drt-H £A rcp₆rh. iDUj, Vol I. _{p d} +

riUMMINGS

^ S S T A N T S , INC.

VOLUME *l* OF n

REMEDIAL ACTION REPORT INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

PREPARED FOR: VIACOM INC. 11 STANWIX STREET PITTSBURGH, PA 15222

PREPARED BY: CUMMINGS/RLTER CONSULTANTS, INC. 10 DUFF ROAD, SUITE 500 PITTSBURGH, PA 15235

> PROJECT NO. 98245.20/04 NOVEMBER 16,2004

10 Duff Road . Suite 500 • Pittsburgh, PA 15235 (412) 241-4500 • FAX (412) 241-7500 • E-Mail: <u>crc@cummingsriter.com</u>

VIACOM

November 15, 2004

Ms. Isabel Rodrigues Western New York Superfund Branch II Emergency and Remedial Response Division U.S. Environmental Protection Agency, Region II 290 Broadway, 20th Floor New York, NY 10007-1866

Re: Remedial Action Report, Industrial Drainageway Kentucky Avenue Wellfield Superfund Site, Operable Unit No. 3 Horse heads. New York

Dear Ms. Rodrigues:

Viacom Inc. (Viacom) hereby submits to the U.S. Environmental Protection Agency, Region II (EPA), three copies of the Remedial Action Report that documents the completion of the Remedial Design and Remedial Action for the Industrial Drainageway associated with Operable Unit No. 3 of the Kentucky Avenue Wellfield Superfund Site. This report also describes the supplemental soil remediation effort conducted by Viacom in response to EPA correspondence dated June 16 and September 16, 2004.

We trust this submittal satisfies your requirements at this time. If you have questions regarding this report or related project matters, please do not hesitate to contact me.

Respectfully submitted,

-----Les M. Fransch

Supervising Contractor Consultant/Project Engineer Environmental Remediation

LMB:

Ms. Isabel Rodrigues November 15, 2004 Page 2

- cc: U.S. Environmental Protection Agency, Region II Attn: Chief, New York Caribbean Superfund Branch Office of Regional Counsel Kentucky Avenue Wellfield Site Attorney
 - U. S. Department of Justice
 - Attn: Chief, Environmental Enforcement Section Re: DOJ #90-11-2-1224-A
 - New York State Department of Environmental Conservation
 - Attn: Director, Division of Hazardous Waste Remediation Kentucky Avenue Wellfield Site Project Manager

 $f^{A}UMMINGS$ $f^{A}E > ITER$ JL t CONSULTANTS, INC.

»

VOLUME I OF II

REMEDIAL ACTION REPORT INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

PREPARED FOR: VIACOM INC. 11 STANWIX STREET PITTSBURGH, PA 15222

PREPARED BY: CUMMINGS/RITER CONSULTANTS, INC. 10 DUFF ROAD, SUITE 500 PITTSBURGH, PA 15235

> PROJECT NO. 98245.20/04 NOVEMBER 16,2004

10 Duff Road • Suite 500 • Pittsburgh, PA 15235 (412) 241-4500 • FAX (412) 241-7500 • E-Mail: <u>crc@cummingsriter.com</u>

TABLE OF CONTENTS

LIST (OF TAB	BLES iii	i I						
	JF FIG	UKES							
VOLU	J ME I								
1.0	INTRODUCTION 1								
	1.1 PROJECT FIELD TEAM								
	1.2	REPORT ORGANIZATION							
2.0	REMEDIAL CONSTRUCTION ACTIVITIES								
	2.1 EXCAVATION DELINEATION								
	2.2	BYPASS PUMPING AND EXCAVATION							
	2.3	POST-EXCAVATION SOIL SAMPLING							
	2.4	DISPOSAL	2						
	2.5	DECONTAMINATION.	3						
	2.6	HEALTH AND SAFETY	3						
	2.7	BACKFILL AND RESTORATION	1						
	2.8	SEEDING AND MULCHING.	5						
	2.9	PRE-FINAL AND FINAL INSPECTIONS	5						
	2.10	SUMMARY OF COSTS	5						
	2.11	PROJECT CHANGES/UNUSUAL OBSERVATIONS	5						
3.0	SUPPLEMENTAL SOIL REMEDIATION								
	3.1	SOIL SAMPLING)						
	3.2	SOIL REMOVAL							
		3.2.1 Excavation	2						
		3.2.2 Disposal	5						
	3.3	ROCK CHANNEL PROTECTION	3						
4.0	CERTI	FICATION OF WORK	ŀ						
TABL	ES								
FIGUE	RES								
APPE	NDIX A	; RECORD DRAWINGS							
APPENDIX B:		: POST-EXCAVATION VERIFICATION AND POST-CONSTRUCTION							
		BACKGROUND SOIL SAMPLE LABORATORY RESULTS (ELECTRONIC DA	TA)						
APPE	NDIX C	SAMPLING MEMORANDUM							
APPE	NDIX D	D DATA VALIDATION REPORT							
VOLU	J ME II								
APPE	NDIX E	: PERSONAL AIR MONITORING DATA							

APPENDIX F: BACKFILL CHEMICAL AND GEOTECHNICAL TESTING RESULTS

fUMMINGS WITER IV

TABLE OF CONTENTS (CONTINUED)

PAGE

APPENDIX G:	FIELD DESIGN CHANGE REQUEST FORMS
APPENDIX H:	HAZARDOUS WASTE MANIFESTS
APPENDIX I:	NON-HAZARDOUS WASTE BILLS OF LADING
APPENDIX J:	NYSDEC GEOPROBE® SAMPLE DATA, SUPPLEMENTAL SOIL
	INVESTIGATION
APPENDIX K:	POST-EXCAVATION VERIFICATION DATA, SUPPLEMENTAL SOIL
	REMEDIATION
APPENDIX L:	NON-HAZARDOUS WASTE BILLS OF LADING, SUPPLEMENTAL SOIL
	REMEDIATION

LIST OF TABLES

TABLE NO.TITLE

1	SUMMARY OF ANALYTICAL RESULTS, POST-EXCAVATION SOIL SAMPLES
2	SUMMARY OF ANALYTICAL RESULTS, PRE- AND POST- CONSTRUCTION BACKGROUND SOIL SAMPLES
3	SUMMARY OF ANALYTICAL RESULTS, DISPOSAL CHARACTERIZATION SAMPLES
4	SUMMARY OF APPROXIMATE COSTS
5	AREA 23, SUMMARY OF GEOPROBE SAMPLING AND ANALYSES, SUPPLEMENTAL SOIL REMEDIATION
6	AREA N, SUMMARY OF GEOPROBE SAMPLING AND ANALYSES, SUPPLEMENTAL SOIL REMEDIATION
7	SUMMARY OF POST-EXCAVATION CONFIRMATORY SAMPLING DATA, SUPPLEMENTAL SOIL REMEDIATION

LIST OF FIGURES

FIGURE NO. TITLE

1 SITE LOCATION MAP

EXCAVATION RECORD DRAWING

SOIL SAMPLE LOCATION MAP

SUPPLEMENTAL SOIL REMEDIATION, AREAS N AND 23

REMEDIAL ACTION REPORT INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

1.0 INTRODUCTION

Cummings/Riter Consultants, Inc. (Cummings/Riter), on behalf of Viacom Inc. (Viacom), successor by corporate merger to CBS Corporation, has prepared this Remedial Action Report for remedial construction activities at the Industrial Drainageway portion of the Kentucky Avenue Wellfield site in Horseheads, New York (Figure 1). This report summarizes the remedial construction activities undertaken by Viacom to comply with the requirements of a Consent Decree, Civil Action No. 97-CV-6555T, entered between CBS Corporation and the U.S. Environmental Protection Agency (USEPA), on March 2, 1998 (the Consent Decree). The remedial construction was undertaken as described in the USEPA-approved Supplemental Design Report (Cummings/Riter, April 19, 2001) and the Remedial Action Work Plan for Industrial Drainageway Remediation (RAWP), as amended (Cummings/Riter, August 15, 2001; April 24, 2002). This report also describes Viacom's supplementary work effort conducted in August and September 2004 to address certain floodplain soils associated with the Industrial Drainageway.

1.1 PROJECT FIELD TEAM

The project field team for remedial construction consisted of the supervising contractor, the quality assurance (QA) team, the remedial action contractor, and USEPA representatives. Mr. Leo M. Brausch acted as the supervising contractor on behalf of Viacom. Fagan Engineers, PC, of Elmira, New York (Fagan) and Cummings/Riter served as Viacom site representatives and the independent QA team during construction. CDM Federal Programs Corporation represented USEPA and provided full-time regulatory oversight. Viacom retained AAA Environmental, Inc. of Syracuse, New York (AAA) as the primary remedial action contractor to implement the remedial action.

1.2 REPORT ORGANIZATION

Section 2.0 of this report describes the Industrial Drainageway remedial construction activities. Section 3.0 of this report describes the supplemental remediation of floodplain soils. Section 4.0 is a request for certification of Industrial Drainageway remedial construction.

The appendices include record drawings (Appendix A), post-excavation soil sample laboratory reports in electronic format (Appendix B), sampling memoranda (Appendix C), the data validation report (Appendix D), personal air monitoring data (Appendix E), backfill chemical and geotechnical testing results (Appendix F), Field Design Change Request Forms (Appendix G), and copies of waste manifests and bills of lading (Appendices H and I, respectively). Appendix J provides New York State Department of Environmental Conservation (NYSDEC) Geoprobe® sample data related to the supplemental investigation of floodplain soils, and Appendices K and L provide additional backup documentation related to the supplemental investigation and remediation of floodplain soils.

2.0 REMEDIAL CONSTRUCTION ACTIVITIES

This section of the Remedial Action Report describes the construction activities performed to implement the remedial design described in the RAWP and the Revised Addendum to the RAWP (Cummings/Riter, April 24, 2002).

Construction activities were initiated September 4, 2001, and were suspended September 25, 2001 due to inability to gain access to properties owned by Norfolk Southern Railway Company (Norfolk Southern) and Hardinge, Inc. (Hardinge). At the request of USEPA, an addendum to the RAWP (Cummings/Riter, March 11, 2002) was drafted to address temporary flow diversion and construction sequencing as related to erosion and sedimentation control to facilitate property access with Hardinge. A Revised Addendum to the RAWP was issued April 24, 2002 to address comments received from the USEPA via letter dated March 27, 2002. Construction activities resumed August 19, 2002, and demobilization was completed January 27, 2003. Final site restoration activities (e.g., fine grading, seeding, and mulching) were completed in the spring of 2003.

In accordance with the approved remedial design, the remedial action included the excavation and off-site disposal of sediment and bank soils exceeding 1.0 milligram per kilogram (mg/kg) of polychlorinated biphenyls (PCBs). In addition to excavation and off-site disposal, construction activities included bypass pumping, on-site stabilization/solidification, post-excavation confirmatory sampling, excavation backfilling, seeding and mulching, and demobilization. The following sections describe construction activities.

2.1 EXCAVATION DELINEATION

In its September 30, 1996 Record of Decision (ROD) for Operable Unit No. 3 of the Kentucky Avenue Wellfield Superfund site, which dealt with remediation of the Industrial Drainageway, USEPA established a remedial action objective (RAO) for PCBs in drainageway sediments of 1.0 mg/kg. As described in the ROD, USEPA established this RAO to address potential unacceptable human health risks associated with direct contact with PCBs in drainageway sediments (i.e., while wading in the stream) and to reduce the potential exposure of aquatic organisms to PCBs in sediment. Concerns regarding aquatic organisms related both to the protection of potential ecological receptors and potentially unacceptable human health risk from consumption offish containing elevated PCB concentrations.

The design for the Industrial Drainageway remedial action was based on the results of the supplemental pre-design investigation performed by Cummings/Riter in February 2001, and documented in the Supplemental Design Report. A total of 263 sediment and bank soil samples were collected from 83 locations in and adjacent to the Industrial Drainageway and analyzed for PCBs. The results of the systematic sampling and analysis performed during the supplemental pre-design investigation were used to horizontally and vertically delineate sediment and bank soil exceeding the RAO of 1.0 mg/kg PCBs. Initial excavation limits were presented in the RAWP, and were located by survey and marked with wooden stakes before excavation.

2.2 BYPASS PUMPING AND EXCAVATION

AAA mobilized September 4, 2001 and began setup of temporary utilities, construction of a decontamination pad, construction of a polyethylene-lined stabilization/solidification cell, and site clearing. Without access to Norfolk Southern property, AAA prepared for excavation activities downstream of Culvert 2 (Figure 1), where the stream passes beneath a Norfolk Southern spur track. An earthen dam was constructed at Station 16+25, and an 8-inch diesel pump was located at the dam to bypass flow around designated excavation areas at Stations 17+00 and 18+00. A combination of 8-inch diameter aluminum pipe and collapsible hose was used to convey the flow to the discharge point near Station 20+00 along the east side of the Industrial Drainageway. A 15-foot long, 12-inch diameter aluminum manifold with four, six-inch diameter outlets was attached to the discharge end of the pipe as an energy dissipator. The energy dissipator was placed within a bed of nominal four-inch diameter stone enveloped in non-woven geotextile.

Excavation activities commenced September 20, 2001 with the partial removal of designated bank soil between Industrial Drainageway Station 17+75 and Station 18+25

(Figure 2). Excavated soil was placed in the nearby stabilization/solidification cell, mixed with lime kiln dust, and analyzed for disposal parameters. The approximate 10-percent by weight lime kiln dust addition, which was based on bench-scale testing conducted by AAA during the preparation of its bid for the remedial construction work, was aimed at solidifying wet materials and eliminating free liquids to the extent required by the disposal facilities. The lime kiln dust was supplied by Special Minerals, Inc. of Adams, Massachusetts.

For the work conducted in September 2001, the 10-percent lime kiln dust addition effectively solidified the excavated soils, and analytical results for the excavated and solidified material were used to obtain approval for disposal as non-hazardous waste at Waste Management, Inc. (WMI) Subtitle D landfills in Erie, Pennsylvania (Lakeview Landfill) and in Fairport, New York (High Acres Landfill). Approximately 10 tons of bank soil were removed before construction activities were suspended on September 24, 2001, due primarily to insufficient capacity of the temporary pumping scheme. Upon suspension of construction activities, the excavation was lined with geotextile, and gravel was placed over the geotextile to help stabilize the channel bank.

Upon remobilization in August 2002, AAA began with setup of temporary facilities, additional site clearing, and general site cleanup. As a component of the full-scale bypass pumping setup, AAA installed butt-fusion welded, 16-inch diameter high-density polyethylene (HDPE) pipe from the Industrial Drainageway outfall, through Culvert 1 to the inlet of Culvert 2. A second length of HDPE pipe was installed from the outlet of Culvert 2 to a discharge location at the northwest portion of Koppers Pond on property owned by the Elmira Water Board (EWB). The HDPE pipe was placed along the west side of the Industrial Drainageway to Culvert 2, and then along the west side of the Industrial Drainageway from Culvert 2 to Koppers Pond (Figure 2). In accordance with the approved Revised Addendum to the RAWP, AAA installed a rock apron energy dissipator at the discharge end of the HDPE pipe to help prevent scour from the flow discharge. The full-scale bypass pumping design called for placement of the HDPE pipe through Culvert 2 because Norfolk Southern would not allow the pipe to be placed over the rail spur or through the ballast.

Excavation activities resumed September 5, 2002 with the removal of sediment via vacuum truck from Culvert 2 to accommodate the 16-inch HDPE pipe for bypass pumping. The flow through the culvert was captured and temporarily conveyed to a discharge point downstream of Culvert 2 to eliminate normal flow through the culvert during cleaning operations. Flow was temporarily pumped by an 8-inch diesel pump from a sump excavated at Station 12+00 through an 8-inch diameter collapsible hose to the HDPE pipe immediately downstream of Culvert 2. A filter bag was attached to the outlet end of the HDPE pipe at the rock apron during the temporary flow diversion. The solids removed from the culvert with the vacuum truck were placed in a polyethylene-lined storage cell for solidification with lime kiln dust (i.e., remaining lime kiln dust from that delivered to the site in September 2001). Vacuumed liquids were processed through the construction water treatment system, consisting of two 500-gallon HDPE tanks and a series of filters down to one-micron opening size, and then discharged to the Industrial Drainageway.

AAA installed a row of silt fence across the channel downstream of Culvert 2 to capture solids potentially suspended by the installation of the temporary sump and the earthen dam used for full-scale bypass pumping. The silt fence was enveloped with 2-to 4-inch diameter stone for stability. The purpose of the check dam was to mitigate potential suspended solids in Industrial Drainageway flow before initiating full-scale bypass pumping. The principal source of suspended solids related to remediation activities was vehicular traffic crossing the Industrial Drainageway immediately downstream of Culvert 2 to access the contractor trailer area. Sediment samples collected from the traffic crossing area as part of supplemental pre-design activities met the performance standard. This source of suspended solids was eliminated upon initiation of full-scale bypass pumping.

After cleaning Culvert 2, the 8-inch diesel pump was relocated from the temporary sump at Station 12+00 to the Industrial Drainageway outfall at Station 0+00. A sump was excavated at approximately Station 00+15, and an earthen dam was constructed at approximately Station 00+25. The dam was covered with polyethylene sheeting secured with nominal 12-inch size riprap. Full-scale bypass pumping of the Industrial Drainageway flow began September 11, 2002 with the 8-inch diameter pump. A 12-inch

diameter pump was mobilized to the outfall area as a backup pump for high-flow events and manifolded with the 8-inch pump. A level controller was installed in the sump to activate the 12-inch pump when the water level exceeded a set point.

Excavation of sediments and bank soil near Station 0+00 commenced on September 14, 2002. By October 21, 2002, AAA had excavated an estimated 1,750 cubic yards (CY) of sediment and bank soil, an excavation rate of approximately 43 CY/day. By that time, it had become apparent that the extent of PCB-impacted materials subject to removal was significantly greater than had been predicted in the remedial design.

The excavation effort was then accelerated so that, by the end of November 2002, AAA had excavated an estimated 5,962 CY of material, representing an excavation rate of more than 105 CY/day after October 21, 2002. By the time the excavation was completed on December 10, 2002, AAA had removed an estimated 6,077 CY of sediment, bank soil, and other floodplain soil. This quantity was more than twice what was envisioned in the remedial design (based on the extensive predesign sampling) and almost six times what was described in the ROD.

Excavated sediment, bank soil, and other floodplain soils were placed in rolloff boxes or polyethylene-lined basins for solidification/stabilization mixing. Based on the results of its initial bench-scale treatability testing, AAA had planned to use a 5- to 10-percent Portland cement addition to chemically stabilize sediments and bank soils exhibiting a cadmium concentration greater than 1.0 milligram per liter (mg/1) in toxicity characteristic leaching procedure (TCLP) testing. AAA's bench scale testing showed that stabilizing with Portland cement would reduce TCLP cadmium concentrations to less than 1.0 mg/1 and allow off-site disposal of the stabilized material in a Subtitle D landfill. Instead, AAA was able to chemically stabilize cadmium-impacted soils using a 5- to 10-percent addition of Portland cement kiln dust rather than Portland cement. The cement kiln dust was purchased from Pozament Corporation of Milford, Connecticut.

After exhausting its previously delivered supply of lime kiln dust, AAA used cement kiln dust almost exclusively to both solidify and stabilize excavated materials. By using cement kiln dust to treat all excavated materials, AAA did not need to segregate cadmium-impacted materials from other excavated materials. Over the course of the

i^UMMINGS

project, AAA used approximately 870 tons of cement kiln dust and 90 tons of lime kiln dust to stabilize/solidify the estimated 11,849 tons of excavated sediment and soils, an average agent addition rate of 8.1 percent.' The materials stabilized in rolloff boxes were then transferred to polyethylene-lined storage cells and sampled for disposal parameters. Solidified/stabilized materials were staged in the storage cells until treatment sample verification results were obtained for disposal approval.

2.3 POST-EXCAVATION SOIL SAMPLING

Following excavation of sediment and bank soils to the design limits, post-excavation samples were collected from excavation sidewalls and bottoms for PCB analysis to demonstrate that remaining bank soil and sediment met the performance standard. Additional sediment and bank soil and, as described above, other floodplain soils were removed where representative post-excavation sample results failed to meet the 1.0 mg/kg PCB concentration applied by USEPA as the cleanup standard. A total of 208 post-excavation samples were collected and submitted for laboratory analysis.

AAA performed post-excavation sampling, and Friend Laboratory Inc. (FLI) of Waverly, New York, performed laboratory analysis. Samples were collected with USEPA oversight.

AAA initially attempted to use Dexsil L2000DX field screening kits to aid in the evaluation of excavation limits prior to collection of samples for laboratory analysis. The Dexsil results proved to correlate poorly to laboratory results, possibly due to matrix interference. AAA then switched to using Ensys, Inc. (Ensys) PCB field screening test kits and achieved better results. Post-excavation soil sample laboratory analytical results are provided on a dry-weight basis and are summarized in Table 1. Sample locations are shown on the record drawings included as Appendix A. Laboratory analytical reports for post-excavation samples are provided as Appendix B in electronic format.

 $^{^{1}}$ The total quantity of 11,849 tons includes material generated in cleanup (i.e., over-excavation) of areas use in waste stabilization and on-site stockpiling. The 6,077 CY survey volume of material removed from the drainageway equates to an estimated 10,500 tons. On this basis, the cement kiln dust addition rate calculates to 9.1 percent.

Sidewall samples were collected at a frequency of one sample per 200 square feet of exposed sidewall, with a minimum of one sample for each sidewall in each discrete excavation. Bottom samples were collected at a frequency of one sample per 900 square feet of excavation, with a minimum of one bottom sample for each discrete excavation. Sidewall and bottom samples were collected as composite samples consisting of three to five equal volume aliquots distributed evenly throughout the sidewall or bottom surface, respectively, from zero to six inches in the direction perpendicular to the sample surface. The number of aliquots varied according to the surface area for each composite sample.

Based on the expectation that removal was to be limited to sediment and bank soils, the RAWP (Cummings/Riter, August 15, 2001) called for the collection of sidewall samples for each two-foot depth increment. During remedial construction activities, however, sampling was focused on surface versus subsurface soils in the floodplain along the drainageway. Accordingly, sidewall soil samples were collected from two zones: zero to two feet (surface soil) and greater than two feet (subsurface soil) at the prescribed frequency. The field change was approved by USEPA and documented in a memorandum (Appendix C) issued by Cummings/Riter dated September 16, 2002. The memorandum was prepared at the request of USEPA to clarify post-excavation sampling requirements. Sidewall samples were generally collected at mid-height within the sample depth interval.

The sample labeling scheme was modified with USEPA approval from the Sampling and Analysis Plan (Appendix B of the RAWP, Cummings/Riter, August 16, 2001) to help track sample locations. Samples were labeled with a series of four letters followed by a sample number, as follows:

A-B-S-N-001

where,

first letter: Industrial Drainageway stationing: A = STA. 0+00 to 1+00, etc. second letter: B = bank sample or C = channel sample, third letter: surface (S, less than two feet deep) or subsurface (SS, greater than two feet deep) sample, fourth letter: compass direction (north, south, east, or west) for sidewall samples, or B = bottom samples, and number indicates the order of sample collection. Analytical results for confirmatory samples were reported as Level IV data to facilitate validation by an independent validation service in accordance with USEPA National Functional Guidelines. Because the samples were composite samples and, therefore, not truly Level IV data, full data validation was not performed. Rather, a data usability and completeness review was performed on a representative portion of the data to determine analytical limitations of the data based on specific quality control criteria. Twelve percent of the laboratory sample delivery groups were verified as part of the validation. The data validation report is included as Appendix D.

In addition to post-excavation sampling, samples collected from contractor staging areas after construction were analyzed for PCBs to show that remediation activities did not result in migration of constituents of interest. Samples were collected from areas used for solidification/stabilization operations and staging areas. Post-construction background staging area results are summarized in Table 2. Sample locations on the Village of Horseheads property are shown on Figure 3.

In some sections of the Industrial Drainageway, especially portions upstream of Culvert 2, sediments containing PCBs at levels above the performance standard correlated to the presence of a gray, clay-like material. In areas where the gray material was encountered, the typical excavation scenario consisted of removing sediment and bank soils to initial design limits, sampling and analyzing for PCBs, and, if sample results exceeded the performance standard, removing the gray material before re-sampling. As confidence in the Ensys test kits grew, field testing with the Ensys kits was used to evaluate whether or not to expand an excavation before collecting post-excavation samples for laboratory analysis.

In general, if post-excavation channel and bank sample analytical results exceeded the performance standard, additional material away from the channel was removed, as specified by USEPA, and the excavation was re-sampled. This process was repeated until samples at the limits of the excavation exhibited less than 1.0 mg/kg PCBs. Post-excavation Sample N-B-S-E-004 (5.9 mg/kg PCBs) did not achieve the 1.0 mg/kg PCBs level along the east sidewall of the excavation between Stations 12+75 and 13+75. The

excavation at this portion of the Industrial Drainageway was expanded beyond design limits into floodplain soils along the east bank (Chemung County property) for three iterations in attempts to remove material with PCB concentrations exceeding 1.0 mg/kg. Viacom submitted Field Design Change Request 004 (Appendix G) to USEPA regarding the post-excavation sample results and the limits of excavation in this area.

The only portion of the Industrial Drainageway other than the east sidewall between Stations 12+75 and 13+75 where post-excavation samples did not achieve 1.0 mg/kg PCBs is between Stations 16+75 and 17+25. The inactive Village of Horseheads municipal waste landfill lies immediately adjacent to this portion of the channel. Results for samples collected in the direction longitudinal to flow meet the performance standard; however, levels of PCBs in the northeast sidewall of the excavation (Sample W-B-S-E-003 [1.8 mg/kg PCBs]) at this location exceeded the performance standard. The excavation was expanded twice in the northeast direction in attempts to remove bank soil with PCB concentrations exceeding the performance standard; however, these efforts were terminated when landfill waste (including glass and plastic garbage bags) was encountered. Remaining impacted materials are beyond the flow line of the channel. Viacom submitted Field Design Change Request 003 (Appendix G) to USEPA to address the post-excavation sample results and the limits of excavation in this area.

As part of the supplemental pre-design investigation, samples were collected from a lowlying area to the southwest of Industrial Drainageway Station 16+75 that occasionally floods during high-flow events, typically during the spring thaw (Sample Point 23). An investigation sample collected from a depth interval of one to two feet from Sample Point 23 contained 13 mg/kg PCBs. Following excavation to the design limits, analytical results for five of six sidewall post-excavation verification samples, and one of two bottom samples, indicated levels of PCBs in excess of the performance standard. The excavation was expanded laterally and vertically, and additional samples were collected. Concentrations of PCBs in samples from the remaining south and west sidewalls (Samples 23-B-S-S-IOO [3.1 mg/kg PCBs] and 23-B-S-W-IOO [2.2 mg/kg PCBs]) exceed 10 mg/kg PCBs. Viacom submitted Field Design Change Request 002 (Appendix G) to USEPA to address the post-excavation sample results and limits of excavation in this area.

- 1 1 -

2.4 DISPOSAL

Prior to contractor mobilization, disposal characterization samples were composited from supplemental pre-design sediment and bank soil samples with concentrations of PCBs exceeding the performance standard. The composited samples were analyzed using the TCLP testing for metals regulated by the Resource Conservation and Recovery Act (RCRA). The disposal characterization sample results identified cadmium as the only RCRA metal present at concentrations exceeding the threshold for classification as hazardous waste.

Sediment and bank soil identified from supplemental pre-design investigation samples as exceeding 35 mg/kg PCBs were classified for disposal purposes as Toxic Substances Control Act (TSCA) and NYSDEC hazardous waste. Soil and sediment containing less than 35 mg/kg PCBs were designated for disposal as non-hazardous waste following demonstration of effective solidification/stabilization of cadmium. Materials classified as TSCA waste were disposed of at CWM Chemical Services, LLC, in Model City, New York. Non-TSCA materials were disposed of at High Acres Landfill, in Fairport, New York. Approximately 372 tons of material were disposed of in Model City, and approximately 12,437 tons of excavated materials were disposed of at High Acres Landfill. The total quantity of material sent off site for disposal was nearly four times that calculated from the predesign investigation data and more than 10 times that described in the ROD. Appendices H and I provide copies of hazardous waste manifests and nonhazardous waste bills of lading, respectively.

In accordance with disposal facility requirements, samples of staged materials from each storage cell were collected for analysis of cadmium by TCLP and PCBs at a minimum frequency of one sample per 250 CY. Disposal characterization results for samples of staged materials were used to verify that materials were non-TSCA and to verify effective solidification/stabilization of cadmium. None of the disposal characterization samples indicated that excavated materials were TSCA-regulated, and PCB levels were typically less than 5 mg/kg. If sampling indicated a TCLP cadmium concentration

greater than 1.0 mg/1, further cement kiln dust addition and mixing were conducted on the corresponding stockpile. Re-sampling was performed after the supplemental treatment to confirm that the affected stockpiled could be disposed of in a Subtitle D landfill.

The process of solidification/stabilization and characterization sample analysis was repeated until effective de-classification could be demonstrated. Samples from stockpiles that failed Land Disposal Requirements were mixed with additional reagent and were analyzed for cadmium by TCLP. Table 3 summarizes disposal characterization sample results.

2.5 DECONTAMINATION

Before handling backfill materials, the excavator buckets used to remove and stabilize/solidify excavated materials were mechanically cleaned (shovel and brush) to remove clinging soil, and then pressure-washed/steam-cleaned over one of the excavated materials stockpiles.

Rolloff boxes were cleaned prior to demobilization by mechanical (shovel) removal of clinging soil and pressure washing/steam-cleaning. Decontamination water was collected from the rolloffs via vacuum truck and transferred to one of the treatment cells for mixing with staged materials and solidification reagent prior to off-site disposal.

Following the disposal of staged materials, and excavation and disposal of soil below the staging areas, the decontamination pad material was loaded out with other staged soil. The final excavator decontamination consisted of brush-scrubbing the excavator bucket over the last load to High Acres Landfill, and dry-wiping the excavator bucket with cloth rags. Rags were disposed of with the last load of material destined for High Acres Landfill.

2.6 HEALTH AND SAFETY

In accordance with the RAWP, AAA prepared a Health, Safety and Contingency Plan (HSCP) prior to mobilization. The HSCP included provisions for a daily tailgate safety meeting, personnel air monitoring, and perimeter air monitoring.

In accordance with the HSCP, personal air pump samples were to be collected on the first day of intrusive activities, and on the first day of excavation of TSCA-designated sediments. Personal air pumps were not deployed on the first day of excavation in September 2001 due to rain. However, personal air monitoring samples were collected for PCB analysis on both the first day of intrusive activities and on the first day of excavation of TSCA-designated sediments upon resumption of activities in September 2002. Based on the results of personal air monitoring showing no detectable levels of PCBs, soil removal activities were performed using Level D personal protective equipment, unless dust monitoring results warranted upgrades in respiratory protection. Personal air monitoring sample results are provided as Appendix E. A work-zone action level of 0.05 milligrams per cubic meter (mg/m³) was established in the HSCP for workers to don Level C protection. Dust levels exceeding action levels that were considered by the contractor's health and safety officer to be brief transients (e.g., caused by approaching or moving the dust monitor) were annotated in the logbook, and were not regarded as meaningful data.

During the removal of sediment and bank soil with concentrations of PCBs exceeding the performance standard, dust monitoring was performed at the work zone perimeter in accordance with the Community Air Monitoring Plan. Dust monitors were not deployed during precipitation events to avoid instrument damage, or when the ground surface was saturated from recent precipitation. The level of 0.05 mg/m³ was also used as the work-zone perimeter action level for the contractor to implement dust suppression measures for community protection. On those occasions that the work zone perimeter action level was exceeded, AAA used a water truck to spray water for dust suppression.

2.7 BACKFILL AND RESTORATION

On October 18, 2002, AAA mobilized a Caterpillar D6C bulldozer for backfill placement. Prior to delivery of backfill soil to the site from Porter Concrete Service of Waverly, New York, and in accordance with the RAWP, AAA submitted the required advanced testing results to Cummings/Riter for review and approval. Parameters for advance testing consisted of the most recent Target Compound List/Target Analyte List for each type of backfill (general fill and gravel fill), and engineering classification in accordance with American Society for Testing of Materials (ASTM) D2487. Backfill

analytical results and sieve analyses are provided as Appendix F. General fill (denoted as "vegetative fill"), consisting of a well-graded sand with gravel, was placed to within six inches of final grade. Gravel fill (denoted as "bank run gravel") consisted of a well-graded gravel with approximately 30 percent sand-sized particles and approximately 10 percent silt/clay-sized particles. General fill was covered with six inches of gravel fill for channel stabilization. Approximately 4,250 tons (about 2,600 CY) of general fill and 7,130 tons (about 4,700 CY) of gravel fill were placed on site to restore the channel and staging areas. The final restoration elevations are shown on Sheet 3 of 3 of the record drawings (Appendix A).

2.8 SEEDING AND MULCHING

Seed was applied over the disturbed area at the bypass pumping discharge location using a mechanical spreader. The seed was comprised of a mixture of annual ryegrass, birdsfoot trefoil, white clover, and red fescue and was applied at a rate of 30 pounds per 10,000 square feet (s.f.). The seed mix for the disturbed area at the pump intake was restored with a mixture of perennial ryegrass, blue grass and red fescue applied at a rate of 60 pounds per 10,000 s.f. Straw mulch was applied to all seeded areas. "

2.9 PRE-FINAL AND FINAL INSPECTIONS

With the restoration of the drainageway channel completed, a pre-final inspection was held on December 6, 2002 with representatives of USEPA, Viacom, Fagan, and AAA. Removal of the dam, dismantling of the bypass pumping system, and off-site disposal of excavated sediment and bank soil were completed after that inspection. A subsequent inspection was conducted on September 22, 2003 and consisted of a walk-through of the project to determine the completeness of the remedial action and its consistency with design documents and the ROD. In accordance with the Statement of Work (SOW) under the Consent Decree, advance notification of this inspection was provided to NYSDEC. A final inspection of the project, including the supplemental soil remediation (Section 3.0), was made on September 23, 2004. Representatives of Viacom, USEPA, and NYSDEC conducted this final inspection.

2.10 SUMMARY OF COSTS

In accordance with the requirements of the SOW, a summary of approximate remedial design and remedial construction costs for Industrial Drainageway has been provided in Table 4. The costs presented in Table 4 include costs associated with the supplemental soil remediation (Section 3.0).

2.11 **PROJECT** CHANGES/UNUSUAL **OBSERVATIONS**

Viacom submitted four field design change requests to USEPA for approval to address post-excavation conditions for specific areas of the Industrial Drainageway and floodplain. These change requests were initiated following discussions and a conference call on October 16, 2002, among Ms. Isabel Rodrigues of USEPA, Mr. Michael Miner of CDM Federal Programs Corporation, Mr. Leo Brausch of Viacom, and Mr. Stan Criss of Fagan. The first three field design change requests were prepared by Mr. Criss and submitted to the above-listed parties on October 24, 2002. On January 10, 2003, summarized reports stating the changes that were made related to each request were submitted to these same parties. To maintain continuity, a fourth change request has been added to this report and included in Appendix G to clarify results for a post-excavation sample that had been taken from the east bank of the Industrial Drainageway between Station 12+75 and Station 13+75.

Field Design Change Request 001 addressed the excavation and subsequent restoration on the east side of a small peninsula near Station 15+25 aligned parallel to flow along the west bank of the Industrial Drainageway. The change was made to connect drainage from an unnamed culvert (Culvert 3) to the Industrial Drainageway, and describes stabilization of the excavation with geotextile and a one-foot layer of nominal one- to three-inch diameter stone. The excavations were made per the design from Stations 14+00 to 15+42 on the west bank, and included an excavation to Culvert 3. Postexcavation results indicate that remaining sediments in this area meet the performance standard.

Field Design Change Request 002 addressed the lateral extent of excavation of a small, low-lying area approximately 30 feet south of the Industrial Drainageway at Station 17+00, known from the predesign sample location as Area 23. This area was separated

from the drainageway channel by a stabilized bank, which was overgrown with poplar trees. The request was to limit the excavation to the dimensions as of October 24, 2002, to avoid impairment of the vegetative stabilization. Based on results for post-excavation samples from the bank sidewalls, the bank was excavated, and a replacement berm was built and armored with nominal one-to three-inch diameter stone. Post-excavation samples (labeled with 23/W identifiers) from the excavated bank area indicate that remaining soils along the bank met the performance standard.

Several expansions of the Area 23 excavation were made in the southerly and western directions, but PCB concentrations in two post-excavation samples (23-B-S-S-100 and 23-B-S-W-100) continued to show exceedance of the performance standard (3.1 mg/kg and 2.2 mg/kg, respectively). In submitting Field Design Change Request 002, Viacom believed that the area was not part of the drainageway channel (the excavation had already been expanded more than 70 feet from the drainageway) and that further excavation would provide only minimal improvement to what is already significantly below the subsurface cleanup level of 10 mg/kg perNYSDEC *Technical Administrative Guidance Memorandum on Determination of Soil Cleanup Objectives and Cleanup*

Levels (TAGM) 4046. The Area 23 excavation was lined with geotextile and backfilled with bank run gravel. Viacom subsequently agreed to remove additional floodplain soils in Area N, as described in Section 3.2.

Field Design Change Request 003 was to limit the excavation between Stations 16+75 and 17+25 to the dimensions as of October 24, 2002. The request was made to limit extension of the east sidewall excavation further into the garbage of the closed Village of Horseheads landfill, and to leave the bank in place between the drainageway channel and the Area 23 excavation. As stated above, it was decided to remove the common bank between the drainageway and Area 23 due to post-excavation sample results. The east bank excavation was excavated to design limits, and expanded twice in two-foot increments. Garbage, plastic bags, and various wastes were encountered in the first two-foot extension of the excavation, and a combination of garbage intermingled with cover soil was encountered in the second two-foot excavation extension. The composite

 $^{^2}$ Although, the sidewall confirmation samples are designated as surface samples, they are comprised of aliquots taken from the top two feet of the excavation. Under NYSDEC TAGM 4046, the surface refers to the top six inches or less of soils.

sample of east bank soils following the second extension showed a 1.7 mg/kg PCB concentration. Because the excavation of the east sidewall was well within the limits of the Village of Horseheads landfill, and the PCB concentration was below the TAGM levels for clean subsurface soils, no additional excavation of the east sidewall was done. The east sidewall was covered with a geotextile, bank run gravel, and armored with nominal one- to three-inch diameter stone for erosion protection. Viacom subsequently provided additional rock channel protection in this area, as described in Section 3.3.

Viacom submitted Field Design Change Request 004 to document the limits of excavation of the east bank of the Industrial Drainageway from Station 12+75 to Station 13+75 in the Chemung County Department of Public Works yard (AreaN). The east sidewall in Area N was extended 25 feet east of design limits from approximately Station 13+20 to Station 13+60. Additional expansion would be into large cinder, metal debris, and soil stockpiles. The PCB concentration in the post-excavation sidewall sample (N-B-S-E-004) was 5.9 mg/kg; Sample N-B-S-E-004 was of subsurface soils and was below the cleanup level as per NYSDEC TAGM 4046. Viacom subsequently agreed to remove additional floodplain soils in Area N, as described in Section 3.2.

In summary, through the course of the Industrial Drainageway remediation, sediments, bank soils, and floodplain soils exhibiting PCB concentrations greater than 1.0 mg/kg were removed, with the following exceptions:

- The north and west sidewalls of the excavation near pre-design investigation Sample Point 23 (2.2 mg/kg and 3.1 mg/kg PCBs, respectively), as described in Field Design Change Request No. 2 (Appendix G);
- The northeast sidewall cutting into the old Village of Horseheads landfill between Stations 16+75 and 17+25 (1.8 mg/kg PCBs), as described in Field Design Change Request No. 3 (Appendix G); and
- East of the drainageway in the Chemung County yard between Stations 12+75 and 13+75 (5.9 mg/kg PCBs), as described in Field Design Change Request No. 4 (Appendix G).

Subsequent work to address these areas is discussed in Section 3.0.

The location of the bypass pumping discharge was changed from the location shown in the Revised Addendum to the RAWP. The pump discharge was relocated to the northwest portion of Koppers Pond on EWB property from approximately Station 19+00. The reason for the relocation was to discharge downstream of sediments designated for excavation on Hardinge property. Natural revegetation of this area is expected to readily occur by native plant species.

AAA had proposed using Dexsil field screening kits for evaluation of PCB concentrations prior to collection of post-excavation samples for laboratory analysis. An evaluation of the correlation between laboratory analytical results and Dexsil field screening results for the same samples indicated that the Dexsil results were unreliable. Consequently, AAA substituted Ensys test kits, which are less susceptible to interference from non-PCB chlorinated compounds, for the Dexsil test kits.

3.0 SUPPLEMENTAL SOIL REMEDIATION

With completion of the activities described in Section 2.0, Viacom believed that the Industrial Drainageway remedial construction had been completed in conformance with the design concept as presented in RAWP, the Remedial Design Report, the ROD, and the Consent Decree. Via letter dated June 16, 2004, however, USEPA requested that Viacom conduct additional remedial activities to address floodplain soils in three locations:

- The sidewalls of the excavation near pre-design investigation Sample Point 23 (Area 23);
- East of the drainageway in the Chemung County yard between Stations 12+75 and 13+75 (Area N); and
- The northeast sidewall cutting into the old Village of Horseheads landfill between Stations 16+75 and 17+25.

As described in its response of August 3, 2004, Viacom agreed to conduct supplemental sampling of floodplain soils and implemented this sampling in August 2004. Based on the results of that sampling, USEPA requested, via letter dated September 16, 2004, that Viacom remove certain floodplain soils in Area 23 and Area N, and provide additional documentation regarding the rock channel protection where the drainageway encountered the Village of Horseheads landfill. Viacom agreed to conduct the scope of work defined by USEPA's letter of September 16, 2004 and has completed this work. These activities are briefly summarized in the following paragraphs.

3.1 SOIL SAMPLING

On August 11, 2004, Fagan conducted, on behalf of Viacom, Geoprobe® sampling of floodplain soils located in Area N and Area 23. This sampling focused on delineating the extent of floodplain soils exhibiting PCB concentrations above 1.0 mg/kg in these two areas.

In this effort, 19 Geoprobe borings were advanced in Area N, and 12 borings were advanced at locations in Area 23. Based on the results of this sampling, Fagan conducted further Geoprobe® sampling in Area N on August 19, 2004, at which time an additional 10 borings were advanced. Figure 4 shows the sampling locations from the work conducted on August 11 and 19, 2004 in Area N and Area 23.

Geoprobe® sampling was conducted using 2-inch diameter Macrocore samplers fitted with acetate sleeves. At each location, the probe was pushed to a depth below the target zone, and the cores were withdrawn and inspected. In Area N, the Geoprobe® borings were advanced to depths of 6 to 8 feet below ground surface (bgs); in Area 23, the Geoprobe® borings were advanced to a depth of 4 feet bgs. Tables 5 and 6 include the lithology encountered the Geoprobe® borings from Area 23 and Area N, respectively.

At each boring, samples of materials suspected of containing PCBs were collected for analysis. Such materials were selected based on their color and texture, and included a black and brown clay and a gray clay at Area N and a gray clay and black silt at Area 23. These impacted materials were generally found in thin layers between depths of 3 to 4.5 feet bgs in Area N and between 1.5 and 3.5 feet bgs in Area 23.

Sampled materials were screened for PCBs using RapidAssay® immunoassay testing kits. The NYSDEC on-site representative also collected samples for laboratory analysis of PCBs. Because the suspected materials were often present only in a very thin layer, many of the NYSDEC samples were not "split samples," but samples of related materials encountered in the borings. Tables 5 and 6 include the results of the RapidAssay® screening for samples collected from Area 23 and Area N, respectively. Appendix J includes the NYSDEC laboratory data uncorrected for dry weight.

3.2 SOIL REMOVAL

Based on the results of the delineation sampling, and in accordance with USEPA's letter of September 16, 2004, Viacom agreed to remove floodplain soils found to contain PCB concentrations greater than 1 mg/kg in Area 23 and floodplain soils found to contain PCB concentrations greater than 10 mg/kg in Area N.

3.2.1 Excavation

This excavation effort was initiated on September 16, 2004 and completed on September 27, 2004. Fagan conducted this work on behalf of Viacom, using Gary Dyer Excavating as a subcontractor.

Fagan first laid out the excavation areas in the field based on the results of the delineation samples. Three distinct excavations were marked in Area N and two were defined in Area 23. These excavation limits are shown on Figure 4.

The excavations first involved removing and stockpiling clean overburden soils from atop the target removal zone. In Area N, the overburden thickness was approximately 2.5 feet, and the overburden was approximately 1.0 foot in Area 23. Segregation of the overburden from underlying impacted materials was practical because the target impacted soils are visibly distinguishable from overburden. The limits of overburden removal were closely monitored in the field to avoid mixing of these materials from underlying impacted soils.

The underlying impacted soils were then excavated and placed in prepared containment areas. These containment areas were lined with polyethylene sheeting and encircled by an earthen berm. Separate containments were constructed for Area N and Area 23.

In Area N, impacted soils were removed to a final depth of 5.0 feet bgs where a visibly distinguishable brown sand and gravel was encountered. In Area 23, the west side excavation was taken to a depth of 3.0 feet bgs; the south side excavation was taken to a depth of 4.0 feet bgs. In both excavations, the residual bottom was a visibly distinguishable brown clay.

After removing soils to the delineated limits, Fagan collected soil samples at the bottom of each excavation area. One soil sample was collected for each 900 square feet of excavation area. In Area N, the confirmatory bottom samples were taken at discrete locations. The confirmatory samples in Area 23 were composites of the encountered

bottom soils. These samples were field screened for PCBs using RapidAssay test kits, and splits were sent to FLI for laboratory analysis in accordance with the approved Quality Assurance Project Plan.

Excavations were then backfilled with clean imported soil. This imported soil was a bank-run gravel from Porter Sand and Gravel, a New York State permitted gravel quarry. The disturbed areas were then mulched and seeded with common grasses and foils.

Table 7 provides the results of confirmatory soil sampling for the September 2004 excavation activities. Laboratory data for these samples are provided in Appendix K. All final confirmation samples showed attainment of the specified cleanup level of 10 mg/kg, consistent with NYSDEC TAGM 4046.

3.2.2 Disposal

Within the containment areas, impacted soils were mixed with hydrated lime at a nominal lime addition rate of 10 percent by weight. Enviroblend®, a proprietary buffered phosphate compound, was also added to the soils removed from Area 23 at an approximate 5-percent rate to chemically stabilize heavy metals present in this material. Samples of the mixed materials were collected and sent to FLI for analysis of PCBs and TCLP SVOCs and metals. These data were needed for waste characterization and acceptance by WML Disposal was at the High Acres Landfill. In this effort, 422.45 tons of stabilized soil were sent off site for disposal. Appendix L provides shipping records.

3.3 ROCK CHANNEL PROTECTION

Figure 4 shows the as-built rock-protected slope on the bank of the Industrial Drainageway between Stations 16+75 and 17+25. This bank has been protected with riprap to minimize the potential from streambank erosion into the adjacent Village of Horseheads landfill. The bank slope at this location is approximately 4 horizontal to 1 vertical. At this slope, the rock channel protection is stable and not subject to excessive scour.

In the supplemental work conducted in September 2004, Viacom added approximately 40 tons of 3- to 6-inch riprap.

4.0 CERTIFICATION OF WORK

Cummings/Riter certifies that this document has been prepared in conformance with the requirements of the Consent Decree, Civil Action No. 97-CV-6555T, between CBS Corporation and USEPA for implementation of the RAWP for Industrial Drainageway Remediation, as amended (Cummings/Riter, August 15, 2001; April 24, 2002).

For the purpose of this Remedial Action Report, "certify" means to state or declare a professional opinion of conditions whose true properties cannot be known at the time such certification was made, despite appropriate professional evaluation. We have accurately reported information provided by others identified in Section 1.1. Certification of work in no way relieves any other party from meeting requirements imposed by contract or other means, including commonly accepted industry practices. Certification does not guarantee construction, nor should our work or this Remedial Action Report be construed as relieving AAA, its subcontractors, and other project participants of their responsibility to have performed the work in accordance with the contract drawings and technical specifications.

Respectfully submitted, Cummings/Riter Consultants, Inc.

Brun () out

Bruce Geno Project Manager

I hereby certify that to the best of my knowledge, the Remedial Action for Industrial Drainageway sediments was implemented and all construction activities were completed, unless so noted, in accordance with the USEPA-approved RAWP for Industrial Drainageway Remediation, the USEPA-approved Supplemental Design Report, the ROD, and Consent Decree unjjff^Bfc& and signature as a Professional Engineer in the State of New York. $J^{\Lambda}J^{\&}A'O^{\Lambda}K$

William C. Smith, P.E. Date Senior Project Manager New York State P.E. No.

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS POST-EXCAVATION SOIL SAMPLES INDUSTRIAL DRA1NAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

		Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/
Interval	Sample ID	Sampled	(mg/kg) ¹ "	Fail""	Sample ID	Sampled	(mg/kg)	Fail	Sample ID	Sampled	(mg/kg)	Fail
0+00	PRE-DAM-S/SS-W-001	12/11/2002	0.140	Р								
	ROCKY MIX (BOTTOM)	9/14/2002	<0.440	Р								
0+30	A-B-S-W-001	9/16/2002	0.480	Р								
	A-B-SS-W-001	9/16/2002	0.580	Р								
	A-B-S-E-B-001	9/26/2002^	0.180	Р								
	A-B-S-E-001	9/16/2002	2.200	F	A-B-S-E-R-002	9/26/2002	0.730	Р				
	A-B-SS-E-001	9/16/2002	13.000	F	A-B-SS-E-R-002	9/26/2002	5.300	F	A-B-SS-E-R-003	10/5/2002	0.78/<0.32 ^{(e}	Р
	A-C-SS-B-001	10/11/2002	0.730	Р								
0+80	A-B-SS-B-001	9/16/2002	0.098	Р								
0+80	B-B-S-W-001	9/24/2002	0.270	Р								
	B-B-SS-W-001A	9/24/2002	0.220	Р								
	B-B-SS-W-001B	9/24/2002	0.260	Р								
	B-B-S-E-001	9/24/2002	1.100	F	B-B-S-E-B-002	10/5/2002	0.580	Р				
					B-B-S-E-R-002	10/5/2002	0.260	Р	<-also tracked B	-B-S-E-001		
	B-B-SS-E-001	9/24/2002	0.490	Р								
1+80	B-C-S-B-001	9/24/2002	1.000	Р								
2+50	C-B-S-W-001	9/30/2002	0.280	Р								
	C-B-SS-W-001	9/30/2002	4.100	F	C-B-SS-W-002	11/2/2002	0.120	Р				
	C-C-S-B-001	9/30/2002	6.800	F	C-C-S-B-002	11/2/2002	0.260	Р	<-also tracked C	-B-SS-B-00	1	
	C-B-SS-B-001	9/30/2002	1.600	F	see C-C-S-B-002							
	C-C-SS-B-001	9/30/2002	0.220	Р								
	C-B-S-E-001	9/30/2002	0.310	Р								
3+75	C-B-SS-E-001	9/30/2002	3.100	F	C-B-SS-E-002	11/2/2002	0.620	Р				
3+75	D-B-S-W-001	10/2/2002	0.250	Р								
	D-B-SS-W-001	10/2/2002	2.000	F	D-B-SS-W-006	11/7/2002	<0.210	Р				
(bottom)	D-C-S-001	10/2/2002	3.100	F	D-C-S-B-002	11/2/2002	<0.220	Р				
(bottom)	D-C-SS-001	10/2/2002	0.240	Р								
	D-B-S-E-001	10/2/2002	0.540	Р								
4+75	D-B-SS-E-001	10/2/2002	0.460	Р								
4+75	E-C-S-W1-001	10/9/2002	0.590	Р								
	E-C-SS-W1-001	10/9/2002	0.700	Р								
	E-C-S-W2-001	10/9/2002	0.450	Р								
	E-C-SS-W4-001	10/9/2002	1.600	F	E-B-S-W-002	11/5/2002	<0.150	Р				
					E-B-SS-WB-001	11/5/2002	<0.110	Р				
					E-B-SS-W-002	11/5/2002	0.160	Р				

TABLE 1 SUMMARY OF ANALYTICAL RESULTS POST-EXCAVATION SOIL SAMPLES INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

		Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/
Interval	Sample ID	Sampled	<mg kg)"=""></mg>	Fal[^{(bl}	Sample ID	Sampled	(mg/kg)	Fail	Sample ID	Sampled	(mg/kg)	Fall
	E-C-SS-W2-001	10/9/2002	5.200	F	E-B-S-W-002	11/5/2002	<0.150	Р				
					E-B-SS-WB-001	11/5/2002	<0.110	Р				
					E-B-SS-W-002	11/5/2002	0.160	Р				
	E-C-S-W3-001	10/9/2002	0.360	Р								
	E-C-SS-W3-001	10/9/2002	0.410	Р								
	E-C-S-W4-001	10/9/2002	0.390	Р								
	E-C-S-E-001	10/9/2002	1.200	F	E-C-S-E-002	11/5/2002	0.330	Р				
	E-C-SS-E-001	10/9/2002	1.500	F	E-C-SS-E-002	11/5/2002	0.450	Р				
5+11	E-C-SS-B-001	10/9/2002	0.300	Р								
5+11	F-C-S-W1-001	10/9/2002	0.470	Р								
	F-C-SS-W1-001	10/9/2002	1.600	F	F-B-SS-W-001	11/5/2002	0.210	Р				
					F-B-SS-WB-001	11/5/2002	<0.110	Р				
	F-C-S-W2-001	10/9/2002	0.300	Р								
	F-C-SS-W2-001	10/9/2002	1.400	F	F-B-SS-W-001	11/5/2002	0.210	Р				
					F-B-SS-WB-001	11/5/2002	<0.110	Р				
	F-C-S-W3-001	10/9/2002	0.460	Р								
	F-C-SS-W3-001	10/9/2002	0.450	Р								
	F-C-S-W4-001	10/9/2002	0.280	Р								
	F-C-SS-W4-001	10/9/2002	1.600	F	F-B-SS-W-001	11/5/2002	0.210	Р				
					F-B-SS-WB-001	11/5/2002	<0.110	Р				
	F-C-S-W5-001	10/9/2002	0.430	Р								
	F-C-SS-W5-001	10/9/2002	1.4/1.4	F	F-B-SS-W-001	11/5/2002	0.210	Р				
					F-B-SS-WB-001	11/5/2002	<0.110	Р				
	F-C-S-E-001	10/9/2002	1.300	F	F-C-S-E-003	11/7/2002	<0.110	Р				
					F-B-SS-W-002	11/7/2002	0.370	Р				
					F-C-S-B-001	11/7/2002	<0.110	Р				
	F-C-SS-E-001	10/9/2002	0.280	Р								
5+75	F-C-SS-B-001	10/9/2002	0.710	Р								
5+75	G-C-S-W-001	10/10/2002	0.310	Р								
	G-B-S-W1-001	10/10/2002	3.100	F	G-B-S-W1-004	10/29/2002	O.130	Р				
	G-B-S-W-001	10/10/2002	1.700	F	G-B-S-W-003	10/29/2002	<0.110	Р				
	G-C-S-E-001	10/10/2002	0.710	Р								
	G-B-S-E1-001	10/10/2002	1.200	F	G-B-S-E1-004	10/29/2002	0.160	Р				
	G-B-SS-E1-001	10/10/2002	6.300	F	G-B-SS-E 1-003	10/29/2002	0.170	Р				
	G-B-S-E2-001	10/10/2002	0.810	P								
	G-B-SS-E2-001	10/10/2002	3.600	F	G-B-SS-E2-003	10/29/2002	<0.110	Р				
	G-B-S-N-001	10/10/2002	0.610	Р								

TABLE 1 SUMMARY OF ANALYTICAL RESULTS POST-EXCAVATION SOIL SAMPLES INDUSTRIAL DRAIN AGE WAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

		Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/
Interval	Sample ID	Sampled	(mg/kg)"'	Fail""	Sample ID	Sampled	(mg/kg)	Fail	Sample ID	Sampled	(mg/kg)	Fail
	G-B-SS-N-001	10/10/2002	6.900	F	G-C-S-W-002	11/8/2002	<0.200	Р				
	00000				G-C-S-E-002	11/8/2002	<0.140	Р				
	G-C-S-B-001	10/11/2002	1.000	Р	G-C-S-B-002	11/8/2002	<0.110	Р				
	G-C-SS-B-001	10/10/2002	1.400	F	G-C-SS-B-003	10/29/2002	O.110	Р				
7+25	G-C-SS-B2-001	10/10/2002	0.840	Р								
7+25	H-B-S-W-001	10/14/2002	0.310	Р								
	H-B-SS-W-001	10/14/2002	0.420	Р								
	H-C-SS-B1-001	10/14/2002	0.360	Р								
	H-B-S-E-001	10/14/2002	0.360	Р								
	(H-I)-B-SB-001	11/7/2002	0.390	Р								
	H-B-SS-E-001	10/14/2002	2.200/0.54	F	H-B-SS-E-002	10/28/2002	0.680	Р				
					H-B-SS-E-003	10/29/2002	<0.23	Р				
8+25	H-C-SS-B2-001	10/14/2002	0.250	Р								
8+25	I-C-SS-B2-001	10/21/2002	0.380	Р								
	I-B-S-E-001	10/21/2002	1.300	F	I-B-S-E-004	11/1/2002	<0.13/<0.13	Р				
	I-B-S-W-001	10/21/2002	0.630	Р								
	I-C-SS-B1-001	10/21/2002	0.16/0.26	Р								
	(H-D-B-SB-001	11/7/2002	0.390	Р								
	I-B-SS-W-001	10/21/2002	3.300	F	I-B-SS-W-002	10/30/2002	<0.120	Р				
9+25	I-B-SS-E-001	10/21/2002	2.000	F	I-B-SS-E-002	10/30/2002	<0.120	Р				
9+25	J-B-S-W-001	10/30/2002	O.170	Р								
	J-C-SS-B1-001	10/30/2002	< 0.099	Р								
	J-C-SS-B2-001	10/30/2002	<0.110	Р								
	J-B-S-E-002	11/1/2002	<0.130	Р								
	J-B-SS-E-001	11/1/2002	<0.110	Р								
10+25	J-B-SS-W-002	11/1/2002	0.380	Р								
10+25	K-C-SS-B1-001	11/13/2002	<0.100	Р								
	K-C-SS-B2-001	11/13/2002	<0.100	Р								
	K-C-SS-B3-001	11/13/2002	0.330	Р								
	K-B-S-E-002	11/16/2002	0.270	Р								
	K-B-SS-W-003	11/11/2002	1.100	F	K-B-SS-W-005	11/20/2002	<0.100	Р				
	K-B-SS-E-003	11/20/2002	<0.100	Р								
11+25	K-B-S-W-004	11/13/2002	<0.130	Р								
11+25	L-C-SS-B1-001	11/16/2002	0.470	Р								
	L-C-SS-B2-001	11/16/2002	<0.092	Р								
	L-C-SS-B3-001	11/16/2002	<0.130	Р								
	L-B-S-W-002	11/20/2002	<0.130	Р								
	L-B-SS-E-002	11/20/2002	<0.120	Р								

TABLE 1 SUMMARY OF ANALYTICAL RESULTS POST-EXCAVATION SOIL SAMPLES INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Lata must	Comple ID	Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/
Interval	Sample ID	Sampled	(mg/kg)"'	Fail ^{IbI}	Sample ID	Sampled	(mg/kg)	Fall	Sample ID	Sampled	(mg/kg)	Fail
	L-B-SS-W-004	11/21/2002	<0.110	Р								
12+25	L-B-S-E-004	11/21/2002	O.110	Р								
12+25	M-C-SS-B1-001	11/16/2002	<0.110/<0.110	Р								
	M-C-SS-B2-001	11/16/2002	O.100	Р								
	M-C-SS-E-001	11/16/2002	<0.120	Р								
	M-B-S-E-001	11/16/2002	0.190	Р								
	M-B-SS-W-001	11/16/2002	0.390	Р								
12+75	M-B-S-W-001	11/16/2002	< 0.250	Р								
12+75	N-B-S-W-001	11/20/2002	<0.120	Р								
	N-B-SS-W-001	11/20/2002	<0.120	Р								
	N-C-SS-B1-001	11/20/2002	O.110	Р								
	N-C-SS-B2-001	11/20/2002	0.480	Р								
	N-B-S-E-004	12/2/2002	5.900	F								
	N-B-SS-E-004	12/2/2002	0.580	Р								
13+75	N-C-SS-B3-001	11/20/2002	<0.110	Р								
13+75	O-C-SS-B3-002	11/29/2002	<0.110	Р								
	O-B-SS-W-001	11/27/2002	0.130	Р								
	O-B-SS-E-003	11/30/2002	0.120	Р								
	O-C-SS-B2-002	11/29/2002	<0.100	Р								
	O-B-S-W-001	11/29/2002	0.190	Р								
	O-B-S-E-002	11/29/2002	0.140	Р								
14+75	O-C-SS-B1-002	11/29/2002	O.110	Р								
14+75	P-B-SS-W-001	11/21/2002	<0.120	Р								
	P-B-S-E-001	11/21/2002	< 0.130	Р								
	P-C-SS-B-001	11/21/2002	<0.140	Р								
	P-B-S1-W-001	11/21/2002	<0.140	Р								
	P-Bsub-SrN-001	11/21/2002	<0.130	Р								
	P-Bsub-S-S-001	11/21/2002	<0.120	Р								
	P-B-SS-E-001	11/21/2002	<0.130	Р								
15+42	P-B-S2-W-001	11/21/2002	O.130	Р								
AREA 23	23-B-S-E-001	10/14/2002	2.600	F	23-B-S-E-100	1/20/2003	0.860	Р	23-B-S-E-100	1/20/2003	0.860	Р
AREA 23	23-B-S-W-001	10/14/2002	2.300	F	23-B-S-W-100	1/20/2003	2.200	F	23-B-S-W-100	1/20/2003	2.200	F
AREA 23	23-C-S-E-B-001	10/14/2002	1.600	F	23-C-S-E-B-002	10/18/2002	0.160	Р				
AREA 23	23-C-S-E-B-002	10/18/2002	0.160	Р								
AREA 23	23-B-S-SE-003	10/23/2002	0.750	Р								
AREA 23	23-B-S-SW-003	10/24/2002	7.100	F	23-B-S-S-100	1/20/2003	3.100	F				
AREA 23	23-B-S-NE-003	10/24/2002	14.000	F	23/W-B-S-S-001	12/4/2002	0.550	Р				
AREA 23	23-B-S-NW-003	10/24/2002	1.600	F	23/W-B-S-N-001	12/4/2002	O.150	Ρ				

TABLE 1 SUMMARY OF ANALYTICAL RESULTS POST-EXCAVATION SOIL SAMPLES INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

	O	Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/	Tracked with	Date	Total PCB	Pass/
Interval	Sample ID	Sampled	<mg kg)<sup="">("</mg>	Fail""	Sample ID	Sampled	(mg/kg)	Fail	Sample ID	Sampled	(mg/kg)	Fail
AREA 23	23-C-S-W-B-001	10/14/2002	0.190	Р								
BERM	23/W-C-SS-B-001	12/4/2002	O.120	Р								
BERM	23/W-B-S-S-001	12/4/2002	0.550	Р								
BERM	23/W-B-S-N-001	12/4/2002	O.150	Р								
16+75	W-C-S-B-001	10/15/2002	O.120	Р								
	W-B-S-E-001	10/15/2002	1.700	F	W-B-S-E-003	10/23/2002	1.800	F				
	W-B-S-W-001	10/15/2002	2.000	F	W-B-S-W-002	10/23/2002	2.100	F	Bank Removed -	tracked with	n 23/W-B-S-S	S-001,
	W-C-S-S-001	10/15/2002	0.920	Р					23/W-B-S-N-001	, AND 23/W	/-C-SS-B-001	1
17+25	W-C-S-N-001	10/15/2002	<0.120	Р								
17+75	X-B-S-E-001	10/15/2002	0.460	Р								
	X-B-S-B-001	10/15/2002	0.170	Р								
	X-B-S-W-001	10/15/2002	0.910	Р								
	X-B-S-N-001	10/15/2002	0.950	Р								
18+25	X-B-S-S-001	10/15/2002	0.550	Р								
21+75	Y-B-SS-B-001	10/18/2002	<0.120	Р								
	Y-B-SS-N-001	10/18/2002	O.190	Р								
	Y-B-SS-S-001	10/21/2002	<0.180	Р								
	Y-B-S-E-001	10/18/2002	0.470	Р								
	Y-B-SS-E-001	10/18/2002	0.230	Р								
	Y-B-S-W-001	10/18/2002	O.310	Р								
22+30	Y-B-SS-W-001	10/18/2002	O.120	Р								
22+60	2-B-S-E-002	12/4/2002	<0.210	Р								
	2-B-S-W-002	12/4/2002	<0.160	Р								
	Z-C-SS-B-001	12/3/2002	<0.130	Р								
	Z-B-S-S-001	12/3/2002	<0.160	Ρ								
	2-B-S-N-001	12/3/2002	<0.160	Ρ								

Notes:

a. mg/kg = milligrams per kilogram.

b. P/F - Pass/Fail. Threshold for Resource Conservation and Recovery Act classification as hazardous waste is 1.0 mg/l for cadmium using Toxicity Characteristic Leachate Procedure (TCLP).

c. "/" = results of sample analysis / results of duplicate sample analysis.

TABLE 2 SUMMARY OF ANALYTICAL RESULTS PRE- AND POST-CONSTRUCTION BACKGROUND SOIL SAMPLES INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Location	Sample I.D.	Sample Date	PCBs (mg/kg)	Comments
				Pre-construction grab sample from Village of Horseheads property near
Village of Horseheads	PRE-HV1	9/17/2001	<0.036	contractor staging area
				Pre-construction grab sample from Village of Horseheads property near
Village of Horseheads	PRE-HV2	9/17/2001	<0.036	contractor staging area
				Pre-construction grab sample from Village of Horseheads property near
Village of Horseheads	PRE-HV3	9/17/2001	<0.036	contractor staging area
				Post-construction grab sample from Village of Horseheads property from
Village of Horseheads	POST HV-1	3/19/2003	<0.12	same location as PRE-HV1
				Post-construction grab sample from Village of Horseheads property from
Village of Horseheads	POST HV-2	3/19/2003	<0.13	same location as PRE-HV2
				Post-construction grab sample from Village of Horseheads property from
Village of Horseheads	POST HV-3	3/19/2003	<0.15	same location as PRE-HV3
	DPW - DECON PAD			Pre-construction composite sample collected from decontamination pad
Chemung Co. Yard	AREA PRE	9/4/2002	<0.21/<0.21	area (later used for staging cell 13)
	DPW - STAGING			
Chemung Co. Yard	AREA PRE-SPL	9/4/2002	<0.20/<0.19	Pre-construction composite sample collected from staging cell 1 area
				Composite sample collected from restored locations of staging cells 10
Chemung Co. Yard	CELLS 10, 14	1/21/2003	<0.24	and 14
				Composite sample collected from restored locations of staging cells 1
Chemung Co. Yard	CELLS 12, 1	1/21/2003	<0.24	and 12
				Composite sample collected from restored locations of staging cells 4
Chemung Co. Yard	CELLS 11 (4,5), 8, 9	1/21/2003	<0.24	and 5 (removed and subsequently rebuilt as staging cell 11), 8, and 9
				Composite sample collected from restored location of staging cell 13
Chemung Co. Yard	CELL 13	1/21/2003	<0.24	(decontamination pad area)

TABLE 3

SUMMARY OF ANALYTICAL RESULTS DISPOSAL CHARACTERIZATION SAMPLES INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Rolert Rolert	Cell/Rolloff	Sample I.D.	Sample Date	PCB (mg/kg)" ¹	TCLP Cd <mg lf=""></mg>	P/F**	Sample I.D.	Sample Date	TCLP Cd (mg/L)	P/F	Sample I.D.	Sample Date	TCLP Cd (mg/L)	P/F	Sample I.D.	Sample Date	TCLP Cd (mg/L)	P/F
Rolloff RO02 9/21/2002 0.33 0.34 P Rolloff RO03 9/21/2002 1.10 0.489 P Rolloff RO03 9/21/2002 1.10 0.489 P Rolloff RO03 9/21/2002 1.10 0.499 P Rolloff RO03 9/21/2002 1.10 0.499 P Rolloff RO03 9/21/2002 1.10 0.499 P Rolloff RO03 9/21/2002 0.990 P P Rolloff RO Rolloff RO 9/21/2002 0.996 P Rolloff RO03 9/21/2002 1.060 F TSCA, CEL 11/25/200 1.14 P Roll Roll Roll Roll Roll Roll Roll Roll Roll P Roll Roll P Roll Roll<	Rolloff	RO001	9/21/2002	1.50	0.367	Р												
Rolloff Rolloff Rolloff Rolloff Rolloff RO03 ROLL ROLL ROLL ROLL ROLL ROLL ROLL ROL	Rolloff	RO002	9/21/2002	0.93	0.324	Р												
Rolingth Rolingth Rolingth Rolingth ROOM ROUS 9/21/2002 1/21/2002 1.10 0.997 0.489 0.937 P Image: register of the second s	Rolloff	RO003	9/21/2002	0.72	0.546	Р												
Rolloff ROODS 9/21/2002 0.907 P	Rolloff	ROOM	9/21/2002	1.10	0.489	Р												
Rolloff RO006 9/21/2002 0.89 0.431 P - </td <td>Rolloff</td> <td>ROODS</td> <td>9/21/2002</td> <td>1.10</td> <td>0.907</td> <td>Р</td> <td></td>	Rolloff	ROODS	9/21/2002	1.10	0.907	Р												
1 RO038.39/41-4 10/14/2002 2.60 0.96 P TSCA_CELL # 11/15/2002 0.114 p Call #	Rolloff	RO006	9/21/2002	0.89	0.431	Р												
1 R0038.3941-44 10/14/2002 2.60 0.996 P F TSCA, CELL 41 11/25/202 0.114 p F F F TSCA, CELL 41 11/25/202 0.114 p F F F TSCA, CELL 41 11/25/202 0.114 p F																		
1 CELL #1 TSCA MATL 1/19/2002 1 600 F TSCA, CELL <1 11/25/2002 0.114 p Image: Constraint of the const	1	RO038.39/41-44	10/14/2002	2.60	0.996	Р												
1 MATL 11/19/2002 1.060 F TSCA, CELL <1 11/25/2002 0.114 p Image: Constraint of the second seco		CELL #1 TOCA																
Image: NATE Index	1	MATI	11/10/2002		1.060	F	TSCA CELL «1	11/25/2002	0 114	_								
RO007 SN NA POST-CKD 9/23/2002 9/23/2002 0.293 P 0.293 P 0.293 P 0.293 P 0.293 P 0.306 P		MATL	11/19/2002		1.000	ľ	TOOA, OLLE «T	11/23/2002	0.114	Р								
2 POST-CKI 9/23/2002 P 0.293 P		R0007 SN N/A																
2 RO00B 200-430 POST-CKD RO009 N 200- 2 9/24/2002 9/24/2002 - 0.306 P 2 609 POST-CKD RO010 SN 200- 2 9/24/2002 0.825 P - 0.306 P 2 436 POST-CKD RO010 SN 200- 9/23/2002 0.825 P -	2	POST-CKD	9/23/2002		0 293	Р												
2 POST-CKD 9/24/2002 - 0.306 P	-	RO00B 200-430	0/20/2002															
RO009 SN 200- 609 POST-CKD 2001 SN 200- 2 g/24/2002 9/23/2002 0.825 P <t< td=""><td>2</td><td>POST-CKD</td><td>9/24/2002</td><td>-</td><td>0.306</td><td>Р</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2	POST-CKD	9/24/2002	-	0.306	Р												
2 609 POST-CKD RO010 N 200- 9/23/2002 9/24/2002 0.825 P Image: state of the state		RO009 SN 200-	0/2 //2002															
2 A36 POST-CCD 9/23/2002 0.229 p - </td <td>2</td> <td>609 POST-CKD</td> <td>9/24/2002</td> <td></td> <td>0.825</td> <td>Р</td> <td></td>	2	609 POST-CKD	9/24/2002		0.825	Р												
2 436 POST-CKD 9/23/2002 0.229 P A </td <td></td> <td>RO010 SN 200-</td> <td></td>		RO010 SN 200-																
3 RO0025 10/1/2002 0.53 0.283 P RO040A. RESAMPLE RO400B. (ELL#3) RO400B, RESAMPLE RO400B, (ELL#3) RO4040B, RESAMPLE RO4040B, RESAMPLE<	2	436 POST-CKD	9/23/2002		0.229	Р												
3 R00025 10/1/2002 0.53 0.283 P R0040A. RESAMPLE NO40A. RESAMPLE R0040B. CELL 3 R0040B. CELL 4 R0040CELL C. CELL 4 R0040CELL C. CELL 4																		
3 R0040 SEVERAL ROLOFFS No No F R0040. RESAMPLE CEL No F R0040. RESAMPLE CEL No F R0040. RESAMPLE No	3	RO0025	10/1/2002	0.53	0.283	Р												
3 RO040 SEVERAL ROLLOFFS 10/9/2002 0.78 1.04 F RESAMPLE CELL 3 10/15/2002 2.320 F RESAMPLE 10/21/2002 0.859 P -							RO040A.				RO040B,							
3 ROLLOFFS 10/9/2002 0.78 1.04 F CELL 3 10/15/2002 2.320 F RESAMPLE 10/21/2002 0.859 P Image: Constraint of the state of the sta		RO040 SEVERAL					RESAMPLE				CELL#3							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	ROLLOFFS	10/9/2002	0.78	1.04	F	CELL 3	10/15/2002	2.320	F	RESAMPLE	10/21/2002	0.859	Р				
A CELUM 10/14/2002 1.40 0.540 P Image: Celum of the second seco																		
4 CELUM 10/14/2002 1.40 0.540 P Image: Constraint of the state of		RO045-49/58-60																
And Mark And Mark <th< td=""><td>4</td><td>CELUM</td><td>10/14/2002</td><td>1.40</td><td>0.540</td><td>Р</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	4	CELUM	10/14/2002	1.40	0.540	Р												
5 69/71/76-78/80 COMPOSITE 10/18/2002 0.43 2.300 F CELL #5 10/23/2002 0.701 p Image: Composition of the composition o																		
5 COMPOSITE 10/18/2002 0.43 2.300 F CELL #5 10/23/2002 0.701 p Composition		69/71/76-78/80																
RO050-060 CELL CELL #6 10 CEL	5	COMPOSITE	10/18/2002	0.43	2.300	F	CELL #5	10/23/2002	0.701	Р								
R0050-060 CELL CELL #6 10 CELL #6 10																		
		R0050-060 CELL					CELL #6 10											
b 10/14/2002 3.70 4.930 F ROLLOFFS 10/23/2002 5.25 F 2-6-TRAILER 12/17/2002 1.6 F 3-6-CHEMUNG 12/30/2002 <0.05 P	6	06	10/14/2002	3.70	4.930	F	ROLLOFFS	10/23/2002	5.25	F	2-6-TRAILER	12/17/2002	1.6	F	3-6-CHEMUNG	12/30/2002	<0.05	Р
6 2-6-CENTER 12/17/2002 0.192 P 3-6-CENTER 12/30/2002 <0.05 P	6										2-6-CENTER	12/17/2002	0.192	Р	3-6-CENTER	12/30/2002	< 0.05	Р
6 2-6-CHEMUNG 12/17/2002 1.38 F 3-6-TRAILER 12/30/2002 0.065 P	6										2-6-CHEMUNG	12/17/2002	1.38	F	3-6-TRAILER	12/30/2002	0.065	P
CELL #7 INITIAL		CELL #7 INITIAL																
7 RUN 10/24/2002 <0.250 4.070 F 2-7-TRAILER 12/17/2002 0.32 P	7	RUN	10/24/2002	<0.250	4.070	F	2-7-TRAILER	12/17/2002	0.32	Р								
7 2-7-CENTER 12/17/2002 1.07 F 3-7-CENTER 12/30/2002 0.072 P	7					1	2-7-CENTER	12/17/2002	1.07	F	3-7-CENTER	12/30/2002	0.072	Р				
7 2-7-CHEMUNG 12/17/2002 0.305 P	7						2-7-CHEMUNG	12/17/2002	0.305	Р								

٠

•

TABLE 3 SUMMARY OF ANALYTICAL RESULTS DISPOSAL CHARACTERIZATION SAMPLES INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Cell/Rolloff	Sample I.D.	Sample Date	PCB (mo/kg)" ¹	TCLP Cd (mg/L) ^(b)	P/F*1	Sample I.D.	Sample Date	TCLP Cd (mg/L)	P/F	Sample I.D.	Sample Date	TCLP Cd (mg/L)	P/F	Sample I.D.	Sample Date	TCLPCd (mg/L)	P/F
8 (1ST CONSTRUCTION)	OF PILE	10/28/2002	<0.310	4.180	F	8 EAST	11/1/2002	2.38	F	8P	11/11/2002	<0.50	Ρ				
8 (1ST CONSTRUCTION)	TRENCH MIXED CELL #8C WEST	10/28/2002	<0.29	3.760	F	8 CENTRAL	11/1/2002	2.53	F	8C	11/11/2002	<050	Ρ				
8 (1ST CONSTRUCTION)	PORTION CELL #8D EAST	10/28/2002	0.44	3.340	F	8 MOUNTAIN	11/1/2002	2.13	F	8E	11/11/2002	0.352	Ρ				
8 (1ST CONSTRUCTION)	PORTION	10/28/2002	0.81	2.990	F	6 PACIFIC	11/1/2002	1.75	F		CELL ff 8 SPLIT IN	3 SECTION	NS MEETS	TESTING FREQ			
	0.110	44/00/0000	0.050	0.000	-	205	12/5/2002	-0.0E	D								
8 (2ND CONSTRUCTION)	2#8E	11/26/2002	<0.250	2.330	r c	3-0-E	12/5/2002	<0.05	Р								
8 (2ND CONSTRUCTION)	2#80	11/26/2002	<0.250	1.840	г с	3-0-0	SAMPLE Of		F ETQ1	ESTING EREON	ENCY						
8 (2ND CONSTRUCTION)	2#0IVI	11/26/2002	<0.300	2.610	г с	200	12/5/2002	<0.05	D	LOTING TREOU	LINCT						
		10/20/2002	0.00	2.580	Г	3-0-F	11/5/2002	1 /2	г С	05	11/11/2002	2.11	F)		
	CELL #9NE	10/29/2002	0.23	2.360	г с	CELL#9E	11/5/2002	1.45	-	9L	11/11/2002	2.11	- -		,		
	CELL #95W	10/29/2002	0.57	2.760	г Е	CELL#9C	11/5/2002	1.79	Г	90	11/11/2002	1.44	1	AND REMIXED			
	CELL #9NW	10/29/2002	1.20	2.030	r r	CELLS9M	11/5/2002	0.755									
3 (131 CONSTRUCTION)	GELL #95E	10/29/2002	1.20	1.700	F	GELL#9P	11/3/2002	0.435	r								
	2_#0_P	12/0/2002	0.80	1 320	F	2_#0_P2	12/17/2002	<0.05	P								
	2-#9-1	12/9/2002	0.83	1.320	5	2-#9-02	12/17/2002	<0.05	P								
	2 #0 1	12/9/2002	0.03	1.230	-	2-#9-02	12/17/2002	<0.05	P								
3 (2112 001101110011011)	2-#3-L	12/9/2002	0.50	1.400	•	2-#3-62	12/11/2002	<0.00									
10 (1ST CONSTRUCTION	105	11/11/2002	2.80	0.038	P												
	10SN	11/11/2002	1 70	2 250	F	10SN1	11/1/2002	0 709	P								
10 (1ST CONSTRUCTION	10NN	11/11/2002	0.93	0.054	P		11,14,2002	0.700									
10 (1ST CONSTRUCTION	10N	11/11/2002	1 10	< 0.05	P												
		1.0.1.02002															
10 (2ND CONSTRUCTION	2-10-L	12/5/2002	0.68	< 0.05	Р												
10 (2ND CONSTRUCTION	2-10-C	12/5/2002	0.56	<0.05	Р												
10 (2ND CONSTRUCTION	2-10-R	12/5/2002	1.90	0.863	P												
		12/0/2002		0.000													
11 (1ST CONSTRUCTION	CELU11E	11/6/2002	<0.25	1 530	F	11F1	11/14/2002	<0.05	Р								
11 (1ST CONSTRUCTION	CELU11C	11/6/2002	0.21	4.580	F	11C1	11/14/2002	< 0.05	P								
11 (1ST CONSTRUCTION	CELL#11M	11/6/2002	0.26	3 460	F	11M1	11/14/2002	<0.05	P								
11 (1ST CONSTRUCTION	CELUM1P	11/6/2002	<0.27	< 0.05	Р				ľ.								
11 (2ND CONSTRUCTION	2-#11-P	12/9/2002	<0.24	1.040	F	2-#11-P2	12/17/2002	0.074	Р								
11 (2ND CONSTRUCTION	2-#11-M	12/9/2002	<0.28	1.370	F	2-#11-M2	12/17/2002	0.339	Р								
11 (2ND CONSTRUCTION	2-#11-C	12/9/2002	<0.26	1.820	F	2-#11-C2	12/17/2002	0.101	Р								
11 (2ND CONSTRUCTION	2-W11-E	12/9/2002	<0.27	1.170	F	2-#11-E2	12/17/2002	0.067	Р								
12	12E	11/11/2002	0.99	1.520	F	12E1	11/25/2002	1.73	F	12E2	12/2/2002	0.081	Р				
12	12C	11/11/2002	1.20	1.580	F	12C1	11/25/2002	1.34	F	12C2	12/2/2002 •	0.141	Р				
12	12M	11/11/2002	1.10	<0.05	Р	12Z1	11/25/2002	0.93	Р	12Z2	12/2/2002	<0.05	Р				
12	12P	11/11/2002	1.00	0.628	Ρ	<u> </u>					<u> </u>						
13	1-13-NORTH	12/30/2002	0.78	0.291	Р												
13	1-13-CENTER	12/30/2002	<0.27	0.912	Р												
13	1-13-SOUTH	12/30/2002	0.90	<0.05	Р												

٠

٠

SUMMARY OF ANALYTICAL RESULTS DISPOSAL CHARACTERIZATION SAMPLES INDUSTRIAL DRAIN AGE WAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

CeJI/Rolloff	Sample I.D.	Sample Dale	PCB (mg/kg) ^l «	TCLPCd (mg/ir ¹	P/F*"	Sample I.D.	Sample Date	TCLP Cd (mgrt.)	P/F	Sample I.D.	Sample Date	TCLPCd <mg l)<="" th=""><th>P/F</th><th>Sample I.D.</th><th>Sample Date</th><th>TCLP Cd <mg l)<="" th=""><th>P/F</th></mg></th></mg>	P/F	Sample I.D.	Sample Date	TCLP Cd <mg l)<="" th=""><th>P/F</th></mg>	P/F
14 (1ST CONSTRUCTION	14E	11/14/2002	0.36	<0.05	Р												
14 (1ST CONSTRUCTION	14C	11/14/2002	0.63	0.135	Р												
14 (1ST CONSTRUCTION	14P	11/14/2002	0.58	0.238	Р												
14 (2ND CONSTRUCTION	2-14-L	12/5/2002	1.10	0.480	Р												
14 (2ND CONSTRUCTION	2-14-C	12/5/2002	1.10	0.096	Р												
14 (2ND CONSTRUCTION	2-14-R	12/5/2002	0.77	<0.05	Р												
15	15 ROAD	12/10/2002	0.75	1.620	F	2-15-CREEK	12/18/2002	<0.05	Р								
15	15 CENTER	12/10/2002	0.77	1.230	F	2-15-ROAD	12/18/2002	<0.05	Р								
15	15 CREEK	12/10/2002	1.10	1.710	F	2-15-CENTER	12/18/2002	0.073	Р								
16	16 CREEK	12/17/2002	0.39	<0.05	Р	2-16-CREEK	12/30/2002	<0.05	Р								
16	16 CENTER	12/17/2002	1.20	1.630	F	2-16-CENTER	12/30/2002	<0.05	Р								
16	16 ROAD	12/17/2002	0.38	1.180	F	2-16-ROAD	12/30/2002	<0.05	Р								

Notes:

a. mg/kg = milligrams per kilogram.

b. mg/L = milligrams per kilogram.

c. P/F = pass/fail. Threshold for Resource Conservation and Recovery Act classification as hazardous waste is 1.0 mg/l for cadmium using Toxicity Characteristic Leachale Procedure (TCLP).

TABLE 4 SUMMARY OF APPROXIMATE COSTS INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Cost Component	Amount (\$)
RD/RA Project Management	\$ 30,000
Remedial Design and Construction Management Investigations and Engineering Laboratory Analyses Data Validation Construction Management and Quality Assurance Remedial Design Total	80,000 25.000 5.000 160.000 270,000
Remedial Action Site Work Nonhazardous Waste Disposal TSCA/Hazardous Waste Disposal Supplemental Site Restoration Supplemental Soil Investigation and Remediation Remedial Action Total	946,000 724.000 41,000 9,000 100,000 1,820,000
RD/RA Total	\$ 2,120,000

TABLE 5 AREA 23 SUMMARY OF GEOPROBE SAMPLING AND ANALYSES SUPPLEMENTAL SOIL REMEDIATION INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Sample Number	Location From SW Corner of Area 23 Excavation <i>(HIS)</i> x (E/W) in ft.	Sampling Inteval in ft. bgs	Rapid Assay PCB in ppm	Interval Depth in ft. bgs	Lithology
S-1	0 x 0	1.8-2.6	ND	1-1.8	Br - Sit w Stone
				1.8-2.6	BI - Sd Sit
				2.6-4.0	Br - CI w Sit
				4.0-8.0	Br-SdGr
S-2	30Sx0	2.6 - 2.9	0.9	0-2.6	Br - Sit w Stone
				2.6 - 2.9	BI - Sd Sit
				2.9-4.0	Br - Cl Sit
S-3	30 S x 20 E	1.3-2.1	ND	0-1.3	Br - CI w Sit
				1.3-2.1	BI - Sit
				2.1-4.0	Br - CI w Sit
S-4	30 S x 40 E	1.3-1.8	ND	0-1.3	Br - Sd Sit Gr
				1.3-1.8	BI - Sit
				1.8-4.0	Br-Cl
S-5	30 S x 58 E	1.4-1.9	ND	0-1.4	Br - Sd Sit Gr
				1.4 - 1.9	BI - Sit
				1.9-4.0	Gr/Br - Cl
S-6	35NxO	1.3-1.9	1.71	0-1.3	Br-Cl
				1.3-1.9	BI - Sit
				1.9-4.0	Br - C! Sd Gr
S-7	67 N x O	0.9-1.9	1.26	0-0.5	Br - Gr Sit
				0.5 - 0.9	Gr-Cl
				0.9-1.9	BI - Sit
				1.9-3.5	Br - Sd Cl
S-8	67 N x 15 W	1.2-2.6	0.53	0-1.2	BrGr
		2.6 - 3.2	ND	1.2-2.6	Gr - Cl Sit
				2.6 - 3.2	BI - Sit
				3.2 - 8.0	Br-SISdGr
S-9	35 N X 15 W	1.6-2.1	ND	0-1.3	Br - Gr Sit
				1.3-1.6	Gr-Cl
				1.6-2.1	BI - Sit
0.10	0			2.1 -4.0	Gr - Cl Gr
S-10	0 x 1 5 W	1.8-2.7	Lost	0-1.8	Br Gr Sd
				1.8-2.7	BI - Sit
0.11	000 45114	1001		2.7-4.0	Br - Sit Sd C!
5-11	305x15W	1.6-2.1	ND	0-1.6	Br-SdGr
				1.6-2.1	BI/BL - 21 20
0.40		07.00		2.1 -4.0	Br - SI CI w Gr
5-12	60 S X 20 E	0.7 - 0.9	ND	0-0.7	Br - Sd Sit
				0.7-0.9	BI/Br - Sd Sit
				0.9-4.0	Br - CI Sd w Gr

TABLE 5 AREA 23 SUMMARY OF GEOPROBE SAMPLING AND ANALYSES SUPPLEMENTAL SOIL REMEDIATION INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Sample Number	Location From SW Corner of Area 23 Excavation (N/S) x (E/W) in ft.	Sampling Inteval in ft. bgs	Rapid Assay PCB in ppm	Interval Depth in ft. bgs	Lithology
S-13	15Sx15E	1.2-1.7	ND	0-0.7	Br - Sd Gr
		1.7-2.5	ND	0.7-1.2	Bt/Br - CI w Sit Gr
				1.2-1.7	Lt Gr - C!
				1.7-2.5	BI - Sit
				2.5-2.8	Br-Cl
S-14	2 5 N x 5 W	1.1-1.8	0.27	0-1.1	Br - Sd Gr w Sit
		1.8-2.8	ND	1.1-1.8	Lt Gr - Cl
				1.8-2.8	BI - Sit
				2.8 - 3.5	Br - Cl Sit w Gr
S-15	50 N x 5 W	1.1 - 1.6	0.51	0-0.8	Br - Sd Gr Sit
				0.8-1.4	BI/Br-ClwGrSd
				1.4-2.1	BI - Sit
				2.1 -3.4	Br - Sd Gr w Cl
S-16	7 5 N X 5 W	1.0-1.9	3.24	0-0.8	Br-SdGrwSlt
				0.8-1.5	Br - CI w Sit
				1.5-1.7	Lt Gr - Cl
				1.7-2.3	BI - Sit
				2.3-3.3	Br - Sit Sd & Gr w Cl
S-17	15Sx30E	1.2-1.8	0.62	0-1.2	Br-SltSd&Gr
		1.8-2.1	2.35	1.2-1.8	Br/BI - Sit
				1.8-2.1	BI - Sit & Lt Gr - CI
				2.1 -2.4	BI - Sit & Lt Gr - CI
				2.4 - 3.7	Br-Cl
S-18	15Sx60E	1.0-1.5	ND	0-1.0	Br-Gr
		1.5-2.0	6.26	1.0-1.5	Lt Gr - Cl
				1.5-1.8	Bl/Br - Sit
				1.8-2.6	BI - Sit
				2.6-3.6	Br-Cl

TABLE 6 AREA N SUMMARY OF GEOPROBE SAMPLING AND ANALYSES SUPPLEMENTAL SOIL REMEDIATION INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Sample	Station	Distance Back	Sampling	Rapid Assay	Interval	Lithology
Number	Location of Drainageway	I imit in ft	in ft. bas	PCB in ppm	Depth in ft bas	Lithology
S-1	13±75	20	20-30	ND	0-2.2	BL - Codre & Gr Br Sd w Gr
3-1	13+75	20	2.0 = 3.0	7.2	2 2 3 0	Br-SdGrwStt
			5.0 10 4.5	1.2	2.2-3.0	Gr - Cl w Bl Sit Gr
					1 3-6 1	Br - Sit Sd & Gr
S-2	13+75	30	35-42	2 29	0-1.2	Br-Sd&Gr
0-2	10170	50	0.0 4.2	2.25	1 2-2 5	BL - Codrs
					25-35	Br-SdGrwSlt
					3 5-4 2	Br - Clw Gr
					4.2 - 5. 9	Br-SltSd&Gr
S-3	13+75	10	3 0-3 5	11 95	0-2 1	Gr - Gr w Sd
00	10110	10	0.0 0.0	11.00	2.1-3.3	Bl - Sd Cinders
					33-44	Gr-Cl
					4.4 - 6.0	Br-SltvSd&Gr
S-4	13+50	20	2.5-3.5	3.42	0-2.0	Gr - Gr & Sd
		=0	2.0 0.0		2.0-2.5	Br-CI w Cndrs
					2.5-3.5	Bl / Br - Cndrs w Cl
					3.5 - 6.0	Br-SltySd&Gr
S-5	13+50	10	2.7 - 3.0	ND	0-2.7	Bl / Gr - Sd & Gr
			4.0-4.5	ND	2.7-3.0	Lt Gr - Cl
					3.0-4.0	Br-ClwSdGr/BlCndrs
					4.0-4.5	Br-ClwSd&Gr
					4.5-6.1	Br-SltySdwGr
S-6	13+25	10	0-3.0	ND	0-3.0	Bl / Br - Gr Sd
			Poor Recovery		3.0-6.0	Br - Sit Sd / Gr
S-7	13+25	10	2.9-3.7	ND	0-1.5	Cndrs
					1.5-2.2	Br - Sd & Gr
					2.2-2.8	Br - Sd Gr Sit
					2.8-4.0	Gr - Cl; Blk - Sit Sd Gr
					4.0 - 6.0	Br - Sit Sd Gr
S-8	13+00	20	3.6 - 4.2	0.79	0-1.5	Cndrs
					1.5-2.7	Br/BI-SItSdGr
					2.7-4.5	Gr - Slty Cl Gr
					4.5-5.0	Br-Cl
<u> </u>	10.75	20	2025	1 47	5.0 - 6.0	Br-SILGr Codeo
5-9	12+75	20	3.0-3.5	1.47	0-1.9	Chars
					1.9-3.0	
					3.0-3.5	BI/Br-CI
S 10	14:00	10	21 / 5	1 52	0.2 1	
3-10	14+00	IU	3.1 -4.3	4.02	31 4 0	
					4 0-4 5	Bl - Sd Gr
					4 5-6 0	Br to Gr - Cl
S-11	14+00	20	31-47	3 54		Codre
5-11	14700	20	5.1 -4.7	0.04	27-35	BL-SdGr
					3 5-4 2	Gr-CI
					4.2-4.7	BI - Sd Gr
					4.7-6.0	Br - Gr w Sd
L					0.0	

TABLE 6 AREAN SUMMARY OF GEOPROBE SAMPLING AND ANALYSES SUPPLEMENTAL SOIL REMEDIATION INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Sample Number	Station Location of Drainageway	Distance Back From Excavation Limit in ft.	Sampling Interval in ft. bgs	Rapid Assay PCB in ppm	Interval Depth in ft. bgs	Lithology
S-12	14+00	30	3.1 -4.4	4.89	0-3.1 3.1 -3.3 3.3-3.5 3.5-4.4 4.4 - 6.0	Cndrs BI - Sd Gr Gr - Cl BI - Sd Gr Br - Sd Gr
S-13	14+25	30	3.5 - 4.0	ND	0-1.9 1.9-4.0	Cndrs Br/Gr-CIGr
S-14	14+25	10	4.2 - 5.0	10.48	0-1.3 1.3-3.1 3.1 -4.0 4.0 - 5.2 5.2 - 7.0	BI - Cndrs Cly Sd Gr Br/Gr - Cl Sit BI - Cl Sd Br - Cl Sd Gr
S-15	13+90	30	3.9-4.6	12.75	0-3.9 3.9-4.6 4.6 - 5.2 5.2 - 7.0	Cndrs Fill BI - Sit & CI Br - Ct Sit w Sd Br -Sit Sd Gr
S-16	13+75	0	3.0-3.3	ND	0-1.0 1.0-2.0 2.0 - 7.0 7.0 - B!U	BI-Cndrs . LtTn-SItSd&Gr Br-SltySd&Cl Br-SdGr
S-17	13+75	40	4.2 - 4.7	6.9	0-2.5 2.5-4.2 4.2-4.7 4.7+	BI - Sd & Cndrs Tn / BI - Sd Gr CI/GrwBI-SIt Br-CISdGr
S-18	14+25	20	2.1 -2.6	0.96	0-0.9 0.9 - 2.1 2.1 -2.3 2.3-2.6 2.6-8	BI - Cndrs Dark Br - Slty CI G r - C I BI - Slty Br - Slty Sd Gr
S-19	14+25	0	4.0-4.6 4.6 - 5.1	19.5 ND	0.7 -1.4 1.4-4.0 4.0-4.7 4.7-5.1 5.1 -5.6 5.6-	Br - Slty Gr Br - Slty Cl Gr - Cl Bl - Sit Gr/ Br - Cl Br - SdGr
S-20	14+75	20	4.3-4.4	ND	1.5-2.6 2.6 - 3.7 3.7-4.3 .43 - 4.4 4.4 - 5.8	BI - Gr Sd w Cndrs BI - CI Sit Sd Gr - Br Gr w Sit Sd Gr - Cl Br - Gr Gr SIt Sd
S-21	15+00	15	3.3 - 3.9	ND	2.5 - 3.3 3.3-3.5 3.5 - 3.7 3.7 - 3.9	Br - Bl Sd Gr Fill Bl - Cl Sd Gr - Cl Bl - Sd Cl Sit
S-22	14+75	0	2.5-3.1	ND	0-2 2.0-2.5 2.5-2.8 2.8-3.1 3.1 -3.7	No Sample Br-SdCl&Gr Bl-GrCl Bl-GrCl Br-SdGr Sit

TABLE 6 AREAN SUMMARY OF GEOPROBE SAMPLING AND ANALYSES SUPPLEMENTAL SOIL REMEDIATION INDUSTRIAL DRAINAGEWAY KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Sample Number	Station Location of Drainageway	Distance Back From Excavation Limit in ft.	Sampling Interval in ft. bgs	Rapid Assay PCB in ppm	Interval Depth in ft. bgs	Lithology
S-23	14+75	10	2.3 - 2.8	ND	0-2	No Sample
					2.0-2.3	Br - Sd Gr
					2.3-2.8	BI - Sit
					2.8-3.7	Br-SdGr
S-24	14+50	0	No Sample		3.0-3.5	Br/BI-GrwSd
					3.5-4.0	Br-GrwCl
					4.0-5.2	Gr/Br - Sd Gr
S-25	14+50	10	1.9-3.1	ND	0-1.9	BI-SltwGr
			3.0 - 3.5	ND	1.9-3.0	Bl/Gr - CI w Sd Sit
					3.0-3.5	BI - CI Sit
					3.5-4.3	Br-CIGrwSIt
					4.3 - 6.0	Gr - Sd Gr
S-26	14+50	20	2.0 - 3.4	ND	0-2.0	Gr/BI-GrSdwCl
			3.2 - 3.8	ND	2.0 - 3.4	BI-SItwGr
					3.4 - 4.1	Br - Sit w Gr
					4.1 -5.5	Br/Gr-SdwGr
S-27	13+75	60	2.0-2.5	ND	0-2	No Sample
			3.3-3.8	ND	2.0-2.5	BI - Sd Sit w CI
			3.8-4.3	ND	2.5-3.6	BI-CISItwGr
					3.6 - 3.8	Gr-Cl
					3.8-4.2	BI - Sit w Sd
					4.2-6.0	Br - CI w Sit
S-28	13+75	50	2.9 - 3.6	ND	0-2.0	No Sample
					2.0-2.6	BI - Sd Sit
					2.6-2.9	Gr - Gr w Sd
					2.9-3.6	BI - Sit
					3.6-6.0	Br-ClwGr
S-29	13+50	80	4.8-5.2	ND	0-2.0	No Sample
			5.2 - 6.0	ND	2.0-2.7	BI - Sd Sit
					2.7-3.6	BI - CI Gr
					3.6-4.5	BI - Sit Sd Gr Fine
					4.5-5.2	Gr-Cl
					5.2 - 6.0	BI - Sit
					6.0 - 8.0	Br - Sit Sd Cl w Gr

Page 3 of 3

TABLE 7 SUMMARY OF POST-EXCAVATION CONFIRMATORY SAMPLING DATA SUPPLEMENTAL SOIL REMEDIATION INDUSTRIAL DRAINAGEWAU KENTUCKY AVENUE WELLFIELD SITE HORSEHEADS, NEW YORK

Excavated	Location	Sample	Date	Total PCB Concentration (mg/kg)	
Area	Location	Number	Sampled	Grab	Composite
Area N	East of 13+60 to 13+90	13+50S	9/20/2004	0.12	
Area N	East of 13+90	13+90	9/20/2004	0.23	
Area N	East of 14+10 to 14+40	14+25	9/20/2004	3.0	
Area 23	West of Original Excavation	Area 23 West	9/17/2004		0.98
Area 23	South of Original Excavation	Area 23 South	9/23/2004		ND

FIGURES

KENTUCKY AVENUE WELL AND TREATMENT FACILITY

1ESEUQ

APPROXIMATE PROPERTY BOUNDARY (FORMER WESTINGHOUSE FACILITY)

FENCE

BW-1, BARRIER WELL INSTALLED UNDER OU2

S	С	А	L	Е
---	---	---	---	---

800 FEET

400

400

FIGURE 1

SITE PLAN

KENTUCKY AVENUE WELL HORSEHEADS, I PREPARED VIACOM	lfield s New Yof For I NC.	SITE - 0U3 RK
PITTSBURGH, PE	NNSYLV	ΑΝΙΑ
CUMMINGS	DRAWI	NG NUMBER
*&ITER	982	245B1
DRAWN BY: T.E. McKee	DATE	3-5-98
CHECKED BY: ft Geno	DATE	3-19-98
APPROVED BY: W. Smith	DATE	3- 19-98

SCALE

DATE APPROVED!

APPENDIX A RECORD DRAWINGS

H . . II Is \ \ !.»lati..n (i| llic New "i ml. 1 •dtiLiilinn 1aw. Article 14.^ Seclinn ~2'i'» 1 i'i \n\ Person. I nless lie Is Acinic I "ndei llic Direclitin ()l \setminus I icciised Professional 1 ni;ineer < h I and Sur\e\nr l,» <u>\llci</u> \n llcm In $\n \ \n \ \n$ II \n Item Hearing I lie Seal (M Vn I nuineerOi I and Sur\ c\ oi K Altered. Hie Vllerine Ingineer (li I and Sime\oi Shall \lli\ Ic llic Item His Seal \nd I lie "".|.,"|.|>»° (MSncli Mleriilimi. $\ \ S|$ vcilic 1 XJ^CI iption (M llic Uienilimi

(BS/WESTINGMOISE HORSEHEADS $\frac{n.\ii}{3/2003}$ KENTUCKY AVENUE WELL! IELD-OU3 1"=40' TOWN OF HORSEHEADS, CHEMUNG COUNTY, HEW YORK

INDUSTRIAL DRAINAGE WAY CONFIRMATORY SAMPLE ID RESULT

D.A.F.

FAGAN ENGINEERS Consultants 113 East Chemung Place

••.' MI'I-.I-I 1)S.(i2x MI-¹ II F¹ I II F M ' 'hi F S(PS-S

s111-1.1 ∙.' MI'-I ⊨•

	054	COL	A		H H H H H H H H H H H H H H H H H H H
	_				
					ACCESS VIA KENTUCKY
		ų			THE WEE ACCESS NOAD
ROAD	3	885	× 524.33	× siguin	
2 4866.37	×88 45		195.98 		
× 565 62 × 845 91 30 00 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1					
		- Artic			
				. – –	
MATC				1	SE OF NEW PO
				CAL	STATISTICS AND
k.,				ACE.	3-0-50499 5UEV
		LEGEND:	SURVEY	CONTROL POINT	CAIND
		<i>д</i> 10 і 50	UTILITY P	POLE	
			PROPERT	Y LINES	CHEMONG ST. OUTFALL
	SHEET 2 C	F 3 SHEET			FYORS
DN WERE PRODUCED FROM FIELD DN JANUARY 20, 2003. D03.			AIRPORT COR HORS	PORATE PARK, 100 HUNT C EHEADS, NEW YORK 14845	607+358+1000 ENTER FAX+358+1800
	KENT	UCKY	AVE.	WELLFIELD S	SITE – OU3
		EXCA	VATED	GROUND CONT	OURS
SCALE IN FEET		HO	ORSEHE	ADS, NEW YO	RK
20 40 80 120	SCALE: 1" = 40'	DWG.BY: T.A.O.	СНК.ВҮ:	TAX PARCEL NO;	JOB NO: 5357-002 (REF. 5357-001)
		•		<u> </u>	

A A A	\$\$ 20	Contra			RIBE: 37 HET. 31 HET. 31	
					ACCESS AVE. WE	S WA KENTUCKY LL ACCESS ROAD
BOAD SBLOG S			3 99-76 1000000000000000000000000000000000000			
×887.43 × 867-64 ×891-70 ×891-70 ×891-70						
				• •• •• •• ••	THE OF	NEW LOUF
Ĩ		LEGEND : △ ∂ 10+50	SURVEY UTILITY F STATION PROPERT	Control Point Pole No. As measured TY lines	FROM CHEMUI	NG ST. OUTFALL
DN WERE PRODUCED FROM FIELD DN MARCH 3, 2003. D03.	SHEET 3 C	DF 3 SHEET	S ENGINEERS AIRPORT COI HORS	• ARCHITECTS • RPORATE PARK, 100 H SEHEADS, NEW YORK	SURVEYORS HUNT CENTER 14845	607+358+1000 FAX+358+1800
SCALE IN FEET	KENT	ľUCKY H	AVE. BACK F ORSEHE	WELLFIELI TILL CONTO CADS, NEW	D SITE URS YORK	- 0U3
20 40 80 120	SCALE: 1" = 40'	DWG.BY: T.A.O.	CHK.BY:	TAX PARCEL NO:	JOB NO: (F	5357-002 REF. 5357-001)

APPENDIX B

POST-EXCAVATION VERIFICATION AND POST-CONSTRUCTION BACKGROUND SOIL SAMPLE LABORATORY RESULTS (ELECTRONIC DATA)

APPENDIX C

SAMPLING MEMORANDUM

{*^UMMINGS vryiTER*

MEMO

 TO:
 Isabel Rodrigues (USEPA Region II)
 September 16,2002

 Terence Chuhay (CDM Federal Programs Corp.)
 Aaron Gorges (Fagan Engineers)

 Peter Poter (AAA Environmental Services, Inc.)
 Leo Brausch (Viacom Inc.)

FROM: Bruce Geno Currimings/Riter Consultants, Inc. Project No. 245.20/04

RE: POST-EXCAVATION SAMPLE DOCUMENTATION INDUSTRIAL DRAINAGEWAY REMEDIATION - HORSEHEADS, NEW YORK

This memo provides clarification to post-excavation sampling requirements for sediment and bank soil remediation in the Industrial Drainageway.

- Sidewall samples of both sediments and bank soils will be collected at a frequency of 1 sample per 200 square feet of exposed sidewall, with a minimum of one sample for each sidewall in each discrete excavation. Sidewall samples will be collected in both the transectional and longitudinal directions.
- Bottom samples from both sediment and bank soil excavations will be collected at a frequency of 1 sample per 900 square feet of excavation, with a minimum of one bottom sample for each discrete excavation.
- Each sidewall and bottom sample will be collected as a composite sample consisting of five equal volume aliquots distributed evenly throughout the sidewall or bottom surface, respectively. There may be exceptions for small excavations, with concurrence of the USEPA oversight engineer.
- Although the Remedial Action Work Plan (Cummings/Riter Consultants, Inc., August 15, 2001) calls for the collection of additional sidewall samples for every additional two-foot depth increment, the New York State Department of Environmental Conservation *Technical Administrative Guidance Memorandum on Determination of Soil Cleanup Objectives and Cleanup Levels* (TAGM) distinguishes between surface soil (zero to two-foot depth) and subsurface soil (greater than two-foot depth). Therefore, it is consistent with the TAGM that sidewall samples be collected from two zones: zero to two feet and greater than two feet. USEPA has agreed to this practice.

/^*iUMMINGS yJDITER* With USEPA concurrence, the sample designation has been modified from the Sampling and Analysis Plan (Cummings/Riter Consultants, Inc., Remedial Action Work Plan, Appendix B) to help track sample locations. Samples will be labeled with a series of four letters followed by a sample number, as follows:

A-B-S-N-001

where,

- first letter: Industrial Drainageway stationing: A= STA. 0+00 to 1+00, etc.
- second letter: B = bank sample or C = channel sample
- third letter: surface (S, less than two feet deep) or subsurface (SS, greater than two feet deep) sample,
- fourth letter: compass direction (north, south, east or west) for sidewall samples, or B = bottom samples, and
- number is numerical order of sample collected.

Quality control requirements do not include trip blank analysis.

Sample locations do not need to be surveyed; however, as-built drawings of completed excavations shall indicate sample locations.

Analysis of all confirmatory samples must be reported as Level IV data.

APPENDIX D

DATA VALIDATION REPORT

APR 2 9 2003

Data Validation Report

Cummings-Riter Consultants, Inc. Kentucky Avenue Wellfield Site OU3 - Horseheads, New York SDG# 94773, 95433,9717^/97224, 94538,94081,94662

3531 Fox Chase Drive Imperial, PA 15126 (724) 695-8042 FAX (724) 695-2698 e-mail: <u>ECTCONINC@aol.com</u>

Data Validation Report

SDG#	94773
Validation Report Date	April 28,2003
Validation Guidance	USEPA Region 2 Guidelines for Data Review SW 846 Method 8082
Client Name	Cummings-Riter
Project Name	Viacom/Horseheads
Laboratory	Friend Laboratory Inc.
Method(s) Utilized	SW 846 8082
Analytical Fraction	PCBs

Samples/Matrix:

Date Sampled	Sample ID	Laboratory ID	PCBs	Matrix
9/30/02	C-B-S-W-001	94773-1	Х	Solid
9/30/02	C-B-SS-W-001	94773-2	Х	Solid
9/30/02	C-C-S-B-001	94773-5	Х	Solid
9/30/02	C-C-SS-B-001	94773-6	Х	Solid
9/30/02	C-B-SS-B-001	94773-7	Х	Solid
9/30/02	C-B-SS-E-001	94773-8	Х	Solid
9/30/02	C-B-S-E-001	94773-9	Х	Solid M

Analytical data in this report were screened to determine analytical limitations of the data based on specific quality control criteria. This screening assumes analytical results are correct as reported and merely provides an interpretation of the reported quality control results. A minimum of 10% of laboratory calculations has been verified as part of this validation. Specific findings on analytical limitations are presented in this report. Annotated Form Is or spreadsheets for samples reviewed are included after the Data Assessment Findings. Form Is for the MS/MSD samples and spreadsheets are not annotated.

SUMMARY

The sample set for Viacom/Horsehead consists of seven solid field samples. These samples were analyzed for the parameters as provided above. The findings presented in this review of the analytical data assume that the information presented by the analytical laboratory is correct. This review is identified as a false positive/false negative review, and therefore, does not include the review of some quality control (QC) items. Those included in the review are listed below.

The polychlorinated biphenyl (PCBs) findings are based upon the assessment of the following:

- * Data Completeness
- * Holding Times
- * Calibration and GC Performance
- * Blanks
- * Analytical Sequence Check
 - Target Compound Identification
 - Compound Quantitation and Reported Detection Limits
- * Chromatogram Quality
- * Criteria were met for this evaluation item.

This evaluation was conducted in accordance with USEPA Region II SOP No. HW-23B (May 2002), USEPA CLP National Functional Guidelines for Organic Data Review and the analytical method. Findings from this evaluation should be considered when using the analytical data. This report presents a summary of the data qualifications based on the review of the aforementioned evaluation criteria. This is followed by annotated Form Is/ spreadsheets. Finally, the worksheets used to perform the evaluation are provided.

FINDINGS

*

Polychlorinated Biphenyls (PCBs)

1. Compound Quantitation

The percent difference between columns exceeded the 25% quality control limit. For the following samples and compound, qualify PCB results as indicated in the table below. Samples were qualified based on SOP HW-23, Section 12.6.

Sample	Compound	% Difference	Qualifier
C-C-S-B-001	Aroclor 1254	81.1%	NJ
C-B-SS-B-001	Aroclor 1254	34.3%	J
C-B-S-E-001	Aroclor 1254	50%	J

NOTES

Polychlorinated Biphenyls (PCBs)

Completeness

The USEPA Region II SOP No. HW-23B has the following sections that are not applicable to this project because it is a false positive/false negative review:

- Surrogate Recovery (Form 2) ,
- Laboratory Control Sample
- Matrix Spikes (Form 3)
- Contamination
- GC Apparatus and Materials
- Extraction Techniques for Sample Preparation
- Field Duplicates

The cooler temperature upon receipt at the laboratory was 0 C. Data are not qualified upon this basis.

Calibration

The laboratory used linear regression to calculate PCB results. The use of linear regression is permissible for SW-846 methodologies. The laboratory met the acceptance criteria specified in Section 7.5.2 of Method 8000B (r value greater than or equal to 0.99).

Data summary forms (including calibration factors) for the initial and continuing calibration is not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the calibration factor information. Because Aroclor 1254 was identified as a constituent of concern, the data summary information for the second column is provided for the continuing calibration. Data are not qualified on this basis.

The percent difference (%D) per peak for multi-standard Aroclors are provided. For SW 846, the laboratory used the average Aroclor concentration to determine the %D. Data are not qualified because the average value is used.

Retention Time

Retention time windows are not determined by the use of three standards for single standard calibration Aroclors. The center of the retention time window is defined as the retention time of the midpoint standard from the initial calibration. For the multi-standard calibration Aroclors, the center of the retention time window is the mean of the retention time generated from each standard. The retention time windows are the mean + 0.1 minutes. Data are not qualified on this basis.

Retention time windows are not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the retention time window information. Because Aroclor 1254 was identified as a constituent of concern, the retention time information for the second column is provided. Data are not qualified on this basis.

Compound Quantitation

Samples were analyzed and reported at a dilution due to the presence of target compounds. Dilutions for samples are presented below. Reporting limits were adjusted for percent solids and dilutions.

C-B-S-W-001, C-B-SS-W-001, C-C-S-B-001, C-C-SS-B-001, C-B-SS-B-001, C-B-SS-E-001, C-B-S-E-001_____

K L

)ata Reviewer

Glossary of Data Qualifiers

u	Not Detected.	The associated number indicates approximate sample
		concentration necessary to be detected.
UJ	Not Detected.	Quantitation limit may be inaccurate or imprecise.
J	Analyte Present.	Reported value may not be accurate or precise.
Ν	Consider Present.	Tentative identification. Special methods may be needed to
		confirm its presence or absence in future sampling efforts.
R	Unusable Result.	Analyte may or may not be present in the sample.
UR	Unusable Result.	Analyte may or may not be present in the sample.

^sl/^

ECT.CON INC.

 ^^^f I
 ``A``A`
 Environmental and Computer

 I
 Technology Consultants

Annotated Form 1's (Spreadsheet)

32 ITHACA STREET TELEPHONE (607) 565-3600

WAVERLY, NY 14892-1532 PAX (607) 565-4083

D a t e : 0 4 - O C T - 2 0 0 2

Lab Sample ID: L94773-1

AAA Environmental Peter Porter 667 9 Moore Road Syracuse, NY 13211 Sample Source: VIACOM/HORSEHEADS 19208 Origin: Q-B-S-W-001 Description:; .^-COMPOSITE Sampled On:: 30-SEP-02 16:45 by CLIENT Date Received:.; 01-QCT-02 09:00

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	56.6			01-OCT-02 00:00	CLP 3.0	02-066-79
EPA 6082						
FCB 1016 FCB 1221 FCB 1232 FCB 1242 FCB 1248 FCB 1254 FCB 1260	U U U U 280 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	170 350 170 170 170 170 170	04-OCT-02 10:30 04-OCT-02 10:30 04-OCT-02 10:30 04-OCT-02 10:30 04-OCT-02 10:30 04-OCT-02 10:30 04-OCT-02 10:30	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-9998 02-004-9998 02-004-9998 02-004-9998 02-004-9998 02-004-9998 02-004-9998
Extraction Information:				02-OCT-02 00:00	EPA 3550	02-044-92
Surrogate Recovery: TetrachIoro-m-xylene Martherphiphenyl	82 96					02-004-9998 02-004-9998

Results calculated on a dry weight basis.

Lab Director Approved by:1

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

 KEY: ND o/ U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 _mg/L
 = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million)

 ^^^L L
 - = ^{sna.l}Y^{te}.^{was} detected in the method or trip blank
 J = result estimated below the Jiuantitation limit

(rmation in this report is accurate to the best of our knowledge and ability- In no event shall our liability exceed the cost fc_r be services. Your samples will be discarded after 14 days unless we are advised otherwise.

32 ITHACA STREET TELEPHONE <607) 565-3500

WAVERLY, NY 14892-1532 0 FAX (607) 565-4083

Date:04-0CT-2002

<u>I • N • C</u> Lab Sample ID: L94773-2

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

L\H()RATnRV

Sample Source: VIAGOM/HORSEHEAOS 1920S Origin: C-B-SS-U-OOI ". Description: COMPOSITE ;... Sampled On: 30-SEP-02 16:50 by CLIENT Date Received: 01-0CT-02 09:00 P.O. No: N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	55.8			01-OCT-02 00:00	CLP 3.0	02-066-79
EPA \$082						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1260	U U U U 4100 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	160 330 160 160 160 160 160	04-OCT-02 13:08 04-OCT-02 13:08 04-OCT-02 13:08 04-OCT-02 13:08 04-OCT-02 13:08 04-OCT-02 13:08 04-OCT-02 13:08	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-0004 02-004-0004 02-004-0004 02-004-0004 02-004-0004 02-004-0004 02-004-0004
Extraction Information:				02-OCT-02 00:00	EPA 3550	02-044-92
Surrogate Recovery: Tetrachloro-m-xylene Bewehl orobiphenyl	80 97					02-004-0004 02-000(AJM/

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

KEY: MD o/ U = None Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion) mg/C = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram {equivalent to parts per million) ^ f l ^ _ = analyte was detected in the method or trip blank - result estimated below the quantitation ilimit

jrmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the services. Your samples will be discarded after 14 days unless we are advised otherwise.

82 ITHACA STREET TELEPHONE (607) 565-3500 WAVERLY, NY 14892-1532 PAX (607) 565-4083

Date:04-OCT-2002

Lab Sample ID: L94773-5

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VACOTHORSEHEADS 1920S Origin: C-C-.S'BAQQI Description: COMPQSPE Sampled On: 30rs|p^p'16:50 by CLIENT Date Received": p1r.OCi^1:p9;00 P.O. No;

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	56.1			01-OCT-02 00:00	CLP 3.0	02-066-79
EPA 8082						
FCB 1016 FCB 1221 FCB 1232 FCB 1242 FCB 1248 FCB 1254 FCB 1260	บ บ บ 6800 <i>fJ)</i> บ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	170 330 170 170 170 170 170	04-OCT-02 13:39 04-OCT-02 13:39 04-OCT-02 13:39 04-OCT-02 13:39 04-OCT-02 13:39 04-OCT-02 13:39 04-OCT-02 13:39	EPA B0B2 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-0005 02-004-0005 02-004-0005 02-004-0005 02-004-0005 02-004-0005 02-004-0005
Extraction Information:				02-OCT-02 00:00	EPA 3550	02-044-92
Surrogate Recovery: Tetrachloro-m-xylene Decehl@obiphenyl	98 135					02-004-0005 02-004-0005

Results calculated on a dry weight basis.

Approved by; Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

KEY: ND o/ U = None Detected <= less than ug/L = micrograms per liter (equivalent to parts per billion)
mg/L = milligram per liter (equivalent to parts per million) mg/kg * milligrams per kilogram (equivalent to parts per million)
= analyte was detected in the method or trip blank J = result estimated below the quantitation Limit</pre>

rmation in this report is accurate to the best of our knowledge and ability, in no event shall our liability exceed the cost ^^^OESse services. Your samples uill be discarded after 14 days unless we are advised otherwise.

H ^{F R 1 E N n} ^{i ugealQRX} N • C

32 ITHACA STREET TELEPHONE (607) 565-3500 WAVERLY, NY 14892-1532 FAX (607) 565-4083

D a t e : 0 4 - O C T - 2 0 0 2

Lab Sample ID: L94773-6

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VIACOM/HORSEHEADS WEOS Origin: C-C-SS-B-OOI Description: COMPOSITE Sampled On: 30-SEP-02 17:00 by CLIENT Date Received: oi-ocT-02 09:00 P.O. No: M/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	85			01-OCT-02 00:00	CLP 3.0	02-066-79
EPA 80B2						
PCB 1016 PCS 1221 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1260	U U U U 220 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 230 110 110 110 110 110	04-QCT-02 11:01 04-OCT-02 11:01 04-OCT-02 11:01 04-OCT-02 11:01 04-OCT-02 11:01 04-OCT-02 11:01 04-OCT-02 11:01	EPA 80B2 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-9999 02-004-9999 02-004-9999 02-004-9999 02-004-9999 02-004-9999 02-004-9999
Extraction Information:				02-OCT-02 00:00	EPA 3550	02-044-92
Surrogate Recovery: Tetrachloro-m-xylene Beeachl orobiphenyl	73 87					02-004-999 02-004-999

Results calculated on a dry weight basis.

Lab Director

Approved by*

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

Q C X ^ ***^**

KEY: ND U = None Detected < = less than ug/L = micrograms pep Liter (equivalent to parts per billion) ma/ = roiUigram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) = analyte was detected in the method or trip blank J = result estimated below the quantitation_limjt_

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed e services. Your samples will be discarded after 14 days unless we are advised otherwise.

32 ITHACA STREET TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:04-OCT-2002

Lab Sample ID: L94773-7

AAA Environmental Peter Porter 6 67 9 Moore Road Syracuse, NY 13211

BQRATORY

<u>N</u> C

Sample Source: VIACOH/HORSEHEADS 19208 Origin: C-B-SS-B-001 Description: COMPOSITE Sampled On: 30-SEP-Q2 16:30 by CLIENT Date Received: 01-OCT-02 09:00 P.O. No.: NA:

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	69.2			01-OCT-02 00:00	CLP 3.0	02-066-79
EPA jl08Lv™~						
FCB 1016 FCB 1221 FCB 1232 FCB 1242 FCB 1248 FCB 1254 FCB 1260	U U U U 1600 3 u	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	140 270 140 140 140 140 140	04-OCT-02 12:05 04-OCT-02 12:05 04-OCT-02 12:05 04-OCT-02 12:05 04-OCT-02 12:05 04-OCT-02 12:05 04-OCT-02 12:05	EPA 6082 EPA 8082 EPA 8082 EPA 6082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-0002 02-004-0002 02-004-0002 02-004-0002 02-004-0002 02-004-0002 02-004-0002
Extraction Information:				02-OCT-02 00:00	EPA 3550	02-044-92
Surrogate Recovery: TetrachIoro-m-xylene Decachlorobiphenyl	78 96	% .				02-004-0002 02-004-0002

<0

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 Hi 73168 PA 68180 EPA NY 00033

= None Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion)
= milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million)
= analyte was detected in the method or trip blank J = result estimated below the quantitation limit</pre> KEY: ND of U = None Detected mg/C rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost e services. Your samples will be discarded after 14 days unless we are advised otherwise.

32 ITHACA STREET TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 0 PAX (607) 565-4083

Date:04-OCT-2002

Lab Sample ID: L94773-8

AAA Environmental Peter Porter 667 9 Moore Road Syracuse, NY 13211

Sample Source:	VIACOM/HORSEHEADS 19208
Origin:	C-B-SS-E-001
Description:	COMPOSITE
Sanvpied On:	30-SEP-02 16:35 by CLIENT
Date. Received:	01-OCT-02 09:00
-'-5fe"6-J NO:	N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Tote I Solids	62.4			01-OCT-02 00:00	CLP 3.0	02-066-79
EPA 8082						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	U u u u 3100 U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	160 320 160 160 160 160 160	04-OCT-02 12:37 04-OCT-02 12:37 04-OCT-02 12:37 04-OCT-02 12:37 04-OCT-02 12:37 04-OCT-02 12:37 04-OCT-02 12:37	EPA 8082 EPA 80B2 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-0003 02-004-0003 02-004-0003 02-004-0003 02-004-0003 02-004-0003 02-004-0003
Extraction Information:				02-0CT-02 00:00	EPA 3550	02-044-92
Surrogate Recovery: Tetrachloro-m-xylene D <u>e.caa</u> plorobiphenyl	92 115					02-004-0003 02- 0 094^M3

Results calculated on a dry weight basis.

Approved by

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

ost

 KEY: ND
 U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/L
 = milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per million)

 = analyte was detected in the method or trip blank
 J
 = result estimated below the quantitation limit_____

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability excei^g fol[^]Wresse services. Your samples will be discarded after 14 days unless we are advised otherwise. 32 ITHACA STREET TELEPHONE (607) 665-3500 WAVERLY, NY 14892-1532 FAX (607) 565-4083

i F N r> ORATORY N • C

Date:04-OCT-2002

Lab Sample ID: L94773-9

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 .e Source : VIACOH/HORSEHEADS 1920B Origin : C-B-S-E-OOI Description : COMPOSITE V;¹-Sampled On : 30-SEP-02 16:40 by CLIENT Dat& Received : OI-OCT-02 o9:po '•'•• P.O.NO: N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	56.7			OI-OCT-02 00:00	CLP 3.0	02-066-79
EPA 8082						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1246 PCB 1254 PCB 1260	310 J ^	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	170 350 170 170 170 170 170	04-OCT-02 11 36 04-OCT-02 11 36	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-0001 02-004-0001 02-004-0001 02-004-0001 02-004-0001 02-004-0001 02-004-0001
Extraction Information:				02-OCT-02 00 00	EPA 3550	02-044-92
Surrogate Recovery: TetrachIoro-m-xyIene Decachlorobiphenyl	B6 93					02-004-0001 02-004-0001

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

KEY: ND o/ U = None Detected <= less than ug/l = micrograms per liter (equivalent to parts per billion) mg/L = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) = analyte was detected in the method or trip blank = result estimated below the quantitation limit

Drmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost services. Your samples will be discarded after 14 days unless we are advised otherwise.

 $^{\rm A}S]/^{\rm ECT.CON INC.}$

 $\bigwedge f \quad I \setminus \land \land \land$ Environmental and Computer I Technology Consultants

Support Documentation

.

CUSTOMER

CHAIN OF C100DY RECORD

PAGE

Laboratory Case Narrative

Laboratory Validation and Usability Assessment

Project: AAA Environmental Viacom/Horseheads 19208 Sampled September 30, October 1, 2, & 5, 2002

The data reported in this package have been reviewed for compliance with QC acceptance limits as specified in the method cited for each analysis.

These statistical limits are typically based on historical laboratory data for a given sample matrix, and will not exceed any default limits specified by the method. CLP acceptance limits are also considered.

The following Quality Control operations are considered in the validation of reported results:

Holding times, surrogate recovery, spiked sample recovery, duplicates/spiked duplicate precision, tuning criteria, internal standard variation, continuing calibration variation, reference (check) sample recovery, and instrument, method, trip and field blanks. The appropriate frequency for each operation is also considered.

Every effort has been made to report data that is compliant with the EPA methodology cited for each analysis. In cases where the laboratory was unable to meet all method requirements prior to sample expiry, either due to the nature of the sample or other technical difficulty, results are reported with qualification with the understanding that qualified results may not be suitable for compliance purposes. The internal technical review is based on the USEPA Contract Laboratory Program *National Functional Guidelines for Organic Review* (EPA 540/R-94/012, February 1994) and *National Functional Guidelines for Inorganic Review* (EPA 540/R-94/013, February 1994).

Validation

Eighteen site samples and three matrix spike/matrix spike duplicate sets were received on October 1, 2, & 7, 2002, with ice. The temperatures as received were 0°C, 9°C, 28°C, and 5°C, in order of receipt. The cooler received at 9°C had ice present at -2°C, and the cooler received at 28°C had ice present at 3°C.

Laboratory Validation p.1

PCB

Site samples were analyzed by EPA method 8082 for PCBs with a two-microliter injection volume.

RTX-CLPesticides 1 and RTX-CLPesticides 2 capillary columns, 0.32 mm ID, with purge packed inlets and electronic pressure control are used on an Hewlett-Packard 5890 series II with dual ECD and an HP 7673 autosampler with simultaneous injection. Data is collected with HP Chemstation software and processed by Thruput with Target software. If a peak is detected within the retention time window of a target compound, second-column confirmation is performed. Column RTX-CLPesticides 2 was used for the primary analysis. Column RTX-CLPesticides 1 was used to confirm only the fingerprint, not the quantitation. Form 10B's are provided in order to verify pattern recognition.

PCB 1254 was detected in each of the site samples except the Duplicate site sample. Second-column analysis confirmed the presence of these targets. No PCBs were detected in the method blanks.

Surrogate recoveries were within limits.

Site samples C-B-SS-W-001 and B-B-S-E-B-002 were spiked in duplicate. Spike recovery for PCB 1260 was within limits for the MSD of site sample B-B-S-E-B-002. Ail other spike recoveries were above the acceptance limits. Due to the levels of PCB 1254 detected in both site samples, overlapping peaks probably caused an elevation of the recoveries.

Precision as indicated by RPD was within acceptance limits.

Three blank spikes were associated with the site samples. Blank spike recoveries were within acceptance limits.

No other analytical difficulties were encountered.

Metals

Site sample R0025 was analyzed for TCLP Cadmium by Inductively Coupled Plasma - Optical Emission Spectrometry.

The ICP-OES instrument is an ARL 3560 with an AIM 1250 autosampler with an extension. The data is acquired with the Microactive, Australia software ICP Manager 35xx.

Site sample R0025 was spiked for TCLP Cadmium. Spike recovery was within acceptance limits.

Laboratory Control sample recovery for TCLP Cadmium was within acceptance limits.

No analytical difficulties were encountered.

Wet Chemistry

Site sample R0025 was analyzed in duplicate for paint filter by EPA method 9095. Precision as indicated by absolute difference was within the acceptance limit.

Usability Assessment

All reported data were found to be valid and usable within the EPA National Functional Validation guidelines except those that were qualified in this Laboratory Validation.

Laboratory validation and Usability assessment conducted by:

£%£*s?\$?Jth~ & AjZ&tfr'x-

Date: November 5, 2002

Elizabeth A. Keator Quality Assurance

Worksheets

PA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

PACKAGE COMPLETENESS AND DELIVERABLES

CASE NUMBER: " SDG#

LAB: $ftrM^{**}/h^{As}$ IjtfL- SITE: $//*\&V?_g$ //&&>,&**&

- 1.0 Data Completeness and Deliverables
 - 1.1 Has all the data been submitted in CLP deliverable format?
 - 1.2 Have any missing deliverables been received and added to the data package?
 - ACTION: Call lab for explanation/resubmittal of any missing deliverables. If lab cannot provide them, note the effect on review of the data in the reviewer narrative.

2.0 Cover Letter, SDG Narrative

- 2.1 Is a laboratory narrative or cover letter present?
- 2.2 Are the case number and/or SDG number contained in the narrative or cover letter?

3.0 Data Validation Checklist

3.1 Does this data package contain:

Water data?

Waste data?

Soil/solid data?

JΙ

V

USEPA Region II SW846 Method 8082

YES NO N/A

POLYCHLORINATED BI PHENYLS

1.0 Traffic Reports and Laboratory Narrative

- 1.1 Are traffic report and chain-of-custody forms present for all samples?
- ACTION: If no, contact lab for replacement of missing or illegible copies.
- 1.2 Do the traffic reports, chain-of-custody forms or SDG narrative indicate any problems with sample receipt, condition of the samples, analytical problems or special circumstances affecting the quality of the data?
- ACTION: If any sample analyzed as a soil, other than TCLP, contains 50%-90% water, all data should be qualified as estimated, "J." If a soil sample, other than TCLP, contains more than 90% water, non detects shall be qualified as unusable, "R."
- ACTION: If samples were not iced or if the ice was melted upon arrival at the laboratory and the temperature of the cooler'was elevated (> 10* C), flag all positive results "J" and all non-detects "UJ".

2.0 Holding Times

2.1 Have any PCB technical holding times, determined from date of collection

> to date of extraction, been exceeded?_____IU: ___IU: ___ Water and waste samples for PCB analysis must be extracted within *l* days of the date of collection. Extracts must be . analysed within 40 days of the f^llcCT^c/. date of extraction. Soils and solid samples must e?/3cJ0?be extracted within 14 days of collection and *' it analyzed within 40 days of extraction. fjt^**"***⁵^

ACTION: If technical holding times are exceeded, flag all A// / positive results as estimated, "J," and sample ft^Yi^ quantitation limits "UJ" and document in the i^/Vyc*? narrative that holding times were exceeded. If analyses were done more than 14 days beyond holding time, either on the first analysis or upon re-analysis, the reviewer must use

|s|

:

» 7V*t*P $QaCLA^{t} ^{\prime}$ (0*fc)

* /

EPA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

F 1

YES NO N/A

professional judgement to determine the reliability of the data and the effects of additional storage on the sample results. At a minimum, all the data should at least be qualified "J", but the reviewer may determine that non-detects are unusable, "R. "

Surrogate Recovery (Form II) H*/-/A •f'/fe^-M'"^ 3.0

- 3.1 Were the recoveries of tetrachloro-m-xylene (TCMX) and decachlorobiphenyl (DCB) presented on CLP Surrogate Recovery Summary forms (Form II), or equivalent, for each of the following matrices?
 - Water/Waste JЬ a.
 - Soil/Solid b. f 1
- 3.2 Are all the PCB samples listed on the appropriate surrogate recovery form for each of the following matrices?
 - a. Water
 - b. Waste
 - Soil/Solid с.
- ACTION: Call lab for explanation/resubmittals. If missing deliverables are unavailable, document the effect in the data assessment.
- Did the laboratory provide their developed in-house 3.3 Surrogate recoveries?
- If no, use 70 -130% recovery to qualify in ACTION: section 3.4 below.
- Were surrogate recoveries of TCMX or DCB outside 3.4 of the laboratory-established upper (UCL) or lower (LCL) control limits for any sample or blank?

Circle all outliers in red. ACTION:

ACTION: No qualification is done if surrogates are diluted out. If recovery for both surrogates is

-PCB 3 -

USEPA Region II SW84 6 Method 80 82 Date: May, 2002 SOP HW-23B, Rev.1.0

LL

LL

YES NO N/A

below the LCL, but above 10%, flag all results for that sample "J". If recovery is < 10% for either surrogate, qualify positive results "J" and flag non-detects "R". If recovery is above the UCL for both surrogates qualify positive values "J".

- Note: DCB is used when PCBs are determined as Aroclors. DCB is the internal standard when determining PCB congeners and TCMX the surrogate.
- 3.5 Were surrogate retention times (RT) within the windows established during the initial 5-point analysis?
- ACTION: If the RT limits are not met, the analysis may be qualified unusable (R) for that sample on the basis of professional judgement. However, flag positive hits as estimate (J) if confirmed by GC/MS analysis.
- 3.6 Are there any transcription/calculation errors between raw data and Form II?
- ACTION: If large errors exist, call lab for explanation/resubmittal. Make any necessary corrections and document the effect in data assessments.
- ⁴-° Laboratory Control Sample Jj fi J^{\wedge} faj<)£ f /-nCte* ~ st# &'<&*/
 - 4.1 Are raw data and percent recoveries present for all <u>Laboratory Control</u> samples as required by Method 8000B (section 8.5) and Method 8082 (section 8.4.2)?

Verify that QC check samples were extracted and analyzed by the same procedures used for the actual samples.

- ACTION: If any <u>Laboratory Control Sample</u> data are missing, call the lab for explanation /resubmittals. Make note in the data assessment.
- NOTE: For aqueous samples, an additional QC check sample must be prepared and analyzed when any analyte in a matrix spike fails the required acceptance criteria (see section 5.3 below). The additional QC check sample must contain each analyte that failed in the MS analysis.

\^

%

۸

EPA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

_L_L

\ 1_____^

y

YES NO N/A

- Note: When the results for matrix spike analysis indicates a problem due to sample matrix effects, the LCS results are used to verify the laboratory can perform the analysis in a clean sample.
- 4.2 Were Laboratory Control Samples analyzed at the required concentration for all analytes of interest as specified in Method 8000B (sec.8.5)?
- ACTION: If Laboratory Control Samples were not analyzed at the required concentration or the required frequency, make .note in the data assessment and use professional judgement to determined the affect on the data.
- 4.3 Were the LCS recoveries within the laboratory's in-house per cent recoveries (if not available, use 70 130%) I L
- 4.4 If no, were <u>Laboratory Control Samples</u> re-analyzed?
- Note: Corrective action must be taken when one or more of the analytes of interest fail the QC acceptance criteria (Method 8000B, section 8.7.4)
- ACTION: If QC check samples were not re-analyzed, or a general system problem is indicated by repeated failure to meet the QC acceptance criteria specified in the method, make note in the data assessment and use professional judgement to determine the effect on the data.

5.0 Matrix Spikes (Form III) JUA f- jUa-*. t/ft*****

- 5.1 Are all data for one matrix spike and matrix duplicate (unspiked) pair (MS/Dup) or matrix spike/matric spike duplicate (MS/MSD)present and complete for each matrix Method 8082(section 8.4.1)?
- NOTE: For soil and waste samples showing detectable amounts of organics, the lab may substitute replicate samples in place of the matrix spike (see Method 8000B-40, section 8.5.3)).
- 5.2 Have MS/Dup or MS/MSD results been summarized on modified CLP Form III?
- ACTION: If any data are missing take action as specified in section 3.2 above.
- 5.3 Were matrix spikes analyzed at the required frequency

Date: May, 2002 USEPA Region II SOP HW-23B, Rev.1.0 SW846 Method 8082 YES NO N/A for each of the following matrices? (One MS/Dup, MS/MSD must be performed for every 20 samples of similar matrix or concentration level. Laboratories analyzing one to ten samples per month are required to analyze at least one MS per month (Method 8000B-39 (section 8.5)). L ^ J-L Water a. b. Waste Soil/Solid C. If any MS/Dup or MS/MSD data are missing, ACTION: take the action specified in 3.2 above. Were the 70 - 130% recoveries used to 5.4 compare the matrix spike recoveries, or did the lab use the optional QC acceptance criteria discussed in Method 8000B-40(section 8.5.3.1)? List the criteria used and make note in data assessment. Criteria used_____ __^_^_^__^_ Was the matrix spike prepared at the proper spike 5.5 U concentration? (Method 8000B, section 8.5.1-8.5.2) JΓ For aqueous organic extractable, the spike concentration should be prepared according options in: Method 8000B-40, (section 8.5.1 and 8.5.2). ACTION: No action is taken based on MS or replicate data alone. However, using informed professional judgement, the data reviewer may use the matrix spike or laboratory replicate results in conjunction with other QC criteria and determine the need for some qualification of the data. In some instances it may be determined that only the replicate or spiked samples are affected. Alternatively, the data may suggest that the laboratory is having a systematic problem with one or more analytes, thereby affecting all associated samples.

STANDARD OPERATING PROCEDURE

PA Region II 46 Method 8082

YES NO N/A

6.1 Was reagent blank data reported on CLP equivalent Method Blank Summary form(s) (Form IV)?

- 6.2 Frequency of Analysis: Has a reagent blank been analyzed for every 20 (or less) samples .of similar matrix or concentration or each extraction batch?
- ACTION: If any blank data are missing, take action as specified above (section 3.2) . If blank data is not available, reject (R) all associated positive data. However, using professional judgement, the data reviewer may substitute field blank' data for missing method blank data.
- 6.3 Chromatography: review the blank raw data chromatograms, quant reports or data system printouts.

Is the chromatographic performance (baseline stability) for each instrument acceptable for PCBs?

ACTION: Use professional judgement to determine the effect on the data.

7.0 <u>Contamination</u> NOTE: "Wa

TE: "Water blanks", "distilled water blanks" and "drilling water blanks" are validated like any other sample and are <u>not</u> used to qualify the data. Do not confuse them with the other OC blanks discussed below.

for for U t /J/w -/Uct'IW -

- 7.1 Do any method/instrument/reagent/cleanup blanks have positive results for PCBs? when applied as described below, the contaminant concentration in these blanks are multiplied by the sample Dilution Factor and corrected for % moisture when necessary.
- 7.2 Do any field/rinse blanks have positive PCB results?
- ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)
- NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data.

Jledr'

J 1

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

J-L

*/

YES NO N/A

Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified for surrogate, or calibration QC problems.

ACTION: Follow the directions in the table below to qualify sample results due to contamination. Use the largest value from all the associated blanks.

Sample cone > EI x blank	DL but < 5 Sa 5	mple cone < EI x blank value	DL & is <	Sample cone > EDI x blank value	<u>`</u> & > 5
Flag sample rest "U"	ult with a H	Report EDL & ^{U"}	qualify	No qualification needed	is

- NOTE: If gross blank contamination exists, all data in the associated samples should be qualified as unusable (R).
- 7.3 Are there field/rinse/equipment blanks associated with every sample?
- ACTION: For low level samples, note in data assessment that there is no associated field/rinse/equipment blank. Exception: samples taken from a drinking water tap do not have associated field blanks.

8.0 GC Apparatus and Mater ials /J/l/£/£&" //£& 's"*"'*'

- 8.1 Was the proper gas chromatographic capillary column used for the analysis of PCBs?
- Action: Check raw data, instrument logs, or contact the lab to determine what type of columns were used. (Method 8082, section 4.2)
- 8.2 Indicate the specific type of narrow bore or wide bore (.53 mm ID, fused silica GC columns, such as DB-608 and DB-1701 or equivalent).

column 1:

column 2:

ACTION: Note any changes to the suggested materials in section 8.1 above in the data assessment. Also note the impact (positive or negative) such changes have on the analytical results.

EPA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

c I

SA

0

YES NO N/A

Calibration and GC Performance

- 9.1 Are the following Gas Chromatograms and Data Systems Printouts for both columns present for all samples, blanks, MS, replicates?
 - a. Samples
 - b. All blanks
 - c. Matrix spike samples -
 - d. 5 pt. initial calibration standards t JLjUJi-
 - e. calibration verification standards $i^{f^{**''^{\prime}}}$
 - f. Laboratory Control samples (LCS)

ACTION: If no, take action specified in 3.2 above.

- 9.2 Are data summary forms (containing calibration factors or response factors) for the initial 5 pt. calibration and daily calibration verification standards present and complete for each column and each analytical sequence?
- Note: Calibration Aroclor mixtures other than 1016/1260 may be used (as per approved project QA plan)
- NOTE: If internal standard calibration procedure is used (Method 8000B-15(section 7.4.2.2)), then response factors must be used for %RSD calculations and compound quantitation. If, external standard calibration procedures are used (Method 8000B-16 (section 7.4.2.1)), then calibration factors must be used. The internal standard approach is highly recommended for PCB congener analysis.
- ACTION If any data are missing or it cannot be determined how the laboratory calculated calibration factors or response factors, contact the lab for explanation/resubmittals. Make necessary corrections and note any problems in the data assessment.
- 9.3 Are there any transcription/calculation errors between raw data and data summary forms?

ACTION: If large errors exist, call lab for

3J.	—	_
IA		
J_L_		i - /
иL	_	_^_f
J±f_		,

Λ

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

explanation/resubmittal, make necessary corrections and document the effect in data assessments.

- 9.4 Are standard retention time (RT) windows for each PCB peak of interest presented on modified CLP summary forms?
- ACTION: If any data are missing, or it cannot be determined how RT windows were calculated, call the lab for explanation/resubmittals. Note any problems in the data assessment.
- NOTE: Retention time windows for all PCBs are established using retention times from three calibration standards analyzed during the entire analytical sequence (Method 8000B, section 7.6).

Best results are obtained using retention times which span the entire sequence; i.e., using the calibration verification/continuing calibration standards analyzed every 12 hours.

- 9.5 Were RT windows on the confirmation column established using three standards as described above?
- NOTE: RT windows for the confirmation column should be established using a 3 pt. calibration, preferably spanning the entire analytical sequence as described in 9.4 above. If RT windows on one column are tighter than the other, this may result in false negatives when attempting to identify compounds in the samples.
- ACTION: Note potential problems, if any, in the data assessment.
- 9.6 Do all standard retention times in each level of the initial 5 pt. calibrations for PCBs fall within the windows established during the initial calibration sequence?
- ACTION i: If no, all samples in the entire analytical sequence are potentially affected. Check to see if three standard spanning the entire sequence were used to obtained RT windows. If the lab used three standards from the 5 pt., RT windows may be too tight. If so, RT windows should be recalculated as per Method 8081B-15 (section 7.4.6).
 - ii. Alternatively, check to see if the chromatograms contain peaks

PA Region II 46 Method 8082

YES NO N/A

within an expanded window surrounding the expected retention times.

If no peaks are found and the surrogates are visible, non-detects are valid. If peaks are present but cannot be discerned through pattern recognition or by using revised RT windows, qualify all positive results and non-detects as unusable, "R".

9.7 Has the linearity criteria for the initial calibration standards been satisfied for both columns? (% RSD must be < 20.0% for all analytes).</p>

ACTION: If no, qualify all associated positive results generated during the entire analytical sequence "J" and all non-detects "UJ". When RSD > 90%, flag all non-detect results for that analyte "R" (unusable).

- 9.8 Does the calibration verification/continuing Calibration standard contain the PCB peaks of interest, analyzed on each working day, prior to sample analyses (Method 8082, sections 7.6.2)?
- 9.9 Has a calibration verification/continuing calibration standard been analyzed after every 10 samples and at the end of each analytical sequence (Method 8082, section 7.6.2)

ACTION: If no, take action as specified in section 3.2 above. U^CT

- 9.10 Has the percent difference (%D) exceeded ± 15% for any PCB analyte in any calibration verification/ Continuing calibration standard? J
- 9.11 Has a new 5 pt. initial calibration curve been generated for those PCB analytes which failed in the calibration verification/continuing calibration standard (8000B, section 7.7.3), and all samples which followed the out-of-control calibration verification/standard continuing calibration Standard?
- ACTION: If the %D for any analyte exceeded the ± 15% criterion and the instrument was not recalibrated for those analytes, qualify positive results for all associated samples (those which followed the out-of-control standard) "J" and sample quantitation limits "UJ". If the %D was > 90%

jk\$ok'0\$Wf*~'

J_L

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.l.

YES NO N/A

for any analyte, qualify non-detects "R", unusable.

9.12 Have retention time (RT) windows been properly calculated for each analyte of interest (Msthod 8000B, section 7.6), using RTs from the associated calibration verification/continuing standard?

ACTION: If no, take action specified in section 3.2 above

- 9.13 Do all standard retention times for each calibration verification/continuing calibration standard fall within the windows established during the initial calibration sequence?
- 9.14 Do all standard retention times for each midconcentration standard (analyzed after every 10 samples) fall within the daily RT windows
- ACTION: If the answer to either 9.13 or 9.14 above is no, check the chromatograms of all samples which followed the last in-control standard. All samples analyzed after the last in~control standard must be re-injected, if initial analysis indicated the presence of the specific analyte that exceeded the retention time criteria. If samples were not re-analyzed, document under Contract Non-compliance in the Data Assessment.

Reviewer has two options to determine how to qualify questionable sample data. First option is to determine if possible peaks are present within daily retention time window. If no possible peaks are found, non-detects are valid. If possible peaks are found (or interference), qualify positive hits as presumptively present "NJ" and non-detects are rejected "R". Second option is to use the ratio of the retention time of the analyte over the retention time of either surrogate. The passing criteria is + 0.06 RRT units of the RRT of the standard component. Reject "R" all questionable analytes exceeding criteria, and "NJ" all other positive hits.

For any multi-response analytes, retention time windows should be used but analyst and reviewer should rely primarily on pattern recognition or use option 2 specified in paragraph above.

9.15 Are there any transcription/calculation errors

-IIREPA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

> YES NO N/A

between raw data and data summary forms?

ACTION: If large errors exists, call lab for explanation/resubmittal, make any necessary corrections and document the effect in data assessments under "Conclusions".

10.0 Analytical Sequence Check (Form VIII-PEST)

- 10.1 Have all samples been listed on CLP Form VIII or equivalent, and are separate forms present for each column?
- If no, take action specified in 3.2 above, ACTTON:
- 10.2 Was the proper analytical sequence followed for each initial calibration and subsequent analyses?
- ACTION: If no, use professional judgement to determine the severity of the effect on the data and qualify it accordingly. Generally, the effect is negligible unless the sequence was grossly altered or the calibration was also out of limits.
 - 10.3 Were the TCMX/DCB surrogate RTs for the samples within the mean surrogate RT from the initial calibration? MX

If no, see "Action" in section 9.14 above Action: h) h for talee + / false yCtC/ If

11.0 Extraction Techniques for Sample Preparation

Method 8081B permits a variety of extraction techniques to be used for sample preparation. Which extraction procedure was used?

- 1. Aqueous samples:
 - 1. Separatory funnel (Method 3510)
 - 2. Continuous liquid-liquid extraction (Method 3520)
 - 3. Solid phase extraction (Method 3535) іL
 - -LT 4. Other

2. Solid samples:

1. Soxhlet (Method 3540)

LL

1^

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev. 1.0

YES NO N/A

w ^

- 2. Automated Soxhlet (Method 3541)
- 3. Pressurized fluid (Method 3545)
- 4. Microwave extraction (Method 3546)
- 5. Ultrasonic extraction (Method 3550)
- 6. Supercritical fluid (Method 3562)
- 7. Other

11.1 Extract Cleanup - Efficiency Verification (Form IX)

- 11.1.1 Method 8082 (section 7.2) references method 3660 (sulfur) and 3665A (sulfuric acid) to use for Cleaning extracts. Were one or both method used? J_]_
- ACTION: If no, take action specified in 3.2 above. If data suggests cleanup was not performed, make note in the data assessment.
- NOTE: Method 3620A, Florisil, may be used per approved project QA plan. The method does not list which analytes and surrogate(s) to use to verify column efficiency. The reviewer must check project plan to verify method used as well as the correct PCB list. If not stated or available, use the CLP listing or accept what the laboratory used.
- 11.2 Are all samples listed on modified CLP PCBs Florisil/Cartridge Check Form?
- ACTION: If no, take action specified in 3.2 above.
- 11.3 Was GPC Cleanup (method 3640A) performed?
- NOTE: GPC cleanup is not required and is optional. The reviewer should check Project Plan to verify requirement.
- 11.4 Were the same PCB analytes used in calibration used to check the efficiency of the cleanup procedures? Ji
- 11.5 Are percent recoveries (% R) of the PCBs and surrogate compounds used to check the efficiency of the cleanup procedures within lab's in-house QC limits (use 70-130% if not available)

70-130% for GPC calibration?

/ fulse f* 1/1f

i l

JΓ

JASEPA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

Qualify only the analyte(s) which fail the recovery criteria as follows;

ACTION: If % R are < 80%, qualify positive results "J" and quantitation limits "UJ". Non-detects should be qualified "R" if zero %R was obtained for PCBs. Use professional judgement to qualify positive results if recoveries are greater than the upper limit.

12.0 PCB Identification

- 12.1 Has CLP Form X or equivalent, showing **retention time** data for positive results on the two GC columns, been
 - completed for every sample in which a PCB was detected?
- ACTION: If no, take action specified in 3.2 above, or compile a list comparing the retention times for all sample hits on the two columns.
- 12.2 Are there any transcription/calculation errors between raw data and data summary forms (initial calibration summaries, calibration verification summaries, analytical sequence summaries, GPC and cleanup verification forms)?
- ACTION: If large errors exist, call lab for explanation/resubmittal, make necessary corrections and note error in the data assessment.
- 12.3 Are retention times (RT) of sample compounds within the established RT windows for both columns/analyses?
- ACTION: Qualify as unusable (R) all positive results which were not confirmed by second GC column analysis. Also qualify "R", unusable, all positive results not within RT windows unless associated standard compounds are similarly biased. The reviewer should use professional judgement to assign an appropriate quantitation limit.
- 12.4 Check chromatograms for false negatives, especially if RT windows on each column were established differently. Were there any false negatives?

d

1

9
STANDARD OPERATING PROCEDURE

USEPA Region II SW846 Method 8082

Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

 $S-Ps^4/$

_//

.

j.

ACTION: Use professional judgement to decide if the compound should be reported. If there is reason to believe that peaks outside retention RT windows should be reported, make corrections to data summary forms (Form I) and note in data assessment.

- ACTION: Indicate with red pencil which Form I results were confirmed by GC/MS and also note in data assessment.
- 12.6 Is the percent difference (%D) calculated for the positive sample results on the two GC columns <25.0%?
- NOTE: The method requires quantitation from one column. The second column is to confirm the presence of an analyte. It is the reviewer's responsibility to verify from the project plan what the lab was required to report. If the lab was required to report concentrations from both columns, continue with validation for % Difference. If required, but not reported, either contact the lab for results or calculate the concentrations from the calibration. If not required, skip this section. Document actions in Data Assessment.
- ACTION: If the reviewer finds neither column shows interference for the positive hits, the data should be qualified as follows:

<pre>% Differe</pre>	nce	Qualifier
0-25%		none
26-70%		irjii
71-100%		"NJ "
>100% *		"R"
100-200%	(Interference detected) * *	"NJ "
>50%	(PCBs value is <crql)< td=""><td>"U"</td></crql)<>	"U"

When the reported PCBs value is <CROL and the %D is >50%. raise the value to the CRQL and qualify with "U" (non-detect).

* Check the chromatogram. If pattern is confirmed qualify "J". If pattern is mixed, has interference, or the PCB cannot be positively determined due to weathering, qualify "JN". PA Region II 46 Method 8082

If PCB can not be confirmed, qualify the PCB as "R".

** When the <u>reported %D is 100-200%</u> but interference is detected in either column, qualify the data with "NJ".

13.0 Compound Quantitation and Reported Detection Limits

- 13.1 Are there any transcription/calculation errors in Form I results? Check at least two positive values. Were any errors found?
- NOTE: Single-peak PCBs results can be checked for rough agreement between quantitative results obtained on the two GC columns. The reviewer should use professional judgement to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interference is suspected, the lower of the two values should be reported and qualified according to section 12.6 above. This necessitates a determination of an estimated concentration on the confirmation column. The narrative should indicate that the presence of interferences has led to the quantitation of the second column confirmation results.
- 13.2 Are the EDLs (Estimated Detection Limits) adjusted to reflect sample dilutions and, for soils, % moisture?
- ACTION: If errors are large, call lab for explanation/resubmittal, make any necessary corrections and document effect in data assessments.
- ACTION: When a sample is analyzed at more than one dilution, the lowest EDLs are used (unless a QC exceedance dictates the use of the higher EDL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the value on the original Form I and substituting it with data from the analysis of diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including any in the summary package.

 $r-? X \underline{\nabla^{3}}_{JO, l^{\wedge}} \bullet * * \downarrow$

•><-''

~7^/y//J '^ '* //•*' - / J\$ ^r\$/i fS

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

ACTION: EDLs affected by large, off-scale peaks should be qualified as unusable, "R". If the interference is on-scale, the reviewer can provide a modified EDL flagged "UJ" for each affected compound.

14.0 Chromatoaram Quality

- 14.1 Were baselines stable?
- 14.2 Were any electropositive displacement (negative peaks) or unusual peaks seen?
- ACTION: Note all system performance problems in the data assessment.

15.0 Field Duplicates lik f- ftht JLU' VliAlS

15.1 Were any field duplicates submitted for PCB analysis?

I_L

- ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.
- ACTION: Any gross variation between field duplicate results must be addressed in the reviewer narrative. However, if large differences exist, the identity of the field duplicates is questionable. An attempt should be made to determine the proper identification of field duplicates.

4 C

PESTICIDE METHOD BLANK SUMMARY

NYSDEC SAMPLE NO.

MB 92

Lab Name: FRIEND LABORATORY, INC. Contract: Lab Code: 10252 Case No.: SAS No.: Lab Sample ID: MB 92 Matrix: (soil/water) SOIL Sulfur Cleanup: (Y/N) N Date Analyzed (1): 10/08/02 Time Analyzed (1): 1843 Instrument ID (1): HP1 GC Column (1): RTX-CLPESTICIDES2 ID 0.32 (mm) GC Column (2): RTX-CLPESTICIDES1 ID 0.32 (mm) THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, AND MSB

SDG No.: AAA Lab File ID: E2980075 Extraction:(SepF/Cont/Sonc) SONC Date Extracted: 10/02/02 Date Analyzed (2): Time Analyzed (2): Instrument ID (2): HP3

NYSDEC	LAB	DATE	DATE
SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
QC92	QC92	10/04/02	
L94773-1	L94773-1	10/04/02	10/3/02
L94773-6	L94773-6	10/04/02	10/3/02
L94773-9	L94773-9	10/04/02	10/3/02
L94773-7	L94773-7	10/04/02	10/3/02
L94773-8	L94773-8	10/04/02	10/3/02
L94773-2	L94773-2	10/04/02	. 10/3/02
L94773-5	L94773-5	10/04/02	10/3/02
L94859-4	L94859-4	10/7/02	10/3/02
L94773-3, -2MS	L94773-3, -2MS	10/8/02	
L94773-4, -2MSD	L94773-4, -2MSD	10/8/02	
	NYSDEC SAMPLE NO. QC92 L94773-1 L94773-6 L94773-7 L94773-7 L94773-8 L94773-8 L94773-2 L94773-5 L94859-4 L94773-3, -2MS L94773-4, -2MSD	NYSDEC SAMPLE NO. LAB SAMPLE ID QC92 QC92 L94773-1 L94773-1 L94773-6 L94773-6 L94773-7 L94773-9 L94773-8 L94773-7 L94773-8 L94773-8 L94773-5 L94773-5 L94773-6 L94773-7 L94773-7 L94773-8 L94773-8 L94773-8 L94773-7 L94773-8 L94773-8 L94773-7 L94773-7 L94773-8 L94773-8 L94773-8 L94773-7 L94773-8 L94773-7 L94773-7 L94773-7 L94773-7 L94773-7 L94773-8 L94773-3 -2MSD L94773-4 -2MSD L94773-4 -2MSD L94773-5 L94773-4 L94773-4 -2MSD L94773-5 L94773-4 L94773-6 L94773-4 L94773-7 L94773-4 L94773-7 L94773-4 L94773-7 L94773-4	NYSDEC SAMPLE NO. LAB SAMPLE ID DATE ANALYZED 1 QC92 QC92 10/04/02 L94773-1 L94773-1 10/04/02 L94773-6 L94773-6 10/04/02 L94773-7 L94773-9 10/04/02 L94773-8 L94773-7 10/04/02 L94773-7 L94773-7 10/04/02 L94773-8 L94773-8 10/04/02 L94773-8 L94773-8 10/04/02 L94773-7 L94773-7 10/04/02 L94773-8 L94773-8 10/04/02 L94773-7 L94773-8 10/04/02 L94773-8 L94773-5 10/04/02 L94773-5 L94773-5 10/04/02 L94773-4 L94773-3 -2MS L94773-4 -2MSD 10/8/02 L94773-4 -2MSD - L94773-

COMMENTS

4C

PESTICIDE METHOD BLANK SUMMARY

NYSDEC SAMPLE NO.

MB 01

Lab Name: FRIEND LABORATORY, INC.	Co	ntract:	
Lab Code: 10252 Case No.:		SAS No	o.: SDGNo.:AAA
Lab Sample ID: MB 01		-	Lab File ID: E2980047
Matrix: (soil/water) SOIL			Extraction:(SepF/Cont/Sonc) SONC
Sulfur Cleanup: (Y/N) N			Date Extracted: 10/03/02
Date Analyzed (1): 10/07/02		-	Date Analyzed (2):
Time Analyzed (1): 1331		-	Time Analyzed (2):
Instrument ID (1): HP1			Instrument ID (2): HP3
GC Column (1): RTX-CLPESTICIDES2	ID	0.32	(mm)
GC Column (2): RTX-CLPESTICIDES1	ID	0.32	(mm)
THIS METHOD BLANK APPLIES TO TH	HE F	OLLO	WING SAMPLES. MS. MSD. AND MSB

		LAR		
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
01	QC01	QC01	10/07/02	
02	L94910-1	L94910-1	10/07/02	10/04/02
03	L94910-2	L94910-2	10/07/02	10/04/02
04	L94910-3	L94910-3	10/07/02	10/04/02
05	L94910-4	L94910-4	10/07/02	10/04/02
06	L94910-5	L94910-5	10/07/02	10/04/02
07	L94910-6	L94910-6	10/07/02	10/04/02
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				

COMMENTS:

Friend Inc.

Data File: /chem/hp3.i/1254FCONFIRMa.b/E3956347.D Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec.M Sample Info: 250PPB 1254 Misc Info: CONFIRMATION Analysis Date: 08-OCT-2002 19:20 Sample Matrix WATER File Number 6347

Dilution	Factor	1.0000
Sample	Volume	1000.0000
Final	Volume	5.0000

Analytes (ug/L)

Aroclor-1254	267.54
Tetrachloro-m-xylene	0.00%
Decachlorobiphenyl	0.00%

Analyst: CPW Report Date: 10/09/2002 10:59

Supervisor: Date:

PESTICIDE ORGANICS ANALYSIS DATA SHEET

MB92 Lab Name: Contract: Case No.: SAS No.: SDG No.: AAA1007 Lab Code: Lab Sample ID: MB92 Matrix: (soil/water) SOIL Sample wt/vol: 10.2 (g/mL) G Lab File ID: E2980075 % Moisture: 0 decanted: (Y/N) N Date Received: 10/01/2 Date Extracted:10/02/2 Extraction: {SepF/Cont/Sonc) SONC -Concentrated Extract Volume: <u>/COOO</u> (uL) Date Analyzed: 10/08/2 Dilution Factor: 1.0 Injection Volume: 2.0(uL) GPC Cleanup: (Y/N) N pH: 7.0 Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) UG/KG COMPOUND Q

12674-11-2	Aroclor-1016	•u	L
1104-28-2	Aroclor-1221	u	L
11141-16-5	Aroclor-1232	<u>I<-•</u> 0.01	L
53469-21-9	Aroclor-1242	 u	L
11097-69-1	Aroclor-1254	u	L
11096-82-5	Aroclor-1260	 <i>ip</i> -0 , 01-	L
	Aroclor-1248	u	L

Thru-Put Systems, Inc.

\chem\hpl.i\8082r0917.b\E2980075.D Data file Lab Smp Id MB92 Client Smp ID: MB92 Inj Date 08-OCT-2002 18:43 Operator CPW Inst ID: hpl.i Smp Info MB92 Misc Info Comment Method <u>\chem\hpl.i\8</u>082r0917.b\8082_PCBsec.M 09-Oct-2002 07:33 Administra Quant Type: ESTD Meth Date Cal File: E2989834.D 17-SEP-2002 16:43 Cal Date Als bottle 1 Dil Factor 1.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000 Description Value Name Dilution Factor 1.000 DF Final volume Vf. 10.000 Weight of sample extracted Ws 10.240 Unit Correction Factor Uf 0.100 100.000 Total Solid Τs

		CONCENTRA	FIONS		
		ON-COL	FINAL		
RT EXP RT DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Tetrachloro-m-xylene			CAS It:		
7.990 7.997 -0.007	'3939874	466.020	474.61		
S 29 Decachlorobiphenyl			CAS ft:		
20.130 20.130 0.000	3110160	591.812	577.92		

Friend Inc.

*

Data File: /chem/hpl.i/8082r0917.b/E2980075.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Method: /chem/hpl.1/8082r0 Sample Info: MB92 Misc Info: Analysis Date: 08-OCT-2002 18:43 Sample Matrix: SOIL File Number: 0075

U
4
0
0

Analytes (ug/Kg)

0.00
0.00
0.00
0.00
0.00
0.00
0.00
97.20%
118.36%

Analyst: CPW Report Date: 10/09/2002 10:53

Supervisor: Date:

Т

PESTICIDE ORGANICS ANALYSIS DATA SHEET

53469-21-9—Aroclor-1242

11097-69-1——Aroclor-1254

-Aroclor-1260

11096-82-5-

MB01 Lab Name: Contract: Case No.: SAS No.: SDG No.: AAA1002 Lab Code: Matrix: (soil/water) SOIL Lab Sample ID: MB01 Lab File ID: 10.0 <g/mL) G E2980047 Sample wt/vol: Date Received: 10/02/2 % Moisture: 0 decanted: (Y/N) N Date Extracted:10/03/2 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 10/07/2 Concentrated Extract Volume: <u>fOOcc</u> (uL) Injection Volume: . 2.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0 Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG CAS NO. COMPOUND 0 12674-11-2-—Aroclor-1016 /0 •'0.01 V £° 1104-28-2———Aroclor-1221 0.02 **u** io n ni **u** 11141-16-5--Aroclor-1232

/f/f/cj-

/C -0-reir **u**

^lO n m

u

u u

b Name: FRIEND LABORATORY, INC. Contract: b Code: 10252 Case No.:_____SAS No.:_____ strument ID: HP1 GC Column: RTX-CLPest2 ID: 0.32 (mm)

Date(s) Analyzed: 09/17/02 09/17/02 File Numbers: 9827-9843

SDG No.: AAA

	Peak		F	U OF ST	ANDARD	S		MEAN	RTWI	^JDOW
COMPOUND	#	10 ppb	50 ppb	100 ppb	250 ppb	500 ppb	1000 ppb	RT	FROM	ТО
PCB1016	r	10.19	10.20	10.20	10.20	10.21	10.21	10.20	10.10	10.30
	2*	10.71	10.71	10.71	10.71	10.71	10.71	10.71	10.61	10.81
	3*	11.89	11.89	11.90	11.90	11.90	11.90	11.90	11.80	12.00
	4	11.97	11.98	11.98	11.98	11.98	11.98	11.98	11.88	12.08
	5	12.67	12.68	12.68	12.68	12.69	12.69	12.68	12.58	12.78
PCB 1221	1*				8.79			8.79	8.69	8.89
	2*				9.12			9.12	9.02	9.22
	3*				9.27			9.27	9.17	9.37
PCB 1232	1*				9.27			9.27	9.17	9.37
	2*				10.20			10.20	10.10	10.30
	3*				11.19			11.19	11.09	11.29
	4				11.47			11.47	11.37	11.57
	5				11.97			11.97	11.87	12.07
PCB 1242	1*				10.20			10.20	10.10	10.30
	2*				11.19			11.19	11.09	11.29
	3*				11.47			11.47	11.37	11.57
	4				12.68			12.68	12.58	12.78
	5				13.29			13.29	13.19	13.39
IcB 1248	1*				11.19			11.19	11.09	11.29
	2*				11.90			11.90	11.80	12.00
	3*				12.68			12.68	12.58	12.78
	4				13.21			13.21	13.11	13.31
	5				13.29			13.29	13.19	13.39
PCB 1254	1*	13.67	13.67	13.67	13.67	13.67	13.67	13.67	13.57	13.77
	2*	14.56	14.56	14.56	14.56	14.56	14.56	14.56	14.46	14.66
	3*	15.01	15.01	15.01	15.01	15.00	15.00	15.01	14.91	15.11
	4	15.34	15.35	15.35	15.35	15.35	15.35	15.35	15.25	15.45
	5	16.02	16.03	16.03	16.03	16.03	16.03	16.03	15.93	16.13
PCB 1260	1*	14.93	14.93	14.94	14.94	14.94	14.94	/ 14.94	14.84	15.04
	2*	15.34	15.34	15.35	15.35	15.35	15.35	15.35	15.25	15.45
	3*	16.19	16.19	16.20	16.20	16.20	16.21	16.20	16.10	16.30
	4.	16.75	16.75	16.76	16.76	16.76	16.77	16.76	16.66	16.86
	5	17.23	17.23	17.24	17.24	17.25	17.25	17.24	17.14	17.34
Tetrachloro-nvxylene		7.97	7.99	8.00	7.99	8.00	8.00	7.99	7.89	8.09
Decachlorobiphenyl		20.11	20.12	20.13	20.13	20.13	20.13	20.13	20.03	20.23
* Denotes required	noak	c								

Denotes required peaks

Retention time windows are + 0.1 minutes for all compounds.

H.W

00161

U

FORM 6 PCB INITIAL CALIBRATION DATA

La	ab Name:			Cont	tract:			
La	ab Code:	Case No	.:	SA	S No.:	SDO	SNo.: AA	AA916
Ir	nstrument	ID: HP1	(Calib	ration Date	(s): 09	/17/2	09/17/2
GC	C Column:	RTX-CLPESTICIDES	5 2 ID: 0	.32	(mm)			
LAB	FILE ID:	RFIO: E2989	9834 RI	F50:	E2989835	RF100:	E298983	6
RF2	50: E2989	843 RF500: E298	39838					
RF Z:	50· EZ989	543 RF500+ E298	59838					

COMPOUND		RFIO	RF50	RF100	RF250	RF500
		4.0.1 . 0		4.2.0.0	400.0	404 0
Aroclor-1016		401.3	365.1	438.0	493.9	404.2
	(2)	136.5	147.3	1//.8	191.1	175.4
	(3)	135.2	120.4	144.0	140.8	117.2
	(4)	140.8	136.7		189.3	184.3
	(5)	201,4	165.9	1/9./	207.5	203.2
Aroclor-1221					80.2	
	(2)				64.3	
	(3)				307.9	
	(4)					
	(5)					
Aroclor-1232					283.3	
	(2)				161.5	
	(3)				221.6	
	(4)				97.5	
	(5)				57.9	
Aroclor-1242					352.7	
	(2)				515.2	
	(3)				225.6	
	(4)				162.9	
	(5)				195.6	
Aroclor-1254	(5)	316.9	313.4	305.2	308.2	343.4
	(2)	288 2	317.8	319 7	345.8	442.7
	(2)	190 1	233 8	239 2	278.8	384 7
	(3)	148 5	164 1	178 0	186.5	230 4
	(1)	253 9	263 2	271 9	294 5	392 1
Arcalor = 1260	(5)	334 4	269.2	334 8	384 6	340 0
AIOCIOI-1200	(2)	250 5	200.7	252 0	415 1	265 1
	(Z)	222.2	170 5	206 1	246 1	200.1
	(3)	22/.9	172 2	200.4	246 2	209.2
	(4). (E)	254.0	200 0	200.2	496 5	440.0
	(5)	304.1	200.0	301.0	278 0	440.9
AF0C10F-1248	(2)				162 /	
	(∠) (2)					
	(3)				106 5	
	(4)					
	(5)				304.2	
		2612	F100	0.0.0.1		0000
Tetrachloro -m-xyle	ne	3613	5109	808T	//43	8808
Decachiorobiphenyl		3029	3502	5170	5257	6283

•

.

FORM 6 PCB INITIAL CALIBRATION DATA

Μ	Name: Code: hstrument	ID:	Case No. HPl	:		Cor SA Calil	ntract: AS No.: pration 1	Date (s)	SDG No. 09/17/2	AAA916 09/17/2
	GC Column:	RTX-	CLPESTICIDES	2	ID:	0.32	(mm)			
R	F1000: E2989	9839								

				COEFFI	CENTS	%RSD
COMPOUND		RF100	CURVE	A 0	Al	OR R"2
						-
Aroclor-1016		366.0	LINR	-18.105188	2.688e-003	0.991
	(2)	161.5	LINR	-9.4133819	6.109e-003	0.997
	(3)	100.6	LINR	-18.332671	9.78e-003	0.993
	(4)	162.6	LINR	-9.1394188	6.01e-003	0.995
	(5)	201.8	T, T N R	2.94297360	4.926e-003	1.000
Aroclor-1221	(3)	201.0	LINR	0 00000000	1.159e-0.02	1.000
	(2)		T, T N R	0 00000000	1.555e-002	1.000
	(2)		LINR	0 00000000	3 248 - 003	1 000
	(3)		TIME	0.00000000	5.2100 005	1.000
	(4)		TINK			
Amorian 1000	(5)		TINU	0 0000000	3 530-003	1 000
AFOCIOF-1232	(2)		TINE	0.00000000	$5.33e^{-003}$	1 000
	(2)		LINK	0.00000000	0.191e-003	1.000
	(3)		LINR	0.00000000	4.512e-003	1 000
	(4)		LINR	0.00000000	1.0250-002	1 000
	(5)		LINR	0.00000000	1./2/e-002	1 000
Aroclor-1242	(0)		LINR	0.00000000	2.835e-003	1,000
	(2)		LINR	0,00000000	1.941e-003	1.000
	(3)		LINR	0.00000000	4.432e-003	1.000
	(4)		LINR	0.00000000	6.138e-003	1.000
	(5)		LINR	6 4275202	5.111e-003	1.000
Aroclor-1254		296.1	LINR	-6.43/5383	3.29e-003	0.994
	(2)	434.5	LINR		2.262e-003	0.997
	(3)	371.6	LINR.		2.623e-003	0.995
	(4)	190.9	LINR	4.45851132	5.219e-003	1.000
	(5)	352.0	LINR	LI.0501975	2.751e-003	0.994
Aroclor-1260		329.3	LINR		3.014e-003	0.998
	(2)	358.9	LINR	-3.4590831	2.769e-003	0.998
	(3)	210.0	LINR	-3.5269/11	4.748e-003	0.998
	(4)	214.3	LINR	-2.0615020	4.659e-003	0.998
	(5)	480.7	LINR	11.3530028	2.078e-003	0.998
Aroclor-1248			LINR	0.00000000	3.596e-003	1.000
	(2)		LINR	0.00000000	6.12e-003	1.000
	(3)		LINR	0.00000000	4.686e-003	1.000
	(4)		LINR	0.00000000	5.361e-003	1.000
	(5)		LINR		3.287e-003	1.000
			1			
Tetrachloro-m-xyle	ne	7679	LINR	5.59456943	1.219e-004	0.991
Decachlorobiphenyl		5238	LINR	4.64742762	1.888e-004	0.999
		1				

Lab Name: FRI	END LABORA	TORY	, INC.	С	contract:		
Lab Code: 102	52 Case No.:_		<u> </u>	SAS No.:		SDG No.	: AAA
Instrument ID:	HP3						
GC Column: F	RTX-CLPest1	ID:	0.32	(mm)	Date(s)	Analyzed:	10/03/02

File Numbers: 6274

	AMOUNT			RT WI	NDOW	CALIBRATION
COMPOUND	(ng)	PEAK	RT	FROM	ТО	FACTOR
PCB 1254	250 PPB	r	14.20	14.10	14.30	328.39
		2*	15.29	15.19	15.39	314.24
		3*	15.53	15.43	15.63	493.18
		4	15.89	15.79	15.99	262.87
		5	16.08	15.98	16.18	385.80
Tetrachloro-m-xylene	300 PPB		9.34	9.24	9.44	8579.98
De ca ch l orobi phenyl	300 PPB		20.92	20.82	21.02	5653.47
* Denotes required neak	\$					

Denotes required peaks

Single injections of the low standard are made to establish approximate retention times and instrument sensitivity. Five point calibrations are performed if a multipeak component is detected in a sample.

Alternate column confirmation is run if a pesticide or PCB is detected in a site sample.

0E <u>8</u> 209 7 -JZ7 ~3.22.SI

٠ •

• •

7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2989996.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 10/04/02 Analysis Time: 0927

			RTWI	NDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.66	13.57	13.77	283.52	250.00	13.41
Aroclor-1254	2	14.55	14.46	14.66	246.67	250.00	1.33
Aroclor-1254	3	15.00	14.91	15.11	261.59	250.00	4.64
Aroclor-1254	4	15.34	15.25	15.45	305.80	250.00	22.32
Aroclor-1254	5	16.02	15.93	16.13	261.10	250.00	4.44
Tetrachloro-m-xylene	1	7.98	7.89	8.09	314.70	300.00	4.90
Decach I orobi phenyl	1	20.12	20.03	20.23	340.26	300.00	13.42

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.;_____ SAS No.:____ SDG No.: AAA

Sample Name: 250PPB1254 File Name: E2980007.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 10/04/02 Analysis Time: 1441

			RTWI	NDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.66	13.57	13.77	277.12	250.00	10.85
Aroclor-1254	2	14.55	14.46	14.66	242.37	250.00	3.05
Aroclor-1254	3	14.99	14.91	15.11	259.16	250.00	3.66
Aroclor-1254	4	15.34	15.25	15.45	268.96	250.00	7.58
Aroclor-1254	5	16.02	15.93	16.13	244.61	250.00	2.16
Tetrachloro-m-xylene	1	7.98	7.89	8.09	295.72	300.00	1.43
							i
Decachlorobi phenyl	1	20.12	20.03	20.23	325.72	300.00	8.57 \

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

***hr** <u>fast'*•*</u>''/_{ftt <*s}

٠

7E

PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:_____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E3956283.D Instrument ID: HP3.I GC Column: RTX-CLPesticides 1

ID: 0.32 (mm)

Analysis Date: 10/03/02 Analysis Time: 2116

			RTWI	NDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	14.21	14.10	14.30	282.87	250.00	13.15
Aroclor-1254	2	15.29	15.19	15.39	293.88	250.00	17.55
Aroclor-1254	3	15.54	15.43	15.63	276.11	250.00	10.44
Aroclor-1254	4	15.90	15.79	15.99	273.35	250.00	9.34
Aroclor-1254	5	16.08	15.98	16.18	251.70	250.00	0.68
Tetrachloro-m-xylene	1	9.35	9.24	9.44	273.82	300.00	8.73
Decach I orobi phenyl	1	20.93	20.82	21.02	274.61	300.00	8.46

ft

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

Mir

7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.: SAS No.:_____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E3956292.D Instrument ID: HP3.I GC Column: RTX-CLPesticides 1

ID: 0.32 (mm)

Analysis Date: 10/04/02 Analysis Time: 2033

			RTWI	N"DOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	14.21	14.09	14.29	239.83	250.00	4.07
Aroclor-1254	2	15.29	. 15.17	15.37	235.59	250.00	5.76
Aroclor-1254	3	15.53	15.41	15.61	235.86	250.00	5.66
Aroclor-1254	4	15.89	15.77	15.97	222.26	250.00	11.10
Aroclor-1254	5	16.08	15.96	16.16	235.87	250.00	5.65
Tetrachloro-m-xylene	1	9.34	9.22	9.42	269.75	300.00	10.08
Decachlorobiphenyl	1	20.92	20.81	21.01	270.42	300.00	9.86 [}]

fiffif jL- <)Ci*»pLo JJ>t/}M>*c(

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

PCB ANALYTICAL SEQUENCE

D Name: Code: Contract: Case No. : SAS No.: SDG No. : AAA916 .strument ID: HP1 Init. Calib. Date(s): 09/17/2 09/17/2 GC Column: RTX-CLPESTICIDES 2 ID: 0.32 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROG TCX: 8.00	ATE RT FROM I DCB: 2	NITIAL CALI 20.13	BRATION		
	EPA	LAB	DATE	TIME	ТСХ	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	STD11660	STD11660	09/17/2	1304	7.97	20.11
02	STD21660 •	STD21660	09/17/2	1335	7.99	20.12
03	STD31660	STD31660	09/17/2	1406	8.00	20.13
04	STD41660	STD41660	09/17/2	1437	7.99	20.13
05	STD51660	STD51660	09/17/2	1509	8.00	20.13
06	STD61660	STD61660	09/17/2	1540	8.00	20.13
07	STD11254	STD11254	09/17/2	1643	7.98	20.12
80	STD21254	STD21254	09/17/2	1714	7.99	20.13
09	STD31254	STD31254	09/17/2	1745	8.00	20.13
10	STD41254	STD41254	09/17/2	1816	7.99	20.13
11	STD51254	STD51254	09/17/2	1848	7.98	20.13
12	STD61254	STD61254	09/17/2	1919	8.00	20.13
13	STD41248	STD41248	09/17/2	1950	7.99	20.13
14	STD41242	STD41242	09/17/2	2021	7.99	20.13
15	STD41232	STD41232	09/17/2	2052	7.99	20.13
16	STD41221	STD41221	09/17/2	2124	8.00	20.13
17	£C1GG0Q1	CC166001	09/18/2	1401	8.00	20.13
18	MB82 /	MB82	09/18/2	1433	8-02	20.13
19	QC82 /	QC82	09/18/2	1507	8.02	20.13
20	L94080fLRE	L94080-1RE	09/18/2	1538	7.99	20.13
21	L94080/2	L94080-2	09/18/2	1610	7.99	20.13
22	L9408/-3RE	L94080-3RE	09/18/2	1641	7.99	20.13
23	L9408/-4	L94080-4	09/18/2	1712	7.98	20.13
24	CC16flb02	CC166002	09/18/2	1815	8.01	20.13
25	L940I1-1RE	L94081-1RE	09/18/2	1846	7.98	20.13
26	L940B1-4RE	L94081-4RE	09/18/2	1917	7.99	20.13
27	L94f81-5RE	L94081-5RE	09/18/2	1948	8.00	20.13
28	L94f)81-6RE	L94081-6RE	09/18/2	2019	7.99	20.13
29	L9f081-7R	L94081-7R	09/18/2	2051	7.98	20.13
30	L91081-1MSR	L94081-1MSR	09/18/2	2122	7.98	20.13
31	LS»081-1MSDR	L94081-1MSDR	09/18/2	2153	7.97	20.11
32	cJ166003	CC166003	09/18/2	2255	8.01	20.13
33	C#125401	CC125401	09/18/2	2327	7.99	20.13
34	CC125402	CC125402	09/19/2	1009	7.99	20.13
35	⊥*4080-1	L94080-1	09/19/2	1038	7.99	20.13
36	⊥te4080-3R	L94080-3R	09/19/2		7.99	20.13
37		L94081-6	09/19/2	1148	/.98	20.13

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

QC LIMITS (+/- 0.10 MINUTES, (+/- 0.10 MINUTES,

Column used to flag retention time values with an asterisk. * Values outside of QP limits. page 1 of / i

Mu(L

0017.8

8D

PCB ANALYTICAL SEQUENCE

Lab Name: Contract: SAS No. : SDG No. : AAA1001 Lab Code: Case No. : Instrument ID: HP1 Init. Calib. Date (s) : 09/17/2 09 GC Column: RTX-CLPESTICIDES 2 ID: 0.32 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO	GATE RT FROM	INITIAL CAL	IBRATION		
	TCX: 8.00	DCB:	20.13			
	ΕΡΛ	IAB	DATE	TIME	TCY	DCB
	SAMPLE NO		ANAL VZED		PT #	DCD PT #
	SAMILL NO.	SAMILL ID	AINALILLD	ANALIZED		K1 #
01	jnciCCtlL	1254CC01	10/02/2	1527	7.99	20.13
02	MB92R /	MB92R	10/02/2	1556	7.98	20.13
03	QC92R 1 '	QC92R	10/02/2	1628	7.93	20.12
04	L94773/2R	L94773-2R	10/02/2	1657	7.99	20.13
05	L9477X-7R	L94773-7R	10/02/2	1728	7.99	20.13
06	L94771-8R	L94773-8R	10/02/2	1759	7.99	20.13
07	L947TO-4R	L94773-4R	10/02/2	1831	7.99	20.12
08	1254CJC02	1254CC02	10/02/2	1902	7.99	20.13
09	1254 C03	1254CC03	10/03/2	0929	7.98	20.12
10	MB9 [^] E	MB92RE	10/03/2	1000 .	7.97	20.12
11	OC9·fel	OC92RE	10/03/2	. 1032	7.98	20.12
12	L94I73-2RE	L94773-2RE	10/03/2	1103	7.97	20.12
13	L94I73-7RE	L94773-7RE	10/03/2	1134	7.97	20.12
14	L94P73-8RE	L94773-8RE	10/03/2	1205	7.97	20.12
15	L9/773-9RE	L94773-9RE	10/03/2	1237	7.98	20.12 A
16	L9I773-1RE	L94773-1RE	10/03/2	1308	7.97	20 12 1
17	L^773-5RE	L94773-5RE	10/03/2	1339	7.98	20.12 "
18	Lf4773-6RE	L94773-6RE	10/03/2	1410	7.97	20.12
19	IJ4773-2MSRE	L94773-2MSRE	10/03/2	1441	7.97	20.12
20	I«4773-2MSDR	L94773-2MSDR	10/03/2	1513	7.97	20.12
21	J94859-4RE	L94859-4RE	10/03/2	1544	7.98	20.12
22		1254CC04	10/03/2	1615	7.97	20.12
23	1254CC05	1254CC05	10/04/2	0927	7.98	20.12
24	QC92	QC92	10/04/2	0959	7.98	20.12
25	L94773-1	L94773-1	10/04/2	1030	7.98	20.12
26	L94773-6	L94773-6	10/04/2	1101	7.98	20.12
27	L94773-9	L94773-9	10/04/2	1136	7.98	20.12
28	L94773-7	L94773-7	10/04/2	1205	7.98	20.12
29	L94773-8	L94773-8	10/04/2	1237	7.97	20.12
30	L94773-2	L94773-2	10/04/2	1308	7.98	20.12
31	L94773-5	L94773-5	10/04/2	1339	7.97	20.12
32	1254CC06	1254CC06	10/04/2	•1441	7.98	20.12
33						
34						
35						
36						
37						

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

QC LIMITS {+/- o.io MINUTES;

(+/- 0.10 MINUTES:

Column used to flag retention time values with an asterisk. * Values outside of QC limits.

page 1 of 1

FORM VIII PCB

n n i 7 ^ 0U1 (-

• ٠

PCB ANALYTICAL SEQUENCE

8D

Lab Name: Contract: ,ab Code: Case No. : SDG No. : AAA1002 SAS No. : Init. Calib. Date(s): 09/17/2 09/17/2 nstrument ID: HP1 GC Column: RTX-CLPESTI CEDES 2 ID: 0.32 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

		MEAN SURROO TCX: 8:00	GATE RT FROM DCB:	INITIAL CAL	IBRATION		
ł		EPA	LAB	DATE	TIME	TCX	DCB
		SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	01	1254CC02	1254CC02	10/07/2	1300	7.98	20.12
	02	MBOL	MBO1	10/07/2	1331	7.98	20.12
	03	QCOL	QCOL	10/07/2	1403	7.97	20.12
	04	L94910-1	L94910-1	10/07/2	1434	7.97	20.11
	05	L94910-2	L94910-2	10/07/2	1505	7.97	20.12
	06	L94910-3	L94910-3	10/07/2	1530	7.97	20.12
	07	L94910-4	L94910-4	10/07/2	1608	7.98	20.12
	80	L94910-5	L94910-5	10/07/2	1039 1710	7.98	20.12
	10	12540002	L94910-6	10/07/2	1012	7.97	20.12
	11	12540003	12540003	10/07/2	1012	7.98	20.11
+	12 12			<u>loihy-</u>	^2 - 1	$\frac{3.<\alpha}{++\infty}$	та 11
ł	13	LS4S51-H	M_{M} , $d - T$	\0/011CO-	3<=1	_j ^ n	<u> </u>
ł	14						
ł	15						
ł	16						
Ì	$\frac{10}{17}$						
t	18						
İ	19						
İ	20						
Ì	21						
Ī	22						
	23						
	24						
	25						
	26						
	27						
	28						
	29						
	30						
ļ	31						
	32						
ł	33						
+	34						
ł	35						
ł	36						
	31						

TCX = Tetrachloro-m-xylene (+/- 0.10 MINUTES) DCB = Decachlorobiphenyl

Column used to flag retention time values with an asterisk. * Values outside of QC limits.

1 of 1

00180

%

PCB ANALYTICAL SEQUENCE

8D

Lab Name:			Contract	::			
Lab Code:	Case No. :		SAS No	. :	SDG No.	: AAA1007	
Instrument	ID: HP1		Init	. Calib.	Date(s):	09/17/2 0^ ^ ,	
GC Column:	RTX-CLPESTICIDES 2	ID:	0.32 (mm)			,	•

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO	GATE RT FROM	INITIAL CAL	IBRATION		
	TCX: 8.00	DCB:	20.13			
	EDA	T.AB	DATE	TTME	тсх	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
0.1	10540001	10540001	10/00/0	1040		00.10
01	1254CCU1	1254CCU1	10/08/2	1249	7.99	20.13
02	MB05	MB05	10/08/2	1402	8.00	20.13
$\cap A$		105095 - 1	10/08/2	1402	0.00 7 99	20.13
05	195095 - 2	1,95095 - 2	10/08/2	1505	7.99	20.13
06	L95095-2MS	L95095-2MS	10/08/2	1536	7.99	20.13
07	L95095-2MSD	L95095-2MSD	10/08/2	1607	7.99	20.13
8 0	L95095-5	L95095-5	10/08/2	1639	7.99	20.13
09	L95095-6	L95095-6	10/08/2	1710	7.99	20.13
10	1254CC02	1254CC02	10/08/2	1812	8.00	20.13
11	MB92	MB92	10/08/2	1843	7.99	20.13
12	L94773-3MS	L94773-3MS	10/08/2	1915	7.98	20.13
13	L94773-4MSD	L94773-4MSD	10/08/2	1946	7.99	20.13
14	1254CC03	1254CC03	10/08/2	2048	7.99	20.13
15						4
16						%
17						
10						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
3∠ 22						
33 34						
35						
36						
37						

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

QC LIMITS (+/- 0.10 MINUTES) (+/- 0.10. MINUTES)

Column used to flag retention time values with an asterisk, * Values outside of QC limits.

page 1 of 1

8D PCB ANALYTICAL SEQUENCE

Lab Name:				Cont	tract:			
.Lab Code:	Case No.	:		SAS	S No. 3	:	SDG No.	: AAA1001CONFIRM
^Instrument	ID: HP3				Init.	Calib.	Date(s):	10/03/2 10/03/2
GC Column:	RTX-CLPESTICIDES	1	ID:	0.32	(mm)			JLPJL,
								n 4 0"3-

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO	IBRATION				
	TCX: 9.34	DCB:	20.92			
			1			
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	1254LLSTD	1254LLSTD	10/03/2	1606	9.36	20.93
02	1254STD1 .	1254STD1	10/03/2	1636	9.34	20.92
03	L94773-2	L94773-2	10/03/2	1707	9.34	20.91
04	L94773-7	L94773-7	10/03/2	1738 .	9.33	20.91
05	L94773-8	L94773-8	10/03/2	1809	9.33	20.92
06	L94773-9	L94773-9	10/03/2	1840	9.32	20.91
07	L94773-1	L94773-1	10/03/2	1911	9.33	20.91
08	L94773-5	L94773-5	10/03/2	1942	9.34	20.92
10	L94773-6	L94773-6	10/03/2	2013	9.34	20.92
11	L94859-4	L94859-4	10/03/2	2045	9.34	20.92
12	12540001	1254CC01	10/03/2	ZIIO	9.35	20.93
13						
14						
15						
17						
18						
19						
20						
21						
23						
24						
25						
26						
2/28						
29						
30						
31						
32						
33						
35						
36						
37						

TCX = Tetrachloro-m-xylene DCB * Decachlorobiphenyl QC LIMITS (+/- 0-1° MINUTES) (+/- 0.10 MINUTES)

Column used to flag retention time values with an asterisk.
* Values outside of QC limits.

ge 1 of 1

%

8D PCB ANALYTICAL SEQUENCE

Lab Name: Lab Code: Instrument ID: HP3 GC Column: RTX-CLPESTICIDES 1 ID: 0.32 (mm) Contract: SAS No.: SDG No.: AAA1002 SDG No.: AAA1002 Init. Calib. Date(s): 10/03/2 10 WQ ID/OM/OZ

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO	GATE RT FROM	[NITIAL CAL	IBRATION		
	TCX: -9r34	9-3.2- DCB: I	>0.D2 3(7. 粒	1		
		00.Z. II				
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	1254CC01	1254CC01	10/04/2	1624	9.32	20.91
02	L94910-1	L94910-1	10/04/2	1655	9.34	20.92
03	L94910-2'	L94910-2	10/04/2	1726	9.32	20.91
04	L94910-3	L94910-3	10/04/2	1758	9.33	20.92
05	L94910-4	L94910-4	10/04/2	1829	9.32	20.91
<i>06</i>	L94910-5	L94910-5	10/04/2	1900	9.33	20.92
07	L94910-6	L94910-6	10/04/2	1931	9.34	20.93
08	1254CC02	1254CC02	10/04/2	2033	9.34	20.92
09						
10						
11						
12						
13						
14						_
15						4
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						

QC LIMITS

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl (+/- o.io MINUTES; (+/- o.io MINUTES;

Column used to flag retention time values with an asterisk.

* Values outside of QC limits.

page 1 of 1

00183

8D PCB ANALYTICAL SEQUENCE

Lab Name:		Contract:	
a b Code:	Case No. :	SAS No. :	SDG No. : AAA1007CONFIRM
nstrument	ID: HP3	Init. Calib.	Date(s): 10/08/2 10/08/2
Column:	RTX-CLPESTICIDES 1 ID:	0.32 (mm)	

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO TCX: 9.38	GATE RT FROM DCB: 2	INITIAL CALI 20.95	IBRATION		
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01 02 03 04	1254CC01 L95095-1 L95095-2 L95095-5	1254CC01 L95095-1 L95095-2 L95095-5	10/08/2 10/08/2 10/08/2 10/08/2	1613 1644 1715 1746	9.38 9.39 9.38 9.38	20.95 20.97 20.96 20.96
05 06 07	1254CC02	1254CC02	10/08/2	1920	9.37 9.37	20.96
08						
10						
11						
12						
14						
15						
16						
17			•			
10 19						
20						
21						
22						
23 24						
25						
26						
27						
28						
30						
31						
32						
33						
34 २८						
36						
37						

TCX = Tetrachloro-m-xylene (+/- 0.10 MINUTES) DCB = Decachlorobiphenyl (+/- 0.10 MINUTES)

QC LIMITS

Column used to flag retention time values with an asterisk.
* Values outside of QC limits.

qe 1 of 1

I	10B PESTICIDE IDENTIFICA FOR MULTICOMPONENT	TION SUMMARY		EPA SAMPL	LE NO.	
Lab Name:		Contract:		L94773-	-1	
Lab Code:	Case No.:	SAS No. :	SDG	No.: AAA1(. * .	
Lab Sample ID:	L94773-1	Date(s)	Analyzed:	10/04/2	<u>tolo^hg</u> .	
Instrument ID	(1): HP1	Instrumer	nt ID (2) :	<u>y\f> 3</u>	_	
GC Column(1) :	RTX-CLPESTICIDES 2 II): 0.32 (mm) GC C	olumn(2) :	ft-yY-CiPeS	ST j-ID: /)	,3J-

			RT W	INDOW		MEAN	
' ANALYTE	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D
			_	-			
	1	13.65	13.57	13.77	47.42		
Aroclor-1254	2	14.54	14.46	14.66	338.15		
	3	14.92	14.90	15.10	429.61		
COLUMN 1	4	15.33	15.25	15.45	237.09		
	5	16.01	15.93	16.13	348.78	280.21	
	1	m.ao	> 111. 1D	iM-3c			
	2	J^.^T-	/ 5 1 ^	IX.7ft	. ^ ^ . ^ - X		
	3	i.s^i	1-5.4.3	is5.£c7>	•SiS•^3		
COLUMN 2	4	i^.S'K	iSW	1-5.^	3 H ? . ^		
	5	i/ "X	ISX9>	11*.1*??	-2/2-22		
					a a aa.		=r = ^ = = =
	1						
	2						^ t
	3						Λ 1
COLUMN 1	4						▲
	5						
	1						
	2						
	3						
COLUMN 2	4						
	5						
	1						
	2						
	3						
COLUMN I	4		1			-	
	5						-
	2					-	
COLUMNI	5						
COLUMIN 2	4						
	5						
1							

page 1 of 1

• •

	10B		EPA SAM	PLE NO.	
	PESTICIDE IDENTIFICATIO FOR MULTICOMPONENT AN		т.9477	3-2	
Lab Name:		Contract:			52
ab Code:	Case No.:	SAS No.:	SD	G No.: AAA	1001
Lab Sample ID:	L94773-2	Date(s)	Analyzed:	10/04/2	<u>io\c3lo?~</u>
Instrument ID	(1): HP1	Instrum	ent ID (2) :	HP3	
GC.Columnd):	RTX-CLPESTICIDES 2 ID:	0.32 (ram)	GC Column(2	2) : RTK-CLP	£ST^. ID: <u>Q</u>

^{: &}lt;u>Q,y</u> (mm)

			RT W	NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
	1	13.66	13.57	13.77	5007.55		
Aroclor-1254	2	14.55	14.46	14.66	4015.48		
	3	14.99	14.90	15.10	4008.44		
COLUMN 1	4	15.34	15.25	15.45	4812.77		
	5	16.01	15.93	16.13	2586.66	4086.18	
	1	m-a.0	iH.10	14-30			
	2	1n.S**	15.1^	I.S.dtf	^?Dir;. qq	-	
COLUMNIA	3	15,33	fS.43	LS.(^3	^/oto.;-?»	-	
COLUMIN 2	4	15.^	io.1'1	15.^	3°i5^.0(-	
	3	1/^.0>	15.18	Ifc-IS	3552.31	3M 10,10	
	1						
	2						
	3					-	
COLUMN 1	1					-	
	5						
	5						
	1						
	2						
	3					+	
COLUMN 2	4					-	
	5					-	
	1						
	2						
	3						
COLUMN 1	4						
	5						
	1					-	
	2					-	
	3						
COLUMN 2	4						
	5						

page 1 of 1

FORM X PEST-2

%

*

	10B PESTICIDE IDENTIFIC		EPA SAMPLE NO.		ю.		
	FOR MULTICOMPONEN	T ANALYI	FES		T.94773-3MS		
Lab Name:		Cont	tract:			•	•
Lab Code:	Case No.:	SAS	SNo.:	S	DG No. : A	AAA1007	
Lab Sample ID:	: L94773-3MS	I	Date(s)	Analyzed:	10/08/2		
Instrument ID	(1): HP1	:	Instrume	nt ID (2)	:		
GC Column(1):	RTX-CLPESTICIDES 2	ID: 0.3	32 (mm)	GC Column	(2):		ID:
	RT	WINDOW			MEAN		

ANALYTE	PEAK RT	FROM TO	CONCENTRATION	CONCENTRATION	%D
Aroclor-1016 COLUMN 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.11 10.31 10.61 10.81 11.80 12.00 11.88 12.08 12.59 12.79	444.04 983.02 3436.30 3068.12 1234.24	1833.14	
COLUMN 2					
Aroclor-1260 COLUMN 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.84 .15.04 15.25 1.5.45 16.11 16.31 16.67 16.87 17.15 17.35	2018.55 2617.09 1396.65 1197.57 1118.61	1669.69	
COLUMN 2	1 2 3 4 5		X X		
COLUMN 1	1 2 3 4 5				
COLUMN 2	1 2 3 4 5				

page 1 of 1

	EPA	SAMPLE NO-		
	PESTICIDE IDENTIFICATIC FOR MULTICOMPONENT AN	ON SUMMARY IALYTES	то	4773_4MGD
Lab Name:		Contract:	СЦ	עטאד-ניויד
Lab Code:	Case No.:	SASNo.:	SDG No.:	AAA1007
Lab Sample	ID: L94773-4MSD	Date(s)	Analyzed: 10/08/	2
Instrument	ID (1): HP1	Instrum	ment ID (2):	
GC Column(1) : RTX-CLPESTICIDES 2 ID:	0-32 (mm)	GC Column(2) :	ID;

			RT WI	INDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
	1	10.20	10.11	10.31	612.30		
Aroclor-1016	•2	10.70	10.61	10.81	625.00		
	3	.11.90	11.80	12.00	4477.19		
COLUMN 1	4	^.98	11.88	12.08	4096.55		
	5	12^67	12.59	12.79	1639.49	2290.10	
	1	^	\				
	2		\				
~~~~~ ~	3		\				
COLUMN 2	4		<u>\</u>				
	5		\				
	1	=====	=====	===== 1 E 0 4	======================================	=======	=====
Arcalor 1960	⊥ 2	15 25	15 25	15.04	2351.10		
ALOCIOL-1200	2	15.35	15.25	16 21	2904.90 1522 00		
COLIMN 1		16 75	16.11	16 57	1040 00		
	т Б	17 24	17.07	17 30	1150.28	1848 43	
	5	11.24	17.15	17.55	1100.20	1010.13	
	1						
	2						
	3				Δ.		
COLUMN 2	4				\\		
	5				\		
					· · · ·		
	1						
	2				$\setminus$		
	3				Δ7		
COLUMN 1	4				V		
	5				4		
	1					١	
	2					1	
COLING: 0	3						
COLUMN 2	4						
	Э						

page 1 of 1

PE	10B STICIDE IDENTIFICATION FOR MULTICOMPONENT AND	EPA	EPA SAMPLE NO.		
Lab Name:	(	Contract:	L	94773-5	
Lab Code:	Case No.:	SAS No.:	SDG No.:	AAAlool	
Lab Sample ID: I	94773-5	Date(s)	Analyzed: 10/04/	/2 <u>fc/c3/o</u> ;i	
Instrument ID (1	): HP1	Instrum	ent ID (2) : <u>HP3</u>		
GC Column(1) : R	TX-CLPESTICIDES 2 ID:	0.32(mm)	GC Column(2) : RT	<u>X-CiP£5T^</u> ID: <u>0</u>	). <u>32</u> -

			RT W	[NDOW		MEAN	
<ul> <li>ANALYTE</li> </ul>	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D
			10 55				
	1	13.66	13.57	13.77	8244.31		
Aroclor-1254	2	14.55	14.46	14.66	6193.37		
COLUBRI 1	3	14.99	14.90	15.10	6438.76		
COLUMN I	4	15.34	15.25	15.45	9950.56		
	5	10.00	15.93	10.15	3265.79	6818.56	
	1	mai		IM 20			
	2	In.al		1M.30	11/00 412		
	2	15. as	1.^.11	<u>^.vl</u>	11/00.*13		
COLUMN 2	3	$\frac{i\&.S2>}{2}$	w = iM3 >	<u>1-5 • t ~ 5</u>	MAOH. II		
COLUMIN 2	5		<u> </u>	<u>18.qq</u>	tHX < r.8S		
	5	ltc.C%	1.^5	14.18	~0 [~] .5 [?] 4		
	1						
	2						
	3						т
COLUMN 1	4						m
	5						
	1						
	2						
	3						
COLUMN 2	4						
	5						
	1						
	2						
	3						
COLUMN 1	4						
	5						
	1						
	2						
COLUMN 2	5						
COLUMIN 2	4 5						
	5						

page 1 of 1

I	10B PESTICIDE IDENTIFIC FOR MULTICOMPONEN	ATION SUMMARY T ANALYTES	EPA SA	AMPLE NO.
Lab Name:		Contract:	L947	773-6
ab Code:	Case No.:	SAS No.:	SDG No. : AF	AA1001
Lab Sample ID:	L94773-6	Date(s) Analy	yzed: 10/04/2	J_C_[03_ip3-
Instrument ID (	(1): HP1	Instrument II	) (2) : HP-3	
GC Column (1) :	RTX-CLPESTICIDES 2	ID: 0.32 (mm) GC Colur	mn(2) : <u>/TIV -Ci</u> E	<u>xfst 1.</u> ID: <u>Q.3 3.</u>

			RT W	[NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	TO .	CONCENTRATION	CONCENTRATION	۶D
	1	10 65	10 55	10 88			
Amoralow 10E4	⊥ 2	14 E4	14 46	14 66	141.79		
Arocior-1254	2	14.54	14.40	15 10	2/4.20		
COT TIMNE 1	5 4	15 22	15 25	15.10	295.50		
	т 5	15 99	15.25	16 13	203 79	210 01	
	5	13.77	13.75	10.13	205,19	210.01	
	1		тм то	14 ^0			
	2	W.a*	145 \9	$l_n 7f$	*r* fc75		
	3	kS.sM	1^.43	k^ • h>~h	,J3^SD		
COLUMN 2	4	L<5>1D		r-i.^	M^.1(0		
	5	I/0S	t.'VK*	Wo-ls	i8^.^		
	1						
	2						
COT TIMPE 1							
COLUMN I	5						
	1						
	2						
	3						
COLUMN 2	4						
	5						
	1						
	 3						
COLUMN 1	4						
COLOIM I	5						
	1						4
	1						
	2						
	3						
COLUMN 2	4						
	5						

page 1 of 1

	10B PESTICIDE IDENTIFICATIO FOR MULTICOMPONENT AN	N SUMMARY ALYTES	EPA SA	MPLE NO.
Lab Name:		Contract:	L947	73-7
Lab Code:	Case No.:	SAS No.:	SDG No.: AA	A1001
Lab Sample ID:	L94773-7	Date(s)	Analyzed: 10/04/2	)0103103-
Instrument ID	(1): HP1	Instrum	ent ID (2) : HP3	
GC Column(1) :	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	GC Column(2) : <u>faX-Co</u>	PCST X ID: 0.3^-

			RT W	NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D
	1	13.65	13.57	13.77	2081.35		
Aroclor-1254	2	14.55	14.46	14.66	1541.13		
	3	14.99	14.90	15.10	1456.20		
COLUMN 1	4	15.33	15.25	15.45	1986.66		
	5	16.01	15.93	16.13	1072.69	1627.61	
	1	(4.30	14.10	I4-30	!3'43. 1*		
	2	i [°] s. a s	1-5 • \°\	^\3<=1	^i1 ./*4		
	3	IS.SSI	^.43	SArr*>	i V43 ^4.		
COLUMN 2	4	Ľ5 W	15.1*	is. <w< td=""><td>14 4?[. 31</td><td></td><td></td></w<>	14 4?[. 31		
	5	$\langle u \rangle$ . e n	1^.98	1/.,-IX	irvs4.^4		34-3
		=====					
	1						
	2						
	3						
COLUMIN I	4						<b>V</b>
	3						
	1						
	2						
	3						
COLUMN 2	4						
	5						
	5		-^-s-·s				
	1						
	2						
	3						
COLUMN 1	4						
	5						
	1						
	2						
COLUBAL	3						
COLUMN 2	4						
	5						

page 1 of 1

FORM X PEST-2

•

•

P	10B ESTICIDE IDENTIFICATIO		EPA SAMP	LE NO.	
	FOR MULTICOMPONENT AN	ALYTES		L94773	-8
Lab Name:		Contract:			
Lab Code:	Case No.:	SASNo.:	SD	G No.: AAA1	001
Lab Sample ID:	L94773-8	Date{s)	Analyzed:	10/04/2	<u>1010310</u> <b>3-</b>
Instrument ID (	1): HP1	Instrum	ent ID (2) :	HP-3	_
GC Column(1) : H	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	GC Column(2	2) : <u>KTX-C LPfc</u>	<u> 87 1</u> . ID: <u>^ . 3 ^</u>

			RT W	[NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
Aroclor-1254	1 2 3	$13.66 \\ 14.55 \\ 14.99$	13.57 14.46 14.90	13.77 14.66 15.10	3127.77 2936.62 2791.77		
COLUMN 1	4 5	$\begin{array}{c}15.34\\16.01\end{array}$	$\begin{array}{c}15.25\\15.93\end{array}$	$\begin{array}{c}15.45\\16.13\end{array}$	$3911.00 \\ 2549.65$	3063.36	
COLUMN 2	1 2 3 4 5	m-ao LS.aa /.SS3 i.S.tfl ilf.CTf	M•tO LTIS I5-M3. IS.V? \5 <u< td=""><td>IH-30 <u>t^.tft</u> <u>l+&gt;t/{*&gt;</u> /^.qq llo.lK</td><td>^ I . S I . ^ <i>JXIX.</i> ^ 3 ^ C A S I . ^ &lt;3fc<w. m4<="" td=""><td>^ 5 4 - 0 5 "</td><td>13.5"</td></w.></td></u<>	IH-30 <u>t^.tft</u> <u>l+&gt;t/{*&gt;</u> /^.qq llo.lK	^ I . S I . ^ <i>JXIX.</i> ^ 3 ^ C A S I . ^ <3fc <w. m4<="" td=""><td>^ 5 4 - 0 5 "</td><td>13.5"</td></w.>	^ 5 4 - 0 5 "	13.5"
COLUMN 1	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5 \end{array} $						
COLUMN 2	1 2 3 4 5						
	1 2 3						
COLUMN 1	4 5						
COLUMN 2	1 2 3 4 5						

page 1 of 1"

	10B PESTICIDE IDENTIFICA FOR MULTICOMPONENT	TION SUMMARY ANALYTES	EPA SAN	IPLE NO.
Lab Name:		Contract:	L947	73-9
Lab Code:	Case No. :	SAS No.:	SDG No.: AAA	• A1001
Lab Sample ID	: L94773-9	Date(s)	Analyzed: 10/04/2	<u>iOlo^&gt;lo</u> 'X
Instrument ID	(1): HP1	Instrume	ent ID (2) : <u>MP3</u>	
GC Column(1)	: RTX-CLPESTICIDES 2	ID: 0.32(mm)	GC Column(2) : $dJ - d$	CLP£ST1 ID: Q.31

			RT W3:NDOW			MEAN		
ANALYTE	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D	
	1	13.65	13.57	13.77	72.67			
Aroclor-1254	2	14.54	14.46	14.66	367.09			
	3	14.99	14.90	15.10	450.68			
COLUMN 1	4	15.33	15.25	15.45	271.46			
	5	16.01	15.93	16.13	379.75	308.33		
	1		IM.IO	1M-^0		-	_	
	2	_/^.as	L5.n	AS.ST	38S.3^	-	_	
	3	\^.\$3~~	I/S.M3	(.S.6;3	MT^.Tlo	_	_	_
COLUMN 2	4	ixtt	L*).!^	l < 5 . ^	<u>iq^.^3</u>	-		_
	5	iu-oi	J^.^K	$1/_{f}. tf$	a^o. <i4< td=""><td>Hfc3.*fi</td><td><i>SO</i>.<i>V</i></td><td></td></i4<>	Hfc3.*fi	<i>SO</i> . <i>V</i>	
	1	===~=			= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$			
	1					-	_	_
	2					-		_
COLUMN 1	3						<u>^  </u>	_
	5					-	_	-
	5						_	-
	1							
	2					-	-	-
	3							-
COLUMN 2	4						_	-
	5						-	-
								-
	1							
	2							
	3							
COLUMN 1	4							
	5							
	1					4		
	$\frac{2}{2}$							_
	3						_	_
COLUMN 2	4					-	_	_
	3							_

page 1 of 1

FORM X PEST-2

• •

#### ID

PESTICIDE	ORGANICS	ANALYSIS	DATA	SHEET	

=

Lab Name:		Contract:		L94773-1	
Lab Code:	Case No.:	SAS No.:	SDG N	No.: AAA1001	
Matrix: (soil/water)	SOIL	Lab	Sample ID:	L94773-1	
Sample wt/vol:	10.2 (g/mL) G	Lak	File ID:	E2989998	
% Moisture: ~Q43.H	decanted: (Y/N)	N Dat	e Received:	10/01/2	
Extraction: (SepF/G	Cont/Sonc) SONC	Dat	e Extracted	:10/02/2	
Concentrated Extract	Volume: \ <u>Q0Q0</u>	(uL) Dat	e Analyzed:	10/04/2	
Injection Volume: 2.0(uL)			Dilution Factor: 10.0		
GPC Cleanup: (Y/N	) N pH: 7.	0 Sul	fur Cleanup	: (Y/N) N	
CAS NO.	COMPOUND	CONCENTR <i>i</i> {ug/L or	ATION UNITS: ug/Kg) UG/K(	G Q	
12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260		/ i o 1~? n	<u>v.11</u> <u>0.17</u> <u>0.17</u> <u>u</u> 80.21 <u>u</u> 8^i7- <u>u</u>	

	nWoi-	,	
	,		
Aroclor-1248	і <i>Ц Ц</i> (т. 17	u	
Aroclor-1260	'^ 8^i7-	u	
_Aroclor-1254	280.21	-	
Aroclor-1242		u	
_Aroclor-1232	l~?n 0.17	U	
		-	
#### Thru-Put Systems, Inc.

Data file \chem\hpl.i\8082r0917.b\E2989998.D Lab Smp Id <u>L94773-1</u>. Client Smp ID: L94773-1 Inj Date 04-OCT-2002 10:30 Operator CPW Inst ID: hpl.i Smp Info L94773-1 Misc Info WG32995,02-004 Comment \chem\hpl.i\8082r0917.b\8082_PCBsec.M Method 04-Oct-2002 09:44 Administra Quant Type: ESTD 17-SEP-2002 16:43 Cal File: E2989834.D _Meth Date Cal Date Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF	10.000	Dilution Factor
Vf	10.000	Final volume
Ws	10.175	Weight of sample extracted (g
Uf	0.100	Unit Correction Factor
Ts	56.600	Total Solid

				CONCENTE	RATIONS			
				ON-COL	FINAL			
RT I	EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET	RANGE	RATIO
\$ 1 Te	trachlo	ro-m-xylene	2		CAS ft:			
7.977	7.997	-0.020	289496	40.8955	710.09			
\$ 29 De	cachlor	obiphenyX			CAS #:			
20.120	20.130	-0.010	228917	47.8645	B31.09			
25 Ar	oclor-1	254			CAS #:	11097-6	9-1	
13-650	13.670	-0.020	2786	2.73079	47.42	80.00-	120 00	100 00(MH)
14.540	14-563	-0.023	1270	19.4747	338.15	95.41-	135 41	45 59
14.917	15-003	-0.086	1294	24.7421	429.61	83.91-	123 91	46 45
15.330	15.350	-0.020	1762	13.6546	237.09	45.52-	85 52	63 23
16.007	16-033	-0.026	3063	20.0871	348.7B	82.88-	122 88	109 94
		Average of	Peak Concentr	ations =	280.21			

Data.File: \chem\hpl.i\8082r0917.b\E2989998.D Report Date: 04-0ct-2002 14:56

Flag Legend

- Compound response manually integrated.
   H Operator selected an alternate compound hit

Ν



```
Data File: <u>\chem\hp3.i\1254FCONFIRMa.b\E3956279.d</u>
Report Date: 04-Oct-2002 09:46
```

Flag Legend

*

- M Compound response manually integrated.
- H Operator selected an alternate compound hit.



_____T Decachlorobiphenyl <20,913>

00022



Thru-Put Systems, Inc.

\chem\hpl.i\8082r0917.b\E2980004.D Data file L94773-2 Client Smp ID: L94773-2 Lab Smp Id Inj Date 04-OCT-2002 13:08 CPW Inst ID: hpl.i Operator L94773-2 Smp Info Misc Info WG32995,02-004 Comment Method \chem\hpl.i\8082r0917.b\8082_PCBsec.M Meth Date 04-Oct-2002 14:58 Administra Quant Type: ESTD Cal File: E2989834.D Cal Date 17-SEP-r2002 16:43 Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	L
DF	10.000	Dilution Factor	
Vf	10.00 0	Final volume	
Ws	10.967	Weight of sample extracted	
Uf	0.100	Unit Correction Factor	
Ts	55.800	Total Solid	

				CONCENTR	ATIONS			
				ON-COL	FINAL			
RT 1	EXP RT	•LT RT	.RESPONSE	(ug/L)	tug/Kg)	TARGET	RANGE	RATIO
\$ 1 Te	trachlo	ro-m-xylene	2		CAS «:			
7.980	7.997	-0.017	2B0155	39.7565	649.66			
S 29 De	cachlor	obiphenyl			CAS ft:			
20.117	20.130	-0.013	231113	48.2790	788.93			
25 Ar	oclor-1	254			CAS «:	11097-6	9-1	
13.657	13.670	-0.013	95102	306.441	5007.55	80.00-	120.00	100.00(MH)
14.550	14.563	-0.013	101298	245.731	4015.48	95.80-	135.B0	106.51
14.990	15.003	-0.013	85374	245.300	4008.44	B5.18-	125.18	89.77
15.337	15.350	-0.013	55580	294.522	4812.77	38.80-	78.80	58.44
16.010	16.033	-0.023	53299	156.293	2586.66	7B.24-	118.24	56.04
	1	Average of	Peak Concentr	ations •	4086.18			

%

%

Data File: <u>\chem\hpl.i\8082r0917</u>,b\E2980004.D Report Date: 04-Oct-2002 15:08

QC Flag Legend

- M Compound response manually integrated.
- H Operator selected an alternate compound h



Data File: /chem/hpl.i/8082r0917.b/E2980004.D Method: /chem/hpl.i/8082r0917.b/8082_JPCBsec.M Sample Info; L94773-2 Misc Info; WG32995,02-004 Analysis Date: 04-OCT-2002 13:08 Sample Matrix SOIL File Number 0004

Dilution	Factor	10.0000
Sample	Weight	10.9670
Final	Volume	10.0000
Total	Solid	55.8000

Analytes fug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	4086.18
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	79.51%
Decachlorobiphenyl	96.56%

Ana	alyst	CPW	
Report	Date	10/04/2002	15:08



Data File: /chem/hp3.i/l254FCONFIRMa.b/E3956275.d Method: /chem/hp3.i/l254FCONFIRMa.b/8082J?CBsec.M Sample Info: L94773-2 Misc Info: CONFIRMATION Analysis Date: 03-OCT-2002 17:07 Sample Matrix: SOIL File Number: 6275

Dilution Fa	ctor 10.0000
Sample We	ight 10.9670
Final Vo	lume 10.0000
Total Sol:	id 55.8000

Analytes (ug/Kg)

Aroclor-1254	3410.70
Tetrachloro-m-xylene	102.38%
Decachlorobiphenyl	111.65%

Analyst: CPW Report Date: 10/04/2002 08:55



#### Y <xIO~6> o o o o o o o o o P - P t ^ ^ H - h ^ i ^ P t ^ P M N r o r o r o r o i y r o t ⁱ M W * (J I 0 ' > v I C D > J » O t - ^k W OJ * 01 ff> ⊷j CO >S O t¹ N U « 01 H> M



-Tetrachloro-M-xylene (9.337)

# 11. (D. D. L

P.5 E-Aroclor-1254 (14.203) E-Aroclor-1254 (15.280> t -ftroolor-1254 (15.527)



-Decach1orobipheny1 (20.913>

C0030

٠

٠

Data File: <u>\chem\hpl.i\8082r0917.b\E2980005.D</u> Report Date: 04-Oct-2002 15:08

- Flag Legend
  - M Compound response manually integrated.
  - H Operator selected an alternate compound hit

»

<

## 

J~I ^A ^H ^H ^H **H** н п т *^т з г∧ п ω •• M 7 in ₩71 t r in the total form Ħ f 11 *>> * o" 4 **Q**. fl •.fl vt ri⊳ in NI ri⊳ in ∧ *J **#** ₽* 1 V> ^ m •^1 * w x m ∞ ©

Tetrachloro-m-xylene (?4970)



¥

-flroclor-1254 (13.657)

-Aroclor-1254 C144550) -Aroclor-1254 <14.990>

> =_____= = = = = ___r Decachlorobipheny1 < 20.120 >



Lata File: A;hemyr.p3.i/'1254FCONFIRha.b/E3956280,d		Page 2
Date : 03-GCT-2002 19:42		
Client ID: L94773-5	Instrument * hp3.i	
Sample Info; L94773-5		CO
Volume Injected <ul): 2.0<="" th=""><th>Operator: CPU</th><th>CO</th></ul):>	Operator: CPU	CO
Column phase; RTX-CLPesticides 1	Column diameter: 0.32	0
•chem/hp3.i/12	54FCDNFIRHa.b/E3956280.d	
2.7-		
2.6 [°]		
2.5-		
2.4-		
2.3-		
2.2-		
2.1-		
2.0"		
<i>L9-</i> .		
1.8-		
1.7-		
1.6-;		
1.5-		
1.4-		
1.3-		
1.2-		
1.1-		
1.0-		
0.9-		
0.8-		
0,7-	3)	
0.6-	c	
0.5-	a.	
0.4:	Ч	
0.3-	L	
0.2.	0 fi ~+≺ qo -S	
0.1-		
$\frac{1}{2} \frac{1}{2} \frac{1}$	u <u>1.hrthiittiiTiii7~.^^iii.1.LMinn»1.iin .mi</u> n محمد معند معند معند معند معند معند معند مع	iiiitniiiniiniiiiinininuiiiii-in
	IC. IT IJ IO I/ IO I/ ZU ZI	22 2J 2T 2J 20

Data File: /chem/hp3.i/l254FCONFIRMa.b/E3956280.d Method: /chem/hp3.i/l254FCONFIRMa.b/8082_PCBsec Sample Info; L94773-5 Misc Info; CONFIRMATION Analysis Date 03-OCT-2002 19:42 Sample Matrix SOIL File Number 6280

Dilution Factor	10.0000
Sample Weight	10.7111
Final Volume	10.0000
Total Solid	56.1000

Analytes (ug/Kg)

Aroclor-1254	3765.06
Tetrachloro-m-xylene	108.14%
Decachlorobiphenyl	116.04%

Analyst: CPW Report Date: 10/04/2002 08:55

```
Data File: <u>\chem\hpl.i\8082r0917.b\E2989999.D</u>
Report Date: 04-Oct-2002 14:56
```

Flag Legend

«

*

- M Compound response manually integrated.
- H Operator selected an alternate compound hit



```
Data File: <u>\chem\hp3.i\1254FCONFIRMa.b\E3956281.d</u>
Report Date: 04-Oct-2002 08:55
```



Flag Legend

M - Compound response manually integrated.



			L94773-7
ab Name:		Contract:	
ab Code:	Case No.:	SAS NO. :	SDG No.: AAA1001
Matrix: (soil/water	) SOIL	Lab	Sample ID: L94773-7
Sample wt/vol:	10.6 (g/mL) G	Lab	File ID: E2980002
% Moisture: ^r 30.%	decanted: (Y/N)	N Date	Received: 10/01/2
Extraction: (SepF/	Cont/Sonc) SONC	Date	e Extracted:10/02/2
Concentrated Extrac	t Volume: \ <u>QQOO</u>	(uL) Date	Analyzed: 10/04/2
Injection Volume:	2.0(uL)	Dilu	tion Factor: 10.0
GPC Cleanup: (Y/N	) N pH: 7.	0 Sulf	ur Cleanup: (Y/N) N
CAS NO.	COMPOUND	CONCENTRAI (ug/L or ı	CION UNITS: 1g/Kg) UG/KG Q
12674-11-2 1104-28-2 11141-16-5	-Aroclor-1016 -Aroclor-1221" -Aroclor-1232"		mo -o.i4 No ^4r4HU
53469-21-9 11097-69-1 11096-82-5	Aroclor- 1242" Aroclor- 1254" Aroclor- 1260" Aroclor- 1248"		1627.61 IMO Q^r4- IHO -0^i4

___i20£. ___11/4/03-

Data File: /chem/hp3.i/1254FCONFIRMa.b/E3956281.d Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94773-6 Misc Info: CONFIRMATION Analysis Date; 03-OCT-2002 20:13 Sample Matrix. SOIL File Number: 6281

Dilution	Factor	10.0000
Sample	Weight	10.2765
Final	Volume	10.0000
Total	Solid	85.0000

Analytes (ug/Kg)

Aroclor-1254	261.65
Tetrachloro-m-xylene	96.48%
Decachlorobiphenyl	106.77%

Analyst: CPW Report Date: 10/04/2002 08:55 Supervisor: Date:

Page 1



Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082r0917.b\E2980002.D Lab Smp Id: L94773-7 Client Smp ID: L94773-7 Inj Date : 04-OCT-2002 12:05 Operator : CDW Smp Info : CPW Inst ID: hpl.i Misc Info : L94773-7 : WG32995,02-004 Comment Comment : Notering and Second Cal Date : 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF	10.000	Dilution Factor	
Vf	10.000	Final volume	
Ws	10.585	Weight of sample extracted (g)	
UÍ	0.100	Unit Correction Factor	->xx&
Ts	69.200	Total Solid <i>SfytAfi</i> ** A?	252^*^

RT I	EXP RT I	DLT RT	RESPONSE	CONCENTRA ON-COL ( ug/L)	ATIONS FINAL (ug/Kg)	TARGET RANGE		·· ·.&*i	*3£.J
\$ 1 Te 7.980	etrachlor 7.997	o-m-xylene -0.017	275926	39.2408	CAS 535.72		ff:		/ «^TTj**^ I <i>[ft-</i> *"*
S 29 De 20.117	ecachloro 20.130	biphenyl -0.013	229948	4B.0591	CAS I: 656.11			^ /• [,"S	" / I V1Q ***
25 Ar	oclor-12	54			CAS # s	11097-69-1		_ i J	^ (/ J@
13.653	13.670	-0.017	4B297	152.457	20B1.35	80.00- 120.00	100.00(MH)	"\	iiA
14.547	14.563	-0.016	42567	112.8B6	1541.13	95.80- 135.80	88.14		Α
14.990	15.003	-0.013	32524	106.665	1456.20	85.18- 125.18	67.34		
15.333	15.350	-0.017	27029	145.521	1986.66	38.80- 7B.80	55.96		
16.010	16.033	-0.023	24322	78.5730	1072.69	7B.24- 118.24	50.36		
	A	verage of Pea	k Concentra	ations •	1627.61				

Data File: <u>\chem\hpl</u>.i\8082r0917.b\E2980002.D Report Date: 04-Oct-2002 15:08



QC Flag Legend

- M Compound response manually integrated.
- H Operator selected an alternate compound hit.



CM 10 0000

27

Data File: /chem/hpl.i/8082r0917.b/E2980002.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec,M Sample Info; L94773-7 Misc Info; WG32995,02-004 Analysis Date: 04-OCT-2002 12:05 Sample Matrix: SOIL File Number: 0002

Dilution	Factor	10.0000
Sample	Weight	10.5851
Final	Volume	10.0000
Total	Solid	69.2000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	1627.61
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	78.48%
Decachlorobiphenyl	96.12%

Analyst: CPW Report Date: 10/04/2002 15:08

Page 1



Thru-Put Systems, Inc.

Data file : \chem\hp3.i\l254FCONFIRMa.b\E3956276.d Lab Smp Id: L94773-7 Client Smp ID: L94773-7 Inj Date : 03-OCT-2002 17:38 Operator : CPW Smp Info : L94773-7 Inst ID: hp3.i Misc Info : CONFIRMATION Comment : : \chem\hp3.i\l254FCONFIRMa.b\8082_PCBsec.M Method Meth Date : 04-Oct-2002 08:42 Administra Quant Type: ESTD Cal Date : 03-OCT-2002 16:36 Cal File: E3956274.d Als bottle: 1 Dil Factor: 10.58510 Integrator: Falcon Compound Sublist: 1254.sub Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	10.58510.00010.5850.10069.200	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

RT	EXP RT	DLT RT	RESPONSE	CONCENTR ON-COL { ug/L)	ATIONS FINAL (ug/Kg)	TARGET	RANGE	RATIO
\$ 1 Te	trachlc	ro-m-xylene			CAS #:			
9.333	9.337	-0.004	435300	50.7344	733.16			
25 Ar	oclor-1	254			CAS #:	11097-6	9-1	
14.200	14.203	-0.003	31205	95.0243	1373.18	80.00-	12000	10000
15.280	15.287	-0.007	11126	35.4052	511.64	79.42-	11942	35.65
15.523	15.530	-0.007	46882	95.0595	1373.69	126.59-	16659	150.24
15.687	15.890	-0.003	26346	100.223	1448.31	57.35-	9735	84.43
16.073	16.077	-0.004	36168	93.7479	1354.74	84.54-	124.54	115.90
		Average of Pe	eak Concentra	ations »	1212.31			
\$ 29 De	ecachlo	robiphenyl			CAS ft	:		
20.913	20.920	-0.007	317129	56.0946	B10.62			



-Tetrachloro-m-xylene <9»333)

+ +

# fs-

t-Aroolor-1254 U4.20CO

=-Aroclor-1254	<15.280>
£-ftroclor-1254	<15.523>
E-Aroclor-1254	<15*8SZ?
I-ftroclor-1264	(16.0735

-Deoachlorotoiphenyl <20.913>

ß



»

ρ, <u>n</u>, i i ∱ ∄

in +*

-1

•n

W i-*

i 7* ⊲B

m .,∰[⊔]

₽₄

v| *≫

•

>-•

fr ъ <+ **

w

.

нн

1-1

- 1 •tx v I - J Ji

Η...

vl * N

4 i •01

m

ET

В



Data File: /chem/hpl.i/8082r0917.b/E2980003.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L94773-8 Misc Info: WG32995,02-004 Analysis Date: 04-OCT-2002 12:37 Sample Matrix: SOIL File Number: 0003

Dilution	Factor	10.0000
Sample	Weight	10.0543
Final	Volume	10.0000
Total	Solid	62.4000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	3063.36
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	91.60%
Decachlorobiphenyl	114.56%

Analyst: CPW Report Date: 10/04/2002 15:0:



Thru-Put Systems, Inc.

Data file : \chem\hp3.i\1254FCONFIRMa.b\E3956277.d Lab Smp Id <u>L94773-8</u> Client Smp ID: L94773-8 Inj Date 03-OCT-2002 18:09 Operator CPW Inst ID: hp3.i Smp Info L94773-8 Misc Info CONFIRMATION Comment Method \chem\hp3.i\1254FCONFIRMa.b\8082_PCBsec.M Meth Date 04-Oct-2002 08:42 Administra Quant Type: ESTD Cal Date 03-OCT-2002 16:36 Cal File: E3956274.d Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: 1254.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.054 \\ 0.100 \\ 62.400$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid

			CONCENTRATIONS							
				ON-COL	FINAL					
RT H	EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET RANGE	RATIO			
S 1 Te	trachlo	ro-m-xylene			CAS #:					
9.330	9.337	-0.007	479597	55.6972	890.95					
25 Ar	oclor-1	254			CAS «:	11097-69-1				
14.200	14.203	-0003	46196	140.674	2242.22	80.00- 120.00	100.00			
15.283	15.2B7	-0.004	42413	134.967	2151.25	79.42- 119.42	91.81			
15.527	15.530	-0003	B696B	100.395	2875.33	126.59- 166.59	192.59			
15.890	15.B90	0.000	60230	229.122	3651.99	57.35- 97.35	130.38			
16.073	16.077	-0.004	65339	169.359	2699.44	84.54- 124.54	141.44			
		Average of	Peak Concentra	ations •	2724.05					
\$ 29 De	ecachlor	obiphenyl			CAS ft	:				
20.920	20.920	0.000	339425	60.0384	956.96					



0 T5 3 -*i* Q. 1-¹

١

CL ** 0 ro

-Decachlorobiphenyl (20.920)







-Tetrachloro-m-xylene <9,330)



#### Y (xIO^A4)



ff> <r I-> n n Ø n. 4 * fl' * 3 m Φ -∣--⊅ ***** |_4 ^Н L.L 0 4^ i-. ++ 0 N fi⊳ * 0 * 1i 0 А ^s ¢ r* v м tfl тι n •i] I ₩» N t:t 0> c*l∾ ⊲T> in + м-ft -**** .£ w ro • m 0000 p-

Tetrachloro-m-xylene (7.980)

ro



Data File: /chem/hpl.i/8082r0917.b/E2980001.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L94773-9 Misc Info: WG32995,02-004 Analysis Date: 04-OCT-2002 11:36 Sample Matrix: SOIL File Number: 0001

Dilution	Factor	10.0000
Sample	Weight	10.0965
Final	Volume	10.0000
Total	Solid	56.7000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	308.33
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	85.75%
Decachlorobiphenyl	93.00%

Analyst: CPW Report Date: 10/04/2002 15:08

Sample Info: L94773-9 Volume Injected <ul>: 2.0 Column phase: RTX-CLPesticides 1 /chem/hp3 • i •1254FC0NFI RHa . b/E3956278 . d</ul>	
1.4-	
1.3-	
1.2-	
1.1-	
1*0-	
0.9-	
f 0.8- o	
> 0.7-	
0.6-	
0.5-	

<u>เช่นของ เตา (</u>

Data File: /chem/hp3.i/l254FCONFIRMa.b/E39562 78.d Method: /chem/hp3.i/l254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94773-9 • Misc Info; CONFIRMATION Analysis Date: 03-OCT-2002 18:40 Sample Matrix SOIL File Number: 6278

Dilution	Factor	10.0000
Sample	Weight	10.0965
Final	Volume	10.0000
Total	Solid	56.7000

Analytes (ug/Kg)

Aroclor-1254	462.39
Tetrachloro-m-xylene	105.86%
Decachlorobiphenyl	116.25%

Analyst: CPW Report Date: 10/04/2002 08:55

# KM

WET CHEMISTRY TOTAL SOLIDS NOT %

Notebook : Start Date End Date	02-066 : 01-OCT-02 12: : 01-OCT-02 12:	36 :36	•							•••••			
SMpU* 1*0.	Analysis Date Time		ft <i>tnU</i>	flet Method	Dis	v*U«»∉ <h# («u=""></h#>	e initial ⊳ Weight	tet&2wd Weight	3rdWth Weight	Sth&th weigh*	7th&8th Weight	^tWttOtft Final vafattt Result	Bpd Units
h 	StaTt:^-bcT-62 Stop :01-OCT-02.	' 12:36 12:36	fr-P *	3-6	3'-	& «	1.244*	"OBP				^ 9 <u>2</u> ^	
to\$*r start:0	DI-0CT-02 12;36 Stop :Q1-0CT-Q2	3 12:36	, CLP	3.0	4	5.326?	1.2489	£?B5				" -83.7	
^2 Comfecnts :	Start:01-OCT-02 Stop :Q1*OCT-02	12:36 12:36	CLF	9 3.0	"5	536?1	1.2503	5.2409				WJi'	
X >  Contents 4	Start:O1- ^t OCT- ¹ 02 Stop :01-OCT-02	12:36 12:36	CLF	9 3.0	''6-	^ ^ ^ _ ''	^^^''i	^ ^ y '' '' '	•			6'0'	
Mijpf" WSt	Sta ¹ rt:6I-6cf-62 Stop :qi-0CT-02	"I2:36 ' 12:36	"";""ci>	3.6 '"	7	O &	f c 1 - 2 5 4 8	8 TOST				1677"	X
W&fc ^m >,, st*'f	Start:01-0CT-Q2 Stop :01-0CT-02	12t36 12r36	, ,	3.0	"§-	—%,rm	'1-2451	urn				^ 8	
iZ*3	Start:O1-OCT-02 Stop :01-OCT-O2	12:36 12:36	,' ,CLF	3.0	"9	OS52"	T2T	6*8967				TJOT	, X
'XoCTWfitS i,	Start:01-OCT-02 Stop :O1-OCT-02	12:36 12:36	, ,	3.0	""I'd	i'lmt	i'.iSM	"SlftSft"'				۸	iiuiimun'i*)'
WWI'M	.Stapt'ioi'rOCT-62 Stop :01"OCT*02	12:36 12:36	""""CLP	3.0	TT-	—s:	1.2475	4 J H				3576"	niliniiini
& <i>kW</i> &+b	Start:01-OCT-u£ Stop :01-6CT-02 Calculations:	12:36 12:36 • Fin	CLP al Resi	3.0 ults = (f	12 fnl-ini wgt v	5.8879 tial) x 1 wgt	9 1.238 ⁻ 000000	7 ft.\$&6					33?*"
M	ULA	Ø			nils of sa	mple							
U ser	livet Signature	B		'Date	/		Manager S	ignature	P,	~	/ Date		
	9 E ( ( )												
Friend Inc.

Data File: /chem/hpl.i/8082r0917.b/E2980070.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L95095-4 Misc Info: WG33079,02-004 Analysis Date: 08-OCT-2002 16:07 Sample Matrix: SOIL File Number: 0070

Dilution	Factor	10.0000
Sample	Weight	10.0984
Final	Volume	10.0000
Total :	Solid	65.2000

Analytes (ug/Kg)

Aroclor-1016	11.66%
Aroclor-1260	12.58%
Tetrachloro-m-xylene	72.87%
Decachlorobiphenyl	94.70%

Analyst: CPW Report Date: 10/09/2002 10:53

Supervisor:

Date:'

	»		WET CHEMISTRY TOTAL SOLIDS M			
Notebook : Start Date End Date	: 02-066 = : 01-OCT-02 12:36 : 01-OCT-02 12:36 M ^{*+;;: 6a*t &amp;=-::} :Tirife;:	Method	- [:] ^:::£tfo3^ [:] ^.i^ ^h '#lli  lll- ^'9^:"liiiillll	height :;^^ ^^fWe1flht	7 8ii^P^^!AI^	<u>(•IBS</u>
Hiliiliiin	Start ;01^OCT-02.12:36: p^ Stop, :01-dGt^6Z'12:36::  I	;CLPi;3;u; :I ^{::} ". [:] :-^ [:] :S	[⊥] i3V"5£5M7JI§i*2456 - ⊷ mmm		<i>m&gt;</i> .*.	
IffIPBIIII	Start :01^OCTr02::12:36:ps: Stpp::• Of fOCT-02; 12:36 &;1	sCLP;A;0 li-;":^;/;	;K;:/:;i;5i^i; iil:e4:^;;;;;; ^{;:} ^ms			
flfiisn	Start :01/0CT-02 12:36 ^i:; iS'tppV :0i/bctr02 ^{:::} i2-:36::1i	;CLP:.3.0;  :i-	1? 5^263 ' 1.2347 4T99TT	d <ft *fs-="">p£<!--7</td--><td>69.2 f<b>rf_i'ir</b></td><td></td></ft>	69.2 f <b>rf_i'ir</b>	
	Start •01-OCT-02; 12:36;  sis Stop; ¡&UOCT-0a 12:36: ; i	sCLR^3iO: i	≪16;^/;li^i§£r•?487;;;,•-•SMili	<u> </u>	l6214 ⁷	
#9\$1^ 94	Start:01-OCT-02 12:36 S tpp;:;;i Oi^pG t-:02;;;i 2:3\$ £1	CLP 3.0 I111 '^t [:] ?\$v	•A7.:-/^\$mmM\$^w'\tmmm		'llj^v.^.^'olj.le ic [.] . y	
I^BilKB:-	Start KocT-0^i^& stop- _BLANK !()i*bCt-02:,:12:36::;i	JIi^ li; [:] ';>;:^	:i:i11i		i-,00805	
	Start • Q a c t - 0 2 a i: 3 6 · 1 ↓ Stop' crv::::	SI	[:] "te;IIIII;-2375^:::I	l	IIII g;?2v8::	
^i ^i ^;	".Start •§tdp;•::-:&£•  '94773:2=4:	\ <i>\;</i> \	•^:-;:;;vlii#«i-2485;y.;::iiiil	<b>K</b> V V	155:9::	mm.
	-					
	Calculations: Final	Results = (fnl Wo	- initial) x 1000000 at wat			

lis of sample

'Dai · / ' / * / 2

Manager Signature

/6/3/a^

Analyst Signature

Notebook : 02-066 Start Date : 05-0CT-02 09:31 End Date : 05-0CT-02 09:31 ;!AnatvS:is^: [:] :^-::: •WM-			
isliilsHiil- ;;H§:- iMethoch			
	i—s.Hu? i.23A—r	— 6 T X	
yKSBmerii;g;isi£" Start:05-0CT-02 09:31 CLP3.0	^is&fcm258r?&\$m\$k	mmmzw	
	•MSfflB'l^^'ifflWI^		
<i>m\$m∖</i> #;StaFt:O^OCT^02: 09:3I'3;#&;'CLk5;0?	MSSIIBPPMiliBiM	mm	iHii^
jiBfeMfJ0SVOCT^)2>:09:"31 ••iWURJ^	7————————————————————————————————————	fiiliS;;	
	i— <i>rw</i> &—T2Tu—raw	SSTH^&S&KJ:: 38W^^H4?	
:₩J:™#fet&&&W::Sf:Sf: S^i^^S:^ta^t:*0^aCT^O:2^9.i31 [;] iipffifK	"9 <i>b?m</i> T248 T03T1 ™:S::S*:K:::™.		SSSPsiiS ;  II  Iift*
	,1p::^! _. ^ p\$i :  p:i246;-^r! _. S;^5iI;	minVii⊺titiM;iiftull"iiijivi   i§IIIp8>5 [°] ;.	
M&sftag • [;] III	11 S.SStt 1.2301 \$.< sssi	II     i 75v^	
^^K^mMKW^MM^^^j^W:. Stop::05-0C1-02:09:31 Calculations: Final Results = (fnl	12:•: फ़;;;5g&888M3-23B3.££\$3&&ta - initial) x 1000000 t wat	^SS58;:	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	of sample <u>Mugli Houd</u> Manager Signature	— / Date	



^{^^}S I [^] Environmental and Computer J Technology Consultants

### **Data Validation Report**

SDG#	95433
Validation Report Date	<u>April 28, 2003</u>
Validation Guidance	USEPA Region 2 Guidelines for Data Review SW 846 Method 8082
Client Name	Cummings-Riter
Project Name	Viacom/Horseheads
Laboratory	Friend Laboratory Inc.
Method(s) Utilized	SW 846 8082
Analytical Fraction	PCBs

Samples/Matrix:

Date Sampled	Sample ID	Laboratory ID	PCBs	Matrix
10/14/02	H-C-SS-B1-001	95433-1	Х	Solid
10/14/02	H-C-SS-B2-001	95433-2	Х	Solid
10/14/02	H-B-S-W-001	95433-3	Х	Solid
10/14/02	H-B-SS-W-001	95433-4	Х	Solid

Analytical data in this report were screened to determine analytical limitations of the data based on specific quality control criteria. This screening assumes analytical results are correct as reported and merely provides an interpretation of the reported quality control results. A minimum of 10% of laboratory calculations has been verified as part of this validation. Specific findings on analytical limitations are presented in this report. Annotated Form Is or spreadsheets for samples reviewed are included after the Data Assessment Findings. Form Is for the MS/MSD samples and spreadsheets are not annotated.

#### SUMMARY

The sample set for Viacom/Horsehead consists of four solid field samples. These samples were analyzed for the parameters as provided above. The findings presented in this review of the analytical data assume that the information presented by the analytical laboratory is correct. This review is identified as a false positive/false negative review, and therefore, does not include the review of some quality control (QC) items. Those included in the review are listed below.

The polychlorinated biphenyl (PCBs) findings are based upon the assessment of the following:

#### False Positives/False Negatives Validation

- Data Completeness
  - Holding Times
- * Calibration and GC Performance
- * Blanks

*

*

*

- * Analytical Sequence Check
  - Target Compound Identification
    - Compound Quantitation and Reported Detection Limits
    - Chromatogram Quality

* Criteria were met for this evaluation item.

This evaluation was conducted in accordance with USEPA Region II SOP No. HW-23B (May 2002), USEPA CLP National Functional Guidelines for Organic Data Review and the analytical method. Findings from this evaluation should be considered when using the analytical data. This report presents a summary of the data qualifications based on the review of the aforementioned evaluation criteria. This is followed by annotated Form Is/ spreadsheets. Finally, the worksheets used to perform the evaluation are provided.

### **FINDINGS**

### **Polychlorinated Biphenyls (PCBs)**

### 1. Holding Time

The cooler temperature upon receipt by the laboratory was measured as 18 C. For the following samples, qualify positive results of all PCBs as estimated "J" and nondetected results as estimated "UJ".

H-C-SS-B1-001 H-C-SS-B2-001 H-B-S-W-001 H-B-SS-W-001

### 2. Compound Quantitation

The percent difference between columns exceeded the 25% quality control limit. For the following sample and compound, qualify PCB results as indicated in the table below. Samples were qualified based on SOP HW-23, Section 12.6.

Sample	Compound	% Difference	Qualifier
H-B-S-W-001	Aroclor 1254	42.3%	J

### **NOTES**

#### **Polychlorinated Biphenyls (PCBs)**

#### **Completeness**

The USEPA Region II SOP No. HW-23B has the following sections that are not applicable to this project because it is a false positive/false negative review:

- Surrogate Recovery (Form 2)
- Laboratory Control Sample
- Matrix Spikes (Form 3)
- Contamination
- GC Apparatus and Materials
- Extraction Techniques for Sample Preparation
- Field Duplicates

#### **Calibration**

The laboratory used linear regression to calculate PCB results. The use of linear regression is permissible for SW-846 methodologies. The laboratory met the acceptance criteria specified in Section 7.5.2 of Method 8000B (r value greater than or equal to 0.99).

Data summary forms (including calibration factors) for the initial and continuing calibration is not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the calibration factor information. Because Aroclor 1254 was identified as a constituent of concern, the data summary information for the second column is provided for the continuing calibration. Data are not qualified on this basis.

The percent difference (%D) per peak for multi-standard Aroclors are provided. For SW 846, the laboratory used the average Aroclor concentration to determine the %D. Data are not qualified because the average value is used.

#### **Retention Time**

Retention time windows are not determined by the use of three standards for single standard calibration Aroclors. The center of the retention time window is defined as the retention time of the midpoint standard from the initial calibration. For the multi-standard calibration Aroclors, the center of the retention time window is the mean of the retention time generated from each standard. The retention time windows are the mean + 0.1 minutes. Data are not qualified on this basis.

Retention time windows are not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the retention time window information. Because Aroclor 1254 was identified as a constituent of concern, the retention time information for the second column is provided. Data are not qualified on this basis.

#### **Compound Quantitation**

Samples were analyzed and reported at a dilution due to the presence of target compounds. Dilutions for samples are presented below. Reporting limits were adjusted for percent solids and dilutions.

H-C-SS-Bl-OOl, H-C-SS-B2-001, H-B-S-W-001, H-B-SS-W-001 IOx

Jui Ja Su L 

.

## **Glossary of Data Qualifiers**

U	Not Detected.	The associated number indicates approximate sample
		concentration necessary to be detected.
UJ	Not Detected.	Quantitation limit may be inaccurate or imprecise.
J	Analyte Present.	Reported value may not be accurate or precise.
Ν	Consider Present.	Tentative identification. Special methods may be needed to
		confirm its presence or absence in future sampling efforts.
R	Unusable Result.	Analyte may or may not be present in the sample.
UR	Unusable Result.	Analyte may or may not be present in the sample.

 $^{sl/r}$ 

ECT.CON INC.



 $^{\wedge \wedge \wedge}$  / I > ^ ^ Environmental and Computer I Technology Consultants

# Annotated Form l's (Spreadsheet)



32 ITHACA STREET TELEPHONE (607) 565-3500 WAVERLY, NY 14892-1532 PAX (607) 565-4083

Date:17-0CT-2002

Lab Sample ID: L95433-1

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VACOMHORSEHEADS 1920B Origin: H-C-SS-BI-OOI Description: COMPOSITE. Sampled On: K-OCT-62 10:20 by CLIENT Date Received: H-OCT-02 15:54 P.O. No: N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	92			15-OCT-02 00:00	CLP 3.0	02-066-87
EPAJB0S2						
PCS       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	UT 360 d	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	100 200 100 100 100 100 100	16-OCT-02         17:10           16-OCT-02         17:10           16-OCT-02         17:10           16-QCT-02         17:10           16-OCT-02         17:10           16-OCT-02         17:10           16-OCT-02         17:10           16-OCT-02         17:10           16-OCT-02         17:10	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-0185 02-004-0185 02-004-0185 02-004-0185 02-004-0185 02-004-0185 02-004-0185
Extraction Information:				15-OCT-02 00:00	EPA 3550	02-090-12
Surrogate Recovery: Tetrachloro-m-xylene Decachbrobiphenyl	82 106					02-004-0185 02-004-0185



Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 7316B PA 68180 EPA NY 00033

 $\infty \& tA$ 

KEY: NO of U = None Detected<= less than</th>ug/L = micrograms per liter (equivalent to parts per billion)mg/L = milligram per liter (equivalent to parts per million)mg/kg = milligrams per kilogram (equivalent to parts per million)= analyte was detected in the method or trip blankJ = result estimated below the quantitation limit

^T^HEse services. Your samples will be discarded after 14 days unless we are advised otherwise.



32 ITHACA STREET TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:17-OCT-2002

Lab Sample ID: L95433-2

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VIACOM/HORSEHEADS 1920S Origin: H-C-SS-B2-QOI Description: COMPOSITE Sampled On: 14-OCT-Q2 10:25 by CLIENT Date Received: H-OCT-0215:54 P.O.NO:N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Sol ids	91.4			15-OCT-02 00:00	CLP 3.0	02-066-87
EPA B082						
PCS 1016         PCB 1221         PCB 1232         PCB 1242         PCB 1248         PCB 1254         PCB 1260		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 220 110 110 110 110 110	16-OCT-02 17:42 16-OCT-02 17:42 16-OCT-02 17:42 16-OCT-02 17:42 16-OCT-02 17:42 16-OCT-02 17:42 16-OCT-02 17:42 16-OCT-02 17:42	EPA 8082 EPA 8052 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004 0186 02-004 •0186 02-004 0186 02-004 0186 02-004 •0186 02-004 •0186 02-004 •0186
Extraction Information:				15-OCT-02 00:00	EPA 3550	02-090-12
Surrogate Recovery: TetrachIoro-m-xylene <del>BecachI</del> orobi phenyl	92 143					02-004- <u>01</u> 86 02-00

&

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

^Qcii£cXL

< = less than ug/L = micrograms per liter (equivalent to parts per billion) KEY: KD - None Detected = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per jrgillion) mg/**L** = analyte was detected in the method or trip blank = result estimated below the quantitation limit J

nnation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed^^^Eost ese services. Your samples will be discarded after 14 days unless we are advised otherwise.

## R I E N D MORATORY Lab Sample ID: L95433-3

32 ITHACA STREET TELEPHONE (607) 565-3500 WAVERLY, NY 14892-1532

FAX (607) 565-4083

Date:17-OCT-2002

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VIACOMHORSEHEADS 19208 Origin: H-B-S-U-OQI Description: COMPOSITE Sampled On: K-OCT-02 IO-.30 by CLIENT Date Received: K-OCT-02 15:54 P.O. No: N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	62.2			15-OCT-02 00:00	CLP 3.0	02-066-87
EPA 8082						
PC6       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	4 Uf 1 310 3 /US	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	160 310 160 160 160 160 160	16-OCT-02 18:13 16-OCT-02 18:13 16-OCT-02 18:13 16-OCT-02 18:13 16-OCT-02 18:13 16-OCT-02 18:13 16-OCT-02 18:13	EPA 6082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-0187 02-004-0187 02-004-0187 02-004-0187 02-004-0187 02-004-0187 02-004-0187
Extraction Information:				15-OCT-02 00:00	EPA 3550	02-090-12
Surrogate Recovery: Tetrachloro-m-xylene ဤMfiptorobiphenyl	85 112					02-004-0187 02-004-0187



Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

ox (JO/L

ug/L = micrograms per liter (equivalent to parts per billion) KEY: ND Q U = None Detected < = less than = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) mg/L = analyte was detected in the method or trip blank J = result estimated below the quantitation limit

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost ^^W^rese services. Your samples will be discarded after 14 days unless we are advised otherwise.



 32 ITHACA STREET
 WAVERLY, NY 14892-1532

 TELEPHONE (607) 565-3500
 FAX (607) 565-4083

Date:17-0CT-2002

Lab Sample ID: L95433-4

	Sample Source:	VIACOM/HORSEHEADS 19208
AAA Environmental	- Origin:	H-B-SS-U-001
Peter Porter	Description:	COMPOSITE
6679 Moore Road	Sampled On:	14-OCT-02 10:35 by CLIENT
Syracuse, NY 13211	Date Received:	14-OCT-02 15:54
	P.O. No:	N/A

Analysis Performed	Result	Units	Detection Limit	Date Ana Iyzed	Method	Notebook Reference
Total Solids	56.9			15-0CT-02 00:00	CLP 3.0	02-066-87
EPA 8082						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	160 330 160 160 160 160 160	16-OCT-02 18:44 16-OCT-02 18:44 16-OCT-02 18:44 16-OCT-02 18:44 16-OCT-02 18:44 16-OCT-02 18:44 16-OCT-02 18:44	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-0188 02-004-0188 02-004-0188 02-004-0188 02-004-0188 02-004-0188 02-004-0188
Extraction Information:				15-OCT-02 00:00	EPA 3550	02-090-12
Surrogate Recovery: TetrachIoro-m-xylene	102					02-004- <u>01</u> 88

TetrachIoro-m-xylene ₿eeaehlorobi phenyl

141

02-004-0188 02-00

Results calculated on a dry weight basis.

Approved by:1 Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

= None Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion) = milligram per liter (equivalent to parts per million) mg/kg = mi I ligrams per kilogram Cequivalent^to_parts^pere'jhilllimmj - analyte was detected in the method or trip blank J = result estimated below the quantitation limit KEY: ND U mg/Ĺ

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability excee'C^J^EOST

 $^{si/n}$ 

ECT.CON INC.



^^^ I \^^v Environmental and Computer
I Technology Consultants

Support Documentation



## COC



CUSTOMEJ^BE I		CHAIN OF OfcrC	DY RECORD	PAGE
FLI	ONE RESEARCH CIRCLE WAVERLY NY 14892-1532	*	CLIENT" AAA etJ^XTZ ADDKESS: <3>N3:CnE.	CJMMt ^{^6*-} INVOICE TO: ADDRESS:
FRIEN~D Telephone (607) 565 3500 <u>LABORATORY</u> •, Fax (607) 565-4083 * N • C			PHONE: _ FAX:	«r
SampleSitei $\langle J^{A}p_{li} \rangle$	$QX$ )t $\lor$ HW-S&XeA ⁱ >&		PROJECT NO. / NAME	COPY TO: ADDRESS:
P.O. #			1%0#	
DATE & TIME OF SAMPLE COLLECTION <i>tfi/tf/oi</i>	sample description $H-r, -SS-FSI - Ocii$	NUMBEk Oh CONTAINERS i i	ANALYSES / TES ● j - ^ & j :-<*`3- (-	TS REQUESTED   ' ^ ^ I I ^ ^ NUMBER
		Description: Grab Composite Other Matrix: DW WW MW Soil Air Other		/
	H-C-SS-E&-O01	7	pcs's, $S^{0 \wedge 1}$ -	_
;o2j		Description: Grab Composite Other Matrix: DW WW MW Soil Air Other		-a
lo∕ä₩7tlL	H - 6 - 5 - ^ - C X M	Х	PCS '5. ^OEC	- 5
		Description: Grab V^bmposite^Other Matrix: DW WW MWieS-fcir Other		
/ <b>0</b> //,44//or	H-ft-ss-w-oo	5?	'PCJ&'a., S>0%	TT
loss		Description: Grab^ComposjjJ Other Matrix: DW WW MWIgoiLAir Other ii_l_l_L_L		•П
RELINQUISHED BY	DATE /TIME	ACCEPTED BY	DATE/TIME '	NOTES TO LABORATORY
sampler ⊨ A-Sc^o^	sr" Eng	s Bones	/or'* ~oz - 19	∧ *
	<u> </u>		SUSPECTE	D CONTAMINATION LEVEL

NONE SLIGHT MODERATE HIGH (please circle)



Laboratory Case Narrative



Laboratory Validation and Usability Assessment

## Project: AAA Environmental Viacom/Horseheads 19208 Sampled October 14,2002

The data reported in this package have been reviewed for compliance with QC acceptance limits as specified in the method cited for each analysis.

These statistical limits are typically based on historical laboratory data for a given sample matrix, and will not exceed any default limits specified by the method. CLP acceptance limits are also considered.

The following Quality Control operations are considered in the validation of reported results:

Holding times, surrogate recovery, spiked sample recovery, duplicates/spiked duplicate precision, tuning criteria, internal standard variation, continuing calibration variation, reference (check) sample recovery, and instrument, method, trip and field blanks. The appropriate frequency for each operation is also considered.

Every effort has been made to report data that is compliant with the EPA methodology cited for each analysis. In cases where the laboratory was unable to meet all method requirements prior to sample expiry, either due to the nature of the sample or other technical difficulty, results are reported with qualification with the understanding that qualified results may not be suitable for compliance purposes. The internal technical review is based on the USEPA Contract Laboratory Program National Functional Guidelines for Organic Review (EPA 540/R-94/012, February 1994) and National Functional Guidelines for Inorganic Review (EPA 540/R-94/013, February 1994).

## Validation

Twelve site samples were received on October 14, 2002, with ice. The temperature was 18°C, as received with ice at 0°C.

## PCB

Site samples were analyzed by EPA method 8082 for PCBs with a two-microliter injection volume.

RTX-CLPesticides 1 and RTX-CLPesticides 2 capillary columns, 0.32 mm ID, with purge packed inlets and electronic pressure control are used on an Hewlett-Packard 5890 series **II with** dual ECD and an HP 7673 autosampler with simultaneous injection. Data is collected with HP Chemstation software and processed by Thruput with Target software. If a peak is detected within the retention time window of a target compound, second-column confirmation is performed. Column RTX-CLPesticides 2 was used for the primary analysis. Column RTX-CLPesticides 1 was used to confirm only the fingerprint, not the quantitation. Form 10B's are provided in order to verify pattern recognition.

PCB 1254 was detected in each of the site samples. Second-column analysis confirmed the presence of these targets. No PCBs were detected in the method blank.

Surrogate recoveries were within limits.

One blank spike was associated with the site samples. Blank spike recoveries were within acceptance limits.

No analytical difficulties were encountered.

## Metals

Site sample R0045-49/58-60 was analyzed for TCLP Cadmium by Inductively Coupled Plasma - Optical Emission Spectrometry.

The ICP-OES instrument is an ARL 3560 with an AIM 1250 autosampler with an extension. The data is acquired with the Microactive, Australia software ICP Manager 35xx.

Laboratory Control sample recovery for TCLP Cadmium was within acceptance limits.

No analytical difficulties were encountered.

Wet Chemistry

Site sample R0045-49/58-60 was analyzed for paint filter by EPA method 9095.

No analytical difficulties were encountered.

## Usability Assessment

All reported data were found to be valid and usable within the EPA National Functional Validation guidelines except those that were qualified in this Laboratory Validation.

Laboratory validation and Usability assessment conducted by:

£&L/?6<g£h. /L/0ate^

Date: December 20, 2002

*6* Elizabeth A. Keator Quality Assurance



## Worksheets



STANDARD OPERATING	PROCEDURE
EPA Region II 46 Method 8082	Date: May, 2002 SOP HW-23B, Rev.1.0
tf-0-AJ-d'"^' f5W33~/	YES NO N/A
PACKAGE COMPLETENESS AND	D DELIVERABLES
CASE NUMBER:SDG# 9	<i>0\$<j3j< i=""></j3j<></i>
$LAB: I'ffi'sncf Uhorabsv \pm Al-$ STTF.;	]//o/tort //&&*&**/*
1.0 Data Completeness and Deliverables	
1.1 Has all the data been submitted in	CLP /
deliverable format?	IzL
1.2 Have any missing deliverables been	received
and added to the data package?	1_1
ACTION: Call lab for explanation/result missing deliverables. If lab them, note the effect on revie in the reviewer narrative.	omittal of any cannot provide ew of the data
2.0 <u>Cover Letter, SDG Narrative</u>	,
2.1 Is a laboratory narrative or cover present?	letter
2.2 Are the case number and/or SDG numb in the narrative or cover letter?	per contained $d$
3.0 Data Validation Checklist	
3.1 Does this data package contain:	
Water data?	
Waste data?	J
Soil/solid data?	<u> </u>

«

USEPA Region II SW846 Method 8082



YES NO N/A

#### POLYCHLORINATED BIPHENYLS

#### 1.0 Traffic Reports and Laboratory Narrative

- 1.1 Are traffic report and chain-of-custody forms present for all samples?
- ACTION: If no, contact lab for replacement of missing or illegible copies.
- 1.2 Do the traffic reports, chain-of-custody forms or SDG narrative indicate any problems with sample receipt, condition of the samples, analytical problems or special circumstances affecting the quality of the data?
- ACTION: If any sample analyzed as a soil, other than TCLP, contains 50%-90% water, all data should be qualified as estimated, "J." If a soil sample, other than TCLP, contains more than 90% water, non detects shall be qualified as unusable, "R."
- ACTION: If samples were not iced or if the ice was melted upon arrival at the laboratory and the temperature of the cooler was elevated (> 10° C), flag all positive results "J" and all non-detects "UJ".

#### 2.0 Holding Times

2.1 Have any PCB technical holding times, determined from date of collection to date of extraction, been exceeded?

Water and waste samples for PCB analysis must be extracted within 7 days of the date of collection. Extracts must be analyzed within 40 days of the /> date of extraction. Soils and solid samples must Lbe extracted within 14 days of collection and analyzed within 40 days of extraction.

ACTION: If technical holding times are exceeded, flag all positive results as estimated, "J," and sample quantitation limits "UJ" and document in the narrative that holding times were exceeded. If analyses were done more than 14 days beyond holding time, either on the first analysis or upon re-analysis, the reviewer must use

f^1



 $\begin{array}{c} Pn/l/A.XSf^{\wedge} \\ lO\&W & \backslash \\ i \quad tifC. \end{array}$ 

/>*I/ffC^C*-*/i*JJfi? L&

f^ff/'⁰*-&?\$*<*erf**'

/#

Bh&6?2C**' f//r fe^* /&//(*/



Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

professional judgement to determine the reliability of the data and the effects of additional storage on the sample results. At a minimum, all the data should at least be qualified "J", but the reviewer may determine that non-detects are unusable, "R."

## 3.0 Surrogate Recovery (Form II) tik^r pkr I fit*- jut**

- 3.1 Were the recoveries of tetrachloro-m-xylene (TCMX) and decachlorobiphenyl (DCB) presented on CLP Surrogate Recovery Summary forms (Form II), or equivalent, for each of the following matrices?
  - a. Water/Waste
  - b. Soil/Solid
- 3.2 Are all the PCB samples listed on the appropriate surrogate recovery form for each of the following matrices?
  - a. Water
  - b. Waste
  - c. Soil/Solid
- ACTION: Call lab for explanation/resubmittals. If missing deliverables are unavailable, document the effect in the data assessment.
- 3.3 Did the laboratory provide their developed in-house Surrogate recoveries?
- ACTION: If no, use 70 -130% recovery to qualify in section 3.4 below.
- 3.4 Were surrogate recoveries of TCMX or DCB outside of the laboratory-established upper (UCL) or lower (LCL) control limits for any sample or blank?

ACTION: Circle all outliers in red.

ACTION: No qualification is done if surrogates are diluted out. If recovery for both surrogates is

JL

, n

J_L _

1

S

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

below the LCL, but above 10%, flag all results for that sample "J". If recovery is < 10% for either surrogate, qualify positive results "J" and flag non-detects "R". If recovery is above the UCL for <u>both</u> surrogates qualify positive values "J".

- Note: DCB is used when PCBs are determined as Aroclors. DCB is the internal standard when determining PCB congeners and TCMX the surrogate.
- 3.5 Were surrogate retention times (RT) within the windows established during the initial 5-point analysis?
- ACTION: If the RT limits are not met, the analysis may be qualified unusable (R) for that sample on the basis of professional judgement. However, flag positive hits as estimate (J) if confirmed by GC/MS analysis.
- 3.6 Are there any transcription/calculation errors between raw data and Form II?

JЬ

S.

ACTION: If large errors exist, call lab for explanation/resubmittal. Make any necessary corrections and document the effect in data assessments.

## 4.0 Laboratory Control Sample $f)hfi^/Uu + 'P\#''M'''*'$

4.1 Are raw data and percent recoveries present for all <u>Laboratory Control</u> samples as required by Method 8000B (section 8.5) and Method 8082 (section 8.4.2)?

Verify that QC check samples were extracted and analyzed by the same procedures used for the actual samples.

- ACTION: If any <u>Laboratory Control Sample</u> data are missing, call the lab for explanation /resubmittals. Make note in the data assessment.
- NOTE: For aqueous samples, an additional QC check sample must be prepared and analyzed when any analyte in a matrix spike fails the required acceptance criteria (see section 5.3 below). The additional QC check sample must contain each analyte that failed in the MS analysis.

EPA Region II 846 Method 8082

Date: May, 2002 SOP HW-23B, Rev.1.0

JĹ

JΙ

YES NO N/A

1

Note: When the results for matrix spike analysis indicates a problem due to sample matrix effects, the LCS results are used to verify the laboratory can perform the analysis in a clean sample.

- 4.2 Were Laboratory Control Samples analyzed at the required concentration for all analytes of interest as specified in Method 8000B (sec.8.5) ?
- ACTION: If Laboratory Control Samples were not analyzed at the required concentration or the required frequency, make note in the data assessment and use professional judgement to determined the affect on the data.
- 4.3 Were the LCS recoveries within the laboratory's in-house per cent recoveries (if not available, use 70 - 130%) J ]_
- If no, were Laboratory Control Samples 4.4 re-analyzed?
- Note: Corrective action must be taken when one or more of the analytes of interest fail the QC acceptance criteria (Method 8000B, section 8.7.4)
- If QC check samples were not re-analyzed, or a ACTION: general system problem is indicated by repeated failure to meet the QC acceptance criteria specified in the method, make note in the data assessment and use professional judgement to determine the effect on the data.
- 5.0 Matrix Spikes (Form III)
  - 5.1 Are all data for one matrix spike and matrix duplicate (unspiked) pair (MS/Dup) or matrix spike/matric spike duplicate (MS/MSD)present and complete for each matrix Method 8082{section 8.4.1)?
  - NOTE: For soil and waste samples showing detectable amounts of organics, the lab may substitute replicate samples in place of the matrix spike (see Method 8000B-40, section 8.5.3)).
  - 5.2 Have MS/Dup or MS/MSD results been summarized on modified CLP Form III?

f 1

- ACTION: If any data are missing take action as specified in section 3.2 above.
- 5.3 Were matrix spikes analyzed at the required frequency



USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

f 1____

JΓ

for each of the following matrices? (One MS/Dup, MS/MSD must be performed for every 20 samples of similar matrix or concentration level. Laboratories analyzing one to ten samples per month are required to analyze at least one MS per month (Method 8000B-39 (section 8.5)).

a. Water

b. Waste

c. Soil/Solid

ACTION: If any MS/Dup or MS/MSD data are missing, take the action specified in 3.2 above.

5.4 Were the 70 - 130% recoveries used to compare the matrix spike recoveries, or did the lab use the optional QC acceptance criteria discussed in Method 8000B-40(section 8.5.3.1)?

List the criteria used and make note in data assessment.

Criteria used

5.5 Was the matrix spike prepared at the proper spike concentration? (Method 8000B, section 8.5.1-8.5.2) \ 1

For aqueous organic extractable, the spike concentration should be prepared according options in: Method 8000B-40, (section 8.5.1 and 8.5.2).

ACTION: No action is taken based on MS or replicate data alone. However, using informed professional judgement, the data reviewer may use the matrix spike or laboratory replicate results in conjunction with other QC criteria and determine the need for some qualification of the data. In some instances it may be determined that only the replicate or spiked samples are affected. Alternatively, the data may suggest that the laboratory is having a systematic problem with one or more analytes, thereby affecting all associated samples.

EPA Region II 846 Method 8082

«

Date: May, 2002 SOP HW-23B, Rev.1.0

il

IA

YES NO N/A

II –

LL

y

- 6.1 Was reagent blank data reported on CLP equivalent Method Blank Summary form(s) (Form IV)?
- 6.2 Frequency of Analysis: Has a reagent blank been analyzed for every 20 (or less) samples of similar matrix or concentration or each extraction batch?
- ACTION: If any blank data are missing, take action as specified above (section 3.2) . If blank data is not available, reject (R) all associated positive data. However, using professional judgement, the data reviewer may substitute field blank data for missing method blank data.
- 6.3 Chromatography: review the blank raw data chromatograms, quant reports or data system printouts.

Is the chromatographic performance (baseline stability) for each instrument acceptable for PCBs?

- ACTION: Use professional judgement to determine the effect on the data.
- 7.0 Contamination
  - NOTE: "Water blanks", "distilled water blanks" and "drilling water blanks" are validated like any other sample and are <u>not</u> used to qualify the data. Do not confuse them with the other QC blanks discussed below.
  - 7.1 Do any method/instrument/reagent/cleanup blanks have positive results for PCBs? When applied as described below, the contaminant concentration in these blanks are multiplied by the sample Dilution Factor and corrected for % moisture when necessary.
  - 7.2 Do any field/rinse blanks have positive .r. t PCB results?  $Pc \land -LXXML^{A}A \sim t \rightarrow -fi^* 4 / \uparrow t \sim$
  - ACTION: Prepare a list of .the samples associated with each of the contaminated blanks. (Attach a separate sheet.)
  - NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data.

USEPA Region II SW846 Method 8082

"ل]"

Date: May, 2002 SOP HW-23B, Rev.l.

needed

us

J_i

YES NO N/A

Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified for surrogate, or calibration QC problems.

ACTION: Follow the directions in the table below to qualify sample results due to contamination. Use the largest value from all the associated blanks.

Sample cone > EDL but < 5</th>Sample cone < EDL & is <</th>Sample cone > EDL & > 5JL blank5 x blank valuex blank valueFlag sample result with a Report EDL & qualifyNo qualification is

NOTE: If gross blank contamination exists, all data in the associated samples should be qualified as unusable (R).

•TT"

- 7.3 Are there field/rinse/equipment blanks associated with every sample? <u>C^JULU^L^JJM^-V-/-***-</u> "
- ACTION: For low level samples, note in data assessment that there is no associated field/rinse/equipment blank. Exception: samples taken from a drinking water tap do not have associated field blanks.

8.0 GC Apparatus and Materials  $ff \pm$ 

8.1 Was the proper gas chromatographic capillary column used for the analysis of .PCBs?

Action: Check raw data, instrument logs, or contact the lab to determine what type of columns were used. (Method 8082, section 4.2)

8.2 Indicate the specific type of narrow bore or wide bore (.53 mm ID, fused silica GC columns, such as DB-608 and DB-1701 or equivalent).

column 1: ____^_

column 2:

ACTION: Note any changes to the suggested materials in section 8.1 above in the data assessment. Also note the impact (positive or negative) such changes have on the analytical results.

-PCB 8 -

EPA Region II 846 Method 8082

YES NO N/A

#### 9-0 Calibration and GC Performance

- 9.1 Are the following Gas Chromatograms and Data Systems Printouts for both columns present for all samples, blanks, MS, replicates?
  - a. Samples
  - b. All blanks
  - c. Matrix spike samples ~"
  - d. 5 pt. initial calibration standards
  - e. calibration verification standards
  - f. Laboratory Control samples (LCS) ~ ~*

ACTION: If no, take action specified in 3.2 above.

- 9.2 Are data summary forms (containing calibration factors or response factors) for the initial 5 pt. calibration and daily calibration verification standards present and complete for each column and each analytical sequence?
- Note: Calibration Aroclor mixtures other than 1016/1260 may be used (as per approved project QA plan)
- NOTE: If internal standard calibration procedure is used (Method 8000B-15(section 7.4.2.2)), then response factors must be used for %RSD calculations and compound quantitation. If, external standard calibration procedures are used (Method 8000B-16 (section 7.4.2.1)), then calibration factors must be used. The internal standard approach is highly recommended for PCB congener analysis.
- ACTION: If any data are missing or it cannot be determined how the laboratory calculated calibration factors or response factors, contact the lab for explanation/resubmittals. Make necessary corrections and note any problems in the data assessment.
- 9.3 Are there any transcription/calculation errors between raw data and data summary forms?

ACTION: If large errors exist, call lab for





c*Lu

p-yr*-

lA _

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.

YES NO N/A

explanation/resubmittal, make necessary corrections and document the effect in data assessments.

- 9.4 Are standard retention time (RT) windows for each PCB peak of interest presented on modified CLP summary forms?
- ACTION: If any data are missing, or it cannot be determined how RT windows were calculated, call the lab for explanation/resubmittals. Note any problems in the data assessment.
- NOTE: Retention time windows for all PCBs are established using retention times from three calibration standards analyzed during the entire analytical sequence (Method 8000B, section 7.6).

Best results are obtained using retention times nest results die uDidineu usxay lettillium u-Luca which span the entire sequence; i.e., using the calibration verification/continuing calibration standards analyzed every 12 hours.

- 9.5 Were RT windows on the confirmation column established using three standards as described above?
- NOTE: RT windows for the confirmation column should be established using a 3 pt. calibration, preferably spanning the entire analytical sequence as described in 9.4 above. If RT windows on one column are tighter than the other, this may result in false negatives when attempting to identify compounds in the samples.
- ACTION: Note potential problems, if any, in the data assessment.
- 9.6 Do all standard retention times in each level of the initial 5 pt. calibrations for PCBs fall within the windows established during the initial calibration sequence?
- ACTION i: If no, all samples in the entire analytical sequence are potentially affected. Check to see if three standard spanning the entire sequence were' used to obtained RT windows. If the lab used three standards from the 5 pt., RT windows may be too tight. If so, RT windows should be recalculated as per Method 8081B-15 (section 7.4.6).
  - ii. Alternatively, check to see if the chromatograms contain peaks

 $M_{?}^{*}$ TTJ $n._{ri}y^{A'}$ 

L^



Date: May, 2002 SOP HW-23B, Rev.1.0

J_

YES NO N/A

^ fl**

for any analyte, qualify non-detects "R", unusable.

9.12 Have retention time (RT) windows been properly calculated for each analyte of interest (Method 8000B, section 7.6), using RTs from the associated calibration verification/continuing standard?

ACTION: if no, take action specified in section 3.2 above

- 9.13 Do all standard retention times for each calibration verification/continuing calibration standard fall within the windows established during the initial calibration sequence?
- 9.14 Do all standard retention times for each midconcentration standard (analyzed after every 10 samples) fall within the daily RT windows
- ACTION: If the answer to either 9.13 or 9.14 above is no, check the chromatograms of all samples which followed the last in-control standard. All samples analyzed after the last in-control standard must be re-injected, if initial analysis indicated the presence of the specific analyte that exceeded the retention time criteria. If samples were not re-analyzed, document under Contract Non-compliance in the Data Assessment.

Reviewer has two options to determine how to qualify questionable sample data. First option is to determine if possible peaks are present within daily retention time window. If no possible peaks are found, non-detects are valid. If possible peaks are found (or interference), qualify positive hits as presumptively present "NJ" and non-detects are rejected "R". Second option is to use the ratio of the retention time of the analyte over the retention time of either surrogate. The passing criteria is + 0.06 RRT units of the RRT of the standard component. Reject "R" all questionable analytes exceeding criteria, and "NJ" all other positive hits.

For any multi-response analytes, retention time windows should be used but analyst and reviewer should rely primarily on pattern recognition or use option 2 specified in paragraph above.

9.15 Are there any transcription/calculation errors





USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

*+*r*,*cS* ^^ **LM**-

JΙ

within an expanded window surrounding the expected retention times.

If no peaks are found and the surrogates are visible, non-detects are valid. If peaks are present but cannot be discerned through pattern recognition or by using revised RT windows, qualify all positive results and non-detects as unusable, "R".

- 9.7 Has the linearity criteria for the initial calibration standards been satisfied for both columns? (% RSD must be < 20.0% for all analytes) .  $-_^{\ Cftf}$
- ACTION: If no, qualify all associated positive results generated during the entire analytical sequence "J" and all non-detects "UJ". When RSD > 90%, flag all non-detect results for that analyte "R" (unusable).
- 9.8 Does the calibration verification/continuing Calibration standard contain the PCB peaks of interest, analyzed on each working day, prior to sample analyses (Method 8082, sections 7.6.2)?
- 9.9 Has a calibration verification/continuing calibration standard been analyzed after every 10 samples and at the end of each analytical sequence (Method 8082, section 7.6.2)
- ACTION: If no, take action as specified in section 3.2 i *+r,cSabove. iwd = *** & -/
- 9.10 Has the percent difference (%D) exceeded ± 15% for &** any PCB analyte in any calibration verification/ Continuing calibration standard? J
- 9.11 Has a new 5 pt. initial calibration curve been generated for those PCB analytes which failed in the calibration verification/continuing calibration standard (8000B, section 7.7.3), and all samples which followed the out-of-control . calibration verification/standard continuing calibration Standard?
- ACTION: If the %D for any analyte exceeded the ± 15% criterion and the instrument was not recalibrated for those analytes, qualify positive results for all associated samples (those which followed the out-of-control standard) "J" and sample quantitation limits ^MUJ". If the %D was > 90%

EPA Region II 846 Method 8082

#### STANDARD OPERATING PROCEDURE

Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

between raw data and data summary forms?

ACTION: If large errors exists, call lab for explanation/resubmittal, make any necessary corrections and document the effect in data assessments under "Conclusions".

- 10.0 Analytical Sequence Check (Form VIII-PEST)
  - 10.1 Have all samples been listed on CLP Form VIII or equivalent, and are separate forms present for each column?
  - ACTION: If no, take action specified in 3.2 above.
  - 10.2 Was the proper analytical sequence followed for each initial calibration and subsequent analyses?
  - ACTION: If no, use professional judgement to determine the severity of the effect on the data and qualify it accordingly. Generally, the effect is negligible unless the sequence was grossly altered or the calibration was also out of limits.
    - 10.3 Were the TCMX/DCB surrogate RTs for the samples within the mean surrogate RT from the initial calibration?

Action: If no, see "Action" in section 9.14 above

11.0 Extraction Techniques for Sample Preparation jjfc Jfa^ LLJUU / " / ftdsU **/*•

Method 8081B permits a variety of extraction techniques to be used for sample preparation. Which extraction procedure was used?

1. Aqueous samples:

1. Separatory funnel (Method 3510)

2. Continuous liquid-liquid extraction (Method 3520)

3. Solid phase extraction (Method 3535)

4. Other

2. Solid samples:

1. Soxhlet (Method 3540)





fc

.L-L

USEPA Region II SW846 Method 8082

Date: May,	2002
SOP HW-23B,	Rev.1.0

YES NO N/A

Ji

- 2. Automated Soxhlet (Method 3541)
- 3. Pressurized fluid (Method 3545)
- 4. Microwave extraction (Method 3546) <u>LL</u>
- 5. Ultrasonic extraction (Method 3550)
- 6. Supercritical fluid (Method 3562)
- 7. Other

#### 11.1 Extract Cleanup - Efficiency Verification (Form IX)

- 11.1.1 Method 8082 (section 7.2) references method 3660 (sulfur) and 3665A (sulfuric acid) to use for Cleaning extracts. Were one or both method used? J ]_
- ACTION: If no, take action specified in 3.2 above. If data suggests cleanup was not performed, make note in the data assessment.
- NOTE: Method 3620A, Florisil, may be used per approved project QA plan. The method does not list which analytes and surrogate(s) to use to verify column efficiency. The reviewer must check project plan to verify method used as well as the correct PCB list. If not stated or available, use the CLP listing or accept what the laboratory used.
- 11.2 Are all samples listed on modified CLP PCBs Florisil/Cartridge Check Form?
- ACTION: If no, take action specified in 3.2 above.
- 11.3 Was GPC Cleanup (method 3640A) performed? JL
- NOTE: GPC cleanup is not required and is optional. The reviewer should check Project Plan to verify requirement.
- 11.4 Were the same PCB analytes used in calibration used to check the efficiency of the cleanup procedures? i-L
- 11.5 Are percent recoveries (% R) of the PCBs and surrogate compounds used to check the efficiency of the cleanup procedures within lab's in-house QC limits (use 70-130% if not available)
  J_L

70-130% for GPC calibration? J_I

'1^'

SEPA Region II 846 Method 8082

J,

YES NO N/A

Qualify only the analyte(s) which fail the recovery criteria as follows:

ACTION: If % R are < 80%, qualify positive results "J" and quantitation limits "UJ". Non-detects should be qualified "R" if zero %R was obtained for PCBs. Use professional judgement to qualify positive results if recoveries are greater than the upper limit.

- 12.0 PCB Identification
  - 12.1 Has CLP Form X or equivalent, showing **retention time** data for positive results on the two GC columns, been completed for every sample in which a PCB was detected?
  - ACTION: If no, take action specified in 3.2 above, or compile a list comparing the retention times for all sample hits on the two columns.
  - 12.2 Are there any transcription/calculation errors between raw data and data summary forms (initial calibration summaries, calibration verification summaries, analytical sequence summaries, GPC and cleanup verification forms)?
  - ACTION: If large errors exist, call lab for explanation/resubmittal, make necessary corrections and note error in the data assessment.
  - 12.3 Are retention times (RT) of sample compounds within the established RT windows for both columns/analyses?
  - ACTION: Qualify as unusable (R) all positive results which were not confirmed by second GC column analysis. Also qualify "R", unusable, all positive results not within RT windows unless associated standard compounds are similarly biased. The reviewer should use professional judgement to assign an appropriate quantitation limit.
  - 12.4 Check chromatograms for false negatives, especially if RT windows on each column were established differently. Were there any false negatives?


USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

f 1

YES NO N/A

ACTION: Use professional judgement to decide if the compound should be reported. If there is reason to believe that peaks outside retention RT windows should be reported, make corrections to data summary forms (Form I) and note in data assessment.

12.5 Was GC/MS confirmation provided when sample concentration was sufficient (> 10 ug/ml) in the final extract?

- ACTION: Indicate with red pencil which Form I results were confirmed by GC/MS and also note in data assessment.
- 12.6 Is the percent difference (%D) calculated for the positive sample results on the two GC columns <25.0%?
- NOTE: The method requires quantitation from one column, The second column is to confirm the presence of an analyte. It is the reviewer's responsibility to verify from the project plan what the lab was required to report. If the lab was required to report concentrations from both columns, continue with validation for % Difference. If required, but not reported, either contact the lab for results or calculate the concentrations from the calibration. If not required, skip this section. Document actions in Data Assessment.
- ACTION: If the reviewer finds neither column shows interference for the positive hits, the data should be qualified as follows:

% Differe	ence	Qualifier
0-25%		none
26-70%		"J"
71-100%		"NJ "
>100% *		"R"
100-200%	(Interference detected) * *	"NJ "
>50%	(PCBs value is <crql)< td=""><td>"U"</td></crql)<>	"U"

When the reported PCBs value is <CROL and the %D is >50%, raise the value to the CRQL and qualify with "U" (non-detect).

* Check the chromatogram. If pattern is confirmed qualify ^WJ". If pattern is mixed, has interference, or the PCB cannot be positively determined due to weathering, qualify "JN". §

STANDARD OPERATING PROCEDURE

kSEPA Region II 846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

If PCB can not be confirmed, qualify the PCB as "R".

** When the reported %D is 100-200% but interference is detected in either column, qualify the data with "NJ".

13.0 Compound Quantitation and Reported Detection Limits

- 13.1 Are there any transcription/calculation errors in Form I results? Check at least two positive values. Were any errors found?
- NOTE: Single-peak PCBs results can be checked for rough agreement between guantitative results obtained on the two GC columns. The reviewer should use professional judgement to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interference is suspected, the lower of the two values should be reported and qualified according to section 12.6 above. This necessitates a determination of an estimated concentration on the confirmation column. The narrative should indicate that the presence of interferences has led to the quantitation of the second column confirmation results.
- 13.2 Are the EDLs (Estimated Detection Limits) adjusted to reflect sample dilutions and, for soils, % moisture?
- ACTION: If errors are large, call lab for explanation/resubmittal, make any necessary corrections and document effect in data assessments.
- ACTION: When a sample is analyzed at more than one L. dilution, the lowest EDLs are used (unless a QC exceedance dictates the use of the higher EDL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the value on the original Form I and substituting it with data from the analysis of diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including any in the summary package.

Ci)

VI CO 970V1

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.l.

YES NO N/A

ACTION: EDLs affected by large, off-scale peaks should be qualified as unusable, "R". If the interference is on-scale, the reviewer can provide a modified EDL flagged "UJ" for each affected compound.

#### 14.0 Chromatoaram Quality

- 14.1 Were baselines stable?
- 14.2 Were any electropositive displacement (negative peaks) or unusual peaks seen?
- ACTION: Note all system performance problems in the data assessment.
- 15.0 Field Duplicates A K
  - 15.1 Were any field duplicates submitted for PCB analysis?
  - ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.
  - ACTION: Any gross variation between field duplicate results must be addressed in the reviewer narrative. However, if large differences exist, the identity of the field duplicates is questionable. An attempt should be made to determine the proper identification of field duplicates.

LL

#### 4C PESTICIDE METHOD BLANK SUMMARY

NYSDEC SAMPLE NO.

### MB 12

Lab Name: FRIEND LABORATORY, INC.	Contract:		
Lab Code: 10252 Case No.:	SAS N	0.:	SDG No.: AAA
Lab Sample ID: MB 12			LabFile ID:E2980182
Matrix: (soil/water) SOIL			Extraction: (SepF/Cont/Sonc) SONC
Sulfur Cleanup: (Y/N) N			Date Extracted: 10/15/02
Date Analyzed (1): 10/16/02			Date Analyzed (2):
Time Analyzed (1): 1536			Time Analyzed (2V
Instrument ID (1): HP1			Instrument ID (2): HP3
GC Column (1): RTX-CLPESTICIDES2	ID 0.32	(mm)	
GC Column (2): RTX-CLPESTICIDES1	ID 0.32	(mm)	
THIS METHOD BLANK APPLIES TO	THE FOL	LOWING	SAMPLES, MS, MSD, AND MSB

NYSDEC	LAB	DATE	DATE
SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
QC12	QC12	10/16/02	
H-C-SS-B1-001	L95433-1	10/16/02	10/16/02
H-C-SS-B2-001	L95433-2	10/16/02	10/16/02
H-B-S-W-001	L95433-3	10/16/02	10/16/02
H-B-SS-W-001	L95433-4	10/16/02	10/16/02
H-B-S-E-001	L95433-5	10/16/02	10/16/02
H-B-SS-E-001	L95433-6	10/16/02	10/16/02
DUPLICATE	L95433-7	10/16/02	10/16/02
23-C-S-W-B-O01	L95433-8	10/16/02	10/16/02
23-C-S-E-B-001	L95433-9	10/16/02	10/16/02
23-B-S-E-001	L95433-10	10/16/02	10/16/02
23-B-S-W-001	L95433-11	10/16/02	10/16/02
R0045^9/58-60	L95433-12	10/16/02	10/16/02
	NYSDEC SAMPLE NO. QC12 H-C-SS-B1-001 H-C-SS-B2-001 H-B-S-W-001 H-B-SS-W-001 H-B-SS-E-001 DUPLICATE 23-C-S-W-B-001 23-C-S-E-B-001 23-C-S-E-B-001 23-B-S-E-001 23-B-S-W-001 R0045^9/58-60	NYSDEC         LAB           SAMPLE NO.         SAMPLE ID           QC12         QC12           H-C-SS-B1-001         L95433-1           H-C-SS-B2-001         L95433-2           H-B-S-W-001         L95433-3           H-B-SS-W-001         L95433-4           H-B-SS-E-001         L95433-5           H-B-SS-E-001         L95433-6           DUPLICATE         L95433-7           23-C-S-W-B-O01         L95433-9           23-C-S-E-B-001         L95433-10           23-B-S-E-001         L95433-10           23-B-S-E-001         L95433-10           23-B-S-E-001         L95433-10           23-B-S-W-001         L95433-11           R0045^9/58-60         L95433-12	NYSDEC         LAB         DATE           SAMPLE NO.         SAMPLE ID         ANALYZED 1           QC12         QC12         10/16/02           H-C-SS-B1-001         L95433-1         10/16/02           H-C-SS-B2-001         L95433-2         10/16/02           H-B-S-W-001         L95433-3         10/16/02           H-B-S-W-001         L95433-4         10/16/02           H-B-S-E-001         L95433-5         10/16/02           H-B-S-E-001         L95433-6         10/16/02           H-B-SS-E-001         L95433-7         10/16/02           DUPLICATE         L95433-8         10/16/02           23-C-S-W-B-001         L95433-9         10/16/02           23-C-S-E-B-001         L95433-10         10/16/02           23-B-S-E-001         L95433-10         10/16/02           23-B-S-W-001         L95433-12         10/16/02           R0045^9/58-60         L95433-12         10/16/02           NO45^9/58-60         L95433-12         10/16/02           NO         NO         NO           NO         NO         NO           NO         NO         NO           NO         NO         NO           NO

#### COMMENTS

#### 3F SOIL PCB BLANK SPIKE RECOVERY SW846/8082

Lab name: FRIEND LABORATORY, INC.

Reference: 02-004-0183

Lab code: 10252

Matrix Spike - Lab Sample No.: QC12

Date Extracted: 10/15/02

Date analyzed: 10/16/02

	SPIKE	SAMPLE	MS	MS	QC
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/kg)	(ug/kg)	(ug/kg)	REC #	REC
KB 1016	471	0	420	89	50-114
PCB 1260	471	0	521	111	10-127

# Column to be used to flag recovery values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 2 outside limits

COMMENTS:

ID

PESTICIDE ORGANICS ANALYSIS DATA SHEET

-Aroclor- 1260" -Aroclor- 1248"

MB12 Name: Contract: Case No.: SAS No.: SDG No.: AAA1014 Lab Code: Lab Sample ID: MB12 Matrix: (soil/water) SOIL Lab File ID: E2980182 Sample wt/vol: 10.3 (g/mL) G Date Received: 10/14/2 % Moisture: 0 . decanted: (Y/N) N Date Extracted:10/15/2 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 10/16/2 Concentrated Extract Volume: IQQ Q O (up Dilution Factor: 1.0 Injection Volume: 2.0{uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 

 12674-11-2
 -Aroclor-1016

 1104-28-2
 -Aroclor-1221"

 11141-16-5
 -Aroclor-1232"

 53469-21-9
 -Aroclor-1242"

 9.7 0.01 U 19 0<del>.02</del> U 0.01 U 9.7 9.7 0.01 U 11097-69-1 -Aroclor- 1254" 0.01 U 9.7 11096-82-5

0.01 U 9.7 12/30/02

9.7

0.01 U

FORM I PEST

Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082r0917.b\E2980182.D Lab Smp Id: MB12 Client Smp ID: MB12 Inj Date : 16-OCT-2002 15:36 Operator : CPW Inst ID: hpl.i : MB12 Smp Info Misc Info Comment \chem\hpl.i\8082r0917.b\8082_PCBsec.M Method Meth Date 17-Oct-2002 07:11 Cal Date 17-SEP-2002 16:43 17-Oct-2002 07:11 Administra Quant Type: ESTD Cal File: E2989834.D Als bottle 1 Dil Factor 1.00000 Compound Sublist: PCB.sub Integrator: Falcon Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$1.000 \\ 10.000 \\ 10.268 \\ 0.100 \\ 100.000$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

		CONCENTRA	TIONS		
		ON-COL	FINAL		
RT EXP RT DLT RT	RESPONSE	$\{ ug/L \}$	(ug/Kg)	TARGET RANGE	RATIO
5 1 Tetrachloro-m-xylene			CAS #!		
7.990 7.997 -0.007	4186757	516.125	502.64		
S 29 Decachlorobiphenyl			CAS #:		
20.133 20.130 0.003	3383203	643.359	626.55		



Tetrachloro-n-xylene (7,990)







Decaohlorobiphenyl (20*133)

*

#### Friend Inc.

Data File: /chem/hpl.i/8082r0917.b/E2980182.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: MB12 Misc Info: Analysis Date: 16-OCT-2002 15:36 Sample Matrix: SOIL File Number: 0182

Dilution	Factor	1.0000
Sample	Weight	10.2683
Final	Volume	10.0000
Total	Solid	100.0000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	0.00
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	103.22%
Decachlorobiphenyl	128.67%

Analyst: CPW Report Date: 10/17/2002 07:45

Supervisor: Date:

01/12/02	RTX-CLPES	ST 1	PC	G ON COLLM	N	IDL	UG/LIN WATER	CRDL (UG/L)
nstrument#3	Runffl	Run #2	Run #3	Average	SD	SD*6.9S	IDL	
PCB 1016	99.14	100.48	98.05	99.22	1.21	8.44	0.1	1.0
PCB 1221	200.36	193.87	196.82	197.02	3.25	22.6	0.2	2.0
PCB 1232	97.97	96.72	99.17	97.95	1.22	8.51	0.1	1.0
PCB 1242	99.14	100.08	101.34	100.19	1.10	7.67	0.1	1.0
PCB 1248	101.82	101.01	99.76	100.86	1,04	7.22	0.1	1.0
PCB 1254	99.63	100.10	99.13	99.62	0.487	3.39	0.1	1.0
PCB 1260	100.74	100.76	101.10	100.87	0.199	1.39	0.1	1.0

							UG/LIN	CRDL
01/12/02	RTX-CLPES	ST 2	Р	G ON COLUM	N	IDL	WATER	(UG/L)
Instrument#3	Run#l	Run #2	Run #3	Average	SD	SD*6.95	IDL	
PCB 1016	106.01	105.20	106.90	106.04	0.850	5.91	0.1	1.0
PCB 1221	202.83	203.02	204.03	203.29	0.642	4.46	0.1	2.0
PCB 1232	105.99	105.07	104.41	105.16	0.796	5.53	0.1	1.0
PCB 1242	104.27	105.07	108.17	105.84	2.06	14.3	0.1	1.0
PCB 1248	101.79	101.90	101.19	101.63	0.379	2.64	0.1	1.0
PCB 1254	101.02	103.64	105.02	103.23	2.03	14.1	0.1	1.0
PCB 1260	102.25	102.84	103.11	102.74	. 0.437	3.04	0.1	1.0

•

PESTICIDE ORGANICS ANALYSIS DATA SHEET

			L95433-1
Lab Name:		Contract:	• •
Lab Code:	Case No. :	SAS No.: SDG	No.: AAA1014
Matrix: (soil/water	) SOIL	Lab Sample ID	: L95433-1
Sample wt/vol:	10.9 (g/mL) G	Lab File ID:	E2980185
% Moisture: 8,0	decanted: (Y/N)	N Date Received	: 10/14/2
Extraction: (SepF/	Cont/Sonc) SONC	Date Extracte	d:10/15/2
Concentrated Extract	z Volume: <u>j0000</u>	(uL) Date Analyzed	: 10/16/2
Injection Volume:	2.0 (uL)	Dilution Fact	or: 10.0
GPC Cleanup: (Y/N	) N pH: 7.	0 Sulfur Cleanu	p: (Y/N) N
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/	: KG Q
12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	<ul> <li>-Aroclor-1016</li> <li>-Aroclor-1221"</li> <li>-Aroclor-1232"</li> <li>-Aroclor-1242"</li> <li>-Aroclor-1254"</li> <li>-Aroclor-1260"</li> <li>-Aroclor-1248"</li> </ul>	J0 0 aco joo /oo i°°	-0TX0- 0.26 o.ie o.io- 364.09 &r+€r

i°° &r±€r ;a/3o/03i

Thru-Put Systems, Inc.

\chem\hpl.i\8082r0917.b\E2980185.D Data file Lab Smp Id L95433-1 Client Smp ID: L95433-1 Inj Date 16-OCT-2002 17:10 Operator CPW Inst ID: hpl.i Smp Info L95433-1 WG33196,02-004 Misc Info Comment Method \chem\hpl.i\8082r0917.b\8082_PCBsec.M 17-Oct-2002 07:11 Administra Quant Type: ESTD Meth Date Cal Date 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version.: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name Va	lue • Desc	cription	
DF	10.000 Dilu	ation Factor	
Vf	10.000 Fina	al volume	
Ws	10.872 Weig	ght of sample extracted (g)	
Uf	0.100 Unit	c Correction Factor	
Ts	92.000 Tota	al Solid	

CONCENTRATIONS

	CONCLINE	1011110110		
	ON-COL	FINAL		
EXP RT DLT R	T RESPONSE ( ug/L)	fug/Kg) TARGET RANGE	E RATIO	
S 1 Tetrachloro-m-x	ylene	CAS #:	33 F_	
8.013 7.997 0.03	16 291540 41.1447	411.34	. J.Э. Т	Λ.Λ
				IVI
\$ 29 Decachlorobiphe	nyl	CAS «:		
20.130 20.130 0.0	00 257101 53.1853	531.72		
25 Aroclor-1254		CAS #: 11097-69-1		
13.670 13.670 0.0	00 19700 58.3757	583.61 80.00- 120.00	0 100.00(MH)	
14.560 14.563 -0.0	03 15670 52.0458	520.33 103.67- 143.67	7 79.54	
15.003 15.003 0.0	00 4665 33.6379	336.29 73.24- 113.24	4 23.79	
15.347 15.350 -0.0	03 3219 21.2599	9 212.55 41.14- 81.14	4 16.34	
15.987 16.033 -0.0	1859 16.7726	5 167.68 77.22- 117.22	2 9.44	
Averag	e of Peak Concentrations -	- 364.09		

# **?3 Cl''** Id[Itol*2-

0 '

Page 1

80000

```
Data File: \chem\hpl.i\8082r0917.b\E2980185.D
Report Date: 17-Oct-2002 07:45
```

QC Flag Legend

- M Compound response manually integrated.
- H Operator selected an alternate compound hit.



fc> (V t*-& 0 ₽ 3t- I 0***** r 0IJ1 L 0U1 **8** α³ 3³ ³ ³ ³ ³ ⁴ ⁴ ¹ ² ×¹ 0² δ² ⁴ 0 αΕΣ ¹ () 

۷ m

**V**"

tt*

8

-Tetradloro-w-xylene <8.013>

or

Aroolor-1254 (13,670) -Aroolor-1254 <14.56 Aroolor-1254 <14.560)

-Aroolor-1254 <15.347> £-Aroolor-1254 <15.987>

١

**n o** 0 T) f- ⊅ £ 1 | 3≦ ≮* -) * * **go.** Q. *H* *** **6** « TJ * sr =

-Deeachlorobiphenyl <20.130)

\r

w.

w.

%

w.

Friend Inc.

Data File: /chem/hpl.i/8082r0917.b/E2980185.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L95433-1 Misc Info: WG33196,02-004 Analysis Date: 16-OCT-2002 17:10 Sample Matrix: SOIL File Number: 0185

Dilution	Factor	10.0000
Sample	Weight	10.8723
Final	Volume	10.0000
Total S	olid	92.0000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	364.09
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	82.29%
Decachlorobiphenyl	106.37%

Analyst: CPW Report Date: 10/17/2002 07:45

Supervisor: Date:

Thru-Put Systems, Inc.

Data file : \chem\hp3.i\1254FCONFIRMIIIa b\E3956426.D Lab Smp Id: L95433-1 Client Smp ID: L95433-1 Inj Date 16-OCT-2002 01:50 CPW Inst ID: hp3.i Operator Smp Info L95433-1 Misc Info CONFIRMATION Comment \chem\hp3.i\l254FCONFIRMIIIa b\8082_PCBsec.M Method Meth Date 16-Oct~2002 12:27 Administra Quant Type: ESTD Cal File: E3956425.D Cal Date 16-OCT-2002 01:19 Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: 1254.sub Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF. * ((Vf / Ws) * Uf) / Ts * 1000

DF 10.000 Dilution Factor Vf 10.000 Final volume Ws 10.872 Weight of sample extracted (g) Uf 0.100 Unit Correction Factor Ts 92.000 Total Solid	Name	Value	Description	
	DF Vf Ws Uf Ts	10.000 10.000 10.872 0.100 92.000	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

				CONCENTRA	ATIONS		
				ON-COL	FINAL		
RT	EXPRT	DLT RT	RESPONSE	{ ug/L)	lug/Kg)	TARGET RAN	ge ^{ra-} no
					GD G #		
Ş I Te	etrachio	ro-m-xylene	2		CAS #:		
9.343	9.337	0.006	895741	58.8131	587.98		
25 Ar	oglor-1	254			CAS ft	: 11097-69-1	
25 111		2.5.1	54404			11007 00 1	
14.213	14.213	0.000	54424	84.1565	841.35	80.00- 120.0	100.00
15.287	15.297	-0.010	7695	11.5089	115.06	83.82- 123.8	82 "14.14
15.540	15.537	0.003	60374	58.9038	588.89	136.90- 176.	90 110-93
16-0B7	16.087	0.000	26B92	32.0221	320.14	111.13- 151.3	13 49.41
16.450	16.447	0.003	30197	33.4508	334.42	119.15- 159.	15 55.48
		Average of	Peak Concentra	ations	439.97		
5 29 De	ecachlor	obiphenyl			CAS **	:	
20.930	20.927	0.003	693518	63.9260	639.10		





^-Aroclor-1254	<15.287)
-Aroclor-1254	<15.540)
I -Aroolor-1254	<16.087)
-flroclor-1254	(16,450)





n <r o ⊢ c t

> ⊤≥≣ ** at⊥

r v ij

IP V

ID

ъ *.

**U** j^N

× *+ ro ∙

-ը, ii

«

∱U

ft!

s 14

Ui 1-1-

tŊ ſ₹

0 i]

Of

m en

ro

strument: hp3

بر آری بر آری

<*j*

vj\

r⊳ r⊳

**‱l"** 

o ✿ ╡

ρ *

Data File: /chem/hpl.i/8082r0917»b/E2980186.D Date J 16-OCT-2002 17;42 Client ID; L95433-2 Sample InfoJ L95433-2 Volume Injected <uL>; 2,0 Column phase; RTX-CLPesticides 2

Operator; CPU Column diameter: 0,32



Page 3

00

0 00

#### Friend Inc.

Data File: /chem/hpl.i/8082r0917.b/E2980186.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L95433-2 Misc Info: WG33196,02-004 Analysis Date: 16-OCT-2002 17:42 Sample Matrix: SOIL File Number: 0186

Dilution Factor	10.0000
Sample Weight	10.1400
Final Volume	10.0000
Total Solid	91.4000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	252.39
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	92 23%
Decachlorobiphenyl	

Analyst: CPW Report Date: 10/17/2002 07:45

Supervisor: Date:

20

Page

Data file : \chem\hp3.i\1254FCONFIRMIIIa b\E3956427.D Lab Smp Id: L95433-2 Client Smp ID: L95433-2 Inj Date : 16-OCT-2002 02:22 Operator : CPW Inst ID: hp3.i Smp Info : L95433-2 Misc Info : CONFIRMATION Comment : Method : \chem\hp3.i\1254FCONFIRMIIIa b\8082_PCBsec.M Meth Date : 16-OCT-2002 12:27 Administra Quant Type: ESTD Cal Date : 16-OCT-2002 01:19 Cal File: E3956425.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: 1254.sub Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / .Ws) * Uf) / Ts * 1000

DF10.000Dilution FactorVf10.000Final volumeWs10.140Weight of sample extractedUf0.100Unit Correction FactorTs91.400Total Solid	(g)

				CONCENTR.	ATIONS		
				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET R	ANGE RATIO
	- • • -	-	"		•••••	···· —	•••
S 1 Te	trachlo	r0' <b>-tn-xylene</b>			CAS ft:		
9.340	9.337	0.003	91663B	60.1B52	649.39		
25 Ar	oclor-1	254			CAS tt:	11097-69-3	1
14.213	14.213	0.000	35096	54.2694	585.56	80.00- 12	0.00 100.00
15.290	15.297	-0.007	5428	8.11831	87.60	83.82- 12	3.82 15.47
15.540	15.537	0.003	29890	29.1621	314.66	136.90- 17	6.90 85.17
16.087	16.0B7	0.000	В434	10.0429	108.36	111.13- 15	1.13 24.03
16.447	16.447	0.000	13818	15.3069	165.16	119.15- 15	9.15 39.37
		Average of	Peak Concentra	ations	252.27		
\$ 29 D	ecachlo	robiphenyl			CAS #	:	
20.923	20.927	7 -0.004	630169	58.0867	626.75		





Tetrachloro-ra-xylene <9,340> o

۸

-Aroolor-1254 <14*213)

^cE-Aroolor-1254 <15,290) - -Aroclor-1254 <15,540) |"-Aroclor-1254 <16,087) §• -Aroolor-1254 <16,447)

8 V



r Deoachlorobiphenyl C20.923)

client DD: 19943-3       Instrument/hpl.i         Sample Infoit L9943-3       Operator: CPU         Column phase: RTX-CLPestioides 2       Column diameter: 0.32         ///////////////////////////////////	
Sample Info: U9433-3         Volume phase: RTX-CLPetioldes 2       Operator: CPU         Column phase: RTX-CLPetioldes 2       Column diameter: 0.32         /chen/hpl.1/8082r0917.b/82980187.D         6-         4.         2''         0:         8-         6- <i>A</i> .         .2''         8-         6- <i>A</i> .         .2''         8         .4.         .2''         .2''         .3.         .4.         .2''         .4.         .2''         .3.         .4.         .4.         .2''         .3.         .4.         .4.         .2''         .3.         .4.         .4.         .5.         .6.         .7.         .8.         .1.         .2.         .3.         .4.         .5.         .6.         .7.         .8.         .1.	
Volume Injected 4L_0: 2.0 Operator: CFU Column phase: HTX-CLPestioldes 2 Column diameter: 0.32 /chen/hpl,1/8082r0917.b/E2980187.D 6 4 20 0 8 8 6 4 2 2 0 8 8 6 4 3 2 7 0 8 8 6 4 3 2 7 0 8 8 6 4 3 2 7 0 9	
Column phase: KIX-CLPestioldes 2 Column diameter: 0.32 //dten/hpl.i/8082r0917.b/E2980187.D 6- 4. 21 0: 8- 6- A. 2. 0 8- 6- A. 2. 0 8- 6- 4. 2. 0 8- 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6- 4. 2. 0 8. 6. 4. 2. 0 8. 6. 4. 0 8. 6. 4. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9. 0 9.	
/chen/hp1,1/8082r0917.b/E2980187.b	
6- 4. 2:1 0: 8- 6- A. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 4. 2- 0 8- 6- 8- 6- 8- 6- 8- 8- 6- 8- 8- 8- 8- 8- 8- 8- 8- 8- 8	
4 2 3 4 6 4 2 3 2 3 2 3 2 0 .8 6 .8 6 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	
2:1 0: 8: 6: A: 2: 0: 8: 6: 4: 2: 0: 8: 6: 4: 2: 0: 8: 6: 4: 2: 0: 8: 6: 4: 2: 0: 8: 6: 4: 2: 0: 8: 6: 4: 2: 0: 8: 6: 4: 2: 0: 8: 6: 8: 6: 8: 6: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8	
0:       8-         6-          .2-          .3-          .4-          2       3.2-         .0-          .8-          .4-          .5-          .6-          .7-          .8-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .9-          .	
8- 6- A. .2- o .8- 6- .4- 2 3.2- .0- .8- .4- .2- .4- .4- .4- .4- .4- .4- .4- .4	
6- A- 2- 0 8- 6- 4- 2 3.2- .0- .8- .4- .0- .8- .4- .0-	
A- 2- 0 8- 6- 4- 3.2- 0. 3.2- 0. .2- .4- .4- .4- .4- .4- .4- .4- .4	
2- 0 3.2- .4- 2 3.2- .0- .8- .4- .4- .4- .4- .4- .4- .4- .4	
0         .8-         6-         .4-         2       3         .0-         .8-         .4-         .8-         .4-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .8-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-         .9-	
.8-         6-         .4-         3.2-         .0-         .8-         .4-         .4-         .2-         .0-         .8-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .4-         .	
6- .4 3.2 .0 .8  A-	
.4- 3.2- .0- .8- .4- .4-	
3 .2-     .0-     .8-     .4-     A-     2	
.0- .8- .4- A-	
.8- .4- A-	
A-	
A-	
.2-	
.0-	
,8- <b>3 - • • </b>	
,6- • • <del>•</del>	
,4- <b>I g1 g1</b>	
•2-	
10 11 12 <b>15 16 17</b> 18 19 20 21 22 23 <b>24 25</b>	
	27

to 0000

*

Friend Inc.

Data File: /chem/hpl.i/8082r0917.b/E2980187.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L95433-3 Misc Info: WG33196,02-004 Analysis Date: 16-OCT-2002 18:13 Sample Matrix: SOIL File Number: 0187

Dilution	Factor	10.0000
Sample	Weight	10.2286
Final	Volume	10.0000
Total	Solid	62.2000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	313.10
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	84.88%
Decachlorobiphenyl	112.26%

Analyst: CPW Report Date: 10/17/2002 07:45

Supervisor: Date:



Thru-Put Systems, Inc.

Data file : <u>\chem\hp3.i\1254FCONFIRMIIIa</u>, b\E3956428.D Lab Smp Id: <u>L95433-3</u> Client Smp II Client Smp ID: L95433-3 Inj Date 16-OCT-2002 02:53 CPW Inst ID: hp3.i Operator Smp Info L95433-3 Misc Info CONFIRMATION Comment \chem\hp3.i\1254FCONFIRMIIIa b\8082_PCBsec.M Method Meth Date 16-Oct-2002 12:27 Administra Quant Type: ESTD 16-OCT-2002 01:19 Cal File: E3956425.D Cal Date Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: 1254.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$\begin{array}{c} 10.000 \\ 10.000 \\ 10.229 \\ 0.100 \\ 62.200. \end{array}$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

				CONCENTR	ATIONS			
				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	( Ug/L)	(ug/Kg)	TARGET	RANGE	RATIO
	•••••	•••••						
S 1 T	etrachlo	ro-m-xyler	ie		CAS »:			
9.343	9.337	0.006	904557	59.3919	933.51			
25 A1	roclor-1	254			CAS #:	11097-69	9-1	
14.217	14.213	0.004	10896	16.8486	264.82	80.00-	120.00	100.00
IS.293	15.297	-0.004	4811	7.19550	113.10	83.82-	123.82	44.15
15.540	15.537	0.003	14342	13.9927	219.94	136.90-	176.90	131.63
16.090	16.087	0.003	9958	11.8576	186.38	111.13-	151.13	91.39
16.450	16.447	0.003	18163	20.1201	316.25	119.15-	159.15	166.69
		Average of	Peak Concentra	ations -	220.10			
S 29 D	ecachloi	robiphenyl			CAS #			

20.937 20.927 0.010 700911 64.6075 1015.49





**D**ecachlorobiphenyl <20.937>





Thru-Put Systems, Inc.

Data file \chem\hp3.i\1254FCONFIRMIIIa.b\E3956429.D Lab Smp Id L95433-4 Client Smp ID: L95433-4 Inj Date 16.-OCT-2002 03:24 CPW Operator Inst ID: hp3.i Smp Info L95433-4 Misc Info CONFIRMATION Comment \chem\hp3.i\1254FCONFIRMIIIa.b\8082_PCBsec.M 16-Oct-2002 12:27 Administra Quant Type: ESTD 16-OCT-2002 01:19 Cal File: E39564 Method Meth Date Cal Date Als bottle Dil Factor Cal File: E3956425.D 1 10.00000 Integrator: Falcon Compound Sublist: 1254.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.723 \\ 0.100 \\ 56.900$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

				CONCENTR	ATIONS		
				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Te	etrachlo	ro-m-xylene			CAS #:		
9.337	9.337	0.000	924496	60.7011	994.91		
25 A1	coclor-1	254			CAS #:	11097-69-1	
14.207	14.213	-000e	20051	31.0051	508.18	80.00- 120.00	100.00
15.2&7	15.297	-0010	6978	10.4365	171.06	83.82- 123.B2	34.80
15.533	15.537	-0004	26022	25.3883	416.12	136.90- 176.90	129.78
16.080	16.087	-0.007	16450	19.5881	321.06	111.13-151.13	82.04
16.443	16.447	-0.004	22942	25.4141	416.55	119.15- 159.15	114.42
		Average of P	eak Concentra	ations •	366.59		
5 29 D	ecachlor	obiphenyl			CAS #:		
20.923	20.927	-0.004	6145B4	56.6502	928.51		

Page

Friend Inc.



Data File: /chem/hpl.i/8082r0917.b/E2980188.D Method; /chem/hpl.i/8082r.0917.b/8082_PCBsec.M Sample Info: L95433-4 Misc Info: WG33196,02-004 Analysis Date: 16-OCT-2002 18:44 Sample Matrix: SOIL File Number: ^0188

Dilution Factor	10.0000
Sample Weight	10.7226
Total Solid	56 9000
IOCAL SOLLA	50.9000

Analytes (ug/Kg)

0.00
0.00
0.0.0
0.00
423.67
0.00
0.00
102.14%
141.01%



Analyst: CPW Report Date: 10/17/2002 07:45

Supervisor: Date:

,iSfc₂ ^

#### Y (xIO^A4)





Tetrachloro-«-xylene (7,987)

^ >



Aroolor-1254	(14.557)
•-Aroclor-1254 (	(15.007)
-Aroclor-1254	(15.340)

*r*-Aroclor-1254 (16,020)

\r

EC

Deoachlorobiphenyl (20.130)

•

## 00034

Date(s) Analyzed: 09/17/02 09/17/02 File Numbers: 9827-9843

	Peak		F	RT OF ST	ANDARD	S		MEAN	RT WIN	IDOW
COMPOUND	#	10 ppb	50 ppb 1	100 ppb 1	250 ppb	1500 ppb ⁻	11000 ppb	RT	FROM	ТО
PCB1016	r	10.19	10.20	10.20	10.20	10.21	10.21	10.20	10.10	10.30
	2*	10.71	10.71	10.71	10.71	10.71	10.71	10.71	10.61	10.81
	3*	11.89	11.89	11.90	11.90	11.90	11.90	11.90	11.80	12.00
	4	11.97	11.98	11.98	11.98	11.98	11.98	11.98	11.88	12.08
	5	12.67	12.68	12.68	12.68	12.69	12.69	12.68	12.58	12.78
PCB 1221	1*				8.79			8.79	8.69	8.89
	Т				9.12			9.12	9.02	9.22
	3*				9.27			9.27	9.17	9.37
PCB 1232	1*				9.27			9.27	9.17	9.37
	2*				10.20			10.20	10.10	10.30
	3*				11.19			11.19	11.09	11.29
	4				11.47			11.47	11.37	11.57
	5				11.97			11.97	11.87	12.07
PCB 1242	r				10.20			10.20	10.10	10.30
	2*				11.19			11.19	11.09	11.29
	3*				11.47			11.47	11.37	11.57
	4				12.68			12.68	12.58	12.78
	5				13.29			13.29	13.19	13.39
<u>fi</u> CB 1248	1*				11.19			11.19	11.09	11.29
	2*				11.90			11.90	11.80	12.00
	3*				12.68			12.68	12.58	12.78
	4				13.21			13.21	13.11	13.31
	5				13.29			13.29	13.19	13.39
PCB 1254	1*	13.67	13.67	13.67	13.67	13.67	13.67	13.67	13.57	13.77
	2*	.14.56	14.56	14.56	14.56	14.56	14.56	14.56	14.46	14.66
	3*	15.01	15.01	15.01	15.01	15.00	15.00	15.01	14.91	15.11
	4	15.34	15.35	15.35	15.35	15.35	15.35	15.35	15.25	15.45
	5	16.02	16.03	16.03	16.03	16.03	16.03	16.03	15.93	16.13
PCB 1260	1*	14.93	14.93	14.94	14.94	14.94	14.94	14.94	14.84	15.04
	2*	15.34	15.34	15.35	15.35	15.35	15.35	15.35	15.25	15.45
	3*	16.19	16.19	16.20	16.20	16.20	16.21	16.20	16.10	16.30
	4	16.75	16.75	16.76	16.76	16.76	16.77	16.76	16.66	16.86
	5	17.23	17.23	17.24	17.24	17.25	17.25	17.24	17.14	17.34
Tetrachloro-m-xylene		7.97	7.99	8.00	7.99	8.00	8.00	7.99	7.89	8.09
De each I orobi phenyl		20.11	20.12	20.13	20.13	20.13	20.13	20.13	20.03	20.23

Denotes required peaks

Retention time windows are + 0.1 minutes for all compounds.

$$10.19 + 10.20 + 10.20 + 10.20 + 10.21 + 10.21 = 10.20$$

FORM VI-PCB-1

.

#### FORM 6 PCB INITIAL CALIBRATION DATA

Lab Name	Contract:	
Lab Code: Case No.:	SAS No. :	SDG No.: AAA916
Instrument ID: HP1	Calibration Date { s ):	09/17/2 09/17/2
GC Column: RTX-CLPESTICIDES 2 ID	: 0.32 (mm)	
LAB FILE ID: RF10: E2989834	RF50: E2989835 RF	100: E2989836
RF250: E2989843 RF500: E2989838		

COMPOUND	rf10	RF50	RF100	RF250	RF500	
Aroclor-1016	401.3	365.1	438.0	493.9	404.2	
(2) (3) (4) (5) Aroclor-1221	136.5 135.2 140.8 201.4	147.3 120.4 136.7 165.9	177.8 144.0 181.1 179.7	191.1 140.8 189.3 207.5 86.2	175.4 117.2 184.3 203.2	
(2) (3) (4)				64.3 307.9		-
(5) Aroclor-1232				283.3		
(2) (3) (4)				161.5 221.6 97.5		k/3
(5) Aroclor-1242				352.7		_
(2) (3) (4)				515.2 225.6 162.9 195.6		-
Aroclor-1254	316.9	313.4	305.2	308.2	343.4	-
(2) (3) (4) (5)	288.2 190.1 148.5 253 9	317.8 233.8 164.1 263.2	319.7 239.2 178.0 271.9	278.8 186.5 294.5	442.7 384.7 230.4 392.1	
Aroclor-1260	334.4	269.7	334.8	384.6	340.0	
(2) (3) (4) (5)	358.5 227.9 234.8 364 1	290.3 170.5 173.2 280.0	352.0 206.4 208.2 381.6	246.1 246.2 496.5	365.1 209.2 210.6 440.9	
Aroclor-1248				163.4		CPjo-
(2) (3) (4) (5)				213.4 186.5 304.2		-
Tetrachloro-m-xylene Decachlorobiphenyl	3613 3029	5109 3502	8081 5170	7743 5257 I	8808 6283	
	1	1	1		1	204963 1000 = Jof.fOt

٠

#### FORM 6 PCB INITIAL CALIBRATION DATA

Lab Name:		Contract:		
Code:	Case No.:	SAS No.:	SDG No.:	AAA916
strument	ID: HP1	Calibration Date(s):	09/17/2	09/17/2
Column:	RTX-CLPESTICIDES 2 ID:	0.32 (mm)		
RF1000: E2989	9839			

[					COEFFI	CENTS	%RSD
	COMPOUND		RF100	CURVE	A O	Al	OR R~2
	Aroclor-1016		366.0	LINR	-18.105188	2.688e-003	0.991
		(2)	161.5	LINR	-9.4133819	6.109e-003	0.997
		(3)	100.6	LINR	-18.332671	9.78e-003	0.993
		(4)	162.6	LINR	-9.1394188	6.01e-003	0.995
		(5)	201.8	LINR	2.94297360	4.926e-003	. 1.000
	Aroclor-1221	(0)		T, TNR	0.00000000	1.159e-002	1.000
		(2)		T, TNR	0.00000000	1.555e-002	1.000
		(3)		LINR	0.00000000	3.248e-003	1.000
		(4)		LINR			
		(5)		LINR			
	Aroclor-1232	(-,		LINR	0.00000000	3.53e-003	1.000
		(2)		LINR	0.00000000	6.191e-003	i ood
		(3)		LINR	0.00000000	4.512e-003	1 000
		(4)		LINR	0.00000000	1.025e-002	1.000
		(5)		LINR	0.00000000	1.727e-002	1 000
	Aroclor-1242			LINR	0.00000000	2.835e-003	1 000
		(2)		LINR	0.00000000	1.941e-003	1 000
		(3)		LINR	o.dooooooo	4.432e-003	1 000
	W	(4)		LINR	0.0000000	6.138e-003	1,000
$\Delta \lambda$		(5)		LINR	0.00000000	S.111e-003	1.000
	Kroclor-1254		296.1	LINR	-6.4375383	3.29e-003	0.994
		(2)	434.5	LINR	16.6006465	2.262e-003	0.997
		(3)	371.6	LINR	21.3460443	2.623e-003	0.995
		(4)	190.9	LINR	4.45851132	5.219e-003	1.000
		(5)	352.0	LINR	11.6581973	2.751e-003	0.994
	Aroclor-1260		329.3	LINR	-5.1814212	3.014e-003	0.998
		(2)	358.9	LINR	-3.4590831	2.769e-003	0.998
		(3)	210.0	LINR	-3.5269711	4.748e-003	0.998
		(4)	214.3	LINR	-2.0615020	4.659e-003	0.998
		(5)	480.7	LINR	11.3530028	2.078e-003	0.998
	Aroclor-1248			LINR	0.00000000	3.596e-003	1.000
		(2)		LINR	0.0000000	6.12e-003	1.000
		(3)		LINR	0.00000000	4.686e-003	1.000
		(4)		LINR	0.00000000	5.361e-003	1.000
		(5)		LINR	0.0000000	3.287e-003	1.000
	Tetrachloro-m	-xylene	7679	LINR	5.59456943	l".219e-004	0.991
	Decachlorobip	lenyl	5238	LINR	4.64742762	1.888e-004	0.999



FORM VI PCB

Lab Name: FRIEND LABOR	ATORY	, INC	. Cor	ntract:	
Lab Code: 10252 Case No.:			SAS No.:	SDG No.: AAA	
Instrument ID: HP3					
GC Column: RTX-CLPest1	ID:	0.32	(mm)	Date(s) Analyzed: 10/16/02 File Numbers: 6425	AZ£

6F

	AMOUNT			RT WINDOW		CALIBRATION				
COMPOUND	<"9)	PEAK	RT	FROM	ТО	FACTOR				
PCB 1254	250 PPŔ	1*	14.21	14.11	14.31	646.70				
		2*	15.30	15.20	15.40	668.61				
		3*	15.54	15.44	15.64	1024.96				
		4	16.09	15.99	16.19	839.80				
		5	16.45	16.35	16.55	902.73				
Tetrachloro-m-xylene	300 PPB		9.34	9.24	9.44	15230.30				
Decachlorobiphenyl	300 PPB		20.93	20.83	21.03	10848.76				
* Denotes required peaks										

Denotes required peaks

Single injections of the low standard are made to establish approximate retention times and instrument sensitivity. Five point calibrations are performed if a multipeak component is detected in a sample.

Alternate column confinnation is run if a pesticide or PCB is detected in a site sample.

14/475 = 646.70

#### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.: SAS No.: SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2980181.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 10/16/02 Analysis Time: 1504

			RTWI SJDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	_L ТО	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.67	13.57	13.77	253.31	250.00	1.32
Aroclor-1254	2	14.57	14.46	14.66	241.89	250.00	3.24
Aroclor-1254	3	15.01	14.91	15.11	226.17	250.00	9.53
Aroclor-1254	4	15.35	15.25	15.45	316.85	250.00	26.74
Aroclor-1254	5	16.04	15.93	16.13	257.07	250.00	2.83
Tetrachloro-m-xylene	1	8.01	7.89	8.09	316.71	300.00	5.57
Decach I orobi phenyl	1	20.14	20.03	20.23	344.81	300.00	14.94

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

Aug 1259-250/XI 00 '3-Lf

9m

7E

#### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.: "_____SAS No.:_____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2980184.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 10/16/02 Analysis Time: 1639

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.67	13.57	13.77	238.95	250.00	4.42
Aroclor-1254	2	14.57	14.46	14.66	224.88	250.00	10.05
Aroclor-1254	3	15.01	14.91	15.11	203.48	250.00	18.61
Aroclor-1254	4	15.35	15.25	15.45	243.99	250.00	2.40
Aroclor-1254	5	16.03	15.93	16.13	210.62	250.00	15.75
Tetra ch I o ro-m-xy le ne	1	8.01	7.89	8.09	319.44	300.00	6.48
Decachlorobiphenyi	1	20.13	20.03	20.23	343.54	300.00	14.51 J

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.





#### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.: SAS No.: __ SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2980192.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 10/16/02 Analysis Time: 2049

			RTWIMDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.67	13.57	13.77	248.79	250.00	0.48
Aroclor-1254	2	14.57	14.46	14.66	227.10	250.00	9.16
Aroclor-1254	3	15.01	14.91	15.11	205.08	250 _T 00	17.97
Aroclor-1254	4	15.35	15.25	15.45	246.88	250.00	1.25
Aroclor-1254	5	16.03	15.93	16.13	209.27	250.00	16.29
Tetrachloro-m-xylene	1	8.01	7.89	8.09	318.87	300.00	6.29
D eca ch lo ro bi ph e nyl	1	20.13	20.03	20.23	341.31	300.00	13.77

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

Jor-250 Nt^'-l^
7E

#### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2980200.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 10/17/02 Analysis Time: 0100

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.67	13.57	13.77	236.84	250.00	5.26
Aroclor-1254	2	14.56	14.46	14.66	222.34	250.00	11.06
Aroclor-1254	3	15.01	14.91	15.11	195.65	250.00	21.74
Aroclor-1254	4	15.35	15.25	15.45	237.80	250.00	4.88
Aroclor-1254	5	16.03	15.93	16.13	202.33	250.00	19.07
Tetrachloro-m-xylene	1	7.99	7.89	8.09	309.54	300.00	3.18
Decachlorobiphenyl	1	20.13	20.03	20.23	333.62	300.00	11.21 J

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

j^Wh- - in



#### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E3956439.D Instrument ID: HP3.I GC Column: RTX-CLPesticides 1

ID: 0.32 (mm)

Analysis Date: 10/16/02 Analysis Time: 0836

			RT WI	NDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	ТО	AMOUNT	AMOUNT	%D
Aroclor-1254	1	14.21	14.11	14.31	270.48	250.00	8.19
Aroclor-1254	2	15.29	15.20	15.40	271.61	250.00	8.64
Aroclor-1254	3	15.53	15.44	15.64	267.77	250.00	7.11
Aroclor-1254	4	16.08	15.99	16.19	273.12	250.00	9.25
Aroclor-1254	5	16.44	16.35	16.55	269.63	250.00	7.85
Tetrachloro-m-xylene	1	9.33	9.24	9.44	304.58	300.00	1.53
Decachlorobiphenyl	1	20.91	20.83	21.03	305.68	300.00	1.89

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

8D PCB ANALYTICAL SEQUENCE

Lab Name: Contract: SASNO.: SDG No.: AAA916 Lab Code: Case No. : Instrument ID: HP1 Init. Calib. Date(s): 09/17/2 09/1 GC Column: RTX-CLPESTICIDES 2 ID: 0.32 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES/ BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW: .

	MEAN SURROG TCX: 8.00	ATE RT FROM I DCB: 2	NITIAL CALI	BRATION		
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	STD11660	STD11660	09/17/2	1304	7.97	20.11
02	STD21660	STD21660	09/17/2	1335	7.99	20.12
03	STD31660	STD31660	09/17/2	1406	8.00	20.13
04	STD41660	STD41660	09/17/2	1437	7.99	20.13
05	STD51660	STD51660	09/17/2	1509	8.00	20.13
06	STD61660	STD61660	09/17/2	1540	8.00	20.13
07	STD11254	STD11254	09/17/2	1643.	7.98	20.12
80	STD21254	STD21254	09/17/2	1714	7.99	20.13
09	STD31254	STD31254	09/17/2	1745	8.00	20.13
10	STD41254	STD41254	09/17/2	1816	7.99	20.13
11	STD51254	STD51254	09/17/2	1848	7.98	20.13
12	STD61254	STD61254	09/17/2	1919	8.00	20.13
13	STD41248	STD41248	09/17/2	1950	7.99	20.13
14	STD41242	STD41242	09/17/2	2021	7.99	20.13
15	STD41232	STD41232	09/17/2	2052	7.99	20.13
16	STD41221	STD41221	09/17/2	2124	8.00	20.13
17		CC166001	09/18/2	1401	8.00	20.13 j
18	MB82 /	MB82	09/18/2	1433	8.02	20.131
19	QC82 /	QC82	09/18/2	1507	8.02	20.13
20	L94080fLRE	L94080-1RE	09/18/2	1538	7.99	20.13
21	L94080/2	L94080-2	09/18/2	1610	7.99	20.13
22	L9408/-3RE	L94080-3RE	09/18/2	1641	7.99	20.13
23	L9408I-4	L94080-4	09/18/2	1712	7.98	20.13
24	CC16fD02	CC166002	09/18/2	1815	8.01	20.13
25	L940I1-1RE	L94081-1RE	09/18/2	1846	7.98	20.13
26	L940fel-4RE	L94081-4RE	09/18/2	1917	7.99	20.13
27	L94#81-5RE	L94081-5RE	09/18/2	1948	8.00	20.13
28	L94C81-6RE	L94081-6RE	09/18/2	2019	7.99	20.13
29	L9f081-7R	L94081-7R	09/18/2	2051	7.98	20.13
30	L91081-1MSR	L94081-1MSR	09/18/2	2122	7.98	20.13
31	L31081-1MSDR	L94081-1MSDR	09/18/2	2153	7.97	20.11
32	CCIL66003	CC166003	09/1B/2	2255	8.01	20.13
33	Cfl25401	CC125401	09/18/2	2327	7.99	20.13
34	CC125402	CC125402	09/19/2	1009	7.99	20.13
35	1*4080-1	L94080-1	09/19/2	1038	7.99	20.13
36	lfe4080-3R	L94080-3R	09/19/2	1116	7.99	20.13
<u>3</u> 7		L94081-6	09/19/2	1148	7.98	7.0.1.3
-						11 4 - 22 W/

TCX = Tetrachloro-m-xylene (+/- 0.10 MINUTES) DCB = Decachlorobiphenyl

QC LIMITS (+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk. * Values outside of QC limits. page 1 of/i

FORM VIII PCB



#### 8D PCB ANALYTICAL SEQUENCE

**f**Contract:<br/>SAS No. :Contract:<br/>SDG No. : AAA1014<br/>Init. Calib. Date(s) : 09/17/2 09/17/2**f**Case No.::Contract:<br/>SAS No. :Instrument ID: HP1<br/>GC Column: RTX-CLPESTICIDES 2 ID: 0.32 (mm)Init. Calib. Date(s) : 09/17/2 09/17/2

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLRNKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO	GATE RT FROM I	NITIAL CALI	BRATION		
	TCX: 8.00	DCB: 2	0.13			
		<b></b>				
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT '#	RT #
01	1254CC01	1254CC01	10/16/2	1504	8.01	20.14
02	MB12	MB12 '	10/16/2	1536	7.99	20.13
03	QC12	QC12	10/16/2	1608	8.00	20.13
04	1254CC02	1254CC02 •'	10/16/2	1639	8.01	20.13
05	L95433-1	L95433-1	10/16/2	1/10	8.01	20.13
00	L95433-2	L95433-2	10/16/2	1012	7.90	20.13
07	L95433-3	$L95433-3^{\circ}$	10/16/2	1844	7 99	20.13
00	L95433-4	L95433-4	10/16/2	1915	7.99	20.13
10	L95433-5	L95433-5	10/16/2	1947	7 99	20.13
11	125433-0	L95433-6	10/16/2	2049	8.01	20.13
12		1254CC03J	10/16/2	2121	7.99	20.13
13		L95433-7	10/16/2	2152	7.99	20.13
14	195433-0	L95433-0 T 05/22_0	10/16/2	2223	7.99	20.13
15	T.95433-9	195433 - 9 195433 - 10	10/16/2	2254	7.99	20.13
16	T.95433-11	T.95433-11	10/16/2	2326	. 7.99	20.13
17	T.95433-12	T.95433-12	10/16/2	2357	7.98	20.13
18	1254CC04	1254CC04	10/17/2	0100	7.99	20.13
19		L95346-9	10/17/2	0131	7.99	20.13
20	L95346^^	L95346-11	10/17/2	0202	7.99	20.13
	L9542QF1	L95420-1	10/17/2	0233	7.99	20.13
22	L9542G-1MS	L95420-1MS	10/17/2	0305	7.99	•20.13 20.12
23	L95^0-1MSD	L95420-1MSD	10/17/2	0330	7.99	20.13
	L9J&20-7	L95420-7	10/17/2	0407	8.00	20.13
20		- 1254CC05	10/1//2	0510	0.00	20.15
26 27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37			1			



TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl (+/- 0.10 MINUTES) (+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk. * Values outside of QC limits.



#### PCB ANALYTICAL SEQUENCE

Lab Name:						Con	itract:				
Lab Code:			Case No	э <b>.</b> :		SA	AS No. 3	:	SDG No.	: AAA1014C	ONFIRM
Instrument	ID:	HP3_	_				Init.	Calib.	Date(s):	10/16/2 10	/^?
GC Column:	RTX-	CLPES	STICIDES	S 1	ID:	0.32	(mm)				

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO TCX: 9.34	GATE RT FROM DCB:	INITIAL CAL 20.93	IBRATION		
		LAD			may	DOD
	EPA CANDIE NO	LAB				DCB
	SAMPLE NO.	SAMPLE ID	ANALIZED	ANALIZED	RI #	RI #
01	1254CC02	1254CC02	10/16/2	0119	9.34	20.93
02	L95433-1	L95433-1*'	10/16/2	0150	9.34	20.93
03	L95433-2	L95433-2 -	10/16/2	0222	9.34	20.92
04	L95433-3	L95433-3 '	10/16/2	0253	9.34	20.94
05	L95433-4	L95433-4 <i>-J</i>	10/16/2	0324	9.34	20.92
06	L95433-5	L95433-5	10/16/2	0355	9.36	20.92
07	L95433-6	L95433-6	10/16/2	0426	9.32	20.92
08	L95433-7	L95433-7	10/16/2	0458	9.32	20.92
09	L95433-8	L95433-8	10/16/2	0529	9.32	20.92
10	L95433-9	L95433-9	10/16/2	0600	9.33	20.93
11	L95433-10	L95433-10	10/16/2	0631	9.32	20.92
12	L95433-11	L95433-11	10/16/2	0703	9.33	20.92
13	L95433-12	L95433-12	10/16/2	0734	9.32	20.92
14	1254CC03	1254CC03	10/16/2	0836	9.33	20.91
15						
16						
17						
18						<
19						
20						
21						
22						
23						
24 25						
26						
27						
28						
29						
31						
32						
33						
34						
35						
36						
37						

TCX = Tetrachloro-m-xylene (+/- 0.10 MINUTES) DCB = Decachlorobiphenyl (+/- 0.10 MINUTES)

QC LIMITS

# Column used to flag retention time values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VTII PCB

Friend Inc.



Data File: /chem/hpl.i/8082r0917.b/E2980183.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: QC12 Misc Info: QC12 Analysis Date: 16-OCT-2002 16:08 Sample Matrix: SOIL File Number: 0183

Dilution Factor	1.0000
Sample Weight	10.6196
Final Volume	10.0000
Total Solid	100.0000

Analytes (ug/Kg)

Aroclor-1016	99.88%
Aroclor-1260	110.60%
Tetrachloro-m-xylene	94.69%
Decachlorobiphenyl	118.22%

Analyst: CPW Report Date: 10/17/2002 07:45

Supervisor: Date:



Page: 87 1 of 2

Notebook Start Dat End Date Sample I.E	: 02-066 te : 15-OCT-02 11:18 : 15-OCT-02 11:18 Aha Lysis D. Date Time	AfiSt	Vlethod Di	Volume sh* (mis)	initia Weight	l 1st&2fid Weight	3rd&*th Weight	'SthWth Weight	7thS8th Weight	?tfi&t0tft Fina Weight Resu	al It Rpd Units
copients	Start:'15-OCT-02 1 Stop :15-OCT-02 1	1:18 CLP 1 1:18	3.0 4	' IWiiS	1.2^5	O&'z"				МТ	''Mi_* ''
^ fconmenls	5tart:15-OCT-Q2 1 Stop :15-OCT-02 1	1:18 CLP : 1:18	3.0 1—	<i>S^m</i>	-T243T—	-£3575"				Torr	
195433-J 'Comments	Start:15~OCT-02 1 Stop ;15-OCT-02 1	1:18 '> 1:18	「 3.C" <i>i</i>	To?33	T246-	6.7'.	li 7Z	7*f/\$ <u>'</u> rr,f	<u>^j7?lft</u> 7Ji	<u>7f</u> ₩ ∧	
L95433"J0-'' Comtents	"" Start:iS-OCT-02 1 Stop :15*OCT-02 1 *	1:18 CLP 3 1:18	3.0 T5	5^2789	1.2424	4^0256				••SSIT	
' <b>CV}t,i\$∼i\'"</b> Cotfrtienta	Start;15-OCT-02 11: Stop i15-OCT-02 1 t	13 CLP 3 1:18	3.0 16	\$jm	.1.2515	TOV				TCT	Him <u>…i</u> ii
i95433 [:] 1 <br CoaimBn-t*	Start:15-OCT-02 1 Stop :15-OCT-02 1	1:18 CLP 3 1:18	3.0 1?	5.10A3"	1.2476	4.5564				10'	
195433*2 ' Cotrmentfi	Start:15'OCT-02 1 Stop :15-OCT-02 1	1:18 CLP 3 1:18	3.0	5*3219	1725*8	Ola"				91.4	
i 'Coaifteats	Start:15-OCT-02 1 Stop :1\$*0CT-02 1	1:18 CLP 3 1:18	3.0 8	5.9586	1.2'.07	h.fTM				"ZTT	
<i>ty&amp;3t\$"\$</i> Contents	Start:1S-OCT-02 1 Stop :15-OCT-02 1 :	1:18CLP 3 1:18	3.0 <b>-9</b> -	—vi'tm	12**3	"am				TSX	
iWMM' ' '	Start:15-OCT-02 11: Stop :15-OCT-02 1: Calculations:	18 ""CLP 3. 1:18 Final Results	0	SJ&\$7" [tial) x 100 wgt	1.2356 00000	§'.» "				7 T	
			mis of sa	ample							

"/" st Signature Anal

0 0 to





							UET	CHEMIS	TRY TOTAL	SOLIDS t	^ ^ W						
Noteboo Start I End Dat	ok : Date : te :	02-066 15-OCT-02 11 15-OCT-02 11	:18 :18	•							0 10 44						
Ksmpt*	K0.	Analysis Date Time	IU-	Aast mlt		od {	&ish	Volume, # tats)	Weigh	I 1st&2pa t weigh* i in mi ill nii	Used Weight	Sth&6ti Weig	n. 7thS8 ht Wei nii ⊢m . n	ght V	sulfittt Fina eJg.M; Ro iinimii—mini.i	al esult ™⊸iitwi1111	RptJ ttnfts
QmmxA	J									,						,	•,′
WM33h6	S	tartil5*OCT*0 top I15-OCT-0	2 11:18 2 11:18	C	CLP 3.0	1	11	5.5937	17237	ОЅТ		'	1		'"56	u	*""%
<b>MW</b> Clients	n_s , s	tart^-bGT-b top i15*OCT*0	<b>z' \\\</b> 2 flilfi	<u>/(</u>	civo	t	ta_	_CTss.	_um_	_iwm		мшмшнм	HIni	»i millHim⊦		lilt	.IUIIIII III Ľ, ¹ 1'
<i>m</i> . Cowneftts	s S i i	tart:I5-bcT-c tep :15-dCI-02	oi una 2 11:18	C	ci> j.o-	1	13'	J K W	USV	"VM\$	—			"•' nriij		—ii'iiin	iluli
t\$U33H* £ttflaftfcft	"S S	tarts15-0CI-Q2 top15-OCT-0	2  1:ia 2 11:18	' C	1P 3.0	1	4	5,'4<#£	1.2455	5*19?V			II		73.1	,	тм %
<i>m*\n*\'*</i> fenn*rt	Start: 'S	15-OCT*02 1 top :15/0CT-Q2 5 t « n ^	1:18 2 11:18	C	XP 3.0	1		0§92	172491	1.2491	~	1		· "	J		Hf
	S "St	tart:15-OCT-02 op :15-OCT*02	2 il'ilB 2 11:18	'""""C	Lp'Xti <u></u>	2	" "	gji&S'	. IJ2459	'CT	t7\$'		""	'	.""""65	*	'""".'"ii ¹
•inmi		·1'"	r —	. iiiiwiu	i - i	-' —1'	1	iliniiu-luiTiili	ti in	iiimnniiiii	il			mill	IIUMLII'——u—	ifiiiiii	nrin

Final Results = (fnl - initial) x 1000000 Calculations:

wgt ugt

mis of sample

CT/^AJUB* &-&^be /º//fc/cD-/ Analyst Signature <u>/<?AM;</u> Date

0 0 CO

٠

## IAG, ^ ' ^

**Organic Extractions** 

Notebook:

Extracted By: *tie*. Date Extracted: . mm/tO-

Analysis:-Matrix <u>RbitVSSSc,</u>)>'

<u>ra.v</u>, Page:

Sur Rrf. r66-??r^?-g' .Sur Cone:

Spike Ref.<u>^Olfe?r^S^^fM^^f</u> Spike Cone:______

Q&xnuprri2]hoc)_

1. D.	Customer-	Int. size	Fin. vol.	Sr. amt.	Spk amt.	Wit., by	Clean-ups		
^fil^		/*- QL%1	(75A0	\t*J		·	′Δ *s	2* 3100	rtu
or ,a		/OMtQt'	1		IrU				Τţ
£ <i«^ <="" td=""><td><b>m ^</b></td><td>/o.<i!23< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i!23<></td></i«^>	<b>m ^</b>	/o. <i!23< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i!23<>							
. ^		/0 ./ **</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
-?		*o.te%u		\					
-7		(0.1271*		1	-				
~ ~		/6>(/U%							
- 6		/o. %S7							
"∙?		/&./?/'		-					
. " <r></r>		/7> /.2VC							
i _^	J	/&.067 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
* -/*		/6.USO							<b>.</b>
-а	-	A>.0?£?							
- / *		/o-lil**	p."				U		
	•		·						
					- '				
		•							

Extracts ReUquished to:

Comments:







#### **Data Validation Report**

SDG#	97127-97224
Validation Report Date	April 28, 2003
Validation Guidance	USEPA Region 2 Guidelines for Data Review SW 846 Method 8082
Client Name	Cummings-Riter
Project Name	Viacom/Horseheads
Laboratory	Friend Laboratory Inc.
Method(s) Utilized	SW 846 8082
Analytical Fraction	PCBs

#### Samples/Matrix:

Date Sampled	Sample ID	Laboratory ID	PCBs	Matrix				
SDG# 97127								
11/20/02	N-B-S-W-001	97127-1	Х	Solid				
11/20/02	N-B-SS-W-001	97127-2	Х	Solid				
11/20/02	N-C-SS-B1-001	97127-3	Х	Solid				
11/20/02	N-C-SS-B2-001	97127-4	Х	Solid				
11/20/02	N-C-SS-B3-001	97127-5	Х	Solid				
11/20/02	L-B-S-W-002	97127-6	Х	Solid				
11/20/02	L-B-SS-E-002	97127-7	Х	Solid				
		SDG# 97224	-					
11/21/02	P-B-SS-W-001	97224-1	Х	Solid				
11/21/02	P-B-S-E-001	97224-2	Х	Solid				
11/21/02	P-C-SS-B-001	97224-3	Х	Solid				
11/21/02	P-B-Sl-W-001	97224-4	Х	Solid				
11/21/02	P-BSUB-S-N-001	97224-5	Х	Solid				
11/21/02	P-BSUB-S-S-001	97224-6	Х	Solid				
11/21/02	P-B-SS-E-001	97224-7	Х	Solid				
11/21/02	P-B-S2-W-001	97224-8	Х	Solid				
11/21/02	L-B-SS-W-004	97224-9	Х	Solid				
11/21/02	L-B-S-E-004	97224-10	Х	Solid				

Analytical data in this report were screened to determine analytical limitations of the data based on specific quality control criteria. This screening assumes analytical results are correct as reported and merely provides an interpretation of the reported quality control results. A minimum of 10% of laboratory calculations has been verified as part of this validation. Specific findings on analytical limitations are presented in this report. Annotated Form Is or spreadsheets for samples reviewed are included after the Data Assessment Findings. Form Is for the MS/MSD samples and spreadsheets are not annotated.

#### SUMMARY

The sample set for Viacom/Horsehead consists of 17 solid field samples. These samples were analyzed for the parameters as provided above. The findings presented in this review of the analytical data assume that the information presented by the analytical laboratory is correct. This review is identified as a false positive/false negative review, and therefore, does not include the review of some quality control (QC) items. Those included in the review are listed below.

The polychlorinated biphenyl (PCBs) findings are based upon the assessment of the following:

False Positives/False Negatives Validation

- * Data Completeness
  - Holding Times
    - Calibration and GC Performance
  - Blanks

*

*

*

*

- * Analytical Sequence Check
  - Target Compound Identification
    - Compound Quantitation and Reported Detection Limits
  - Chromatogram Quality

* Criteria were met for this evaluation item.

This evaluation was conducted in accordance with USEPA Region II SOP No. HW-23B (May 2002), USEPA CLP National Functional Guidelines for Organic Data Review and the analytical method. Findings from this evaluation should be considered when using the analytical data. This report presents a summary of the data qualifications based on the review of the aforementioned evaluation criteria. This is followed by annotated Form 1 s/ spreadsheets. Finally, the worksheets used to perform the evaluation are provided.

#### **FINDINGS**

#### **Polychlorinated Biphenyls (PCBs)**

#### 1. Calibration

The 11/23/02 2:25 continuing calibration percent difference (%D) for Arolcor 1016 (28.4%) was greater than the control limit of 15%. For the following samples, qualify positive results of Aroclor 1016 as estimated "J" and nondetected results as estimated "UJ".

N-B-S-W-001	N-B-SS-W-001	N-C-SS-B1-001	N-C-SS-B3-001

The 11/26/02 5:02 continuing calibration percent difference (%D) for Arolcor 1016 (16.8%) was greater than the control limit of 15%. For the following samples, qualify positive results of Aroclor 1016 as estimated "J" and nondetected results as estimated "UJ".

#### 2. Compound Quantitation

The percent difference between columns exceeded the 25% quality control limit. For the following sample and compound, qualify PCB results as indicated in the table below. Samples were qualified based on SOP HW-23, Section 12.6.

Sample	Compound	% <b>Difference</b>	Qualifier
N-C-SS-B2-001	Aroclor 1254	34.6%	J

#### **NOTES**

#### **Polychlorinated Biphenyls (PCBs)**

#### **Completeness**

The USEPA Region II SOP No. HW-23B has the following sections that are not applicable to this project because it is a false positive/false negative review:

- Surrogate Recovery (Form 2)
- Laboratory Control Sample
- Matrix Spikes (Form 3)
- Contamination
- GC Apparatus and Materials
- Extraction Techniques for Sample Preparation
- Field Duplicates

Samples within this batch were received by the laboratory in several coolers. The case narrative indicates that the various cooler temperature upon receipt at the laboratory ranged was 4 and 6 C. Data are not qualified upon this basis.

#### **Calibration**

The laboratory used linear regression to calculate PCB results. The use of linear regression is permissible for SW-846 methodologies. The laboratory met the acceptance criteria specified in Section 7.5.2 of Method 8000B (r value greater than or equal to 0.99).

Data summary forms (including calibration factors) for the initial and continuing calibration is not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the calibration factor information. Because Aroclor 1254 was identified as a constituent of concern, the data summary information for the second column is provided for the continuing calibration. Data are not qualified on this basis.

The percent difference (%D) per peak for multi-standard Aroclors are provided. For SW 846, the laboratory used the average Aroclor concentration to determine the %D. Data are not qualified because the average value is used.

#### **Retention Time**

Retention time windows are not determined by the use of three standards for single standard calibration Aroclors. The center of the retention time window is defined as the retention time of the midpoint standard from the initial calibration. For the multi-standard calibration Aroclors, the center of the retention time window is the mean of the retention time generated from each standard. The retention time windows are the mean + 0.1 minutes. Data are not qualified on this basis.

Retention time windows are not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the retention time window information. Because Aroclor 1254 was identified as a constituent of concern, the retention time information for the second column is provided. Data are not qualified on this basis.

#### **Compound Quantitation**

Samples were analyzed and reported at a dilution due to the presence of target compounds. Dilutions for samples are presented below. Reporting limits were adjusted for percent solids and dilutions.

N-B-S-W-001,N-B-SS-W-001,N-C-SS-B1-001,N-C-SS-B2-001, N-C-SS-B3-001, L-B-S-W-002, L-B-SS-E-002, P-B-SS-W-001, P-B-S-E-001, P-C-SS-B-001, P-B-S1-W-001, P-BSUB-S-N-001, P-BSUB-S-S-001, P-B-SS-E-001, P-B-S2-W-001, L-B-SS-W-004, L-B-S-E-004



ita Reviewer

Date <u>YAS-/^</u>

## **Glossary of Data Qualifiers**

u	Not Detected.	The associated number indicates approximate sample concentration necessary to be detected.
UJ	Not Detected.	Quantitation limit may be inaccurate or imprecise.
J	Analyte Present.	Reported value may not be accurate or precise.
N	Consider Present.	Tentative identification. Special methods may be needed to confirm its presence or absence in future sampling efforts.
R UR	Unusable Result. Unusable Result.	Analyte may or may not be present in the sample. Analyte may or may not be present in the sample.

 $^{\Lambda}si/^{\Gamma}r$ 

ECT.CON INC.



^^f I \^^wEnvironmental and ComputerITechnology Consultants

### Annotated Form l's (Spreadsheet)



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:25-NOV-2002

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Analysis Performed	Result	Uni ts	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	76.8	x		21-NOV-02 00:00	CLP 3.0	02-123-7
EPA 8082						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	<b>^ 0 *</b> บ บ บ บ บ บ บ บ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	120 250 120 120 120 120 120	23-NOV-02 02:56 23-NOV-02 02:56 23-NOV-02 02:56 23-NOV-02 02:56 23-NOV-02 02:56 23-NOV-02 02:56 23-NOV-02 02:56	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0777 02-117-0777 02-117-0777 02-117-0777 02-117-0777 02-117-0777 02-117-0777
Extraction Information:				22-NOV-02 00:00	EPA 3550	02-090-42
Surrogate Recovery: Tetrachloro-m-xylene p^g^lorobi phenyl	105 115	90 90				02-117-0777 02-117-0777

Results calculated on a dry weight basis.

Approved byr Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC/^C

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost ^^cWPieese services. Your samples will be discarded after 14 days unless we are advised otherwise. ••-

WAVERLY, NY 14892-1532 FAX (607) 565-4083

#### Date: 25 - NOV - 2002

#### $\{^{\circ}$ ORATORY **r** • **N** • **c**

f R I E N n

**<u>r**• N • C</u> Lab Sample ID: L97127-2 AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

S a m p l e ••SiGuxcfe:: • ;;; O r i g i n . : . .:^;;pe:SGfeiptiQri': • • compositi;;;-!^;::.^ •^z-Pi Siattypyie & - On::: • E a t ^ l i e e e i ved.::.

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	78.3			21-NOV-02 00:00	CLP 3.0	02-123-7
EPA 8082						
PCB 1016         PCB 1221         PCB 1232         PCB 1242         PCB 1248         PCB 1254         PCB 1260	-WIXf ∪ u u u u u	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	120 240 120 120 120 120 120 120	23-NOV-02 03:28 23-NOV-02 03:23 23-NOV-02 03:28 23-NOV-02 03:28 23-NOV-02 03:28 23-NOV-02 03:28 23-NOV-02 03:28 23-NOV-02 03:28	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0778 02-117-0778 02-117-0778 02-117-0778 02-117-0778 02-117-0778
Extraction Information:				22-NOV-02 00:00	EPA 3550	02-090-42
Surrogate Recovery: Tetrachloro-m-xylene ^ ^ ^ c <b>ir</b> hlorobiphenyl	102 100					02-11 02-11

**A**3

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QCc3£A^

 KEY: NO
 U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per bi mg/L = milligram per liter (equivalent to parts per million)

 mg/L
 = milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per bi J = result estimated below the quantitation limit

ormation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost fd^Wnese services. Your samples will be discarded after 14 days unless we are advised.otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:25-NOV-2002

Lab Sample ID: L97127-3

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Analysis Performed	Result	Units	Detection limit	Date Analyzed	Method	Notebook Reference
Total Solids	90.5			21-NOV-02 00:00	CLP 3.0	02-123-7
EPA 8082						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCS 1242 PCS 1248 PCB 1254 PCB 1260	-tt-Uj U U U U U U U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 210 110 110 110 110 <b>no</b>	23-NOV-02 03:59 23-NOV-02 03:59 23-NOV-02 03:59 23-NOV-02 03:59 23-NOV-02 03:59 23-NOV-02 03:59 23-NOV-02 03:59	EPA 6082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0779 02-117-0779 02-117-0779 02-117-0779 02-117-0779 02-117-0779 02-117-0779
Extraction Information:				22-NOV-02 00:00	EPA 3550	02-090-42
Surrogate Recovery: Tetrachloro-m-xylene GećAhlgrobiphenyl	91 87	<b>%</b> ×				02-117-0779 02-117-0779



Results calculated on a dry weight basis.

Approved by? MAC^^^L Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

C t₩t

 KEY: ND
 U = None Detected
 < = less than</td>
 ug/L = micrograms per titer (equivalent to parts per billion)

 mg/L
 = milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per million)

 = analyte was detected in the method or trip blank
 J
 = result estimated below the quantitation limit

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost .^j^n^^Se services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:02-DEC-2002

••!

 $\frac{\mathbf{F} \mathbf{K} \mathbf{I} \mathbf{E} \mathbf{N} \mathbf{D}}{\mathbf{L} \mathbf{A} \mathbf{B} \mathbf{O} \mathbf{R} \mathbf{A} \mathbf{O} \mathbf{Y}}$   $\frac{\mathbf{I} \bullet \mathbf{N} \bullet \mathbf{'' X}}{\mathbf{L} \mathbf{a} \mathbf{b} \mathbf{S} \mathbf{a} \mathbf{m} \mathbf{p} \mathbf{l} \mathbf{e} \mathbf{I} \mathbf{D} \mathbf{:} \mathbf{L} \mathbf{97127-4}$ 

faim|p&:'^

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	88.1			21-NOV-02 00:00	CLP 3.0	02-123-7
EPA 8082						
PCB 1016         PCB 1221         PCB 1232         PCB 1242         PCB 1248         PCB 1254         PCB 1260	480 <b>\$</b>	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 220 110 110 110 110 110	26-NOV-02 14:08 26-NOV-02 14:08 26-NOV-02 14:08 26-NOV-02 14:08 26-NOV-02 14:08 26-NOV-02 14:08 26-NOV-02 14:08 26-NOV-02 14:08	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0837 02-117-0837 02-117-0837 02-117-0837 02-117-0837 02-117-0837 02-117-0837
Extraction Information:				22-NOV-02 00:00	EPA 3550	02-090-42
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobiphenyl	121 149					02-1 <b>1MML</b> 02-1

lip

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC^j&P-

 KEY: ND of U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/L
 = milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per billion)

 = analyte was detected in the method or trip blank
 J = result estimated below the quantitation limit

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed ***ost **fosks**e services. Your samples will be discarded after 14 days unless we are advised otherwise.

32 ITHACA STREET
TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

i FN n

N_,,- C

Lab Sample ID: L97127-5

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

### e••Source:!^

Date:25-NOV-2002

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	88.7			21-NOV-02 00:00	CLP 3.0	02-123-7
EPA 6082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	*t-u3"	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 220 110 110 110 110 110	23-NOV-02 05:01 23-NOV-02 05:01 23-NOV-02 05:01 23-NOV-02 05:01 23-NOV-02 05:01 23-NOV-02 05:01 23-NOV-02 05:01	EPA 80B2 EPA 8082 EPA 6082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0781 02-117-0781 02-117-0781 02-117-0781 02-117-0781 02-117-0781 02-117-0781
Extraction Information:				22-NOV-02 00:00	EPA 3550	02-090-42
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobiphenyl	95 114					02-117-0781 02-117-0781





Results calculated on a dry weight basis.

Approved by? Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

Wj^L

 KEY; ND of U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/C
 = milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per million)

 = analyte
 was detected in the method or trip blank
 J = result estimated below the quantitation limit

formation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost  $\bullet N \bullet PIJ_{Se}$  services. Your samples will be discarded after 14 days unless we are advised otherwise.  $\bullet -$ 



WAVERLY, NY 14892-1532 FAX (607) 565-4083



Lab Sample ID: L97127-6

AAA Environmental Peter Porter 6 67 9 Moore Road Syracuse, NY 13211 Samjalje^Source/:; \:v AcaMHORSE HEADS :;i92dag.

Date: 25-NOV-2002

•t;^"pese ri£fri'o>n;:^COMPOSITE;'"..--;•rS&?c\$f.|S

©aite::|ReceKeIJ;::;t21-Nofeo2ilpsVs^;**^i;lf>^

			Detection	Date		Notebook
Analysis Performed	Result	Units	Limit	Analyzed	Method	Reference
Total Solids	76.5	%		21-NOV-02 00:00	CLP 3.0	02-123-7
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	<b>บ</b> น น น น น	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	130 260 130 130 130 130 130	23-NOV-02 06:35 23-NOV-02 06:35 23-HOV-02 06:35 23-NOV-02 06:35 23-NOV-02 06:35 23-NOV-02 06:35 23-NOV-02 06:35	EPA 8062 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0784 02-117-0784 02-117-0784 02-117-0784 02-117-0784 02-117-0784 02-117-0784
Extraction Information:	_			22-NOV-02 00:00	EPA 3550	02-090-42
Surrogate Recovery: Tetrachloro-m-xylene	104 120	<b>X</b> %				02-11^Z84 02-1^^fe>

Results calculated on a dry weight basis.

Approved by: Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033 QCj^^C

 KEY: ND 0
 U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/L
 = milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per billion)

 mg/L
 = analyte was detected in the method or trip blank
 J
 = result estimated below the quantitation limit

for meson services. Your samples will be discarded after 14 days unless we are advised otherwise.

## FRIEND LABC)RXT8RM $\overline{I \cdot N \cdot C}$

32 ITHACA STREET TELEPHONE (607) 565-3500 WAVERLY, NY 14892-1532 FAX (607) 565-4083

D a t e : 2 5 ~ N O V - 2 0 0 2

Lab Sample ID: L97127-7

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	85.5			21-NOV-02 00:00	CLP 3.0	02-123-7
EPA 6082						
PCS       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	120 230 120 120 120 120 120 120	23-NOV-02 07:06 23-KOV-02 07:06 23-NOV-02 07:06 23-NOV-02 07:06 23-NOV-02 07:06 23-NOV-02 07:06 23-NOV-02 07:06	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0785 02-117-0785 02-117-0785 02-117-0785 02-117-0785 02-117-0785 02-117-0785
Extraction Information:				22-NOV-02 00:00	EPA 3550	02-090-42
Surrogate Recovery: letrachloro-m-xylene DetachLorobiphenyl	110 120					02-117-0785 02-117-0785



Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 MY 10252 NJ 73168 PA 68180 EPA NY 00033

QC£&£

KEY: NO 9 U = None Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion) = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) = analyte was detected in the method or trip blank J = result estimated below the quantitation limit mg/**Ĺ** 

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost ^•^^^IWsie services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 PAX (607) 565-4083



#### Date:04-DEC-2002

Lab Sample ID: L97224-1

/Souree[:]:•-.y.iAdof#HO^HEWS|I?ZOE^^;|m•

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

;^[:];B^S^rrptiprii.:-c

Analysis Performed	Result	Units	Detection <u>Limit</u>	Date Analyzed	Method	Notebook Reference
Total Solids	82.1			27-NOV-02 13:32	CLP 3.0	02-123-8
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	120 240 120 120 120 120 120	26-N0V-Q2 01:24 26-N0V-02 01:24 26-N0V-02 01:24 26-N0V-02 01:24 26-N0V-02 01:24 26-N0V-02 01:24 26-N0V-02 01:24	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0815 02-117-0815 02-117-0815 02-117-0815 02-117-0815 02-117-0815 02-117-0815
Extraction Information:				25-NOV-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobiphenyl Sis Comment:D - Diluted.	132 164					02-1 02-1

Results calculated on a dry weight basis.

AUTA |

Lab Director

Approved by:

Page 1 of 1 NY 10252 NJ 73168 PA 63180 EPA NY 00033

œ:&£.£-

KEY: ND mg/ U = None Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion) = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per^m^lion) = analyte was detected in the method or trip blank ______i = result estimated below the quantitation limit

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceedI^^Fost e services. Your samples will be discarded after 14 days unless ue are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date: 03 - DEC - 2002

Lab Sample ID: L97224-2

Safnp&^|S\$&r^

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

.' "";S amglep

ft^^i^bife^:^^^:^'!!!!^

Analysis Performed	Result	Units	Detection limit	Date Analyzed	Method	Notebook Reference
Total Solids	76.6			27-NOV-02 13:32	CLP 3.0	02-123-8
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	130 250 130 130 130 130 130 130	26-NOV-02 01 :55 26-NOV-02 01 :55 26-NOV-02 01 :55 26-NOV-02 01 :55 26-NOV-02 01 :55 26-NOV-02 01 :55 26-NOV-02 01 :55	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0816 02-117-0816 02-117-0816 02-117-0816 02-117-0816 02-117-0816 02-117-0816
Extraction Information:				25-NOV-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: oro-m-xylene robiphenyl	128 165					02-117-0816 02-117-0816
is Comment:D - Diluted						

Results calculated on a dry weight basis.

Approved by? Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

_{QCi^a} £-

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our Liability exceed the cost e services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:03-DEC-2002

Lab Sample ID: L97224-3

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

):  $[1]^{1}$ ;  $[1]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2}$ ;  $[2]^{2$ 

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	66.7			27-NOV-02 13:32	CLP 3.0	02-123-8
EPA 8082						
FCB       1016         FCB       1221         FCB       1232         FCB       1242         FCB       1248         FCB       1254         FCB       1260		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	140 290 140 140 140 140 140 140	26-NOV-02 02:27 26-NOV-02 02:27 26-NOV-02 02:27 26-NOV-02 02:27 26-NOV-02 02:27 26-NOV-02 02:27 26-NOV-02 02:27	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0817 02-117-0817 02-117-0817 02-117-0817 02-117-0817 02-117-0817 02-117-0817
Extraction Information:				25-ноу-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: Tetrachloro-m-xylene Oecachlorobiphenyl	127 160					02-11 <u>7-3317</u>

Results calculated on a dry weight basis.

En A Approved by? Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

^{Qt}U&£−

KEY: ND o / u = None Detected < = less than ug/L = micrograms per liter (equivalent to.parts per billion)
mg/ milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million)
B = analyte was detected in the method or trip blank J = result estimated below the quantitation limit</pre>

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed e services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:03-DEC-2002

Lab Sample ID: L97224-4

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 [:]SAmpler'.^^r^S^i^SS^^??iMil?.^'^: *iy*§r; *l*&g'|!|i:|;;: *^fM^^SM^^y-f!*^ '•'•• ''-pesp^fp^

Bate: -  $i; \text{Rex3-e1}^v \in \$m \ W \pounds W^{\wedge} \& \& \&^{\circ}; :$ 

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	71.8	%		27-NOV-02 13:32	CLP 3.0	02-123-8
EPA 8032						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	บ บ บ บ บ บ บ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	140 270 140 140 140 140 140	26-KOV-02 02:58 26-NOV-02 02:58 26-NOV-02 02:58 26-NOV-02 02:58 26-NOV-02 02:58 26-NOV-02 02:58 26-NOV-02 02:58 26-NOV-02 02:58	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0818 02-117-0818 02-117-0818 02-117-0818 02-117-0818 02-117-0818 02-117-0818
Extraction Information:				25-NOV-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: TetrachIoro-m-xylene Deca^torobi phenyl	127 161 D	% %				02-117-0818 02-117-0818

^^^^^Jis Comment:D -- Diluted

Results calculated on a dry weight basis.

Approved by Lab Director

«

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033 QC tufi

 KEY: ND of U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/L = milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per million)

 B = analyte was detected in the method or trip blank
 J = result estimated below the quantitation limit______

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost e services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083



Date:03-DEC-2002

Lab Sample ID: L97224-5

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

#### \$amp;|fc

?t^^¥f5i^^SS^^1;fIMrO^-.i^o1by,c9EMT ... Baigl&eG©^^

Analysis Performed	Resul	t	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	77.5		%		27-NOV-02 13:32	CLP 3.0	02-123-8
EPA 8082							
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1254 PCB 1260	U U U U U U U		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	130 250 130 130 130 130 130 130	26-NOV-02 03:29 26-NOV-02 03:29 26-NOV-02 03:29 26-NOV-02 03:29 26-NOV-02 03:29 26-NOV-02 03:29 26-NOV-02 03:29	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0819 02-117-0819 02-117-0819 02-117-0819 02-117-0819 02-117-0819 02-117-0819
Extraction Information:					25-NOV-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobiphenyl	132 164	D	% X				02-11 "^11? 02-1.^ B
sis Comment:D - Diluted							

Results calculated on a dry weight basis.

«

Approved by Lab Director KEY: ND of U None Detected <= less than ug/L = micrograms per liter (equivalent to parts per billion) mg/L - mil igram per liter {equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) B _ analyte was detected in the method or trip blank J = result estimated below the quantitation limit ______ rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed • e services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:03-DEC-2002

Lab Sample ID: L97224-6

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

? ;vOe;^G;^:l:|>t"io^l::;

Bat^^eGe^^ecl^

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	77.3			27-N0V-02 13:32	CLP 3.0	02-123-fl
EPA 3082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	120 250 120 120 120 120 120	26-NOV-02 04:00 26-NOV-02 04:00 26-NOV-02 04:00 26-NOV-02 04:00 26-NOV-02 04:00 26-NOV-02 04:00 26-NOV-02 04:00	EPA 8082 EPA 8DS2 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0820 02-117-0820 02-117-0820 02-117-0820 02-117-0820 02-117-0820 02-117-0820
Extraction Information:				25-NOV-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: TetrachIoro-m-xylene Decachlorobiphenyl	122 150					02-117-0320 02-117-0820



Results calculated on a dry weight basis.

Bur Approved by Lab Director

Page 1 of 1 NY 10252 HJ 73168 PA 68180 EPA NY 00033

OX ^

ND o/ u = None Detected <= less than ug/L * micrograms per liter {equivalent to parts per billion) mg/C = milligram per liter (equivalent to parts per million) tng/kg = milligrams per kilogram (equivalent to parts per million) = analyte was detected in the method or trip blank · = result -estimated below the quantitation_himit

^WBRe nation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost services. Your samples will be discarded after 14 days unless we are advised otherwise.

WAVERLY, NY 14892-1532 FAX (607) 565-4083

 $\frac{\underline{I \ E \ N \ n}}{\underline{MORATORY}} \\ \underline{N \ \bullet \ C}$ 

AAA Environmental Peter Porter 6679 Moore Road

Syracuse, NY 13211

Lab Sample ID: L97224-7

••;;:;::i;#ra^;||i;i; iyjM^tlpRiIM

 $\langle i \rangle$  Sampl:edf;G3n;::;': bat-e-:,'-Re ce£we £i;I';

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	77.7			27-NOV-02 13:32	CLP 3.0	02-123-8
EPA £082						
PCS 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1254 PCB 1260	ប ប ប ប ប	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	130 250 130 130 130 130 130	26-NOV-02 05:34 26-NOV-02 05:34 26-NOV-02 05:34 26-NOV-02 05:34 26-NOV-02 05:34 26-NOV-02 05:34 26-NOV-02 05:34	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0823 02-117-0823 02-117-0823 02-117-0823 02-117-0823 02-117-0823 02-117-0823
Extraction Information:				25-NOV-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobi phenyl	102 115					02-11 ^ ^ 3 02-1 <b>1</b>



1#, 4/244

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC /jI/L

 KEY: ND of U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/L
 ~ milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per MHL>)

 = anatyte was detected in the method or trip blank
 J = result estimated below the quantitation limit

NASSe services. Your samples will be discarded after 14 days unless we are advised otherwise.



Date:03-DEC-2002

В



TELEPHONE (607) 565-3500

32 ITHACA STREET WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:03-DEC-2002

Lab Sample ID: L97224-8

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	76.6			27-NOV-02 13:32	CLP 3.0	02-123-8
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	-Wt-Cf	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	130 260 130 130 130 130 130	26-NOV-02 06:05 26-NOV-02 06:05 26-NOV-02 06:05 26-NOV-02 06:05 26-NOV-02 06:05 26-NOV-02 06:05 26-NOV-02 06:05	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0824 02-117-0824 02-117-0824 02-117-0824 02-117-0824 02-117-0824 02-117-0824
Extraction Information:				25-N0V-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: Tetrachloro-m-xylene DejgMkprobi phenyl	109 117					02-117-0824 02-117-0824

IHfy

Results calculated on a dry weight basis.

Approved by: Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC/

= None Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion) = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) = analyte was detected in the method or trip blank J = result estimated below the quantitation limit KEY: ND U = None Detected jng/

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost foWPresse services. Your samples will be discarded after 14 days unless we are advised otherwise.



TELEPHONE (607) 565-3500

32 ITHACA STREET WAVERLY, NY 14892-1532 FAX (607) 565-4083



Lab Sample ID: L97224-9

Selfie;;."- S<3Ur cfef; ^iw^fl^^JSEM^^i^i^

Date:03-DEC-2002

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	87.8	%		27-NOV-02 13:32	CLP 3.0	02-123-8
EPA 8082						
PCB       1016         PCS       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	* <b>Uf^</b> ប ប ប ប ប	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 210 110 110 110 110 110	26-NOV-02 06:36 26-NOV-02 06:36 26-NOV-02 06:36 26-NOV-02 06:36 26-NOV-02 06:36 26-NOV-02 06:36 26-NOV-02 06:36	EPA 8082 EPA B082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0825 02-117-0825 02-117-0825 02-117-0825 02-117-0825 02-117-0825 02-117-0825
Extraction Information:				25-NOV-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobi phenyl	115 131	%				02-11jMfi?⁵ 02-1^np*

%

Results calculated on a dry weight basis.





WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:03-DEC-2002

Lab Sample ID: L97224-10

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

&^^peisier&g£^{*}&oj}^, detwposHE >;• p.

Da't&:'! ReG:e;i.we a*i& 22*wov^02 J A\$*\$WMM?

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	87.8			27-ноv-02 13:32	CLP 3.0	02-123-8
EPA 8082 PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1254 PCB 1250	V^f	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 220 110 110 110 110 110	26-NOV-02 07:07 26-NOV-02 07:07 26-NOV-02 07:07 26-NOV-02 07:07 26-NOV-02 07:07 26-NOV-02 07:07 26-NOV-02 07:07	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-117-0826 02-117-0826 02-117-0826 02-117-0826 02-117-0826 02-117-0826 02-117-0826
Extraction Information:				25-NOV-02 00:00	EPA 3550	02-090-45
Surrogate Recovery: Tetrachloro-m-xylene Dec^Murobi phenyl	106 114					02-117-0826 02-117-0826



Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC Z&IL

 KEY: ND o/ U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/L = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million)

 = analyte was detected in the method or trip blank
 = result estimated below the quantitation limit

rmatlon In this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost fcKBVTese services. Your samples will be discarded after 14 days unless we are advised, otherwise.

ECT.CON INC.



 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I</t

^s1/^r

# Support Documentation



#### HAIN OF am ody record CUSTOME^^K PAGE ONE RESEARCH CIRCuf CLIENT: A M cv^vrifc INVOICE TO: WAVERLY NY 14892-1532 ADDRESS: ADDRESS: Telephone (607) 565 3500 E N 1 ۸ Fax (607) 565-4083 PHONE: LABORATORY FAX: Sample Srfei ^ [ Q ^ ^ ^ S PROJECT NO. / NAME COPY TO: ADDRESS: P.O. # ANALYSES/ TESTS REQUES $11 \underset{j \in STSD}{\text{HI}} 11 \underset{j \times \times \times \times}{\text{HI}}$ SAME ; NUMBER OF DATE & TIME OF v* ~ CONTAINERS SAMPLE DESCRIPTION -SAMPLE COLLECTION NUMBER. ^-ft-S^-cxH T^'5 **wm**jo-z. LAB USE ONLY Description: GrabNCfirnposjie--dther Matrix; DW WW MW^SbAir Other N'8-3S-vJ-001 il|^OX-"ffB'5 Description: Grab yorhpositeyOther Matrix: DW WW MW^oj&Air Other I(**H**<07^ / s ' r tfO-C-S<£-&v-oov / ?cg^ £• ©910 Description: Grab(Xoftip6sSfe Other Matrix: DW WW MW/SdifAir Other $ul*>/0^{1}$ 1 N-C-SS-T^X-OOI T^S'5 <£•,'01Y^ Description: Grab ydfnpg^ite^ Other Matrix- DW WW MV^JilAir Other 1 1 1 i 1 REUNQUISHED BY DATE /TIME ACCEPTED BY DATE/TIME OIB TO LABORATORY SAMPLER 11/20/0 *?**\$ • Hi- '^cd&c/eeftosr W. & SUSPECTED CONTAMINATION LEVEL NONE SLIGHT MODERATE HIGH (please circle)


CUSTOMED			ODY RECORD	PAGE
TT7T T JPJLiX vRIFM	ONE RESEARCH ^A IRCLE WAVERLY NY 14892-1532 Telephone (607) 565 3500		CUENT: <b>AAA</b> GMVEfto^^eMT-A^. INV ADDRESS: _{(Qt} JSjrrg ADD	OICE TO: RESS: <b>&lt; r</b>
LABORATOR?	Fax (607) 565-4083		PHONE: FAX:	
Sampled	fa^tM^		PROJECT NO. / NAME COP' ADD	/ TO: RESS:
P.O. #		ts> : < =C =C !		
DATES-TIME OF '" SAMPLECOLLECTION	SAMPLE DESCRIPTION	"NUMBER OF CONTAINERS.	ANALYSES'/ TESTS REQUESTED	I ' ' * - NUMBER
(Vzc>/ox	^0-S -vs/'Co^		?c6'3	UB USE .ONLY
		Description: Grab <u>CComposite</u> Oth Matrix: DW WW MW SolDajr Oth	her her	i w
'cu	t ^ - ^ - S ' O O		T^S'5	
		Description: Gra <u>6 Compos</u> t Oth Matrix: DW WW MW fiEEXir Oth	her	
		Description: Grab Composite Oth Matrix: DW WW MW Soil Air Oth	ner ner	
		Description: Grab Composite Oth Matrix: DW WW MW Soil Air Oth	ier er I	" - IS '" 1 i i
, REUNQUISHED BY {, SAMPLER 1 *	ATE/TIME;	ACCEPTED BY Coban		<b>JORATORY</b>
	<u>pe</u>	pruse		)N LEVEL
		V	NONE SLIGHT MODER	ATE HIGH (please circle)

TTT_T_V_X_X       ONE RESEARCOCIRCLE       ADDRESS:       ADDRESS: </th <th>CUSTOMED</th> <th>Mul</th> <th>HAIN OF CIATO</th> <th>DY REC</th> <th>ORD</th> <th>PAGE</th>	CUSTOMED	Mul	HAIN OF CIATO	DY REC	ORD	PAGE
Sample Site: ^ p s g ^ p ^ s     £     PROJECT NO. / NAME     COPY TO: ADDRESS.       P.O.#     C	T7T T J^ J^ X <u>F.R I E H D</u> ^ABQRATORY	^{ONE} RESEARC^CIRCLE' WAVERLY NY 14892-1532 Telephone (607) 565 3500 _{Fax (607} ) 565-4083		CLIENT: /4/\^ ADDRESS: (5M) PHONE:	E^VTRx^^AE// Sn-*e^ FAX:	^^WoiCETO: ADDRESS:
P.O.# <deter jime="" of<br="">SMIRE COLLECTION. SMIRE COLLECTION. SAMPLE DESCRIPTION E-ft-SS-v^-ooS" </deter>	Sample Sitei ^ p s	g ^ p ^ s	£	PROJECT NO. / N	JAME	COPY TO: ADDRESS:
CONTE AJIME OF SMAPLE DESCRIPTION     SAMPLE DESCRIPTION     CONTAINERS,	P.O.#		CL.«U C -o t— Io			
Bescription: Grab damposite Other Matrix: DW WW MW/SoilbATT Other      F-i3-SS-Z2"-003     YE\$S      Description: Grab Composite Other Matrix: DW WW MW/SoilbAT Other      Description: Grab Composite Other Matrix: DW WW MW/SoilbAT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW MW/Soil AIT Other      Description: Grab Composite Other Matrix: DW WW/MW/Soil AIT Other      Supercence Contamination Level	< DATE ajIME OF SAMPLE COLLECTION.	SAMPLE DESCRIPTION £-ft-SS~v^-ooS"	NUMBER OF' CONTAINERS, *	fcB'5	Lyses / Tests Requ <b>ires</b>	SETElj ^F _f "' <u>g</u> ^v f.^^WUMIJR_
Description: Grab Composite Other         Matrix: DW         WW MW/SolbAir Other         Description: Grab Composite Other         Matrix: DW         Matrix: DW         WW MW/Soil Air Other         Description: Grab Composite Other         Matrix: DW         Matrix: DW <td>•<i w<sup="">07_</i></td> <td>£-i3~SS-Z2"-003</td> <td>Description: Grab d<u>gmposit</u>^ Other Matrix: DW WW Mw75oil&gt;A"ir Other</td> <td>Y£\$s</td> <td></td> <td>١</td>	• <i w<sup="">07_</i>	£-i3~SS-Z2"-003	Description: Grab d <u>gmposit</u> ^ Other Matrix: DW WW Mw75oil>A"ir Other	Y£\$s		١
Description: Grab Composite Other Matrix: DW WW MW Soil Air Other Description: Grab Composite Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air Other Matrix: DW WW MW Soil Air			Description: GrabC <u>gomposTfe^</u> Other Matrix: DW WW MW/SotbAir Other			
Description: Grab Composite Other Matrix: DW WW MW Soil Air Other DATE/IME DATE/IME DATE/IME NOTES TOILABORATORY Ujzo/o Ujzo/o Ujzo/o fifio fifio			Description: Grab Composite Other Matrix: DW WW MW Soil Air Other			
SAMPLER L A. Schreickentor A. Schreickentor Ififio Ififio Ififio Ikco SUSPECTED CONTAMINATION LEVEL			Description: Grab Composite Other Matrix: DW WW MW Soil Air Other			
A. Schreikentor Inco Bays Ikco Inco Inco Ikco	SAMPLER I	r-y' DATEOIME	10W/BCIHACCEPTED BY. <	DATEfIIME	NOTES	TOILABORATORY
SUSPECTED CONTAMINATION LEVEL	A. SCHREEK	the st	DLange	IkcO		
					SUSPECTED CONTAN	MINATION LEVEL

DY RECORD	CLIENT: AAA ENVERONMENTEN INVOICE TO: ADDRESS: ONSETCE ADDRESS: PHONE: FAX:	PROJECT NO. / NAME COPY TO: 1 & 2.6 & ADDRESS: Hotse Heads	ANALYZES// TESTS REQUESTED / CCC/ MILLE	PcB's		Pert's	8	Peres:		Reas		DATITIME NOTES TO LABORATORY	e) Enlegh	245 suspected contamination level None sugar moderate High (please circle)
	E> H	etic Buffer p dium sulfice	20 24		other fr Other		ir Other		a Other		tr Other		6	
F	ec Hq sist	0H # 2100 900 0H bH >75 20 ⁴ bH <5	20 10 10 10 10 10 10 10 10		W LOIL A		NW Soll A		Komposi Komposi MW Solitz		WW South		0000	
0 Z	HC1 PH <2	8 btos otdroo 2> Hq E	≰   ∰   NUMBER CONTAIN		NW NW N		UN WW I		 ion: Grab DW WW   11		ion: Grab DW WW			
CHAI	, , ,	treated tium thiosulf: S> Hq I	20 20 20	ind.	 Descripti Matrix: [		│ │ │ Descripti Matrix: □	×	Descripti Matrix: {	×	Descriptů Matrix: C			א <u>רא</u>
2. 7.		T												$\mathbf{A}$
	//////////////////////////////////////		CRITION	100-0		5		3-001		100-		/TIME	R	
	ARCH C X NV 1 (607) 54		MPLE DES	-22-61		Sufero				m - /s			<u>F</u>	<u> </u>
	NE RESE WAVERI ephone <b>Fax</b>		AS +	4		p-3-		0-0		- 812		A	Ro C	) a
*		প			,ö		12		Ģ		5	<b>3</b>	5ar S	22
CUSTOME	F R I E N	Scrriple Stre	P.O. # DATE & IME O	u/21/02	S, B	- 11/21/02	<u>ف</u> ن <u>ف</u>	11/11/02	(23	1/21/02 0	6.0	RELINGUISHED	M. P.C.W.	2



# IIf/ PHAIN OF C(§jrODY RECORD



FRIEN~D LABORATORY Sample Sitei	OHE RESEARCf/ciRCLE ^{-, /} WAVERLY NY 14892-1532 Telephone (607) 565 3500 Fax (607) 565-4083	/1 i i I i i , , , , , , , , , , , , , , , , , , ,	i       rr.
P.O. #		$\begin{array}{c c} I & 4 & \mathbf{a} \\ I & \overline{\mathbf{y}} & \mathbf{a} \\ I & \overline{\mathbf{y}} & \mathbf{a} \\ I & \mathbf{z} & I_{\mathbf{z}} \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	0.000
;,DATE & TIME OF ^SAMPLE COLLECTION	SAMPLE DESCRIPTION-	NUMBER OF CONTAINERS	ANALYSES / TESTS REQUESTED
	•-^*-S-K)~0*		LAB USE ONLY
IfS^		Description: Gra6[]Bom^^te Other Matrix: DW WW MWJsSjl Air Other	
	-Sj.^-S-S-o^		t?cSs
		Description: Grab fCof <u>ttposTt6&gt;</u> Other Matrix: DW WW MW^oibAir Other	
iMzt-C^	P-6-S9-tr~oc		?c5>
		Description: Grab ^o <u>KiposItg</u> Other Matrix: DW WW MVTS61I Air Other VT	
	P-B-S^-vd-ay	ΛΙ	PCZTs
RELINQUISHED BY SAMPLER i= A	DATE /TIME ¥MZ ↓→ <del>2</del> € Tpi	Description: Grab^jimpiisU^Other Matrix: DW WW MVfgoSI Air Other —I_1_1_1_1_1_1_1I ACCEPTED BY	$\frac{701}{izs0} * = -\frac{1}{2}$ NOTES TO LABORATORY izs0 njja/aa c ^ SUSPECTED CONTAMINATION LEVEL NONE SLIGHT MODERATE HIGH (please circle)



RELINQUISHED BY	
SAMPLER' ^ - ^ 4 ^ "	11/21/02_ Ho 60/2020
fico/ <azsj^< th=""><th>MID^-A'ynJiD</th></azsj^<>	MID^-A'ynJiD
/	

NONE

NOTES TO LABORATORY

SUSPECTED CONTAMINATION LEVEL



Laboratory Case Narrative



Laboratory Validation and Usability Assessment

# Project: AAA Environmental Viacom/Horseheads 19208 Sampled November 20 & 21, 2002

The data reported in this package have been reviewed for compliance with QC acceptance limits as specified in the method cited for each analysis.

These statistical limits are typically based on historical laboratory data for a given sample matrix, and will not exceed any default limits specified by the method. CLP acceptance limits are also considered.

The following Quality Control operations are considered in the validation of reported results:

Holding times, surrogate recovery, spiked sample recovery, duplicates/spiked duplicate precision, tuning criteria, internal standard variation, continuing calibration variation, reference (check) sample recovery, and instrument, method, trip and field blanks. The appropriate frequency for each operation is also considered.

Every effort has been made to report data that is compliant with the EPA methodology cited for each analysis. In cases where the laboratory was unable to meet all method requirements prior to sample expiry, either due to the nature of the sample or other technical difficulty, results are reported with qualification with the understanding that qualified results may not be suitable for compliance purposes. The internal technical review is based on the USEPA Contract Laboratory Program *National Functional Guidelines for Organic Review* (EPA 540/R-94/012, February 1994) and *National Functional Functional Guidelines for Inorganic Review* (EPA 540/R-94/013, February 1994).

# Validation

Nineteen samples were received on November 21 & 22, 2002, with ice. The temperature, as received, was  $4^{\circ}C$  and  $6^{\circ}C$ 

# РСВ

The site samples were analyzed by EPA method 8082 for PCBs with a two-microliter injection volume.

RTX-CLPesticides 1 and RTX-CLPesticides 2 capillary columns, 0.32 mm ID, with purge packed inlets and electronic pressure control are used on an Hewlett-Packard 5890 series II with dual ECD and an HP 7673 autosampler with simultaneous injection. Data is collected with HP Chemstation software and processed by Thruput with Target software. If a peak is detected within the retention time window of a target compound, second-column confirmation is performed. Column RTX-CLPesticides 2 was used for the primary analysis. Column RTX-CLPesticides 1 was used to confirm only the fingerprint, not the quantitation. Form 10B's are provided in order to verify pattern recognition.

PCB 1254 was detected in site sample N-C-SS-B2-001. Second-column analysis confirmed the presence of this target. No PCBs were detected in the associated method blank.

Surrogate recoveries were within limits.

Site sample K-B-SS-W-005 was spiked in duplicate. Spike recoveries were within acceptance limits.

Precision, as indicated by RPD, was within acceptance limits.

Two blank spikes were associated with the site samples. Blank spike recoveries were within acceptance limits.

No analytical difficulties were encountered.

# Usability Assessment

All reported data were found to be valid and usable within the EPA National Functional Validation guidelines except those that were qualified in this Laboratory Validation.

Laboratory validation and Usability assessment conducted by:  $C \land M J \land \land L \land A \land J \land$ ,

Date: March 31, 2003

Elizabeth A. Keator Quality Assurance

Laboratory Validation p.2

AAA L97127, L97224



# Worksheets



EPA Region II 846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

W-G-S-UJ-OO 1 ?7/»7«/ 7-d-^fr-^O'C*;/ ?7*>*W YES NO N/A

# u-fc-j&a-**"'***' PACKAGE COMPLETENESS AND DELIVERABLES

CASE NUMBER: '___' SDG# 7 ' '^7 / 7 7 D-^Y

LABi^Vf^d UttWfrki/frv IE>d- SITE:.

- 1.0 Data Completeness and Deliverables
  - 1.1 Has all the data been submitted in CLP deliverable format?
  - 1.2 Have any missing deliverables been received and added to the data package?
  - ACTION: Call lab for explanation/resubmittal of any missing deliverables. If lab cannot provide them, note the effect on review of the data in the reviewer narrative.

## 2.0 Cover Letter, SDG Narrative

- 2.1 Is a laboratory narrative or cover letter present?
- 2.2 Are the case number and/or SDG number contained in the narrative or cover letter?

## 3.0 Data Validation Checklist

- 3.1 Does this data package contain:
- Water data? _____ J Waste data? _____ J Soil/solid data? ____^/

U	

J_L

*£

۸

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.l.•

s£

YES NO N/A

[i/>

#### POLYCHLORINATED BI PHENYLS

#### 1-0 Traffic Reports and Laboratory Narrative

- 1.1 Are traffic report and chain-of-custody forms present for all samples?
- ACTION: If no, contact lab for replacement of missing or illegible copies.
- 1.2 Do the traffic reports, chain-of-custody forms or SDG narrative indicate any problems with sample receipt, condition of the samples, analytical problems or special circumstances affecting the quality of the data?
- ACTION: If any sample analyzed as a soil, other than TCLP, contains 50%-90% water, all data should be qualified as estimated, "J." If a soil sample, other than TCLP, contains more than 90% water, non detects shall be qualified as unusable, "R."
- ACTION: if samples were not iced or if the ice was melted upon arrival at the laboratory and the temperature of the cooler was elevated (> 10° C), flag all positive results "J" and all non-detects "UJ".

#### 2.0 Holding Times

2.1 Have any PCB technical holding times, determined from date of collection to date of extraction, been exceeded?

Water and waste samples for PCB analysis must be extracted within l days of the date of collection. Extracts must be  $\overset{*f"?/^7}{CdUeM}$ analyzed within 40 days of the date of extraction. Soils and solid samples must be extracted within 14 days of collection and analyzed within 40 days of extraction.

ACTION: If technical holding times are exceeded, flag all positive results as estimated, "J," and sample quantitation limits "UJ" and document in the narrative that holding times were exceeded. If analyses were done more than 14 days beyond holding time, either on the first analysis or upon re-analysis, the reviewer must use PA Region II 46 Method 8082 STANDARD OPERATING PROCEDURE

Date: May, 2002 SOP HW-23B, Rev.1.0

J_L

<u>f1</u>

J J_ _

LL -4*J

YES NO N/A

professional judgement to determine the reliability of the data and the effects of additional storage on the sample results. At a minimum, all the data should at least be qualified "J", but the reviewer may determine that non-detects are unusable, "R."

#### Surrogate Recovery (Form II JJA fir p*H- fpAL - /JUiV 3.0

3.1 Were the recoveries of tetrachloro-m-xylene (TCMX) and decachlorobiphenyl (DCB) presented on CLP Surrogate Recovery Summary forms (Form II), or equivalent, for each of the following matrices?

a.	Water/Waste	J_L	^
b.	Soil/Solid	J_L	s*S

- 3.2 Are all the PCB samples listed on the appropriate surrogate recovery form for each of the following matrices?
  - a. Water
  - b. Waste
  - с. Soil/Solid
- ACTION: Call lab for explanation/resubmittals. If missing deliverables are unavailable, document the effect in the data assessment.
- 3.3 Did the laboratory provide their developed in-house Surrogate recoveries?
- ACTION: If no, use 70 -130% recovery to qualify'in section 3.4 below.
- 3.4 Were surrogate recoveries of TCMX or DCB outside of the laboratory-established upper (UCL) or lower (LCL) control limits for any sample or blank? J L _'

Circle all outliers in red. ACTION:

ACTION: No qualification is done if surrogates are diluted out. If recovery for both surrogates is



STANDARD OPERATING PROCEDURE

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

below the LCL, but above 10%, flag all results for that sample "J". If recovery is < 10% for either surrogate, qualify positive results "J" and flag non-detects "R". If recovery is above the UCL for <u>both</u> surrogates qualify positive values "J".

- Note: DCB is used when PCBs are determined as Aroclors. DCB is the internal standard when determining PCB congeners and TCMX the surrogate.
- 3.5 Were surrogate retention times (RT) within the windows established during the initial 5-point analysis?
- ACTION: If the RT limits are not met, the analysis may be qualified unusable (R) for that sample on the basis of professional judgement. However, flag positive hits as estimate (J) if confirmed by GC/MS analysis.
- 3.6 Are there any transcription/calculation errors between raw data and Form II?

i L

f 1

J L _____

ACTION: If large errors exist, call lab for explanation/resubmittal. Make any necessary corrections and document the effect in data assessments.

4.0 Laboratory Control Sample /J  $fi sp^* y V \ll - " / a^* \sim *$ 

4.1 Are raw data and percent recoveries present for all <u>Laboratory Control</u> samples as required by Method 8000B (section 8.5) and Method 8082 (section 8.4.2)?

Verify that QC check samples were extracted and analyzed by the same procedures used for the actual samples.

- ACTION: If any <u>Laboratory Control Sample</u> data are missing, call the lab for explanation /resubmittals. Make note in the data assessment.
- NOTE: For aqueous samples, an additional QC check sample must be prepared and analyzed when any analyte in a matrix spike fails the required acceptance criteria (see section 5.3 below). The additional QC check sample must contain each analyte that failed in the MS analysis.

EPA Region II 846 Method 8082

#### STANDARD OPERATING PROCEDURE

Date: May, 2002 SOP HW-23B, Rev.1.0

1111 ×1

- Note: When the results for matrix spike analysis indicates a problem due to sample matrix effects, the LCS results are used to verify the laboratory can perform the analysis in a clean sample.
- 4.2 Were Laboratory Control Samples analyzed at the required concentration for all analytes of interest as specified in Method 8000B (sec.8.5)?
- (sec.8.5)? J_L ACTION: If Laboratory Control Samples were not analyzed at the required concentration or the required frequency, make note in the data assessment and use professional judgement to determined the affect on the data.
- 4.3 Were the LCS recoveries within the laboratory's in-house per cent recoveries (if not available, use 70 130%) J_/____
- 4.4 If no, were <u>Laboratory Control Samples</u> re-analyzed?
- Note: Corrective action must be taken when one or more of the analytes of interest fail the QC acceptance criteria (Method 8000B, section 8.7.4)
- ACTION: If QC check samples were not re-analyzed, or a general system problem is indicated by repeated failure to meet the QC acceptance criteria specified in the method, make note in the data assessment and use professional judgement to determine the effect on the data.

 $u_{h}jL. j?u+ / A -$ Matrix Spikes (Form III) 5.0

- 5.1 Are all data for one matrix spike and matrix duplicate (unspiked) pair (MS/Dup) or matrix spike/matric spike duplicate (MS/MSD)present and complete for each matrix Method 8082(section 8.4.1)?
- NOTE: For soil and waste samples showing detectable amounts of organics, the lab may substitute replicate samples in place of the matrix spike • (see Method 8000B-40, section 8.5.3)).
- 5.2 Have MS/Dup or MS/MSD results been summarized on modified CLP Form III?
- ACTION: If any data are missing take action as specified in section 3.2 above.
- 5.3 Were matrix spikes analyzed at the required frequency



±S

#### STANDARD OPERATING PROCEDURE

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

for each of the following matrices? (One MS/Dup, MS/MSD must be performed for every 20 samples of similar matrix or concentration level. Laboratories analyzing one to ten samples per month are required to analyze at least one MS per month (Method 8000B-39 (section 8.5)).

- a. Water
- b. Waste
- c. Soil/Solid

ACTION: If any MS/Dup or MS/MSD data are missing, take the action specified in 3.2 above.

5.4 Were the 70 - 130% recoveries used to compare the matrix spike recoveries, or did the lab use the optional QC acceptance criteria discussed in Method 8000B-40(section 8.5.3.1)?

List the criteria used and make note in data assessment.

Criteria used :

5.5 Was the matrix spike prepared at the proper spike concentration? (Method 8000B, section 8.5.1-8.5.2)

For aqueous organic extractable, the spike concentration should be prepared according options in: Method 8000B-40, (section 8.5.1 and 8.5.2).

ACTION: No action is taken based on MS or replicate data alone. However, using informed professional judgement, the data reviewer may use the matrix spike or laboratory replicate results in conjunction with other QC criteria and determine the need for some qualification of the data. In some instances it may be determined that only the replicate or spiked samples are affected. Alternatively, the data may suggest that the laboratory is having a systematic problem with one or more analytes, thereby affecting all associated samples. *S

EPA Region II 846 Method 8082 STANDARD OPERATING PROCEDURE

Date: May, 2002 SOP HW-23B, Rev.1.0

۸

SA

YES NO N/A

IV^

- 6.1 Was reagent blank data reported on CLP equivalent Method Blank Summary form(s) (Form IV)?
- 6.2 Frequency of Analysis: Has a reagent blank been analyzed for every 20 (or less) samples of similar matrix or concentration or each extraction batch?
- ACTION: If any blank data are missing, take action as specified above (section 3.2) . If blank data is not available, reject (R) all associated positive data. However, using professional judgement, the data reviewer may substitute field blank data for missing method blank data.
- 6.3 Chromatography: review the blank raw data chromatograms, quant reports or data system printouts.

Is the chromatographic performance (baseline stability) for each instrument acceptable for PCBs?

- ACTION: Use professional judgement to determine the effect on the data.
- 7.0 Contamination
  - NOTE: "Water blanks", "distilled water blanks" and "drilling water blanks" are validated like any other sample and are <u>not</u> used to qualify the data. Do not confuse them with the other QC blanks discussed below.
  - 7.1 Do any method/instrument/reagent/cleanup blanks have positive results for PCBs? When applied as described below, the contaminant concentration in these blanks are multiplied by the sample Dilution Factor and corrected for % moisture when necessary.
  - 7.2 Do any field/rinse blanks have positive PCB results? AW W - V = tf + t/*/*#* -_L1
  - ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)
  - NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data.



USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

_ s ^

f 1

Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified for surrogate, or calibration QC problems.

ACTION: Follow the directions in the table below to qualify sample results due to contamination. Use the largest value from all the associated blanks.

Sample cone > EDL but < 5	Sample cone < EDL & is <	Sample cone > EDL & > 5
x blank	5 x blank value	x blank value
Flag sample result with a "U"	Report EDL & qualify •U"	No qualification is needed

- NOTE: If gross blank contamination exists, all data in the associated samples should be qualified as unusable (R).
- 7.3 Are there field/rinse/equipment blanks associated with every sample? ^ A^ (V *furvft** /V>p*t-if_c/
- ACTION: For low level samples, note in data assessment that there is no associated field/rinse/equipment blank. Exception: samples taken from a drinking water tap do not have associated field blanks.

8.0 GC Apparatus and Materials AJA~ -/ v ff-*- f~ / '& '***'

- 8.1 Was the proper gas chromatographic capillary column used for the analysis of PCBs?
- Action: Check raw data, instrument logs, or contact the lab to determine what type of columns were used. (Method 8082, section 4.2)
- 8.2 Indicate the specific type of narrow bore or wide bore (.53 mm ID, fused silica GC columns, such as DB-608 and DB-1701 or equivalent).

column 1:

column 2:

ACTION: Note any changes to the suggested materials in. section 8.1 above in the data assessment. Also note the impact (positive or negative) such changes have on the analytical results.

^ K EPA Region II 46 Method 8082 Date: May,-2002 SOP HW-23B, Rev.1.0

Λ

()

 $J_{y_f} L J^{l_h} \Gamma$ 

YES NO N/A

#### 9.0 Calibration and GC Performance

- 9.1 Are the following Gas Chromatograms and Data Systems Printouts for both columns present for all samples, blanks, MS, replicates?
  - a. Samples
  - b. All blanks
  - c. Matrix spike samples
  - d. 5 pt. initial calibration standards
  - e. calibration verification standards
  - f. Laboratory Control samples (LCS)

ACTION: If no, take action specified in 3.2 above  $.///^/ \sim yU \, 0 \langle J^{\prime} \rangle$ 

- 9.2 Are data summary forms (containing calibration factors or response factors) for the initial 5 pt. calibration and daily calibration verification standards present and complete for each column and each analytical sequence?
- Note: Calibration Aroclor mixtures other than 1016/1260 may be used (as per approved project QA plan)
- NOTE: If internal standard calibration procedure is used (Method 8000B-15(section 7.4.2.2)), then response factors must be used for %RSD calculations and compound quantitation. If, external standard calibration procedures are used (Method 8000B-16 (section 7.4.2.1)), then calibration factors must be used. The internal standard approach is highly recommended for PCB -congener analysis.
- ACTION: If any data are missing or it cannot be determined how the laboratory calculated calibration factors or response factors, contact the lab for explanation/resubmittals. Make necessary corrections and note any problems in the data assessment.
- 9.3 Are there any transcription/calculation errors between raw data and data summary forms?

ACTION: If large errors exist, call lab for

*\-^ue^^~fd'**^A^* » *lA⁰T/jt*^*_____

#### STANDARD OPERATING PROCEDURE

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0



from the state.

explanation/resubmittal, make necessary corrections and document the effect in data assessments.

- 9.4 Are standard retention time (RT) windows for each PCB peak of interest presented on modified CLP summary forms?
- ACTION: If any data are missing, or it cannot be determined how RT windows were calculated, call the lab for explanation/resubmittals. Note any problems in the data assessment.
- NOTE: Retention time windows for all PCBs are established using retention times from three calibration standards analyzed during the entire analytical sequence (Method 8000B, section 7.6).

Best results are obtained using retention times which span the entire sequence; i.e., using the calibration verification/continuing calibration standards analyzed every 12 hours.

- 9.5 Were RT windows on the confirmation column established using three standards as described above?
- NOTE: RT windows for the confirmation column should be established using a 3 pt. calibration, preferably spanning the entire analytical sequence as described in 9.4 above. If RT windows on one column are tighter than the other, this may result in false negatives when attempting to identify compounds in the samples.
- ACTION: Note potential problems, if any, in the data assessment.
- 9.6 Do all standard retention times in each level of the initial 5 pt. calibrations for PCBs fall within the windows established during the initial calibration sequence?
- ACTION i: If no, all samples in the entire analytical sequence are potentially affected. Check to see if three standard spanning the entire sequence were used to obtained RT windows. If the lab used three standards from the 5 pt., RT windows may be too tight. If so, RT windows should be recalculated as per Method 8081B-15 (section 7.4.6).
  - ii. Alternatively, check to see if the chromatograms contain peaks

STANDARD OPERATING PROCEDURE

PA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

within an expanded window surrounding the expected retention times.

If no peaks are found and the surrogates are visible, non-detects are valid. If peaks are present but cannot be discerned through pattern recognition or by using revised RT windows, qualify all positive results and non-detects as unusable, "R".

- 9.7 Has the linearity criteria for the initial calibration standards been satisfied for both columns? (% RSD must be < 20.0% for all analytes).  $y_0 ext{ f}^{\Lambda}$
- ACTION: If no, qualify all associated positive results generated during the entire analytical sequence "J" and all non-detects "UJ". When RSD > 90%, flag all non-detect results for that analyte "R" (unusable).
- 9.8 Does the calibration verification/continuing Calibration standard contain the PCB peaks of interest, analyzed on each working day, prior to sample analyses (Method 8082, sections 7.6.2)?
- 9.9- Has a calibration verification/continuing calibration standard been analyzed after every 10 samples and at the end of each analytical sequence (Method 8082, section 7.6.2)
- ACTION: If no, take action as specified in section 3.2  $jJL^{\circ}l[$   $tkJh^{\wedge}$  above.  $^{\circ}V * ^{\circ}A^{\circ}$
- 9.10 Has the percent difference (%D) exceeded ± 15% for any PCB analyte in any calibration verification/ Continuing calibration standard?
- 9.11 Has a new 5 pt. initial calibration curve been generated for those PCB analytes which failed in the calibration verification/continuing calibration standard (8000B, section 7.7.3), and all samples which followed the out-of-control calibration verification/standard continuing calibration Standard?

ACTION: If the %D for any analyte exceeded the  $\pm$  15% criterion and the instrument was not recalibrated /&/(* for those analytes, qualify positive results for //foy/c¹- *?* <f 4&*tf all associated samples (those which followed the ^-/fc 2. •\$*"•"* ^ fr>\$ out-of-control standard) "J" and sample v/^J ' quantitation limits "UJ". If the %D was > 90% . _. -p y₀/U

-PCB ii -

^{77M}*'⁷".?/*

?7i>7 i; **\ *

 $\Lambda^{A}$ 



USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

for any analyte, qualify non-detects "R", unusable.

9.12 Have retention time (RT) windows been properly calculated for each analyte of interest (Method 8000B, section 7.6), using RTs from the associated calibration verification/continuing standard?

ACTION: If no, take action specified in section 3.2 above

- 9.13 Do all standard retention times for each calibration verification/continuing calibration standard fall within the windows established during the initial calibration sequence?
- 9.14 Do all standard retention times for each midconcentration standard (analyzed after every 10 samples) fall within the daily RT windows
- ACTION: If the answer to either 9.13 or 9.14 above is no, check the chromatograms of all samples which followed the last in-control standard. All samples analyzed after the last in-control standard must be re-injected, if initial analysis indicated the presence of the specific analyte that exceeded the retention time criteria. If samples were not re-analyzed, document under Contract Non-compliance in the Data Assessment.

Reviewer has two options to determine how to qualify questionable sample data. First option is to determine if possible peaks are present within daily retention time window. If no possible peaks are found, non-detects are valid. If possible peaks are found (or interference), qualify positive hits as presumptively present "NJ" and non-detects are rejected "R". Second option is to use the ratio of the retention time of the analyte over the retention time of either surrogate. The passing criteria is + 0.06 RRT units of the RRT of the standard component. Reject "R" all questionable analytes exceeding criteria, and "NJ" all other positive hits.

For any multi-response analytes, retention time windows should be used but analyst and reviewer should rely primarily on pattern recognition or use option 2 specified in paragraph above.

9.15 Are there any transcription/calculation errors

useo II CM four IA. quant four IA.

PA Region II 46 Method 8082 STANDARD OPERATING PROCEDURE

Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

**u**/

between raw data and data summary forms?

ACTION: If large errors exists, call lab for explanation/resubmittal, make any necessary corrections and document the effect in data assessments under "Conclusions".

10.0 Analytical Sequence Check (Form VIII-PEST)

- 10.1 Have all samples been listed on CLP Form VIII or equivalent, and are separate forms present for each column?
- ACTION: If no, take action specified in 3.2 above.
- 10.2 Was the proper analytical sequence followed for each initial calibration and subsequent analyses?

14.



10.3 Were the TCMX/DCB surrogate RTs for the samples within the mean surrogate RT from the initial calibration?

Action: If no, see "Action" in section 9.14 above

# 11.0 Extraction Techniques for Sample Preparation ijj^ J/ file $-ilJ^-w^x$

Method 8081B permits a variety of extraction techniques to be used for sample preparation. Which extraction procedure was used?

- 1. Aqueous samples:
  - 1. Separatory funnel (Method 3510)
  - 2. Continuous liquid-liquid extraction (Method 3520)
  - 3. Solid phase extraction (Method 3535)
  - 4. Other
- 2. Solid samples:
  - 1. Soxhlet (Method 3540)



USEPA Region II SW846 Method 8082

Date	::	May,	2002	
SOP	ΗV	V-23B,	Rev.	L.0

YES NO N/A

V

S

JUL

J_L

J_L

- 2. Automated Soxhlet (Method 3541)
- 3. Pressurized fluid (Method 3545)
- 4. Microwave extraction (Method 3546)
- 5. Ultrasonic extraction (Method 3550) J_L *s
- 6. Supercritical fluid (Method 3562) <u>L</u>L
- 7. Other

#### 11-1 Extract Cleanup - Efficiency Verification (Form IX)

- 11.1.1 Method 8082 (section 7.2) references method 3660 (sulfur) and 3665A (sulfuric acid) to use for Cleaning extracts. Were one or both method used? J ]_
- ACTION: If no, take action specified in 3.2 above. If data suggests cleanup was not performed, make note in the data assessment.
- NOTE: Method 3620A, Florisil, may be used per approved project QA plan. The method does not list which analytes and surrogate(s) to use to verify column efficiency. The reviewer must check project plan to verify method used as well as the correct PCB list. If not stated or available, use the CLP listing or accept what the laboratory used.
- 11.2 Are all samples listed on modified CLP PCBs Florisil/Cartridge Check Form?
- ACTION: If no, take action specified in 3.2 above.
- 11.3 Was GPC Cleanup (method 3640A) performed?
- NOTE: GPC cleanup is not required and is optional. The reviewer should check Project Plan to verify requirement.
- 11.4 Were the same PCB analytes used in calibration used to check the efficiency of the cleanup procedures? <u>LL</u>
- 11.5 Are percent recoveries (% R) of the PCBs and surrogate compounds used to check the efficiency of the cleanup procedures within lab's in-house QC limits (use 70-130% if not available)

70-130% for GPC calibration?

PA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

Qualify only the analyte(s) which fail the recovery criteria as follows:

ACTION: If % R are < 80%, qualify positive results "J" and quantitation limits "UJ". Non-detects should be qualified "R" if zero %R was obtained for PCBs. Use professional judgement to qualify positive results if recoveries are greater than the upper limit.

12.0 PCB Identification

- 12.1 Has CLP Form X or equivalent, showing **retention time** data for positive results on the two GC columns, been completed for every sample in which a PCB was detected?
- ACTION: If no, take action specified in 3.2 above, or compile a list comparing the retention times for all sample hits on the two columns.
- 12.2 Are there any transcription/calculation errors between raw data and data summary forms (initial calibration summaries, calibration verification summaries, analytical sequence summaries, GPC and cleanup verification forms)?
- ACTION: If large errors exist, call lab for explanation/resubmittal, make necessary corrections and note error in the data assessment.
- 12.3 Are retention times (RT) of sample compounds within the established RT windows for both columns/analyses?
- ACTION: Qualify as unusable (R) all positive results which were not confirmed by second GC column analysis. Also qualify "R", unusable, all positive results not within RT windows unless associated standard compounds are similarly biased. The reviewer should use professional judgement to assign an appropriate quantitation limit.
- 12.4 Check chromatograms for false negatives, especially if RT windows on each column were established differently. Were there any false negatives?









* /

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

97127-4. 34.6 pricher 1254

ACTION: Use professional judgement to decide if the compound should be reported. If there is reason to believe that peaks outside retention RT windows should be reported, make corrections to data summary forms (Form I) and note in data assessment.

- ACTION: Indicate with red pencil which Form I results were confirmed by GC/MS and also note in data assessment.
- 12.6 Is the percent difference (%D) calculated for the positive sample results on the two GC columns <25.0%?
- NOTE: The method requires quantitation from one column. The second column is to confirm the presence of an analyte. It is the reviewer's responsibility to verify from the project plan what the lab was required to report. If the lab was required to report concentrations from both columns/ continue with validation for % Difference. If required/ but not reported, either contact the lab for results or calculate the concentrations from the calibration. If not required, skip this section. Document actions in Data Assessment.
- ACTION. If the reviewer finds neither column shows interference for the positive hits, the data should be qualified as follows:

% Difference 0-25% 26-70% 71-100% >100% * 100-200% (Interference detected)** >50% (PCBs value is <CRQL)</pre> Oualifier none "J"" "NJ" "R" "NJ" "U"

When the reported PCBs value is <CROL and the <u>%D is >50%</u>, raise the value to the CRQL and qualify with "U" (non-detect).

* Check the chromatogram. If pattern is confirmed qualify "J". If pattern is mixed, has interference, or the PCB cannot be positively determined due to weathering, qualify "JN". STANDARD OPERATING PROCEDURE

PA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

If PCB can not be confirmed, qualify the PCB as "R".

When the reported %D is 100-200% but interference is detected in either column, qualify the data with "NJ".

13.0 Compound Quantitation and Reported Detection Limits

- 13.1 Are there any transcription/calculation errors in Form I results? Check at least two positive values. Were any errors found?
- Single-peak PCBs results can be checked for rough NOTE: agreement between quantitative results obtained on the two GC columns. The reviewer should use professional judgement to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interference is suspected, the lower of the two values should be reported and qualified according to section 12.6 above. This necessitates a determination of an estimated concentration on the confirmation column. The narrative should indicate that the presence of interferences has led to the quantitation of the second column confirmation results.
- 13.2 Are the EDLs (Estimated Detection Limits) adjusted to reflect sample dilutions and, for soils, % moisture?
- ACTION: If errors are large, call lab for explanation/resubmittal, make any necessary corrections and document effect in data assessments.
- ACTION: When a sample is analyzed at more than one dilution, the lowest EDLs are used (unless a QC exceedance dictates the use of the higher EDL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the value on the original Form I and substituting it with data from the analysis of diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including any in the summary package.

a 7, j. 7 – / '*' /4 0

/0 ^ /^ i

yj,  $f_{cC.}$ ۸ /,£*/#/#'

-PCB 17 -

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev. 1.0

#### YES NO N/A

J_L

S

-TR-

ACTION: EDLs affected by large, off-scale peaks should be qualified as unusable, "R". If the interference is on-scale, the reviewer can provide a modified EDL flagged "UJ" for each affected compound.

# 14.0 Chromatogram Quality

- 14.1 Were baselines stable?
- 14.2 Were any electropositive displacementJ(negative peaks) or unusual peaks seen?I" M
- ACTION: Note all system performance problems in the data assessment.
- 15.0 Field Duplicates  $H fr M^* T^{0} \land V J^{**C} M^* JS'$ 
  - 15.1 Were any field duplicates submitted for PCB analysis?
  - ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.
  - ACTION: Any gross variation between field duplicate results must be addressed in the reviewer narrative. However, if large differences exist, the identity of the field duplicates is questionable. An attempt should be made to determine the proper identification of field duplicates.

#### 4C

# PESTICIDE METHOD BLANK SUMMARY

NYSDEC SAMPLE NO.

MB 42

Lab Name: FRIEND LABORATORY, INC. Contract: SDG No.: AAA Lab Code: 10252 Case No.: SAS No.: Lab Sample ID: MB 42 Lab File ID: 02-117-0770 Matrix: (soil/water) SOIL Extraction:(SepF/Cont/Sonc) SONC Sulfur Cleanup: (Y/N) N Date Extracted: 11/22/02 Date Analyzed (1): 11/23/02 Date Analyzed (2): Time Analyzed (2): Time Analyzed (1): 23:17 Instrument ID (2): HP3 Instrument ID (1): HP1 GC Column (1): RTX-CLPESTICIDES2 ID 0.32 (mm) GC Column (2): RTX-CLPESTICIDES1 ID 0.32 (mm) THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, AND MSB

NYSDEC	LAB	DATE	DATE
SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
N-B-S-W-001	L97127-1	11/23/02	
N-B-SS-W-001	L97127-2	11/23/02	
N-C-SS-B1-001	L97127-3	11/23/02	
N-C-SS-B3-001	L97127-5	11/23/02	
L-B-S-W-002	L97127-6	11/23/02	
L-B-SS-E-002	L97127-7	11/23/02	
K-B-SS-W-005	L97127-8	11/23/02	
K-B-SS-W-005 MS	L97127-9, -8MS	11/23/02	
K-B-SS-W-005 MSD	L97127-10, -8MSD	11/23/02	
K-B-SS-E-003	L97127-11	11/23/02	
QC42	QC42	11/26/02	
N-C-SS-B2-001	L97127-4	11/26/02	11/26/02
	NYSDEC SAMPLE NO.           N-B-S-W-001           N-B-SS-W-001           N-C-SS-B1-001           N-C-SS-B3-001           L-B-S-W-002           L-B-SS-E-002           K-B-SS-W-005           K-B-SS-W-005           K-B-SS-W-005           K-B-SS-W-005           MSD           K-B-SS-E-003           QC42           N-C-SS-B2-001	NYSDEC         LAB           SAMPLE NO.         SAMPLE ID           N-B-S-W-001         L97127-1           N-B-SS-W-001         L97127-2           N-C-SS-B1-001         L97127-3           N-C-SS-B3-001         L97127-5           L-B-S-W-002         L97127-6           L-B-SW-002         L97127-7           K-B-SS-E-002         L97127-7           K-B-SS-W-005         MS           L97127-9, -8MS           K-B-SS-W-005         MSD           L97127-10, -8MSD           K-B-SS-E-003         L97127-10, -8MSD           K-B-SS-E-003         L97127-11           QC42         QC42           N-C-SS-B2-001         L97127-4	NYSDEC         LAB         DATE           SAMPLE NO.         SAMPLE ID         ANALYZED 1           N-B-S-W-001         L97127-1         11/23/02           N-C-SS-B1-001         L97127-2         11/23/02           N-C-SS-B3-001         L97127-5         11/23/02           L-B-S-W-002         L97127-6         11/23/02           L-B-SW-002         L97127-7         11/23/02           L-B-SS-E-002         L97127-7         11/23/02           K-B-SS-W-005         L97127-7         11/23/02           K-B-SS-W-005         L97127-8         11/23/02           K-B-SS-W-005         MS         L97127-9, -8MS         11/23/02           K-B-SS-W-005         MSD         L97127-10, -8MSD         11/23/02           K-B-SS-E-003         L97127-11         11/26/02           QC42         QC42         11/26/02           N-C-SS-B2-001         L97127-4         11/26/02           Image: Comparison of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

COMMENTS:





u

# 4C PESTICIDE METHOD BLANK SUMMARY

NYSDEC SAMPLE NO.

Lab Name: FRIEND LABORATORY, INC. Contract: Lab Code: 10252 SAS No.: SDG No.: AAA Case No.: Lab Sample ID: MB 45 Lab File ID: 02-117-0813 Matrix: (soil/water) SOIL Extraction:(SepF/Cont/Sonc) SONC Date Extracted: 11/25/02 Sulfur Cleanup: (Y/N) N Date Analyzed (1): 11/26/02 Date Analyzed (2): Time Analyzed (1): 0022 Time Analyzed (2): Instrument ID (2): HP3 Instrument ID (1): HP1 ID 0.32 GC Column (1): RTX-CLPESTICIDES2 (mm) GC Column (2): RTX-CLPESTICIDES1 ID 0.32 (mm) THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, AND MSB

	NYSDEC	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
01	P-B-SS-W-001	L97224-1	11/26/02	
02	P-B-S-E-001	L97224-2	11/26/02	
03	P-C-SS-B-001	L97224-3	11/26/02	
04	P-B-S1-W-001	L97224-4	11/26/02	
05	P-BSUB-S-N-001	L97224-5	11/26/02	
06	P-BSUB-S-S-001	L97224-6	11/26/02	
07	P-B-SS-E-001	L97224-7	11/26/02	
80	P-B-S2-W-001	L97224-8	11/26/02	
09	L-B-SS-W-004	L97224-9	11/26/02	
10	L-B-S-E-004	L97224-10	11/26/02	
11	QC45	QC45	11/26/02	
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				

CO WMENTS:



MB42

	iab Name:		Contract	:
^P^E	SK,ab Code:	Case No. :	SAS No.	: SDG No. : AAA1121
	Matrix: (soil/water	) SOIL		Lab Sample ID: MB42
	Sample wt/vol:	10.9 (g/mL) G		Lab File ID: E2980770
	% Moisture: 0	decanted: (Y/N)	Ν	Date Received: 11/21/2
	Extraction: (SepF/	Cont/Sonc) SONC		Date Extracted:11/22/2
	Concentrated Extrac	t Volume: <u>1000P</u>	(up	Date Analyzed: 11/22/2
	Injection Volume:	2.0(uL)		Dilution Factor: 1.0
	GPC Cleanup: (Y/N	N) N pH: 7.	0	Sulfur Cleanup: (Y/N) N
	CAS NO.	COMPOUND	CONCE (ug/I	NTRATION UNITS: or ug/Kg) UG/KG Q
	12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	<ul> <li>-Aroclor-1016</li> <li>-Aroclor-1221"</li> <li>-Aroclor-1232"</li> <li>-Aroclor-1242"</li> <li>-Aroclor-1254"</li> <li>-Aroclor-1260"</li> <li>-Aroclor-1248"</li> </ul>		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

M

#### Thru-Put Systems, Inc.

Data file \chem\hpl.i\8082rll22.b\E2980770.D Lab Smp Id MB42 Client Smp ID: MB42 Inj Date 22-NOV-2002 23:17 Operator CPW Inst ID: hpl.i Smp Info MB42 Misc Info WG33714,02-117 Comment Method \chem\hpl.i\8082rll22.b\8082_PCBsec.M Meth Date 25-Nov-2002 08:50 Administra Quant Type: ESTD Cal Date 22-NOV-2002 18:04 Cal File: E2980760.D Als bottle 1 Dil Factor 1.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$1.000 \\ 10.000 \\ 10.890 \\ 0.100 \\ 100.000$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

		CONCENTRAT	TIONS		
		ON-COL	FINAL		
RT EXP RT DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Tetrachloro-tn-xylene			CAS #:		
7.957 7.980 -0.023	4124732	481.610	442.23		
\$ 29 Decachlorobiphenyl			CAS 8:		
20.103 20.127 -0.024	2666674	455.10B	417.90		

Data File: /chem/hpl.i'8082rll22.b/E2980770.D		Page 2
Date : 22-H0V-2002 23:17		
Client ID: MB42	Instrunent; hpl.i	
Sample Info: HB42		
Volume Injected <ul>: 2.0</ul>	Operator: CPU	0
Column phase: RTX-CLPesticides 2	Column diameter: 0.32	0
		0





Friend Inc.

Data File: /chem/hpl.i/8082rll22.b/E2980770.D Method: /chem/hpl.i/8082rll22.b/8082_PCBsec.M Sample Info: MB42 s Misc Info: WG33714,02-117 Analysis Date: 22-NOV-2002 23:17 Sample Matrix: SOIL File Number: 0770

Dilution	Factor	1.0000
Sample	Weight	10.8904
Final	Volume	10.0000
Total	Solid	100.0000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	0.00
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	96.32%
Decachlorobiphenyl	91.02%

Analyst: CPW Report Date: 11/25/2002 09:06

Supervisor: Date:

____/ y f____

MB45

🖌 \star ab Name:		Contract:		
Code:	Case No. :	SAS No.:	SDG N	No.: AAA1121
Matrix: (soil/water	) SOIL	La	ab Sample ID:	MB45
Sample wt/vol:	10.8 (g/mL) G	La	ab File ID:	E2980813
<pre>% Moisture: 0</pre>	decanted: (Y/N)	N Da	ate Received:	11/22/2
Extraction: (SepF/	Cont/Sonc) SONC	Da	ate Extracted	:11/25/2
Concentrated Extrac	t Volume: \ <u>QOOQ</u>	(uL) Da	ate Analyzed:	11/26/2
Injection Volume":	2.0 (uL)	D	ilution Facto:	r: 1.0
GPC Cleanup: (Y/M	I) N pH: 7.	.0 S ⁻	ulfur Cleanup	: (Y/N) N
CAS NO.	COMPOUND	CONCENT (ug/L o:	RATION UNITS: r ug/Kg) UG/K	G Q
12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5 	Aroclor-1016 —Aroclor-1221 —Aroclor-1232 —Aroclor-1242 —Aroclor-1254 —Aroclor-1260 —Aroclor-1248		H>3 3 -?.3 H.3 ^•3	0.01 U 0.02/ 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0/01 U W. U1
~~			3/31/0	3

FORM I PEST

. - -

#### Thru-Put Systems, Inc.

\chem\hpl.i\8082rll22.b\E2980813.D Data file Lab Smp Id MB45 Client Smp ID: MB45 Inj Date 26-NOV-2002 00:22 CPW Inst ID: hpl.i Operator Smp Info MB4 5 Misc Info Comment Method\chem\hpl.i\8082rll22.b\8082_PCBsec.MMeth Date26-Nov-2002 07:58 Administra Quant Type: ESTDCal Date22-NOV-2002 18:04Cal File:E29807 Cal File: E2980760.D Als bottle 1 Dil Factor 1.00000 Integrator Falcon Compound Sublist: PCB.sub Sample Matrix: SOIL Target Version: 3.4 0 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$1.000 \\ 10.000 \\ 10.791 \\ 0.100 \\ 100.000$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g!

	CONCENTRATIONS					
		ON-COL	FINAL			
RT EXP RT DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET RANGE	RATIO	
\$ 1 Tetrachloro-m-xylene			CAS «:			
7.943 7.980 -0.037	4391838	513.275	475.64			
S 29 Decachlorobiphenyl			CAS fl:			
20.090 20.127 -0.037	367B835	630.346	584.13			

	Data File: /chem/hpl.i/S0S2rll22.b/E2980813.D Date : S&-H0V-2002 00:22 Client ID: MB45 Sample Info: MB45 Volume Injected <ul>; 2.0 Column phase: RTX-CLPesticides 2</ul>	Instrument; hpl.i Operator; CPU Column diameter; /chem/hpl.i/8032rH22.b/E2980813.D	0.32
	1.2-		
	1.1-		С Ф 2.
	1.0-		
	0.9		
	0.8		
	0.7		
k x	0.6		
	0.5		
	0.4		
	0.3		
	0.2		
	0.1- 2 3 4 5 6	1,",'."."'''''''''''''''''''''''''''''''	"·" <u>I"'i';'?'.'•'!"."'"</u> 20 17 18 18
Friend Inc.

Data File: /chem/hpl.i/8082rl122.b/E2980813.D Method: /chem/hpl.i/8082rl122.b/8082_PCBsec.M Sample Info: MB45 Misc Info: Analysis Date: 26-NOV-20Q2 00:22 Sample Matrix SOIL File Number: 0813

Dilution	Factor	1.0000
Sample	Weight	10.7912
Final	Volume	10.0000
Total	Solid	100.0000

Analytes (ug/Kg!

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00.
Aroclor-1242	0.00
Aroclor-1254	0.00
$\operatorname{Aroclor} -1260$	0.00
Aroclor-1248	0.00
Totrachlara m uulana	0.00
	102.66%
Decacifioropiphenyl	126.07%

Analyst: CPW Report Date: 11/26/2002 08:05

Supervisor: Date:

							UG/L IN	CRDL
pl/12/02	RTX-CLPES	ST 1	UG/L ON COLUMN IDL			WATER	(UG/L)	
Instruments	Run #1	Run #2	Run #3	Average	SD	SD'6.95	IDL	
PCB 1016	99.14	100.48	98.05	99.22	1.21	8.44	0.08437	1.0
PCB 1221	200.36	193.87	196.82	197.02	3.25	22.5824	0.22582	2.0
PCB 1232	97.97	96.72	99.17	97.95	1.22	8.51	0.08506	1.0
PCB1242	99.14	100.08	101.34	100.19	1.10	7.67	0.07673	1.0
PCB 1248	101.82	101.01	99.76	100.86	1.04	7.22	0.0722	1.0
PCB 1254	99.63	100.10	99.13	99.62	0.48708	3.39	0.03	1.0
PCB 1260	100.74	100.76	101.10	100.87	0.19949	1.39	0.01	1.0

							UG/L IN	CRDL
10/22/02	RTX-CLPE	TX-CLPEST 2 UG/L ON COLUMN IDL			WATER	(UG/L)		
Instruments	Run #1	Run #2	Run #3	Average	SD	SD'6.95	IDL	
PCB 1016	8.72	6.71	6.44	7.29	1.24513	8.65	0.08654	1.0
PCB 1221	17.30	21.26	23.39	20.65	3.08802	21.46	0.21462	2.0
PCB 1232	16.48	13.15	14.83	14.82	1.66496	11.57	0.11571	1.0
PCB 1 242	10.01	10.71	11.10	10.61	0.56	3.86	0.04	1.0
PCB 1248	13.05	12.31	10.92	12.09	1.08241	7.52	0.07523	1.0
PCB 1254	14.63	15.76	15.48	15.29	0.59	4.08657	0.04	1.0
PCB 1260	20.45	21.22	20.65	20.77	0.39707	2.76	0.03	1.0

### ID

*Q£&-*3/31 'CL3

# PESTICIDE ORGANICS. ANALYSIS DATA SHEET

Lab Name:		Contract:	L97127-1
Lab Code	Case No.:	SAS No. :	SDG No.: AAA1121
Matrix: (soil/water)	SOIL	Lab Sa	mple ID: L97127-1
Sample wt/vol:	10.5 (g/mL) G	Lab Fi	le ID: E2980777
<pre>% Moisture: ^ 2 3 . ^</pre>	decanted: (Y/N)	N Date F	eceived: 11/21/2
Extraction: (SepF/	Cont/Sonc) SONC	Date I	Extracted:11/22/2
Concentrated Extract	z Volume: <u>10000</u>	(UL) Date A	nalyzed: 11/23/2
Injection Volume:	2.0(uL)	Diluti	on Factor: 10.0
GPC Cleanup: (Y/N	) N pH: 7.	Sulfur	Cleanup: (Y/N) N
CAS NO .	COMPOUND	CONCENTRATIC (ug/L or ug/	N UNITS: Kg) UG/KG Q
12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	<ul> <li>-Aroclor- 1016</li> <li>-Aroclor- 1221"</li> <li>-Aroclor- 1232"</li> <li>-Aroclor- 1242"</li> <li>-Aroclor- 1254"</li> <li>-Aroclor- 1260"</li> <li>-Aroclor- 1248"</li> </ul>		i 2 0 Z.SO 0.2E U fZ-O 0.12 U 1-2-O 0./.2 U (Z.O 0/12 U (Z.O 0/.12 U 1-Z.O 9,12" U

FORM I PEST



Data file : \chem\hpl.i\8082rll22.b\E2980777.D Lab Smp Id: L97127-1 Inj Date 23-NOV-2002 02:56 Client Smp ID: L97127-1 Inst ID: hpl.i Operator CPW Smp Info L97127-1 Misc Info : WG33714,02-117 Comment Method \chem\hpl.i\8082rll22.b\8082_PCBsec.M Meth Date : 25-Nov-2002 08:50 Administra Quant Type: ESTD Cal File: E2980760.D Cal Date 22-NOV-2002 18:04 Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.462 \\ 0.100 \\ 76.800$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

		CONCENTRATI	ONS		
		ON-COL H	FINAL		
RT EXP RT DLT R	RT RESPONSE	(ug/L) (	ug/Kg) TA	ARGET RANGE	RATIO
S 1 Tetrachloro-m-	xylene		CAS tt:		
7.963 7.980 -0.0	505480	52.5475	654.01		
S 29 Decachlorobiphe	enyl		CAS tt:		
20.107 20.127 -0.0	020 371036	57.6579	717.61		



<i>J)sg^mL</i> \e:/chem/hpl.i/S082rll22.b/E2980777.D		Paj^^
I>^^K3-H0V-20C2 02:56 Cl^^E ID; L97127-1	Instrument: hpl.i	
Volume Injected <ul><li>2.0</li></ul>	Operator: CPU	
Column phase: RTX-CLPestieides 2	Column diameter: 0.32	
	chem/hpl.i/8082rll22.b/E2980777.D	
1.0	3)	
	C £	
0.0	a.	
0,5		
0.8		
0.7-		
0,6-		
0,5-		
0.4		
0.4-		

£ o



*C2* 



Data file : \chem\hpl.i\8082rll22.b\E2980778,D Lab Smp Id: L97127-2 Inj Date 23-NOV-2002 03:28 Client Smp ID: L97127-2 Inst ID: hpl.i CPW Operator Smp Info L97127-2 Misc Info : WG33714,02-117 Comment Method \chem\hpl.i\8082rll22.b\8082_PCBsec.M Meth Date : 25-Nov-2002 08:50 Administra Quant Type: ESTD 22-NOV-2002 18:04 Cal File: E2980760.D Cal Date Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF Vf Ws Uf Ts	$ \begin{array}{r} 10.000 \\ 10.000 \\ 10.549 \\ 0.100 \\ 78.300 \end{array} $	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid

	CONCE	NTRATIONS		
	ON-CC	L FINAL		
RT EXP RT DLT RT	RESPONSE ( ug,	/L) (ug/Kg)	TARGET RANGE	RATIO
S l Tetrachloro-m-xylene		CAS ft:		
7.970 7.980 -0.010	4913B6 50.87	67 615.96		
5 29 Decachlorobiphenyl		CAS #:		
20.110 20.127 -0.017	326694 49.96	605.11		



### Y <xl<T4)



Tetrachloro-m-xylene <7.970)

f^{tt}-

T Deoachlorobiphenyl <20,110>

« •

Data file : \chem\hpl.i\8082rll22.b\E2980779.D Lab Smp Id: 197127-3 Client Smp ID: L97127-3 Inj Date : 23-NOV-2002 03:59 Operator CPW Smp Info : L97127-3 Inst ID: hpl.i Misc Info : WG33714,02-117 Comment : Method : <u>\chem\hpl.i\8082rll22.b\8082_PCBsec.M</u> Meth Date : <u>25-NOV-2002</u> 08:50 Administra Quant Type: ESTD Cal Date : 22-NOV-2002 18:04 Cal File: E2980760.D Als bottle: 1 Dil Factor: 10.00000 Compound Sublist: PCB.sub Integrator: Falcon Sample Matrix: SOIL Target Version: 3.40

Thru-Put Systems, Inc

Concentration Formula: Amt * DF * ((Vf / Ws) •* Uf) / Ts * 1000

DF10.000Dilution FactorVf10.000Final volumeWs10.339Weight of sample extractedUf0.100Unit Correction FactorTs90.500Total Solid	(g!

				CONCENTRA	TIONS		
				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET RANGE	RATIO
S 1 T	etrachlo	oro-m-xylene			CAS «;		
7.973	7.980	-0.007	4443B9	45.3052	4B4.20		
S 29 E	ecachlor	obiphenyl			CAS #:		
20.110	20.127	-0.017	289439	43.5305	465.24		





Tetrachloro-m-xylene <7.973>



|» ro 1

1

1

о м g, h* ★ M.

••1 4 « 'fl

Decachlorobiphenyl < 20.110 >



## Friend Inc.

« •

Data File: /chem/hpl.i/8082rll22.b/E2980779.D Method: /chem/hpl.i/8082rll22.b/8082_PCBsec.M Sample Info: L97127-3 Misc Info: WG33714,02-117 Analysis Date: 23-NOV-2002 03:59 Sample Matrix: SOIL File Number: 0779

Dilution	Factor	10.0000
Sample	Weight	10.3388
Final	Volume	10.0000
Total	Solid	90.5000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	0.00
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	90.61%
Decachlorobiphenyl	87.06%



Analyst: CPW Report Date: 11/25/2002 09:06

Supervisor:		^ / % X	/.
Date:	<u>/</u>		fcL

110

**QAR** 3/31/03

L97127-4 Lab Name: Contract: Lab Code: Case No.: SAS No.: SDG No.: AAA1121 Lab Sample ID: L97127-4 Matrix: (soil/water) SOIL Lab File ID: E2980837 Sample wt/vol: 10.4 (q/mL) G Date Received: 11/21/2 %. Moisture: -& il. *? decanted: (Y/N) N Date Extracted:11/22/2 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 11/26/2 Concentrated Extract Volume: j0000 (up Dilution Factor: 10.0 Injection Volume: 2.0(uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 110 12674-11-2_____-Aroclor-1016 220 1104-28-2____ -Aroclor-1221" 110 11141-16-5____ -Aroclor-1232" -Aroclor-1242" 110 53469-21-9____ 11097-69-1____ -Aroclor-1254" 483.59 11096-82-5____ -Aroclor-1260" 110

-Aroclor-1248"



\chem\hpl.i\8082rll22.b\E2980837.D. Data file Lab Smp Id L97127-4 Client Smp ID: L97127-4 Inj Date 26-NOV-2002 14:08 Operator CPW Inst ID: hpl.i Smp Info L97127-4 Misc Info Comment 1*033714,02-117 \chem\hpl.i\8082r1122.b\8082_PCBsec.M Method 27-Nov-2002 08:38 Administra Quant Type: ESTD Meth Date 22-NOV-2002 18:04 Cal File: E2980760.D Cal Date Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3 Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000 Description Name Value DF 10.000 Dilution Factor 10.000 Final volume Vf 10.358 Weight of sample extracted (g) Ws Unit Correction Factor 0.100 Uf , ../*?*^ ^ 88.100 Total Solid  $/ \} \setminus$ Ts hA --, v ЛЛ CONCENTRATIONS 응 ON-COL PINAL 4 I*? v * RATTO 'ft*^ RT EXP RT DLT RT RESPONSE ( Ug/L) (ug/Kg) TARGET RANGE €*\^  $\langle 0^{\circ} \rangle$ æ J CAS #-S 1 Tetrachloro-m-xvlene J\jlQtt/^ 7.960 7.957 0.003 574648 60.7474 665.68 S 29 Decachlorobiphenyl CAS # .. QQ.uy . 20.100 20.110 -0.010 -^ A *"/ * 467013 74.2744 0 813.91 25 AroClor-1254 CAS #: 11097-69-1 13.263' 13.260 0.003 B49.67 80.00- 120.00 100.00(H) 3B380 77.5375 13.650 13.650 0.000 28973 65.2265 714.77 70.58- 110.58 75.49 14.917 14.920 -0.003 16487 39.7550 435.64 50.45- 90.45 42.96 15.327 15.333 -0.006 13324 21.2843 233.24 62.38- 102.3B 34.72 16.000 16.020 -0.020 10537 16.8498 1B4.64 115.83- 155.83 27.45 I* *n f*\ Average of Peak Concentrations = 483.59 -v^II* ∧ V  $0^{3}$ 



Data File: \chem\hpl.i\8082rll22.b\E2980837.D Report Date: 27-Nov-2002 09:03

^P^C Flag Legend

H - Operator selected an alternate compound hit.



I-I m fi-0 1– ₽ -1-1 111 f+ =" *? 3 fl> ∢⊳ ». нн I Ст »t »t IV M •>> M 1, I/> 3-*u*, ****** 11 ₽ • • • • • • • • • • • • • • • • o t r М 'n

-Tetrachloro-m-xylene (7.960)

-firoclor-1254 (13.263) -Aroclor-1254 (13.650) -ftroclor-1254 (14.917) -Aroolor-1254 (15.327) -Aroclor-1254 (16.000)

o o —

Decachlorobiphenyl (20.100)

00025

## Friend Inc.

Data File: /chem/hpl.i/8082rll22.b/E2980837.D Method: /chem/hpl.i/8082rll22.b/8082_PCBsec Sample Info: L97127-4 Misc Info: WG33714/02-117 Analysis Date: 26-NOV-2002 14:08 Sample Matrix: SOIL File Number: 0837

/

Dilution	Factor	10.0000
Sample	Weight	10.3582
Final	Volume	10.0000
Total	Solid	88.1000

Analytes (ug/Kgl

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	483.59
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	121.49%
Decachlorobiphenyl	148.55%

Analyst: CPW Report Date: 11/27/2002 09:03

Supervisor: Date:'

\chem\hp3.i\1254FCONFIRMVa.b\E3956869.D Data file Client Smg ID; Lab Smp Id L97127-4 L97127-4 fi ma Inj Date 26-NOV-2002 11:25 CPW Inst ID: hp3.i Operator Smp Info Misc Info L97127-4 (/ CONFIRMATION Comment \chem\hp3.i\1254FCONFIRMVa.b\8082_PCBsec.M Method Meth Date 26-Nov-2002 14:20 Administra Quant Type: ESTD Cal Date 26-NOV-2002 10:54 Cal File: E3956868.D Als bottle 1 Dil Factor 10.00000 Integrator Target Version: 3.40 Compound Sublist: 1254.sub Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.358 \\ 0.100 \\ 88.100$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

				CONCENTR	ATIONS		
				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANG	E RATIO
<b>*</b> *				= " » " M	• • • • • •		
\$ 1 Te	etrachlo	oro-m-xylene			CAS tt:		
8,577	6.597	-0.020	1529743	45.3757	497.24		
25 Ar	coclor-1	254			CAS #:	11097-69-1	
14.493	14.490	0.003	18051	19.4757	213.42	80.00- 120.0	0 100.00(M
14.737	14.730	0.007	67245	45.9409	503.43	138.90- 178.9	0 372.53
15.100	15.093	0.007	33022	47.1000	516.13	58.39- 98.3	9 182.94
15.280	15.273	3 0.007	17986	16.9191	185.40	98.45- 138.4	5 99.64
15.647	15.640	0.007	40031	34.5198	378.28	106.65- 146.6	5 221.77
		Average of	Peak Concentr	ations •	359.33		
\$ 29 D	ecachlo	robiphenyl			CAS »		
20.100	20.097	0.003	995859	63.4277	695.05		

Page

Data File: <u>\chem\hp3.i\12 54FCONFIRMVa.b\E3 95 686 9.D</u> Report Date: 02-Dec-2002 08:39

- **^^**QC Flag Legend
  - M Compound response manually integrated.



^ _





# Frxend Inc.

Data File: /chem/hp3.i/1254FC0NFIRMVa.b/E3956869.D Method: /chem/hp3.i/1254FC0NFIRMVa.b/8082_PCBsec.M Sample Info: L97127-4 Misc Info: CONFIRMATION Analysis Date: 2G-NOV-2002 11:25 Sample Matrix: SOIL File Number: 6869

Dilution Fac	tor 10.0000
Sample Wei	ght 10.3582
Fināl Vol	ume 10.0000
Total Soli	d 88.1000

Analytes (ug/Kg)

Aroclor-1254	359.33
Tetrachloro-m-xylene	90.75%
Decachlorobiphenyl	126.86%

Analyst: CPW Report Date: 12/02/2002 08:39 Supervisor: Date:



Tetrachloro-m-xylene (7.957>



w

י∕∙ ro

Decachlorobiphenyl C20.107>

M

r

OC033

Friend Inc.

Data File: /chem/hpl.i/8082rll22.b/E2980781.D Method: /chem/hpl.i/8082rll22.b/8082_PCBsec.M Sample Info: L97127-5 Misc Info: WG33714,02-117 Analysis Date: 23-NOV-2002 05:01 Sample Matrix: SOIL File Number: 0781

/

**_T** 

Dilution	Factor	10.0000
Sample	Weight	10.1284
Final	Volume	10.0000
Total	Solid	88.7000

Analytes (ug/Kg)

Aroclor-1221       0.00         Aroclor-1232       0.00         Aroclor-1242       0.00         Aroclor-1254       0.00         Aroclor-1260       0.00         Aroclor-1248       0.00         Tetrachloro-m-xylene       95.26%         Decachlorobiphenyl       114.37%	Aroclor-1016	0.00
Aroclor-1232       0.00         Aroclor-1242       0.00         Aroclor-1254       0.00         Aroclor-1260       0.00         Aroclor-1248       0.00         Tetrachloro-m-xylene       95.26%         Decachlorobiphenyl       114.37%	Aroclor-1221	0.00
Aroclor-1242       0.00         Aroclor-1254       0.00         Aroclor-1260       0.00         Aroclor-1248       0.00         Tetrachloro-m-xylene       95.26%         Decachlorobiphenyl       114.37%	Aroclor-1232	0.00
Aroclor-1254       0.00         Aroclor-1260       0.00         Aroclor-1248       0.00         Tetrachloro-m-xylene       95.26%         Decachlorobiphenyl       114.37%	Aroclor-1242	0.00
Aroclor-1260         0.00           Aroclor-1248         0.00           Tetrachloro-m-xylene         95.26%           Decachlorobiphenyl         114.37%	Aroclor-1254	0.00
Aroclor-12480.00Tetrachloro-m-xylene95.26%Decachlorobiphenyl114.37%	Aroclor-1260	0.00
Tetrachloro-m-xylene95.26%Decachlorobiphenyl114.37%	Aroclor-1248	0.00
Decachlorobiphenyl 114.37%	Tetrachloro-m-xylene	95.26%
	Decachlorobiphenyl	114.37%

Analyst: CPW Report Date: 11/25/2002 09:07

Supervisor: Date: PESTICIDE ORGANICS ANALYSIS DATA SHEET

L97127-6

Name:		Contract:	
Code:	Case No. :	SAS No. :	SDG No.: AAA1121
Matrix: (soil/water)	) SOIL	Lab Sa	mple ID: L97127-6
Sample wt/vol:	10.2 (g/mL) G	Lab Fi	le ID: E2980784
<pre>% Moisture: -QrZ^-S</pre>	decanted: $(Y/N)$	N Date R	eceived: 11/21/2
Extraction: (SepE/	Cont/Song) SONC	Date E	xtracted:11/22/2
Concentrated Tutue	Line, Sone, Sone	Date A	nalyzed: 11/23/2
concentrated Extract	L Volume: <u>/0000</u>	(uL) Diluti	on Factor: 10.0
Injection Volume:	2.0(uL)	Sulfur	Cleanup: (Y/N) N
GPC Cleanup: (Y/N	) N pH: 7.	0	
CAS NO.	COMPOUND	(ug/L or ug/	Kg) UG/KG Q
12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	<ul> <li>-Aroclor- 1016</li> <li>-Aroclor- 1221"</li> <li>-Aroclor- 1232"</li> <li>-Aroclor- 1242"</li> <li>-Aroclor- 1254'</li> <li>-Aroclor- 1260"</li> <li>-Aroclor- 1248"</li> </ul>		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

<u>eoR</u> 3/3i/03

FORM I PEST

Data file : \chem\hpl.i\8082rl122.b\E2980784.D Lab Smp Id: 197127-6 Client Smp ID: L97127-6 Inj Date : 23-NOV-2002 06:35 Operator : CPW Inst ID: hpl.i Smp Info : L97127-6 Misc Info : WG33714,02-117 Comment : Method : <u>\chem\hpl.i\8082rll22.b\8082_PCBsec.M</u> Meth Date : <u>25-Nov-2002</u> 08:50 Administra Quant Type: ESTD Cal Date : 22-NOV-2002 18:04 Cal File: E2980760.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF	10.000	Dilution Factor
Vf	10.000	Final volume
Ws	10.191	Weight of sample extracted
Uf	0.100	Unit Correction Factor
Ts	76.500	Total Solid

				CONCENTR	ATIONS			
				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	fug/Kg)	TARGET RANG	E RATIO	
S 1 Te	etrachlo	ro-m-xylene			CAS #:			
7.957	7.980	-0.023	499139	51.7958	664.40			
S 29 De	ecachlor	obiphenyl			CAS «:			
20.103	20.127	-0.024	383378	59.7944	767.00			
25 Ar	oclor-1	254			CAS tt	:11097-69-1		
13.260	13.263	-0.003	5458			80.00- 120.0	0 100.00(M)	
13.647	13.657	-0.010	4441			56.30- 96.3	0 81.37	
14.917	14.927	-0.010	3508			44.43- 84.4	3 64.27	
15.330	15.347	-0.017	371B			63.85- 103.8	5 68.12	
16.013	16.043	-0.030	6299	9 34027	119 ei	73.96- 113.9	6 115.41	
		Average of Pe	ak Concentra	ations •	119 Bl			

lag Legend

«

M - Compound response manually integrated.

# M



Data file ; \chem\hpl.i\8082rll22.b\E2980785.D Lab Smp Id; L97127-7 Client Client Smp ID: L97127-7 Lab Sup _____ Inj Date 23-N CPW 23-NOV-2002 07:06 Inst ID: hpl.i Smp Info L97127-7 WG33714,02-117 Misc Info Comment Method <u>\chem\hpl.i\8082rll22.b\8082_PCBsec.M</u> Meth Date <u>25-Nov-2002_08:50</u> Administra Quant Type: ESTD Cal Date 22-NOV-2002 18:04 Cal File: E2980760.D Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL

Concentration Formula: Amt * DF * f(Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.099 \\ 0.100 \\ 85.500$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	fgj



«

.

	CONCENT	RATIONS		
	ON-COL	FINAL		
RT EXP RT DLT RT	RESPONSE { ug/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Tetrachloro-m-xylene	527809 55 1946	CAS #:		
1.957 1.980 -0.025	527007 55.1740	059.21		
S 29 Decachlorobiphenyl		CAS 8:		
20.103 20.127 -0.024	38556S 60.1730	696.87		

	lia^MLIe: /chem/hpl.i/S082rII22.b/E2980785.D D^^^K-HOV-2002 07*06 <b>CHJBWD: L97127-7</b> Sample Info: L97127-7 Volume Injected <ul)j 2.0<br="">Column phase: RTX-CLPesticides 2</ul)j>					Instr Operat Column	ument: tor: C n diam	hpl.i PU eter;	0.32							:	Page		0042
			/che	m/hpl,	i/8082rl	122.b/E	298078	5.D											Ō¬
	1.1																		
	1.0																		
	0,9																		
	0,8																		
	0.7																		
If) S X	0.6																		
	0.5																		
	0,4																		
	0.3																		
	0,2																		
	0.1- JJ-U1I _>	-KIL	JJT	J_ п	'	··		•' '_"	• • • •	"			JJJJ						
			10 1	.1 1	2 13 <u>Hin</u>	14	IB	16	17	18	19	20	21	22	23	24	25	26	27

Data file : \chem\hpl.i\8082rll22.b\E2980815.D Lab Smp Id: L97224-1 Inj Date 26-NOV-2002 01:24 Client Smp ID: L97224-1 Inst ID: hpl.i Operator CPW Smp Info : L97224-1 Misc Info : WG33733,02-117 Comment \chem\hpl.i\8082rll22.b\8082_PCBsec.M Method Meth Date26-Nov-200214:11AdministraQuantType:ESTDCal Date22-NOV-200218:04Cal File:E29807 Cal File: E2980760.D Als bottle: 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Description Value Name 10.000 Dilution Factor DF Vf 10.000 Final volume Ws 10.052 Weight of sample extracted Uf 0.100 Unit Correction Factor 82.100 Τs Total Solid

RT EXP RT DLT RT	RESPONSE	CONCENTRA ON-COL ( ug/L)	FIONS FINAL (ug/Kg)	TARGET RANGE	RATIO
<pre>\$ 1 TeCrachloro-m-xylene 7.947 7.957 -0.010</pre>	619665	66.0S41	CAS ft: 800.77		
S 29 Decachlorobiphenyl 20.097 20.110 -0.013	512086	82.07B0	CAS #: 994.5B		(RM)

### QC Flag Legend

- R Spike/Surrogate failed recovery limits.
- M Compound response manually integrated.



«

٠







Tetrachloro-m-xylene <?,947)





o c

то w





Data file \chem\hpl.i\8082rll22,b\E2980816.D L97224-2 Client Smp ID: L97224-2 Lab Smp Id Inj Date 26-NOV-2002 01:55 CPW Inst ID: hpl.i Operator Smp Info L97224-2 Misc Info WG33733,02-117 Comment Method \chem\hpl.i\8082rll22.b\8082_PCBsec.M 26-Nov-2002 14:11 Administra Quant Type: ESTD Meth Date Cal Date 22-NOV-2002 18:04 Cal File: E2980760.D Als bottle 1 Dil Factor 10.00000 Integrator Falcon Target Version: 3.40 Compound Sublist: PCB.sub Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name Value Description

DF Vf Ws Uf	$10.000 \\ 10.000 \\ 10.315 \\ 0.100 \\ 100$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor
Ts	76.600	Total Solid

				CONCENTRA	TIONS			
				ON-COL.	FINAL			
RT	EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET RA	NGE R	ATIO
a 1 m					67 G 6 L 1			
S I T	ecrachio	ro-m-xylene			CAS It:			
7.947	7.957	-0.010	600621	63.8265	807.77			
S 29 D	ecachlor	obiphenyl			CAS ft:			
20.097	20.110	-0.013	51359B	32.3397	1042.07			(RM)

QC Flag Legend

R - Spike/Surrogate failed recovery limits.M - Compound response manually integrated.

Baranii 1 e:/chem/hpl.i/8082rII22.b/E2«>30816.D I 226-NOV-2002 01:55 CITWE ID: L97224-2 Sample Info: L97224-2 Volume Injected <ul>: 2.0 Column phase: RTX-CLPesticides 2</ul>	Instrument: hpl.i Operator: CPW Column diameter; 0.3'j	Page ^ CO
	/chem/hpl.i/8082rll22.b/E2980316.D	
1.5-		
1.4-	35 6 A.	
1.3-	යි ර	
1.2-		
1.1-		
1.0-		
0.9-		
0.7-		
0.6-		
0.5-		
0.4		
0.3-		
o.2-	_	
0.1- JJw1UJ_IUHJ- VIj-IKIttl	••	
<b>1 2</b> S	10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 Hin	24 25 26 27



Data file : <u>\chem\hpl.i\8082rl!22.b\E2980817.D</u> Lab Smp Id: <u>L97224-3</u> Client Client Smp ID: L97224-3 Inj Date : 26-NOV-2002 02:27 CPW Inst ID: hpl.i Operator Smp Info L97224-3 Misc Info : WG33733/02-117 Comment \chem\hpl.i\8082rll22.b\8082_PCBsec.M Method 26-Nov-2002 14:11 Administra Quant Type: ESTD 22-NOV-2002 18:04 Cal File: E29807 Meth Date Cal File: E2980760.D Cal Date Als bottle 1 10.00000 Dil Factor Integrator: Falcon Compound Sublist: PCB.sub Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Description Name Value Dilution Factor  $\mathsf{DF}$ 10.000 Vf 10.000 Final volume Ws 10.362 Weight of sample extracted IJf 0.100 Unit Correction Factor Total Solid Τs 66.700

RT EXP RT DLT RT	RESPONSE	CONCENTRA ON-COL ( ug/L)	TIONS FINAL (ug/Kg)	TARGET RANGE	RATIO
<pre>\$ 1 Tetrachloro-m-xylene 7.947 7.957 -0.010</pre>	599045	63.6396	CAS tt: 920.79		
S 29 Decachlorobiphenyl 20.093 20.110 -0.017	500796	80.1233	CAS »: 1159.29		(RM)

### QC Flag Legend

«

- R Spike/Surrogate failed recovery limits.
- M Compound response manually integrated.



Data file : \chem\hpl.i\8082rll22.b\E2980818.D Lab Smp Id: L97224-4 Inj Date 26-NOV-2002 02:58 Client Smp ID: L97224-4 Inst ID: hpl.i CPW Operator L97224-4 Smp Info Misc Info : WG33733,02-117 Comment Method \chem\hpl.i\8082rll22.b\8082_PCBsec.M 26-Nov-2002 14:11 Administra Quant Type: ESTD Meth Date Cal Date 22-NOV-2002 18:04 Cal File: E2980760.D Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.274 \\ 0.100 \\ 71.800$	Dilution Factor - Final volume Weight of sample extracted Unit Correction Factor Total Solid

				CONCENTRA	FIONS			
				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET	RANGE	RATIO
S 1 Te	trachlo	ro-m-xvlene			CAS #:			
7 947	7 957	-0 010	599193	63 6572	862 95			
1.941	1.551	0.010	599195	03.0372	002.95			
S 29 De	cachlor	obiphenyl			CAS #			
20.097	20.110	-0.013	503140	80.5291	1091.67			(RM)

QC Flag Legend

R - Spike/Surrogate failed recovery limits.M - Compound response manually integrated.



•

«



Column phase: RTX-CLPesticides 2		Instrument: hpl.i Operator! CPU Column diameter: 0,32		Page^1
	/chem/hpl•i/8082r	l!22.b/E2930818,D		-0-
1.5				
1.5-				
1.4-				
1.3-				
1.2-				
1.1-				
1,0-				
0.9-				
>				
0.7-				
0.6-				
0,5-				
0,4-				
0.3-				
0,2-			TT	
0,1LI [Lu_ii nn	M-I- ^{thI} IIII_LUJ_UII' "i 8 10 11 12 13	"imumm.l	<b>JL</b> -klii 19 20 21 22	23 24 25 26 27
	S IO II IZ IS Mir	1 TT TT TT TO TV TO		

Data file : \chem\hpl.i\8082rll22.b\E2980B19.D Lab Smp Id: L97224-5 Client Client Smp ID: L97224-5 Inj Date : 26-NOV-2002 03:29 Operator CPW Smp Info L97224-5 Inst ID: hpl.i Misc Info WG33733,02-117 Comment \chem\hpl.i\8082rll22.b\8082_PCBsec.M Method 26-Nov-2002 14:11 Administra Quant Type: ESTD Meth Date 22-NOV-2002 18:04 Cal File: E2980760.D Cal Date Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF Vf WS uf Ts	$10.000 \\ 10.000 \\ 10.240 \\ 0.100 \\ 77.500$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid

RT E	EXP RT I	DLT RT	RESPONSE	CONCENTRA ON-COL ( Ug/L)	TIONS FINAL (ug/Kg)	TARGET RANGE	RATIO
S l Tet 7.947	trachlor 7.957	o-m-xylene -0.010	620463	56.1787	CAS <i>n</i> 333.91		
\$ 29 Dec 20.093	cachloro 20.110	biphenyl -0.017	512575	82.1626	CAS #: 1035.32		(RM)

### QC Flag Legend

- R Spike/Surrogate failed recovery limits.
- M Compound response manually integrated.

« •
	<pre>D a ^ ^ W e: /chert/hpl, i /30S2rll22, b/ES^S0Sl?, I oi ^ He - NOV - 2002 03*29</pre>												Page 2	2'	
	Cli^^lD; L97224-5				Instrumer	nt; hpl.i								0	
	Sample Info: L97224-5				Operator:	CPII									
	Column phase: RTX-CLPssticides 2				Column di	ameter: 0	.32							0	
			/ohem/ł	i/3082rll£	2.b/E29808	319.D								-	
	1.6-														
	1.5-								35						
	14	x							C Q.C. 2.						
	1.7	. £							 J2 0 1.						
	1*3-	0							0						
	10	m L m							Q Q						
	1.2-:														
	1.1-														
	1.0-														
	0,9-														
5	0.8-														
	0.7-														
	0,6-														
	0.5-														
	0.5-														
	0,4-														
	0.24														
	0.3^														
	0.2-														
	0.1U-IL-LU_LUfcL	<b>k-</b> ₋ואויי	1 iili i.uniu	п hjuk	ILIM LLI UI I-I	UIIILIIiniII	t <u>HI</u>		ULL						
			10 11	12 13 Hin	14 15	16 1	.7 18 1	9 20	21	22	23	24	25	26	27

Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082rll22.b\E2980820.D Lab Smp Id: L97224-6 Inj Date 26-NOV-20 Client Smp ID: L97224-6 26-NOV-2002 04:00 Inst ID: hpl.i Operator CPW L97224-6 Smp Info Misc Info : WG33733,02-117 Comment Method \chem\hpl.i\8082rll22.b\8082_PCBsec.M Meth Date . 26-Nov-2002 14:11 Administra Quant Type: ESTD 22-NOV-2002 18:04 Cal File: E2980760.D Cal Date Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name Value Description

DF	10.000	Dilution Factor	
Vf	10.000	Final volume	
Ws	10.473	Weight of sample extracted	<g)< td=""></g)<>
Uf	0.100	Unit Correction Factor	
Ts	77.300	Total Solid	

RT EXP RT DLT RT	RESPONSE	CONCENTRAT ON-COL ( ug/L)	FIONS FINAL (ug/Kg)	TARGET RANGE	RATIO
\$ 1 Tetrachloro-m-xylene 7.947 7.957 -0-010	577220	61.0523	CAS #: 754.13		
\$ 29 Decachlorobiphenyl 20.097 20.110 -0-013	472154	75.1644	CAS tt: 928.45		(RM)

### QC Flag Legend

- R Spike/Surrogate failed recovery limits.
- M Compound response manually integrated.







Thru-Put Systems, Inc.

\chem\hpl.i\8082r1122.b\E2980823.D Data file Lab Smp Id L97224-7 Client Smp ID: L97224-7 Inj Date 26-NOV-2002 05:34 Operator Inst ID: hpl.i CPW Snip Info L97224-7 Misc Info WG33733,02-117 Comment Method \chem\hpl.i\8082rll22.b\8082_PCBsec.M 26-Nov-2002 14:11 Administra Quant Type: ESTD Meth Date 22-NOV-2002 18:04 Cal File: E2980760.D Cal Date Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: Sample Matrix: SOIL 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.243 \\ 0.100 \\ 77.700$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

RT EXP RT DLT RT	CC OI RESPONSE (	ONCENTRATI N-COL F ug/L) (1	ONS 'INAL 1g/Kg)	TARGET RANGE	RATIO
<pre>\$ 1 Tetrachloro-m-xylene 7.957 7.957 0.000</pre>	491138 5	0.8473 6	CAS #: 538.91		
S 29 Decachlorobiphenyl 20.100 20.110 -0.010	369468 5	57.3896 7	CAS ft: 721.12		





Thru-Put Systems , • Inc.

Data file : \chem\hpl.i\8082rll22.b\E2980824.D Lab Smp Id: L97224-8 Client Client Smp ID: L97224-8 Inj Date : 26-NOV-20G2 06:05 CPW Inst ID: hpl.i Operator Smp Info L97224-8 Misc Info : WG33733,02-117 Comment \chem\hpl.i\8082rll22.b\8082_PCBsec.M Method Meth Date : 26-Nov-2002 14:11 Administra Quant Type: ESTD Cal Date 22-NOV-2002 18:04 Cal File: E2980760.D Als bottle  $\frac{1}{1}$ Dil Factor 10.00000 Integrator Target Version: 3.40 Compound Sublist: PCB.sub Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000 Description Value Name 10.000 Dilution Factor DF Vf 10.000 Final volume Ws 10.151 Weight of sample extracted (g) 0.100 Uf Unit Correction Factor 76.600 Total Solid Τs

RT EXP RT DLT RT	CONCENT ON-COL RESPONSE < ug/L)	RATIONS FINAL (ug/Kg)	TARGET RANGE	RATIO
S 1 Tetrachloro-m-xylene 7.957 7.957 0.000	521475 54.4437	CAS ft: 700.18		
S 29 Decachlorobiphenyl 20.100 20.110 -0.010	374953 58.3357	CAS IL: 750.23		



																	Y	С	xl0	-^5	>																							
ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	<b>)</b> (	)	0	ο	0	0	0	0	0	0	0	0	0	0	0	-*	h*	h"				
<b>0</b> -vi	0	04	(51	H^J	<b>6</b>	ro OJ	ro G1	ω	w		in	0J 00	0		.0. en		en o	cn W	oi Ol	cn N	. <b>√</b> .	¢ o c	NJ (5	51 C	00	?	-si ro	en	Ø	со О	со <b>го</b>	00 til	805	0	J*	m	v£i V)	?	<b>)</b> %	â	ò	«– "	. (	0
																																									Π.	🗢 "	<	
																																									V	<u>ç</u> -	n	

Ρ

Tetrachloro-n-xylene <7,957>



l Becachlorobiphenyl <20.100)

**O0C82** 

• .



Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082rll22.b\E2980825.D Lab Smp Id: L97224-9 Inj Date : 26-NOV-2002 06:36 Operator CPW Inst ID: hpl.i Smp Info L97224-9 Misc Info WG33733,02-117 Comment Method \chem\hpl.i\8082rll22.b\8082_PCBsec.M Meth Date 26-NOV-2002 14:11 Administra Quant Type: ESTD Cal Date 22-NOV-2002 18:04 Cal File: E2980760.D Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF	10.000	Dilution Factor
Vf	10.000	Final- volume
Ws	10.751	Weight of sample extracted
Uf	0.100	Unit Correction Factor
Ts	87.800	Total Solid

		CONCENTRA	TIONS		
		ON-COL	FINAL '		
RT EXP RT DLT RT	RESPONSE	{ ug/L)	(ug/Kgl	TARGET RANGE	RATIO
S 1 Tetrachloro-m-xylene			CAS #:		
7.957 7.957 0.000	545B46	57.3329	607.40		
5 29 Decachlorobiphenyl			CAS #:		
20.100 20.110 -0.010	417175	65.6458	695.47		





Page 1

D; * Be: /chem/hpl,i/8082rll22.b/E2580825.D		Paj^^"
Da1^PP56H0V-2002 06:36		
Client ID: L97224-9	Instrument; hpl.i	0
Sample Info: L97224-9		00
Volume Injected <ul>J 2.0</ul>	Operator: CPU	00
Column phase: RTX-CLPesticid©s 2	Column diameter: 0,32	-
^chem/hpl.i/80S2rll	122.b/E2980825.D	0





Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082r!122.b\E2980826.D Lab Smp Id: L97224-10 Client Client Smp ID: L97224-10 Inj Date : 26-NOV-2002 07:07 CPW Inst ID: hpl.i Operator Smp Info L97224-10 Misc Info WG33733,02-117 Comment \chem\hpl.i\8082rll22.b\8082_PCBsec.M 26-Nov-2002 14:11 Administra Quant Type: ESTD 22-NOV-2002 18:04 Cal File: E29807 Method Meth Date Cal Date Cal File: E2980760.D Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.432 \\ 0.100 \\ 87.800$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g;

RT EXP RT DLT RT	RESPONSE	CONCENTRA ON-COL { ug/L)	ATIONS FINAL (ug/Kg)	TARGET RANGE	RATIO
S 1 Tetrachloro-m-xylene 7.953 7.957 -0.004	509053	52.9711	CAS «: 578.34		
S 29 Decachlorobiphenyl 20.097 20.110 -0.013	367728	57.0B49	CAS ft; 623.25		



	Data^^fe/chem/hpl.i/8082rll22.b/E2930826.D Oate^^B^OV-2002 07:07 Clien^K L97224-10 Sample Info: L97224-10 Volume Injected <ul_>: 2.0 Column phase: RTX-CLPestisides 2</ul_>	Operator: CPU Column diameter: 0.32	Page^^ O O
	1.1-	•chem/hpl.i/8082rll22.b/E2930826.D	
	1,0-		
	0.9-		
	0.8-		
	0.7-		
2 © +X	0,6-		
	0.5-		
	0,4-		

Friend Inc.

Data File: /chem/hpl.i/8082rll22.b/E2980826.D Method: /chem/hpl.i/8082rll22.b/8082_PCBsec.M Sample Info: L97224-10 Misc Info: WG33733,02-117 Analysis Date: 26-NOV-2002 07:07 Sample Matrix: SOIL File Number: 0826

Dilution	Factor	:	10.0000
Sample	Weight	:	10.4319
Final	Volume	:	10.0000
Total	Solid	:	87.8000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Argclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	0.00
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	105.94%
Decachlorobiphenyl	114.17%

Analyst: CPW Report Date: 11/26/2002 15:25

Supervisor: Date: 6D

Lab Name: FRIEND LABORATORY, INC. Contract: Lab Code: 10252 Case No.:_____SAS No.:_____ Instrument ID: HP1 GC Column: RTX-CLPest2 ID: 0.32 (mm) Da

Date(s) Analyzed: 11/22/02 11/22/02 File Numbers: 0753 - 0769

SDG No.: AAA

	Peak		F	RT OF ST	ANDARD	S		MEAN	RT WIN	1DOM	
COMPOUND	#	10ppb	50 ppb '	1100 ppb	250 ppb	500 ppb	1000 ppb	RT	FROM	то	
PCB 1016	r	10.19	10.19	10.18	10.18	10.18	10.18	10.18	10.08	10.28	
	2*	10.71	10.70	10.70	10.70	10.70	10.70	10.70	10.60	10.80	
	3*	11.90	11.89	11.88	11.88	11.88	11.88	11.89	11.79	11.99	
	4	11.97	11.97	11.97	11.97	11.96	11.96	11.97	11.87	12.07	
	5	12.68	12.67	12.67	12.67	12.67	12.67	12.67	12.57	12.77	
PCB 1221	1*				8.76			8.76	8.66	8.86	
	2*				9.10			9.10	9.00	9.20	
	3*				9.24			9.24	9.14	9.34	
PCB 1232	r				10.18			10.18	10.08	10.28	
	2*				10.70			10.70	10.60	10.80	
	3*				11.17			11.17	11.07	11.27	
	4				11.88			11.88	11.78	11.98	
	5				12.42			12.42	12.32	12.52	
PCB 1242	1*				10.18			10.18	10.08	10.28	
	2*				11.45			11.45	11.35	11.55	
	3*				11.87			11.87	11.77	11.97	
	4				11.96			11.96	11.86	1 🔶 🗖	
	5				12.42			12.42	12.32	-M	>
PCB 1248	1*				11.16			11.16	11.06	11.2"ff	<b>`</b> {
	2*				11.87			11.87	11.77	11.97	L
	3*				11.96			11.96	11.86	12.06	
	4				12.66			12.66	12.56	12.76	
	5				13.27			13.27	13.17	13.37	
PCB 1254	1*	13.26	13.26	13.26	13.26	13.26	13.26	13.26	/ 13.16	13.36	
	2*	13.66	13.65	13.65	13.65	13.65	13.65	13.6S	' 13.55	13.75	
	3*	14.93	14.92	14.93	14.92	14.92	14.92	14.92	14.82	15.02	
	4	15.35	15.34	15.34	15.34	15.34	15.33	15.34	15.24	15.44	
	5	16.04	16.03	16.03	16.03	16.02	16.02	16.03	15.93	16.13	
PCB 1260	1*	14.94	14.93	14.93	14.93	14.93	14.92	14.93	14.83	15.03	
	2*	15.36	15.35	15.35	15.34	15.34	15.34	15.35	15.25	15.45	
	3*	16.21	16.20	16.20	16.19	16.19	16.19	16.20	16.10	16.30	
	4	16.30	16.30	16.30	16.30	16.29	16.29	16.30	16.20	16.40	
	5	16.77	16.76	16.76	16.75	16.75	16.75	16.76	16.66	16.86	
Tetrachloro-m-xylene		7.98	7.97	7.96	7.96	7.96	7.96	7.96	7.86	8.06	
Decachlorobi phenyl		20.13	20.12	20.11	20.11	20.11	20.11	20.12	20.02	20.22	

* Denotes required peaks

Retention time windows are + 0.1 minutes for all compounds.



FORM VI-PCB-1

### FORM 6 PCB INITIAL CALIBRATION DATA

Łab Name∶	Contract:
ab Code: Case No. :	SAS No.: SDG No.: AAA1121
nstrument ID: HP1	Calibration Date(s): 11/22/2 11/22/2
GC Column: RTX-CLPESTICIDES 2 ID:	0.32 (mm)
LAB FILE ID: RF10: E2980760	RF50: E2980761 RF100: E2980762
RF250: E2980769 RF500: E2980764	

1		1					1
	COMPOUND	RF10	RF50	RF100	RF250	RF500	
	Aroclor-1016 (2) (3)	578.2 240.3 522.7	531.5 252.9 334.3	7109 343.6 325.0	516.9 247.4 222.9	423.4 217.8 196.1	
	(5) Aroclor-1221	560.0	421.9	346.7	343.1 139.6	328.0	
	(2) (3) (4)				93.4 345.0		
	(5) Aroclor-1232 (2)				215.4		
	(3) (4) (5)				294.0 76.1 90.4		
	Aroclor-1242 . (2) k (3)				399.2 338.1 180.8		
	$\overline{W}$ $(4/5)$ Aroclor-1254	468.0	523.6	548.9	201.5 220.4 554.3	455.2	te>*
	(2) (3) (4) (5)	357.1 301.5 392.4 439.7	412.9 351.8 421.9 567.5	424.9 353.4 431.5 566.3	423.8 337.4 399.9 567.0 610.0	391.3 317.7 393.9 588.0	cf\$
	Aroclor-1260 (2) (3) (4) (5)	632.5 471.3 427.4 394.9	574.1 544.0 410.9 377.9 344.5	701.3 712.4 544.2 448.2 496.5	634.8 468.2 366.3 437.6	550.5 581.6 428.0 340.7 420.5	
	Aroclor-1248	\			435.5		
	• (2) (3) (4) (5)				283.7 409.5 518.7		
	Tetrachloro-m-xylene Decachlorobiphenyl	10763 10481	9638 7311	9680 7654	9265 6357	8179 5747	

+3

if01 ⁷¹

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<b>?</b> <b>0</b> 0 0 0 1 0 3 л 0 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
U1 0D II         -J .f* 11         CTI-JCT\VO(JI(/lit*COU10)         W t O H to V           0\ o II         0) U J s J i X) H k D W V O*'W         W t O H co V	V D H -J J V J J V J V J V J V J V J V J V J V J V J V J V J V J V V V V V V V V V V V V V
f rr ¹ Ш I r ' F F I r ' I r ' t r ' I r ' A F r A I r ' t r ' F I r ' I r ¹ A Н М 11 Н М Н М Н М Н Н М М М Н М М Н Н М М Н W М М Н Н М М Н Н М М Н Н М Ш Ш Ш	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 r* 0 0 0 0 0 0 0 0 0 0 0 0 0
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	1 o pa <a° pd w ) &gt;<b>2</b> ^ to</a° 

**0** co

Lab Name: FRIEND LABO	RATOR	Y. INC	. Co	ontract:	
Lab Code: 10252 Case No	o.:		SAS No.:	SDG No.: AAA	
Instrument ID: HP3					
GC Column: RTX-CLPest1	I ID:	0.32	(mm)	Date(s) Analyzed: 11/26/02	2
				File Numbers: 6868	



	AMOUNT			RT WI	NDOW	CALIBRATION
COMPOUND	(ng)	PEAK	RT	FROM	l to	FACTOR
PCB 1254	250 PPB	1*	14.49	14.39	14.59	926.85
		2*	14.73	14.63	14.83	1463.73
		3*	15.09	14.99	15.19	701.10
		4	15.27	15.17	15.37	1063.11
		5	15.64	15.54	15.74	1159.66
Tetrachloro-m-xylene	300 PPB		8.60	8.50	8.70	33712.85
Decachlorobiphenyl	300 PPB		20.10	20.00	20.20	15700.69

* Denotes required peaks

Single injections of the low standard are made to establish approximate retention times and instrument sensitivity. Five point calibrations are performed if a multipeak component is detected in a sample.

Alternate column confirmation is run if a pesticide or PCB is detected in a site sample.

# *70u**

% D Mug /202-252 / Klo* -d

### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980776.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/23/02 Analysis Time: 0225

r	1						
			RT WI	RT WINDOW		TRUE	
COMPOUND	PEAK	RT	FROM J	то	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.18	10.08	10.28	345.60	250.00	38.24
Aroclor-1016	2	10.69	10.60	10.80	294.90	250.00	17.96
Aroclor-1016	3	11.88	11.79	11.99	337.54	250,00	35.02
Aroclor-1016	4	11.96	11.87	12.07	349.59	250.00	39.84
Aroclor-1016	5	12.67	12.57	12.77	277.93	250.00	11.17
Aroclor-1260	1	14.92	14.83	15.03	271.52	250.00	8.61
Aroclor-1260	2	15.33	15.25	15.45	270.51	250.00	8.20
Aroclor-1260	3	16.19	16.10	16.30	260.89	250.00	4.36
Aroclor-1260	4	16.29	16.20	16.40	171.87	250.00	31.25
Aroclor-1260	5	16.75	16.66	16.86	312.51	250.00	25.00
Tetrachloro-m-xylene	1	7.95	7.86	8.06	356.61	300.00	18.87
Decachlorobiphenyl	1	20.11	20.02	20.22	372.91	300.00	24.30
1							

QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equaMe-15%7

/0/U-^ × 100 = 28.4

### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract: Lab Code: 10252 Case No.: _ _ _ SAS No.: _ _ _ SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980783.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/23/02 Analysis Time: 0604

			RT WI	NDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.18	10.08	10.28	316.95	250.00	26.78
Aroclor-1016	2	10.69	10.60	10.80	253.38	250.00	1.35
Aroclor-1016	3	11.87	11.79	11.99	288.97	250.00	15.59
Aroclor-1016	4	11.96	11.87	12.07	294.39	250.00	17.76
Aroclor-1016	5	12.66	12.57	12.77	277.51	250.00	11.00
Aroclor-1260	1	14.92	14.83	15.03	247.89	250.00	0.84
Aroclor-1260	2	15.33	15.25	15.45	253.55	250.00	1.42
Aroclor-1260	3	16.19	16.10	16.30	281.37	250.00	12.55
Aroclor-1260	4	16.29	16.20	16.40	268.95	250.00	7.58
Aroclor-1260	5	16.75	16.66	16.86	274.74	250.00	9.90
Tetrachloro-m-xylene	1	7.95	7.86	8.06	317.72	300.00	5.91
Decachlorobiphenyl	1	20.10	20.02	20.22	312.69	300.00	4.23

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug. 1014 Aug.

### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980791.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/23/02 Analysis Time: 1014

	1						
			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM I	то	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.17	10.08	10.28	316.17	250.00	26.47
Aroclor-1016	2	10.69	10.60	10.80	249.67	250.00	0.13
Aroclor-1016	3	11.87	11.79	11.99	278.81	250.00	11.52
Aroclor-1016	4	11.96	11.87	12.07	282.20	250.00 .	12.88
Aroclor-1016	5	12.66	12.57	12.77	243.57	250.00	2.57
Aroclor-1260	1	14.92	14.83	15.03	265.44	250.00	6.18
Aroclor-1260	2	15.33	15.25	15.45	271.74	250.00	8.70
Aroclor-1260	3	16.19	16.10	16.30	302.15	250.00	20.86
Aroclor-1260	4	16.29	16.20	16.40	276.82	250.00	10.73
Aroclor-1260	5	16.75	16.66	16.86	290.17	250.00	16.07
Tetrachloro-m-xylene	1	7.95	7.86	8.06	323.83	300.00	7.94
Decachlorobiphenyl	1	20.10	20.02	20.22	335.68	300.00	11.89

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

/ <u>r_/y/ * ^ */*.</u>>/

O0C93

### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:______Lab Code: 10252 Case No.:_____SAS No.:_____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980812.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/25/02 Analysis Time: 2351

			RTWI SJDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	TO	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.17	10.08	10.28	327.19	250.00	30.88
Aroclor-1016	2	10.69	10.60	10.80	264.97	250.00	5.99
Aroclor-1016	3	11.87	11.79	11.99	293.96	250.00	17.58
Aroclor-1016	4	11.95	11.87	12.07	298.05	250.00	19.22
Aroclor-1016	5	12.66	12.57	12.77	246.81	250.00	1.28
Aroclor-1260	1	14.92	14.83	15.03	254.63	250.00	1.85
Aroclor-1260	2	15.33	15.25	15.45	267.02	250.00	6.81
Aroclor-1260	3	16.18	16.10	16.30	291.47	250.00	16.59
Aroclor-1260	4	16.28	16.20	16.40	270.70	250.00	8.28
Aroclor-1260	5	16.74	16.66	16.86	291.67	250.00	16.67
Tetrachloro-m-xylene	1	7.95	7.86	8.06	334.83	300.00	11.61
Deca ch I orobi phenyl	1	20.10	20.02	20.22	324.02	300.00	8.01

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.



### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980822.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/26/02 Analysis Time: 0502

			RTWIMDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.17	10.08	10.28	346.82	250.00	38.73
Aroclor-1016	2	10.68	10.60	10.80	286.96	250.00	14.78
Aroclor-1016	3	11.87	11.79	11.99	303.07	250.00	21.23
Aroclor-1016	4	11.95	11.87	12.07	292.65	250.00	17.06
Aroclor-1016	5	12.66	12.57	12.77	230.93	250.00	7.63
Aroclor-1260	1	14.91	14.83	15.03	283.71	250.00	13.48
Aroclor-1260	2	15.33	15.25	15.45	281.20	250.00	12.48
Aroclor-1260	3	16.18	16.10	16.30	255.62	250.00	2.25
Aroclor-1260	4	16.28	16.20	16.40	174.75	250.00	30.10
Aroclor-1260	5	16.74	16.66	16.86	315.16	250.00	26.06
Tetrachloro-m-xylene	1	7.94	7.86	8.06	371.47	300.00	23.82
Decachlorobiphenyl	1	20.10	20.02	20.22	442.31	300.00	47.44

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

/c/o A-^.

*fcC+e J**L*,

00100

### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980828.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/26/02 Analysis Time: 0809

			RT WI	NDOM	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.17	10.08	10.28	361.03	250.00	44.41
Aroclor-1016	2	10.69	10.60	10.80	291.16	250.00	16.46
Aroclor-1016	3	11.87	11.79	11.99	266.69	250.00	6.68
Aroclor-1016	4	11.95	11.87	12.07	287.34	250.00	14.94
Aroclor-1016	5	12.66	12.57	12.77	231.97	250.00	7.21
Aroclor-1260	1	14.92	14.83	15.03	268.69	250.00	7.48
Aroclor-1260	2	15.33	15.25	15.45	260.97	250.00	4.39
Aroclor-1260	3	16.18	16.10	16.30	234.06	250.00	6.38
Aroclor-1260	4	16.28	16.20	16.40	156.55	250.00	37.38
Aroclor-1260	5	16.74	16.66	16.86	285.27	250.00	14.11
Tetrachloro-m-xylene	1	7.95	7.86	8.06	374.89	300.00	24.96
Decachlorobiphenyl	1	20.10	20.02	20.22	376.89	300.00	25.63

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

jctc **-/£&** 

1240 try. / 241-250 / xin J,0

### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980833.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/26/02 Analysis Time: 1205

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.19	10.08	10.28	307.90	250.00	23.16
Aroclor-1016	2	10.70	10.60	10.80	250.51	250.00	0.20
Aroclor-1016	3	11.88	11.79	11.99	269.83	250.00	7.93
Aroclor-1016	4	11.97	11.87	12.07	277.44	250.00	10.98
Aroclor-1016	5	12.67	12.57	12.77	234.70	250.00	6.12
Aroclor-1260	1	14.93	14.83	15.03	242.77	250.00	2.89
Aroclor-1260	2	15.34	15.25	15.45	254.33	250.00	1.73
Aroclor-1260	3	16.19	16.10	16.30	279.42	250.00	11.77 A
Aroclor-1260	4	16.30	16.20	16.40	252.52	250.00	1.01 \
Aroclor-1260	5	16.75	16.66	16.86	278.37	250.00	11.35
Tetrachloro-m-xylene	1	7.96	7.86	8.06	322.79	300.00	7.60
Decachlorobiphenyl	1	20.11	20.02	20.22	314.56	300.00	4.85

" QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.: _____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980836.D Instrument ID: HP1.1 GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/26/02 Analysis Time: 1336

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	ТО	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.18	10.08	10.28	320.69	250.00	28.28
Aroclor-1016	2	10.69	10.60	10.80	239.68	250.00	4.13
Aroclor-1016	3	11.88	11.79	11.99	223.47	250.00	10.61
Aroclor-1016	4	11.96	11.87	12.07	250.68	250.00	0.27
Aroclor-1016	5	12.66	12.57	12.77	217.05	250.00	13.18
Aroclor-1260	1	14.92	14.83	15.03	228.49	250.00	8.60
Arocior-1260	2	15.33	15.25	15.45	231.29	250.00	7.48
Aroclor-1260	3	16.19	16.10	16.30	265.54	250.00	6.22
Aroclor-1260	4	16.29	16.20	16.40	235.58	250.00	5.77
Aroclor-1260	5	16.74	16.66	16.86	260.94	250.00	4.38
Tetrach I o ro-m-xy I e n e	1	7.96	7.86	8.06	322.30	300.00	7.43
Decachlorobiphenyl	1	20.10	20.02	20.22	301.80	300.00	0.60

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

1260 hig. 10-14-250/x100 *d.Y

### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2980842.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 11/26/02 Analysis Time: 1647

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.18	10.08	10.28	313.98	250.00	25.59
Aroclor-1016	2	10.70	10.60	10.80	236.39	250.00	5.44
Aroclor-1016	3	11.88	11.79	11.99	226.99	250.00	9.20
Aroclor-1016	4	11.96	11.87	12.07	247.00	250.00	1.20
Aroclor-1016	5	12.67	12.57	12.77	210.41	250.00	15.84
Aroclor-1260	1	14.92	14.83	15.03	222.06	250.00	11.18
Aroclor-1260	2	15.33	15.25	15.45	221.32	250.00	11.47
Aroclor-1260	3	16.19	16.10	16.30	251.38	250.00	0.55
Aroclor-1260	4	16.29	16.20	16.40	217.11	250.00	13.16 (
Aroclor-1260	5	16.74	16.66	16.86	248.95	250.00	0.42
Tetrachloro-m-xylene	1	7.96	7.86	8.06	319.12	300.00	6.37
Decachlorobi phenyl	1	20.10	20.02	20.22	279.58	300.00	6.81

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

fa± /Mb

*%- /^>&0-

 $h \neq 2z \& P$  Wus = / 2.

<fev*^ *2 2-

00104

### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____Lab Code: 10252 Case No.:_____SAS No.:_____. SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E3956872.D Instrument ID: <u>JHP3.I</u> GC Column: RTX-CLPesticides 1

ID: 0.32 (mm)

Analysis Date: 11/26/02 Analysis Time: 1258

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	14.48	14.39	14.59	255.60	250.00	2.24
Aroclor-1254	2	14.72	14.63	14.83	257.17	250.00	2.87
Aroclor-1254	3	15.09	14.99	15.19	264.86	250.00	5.94
Aroclor-1254	4	15.27	15.17	15.37	263.95	250.00	5.58
Aroclor-1254	5	15.63	15.54	15.74	258.72	250.00	3.49
Tetrachloro-m-xylene	1	8.58	8.50	8.70	302.96	300.00	0.99
Decachlorobiphenyl	1	20.10	20.00	20.20	307.79	300.00	2.60

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

9, P |200-250/ JCtu> *1

8D PCB ANALYTICAL SEQUENCE

Lab Name:Contract:Lab Code:Case No.:SAS No.:SDG No.: AAA1121Instrument ID: HP1Init. Calib. Date{s): 11/22/2 11/2GC Column: RTX-CLPESTICIDES 2 ID: 0.32 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROGATE RT FROM INITIAL CALIBRATION TCX: 7.96 DCB: 20.11			BRATION		
	ICA · 7.90	DCB· 2	20.11			
	EPA	LAB	DATE	TTME	тсх	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	1660STD1	1660STD1	11/22/2	1427	7.98	20.13
02	1660STD2	1660STD2	11/22/2	1457	7.97	20.12
03	1660STD3	1660STD3	11/22/2	1528	7.96	20.11
04	1660STD4	1660STD4	11/22/2	1559	7.96	20.11
05	1660STD5	1660STD5	11/22/2	1630	7.96	20.11
06	1660STD6	1660STD6	11/22/2	1702	7.96	20.11
07	1660STD1	1254STD1	11/22/2	1804	7.97	20.12
08	1660STD2	1254STD2	11/22/2	1835	7.96	20.11
09	1660STD3	1254STD3	11/22/2	1907	7.96	20.11
10	1660STD4	1254STD4	11/22/2	1938	7.96	20.11
11	1660STD5	1254STD5	11/22/2	2009	7.96	20.11
12	1660STD6	1254STD6	11/22/2	2041	7.95	20.11
13	1248STD	1248STD	11/22/2	2112	7.95	20.11
14	1242STD	1242STD	11/22/2	2143	7.95	20.11
15	1232STD	1232STD	11/22/2	2214	7.96	20.11
16	1221STD	1221STD	11/22/2	2246	7.96	20.11
17	MB42 i	MB42	11/22/2	2317	7.96	20.10
18	1660CC01 $J$	1660CC01	11/23/2	0225	7.95	20.11
19	L97127-1	L97127-1	11/23/2	0256	7.96	20.11
20	L97127-2	L97127-2	11/23/2	0328	7.97	20.11
21	L97127-3	L97127-3	11/23/2	0359	7.97	20.11
22	L97127-5 /	L97127-5	11/23/2	0501	7.96	20.11
23	1660CC02 J	1660CC02	11/23/2	0604	7.95	20.10
24	L97127-6	L97127-6	• 11/23/2	0635	7.96	20.10
25	L97127-7	L97127-7	11/23/2	0706	7.96	20.10
26	L97127-8	L97127-8	11/23/2	0738	7.96	20.10
27	L97127-8MS	L97127-8MS	11/23/2	0809	7.96	20.11
28	L97127-8MSD	L97127-8MSD	11/23/2	0840	7.96	20.10
29	L97127-11	L97127-11	11/23/2	0911	7.96	20.10
30	1660CC03 <i>*f</i>	1660CC03	11/23/2 •	1014	7.95	20.10
31	1660CC07 <i>-</i> J	1660CC07	11/25/2	2351	7.95	20.10
32	MB45	MB45	11/26/2	0022	7.94	20.09
<u>11</u>		QC45	11/26/2	0053	7.94	20.09
34	L97224-1	L97224-1	11/26/2	0124	7.95	20.10
35	L97224-2	L97224-2	11/26/2	0155	7.95	20.10
36	L97224-3	L97224-3	11/26/2	0227	7.95	20.09
37	L97224-4	L97224-4	11/26/2	0258	7.95	20.10

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl QC LIMITS {+/- 0.10 MINUTES) (+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk, * Values outside of QC limits.

page 1 of 2

FORM VIII PCB

8D PCB ANALYTICAL SEQUENCE

Lab Name:		Contract:	
Code:	Case No. :	SAS No. :	SDG No. : AAA1121
<b>s</b> trument	ID: HP1	Init. Calib.	Date(s): 11/22/2 11/22/2
Column:	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO TCX: 7.96	GATE RT FROM DCB: 2	INITIAL CALI 20.11	BRATION		
	EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	TCX RT #	DCB RT #
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17	L97224-5 L97224-6 / 1660CC08 J L97224-7 L97224-8 L97224-9 L97224-9 L97224-10. 1660CC09 * I 1660CC10 J QC42 QC45 / 1660CC11J L97127-4 L*?G9B4->t ⁻¹⁵ L96>8<-4 L3S984 5 r 1660CC12 J	L97224-5 L97224-6 1660CC08 L97224-7 L97224-8 L97224-9 L97224-9 1660CC09 1660CC09 1660CC10 QC42 QC45 1660CC11 L97127-4 L96984-13 L96984-4 L96984-5 1660CC12	11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2 11/26/2	0329 0400 0502 0534 0605 0636 0707 0809 1205 1234 1305 1336 1408 1442 1514 1545 1647	7.95 7.95 7.94 7.96 7.96 7.95 7.95 7.95 7.95 7.95 7.96 7.96 7.96 7.96 7.96 7.96	20.09 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10 20.10
19 20						
21						
22						
23						
25						
26						
27						
28						
30						
31						
32						
33						
34 2⊑						
25						
37	1					

QC LIMITS

TCX = Tetrachloro-m-xylene(+/- 0.10 MINUTES)DCB - Decachlorobiphenyl(+/- 0.10 MINUTES)

 $\ensuremath{\texttt{\#}}$  Column used to flag retention time values with an asterisk * Values outside of QC limits.

ge 2 of 2

8D

#### PCB ANALYTICAL SEQUENCE

Lab Name:Contract:Lab Code:Case No.:SAS No.:SDG No.: AAA1121C0N}Instrument ID: HP3Init. Calib. Date(s): 11/20/2 11/2•GC Column: RTX-CLPESTICIDES 1 ID: 0:32 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO TCX: 8.60					
	EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	TCX RT #	DCB RT #
01 02 03	1254STD L97127-4	1254STD L97127-4 L97260-5	11/26/2 11/26/2 11/26/2	1054 1125 1156	8.60 8.58 8.57	20.10 20.10 20.10
04 05	1254CC01J	1254CC01	11/26/2	1258	8.58	20.10
07 08						
09 10 11						
12 13 14						
15 16						
18 19						
20 21 22						
23 24 25						
26 27 28						
29 30						
3⊥ 32 33						
34 35 36						
37						

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl QC LIMITS (+/- 0.10 MINUTES) (+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk.
 * Values outside of QC limits.

page 1 of 1

0C108

	10B PESTICIDE IDENTIFICATIO	EPA SA	MPLE JMU.	
ab Name:	FOR MULTI COMPONENT A	Contract:	L971	27-4
Code:	Case No. :	SAS No.:	SDG No.: AA	A1121
Lab Sample ID:	L97127-4	Date(s)	Analyzed: 11/26/2	ji/Ztoloa*
Instrument ID	(1): HP1	Instrum	ent ID (2): <i>Hf3</i>	
GC Column(1) :	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	GC Column(2) : <u>/m~Ci</u>	<u>"P£sri</u> ID: <u><p>3z</p></u>

			RT WI	NDOW		MEAN		
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D	
			_	_				
	1	13.26	13.16	13.36	849.67			
Aroclor-1254	2	13.50	13.55	13.75	714.77			
	3	14 92	14.82	15.02	435.64			
COLUMN 1	4	15 33	15.23	15 43	233.24			
COLONIA	5	16.00	15 92	16 12	184 64	483 59		
	5	10.00	10.72	10.12	101101	105.57		
	1		$M_{-}31$		1/3-WSI			
	2	U 7/	7-463	M 83	5/3-WD1 5/3 ^3	-		
	3	-11.74	<u>Z</u> 403 <u>(V</u> -2-2		505.5.	-		
COLUMN 2	4	IT 30	75 /7	is ni	$>\%5 *_{-t0}$	-		
COLONIX 2	5		2377	I.S.M	37172	351 33	3H-(n	
	5	15.05	/.1	JAN	5752:	551.55	<b>511</b> (p	
	1							
-	2							
	3					-		
COLUMN 1	4					-		
	5							
	1							
	2					-		
	3					-		
COLUMN 2	4					-		
	5							
	1							
	2							
	3							
COLUMN 1	1					-		
COLONIN	5					-		
	5							
	1							
	2					-		
						-		
COLUMN 2	3					-		
COLUMIN 2	4 5					-		
	5							

At least 3 peaks are required for identification of multi component analytes.

Ρ	CJCJ-^. Ortl'lCUlj 3	LVW .		
T I NI	L97127-8MS			
Lab Name:	(	Contract:		
Lab Code:	CaseNo	SAS No.:	SDG NO. : AAA1121	
Lab Sample ID:	L97127-8MS	Date(s)	Analyzed: 11/23/2	-
Instrument ID (	1) : HP1	Instrum	ent ID (2):	
GC Column(1) : H	RTX-CLPESTICIDES 2 ID:	0.32(mm)	GC Column(2):	ID;

			RT WI	NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	то	CONCENTRATION	CONCENTRATION	%D
Aroclor-1016 COLUMN 1	1 2 3 4 5	10.18 10.69 11.88 11.96 12.66	10.08 10.60 11.78 11.86 12.57	10.28 10.80 11.98 12.06 12.77	442.08 336.65 359.78 418.40 540.19	419.42	
COLUMN 2	1 2 3 4 5						
Aroclor-1260 COLUMN 1	1 2 3 4 5	14.92 15.34 16.19 16.29 16.75	'14.82 15.24 16.09 16.19 16.65	15.02 15.44 16.29 16.39 16.85	521.22 541.34 424.74 368.84 422.97	455.82	4
COLUMN 2	1 2 3 4 '5					-	
	1 2 3					-	
COLUMN 1	4 5					-	
COLUMN 2	1 • ² 3 4 5						

At least 3 peaks are required for identification of multicomponent analytes

page l of 1

FORM X PEST-2



Organic Extractions



^nalYsis:_^S^S^i
Matrix:^£LtSk-S^

Page: JMSL

Sur Ref.: Conc.: DD 193355560

Spike Ref.:JS£

1. D.	Customer-	Int. size	Hn. vol.	Sr. amt.	Spk amt.	Wit., by	Clean-ups	
IA(MS		fenm	fOy <u>y</u> J	/ « /			u.?	5-
GJLH^		/i."3o«7			U •		1	5-
UhIXH-I	J.OA /Tw	/ri*<£/%						
•-?		/o.W<3						
"?		fc<30/9						
-•4		/i),?7?9						
—*E>		l(),7Hou						
• ~L-		lbMI*>I	-					
7		/o. w r						
*t>		/0.//5'0				•	-	
-°i		/D.'75*7		i\^>	•			
^k^-ii^	">/	/ft.w?						
11/8	_ <b>*</b> *	<b>≮</b> _/o.w>						_
vv Q ~	<b>,</b>	/•£>./33S"	^	Jy,'			v I	
					- '			
						•	• • •	
					-			
		_						
				l,+				_

Extracts Reliquished to:

Comments:



(C, C)





3WOA-. ^

Organic Extractions

## AG. ^7M.

N^k>ok:,

Extracted By: JMDate Extrarted:  $M \% 2^{V}$ 

Analysis^*

Page: *M&&L&1* 

Sur.Ref.:. Sur Cone:

Spike Ref.: 100 Spike Conc.:_____

. 1. D.	Customer	Int. size	Fin.	vol.	Sr.	amt.	Spk amt.	Wit. by					
MB42		10.9904	10m	_ گ	1	l			1. 3	3	5	38.∩flr	<b>⊥</b> /*
QC42		10.3378					Int			Ĺ	J J.	500 m	т
1971271	AAA GON	10.4618						· ·		·			
		10.5489					· · ·						
-3_		10,338\$											
		10.3582		- ··					<u>_</u>		ŀ		
-5		10.1284								· · ·			
-6		10,1907	· ·			<u> </u>	···						
7		10.0992				· ·	·	·					
-8		10 5672						· · ·					
- AAS		10.5555									· .		4g -
1025		10 400						1.					
<b>—</b> — <i>II</i>		10.9690		ر	<u> </u>					/			
									· ·				
			1						<u> </u>		Į		
					[""	•	ſ	·		·	ţ.		···
								· •·· ·		· .	· ·		
			ł	-			-		-  -		·		
					Ī								•
			,				·	· · ·			ļ		
			1		1								
1					Τ					- •		• •	•
	1	1						·	{.		]	•	
	·										}		1
				•				• •			]	•	
						- · ·						1. 1	
												$\sim$	9
Extracts R	eliquished to	):										410 °	le la constance de la constance
						, .		····· ,			$\cap$	Ъ С	120
Comments:								• •		·	V	- 1	11/
					~						•	1111	-
				/	$\langle \rangle$	1	$\gamma $ ( )					Y_M	
				. /	•	1	) (					0 ¢	
				(	/	$\mathcal{O}$						•	





Notebook : 02-123 Start Date : 21-NOV-02 13:37

End Date	: 21-NOV-02 13:37 Analysis Date Time	Mal Init Rethod	0lsh8	Votiinc (mtsj	initial Weight	1*tKHB(g Weight &	g 3rt»tfi Weight	? <i>mmK%</i> fWjpJI	7tM«th ^Weight	f©ffi*10tfi ^fejsht	Pinal Result	Rfe;>in:
Connents	8tert:21-00v-02 13:37 Stop::21-00v-02 13:37	12 CLP 3.0	3	5.1421	1.2559	1.2034		6-10-1-1 		1947 (S. 19 12 (S. 19	76.8	X
CORRECTS	Start:21-NOV-02 13:37 Stop :21-NOV-02 13:37	CLP 310	<del>1</del> 1	5.3726	1,2834	6.0921					89.9	X
Connenta	Start:21-NDV-02 13:37 Stop :21-NDV-02 13:37	CLP 3.0	* !	<b>7.8228</b>	1,2668	5.828					78,3	*
97127-3 Comenta	Stert:21-HOV-02 13:37 Stop :21-HOV-02 13:37	CLP 3.0	<u>s</u>	5.16	1.2629	5.9325					90.5	
Comenta	Start:21-ROW-02 13:37 Stop (21-ROW-02 13:37	CLF S.C	6	6977	1,257	6,1006					88.1	<u> </u>
67127×5	Start:21-NOV-02 13:37 Stop :21-NOV-02 13:37	ELP 3.0	7 9	. 2753	1.2626	5,9614	5.90	11-77 275	<del>204</del> 3	-112) 58)	88.7 792	<b>X</b>
	Start:21-WOW-02 13:37 Stop :21-WOW-02 13:37	CLP 3.0	8	x.1257	1.2693	521915					76,3	X
07127-7 Comerita	Start:21-MOV-02 13:37 Btop 121-WOV-02 13:37	CLF 3.0	9	. 1442	1.2597	.66					15.5	1
Committe	8t#tt:21+W3V+02 33:37 Stop 121-W3V+02 13:37	CLP 3:0	10	-3922	1.256	.5581					4.6	108 X
MAN SALES	Stor: 21-NOV-02 13:37	CLP 315	1	82800%	1,2452	8-051×				4. Z 🕈	39 <u>.</u> 4	2

Calculations: Final Results • (fnl - Initial) x 1000000 wgt wgt

mis of sample

Analyst Signature

- Date

ManagerSignature



• #

o O I)

Notebook : Start Date End Date   S«Vte l.D.	02-123 2 : 21-NOV-02 13:37 21-NOV-02 13:37 Analysis Date Tine	Anst Method	<i>mWi</i> Initial 1stS2nd 3rdMth SthA6th 7th&8th «thi 10th Final Dish* («tft) Weight Weight Weight Weight Weight Result Rpd <i>I</i> -''units	Page: 7 2 of 2
•>ts 53*81-2 M iKwmpnts	Start:2I-N0v-u2 13:37 Stop :21-KOV-02 13:37 L97127-6D	CLP 3.0	5. <u>参股</u> 1.24*2 6.3A29 •&T W <i>mi</i>	

Calculations:	Ffnal	Results =		(fnl	-	Initial)	х	1000000
				wgt		wgt		

mis of sample

QAnalyikyst Signature

/ Date

ManagerSignature ~~ 0" ' Date

CO


#### UET CHEHISTRY TOTAL SOLIDS NOTETOWC

Notebook : 02-123 Start Date : 27-N0V-02 13:32 End Date : 27-NOV-02 13:32 Anatysts Anal ssmpic 1,0 Date Time JrJit M	VtftuwT Initt& 1ethod Dtshtf Curts) 'Weigh	&I *st&2nd 3rd&4th 5thfcfittT 7tM8tft ht Veiflht Weight Weight We.fght	: \$t*tt0t8 Final ; Bright Result _: ftpd* Unite
^Cottrtent*^ t	-	1	,
U&33762*1 3taft:27*NOV/*02 13:32 - £LP 3 1 ' Stop :27-HOV-02 13:32	-0 1 1*263* 1.263	K26ST - ^	
W ^ 3 M ^Start^V-Mdv:'^ "I3:32 ':"QP 3 Stop :27-NaV-02 13:32	*0 2' &T5&'" "1.'262""	£14383. •" "'" " ••;	''"'•' "uH"' ' <b>'•I</b> T

i ^s '





^ / | \ ^ Environmental and Computer Technology Consultants

# Data Validation Report

SDG#	94538
Validation Report Date	April 28, 2003
Validation Guidance	USEPA Region 2 Guidelines for Data Review SW 846 Method 8082
Client Name	Cummings-Riter
Project Name	Viacom/Horseheads
Laboratory	Friend Laboratory Inc.
Method(s) Utilized	SW 846 8082
Analytical Fraction	PCBs

Samples/Matrix:

Date Sampled	Sample ID	Laboratory ID	PCBs	Matrix
9/24/02	B-B-SS-W-OOl(B)	94538-1	Х	Solid
9/24/02	B-B-SS-E-001	94538-2	Х	Solid
9/24/02	B-B-S-E-001	94538-5	Х	Solid
9/24/02	B-B-SS-W-OOl(A)	94538-6	Х	Solid
9/24/02	B-C-S-B-001	94538-7	Х	Solid
9/24/02	B-B-S-W-001	94538-8	Х	Solid

Analytical data in this report were screened to determine analytical limitations of the data based on specific quality control criteria. This screening assumes analytical results are correct as reported and merely provides an interpretation of the reported quality control results. A minimum of 10% of laboratory calculations has been verified as part of this validation. Specific findings on analytical limitations are presented in this report. Annotated Form Is or spreadsheets for samples reviewed are included after the Data Assessment Findings. Form Is for the MS/MSD samples and spreadsheets are not annotated.

## SUMMARY

The sample set for Viacom/Horsehead consists of six solid field samples. These samples were analyzed for the parameters as provided above. The findings presented in this review of the analytical data assume that the information presented by the analytical laboratory is correct. This review is identified as a false positive/false negative review, and therefore, does not include the review of some quality control (QC) items. Those included in the review are listed below.

The polychlorinated biphenyl (PCBs) findings are based upon the assessment of the following:

## False Positives/False Negatives Validation

- * Data Completeness
- * Holding Times
- * Calibration and GC Performance
- * Blanks
- * Analytical Sequence Check
  - Target Compound Identification
    - Compound Quantitation and Reported Detection Limits
    - Chromatogram Quality

* Criteria were met for this evaluation item.

This evaluation was conducted in accordance with USEPA Region II SOP No. HW-23B (May 2002), USEPA CLP National Functional Guidelines for Organic Data Review and the analytical method. Findings from this evaluation should be considered when using the analytical data. This report presents a summary of the data qualifications based on the review of the aforementioned evaluation criteria. This is followed by annotated Form Is/ spreadsheets. Finally, the worksheets used to perform the evaluation are provided.

# **FINDINGS**

*

*

## **Pol> chlorinated Biphenyls (PCBs)**

## **1.** Compound Quantitation

The percent difference between columns exceeded the 25% quality control limit. For the following samples and compounds, qualify PCB results as indicated in the table below. Samples were qualified based on SOP HW-23, Section 12.6.

Sample	Compound	% Difference	Qualifier
B-B-SS-W-OOl(B)	Aroclor 1254	35.6%	J
B-B-SS-E-001	Aroclor 1254	36.7%	J
B-B-S-W-001	Aroclor 1254	48.6%	J

## **NOTES**

## **Polychlorinated Biphenyls (PCBs)**

#### **Completeness**

The USEPA Region II SOP No. HW-23B has the following sections that are not applicable to this project because it is a false positive/false negative review:

- Surrogate Recovery (Form 2)
- Laboratory Control Sample
- Matrix Spikes (Form 3)
- Contamination
- GC Apparatus and Materials
- Extraction Techniques for Sample Preparation
- Field Duplicates

Samples within this batch were received by the laboratory over a three day period. The case narrative indicates that the various cooler temperature upon receipt at the laboratory ranged from 3 to 6 C. Data are not qualified upon this basis.

## **Calibration**

The laboratory used linear regression to calculate PCB results. The use of linear regression is permissible for SW-846 methodologies. The laboratory met the acceptance criteria specified in Section 7.5.2 of Method 8000B (r value greater than or equal to 0.99).

Data summary forms (including calibration factors) for the initial and continuing calibration is not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the calibration factor information. Because Aroclor 1254 was identified as a constituent of concern, the data summary information for the second column is provided for the continuing calibration. Data are not qualified on this basis.

The percent difference (%D) per peak for multi-standard Aroclors are provided. For SW 846, the laboratory used the average Aroclor concentration to determine the %D. Data are not qualified because the average value is used.

## **Retention Time**

Retention time windows are not determined by the use of three standards for single standard calibration Aroclors. The center of the retention time window is defined as the retention time of the midpoint standard from the initial calibration. For the multi-standard calibration Aroclors, the center of the retention time window is the mean of the retention time generated from each standard. The retention time windows are the mean + 0.1 minutes. Data are not qualified on this basis.

Retention time windows are not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the retention time window information. Because Aroclor 1254 was identified as a constituent of concern, the retention time information for the second column is provided. Data are not qualified on this basis.

## **Compound Quantitation**

Samples were analyzed and reported at a dilution due to the presence of target compounds. Dilutions for samples are presented below. Reporting limits were adjusted for percent solids and dilutions.

B-B-SS-W-001(B), B-B-SS-E-001, B-B-S-E-001, B-B-SS-W-OOl(A), B-C-S-B-001, B-B-S-W-001_____

the AJx*^£

lOx

iSTta Reviewer

Date

# **Glossary of Data Qualifiers**

u	Not Detected.	The associated number indicates approximate sample
•••		concentration necessary to be detected.
UJ	Not Detected.	Quantitation limit may be inaccurate or imprecise.
J	Analyte Present.	Reported value may not be accurate or precise.
Ν	Consider Present.	Tentative identification. Special methods may be needed to confirm its presence or absence in future sampling efforts.
R UR	Unusable Result. Unusable Result.	Analyte may or may not be present in the sample. Analyte may or may not be present in the sample.

ECT.CON INC.



«

«

•

.

I A A A A Environmental and Computer I Technology Consultants

^**l**/^

# Annotated Form l's (Spreadsheet)



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date: 30-SEP-2002

Lab Sample ID: L94538-1

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Sample Source:	VIACOM/HORSEHEADS::192M;:.
Origin:	B-8-SS-U-QQ1 <b>: ,;:. ;.</b>
Description:	COMPOSITE
Sampled On:	24-SEP-02
Date Received:	25-SEP-02 15;2> [^] ;-';
P.O. No:	N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	69.2			25-SEP-02 00:00	CLP 3.0	02-066-77
EPA 8082						
PC8 1016		ug/kg	140	26-SEP-02 12:17	EPA 8082	02-004-9953
PC8 1221		ug/kg	280	26-SEP-02 12:17	EPA 8082	02-004-9953
PCB 1232		ug/kg	140	26-SEP-02 12:17	EPA 8082	02-004-9953
PCB 1242		ug/kg	140	26-SEP-02 12:17	EPA 8082	02-004-9953
PCB 1248	/	uq/kq	140	26-SEP-02 12:17	EPA 8082	02-004-9953
PCB 1254	260 ⁽ )	ug/kg	140	26-SEP-02 12:17	EPA 8082	02-004-9953
PCB 1260	U Ĵ	ug/kg	140	26-SEP-02 12:17	EPA 8082	02-004-9953
Extraction Information:				25-SEP-02 00:00	EPA 3550	02-044-87
Surrogate Recovery:						
Tetrachioro-m-xylene	75					02-004-9953
<b>Decachlor</b> oblphenyl	83					02-004-9953

^4

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QCt2*£

 KEY: ND of U = None Detected
 < = less than</td>
 ug/L
 ^B micrograms per liter (equivalent to parts per billion)

 mg/C
 - milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per million)

 mg/C
 - milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per million)

 = analyte was detected in the method or trip blank
 J
 = result estimated below the quantitation limit

**wm**-ⁿ iation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083



Date: 30-SEP-2002

Lab Sample ID: L94538-2

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Sample	Source:	VIACOMHOR	SEHEADS	1920S
-	Origin:	B-B-SS-:E-C	100	
Des	cription;	COMPOSITE		
Sar	npled- On;	?4-SEP-02	i6:io by	CLIENT
Date F	Received:	-vas-sEP-os	15:25	
	P,0;No,:	N⁄A-•.		

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	87.5	%		25-SEP-02 00:00	CLP 3.0	02-066-77
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	U U U 490 <b>sf</b> U - ⁷	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	100 210 100 100 100 100	26-SEP-02 09:41 26-SEP-02 09:41 26-SEP-02 09:41 26-SEP-02 09:41 26-SEP-02 09:41 26-SEP-02 09:41 26-SEP-02 09:41	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-9948 02-004-9948 02-004-9948 02-004-9948 02-004-9948 02-004-9948 02-004-9948
Extraction Information:				25-SEP-02 00:00	EPA 3550	02-044-87
Surrogate Recovery: Tetrachtoro-m-xylene Decachlorobiphenyl	85 114	х %				0 2 - 0 0 ^ 3 0 2 - 0 ( ^ ^ 3

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA HY 00033

QC

KEY: ND o/ U = None Detected <= less than ug/L = micrograms per liter (equivalent to parts per bUlion) mg/L = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per bUlion) = analyte was detected in the methodj>r trip blank J = resuj^estitnated below the quantitation limit

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost ^TC^Brese services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date: 30-SEP-2002

Lab Sample ID: L94538-5

AAA. Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211

Sample Source:	VIACOH/HORSEHEWJS; ?1?2Q8
Origin:	B-B-S-E-001 [:] ":"i':^y^
Description:	COMpOS•IT•E.•.'.";"^i'i4'^^•
Sampled On	24-SEP-02 16^0;: /^;-Gtl;ENT
Date Received	25-sEp-02yi5  5;;J;:  /:'
P.O. No	

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	45.4			25-SEP-02 00:00	CLP 3.0	02-066-77
EPA 5082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	u u u u <b>1100</b> u	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	200 400 200 200 200 200 200	26-SEP-02 10:12 26-SEP-02 10:12 26-SEP-02 10:12 26-SEP-02 10:12 26-SEP-02 10:12 26-SEP-02 10:12 26-SEP-02 10:12	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-9949 02-004-9949 02-004-9949 02-004-9949 02-004-9949 02-004-9949 02-004-9949
Extraction Information:				25-SEP-02 00:00	EPA 3550	02-044-87
Surrogate Recovery: TetrachIoro-m-xylene Desachiorobiphenyl	87 114					02-004-9949 02-004-9949



Results calculated on a dry weight basis.

Approved byr 📕 Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC ^ v



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date: 30-SEP-2002

Lab Sample ID: L94538-6

AAA Environmental Peter Porter 6 679 Moore Road Syracuse, NY 13211

Sample	Souree:	VIACOM/HORSEHEADS 19208
	Origin:	B-B-SS-U-OOI (A)
besq	ripKion:	COMPOSITE
,-4^iin	^ l ^ d : . 9 n :	24-SEP-02 15:50 by CLIENT
C*at [:] e _{;;:} ^	ecjeicked:	25-SEP-O2 15:25
•••	.''P':>'0.':':'-NO.:	N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	81.9			25-SEP-02 00:00	CLP 3.0	02-066-77
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	บ บ น น 220 บ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 230 110 110 110 110 110	26-SEP-02 10:43 26-SEP-02 10:43 26-SEP-02 10:43 26-SEP-02 10:43 26-SEP-02 10:43 26-SEP-02 10:43 26-SEP-02 10:43	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004 •995( 02-004 •995( 02-004 •995( 02-004 •995( 02-004 •995( 02-004 •995( 02-004 •995(
Extraction Information:				25-SEP-02 00:00	EPA 3550	02-044-87
Surrogate Recovery: Tetrachloro-m-xylene Decacti lorobi phenyl	90 110					02-00 02-0

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 66180 EPA NY 00033

осјі 况

KEY: ND of U = None Detected '< = less than ug/L = micrograms per liter (equivalent to parts per bi mg/L = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts p* ), ion) = analyte was detected in the method or trip blank J = result estimated below the quantitation_Iimit

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost **fdj^PFs**e services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 PAX (607) 565-4083

Date: 30-SEP-2002

Lab Sample ID: L94538-7

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VIACOH/HORSEHEADS 1920S . Origin: B-C-S-B-001 •.; - ] Description: COMPOSITE Sampled On: 24-SEP-Q2 15;c40:by CLIENT Date Received: 25-SEP-02,J5;:25::^ P.O. NO: N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	80.7			25-SEP-02 00:00	CLP 3.0	02-066-77
EPA 80S2						
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	บ น น น 1000 น	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	120 240 120 120 120 120 120 120	26-SEP-02       11       14         26-SEP-02       11       14         26-SEP-02       11       14         26-SEP-02       11       14         26-SEP-02       11       14         26-SEP-02       11       14         26-SEP-02       11       14         26-SEP-02       11       14	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-9951 02-004-9951 02-004-9951 02-004-9951 02-004-9951 02-004-9951 02-004-9951
Extraction Information:				25-SEP-02 00 00	EPA 3550	02-044-87
Surrogate Recovery: Tetrachloro-m-xylene Dec^ Uprobiphenyl	96 141					02-004-9951 02-004-9951

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC •'///• -

KEY: ND of U s Hone Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion) mg/L = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) ^ ^ ^ J | ^ ___= analyte was detected in the method or trip blank J = result estimated below the quantitation limit

MB^TMmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost >e services. Your samples will be discarded after 14 days unless ue are advised otherwise.

WAVERLY, NY 14892-1532 00 PAX (607) 565-4083

Date: 30-SEP-2002

<u>I • N • C</u> Lab Sample ID: L94538-8 AAA Environmental Peter Porter 6 67 9 Moore Road Syracuse, NY 13211

FRIEND

LABORATORY

Sample Source: VACCW/HORSEHEApS 1920S Origin: B-BASTU-001 Description; Sampled Ori: 24'SEf>:A2 15:40 by CLIENT Date Received: ASENJ? 1525 P.O. NO-. N/A:-..

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	86.2			25-SEP-02 00:00	CLP 3.0	02-066-77
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	U U 270'T U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 210 110 110 110 110 110	26-SEP-02 11:46 26-SEP-02 11:46 26-SEP-02 11:46 26-SEP-02 11:46 26-SEP-02 11:46 26-SEP-02 11:46 26-SEP-02 11:46	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-9952 02-004-9952 02-004-9952 02-004-9952 02-004-9952 02-004-9952 02-004-9952
Extraction Information:				25-SEP-02 00:00	EPA 3550	02-044-87
Surrogate Recovery: TetrachIoro-m-xylene Oecachlorobiphenyl	103 137					02-0 <b>04^325</b> 2 02-00i



1/2/3

Results calculated on a dry weight basis.

Approved by: Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC L**A.

 KEY: ID of U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 milligram per liter (equivalent to parts per million)
 mg/kg = milligrams per kilogram (equivalent to parts per billion)

 = analyte was detected in the method or trip blank
 J = result estimated below the quantitation limit

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed l^iKost se services. Your samples will be discarded after 14 days unless we are advised otherwise.'

 $^{sl/r}$  ect.con inc.

^^^ I \^^w Environmental and Computer
I Technology Consultants

Support Documentation







fV

«

La bora tory Case Narra tive



# Laboratory Validation and Usability Assessment

# Project: AAA Environmental Viacom/Horseheads 19208 Sampled September 21,23, & 24, 2002

The data reported in this package have been reviewed for compliance with QC acceptance limits as specified in the method cited for each analysis.

These statistical limits are typically based on historical laboratory data for a given sample matrix, and will not exceed any default limits specified by the method. CLP acceptance limits are also considered.

The following Quality Control operations are considered in the validation of reported results:



u

Holding times, surrogate recovery, spiked sample recovery, duplicates/spiked duplicate precision, tuning criteria, internal standard variation, continuing calibration variation, reference (check) sample recovery, and instrument, method, trip and field blanks. The appropriate frequency for each operation is also considered.

Every effort has been made to report data that is compliant with the EPA methodology cited for each analysis. In cases where the laboratory was unable to meet all method requirements prior to sample expiry, either due to the nature of the sample or other technical difficulty, results are reported with qualification with the understanding that qualified results may not be suitable for compliance purposes. The internal technical review is based on the USEPA Contract Laboratory Program *National Functional Guidelines for Organic Review* (EPA 540/R-94/012, February 1994) and *National Functional Functional Guidelines for Inorganic Review* (EPA 5407R-94/013, February 1994).

# Validation

Sixteen site samples and a matrix spike/matrix spike duplicate set were received on September 23, 24, & 25, 2002, with ice and ice packs. The temperature, as received, was 3°Cto6°C.

# РСВ

Site samples were analyzed by EPA method 8082 for PCBs with a two-microliter injection volume.

RTX-CLPesticides 1 and RTX-CLPesticides 2 capillary columns, 0.32 mm ID, with purge packed inlets and electronic pressure control are used on an Hewlett-Packard 5890 series II with dual ECD and an HP 7673 autosampler with simultaneous injection. Data is collected with HP Chemstation software and processed by Thruput with Target software. If a peak is detected within the retention time window of a target compound, second-column confirmation is performed. Column RTX-CLPesticides 2 was used for the primary analysis. Column RTX-CLPesticides 1 was used to confirm only the fingerprint, not the quantitation. Form 10B's are provided in order to verify pattern recognition.

PCB 1254 was detected in each of the site samples. Second-column analysis confirmed the presence of these targets. No PCBs were detected in the method blank.

Surrogate recoveries were within limits for the site samples.

Surrogate recoveries for the method blank and blank spike extracted on 9/25/02 were five times the expected amount. Since no PCBs were detected in the method blank, and blank spike recoveries of PCBs 1016 and 1260 were within the acceptance limits, no qualification was made.

Site sample A-B-SS-B-001 was spiked in duplicate. Spike recoveries were above the acceptance limits for the MS, and slightly above the acceptance limits for the MSD. Since PCB 1254 was present in this site sample, overlapping peaks probably caused an elevation of the recoveries.

Precision as indicated by RPD was within the acceptance limits.

Two blank spikes were associated with the site samples. Blank spike recoveries were within the acceptance limits.

No other analytical difficulties were encountered.

# Metals

Site samples were analyzed forTCLP Cadmium by Inductively Coupled Plasma - Optical Emission Spectrometry.

The ICP-OES instrument is an ARL 3560 with an AIM 1250 autosampler with an extension. The data is acquired with the Microactive, Australia software ICP Manager 35xx.

Laboratory Control sample recoveries for Cadmium were within acceptance limits.

No analytical difficulties were encountered.

# Wet Chemistry

Site samples were analyzed by EPA method 9095 for Paint Filter.

No analytical difficulties were encountered.

# **Usability Assessment**

All reported data were found to be valid and usable within the EPA National Functional Validation guidelines except those that were qualified in this Laboratory Validation.

Laboratory validation and Usability assessment conducted by:

<u>/I/L&ajt&L*</u> Z&+JJ&\$L

Date: October 25, 2002

Elizabeth A. Keator Quality Assurance

# Worksheets

•

•

EPA Region II 846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

N/A

YES NO

• »

fc-fc *^~U>-<*M,t61 ?y<0.?- /

#### 5-,e.--3-co - ∞ ' PACKAGE COMPLETENESS AND DELIVERABLES

CASE NUMBER: ""* SDG#

LAB : <u>n & t e t fdn0 > T</u>».-k.m. JtfL. SITE : <u>/, *£f*i*-</u> //k/fef £S&C(

- 1.0 Data Completeness and Deliverables
  - 1.1 Has all the data been submitted in CLP deliverable format?
  - 1.2 Have any missing deliverables been received and added to the data package?
  - ACTION: Call lab for explanation/resubmittal of any missing deliverables. If lab cannot provide them, note the effect on review of the data in the reviewer narrative.

#### 2.0 Cover Letter. SDG Narrative

- 2.1 Is a laboratory narrative or cover letter present?
- 2.2 Are the case number and/or SDG number contained in the narrative or cover letter?

#### 3.0 Data Validation Checklist

3.1 Does this data package contain:

Water data?

Waste data?

Soil/solid data?



_L^L

1



USEPA Region II SW846 Method 8082



YES NO N/A

/

" ]^A '

>V\J>fJ^*

.

^IpLh?-

F√H

#### POLYCHLORINATED BIPHENYLS

#### 1.0 Traffic Reports and Laboratory Narrative

- 1.1 Are traffic report and chain-of-custody forms present for all samples?
- ACTION: If no, contact lab for replacement of missing or illegible copies.
- 1.2 Do the traffic reports, chain-of-custody forms or SDG narrative indicate any problems with sample receipt, condition of the samples, analytical problems or special circumstances affecting the quality of the data?
- ACTION: If any sample analyzed as a soil, other than TCLP, contains 50%-90% water, all data should be qualified as estimated, "J." If a soil sample, other than TCLP, contains more than 90% water, non detects, shall be qualified as unusable, "R."
- ACTION: If samples were not iced or if the ice was melted upon arrival at the laboratory and the temperature of the cooler was elevated (> 10° C), flag all positive results "J" and all non-detects "UJ".

#### 2.0 Holding Times

2.1 Have any PCB technical holding times, determined from date of collection to date of extraction, been exceeded?

Water and waste samples for PCB analysis must be extracted within 7 days of the date of collection. Extracts must be analyzed within 40 days of the /^/Uc4*'^c' date of extraction. Soils and solid samples must be extracted within 14 days of collection and "H*7/ analyzed within 40 days of extraction.  $^{j}An^{C^{*}}$ 

ACTION: If technical holding times are exceeded, flag all positive results as estimated, "J," and sample quantitation limits "UJ" and document in the narrative that holding times were exceeded. If analyses were done more than 14 days beyond holding time, either on the first analysis or upon re-analysis, the reviewer must use EPA Region II 846 Method 8082 STANDARD OPERATING PROCEDURE

Date: May, 2002 SOP HW-23B, Rev.1.0

> YES NO N/A

> > v/

S

J_L____-U-

J L _

professional judgement to determine the reliability of the data and the effects of additional storage on the sample results. At a minimum, all the data should at least be qualified "J", but the reviewer may determine that non-detects are unusable, "R."

- Surrogate Recovery (Form II) "MAr Lkf. (ft. ~ M/ IP* 3.0
  - Were the recoveries of tetrachloro-m-xylene (TCMX) 3.1 and decachlorobiphenyl (DCB) presented on CLP Surrogate Recovery Summary forms (Form II), or equivalent, for each of the following matrices?
    - a. Water/Waste
      - Soil/Solid b.
  - 3.2 Are all the PCB samples listed on the appropriate surrogate recovery form for each of the following matrices?
    - ' ___ Water a. J_L 1/ b. Waste 1/
  - Call lab for explanation/resubmittals. ACTION: If missing deliverables are unavailable, document the effect in the data assessment.
  - 3.3 Did the laboratory provide their developed in-house Surrogate recoveries?
  - ACTION: If no, use 70 -130% recovery to qualify in section 3.4 below.
  - Were surrogate recoveries of TCMX or DCB outside 3.4 of the laboratory-established upper (UCL) or lower ____J_L ___ (LCL) control limits for any sample or blank?
  - ACTION: Circle all outliers in red.

Soil/Solid

c.

ACTION: No qualification is done if surrogates are diluted out. If recovery for both surrogates is





-PCB 3 -

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

#### YES NO N/A

J

f1 .

below the LCL, but above 10%, flag all results for that sample "J". If recovery is < 10% for either surrogate, qualify positive results "J" and flag non-detects "R". If recovery is above the UCL for <u>both</u> surrogates qualify positive values "J".

- Note: DCB is used when PCBs are determined as Aroclors. DCB is the internal standard when determining PCB congeners and TCMX the surrogate.
- 3.5 Were surrogate retention times (RT) within the windows established during the initial 5-point analysis?
- ACTION: If the RT limits are not met, the analysis may be qualified unusable (R) for that sample on the basis of professional judgement. However, flag positive hits as estimate (J) if confirmed by GC/MS analysis.
- 3.6 Are there any transcription/calculation errors between raw data and Form II?
- ACTION: If large errors exist, call lab for explanation/resubmittal. Make any necessary corrections and document the effect in data assessments.
- 4.0 Laboratory Control Sample \$\$ t* ^ MfiL ** f UW ~ */!/«"
  - 4.1 Are raw data and percent recoveries present for all <u>Laboratory Control</u> samples as required by Method 8000B (section 8.5) and Method 8082 (section 8.4.2)?

Verify that QC check samples were extracted and analyzed by the same procedures used for the actual samples.

- ACTION: If any <u>Laboratory Control Sample</u> data are missing, call the lab for explanation /resubmittals. Make note in the data assessment.
- NOTE: For aqueous samples, an additional QC check sample must be prepared and analyzed when any analyte in a matrix spike fails the required acceptance criteria (see section 5.3 below). The additional QC check sample must contain each analyte that failed in the MS analysis.



Date: May, 2002 SOP HW-23B, Rev.1.0

_L_1

YES NO N/A

>/

J

y

- Note: When the results for matrix spike analysis indicates a problem due to sample matrix effects, the LCS results are used to verify the laboratory can perform the analysis in a clean sample.
- 4.2 Were <u>Laboratory Control Samples</u> analyzed at the required concentration for all analytes of interest as specified in Method 8000B (sec.8.5)?
- ACTION: if Laboratory Control Samples were not analyzed at the required concentration or the required frequency, make note in the data assessment and use professional judgement to determined the affect on the data.
- 4.3 Were the LCS recoveries within the laboratory's in-house per cent recoveries (if not available, use 70 130%) J_/____
- 4.4 If no, were <u>Laboratory Control Samples</u> re-analyzed?
- Note: Corrective action must be taken when one or more of the analytes of interest fail the QC acceptance criteria (Method 8000B, section 8.7.4)
- ACTION: if QC check samples were not re-analyzed, or a general system problem is indicated by repeated failure to meet the QC acceptance criteria specified in the method, make note in the data assessment and use professional judgement to determine the effect on the data.

#### 5.0 Matrix Spikes (Form II

- 5.1 Are all data for one matrix spike and matrix duplicate (unspiked) pair (MS/Dup) or matrix spike/matric spike duplicate (MS/MSD)present and complete for each matrix Method 8082{section 8.4.1)?
- NOTE: For soil and waste samples showing detectable amounts of organics, the lab may substitute replicate samples in place of the matrix spike (see Method 8000B-40, section 8.5.3)).
- 5.2 Have MS/Dup or MS/MSD results been summarized on modified CLP Form III?
- ACTION: If any data are missing take action as specified in section 3.2 above.
- 5.3 Were matrix spikes analyzed at the required frequency

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev. 1.0'

_|__L _____

JJ

YES NO N/A

for each of the following matrices? (One MS/Dup, MS/MSD must be performed for every 20 samples of similar matrix or concentration level. Laboratories analyzing one to ten samples per month are required to analyze at least one MS per month (Method 8000B-39 (section 8.5)).

- a. Water
- b. Waste
- c. Soil/Solid
- ACTION: If any MS/Dup or MS/MSD data are missing, take the action specified in 3.2 above.
- 5.4 Were the 70 130% recoveries used to compare the matrix spike recoveries, or did the lab use the optional QC acceptance criteria discussed in Method 8000B-40(section 8.5.3.1)?

List the criteria used and make note in data assessment.

Criteria used

5.5 Was the matrix spike prepared at the proper spike concentration? (Method 8000B, section 8.5.1-8.5.2)

For aqueous organic extractable, the spike concentration should be prepared according options in: Method 8000B-40, (section 8.5.1 and 8.5.2).

ACTION: No action is taken based on MS or replicate data alone. However, using informed professional judgement, the data reviewer may use the matrix spike or laboratory replicate results in conjunction with other QC criteria and determine the need for some qualification of the data. In some instances it may be determined that only the replicate or spiked samples are affected. Alternatively, the data may suggest that the laboratory is having a systematic problem with one or more analytes, thereby affecting all associated samples. /____

>S

V

EPA Region II 1846 Method 8082

/

A-A

n/

JЬ

JΓ

YES NO N/A

6.1 Was reagent blank data reported on CLP equivalent Method Blank Summary form(s) (Form IV)?

- 6.2 Frequency of Analysis: Has a reagent blank been analyzed for every 20 (or less) samples of similar matrix or concentration or each extraction batch?
- ACTION: If any blank data are missing, take action as specified above (section 3.2) . If blank data is not available, reject (R) all associated positive data. However, using professional judgement, the data reviewer may substitute field blank data for missing method blank data.
- 6.3 Chromatography: review the blank raw data chromatograms, quant reports or data system printouts.

Is the chromatographic performance (baseline stability) for each instrument acceptable for PCBs?

- ACTION: Use professional judgement to determine the effect on the data.
  - 7.0 Contami
    - NOTE: "Water blanks", "distilled water blanks" and "drilling water blanks" are validated like any other sample and are not used to qualify the data. Do not confuse them with the other QC blanks discussed below.

7.1 Do any method/instrument/reagent/cleanup blanks have positive results for PCBs? When applied as described below, the contaminant concentration in these blanks are multiplied by the sample Dilution Factor and corrected for % moisture when necessary.

- 7.2 Do any field/rinse blanks have positive PCB results?
- ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)
- NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data.

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified for surrogate, or calibration QC problems.

ACTION; Follow the directions in the table below to qualify sample results due to contamination. Use the.largest value from all the associated blanks.

Sample cone > EDL but < 5</th>Sample cone < EDL & is <<br/>5 x blank valueSample cone > EDL & > 5<br/>x blank valueFlag sample result with a<br/>"U"Report EDL & qualify<br/>•U"No qualification is<br/>needed

- NOTE: If gross blank contamination exists, all data in the associated samples should be qualified as unusable (R).
- 7.3 Are there field/rinse/equipment blanks associated with every sample?
- ACTION: For low level samples, note in data assessment that there is no associated field/rinse/equipment blank. Exception: samples taken from a drinking water tap do not have associated field blanks.
- 8.0 GC Apparatus and Materials  $jd fr Pt^{1/Jo^{*}} t / ft^{-} \sim JL?M$  US
  - 8.1 Was the proper gas chromatographic capillary column used for the analysis of PCBs?
  - Action: Check raw data, instrument logs, or contact the lab to determine what type of columns were used. (Method 8082, section 4.2)
  - 8.2 Indicate the specific type of narrow bore or wide bore (.53 mm ID, fused silica GC columns, such as DB-608 and DB-1701 or equivalent).

column 1:

column 2:

ACTION: Note any changes to the suggested materials in section 8.1 above in the data assessment. Also note the impact (positive or negative) such changes have on the analytical results.

i /

V

kSEPA Region II 846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

iA

lA

JЬ

V

</

Mm*-'

*/*tyy*.

YES NO N/A

#### 9.0 Calibration and GC Performance

9.1 Are the following Gas Chromatograms and Data Systems Printouts for both columns present for all samples/ blanks, MS, replicates?

- a. Samples
- b. All blanks
  - Matrix spike samples

5 pt. initial calibration standards

/ s_ calibration verification standards

-^Laboratory Control samples <LCS)

ACTION: If no, take action specified in 3.2 above.

- 9.2 Are data summary forms (containing calibration factors or response factors) for the initial 5 pt. calibration and daily calibration verification standards present and complete for each column and each analytical sequence?
- Note: Calibration Aroclor mixtures other than 1016/1260 may be used (as per approved project QA plan)
- NOTE: If internal standard calibration procedure is used (Method 8000B-15(section 7.4.2.2)), then response factors must be used for %RSD calculations and compound quantitation. If, external standard calibration procedures are used (Method 8000B-16 (section 7.4.2.1)), then calibration factors must be used. The internal standard approach is highly recommended for PCB congener analysis.
- ACTION: If any data are missing or it cannot be determined how the laboratory calculated calibration factors or response factors, contact the lab for explanation/resubmittals. Make necessary corrections and note any problems in the data assessment.
- 9.3 Are there any transcription/calculation errors between raw data and data summary forms?

ACTION: If large errors exist, call lab for

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

 $JcO^{A}$ 

**x y** _

explanation/resubmittal, make necessary corrections and document the effect in data assessments.

- 9.4 Are standard retention time (RT) windows for each PCB peak of interest presented on modified CLP summary, forms?
- ACTION: If any data are missing, or it cannot be determined how RT windows were calculated, call the lab for explanation/resubmittals. Note any problems in the data assessment.
- NOTE: Retention time windows for all PCBs are established using retention times from three calibration standards analyzed during the entire analytical sequence (Method 8000B, section 7.6).

Best results are obtained using retention times which span the entire sequence; i.e., using the calibration verification/continuing calibration standards analyzed every 12 hours.

- 9.5 Were RT windows on the confirmation column established using three standards as described above?
- NOTE: RT windows for the confirmation column should be established using a 3 pt. calibration, preferably spanning the entire analytical sequence as described in 9.4 above. If RT windows on one column are tighter than the other, this may result in false negatives when attempting to identify compounds in the samples.
- ACTION: Note potential problems, if any, in the data assessment.
- 9.6 Do all standard retention times in each level of the initial 5 pt. calibrations for PCBs fall within the windows established during the initial calibration sequence?
- ACTION i: if no, all samples in the entire analytical sequence are potentially affected. Check to see if three standard spanning the entire sequence were used to obtained RT windows. If the lab used three standards from the 5 pt., RT windows may be too tight. If so, RT windows should be recalculated as per Method 8081B-15 (section 7.4.6).
  - ii. Alternatively, check to see if the chromatograms contain peaks

EPA Region II 846 Method 8082

Date: May, 2002 SOP HW-23B, Rev.1.0

[H

YES NO N/A

within an expanded window surrounding the expected retention times.

If no peaks are found and the surrogates are visible, non-detects are valid. If peaks are present but cannot be discerned through pattern recognition or by using revised RT windows, qualify all positive results and non-detects as unusable, "R".

- 9.7 Has the linearity criteria for the initial calibration standards been satisfied for both columns? (% RSD must be < 20.0% for all analytes).</p>
- ACTION: If no, qualify all associated positive results generated during the entire analytical sequence "J" and all non-detects "UJ". When RSD > 90%, flag all non-detect results for that analyte "R" (unusable).
- 9.8 Does the calibration verification/continuing Calibration standard contain the PCB peaks of interest, analyzed on each working day, prior to sample analyses (Method 8082, sections 7.6.2)?
- 9.9 Has a calibration verification/continuing calibration standard been analyzed after every 10 samples and at the end of each analytical sequence (Method 8082, section 7.6.2)
- ACTION: If no, take action as specified in section 3.2 above.
- 9.10 Has the percent difference (%D) exceeded ± 15% for any PCB analyte in any calibration verification/ Continuing calibration standard?
- 9.11 Has a new 5 pt. initial calibration curve been generated for those PCB analytes which failed in the calibration verification/continuing calibration standard (8000B, section 7.7.3), and all samples which followed the out-of-control calibration verification/standard continuing calibration Standard?
- ACTION: If the %D for any analyte exceeded the ± 15% criterion and the instrument was not recalibrated for those analytes, qualify positive results for all associated samples (those which followed the out-of-control standard) "J" and sample quantitation limits "UJ". If the %D was > 90%



USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

for any analyte, qualify non-detects "R", unusable.

9.12 Have retention time (RT) windows been properly calculated for each analyte of interest (Method 8000B, section 7.6), using RTs from the associated calibration verification/continuing standard?

h/i

ACTION: If no, take action specified in section 3.2 above

- 9.13 Do all standard retention times for each calibration verification/continuing calibration standard fall within the windows established during the initial calibration sequence?
- 9.14 Do all standard retention times for each midconcentration standard (analyzed after every 10 samples) fall within the daily RT windows
- ACTION: If the answer to either 9.13 or 9.14 above is no, check the chromatograms of all samples which followed the last in-control standard. All samples analyzed after the last in-control standard must be re-injected, if initial analysis indicated the presence of the specific analyte that exceeded the retention time criteria. If samples were not re-analyzed, document under Contract Non-compliance in the Data Assessment.

Reviewer has two options to determine how to qualify questionable sample data. First option is to determine if possible peaks are present within daily retention time window. If no possible peaks are found, non-detects are valid. If possible peaks are found (or interference), qualify positive hits as presumptively present "NJ" and non-detects are rejected "R". Second option is to use the ratio of the retention time of the analyte over the retention time of either surrogate. The passing criteria is + 0.06 RRT units of the RRT of the standard component. Reject "R" all questionable analytes exceeding criteria, and "NJ" all other positive hits.

For any multi-response analytes, retention time windows should be used but analyst and reviewer should rely primarily on pattern recognition or use option 2 specified in paragraph above.

9.15 Are there any transcription/calculation errors

EPA Region II 846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

> YES NO N/A

ML

between raw data and data summary forms?

ACTION: If large errors exists, call lab for explanation/resubmittal, make any necessary corrections and document the effect in data assessments under "Conclusions".

10.0 Analytical Sequence Check (Form VIII-PEST)

> 10.1 Have all samples been listed on CLP Form VIII or equivalent, and are separate forms present for each column?

ACTION: If no, take action specified in 3.2 above.

- 10.2 Was the proper analytical sequence followed for each initial calibration and subsequent analyses?
- ACTION: If no, use professional judgement to determine the severity of the effect on the data and qualify it accordingly. Generally, the effect is negligible unless the sequence was grossly altered or the calibration was also out of limits.
  - 10.3 Were the TCMX/DCB surrogate RTs for the samples within the mean surrogate RT from the initial calibration?

Action: If no, see "Action" in section 9.14 above

# 

Method 8081B permits a variety of extraction techniques to be used for sample preparation. Which extraction procedure was used?

1. Aqueous samples:

- 1. Separatory funnel (Method 3510)
- 2. Continuous liquid-liquid extraction {Method 3520)
- 3. Solid phase extraction (Method 3535)
- 4. Other

2. Solid samples:

1. Soxhlet (Method 3540)

_L_L



USEPA Region II SW846 Method 8082

Date	e: May	, 20	02	
SOP	HW-23	B, R	ev.1.0	
	YES	NO	N/A	

[....]

f 1

J_J_

V

Automated Soxhlet (Method 3541)	_IJ
Pressurized fluid (Method 3545)	ī]_
Microwave extraction (Method 3546)	J_L
Ultrasonic extraction (Method 3550)	J_1
	Automated Soxhlet (Method 3541) Pressurized fluid (Method 3545) Microwave extraction (Method 3546) Ultrasonic extraction (Method 3550)

- 6. Supercritical fluid (Method 3562)
- 7. Other

# 11.1 Extract Cleanup - Efficiency Verification (Form IX) $tf^jM+Zfa'Ap'$

- 11.1.1 Method 8082 (section 7.2) references method 3660 (sulfur) and 3665A (sulfuric acid) to use for Cleaning extracts. Were one or both method used? J ]_
- ACTION: If no, take action specified in 3.2 above. If data suggests cleanup was not performed, make note in the data assessment.
- NOTE: Method 3620A, Florisil, may be used per approved project QA plan. The method does not list which analytes and surrogate(s) to use to verify column efficiency. The reviewer must check project plan to verify method used as well as the correct PCB list. If not stated or available, use the CLP listing or accept what the laboratory used.
- 11.2 Are all samples listed on modified CLP PCBs Florisil/Cartridge Check Form?
- ACTION: If no, take action specified in 3.2 above.
- 11.3 Was GPC Cleanup (method 3640A) performed?
- NOTE: GPC cleanup is not required and is optional. The reviewer should check Project Plan to verify requirement.
- 11.4 Were the same PCB analytes used in calibration used to check the efficiency of the cleanup procedures? f 1
- 11.5 Are percent recoveries (% R) of the PCBs and surrogate compounds used to check the efficiency of the cleanup procedures within lab's in-house QC limits (use 70-130% if not available)

70-130% for GPC calibration?

-PCB 14 -

SEPA Region II IW846 Method 8082

Qualify only the analyte(s) which fail the recovery criteria as follows:

ACTION: If % R are < 80%, qualify positive results "J" and quantitation limits "UJ". Non-detects should be qualified "R" if zero %R was obtained for PCBs. Use professional judgement to qualify positive results if recoveries are greater than the upper limit.

12.0 PCB Identification

- 12.1 Has CLP Form X or equivalent, showing **retention time** data for positive results on the two GC columns, been completed for every sample in which a PCB was detected?
- ACTION: If no, take action specified in 3.2 above, or compile a list comparing the retention times for all sample hits on the two columns.
- 12.2 Are there any transcription/calculation errors between raw data and data summary forms (initial calibration summaries, calibration verification summaries, analytical sequence summaries, GPC and cleanup verification forms)?
- ACTION: If large errors exist, call lab for explanation/resubmittal, make necessary corrections and note error in the data assessment.
- 12.3 Are retention times (RT) of sample compounds within the established RT windows for both columns/analyses?
- ACTION: Qualify as unusable (R) all positive results which were not confirmed by second GC column analysis. Also qualify "R", unusable, all positive results not within RT windows unless associated standard compounds are similarly biased. The reviewer should use professional judgement to assign an appropriate quantitation limit.
- 12.4 Check chromatograms for false negatives, especially if RT windows on each column were established differently. Were there any false negatives?



f^1



»
STANDARD OPERATING PROCEDURE

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

JL

YES NO N/A

ACTION: Use professional judgement to decide if the compound should be reported. If there is reason to believe that peaks outside retention RT windows should be reported, make corrections to data summary forms (Form I) and note in data assessment.

- 12.5 Was GC/MS confirmation provided when sample concentration was sufficient (> 10 ug/ml) in the final extract?
- ACTION: Indicate with red pencil which Form I results were confirmed by GC/MS and also note in data assessment.
- 12.6 Is the percent difference (%D) calculated for the positive sample results on the two GC columns <25.0%?</pre>
- NOTE: The method reguires quantitation from one column. The second column is to confirm the presence of an analyte. It is the reviewer's responsibility to verify from the project plan what the lab was required to report. If the lab was required to report concentrations from both columns, continue with validation for % Difference. If required, but not reported, either contact the lab for results or calculate the concentrations from the calibration. If not required, skip this section. Document actions in Data Assessment.
- ACTION: If the reviewer finds neither column shows interference for the positive hits, the data should be qualified as follows:

% Difference 0-25% 26-70% 71-100% >100% * 100-200% (Interference detected)** >50% (PCBs value is <CRQL)</pre>

Qualifier none NĴ "R" "NJ" 4116

When the reported PCBs value is <CROL and the %D is >50%, raise the value to the CRQL and qualify with "U" (non-detect).

* Check the chromatogram. If pattern is confirmed qualify "J". If pattern is mixed, has interference, or the PCB cannot be positively determined due to weathering, qualify "JN".

-PCB 16 -

STANDARD OPERATING PROCEDURE

EPA Region II 846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

If PCB can not be confirmed, qualify the PCB as "R".

When the reported %D is 100-200% but interference is detected in either column, qualify the data with "NJ".

13.0 Compound Quantitation and Reported Detection Limits

- 13.1 Are there any transcription/calculation errors in Form I results? Check at least two positive values. Were any errors found?
- NOTE: Single-peak PCBs results can be checked for rough agreement between quantitative results obtained on the two GC columns. The reviewer should use professional judgement to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interference is suspected, the lower of the two values should be reported and qualified according to section 12.6 above. This necessitates a determination of an estimated concentration on the confirmation column. The narrative should indicate that the presence of interferences has led to the quantitation of the second column confirmation results.
- ACTION: If errors are large, call lab for explanation/resubmittal, make any necessary corrections and document effect in data assessments.
- ACTION When a sample is analyzed at more than one dilution, the lowest EDLs are used (unless a QC exceedance dictates the use of the higher EDL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the value on the original Form I and substituting it with data from the analysis of diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including any in the summary package.

iv *iio*.

- Li*to ^S

-PCB 17 -

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

f 1

#### YES NO N/A

ACTION: EDLs affected by large, off-scale peaks should be qualified as unusable, "R". If the interference is on-scale, the reviewer can provide a modified EDL flagged "UJ" for each affected compound.

#### 14.0 Chromatoaram Quality

- 14.1 Were baselines stable?
- 14.2 Were any electropositive displacement (negative peaks) or unusual peaks seen?
- ACTION: Note all system performance problems in the data assessment: A

15.0 Field Duplicates ^{Lv} * * '«-*<' J*MA^~ ALVIIS

- 15.1 Were any field duplicates submitted for PCB analysis?
- ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.
- ACTION: Any gross variation between field duplicate results must be addressed in the reviewer narrative. However, if large differences exist, the identity of the field duplicates is questionable. An attempt should be made to determine the proper identification of field duplicates.

# 4C PESTICIDE METHOD BLANK SUMMARY

NYSDEC SAMPLE NO.

# MB 87

Lab Name: FRIEND LABORATORY, INC.	Co	ntract:	
Lab Code: 10252 Case No.:	SAS No.:		D.: SDG No.: AAA
Lab Sample ID: MB 87		=	Lab File ID: E2989945
Matrix: (soil/water) SOIL			Extraction:(SepF/Cont/Sonc) SONC
Sulfur Cleanup: (Y/N) N			Date Extracted: 09/25/02
Date Analyzed (1): 09/26/02		_	Date Analyzed (2):
Time Analyzed (1): 0803		-	Time Analyzed (2):
Instrument ID (1): HP1			Instrument ID (2): HP3
GC Column (1): RTX-CLPESTIC1DES2	ID	0.32	(mm)
GC Column (2): RTX-CLPESTICIDES1	ID	0.32	(mm)
THIS METHOD BLANK APPLIES TO T	HE F	OLLO	WING SAMPLES, MS, MSD, AND MSB

	NYSDEC	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
01	QC87	QC87	09/26/02	09/26/02
02	L94538-1	L94538-1	09/26/02	09/26/02
03	L94538-2	L94538-2	09/26/02	09/26/02
04	L94538-5	L94538-5	09/26/02	09/26/02
05	L94538-6	L94538-6	09/26/02	09/26/02
06	L94538-7	L94538-7	09/26/02	09/26/02
07	L94538-8	L94538-8	09/26/02	09/26/02
80	L94538-2MS	L94538-2MS	09/26/02	09/26/02
09	L94538-2MSD	L94538-2MSD	09/26/02	09/26/02
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				

# COMMENTS

### 4 C PESTICIDE METHOD BLANK SUMMARY

NYSDEC SAMPLE NO.

# MB 84

Lab Name: FRIEND LABORATORY, INC.	Co	ontract:	
Lab Code: 10252 Case No.:		SAS No	D.: SDG No.: AAA
Lab Sample ID: MB 84		-	Lab File ID: E2989924
Matrix: (soil/water) SOIL			Extraction:(SepF/Cont/Sonc) SONC
Sulfur Cleanup: (Y/N) N			Date Extracted: 09/24/02
tete Analyzed (1): 09/25/02		_	Date Analyzed (2):
Time Analyzed (1): 1314		_	Time Analyzed (2):
Instrument ID (1): HP1			Instrument ID (2): HP3
GC Column (1): RTX-CLPESTICIDES2	ID	0.32	(mm)
GC Colum\(2): RTX-CLPESTICIDES1	ID	0.32	(mm)
THIS METHOD BLANK APPLIES TO TH	IE F	FOLLO	NING SAMPLES. MS. MSD, AND MSB

	"NYSDEC	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
01	QC84 \	QC84	09/25/02	09/25/02
02	L94363-4 \	L94363-4	09/25/02	09/25/02
03	L94363-6 \	L94363-6	09/25/02	09/25/02
04	L94363-8 ×	,L94363-8	09/25/02	09/25/02
05	L94363-10	LS4363-10	09/25/02	09/25/02
06	L94363-12	L94>63-12	09/25/02	09/25/02
07	L94363-2	L9436§-2	09/25/02	09/25/02
08				
09				
10				
11				
12		N	^	
13			\	
14			1	
15			\	
16			\	
17			\	
18			\	
19			\	
20			١.	
21			١	
22				\
23				1
24				\
25				
26				\

COMMENTS

<u>væR_</u> /oj^sfijx-

PESTICIDE ORGANICS ANALYSIS DATA SHEET

MB87 Lab Name: Contract: SAS No. : SDG No. : AAA925 Lab Code: Case No. : Lab Sample ID: MB87 Matrix: (soil/water) SOIL Lab File ID: Sample wt/vol: 10.0 (g/mL) G E2989945 Date Received: 09/25/2 % Moisture: 0 decanted: (Y/N) N Date Extracted:09/25/2 Extraction: {SepF/Cont/Sonc) SONC Date Analyzed: 09/26/2 Concentrated Extract Volume: <u>jQOQO</u> (up Dilution Factor: 1.0 Injection Volume: . 2.0(uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 T /£>•& TT.Oll'U 12674-11-2_____-Aroclor-1016 1104-28-2____ -Aroclor-1221' 20 -0.02 U 11141-16-5_____ 53469-21-9_____ 10 -Aroclor-1232" <del>0.01</del> U 10 -Aroclor-1242" <del>0.01</del>10 -Aroclor-1254" 10 -01 | U 11097-69-1---Ω. -Aroclor-1260" 10 0.01 U 11096-82-5----Aroclor-1248" 10 -0.01 U

FORM I PEST

## Friend Inc.

Data File: /chem/hpl.i/8082r0917.b/E2989924.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: MB84 Misc Info: Analysis Date: 25-SEP-2002 13:14 Sample Matrix: SOIL File Number: 9924

Dilution	Factor	1.0000
Sample	Weight	10.4202
Final	Volume	10.0000
Total	Solid	100.0000

Analytes (ug/Kg)

0.00
0.00
0.00
0.00
0.00
0.00
0.00
94.24%
132.37%

Analyst: CPW Report Date: 09/25/2002 15:37

Supervisor: Date:

1/125

Thru-Put Systems, Inc

Data file : \chem\hpl.i\8082r0917.b\E2989945.D Lab Smp Id: MB87 Client Smp ID: MB87 Inj Date : 26-SEP-2002 08:03 Operator : CPW Smp Info : MB87 Inst ID: hpl.i Misc Info Comment \chem\hpl.i\8082r0917.b\8082_PCBsec.M Method 26-Sep-2002 12:38 Administra Quant Type: ESTD Meth Date26-Sep-200212:38Cal Date17-SEP-200216:43 Cal File: E2989834.D Als bottle 1 Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

	Name	Value	Description
S»	DF Vf Ws Uf Ts	$1.000 \\ 10.000 \\ 10.037 \\ 0.100 \\ 100.000$	Dilution Factor Final volume Weight of sample extracted (g) Unit Correction Factor Total Solid

		CONCENTRA	TIONS		
		ON-COL	FINAL		
RT EXP RT DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANGE	RATIO
S l Tetrachloro-m-xylene			CAS #:		
7.973 7.997 -0.024	3885733	479.418	477.65		(R)
S 29 Decachlorobiphenyl			CAS tt:		
20.123 20.130 -0.007	3131701	595.B78	593.6B		(R)

QC Flag Legend

R - Spike/Surrogate failed recovery limits.



Friend Inc.

: •

Data File: /chem/hpl.i/8082r0917.b/E2989945.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: MB87 Misc Info: Analysis Date: 26-SEP-2002 08:03 Sample Matrix SOIL File Number 9945

Dilution	Factor	1.0000
Sample	Weight	10.0371
Final	Volume	10.0000
Total	Solid	100.0000

Analytes (ug/Kg)

Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1248 Tetrachloro-m-xylene	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 479.42\% \end{array}$
Tetrachloro-m-xylene Decachlorobiphenyl	595.88%

Analyst: CPW Report Date: 09/26/2002 12:43

Supervisor: Date:'

/**f***/*

ID

PESTICIDE ORGANICS ANALYSIS DATA SHEET

.

QC84 Contract: Lab Name: Lab Code: Case No.: SAS No.: SDG No.: AAA923 Lab Sample ID: QC84 Matrix: (soil/water) SOIL Lab File ID: E2989917 Sample wt/vol: 10.0 (g/mL) G Date Received: 09/23/2 % Moisture: 0 decanted: (Y/N) N Date Extracted:09/24/2 Extraction: (SepF/Cont/Sonc) SONC Concentrated Extract Volume: <u>jOfiOO</u> (uL) Date Analyzed: 09/25/2 Dilution Factor: 1.0 Injection Volume: 2.0(uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 12674-11-2--- Aroclor-1016 494.02 11096-82-5---<u>Aroclor-1260</u>" 572.76 E



Lab Name: FRIEND	LABORATOR	Y, INC.	(	Contract:
b Code: 10252 C	ase No.:		SAS No.	
rument ID: HP1				
Column: RTX-C	LPest2 ID:	0.32	(mm)	Da

Date(s) Analyzed: 09/17/02 09/17/02 File Numbers: 9827-9843

SDG No.: AAA

	Peak		F	RT OF ST	ANDARD	S		MEAN	RT WI	NDOW
COMPOUND	#	10ppb	50_ppb ^	100 ppb	250 ppb)	500 ppb	1000 ppb	RT	L FROM	1 TO
PCB1016	1*	10.19	10.20	10.20	10.20	10.21	10.21	10.20	10.10	10.30
	2*	10.71	10.71	10.71	10.71	10.71	10.71	10.71	10.61	10.81
	3*	11.89	11.89	11.90	11.90	11.90	11.90	11.90	11.80	12.00
	4	11.97	11.98	11.98	11.98	11.98	11.98	11.98	11.88	12.08
	5	12.67	12.68	12.68	12.68	12.69	12.69	12.68	12.58	12.78
PCB 1221	1*				8.79			8.79	8.69	8.89
	2*				9.12			9.12	9.02	9.22
	3*				9.27			9.27	9.17	9.37
PCB1232	1*				9.27			9.27	9.17	9.37
	2*				10.20			10.20	10.10	10.30
	3*				11.19			11.19	11.09	11.29
	4				11.47			11.47	11.37	11.57
	5				11.97			11.97	11.87	12.07
PCB 1242	1*				10.20			10.20	10.10	10.30
	2*				11.19			11.19	11.09	11.29
	3*				11.47			11.47	11.37	11.57
	4				. 12.68			12.68	12.58	12.78
	5				13.29			13.29	13.19	13.39
K B 1248	1*				11.19			11.19	11.09	11.29
W	2*				11.90			11.90	11.80	12.00
	3*				12.68			12.68	12.58	12.78
	4				13.21			13.21	13.11	13.31
	5				13.29			13.29	13.19	13.39
PCB 1254	r	13.67	13.67	13.67	13.67	13.67	13.67	13.67	13.57	13.77
	2*	14.56	14.56	14.56	14.56	14.56	14.56	14.56	14.46	14.66
	3*	15.01	15.01	15.01	15.01	15.00	15.00	15.01	14.91	15.11
	4	15.34	15.35	15.35	15.35	15.35	15.35	15.35	15.25	15.45
	, 5	16.02	16.03	16.03	16.03	16.03	16.03	16.03	15.93	16.13
PCB 1260 y	1*	14.93	14.93	14.94	14.94	14.94	14.94	14.94	14.84	15.04
	2*	15.34	15.34	15.35	15.35	15.35	15.35	15.35	15.25	15.45
	3*	16.19	16.19	16.20	16.20	16.20	16.21	16.20	16.10	16.30
	4	16.75	16.75	16.76	16.76	16.76	16.77	16.76	16.66	16.86
	5	17.23	17.23	17.24	17.24	17.25	17.25	17.24	17.14	17.34
Tetrachloro-m-xylene		7.97	7.99	8.00	7.99	8.00	8.00	7.99	7.89	8.09
D eca ch l orobi phenyl		20.11	20.12	20.13	20.13	20.13	20.13	20.13	20.03	20.23

Denotes required peaks

Retention time windows are + 0.1 minutes for all compounds.

<rV



i

FORM 6 PCB INITIAL CALIBRATION DATA

Lab Name: Lab Code:	Case No.:	Con SAS	itract: 5 No. :	SD(	G No.: A	AAA916
		Call		(SI 09	/ 1 / / 2	05/11/2
GC Column RTX-	CLPESTICIDES 2 ID:	0.32	(mm)			
LAB FILE ID:	RF10: E2989834	RF50:	E2989835	RF100:	E298983	36
RF250: E2989843	RF500: E2989838					

'T^k/⁵

COMPOUND	RF10	RF50	RF100	RF250	RF50Q		_
A 1 1016	401.2	265 1	120.0	102 0	101 2		/sf.z-
Aroclor-1016 (2)	401.3	365.1 147.3	438.0 1778	493.9	404.2 175 A		
(2)	130.3 135.2	120.4	144.0	140.8	117.2		
(4)	140.8	136.7	181.1	189.3	184.3		/no Y
(5)	201.4	165.9	179.7	207.5	203.2		/p0.1
Aroclor-1221				86.2			
(2)				64.3			
(3)				507.9			H<6
(4)							
Aroclor-1232				283 3			
(2)				161.5			rfC?
(3)				221.6			
(4)				97.5			
(5)				57.9			
Aroclor-1242				352.7			-•\ai
(2)				225.2			
(3)				162.9			
(4)				195.6			
Aroclor-1254	316.9	313.4	305.2	308.2	343.4		-/co-O
(2)	288.2	317.8	319.7	345.8	442.7	/OtsO	
(3)	190.1	233.8	239.2	2/8.8	384.7		
(4)	148.5	164.1	178.0	294.5	230.4		
(5)	253.9	263.2	271.9	384.6	392.1		
Arocior-1200 (2)	334.4	269.7	334.8	415.1	340.0		
(2)	222.2	290.5	206.4	246.1	209.1		
(3)	234 8	173.2	208.2	246.2	210.6		
(1).	364.1	280.0	381.6	490.3	440.9		
Aroclor-1248				163.4			
(2)				213.4			
				186.5			
(4)				304.2			
(3)				-			
Tetrachloro-m-xylene	3613	5109	8081	7743	8808		
Decachlorobiphenyl	3029	3502	5170	5257	6283		
	1			1	1		

### FORM 6. PCB INITIAL CALIBRATION DATA

Lab Name: } ^) Code: Case No.: SAS No.: SDG No. AAA916 ^•strument ID: HP1 Calibration Date(s) 09/17/2 09/17/2 l ^ C Column: RTX-CLPESTICIDES 2 ID: 0.32 (mm) RF1000: E2989839

				COEFFI	CENTS	%RSD
COMPOUND		RF100	CURVE	AO	Al	OR R~2
Aroclor-1016		366.0	LINR	-18.105188	2.688e-003	0.991
	(2)	161.5	LINR	-9.4133819	6.109e-003	0.997
	(3)	100.6	LINR	-18.332671	9.78e-003	0.993
	(4)	162.6	LINR	-9.1394188	6.01e-003	0.995
	(5)	201.8	LINR	2.94297360	4.926e-003	1.000
Aroclor-1221			LINR	000000000	1.159e-002	1.000
	(2)		LINR	0.00000000	1.555e-002	*1.000'
	(3)		LINR	0.00000000	3.248e-003	1.000
	(4)		LINR			
	(5)		LINR			
Aroclor-1232			LINR	0.00000000	3.53e-003	1.000
	(2)		LINR	0.00000000	6.191e-003	1.000
	(3)		LINR	0.00000000	4.512e-003	1.000
	(4)		LINR	0.00000000	1.025e-002	1.000
	(5)		Lllfe	0.00000000	1.727e-002	1.000
Aroclor-1242			LINR	0.00000000	2.835e-003	1.000
	(2)		LINR	0.00000000	1.941e-003	1.000
<b>C</b>	(3)		LINR	0.00000000	4.432e-003	1.000
	(4)		LINR	0.00000000	6.138e-003	1.000
$\overline{W}$	(5)		LINR	6 4275202	5.111e-003	
Aroclor-1254		296.1	LINR	-0.4375303	3.29e-003	0.994
	(2)	434.5	LINR	10.0000405	2.262e-003	0.997
	(3)	371.6	LINR	<i>A A</i> 5851132	2.623e-003	1 000
	(4)	190.9	LINR	11 6581973	5.219e-003	0 994
	(5)	352.0	LINR	-5 1814212	2.751e-003	0 998
Aroclor-1260	( 0 )	329.3	LINR	-3.4590831	3.014e-003	0.998
	(2)	358.9	LINR	-3.5269711	2.769e-003	0.998
	(3)		LINR	-2.0615020	4.748e-003	0.998
	(4)	480 7	LINK	11.3530028	4.0590-003	0.998
	(5)	100.7	LINR	0.0000000	2.0/8e-003	1.000
Aroclor-1248	( ) )			0.0000000	5.5900-003	1.000
	(2)			0.0000000	1 6860-003	1.000
	(J) (A)		TTNR	0.0000000	$5361^{-002}$	1.000
	(4)		TINK	0.0000000	3.301e-003	1.000
	(5)		LINK		3.20/e-003	
Tetrachloro-m-xyle	ne	7679	LINR	5.59456943	1.219e-004	0.991
Decachlorobiphenyl		5238	LINR	4.64742762	1.888e-004	0.999

Lab Name: FRIEND LABORA	TOR	Y, INC	. Co	ntract:,	
Lab Code: 10252 Case No.:			SAS No.:	SDGNo.:AAA	
Instrument ID: HP3					
GC Column: RTX-CLPest1	ID:	0.32	(mm)	Date(s) Analyzed: 09/25/02	
				File Numbers: 6172	

	AMOUNT			RT WINDOW		CALIBRATION	
COMPOUND	(ng)	PEAK	RT	FROM	то	FACTOR	
PCB 1254	250 PPB	1*	14.60	14.50	14.70	289.77	
		2*	15.12	15.02	15.22	481.24	
		3*	15.93	15.83	16.03	405.70	
		4	16,29	16.19	16.39	225.50	
		5	16.84	16.74	16.94	400.31	
Tetrachloro-m-xylene	300 PPB		9.72	9.62	9.82	5801.99	
Decachlorobiphenyl	300 PPB		21.33	21.23	21.43	4463.69	
Denotes required peaks	·		/"\			·	

Single injections of the low standard are made to establish aj proximate retention times and instrument sensitivity. Five point calibrations are performed f a multipeak component is detected in a sample.

FORM VI-PCB-3

Alternate column confirmation is run if a pesticide or PCB is detected in a site sample.

Aug 7/1 CAN  $\frac{1}{250}$   $\frac{1}{250}$   $\frac{1}{200}$   $\frac{$ 

OP

—'s^>

Lab Name: FRIEND LABORATORY, INC	C. Co	ntract:,	
Lab Code: 10252 Case No.:	SAS No.:	SDG No.: AAA	
Instrument ID: HP3			
GC Column: RTX-CLPest1 ID:' 0.32	(mm)	Date(s) Analyzed: 09/26/02	/C\d&'
	. ,	File Numbers: 6215	

	AMOUNT			RT WINDOW		CALIBRATION
COMPOUND	(ng)	PEAK	RT	FROM	то	FACTOR
PCB 1254	250 PPB	r	14.58	14.48	14.68	293.65
		2*	15.10	15.00	15.20	500.98
		3*	15.91	15.81	16.01	435.40
		4	16.27	16.17	16.37	231.60
		5	16.82	16.72	16.92	404.01
Tetrachloro-m-xylene	300 PPB		9.70	9.60	9.80	6001.89
D eca ch l orobi phenyl	300 PPB		21.31	21.21	21.41	4459.74
* Denotes required peak	(S		Λ			

Denotes required peaks

• « *

*

Single injections of the low standard are made to establish approximate retention times and instrument sensitivity. Five point calibrations are performed if a multipeak component is detected in a sample.

Alternate column confirmation is run if a pesticide or PCB is detected in a site sample.

6F

# 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.: _____SAS No.: "____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2989916.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 09/25/02 Analysis Time: 0903

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	TO.	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.66	13.57	13.77	238.56	250.00	4.58
Aroclor-1254	2	14.55	14.46	14.66	216.56	250.00	13.38
Aroclor-1254	3	15.00	14.91	15.11	203.89	250.00	18.44
Aroclor-1254	4	15.34	15.25	15.45	264.10	250.00	5.64
Aroclor-1254	5	16.02	15.93	16.13	227.43	250.00	9.03
Tetrachloro-m-xylene	1	7.98	7.89	8.09	297.98	300.00	0.67
Decachlorobiphenyl	1	20.12	20.03	20.23	308.82	300.00	2.94 A

QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

# 7E

# PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY. INC. Contract:______ Lab Code: 10252 Case No.:_____SAS No.:_____SDG No.: AAA

> Sample Name: 250PPB 1254 File Name: E2989925.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

»

ID: 0.32 (mm)

Analysis Date: 09/25/02 Analysis Time: 1345

			RTWI	SJDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%
Aroclor-1254	1	13.66	13.57	13.77	271.52	250.00	8.6
Aroclor-1254	2	14.55	14.46	14.66	241.18	250.00	3.
Aroclor-1254	3	15.00	14.91	15.11	239.00	250.00	4.
Aroclor-1254	4	15.34	15.25	15.45	290.21	250.00	16
Aroclor-1254	5	16.02	15.93	16.13	247.62	250.00	0.9
Tetrachloro-m-xylene	1	8.00	7.89	8.09	297.80	300.00	0.
Decachlorobiphenyl	1	20.12	20.03	20.23	297.12	300.00	0.

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

^*Tki*^*L*- \J-*z* 

7E

# PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2989944.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 09/26/02 Analysis Time: 0734

			RTWI	NDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.66	13.57	13.77	253.65	250.00	1.46
Aroclor-1254	2	14.56	14.46	14.66	219.37	250.00	12.25
Aroclor-1254	3	15.00	14.91	15.11	223.72	250.00	10.51
Aroclor-1254	4	15.34	15.25	15.45	281.08	250.00	12.43
Aroclor-1254	5	16.02	15.93	16.13	231.65	250.00	7.34
Tetrachloro-m-xylene	1	7.98	7.89	8.09	288.02	300.00	3.99
Decachlorobiphenyl	1	20.13	20.03	20.23	330.41	300.00	10.14

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

A*e. 3<fo'Q0> /&**>-- j,-u <PJ tJ

00120

#### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB1254 File Name: E2989957.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 09/26/02 Analysis Time: 1422

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.66	13.57	13.77	232.98	250.00	6.81
Aroclor-1254	2	14.55	14.46	14.66	213.71	250.00	14.52
Aroclor-1254	3	15.00	14.91	15.11	208.31	250.00	16.68
Aroclor-1254	4	15.34	15.25	15.45	258.13	250.00	3.25
Aroclor-1254	5	16.02	15.93	16.13	224.63	250.00	10.15
Tetrachloro-m-xylene	1	7.98	7.89	8.09	275.22	300.00	8.26
Decachlorobi phenyl	1	20.12	20.03	20.23	302.03	300.00	0.68

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

Aug 208-050 / XI ~~ Li?:

7E

# PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E3956179.D Instrument ID: HP3.I GC Column: RTX-CLPesticides 1

ID: 0.32 (mm)

Analysis Date: 09/25/02 Analysis Time: 1250

			RTWI	MDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	ТО	AMOUNT	AMOUNT	%D
Aroclor-1254	1	14.59	14.50	14.70	240.21	250.00	3.92
Aroclor-1254	2	15.12	15.02	15.22	244.39	250.00	2.24
Aroclor-1254	3	15.92	15.83	16.03	248.85	250.00	0.46
Aroclor-1254	4	16.28	16.19	16.39	235.03	250.00	5.99
Aroclor-1254	5	16.83	16.74	16.94	233.24	250.00	6.70
Tetrachloro-m-xylene	1	9.71	9.62	9.82	304.08	300.00	1.36
Decachlorobiphenyl	1	21,32	21.23	21.43	290.67	300.00	3.11 4
							•
		1)					
		/					

*a**

QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

#### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E3956222.D Instrument ID: HP3.I GC Column: RTX-CLPesticides 1

ID: 0.32 (mm)

Analysis Date: 09/26/02 Analysis Time: 1428

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM 1	ТО	AMOUNT	AMOUNT	%D
Aroclor-1254	1	14.58	14.48	14.68	254.71	250.00	1.88
Aroclor-1254	2	15.10	15.00	15.20	263.81	250.00	5.52
Aroclor-1254	3	15.91	15.81	16.01	272.60	250.00	9.04
Aroclor-1254	4	16.27	16.17	16.37	262.78	250.00	5.11
Aroclor-1254	5	16.81	16.72	16.92	258.77	250.00	3.51
Tetrachloro-m-xylene	1	9.70	9.60	9.80	319.48	300.00	6.49
Decachlorobiphenyl	1	21.30	21.21	21.41	306.20	300.00	2.07

## til-

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

 $f_{j>\sim A \gg 5} = \int_{a_{u}a_{v}a_{v}} \int_{bci^{*}} f_{ci^{*}} dc_{a_{u}a_{v}} dc_{bci^{*}} dc_{bc$ 

#### PCB ANALYTICAL SEQUENCE

Lab Name:Contract:Lab Code:Case No.:SASNo.:SDG No.: AAA916Instrument ID: HP1Init. Calib. Date(s): 09/17/2 09/17/^GC Column: RTX-CLPESTICIDES 2 ID: 0.32 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW: .

	MEAN SURROG TCX: 8.00	ATE RT FROM I DCB: 2	NITIAL CALI 0.13	BRATION		
	ΕΡΔ	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	STD11660	STD11660	09/17/2	1304.	7.97	20.11
02	STD21660	STD21660	09/17/2	1335	7.99	20.12
03	STD31660	STD31660	09/17/2	1406	8.00	20.13
04	STD41660	STD41660	09/17/2	1437	7.99	20.13
05	STD51660	STD51660	09/17/2	1509	8.00	20.13
06	STD61660	STD61660	09/17/2	1540	8.00	20.13
07	STD11254	STD11254	09/17/2	1643	7.98	20.12
8 0	STD21254	STD21254	09/17/2	1714	799	20.13
09	STD31254	STD31254	09/17/2	1745	8.00	20.13
10	STD41254	STD41254	09/17/2	1816	7.99	20.13
11	STD51254	STD51254	09/17/2	1848	7.98	20.13
12	STD61254	STD61254	09/17/2	1919	8.00	20.13
13	STD41248	STD41248	09/17/2	1950	7.99	20.13
14	STD41242	STD41242	09/17/2	2021	7.99	20.13
15	STD41232	STD41232	09/17/2	2052	7.99	20.13
16	STD41221	STD41221	09/17/2	2124	8.00	20.13
17	^BC1GC001	CC166001	09/18/2	1401	8.00	20.13
18	MB82 /	MB82	09/18/2	1433	8.02	20.13
19	QC82 /	QC82	09/18/2	1507	8.02	20.13
20	L94080fLRE	L94080-1RE	09/18/2	1538	7.99	20.13
21	L94080/2	L94080-2	09/18/2	1610	7.99	20.13
22	L9408Cf-3RE	L94080-3RE	09/18/2	1641	7.99	20.13
23	L9408/-4	L94080-4	09/18/2	1712	7.98	20.13
24	CC16d002	CC166002	09/18/2	1815	8.01	20.13
25	L940I1-1RE	L94081-1RE	09/18/2	1846	7.98	20.13
26	L94QB1-4RE	L94081-4RE	09/18/2	1917	7.99	20.13
27	L94 81-5RE	L94081-5RE	09/18/2	1948	8.00	20.13
28	L94f)81-6RE	L94081-6RE	09/18/2	2019	7.99	20.13
29	L9f081-7R	1494081-7R	09/18/2	2051	7.98	20.13
30	L9I081-1MSR	L94081-1MSR	09/18/2	2122	7.98	20.13
31	LSR081-1MSDR	L94081-1MSDR	09/18/2	2153	7.97	20.11
32	C( 166003	CC166003	09/18/2	2255	8.01	20.13
33	Cf125401	CC125401	09/18/2	2327	7.99	20.13
34	CE125402	CC125402	09/19/2	1009	7.99	20.13
35	⊥*4080-1	L94080-1	09/19/2	1038	/.99	20.13
36	lie4080-3R	L94080-3R	09/19/2		7.99	20.13
÷₽ ∮		L94U81-6	09/19/2	1148	1.98	∠∪.⊥3

TCX =* Tetrachloro-m-xylene DCB = Decachlorobiphenyl QC LIMITS (+/- 0.10 MINUTES) (+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk.
 * Values outside of QC limits.

page 1 of / i JJH(L

FORM VIII PCB



#### 8D PCB ANALYTICAL SEQUENCE

<b>⊉</b> ab Name∶					Co	ntract:				
ab Code:		Case N	o.:		S.	AS No. :		SDG No.	: AAA923	
nstrument	ID:	HP1				Init.	Calib.	Date(s):	09/17/2	09/17/2
GC Column:	RTX	-CLPESTICIDE	S 2	ID:	0.32	(mm)				

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO TCX: 8.00	GATE RT FROM DCB: 2	INITIAL CAL 20.13	IBRATION		
	V EPA $\underline{AMPLE}$ NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	TCX RT #	DCB RT #
01 02 03 04 05 06 07 08 09 10	CC12^S402 QC84 \ L94363-4X L94363-6 \ L94363-8 L94363-10 L94363-12 L94363-2 MB84 CC125402	CC125402 QC84 L94363-4 L94363-6 SL94363-8 L94363-10 L94>€3-12 L94363V2 MB84 N. CC125402 N.	09/25/2 09/25/2 09/25/2 09/25/2 09/25/2 09/25/2 09/25/2 09/25/2 09/25/2 09/25/2	0903 0934 1007 1038 1109 1141 1212 1243 1314 1345	7.98 7.98 7.97 7.97 7.97 7.97 7.97 7.97	20.12 20.12 20.11 20.11 20.11 20.11 20.11 20.12 20.12 20.12
12			$\mathbf{X}$			
⊥3 14			\ <u>\</u>			
15						
16			\ \			
17			k			
18				· \		
19				\		
20				\		
∠⊥ 22				\\		
23						
24						
25						
26						
27						
28						
29						
30						
32						
33						
34						
35						
36						
37						

CX = Tetrachloro-m-xyleneQC LIMITSDCB = Decachlorobiphenyl(+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk.
* Values outside of QC limits.

**a**ge 1 of 1

8D PCB ANALYTICAL SEQUENCE

Lab Name: Contract: Lab Code: SDG No. : AAA925 Case No.: SAS No.: Instrument ID: HP1 ^ Init. Calib. Date(s): 09/17/2 09/17/2 GC Column: RTX-CtJ'ESTICIDES 2 ID: 0.32 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO TCX: 8.00	GATE RT FROM DCB:	INITIAL CAL 20.13	IBRATION		
	EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	TCX RT #	DCB RT #
01 02 03	CC1254 MB87 QC87	CC1254 MB87 QC87	09/26/2 09/26/2 09/26/2	0734 0803 0838	7.98 7.97 7.99	20.13 20.12 20.12
04 05 06 07 08	L94538-2J L94538-5^ L94538-6V L94538-7-//	L94538-1 L94538-2 L94538-5 L94538-6 L94538-7	09/26/2 09/26/2 09/26/2 09/26/2 09/26/2	0909 0941 1012 1043 1114	7.97 7.97 7.97 7.98 7.97	20.12 20.12 20.12 20.12 20.12
09 10 11 12	L94538-8 ' L94538-1J L94538-2MS L94538-2MSD	L94538-8 L94538-1 L94538-2MS L94538-2MSD	09/26/2 09/26/2 09/26/2 09/26/2	1146 1217 1248 1319	7.97 7.98 7.98 7.98	20.12 20.12 20.12 20.12 20.12
13 14 15	CC125402	CC125402	09/26/2	1422	7.98	20.12
17 18						
19 20 21						
22 23						
24 25 26						
27 28 29						
30 31 32						
33 34 35						
36 37						

QC LIMITS

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

{+/- 0.10 MINUTES) (+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk. * Values outside of QC limits.

#### 8D PCB ANALYTICAL SEQUENCE

Lab Name:			Contract:			
ab Code:	Case No.	:	SAS No.	:	SDG No.	: AAA923CONFIRM
nstrument	ID: HP3		Init.	Calib.	Date(s):	09/19/2 09/25/2
C Column:	RTX-CLPESTICIDES	1 ID:	0.32 (mm)		•—	

### THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROG	GATE RT FROM I	INITIAL CALI	IBRATION		
	1011 9.72	202 2	11.00			
	EPA •	LAB	DATE	TIME	тсх	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
					101 11	
01	CC12MD1	CC125401	09/25/2	0908	9.72	21.33
02	L94363-^\	L94363-2	09/25/2	0939	9.72	21.33
03	L94363-4 `	L94363-4	09/25/2	1011	9.73	21.34
04	L94363-12	1394363-12	09/25/2	1045	9.73	21.32
05	L94363-6	L94JTS ⁶	09/25/2	1116	9.72	21.33
06	L94363-8	L94363-8\	09/25/2	1147	9.72	21.32
07	T-94363-10	L94363-10\	09/25/2	1218	9.71	21.32
08	CC125402	CC125402	^09/25/2	1250	9.71	21.32
09						
10			\			
11			\ \			
12			^			
13				\		
14						
15				, ,		
16				`\		
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						

QC LIMITS TCX = Tetrachloro-m-xylene (+/- 0.10 MINUTES) DCB = Decachlorobiphenyl

(+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk, * Values outside of QC limits.

**g**e 1 of 1

8D

PCB ANALYTICAL SEQUENCE

Lab Name: Contract: SDG No. : AAA925CONta» Lab Code: Case No. : SAS No. : Instrument ID: HPO._ Init. Calib. Date (s) : 09/19/2 09#2572 GC Column: RTX-CLPESTICIDES 1 ID: 0.32 /2?72(mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					· · · · · · · · · · · · · · · · · · ·	
	MEAN SURROO	GATE RT FROM	INITIAL CAL	IBRATION		
	TCX: 9 72	DCB:	21 33			
	1011 9.72	DCD	21.33			
	EDA	ם ג ד	שייי א כו	ттмр	TUN	DOD
	LPA	LAD				
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	R'I' #	R.I. #
01	CC125401	CC125401	09/26/2	1050	9.70	21.31
02	L94538-2s/.	L94538-2	09/26/2	1121	9.70	21.30
03	L94538-5 <i>J</i>	L94538-5	09/26/2	1153	9.69	21.30
04	L94538-6 J	L94538-6	09/26/2	1224	9.69	21.30
05	T-94538-7 J	T-94538-7	09/26/2	1255	9.70	21 30
06	T.94538-8^	T.94538-8	09/26/2	1326	9 69	21 30
07	1919900	101530 0 104538 - 1	09/20/2	1357	9.69	21.50 21.21
08			09/20/2	1400	9.09	21.31
09	CCIZ540Z	CC125402	09/20/2	1420	9.70	21.30
10						
11						
12						
12						
11						
11						
10						(
10						\
10						
10						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
57						

OC LIMITS

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

(+/- 0.10 MINUTES) (+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk. * Values outside of QC limits.

page 1 of 1

			PES	10B STICIDE IDENTIFICATION	J SUMMARY	EPA S.	AMPLE NO.	
			I	FOR MULTICOMPONENT ANA	LYTES	L94538-1		
#	٨	b	Name:	(	Contract:	27.		
		Lab	Code:	CaseNo.:	SAS No.:	SDG No.: A	AA925	
		Lab	Sample ID: L	94538-1	Date(s)	Analyzed: 09/26/2	<u>o&lt;∖ fau f Q</u> -J-	
		Ins	trument ID (1	): HP1	Instrume	ent ID (2) : <u>MP3</u>		
		GC	Column(1) : R7	TX-CLPESTICIDES 2 ID:	0,32 (mm)	GC Column(2) : <u>m-<k< u=""></k<></u>	<u>-PE^T ±</u> ID: <u>0.33</u> .	

ſ				RT WI	NDOW		MEAN	
	ANALYTE	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D
		1	13,65	13.57	13.77	64.86		
	Aroclor-1254	2	14.54	14.46	14.66	306.78		
		3	14.99	14.90	15.10	358.85		
	COLUMN 1	4	15.33	15.25	15.45	280.04	• • • • • •	
		5	16.01	15.93	16.13	289.50	260.01	
		1						
		1	IM.S1	IM.SO	IM-IO			
		2		15.CO.	15.33	IM~J.M>		
	COLUMN 2	1		13.33	<u>IK. US</u>	155. qt		
	COLUMN 2	5	111SK 11* 31	110.W		$\frac{a^{1}}{3in}$		-35" 6
		5	11 .51		IK. 11VI			35.0
_		1						
		2						
		3						
	COLUMN 1	4						
		5						
		1					-	
		2					-	
	COLUMN 2	3					-	
	COLUMIN 2	5						
		5						
		1						
		2						
		3						
	COLUMN 1	4						
		5						
		1					1	
		2						
	COLINAL	5						
	COLUMIN 2	4						
		5						
L						1		

At least 3 peaks are required for identification of multicomponent analytes.

x/<*- ^J*. -?

age 1 of 1

« •

	10B		EPA SAMPLE NO.		
PEST: FOI		L94538	8-2		
Lab Name:	(	Contract:		2,100	
Lab Code:	Case No.:	SAS No.:	SD	G No.: AAA	.925
Lab Sample ID: L94	538-2	Date(s)	Analyzed:	09/26/2	<u>Oblate Io</u> 3-
Instrument ID (1):	HP1	Instrume	ent ID (2) :	H£3	
GC Column(1) : RTX-	CLPESTICIDES 2 ID:	0.32 (mm)	GC Column	$(2) : \underline{\$Jt-CLP}$	<u>£\$T X</u> ID: <u>0.33-</u>

			RT W3	NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D
Aroclor-1254 COLUMN 1	X 2 3 4 5	$13.65 \\ 14.55 \\ 14.99 \\ 15.33 \\ 16.01$	$13.57 \\ 14.46 \\ 14.90 \\ 15.25 \\ 15.93$	$13.77 \\ 14.66 \\ 15.10 \\ 15.45 \\ 16.13$	$\begin{array}{r} 428.87 \\ 564.11 \\ 479.80 \\ 533.47 \\ 462.70 \end{array}$	493.79	
COLUMN 2	1 2 3 4 5	JSJD JS-fi ftt-3? fto.ti	JQ-5-0 ,^.03- /.^.S3 lb. ft l&.l^	N^O A5~.,33 lb.OS lb,&∖ l&M	m . 0-0 ktcX.lX /rte:^(c% /.r-KD.iX /rtt.tote		3L </td
COLUMN 1	1 2 3 4 5						- <b>M</b>
COLUMN 2	1 2 3 4 5						
	$\begin{array}{c}1\\2\\3\\4\end{array}$	==.===				<u>-</u>	
	5						
COLUMN 2	2 3 4 5						

At least 3 peaks are required for identification of multiconponent analytes.



10B PESTICIDE IDENTIFICATIO FOR MULTICOMPONENT AN	EPA SAMPLE NO. ON SUMMARY
Name:	L94538-5 Contract:
Lab Code: Case No.:	SAS No.: SDG No.: AAA925
Lab Sample ID: L94538-5	Date(s) Analyzed: 09/26/2 <u>O^hblcx</u>
Instrument ID (1): HP1	Instrument ID (2) : <u>up3</u>
GC Columnd) : RTX-CLPESTICIDES 2 ID:	0.32 (mm) GC Column $\{2\}$ : <u>R TX-CiP£5T 1</u> ID: <u>Q.^g</u> (MM)

			RT WI	NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
	1	13.65	13.57	13.77	1023.52		
Aroclor-1254	2	14.55	14.46	14.66	1223.05		
	3	14.99	14.90	15.10	1148.80		
COLUMN 1	4	15.33	15.25	15.45	1197.75		
	5	16.01	15.93	16.13	1084.08	1135.44	
	1	m.ST-			M&3 -tt		
	2	J5.C1	/.T.03.	/3".aa	iJtib-AO		
	3	ifi.W	/S.83	It*. 03	<i>13SS.</i> 9/		
COLUMN 2	4	lb-2b	Jfc.tf	U, '2f∖	/c20.r- 5f7	-	
	5	/fr.frl	1/?i/	ihM	/JW.S.^J?		
	l					_	
	2						
	3						
COLUMIN I	4					-	
	5						
	1						
	2					-	
	3					-	
COLUMN 2	4						
COLONIN 2	5					-	
	1						
	2						
	3						
COLUMN 1	4						
	5						
	1						
	2						
	3						
COLUMN 2	4						
	5						
L	1		r	1	1	1	

At least 3 peaks are required for identification of multicomponent analytes.

'page 1 of 1

£

>

*

FORM X PEST-2

	10B PESTICIDE IDENTIFICATION	EPA SAMPLE NO.			
Lab Name:	FOR MULTICOMPONENT ANA	Contract:		L94538	8-6
Lab Code:	Case No.:	SAS No.:	SDO	G No.: AAA9	925
Lab Sample ID:	L94538-6	Date(s)	Analyzed:	09/26/2	<u>o'lllulcZ</u> -
Instrument ID	(1): HP1	Instrume	ent ID (2):	<u>^p~3</u>	
GC Column(1) :	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	GC Column(2	) : <u>HrX-CLP</u>	<u>PCSrl</u> ID∶ <^3

10B

			RT W	:NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
	1	13.65	13.57	13.77	57.62		
Aroclor-1254	2	14.54	14.46	14.66	258.14		
	3	14.99	14.90	15.10	297.04		
COLUMN 1	4	15.33	15.25	15.45	209.28		
	5	16.01	15.93	16.13	276.69	219.76	
	1						
	2	/.T. W	$tS.D^{\wedge}$	/S2.3	<i>M3</i> . fra		
	3	/5?0	/*5∖ O	Uc.QX	l/iX.3te		
COLUMN 2	4	Hs-2ij>	ib.ft	ih.^fl	Art. 35"		
	5	//;. XI	ib.m	IU.W	333. ?5^		/4- 3-
	1						- in
	2						<b>11</b>
COLUMNI 1	3						
COLUMIN	4						
	3						
	1						
	1						
	2						
COLUMN 2	3						
	5						
	5				ТМ		
	1	=====		=====	A 47A		
	2						
	3						
COLUMN 1	4						
	5						
	1						
	2						
	3						
COLUMN 2	4						
	5						

At least 3 peaks are required for identification of multicomponent analytes.



	10B	EPA SAMPLE NO.			
PE	STICIDE IDENTIFICATION FOR MULTICOMPONENT ANA		19453	8-7	
ab Name:	(	Contract:			
Lab Code:	Case No.:	SAS No.:	SDO	G No.: AAA	925
Lab Sample ID: I	94538-7	Date(s)	Analyzed:	09/26/2	Mfajilll-
Instrument ID (1	): HP1	Instrume	ent ID (2):	<u>}JP3</u>	
GC Column(1) : R	TX-CLPESTICIDES 2 ID:	0.32{mm)	GC Column	(2) : <u>f<n~clp< u=""></n~clp<></u>	<u>£ST:£</u> ID: # (,

			RT WI	NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D
	1	13.65	13.57	13.77	1156.53		
Aroclor-1254	2	14.55	14.46	14.66	1017.89		
	3	14.99	14.90	15.10	911.80		
COLUMN 1	4	15.33	15.25	15.45	1237.70		
	5	16.01	15.93	16.13	748.61	1014.51	
	1						
	2	iS > 0	L*. 01-	iff. 33	QXfc.tt		
	3	$iS.^{c}it$	i*.83	Ĩ∕c*OZ	*•??*?</td <td>_</td> <td></td>	_	
COLUMN 2	4	ih.at	ilt-H	lh.1°i	iD3Q*H	-	
	5	ih,x	lb.1**	IhM	WV.Dl		
	2						
	3					-	
COLUMIN I	4 5						
	5						
	1						
	2					-	
	3						
COLUMN 2	4						
	5					-	
	5						
	1						
	2						
	3					-	
COLUMN 1	4						
	5					-	
	1						
	2					]	
	3						
COLUMN 2	4						
	5						
1							

At least 3 peaks are required for identification of multicomponent analytes.

#### 10B PESTICIDE IDENTIFICATION SUMMARY FOR MULTI COMPONENT ANALYTES

L94538-8

•

ID:

Lab Name:	(	Contract:	1,1000 0
Lab Code:	Case No.:	SAS No.:	SDG No. : AAA925
Lab Sample ID:	L94538-8	Date(s)	Analyzed: 09/26/2
Instrument ID (	1): HP1	Instrum	ent ID (2) :
GC Column(1) : F	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	GC Column(2) :

			RT W	INDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
	Ι	13.65	13.57	13.77	107.35		
Aroclor-1254	2	14.54	14.46	14.66	255.97		
	3	14.98	14.90	15.10	340.79		
COLUMN 1	4	15.33	15.25	15.45	342.27		
	5	16.01	15.93	16.13	319.99	273.27	
	1			N.70			
	2	lb .ID	$J^{\wedge}.D^{\wedge}$	1^,33	mo.'A-^	-	
	3	//>. /</td <td>y*r.ff.^</td> <td>/to. OX</td> <td>i&lt;-)LS4</td> <td>-</td> <td></td>	y*r.ff.^	/to. OX	i<-)LS4	-	
COLUMN 2	4	//;-3?	/6.M	Ih. ~*ft	JttSll-	11/2 . 0	
	5	lb-M	lb,'} 4	/£. 14	^3S,^i	1X3-tO	
						-	100
	2					-	
	3					-	^
COLUMIN I	4					-	
	3						
	1						
	2					-	
	3					-	
COLUMN 2	4					-	
COLUMIN 2	5					-	
	5						
	1						
	2					-	
	3					-	
COLUMN 1	4					-	
	5						
	1						
	2						
	3						
COLUMN 2	4						
	5						

At least 3 peaks are required for identification of multicomponent analytes





;

00064

PESTICIDE ORGANICS ANALYSIS DATA SHEET

L94538-1

٠

Lab Name:		Contract:	
Lab Code:	Case No. :	SAS No. :	SDG No.: AAA925
Matrix: (soil/water)	) SOIL	Lab S	ample ID: L94538-1
Sample wt/vol:	10.4 (g/mL) G	Lab F	ile ID: E2989953
% Moisture: 30-3	decanted: (Y/N)	N Date 1	Received: 09/25/2
Extraction: (SepF/	Cont/Sonc) SONC	Date	Extracted:09/25/2
Concentrated Extract	t Volume: <u>joQOQ</u>	(up Date 2	Analyzed: 09/26/2
Injection Volume:	2.0(uL)	Dilut	ion Factor: 10.0
GPC Cleanup: (Y/N	) N pH: 7.	0 Sulfu	r Cleanup: (Y/N) N
CAS NO.	COMPOUND	CONCENTRATI (ug/L or ug,	ON UNITS: /Kg) UG/KG Q
12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1248		U /MO -Ori4 U 'MO .£Ui4 U 260.01 IMC Q.ifr- U U



/o/^siOX

.tat



~

Thru-Put Systems, Inc.

Data, file : \chem\hpl.i\8082r0917.b\E2989953.D Lab Smp Id; L94538-1 Client Smp ID: L94538-1 Inj Date 26-SEP-2002 12:17 Operator CPW Inst ID: hpl.i Smp Info Misc Info : L94538-1 Comment 1*032900,02-004 Method \chem\hpl.i\8082r0917.b\8082_PCBsec.M Meth Date 26-Sep-2002 14:49 Administra Quant Type: ESTD Cal Date 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle 1Dil Factor 10.00000 Integrator Falcon Target Version: 3.40 Compound Sublist: PCB.sub Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000 Name Value Description  $\mathsf{DF}$ 10.000 Dilution Factor ~~ ^ ^ 10.000 Vf Final volume ~ ~ ~ ~ 10.366 0.100 Weight of sample extracted (g) Ws  $^{H^{J}}$ Uf Unit Correction Factor Τs 69.200 Total Solid

		CONCENTRATI	ONS				t	fS
		ON-COL F	FINAL			^1***	\ 0^	
RT EXP RT DLT	RT RESPONSE	( ug/L) (	(ug/Kg)	TARGET RANG	E RATIO	*/ •* Hi *	/- 5 •	
··· ··=,,,,	•,, ,,,,, «	,, ,, . ,,     , <del>,</del>		<del>.</del> ,, , ,, ,, ,, ,, ,,	,, ,, .	$W^{i}$ $\wedge y$	k	<b>x</b> \
\$ 1 Tetrachloro-m-	x y l e n e		CAS #=					* / j £
7.983 7.997 -0.0	14 259778	37.2717 5	19.57		ft	▲ <b>▲</b> <del>↓</del> ↓	-» -* '	
<i>–</i>		.—				^,1 ^ ^		~%V
\$ 29 Decachlorobiphe	e n y l		CAS #:			Τ'		I \M
20.120 20.130 -0.0	10 193975	41.2678 5	75.28					U 🔥
· · · · · · · · · · · · · · · · · · ·	<u>-</u> . <u></u>			<u></u>	<u></u> –			A
25 Aroclor-1254			CAS 8:	11097-69-1				
13.647 13.670 -0.0	23 3371	4.65275	64.86 8	30.00- 120.00	100.00(MH	()	"7 Q^jf	t
14.537 14.563 -0.0	26 2390	22.0067	306.78 9	99-75- 139.75	70.90		^ *	Cl Ofa
14.987 15.003 -0.0	16 1676	25.7425 3	359.B5 7	77.94- 117.94	49.72		.3 ~A.	/• ^ V S ( '
15.327 15.350 -0.0	2 3 2 995	20.0888	2B0.04 4	46.79- 86.79	68.85		"> -?	"
16.007 16.033 -0.0	3311	20.7672	289.50 8	86.38- 126.38	98.22			
Avera	ge of Peak Concentra	ations - 2	260.01				*	
••	•	— <b></b>				Q r	M ' " ^	0 ^

00066
Data File: <u>\chem\hpl.i\8082r0917.b\E2989953-D</u> Report Date: 26-Sep-2002 14:51

QC Flag Legend

- M Compound response manually integrated.
- H Operator selected an alternate compound hit.







>

-flroclor-1254 (13.647).

-Aroolor-1254	(14.537)
^-ftroclor-1254 -Ar-oclor-1254	(14.987) < (15.327)
-Aroclor-1254	(16.007)

Decach1orota i phsny1 (20.120)

Data File: /chem/hpl.i/8082r0917.b/E2989953.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info L94538-1 Misc Info WG32900,02-004 Analysis Date 26-SEP-2002 12:17 Sample Matrix SOIL File Number 9953 Data File State 
Dilution	Factor	10.0000
Sample	Weight	10.3664
Final	Volume	10.0000
Total	Solid	69.2000

Analytes (ug/Kg)

•	0.00
	0.00
	0.00
	0.00
	260.01
	0.00
	0.00
-xylene	74.54%
henyl	82.54%
	-xylene henyl

Analyst: CPW Report Date: 09/26/2002 14:51

2

U.

Thru-Put Systems, Inc

Data file : \chem\hp3.i\1254FCONFIRMa.b\E3956221.D Lab Smp Id: L94538-1 Client Sm Client Smp ID: L94538-1 Inj Date : 26-SEP-2002 13:57 Operator : CPW Inst ID: hp3.i Smp Info : L94538-1 Misc Info : CONFIRMATION Comment : \chem\hp3.i\l254FCONFIRMa.b\8082_PCBsec.M Method Meth Date : 26-Sep-2002 14:54 Administra Quant Type: ESTD Cal Date : 25-SEP-2002 09:08 Cal File: E3956172.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound S.ublist: 1254. sub Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * (<Vf / Ws) * Uf) / Ts * 1000 Value Description Name  $\mathsf{DF}$ 10.000 Dilution Factor Vf 10.000 Final volume 10.366 Weight of sample extracted Ws 0.100 Unit Correction Factor Uf Τs 69.200 Total Solid

				CONCENTRA	ATIONS		
				ON-COL '	PINAL		
RT E	EXP RT	DLT RT	RESPONSE	{ ug'/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Te	trachlc	oro-m-xylene			CAS #:		
9.G90	9.717	-0.027	376910	65.3069	910.38		
25 Ar	oclor-1	254			CAS ft	: 11097-69-1	
14.573	14.597	-0.024	3659	12.6272	176.02	80.00120.00	10000
15.100	15.123	-0.023	5091	10.5788	147.47	152.01- 19201	13914
15.907	15.927	-0.020	4523	11.1485	155.41	129.84- 16984	12361
16.270	16.290	-0.020	4243	18.8156	262.29	60.29- 100.29	115.96
16.813	16.837	-0.024	6247	15.6055	217.54	120.35- 160.35	170.73
		Average of	Peak Concentra	ations =	191.75		
\$ 29 De	cachlo	robiphenyl			CAS ft		
21.313	21.327	-0.014	294002	65.8652	918.17		





t-l fl

V

T? T #₽ ★★

i —

•li tn



3" B



« 3 3"





1 -Aroclor-1254 <14,573) • ^ -Aroclor-1254 <15.100> •

iΚ

5--Aroclor-1254 (15,907) -Aroclor-1254 <16.270> -Aroclor-1254 <16,813>

Decachlorobiphenyl (21*313)

-r

Tetrachloro-nt-xylene C9.690) §•

Maria		dan tara at i	L94538-2
Name:		Contract	
Lab Code:	Case No. :	SAS No.	SDG No. : AAA925
Matrix: (soil/water	) SOIL		Lab Sample ID: L94538-2
Sample wt/vol:	10.9 {g/mL) G		Lab File ID: E2989948
% Moisture: -e-ia.s	" decanted: (Y/N)	Ν	Date Received: 09/25/2
Extraction: (SepF/	Cont/Sonc) SONC		Date Extracted:09/25/2
Concentrated Extrac	t Volume: \ <u>00000</u>	(up	Date Analyzed: 09/26/2
Injection Volume:	2.0(uL)		Dilution Factor: 10.0
GPC Cleanup: (Y/I	N) N pH: 7.	0	Sulfur Cleanup: (Y/N) N
CAS NO.	COMPOUND	CONCE (ug/L	NTRATION UNITS: or ug/Kg) UG/KG Q
1 2 6 7 4 - 1 1 - 2 1 1 0 4 - 2 8 - 2	Aroclor-1016		$\frac{100  \text{U}_{-i}\text{-}\text{U}^{\text{I}}}{< 2/\text{C}  0\text{-}\text{rSi}} \mathbf{U}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	/Dla^iooJ

U

U

* •

Data File: /chem/hp3.i/1254FCONFIRMa.b/E3956221.D Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94538-1 Misc Info: CONFIRMATION Analysis Date: 26-SEP-2002 13:57 Sample Matrix: SOIL File Number: 6221

Dilution	Factor	10.0000
Sample	Weight	10.3664
Final	Volume	10.0000
Total S	Solid	69.2000

Analytes (ug/Kg)

Aroclor-1254	191.75
Tetrachloro-m-xylene	130.61%
Decachlorobiphenyl	131.73%

Analyst: CPW Report Date: 09/26/2002 15:02

Thru-Put Systems, Inc.

Data file ; \chem\hpl.i\8082r0917.b\E2989948.D Lab Smp Id: 194538-2 Client Smp ID: L94538-2 Inj Date 26-SEP-2002 09:41 Operator CPW Inst ID: hpl.i Smp Info L94538-2 WG32900,02-004 Misc Info Comment \chem\hpl.i\8082r0917.b\8082 PCBsec.M Method 26-Sep-2002 14:49 Administra Quant Type: ESTD Meth Date 17-SEP-2002 16:43 Cal File: E2989834.D Cal Date Als bottle 1 10.00000 Dil Factor Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Description Name Value 10.000 Dilution Factor DF Vf 10.000 Final volume 10.929 Weight of sample extracted Ws 0.100 Unit Correction Factor Uf Τs 87.500 Total Solid

				CONCENTRA	TIONS		
				ON-COL	FINAL		
RT EX	KP RT 1	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANGE	
\$ 1 Tet:	rachlor	o-m-xylene			CAS «:		
7.973	7.997	-0.024	300883	42.2846	442.17		
\$ 29 Dec	achlorc	biphenyl			CAS »:		
20.120	20.130	-0.010	278127	57.154B	597.67		
25 Aroo	clor-12	54			CAS tt:	11097-69-1	
13.653	13.670	-0.017	14423	41.0129	42B.87	80.00- 120.00	10000 <h)< td=""></h)<>
14.547	14.563	-0.016	16510	53.9452	564.11	99.75- 139.75	11447
14.993	15.003	-0.010	9354	45.8835	479.80	77.94- 117.94	64.85
15.333	15.350	-0.017	8921	51.0155	533.47	46.79- 86.79	61.85
16.013	16.033	-0.020	11B46	44.2482	462.70	86.38- 126.38	82.13
	P	verage of Peal	k Concentr	ations -	493.79		

4^3 CUPI

00074

Data File: \chem\hpl.i\8082r0917.b\E2989948.D Report Date: 26-Sep-2002 14:51

QC Flag Legend

H - Operator selected an alternate compound hit.

Data File: Xchem^hpl*i/8082r0917tb/E2989948.DDate : 26-SEP-2002 09:41Client ID: L94538-2Sample Info: L94538-2Volume Injected (uL>; 2.0Column phase: RTX-CLPesticides 2Column diameter: 0.32



Page 3

0 00

Data File: /chem/hpl.i/8082r0917.b/E2989948.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L94538-2 Misc Info: WG32900,02-004 Analysis Date: 26-SEP-2002 09:41 Sample Matrix: SOIL File Number: 9948

Dilution Factor	10.0000
Sample Weight	10.9291
Final Volume	10.0000
Total Solid	87.5000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	493.79
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	84.57%
Decachlorobiphenyl	114.31%

Analyst: CPW Report Date: 09/26/2002 14:51

JA1 30

:

•

: •

»

#### Thru-Put Systems, Inc

Data file : \chera\hp3.i\1254FCONFIRMa.b\E3956216.D Lab Smp Id: L94538-2 Client Smp ID: L94538-2 Inj Date : 26-SEP-2002 11:21 Operator : CPW Inst ID: hp3.i Smp Info : L94538-2 Misc Info : CONFIRMATION Comment : Method : \chem\hp3.i\1254FCONFIRMa.b\8082_PCBsec.M Meth Date : 26-Sep-2002 14:54 Administra Quant Type: ESTD Cal Date : 25-SEP-2002 09:08 Cal File: E3956172.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: 1254.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF	10.000	Dilution Factor
Vf	10.000	Final volume-
Ws	10.929	Weight of sample extracted
Uf	0.100	Unit Correction Factor
Ts	87.500	Total Solid

				CONCENTRA	ATIONS			
				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET	RANGE	RATIO
\$ 1 Te	etrachlo	ro-m-xylene			CAS «i			
9 - 7 0 0	9.717	-0.017	36B178	63.4572	663*.S7			
25 Ar	oclor-1	254			CAS ft	: 11097-6	9 - 1	
14.577	14.597	-002 0	20262	69.9239	731.20	80.00-	120.00	100.0.0
15.100	15.123	-0023	30778	63.9551	668.7B	152.01-	192.01	151.90
15-907	15.927	-0.020	25749	63.4675	663.66	129.84-	169.84	127.08
16.267	16.290	-0.023	14681	65.1031	680.76	60.29-	100.29	72.46
16.813	16.837	-0.024	24334	60.7882	635.66	120.35-	160.35	120-10
	i	Average of Pe	eak Concentr	ations -	676.02			
\$ 29 De	ecachlor	obiphenyl			CAS It			
21-303	21.327	-0.024	300647	67.3539	704.32			









-flroclor-1254 <15.10C0



00079

• .

™ ****** ****** * * *

w



Data File: /chem/hp3.i/1254FC0NFIRMa.b/E3956216.D Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec-M Sample Info: L94538-2 Misc Info: CONFIRMATION Analysis Date: 26-SEP-2002 11:21 Sample Matrix: SOIL File Number: 6216

Dilution	Factor	10.0000
Sample	Weight	10.9291
Final	Volume	10.0000
Total	Solid	87.5000

Analytes (ug/Kg)

Aroclor-1254	676.02
Tetrachloro-m-xylene	126.91%
Decachlorbbiphenyl	134.71%

Analyst: CPW Report Date: 09/26/2002 15:01

Supervisor: Date:



;•

00080

ID PESTICIDE ORGANICS ANALYSIS DATA SHEET

L94538-5

٠

Lab Name:		Contract:		50 5
Lab Code:	Case No.:	SAS No.:	SDG No.: AA	A925
Matrix: (soil/water	) SOIL	Lab S	ample ID: L94538	-5
Sample wt/vol:	11.0 (g/mL) G	Lab F	'ile ID: E29899	49
<pre>% Moisture: .^TSH-U</pre>	decanted: (Y/N)	N Date	Received: 09/25/	2
Extraction: (SepF/	Cont/Sonc) SONC	Date	Extracted:09/25/	2
Concentrated Extract	z Volume: <u>iOOOQ</u>	(up Date	Analyzed: 09/26/	2
Injection Volume:	2.0(uL)	Dilut	ion Factor: 10.0	)
GPC Cleanup: (Y/N	) N pH: 7.	0 Sulfu	r Cleanup: (Y/N)	Ν
CAS NO.	COMPOUND	CONCENTRATI {ug/L or ug	ON UNITS: /Kg) UG/KG.	Q

12674-11-2       Aroclor-1016         1104-28-2       Aroclor-1221         11141-16-5       Aroclor-1232         53469-21-9       Aroclor-1242         11097-69-1       Aroclor-1254         .11096-82-5       Aroclor-1248	•Vco .Q.4Q <u>30fi n on</u> 1135.44 ^00-0-T56	u u u u u
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------	-----------------------

Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082r0917,b\E2989949.D Lab Smp Id: <u>L94538-5</u> Client Smp ID: L94538-5 Inj Date : 26-SEP-2002 10:12 Operator : CPW Smp Info : L94538-5 Misc Info : WG32900/.02-004 Inst ID: hpl.i Comment : Method : \chem\hpl.i\8082r0917.b\8082_PCBsec.M Meth Date : 26-Sep-2002 14:49 Administra Quant Type: ESTD Cal Date : 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

	Name	Value	Description	
S»	DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.975 \\ 0.100 \\ 45.400$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

				CONCENTRA	TIONS		
				ON-COL	FINAL		
RT 1	EXP RT	DLT RT	RESPONSE	{ ug/L)	(ug/Kg)	TARGET RANGE	
\$ l Te	trachlor	o-ni-xylene			CAS A:		
7.973	7.997	-0.024	311670	43.5994	875.04		
S 29 De	cachloro	biphenyl			CAS fi:		
20.120	20.130	-0.010	278337	57.1944	1147.89		
25 Ar	oclor-12	54			CAS #:	11097-69-1	
13.653	13.670	-0.017	1745S	50.9977	1023.52	80.00- 12000	10000(H)
14.547	14.563	-0.016	19602	60.9391	1223.05	99.75- 139.75	11228
14.990	15.003	-0.013	13683	57.2394	1148.80	77.94- 11794	78.38
15.333	15.350	-0.017	10581	59.6787	1197.75	46.79- 86.79	60.61
16.013	16.033	-0.020	15396	54.0147	1084.08	86.38- 126.3B	88.19
	I	Average of Peal	k Concentr	ations -	1135.44		

UP3. CLH

Data File: <u>\chem\hpl.i\8082r0917.b\E2989949.D</u> Report Date: 26-Sep-2002 14:51

QC Flag Legend

H - Operator selected an alternate compound hit.



Data File: /chem/hpl.i/8082r0917.b/E2989949.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L94538-5 Misc Info: WG32900,02-004 Analysis Date: 26-SEP-2002 10:12 Sample Matrix: SOIL File Number: 9949

Dilution	Factor	10.0000
Sample	Weight	10.9748
Final	Volume	10.0000
Total	Solid	45.4000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	1135.44
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	87.20%
Decachlorobiphenyl	114.39%

Analyst: CPW Report Date: 09/26/2002 14:51

Supervisor:

Date:



Thru-Put Systems, Inc

Data file : \chem\hp3.x\1254FCONFIRMa.b\E3956217.D Client Smp ID: L94538-5 Lab Smp Id: L94538-5 Inj Date 26-SEP-2002 11:53 Operator CPW Smp Info L94538-5 Inst ID: hp3.i Misc Info CONFIRMATION Comment \chem\hp3.i\1254FCONFIRMa.b\8082_PCBsec.M Method Meth Date26-Sep-200214:54AdministraQuantType:ESTDCal Date25-SEP-200209:08Cal File:E39561 Cal File: E3956172.D Als bottle 1 Dil Factor 10.00000 Integrator: Falcon Compound Sublist: 1254.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * {(Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 10.975 \\ 0.100 \\ 45.400$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

				CONCENTRA	ATIONS		
				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANGE	RATIO
	•••••		•••••	•••••			
\$ 1 Te	etrachlo	ro-m-xylene			CAS ft:		
9.690	9.717	-0.027	375501	64.7193	1298.92		
25 Ar	oclor-1	254			CAS #:	11097-69-1	•
14.570	14.597	-0.027	19683	67.9258	1363.27	80.00- 120.00	100.00
15.093'	15.123	-0.030	31083	64.58B9	1296.30	152.01- 192.01	157.92
15.900	15.927	-0.027	27409	67.5591	1355-91	129-В4- 169-В4	139.25
16.263	16.290	-0.027	13549	60.0832	1205-B7	60.29- 100.29	6B.84
16.807	16.837	-0.030	26248	65.5695	1315.98	120.35- 160.35	133.35
	-	Average of Pea	k Concentra	ations «	1307.47		
\$ 29 De	ecachlor	obiphenyl			CAS (f:		
21.300	21.327	-0.027	297785	66.7127	1338.93		

	Y	<x10<sup>A5)</x10<sup>	
0			0
(SI	р.	V]	CO

£-

Tetrachloro-m-xylene <9,690> S

Column phase: RTX-CLPesticides 1

Volume Injected (uL): 2.0

Data

26-SEP-2002 11:53 ID: L94538-5

: /otem/hp3.i/1254FCONFIRMa.b/E3

-Aroclor-1254 (14.570) - -Aroclor-1254 <15.093> *-

-Aroclor-1254 <15,900) -Aroclor-1254 <16.263> //^. -Aroclor-1254 <16.807)

Decachlorobiphenyl <21.300)



3" W

'3_ *^\

Data File: /chem/hp3.i/1254FCONFIRMa.b/E3956217.D Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94538-5 Misc Info: CONFIRMATION Analysis Date: 26-SEP-2002 11:53 Sample Matrix: SOIL File Number: 6217

Dilution	Factor	10.0000
Sample	Weight	10.9748
Final	Volume	10.0000
Total	Solid	45.4000

Analytes (ug/Kg)

Aroclor-1254	1307.47
Tetrachloro-m-xylene	129.44%
Decachlorobiphenyl	133.43%

Analyst: CPW Report Date: 09/26/2002 15:01



PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO,

Lah Name	Contra	L94538-6
	Concra	
Lab Code: Case No	SAS NC	SDG No. : AAA925
Matrix: (soil/water) SOIL		Lab Sample ID: L94538-6
Sample wt/vol: 10.7	(g/mL) G	Lab File ID: E2989950
<pre>% Moisture: -e~/S,   decant</pre>	ted: (Y/N) N	Date Received: 09/25/2
Extraction: (SepF/Cont/Son	C) SONC	Date Extracted:09/25/2
Concentrated Extract Volume	e: <u>jQQOp</u> (uL)	Date Analyzed: 09/26/2
Injection Volume: . 2.0(u	1L)	Dilution Factor: 10.0
GPC Cleanup: (Y/N) N	рН: 7.0	Sulfur Cleanup: (Y/N) N
CAS NO. COME	CON POUND (ug	CENTRATION UNITS: g/L or ug/Kg) UG/KG Q
12674-11-2       -Aroo         1104-28-2       -Aroo         11141-16-5       -Aroo         53469-21-9       -Aroo         11097-69-1       -Aroo         11096-82-5       -Aroo	clor- 1016 clor- 1221" clor- 1232" clor- 1242" clor- 1254" clor- 1260" clor- 1248"	<b>no</b> 0.11 •33 0 s-rsa- ¹¹⁰ -fmrl 219.76

/C/SS/OZL



Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082r0917.b\E2989950.D Lab Smp Id: L94538-6 Inj Date 26-SEP-2002 10:43 Client Smp ID: L94538-6 Operator : CPW Smp Info : L94538-6 Inst ID: hpl.i Misc Info : WG32900,02-004 Comment : Method : \chem\hpl.i\8082r0917.b\8082_PCBsec.M Meth Date : 26-Sep-2002 14:49 Administra Quant Type: ESTD Cal Date : 17-SEP-.2002 16:43 Cal File: E2989834.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ .10.000 \\ 10.682 \\ 0.100 \\ 81.900$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)
		IULAI SUILU	

			CONCENTRA	TIONS		
			ON-COL	FINAL		
RT EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Tetrachl	oro-m-xylene			CAS «:		
7.977 7.997	-0.020	322734	44.9485	513.79		
S 29 Decachlo	robiphenyl			CAS #:		
20.120 20.130	0 -0.010	266769	55.0105	628.B0		
25 Aroclor-1	254			CAS tt:	11097-69-1	
13.650 13.670	-0.020	3489	5.04096	57.62	80.00- 120,.00	10000
14.543 14.563	3 -0.020	2645	22.5835	258.14	99.75- 139.75	75. ei
14-987 15.003	3 -0.016	1769	25.9865	297.04	77.94- 117.94	5070
15.330 15.350	0 -0.020	2654	IB.3092	209.2B	46.79- 85.79	76.07
16.010 16.033	3 -0.023	4561	24.2061	276.69	86.3B- 126.3B	130.73
	Average of Peak	Concentr	ations -	219.76		

kLi^F

»

»



Tetrachloro-m-xylene (7.977)



۸

n-Aroclor-1248 (11.883) --tfe

- £5f*4WBrIMft8<»3Wte> -£ -Aroolor-1254 (13.650) L ۷
- ft -Aroolor-1254 (14.543)
- i. -Aroolor-1254 (15.330)+

# •-A^8?o^l2i§⁴<^!l839L

-ftroclor-1260 (16.737) •r-Aroclor-12&0 (17.220) •_



Data File: /chem/hpl.i/8082r0917.b/E2989950.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L94538-6 Misc Info: WG32900,02-004 Analysis Date: 26-SEP-2002 10:43 Sample Matrix: SOIL File Number: 9950

Dilution	Factor	10.0000
Sample	Weight	10.6819
Final	Volume	10.0000
Total	Solid	81.9000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	219.76
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	89.90%
Decachlorobiphenyl	110.02%

Analyst: CPW Report Date: 09/26/2002 14:51

#### Thru-Put Systems, Inc.

\chem\hp3.i\l254FCONFIRMa.b\E3956218.D Data file Lab Smp Id L94538-6 Inj Date 26-SEP-2002 12:24 Client Smp ID: L94538-6 Operator CPW Inst ID: hp3.i Smp Info L94538-6 Misc Info CONFIRMATION Comment \chem\hp3.i\1254FCONFIRMa.b\8082_PCBsec.M Method 26-Sep-2002 14:54 Administra Quant Type: ESTD Meth'Date Cal File: E3956172.D 25-SEP-2002 09:08 Cal Date Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: 1254.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF	10.000	Dilution Factor
Vf	10.000	Final volume
Ws	10.682	Weight of sample extracted (g]
Uf	0.100	Unit Correction Factor
Ts	81.900	Total Solid

				CONCENTR	ATIONS		
				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Te	etrachlo	ro-m-xylene			CAS «		
9.690	9.717	-0027	388020	66.8771	764.44		
25 Ar	oclor-1	254			CAS #	11097-69-1	
i4.570	14.597	-0-027	4571	15.7745	180.31	80.00- 120.00	100.00
15.097	15-123	-0.026	6055	12.5820	143.82	152.01- 192.01	132.47
15.903	15-927	-0.024	5798	14.2912	163.36	129.84- 169.84	126.84
16.263	16.290	-0.027	4939	21.9021	250.35	60-29- 100-29	108.05
16.807	16.837	-0.030	7843	19.5924	223.95	120-35- 160-35	171.58
		Average of	Peak Concentra	ations .	192.36		
\$ 29 De	ecachlor	obiphenyl			CAS tt		
21.303	21.327	-0-024	316778	70.9677	811.20		

Data File: /chen/hp3,i/1254FCOHFIRHa,b/E3956218»D Date : 26-SEP-2002 12J24 Client ID: L94538-6 Sample Info: L94538-6 Volume Injected <ul_>; 2*0 Column phase: RTX-CLPesticides 1</ul_>	Instrument: Operator: C Column diam	: hp3.i LPU meter: 0,32	Page 2
	/chem/hp3.i/1254FC0NFIRMa.b/E3956	5218.D	0
1.2-	Qr. Ç		
1.1-	3) 3X 100-100-100-100-100-100-100-100-100-100		- 3) c 2. o
1.0-	Ö E T T T P Or		t.
0.9-			
0.8-			
0.7-			
0.6-			
0.5-			
0.4-			
0.3-	14.570) 15.097)	115,903 16,807 (16,807	
0,2-		n-1254	
0,1-	-Aroolo		Jin The The Color of the The The The The The The The The The T
∠ ⊥ JU- 2 3 4 7 ' 8 "	$\tau_{JJ}$	16 17 18 19 20 21	22 23 24 ^^^26 27

*

Data File: /chem/hp3.i/1254FCONFIRMa.b/E3956218.D Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94538-6 Misc Info: CONFIRMATION Analysis Date 26-SEP-2002 12:24 Sample Matrix SOIL File Number: 6218

Dilution	Factor	10.0000
Sample	Weight	10.6819
Final	Volume	10.0000
Total S	Solid	81.9000

Analytes {ug/Kg)

Aroclor-1254	192.36
Tetrachloro-m-xylene	133.75%
Decachlorobiphenyl	141.94%

Analyst: CPW Report Date: 09/26/2002•15:02

ab Name:		Contract:	L94538-7
Lab Code:	Case No. :	SAS No. :	SDG No. : AAA925
Matrix: (soil/water)	SOIL	Lab S	ample ID: L94538-7
Sample wt/vol:	10.2 (g/mL) G	Lab F	ile ID: E2989951
% Moisture: -0" $\^ci-3$	decanted: (Y/N)	N Date	Received: 09/25/2
Extraction: (SepF/G	Cont/Sonc) SONC	Date	Extracted:09/25/2
Concentrated Extract	Volume: <u>JCOOO</u>	(uL) Date	Analyzed: 09/26/2
Injection Volume: •	2.0(uL)	Dilut	ion Factor: 10.0
GPC Cleanup: (Y/N)	) N pH: 7.	) Sulfu	r Cleanup: (Y/N) N
CAS NO.	COMPOUND	CONCENTRATIOn (ug/L or ug/	ON UNITS: (Kg) UG/KG Q
$\begin{array}{r} 12674 - 11 - 2 \\ \hline 1104 - 28 - 2 \\ \hline 11141 - 16 - 5 \\ \hline 53469 - 21 - 9 \\ \hline 11097 - 69 - 1 \\ \hline 11096 - 82 - 5 \\ \hline \end{array}$	Aroclor-1016 —Aroclor-1221 —Aroclor-1232 —Arocior-1242 —Aroclor-1254 —Aroclor-1260		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Aroclor-1248		20 JXJL3J <b>u</b>

S»

WI&IC-L

tait

#### Thru-Put Systems, Inc.

Data file : <u>\chem\hpl.i\8082r0917.b\E2</u>989951.D Lab Smp Id: <u>L94538-7</u> Clien Client Smp ID: L94538-7 Inj Date : 26-SEP-2002 11:14 Operator : CPW Inst ID: hpl.i Smp Info : L94538-7 Misc Info : WG32900,02-004 Comment Method : <u>\chem\hpl.i\8082r0917.b\8082_PCBsec.M</u> Meth Date : <u>26-Sep~2002</u> 14:49 Administra Quant Type: ESTD Cal Date : 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Target Version: 3.40 Compound Sublist: PCB.sub Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF	10.000	Dilution Factor
Vf	10.000	Final volume
Ws	10.231	Weight of sample extracted
Uf	0.100	Unit Correction Factor
Ts	80.700	Total Solid

				CONCENTRATIONS						
				ON-COL	FINAL					
RT E	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET	RAN	IGE	RAI	OI
\$ 1 Te	trachlo	ro-m-xylene			CAS it:					
7.970	7.997	-0.027	346383	47.8323	579.36					
\$ 29 De	cachlor	bbiphenyl			CAS ft:					
20.120	20.130	-0.010	347802	70.3086	851.60					
25 Ar	oclor-1	254			'CASft:	11097-6	9-1			
13.653	13.670	-0.017	30980	95.4839	1156.53	80.00-	120	00	100	00(H)
14.547	14.563	-0.016	29B14	84.0380	1017.В9	99.75-	139	75	96	24
14-987	15.003	-0.016	20560	75.2792	911.80	77.94-	117	94	66	37
15.333	15.350	-0.017	18726	102.186	1237.70	46.79-	в6	79	60	45
16.010	16.033	-0.023	18228	61.8059	74B.61	86.3B-	126	38	58	84
		Average of	Peak Concentra	ations •	1014.51					

Data File: <u>\chem\hpl</u>.i\8082r0917.b\E2989951.D Report Date: 26-Sep-2002 14:51

Flag Legend

H - Operator selected an alternate compound hit

# U

# U

00098

Y (>dO ^A 5)					
		0	0	0	0
+	(JI	C*	J	* CO	

-Tetrachloro-m-xylene (7.970)

Eluzero o



h

-firoclor-1254 (16.010)



-Decachlorobiphenyl (20,120)

Data File: /chem/hpl.i/8082r0917.b/E2989951.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L94538-7 Misc Info: WG32900,02-004 Analysis Date:. 26-SEP-2002 11:14 Sample Matrix: SOIL File Number: 9951

Dilution	Factor	10.0000
Sample	Weight	10.2306
Final	Volume	10.0000
Total	Solid	80.7000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	1014.51
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	95.66%
Decachlorobiphenyl	140.62%



Analyst: CPW Report Date: 09/26/2002 14:51

19/30/2

:

»

»

Thru-Put Systems, Inc

Data file : \chem\hp3.i\1254FCONFIRMa.b\E3956219.D Lab Smp Id: L94538-7 Inj Date : 26-SEP-2002 12:55 Client Smp ID: L94538-7 Operator : CPW Inst ID: hp3.i Smp Info : L94538-7 Misc Info : CONFIRMATION Comment : : \chem\hp3.i\1254FCONFIRMa.b\8082_PCBsec.M Method Meth Date : 26-Sep-2002 14:54 Administra Quant Type: ESTD Cal Date : 25-SEP-2002 09:08 Cal File: E39561 Dil Factor: 1 Integrator: 10.00000 Cal File: E3956172.D Target Version: 3-40 Compound Sublist: 1254.sub Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000 Name Value Description

DF Vf Ws Uf	$ \begin{array}{c} 10.000 \\ 10.000 \\ 10.231 \\ 0.100 \\ 80.700 \end{array} $	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor
Ts	80.700	Total Solid

				CONCENTRATIONS			
				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANGE	RATIO
II			····—·	•••••			
S 1 T	etrachlor	ro-m-xylene			CAS #:		
9.697	9.717	-0.020	372332	64.1732	777.28		
25 A:	roclor-12	254			CAS #:	11097-69-1	
14.573	14.597	-0.024	23279	в0.3356	973-05	60-00- 120.00	100.00
15.097	15.123	-0.026	38005	78.9724	956.53	152.01- 192-01	163.26
15.903	15.927	-0.024	33073	81.5200	987.39	129.84- 169.84	142.07
16.267	16.290	-0.023	19035	84.4109	1022.41	60.29- 100.29	81.77
16.810	16.837	-0.027	32852	82.0668	994.01	120.35- 160.35	141.12
	Ι	Average of Peak	Concentra	ations •	986.68		
S 29 D	ecachlor	obiphenyl			CAS 8:		
21.300	21.327	-0.027	305212	68.3766	828.20		



-Decachlorobiphenyl (21,300)

(10102

.
Friend Inc.



»

Data File: /chem/hp3.i/l254FCONFIRMa.b/E3956219.D Method: /chem/hp3.i/l254FCONFIRMa.b/8082_PCBsec-M Sample Info: L94538-7 Misc Info: CONFIRMATION Analysis Date: 26-SEP-2002 12:55 Sample Matrix SOIL File Number 6219

Dilution	Factor	10.0000
Sample	Weight	10.2306
Final	Volume	10.0000
Total	Solid	80.7000

Analytes (ug/Kg]

Aroclor-1254	986.68
Tetrachloro-m-xylene	128.35%
Decachlorobiphenyl	136.75%

Analyst: CPW Report Date: 09/26/2002 15:02

Supervisor: Date:

EPA SAMPLE NO-

# ID PESTICIDE ORGANICS ANALYSIS DATA SHEET

				L94	1538-8
Lab Name:		Contract:			
Lab Code:	Case No. :	SAS No.:	SDG N	ío.: A	AA925
Matrix: (soil/water	) SOIL	La	b Sample ID:	L9453	38-8
Sample wt/vol:	10.9 (g/mL) G	La	b File ID:	E2989	9952
% Moisture: -9-13.?	decanted: (Y/N)	N Da	te Received:	09/25	5/2
Extraction: (SepF/	(Cont/Sonc) SONC	Da	te Extracted	:09/25	5/2
Concentrated Extrac	t Volume: <u>jQ000</u>	(uL) Da	te Analyzed:	09/26	5/2
Injection Volume: .	2.0 (uL)	Di	lution Factor	c: 10.	.0
GPC Cleanup: (Y/N	J) N рН: 7.	.0 Su	lfur Cleanup	(Y/1	N) N
CAS NO.	COMPOUND	CONCENTR (ug/L or	ATION UNITS: ug/Kg) UG/K(	74	Q
12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260			0.11	U U U U
	Aroclor-1248		no J&.	-frr*± IL	U
			Тој	$SS/O^{\prime}$	

Thru-Put Systems, Inc

Data file \chem\hpl.i\8082r0917.b\E2989952.D Lab Smp Id L94538-8 Client Smp ID: L94538-8 26-SEP-2002 11:46 Inj Date Inst ID: hpl.i Operator CPW Smp Info L94538-8 Misc Info WG32900,02-004 Comment \chem\hpl.i\8082r0917.b\8082_PCBsec.M Method Meth Date 26-Sep-2002 14:49 Administra Quant Type: ESTD Cal Date 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3 Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000 Name Value Description 10.000 Dilution Factor DFFinal volume Vf 10.000 Weight of sample extracted (g) Ws 10.923 Uf 0.100 Unit Correction Factor Ts 86.200 Total Solid CONCENTRATIONS ON-COL FINAL RT EXP RT DLT RT RESPONSE ( ug/L) lug/Kg) TARGET RANGE RATIO 1 Tetrachloro-m-xylene CAS th 5 7.973 7.997 -0.024 377088 51.5764 547.76 \$ 29 Decachlorobiphenyl CAS ft:

20.123 20.130 -0.007 33B210 68.4978 727.48 25 Aroclor-1254 CAS #: 11097-69-1 13.647 13.670 -0.023 5029 10.1074 107.35 80.00- 120.00 100.00(MH) 14.540 14.563 -0.023 255.97 99.75- 139.75 65 94 3316 24.1012 14.9B3 15.003 -0.020 4095 32.0881 340.79 77.94- 117.94 81 43 15.330 15.350 -0.020 5321 32.2278 342.27 46.79- 86.79 105.61 16.010 16.033 -0.023 6714 30.1293 319.99 86.38- 126.38 133 51 Average of Peak Concentrations -273 27

ft

$$MfS \quad C(JI)$$
$$0 > VLO F$$

 $Q_k r \&''^* < *^* *$ 

00105

J '

Data File: \chem\hpl.i\8082r0917.b\E2989952.D Report Date: 26-Sep-2002 14:51

QC Flag Legend

- M Compound response manually integrated.H Operator selected an alternate compound hit.



Friend Inc.

Data File: /chem/hpl.i/8082r0917.b/E2989952.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec Sample Info: L94538-8 Misc Info: WG32900,02-004 Analysis Date: 26-SEP-2002 11:46 Sample Matrix: SOIL File Number: 9952

Dilution	Factor	10.0000
Sample	Weight	10.9232
Final	Volume	10.0000
Total	Solid	86.2000

Analytes (ug/Kg)

Analyst: CPW Report Date: 09/26/2002 14:51

Supervisor: Date:

Thru-Put Systems, Inc

Data file : \chem\hp3.i\1254FCONFIRMa.b\E3956220.D Lab Smp Id L94538-8 Client Smp ID: L94538-8 Inj Date 26-SEP-2002 13:26 Operator CPW Inst ID: hp3-i Smp Info L94538-8 Misc Info CONFIRMATION Comment \chem\hp3.i\1254FCONFIRMa.b\8082_PCBsec.M Method Meth Date26-Sep-200214:54AdministraQuantType:ESTDCal Date25-SEP-200209:08Cal File:E39561 Cal File: E3956172.D Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: 1254.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000 Name Value Description 10.000 Dilution Factor DFVf 10.000 Final volume 10.923 Ws Weight of sample extracted (g! 0.100 Unit Correction Factor Uf 86.200 Total Solid Τs

				CONCENTRA	ATIONS			
				ON-COL	FINAL			
RT I	EXP RT	DLT RT	CONCENTRATIONS ON-COL FINAL RESPONSE { ug/L} (ug/Kg) TARGET RANGE RATIO ene CAS #: 418831 72.1875 766.66 CAS #: 11097-69-1 3971 13.7039 145-54 80.00- 120.00 100.00 6365 13.2261 140.47 152.01- 192.01 160.29 5407 13-3275 141.54 129.84- 169.84 136.10 5435 24.1016 255.97 60.29- 100.29 136.8° 8895 22.2204 235.99 120.35- 160.35 224.00 of Peak Concentrations < 183.90 Pl CAS #: 338550 75 8453 605 51	RATIO				
S 1 Te	trachlo	ro-m-xylene	2		CAS #:			
9.693	9.717	-0.024	418831	72.1875	766.66			
25 Ar	oclor-1	254			CAS #:	11097-69	-1	
14.577	14.597	-002 0	3971	13.7039	145-54	80.00-	120.00	100.00
15.100	15.123	-0023	6365	13.2261	140.47	152.01-	192.01	160.29
15.907	15.927	-0020	5407	13-3275	141.54	129.84-	169.84	136.16
16.267	16.290	-0.023	5435	24.1016	255.97	60.29-	100.29	136.87
16.810	16.837	-0.027	8895	22.2204	235.99	120.35-	160.35	224.00
		Average of	Peak Concentr	ations «	183.90			
\$ 29 D	ecachlo	robiphenyl			CAS #:	:		
21.303	21.327	-0.024	338550	75.8453	605.51			(R)

Data File: <u>\chem\hp3.i\1254FCONFIRMa.b\E3956220.D</u> Report Date: <u>26-Sep-2002</u> 15:02

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Data File: •'chem/hp3.i/1254FCONFIRHa.b/E3956220,D Date : 26-SEP-2002 13:26 Client ID: L94538-8 Sample Infoi L94538-8 Volume Injected (ul_): 2.0 Column phase! RTX-CLPesticides 1

Instrument! hpS.i

Operator: CPU Column diameter: 0.32



#### Friend Inc.

Data File: /chem/hp3.i/1254FCONFIRMa.b/E3956220.D Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94538-8 Misc Info: CONFIRMATION Analysis Date: 26-SEP-2002 13:26 Sample Matrix: SOIL File Number: 6220

Dilution	Factor	10.0000
Sample	Weight	10-9232
Final	Volume	10.0000
Total	Solid	86.2000

Analytes (ug/Kg)

Aroclor-1254	183.90
Tetrachloro-m-xylene	144.37%
Decachlorobiphenyl	151.69%

Analyst: CPW Report Date: 09/26/2002 15:02

Supervisor: Date:

							UG/L IN	CRDL
pl/12/02	RTX-CLPE	ST 1	pc	ON COLM	N	$\mathbb{D}$ L	WATER	(UG/L)
Instrument#3	Run#l	Run #2	Run #3	Average	SD	SD*6.95	IDL	
PCB 1016	99.14	100.48	98.05	99.22	1.21	8.44	0.1	1.0
PCB 1221	200.36	193.87	196.82	197.02	3.25	22.6	0.2	2.0
PCB 1232	97.97	96.72	99.17	97.95	1.22	8.51	0.1	1.0
PCB 1242	99.14	100.08	101.34	100.19	1.10	7.67	0.1	1.0
PCB 1248	101.82	101.01	99.76	100.86	1.04	7.22	0.1	1.0
PCB 1254	99.63	100.10	99.13	99.62	0.487	3.39	0.1	1.0
PCB 1260	100.74	100.76	101.10	100.87	0.199	1.39	0.1	1.0

							UG/L IN	CRDL
01/12/02	RTX-CLPES	ST 2	P	G ON COLUM	N	IDL	WATER	(UG/L)
Instrument#3	Run#l	Run #2	Run #3	Average	SD	SD*6.95	IDL	
PCB 1016	106.01	105.20	106.90	106.04	0.850	5.91	0.1	1.0
PCB 1221	202.83	203.02	204.03	203.29	0.642	4.46	0.1	2.0
PCB 1232	105.99	105.07	104.41	105.16	0.796	5.53	0.1	1.0
PCB 1242	104.27	105.07	108.17	105.84	2.06	14.3	0.1	1.0
PCB 1248	101.79	101.90	101.19	101.63	0.379	2.64	0.1	1.0
PCB 1254	101.02	103.64	105.02	103.23	2.03	14.1	0.1	1.0
PCB 1260	102.25	102.84	103.11	102.74	0.437	3.04	0.1	1.0

PESTICIDE ORGANICS ANALYSIS DATA SHEET

L94363-2 Lab Name: Contract: Lab Code: Case No.: SAS No.: SDG No.: AAA923 Matrix -. (soil /water) SOIL Lab Sample ID: L94363-2 Sample wt/vol: 10.8 (g/mL) G Lab File ID: E2989923 % Moisture: -£-/<?• 6= decanted: (Y/N) N Date Received: 09/23/2 Extraction: (SepF/Cont/Sonc) SONC Date Extracted:09/24/2 Concentrated Extract Volume: <u>iOOoo</u> (uL) Date Analyzed: 09/25/2 Injection Volume: 2.0 (uL) Dilution Factor: 10.0 GPC Cleanup: (Y/N) N pH: 7.0 Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 

12674-11-2       Aroclor-1016         1104-28-2       Aroclor-1221         11141-16-5       Aroclor-1232	// O 0;11" U •JJiO UT'Z.3
11141-16-3       Aroclor-1232         53469-21-9       Aroclor-1242         11097-69-1       Aroclor-1254         11096-82-5       Aroclor-1260	<i>no</i> Q-^ri 1549.70 <i>/to</i> 0.11
Aroclor-1248	no 0.11. <b>u</b>

/CAP^/DD-



**Organic Extractions** 

#

NotebooK:

:

jmm

Extracted By: <u>^V&</u> Date Extracted: %&fflSM<ya&\$i&£

Analysis:

# Patie: I3g«I' WG#^22L^S sur. Rf.: mmmmmmm •

	- <u>1</u>			<u> </u>	/·	<u>.</u>						
I.U.		imer	Int. Size	F <u>IA. V</u>		sr. Amt	SPK Amt	Bottle #	pH 5-9	Emuision	TClean-u	<u>b</u> ;
A CAN	-		10, 7200	10m	-+	112.		╏╍╌╴╸	<u> </u>	+	$\frac{1}{1}$	
MC 84 ach	<u>6641</u>		10.005	┼╌╂	╌╌╄	-+-	1 1 Darks	<u>}</u>	<b></b>	+	120	ž
4.4.1.2	**		10.0471	$\frac{1}{1}$		╶╴╂╌╴	1 magaze	1			+40-	
	49	1	11 718	-+	_		I NET	an Protein	1	1		
-3	251		10 2470	51-1					1		1	-
1943/01		J	10.455	7								
1294103	1		10.7180	2							1,2	2
4270	4		10.215	5					1			
	<u>لم الم</u>	15	10,209	24-4		<u> </u>	<b>\\</b>		┥	_ <u>_</u>		
	31	J.	10.060	2	<b> </b> -	- <u> </u>	<u></u>		-			
L- 4.564	<u>)-9</u>		10.24	Z -		+	╂┼───		-		╧╂╾╼┨	┡
	-4.1	<del>`</del> K-	10.63	25	┝		-{{				┯╋┷╾╵	ł
19421	2.24		10 50		<b> </b>		╌╉╁╼╌╌╴					ł
h ou	5-2 10	AN Cong	1 10.17	<u>70</u> 30			╶╂┼╌╌╌			<del></del>		+
			1/4 70	-118	┝──				╧╋┲╼╼		╼╍┨╌╌╴	
	Ĩ	-+	40.7	849		-	━╋┼───					-
	-10		10.05	741	1	÷						
[	-12		10.04	175	1		. Lit		·			$\overline{\mathbf{x}}$
	•				· · · ·				<i>8</i> 1		;	
l	Ì	-		· 1			ļ			. 1	1	_

Extracts Relinquished to:_

<u></u>

Clean-up Methods:1. 3665 H₂S0₄ .2. 3620A fiorisil. 3. 3660A Hg ommerrts:

Cot

283677 R.21 9/25

00256

Organic Extractions

Notebook:	025046
Extracted By:	KTB.
Date Extracte	d: <b>9/2</b> 5/02.
Analysis:	Const pels
Matrix:	Sontes / 2550

### PageUp. wa<u>*<WXj</u> sur. R«.:<u>mm&mmmBm</u>

<u>R^mmmmmm</u> sp^e

·	<u>,</u>	<u> </u>	<u> </u>	ئىنە		1		<del>,</del>	,	<del> </del>
I.D.	Customer	Int. Size	Fin.	Vol	Sr. An	t Spk Am	Bottle #	pH 5-9	Emulsion	Clean-ups
MB87		10.037	10	m	Incl			· · · · · · · · · · · · · · · · · · ·		1123
alsi		10.0993	<u> </u>			Mal			<u> </u>	$\left( \begin{array}{c} \cdot \\ \cdot \end{array} \right)$
L94588-1	AAA Env	10.3664								
2		10.9291	·							
		10.708				<b>图</b> 影》是	NS074.			
		12/6 1/45	5			1至72	Bi.			
-5	· · · · ·	10.9749	1	Γ	$\overline{1}$	Ţ	T .	· ·		
-6 :		10.6819				1	1			
-7 -		10.2306	<u> </u>	<b>1</b>				1	1.	<u>,                                     </u>
-8		10.9732			1-1	1	1		1	
	<b>*</b>	1	ļ	1		:	· ·		1	1
		1	<b>[</b>		1		1	[		•
			<u> </u>		ţ		1		1	1
		1	†				+	•		†
	<u></u> -	· · ·			<u> </u>		1		<u></u>	<u> </u>
	<b> </b>	┼╌╌╌──					1	t	<u>†</u>	1
· · · · · · · · · · · · · · · · · · ·	[	· · ·	<u>+</u>		1		+	{	+	1
		1			╞┍╌	+	1	}	+	<u> </u>
	<b> </b>	<u>+</u>					+	<del> </del>		
	<u>├</u> ─────	- <u> </u>	┟┈┈		1		1	<u> </u>	<del> </del>	
	<u> </u>	+	<u> </u>				<u>}</u>	*		┉┼━╼━━━━
┝╼╾╧╺╶╌╸	<u> </u>	+	┼──		+	┽╌╌╌╴	+	╉┯╍┯		+
	<u> </u>		┼		+	-+	<u>+</u>		+	
· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u>†</u>		<del> </del>			╉╼╾┶╧╾╼╾╸	┨╌╌╌╌	┽╌╌╌╌
· · ·		+	+		<u> </u>		╶╋╼╌╾╼╸	╉╼╼╼╼	+	┢╾╍╼╼╼
L	<u>للے میں م</u>	4,	1		<u> </u>			<u></u>		

Extracts Relinquished to:,

Clean-up Methods: 1. 3665 H₂S0₄. 2. 3620A florisil. 3. 3660AHg Comments:

4-<-( 00257 r^df

V	WET CHEMISTRY TOTAL SOLIDS N
Notebook : 02-066 Start Date : 24-SEP-02 16:41 End Date : 24-SEP-02 16:41 $\leftarrow$	»•= «.n.? g Sag K
ComfliefttS t Start:24-SEP-02 16:41 CLP 3.0" Stop :24-SEP-02 16:41	ir~r2B2TT0541 JT332T
Converts Start!24-SEP'-62 14:41aVS.U' ' Stop :24-SEP*02 16:41 Cwwwnte t	-u—\$:mr i.sw ^ w''
mmi'Astert:24-SEP-b2 14:*1 \ CtP'i.O" ' Stop :24-SEP-02 16:41	Mijwayuu'i';W""
***** * \$\a<\f j^MW^f'' Start:24-SEP>02 16:41 "CLP 3.0" Stop :24-SEP-D2 16:41	1—£W "1.24^8 *^Htt ^{I,W} • c r





- / DqbT ^ Manager Signature

t? T Date

Notebook : Start Date End Date "-"' Sample 3*0.	02-066 : 25-SEP-02 20:01 : 25-SEP-02 20:01 Analysis Date Time	Aflst taftt	Hethod	DisH#	V*b*» («tft)	initial <• Ueight	tettfttil 3rdN : IfeHftt-Wei	∕lth 5th*6th ight ifcfgkt	7th&8th Weight	*M0tfc Weight.	Final Result	Hpd	Unlta
mm-'i "	Start:2S-SEP-6a 26:01 Stop :25-SEP-02 20:01	'-" "dP	3.0"							Ŧ	#'.*''	or	
ConWAtft t						4 0 40*				(	67.5		
WW3&-4	Start:25-SEP-02 20:61 Stop :25-SEP-02 20:01	CLP	3.0	1	5.4&*	1.249*	1Mb				01.0		
Comments t										5 7	۲ <i>4</i>		k
t » 538 » & - Comnents ;	Starti25-SEP-02 20:01 Stop :25-SEP-02 20:01	"CLP 	3.0	"5 <u></u> S	5-fi&Si	' 1.2434	OIsT*				. 4 ~		ĸ
t W S M "''" Domttents t	StBrt:2i>-SEP-62 26:01 Stop i25*SEP-02 20i01	' 'aı	⊃ O	6 ' 3	S'K^y"'	"1.24oa	S'»jflr"			1	ww—'	':	X
rott'-y	.start:2S-SEP-62 26:61 Stop :25-SEP'Q2 20:01	' CtP	!*. <i "<="" th=""><th>(</th><th>ow 12</th><th>223 raw</th><th>′V</th><th></th><th></th><th>"' ;</th><th>a'6.7</th><th></th><th>1</th></i>	(	ow 12	223 raw	′V			"' ;	a'6.7		1
IW5&-&' ""	Start;2S-SEP-62 200l Stop ;25-SEP-02 20:01	' '" QP	4.6	1\$	5;260!	I.ZStt	HMf"			^••';" [,] 8	36.2'		
863 <u>2</u> 6604' ' ' ,-/-	stert;25-SEP^0Z 26:oi Stop ;25-SEP*02 20:01	"- 'CLP ' _h	4.0	TL	_zASA'	i.z*ai	1 - 4 4 W			1	:ot6i"	w;	-k"
				-2—5	S'JBW	t.atte	\$:m"						

- \ "Stop :25-SEP*02 20t01 *

Calculations:

ns: Final Results = (fnl - initial) x 1000000 wgt ugt

.mis of sample

/i.k /^Analyst Signature—

Vbatf

Manager Signature

Date







#### **Data Validation Report**

SDG#	94081
Validation Report Date	April 28, 2003
Validation Guidance	USEPA Region 2 Guidelines for Data Review SW 846 Method 8082
Client Name	Cummings-Riter
Project Name	Viacom/Horseheads
Laboratory	Friend Laboratory Inc.
Method(s) Utilized	SW 846 8082
Analytical Fraction	PCBs

Samples/Matrix:

Date Sampled	Sample ID	Laboratory ID	PCBs	Matrix
9/16/02	A-B-SS-B-001	94081-1	Х	Solid
9/16/02	A-B-S-W-001	94081-4	Х	Solid
9/16/02	A-B-SS-W-001	94081-5	Х	Solid
9/16/02	A-B-S-E-001	94081-6	Х	Solid
9/16/02	A-B-SS-E-001	94081-7	Х	Solid

Analytical data in this report were screened to determine analytical limitations of the data based on specific quality control criteria. This screening assumes analytical results are correct as reported and merely provides an interpretation of the reported quality control results. A minimum of 10% of laboratory calculations has been verified as part of this validation. Specific findings on analytical limitations are presented in this report. Annotated Form Is or spreadsheets for samples reviewed are included after the Data Assessment Findings. Form Is for the MS/MSD samples and spreadsheets are not annotated.

#### SUMMARY

The sample set for Viacom/Horsehead consists of five solid field samples. These samples were analyzed for the parameters as provided above. The findings presented in this review of the analytical data assume that the information presented by the analytical laboratory is correct. This review is identified as a false positive/false negative review, and therefore, does not include the review of some quality control (QC) items. Those included in the review are listed below.

The polychlorinated biphenyl (PCBs) findings are based upon the assessment of the following:

#### False Positives/False Negatives Validation

- * Data Completeness
- * Holding Times
- Calibration and GC Performance
- * Blanks

*

*

*

- * Analytical Sequence Check
  - Target Compound Identification
    - Compound Quantitation and Reported Detection Limits
    - Chromatogram Quality

* Criteria were met for this evaluation item.

This evaluation was conducted in accordance with USEPA Region II SOP No. HW-23B (May 2002), USEPA CLP National Functional Guidelines for Organic Data Review and the analytical method. Findings from this evaluation should be considered when using the analytical data. This report presents a summary of the data qualifications based on the review of the aforementioned evaluation criteria. This is followed by annotated Form Is/ spreadsheets. Finally, the worksheets used to perform the evaluation are provided.

#### **FINDINGS**

#### **Polychlorinated Biphenyls (PCBs)**

#### 1. Compound Quantitation

The percent difference between columns exceeded the 25% quality control limit. For the following samples and compounds, qualify PCB results as indicated in the table below. Samples were qualified based on SOP HW-23, Section 12.6.

Sample	Compound	% Difference	Qualifier
A-B-SS-E-001	Aroclor 1254	27.1%	J
A-B-SS-W-001	Aroclor 1254	29.4%	J

#### **NOTES**

#### **Polychlorinated Biphenyls (PCBs)**

#### **Completeness**

The USEPA Region II SOP No. HW-23B has the following sections that are not applicable to this project because it is a false positive/false negative review:

- Surrogate Recovery (Form 2)
- Laboratory Control Sample
- Matrix Spikes (Form 3)
- Contamination
- GC Apparatus and Materials
- Extraction Techniques for Sample Preparation
- Field Duplicates

The cooler temperature upon receipt at the laboratory was 1 C. Data are not qualified upon this basis.

#### **Calibration**

The laboratory used linear regression to calculate PCB results. The use of linear regression is permissible for SW-846 methodologies. The laboratory met the acceptance criteria specified in Section 7.5.2 of Method 8000B (r value greater than or equal to 0.99).

Data summary forms (including calibration factors) for the initial and continuing calibration is not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the calibration factor information. Because Aroclor 1254 was identified as a constituent of concern, the data summary information for the second column is provided for the continuing calibration. Data are not qualified on this basis.

The percent difference (%D) per peak for multi-standard Aroclors are provided. For SW 846, the laboratory used the average Aroclor concentration to determine the %D. Data are not qualified because the average value is used.

The percent difference (%D) for calibration standards (first column) Aroclor 1260 (9/18/02 18:15) 21.2% and Aroclor 1260 (9/18/02 22:55) 18.8% were greater than the control limit of 15%. These standards were not associated with any project samples. Data are not qualified on this basis. The percent difference (%D) for calibration standard (second column) Aroclor 1254 (9/19/02 19:10) 15.6% was greater than the control limit of 15%. Since second column is not used for quantitation, data are not qualified.

#### **Retention Time**

Retention time windows are not determined by the use of three standards for single standard calibration Aroclors. The center of the retention time window is defined as the retention time of the midpoint standard from the initial calibration. For the multi-standard calibration Aroclors, the center of the retention time window is the mean of the retention time generated from each standard. The retention time windows are the mean + 0.1 minutes. Data are not qualified on this basis.

Retention time windows are not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the retention time window information. Because Aroclor 1254 was identified as a constituent of concern, the retention time information for the second column is provided. Data are not qualified on this basis.

#### **Compound Quantitation**

Samples were analyzed and reported at a dilution due to the presence of target compounds. Dilutions for samples are presented below. Reporting limits were adjusted for percent solids and dilutions.

A-B-SS-B-001, A-B-S-W-001,	lOx
A-B-SS-W-001, A-B-S-E-001	
A-B-SS-E-001	50x

Data Reviewer

& ' / < • • Date

#### **Glossary of Data Qualifiers**

Not Detected.	The associated number indicates approximate sample
	concentration necessary to be detected.
Not Detected.	Quantitation limit may be inaccurate or imprecise.
Analyte Present.	Reported value may not be accurate or precise.
Consider Present.	Tentative identification. Special methods may be needed to
	confirm its presence or absence in future sampling efforts.
Unusable Result.	Analyte may or may not be present in the sample.
Unusable Result.	Analyte may or may not be present in the sample.
	Not Detected. Not Detected. Analyte Present. Consider Present. Unusable Result. Unusable Result.

^****/^

•

٠

ECT.CON INC.

^{^^}f I [^] [^] A [^] Environmental and Computer I Technology Consultants

# Annotated Form 1's (Spreadsheet)



#

«

32 ITHACA STREET TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:19-SEP-2002

Lab Sample ID: L94081-1

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VIACOH/HORSE HEADS #19208 Origin: A-B-SS-B-OOI Description: COMPOSITE sampled..On: 16-SEP-02 16:45 by CLIENT Date Received: 17-SEP-02 09:18 P.'OVNO: N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	79.2			17-SEP-02 00:00	CLP 3.0	02-066-73
EPA 8082						
PCB       1016         PCS       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	ս Ա Ա Ա 98 Մ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	63 130 63 63 63 63 63 63	19-SEP-02 13:53 19-SEP-02 13:53 19-SEP-02 13:53 19-SEP-02 13:53 19-SEP-02 13:53 19-SEP-02 13:53 19-SEP-02 13:53	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-988 02-004-988 02-004-988 02-004-983 02-004-988 02-004-988
Extraction Information:				17-SEP-02 00:00	EPA 3550	02-044-82
Surrogate Recovery: Tetrachloro-m-xylene <b>Déag<u>chT</u>p</b> robi phenyI	78 94					02-004-988 02-004-968

Results calculated on a dry weight basis.

Approved by; Lab Director

Page 1 of 1 NY 10252 HJ 73168 PA 68180 EPA NY 00033

ac <u>/ / /</u>

 KEY: HO of U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/L
 = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million)

 = analyte was detected in the method or trip blank
 J
 = result estimated below the quantitation limit

K rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost K se services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083



Lab Sample ID: L94081-4

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VACOMHORSEHEADS #19208 Origin: A-B-S-U-OOI \; inscription: COMPOSITE •••^^Sampled On: 16-SEP-02 16:20 by CLIENT Date-'Received: 17-SEP-02 09:ia ^MA-- P.O. No: N/A

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	68.6			17-SEP-02 00:00	CLP 3.0	02-066-73
EPA 8082						
PCB       1016         PCS       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	Ա Ա Ա Ա Ա <b>480</b> Մ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	71 140 71 71 71 71 71 71 71	19-SEP-02 14:24 19-SEP-02 14:24 19-SEP-02 14:24 19-SEP-02 14:24 19-SEP-02 14:24 19-SEP-02 14:24 19-SEP-02 14:24	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-9885 02-004-9885 02-004-9885 02-004-9885 02-004-9885 02-004-9885 02-004-9885
Extraction Information:				17-SEP-02 00:00	EPA 3550	02-044-82
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobiphenyl	81. 90	X X				02-004-988 02-0004*0389



Results calculated on a dry weight basis.

Approved byr Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

QC: <

 KEY: ND
 U = None Detected
 < = less than</td>
 ug/L = micrograms per liter (equivalent to parts per billion)

 mg/L
 = mitligram per liter (equivalent to parts per million)
 mg/kg = miUigrams per kilogram (equivalent to parts per mUlion)

 w analyte was detected in the method or trip blank
 J
 = result estimated below the quantitation limit

.rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed. ^O^BRle services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:19-SEP-2002

Lab Sample ID: L94081-5

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VACCWHORSEHEADS #19208 Origin: A-B.-SS/W-QOI Description: COMPOSITE: Sampled On: 16/SEP;.02,16:35 by CLIENT Date Received: .177SEPT02.-09:18 P.O. Np:.:vi/k-^?%)'••'••'

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	88.9			17-SEP-02 00:00	CLP 3.0	02-066-73
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	u u u 580 v 580	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	되 100 되 되 되 되 되	19-SEP-02 14:55 19-SEP-02 14:55 19-SEP-02 14:55 19-SEP-02 14:55 19-SEP-02 14:55 19-SEP-02 14:55 19-SEP-02 14:55 19-SEP-02 14:55	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004 -9686 02-004 9886 02-004 -9886 02-004 -9886 02-004 •9886 02-004 •9886 02-004 •9886
Extraction Information:				17-SEP-02 00:00	EPA 3550	02-044-82
Surrogate Recovery: Tetrachloro-m-xylene Deamybtorobiphenyl	72 88					02-004-9886 02-004-9886

Results calculated on a dry weight basis.

Page 1 of 1 Approved by NY 10252 NJ 73168 PA 68180 EPA NY 00033 Lab Director KEY: NO Q U = None Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion) = milligram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) ms/Ĺ = analyte was detected in the method or trip blank J = result estimated below the quantitation limit

rmation in this report is accurate to the best of our knowledge and ability, in no event shall our liability exceed the cost ^^ff^^Besse services. Your samples will be discarded after 14 days unless we are advised otherwise.



WAVERLY, NY 14892-1532 FAX (607) 565V4083

Date:19-SEP-2002



Lab Sample ID: L94081-6

AAA Environmental Peter Porter 667 9 Moore Road Syracuse, NY 13211 Sample Source: VIACOM/HORSEHEADS #19208 Origin: A-B-S-E-001 Description: COMPOSITE Sampled On: 16-SEP-02 17:10 by CLIENT Date Received: 17-SEP-02 09:18 P.O. No: N/A

		1.	Detection	Date		Notebook
Analysis Performed	Result	Units	Limit	Analyzed	Method	Reference
Total Solids	68.7	x		17-SED-02 00.00	CT.P. 3. 0	02-066-73
	,	21		1, 551 02 00:00		02 000 75
EPA 8032						
PCB 1016	π	ua/ka	68	19-SEP-02 11:48	EPA 8082	02-004-9880
PCB 1221	U	ug/kg	140	19-SEP-02 11:48	EPA 8082	02-004-9880
PCB 1232	Ŭ	ug/kg	68	19-SEP-02 11:48	EPA 8082	02-004-9880
PCB 1242	Ū	ug/kg	68	19-SEP-02 11:48	EPA 8082	02-004-9880
PCB 1248	Ū	ug/kg	68	19-SEP-02 11:48	EPA 6082	02-004-9880
PCB 1254	2200	ug/kg	68	19-SEP-02 11:48	EPA 8082	02-004-9880
PCB 1260	U	ug/kg	68	19-SEP-02 11:48	EPA 8032	02-004-9880
Extraction Information:				17-SEP-02 00:00	EPA 3550	02-044-82
Surrogate Recovery:						
TetrachIoro-m-xylene	68	х				02-004-9880
De <u>cac</u> hIorobiphenyl	85	%				02-004-9880

Results calculated on a dry weight basis.

Page 1 of 1 NY 102S2 HJ 73168 PA 68180 EPA NY 00033 Approved by Lab Director KEY: ND 😋 **U** = None Detected < = less than ug/L = micrograms per liter (equivalent to parts per billion) mg/**(** = miUigram per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) = analyte was detected in the method or trip blank J = result estimated below the quantitation limit

rmation in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceet^^^Bost

se services. Your samples will be discarded after 14 days unless we are advised otherwise.

WAVERLY, NY 14692-1532 665-3500 PAX (607) 565-4083

LABORATORY

W^Sb Sample ID: L94081-7

AAA Environmental Peter Porter 6679 Moore Road Syracuse, NY 13211 Sample Source: VACOMHORSEHEADS #19208 Origin: A-B-SS-E-OOI Description: composite Sampled On: 16-sep-02 17:05 by CU|Nt; Date Received: 17-sep-02 09:18 P.O.NO: N/A

Date:20-SEP-2002

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	72.4			17-SEP-02 00:00	CLP 3.0	02-066-73
EPA 8082						
PCB       1016         PCB       1221         PCB       1232         PCB       1242         PCB       1248         PCB       1254         PCB       1260	U U U 13000 <b>rT</b> U	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 670 330 330 330 330 330 330	19-SEP-02 17:31 19-SEP-02 17:31 19-SEP-02 17:31 19-SEP-02 17:31 19-SEP-02 17:31 19-SEP-02 17:31 19-SEP-02 17:31	EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082 EPA 8082	02-004-9891 02-004-9891 02-004-9891 02-004-9891 02-004-9891 02-004-9891 02-004-9891
Extraction Information:				17-SEP-02 00:00	EPA 3550	02-044-82
Surrogate Recovery: Tetrachloro-m-xylene Decachlorobi phenyl	95 NO					02-004-9891 02-004-9891

»

Results calculated on a dry weight basis.

Approved by Lab Director

Page 1 of 1 NY 10252 NJ 73168 PA 68180 EPA NY 00033

tion in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost ervices. Your samples will be discarded after 14 days unless we are advised otherwise.

 $^{\rm L/r}$  ect.con inc.

• #

 I
 I
 Environmental and Computer

 I
 Technology Consultants

# Support Documentation

4 ^

CUSTOK^Hp^E /		CHAIN OF IT	ODY RECORD	P A G E ^ ^ ^ _
T7 T T J? JL^ J. <u>f R I E H~Ij</u> LABORATORY	ONE RESEARCH CIRCLE WAVERLY NY 14892-1532 Telephone (607) 565 3500 _{Fax} <607) 565-4083	%	CLIENT: /IA^ £wvrfioNwe*JTAi_ ADDRESS: 0H - S x T g ^ T i j ^ y e? ¹ I ^ J V T S PHONE: FAX:	INVOICE TO: ADDRESS:
Sample Site:, sj^ O 7k-	^{b*t/fw<seh &<?\$<="" sup=""> 0 J€CT</seh>}		PROJECT NO. / NAME	COPY TO: ADDRESS:
P.O. # DATE & TIME OF		• Q U O  ac   < ((/> NUMBER OF CONTAINEDS		লেলেম 1 • ০০'০০।।।MRER
fo-2.	SAWFLE DESCRIPTION	*	po6^ ^' ^J S°x:<-	
		Description: Grab < <u>£omposita)</u> Other Matrix: DW WW MW Soil Air Other	- )	>-3.1=3
	£ a **(«>*** 4- Sort- 5A*^"*-S-	X	pCS'S x^ ^> ^G ^(-	f
		Description: Grab <u>CComposit^</u> Other Matrix: DW WW MW Soil Air Other		
		*	PCS'5 or ^{^ ^a} -	•
		Description: Grab ( <u>£ompositeX</u> )ther Matrix: DW WW MW Soil Air Other		5
	**A - " e » - S - £ - o o v A «f0e-</td <td>*</td> <td>fC-S'S *•* Sost-</td> <td>C.</td>	*	fC-S'S *•* Sost-	C.
		Description: Grab <u>fISTmppsite</u> ^Qther Matrix: DW WW MW Soil Air Other I I I I 1 1 T I I j		t>
RELINQUISHED BY		ACCEPTED BY	DATE/TIME NOTE	S TO LABORATORY
A < • -	& & — <u>HJ17/0-2-</u>	ni) haiff	W , w	
	ليلمي الم		SUSPECTED CONTA	MINATION LEVEL

## CHAIN OF (%TODY RECORD

PAGE

CUSTOMER A ^ E#



Laboratory Case Narrative



#### -Laboratory Validation and Usability Assessment

#### Project: AAA Environmental Viacom/Horseheads 19208 Sampled September 16, 2002

The data reported in this package have been reviewed for compliance with QC acceptance limits as specified in the method cited for each analysis.

These statistical limits are typically based on historical laboratory data for a given sample matrix, and will not exceed any default limits specified by the method. CLP acceptance limits are also considered.

The following Quality Control operations are considered in the validation of reported results:

Holding times, surrogate recovery, spiked sample recovery, duplicates/spiked duplicate precision, tuning criteria, internal standard variation, continuing calibration variation, reference (check) sample recovery, and instrument, method, trip and field blanks. The appropriate frequency for each operation is also considered.

Every effort has been made to report data that is compliant with the EPA methodology cited for each analysis. In cases where the laboratory was unable to meet all method requirements prior to sample expiry, either due to the nature of the sample or other technical difficulty, results are reported with qualification with the understanding that qualified results may not be suitable for compliance purposes. The internal technical review is based on the USEPA Contract Laboratory Program *National Functional Guidelines for Organic Review* (EPA 540/R-94/012, February 1994) and *National Functional Functional Guidelines for Inorganic Review* (EPA 540/R-94/013, February 1994).

#### Validation

Five site samples and a matrix spike/matrix spike duplicate set were received on September 17, 2002, with ice. The temperature, as received, was 1°C.

#### PCB

Site samples were analyzed by EPA method 8082 for PCBs with a two-microliter injection volume.

RTX-CLPesticides 1 and RTX-CLPesticides 2 capillary columns, 0.32 mm ID, with purge packed inlets and electronic pressure control are used on an Hewlett-Packard 5890 series II with dual ECD and an HP 7673 autosampler with simultaneous injection. Data is collected with HP Chemstation software and processed by Thruput with Target software. If a peak is detected within the retention time window of a target compound, secondcolumn confirmation is performed. Column RTX-CLPesticides 2 was used for the primary analysis. Column RTX-CLPesticides 1 was used to confirm only the fingerprint, not the quantitation. Form 10B's are provided in order to verify pattern recognition.

PCB 1254 was detected in each of the site samples. Second-column analysis confirmed the presence of these targets. No PCBs were detected in the method blank.

Surrogate recoveries were within limits for the site samples.

Site sample A-B-SS-B-001 was spiked in duplicate. Recoveries were above the acceptance limits for the MS, within limits for PCB 1260 in the MSD, and below the limit for PCB 1016 in the MSD. Since the MSD also had low surrogate recoveries, an extraction error isolated to the MSD is suspected. Results for site sample A-B-SS-B-001 should be considered as estimated.

Precision as indicated by RPD was above the acceptance limits. Since the results for site sample A-B-SS-B-001 had already been qualified due to the matrix spike recovery, no further qualification was made.

One blank spike was associated with the site samples. Blank spike recoveries were within the acceptance limits.

No other analytical difficulties were encountered.

#### **Usability Assessment**

All reported data were found to be valid and usable within the EPA National Functional Validation guidelines except those that were gualified in this Laboratory Validation.

Laboratory validation and	
Usability assessment conducted by:	<u>C&amp;A^Ji&amp;tk</u>

Date: October 9, 2002

/LK&ZJFC

Elizabeth A. Keator Quality Assurance

# Worksheets

»

«

.

.



STANDARD OPERATING PROCEDURE

Date: May, 2002 SOP HW-23B, Rev.1.0

JЬ

1^1

#-£>-*\$-\$- <=*⇒] ^atfl -1, *, 5.

#### PACKAGE COMPLETENESS AND DELIVERABLES

CASE NUMBER:  $\land C > 91$  SDG# ? V ^ O '

LAB: <u>YTi'pAA ^IrscV^ T^^X J inC</u> SITE: <u>\li*6i Sofa l£pS&>&&a/s</u>.

- 1.0 Data Completeness and Deliverables
  - 1.1 Has all the data been submitted in CLP deliverable format?
  - 1.2 Have any missing deliverables been received and added to the data package?
  - ACTION: Call lab for explanation/resubmittal of any missing deliverables. If lab cannot provide them, note the effect on review of the data in the reviewer narrative.

2.0 Cover Letter, SDG Narrative

- 2.1 Is a laboratory narrative or cover letter present?
- 2.2 Are the case number and/or SDG number contained in the narrative or cover letter?

#### ³-• Data Validation Checklist

3.1 Does this data package contain:

Water data?

Waste data?

Soil/solid data?


USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.

rvf

YES NO N/A

idT

/VscJ.*er T3?>*-p '

 $\mathbf{x} \mathbf{l}$ 

 $ctlnlt > '^-m$ 

'//W^i

 $\langle 0 \rangle$ 

#### POLYCHLORINATED BIPHEMYLS

#### 1.0 Traffic Reports and Laboratory Narrative

Are traffic report and chain-of-custody forms 1.1 present for all samples?

- ACTION: If no, contact lab for replacement of missing or illegible copies.
- Do the traffic reports, chain-of-custody forms or 1.2 SDG narrative indicate any problems with sample receipt, condition of the samples, analytical problems or special circumstances affecting the quality of the data?
- ACTION: If any sample analyzed as a soil, other than TCLP, contains 50%-90% water, all data should be qualified as estimated, "J." If a soil sample, other than TCLP, contains more than 90% water, non detects shall be qualified as unusable, "R."
- ACTION: If samples were not iced or if the ice was melted upon arrival at the laboratory and the temperature of the cooler was elevated (> 10° C), flag all positive results
  "J" and all non-detects "UJ".

#### 2.0 Holding Times

Have any PCB technical 2.1 holding times, determined from date of collection to date of extraction, been exceeded?

Water and waste samples for PCB analysis must be extracted within *l* days of the date of collection. Extracts must be analyzed within 40 days of the date of extraction. Soils and solid samples must be extracted within 14 days of collection and Cd>llfieJ""&'/' 1 ||L<l£>'-" analyzed within 40 days of extraction.

ACTION: If technical holding times are exceeded, flag all \\XMj> positive results as estimated, "J," and sample quantitation limits "UJ" and document in the narrative that holding times were exceeded. AACU 7^./ If analyses were done more than 14 days beyond holding time, either on the first analysis or upon re-analysis, the reviewer must use

PA Region II 46 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1,0

YES NO N/A

۸

v/

v/

_L_L _J^_

J_J_ –AB–

professional judgement to determine the reliability of the data and the effects of additional storage on the sample results. At a minimum, all the data should at least be qualified "J", but the reviewer may determine that non-detects are unusable, "R."

³ - ^o Surrogate Recovery (Form II) 
$$fJIk A^{**} iAnji -f IJJL^{*} '^Uui^{-h}$$

- 3.1 Were the recoveries of tetrachloro-m-xylene (TCMX) and decachlorobiphenyl (DCB) presented on CLP Surrogate Recovery Summary forms (Form II), or equivalent, for each of the following matrices?
  - a. Water/Waste
  - b. Soil/Solid
- 3.2 Are all the PCB samples listed on the appropriate surrogate recovery form for each of the following matrices?
  - a. Water
  - b. Waste
  - c. Soil/Solid
- ACTION: Call lab for explanation/resubmittals. If missing deliverables are unavailable, document the effect in the data assessment.
- 3.3 Did the laboratory provide their developed in-house Surrogate recoveries?
- ACTION: If no, use 70 -130% recovery to qualify in section 3.4 below.
- 3.4 Were surrogate recoveries of TCMX or DCB outside of the laboratory-established upper (UCL) or lower (LCL) control limits for any sample or blank?
- ACTION: Circle all outliers in red.
- ACTION: No qualification is done if surrogates are diluted out. If recovery for both surrogates is

-PCB 3 -

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.

i L

JI

YES NO N/A

below the LCL, but above 10%, flag all results for that sample "J". If recovery is < 10% for either surrogate, qualify positive results "J" and flag non-detects "R". If recovery is above the UCL for <u>both</u> surrogates qualify positive values "J".

- Note: DCB is used when PCBs are determined as Aroclors. DCB is the internal standard when determining PCB congeners and TCMX the surrogate.
- 3.5 Were surrogate retention times (RT) within the windows established during the initial 5-point analysis?
- ACTION: If the RT limits are not met, the analysis may be qualified unusable (R) for that sample on the basis of professional judgement. However, flag positive hits as estimate (J) if confirmed by GC/MS analysis.
- 3.6 Are there any transcription/calculation errors between raw data and Form II?
- ACTION: If large errors exist, call lab for explanation/resubmittal. Make any necessary corrections and document the effect in data assessments.
- 4.0 Laboratory Control Sample Jj/l j2x XoXo*- t / *XtJk*- JJL  $0 \setminus Q_{*\wedge J}$ 
  - 4.1 Are raw data and percent recoveries present for all <u>Laboratory Control</u> samples as required by Method 8000B {section 8.5) and Method 8082 {section 8.4.2)?

Verify that QC check samples were extracted and analyzed by the same procedures used for the actual samples.

- ACTION: If any <u>Laboratory Control Sample</u> data are missing, call the lab for explanation /resubmittals. Make note in the data assessment.
- NOTE: For aqueous samples., an additional QC check sample must be prepared and analyzed when any analyte in a matrix spike fails the required acceptance criteria (see section 5.3 below). The additional QC check sample must contain each analyte that failed in the MS analysis.



USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.

for each of the following matrices? (One MS/Dup, MS/MSD must be performed for every 20 samples of similar matrix or concentration level. Laboratories analyzing one to ten samples per month are required to analyze at least one MS per month (Method 8000B-39 (section 8.5)).

a. Water

b. Waste

c. Soil/Solid

_L_L _1^

i /

- ACTION: If any MS/Dup or MS/MSD data are missing, take the action specified in 3.2 above.
- 5.4 Were the 70 130% recoveries used to compare the matrix spike recoveries, or did the lab use the optional QC acceptance criteria discussed in Method 8000B-40(section 8.5.3.1)?

List the criteria used and make note in data assessment.

Criteria used .

5.5 Was the matrix spike prepared at the proper spike concentration? (Method 8000B, section 8.5.1-8.5.2)

For aqueous organic extractable, the spike concentration should be prepared according options in: Method 8000B-40, (section 8.5.1 and 8.5.2).

ACTION: No action is taken based on MS or replicate data alone. However, using informed professional judgement, the data reviewer may use the matrix spike or laboratory replicate results in conjunction with other QC criteria and determine the need for some qualification of the data. In some instances it may be determined that only the replicate or spiked samples are affected. Alternatively, the data may suggest that the laboratory is having a systematic problem with one or more analytes, thereby affecting all associated samples.

EPA Region II 846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

- 6.1 Was reagent blank data reported on CLP equivalent Method Blank Summary form(s) (Form IV)?
- 6.2 Frequency of Analysis: Has a reagent blank been analyzed for every 20 (or less) samples of similar matrix or concentration or each extraction batch?
- ACTION: If any blank data are missing, take action as specified above (section 3.2) . If blank data is not available, reject (R) all associated positive data. However, using professional judgement, the data reviewer may substitute field blank data for missing method blank data.
- 6.3 Chromatography: review the blank raw data chromatograms, quant reports or data system printouts.

Is the chromatographic performance (baseline stability) for each instrument acceptable for PCBs?

- ACTION: Use professional judgement to determine the effect on the data.
- 7.0 Contamination
  - NOTE: "Water blanks", "distilled water blanks" and "drilling water blanks" are validated like any other sample and are <u>not</u> used to qualify the data. Do not confuse them with the other QC blanks discussed below.
  - 7.1 Do any method/instrument/reagent/cleanup blanks have positive results for PCBs? When applied as described below, the contaminant concentration in these blanks are multiplied by the sample Dilution Factor and corrected for % moisture when necessary.
  - 7.2 Do any field/rinse blanks have positive PCB results? \^k ^u-b^tb^U-oIX^-____-U-
  - ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)
  - NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data.



u

**A** -

**U** -

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.U

YES NO N/A

» /

_j_i ___

Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified for surrogate, or calibration QC problems.

ACTION: Follow the directions in the table below to qualify sample results due to contamination. Use the largest value from all the associated blanks.

Sample cone > EDL but < 5</th>Sample cone < EDL & is <<br/>5 x blankSample cone > EDL & > 5<br/>x blank valueFlag sample result with a<br/>"U"Report EDL & qualify<br/>•U"No qualification is<br/>needed

- NOTE: If gross blank contamination exists, all data in the associated samples should be qualified as unusable (R).
- 7.3 Are there field/rinse/equipment blanks associated with every sample? fV>\; (^UCLLLCUC* tfir—fyxs VI*>>>•<*•' ' [].
- ACTION: For low level samples, note in data assessment that there is no associated field/rinse/equipment blank. Exception: samples taken from a drinking water tap do not have associated field blanks.
- 8.0 GC Apparatus and Materials  $f_i A \sim W J''^{**} \wedge / I f^{2*} \sim ****'*'$ 
  - 8.1 Was the proper gas chromatographic capillary column used for the analysis of PCBs?

Action: Check raw data, instrument logs, or contact the lab to determine what type of columns were used. (Method 8082, section 4.2)

.2 Indicate the specific type of narrow bore or wide bore (.53 mm ID, fused silica GC columns, such as DB-608 and DB-1701 or equivalent).

column 1:_____^

column 2:

ACTION: Note any changes to the suggested materials in section 8.1 above in the data assessment. Also note the impact (positive or negative) such , changes have on the analytical results.

Date: May, 2002 SOP HW-23B, Rev.1.0

Ι

Ι

&£

*[

Jl

YES NO N/A

Λ

#### Calibration and GC Performance 9.0

EPA Region II

846 Method 8082

- 9.1 Are the following Gas Chromatograms and Data Systems Printouts for both columns present for all samples, blanks, MS, replicates?
  - a. Samples
  - b. All blanks
  - Matrix spike samples  $tf h \wedge r LhC^{\prime}/f^{\prime} \wedge 0^{i} *''$ c.
  - d. 5 pt. initial calibration standards
  - calibration verification standards e.
  - Laboratory Control samples (LCS)  $V^{tfC/***^4} + '$ f. JL iZ

ACTION: If no, take action specified in 3.2 above.

- fid^fe" P?^'S [ {& iff 9.2 Are data summary forms (containing calibration ty *t44 > < flfr /fc*yt t & tfactors or response factors) for the initial 5 pt. calibration and daily calibration verification  $y^{\Lambda}c^{\Lambda}h^{\Lambda'}$ standards present and complete for each column and each analytical sequence? |v|
- Note: Calibration Aroclor mixtures other than 1016/1260 may be used (as per approved project QA plan)
- NOTE: If internal standard calibration procedure is used (Method 8000B-15(section 7.4.2.2)), then response factors must be used for %RSD calculations and compound quantitation. If, external standard calibration procedures are used (Method 8000B-16 (section 7.4.2.1)), then calibration factors must be used. The internal standard approach is highly recommended for PCB congener analysis.
- ACTION: If any data are missing or it cannot be determined how the laboratory calculated calibration factors or response factors, contact the lab for explanation/resubmittals. Make necessary corrections and note any problems in the data assessment.

9.3 Are there any transcription/calculation errors between raw data and data summary forms?

ACTION: If large errors exist, call lab for







USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev. 1.(1

YES NO N/A

explanation/resubmittal, make necessary corrections and document the effect in data assessments.

- 9.4 Are standard retention time-(RT) windows for each PCB peak of interest presented on modified CLP summary forms?
- ACTION: If any data are missing, or it cannot be determined how RT windows were calculated, call the lab for explanation/resubmittals. Note any problems in the data assessment.
- NOTE: Retention time windows for all PCBs are established using retention times from three calibration standards analyzed during the entire analytical sequence (Method 8000B, section 7.6).

Best results are obtained using retention times which span the entire sequence; i.e., using the calibration verification/continuing calibration standards analyzed every 12 hours.

- 9.5 Were RT windows on the confirmation column established using three standards as described above?
- NOTE RT windows for the confirmation column should be established using a 3 pt. calibration, preferably **0*** spanning the entire analytical sequence as described in 9.4 above. If RT windows on one column are tighter than the other, this may result in false negatives when attempting to identify compounds in the samples.
- ACTION Note potential problems, if any, in the data assessment.
- 9.6 Do all standard retention times in each level of the initial 5 pt. calibrations for PCBs fall within the windows established during the initial calibration sequence?
- ACTION i If no, all samples in the entire analytical sequence are potentially affected. Check to see if three standard spanning the entire sequence were used to obtained RT windows. If the lab used three standards, from the 5 pt., RT windows may be too tight. If so, RT windows should be recalculated as per Msthod 8081B-15 (section 7.4.6).
  - ii. Alternatively, check to see if the chromatograms contain peaks

 $\frac{71^{10}}{21^{10}}$  VM⁶ '...fc  $_{X^* < y}$ tOi* r

L



Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

within an expanded window surrounding the expected retention times.

If no peaks are found and the surrogates are visible, non-detects are valid. If peaks are present but cannot be discerned through pattern recognition or by using revised RT windows, qualify all positive results and non-detects as unusable, "R".

- 9.7 Has the linearity criteria for the initial calibration standards been satisfied for both columns? (% RSD must be < 20.0% for all analytes).
- ACTION: If no, qualify all associated positive results generated during the entire analytical sequence "J" and all non-detects "UJ". When RSD > 90%, flag all non-detect results for that analyte "R" (unusable).
- 9.8 Does the calibration verification/continuing Calibration standard contain the PCB peaks of interest, analyzed on each working day, prior to sample analyses (Method 8082, sections 7.6.2)?
- 9.9 Has a calibration verification/continuing calibration standard been analyzed after every 10 samples and at the end of each analytical sequence (Method 8082, section 7.6.2)
- ACTION: If no, take action as specified in section 3. above.
- 9.10 Has the percent difference (%D) exceeded ± 15% for any PCB analyte in any calibration verification/ Continuing calibration standard?
- 9.11 Has a new 5 pt. initial calibration curve been generated for those PCB analytes which failed in the calibration verification/continuing calibration standard (8000B, section 7.7.3), and all samples which followed the out-of-control calibration verification/standard continuing calibration Standard?

If the %D for any analyte exceeded the ± 15% |C?CP°  $C^{\circ}i$ ACTION: criterion and the instrument was not recalibrated for those analytes, qualify positive results for £*/.*£• \ /•<5//⇔/ 2 I3U& lql^/ 2 all associated samples (those which followed the J3&) out-of-control standard) "J" and sample quantitation limits ^MUJ". If the %D was > 90% jg. & v^

-PCB 11 -



id

/

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.d

YES NO N/A

for any analyte, qualify non-detects "R", unusable.

9.12 Have retention time (RT) windows been properly calculated for each analyte of interest (Method 8000B, section 7.6), using RTs from the associated calibration verification/continuing standard?

ACTION: If no, take action specified in section 3.2 above

- 9.13 Do all standard retention times for each calibration verification/continuing calibration standard fall within the windows established during the initial calibration sequence?
- 9.14 Do all standard retention times for each midconcentration standard (analyzed after every 10 samples) fall within the daily RT windows
- ACTION: if the answer to either 9.13 or 9.14 above is no, check the chromatograms of all samples which followed the last in-control standard. All samples analyzed after the last in-control standard must be re-injected, if initial analysis indicated the presence of the specific analyte that exceeded the retention time criteria. If samples were not re-analyzed, document under Contract Non-compliance in the Data Assessment.

Reviewer has two options to determine how to qualify questionable sample data. First option is to determine if possible peaks are present within daily retention time window. If no possible peaks are found, non-detects are valid. If possible peaks are found (or interference), qualify positive hits as presumptively present "NJ" and non-detects are rejected "R". Second option is to use the ratio of the retention time of the analyte over the retention time of either surrogate. The passing criteria is + 0,06 RRT units of the RRT of the standard component. Reject "R" all questionable analytes exceeding criteria, and "NJ" all other positive hits.

For any multi-response analytes, retention time windows should be used but analyst and reviewer should rely primarily on pattern recognition or use option 2 specified in paragraph above.

9.15 Are there any transcription/calculation errors

EPA Region II 846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

II

between raw data and data summary forms?

- ACTION: If large errors exists, call lab for explanation/resubmittal, make any necessary corrections and document the effect in data assessments under "Conclusions".
- 10.0 Analytical Sequence Check (Form VIII-PEST)
  - 10.1 Have all samples been listed on CLP Form VTII or equivalent, and are separate forms present for each column?
  - ACTION: If no, take action specified in 3.2 above.
  - 10.2 Was the proper analytical sequence followed for each initial calibration and subsequent analyses?
  - ACTION: If no, use professional judgement to determine the severity of the effect on the data and qualify it accordingly. Generally, the effect is negligible unless the sequence was grossly altered or the calibration was also out of limits.
    - 10.3 Were the TCMX/DCB surrogate RTs for the samples within the mean surrogate RT from the initial calibration?

Action: If no, see "Action" in section 9.14 above

## 11.0 Extraction Techniques for Sample Preparation tdfir "for -i - -i - -i - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f - - + /f

Method 8081B permits a variety of extraction techniques to be used for sample preparation. Which extraction procedure was used?

- 1. Aqueous samples:
  - 1. Separatory funnel (Method 3510)
  - 2. Continuous liquid-liquid extraction J_L (Method 3520)
  - 3. Solid phase extraction (Method 3535)
  - 4. Other LL
- 2. Solid samples: JL
  - 1. Soxhlet (Method 3540)

USEP SW84	A Region 1 6 Method 1	STANDARD OPERATING PROCEDURE	Date: May, 2002 SOP HW-23B, Rev.l.d
			YES NO N/A
		2. Automated Soxhlet (Method 3541)	J_J
		3. Pressurized fluid (Method 3545)	
		4. Microwave extraction (Method 3546)	
		5. Ultrasonic extraction (Method 3550)	<i>I</i> _1
		6. Supercritical fluid (Method 3562)	_LJ
		7. Other	
11.1	Extract Cl	eanup - Efficiency Verification (Form IX)	
	11.1.1	Method 8082 (section 7.2) references method 3660 (sulfur) and 3665A (sulfuric acid) to Cleaning extracts. Were one or both method	use for <b>J</b> used? J_]_
	ACTION:	If no, take action specified in 3.2 above. data suggests cleanup was not performed, may note in the data assessment.	If ke
	NOTE :	Method 3620A, Florisil, may be used per appropriate of the method does not list analytes and surrogate(s) to use to verify efficiency. The reviewer must check project to verify method used as well as the correct list. If not stated or available, use the C listing or accept what the laboratory used.	roved which column t plan t PCB LP
	11.2 Are Flor	all samples listed on modified CLP PCBs isil/Cartridge Check Form?	J J_L
	ACTION:	If no, take action specified in 3.2 above.	I
	11.3 Was	GPC Cleanup (method 3640A) performed?	f1
	NOTE :	GPC cleanup is not required and is optional The reviewer should check Project Plan to v requirement.	 verify
	11.4 Were to d	the same PCB analytes used in calibration under the same procedure the efficiency of the cleanup procedure	ısed ^/ s? J_L
	11.5 Are surn of t lim:	percent recoveries (% R) of the PCBs and ogate compounds used to check the efficiency the cleanup procedures within lab's in-house ts (use 70-130% if not available)	QC J_L
	70-1	30% for GPC calibration?	J. 🛑

EPA Region II 46 Method 8082

Qualify only the analyte(s) which fail the recovery criteria as follows:

ACTION If % R are < 80%, qualify positive results "J" and quantitation limits "UJ". Non-detects should be qualified "R" if zero %R was obtained for PCBs. Use professional judgement to qualify positive results if recoveries are greater than the upper limit.

12.0 PCB Identification

- 12.1 Has CLP Form X or equivalent, showing **retention time** data for positive results on the two GC columns, been completed for every sample in which a PCB was detected?
- ACTION: If no, take action specified in 3.2 above, or compile a list comparing the retention times for all sample hits on the two columns.
- 12.2 Are there any transcription/calculation errors between raw data and data summary forms (initial calibration summaries, calibration verification summaries, analytical sequence summaries, GPC and cleanup verification forms)?
- ACTION: If large errors exist, call lab for explanation/resubmittal, make necessary corrections and note error in the data assessment.
- 12.3 Are retention times <RT) of sample compounds
  within the established RT windows for both
  columns/analyses?</pre>
- ACTION:' Qualify as unusable (R) all positive results which were not confirmed by second GC column analysis. Also qualify "R", unusable, all positive results not within RT windows unless associated standard compounds are similarly biased. The reviewer should use professional judgement to assign an appropriate quantitation limit.
- 12.4 Check chromatograms for false negatives, especially if RT windows on each column were established differently. Were there any false negatives?



U _

Jj

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.1.

#### YES NO N/A

*1-

^{€>}1.

I

_>/

- ACTION: Use professional judgement to decide if the compound should be reported. If there is reason to believe that peaks outside retention RT windows should be reported, make corrections to data summary forms (Form I) and note in data assessment.
- ACTION: Indicate with red pencil which Form I results were confirmed by GC/MS and also note in data assessment.
- 12.6 Is the percent difference (%D) calculated for the positive sample results on the two GC columns <25.0%?
- NOTE: The method requires quantitation from one column. The second column is to confirm the presence of an analyte. It is the reviewer's responsibility to verify from the project plan what the lab was required to report. If the lab was required to report concentrations from both columns, continue with validation for % Difference. If required, but not reported, either contact the lab for results or calculate the concentrations from the calibration. If not required, skip this section. Document actions in Data Assessment.
- ACTION: If the reviewer finds neither column shows interference for the positive hits, the data should be qualified as follows:

 % Difference
 Qualifier

 0-25%
 none

 26-70%
 "J"

 71-100%
 "NJ"

 >100% *
 "R"

 100-200% (Interference detected)**
 "NJ"

 >50%
 (PCBs value is <CRQL)</td>
 "U"

When the reported PCBs value is <CROL and the <u>%D is >50%</u>, raise the value to the CRQL and qualify with "U" (non-detect).

* Check the chromatogram. If pattern is confirmed qualify "J". If pattern is mixed, has interference, or the PCB cannot be positively determined due to weathering, qualify "JN".



Date: May, 2002 SOP HW-23B, Rev.1.0

YES NO N/A

If PCB can not be confirmed, qualify the PCB as "R".

When the reported %D is 100-200% but interference is detected in either column, qualify the data with "NJ".

#### 13.0 Compound Quantitation and Reported Detection Limits

- 13.1 Are there any transcription/calculation errors in Form I results? Check at least two positive values. Were any errors found?
- NOTE: Single-peak PCBs results can be checked for rough agreement between quantitative results obtained on the two GC columns. The reviewer should use professional judgement to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interference is suspected, the lower of the two values should be reported and qualified according to section 12.6 above. This necessitates a determination of an estimated concentration on the confirmation column. The narrative should indicate that the presence of interferences has led to the quantitation of the second column confirmation results.
- 13.2 Are the EDLs (Estimated Detection Limits) adjusted to reflect sample dilutions and, for soils, % moisture?
- ACTION: If errors are large, call lab for explanation/resubmittal, make any necessary corrections and document effect in data assessments.
- ACTION: When a sample is analyzed at more than one dilution, the lowest EDLs are used (unless a QC exceedance dictates the use of the higher EDL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the value on the original Form I and substituting it with data from the analysis of diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including any in the summary package.

USEPA Region II SW846 Method 8082 Date: May, 2002 SOP HW-23B, Rev.l.

YES NO N/A

ACTION: EDLs affected by large, off-scale peaks should be qualified as unusable, "R". If the interference is on-scale, the reviewer can provide a modified EDL flagged "UJ" for each affected compound.

- 14.0 Chromatogram Quality
  - 14.1 Were baselines stable?
  - 14.2 Were any electropositive displacement (negative peaks) or unusual peaks seen?
  - ACTION: Note all system performance problems in the data assessment.

15.0 <u>Field Du</u>plicates ,, **^P** 

# 15.1 Were any field duplicates submitted for PCB analysis?

- TN-
- ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.

^I^M-'MpiU/-

ACTION: Any gross variation between field duplicate results must be addressed in the reviewer narrative. However, if large differences exist, the identity of the field duplicates is questionable. An attempt should be made to determine the proper identification of field duplicates.

MB82 Name-. Contract Lab Code: Case No.: SAS No. SDG No.: AAA916 Lab Sample ID: MB82 Lab File ID: E2989859 Matrix (soil/water) SOIL Extraction: (SepF/Cont/Sonc/Other) SONC Sulfur Cleanup (Y/N) N Date Extracted: 09/17/2 Date Analyzed (1): 09/18/2 Date Analyzed (2) Time Analyzed (1) : 1433 Time Analyzed (2) Instrument ID (1) : HP1 Instrument ID (2) : \-\P3

GC Column (1): RTX-CLPESTICIDES 2 ID: 0.32 (mm)

GC Column (2) : RTX-CLPtST 1 ID:  $D.3z^{m}$ )

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB		DATE		DATE	
	SAMPLE NO.	SAMPLE I	D	ANALYZED	1	ANALYZED	2
01		QC82		09/18/2			
02		L94080-1RE	l.	09/18/2			
03	L9408 2</td <td>L94080-2</td> <td></td> <td>09/18/2</td> <td></td> <td></td> <td></td>	L94080-2		09/18/2			
04	L940fc/-3RE	L94080-3RE	2	09/18/2			
05	L940/0-4	L94080-4		09/18/2			
06	L94J81-1RE	L94081-IRE	3	09/18/2			
07	L94C81-4RE	L94081-4RE	Ξ	09/18/2			
80	L9I081-5RE	L94081-5RE	Ξ	09/18/2			
09		L94081-6RE	Ξ	09/18/2			
10	L9.4081-7.	L94081-7R		09/18/2			
11	WWW	L94081-1MS	SR	09/18/2			
12	1 1H0DH	L94081-1MS	SDR	09/18/2			
13		I		,		O^M.IQ-Z	_
14	L^MoS>- >	I atAOSI-		mh^io_7		nstrtt <b>o</b> z	-
15	L°i^0SI- M	La^OSi-M		mm 10-2,	•	$n^{\circ}i \wedge < 1 t > 2$	7
16		L ^c \MQ8i- S				<u>n u ( lu )</u> fC	<u>.</u> .
17	$LSM0al-^1>l$	Lau o^\-ii>		&\/\~\\0'I			
18	$L^{\circ}mcS > -1 M5$	$\frac{1}{1}$ I floofr 1M	<u>c</u>		1		
19	$\frac{L (1100)}{L (1100)} + \frac{1000}{100}$			rt/rt	 7		
20	$\underline{LSII}   0 \neq 0   - IIESA \geq$		<u>100</u>				
$\frac{20}{21}$							
$\frac{21}{22}$							
22							
$\frac{23}{24}$							
24							
23							
26							

COMMENTS:



FORM IV PCB

00006



#### 3F SOIL PCB BLANK SPIKE RECOVERY SW846/8082

Lab narrteK.FRIEND LABORATORY, INC.

Reference: 02-004-9860

•

.

Lab code: 102*

Matrix Spike - Lab Sa>nple No.: QC 82

Date analyzed: 09/18/02 Date Extracted: 09/17/02

COMPOUND	SWKE ADDED (ug/kg\	SAMPLE CONCENTRATION (ug/kg)	MS CONCENTRATION (ug/kg)	MS % REC #	QC UMITS REC
KB 1016	249	\ 0.00	190	77	50-114
PCB 1260	249	\ 0.00	199	80	10-127

# Column to be used to flag recovery values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 2 outside limits

COMMENTS:

FORM III - PCB



-MB82 Name: Contract: ~ ~ SDG No.: AAA916 Lab Code: Case No. : SAS No. : Lab Sample ID; MB82 Matrix: (soil/water) SOIL Lab File ID: E2989859 Sample wt/vol: 20.1 (g/mL) G Date Received: 09/17/2 % Moisture: 0 decanted: (Y/N) N Date Extracted:09/17/2 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 09/18/2 Concentrated Extract Volume: <u>10000</u> (uL) Dilution Factor: 1.0 Injection Volume: .2.0(uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: рН: 7.0 (Y/N) N CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG CAS NO. COMPOUND 0 12674-11-2--- Aroclor-1016 1104-28-2 — Aroclor-1221" 11141-16-5--- Aroclor-1232" •5"~G-re0 U /O Q~&r U ^--OrOu U 53469-21-9--- Aroclor-1242" ^^-rOtf u 11097-69-1----Aroclor-1254" j'p-retr u 11096-82-5--- Aroclor-1260" —Aroclor-1248" ^-ix^eo-ju

tofald?-

Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082r0917.b\E2989859.D Lab Smp Id: MB82 Client Smp ID: MB82 Inj Date : 18-SEP-2002 14:33 CPW Inst ID: hpl.i Operator Smp Info : MB82 Misc Info : Comment : Method : \chem\hpl.i\8082r0917.b\8082_PCBsec.M Meth Date : 19-Sep-2002 07:17 Administra Quant Type: ESTD Cal Date : 17-SEP-2002 16:43 Cal File: E2989834.D QC Sample: BLANK Als bottle: 1 Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: PCB.sub Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description
DF Vf Ws Uf Ts	$\begin{array}{c} 1.000 \\ 10.000 \\ 20.065 \\ 0.100 \\ 100.000 \end{array}$	Dilution Factor Final volume Weight of sample extracted' (g) Unit Correction Factor Total Solid

				CONCENTR	ATIONS		
				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANGE	RATIO
S 1	Tetrachlo	oro-m-xylene			CAS ft:		
8.01	7 7.997	0.020	3543802	382.198	190.48		
S 29	Decachlor	robiphenyl			CAS fl;		
20.13	3 20.130	0.003	2274174	397.705	198.21		



n ⊳ c (-1 ill m ଏ o ,∴. S Cî M ∧ -8 * 6-F - OM A** τ 0. ** 50 n ** 7 /// sl 00 0 n *** 3 0 Γ *** 1 00 0 n ** 5 /// sl 00 0 n ** 5 /// Sl 00 0 n ** 5 /// Sl 00 0 n ** 5 /// Sl 00 0 n ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 // M ** 5 / ۴ 6 v⊳ W

Tetrachloro-m-xylene (8.017)

Decachlorobiphenyl (20.133)

vs.y

r

00178

Friend Inc.

Data File:	/chem/hpl.i/8082r0917.b/E2989859.D
Method:	/chem/hpl.i/8082r0917.b/8082_PCBsec.M
Sample Info:	MB82
Misc Info:	
Analysis Date:	18-SEP-2002 14:33
Sample Matrix:	SOIL
File Number:	9859

Dilution	Factor	1.0000
Sample	Weight	20.0649
Final	Volume	10.0000
Total	Solid	100.0000

Analytes (ug/Kg)

0.00
0.00
0.00
0.00
0.00
0.00
5.44%
).54%

Analyst: CPW Report Date: 09/19/2002 07:38

Supervisor: Date:

• •

#### FORM 6 PCB INITIAL CALIBRATION DATA





FORM VI PCB

#### FORM 6 PCB INITIAL CALIBRATION DATA

Lab Name:		Contract:	
Lab Code:	Case No.:	SAS No. :	SDG No. : AAA916
Instrument	ID: HP1	Calibration Date(s):	09/17/2 09/17/2
GC Column:	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	
RF1000: E2989	839		

				COEFFICENTS		%RSD
COMPOUND		RF100(	CURVE	A 0	Al	OR R~2
	1					
Aroclor-1016		366.0	LINR	-18.105188	2.688e-003	0.991
	(2)	161.5	LINR	-9.4133819	6.109e-003	0.997
	(3)	100.6	LINR	-18.332671	9.78e-003	0.993
	(4)	162.6	LINR	-9.1394188	6.01e-003	0.995
	(5)	201.8	LINR	2.94297360	4.926e-003	1.000
Aroclor-1221			LINR	0.0000000	1.159e-002	1.000
	(2)		LINR	0.0000000	1.555e-002	1.000
	(3)		LINR	0.00000000	3.248e-003	1.000
	(4)		LINR			
	(5)		LINR			
Aroclor-1232	( - <i>)</i>		LINR	0.0000000	3.53e-003	1.000
	(2)		LINR	0.00000000	6.191e-003	1.000
	(3)		LINR	0.00000000	4.512e-003	1.000
	(4)		LINR	0.00000000	1.025e-002	1.000
	(5)		LINR	0.00000000	1.727e-002	1.000
Aroclor-1242			LINR	0.00000000	2.835e-003	1.000
	(2)		LINR	0.00000000	1.941e-003	1.000
	(3)		LINR	0.00000000	4.432e-003	1.000
	(4)		LINR	0.00000000	6.138e-003	1.000
	(5)		LINR	0.00000000	5.111e-003	1.000
Aroclor-1254		296.1	LINR	-6.4375383	3.29e-003	0.994
	(2)	434.5	LINR	16.6006465	2.262e-003	0.997
	(3)	371.6	LINR	21.3460443	2.623e-003	0.995
	(4)	190.9	LINR	4.45851132	5.219e-003	1.000
	(5)	352.0	LINR	LI.0581973	2.751e-003	0.994
Aroclor-1260		329.3	LINR		3.014e-003	0.998
	(2)	358.9	LINR	-3.4390031	2.769e-003	0.998
	(3)	210.0	LINR	-2 0615020	4.748e-003	0.998
	(4)	214.3	LINR	11 3530028	4.659e-003	0.998
	(5)	480.7	LINR	0 00000000	2.078e-003	0.998
Aroclor-1248			LINR	0.00000000	3.596e-003	1.000
	(2)		LINR	0.00000000	6.12e-003	1.000
	(3)		LINR	0.00000000	4.686e-003	1.000
	(4)		LINR	0.00000000	5.361e-003	1.000
	(5)		LINR		3.287e-003	1.000
					1 010 004	0.001
Tetrachloro-m-xyle	ne	7679	LINR	5.59456943	1.219e-004	0.991
Decachlorobiphenyl		5238	LINR	4.64742762	1.888e-004	0.999

r/>&.??

```
Data File: <u>\chem\hpl</u>.i\8082r0917.b\E2989827.D
Report Date: 18-Sep-2002 08:07
```

Thru-Put Systems, Inc

Data file : \chem\hpl.i\8082r0917.b\E2989827.D Lab Smp Id: STD11660 Client Client Smp ID: STD11660 Inj Date : 17-SEP-2002 13:04 Operator : CPW Inst ID: hpl.i Smp Info : 10PPB 1660 Misc Info : Comment Method : <u>\chem\hpl.i\8082r0917.b\8082_PCBsec.M</u> Meth Date : 18-Sep-2002 08:00 Administra Quant Type: ESTD Cal Date : 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle: 1 Calibration Sample, Level: 1 Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1660.sub Sample Matrix: WATER Target Version: 3.4 0 Processing Host: TARGET3

Concentration Formula: Amt * DF * Vt / Vo

Na	me	Value	Description
fe V	PF t <b>70</b>	$\begin{array}{r} 1.000 \\ 5.000 \\ 1000.000 \end{array}$	Dilution Factor Fi.nalVolume SampleVolume

	AMOUNTS							
				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	I ug/L)	TARGET	RANGE	RATIO
	·	•••••	•••••	•••••	•••••	•••••	•••••	
26 A	Aroclor-12	260			CAS ft:	11096-8	2-5	
14.927	14.943	-0.016	3344	10.0000	4.90	80.00-	120.00	100.001M)
15.340	15.353	-0.013	35B5	10.0000	6.47	87.23-	127.23	107.21
16.190	16.207	-0.017	2279	10.0000	7.29	44.03-	84.03	68.15
16.747	16.767	-0.020	2348	10.0000	8.as	45.69-	85.69	70.22
17.233	17.247	-0.014	3641	10.0000	18.92	112.78-	152.78	108.88
		Average of F	Peak Amounts		9.29			
20	Aroclor-1	016			CAS tt	: 12674-1	1-2	
10.193	10.207	-0.014	4013	10.0000		80.00-	120.00	100.00(M)
10.707	10.713	-0.006	1365	10.0000		14.45-	54.45	34.01
11.890	11.900	-0.010	1352	10.0000		8.36-	48.36	33.69
11.970	11.977	-0.007	140S	10.0000		20.90-	60.90	35.09
12.673	12.693	-0.020	2014	10.0000	12.86	24.49-	64.49	50.19
		Average of	Peak Amounts		12.9			



Page 1

## Data File: <u>\chem\hpl.i\8082r0917.b\E2989827.D</u> Report Date: 18-Sep-2002 08:07

RT EXP RT DLT RT	AMOUN CAL-AMT RESPONSE { ug/L)	ON-COL. (ug/L)	TARGET RANGE	RATIO
<pre>\$ 1 Tetrachloro-m-xylene 7.973 7.997 -0.024</pre>	15611 4.00000	CAS #: 6.51		
\$ 29 Decachlorobiphenyl 20.113 20.130 -0.017	11565 4.00000	CAS #: 9.22		

QC Flag Legend

M - Compound response manually integrated.

Lab Name: FRIEND LABORATORY, INC. Contract: 
**mm**^b Code: 10252
 Case No.:______SAS No.:_____

 rument ID: HP1

CCoiumn: RTX-CLPest2 ID: 0.32 (mm)

Date(s) Analyzed: 09/17/02 09/17/02 File Numbers: 9827-9843

'

'

FORM VI-PCB-1

SDG No.: AAA

	Peak	RT OF STANDARDS					MEAN	RTWI	SIDOW	
COMPOUND	#	10 ppb I	50 ppb 1	100 ppb 1	250 ppb	1500 ppb	11000 ppb	RT	FROM	L TO
PCB1016	1*	10.19	10.20	10.20	10.20	10.21	10.21	10.20	10.10	10.30
	2*	10.71	10.71	10.71	10.71	10.71	10.71	10.71	10.61	10.81
	3*	11.89	11.89	11.90	11.90	11.90	11.90	11.90	11.80	12.00
	4	11.97	11.98	11.98	11.98	11.98	11.98	11.98	11.88	12.08
	5	12.67	12.68	12.68	12.68	12.69	12.69	12.68	12.58	12.78
PCB 1221	1*				8.79			8.79	8.69	8.89
	2*				9.12			9.12	9.02	9.22
	3*				9.27			9.27	9.17	9.37
PCB 1232	r				9.27			9.27	9.17	9.37
	2*				10.20			10.20	10.10	10.30
	3*				11.19			11.19	11.09	11.29
	4				11.47			11.47	11.37	11.57
	5				11.97			11.97	11.87	12.07
PCB 1242	1*				10.20			10.20	10.10	10.30
	2*				11.19			11.19	11.09	11.29
	3*				11.47			11.47	11.37	11.57
	4				12.68			12.68	12.58	12.78
	5				13.29			13.29	13.19	13.39
HCB 1248	1*				11.19			11.19	11.09	11.29
Ρ	2*				11.90			11.90	11.80	12.00
-	3*				12.68			12.68	12.58	12.78
	4				13.21			13.21	13.11	13.31
	5				13.29			13.29	13.19	13.39
PCB 1254	r	13.67	13.67	13.67	13.67	13.67	13.67	13.67	13.57	13.77
	2*	14.56	14.56	14.56	14.56	14.56	14.56	14.56	14.46	14.66
	3*	15.01	15.01	15.01	15.01	15.00	15.00	15.01	14.91	15.11
	4	15.34	15.35	15.35	15.35	15.35	15.35	15.35	15.25	15.45
	5	16.02	16.03	16.03	16.03	16.03	16.03	16.03	15.93	16.13
PCB 1260	1*	14.93	14.93	14.94	14.94	14.94	14.94	14.94	14.84	15.04
	2*	15.34	15.34	15.35	15.35	15.35	15.35	15.35	15.25	15.45
	3*	16.19	16.19	16.20	16.20	16.20	16.21	16.20	16.10	16.30
	4	16.75	16.75	16.76	16.76	16.76	16.77	16.76	16.66	16.86
	5	17.23	17.23	17.24	17.24	17.25	17.25	17.24	17.14	17.34
Tetrachloro-m-xylene		7.97	7.99	8.00	7.99	8.00	8.00	7.99	7.89	8.09
Decach I orobi phenyl		20.11	20.12	20.13	20.13	20.13	20.13	20.13	20.03	20.23
* Denotes required	l neak	s	1	1	1	1	1			

Denotes required peaks

Retention time windows are + 0.1 minutes for all compounds.

.

- " "

\olU

Lab Name: FRIEND LABORATORY, INC. Contract:								
Lab Code: 10252 Case No.: instrument ID: HP3	S	AS No.:	:	SDGNo.:A	AA	lfcH&T\$>	(	
GC Column: RTX-CLPest1	ID: 0.32 (	(mm)	Date(s) Ar File Numb	nalyzed: 09 pers: 6149	3&^fWI			
	AMOUNT			RT WI	NDOW	CALIBRATION		
COMPOUND	(ng)	PEAK	RT	FROM	то	FACTOR		
PCB 1254	250 PPB	1*	14.62	14.52	14.72	260.72		
		2*	15.14	15.04	15.24	397.02		
		3*	15.95	15.85	16.05	307.45		
		4	16.31	16.21	16.41	217.85		
		5	16.86	16.76	16.96	330.96		
Tetrachloro-m-xylene	300 PPB		9.73	9.63	9.83	5361.44		
Decachlorobiphenyl	301 PPB		21.35	21.25	21.45	3867.94		
* Donotos roquirod poaks	1	1						

Denotes required peaks

Single injections of the low standard are made to establish approximate retention times and instrument sensitivity. Five point calibrations are performed if a multipeak component is detected in a sample.

Alternate column confirmation is run if a pesticide or PCB is detected in a site sample.

Thru-Put Systems, Inc

\chem\hp3.i\1254FCONFIRMa.b\E3956149.D Data file 1254SJD-Lab Smp Id Client Smp ID: 1254STD Inj Date -SEP-2002 13:57 Operator CPW Inst ID: hp3.i Smp Info 250PPB 1254 Misc Info CONFIRMATION Comment Method \chem\hp3.i\1254FCONFIRMa.b\8082_PCBsec.M Meth Date 20-Sep-2002 06:59 Administra Quant Type: ESTD 19-SEP-2002 13:57 Cal Date Cal File: E3956149.D Als bottle Calibration Sample, Level: 4 1 Dil Factor 1.00000 Integrator Falcon Compound Sublist: 1254.sub Target Version: 3.40 Sample Matrix: WATER Processing Host: TARGET3

Concentration Formula: Amt * DF * Vt / Vo

_	Name	Value	Description
<b>B</b>	DF <b>Vo</b> t	$1.000 \\ 5.000 \\ 1000.000$	Dilution Factor FinalVolume SampleVolume

				AMOUN	TS			
				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/L)	TARGET	RANGE	RATIO
\$ 1 T	etrachlo	ro-m-xylene			CAS fl:			
9.730	9.730	0.000	1608432	300.000.	300.00			(M)
25 A	roclor-1	254			CAS #:	11097-6	9-1	
14.617	14.617	0.000	65181	250.000	250.00	80.00-	120.00	10000(M)
15.140	15.140	0.000	992S5	250.000	250.00	146.75-	186.75	152.28
15.947.	15.947	0.000	76B63	250.000	250.00	122.83-	162.83	11792
16.307	16.307	0.000	54462	250.000	250.00	57.51-	97.51	83.56
16.563	16.863	0.000	82739	250.000	250.00	118.07-	158.07	126.94
		Average of	Peak Amounts	-	250			
\$ 29 E	ecachlo	robiphenyl			CAS tt	i		
21.347	21.347	0.000	1160381	300.000	300.00			(M)



#

Friend Inc.

Data File /chem/hpl.i/8082r0917.b/E2989895.D Method /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info 250PPB 1254 Misc Info Analysis Date 19-SEP-2002 19:36 Sample Matrix: WATER File Number: 9895

Dilution	Factor:	1.0000
Sample	Volume:	1000.0000
Final	Volume:	5.0000

Analytes (ug/L)

Aroclor-1254	220.14
Tetrachloro-m-xylene	0.00%
Decachldrobiphenyl	0.00%

Analyst: CPW Report Date: 09/20/2002 06:44

Supervisor: Date:

#### 7E PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY. INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:_____SDG No.: AAA

Sample Name: 250PPB1660 File Name: E2989858.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 09/18/02 Analysis Time: 1401

			RT WIN	DOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	ТО	AMOUNT	AMOUNT	%D
Aroclor-1016		10.21	10.10	10.30	290.85	250.00	C3G3EZ
Aroclor-1016		10.72	10.61	10.81	246.67	250.00	1.33
Aroclor-1016		11.90	11.80	12.00	307.89	250.00	23.16
Aroclor-1016		11.98	11.88	12.08	273.24	250.00	9.30
Aroclor-1016		12.69	12.58	12.78	256.52	250.00	2.61 i
Aroclor-1260		14.94	14.84	15.04	296.92	250.00	
Aroclor-1260		15.35	15.25	15.45	289.30	250.00	i5 <u>J2zz</u> >
Aroclor-1260		16.21	16.10	16.30	298.85	250.00	(19.54
Aroclor-1260		16.76	16.66	16.86	292.16	250.00	16.86
Aroclor-1260		17.25	17.14	17.34	263.15	250.00	5.26
Tetrachloro-m-xylene		8.00	7.89	8.09	301.18	300.00	0.39
Decachlorobi phenyl		20.13	20.03	20.23	306.99	300.00	2.33

* QC LIMITS: %D of amounts in the Continuing Calibration must be

*i*^*CeC*? -*Ai*"?

*£2?/#<~=<SJZ

(P 100330 --<*>!. '/,,p •• 1 VtoJZ^Sbj*,* -- /s. 17%

-fer 1260

less than or equal to 15%.

ioi^u ^~^f ^{__} - l°l



7E

#### PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:____ Lab Code: 10252 Case No.: _____SAS No.: ____SDG No.: AAA

Sample Name: 250PPB 1660 File Name: E2989866.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm)

Analysis Date: 09/18/02 Analysis Time: 1815

			RTWI	NDOM	CALC	TRUE		
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D	
Aroclor-1016		10.21	10.10	10.30	279.25	250.00	11.70	
Aroclor-1016		10.72	10.61	10.81	267.51	250.00	7.00	
Aroclor-1016		11.90	11.80	12.00	326.74	250.00	30.70-	>
Aroclor-1016		11.98	11.88	12.08	287.35	250.00	14.94	
Aroclor-1016		12.68	12.58	12.78	255.78	250.00	2.31	
Aroclor-1260		14.94	14.84	15.04	306.93	250.00	22.77	>
Aroclor-1260		15.35	15.25	15.45	306.04	250.00	22.42	>
Aroclor-1260		16.20	16.10	16.30	316.74	250.00	26.70	2
Aroclor-1260		16.76	16.66	16.86	304.00	250.00	21.60	
Aroclor-1260		17.25	17.14	17.34	283.69	250.00	13.48	
Tetrachloro-m-xylene		8.01	7.89	8.09	315.26	300.00	5.09	
·								
Decachlorobiphenyl		20.13	20.03	20.23	330.97	300.00	10.32	ſ

/

* QC LIMITS: %D of amounts in the Continuing Calibration must be

less than or equal to 15%.

 $\frac{\mathcal{E}(\mathcal{E})}{3c_{3}} = \frac{\mathcal{E}}{2c_{3}} \frac{\mathcal{E}}{\mathcal{E}} \frac{\mathcal{E}} \frac{\mathcal{E}}{\mathcal{E}} \frac{\mathcal{E}}{\mathcal{E}} \frac{\mathcal{E}}{\mathcal{E}} \frac{\mathcal{E}}{$ 

f£?/£e sfob

-7&& ^r

00060

FORM VI -PCB-2

Page 1

Thru-Put Systems, Inc. _ccAu Data file : \chem\hpl.i\8082r0917.b\E2989858.D Lab Smp Id: CC166001 Client Smp ID: CC166001 Inj Date : 1B-SEP-2QQ2 14j01 Operator : TFfl ı. Inst ID: hpl.i Smp Info : 250PPB 1660 Misc Info : Comment : \chem\hpl.i\8082r0917.b\8082_PCBsec.M Method Meth Date19-Sep-200207:17Administra Quant Type:ESTDCal Date: 17-SEP-200216:43Cal File:E29898Als bottle:1Continuing Calib Cal File: E2989834.D Continuing Calibration Sample Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: 1660.sub Target Version: 3.40 Sample Matrix: WATER Processing Host: TARGET3

Concentration Formula: Amt * DF * Vt / Vo

Name	Value	Description
DF Vt Vo	$1.000 \\ 5.000 \\ 1000.000$	Dilution Factor FinalVolume SampleVolume

				AMOUN	JTS			
				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	< ug/D	(ug/L)	TARGET-R	RANGE	RATIO
"		=						
26 A	roclor-1	260			CAS #:	11096-82	- 5	
14.943	14.943	0.000	100230	250.000	296.92	80.00- 1	20.00	100.00
15.353	15.353	0.000	105731	250.000	289.30	88.18-1	28.18	105.49
16.207	16.207	0.000	63689	250.000	298.85	42.93-	82.93	63.54
16.763	16.767	-0.004	63150	250.000	292.16	41.14-	81.14	63.01
17.250	17.247	0.003	121190	250.000	263.15	108.65- 1	4B.65	120.91
		Average of	Peak Amounts «	×	288			
20 A	roclor-1	016			CAS *	12674-11	-2	
10.210	10.207	0.003	114927	250.000	290.85	B0.00- 1	20.00	100.00
10.717	10.713	0.004	41919	250.000	246.67	16.92-	56.92	36.47
11-903	11.900	0.003	33355	250.000	307.89	10.29-	50.29	29.02
11.980	11.977	0.003	46984	250.000	273.24	24.51-	64.51	40.88
12.690	12.693	-0.003	51480	250.000	256.52	26.73-	66.73	44.79
		Average of	Peak Amounts	-	275			



«

## Data File: <u>\chem\hpl.i\8082r0917.b\E2989858.D</u> Report Date: 19-Sep-2002 07:38

	AMOUNT	rs		
	CAL-AMT	ON-COL		
RT EXP RT DLT RT	RESPONSE ( ug/L)	(ug/L)	TARGET RANGE	RATIO
\$ 1 Tetrachloro-m-xylene		CAS #;		
8.000 7.997 0.003	2772737 300.000	301.18		
S 29 Decachlorobiphenyl		CAS #:		
20.133 20.130 0.003	1740644 300.000	306.99		

#### 7E

## PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.: _____SAS No.: _ _ _ SDG No.: AAA

> Sample Name: 250PPB 1660 File Name: E2989875.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

:v

ID: 0.32 (mm) Analysis Date: 09/18/02 Analysis Time: 2255

			RTWI ^JDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1016	1	10.20	10.10	10.30	291.25	250.00	<tt6.5(d< td=""></tt6.5(d<>
Aroclor-1016	2	10.71	10.61	10.81	250.15	250.00	0.06
Aroclor-1016	3	11.90	11.80	12.00	322.53	250.00	C29.0fe
Aroclor-1016	4	11.97	11.88	12.08	298.68	250.00	<i><m£:< i=""></m£:<></i>
Aroclor-1016	5	12.68	12.58	12.78	267.80	250.00	7.12
Aroclor-1260	1	14.94	14.84	15.04	303.34	250.00	-TTT3T
Aroclor-1260	2	15.35	15.25	15.45	303.16	250.00	21.26
Aroclor-1260	3	16.20	16.10	16.30	302.32	250.00	20.93
Aroclor-1260	4	16.76	16.66	16.86	289.54	250.00	15.82
Aroclor-1260	5	17.24	17.14	17.34	284.97	250.00	13.99
Tetrachloro-m-xylene	1	8.01	7.89	8.09	285.47	300.00	4.84
Decachlorobiphenyl	1	20.13	20.03	20.23	304.88	300.00	1.63

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

18.8

/0 /C*



*i.*/*.


Lab Name: FRIEND LABORATORY, INC. Contract: Lab Code: 10252 Case No.: SAS No. SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2989876.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

ID: 0.32 (mm) Analysis Date: 09/18/02

Analysis Time: 2327

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	ТО	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.67	13.57	13.77	272.65	250.00	9.06
Aroclor-1254	2	14.56	14.46	14.66	241.09	250.00	3.56
Aroclor-1254	3	15.00	14.91	15.11	231.09	250.00	7.56
Aroclor-1254	4	15.34	15.25	15.45	285.36	250.00	14.14"
Aroclor-1254	5	16.03	15.93	16.13	242.50	250.00	3.00
Tetrachloro-m-xylene	1	7.99	7.89	8.09	272.39	300.00	9.20
Decachlorobi phenyl	1	20.13	20.03	20.23	303.43	300.00	1.14

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

 $\frac{253^{-252}}{255} \times \sim = SZ$ 

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.: SAS No.:_____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2989877.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2



ID: 0.32 (mm)

Analysis Date: 09/19/02 Analysis Time: 1009

			RTWI	^JDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.67	13.57	13.77	259.53	250.00	3.81
Aroclor-1254	2	14.56	14.46	14.66	225.30	250.00	9.88
Aroclor-1254	3	15.01	14.91	15.11	223.36	250.00	10.66
Aroclor-1254	4	15.35	15.25	15.45	285.42	250.00	14.17
Aroclor-1254	5	16.03	15.93	16.13	235.44	250.00	5.82
Tetrachloro-m-xylene	1	7.99	7.89	8.09	290.73	300.00	3.09
Decachlorobiphenyl	1	20.13	20.03	20.23	307.49	300.00	2.50

QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

3¥C* :250/ <?j° / X*c --/.££

Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:_____SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2989883.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2



ID: 0.32 (mm) Analysis Date: 09/19/02 Analysis Time: 1321

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.67	13.57	13.77	259.55	250.00	3.82
Aroclor-1254	2	14.56	14.46	14.66	228.67	250.00	8.53
Aroclor-1254	3	15.00	14.91	15.11	228.48	250.00	8.61
Aroclor-1254	4	15.35	15.25	15.45	285.04	250.00	14.02
Aroclor-1254	5	16.03	15.93	16.13	237.94	250.00	4.82
Tetrachloro-m-xylene	1	7.99	7.89	8.09	275.42	300.00	8.19
Decachlorobiphenyl	1	20.13	20.03	20.23	323.32	300.00	7.77

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.



Lab Name: FRIEND LABORATORY, INC. Contract:_____ Lab Code: 10252 Case No.:_____SAS No.:____SDG No.: AAA

Sample Name: 250PPB1254 File Name: E2989888.D Instrument ID: HP1.I GC Column: RTX-CLPesticides 2

«

.

ID: 0.32 (mm)

Analysis Date: 09/19/02 Analysis Time: 1558

			RTWI	SJDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	то	AMOUNT	AMOUNT	%D
Aroclor-1254	1	13.67	13.57	13.77	234.65	250.00-	6.14
Aroclor-1254	2	14.56	14.46	14.66	206.97	250.00	
Aroclor-1254	3	15.01	14.91	15.11	199.78	250.00	20.09
Aroclor-1254	4	15.35	15.25	15.45	247.93	250.00	
Aroclor-1254	5	16.03	15.93	16.13	207.20	250.00	
Tetrachloro-m-xylene	1	8.00	7.89	8.09	270.47	300.00	9.84
Decachlorobiphenyl	1	20.13	20.03	20.23	264.18	300.00	11.94

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

/

•rt

/3-¹/'*



Lab Name: FRIEND LABORATOF	RY, INC.	Contract:					
Lab Code: 10252 Case No.:	SASN	0.	SDG No	.: AAA			
Sample Name: 250PPB 1254 File Name: E2989888 D						∖ Y	
Instrument ID: HP1.I						;;	
GC Column: RTX-CLPesticides 2		I	D: 0.32	(mm) Analysis F	)ate: 09/19/	\	
				Analysis 1	Time:-t558-	· /f ' 3	Cs.
			RT WI	NDOW	CALC	TRUE	
COMPOUND	PEAK	RT	FROM	ТО	AMOUNT	AMOUNT	%D
Aroclor-1254		13.67v	13.57	13.77	237.28	250.00	5.09
Aroclor-1254		14.56 t	14.46	14.66	210.21	250.00	15.92
Aroclor-1254		15.01 \/	14.91	15.11	197.63	250.00	20.95
Aroclor-1254		15.35 v	15.25	15.45	247.15	250.00	1.14
Aroclor-1254		16.03 ^ ^v	15.93	16.13	208.42	250.00	16.63
Tetrachloro-m-xylene		8.01	7.89	8.09	272.21	300.00	9.26
Decachlorobiphenyl		20.13	20.03	20.23	272.91	300.00	9.03

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

220-250/ 250 /1 "- 11



Lab Name: FRIEND LABORATORY, INC. Contract: Lab Code: 10252 Case No.: SAS No.: _ _ SDG No.: AAA

Sample Name: 250PPB 1254 File Name: E2989888.D __{~&r>}Cfj*a*~/il ∧ ∨ ^ ^ ^ ^ ^ Instrument ID: HP3.I GC Column: RTX-CLPesticides 1

ID: 0.32 (mm)

Analysis Date: 09/19/02 Analysis Time: 1910

			RT WINDOW		CALC	TRUE	
COMPOUND	PEAK	RT	FROM J	ТО	AMOUNT	AMOUNT	%D
Aroclor-1254	1	14.59	14.52	14.72	271.45	250.00	8.58
Aroclor-1254	2	15.11	15.04	15.24	297.25	250.00	nOol
Aroclor-1254	3	15.92	15.85	16.05	328.78	250.00	
Aroclor-1254	4	16.28	16.21	16.41	251.81	250.00	0.72
Aroclor-1254	5	16.82	16.76	16.96	295.26	250.00	
Tetrach I o ro-m-xy I e n e	1	9.70	9.63	9.83	330.09	300.00	10.03
Decachlorobiphenyl	1	21.32	21.25	21.45	340.09	300.00	13.36
r							

<

* QC LIMITS: %D of amounts in the Continuing Calibration must be less than or equal to 15%.

200 ×10 / 15.6%

8D PCB ANALYTICAL SEQUENCE

Lab Name:				Cont	tract:			
Lab Code:		Case No.	:	SA	S No.	:	SDG No.	: AAA916
Instrument	ID: HP1				Init.	Calib.	Date(s):	09/17/2 09/
GC Column:	RTX-CLPE	STICIDES	2 ID:	0.32	(mm)			

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROG TCX: 8.00	GATE RT FROM I DCB: 2	BRATION			
	EPA	LAB	DATE	TIME	TCX	. DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	STD11660	STD11660	09/17/2	1304	7.97	20.11
02	STD21660	STD21660	09/17/2	1335	7.99	20.12
03	STD31660	STD31660	09/17/2	1406	8.00	20.13
04	STD41660	STD41660	09/17/2	1437	7.99	20.13
05	STD51660	STD51660	09/17/2	1509	8.00	20.13
06	STD61660	STD61660	09/17/2	1540	8.00	20.13
07	STD11254	STD11254	09/17/2	1643	7.98	20.12
08	STD21254	STD21254	09/17/2	1714	7.99	20.13
09	STD31254	STD31254	09/17/2	1745	8.00	20.13
10	STD41254	STD41254	09/17/2	1816	7.99	20.13
11	STD51254	STD51254	09/17/2	1848	7.98	20.13
12	STD61254	STD61254	09/17/2	1919	8.00	20.13
13	STD41248	STD41248	09/17/2	1950	7.99	20.13
14	STD41242	STD41242	09/17/2	2021	7.99	20.13
15	STD41232	STD41232	09/17/2	2052	7.99	20.13
16	STD41221	STD41221	09/17/2	2124	8.00	20.13
17	CC166001	CC166001	09/18/2	1401	8.00	20.13
18	MB82	MB82	09/18/2	1433	8.02	20.13 •
19	QC82	QC82	09/18/2	1507	8.02	20.13
20	fep£*WWWHffl*	L94080-1RE	09/18/2	1538	7.99	20.13
21	L940ai^2	L94080-2	09/18/2	1610	7.99	20.13
22	L94fl£0-3RE	L94080-3RE	09/18/2	1641	7.99	20.13
23		L94080-4	09/18/2	1712	7.98	20.13
24	CC166002	CC166002	09/18/2	1815	8.01	20.13
25	fe#4£6fe^SE;	L94081-1RE	09/18/2	1846	7.98	20.13
26	L94Q <b>^.</b> -4RE	L94081-4RE	09/18/2	1917	7.99	20.13
27	L94/81-5RE	L94081-5RE	09/18/2	1948	8.00	20.13
28		L94081-6RE	09/18/2	?01 9	7.99	20.13
29	L94081-7/ '	L94081-7if	09/18/2	2051	7.98	20.13
30		L94081-1MSR	09/18/2	2122	7.98	20.13
31		L94081-1MSDR	09/18/2	2153	7.97	20.11
32	CC166003	CC166003	09/18/2	2255	8.01	20.13
33	CC125401	CC125401	09/18/2	2327	7.99	20.13
34	CC125402	CC125402	09/19/2	1009	7.99	20.13
35	JMF^^^^*1	L94080-1	09/19/2	1038	7'.99	20.13
36 37	L94081-6	L94080-3R L94081-6	09/19/2 09/19/2	1116 1148	7.99 7.98	20.13 20.13

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

QC LIMITS (+/- 0.10 MINUTES) (+/- 0.10 MINUTES)

# Column used to flag retention time values with an asterisk.
* Values outside of QC limits.

page 1 of 2

FORM VIII PCB

00068

## 8D PCB ANALYTICAL SEQUENCE

Name:				Con	ntract:		
Code:		Case No.	:	SZ	AS No. :	SDG No.	: AAA916
strument	ID: HP	1			Init.	CalibDate(s):	09/17/2 09/17/2
GC Column:	RTX-CLE	PESTICIDES 2	2 ID:	0.32	(mm)		

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO TCX: 8.00					
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01 02 03 04 05 06 07	CC125403 L94081-1 L94081-4 L94081-5 CC125404	L94081-7D CC125403 L94081-1 L94081-4 L94081-5 CC125404 L94080-3	09/19/2 09/19/2 09/19/2 09/19/2 09/19/2 09/19/2 09/19/2	1219 1321 1353 1424 1455 1558 1629	7.98 7.99 7.99 7.99 8.00 8.00 7.99	20.12 20.13 20.13 20:13 20.13 20.13 20.13 20.13
08 09 10 11 12 13	L94081-7T>L L94081-1MS L94081-1MSD CC125405	L94081-7DL L94081-7DL L94081-1MS L94081-1MSD CC125405	09/19/2 09/19/2 09/19/2 09/19/2 09/19/2	1700 1731 1803 1834 1936	.7.97 7.98 7.99 7.98 8.01	20.12 20.12 20.13 20.12 20.13
14						
$16^{15}$						
17						
18						
19						
20						
21						
22						
2.4						
25						
26						
27						
28						
29						
21						
32						
33						
34						
35						
36						
37						

TCX = Tetrachloro-m-xylene (+/- 0.10 MINUTES) DCB = Decachlorobiphenyl (+/- 0.10 MINUTES)

QC LIMITS

# Column used to flag retention time values with an asterisk. * Values outside of QC limits.

FORM VIII PCB

8D PCB ANALYTICAL SEQUENCE

Lab Name:		Contract:	
Lab Code:	Case No. :	SAS No. :	SDG No. : AAA916CONF.
Instrument	ID: HP3	Init. Calib.	Date(s): 09/19/2 09/'
GC Column:	RTX-CLPESTICIDES 1 ID:	0.32 (mm)	

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROO TCX: 9.73	GATE RT FROM I DCB: 2	INITIAL CALI 21.35	IBRATION		
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01 02 03 04 05	1254STD 1254LSTD L94081-1	1254STD 1254LSTD L94080-3 L94080-1 L94081-1	09/19/2 09/19/2 09/19/2 09/19/2 09/19/2	1357 1429 1500 1531 1602	9.73 9.74 9.72 9.72 9.71	21.35 21.35 21.33 21.33 21.33
06 07 08 09 10 11	L94081-4 L94081-5 L94081-6 L94081-7 CC1254	L94081-4 L94081-5 L94081-6 L94081-7 CC1254	09/19/2 09/19/2 09/19/2 09/19/2 09/19/2	1634 1705 1736 1807 1910	9.72 9.71 9.71 9.71 9.70	21.33 21.32 21.33 21.33 21.32
12						
13						
14 15						
16						
17						(
18						•
19						
20						
21						
22						
23						
24						
25						
26						
2/						
20						
30						
31						
32						
33						
34						
35						
36						
37						

TCX = Tetrachloro-m-xylene

QC LIMITS (+/- 0.10 MINUTES) (+/- 0.10 MINUTES)

DCB = Decachlorobiphenyl

# Column used to flag retention time values with an asterisk. * Values outside of QC limits.

page 1 of 1

FORM VIII PCB

•

.

	10B PESTICIDE IDENTIFICA	EPA SAMPLE NO.		
	FOR MULTICOMPONENT	L94081-1		
Name:		Contract:		
Lab Code:	Case No.:	SAS No. :	SDG No.: A	AA916
Lab Sample ID	: L94081-1	Date(s)	Analyzed: 09/19/2	<u>oq/11 03-</u>
Instrument ID	(1) : HP1	Instrume	ent ID (2) : [4P3	
GC Column(1) :	RTX-CLPESTICIDES 2	ID: . 0.32 (mm)	GC Column(2) : <u>Rji'(</u>	<u>CiPtSi 1</u> ID <u>0.32</u>

			RT WI	NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
	1	13.66	13.57	13.77	24.12		
Aroclor-1254	2	14.55	14.46	14.66	130.30		
	3	15.00	14.90	15.10	151.17		
COLUMN 1	4	15.34	15.25	15.45	81.10		
	5	16.02	15.93	16.13	104.56	98.25	
	_						
	1		1453L	I4-T3-	iog.14		
	2	15.ia	/.*0.04	IT.3M	R - ^ 4	-	
	3	1.5.13	15 .*.<=>	i/^.as"	^3.35"		
COLUMN 2	4	lb.2*1	h.Z	i/o-m	II4.C3		
	. 5	16.^4	Ls Hi?	Itt.ffli?	<h.1*< td=""><td></td><td>1 ^</td></h.1*<>		1 ^
			= £=^ = E= =		$= = ^{ ^{ ^{ ^{ ^{ ^{ ^{ ^{ ^{ ^{ ^{ ^{ ^{ $		
	1					_	
	2					_	
	3					_	
COLUMN 1	4					-	
	5						
	1						
	2					-	
COLLBOL	5					-	
COLUMN 2	4					-	
	5						
	1						
	1 2					-	
						4	
COLUMN 1	4					-	
	5					-	
	5						
	1						
	$\frac{1}{2}$						
	3						
COLUMN 2	4						
	5					4	
1	1		1		1		

At least 3 peaks are required for identification of multicorrponent analytes.

page 1 of 1

PESTICIDE IDENTIFICATIO FOR MULTICOMPONENT AN	T 0 4 0 0 1 1 MG		
Lab Name:	Contract:	L94081-IMS	
Lab Code: Case No.:	SAS No.:	SDG NO. : AAA916	
Lab Sample ID: L94081-1MS	Date(s) Analyze	d: 09/19/2	
Instrument ID (1) : HP1	Instrument ID (2	2) :	
GC Column(1) : RTX-CLPESTICIDES 2 ID:	0.32 (mm) GC Colum	un(2) :	ID:

10B

			RT WI	NDOW		MEAN	
.ANALYTE	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D
ArocloX-1016 COLUMN 1\	$\overset{1}{\overset{2}{\overset{3}{\bullet}}}_{4}^{4}$	10.20 10.71 11.90 11.98 12.68	10.11 10.61 11.80 11.88 12.59	10.31 10.81 12.00 12.08 12.79	233.25 368.47 569.59 397.59 518.57	417.49	
COLUMN 2	4 5	\					
Aroclor-1260 COLUMN 1	5 1 2 3 4 5 1 2 3	14?^4 15.35^ 16.20 16.75 17.24	14.84 .15.25 <u>N16.i1</u> 16.67 17N15	15.04 15.45 16.31 16.87 17.35	494.90 475.44 420.94 443.89 375.30	442.10	4
	5			\\	\	-	
	1 2				- ^	-	
COLUMN 1	3 4 5					-	
	1 2				1		
COLUMN 2	3 4 5						

At least 3 peaks are required for identification of multicomponent analytes.

page 1 of 1

EPA SAMPLE NO.

		10B PESTICIDE IDENTIFICATIO	N SUMMARY	EPA SA	MPLE NO.
		FOR MULTICOMPONENT AN	ALYTES	т.940	181-5
	Name:		Contract:	10	
W	Lab Code:	Case No.:	SASNo.:	SDG No.: AA	A916
	Lab Sample ID	: L94081-5	Date(s)	Analyzed: 09/19/2	Ofl/ifiica.
	Instrument ID	(1): HP1	Instrume	nt ID (2) : <u>}-]p3</u>	
	GC Column(l) :	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	GC Column(2) : RT^O	-P^Tl- ID: <u>C3d-</u>

				RT WI	NDOW		MEAN	
	ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
		1	13 67	13 57	13 77	524 70		
	Aroclor-1254	2	14 56	14.46	14.66	511.19		
		$\frac{2}{3}$	15.00	14.90	15.10	467.20		
	COLUMN 1	4	15.35	15.25	15.45	824.19		
		5	16.03	15.93	16.13	552.60	575.97	
		1			1 4 1 5 1			
		2	: ^ ^	is Cu	<u>1-4.151</u>	& 3_V/3I	-	
		$\frac{2}{3}$	<u>1.~.a</u>	I.S.СП IS *·*	<u>1^.an</u> It* OS"	^O^4 oit	-	
	COLUMN 2	4		$\langle h_{-}3I \rangle$	UM	$\widetilde{K}io4 \mu M$	-	
		5	$\frac{\mu}{1^{1}}$	\is.lto	$U \ll \langle   \rangle D$	^ 5 . 3 D		3*ltf
					• • • • • • • •			J
		1					-	
		$\frac{2}{2}$					-	
JD	COLUMN 1	5					-	
1		4					-	
		5						
		1						
		2					-	
		3					-	
	COLUMN 2	4						
		5						
		1						
							-	
		$\frac{2}{3}$					-	
	COLUMN 1	4					-	
		5						
		1						
	-	2						
	COLLARIA	3					4	
	COLUMIN 2	4						
		3						

At least 3 peaks are required for identification of multicomponent analytes.

page 1 of 1

F	10B PESTICIDE IDENTIFICATIO	EPA	SAMPLE NO.	
	FOR MULTICOMPONENT AN	L94081-6		
Lab Name:		Contract:	_	
Lab Code:	Case No.:	SAS No.:	SDG No.:	AAA916
Lab Sample ID:	L94081-6	Date(s)	Analyzed: 09/19	0/2 <u>OH/I^IQ?</u> -
Instrument ID (	1): HP1	Instrume	nt ID (2) : <u>HP-3</u>	
GC Column(1) :	RTX-CLPESTICIDES 2 ID:	0.32 (mm)	GC Column(2) : $f$	<u>UX'ClP&amp;Sfl</u> ID: <u>Q."52-</u>

			RT WI	NDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
	1	13.66	13.57	13.77	2938.10		
Aroclor-1254	2	14.56	14.46	14.66	1659.16		
	3	15.00	14.90	15.10	1994.92		
COLUMN 1	4	15.35	15.25	15.45	2825.70		
	5	16.03	15.93	16.13	1546.67	2192.91	
	1			m-la		-	
	2	155.13.	uT.OH	i^.^M	<u>s23i1.SU</u>	-	
	3	<u>\-5.Ti</u>	I&.K5"	<u>\b-05</u>	^0.5.30	-	
COLUMN 2	4	$U^{-^{}}$	UP>3.	[bM]	J3S3. <n< td=""><td>-</td><td>* 1</td></n<>	-	* 1
	5	]l*.Z2>	)h.lip	$b^{-c}h$	£6?ao. 2-</td <td></td> <td>*.4</td>		*.4
	1						
	1					-	
	2					-	•
COLUMN 1	3					-	<u>л</u>
COLUMIN	5					-	Λ
	5						
	1						
	2					-	
	3					-	
COLUMN 2	4					-	
	5						
	1					_	
	2						
	3						
COLUMN 1	4					-	
	5						
	1						
	23					-	
COLUMN 2	1						
COLUMIN 2	5					-	

At least 3 peaks are required for identification of multicomponent analytes.

page 1 of 1

	т	94081 -						
Na	ame:		Con	tract:		-		
<b>W^ab</b> Lab Co	ode:	Case No.:	SA	SNo.:		SDG No. :	AAA916	
Lab Sa	ample ID: L9408	31-7R		Date(s)	Analyzed	: 09/18/	2	
Instru	ument ID (1): H	HP1		Instrum	ent ID (2)	:		
GC Col	lumn(1): RTX-C	LPESTICIDES 2 1	D: 0.	32 (mm)	GC Column	(2):		ID

10B

			RT WINDOW				MEAN	
	ANALYTE	PEAK	RT	FROM	TO	CONCENTRATION	CONCENTRATION	%D
	Aroclor-1254 COLUMN 1	1 2 3 4 5	13.6714.5615.0015.3516.02	13.5714.4614.9015.2515.93	13.77 14.66 15.10 15.45 16.13	11414.52 13549.70 17400.42 17289.71 7984.88	13527.85	
	COLUMN 2	1 2 3 4 5						
1/1	)	1 2 3						
	, COLUMN 1	4 5						
	COLUMN 2	1 2 3 4 5						
		1 2						
	COLUMN 1	3 4 5						
	COLUMN 2	1 2 3 4						
		5						
l								

At least 3 peaks are required for identification of multicomponent analytes

EPA SAMPLE NO.

	PESTICIDE IDENTIFICATI FOR MULTICOMPONENT A	ON SUMMARY NALYTES				
Lab Name:		Contract:		D-FC		
Lab Code:	Case No.:	SAS No.:	SI	DG No.: AA	A916	
Lab Sample ID:	L94081-7	Date(s)	Analyzed:	09/19/2	<u>0*Wiq 03</u> -	
Instrument ID	(1) : HP1	Instrur	ment ID (2)	: WP3		
GC Column(1) :	RTX-CLPESTICIDES 2 ID:	0.32 (mm) G	CColumn(2)	: ft,TK-CL	P£5T1 ID: <u>p.32</u>	

10B

			RT W	ENDOW		MEAN	
ANALYTE	PEAK	RT	FROM	ТО	CONCENTRATION	CONCENTRATION	%D
	1	13.67	13.57	13.77	13707.37		
Aroclor-1254	2	14.57	14.46	14.66	13018.07		
COLUBRI	3	15.00	14.90	15.10	12706.46		
COLUMN I	4	15.35	15.25	15.45	17143.69		
	5	16.03	15.93	16.13	/131.85	12741.49	
	1		1450		4.2 * 5.4		
	1-	IM.^	1453-	10.24	m 4 3 * . 5 ^	-	
	23	$l^*.)l$	1/5. LH	15-34	$\frac{1/*353.33.}{1000000000000000000000000000000000000$		
COLUMN 2		<u>\5.&lt;\/~</u> \10.7%	<b>7.8</b>	<u></u>	UUCh?.~		
	5	iif 23	$h_{h}$	<b>I</b> //.MI	<u>168 14</u> M5		
	5	111.23	<u>\D.1-D</u>	ΠρΑιε	100 14. MDL		
	1						
	2						
	3						С
COLUMN 1	4						
	5						
	1					-	
	2						
COLUMNE	3						
COLUMIN 2	4					-	
	5						
	1						
	2						
	3						
COLUMN 1	4						
	5						
	1						
	2						
COLUMBIA	3						
COLUMN 2	4					-	
	3						

At least 3 peaks are required for identification of multicomponent analytes.

page 1 of 1

EPA SAMPLE NO.

# Friend Inc.

≪ ●

*

•

Data File: /chem/hpl.i/8082r0917.b/E2989893.D Method: /chem/hpl.i/8082r0917.b/8082_PCBsec.M Sample Info: L94081-3 Misc Info: WG32788,02-004 Analysis Date: 19-SEP-2002 18:34 Sample Matrix: SOIL File Number: 9893

Dilution	Factor	10.0000
Sample	Weight	20.5502
Final	Volume	10.0000
Total	Solid	79.2000

Analytes (ug/Kg)

Aroclor-1016	
Aroclor-1260	1_&1
Tetrachloro-m-xylene	16.26%
Decachlorobiphenyl	17.28%

04\r65-

Analyst: CPW Report Date: 09/20/2002 06:44

Supervisor: Date:

/ IlioUL

UET CHEMISTRY TOTAL SOLIDS NOTEBOOK

Notebook Start Date	: 02-066 e : 17-SEP-02 21:06														Page: 73 1 of	/^
End Date SafnpLe K0.	: 17-SEP-02 21:06 Analysis . Date Time	Anat <u>tn.it</u>	Method	Dtshff	V <ilufl» c«t&amp;&gt;</ilufl» 	Initial Weight	1*t&2od ifeUftt	3rd&4th Weight	5th*6tH Vefcstvt:	7th&8th Weight	9tb&10th Weight	Final Result	ftpd	ttofts	1*5	5
connent/	Start:17-SEP-02 2 Stop :17-SEP-02 2	1:06 CIF 1:06	<b>&gt;</b> 3.0	i—.\$	\$:m	1.254"	am"				"(	SST			lt	rf
Competes	Start:17-SEP-02 21 Stop :17-SEP-02 21	1:06 CtF 1:06	<b>3</b> .0	1	5^	U2404	H 9 W				Т	Ο"				
SADIO-3 Comerits	Start:17-SEP-02 2 Stop :17-SEP-02 2	1:06 CLF 1:06	<b>3</b> .0		5.219	1.2568	4.1W1									
Comments	Start:17-SEP-02 21 Stop :17*SEP-02 21	L:06 ' 'CLI L:06	P 3.0	(	6*5832	1*247	6!'.82'l'2				1	&Т				
'foiftneftt 5	Start:17-SEP-02 2 Stop :17-SEP-02 2	1:06 CLF 1:06	9 3.0	<i>i</i> —	om	_i.a*	ΟΤ					<u>^</u>	-051	r		
LWWI-^ Comment* s	Start:17-SEP-02 21 Stop :17-SEP-02 21	1:06 CLF 1:06 '	9 3.0	7	M	-1.2472	5JK&*				6	8 X				
tftQftt*5 , Comments t	Start:17-SEP-02 21 Stop :t?-SEP-02 27 f	1:06 CLF 1:06	P 3.0	1 6	)*9795	1.259	7 _t «7,	^ , ^ _?	• " fitf:	[≁] Χ** ^s	<b>tf\$</b> [*]	8.9				
tftitWrfliS"-" Contents :	start:17-SEP-iJz- z'l Stop :17-SEP-02 21 :	rO'S CLF 1:06	P 3*0	"	ftlfltt	. T.2581 '	VX&t				^;	87T		^J %		
t W i - ? ' ' ' C4lfttleh.ts t	. Start;1?-SEP-62 2 Stop :T7-SEP-02 21	1:06QF 1:06	P 1.0	ib	mim	1.249	—nm				**7	7ZX		V		
	Start;17-SEP-02 21 Stop :17-SEP-02 21 Calculations:	:06 " CLP :06 Final Resul	9 3,0 lts = (fnl - wgt	14 \$ initia wgt	;*?8& ' al) x 10	1.2521 00000	11685				11	BTT				
	Ade. M.	1_	1/5 /2	samp]	Le											
00 /	aløst Signature	<u> ~ ~</u> ~ _	Date		Ма	anager Si	ignature			Date						
CD en															_	

f / ^

*ft



M

s

**Organic Extractions** 



Extracts Relinquished to:.

Comments: Clean-up Methods: 1. 3665 H₃SO₄ 2. 3620A florisil. 3. 3660A Hg





00197

							UG/LIN	CRDL
ASP 95-3 01/12/02	RXX-CLPES	Т 2	PG	ON COLLM	N	IDL	WATER	(UG/L)
Instrument#3	Run#l	<b>Run #2</b>	<b>Run #3</b>	Average	SO	SD*6.95	IDL	
alpha-BHC	3.64	3.74	3.73	3.70	0.0551	0.383	0.004	0.050
Heptachlor	4.82	4.92	4.99	4.91	0.0854	0.594	0.006	0.050
gamma-BHC	3.97	4.09	4.07	4.04	0.0643	0.447	0.004	0.050
Endosutfan I	3.88	4.05	4.13	4.02	0.128	0.887	0.009	0.050
Dieldrin	7.37	7.58	7.59	7.51	0.124	0.863	0.01	0.10
Endrin	8.77	8.89	8.98	8.88	0.105	0.732	0.01	0.10
4,4'-DDD	8.60	8.82	8.88	8.77	0.147	1.02	0.01	0.10
4,4'-DDT	9.79	9.99	10.04	9.94	0.132	0.919	0.01	0.10
Methoxychlor	58.26	59.00	59.19	58.82	0.491	3.41	0.03	0.50
Tetrachloro-m-xylene	4.49	4.62	4.62	4.58	0.0751	0.522	0.005	0.050
Decachlorobiphenyl	10.49	10.29	10.37	10.38	0.101	0.700	0.01	0.10
beta-BHC	5.09	5.02	5.22	5.11	0.101	0.705	0.007	0.050
delta-BHC	4.65	4.71	4.97	4.78	0.170	1.18	0.012	0.050
Aldrin	3.64	3.65	3.73	3.67	0.0493	0.343	0.003	0.050
Heptachlor epoxide	4.07	4.03	4.17	4.09	0.0721	0.501	0.005	0.050
alpha-Chlordane	4.18	4.16	4.32	4.22	0.0872	0.606	0.006	0.050
gamma-Chlordane	4.53	4.18	4.36	4.36	0.175	1.22	0.012	0.050
<b>4,4'-DDE</b>	8.10	7.94	8.42	8.15	0.244	1.70	0.02	0.10
Endosulfan sulfate	9.28	9.20	9.71	9.40	0.274	1.91	0.02	0.10
Endrin aldehyde	10.69	9.73	10.29	10.24	0.482	. 3.35	0.03	0.10
Endrin ketone	9.58	9.37	9.94	9.63	0.288	2.00	0.02	0.10
Endosulfan II	8.89	8.74	9.19	8.94	0.229	1.59	0.02	0.10
PCB 1016	106.01	105.20	106.90	106.04	0.850	5.91	0.1	1.0
PCB 1221	202.83	203.02	204.03	203.29	0.642	4.46	0.1	2.0
PCB 1232	105.99	105.07	104.41	105.16	0.796	5.53	0.1	1.0
PCB 1242	104.27	105.07	108.17	105.84	2.06	14.3	0.1	1.0
PCB 1248	101.79	101.90	101.19	101.63	0.379	2.64	0.1	1.0
PCB 1254	101.02	103.64	105.02	103.23	2.03	14.1	0.1	1.0
PCB 1260	102.25	102.84	103.11	102.74	0.437	3.04	0.1	1.0

C:\My Documents\QC Stuff\IDL's and MDL's\Semivolatile\[pest IDLxIs]0102

							UG/LIN	CRDL
ASP 95-3 01/12/02	RTX-CLPES	TT 1	PC	G ON COLUMN	1	IDL	WATER	(UG/L)
Instrument#3	Run#l	Run #2	Run #3	Average	SD	SD*6.95	IDL	
alpha-BHC	3.85	3.91	3.90	3.89	0.0321	0.223	0.002	0.05CU
Heptachlor	4.97	5.06	5.05	5.03	0.0493	0.343	0.003	0.05fl
gamma-BHC	4.06	4.12	4.11	4.10	0.0321	0.223	0.002	0.05?
Endosulfan I	4.90	4.90	4.83	4.88	0.0404	0.281	0.003	0.050
Dieldrin	8.49	8.62	8.66	8.59	0.0889	0.618	0.01	0.10
Endrin	9.38	9.59	9.48	9.48	0.105	0.730	0.01	0.10
4,4'-DDD	8.61	8.68	8.82	8.70	0.107	0.743	0.01	0.10
4,4'-DDT	9.88	9.89	<b>9.8</b> 7	9.88	0.0100	0.070	0.01	0.10
Methoxychlor	56.72	58.46	58.11	57.76	0.920	6.40	0.06	0.50
Tetrachloro-m-xylene	4.99	5.05	5.04	5.03	0.0321	0.223	0.002	0.050
Decachlorobiphenyi	10.75	11.00	11.05	10.93	0.161	1.12	0.01	0.10
beta-BHC	4.83	4.68	4.86	4.79	0.0964	0.670	0.007	0.050
delta-BHC	3.91	3.84	3.93	3.89	0.0473	0.328	0.003	0.050
Aldrin	4.37	4.32	4.35	4.35	0.0252	0.175	0.002	0.050
Heptachlor epoxide	4.70	4.62	4.74	4.69	0.0611	0.425	0.004	0.050
alpha-Chlordane	4.61	4.56	4.64	4.60	0.0404	0.281	0.003	0.050
gamma -Chlordane	4.84	4.71	4.87	4.81	0.0850	0.591	0.006	0.050
4,4'-DDE	8.56	8.38	8.72	8.55	0.170	1.18	0.01	0.10
Endosulfan sulfate	9.43	8.99	9.17	9.20	0.221	1.54	0.02	0.10
Endrin aldehyde	9.86	9.63	9.80	9.76	0.119	0.829	0.01	0.10
Endrin ketone	8.98	8.80	9.09	8.96	0.146	1.02	0.01	0.10
Endosulfan II	9.08	9.02	9.12	9.07	0.0503	0.350	0.01	0.10
PCB 1016	99.14	100.48	98.05	99.22	1.21	8.44	0.1	1.0
PCB1221	200.36	193.87	196.82	197.02	3.25	22.6	0.2	2.0
PCB 1232	97.97	96.72	<b>99.17</b>	97.95	1.22	8.51	0.1	<u> </u>
PCB 1242	99.14	100.08	101.34	100.19	1.10	7.67	0.1	<u> </u>
PCB 1248	101.82	101.01	<b>99.76</b>	100.86	1.04	7.22	0.1	i\$
PCB 1254	99.63	100.10	99.13	99.62	0.487	3.39	0.1	1.0
PCB 1260	100.74	100.76	101.10	100.87	0.199	1.39	0.1	1.0

<u>C:\My</u> Doci ments\QC Stuff\IDL's and MDL's\Semivolatile\[pest IDL.xls]0102

# ID

PESTICIDE ORGANICS ANALYSIS DATA SHEET

L94081-1 Name: Contract: SDG No. : AAA916 Lab Code: Case No. : SAS No. : Lab Sample ID: L94081-1 Matrix: (soil/water) SOIL Lab File ID: E2989884 20.0 (g/mL) G Sample wt/vol: Date Received: 09/17/2 % Moisture: 30,3 decanted: (Y/N) N Date Extracted:09/17/2 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 09/19/2 Concentrated Extract Volume: 10000 (up Dilution Factor: 10.0 Injection Volume: 2.0(uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 12674-11-2 — Aroclor-1016 C-3 -O-retf-U 1104-28-2_____Aroclor-1221" 11141-16-5____Aroclor-1232" 53469-21-9---_Aroclor-1242" /30 Q-±TU &3 &^r0^ U 11097-69-1--- Aroclor-1254"

11096-82-5- — Aroclor-1260"

-Aroclor-1248*

98.25

4>3D-^e6

johlo^L



W

- -

Data file : \chem\hpl.i\8082r0917.b\E2989884.D Lab Smp Id: 194081-1 Client Smp ID: L94081-1 Inj Date : 19-SEP-2002 13:53 Operator : CPW Inst ID: hpl.i Smp Info : L94081-1 Misc Info : WG32788/02-004 Comment : Method : \chem\hpl.i\8082r0917.b\8082_PCBsec.M Meth Date : 19-Sep-2002 16:32 Administra Quant Type: ESTD Cal Date : 17-SEP-2002 16:43, Cal File: E2989834.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF	10.000	Dilution Factor	(g)
Vf	10.000	Final volume	
Ws	20.030	Weight of sample extracted	
Uf	0.100	Unit Correction Factor	
TS	79.200	Total Solid	

				CONCENTRA	ATIONS		
				ON-COL	FINAL		
RT I	EXP RT	DLT RT	RESPONSE	( ug/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Te	trachlo	ro-m-xylene			CAS #:		
7.993	7.997	-0.004	274134	39.0223	245.98		
\$ 29 De	cachlor	obiphenyl			CAS #:		
20.127	20.130	-0.003	225375	47.1958	297.50		
25 Ar	oclor-1	254			CAS 8:	11097-69-1	
13.660	13.670	-0.010	3120	3.82699	24.12	80.00- 120.00	10000(MH)
14.550	14.563	-0.013	1799	20.6717	130.30	94.85- 13485	82.33
15.000	15.003	-0.003	1005	23.9824	151.17	72.82- 11282	32.21
15.337	15.350	-0.013	1611	12.8660	81.10	43.66- 83.66	51.63
16.017	16.033	-0.016	1792	16.5BB2	104.56	76.99- 116.99	57.44
		Average of	Peak Concentr	ations •	9B.25		

rO

lag Legend

« •

- TM  Compound response manually integrated.
  - H Operator selected an alternate compound hit

Y <xIO^A4) + * * *

• * * • + + ++

4



Tetrachloro-ro-xylene (7.993)

r^

Stt-

-ftroclor-1254	(13.660)	С	о
	C	с с	s
-Aroclor-1254	(14.550)	С	1
-Aroclor-1254	(15.000)	3	ft
s -Aroclor-1254	<15.337>	1	0
ссонон . <u>_</u> сн		3 1	T **
I - Aroclor-1254	<16.017)	>	
1 11100101 1201		3	0

Decachlorobiphenyl (20.127)

 $M_{-}$ 

00012

0)



Friend Inc.

Data File: /chem/hp3.i/l254FCONFIFJVIa.b/E3956153.D Method: /chem/hp3.i/l254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94081-1 Misc Info: CONFIRMATION Analysis Date: 19-SEP-2002 16:02 Sample Matrix: SOIL File Number: 6153

Dilution Fa	ctor 10.0000
Sample We	ight 20.0304
Final "Vo	lume 10.0000
Total Sol:	id 79.2000

Analytes (ug/Kg)

Aroclor-1254	99.89
Tetrachloro-m-xylene	138.94%
Decachlorobiphenyl	146.56%

Analyst: CPW Report Date: 09/20/2002 07:21

Supervisor: Date:

# ID PESTICIDE ORGANICS ANALYSIS DATA SHEET

<b>Name</b> :		Contract:		L94081	1-4
JLa Code:	Case No.:	SAS No.:	SDG N	o.: AAA	916
Matrix: (soil/water	) SOIL	L	ab Sample ID:	L94081-	4
Sample wt/vol:	20.5 (g/mL) G	L	ab File ID:	E298988	5
<pre>% Moisture: -^3»-M</pre>	decanted: (Y/N)	N D	ate Received:	09/17/2	
&&-IL: Extraction: (SepF/	Cont/Sonc) SONC	D	ate Extracted:	09/17/2	
Concentrated Extrac	t Volume: <u>i0000</u>	(uL) D	ate Analyzed:	09/19/2	
Injection Volume:	2.0(uL)	D	ilution Factor	: 10.0	
GPC Cleanup: (Y/N	) N pH: 7.	.0 S	ulfur Cleanup:	(Y/N)	Ν
CAS NO.	COMPOUND	CONCENT (ug/L o	RATION UNITS: r ug/Kg) UG/KC		Q
12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1248		^/ "?" 47	0-r&7 0-rer 77.68 0-rffT	
			^r t	GhĪQ\$	

4

FORM I PEST

Thru-Put Systems, Inc.

Data file : \chem\hpl.i\8082r0917.b\E2989885.D Lab Smp Id: L94081-4 Client Smp ID: L94081-4 19-SEP-2002 14:24 Inj Date Operator CPW Inst ID: hpl.i Smp Info Misc Info : L94081-4 : WG32788,02-004 Comment Method : \chem\hpl.i\8082r0917.b\8082_PCBsec.M Meth Date : 19-Sep-2002 16:32 Administra Quant Type: ESTD Cal Date : 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: Sample Matrix: SOIL 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF	10.000	Dilution Factor	(g)
Vf	10.000	Final volume	
Ws	20.529	Weight of sample extracted	
Uf	0.100	Unit Correction Factor	
Ts	68.600	Total Solid	

				CONCENTR.	ATIONS				
				ON-COL	FINAL				
RT 1	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RAN	IGE	RAT	ΊΟ
S 1 Te	trachlo	ro-m-xylene	1		CAS #t				
7.990	7.997	-0.007	286877	40.5761	288.12				
5 29 De	cachlor	obiphenyl			CAS #:				
20.127	20.130	-0.003	212827	44.6268	31B.31				
25 Ar	oclor-1	254			CAS #:	11097-69-1			
13.663	13.670	-0.007	18932	55.8471	396.56	80.00- 120	00	100	00(H)
14.553	14.563	-0.010	20302	62.5224	443.96	94.85- 134	85	107	24
15.000	15.003	-0.003	17432	67.0738	476.28	72.82- 112	82	92	08
15.340	15.350	-0.010	17129	93.8514	666.42	43.66- 83	66	90	48
16.023	16.033	-0.010	16503	57.0602	405.17	76.99- 116	99	87	17
		Average of	Peak Concentr	ations •	477.68				

Data File: <u>\chem\hpl.i\8082r0917.b\E2989885.D</u> Report Date: 19-Sep-2002 16:40

Flag Legend

!

 $\overset{\bullet}{H}$  - Operator selected an alternate compound hit

## Y Cx10"4)





Tetraohloro-m-xylene (7.990)

r--ftroclor-1254 (13.6635 -Aroclor-1254 <14*553) -Aroclor-1254 (15.000) -Aroclor-1254 (15.340) -flroclor-1254 (16.023)

"O # tor 0 E 3"

00*'Umm

(U 3 ID C*

Decachlorobiphenyl (20.127)

В

r

6

00020







## -Tetraohloro-m-xylerte (9.717>

p- -ftroclor-1254 <14.600> -ftroclor-1254 <15.123)

-ftroclor-1254 <15.930> -ftroclor-1254 <16.290> -ftroclor-1254 <16.833>

-Deoachlorobiphenyl <21.330>



0 0 — O TJ 3 C T (*

> 3" W

# Friend Inc.

Data File: /chem/hp3.i/1254FCONFIRMa.b/E3956154.D Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94081-4 Misc Info CONFIRMATION Analysis Date 19-SEP-2002 16:34 Sample Matrix SOIL File Number 6154

Factor	10.0000
Weight	20.5290
Volume	10.0000
Solid	68.6000
	Factor Weight Volume Solid

Analytes (ug/Kg)

Aroclor-1254	540.65
Tetrachloro-m-xylene	136.08%
Decachlorobiphenyl	144.23%

Analyst: CPW Report Date: 09/20/2002 07:21

Supervisor: Date:

ft	Nar	me:		Contract	:	L94	1081-5		
W	Lab Co	de:	Case No. :	SAS No.	:	SDG No.: A	AA916		
	Matrix	: (soil/water	) SOIL		Lab Sample	e ID: L9408	81-5		
	Sample	wt/vol:	21.9 (g/mL) G		Lab File	ID: E2989	9886		
	% Mois	ture: -©-i\.	/ decanted: (Y/N)	N	Date Rece	ived: 09/1	7/2		
	Extrac	tion: (SepF/	Cont/Sonc) SONC		Date Extr	Extracted:09/17/2			
	Concen	trated Extract	Date Anal	Analyzed: 09/19/2					
	Inject	ion Volume:	2.0(uL)		Dilution Factor: 10.0				
	GPC Cl	eanup: (Y/N	0	Sulfur Cleanup: (Y/N) N					
	CAS NO. COMPOUND				CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q				
4 '	k	12674-11-2 1104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5	- <u>Aroclor-1016</u> - <u>Aroclor-1221</u> - <u>Aroclor-1232</u> - <u>Aroclor-1242</u> - <u>Aroclor-1254</u> - <u>Aroclor-1260</u> - <u>Aroclor-1248</u>			51 Ores si a-©? 575.97 SI &7t& 51 jQ-0-5	บ บ บ P น น		

/oH/CX

## Thru-Put Systems, Inc.

Data file \chem\hpl.i\8082r0917.b\E2989886.D L94081-5 Client Smp ID: L94081-5 Lab Smp Id 19-SEP-2002 14:55 Inj Date CPW Inst ID: hpl.i Operator L94081-5 Smp Info Misc Info WG32788,02-004 Comment Method \chem\hpl.i\8082r0917.b\8082_PCBsec.M 19-Sep-2002 16:32 Administra Quant Type: ESTD Meth Date 17-SEP-2002 16:43 Cal File: E2989834.D Cal Date Als bottle 1 Dil Factor 10.00000 Integrator Falcon Compound Sublist: PCB.sub Target Version: 3.40 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 21.925 \\ 0.100 \\ 88.900$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

				CONCENTRATIONS						
				ON-COL	FINAL					
RT 1	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET	RAN	GE	RAI	'IO
S l Te	trachlo	ro-m-xylene		CAS t:						
7.997	7.997	0.000	250486	36.1387	185.41					
\$ 29 De	cachlor	obiphenyl			CAS ft:					
20.127	20.130	-0.003	208199	43.9531	225.50					
25 Arcolor-1254 (As fl: 1100)						11097-6	9-1			
13 667	13 670	_0 003	33043	102 271	524 70	80 00-	120	0.0	100	00(H)
14 557	14 5070	0.005	26711	102.271	524.70	04.05	120	00	111	10
14.557	14.503	-0.006	20/11	99.0385	511.19	94.85-	134	85	111	10
14.997	15.003	-0.006	26577	91.0631	467.20	72.B2-	112	82	80	43
15.347	15.350	-0.003	29926	160.647	824.19	43.66-	83	66	90	57
16.027	16.033	-0.006	34913	107.709	552.60	76.99-	116	99	105	66
		Average of	Peak Concentr	ations -	575.97					

#### Y <x10~4)





Tetrachloro-m-xylene (7.997)



-Aroolor-1254 <13.667) »

a____Aroolor-1254 (16.027)

Deoachlorotaiphenyl (20.127)

a.

3"
Data File: <u>\chem\hpl.i\8082r0917.b\E2989886</u>.D Report Date: 19-Sep-2002 16:40

^fcgc Flag Legend

H - Operator selected an alternate compound hit.



Data File: /chem/hp3.i/l254FCONFIRMa.b/E3956155.D Method: /chem/hp3.i/l254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94081-5 Misc Info: CONFIRMATION Analysis Date: 19-SEP-2002 17:05 Sample Matrix SOIL File Number 6155

Dilution Factor	10.0000
Sample Weight	21.9251
Final Volume	10.0000
Total Solid	88.9000

Analytes (ug/Kg)

Aroclor-1254	745.14
Tetrachloro-m-xylene	133.89%
Decachlorobiphenyl	142.94%

Analyst: CPW Report Date: 09/20/2002 07:21

Thru-Put Systems, Inc

Data file : <u>\chem\hpl</u>.i\8082r0917.b\E2989880.D Lab Smp Id: L94081-6 Client Smp ID: L94081-6 Inj Date : 19-SEP-2002 11:48 Operator : CPW Inst ID: hpl.i Smp Info : L94081-6 Misc Info : WG32788,02-004 Comment : WG32788,02-004 Method : <u>\chem\hpl.i\8082r0917.b\8082_PCBsec.M</u> Meth Date : 19-Sep-2002 16:32 Administra Quant Type: ESTD Cal Date : 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle: 1 Dil Factor: 10.00000 Integrator: Falcon Compound Sublist: PCB.sub Target Version: 3.4 0 Sample Matrix: SOIL Processing Host: TARGET3

Concentration Formula: Amt * DF * ((Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF Vf Ws Uf Ts	$10.000 \\ 10.000 \\ 21.409 \\ 0.100 \\ 68.700$	Dilution Factor Final volume Weight of sample extracted Unit Correction Factor Total Solid	(g)

				CONCENTRA	ATIONS		
				ON-COL	FINAL		
RT I	EXP RT	DLT RT	RESPONSE	(ug/L)	(ug/Kg)	TARGET RANGE	RATIO
\$ 1 Te	trachlo	ro-m-xylene			CAS «:		
7.983	7.997	-0.014	233125	34.0217	231-31		
S 29 De	cachlor	obiphenyl			CAS H:		
20.127	20.130	-0.003	199295	42.2721	287.40		
25 Ar	oclor-1	254			CAS ft:	11097-69-1	
13.6G3	13.670	-0.007	133311	432.144	2938.10	80.00- 120.00	100.00(H)
14.557	14.563	-0.006	100548	244.034	1659.16	94.85- 134.85	7542
14.997	15.003	-0.006	103717	293.417	1994.92	72.82- 112B2	77.80
15.347	15.3SC	-0.003	78783	415.611	2B25.70	43.66- 83.66	59.10
16.027	16.033	-0.006	78451	227.4BB	1546.67	76.99- 116.99	58 -B5
		Average of	Peak Concentr	ations •	2192.91		



٠

٠

L94081-6

Lab Name:		Contract:	
Lab Code:	CaseNo.:	SAS No. :	SDG No.: AAA916
Matrix: (soil/water	) SOIL	Lab Samp	le ID: L94081-6
Sample wt/vol:	21.4 (g/mL) G	Lab File	ID: E2989880
% Moisture: ~& <i>3\.3</i>	decanted: (Y/N)	N Date Rec	eived: 09/17/2
Extraction: (SepF/	Cont/Sonc) SONC	Date Ext	racted:09/17/2
Concentrated Extrac	t Volume: <u>10000</u>	(uL) Date Ana	lyzed: 09/19/2
Injection Volume:	2.0(uL)	Dilution	Factor: 10.0
GPC Cleanup: (Y/N	I) N pH: 7.(	) Sulfur C	leanup: (Y/N) N
CAS NO.	COMPOUND	CONCENTRATION ( (ug/L or ug/Kg	JNITS: ) UG/KG Q
12674-11-2 1104-28-2 11141-16-5- 53469-21-9 11097-69-1 11096-82-5	- Aroclor-1016 Aroclor-1221" - Aroclor-1232" - Aroclor-1242" - Aroclor-1254" - Aroclor-1260" Aroclor-1248"		/VOj^i4-U &>%&rtrru 2192.91 6Tiuo^ % £

 $\frac{\sqrt{c}\cdot \hat{ft}}{c}$ 

FORM I PEST

• •

	Page 3
Instr-umentt hpl.i	CC
Å	CO
Operator: CPU	0
Column diameter: 0*32	0
- chem/hpl i/2022-0017 b/E202020 D	0
	Instr-umentt hpl.i Operator: CPU Column diameter: 0*32

1.5-



Data File: \chem\hpl.i\8 082r0 917.b\E2 98 9880.D Report Date: 19-Sep-2002 16:40

QC Flag Legend

H - Operator selected an alternate compound hit.



Data File: /chem/hp3.i/1254FCONFIRMa.b/E3956156.D Method: /chem/hp3.i/1254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94081-6 Misc Info: CONFIRMATION Analysis Date: 19-SEP-2002 17:36 Sample Matrix: SOIL File Number: 6156

actor	10.	0000	1
eight	21.	4094	
olume	10.	0000	Ì
lid	68.	7000	)
	actor eight olume lid	actor 10. eight 21. olume 10. lid 68.	actor 10.0000 eight 21.4094 olume 10.0000 lid 68.7000

Analytes (ug/Kgi

Aroclor-1254	2377.17
Tetrachloro-m-xylene	121.61%
Decachlorobiphenyl	139.99%

Analyst: CPW Report Date: 09/20/2002 07:21

Data file : <u>\chem\hplyi\8082r0917.b\E2989891.D</u> Lab Smp Id: L94081-7DL Inj Date : 19-SEP-2TD02 17:31 Client .Smp ID: L94081-7DL Operator CPW Inst ID: hpl.i L94081-7 Smp Info Misc Info ; WG32788,02-004 Comment \chem\hpl.i\8082r0917.b\8082_PCBsec.M Method Meth Date 20-Sep-2002 06:21 Administra Quant Type: ESTD Cal Date 17-SEP-2002 16:43 Cal File: E2989834.D Als bottle 1 Dil Factor 50.00000 Integrator Compound Sublist: PCB.sub Sample Matrix: SOIL Target Version: 3.40 Processing Host: TARGET3

Concentration Formula: Amt * DF * {(Vf / Ws) * Uf) / Ts * 1000

Name	Value	Description	
DF	50.000	Dilution Factor	g)
Vf	10.000	Final volume	
Ws	20.677	Weight of sample extracted (	
Uf	0.100	Unit Correction Factor	
Ts	72.400	Total Solid	

				CONCENTR	ATIONS		
				ON-COL	FINAL		
RT H	EXP RT	DLT RT	RESPONSE	.{ ug/L)	(ug/Kg)	TARGET RANGE	RATIO
					<b>6 1 1 1 1</b>		
S 1 Te	trachlo	ro-m-xylene			CAS tt:		
7.983	7.997	-0.014	32418	9.54760	318.88		
S 29 De	cachlor	obiphenyl			CAS It:		
20.123	20.130	-0.007	33446	10.9617	366-11		
25 Ar	oclor-1	254			CAS #:	11097-69-1	
13.673	13.670	0.003	126705	410.411	13707.37	80.00- 120.00	100.00(H)
14.567	14.563	0.004	164979	389.772	13018.07	95.55- 135.55	130.21
15.003	15.003	0.000	136892	360.442	12706.46	70.72- 110.72	108.04
15.350	15.350	0.000	97501	513.297	17143.69	42.78- 82.78	76:95
16.027	16.033	-0.006	73379	213.534	7131.85	76.54- IIS.54 .	57.91
		Average of	Peak Concentr	ations -	12741.49		

.

.

Data File: <u>\chem\hpl.i\8082r0917.b\E2989891</u>. Report Date: 20-Sep-2002 06:43

^fcQC Flag Legend

H - Operator selected an alternate compound



Data File: /chem/hpl.i/8082r0917.b/E2989891.D Method: /chem/hpl.i/8082r0917.b/8Q82_PCBsec.M Sample Info: L94081-7 Misc Info: WG32788,02-004 Analysis Date: 19-SEP-2002 17:31 Sample Matrix: SOIL File Number: 9891

Dilution F	'actor	50.0000
Sample W	leight	20.6774
Final V	olume	10.0000
Total Sc	olid	72.4000

Analytes (ug/Kg)

Aroclor-1016	0.00
Aroclor-1221	0.00
Aroclor-1232	0.00
Aroclor-1242	0.00
Aroclor-1254	12741.49
Aroclor-1260	0.00
Aroclor-1248	0.00
Tetrachloro-m-xylene	95.48%
Decachlorobiphenyl	109.62%

Analyst: CPW Report Date: 09/20/2002 06:43

/ t/y



Data File: /chem/hp3.i/l254FCONFIRMa.b/E3956157.D Method: /chem/hp3.i/l254FCONFIRMa.b/8082_PCBsec.M Sample Info: L94081-7 Misc Info: CONFIRMATION Analysis Date: 19-SEP-2002 18:07 Sample Matrix: SOIL File Number: 6157

Dilution	Factor	100.0000
Sample	Weight	20.6774
Final	Volume	10.0000
Total	Solid	72.4000

Analytes (ug/Kg)

Aroclor-1254	16188.80
Tetrachloro-m-xylene	158.49%
Decachlorobiphenyl	287.45%

Analyst: CPW Report Date: 09/20/2002 07:21

4f41 7

^\]/^

^ / | \ ^ Environmental and Computer Technology Consultants

### Data Validation Report

SDG#	94662
Validation Report Date	April 28, 2003
Validation Guidance	USEPA Region 2 Guidelines for Data Review SW 846 Method 8082
Client Name	Cummings-Riter
Project Name	Viacom/Horseheads
Laboratory	Friend Laboratory Inc.
Method(s) Utilized	SW 846 8082
Analytical Fraction	PCBs

Samples/Matrix:

Date Sampled	Sample ID	Laboratory ID	PCBs	Matrix
9/26/02	A-B-S-E-R-002	94662-1	Х	Solid
9/26/02	A-B-SS-E-R-002	94662-2	Х	Solid
9/26/02	A-B-S-E-B-001	94662-3	Х	Solid

Analytical data in this report were screened to determine analytical limitations of the data based on specific quality control criteria. This screening assumes analytical results are correct as reported and merely provides an interpretation of the reported quality control results. A minimum of 10% of laboratory calculations has been verified as part of this validation. Specific findings on analytical limitations are presented in this report. Annotated Form Is or spreadsheets for samples reviewed are included after the Data Assessment Findings. Form Is for the MS/MSD samples and spreadsheets are not annotated.

#### SUMMARY

The sample set for Viacom/Horsehead consists of three solid field samples. These samples were analyzed for the parameters as provided above. The findings presented in this review of the analytical data assume that the information presented by the analytical laboratory is correct. This review is identified as a false positive/false negative review, and therefore, does not include the review of some quality control (QC) items. Those included in the review are listed below.

The polychlorinated biphenyl (PCBs) findings are based upon the assessment of the following:

#### False Positives/False Negatives Validation

- * Data Completeness
- * Holding Times
- * Calibration and GC Performance
- * Blanks
- * Analytical Sequence Check
  - Target Compound Identification
    - Compound Quantitation and Reported Detection Limits
    - Chromatogram Quality

* Criteria were met for this evaluation item.

This evaluation was conducted in accordance with USEPA Region II SOP No. HW-23B (May 2002), USEPA CLP National Functional Guidelines for Organic Data Review and the analytical method. Findings from this evaluation should be considered when using the analytical data. This report presents a summary of the data qualifications based on the review of the aforementioned evaluation criteria. This is followed by annotated Form Is/ spreadsheets. Finally, the worksheets used to perform the evaluation are provided.

#### **FINDINGS**

*

#### **Polychlorinated Biphenyls (PCBs)**

#### **1.** Compound Quantitation

The percent difference between columns exceeded the 25% quality control limit. For the following samples and compounds, qualify PCB results as indicated in the table below. Samples were qualified based on SOP HW-23, Section 12.6.

Sample	Compound	% Difference	Qualifier
A-B-S-E-R-002	Aroclor 1254	48.7%	J
A-B-S-E-B-001	Aroclor 1254	50%	J

#### <u>NOTES</u>

#### **Polychlorinated Biphenyls (PCBs)**

#### **Completeness**

The USEPA Region II SOP No. HW-23B has the following sections that are not applicable to this project because it is a false positive/false negative review:

- Surrogate Recovery (Form 2)
- Laboratory Control Sample
- Matrix Spikes (Form 3)
- Contamination
- GC Apparatus and Materials
- Extraction Techniques for Sample Preparation
- Field Duplicates

The cooler temperature upon receipt at the laboratory was 6 C. Data are not qualified upon this basis.

#### <u>Calibration</u>

The laboratory used linear regression to calculate PCB results. The use of linear regression is permissible for SW-846 methodologies. The laboratory met the acceptance criteria specified in Section 7.5.2 of Method 8000B (r value greater than or equal to 0.99).

Data summary forms (including calibration factors) for the initial and continuing calibration is not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the calibration factor information. Because Aroclor 1254 was identified as a constituent of concern, the data summary information for the second column is provided for the continuing calibration. Data are not qualified on this basis.

The percent difference (%D) per peak for multi-standard Aroclors are provided. For SW 846, the laboratory used the average Aroclor concentration to determine the %D. Data are not qualified because the average value is used.

#### **Retention Time**

Retention time windows are not determined by the use of three standards for single standard calibration Aroclors. The center of the retention time window is defined as the retention time of the midpoint standard from the initial calibration. For the multi-standard calibration Aroclors, the center of the retention time window is the mean of the retention time generated from each standard. The retention time windows are the mean + 0.1 minutes. Data are not qualified on this basis.

Retention time windows are not provided for the second column except for Aroclor 1254. The second column is used only for fingerprint confirmation, therefore, the laboratory does not provide the retention time window information. Because Aroclor 1254 was identified as a constituent of concern, the retention time information for the second column is provided. Data are not qualified on this basis.

#### **Compound Quantitation**

Samples were analyzed and reported at a dilution due to the presence of target compounds. Dilutions for samples are presented below. Reporting limits were adjusted for percent solids and dilutions.

A-B-S-E-R-002, A-B-SS-E-R-002, IOx A-B-S-E-B-002

## **Glossary of Data Qualifiers**

u	Not Detected.	The associated number indicates approximate sample
		concentration necessary to be detected.
UJ	Not Detected.	Quantitation limit may be inaccurate or imprecise.
J	Analyte Present.	Reported value may not be accurate or precise.
N	Consider Present.	Tentative identification. Special methods may be needed to confirm its presence or absence in future sampling efforts.
R	Unusable Result.	Analyte may or may not be present in the sample.
UK	Unusable Result.	Analyte may or may not be present in the sample.

# END

OF