

Imagine the result

NYSEG

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site Elmira, New York NYSDEC Site Number: 808018

May 2015

(Thans) Bank

Nicholas (Klaus) Beyrle Project Geologist

Bruce W. Ahrens Associate Vice President

Margaret Carrillo-Sheridan, P.E. Vice President

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

Prepared for: NYSEG

Prepared by: ARCADIS of New York, Inc. 295 Woodcliff Drive Third Floor Suite 301 Fairport New York 14450 Tel 585 385 0090 Fax 585 385 4198

Our Ref.: B0013134.0001

Date: May 2015

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	Introdu	iction 1		
	1.1	Backgr	ound	1
	1.2	Objecti	ves	3
2.	Performance Monitoring			5
	2.1	Compa	rison of DO Measurement Methods	6
	2.2	DO Co	ncentration Results	7
	2.3	Biological Oxygen Demand		8
	2.4	pH		9
	2.5	DO and pH Values After New Sock Deployment		10
		2.5.1	pH Values in AWs Over Time	10
		2.5.2	DO Concentrations in AWs Over Time	11
3.	Effectiv	/eness	Monitoring	13
	3.1	Ground	dwater Movement	13
	3.2	Ground	dwater Quality	15
		3.2.1	Dissolved BTEX	15
		3.2.2	Dissolved PAH COCs	16
	3.3	Dissolv	ed BTEX in Performance Monitoring Wells	17
4.		Monitor	ing Results	19
5.	Treatment System Operation and Maintenance			20
	5.1	Treatment System Maintenance		
		5.1.1	Monitoring Wells	21
		5.1.2	Application Wells	22
		5.1.3	Performance Monitoring Wells	23
		5.1.4	NAPL Recovery Wells	23
	5.2	5.2 Replacement of Oxygen-Releasing Material		
	5.3	Annual	Site Inspection	24
6.	Disturb	ance A	ctivities in Potentially Impacted Areas	26

Table of Contents

7.	Conclusions and Recommendations			27
	7.1	Conclu	Conclusions	
		7.1.1	Performance Monitoring	27
		7.1.2	Effectiveness Monitoring	28
		7.1.3	NAPL Monitoring	29
		7.1.4	Treatment System O&M	29
	7.2	Recom	commendations	
		7.2.1	Performance Monitoring	30
		7.2.2	Effectiveness Monitoring	30
		7.2.3	NAPL Monitoring	30
		7.2.4	Treatment System Operation and Maintenance	31
8.	Certification Statement 33		32	
9.	Refere	nces		33

Tables

Table 1	Monitoring, Gauging, and Operation & Maintenance Schedule
Table 2	Treatment System Dissolved Oxygen Data
Table 3	pH Within AWs and PMWs
Table 4	Dissolved Oxygen in Application Wells Over Time
Table 5	Groundwater Analytical Data
Table 6	pH in Application Wells Over Time
Table 7	Gauging Data

Figures

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Performance Monitoring Well Data
Figure 4	Groundwater Treatment System Cross-Section
Figure 5	Water Table Map - August 4, 2014

Table of Contents

ł	Figure 6	Water Table Map – February 23, 2015	
ł	Figure 7	Total BTEX Concentations in Groundwater	
I	Figure 8	PAH COC Concentrations in Groundwater	
I	Figure 9	Photograph Orientation Figure	
Graph	Graphs		
C	Graph 1	Dissolved Oxygen Readings from PMW-1 and PMW-2	
C	Graph 2	Dissolved Oxygen Readings from PMW-3 and PMW-4	
C	Graph 3	Dissolved Oxygen Readings from PMW-5 and PMW-6	
C	Graph 4	BTEX in PMW-2 Over Time	
(Graph 5	BTEX in PMW-4 Over Time	
C	Graph 6	BTEX in PMW-6 Over Time	
Annondix			

Appendix

А	Data Usability Summary Reports (on Compact Disc)
В	DNAPL Recovery Summary
С	Site Inspection Form
D	Site Inspection Photographic Logs
Е	Well Inspection Photographic Logs
F	Certification Statement

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

1. Introduction

This *Annual Periodic Review Report* (report) summarizes monitoring results collected and operation and maintenance (O&M) activities conducted during the second year of operation of the New York State Department of Environmental Conservation-(NYSDEC-) selected remedy for the Madison Avenue former manufactured gas plant (MGP) site. The former MGP site is located in the City of Elmira, Chemung County, New York (**Figure 1**). The site is approximately 6 acres in size and occupies most of the city block bounded by East Clinton Street, Madison Avenue and East Fifth Street (**Figure 2**).This report covers the monitoring period from May 2014 (Q5 Quarterly Visit) through February 2015 (Q8 Annual Visit).

Recommendations based on evaluation of data collected during the reporting period are also included. Verification from NYSEG that site controls were in place and effective, and that no changes have occurred at the site that would impair the ability of the controls to protect public health and the environment, is included as an appendix.

1.1 Background

The NYSDEC-selected soil and groundwater remedies for the site are presented in the Record of Decision (NYSDEC, 2008) (ROD). The soil remedy for the site was completed in January 2012; remedial components associated with the groundwater treatment and non-aqueous phase liquid (NAPL) recovery systems were subsequently installed in October 2012.

In general, the soil remedy consisted of:

- Excavation of approximately 9,820 tons of soil/fill containing visual evidence of heavy MGP-related impacts from three areas of the site at depths up to 15 feet below ground surface (bgs)
- In-situ soil stabilization (ISS) of approximately 7,811 cubic yards (cy) of soil exhibiting visual evidence of heavy MGP-related impacts at depths up to 28 feet bgs in 10 discrete areas of the site
- Excavation and removal of an oil/tar separator

In addition, the following were encountered during implementation of the site remedy and were removed for off-site disposal:

Madison Avenue Former MGP Site

- A shallow area (approximately 6,250 square feet [sf]) containing purifier waste that was observed on the eastern portion of the site during excavation of a test pit
- An abandoned electrical line encased in concrete
- An abandoned section of railroad

The groundwater remedy consists of increasing the oxygen content of groundwater in the southwest corner of the site to enhance natural biodegradation of MGP-related contaminants of concern (COCs). The ROD identifies the following COCs for groundwater:

- Four (4) volatile organic compounds (VOCs):
 - Benzene Toluene Ethylbenzene Xylene
- Six (6) polycyclic aromatic hydrocarbons (PAHs):
 - Benzo(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(k)fluoranthene Chrysene

The technology of enhancing the population of naturally occurring indigenous bacteria is targeted at the single-ringed, less complex, more mobile benzene, toluene, ethylbenzene, and xylene (BTEX) compounds rather than the multi-ringed, complex PAH compounds. While some reduction in dissolved levels of PAHs associated with source removal/ISS may be anticipated, monitoring concentrations of BTEX compounds is most appropriate for evaluating the effectiveness of the groundwater remedy. However, PAHs (particularly the six identified as COCs) are also considered when evaluating the groundwater remedy.

Oxygen-enhancement of groundwater is accomplished through application of oxygen releasing compounds (i.e., Adventus EHC-O oxygen-releasing socks) in site

Madison Avenue Former MGP Site

Application Wells (AWs). The objective of the groundwater treatment system is to mitigate BTEX migration beyond the southwest property boundary. The in-situ groundwater remedy consists of:

- Nineteen (19) 4-inch diameter AWs (AW-1 through AW-19); each AW contains a stainless steel canister containing oxygen-releasing material
- Six Performance Monitoring Wells (PMW-1 through PMW-6); three PMWs are located hydraulically upgradient from the AWs, three are located hydraulically downgradient

NAPL monitoring and removal is also a component of the site remedy. The NAPL collection network consists of five NAPL collection wells for passive removal of MGP-related NAPL:

- NRW-1 through NRW-4 (installed during site remedial actions in 2012)
- NAPL Monitoring Well NMW-0402S (previously existing well installed in 2004)

Locations of the groundwater treatment and monitoring wells and NAPL collection wells are shown on **Figure 2**. Soil boring and well construction logs are included in the *Site Management Plan* (ARCADIS, 2014) (SMP). The SMP also includes an *Engineering and Institutional Control Plan*, a *Monitoring Plan*, an *Operation and Maintenance Plan*, and inspection and reporting requirements.

1.2 Objectives

As stated in the SMP, the objectives of this Annual Report are to:

- Present and evaluate the site-wide data collected during the monitoring period
- Present conclusions indicating whether the treatment system objectives, as defined in the ROD and SMP, and presented herein, are being achieved
- Present recommendations for modifications to the treatment system and/or monitoring requirements based on the evaluation of treatment system data

Prior to startup of the groundwater treatment, a Baseline Sampling Event was conducted in April 2013 to document pre-treatment conditions. The initiation of oxygen-

Madison Avenue Former MGP Site

enhancement of groundwater was conducted after Baseline groundwater sampling was completed.

As required by the SMP, during this reporting period (Q5 through Q8):

- Performance monitoring, effectiveness monitoring, and ECH-O sock replacement were conducted semi-annually
- NAPL was gauged, and removed as required, on a quarterly basis
- Well inspection and site inspection were conducted annually

A summary of monitoring and O&M tasks completed, along with associated dates tasks were conducted, is presented in **Table 1**.

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

2. Performance Monitoring

The *Monitoring Plan* included in the SMP describes performance and effectiveness monitoring requirements for evaluating the site remedy. *Performance monitoring is the assessment of physical and chemical parameters of the treatment system to determine if the remedy is performing as designed.* The performance monitoring program presented in the SMP was developed to document that the groundwater treatment system is delivering oxygen to the groundwater within the AWs (i.e., treatment area). Enhancement of oxygen could stimulate growth of indigenous biological populations and thereby enhance biodegradation of COCs within the treatment area.

As stated above, the technology of enhancing biodegradation targeted at BTEX compounds rather than PAH compounds; therefore, monitoring concentrations of BTEX compounds is most appropriate for evaluating effectiveness of the treatment system. However, some reduction in dissolved levels of PAHs associated with source removal/ISS may be anticipated; therefore, PAHs are also considered during the evaluation of the remedy.

As required by the SMP, performance monitoring was conducted semi-annually during the second year of treatment system operation (August 2014 [Q6] and February 2015 [Q8]).

Performance monitoring consisted of:

- Measuring and recording DO concentrations from each of the 19 AWs to verify that the Adventus socks are contributing oxygen to groundwater
- Measuring and recording DO concentrations and depth to bottom at each of the 6 PMWs
- Collecting field measurements of pH from each of the 6 PMWs and 19 AWs

Measurements of DO concentrations were collected using two field methods:

- Flow-through cell equipped with a DO electrode (YSI, Inc.)
- Colorimetric testing using CHEMet ampoules

Madison Avenue Former MGP Site

Two different CHEMet ampoules were used to measure DO. For concentrations greater than 1 part per million (ppm), CHEMet kit #K-7512 was used; for concentrations less than or equal to 1 ppm, kit #K-7501 was used.

DO and pH measurements were collected from the AWs and PMWs prior to change out of the Adventus oxygen-releasing socks during the Q6 and Q8 visits. Tabulated concentrations of DO and pH collected prior to change out of the socks are presented in **Table 2** and **Table 3**, respectively. While not required as part of the performance monitoring, DO measurements within the AWs were also collected on several successive days after change out of the socks during both events. DO within the AWs over time data are presented in **Table 4**.

2.1 Comparison of DO Measurement Methods

Comparisons of DO data obtained using the two field methods for each of the 6 PMWs during the Baseline Event through Q8 are presented on **Graphs 1 through 3**. Including the baseline data, 7 data sets exist for comparing the two field methods. Based on data collected to date, the two methods generally exhibit similar trends with the exception of PMW-2, PMW-3, and PMW-4 during the Q8 sampling event.

Experience using both measuring devices (i.e., YSI meter and CHEMets) at a similar site has identified benefits and deficiencies of each method. Additionally, studies performed by White, et al. (1990), Walton-Day, et al. (1990) and Wilkin, et al. (2001), indicate that CHEMets colorimetric methods were found to be accurate and reproducible, particularly at low DO concentrations (<1 ppm). However, despite being found to be relatively accurate and reproducible, colorimetric methods can be subject to interferences that may affect the accuracy of readings. Because the colorimetric reagents involve oxidation-reduction reactions to indicate concentration of DO, redox species in groundwater other than DO can influence results (Wilkin et al. 2001). DO electrodes (i.e., as used in the YSI meter) were found to be generally less reliable and prone to problems such as membrane fouling that compromise electrode performance (hydrogen sulfide, thio-organic, and other organic compounds were found to be the most problematic compounds responsible for membrane fouling and subsequent inaccurate readings).

Regression analysis was used to calculate correlation between YSI readings and CHEMet readings (from the Baseline event through the Q8 sampling event); the analysis indicates a correlation factor (R^2) of 0.93. This correlation factor indicates that the two DO measurement techniques have a moderate correlation.

Madison Avenue Former MGP Site

2.2 DO Concentration Results

This section summarizes baseline DO data collected prior to installing the oxygenreleasing socks, followed by a discussion of the DO data collected in AWs at several time intervals after the oxygen-releasing socks were installed. Discussions include DO data collected from both the AWs and the PMWs. DO data are presented in **Table 2** and **Table 4**.

During the Baseline Sampling Event (i.e., spring 2013) prior to deployment of oxygenreleasing socks, DO data in the treatment area were collected from the 6 PMWs and 19 AWs. The average DO concentrations within the treatment area wells using both measurement techniques indicated that the aquifer was generally considered to be oxygen limited (i.e., average DO less than 1.0 to 2.0 mg/l).

General observations based on data provided in **Table 2** for the Q6 and Q8 events include:

- Average DO concentration in groundwater from upgradient PMWs during the reporting period was 1.12 mg/l / 0.78 mg/l (CHEMets / YSI meter); average DO concentration from downgradient PMWs was 1.63 mg/l / 0.74 mg/l (46% increase using the CHEMets/ 5% decrease using the YSI meter)
- When comparing DO concentrations in groundwater from PMW upgradient/ downgradient "pairs" over the reporting period:
 - PMW-1/PMW-2: DO concentrations in groundwater increased in the downgradient well during both site visits using both meters
 - PMW-3/PMW-4: DO concentrations in groundwater increased in the down gradient well during both the Q6 and Q8 events as measured by the CHEMet kit; either no change in DO (Q6) or a decrease in DO (Q8) was measured using the YSI meter. Therefore No consistent correlation between the CHEMet kit and YSI meter existed at these locations
 - PMW-5/PMW-6: DO concentrations in groundwater generally decreased in the downgradient well

Comparisons of DO data over time (Baseline Sampling through Q8) for each of the upgradient and downgradient PMW "pairs" are provided in **Graphs 1 through 3**. Key

Madison Avenue Former MGP Site

dates, including dates for initial installation and subsequent replacement of oxygenreleasing material, are included on the graphs. While some trends of increasing DO concentrations appear to exist, several variables make the data difficult to interpret, including:

- Variations between the field analytical methods
- Potential variations in localized groundwater flow patterns in the immediate area of the PMWs (described in Section 3.1)
- The presence of dissolved BTEX appears to influence/interfere with the CHEMets' DO measurements when DO data over time are compared with dissolved BTEX data over time
- The presence of dense nonaqueous phase liquid (DNAPL) in NRW-2 and NMW-0402S (Section 4) confirms problematic compounds/redox species that affect DO readings are dissolved in groundwater near the PMWs

2.3 Biological Oxygen Demand

While not required by the SMP, groundwater samples collected during the Q6 event from the three hydraulically upgradient PMWs (PMW-1, PMW-3, and PMW-5) were sent for laboratory analysis of Biochemical Oxygen Demand (BOD) to assess oxygen requirements of groundwater immediately upgradient from the AWs, and to confirm the results from the previous two BOD sampling events. Groundwater samples were also analyzed for carbonaceous BOD (cBOD). BOD analysis is used to determine the amount of oxygen demand that exists in groundwater. In the laboratory initial DO levels in samples are compared to DO levels after 5-days of incubation to determine the biochemical degradation of organic (carbonaceous) demand and the oxygen used to oxidize inorganic materials. Sources of organic material include dissolved MGP impacts (e.g., BTEX and PAHs) as well as other non-regulated organic material originating from the formation; inorganic sources include sulfides and ferrous iron, as well as reduced nitrogen. A high BOD causes excessive oxygen demands on the groundwater.

The sample's cBOD should be less than or equal to the BOD result. The cBOD measurement is therefore useful in assessing the oxygen needed to satisfy the organic demand (i.e., versus the total oxygen demand). Comparing the BOD with the

Madison Avenue Former MGP Site

cBOD is useful when developing trends in dissolved organics with relation to time and seasons.

The results from BOD and cBOD analyses are also included in **Table 5** and presented on **Figure 3**.

BOD values ranged from below the laboratory detection limits (BDL) of 2.0 mg/l at both PMW-1 and PMW-5, to 6,900 mg/l at PMW-3. Similarly, cBOD values ranged from BDL (< 2.0 mg/l) at PMW-1 and PMW-5, to 10,600 mg/l at PMW-3.

The BOD/cBOD data at PMW-1 appears to be consistent with the concentration of BTEX present at PMW-2 (i.e., non-detectable concentrations of BTEX and no measurable concentrations of BOD/cBOD). Similarly, the BOD/cBOD data at PMW-3 appears to be consistent with the concentration of BTEX present at PMW-4 (dissolved BTEX with associated BOD/cBOD concentrations). However, the data at PMW-5 does not appear to be consistent with the concentrations of BTEX reported at PMW-6 (high dissolved BTEX with both BOD and cBOD below detectable levels).

2.4 pH

Groundwater samples were collected from the AWs and PMWs during the Q6 and Q8 sampling events and field analyzed for pH. The pH values were measured prior to change out of the Adventus oxygen-releasing socks. Results from the pH measurements are presented in **Table 3**.

As measured during Q6, the average pH value for upgradient PMWs was 7.04 Standard Units (SUs), and the average pH for downgradient PMWs was 6.95 SUs (approximately 1% decrease). However, the average pH of groundwater within the AWs prior to change out of the socks was 8.40 SUs (approximately a 19% increase compared to upgradient). A potential connection may exist between higher DO concentrations measured in AWs and higher pH readings within these AWs. Higher pH values could be an indicator that DO is being released by the Adventus oxygenreleasing socks deployed in the wells because hydroxide in the form of Ca(OH)₂ is a byproduct of the oxygen producing reaction associated with the socks, which can therefore create high pH/alkaline conditions.

During the Q8 visit, the average pH value for upgradient PMWs was 7.23 SUs, and the average pH for downgradient PMWs was 7.01 SUs (approximately 3% decrease). However, the average pH of groundwater within the AWs prior to change out of the

Madison Avenue Former MGP Site

socks was 7.08 SUs. The DO concentrations measured by both the YSI meter and CHEMets were significantly lower in the AWs during Q8 than historically recorded; therefore, the pH measurements in the AWs appear to be consistent with the DO results.

When pH values of groundwater collected during Q6 are looked at in individual AWs, a significant increase in the pH of groundwater occurs in AW-1 through AW-10; however, this increase is not observed in AW-11 through AW-19 located on the eastern end of the system. This is consistent with data collected during the first year of system monitoring.

2.5 DO and pH Values After New Sock Deployment

DO and pH parameters were recorded several times during Q6 and Q8 site visits subsequent to replacement of oxygen-releasing socks to evaluate variations early in the change-out cycle. Parameters were recorded before sock replacement and approximately 24- and 48-hours after the new socks were installed. Results from DO and pH measurements over time are presented in **Table 4** and **Table 6**, respectively.

2.5.1 pH Values in AWs Over Time

Results of groundwater pH measurements in AWs subsequent to replacement of the oxygen-releasing socks for the Q6 and Q8 sampling events are presented below.

- Q6 Sampling Event:
 - Prior to change out of the oxygen-releasing socks, the average pH of groundwater across the 19 AWs was approximately 8.40SUs; at five locations (AW-1, AW-2, AW-5, AW-6, AW-7 and AW-9) the pH prior to change out ranged from 9.86 to 12.25. pH values at the remaining AWs ranged from 6.76 to 7.93 SUs. The high pH values measured during Q6 at five of the six locations (except AW-2) were consistent with the Q4 measurements.
 - Average pH of groundwater across the 19 AWs 24-hours after installation of oxygen-releasing material was approximately 7.59 SUs, with values ranging from 6.55 to 10.07 SUs).

Madison Avenue Former MGP Site

- Average pH of groundwater across the 19AWs 48-hours after installation of oxygen-releasing material as approximately 7.55 SUs with values ranging from 6.69 to 9.67 SUs.
- The highest groundwater pH values were measured at the western end of the row of AWs (AW-1, AW-2, AW-5, AW-6, AW-7, and AW-9).
- Average groundwater pH concentrations decreased within 24-hours after change-out; this is not consistent with historical results.
- Q8 Sampling Visit:
 - Prior to change out of the oxygen-releasing socks, average pH of groundwater across the 19 AWs was 7.22 SUs. The five locations that historically exhibited high pH values prior to change out (AW-1, AW-5, AW-6, AW-7, and AW-9) did not exhibit high pH values during the Q8 visit.
 - 24-hours after change out of the socks, average pH across the 19 AWs was 8.14 SUs with AWs located at the western end of the row exhibiting comparatively higher pH values.
 - 48-hours after change out of the socks, average groundwater pH across the 19 AWs was 8.85 with AWs located at the western end of the row exhibiting comparatively higher pH values over all.
 - Average groundwater pH concentrations increased within 24-hours after change-out; this is consistent with historical results.

During the Q6 event, groundwater within the AWs exhibited a decrease in pH with increasing time after sock change-out that was inconsistent with historical and anticipated results. During the Q8 event, pH results for groundwater within the AWs exhibited the anticipated steady increase with respect to increasing time after sock change-out; this is consistent with the Baseline and Q4 results.

2.5.2 DO Concentrations in AWs Over Time

Results of groundwater DO measurements in AWs subsequent to replacement of the oxygen-releasing socks are presented below.

Madison Avenue Former MGP Site

- Q6 Sampling Event
 - Prior to change out of the oxygen-releasing socks, average DO concentration of groundwater across the 19 AWs was 5.99 mg/l as measured with the CHEMet ampoules (note that at six locations the DO was >12 mg/l; a value of 12 mg/l was used for calculating average) and 9.73 mg/l measured with the YSI meter.
 - 24-hours after change out of the socks, average DO concentrations were
 4.71 mg/l as measured with the CHEMet ampoules and 5.02 mg/l as
 measured with the YSI meter (i.e., measurements indicated a decrease in
 DO after change out).
 - 48-hours after change out of the socks, average DO concentrations were
 3.58 mg/l as measured with the CHEMet ampoules and 3.80 mg/l as
 measured with the YSI meter (i.e., DO concentrations continued to decrease after change out).
 - The highest groundwater DO values were recorded at AWs located at the western end of the row of AWs.
- Q8 Sampling Event
 - Prior to change out of the oxygen-releasing socks, average DO concentration of groundwater across the 19 AWs was 0.43 mg/l as measured with the CHEMet ampoules and 0.23 mg/l measured with the YSI meter.
 - 24-hours after change out of the socks, DO concentrations were 8.34 mg/l as measured with the CHEMet ampoules and 6.92 mg/l as measured with the YSI meter.
 - 48-hours after change out of the socks, DO concentrations were 8.08 mg/l as measured with the CHEMet ampoules and 6.62 mg/l as measured with the YSI meter.

Similar to the pH data (Section 2.5.1), DO data collected during the Q6 sampling event were not consistent with anticipated (and historical) results. DO results collected during the Q8 sampling event confirm that socks are liberating oxygen and increasing DO in groundwater within the AWs (i.e., consistent with historical results).

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

3. Effectiveness Monitoring

Effectiveness monitoring is the periodic chemical and physical analysis of a media (e.g., groundwater) to determine if the remedial action objectives are being achieved.

As presented in the SMP, the objectives of effectiveness monitoring are to:

- Assess groundwater movement patterns at the site using water-level data
- Document concentrations of dissolved BTEX downgradient from AWs
- Document dissolved COC (BTEX and six PAHs) concentration trends across the site

Effectiveness monitoring for the second year of system operation consisted of:

- Semi-annual (Q6 and Q8) gauging of 6 PMWs, 19 PMWs, and 17 MWs
- Semi-annual (Q6 and Q8) sampling of groundwater from 10 monitoring wells for laboratory analysis of BTEX and PAHs

In addition, while not required by the SMP, sampling of groundwater from the three hydraulically downgradient PMWs (PMW-2, PMW-4, and PMW-6) for analysis of BTEX was conducted during the Q6 and Q8 visits to confirm the results from the previous sampling events and determine if a trend(s) in dissolved COCs exists subsequent to implementation of the soil remedy.

The results from the effectiveness monitoring are presented below.

3.1 Groundwater Movement

Groundwater movement beneath the site was assessed in two ways:

- Preparation of site-wide water table maps
- Review of groundwater elevation data collected from PMWs

The water-level data were collected during the Q6 and Q8 visits from the following locations:

Madison Avenue Former MGP Site

- 6 PMWs (PMW-1 through PMW-6)
- 19 AWs (AW-1 through AW-19)
- 17 site monitoring wells (MW-1S, MW-1D, MW-2S, MW-2D, MW-4S, MW-6S, MW-7, MW-8S, MW-8D, MW-9S, MW-9D, MW-0304D, MW-0402S, MW-0403S, MW-0404S, MW-0404D, and MW-0405S)

Table 7 presents water elevation data collected from the Baseline through Q8sampling events.

Figures 5 and **6** present the water table maps developed from the Q6 and Q8 gauging events, respectively. As shown on the figures, the general groundwater flow direction at the site is to the south during both gauging events. When comparing the water table maps between the two gauging events, no significant differences are observable, indicating that no significant changes to site-wide groundwater flow directions occurred during the reporting period. Additionally, site-wide groundwater flow directions during this reporting period were very similar to the previous reporting period (i.e., Baseline event through Q4).

In addition to site-wide evaluation of groundwater movement, water-level data collected from PMWs were also examined to evaluate localized groundwater flow at the AWs. Upgradient/downgradient PMW pairs were gauged with the objective of confirming groundwater elevations in PMWs designated as "upgradient" were higher than their "downgradient" counterparts.

The results from gauging events indicate that:

- Groundwater elevations in upgradient well PMW-5 were higher than in downgradient PMW-6 during both Q6 and Q8 monitoring events.
- During the Q6 gauging event the groundwater elevation at upgradient well PMW-3 was higher than downgradient well PMW-4. However, during the Q8 event the groundwater elevation in PMW-4 was 0.04 feet higher than PMW-3.
- Groundwater elevations at up/downgradient well pair PMW-1 and PMW-2 were consistently higher in downgradient well PMW-2 (ranging from 0.70 to 1.20 feet higher) during the Q6 and Q8 gauging events, respectively.

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

As presented in the *Annual Periodic Review Report, Baseline Event through Q4* (ARCADIS 2015) the surface completion at PMW-2 was observed to be deteriorated and the surrounding ground surface settled. It was suspected that the higher groundwater elevation at PMW-2 was the result of surface water infiltration due to failure of its surface completion. The surface completion at PMW-2 was repaired during the Q6 event and while groundwater elevations still indicate a higher elevation at the "downgradient" location, the difference was smaller during the Q8. However, this pattern seems to follow a seasonal trend for this well pair and is likely not a result of the surface completion at PMW-2.

3.2 Groundwater Quality

An ongoing program of groundwater monitoring was in place at the site since 1985. As reported in the *Supplemental Remedial Investigation Report* (ARCADIS, 2007), results from quantitative trend analysis using available data from 1985 to 2004 concluded that constituent plumes appeared to be shrinking over time due to a variety of naturally occurring processes.

Semi-annual (Q6) and annual (Q8) sampling of groundwater was conducted during this reporting period. During both events, groundwater from 10 monitoring wells identified in the SMP was collected for laboratory analysis of BTEX by United States Environmental Protection Agency (USEPA) SW-846 Method 8260 and PAHs by USEPA SW-846 Method 8270. The analytical results are summarized in **Table 5**. For comparison purposes, historical groundwater results collected in April 2004 and the Q1 through Q4 results are also included in the table.

Laboratory data packages from each sampling event were reviewed by an individual approved to validate data in New York State, and *Data Usability Summary Reports* (DUSRs) were prepared. Data review indicated that overall laboratory performance was acceptable and that the overall data quality was within the guidelines specified in the respective methods. A compact disc containing copies of the DUSRs is included as **Appendix A**.

Discussions of laboratory results for BTEX and PAHs are presented below.

3.2.1 Dissolved BTEX

Laboratory data for dissolved BTEX are presented in **Table 5**; dissolved total BTEX data are presented on **Figure 7**. The most recent historical sampling data (2004) and

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

data collected during the first year of treatment system operation are also presented in **Table 5** and on **Figure 7**.

Total BTEX concentrations in groundwater collected from the 10 MWs during both the Q6 and Q8 reporting period were all below detection limits (BDL). Results from the second year of groundwater sampling are consistent with data reported since the 2004 sampling event.

3.2.2 Dissolved PAH COCs

Laboratory data for dissolved PAHs are also presented in **Table 5**; data for the six PAH COCs are presented on **Figure 8**. The most recent historical sampling data (2004) and data collected during the first year of treatment system operation are also presented in **Table 5** and on **Figure 8**. Total PAHs (tPAHs) are also presented on **Figure 8**.

Results from groundwater collected from the 10 MWs during the reporting period are summarized below.

Q6 Sampling:

- None of the 6 PAH COCs were detected in groundwater from any of the 10 MWs
- None of the non-COC PAHs exceeded a groundwater guidance value (only low concentrations of acenaphthene and fluorene were detected at one well [MW-8S])

Q8 Sampling:

- None of the 6 PAH COCs were detected in groundwater from 6 of the 10 MWs (MW-2S, MW-6S, MW-7, MW-9S, MW-0402S, and MW-0403S)
- Benzo(b)fluoranthene was detected at 3 of the 10 MWs (MW-4S, MW-0404S, and MW-0405S) above its groundwater guidance value. At each of these locations benzo(b)fluoranthene was detected well below the laboratory reporting limit (RL), however; slightly above the method detection limit (MDL), so, each of the results were reported with a "J" qualifier (i.e., estimated value).
- 5 of the 6 PAH COCs were present above their respective groundwater guidance values at MW-8S. While these are just guidance values (i.e., not groundwater

Madison Avenue Former MGP Site

standards), this event represents the first detections of these analytes at this location.

- Concentrations of dissolved tPAHs in groundwater at MW-8S appear to be increasing
- Groundwater from MW-9S (located north/hydraulically upgradient of the Trayer Products building) did not have any detections of PAHs (consistent with previous sampling events).
- Groundwater from monitoring well MW-4S, located in the former MGP area, had 1 PAH COC analyte (benzo[b]fluoranthene) above its groundwater guidance value; historically at this location up to 4 PAH COCs have been reported at this location (benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, and indeno[1,2,3-cd]pyrene).
- Dissolved tPAH concentrations increased at 3 locations (MW-4S MW-0404S, and MW-0405S) when compared to recent sampling results (i.e., Q2 and Q4); however, concentrations were lower than results from the baseline sampling event.

3.3 Dissolved BTEX in Performance Monitoring Wells

Groundwater samples were collected from the three hydraulically downgradient PMWs (PMW-2, PMW-4, and PMW-6) during the Q6 and Q8 sampling events for laboratory analysis of BTEX by USEPA Method 8260b. Analysis of groundwater from these locations was conducted to monitor the concentrations of dissolved BTEX downgradient from the AWs over time.

Results from the laboratory analyses are presented in **Table 5** along with previous data collected since the Baseline event. The laboratory data are presented on **Figure 3**.

Dissolved BTEX in PMWs during the reporting period ranged from BDL at PMW-2 (Q6 and Q8 events) to 1,790 micrograms per liter (μ g/l) at PMW-6 (Q8 event). Concentrations of dissolved BTEX over time in the three downgradient PMWs are presented on **Graphs 4 through 6**.

The lowest concentration of total BTEX was detected at PMW-2 (**Graph 4**), located at the western end of the row of AWs. The BTEX results from PMW-2 are consistent with

Madison Avenue Former MGP Site

historical results (i.e., typically BDL). The lower concentrations of dissolved BTEX detected at PMW-2 appears to be consistent with observations of subsurface soil conditions documented during installation of the AWs and PMWs (no visual evidence of staining, blebs, etc. was observed at AW-1, AW-2, or AW-3 [the western three AWs]).

The highest concentrations of BTEX were detected at PMW-6 (**Graph 6**), which is located near the eastern end of the row of AWs. The concentrations of each of the BTEX analytes has been increasing in PMW-6 since the Baseline sampling event, and increased significantly during the Q8 sampling event. More frequent observations of staining and heavy impacts in soil were documented during installation of the AWs located along the central and eastern portions of the treatment zone. Additionally, NAPL was detected in AW-17 (approximately 30 feet east of PMW-6) during the Q8 monitoring event.

As shown on **Graph 5**, the concentration of total BTEX at PMW-4 has been trending downward over time.

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

4. NAPL Monitoring Results

Consistent with the SMP, NAPL gauging was conducted quarterly during the second year of system operation. As described in the SMP, the NAPL monitoring network at the site includes five NAPL recovery wells (NRW-1, NRW-2, NRW-3, NRW-4, and NMW-0402S). The objectives of this task were to identify whether NAPL had accumulated within a well, and to remove NAPL if present and recoverable. Locations of the five wells are shown on **Figure 2**. A summary of the NAPL gauging data is included in **Table 7**.

Similar to previous gauging events, DNAPL was detected in two of the five NAPL recovery wells (NRW-2 and NMW-0402S) during the reporting period. DNAPL was detected in NMW-0402S during all four gauging events ranging from 1.3 to 2.4 feet in apparent thickness within the well. DNAPL was detected in NRW-2 during the Q5, Q7, and Q8 sampling events ranging in apparent thickness from 0.7 to 1.2 feet within the well. In addition, trace amounts of DNAPL had been historically detected on the probe in PMW-3 (April and May 2013), however; the quantity was not sufficient to measure or recover. During this reporting period, no trace of DNAPL was detected at PMW-3.

During the Q8 event, trace amounts of NAPL were observed on the sock canister suspended in AW-17. AW-17 will be monitored semi-annually for recoverable NAPL. In the event recoverable NAPL is observed, it will be removed and the well will be added to the quarterly NAPL gauging schedule.

Since the Baseline event in 2013, a total of approximately 2.3 gallons of DNAPL has been manually removed using a bailer from NRW-2 and NMW-0402S (a total of 1.6 gallons removed during the first year of operation and 0.7 gallons during the second year). As shown on the summary table and graph in **Appendix B**, the quantity of DNAPL recovered from the wells is decreasing over time. Recovered DNAPL was containerized for disposal by NYSEG.

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

5. Treatment System Operation and Maintenance

NYSEG is responsible for maintaining any aspect of the site that is associated with remediation activities for the former MGP facility.

Operation and maintenance activities during the reporting period included the following:

- Well maintenance (i.e., replacing missing or broken locks, repair/replacement of ground seals, protective casings, and/or locking caps, etc.)
- Replacement of the oxygen-releasing material.
- Annual site inspection.

In addition, deficiencies and maintenance activities recommended in the *Annual Periodic Review Report, Baseline Event through Q4* were addressed during the Q6 visit.

A summary of these activities is presented below.

5.1 Treatment System Maintenance

The site remedy does not rely on any mechanical systems to protect public health or the environment. However, the SMP describes measures necessary to perform routine maintenance on the site cover materials, monitoring and treatment system components (i.e., well network), and replacement of oxygen-releasing material.

Visual inspections of the surface cover and treatment system wells conducted during the previous annual site visit (Q4) identified deficiencies that were reported in the first *Annual Periodic Review Report, Baseline Event through Q4* (ARCADIS 2015). These deficiencies were repaired during the Q6 site visit, and included:

- Surface completions were replaced at AW-2, PMW-2, MW-9S, and MW-9D by Nothnagle Drilling, Inc. (ARCADIS subcontractor)
- Risers were cut down to allow for better seal of covers at road boxes at PMW-2, MW-4S, and NRW-1

Madison Avenue Former MGP Site

- Accumulated sediment was removed from MW-2S, MW-2D, MW-4S, and MW-9D by Nothnagle Drilling, Inc. using an air lift pump
- A replacement aluminum locking well cap was installed at MW-6S
- The steel lid to the road box was replaced at AW-11
- The tops of casing and ground surface elevations at MW-4S, MW-9S, MW-9D, AW-2, PMW-2, and NRW-1 were re-surveyed by Keystone Associates (ARCADIS subcontractor)

In addition to the deficiencies noted during the Q4 visit, the following additional tasks were completed during the Q6 visit:

- Accumulated sediment was manually removed with a bailer from AW-15, AW-16, AW-19, PMW-3, PMW-5, and PMW-6
- Locking well caps were replaced/installed at MW-4S and NRW-1

Per the SMP, PMWs, MWs, and AWs associated with the site were gauged during the Q6 and Q8 visits. The objective for gauging wells was to determine if siltation had occurred in sufficient quantity to warrant additional development/sediment removal. Depth to bottom measurements and accumulated thickness of sediments (e.g., silts, sands) for each well are presented in **Table 7** (note that gauging data reported in **Table 7** for the Q6 visit were collected subsequent to removal of sediments from the wells identified above). Depth to bottom measurements were compared to the installed depth as reported on each well's construction log to determine if sediment removal is needed. A summary of results is presented below.

5.1.1 Monitoring Wells

Comparison of depth to bottom measurements collected during the reporting period for each of the 17 MWs to their respective well construction logs was conducted to determine accumulation of material within each well.

 Based on gauging data from the Q6 event compared to well installation information, only one well (MW-2S) contained sediments that occluded greater than 10% of the well screen (approximately 17% of the screen was still occluded after re-development)

Madison Avenue Former MGP Site

- Based on gauging data from the Q8 event compared to well installation information, two MWs (MW-2S and MW-9S) contained sediments that occluded greater than 10% of the well screen (approximately 16 and 20%, respectively)
- Three additional MWs (MW-1D, MW-2D, and MW-4S) contained sediments that occluded between 5 to 9% of their well screens during both the Q6 and Q8 visits

Sediment removal at MW-2S and MW-9S should be attempted again during future site visits using non- manual methods (e.g., Waterra pump, air lift pump, whaler pump).

Based on visual inspections, no additional repairs to monitoring wells are required.

5.1.2 Application Wells

Comparison of depth to bottom measurements collected during the reporting period for each AW to their respective well construction logs was also conducted to determine accumulation of material within each well (note that each AW was constructed with a 2-foot-long collection sump). As mentioned above, accumulated sediment was manually removed with a bailer from AW-15, AW-16, and AW-19 during the Q6 event; depth to bottom measurements and accumulated thickness of sediments reported in **Table 7** were collected subsequent to removal of sediments.

Results from the gauging indicated:

- Gauging data from the Q6 event indicated that none of the AWs contained appreciable accumulation of sediments within the sumps; accumulation ranged from 0 to 0.57 feet.
- Gauging data from the Q8 event indicated that AW-16 contained approximately 3.0 feet of accumulated sediments (i.e., sediments accumulation exceeded the sump depth), and two AWs (AW-17 and AW-19) contained approximately 1.4 and 1.6 feet of sediments within their sumps, respectively.
- Sediment appears to be accumulating in many of the wells over time

While only AW-16 contained sediments greater than the sump depth and requires removal, removal of sediments from AW-17 and AW-19 is also recommended.

Based on visual inspections, no additional repairs to AWs are required.

Madison Avenue Former MGP Site

5.1.3 Performance Monitoring Wells

Comparison of depth to bottom measurements collected during the reporting period for each of the six PMW to their respective well construction log was also conducted to determine accumulation of material within each well (note that each PMW was constructed with a 2-foot-long collection sump). As mentioned above, accumulated sediment was manually removed with a bailer from PMW-3, PMW-5, and PMW-6 during the Q6 event; depth to bottom measurements and accumulated thickness of sediments reported in **Table 7** were collected subsequent to removal of sediments.

Results from the gauging indicate:

- Sediment accumulation within PMW-1, PMW-2, PMW-4, and PMW-5 does not appear to be an issue (i.e., only occasional removal of sediments is required using a bailer as accumulated thickness is generally 0.5 to 1.0 feet)
- Continued removal of sediments using a bailer has not been successful at PMW-3; accumulated thicknesses of sediments within the well consistently range for 3.9 to 5 feet because the well was initially gauged in April 2013 (Baseline event)

Re-development of PMW-3 is recommended. If sediment accumulation continues to be an issue, the integrity of the well should be evaluated.

Based on visual inspections, no additional repairs to PMWs are required.

5.1.4 NAPL Recovery Wells

Comparison of depth to bottom measurements collected during the reporting period for each of the four NRWs and NMW-0402S to their respective well construction logs was also conducted to determine accumulation of material within each well. Each NRW was constructed with a 5-foot long collection sump.

Results from the gauging indicated that none of the NRWs contained quantities of accumulated material in the sumps greater than 2 feet. (accumulated material ranged from 0.0 to 1.5 feet). Therefore, based on gauging events conducted during the monitoring period, sediment removal from the NRWs is not required at this time.

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

5.2 Replacement of Oxygen-Releasing Material

Replacement of Adventus EHC-O oxygen-releasing socks was conducted during the following site visits during this reporting period:

- Replacement #3: August 2014 (Q6 semi-annual site visit)
- Replacement #4: February 2015 (Q8 annual site visit)

During initial installation of the EHC-O oxygen-releasing material (Baseline event), field measurements were used to determine the middle of the saturated well screen for each AW. This data was used to set the EHC-O oxygen releasing socks in the wells at a depth such that the middle of the stainless steel canister containing the EHC-O sock was in the middle of the saturated well screen.

During the Q6 semi-annual and Q8 annual replacement of the EHC-O oxygenreleasing socks, the stainless steel canisters that contain the socks were removed and brushed/scrubbed to remove accumulated material prior to re-deployment. The canisters were re-deployed at the same depths determined during their initial installation. After each change out, spent socks were containerized for subsequent disposal by NYSEG.

5.3 Annual Site Inspection

As presented in the ROD, one of the remediation goals for the site is to maintain the surface cover materials that provide continued protection against potential human exposure to subsurface soil potentially containing MGP-related impacts. As required by the SMP, surface cover of the site (stone, gravel, vegetative, and/or asphalt cover) is therefore visually evaluated annually and repaired as needed. Because potential MGP impacts can be encountered at depths as shallow as 2 feet bgs, the annual inspections focus on maintaining physical separation between site workers and the remaining MGP impacts.

The annual site inspection was conducted February 23, 2015. During the annual inspection significant snow cover (0.5 to 1.5 feet) covered the site; however, no evidence of settling, obvious obstructions within drainage features (e.g., catch basins) or disturbance activities were observed. A Site Inspection Form is included in **Appendix C**; however, for verification purposes, the site will be re-inspected during the Q10 (August 2015) semi-annual site visit and a Site Inspection Form completed A

Madison Avenue Former MGP Site

photographic log documenting site conditions at the time of the annual inspection is included as **Appendix D**. The location where each photograph was taken, and the direction that the photographer was facing, is shown on **Figure 9**.

In addition, photographic documentation of the condition of each well associated with the site, including protective covers, locking devices, and overall integrity of the wells is also provided as **Appendix E**. No deficiencies were identified.

Madison Avenue Former MGP Site

6. Disturbance Activities in Potentially Impacted Areas

NYSEG is not aware of any intrusive activities that were conducted in potentially impacted areas during the reporting period.

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

7. Conclusions and Recommendations

Conclusions and recommendations based on the second year of treatment system monitoring and operation are presented below.

7.1 Conclusions

A summary of pertinent conclusions based on the second year of treatment system operation are presented below.

- 7.1.1 Performance Monitoring
- DO data collected within AWs during the Q8 monitoring event confirmed that the Adventus EHC-O socks were liberating oxygen to groundwater and the objective of the treatment system was being achieved. This is consistent with data collected during the Baseline and Q4 monitoring events. However, DO data collected during the Q6 monitoring event is suspect, with 10 to 14 AWs showing a decrease in DO immediately after change out of oxygen-releasing socks.
- Establishing DO and pH trends in upgradient/downgradient PMW "pairs" has been difficult due to a number of site characteristics, including establishing localized groundwater flow directions in the immediate vicinity if the AWs, the presence of impacted soil identified during the installation of several AWs and PMWs, the historic presence of DNAPL in PMW-3, and the presence of DNAPL at NMW-0402S and NRW-2.
- Groundwater samples were collected from the three hydraulically downgradient PMWs (PMW-2, PMW-4, and PMW-6) during the Q6 and Q8 sampling events for laboratory analysis of BTEX:
 - During both events, the lowest concentrations of BTEX were detected at the western end of the row of AWs (PMW-2); this is consistent with previous sampling events
 - During both sampling events, the highest concentrations of BTEX were detected at PMW-6, located near the eastern end of the row of AWs; dissolved BTEX concentrations have been increasing at this location since the Baseline sampling event

Madison Avenue Former MGP Site

- Dissolved BTEX has been decreasing at PMW-4 since the Baseline sampling event and appears to exhibit a seasonal cyclic pattern (comparably lower dissolved BTEX concentrations are reported during the summer sampling event and higher concentrations reported during the winter sampling event).
- Relative concentrations of BTEX are consistent with observations of subsurface soil conditions documented during installation of the AWs and PMWs (Figure 4)
- BOD data collected during the Q6 visit indicated that relative concentrations of BOD correlated well with the distribution of dissolved BTEX at PMW "pairs" PMW-1/PMW-2 and PMW-3/PMW-4; however, do not correlate well at PMW-5/PMW-6
- Groundwater samples were collected from the 19 AWs during both the Q6 and Q8 sampling events during the reporting period and field analyzed for pH:
 - During the Q6 event, the average pH of groundwater within the 19 AWs decreased after the new oxygen-releasing socks were installed. These results were not consistent with the anticipated (or historical) results. The pH in water within the AWs results also dropped, which may support the position that oxygen was not yet being liberated from the socks (rather than both DO instruments and the pH meter were not working properly).
 - During the Q8 event, the average pH of groundwater within the 19 AWs increased after the new oxygen-releasing socks were installed and the pH within the AWs increased. These results were consistent with the anticipated (and historical) results, and support the conclusion that oxygen was being released to the groundwater.

7.1.2 Effectiveness Monitoring

- Groundwater gauging conducted during the Q6 and Q8 events indicated that:
 - Site-wide groundwater flow direction was to the south
 - No significant differences in groundwater flow direction were observed between gauging events

Madison Avenue Former MGP Site

- the soil remedy did not result in changes to site-wide groundwater flow direction when compared to pre-site remedy constructions/installation
- Total BTEX concentrations in groundwater collected from the 10 MWs located across the site were all BDL during both the Q6 and Q8 sampling events; results from the second year are similar to data reported from the first year of groundwater sampling and from the 2004 sampling event
- None of the PAH COCs were detected during the Q6 sampling event from the 10 MWs located across the site
- PAH concentrations in groundwater collected during the Q8 sampling event from the 10 MWs located across the site indicated:
 - One of the 6 PAH COCs (benzo(b)fluoranthene) was detected in groundwater from 3 of the 8 wells located around the perimeter of the study area (also detected in 1 interior well)
 - MW-8S had detectable concentrations of 5 of the 6 PAH COCs
 - None of the non-COC PAHs were detected in the 8 wells located around the perimeter of the study area at concentrations above groundwater guidance vales

7.1.3 NAPL Monitoring

- NAPL was detected in the same two NAPL recovery wells (NRW-2 and NMW-0402S) as previous monitoring periods
- The total volume of NAPL removed to date by manual bailing is approximately 2.3 gallons; the quantity of recovered NAPL during each site visit is decreasing over time

7.1.4 Treatment System O&M

• Required repairs identified in the first annual periodic report were completed during the Q6 site visit

Madison Avenue Former MGP Site

- Visual inspection of site wells was conducted during the Q6 site visit; no damages requiring repairs were observed. Significant snow cover present during the Q8 site visit prevented a complete site inspection
- Depth to bottom measurements collected during Q8 indicated that:
 - AW-16, AW-17, and AW-19 had significant quantities of accumulated sediments (1.4 to 3 feet)
 - PMW-3 consistently contains accumulated sediments above the capacity of the sump
 - None of the NRWs contained significant quantities of accumulated material
- Adventus EHC-O oxygen-releasing socks were replaced in during the Q6 and Q8 events; performance of the socks could not be documented subsequent to the Q6 change out

7.2 Recommendations

Recommendations based on the second year of treatment system operation are presented below.

- 7.2.1 Performance Monitoring
- Continue with performance monitoring tasks identified in the SMP (Q10 and Q12) to further develop DO concentration and pH data
- 7.2.2 Effectiveness Monitoring
- Continue with effectiveness monitoring tasks identified in the SMP (Q10 and Q12) to further develop groundwater quality data

7.2.3 NAPL Monitoring

 Continue quarterly NAPL monitoring, and removal if required, as identified in the SMP

Madison Avenue Former MGP Site

- Continue to gauge PMW-3 on a semi-annual basis for the presence of NAPL; remove if present and recoverable (NAPL not been present since 2013)
- Based on the staining observed on the canister during the Q8 event, gauge AW-17 during the quarterly site events for the presence of NAPL
- 7.2.4 Treatment System Operation and Maintenance
- Continue semi-annual (Q10) and annual (Q12) O&M as identified in the SMP
- Removal of sediments using a bailer has not been successful at PMW-3; accumulated thicknesses of sediments within the well consistently range for 3.9 to 5 feet since O&M was initiated. Therefore, re-development of PMW-3 is recommended. If sediment accumulation continues to be an issue, the integrity of the well should be evaluated
- Sediment removal at MW-2S, MW-9S, AW-16 (contained sediments greater than the sump depth), AW-17, and AW-19 should be performed
- Perform site-wide inspection during Q10 semi-annual site visit (snow cover prevented inspection during Q8 visit)

ARCADIS

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

8. Certification Statement

A statement from NYSEG confirming that site controls were in place and effective and, based on information provided and site conditions to the extent that they could be observed, no changes occurred during the reporting period that would impair the ability of the controls to protect public health and the environment is included as **Appendix F**.

ARCADIS

Annual Periodic Review Report Q5 through Q8

Madison Avenue Former MGP Site

9. References

- ARCADIS, 2015. *Annual Periodic Review Report, Baseline Event through Q4*. Madison Avenue Former MGP Site, Elmira, New York (February 2015).
- ARCADIS. 2014. *Site Management Plan.* Prepared for NYSEG, Madison Avenue Former MGP Site, Chemung County, Elmira, New York (March 2014).
- ARCADIS. 2007. Supplemental Remedial Investigation Report, Madison Avenue MGP Site, Elmira, New York (February 2007).
- New York State Department of Environmental Conservation. 2008. *Record of Decision*, Madison Avenue Former manufactured Gas Plant (MGP) Site, City of Elmira, Chemung County, New York. Site Number 8-08-018. 2008.
- Walton-Day, Katherine, Donald L. Macalady, Myron H. Brooks, and Vernon T. Tate. 1990. Field methods for measurement of ground water redox chemical parameters. *Ground Water Monitoring Review*. Vol.10, No. 4: 81-89.
- White, Art F., Maria L. Peterson, and Ray D. Solbau. 1990. Measurement and interpretation of low levels of dissolved oxygen in ground water. *Ground Water* Vol. 28, No. 4: 584-590.
- Wilkin, Richard T., Mary S. McNeil, Cherri J Adair, and John T. Wilson. 2001. Field measurement of dissolved oxygen: a comparison of methods. *Ground Water Monitoring Review*. Vol.21, No. 4: 124-132.

Tables

Table 1 Monitoring, Gauging, and Operation & Maintenance Schedule

Annual Periodic Review Report, Q5 through Q8 Madison Avenue Former MGP Site, Elmira, New York

Event	Dates			Schedule	d Activities		
Event	Dates	Performance	Effectiveness	NAPL		O&M	
		Monitoring	Monitoring	Gauging	Site Inspection	Well Inspections	ECH-O Socks Replacement
Q5 (Quarterly) Monitoring	May 2014			x			
Q6 (Semi-annual) Monitoring	August 2014	Х	X	х			x
Q7 (Quarterly) Monitoring	November 2014			x			
Q8 (Annual) Monitoring	February 2015	x	X	x	x	X	X

Notes:

- Performance Monitoring Included measuring pH and DO concentrations at 6 PMWs and 19 AWs
- Effectiveness Monitoring Included semi-annual gauging of 6 PMWs and 17 MWs; sampling 3 PMWs for BOD and cBOD during the Q6 site visit, and semi-annual sampling of 10 site MWs for BTEX and PAHs. Also included semi-annual change-out of ECH-O socks.
- NAPL Gauging Included quarterly gauging of depth to water and depth to bottom at 4 NRWs and 1 NMW, and removal of NAPL if present.
- Site and Well Inspections Included visual inspections of the site cover materials and MWs, PMWs, NRWs, NMW, and AWs associated with the site

Table 2Treatment System Dissolved Oxygen Data

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

		Baseline	Sampling	3-Month Sa	mpling (Q1)	6-Month Sa	mpling (Q2)	9-Month Sa	mpling (Q3)	12-Month Sa	ampling (Q4)	18-Month Sa	ampling (Q6)	24-Month Sa	ampling (Q8)
	Location (Upgradient,		-5, 2013	May 28-	<u> </u>		6-30, 2013		er 19, 2013		y 6, 2014		4-7, 2014	1	23-27, 2015
Well ID	Downgradient, Internal)	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI
		(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
PMW-01	Upgradient	0.35	0.11	0.40	0.29	0.80	0.12	0.60	0.12	1.00	0.79	0.80	0.11	0.80	0.19
PMW-02	l ů	4.00	3.94	4.50	4.97	1.00	0.70	4.00	3.20	1.50	2.45	2.00	1.54	2.00	0.41
PMW-02	Downgradient Upgradient	4.00 NA	0.13	0.80	4.97 0.27	NA	0.68	4.00	1.35	0.80	0.76	1.00	1.95	2.00	0.41
PMW-03		0.60	0.13	0.80	0.27			2.00	2.19	1.50	0.76	1.50	1.95		0.96
	Downgradient					1.50	1.15							3.00	
PMW-05	Upgradient	1.50	0.73	5.50	5.68	1.00	0.58	1.50	1.35	1.50	0.00	1.50	1.18	0.60	0.29
PMW-06	Downgradient	0.70	0.10	0.50	0.11	0.90	0.11	0.80	0.15	0.60	0.62	0.90	0.07	0.40	0.32
AW-01	Internal	0.35	0.08	>12*	19.16	8.00	10.26	6.00	8.09	>12*	23.56	>12*	28.67	0.60	0.21
AW-02	Internal	0.60	0.07	>12*	19.24	2.00	1.82	2.50	1.54	0.90	0.09	>12*	19.18	2.00	0.13
AW-03	Internal	1.00	0.15	5.00	4.49	1.50	1.79	0.95	0.24	1.00	0.84	0.80	0.37	0.60	0.29
AW-04	Internal	2.00	2.00	>12*	14.61	3.00	3.52	>12*	22.81	5.50	5.84	7.00	6.19	0.80	0.20
AW-05	Internal	0.80	0.10	>12*	21.08	>12*	21.79	>12*	25.19	>12*	24.70	>12*	21.48	0.40	0.11
AW-06	Internal	0.40	0.09	>12*	25.08	>12*	23.79	>12*	29.28	>12*	31.04	>12*	21.12	0.00	0.23
AW-07	Internal	0.80	0.08	>12*	19.93	>12*	14.68	>12*	20.15	>12*	23.58	>12*	22.77	0.10	0.11
AW-08	Internal	0.35	0.07	9.00	8.94	6.00	6.98	>12*	14.34	2.00	1.43	6.00	5.73	0.20	0.10
AW-09	Internal	0.70	0.33	>12*	24.32	>12*	22.09	>12*	31.34	>12*	31.59	>12*	35.23	0.00	0.77
AW-10	Internal	0.60	0.08	2.50	1.82	1.00	0.98	6.00	6.64	1.50	0.72	5.50	5.70	0.40	0.31
AW-11	Internal	0.35	0.08	1.50	1.64	0.40	0.06	2.50	2.56	1.00	0.48	1.50	0.60	0.40	0.18
AW-12	Internal	7.00	8.33	10.00	9.67	4.00	3.33	3.00	2.96	3.50	2.68	4.50	4.29	0.15	0.16
AW-13	Internal	0.70	0.12	1.50	0.74	0.80	0.34	1.00	1.01	1.50	0.50	1.00	0.38	0.40	0.17
AW-14	Internal	5.00	4.93	9.00	9.54	8.00	7.14	12.00	13.11	6.00	5.16	9.00	9.00	0.20	0.15
AW-15	Internal	0.70	0.11	4.00	7.27	3.00	2.99	5.00	5.13	4.50	3.84	1.00	0.44	0.50	0.20
AW-16	Internal	1.00	0.08	1.00	0.58	0.80	0.2	1.50	1.19	1.50	0.00	1.00	0.87	0.00	0.26
AW-17	Internal	0.90	0.06	3.00	2.99	0.80	0.12	0.90	0.39	1.00	0.15	1.50	0.58	0.50	0.15
AW-18	Internal	2.50	0.94	1.50	1.3	1.00	0.43	3.00	2.31	2.50	1.43	1.00	0.25	0.50	0.25
AW-19	Internal	1.50	0.50	1.50	1.7	1.50	0.87	1.50	2.22	2.50	1.56	2.00	2.11	0.40	0.30
MW-2S	(site monitoring well)	1.00	0.15			0.60	0.23			1.00	0.00	1.50	0.24	0.40	0.33
MW-4S	(site monitoring well)	1.50	0.30			0.80	0.05			1.00	0.00	0.90	0.23	0.50	0.16
MW-6S	(site monitoring well)	1.50	0.85			0.80	0.42			2.00	0.69	0.90	0.83	2.50	2.98
MW-7	(site monitoring well)	1.50	0.88			0.70	0.1			1.50	0.71	1.50	0.56	1.50	1.49
MW-8S	(site monitoring well)	1.00	0.41			0.80	0.09			0.80	0.00	1.00	0.06	0.80	0.32
MW-9S	(site monitoring well)	5.50	4.42			1.50	0.55			5.00	3.65	2.50	1.61	2.00	1.65
MW-0402S	(site monitoring well)	0.50	0.34			0.60	0.1			1.00	0.00	1.00	0.10	0.60	0.23
MW-0403S	(site monitoring well)	0.70	0.71			1.00	0.9			1.00	0.14	0.90	0.88	2.00	1.10
MW-0404S	(site monitoring well)	0.30	0.12			0.70	0.12			0.80	0.00	0.50	0.09	0.80	0.21
MW-0405S	(site monitoring well)	0.60	0.10			0.30	0.11			0.80	0.00	0.60	0.12	0.40	0.24
Average	Conc. (all PMWs)	1.43	0.86	2.07	1.91	1.04	0.56	2.15	1.39	1.15	0.85	1.28	1.14	1.47	0.38
Average Cor	nc. (Upgradient PMWs)	0.93	0.32	2.23	2.08	0.90	0.46	2.03	0.94	1.10	0.52	1.10	1.08	1.13	0.48
Average Conc	. (Downgradient PMWs)	1.77	1.39	1.90	1.75	1.13	0.65	2.27	1.85	1.20	1.19	1.47	1.20	1.80	0.29

Notes:

mg/l = milligrams per liter

Upgradient = Indicates well is located hydraulically upgradient from the treatment system

Downgradient = Indicates well is located hydraulically downgradient from the treatment system

Internal = Indicates well is located within the treatment system

DO measurements collected prior to deployment / replacement of oxygen-releasing socks (Baseline, Q2, Q4, Q6 and Q8 events)

* = DO concentration exceeded operating range of CHEMets

Table 3 pH Within AWs and PMWs

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

	Location	Baseline Sampling	3-Month Sampling	6-Month Sampling	9-Month Sampling	12-Month Sampling	18-Month Sampling	24-Month Sampling
Well ID	(Upgradient, Downgradient,	April 1-5, 2013	Q1 (May 28-30, 2013)	Q2 August 26-30, 2013	Q3 November 19, 2013	Q4 February 6, 2014	Q6 August 4-5, 2014	Q8 February 23-27, 2015
	Internal)	рН	рН	рН	рН	рН	рН	рН
PMW-01	Upgradient	7.09	7.08	7.00	6.86	7.10	7.05	7.19
PMW-02	Downgradient	7.06	7.05	6.67	6.59	6.95	6.92	6.87
PMW-03	Upgradient	7.23	7.10	7.09	7.28	7.39	7.19	7.45
PMW-04	Downgradient	7.24	7.18	7.04	7.32	7.09	6.96	7.24
PMW-05	Upgradient	7.05	7.08	6.87	6.98	6.91	6.89	7.04
PMW-06	Downgradient	7.10	6.95	6.97	6.87	7.06	6.96	6.92
AW-01	Internal	7.03	10.11	9.52	8.55	11.18	11.79	6.91
AW-02	Internal	7.21	10.18	7.13	7.33	7.17	9.86	7.33
AW-03	Internal	7.08	8.5	7.41	6.96	7.07	7.20	6.99
AW-04	Internal	7.31	7.78	7.05	7.7	7.36	7.14	7.41
AW-05	Internal	7.25	12.32	9.97	12.04	12.31	10.77	7.15
AW-06	Internal	7.34	12.17	10.32	11.66	11.21	10.64	7.08
AW-07	Internal	7.16	11.52	9.38	10.2	11.21	11.49	7.11
AW-08	Internal	7.39	9.22	8.03	9.12	7.97	7.93	6.67
AW-09	Internal	7.45	11.91	11.34	12.27	12.25	12.25	6.63
AW-10	Internal	7.29	7.33	7.28	7.47	7.27	7.40	7.23
AW-11	Internal	7.17	7.19	7.04	7.78	7.13	7.07	7.24
AW-12	Internal	7.92	8.57	7.32	7.78	7.33	7.42	7.31
AW-13	Internal	7.2	7.04	7.02	7.14	7.07	7.01	7.22
AW-14	Internal	7.21	7.33	7.22	7.67	7.14	7.19	7.27
AW-15	Internal	7.25	7.09	6.94	6.99	7.03	7.17	7.09
AW-16	Internal	7.08	6.84	6.73	6.68	6.74	6.76	6.97
AW-17	Internal	6.86	6.67	6.64	6.77	6.86	6.90	6.93
AW-18	Internal	7.07	6.83	6.69	6.73	6.93	6.84	7.05
AW-19	Internal	7.02	6.83	6.64	6.59	6.72	6.82	6.95
Average C	onc. (all AWs)	7.23	8.71	7.88	8.29	8.31	8.06	7.09
Average Conc.	(Upgradient PWMs)	7.12	7.09	6.99	7.04	7.13	7.04	7.23
Average Conc. (I	Downgradient PMWs)	7.13	7.06	6.89	6.93	7.03	6.95	7.01

Notes:

Upgradient = Indicates well is located hydraulically upgradient from the treatment system Downgradient = Indicates well is located hydraulically downgradient from the treatment system Internal = Indicates well is located within the line of Application Wells (i.e., treatment system)

Table 4 Dissolved Oxygen in Application Wells Over Time

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

		Baseline	Event				Q4 Sam	oling					Q6 Sam	pling					Q8 Sam	pling		
	April 2-	-3, 2013	April 5	, 2013	February	4-5, 2013	February	6, 2014	Februar	y 7, 2014	August 4	-5, 2013	August	7, 2014	August	8, 2014	February	23-25, 2015	February	26, 2015	February	27, 2015
Well ID	Before Sock	Replacement	24 H	ours	Before Sock	Replacement	24 He	ours	48 H	lours	Before Sock	Replacement	24 H	lours	48 H	ours	Before Sock	Replacement	24 H	ours	48 H	ours
	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI	CHEMet	YSI
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
AW-1	0.35	0.08	>12*	18.44	>12*	23.56	>12*	41.17	>12*	40.31	>12*	28.67	>12*	12.53	5.00	5.13	0.60	0.21	4.50	1.7	3.00	2.92
AW-2	0.60	0.07	>12*	15.15	0.90	0.09	>12*	24.40	>12*	19.24	>12*	19.18	3.50	3.14	4.50	4.23	2.00	0.13	4.50	3.95	3.50	3.30
AW-3	1.00	0.15	9.00	8.69	1.00	0.84	7.00	9.01	5.50	6.50	0.80	0.37	1.00	0.94	1.00	1.01	0.60	0.29	5.00	4.40	3.50	3.30
AW-4	2.00	2.00	>12*	17.33	5.50	5.84	>12*	31.79	>12*	27.79	7.00	6.19	2.00	2.32	1.50	2.33	0.80	0.20	>12*	5.27	12.00	6.50
AW-5	0.80	0.10	>12*	17.30	>12*	24.70	>12*	30.56	>12*	31.00	>12*	21.48	11.00	12.70	10.00	10.12	0.40	0.11	11.00	7.20	8.00	5.23
AW-6	0.40	0.09	>12*	16.79	>12*	31.04	>12*	28.16	>12*	31.40	>12*	21.12	>12*	12.84	9.00	9.90	0.00	0.23	6.00	5.99	4.50	4.60
AW-7	0.80	0.08	>12*	15.63	>12*	23.58	>12*	32.91	>12*	31.70	>12*	22.77	10.00	10.83	9.00	8.70	0.10	0.11	5.50	5.00	7.00	5.18
AW-8	0.35	0.07	>12*	13.40	2.00	1.43	>12*	25.64	>12*	22.38	6.00	5.73	4.00	4.46	1.50	2.34	0.20	0.10	4.00	3.06	3.50	3.35
AW-9	0.70	0.33	>12*	15.54	>12*	31.59	>12*	38.81	>12*	39.25	>12*	35.23	>12*	15.20	12.00	12.88	0.00	0.77	5.00	3.98	10.00	5.93
AW-10	0.60	0.08	11.00	10.42	1.50	0.72	>12*	19.88	>12*	18.79	5.50	5.70	1.00	0.93	1.00	1.27	0.40	0.31	12.00	8.04	10.00	7.45
AW-11	0.35	0.08	8.00	8.32	1.00	0.48	>12*	18.48	>12*	13.40	1.50	0.60	0.80	0.79	1.00	1.02	0.40	0.18	12.00	7.42	8.00	7.49
AW-12	7.00	8.33	11.00	11.02	3.50	2.68	>12*	19.02	>12*	15.00	4.50	4.29	4.50	4.59	2.50	3.06	0.15	0.16	8.00	8.00	10.00	6.84
AW-13	0.70	0.12	11.00	10.00	1.50	0.50	>12*	15.14	8.00	10.00	1.00	0.38	1.00	1.00	0.90	0.83	0.40	0.17	8.00	7.51	10.00	7.75
AW-14	5.00	4.93	11.00	11.96	6.00	5.16	>12*	32.67	>12*	31.40	9.00	9.00	5.00	5.47	4.00	4.30	0.20	0.15	12.00	10.05	12.00	9.14
AW-15	0.70	0.11	9.00	9.35	4.50	3.84	>12*	35.12	>12*	25.30	1.00	0.44	5.50	4.79	1.50	1.30	0.50	0.20	6.00	6.15	5.50	5.52
AW-16	1.00	0.08	9.00	9.15	1.50	0.00	>12*	35.90	>12*	32.52	1.00	0.87	1.50	0.59	0.20	0.85	0.00	0.26	>12*	11.36	12.00	11.24
AW-17	0.90	0.06	8.50	8.15	1.00	0.15	>12*	31.64	>12*	29.40	1.50	0.58	0.90	0.66	1.00	0.88	0.50	0.15	10.00	10.61	12.00	11.45
AW-18	2.50	0.94	4.00	3.47	2.50	1.43	4.50	4.84	3.50	4.00	1.00	0.25	0.80	0.83	1.00	0.96	0.50	0.25	10.00	10.26	9.00	8.69
AW-19	1.50	0.50	2.50	2.56	2.50	1.56	>12*	15.15	5.50	7.80	2.00	2.11	0.90	0.70	1.50	1.10	0.40	0.30	11.00	11.60	10.00	9.95
Average Conc. (all wells)	1.43	0.96	10.00	11.72	4.99	8.38	11.34	25.80	10.66	23.01	5.99	9.73	4.71	5.02	3.58	3.80	0.43	0.23	8.34	6.92	8.08	6.62

Notes:

'Before Sock Replacement' readings collected prior to replacing the Adventus ECH-O socks

mg/l = milligrams per liter

* = DO concentration exceeded operating range of CHEMets

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

L	ocation ID:	NYSDEC TOGS 1.1.1				MW	/-2S						MW-4S						MW	-6S		
		Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Historical	Historical	Baseline	Q2	Q4	Q6	Q8	Historical	Baseline	Q2	Q4	Q6	Q8
Date	Collected:	Guidance Values		04/21/04	04/04/13	08/27/13	02/06/14	08/06/14	02/26/15	04/22/04	08/23/11	04/04/13	08/27/13	02/06/14	08/06/14	02/26/15	04/22/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15
втех													1									
Benzene		1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene		5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	4 U	1 U	1 U	1 U	1 U	1 U
Toluene		5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)		5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	5 U	NA	2 U	2 U	2 U	2 U	2 U	5 U	2 U	2 U	2 U	2 U	2 U
Total BTEX			μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs														1								1
Acenaphthene		20 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 UJ	4.8 U	10 U	0.07	4.9 U	4.8 U	4.8 UJ	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U
Acenaphthylene			μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	10 U	0.1	4.9 U	4.8 U	4.8 UJ	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U
Anthracene		50 (GV)	μg/L	10 U	4.8 U	4.8 UB	4.8 U	10 U	4.8 U	10 U	5 U	4.9 U	4.8 U	4.8 U	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 U	9.8 U	5 U
Benzo(a)anthracene*		0.002 (GV)	μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	1 U	0.06	4.9 U	4.8 U	4.8 U	9.6 U	5 U	1 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 UJ
Benzo(a)pyrene*		0	μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	1 U	0.05 U	1.2 J	4.8 U	4.8 U	9.6 U	5 U	1 U	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ
Benzo(b)fluoranthene*		0.002 (GV)	μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	1 U	0.07	1.2 J	4.8 U	4.8 U	9.6 U	0.48 J	1 U	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ
Benzo(g,h,i)perylene			μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	10 U	3 U	4.9 U	4.8 U	4.8 U	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ
Benzo(k)fluoranthene*		0.002 (GV)	μg/L	1 UJ	4.8 U	4.8 U	4.8 U	10 U	4.8 U	1 UJ	0.05 U	0.75 J	4.8 U	4.8 U	9.6 U	5 U	1 UJ	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ
Chrysene*		0.002 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	10 U	0.05 U	4.9 U	4.8 U	4.8 U	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 UJ
Dibenzo(a,h)anthracene			μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	1 U	0.03	4.9 U	4.8 U	4.8 U	9.6 U	5 U	1 U	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ
Fluoranthene		50 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	10 U	5 U	4.9 U	4.8 U	4.8 U	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 U	9.8 U	5 U
Fluorene		50 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 UJ	4.8 U	10 U	5 U	4.9 U	4.8 U	4.8 UJ	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U
Indeno(1,2,3-cd)pyrene*		0.002 (GV)	μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	1 U	0.05 U	1.7 J	4.8 U	4.8 U	9.6 U	5 U	1 U	4.8 U	4.7 U	4.8 U	9.8 U	5 U
Naphthalene		10 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 UJ	10 U	4.8 U	10 U	5 U	4.9 U	4.8 U	4.8 UJ	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U
Phenanthrene		50 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	10 U	0.09	4.9 U	4.8 U	4.8 U	9.6 U	5 U	10 U	4.8 U	0.45 J	4.8 U	9.8 U	5 U
Pyrene		50 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	10 U	5 U	0.42 J	4.8 U	4.8 U	9.6 U	5 U	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U
PAH COCs			μg/L	ND	ND	ND	ND	ND	ND	ND	0.13	4.85 J	ND	ND	ND	0.48 J	ND	ND	ND	ND	ND	ND
Total PAHs			μg/L	ND	ND	ND	ND	ND	ND	ND	0.42	5.27 J	ND	ND	ND	0.48 J	ND	ND	0.45 J	ND	ND	ND
Oxygen Demand			1		1	[[[1	r			1	1			n		[
Biochemical Oxygen Demand			μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen	Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

Location ID	NYSDEC TOGS 1.1.1				M	N-7					MW	/-8S					MW	-9S		
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Historical	Baseline	Q2	Q4	Q6	Q8	Historical	Baseline	Q2	Q4	Q6	Q8
Date Collected	Guidance Values		04/22/04	04/04/13	08/27/13	02/06/14	08/06/14	02/26/15	04/22/04	04/05/13	08/27/13	02/07/14	08/07/14	02/26/15	04/27/04	04/05/13	08/27/13	02/07/14	08/06/14	02/26/15
BTEX														1						
Benzene	1	μg/L	1 U	1 U	1 U	0.45 J	1 U	1 U	0.5 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1.3 J	1 U	1 U	1 U	1 U	1 U	4 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	6	2 U	2 U	2 U	2 U	2 U	5 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	0.45 J	ND	ND	7.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs		1			1		1		1	1	[1	1	1	1	1	[[
Acenaphthene	20 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	2 J	4.8 U	4.8 U	6 J	6.8 J	8	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Acenaphthylene		μg/L	1.1 J	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	10 U	4.8 U	4.8 U	23 UJ	9.6 U	0.46 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Anthracene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	10 U	4.8 U	4.8 U	23 UJ	9.6 U	0.97 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	1 U	4.8 U	4.8 U	23 UJ	9.6 U	1.2 J	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Benzo(a)pyrene*	0	μg/L	1 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	1 U	4.8 U	4.8 UJ	23 UJ	9.6 U	1.2 J	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	1 U	4.8 U	4.8 UJ	23 UJ	9.6 U	1.4 J	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Benzo(g,h,i)perylene		μg/L	10 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	10 U	4.8 U	4.8 UJ	23 UJ	9.6 U	0.49 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 UJ	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	1 UJ	4.8 U	4.8 UJ	23 UJ	9.6 U	4.9 U	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	10 U	4.8 U	4.8 UJ	23 UJ	9.6 U	0.97 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	1 U	4.8 U	4.8 UJ	23 UJ	9.6 U	4.9 U	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Fluoranthene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	0.4 J	4.8 U	4.8 U	23 UJ	9.6 U	3.4 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Fluorene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	1.7 J	4.8 U	4.8 U	3.5 J	5.1 J	4.8 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	1 U	4.8 U	4.8 UJ	23 UJ	9.6 U	0.55 J	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Naphthalene	10 (GV)	μg/L	17	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	14	4.8 U	4.8 U	23 UJ	9.6 U	2.5 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Phenanthrene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	0.2 J	4.8 U	0.44 J	23 UJ	9.6 U	0.57 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
Pyrene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	0.3 J	4.8 U	4.8 U	23 UJ	9.6 U	2.6 J	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.78 J	ND	ND	ND	ND	ND	ND
Total PAHs		μg/L	18.1 J	ND	ND	ND	ND	ND	18.6 J	ND	0.44 J	9.5 J	11.9 J	29.1 J	ND	ND	ND	ND	ND	ND
Oxygen Demand		1	1		1		1	1	i	1	[1	1	1	h	1			[1
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

Location	ID: NYSDEC				MW-	0402S					MW-0	0403S					MW-	0404S		
	TOGS 1.1.1 Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Historical	Baseline	Q2	Q4	Q6	Q8	Historical	Baseline	Q2	Q4	Q6	Q8
Date Collect	ed: Guidance Values		04/28/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15	04/28/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15	04/29/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15
втех	-			1		1	1	I	1		I	1	1			1				
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	4 U	1 U	1 U	1 U	1 U	1 U	4 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	5 U	2 U	2 U	2 U	2 U	2 U	5 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs				1		[[1	•		1	[[1	1	1			
Acenaphthene	20 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 U	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	1.3 J	4.7 U	9.8 U	4.7 U
Acenaphthylene		μg/L	10 U	4.8 UJ	4.6 U	4.7 U	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Anthracene	50 (GV)	μg/L	10 U	4.8 UJ	4.6 U	4.7 U	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.8 UJ	4.6 U	4.7 UJ	9.9 U	4.9 U	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Benzo(a)pyrene*	0	μg/L	1 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	1 U	4.7 U	4.6 U	4.7 U	9.8 U	0.33 J
Benzo(g,h,i)perylene		μg/L	10 U	4.8 UJ	4.6 U	4.7 UJ	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.8 UJ	4.6 U	4.7 UJ	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Fluoranthene	50 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 U	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	0.49 J	4.7 U	9.8 U	4.7 U
Fluorene	50 (GV)	μg/L	10 U	4.8 UJ	4.6 U	4.7 U	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	1.2 J	4.7 U	9.8 U	4.7 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.8 UJ	4.6 U	4.7 UJ	9.9 U	4.9 U	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U
Naphthalene	10 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	0.94 J	10 U	4.7 U	4.6 U	4.7 UJ	9.8 U	3.2 J
Phenanthrene	50 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 U	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	0.45 J	4.7 U	9.8 U	4.7 U
Pyrene	50 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	10 U	4.7 U	0.38 J	4.7 U	9.8 U	4.7 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.33 J
Total PAHs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.94 J	ND	ND	3.82 J	ND	ND	3.53 J
Oxygen Demand				1				1	r		1				r	1	1			
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

Location II	NYSDEC				MW-0)405S				РМ	W-1				PMW-2				РМ	W-3	
	TOGS 1.1.1 Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Baseline	Q2	Q6	Q8	Baseline	Q2	Q4	Q6	Q8	Baseline	Q2	Q6	Q8
Date Collected	Guidance d: Values		04/29/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15	04/03/13	08/28/13	08/06/14	02/24/15	04/03/13	08/28/13	02/05/14	08/06/14	02/24/15	04/03/13	08/30/13	08/06/14	02/24/15
втех										1								-			
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA	1 U	1 U	0.92 J	1 U	1 U	NA	NA	NA	NA
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	NA	NA	NA	NA	2 U	2 U	2 U	2 U	2 U	NA	NA	NA	NA
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	ND	ND	0.92 J	ND	ND	NA	NA	NA	NA
PAHs																					
Acenaphthene	20 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Acenaphthylene		μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Anthracene	50 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Benzo(a)pyrene*	0	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	0.35 J	NA	NA	NA	NA	4.8 U	NA							
Benzo(g,h,i)perylene		μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Chrysene*	0.002 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Dibenzo(a,h)anthracene		μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Fluoranthene	50 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Fluorene	50 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Naphthalene	10 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Phenanthrene	50 (GV)	μg/L	10 U	4.7 U	0.45 J	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
Pyrene	50 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	NA	NA	NA	NA	4.8 U	NA							
PAH COCs		μg/L	ND	ND	ND	ND	ND	0.35 J	NA	NA	NA	NA	ND	NA							
Total PAHs		μg/L	ND	ND	0.45 J	ND	ND	0.35 J	NA	NA	NA	NA	ND	NA							
Oxygen Demand	1	1		1	[[·	[1					1	[r			. <u> </u>
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	4,500	3,500	2,000U	NA	NA	NA	NA	NA	NA	99,000	13,000	6,900	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	2,400	NA	2,000U	NA	NA	NA	NA	NA	NA	79,400	NA	10,600	NA

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

Location ID:	NYSDEC TOGS 1.1.1				PMW-4				РМ	W-5				PMW-6		
	Std. or	Units	Baseline	Q2	Q4	Q6	Q8	Baseline	Q2	Q6	Q8	Baseline	Q2	Q4	Q6	Q8
Date Collected:	Guidance Values		04/03/13	08/28/13	02/05/14	08/06/14	02/25/15	04/03/13	08/28/13	08/06/14	02/24/15	04/03/13	08/28/13	02/05/14	08/06/14	02/25/15
втех		1														
Benzene	1	μg/L	230 D	81	150	4 U	81	NA	NA	NA	NA	3.4	25	89	90	1,200 D
Ethylbenzene	5	μg/L	110 D	36	55	4 U	29	NA	NA	NA	NA	1.4	6.4	42	57	290 D
Toluene	5	μg/L	9.3	2.9 J	5.4	4 U	4.9	NA	NA	NA	NA	1 U	0.54 J	1	3.4	10
Xylenes (total)	5	ug/L	80	21	33	8 U	21	NA	NA	NA	NA	1.1 J	8.9	30	95	290 D
Total BTEX		μg/L	429	141 J	243	ND	136	NA	NA	NA	NA	5.9 J	40.8 J	162	245	1,790 D
PAHs		1		[]		[[
Acenaphthene	20 (GV)	μg/L	110 D	NA	7.2	NA	NA	NA	NA							
Acenaphthylene		μg/L	6.2	NA	4.8 U	NA	NA	NA	NA							
Anthracene	50 (GV)	μg/L	8.8	NA	4.8 U	NA	NA	NA	NA							
Benzo(a)anthracene*	0.002 (GV)	μg/L	0.88 J	NA	4.8 U	NA	NA	NA	NA							
Benzo(a)pyrene*	0	μg/L	1.3 J	NA	4.8 U	NA	NA	NA	NA							
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1.3 J	NA	4.8 U	NA	NA	NA	NA							
Benzo(g,h,i)perylene		μg/L	1 J	NA	4.8 U	NA	NA	NA	NA							
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	0.71 J	NA	4.8 U	NA	NA	NA	NA							
Chrysene*	0.002 (GV)	μg/L	0.70 J	NA	4.8 U	NA	NA	NA	NA							
Dibenzo(a,h)anthracene		μg/L	4.7 U	NA	4.8 U	NA	NA	NA	NA							
Fluoranthene	50 (GV)	μg/L	5.4	NA	4.8 U	NA	NA	NA	NA							
Fluorene	50 (GV)	μg/L	29	NA	4.8 U	NA	NA	NA	NA							
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	4.7 U	NA	4.8 U	NA	NA	NA	NA							
Naphthalene	10 (GV)	μg/L	800 D	NA	7.3	NA	NA	NA	NA							
Phenanthrene	50 (GV)	μg/L	33	NA	4.8 U	NA	NA	NA	NA							
Pyrene	50 (GV)	μg/L	9.5	NA	4.8 U	NA	NA	NA	NA							
PAH COCs		μg/L	4.89 J	NA	ND	NA	NA	NA	NA							
Total PAHs		μg/L	1,008 J	NA	14.5	NA	NA	NA	NA							
Oxygen Demand		1		[Γ		·,		Γ	1	·	[T
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	2,000 U	2,000 U	2,000U	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	2,000 U	NA	2,000U	NA	NA	NA	NA	NA	NA

Notes:

Table 6 pH in Application Wells Over Time

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

	Baseline Ev	ent	Q	4 Sampling		Q6	Sampling			Q8 Sampling	
	April 2-3, 2013	April 5, 2013	February 4-5, 2014	February 6, 2014	February 7, 2014	August 4-5, 2014	August 7, 2014	August 8, 2014	February 23-25, 2015	February 26, 2015	February 27, 2015
Well ID	Before Sock Deployment	24 Hours	Before Sock Replacement	24 Hours	48 Hours	Before Sock Replacement	24 Hours	48 Hours	Before Sock Replacement	24 Hours	48 Hours
	Standard Units	Standard Units	Standard Units	Standard Units	Standard Units	Standard Units	Standard Units	Standard Units	Standard Units	Standard Units	Standard Units
AW-1	7.03	12.07	11.18	12.85	12.97	11.79	9.70	9.49	9.61	6.93	8.54
AW-2	7.21	10.34	7.17	10.05	9.26	9.86	7.06	7.19	7.33	7.16	8.08
AW-3	7.08	8.98	7.07	8.39	8.34	7.20	7.03	7.05	6.99	7.43	7.81
AW-4	7.31	11.54	7.36	12.55	12.56	7.14	7.29	7.30	7.41	9.78	10.36
AW-5	7.25	11.70	12.31	12.51	12.62	10.77	9.24	9.02	7.15	8.81	9.73
AW-6	7.34	12.54	11.21	12.23	12.47	10.64	8.87	8.28	7.08	8.90	10.21
AW-7	7.16	10.67	11.21	12.12	12.37	11.49	8.49	8.17	7.11	7.94	9.41
AW-8	7.39	10.99	7.97	12.30	12.36	7.93	8.07	7.80	6.67	7.09	8.76
AW-9	7.45	12.70	12.25	12.74	12.94	12.25	10.07	9.67	6.63	7.14	9.42
AW-10	7.29	8.15	7.27	8.68	8.82	7.40	7.11	7.16	7.23	7.98	8.84
AW-11	7.17	8.01	7.13	9.07	7.80	7.07	6.98	7.00	7.24	8.12	8.52
AW-12	7.92	9.15	7.33	8.20	8.02	7.42	7.14	7.24	7.31	8.08	8.43
AW-13	7.20	8.25	7.07	7.90	7.44	7.01	6.90	6.93	7.22	7.61	7.93
AW-14	7.21	10.22	7.14	10.21	10.05	7.19	6.91	6.96	7.27	8.35	8.85
AW-15	7.25	9.40	7.03	10.13	9.99	7.17	6.83	6.89	7.09	8.06	7.71
AW-16	7.08	10.45	6.74	9.50	9.48	6.76	6.63	6.75	6.97	9.57	9.78
AW-17	6.86	10.60	6.86	9.64	9.43	6.90	6.55	6.68	6.93	9.48	9.64
AW-18	7.07	6.99	6.93	7.05	7.05	6.84	6.71	6.82	7.05	8.26	8.31
AW-19	7.02	6.89	6.72	7.16	6.95	6.82	6.58	6.96	6.95	7.93	7.90
Average pH Concentration	7.23	9.98	8.31	10.17	10.05	8.40	7.59	7.55	7.22	8.14	8.85

Notes:

'Before Sock Replacement" indicates readings collected prior to replacing the Adventus ECH-O socks

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	8.44	844.44		13.75	0.03
			05/28/13	8.55	844.33		13.75	0.03
			08/26/13	8.63	844.25		13.71	0.07
MW-1S	852.88	13.78	11/18/13	8.60	844.28		13.69	0.09
			02/03/14	8.50	844.38		13.75	0.03
			08/04/14	8.35	844.53		13.74	0.04
			02/23/15	8.81	844.07		13.70	0.08
			04/01/13	10.54	842.44		60.77	0.67
			05/28/13	10.75	842.23		60.76	0.68
			08/26/13	10.83	842.15		60.72	0.72
MW-1D	852.98	61.44	11/18/13	10.87	842.11		60.67	0.77
		-	02/03/14	10.70	842.28		60.91	0.53
			08/04/14	11.01	841.97		60.92	0.52
			02/23/15	11.13	841.85		60.81	0.63
			04/01/13	10.02	844.04		16.54	3.68
			05/28/13	10.02	844.00		16.20	4.02
			03/28/13	10.00	844.03		16.60	3.62
MW-2S	854.06	20.22						
10100-23	854.00	20.22	11/18/13	10.03	844.03		17.00	3.22
			02/04/14	10.27	843.79		18.50	1.72
			08/04/14	9.79	844.27		18.56	1.66
			02/23/15	11.03	843.03		18.64	1.58
			04/01/13	14.87	840.79		64.51	3.68
			05/28/13	15.16	840.50		64.54	3.65
			08/26/13	15.35	840.31		64.53	3.66
MW-2D	855.66	68.19	11/18/13	15.43	840.23		64.44	3.75
			02/03/14	15.09	840.57		64.64	3.55
			08/04/14	15.43	840.23		67.25	0.94
			02/23/15	15.73	839.93		67.17	1.02
			04/01/13	7.65	843.69		15.65	1.15
			05/28/13	7.80	843.54		15.56	1.24
			08/26/13	7.78	843.56		15.55	1.25
MW-4S	851.47	16.67	11/18/13	7.98	843.36		15.30	1.50
			02/03/14	8.09	843.25		16.10	0.70
			08/04/14	7.64	843.70		15.96	0.75
			02/23/15	9.73	841.74		15.88	0.79
			04/01/13	5.41	847.13		20.91	3.93
			05/28/13	5.70	846.84		20.90	3.94
			08/26/13	5.39	847.15		20.85	3.99
MW-6S	852.54	24.84	11/18/13	5.68	846.86	-	20.72	4.12
			02/03/14	4.66	847.88	-	24.80	0.04
			08/04/14	5.75	846.79		24.80	0.04
			02/23/15	6.71	845.83		24.69	0.15
			04/01/13	10.62	843.52		32.80	6.76
			05/28/13	10.71	843.43		32.76	6.80
			08/26/13	10.68	843.46		33.00	6.56
MW-7	854.14	39.56	11/18/13	10.69	843.45		33.07	6.49
			02/03/14	10.68	843.46		39.33	0.23
			08/04/14	10.51	843.63		39.17	0.39
			02/23/15	10.82	843.32		39.18	0.38

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	6.76	843.62		6.93	7.77
			05/28/13	6.89	843.49		6.94	7.76
			08/26/13	6.79	843.59		6.98	7.72
MW-8S	850.38	14.70	11/18/13	6.85	843.53		7.02	7.68
			02/03/14	6.84	843.54		14.01	0.69
			08/04/14	6.68	843.70		14.02	0.68
			02/23/15	7.09	843.29		13.98	0.72
			04/01/13	10.17	839.91		69.28	0.30
			05/28/13	10.57	839.51		69.24	0.34
			08/26/13	10.56	839.52		69.30	0.28
MW-8D	850.08	69.58	11/18/13	10.73	839.35		70.43	-0.85
			02/03/14	10.42	839.66		69.36	0.22
			08/04/14	10.68	839.40		69.44	0.14
			02/23/15	11.19	838.89		70.30	-0.72
			04/01/13	5.67	843.01		14.43	0.39
			05/28/13	5.91	842.77		14.41	0.41
			08/26/13	6.09	842.59		14.50	0.32
MW-9S	849.03	14.47	11/18/13	6.32	842.36		14.47	0.35
			02/03/14	5.93	842.75		14.55	0.27
			08/04/14	5.03	843.65		14.40	0.42
			02/23/15	6.89	842.14		12.25	2.22
			04/01/13	8.05	840.67		67.96	3.82
			05/28/13	8.36	840.36		67.90	3.88
			08/26/13	8.39	840.33		67.93	3.85
MW-9D	849.06	71.44	11/18/13	8.51	840.21		67.89	3.89
			02/03/14	8.20	840.52		67.95	3.83
			08/04/14	8.14	840.58		72.65	-0.87
			02/23/15	8.85	840.21		72.58	-1.14
			04/01/13	9.78	841.40		59.60	0.04
			05/28/13	9.89	841.29		59.55	0.09
			08/26/13	9.57	841.61		59.60	0.04
MW-0304D	851.18	59.64	11/18/13	9.78	841.40		59.58	0.06
			02/03/14	9.78	841.40		59.65	-0.01
			08/04/14	10.00	841.18		59.58	0.06
			02/23/15	10.35	840.83		59.56	0.08
			04/01/13	7.78	842.31		22.48	-0.10
			05/28/13	7.89	842.20		22.49	-0.11
			08/26/13	7.97	842.12		22.50	-0.12
MW-0402S	850.09	22.38	11/18/13	8.15	841.94		22.49	-0.11
			02/03/14	7.94	842.15		22.54	-0.16
			08/04/14	7.39	842.70		22.55	-0.17
			02/23/15	8.36	841.73		22.48	-0.10

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
		(04/01/13	9.45	840.21		39.40	-0.08
			05/28/13	9.75	839.91		39.36	-0.04
			08/26/13	9.81	839.85		39.32	0.00
MW-0403S	849.66	39.32	11/18/13	9.97	839.69		39.34	-0.02
			02/03/14	9.54	840.12		39.38	-0.06
			08/04/14	9.49	840.17		39.39	-0.07
			02/23/15	10.05	839.61		39.30	0.02
			04/01/13	9.71	840.28		27.94	0.63
			05/28/13	10.02	839.97		27.89	0.68
			08/26/13	10.02	839.93		27.81	0.76
MW-0404S	849.99	28.57	11/18/13	10.00	839.80		27.81	0.78
10100-04043	049.99	20.37						
			02/03/14	9.80	840.19		28.25	0.32
			08/04/14	9.71	840.28		28.20	0.37
			02/23/15	10.39	839.60		28.20	0.37
			04/01/13	9.45	840.10		59.43	0.34
			05/28/13	9.89	839.66		59.45	0.32
			08/26/13	9.94	839.61		59.38	0.39
MW-0404D	849.55	59.77	11/18/13	10.22	839.33		60.21	-0.44
			02/03/14	9.73	839.82		59.40	0.37
			08/04/14	9.67	839.88		59.40	0.37
			02/23/15	10.50	839.05		59.33	0.44
			04/01/13	10.33	840.26		35.43	-0.16
			05/28/13	10.81	839.78		35.44	-0.17
			08/26/13	10.83	839.76		35.38	-0.11
MW-0405S	850.59	35.27	11/18/13	11.16	839.43		35.41	-0.14
			02/03/14	10.66	839.93		35.50	-0.23
			08/04/14	10.61	839.98		35.42	-0.15
			02/23/15	11.54	839.05		35.39	-0.12
			04/01/13	7.04	843.90		20.00	-0.22
			05/28/13	7.05	843.89		19.99	-0.21
			08/26/13	7.00	843.94		19.92	-0.14
AW-1	850.94	19.78	11/18/13	7.17	843.77		19.92	-0.13
AVV-1	030.34	13.70	02/03/14		-			-0.16
				7.21	843.73		19.94	
			08/04/14	6.74	844.20		19.91	-0.13
			02/23/15	7.42	843.52		19.83	-0.05
			04/01/13	7.51	843.44		20.17	0.15
			05/28/13	7.25	843.70		20.19	0.13
			08/26/13	7.61	843.34		20.18	0.14
AW-2	851.23	20.04	11/18/13	7.76	843.19		20.15	0.17
			02/03/14	7.75	843.20		20.13	0.19
			08/04/14	6.91	844.04		20.09	0.23
			02/23/15	8.43	842.80		20.10	-0.06
			04/01/13	6.83	843.55		19.59	-0.49
			05/28/13	6.84	843.54		19.60	-0.50
			08/26/13	7.02	843.36		19.55	-0.45
AW-3	850.38	19.10	11/18/13	6.98	843.40		19.81	-0.71
			02/03/14	6.94	843.44		19.59	-0.49
			08/04/14	6.31	844.07		19.53	-0.43
			02/23/15	7.47	842.91		19.50	-0.40

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	6.30	844.32		20.01	-0.24
			05/28/13	6.22	844.40		19.83	-0.06
			08/26/13	6.91	843.71		19.96	-0.19
AW-4	850.62	19.77	11/18/13	7.74	842.88		19.97	-0.20
			02/03/14	7.50	843.12		19.98	-0.21
			08/04/14	5.49	845.13		19.75	0.02
			02/23/15	8.47	842.15		19.73 19.73 19.73 19.73 19.73 19.73 19.73 19.73 19.73 19.75 19.75 19.75 19.75 19.75 19.75 19.75 19.75 19.75 19.75 19.75 19.75 19.04 19.03 18.98 19.02 19.02 19.02 18.79 18.86 18.85 18.85 18.82 18.80 18.82 18.82 18.85 19.35 19.34 19.31	0.04
			04/01/13	7.16	843.22		19.78	0.02
			05/28/13	7.24	843.14		19.73	0.07
			08/26/13	7.30	843.08		19.73	0.07
AW-5	850.38	19.80	11/18/13	7.71	842.67		19.70	0.10
			02/03/14	7.26	843.12		19.75	0.05
			08/04/14	6.81	843.57		19.75	0.05
			02/23/15	8.42	841.96		19.64	0.16
			04/01/13	7.72	842.13		19.04	0.24
			05/28/13	7.87	841.98		19.10	0.18
			08/26/13	7.87	841.98		19.03	0.25
AW-6	849.85	19.28	11/18/13	8.24	841.61		18.98	0.30
			02/03/14	7.77	842.08		19.02	0.26
			08/04/14	7.45	842.40		19.02	0.26
			02/23/15	8.64	841.21		18.79	0.49
			04/01/13	8.49	841.23		18.86	-0.12
		18.74	05/28/13	8.72	841.00		18.85	-0.11
			08/26/13	8.72	841.00		18.82	-0.08
AW-7	849.72		11/18/13	9.00	840.72		18.80	-0.06
			02/03/14	8.59	841.13		18.85	-0.11
			08/04/14	8.43	841.29		18.82	-0.08
			02/23/15	9.32	840.40		18.75	-0.01
			04/01/13	8.86	840.92		19.35	-0.03
			05/28/13	9.07	840.71		19.34	-0.02
			08/26/13	9.13	840.65		19.31	0.01
AW-8	849.78	19.32	11/18/13	9.35	840.43		19.25	0.07
			02/03/14	8.90	840.88		19.22	0.10
			08/04/14	8.71	841.07		19.20	0.12
			02/23/15	9.55	840.23		18.85	0.47
			04/01/13	8.30	841.31		22.22	0.05
			05/28/13	9.00	840.61		21.88	0.39
			08/26/13	9.05	840.56		21.92	0.35
AW-9	849.61	22.27	11/18/13	9.21	840.40		22.11	0.16
			02/03/14	8.87	840.74		22.10	0.17
			08/04/14	8.73	840.88		21.92	0.35
			02/23/15	9.54	840.07		21.71	0.56
			04/01/13	9.18	840.42		24.28	-0.08
			05/28/13	9.42	840.18		24.27	-0.07
			08/26/13	9.51	840.09		24.20	0.00
AW-10	849.60	24.20	11/18/13	9.91	839.69		24.20	0.00
	2.5.00		02/03/14	9.25	840.35		24.18	0.02
			08/04/14	9.45	840.15		24.19	0.02
			02/23/15	9.67	839.93		23.76	0.44

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	8.99	840.50		24.14	0.13
			05/28/13	9.22	840.27		24.13	0.14
			08/26/13	9.34	840.15		24.02	0.25
AW-11	849.49	24.27	11/18/13	9.45	840.04		24.06	0.21
AW-11			02/03/14	9.01	840.48		24.10	0.17
			08/04/14	9.01	840.48		24.02	0.25
			02/23/15	9.71	839.78		23.50	0.77
			04/01/13	8.68	840.51		37.67	-0.09
			05/28/13	9.00	840.19		37.68	-0.10
			08/26/13	9.15	840.04		37.50	0.08
AW-12	849.19	37.58	11/18/13	9.29	839.90		37.50	0.08
			02/03/14	8.90	840.29		37.52	0.06
			08/04/14	8.78	840.41		37.15	0.43
			02/23/15	9.49	839.70		36.92	0.66
			04/01/13	8.59	840.48		27.40	0.06
			05/28/13	9.42	839.65		27.34	0.12
			08/26/13	8.98	840.09		27.24	0.12
AW-13	849.07	27.46						
AW-13	849.07	/ 27.46	11/18/13	9.10	839.97		27.28	0.18
			02/03/14	8.72	840.35		27.32	0.14
			08/04/14	8.59	840.48		27.26	0.20
			02/23/15	9.32	839.75		26.97	0.49
		28.88	04/01/13	8.86	840.59		30.90	-2.02
			05/28/13	9.22	840.23		30.57	-1.69
			08/26/13	9.27	840.18		30.54	-1.66
AW-14	849.45		11/18/13	9.34	840.11		30.57	-1.69
			02/03/14	8.99	840.46		30.44	-1.56
			08/04/14	8.83	840.62		30.30	-1.42
			02/23/15	9.58	839.87		29.70	-0.82
		34.68	04/01/13	8.67	840.44		34.57	0.11
			05/28/13	8.92	840.19		34.40	0.28
			08/26/13	9.02	840.09		34.20	0.48
AW-15	849.11		11/18/13	9.23	839.88		34.42	0.26
			02/03/14	8.75	840.36		33.85	0.83
			08/04/14	8.72	840.39		34.42	0.26
			02/23/15	9.40	839.71		33.89	0.79
			04/01/13	8.56	840.56		34.44	0.36
			05/28/13	8.72	840.40		34.31	0.49
			08/26/13	8.85	840.27		34.20	0.60
AW-16	849.12	34.80	11/18/13	8.97	840.15		34.25	0.55
			02/03/14	8.60	840.52		34.23	0.57
			08/04/14	8.44	840.68		34.45	0.35
			02/23/15	9.14	839.98		31.78	3.02
			04/01/13	8.53	840.55		34.56	-2.72
			05/28/13	8.75	840.33		31.34	0.50
			08/26/13	8.81	840.27		31.52	0.32
AW-17	849.08	31.84	11/18/13	8.99	840.09		31.43	0.41
			02/03/14	8.62	840.46		31.10	0.74
			08/04/14	8.45	840.63		31.27	0.57
			02/23/15	9.13	839.95		30.49	1.35

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	7.94	840.87		33.75	-0.24
			05/28/13	7.49	841.32		33.75	-0.24
			08/26/13	8.36	840.45		33.69	-0.18
AW-18	848.81	33.51	11/18/13	8.62	840.19		33.67	-0.16
			02/03/14	8.10	840.71		33.40	0.11
			08/04/14	6.78	842.03		33.15	0.36
			02/23/15	8.73	840.08		32.95	0.56
			04/01/13	7.99	841.02		33.91	0.42
			05/28/13	8.29	840.72		33.89	0.44
			08/26/13	8.59	840.42		33.87	0.46
AW-19	849.01	34.33	11/18/13	8.74	840.27		33.90	0.43
			02/03/14	8.27	840.74		33.15	1.18
			08/04/14	7.39	841.62		34.05	0.28
			02/23/15	8.85	840.16		32.74	1.59
			04/01/13	7.78	843.41		19.24	-0.43
			05/28/13	7.89	843.30		19.35	-0.54
			08/26/13	8.02	843.17		19.29	-0.48
PMW-1	851.19	18.81	11/18/13	8.35	842.84		19.41	-0.60
			02/03/14	7.97	843.22		19.38	-0.57
			08/04/14	7.50	843.69		19.32	-0.51
			02/23/15	9.21	841.98		19.29	-0.48
			04/01/13	5.45	844.40		19.67	0.17
			05/28/13	5.01	844.84		19.65	0.19
			08/26/13	6.00	843.85		19.64	0.20
PMW-2	849.93	19.76	11/18/13	5.68	844.17		19.62	0.22
			02/03/14	6.44	843.41		19.62	0.22
			08/04/14	4.96	844.89		19.53	0.31
			02/23/15	7.25	842.68		19.23	0.53
			04/01/13	8.45	841.19		14.60	4.69
			05/28/13	8.98	840.66		15.33	3.96
			08/26/13	8.73	840.91		15.41	3.88
PMW-3	849.64	19.29	11/18/13	8.76	840.88		15.15	4.14
			02/03/14	8.37	841.27		18.19	1.10
			08/04/14	7.75	841.89		15.35	3.94
			02/23/15	9.36	840.28		14.29	5.00
			04/01/13	9.20	840.82		19.85	-0.07
			05/28/13	9.45	840.57		19.85	-0.07
			08/26/13	9.51	840.51		19.85	-0.07
PMW-4	850.02	19.78	11/18/13	9.73	840.29		19.81	-0.03
			02/03/14	9.26	840.76		19.82	-0.04
			08/04/14	9.13	840.89		19.86	-0.08
			02/23/15	9.70	840.32		19.81	-0.03
			04/01/13	8.58	840.50		32.65	0.12
			05/28/13	8.77	840.31		32.36	0.41
			08/26/13	8.95	840.13		32.26	0.51
PMW-5	849.08	32.77	11/18/13	9.11	839.97		32.20	0.57
	0.0.00	5=	02/03/14	8.74	840.34		32.30	0.47
			08/04/14	8.60	840.48		32.69	0.08
	1			0.00	010.70		02.00	0.00

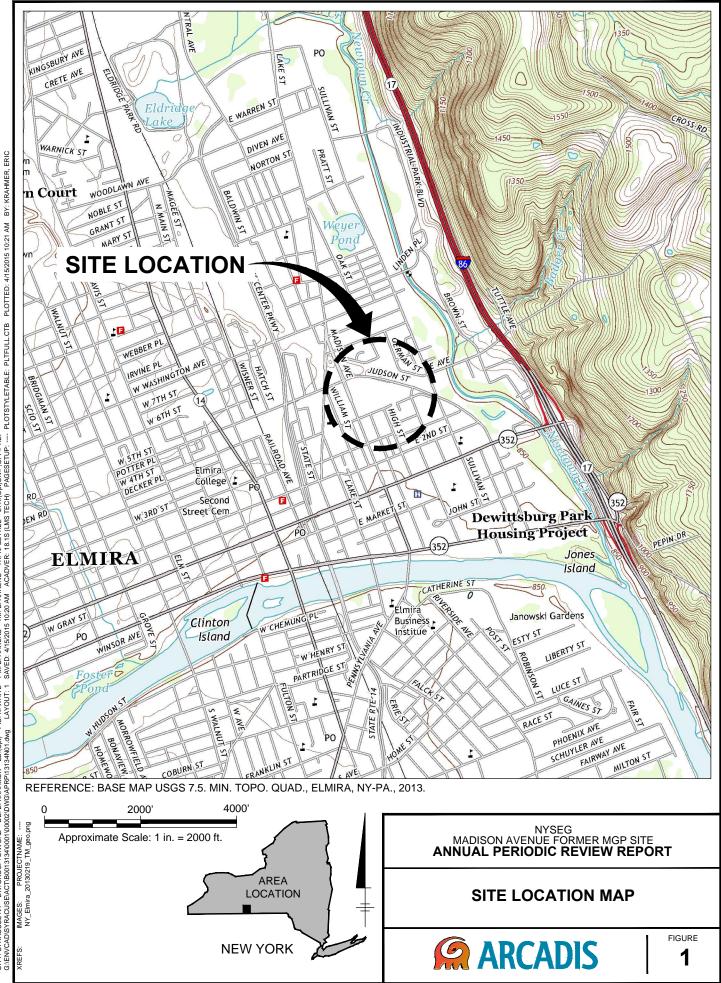
Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	9.19	840.40		37.97	0.84
			05/28/13	9.35	840.24		37.45	1.36
			08/26/13	9.50	840.09		37.35	1.46
PMW-6	849.59	38.81	11/18/13	9.68	839.91		37.23	1.58
			02/03/14	9.23	840.36		37.25	1.56
			08/04/14	9.19	840.40		38.33	0.48
			02/23/15	9.90	839.69		38.06	0.75
			04/01/13	9.24	840.53	29.87	31.07	0.22
			05/28/13	9.59	840.18	30.77	31.17	0.12
			08/26/13	9.89	839.88	29.25	31.25	0.04
			11/18/13	9.98	839.79	29.25	31.25	0.04
NMW-0402S	849.77	31.29	02/03/14	5.42	844.35	30.08	31.28	0.01
			05/30/14	8.75	841.02	29.92	31.41	-0.12
			08/04/14	9.48	840.29	29.93	31.33	-0.04
			11/20/14	10.08		30.28	31.38	-0.09
			02/23/15			30.72	32.35	-1.06
		5 33.74	04/01/13	11.21	841.15		33.82	0.01
	852.45		05/28/13	11.48	840.88		33.75	0.08
			08/26/13	11.42	840.94		33.70	0.13
			11/18/13	11.61	840.75		33.68	0.15
NRW-1			02/03/14	11.29	841.07		33.75	0.08
			05/30/14	10.87	841.07		33.62	0.08
			08/04/14	11.11	841.25		33.65	0.18
			11/20/14	11.54	840.91		33.59	0.15
			02/23/15	11.62	840.83		33.46	0.28
			04/01/13	9.36	840.44	57.54	57.87	0.38
			05/28/13	9.62	840.18		57.31	0.94
			08/26/13	9.80	840.00	56.73	57.20	1.05
			11/18/13	9.98	839.82	56.93	57.63	0.62
NRW-2	849.80	849.80 58.25	02/03/14	7.20	842.60		57.70	0.55
			05/30/14	8.94	840.86		57.92	0.33
			08/04/14	9.46	840.34	56.61	57.81	0.44
			11/20/14	10.05	839.75	57.44	57.83	0.42
			02/23/15	10.13	839.67	57.30	57.70	0.55
			04/01/13	9.33	840.45		52.97	0.79
		78 53.76	05/28/13	9.59	840.19		52.49	1.27
	849.78		08/26/13	9.77	840.01		52.13	1.63
			11/18/13	9.93	839.85		52.34	1.42
NRW-3			02/03/14	9.43	840.35		52.30	1.46
			05/30/14	8.93	840.85		52.24	1.52
			08/04/14	9.44	840.34		52.12	1.64
			11/20/14	10.02	839.76		52.23	1.53
			02/23/15	10.10	839.68		52.32	1.44

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

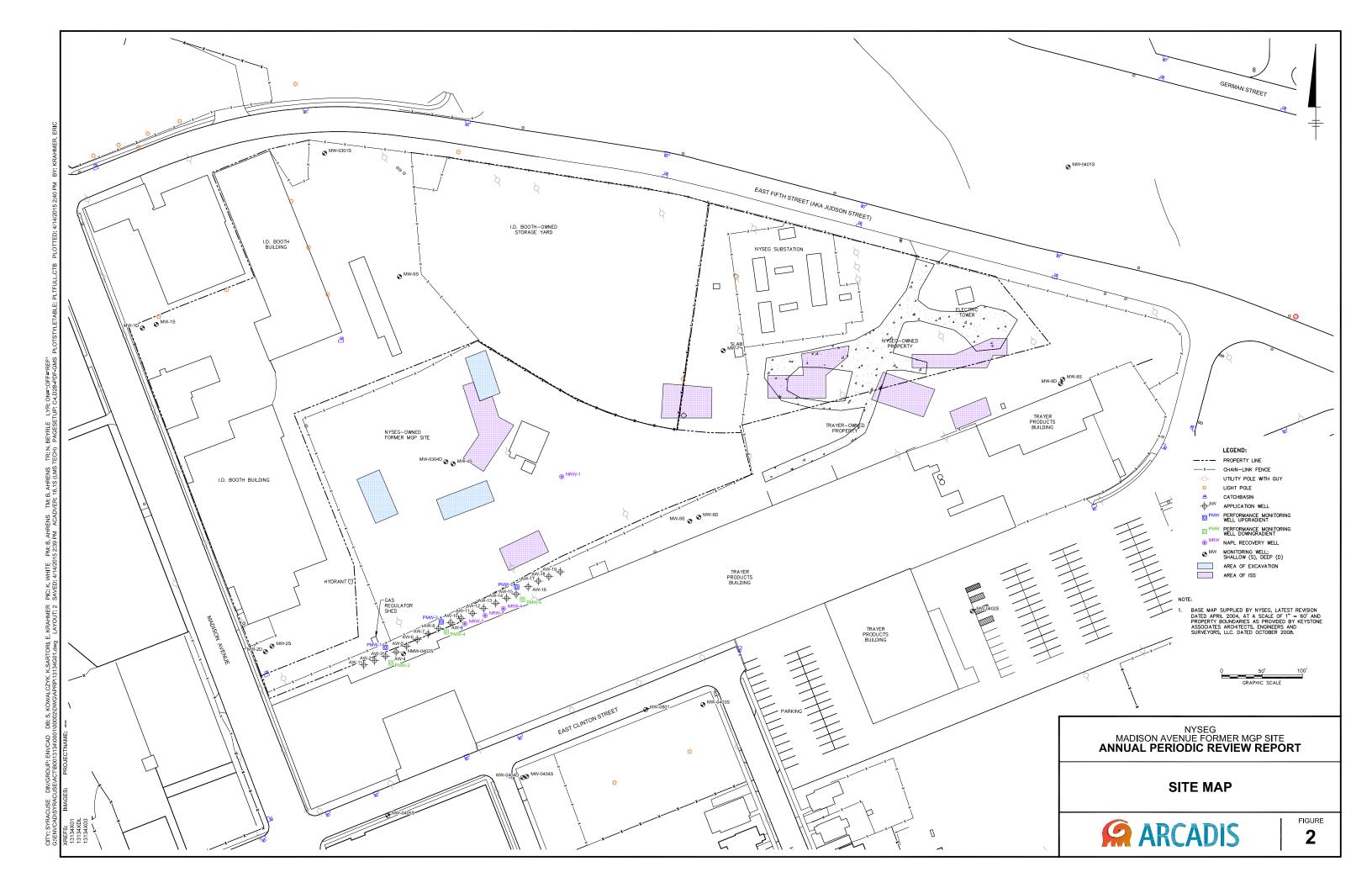
Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	9.06	840.46		57.40	-0.72
	849.52	56.68	05/28/13	9.35	840.17		57.34	-0.66
			08/26/13	9.53	839.99		56.57	0.11
			11/18/13	9.69	839.83		56.59	0.09
NRW-4			02/03/14	9.21	840.31		56.99	-0.31
			05/30/14	8.66	840.86		56.64	0.04
			08/04/14	9.18	840.34		56.58	0.10
			11/20/14	9.76	839.76		56.62	0.06
			02/23/15	9.88	839.64		56.40	0.28

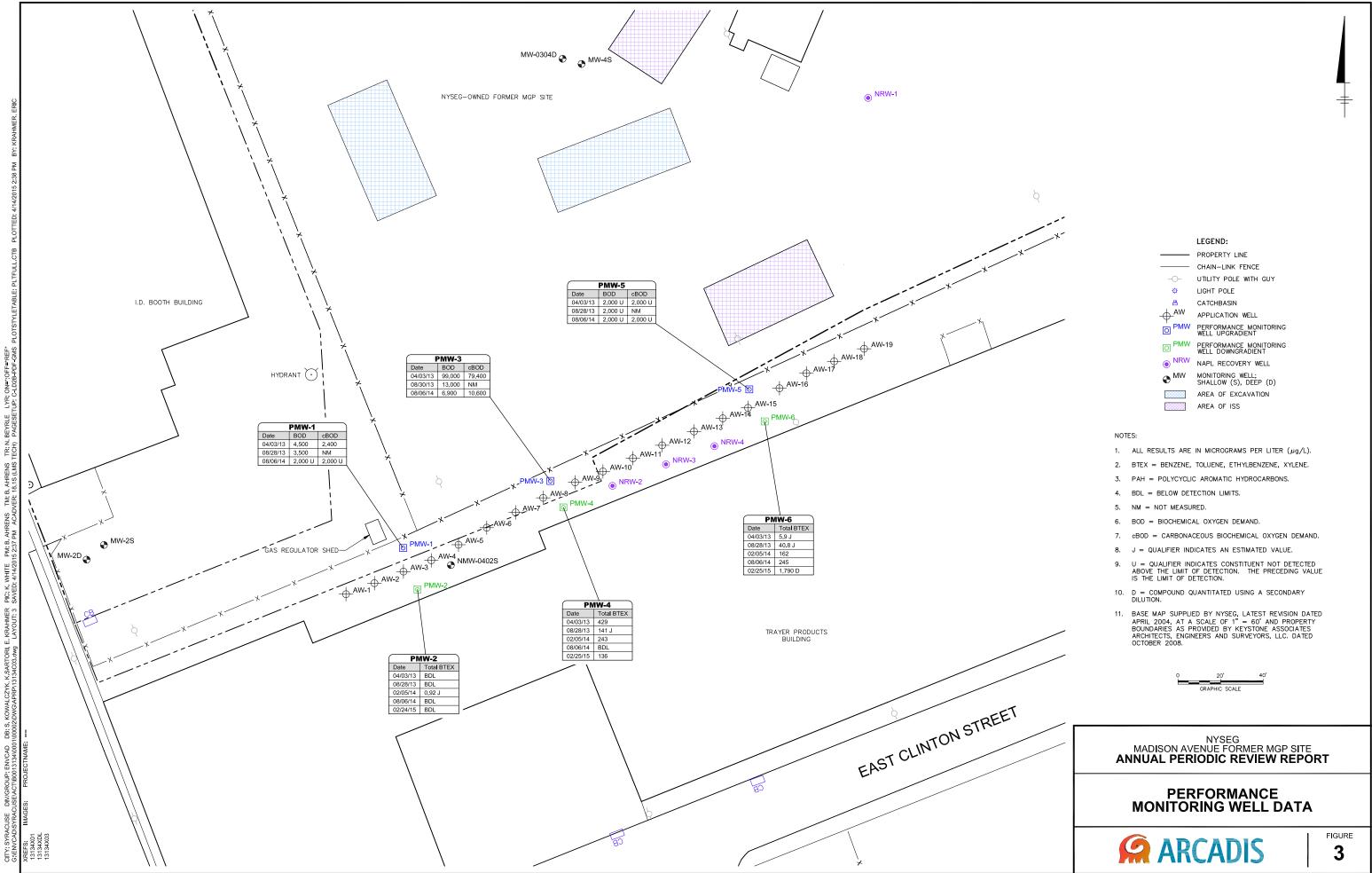
Notes:

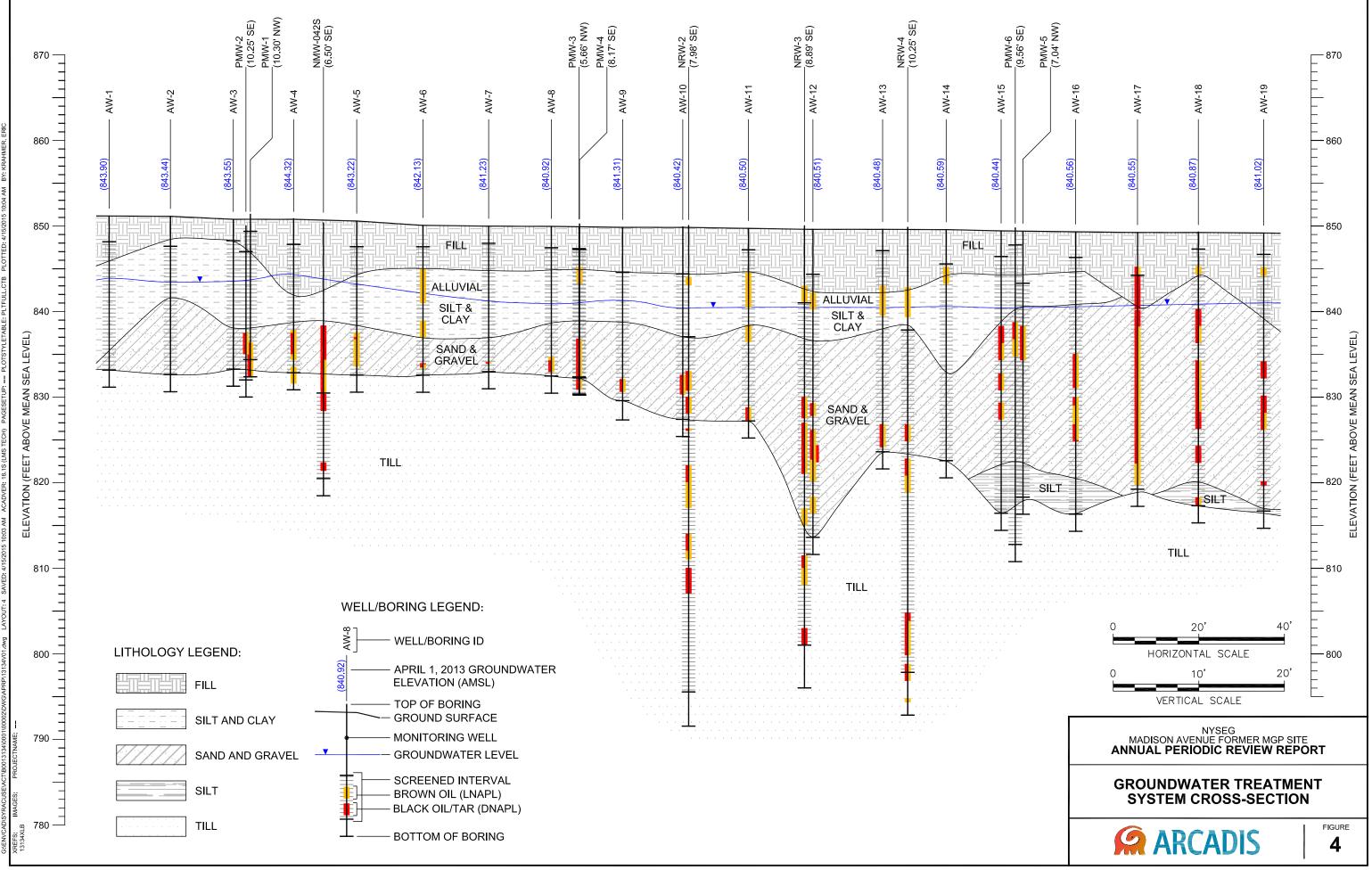
All measurements from Top of Casing (TOC).


Elevations in feet above mean sea level (ft amsl), 1988 North American Vertical Datum (NAVD88).

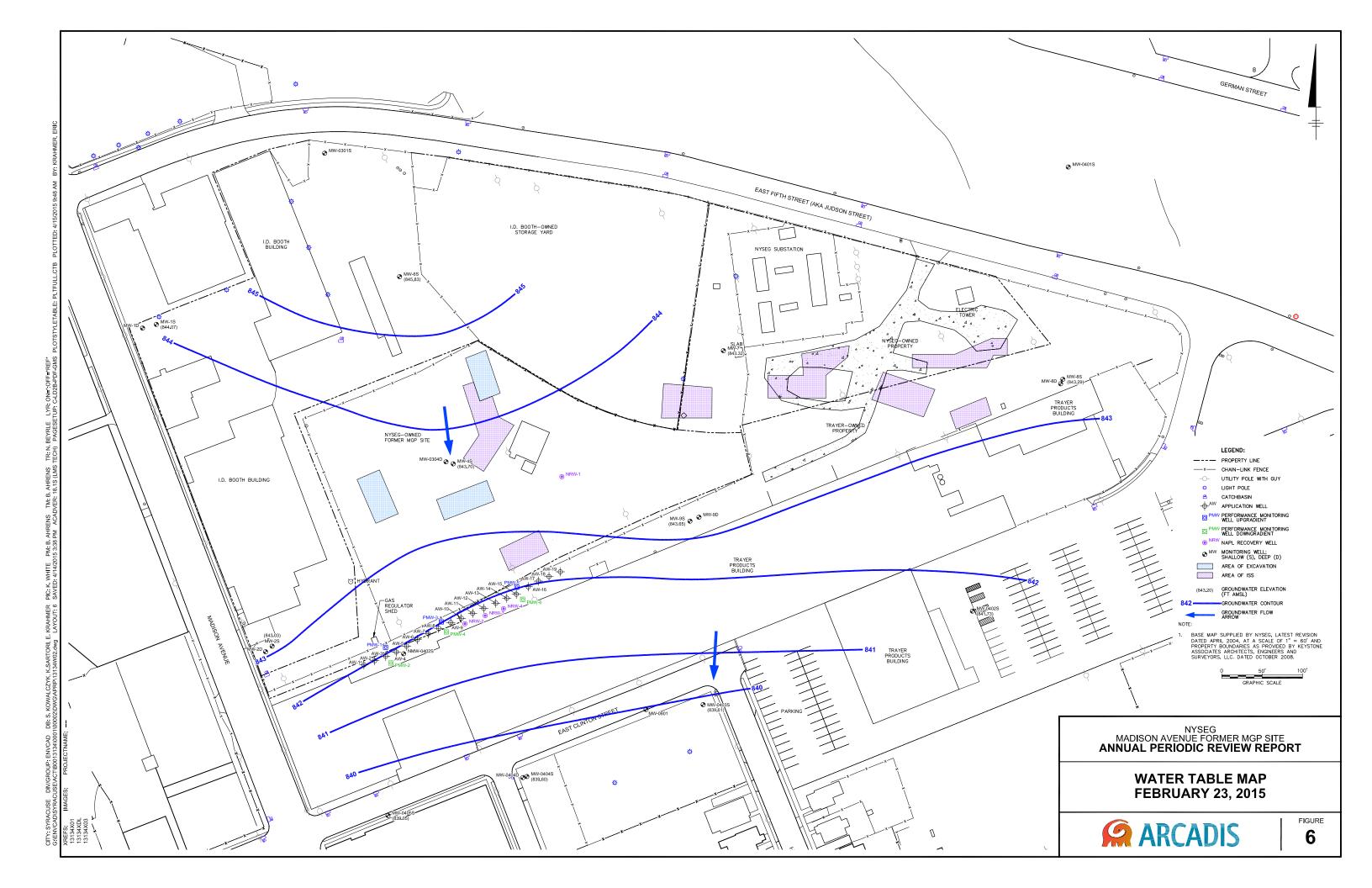
-- Indicates measurement not taken or not avaliable.

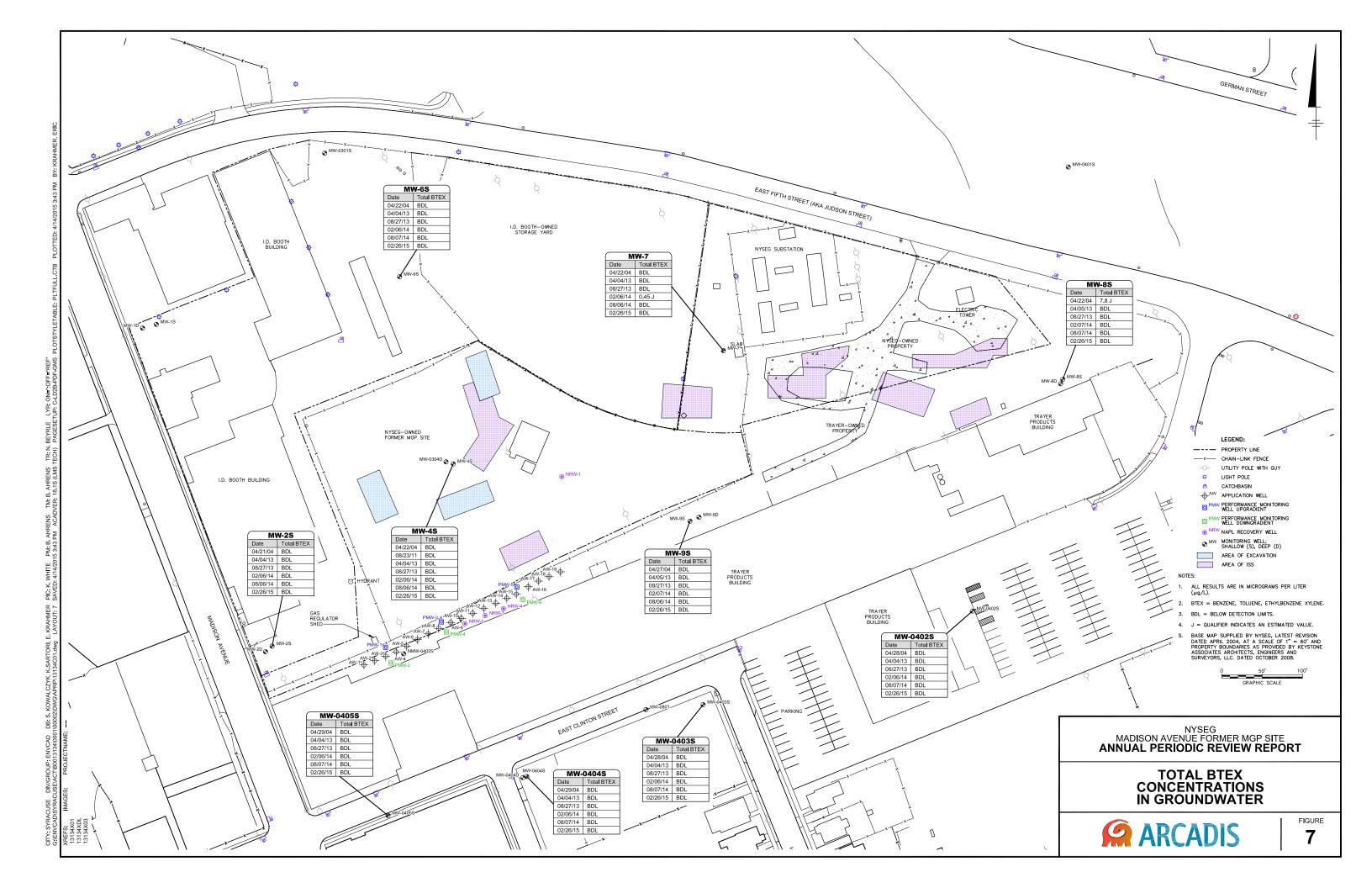

Due to well repairs, MW-4S, MW-9S, MW-9D, AW-2, PMW-2 and NRW-1 were resurveyed during the August 2014 site visit but after the gauging dated 8/4/2014. *Measuring Point Elevations* and *Actual Depth to Bottom* values have been updated and used starting with the gauging dated 2/23/2015.

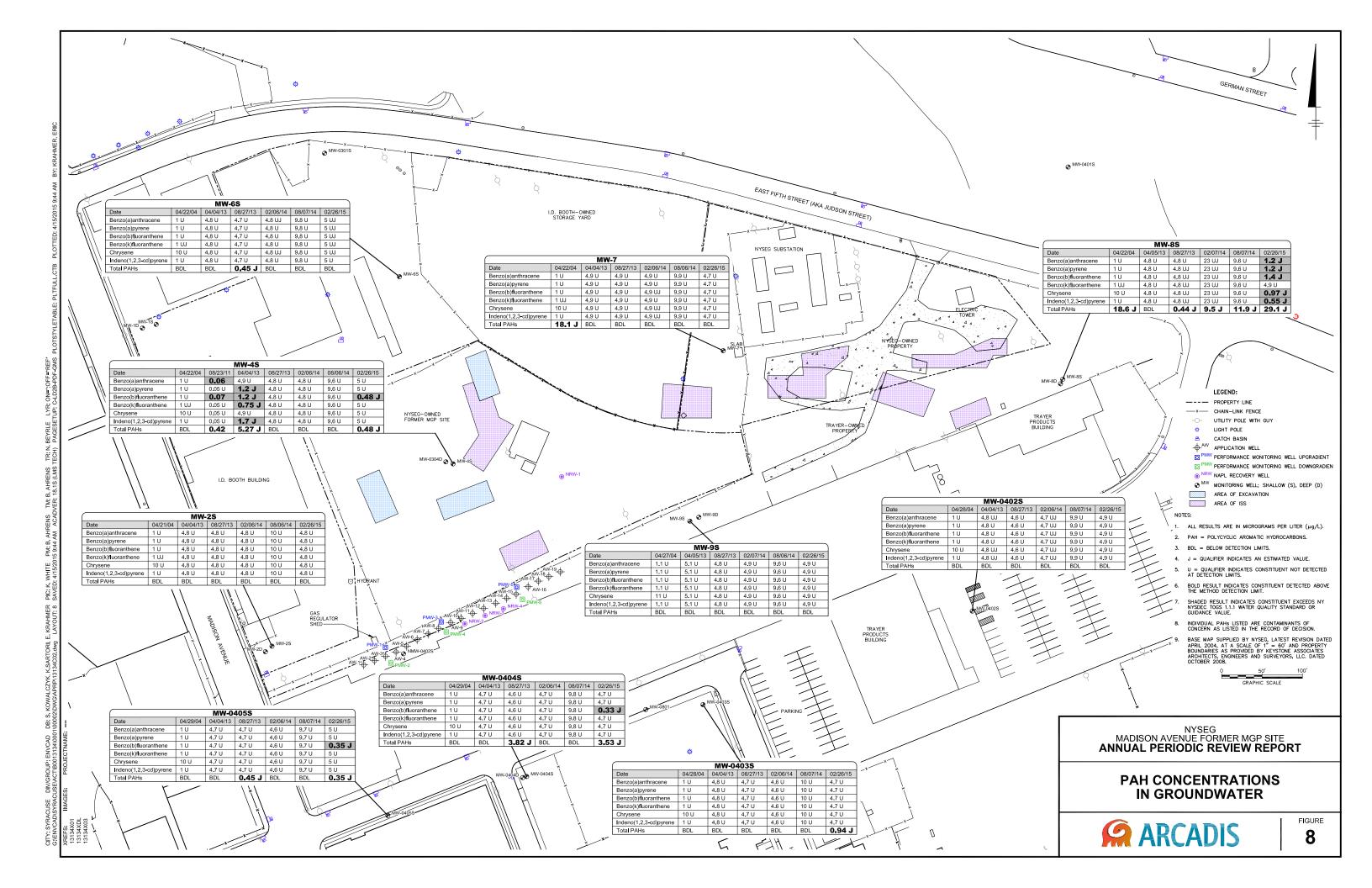


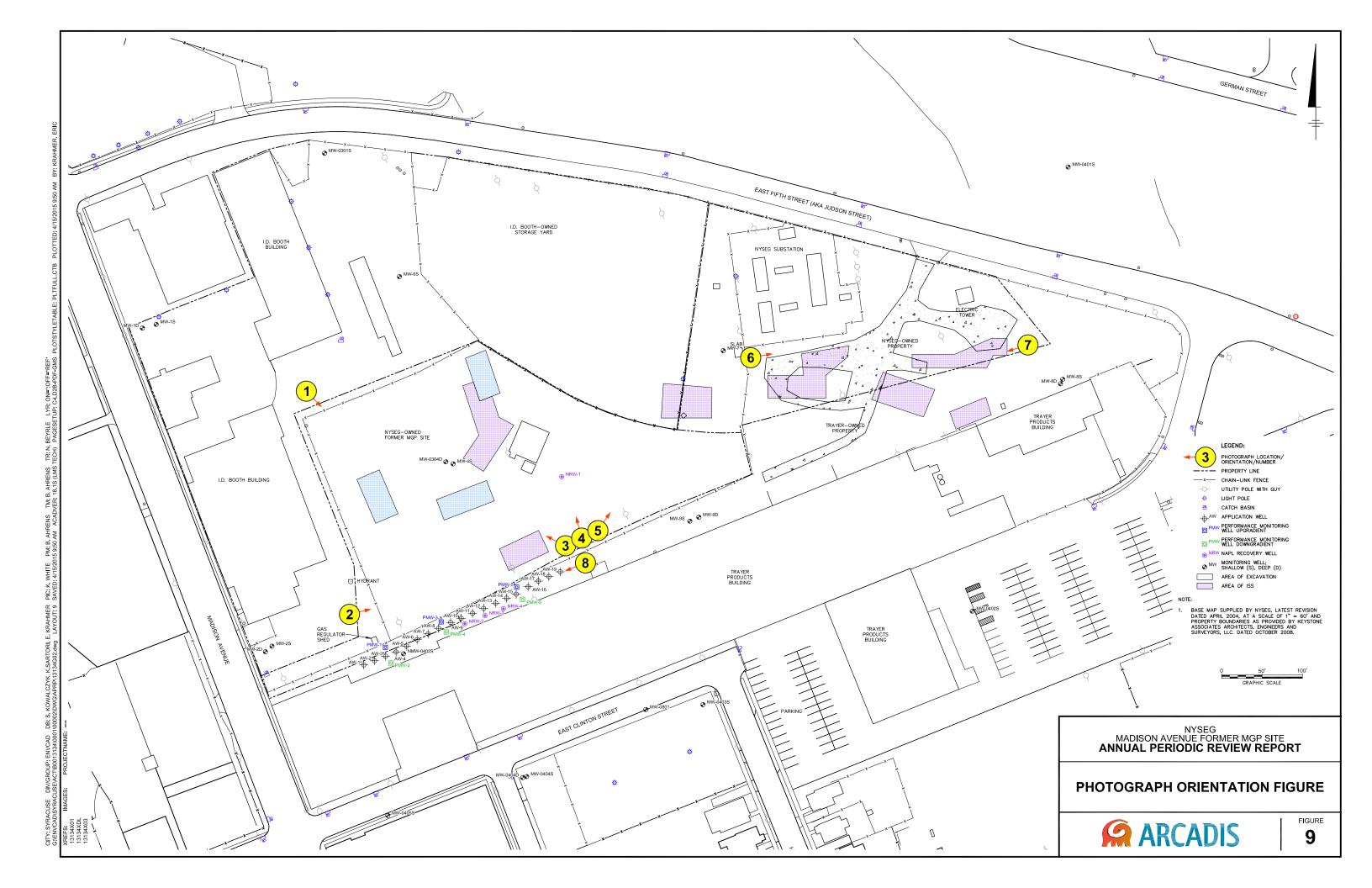

Figures

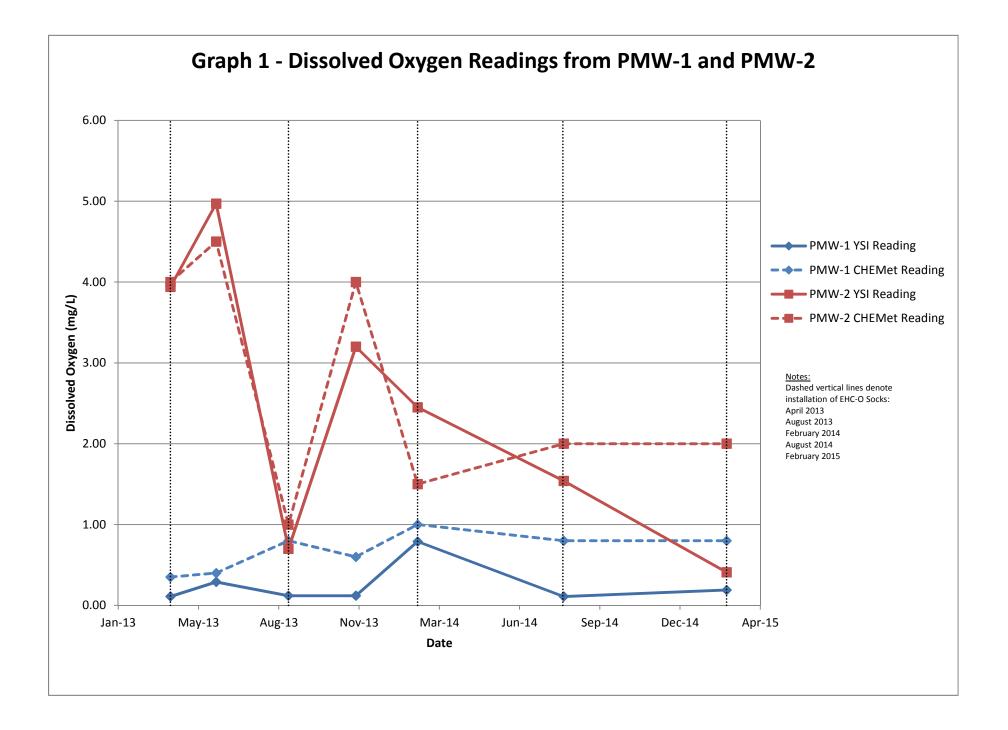
PLOTTED: 4/15/2015 10:21 AM PLOTSTYLETABLE: PLTFULL.CTB LYR:(Opt)ON=*;OFF=*REF* TECH) PAGESETUP: ----I. BEYRLE 18.1S (LMS 1 TM: B. AHRENS TR: N. 10:20 AM ACADVER: 18 4/15/2015 PM: B. AHRENS SAVED: 4/15/2015 PIC: K. WHITE LAYOUT: 1 gwb LD:(Opt) 134N01.dwc KRAHMER VG\APRP\131 ш CITY: SYRACUSE NY DIV/GROUP: ENVCAD DB: G. ENVCAD\SYRACUSE\ACT\B0013134\0001\00002V

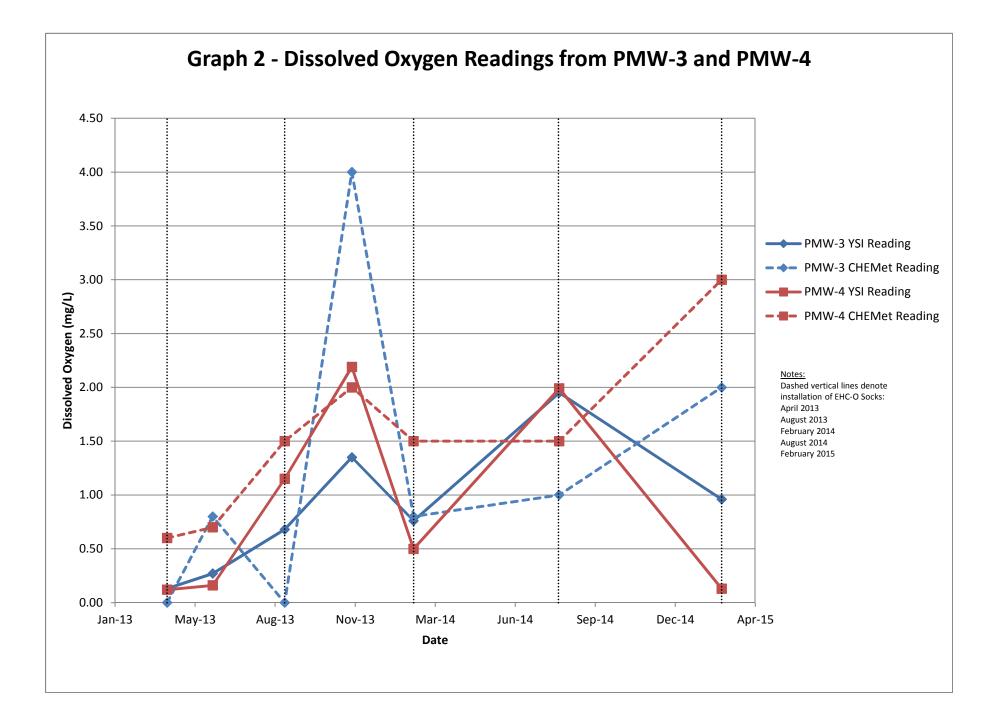


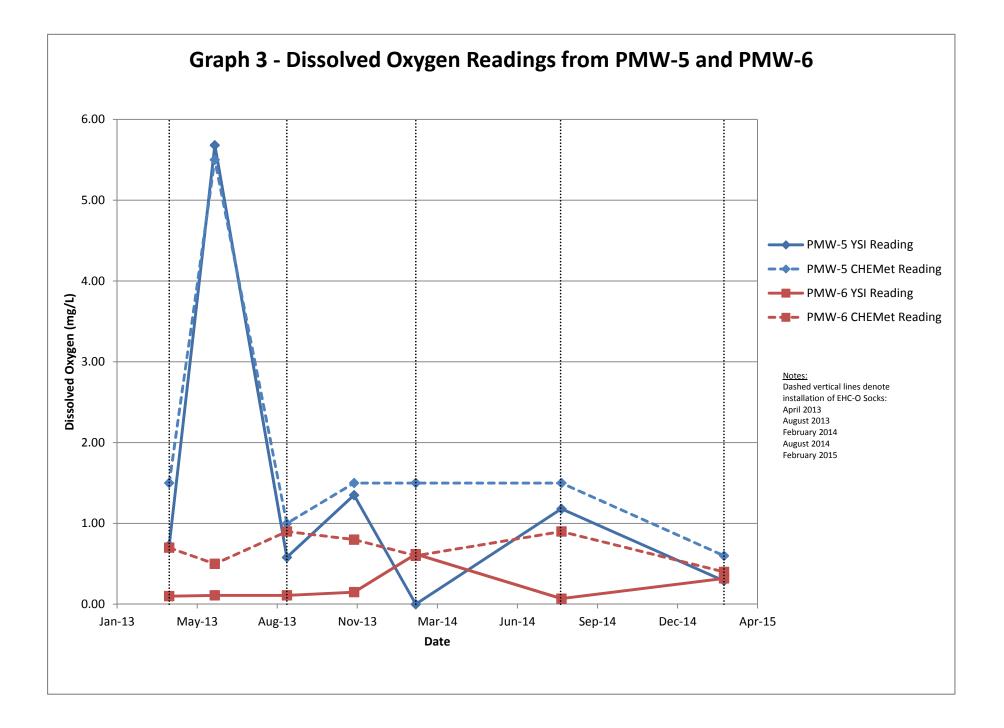


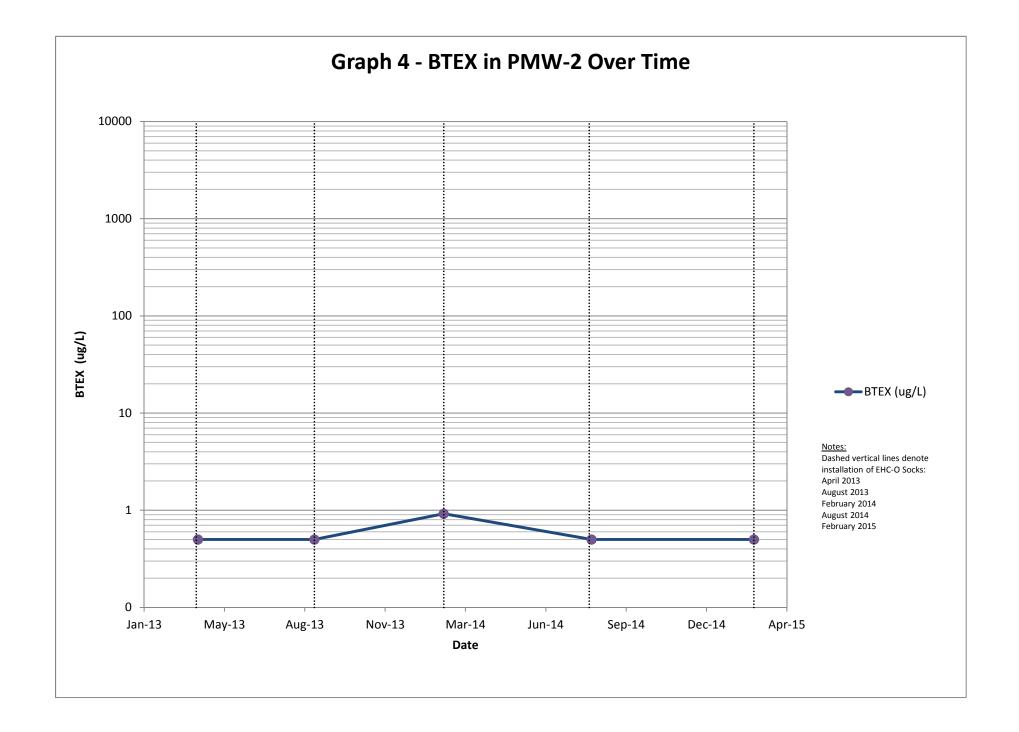


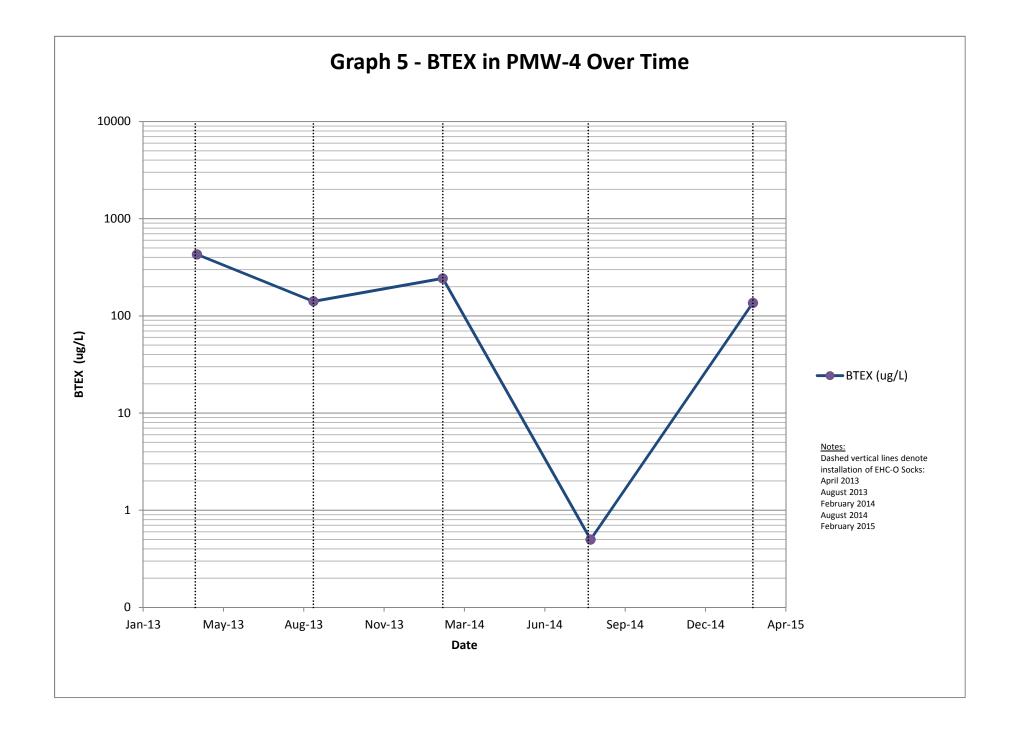

LR R TR. N. BEY ER: 18.1S (L TM B AHRENS 0.03 AM ACADV LD:(Opt) PIC: K WHITE PM B AHRENS 34/01 dwg LAYOUT: 4 SAVED: 4/15/2015 <u>A</u>ER

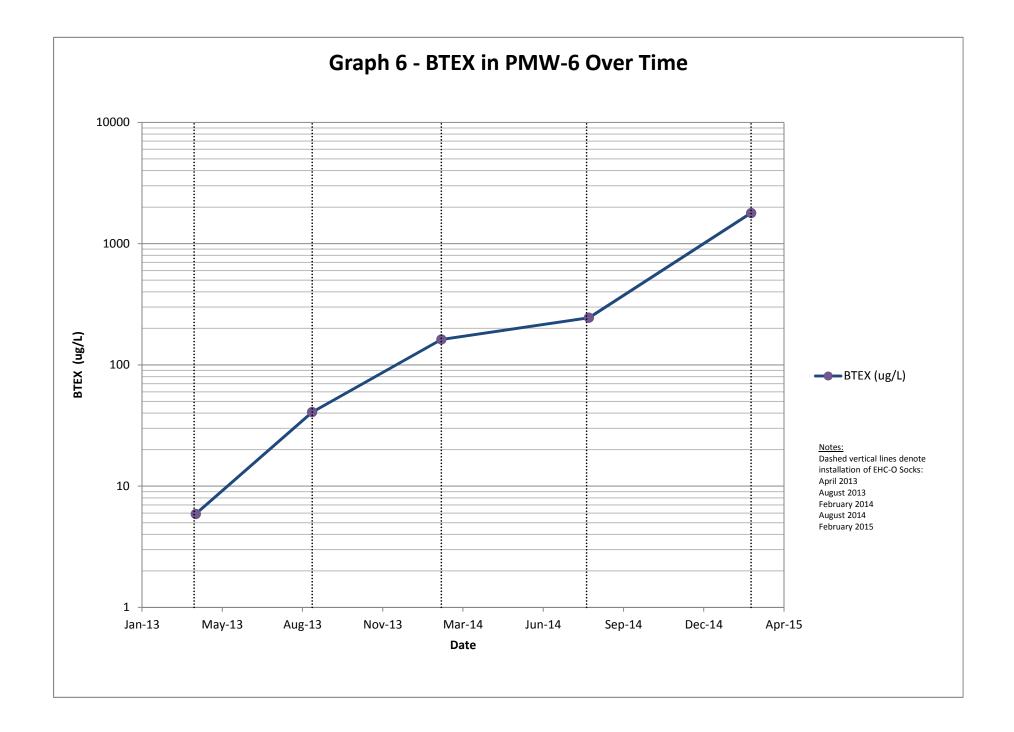









Graphs



ARCADIS

Appendix A

Data Usability Summary Reports (on Compact Disc)

Imagine the result

NYSEG Elmira Madison Avenue Former MGP Site

Data Usability Summary Report (DUSR)

ELMIRA, NEW YORK

Volatile, Semivolatile and Miscellaneous Analyses

SDG #480-65088-1

Analyses Performed By: TestAmerica Amherst, New York

Report #22286R Review Level: Tier III Project: B0013134.0000.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 480-65088-1 for samples collected in association with the NYSEG Elmira Madison Avenue Former MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent		А	nalysi	S	
Campie ID	Labib	Matrix	Collection Date	Sample	voc	SVOC	РСВ	МЕТ	MISC
TRIP BLANK	480-65088-1	Water	8/6/2014		Х				
PMW-6	480-65088-10	Water	8/6/2014		Х				
PMW-3	480-65088-11	Water	8/6/2014						Х
DUP-080614	480-65088-12	Water	8/6/2014	MW-4S	Х	Х			
PMW-2	480-65088-2	Water	8/6/2014		Х				
PMW-1	480-65088-3	Water	8/6/2014						Х
MW-4S	480-65088-4	Water	8/6/2014		Х	Х			
MW-2S	480-65088-5	Water	8/6/2014		Х	Х			
PMW-4	480-65088-6	Water	8/6/2014		Х				
MW-9S	480-65088-7	Water	8/6/2014		Х	Х			
PMW-5	480-65088-8	Water	8/6/2014						Х
MW-7	480-65088-9	Water	8/6/2014		Х	Х			

Note:

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location MW-2S.

2. Miscellaneous parameters include biochemical oxygen demand and carbonaceous biochemical oxygen demand.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported			mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		х		х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		х	
12.	Data Package Completeness and Compliance		Х		х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260B and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA Region II SOP HW-24 - Validating Volatile Organic Compounds by SW-846 Method 8260B of October 2006 and New York State ASP 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Water	14 days from collection to analysis (7 days if unpreserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.
	Soil	14 days from collection to analysis	Cool to <6 °C.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-4S/DUP-080614	All compounds	U	U	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260B	Repo	orted	Perfori Accep		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/I	MS)			
Tier II Validation	1	•	1	1	
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
C. Trip blanks		X		Х	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)		Х		Х	
Matrix Spike Duplicate(MSD)		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•		•	
A. Reconstructed ion chromatograms		X		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present				Х	

VOCs: SW-846 8260B	Repo	orted	Perfor Accep	Not Required		
	No	Yes	No	Yes	Roquirou	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)						
 Reporting limits adjusted to reflect sample dilutions 		x		Х		
%RSD Relative standard deviation						

Percent recovery Relative percent difference Percent difference

%R RPD %D

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C.
300-040 02700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries.

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
MW-2S	Acenaphthene
10107-23	Flourene

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
. 10	Non-detect	UJ
> UL	Detect	J

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
DUP-080614 MW-4S MW-2S MW-9S MW-7	Di-n-octyl phthalate	> UL

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper control limit (III.)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower control limit (11) but a 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	IL)	J
< 10%	Non-detect	R
< 10%	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-4S/DUP-080614	Bis(2-ethylhexyl) phthalate	2.4 J	9.8 U	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270C	Repo	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	ETRY (GC/I	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					•
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculation errors present				Х	
 E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation 		Х		х	

%R RPD

Percent recovery Relative percent difference Percent difference

%D

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to SM 5210B. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Biological Oxygen Demand (BOD) by SM5210B		48 hours from	
Carbonaceous Biochemical Oxygen Demand by SM5210B	Water	collection to analysis	Cool to <6 °C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

MS/MSD analysis was not performed on a sample location within this SDG.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

Laboratory duplicate analysis was not performed on a sample location within this SDG.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: SM5210B	Rep	orted	Performance Acceptable		Not Required
	No	Yes	No	Yes	Kequileu
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		X	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate(MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation			•		
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data		Х		Х	
Transcription/calculation errors present		1		Х	
Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		х	

Percent recovery Relative percent difference Percent difference %R RPD

%D

SAMPLE COMPLIANCE REPORT

Sample						Compliancy ¹				Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	VOC	SVOC	РСВ	МЕТ	MISC	
	8/6/2014	ASP 2005	TRIP BLANK	Water	Yes		-		-	
	8/6/2014	ASP 2005	PMW-6	Water	Yes					
	8/6/2014	ASP 2005	PMW-3	Water					Yes	
	8/6/2014	ASP 2005	DUP-080614	Water	Yes	Yes				
	8/6/2014	ASP 2005	PMW-2	Water	Yes					
490 65099 4	8/6/2014	ASP 2005	PMW-1	Water					Yes	
480-65088-1	8/6/2014	ASP 2005	MW-4S	Water	Yes	Yes				
	8/6/2014	ASP 2005	MW-2S	Water	Yes	No				SVOC – MS/MSD RPD
	8/6/2014	ASP 2005	PMW-4	Water	Yes					
	8/6/2014	ASP 2005	MW-9S	Water	Yes	Yes				
	8/6/2014	ASP 2005	PMW-5	Water					Yes	
	8/6/2014	ASP 2005	MW-7	Water	Yes	Yes				

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Jose

Joseph C. Houser

SIGNATURE:

Juph c. Homen

DATE: September 10, 2014

PEER REVIEW: Dennis Capria

DATE: September 12, 2014

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Analytical Data

Client Sample ID:	TRIP BLANK					
Lab Sample ID: Client Matrix:	480-65088-1 Water					Date Sampled: 08/06/2014 0000 Date Received: 08/07/2014 0900
		8260C Volatile Orgar	nic Compounds	by GC/N	ńS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/13/2014 0400 08/13/2014 0400	Analysis Batch: Prep Batch:	480-197478 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	
Analyte		Result (u	g/L)	Qualifier	MDL	RL
Benzene		<1.0	An an and a star of a star and a star and a star	SIGN WITH STREET COLONY	0.41	1.0
Ethylbenzene		<1.0			0.74	1.0
Toluene		<1.0			0.51	1.0
Xylenes, Total		<2.0			0.66	2.0
m,p-Xylene		<2.0			0.66	2.0
o-Xylene		<1.0			0.76	1.0
Surrogate		%Rec		Qualifier	Acce	ptance Limits
1,2-Dichloroethane-	d4 (Surr)	114	nama kana ana kana kana kana kana kana k	2010-rend re-managemeters	- 66 -	
Toluene-d8 (Surr)		110			71 - 1	126
4-Bromofluorobenze		104			73 - 1	120
Dibromofluorometha	ane (Surr)	118			60 - 1	140

Analytical Data

Client: New York State Electric & Gas

Client Sample ID:	PMW-2					
Lab Sample ID: Client Matrix:	480-65088-2 Water					Date Sampled: 08/06/2014 0850 Date Received: 08/07/2014 0900
		8260C Volatile Orgar	nic Compound	s by GC/I	WS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/13/2014 0420 08/13/2014 0420	Analysis Batch: Prep Batch:	480-197478 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Benzene		<1.0	in yn enwe fel wys roeffel yn hefer a fel fel yn generad yn argener yn yn generad yn yn generad yn yn generad y	n of a second	0.41	1.0
Ethylbenzene		<1.0			0.74	1.0
Toluene		<1.0			0.51	1.0
Xylenes, Total		<2.0			0.66	2.0
m,p-Xylene		<2.0			0.66	2.0
o-Xylene		<1.0			0.76	1.0
Surrogate		%Rec		Qualifie	Acce	eptance Limits
1,2-Dichloroethane-	d4 (Surr)	114	ana na		- 66	
Toluene-d8 (Surr)		109			71 -	
4-Bromofluorobenze		104			73 -	120
Dibromofluorometha	ine (Surr)	117			60 -	140

Analytical Data

Client: New York State Electric & Gas

Client Sample ID:	MW-4S					
Lab Sample ID: Client Matrix:	480-65088-4 Water					0ate Sampled: 08/06/2014 0950 0ate Received: 08/07/2014 0900
		8260C Volatile Orgar	nic Compound	s by GC/I	WS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/13/2014 0441 08/13/2014 0441	Analysis Batch: Prep Batch:	480-197478 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volume	
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Benzene	in negative service and an an an and an and a service of the	< 1.0		2) was an of the second second second second	0.41	1.0
Ethylbenzene		<1.0			0.74	1.0
Toluene		<1.0			0.51	1.0
Xylenes, Total		<2.0			0.66	2.0
m,p-Xylene		<2.0			0.66	2.0
o-Xylene		<1.0			0.76	1.0
Surrogate		%Rec		Qualifier	Acce	ptance Limits
1,2-Dichloroethane-	d4 (Surr)	115	ana na mangkata sa na	ford an	66 - 1	And Chief Management and the second se
Toluene-d8 (Surr)		110			71 - 1	
4-Bromofluorobenze		106			73 - 1	20
Dibromofluorometha	ane (Surr)	116			60 - 1	40

Analytical Data

Client Sample ID:	MW-2S					
Lab Sample ID: Client Matrix:	480-65088-5 Water					Date Sampled: 08/06/2014 1100 Date Received: 08/07/2014 0900
		8260C Volatile Orgar	nic Compound	s by GC/I	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/14/2014 0105 08/14/2014 0105	Analysis Batch: Prep Batch:	480-197698 N/A	;	Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun	
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Benzene	a na mana za na provinski pri na provinski ma na pri na Na na mana za na pri	< 1,0	999 - 19 - 19 - 19 - 19 - 19 - 19 - 19 	001/1-01/1000-054-05-04-07978-0000	0.41	1.0
Ethylbenzene		<1.0			0.74	1.0
Toluene		<1.0			0.51	1.0
Xylenes, Total		<2.0			0.66	2.0
m,p-Xylene		<2.0			0.66	2.0
o-Xylene		<1.0			0.76	1.0
Surrogate		%Rec		Qualifier	r Aca	eptance Limits
1,2-Dichloroethane-	d4 (Surr)	110	an o managementaria da antigan yang kang kang kang kang kang kang kang k	1999 (1999) (1999) (1999) (1997) (199	- 66	
Toluene-d8 (Surr)		103			71 -	126
4-Bromofluorobenze	• •	102			73 -	120
Dibromofluorometha	ane (Surr)	108			60 -	140

Analytical Data

Client: New York State Electric & Gas

Job Number: 480-65088-1

Client Sample ID:	PMW-4					
Lab Sample ID: Client Matrix:	480-65088-6 Water					Date Sampled: 08/06/2014 1105 Date Received: 08/07/2014 0900
	ата со 100 201 104 201 104 200 на комплонески практи се на се На се на с	8260C Volatile Organ	nic Compounds	s by GC/N	лs	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 4.0 08/13/2014 0502 08/13/2014 0502	Analysis Batch: Prep Batch:	480-197478 N/A		Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun	
Analyte		Result (u	g/L)	Qualifier	MDL	RL
Benzene		<4.0		an talah mentukkan kanang ng mpa	1.6	4.0
Ethylbenzene		<4.0			3.0	4.0
Toluene		<4.0			2.0	4.0
Xylenes, Total		<8.0			2.6	8.0
m,p-Xylene		<8.0			2.6	8.0
o-Xylene		<4.0			3.0	4.0
Surrogate		%Rec		Qualifier	Acc	eptance Limits
1,2-Dichloroethane-	d4 (Surr)	115	an ta kalanan (talara) ya ya ya kata ka kata ya kata ang		66 -	137
Toluene-d8 (Surr)		111			71 -	126
4-Bromofluorobenze		105			73 -	120
Dibromofluorometha	ane (Surr)	117			60 -	140

~

Analytical Data

Client Sample ID: Lab Sample ID: Client Matrix:	MW-9S 480-65088-7 Water					ate Sampled: 08/06/2014 1235 ate Received: 08/07/2014 0900
		8260C Volatile Organ	nic Compound	s by GC/I	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/13/2014 0522 08/13/2014 0522	Analysis Batch: Prep Batch:	480-197478 N/A		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Benzene		<1.0		1993) Balang alay amang ang ang ang ang ang ang ang ang ang	0.41	1.0
Ethylbenzene		<1.0			0.74	1.0
Toluene		<1.0			0.51	1.0
Xylenes, Total		<2.0			0.66	2.0
m,p-Xylene		<2.0			0.66	2.0
o-Xylene		<1.0			0.76	1.0
Surrogate		%Rec		Qualifie	- Accer	otance Limits
1,2-Dichloroethane-	d4 (Surr)	115	an na manana ang kanana na manana na mana	n han an an transmission and a standard and a stand	66 - 1	
Toluene-d8 (Surr)		110			71 - 1	26
4-Bromofluorobenze		105			73 - 1	20
Dibromofluorometha	ine (Surr)	117			60 - 1	40

Analytical Data

Client Sample ID:	MW-7					
Lab Sample ID: Client Matrix:	480-65088-9 Water					Date Sampled: 08/06/2014 1400 Date Received: 08/07/2014 0900
		8260C Volatile Orgar	nic Compound	s by GC/I	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/13/2014 0543 08/13/2014 0543	Analysis Batch: Prep Batch:	480-197478 N/A	i	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Benzene		<1.0	anna a' cur (a' c), a' faile an an fan ann ann ann a' chur ann a' chur ann ann an ann ann ann ann ann ann ann	n Male na Malendaria di Balandi Manjarjini di sasa	0.41	1.0
Ethylbenzene		<1.0			0.74	1.0
Toluene		<1.0			0.51	1.0
Xylenes, Total		<2.0			0.66	2.0
m,p-Xylene		<2.0			0.66	2.0
o-Xylene		<1.0			0.76	1.0
Surrogate		%Rec		Qualifie	r Acce	ptance Limits
1,2-Dichloroethane-	d4 (Surr)	1115	na feorar ann an ann an Anna ann an Anna Anna	TP TRUE many several second second second	66 -	
Toluene-d8 (Surr)		109			71 - 1	126
4-Bromofluorobenze	· · ·	106			73 - 1	
Dibromofluorometha	ane (Surr)	116			60 - 1	140

Analytical Data

Client Sample ID:	PMW-6					
Lab Sample ID: Client Matrix:	480-65088-10 Water					Date Sampled: 08/06/2014 1440 Date Received: 08/07/2014 0900
		8260C Volatile Orgar	nic Compound	s by GC/I	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/13/2014 0604 08/13/2014 0604	Analysis Batch: Prep Batch:	480-197478 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Benzene		90		an a	0.41	1.00
Ethylbenzene		57			0.74	1.0
Toluene		3.4			0.51	1.0
Xylenes, Total		95			0.66	2.0
m,p-Xylene		63			0.66	2.0
o-Xylene		32			0.76	1.0
Surrogate		%Rec		Qualifier	Acce	ptance Limits
1,2-Dichloroethane-	d4 (Surr)	1115	n kon sy koonstan i de waar yn kon yn de de gelegen yn en en anter yn de g		- 66	
Toluene-d8 (Surr)		102			71 - 1	126
4-Bromofluorobenze		99			73 - 1	120
Dibromofluorometha	ane (Surr)	117			60 - 1	140

Analytical Data

Client Sample ID: Lab Sample ID: Client Matrix:	DUP-080614 480-65088-12 Water					nte Sampled: 08/06/2014 0000 nte Received: 08/07/2014 0900		
		8260C Volatile Organ	ic Compound	s by GC/	MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/13/2014 0624 08/13/2014 0624	Analysis Batch: Prep Batch:	480-197478 N/A		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume:			
Analyte		Result (u	g/L)	Qualifie	r MDL	RL		
Benzene		<1.0		19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19	0.41			
Ethylbenzene		<1.0			0.74	1.0		
Toluene		<1.0			0.51	1.0		
Xylenes, Total		<2.0			0.66	2.0		
m,p-Xylene		<2.0			0.66	2.0		
o-Xylene		<1.0			0.76	1.0		
Surrogate		%Rec		Qualifie	Accept	ance Limits		
1,2-Dichloroethane-d4 (Surr)		1114	30000010000000000000000000000000000000		66 - 137			
Toluene-d8 (Surr)		110	110		71 - 126			
4-Bromofluorobenzene (Surr)		104	104		73 - 120			
Dibromofluoromethane (Surr)		115	115		60 - 140			

Analytical Data

Client: New York State Electric & Gas

Job Number: 480-65088-1

Client Sample ID:	MW-4S					
Lab Sample ID: Client Matrix:	480-65088-4 Water					Date Sampled: 08/06/2014 09 Date Received: 08/07/2014 09
		8270D Semivolatile Or	ganic Compou	inds (GC	C/MS)	
Analysis Method:	8270D	Analysis Batch:	680-343799		Instrument ID:	CMSG
Prep Method:	3520C	Prep Batch:	680-343390		Lab File ID:	GH1318.D
Dilution:	1.0				Initial Weight/Volu	me: 259.4 mL
Analysis Date:	08/13/2014 1640				Final Weight/Volur	ne: 0.5 mL
Prep Date:	08/11/2014 1624				Injection Volume:	1 uL
Analyte		Result (u	g/L)	Qualifie	er MDL	RL
Biphenyl		<9.6		ulia da Maliliana da Caractera	1.4	9,6
3 & 4 Methylphenol		<9.6			1.3	9.6
bis (2-chloroisopropyl) ether		<9.6			1.2	9.6
2,4,5-Trichlorophen	ol	<9.6			1.7	9.6
2,4,6-Trichlorophenol		<9.6			1.4	9.6
2,4-Dichlorophenol		<9.6			1.6	9.6
2,4-Dimethylphenol		<9.6			1.3	9.6
2,4-Dinitrophenol		<48			24	48
2,4-Dinitrotoluene		<9.6			0.81	9.6
2,6-Dinitrotoluene		<9.6			1.2	9.6
2-Chloronaphthalen	e	<9.6			1.3	9.6
2-Chlorophenol		<9.6			1.4	9.6
2-Methylnaphthalen	e	<9.6			1.3	9.6
2-Methylphenol		<9.6			1.3	9.6
2-Nitroaniline		<48			9.6	48
2-Nitrophenol		<9.6			1.9	9.6
3,3'-Dichlorobenzidine		<58			39	58
3-Nitroaniline		<48			9,6	48
4,6-Dinitro-2-methylphenol		<48			16	48
4-Bromophenyl phe		<9.6			1.7	9.6
4-Chloro-3-methylphenol		<9.6			1.6	9.6
4-Chloroaniline		<19			1.3	19
4-Chlorophenyl phenyl ether		<9.6			1.7	9.6
4-Nitroaniline		<48			9.6	48
4-Nitrophenol		<48			9.6	48
Acenaphthene		<9.6			5.0 1.4	40 9.6
Acenaphthylene		<9.6			1.5	9.6
Acetophenone		<9.6			1.5	9.6
Anthracene		<9.6			1.6	9.6
Atrazine		<9.6			1.5	9.6
Benzaldehyde		<9.6			2.0	
Benzo(a)anthracene	2	<9.6			1.8	9.6 9.6
Benzo(a)pyrene		<9.6			2.3	9.6 9.6
Benzo(b)fluoranthene		<9.6			2.0	
Benzo(g,h,i)perylene		<9.6			2.0 1.9	9.6 9.6
Benzo(k)fluoranthene		<9.6			2.4	9.6 9.6
Bis(2-chloroethoxy)methane		<9.6			1.6	9.6 9.6
Bis(2-chloroethyl)ether		<9.6			1.3	9.6 9.6
Bis(2-ethylhexyl) phi		2.4		J	2.3	9.6 9.6
Butyl benzyl phthala		<9.6		0	2.3	
Caprolactam		<9.6			1.3	9.6
Carbazole		<9.6			2.0	9.6
Chrysene		<9.6			2.0 1.8	9.6
Dibenz(a,h)anthrace	ne	<9.6				9.6
Dibenzofuran		<9.6			1.6	9.6
Diethyl ohthalate		<9.0 <9.6			1.6	9.6
		SAN			10	0.6

Diethyl phthalate

1.9

<9.6

9.6

Analytical Data

Client Matrix: Water Analysis Method: 8270D Prep Method: 3520C Dilution: 1.0 Analysis Date: 08/13/20	8	8270D Semivolatile Or Analysis Batch: Prep Batch:	ganic Compou 680-343799 680-343390		/ MS) Instrument ID: Lab File ID:	•	: 08/06/2014 0950 d: 08/07/2014 0900	
Prep Method:3520CDilution:1.0Analysis Date:08/13/20	14 1640	Analysis Batch:	680-343799		Instrument ID:			
Prep Method:3520CDilution:1.0Analysis Date:08/13/200		•					i	
							18.D mL ոL	
Analyte		Result (u	g/L)	Qualifie	r MDL	R	L	
Dimethyl phthalate	en yn einithiol ar an an far far far yn yn yn yn ar yn	<9.6	anna a' an Selo anna ann anna a'	n - Martin Ministration - Ad	1.9	9	.6	
Di-n-butyl phthalate		<9.6			1.8	9	.6	
Di-n-octyl phthalate		<9.6		C. Francisco	2.4	9	.6	
Fluoranthene		<9.6		1.8		9	.6	
Fluorene		<9.6			1.7		.6	
Hexachlorobenzene		<9.6		1.6		9	.6	
Hexachlorobutadiene		<9.6		0.80		9	.6	
Hexachlorocyclopentadiene		<9.6		0.72		9.	.6	
Hexachloroethane		<9.6			0.80		.6	
Indeno(1,2,3-cd)pyrene		<9.6		1.7		9.	6	
Isophorone		<9.6		1.3		9.	6	
Naphthalene		<9.6		1.2		9.	6	
Nitrobenzene		<9.6		1.3		9.	6	
N-Nitrosodi-n-propylamine		<9.6		1.4		9.	6	
N-Nitrosodiphenylamine		<9.6			1.7	9.	6	
Pentachlorophenol		<48			9.6	48		
Phenanthrene		<9.6			1.8	9.		
Phenol		<9.6			1.4	9.		
Pyrene		<9.6			1.8	9.	6	
Surrogate		%Rec		Qualifier Accepta		eptance Limits	ince Limits	
Terphenyl-d14 (Surr)		84		10,999/00/10/10/2010/00/10/2010/00/2010/00/2010/00/2010/00/2010/2010/2010/2010/2010/2010/2010/2010/2010/2010/20 10 - 143		Belance of the order of the standard standard and the standard of the standard standard standard standard standa		
Nitrobenzene-d5		80		39 - 13		- 130	30	
Phenol-d5		70		25 - 1			130	
2-Fluorophenol		65		25 -			130	
2,4,6-Tribromophenol					31 -	- 141		
2-Fluorobiphenyl		70			38 -	- 130		

Analytical Data

Job Number: 480-65088-1

Lab Sample ID: Client Matrix:	480-65088-5 Water				Date Sampled: 08/06/2014 11 Date Received: 08/07/2014 09
		8270D Semivolatile Org	anic Compound	s (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1705 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	
Analyte		Result (ug/	(1)	ualifier MDL	
Biphenyl	an kananan keta dara bahar kelang mananan kenang menangkan pangan kenang menangkan pangan kenang menangkan dara Kenang	<10			
3 & 4 Methylphenol		<10		1.5	10
bis (2-chloroisoprop	vI) ether	<10		1.3	10
2,4,5-Trichloropheno		<10		1.2	10
2,4,6-Trichlorophene		<10		1.8	10
2,4-Dichlorophenol		<10		1.5	10
2,4-Dimethylphenol		<10 <10		1.7	10
2,4-Dinitrophenol				1.3	10
2,4-Dinitrotoluene		<51 <10		26	51
2,6-Dinitrotoluene				0.86	10
2-Chloronaphthalene	~	<10		1.2	10
2-Chlorophenol	5	<10		1.4	10
2-Methylnaphthalene	~	<10		1.5	10
	7	<10		1.3	10
2-Methylphenol 2-Nitroaniline		<10		1.4	10
		<51		10	51
2-Nitrophenol		<10		2.0	10
3,3'-Dichlorobenzidir	le	<61		41	61
-Nitroaniline		<51		10	51
,6-Dinitro-2-methylp		<51		17	51
-Bromophenyl pher		<10		1.8	10
-Chloro-3-methylph	enol	<10		1.7	10
-Chloroaniline		<20		1.3	20
-Chlorophenyl pher	iyl ether	<10		1.8	10
-Nitroaniline		<51		10	51
-Nitrophenol		<51		10	51
cenaphthene		<10	Sn	1.5	10
cenaphthylene		<10		1.6	10
cetophenone		<10		1.8	10
nthracene		<10		1.7	10
trazine		<10		1.6	10
lenzaldehyde		<10		2.2	10
enzo(a)anthracene		<10		1.9	10
ienzo(a)pyrene		<10		2.5	10
ienzo(b)fluoranthen		<10		2.2	10
enzo(g,h,i)perylene		<10		2.0	10
enzo(k)fluoranthene		<10		2.6	10
is(2-chloroethoxy)m		<10		1.7	10
is(2-chloroethyl)eth		<10		1.4	10
is(2-ethylhexyl) pht		4.4	J	2.5	10
utyl benzyl phthalat	e	<10		2.4	10
aprolactam		<10		1.3	10
arbazole		<10		2.2	10
hrysene		<10		1.9	10
ibenz(a,h)anthracer	ne	<10		1.7	10
ibenzofuran		<10		1.7	10
iethyl phthalate		<10		2.0	i v

Client: New York State Electric & Gas

Job Number: 480-65088-1

Client Sample ID:	MW-2S				
Lab Sample ID: Client Matrix:	480-65088-5 Water				Date Sampled: 08/06/2014 1100 Date Received: 08/07/2014 0900
		8270D Semivolatile Or	ganic Compounds (G	C/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1705 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volur Injection Volume:	
Analyte		Result (u	g/L) Qualif	ier MDL	RL
Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadier Hexachlorocycloper Hexachlorocycloper Hexachlorocycloper Hexachlorocycloper Naphthalene Nitrobenzene N-Nitrosodi-n-propy N-Nitrosodiphenylar Pentachlorophenol Phenanthrene Phenol	e ne ntadiene rene lamine	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	U)	2.0 1.9 2.6 1.9 1.8 1.7 0.85 0.77 0.85 1.8 1.3 1.2 1.3 1.5 1.8 10 1.9 1.5	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Pyrene Surrogate		<10 %Rec	Qualifi	1.9 er Acc	10 eptance Limits
Terphenyl-d14 (Sum Nitrobenzene-d5 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophen 2-Fluorobiphenyl	, 	93 75 75 71 75 71 75 71		10 - 39 - 25 - 25 - 31 - 38 -	143 130 130 130 130 141

7

Analytical Data

Job Number: 480-65088-1

Client Sample ID: MW-9S Lab Sample ID: 480-65088-7 Date Sampled: 08/06/2014 1235 Client Matrix: Water Date Received: 08/07/2014 0900 8270D Semivolatile Organic Compounds (GC/MS) Analysis Method: 8270D Analysis Batch: 680-343799 Instrument ID: CMSG Prep Method: 3520C Prep Batch: 680-343390 Lab File ID: GH1320.D Dilution: 1.0 Initial Weight/Volume: 261.4 mL 08/13/2014 1729 Analysis Date: Final Weight/Volume: 0.5 mL Prep Date: 08/11/2014 1624 Injection Volume: 1 uL Analyte Result (ug/L) Qualifier MDL RL Biphenyl <9.6 1.4 9.6 3 & 4 Methylphenol <9.6 1.2 9.6 bis (2-chloroisopropyl) ether <9.6 1.1 9.6 2,4,5-Trichlorophenol <9.6 1.7 9.6 2,4,6-Trichlorophenol <9.6 1.4 9.6 2,4-Dichlorophenol <9.6 1.6 9.6 2,4-Dimethylphenol <9.6 1.2 9.6 2,4-Dinitrophenol <48 24 48 2,4-Dinitrotoluene <9.6 0.80 9.6 2,6-Dinitrotoluene <9.6 1.1 9.6 2-Chloronaphthalene <9.6 1.3 9.6 2-Chlorophenol <9.6 1.4 9.6 2-Methylnaphthalene <9.6 1.2 9.6 2-Methylphenol <9.6 1.3 9.6 2-Nitroaniline <48 9.6 48 2-Nitrophenol <9.6 1.9 9.6 3.3'-Dichlorobenzidine <57 38 57 3-Nitroaniline <48 9.6 48 4,6-Dinitro-2-methylphenol <48 16 48 4-Bromophenyl phenyl ether <9.6 1.7 9.6 4-Chloro-3-methylphenol <9.6 1.6 9.6 4-Chloroaniline <19 1.2 19 4-Chlorophenyl phenyl ether <9.6 1.7 9.6 4-Nitroaniline <48 9.6 48 4-Nitrophenol <48 9.6 48 Acenaphthene <9.6 1.4 9.6 Acenaphthylene <9.6 1.5 9.6 Acetophenone <9.6 1.7 9.6 Anthracene <9.6 1.6 9.6 Atrazine <9.6 1.5 9.6 Benzaldehyde <9.6 2.0 9.6 Benzo(a)anthracene <9.6 1.8 9.6 Benzo(a)pyrene <9.6 2.3 9.6 Benzo(b)fluoranthene <9.6 2.0 9.6 Benzo(g,h,i)perylene <9.6 1.9 9.6 Benzo(k)fluoranthene <9.6 2.4 9.6 Bis(2-chloroethoxy)methane <9.6 1.6 9.6 Bis(2-chloroethyl)ether <9.6 1.3 9.6 Bis(2-ethylhexyl) phthalate 2.4 J 2.3 9.6 Butyl benzyl phthalate <9.6 2.2 9.6 Caprolactam <9.6 1.2 9.6 Carbazole <9.6 2.0 9.6 Chrysene <9.6 1.8 9.6 Dibenz(a,h)anthracene <9.6 1.6 9.6

TestAmerica Buffalo

Dibenzofuran

Diethyl phthalate

1.6

1.9

<9.6

<9.6

9.6

9.6

Analytical Data

Client Sample ID:	MW-9S					
Lab Sample ID: Client Matrix:	480-65088-7 Water					Date Sampled: 08/06/2014 1235 Date Received: 08/07/2014 0900
		8270D Semivolatile Or	ganic Compound	ds (GC/N	AS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1729 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	L 1 F	nstrument ID: .ab File ID: nitial Weight/Volum final Weight/Volum njection Volume:	
Analyte		Result (u	g/L) C	Qualifier	MDL	RL
Dimethyl phthalate	nin da Ennementaria en Canagora anna (a anna danagona) dua a dal da dal da dal da	< 9.6	Analysian U.A. Tarange signered and subscription of the second state of the	an a	1.9	**************************************
Di-n-butyl phthalate		<9.6			1.8	9.6
Di-n-octyl phthalate		<9.6	and the second se	145 9	2.4	9.6
Fluoranthene		<9.6			1.8	9.6
Fluorene		<9.6			1.7	9.6
Hexachlorobenzene		<9.6			1.6	9.6
Hexachlorobutadien		<9.6			0.79	9.6
Hexachlorocycloper	ntadiene	<9.6			0.72	9.6
Hexachloroethane		<9.6			0.79	9.6
Indeno(1,2,3-cd)pyr	ene	<9.6			1.7	9.6
Isophorone		<9.6			1.2	9.6
Naphthalene		<9.6			1.1	9.6
Nitrobenzene		<9.6			1.2	9.6
N-Nitrosodi-n-propy		<9.6			1.4	9.6
N-Nitrosodiphenylar	nine	<9.6			1.7	9.6
Pentachlorophenol		<48			9.6	48
Phenanthrene		<9.6			1.8	9.6
Phenol		<9.6			1.4	9.6
Pyrene		<9.6			1.8	9.6
Surrogate		%Rec	C	Jualifier	Acce	ptance Limits
Terphenyl-d14 (Surr		**************************************	allel verse alle se den alle alle alle de la constante de la constante de la constante de la constante de la c	19. 99 999 1 946 1967 1969 1969 1969 1969 1969 1969 196	10 - 1	
Nitrobenzene-d5		77			39 - 1	130
Phenol-d5		71			25 - 1	
2-Fluorophenol		65			25 - 1	-
2,4,6-Tribromophene	l	71			31 - 1	
2-Fluorobiphenyl		67			38 - 1	

Client: New York State Electric & Gas

Job Number: 480-65088-1

Client Sample ID:	MW-7				
Lab Sample ID: Client Matrix:	480-65088-9 Water				Date Sampled: 08/06/2014 1400 Date Received: 08/07/2014 0900
		8270D Semivolatile Or	ganic Compounds	GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1754 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volu Injection Volume	ume: 0.5 mL
Analyte		Result (u	g/L) Qu	alifier MDL	RL
Biphenyl	nen har en en televisien et herende det en en som det en de som her herende det en en herende som et herende so	<9.9		1.5	аналията накалитер политики получение накали на политики произвется по на сила солосное солосное на политики на 9,9
3 & 4 Methylphenol		<9.9		1.3	9.9
bis (2-chloroisoprop		<9.9		1.2	9.9
2,4,5-Trichlorophen	ol	<9.9		1.8	9.9
2,4,6-Trichlorophen	ol	<9.9		1.5	9.9
2,4-Dichlorophenol		<9.9		1.7	9.9
2,4-Dimethylphenol		<9,9		1.3	9.9
2,4-Dinitrophenol		<49		25	49
2,4-Dinitrotoluene		<9.9		0.83	9.9
2,6-Dinitrotoluene		<9,9		1.2	9.9
2-Chloronaphthalen	ie	<9.9		1.4	9.9
2-Chlorophenol		<9.9		1.5	9.9 9.9
2-Methyinaphthalen	ie	<9.9		1.3	9.9
2-Methylphenol		<9.9		1.3	9.9
2-Nitroaniline		<49		9.9	9.9 49
2-Nitrophenol		<9,9		2.0	49 9.9
3,3'-Dichlorobenzidi	ine	<59		39	5.9 59
3-Nitroaniline		<49		9.9	49
4,6-Dinitro-2-methyl	phenol	<49		17	49
4-Bromophenyl phe		<9.9		1.8	49 9.9
4-Chloro-3-methylph		<9.9		1.5	9.9
4-Chloroaniline		<20		1.7	9.9 20
4-Chlorophenyl phe	nvl ether	<9.9		1.3	20 9.9
4-Nitroaniline		<49		9.9	
4-Nitrophenol		<49		9.9 9.9	49 49
Acenaphthene		<9.9		<i>9.9</i> 1.5	
Acenaphthylene		<9.9		1.5	9.9 9.9
Acetophenone		<9.9		1.8	
Anthracene		<9.9		1.8	9.9 9.9
Atrazine		<9.9		1.6	9.9
Benzaldehyde		<9.9		2.1	9.9
Benzo(a)anthracene	9	<9.9		1.9	9.9
Benzo(a)pyrene		<9.9		2.4	9.9
Benzo(b)fluoranther	ne	<9.9		2.1	9.9
Benzo(g,h,i)perylene		<9.9		2.0	9.9
Benzo(k)fluoranthen		<9.9		2.5	9.9
Bis(2-chloroethoxy)r	methane	<9.9		1.7	9.9
Bis(2-chloroethyl)eth		<9.9		1.4	9.9
Bis(2-ethylhexyl) phi		<9.9		2.4	9.9
Butyl benzyl phthala		<9.9		2.3	9.9
Caprolactam		<9.9		1.3	9.9
Carbazole		<9.9		2.1	9.9 9.9
Chrysene		<9,9		1.9	9.9 9.9
Dibenz(a,h)anthrace	ene	<9.9		1.5	9.9 9.9
Dibenzofuran		<9.9		1.7	9.9 9.9
Diethyl phthalate		<9.9		2.0	
		-0.0		2.0	9.9

Client: New York State Electric & Gas

Client Sample ID:	MW-7						
Lab Sample ID:	480-65088-9					Date	Sampled: 08/06/2014 1400
Client Matrix:	Water					Date	Received: 08/07/2014 0900
		8270D Semivolatile Org	ganic Compou	nds (GC/	/MS)		
Analysis Method:	8270D	Analysis Batch:	680-343799		Instrument ID:		CMSG
Prep Method:	3520C	Prep Batch:	680-343390	•	Lab File ID:		GH1321.D
Dilution:	1.0				Initial Weight/Volu	me:	253.4 mL
Analysis Date:	08/13/2014 1754				Final Weight/Volu		0.5 mL
Prep Date:	08/11/2014 1624				Injection Volume:		1 uL
Analyte		Result (ug]/L)	Qualifie	MDL		RL
Dimethyl phthalate	9899) - унтропистически сулски со	<9,9			2.0	1343 no 10 m 10	
Di-n-butyl phthalate		<9.9			1.9		9.9
Di-n-octyl phthalate		<9.9	ىد	and the second	2,5		9.9
Fluoranthene		<9.9			1.9		9.9
Fluorene		<9.9			1.8		9.9
Hexachlorobenzene)	<9.9			1.7		9.9
Hexachlorobutadien		<9.9			0.82		9.9
Hexachlorocycloper	ntadiene	<9.9			0.74		9.9
Hexachloroethane		<9.9			0.82		9.9
Indeno(1,2,3-cd)pyr	ene	<9.9			1.8		9.9
Isophorone		<9.9			1.3		9.9
Naphthalene		<9.9			1.2		9.9
Nitrobenzene		<9.9			1.3		9.9
N-Nitrosodi-n-propyl		<9.9			1.5		9.9
N-Nitrosodiphenylar	nine	<9.9			1.8		9.9
Pentachlorophenol		<49			9.9		49
Phenanthrene		<9.9			1.9		9.9
Phenol		<9.9			1.5		9.9
Pyrene		<9.9			1.9		9.9
Surrogate	ma deba hidu annan sa man ann ann ann ann ann ann ann ann an	%Rec		Qualifier	Acc	eptanc	e Limits
Terphenyl-d14 (Surr)	89			10 -	- 143	Mantal a yr ei yf yn a mar yn
Nitrobenzene-d5		75			39 -	- 130	
Phenol-d5		67			-	· 130	
2-Fluorophenol	- 1	64			-	130	
2,4,6-Tribromophene	DI	73				141	
2-Fluorobiphenyl		68			38 -	- 130	

Analytical Data

Job Number: 480-65088-1

Client Sample ID:	DUP-080614					
Lab Sample ID: Client Matrix:	480-65088-12 Water					Date Sampled: 08/06/2014 000 Date Received: 08/07/2014 090
		8270D Semivolatile Or	ganic Compou	ınds (GC	:/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1818 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390		Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun Injection Volume:	
Analyte		Result (u	a/L)	Qualifie	er MDL	RL
Biphenyl	ne - Martin C. Martin Salanda da an ana da yezh e sa antez e sy martin a sa an an antez da antez da antez da an	< 9.8		Guumu	1.5	
3 & 4 Methylphenol		<9.8			1.3	9.8
bis (2-chloroisoprop	vl) ether	<9.8			1.2	9.8
2,4,5-Trichlorophen	• ·	<9.8			1.8	9.8
2,4,6-Trichlorophen		<9.8			1.8	9.8 9 <i>.</i> 8
2,4-Dichlorophenol		<9.8			1.5	
2,4-Dimethylphenol		<9.8			1.7	9.8 9.8
2,4-Dinitrophenol		<49			25	
2,4-Dinitrotoluene		<9.8			0.82	49 9.8
2,6-Dinitrotoluene		<9.8			1.2	9.8
2-Chloronaphthalen	e	<9.8			1.2	9.8 9.8
2-Chlorophenol		<9.8			1.4	9.8
2-Methylnaphthalen	e	<9.8			1.3	9.8
2-Methylphenol		<9.8			1.4	9.8
2-Nitroaniline		<49			9.8	49
2-Nitrophenol		<9.8			2.0	9.8
3,3'-Dichlorobenzidi	ne	<59			39	59
3-Nitroaniline		<49			9.8	49
4,6-Dinitro-2-methyl	phenol	<49			17	49
4-Bromophenyl pher		<9.8			1.8	9.8
4-Chloro-3-methylph	nenol	<9.8			1.7	9.8
I-Chloroaniline		<20			1.3	20
1-Chlorophenyl phei	nyl ether	<9.8			1.8	9.8
1-Nitroaniline		<49			9.8	49
I-Nitrophenol		<49			9.8	49
Acenaphthene		<9.8			1.5	9.8
Acenaphthylene		<9.8			1.6	9.8
Acetophenone		<9.8			1.8	9.8
Anthracene		<9.8			1.7	9.8
Atrazine		<9.8			1.6	9.8
Benzaldehyde		<9.8			2.1	9.8
Benzo(a)anthracene	;	<9.8			1.9	9.8
Benzo(a)pyrene		<9.8			2.4	9.8
Benzo(b)fluoranthen		<9.8			2.1	9.8
Benzo(g,h,i)perylene		<9.8			2.0	9.8
Benzo(k)fluoranthen		<9.8			2.5	9.8
Bis(2-chloroethoxy)		<9.8			1.7	9.8
Bis(2-chloroethyl)eth		<9.8			1.4	9.8
Bis(2-ethylhexyl) pht		<9.8			2.4	9.8
Butyl benzyl phthala	te	<9.8			2.3	9.8
Caprolactam		<9.8			1.3	9.8
Carbazole		<9.8			2.1	9.8
Chrysene		<9.8			1.9	9.8
Dibenz(a,h)anthrace	ne	<9.8			1.7	9.8
Dibenzofuran		<9.8			1.7	9.8
Diethyl phthalate		<9.8			20	0.8

Diethyl phthalate

<9.8

9.8

2.0

Analytical Data

Client Sample ID:	DUP-080614				
Lab Sample ID: Client Matrix:	480-65088-12 Water				Date Sampled: 08/06/2014 0000 Date Received: 08/07/2014 0900
		8270D Semivolatile Or	ganic Compounds ((GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1818 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun Injection Volume:	
Analyte		Result (u	g/L) Quali	ifier MDL	RL
Dimethyl phthalate		<9.8		2.0	9.8
Di-n-butyl phthalate		<9.8		1.9	9.8
Di-n-octyl phthalate		<9.8	-mailinea	2.5	9.8
Fluoranthene		<9.8		1.9	9.8
Fluorene		<9.8		1.8	9.8
Hexachlorobenzene		<9.8		1.7	9.8
Hexachlorobutadier		<9.8		0.81	9.8
Hexachlorocycloper	itadiene	<9.8		0.74	9.8
Hexachloroethane		<9.8		0.81	9.8
Indeno(1,2,3-cd)pyr	ene	<9.8		1.8	9.8
Isophorone		<9.8		1.3	9.8
Naphthalene Nitrobenzene		<9.8		1.2	9.8
	le un fan e	<9.8		1.3	9.8
N-Nitrosodi-n-propy		<9.8		1.5	9.8
N-Nitrosodiphenylar Pentachlorophenol	nine	< 9.8		1.8	9.8
Phenanthrene		<49		9.8	49
Phenol		<9.8 <9.8		1.9	9.8
Pyrene		<9.8		1.5 1.9	9.8 9.8
Surrogate		%Rec	Quali	_	eptance Limits
Terphenyl-d14 (Surr		ninganan managana ana ana ana ana ana ana ana ana		10 -	-
Nitrobenzene-d5		75		39 -	
Phenol-d5		69		25 -	
2-Fluorophenol		65		25 -	
2,4,6-Tribromophene	bl	64		31 -	
2-Fluorobiphenyl		66		38 -	

			Gen	eral Chemi	stry			
Client Sample ID:	PMW-1							
Lab Sample ID: Client Matrix:	480-65088-3 Water						•	d: 08/06/2014 0945 d: 08/07/2014 0900
Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Carbonaceous Bioche Demand	emical Oxygen	<2.0	na na sena na mangana na sena se	mg/L	2.0	2.0	1.0	5210B
A	nalysis Batch: 480	-196808	Analysis Date:	08/07/2014	1541			
Biochemical Oxygen A	Demand nalysis Batch: 480	<2.0 -196807	Analysis Date:	mg/L 08/07/2014	2.0 1541	2.0	1.0	SM 5210B

Client: New York State Electric & Gas

			Gen	eral Chemi	stry		an a	
Client Sample ID:	PMW-5							
Lab Sample ID: Client Matrix:	480-65088-8 Water							d: 08/06/2014 1335 d: 08/07/2014 0900
Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Carbonaceous Bioch Demand	emical Oxygen	<2.0	nyy unite en external and an	mg/L	2.0	2.0	1.0	5210B
Α	nalysis Batch: 480	-196808	Analysis Date:	08/07/2014	1541			
Biochemical Oxygen A	Demand .nalysis Batch: 480	<2.0 -196963	Analysis Date:	mg/L 08/08/2014	2.0 1 0841	2.0	1.0	SM 5210B

			Gen	eral Chemi	istry			
Client Sample ID:	PMW-3							
Lab Sample ID: Client Matrix:	480-65088-11 Water						•	d: 08/06/2014 1600 d: 08/07/2014 0900
Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Carbonaceous Bioche Demand	mical Oxygen	10.6	na kana kana kana kana kana kana kana k	mg/L	2.0	2.0	1.0	5210B
A	nalysis Batch: 480	-196808	Analysis Date:	08/07/2014	4 1541			
Biochemical Oxygen I Ai	Demand nalysis Batch: 480	6.9 -196963	Analysis Date:	mg/L 08/08/2014	2.0 4 0841	2.0	1.0	SM 5210B

Chain of					Toct	[ectAm		
Custody Record		Temperat	Temperature on Receipt	<i>nt</i>	3			
TAL-4124 (1007)		Drinking V	Drinking Water? Yes		THE LEADE	THE LEADER IN ENVIRON	480-65088 Chain of Custody	of Custody
NVSEG/ARCADES		Project Man	Project Manager BRACE	Ahrest	and the second	Date	2/6/14	Chain of Custopy Number
delift Dive		Teleptone I SgS	Telephone Number (Area Code)/Fax Number SSS ~ 385 ~ 0090	te)Fax Number OPO		Lab Num	tumber	Page / of XI
$\left \begin{array}{c} State \\ N \\ N \end{array} \right $	id'ySb	Stre Contact Klaus Bcu	Bart	Lab Contact Malis K D	Deve	Analysis (more spac	Analysis (Attach list ff more space is needed)	
Machison Aur Former MCP Site	たい	Carrier/Waybill N	bill Number			****		
. 8			Matrix	Containers & Preservatives	<u>0</u> 0	280		Special instructions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time 🛓	IIDS DAG snoenby	ЮН 60NH 7057H 70504	10EN	মি হিন্দু হিন্দু		
TREPOLANK	1	1						
	86.14	8	X		X			
ap mu - 1		2460	X	7		XX		
S,MWC(S			$\overline{\lambda}$	N N	× 	X		
WW-JS		100	$\frac{1}{\lambda}$	6 9	×	×		MS/mS/
PMW		Soll	Х	3	X			
56- MW.		1,35	X	<u>م</u>	X	X		
Pru-S		1335	X	2		< <u> </u>		
MW-7		Mod 1	×	J 3	X	X.		
Pmw-6		1460		\sim	X			
Pmw-3		1602	×	ನ				
DUP-0806/4				2 N	X	X		
n mnæble 🔲 Skín Intlant	🗌 Poison B	Sa Unknown	Sample Disposal	Disposel By Lab	Rr Cartact	For Months		(A fee may be assessed if samples are retained tonger than 1 month)
Turn Around The Required	s 🗌 21 Days	B other S	134 OTHON Stankland	OC Requirem	GC Requirements (Specify)			
1. Reinigener of Br		Date 14	4 172	1. Received By	tedEx			Date Date Time
Belinquisher By UV		Date	Time	2. Received B			Aut	Date Time
Kelinquished By 5 0 0		Date	Time	3. Received By			1 101	Date 1 1 0 100
Pomments 4								#2 400
DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy	WARY - Stays wit	h the Sample; P.	iNK - Field Copy					

.

Imagine the result

NYSEG Elmira Madison Avenue Former MGP Site

Data Usability Summary Report (DUSR)

ELMIRA, NEW YORK

Volatile and Semivolatile Analyses

SDG #480-65212-1

Analyses Performed By: TestAmerica Amherst, New York

Report #22287R Review Level: Tier III Project: B0013134.0000.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 480-65212-1 for samples collected in association with the NYSEG Elmira Madison Avenue Former MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Sample ID Lab ID Matrix		Sample	Parent	Analysis					
	Labib	Matrix	Collection Date	Sample	voc	SVOC	РСВ	MET	MISC	
MW-6S	480-65212-1	Water	8/7/2014		Х	Х				
MW-0405S	480-65212-2	Water	8/7/2014		Х	Х				
MW-8S	480-65212-3	Water	8/7/2014		Х	Х				
MW-0404S	480-65212-4	Water	8/7/2014		Х	Х				
MW-0402S	480-65212-5	Water	8/7/2014		Х	Х				
MW-0403S	480-65212-6	Water	8/7/2014		Х	Х				
TRIP BLANK	480-65212-7	Water	8/7/2014		Х					

Note:

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location MW-7.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		х		х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		х	
12.	Data Package Completeness and Compliance		Х		х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260C and 8270D as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA Region II SOP HW-24 - Validating Volatile Organic Compounds by SW-846 Method 8260B of October 2006 and New York State ASP 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260C	Water	14 days from collection to analysis (7 days if unpreserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.
	Soil	14 days from collection to analysis	Cool to <6 °C.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was not performed on a sample location within this SDG.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Repo	orted	Perfori Accep		Not Required
	No	Yes	No	Yes	Nequireu
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/I	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		х	
B. Equipment blanks					Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)					Х
Matrix Spike Duplicate(MSD)					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present				Х	

VOCs: SW-846 8260C	Repo	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	Roquiou
GAS CHROMATOGRAPHY/MASS SPECTRO	METRY (GC/	MS)			
 Reporting limits adjusted to reflect sample dilutions 		x		Х	
%RSD Relative standard deviation					

Percent recovery Relative percent difference Percent difference

%R RPD %D

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C.
300-040 02700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was not performed on a sample location within this SDG.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
MW-6S MW-0405S MW-8S MW-0404S MW-0402S MW-0403S	Di-n-octyl phthalate	> UL

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
the lower control limit (11) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 1070	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270D	Repo	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	ETRY (GC/I	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present				Х	
 E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation 		Х		X	

%R RPD

Percent recovery Relative percent difference Percent difference

%D

SAMPLE COMPLIANCE REPORT

Sample					Co	omplian	cy ¹	Noncompliance		
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	VOC	SVOC	РСВ	МЕТ	MISC	
	8/7/2014	ASP 2005	MW-6S	Water	Yes	Yes				
	8/7/2014	ASP 2005	MW-0405S	Water	Yes	Yes				
	8/7/2014	ASP 2005	MW-8S	Water	Yes	Yes				
480-65212-1	8/7/2014	ASP 2005	MW-0404S	Water	Yes	Yes				
	8/7/2014	ASP 2005	MW-0402S	Water	Yes	Yes				
	8/7/2014	ASP 2005	MW-0403S	Water	Yes	Yes				
	8/7/2014	ASP 2005	TRIP BLANK	Water	Yes					

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Jose

Joseph C. Houser

SIGNATURE:

Juph c. Homen

DATE: September 10, 2014

PEER REVIEW: Dennis Capria

DATE: September 12, 2014

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Analytical Data

Client Sample ID:	MW-6S					
Lab Sample ID: Client Matrix:	480-65212-1 Water					Date Sampled: 08/07/2014 0850 Date Received: 08/08/2014 0900
		8260C Volatile Organ	ic Compounds	s by GC/I	VIS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/14/2014 0203 08/14/2014 0203	Analysis Batch: Prep Batch:	480-197700 N/A		Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun	
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Benzene	o o o na monorene dan analasi na da da da da da da mana na mana na da mana da	<1.0		in Cigin an ann an Ann Ann Ann Ann Ann Ann Ann	0.41	1.0
Toluene		<1.0			0.51	1.0
Ethylbenzene		<1.0			0.74	1.0
m-Xylene & p-Xylen	e	<2.0			0.66	2.0
o-Xylene		<1.0			0.76	1.0
Xylenes, Total		<2.0			0.66	2.0
Surrogate		%Rec		Qualifier	r Aco	eptance Limits
1,2-Dichloroethane-	d4 (Surr)	999		MOGINE ACCOUNTS AND A MARKED	- 66	
Toluene-d8 (Surr)		95			71 -	126
4-Bromofluorobenzene (Surr)		108			73 -	120
Dibromofluorometha	ine (Surr)	100			60 -	140

Analytical Data

Client Sample ID:	MW-0405S					
Lab Sample ID: Client Matrix:	480-65212-2 Water					ate Sampled: 08/07/2014 0850 ate Received: 08/08/2014 0900
		8260C Volatile Orgar	nic Compounds b	y GC/MS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/14/2014 0227 08/14/2014 0227	Analysis Batch: Prep Batch:	480-197700 N/A	Lab F Initial	ment ID: ile ID: Weight/Volume Weight/Volume	
Analyte		Result (u	g/L) Q	ualifier	MDL	RL
Benzene	namen ku namen namen kan kan kan kan kan kan kan kan kan ka	<1.0		и жилон байсан хайн байлаас ну ул нөө төөнүү на	0.41	
Toluene		<1.0			0.51	1.0
Ethylbenzene		<1.0			0.74	1.0
m-Xylene & p-Xylen	e	<2.0			0.66	2.0
o-Xylene		<1.0			0.76	1.0
Xylenes, Total		<2.0			0.66	2.0
Surrogate		%Rec	Q	ualifier	Acce	otance Limits
1,2-Dichloroethane-	d4 (Surr)	99		962364 Foreigi States - 6 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	66 - 1	³⁰
Toluene-d8 (Surr)		95			71 - 1	26
4-Bromofluorobenze		107			73 - 1	20
Dibromofluorometha	ane (Surr)	98			60 - 1	40

Client: New York State Electric & Gas

Client Sample ID:	MW-8S						
Lab Sample ID: Client Matrix:	480-65212-3 Water					•	oled: 08/07/2014 1000 ived: 08/08/2014 0900
		8260C Volatile Orgar	nic Compounds	s by GC/	MS		and the second secon
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/14/2014 0250 08/14/2014 0250	Analysis Batch: Prep Batch:	480-197700 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu	Q6 ime: 5	5973Q 804.D mL mL
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		< 1.0	an - Geologia Contra	n (h fel fel fan Skriger an gener fen sjon en gener gener fel	0.41		1.0
Toluene		<1.0			0.51		1.0
Ethylbenzene		<1.0			0.74		1.0
m-Xylene & p-Xylen	e	<2.0			0.66		2.0
o-Xylene		<1.0			0.76		1.0
Xylenes, Total		<2.0			0.66		2.0
Surrogate		%Rec		Qualifie	r Ac	ceptance Lir	nits
1,2-Dichloroethane-	d4 (Surr)	101	and and a second of the second se	an a	66	- 137	anteren konstruktion die kan konstruktion operation operation operation operation operation operation operation
Toluene-d8 (Surr)		94			71	- 126	
4-Bromofluorobenze	ene (Surr)	106		73 - 120			
Dibromofluorometha	ane (Surr)	102			60	- 140	

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-0404S							
Lab Sample ID: Client Matrix:	480-65212-4 Water						npled: 08/07/2014 1000 ceived: 08/08/2014 0900	
		8260C Volatile Orgar	ic Compounds	s by GC/	MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/14/2014 0313 08/14/2014 0313	Analysis Batch: Prep Batch:	480-197700 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu	(me: 5	HP5973Q Q6805.D 5 mL 5 mL	
Analyte		Result (u	g/L)	Qualifie	r MDL		RL	
Benzene		< 1.0	9 (na 1998) (10 - 11 III (1999) (10 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -	ANY CONSIGNATION OF THE OWNER OF	0.41		1.0	
Toluene		<1.0			0.51		1.0	
Ethylbenzene		<1.0			0.74		1.0	
m-Xylene & p-Xylen	e	<2.0			0.66		2.0	
o-Xylene		<1.0			0.76		1.0	
Xylenes, Total		<2.0			0.66		2.0	
Surrogate		%Rec		Qualifie	r Acc	eptance l	Limits	
1,2-Dichloroethane-d4 (Surr)				ете таки в на				
Toluene-d8 (Surr)		94		71 - 126				
4-Bromofluorobenzene (Surr)		106	106		73 - 120			
Dibromofluoromethane (Surr)		100			60 -	- 140		

ν.

Analytical Data

Client Sample ID:	MW-0402S						
Lab Sample ID: Client Matrix:	480-65212-5 Water					Date Sampled: 08/07/2014 1110 Date Received: 08/08/2014 0900	
		8260C Volatile Orgar	nic Compounds I	by GC/MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/14/2014 0337 08/14/2014 0337	Analysis Batch: Prep Batch:	480-197700 N/A	La Ini	strument ID: b File ID: tial Weight/Volume nal Weight/Volume		
Analyte		Result (u	g/L) (Qualifier	MDL	RL	
Benzene	d in na Galandi da kasili kanan kasa kasa kasa kasa kasa kasa kas	<1.0	n an	an Addama ka dan dan dan dan dan b	0.41	1.0	
Toluene		<1.0			0.51	1.0	
Ethylbenzene		<1.0			0.74	1.0	
m-Xylene & p-Xyler)e	<2.0			0.66	2.0	
o-Xylene		<1.0			0.76	1.0	
Xylenes, Total		<2.0			0.66	2.0	
Surrogate		%Rec	G	Qualifier	Accep	otance Limits	
1,2-Dichloroethane-d4 (Surr)							
Toluene-d8 (Surr)		95		71 - 126			
4-Bromofluorobenzene (Surr)		107		73 - 120			
Dibromofluoromethane (Surr)		100		60 - 140			

Analytical Data

Client Sample ID:	MW-0403S							
Lab Sample ID: Client Matrix:	480-65212-6 Water					ate Sampled: 08/07/2014 1110 ate Received: 08/08/2014 0900		
		8260C Volatile Organ	ic Compound	s by GC/I	MS			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/14/2014 0401 08/14/2014 0401	Analysis Batch: Prep Batch:	480-197700 N/A	•	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume			
Analyte		Result (u	g/L)	Qualifie	r MDL	RL		
Benzene		<1.0	and the second secon	SCHARLEN STOL AND DRAW SHOW	0.41	1.0		
Toluene		<1.0			0.51	1.0		
Ethylbenzene		<1.0			0.74	1.0		
m-Xylene & p-Xylen	e	<2.0			0.66	2.0		
o-Xylene		<1.0			0.76	1.0		
Xylenes, Total		<2.0			0.66	2.0		
Surrogate		%Rec		Qualifie	Accer	tance Limits		
1,2-Dichloroethane-d4 (Surr)		97			66 - 137			
Toluene-d8 (Surr)		95	95		71 - 126			
4-Bromofluorobenzene (Surr)		106	106		73 - 120			
Dibromofluorometha	ne (Surr)	98			60 - 1	40		

Analytical Data

Client Sample ID:	TRIP BLANK						
Lab Sample ID: Client Matrix:	480-65212-7 Water					Date Sampled: 08/07/2014 0000 Date Received: 08/08/2014 0900	
		8260C Volatile Orgar	nic Compounds	s by GC/I	VIS		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 08/14/2014 0425 08/14/2014 0425	Analysis Batch: Prep Batch:	480-197700 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum		
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Benzene		<1.0	ning di kila tangang ang mga nakata kanaka nakata kanaka kang mang pang mang pang mang pang mang pang mang pang	rty International Contractor	0.41	1.0	
Toluene		<1.0			0.51	1.0	
Ethylbenzene		<1.0			0.74	1.0	
m-Xylene & p-Xylen	e	<2.0			0.66	2.0	
o-Xylene		<1.0			0.76	1.0	
Xylenes, Total		<2.0			0.66	2.0	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
1,2-Dichloroethane-d4 (Surr)				666 - 137			
Toluene-d8 (Surr)		94		71 - 126			
4-Bromofluorobenzene (Surr)		105		73 - 120			
Dibromofluoromethane (Surr)		99		60 - 140			

Analytical Data

Job Number: 480-65212-1

Lab Sample ID: Client Matrix:	480-65212-1 Water				Date Sampled: 08/07/2014 Date Received: 08/08/2014
		8270D Semivolatile Org	ganic Compounds (G	C/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1843 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum Injection Volume:	
Analyte		Result (ug	ı/L) Qualifi	er MDL	RL
Biphenyl	nan an	< 9.8	CARACTERIZZE CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	1.5	9.8
3 & 4 Methylphenol		<9.8		1.3	9.8
ois (2-chloroisoprop	vI) ether	<9.8		1.3	
2,4,5-Trichloropheno	•	<9.8		1.2	9.8
2,4,6-Trichlorophend		<9.8		1.5	9.8
2,4-Dichlorophenol		<9.8		1.5	9.8
2,4-Dimethylphenol		<9.8		1.7	9.8
2,4-Dinitrophenol		<49			9.8
2,4-Dinitrotoluene		< 4 9 <9.8		25	49
2,6-Dinitrotoluene		<9.8		0.83	9.8
2-Chloronaphthalene	2	<9.8		1.2	9.8
2-Chlorophenol	-	<9.8		1.4	9.8
2-Methylnaphthalene	2	<9.8		1.5	9.8
2-Methylphenol	-	<9.8		1.3	9.8
2-Nitroaniline		<9.8 <49		1.4	9.8
2-Nitrophenol		<4 <i>9</i> <9.8		9.8	49
3,3'-Dichlorobenzidir		<9.0 <59		2.0	9.8
-Nitroaniline				39	59
	bonol	<49		9.8	49
4,6-Dinitro-2-methylp		<49		17	49
-Bromophenyl phen	•	<9.8		1.8	9.8
-Chloro-3-methylph	enoi	<9.8		1.7	9.8
-Chloroaniline	. 4 . 11	<20		1.3	20
-Chlorophenyl phen	iyi ether	<9.8		1.8	9.8
-Nitroaniline		<49		9.8	49
-Nitrophenol		<49		9.8	49
cenaphthene		<9.8		1.5	9.8
cenaphthylene		<9.8		1.6	9.8
cetophenone		<9.8		1.8	9.8
nthracene		<9.8		1.7	9.8
trazine		<9.8		1.6	9.8
enzaldehyde		<9.8		2.1	9.8
enzo(a)anthracene		<9.8		1.9	9.8
enzo(a)pyrene		<9.8		2.4	9.8
enzo(b)fluoranthene		<9.8		2.1	9.8
enzo(g,h,i)perylene		<9.8		2.0	9.8
enzo(k)fluoranthene		<9.8		2.5	9.8
is(2-chloroethoxy)m		<9.8		1.7	9.8
is(2-chloroethyl)eth		<9.8		1.4	9.8
is(2-ethylhexyl) phth		<9.8		2.4	9.8
utyl benzyl phthalati	e	<9.8		2.3	9.8
aprolactam		<9.8		1.3	9.8
arbazole		<9.8		2.1	9.8
hrysene		<9.8		1.9	9.8
ibenz(a,h)anthracer	ne	<9.8		1.7	9.8
ibenzofuran		<9.8		1.7	9.8
iethyl phthalate		<9.8		2.0	5.0

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-6S					
Lab Sample ID: Client Matrix:	480-65212-1 Water					Date Sampled: 08/07/2014 0850 Date Received: 08/08/2014 0900
		8270D Semivolatile Or	ganic Compoun	lds (GC/N	ЛS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1843 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	1 1 F	nstrument ID: .ab File ID: nitial Weight/Volum Final Weight/Volum njection Volume:	
Analyte		Result (u	g/L) (Qualifier	MDL	RL
Dimethyl phthalate		< 9.8			2.0	1977 (* 1978) 1977 (* 1978) 1978 - Station (* 1978) 1978 - Station (* 1978) 1978 - Station (* 1978) 1978 - Station (* 1978)
Di-n-butyl phthalate		<9.8			1.9	9.8
Di-n-octyl phthalate		<9.8	0	Resident.	2.5	9.8
Fluoranthene		<9.8			1.9	9.8
Fluorene		<9.8			1.8	9.8
Hexachlorobenzene		<9.8			1.7	9.8
Hexachlorobutadier		<9.8			0.82	9.8
Hexachlorocycloper	ntadiene	<9.8			0.74	9.8
Hexachloroethane		<9.8			0.82	9.8
Indeno(1,2,3-cd)pyr	ene	<9.8			1.8	9.8
Isophorone		<9.8			1.3	9.8
Naphthalene		<9.8			1.2	9.8
Nitrobenzene		<9.8			1.3	9.8
N-Nitrosodi-n-propy		<9.8			1.5	9.8
N-Nitrosodiphenylar	nine	<9.8			1.8	9.8
Pentachlorophenol		<49			9.8	49
Phenanthrene		<9.8			1.9	9.8
Phenol		<9.8			1,5	9.8
^D yrene		<9.8			1.9	9.8
Surrogate		%Rec	C	Qualifier	Acce	ptance Limits
Ferphenyl-d14 (Surr	.)	988	na je do na menodelika na na poslod na mino pravna na meno da se na doba na doba na doba na doba na doba na dob	######################################	10 - 1	
Nitrobenzene-d5		78			30 - 1	
Phenol-d5		76			25 - 1	
2-Fluorophenol		70			26 - 1	
2,4,6-Tribromophen	ol	75			34 - 1	
2-Fluorobiphenyl		67			32 - 1	-

Analytical Data

Job Number: 480-65212-1

					000 Number: 400-03212-
Client Sample ID:	MW-0405S				
Lab Sample ID: Client Matrix:	480-65212-2 Water				Date Sampled: 08/07/2014 0850 Date Received: 08/08/2014 0900
		8270D Semivolatile O	ganic Compou	nds (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1907 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol Injection Volume	lume: 0.5 mL
Analyte		Result (u	g/L)	Qualifier MDL	RL
Biphenyl				1.5	Medianina (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
3 & 4 Methylphenol		<9.7		1.3	9.7
bis (2-chloroisoprop	yl) ether	<9.7		1.2	9.7
2,4,5-Trichlorophen	ol	<9.7		1.7	9.7
2,4,6-Trichlorophen	ol	<9.7		1.5	9.7
2,4-Dichlorophenol		<9.7		1.6	9.7
2,4-Dimethylphenol		<9.7		1.3	9.7 9.7
2,4-Dinitrophenol		<48		24	9.7 48
2,4-Dinitrotoluene		<9.7		0.81	40 9.7
2,6-Dinitrotoluene		<9,7		1.2	9.7 9.7
2-Chloronaphthalen	e	<9.7		1.4	9.7
2-Chlorophenol		<9.7		1.5	9.7
2-Methylnaphthalen	e	<9.7		1.3	9.7
2-Methylphenol		<9.7		1.5	9.7
2-Nitroaniline		<48		9.7	48
2-Nitrophenol		<9.7		3.7 1.9	40 9.7
3,3'-Dichlorobenzidi	ne	<58		39	
3-Nitroaniline		<48		9.7	58
4,6-Dinitro-2-methyl	phenol	<48		5.7 16	48
4-Bromophenyl pher		<9.7		10	48
4-Chloro-3-methylph		<9.7		1.6	9.7
4-Chloroaniline		<19		1.8	9.7
4-Chlorophenyl pher	nvi ether	<9.7		1.3	19
4-Nitroaniline	.j, ee.	<48		9.7	9.7
4-Nitrophenol		<48		9.7 9.7	48
Acenaphthene		<9.7		9.7 1.5	48
Acenaphthylene		<9.7			9.7
Acetophenone		<9.7		1.6 1.7	9.7
Anthracene		<9.7		1.7 1.6	9.7
Atrazine		<9.7		1.6	9.7
Benzaldehyde		<9.7		2.0	9.7
Benzo(a)anthracene		<9.7		1.8	9.7
Benzo(a)pyrene		<9.7		2.3	9.7
Benzo(b)fluoranthen	e	<9.7		2.0	9.7
Benzo(g,h,i)perylene		<9.7		1.9	9.7
Benzo(k)fluoranthen		<9.7		2.4	9.7
Bis(2-chloroethoxy)n		<9.7		1.6	9.7
Bis(2-chloroethyl)eth		<9.7		1.6	9.7
Bis(2-ethylhexyl) pht		<9.7		2.3	9.7
Butyl benzyl phthalat		<9.7		2.3	9.7
Caprolactam		<9.7		1.3	9.7
Carbazole		<9.7			9.7
Chrysene		<9.7		2.0	9.7
Dibenz(a,h)anthrace	ne	<9.7		1.8	9.7
Dibenzofuran		<9.7		1.6	9.7
Diethyl phthalate		<9.7		1.6	9.7
neury primaiate		<9.7		1.9	9.7

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-0405S				
Lab Sample ID: Client Matrix:	480-65212-2 Water				Date Sampled: 08/07/2014 0850 Date Received: 08/08/2014 0900
		8270D Semivolatile Or	ganic Compounds	GC/MS)	n an
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1907 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volu Injection Volume:	ume: 0.5 mL
Analyte		Result (u	g/L) Qu	alifier MDL	RL
Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadien Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Nexachlorocethane Indeno(1,2,3-cd)pyr Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propy N-Nitrosodiphenylar Pentachlorophenol Phenanthrene Phenol Pyrene	e ne ntadiene rene rlamine	<9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7 <9.7		1.9 1.8 2.4 1.8 1.7 1.6 0.80 0.73 0.80 1.7 1.3 1.2 1.3 1.5 1.7 9.7 1.8 1.5 1.5 1.5 1.5 1.8	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7
Surrogate Terphenyl-d14 (Sur Nitrobenzene-d5 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophen 2-Fluorobiphenyl		%Rec 87 77 68 68 68 76 72	Qu	alifier Ac 10 30 25 26 34	ceptance Limits - 132 - 117 - 109 - 107 - 140 - 114

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-8S				
Lab Sample ID: Client Matrix:	480-65212-3 Water				Date Sampled: 08/07/2014 1000 Date Received: 08/08/2014 0900
- <u> </u>		8270D Semivolatile Or	ganic Compounds (G0	C/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1932 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volume Injection Volume:	
Analyte		Result (u	g/L) Qualifie	er MDL	RL
Biphenyl		<9.6		1.4	9.6
3 & 4 Methylphenol		<9.6		1.2	9.6
bis (2-chloroisoprop	yl) ether	<9.6		1.2	9.6
2,4,5-Trichlorophene	ol	<9.6		1.7	9.6
2,4,6-Trichlorophene	ol	<9.6		1.4	9.6
2,4-Dichlorophenol		<9.6		1.6	9.6
2,4-Dimethylphenol		<9.6		1.0	9.6 9.6
2,4-Dinitrophenol		<48		24	9.6 48
2,4-Dinitrotoluene		<9.6		0.81	
2,6-Dinitrotoluene		<9.6		1.2	9.6
2-Chloronaphthalen	e	<9.6			9.6
2-Chlorophenol	0	<9.6		1.3	9.6
2-Methylnaphthalen	۵	<9.6		1.4	9.6
2-Methylphenol	6	<9.6		1.2	9.6
2-Nitroaniline		<9.0 <48		1.3	9.6
2-Nitrophenol		<40 <9.6		9.6	48
3,3'-Dichlorobenzidir				1.9	9.6
3,5-Dichloroberizidii 3-Nitroaniline		<58		38	58
	- h I	<48		9.6	48
4,6-Dinitro-2-methyl		<48		16	48
4-Bromophenyl pher		<9.6		1.7	9.6
4-Chloro-3-methylph	ienol	<9.6		1.6	9.6
4-Chloroaniline		<19		1.2	19
4-Chlorophenyl pher	nyl ether	<9.6		1.7	9.6
4-Nitroaniline		<48		9.6	48
4-Nitrophenol		<48		9.6	48
Acenaphthene		6.8	J	1.4	9.6
Acenaphthylene		<9.6		1.5	9.6
Acetophenone		<9.6		1.7	9.6
Anthracene		<9.6		1.6	9.6
Atrazine		<9.6		1.5	9.6
Benzaldehyde		<9.6		2.0	9.6
Benzo(a)anthracene		<9.6		1.8	9.6
Benzo(a)pyrene		<9.6		2.3	9.6
Benzo(b)fluoranthen	e	<9.6		2.0	9.6
Benzo(g,h,i)perylene	9	<9.6		1.9	9.6
Benzo(k)fluoranthen	e	<9.6		2.4	9.6
Bis(2-chloroethoxy)n	nethane	<9.6		1.6	9.6
Bis(2-chloroethyl)eth		<9.6		1.3	9.6
Bis(2-ethylhexyl) pht		7.2	J	2.3	9.6
Butyl benzyl phthalat		<9.6	v	2.2	9.6
Caprolactam		<9.6		1.2	9.6
Carbazole		3.5	J	2.0	
Chrysene		<9.6	0	2.0 1.8	9.6
Dibenz(a,h)anthrace	ne	<9.6			9.6
Dibenzofuran		<9.6		1.6	9.6
Diethyl phthalate				1.6	9.6
source primatale		<9.6		1.9	9.6

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-8S				
Lab Sample ID: Client Matrix:	480-65212-3 Water				ate Sampled: 08/07/2014 100 ate Received: 08/08/2014 090
		8270D Semivolatile Or	ganic Compounds (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	680-343799	Instrument ID:	CMSG
Prep Method:	3520C	Prep Batch:	680-343390	Lab File ID:	GH1325.D
Dilution:	1.0			Initial Weight/Volume	e: 260.8 mL
Analysis Date:	08/13/2014 1932			Final Weight/Volume	,
Prep Date:	08/11/2014 1624			Injection Volume:	1 uL
Analyte		Result (u	g/L) Qual	lifier MDL	RL
Dimethyl phthalate	ny gy na anna an a' ann a' an am ann ann a' an ann ann ann ann ann ann a	< 9.6	None and the second	1	9.6
Di-n-butyl phthalate	9	<9.6		1.8	9.6
Di-n-octyl phthalat∈	9	<9.6	~~~	2.4	9.6
Fluoranthene		<9.6		1.8	9.6
Fluorene		5.1	J	1.7	9.6
Hexachlorobenzen	-	<9.6		1.6	9.6
Hexachlorobutadie	ne	<9.6		0.80	9.6
Hexachlorocyclope	ntadiene	<9.6		0.72	9.6
Hexachloroethane		<9.6		0.80	9.6
Indeno(1,2,3-cd)py	rene	<9.6		1.7	9.6
Isophorone		<9.6		1.2	9.6
Naphthalene		<9.6		1.2	9.6
Nitrobenzene		<9.6		1.2	9.6
N-Nitrosodi-n-propy		<9.6		1.4	9.6
N-Nitrosodiphenyla	mine	<9.6		1.7	9.6
Pentachlorophenol		<48		9.6	48
Phenanthrene		<9.6		1.8	9.6
Phenol		<9.6		1.4	9.6
Pyrene		<9.6		1.8	9.6
Surrogate		%Rec	Qual	ifier Accep	tance Limits
Ferphenyl-d14 (Sur	r)	71		10 - 13	300/01/2010
Nitrobenzene-d5		82		30 - 1	17
Phenol-d5		80		25 - 10	09
2-Fluorophenol		74		26 - 10	07
2,4,6-Tribromophen	ol	76		34 - 14	40
-Fluorobiphenyl		72		32 - 1 ⁻	14

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-0404S					
Lab Sample ID: Client Matrix:	480-65212-4 Water				Sampled: 08/07/2014 Received: 08/08/2014	
		8270D Semivolatile Org	anic Compounds (G0	C/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1956 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CMSG GH1326.D 254.2 mL 0.5 mL 1 uL	
Analyte		Result (ug	/L) Qualifi	er MDL	RL	
Biphenyl		< 9,8		1.5	9.8	
3 & 4 Methylphenol		<9.8		1.3	9.8	
bis (2-chloroisoprop		<9.8		1.2	9.8	
2,4,5-Trichlorophene	ol	<9.8		1.8	9.8	
2,4,6-Trichlorophen		<9.8		1.5	9,8	
2,4-Dichlorophenol		<9.8		1.7	9.8	
2,4-Dimethylphenol		<9.8		1.3	9.8	
2,4-Dinitrophenol		<49		25	49	
2,4-Dinitrotoluene		<9.8		0.83	49 9.8	
2,6-Dinitrotoluene		<9.8		1,2	9.8	
2-Chloronaphthalen	e	<9.8		1.4	9.8	
2-Chlorophenol		<9.8		1.5	9.8	
2-Methylnaphthalen	e	<9.8		1.3	9.8	
2-Methylphenol		<9.8		1.6	9.8	
2-Nitroaniline		<49		9.8	49	
2-Nitrophenol		<9.8		2.0	49 9.8	
3,3'-Dichlorobenzidi	ne	<59		39	59	
3-Nitroaniline		<49		9.8	49	
4,6-Dinitro-2-methyl	phenol	<49		17	49 49	
4-Bromophenyl pher		<9.8		1.8	49 9.8	
4-Chloro-3-methylph		<9.8		1.8	9.8 9.8	
4-Chloroaniline		<20		1.7		
4-Chlorophenyl pher	nvl ether	<9.8		1.8	20	
4-Nitroaniline		<49		9.8	9.8 49	
4-Nitrophenol		<49		9.8		
Acenaphthene		<9.8		1.5	49	
Acenaphthylene		<9.8		1.6	9.8	
Acetophenone		<9.8		1.8	9.8	
Anthracene		<9.8		1.7	9.8 9.8	
Atrazine		<9.8		1.6		
Benzaldehyde		<9.8		2.1	9.8	
Benzo(a)anthracene	٠	<9.8		1.9	9.8	
Benzo(a)pyrene		<9.8		2.4	9.8 9.8	
Benzo(b)fluoranthen	e	<9.8		2.4 2.1	9.8 9.8	
Benzo(g,h,i)perylene		<9.8		2.0	9.8 9.8	
Benzo(k)fluoranthen		<9.8		2.5	9.8 9.8	
Bis(2-chloroethoxy)n		<9.8		2.5	9.8 9.8	
Bis(2-chloroethyl)eth		<9.8		1.4	9.8 9.8	
Bis(2-ethylhexyl) pht		<9.8		2.4	9.8 9.8	
Butyl benzyl phthalai		<9.8		2.4	9.8 9.8	
Caprolactam		<9.8		1.3	9.8 9.8	
Carbazole		<9.8		2.1	9.8 9.8	
Chrysene		<9.8		1.9		
Dibenz(a,h)anthrace	ne	<9.8		1.9	9.8	
Dibenzofuran		<9.8		1.7	9.8	
Diethyl phthalate		<9.8			9.8	
sie any promotote		\J.U		2.0	9.8	

TestAmerica Buffalo

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-0404S				
Lab Sample ID: Client Matrix:	480-65212-4 Water				Date Sampled: 08/07/2014 1000 Date Received: 08/08/2014 0900
		8270D Semivolatile Or	ganic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 1956 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum Injection Volume:	
Analyte		Result (u	g/L) Qua	lifier MDL	RL
Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Hexachlorocethane Indeno(1,2,3-cd)pyr Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propy N-Nitrosodiphenylar Pentachlorophenol Phenanthrene Phenol Pyrene	e ne ntadiene rene	<9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8 <9.8		$\begin{array}{c} 2.0\\ 1.9\\ 2.5\\ 1.9\\ 1.8\\ 1.7\\ 0.82\\ 0.74\\ 0.82\\ 1.8\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.5\\ 1.8\\ 9.8\\ 1.9\\ 1.5\end{array}$	9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8
Surrogate Terphenyl-d14 (Surr Nitrobenzene-d5 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophen 2-Fluorobiphenyl		%Rec 94 85 81 76 80 72	Qual	1.9 ifier Acce 10 - 30 - 25 - 26 - 34 - 32 -	117 109 107 140

Analytical Data

Client: New York State Electric & Gas

Job Number: 480-65212-1

Lab Sample ID:	480-65212-5				[Date Sampled: 08/07/201	4 11 [.]
Client Matrix:	Water					Date Received: 08/08/201	
		8270D Semivolatile Or	ganic Compou	ınds (GC	/MS)		
Analysis Method:	8270D	Analysis Batch:	680-343799		Instrument ID:	CMSG	
Prep Method:	3520C	Prep Batch:	680-343390		Lab File ID:	GH1327.D	
Dilution:	1.0				Initial Weight/Volum	ne: 252.3 mL	
Analysis Date:	08/13/2014 2020				Final Weight/Volum	e: 0.5 mL	
Prep Date:	08/11/2014 1624				Injection Volume:	1 uL	
Analyte		Result (u	g/L)	Qualifie	r MDL	RL	
Biphenyl	an fan twender han hen in yn in weder ar weder yn de fan de ferste general yn wyner yn gymer myner yn general o	<9.9			1.5	9.9	
3 & 4 Methylphenol		<9.9			1.3	9.9	
bis (2-chloroisoprop		<9.9			1.2	9.9	
2,4,5-Trichlorophen	-	<9.9			1.8	9.9	
2,4,6-Trichlorophen		<9.9			1.5	9.9	
2,4-Dichlorophenol		<9.9			1.7	9.9	
2,4-Dimethylphenol		<9.9			1.3	9.9	
2,4-Dinitrophenol		<50			25	50	
2,4-Dinitrotoluene		<9.9			0.83	9.9	
2,6-Dinitrotoluene		<9.9			1.2	9.9	
2-Chloronaphthalen	e	<9.9			1.4	9.9	
2-Chlorophenol		<9.9			1.5	9.9	
2-Methylnaphthalen	e	<9.9			1.3	9.9	
2-Methylphenol		<9.9			1.4	9.9	
2-Nitroaniline		<50			9.9	50	
2-Nitrophenol		<9.9			2.0	9.9	
3,3'-Dichlorobenzidi	ne	<59			40	59	
3-Nitroaniline		<50			9.9	50	
4,6-Dinitro-2-methyl	phenol	<50			17	50	
4-Bromophenyl phe	nyl ether	<9.9			1.8	9.9	
4-Chloro-3-methylpl	nenol	<9.9			1.7	9.9	
4-Chloroaniline		<20			1.3	20	
4-Chlorophenyl phe	nyl ether	<9.9			1.8	9.9	
4-Nitroaniline		<50			9.9	50	
1-Nitrophenol		<50			9.9	50	
Acenaphthene		<9.9			1.5	9.9	
Acenaphthylene		<9.9			1.6	9.9	
Acetophenone		<9.9			1.8	9.9	
Anthracene		<9.9			1.7	9.9	
Atrazine		<9.9			1.6	9.9	
Benzaldehyde		<9.9			2.1	9.9	
Benzo(a)anthracene	9	<9.9			1.9	9.9	
Benzo(a)pyrene		<9.9			2.4	9.9	
Benzo(b)fluoranther		<9.9			2.1	9.9	
Benzo(g,h,i)perylene		<9.9			2.0	9.9	
Benzo(k)fluoranthen		<9.9			2.5	9.9	
Bis(2-chloroethoxy)r		<9.9			1.7	9.9	
Bis(2-chloroethyl)eth		<9.9			1.4	9.9	
Bis(2-ethylhexyl) phi		<9.9			2.4	9.9	
Butyl benzyl phthala	te	<9.9			2.3	9.9	
Caprolactam		<9.9			1.3	9.9	
Carbazole		<9.9			2.1	9.9	
Chrysene		<9.9			1.9	9.9	
Dibenz(a,h)anthrace	ene	<9.9			1.7	9.9	
ibenzofuran		<9.9			1.7	9.9	
)iethyl phthalate		<9.9			2.0	0.0	

Diethyl phthalate

2.0

<9.9

9.9

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-0402S				
Lab Sample ID: Client Matrix:	480-65212-5 Water				Date Sampled: 08/07/2014 1110 Date Received: 08/08/2014 0900
		8270D Semivolatile Or	ganic Compounds	(GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3520C 1.0 08/13/2014 2020 08/11/2014 1624	Analysis Batch: Prep Batch:	680-343799 680-343390	Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun Injection Volume:	
Analyte		Result (u	g/L) Qu	alifier MDL	RL
Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadie Hexachlorocyclope Hexachlorocyclope Hexachlorocyclope Hexachlorocethane Indeno(1,2,3-cd)pyr Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propy N-Nitrosodiphenyla Pentachlorophenol Phenanthrene Phenol Pyrene	e ne ntadiene rene rlamine	<pre><9.9 <9.9 <9.9 <9.9 <9.9 <9.9 <9.9 <9.9</pre>		2.0 1.9 2.5 1.9 1.8 1.7 0.82 0.74 0.82 1.8 1.3 1.2 1.3 1.5 1.8 9.9 1.9 1.5	9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9
Surrogate Terphenyl-d14 (Sur Nitrobenzene-d5 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophen 2-Fluorobiphenyl		<9.9 %Rec 93 87 88 82 78 78 75	Qu	1.9 alifier Acce 10 - 30 - 25 - 26 - 34 - 32 -	117 109 107 140

Analytical Data

Job Number: 480-65212-1

MW-0403S **Client Sample ID:** Lab Sample ID: 480-65212-6 Date Sampled: 08/07/2014 1110 **Client Matrix:** Water Date Received: 08/08/2014 0900 8270D Semivolatile Organic Compounds (GC/MS) Analysis Method: 8270D Analysis Batch: 680-343799 Instrument ID: CMSG Prep Method: 3520C Prep Batch: 680-343390 Lab File ID: GH1328.D Dilution: 1.0 Initial Weight/Volume: 250.6 mL Analysis Date: 08/13/2014 2045 Final Weight/Volume: 0.5 mL Prep Date: 08/11/2014 1624 Injection Volume: 1 uL Analyte Result (ug/L) Qualifier MDL RL Biphenyl <10 1.5 10 3 & 4 Methylphenol <10 1.3 10 bis (2-chloroisopropyl) ether <10 1.2 10 2,4,5-Trichlorophenol <10 1.8 10 2,4,6-Trichlorophenol <10 1.5 10 2,4-Dichlorophenol <10 1.7 10 2,4-Dimethylphenol <10 1.3 10 2,4-Dinitrophenol <50 25 50 2,4-Dinitrotoluene <10 0.84 10 2,6-Dinitrotoluene <10 1.2 10 2-Chloronaphthalene <10 1.4 10 2-Chlorophenol <10 1.5 10 2-Methylnaphthalene <10 1.3 10 2-Methylphenol <10 1.4 10 2-Nitroaniline <50 10 50 2-Nitrophenol <10 2.0 10 3,3'-Dichlorobenzidine <60 40 60 3-Nitroaniline <50 10 50 4,6-Dinitro-2-methylphenol <50 17 50 4-Bromophenyl phenyl ether <10 1.8 10 4-Chloro-3-methylphenol <10 1.7 10 4-Chloroaniline <20 1.3 20 4-Chlorophenyl phenyl ether <10 1.8 10 4-Nitroaniline <50 10 50 4-Nitrophenol <50 10 50 Acenaphthene <10 1.5 10 Acenaphthylene <10 1.6 10 Acetophenone <10 1.8 10 Anthracene <10 1.7 10 Atrazine <10 1.6 10 Benzaldehyde <10 2.1 10 Benzo(a)anthracene <10 1.9 10 Benzo(a)pyrene <10 2.4 10 Benzo(b)fluoranthene <10 2.1 10 Benzo(g,h,i)perylene <10 2.0 10 Benzo(k)fluoranthene <10 2.5 10 Bis(2-chloroethoxy)methane <10 1.7 10 Bis(2-chloroethyl)ether <10 1.4 10 Bis(2-ethylhexyl) phthalate <10 24 10 Butyl benzyl phthalate <10 2.3 10 Caprolactam <10 1.3 10 Carbazole <10 2.1 10 Chrysene <10 1.9 10

Dibenz(a,h)anthracene

Dibenzofuran

Diethyl phthalate

1.7

1.7

2.0

<10

<10

<10

10

10

10

Analytical Data

Job Number: 480-65212-1

Client Sample ID:	MW-0403S				
Lab Sample ID: Client Matrix:	480-65212-6 Water				Date Sampled: 08/07/2014 1110
Cheffit Matrix.	vvalei				Date Received: 08/08/2014 0900
		8270D Semivolatile Orga	anic Compounds	(GC/MS)	
Analysis Method:	8270D	Analysis Batch:	680-343799	Instrument ID:	CMSG
Prep Method:	3520C	Prep Batch:	680-343390	Lab File ID:	GH1328.D
Dilution:	1.0			Initial Weight/Vol	ume: 250.6 mL
Analysis Date:	08/13/2014 2045			Final Weight/Volu	
Prep Date:	08/11/2014 1624			Injection Volume:	
Analyte		Result (ug/	L) Qua	lifier MDL	RL
Dimethyl phthalate		<10	an a	2.0	10
Di-n-butyl phthalate		<10		1.9	10
Di-n-octyl phthalate	2	<10	and the second sec	2.5	10
Fluoranthene		<10		1.9	10
Fluorene		<10		1.8	10
Hexachlorobenzen	-	<10		1.7	10
Hexachlorobutadie		<10		0.83	10
Hexachlorocyclope	ntadiene	<10		0.75	10
Hexachloroethane		<10		0.83	10
Indeno(1,2,3-cd)py	rene	<10		1.8	10
Isophorone		<10		1.3	10
Naphthalene		<10		1.2	10
Nitrobenzene		<10		1.3	10
N-Nitrosodi-n-propy		<10		1.5	10
N-Nitrosodiphenyla	mine	<10		1.8	10
Pentachlorophenol		<50		10	50
Phenanthrene		<10		1.9	10
Phenol		<10		1.5	10
Pyrene		<10		1.9	10
Surrogate		%Rec	Qua	lifier Ac	ceptance Limits
Terphenyl-d14 (Sur	r)	64	2010 CONSTRUCTION CONSTRUCTION (1869) (1869)	10	- 132
Nitrobenzene-d5		59		30	- 117
Phenol-d5		62			- 109
2-Fluorophenol	-1	57		26	- 107
2,4,6-Tribromophen	01	52		34	- 140
2-Fluorobiphenyl		47		32	- 114

			F	Toct A		
Chain of Custody Record	Tem	Temperature on Receipt				
TAL-4124 (1007)	Drin	Drinking Water? Yes	ŗ	THE LEADER IN	480-65212 Chain of Custody	
CHEM NYSEG/ARCADIS	Proje	Project Manager Ahrest	Ahrests		Date Lefter SI 71/4	Chain of Custoor, Number 264226
ars would ff Dr		shone Number (Area Co SSS- S&S-Co	del/Fax Number 298		Lab Number	Page of C
Earlingert NY 14450	R	Site contact Kluws Barry	Aulssa Dera		Analysis (Attach list if more space is needed)	1
cation (State) AVE FORME MG		erMaybill Number				Consist Index sets
contract Purchase Order Quote No. $\Omega_{000}/3/34$. A dow		Matrix	Containers & Preservatives	Pf 09		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Time	HOS PBS snoenby JNY	HOBN /DVUZ HOBN IDH EONH FOSZH SBIDUN	(8)(8		
	280 H.F.8	×	5 6	XX		
SSopo-MWA	10830					
ãrw-SS	000					
Shaha-wma	690					
WW -04025	1119					
Starter - Merry	a [1]		2	>		
STRIP RANK				>		
table 🔲 Skin Imitant	🗌 Poison B 💌 Unknown	n 🗌 Retum fo Client	Disposal By Lab	Br Archive For	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A tee may be assessed if samples are retained horner than 1 month)
Tum Around Time Required	🗆 21 Days 🔁 Ol	3 Other Stordal	- CC Requirements (Spe	<i>(l</i> 4	1	
". Holinguistication (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 8.7.14	Ime IS	30 1. Received By Fall I			Date
	Date	Time	2. Received By	1	- A-	RILL DALL
a neuroparea by	Date	Time	3. Received By	A	-	Date Time
sueuuo-4					12241	
DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample; PINK - Field Copy	RY - Stays with the Sam	iple; PINK - Field Copy				

,

Imagine the result

NYSEG Elmira Madison Avenue Former MGP Site

Data Usability Summary Report (DUSR)

ELMIRA, NEW YORK

Volatile and Semivolatile Analyses

SDG #480-75932-1

Analyses Performed By: TestAmerica Amherst, New York

Report #23291R Review Level: Tier III Project: B0013134.0001.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #480-75932-1 for samples collected in association with the NYSEG Elmira Madison Avenue Former MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Parent	Analysis				
Sample ID	Labib	Wath	Collection Date	Sample	voc	SVOC	РСВ	МЕТ	MISC
MW-2S	480-75932-1	Water	2/26/2015		Х	Х			
MW-4S	480-75932-2	Water	2/26/2015		Х	Х			
MW-6S	480-75932-3	Water	2/26/2015		Х	Х			
MW-7	480-75932-4	Water	2/26/2015		Х	Х			
MW-8S	480-75932-5	Water	2/26/2015		Х	Х			
MW-9S	480-75932-6	Water	2/26/2015		Х	Х			
MW-0402S	480-75932-7	Water	2/26/2015		Х	Х			
MW-0403S	480-75932-8	Water	2/26/2015		Х	Х			
MW-0404S	480-75932-9	Water	2/26/2015		Х	Х			
MW-0405S	480-75932-10	Water	2/26/2015		Х	Х			
DUP-022615	480-75932-11	Water	2/26/2015	MW-8S	Х	Х			
TRIP BLANK	480-75932-12	Water	2/26/2015		Х				
PMW-02	480-75932-13	Water	2/24/2015		Х				
PMW-04	480-75932-14	Water	2/25/2015		Х				
PMW-06	480-75932-15	Water	2/25/2015		Х				

Note:

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location MW-6S.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Repo	orted	Performance Acceptable		Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 8260C and 8270D as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA Region II SOP HW-24 - Validating Volatile Organic Compounds by SW-846 Method 8260B of October 2006 and New York State ASP 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW 846 82600	Water	14 days from collection to analysis (7 days if unpreserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.
SW-846 8260C	Soil	14 days from collection to analysis	Cool to <6 °C.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Sample ID/ Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-8S/	m-Xylene & p-Xylene	2 U	0.66 J	AC
DUP-022615	Xylenes, Total	2 U	0.66 J	AC

Results for duplicate samples are summarized in the following table.

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
	Benzene	570 E	1200 D	1200 D
PMW-06	Ethylbenzene	260 E	290 D	290 D
	m-Xylene & p-Xylene	180 E	190 D	190 D
	Xylenes, Total	270 E	290 D	290 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260C	Repo	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	Nequireu
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation		1		1	
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks			1		
A. Method blanks		Х		Х	
B. Equipment blanks					Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)		Х		Х	
Matrix Spike Duplicate(MSD)		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation		•			
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present				Х	

VOCs: SW-846 8260C	Repo	Reported		mance otable	Not Required	
	No	Yes	No	Yes	Roquilou	
GAS CHROMATOGRAPHY/MASS SPECTROM	GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)					
 Reporting limits adjusted to reflect sample dilutions 		х		Х		
%RSD Relative standard deviation						

Percent recovery Relative percent difference Percent difference

%R RPD %D

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C.
300-040 02700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
	Nitrobenzene-d5	AC
MW-8S	2-Fluorobiphenyl	AC
	p-Terphenyl-d14	< LL but > 10%
LL Lower control limit		i

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
	Detect	J
< LL but > 10%	Non-detect	UJ
	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Surrogates diluted below the calibration curve due to the	Non-detect	11
high concentration of a target compounds	Detect	J ¹

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the

SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
	Benzo(a)pyrene		
	Benzo(b)fluoranthene		
MW-6S	Benzo(g,h,i)perylene	<ll but="">10%</ll>	AC
	Chrysene		AC
	Dibenz(a,h)anthracene		
	Indeno(1,2,3-c,d)pyrene		

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper control limit (111)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
a the lower control limit (11) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NU ACIION

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
	Benzo(a)anthracene
	Benzo(a)pyrene
	Benzo(b)fluoranthene
MW-6S	Benzo(g,h,i)perylene
10100-03	Benzo(k)fluoranthene
	Chrysene
	Dibenz(a,h)anthracene
	Indeno(1,2,3-c,d)pyrene

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
> OL	Detect	J

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/ Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acenaphthene	8.0	9.7 J	
MW-8S/	Acenaphthylene	0.46 J	24 U	10
DUP-022615	Anthracene	0.97 J	24 U	AC
	Benzo(a)anthracene	1.2 J	1.8 J	

Sample ID/ Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Benzo(a)pyrene	1.2 J	2.3 J	
	Benzo(b)fluoranthene	1.4 J	2.9 J	
	Benzo(g,h,i)perylene	0.49 J	24 U	
	Chrysene	0.97 J	24 U	
	Fluoranthene	3.4 J	4.8 J	10
	Fluorene	4.8 J	6.3 J	AC
	Indeno(1,2,3-c,d)pyrene	0.55 J	24 U	
	Naphthalene	2.5 J	24 U	
	Phenanthrene	0.57 J	24 U	
	Pyrene	2.6 J	3.5 J	

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270D		orted	Perfor Accep	mance otable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks			-			
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate(LCSD) %R					x	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R		Х	Х			
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х	Х			
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х	Х			
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		х		х		
D. Transcription/calculation errors present				Х		
E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		X		х		

%R RPD

Percent recovery Relative percent difference

%D Percent difference

SAMPLE COMPLIANCE REPORT

Sample						Compliancy ¹				Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	MET	MISC	
	2/26/2015	ASP 2005	MW-2S	Water	Yes	Yes				
	2/26/2015	ASP 2005	MW-4S	Water	Yes	Yes				
	2/26/2015	ASP 2005	MW-6S	Water	Yes	No				SVOC-MS %R, MS/MSD RPD
	2/26/2015	ASP 2005	MW-7	Water	Yes	Yes				
	2/26/2015	ASP 2005	MW-8S	Water	Yes	Yes				
	2/26/2015	ASP 2005	MW-9S	Water	Yes	Yes				
	2/26/2015	ASP 2005	MW-0402S	Water	Yes	Yes				
480-75932-1	2/26/2015	ASP 2005	MW-0403S	Water	Yes	Yes				
	2/26/2015	ASP 2005	MW-0404S	Water	Yes	Yes				
	2/26/2015	ASP 2005	MW-0405S	Water	Yes	Yes				
	2/26/2015	ASP 2005	DUP-022615	Water	Yes	Yes				
	2/26/2015	ASP 2005	TRIP BLANK	Water	Yes					
	2/24/2015	ASP 2005	PMW-02	Water	Yes					
	2/25/2015	ASP 2005	PMW-04	Water	Yes				-	
	2/25/2015	ASP 2005	PMW-06	Water	No					VOC-Dilution

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Todd Church

SIGNATURE:

-le Jan l

DATE: March 19, 2015

PEER REVIEW: Dennis Capria

DATE: March 25, 2015

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Client: New York State Electric & Gas Project/Site: NYSEG - Elmira Madison Ave Lab & Test

1 2 3 4 5 6 7 8 9 10

Qualifiers

GC	VO	. ^
GC	VU	н
	 	-

GC/IVIS VUA	A	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
E	Result exceeded calibration range.	
GC/MS Sem	ni VOA	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	7
F1	MS and/or MSD Recovery exceeds the control limits	
х	Surrogate is outside control limits	9

F2 MS/MSD RPD exceeds control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Lab Sample ID: 480-75932-1

Matrix: Water

5

6

Client Sample ID: MW-2S

Date Collected: 02/26/15 10:25 Date Received: 02/27/15 09:30

Method: 8260C - Volatile Orga	· · · · · · · · · · · · · · · · · · ·	-							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 13:15	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 13:15	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 13:15	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 13:15	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 13:15	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 13:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		66 - 137			-		03/02/15 13:15	1
Toluene-d8 (Surr)	99		71 - 126					03/02/15 13:15	1
4-Bromofluorobenzene (Surr)	100		73 - 120					03/02/15 13:15	1
Dibromofluoromethane (Surr)	98		60 - 140					03/02/15 13:15	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<4.8		4.8	0.40	ug/L		02/27/15 14:31	02/28/15 12:19	1
Acenaphthylene	<4.8		4.8	0.37	ug/L		02/27/15 14:31	02/28/15 12:19	1
Anthracene	<4.8		4.8	0.27	ug/L		02/27/15 14:31	02/28/15 12:19	1
Benz(a)anthracene	<4.8		4.8	0.35	ug/L		02/27/15 14:31	02/28/15 12:19	1
Benzo(a)pyrene	<4.8		4.8	0.45	ug/L		02/27/15 14:31	02/28/15 12:19	1
Benzo(b)fluoranthene	<4.8		4.8	0.33	ug/L		02/27/15 14:31	02/28/15 12:19	1
Benzo(g,h,i)perylene	<4.8		4.8	0.34	ug/L		02/27/15 14:31	02/28/15 12:19	1
Benzo(k)fluoranthene	<4.8		4.8	0.70	ug/L		02/27/15 14:31	02/28/15 12:19	1
Chrysene	<4.8		4.8	0.32	ug/L		02/27/15 14:31	02/28/15 12:19	1
Dibenz(a,h)anthracene	<4.8		4.8	0.41	ug/L		02/27/15 14:31	02/28/15 12:19	1
Fluoranthene	<4.8		4.8	0.39	ug/L		02/27/15 14:31	02/28/15 12:19	1
Fluorene	<4.8		4.8	0.35	ug/L		02/27/15 14:31	02/28/15 12:19	1
Indeno(1,2,3-c,d)pyrene	<4.8		4.8	0.45	ug/L		02/27/15 14:31	02/28/15 12:19	1
Naphthalene	<4.8		4.8	0.73	ug/L		02/27/15 14:31	02/28/15 12:19	1
Phenanthrene	<4.8		4.8	0.42	ug/L		02/27/15 14:31	02/28/15 12:19	1
Pyrene	<4.8		4.8	0.33	ug/L		02/27/15 14:31	02/28/15 12:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72		46 - 120				02/27/15 14:31	02/28/15 12:19	1
2-Fluorobiphenyl	74		48 - 120				02/27/15 14:31	02/28/15 12:19	1
p-Terphenyl-d14	79		67 - 150				02/27/15 14:31	02/28/15 12:19	1

Client Sample ID: MW-4S

Date Collected: 02/26/15 11:40

Date Received: 02/27/15 09:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	0.41	ug/L			03/02/15 13:39	1
Toluene	<1.0	1.0	0.51	ug/L			03/02/15 13:39	1
Ethylbenzene	<1.0	1.0	0.74	ug/L			03/02/15 13:39	1
m-Xylene & p-Xylene	<2.0	2.0	0.66	ug/L			03/02/15 13:39	1
o-Xylene	<1.0	1.0	0.76	ug/L			03/02/15 13:39	1
Xylenes, Total	<2.0	2.0	0.66	ug/L			03/02/15 13:39	1

TestAmerica Buffalo

Matrix: Water

Lab Sample ID: 480-75932-2

TestAmerica Job ID: 480-75932-1

Lab Sample ID: 480-75932-2

Lab Sample ID: 480-75932-3

Matrix: Water

Matrix: Water

Client Sample ID: MW-4S Date Collected: 02/26/15 11:40

Date Received: 02/27/15 09:30

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	66 - 137		03/02/15 13:39	1
Toluene-d8 (Surr)	97	71 - 126		03/02/15 13:39	1
4-Bromofluorobenzene (Surr)	98	73 - 120		03/02/15 13:39	1
Dibromofluoromethane (Surr)	97	60 - 140		03/02/15 13:39	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<5.0		5.0	0.41	ug/L		02/27/15 14:31	02/28/15 12:46	1	-
Acenaphthylene	<5.0		5.0	0.38	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Anthracene	<5.0		5.0	0.28	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Benz(a)anthracene	<5.0		5.0	0.36	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Benzo(a)pyrene	<5.0		5.0	0.47	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Benzo(b)fluoranthene	0.48	J	5.0	0.34	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Benzo(g,h,i)perylene	<5.0		5.0	0.35	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Benzo(k)fluoranthene	<5.0		5.0	0.74	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Chrysene	<5.0		5.0	0.33	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Fluoranthene	<5.0		5.0	0.40	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Fluorene	<5.0		5.0	0.36	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Naphthalene	<5.0		5.0	0.77	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Phenanthrene	<5.0		5.0	0.44	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Pyrene	<5.0		5.0	0.34	ug/L		02/27/15 14:31	02/28/15 12:46	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Nitrobenzene-d5	60		46 - 120				02/27/15 14:31	02/28/15 12:46	1	
2-Fluorobiphenyl	65		48 - 120				02/27/15 14:31	02/28/15 12:46	1	
p-Terphenyl-d14	70		67 - 150				02/27/15 14:31	02/28/15 12:46	1	

Client Sample ID: MW-6S

Date Collected: 02/26/15 08:55

Date Received: 02/27/15 09:30

Г

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 14:03	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 14:03	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 14:03	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 14:03	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 14:03	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 14:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		66 - 137					03/02/15 14:03	1
Toluene-d8 (Surr)	99		71 - 126					03/02/15 14:03	1
4-Bromofluorobenzene (Surr)	97		73 - 120					03/02/15 14:03	1
Dibromofluoromethane (Surr)	99		60 - 140					03/02/15 14:03	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	5)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.0		5.0	0.41	ug/L		02/27/15 14:31	02/28/15 13:12	1

TestAmerica Buffalo

RL

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

Limits

46 - 120

48 - 120

67 - 150

MDL Unit

0.28 ug/L

0.36 ug/L

0.47 ug/L

0.34 ug/L

0.35 ug/L

0.73 ug/L

0.40 ug/L

0.36 ug/L

0.47 ug/L

0.75 ug/L

0.44 ug/L

0.34 ug/L

0.33 ug/L

0.42 ug/L

ug/L

0.38

D

Prepared

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

Prepared

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

UJ

UJ

U.

Qualifier

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

< 5.0

<5.0

<5.0

62

65

76

%Recovery

Client Sample ID: MW-6S Date Collected: 02/26/15 08:55

Date Received: 02/27/15 09:30

Analyte

Acenaphthylene

Benz(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Dibenz(a,h)anthracene

Indeno(1,2,3-c,d)pyrene

Benzo(a)pyrene

Anthracene

Chrysene

Fluorene

Pyrene

Surrogate

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

Fluoranthene

Naphthalene

Phenanthrene

Lab Sample ID: 480-75932-3 Matrix: Water

Analyzed

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

Analyzed

02/28/15 13:12

02/28/15 13:12

02/28/15 13:12

6

Client Sample ID: MW-7

Date Collected: 02/26/15 12:45

Date Received: 02/27/15 09:30

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 14:28	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 14:28	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 14:28	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 14:28	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 14:28	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 14:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		66 - 137			-		03/02/15 14:28	1
Toluene-d8 (Surr)	99		71 - 126					03/02/15 14:28	1
4-Bromofluorobenzene (Surr)	99		73 - 120					03/02/15 14:28	1
Dibromofluoromethane (Surr)	101		60 - 140					03/02/15 14:28	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<4.7	4.7	0.39	ug/L		02/27/15 14:31	02/28/15 13:38	1
Acenaphthylene	<4.7	4.7	0.36	ug/L		02/27/15 14:31	02/28/15 13:38	1
Anthracene	<4.7	4.7	0.27	ug/L		02/27/15 14:31	02/28/15 13:38	1
Benz(a)anthracene	<4.7	4.7	0.34	ug/L		02/27/15 14:31	02/28/15 13:38	1
Benzo(a)pyrene	<4.7	4.7	0.45	ug/L		02/27/15 14:31	02/28/15 13:38	1
Benzo(b)fluoranthene	<4.7	4.7	0.32	ug/L		02/27/15 14:31	02/28/15 13:38	1
Benzo(g,h,i)perylene	<4.7	4.7	0.33	ug/L		02/27/15 14:31	02/28/15 13:38	1
Benzo(k)fluoranthene	<4.7	4.7	0.69	ug/L		02/27/15 14:31	02/28/15 13:38	1

TestAmerica Buffalo

Lab Sample ID: 480-75932-4 Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

1

1

Date Received: 02/27/15 09:30

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)
include of game compounds (commo) (commo)

75

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	<4.7		4.7	0.31	ug/L		02/27/15 14:31	02/28/15 13:38	1
Dibenz(a,h)anthracene	<4.7		4.7	0.40	ug/L		02/27/15 14:31	02/28/15 13:38	1
Fluoranthene	<4.7		4.7	0.38	ug/L		02/27/15 14:31	02/28/15 13:38	1
Fluorene	<4.7		4.7	0.34	ug/L		02/27/15 14:31	02/28/15 13:38	1
Indeno(1,2,3-c,d)pyrene	<4.7		4.7	0.45	ug/L		02/27/15 14:31	02/28/15 13:38	1
Naphthalene	<4.7		4.7	0.72	ug/L		02/27/15 14:31	02/28/15 13:38	1
Phenanthrene	<4.7		4.7	0.42	ug/L		02/27/15 14:31	02/28/15 13:38	1
Pyrene	<4.7		4.7	0.32	ug/L		02/27/15 14:31	02/28/15 13:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	57		46 - 120				02/27/15 14:31	02/28/15 13:38	1
2-Fluorobiphenyl	63		48 - 120				02/27/15 14:31	02/28/15 13:38	1

67 _ 150

Client Sample ID: MW-8S

p-Terphenyl-d14

Date Collected: 02/26/15 08:35

Date Received: 02/27/15 09:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	0.41	ug/L			03/02/15 15:03	1
Toluene	<1.0	1.0	0.51	ug/L			03/02/15 15:03	1
Ethylbenzene	<1.0	1.0	0.74	ug/L			03/02/15 15:03	1
m-Xylene & p-Xylene	<2.0	2.0	0.66	ug/L			03/02/15 15:03	1
o-Xylene	<1.0	1.0	0.76	ug/L			03/02/15 15:03	1
Xylenes, Total	<2.0	2.0	0.66	ug/L			03/02/15 15:03	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		66 - 137		03/02/15 15:03	1
Toluene-d8 (Surr)	96		71 - 126		03/02/15 15:03	1
4-Bromofluorobenzene (Surr)	97		73 - 120		03/02/15 15:03	1
Dibromofluoromethane (Surr)	98		60 - 140		03/02/15 15:03	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	8.0		4.9	0.40	ug/L		02/27/15 14:31	02/28/15 14:04	1
Acenaphthylene	0.46	J	4.9	0.37	ug/L		02/27/15 14:31	02/28/15 14:04	1
Anthracene	0.97	J	4.9	0.28	ug/L		02/27/15 14:31	02/28/15 14:04	1
Benz(a)anthracene	1.2	J	4.9	0.35	ug/L		02/27/15 14:31	02/28/15 14:04	1
Benzo(a)pyrene	1.2	J	4.9	0.46	ug/L		02/27/15 14:31	02/28/15 14:04	1
Benzo(b)fluoranthene	1.4	J	4.9	0.33	ug/L		02/27/15 14:31	02/28/15 14:04	1
Benzo(g,h,i)perylene	0.49	J	4.9	0.34	ug/L		02/27/15 14:31	02/28/15 14:04	1
Benzo(k)fluoranthene	<4.9		4.9	0.72	ug/L		02/27/15 14:31	02/28/15 14:04	1
Chrysene	0.97	J	4.9	0.33	ug/L		02/27/15 14:31	02/28/15 14:04	1
Dibenz(a,h)anthracene	<4.9		4.9	0.41	ug/L		02/27/15 14:31	02/28/15 14:04	1
Fluoranthene	3.4	J	4.9	0.39	ug/L		02/27/15 14:31	02/28/15 14:04	1
Fluorene	4.8	J	4.9	0.35	ug/L		02/27/15 14:31	02/28/15 14:04	1
Indeno(1,2,3-c,d)pyrene	0.55	J	4.9	0.46	ug/L		02/27/15 14:31	02/28/15 14:04	1
Naphthalene	2.5	J	4.9	0.75	ug/L		02/27/15 14:31	02/28/15 14:04	1
Phenanthrene	0.57	J	4.9	0.43	ug/L		02/27/15 14:31	02/28/15 14:04	1

TestAmerica Job ID: 480-75932-1

Lab Sample ID: 480-75932-4 Matrix: Water

02/28/15 13:38

Lab Sample ID: 480-75932-5

02/27/15 14:31

5 6

1

Matrix: Water

TestAmerica Job ID: 480-75932-1

Lab Sample ID: 480-75932-6

Matrix: Water

Client Sample ID: MW-8S Date Collected: 02/26/15 08:35

Date Received: 02/27/15 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	2.6	J	4.9	0.33	ug/L		02/27/15 14:31	02/28/15 14:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	61		46 - 120				02/27/15 14:31	02/28/15 14:04	1
2-Fluorobiphenyl	66		48 - 120				02/27/15 14:31	02/28/15 14:04	1
p-Terphenyl-d14	63	X	67 - 150				02/27/15 14:31	02/28/15 14:04	1

Client Sample ID: MW-9S

Date Collected: 02/26/15 14:00

Date Received: 02/27/15 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 15:27	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 15:27	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 15:27	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 15:27	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 15:27	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 15:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137	 	03/02/15 15:27	1
Toluene-d8 (Surr)	99		71 - 126		03/02/15 15:27	1
4-Bromofluorobenzene (Surr)	101		73 - 120		03/02/15 15:27	1
Dibromofluoromethane (Surr)	96		60 _ 140		03/02/15 15:27	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<4.9		4.9	0.41	ug/L		02/27/15 14:31	02/28/15 14:30	1
Acenaphthylene	<4.9		4.9	0.38	ug/L		02/27/15 14:31	02/28/15 14:30	1
Anthracene	<4.9		4.9	0.28	ug/L		02/27/15 14:31	02/28/15 14:30	1
Benz(a)anthracene	<4.9		4.9	0.36	ug/L		02/27/15 14:31	02/28/15 14:30	1
Benzo(a)pyrene	<4.9		4.9	0.46	ug/L		02/27/15 14:31	02/28/15 14:30	1
Benzo(b)fluoranthene	<4.9		4.9	0.34	ug/L		02/27/15 14:31	02/28/15 14:30	1
Benzo(g,h,i)perylene	<4.9		4.9	0.35	ug/L		02/27/15 14:31	02/28/15 14:30	1
Benzo(k)fluoranthene	<4.9		4.9	0.72	ug/L		02/27/15 14:31	02/28/15 14:30	1
Chrysene	<4.9		4.9	0.33	ug/L		02/27/15 14:31	02/28/15 14:30	1
Dibenz(a,h)anthracene	<4.9		4.9	0.42	ug/L		02/27/15 14:31	02/28/15 14:30	1
Fluoranthene	<4.9		4.9	0.40	ug/L		02/27/15 14:31	02/28/15 14:30	1
Fluorene	<4.9		4.9	0.36	ug/L		02/27/15 14:31	02/28/15 14:30	1
Indeno(1,2,3-c,d)pyrene	<4.9		4.9	0.46	ug/L		02/27/15 14:31	02/28/15 14:30	1
Naphthalene	<4.9		4.9	0.75	ug/L		02/27/15 14:31	02/28/15 14:30	1
Phenanthrene	<4.9		4.9	0.44	ug/L		02/27/15 14:31	02/28/15 14:30	1
Pyrene	<4.9		4.9	0.34	ug/L		02/27/15 14:31	02/28/15 14:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	70		46 - 120				02/27/15 14:31	02/28/15 14:30	1
2-Fluorobiphenyl	75		48 - 120				02/27/15 14:31	02/28/15 14:30	1
p-Terphenyl-d14	87		67 - 150				02/27/15 14:31	02/28/15 14:30	1

3/9/2015

Client Sample ID: MW-0402S Date Collected: 02/26/15 14:20

Date Received: 02/27/15 09:30

Method: 8260C - Volatile Orga	nic Compounds b	oy GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 15:51	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 15:51	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 15:51	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 15:51	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 15:51	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 15:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137			-		03/02/15 15:51	1
Toluene-d8 (Surr)	99		71 - 126					03/02/15 15:51	1
4-Bromofluorobenzene (Surr)	98		73 - 120					03/02/15 15:51	1
Dibromofluoromethane (Surr)	95		60 - 140					03/02/15 15:51	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<4.9		4.9	0.40	ug/L		02/27/15 14:31	02/28/15 14:56	1
Acenaphthylene	<4.9		4.9	0.37	ug/L		02/27/15 14:31	02/28/15 14:56	1
Anthracene	<4.9		4.9	0.27	ug/L		02/27/15 14:31	02/28/15 14:56	1
Benz(a)anthracene	<4.9		4.9	0.35	ug/L		02/27/15 14:31	02/28/15 14:56	1
Benzo(a)pyrene	<4.9		4.9	0.46	ug/L		02/27/15 14:31	02/28/15 14:56	1
Benzo(b)fluoranthene	<4.9		4.9	0.33	ug/L		02/27/15 14:31	02/28/15 14:56	1
Benzo(g,h,i)perylene	<4.9		4.9	0.34	ug/L		02/27/15 14:31	02/28/15 14:56	1
Benzo(k)fluoranthene	<4.9		4.9	0.71	ug/L		02/27/15 14:31	02/28/15 14:56	1
Chrysene	<4.9		4.9	0.32	ug/L		02/27/15 14:31	02/28/15 14:56	1
Dibenz(a,h)anthracene	<4.9		4.9	0.41	ug/L		02/27/15 14:31	02/28/15 14:56	1
Fluoranthene	<4.9		4.9	0.39	ug/L		02/27/15 14:31	02/28/15 14:56	1
Fluorene	<4.9		4.9	0.35	ug/L		02/27/15 14:31	02/28/15 14:56	1
Indeno(1,2,3-c,d)pyrene	<4.9		4.9	0.46	ug/L		02/27/15 14:31	02/28/15 14:56	1
Naphthalene	<4.9		4.9	0.74	ug/L		02/27/15 14:31	02/28/15 14:56	1
Phenanthrene	<4.9		4.9	0.43	ug/L		02/27/15 14:31	02/28/15 14:56	1
Pyrene	<4.9		4.9	0.33	ug/L		02/27/15 14:31	02/28/15 14:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	61		46 - 120				02/27/15 14:31	02/28/15 14:56	1
2-Fluorobiphenyl	66		48 - 120				02/27/15 14:31	02/28/15 14:56	1
p-Terphenyl-d14	70		67 - 150				02/27/15 14:31	02/28/15 14:56	1

Client Sample ID: MW-0403S

Date Collected: 02/26/15 13:15 Date Received: 02/27/15 09:30

Method: 8260C - Volatile Organ	nic Compounds by GC/MS						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	0.41 ug/L			03/02/15 16:15	1
Toluene	<1.0	1.0	0.51 ug/L			03/02/15 16:15	1
Ethylbenzene	<1.0	1.0	0.74 ug/L			03/02/15 16:15	1
m-Xylene & p-Xylene	<2.0	2.0	0.66 ug/L			03/02/15 16:15	1
o-Xylene	<1.0	1.0	0.76 ug/L			03/02/15 16:15	1
Xylenes, Total	<2.0	2.0	0.66 ug/L			03/02/15 16:15	1

TestAmerica Buffalo

Matrix: Water

Lab Sample ID: 480-75932-8

TestAmerica Job ID: 480-75932-1

Lab Sample ID: 480-75932-7

Matrix: Water

12 13

Client Sample ID: MW-0403S

Date Collected: 02/26/15 13:15 Date Received: 02/27/15 09:30

Surrogate	%Recovery Qualifier	Limits	Prepared	Analvzed	Dil Fac
Sullogate	/sitecovery qualifier	Linits	riepareu	Analyzeu	Dirrac
1,2-Dichloroethane-d4 (Surr)	103	66 - 137		03/02/15 16:15	1
Toluene-d8 (Surr)	99	71 - 126		03/02/15 16:15	1
4-Bromofluorobenzene (Surr)	98	73 - 120		03/02/15 16:15	1
Dibromofluoromethane (Surr)	99	60 - 140		03/02/15 16:15	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<4.7		4.7	0.38	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Acenaphthylene	<4.7		4.7	0.35	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Anthracene	<4.7		4.7	0.26	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Benz(a)anthracene	<4.7		4.7	0.34	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Benzo(a)pyrene	<4.7		4.7	0.44	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Benzo(b)fluoranthene	<4.7		4.7	0.32	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Benzo(g,h,i)perylene	<4.7		4.7	0.33	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Benzo(k)fluoranthene	<4.7		4.7	0.68	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Chrysene	<4.7		4.7	0.31	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Dibenz(a,h)anthracene	<4.7		4.7	0.39	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Fluoranthene	<4.7		4.7	0.37	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Fluorene	<4.7		4.7	0.34	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Indeno(1,2,3-c,d)pyrene	<4.7		4.7	0.44	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Naphthalene	0.94	J	4.7	0.71	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Phenanthrene	<4.7		4.7	0.41	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Pyrene	<4.7		4.7	0.32	ug/L		02/27/15 14:31	02/28/15 15:23	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Nitrobenzene-d5	62		46 - 120				02/27/15 14:31	02/28/15 15:23	1	
2-Fluorobiphenyl	68		48 - 120				02/27/15 14:31	02/28/15 15:23	1	
p-Terphenyl-d14	78		67 - 150				02/27/15 14:31	02/28/15 15:23	1	

Client Sample ID: MW-0404S

Date Collected: 02/26/15 11:40 Date Received: 02/27/15 09:30

Lab Sample ID: 480-75932-9 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 16:38	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 16:38	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 16:38	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 16:38	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 16:38	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 16:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137					03/02/15 16:38	1
Toluene-d8 (Surr)	99		71 - 126					03/02/15 16:38	1
4-Bromofluorobenzene (Surr)	98		73 - 120					03/02/15 16:38	1
Dibromofluoromethane (Surr)	96		60 - 140					03/02/15 16:38	1
- Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	5)						
	- Desult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer			Unit		Fiepaieu	Analyzeu	DirFac

TestAmerica Buffalo

RL

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

47

Limits

46 - 120

48 - 120

67 - 150

MDL Unit

0.26 ug/L

0.34 ug/L

0.44 ug/L

0.32 ug/L

0.33 ug/L

0.31 ug/L

0.38 ug/L

0.34 ug/L

0.44 ug/L

0.71 ug/L

0.41 ug/L

0.32 ug/L

0.68 ug/L

0.39 ug/L

ug/L

0.36

D

Prepared

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

Prepared

02/27/15 14:31

02/27/15 14:31

02/27/15 14:31

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

<4.7

<4 7

<4.7

<4.7

0.33

<4 7

<4.7

<4.7

<4.7

<4.7

<4.7

<4.7

<4.7

<4 7

65

69

82

Qualifier

%Recovery

3.2

Client Sample ID: MW-0404S Date Collected: 02/26/15 11:40

Date Received: 02/27/15 09:30

Analyte

Acenaphthylene

Benz(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Dibenz(a,h)anthracene

Indeno(1,2,3-c,d)pyrene

Benzo(a)pyrene

Anthracene

Chrysene

Fluorene

Pyrene

Surrogate

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

Fluoranthene

Naphthalene

Phenanthrene

TestAmerica Job ID: 480-75932-1

Lab Sample ID: 480-75932-9 Matrix: Water

Analyzed

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

Analvzed

02/28/15 15:49

02/28/15 15:49

02/28/15 15:49

Client Sample ID: MW-0405S

Date Collected: 02/26/15 10:20

Date Received: 02/27/15 09:30

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 17:03	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 17:03	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 17:03	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 17:03	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 17:03	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		66 - 137			-		03/02/15 17:03	1
Toluene-d8 (Surr)	96		71 - 126					03/02/15 17:03	1
4-Bromofluorobenzene (Surr)	97		73 - 120					03/02/15 17:03	1
Dibromofluoromethane (Surr)	98		60 - 140					03/02/15 17:03	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.0	5.0	0.41	ug/L		02/27/15 14:31	02/28/15 16:15	1
Acenaphthylene	<5.0	5.0	0.38	ug/L		02/27/15 14:31	02/28/15 16:15	1
Anthracene	<5.0	5.0	0.28	ug/L		02/27/15 14:31	02/28/15 16:15	1
Benz(a)anthracene	<5.0	5.0	0.36	ug/L		02/27/15 14:31	02/28/15 16:15	1
Benzo(a)pyrene	<5.0	5.0	0.47	ug/L		02/27/15 14:31	02/28/15 16:15	1
Benzo(b)fluoranthene	0.35 J	5.0	0.34	ug/L		02/27/15 14:31	02/28/15 16:15	1
Benzo(g,h,i)perylene	<5.0	5.0	0.35	ug/L		02/27/15 14:31	02/28/15 16:15	1
Benzo(k)fluoranthene	<5.0	5.0	0.72	ug/L		02/27/15 14:31	02/28/15 16:15	1

TestAmerica Buffalo

Lab Sample ID: 480-75932-10

Matrix: Water

Client Sample ID: MW-0405S Date Collected: 02/26/15 10:20

Date Received: 02/27/15 09:30

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

75

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	<5.0		5.0	0.33	ug/L		02/27/15 14:31	02/28/15 16:15	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		02/27/15 14:31	02/28/15 16:15	1
Fluoranthene	<5.0		5.0	0.40	ug/L		02/27/15 14:31	02/28/15 16:15	1
Fluorene	<5.0		5.0	0.36	ug/L		02/27/15 14:31	02/28/15 16:15	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		02/27/15 14:31	02/28/15 16:15	1
Naphthalene	<5.0		5.0	0.75	ug/L		02/27/15 14:31	02/28/15 16:15	1
Phenanthrene	<5.0		5.0	0.44	ug/L		02/27/15 14:31	02/28/15 16:15	1
Pyrene	<5.0		5.0	0.34	ug/L		02/27/15 14:31	02/28/15 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	59		46 - 120				02/27/15 14:31	02/28/15 16:15	1
2-Fluorobiphenyl	63		48 - 120				02/27/15 14:31	02/28/15 16:15	1

67 - 150

Client Sample ID: DUP-022615

Date Collected: 02/26/15 00:00 Date Received: 02/27/15 09:30

p-Terphenyl-d14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 17:27	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 17:27	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 17:27	1
m-Xylene & p-Xylene	0.66	J	2.0	0.66	ug/L			03/02/15 17:27	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 17:27	1
Xylenes, Total	0.66	J	2.0	0.66	ug/L			03/02/15 17:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137		03/02/15 17:27	1
Toluene-d8 (Surr)	99		71 - 126		03/02/15 17:27	1
4-Bromofluorobenzene (Surr)	98		73 - 120		03/02/15 17:27	1
Dibromofluoromethane (Surr)	94		60 - 140		03/02/15 17:27	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	9.7	J	24	2.0	ug/L		02/27/15 14:31	02/28/15 16:42	5
Acenaphthylene	<24		24	1.8	ug/L		02/27/15 14:31	02/28/15 16:42	5
Anthracene	<24		24	1.4	ug/L		02/27/15 14:31	02/28/15 16:42	5
Benz(a)anthracene	1.8	J	24	1.7	ug/L		02/27/15 14:31	02/28/15 16:42	5
Benzo(a)pyrene	2.3	J	24	2.3	ug/L		02/27/15 14:31	02/28/15 16:42	5
Benzo(b)fluoranthene	2.9	J	24	1.6	ug/L		02/27/15 14:31	02/28/15 16:42	5
Benzo(g,h,i)perylene	<24		24	1.7	ug/L		02/27/15 14:31	02/28/15 16:42	5
Benzo(k)fluoranthene	<24		24	3.5	ug/L		02/27/15 14:31	02/28/15 16:42	5
Chrysene	<24		24	1.6	ug/L		02/27/15 14:31	02/28/15 16:42	5
Dibenz(a,h)anthracene	<24		24	2.0	ug/L		02/27/15 14:31	02/28/15 16:42	5
Fluoranthene	4.8	J	24	1.9	ug/L		02/27/15 14:31	02/28/15 16:42	5
Fluorene	6.3	J	24	1.7	ug/L		02/27/15 14:31	02/28/15 16:42	5
Indeno(1,2,3-c,d)pyrene	<24		24	2.3	ug/L		02/27/15 14:31	02/28/15 16:42	5
Naphthalene	<24		24	3.7	ug/L		02/27/15 14:31	02/28/15 16:42	5
Phenanthrene	<24		24	2.1	ug/L		02/27/15 14:31	02/28/15 16:42	5

TestAmerica Buffalo

TestAmerica Job ID: 480-75932-1

02/27/15 14:31 02/28/15 16:15

Lab Sample ID: 480-75932-11

Matrix: Water

Lab Sample ID: 480-75932-10 Matrix: Water

water

TestAmerica Job ID: 480-75932-1

Lab Sample ID: 480-75932-11

Lab Sample ID: 480-75932-12

Lab Sample ID: 480-75932-13

Matrix: Water

Matrix: Water

Matrix: Water

1

1

Client Sample ID: DUP-022615

Date Collected: 02/26/15 00:00 Date Received: 02/27/15 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	3.5	J	24	1.6	ug/L		02/27/15 14:31	02/28/15 16:42	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	66		46 - 120				02/27/15 14:31	02/28/15 16:42	5
2-Fluorobiphenyl	76		48 - 120				02/27/15 14:31	02/28/15 16:42	5
p-Terphenyl-d14	77		67 - 150				02/27/15 14:31	02/28/15 16:42	5

Client Sample ID: TRIP BLANK

Date Collected: 02/26/15 00:00

Date Received: 02/27/15 09:30

Method: 8260C - Volatile Organic Compounds by GC/MS Analvte Result Qualifier RL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 17:50	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 17:50	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 17:50	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 17:50	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 17:50	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 17:50	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		66 - 137	 	03/02/15 17:50	1
Toluene-d8 (Surr)	97		71 - 126		03/02/15 17:50	1
4-Bromofluorobenzene (Surr)	97		73 - 120		03/02/15 17:50	1
Dibromofluoromethane (Surr)	97		60 - 140		03/02/15 17:50	1

Client Sample ID: PMW-02

Date Collected: 02/24/15 14:20

Date Received: 02/27/15 09:30

Method: 8260C - Volatile Orga	nic Compounds	by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			03/02/15 18:14	1
Toluene	<1.0		1.0	0.51	ug/L			03/02/15 18:14	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			03/02/15 18:14	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			03/02/15 18:14	1
o-Xylene	<1.0		1.0	0.76	ug/L			03/02/15 18:14	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			03/02/15 18:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		66 - 137			-		03/02/15 18:14	1
Toluene-d8 (Surr)	98		71 - 126					03/02/15 18:14	1

, and could be a set of the set o	Quanner Ennite		riepureu	/ linuity 200	Dirruc
102	66 - 137	-		03/02/15 18:14	1
98	71 - 126			03/02/15 18:14	1
97	73 - 120			03/02/15 18:14	1
99	60 - 140			03/02/15 18:14	1
	102 98 97	102 66 - 137 98 71 - 126 97 73 - 120	102 66 - 137 98 71 - 126 97 73 - 120	102 66 - 137 98 71 - 126 97 73 - 120	102 66 - 137 03/02/15 18:14 98 71 - 126 03/02/15 18:14 97 73 - 120 03/02/15 18:14

TestAmerica Job ID: 480-75932-1

Lab Sample ID: 480-75932-14

Matrix: Water

Client Sample ID: PMW-04 Date Collected: 02/25/15 13:35

Date Received: 02/27/15 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	81		4.0	1.6	ug/L			03/02/15 18:38	4
Toluene	4.9		4.0	2.0	ug/L			03/02/15 18:38	4
Ethylbenzene	29		4.0	3.0	ug/L			03/02/15 18:38	4
m-Xylene & p-Xylene	10		8.0	2.6	ug/L			03/02/15 18:38	4
o-Xylene	11		4.0	3.0	ug/L			03/02/15 18:38	4
Xylenes, Total	21		8.0	2.6	ug/L			03/02/15 18:38	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		66 - 137			-		03/02/15 18:38	4
Toluene-d8 (Surr)	99		71 - 126					03/02/15 18:38	4
4-Bromofluorobenzene (Surr)	99		73 - 120					03/02/15 18:38	4
Dibromofluoromethane (Surr)	98		60 - 140					03/02/15 18:38	4

Client Sample ID: PMW-06

Lab Sample ID: 480-75932-15 Matrix: Water

Date Collected: 02/25/15 11:30 Date Received: 02/27/15 09:30

Analyte		Result	Quali	fior	RL	МО	Unit	D	Prepared	Analyzed	Dil Fac
									riepaieu	·	
Benzene	1200	570	E	D	1.0		ug/L			03/02/15 19:02	1
Toluene		10			1.0	0.51	ug/L			03/02/15 19:02	1
Ethylbenzene	290		E	D	1.0	0.74	ug/L			03/02/15 19:02	1
m-Xylene & p-Xylene	190	- 180	E	D	2.0	0.66	ug/L			03/02/15 19:02	1
o-Xylene		87			1.0	0.76	ug/L			03/02/15 19:02	1
Xylenes, Total	290	270	E	D	2.0	0.66	ug/L			03/02/15 19:02	1
Surrogate	9	6Recovery	Quali	fier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		98			66 - 137			-		03/02/15 19:02	1
Toluene-d8 (Surr)		98			71 - 126					03/02/15 19:02	1
4-Bromofluorobenzene (Surr)		100			73 - 120					03/02/15 19:02	1
Dibromofluoromethane (Surr)		89			60 - 140					03/02/15 19:02	1

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1200	20	8.2	ug/L			03/05/15 12:20	20
Toluene	11 J	20	10	ug/L			03/05/15 12:20	20
Ethylbenzene	290	20	15	ug/L			03/05/15 12:20	20
m-Xylene & p-Xylene	190	40	13	ug/L			03/05/15 12:20	20
o-Xylene	99	20	15	ug/L			03/05/15 12:20	20
Xylenes, Total	290	40	13	ug/L			03/05/15 12:20	20
Surrogate	%Recovery Qua	Nifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	66 - 137					03/05/15 12:20	20
Toluene-d8 (Surr)	104	71 - 126					03/05/15 12:20	20
4-Bromofluorobenzen e (Surr)	104	73 - 120					03/05/15 12:20	20
Dibromofluoromethane (Surr)	107	60 - 140					03/05/15 12:20	20

TestAmerica Buffalo

Chain of		Tomorotico on Bonoint	an Bocaint		Ē	[estAme]	ner		
Custody Record		aniberation	idianau illo i		-			480-75932 CF	480-75932 Chain of Custody
Tal. 4124 (1007)		Drinking Water?	ter? Yes□	□ oN	THE	THE LEADER IN ENVIRONMENTA	RONMENT		
Client NYSEG / ARCANTS		Project Manager	Bruce Ahrens	Ahrey			$ ^{Date} \geq / \lambda l_{0}$	115	Chain of Custody Number
Adress Adal Cliff Drive		Teleptrone Number (Area Code)/Fax Number SSS - 385 - 00 K	hone Number (Area Cod) 595 - 3555 -	de)/Fax Number つみが			Lab Number		Page of D
tate Ztp	Zip Code	Site Contact Klowe Round		Lab Contact	A.	Ar	Analysis (Attach list if more space is needed)	st if fed)	
Ar French MCP Sup	New York	Carrier/Waybill	Number	vec An I	one				Special Instructions/
Contract/Purchase Order/Quote No.			Matríx	Cont Pres	Containers & Preservatives	n Xe			Conditions of Receipt
Sample I.D. No. and Description Containers for each sample may be combined on one line)	Date	suoenp∳ `i!\	llos pəs	EONH †OSZH `seuduŋ	HOBN /SYUZ HOBN IOH	1¥] 118j			
MILLASS	3/36/5	X Zeol		q	5	ХX			
MW-45		1140			8	χX			~
MW-GS		0855		Ø	COT-	XX			MS/MSD
mu-7	21 / mele	(345			• ch	XX			-
MW-85	sulove le	0 835		¢	3	ХX			
MW-95	silmele	H00		4	3	× ×			
N.W 04025		Action of the second		ત્હ	50	X			
MW-OYOZS	2 aulis	135		୍ଦ	3	X X			
And -Oto els	3 Jave le	II 4D		6	Я	X X			
Soho-MW	2 Julis	000		cb	e	X X			
DWP-OLLONS	3 Jaul 15			¢	<i>b</i>	XX			
TRIPDIANK	[].	7							
mable 🗌 Skin Irritant	🗌 Poison B	Samt	Sample Disposal		KUN Yu By Lab	Achive For	(A) Months lon	fee may be asse ger than 1 mont	(A fee may be assessed if samples are retained longer than 1 month)
Tum Around Time Required	□ <i>21 D</i> a	Bomer Standor	and or	QC Regi	OC Requirements (Specify,	<i>(</i> A)			
11121		Date Date	Time 1521	1. Received B)	led By	2 fels	TA T	BUF	217115 0930
2. Relinquistied By		Date	Time	2. Receiv	D Jahod	0			Date
3. Relinquished By		Date	Time	3 Received By	ied By				Date Time
Comments		_		-		1 # (2.2	3.6	
DISTRIBUTION: WHITE - Returned to Client with Report. CANARY - Stays with the Sample: PINK - Field Copy	CANARY - Stays wit	h the Sample; PIN	iK - Field Copy						

3/9/2015

- ----

4

Chain of Custody Record		estAmerica	
TAL-4124 (1007)	•	THE LEADER IN ENVIRONMENTAL TESTING	
Client NYSEG/ARCA DIS	Project Manager () YULC (ALL)	Date 2/2/0/15	Chain of Custody Number 275576
190 ° °	Telephone Number (Area Code)/Fax Number S&5 - 3&5 - 00%s	Lab Number	Page 2 of 2
State	Zip Code Site Conject Lab Contact	Analysis (Attach list if more space is needed)	
Project Name and Location (State)	Vark CamerWaybill Number		Special Instructions/
e Order/Duote No.	Matrix Containers & X		Conditions of Receipt
Sample I.D. No. and Description Containers for each sample may be combined on one line)	HOBN IOH EONH FOSZH IOS IIOS IIOS Snoenby IIV Succession		
RMW-02	2/2/15 14/15 14/16 X X X		
pmm sy	X 2//s//2 X X 2//s/		
jo-mwd	3/12/12 1130 1130 1130 1130 1130 1130 1130 11		
11	- Ajaults 0555 X 9 3 X X		
A min is (men)	\Box		
1			
5			
-			
Possible Hazard Identification Mon-Hazard Elammable Skin Inflant	Poison B Refine To Olient Disposal By Lab Archite For	Months	(A fee may be assessed if samples are retained (nonset than 1 month)
e Required	Davs 21 Davs Souther Stort Cont		
ABY B. I	Date 1/6/15 1530	R. to But	Date 7/15 0930
2. Relinquished By			Date
3. Relinquished By	Date Time 3. Beceived By		Date Time
2 Comments		# - 3'S'	X
DISTRIBUTION: WHITE - Returned to Client with Repor	DISTRIBUTION: WHITE - Returned to Client with Report. CANARY - Stays with the Sample; PINK - Field Copy	·~ 1	

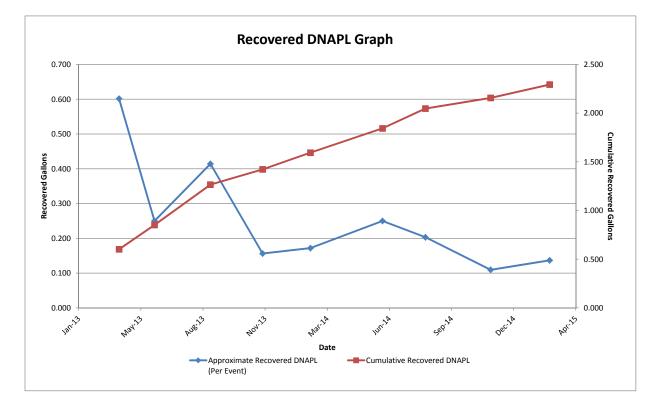
┢

4

Appendix B

DNAPL Recovery Summary

Appendix B DNAPL Recovery Summary


Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

		PMW-3			NRW-2			NMW-0402S			Totals	
Date	Recoverd DNAPL (gal)	Total (gal)	Cumulative (gal)									
4/1/2013	0		0	0.0078		0.008	0.5938		0.594	0.602		0.602
5/28/2013	0		0	0.0000		0.008	0.2500		0.844	0.250		0.852
8/26/2013		0	0	0.1875	0.242	0.195	0.2266	1.352	1.070	0.414	1.594	1.266
11/18/2013			0	0.0313		0.227	0.1250		1.195	0.156		1.422
2/3/2014			0	0.0156		0.242	0.1563		1.352	0.172		1.594
5/30/2014			0	0.0000		0.242	0.25		1.602	0.250		1.844
8/7/2014		0	0	0.109375	0.168	0.352	0.09375	0 5 2 1	1.695	0.203	0.699	2.047
11/20/2014		0	0	0.046875	0.100	0.398	0.0625	0.531	1.758	0.109	0.699	2.156
2/23/2015			0	0.01171875		0.410	0.125		1.883	0.137		2.293

Notes:

A value of zero for 'Recovered DNAPL' indicates DNAPL was observed but not recoverable.

-- for 'Recovered DNAPL' indicates DNAPL was not observed.

Appendix C

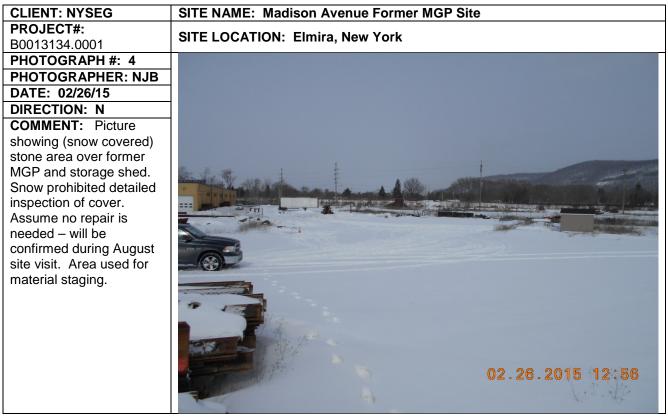
Site Inspection Form

Site Inspection Form Madison Avenue Former MGP Site - Elmira, New York

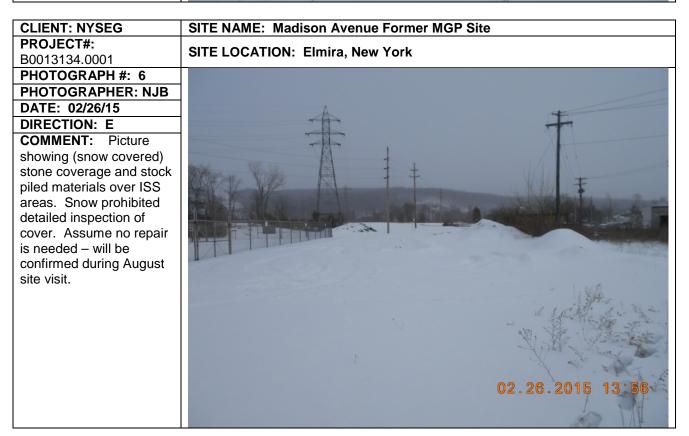
	eneral Requ	
		lition of each inspection item identified below sidered to be in poor condition is required.
General Site Conditions:		
Monitoring wells	🔀 Good	Poor*
Application wells	🖂 Good	Poor*
Performance Monitoring wells	🖄 Good	Poor*
NAPL Monitoring/Recovery wells	🔀 Good	Poor*
Cover Areas (Grass and Stone)	Good 🗌	Poor* NA, Lovered by SNOW
Signs of intrusive activities	😹 No	□ Poor* NA, tovered by SNOW □ Yes* However, covered by SNOW □ Yes* However, covered by SNOW
Enderson of Ontillement		
Evidence of Settlement ote: Cover area inspection is to determine if intro	No activities	Tes* However, covered by SNOW
ote: Cover area inspection is to determine if intro Site Cover Systems:	usive activities	may have occurred since the previous site visit
ote: -Cover area inspection is to determine if intro		
ote: Cover area inspection is to determine if intro Site Cover Systems: Borrowing/Depressions	usive activities	may have occurred since the previous site visit
ote: Cover area inspection is to determine if intro Site Cover Systems: Borrowing/Depressions Standing Water	usive activitie: ⊠ No ⊠ No	may have occurred since the previous site visit
ote: Cover area inspection is to determine if intro Site Cover Systems: Borrowing/Depressions Standing Water Missing Stone	usive activities ⊠ No ⊠ No ⊠ No ⊠ No	may have occurred since the previous site visit
ote: Cover area inspection is to determine if intro Site Cover Systems: Borrowing/Depressions Standing Water Missing Stone Vegetative Growth	usive activities	may have occurred since the previous site visit Yes* Yes* Yes* Yes* Yes*

Site Inspection Form Madison Avenue Former MGP Site - Elmira, New York

* Indicates condition should be reported to NYSEG Project Manager/OM&M Coordinator.


Appendix D

Site Inspection Photographic Logs


CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
PHOTOGRAPH #: 1	
PHOTOGRAPHER: NJB	
DATE: 02/26/15	
DIRECTION: SE	
COMMENT: Picture	
showing (snow covered)	
stone parking area over	T
former manufactured gas	¥1 4
plant (MGP) area. Snow	and a start of the second seco
prohibited detailed	Later and the second se
inspection of cover.	
Assume no repair is needed – will be confirmed	
during August site visit.	
	the second s
	STATE - SHARE WINNER WINNER
	02.26.2015 12:53

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
PHOTOGRAPH #: 2	
PHOTOGRAPHER: NJB	
DATE: 02/26/15	
DIRECTION: E	
COMMENT: Picture showing (snow covered) stone parking area over former MGP. Snow prohibited detailed inspection of cover. Assume no repair is needed – will be confirmed during August site visit.	D2.26.2015 12:54

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	SITE LOCATION. Emilia, New YOR
PHOTOGRAPH #: 3	
PHOTOGRAPHER: NJB	
DATE: 02/26/15	
DIRECTION: NW	
COMMENT: Picture showing (snow covered) stone parking area over former MGP. Snow prohibited detailed inspection of cover. Assume no repair is needed – will be confirmed during August site visit. Area currently used for material staging.	

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	SITE LOCATION. Emilia, New TOTK
PHOTOGRAPH #: 5	
PHOTOGRAPHER: NJB	
DATE: 02/26/15	
DIRECTION: NE	
COMMENT: Picture	
showing (snow covered)	
stone and vegetation	
coverage over PCB IRM	
removal areas (1997) and	
purifier waste removal	
area (2011). Snow prohibited detailed	
inspection of cover.	
Assume no repair is	
needed – will be	
confirmed during August	
site visit. Area used for	MALE V
material staging.	
	5
	All I
	02.26.2015 12:56
	where the second states and
	and the second sec

APPENDIX D SITE INSPECTION PHOTOGRAPH LOG

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	SHE LOCATION. Ellilla, New Tork
PHOTOGRAPH #: 7	
PHOTOGRAPHER: NJB	
DATE: 02/26/15	
DIRECTION: SW	
COMMENT: Picture showing (snow covered) grass area and stone coverage over ISS area, purifier waste IRM removal area (2004) and purifier waste removal area (2011). Snow prohibited detailed inspection of cover. Assume no repair is needed – will be confirmed during August site visit.	Ø Ø

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
PHOTOGRAPH #: 8	
PHOTOGRAPHER: NJB	
DATE: 02/26/15	
DIRECTION: WSW	
COMMENT: Picture	
showing treatment	
system area. Snow	
prohibited detailed	
inspection of cover.	
Assume no repair is	
needed – will be	
confirmed during August	
site visit.	
	A CARLER AND A CARLE
	the set of the set of the set of the set
	and the second sec
	and the second
	02.26.2015 14:43
	the second and the se

Appendix E

Photographic Logs of Well Conditions

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-1S	i the setter
PHOTOGRAPHER: NJB	X Land in the All All All All All All All All All Al
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph	
showing MW-1S. Well is	Nuclei 2 Martin
in good condition with cap	NISEG 20316 Nistigen Asia
and competent cover.	
	/IN-OI
	and the second second
	7
	02.23.2015 12:00

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-1D	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph	
showing MW-1D. Well is	
in good condition with cap	
and competent cover.	NBEG 2.23.15
	Medison Auc
	Illusian and a second sec
	NIN-OID
	02.23.2015 12:00
	14 C 3 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C

SITE NAME: Madison Avenue Former MGP Site
SITE LOCATION: Elmira, New York
NYSF: 2.23.15 Madisson Aue MW-25

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-4S	
PHOTOGRAPHER: NJB	A REAL PROPERTY AND A REAL
DATE: 02/23/15	New 20315
DIRECTION: NA	WD
COMMENT: Photograph	Medison Ave
showing MW-4S. Well is	MW LICE
in good condition with	11W-45
locking cap and	
competent cover. Surface	
completion was replaced	A MARKEN AND A MARKEN
August 2014.	
	and the second states
	02.23.2015 12:51

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-6S	
PHOTOGRAPHER: NJB	A DE LA DE L
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph showing MW-6S. Well is in good condition with locking cap and competent cover. Locking cap was installed August 2014.	NBSF 2.23.15 Mederson Aue MW-CS 02.23.2015 12:17

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : MW-7 PHOTOGRAPHER: NJB DATE: 02/23/15 DIRECTION: NA COMMENT: Photograph showing MW-7. Well is in good condition. Well has well plug and locking well cover.	KEG 2.23 /5 Nick sout Aue Or 2.28. 2015 13:24

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-8S	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph	
of MW-8S. Well is in good	NYSEC 2.23.15
condition with locking well	Medison Ave
cap and competent cover.	
	MW-85
	F A Standard Standa
	102 22 2015 15 0A

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-8D	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph	2.23.15
showing MW-8D. Well is	NYSEG Misdisson Aue
in good condition with locking well cap and	Medison Huc
competent cover.	
	MN-8D
	Manager and Manager and Manager and
	22 2015 15 02
	2.23.2013,10.04

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : MW-9S	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	NBEG 2.23.15
DIRECTION: NA	Medison Ave
COMMENT: Photograph showing MW-9S. Well is in good condition with locking well cap and competent cover. Surface completion was replaced August 2014.	1W-95 100-00-00-00-00-00-00-00-00-00-00-00-00-

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-9D	
PHOTOGRAPHER: NJB	NIXEE 2.23.15
DATE: 02/23/15	NDEG
DIRECTION: NA	Medison Ave
COMMENT: Photograph	
showing MW-9D. Well is	MW-GD
in good condition with	
locking well cap and	A Start Start
competent cover. Surface	
completion was replaced	
August 2014.	
	A AND A AND A A A A A A A A A A A A A A
	02.23.2015 14:49

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-0304D	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	NYSF 2.23.15
DIRECTION: NA	
COMMENT: Photograph	Madison Ave
showing MW-0304D. Well	
is in good condition with	MW-02040
well and competent cover.	Pitt Opp to
	Ap 11 P
	02.23.2015 12:48
	and the second sec

APPENDIX E WELL INSPECTION PHOTOGRAPH LOG

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-0402S	
PHOTOGRAPHER: NJB	NYEE 2.23.15
DATE: 02/23/15	NDEC
DIRECTION: NA	Madison Ave
COMMENT: Photograph	Liney, 20 Martin
showing MW-0402S.	
Well is in good condition	MW-04025
with locking well plug and	
competent cover.	
	A TANK CONTRACTOR OF THE OWNER OF
	a star water and the star and the
	The states a state of the state
	02.23.2015 14:13
	02.2010 14.10

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-0403S	
PHOTOGRAPHER: NJB	A MARTIN DAVE
DATE: 02/23/15	NYSEG 2.23.15
DIRECTION: NA	Medison Auc
COMMENT: Photograph	The set of the second s
showing MW-0403S. Well	MN-0403S
is in good condition with	This was the second
locking well plug and	
competent cover.	
	Constant of the second s
	02.23 2015 14:02

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : MW-0404S	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph showing MW-0404S. Well is in good condition with locking well plug and competent cover.	Мове с 2.3.5 Миноско ц с 2.3.2015
	02 23 2015 13 46

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : MW-0404D	the second s
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph of MW-0404D. Well is in good condition with locking	NISEG 2-23.15 Middrson Aue
well plug and competent cover.	Mul-OHO UD
	02/03/20195/13/49

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : MW-0405S	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	NISEG 235
COMMENT: Photograph of MW-0405S. Well is in good condition with locking well plug and competent	Medison Aue MINI 04055
cover. Surrounding	
concrete flags are cracked, but road box is secure.	
	02.23.2015 13:34

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-1	
PHOTOGRAPHER: NJB	
DATE: 02/25/15	
DIRECTION: NA	23573
COMMENT: Photograph showing AW-1. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	02.25.2015 14:13

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	a second a s
WELL ID : AW-2	
PHOTOGRAPHER: NJB	and of the second se
DATE: 02/25/15	
DIRECTION: NA	A LAND HAR A COLOR A
COMMENT: Photograph showing AW-2. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover. Surface completion was replaced August 2014.	Richard Aur Au - a Au - a D D D D D D D D D D D D D D D D D D D

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	SITE LOCATION. Emilia, New TOTK
WELL ID : AW-3	
PHOTOGRAPHER: NJB	NYSEG 22515
DATE: 02/25/15	Makson Aur
DIRECTION: NA	AW-3
COMMENT: Photograph showing AW-3. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : AW-4	
PHOTOGRAPHER: NJB	
DATE: 02/25/15	
DIRECTION: NA	235.15
COMMENT: Photograph showing AW- 4. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	WYSEG Modssow Avr AW- 41 02.25.2015 14:09

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	SHE LOCATION. Elitina, New York
WELL ID : AW-5	
PHOTOGRAPHER: NJB	
DATE: 02/25/15	
DIRECTION: NA	
COMMENT: Photograph showing AW-5. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	NSE AU-5 O2-25-2015 14:09

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : AW-6	MAR AND
PHOTOGRAPHER: NJB	
DATE: 02/25/15	The second se
DIRECTION: NA	
COMMENT: Photograph showing AW-6. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	Wyses Wardson Aur AW-G O2.25.2015 14:08

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-7	
PHOTOGRAPHER: NJB	and a second
DATE: 02/24/15	B MAY
DIRECTION: NA	Sal Print And And
COMMENT: Photograph showing AW-7. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	NISEG 1 Jursen Aur Aur

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : AW-8	
PHOTOGRAPHER: NJB	
DATE: 02/24/15	
DIRECTION: NA	
COMMENT: Photograph showing AW-8. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent	NIKE C 224/5
cover.	NYSEG 2.24.15 Isdison Aue AW-8
	02.24.2015 15:19

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-9	
PHOTOGRAPHER: NJB	
DATE: 02/24/15	
DIRECTION: NA	ALL
COMMENT: Photograph showing AW-9. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	NYSEG 22975 Vedrson Auc AW - 9
	02.24.2015 15:18

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : AW-10	A LAND AND A LAND A LAND
PHOTOGRAPHER: NJB	
DATE: 02/24/15	
DIRECTION: NA	274/5
COMMENT: Photograph	d.d.I.
showing AW-10. Well	NYSEG Misduson Ave
and stainless steel	-Isdissin In
canister/assembly is in	10 Aul-10
good condition. Well has well plug and competent	/100 1 0. All of the life of the
cover.	
	The second se
	CLASS / CLASS
	02.24.2015 15:18

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-11	the state of the s
PHOTOGRAPHER: NJB	
DATE: 02/24/15	
DIRECTION: NA	The
COMMENT: Photograph	774
showing AW-11. Well	4 NYSEG 2.24.15
and stainless steel	"Edison Ave
canister/assembly is in	XO KIL
good condition. Well has	AW-11 AW-11
well plug and competent	
cover. Well cover was	
replaced August 2014.	
	+ the second sec
	X 1. The second s
	02.24.2015 15:18

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-12	
PHOTOGRAPHER: NJB	
DATE: 02/24/15	
DIRECTION: NA	2.2775
COMMENT: Photograph	NYSEG Isdison Aue
showing AW-12. Well	solison have been and the solison and the soli
and stainless steel	Aw-12
canister/assembly is in	Awid
good condition. Well has	
well plug and competent	
cover.	
	02.24.2015 15:17
	and the second sec

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-13	
PHOTOGRAPHER: NJB	
DATE: 02/24/15	
DIRECTION: NA	
COMMENT: Photograph showing AW-13. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	NISE G Isdusson Aue AW - 13 02 24 2015 15:17

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : AW-14	the second se
PHOTOGRAPHER: NJB	
DATE: 02/24/15	
DIRECTION: NA	
COMMENT: Photograph	NYSEG 2.27/5
showing AW-14. Well	Tedrson Auc
and stainless steel	Aw-14
canister/assembly is in	
good condition. Well has well plug and competent	
cover.	
	02.24.2015 15 15
	UZ. 24. 2019 10-13

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : AW-15	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph showing AW-15. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	NISEG Au Niskissi Au Oz. 23. 2015. 17: 40

ARCADIS

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-16	
PHOTOGRAPHER: NJB	2100
DATE: 02/23/15	NWE 2.33.15
DIRECTION: NA	NDEC
COMMENT: Photograph	NYSEG 2.23.15 Medison Ave AW-16
showing AW-16. Well	
and stainless steel	ALL A
canister/assembly is in	FW-10
good condition. Well has	
well plug and competent	
cover.	
	02.23.2015 17:35

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-17	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	
COMMENT: Photograph showing AW-17. Well and stainless steel canister/assembly is in good condition. Well has well plug and competent cover.	NSEG 2-315 Nedeson Aue De 2-23-25 Nedeson Aue De 2-23-2015 17:28

APPENDIX E WELL INSPECTION PHOTOGRAPH LOG

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-18	
PHOTOGRAPHER: NJB	2.32.15
DATE: 02/23/15	Lifes
DIRECTION: NA	NYSEG
COMMENT: Photograph	NYSEG Modison Ave
showing AW-18. Well	A Start A Star
and stainless steel	
canister/assembly is in	
good condition. Well has	
well plug and competent cover.	
60761.	
	02.23.2015 17:26

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : AW-19	
PHOTOGRAPHER: NJB	2.23.15
DATE: 02/23/15	L. D. S
DIRECTION: NA	NISEG
COMMENT: Photograph	MEDISON AUC
showing AW-19. Well	hiteor 2.
and stainless steel	1. 1. [4]
canister/assembly is in	
good condition. Well has	
well plug and competent	
cover.	
	02.23.2015 17:15

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : PMW-1	
PHOTOGRAPHER: NJB	
DATE: 02/25/15	
DIRECTION: NA	
COMMENT: Photograph	NYSEG RANS
showing PMW-1. Well is in	Madson Sint
good condition with well plug and competent cover.	A A A A A A A A A A A A A A A A A A A
plug and competent cover.	
	VZ.20.2015 14.12

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : PMW-2	
PHOTOGRAPHER: NJB	
DATE: 02/25/15	NYSEG 22575
DIRECTION: NA	Madson Aur
COMMENT: Photograph	PIMU-2
showing PMW-2. Well is	
in good condition with well	
plug and competent cover.	
Surface completion was	
replaced August 2014.	The second se
	A REAL PROPERTY OF A REAL PROPERTY AND A REAL
	02.25.2015 14:11
	02.20.2013 14.11

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : PMW-3	
PHOTOGRAPHER: NJB	
DATE: 02/25/15	
DIRECTION: NA	NYSEG AJ515
COMMENT: Photograph showing PMW-3. Well is in good condition with well plug and competent cover.	DUW-3 DUW-3 D2.25.2015 14:18

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : PMW-4	
PHOTOGRAPHER: NJB	
DATE: 02/25/15	THE TRUE TO A LAND TO
DIRECTION: NA	
COMMENT: Photograph showing PMW-4. Well is in good condition with well plug and competent cover.	VYSEG RUSS Madson' Aur PILIU - 4 02 25 2015 17 08

APPENDIX E WELL INSPECTION PHOTOGRAPH LOG

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001 WELL ID : PMW-5	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	NYSEG 2.33.15
DIRECTION: NA	Medison Ave
COMMENT: Photograph	earson Auc
showing PMW-5. Well is	PMIN-5
in good condition with	I TUN O
well plug and competent	
cover.	
	02.23.2015 17:55
	at dates have

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	OTE ECOATION. Emina, New York
WELL ID : PMW-6	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	
DIRECTION: NA	NYSEC 2.33.15
COMMENT: Photograph	NDEG T
showing PMW-6. Well is	Todison Auc
in good condition with	
well plug and competent	PMU-6
cover.	
	02 23 2015 17 52

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : NRW-1	
PHOTOGRAPHER: NJB	
DATE: 02/23/15	A LANT SHE
DIRECTION: NA	de la
COMMENT:	NBEG 22315
Photograph showing	Niedrschil Ave
NRW-1. Well is in good	NRW-CI
condition with well plug	
and competent cover. Riser height was lowered	
August 2014 to allow	
room for the locking cap.	
reen for the locking cap.	
	02.23.2015 13:10

ARCADIS

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#: B0013134.0001	SITE LOCATION: Elmira, New York
WELL ID : NRW-4	
PHOTOGRAPHER: NJB	The hard and the the the
DATE: 02/25/15	
DIRECTION: NA	
COMMENT: Photograph	
showing NRW-4. Well is	
in good condition with well plug and competent	
cover.	
	NYSEG 22515
	Madson Aur
	N'RW-H
	A CONT
	A star in the second starting of the second s
	02 25.2015 14:16

ARCADIS

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID : NMW-0402S	
PHOTOGRAPHER: NJB	
DATE: 02/25/15	and the second
DIRECTION: NA	
COMMENT: Photograph	NYSEG 22515
showing NMW-0402S. Well	Madison Aur
is in good condition with	NMW-0402S
well plug and competent	
cover.	
	A A MARCEL AND A REAL AND A
	02.25.2015 14:22
	VELEVILUIU IVILL

Appendix F

Certification Statement

Appendix F Certification Statement

Based on information provided to NYSEG, NYSEG verifies that the site engineering controls described in the ROD (NYSDEC 2008) were in place during the reporting period, and has no knowledge that changes have occurred at the Madison Avenue Former MGP Site that would impair the ability of the engineering controls to protect public health and the environment, or constitute a violation or failure to comply with the operation and maintenance plan described in the *Site Management Plan*.

During the reporting period, NYSDEC, NYSEG and the City of Elmira have worked to define and are working to establish Institutional Controls at the Site that would further protect public health and safety.

Ushantin

John J. Ruspantini, CHMM, PMP NYSEG, Manager – Programs/Projects

Imagine the result

c:\users\jhaynes\appdata\local\microsoft\windows\temporary internet files\content.outlook\ecwsq9ll\appendix f.doc