

NYSEG

ANNUAL PERIODIC REVIEW REPORT (Q21 THROUGH Q24)

Madison Avenue Former MGP Site Elmira, New York NYSDEC Site Number: 808018

April 2019

ANNUAL PERIODIC REVIEW REPORT (Q21 THROUGH Q24)

Nicholas (Klaus) Beyrle Project Geologist

Bruce W. ahrens

Micholas (Wan) Baych

Bruce W. Ahrens Associate Vice President

Jason Brien, P.E. Principal Engineer Prepared for:

NYSEG

18 Link Drive

Binghamton, New York 13904

Prepared by:

Arcadis of New York, Inc.

295 Woodcliff Drive

Third Floor

Suite 301

Fairport

New York 14450

Tel 585 385 0090

Fax 585 385 4198

Our Ref.:

B0013134.0007

Date:

April 2019

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Ac	ronyms and	Abbreviations	iii
1	Introductio	on	4
	1.1 Back	ground	4
	1.2 Object	ctives	5
2	Performan	ce Monitoring	7
3	Effectivene	ess Monitoring	8
	3.1 Groui	ndwater Movement	8
	3.2 Groui	ndwater Quality	8
	3.2.1	Dissolved BTEX	9
	3.2.2	Dissolved PAH COCs	9
4	NAPL Mor	nitoring Results	11
5	Treatment	System Operation and Maintenance	12
	5.1 Treat	ment System Maintenance	12
	5.1.1	Monitoring Wells	13
	5.1.2	Application Wells	13
	5.1.3	Performance Monitoring Wells	14
	5.1.4	NAPL Recovery Wells	14
	5.2 Susp	ension of Oxygen-Releasing Material	14
	5.3 Annu	al Site Inspection	14
6	Disturband	ce Activities in Potentially Impacted Areas	16
7	Conclusion	ns and Recommendations	17
	7.1 Conc	lusions	17
	7.1.1	Effectiveness Monitoring	17
	7.1.2	NAPL Monitoring	17
	7.1.3	Treatment System O&M	18
	7.2 Reco	mmendations	18
	7.2.1	Treatment System O&M	18
	7.2.2	Effectiveness Monitoring	18
	7.2.3	NAPL Monitoring	18

Annual Periodic Review Report (Q21 through Q24)

	7.2.4	Reporting	.18
8	Certification	n Statement	.19
9	References		.20

TABLES

- Table 1. Monitoring, Gauging, and Operation & Maintenance Schedule
- Table 2. Gauging Data
- Table 3. Groundwater Analytical Data

FIGURES

- Figure 1. Site Location Map
- Figure 2. Site Map
- Figure 3. Water Table Map August 13, 2018
- Figure 4. Water Table Map February 19, 2019
- Figure 5. Total BTEX Concentrations in Groundwater
- Figure 6. Concentrations of PAH COCs in Groundwater
- Figure 7. Photograph Orientation Figure

APPENDICES

- A Data Usability Study Reports
- B DNAPL Recovery Summary Table and Graph
- C Site Inspection Form
- D Site Inspection Photographic Log
- E Well Inspection Photographic Log
- F NYSEG Certification Statement

ACRONYMS AND ABBREVIATIONS

AW Application Well

BDL below detection limits

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, xylene

COC Compound of Concern

cy cubic yard

DNAPL dense non-aqueous phase liquid

DUSR data usability summary report

GV guidance value

ISS in-situ soil stabilization

MGP manufactured gas plant

O&M operation and maintenance

NAPL non-aqueous phase liquid

NYSDEC New York State Department of Environmental Conservation

PAH polycyclic aromatic hydrocarbon

PMW performance monitoring well

PRR Periodic Review Report

ROD Record of Decision

sf square feet

SMP Site Management Plan

ug/L micrograms per liter

USEPA United States Environmental Protection Agency

VOCs volatile organic compounds

1 INTRODUCTION

This Annual Periodic Review Report (Q21 through Q24) (Annual PRR) summarizes monitoring results collected and operation and maintenance (O&M) activities conducted during the sixth year of operation of the New York State Department of Environmental Conservation- (NYSDEC-) selected remedy for the Madison Avenue former manufactured gas plant (MGP) site. The former MGP site is located in the City of Elmira, Chemung County, New York (**Figure 1**). The site is approximately 6 acres in size and occupies most of the city block bounded by East Clinton Street, Madison Avenue and East Fifth Street (**Figure 2**). This report includes the monitoring results obtained and maintenance activities performed during the May 2018 (Q21 quarterly site visit) through February 2019 (Q24 annual site visit).

Recommendations based on evaluation of data collected during the reporting period are also included. Verification from NYSEG that site controls were in place and effective, and that no changes have occurred at the site that would impair the ability of the controls to protect public health and the environment, is included as an appendix.

1.1 Background

The NYSDEC-selected soil and groundwater remedies for the site are presented in the *Record of Decision* (NYSDEC, 2008) (ROD). The soil remedy for the site was completed in January 2012; remedial components associated with the groundwater treatment and non-aqueous phase liquid (NAPL) recovery systems were subsequently installed in October 2012.

In general, the soil remedy consisted of:

- Excavation of approximately 9,820 tons of soil/fill containing visual evidence of heavy MGP-related impacts from three areas of the site at depths up to 15 feet below ground surface (bgs).
- In-situ soil stabilization (ISS) of approximately 7,811 cubic yards (cy) of soil exhibiting visual evidence of heavy MGP-related impacts at depths up to 28 feet bgs in 10 discrete areas of the site.
- Excavation and removal of an oil/tar separator.

In addition, a shallow area (approximately 6,250 square feet [sf]) containing purifier waste that was observed on the eastern portion of the site during excavation of a test pit was removed, along with an abandoned electrical line encased in concrete and an abandoned section of railroad.

The groundwater remedy consisted of increasing the oxygen content of groundwater in the southwest corner of the site to enhance natural biodegradation of MGP-related compounds of concern (COCs) to mitigate their migration beyond the site boundary. The ROD identifies the following COCs for groundwater:

- Four (4) volatile organic compounds (VOCs) that includes benzene, toluene, ethylbenzene, and xylene (BTEX).
- Six (6) polycyclic aromatic hydrocarbons (PAHs), including benzo(a)anthracene, benzo(b) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, benzo(k)fluoranthene, and chrysene.

The technology of enhancing the population of naturally occurring indigenous bacteria targets the single-ringed, less complex, more mobile BTEX compounds rather than the multi-ringed, complex PAH compounds; however, PAHs (particularly the six identified as COCs) are also considered when evaluating the groundwater remedy.

From May 2013 to August 2018, oxygen-enhancement of groundwater was accomplished through application of oxygen releasing compounds (i.e., oxygen-releasing socks) deployed in 19 4-inch diameter Application Wells (AWs). Treatment system performance was measured using three Performance Monitoring Wells (PMWs) located hydraulically upgradient from the AWs and three located hydraulically downgradient.

NAPL monitoring and passive removal is also a component of the site remedy. The NAPL collection network during the first 5-years of operation consisted of five NAPL collection wells (NRW-1 through NRW-4, and NMW-0402S), along with AW-17.

Based on site data collected over the initial 5-year monitoring period, the fifth Annual PRR (Arcadis 2018) recommended:

- Suspending the application of oxygen-releasing material (and the associated performance monitoring tasks) for a 5-year period.
- Eliminating collection of groundwater samples from four monitoring wells (MW-2S, MW-7, MW-0402S, and MW-0403S) from the effectiveness monitoring program.
- Eliminating quarterly gauging at three NAPL monitoring wells (NRW-1, NRW-3, and NRW-4).

The NYSDEC concurred with these recommendations in an email correspondence dated July 26, 2018. An addendum letter dated August 13, 2018 was sent to the NYSDEC and added to the *Site Management Plan* (ARCADIS, 2014) (SMP) to document the revisions These modifications to the scope of work were implemented during the August 2018 (Q22) site visit.

Locations of all site wells, including the groundwater treatment wells, monitoring wells, and NAPL collection wells are shown on **Figure 2**. Soil boring and well construction logs are included in the SMP.

1.2 Objectives

As stated in the addended SMP, the objectives of this Annual PRR are to:

- Present and evaluate site-wide data collected during the monitoring period (i.e., Q21 through Q24).
- Present conclusions indicating whether the treatment system objectives, as defined in the ROD and SMP (including NYSDEC-approved modifications), and presented herein, are being achieved.
- Present recommendations for modifications to the treatment system and/or monitoring requirements based on the evaluation of site data.

As required by the addended SMP, during this reporting period:

Effectiveness monitoring was conducted semi-annually.

Annual Periodic Review Report (Q21 through Q24)

- NAPL gauging, and removal if required, was performed on a quarterly basis from NRW-2, NMW-0402S, and AW-17; gauging of NRW-1, NRW-3, and NRW-4 was performed during semi-annual site visits.
- Well inspections and a site inspection were conducted annually.

A summary of monitoring and O&M tasks completed, along with associated dates tasks were conducted, is presented in **Table 1**.

2 PERFORMANCE MONITORING

Performance monitoring is the assessment of physical and chemical parameters of the treatment system to determine if the remedy is performing as designed.

As stated above, based on site data collected over the initial 5-year monitoring period (May 2013 to February 2018), the NYSDEC approved suspending application of oxygen-releasing material and the associated performance monitoring tasks for a 5-year period; therefore, no performance monitoring was conducted during the reporting period.

3 EFFECTIVENESS MONITORING

Effectiveness monitoring is the periodic chemical and physical analysis of a media (e.g., groundwater) to determine if the remedial action objectives are being achieved.

As presented in the addended SMP, the objectives of effectiveness monitoring are to:

- Assess groundwater movement patterns at the site using water-level data.
- Document concentrations of dissolved BTEX downgradient from the treatment area.
- Document dissolved COC (BTEX and six PAHs) concentration trends across the site.

Effectiveness monitoring for the sixth year of system operation consisted of:

- Semi-annual (Q22 and Q24) gauging of 17 MWs.
- Semi-annual (Q22 and Q24) sampling of groundwater from 6 monitoring wells for laboratory analysis of BTEX and PAHs.

The results from the effectiveness monitoring are presented below.

3.1 Groundwater Movement

Water-level data were collected during the Q22 and Q24 site visits from 17 monitoring wells (MW-1S, MW-1D, MW-2S, MW-2D, MW-4S, MW-6S, MW-7, MW-8S, MW-8D, MW-9S, MW-9D, MW-0304D, MW-0402S, MW-0403S, MW-0404S, MW-0404D, and MW-0405S).

Table 2 presents a summary of the water elevation data collected from the initial Q1 (i.e., baseline) sampling event (April 2013) through the Q24 sampling event.

Figure 3 and **Figure 4** present water table maps developed from the Q22 and Q24 gauging events, respectively. As shown on the figures, the general groundwater flow direction at the site is to the south during both gauging events. When comparing water table maps between the two gauging events, no significant differences are observed, indicating that no significant changes to site-wide groundwater flow direction occurred during the reporting period. Additionally, site-wide groundwater flow directions during this reporting period were very similar to the previous reporting periods (i.e., Baseline event through Q20). Depths to groundwater ranged between approximately 5.0 to 10.5 feet bgs across the site during the reporting period.

3.2 Groundwater Quality

An ongoing program of groundwater monitoring has been in place at the site since 1985. As reported in the *Supplemental Remedial Investigation Report* (ARCADIS, 2007), results from quantitative trend analysis using available data from 1985 to 2004 concluded that constituent plumes appeared to be shrinking over time due to a variety of naturally occurring processes.

During both the Q22 and Q24 sampling events, groundwater from the 6 monitoring wells identified in the addended SMP (MW-4S, MW-6S, MW-9S, MW-9404S, and MW-0405S) was collected for

laboratory analysis of BTEX by United States Environmental Protection Agency (USEPA) SW-846 Method 8260 and PAHs by USEPA SW-846 Method 8270. Analytical results are summarized in **Table 3**. For comparison purposes, historical groundwater results collected in April 2004 and the Q1 through Q20 results are also included in the table.

Laboratory data packages from each of the sampling events during this period were reviewed by an individual approved to validate data in New York State, and *Data Usability Summary Reports* (DUSRs) were prepared. Data review indicated that overall laboratory performance was acceptable, and that overall data quality was within guidelines specified in the respective methods. A compact disc containing copies of the DUSRs is included as **Appendix A**.

Discussions of laboratory results for BTEX and PAHs are presented below.

3.2.1 Dissolved BTEX

Total BTEX concentrations in groundwater collected from the six MWs during both the Q22 and Q24 reporting period were all below detection limits (BDL). Results for dissolved BTEX from this sixth year of groundwater sampling are consistent with data reported since the 2004 sampling event.

Laboratory data for dissolved BTEX are presented in **Table 3**; dissolved total BTEX data are presented on **Figure 5**. Historical sampling data from 2004 and data collected during the previous five years of treatment system operation are also presented in **Table 3** and shown on **Figure 5**.

3.2.2 Dissolved PAH COCs

Laboratory data for dissolved PAHs are also presented in **Table 3**; data for the 6 PAH COCs are presented on **Figure 6**. Historical COC sampling data from 2004 and data collected during the first five years of treatment system operation are also presented in **Table 3** and shown on **Figure 6**.

Results from groundwater collected from the 6 MWs during the reporting period are summarized below.

Q22 Sampling:

- PAH COCs were not detected above method detection limits from any of the six MWs sampled.
- One (1) non-COC PAH analyte (acenaphthene) was detected in groundwater from 1 of the 6
 monitoring wells sampled (MW-8S). Acenaphthene was detected at an estimated concentration of 2.1
 micrograms per liter (ug/L), well below its New York State (NYS) groundwater guidance value (GV) of
 20 ug/L. Concentrations of non-COC PAHs have consistently decreased during the February
 sampling events since the Q8 (February 2015) sampling event.
- Groundwater from MW-9S (located north/hydraulically upgradient of the Trayer Products building) did not have any detections of either COC or non-COC PAHs (consistent with previous sampling events).
- Neither COC nor non-COC PAHs were detected in either of the hydraulically downgradient monitoring wells (MW-0402S, MW-0405S) located south of the site (and south of the Trayer Products facility.

Q24 Sampling:

PAH COCs were not detected above method detection limits from any of the 6 MWs sampled.

Annual Periodic Review Report (Q21 through Q24)

- Non-COC PAHs were only detected in groundwater from 1 of the 6 monitoring wells sampled (MW-8S). Five non-COC PAHs were detected at MW-8S; each were detected at concentrations below their respective NYS groundwater GVs.
- Groundwater from MW-9S (located north/hydraulically upgradient of the Trayer Products building) did
 not have any detections of either COC or non-COC PAHs (consistent with previous sampling events).
- Similar to historical sampling events since 2015, neither COC or non-COC PAHs were detected in either of the hydraulically downgradient monitoring wells (MW-0404S and MW-0405S) located south of the site.

4 NAPL MONITORING RESULTS

Consistent with the addended SMP, NAPL gauging was conducted quarterly during the sixth year of monitoring. NAPL monitoring included two NAPL recovery wells (NRW-2 and NMW-0402S) and application well AW-17. The objectives of the NAPL monitoring task were to identify whether NAPL had accumulated within a well, and to remove it if present and recoverable. Locations of the wells are shown on **Figure 2**. A summary of the NAPL gauging data is included in **Table 2**.

DNAPL was present in each of the three wells during the reporting period:

- At NMW-0402S, DNAPL was present during each of the 4 gauging events ranging from 0.39 feet to 0.8 feet in apparent thickness.
- At NRW-02, DNAPL was present during three of the four gauging events ranging from 0.4 feet to 2 feet in apparent thickness.
- At AW-17, approximately 1.5 feet of DNAPL was present during the Q21 visit (May 2018), with only blebs present during the subsequent three visits.

Since the Baseline event in 2013, a total of approximately 4.5 gallons of DNAPL has been manually removed using a bailer. The approximate amount of NAPL removed by year includes:

- Year 1 (Q1 Q4): approximately 1.6 gallons
- Year 2 (Q5 Q8): approximately 0.7 gallons
- Year 3 (Q9 Q12): approximately 0.5 gallons
- Year 4 (Q13 Q16): approximately 0.5 gallons
- Year 5 (Q17 Q20): approximately 0.5 gallons
- Year 6 (Q21 Q24): approximately 0.7 gallons

As shown on the summary table and graph in **Appendix B**, the quantity of DNAPL recovered each year has been consistent over the past 4 to 5 years.

Recovered DNAPL was containerized and staged in the on-site shed for disposal by NYSEG.

5 TREATMENT SYSTEM OPERATION AND MAINTENANCE

NYSEG is responsible for maintaining any aspect of the site that is associated with remediation activities for the former MGP facility.

5.1 Treatment System Maintenance

The site remedy does not rely on any mechanical systems to protect public health or the environment. However, the addended SMP describes measures necessary to perform routine maintenance on the site cover materials, along with monitoring and treatment system components (i.e., well network).

Scheduled operation and maintenance activities described in the addended SMP and completed during the reporting period included the following:

- Routine well maintenance (e.g., replacing missing or broken locks, locking gripper caps, etc.).
- Removal of the oxygen-releasing socks and stainless steel containers from the application wells.
- Annual site inspection.

Additional maintenance recommendations that were included in the 5th Annual PRR (*Annual Periodic Review Report, Q17 through Q20*), and completed during the reporting period included:

- Verifying the depth to bottom of MW-2S. A Borescope was used during the Q22 site visit to determine
 if an obstruction existed near the bottom of MW-2S. Use of the Borescope was unsuccessful;
 sediment from within the well was manually removed using a bailer.
- Sediment removal from MW-2D and MW-7. Sediments were manually removed from MW-2D and MW-7 during the Q22 site visit using a bailer.
- Resurveying the top of casing of MW-2S. A surveying subcontractor (Keystone Associates Architects, Engineers and Surveyors, LLC) was hired to re-survey the top of casing elevation of MW-2S during the Q24 site visit.
- Replacing the road box lid at MW-0404S. The bolt holes for road box lid were re-tapped and the lid
 was replaced and secured during the Q24 site visit.

In addition, based on observed deficiencies during site visits, the following additional maintenance tasks were completed:

• Risers were cut down at PMW-01, PMW-03, and PMW-04. Due to heaving of the wells and/or sinking of the road boxes, the lids on the road boxes for each of the three PMWs could not be properly secured. To preserve the integrity of the well, the 2-inch riser was cut down within the road box, and the top of casings were re-surveyed along with MW-2S during the Q24 site visit. Note that these repairs were completed towards the end of the site visit, after gauging of the site wells were completed; therefore, the top of casing elevations presented in Table 2 did not require revision for this report – the revised top of casing elevations will be reflected in the next gauging event.

 Replaced cover bolts and washers at MW-8S. To secure the road box cover, the cover bolts and washers were replaced during the Q22 visit.

Visual inspection of the treatment system wells was conducted during the annual site visit (Q24). In addition to visually inspecting the integrity of each well, gauging data was reviewed to monitor accumulated sediments. Accumulated sediments could impact the proper function of a well (e.g., adequate connection of the screened interval with groundwater in the formation). A summary of the accumulated sediment results from the Q22 and Q24 visits are presented below. As mentioned above, a summary of the gauging data is included in **Table 2**.

5.1.1 Monitoring Wells

Comparison of depth to bottom measurements collected during the reporting period for each of the 17 MWs to their respective well construction logs was conducted to determine accumulation of material within each well.

- Based on gauging data from the Q22 event compared to well installation information, only one well (MW-2S) contained sediments that occluded 10% or greater of the well screen (approximately 17%).
- Based on gauging data from the Q24 event compared to well installation information, again MW-2S contained sediments that occluded greater than 10% or greater of the well screen (approximately 16%).

Based on depth to bottom elevation information presented in the *Supplemental Investigation Report* (BBL, 2007), since February 2014 MW-2S consistently indicates the presence of approximately 1.7 to 1.8 feet of sediments after re-development. As stated above, the top of casing for MW-2S was resurveyed during the Q22 site visit, and the Borescope was not successful at identifying an obstruction at the bottom of the well.

Based on visual inspection during the Q24 site visit, the following deficiencies to monitoring wells were observed:

- MW-1S, MW-6S, MW-0402S, MW-0403S, MW-0404D, and MW-0405S: To properly secure the road box cover, the bolt holes for the road box lid should be re-tapped and the bolts replaced.
- MW-1S: The road box and apron are deteriorated/destroyed and should be replaced.

5.1.2 Application Wells

As described in the addended SMP, semi-annual gauging of AWs was not required during the reporting period, with the exception of AW-17 that has historically contained measurable quantities of NAPL.

Accumulated sediments within AW-17 increased during each of the quarterly site visits during the monitoring period, increasing from approximately 0.9 to 4.6 feet in thickness.

Based on visual inspection, no repairs to AW-17 are required.

5.1.3 Performance Monitoring Wells

As described in the addended SMP, semi-annual gauging of PMWs was not required during the reporting period.

5.1.4 NAPL Recovery Wells

Comparison of depth to bottom measurements collected during the reporting period from NRW-2 and NMW-0402S to their respective well construction logs was also conducted to determine accumulation of material within the wells. Both NRW-2 and NMW-0402S were constructed with a 5-foot long collection sump.

Results from each of the quarterly gauging events indicated:

- NRW-02 contained 0.13 feet of accumulated material in the sump.
- NMW-0402S contained 0.13 feet of accumulated material in the sump.

While not required by the addended SMP, NRW-1, NRW-3, and NRW-4 were gauged during the reporting period; none of these wells contained greater than 1 foot of accumulated materials (0.16 feet, 0.76 feet, and 0 feet, respectively).

Based on visual inspections, no repairs to NAPL recovery wells are required.

5.2 Suspension of Oxygen-Releasing Material

Removal of Adventus EHC-O oxygen-releasing socks and removal of the associated stainless steel canisters that contain the socks was completed during the August 2018 (Q22) site visit. The stainless-steel canisters were removed and brushed/scrubbed to remove accumulated material, and stored in the on-site storage shed. The spent oxygen-releasing socks were contained in 55-gallon DOT-approved drums and staged in the on-site storage shed for disposal by NYSEG.

5.3 Annual Site Inspection

As presented in the ROD, one of the remediation goals for the site is to maintain the surface cover materials that provide continued protection against potential human exposure to subsurface soil potentially containing MGP-related impacts. As required by the SMP, surface cover of the site (stone, gravel, vegetative, and/or asphalt cover) is visually evaluated annually and repaired as needed. Because potential MGP impacts can be encountered at depths as shallow as 2 feet bgs, the annual inspections focus on maintaining physical separation between site workers and the remaining MGP impacts.

The 2019 annual site inspection was conducted on February 19, 2019. No evidence of settling, obvious obstructions within drainage features (e.g., catch basins) or disturbance activities were observed. No deficiencies were observed. A Site Inspection Form associated with the inspection is included in **Appendix C.** A photographic log documenting site conditions at the time of the annual inspection is included as **Appendix D**. Note that snow was present at the time photographs were taken, however during successive days of the site visit, the snow melted, and condition of the cover, as described above,

Annual Periodic Review Report (Q21 through Q24)

was verified. The location where each photograph was taken, and the direction that the photographer was facing, is shown on **Figure 7**.

In addition, photographic documentation of the condition of each well associated with the site, including protective covers, locking devices, and overall integrity of the wells is also provided as **Appendix E**.

6 DISTURBANCE ACTIVITIES IN POTENTIALLY IMPACTED AREAS

NYSEG is not aware of any intrusive activities that were conducted in potentially impacted areas during the reporting period.

7 CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations based on the sixth year of treatment system monitoring and operation are presented below.

7.1 Conclusions

A summary of pertinent conclusions based on the sixth year of treatment system operation are presented below.

7.1.1 Effectiveness Monitoring

Results from the semi-annual (Q22) and annual (Q24) effectiveness monitoring indicated that:

- Site-wide groundwater flow direction was to the south; no significant differences in groundwater flow direction were observed between the two gauging events.
- Site-wide groundwater flow directions were very similar to historical reporting results.
- Total BTEX concentrations in groundwater collected from the 6 MWs located across the site were BDL during both the Q22 and Q24 sampling events.
- No PAH COCs in groundwater were detected from the 6 monitoring wells sampled across the site during either the Q22 or Q24 sampling events.
- One non-COC PAHs was present at MW-8S at concentrations below guidance values during the Q22 sampling; five non-COC PAHs were present below guidance values during the Q24 sampling event.
 Concentrations of both PAH COCs and non-COCs at MW-8 have shown decreasing trends during both spring and fall sampling events since Q14 (August 2016).
- Consistent with the objective of the groundwater treatment system, neither BTEX or PAH COCs were
 detected beyond the southwest property boundary; groundwater sampling results are similar to data
 reported from the first five years of groundwater sampling.

7.1.2 NAPL Monitoring

Quarterly NAPL monitoring indicated that:

- NAPL was detected at the same two NAPL recovery wells (NRW-2 and NMW-0402S) as previous monitoring periods.
- NAPL was detected at AW-17 during the Q21 site visit; however, only trace amounts were present during the three subsequent gauging events.
- The total volume of NAPL removed to date by manual bailing is approximately 4.5 gallons.
- The quantity of NAPL recovered each year has generally been consistent over the past four to five years.

7.1.3 Treatment System O&M

Scheduled O&M activities, along with recommended maintenance repairs presented in the 5th Annual PRR, in addition to additional required repairs observed during site visits conducted during the reporting period, were completed during the Q22 and Q24 site visits.

After re-development of MW-2S, well gauging data continued to indicate that sediments occluded greater than 10% of the well screen (approximately 16 to 17%). Use of a Borescope was not successful at identifying a blockage at the bottom of the well.

No evidence of settling, obvious obstructions within drainage features, or disturbance activities were observed during the 2018 annual site inspection.

7.2 Recommendations

Recommendations based on the sixth year of treatment system operation are presented below.

7.2.1 Treatment System O&M

- Redevelop AW-17 as accumulated sediments steadily increased over the four quarterly site visits to approximately 4.59 feet in thickness.
- Change the reference depth to bottom measurement of MW-2S from 20.22 to 18.50 to agree with the
 average gauged depth to bottom measurement from the August 2015 gauging event to present (i.e.,
 based on the repeated and unable to be identified obstruction encountered in this well, or the
 presumed inaccurate reported depth to bottom measurement included on the well construction log).

7.2.2 Effectiveness Monitoring

 Continue with semi-annual and annual water-level gauging at 17 MWs and groundwater sampling from six monitoring wells (MW-4S, MW-6S, MW-9S, MW-9S, MW-0404S, and MW-0405S) as specified in the addended SMP.

7.2.3 NAPL Monitoring

• Continue to gauge NRW-2, NMW-0402S, and AW-17 quarterly for the presence of NAPL, and if present, remove to the extent practicable.

7.2.4 Reporting

Continue to prepare and submit Annual PRRs as described in the addended SMP.

8 CERTIFICATION STATEMENT

A statement from NYSEG confirming that site controls were in place and effective and, based on information provided and site conditions to the extent that they could be observed, no changes occurred during the reporting period that would impair the ability of the controls to protect public health and the environment is included as **Appendix F**.

9 REFERENCES

- ARCADIS, 2018. *Annual Periodic Review Report, Q17 through Q20.* Madison Avenue Former MGP Site, Elmira, New York (May 2018).
- ARCADIS. 2014. *Site Management Plan.* Prepared for NYSEG, Madison Avenue Former MGP Site, Chemung County, Elmira, New York (March 2014).
- ARCADIS. 2007. Supplemental Remedial Investigation Report, Madison Avenue MGP Site, Elmira, New York (February 2007).
- New York State Department of Environmental Conservation, 2018. Email correspondence dated July 26, 2018 from Douglas MacNeal approving recommendations included in the *Annual Periodic Review Report*, *Q17 through Q20*.
- New York State Department of Environmental Conservation. 2008. *Record of Decision*, Madison Avenue Former Manufactured Gas Plant (MGP) Site, City of Elmira, Chemung County, New York. Site Number 8-08-018. 2008.

TABLES

Table 1 Monitoring, Gauging, and Operation & Maintenance Schedule

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Event	Data	Scheduled Activities								
Event	Date	Performance	Effectiveness	NAPL	O&M					
		Monitoring	Monitoring	Gauging	Site Inspection	Well Inspections	Suspension/ Removal of EHC-O Socks			
Q21 (Quarterly) Monitoring	May 17, 2018			X						
Q22 (Semi-annual) Monitoring	August 13-15, 2018		Х	Х			Х			
Q23 (Quarterly) Monitoring	November 15, 2018			х						
Q24 (Annual) Monitoring	February 19-21, 2019		Х	Х	Х	Х				

Notes:

- **Effectiveness Monitoring** Included semi-annual gauging of 17 MWs and semi-annual sampling of 6 site MWs for BTEX and PAHs.
- **NAPL Gauging** Included quarterly gauging of depth to water and depth to bottom at NRW-2, NMW-0402S, and AW-17, and removal of NAPL if present.
- Site and Well Inspections Included visual inspections of the site cover materials and MWs, PMWs, NRWs, NMW, and AWs associated with the site

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulate Thickness of Sediments (feet)
			04/01/13	8.44	844.44		13.75	0.03
			05/28/13	8.55	844.33	-	13.75	0.03
			08/26/13	8.63	844.25	-	13.71	0.07
			11/18/13	8.60	844.28	-	13.69	0.09
			02/03/14	8.50	844.38	-	13.75	0.03
			08/04/14	8.35	844.53	-	13.74	0.04
			02/23/15	8.81	844.07	-	13.70	0.08
MW-1S	852.88	13.78	08/24/15	8.37	844.51	-	13.71	0.07
			02/08/16	8.41	844.47		13.70	0.08
			08/22/16	8.55	844.33		13.72	0.06
			02/20/17	7.88	845.00	-	13.72	0.06
			08/21/17	8.56	844.32		13.71	0.07
			02/12/18	8.40	844.48	-	13.72	0.06
			08/13/18	8.01	844.87		13.75	0.03
			02/19/19	8.12	844.76		13.79	-0.01
			04/01/13	10.54	842.44		60.77	0.67
			05/28/13	10.75	842.23		60.76	0.68
			08/26/13	10.83	842.15	-	60.72	0.72
			11/18/13	10.87	842.11	1	60.67	0.77
			02/03/14	10.70	842.28		60.91	0.53
			08/04/14	11.01	841.97	-	60.92	0.52
			02/23/15	11.13	841.85	-	60.81	0.63
MW-1D	852.98	61.44	08/24/15	10.85	842.13		60.85	0.59
			02/08/16	10.48	842.50	-	60.84	0.60
			08/22/16	10.96	842.02		60.89	0.55
			02/20/17	9.90	843.08		60.93	0.51
			08/21/17	11.71	841.27		60.90	0.54
			02/12/18	10.59	842.39		60.85	0.59
			08/13/18	10.17	842.81	-	60.89	0.55
			02/19/19	10.11	842.87	-	60.95	0.49
			04/01/13	10.02	844.04	-	16.54	3.68
			05/28/13	10.06	844.00	-	16.20	4.02
			08/26/13	10.03	844.03	-	16.60	3.62
			11/18/13	10.03	844.03		17.00	3.22
			02/04/14	10.27	843.79	_	18.50	1.72
			08/04/14	9.79	844.27	-	18.56	1.66
			02/23/15	11.03	843.03		18.64	1.58
MW-2S	854.06	20.22	08/24/15	9.82	844.24		18.49	1.73
			02/08/16	10.03	844.03		18.48	1.74
			08/22/16	10.14	843.92		18.45	1.77
			02/20/17	8.35	845.71		18.50	1.72
			08/21/17	10.23	843.83		18.50	1.72
			02/12/18	9.55	844.51	-	18.49	1.73
			08/13/18	9.13	844.93		18.49	1.73
			02/19/19	9.71	844.35		18.58	1.64
			04/01/13	14.87	840.79		64.51	3.68
			05/28/13	15.16	840.50		64.54	3.65
			08/26/13	15.35	840.31		64.53	3.66
			11/18/13	15.43	840.23	_	64.44	3.75
			02/03/14	15.09	840.57	_	64.64	3.55
			08/04/14	15.43	840.23	_	67.25	0.94
			02/23/15	15.73	839.93	_	67.17	1.02
MW-2D	855.66	68.19	08/24/15	15.32	840.34	_	67.18	1.01
20	223.00		02/08/16	14.73	840.93		67.10	0.98
			08/22/16	15.58	840.98	-	67.21	0.98
			02/20/17	13.89	841.77	-	67.61	0.98
								0.58
			08/21/17	16.42	839.24		67.20 67.18	
			02/12/18	15.00	840.66		67.18	1.01
	1	l	08/13/18	14.17	841.49		67.21	0.98

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulate Thickness of Sediments (feet)
			04/01/13	7.65	843.69	-	15.65	1.15
			05/28/13	7.80	843.54	-	15.56	1.24
			08/26/13	7.78	843.56	-	15.55	1.25
			11/18/13	7.98	843.36		15.30	1.50
			02/03/14	8.09	843.25	-	16.10	0.70
			08/04/14	7.64	843.70	-	15.96	0.75
			02/23/15	9.73	841.74	-	15.88	0.79
MW-4S	851.47	16.67	08/24/15	6.97	844.50	-	15.91	0.76
			02/08/16	7.22	844.25	-	15.87	0.80
			08/22/16	7.72	843.75	-	15.90	0.77
			02/20/17	6.61	844.86	-	15.88	0.79
			08/21/17	7.78	843.69	-	15.58	1.09
			02/12/18	6.90	844.57	-	15.90	0.77
			08/13/18	5.70	845.77	-	15.90	0.77
			02/19/19	6.77	844.70	-	15.97	0.70
			04/01/13	5.41	847.13	-	20.91	3.93
			05/28/13	5.70	846.84	-	20.90	3.94
			08/26/13	5.39	847.15	-	20.85	3.99
			11/18/13	5.68	846.86	-	20.72	4.12
			02/03/14	4.66	847.88		24.80	0.04
			08/04/14	5.75	846.79		24.80	0.04
			02/23/15	6.71	845.83		24.69	0.15
MW-6S	852.54	24.84	08/24/15	5.43	847.11	-	24.80	0.04
			02/08/16	5.41	847.13		24.77	0.07
			08/22/16	8.56	843.98	-	24.79	0.05
			02/20/17	5.28	847.26	-	24.79	0.05
			08/21/17	8.10	844.44	-	24.99	-0.15
			02/12/18	6.05	846.49		24.75	0.09
			08/13/18	5.06	847.48	-	24.80	0.04
			02/19/19	5.29	847.25	-	24.86	-0.02
			04/01/13	10.62	843.52	-	32.80	6.76
			05/28/13	10.71	843.43	-	32.76	6.80
			08/26/13	10.68	843.46	-	33.00	6.56
			11/18/13	10.69	843.45		33.07	6.49
			02/03/14	10.68	843.46		39.33	0.23
			08/04/14	10.51	843.63		39.17	0.39
			02/23/15	10.82	843.32	-	39.18	0.38
MW-7	854.14	39.56	08/24/15	10.62	843.52	-	39.22	0.34
			02/08/16	10.56	843.58	-	38.53	1.03
			08/22/16	10.69	843.45	-	39.04	0.52
			02/20/17	10.31	843.83	-	39.31	0.25
			08/21/17	10.50	843.64	-	38.55	1.01
			02/12/18	10.58	843.56	-	38.19	1.37
			08/13/18	10.28	843.86		38.28	1.28
			02/19/19	10.49	843.65		39.48	0.08
			04/01/13	6.76	843.62		6.93	7.77
			05/28/13	6.89	843.49		6.94	7.76
			08/26/13	6.79	843.59	-	6.98	7.72
			11/18/13	6.85	843.53		7.02	7.68
			02/03/14	6.84	843.54		14.01	0.69
			08/04/14	6.68	843.70	-	14.02	0.68
			02/23/15	7.09	843.29	-	13.98	0.72
MW-8S	850.38	14.70	08/24/15	6.80	843.58	-	14.00	0.70
			02/08/16	6.75	843.63	-	13.98	0.72
			08/22/16	6.85	843.53	-	14.00	0.70
			02/20/17	6.41	843.97	-	13.99	0.71
			08/21/17	6.80	843.58	-	14.00	0.70
			02/12/18	6.70	843.68	-	14.00	0.70
			08/13/18	6.01	844.37		14.01	0.69
	1	l	02/19/19	6.57	843.81	_	14.06	0.64

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
		, ,	04/01/13	10.17	839.91		69.28	0.30
			05/28/13	10.57	839.51	-	69.24	0.34
			08/26/13	10.56	839.52		69.30	0.28
			11/18/13	10.73	839.35	-	70.43	-0.85
			02/03/14	10.42	839.66	-	69.36	0.22
			08/04/14	10.68	839.40	-	69.44	0.14
			02/23/15	11.19	838.89		70.30	-0.72
MW-8D	850.08	69.58	08/24/15	10.61	839.47	-	69.30	0.28
			02/08/16	9.74	840.34	-	69.29	0.29
			08/22/16	11.23	838.85	-	69.31	0.27
			02/20/17	9.79	840.29	-	69.38	0.20
			08/21/17	10.78	839.30	-	69.41	0.17
			02/12/18	10.54	839.54		69.25	0.33
			08/13/18	9.46	840.62		69.34	0.24
			02/19/19	9.81	840.27	-	69.35	0.23
			04/01/13	5.67	843.01	-	14.43	0.39
			05/28/13	5.91	842.77		14.41	0.41
			08/26/13	6.09	842.59		14.50	0.32
			11/18/13	6.32	842.36	-	14.47	0.35
			02/03/14	5.93	842.75	-	14.55	0.27
			08/04/14	5.03	843.65		14.40	0.42
			02/23/15	6.89	842.14	-	12.25	2.22
MW-9S	849.03	14.47	08/24/15	5.16	843.87	-	14.27	0.20
			02/08/16	5.44	843.59		14.95	-0.48
			08/22/16	5.86	843.17		14.98	-0.51
			02/20/17	4.38	844.65		14.97	-0.50
			08/21/17	6.18	842.85		14.97	-0.50
			02/12/18	5.42	843.61	-	14.98	-0.51
			08/13/18			-	14.96	-0.49
			02/19/19	4.93		-	15.01	-0.54
			04/01/13	8.05	840.67	-	67.96	3.82
			05/28/13	8.36	840.36	-	67.90	3.88
			08/26/13	8.39	840.33		67.93	3.85
			11/18/13	8.51	840.21	-	67.89	3.89
			02/03/14	8.20	840.52		67.95	3.83
			08/04/14	8.14	840.58	-	72.65	-0.87
			02/23/15	8.85	840.21		72.58	-1.14
MW-9D	849.06	71.44	08/24/15	8.21	840.85	-	72.60	-1.16
			02/08/16	8.01	841.05		72.50	-1.06
			08/22/16	8.62	840.44	-	72.61	-1.17
			02/20/17	7.19	841.87		72.64	-1.20
			08/21/17	8.62	840.44		72.61	-1.17
			02/12/18	8.62	840.44		72.58	-1.14
			08/13/18				72.61	-1.17
			02/19/19	7.38			72.65	-1.21
			04/01/13	9.78	841.40		59.60	0.04
			05/28/13	9.89	841.29		59.55	0.09
			08/26/13	9.57	841.61		59.60	0.04
			11/18/13	9.78	841.40		59.58	0.06
			02/03/14	9.78	841.40		59.65	-0.01
			08/04/14	10.00	841.18		59.58	0.06
			02/23/15	10.35	840.83		59.56	0.08
MW-0304D	851.18	59.64	08/24/15	9.95	841.23		59.55	0.09
			02/08/16	9.51	841.67	-	59.50	0.14
			08/22/16	10.48	840.70		59.59	0.05
			02/20/17	8.81	842.37		59.50	0.14
			08/21/17	10.89	840.29		59.32	0.32
			02/12/18	9.70	841.48		59.42	0.22
			08/13/18	9.05	842.13	-	59.54	0.10
	1	1	02/19/19	8.90	842.28		59.62	0.02

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
		(1661 100)	04/01/13	7.78	842.31		22.48	-0.10
			05/28/13	7.89	842.20		22.49	-0.11
			08/26/13	7.97	842.12		22.50	-0.12
			11/18/13	8.15	841.94		22.49	-0.11
			02/03/14	7.94	842.15		22.54	-0.16
			08/04/14	7.39	842.70	-	22.55	-0.17
			02/23/15	8.36	841.73	-	22.48	-0.10
MW-0402S	850.09	22.38	08/24/15	7.65	842.44	-	22.51	-0.13
			02/08/16	7.77	842.32	-	22.50	-0.12
			08/22/16	7.93	842.16	-	22.52	-0.14
			02/20/17	7.30	842.79		22.51	-0.13
			08/21/17	7.95	842.14		22.50	-0.12
			02/12/18	7.89	842.20		22.52	-0.14
			08/13/18	6.69	843.40		22.52	-0.14
			02/19/19	7.55	842.54		22.62	-0.24
			04/01/13	9.45	840.21		39.40	-0.08
			05/28/13	9.75	839.91		39.36	-0.04
			08/26/13	9.81	839.85		39.32	0.00
			11/18/13	9.97	839.69		39.34	-0.02
			02/03/14	9.54	840.12		39.38	-0.06
			08/04/14	9.49	840.17		39.39	-0.07
			02/23/15	10.05	839.61		39.30	0.02
MW-0403S	849.66	39.32	08/24/15	9.62	840.04	-	39.33	-0.01
			02/08/16	9.48	840.18	-	39.34	-0.02
			08/22/16	9.83	839.83	-	39.35	-0.03
			02/20/17	8.25	841.41		39.31	0.01
			08/21/17	9.92	839.74	-	39.33	-0.01
			02/12/18	9.41	840.25		39.30	0.02
			08/13/18	8.64	841.02		39.34	-0.02
			02/19/19	8.84	840.82		39.41	-0.09
			04/01/13	9.71	840.28		27.94	0.63
			05/28/13	10.02	839.97	-	27.89	0.68
			08/26/13	10.06	839.93		27.81	0.76
			11/18/13	10.19	839.80	-	27.85	0.72
			02/03/14	9.80	840.19	-	28.25	0.32
			08/04/14	9.71	840.28		28.20	0.37
NAV 04040	040.00	00.57	02/23/15	10.39	839.60	-	28.20	0.37
MW-0404S	849.99	28.57	08/24/15	9.82	840.17		28.22	0.35
			02/08/16	9.70	840.29		28.20	0.37
			08/22/16	10.13	839.86		28.22	0.35
			02/20/17	8.98	841.01		28.25	0.32
			08/21/17 02/12/18	10.19 9.71	839.80 840.28	_	28.18 28.20	0.39
			02/12/18	9.71	840.28 841.15		28.20	0.37
			08/13/18	8.84 9.07	841.15		28.29	0.37
			04/01/13	9.07	840.92	-	59.43	0.28
			05/28/13	9.43	839.66		59.45	0.34
			08/26/13	9.94	839.61		59.43	0.32
			11/18/13	10.22	839.33		60.21	-0.44
			02/03/14	9.73	839.82		59.40	0.37
			08/04/14	9.67	839.88		59.40	0.37
			02/23/15	10.50	839.05	-	59.33	0.44
MW-0404D	849.55	59.77	08/24/15	9.74	839.81		59.40	0.44
			02/08/16	9.35	840.20	-	59.20	0.57
			08/22/16	10.26	839.29		59.30	0.37
			02/20/17	8.35	841.20		59.30	0.47
			08/21/17	10.28	839.27		59.88	-0.11
			02/12/18	9.71	839.84		59.00	0.52
			08/13/18	8.23	841.32		59.35	0.32
	I	1	02/19/19	8.64	840.91		59.39	0.42

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
		(1000101)	04/01/13	10.33	840.26		35.43	-0.16
			05/28/13	10.81	839.78	-	35.44	-0.17
			08/26/13	10.83	839.76		35.38	-0.11
			11/18/13	11.16	839.43	-	35.41	-0.14
			02/03/14	10.66	839.93	-	35.50	-0.23
			08/04/14	10.61	839.98		35.42	-0.15
			02/23/15	11.54	839.05	-	35.39	-0.12
MW-0405S	850.59	35.27	08/24/15	10.43	840.16	-	35.44	-0.17
			02/08/16	10.25	840.34	-	35.41	-0.14
			08/22/16	11.20	839.39	-	35.44	-0.17
			02/20/17	9.03	841.56		35.48	-0.21
			08/21/17	11.12	839.47	-	35.37	-0.10
			02/12/18	10.52	840.07	-	35.42	-0.15
			08/13/18	8.88	841.71	-	35.45	-0.18
			02/19/19	9.38	841.21		35.52	-0.25
			04/01/13	7.04	843.90		20.00	-0.22
			05/28/13	7.05	843.89		19.99	-0.21
			08/26/13	7.00	843.94	-	19.92	-0.14
			11/18/13	7.17	843.77	-	19.91	-0.13
			02/03/14	7.21	843.73		19.94	-0.16
AW-1	850.94	19.78	08/04/14	6.74 7.42	844.20		19.91	-0.13 -0.05
AVV-1	630.94	19.70	02/23/15 08/24/15	6.79	843.52 844.15		19.83 19.59	0.19
			02/08/16	6.85	844.09	-	19.68	0.19
			08/22/16	7.00	843.94		19.69	0.09
			02/20/17	6.16	844.78		19.55	0.03
			08/21/17	7.04	843.90		19.89	-0.11
			02/12/18	6.80	844.14	_	19.55	0.23
			04/01/13	7.51	843.44	_	20.17	0.15
			05/28/13	7.25	843.70	_	20.19	0.13
			08/26/13	7.61	843.34	-	20.18	0.14
			11/18/13	7.76	843.19		20.15	0.17
			02/03/14	7.75	843.20	-	20.13	0.19
			08/04/14	6.91	844.04	-	20.09	0.23
AW-2	851.23	20.04	02/23/15	8.43	842.80	-	20.10	-0.06
			08/24/15	6.91	844.32	-	19.96	0.08
			02/08/16	7.29	843.94	-	20.06	-0.02
			08/22/16	7.35	843.88		20.08	-0.04
			02/20/17	6.19	845.04	-	19.65	0.39
			08/21/17	7.03	844.20	-	20.12	-0.08
			02/12/18	6.85	844.38	-	19.50	0.54
			04/01/13	6.83	843.55	-	19.59	-0.49
			05/28/13	6.84	843.54	-	19.60	-0.50
			08/26/13	7.02	843.36		19.55	-0.45
			11/18/13	6.98	843.40		19.81	-0.71
			02/03/14	6.94	843.44		19.59	-0.49
			08/04/14	6.31	844.07	-	19.53	-0.43
AW-3	850.38	19.10	02/23/15	7.47	842.91	-	19.50	-0.40
			08/24/15	6.27	844.11		19.33	-0.23
	l		02/08/16	6.63	843.75		19.08	0.02
			08/22/16	6.68	843.70	-	18.62	0.48
			08/22/16 02/20/17 08/21/17	6.68 5.64 	843.70 844.74 		18.62 18.63 	0.48

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	6.30	844.08		20.01	-0.24
			05/28/13	6.22	844.16		19.83	-0.06
			08/26/13	6.91	843.71	-	19.96	-0.19
			11/18/13	7.74	842.88	-	19.97	-0.20
			02/03/14	7.50	843.12	-	19.98	-0.21
			08/04/14	5.49	845.13		19.75	0.02
AW-4	850.62	19.77	02/23/15	8.47	842.15	-	19.73	0.04
			08/24/15	5.91	844.71	-	19.78	-0.01
			02/08/16	6.57	844.05		19.56	0.21
			08/22/16	5.93	844.69		19.65	0.12
			02/20/17	5.49	845.13	-	19.45	0.32
			08/21/17	7.20	843.42	-	19.42	0.35
			02/12/18	6.09	844.53		19.58	0.19
			04/01/13	7.16	843.22	-	19.78	0.02
			05/28/13	7.24	843.14	-	19.73	0.07
			08/26/13	7.30	843.08		19.73	0.07
			11/18/13	7.71	842.67		19.70	0.10
			02/03/14	7.26	843.12		19.75	0.05
			08/04/14	6.81	843.57		19.75	0.05
AW-5	850.38	19.80	02/23/15	8.42	841.96		19.64	0.16
			08/24/15	6.83	843.55	-	19.71	0.09
			02/08/16	6.84	843.54	-	19.62	0.18
			08/22/16	7.37	843.01	-	19.21	0.59
			02/20/17	5.61	844.77	-	19.10	0.70
			08/21/17	7.22	843.16		19.33	0.47
			02/12/18	6.98	843.40		19.06	0.74
			04/01/13	7.72	842.13		19.04	0.24
		40.00	05/28/13	7.87	841.98	-	19.10	0.18
			08/26/13	7.87	841.98	-	19.03	0.25
			11/18/13	8.24	841.61	-	18.98	0.30
			02/03/14	7.77	842.08	-	19.02	0.26
A)A/ C	040.05		08/04/14	7.45	842.40		19.02	0.26
AW-6	849.85	19.28	02/23/15	8.64	841.21		18.79	0.49
			08/24/15	7.38	842.47	-	18.99	0.29
			02/08/16	7.11 7.91	842.74		18.72	0.56 0.71
			08/22/16	6.15	841.94		18.57	
			02/20/17 08/21/17	7.82	843.70 842.03		18.43 18.72	0.85 0.56
			02/12/18	7.02	842.81	-	18.55	0.73
			04/01/13	8.49	841.23		18.86	-0.12
			05/28/13	8.72	841.00		18.85	-0.12
			08/26/13	8.72	841.00		18.82	-0.11
			11/18/13	9.00	840.72	-	18.80	-0.06
			02/03/14	8.59	841.13	-	18.85	-0.11
			08/04/14	8.43	841.29	_	18.82	-0.08
AW-7	849.72	18.74	02/23/15	9.32	840.40		18.75	-0.01
			08/24/15	8.46	841.26	_	18.81	-0.07
			02/08/16	8.10	841.62		18.38	0.36
			08/22/16	9.02	840.70		18.41	0.33
			02/20/17	7.15	842.57		18.44	0.30
			08/21/17	8.73	840.99		18.40	0.34

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness o Sediments (feet)
		, ,	04/01/13	8.86	840.92		19.35	-0.03
			05/28/13	9.07	840.71		19.34	-0.02
			08/26/13	9.13	840.65		19.31	0.01
			11/18/13	9.35	840.43		19.25	0.07
			02/03/14	8.90	840.88		19.22	0.10
			08/04/14	8.71	841.07		19.20	0.12
AW-8	849.78	19.32	02/23/15	9.55	840.23		18.85	0.47
			08/24/15	8.76	841.02		18.85	0.47
			02/08/16	8.41	841.37		18.88	0.44
			08/22/16	9.30	840.48		18.98	0.34
			02/20/17	7.45	842.33		18.84	0.48
			08/21/17	9.08	840.70		18.89	0.43
			02/12/18	8.52	841.26		18.82	0.50
			04/01/13	8.30	841.31		22.22	0.05
			05/28/13	9.00	840.61		21.88	0.39
			08/26/13	9.05	840.56		21.92	0.35
			11/18/13	9.21	840.40		22.11	0.16
			02/03/14	8.87	840.74		22.10	0.17
			08/04/14	8.73	840.88		21.92	0.35
AW-9	849.61	22.27	02/23/15	9.54	840.07		21.71	0.56
			08/24/15	8.89	840.72		21.78	0.49
			02/08/16	8.39	841.22		21.26	1.01
			08/22/16	9.32	840.29		21.30	0.97
			02/20/17	7.39	842.22		22.30	-0.03
			08/21/17	9.02	840.59		22.18	0.09
			02/12/18	8.50	841.11		19.92	2.35
			04/01/13	9.18	840.42		24.28	-0.08
			05/28/13	9.42	840.18		24.27	-0.07
			08/26/13	9.51	840.09		24.20	0.00
			11/18/13	9.91	839.69		24.20	0.00
			02/03/14	9.25	840.35		24.18	0.02
			08/04/14	9.45	840.15		24.19	0.01
AW-10	849.60	24.20	02/23/15	9.67	839.93		23.76	0.44
			08/24/15	9.06	840.54		24.10	0.10
			02/08/16	8.92	840.68		23.54	0.66
			08/22/16	9.50	840.10		23.65	0.55
			02/20/17	7.84	841.76		23.74	0.46
			08/21/17	9.04	840.56		24.12	0.08
			02/12/18	8.72	840.88		22.90	1.30
			04/01/13	8.99	840.50		24.14	0.13
			05/28/13	9.22	840.27		24.13	0.14
			08/26/13	9.34	840.15		24.02	0.25
			11/18/13	9.45	840.04		24.06	0.21
			02/03/14	9.01	840.48		24.10	0.17
			08/04/14	9.01	840.48		24.02	0.25
AW-11	849.49	24.27	02/23/15	9.71	839.78		23.50	0.77
			08/24/15	9.05	840.44		23.95	0.32
			02/08/16	8.76	840.73		23.48	0.79
			08/22/16	9.42	840.07		22.79	1.48
			02/20/17	7.45	842.04		23.28	0.99
			08/21/17	9.36	840.13		23.33	0.94
	1	ı	02/12/18	8.92	840.57		22.57	1.70

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
		(1000 10 2)	04/01/13	8.68	840.51		37.67	-0.09
			05/28/13	9.00	840.19		37.68	-0.10
			08/26/13	9.15	840.04		37.50	0.08
			11/18/13	9.29	839.90		37.50	0.08
			02/03/14	8.90	840.29		37.52	0.06
			08/04/14	8.78	840.41		37.15	0.43
AW-12	849.19	37.58	02/23/15	9.49	839.70		36.92	0.66
			08/24/15	8.93	840.26		37.10	0.48
			02/08/16	8.70	840.49		36.79	0.79
			08/22/16	9.30	839.89		35.74	1.84
			02/20/17	7.73	841.46		35.72	1.86
			08/21/17	9.26	839.93	_	35.69	1.89
			02/12/18	8.82	840.37	_	35.00	2.58
			04/01/13	8.59	840.48		27.40	0.06
			05/28/13	9.42	839.65		27.34	0.12
			08/26/13	8.98	840.09		27.24	0.22
			11/18/13	9.10	839.97		27.28	0.18
			02/03/14	8.72	840.35		27.32	0.14
			08/04/14	8.59	840.48		27.26	0.20
AW-13	849.07	27.46	02/23/15	9.32	839.75		26.97	0.49
7	010.01	27.10	08/24/15	8.63	840.44		27.16	0.30
			02/08/16	8.42	840.65		25.85	1.61
			08/22/16	9.06	840.01		26.40	1.06
			02/20/17	7.65	841.42		27.40	0.06
			08/21/17	9.05	840.02		27.40	0.15
			02/12/18	8.59	840.48		26.95	0.13
			04/01/13	8.86	840.59		30.90	-2.02
			05/28/13	9.22	840.23		30.57	-1.69
				9.27				-1.66
			08/26/13		840.18		30.54	
			11/18/13	9.34 8.99	840.11		30.57	-1.69 1.66
			02/03/14		840.46		30.44	-1.56
AW-14	849.45	28.88	08/04/14	8.83	840.62		30.30	-1.42
AVV-14	049.43	20.00	02/23/15	9.58	839.87		29.70	-0.82
			08/24/15	9.00	840.45		30.40	-1.52
			02/08/16	8.78	840.67		29.40	-0.52
			08/22/16	9.32	840.13	-	29.42	-0.54
			02/20/17	7.95	841.50		29.62	-0.74
			08/21/17	9.34	840.11		29.59	-0.71
			02/12/18	8.73	840.72	-	28.78	0.10
			04/01/13	8.67	840.44	-	34.57	0.11
			05/28/13	8.92	840.19		34.40	0.28
			08/26/13	9.02	840.09		34.20	0.48
			11/18/13	9.23	839.88		34.42	0.26
			02/03/14	8.75	840.36		33.85	0.83
**** 45	04044	04.00	08/04/14	8.72	840.39		34.42	0.26
AW-15	849.11	34.68	02/23/15	9.40	839.71		33.89	0.79
			08/24/15	8.80	840.31	-	34.16	0.52
			02/08/16	8.59	840.52		33.62	1.06
			08/22/16	9.10	840.01		32.85	1.83
			02/20/17	7.76	841.35		34.49	0.19
			08/21/17	9.12	839.99		34.48	0.20
]	02/12/18	8.70	840.41	-	34.20	0.48

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
		, ,	04/01/13	8.56	840.56		34.44	0.36
			05/28/13	8.72	840.40		34.31	0.49
			08/26/13	8.85	840.27		34.20	0.60
			11/18/13	8.97	840.15		34.25	0.55
			02/03/14	8.60	840.52	-	34.23	0.57
			08/04/14	8.44	840.68		34.45	0.35
AW-16	849.12	34.80	02/23/15	9.14	839.98		31.78	3.02
			08/24/15	8.60	840.52		34.46	0.34
			02/08/16	8.44	840.68		31.97	2.83
			08/22/16	8.98	840.14	-	31.03	3.77
			02/20/17	7.78	841.34		34.50	0.30
			08/21/17	8.93	840.19		34.16	0.64
			02/12/18	8.57	840.55		33.62	1.18
			04/01/13	8.53	840.55		34.56	-2.72
			05/28/13	8.75	840.33		31.34	0.50
			08/26/13	8.81	840.27		31.52	0.32
			11/18/13	8.99	840.09		31.43	0.41
			02/03/14	8.62	840.46	-	31.10	0.74
			08/04/14	8.45	840.63	-	31.27	0.57
			02/23/15	9.13	839.95		30.49	1.35
			08/24/15	8.67	840.41	31.02	31.22	0.62
			11/18/15	8.45	840.63	TR	31.04	0.80
			02/08/16	8.54	840.54	TR	31.10	0.74
AW-17	849.08	31.84	05/12/16	8.49	840.59	TR	28.48	3.36
			08/22/16	8.91	840.17	TR	30.57	1.27
			11/17/16	8.81	840.27	TR	27.70	4.14
			02/20/17	7.70	841.38	TR	31.25	0.59
			08/21/17	8.95	840.13	TR	31.25	0.59
			02/12/18	8.50	840.58	TR	30.52	1.32
			05/17/18	8.30	840.78	29.40	30.90	0.94
			08/13/18			TR	27.40	4.44
			11/18/18	7.65	841.43	TR	27.30	4.54
			02/19/19		-	TR	27.25	4.59
	1		04/01/13	7.94	840.87		33.75	-0.24
			05/28/13	7.49	841.32		33.75	-0.24
			08/26/13	8.36	840.45		33.69	-0.18
			11/18/13	8.62	840.19		33.67	-0.16
			02/03/14	8.10	840.71		33.40	0.11
			08/04/14	6.78	842.03		33.15	0.36
AW-18	848.81	33.51	02/23/15	8.73	840.08	_	32.95	0.56
• •			08/24/15	7.83	840.98	_	33.01	0.50
			02/08/16	7.05	841.76	-	32.10	1.41
			08/22/16	8.25	840.56	-	31.81	1.70
			02/20/17	6.99	841.82		33.80	-0.29
			08/21/17	8.50	840.31		32.20	1.31
			02/12/18	7.49	841.32	-	30.92	2.59
			04/01/13	7.49	841.02		33.91	0.42
			05/28/13	8.29	840.72		33.89	0.42
			08/26/13	8.59	840.42	-	33.87 33.90	0.46
			11/18/13	8.74	840.27 840.74	-	33.90	0.43
			02/03/14	8.27				1.18
Δ\Λ/ 10	940.04	24 22	08/04/14	7.39	841.62		34.05	0.28
AW-19	849.01	34.33	02/23/15	8.85	840.16	-	32.74	1.59
			08/24/15	8.44	840.57		34.05	0.28
			02/08/16	8.22	840.79		33.55	0.78
			08/22/16	8.28	840.73		33.15	1.18
			02/20/17	7.20	841.81		31.58	2.75
			08/21/17	8.71	840.30	-	31.00	3.33
	1	l	02/12/18	8.05	840.96		29.82	4.51

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	7.78	843.41	-	19.24	-0.43
			05/28/13	7.89	843.30	-	19.35	-0.54
			08/26/13	8.02	843.17		19.29	-0.48
			11/18/13	8.35	842.84	-	19.41	-0.60
			02/03/14	7.97	843.22	-	19.38	-0.57
PMW-1	851.19	18.81	08/04/14	7.50	843.69	-	19.32	-0.51
			02/23/15	9.21	841.98	-	19.29	-0.48
			08/24/15	7.53	843.66	-	19.36	-0.55
			02/08/16	7.56	843.63		19.34	-0.53
			08/22/16	8.05	843.14		19.40	-0.59
			02/20/17	6.33	844.86	-	19.30	-0.49
			08/21/17	7.99	843.20	-	19.35	-0.54
			02/12/18	7.64	843.55	-	19.92	-1.11
		19.76	04/01/13	5.45	844.40	-	19.67	0.17
			05/28/13	5.01	844.84		19.65	0.19
			08/26/13	6.00	843.85	-	19.64	0.20
			11/18/13	5.68	844.17	-	19.62	0.22
			02/03/14	6.44	843.41		19.62	0.22
			08/04/14	4.96	844.89	-	19.53	0.31
PMW-2	849.93		02/23/15	7.25	842.68		19.23	0.53
			08/24/15	4.98	844.95	-	19.24	0.52
			02/08/16	5.44	844.49	-	19.21	0.55
			08/22/16	5.00	844.93	-	19.18	0.58
			02/20/17	4.68	845.25	-	19.15	0.61
			08/21/17	5.58	844.35		19.21	0.55
			02/12/18	5.11	844.82		18.80	0.96
			04/01/13	8.45	841.19	-	14.60	4.69
			05/28/13	8.98	840.66	-	15.33	3.96
			08/26/13	8.73	840.91		15.41	3.88
			11/18/13	8.76	840.88		15.15	4.14
			02/03/14	8.37	841.27	-	18.19	1.10
PMW-3			08/04/14	7.75	841.89		15.35	3.94
	849.64	19.29	02/23/15	9.36	840.28	-	14.29	5.00
			05/22/15	7.33	842.31	-	19.29	0.00
			08/24/15	8.35	841.29	-	14.26	5.03
			11/18/15	7.51	842.13	-	14.18	5.11
			02/08/16	7.76	841.88	-	14.10	5.19
			05/12/16	7.40	842.24	-	14.04	5.25
			08/22/16	9.31	840.33	-	14.12	5.17
			11/17/16	8.13	841.51	-	14.22	5.07
			02/20/17	5.84	843.80		18.95	0.34
			08/21/17	8.95	840.69		19.26	0.03
			02/12/18	8.25	841.39		18.50	0.79
PMW-4	850.02	19.78	04/01/13	9.20	840.82		19.85	-0.07
			05/28/13	9.45	840.57		19.85	-0.07
			08/26/13	9.51	840.51		19.85	-0.07
			11/18/13	9.73	840.29		19.81	-0.03
			02/03/14	9.26	840.76		19.82	-0.04
			08/04/14	9.13	840.89	-	19.86	-0.08
			02/23/15	9.70	840.32	-	19.81	-0.03
			08/24/15	9.19	840.83	-	19.80	-0.02
			02/08/16	8.83	841.19	-	19.80	-0.02
			08/22/16	9.71	840.31	-	19.81	-0.03
			02/20/17	7.70	842.32		19.80	-0.02
			08/21/17	9.40	840.62	-	19.82	-0.04
	1		02/12/18	8.89	841.13	_	19.81	-0.03

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	8.58	840.50	-	32.65	0.12
			05/28/13	8.77	840.31	-	32.36	0.41
			08/26/13	8.95	840.13	-	32.26	0.51
			11/18/13	9.11	839.97	-	32.20	0.57
			02/03/14	8.74	840.34	-	32.30	0.47
			08/04/14	8.60	840.48		32.69	0.08
PMW-5	849.08	32.77	02/23/15	9.25	839.83		31.69	1.08
			08/24/15	8.70	840.38	-	33.65	-0.88
			02/08/16	8.57	840.51		32.50	0.27
			08/22/16	9.00	840.08	-	32.49	0.28
			02/20/17	7.75	841.33		32.34	0.43
			08/21/17	9.04	840.04	-	32.34	0.43
			02/12/18	8.58	840.50	-	30.40	2.37
			04/01/13	9.19	840.40	_	37.97	0.84
			05/28/13	9.35	840.24	-	37.45	1.36
			08/26/13	9.50	840.09		37.35	1.46
			11/18/13	9.68	839.91		37.23	1.58
			02/03/14	9.23	840.36		37.25	1.56
	849.59	38.81	08/04/14	9.19	840.40	-	38.33	0.48
PMW-6			02/23/15	9.90	839.69	_	38.06	0.75
			08/24/15	9.29	840.30		38.32	0.49
			02/08/16	9.09	840.50		38.10	0.71
			08/22/16	9.65	839.94		38.10	0.71
			02/20/17	8.28	841.31		38.10	0.71
			08/21/17	9.32	840.27		37.90	0.91
			02/12/18	9.20	840.39		37.90	0.91
			04/01/13	9.24	840.53	29.87	31.07	0.22
			05/28/13	9.59	840.18	30.77	31.17	0.12
NMW-0402S			08/26/13	9.89	839.88	29.25	31.25	0.04
			11/18/13	9.98	839.79	29.25	31.25	0.04
			02/03/14	5.42	844.35	30.08	31.28	0.01
			05/30/14	8.75	841.02	29.92	31.41	-0.12
			08/04/14	9.48	840.29	29.93	31.33	-0.04
			11/20/14	10.08	839.69	30.28	31.38	-0.09
			02/23/15	10.13	839.64	30.15	31.35	-0.06
			05/22/15	9.10	840.67	30.88	31.38	-0.09
	849.77	31.29	08/24/15	9.55	840.22	31.03	31.38	-0.09
			11/18/15	9.02	840.75		31.39	-0.10
			02/08/16	9.21	840.56	31.04	31.44	-0.15
			05/12/16	8.89	840.88	31.24	31.45	-0.16
			08/22/16	9.83	839.94	31.02	31.43	-0.10
			11/17/16	9.68	840.09	30.96	31.46	-0.14
			02/20/17	8.21	841.56	31.00	31.50	-0.17
			08/21/17	10.36	839.41	30.73	31.33	-0.21
			02/12/18		840.33	30.73	31.55	-0.04
			05/17/18	9.44 8.95	840.33	30.88	31.55	-0.26
			08/13/18 11/15/18	7.36 7.95	842.41 841.82	30.75 31.07	31.58 31.57	-0.29 -0.28
		1	02/19/19	7.95 8.54	841.82	31.07	31.57	-0.25

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulate Thickness of Sediments (feet)
			04/01/13	11.21	841.15	-	33.82	0.01
			05/28/13	11.48	840.88		33.75	0.08
			08/26/13	11.42	840.94	-	33.70	0.13
			11/18/13	11.61	840.75	-	33.68	0.15
			02/03/14	11.29	841.07	-	33.75	0.08
			05/30/14	10.87	841.07		33.62	0.08
			08/04/14	11.11	841.25	-	33.65	0.18
			11/20/14	11.54	840.91	-	33.59	0.15
			02/23/15	11.62	840.83	-	33.46	0.28
			05/22/15	10.96	841.49		33.46	0.28
	852.45	33.74	08/24/15	11.06	841.39	-	33.45	0.29
NRW-1			11/18/15	10.68	841.77	-	33.45	0.29
			02/08/16	10.80	841.65	-	33.46	0.28
			05/12/16	10.77	841.68	-	33.48	0.26
			08/22/16	11.34	841.11		33.45	0.29
			11/17/16	11.25	841.20		33.51	0.23
			02/20/17	9.05	843.40	-	33.41	0.33
			08/21/17	11.36	841.09		33.40	0.34
			02/12/18	10.37	842.08	-	33.41	0.33
			05/17/18	10.80	841.65	-	33.33	0.41
			08/13/18	9.75	842.70		33.35	0.39
			11/15/18	9.76	842.69	-	33.62	0.12
			02/19/19	9.70	842.75		33.58	0.16
	849.80		04/01/13	9.36	840.44	57.54	57.87	0.38
			05/28/13	9.62	840.18		57.31	0.94
		58.25	08/26/13	9.80	840.00	56.73	57.20	1.05
NRW-2			11/18/13	9.98	839.82	56.93	57.63	0.62
			02/03/14	7.20	842.60	-	57.70	0.55
			05/30/14	8.94	840.86	-	57.92	0.33
			08/04/14	9.46	840.34	56.61	57.81	0.44
			11/20/14	10.05	839.75	57.44	57.83	0.42
			02/23/15	10.13	839.67	57.30	57.70	0.55
			05/22/15	9.23	840.57	-	57.80	0.45
			08/24/15	9.50	840.30	-	57.82	0.43
			11/18/15	9.12	840.68	-	57.82	0.43
			02/08/16	9.31	840.49	56.74	57.84	0.41
			05/12/16	9.17	840.63	56.92	57.92	0.33
			08/22/16	9.94	839.86	57.37	57.88	0.37
			11/17/16	9.71	840.09	57.42	57.92	0.33
			02/20/17	8.44	841.36	57.03	57.93	0.32
			08/21/17	10.85	838.95	57.39	58.09	0.16
			02/12/18	9.40	840.40	56.59	58.09	0.16
			05/17/18	9.10	840.70	_	58.05	0.20
			08/13/18	6.36	843.44	57.70	58.12	0.13
			11/15/18	8.24	841.56	56.10	58.10	0.15
			02/19/19	8.72	841.08	57.28	58.12	0.13

Table 2 Gauging Data

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	9.33	840.45		52.97	0.79
			05/28/13	9.59	840.19	-	52.49	1.27
			08/26/13	9.77	840.01		52.13	1.63
			11/18/13	9.93	839.85	-	52.34	1.42
			02/03/14	9.43	840.35	-	52.30	1.46
			05/30/14	8.93	840.85	-	52.24	1.52
			08/04/14	9.44	840.34		52.12	1.64
			11/20/14	10.02	839.76	-	52.23	1.53
			02/23/15	10.10	839.68	-	52.32	1.44
			05/22/15	9.22	840.56	-	52.09	1.67
			08/24/15	9.49	840.29	-	53.78	-0.02
NRW-3	849.78	53.76	11/18/15	9.97	839.81		53.12	0.64
			02/08/16	9.25	840.53	-	52.90	0.86
			05/12/16	9.10	840.68	-	52.93	0.83
			08/22/16	9.88	839.90	-	53.00	0.76
			11/17/16	9.69	840.09	-	53.00	0.76
			02/20/17	8.35	841.43		53.90	-0.14
			08/21/17	10.92	838.86	-	53.88	-0.12
			02/12/18	9.32	840.46	-	53.03	0.73
			05/17/18	9.00	840.78	-	53.10	0.66
			08/13/18	6.53	843.25	-	53.03	0.73
			11/15/18	8.19	841.59	-	53.87	-0.11
			02/19/19	8.56	841.22	-	53.00	0.76

Table 2 **Gauging Data**

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Well ID	Measuring Point Elevation	Actual Depth to Bottom (feet TOC)	Date	Depth to Water (feet TOC)	Groundwater Elevation	Depth to Product (feet TOC)	Depth to Bottom (feet TOC)	Accumulated Thickness of Sediments (feet)
			04/01/13	9.06	840.46		57.40	-0.72
			05/28/13	9.35	840.17		57.34	-0.66
			08/26/13	9.53	839.99		56.57	0.11
			11/18/13	9.69	839.83	-	56.59	0.09
			02/03/14	9.21	840.31		56.99	-0.31
			05/30/14	8.66	840.86		56.64	0.04
			08/04/14	9.18	840.34	-	56.58	0.10
			11/20/14	9.76	839.76	-	56.62	0.06
			02/23/15	9.88	839.64		56.40	0.28
			05/22/15	8.83	840.69	-	56.48	0.20
			08/24/15	9.23	840.29		57.05	-0.37
NRW-4	849.52	56.68	11/18/15	8.82	840.70		56.55	0.13
			02/08/16	8.98	840.54	-	56.55	0.13
			05/12/16	8.82	840.70	-	56.33	0.35
			08/22/16	9.64	839.88		56.69	-0.01
			11/17/16	9.42	840.10	-	56.40	0.28
			02/20/17	8.10	841.42	-	57.30	-0.62
			08/21/17	9.70	839.82	-	57.37	-0.69
			02/12/18	9.18	840.34	-	56.52	0.16
			05/17/18	8.75	840.77	-	57.50	-0.82
			08/13/18	6.56	842.96	-	56.78	-0.10
			11/15/18	7.90	841.62	-	57.44	-0.76
			02/19/19	8.29	841.23	-	57.04	-0.36

All measurements from Top of Casing (TOC).

Elevations in feet above mean sea level (ft amsl), 1988 North American Vertical Datum (NAVD88).

-- Indicates measurement not taken or not avaliable.

Due to well repairs, MW-4S, MW-9S, MW-9D, AW-2, PMW-2, and NRW-1 were resurveyed during the August 2014 site visit but after the gauging dated 8/4/2014. Measuring Point Elevations and Actual Depth to Bottom values have been updated and used starting with the gauging dated 2/23/2015.

TR - Indicates DNAPL product observed but not in a quantifiable amount.

AW-03 was not safely accessible on February 12, 2018 due to a nearby nest of ground bees.

MW-9S and MW-9D were underwater on 8/13/18 and the depth to water was not able to be gauged.

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Location ID:	NYSDEC TOGS 1.1.1							MW	<i>1-</i> 2S					
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20
Date Collected:	Guidance Values		04/21/04	04/04/13	08/27/13	02/06/14	08/06/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18
втех		1												
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs	1	1			T			T		T	1	T	T	
Acenaphthene	20 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 UJ	4.8 U	4.7 U	4.9 U	4.9 U	5 U	5 U	5 U
Acenaphthylene		μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 UJ	5 U	5 U
Anthracene	50 (GV)	μg/L	10 U	4.8 U	4.8 UB	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 UJ	5 U	5 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 UJ	5 U	5 U
Benzo(a)pyrene*	0	μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 UJ	5 UJ	5 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 UJ	5 U	5 U
Benzo(g,h,i)perylene		μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 UJ	5 UJ	5 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 UJ	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 U	5 U	5 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 UJ	5 U	5 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 UJ	5 UJ	5 U	5 U
Fluoranthene	50 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 UJ	5 U	5 U
Fluorene	50 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 UJ	4.8 U	4.7 U	4.9 U	4.9 U	5 UJ	5 U	5 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 UJ	5 UJ	5 U	5 U
Naphthalene	10 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 UJ	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 U	5 U	5 U
Phenanthrene	50 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 UB	4.9 U	4.9 U	5 UJ	5 U	5 U
Pyrene	50 (GV)	μg/L	10 U	4.8 U	4.8 U	4.8 U	10 U	4.8 U	4.7 U	4.9 U	4.9 U	5 U	5 U	5 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PAHs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Oxygen Demand	1										1			
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance Valué (i.e., not a standard)

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Location ID:	NYSDEC TOGS 1.1.1									MW-4S							
	Std. or	Units	Historical	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20	Q22	Q24
Date Collected:	Guidance Values		04/22/04	08/23/11	04/04/13	08/27/13	02/06/14	08/06/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18	08/14/18	02/20/19
втех	I			I				T	T	T				1			
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	NA	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs	1	T		1				T	T	T				1	1		
Acenaphthene	20 (GV)	μg/L	10 U	0.07	4.9 U	4.8 U	4.8 UJ	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Acenaphthylene		μg/L	10 U	0.1	4.9 U	4.8 U	4.8 UJ	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Anthracene	50 (GV)	μg/L	10 U	5 U	4.9 U	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	0.06	4.9 U	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Benzo(a)pyrene*	0	μg/L	1 U	0.05 U	1.2 J	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	0.07	1.2 J	4.8 U	4.8 U	9.6 U	0.48 J	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Benzo(g,h,i)perylene		μg/L	10 U	3 U	4.9 U	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 UJ	0.05 U	0.75 J	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Chrysene*	0.002 (GV)	μg/L	10 U	0.05 U	4.9 U	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene		μg/L	1 U	0.03	4.9 U	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Fluoranthene	50 (GV)	μg/L	10 U	5 U	4.9 U	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Fluorene	50 (GV)	μg/L	10 U	5 U	4.9 U	4.8 U	4.8 UJ	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	0.05 U	1.7 J	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Naphthalene	10 (GV)	μg/L	10 U	5 U	4.9 U	4.8 U	4.8 UJ	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Phenanthrene	50 (GV)	μg/L	10 U	0.09	4.9 U	4.8 U	4.8 U	9.6 U	5 U	4.8 UB	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
Pyrene	50 (GV)	μg/L	10 U	5 U	0.42 J	4.8 U	4.8 U	9.6 U	5 U	4.8 U	5 U	4.8 U	4.5 U	25 U	5 U	5 U	5 U
PAH COCs		μg/L	ND	0.13	4.85 J	ND	ND	ND	0.48 J	ND							
Total PAHs		μg/L	ND	0.42	5.27 J	ND	ND	ND	0.48 J	ND							
Oxygen Demand	ı	ı		ı				I	I	I				1	ı		
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance value (i.e., not a ร์โสกิติส์าช์)

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Location ID:	NYSDEC TOGS 1.1.1								MV	/-6S						
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20	Q22	Q24
Date Collected:	Guidance Values		04/22/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18	08/14/18	02/20/19
втех	_	1					T			T			T			
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs	1	ı			T	T	T	T		T	T		T	1		
Acenaphthene	20 (GV)	μg/L	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Acenaphthylene		μg/L	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Anthracene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.8 U	9.8 U	5 U	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 UJ	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Benzo(a)pyrene*	0	μg/L	1 U	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Benzo(g,h,i)perylene		μg/L	10 U	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 UJ	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 UJ	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.8 U	4.7 U	4.8 U	9.8 U	5 UJ	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Fluoranthene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.8 U	9.8 U	5 U	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Fluorene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.8 U	4.7 U	4.8 U	9.8 U	5 U	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Naphthalene	10 (GV)	μg/L	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Phenanthrene	50 (GV)	μg/L	10 U	4.8 U	0.45 J	4.8 U	9.8 U	5 U	4.8 UB	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
Pyrene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.8 UJ	9.8 U	5 U	4.8 U	5 U	5.1 U	4.9 U	5 U	5 U	5.2 U	5 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PAHs		μg/L	ND	ND	0.45 J	ND										
Oxygen Demand	1	ı		<u> </u>	Г	Г	1	Г	<u> </u>	1	Г		1	ı	<u> </u>	
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance value (i.e., hot aostandard)

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Location ID:	NYSDEC TOGS 1.1.1							N	IW-7					
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20
Date Collected:	Guidance Values		04/22/04	04/04/13	08/27/13	02/06/14	08/06/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18
втех		1						1	1	1		1		
Benzene	1	μg/L	1 U	1 U	1 U	0.45 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	0.45 J	ND							
PAHs		_					Т	Г	Т	Г		Г		
Acenaphthene	20 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Acenaphthylene		μg/L	1.1 J	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Anthracene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	4.9 U	4.8 U	5 U	0.28 J	5 U	5 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Benzo(a)pyrene*	0	μg/L	1 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Benzo(g,h,i)perylene		μg/L	10 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 UJ	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Fluoranthene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Fluorene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Naphthalene	10 (GV)	μg/L	17	4.9 U	4.9 U	4.9 UJ	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
Phenanthrene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	4.9 UB	4.8 U	5 U	4.9 U	5 U	5 U
Pyrene	50 (GV)	μg/L	10 U	4.9 U	4.9 U	4.9 U	9.9 U	4.7 U	4.9 U	4.8 U	5 U	4.9 U	5 U	5 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PAHs		μg/L	18.1 J	ND	0.28 J	ND	ND							
Oxygen Demand							T	T	T	<u> </u>		<u> </u>		
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance งิสิเนิย์ (i.te., not a standard)

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Location ID:	NYSDEC TOGS 1.1.1								MW	<i>I-</i> 8S						
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20	Q22	Q24
Date Collected:	Guidance Values		04/22/04	04/05/13	08/27/13	02/07/14	08/07/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18	08/14/18	02/20/19
втех										<u>'</u>						
Benzene	1	μg/L	0.5 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	4 U	4 U	8 U	8 U
Ethylbenzene	5	μg/L	1.3 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	4 U	4 U	8 U	8 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	4 U	4 U	8 U	8 U
Xylenes (total)	5	ug/L	6	2 U	2 U	2 U	2 U	2 U	2 U	2 U	4 U	4 U	8 U	8 U	16 U	16 U
Total BTEX		μg/L	7.8 J	ND	ND	ND	ND	ND	ND	ND						
PAHs	1	,														
Acenaphthene	20 (GV)	μg/L	2 J	4.8 U	4.8 U	6 J	6.8 J	8	7.5	7.5	6.6	9.4	7.9 J	4.7 J	2.1 J	5.9
Acenaphthylene		μg/L	10 U	4.8 U	4.8 U	23 UJ	9.6 U	0.46 J	4.7 U	0.5 J	4.7 U	0.36 J	25 U	25 U	25 U	5 U
Anthracene	50 (GV)	μg/L	10 U	4.8 U	4.8 U	23 UJ	9.6 U	0.97 J	0.61 J	1 J	0.56 J	0.69 J	25 U	25 U	25 U	0.47 J
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.8 U	4.8 U	23 UJ	9.6 U	1.2 J	4.7 U	1.2 J	0.52 J	0.38 J	25 U	25 U	25 U	5 U
Benzo(a)pyrene*	0	μg/L	1 U	4.8 U	4.8 UJ	23 UJ	9.6 U	1.2 J	4.7 U	1.2 J	4.7 U	0.43 J	25 U	25 U	25 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.8 UJ	23 UJ	9.6 U	1.4 J	4.7 U	1.2 J	0.43 J	0.39 J	25 U	25 U	25 U	5 U
Benzo(g,h,i)perylene		μg/L	10 U	4.8 U	4.8 UJ	23 UJ	9.6 U	0.49 J	4.7 U	0.53 J	4.7 U	4.6 U	25 U	25 U	25 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 UJ	4.8 U	4.8 UJ	23 UJ	9.6 U	4.9 U	4.7 U	5.3 U	4.7 U	4.6 U	25 U	25 U	25 U	5 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.8 U	4.8 UJ	23 UJ	9.6 U	0.97 J	4.7 U	1 J	0.31 J	4.6 U	25 U	25 U	25 U	5 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.8 U	4.8 UJ	23 UJ	9.6 U	4.9 U	4.7 U	5.3 U	4.7 U	4.6 U	25 U	25 U	25 U	5 U
Fluoranthene	50 (GV)	μg/L	0.4 J	4.8 U	4.8 U	23 UJ	9.6 U	3.4 J	2 J	3.6 J	2.4 J	2.7 J	2.7 J	25 U	25 U	1.7 J
Fluorene	50 (GV)	μg/L	1.7 J	4.8 U	4.8 U	3.5 J	5.1 J	4.8 J	5.4	5.5	5	6	5.2 J	4.2 J	25 U	4.6 J
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.8 U	4.8 UJ	23 UJ	9.6 U	0.55 J	4.7 U	0.7 J	4.7 U	4.6 U	25 U	25 U	25 U	5 U
Naphthalene	10 (GV)	μg/L	14	4.8 U	4.8 U	23 UJ	9.6 U	2.5 J	4.7 U	5.3 U	4.7 U	4.6 U	25 U	25 U	25 U	5 U
Phenanthrene	50 (GV)	μg/L	0.2 J	4.8 U	0.44 J	23 UJ	9.6 U	0.57 J	4.7 UB	5.3 U	4.7 U	4.6 U	25 U	25 U	25 U	5 U
Pyrene	50 (GV)	μg/L	0.3 J	4.8 U	4.8 U	23 UJ	9.6 U	2.6 J	1.3 J	2.8 J	1.7 J	1.9 J	25 U	25 U	25 U	1.5 J
PAH COCs		μg/L	ND	ND	ND	ND	ND	5.32 J	ND	5.3	1.26 J	1.2 J	ND	ND	ND	ND
Total PAHs		μg/L	18.6 J	ND	0.44 J	9.5 J	11.9 J	29.1 J	16.8J	26.7 J	17.5 J	22.3 J	15.8 J	8.9 J	2.1 J	14.2 J
Oxygen Demand	1	1				I	1			1			I	I	1	
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA Natasi	NA	NA	NA	NA	NA	NA	NA						

- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance value (i.e., hot ao standard)

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Location II	NYSDEC TOGS 1.1.1								MW	<i>I</i> -9S						
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20	Q22	Q24
Date Collected	Guidance I: Values		04/27/04	04/05/13	08/27/13	02/07/14	08/06/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18	08/14/18	02/20/19
втех						ı	ı			ı						
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs																
Acenaphthene	20 (GV)	μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Acenaphthylene		μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Anthracene	50 (GV)	μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene*	0	μg/L	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Benzo(g,h,i)perylene		μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Chrysene*	0.002 (GV)	μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene		μg/L	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Fluoranthene	50 (GV)	μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Fluorene	50 (GV)	μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1.1 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Naphthalene	10 (GV)	μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Phenanthrene	50 (GV)	μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 UB	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
Pyrene	50 (GV)	μg/L	11 U	5.1 U	4.8 U	4.9 U	9.6 U	4.9 U	4.7 U	4.8 U	4.7 U	4.9 U	5 U	5 U	5 U	5 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PAHs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Oxygen Demand				I	T	1	T	I		T	I		I		I	
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance value (i.e., hot aostándard)

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Location ID:	NYSDEC TOGS 1.1.1							MW	-0402S					
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20
Date Collected:	Guidance Values		04/28/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18
втех	T	•					T					T	T	
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs	T					Т	1			Т		T	T	
Acenaphthene	20 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 U	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Acenaphthylene		μg/L	10 U	4.8 UJ	4.6 U	4.7 U	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Anthracene	50 (GV)	μg/L	10 U	4.8 UJ	4.6 U	4.7 U	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.8 UJ	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Benzo(a)pyrene*	0	μg/L	1 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Benzo(g,h,i)perylene		μg/L	10 U	4.8 UJ	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.8 UJ	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Fluoranthene	50 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 U	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Fluorene	50 (GV)	μg/L	10 U	4.8 UJ	4.6 U	4.7 U	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.8 UJ	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Naphthalene	10 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
Phenanthrene	50 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 U	9.9 U	4.9 U	4.9 UB	5.3 U	4.7 U	4.6 U	5 U	5 U
Pyrene	50 (GV)	μg/L	10 U	4.8 U	4.6 U	4.7 UJ	9.9 U	4.9 U	4.9 U	5.3 U	4.7 U	4.6 U	5 U	5 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PAHs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Oxygen Demand	Т	1				T	T	T	T	T	T	T	T	
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance ໍ່ຂໍສາບັ*e*"(i.e., not a standard)

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

Location ID:	NYSDEC TOGS 1.1.1							MW-	0403S					
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20
Date Collected:	Guidance Values		04/28/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18
втех		1												
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs	1	1				T	T		T		T	T	T	Г
Acenaphthene	20 (GV)	μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Acenaphthylene		μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Anthracene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Benzo(a)pyrene*	0	μg/L	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Benzo(g,h,i)perylene		μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 UJ	4.9 U	4.6 U	5 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Fluoranthene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Fluorene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 UJ	4.9 U	4.6 U	5 U	5 U
Naphthalene	10 (GV)	μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	0.94 J	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
Phenanthrene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 UB	5.2 U	4.9 U	4.6 U	5 U	5 U
Pyrene	50 (GV)	μg/L	10 U	4.8 U	4.7 U	4.6 U	10 U	4.7 U	4.7 U	5.2 U	4.9 U	4.6 U	5 U	5 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PAHs		μg/L	ND	ND	ND	ND	ND	0.94 J	ND	ND	ND	ND	ND	ND
Oxygen Demand	1	1					<u> </u>							
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance^Pชิสเซีย์ (i.e., not a standard)

Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

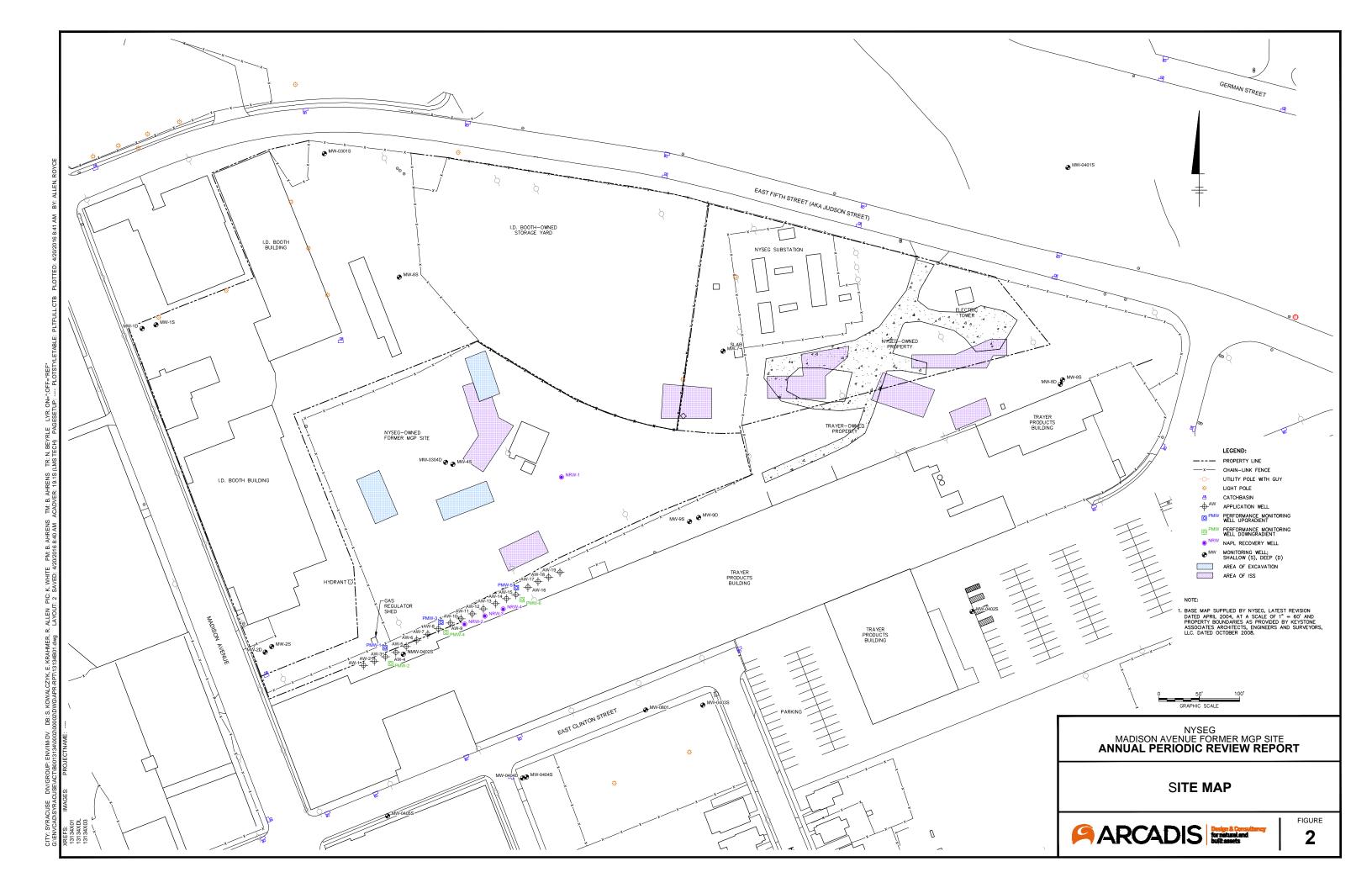
Location ID:	NYSDEC TOGS 1.1.1								MW-	-0404S						
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20	Q22	Q24
Date Collected:	Guidance Values		04/29/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18	08/14/18	02/20/19
втех							1								ı	
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PAHs	1						ı			T		I	T	T	ı	
Acenaphthene	20 (GV)	μg/L	10 U	4.7 U	1.3 J	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Acenaphthylene		μg/L	10 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Anthracene	50 (GV)	μg/L	10 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene*	0	μg/L	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.7 U	4.6 U	4.7 U	9.8 U	0.33 J	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Benzo(g,h,i)perylene		μg/L	10 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Chrysene*	0.002 (GV)	μg/L	10 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene		μg/L	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Fluoranthene	50 (GV)	μg/L	10 U	4.7 U	0.49 J	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Fluorene	50 (GV)	μg/L	10 U	4.7 U	1.2 J	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.7 U	4.6 U	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Naphthalene	10 (GV)	μg/L	10 U	4.7 U	4.6 U	4.7 UJ	9.8 U	3.2 J	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Phenanthrene	50 (GV)	μg/L	10 U	4.7 U	0.45 J	4.7 U	9.8 U	4.7 U	4.9 UB	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
Pyrene	50 (GV)	μg/L	10 U	4.7 U	0.38 J	4.7 U	9.8 U	4.7 U	4.9 U	4.9 U	4.9 U	4.6 U	5 U	5 U	5 U	5 U
PAH COCs		μg/L	ND	ND	ND	ND	ND	0.33 J	ND							
Total PAHs		μg/L	ND	ND	3.82 J	ND	ND	3.53 J	ND							
Oxygen Demand	1	1					ı		1	T		T	T	T	T	
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

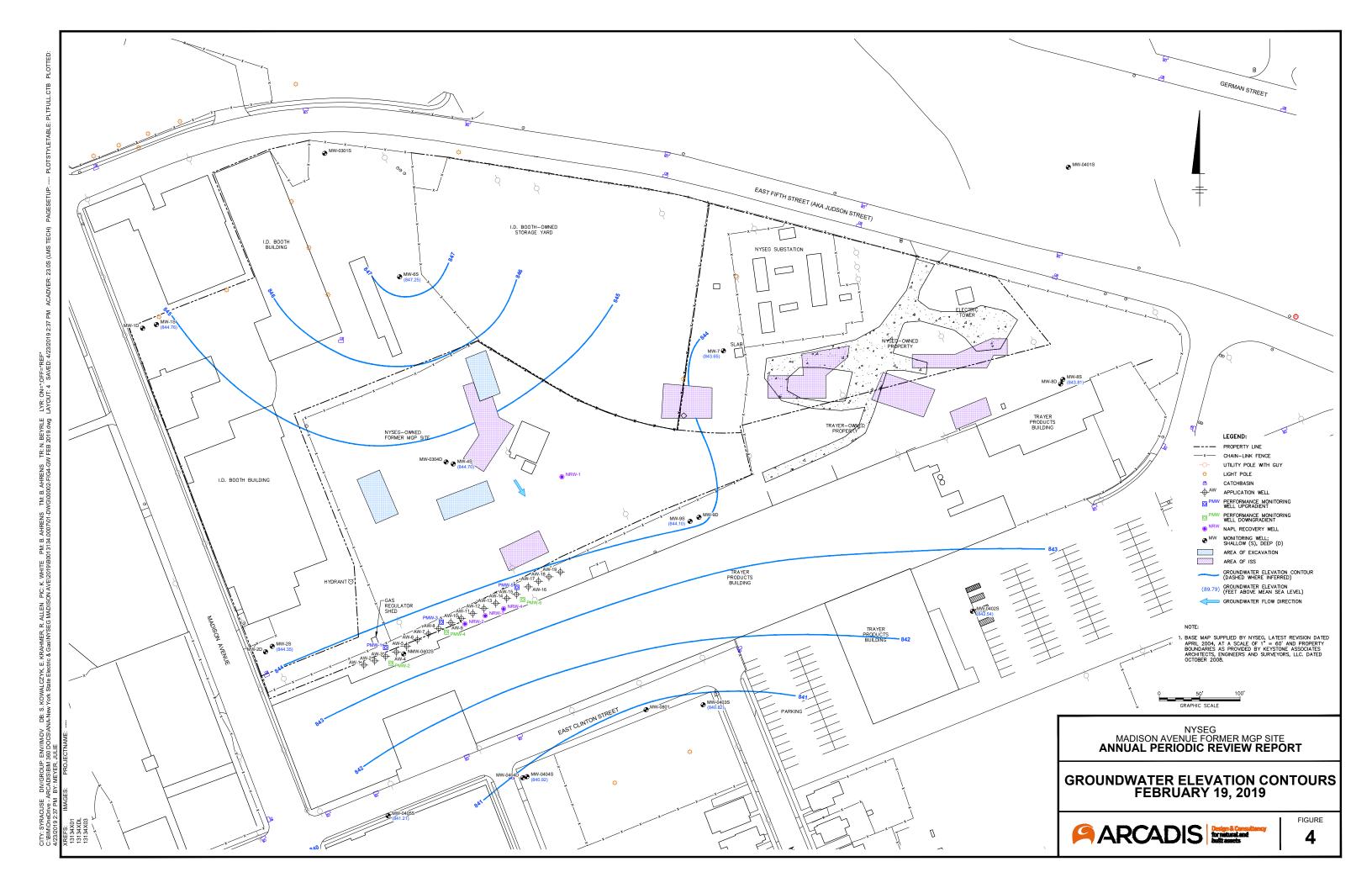
- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance value (i.e., noใช้ ริโลก์ปัลสป)

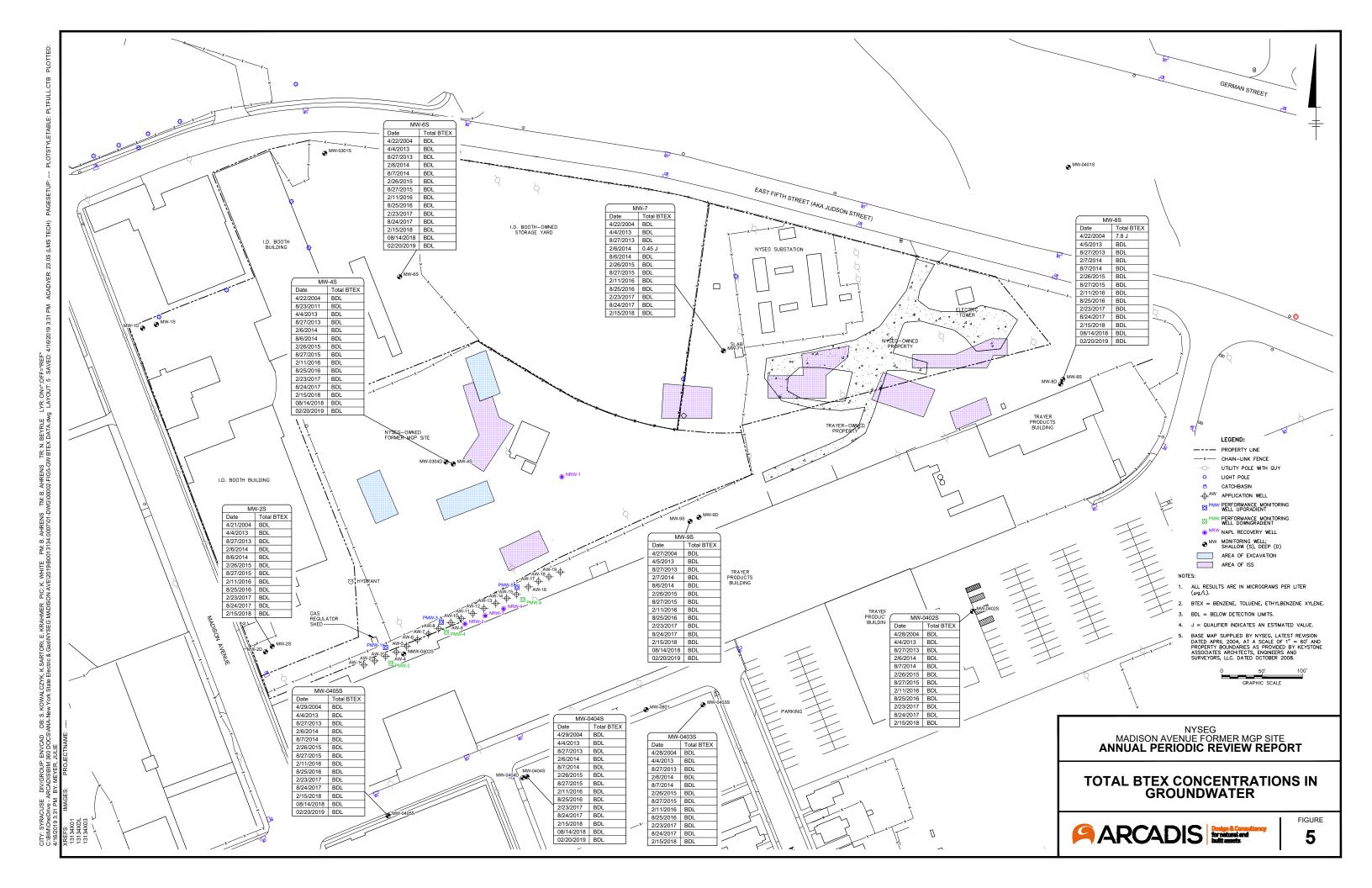
Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York

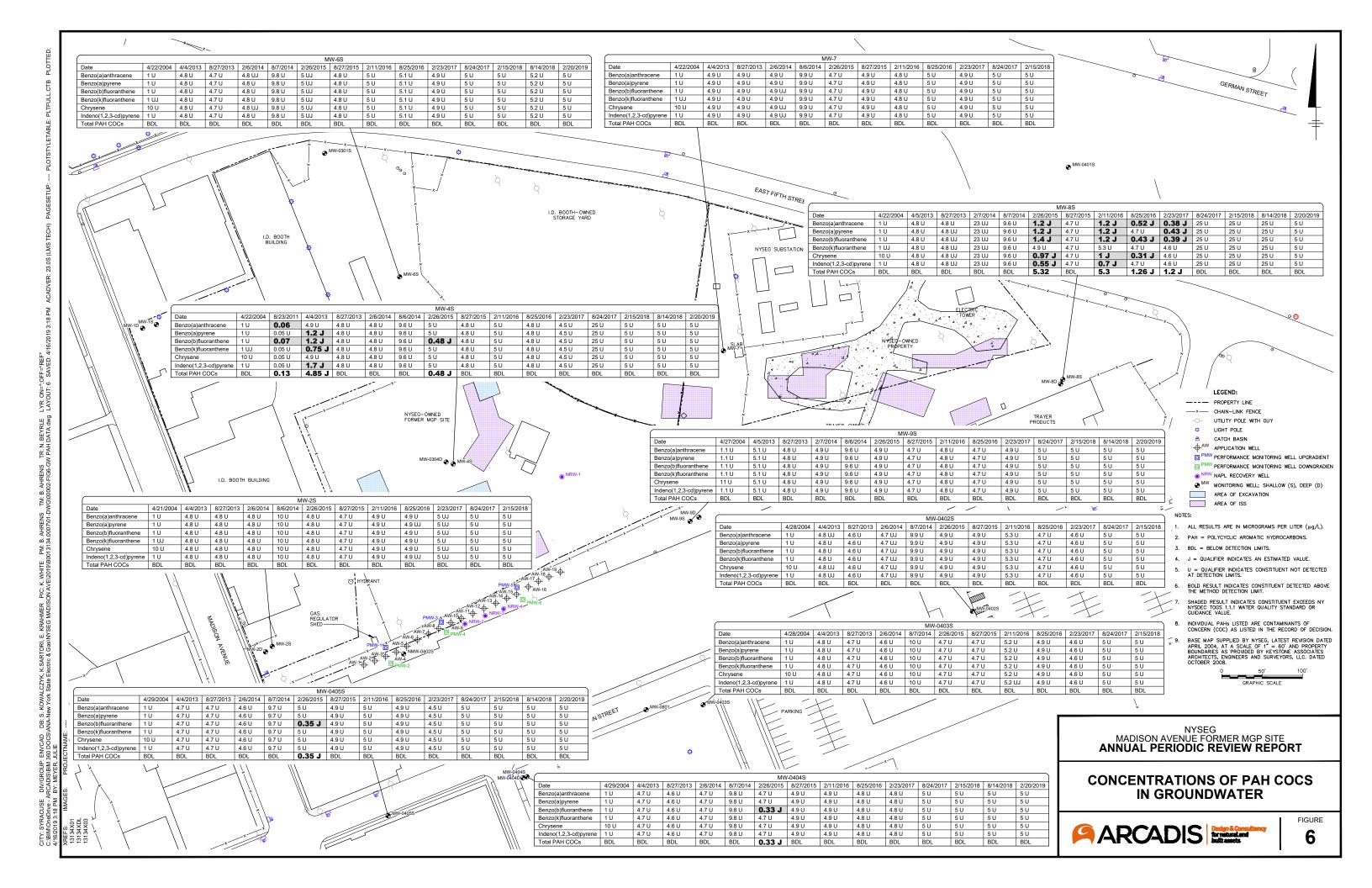
Location ID:	NYSDEC TOGS 1.1.1								MW-0	0405S								PM	W-1	
	Std. or	Units	Historical	Baseline	Q2	Q4	Q6	Q8	Q10	Q12	Q14	Q16	Q18	Q20	Q22	Q24	Baseline	Q2	Q6	Q8
Date Collected:	Guidance Values		04/29/04	04/04/13	08/27/13	02/06/14	08/07/14	02/26/15	08/27/15	02/11/16	08/25/16	02/23/17	08/24/17	02/15/18	08/14/18	02/20/19	04/03/13	08/28/13	08/06/14	02/24/15
втех	T	1	1				T	T	T	T	T	T	T			T		T		1
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA
Ethylbenzene	5	μg/L	4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA
Toluene	5	μg/L	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA
Xylenes (total)	5	ug/L	5 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	NA	NA	NA	NA
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
PAHs	1	1	Ī	1	1		ı	ı	Γ	ı	ı	Γ	ı			Γ		Γ		
Acenaphthene	20 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Acenaphthylene		μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Anthracene	50 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Benzo(a)anthracene*	0.002 (GV)	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Benzo(a)pyrene*	0	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Benzo(b)fluoranthene*	0.002 (GV)	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	0.35 J	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Benzo(g,h,i)perylene		μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Benzo(k)fluoranthene*	0.002 (GV)	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Chrysene*	0.002 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Dibenzo(a,h)anthracene		μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Fluoranthene	50 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Fluorene	50 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene*	0.002 (GV)	μg/L	1 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Naphthalene	10 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Phenanthrene	50 (GV)	μg/L	10 U	4.7 U	0.45 J	4.6 U	9.7 U	5 U	4.9 UB	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
Pyrene	50 (GV)	μg/L	10 U	4.7 U	4.7 U	4.6 U	9.7 U	5 U	4.9 U	5 U	4.9 U	4.5 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA
PAH COCs		μg/L	ND	ND	ND	ND	ND	0.35 J	ND	NA	NA	NA	NA							
Total PAHs		μg/L	ND	ND	0.45 J	ND	ND	0.35 J	ND	NA	NA	NA	NA							
Oxygen Demand	I	1	1	ı	1		1	1	I	1	1	I	1			I		I		
Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,500	3,500	2,000U	NA
Carbonaceous Biochemical Oxygen Demand		μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2,400	NA	2,000U	NA

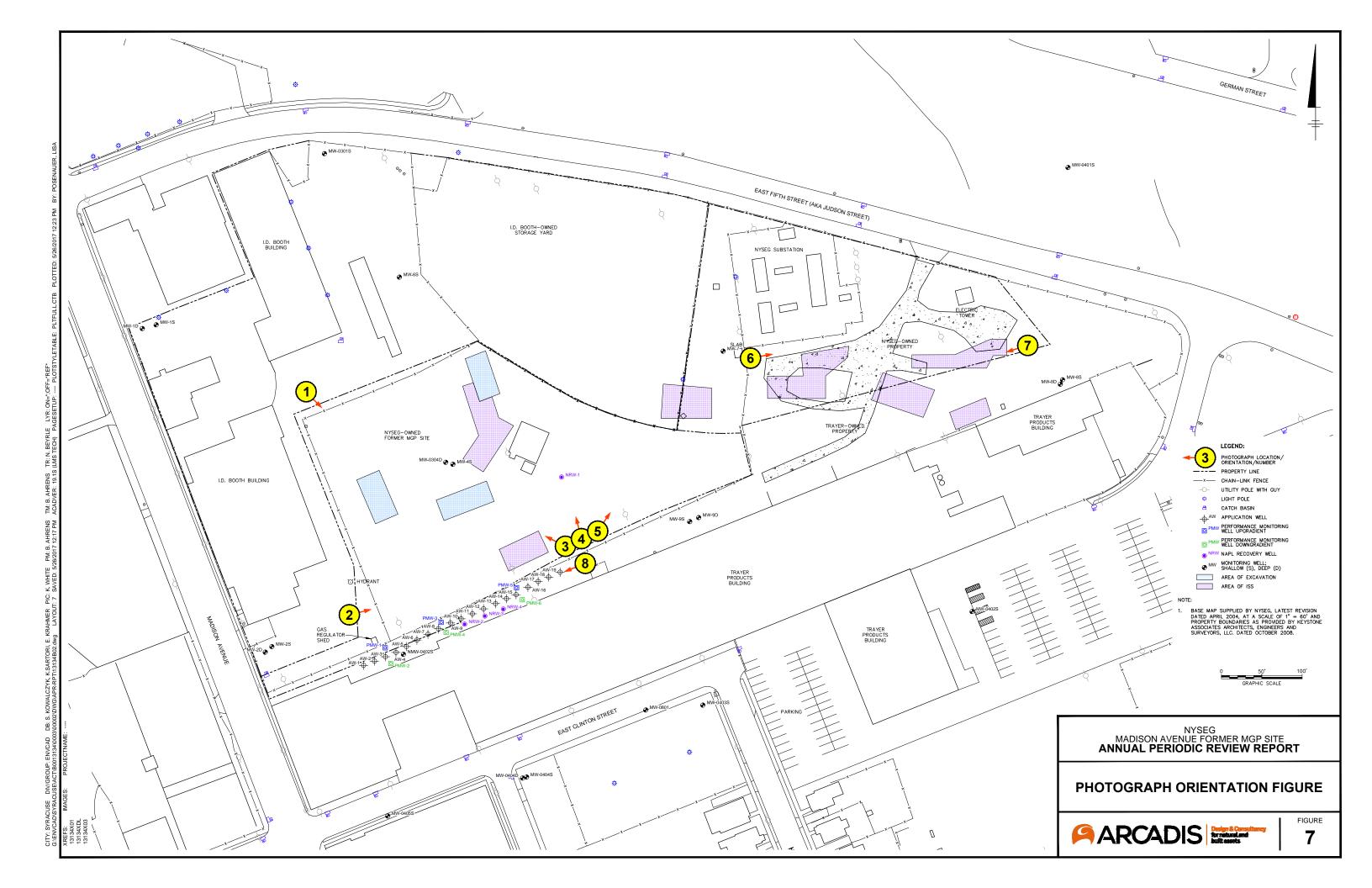
- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance value (i.e., not a standard)


Annual Periodic Review Report, Q21 through Q24 Madison Avenue Former MGP Site, Elmira, New York


Locatio	11 10.	NYSDEC OGS 1.1.1				PMW-2				PMV	V-3				PMW-4				PMV	V-5				PMW-6		
		Std. or	Units	Baseline	Q2	Q4	Q6	Q8	Baseline	Q2	Q6	Q8	Baseline	Q2	Q4	Q6	Q8	Baseline	Q2	Q6	Q8	Baseline	Q2	Q4	Q6	Q8
Date Collect		Guidance Values		04/03/13	08/28/13	02/05/14	08/06/14	02/24/15	04/03/13	08/30/13	08/06/14	02/24/15	04/03/13	08/28/13	02/05/14	08/06/14	02/25/15	04/03/13	08/28/13	08/06/14	02/24/15	04/03/13	08/28/13	02/05/14	08/06/14	02/25/15
втех																										
Benzene		1	μg/L	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA	230 D	81	150	4 U	81	NA	NA	NA	NA	3.4	25	89	90	1,200 D
Ethylbenzene		5	μg/L	1 U	1 U	0.92 J	1 U	1 U	NA	NA	NA	NA	110 D	36	55	4 U	29	NA	NA	NA	NA	1.4	6.4	42	57	290 D
Toluene		5	μg/L	1 U	1 U	1 U	1 U	1 U	NA	NA	NA	NA	9.3	2.9 J	5.4	4 U	4.9	NA	NA	NA	NA	1 U	0.54 J	1	3.4	10
Xylenes (total)		5	ug/L	2 U	2 U	2 U	2 U	2 U	NA	NA	NA	NA	80	21	33	8 U	21	NA	NA	NA	NA	1.1 J	8.9	30	95	290 D
Total BTEX			μg/L	ND	ND	0.92 J	ND	ND	NA	NA	NA	NA	429	141 J	243	ND	136	NA	NA	NA	NA	5.9 J	40.8 J	162	245	1,790 D
PAHs					Τ			ı	1		ı				1	ı	ı			1			_			T
Acenaphthene		20 (GV)	μg/L	4.8 U	NA	110 D	NA	7.2	NA	NA	NA	NA														
Acenaphthylene			μg/L	4.8 U	NA	6.2	NA	4.8 U	NA	NA	NA	NA														
Anthracene		50 (GV)	μg/L	4.8 U	NA	8.8	NA	4.8 U	NA	NA	NA	NA														
Benzo(a)anthracene*	0.	.002 (GV)	μg/L	4.8 U	NA	0.88 J	NA	4.8 U	NA	NA	NA	NA														
Benzo(a)pyrene*		0	μg/L	4.8 U	NA	1.3 J	NA	4.8 U	NA	NA	NA	NA														
Benzo(b)fluoranthene*	0.	.002 (GV)	μg/L	4.8 U	NA	1.3 J	NA	4.8 U	NA	NA	NA	NA														
Benzo(g,h,i)perylene			μg/L	4.8 U	NA	1 J	NA	4.8 U	NA	NA	NA	NA														
Benzo(k)fluoranthene*	0.	.002 (GV)	μg/L	4.8 U	NA	0.71 J	NA	4.8 U	NA	NA	NA	NA														
Chrysene*	0.	.002 (GV)	μg/L	4.8 U	NA	0.70 J	NA	4.8 U	NA	NA	NA	NA														
Dibenzo(a,h)anthracene			μg/L	4.8 U	NA	4.7 U	NA	4.8 U	NA	NA	NA	NA														
Fluoranthene		50 (GV)	μg/L	4.8 U	NA	5.4	NA	4.8 U	NA	NA	NA	NA														
Fluorene		50 (GV)	μg/L	4.8 U	NA	29	NA	4.8 U	NA	NA	NA	NA														
Indeno(1,2,3-cd)pyrene*	0.	.002 (GV)	μg/L	4.8 U	NA	4.7 U	NA	4.8 U	NA	NA	NA	NA														
Naphthalene		10 (GV)	μg/L	4.8 U	NA	800 D	NA	7.3	NA	NA	NA	NA														
Phenanthrene		50 (GV)	μg/L	4.8 U	NA	33	NA	4.8 U	NA	NA	NA	NA														
Pyrene		50 (GV)	μg/L	4.8 U	NA	9.5	NA	4.8 U	NA	NA	NA	NA														
PAH COCs			μg/L	ND	NA	4.89 J	NA	ND	NA	NA	NA	NA														
Total PAHs			μg/L	ND	NA	1,008 J	NA	14.5	NA	NA	NA	NA														
Oxygen Demand	<u> </u>				T			T	ı	1	T		ı	1	1	T	T		1	T	1		1	T		
Biochemical Oxygen Demand			μg/L	NA	NA	NA	NA	NA	99,000	13,000	6,900	NA	NA	NA	NA	NA	NA	2,000 U	2,000 U	2,000U	NA	NA	NA	NA	NA	NA
Carbonaceous Biochemical Oxygen Demar	nd		μg/L	NA	NA	NA	NA	NA	79,400	NA	10,600	NA	NA	NA	NA	NA	NA	2,000 U	NA	2,000U	NA	NA	NA	NA	NA	NA


- * Indicates analytes is COC per Record of Decision (Table 1)
- 1. D Compound quantitated using a secondary dilution.
- 2. J Indicates that the analyte was detected at a concentration less than the practical quantitation limit (PQL).
- 3. U Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.
- 4. UB Indicates the constituent was not detected at a concentration less than the PQL due to associated blank contamination.
- 5. ND not detected
- 6. NA not analyzed
- 7. Sample results detected above the Method Detection Limit (MDL) are presented in bold font.
- 8. Shading indicates that the result exceeds the NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value.
- 9. "GV" indicates value is a guidance value (i.e., not a standard)


FIGURES


LD:(Opt)

APPENDIX A

Data Usability Summary Reports (Included on CD)

NYSEG Elmira Madison Avenue Former MGP Site

DATA USABILITY SUMMARY REPORT ELMIRA, NEW YORK

Volatile and Semivolatile Analysis

SDG #480-140400-1

Analyses Performed By: TestAmerica Laboratories Amherst, New York

Report #30642R Review Level: Tier III

Project: B0013134.0004.00001

SUMMARY

This data usability summary report (DUSR) summarizes the review of Sample Delivery Group (SDG) # 480-140400-1 for samples collected in association with the NYSEG Elmira Madison Avenue Former MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent		Analysis					
Sample ID	Lab ID	Matrix	Collection Date	Sample	VOC	svoc	РСВ	MET	MISC		
MW-8S	480-140400-1	Water	8/14/2018		X	Х					
MW-0405S	480-140400-2	Water	8/14/2018		Х	Х					
MW-4S	480-140400-3	Water	8/14/2018		Х	Х					
MW-0404S	480-140400-4	Water	8/14/2018		Х	Х					
MW-9S	480-140400-5	Water	8/14/2018		Х	Х					
MW-6S	480-140400-6	Water	8/14/2018		Х	Х					
DUP-081418	480-140400-7	Water	8/14/2018	MW-8S	Х	Х					
TRIP BLANK	480-140400-8	Water	8/14/2018		Х						

Note:

 Matrix spike/matrix spike duplicate was performed on sample location MW-4S for VOCs and SVOCs.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Reported		Performance Acceptable		Not	
Items Reviewed	No	Yes	No	Yes	Required	
Sample receipt condition		Х		Х		
2. Requested analyses and sample results		Х		Х		
Master tracking list		Х		Х		
4. Methods of analysis		Х		Х		
5. Reporting limits		Х		Х		
6. Sample collection date		Х		Х		
7. Laboratory sample received date		Х		Х		
8.Sample preservation verification (as applicable)		Х		Х		
Sample preparation/extraction/analysis dates		Х		Х		
10. Fully executed Chain-of-Custody (COC) form		Х		Х		
11. Narrative summary of QA or sample problems provided		Х		Х		
12. Data Package Completeness and Compliance		Х		Х		

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260C and 8270D. Data were reviewed in accordance with USEPA National Functional Guidelines (October 1999) and applicable Region II SOPs. USEPA NFGs and Region II SOPs were followed for qualification purposes.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times/Preservation

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	Water	14 days from collection to analysis (preserved) 7 days from collection to analysis (non-preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.
	Soil	48 hours from collection to extraction and 14 days from extraction to analysis	Cool to <6 °C.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery	
	Benzene	AC	>UL	
MW-4S	m-Xylene & p-Xylene	>111	>UL	
	o-Xylene	>UL		

Note:

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the core or control limit (LLL)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
Abolomora and Hineit (LL) but a 400/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
. 400/	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD spiking	Detect	N. A. (:
solution concentration.	Non-detect	No Action

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-8S/DUP-081418	All compounds	U	U	AC

Notes:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

The laboratory noted: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-8S (480-140400-1) and DUP-081418 (480-140400-7). Elevated reporting limits (RLs) are provided.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260	Re	ported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	RY (GC/N	NS)			
Tier II Validation					
Holding times		X		X	
Reporting limits (units)		Х		Х	
Blanks					1
A. Method blanks		X		X	
B. Equipment blanks					
C. Trip blanks		X		Х	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					
LCS/LCSD Precision (RPD)					
Matrix Spike (MS)		Х	Х		
Matrix Spike Duplicate(MSD)		Х	Х		
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content	Х				Х
Tier III Validation					1
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
lon abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	

VOCs: SW-846 8260		orted		mance ptable	Not			
		Yes	No	Yes	Required			
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)								
C. RT of sample compounds within the established RT windows		X		Х				
D. Transcription/calculation errors present		Х		Х				
E. Reporting limits adjusted to reflect sample dilutions		Х		Х				

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
0.44.0.40.0070	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C
SW-846 8270	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
MW-4S	Acenaphthylene	>UL	AC
MVV-43	Fluoranthene	>UL	>UL

Note:

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the company control limit (LIII)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ

Control Limit	Sample Result	Qualification	
	Detect	J	
< 10%	Non-detect	R	
	Detect	J	
Parent sample concentration > four times the MS/MSD spiking	Detect	No Action	
solution concentration.	Non-detect		

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery			
MW-8S MW-0405S MW-4S MW-0404S MW-9S MW-6S DUP-081418	Acenaphthene				
	Acenaphthylene				
	Anthracene				
	Benz(a)anthracene				
	Benzo(a)pyrene				
	Benzo(b)fluoranthene	>UL			
	Benzo(k)fluoranthene	>UL			
	Chrysene				
	Fluoranthene				
	Naphthalene				
	Phenanthrene				
	Fluorene				

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper central limit (LIL)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower central limit (LL) but > 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
. 400/	Non-detect	R
< 10%	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-8S/DUP-081418	Acenaphthene	2.1 J	26 U	AC

Notes:

AC Acceptable

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

The laboratory noted: The following samples were diluted due to the nature of the sample matrix: MW-8S (480-140400-1) and DUP-081418(480-140400-7). Elevated reporting limits (RLs) are provided.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	Reported		Performance Acceptable		Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROM	GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)					
Tier II Validation						
Holding times		X		X		
Reporting limits (units)		X		X		
Blanks						
A. Method blanks		X		X		
B. Equipment blanks					Х	
Laboratory Control Sample (LCS) %R		X	X			
Laboratory Control Sample Duplicate(LCSD) %R					X	
LCS/LCSD Precision (RPD)					X	
Matrix Spike (MS) %R		Х	Х			
Matrix Spike Duplicate(MSD) %R		Х	Х			
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		х		Х		
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		
Moisture Content	х				Х	
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
lon abundance criteria for each instrument used		Х		Х		
Internal standard		х		Х		
Compound identification and quantitation						
F. Reconstructed ion chromatograms		Х		Х		
G. Quantitation Reports		Х		Х		
H. RT of sample compounds within the established RT windows		х		х		

	SVOCs: SW-846 8270		orted	Perfori Accep		Not
			Yes	No	Yes	Required
GAS	CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC	/MS)			
I.	Quantitation transcriptions/calculations		Х		Х	
J.	Reporting limits adjusted to reflect sample dilutions		X		X	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

DATA USABILITY SUMMARY REPORT

SAMPLE COMPLIANCE REPORT

Sample						C	Compliar	ncy ¹		
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	VOC	svoc	РСВ	MET	MISC	Noncompliance
	8/14/2018	USEPA/ SW846	MW-8S	Water	Yes	Yes				
	8/14/2018	USEPA/ SW846	MW-0405S	Water	Yes	Yes				
	8/14/2018	USEPA/ SW846	MW-4S	Water	Yes	Yes				
480-140400-1	8/14/2018	USEPA/ SW846	MW-0404S	Water	Yes	Yes				
400-140400-1	8/14/2018	USEPA/ SW846	MW-9S	Water	Yes	Yes				
	8/14/2018	USEPA/ SW846	MW-6S	Water	Yes	Yes				
	8/14/2018	USEPA/ SW846	DUP-081418	Water	Yes	Yes				
	8/14/2018	USEPA/ SW846	TRIP BLANK	Water	Yes					

Note:

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

DATA USABILITY SUMMARY REPORT

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: September 14, 2018

Jugh c. House

PEER REVIEW: Dennis Capria

DATE: September 19, 2018

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Lab & Test

TestAmerica Job ID: 480-140400-1

Client Sample ID: MW-8S Lab Sample ID: 480-140400-1

Date Collected: 08/14/18 11:35
Date Received: 08/15/18 09:45
Matrix: Water

Method: 8260C - Volatile Orga	nic Compounds I	by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<8.0		8.0	3.3	ug/L			08/18/18 01:26	8
Toluene	<8.0		8.0	4.1	ug/L			08/18/18 01:26	8
Ethylbenzene	<8.0		8.0	5.9	ug/L			08/18/18 01:26	8
m-Xylene & p-Xylene	<16		16	5.3	ug/L			08/18/18 01:26	8
o-Xylene	<8.0		8.0	6.1	ug/L			08/18/18 01:26	8
Xylenes, Total	<16		16	5.3	ug/L			08/18/18 01:26	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120			-		08/18/18 01:26	8
Toluene-d8 (Surr)	105		80 - 120					08/18/18 01:26	8
4-Bromofluorobenzene (Surr)	110		73 - 120					08/18/18 01:26	8
Dibromofluoromethane (Surr)	113		75 ₋ 123					08/18/18 01:26	8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.1	J	25	2.1	ug/L		08/16/18 07:40	08/22/18 23:20	5
Acenaphthylene	<25	ω 	25	1.9	ug/L		08/16/18 07:40	08/22/18 23:20	5
Anthracene	<25	- In	25	1.4	ug/L		08/16/18 07:40	08/22/18 23:20	5
Benz(a)anthracene	<25	-	25	1.8	ug/L		08/16/18 07:40	08/22/18 23:20	5
Benzo(a)pyrene	<25	- Andrew	25	2.4	ug/L		08/16/18 07:40	08/22/18 23:20	5
Benzo(b)fluoranthene	<25	-	25	1.7	ug/L		08/16/18 07:40	08/22/18 23:20	5
Benzo(g,h,i)perylene	<25		25	1.8	ug/L		08/16/18 07:40	08/22/18 23:20	5
Benzo(k)fluoranthene	<25	politica.	25	3.7	ug/L		08/16/18 07:40	08/22/18 23:20	5
Chrysene	<25	-dece	25	1.7	ug/L		08/16/18 07:40	08/22/18 23:20	5
Dibenz(a,h)anthracene	<25		25	2.1	ug/L		08/16/18 07:40	08/22/18 23:20	5
Fluoranthene	<25	**	25	2.0	ug/L		08/16/18 07:40	08/22/18 23:20	5
Fluorene	<25	****	25	1.8	ug/L		08/16/18 07:40	08/22/18 23:20	5
Indeno(1,2,3-c,d)pyrene	<25		25	2.4	ug/L		08/16/18 07:40	08/22/18 23:20	5
Naphthalene	<25	CONTRACT OF THE PARTY OF THE PA	25	3.8	ug/L		08/16/18 07:40	08/22/18 23:20	5
Phenanthrene	<25	A distribution	25	2.2	ug/L		08/16/18 07:40	08/22/18 23:20	5
Pyrene	<25		25	1.7	ug/L		08/16/18 07:40	08/22/18 23:20	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67		46 - 120				08/16/18 07:40	08/22/18 23:20	5
2-Fluorobiphenyl	84		48 - 120				08/16/18 07:40	08/22/18 23:20	5
p-Terphenyl-d14	68		59 ₋ 136				08/16/18 07:40	08/22/18 23:20	5

Client Sample ID: MW-0405S

Date Collected: 08/14/18 12:00

Lab Sample ID: 480-140400-2

Matrix: Water

Date Received: 08/15/18 09:45

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	0.41	ug/L			08/18/18 01:54	1
Toluene	<1.0	1.0	0.51	ug/L			08/18/18 01:54	1
Ethylbenzene	<1.0	1.0	0.74	ug/L			08/18/18 01:54	1
m-Xylene & p-Xylene	<2.0	2.0	0.66	ug/L			08/18/18 01:54	1
o-Xylene	<1.0	1.0	0.76	ug/L			08/18/18 01:54	1
Xylenes, Total	<2.0	2.0	0.66	ug/L			08/18/18 01:54	1

TestAmerica Buffalo

Page 6 of 25 8/28/2018

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Lab & Test

TestAmerica Job ID: 480-140400-1

Client Sample ID: MW-0405S

Date Collected: 08/14/18 12:00 Date Received: 08/15/18 09:45 Lab Sample ID: 480-140400-2

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120		08/18/18 01:54	1
Toluene-d8 (Surr)	108		80 - 120		08/18/18 01:54	1
4-Bromofluorobenzene (Surr)	114		73 _ 120		08/18/18 01:54	1
Dibromofluoromethane (Surr)	109		75 - 123		08/18/18 01:54	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.0		5.0	0.41	ug/L		08/16/18 07:40	08/22/18 23:48	1
Acenaphthylene	<5.0		5.0	0.38	ug/L		08/16/18 07:40	08/22/18 23:48	1
Anthracene	<5.0		5.0	0.28	ug/L		08/16/18 07:40	08/22/18 23:48	1
Benz(a)anthracene	<5.0		5.0	0.36	ug/L		08/16/18 07:40	08/22/18 23:48	1
Benzo(a)pyrene	<5.0		5.0	0.47	ug/L		08/16/18 07:40	08/22/18 23:48	1
Benzo(b)fluoranthene	<5.0	}	5.0	0.34	ug/L		08/16/18 07:40	08/22/18 23:48	1
Benzo(g,h,i)perylene	<5.0		5.0	0.35	ug/L		08/16/18 07:40	08/22/18 23:48	1
Benzo(k)fluoranthene	<5.0	patric,	5.0	0.73	ug/L		08/16/18 07:40	08/22/18 23:48	1
Chrysene	<5.0 **		5.0	0.33	ug/L		08/16/18 07:40	08/22/18 23:48	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		08/16/18 07:40	08/22/18 23:48	1
Fluoranthene	<5.0	Bite.	5.0	0.40	ug/L		08/16/18 07:40	08/22/18 23:48	1
Fluorene	<5.0 *	Secretary Control of the Control of	5.0	0.36	ug/L		08/16/18 07:40	08/22/18 23:48	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		08/16/18 07:40	08/22/18 23:48	1
Naphthalene	<5.0 **	_	5.0	0.76	ug/L		08/16/18 07:40	08/22/18 23:48	1
Phenanthrene	<5.0 ◆	Months.	5.0	0.44	ug/L		08/16/18 07:40	08/22/18 23:48	1
Pyrene	<5.0		5.0	0.34	ug/L		08/16/18 07:40	08/22/18 23:48	1
0	0/ 5	_							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	87		46 - 120	08/16/18 07:40	08/22/18 23:48	1
2-Fluorobiphenyl	103		48 - 120	08/16/18 07:40	08/22/18 23:48	1
p-Terphenyl-d14	97		59 - 136	08/16/18 07:40	08/22/18 23:48	1

Client Sample ID: MW-4S

Date Collected: 08/14/18 13:55 Date Received: 08/15/18 09:45 Lab Sample ID: 480-140400-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	F4	1.0	0.41	ug/L			08/18/18 02:21	1
Toluene	<1.0		1.0	0.51	ug/L			08/18/18 02:21	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			08/18/18 02:21	1
m-Xylene & p-Xylene	<2.0	P	2.0	0.66	ug/L			08/18/18 02:21	1
o-Xylene	<1.0	Ħ ^l	1.0	0.76	ug/L			08/18/18 02:21	1
Xylenes, Total	<2.0	F∯1	2.0	0.66	ug/L			08/18/18 02:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120					08/18/18 02:21	1
Toluene-d8 (Surr)	105		80 - 120					08/18/18 02:21	1
4-Bromofluorobenzene (Surr)	110		73 - 120					08/18/18 02:21	1
Dibromofluoromethane (Surr)	114		75 _ 123					08/18/18 02:21	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Lab & Test

TestAmerica Job ID: 480-140400-1

Client Sample ID: MW-4S

Date Collected: 08/14/18 13:55 Date Received: 08/15/18 09:45 Lab Sample ID: 480-140400-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<5.0	-Faterier	5.0	0.38	ug/L		08/16/18 07:40	08/22/18 18:04	1
Anthracene	<5.0	1	5.0	0.28	ug/L		08/16/18 07:40	08/22/18 18:04	1
Benz(a)anthracene	<5.0		5.0	0.36	ug/L		08/16/18 07:40	08/22/18 18:04	1
Benzo(a)pyrene	<5.0		5.0	0.47	ug/L		08/16/18 07:40	08/22/18 18:04	1
Benzo(b)fluoranthene	<5.0	1	5.0	0.34	ug/L		08/16/18 07:40	08/22/18 18:04	1
Benzo(g,h,i)perylene	<5.0		5.0	0.35	ug/L		08/16/18 07:40	08/22/18 18:04	1
Benzo(k)fluoranthene	<5.0	l'en	5.0	0.73	ug/L		08/16/18 07:40	08/22/18 18:04	1
Chrysene	<5.0	100 000	5.0	0.33	ug/L		08/16/18 07:40	08/22/18 18:04	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		08/16/18 07:40	08/22/18 18:04	1
Fluoranthene	<5.0	-	5.0	0.40	ug/L		08/16/18 07:40	08/22/18 18:04	1
Fluorene	<5.0	*****	5.0	0.36	ug/L		08/16/18 07:40	08/22/18 18:04	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		08/16/18 07:40	08/22/18 18:04	1
Naphthalene	<5.0	*** *********************************	5.0	0.76	ug/L		08/16/18 07:40	08/22/18 18:04	1
Phenanthrene	<5.0	**	5.0	0.44	ug/L		08/16/18 07:40	08/22/18 18:04	1
Pyrene	<5.0		5.0	0.34	ug/L		08/16/18 07:40	08/22/18 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

46 - 120

48 - 120

59 - 136

64

79

91

Client Sample ID: MW-0404S

Date Collected: 08/14/18 14:15 Date Received: 08/15/18 09:45

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

Lab Sample ID: 480-140400-4

08/22/18 18:04

08/22/18 18:04

08/22/18 18:04

08/16/18 07:40

08/16/18 07:40

08/16/18 07:40

Matrix: Water

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			08/18/18 02:48	1
Toluene	<1.0		1.0	0.51	ug/L			08/18/18 02:48	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			08/18/18 02:48	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			08/18/18 02:48	1
o-Xylene	<1.0		1.0	0.76	ug/L			08/18/18 02:48	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			08/18/18 02:48	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					08/18/18 02:48	1
Toluene-d8 (Surr)	108		80 - 120					08/18/18 02:48	1
4-Bromofluorobenzene (Surr)	110		73 - 120					08/18/18 02:48	1
Dibromofluoromethane (Surr)	113		75 ₋ 123					08/18/18 02:48	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.0	5.0	0.41	ug/L		08/16/18 07:40	08/23/18 00:17	1
Acenaphthylene	<5.0	5.0	0.38	ug/L		08/16/18 07:40	08/23/18 00:17	1
Anthracene	<5.0	5.0	0.28	ug/L		08/16/18 07:40	08/23/18 00:17	1
Benz(a)anthracene	<5.0	5.0	0.36	ug/L		08/16/18 07:40	08/23/18 00:17	1
Benzo(a)pyrene	<5.0	5.0	0.47	ug/L		08/16/18 07:40	08/23/18 00:17	1
Benzo(b)fluoranthene	<5.0	5.0	0.34	ug/L		08/16/18 07:40	08/23/18 00:17	1
Benzo(g,h,i)perylene	<5.0	5.0	0.35	ug/L		08/16/18 07:40	08/23/18 00:17	1
Benzo(k)fluoranthene	<5.0	5.0	0.73	ug/L		08/16/18 07:40	08/23/18 00:17	1

TestAmerica Buffalo

Page 8 of 25

8/28/2018

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Lab & Test

TestAmerica Job ID: 480-140400-1

Client Sample ID: MW-0404S

Lab Sample ID: 480-140400-4

Matrix: Water

Date Collected: 08/14/18 14:15 Date Received: 08/15/18 09:45

Method: 8270D - Semivolati Analyte	•	nds (GC/IVI) Qualifier	S) (Continued) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	<5.0	edition?	5.0	0.33			08/16/18 07:40	08/23/18 00:17	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		08/16/18 07:40	08/23/18 00:17	1
Fluoranthene	<5.0	A.	5.0	0.40	ug/L		08/16/18 07:40	08/23/18 00:17	1
Fluorene	<5.0	at the second	5.0	0.36	ug/L		08/16/18 07:40	08/23/18 00:17	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		08/16/18 07:40	08/23/18 00:17	1
Naphthalene	<5.0	19 4 000°	5.0	0.76	ug/L		08/16/18 07:40	08/23/18 00:17	1
Phenanthrene	<5.0	- April 1900	5.0	0.44	ug/L		08/16/18 07:40	08/23/18 00:17	1
Pyrene	<5.0		5.0	0.34	ug/L		08/16/18 07:40	08/23/18 00:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	90		46 - 120				08/16/18 07:40	08/23/18 00:17	1
2-Fluorobiphenyl	104		48 - 120				08/16/18 07:40	08/23/18 00:17	1
p-Terphenyl-d14	89		59 - 136				08/16/18 07:40	08/23/18 00:17	1

Client Sample ID: MW-9S

Date Collected: 08/14/18 16:45

Date Received: 08/15/18 09:45

Lab Sample ID: 480-140400-5 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			08/18/18 03:16	1
Toluene	<1.0		1.0	0.51	ug/L			08/18/18 03:16	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			08/18/18 03:16	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			08/18/18 03:16	1
o-Xylene	<1.0		1.0	0.76	ug/L			08/18/18 03:16	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			08/18/18 03:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			-		08/18/18 03:16	1
Toluene-d8 (Surr)	111		80 - 120					08/18/18 03:16	1
4-Bromofluorobenzene (Surr)	115		73 - 120					08/18/18 03:16	1
Dibromofluoromethane (Surr)	114		75 ₋ 123					08/18/18 03:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.0	T	5.0	0.41	ug/L		08/16/18 07:40	08/23/18 03:09	1
Acenaphthylene	<5.0	1	5.0	0.38	ug/L		08/16/18 07:40	08/23/18 03:09	1
Anthracene	<5.0	•	5.0	0.28	ug/L		08/16/18 07:40	08/23/18 03:09	1
Benz(a)anthracene	<5.0	1	5.0	0.36	ug/L		08/16/18 07:40	08/23/18 03:09	1
Benzo(a)pyrene	<5.0		5.0	0.47	ug/L		08/16/18 07:40	08/23/18 03:09	1
Benzo(b)fluoranthene	<5.0	1	5.0	0.34	ug/L		08/16/18 07:40	08/23/18 03:09	1
Benzo(g,h,i)perylene	<5.0		5.0	0.35	ug/L		08/16/18 07:40	08/23/18 03:09	1
Benzo(k)fluoranthene	<5.0	diam.	5.0	0.73	ug/L		08/16/18 07:40	08/23/18 03:09	1
Chrysene	<5.0 =	ajpričast	5.0	0.33	ug/L		08/16/18 07:40	08/23/18 03:09	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		08/16/18 07:40	08/23/18 03:09	1
Fluoranthene	<5.0 ⁴	Mano-	5.0	0.40	ug/L		08/16/18 07:40	08/23/18 03:09	1
Fluorene	<5.0	agores»	5.0	0.36	ug/L		08/16/18 07:40	08/23/18 03:09	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		08/16/18 07:40	08/23/18 03:09	1
Naphthalene	<5.0 -4		5.0	0.76	ug/L		08/16/18 07:40	08/23/18 03:09	1
Phenanthrene	<5.0 ⁻⁸	and the same	5.0	0.44	ug/L		08/16/18 07:40	08/23/18 03:09	1

TestAmerica Buffalo

Page 9 of 25

8/28/2018

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Lab & Test

TestAmerica Job ID: 480-140400-1

Lab Sample ID: 480-140400-5

Matrix: Water

Client Sample ID: MW-9S Date Collected: 08/14/18 16:45 Date Received: 08/15/18 09:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	<5.0		5.0	0.34	ug/L		08/16/18 07:40	08/23/18 03:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	93		46 - 120				08/16/18 07:40	08/23/18 03:09	1
2-Fluorobiphenyl	104		48 - 120				08/16/18 07:40	08/23/18 03:09	1
p-Terphenyl-d14	112		59 - 136				08/16/18 07:40	08/23/18 03:09	1

Lab Sample ID: 480-140400-6

Matrix: Water

Date Collected: 08/14/18 16:45 Date Received: 08/15/18 09:45

Client Sample ID: MW-6S

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	0.41	ug/L			08/18/18 03:43	1
Toluene	<1.0	1.0	0.51	ug/L			08/18/18 03:43	1
Ethylbenzene	<1.0	1.0	0.74	ug/L			08/18/18 03:43	1
m-Xylene & p-Xylene	<2.0	2.0	0.66	ug/L			08/18/18 03:43	1
o-Xylene	<1.0	1.0	0.76	ug/L			08/18/18 03:43	1
Xylenes, Total	<2.0	2.0	0.66	ug/L			08/18/18 03:43	1

Surrogate	%Recovery (Qualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	77 - 120	08/18/18 03:43	1
Toluene-d8 (Surr)	107	80 - 120	08/18/18 03:43	1
4-Bromofluorobenzene (Surr)	112	73 - 120	08/18/18 03:43	1
Dibromofluoromethane (Surr)	111	75 - 123	08/18/18 03:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.2	7	5.2	0.43	ug/L		08/16/18 07:40	08/23/18 03:37	1
Acenaphthylene	<5.2		5.2	0.40	ug/L		08/16/18 07:40	08/23/18 03:37	1
Anthracene	<5.2		5.2	0.29	ug/L		08/16/18 07:40	08/23/18 03:37	1
Benz(a)anthracene	<5.2		5.2	0.38	ug/L		08/16/18 07:40	08/23/18 03:37	1
Benzo(a)pyrene	<5.2		5.2	0.49	ug/L		08/16/18 07:40	08/23/18 03:37	1
Benzo(b)fluoranthene	<5.2	1	5.2	0.35	ug/L		08/16/18 07:40	08/23/18 03:37	1
Benzo(g,h,i)perylene	<5.2		5.2	0.36	ug/L		08/16/18 07:40	08/23/18 03:37	1
Benzo(k)fluoranthene	<5.2	-	5.2	0.76	ug/L		08/16/18 07:40	08/23/18 03:37	1
Chrysene	<5.2	*Len	5.2	0.34	ug/L		08/16/18 07:40	08/23/18 03:37	1
Dibenz(a,h)anthracene	<5.2		5.2	0.44	ug/L		08/16/18 07:40	08/23/18 03:37	1
Fluoranthene	<5.2	-	5.2	0.42	ug/L		08/16/18 07:40	08/23/18 03:37	1
Fluorene	<5.2	-	5.2	0.38	ug/L		08/16/18 07:40	08/23/18 03:37	1
Indeno(1,2,3-c,d)pyrene	<5.2		5.2	0.49	ug/L		08/16/18 07:40	08/23/18 03:37	1
Naphthalene	<5.2	~	5.2	0.79	ug/L		08/16/18 07:40	08/23/18 03:37	1
Phenanthrene	<5.2		5.2	0.46	ug/L		08/16/18 07:40	08/23/18 03:37	1
Pyrene	<5.2		5.2	0.35	ug/L		08/16/18 07:40	08/23/18 03:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	82		46 - 120				08/16/18 07:40	08/23/18 03:37	1
2-Fluorobiphenyl	101		48 - 120				08/16/18 07:40	08/23/18 03:37	1
p-Terphenyl-d14	99		59 - 136				08/16/18 07:40	08/23/18 03:37	1

TestAmerica Buffalo

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Lab & Test

TestAmerica Job ID: 480-140400-1

Client Sample ID: DUP-081418

Date Collected: 08/14/18 00:00 Date Received: 08/15/18 09:45 Lab Sample ID: 480-140400-7

Matrix: Water

Method: 8260C - Volatile Organic	Compounds	by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<8.0		8.0	3.3	ug/L			08/18/18 04:10	8
Toluene	<8.0		8.0	4.1	ug/L			08/18/18 04:10	8
Ethylbenzene	<8.0		8.0	5.9	ug/L			08/18/18 04:10	8
m-Xylene & p-Xylene	<16		16	5.3	ug/L			08/18/18 04:10	8
o-Xylene	<8.0		8.0	6.1	ug/L			08/18/18 04:10	8
Xylenes, Total	<16		16	5.3	ug/L			08/18/18 04:10	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			_		08/18/18 04:10	8
Toluene-d8 (Surr)	107		80 - 120					08/18/18 04:10	8
4-Bromofluorobenzene (Surr)	110		73 - 120					08/18/18 04:10	8
Dibromofluoromethane (Surr)	110		75 - 123					08/18/18 04:10	8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<26	· ·	26	2.1	ug/L		08/16/18 07:40	08/23/18 04:06	5
Acenaphthylene	<26		26	2.0	ug/L		08/16/18 07:40	08/23/18 04:06	5
Anthracene	<26	1	26	1.5	ug/L		08/16/18 07:40	08/23/18 04:06	5
Benz(a)anthracene	<26	1	26	1.9	ug/L		08/16/18 07:40	08/23/18 04:06	5
Benzo(a)pyrene	<26	1	26	2.4	ug/L		08/16/18 07:40	08/23/18 04:06	5
Benzo(b)fluoranthene	<26	-	26	1.8	ug/L		08/16/18 07:40	08/23/18 04:06	5
Benzo(g,h,i)perylene	<26		26	1.8	ug/L		08/16/18 07:40	08/23/18 04:06	5
Benzo(k)fluoranthene	<26	dia.	26	3.8	ug/L		08/16/18 07:40	08/23/18 04:06	5
Chrysene	<26	****	26	1.7	ug/L		08/16/18 07:40	08/23/18 04:06	5
Dibenz(a,h)anthracene	<26		26	2.2	ug/L		08/16/18 07:40	08/23/18 04:06	5
Fluoranthene	<26	اساله	26	2.1	ug/L		08/16/18 07:40	08/23/18 04:06	5
Fluorene	<26	Capero,	26	1.9	ug/L		08/16/18 07:40	08/23/18 04:06	5
Indeno(1,2,3-c,d)pyrene	<26		26	2.4	ug/L		08/16/18 07:40	08/23/18 04:06	5
Naphthalene	<26	مد.	26	4.0	ug/L		08/16/18 07:40	08/23/18 04:06	5
Phenanthrene	<26	uture.	26	2.3	ug/L		08/16/18 07:40	08/23/18 04:06	5
Pyrene	<26		26	1.8	ug/L		08/16/18 07:40	08/23/18 04:06	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	64		46 - 120				08/16/18 07:40	08/23/18 04:06	5
2-Fluorobiphenyl	78		48 - 120				08/16/18 07:40	08/23/18 04:06	5
p-Terphenyl-d14	68		59 - 136				08/16/18 07:40	08/23/18 04:06	5

Client Sample ID: TRIP BLANK

Date Collected: 08/14/18 00:00 Date Received: 08/15/18 09:45 Lab Sample ID: 480-140400-8

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	0.41	ug/L			08/18/18 04:38	1
Toluene	<1.0	1.0	0.51	ug/L			08/18/18 04:38	1
Ethylbenzene	<1.0	1.0	0.74	ug/L			08/18/18 04:38	1
m-Xylene & p-Xylene	<2.0	2.0	0.66	ug/L			08/18/18 04:38	1
o-Xylene	<1.0	1.0	0.76	ug/L			08/18/18 04:38	1
Xylenes, Total	<2.0	2.0	0.66	ug/L			08/18/18 04:38	1

TestAmerica Buffalo

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Lab & Test

TestAmerica Job ID: 480-140400-1

Client Sample ID: TRIP BLANK

Date Received: 08/15/18 09:45

Date Collected: 08/14/18 00:00

Lab Sample ID: 480-140400-8 Matrix: Water

	Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	102		77 - 120	08/18/18 04:3	1
ĺ	Toluene-d8 (Surr)	107		80 _ 120	08/18/18 04:3	1
	4-Bromofluorobenzene (Surr)	109		73 - 120	08/18/18 04:30	1
	Dibromofluoromethane (Surr)	116		75 - 123	08/18/18 04:3	1

TestAmerica Buffalo 10 Hazelwood Orive

Chain of Custody Record

TestAmeri

() | 200 285529 RCRA Duber Regulatory Program: DW NPDES Anherst, NY 14228 Phone: 716.691.2600 Fax: 716.691.799

	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1				CALANT TOTAL		1	ı	No.	Selection of the Control of the Cont	The boundary and the state of t	
	Cheff Confact	Project manager:		Michael	S HYSTE		Site Contact:	くないこのない		Date:	00 F - 00	Œ	00 00 00 00 00 00 00 00 00 00 00 00 00	(
y Name	Accadis	Tel/Fax:	565	152 - 88	4883	-	Lab Contact:	Melissu	Q	Carrier:	するこれ	- The state of the	,0	480-140400 COC
Address 245	245 Wissiant Dr Sut 301	ď	nalysis Ti	Analysis Turnaround Time	Time								Sampler	
City/State/Zip.	03 hH /	CALENDAR DAYS	AR DAYS	WOR X	X WORKING DAYS	Ī							For Lab Use Only	7/1/
ne 5857	1747	1.0.1	if different fro	TAT if different from Balow Stransca	42.See	Ī	(N		*********				Walk-in Client	And the second s
- 1	,	*** <u>*</u>	~	2 weeks		(N	11		terininana		entropolico.		Lab Sampling	The state of the s
~ 1	Taxixia from Formal Alors		4+1	1 week		/ A)								
	2.04		rvi +	2 days		əįdi			negágnas kenness		e la companione		Job / SDG No.	
		Towns,	*	رامتاغ		me			****	~				
ß	Sample Identification	Sample Date	Sample	Sample Type (CrComp,	Matrix	S bereili E bereili	M MIDDING KATA R HAS			en de la companya de La companya de la companya de		ettaalisetekki apariik kauseya et ili etteriteri. Austronomi sukurikani kauseya et ili etteriteri sukurikani.	9 6 6 7 8 8 8	sound Specific Make
8 8		(S)	55	0	Ć is	v								
ンソジまで・コン	Y Y 9	20 DIE 0	25.5	10	-	1								
		2].	3	>	4	1	>		-		+			
S.T. 3.E		D/14/18/13/55	1355		C S	\$	>	Mary and and a second of			-			accommon and
STOTO . SIE PE	~丁.	OFFICE TO	5	Ð	35	6	\[\sum_{1}^{2} \sum_{1}^{2} \]							
St. 3		S/H1/6 1545	249	1	35	1	7	l law jor jahana	-				A CONTRACTOR OF THE PROPERTY O	
59, 31 24 €		>401 8/1m/18	244	2	17.14	1								
1	IN- 45 (125/1250)	81141118 1355	1355	1	 	2			and the second				And Andreas and Andreas	
	3418	00 10 10 10 10 10 10 10 10 10 10 10 10 1		P	 	V							PROPERTY AND PROPE	
His SIRK	×	18/m/8		1		14							And form to a second designation of the seco	
y ign.													Annual representation and the Constitution of the Appropriate treat description of th	
				-	and the second s									
		The second secon												
Preservation Used: 1	Preservation Used: 1= ice, 2= HCi; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 6	- Other		.		 - -		H					
Possible Hazard Identification: Are any samples from a listed EF Comments Section if the tab is to	A Hazardous Waste?	Please List any EPA Was	A Waste	ite Codes for the sample in the	e sample	in the	Sample D	sposal (A fee m	ay be as	sessed II	samples	are retain	Sâmple Disposal (A fee may be assessed if samples are retained longer than 1 month)	nonth)
XABON-HAZARG	Frammatsle Skun) tritain	Polson B		Unkergwe	9/		Return	Return to Chem	X Dispos	X Dispessal by Lab		Archive for	Renthy	<u>Schelluge of Carpine Hill</u>
Special Instructions/(Special Instructions/QC Requirements & Comments:											, ,,	andersens-Jerostalenskippy op gesterning gesterning gesterning gesterning gesterning gesterning gesterning ges	And the state of t

Lex	Date/Time, /33/Received by.	Бу.	Date/Time
	CANADA CONTRACTOR CONT		
Company.	Date/Time: Received by:	Company	Date/Time
Company:	Date/Time Received in Labyratory W. C. C.	Company	SHOW SIIS GAN

NYSEG Elmira Madison Avenue Former MGP Site

DATA USABILITY SUMMARY REPORT ELMIRA, NEW YORK

Volatile and Semivolatile Analysis

SDG #480-149303-1

Analyses Performed By: TestAmerica Laboratories Amherst, New York

Report #32123R Review Level: Tier III

Project: B0013134.0007.00002

SUMMARY

This data usability summary report (DUSR) summarizes the review of Sample Delivery Group (SDG) # 480-149303-1 for samples collected in association with the NYSEG Elmira Madison Avenue Former MGP Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent		А	nalysi	S	
Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	svoc	РСВ	MET	MISC
MW-6S	480-149303-1	Water	2/20/2019		Х	Х			
MW-8S	480-149303-2	Water	2/20/2019		Х	Х			
MW-4S	480-149303-3	Water	2/20/2019		Х	Х			
MW-9S	480-149303-4	Water	2/20/2019		Х	Х			
MW-0404S	480-149303-5	Water	2/20/2019		Х	Х			
MW-0405S	480-149303-6	Water	2/20/2019		Х	Х			
DUP-022019	480-149303-8	Water	2/20/2019	MW-8S	Х	Х			
FB-022019	480-149303-9	Water	2/20/2019		Х				

Note:

 Matrix spike/matrix spike duplicate was performed on sample location MW-9S for VOCs and SVOCs.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted	Performance Acceptable		Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		X	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8.Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Χ	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260C and 8270D. Data were reviewed in accordance with USEPA National Functional Guidelines (October 1999) and applicable Region II SOPs. USEPA NFGs and Region II SOPs were followed for qualification purposes.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times/Preservation

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	Water	14 days from collection to analysis (preserved) 7 days from collection to analysis (non-preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.
	Soil	48 hours from collection to extraction and 14 days from extraction to analysis	Cool to <6 °C.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MW-8S/DUP-022019	All compounds	U	U	AC

Notes:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

The laboratory noted: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-8S (480-149303-2) and DUP-022019 (480-149303-8). Elevated reporting limits (RLs) are provided.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260	Re	ported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/N	MS)			'
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		X		X	
B. Equipment blanks		Х		Х	
C. Trip blanks					Х
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					
LCS/LCSD Precision (RPD)					
Matrix Spike (MS)		Х		Х	
Matrix Spike Duplicate(MSD)		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content	Х				Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
lon abundance criteria for each instrument used		Х		X	
Internal standard		Х		X	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		X	
B. Quantitation Reports		Х		Х	

VOCs: SW-846 8260	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/M	S)			
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
0.44.0.40.0070	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C
SW-846 8270	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices and 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acenaphthene	5.9	5.4	
	Anthracene	0.47 J	0.39 J	
MW-8S/DUP-022019	Fluoranthene	1.7 J	1.4 J	AC
	Fluorene	4.6 J	4.3 J	
	Pyrene	1.5 J	1.3 J	

Notes:

AC Acceptable

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	Rep	orted		mance otable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC	S/MS)			
Tier II Validation					
Holding times		X		X	
Reporting limits (units)		X		X	
Blanks					
A. Method blanks		X		X	
B. Equipment blanks					X
Laboratory Control Sample (LCS) %R		X		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		X		X	
Matrix Spike Duplicate(MSD) %R		X		X	
MS/MSD Precision (RPD)		X		X	
Field/Lab Duplicate (RPD)		X		X	
Surrogate Spike Recoveries		X		X	
Dilution Factor		X		X	
Moisture Content	Х				Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		X		х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		X		Х	
lon abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
F. Reconstructed ion chromatograms		X		Х	
G. Quantitation Reports		Х		Х	
H. RT of sample compounds within the established RT windows		х		Х	

	SVOCs: SW-846 8270		orted	Perforr Accep		Not
		No	Yes	No	Yes	Required
GAS	CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC	/MS)			
I.	Quantitation transcriptions/calculations		Х		Х	
J.	Reporting limits adjusted to reflect sample dilutions		Х		X	

Notes:

%RSD Relative standard deviation

%R Percent recovery

RPD Relative percent difference

%D Percent difference

DATA USABILITY SUMMARY REPORT

SAMPLE COMPLIANCE REPORT

Sample						Compliancy ¹				
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	VOC	svoc	РСВ	MET	MISC	Noncompliance
	2/20/2019	USEPA/ SW846	MW-6S	Water	Yes	Yes				
	2/20/2019	USEPA/ SW846	MW-8S	Water	Yes	Yes				
	2/20/2019	USEPA/ SW846	MW-4S	Water	Yes	Yes				
480-149303-1	2/20/2019	USEPA/ SW846	MW-9S	Water	Yes	Yes				
400-143000-1	2/20/2019	USEPA/ SW846	MW-0404S	Water	Yes	Yes				
	2/20/2019	USEPA/ SW846	MW-0405S	Water	Yes	Yes				
	2/20/2019	USEPA/ SW846	DUP-022019	Water	Yes	Yes				
	2/20/2019	USEPA/ SW846	FB-022019	Water	Yes					

Note:

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

DATA USABILITY SUMMARY REPORT

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: March 19, 2019

Jugh c. House

PEER REVIEW: Dennis Capria

DATE: March 25, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Former MGP

TestAmerica Job ID: 480-149303-1

Lab Sample ID: 480-149303-1

Matrix: Water

Client Sample ID: MW-6S Date Collected: 02/20/19 12:25 Date Received: 02/21/19 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			02/22/19 11:41	1
Toluene	<1.0		1.0	0.51	ug/L			02/22/19 11:41	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			02/22/19 11:41	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			02/22/19 11:41	1
o-Xylene	<1.0		1.0	0.76	ug/L			02/22/19 11:41	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			02/22/19 11:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					02/22/19 11:41	1
Toluene-d8 (Surr)	98		80 - 120					02/22/19 11:41	1
4-Bromofluorobenzene (Surr)	97		73 - 120					02/22/19 11:41	1
Dibromofluoromethane (Surr)	94		75 - 123					02/22/19 11:41	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.0		5.0	0.41	ug/L		02/22/19 14:23	02/25/19 20:25	1
Acenaphthylene	<5.0		5.0	0.38	ug/L		02/22/19 14:23	02/25/19 20:25	1
Anthracene	<5.0		5.0	0.28	ug/L		02/22/19 14:23	02/25/19 20:25	1
Benz(a)anthracene	<5.0		5.0	0.36	ug/L		02/22/19 14:23	02/25/19 20:25	1
Benzo(a)pyrene	<5.0		5.0	0.47	ug/L		02/22/19 14:23	02/25/19 20:25	1
Benzo(b)fluoranthene	<5.0		5.0	0.34	ug/L		02/22/19 14:23	02/25/19 20:25	1
Benzo(g,h,i)perylene	<5.0		5.0	0.35	ug/L		02/22/19 14:23	02/25/19 20:25	1
Benzo(k)fluoranthene	<5.0		5.0	0.73	ug/L		02/22/19 14:23	02/25/19 20:25	1
Chrysene	<5.0		5.0	0.33	ug/L		02/22/19 14:23	02/25/19 20:25	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		02/22/19 14:23	02/25/19 20:25	1
Fluoranthene	<5.0		5.0	0.40	ug/L		02/22/19 14:23	02/25/19 20:25	1
Fluorene	<5.0		5.0	0.36	ug/L		02/22/19 14:23	02/25/19 20:25	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		02/22/19 14:23	02/25/19 20:25	1
Naphthalene	<5.0		5.0	0.76	ug/L		02/22/19 14:23	02/25/19 20:25	1
Phenanthrene	<5.0		5.0	0.44	ug/L		02/22/19 14:23	02/25/19 20:25	1
Pyrene	<5.0		5.0	0.34	ug/L		02/22/19 14:23	02/25/19 20:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	91		46 - 120				02/22/19 14:23	02/25/19 20:25	1
2-Fluorobiphenyl	98		48 - 120				02/22/19 14:23	02/25/19 20:25	1
p-Terphenyl-d14	116		59 - 136				02/22/19 14:23	02/25/19 20:25	1

Client Sample ID: MW-8S

Date Collected: 02/20/19 12:30

Lab Sample ID: 480-149303-2

Matrix: Water

Date Received: 02/21/19 10:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<8.0	8.0	3.3	ug/L			02/22/19 12:04	8
Toluene	<8.0	8.0	4.1	ug/L			02/22/19 12:04	8
Ethylbenzene	<8.0	8.0	5.9	ug/L			02/22/19 12:04	8
m-Xylene & p-Xylene	<16	16	5.3	ug/L			02/22/19 12:04	8
o-Xylene	<8.0	8.0	6.1	ug/L			02/22/19 12:04	8
Xylenes, Total	<16	16	5.3	ug/L			02/22/19 12:04	8

TestAmerica Buffalo

3/1/2019

Page 6 of 25

3

Ė

6

8

4.6

11

| 4

14

15

TestAmerica Job ID: 480-149303-1

Project/Site: NYSEG - Elmira Madison Ave Former MGP

Client Sample ID: MW-8S Lab Sample ID: 480-149303-2 Date Collected: 02/20/19 12:30 Matrix: Water

Date Received: 02/21/19 10:00

Client: New York State Electric & Gas

Surrogate	%Recovery	Qualifier Limit	:	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	77 - 1	20		02/22/19 12:04	8
Toluene-d8 (Surr)	97	80 - 1	20		02/22/19 12:04	8
4-Bromofluorobenzene (Surr)	94	73 - 1	20		02/22/19 12:04	8
Dibromofluoromethane (Surr)	95	75 - 1	23		02/22/19 12:04	8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.9		5.0	0.41	ug/L		02/22/19 14:23	02/25/19 20:54	1
Acenaphthylene	<5.0		5.0	0.38	ug/L		02/22/19 14:23	02/25/19 20:54	1
Anthracene	0.47	J	5.0	0.28	ug/L		02/22/19 14:23	02/25/19 20:54	1
Benz(a)anthracene	<5.0		5.0	0.36	ug/L		02/22/19 14:23	02/25/19 20:54	1
Benzo(a)pyrene	<5.0		5.0	0.47	ug/L		02/22/19 14:23	02/25/19 20:54	1
Benzo(b)fluoranthene	<5.0		5.0	0.34	ug/L		02/22/19 14:23	02/25/19 20:54	1
Benzo(g,h,i)perylene	<5.0		5.0	0.35	ug/L		02/22/19 14:23	02/25/19 20:54	1
Benzo(k)fluoranthene	<5.0		5.0	0.73	ug/L		02/22/19 14:23	02/25/19 20:54	1
Chrysene	<5.0		5.0	0.33	ug/L		02/22/19 14:23	02/25/19 20:54	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		02/22/19 14:23	02/25/19 20:54	1
Fluoranthene	1.7	J	5.0	0.40	ug/L		02/22/19 14:23	02/25/19 20:54	1
Fluorene	4.6	J	5.0	0.36	ug/L		02/22/19 14:23	02/25/19 20:54	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		02/22/19 14:23	02/25/19 20:54	1
Naphthalene	<5.0		5.0	0.76	ug/L		02/22/19 14:23	02/25/19 20:54	1
Phenanthrene	<5.0		5.0	0.44	ug/L		02/22/19 14:23	02/25/19 20:54	1
Pyrene	1.5	J	5.0	0.34	ug/L		02/22/19 14:23	02/25/19 20:54	1

Surrogate	%Recovery	Qualifier	Limits	Pre	pared	Analyzed	Dil Fac
Nitrobenzene-d5	83		46 - 120	02/22/	19 14:23	02/25/19 20:54	1
2-Fluorobiphenyl	92		48 - 120	02/22/	19 14:23	02/25/19 20:54	1
p-Terphenyl-d14	92		59 - 136	02/22/	19 14:23	02/25/19 20:54	1

Client Sample ID: MW-4S Lab Sample ID: 480-149303-3 Date Collected: 02/20/19 14:20 **Matrix: Water**

Date Received: 02/21/19 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			02/22/19 12:28	1
Toluene	<1.0		1.0	0.51	ug/L			02/22/19 12:28	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			02/22/19 12:28	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			02/22/19 12:28	1
o-Xylene	<1.0		1.0	0.76	ug/L			02/22/19 12:28	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			02/22/19 12:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			_		02/22/19 12:28	1
Toluene-d8 (Surr)	97		80 - 120					02/22/19 12:28	1
4-Bromofluorobenzene (Surr)	104		73 - 120					02/22/19 12:28	1
Dibromofluoromethane (Surr)	93		75 - 123					02/22/19 12:28	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Acenaphthene <5.0 5.0 0.41 ug/L 02/22/19 14:23 02/25/19 21:23

TestAmerica Buffalo

Page 7 of 25 3/1/2019

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Former MGP

TestAmerica Job ID: 480-149303-1

Lab Sample ID: 480-149303-3

Matrix: Water

Client Sample ID: MW-4S Date Collected: 02/20/19 14:20

Date Received: 02/21/19 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<5.0		5.0	0.38	ug/L		02/22/19 14:23	02/25/19 21:23	1
Anthracene	<5.0		5.0	0.28	ug/L		02/22/19 14:23	02/25/19 21:23	1
Benz(a)anthracene	<5.0		5.0	0.36	ug/L		02/22/19 14:23	02/25/19 21:23	1
Benzo(a)pyrene	<5.0		5.0	0.47	ug/L		02/22/19 14:23	02/25/19 21:23	1
Benzo(b)fluoranthene	<5.0		5.0	0.34	ug/L		02/22/19 14:23	02/25/19 21:23	1
Benzo(g,h,i)perylene	<5.0		5.0	0.35	ug/L		02/22/19 14:23	02/25/19 21:23	1
Benzo(k)fluoranthene	<5.0		5.0	0.73	ug/L		02/22/19 14:23	02/25/19 21:23	1
Chrysene	<5.0		5.0	0.33	ug/L		02/22/19 14:23	02/25/19 21:23	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		02/22/19 14:23	02/25/19 21:23	1
Fluoranthene	<5.0		5.0	0.40	ug/L		02/22/19 14:23	02/25/19 21:23	1
Fluorene	<5.0		5.0	0.36	ug/L		02/22/19 14:23	02/25/19 21:23	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		02/22/19 14:23	02/25/19 21:23	1
Naphthalene	<5.0		5.0	0.76	ug/L		02/22/19 14:23	02/25/19 21:23	1
Phenanthrene	<5.0		5.0	0.44	ug/L		02/22/19 14:23	02/25/19 21:23	1
Pyrene	<5.0		5.0	0.34	ug/L		02/22/19 14:23	02/25/19 21:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	74		46 - 120				02/22/19 14:23	02/25/19 21:23	1
2-Fluorobiphenyl	80		48 - 120				02/22/19 14:23	02/25/19 21:23	1
p-Terphenyl-d14	96		59 - 136				02/22/19 14:23	02/25/19 21:23	1

Client Sample ID: MW-9S

Date Collected: 02/20/19 14:15

Lab Sample ID: 480-149303-4

Matrix: Water

Date Received: 02/21/19 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			02/22/19 12:51	1
Toluene	<1.0		1.0	0.51	ug/L			02/22/19 12:51	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			02/22/19 12:51	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			02/22/19 12:51	1
o-Xylene	<1.0		1.0	0.76	ug/L			02/22/19 12:51	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			02/22/19 12:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			_		02/22/19 12:51	1
Toluene-d8 (Surr)	96		80 - 120					02/22/19 12:51	1
4-Bromofluorobenzene (Surr)	104		73 - 120					02/22/19 12:51	1
Dibromofluoromethane (Surr)	96		75 - 123					02/22/19 12:51	1

Method: 8270D - Semivolatile	lethod: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	<5.0	5.0	0.41	ug/L		02/22/19 14:23	02/25/19 18:58	1	
Acenaphthylene	<5.0	5.0	0.38	ug/L		02/22/19 14:23	02/25/19 18:58	1	
Anthracene	<5.0	5.0	0.28	ug/L		02/22/19 14:23	02/25/19 18:58	1	
Benz(a)anthracene	<5.0	5.0	0.36	ug/L		02/22/19 14:23	02/25/19 18:58	1	
Benzo(a)pyrene	<5.0	5.0	0.47	ug/L		02/22/19 14:23	02/25/19 18:58	1	
Benzo(b)fluoranthene	<5.0	5.0	0.34	ug/L		02/22/19 14:23	02/25/19 18:58	1	
Benzo(g,h,i)perylene	<5.0	5.0	0.35	ug/L		02/22/19 14:23	02/25/19 18:58	1	
Benzo(k)fluoranthene	<5.0	5.0	0.73	ug/L		02/22/19 14:23	02/25/19 18:58	1	

TestAmerica Buffalo

3/1/2019

Page 8 of 25

_

4

6

8

9

11

12

1 1

1 %

Client: New York State Electric & Gas

Client Sample ID: MW-9S

Date Collected: 02/20/19 14:15

Date Received: 02/21/19 10:00

Project/Site: NYSEG - Elmira Madison Ave Former MGP

Lab Sample ID: 480-149303-4

TestAmerica Job ID: 480-149303-1

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	<5.0	5.0	0.33	ug/L		02/22/19 14:23	02/25/19 18:58	1
Dibenz(a,h)anthracene	<5.0	5.0	0.42	ug/L		02/22/19 14:23	02/25/19 18:58	1
Fluoranthene	<5.0	5.0	0.40	ug/L		02/22/19 14:23	02/25/19 18:58	1
Fluorene	<5.0	5.0	0.36	ug/L		02/22/19 14:23	02/25/19 18:58	1
Indeno(1,2,3-c,d)pyrene	<5.0	5.0	0.47	ug/L		02/22/19 14:23	02/25/19 18:58	1
Naphthalene	<5.0	5.0	0.76	ug/L		02/22/19 14:23	02/25/19 18:58	1
Phenanthrene	<5.0	5.0	0.44	ug/L		02/22/19 14:23	02/25/19 18:58	1
Pyrene	<5.0	5.0	0.34	ug/L		02/22/19 14:23	02/25/19 18:58	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	86		46 - 120	02/22/19 14:23	02/25/19 18:58	1
2-Fluorobiphenyl	92		48 - 120	02/22/19 14:23	02/25/19 18:58	1
p-Terphenyl-d14	108		59 ₋ 136	02/22/19 14:23	02/25/19 18:58	1

Client Sample ID: MW-0404S Lab Sample ID: 480-149303-5

Date Collected: 02/20/19 16:15 Matrix: Water

Date Received: 02/21/19 10:00

i welliou. 62600 - voialile Orga	ilic compounds t	iy GC/IVIS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	0.41	ug/L			02/22/19 13:13	1
Toluene	<1.0		1.0	0.51	ug/L			02/22/19 13:13	1
Ethylbenzene	<1.0		1.0	0.74	ug/L			02/22/19 13:13	1
m-Xylene & p-Xylene	<2.0		2.0	0.66	ug/L			02/22/19 13:13	1
o-Xylene	<1.0		1.0	0.76	ug/L			02/22/19 13:13	1
Xylenes, Total	<2.0		2.0	0.66	ug/L			02/22/19 13:13	1

Surrogate	%Recovery	Qualifier	Limits	Prepa	red	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	98		77 - 120			02/22/19 13:13	1	
Toluene-d8 (Surr)	99		80 - 120		(02/22/19 13:13	1	
4-Bromofluorobenzene (Surr)	99		73 - 120		(02/22/19 13:13	1	
Dibromofluoromethane (Surr)	96		75 - 123			02/22/19 13:13	1	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.0	5.0	0.41	ug/L		02/22/19 14:23	02/25/19 21:53	1
Acenaphthylene	<5.0	5.0	0.38	ug/L		02/22/19 14:23	02/25/19 21:53	1
Anthracene	<5.0	5.0	0.28	ug/L		02/22/19 14:23	02/25/19 21:53	1
Benz(a)anthracene	<5.0	5.0	0.36	ug/L		02/22/19 14:23	02/25/19 21:53	1
Benzo(a)pyrene	<5.0	5.0	0.47	ug/L		02/22/19 14:23	02/25/19 21:53	1
Benzo(b)fluoranthene	<5.0	5.0	0.34	ug/L		02/22/19 14:23	02/25/19 21:53	1
Benzo(g,h,i)perylene	<5.0	5.0	0.35	ug/L		02/22/19 14:23	02/25/19 21:53	1
Benzo(k)fluoranthene	<5.0	5.0	0.73	ug/L		02/22/19 14:23	02/25/19 21:53	1
Chrysene	<5.0	5.0	0.33	ug/L		02/22/19 14:23	02/25/19 21:53	1
Dibenz(a,h)anthracene	<5.0	5.0	0.42	ug/L		02/22/19 14:23	02/25/19 21:53	1
Fluoranthene	<5.0	5.0	0.40	ug/L		02/22/19 14:23	02/25/19 21:53	1
Fluorene	<5.0	5.0	0.36	ug/L		02/22/19 14:23	02/25/19 21:53	1
Indeno(1,2,3-c,d)pyrene	<5.0	5.0	0.47	ug/L		02/22/19 14:23	02/25/19 21:53	1
Naphthalene	<5.0	5.0	0.76	ug/L		02/22/19 14:23	02/25/19 21:53	1
Phenanthrene	<5.0	5.0	0.44	ug/L		02/22/19 14:23	02/25/19 21:53	1

TestAmerica Buffalo

Page 9 of 25 3/1/2019

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Former MGP

TestAmerica Job ID: 480-149303-1

Client Sample ID: MW-0404S

Lab Sample ID: 480-149303-5

Date Collected: 02/20/19 16:15 Date Received: 02/21/19 10:00

IJ	Jampie	ID. 400-143303-3
		Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	<5.0		5.0	0.34	ug/L		02/22/19 14:23	02/25/19 21:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	76		46 - 120				02/22/19 14:23	02/25/19 21:53	1
2-Fluorobiphenyl	83		48 - 120				02/22/19 14:23	02/25/19 21:53	1
p-Terphenyl-d14	105		59 - 136				02/22/19 14:23	02/25/19 21:53	1

Client Sample ID: MW-0405S Lab Sample ID: 480-149303-6 Date Collected: 02/20/19 16:05

Date Received: 02/21/19 10:00

Dibromofluoromethane (Surr)

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

Matrix: Water

02/22/19 13:36

Method: 8260C - Volatile Organic Compounds by GC/MS RL MDL Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed Benzene <1.0 1.0 0.41 ug/L 02/22/19 13:36 Toluene <1.0 1.0 0.51 ug/L 02/22/19 13:36 Ethylbenzene <1.0 1.0 0.74 ug/L 02/22/19 13:36 m-Xylene & p-Xylene <2.0 2.0 0.66 ug/L 02/22/19 13:36 o-Xylene <1.0 1.0 0.76 ug/L 02/22/19 13:36 Xylenes, Total <2.0 2.0 0.66 ug/L 02/22/19 13:36 Surrogate %Recovery Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 101 77 - 120 02/22/19 13:36 Toluene-d8 (Surr) 96 80 - 120 02/22/19 13:36 4-Bromofluorobenzene (Surr) 99 73 - 120 02/22/19 13:36

75 - 123

98

83

90

104

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<5.0	5.0	0.41	ug/L		02/22/19 14:23	02/25/19 22:21	1
Acenaphthylene	<5.0	5.0	0.38	ug/L		02/22/19 14:23	02/25/19 22:21	1
Anthracene	<5.0	5.0	0.28	ug/L		02/22/19 14:23	02/25/19 22:21	1
Benz(a)anthracene	<5.0	5.0	0.36	ug/L		02/22/19 14:23	02/25/19 22:21	1
Benzo(a)pyrene	<5.0	5.0	0.47	ug/L		02/22/19 14:23	02/25/19 22:21	1
Benzo(b)fluoranthene	<5.0	5.0	0.34	ug/L		02/22/19 14:23	02/25/19 22:21	1
Benzo(g,h,i)perylene	<5.0	5.0	0.35	ug/L		02/22/19 14:23	02/25/19 22:21	1
Benzo(k)fluoranthene	<5.0	5.0	0.73	ug/L		02/22/19 14:23	02/25/19 22:21	1
Chrysene	<5.0	5.0	0.33	ug/L		02/22/19 14:23	02/25/19 22:21	1
Dibenz(a,h)anthracene	<5.0	5.0	0.42	ug/L		02/22/19 14:23	02/25/19 22:21	1
Fluoranthene	<5.0	5.0	0.40	ug/L		02/22/19 14:23	02/25/19 22:21	1
Fluorene	<5.0	5.0	0.36	ug/L		02/22/19 14:23	02/25/19 22:21	1
Indeno(1,2,3-c,d)pyrene	<5.0	5.0	0.47	ug/L		02/22/19 14:23	02/25/19 22:21	1
Naphthalene	<5.0	5.0	0.76	ug/L		02/22/19 14:23	02/25/19 22:21	1
Phenanthrene	<5.0	5.0	0.44	ug/L		02/22/19 14:23	02/25/19 22:21	1
Pyrene	<5.0	5.0	0.34	ug/L		02/22/19 14:23	02/25/19 22:21	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

02/25/19 22:21

02/25/19 22:21

02/25/19 22:21

02/22/19 14:23

02/22/19 14:23

02/22/19 14:23

46 - 120

48 - 120

59 - 136

TestAmerica Job ID: 480-149303-1

Client Sample ID: DUP-022019

Date Collected: 02/20/19 00:00

Lab Sample ID: 480-149303-8

Matrix: Water

Date Received: 02/21/19 10:00

Project/Site: NYSEG - Elmira Madison Ave Former MGP

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<8.0		8.0	3.3	ug/L			02/22/19 13:59	8
Toluene	<8.0		8.0	4.1	ug/L			02/22/19 13:59	8
Ethylbenzene	<8.0		8.0	5.9	ug/L			02/22/19 13:59	8
m-Xylene & p-Xylene	<16		16	5.3	ug/L			02/22/19 13:59	8
o-Xylene	<8.0		8.0	6.1	ug/L			02/22/19 13:59	8
Xylenes, Total	<16		16	5.3	ug/L			02/22/19 13:59	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		02/22/19 13:59	8
Toluene-d8 (Surr)	94		80 - 120					02/22/19 13:59	8
4-Bromofluorobenzene (Surr)	100		73 - 120					02/22/19 13:59	8
Dibromofluoromethane (Surr)	91		75 - 123					02/22/19 13:59	8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.4		5.0	0.41	ug/L		02/22/19 14:23	02/25/19 22:50	1
Acenaphthylene	<5.0		5.0	0.38	ug/L		02/22/19 14:23	02/25/19 22:50	1
Anthracene	0.39	J	5.0	0.28	ug/L		02/22/19 14:23	02/25/19 22:50	1
Benz(a)anthracene	<5.0		5.0	0.36	ug/L		02/22/19 14:23	02/25/19 22:50	1
Benzo(a)pyrene	<5.0		5.0	0.47	ug/L		02/22/19 14:23	02/25/19 22:50	1
Benzo(b)fluoranthene	<5.0		5.0	0.34	ug/L		02/22/19 14:23	02/25/19 22:50	1
Benzo(g,h,i)perylene	<5.0		5.0	0.35	ug/L		02/22/19 14:23	02/25/19 22:50	1
Benzo(k)fluoranthene	<5.0		5.0	0.73	ug/L		02/22/19 14:23	02/25/19 22:50	1
Chrysene	<5.0		5.0	0.33	ug/L		02/22/19 14:23	02/25/19 22:50	1
Dibenz(a,h)anthracene	<5.0		5.0	0.42	ug/L		02/22/19 14:23	02/25/19 22:50	1
Fluoranthene	1.4	J	5.0	0.40	ug/L		02/22/19 14:23	02/25/19 22:50	1
Fluorene	4.3	J	5.0	0.36	ug/L		02/22/19 14:23	02/25/19 22:50	1
Indeno(1,2,3-c,d)pyrene	<5.0		5.0	0.47	ug/L		02/22/19 14:23	02/25/19 22:50	1
Naphthalene	<5.0		5.0	0.76	ug/L		02/22/19 14:23	02/25/19 22:50	1
Phenanthrene	<5.0		5.0	0.44	ug/L		02/22/19 14:23	02/25/19 22:50	1
Pyrene	1.3	J	5.0	0.34	ug/L		02/22/19 14:23	02/25/19 22:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

· · · · · · · · · · · · · · · · · ·	,	4			,y=0 a	
Nitrobenzene-d5	83		46 - 120	02/22/19 14:2	3 02/25/19 22:50	1
2-Fluorobiphenyl	92		48 - 120	02/22/19 14:2	3 02/25/19 22:50	1
p-Terphenyl-d14	101		59 - 136	02/22/19 14:2	3 02/25/19 22:50	1

Client Sample ID: FB-022019 Lab Sample ID: 480-149303-9 Date Collected: 02/20/19 17:00 **Matrix: Water**

Date Received: 02/21/19 10:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	0.41	ug/L			02/22/19 14:23	1
Toluene	<1.0	1.0	0.51	ug/L			02/22/19 14:23	1
Ethylbenzene	<1.0	1.0	0.74	ug/L			02/22/19 14:23	1
m-Xylene & p-Xylene	<2.0	2.0	0.66	ug/L			02/22/19 14:23	1
o-Xylene	<1.0	1.0	0.76	ug/L			02/22/19 14:23	1
Xylenes, Total	<2.0	2.0	0.66	ug/L			02/22/19 14:23	1

TestAmerica Buffalo

Page 11 of 25

Client: New York State Electric & Gas

Project/Site: NYSEG - Elmira Madison Ave Former MGP

TestAmerica Job ID: 480-149303-1

Client Sample ID: FB-022019

Lab Sample ID: 480-149303-9

Matrix: Water

Date Collected: 02/20/19 17:00 Date Received: 02/21/19 10:00

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	77 - 120	-	02/22/19 14:23	1
Toluene-d8 (Surr)	95	80 - 120		02/22/19 14:23	1
4-Bromofluorobenzene (Surr)	103	73 - 120		02/22/19 14:23	1
Dibromofluoromethane (Surr)	95	75 - 123		02/22/19 14:23	1

5

7

8

10

13

14

15

Chain of Custody Record

Amherst,	NY 14228-2298	
Amherst,	NY 14228-2298	

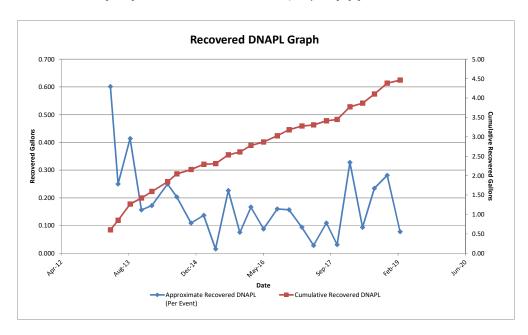
Phone (716) 691-2600 Fax (716) 691-7991

TE	sty	An	ner	ica
10000	1311	(1 1	101	
THE	LEADER	N ENVI	RONMENTA	AL TESTING

Client Information	Sampler: Ryan Clare + Jeff B Deyo, Me				M: o, Meli:	Carrier Tracking No(s):			(s):	COC No: 480-125189-2	8414.2	
Client Contact: Mr. Nicholas Beyrle	Filolie.				deyo@testamericainc.com					Page: Page 2 of 2	10f1	
Company: ARCADIS U.S. Inc								Analysis Re	auested		Job #:	•
Address: Arcadis 295 Woodcliff Drive 3rd Floor, Suite 301	Due Date Request	ted:				Г		TTÍT				
City: Fairport	TAT Requested (d											
State, Zip: NY, 14450	- Standard (10 Days)			2)								
Phone:	PO #:									480-14930	3 Chain of Cu	stody
Email:	IU00316300 WO#:				(ON						H - Ascorbic Acid	d T - TSP Dodecahydrate U - Acetone
Nicholas.beyrle@arcadis-us.com Project Name:	NYSEG-Elmira	Madison Av	/e/John Rus	spantini	Yes or or No)					ers	J - DI Water K - EDTA	V - MCAA W - pH 4-5
NYSEG - Elmira Madison Ave Former MGP Site:	Project #: 48004725				ole (Y					ntain	L - EDA	Z - other (specify)
Site:	SSOW#:				Sami ISD (of co	Other:	
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=Air) ation Code:	Field Filtered Sample (7	8260C - BTEX			Total Number	Special	Instructions/Note:
MW-6S	2/20/19	1225	-	Water	HY.	2	A 3			1 /		
MW-8S	2/20/19	1230	6	Water	H	+	3	+++		2		
MW-48	1		G		H	2				2		
MW-95	2/20/19	1415		Water	+	2	3	+++		2		
	2/20/19	-	6	Water	H	2	+	++++		2		
MW-0404S	2/20/19	1615	G	Water	\vdash	2	-			2		
MW-040SS	2/26/19	1602	6	Water	₩	2	3			2		
MW-95 (MS/MSD)	5 30 19	1415	6	water	H	4	6			10		
DU9-022019	2/20/19	-	G	Water	H	2	3		4-4-4-4	2	F0 -)	
FB-022019	2/20/19	1700	6	Mater	1	2	1			2	LB Lebie	eced the TB
	+	-			Н	-	11					
Possible Hazard Identification					Ц		5				<u></u>	
Non-Hazard Seminication Skin Irritant Pe	oison B Unkn	own -	Radiologica	1	36		Return To	sal (A fee may be	assessed if sam Disposal By Lab	Pies are retain	ed Ionger thai ive For	n 1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	ecia	I Instruct	tions/QC Requirements	ents: Trip BI	ank vons	mere 10	lamaged.
Empty Kit Relinquished by:		Date:			Time	:	044	OII collects	Method of Sh	ipment:	Dr Mati	٠. ،
Relinquished by:	Date/Time:	18	30	Accadi	۲	Rec	eived by:		D	ate/Time:		Company
Relinquished by:	Date/Time:	, 0		Company		Received by:			D	ate/Time:		Company
Relinquished by:	Date/Time:			Company		Received by:			D	Date Time: 27-19 / UOU Company		
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					77	Coo	oler Tempe	erature(s) °C and Other	The second name of the second	2-1		

Ver: 08/04/2016

APPENDIX B DNAPL Recovery Summary Table and Graph


Appendix B DNAPL Recovery Summary

Annual Periodic Review Report Madison Avenue Former MGP Site, Elmira, New York

		AW-17			NRW-2			NMW-0402S			Totals	
Date	Recoverd DNAPL (gal)	Total (gal)	Cumulative (gal)	Recoverd DNAPL (gal)	Total (gal)	Cumulative (gal)	Recoverd DNAPL (gal)	Total (gal)	Cumulative (gal)	Recoverd DNAPL (gal)	Total (gal)	Cumulative (gal)
4/1/2013				0.008		0.01	0.594		0.59	0.602		0.60
5/28/2013				0.000		0.01	0.250		0.84	0.250		0.85
8/26/2013				0.188	0.24	0.20	0.227	1.35	1.07	0.414	1.59	1.27
11/18/2013				0.031		0.23	0.125		1.20	0.156		1.42
2/3/2014				0.016		0.24	0.156		1.35	0.172		1.59
5/30/2014				0.000		0.24	0.250		1.60	0.250		1.84
8/7/2014		_		0.109	0.17	0.35	0.094	0.53	1.70	0.203	0.70	2.05
11/20/2014				0.047	0.17	0.40	0.063	0.55	1.76	0.109	0.70	2.16
2/23/2015	-			0.012		0.41	0.125		1.88	0.137		2.29
5/22/2015	-			0.000		0.41	0.016		1.90	0.016		2.31
8/24/2015	0.008	0.02	0.01	0.188 0.021 0.35	0.60	0.031	0.11	1.93	0.227	0.48	2.54	
11/18/2015	0.008	0.02	0.02		0.62	0.047		1.98	0.076		2.61	
2/8/2016	0		0.02	0.146		0.76	0.021		2.00	0.167		2.78
5/12/2016	0		0.02	0.078		0.84	0.010		2.01	0.088		2.87
8/22/2016	0	0.00	0.02	0.156	0.45	1.00	0.004	0.05	2.01	0.160	0.50	3.03
11/17/2016	0	0.00	0.02	0.141	0.45	1.14	0.016	0.05	2.03	0.157	0.50	3.18
2/20/2017	0		0.02	0.078		1.22	0.016		2.04	0.094		3.28
5/18/2017	0		0.02	0.021		1.24	0.008		2.05	0.03		3.31
8/21/2017	0	0.00	0.02	0.094	0.41	1.33	0.016	0.09	2.07	0.11	0.50	3.41
11/9/2017	0	0.00	0.02	0.000	0.41	1.33	0.031	0.09	2.10	0.03	0.50	3.45
2/12/2018	0		0.02	0.297		1.63	0.031		2.13	0.33		3.77
5/17/2018	0		0.02	0.047		1.68	0.047		2.18	0.09		3.87
8/13/2018	0	0.00	0.02	0.172	0.53	1.85	0.063	0.16	2.24	0.23	0.69	4.10
11/15/2018	0	0.00	0.02	0.250	0.53	2.10	0.031	0.16	2.27	0.28	0.69	4.38
2/19/2019	0		0.02	0.0625		2.16	0.016		2.29	0.08		4.46

Notes:

- 1. A value of zero for 'Recovered DNAPL' indicates DNAPL was observed but not recoverable.
 2. -- for 'Recovered DNAPL' indicates DNAPL was not observed.
 3. DNAPL was first observed in AW-17 during the August 24, 2015 site visit. AW-17 is now included in quarterly NAPL gauging schedule.

APPENDIX C

Site Inspection Form

Site Inspection Form Madison Avenue Former MGP Site - Elmira, New York

Date/Time:	2/21/2019	0900		Weather: Sunny
Personnel:	Ryan Clare			Temperature: 37 degrees F
		Ge	eneral Requ	uirements
				dition of each inspection item identified below. sidered to be in poor condition is required.
	I Site Conditions:			,
	Monitoring wells		X Good	□ Poor*
	Application wells		X Good	☐ Poor*
	Performance Mon	itorina wells	▼ Good	☐ Poor*
	NAPL Monitoring/I	•	X Good	☐ Poor*
	Cover Areas (Gras	ss and Stone)	 ▼ Good	— ☐ Poor*
	Signs of intrusive	activities	X No	☐ Yes*
	Evidence of Settle	ment	X No	☐ Yes*
Note:				
-Cover a	rea inspection is to	determine if intr	usive activitie	es may have occurred since the previous site visit.
2. Site Co	ver Systems:	oiono	∇ No	□ Voc*
	Borrowing/Depres Standing Water	SIONS	X No X No	☐ Yes*
	Missing Stone		X No	☐ Yes*
	Vegetative Growth	1	□ No	X Yes*
	Evidence of Settle		☑ No	☐ Yes*
	Sedimentation		X No	☐ Yes*
	Damage/Failure		X No	☐ Yes*
2 Notes:	Vegetative gro	wth is normal	compared	I to previous site inspections. Brush and
			· · · · · · · · · · · · · · · · · · ·	IYSEG is staging more sheet piling on site.
	te inspection p			
TCICI to 3i	te mapeedon p	lotares for aut		set pile.

Site Inspection Form Madison Avenue Former MGP Site - Elmira, New York

^{*} Indicates condition should be reported to NYSEG Project Manager/OM&M Coordinator.

APPENDIX D Site Inspection Photographic Log

CLIENT: NYSEG
PROJECT#:
B0013134.0001
PHOTOGRAPH #: 1
PHOTOGRAPHER: NJB
DATE: 02/21/19

DIRECTION: SE

COMMENT: Picture
showing (snow covered)
stone parking area over
former manufactured gas
plant (MGP) area. Photo
indicates cover is in good
condition; no repair is
needed.

SITE NAME: Madison Avenue Former MGP Site

SITE LOCATION: Elmira, New York

CLIENT: NYSEG PROJECT#:

B0013134.0001

PHOTOGRAPH#: 2
PHOTOGRAPHER: NJB

DATE: 02/21/19
DIRECTION: E
COMMENT: Picture

showing (snow covered) stone parking area over former MGP. Photo indicates cover is in good condition; no repair is needed.

SITE NAME: Madison Avenue Former MGP Site

CLIENT: NYSEG PROJECT#: B0013134.0001

PHOTOGRAPH #: 3

PHOTOGRAPHER: NJB
DATE: 02/21/19
DIRECTION: NW
COMMENT: Picture

showing (snow covered) stone parking area over former MGP. Photo indicates cover is in good condition; no repair is needed. Area currently used for material staging.

SITE NAME: Madison Avenue Former MGP Site

SITE LOCATION: Elmira, New York

CLIENT: NYSEG

PROJECT#: B0013134.0001

PHOTOGRAPH #: 4 PHOTOGRAPHER: NJB

DATE: 02/21/19 DIRECTION: N

comment: Picture showing (snow covered) stone parking area over former MGP. Photo indicates cover is in good condition; no repair is needed. Area currently used for material staging.

SITE NAME: Madison Avenue Former MGP Site

PROJECT#: B0013134.0001

PHOTOGRAPH #: 5 PHOTOGRAPHER: NJB DATE: 02/21/19

DIRECTION: NE

COMMENT: Picture
showing stone and
vegetation coverage over
PCB IRM removal areas
(1997) and purifier waste
removal area (2011).
Photo indicates cover is
in good condition; no
repair is needed. Area
currently used for
material staging

SITE NAME: Madison Avenue Former MGP Site

SITE LOCATION: Elmira, New York

CLIENT: NYSEG PROJECT#:

B0013134.0001
PHOTOGRAPH #: 6
PHOTOGRAPHER: NJB

DATE: 02/21/19 DIRECTION: E

comment: Picture showing stone coverage and stock piled materials over ISS areas. Photo indicates cover is in good condition; no repair is needed.

SITE NAME: Madison Avenue Former MGP Site

CLIENT: NYSEG PROJECT#: B0013134.0001

DATE: 02/21/19

PHOTOGRAPH #: 7 PHOTOGRAPHER: NJB

DIRECTION: SW

COMMENT: Picture
showing grass area and
stone coverage over ISS
area, purifier waste IRM
removal area (2004) and
purifier waste removal
area (2011). Photo
indicates cover is in good
condition; no repair is
needed.

SITE NAME: Madison Avenue Former MGP Site

SITE LOCATION: Elmira, New York

CLIENT: NYSEG

PROJECT#: B0013134.0001

needed.

PHOTOGRAPH #: 8
PHOTOGRAPHER: NJB

DATE: 02/21/19
DIRECTION: WSW
COMMENT: Picture
showing treatment
system area. Photo
indicates cover is in good
condition; no repair is

SITE NAME: Madison Avenue Former MGP Site

APPENDIX E Well Inspection Photographic Log

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	OTTE EGOVETION FOR
WELL ID: MW-1S	
PHOTOGRAPHER: NJB	
DATE: 02/19/19	
DIRECTION: NA	
COMMENT: Photograph showing MW-1S. Well is in good condition with cap and competent cover.	2019-2-19 WYSEG Medison Ave Map
	Maris Control of the

SITE NAME: Madison Avenue Former MGP Site

CLIENT: NYSEG PROJECT#: B0013134.0001 WELL ID: MW-1D PHOTOGRAPHER: NJB DATE: 02/19/19 DIRECTION: NA COMMENT: Photograph showing MW-1D. Well is in good condition with cap and competent cover.

CLIENT: NYSEG
PROJECT#:
B0013134.0001

WELL ID: MW-2S
PHOTOGRAPHER: NJB
DATE: 02/19/19

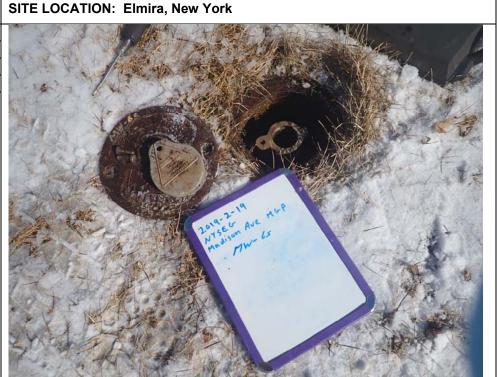
DIRECTION: NA

COMMENT: Photograph showing MW-2S. Cap mounting rig is cracked but competent. Well is in good condition with locking cap.

CLIENT: NYSEG PROJECT#: B0013134.0001 WELL ID: MW-2D PHOTOGRAPHER: NJB DATE: 02/19/19 DIRECTION: NA COMMENT: Photograph showing MW-2D. Well is in good condition with locking cap.

CLIENT: NYSEG

PROJECT#:
B0013134.0001


WELL ID: MW-4S
PHOTOGRAPHER: NJB
DATE: 02/19/19
DIRECTION: NA

COMMENT: Photograph showing MW-4S. Well is in good condition with locking cap and competent cover.

SITE NAME: Madison Avenue Former MGP Site

CLIENT: NYSEG
PROJECT#:
B0013134.0001
WELL ID: MW-6S
PHOTOGRAPHER: NJB
DATE: 02/19/19
DIRECTION: NA
COMMENT: Photograph

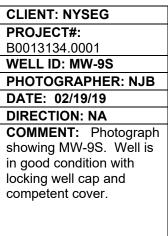
comment: Photograph showing MW-6S. Well is in good condition with locking cap and competent cover.

ARCADIS

CLIENT: NYSEG
PROJECT#:
B0013134.0001

WELL ID: MW-7
PHOTOGRAPHER: NJB
DATE: 02/19/109
DIRECTION: NA

COMMENT: Photograph showing MW-7. Well is in good condition. Well has well plug and locking well cover.

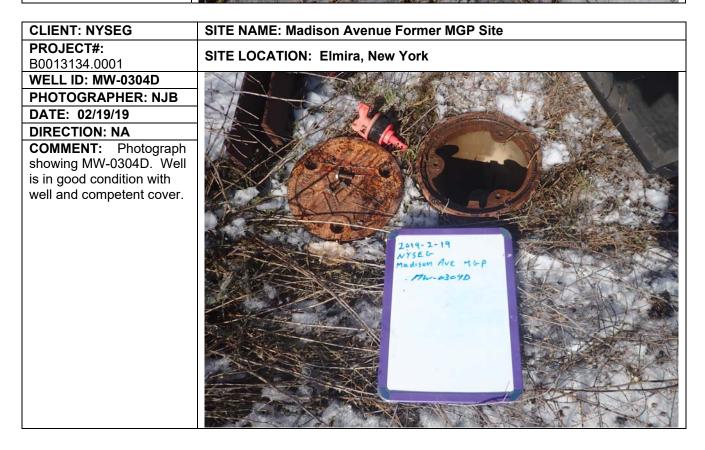


CLIENT: NYSEG
PROJECT#:
B0013134.0001

WELL ID: MW-8D
PHOTOGRAPHER: NJB
DATE: 02/19/19
DIRECTION: NA

COMMENT: Photograph showing MW-8D. Well is in good condition with locking well cap and competent cover.

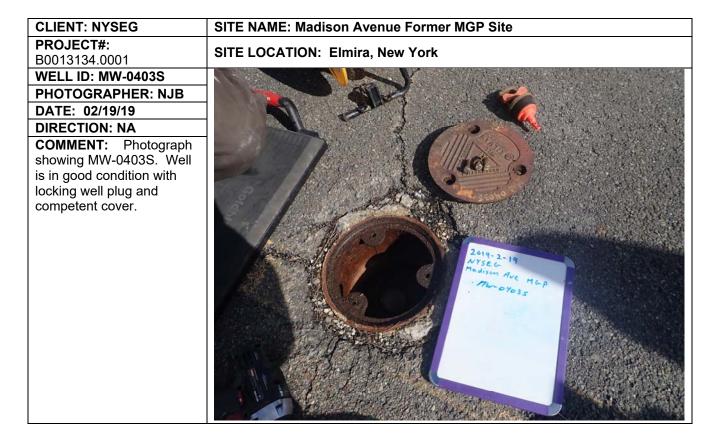
SITE NAME: Madison Avenue Former MGP Site



CLIENT: NYSEG
PROJECT#:
B0013134.0001

WELL ID: MW-9D
PHOTOGRAPHER: NJB
DATE: 02/19/19

DIRECTION: NA


COMMENT: Photograph showing MW-9D. Well is in good condition with locking well cap and competent cover.

CLIENT: NYSEG
PROJECT#:
B0013134.0001

WELL ID: MW-0402S
PHOTOGRAPHER: NJB
DATE: 02/19/19
DIRECTION: NA

COMMENT: Photograph showing MW-0402S.
Well is in good condition with locking well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 WELL ID: MW-0404S **PHOTOGRAPHER: NJB** DATE: 02/19/19 **DIRECTION: NA** COMMENT: Photograph showing MW-0404S. Well is in good condition with locking well plug and competent cover. Bolted well lid was observed missing during the Annual Site Inspection. The lid will be replaced.

CLIENT: NYSEG PROJECT#: B0013134.0001 WELL ID: MW-0404D PHOTOGRAPHER: NJB DATE: 02/19/19 DIRECTION: NA COMMENT: Photograph of MW-0404D. Well is in good condition with locking well plug and competent cover.

CLIENT: NYSEG
PROJECT#:
B0013134.0001
WELL ID: MW-0405S
PHOTOGRAPHER: NJB

DATE: 02/19/19 DIRECTION: NA

of MW-0405S. Well is in good condition with locking well plug and competent cover.
Surrounding concrete flags are cracked, but road box is secure.

SITE NAME: Madison Avenue Former MGP Site

SITE LOCATION: Elmira, New York

CLIENT: NYSEG

PROJECT#: B0013134.0001

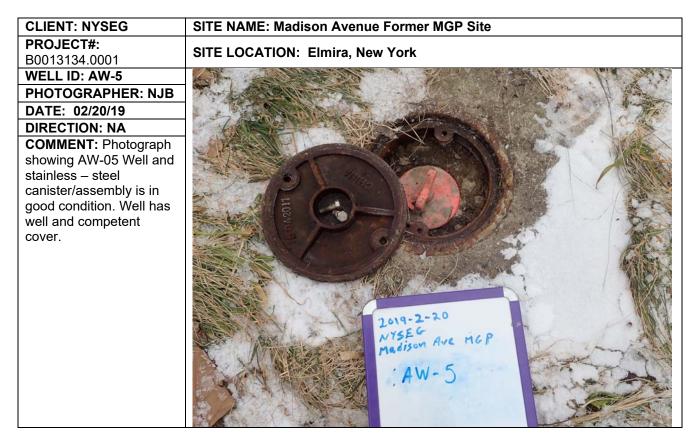
WELL ID: AW-1

PHOTOGRAPHER: NJB

DATE: 02/20/19 DIRECTION: NA

COMMENT: Photograph showing AW-1. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

SITE NAME: Madison Avenue Former MGP Site


CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-2** PHOTOGRAPHER: NJB DATE: 02/20/19 **DIRECTION: NA COMMENT:** Photograph showing AW-2. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

SITE NAME: Madison Avenue Former MGP Site

CLIENT: NYSEG PROJECT#: B0013134.0001 WELL ID: AW-3 PHOTOGRAPHER: NJB DATE: 02/20/19 DIRECTION: NA COMMENT: Photograph showing AW03. Well and stainlesssteel canister/assembly is in good condition. Well has well plug and competent cover.

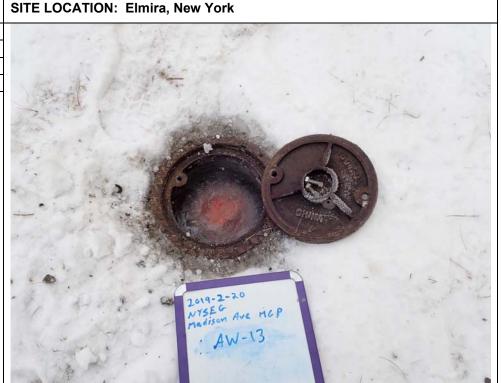
CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-4** PHOTOGRAPHER: NJB **DATE: 02/20/19 DIRECTION: NA** COMMENT: Photograph showing AW-4. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-6 PHOTOGRAPHER: NJB** DATE: 02/20/19 **DIRECTION: NA COMMENT:** Photograph showing AW-6. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-7** PHOTOGRAPHER: NJB **DATE: 02/20/19 DIRECTION: NA** COMMENT: Photograph showing AW-7. Well and stainlesssteel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-8 PHOTOGRAPHER: NJB DATE: 02/20/19 DIRECTION: NA** COMMENT: Photograph showing AW-8. Well and stainlesssteel canister/assembly is in good condition. Well has well plug and competent cover. ormer Madison Ave 2-12-18 AW-08

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-9** PHOTOGRAPHER: NJB DATE: 02/20/19 **DIRECTION: NA COMMENT:** Photograph showing AW-9. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.


CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-10 PHOTOGRAPHER: NJB DATE: 02/20/19** DIRECTION: NA **COMMENT:** Photograph showing AW-10. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 WELL ID: AW-11 **PHOTOGRAPHER: NJB** DATE: 02/20/19 **DIRECTION: NA COMMENT:** Photograph showing AW-11. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

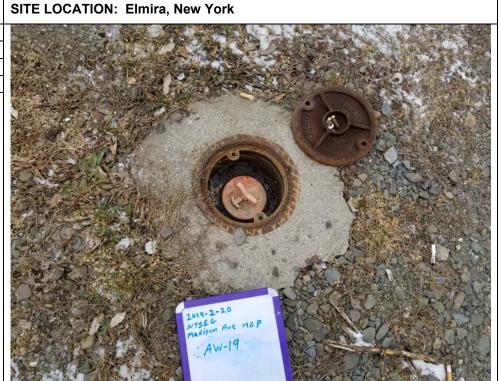
SITE NAME: Madison Avenue Former MGP Site

PROJECT#: B0013134.0001 WELL ID: AW-13 PHOTOGRAPHER: NJB DATE: 02/20/19 DIRECTION: NA COMMENT: Photograph showing AW-13. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 WELL ID: AW-14 **PHOTOGRAPHER: NJB** DATE: 02/20/19 **DIRECTION: NA COMMENT:** Photograph showing AW-14. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 WELL ID: AW-15 **PHOTOGRAPHER: NJB** DATE: 02/20/19 **DIRECTION: NA COMMENT:** Photograph showing AW-15. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-16 PHOTOGRAPHER: NJB DATE: 02/20/19 DIRECTION: NA COMMENT:** Photograph showing AW-16. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.


CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-17** PHOTOGRAPHER: NJB **DATE: 02/20/19 DIRECTION: NA COMMENT:** Photograph showing AW-17. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 **WELL ID: AW-18 PHOTOGRAPHER: NJB DATE: 02/20/19 DIRECTION: NA COMMENT:** Photograph showing AW-18. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

SITE NAME: Madison Avenue Former MGP Site

CLIENT: NYSEG PROJECT#: B0013134.0001 WELL ID: AW-19 PHOTOGRAPHER: NJB DATE: 02/20/19 DIRECTION: NA COMMENT: Photograph showing AW-19. Well and stainless-steel


comment: Photograph showing AW-19. Well and stainless-steel canister/assembly is in good condition. Well has well plug and competent cover.

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: B0013134.0001 WELL ID: PMW-1 **PHOTOGRAPHER: NJB** DATE: 02/20/19 **DIRECTION: NA** COMMENT: Photograph showing PMW-1. Well is in good condition with well plug and competent cover, however well road box has settled since installation. During the

February 2019 site visit, the PVC riser was cut shorter and the well measuring point was

resurveyed.

CLIENT: NYSEG PROJECT#: B0013134.0001 WELL ID: PMW-2 PHOTOGRAPHER: NJB **DATE: 02/21/19 DIRECTION: NA** COMMENT:

Photograph showing PMW-2. Well is in good condition with well plug and competent cover.

SITE NAME: Madison Avenue Former MGP Site

CLIENT: NYSEG SITE NAME: Madison Avenue Former MGP Site PROJECT#: SITE LOCATION: Elmira, New York B0013134.0001 WELL ID: PMW-3 **PHOTOGRAPHER: NJB DATE: 02/20/19 DIRECTION: NA COMMENT:** Photograph is showing well PMW-03. Well is in good condition with well plug and competent cover, however well road box has settled since installation. During the February 2019 site visit, the PVC riser was cut shorter and the well measuring point was resurveyed.

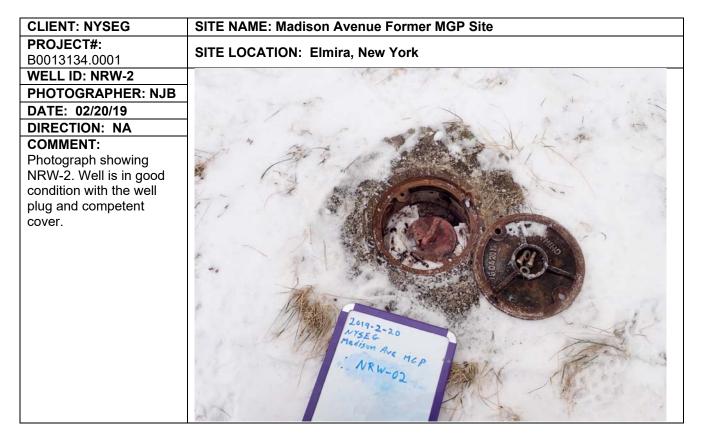
CLIENT: NYSEG
PROJECT#:
B0013134.0001
WELL ID: PMW-4
PHOTOGRAPHER: NJB
DATE: 02/20/19
DIRECTION: NA

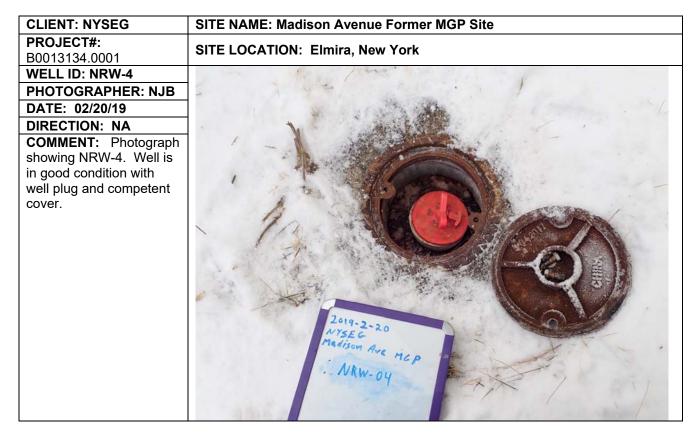
comment: Photograph showing PMW-4. Well is in good condition with well plug and competent cover, however well road box has settled since installation. During the February 2019 site visit, the PVC riser was cut shorter and the well measuring point was resurveyed.

SITE NAME: Madison Avenue Former MGP Site

SITE LOCATION: Elmira, New York

20


CLIENT: NYSEG
PROJECT#:
B0013134.0001
WELL ID: PMW-5
PHOTOGRAPHER: NJB
DATE: 02/20/19
DIRECTION: NA
COMMENT: Photograph showing PMW-5. Well is in good condition with well plug and competent cover.


CLIENT: NYSEG
PROJECT#:
B0013134.0001

WELL ID: NRW-1
PHOTOGRAPHER: NJB
DATE: 02/19/19
DIRECTION: NA

COMMENT:
Photograph showing
NRW-1. Well is in good condition with well plug and competent cover.

CLIENT: NYSEG	SITE NAME: Madison Avenue Former MGP Site
PROJECT#:	SITE LOCATION: Elmira, New York
B0013134.0001	
WELL ID: NRW-3	
PHOTOGRAPHER: NJB	
DATE: 02/20/19	
DIRECTION: NA	The state of the s
COMMENT:	
Photograph showing	
NRW-3. Well is in good	VIVINO
condition with the plug	
and competent cover.	
	4
	2019-2-20
	Madison Ave MCP
	MCP
	NRW-03

24

APPENDIX F NYSEG Certification Statement

Appendix F Certification Statement

Based on information provided to NYSEG, NYSEG verifies that the site engineering controls described in the ROD (NYSDEC 2008) were in place during the reporting period, and has no knowledge that changes have occurred at the Oneonta Former MGP Site that would impair the ability of the engineering controls to protect public health and the environment, or constitute a violation or failure to comply with the operation and maintenance plan described in the *Site Management Plan*.

John J. Ruspantini, CHMM, PMP

NYSEG, Manager - Programs/Projects

Arcadis of New York, Inc.

295 Woodcliff Drive

Third Floor

Suite 301

Fairport, New York 14450

Tel 585 385 0090

Fax 585 385 4198

www.arcadis.com