FINAL SITE CHARACTERIZATION REPORT KENTUCKY AVENUE SITE 1 HORSEHEADS, NEW YORK

SITE NO. 8-08-027

Prepared For:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, PC Portland, Maine

MACTEC NO. 3612052036

OCTOBER 2006

This document was prepared for the sole use of New York State Department of Environmental Conservation, the only intended beneficiary of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering and Consulting, P.C.

SITE CHARACTERIZATION REPORT

KENTUCKY AVENUE SITE 1 HORSEHEADS, NEW YORK

SITE NO. 8-08-027

Submitted to:

New York State Department of Environmental Conservation Albany, New York

Submitted by:

MACTEC Engineering and Consulting, PC Portland, Maine MACTEC No. 3612052036

OCTOBER 2006

This document was prepared for the sole use of New York State Department of Environmental Conservation, the only intended beneficiary of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering and Consulting, PC.

Submitted by:

John W. Peterson, P.M.

Project Manager

Approved by:

William J. Weber, P.E.

Program Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	1-1
2.0	SITE BACKGROUND AND PHYSICAL SETTING	2-1
2.1		
2.2	SITE HISTORY	2-1
2.3	PREVIOUS INVESTIGATIONS	2-2
2.4	PHYSICAL SETTING	2-3
2.5		
2.6	SUMMARY OF DATA RECORDS SEARCH AND ASSESSMENT	
	FINDINGS	2-5
3.0	SCOPE OF WORK	3-1
TA	ASK 2 - FIELD INVESTIGATIONS	3-1
	3.1 General Field Activities	3-2
	3.1.1 Mobilization	3-2
	3.1.2 Health and Safety	3-2
	3.1.3 Decontamination	3-3
	3.1.4 Investigation Derived Wastes	3-3
	3.2 Soil Borings and Sampling	3-3
	3.3 Overburden Well Installation	
	3.4 Groundwater Sampling	3-5
	3.5 Site Survey	3-5
4.0	DATA ASSESSMENT	
4.1	FIELD OBSERVATIONS/RESULTS	4-1
4.2	ANALYTICAL RESULTS	4-1
	4.1.1 Soil Sample Results	4-3
	4.1.2 Groundwater Sample Results	4-4
5.0	INVESTIGATION FINDINGS	5-1
6.0	REFERENCES	6-1

APPENDICES

APPENDIX A	Site Photos
APPENDIX B	Field Data Records
APPENDIX C	Survey Drawing – Site Map
APPENDIX D	DUSR and Laboratory Analytical Results

LIST OF TABLES

- 4.1 Groundwater Well Survey and Water Elevation Data from December 2005
- 4.2 Groundwater Well Survey and Water Elevation Data from March 2006
- 4.3 Soil Sampling Results
- 4.4 Groundwater Sample Results from December 2005
- 4.5 Groundwater Sample Results from March 2006

LIST OF FIGURES

- 1.1 Site Location and Topography
- 3.1 Boring Locations
- 4.1 Potentiometric Surface Map December 2005
- 4.2 Potentiometric Surface Map March 2006

ACRONYMS

ABB-ES ABB Environmental Services
ASP Analytical Services Protocol

ASTM

bgs below ground surface

DUSR Data Usability Summary Report

EDR Environmental Data Resources, Inc.

°F degrees Fahrenheit

ID inside diameter

KAW Kentucky Avenue Wellfield

MACTEC Engineering and Consulting, Inc..

MCL Maximum Concentration Limit

MITKEM Mitkem Corp. msl mean sea level

NYCRR New York Codes, Rules, and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH State of New York Department of Health NYSDOT New York State Department of Transportation

ORP

PCBs Poly-Chlorinated Biphenols

PCE tetrachloroethene

PID photoionization detector

ppm parts per million PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

Report Site Characterization Report

SC Site Characterization

SCG Standards, Criteria and guidance values

Site Kentucky Avenue

SVOC Semi-volatile organic compound

TAGM Technical and Administrative Guidance Memoranda

TCE trichloroethylene TCL Target Compound List

TIC Tentatively Identified Compounds

μg/L micrograms per Liter

USCS United Soil Classification System

USEPA United States Environmental Protection Agency

VOC volatile organic compound

WA Work Assignment

1.0 INTRODUCTION

MACTEC Engineering and Consulting, PC (MACTEC), is submitting this Site Characterization Report (Report) to the New York State Department of Environmental Conservation (NYSDEC). The Report addresses the Site Characterization (SC) at the Kentucky Avenue, Site 1 (Site) in the town of Horseheads, Chemung County, New York (Figure 1.1). This Report was prepared in response to Work Assignment (WA) No. D0003826-19 dated April 22, 2005 (NYSDEC, 2005), and in accordance with the requirements of the July 1997 Superfund Standby Contract No. D003826 between the NYSDEC and MACTEC.

The Site is listed as Site No. 8-08-027 in the Registry of Hazardous Waste Sites in New York State. It is currently listed as a potential hazardous waste site, or "P" site, by the NYSDEC, because insufficient information existed to determine whether wastes were disposed of at the site and whether, if present, those wastes posed a potential significant threat to public health or the environment (New York State [NYS], 1998.)

The purpose of the SC is to provide information to be used by the NYSDEC to reclassify the site to one of the following categories:

Class 2	Hazardous waste sites presenting a significant threat to public health or the
	environment; defined by the NYSDEC as sites that had a release(s)
	resulting in violation of the NYSDEC environmental quality standards and
	guidelines.

Class 3 Hazardous waste sites not presenting a significant threat to public health or the environment.

Delist Sites where hazardous waste disposal is not documented.

To complete its reclassification, the NYSDEC requires information to establish the following:

- The existence of documented hazardous waste disposal, as defined in Title 6 of the New York Codes, Rules, and Regulations (NYCRR) Part 371 (NYS, 1999a).
- The site's significance with respect to the threat it poses to public health and the environment as defined in 6 NYCRR Part 375 (NYSDEC, 1998).
- Identification of contaminant source.

MACTEC collected reclassification documentation and is presenting it to the NYSDEC so it can recommend follow up action for the site (i.e., reclassify, delist, or perform additional investigation).

During Task 1, MACTEC conducted a search of state and county site records, and performed a site inspection to develop information necessary for reclassification or delisting. The information collected is presented in Section 2 of this document. Task 1 activities did not develop adequate data on which to base a delist or reclassification recommendation. Therefore, additional field investigations were conducted under Task 2 – Field Investigations.

Section 3 of this Report presents the work conducted during the field investigations. Section 4 presents results of the field investigation. Section 5 presents an investigation summary.

Task 3 is the preparation of this Report. Resources used to prepare this Report include: (1) information provided in the Work Assignment, (2) appropriate guidelines in the NYSDEC Draft DER-10 Guidance (NYSDEC, 2002), (3) results of previous investigations, if applicable, and (4) results of the SC investigation

2.0 SITE BACKGROUND AND PHYSICAL SETTING

On September 9 and 10, 2005, MACTEC personnel reviewed available records from the NYSDEC office in Albany, New York, and visited the City of Horseheads, New York town offices. As part of the review, MACTEC ordered a copy of an Environmental Data Resources, Inc. (EDR) report which provides a listing of federal and state governmental information pertaining to potential and documented environmental impacts, both at the Site and within the ASTM recommended search radii. Complete lists of all recommended ASTM record searches for standard due diligence requirements are included in the EDR report provided under separate cover. This information was reviewed to support a Site classification, and to help prepare the scope of work for the SC field investigations. The information collected from these sources is summarized below.

2.1 SITE LOCATION

The Site is located at 730 West Chemung St. along the north side of West Chemung St. in a mixed residential/commercial area. It is 10.10 acres in size, and contains two primary structures which house offices and maintenance facilities for the New York State Department of Transportation (NYSDOT). Additionally on the site are stockpiles of road salt and sand for winter application. The bulk of the site is paved, providing space for parking employee vehicles and work vehicles.

Roads, businesses, and private residences surround the Site. Several private residences either border or are located near the site (primarily to the west). Other adjacent properties include additional industrial/commercial facilities.

2.2 SITE HISTORY

The Site is located at 730 West Chemung St. in the Township of Horseheads in Chemung County, New York and is owned by the NYSDOT.

History of the Site has been interpreted from Sanborn® Fire Insurance Maps dating back to 1897, City of Elmira Atlases dated 1878, 1896, and 1904, and Chemung County Atlases from 1869 and 1904. Historical information is summarized below.

The Chemung County Atlas from 1869 provides no indication of ownership of the property, but also indicates no buildings at that time. The earliest indication of site ownership and improvements is provided in the 1897 Sanborn® Fire Insurance Map which shows two buildings on the 730 West Chemung St. property. These buildings are listed as Horseheads Bridge Co.'s Bridge Works and Terry Mfg. Co. specializing in Door Hangers and other Specialties. The 1897 Sanborn® Fire Insurance Map also shows a Standard Oil Co. Pumping Station across the street at 803 West Chemung St.. The pumping station is accompanied by multiple small outbuildings which likely house offices and operations facilities related to the pumping station. By 1903, as indicated by the 1903 Sanborn® Fire Insurance Map, the 730 West Chemung St. buildings were operating under new names. The Horseheads Bridge Co. had become Empire Bridge Co. and the other facility was listed as "formerly owned by" Terry Mfg. The 1904 Chemung County Atlas lists Empire Bridge Co., on the northern portion of 730 West Chemung St., but lists the southern portion as owned by E.A. Perkins. The atlas provides no indication of a second building south of the bridgeworks. The 803 West Chemung St. property is still listed as a Standard Oil Co. Pumping station in 1908. There is no information regarding ownership of the property at 730 West Chemung St. between 1908 and 1932 however the 1914 Sanborn® Fire Insurance Map still indicates the property at 803 West Chemung St to be a Standard Oil Co. Pump Station. The New York State apparently purchased the 730 West Chemung Street property between 1903 and 1932. By 1932 (according to the 1932 Sanborn® Fire Insurance Map) the New York State Highway Department occupies the property (two buildings). There appears to be no change in ownership of the property since that time.

2.3 PREVIOUS INVESTIGATIONS

The file review and site visit did not indicate that previous investigations had been conducted on the site property.

Two major well fields located downgradient of the Site are the Kentucky Avenue Well-field and the Sullivan Street Well-field. Chlorinated solvents (specifically TCE) were detected in both well-fields in the 1980's. It is suspected that the source of the TCE groundwater plume is the contaminated soils at the Westinghouse Electric Corporation's manufacturing facility, located upgradient of the well-fields and the Site. that the TCE contamination reportedly migrated in groundwater out of the southeast corner of the Westinghouse site, hooked to the south upon joining the main valley of Newton Creek, and continued migrating south (NYSDEC, 2005).

Numerous remedial activities have been conducted at the Westinghouse site, including the removal of 179 buried drums and 1,300 tons of hazardous soils (NYSDEC, 2005). MACTEC reviewed a copy of the "2005 Annual Report, Long Term Groundwater Monitoring, Operable Unit 2, Kentucky Avenue Well Field Site, Horseheads, NY (Cummings, Riter Inc., 2006). groundwater monitoring program is being implemented by Viacom Inc. formerly known as Westinghouse Electric Corporation, pursuant to the requirements of an Administrative Order for Remedial Action issued by the USEPA in June 1991. The groundwater monitoring program is designed to assess the effectiveness of the barrier well groundwater recovery and treatment system installed on the Westinghouse property as part of OU-2. This system is designed to remove trichloroethene and other volatile organic compounds from the affected area of the Newtown Creek aquifer, down-gradient of the former Westinghouse plant site and up-gradient of the Kentucky Avenue Wellfield property. There are three groundwater monitoring wells sampled annually that are in close proximity to the Kentucky Avenue site; MW-100S, MW-100D (both located 100 ft. northwest of the Site), and MW-113D (located 400 ft. west of the Site). The July 2005 sample results for the wells were 3J µg/L, 9 µg/L and 32 µg/L, respectively; two of which exceeded the NYS Class GA groundwater standard for TCE of 5 µg/L. Findings indicated that groundwater recovery system is functioning as designed, capturing groundwater in the Newton Creek aquifer at the down-gradient edge of the former Westinghouse facility.

2.4 PHYSICAL SETTING

Topography

The Site is located immediately south of the State Highway 17 in Horseheads, New York at approximately 900 feet above mean sea level (msl). The City of Horseheads is situated in a relatively flat flood plain formed by the Newtown Creek to the east. The flood plain is bordered on the west and east by sharp ridges, apparently formed by the down cutting of Newtown Creek.

The topography at the site slopes generally to the southeast toward the surface water body known as Kopper's Pond.

The topography is relatively flat for approximately one mile to the east of the Site, before rising sharply up a ridge to an elevations over 1600 feet above msl. The topography is also relatively flat to the west of the Site before similarly rising up a ridge to over 1600 feet above msl..

Climate

The climate of the area is characterized by moderately warm summers and cold winters. Mean monthly temperatures range from 24 degrees Fahrenheit (°F) in January to 70°F in July. Average annual precipitation is 34 inches. Average annual snowfall is 43 inches (National Climatic Data Center, 1999).

Surface Water Hydrology

The Site is mostly paved and surface water most likely flows to storm water drainages situated at the site.

Groundwater Hydrology

Groundwater at the site is interpreted to flow to the south and this was also verified by the 2005 Kentucky Avenue Wellfield groundwater monitoring report. Based on regional groundwater flow and topography, the Chemung River and, to a lesser extent Newtown Creek, are presumed local groundwater discharge areas. Groundwater was encountered between 11 and 22 feet below ground surface (bgs) beneath the Site.

Geology

Overburden soils at the site are greater than 35 feet thick according to data collected by MACTEC. Drilling at the site indicated that soils consisted primarily of light brown sands, silts, and gravels. Overburden is mapped as sand, silt, and gravel associated with a glacial outwash depositional environment (Muller et al., 1986). Based on regional geologic mapping (Rickard and Fisher, 1970) bedrock is expected to consist of shale and siltstones associated with the Upper Devonian West Falls Group. Specifically, the Beers Hill Shale; Grimes Siltstone; Dunn Hill, Millport, and Moreland Shales (Rickard and Fisher, 1970).

MACTEC Engineering and Consulting, P.C., Project No. 3612052036

Site Walkover

On June 13, 2005 MACTEC personnel (Dave Bufo) conducted a site visit at the subject location. The site walkover consisted of viewing the Site to assess possible contamination sources and the logistical concerns for the field program. Prior to the MACTEC site visit, NYSDEC representative Jeff McCullough visited the Site and was provided a tour by operations personnel. Information from Mr. McCullough's visit was communicated to MACTEC and was included in the Work Plan where pertinent.

No obvious sources of contamination were observed (i.e., leaking down), however, potential sources of contamination were observed including sweepings piles, scrap piles, parking areas, and maintenance shops. MACTEC gathered additional information for the purpose of identifying potential sources during the field investigation. Photographs of the site are included in Appendix A.

2.5 FILE REVIEW

On June 24, 2005 MACTEC personnel visited the City of Horseheads municipal offices (including Code Enforcement, Fire Department, Public Works/Engineering and Tax Assessment Office) and the Elmira Public Library. Information pertaining to the history of Site operations and past releases of contamination was reviewed to help prepare the Work Plan for the field investigation. In addition, MACTEC reviewed the EDR report. The information collected, as well as information provided in the WA, is included in various sections of this Report.

2.6 SUMMARY OF DATA RECORDS SEARCH AND ASSESSMENT FINDINGS

Data records searches (conducted through the EDR) for the site indicated numerous minor spills consisting predominantly of fuel, fuel oil, and petroleum based liquids typically used at maintenance and operations facilities. The site is noted as generating hazardous wastes; however no spills or releases of such materials were noted.

Under federal and state regulations a solid waste may be regulated as a hazardous waste if it is a material included in one of the USEPA or the NYSDEC's lists of hazardous wastes. If a material is regulated because of its inclusion on a federal or state list, it is commonly referred to as a "listed

hazardous waste." A waste may also be regulated under the Resource Conservation and Recovery Act as a "characteristic hazardous waste" if it exhibits one of the characteristics of toxicity, corrosivity, reactivity, or flammability.

Results of sampling and analysis of the Kentucky Avenue and Sullivan Street Supply Wells indicated the presence of chlorinated solvents (TCE) in groundwater. Spent chlorinated solvents not originating from a household sources, including TCE are included on both the USEPA's and the NYSDEC's lists of hazardous wastes. Under 6 NYCRR Part 371.4(a)(1), these spent solvents constitute hazardous waste from non-specified sources. Disposal of these chlorinated solvents has been confirmed by available analytical results from the supply wells, but it is not known if the Site is a contributing source of contamination.

As defined by 6 New York Codes, Rules, and Regulations (NYCRR) Part 375, significant threat can be established by documenting a contravention of environmental standards. Surface water and groundwater are the only media for which New York State (NYS) has promulgated standards. Under NYS Water Quality Regulations (6 NYCRR Parts 70-705) the state has set numeric standards that are the maximum concentration of compounds in groundwater and surface water that protect public health and/or the environment.

Information collected during the file review and site visit was not sufficient to determine if hazardous wastes were disposed of at the site, or if the site poses a significant threat to human health or the environment.

Analytical data had not been collected from the Site and therefore it was not known if the Site was a contributing source of the TCE contamination or if the Site posed a significant threat from other hazardous wastes. As a result, Task 2, the SC Field Investigation, was conducted to:

- collect the data necessary to verify the likelihood of uncontrolled waste disposal,
- determine if potential contamination is present on the Site and is migrating offsite, and
- provide sufficient information to allow the NYSDEC to re-classify the site.

3.0 SCOPE OF WORK

To classify the Site, the NYSDEC requires data documenting hazardous waste disposal as set forth in 6 NYCRR Part 371, and the potential significant threat to human health and the environment as defined in 6 NYCRR Part 375. Because data necessary to determine if hazardous wastes were disposed of on-site was not available in state and county files reviewed during Task 1, and because historic analytical data had not been collected from the Site, the field investigation described below was performed. Task 2 activities include the field investigation. The objective of Task 2 activities was to determine whether there is a contravention of applicable standards, criteria and guidance values (SCGs) for Volatile Organic Compounds (VOCs), Semi-volatile Organic Compounds (SVOCs) Pesticides or Poly Chlorinated Biphenols (PCBs) and in Site soils and/or groundwater. In particular, based on a review of historical documentation and current site activities, the sampling and analysis program was developed to address potential for fuel related compounds, lubricants, waste oils/PCBs, and chlorinated solvents. Because insufficient information exists regarding other potential site contaminants, additional analytes included pesticides and metals. Task 3 was the preparation and distribution of this Report.

TASK 2 - FIELD INVESTIGATIONS

Field investigations included:

- 1) Soil sampling and monitoring well installation
- 2) Round 1 groundwater sampling
- 3) Round 2 groundwater sampling

The subsurface soil borings, groundwater monitoring well installation, and subsurface soil sample collection activities were conducted from November 13, 2005 to November 17, 2005.

Groundwater sampling events were conducted during the period from December 7, 2005 to December 9, 2005 and again on March 3, 2006. A Site land survey was completed by LU Engineers on February 1st, 2006.

The following subsections describe the activities conducted during the field investigation portion of the Site SC. The work generally followed the scope of work as outlined in the SC Work Plan (MACTEC, 2005), with the exception that one additional well was installed at the Site. The field investigation was conducted in accordance with the specifications presented in the Quality Assurance Program Plan (QAPP) (ABB-ES, 1995) and the site specific Quality Assurance Project Plan. Laboratory analyses was performed by Mitkem Corporation (Mitkem), a New York State Department of Health (NYSDOH) approved laboratory. Laboratory analysis complied with the NYSDEC Analytical Services Protocols (ASP) (NYSDEC, 2000).

3.1 General Field Activities

General field activities, including mobilization, health and safety, and decontamination, are described in the following subsections.

3.1.1 Mobilization

After receiving the NYSDEC authorization to begin fieldwork, MACTEC and its subcontractors conducted utility clearance, mobilized to the Site and began the field exploration program. On November 2, 2005, the MACTEC site lead, David Bufo, visited the Site and met with representatives from the NYSDOT to discuss well locations. Well locations were agreed upon and marked at that time.

On November 13th 2005 a field team orientation meeting was held on-site with MACTEC personnel to familiarize field workers with site history, health and safety requirements, equipment calibration procedures, and other field procedures.

3.1.2 Health and Safety

Field investigation activities were conducted at Level D personal protection. Based on photo ionization detection (PID) readings, no upgrades of personal protection were warranted.

3.1.3 Decontamination

Sampling methods and equipment for this field program were chosen to minimize investigation derived waste and minimize possibility of cross contamination. Disposable sampling equipment was used as much as practical to minimize decontamination time and water disposal.

Non disposable sampling equipment was decontaminated by 1) scrubbing the sample collection equipment with potable water and Liquinox, rinsing with potable water, rinsing with de-ionized water, and then allowing the equipment to air dry, or 2) steam cleaning the equipment and then allowing the equipment to air dry. Decontamination fluids did not exhibit visual or olfactory evidence of contamination and were released to the ground surface in the area of the exploration, so as to allow the liquids to infiltrate into the soil.

3.1.4 Investigation Derived Wastes

The field investigation did not result in the generation of wastes that were considered hazardous (i.e., no visual or olfactory signs of contamination, and no PID readings above 5 parts per million (ppm) were detected). Therefore drill cuttings and purge water resulting from the investigation were placed on the ground surface in the area of exploration, or used as backfill for the borings, and personal protective equipment and disposable sampling equipment were double bagged and disposed of as non-hazardous refuse.

3.2 Soil Borings and Sampling

Field investigation activities included the completion of seven soil borings, the collection and analysis of soil and groundwater samples. The purpose of the activities was to provide groundwater data for comparison to NYS Class GA Groundwater Quality Standards set forth under 6 NYCRR Parts 700-705 (NYS, 1999b), and to assist the NYSDEC in evaluating significant threat to public health and the environment as defined by 6 NYCRR Part 375 (NYS, 1998). Soil sample analyses were used to assess whether hazardous waste constituents were present in site soils, and, if possible, confirm a source of contamination.

MACTEC Engineering and Consulting, P.C., Project No. 3612052036

Boring locations are shown on Figure 3.1. Locations were chosen to determine soil and groundwater conditions across the Site including up gradient and down gradient portions to assess variations in potential soil and groundwater contamination potentially resulting from site activity.

Seven soil borings (BS-1 through BS-7) were completed during the period from November 14, 2005 through November 17, 2005. Soil samples were collected using 2-inch split-spoon sampler driven ahead of four and a quarter-inch hollow stem auger. Soil samples were collected continuously from the ground surface to approximately 10 to 15 feet below the water table. PID headspace readings were used to screen soil samples for the presence of VOCs upon opening the split-spoon sampler. Samples were described using the Unified Soil Classification System (USCS). Sample description and classification, VOC headspace reading, and boring observations were recorded on the Test Boring Logs, presented in Appendix B. Based on the PID readings and physical evidence of contamination such as color and odor, seven soil samples were submitted to the off-site analytical laboratory for analysis. Samples exhibiting the highest PID readings and physical evidence of contamination were selected for analysis. Soil samples were shipped to Mitkem for analyses of target compound list (TCL) VOCs, SVOCs, TAL metals, and Pesticides/PCBs at using USEPA OLM04.2_VOA, OLM04.2_SVOA, OLM4.2_PP and ILM04.1 ICP methods as described in the NYSDEC ASP of June 2000. Laboratory analysis included Category B deliverables.

3.3 Overburden Well Installation. All seven (7) of the soil borings were converted to overburden monitoring wells. The monitoring wells were installed after the soil was classified and pertinent soil samples were collected from the borings. The monitoring wells were constructed of 2-inch inside diameter schedule 40 polyvinyl chloride (PVC) riser with 10-foot PVC well screens. Well screens have 0.010-inch wide machine slots with #0 sand pack to 3 feet above the screen, a two foot bentonite seal above the sand pack and a cement/bentonite grout backfill to the ground surface. The wells were completed with a locking cap and a six inch flush mount cover.

Each newly installed monitoring well was developed using the procedures for well development presented in Subsection 4.4.3 of the QAPP (ABB-Environmental Services, 1995.) Development was completed by Geologic, NY on November 18, 2005. Development records are included in Appendix B.

3.4 Groundwater Sampling. The first round of groundwater samples was collected for laboratory analysis during the period from December 7, 2005 to December 9, 2005. All new monitoring wells were sampled using low-flow sampling procedures as described in the QAPP, located in Appendix A. Samples were collected from the presumed least contaminated to the most contaminated locations as determined from the hydrogeology and known Site conditions. Field measurements for pH, temperature, specific conductivity, ORP, dissolved oxygen, and turbidity were collected from each well during pre-sampling purging. Prior to sampling, a full round of groundwater levels were recorded. Sampling data records are included in Appendix B.

The second round of groundwater sampling occurred during the period from March 28, 2005 to March 29, 2006. Similar to the first round groundwater sampling, monitoring wells were sampled using low-flow sampling procedures. Field measurements for pH, temperature, specific conductivity, ORP, dissolved oxygen, and turbidity were collected from each well during presampling purging. Sampling data records are included in Appendix B.

3.5 Site Survey

On February 1, 2006, MACTEC's survey subcontractor (Lu Engineers) surveyed the Site and new monitoring wells. Monitoring well locations were added to the base map. Vertical elevation accuracy was 0.01 foot and horizontal accuracy was 0.1 foot. Horizontal positions were tied into the NYS Plane Coordinate System using North American Datum of 1983. Vertical elevations were tied to msl, North American Vertical Datum 1988. Surveyed items included:

- Horizontal locations of seven new monitoring wells and;
- Vertical elevations of seven new monitoring wells, including top of the riser, top of the protective casing, and the ground surface.
- Location of buildings, landmarks and site boundaries.

4.0 DATA ASSESSMENT

This section presents results of the site investigation activities and laboratory analyses for soil, groundwater, and air samples collected during Task 2, as well as results of the water level survey.

4.1 FIELD OBSERVATIONS/RESULTS

Soils at the site varied from fill material consisting of concrete/pavement fragments, combined with silty sands and gravels near the surface to fine grained silts and sands beneath the fill. Fill thicknesses were greater in the northwest portion of the site (BS-001) down to 18-20 feet and lessened toward the southeast (BS-006, BS-007) down to 10-12 feet.

Ground water depth measurements were collected on December 7, 2005 and between March 28 and 29, 2006. Well survey and water elevation data are presented in Tables 4.1 and 4.2.

Depth to water across the Site varied from 10.84 ft bgs to 22.95 ft bgs resulting in groundwater elevations across the site ranging from 888.34 to 889.66 ft. Potentiometric surface maps are presented in Figures 4.1 and 4.2.

4.2 ANALYTICAL RESULTS

Soil and groundwater analytical results were compared to appropriate standards or guidelines. Reported concentrations of individual analytes indicating contravention of standards or guidelines are summarized in the following sections, and noted in Tables 4.3 through 4.5.

A Data Usability Summary Report (DUSR) was completed in accordance with the NYSDEC's Guidance for the Development of Data Usability Summary Reports (NYSDEC, 1997). This report and complete analytical results including tentatively identified compounds (TIC) are presented in Appendix D. TICs were not evaluated as part of the DUSR.

Based on laboratory or data usability review, some of the data was qualified with a J, B, R and/or an D. Compounds were qualified J if the concentration listed was an estimated value, which was

MACTEC Engineering and Consulting, P.C., Project No. 3612052036

less than the specified minimum reporting limit but greater than the instrument detection limit. Compounds qualified J were analyzed for and determined to be present in the sample, and the mass spectrum of the compound met the identification criteria of the method. The reporting limits for most target VOCs using the OLM04.2 Methods, including the target chlorinated solvents compounds were $10~\mu g/L$. This is above most of the NYS Class GA groundwater standards; however, the actual instrument detection limit was below the NYS Class GA groundwater standards.

Compounds qualified B indicate that the compound was found in the trip blank, or laboratory blank, and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte.

Compounds qualified D indicate that the compound was reported from an analytical run that required a dilution due to concentrations greater than the highest calibration standard.

Compounds qualified R indicate that the result was rejected during data validation. Data was deemed unusable due to gross deviations from validation criteria.

Analytical results were compared to the standards or guidelines described below.

Soil Samples. Analytical results were compared to the Recommended Soil Cleanup Objectives in the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) No. 94-4046 (NYSDEC, 1994).

Groundwater Samples. Analytical results were compared to: (1) the NYS Class GA Groundwater Quality Standards from 6 NYCRR Parts 700-706 (NYS, 1999b) or, where applicable, (2) the NYS Class GA Groundwater Quality Guidance Values from the Division of Water Technical and Operational Guidance Series 1.1.1 "Ambient Water Quality Standards and Guidance Values" (NYSDEC, 1998).

4.2.1 Soil Sample Results

A summary of target VOCs, SVOCs, Pesticides and Metals detected in soil samples are presented in Table 4.3.

VOCs

Chlorinated solvents were not detected in soil samples and VOCs were not detected at concentrations above the NYSDEC Soil Cleanup Objectives.

SVOCs

One SVOC, Benzo(a)pyrene was detected in soil borings BS-002 and BS-007 at 0.1(J) and 0.72(J) mg/kg respectively, exceeding the TAGM level of 0.061 mg/kg.

Metals

Aluminum, arsenic, beryllium, calcium, copper, iron, magnesium, manganese, nickel, potassium, thallium, and zinc exceeded their TAGM levels in soil samples from borings BS-001, BS-002, BS-003, BS-004, BS-005, and BS-007. No soil samples were taken from BS-006 due to cobbles stuck in sleeve. The following summarizes these results;

- Aluminum exceedances ranged from 6,400 mg/kg to 8,730 mg/kg exceeding the TAGM concentration of 4,800 mg/kg.
- Arsenic exceeded the TAGM of 7.5 mg/kg at BS-007 with a concentration of 8.8 mg/kg.
- Beryllium detections ranged from 0.19 mg/kg to 0.48 mg/kg exceeding the TAGM concentration of 0.16 mg/kg.
- Calcium detections ranged from 28,200 mg/kg to 95,000 mg/kg exceeding the TAGM concentration of 100 mg/kg.
- Copper detections ranged from 26.9 mg/kg to 43.3 mg/kg exceeding the TAGM concentration of 25 mg/kg.
- Iron detections ranged from 14,700 mg/kg to 22,900 mg/kg exceeding the TAGM concentration of 2,000 mg/kg.
- Magnesium detections ranged from 7,160 mg/kg to 18,500 mg/kg exceeding the TAGM concentration of 600 mg/kg.

- Manganese detections ranged from 412 mg/kg to 594 mg/kg exceeding the TAGM concentration of 50mg/kg.
- Nickel detections ranged from 17.6 mg/kg to 24.3 mg/kg exceeding the TAGM concentration of 13 mg/kg.
- Potassium detections ranged from 578 mg/kg to 727 mg/kg exceeding the TAGM concentration of 400 mg/kg.
- Thallium detections ranged from 0.78 mg/kg to 2.8 mg/kg exceeding the TAGM concentration of 0.1 mg/kg.
- Zinc detections ranged from 72.1 mg/kg to 106 mg/kg exceeding the TAGM concentration of 20 mg/kg.

Pesticides/PCBs

One Pesticide was detected in one soil sample from the Site. Endrin Ketone was detected in soil from BS-007 at 0.0023 mg/kg and there is no TAGM level for this compound. No PCBs were detected in any of the soil samples.

4.2.2 Groundwater Sample Results

This subsection presents analytical results for VOCs, SVOCs, TAL Metals, and Pesticides/PCBs for the groundwater samples collected during the December 2005 and March 2006 events. Table 4.4 shows a summary of target compounds detected in the groundwater samples from the December 2005 sampling event. Table 4.5 shows a summary of target compounds detected in the groundwater samples from the March 2006 sampling event.

VOCs

During the December 2005 sampling event the only VOC detected in exceedance of the NYS Class GA groundwater standard was trichloroethene (TCE) in a groundwater sample from MW-05. TCE was detected at 8 (J) μ g/l which exceeds the NY State GA Standard of 5 μ g/l.

During the March 2006 sampling event the only VOC detected in exceedance of the NYS Class GA groundwater standard was also TCE. TCE was detected in groundwater from MW-006 at 6(J) μ g/l. Trichloroethene was also detected at 6(J) μ g/l in the duplicate sample collected from MW-006.

MACTEC Engineering and Consulting, P.C., Project No. 3612052036

SVOCs

During the December 2005 and March 2006 sampling events SVOCs were not detected at concentrations in groundwater that exceed the NYS standards or guidance values. During the March 2006 sampling event the only SVOC detected was Bis(2-ethylhexyl)phthalate (a common laboratory contaminant). Bis (2-ethylhexyl)phthalate was detected in groundwater from MW-007 at 1 (J) μ g/l.

Metals

During the December 2005 sampling event the only TAL Metal found at concentrations exceeding NYS Class GA standard was Sodium. Sodium concentrations exceeded the standard of 20,000 μ g/l at all locations and detected concentrations ranged from 138,000 μ g/l to 246,000 μ g/l.

During the March 2006 sampling event Iron, Manganese, and Sodium were found to exceed NYS Class GA Standards. Sodium concentrations exceeded the standard of 20,000 μ g/l at all locations. Detected Sodium concentrations ranged from 133,000 μ g/l to 286,000 μ g/l. Iron exceeded the standard of 300 μ g/l at MW-001 and MW-005 with detected concentrations of 393 (J) μ g/l and 1010 (J) μ g/l respectively. Manganese exceeded the standard of 300 μ g/l at MW-005 with a detected concentration of 321 μ g/l.

Pesticides/PCBs.

Pesticides and PCBs were not detected at concentrations that exceeded applicable standards or guidance values in either of the two groundwater sampling events

5.0 INVESTIGATION FINDINGS

A review of physical and chemical data collected during the SC resulted in the following findings:

- 1) The site is located in a mixed industrial/residential neighborhood that is serviced by public water.
- 2) Groundwater flow is interpreted to flow to the south.
- 3) TCE was not detected in soil samples collected at the Site property. The following metals did exceed TAGM 4045 soil cleanup objectives to protect groundwater in the soil samples collected; Aluminum, arsenic, beryllium, calcium, copper, iron, magnesium, manganese, nickel, potassium, thallium, and zinc
- 4) TCE was detected at low concentrations in groundwater samples collected from all seven wells at the site and exceeded the NYS Class GA groundwater standards in two wells MW-005 at 6(J) μg/L and MW-006 at 8(J) μg/L compared to the standard to 5 μg/L. This is consistent with the reported information that low concentrations of VOCs, specifically, TCE have been detected in area ground water, and are attributed to activities at the Westinghouse site, located up-gradient of the site. Based on the Kentucky Avenue Wellfield Groundwater Monitoring Report from 2005, TCE groundwater concentrations were higher up-gradient of the Site (max of 32 μg/L) towards the former Westinghouse property, and lower down-gradient of the Kentucky Avenue site.
- 5) The following metals exceeded their criteria in groundwater samples collected; sodium, iron and manganese.
- 6) Based on these results, the Site does not appear to be a source of chlorinated solvents because chlorinated solvents detected in the monitoring wells do not appear to be originating from the Site. Elevated concentrations of iron and manganese in soils could be impacting groundwater beneath the site.

6.0 REFERENCES

- ABB Environmental Services, 1995. Program Quality Assurance Program Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. June 1995. (ABB Environmental Services, 1995)
- Annual Report 2005, Longterm Groundwater Monitoring, Operable Unit 2, Kentucky Avenue Well Field Site, Horseheads, NY, (Cummings, Riter Inc., 2006)
- National Climactic Data Center (NCDC), 2004. Comparative Climactic Data for the United States, 1971 to 2000. February, 2004.
- New York State (NYS), 1999a. New York Codes, Rules, and Regulations, Title 6, Part 371 Identification and Listing of Hazardous Wastes. Amended November 1999.
- New York State (NYS), 1999b. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- New York State (NYS), 1998. New York Codes, Rules, and Regulations, Title 6, Part 375 Inactive Hazardous Waste Disposal Sites Remedial Program. Amended January 1998.
- New York State (NYS), 1998. Class GA Groundwater Quality Guidance Values from the Division of Water Technical and operational Guidance Series 1.1.1 "Ambient Water Quality Standards and Guidance Values"
- New York State Department of Environmental Conservation (NYSDEC), 1997. "Guidance for the Development of Data Usability Reports"; Division of Environmental Remediation; September 1997.
- New York State Department of Environmental Conservation (NYSDEC), 2002. Draft DER-10, Technical Guidance for Site Investigation and Remediation. December 2002.
- New York State Department of Environmental Conservation (NYSDEC), 2000. "Analytical Services Protocols"; 6/00 Edition; June 2000.
- New York State Department of Environmental Conservation (NYSDEC), 1994. Revised Technical and Administrative Guidance Memorandum HWR 94-4046: Determination of Soil Cleanup Objectives and Cleanup Levels. January 1994.
- Rickard and Fisher, 1970. Geologic Map of New York, Finger Lakes Sheet, New York State Map and Chart Series 15. by L.V. Rickard and D.W. Fisher. March, 1970. (Rickard and Fisher, 1970).

TABLES

TABLE 4.1: GROUNDWATER WELL SURVEY AND WATER ELEVATION DATA Dec-05

Well	Riser Elevation	Depth to Water	Water Elevation
MW-01	912.61	22.45	890.16
MW-02	909.75	20.13	889.62
MW-03	903.08	14.14	888.94
MW-04	902.28	13.96	888.32
MW-05	899.18	10.84	888.34
MW-06	899.25	11.6	887.65
MW-07	900.91	13.02	887.89

Created by: JMI 7/25/06 Checked by: CRS 7/28/06

Notes:

- 1. Depth to water measured from top of well riser 12/07/05.
- 2. Elevations in feet above mean sea level-NYS Plane Coordinates, NAVD 1988.
- 3. Depth to water = feet below top of riser.

4.1 Table 4.1.xls Page 1 of 1

TABLE 4.2: GROUNDWATER WELL SURVEY AND WATER ELEVATION DATA

Mar-06

Well	Riser Elevation	Depth to Water	Water Elevation
MW-01	912.61	22.95	889.66
MW-02	909.75	20.58	889.17
MW-03	903.08	14.55	888.53
MW-04	902.28	14.38	887.90
MW-05	899.18	11.31	887.87
MW-06	899.25	11.97	887.28
MW-07	900.91	13.36	887.55

Created by: JMI 7/25/06 Checked by: CRS 7/28/06

Notes:

1. Depth to water measured from top of well riser 3/28/06.

- 2. Elevations in feet abov mean sea level-NYS Plan Coordinates, NAVD 1988.
- 3. Depth to water = feet below top of riser.

4.1 Table 4.2.xls Page 1 of 1

Table 4.3: Soil Sampling Results

Site Characterization Report - Kentucky Avenue NYSDEC - Site 808027 MACTEC Engineering and Consulting, Inc., PC., Project 3612052034

	Location Name BS-001		BS-002 BS-003			BS-004		BS-	005	BS-	005	BS-0	05	BS	-007			
		Sample Id			STBS002		STBS0030		STBS0040		STBS005		STBS005		STBS0050			701001XX
		ple Depth	16-1		18-2			16-18 ft		6-8 ft		9 ft	8-10 ft		8-10 ft			-12 ft
		nple Date	11/15/2005			11/16/2005		11/16/2005		11/15/2005		11/15/2005		11/15/2005		11/15/2005		4/2005
		QC Code	F.,,,,			FS		FS		FS		S	FD		FS		FS	
Parameter	TAGM		Result	Qualifier	Result	Qualifier	Result Qualifier			Qualifier	Result Qualifier		Result	Qualifier	Result Qualifier		Result	Qualifier
Volatile Organic Compounds			i i	i i		i i												
Acetone	0.2	MG/KG	-		0.018		-		0.036	J	-		-		0.022	J	-	
Benzene	0.06	MG/KG	0.003	J	0.003	J	-		0.003	J	-		0.003	J	0.003	J	-	
Chloroform	0.3	MG/KG			-		-		-		-		-		0.001	J	-	
Cyclohexane		MG/KG	-		0.01	J	0.006	J	0.01	J	1.8	D	0.011		-		-	
Methyl cyclohexane		MG/KG	0.015		0.014		0.008	J	0.016		3.8	D	0.018		0.016		-	
Methylene chloride	0.1	MG/KG			0.011		0.009		-		-		-		-		-	
Toluene	1.5	MG/KG	0.009	٦	0.004	٦	0.003	J	0.008	J	-		0.01	J	0.011		-	
Xylenes, Total	1.2	MG/KG	0.004	٦	0.001	٦	-		0.004	J	-		0.005	J	0.007	J	-	
Semi-Volatile Organic Compounds		•			-				-		-			•				
Benzo[a]anthracene	0.224	MG/KG			0.096	٦	-		-		-		-		-		0.059	J
Benzo[a]pyrene	0.061	MG/KG	-		0.1	J	-		-		-		-		-		0.072	J
Benzo[b]fluoranthene	0.224	MG/KG	-		0.14	J	-		-		-		-		-		0.12	J
Benzo[k]fluoranthene	0.224	MG/KG	-		0.065	J	-		-		-		-		-		-	
Bis(2-Ethylhexyl)phthalate	50	MG/KG	0.096	J	0.057	J	0.16	J	0.05	J	0.11	J	0.044	J	0.054	J	0.059	J
Chrysene	0.4	MG/KG	-		0.1	J	-		-		-		-		-		0.15	J
Fluoranthene	50	MG/KG			0.2	٦	-		-		-		-		-		0.12	J
Indeno[1,2,3-cd]pyrene	3.2	MG/KG			-		-		-		-		-		-		0.036	J
Phenanthrene	50	MG/KG			0.092	٦	-		-		0.046	J	-		-		0.1	J
Pyrene	50	MG/KG			0.15	٦	-		-		-		-		-		0.12	J
Pesticides																		
Endrin ketone		MG/KG	-				-		-				-		-		0.0023	J
TAL Metals																		
Aluminum	4,800	MG/KG	8730		7710		6800		6400		NA		8430	J	6640	J	7720	
Arsenic	7.5	MG/KG	2.8		5.4		2.7		3.1		NA		4.6		3		8.8	
Barium	300	MG/KG	54.3		52.4		53.6		27.7	В	NA		48.5		36.6	В	90.3	
Beryllium	0.16	MG/KG	0.21	В	0.25	В	0.19	В	0.19	В	NA		0.3	В	0.21	В	0.48	В
Cadmium	10	MG/KG	-		-		-		0.077	В	NA		0.11	В	0.22	В	0.15	В
Calcium	100	MG/KG	42600		70700		59800				NA		45300	J	95000	J	28200	
Chromium	50	MG/KG	13.3	Е	12	Е	13.2	E	10.8	E	NA		18	Е	14	E	13.9	E
Cobalt	30	MG/KG	8	J	8.4	J	6.3	J	6.2	J	NA		8.2	J	5.9	J	9	J
Copper	25	MG/KG	29.9	J		R		R	26.9	J	NA		30.2	J	23.8	J	43.3	J
Iron	2,000	MG/KG	19900	J	19200	J	16500	J	15000	J	NA		19300	J	14700	J	22900	J
Lead	400	MG/KG	10.6	J		R		R	9.5	J	NA		11.1	J	9.3	J	43.7	J
Magnesium	600	MG/KG	12100	*	18500	*	9200	*	11200	*	NA		8700	*	14200	*	7160	*

4.1 Table 4.3.xls Page 1 of 2

Site Characterization Report - Kentucky Avenue

NYSDEC - Site 808027

Table 4.3: Soil Sampling Results

October 2006

Final

Created by: JMI 7/25/06

Checked by: CRS 7/28/06

	Loca	tion Name	BS	-001	BS-002		BS-003		BS-004		BS-005		BS-005		BS-005		В	S-007	
	Field Sample Id Sample Depth Field Sample Date		Field Sample Id STBS001016		STBS002	STBS00201801XX S		STBS00301601XX S		STBS00406001XX 6-8 ft		STBS00501701XX 17-19 ft		STBS00508001XD 8-10 ft		STBS00508001XX 8-10 ft		STBS00701001XX 10-12 ft	
			16-	16-18 ft															
			11/15	5/2005	11/16	11/16/2005		11/16/2005		11/15/2005		11/15/2005		11/15/2005		11/15/2005		11/14/2005	
		QC Code	F	S	F	FS		FS		FS		FS		FD		FS		FS	
Parameter	TAGM	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
Manganese	50	MG/KG	452		508		532		445		NA		502		412		594		
Nickel	13	MG/KG	20.5	J	21.9	J	17.6	J	21.4	Е	NA		24.3	J	17.6	J	21.3	J	
Potassium	400	MG/KG	657	В	727	В	623	В	578	В	NA		682	В	667	В	688	В	
Sodium	750	MG/KG	105	В		R		R	126	В	NA		105	В	131	В	488	В	
Thallium	0.1	MG/KG	2		2	В	1.9		0.99	В	NA		2		0.78	В	2.8		
Vanadium	150	MG/KG	12.3		12.4		10.1		11		NA		14		11.3		17		
Zinc	20	MG/KG	72.1	J		R		R	69.4	J	NA		106	J	83.8	J	86.7	J	

Notes:

Results in milligrams per killogram (mg/kg)

Only detected compounds shown.

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifers:

U = Not detected at a concentration greater than the reporting limit

MACTEC Engineering and Consulting, Inc., PC., Project 3612052034

- J = Result is estimated
- B = The reported result fell above the IDL but below the CRDL
- E= The percent difference between the parent sample and its serial dilution's concentration exceeds 10%.
- R= Sample was rejected.

NA= Not Alanyzed

Criteria = Values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

* = New York State GA Standard

Results in BOLD exceed associated criteria

Methods:

Volatile Organic Compounds analyzed with OLM4.2_VOA

Sem-Volatile Organic Compouds analyzed with OLM4.2_SVOA

Inorganic Compounds analyzed with OLM4.2_PP

TAL Metals analyzed with ILM4.1_ICP

4.1 Table 4.3.xls Page 2 of 2

Table 4.4: Groundwater Sampling Results 12/05

14/10																	
	Location Name		MW-001		002	MW-0		MW-0		MW-0		MW-0		MW-0		MW-0	
	Field Sample Id		STMW001XXX01XX STMW002		XXX01XX STMW003XXX01XX			TMW004XXX01XX STMW005XXX01XX		STMW006XXX01XX		STMW007XXX01DU		STMW007XXX01XX			
	Field Sample Date	12/8/2	2005	12/9/2			12/9/2005		12/8/2005		12/8/2005		2005	12/7/2005		12/7/2005	
	Qc Code	FS	3	FS	3	FS	i	FS	;	FS		FS	5	FD		FS	
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Volatile Organic Compour																	
Methyl cyclohexane	NA	10	U	10	U	10	U	10	U	5	J	10	U	10	U	10	U
Trichloroethene	5*	4	J	4	J	2	J	4	J	8	J	5	J	10	U	10	U
Semivolatile Organic Com		-		•		•		•					•	•		•	
All analytes non-detect	NA																
Inorganics																	
All analytes non-detect	NA																
TAL Metals																	
Antimony	3*	60	U	60	U	60	U	60	U	2.4	В	60	U	60	U	60	U
Barium	1000*	147	В	166	В	154	В	196	В	230		221		159	В	160	В
Calcium	NA	89600		95500		89300		124000		120000		126000		95600		93200	
Chromium	50*	0.79	В	0.66	В	0.64	В	0.71	В	0.64	В	0.55	В	0.85	В	0.91	В
Cobalt	NA	1.1	В	0.68	В	0.58	В	0.7	В	0.65	В	0.83	В	0.8	В	0.99	В
Copper	200*	1.8	В	25	U	25	U	2.2	В	3.6	В	6.7	В	6.5	В	19.2	В
Iron	300*	26.8	В	20.4	В	19.6	В	15.4	В	88.3	В	19.5	В	21.3	В	40.4	В
Magnesium	35000	18600		20200		18700		24900		24500		25500		19900		19300	
Manganese	300*	95.8		6.7	В	4.2	В	69.1		125		89.3		40.4		46.4	
Nickel	100*	2	В	1.5	В	1.7	В	2.3	В	2.3	В	2.4	В	2	В	2.3	В
Potassium	NA	2090	В	1790	В	1870	В	2080	В	2470	В	2190	В	1970	В	2000	В
Silver	50*	0.61	В	0.59	В	10	U	10	U	0.64	В	0.81	В	10	U	0.98	В
Sodium	20000*	154000		141000		138000		192000		140000		246000		163000		164000	
Zinc	2000	5.2	В	5.2	В	3.7	В	7.7	В	15.8	В	14.6	В	6.7	В	23.7	

Created by: AZ 6/27/06

Checked by: CRS 7/28/06

Results in microgram per liter (µg/L)

Only detected compounds shown.

QC Code:

Notes:

FS = Field Sample

FD = Field Duplicate

Qualifers:

U = Not detected at a concentration greater than the reporting limit

J = Result is estimated

 $\boldsymbol{B} = The \ reported \ result \ fell \ above \ the \ IDL \ but \ below \ the \ CRDL$

Criteria = Values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

* = New York State GA Standard

Results in BOLD exceed associated criteria

Methods:

Volatile Organic Compounds analyzed with OLM4.2_VOA

Sem-Volatile Organic Compouds analyzed with OLM4.2_SVOA

Inorganic Compounds analyzed with OLM4.2_PP

TAL Metals analyzed with ILM4.1_ICP

4.1 Table 4.4.xls Page 1 of 1

Table 4.5: Groundwater Sampling Results 03/06

	Location Name	MW-001	MW-002	MW-003	MW-004	MW-005	MW-006	MW-006	MW-007	
	Field Sample Id	STMW00102502XX	STMW00202502XX	STMW00302002XX	STMW00402002XX	STMW00501502XX	STMW00602002XD	STMW00602002XX	STMW00701802XX	
Fie	eld Sample Date	3/28/2006	3/28/2006	3/28/2006	3/29/2006	3/29/2006	3/28/2006	3/28/2006	3/29/2006	
	Lab Sample Id	E0379-04A	E0379-05A	E0379-06A	E0379-07A	E0379-09A	E0379-02A	E0379-01A	E0379-08B	
	Qc Code	FS	FS	FS	FS	FS	FD	FS	FS	
	Criteria	Result Qualifier								
Volatile Organic Compounds										
Cyclohexane	NA	10 U	10 U	10 U	10 U	18	10 U	10 U	10 U	
Methyl cyclohexane	NA	10 U	10 U	10 U	10 U	35	10 U	10 U	10 U	
Methylene chloride	5*	10 U	1 J	1 J	10 U					
Trichloroethene	5*	3 J	4 J	2 J	4 J	5 J	6 J	6 J	1 J	
Semi-Volatile Organic Compounds		<u>.</u>	·	<u>.</u>						
Bis(2-Ethylhexyl)phthalate	l)phthalate 5* 10 U 1		10 U	10 U 10 U		10 U	10 U	10 U	1 J	
Inorganics										
All analytes non-detect	NA									
TAL Metals										
Aluminum	NA	222	200 U							
Barium	1000*	158 BE	168 BE	171 BE	148 BE	252 E	203 E	208 E	152 BE	
Cadmium	5*	0.23 B	0.38 B	0.54 B	0.34 B	5 U	5 U	0.31 B	1.1 B	
Calcium	NA	90,400	95,700	101,000	97,400	106,000	110,000	109,000	97,000	
Chromium	50*	0.95 B	10 U	0.52 B	10 U					
Iron	300*	393 J	23.9 UJ	100 UJ	100 UJ	1010 J	19.2 UJ	67.3 JB	17.1 UJ	
Magnesium	35000	19,300 EJ	20,700 EJ	21,300 EJ	20,400 EJ	21,700 EJ	22,800 EJ	22,600 JE	20,800 EJ	
Manganese	300*	90.2	2.6 U	1.4 U	0.86 U	321	3.7 U	4.1 B	4.6 B	
Potassium	NA	4,380 B	1,820 B	1,840 B	1,600 B	2,020 B	1,900 B	1,880 B	1,670 B	
Selenium	10*	5 UN	5 UN	5 UN	5 UN	3.1 BN	5 UN	5 UN	5 UN	
Sodium	20000	149,000	143,000	145,000	163,000	133,000	282,000	286,000	157,000	
Vanadium	NA	0.98 B	50 U	50 U	0.47 B	50 U	50 U	0.51 B	50 U	

Notes:

Results in microgram per liter (µg/L)

Only detected compounds shown.

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifers:

- U = Not detected at a concentration greater than the reporting limit
- J = Result is estimated
- B = The reported result fell above the IDL but below the CRDL
- E = The percent difference between the parent sample and its serial dilution's concentration exceeds 10%.
- N = The matrix or pre-digested spike sample recovery for an analyte is not within the specified control limit.

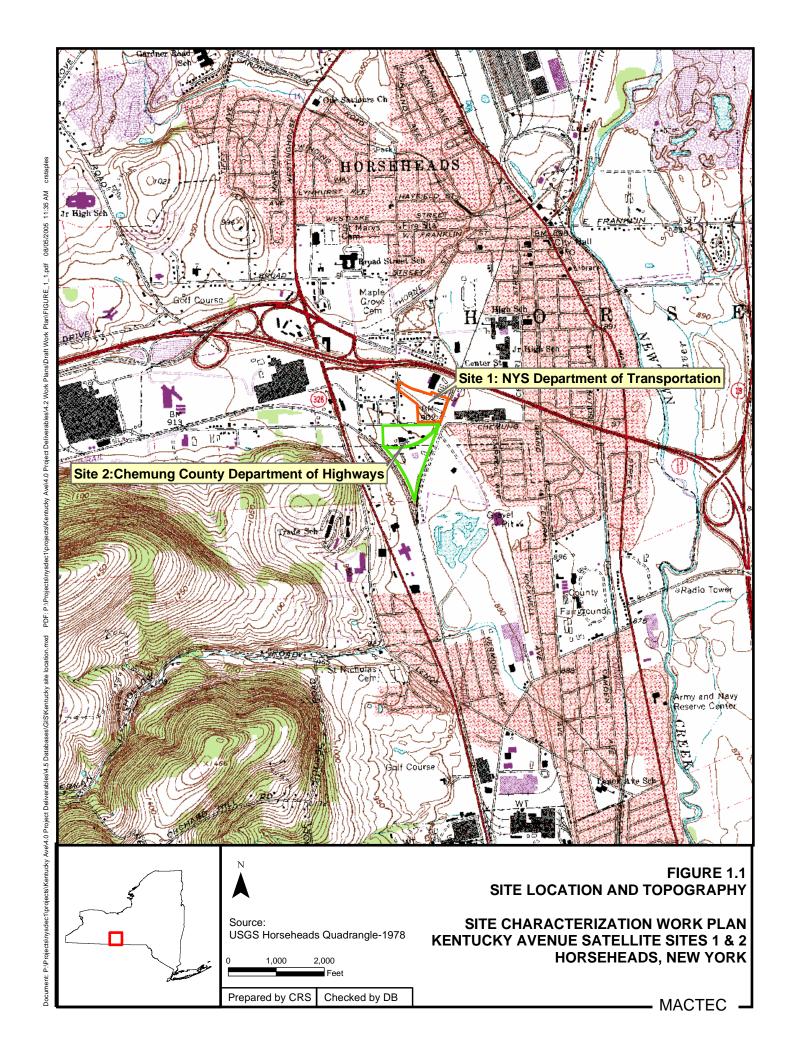
Criteria = Values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

* = New York State GA Standard

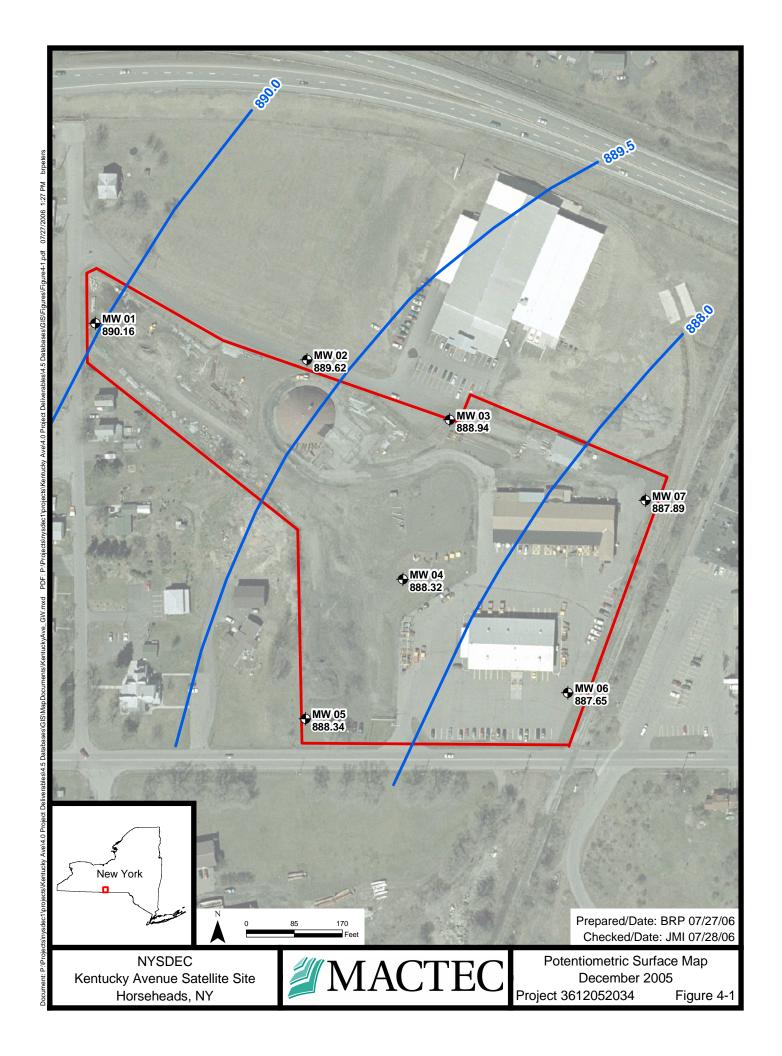
Results in **BOLD** exceed associated criteria

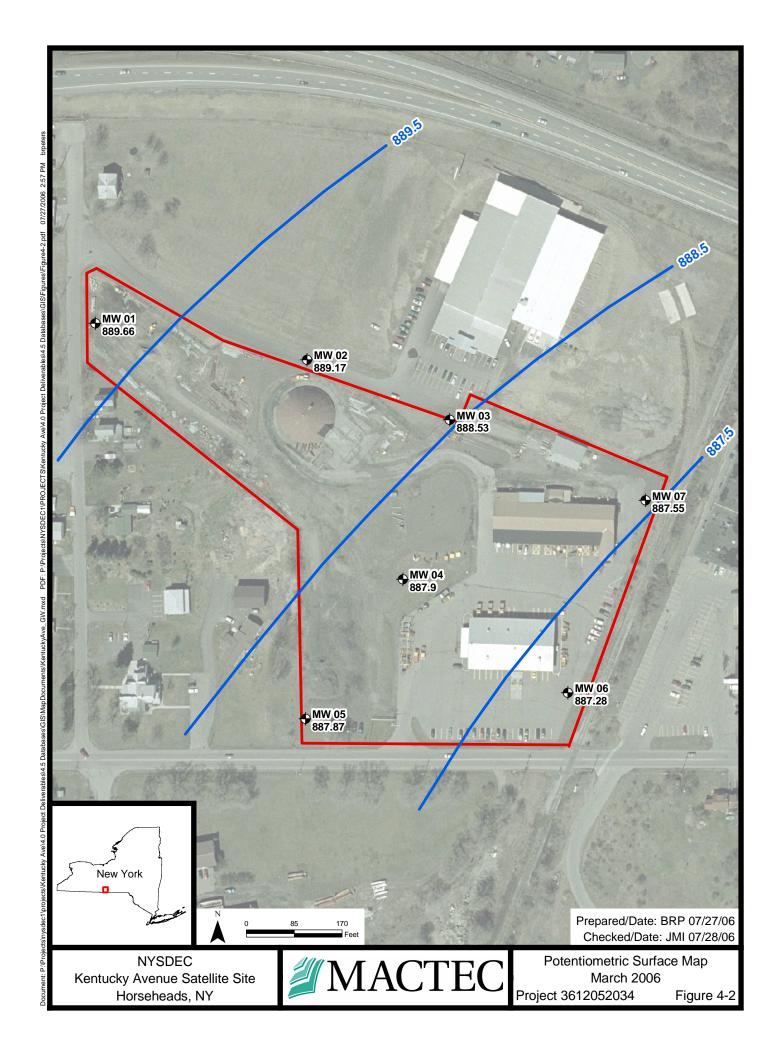
Methods:

Volatile Organic Compounds analyzed with OLM4.2_VOA

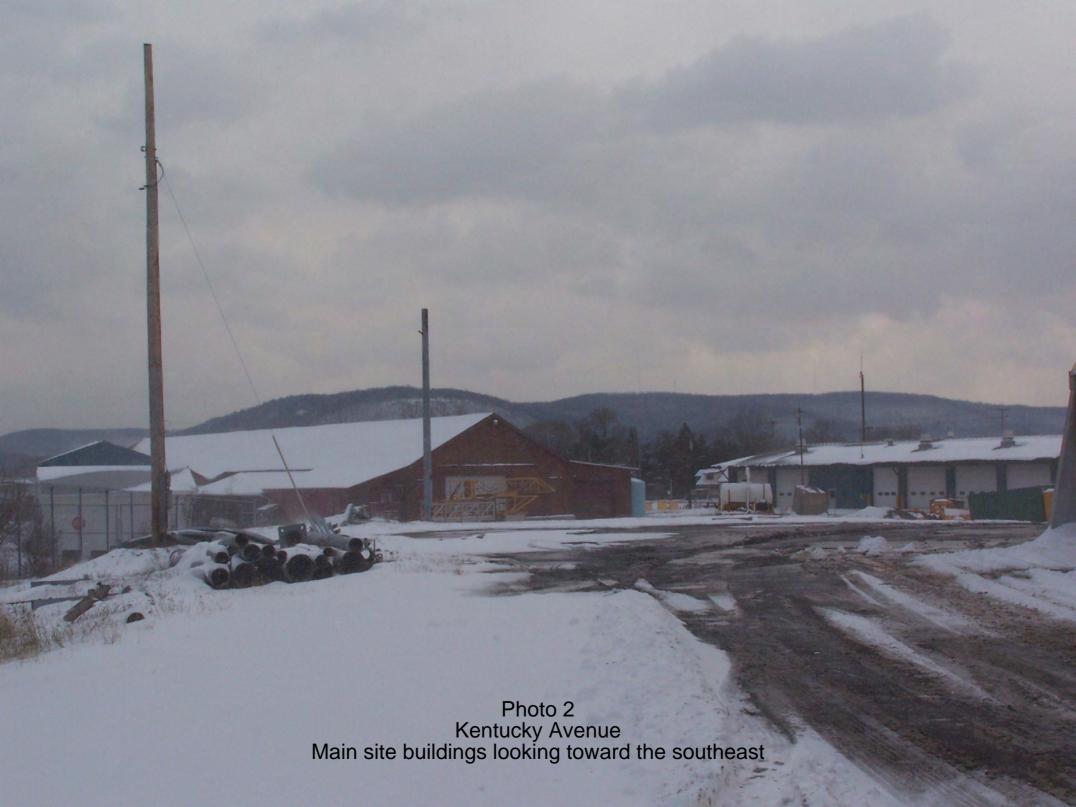

Sem-Volatile Organic Compouds analyzed with OLM4.2_SVOA

Inorganic Compounds analyzed with OLM4.2_PP


TAL Metals analyzed with ILM4.1_ICP


4.1 Table 4.5.xls Page 1 of 1

FIGURES



APPENDIX A:

SITE PHOTOGRAPHS

APPENDIX B:

FIELD DATA RECORDS

October 2006 Final

Field Records:

Well Installation Boring Logs

	W N A	ACTEC	Boring Location: B	5-1 CMWI)				
0	TAT	MOILC	Project Name: Kut	rKyAre I	Geologist:	Bund	la Show		
			Date Started: // 15	15	Drilling Cor	npany: 🔙	2010912 NY		
	Soi	l Boring Log	Date Completed: 11 15 15		Drilling Method: LISA Ager "1/3"				
		MACTEC	211	Total Depth: 345' De		241			
		Congress Street Portland, ME	Tour 2 open			Depth to Water: 74-0			
ŀ	Depth	Stratigraphy I	Comments: 30120	Penetration/	NSDEC Headspace	Blows/	Sample ID		
	(feet)	- , .		Recovery (feet)	(ppm)	6 inches	STB500101 FOIX		
	0'	files + fine sand +	vern Sandy lepm/PG vace coare sad SP-SN not of red Brill grave	14.0 /	60.1	10-14			
	~ (WIFION WAS VERY	SHIP, DEWY, SI,	/20	20.1	14-D	,		
	5	yen angular to 5 b	ve gravel sund clay	0.9		16-14			
	to	gravel, angular t	mp WG-fives to Coarse to Subjounded. 7GC	2-0	20.1	12-12			
	म्'	3 3 to 3.6" DK 13"	o Subjounded -7 GC and lenge of Gryanic fines woist SP, 70L	1200					
,	4	21.10 0 5	yellor gravely clay I pink sudstruct	11/	20.1	12-11			
	6	SHIFFI MUISH, SP-	- BC Sandy (12 w/gran	20	20,1	4-9			
	(e'	6-66 DEOLIVES	ady gravely Elay; Stiff	1.2 /	20,1	9-11			
art of	to 8	66-8. Brown on	cent work a course 2 mg 2 mg,	/20	101	14-24			
1	8'	81 to 8.4 Office	Vock of overage Clay of groves very grovel, congress to vounded	0.9/.		14-34			
(to	1 dw, 31 -> 60c; 8.	4 40 14 - 100 1 100 04	1.4	(0)	5004			
	10	10, to 10.7, DKOH	dry, very dense, 760				TOK 2 partes of		
ı	10	WG frus in for	e genell rem anglan h	0.2	(0.)	50 +000	Cottings nem to		
	12'	Rorded, Damp,	MP -> GCSC				me Surface.		
1	10,	very dense, NP, F	Klred from 1 W Soud 06, with like buseen	0.3'	(0.1	50 603	Atorghanling, many rocks ~ 2", boned.		
-	10, 14	rock, dry -9 Gi	>	(0.3)					
R	14,	W. Gues to coare	unfolive clay-gravely square very angular add, dry, NP/SP/Very	0.5	151	24-27			
	10, 16	- 60	21.11	2.0	Chi	28-25			
4	tlo'	It Brown Sand	-gravel -day mixture	/		44-35	STB500101601XX		
١	19	may very a	ense (hurd, WG, 7GM	20	CO.1	39-46			

		IACTEC	Boring Location: B	5-1(MV	11)		
	14.		Project Name: Ker	ucky Ave	- Geologist:	Bran	Aun Shir
·			Date Started: // 15	105	Drilling Co	mpany: C	eologiz NY
	So	il Boring Log	Date Completed:	15 25	Drilling Me	thod: HS	+ Ayer
	511	MACTEC Congress Street	Total Depth:	ー フ	Depth to W	ater: ~D	40'
		Portland, ME	Comments: 3015	052834	- MYSDA	<u> </u>	
	Depth (feet)	Stratigraphy I	Description	Penetration/ Recovery (feet)	Headspace (ppm)	Blows/ 6 inches	Sample ID
	181	18'-19' graves	of Some fines and day	0.9		36-18	
} 0	to	dry dense, >1 19: 20 Lt brown	tolive Silfy fine said of se, fry white, damp,		LON	lua	
				120		1-1-1	
e l)oʻ	. of 5mm clat. PG	on silty fine sond	0,2/	121	50	esseria.
ii.	22	fryable damp , s	gravel by Some Sand,	D2(100	0.5	
	222/11	DK Grey Silty Five	Soud of these anopylow Pe-fines to fine			12-16	
1,2	tu	Sand, very Stiff, S	lightly fryssle, 50 dan	Y 1/2	101	211.70	
	24	-12M	Si2 LAC E NO.	2.0		14-10	
`.	24°	25.5-25.8 DK9n the vest of Sime	1312, but color is Disgrey by silly finesadolf grows,	2.0	20.1	15-17	
713	26	WE fine to fin fram	nor gravel Sand Silt with, il, Subjected to well garde	/20		47-50	
	26'	26-27 divegrer	gravel sunderly mutter	1.0 /		36:-17	
) pdg	28'	27-28 France Gives	we, loose, Saturated	/20	10.1	21-13	, • .
			- GW(GM I of Source Sanding very derse, Sat.	d		12-17	i.
	TO	NP -1 CM	, very norse, Sat.	0.8	20.1	240 12	
	36'			1 ~~		154-17	·
	30°	Ayery to Bo	ther of Boring.	-			·
•	10 32	Bottom of Well	1.33.61				
					,		
		b					٠,
	<u> </u>)					

	MACTEC		Boring Location:	BS-21.	MW2)		•		
l			Project Name: 🔀	itcky Av.	(TGeologist:	Browne	lun Shr		
			Date Started: (6 5 Dril			Drilling Company: Geo logic N			
	So	il Boring Log	Date Completed: //	Drilling Me	thod: HS	Ayer			
		MACTEC Congress Street	Total Depth: 33 Dep			ater: ~	22.5"		
		Portland, ME	Comments: 361	- MSDF	Z				
	Depth (feet)	Stratigraphy [Description	Penetration/	Headspace	Blows/ 6 inches	Sample ID		
Ī	0"	Olive Black sity	19 mill of Sand W 15P, imple trace do	G 7 /	, ·	2-3			
,	1		(St. 1 mm betraces	4 0.1	[CO.1	3-2			
	2.	-7 GM	- / 201	120		, ,			
	2	Soft, MP, Satur	Soudy Grand, We som) ii /		2-2			
2	10°	@ 4' Blive prum	Sandy Clay of Sand	1/20	(0.1	1-2			
	4,	more dense, mast	75c	nd J		7-4			
3	Ab.	of olive clay Co.1	well and I some soull wable, 31 7 GC	layer 1.5	Loll	1/ 1/2			
	6	Stiff, W.C. damp, fr	rable, 97-76C	(ourse) / 2.0	<i>)</i>	(0-17)			
ų	6	Prime 6 to 7" Sa	Le es 53 Land grant of Son Se, dry, NP, 7GC	me 16/	Lost	18-23			
-	8"	fires, WG, V. der	se, dry, NP, 7GC	/2.0		34-40			
	8,	1 to 8.4 Lt man/ 1)	Coline Sand-grand	-alay		50-45			
5	10	84 to G. 1 DK alive	to of its said greats ted St. To Gray of greats through the state of the great through the said of the great of the said of the great o	1 1 1 0 C	20.1	20-19			
-(diam's	40'	11 16 9.4 C+ Gry 6	Cockylarge growly si	ine LO	r Wil	000			
	to	G.4 to 1.6 Some a	Coxtharge gracings			400	·		
	_(t)	anguar tum	wetere	AND JOS	V	6.3			
		14.7 Kolo' DK or	ayelolive sond q dry, v. dense,	ran		35 X			
		Fryable	⇒ 6€	1.4		(mo.4	,s		
*	10	10 to 10.3 Olive Bu	un Sand-gravel of	girt 1-2		50			
4	H 12	10. 3 to 10 4 June	n Sand gravel of Son	2 /03	60.	C0.3			
	12	Olive 10 mm 979	didn. Frank, 70 vely fix, wo fin , v. hand, dw,	2 7 . Γ	/	27 5			
Ĩ	70	fyable, v.as	I viar to Subrand	led 1.0	201	>> -50 0 - 11			
	14	76e	J	11.4		1604			

Γ	Alle .		San I santiani	35-2/1	nw21	<u> </u>				
6	M	ACTEC	Boring Location:		· · · · · · · · · · · · · · · · · · ·	. 17	1.50-1			
			Project Name: Kurt	ckyprel			den Shaw			
l			Date Started: // 16	Drilling Company: 2010912 NY						
	Soi	l Boring Log	Date Completed: ([[17][85		Drilling Method: HSA Ayer 4;					
l	E11	MACTEC Congress Street	Total Depth: 33		Depth to W	Depth to Water: ~225				
		Portiand, ME	7/1000		VVCV	-7				
ŀ	Depth	Stratigraphy I	· · · · · · · · · · · · · · · · · · ·	Penetration/	Headspace	Blows/	Sample ID			
L	(feet)			Recovery (feet)	(mqq)	6 inches				
	14'	fixable, MIT,	wet - GC	63/	20.1	50 p				
	16	one very and		10.3		6.3				
l	16 '	16 to 16.6 alive	gravely chy, we,	0.2/		44-50	,			
	18	hard, Hamp,	-)GC	106	Col	C.1				
ŀ	181	Constante	ie calido bidam	5 /		Clo-UU-	BTRSOOD DISOIXX			
	+0	Compostied son	ie : 01 we brown of Some face, We wist fives to conge	1-3			6 1745			
	201	V. hard Show	wist fives do craye	1,4	201	50004	6.47			
	24:	Stor 22'-22.5	Sare 65 510			26/42		1		
	to	22-5 to 24 L+13	WB V. howel, dry	1.3/0	20.	0 11				
	29.	an -166		1 / 128		50-50C	פיים			
	79	Capa Ly Buy	n Sang and grave I'm	1.0/		15-17				
	to	2500 Bian C	spirels and one grands,		201	11 -72				
	H	Tax of dix bu	ern Clay From 25.8-25.9	12.0		16-23	Ead of Day exil	405		
	TH'	Le man one	erse Sand and grand of erse Saturated of Good and grand, SP - 359 Sandy Clay Grand Sandy Clay Grand wated, SP, -5C	1031		121-11				
	26	Boney son	, , e.	0.3/	60.	25-18				
		Ageny don	+ BOD.							
		Bottom of ne	1 : 33 to 32.1'			·				
	-									
							,			
							-	-		
		\ 				+				
	,									
)							

		(ACTEC	Boring Location:	35-3(N	(8 m3			
			Project Name: Kent	WK Ave	Geologist:	Brone	du Shar	
			Date Started:	615	Drilling Co	mpany: G	eologiz N	
	So	oil Boring Log	Date Completed: / (16 (5	Drilling Method: HSA Ager -4/2			
	511	MACTEC Congress Street	Total Depth:	o ^l	Depth to W	later C	-18'	
		Portland, ME		52034-			500301601XX	
	Depth	Stratigraphy I		Penetration/	Headspace	Blows/.	Sample ID	
	(feet)	Oto I DK Brew	silty said of graves	Recovery (feet)	(ppm)	6 inches		
5,	,40	ME, med. Stat. No 1' to 21 Born yellow ned devse, damp, S	clayed gracel, ve,	08/		16-10		
. تار≨.,	2	ned derse, damp, 5	PiGC	/20	Lo.1	6-4		
	2	grayell	OKBron Ctoyey grove!			4-3		
5,	\$	Med SHAT SEAT , "	retiwe, mp - oc wase gracy cly, we,	05	Lore	11 /		
	4	syaturated, med sti	HMP-76C	120		4-6		
	4	41 to ~55 400	njelizion and and guiel	0.7/		4-2		
S_3	ю	BE tol Soda	agment of some clay		Col			
	6'	WE, Soft, Sate	rested TGC San and grave, WB	1121		3-3		
٠.,	6	Wace fines fi	es to coarse gravel, we to Go	10/		5-7		
74	fol	wed deuge Ni	>, wet - GW	/20	Con	8-7	·	
	8c	8 to 8,8 Brann	SILY Sand and grovel and y street.	0.8/	,	21-36		
15	tu	DE THE SWO	nd slive stand g tower/cli		20.1	5004		
	10	No v. ayvia +	- Submidded V. Must, day	l ^o				
56	46	WB Fires to coar	se grower, V. Stiff, pulling dayley grand,	13/60	20.1	19-14		
·	12'	we, Vitiff dry	omlonic charger quall, office kill conjunctivell	ander 2.0		26-29		
_	12'	No recovery te	re.	0.0		33-50		
57	44			0.7	NA	(Po.2		
~	14"	14 to 14.6 grey	+ Brown gravel of little	enle -	<i>p</i> .	<i>3</i> 9-40		
Ж	ħ	der server son gran	I for county twee by little for more brown-years Sand	20	60.1			
	16	7 201 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Marie -/ OL			35-38	Sacrati C	
340		of city lange, We	and gravel of a Very Stiff, wet	1-3	10.1	38 09	STBS030/601X1 - Composited	
A	18	Sp, well rounded - GC	de Subayular	2.0		71-18	Cove for simple	
			-	L	<u> </u>	<u> L</u>	<u> </u>	

2012

# \/	IACTEC	Boring Location:	35-30	MM3)			
1V.	HOLLO	Project Name: Kerfu	noky Ave I	Geologist:	Brand	on Sharl	
		Date Started: 11 16		Drilling Company: Geologiz M			
So	il Boring Log	8	615	Drilling Method: HSA Auger-4			
511	MACTEC Congress Street	Total Depth: 28.0		Depth to W	ater:	18'	
	Portland, ME	Comments: 34120		NYSD	EC		
Depth	Stratigraphy	Description Occuse	Penetration/ Recovery (feet)	Headspace (ppm)	Blows/ 6 inches	Sample ID	
(feet)	DK.Brun / Gran	Je Sondgrad - Chy	Recovery (leet)	(рріп)	17-14		
to	WC, very Stiff	3 ar arevea, v. ungvi	1.5/	101			
20"	to WIP	Description Coarse SandGrane - Chr Suturifed, v. any vi	120		16-8		
	Same as Si		M/01		7-8		
20'	b dame	The state of the s		(0.1	2018		
28'			120		20/14		
	Augeriydo	on to ~28'	_				
	BOBC	28 (0.97.1)				,	
	Deptin @ bottom	workell					
			,		, .		
						e e e e e e e e e e e e e e e e e e e	
				,			
					,		
				1			
	14 c	\(
		- Campanana - Campana - Campan					

10F2

Ī		IACTEC	Boring Location: eta	5-4(Mn	14)		
	147	HOILO	Project Name: Kert	cky AveI	Geologist:	Brane	de Show
			Date Started: (1 15 55 1		Drilling Company: Geologic N		
	Soi	il Boring Log			Drilling Method: HSA - Ayer		
	511	MACTEC Congress Street	Total Depth: 26.0		Depth to W	ater: ~ 5	.2
		Portland, ME			MSDE	C	·
	Depth (feet)	Stratigraphy [Description	Penetration/ Recovery (feet)	Headspace (ppm)	Blows/ 6 inches	, Sample ID
/	0 to 2'	. Commerce Cord AAA of	n Sandy loam, NG this device, dump, SP3 SM siam sity Sand of grands (SP - SC	ndelay 2,0	107	2-2 7-10	
2.	2' +0 4'		of Brown of orange, black sondy clay w/ layers of trace fire gravel and co		1.8	6-6	
	4' +0 6'	morst MP - Brown! 5.5° +06' - Brown! Fines to fine grad.	Brann Sitty Sond of pery Stiff, trace coobse Sond and graves of silt, we blomp, SP—BM	120	20.1	7-11	
4	6 to 8	6 to 8' Brown Sith Stiff, dayp, 8P	Said and graves, very	12/20	(0.1	14-17	STBS00406001 XX
ોંડ	8 to	Very St-ff; Mo-S 8.5-10 Bran to Lt very duse, trace	cible, damp to day, SP	1.0 GM 2.0	10.1	10-38 35-46	
	10' to	Sord and lenger	ulstone and other) of of stackfied of Villouge to hand, dry, NP, but ? —9 CC	10/20	20.1	23-31 48-46	, ** **********************************
ר'	12 to,	dy Yelever Sp -	som I yell at Stilly sad I, we fresto five gived Comfoc and Day obveely be in then	0.7	20-1	41-49 5000.2	
5	14° hv 16°	Not representation So sleeve	e of Surple. Disiguid	1-1.	NA	500	
Sq	16'	Silty gre sail	oarse grant of some and trace fine gravel, segrand, dy, NP-GE	0-3	20.1	500	

20/2

		Y	C 116	11 sal 11.			
M	ACTEC		35-40				<u> </u>
		Project Name: Kev+v	ncky Ave I	Geologist:	Bran	du Shaw	<u>'</u>
		Date Started: (/ (5	Drilling Company: Godogic N				
Soi	l Boring Log	Date Completed:	Drilling Me	thod: H	A Nger		
	MACTEC			Denth to W	/ater: <u> </u>	15.2'	
	Congress Street Portland, ME	Comments: 3612052034				,	
Depth	Stratigraphy I		Penetration/	Headspace	Blows/	Sample ID	
(feet)	181. 0-5 6		Recovery (feet)	(ppm)	6 inches		
181	and some fines	outle Soudry grave, we-find to large. Surfred, NP	1-0/	20.1	14-16	•	
/w	years med denge	· Setwered, NP	120	021	11-12		·
20'	to se of chyc	~ 19 (0.1) angular to	vernded		(1)		
20°	for gravel and-	rclean Sand of trace trace Aires, Sat, NP	03/		50		
	2014020-2'- Sa		0.3	<0.1	50 h		
1		<u> </u>	10.5		0,2		
82°	August I RAR	one rest of the , . Mich is @-24.0					
26	isottom of well						
	isonom or vier	C 45.03					
					N		
					:		W
						·	
							
		L					
		J					

		IACTEC	Boring Location: β	5-5 (M	(W5)			
	■	HIGILO	Project Name: Kentu	KyAveI	Geologist:	Bran	den Shar	
		•	Date Started: 1/ /15	Drilling Company: Geologic N				
	So	il Boring Log	Date Completed: //	5/35	Drilling Method: HSA Arrier			
ŀ	MACTEC 511 Congress Street		200		Depth to W	ater: 15.) '	
1	Portland, ME			52034-	_			
t	Depth (feet)	Stratigraphy		Penetration/ Recovery (feet)	Headspace (ppm)	Blows/ 6 inches	Sample ID ST BS00508001XK	
r	0	0'to ~ 1'DK Bro	un silty leam. PG		фин	01-5	3,030 ,000	
	to	Shiff wist im	of of truce fine gravel) some grass od Literantinamorange	1.0/2.0	20-1	6-5		
\vdash	2,	Suay Clay of Some 9	worded SC	wp.		11.11		
-	2' h	2 to 4 orange bow WG, med Stf.	IN SAMY DAY WY GUE COME	0.5/20	LO.1	4-4		
\downarrow	4	1(1) 1(0) D.	n Sandy clay of these giand			of in		
	4'	med stiff, dom, in	n silty said, PG, Mediluse	1.4/20	(0)	6-9	.5v	
-	6'	w/ gray Wis Dia	se doup, ND - SW well	,		<u> </u>		
	60 8	816 7 Brand 311	M Sechal, very clearly some proves, MP - 7 SM crished rocks, (~7.5' C-8'a cly Ltown cley	10-7	20.1	47-50 toas		
	of to	8 1285 17 Bran	Silty Said of some gravel vel dense, damp SP - SA and gravel of some coopers five some or copies, day may be or copied to the fronts	2.0/	(0.1	17-27	#STBS005080DIX	
ŀ	10'	I said with the late	INDIAN SKITU OTHY, DUBE		*	0.2		
	10	Wet info sound and 10 cm Liferine con T	crushed genel of leases of mongraphy silver up and many hody, coloc	0.6	28	18-41 5000.2		
	12'	NIA	The second se	0.01	NA	500		
	14'	15'-16' Over 511	um silty sord, we, saf W Sand over on labyh t , day a strong gay desolom	0.7	49	17-15		
1	16	16-18 Silming	iver herove 5 and grow after Strong day grow eff Sheen on decen	0-8	59	12-16	STB 5005 01601XX	

10t2

ļ	Adam.		2	5-6(m	W65-	1 ST 4+1	empt.	
	IM	IACTEC					1	
			Project Name: Kentic	_ ` _	Geologist:	Brane	du Short	
			Date Started:	105	Drilling Cor	npany: 💪	edogiz M	
	Soi	il Boring Log	Date Completed:	14.125	Drilling Met	thod: HSA	-Ager	
		MACTEC	Total Depth:	0	Donth to M	ater: ~12.	7	
		Congress Street Portland, ME						
	<u> </u>	*		2034 J. J Penetration/	WSDE Headspace	Blows/	Sample ID	
	Depth (feet)	Stratigraphy I	Description	Recovery (feet)	(ppm)	6 inches		•
	0	0' 100.4'-Black	top-No saple	N/A	CO.(NIA-O		
٠ م ا	10 .	WG, 10030, Wel	Brown granely sound	į.		3-5	N. (A.	1
	2'	•	,	09/15	0.4	6	MIA	File
		F	11 re = 5 SI C Brown S. Hy Sord Stiff I day, SM) Fille Make
	2'	2 1025-50	- soun city said	1 - 1		15-11		1-
1	to	25 to 4	CLAFT I down co	(P/2,0	20.1	12-11	NA	
	4'	-Fill	31111		i			Deger of
	4	RUS 10 4.3'	d a piece of	0.3/20	5-4-4	20 -		HBrum B
23	do	copper (Sometin	of a piece of ager	5	My .	150	NA	greety sar
٠.	6	Stopped dull	ling. In a Railread	5	10.1	Styped @40	2nd Hole row.	frace fines
•	6	" in K ent	- I Gree coment		16-5			1 5
H	te	Structure-	stack from Chipson	0.5/2.0	- 6	101	N(K	S
	8'	L WILLKE ITER G	111 7 50		15-6	20		/
	8'		to Burn I to all I	111		8-13		
5	10	Rest Dr	un closed sond of grave	0.8/20	so.l	9-13	NIA	
	10	8.5 10 days, 6	again looks like fill	,		1-0		
	10				4-6			
6	10	10-1 - 105 Burn	Sandy clay dung - Fill sondy grovel of clay-Enl	1.7/20	7111	10.1	NIA	
	124	(D.5 - 12 Brawn			174			
	12'	12-14 Bran San	dy chay of granel - till	1		15-25	*water@ 12.7'.	
7	to	D5-14 Graf Bru	n, somy groves of some	10/20	20.		No Surple sease	
ţ	14,	1 M8 - 1	1111	•		24-16	all fill we tered	
· }	4'	14'-155 Brown	MP, saturated - SC city gravel, No Fine	1.		15-22	m Some word and man amgular partieles	الم
1	to,	19 Grant G. Flaver	city gravel, W6 Finite	0.8 (20	0.9	21-40	- Constitution of the cons	
	16'	15 med aver Ho	und/Dence Saturated SP				V 16.11 = 46.	4
9	16	16-1651 (Fisher	ed grove (Sm(1) and sound from the	an a d	1	144-35	* red pint Sandstone @ pottern of she	
1	10,	16.5-17.5 NG GO	d gravel (Sm(1) and smul, About trace fiver the smul of finer, Brown	1.0/2.0	101	22-19	BOAR	
	18	775-18 Sondstow	e redlank rock					

1+2

		IACTEC	Boring Location: eta	5-6 (MW	(6) -	2m AH	empt Hole	
	1	HOILO	Project Name: Klutu	cky Ave I	Geologist:	Breno	ler Shav	
				1105			ROLOGIZ M	
	So	il Boring Log	Date Completed: /	1415	Drilling Method: HSA - Ager			
	511	MACTEC Congress Street	2/-			Depth to Water: 412.7		
		Portland, ME	Comments: 3612052034 -1		MSD	æ		
	Depth (feet)	Stratigraphy [•	Penetration/ Recovery (feet)	Headspace (ppm)	Blows/ 6 inches	Sample ID	
510	18"	WG-Fines to car	Sardy Clay of Graes arse graves I setworked, relet - #19	0.2/0.2	0.9	50-03"	-Copplestuck	•
	20'					·		
501	201	to coarse sud, t	N Sandy Clay. PG fives fand, Sat., MP Trace sandy gravel of grove fives to five gravel. Very angular to Subrave	11.1-	0-9	t7-4)		
rd.	22'	Some fives, WG- Hand, Sal. SP	fives to fine granel, Very angular to Subrane	16/20	0-1	36/30		
B	22' 10' 24'	fresto corarce NP. Augular + 1	in WE Sudy Grown grace , Set Hund, Rowded	19/0.3	20-)	60-G		
¥	24'	Drilling down of -drilling got - large rack.	Anger. very hard. -cobbe flom 23-3' to	NA -	MA	NIA		
NY.		BOB	of vel = 25.0'					
£0								
	Part		. /			•		

	#V	IACTEC	Boring Location: eta	5-7(M	W7)			
		HICIDO	Project Name: KRNTU	KVAVeI	Geologist:	Brand	n Shav	
	_		Date Started:	105	Drilling Cor	npany:	eologic M	
,-	So	il Boring Log	Date Completed: パイル (が		Drilling Method: HSA Auger			
		MACTEC Congress Street	Total Depth: 24-0		Depth to W	ater: ~	129	
		Portland, ME			MSDEC			
	Depth (feet)	Stratigraphy I	Description	Penetration/ Recovery (feet)	Headspace (ppm)	Blows/ 6 inches	Sample ID	
٠,	D,	0-0.5 Black		D-4/	NK	NIA	•	
51	to	115-11.6 Black	- Sandy gravel, carse gravel, day F	/,	20.7	-5		
,	٦'	16-20 Ohrebin	m Sandy grave Clayey	•		5-4		
5	2	2' to 4' - Blac	K clayey grevel W6	00/	(0)	4-4		
	D Y	rounded, MP	ivane 1 Subangian to Stiff, Mouth - Fill	/20	(0-1	4-3		
	4	4-5' Black	Sand of Some grave!	A d		1-1		
33	to,	and some time	dam , SP - SY	08	20.1	, , , , , , , , , , , , , , , , , , ,		
	6	5 to 6 - It orange ! Some sand, WG	fives to carrigues, some	MP ->GM		VC 34	+ There was water	
4	10	Saran Goal in	Jorane + Black Igers 52, Satverted - GM	11/	10-1	25-37	coarse grave fill	
	\mathcal{G}^{ℓ}	7-8 Brown 92 very dense dry.	NP -7 GP / Fill layer)	12.0		50004	layer	
3	8	DK dive Sandy-	copand) some fines	01/	4.4	50 to.	. A.	
フィ	р 10	very danse, SP		0.2	20.1	0.2		
D	10'	in 11 N hium	clive Sand of graciand course gravel, most	1.4		10-13	STUSOCTO 10 01KK	
NO	to	iron ource	11 VW	/20	201	21-12	C1310	
	15,	25 6 36 11 1	andy gravel WG, dry run grovery soud	0.8		60		
7	to	wy relient them (co, indepth) WG	in olay newse (N 13"	0.1	Loi	800		
,	14	times to come	gravel, angular 105	branded 75	P	/		
K	it.	and black, Saray	ree grave, very deally	1.2/	201	50-43		
	ib'	MP/SPin Clay Ish	ses, 76W-Fill	2.0	10.4	147-37		
9	16'	+ this soil bounded	CHURCH WILLIAMS MIS	0.1/	101	50 C		
1 1	18	force to five grand	1 Danverca Court	/0.0	\ \Zo.(0.0'		
	<u> </u>	50				. J		

20FQ

	IACTEC	Boring Location:	30-10	111		
		Project Name: Kerto	cky Ave I	Geologist:	Brune	den Shaw
		Date Started: 11/14	105	Drilling Co	mpany:	YN Sipolar
So	oil Boring Log	Date Completed: 1 t	14/05	Drilling Me	thod:	St Auger
511	MACTEC 1 Congress Street	Total Depth: 2부	0	Depth to W	ater: ~/	12-9'
	Portland, ME	Comments: 3612	K2034	-MSD	SEC	
Depth (feet)	Stratigraphy I	•	Penetration/ Recovery (feet)	Headspace (ppm)	Blows/ 6 inches	Sample ID
18 to 20'	o live grown to life WG-fines to coo dense, wet, SP	Brown Silty gravel wise grad, very -> GM-fill	9.1	201	50	NA
20 to	30 to 21' Olive Si 3 ml, very durses gi'to 205 Olive 9" Fires. WG, dense	the grove of character of source of the sour	20/20	(0.1	35-32 34-50	NA
21.8 20 22	21.5-22:8 oray	efunitectean said ST-Fill	CA K		ж. ц.	NA
22/24/	Augurad down					
-						
	(1)	}				

Field Records:

Well Installation Records

Monitoring Well Log (Stick Up Type)	Well No.: MW-
Project No.: 36/2052634 Project Name: , Project Area: /	Kentucky Ave Satilite Site I WSDEC Flowing, NY
Contractor: Ceorogic Driller: Refun Grant Logged By: Brandon Shaw	Date Started: 15/05 Completed: 1/16/05
Checked By: TDL Date: 7-31-06	
Lock Identification:	tlush Mount
Surface Casing Type: Stel Roud Box	Elevation of top of Surface Casing: Elevation of top of
Ground Surface Elevation:	Elevation of top of Riser Pipe: Type of Surface Seal: Elevation of top of 912.6 Cement Chick.
Surface Casing Diameter:	
Inside Diameter of Surface Casing:	Borehole Diameter: 444 n8"
5/12/	Inside Diameter of H'/4" Borehole Casing:
Depth/Elevation of Top of Well Seal:	Type of Backfill: Growt Bentavite Type of Riser: Sch. 40 PVC
Depth/Elevation of Top of Sand:	Riser Inside Diameter:
33-5 / . 890.1 ms)	Type of Seal: Bentonite Plugs
Top of Screen:	Type of Sand Pack: OON Industrial Quest
	Type of Screen: Slotted Screen
	Slot Size x Length: 0.0(0" x 10
	of Screen:
Depth/Elevation of Bottom of Screen:	Depth of Sediment 34.5 Sump with Plug:
Depth/Elevation of Bottom of Boring: 34.5 / 878.1 m31	
Not To Scale	FIGURE
Graphics\Misc.\Forms	— MACTEC Engineering and Consulting, Inc. ——

		É		
Monitoring Well Log (Sti	ck Up Type)			Well No.: MW-J
Project No.: 3612053034	Project Name:	Kentucki	Ave	Satilite Site I
	Project Area:	WSDEC- &	Elmira	M
Contractor: (Colog, 7 Driller: (2)	Hen Grant	Method:	<u> </u>	
Logged By: Brandon Stra	w '	Date Started: 4	116/05	Completed: 11/17/05
Checked By: TDL Date	9: 7-31-06			
Lock Identification:				h mont
Surface Casing Type: Steel Road Box		Elevation of Surface C Elevation of	asing:	910.29 msl
Ground Surface Elevation:			r Pipe:	Cerren H Grove
Surface Casing Diameter:				
Inside Diameter of Surface Casing:		Borehole Di		11th ~8"
		Inside Diar Borehole		4'4"
Depth/Elevation of Top of Well Seal:		Type of	<	Svout are
Depth/Elevation of Top of Sand;		Type Riser Inside D	of Riser: iameter:	2'
Depth/Elevation of		← —— Туре	of Seal:	Bentonite Plags
Top of Screen:		Type of Sar	nd Pack:	ood industridant
		Type of	Screen:	Diotted Scien
		Slot Size		0.010" × 10'
·			f Screen:	2.
Depth/Elevation of Bottom of Screen: 476.9 ms		Depth of S	Sediment vith Plug:	33.01
Depth/Elevation of Bottom of Boring: 876.7 ms				
Not To Scale				FIGURE
Graphico Miss / Forms		- MACTEC!	Engineerii	ng and Consulting, Inc.——

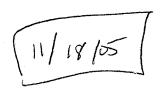
Monitoring Well Log (St	ick Up Type)	Well No.: MW-3
Project No.: 3612052024	Project Name:	Contucky Ave, Stile Ste I
	Project Area:	WSDEC-Elmira, NY
Contractor Coopy Driller:	leften Grant	Method: HSA
Logged By: Brandon Show		Date Started: 4/16/5 Completed:4/16/55
Checked By: TOL Date	te: 7-31-06	
Lock Identification:		Flosh Mant
Ourte of Order Town	· 	Elevation of top of 903.68 next
Surface Casing Type: Walk By		Elevation of top of
Ground Surface Elevation:		Type of Surface
Surface Casing		Seal: Limen (1910)
Diameter:		- Borehole Diameter: 444 18"
Inside Diameter of Surface Casing: 5'(2"	→	lecide Diameter of
		Inside Diameter of Borehole Casing:
Depth/Elevation of		Type of Backfill: Growt
Top of Well Seal:		Type of Riser: Sch 40 PM
Top of Sand:		Riser Inside Diameter:
Depth/Elevation of		Type of Seal: Sentente Mys
Top of Screen:		Type of Sand Pack: OON Industrial Quarte
Vitu C.		Type of Sand Pack: UNIV IMAGENTAL QUARTE
		Type of Screen: Sketted Screen
		Slot Size x Length: OOO KO
		of Screen:
Depth/Elevation of Bottom of Screen:		Depth of Sediment 28.0
Depth/Elevation of Bottom of Boring: 875. I ms!		Camp man lag.
Not To Scale		FIGURE
Graphics\Miss \Eorms		 MACTEC Engineering and Consulting, Inc.—

Monitoring Well Log (Stick Up Type)	Well No.: WW-H
	a tucky Ave. Satilite Site I
Project No.: 36/3053034 Project Name: K	(SDEC Fluira, W
	Complete de la 1
Logged 27. Brings Crow	ate Started: 115 5 Completed: ////5/
Checked By: TDL Date: 7-31-06	
Lock Identification:	Flush Mant
	Elevation of top of Surface Casing: 902.8 ws
Surface Casing Type: Stee Roud Port	Guriade Guding.
	Elevation of top of Riser Pipe: 407.28 ms
Ground Surface Elevation:	Type of Surface Count Count
Surface Casing Diameter:	
Inside Diameter of	— Borehole Diameter: 444 18"
Surface Casing:	
5'12'	Inside Diameter of Hill
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	Type of Backfill: Gran Butante
Depth/Elevation of Top of Well Seal:	
~10' 1-892.3 mst	Type of Riser: Sch 40 PVC
Depth/Elevation of Top of Sand:	Riser Inside Diameter:
10p of sand: 1888 3 wsl	Type of Seal: Bentonite Plugs
←	Type of Seal:
Depth/Elevation of Top of Screen:	
Top of Screen: Waser @ 15:2	Type of Sand Pack: <u>OON ludysfrow Quartz</u>
8865 rsl = =	Type of Canal Comments
	Type of Screen: Slotted Screen
	Slot Size x Length: O.O'O' K 10'
	Inside Diameter of Screen:
Depth/Elevation of	D. H. of Oastles
Bottom of Screen: 976.5 ms/	Depth of Sediment 26.0
Depth/Elevation of	
Bottom of Boring: 876.3 msl	
	FIGURE
Not To Scale	FIGURE
Graphics\Misc.\Forms	 MACTEC Engineering and Consulting, Inc.

Monitoring Well Log (Stick Up	Type)	Well No.: MW-5
Project No.: 3612052034 Project	Name: Kentucky Av	e Sattite Ste I
Project		mila, Ny
Contractor Cologic Driller: Jeffen		74'14 15
Logged By: Brandon Syan	Date Started: 4/15	105 Completed:// 15/5
Checked By: TDL Date: 7-31-00		
Lock Identification:	Flugh /	
Surface Casing Type:	Elevation of top of Surface Casing	
Skel Read Bot.	Elevation of top or	30914
Ground Surface Elevation:	Riser Pipe Type of Surfac	e Condont Count
Surface Casing	Sea	
Diameter:		, and a second
Inside Diameter of	Borehole Diamete	r: 444 ~8"
Surface Casing:	Inside Diameter Borehole Casin	
Depth/Elevation of	Type of Backf	111: Bestonte / Great
Top of Well Seal: 7-891. Thus	Type of Rise	or: Sch 40 AC
Depth/Elevation of Top of Sand:	Riser Inside Diamet	er:21'
10.0° / 889.72 ms	internation	Rentanite Augs
Depth/Elevation of	← Type of Se	al: 100%
Top of Screen:		sk: 00N Industrial Obortz
approx _ water a =	Type of Sand Pac	K: OUT TO SELECT
Range in 15.2		Stotled Screen
being sof	Type of Scree	
Petroleum Conformination mg'	Slot Size x Leng	ter oc
"	of Scree	en: <u> </u>
Depth/Elevation of		
Bottom of Screen: 877.4 ms =	Depth of Sedime	
Depth/Elevation of Bottom of Boring: $\sqrt{77.2}$		
22.0° / 4/1.2mg/		
Not To Scale		FIGURE
Graphics Misc \Forms	MACTEC Engir	eering and Consulting, Inc.—

Monitoring Well Log (Stick Up Type	Well No.: MW-6
Project No.: 36 12052034 Project Name	
Project Area:	
Contractor 20 bg [Driller: Joffen Gran	Date Started: M/14/5 Completed: 11/15/5
Logged By: Svandon Shaw Checked By: TDL Date: ///4/05	Date date date
7/51/06	Flush Mont
Lock Identification:	
Surface Casing Type:	Elevation of top of Surface Casing:
Skel Road Bol	Elevation of top of 899.75 will
Ground Surface Elevation:	Type of Surface Cement
899.72 mgl	Seal:
Surface Casing	
Diameter: 6	Borehole Diameter: 444 ~8
Inside Diameter of Surface Casing	← Borehole Diameter:
	Inside Diameter of Horehole Casing:
Depth/Elevation of	Type of Backfill: Grow
Top of Well Seal:	Type of Riser: Sch 40 PC
Depth/Elevation of	Riser Inside Diameter:
Top of Sand: 1883 Water	Type of Seal: Pentonite Plug
C/2.7	Type of Seal:
Depth/Elevation of Top of Screen:	
Top of Screen: / 883.5 msl -	Type of Sand Pack: OON - Industrial Guart
	Type of Screen:
	Slot Size x Length: OSIO" X IO'
	Inside Diameter 2 " of Screen:
Depth/Elevation of Bottom of Screen:	Depth of Sediment 26.0
Depth/Elevation of	Sump will
Bottom of Boring: 873.3 ml 5.2	Difference Fram bottom of
00.0	Plug to first 0.48 FIGURE
Not To Scale	
Graphics\Misc.\Forms	——— MACTEC Engineering and Consulting, Inc.—

Monitoring Well Log (Stick Up Type)	Well No.: MW-7
Project No.: 36120 >034 Project Name: k	entucky Ave. Satilite Site I
Project Area:	VSDEC-Elmira, M
	Method: ISA - 4/4 ID
os stenena wew	Date Started: 4 /14 / is Completed: 11 /14/05
Checked By: TDL Date: 7-31-06	
Lock Identification:	Flish Mount
Surface Casing Type:	Elevation of top of Surface Casing: 90 35 ms
Ground Surface Elevation:	Elevation of top of Riser Pipe:
Ground Sunace Elevation.	Type of Surface Cenent/Grout
Surface Casing Diameter: i !! !!	
Inside Diameter of	— Borehole Diameter: 44th ~ 8"
Surface Casing:	Inside Diameter of 41/4
Depth/Elevation of Top of Well Seal:	Type of Backfill: Bentante Grant
Depth/Elevation of	Type of Riser: Sch. 40 PVC Riser Inside Diameter:
Top of Sand: 11.7 / 884.2ms	Type of Seal: Bertonite Mug
Depth/Elevation of Walch Top of Screen:	Type of Seal.
13.8	Type of Sand Pack: OON Industrial Quarte
887.1 mg	C Not S was
	Type of Screen: Statted Screen
	Slot Size x Length: OOO X 10"
	of Screen:
Depth/Elevation of Bottom of Screen:	Depth of Sediment 216-0
23:8 / 877.1 mst +	Sump with Plug:
Bottom of Boring:	
07.0 / W9(FIGURE
Not To Scale	
Graphics\Misc \Forms	 MACTEC Engineering and Consulting, Inc.


Field Records: Well Development Records

NYSDOT GARAGE

HORSEHEADS, NEW YORK

WELL DEVELOPMENT TABLE

Well#	Description	Hours
MW-1	2.5 GPM, 55 Gallons Pumped, 86 NTU	1.5
MW-2	4.0 GPM, 55 Gallons Pumped, 139 NTU	(1.0)
MW-3	4.0 GPM, 55 Gallons Pumped, 44 NTU	1.25
MW-4	3.5 GPM, 55 Gallons Pumped, 132 NTU	1.5
MW-5	3.0 GPM, 55 Gallons Pumped, 112 NTU	3.0
MW-6	3.0 GPM, 55 Gallons Pumped, 103 NTU	1.5
MW-7	1.0 GPM, 55 Gallons Pumped, 127 NTU	2.0

					Well No.	:
Well Deve	lopment Re	ecord			MW -	-
Project No.: 3612	2052034	Logge	d By: Bron	don Snav		
Client Name: N		Projec	t Name: Ker	ticky AVR	I Checked By	
Well Installation Da		105	Start D	ate: 11/15/05		11/16/05
Well Development		<u> </u>	Start Ti	ime: NA	Finish Time	: MIA
Initial Water Level		· · · · · · · · · · · · · · · · · · ·				
Water Level during	Initial Pumping	/Purging (ft).:	414			
Water Level at Ter	rmination of Pur	mping/Purging (ft):: N/A			
Weather: NA				(4) 367((N. Cal	
	7 · (3.14)		ווו ישי	· (16.3871-	7140 514	- TOTAL
Heigh	t of Water Colum		16 gal./ft. (2 in. .65 gal./ft. (4 in	1	~ **	(max)
11.15	(ft.)	x <u>· </u>	5 gal./ft. (6 in.)	in.) = 1.78	Well Volume (a	al./ft/
			gal./ft. (in.) =		ľά
Number	Time:	Temperature:	pH:	Conductivity:	Approximate	Turbidity (NTU's):
Number of Well Volumes:	i inite.	Temporataro	. *		Pumping Rate (gal./min.):	
0	90300	MID	NIA	NIA	25	NIA
	1			.		
				.		
				.		
				-		
				-		
	\ 		 			
						·
				_		
	- - - - - - - - - -			_	\ <u> - \</u>	86 NTU.
30-9	01:30		4	_	1 25	
	·					
		0 10	1/21/15	_		
		1 >	1	Trese we	'	
Notes:	Leber Asin	ne purgeal	155 9	+1.500 100	sic.	
" Geos	M Sipp	ruc- de	veloped	I vest		
almer	Colomny, 11.	1.2			,	
	D + W : 22.	45				
	BOB, 33.6,					•
						FIGURE
Mall Days	lopers Signatur	1	<u>) </u>	<u>.</u>		1 100112
Aveil Deve	ioporo orginatara			MACTE	C Engineering at	d Consulting, Inc

Graphics\Misc.\Forms

Well Development Record				Well No.:	3
Project No.: 3612052034	Logged By: J	Branden	Show	mw-	d
Client Name: NYSDEC			KY AND I	Checked By:	
Well Installation Date: 11 / 17 / 05		Start Date: 1	7	Finish Date: <i>u</i>	1/17/05
Well Development Date: (1 / 18/5)	5	Start Time:	NIA	Finish Time:	NIA
Initial Water Level (ft.): 20.13				4.	
Water Level during Initial Pumping/Purging	(ft).: ~1A				
Water Level at Termination of Pumping/Pu	rging (ft).: 🗥	A			
Weather: N/A		· ·	· .		
Height of Water Column:XXXXXX	0.65 gal./	t. (2 in.) ft. (4 in.)	1.92 We		16t.)
Number of Well Volumes: 0 00:00 MM 28.6 01:00 I MM 1242 Notes: Ceologic Ny, Inc. Water column: 11.97' D to water: 20.13';	4 N 1/es yeld: 559 developed	A r	NA (9		Turbidity (NTU's): NA 139 NTU
Well Developers Signature:				FIG	URE
Graphics\Misc.\Forms			MACTEC Engi	neering and Co	nsulting, Inc. —

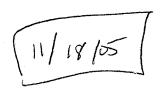
Well Development Record WW-3
Project No.: 3612052034 Logged By: Brinden Show Chapted By:
Client Name: NYSDEC Project Name: Kentucky Are I Checked By:
Well Installation Date: 11/16/05 Start Date: 11/16/05 Finish Date: u/16/05
Well Development Date: // 18 / S Start Time: NA Finish Time: N/A
Initial Water Level (ft.): 14-14
Water Level during Initial Pumping/Purging (ft) N(A
Water Level at Termination of Pumping/Purging (ft).: N\A
Weather: N/A 40:49 in 3 · (16:3824 m/n2) = 467 +ofet west
Height of Water Column: 2.16 (ft.) X
Number of Well Volumes: D
Notes: Geologic Winc developed nells Go MACHEC of HACH BOB-27.1 Initial Dow's 14.14' > water column -> 12.96' Total volume pursed - 55 gallons
Well Developers Signature:

		• .			Well No	o.:		
Well Deve	lopment R	ecord			100 . 1	1 1		
Project No.: 36	1205203	Logge	ed By: Brana	lon Shaw	MW	7		
Client Name: NYSDEC Project Name: Kentucky Ave I Checked By:								
Well Installation Date: 11 15 15 Start Date: 11 15 05 Finish Date: 11 5 05								
Well Development	Well Development Date: (1) 18 105 Start Time: N/A Finish Time: N/A							
Initial Water Level					· · · · · · · · · · · · · · · · · · ·			
Water Level during								
Water Level at Ter		mping/Purging (f	t).: ~1&					
Weather: MIA	love H. Of ot.	ə.id \	of mode = 34	83 (16.3871	mt/m3) - 3	1 Will - Tet		
	t of Water Colur	mn: 🔀 0.	16 gal./ft. (2 in.) .65 gal./ft. (4 in.)))	_ Well Volume (g	(ml)		
Number of Well Volumes:	Time:	Temperature:	pH:	Conductivity:	Approximate Pumping Rate (gal./min.):	Turbidity (NTU's):		
	00:00	1 <u>VIY</u>	414	ANA_				
- .								
			·					
	·							
								
31.0	01:30				3.5	132 NTU		
	-	0.003		-				
		12/01/3						
		1	1	•	1			
Notes:	eologie A	Milne.	developed	trese us	US.			
· Water	colum = 11-E	A		•				
T	D to W : 13	3.96'			,	-		
1		(- Mars					
·Total	Vylume P	urged 555	90100					
1	> pers Signature:			· · · · · · · · · · · · · · · · · · ·	F	IGURE		
	. =				_ , , .,	0		

					Well No.	:	
Well Devel	opment Re	ecord			MW	-5	
Project No.: 361	2052034	Logge		rdn Sha	1		
Client Name: NVSDEC Project Name: K-G-FNCKY AVE, I Checked By.							
Well Installation Da	te: (1/15/	105		Start Date: 115/05 Finish Date: 11/15/05			
Well Development Date: // / Start Time: N/A Finish Time: N/A							
Initial Water Level (ft.): 10.81	(D)	NIA				
Water Level during Water Level at Terr	Initial Pumping	nning/Puraina (ft					
Weather: NA		ilpingir diging (n	/** / / / · · · · · · · · · · · · · · ·				
7.	of Water Colum (ft.)	x0.	16 gal./ft. (2 in. 65 gal./ft. (4 in. 5 gal./ft. (6 in.) gal./ft. () .)	Well Volume (ga	1-01 (ms)	
Number of Well Volumes:	Time:	Temperature:	pH:	Conductivity:	Approximate Pumping Rate (gal./min.):	Turbidity (NTU's):	
0	00:00	MA	NIA	MIA	3.0	- NIT	
				.			
				-			
		<u> </u>		_			
	4/						
33.7	03:00				3.0	112 NTU	
				_			
		10/20/	-				
	_	1					
Notes:							
Geolog	1. M si	ne develop	and the	vers.			
· Water	column >+ W:10	- 10.16° 0.84° ed 55 gaste					
Tab-1 1-	poblime punc	cels 55 90110	MS			,	
l .			<u> </u>		, i	FIGURE	
Well Develo	pers Signature			NA OTE	O Fraincaring and	Consulting, Inc.	

					Well No).:	
Well Development Record					mw-6		
Project No.: 3612052034			ed By: $B_{ u}$	onder Sher			
Client Name: N	YSDEC	Projec	ct Name: Ke	ntucky Are.			
Well Installation Da	ate: # / 15	195	Start Date: u 14 es Finish Date: U				
Well Development			Start	Start Time: N/A Finish Time: N/A			
Initial Water Level			, , , , , , , , , , , , , , , , , , ,				
Water Level during			MA.	,			
Water Level at Ter Weather:		iping/ruiging (i	1) (N)A				
vveatrier. MA	e (3.14)=	42.08	2 interest	16.3871 ml/in	J. 690.	Tetoliell	
	t of Water Colum	nr: <u> </u>	.16 gal./ft. (2 ir	ı.)	5	vol(ms)	
1346	<u>?</u> (ft.)	x0).65 gal./ft. (4 ii .5 gal./ft. (6 in.	١		1.00	
	,		_gal./ft. () in.) = <u>2-14</u>	_ Well Volume (g	al./7.)	
Number of Well Volumes:	7ime: 00:00	Temperature:	pH:	Conductivity:	Approximate Pumping Rate (gal./min.): 3.0 3.0	Turbidity (NTU's): NY A	
Beis.	edogie M 25' 11.60' > Volume for	mater coli	mm: 13.4	nest Courg	ing techne	oves.	
Well Develo	pers Signatu re:	1	<u> </u>	NACTEC	Fngineering and	FIGURE	

Graphics\Misc.\Forms


					Well No	o.:				
Well Deve	lopment Re		1-7			W-7				
Project No.: 361	2052034			don Show		V.				
Client Name: N	(SDEC_	Project		fuckly Ave	T Checked B					
Well Installation Da	ate: // [i4	105	<u> </u>	ate: 4 /14 / 05		11/14/05				
Well Development	Date: // / 1	8/5	Start Ti	me: NIA	Finish Time	9: /V/A				
Initial Water Level										
Water Level during	Initial Pumping	Purging (ft).:	NIA							
Water Level at Ter		ping/Purging (ft)).: MA							
Weather: NYA	(2118	13 /10 >	87/10/1/10	- 64-+2	1 d well				
Height of Water Column: 4.93 (ft.) 1.5 gal./ft. (2 in.) 1.5 gal./ft. (6 in.)										
Number of Well Volumes:	Time:	Temperature:	pH:	Conductivity:	Approximate Pumping Rate (gal./min.): ~ 1.0	Turbidity (NTU's): N/A 127 NTU				
100	ologic NY .95' > W Volume			e nell Csurg	red)					
	opers Signat ure:					FIGURE d Consulting, Inc.				
Graphics\Misc.\Forn	ns			141/ (0 ; 14)		<u> </u>				

NYSDOT GARAGE

HORSEHEADS, NEW YORK

WELL DEVELOPMENT TABLE

Well #	Description	Hours
MW-1	2.5 GPM, 55 Gallons Pumped, 86 NTU	1.5
MW-2	4.0 GPM, 55 Gallons Pumped, 139 NTU	(1.0)
MW-3	4.0 GPM, 55 Gallons Pumped, 44 NTU	1.25
MW-4	3.5 GPM, 55 Gallons Pumped, 132 NTU	1.5
MW-5	3.0 GPM, 55 Gallons Pumped, 112 NTU	3.0
MW-6	3.0 GPM, 55 Gallons Pumped, 103 NTU	1.5
MW-7	1.0 GPM, 55 Gallons Pumped, 127 NTU	2.0

					Well No.	:
Well Deve	lopment Re	ecord			MW -	-
Project No.: 3612	2052034	Logge	d By: Bron	don Snav		
Client Name: N		Projec	t Name: Ker	ticky AVR	I Checked By	
Well Installation Da		105	Start D	ate: 11/15/05		11/16/05
Well Development		<u> </u>	Start Ti	ime: NA	Finish Time	: MIA
Initial Water Level						
Water Level during	Initial Pumping	/Purging (ft).:	414			
Water Level at Ter	rmination of Pur	mping/Purging (ft):: N/A			
Weather: NA				(4) 367((N. Cal	
	7 · (3.14)		ווו ישי	· (16.3871-	7140 514	- TOTAL
Heigh	t of Water Colum		16 gal./ft. (2 in. .65 gal./ft. (4 in	1	~ **	(max)
11.15	(ft.)	x <u>· </u>	5 gal./ft. (6 in.)	in.) = 1.78	Well Volume (a	al./ft/
			gal./ft. (in.) =		ľά
Number	Time:	Temperature:	pH:	Conductivity:	Approximate	Turbidity (NTU's):
Number of Well Volumes:	i inite.	Temporataro	. *		Pumping Rate (gal./min.):	
0	90300	MID	NIA	NIA	25	NIA
	1			.		
				.		
				.		
				-		
				-		
	\ 		 			
						·
				_		
	- - 			_	\ <u> - \</u>	86 NTU.
30-9	01:30		4	_	1 25	
	·					
		0 10	1/21/15	_		
		1 >	1	Trese we	'	
Notes:	Leber Asin	ne purgeal	155 9	+1.500 100	sic.	
" Geos	M Sipp	ruc- de	veloped	I vest		
almer	Colomny, 11.	1.2			,	
	D + W : 22.	45				
	BOB, 33.6,					•
						FIGURE
Mall Days	lopers Signatur	1	<u>) </u>	<u>.</u>		1 100112
Aveil Deve	ioporo orginatore			MACTE	C Engineering at	d Consulting, Inc

Graphics\Misc.\Forms

Well Development Record				Well No.:	3
Project No.: 3612052034	Logged By: J	Branden	Show	mw-	d
Client Name: NYSDEC			KY AND I	Checked By:	
Well Installation Date: 11 / 17 / 05		Start Date: 1	7	Finish Date: <i>u</i>	1/17/05
Well Development Date: (1 / 18/5)	5	Start Time:	NIA	Finish Time:	NIA
Initial Water Level (ft.): 20.13				4.	
Water Level during Initial Pumping/Purging	(ft).: ~1A				
Water Level at Termination of Pumping/Pu	rging (ft).: 🗥	A			
Weather: N/A		· ·	· .		
Height of Water Column:XX	0.65 gal./	t. (2 in.) ft. (4 in.)	1.92 We		16t.)
Number of Well Volumes: 0 00:00 MM 28.6 01:00 I MM 1242 Notes: Ceologic Ny, Inc. Water column: 11.97' D to water: 20.13';	A N	A r	NA (9		Turbidity (NTU's): NA 139 NTU
Well Developers Signature:				FIG	URE
Graphics\Misc.\Forms			MACTEC Engi	neering and Co	nsulting, Inc. —

Well Development Record WW-3
Project No.: 3612052034 Logged By: Brinden Show
Client Name: NYSDEC Project Name: Kentucky Are I Checked By:
Well Installation Date: 11/16/05 Start Date: 11/16/05 Finish Date: u/16/05
Well Development Date: // 18 / S Start Time: NA Finish Time: N/A
Initial Water Level (ft.): 14-14
Water Level during Initial Pumping/Purging (ft) N(A
Water Level at Termination of Pumping/Purging (ft).: N\A
Weather: N/A 40:49 in 3 · (16:3824 m/n2) = 467 +ofet west
Height of Water Column: 2.16 (ft.) X
Number of Well Volumes: D
Notes: Geologic Winc developed nells Go MACHEC of HACH BOB-27.1 Initial Dow's 14.14') water column -> 12.96' Total volume pursed - 55 gallons
Well Developers Signature:

					Well No	o.:
Well Deve	lopment R	ecord				
Project No.: 36	1205203	Logge	ed By: Bran	don Shaw	MW	4
	VSDEC			ntreky Ave	J Checked B	y:
Well Installation Da)ate: 11 11 5 05		:11/15/05
Well Development		8105	Start T		Finish Time	: NA
Initial Water Level	(ft.): 13.96	2				
Water Level during			*			
Water Level at Ter		mping/Purging (fl	1).: NIA			
Weather: NIA		3.14) = 1n2	s 40 31	183 (H. 3871	mt/m3) - 5	11 Well . 7
	t of Water Colur	mn:0. x0	16 gal./ft. (2 in. .65 gal./ft. (4 in.)	_ Well Volume (g	(m1)
Number of Well Volumes:	Time:	Temperature:	pH:	Conductivity:	Approximate Pumping Rate (gal./min.):	Turbidity (NTU's):
	00:00	-VIA	414	ANA_	3.5	-MA
		\ 				
			<u> </u>			
	•					
3.1.0	N1370			. — —	3.5	132 NTU
31.0	01:30		-			
	` d					
		12/01/8				
				1	1	
Notes:	cologie A	Milne.	developed	! These we	u 15.	
· Water	colum = 11-6	A		•		
7	D to W: 13	3.96'			,	-
1	-	((leap			
·Total	Volume P	urged 55	901000			
1	ers Signature:		·		F	IGURE
Aveil Develop	ora Orginalare.					0

	· · · · · · · · · · · · · · · · · · ·				Well No.	:
Well Devel	opment Re	ecord			MW	-5
Project No.: 361	2052034	Logge		rdn Sha	1	
Client Name: N		Projec		Fucky AVR	f	
Well Installation Da	te: (1/15/	05		ate: 1/15/05		11/15/05
Well Development I		[es	Start T	ime: MIX	Finish Time	: NIA
Initial Water Level (ft.): 10.81	(D. deling (ff):	NIA			
Water Level during Water Level at Terr	Initial Pumping	/Purging (it)/ oping/Puraina (ft				
Weather: NA		ilpingir urging (i	/* / / / / / / / / / / / / / / / / / /			
7.	of Water Colum (ft.)	×0.	16 gal./ft. (2 in. 65 gal./ft. (4 in. 5 gal./ft. (6 in.) gal./ft. () .)	Well Volume (ga	1-01-1 (ms)
Number of Well Volumes:	Time:	Temperature:	pH:	Conductivity:	Approximate Pumping Rate (gal./min.):	Turbidity (NTU's):
0	00:00	NIA	NIA	MIA	3.0	- NIT
				.		
				-		
		<u> </u>		_		
33.7	03:00				3.0	712 NTU
				_		
		10/20/	-			
		1				
Notes:						
Geolog	1. M si	ne develop	and the	vers.		
· Water	column No	- 10.16' 0.84' ed 55 galle				
Tab-1 1-	50 B = 21	ed 55 gallo	MS			, [
l .			<u> </u>		, i	FIGURE
Well Develo	pers Signatures				O Fraincaring and	d Consulting, Inc.

					Well No	o.:
Well Deve	lopment Recor	-d			m	W-6
Project No.: 361	2052034	Logged By:	Brm	dan Then		
Client Name: \/			ne: Kent			by:
Well Installation Da	1		Start Da	te: u/14/05	Finish Date	e: U/15/05
Well Development		92	Start Tim	ne: NIA	Finish Tim	e: N/A
Initial Water Level	(ft.): 11.60°					
	Initial Pumping/Purg		IA	,		
	mination of Pumping.	/Purging (ft).: r	MA			
Weather: MA	2	2.08	tere (16	2001 //23	1. 690.	Trans
	t of Water Column:		al./ft. (2 in.) al./ft. (4 in.)		_ Well Volume (g	vol (m/s)
Number of Well Volumes: D D Notes: G D Notes: G		ne dere	pH: NIA I pped 1 pped 1	Conductivity:	Approximate Pumping Rate (gal./min.): 3.0 3.0	Turbidity (NTU's): NVA 103NTU.
	Volvme funged	1: 5590110	<u></u>			FIGURE
				MACTEC	Engineering an	d Consulting, Inc

Graphics\Misc.\Forms

					Well No	o.:				
Well Deve	lopment Re		1-7			W-7				
Project No.: 361	2052034			don Show		V.				
Client Name: N	(SDEC_	Project		fuckly Ave	T Checked B					
Well Installation Da	ate: // [i4	105	<u> </u>	ate: 4 /14 / 05		11/14/05				
Well Development	Date: // / 1	8/5	Start Ti	me: NIA	Finish Time	9: /V/A				
Initial Water Level										
Water Level during	Initial Pumping	Purging (ft).:	NIA							
Water Level at Ter		ping/Purging (ft)).: MA							
Weather: NYA	(2118	13 /10 >	87/10/1/10	- 64-+2	1 d well				
Height of Water Column: 4.93 (ft.) 1.5 gal./ft. (2 in.) 1.5 gal./ft. (6 in.)										
Number of Well Volumes:	Time:	Temperature:	pH:	Conductivity:	Approximate Pumping Rate (gal./min.): ~ 1.0	Turbidity (NTU's): N/A 127 NTU				
100	ologic NY .95' > W Volume			e nell Csurg	red)					
	opers Signat ure:					FIGURE d Consulting, Inc.				
Graphics\Misc.\Forn	ns			141/ (0 ; 14)		<u> </u>				

Field Records:

Groundwater Round I

FIELD	DATA RE	CORD) - LC	W FL V	GROUNDW	ATER S	SAMPLI	NG					
PROJECT	NYSDEC-	KY AVE	SITE 1							JOB	NUMBER	3612042034/10	0.2.2
LOCATION	ia	V-1		_	FIELD	SAMPLE ID	STA	1W001X	x x 0/ x	X	EVE	ENT NO.	
ACTIVITY	START /	310)	END ~ 103	BO SAMPL	E TIME	Moso DATE 8 Del 65					£ 5"	
WATER LE	VEL / PUMP	SETTING	3S		REMENT POINT				,				
INITIAL DEP TO WAT		.45	1	eet TO	P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVE CASING STI	ICKUP	feet	DIFFI	NG / WELL ERENCE	11.18	feet
FINAL DEP TO WAT	TH 27	- 45		HISTOR WELL D eet (TOR)		feet	PID AMBIENT A	IR ZO.	/ ppmv		ETER	<u> </u>	ches
SCREEN LE	ENGTH /	ď	1	PRESS		psi	PID WELL MOUTH	20.1	ppmv	INTE	CAP	RITY: YES NO	N/A
TOTAL V PURG (purge v	ED	1.4 per minu	galle ite) x tin			nilliliter)	DISCHARGI SETTING	20-	- 0	LO	ASING CKED OLLAR	¥ =	
PURGE D			'		SPECIFIC	1	l minn on i		l penov	PUMP	1		
TIME	DEPTH TO WATER (ft)	PUR RATE (TEMP. (+/- deg. C)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (NTU)	REDOX (+/- mV)	INTAKE DEPTH (ft)	COMMENTS	
1320	22.45	200		10.3	1. 48	7.4	69	177	40	2.5			
1325				11.0	1.44	7.4	5.8	124	25	<u> </u>	<u> </u>		
/330		<u> </u>		tt. t	1.44	7.3	57.4	108	4Z				
1335				11.2	1.47	7. 3	5.6	92	50				
1340		<u> </u>		10.9	1.49	7.3	5.7	185	61				
1400	,	<u> </u>		11.0	1.49	7.3	5.7 5.7	148	12			 ,	
1420				10.8	1.49	7.3	4.0	72	7:5				
1500	-			10.9	1.48	73	4.0	70.1	83	<u> </u>	1	:	
1520				106	1.48	7.3	4.0	54.9	87			1 .	. ;
1540	i			11.0	1.48	73	4.0	52	88				
1550				10.9	1.48	7.3	6.0	38,2	84				,
1600				10.8	1.48	7.3	6.0	3/./	84	V	Don	yele	
EQUIPME	NT DOCUMEN	TATION	l				.1						
I	OF PUMP DICATED MARS	CHALK B	LADDE	R X	OTHER Perista	ıltic - Geopur	mp	TY X	PE OF TUBI HIGH DEN		YETHYLE	NE	è
☐ NC	N-DEDICATED	MARSCH	ALK BL	ADDER					OTHER_			-	
ANALYTIC	CAL PARAME	TERS		ME	THOD	PRES	SERVATION	VOLUME	SAME	PLE			
l —	OL NUMBER _			NU	MBER	M	IETHOD	REQUIRED	COLLEC		SAMPLE	BOTTLE ID LE	TTERS
	Cs - 25 ml Purge Cs - 5 ml Purge	(low con	c.)		OLCO2.1 OLMO4.2		CL / 4 DEG. C CL / 4 DEG. C			-			-
X sv	_				OLMO4.2		DEG. C DEG. C	2 X 1 L AG					-
	STICIDES				OLMO4.2	4 [DEG. C	2 X 1 L AG		7 .			
1 ===	TALS				ILM04.2		103 to pH <2] .			
	NGANESE / IRC LFATE / CHLOR		ALIMET		W846 6010 A 375.4 / 325.3 / 310		103 to pH <2 DEG. C	1 X 500 ML 1 x 1 L P	·P	_ -			
	2 - NO3	DE LACK	O-LIMIT		A 353.2 / 354.1		2SO4 to pH <		.p	j -			
□то	С			U	SEPA 415.1	H2	2SO4 to pH <	2 1 X 250 ML	. AG				
	THANE / ETHAN	NE / ETHY	LENE	EP	A Region 1	н	CL / 4 DEG. C	3 X 40 ML] .	/	/	-
	HER					- -				<u></u>		/	
PURGE WA	BSERVATION	IS					LOCATIO						
CONTAINE		NO					pur	mo stra	مولام (25	- 5	et Lo	
NOTES:						1	, t	njo stro d power			M.6		
						l	tul	n permer	ا س	oo r	,		
<	1			\geq									
SIGNATUR					-	1							
CHECKED	BY:					ı							

FIELD 0	DATA REC	ORD	- LO	W FL 7	GROUNDW	ATER S	AMPLII	VG			
PROJECT	NYSDEC-K							,		JOB NU	MBER 3612042034/10.2.2
LOCATION I	11 11				FIELD S	SAMPLE ID	STIM	W002XX	xxiox		EVENT NO. 1
ACTIVITY	START Ö	710		ND へ103	O SAMPL	E TIME	/0	20			DATE 9 Dec out
	VEL / PUMP S			MEASU	REMENT POINT					CASING	WANTE COLOR
INITIAL DEP	TH 7	~ / :	,		OF WELL RISER OF PROTECTIVE	CASING	PROTECTIV	CKUP		DIFFER	
TO WAT	ER	0.13	> fo	etl HISTOR		(FROW GROUND)				WELL	ER Z inches
FINAL DEP	1 24	0.13	f	WELL D eet (TOR)	EPTH 32	· / feet	PID AMBIENT AI	R 20.	ppmv	DIAMET	LIC
SCREEN LE	ENGTH	<i>f</i> 2		PRESSU			PID WELL	10.		INTEGR	
	<u> </u>	10	f	eet TO PUM	IP	psi	MOUTH		ppilivi	CASI	
TOTAL V	en U	.74	galio	REFILL ons SETTIN	G		DISCHARGE SETTING	200	o M/m	COLL	
(purge v	olume (milliliters	per minu	te) x tim	e duration (minu	ites) x 0.00026 gal/n	nilliliter)			<u>, .,</u>	PUMP	
PURGE DA	DEPTH TO	PUR		TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. 02	TURBIDITY	REDOX	INTAKE DEPTH (ft)	COMMENTS
TIME	WATER (fl)	RATE ((+/- deg. C)	(mS/cm) / +3	(units)	(mg/L)	(NTU) 21.0	(+/- mV)	שברוח (וע)	COMMETALO
¥10	0-1(5	1		10.0	1.40	7.2	8.7	19.4	28		
830				10.7	137	7./	9.0	7.3	42		
840	•			10.4	1.42	7.2	8.2	7.6	95		
900				10.7	1.42	7.2	7.7	9.4	111		
915			·	10.50	1.42	7.3	7.9	41.0	120	:	
930	;			10.7	1.45	7.3	7.5	21.0	125	: .	
1010		1		10.3	141	7.3	7.5	41.0	132	;	
1020			<u> </u>	104	1.40	7.3	7,5	41.0	133	i	Stuple
		(<u> </u>		1 1	1	
		<u> </u>				1	;		1 :	:	
FOLUDATE	ENT DOCUME	NTATION)	<u>'</u>		<u> </u>	<u> </u>	<u></u>
	OF PUMP	MIATION		,	, · · · ·			TY Issue	PE OF TUBI		:
	DICATED MARS		4.1		OTHER Perist	altic - Geopu	mp	뜯	OTHER _	SITY POLYE	=) H1 LCNC
	CAL PARAME		IALK DI	ADDLK	· · · · · · · · · · · · · · · · · · ·	······································					
1	ROL NUMBER				ETHOD JMBER		SERVATION METHOD	VOLUME REQUIREI			SAMPLE BOTTLE ID LETTERS
	OCs - 25 ml Purg		ıc.)	-	OLCO2.1		CL/4 DEG.			, –	
)Cs - 5 ml Purge /OCs	t .			OLMO4.2		CL / 4 DEG. (DEG. C	2 X 40 ML 2 X 1 L AG	===	Z	
	ESTICIDES				OLMO4.2		DEG. C	2 X 1 L A		7 –	
	ETALS ANGANESE / IR	ON		S	ILM04.2 SW846 6010		NO3 to pH < NO3 to pH <		==		
	JLFATE / CHLO		KALINI		PA 375.4 / 325.3 / 31		DEG. C	1 x 1 L P			· · · · · · · · · · · · · · · · · · ·
	02 - NO3				PA 353,2 / 354.1 JSEPA 415.1		2SO4 to pH • 2SO4 to pH •				
I III	OC ETHANE / ETHA	NE / ETH	YLENE		PA Region 1		CL/4 DEG.			j -	
	THER										
	OBSERVATIO	NS					LOCATIO	ON NOTES			
PURGE W		s NO] _								
NOTES:											
	and when the same		\leq	\sum_{i}							
		Ĭ	()	<u> </u>							
SIGNATU			X	-3.							

FIELD DA	TA REC	ORD - LO	WFL V	GROUNDWA	ATER S	AMPLIN	IG			
PROJECT		AVE SITE 1						<u> </u>	JOB NUM	BER 3612042034/10.2.2
LOCATION ID	BNW-			FIELD SA	AMPLE ID	STM	w 003 XX	XOIXX	_	EVENT NO. 1
ACTIVITY	START //	50 E	ND 1400	SAMPLE	TIME	14	100			ATE 12/9/05
	EL / PUMP S		MEASUR	EMENT POINT			-		CASING	/WELL /2 6/
NITIAL DEPTH			TOP TOP	OF WELL RISER OF PROTECTIVE (CASING	PROTECTIVE CASING STIC	CKUP	feet	DIFFERE	
TO WATER		' 4 fe	et HISTORIO			(FROM GRO	UND)		WELL DIAMETE	ER Z inches
FINAL DEPTH	1 1 -	1.14 "	WELL DE	27. I	27.1 feet AMBIENT AIR 21.0 ppmv				TERGRITY:	
SCREEN LEN			PRESSU	RE	· .	PID WELL	21.6	2	INTEGRI	
SCREEN LEIN		/0 f	eet TO PUMP	•	psi	MOUTH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ppmv	CASIN LOCKI	NG —
TOTAL VOL	. 1 1/	. 48 gallo	REFILL SETTING		ance.	DISCHARGE SETTING	400	mf/mm	COLL	
PURGEI (purge vol	ume (milliliters	per minute) x tim	e duration (minut	es) x 0.00026 gal/m	illiliter)				PUMP	
PURGE DAT	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pН	DISS. O2	TURBIDITY	REDOX (+/- mV)	INTAKE DEPTH (ft)	COMMENTS
TIME	WATER (ft)	RATE (ml/m)	(+/- deg. C)	(mS/cm) /. 3 C	(units)	(mg/L)	(NTU) 38.2	8-7	20	
1	414	400	9.7	1.32	7.1	76	109	66	1	
1210			11.9	1.34	7.3	7.8	985	84		
1215			11.8	1.34	7.3	8.1	57.9	89		
1230			11.8	1.37	7.3	7.5	119. 64.2	124		
1245			11.5	1.36	7.3	7.9	35,3	131		
1300			11.9	1.360	7.3	78	50	134		
1315			119	1.34	7.3	7.5	<1.0	139		
1330		1	11.9	1.34	7.3	7.4	41.0.	137	 	
1400	4		11.9	1.36	7.3	74	41.0	137		SHUMPU
				1	1			 		
TYPE OF	DICATED MARS	SCHALK BLADD MARSCHALK B			altic - Geopu	ımp	TY X	YPE OF TUB HIGH DEN	ING NSITY POLYI	ETHYLENE
ANALYTIC	AL PARAME	TERS		THOD		SERVATION METHOD	VOLUME REQUIRE		PLE CTED	SAMPLE BOTTLE ID LETTER
	OL NUMBER . Os - 25 ml Purg			JMBER OLCO2.1		ICL74 DEG.				
	Cs - 5 ml Purge			OLMO4.2		ICL / 4 DEG. DEG. C	C 3 X 40 ML 2 X 1 L A		* -	
X PES	DCs STICIDES	•		OLMO4.2 OLMO4.2		DEG. C	2 X 1 L A	G 🖺	₹ -	
X ME	TALS			ILM04.2		1NO3 to pH < 1NO3 to pH <			4 -	
	NGANESE / IR	ON - RIDE / ALKALIN		SW846 6010 PA 375.4 / 325.3 / 31		DEG. C	1x1LP		ᆿ -	
	2 - NO3		USE	PA 353:2 / 354.1		12SO4 to pH 12SO4 to pH			╡ -	
ПТО		ANE / ETHYLEN		JSEPA 415.1 PA Region 1		HCL / 4 DEG.		=	<u> </u>	
	HER									
PURGE C	BSERVATIO	NS				LOCATI	ON NOTES			
PURGE W		s NO								
NOTES:		<u> </u>							-	
SIGNATUF	RE: \	R								
CHECKED			V							`

FIELD D	FIELD DATA RECORD - LOW FL / GROUNDWATER SAMPLING									
The state of the s									JOB NUN	MBER 3612042034/10.2.2
PROJECT	Mains	E mw			SAMPLE ID'	STN	nwistx.	×׫×	4	EVENT NO. 1
LOCATION I	·						230			DATE 8 Dec 65
ACTIVITY	START /			REMENT POINT	ETIME					
WATER LE	VEL / PUMP	SETTINGS	TITOI	OF WELL RISER	CARING	PROTECTIV			CASING .	
INITIAL DEPT	TH ER /	3.94	feet	OF PROTECTIVE	CASING	(FROM GRO		feet	WELL	
FINAL DEP			HISTOR WELL D		ار feet	PID	R Zu	. /	DIAMETE	ER inches
TO WATE	1 /	4.0	feet (TOR)	2.5	feet	AMBIENT AI	R	· / ppmv		TERGRITY: ITY: YES NO N/A
SCREEN LE	NGTH	10	PRESSU feet TO PUM	3 .	psi	PID WELL MOUTH	10.	ppmv		AP V
			REFILL			DISCHARGE			CASIN LOCKI	
TOTAL: VC PURGI	' '	. 94 ge	llone SETTIN	3	milliliter)	SETTING	400		COLL	AR
		rs per minute) x t	ime duration (minu	tes) x 0.00026 gal/r	indicer)	<u> </u>			PUMP	
PURGE DA	DEPTH TO	PURGE	TEMP.	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (NTU)	REDOX (+/- mV)	INTAKE DEPTH (ft)	COMMENTS
1035	VATER (ft)	RATE (ml/m)	(+/- deg. C)	c 95	7, 3	10.3	217	97	20	
1032	1	1 , 5 -	12.0	1.57	6.9	6.3	142	101		
1010			12.4	1.70	4.9	5.8	183	104	1	
1045			12.3	1.77	7.0	5.4	194	105	_	
1050			12.3	1, 34	7.0	5.1	178	11.2		
1055			12.4	1.92	7.0	5.5	167	118		
1100			12.4	1.93	7.0	5.3	214	135		
1115			12.4	1.92	7.0	5.1	2/1	134		
1130			12.4	1.92	7.0	5.2	200	135	1	
12-00		 	12.4	1.90	7.0	4.9	78	140	i	
1215			12.4	1.91	7.0	5.6	46	141	<u> </u>	
1230			12.6	1.90	7.6	5-3	48	141	1	Smith
	NT DOCUME OF PUMP.	ENTATION					T	YPE OF TUBI		•
		RSCHALK BLADI	DER X	OTHER Perist	taltic - Geopu	ımp	. 🗵		SITY POLYE	ETHYLENE
☐ NO	ON-DEDICATE	D MARSCHALK	BLADDER					OTHER _		
ANALYTIC	CAL PARAM	ETERS		THOD		SERVATION	VOLUME REQUIRE			SAMPLE BOTTLE ID LETTERS
I	ROL NUMBER		NU	JMBER OLCO2.1		METHOD CL74 DEG. (
	Cs - 25 mi Pui Cs - 5 ml Purg	ge (low conc.) je		OLMO4.2		CL/4 DEG.			<u> </u>	
	OCs			OLMO4.2		DEG. C	2 X 1 L A0		H -	
<u> </u>	STICIDES ETALS			OLMO4.2 ILM04.2		INO3 to pH <			<u> </u>	
	ANGANESE / I	RON -		SW846 6010		INO3 to pH <		MLP] —	
<u> </u>		ORIDE / ALKALI		A 375.4 / 325.3 / 3 [.] PA 353.2 / 354.1		DEG. C 12804 to pH ·	1 x 1 L P <2 1 X 500 N	ALP [
TC	D2 - NO3 DC			JSEPA 415.1		12SO4 to pH] -	
		IANE / ETHYLEN	IE E	PA Region 1	ŀ	HCL / 4 DEG.	C 3 X 40 MI	L		
	THER				 <u>-</u> -	LOCATIO	ON NOTES	L		
	PURGE OBSERVATIONS LOCATION NOTES									
	PURGE WATER CONTAINERIZED YES NO									
NOTES:	,		7							•
1	Series and the series of the s	-W	4.							
		الل ا	AL P							
SIGNATUI			<u> </u>							

FIELD DATA RECORD - LOW FL / GROUNDWATER SAMPLING													
PROJECT NYSDEC-KY AVE SITE 1 JOB NUMBER 3612042034/10.2.2								/10.2.2					
LOCATION	ID .	Inv	- చో			FIELD	SAMPLE ID	STI	nw 505	XXXOIT	××	EVENT NO.	1
ACTIVITY START C745 END / 662						SAMP	LE TIME		930			DATE 8 Dec	05-
WATER LE	EVEL /	PUMP :	SETT	NGS		REMENT POINT		DDOTEOT!			01001		
	TOP OF WELL RISER PROTECTIVE CASING / WELL DIFFERENCE / / WELL DIFFE												
	FINAL DEPTH WELL DEPTH Z1 Feet AMBIENT AIR CO / ppmv DIAMETER Z inches												
SCREEN LENGTH /C PRESSURE PID WELL INTERGRITY: INTEGRITY: YES NO N/A psi MOUTH // ppmv CAP i/													
TOTAL V	ED		g. ?	2—gallo	REFILL SETTIN	G		DISCHARGI SETTING		·	CAS LOCH COLL	ING ED	
(purge v		milliliters	per m	inute) x tim	ne duration (mini	ites) x 0.00026 gal.	/milliliter)				PUMP		
	DEP.	TH TO		URGE	TEMP.	CONDUCTANCE	1	DISS. O2	TURBIDITY	REDOX	INTAKE	001415115	
FIME F/O		ER (ft) کیامتی	YO	E (ml/m)	(+/- deg. C) //. 3	(mS/cm)	(units)	(mg/L) 5 4	(NTU) ★ナ ナ	(+/- mV) /4 Y	DEPTH (ft)	COMMENT	<u>3</u>
8/2	,,,	3/	, •		17 4	1.58	70	4.4	>+	114	ì	,	
8155				1	12 5	1.58	7. /	4.3	947	110			
820					12.4	1.57	7.1	4.2	942	107			
53-0				Allega and the	12.5	1.57	7.1	3.7	521	76			
845					12.7	1.56	71	3.5	174	19	i	,	
900					12.8	1.5-15	71	3.40	75.7	18		· ·	
0915					12.7	1.55	7.0	3.5	53.2	24			:
0925	1	:			12.7	1.55	7.1	3.5	21.2	23			:
0930				<u>:</u>	12.9	1.54	7.0	3.4	14.3	30	V	Simple	,
						:					<u>;</u>		
ļ		_	_		. '		-			i			· · · · · · · · · · · · · · · · · · ·
							1			,	<u> </u>		
EQUIPME:			TATI	NC					TY	PE OF TUBII	NG		
I			CHAL	K BLADDE	R X	OTHER Perist	ر altic - Geopum	q		,	SITY POLÝE	THYLENE	
☐ NC	N-DED	ICATED	MARS	CHALK BL		• -				OTHER			
ANALYTIC	CAL PA	RAME	ERS	······································		T. 100							-
CONTR	OL NU	MBER_				THOD MBER		ERVATION ETHOD	VOLUME REQUIRED	SAMP COLLEC		SAMPLE BOTTLE ID	LETTERS
Vo	Cs - 25	mi Purge	(low o	onc.)	-	OLCO2.1	HC	L/4 DEG. C	3 X 40 ML		} _		
I ==		nl Purge				OLMO4.2		L/4 DEG. C]		
X SVC	JUS Sticide	:0				OLMO4.2 OLMO4.2		EG. C EG. C	2 X 1 L AG - 2 X 1 L AG	<u> </u>]		
	TALS	-0				ILM04.2		03 to pH <2		. Р]]		
MA	NGANE	SE / IRO	N -		S	W846 6010		O3 to pH <2		.Р 🗀] _	***************************************	
			DE / A	LKALINIT		A 375.4 / 325.3 / <mark>3</mark> 1		EG. C	1 x 1 L P]		
NO	2 - NO3					A 353.2 / 354.1 SEPA 415.1		SO4 to pH <		_	<u> </u>		
		/ ETHAN	IE / ET	HYLENE		A Region 1		SO4 to pH <: L / 4 DEG. C			 1		
ПОП	HER									_ 🗀	i _		
PURGE OBSERVATIONS , PETROTEUM offer IN OWEL LOCATION NOTES													
PURGE WATER Walter walter													
CONTAINE	RIZED	YÈS		읟									
NOTES:			- 1	Q.									
		and a second second	and the same special	7	/								
		-		117	71								
SIGNATUR CHECKED				والمرابع	4								

EIEL D DA	ATA DEC	ORD - L	OW FI. J	GROUNDW	ATER S	AMPLÍN	IG 7					
FIELD DA									JOB N	NUMBER	36120420	34/10.2.2
PROJECT		Y AVE SITE	1			STN	1W006X	XXOIX			ENT NO.	1
LOCATION ID	mu	V-4	0/ 7-		AMPLE ID [=	DATE		re of
ACTIVITY	START /	3/5	END 1432		TIME [15	70			DATE		
WATER LEV	EL / PUMP S	ETTINGS	Г	REMENT POINT OF WELL RISER		PROTECTIVE				NG / WEL	L /	3. Y feet
INITIAL DEPTH		11.6	feet HISTOR	OF PROTECTIVE		CASING STIC (FROM GRO		feet	WEL	ERENCE L	7	
FINAL DEPTH		1.6	WELL D			PID AMBIENT AII	R 20.1	ppmv		IETER L INTERG	L	inches
SCREEN LEN	стн Г	10	PRESSI feet TO PUM	The state of the s	psi	PID WELL MOUTH	L 8. 1	ppmv	INTE	GRITY: CAP	YES 1	N/A
TOTAL VOL	- /0	. 01	REFILL SETTIN	G		DISCHARGE SETTING	350		LC	ASING OCKED OLLAR	V1414	
(purge vol	lume (milliliters	per minute) x	time duration (mint	utes) x 0.00026 gal/n	nilliliter)				PUMF	<u> </u>		
PURGE DAT	TA DEPTH TO	l purge	TEMP.	SPECIFIC CONDUCTANCE	рН	DISS. 02	TURBIDITY	REDOX	INTAK	Ξ	001111	NTC
TIME	WATER (ft)	RATE (ml/m)		(mS/cm)	(units)	(mg/L)	(NTU) 84.4	(+/- mV)	BO	(n)	COMME	
1320	11.4	350	12.5	2.21	7.3	7.4 5.4	67.8	142		_		
1322		<u> </u>	12.6	2.21	7.2	4.8	26.0	140	1			
1325			12.7	2.22	7.2	4.7	27.7	145				
1332			12.4	2.23	7.2	4.8	36.6	148				
13.31			12.5	2,21	7.2	5.1	41.5	175				
1700			12.5	2.22	7.2	4.9	482	178				
1415		 	12.4	2.24	7.2	4.9	55.7	184				
1430			12.5	2.25	7.2	49	52.1	191			:	ł
1445			/2./	2.17	7.2	5.0	35.7	197				
1500			12.1	2.19	7.2	4.8	35.1	195	1 1		1	
1510		V	12.1	2.17	7.2	4.9	33.2	197	17	31	and (<u> </u>
			6		<u> </u>			1				
	T DOCUME	NOITATION					,T\	PE OF TUB			-1	
TYPE OF		SCHALK BLAD	DER X	OTHER Perist	altic - Geopu	ımp	X	HIGH DE	VSITY PO	DLYETHYL	ENE	
		MARSCHALK						OTHER_				
	AL PARAME				DDE	CERVATION	VOLUME	SAM	PIF			
CONTRO	OL NUMBER			ETHOD UMBER	PRE	SERVATION METHOD	REQUIRE			SAMP	LE BOTTL	E ID LETTER
	Cs - 25 ml Purg			OLCO2.1		CL/4 DEG.			7		<u></u>	
1 ==	Cs - 5 ml Purge)		OLMO4.2		ICL / 4 DEG. : DEG. C	C 3 X 40 ML 2 X 1 L A	=	\exists		/	
× SVC				OLMO4.2 OLMO4.2		DEG. C	2 X 1 L A		7		/	
X PES	STICIDES			ILM04.2	۲	INO3 to pH <	2 1 X 500 N	ILP [力		-	
	NGANESE / IR	ON -		SW846 6010	۲	INO3 to pH <	2 1 X 500 N	NLP	<u>~</u>		-	
l ——		RIDE / ALKALI	NITY USE	PA 375.4 / 325.3 / 31		DEG. C	1 x 1 L P		맄		-	
□ NO2	2 - NO3			PA 353.2 / 354.1		12SO4 to pH			믁		-	
тос			_	USEPA 415.1		12SO4 to pH 1CL / 4 DEG.			=		-	1
		NE / ETHYLE	NE E	PA Region 1	r	TOL 74 DEG.	0 0X40W	F	=			/
	HER					LOCATI	ON NOTES		-			
ı	BSERVATIO	NS				LOGATI	OR NOTES					
PURGE WA		s NO					•					
NOTES:												
	- Married Street, or other) \									
	A STATE OF THE PARTY OF THE PAR				1							
SIGNATUR	RE:	1 V	13									
CHECKED			<i>'</i>									

FIELD DA	ATA RECORD - LC	W FL V G	ROUNDW	ATER S	SAMPĖII	NG			
PROJECT	NYSDEC-KY AVE SITE 1							JOB NUI	MBER 3612042034/10.2.2
LOCATION ID	mw-7		FIELD S.	AMPLE ID	STM	1W6074	<4 01 XX		EVENT NO. 1
ACTIVITY	START 0930	END 1310	SAMPLE	TIME	/2	.ಎ೦			DATE 7 DECOS
WATER LEVE	EL / PUMP SETTINGS	MEASUREM TOP OF			PROTECTIV	Æ		CASING	/WELL
TOP OF WELL RISER PROTECTIVE CASING / WELL DIFFERENCE 9.93 feet TO WATER 73. 22 feet HISTORICAL TOP OF WELL RISER PROTECTIVE CASING STICKUP (FROM GROUND) O feet WELL WELL WELL							ENCE 9.93 feet		
FINAL DEPTH TO WATER	FINAL DEPTH 12 A / WELL DEPTH 22 95 PID 60 / DIAMETER 2 inches								
SCREEN LENGTH 10 PRESSURE PID WELL PRINTEGRITY: YES NO N/A							HTY: YES NO N/A		
TOTAL VOL. PURGED (purge volu	/ / /		x 0.00026 gal/m	illiliter)	DISCHARGE SETTING	250		CASI LOCK COLL	ED = =
PURGE DATA	A DEPTH TO PURGE	темр. со	SPECIFIC NDUCTANCE	Hq	DISS. 02	TURBIDITY	REDOX	PUMP INTAKE	!
TIME V	WATER (ft) RATE (ml/m)	(+/- deg. C)	(mS/cm)	(units)	(mg/L)	(NTU)	(+/- mV)	DEPTH (ft)	COMMENTS
	13.0 Z50	10.8 1 9.6 1	1.59	7.1	8.2	21	171	17.95	
10:8	13.0	10.4	1.61	7 2	1:7	4.6	174	\	
1020		'''	1.59	72	4.7	41.0	134		
1025		10.4	1.62	73	69	4.7	100		
1030			1.61	73	7.4	<1.0	9.2		
1045		103	1.5%	7.3	4.7	410	109		
1100		103	1.54	7.3	4.4	<1.0	124		
1115		108	/. 5 ウ :	7.3	48	41.0	134	·	
1/30	V Y	12.4	1.57	7.3	6.8	41.0	142		
1145			1.57	7,3	1.8	∠/ _c 0.	141		
1200		10.3	1,54	7.3	6.8	41.0	142	,	Souple The
FOURDMENT	POGUMENTATION		b - 		<u> </u>		<u> </u>		<u>l</u>
TYPE OF	DOCUMENTATION PUMP		<u></u>			TY	PE OF TUBIN	IG	and the second of
DEDIC	CATED MARSCHALK BLADDE	R X OT	HER Peristal	tic - Geopur	mp	<u> </u>	HIGH DEN	SITY POLYE	THYLENE
NON-	DEDICATED MARSCHALK BL	ADDER					OTHER		
ANALYTICA	L PARAMETERS	METHO	מא	PRES	SERVATION	VOLUME	SAMP	LE	
CONTROL	L NUMBER	NUMBE		N	METHOD	REQUIRED	COLLEC		SAMPLE BOTTLE ID LETTERS
}	- 25 ml Purge (low conc.) - 5 ml Purge ي المد الله على المداه	OLC	.0 2.1 104.2		CL/4 DEG. C CL/4 DEG. G				
	is - 1 Romber		104.2		DEG. C	2 X 1 L AG	. 📆		
	ICIDES - 42 mber	OLM	104.2	-4-	DEG: C	2 X 1 L AG	<u> </u>		
X META			104.2 6 6010	-	103 to pH <2				
	GANESE / IRON - ATE / CHLORIDE / ALKALINIT		5.4 / 325.3 / 310.		NO3 to pH <2 DEG. C	1 x 1 L P]	
NO2 -			53.2 / 354.1		2SO4 to pH <	•	.P 🗀] _	
ТОС	í		A 415.1		2SO4 to pH <		AG _	<u> </u>	
METH	IANE / ETHANE / ETHYLENE	EPA Re	egion 1	H	CL / 4 DEG. C	3 X 40 ML	_]	
	PURGE OBSERVATIONS LOCATION NOTES								
PURGE WATE	PURGE WATER ALSO COMPANY MAD / MAD								
NOTES:	ZED YES NO				C +	lus la	adio	/ ·	•
					· /	10	7	•	
	702								•
SIGNATURE:	12112		·						
CHECKED BY	(:			- 1					

Field Records:

Ground Water Round II

CDOUNDWATER SAL	MPI ING
PROJECT DATA RECORD - GROUNDWATER SAME PROJECT DATA OF START OF S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DEPTH TO WATER 22.95 FT (TOR) SCREEN LENGTH 10 HEIGHT OF WATER COLUMN 1 - 24 FT x 6.66 GAL/FT (ZINCH WE	PROTECTIVE CASING STICKUP CASING / WELL DIFFERENCE FT WELL DIAMETER IN MATERIAL VES NO N/A INTEGRITY: CAP CASING VELL INTEGRITY: CAP CASING VELL INTEGRITY: CAP CASING VELL INTEGRITY: CAP CASING VELL COLLAR COLLA
PURGE DATA TIME: 0950 1001 PURGE VOLUME (gettons) DTW 22.95 22.9	1006 1011 1016 1021 1030
TEFLON/SILICON TUBING BAILER IN LINE FILTER METHOD NUMBER OLM04.2 VOC VOE VOE VOE VEST / PCBS HERBIGDES SULFATE NITRATE/NITRITE SULFATE NITRATE/NITRITE USEPA 376.1 IRON ONLY FERROUS IRON TOTAL PHOSPHORUS TEFLON/SILICON TUBING STE NITR NITR NITR NITR NITR NITR NITR NITR	FRACTION CODE PRESERVATION VOLUME SAMPLE COLLECTED HCL / 4 DEG. C 2 X 40 ML / 1 A DEG. C 2 X 11 AG A DEG. C 2 X 11 AG A DEG. C 1 X 11 AG A DEG. C 1 X 10 AD A DEG. C 1 X 50 ML P A DEG. C 1 X
MANGANESE ONLY AMMONIA NIROGEN TOC TSS ONLY OTHER NOTES SIGNATURE	H2SO4 to pH <2 1 X 400 ML P

FIELD DATA RECORD - GROUNDWATER SAMPLING
PROJECT NOTE - CENTRAL AVE SAMPLE NUMBER STMWOODO SOUK STUDY AREA / AOC MW-Z SITE ID SITE TYPE DEC DATE 03/28/0 ACTIVITY START 1058 END 210 JOB NUMBER 3612052021 FILE TYPE WEATHER 3.5 F/51-1-1-1
WATER LEVEL / WELL DATA PROTECTIVE CASING STICKUP (FROM GROUND) PROTECTIVE CASING / WELL DIFFERNCE FT WELL DEPTH TO WATER 20.5 FT (TOR) SCREEN LENGTH WELL DIAMETER WELL MATERIAL CAL OW MATERIAL
PURGING SAMPLING DECON FLUIDS USED PERISTALTIC PUMP SUBMERSIBLE PUMP BLADDER PUMP BLADDER PUMP PVC/SILICON TUBING TEFLON/SILICON TUBING BAILER IN LINE FILTER DECON FLUIDS USED ALKINOX LIQUINOX FLOAT ACTIVATED KECK INTERFACE PROBE DECON FLUIDS USED ALKINOX FLOAT ACTIVATED KECK INTERFACE PROBE NUMBER OF FILTERS USED NUMBER OF FILTERS USED
ANALYTICAL PARAMETERS METHOD NUMBER CODE METHOD REQUIRED COLLECTED ID NUMBERS
NOTES NOTES Fence in e MW-2 RECEIVED BY:

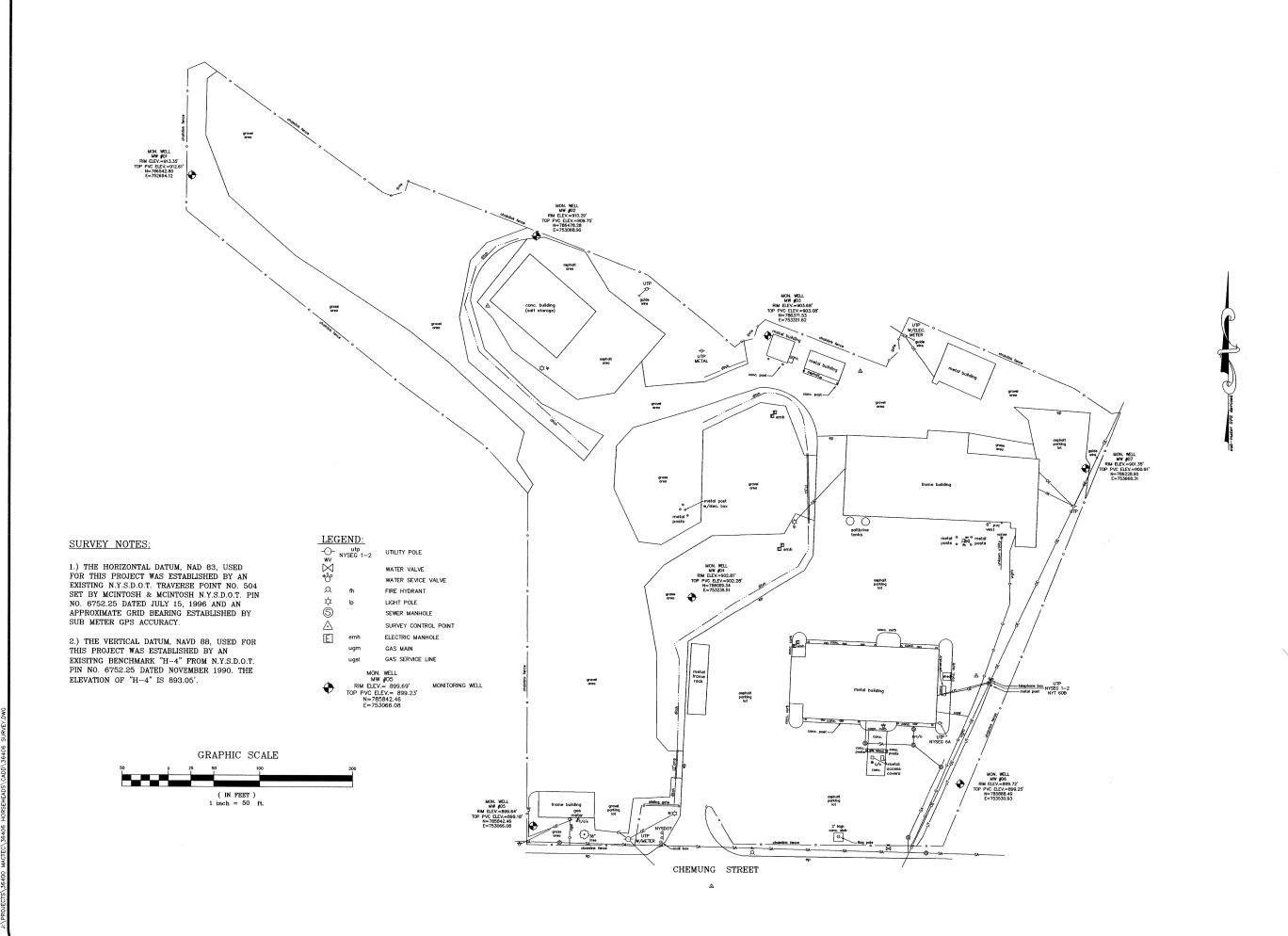
ORGUNDWATER CAMPI INC
FIELD DATA RECORD - GROUNDWATER SAMPLING PROJECT NOOTH KONTICK AVC SAMPLE NUMBER TM WOOD 2002K STUDY AREA / AOC MW-3 SITE ID ACTIVITY START WE END 1305 JOB NUMBER 361205094 FILE TYPE WEATHER 40 F / PC
WATER LEVEL / WELL DATA MEASURED WELL DEPTH 10 HISTORICAL WELL DEPTH 27. FT (TOR) WELL DEPTH TO WATER LENGTH WELL DEPTH WELL DIAMETER 2 IN WELL MATERIAL WATER COLUMN 3.14 FT X0.16 GAL/FT (INCH WELL) = 4.20 GAL/VOL PROTECTIVE CASING / WELL DIFFERENCE FT WELL DIAMETER 2 IN WELL MATERIAL WATERIAL WATERIAL WATERIAL WELL) = 4.20 GAL/VOL PID AMBIENT AIR 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 CASING COLLAR WELL LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 CASING COLLAR LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER LOCKED 1.00 PPM WELL MOUTH 41O PPM TOTAL VOLUME PURGED 9200 WATER PURGED 9200 WAT
PURGE DATA 1218 - Purp Films: 120 123 130 123 1240 1245 1300 - Small Time SAMPLE OBSERVATIONS: PURGE VOLUME (gallons) DTW 14-55 14-
PURGINO SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BLADDER PUMP PVC/SILICON TUBING TEFLON/SILICON TUBING BAILER IN LINE FILTER DECON FLUIDS USED WATER LEVEL EQUIPMENT USED ELECTRIC COND. PROBE FLOAT ACTIVATED KECK INTERFACE PROBE NUMBER OF FILTERS USED NUMBER OF FILTERS USED
ANALYTICAL PARAMETERS METHOD NUMBER CODE METHOD CODE METHOD CODE METHOD COLLECTED ID NUMBERS
NOTES MP. MMP. SIGNATURE: DEGREE DIV.

FIELD DATA RECORD - GROUND	VATER SAMPLING		•
PROJECT NOT CHUTCH START ON END 09 6	SITE TYPE	W00402002K DEC 3612052034.	DATE 03/29/06 FILE TYPE WEATHER 29°F Sum/
MEASURED WELL DATA MEASURED WELL DEPTH OF FT (TOR) WELL DEPTH TO WATER LENGTH HEIGHT OF WATER COLUMN PPM PID AMBIENT AIR PPM WELL M PURGE DATA (Gallons) PPM WELL M PURGE RATE (gpm M mm SSO TEMPERATURE (degreesC) PH (units) TURBIDITY (ntu) PPM PID PID PPM P	FT (L INCH WELL) = 36	GSTICKUP (GROUND) FT TER 2 IN GALNOL VOLUME PURGED 1600 8 8843 0848 14.41 14.41 0 350 350 10.8 10.8 7.2 7.2 1.75 1-59 1.38 (.349 1.50 10.50	ODOR
EQUIPMENT DOCUMENTATION PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BLADDER PUMP PVC/SILICON TUBING TEFLON/SILICON TUBING BAILER IN LINE FILTER	DECON FLUIDS USED ALKINOX LIQUINOX POTABLE WATER DEIONIZED WATER STEAM CLEANING NITRIC ACID	FLOAT A	C COND. PROBE CTIVATED TERFACE PROBE
ANALYTICAL PARAMETERS ANALYTICAL PARAMETERS VOC SVOC PEST / PCBs HERBICIDES HERBICIDES SULFATE NITRATE/NITRITE SULFIDE IRON ONLY FERROUS IRON TOTAL PHOSPHORUS MANGANESE ONLY AMMONIA NIROGEN TOC TSS ONLY OTHER	HCL / 4 DEG	HOD REQUIRED CO 4 DEG. C 2 X 40 ML 4 DEG. C 3 X 40 ML 5. C 2 X 1 L AG 6. C 2 X 1 L AG 7. C 1 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 2 X 1 L P C 3 1 D P C 2 X 1 L P C 3 1 D P C 2 X 1 L P C 3 1 D P C 2 X 1 L P C 3 C 2 X 1 L P C 3 C 3 C C 1 X 1 L P C 3 C 3 C C 1 X 1 L P C 3 C 3 C C C 1 X 1 L P C 3 C 3 C C C C 3 X 1 L P C 3 C C C C 3 X 1 L P C 3 C C C C C C C C C C C C C C C C C	SAMPLE SAMPLE BOTTLE ID NUMBERS
NOTES SIGNATURE: RECEIVED BY:		WAP-1	parenent Building

GWFORM2.XLS/GENERIC

2/22/2006

FIELD DATA RECORD - GROUNDWATER SAMPLING
ROJECT NOW SAMPLE NUMBER ST MWOOTOSCOXX STUDY AREA / AOC MW-S SITE TYPE DEC DATE 6 3/29/06 START 02 END 20 JOB NUMBER 36/2052034 FILE TYPE WEATHER 39 F SWMY
MEASURED WELL DEPTH D. S. FT (TOR) WELL DEPTH 2 FT (TOR) WELL DEPTH TO WATER DEPTH TO WATER COLUMN D. 22 FT (TOR) WELL DEPTH DIAMETER DIAM
EQUIPMENT DOCUMENTATION PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BLADDER PUMP BLADDER PUMP PVC/SILICON TUBING TEFLON/SILICON TUBING BAILER IN LINE FILTER DECON FLUIDS USED ALKINOX LIQUINOX FOTABLE WATER DEIONIZED WATER ALKINOX LIQUINOX FOTABLE WATER DEIONIZED WATER STEAM CLEANING NITRIC ACID NUMBER OF FILTERS USED NUMBER OF FILTERS USED
ANALYTICAL PARAMETERS METHOD FRACTION NUMBER CODE METHOD REQUIRED COLLECTED ID NUMBERS COLLECTED COLECTED COLLECTED COLLECTED COLLECTED COLLECTED COLLECTED
NOTES dequaled hydrocorbon odor; Progenitoris ungre of particles SIGNATURE: RECEIVED BY: NOTES WINT gote WINT gote


ODCUMPNIATED CARROLING	
SITE ID SITE TYPE	MMDUODZOZK STUDY AREA / AOC MW-6 DATE 03/28/66 FILE TYPE WEATHER 28F, SUMM
WATER LEVEL / WELL DATA PROTECT MEASURED MEASURED WELL DEPTH DESCRIPTION WELL DEPTH PROTECT CASING S WELL DEPTH FT (TOR) WELL DEPTH FT (TOR)	TICKUP CASING/WELL
DEPTH TO G 7 FT (TOR) SCREEN OFT WELL DIAMETER	WELL WELL YES NO N/A
HEIGHT OF WATER COLUMN 13.54 FT $\times 0.16$ GAL/FT (2 INCH WELL) = 4.33	GALVOL INTEGRITY: CAP CASING COLLAR COLLAR
PURGE DATA PURGE DATA PID PPM WELL MOUTH LIVE PPM TOTAL VC PVR PVR PVR PVR PVR PVR PVR PVR PVR PV	ON 15 0820 0830 - Supk The
PURGE VOLUME (gallons) D/W 1 98 198 11.98 11.98 PURGE RATE (gm) W / MM 350 350 350 350 TEMPERATURE (degreesC) 11.5 11.3 11.4 pH (units) 7.0 7.2 1.3 TURBIDITY (ntu) 17 19 14 11 SPEC. COND. (uhmos/cm) 7.00 191 1.97 201 TURBIDITY (ntu) 00 6.76 5.81 5.418 5.21 REDOX POTENTIAL (+/- mv) 310 280 260 230	11.98 11.98 SAMPLE OBSERVATIONS: CLEAR COLORED CLOUDY
PURGING SAMPLING DECON FLUIDS USED PERISTALTIC PUMP SUBMERSIBLE PUMP BLADDER PUMP PVC/SILICON TUBING TEFLON/SILICON TUBING BAILER IN LINE FILTER DECON FLUIDS USED ALKINOX LIQUINOX POTABLE WATER DEIONIZED WATER STEAM CLEANING NITRIC ACID	WATER LEVEL EQUIPMENT USED ELECTRIC COND. PROBE FLOAT ACTIVATED KECK INTERFACE PROBE NUMBER OF FILTERS USED
ANALYTICAL PARAMETERS METHOD FRACTION PRESERVA NUMBER CODE METHOD VOC OLM04.2 HCL / 4 I HCL /	DEG. C 2X 40 ML DEG. C (3X 40 ML DEG. C (3X 40 ML DEG. C (2X 1L AG DEG. C
NOTES Collet Dup MS/MSD herc. M	Darenent mind
SIGNATURE:	- farle Inc

FIELD DATA RECORD - GROUNDWATER SAMPLING	10/2
PROJECT NYSTEC KIM WCKY AVE SAMPLE NUMBER STAWDOTO 18 624K	STUDY AREA / AOC MW7
SITE ID STE TYPE DEC	DATE 03/79.166
ACTIVITY START 0915 END 1015 JOB NUMBER 36126 2032	FILE TYPE
ACTIVITI (STAIN) O / S End	WEATHER 36F SWWY!
WATER LEVEL / WELL DATA	
PROTECTIVE CASING STICKLIP	PROTECTIVE CASING/WELL
	DIFFERENCE FT
DEPTH TO 13.76 FT (TOR) SCREEN D FT DIAMETER 2 IN	MATERIAL Sh 40 PC
HEIGHT OF 10.30 NW 2 3.76	WELL YES NO N/A INTEGRITY: CAP
WATER COLOMN TO THE ASSESSMENT OF THE ASSESSMENT	CASING V
PID AMBIENT AIR 10 PPM WELL MOUTH 41-0 PPM TOTAL VOLUME PURGED 1920	GAC LOCKED V
PURGE DATA 1920 POR TIME: 0921 0926 0931 6936 6941 0946	1000 - Sunsk Time
RURGE VOLUME (gattons) (TW 13-40 13-41 13-41 13-41 13-41 13-41	SAMPLE OBSERVATIONS:
PURGE RATE (GPM) W1 M/N 400 400 400 400 400 400	CLEAR
TEMPERATURE (degreesC) 10.3 10.3 10.3 10.3	COLORED
pH (units) 7-3 7-3 7-3 7-4 7-4	CLOUDY
TURBIDITY (ntu) 75 12 19 10 5-3 4-2	TURBID
SPEC. COND. (uhmos/cm) 1-37 1-37 1.36 1.36 1.35 1-35	OTHER (see notes)
700000000000000000000000000000000000000	TINO - PWO IFF
REDOX POTENTIAL (+/- mv) 240 230 220 290 190 90	1 1008 - Level 14
EQUIPMENT DOCUMENTATION	
PERISTALTIC PUMP ALKINOX ELECTR	EQUIPMENT USED IC COND. PROBE
SUBMERSIBLE PLIMP LIQUINOX FLOAT	ACTIVATED ITERFACE PROBE
PVC/SILICON TUBING DEIONIZED WATER TEFLON/SILICON TUBING STEAM CLEANING	
BAILER NITRIC ACID	LTERS USED
IN LINE FILTER NUMBER OF FI	
ANALYTICAL PARAMETERS METHOD FRACTION PRESERVATION VOLUME	SAMPLE SAMPLE BOTTLE
NUMBER CODE METHOD REQUIRED	COLLECTED ID NUMBERS
HCL/4 DEG. C 3 X 40 ML	
Meyoc 4 DEG. C 1/2 X 1 L AG	
THERRICIES 4 DEG. C 2X1LAG	
HERBICIDES HNO3 to pH <2 1 x 1 P SWIND SULFATE NITRATE/NITRITE USEPA 300 4 DEG. C 1 X 50 ML P	
USEPA 376.1 NAOH to pH >9 1 X 500 ML P	
☐ IRON ONLY HNO3 to pH <2 1 x 1 L P-Cube FERROUS IRON FIELD METHOD	
TOTAL PHOSPHORUS USEPA-365.4 H2SO4 to pH <2 1 X 50 ML P	日
MANGANESE ONLY	
TOC USEPA-415.1 TSS ONLY USEPA-160.2 4 DEG. C 1 X1 L P	吕
OTHER	
NOTES MO?	M . 1 H
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MW-7 7
T	——————————————————————————————————————
1	
SIGNATURE:	mw.6 .
RECEIVED BY:	1

· · · · · · · · · · · · · · · · · · ·	7 (m.) 1 (m.)	* (*)	
TO DATA BEOODD, COOLINDW	ATED SAMDLING		[2of 2]
FIELD DATA RECORD - GROUNDW PROJECT NSDEC - KENTULCY SITE ID ST ACTIVITY START DOUS END [615	SITE TY JOB NUME	PE DE	, \
MATER LEVEL / WELL DATA MEASURED WELL DEPTH 22.55 FT (TOR) HISTORIC WELL DE DEPTH TO SCREEN LENGTH HEIGHT OF WATER COLUMN 10.19 FT & 16 GAL/ PID AMBIENT AIR 1.5 PPM WELL MC	FT (L INCH WELL) = 3	PROTECTIVE CASING STICKUP (FROM GROUND) WELL DIAMETER Z GALVOL TOTAL VOLUME PURGED 1920	PROTECTIVE CASING / WELL DIFFERENCE WELL MATERIAL WELL INTEGRITY: CAP CASING COLLAR GAL LOCKED PROTECTIVE FT YES NO N/A
PURGE DATA 6921 - PUN TIME: 0950 PURGE-VOLUME (gations) SN 12-41 PURGE RATE (gpm) M 1 M 14 CO TEMPERATURE (degreesC) [0.4] PH (units) 7-4 TURBIDITY (ntu) 2-5 SPEC. COND. (uhmos/cm) 1-36 TURBIDITY (ntu) 1-36 REDOX POTENTIAL (+/- mv) 100	0954 0959 13.41 13.41 400 400 10.5 10.5 7.4 7.4 2.5 2.3 1.35 1.35 1.71 6.70	1000 Con San San San San San San San San San Sa	SAMPLE OBSERVATIONS: CLEAR COLORED CLOUDY TURBID ODOR OTHER (see notes)
EQUIPMENT DOCUMENTATION PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BLADDER PUMP PVC/SILICON TUBING TEFLON/SILICON TUBING BAILER IN LINE FILTER	DECON FLUIDS USED ALKINOX LIQUINOX POTABLE WATER DEIONIZED WATER STEAM CLEANING NITRIC ACID	ELECT FLOAT KECK I	EQUIPMENT USED RIC COND. PROBE ACTIVATED NTERFACE PROBE
ANALYTICAL PARAMETERS VOC VOC VOC VOC VEST / PCBs HERBICIDES PAL INORGANICS SULFATE NITRATE/NITRITE SULFIDE IRON ONLY FERROUS IRON TOTAL PHOSPHORUS MANGANESE ONLY AMMONIA NIROGEN TOC TSS ONLY OTHER	METHOD CODE NUMBER CODE OLM04.2 USEPA 300 USEPA 376.1 FIELD METHOD USEPA-365.4 USEPA-350.1 USEPA-415.1 USEPA-160.2	PRESERVATION METHOD REQUIRED HCL / 4 DEG. C 2 X 40 ML 4 DEG. C 2 X 1 L AG 4 DEG. C 2 X 1 L AG HN03 to pH <2 1 X 50 ML P HN03 to pH <2 1 X 1 L P H2SO4 to pH <2 1 X 1 L P 4 DEG. C 1 X 50 ML P HX 50 ML P 1 X 1 L P Cube 1 X 50 ML P 1 X 1 L P Cube 1 X 50 ML P 1 X 1 L P Cube 1 X 50 ML P 1 X 1 L P Cube 1 X 50 ML P 1 X 1 L P Cube 1 X 50 ML P 1 X 1 L P Cube 1 X 50 ML P 1 X 1 L P 1 X 400 ML P	
NOTES SIGNATURE:		mp:	Jmw-7

APPENDIX C:

SURVEY DRAWING – SITE MAP

DATE REVISIONS BY

DRAWING ALTERATION

WARNING: It is a violation of the New York State Education
Low, Article 145, Section 7209, Special Provision 2, for any
person unless he is acting under the direction of a
Licensed Protessional Engineer or Land Surveys tool
after an item in any way. If an item bearing the stal
of an engineer or land surveyor is altered, the othering
engineer or land surveyor shall affix to the item his send
and inotialion follered by followed by his singulation
date of such alteration, and a specific description of
the alteration.

BY: _____

JOSEPH C. LU ENGINEERING LAND SURVEYING, P.C. 2230 Penfield Road Penfield, New York 14526 (585) 377-1450 FAX: (585) 377-1266

PROJECT:

N.Y.S.D.O.T. PROPERTY 730 CHEMUNG STREET

CLIEN

MACTEC ENGINEERING, INC 511 CONGRESS STREET PORTLAND, ME 04101

DRAWING TITLE:

SITE MAP

DESIGNED BY: SCALE: 1"=50'

DRAWN BY: JRH DATE: 02/06/06

CHECKED BY: CJR,CAP PROJECT No. 36406

SHEET DRAWING No.

1 OF 1 1

APPENDIX D:

DUSR AND LABORATORY ANALYTICAL RESULTS

DATA VALIDATION REPORT

Volatile, Semi-volatile, Pesticide/PCB, and Metals Analyses

SDG No. D1367

Sampling Date: November 14-16, 2005

Submitted to:

MACTEC, Inc., 511 Congress Street Portland, ME 04112 207-775-5401

Submitted by:

EDV, Inc., 1326 Orangewood Avenue Pittsburgh, PA 15216 412-341-5281

February 27, 2006

Site: Kentucky Ave/NYSDEC

Client: MACTEC, Inc.

Analytical Laboratory: Mitkem Corporation

17 Metro Center Boulevard

Warwick RI 02886

Sample Delivery Group (SDG): D1367

Sampling Date: November 14-16, 2005

Analyses: Volatile, semi-volatile, pesticide/PCB, metals

Analytical Method: NYSDEC ASP

Summary of Data Validation:

The adherence of laboratory analytical performance to CLP and SW-846 Analytical Specifications were evaluated during the data validation process. The USEPA Region II's data validation SOP Checklists (SOP HW-2 Rev 1, January 1992, SOP, HW-15 Rev 2, May 1993), the National Functional Guidelines for Organic Data Review (October 1999), the National Functional Guidelines for Inorganic Data Review (October 2004) were used as guidelines for data qualifications.

Volatile: Several compounds were qualified as estimated due to calibration issues. One methylene chloride result was qualified as non-detect due to blank contamination. Some sample results were qualified as estimated due to calibration issues.

Semi-volatile analyses: Some sample results were qualified as estimated due to calibration issues.

Pesticide/PCB: Some compounds in one sample were qualified as estimated due to surrogate issues.

Metals: Selenium and silver results were rejected in all samples due to matrix spike issues. Some copper, lead, sodium and zinc results were rejected due to field blank contamination. Antimony, cobalt, copper, iron, lead, nickel and zinc results were qualified as estimated due to either matrix spike, CRDL or ICP serial dilution issues.

The sample qualifiers applied by the data validator are in section 15.0 and Attachment A- Form 1s. The detailed discussions can be found in the report.

Table of Contents

1.0	Sample Identifications					
2.0	Comp	pleteness Checklist	2			
3.0		ction Limits				
4.0	Holdi	ing Time	3			
	4.1	Sample Preservation				
	4.2	Percent Moisture	3			
	4.3	Chain of Custody Record	3			
5.0	Calib	ration Quality Control	3			
	5.1	Initial Calibration (ICAL)	3			
	5.2	Continuing Calibration (CCAL)	3			
	5.3	CRDL Standard	4			
6.0	Blank	ks Quality Control	4			
7.0	Surro	ogate Recoveries	4			
8.0	Accu	racy	4			
	8.1	Laboratory Control Samples (LCS)/Blank Spikes	4			
	8.2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)	4			
		8.2.1 Frequency	4			
		8.2.2 Recovery	4			
9.0	Preci					
	9.1	Matrix Spike Duplicates				
	9.2	Matrix Duplicates				
	9.3	ICP Serial Dilution				
10.0	Field	QC				
	10.2	Trip Blanks				
	10.3	Field Duplicate				
11.0	Inter	nal Standards				
	11.1	IS Area Counts				
	11.2	Retention Time				
12.0	Targe	et Compound Identification				
	12.1	Tentatively Identified Compounds (TICs)				
13.0		ılations and Transcription				
14.0		tional Comments	6			
15.0	Data	Oualifier Table	7			

Table of Contents (Continued)

List of Appendices

- A Validated and Qualified Data Sheets (Form 1s)
- B Case Narrative and Chain of Custody

1.0 Sample Identifications

The following table summarizes sample IDENTIFICATIONS, matrix of each sample and analyses present in the data package for each sample.

Client Sample ID	Matrix	Volatile	Semi- volatile	Pesticide/ PCB	Metals	
SDG D1367						
STBS00701001XX	SOIL	Х	Х	х	Х	
STQT001XXX05XX	WATER	Х	-	-	-	
STBS00508001XX	SOIL	Х	х	Х	х	
STBS00508001XD	SOIL	Х	х	Х	Х	
STBS00406001XX	SOIL	Х	Х	X	Х	
STBS00501701XX	SOIL	Х	Х	-	-	
STBS00101601XX	SOIL	Х	х	Х	х	
STQT002XXX05XX	WATER	Х	-	-	_	
STBS00301601XX	SOIL	Х	х	Х	Х	
STQS001XXX05XX	WATER	Х	х	Х	х	
STQT003XXX05XX	WATER	Х	-	-	-	
STBS00201801XX	SOIL	Х	Х	Х	Х	
QC sample ID	Matrix					
STBS00508001XX MS	WATER	X	Х	Х	Х	
STBS00508001XX MSD	WATER	Х	Х	Х	Х	

D. V. Report D1367.doc

2.0 Completeness Checklist

The following table identifies the summary form information and raw data found in the data package. Form numbers shown in parentheses refer to the current U.S. EPA CLP SOW equivalent reporting of results in an alternate summary format that has been determined to be acceptable. Analyses in this data package were performed in accordance with CLP and NYSDEC Methods.

Completeness Checklist

	Completeness Checknist
X	Case Narrative
X	Chain of Custody Records/Traffic Reports/Tracking Records
X	Preservation Information
X	Sample Cross Reference with Unique Identifiers
X	Sample Results Summary Form (Form 1/Form 1-TIC)
X	CLP Flagging used on Results Summary
X	SMC/Surrogate Results Summary (Form 2)
NR	Matrix Spike/Matrix Spike Duplicate Results Summary (Form 3)
X	Laboratory Control Sample (LCS)/ Blank Spike Results Summary (Form 3)
NR	Control Charts
X	Method/Preparation Blank Results Summary (Form 4)
X	Volatile Initial Calibration Summary (Forms 6)
X	Volatile Continuing Calibration Summary (Form 7)
X	Volatile Analytical Sequence (Form 8)
x	Internal Standard Area Summary (Form X11)
X	Raw Data (incl. IS, Surr/SMC, RT, quant. Reports, etc.)
X	Samples
X	Initial Calibration
NR	Clean-ups
X	Continuing Calibration
NR	Instrument Blanks
X	Preparation Blanks/Method Blanks
0	Other Blanks
X	LCS/Blank Spike
X	Matrix Spikes/Matrix Spike Duplicates
NR	Matrix Duplicates/Replicates
0	Field Blanks - Trip Blank
X	Field Duplicates
X	Extraction Log Benchsheets
X	Instrument Run Logs
X	Sample Descriptions
X	Legible Pages
X	Pages in Package Numbered and in Sequence
X	Electronic Data Deliverable (EDD)

X: Included in original Data Package

NR: Not Required RS: Provided as a Resubmission

O: Not Included and/or Not Available X/RS: Incomplete in original data package, completed as a resubmission

D. V. Report D1367.doc 2

3.0 Detection Limits

Detection limits are acceptable.

4.0 Holding Time

Holding times were acceptable.

4.1 Sample Preservation

The appropriate samples were preserved and cooled to 4°C.

4.2 Percent Moisture

Percent moisture results were acceptable.

4.3 Chain of Custody Record

Chain of Custody Records were present.

5.0 Calibration Quality Control

5.1 Initial Calibration (ICAL)

The ICAL was acceptable.

5.2 Continuing Calibration (CCAL)

VOA: For CCV, the following compounds exceeded the +/-25% criterion;

Compound	%D-11/15/05 V5	%D-01/16/05 V5	%D-01/17/05 V5
Bromomethane	27.3	-	-
1,1-Dichloroethene	27.0	-	-
Chloroethane	41.6	-	-
Acetone	51.8	42.0	26.6
2-Butanone	45.4	27.4	-
Trichlorofluoromethane	26.0	-	28.8
Dichlorodifluoromethane	-	-	26.1

Detected affected compounds were qualified "J" to indicate the results are estimated and non-detected results were qualified "UJ" to indicate the results are estimated due to this anomaly.

SVOA: For CCV, the following compounds exceeded the +/-25% criterion;

Compound	%D-12/16/05 S1	%D-12/20/05 S1
4-Chloroaniline	-	529.9
Caprolactam	-	31.1
Benzaldehyde	29.8	55.4
Atrazine	2	64.5
3,3-Dichlorobenzidine	32.8	77.2

Compound	%D-12/16/05 S1	%D-12/20/05 S1
Indeno (1,2-3-cd)pyrene	30.4	-
Dibenzo(a,h) antharacene	38.2	34.9
Benzo (g,h,I) perylene	33.7	-

All samples were affected. All affected compounds were non-detects and were qualified "UJ" to indicate the results are estimated due to this anomaly.

5.3 CRDL Standard

Recoveries for copper (74.7%) and zinc (75.2%) were outside the required 80-120% QC limit. All sample results for these compounds were qualified "J" to indicate the results are estimated due to this anomaly.

6.0 Blanks Quality Control

VOA: Method blanks reported acetone and methylene chloride contamination. Associated detected compound were qualified as non-detects.

7.0 Surrogate Recoveries

PEST/PCB: Decachlorobiphenyl recovery was 27% due to dilution in sample STQS001XXX05XX. This was outside the required QC limits of 30-150%. All non-detected compounds in this sample were qualified "UJ" and all detected compounds were qualified "J" to indicate the results are estimated due to this anomaly.

8.0 Accuracy

8.1 Laboratory Control Samples (LCS)/Blank Spikes

Recoveries were acceptable.

8.2 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

8.2.1 Frequency

Frequency was met.

8.2.2 Recovery

Metals- Matrix spike recovery for antimony-25.6%, lead-151.5%, selenium-0% and silver-0% were outside the 75-125% QC requirement. This resulted in all associated antimony results being qualified as estimated. All selenium and silver results being qualified "R" to indicate the results have been rejected and are not usable. All affected lead results were qualified "J" to indicate the results are estimated due to this anomaly.

9.0 Precision

RPDs were acceptable.

9.1 Matrix Spike Duplicates

9.2 Matrix Duplicate

RPDs were acceptable.

9.3 ICP Serial Dilution

ICP serial dilution results were not acceptable for cobalt, iron, lead, nickel and zinc. All cobalt, iron and nickel results were qualified "J" to indicate the results are estimated due to this anomaly. All zinc results were previously qualified due to CRDL or field blank issues and required no further qualification. All affected lead results were previously qualified due to matrix spike effect and required no further qualification.

ICP serial dilution for copper and iron in sample STQS001XXX05XX were not acceptable. Copper and iron results in this sample were qualified as estimated due to this anomaly.

10.0 Field QC

10.1 Field Blanks/Rinse

SVOA: Rinse blank reported bis (2-ethylhexyl) phthalate contamination. Associated samples reported no low level contamination thus, no action was necessary.

Metals: Field blank reported gross contamination for copper, iron, lead, sodium and zinc. Samples STBS00301601XX and STBS00201801XX were the associated affected samples. Copper, lead, sodium and zinc were rejected in these two samples due to this contamination. Iron results required no qualification.

10.2 Trip Blanks

Trip blanks reported no contamination.

10.3 Field Duplicate

Sample STBS00508001XXD was presented as a field duplicate. The original sample is identified as STBS00508001XX. RPDs are calculated when both original and duplicate report detects. RPDs were acceptable except for the metals shown below.

D	PL	잍	7	ľ	D	D)													
84	8	8	8	8	8	8	34	4	12	2	9)7	7	8	9	%	, o	Α	١L	_
52	45	4	45	45	15	5	52	2	26	9	9)(6	6	9	%	, o	C	2	ì
5							Ę	5	5(0	1	17	7	7	70	%	, o	٨	/Ir	1

Aluminum, calcium and manganese results in both original and duplicate samples were qualified as estimated due to this anomaly.

5

11.0 Internal Standards (IS)

11.1 IS Area Counts

IS area counts were within quality control limit.

11.2 Retention Time (RT)

All RTs were within the method accepted criteria.

12.0 Target Compound Identification

All were acceptable.

12.1 Tentatively Identified Compounds (TICs)

VOA: Some TICs were rejected because they are volatile target compounds and therefore cannot be reported as VOA TICs. Some were rejected because they were suspect artifact or common laboratory contaminant.

SVOA: Some TICs were rejected because they are volatile target compounds and therefore cannot be reported as SVOA TICs.

6

13.0 Calculations and Transcription

Raw data were accurately transcribed to summary data sheets.

14.0 Additional Comments

15.0 Data Qualifier Table

Volatile

Sample Identification	Compound	Qualifier	Section Reference
STBS00101601XX	Acetone, 2-butanone	UJ	5.2
STBS00406001XX,	Acetone	J	5.2
STBS00508001XX			
STBS00406001XX,	2-Butanone	UJ	5.2
STBS00508001XX			
STBS00701001XX	Bromomethane, chloroethane,	UJ	5.2
	trichlorofluoromethane, 1,1-		
	dichlorethene, 2-butanone		
STBS00701001XX	Acetone	UJ	5.2
STBS00701001XX	Methylene chloride	11U	6.0
STQS001XXX05XX,	Dichlorodifluoromethane,	UJ	5.2
STQT001XXX05XX,	trichlorofluoromethane, acetone		
STQT002XXX05XX,			
STQT003XXX05XX			

SVOA

Sample Identification	Compound	Qualifier	Section Reference
STBS00406001XX, STBS00508001XX, STBS00508001XXD	Benzaldehyde, 3,3'dichlorobenzidine, indeno (1,2,3-cd)pyrene, dibenzo(a,h) antracene, benzo (g,h,i) perylene	UJ	5.2
STBS00501701XX	Benzaldehyde, caprolactam, atrazine, 3,3'-dichlorobenzidine, dibenzo (a,h) antracene	UJ	5.2
STBS00701001XX	Benzaldehyde, 3,3'dichlorobenzidine, dibenzo(a,h) antracene, benzo (g,h,i) perylene	UJ	5.2

Pest/PCB

Sample Identification	Compound	Qualifier	Section Reference
STQS001XXX05XX	alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4-DDE 4,4'-DDD Endrin Endosulfan II Endosulfan sulfate 4,4-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane gamma-Chlordane Toxaphene Aroclor-1214 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	UJ	7.0

Metals

Sample Identification	Compound	Qualifier	Section Reference
STBS00101601XX,	Antimony	UJ	8.2.2
STBS00201801XX,			
STBS00301601XX,			
STBS00406001XX,			
STBS00508001XX,			
STBS00508001XXD,			
STBS00701001XX			
STBS00101601XX,	Cobalt, copper, iron, lead, nickel,	J	5.3/8.2.2/9.3
STBS00201801XX,	zinc		
STBS00301601XX,			
STBS00406001XX,			
STBS00508001XX,			
STBS00508001XXD,			
STBS00701001XX			
STBS00101601XX,	Selenium, silver	R	8.2.2
STBS00201801XX			
STBS00301601XX,			

Sample Identification	Compound	Qualifier	Section Reference
STBS00406001XX,			Treate and a second
STBS00508001XX,			
STBS00508001XXD,			
STBS00701001XX			
STQS001XXX05XX	Copper, iron	J	9.3
STBS00508001XX,	Aluminum, calcium, manganese	J	10.3
STBS00508001XXD			
STBS00301601XX,	Copper, lead, sodium, zinc	R	10.1
STBS00201801XX			

DATA VALIDATION REPORT

Volatile, Semi-volatile, Pesticide/PCB, and Metals Analyses

SDG No. D1488

Sampling Date: December 8-9, 2005

Submitted to:

MACTEC, Inc., 511 Congress Street Portland, ME 04112 207-775-5401

Submitted by:

EDV, Inc., 1326 Orangewood Avenue Pittsburgh, PA 15216 412-341-5281

February 20, 2006

Site: Diamond Cleaners/NYSDEC

Client: MACTEC, Inc.

Analytical Laboratory: Mitkem Corporation

17 Metro Center Boulevard

Warwick RI 02886

Sample Delivery Group (SDG): D1488

Sampling Date: December 8-9, 2005

Analyses: Volatile, semi-volatile, pesticide/PCB and metals

Analytical Method: NYSDEC ASP

Summary of Data Validation:

The adherence of laboratory analytical performance to CLP and SW-846 Analytical Specifications were evaluated during the data validation process. The USEPA Region II's data validation SOP Checklists (SOP HW-2 Rev 1, January 1992, SOP, HW-15 Rev 2, May 1993), the National Functional Guidelines for Organic Data Review (October 1999), the National Functional Guidelines for Inorganic Data Review (October 2004) were used as guidelines for data qualifications.

Volatile: Some sample results were qualified as estimated due to calibration issues.

Semi-volatile analyses: Some sample results were qualified as estimated due to calibration and method blank issues.

Pesticide/PCB: The results are acceptable.

Metals: Selenium results in all samples were qualified as estimated due to laboratory control sample issues.

The sample qualifiers applied by the data validator are in section 15.0 and Attachment A- Form 1s. The detailed discussions can be found in the report.

Table of Contents

1.0	Samp	ole Identifications
2.0	Comp	pleteness Checklist
3.0	Detec	etion Limits
4.0	Holdi	ing Time
	4.2	Sample Preservation
	4.3	Chain of Custody Record
5.0	Calib	ration Quality Control
	5.1	Initial Calibration (ICAL)
	5.1	Continuing Calibration (CCAL)
	5.3	CRDL Standard
0.0	Blanl	ks Quality Control
.0	Surro	ogate Recoveries
3.0	Accu	racy
	8.1	Laboratory Control Samples (LCS)/Blank Spikes
	8.2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)
		8.2.1 Frequency
		8.2.2 Recovery
0.0	Preci	sion
	9.1	Matrix Spike Duplicates
	9.2	Matrix Duplicates
	9.3	ICP Serial Dilution
0.0	Field	QC
	10.1	Field Blanks/Rinse Blanks
	10.2	Trip Blanks
	10.3	Field Duplicate
1.0	Inter	nal Standards
	11.1	IS Area Counts
	11.2	Retention Time
2.0	Targe	et Compound Identification
	12.1	Tentatively Identified Compounds (TICs)
3.0		ılations and Transcription
4.0	Addi	tional Comments
15.0	Data	Oualifier Table

Table of Contents (Continued)

List of Appendices

- A Validated and Qualified Data Sheets (Form 1s)
- B Case Narrative and Chain of Custody

1.0 Sample Identifications

The following table summarizes sample IDENTIFICATIONS, matrix of each sample and analyses present in the data package for each sample.

Client Sample ID	Matrix	Volatile	Semi- volatile	Pesticide/ PCB	Metals			
SDG D1488								
STMW007XXX01XX	WATER	Х	х	Х	х			
STMW007XXX01XXD	WATER	Х	х	Х	х			
STMW006XXX01XX	WATER	Х	х	Х	х			
STQT004XXX01XXTB	WATER	Х	-	-	-			
STMW005XXX01XX	WATER	Х	Х	Х	Х			
STMW004XXX01XX	WATER	х	Х	Х	Х			
STMW001XXX01XX	WATER	х	Х	Х	Х			
STQT002XXX01XXTB	WATER	Х	-	-	-			
STMW002XXX01XX	WATER	х	Х	Х	Х			
STMW003XXX01XX	WATER	Х	х	Х	х			
STQT003XXX01XXTB	WATER	Х	-	-	-			
QC sample ID	Matrix							
STMW007MS	WATER	Х	х	Х	Х			
STMW007MSD	WATER	Х	Х	Х	Х			

2.0 Completeness Checklist

The following table identifies the summary form information and raw data found in the data package. Form numbers shown in parentheses refer to the current U.S. EPA CLP SOW equivalent reporting of results in an alternate summary format that has been determined to be acceptable. Analyses in this data package were performed in accordance with CLP and NYSDEC Methods.

Completeness Checklist

X	Case Narrative
X	Chain of Custody Records/Traffic Reports/Tracking Records
X	Preservation Information
X	Sample Cross Reference with Unique Identifiers
X	Sample Results Summary Form (Form 1/Form 1-TIC)
X	CLP Flagging used on Results Summary
X	SMC/Surrogate Results Summary (Form 2)
NR	Matrix Spike/Matrix Spike Duplicate Results Summary (Form 3)
X	Laboratory Control Sample (LCS)/ Blank Spike Results Summary (Form 3)
NR	Control Charts
X	Method/Preparation Blank Results Summary (Form 4)
X	Volatile Initial Calibration Summary (Forms 6)
X	Volatile Continuing Calibration Summary (Form 7)
X	Volatile Analytical Sequence (Form 8)
X	Internal Standard Area Summary (Form X11)
X	Raw Data (incl. IS, Surr/SMC, RT, quant. Reports, etc.)
X	Samples
X	Initial Calibration
NR	Clean-ups
X	Continuing Calibration
NR	Instrument Blanks
X	Preparation Blanks/Method Blanks
0	Other Blanks
X	LCS/Blank Spike
X	Matrix Spikes/Matrix Spike Duplicates
NR	Matrix Duplicates/Replicates
0	Field Blanks - Trip Blank
X	Field Duplicates
X	Extraction Log Benchsheets
X	Instrument Run Logs
X	Sample Descriptions
X	Legible Pages
X	Pages in Package Numbered and in Sequence
X	Electronic Data Deliverable (EDD)

X: Included in original Data Package

NR: Not Required RS: Provided as a Resubmission

O: Not Included and/or Not Available X/RS: Incomplete in original data package, completed as a resubmission

3.0 Detection Limits

Detection limits are acceptable.

4.0 Holding Time

Holding times were acceptable.

4.1 Sample Preservation

Preservation met quality control requirements

4.2 Percent Moisture

Percent moisture was not applicable since samples were of an aqueous matrix.

4.3 Chain of Custody Record

Chain of Custody Records were present.

5.0 Calibration Quality Control

5.1 Initial Calibration

The ICAL was acceptable.

5.2 Continuing Calibration (CCAL)

VOA: For CCV, the following compounds exceeded the +/- 25% criterion;

Compound	%RSD-12/09/05 V2	%RSD-12/14/05 V2
Dichlorodifluoromethane	35.9	-
Chloromethane	27.2	-
Vinyl chloride	28.1	-
Methylene chloride	-	42.9

All affected compounds were non-detects and were qualified "UJ" to indicate the results are estimated due to this anomaly.

SVOA: For CCV, the following compounds exceeded the +/- 25% criterion;

Compound	%D-12/20/05 S1
4-Chloroaniline	529.9
Caprolactam	31.1
Benzaldehyde	55.4
Atrazine	64.5
3,3-Dichlorobenzidine	77.2
Dibenzo(a,h) antharacene	34.9

All affected compounds were non-detects and were qualified "UJ" to indicate the results are estimated due to this anomaly.

5.3 CRDL Standard

Recoveries were acceptable.

6.0 Blanks Quality Control

SVOA: Method blanks reported bis (2-ethyl hexyl) phthalate contamination. Associated detected compounds were qualified as non-detects at CRDL due to this anomaly.

7.0 Surrogate Recoveries

Recoveries were acceptable.

8.0 Accuracy

8.1 Laboratory Control Samples (LCS)/Blank Spikes

SVOA: Recovery for 4-nitrophenol-88% and 2, 4-dinitrotoluene-108% was above the 10-80% QC requirement. There were no associated detected 4-nitrophenol or 2, 4-dinitrotoluene compounds therefore, no qualification was necessary.

Metals: Recovery for selenium-61% was below the required QC limits of 80-120%. Selenium results in all samples were qualified as estimated due to this anomaly.

8.2 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

8.2.1 Frequency

Frequency was met.

8.2.2 Recovery

Recoveries were acceptable.

9.0 Precision

9.1 Matrix Spike Duplicates

The results were acceptable.

9.2 Matrix Duplicate

RPDs were acceptable.

9.3 ICP Serial Dilution

ICP serial dilution results were acceptable.

10.0 Field QC

10.1 Field Blanks/Rinse Blanks

Field blank reported methylene chloride contamination however, there were no detected methylene chloride results in associated samples thus, no qualification was necessary.

10.2 Trip Blanks

The trip blank reported no contamination

10.3 Field Duplicate

Sample STMW007XXX01XXD was presented as a field duplicate. The original sample is identified as STMW007XXX01XX. RPDs are calculated when both original and duplicate report detects. RPDs are acceptable

5

11.0 Internal Standards (IS)

11.1 IS Area Counts

IS area counts were acceptable.

11.2 Retention Time (RT)

All RTs were within the method accepted criteria.

12.0 Target Compound Identification

All identifications are acceptable.

12.1 Tentatively Identified Compounds (TICs)

TIC results are acceptable.

13.0 Calculations and Transcription

Raw data were accurately transcribed to summary data sheets.

14.0 Additional Comments

15.0 Data Qualifier Table

Volatile

Sample Identification	Compound	Qualifier	Section
			Reference
STMW001, STMW004,	Dichlorodifluoromethane,	UJ	5.2
STMW005, STMW006,	chloromethane, vinyl chloride		
STMW007,STMW007D,ST			
QT002, STQT004			
STMW002, STMW003	Methylene chloride	UJ	5.2

SVOA

Sample Identification	Compound	Qualifier	Section
			Reference
STMW001,STMW002,	Benzaldehyde, 4-chloroaniline,	UJ	5.2
STMW003, STMW004,	caprolactam, atrazine,		
STMW005, STMW006,	3,3'dichlorobenzidene, dibenzo(a,h)		
STMW007, STMW007D	antracene		
STMW001, STMW002,	Bis-2-ethyl hexyl phthalate	10U	5.2
STMW003, STMW004,			
STMW005, STMW006,			
STMW007,STMW007D			

Metals

Sample Identification	Compound	Qualifier	Section
			Reference
STMW001, STMW002,	Selenium	UJ	8.1
STMW003, STMW004,			
STMW005, STMW006,			
STMW007, STMW007D			

Loc Name	MW-001	MW-002	MW-003	MW-004
Field Sample Id	STMW00102502XX	STMW00202502XX	STMW00302002XX	STMW00402002XX
Field Sample Date	3/28/2006	3/28/2006	3/28/2006	3/29/2006
Lab Sample Id	E0379-04A	E0379-05A	E0379-06A	E0379-07A
Qc Code	FS	FS	FS	FS
	final_result	final_result	final_result	final_result
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	10 UJ	10 UJ	10 UJ	10 UJ
1,1,2-Trichloroethane	10 U	10 U	10 U	10 U
1,1-Dichloroethane	10 U	10 U	10 U	10 U
1,1-Dichloroethene	10 UJ	10 UJ	10 UJ	10 UJ
1,2,4-Trichlorobenzene	10 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	10 U	10 U	10 U	10 U
1,2-Dibromoethane	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	10 U	10 U	10 U	10 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U
1,2-Dichloropropane	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	10 U	10 U	10 U	10 U
2-Butanone	10 U	10 U	10 U	10 U
2-Hexanone	10 UJ	10 UJ	10 UJ	10 UJ
4-Methyl-2-pentanone	10 U	10 U	10 U	10 U
Acetic acid, methyl ester	10 U	10 U	10 U	10 U
Acetone	10 UJ	10 UJ	10 UJ	10 UJ
Benzene	10 U	10 U	10 U	10 U
Bromodichloromethane	10 U	10 U	10 U	10 U
Bromoform	10 U	10 U	10 U	10 U
Bromomethane	10 UJ	10 UJ	10 UJ	10 UJ
Carbon disulfide	10 UJ	10 UJ	10 UJ	10 UJ
Carbon tetrachloride	10 U	10 U	10 U	10 U
Chlorobenzene	10 U	10 U	10 U	10 U
Chlorodibromomethane	10 U	10 U	10 U	10 U
Chloroethane	10 UJ	10 UJ	10 UJ	10 UJ
Chloroform	10 U	10 U	10 U	10 U
Chloromethane	10 U	10 U	10 U	10 U
Cis-1,2-Dichloroethene	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U
Cyclohexane	10 U	10 U	10 U	10 U
Dichlorodifluoromethane	10 U	10 U	10 U	10 U
Ethyl benzene	10 U	10 U	10 U	10 U

Loc Name	MW-001	MW-002	MW-003	MW-004
Field Sample Id	STMW00102502XX	STMW00202502XX	STMW00302002XX	STMW00402002XX
Field Sample Date	3/28/2006	3/28/2006	3/28/2006	3/29/2006
Lab Sample Id	E0379-04A	E0379-05A	E0379-06A	E0379-07A
Qc Code	FS	FS	FS	FS
	final_result	final_result	final_result	final_result
Isopropylbenzene	10 U	10 U	10 U	10 U
Methyl cyclohexane	10 U	10 U	10 U	10 U
Methyl Tertbutyl Ether	10 U	10 U	10 U	10 U
Methylene chloride	10 U	10 U	10 U	10 U
Styrene	10 U	10 U	10 U	10 U
Tetrachloroethene	10 U	10 U	10 U	10 U
Toluene	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	10 U	10 U	10 U	10 U
Trichloroethene	3 J	4 J	2 J	4 J
Trichlorofluoromethane	10 UJ	10 UJ	10 UJ	10 UJ
Vinyl chloride	10 U	10 U	10 U	10 U
Xylenes, Total	10 U	10 U	10 U	10 U

Table Created By: AZ 6/27/06 Table Checked By: CRS 7/31/06

Notes:

Results in micrograms per liter (µg/L)

Samples analyzed for VOCs by Method EPA OLM04.2

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifers:

U = Not detected at a concentration above the reporting limit

J = Result is estimated

Loc Name	MW-005	MW-006	MW-006	MW-007
Field Sample Id		STMW00602002XD	STMW00602002XX	STMW00701802XX
Field Sample Date	3/29/2006	3/28/2006	3/28/2006	3/29/2006
Lab Sample Id	E0379-09A	E0379-02A	E0379-01A	E0379-08A
Qc Code	FS	FD	FS	FS
	final_result	final_result	final_result	final_result
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	10 UJ	10 UJ	10 UJ	10 UJ
1,1,2-Trichloroethane	10 U	10 U	10 U	10 U
1,1-Dichloroethane	10 U	10 U	10 U	10 U
1,1-Dichloroethene	10 UJ	10 UJ	10 UJ	10 UJ
1,2,4-Trichlorobenzene	10 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	10 U	10 U	10 U	10 U
1,2-Dibromoethane	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	10 U	10 U	10 U	10 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U
1,2-Dichloropropane	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	10 U	10 U	10 U	10 U
2-Butanone	10 U	10 U	10 U	10 U
2-Hexanone	10 UJ	10 UJ	10 UJ	10 UJ
4-Methyl-2-pentanone	10 U	10 U	10 U	10 U
Acetic acid, methyl ester	10 U	10 U	10 U	10 U
Acetone	10 UJ	10 UJ	10 UJ	10 UJ
Benzene	10 U	10 UJ	10 UJ	10 U
Bromodichloromethane	10 U	10 U	10 U	10 U
Bromoform	10 U	10 U	10 U	10 U
Bromomethane	10 UJ	10 UJ	10 UJ	10 UJ
Carbon disulfide	10 UJ	10 UJ	10 UJ	10 UJ
Carbon tetrachloride	10 U	10 U	10 U	10 U
Chlorobenzene	10 U	10 UJ	10 UJ	10 U
Chlorodibromomethane	10 U	10 U	10 U	10 U
Chloroethane	10 UJ	10 UJ	10 UJ	10 UJ
Chloroform	10 U	10 U	10 U	10 U
Chloromethane	10 U	10 U	10 U	10 U
Cis-1,2-Dichloroethene	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U
Cyclohexane	18	10 U	10 U	10 U
Dichlorodifluoromethane	10 U	10 U	10 U	10 U
Ethyl benzene	10 U	10 U	10 U	10 U

Loc N	Name	MW-005	MW-006	MW-006	MW-007
Field Samp	ole Id	STMW00501502XX	STMW00602002XD	STMW00602002XX	STMW00701802XX
Field Sample	Date	3/29/2006	3/28/2006	3/28/2006	3/29/2006
Lab Samp	ole Id	E0379-09A	E0379-02A	E0379-01A	E0379-08A
Qc (Code	FS	FD	FS	FS
		final_result	final_result	final_result	final_result
Isopropylbenzene		10 U	10 U	10 U	10 U
Methyl cyclohexane		35	10 U	10 U	10 U
Methyl Tertbutyl Ether		10 U	10 U	10 U	10 U
Methylene chloride		10 U	1 J	1 J	10 U
Styrene		10 U	10 U	10 U	10 U
Tetrachloroethene		10 U	10 U	10 U	10 U
Toluene		10 U	10 UJ	10 UJ	10 U
trans-1,2-Dichloroethene		10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene		10 U	10 U	10 U	10 U
Trichloroethene		5 J	6 J	6 J	1 J
Trichlorofluoromethane		10 UJ	10 UJ	10 UJ	10 UJ
Vinyl chloride		10 U	10 U	10 U	10 U
Xylenes, Total		10 U	10 U	10 U	10 U

Table Created By: AZ 6/27/06 Table Checked By: CRS 7/31/06

Notes:

Results in micrograms per liter (µg/L)

Samples analyzed for VOCs by Method EPA OLM04.2

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifers:

U = Not detected at a concentration above the reporting limit

J = Result is estimated

Appendix D Table 1.2: GW SVOC Results

Loc Name	MW-001	MW-002	MW-003	MW-004	MW-005	MW-006	MW-006	MW-007
Field Sample Id	STMW00102502XX	STMW00202502XX	STMW00302002XX	STMW00402002XX	STMW00501502XX	STMW00602002XD	STMW00602002XX	STMW00701802XX
Field Sample Date	3/28/2006	3/28/2006	3/28/2006	3/29/2006	3/29/2006	3/28/2006	3/28/2006	3/29/2006
Lab Sample Id	E0379-04C	E0379-05C	E0379-06C	E0379-07C	E0379-09C	E0379-02C	E0379-01C	E0379-08C
Qc Code	FS	FS	FS	FS	FS	FD	FS	FS
40 0000	final result							
2.4.5-Trichlorophenol	25 U							
2,4,6-Trichlorophenol	10 U							
2,4-Dichlorophenol	10 U							
2,4-Dimethylphenol	10 UJ							
2,4-Dinitrophenol	25 U							
2,4-Dinitrotoluene	10 U							
2,6-Dinitrotoluene	10 U							
2-Chloronaphthalene	10 U							
2-Chlorophenol	10 U							
2-Methylnaphthalene	10 U							
2-Methylphenol	10 U							
2-Nitroaniline	25 U							
2-Nitrophenol	10 U							
3,3`-Dichlorobenzidine	10 U							
3-Nitroaniline	25 U							
4,6-Dinitro-2-methylphenol	25 U							
4-Bromophenyl phenyl ether	10 U							
4-Chloro-3-methylphenol	10 U							
4-Chloroaniline	10 UJ							
4-Chlorophenyl phenyl ether	10 U							
4-Methylphenol	10 U							
4-Nitroaniline	25 U							
4-Nitrophenol	25 U							
Acenaphthene	10 U							
Acenaphthylene	10 U							
Acetophenone	10 U							
Anthracene	10 U							
Atrazine	10 U 10 U							
Benzaldehyde	10 U							
Benzo(a)anthracene Benzo(a)pyrene	10 U							
Benzo(b)fluoranthene	10 U							
Benzo(ghi)perylene	10 U							
Benzo(k)fluoranthene	10 U							
Biphenyl	10 U							
Bis(2-Chloroethoxy)methane	10 U							
Bis(2-Chloroethyl)ether	10 U							
Bis(2-Chloroisopropyl)ether	10 U							
Bis(2-Ethylhexyl)phthalate	10 U	1 J						
Butylbenzylphthalate	10 U							
Datymenzyipiitiiaiate	10 0	10 0	10 0	10 0	10 0	10 0	10 0	10 0

Appendix D Table 1.2: GW SVOC Results

Loc Name	MW-001	MW-002	MW-003	MW-004	MW-005	MW-006	MW-006	MW-007
Field Sample Id	STMW00102502XX	STMW00202502XX	STMW00302002XX	STMW00402002XX	STMW00501502XX	STMW00602002XD	STMW00602002XX	STMW00701802XX
Field Sample Date	3/28/2006	3/28/2006	3/28/2006	3/29/2006	3/29/2006	3/28/2006	3/28/2006	3/29/2006
Lab Sample Id	E0379-04C	E0379-05C	E0379-06C	E0379-07C	E0379-09C	E0379-02C	E0379-01C	E0379-08C
Qc Code	FS	FS	FS	FS	FS	FD	FS	FS
	final_result	final_result						
Caprolactum	10 U	10 U						
Carbazole	10 U	10 U						
Chrysene	10 U	10 U						
Di-n-butylphthalate	10 U	10 U						
Di-n-octylphthalate	10 U	10 U						
Dibenz(a,h)anthracene	10 U	10 U						
Dibenzofuran	10 U	10 U						
Diethylphthalate	10 U	10 U						
Dimethylphthalate	10 U	10 U						
Fluoranthene	10 U	10 U						
Fluorene	10 U	10 U						
Hexachlorobenzene	10 U	10 U						
Hexachlorobutadiene	10 U	10 U						
Hexachlorocyclopentadiene	10 UJ	10 UJ						
Hexachloroethane	10 U	10 U						
Indeno(1,2,3-cd)pyrene	10 U	10 U						
Isophorone	10 U	10 U						
N-Nitrosodi-n-propylamine	10 U	10 U						
N-Nitrosodiphenylamine	10 U	10 U						
Naphthalene	10 U	10 U						
Nitrobenzene	10 U	10 U						
Pentachlorophenol	25 U	25 U						
Phenanthrene	10 U	10 U						
Phenol	10 U	10 U						
Pyrene	10 U	10 U						
							Table Created By: /	AZ 6/27/06

Notes:

Results in micrograms per liter (µg/L)

Samples analyzed for SVOCs by Method EPA OLM04.2

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifers:

U = Not detected at a concentration above the reporting limit

J = Result is estimated

Table Checked By: CRS 7/31/06

Appendix D Table 1.3: GW Pest/PCB Results

Loc Name	MW-	001	MW-	002	MW-	003	MW-	004	MW-	-005	MW-	-006	MV	V-006	MW-	007												
Field Sample Id	STMW001	02502XX	STMW002	02502XX	STMW003	02002XX	STMW004	02002XX	STMW005	01502XX	STMW006	02002XD	STMW00	0602002XX	STMW007	01802XX												
Field Sample Date	3/28/2	2006	3/28/2	2006	3/28/	2006	3/29/	2006	3/29/	2006	3/28/	2006	3/28	3/2006	3/29/	2006												
Lab Sample Id	E0379	9-04C	E0379	-05C	E0379)-06C	E0379	-07C	E0379	9-09C	E0379	9-02C	E03	79-01C	E0379	-08C												
Qc Code	F	S	FS	6	F	S	F:	S	F	S	F	D		FS	F:	S												
	Result	Qualifier	Result			Qualifier	Result	Qualifier	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier												
4,4`-DDD	0.1	U	0.1	U	0.1	U	0.1		0.1	U	0.1	U	0.	1 U	0.1	U												
4,4`-DDE	0.1	U	0.1		0.1	U	0.1	U	0.1		0.1	U	0.	1 U	0.1													
4,4`-DDT	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.	1 U	0.1	U												
Aldrin	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.0	5 U	0.05	U												
Alpha-BHC	0.05	J	0.05	U	0.05	J	0.05	U	0.05		0.05			5 U	0.05	U												
Alpha-Chlordane	0.05	U	0.05 U		0.05		0.05		0.05	U	0.05	U	0.0	5 U	0.05	U												
Aroclor-1016	1	U	1	U	1	U	1		-	U		U		1 U		U												
Aroclor-1221	2	U	2		2		2			U	2 U		2 U													2 U	2	
Aroclor-1232	1	U	1	U	1	U	1	U	1	U	1 U		1 U		1 U			1 U	1	U								
Aroclor-1242	1	U	1	U		U	1		1	U	1 U		1 U		1 U			1 U	1	U								
Aroclor-1248	1	U	1	U	1	U	1		1	U	1	U	1 U		1	U												
Aroclor-1254	1	U	1	U	1	U	1		1	U	1	1 U 1 U		1	U													
Aroclor-1260	1	U	1	U	1	U	1	U	1	U	1 U			1 U	1	U												
Beta-BHC	0.05		0.05		0.05	U	0.05	-	0.05	U	0.05			5 U	0.05	U												
Delta-BHC	0.05		0.05		0.05	U	0.05		0.05	U	0.05	0.05 U		5 U	0.05													
Dieldrin	0.1		0.1		0.1		0.1		0.1		0.1			1 U	0.1													
Endosulfan I	0.05	U	0.05		0.05	U	0.05	U	0.05	U	0.05	U	0.0	5 U	0.05	U												
Endosulfan II	0.1		0.1		0.1	J	0.1		0.1	U	0.1	U	0.	1 U	0.1	U												
Endosulfan sulfate	0.1	U	0.1	U	0.1	U	0.1		0.1	U	0.1	U	0.	1 U	0.1	U												
Endrin	0.1	J	0.1		0.1	J	0.1		0.1	U	0.1	U	0.	1 U	0.1	U												
Endrin aldehyde	0.1		0.1		0.1	J	0.1		0.1	U	0.1	U	0.	1 U	0.1													
Endrin ketone	0.1		0.1		0.1	J	0.1		0.1		0.1			1 U	0.1													
Gamma-BHC/Lindane	0.05		0.05		0.05		0.05		0.05		0.05			5 U	0.05													
Gamma-Chlordane	0.05		0.05		0.05	J	0.05		0.05		0.05			5 U	0.05													
Heptachlor	0.05		0.05		0.05	U	0.05		0.05		0.05			5 U	0.05													
Heptachlor epoxide	0.05			0.05 U		J	0.05		0.05		0.05		0.05 U		0.05													
Methoxychlor	0.5		0.5		0.5		0.5		0.5		0.5	U		5 U	0.5													
Toxaphene	5	U	5	U	5	U	5	U	5	U	5	U		5 U	5	U												
													Т	able Create	d By: AZ 6	/27/06												

Notes

Results in micrograms per liter (µg/L)

Samples analyzed for Pesticides/PCBs by Method EPA OLM04.2

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifers:

U = Not detected at a concentration above the reporting limit

Table Checked By: CRS 7/31/06

Appendix D Table 1.3: GW Pest/PCB Results

Loc Name	MW-	-001	MW-	-002	2 MW-003		MW	MW-004		-005	MW-	-006	MW	-006	MW-	-007
Field Sample Id	STMW001	102502XX	STMW00202502XX		STMW00302002XX		STMW00402002XX		STMW00501502XX		STMW00602002XD		STMW00602002XX		STMW007	701802XX
Field Sample Date	3/28/	2006	3/28/2006		3/28/2006		3/29/2006		3/29/2006		3/28/2006		3/28/2006		3/29/	2006
Lab Sample Id	E0379	9-04C	E0379	9-05C	E0379-06C		E037	9-07C	E037	9-09C	E0379	9-02C	E037	9-01C	E0379	9-08C
Qc Code	F	S	F	S	FS		F	S	F	S	F	D	F	S	F	S
	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result Qualifier Result Qua		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
																•

Appendix D Table1.4: GW Metals Results

Loc Name	MW	/-001	MW	-002	MW	-003	MW-004		MW	-005	MW-	-006	MW-	-006	MW-	-007		
Field Sample Id	STMW00	102502XX	STMW002	202502XX	STMW003	302002XX	STMW004020	02XX	STMW005	501502XX	STMW006	02002XD	STMW006	602002XX	STMW007	701802XX		
Field Sample Date	3/28/	/2006	3/28/	2006	3/28/	2006	3/29/2006	6	3/29/	2006	3/28/	2006	3/28/	2006	3/29/	2006		
Lab Sample Id	E037	79-04	E037	9-05	E037	9-06	E0379-07	,	E037	'9-09	E037	9-02	E037	9-01	E037	9-08		
Qc Code	F	S	F	_	F	S	FS		F	S	FD		FS		F	_		
	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result Qu	alifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
Mercury	0.3	U	0.3	U	0.3	U	0.28 U		0.3	U	0.3	U	0.29 U		0.3	U		
Aluminum	222		200	U	200	U	200 U		200	U	200	U	200	U	200	U		
Antimony	60	U	60	U	60	_	60 U		60	U	60	U	60	U	60	U		
Arsenic	10	_	10	_	10	_	10 U		10	U	10	U	10	_	10	U		
Barium	158	BE	168	BE	171	BE	148 BE		252	E	203	E	208	Е	152	BE		
Beryllium	5	U	5	U	5	U	5 U		5	-	5	_	5	U	5	~		
Cadmium	0.23	В	0.38	В	0.54	В	0.34 B		5 U		5 U		0.31	В	1.1	В		
Calcium	90,400		95,700		101,000		97,400		106,000		110,000		109,000		97,000			
Chromium	0.95	В	10	_	10	_	10 U		10 U		10	_	0.52		10	~		
Cobalt	2	U	50	U	50	U	50 U		50 U		50 U				0.51	U	50	U
Copper	5.4	U	2.4	U	2.2	U	1.9 U		2.8 U		3.9	U	9.9	U	1.7	U		
Iron	393	J	23.9	UJ	100	UJ	100 UJ		1010	1010 J 19.:		UJ	67.3	JB	17.1	UJ		
Lead	1.1	U	3	_	3	_	3 U		3 U 3 U		1.2	_	3	~				
Magnesium	19,300	EJ	20,700	EJ	21,300	EJ	20,400 EJ		21,700	21,700 EJ 22,800		EJ	22,600	JE	20,800	EJ		
Manganese	90.2		2.6	U	1.4	_	0.86 U		321		3.7	U	4.1	В	4.6	В		
Nickel	1.4	U	40	U	40	U	40 U		0.79	U	0.71	U	1.5	U	40	U		
Potassium	4,380	В	1,820	В	1,840	В	1,600 B		2,020		1,900	В	1,880	В	1,670	В		
Selenium		UN		UN		UN	5 UN		3.1			UN		UN		UN		
Silver	0.94	U	10	U	10 U		10 U		10	U	10	U	10	U	10	U		
Sodium	149,000		143,000		145,000		163,000		133,000		282,000		286,000		157,000			
Thallium	10	U	10	~	10	_	10 U		10 U		10 U		10		10		10	U
Vanadium	0.98		50		50		0.47 B			50 U		U	0.51		50			
Zinc	13.3	U	11.3	U	9.2	U	9.9 U		8.1	U	8.4	U	13.3		9			

Notes:

Results in micrograms per liter (µg/L)

Samples analyzed for Metals by Method EPA ILM04.1

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifers:

- U = Not detected at a concentration above the reporting limit
- J = Result is estimated
- B = The reported result fell above the IDL but below the CRDL
- E = The percent difference between the serial dilution and the parent sample was greater than 10%
- N = The matrix spike recovery is outside of specified control limits

Table Created By: AZ 6/27/06
Table Checked By: CRS 7/31/06

		Lah Sample Deliy	Loc Name BS		367	D1	367	D1	367	D1	367	D1:	367
		zas campio sono	, .		-001		-002		-003		-004	BS-	
		Field	Sample Id				201801XX	_	301601XX	_	406001XX	STBS005	
			ample Date		5/2005		6/2005		6/2005		5/2005	11/15	
		1 1014 00	Qc Code		-S		S		-S		-S		S
Media	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	OLM4.2_VOA	1,1,1-Trichloroethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,1,2,2-Tetrachloroethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,1,2-Trichloroethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,1-Dichloroethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,1-Dichloroethene	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,2,4-Trichlorobenzene	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,2-Dibromo-3-chloropropane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,2-Dibromoethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,2-Dichlorobenzene	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	1,2-Dichloroethane	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	1,2-Dichloropropane	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	1,3-Dichlorobenzene	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	1,4-Dichlorobenzene	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	2-Butanone	ug/kg	10	UJ	11	U	11	U	11	UJ	610	U
SOIL	OLM4.2_VOA	2-Hexanone	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	4-Methyl-2-pentanone	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Acetic acid, methyl ester	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Acetone	ug/kg	10	UJ	18		11	J	36	J	610	U
SOIL	OLM4.2_VOA	Benzene	ug/kg	3	J	3	J	11	J	3	J	610	U
SOIL	OLM4.2_VOA	Bromodichloromethane	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Bromoform	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Bromomethane	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Carbon disulfide	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Carbon tetrachloride	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Chlorobenzene	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Chlorodibromomethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Chloroethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Chloroform	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Chloromethane	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Cis-1,2-Dichloroethene	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	cis-1,3-Dichloropropene	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Cyclohexane	ug/kg	10	U	10	J	6	J	10		1800	D
SOIL	OLM4.2_VOA	Dichlorodifluoromethane	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Ethyl benzene	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Isopropylbenzene	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Methyl cyclohexane	ug/kg	15	·	14		8	J	16		3800	D
SOIL	OLM4.2_VOA	Methyl Tertbutyl Ether	ug/kg	10	U	11	U	11	J	11	U	610	U
SOIL	OLM4.2_VOA	Methylene chloride	ug/kg	12	U	11	·	9		13	U	610	U
SOIL	OLM4.2_VOA	Styrene	ug/kg	10	U	11	U	11	U	11	U	610	U

	Lab Sample Delivery Group Loc Name		D1	367	D1	367	D1	367	D1	367	D1'	367	
		Lab dample Denv	, .		-001		-002		003		-004		-005
		Field	Sample Id				201801XX	STBS003			406001XX		003 01701XX
			mple Date		5/2005		6/2005		/2005		5/2005		5/2005
		i ielu Oz	Qc Code		72003 S		-S		S		-S		S
Media	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	OLM4.2_VOA	Tetrachloroethene	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2 VOA	Toluene	ug/kg	9	J	4	J	3	J	8	J	610	U
SOIL	OLM4.2_VOA	trans-1,2-Dichloroethene	ug/kg	10	U	11	U	11	U	11	Ü	610	U
SOIL	OLM4.2_VOA	trans-1,3-Dichloropropene	ug/kg	10	Ü	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Trichloroethene	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2 VOA	Trichlorofluoromethane	ug/kg	10	Ü	11	U	11	U	11	U	610	U
SOIL	OLM4.2_VOA	Vinyl chloride	ug/kg	10	U	11	U	11	U	11	U	610	U
SOIL	OLM4.2 VOA	Xylenes, Total	ug/kg	4	J	1	J	11	U	4	J	610	U
SOIL	OLM4.2_SVOA	2,4,5-Trichlorophenol	ug/kg	860	U	910	Ü	880	U	890	U	930	U
SOIL	OLM4.2_SVOA	2,4,6-Trichlorophenol	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	2,4-Dichlorophenol	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	2,4-Dimethylphenol	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	2,4-Dinitrophenol	ug/kg	860	U	910	U	880	U	890	U	930	U
SOIL	OLM4.2 SVOA	2.4-Dinitrotoluene	ug/kg	340	Ü	360	Ü	350	U	350	U	370	Ü
SOIL	OLM4.2_SVOA	2,6-Dinitrotoluene	ug/kg	340	Ü	360	Ü	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	2-Chloronaphthalene	ug/kg	340	U	360	U	350	U	350	Ū	370	U
SOIL	OLM4.2_SVOA	2-Chlorophenol	ug/kg	340	Ü	360	Ū	350	Ū	350	Ū	370	Ū
SOIL	OLM4.2_SVOA	2-Methylnaphthalene	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	2-Methylphenol	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	2-Nitroaniline	ug/kg	860	U	910	U	880	U	890	U	930	U
SOIL	OLM4.2_SVOA	2-Nitrophenol	ug/kg	340	U	360	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	3,3`-Dichlorobenzidine	ug/kg	340	U	360	U	350	U	350	UJ	370	UJ
SOIL	OLM4.2_SVOA	3-Nitroaniline	ug/kg	860	U	910	J	880	U	890	U	930	U
SOIL	OLM4.2_SVOA	4,6-Dinitro-2-methylphenol	ug/kg	860	U	910	J	880	U	890	U	930	U
SOIL	OLM4.2_SVOA	4-Bromophenyl phenyl ether	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	4-Chloro-3-methylphenol	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	4-Chloroaniline	ug/kg	340	U	360	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	4-Chlorophenyl phenyl ether	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	4-Methylphenol	ug/kg	340	U	360	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	4-Nitroaniline	ug/kg	860	U	910	U	880	U	890	U		
SOIL	OLM4.2_SVOA	4-Nitrophenol	ug/kg	860	U	910	J	880	U	890	U	930	U
SOIL	OLM4.2_SVOA	Acenaphthene	ug/kg	340	U	360	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Acenaphthylene	ug/kg	340	U	360	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Acetophenone	ug/kg	340	U	360	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Anthracene	ug/kg	340	U	360	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Atrazine	ug/kg	340	U	360	J	350	U	350	U	370	UJ
SOIL	OLM4.2_SVOA	Benzaldehyde	ug/kg	340	U	360	J	350	U	350	UJ	370	UJ
SOIL	OLM4.2_SVOA	Benzo[a]anthracene	ug/kg	340	U	96	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Benzo[a]pyrene	ug/kg	340	U	100	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Benzo[b]fluoranthene	ug/kg	340	U	140	J	350	U	350	U	370	U

			ery Group	D1	367	D1	367	D1	367	D1	367	D1:	367
		•	Loc Name	BS-	-001	BS-	-002	BS-	003	BS	-004	BS-	005
		Field	Sample Id	STBS001	01601XX	STBS002	201801XX	STBS003	801601XX	STBS004	406001XX	STBS005	01701XX
			mple Date		5/2005		6/2005		/2005		5/2005	11/15	
			Qc Code		S		S		S		S		S
Media	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	OLM4.2_SVOA	Benzo[ghi]perylene	ug/kg	340	U	360	U	350	U	350	UJ	370	U
SOIL	OLM4.2_SVOA	Benzo[k]fluoranthene	ug/kg	340	U	65	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Biphenyl	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Bis(2-Chloroethoxy)methane	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Bis(2-Chloroethyl)ether	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Bis(2-Chloroisopropyl)ether	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Bis(2-Ethylhexyl)phthalate	ug/kg	96	J	57	J	160	J	50	J	110	J
SOIL	OLM4.2_SVOA	Butylbenzylphthalate	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Caprolactum	ug/kg	340	U	360	U	350	U	350	U	370	UJ
SOIL	OLM4.2_SVOA	Carbazole	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Chrysene	ug/kg	340	U	100	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Di-n-butylphthalate	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Di-n-octylphthalate	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2 SVOA	Dibenz[a,h]anthracene	ug/kg	340	U	360	U	350	U	350	UJ	370	UJ
SOIL	OLM4.2_SVOA	Dibenzofuran	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Diethylphthalate	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Dimethylphthalate	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Fluoranthene	ug/kg	340	U	200	J	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Fluorene	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Hexachlorobenzene	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Hexachlorobutadiene	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Hexachlorocyclopentadiene	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Hexachloroethane	ug/kg	340	U	360	U	350	U	350	U	370	U
	OLM4.2_SVOA	Indeno[1,2,3-cd]pyrene	ug/kg	340	U	360	U	350	U	350	UJ	370	U
SOIL	OLM4.2_SVOA	Isophorone	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	N-Nitrosodi-n-propylamine	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	N-Nitrosodiphenylamine	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Naphthalene	ug/kg	340	U	360	U	350	U	350	U	370	U
	OLM4.2_SVOA	Nitrobenzene	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Pentachlorophenol	ug/kg	860	U	910	U	880	U	890	U	930	U
SOIL	OLM4.2_SVOA	Phenanthrene	ug/kg	340	Ü	92	J	350	Ū	350	U	46	J
SOIL	OLM4.2_SVOA	Phenol	ug/kg	340	U	360	U	350	U	350	U	370	U
SOIL	OLM4.2_SVOA	Pyrene	ug/kg	340	Ü	150	J	350	Ū	350	U	370	Ū
SOIL	OLM4.2_PP	4,4`-DDD	ug/kg	3.4	Ü	3.6	U	3.5	U	3.5	Ü		
SOIL	OLM4.2_PP	4,4`-DDE	ug/kg	3.4	Ü	3.6	Ü	3.5	U	3.5	Ü		
SOIL	OLM4.2_PP	4,4`-DDT	ug/kg	3.4	U	3.6	U	3.5	U	3.5	U		
SOIL	OLM4.2_PP	Aldrin	ug/kg	1.7	U	1.9	U	1.8	U	1.8	U		
SOIL	OLM4.2_PP	Alpha-BHC	ug/kg	1.7	U	1.9	U	1.8	U	1.8	Ü		
SOIL		• • • •					U		U		U		
		•			U	36	U	35	U	35	Ü		
SOIL	OLM4.2_PP OLM4.2_PP OLM4.2_PP	Alpha-BHC Alpha-Chlordane Aroclor-1016	ug/kg ug/kg ug/kg	1.7 1.7 34	U	1.9	U	1.8	U	1.8	U		

		Lab Sample Deliv	ery Group	D1	367	D1	367	D1:	367	D1	367	D1	367
		Zus Gumpio Bom	Loc Name		-001		-002	BS-			-004		-005
		Field	Sample Id				201801XX	STBS003			406001XX		501701XX
			mple Date		5/2005		6/2005	11/16			5/2005		5/2005
		i ioid oc	Qc Code		S		-S		S		-S		-S
Media	Method	Parameter	Units	Result	Qualifier	Result	Qualifier		Qualifier	Result	Qualifier	Result	Qualifier
SOIL	OLM4.2 PP	Aroclor-1221	ug/kg	69	U	73	U	72	U	72	U		
SOIL	OLM4.2_PP	Aroclor-1232	ug/kg	34	U	36	U	35	U	35	U		
SOIL	OLM4.2_PP	Aroclor-1242	ug/kg	34	Ū	36	Ü	35	Ū	35	Ū		
SOIL	OLM4.2_PP	Aroclor-1248	ug/kg	34	Ū	36	Ū	35	Ū	35	Ū		
SOIL	OLM4.2_PP	Aroclor-1254	ug/kg	34	U	36	U	35	U	35	U		
SOIL	OLM4.2_PP	Aroclor-1260	ug/kg	34	U	36	U	35	U	35	U		
SOIL	OLM4.2_PP	Beta-BHC	ug/kg	1.7	U	1.9	U	1.8	U	1.8	U		
SOIL	OLM4.2_PP	Delta-BHC	ug/kg	1.7	U	1.9	U	1.8	U	1.8	U		
SOIL	OLM4.2_PP	Dieldrin	ug/kg	3.4	U	3.6	U	3.5	U	3.5	U		
SOIL	OLM4.2_PP	Endosulfan I	ug/kg	1.7	U	1.9	U	1.8	U	1.8	U		
SOIL	OLM4.2_PP	Endosulfan II	ug/kg	3.4	U	3.6	U	3.5	U	3.5	U		
SOIL	OLM4.2_PP	Endosulfan sulfate	ug/kg	3.4	U	3.6	U	3.5	U	3.5	U		
SOIL	OLM4.2_PP	Endrin	ug/kg	3.4	U	3.6	U	3.5	U	3.5	U		
SOIL	OLM4.2_PP	Endrin aldehyde	ug/kg	3.4	U	3.6	U	3.5	U	3.5	U		
SOIL	OLM4.2_PP	Endrin ketone	ug/kg	3.4	U	3.6	U	3.5	U	3.5	U		
SOIL	OLM4.2_PP	Gamma-BHC/Lindane	ug/kg	1.7	U	1.9	U	1.8	U	1.8	U		
SOIL	OLM4.2_PP	Gamma-Chlordane	ug/kg	1.7	U	1.9		1.8	U	1.8	U		
SOIL	OLM4.2_PP	Heptachlor	ug/kg	1.7	U	1.9	_	1.8	U	1.8	U		
SOIL	OLM4.2_PP	Heptachlor epoxide	ug/kg	1.7	U	1.9	_	1.8	U	1.8	U		
SOIL	OLM4.2_PP	Methoxychlor	ug/kg	17	U	19	U	18	U	18	U		
SOIL	OLM4.2_PP	Toxaphene	ug/kg	170	U	190	U	180	U	180	U		
	ILM4.1_HG	Mercury	mg/kg	0.086	U	0.096	U	0.1	U	0.094	U		
SOIL	ILM4.1_ICP	Aluminum	mg/kg	8,730		7,710		6,800		6,400			
SOIL	ILM4.1_ICP	Antimony	mg/kg	9.4	UJ	12	UJ	9.9	UJ	11	UJ		
SOIL	ILM4.1_ICP	Arsenic	mg/kg	2.8		5.4		2.7		3.1			
SOIL	ILM4.1_ICP	Barium	mg/kg	54.3		52.4		53.6		27.7	В		
SOIL	ILM4.1_ICP	Beryllium	mg/kg	0.21	В	0.25	В	0.19	В	0.19	В		
SOIL	ILM4.1_ICP	Cadmium	mg/kg	0.78	U	1	U	0.83	U	0.077	В		
	ILM4.1_ICP	Calcium	mg/kg	42,600		70,700		59,800					
SOIL	ILM4.1_ICP	Chromium	mg/kg	13.3	Е	12	E	13.2	E	10.8	E		
	ILM4.1_ICP	Cobalt	mg/kg	8	J	8.4	J	6.3	J	6.2	J		
SOIL	ILM4.1_ICP	Copper	mg/kg	29.9	J		R		R	26.9	J		
SOIL	ILM4.1_ICP	Iron	mg/kg	19,900	J	19,200	J	16,500	J	15,000	J		
SOIL	ILM4.1_ICP	Lead	mg/kg	10.6	J		R		R	9.5	J		
SOIL	ILM4.1_ICP	Magnesium	mg/kg	12,100	*	18,500	*	9,200	*	11,200	*		
	ILM4.1_ICP	Manganese	mg/kg	452		508		532		445			
SOIL	ILM4.1_ICP	Nickel	mg/kg	20.5	J	21.9	J	17.6	J	21.4	Е		
SOIL	ILM4.1_ICP	Potassium	mg/kg	657	В	727	В	623	В	578	В		
SOIL	ILM4.1_ICP	Selenium	mg/kg		R		R		R		R		
SOIL	ILM4.1_ICP	Silver	mg/kg		R		R		R		R		

			Lab Sample Delivery Group	D1	367	D1	367	D1	367	D1	367	D1	367
			Loc Name	BS	-001	BS	-002	BS	-003	BS	-004	BS	-005
			Field Sample Id	STBS00	101601XX	STBS002	201801XX	STBS003	301601XX	STBS00	406001XX	STBS00	501701XX
			Field Sample Date			11/16	6/2005	11/16/2005		11/15	5/2005	11/15	5/2005
			Qc Code	F	S	F	S	F	-S	F	-S	F	S
Media	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	ILM4.1_ICP	Sodium	mg/kg	105	В		R		R	126	В		
SOIL	ILM4.1_ICP	Thallium	mg/kg	2		2	В	1.9		0.99	В		
SOIL	ILM4.1_ICP	Vanadium	mg/kg	12.3		12.4		10.1		11			
SOIL	ILM4.1_ICP	Zinc	mg/kg	72.1	J		R		R	69.4	J		

		Lab Sample Deliv	ery Group	D1	367	D1	367	D1	367
		Zab Gampio Zom	Loc Name		005		-005		-007
		Field	Sample Id				508001XX		701001XX
			mple Date		/2005		5/2005		1/2005
		r ielu oc	Qc Code		D		72003 -S		72003 S
Media	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	OLM4.2 VOA	1.1.1-Trichloroethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	1,1,2,2-Tetrachloroethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	1.1.2-Trichloro-1.2.2-Trifluoroethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	1,1,2-Trichloroethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	1.1-Dichloroethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	1.1-Dichloroethene	ug/kg	10	U	11	U	11	UJ
SOIL	OLM4.2_VOA	1.2.4-Trichlorobenzene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	1,2-Dibromo-3-chloropropane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	1.2-Dibromoethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	1.2-Dichlorobenzene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	1,2-Dichloroethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	1,2-Dichloropropane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	1.3-Dichlorobenzene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	1.4-Dichlorobenzene	ug/kg	10	U	11	Ü	11	U
SOIL	OLM4.2 VOA	2-Butanone	ug/kg	10	UJ	11	UJ	11	UJ
SOIL	OLM4.2_VOA	2-Hexanone	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	4-Methyl-2-pentanone	ug/kg	10	Ū	11	U	11	Ū
SOIL	OLM4.2 VOA	Acetic acid, methyl ester	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2 VOA	Acetone	ug/kg	10	UJ	22	J	11	UJ
SOIL	OLM4.2_VOA	Benzene	ug/kg	3	J	3	J	11	U
SOIL	OLM4.2_VOA	Bromodichloromethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Bromoform	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Bromomethane	ug/kg	10	U	11	U	11	UJ
SOIL	OLM4.2_VOA	Carbon disulfide	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Carbon tetrachloride	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Chlorobenzene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Chlorodibromomethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Chloroethane	ug/kg	10	U	11	U	11	UJ
SOIL	OLM4.2_VOA	Chloroform	ug/kg	10	U	1	J	11	U
SOIL	OLM4.2_VOA	Chloromethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Cis-1,2-Dichloroethene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	cis-1,3-Dichloropropene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Cyclohexane	ug/kg	11		11	U	11	U
SOIL	OLM4.2_VOA	Dichlorodifluoromethane	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Ethyl benzene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Isopropylbenzene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Methyl cyclohexane	ug/kg	18		16		11	U
SOIL	OLM4.2_VOA	Methyl Tertbutyl Ether	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Methylene chloride	ug/kg	13	U	11	U	11	U
SOIL	OLM4.2_VOA	Styrene	ug/kg	10	U	11	U	11	U

		Lab Sample De	livery Group	D1	367	D1	367	D1	367
		Lab Gample De	Loc Name		-005		-005		-007
		Eic	eld Sample Id				508001XX		701001XX
			-		5/2005		5/2005		1/2005
		rieid	Sample Date Qc Code		D		5/2005 -S		-72005 -S
Modia	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	OLM4.2 VOA	Tetrachloroethene	ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Toluene	ug/kg ug/kg	10	J	11	U	11	U
SOIL	OLM4.2_VOA	trans-1.2-Dichloroethene	ug/kg ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	trans-1,3-Dichloropropene	ug/kg ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Trichloroethene	ug/kg ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Trichlorofluoromethane	ug/kg ug/kg	10	U	11	U	11	UJ
SOIL	OLM4.2_VOA	Vinyl chloride	ug/kg ug/kg	10	U	11	U	11	U
SOIL	OLM4.2_VOA	Xylenes, Total		5	J	7	J	11	U
SOIL	OLM4.2_VOA OLM4.2_SVOA	2,4,5-Trichlorophenol	ug/kg	880	U	890	U	900	U
SOIL	OLM4.2_SVOA	2,4,6-Trichlorophenol	ug/kg	350	U	350	U	360	U
SOIL	_	2,4-Dichlorophenol	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA OLM4.2_SVOA		ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	2,4-Dimethylphenol	ug/kg	880	U	890	U	900	U
SOIL	_	2,4-Dinitrophenol 2.4-Dinitrotoluene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	,	ug/kg	350	U	350	U	360	U
	OLM4.2_SVOA	2,6-Dinitrotoluene	ug/kg						_
SOIL	OLM4.2_SVOA	2-Chloronaphthalene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	2-Chlorophenol	ug/kg	350		350		360	_
SOIL	OLM4.2_SVOA	2-Methylnaphthalene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	2-Methylphenol	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	2-Nitroaniline	ug/kg	880	U	890	U	900	U
SOIL	OLM4.2_SVOA	2-Nitrophenol	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	3,3`-Dichlorobenzidine	ug/kg	350	UJ	350	UJ	360	UJ
SOIL	OLM4.2_SVOA	3-Nitroaniline	ug/kg	880	U	890	U	900	U
SOIL	OLM4.2_SVOA	4,6-Dinitro-2-methylphenol	ug/kg	880	U	890	U	900	U
SOIL	OLM4.2_SVOA	4-Bromophenyl phenyl ether	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	4-Chloro-3-methylphenol	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	4-Chloroaniline	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	4-Chlorophenyl phenyl ether	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	4-Methylphenol	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	4-Nitroaniline	ug/kg	880	U	890	U	900	U
SOIL	OLM4.2_SVOA	4-Nitrophenol	ug/kg	880	U	890	U	900	U
SOIL	OLM4.2_SVOA	Acenaphthene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Acenaphthylene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Acetophenone	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Anthracene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Atrazine	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Benzaldehyde	ug/kg	350	UJ	350	UJ	360	UJ
SOIL	OLM4.2_SVOA	Benzo[a]anthracene	ug/kg	350	U	350	U	59	J
SOIL	OLM4.2_SVOA	Benzo[a]pyrene	ug/kg	350	U	350	U	72	J
SOIL	OLM4.2_SVOA	Benzo[b]fluoranthene	ug/kg	350	U	350	U	120	J

		Lab Sample De	livery Group	D1	367	D1	367	D1	367
		•	Loc Name	BS	-005	BS	-005	BS	-007
		Fie	ld Sample Id	STBS005	508001XD	STBS00	508001XX	STBS007	701001XX
		Field	Sample Date	11/15	5/2005		5/2005		1/2005
			Qc Code		-D		S		S
Media	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	OLM4.2_SVOA	Benzo[ghi]perylene	ug/kg	350	UJ	350	UJ	360	UJ
SOIL	OLM4.2_SVOA	Benzo[k]fluoranthene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Biphenyl	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Bis(2-Chloroethoxy)methane	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Bis(2-Chloroethyl)ether	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2 SVOA	Bis(2-Chloroisopropyl)ether	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2 SVOA	Bis(2-Ethylhexyl)phthalate	ug/kg	44	J	54	J	59	J
SOIL	OLM4.2 SVOA	Butylbenzylphthalate	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2 SVOA	Caprolactum	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Carbazole	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Chrysene	ug/kg	350	Ü	350	Ü	150	J
SOIL	OLM4.2 SVOA	Di-n-butylphthalate	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Di-n-octylphthalate	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2 SVOA	Dibenz[a,h]anthracene	ug/kg	350	UJ	350	UJ	360	UJ
SOIL	OLM4.2_SVOA	Dibenzofuran	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Diethylphthalate	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Dimethylphthalate	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Fluoranthene	ug/kg	350	U	350	U	120	J
SOIL	OLM4.2_SVOA	Fluorene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Hexachlorobenzene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Hexachlorobutadiene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Hexachlorocyclopentadiene	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Hexachloroethane	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Indeno[1,2,3-cd]pyrene	ug/kg	350	UJ	350	UJ	36	J
SOIL	OLM4.2_SVOA	Isophorone	ug/kg	350	U	350	C	360	С
SOIL	OLM4.2_SVOA	N-Nitrosodi-n-propylamine	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	N-Nitrosodiphenylamine	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Naphthalene	ug/kg	350	U	350	C	360	С
SOIL	OLM4.2_SVOA	Nitrobenzene	ug/kg	350	U	350	C	360	C
SOIL	OLM4.2_SVOA	Pentachlorophenol	ug/kg	880	U	890	C	900	С
SOIL	OLM4.2_SVOA	Phenanthrene	ug/kg	350	U	350	U	100	J
SOIL	OLM4.2_SVOA	Phenol	ug/kg	350	U	350	U	360	U
SOIL	OLM4.2_SVOA	Pyrene	ug/kg	350	U	350	U	120	J
SOIL	OLM4.2_PP	4,4`-DDD	ug/kg	3.5	U	3.5	U	3.6	U
SOIL	OLM4.2_PP	4,4`-DDE	ug/kg	3.5	U	3.5	U	3.6	U
SOIL	OLM4.2_PP	4,4`-DDT	ug/kg	3.5	U	3.5	U	3.6	U
SOIL	OLM4.2_PP	Aldrin	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Alpha-BHC	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Alpha-Chlordane	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Aroclor-1016	ug/kg	35	U	35	U	36	U

		I ah Samr	ole Delivery Group	D1	367	D1	367	D1	367
		Lab Gamp	Loc Name		-005		-005		-007
			Field Sample Id				508001XX		701001XX
		,	Field Sample Date		5/2005		5/2005		1/2005
			Qc Code		D		5/2005 FS		S
Modio	Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	OLM4.2 PP	Aroclor-1221		71	U	72	U	73	U
SOIL	OLM4.2_PP	Aroclor-1232	ug/kg	35	U	35	U	36	U
	_		ug/kg		U				U
SOIL	OLM4.2_PP	Aroclor-1242	ug/kg	35	U	35	U	36	U
SOIL	OLM4.2_PP	Aroclor-1248	ug/kg	35	U	35	U	36	U
SOIL	OLM4.2_PP	Aroclor-1254	ug/kg	35		35	U	36	
SOIL	OLM4.2_PP	Aroclor-1260	ug/kg	35	U	35	U	36	U
SOIL	OLM4.2_PP	Beta-BHC	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Delta-BHC	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Dieldrin	ug/kg	3.5	U	3.5	U	3.6	U
SOIL	OLM4.2_PP	Endosulfan I	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Endosulfan II	ug/kg	3.5	U	3.5	U	3.6	U
SOIL	OLM4.2_PP	Endosulfan sulfate	ug/kg	3.5	U	3.5	U	3.6	U
SOIL	OLM4.2_PP	Endrin	ug/kg	3.5	U	3.5	U	3.6	U
SOIL	OLM4.2_PP	Endrin aldehyde	ug/kg	3.5	U	3.5	U	3.6	U
SOIL	OLM4.2_PP	Endrin ketone	ug/kg	3.5	U	3.5	U	2.3	J
SOIL	OLM4.2_PP	Gamma-BHC/Lindane	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Gamma-Chlordane	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Heptachlor	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Heptachlor epoxide	ug/kg	1.8	U	1.8	U	1.8	U
SOIL	OLM4.2_PP	Methoxychlor	ug/kg	18	U	18	U	18	U
SOIL	OLM4.2_PP	Toxaphene	ug/kg	180	U	180	U	180	U
SOIL	ILM4.1_HG	Mercury	mg/kg	0.093	U	0.1	U	0.087	U
SOIL	ILM4.1_ICP	Aluminum	mg/kg	8,430	J	6,640	J	7,720	
SOIL	ILM4.1_ICP	Antimony	mg/kg	12	UJ	11	UJ	8.9	UJ
SOIL	ILM4.1_ICP	Arsenic	mg/kg	4.6		3		8.8	
SOIL	ILM4.1_ICP	Barium	mg/kg	48.5		36.6	В	90.3	
SOIL	ILM4.1_ICP	Beryllium	mg/kg	0.3	В	0.21	В	0.48	В
SOIL	ILM4.1_ICP	Cadmium	mg/kg	0.11	В	0.22	В	0.15	В
SOIL	ILM4.1_ICP	Calcium	mg/kg	45,300	J	95,000	J	28,200	
SOIL	ILM4.1_ICP	Chromium	mg/kg	18	Е	14	Е	13.9	Е
SOIL	ILM4.1_ICP	Cobalt	mg/kg	8.2	J	5.9	J	9	J
SOIL	ILM4.1_ICP	Copper	mg/kg	30.2	J	23.8	٦	43.3	J
SOIL	ILM4.1_ICP	Iron	mg/kg	19,300	J	14,700	J	22,900	J
SOIL	ILM4.1_ICP	Lead	mg/kg	11.1	J	9.3	J	43.7	J
SOIL	ILM4.1_ICP	Magnesium	mg/kg	8,700	*	14,200	*	7,160	*
SOIL	ILM4.1_ICP	Manganese	mg/kg	502		412		594	
SOIL	ILM4.1_ICP	Nickel	mg/kg	24.3	J	17.6	J	21.3	J
SOIL	ILM4.1_ICP	Potassium	mg/kg	682	В	667	В	688	В
SOIL	ILM4.1_ICP	Selenium	mg/kg		R		R		R
SOIL	ILM4.1_ICP	Silver	mg/kg		R		R		R

			Lab Sample Delivery Gro	oup	D1	367	D1	367	D1	367
			Loc Na	ame	BS-	-005	BS	-005	BS	-007
			Field Sample	e Id	STBS005	508001XD	STBS005	508001XX	STBS007	701001XX
			Field Sample D	ate	11/15	5/2005	11/15	5/2005	11/14	1/2005
			Qc Co	ode	F	D	F	S	F	S
Media	Method	Parameter	Unit	ts	Result	Qualifier	Result	Qualifier	Result	Qualifier
SOIL	ILM4.1_ICP	Sodium	mg/k	кg	105	В	131	В	488	В
SOIL	ILM4.1_ICP	Thallium	mg/k	κg	2		0.78	В	2.8	
SOIL	ILM4.1_ICP	Vanadium	mg/k	κg	14		11.3		17	
SOIL	ILM4.1_ICP	Zinc	mg/k	κg	106	J	83.8	J	86.7	J

		Lab Sample Delivery	Group	D ²	1488	D,	1488	D14	488	D1	488
		Lo	c Name	MV	V-001	MV	V-002	MW-	-003	MW	-004
		Field Sa	mple Id		1XXX01XX	STMW00	2XXX01XX	STMW003	3XXX01XX	STMW00	4XXX01XX
		Field Samp	le Date	12/8	3/2005	12/9	9/2005	12/9/	2005	12/8	/2005
		G	c Code		FS		FS	F	S	F	S
Media	Method	Parameter	Units	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier
GW	OLM4.2_VOA	1,1,1-Trichloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1,2,2-Tetrachloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1,2-Trichloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1-Dichloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1-Dichloroethene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2,4-Trichlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dibromo-3-chloropropane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dibromoethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dichlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dichloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dichloropropane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,3-Dichlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,4-Dichlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	2-Butanone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	2-Hexanone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	4-Methyl-2-pentanone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Acetic acid, methyl ester	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Acetone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Benzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Bromodichloromethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Bromoform	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Bromomethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Carbon disulfide	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Carbon tetrachloride	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chlorodibromomethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chloroform	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chloromethane	ug/l	10	UJ	10	U	10	U	10	UJ
GW	OLM4.2_VOA	Cis-1,2-Dichloroethene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	cis-1,3-Dichloropropene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Cyclohexane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Dichlorodifluoromethane	ug/l	10	UJ	10	U	10	U	10	UJ
GW	OLM4.2_VOA	Ethyl benzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Isopropylbenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Methyl cyclohexane	ug/l	10	U	10	U	10	U	10	U

		Lab Sample Delivery Gro	oup	D1	1488	D1	1488	D1	488	D1	488
		Loc Na	ıme	MV	V-001	MV	/-002	MW	/-003	MW	/-004
		Field Sample	e Id	STMW00	1XXX01XX	STMW00	2XXX01XX	STMW00	3XXX01XX	STMW00-	4XXX01XX
		Field Sample D	-		3/2005		9/2005		/2005		/2005
		Qc Co			FS		FS	F	S	F	S
Media	Method	Parameter Un	nits F	Final Result	Final Qualifier						
GW	OLM4.2_VOA	Methyl Tertbutyl Ether uç	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Methylene chloride ug	g/l	10	U	10	UJ	10	UJ	10	U
GW	OLM4.2_VOA	Styrene uç	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Tetrachloroethene ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Toluene uç	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	trans-1,2-Dichloroethene ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	trans-1,3-Dichloropropene ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Trichloroethene	g/l	4	J	4	J	2	J	4	J
GW	OLM4.2_VOA	Trichlorofluoromethane	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Vinyl chloride ug	g/l	10	UJ	10	U	10	U	10	UJ
GW	OLM4.2_VOA	Xylenes, Total ug	g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	2,4,5-Trichlorophenol ug	g/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	2,4,6-Trichlorophenol ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2,4-Dichlorophenol ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2,4-Dimethylphenol ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2,4-Dinitrophenol ug	g/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	2,4-Dinitrotoluene ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2,6-Dinitrotoluene ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2-Chloronaphthalene ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2-Chlorophenol ug	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2-Methylnaphthalene ug	g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	2-Methylphenol ug	g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	2-Nitroaniline ug	g/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	2-Nitrophenol ug	g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	3,3`-Dichlorobenzidine ug	g/l	10	UJ	10		10	UJ	10	UJ
GW	OLM4.2_SVOA		g/l	25	U	25		25	U	25	U
GW	OLM4.2_SVOA	4,6-Dinitro-2-methylphenol ug	g/l	25	U	25		25	U	25	U
GW	OLM4.2_SVOA		g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	4-Chloro-3-methylphenol ug	g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	4-Chloroaniline ug	g/l	10	UJ	10		10	UJ	10	UJ
GW	OLM4.2_SVOA		g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA		g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA		g/l	25	U	25		25	U	25	U
GW	OLM4.2_SVOA		g/l	25	U	25		25	U	25	U
GW	OLM4.2_SVOA	Acenaphthene uç	g/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	. ,	g/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Acetophenone ug	g/l	10	U	10	U	10	U	10	U

		Lab Sample Delivery (Group	D1	1488	D1	1488	D1	488	D1	488
		Loc	Name	MV	V-001	MV	V-002	MW	/-003	MW	/-004
		Field Sam	ple Id	STMW00	1XXX01XX	STMW00	2XXX01XX	STMW00	3XXX01XX	STMW00	4XXX01XX
		Field Sample	e Date	12/8	3/2005	12/9)/2005	12/9	/2005	12/8	/2005
		-	Code	I	FS	ı	FS	F	S	F	S
Media	Method	Parameter	Units	Final Result	Final Qualifier						
GW	OLM4.2_SVOA	Anthracene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Atrazine	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	Benzaldehyde	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	Benzo[a]anthracene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Benzo[a]pyrene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Benzo[b]fluoranthene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Benzo[ghi]perylene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Benzo[k]fluoranthene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Biphenyl	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Bis(2-Chloroethoxy)methane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Bis(2-Chloroethyl)ether	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Bis(2-Chloroisopropyl)ether	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Bis(2-Ethylhexyl)phthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Butylbenzylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Caprolactum	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	Carbazole	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Chrysene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Di-n-butylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Di-n-octylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Dibenz[a,h]anthracene	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	Dibenzofuran	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Diethylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Dimethylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Fluoranthene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Fluorene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Hexachlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Hexachlorobutadiene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Hexachlorocyclopentadiene	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_SVOA	Hexachloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Indeno[1,2,3-cd]pyrene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Isophorone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	N-Nitrosodi-n-propylamine	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	N-Nitrosodiphenylamine	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Naphthalene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Nitrobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Pentachlorophenol	ug/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	Phenanthrene	ug/l	10	U	10	U	10	U	10	U

		Lab Sample Delivery	Group	D,	1488	D1	1488	D1-	488	D1	488
		• • • • • • • • • • • • • • • • • • • •	c Name		V-001	MV	V-002	MW	-003	MW	'-004
		Field Sa			1XXX01XX		2XXX01XX		3XXX01XX		4XXX01XX
		Field Samp	le Date	12/8	3/2005		9/2005	12/9/	/2005	12/8	/2005
		•	c Code		FS		FS		S	F	S
Media	Method	Parameter	Units	Final Result	Final Qualifier						
GW	OLM4.2_SVOA	Phenol	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Pyrene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_PP	4,4`-DDD	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	4,4`-DDE	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	4,4`-DDT	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Aldrin	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Alpha-BHC	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Alpha-Chlordane	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Aroclor-1016	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Aroclor-1221	ug/l	2	U	2	U	2	U	2	U
GW	OLM4.2_PP	Aroclor-1232	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Aroclor-1242	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Aroclor-1248	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Aroclor-1254	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Aroclor-1260	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Beta-BHC	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Delta-BHC	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Dieldrin	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Endosulfan I	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Endosulfan II	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Endosulfan sulfate	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Endrin	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Endrin aldehyde	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Endrin ketone	ug/l	0.1	U	0.1	U	0.1	U	0.1	C
GW	OLM4.2_PP	Gamma-BHC/Lindane	ug/l	0.05	U	0.05	U	0.05	U	0.05	C
GW	OLM4.2_PP	Gamma-Chlordane	ug/l	0.05	U	0.05	U	0.05	U	0.05	C
GW	OLM4.2_PP	Heptachlor	ug/l	0.05	U	0.05	U	0.05	U	0.05	C
GW	OLM4.2_PP	Heptachlor epoxide	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Methoxychlor	ug/l	0.5	U	0.5	U	0.5	U	0.5	C
GW	OLM4.2_PP	Toxaphene	ug/l	5	U	5	U	5	U	5	U
GW	ILM4.1_HG	Mercury	ug/l	0.28	U	0.28	U	0.29	U	0.3	U
GW	ILM4.1_ICP	Aluminum	ug/l	200	U	200	U	200	U	200	U
GW	ILM4.1_ICP	Antimony	ug/l	60	U	60	U	60	U	60	U
GW	ILM4.1_ICP	Arsenic	ug/l	10	U	10	U	10	U	10	U
GW	ILM4.1_ICP	Barium	ug/l	147	В	166	В	154	В	196	В
GW	ILM4.1_ICP	Beryllium	ug/l	5	U	5	U	5	U	5	U
GW	ILM4.1_ICP	Cadmium	ug/l	5	U	5	U	5	U	5	U

			Lab Sample Delivery Group	D	1488	D ¹	488	D1	488	D	1488
			Loc Name		V-001	MW	/-002	MW	/-003	MV	V-004
			Field Sample Id	STMW00	01XXX01XX	STMW00	2XXX01XX	STMW00	3XXX01XX	STMW00	04XXX01XX
			Field Sample Date	12/8	3/2005	12/9	/2005	12/9	/2005	12/8	8/2005
			Qc Code		FS	ı	FS	ı	-S		FS
Media	Method	Parameter	Units	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier
GW	ILM4.1_ICP	Calcium	ug/l	89600		95500		89300		124000	
GW	ILM4.1_ICP	Chromium	ug/l	0.79	В	0.66	В	0.64	В	0.71	В
GW	ILM4.1_ICP	Cobalt	ug/l	1.1	В	0.68	В	0.58	В	0.7	В
GW	ILM4.1_ICP	Copper	ug/l	1.8	В	25	U	25	U	2.2	В
GW	ILM4.1_ICP	Iron	ug/l	26.8	В	20.4	В	19.6	В	15.4	В
GW	ILM4.1_ICP	Lead	ug/l	3	U	3	U	3	U	3	U
GW	ILM4.1_ICP	Magnesium	ug/l	18600		20200		18700		24900	
GW	ILM4.1_ICP	Manganese	ug/l	95.8		6.7	В	4.2	В	69.1	
GW	ILM4.1_ICP	Nickel	ug/l	2	В	1.5	В	1.7	В	2.3	В
GW	ILM4.1_ICP	Potassium	ug/l	2090	В	1790	В	1870	В	2080	В
GW	ILM4.1_ICP	Selenium	ug/l	5	UJ	5	UJ	5	UJ	5	UJ
GW	ILM4.1_ICP	Silver	ug/l	0.61	В	0.59	В	10	U	10	U
GW	ILM4.1_ICP	Sodium	ug/l	154000		141000		138000		192000	
GW	ILM4.1_ICP	Thallium	ug/l	10	U	10	U	10	U	10	U
GW	ILM4.1_ICP	Vanadium	ug/l	50	U	50	U	50	U	50	U
GW	ILM4.1_ICP	Zinc	ug/l	5.2	В	5.2	В	3.7	В	7.7	В

		Lab Sample Delivery	Group	D.	1488	D.	1488	D14	488	D1-	488
		Lo	c Name	MV	V-005	MV	V-006	MW-	-007	MW	-007
		Field Sa	mple Id	STMW00	5XXX01XX	STMW00	6XXX01XX	STMW007	'XXX01DU	STMW007	7XXX01XX
		Field Samp	le Date	12/8	3/2005	12/7	7/2005	12/7/	2005	12/7/	2005
		Ġ	c Code		FS		FS	F	D	F	S
Media	Method	Parameter	Units	Final Result	Final Qualifier						
GW	OLM4.2_VOA	1,1,1-Trichloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1,2,2-Tetrachloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1,2-Trichloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1-Dichloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,1-Dichloroethene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2,4-Trichlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dibromo-3-chloropropane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dibromoethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dichlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dichloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,2-Dichloropropane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,3-Dichlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	1,4-Dichlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	2-Butanone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	2-Hexanone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	4-Methyl-2-pentanone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Acetic acid, methyl ester	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Acetone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Benzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Bromodichloromethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Bromoform	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Bromomethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Carbon disulfide	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Carbon tetrachloride	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chlorodibromomethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chloroethane	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_VOA	Chloroform	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Chloromethane	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_VOA	Cis-1,2-Dichloroethene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	cis-1,3-Dichloropropene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Cyclohexane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Dichlorodifluoromethane	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_VOA	Ethyl benzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Isopropylbenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Methyl cyclohexane	ug/l	5	J	10	U	10	U	10	U

		Lab Sample Delivery G	Group	D1	1488	D1	1488	D1	488	D1	488
		Loc I	Name	MV	V-005	MW	V-006	MW	/-007	MW	/-007
		Field Sam	ple ld	STMW00	5XXX01XX	STMW00	6XXX01XX	STMW00	7XXX01DU	STMW00	7XXX01XX
		Field Sample	Date	12/8	3/2005	12/7	7/2005	12/7	/2005	12/7	/2005
		Qc	Code		FS	I	FS	F	-D	F	S
Media	Method	Parameter	Units	Final Result	Final Qualifier						
GW	OLM4.2_VOA	Methyl Tertbutyl Ether	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_VOA	Methylene chloride	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Styrene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Tetrachloroethene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Toluene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	trans-1,2-Dichloroethene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	trans-1,3-Dichloropropene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_VOA	Trichloroethene	ug/l	8	J	5	J	10	U	10	U
GW	OLM4.2_VOA	Trichlorofluoromethane	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_VOA	Vinyl chloride	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_VOA	Xylenes, Total	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2,4,5-Trichlorophenol	ug/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	2,4,6-Trichlorophenol	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2,4-Dichlorophenol	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2,4-Dimethylphenol	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2,4-Dinitrophenol	ug/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	2,4-Dinitrotoluene	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_SVOA	2,6-Dinitrotoluene	ug/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	2-Chloronaphthalene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	2-Chlorophenol	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_SVOA	2-Methylnaphthalene	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_SVOA	2-Methylphenol	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_SVOA	2-Nitroaniline	ug/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	2-Nitrophenol	ug/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	3,3`-Dichlorobenzidine	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	3-Nitroaniline	ug/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	4,6-Dinitro-2-methylphenol	ug/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	4-Bromophenyl phenyl ether	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	4-Chloro-3-methylphenol	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_SVOA	4-Chloroaniline	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	4-Chlorophenyl phenyl ether	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	4-Methylphenol	ug/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	4-Nitroaniline	ug/l	25	U	25		25	U	25	U
GW	OLM4.2_SVOA	4-Nitrophenol	ug/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	Acenaphthene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Acenaphthylene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Acetophenone	ug/l	10	U	10	U	10	U	10	U

		Lab Sample Deliver	v Group	D,	1488	D′	1488	D1-	488	D1	488
		•	c Name	MV	V-005	MV	V-006	MW	-007	MW	-007
			imple Id		5XXX01XX		6XXX01XX		XXX01DU		7XXX01XX
		Field Sam	ple Date	12/8	3/2005	12/7	7/2005	12/7/	/2005	12/7/	2005
			Code		FS	ı	FS	F	D	F	S
Media	Method	Parameter	Units	Final Result	Final Qualifier						
GW	OLM4.2_SVOA	Anthracene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Atrazine	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	Benzaldehyde	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	Benzo[a]anthracene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Benzo[a]pyrene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Benzo[b]fluoranthene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Benzo[ghi]perylene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Benzo[k]fluoranthene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Biphenyl	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Bis(2-Chloroethoxy)methane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Bis(2-Chloroethyl)ether	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Bis(2-Chloroisopropyl)ether	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Bis(2-Ethylhexyl)phthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Butylbenzylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Caprolactum	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	Carbazole	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Chrysene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Di-n-butylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Di-n-octylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Dibenz[a,h]anthracene	ug/l	10	UJ	10	UJ	10	UJ	10	UJ
GW	OLM4.2_SVOA	Dibenzofuran	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Diethylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Dimethylphthalate	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Fluoranthene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Fluorene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Hexachlorobenzene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Hexachlorobutadiene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Hexachlorocyclopentadiene	ug/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	Hexachloroethane	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Indeno[1,2,3-cd]pyrene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Isophorone	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	N-Nitrosodi-n-propylamine	ug/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	N-Nitrosodiphenylamine	ug/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	Naphthalene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_SVOA	Nitrobenzene	ug/l	10	U	10		10	U	10	U
GW	OLM4.2_SVOA	Pentachlorophenol	ug/l	25	U	25	U	25	U	25	U
GW	OLM4.2_SVOA	Phenanthrene	ug/l	10	U	10	U	10	U	10	U

		Lab Sample Delivery 0	Group	D,	1488	D1	1488	D1	488	D1	488
		Loc	Name	MV	V-005	MW	V-006	MW	/-007	MW	/-007
		Field Sam	ple ld	STMW00	5XXX01XX	STMW00	6XXX01XX	STMW00	7XXX01DU	STMW00	7XXX01XX
		Field Sample	Date	12/8	3/2005	12/7	7/2005	12/7	/2005	12/7	/2005
		Qc	Code		FS		FS	F	-D	ı	-S
Media	Method	Parameter	Units	Final Result	Final Qualifier						
GW	OLM4.2_SVOA	Phenol	ug/l	10	U	10	U	10	U	10	C
GW	OLM4.2_SVOA	Pyrene	ug/l	10	U	10	U	10	U	10	U
GW	OLM4.2_PP	4,4`-DDD	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	4,4`-DDE	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	4,4`-DDT	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Aldrin	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Alpha-BHC	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Alpha-Chlordane	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Aroclor-1016	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Aroclor-1221	ug/l	2	U	2	U	2	U	2	U
GW	OLM4.2_PP	Aroclor-1232	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Aroclor-1242	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Aroclor-1248	ug/l	1	U	1	U	1	U	1	C
GW	OLM4.2_PP	Aroclor-1254	ug/l	1	U	1	U	1	U	1	C
GW	OLM4.2_PP	Aroclor-1260	ug/l	1	U	1	U	1	U	1	U
GW	OLM4.2_PP	Beta-BHC	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Delta-BHC	ug/l	0.05	U	0.05	U	0.05	U	0.05	C
GW	OLM4.2_PP	Dieldrin	ug/l	0.1	U	0.1	U	0.1	U	0.1	C
GW	OLM4.2_PP	Endosulfan I	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Endosulfan II	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Endosulfan sulfate	ug/l	0.1	U	0.1	U	0.1	U	0.1	C
GW	OLM4.2_PP	Endrin	ug/l	0.1	U	0.1	U	0.1	U	0.1	C
GW	OLM4.2_PP	Endrin aldehyde	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Endrin ketone	ug/l	0.1	U	0.1	U	0.1	U	0.1	U
GW	OLM4.2_PP	Gamma-BHC/Lindane	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Gamma-Chlordane	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Heptachlor	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Heptachlor epoxide	ug/l	0.05	U	0.05	U	0.05	U	0.05	U
GW	OLM4.2_PP	Methoxychlor	ug/l	0.5	U	0.5	U	0.5	U	0.5	C
GW	OLM4.2_PP	Toxaphene	ug/l	5	U	5	U	5	U	5	U
GW	ILM4.1_HG	Mercury	ug/l	0.31	U	0.31	U	0.28	U	0.3	U
GW	ILM4.1_ICP	Aluminum	ug/l	200	U	200	U	200	U	200	U
GW	ILM4.1_ICP	Antimony	ug/l	2.4	В	60	U	60	U	60	U
GW	ILM4.1_ICP	Arsenic	ug/l	10	U	10	U	10	U	10	U
GW	ILM4.1_ICP	Barium	ug/l	230		221		159	В	160	В
GW	ILM4.1_ICP	Beryllium	ug/l	5	U	5	U	5	U	5	U
GW	ILM4.1_ICP	Cadmium	ug/l	5	U	5	U	5	U	5	U

			Lab Sample Delivery Group	D.	1488	D1	488	D1	1488	D′	1488
			Loc Name	MV	V-005	MW	/-006	MW	/-007	MV	V-007
			Field Sample Id	STMW00	5XXX01XX	STMW00	6XXX01XX	STMW00	7XXX01DU	STMW00	7XXX01XX
			Field Sample Date	12/8	3/2005	12/7	7/2005	12/7	7/2005	12/7	7/2005
			Qc Code		FS	ı	-S	F	-D		FS
Media	Method	Parameter	Units	Final Result	Final Qualifier						
GW	ILM4.1_ICP	Calcium	ug/l	120000		126000		95600		93200	
GW	ILM4.1_ICP	Chromium	ug/l	0.64	В	0.55	В	0.85	В	0.91	В
GW	ILM4.1_ICP	Cobalt	ug/l	0.65	В	0.83	В	8.0	В	0.99	В
GW	ILM4.1_ICP	Copper	ug/l	3.6	В	6.7	В	6.5	В	19.2	В
GW	ILM4.1_ICP	Iron	ug/l	88.3	В	19.5	В	21.3	В	40.4	В
GW	ILM4.1_ICP	Lead	ug/l	3	U	3	U	3	U	3	U
GW	ILM4.1_ICP	Magnesium	ug/l	24500		25500		19900		19300	
GW	ILM4.1_ICP	Manganese	ug/l	125		89.3		40.4		46.4	
GW	ILM4.1_ICP	Nickel	ug/l	2.3	В	2.4	В	2	В	2.3	В
GW	ILM4.1_ICP	Potassium	ug/l	2470	В	2190	В	1970	В	2000	В
GW	ILM4.1_ICP	Selenium	ug/l	5	UJ	5	UJ	5	UJ	5	UJ
GW	ILM4.1_ICP	Silver	ug/l	0.64	В	0.81	В	10	U	0.98	В
GW	ILM4.1_ICP	Sodium	ug/l	140000		246000		163000		164000	
GW	ILM4.1_ICP	Thallium	ug/l	10	U	10	U	10	U	10	U
GW	ILM4.1_ICP	Vanadium	ug/l	50	U	50	Ω	50	U	50	U
GW	ILM4.1_ICP	Zinc	ug/l	15.8	В	14.6	В	6.7	В	23.7	

STB50050001XX	sample_name	sample_date	Lab_Del_Group	lab_anl_method_name	cas_rn	chemical_name	result_value	lab_qualifiers	result_unit
STBS00580001XX	STBS00508001XX	11/15/2005	D1367			UNKNOWN	37	J	μg/kg
STESS00508001XX	STBS00508001XX		D1367					J	μg/kg
STB50098001XX	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	5	J	μg/kg
STESS0698001XX	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	13	J	μg/kg
STBS00508001XX 11/15/2005 D1867 OLMA-2 VOA UNINCIOWN 8 J µg/kg STBS00508001XX 11/15/2005 D1867 OLMA-2 VOA BRANCHED ALKANE 8 J µg/kg STBS00508001XX 11/15/2005 D1867 OLMA-2 VOA STRAINCHOWN 10 J µg/kg STBS00508001XX 11/15/2005 D1867 OLMA-2 VOA STRAINCHOWN 10 J µg/kg STBS00508001XX 11/15/2005 D1867 OLMA-2 VOA 21895-13-6 BERZERE, MERTALGAMETH 7 J µg/kg STBS00508001XD 11/15/2005 D1867 OLMA-2 VOA BERZERE, MERTALGAMETH 9 J µg/kg STBS00508001XD 11/15/2005 D1867 OLMA-2 VOA UNKNOWN 36 J µg/kg STBS00508001XD 11/15/2005 D1867 OLMA-2 VOA UNKNOWN 13 J µg/kg STBS00508001XD 11/15/2005 D1867 OLMA-2 VOA UNKNOWN 13 J µg/kg	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	25	J	μg/kg
STBS0050001XX 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 15 J µg/kg STBS0050001XX 11/15/2005 D1367 OLMA-2 VOA BRANCHE BALKANE 8 J µg/kg STBS0050001XX 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 10 J µg/kg STBS0050001XX 11/15/2005 D1367 OLMA-2 VOA STRAIGHT-CHAIN ALKANE 7 J µg/kg STBS0050001XX 11/15/2005 D1367 OLMA-2 VOA 21995-13-6 BENZTRI, 1-METHYL-2[G-METH 9 NJ µg/kg STBS0050001XX 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 39 J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 38 J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 38 J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 38 J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 38 J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 44 J J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 12 J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 12 J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 12 J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS0050001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA UNKNOWN 9 J J µg/kg STBS00500001XD 11/15/2005 D1367 OLMA-2 VOA STRAIGHT-CHAIN ALKANE 7 J J µg/kg STBS00400001XX 11/15/2005 D1367 OLMA-2 VOA STRAIGHT-CHAIN ALKANE 7 J J µg/kg STBS00400001XX 11/15/2005 D1367 OLMA-2 VOA STRAIGHT-CHAIN ALKANE 12 J J µg/kg STBS00400001XX 11/15/2005 D1367 OLMA-2 VOA STRAIGHT-CHAIN ALKANE 12 J J µg/kg STBS00400001XX 11/15/2005 D1367 OLMA-2 VOA STRAIGHT-CHAIN ALKANE 11 J µg/kg STBS00400001XX 11/15/2005 D1367 OLMA-2 VOA STRAIGHT-CHAIN ALKANE	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	16	J	μg/kg
STBS00508001XX 11/15/2005 D1867 OLMA2, VOA BRANCHED ALKANE 8 J µg/kg STBS00508001XX 11/15/2005 D1867 OLMA2, VOA UNKNOWN 10 J µg/kg STBS00508001XX 11/15/2005 D1867 OLMA2, VOA 2188-13-6 BERZEREL, 14METY2/36METH 9 NJ µg/kg STBS00508001XD 11/15/2005 D1867 OLMA2, VOA BERZEREL, 14METY2/36METH 9 NJ µg/kg STBS00508001XD 11/15/2005 D1867 OLMA2, VOA UNKNOWN 39 J µg/kg STBS00508001XD 11/15/2005 D1867 OLMA2, VOA UNKNOWN 13 J µg/kg STBS00508001XD 11/15/2005 D1867 OLMA2, VOA UNKNOWN 13 J µg/kg STBS00508001XD 11/15/2005 D1867 OLMA2, VOA UNKNOWN 12 J µg/kg STBS00508001XD 11/15/2005 D1867 OLMA2, VOA STRAGHT-CHAIN JALKANE 2 J µg/kg	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	8	J	μg/kg
STESD0508001XX	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	15	J	μg/kg
STESD0508001XX	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		BRANCHED ALKANE	8	J	μg/kg
STBS0060801XX	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	10	J	μg/kg
STESD0508001XD	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA		STRAIGHT-CHAIN ALKANE	7	J	μg/kg
STESD0068001XD	STBS00508001XX	11/15/2005	D1367	OLM4.2_VOA	21895-13-6	BENZENE, 1-METHYL-2-[(3-METH	9	NJ	μg/kg
STESD0698001XD	STBS00508001XD	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	39	J	μg/kg
STESD0698001XD	STBS00508001XD	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	36	J	
STESD0608001XD	STBS00508001XD	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	13	J	μg/kg
STBS00608001XD	STBS00508001XD	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	44	J	μg/kg
STES00060001XD	STBS00508001XD	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	12	J	
STBS0006001XD	STBS00508001XD		D1367	OLM4.2_VOA		STRAIGHT-CHAIN ALKANE	28	J	
STBS0006001XD	STBS00508001XD	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	9	J	μg/kg
STBS0069001XD	STBS00508001XD	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	9	J	
STBS0069001XD	STBS00508001XD	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	7	J	
STBS00508001XD 11/15/2005 D1367 OLM4 2 VOA STRAIGHT-CHAIN ALKANE 7 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4 2 VOA BRANCHED ALKANE 34 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4 2 VOA UNKNOWN 29 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4 2 VOA STBS00406001X 11/15/2005 D1367 OLM4 2 VOA STRAIGHT-CHAIN ALKANE 11 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4 2 VOA STRAIGHT-CHAIN ALKANE 21 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4 2 VOA 414-78-6 ETHYL ACETATE 220 NJ µg/kg STBS00406001XX 11/15/2005 D1367 OLM4 2 VOA 141-78-6 ETHYL ACETATE 220 NJ µg/kg STBS00406001XX 11/15/2005 D1367 OLM4 2 VOA BRANCHED ALKANE 6 J µg/kg STBS00406001XX 11/15/2005	STBS00508001XD	11/15/2005	D1367			STRAIGHT-CHAIN ALKANE	12	J	
STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA BRANCHED ALKANE 34 J µg/kg STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA UNKNOWN 29 J µg/kg STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA UNKNOWN 11 J µg/kg STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA STRAIGHT-CHAIN ALKANE 21 J µg/kg STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA STRAIGHT-CHAIN ALKANE 21 J µg/kg STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA UNKNOWN 11 J µg/kg STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA UNKNOWN 6 J µg/kg STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA BRANCHED ALKANE 6 J µg/kg STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA BRANCHED ALKANE 6 J µg/kg STBS00501701XX	STBS00508001XD	11/15/2005	D1367			STRAIGHT-CHAIN ALKANE	7	J	
STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA UNKNOWN 29 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA 75-18-3 DIMETHYL SULFIDE 13 NJ µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA STRAIGHT-CHAIN ALKANE 21 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA STRAIGHT-CHAIN ALKANE 21 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA 414-78-6 ETHYL ACETATE 220 NJ µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA 141-78-6 ETHYL ACETATE 220 NJ µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA UNKNOWN 6 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA BRANCHED ALKANE 6 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2 VOA CYCLIC ALKANE 599	STBS00406001XX	11/15/2005	D1367	OLM4.2 VOA		BRANCHED ALKANE	34	J	
STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA 75-18-3 DIMETHYL SULFIDE 13 NJ µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA UNKNOWN 11 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA STRAIGHT-CHAIN ALKANE 21 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA UNKNOWN 11 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA UNKNOWN 6 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA BRANCHED ALKANE 6 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA BRANCHED ALKANE 6 J µg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA UNKNOWN 11 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2 VOA CYCLIC ALKANE 590 J µg/kg S	STBS00406001XX		D1367			UNKNOWN	29	J	
STBS00406001XX 11/16/2005 D1367 OLM4.2 VOA UNKNOWN 11 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA STRAIGHT-CHAIN ALKANE 21 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA 141-78-6 UNKNOWN 11 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA 141-78-6 ETHYL ACETATE 220 NJ μg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA UNKNOWN 6 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA BRANCHED ALKANE 6 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM4.2 VOA UNKNOWN 11 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2 VOA CYCLIC ALKANE 590 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2 VOA CYCLIC ALKANE 1000 J μg/kg <	STBS00406001XX	11/15/2005	D1367	OLM4.2 VOA	75-18-3	DIMETHYL SULFIDE	13	NJ	
STBS00406001XX 11/15/2005 D1367 OLM42_VOA STRAIGHT-CHAIN ALKANE 21 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM42_VOA UNIKNOWN 11 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM42_VOA 141-78-6 ETHYL ACETATE 220 NJ μg/kg STBS00406001XX 11/15/2005 D1367 OLM42_VOA UNKNOWN 6 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM42_VOA BRANCHED ALKANE 6 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM42_VOA BRANCHED ALKANE 6 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM42_VOA CYCLIC ALKANE 590 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM42_VOA CYCLIC ALKANE 1000 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM42_VOA CYCLIC ALKANE 680 J μg/kg STBS00501701XX	STBS00406001XX	11/15/2005	D1367	OLM4.2 VOA		UNKNOWN	11	J	
STBS00406001XX 11/15/2005 D1367 OLM4_2_VOA UNKNOWN 11 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM4_2_VOA 141-78-6 ETHYL ACETATE 220 NJ μg/kg STBS00406001XX 11/15/2005 D1367 OLM4_2_VOA UNKNOWN 6 J μg/kg STBS00406001XX 11/15/2005 D1367 OLM4_2_VOA BRANCHED ALKANE 6 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4_2_VOA CYCLIC ALKANE 6 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4_2_VOA CYCLIC ALKANE 590 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4_2_VOA CYCLIC ALKANE 1000 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4_2_VOA BRANCHED ALKANE 680 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4_2_VOA CYCLIC ALKANE 1300 J μg/kg	STBS00406001XX	11/15/2005	D1367	OLM4.2 VOA		STRAIGHT-CHAIN ALKANE	21	J	
STBS00406001XX	STBS00406001XX					UNKNOWN	11	J	
STBS00406001XX		11/15/2005	D1367	OLM4.2 VOA	141-78-6	ETHYL ACETATE	220	NJ	
STBS00406001XX	STBS00406001XX	11/15/2005	D1367	OLM4.2 VOA		UNKNOWN	6	J	μg/kg
STBS00501701XX	STBS00406001XX	11/15/2005	D1367	OLM4.2_VOA		BRANCHED ALKANE	6	J	
STBS00501701XX	STBS00406001XX	11/15/2005	D1367	OLM4.2 VOA		UNKNOWN	11	J	μg/kg
STBS00501701XX	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	590	J	μg/kg
STBS00501701XX	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	1000	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1300 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1500 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1300 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA BRANCHED ALKANE 1000 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 2100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 2100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1600 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX	STBS00501701XX	11/15/2005	D1367	OLM4.2 VOA		BRANCHED ALKANE	680	J	
STBS00501701XX	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	1300	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA BRANCHED ALKANE 1000 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 2100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1600 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 960 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	1500	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 2100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1600 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 960 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/200	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	1300	J	μg/kg
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 2100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1600 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 960 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA BRANCHED ALKANE 900 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J μg/kg STBS00501701XX 1	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		BRANCHED ALKANE	1000	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1600 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 960 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA BRANCHED ALKANE 900 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J µg/kg STBS00501701XX 11/15/20	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	2100	J	
STBS00501701XX	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	1600	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 960 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA BRANCHED ALKANE 900 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 740 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 740 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1500 J μg/kg STBS00501701XX 11/15/200	STBS00501701XX	11/15/2005	D1367			UNKNOWN	1100	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 960 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA BRANCHED ALKANE 900 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 740 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1500 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J µg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J µg/kg STBS00501701XX 11/15/2005<	STBS00501701XX	11/15/2005	D1367			CYCLIC ALKANE	1100	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA BRANCHED ALKANE 900 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 740 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1500 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 830 J μg/kg	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	960	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA BRANCHED ALKANE 900 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 740 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1500 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 830 J μg/kg	STBS00501701XX	11/15/2005	D1367			UNKNOWN	1200	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1100 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 740 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1500 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 830 J μg/kg	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		BRANCHED ALKANE	900	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 740 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1500 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 830 J μg/kg	STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	1100	J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 1200 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1500 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 830 J μg/kg						UNKNOWN	740		
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA CYCLIC ALKANE 1500 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 830 J μg/kg								J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 850 J μg/kg STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 830 J μg/kg								J	
STBS00501701XX 11/15/2005 D1367 OLM4.2_VOA UNKNOWN 830 J μg/kg									
	STBS00501701XX	11/15/2005	D1367	OLM4.2 VOA	493-02-7	NAPHTHALENE, DECAHYDRO-, TRA		NJ	μg/kg

sample_name	sample_date	Lab_Del_Group	lab_anl_method_name	cas_rn	chemical_name	result_value	lab_qualifiers	result_unit
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	960	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	1300	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 VOA		UNKNOWN	1400	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	670	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	1000	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 VOA		CYCLIC ALKANE	1600	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA	2958-76-1	NAPHTHALENE, DECAHYDRO-2-MET	910	NJ	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA	2000 . 0 .	UNKNOWN	820	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 VOA		UNKNOWN	930	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	4400	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 VOA		CYCLIC ALKANE	2700	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	5300	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		BRANCHED ALKANE	3300	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA OLM4.2_VOA		UNKNOWN	2500	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA OLM4.2_VOA		UNKNOWN	3500	JD	μg/kg
STBS00501701XX	11/15/2005				UNKNOWN		JD	
		D1367 D1367	OLM4.2_VOA		CYCLIC ALKANE	2500 7600	JD JD	μg/kg
STBS00501701XX	11/15/2005		OLM4.2_VOA					μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	2300	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	4600	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	3600	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	8000	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	2600	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		BRANCHED ALKANE	5600	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	7000	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	2900	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	8000	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	6900	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	2700	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	4000	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	3800	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	2900	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA	493-02-7	NAPHTHALENE, DECAHYDRO-, TRA	5300	NJD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	3100	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	5300	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA	1000152-47-3	TRANS-DECALIN, 2-METHYL-	4200	NJD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		CYCLIC ALKANE	3800	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA	2958-76-1	NAPHTHALENE, DECAHYDRO-2-MET	3200	NJD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	2500	JD	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	3700	JD	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	27	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	32	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	10	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	10	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	18	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	14	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	210	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	6	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	13	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	6	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_VOA		UNKNOWN	6	J	μg/kg
STBS00301601XX	11/16/2005	D1367	OLM4.2_VOA		UNKNOWN	28	J	μg/kg
STBS00301601XX	11/16/2005	D1367	OLM4.2 VOA		UNKNOWN	10	J	μg/kg
STBS00301601XX	11/16/2005	D1367	OLM4.2_VOA		UNKNOWN	14	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_VOA		UNKNOWN	94	J	μg/kg
312000201001AA	11/10/2003	D 1301	OLIVIT.Z_VOA	1	CIAICIACAAIA	JT	<u> </u>	μg/ng

sample_name	sample_date	Lab_Del_Group	lab_anl_method_name	cas_rn	chemical_name	result_value	lab_qualifiers	result_unit
STBS00201801XX	11/16/2005	D1367	OLM4.2_VOA		UNKNOWN	46	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_VOA	109-66-0	PENTANE	46	NJ	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_VOA		UNKNOWN	15	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_VOA	110-54-3	HEXANE	22	NJ	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_VOA		UNKNOWN	9	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_VOA		UNKNOWN	9	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_VOA		UNKNOWN	9	J	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2_SVOA		UNKNOWN	82	J	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2_SVOA	872-05-9	1-DECENE	510	NJB	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2_SVOA		UNKNOWN	220	J	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2 SVOA	2531-84-2	PHENANTHRENE, 2-METHYL-	92	NJ	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2_SVOA		UNKNOWN	110	J	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2_SVOA	604-83-1	PHENANTHRENE, 9,10-DIMETHYL-	75	NJ	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2 SVOA		UNKNOWN	88	J	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2_SVOA	192-97-2	BENZO[E]PYRENE	130	NJ	μg/kg
STBS00701001XX	11/14/2005	D1367	OLM4.2 SVOA		UNKNOWN	1300	JB	μg/kg
STBS00508001XX	11/15/2005	D1367	OLM4.2_SVOA	872-05-9	1-DECENE	470	NJB	μg/kg
STBS00508001XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	1700	JB	μg/kg
STBS00508001XD	11/15/2005	D1367	OLM4.2_SVOA	78-40-0	TRIETHYL PHOSPHATE	100	NJ	μg/kg
STBS00508001XD	11/15/2005	D1367	OLM4.2_SVOA	872-05-9	1-DECENE	510	NJB	μg/kg
STBS00508001XD	11/15/2005	D1367	OLM4.2_SVOA	111-02-4	2,6,10,14,18,22-TETRACOSAHEX	97	NJ	μg/kg
STBS00508001XD	11/15/2005	D1367	OLM4.2_SVOA	111 02 1	UNKNOWN	2200	JB	μg/kg
STBS00406001XX	11/15/2005	D1367	OLM4.2 SVOA	78-40-0	TRIETHYL PHOSPHATE	120	NJ	μg/kg
STBS00406001XX	11/15/2005	D1367	OLM4.2_SVOA	872-05-9	1-DECENE	550	NJB	μg/kg
STBS00406001XX	11/15/2005	D1367	OLM4.2 SVOA	072 00 0	UNKNOWN	2000	JB	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 SVOA		UNKNOWN	1500	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 SVOA		UNKNOWN	320	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	460	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	670	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 SVOA		UNKNOWN	680	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	330	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 SVOA		UNKNOWN	440	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	570	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA	493-02-7	NAPHTHALENE, DECAHYDRO-, TRA	1400	NJ	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2 SVOA	493-02-1	UNKNOWN	1200	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	280	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	290	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	620	.]	
STBS00501701XX	11/15/2005	D1367 D1367	OLM4.2_SVOA OLM4.2 SVOA	1	UNKNOWN	1400	J	μg/kg μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA OLM4.2 SVOA	1	UNKNOWN	560	J	
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA OLM4.2 SVOA		UNKNOWN	310	J	μg/kg
STBS00501701XX STBS00501701XX	11/15/2005	D1367 D1367	OLM4.2_SVOA OLM4.2 SVOA		UNKNOWN	310	J	μg/kg
STBS00501701XX STBS00501701XX	11/15/2005	D1367 D1367	OLM4.2_SVOA OLM4.2 SVOA	+	UNKNOWN	740	J	μg/kg
	11/15/2005 11/15/2005		OLM4.2_SVOA OLM4.2 SVOA	+		740 1700	J	μg/kg
STBS00501701XX		D1367			UNKNOWN UNKNOWN	1700 800	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA	2024 45 2			•	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA	3031-15-0	NAPHTHALENE, 1,2,3,4-TETRAME	1100	NJ	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	470	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA	1000101 10 0	UNKNOWN	740	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA	1000104-10-8	3-METHYL-4-(METHOXYCARBONYL)	580	NJ	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	1000	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	300	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA	1	UNKNOWN	980	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	300	J	μg/kg
STBS00501701XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	4400	J	μg/kg

sample_name	sample_date	Lab_Del_Group	lab_anl_method_name	cas_rn	chemical_name	result_value	lab_qualifiers	result_unit
STBS00101601XX	11/15/2005	D1367	OLM4.2_SVOA	872-05-9	1-DECENE	500	NJB	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_SVOA	2156-97-0	DODECYL ACRYLATE	120	NJ	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	99	J	μg/kg
STBS00101601XX	11/15/2005	D1367	OLM4.2_SVOA		UNKNOWN	2300	J	μg/kg
STBS00301601XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	100	J	μg/kg
STBS00301601XX	11/16/2005	D1367	OLM4.2_SVOA	2156-97-0	DODECYL ACRYLATE	360	NJ	μg/kg
STBS00301601XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	78	J	μg/kg
STQS001XXX05XX	11/16/2005	D1367	OLM4.2_SVOA	54446-78-5	ETHANOL, 1-(2-BUTOXYETHOXY)-	3	NJ	μg/l
STQS001XXX05XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	3	J	μg/l
STQS001XXX05XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	42	J	μg/l
STQS001XXX05XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	60	J	μg/l
STBS00201801XX	11/16/2005	D1367	OLM4.2_SVOA	112-34-5	ETHANOL, 2-(2-BUTOXYETHOXY)-	290	NJ	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	130	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_SVOA	872-05-9	1-DECENE	440	NJB	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	470	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	91	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	79	J	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_SVOA	198-55-0	PERYLENE	130	NJ	μg/kg
STBS00201801XX	11/16/2005	D1367	OLM4.2_SVOA		UNKNOWN	1900	J	μg/kg
SBLK1A		D1367	OLM4.2_SVOA	112-34-5	ETHANOL, 2-(2-BUTOXYETHOXY)-	4	NJ	μg/l
SBLK1J		D1367	OLM4.2_SVOA	872-05-9	1-DECENE	420	NJ	μg/kg
SBLK1J		D1367	OLM4.2_SVOA		UNKNOWN	1900	J	μg/kg
STMW003XXX01XX	12/9/2005	D1488	OLM4.2 SVOA	50-84-0	BENZOIC ACID, 2,4-DICHLORO-	10	NJ	ua/l

TIC_retention_time
02.56
02.77
02.92 03.94
03.94
04.83 05.41
05.47
05.59
06.03
07.85
18.00
02.56
02.77
03.25
03.70
03.94
04.21
04.82
05.42
05.59
06.02
07.85
02.56
02.76
03.31
03.95
04.22
04.83
04.97
05.41
05.59
06.03
07.81
08.02
08.51
08.96
09.57
09.92
10.15
10.29
10.50
10.80
11.10
11.17
11.38
11.49
11.60
11.69
11.76
11.87
11.92
11.99
12.42

TIC_retention_time
12.59
12.67
12.83
12.99
13.21
13.32
13.47
13.96
14.15
06.87
07.80
07.99
08.49
08.55
08.69
08.74
08.95
09.38
09.55
09.58
09.90
10.03
10.12
10.28
10.37
10.47
10.77
11.07
11.14
11.36
11.73
12.41
12.64
12.78
13.18
13.30
13.45
13.94
14.14
02.56
02.78
03.30
03.95
04.22
04.83
04.97
05.41
05.47
05.60
06.03
02.76
03.30
04.20
02.02

TIC_retention_time
02.56
02.76
03.94
04.20
05.41
05.59
06.03
05.60
10.82
12.55
14.28
14.73
15.14
19.66
19.71
24.15
10.81
24.15
07.38
10.82
19.28
24.17
07.38
10.81
24.17
05.27
05.37
05.42
05.85
06.00
06.13
06.18
06.45
06.62
06.95
07.06
07.61
08.21
08.82
09.05
09.24
10.55
10.83
11.39
11.76
12.36
12.45
12.63
12.84
12.98
13.73
14.14
14.89
15.46

TIO materialism of
TIC_retention_time
10.75
14.79
15.54
23.98
08.05
12.50
15.54
08.74
14.47
16.36
18.17
08.06
09.69
10.75
12.50
14.79
16.89
19.62
23.97
08.74
10.82
24.17
10.98