SITE CHARACTERIZATION REPORT

REGION 8 DRY CLEANING SITES FORMER AMERICAN DRY CLEANERS SITE HORSEHEADS, NEW YORK

WORK ASSIGNMENT NO. D003826-20

SITE NO. 8-08-036

Submitted to:

New York State Department of Environmental Conservation Albany, New York

Submitted by:

MACTEC Engineering and Consulting, P.C.
Portland, Maine
MACTEC No. 3612052036

SEPTEMBER 2006

SITE CHARACTERIZATION **REPORT**

REGION 8 DRY CLEANING SITES FORMER AMERICAN DRY CLEANERS SITE HORSEHEADS, NEW YORK

WORK ASSIGNMENT NO. D003826-20

SITE NO. 8-08-036

Submitted to:

New York State Department of Environmental Conservation Albany, New York

Submitted by:

MACTEC Engineering and Consulting, P.C. Portland, Maine MACTEC No. 3612052036

SEPTEMBER 2006

This document was prepared for the sole use of New York State Department of Environmental Conservation, the only intended beneficiary of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering and Consulting, P.C.

Submitted by:

John Peterson

Project Manager

Approved by:

William J. Weber, P.E.

Program Manager

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	Y	ES-1
1.0	INTRODUCTION	T	1-1
2.0	SITE BACKGROU	UND AND PHYSICAL SETTING	2-1
2.1	SITE LOCATIO	ON	2-1
2.2		Υ	
2.3	PREVIOUS IN	VESTIGATIONS	2-2
2.4	PHYSICAL SE	TTING	2- 3
2.5	FILE REVIEW		2- 4
2.6	SUMMARY OF	F DATA RECORDS SEARCH AND ASSESSMENT	•••••
	FINDINGS		2-5
3.0	SCOPE OF WOR	K	3-1
3.1	GENERAL FIE	LD ACTIVITIES	3-1
	3.1.1 Mobilization	on	3-2
	3.1.2 Health and	l Safety	3-2
	3.1.3 Decontami	nation	3-2
	3.1.4 Investigation	on Derived Wastes	3-3
3.2	PRIVATE WEI	LL SAMPLING	3-3
33	GEOPROBE® P	BORINGS AND SAMPLING	3-4
3.4	OPTIONAL SU	B-SLAB SOIL VAPOR SAMPLING	3-7
3.5	SITE SURVEY		3-7
4.0	DATA ASSESSMI	ENT	4- 1
5.0	INVESTIGATION	N FINDINGS	5-1
6.0	REFERENCES		6-1
APPI	ENDICES		
	APPENDIX A	SITE PHOTOGRAPHS	
	APPENDIX B	FIELD DATA RECORDS	
	APPENDIX C	SITE SURVEY	
	APPENDIX D	DATA USABILITY SUMMARY REPORT	

LIST OF TABLES

- 3.1 Monitoring Well and Microwell Details
- 4.1 Soil Sample VOC Results
- 4.2 Groundwater VOC Results
- 4.3 Groundwater SVOC Results
- 4.4 Soil Gas Sample Results

LIST OF FIGURES

- 1.1 Site Location
- 3.1 Site Map and Sample Locations
- 3.2 Lake Road Sample Locations
- 4.1 TCE Sample Results in Groundwater
- 4.2 Lake Road TCE Sample Results
- 4.3 Groundwater Elevations and Flow Direction

ACRONYMS

1,1,1-TCA 1,1,1-trichloroethane

ABB-ES ABB Environmental Services
ASP Analytical Services Protocol

ASTM America Society for Testing and Materials

bgs below ground surface

Chemtech Consulting Group, Inc.

EDR Environmental Data Resources, Inc.

°F degrees Fahrenheit

GPS global positioning system

MACTEC Engineering and Consulting, P.C.

ml/min milliliter per minute msl mean sea level

NAD North American Datum

NAVD North American Vertical Datum

NYCRR Title 6 New York Codes, Rules, and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH State of New York Department of Health

PCE tetrachloroethene

PID photoionization detector PPE personal protective equipment

ppm parts per million PVC polyvinyl chloride

QAPP Quality Assurance Program Plan

Report Site Characterization Report

SC Site Characterization

Site Former American Dry Cleaners Site SVOC semivolatile organic compound

TCE trichloroethene

TCL Target Compound List

TIC tentatively identified compounds

μg/L micrograms per liter

μg/m³ micrograms per cubic meter

USCS Unified Soil Classification System

USEPA United States Environmental Protection Agency

VOC volatile organic compound

WA Work Assignment

EXECUTIVE SUMMARY

September, 2006

Final

The Former American Dry Cleaners site (Site) is located at 3045 Lake Road in a mixed residential/commercial neighborhood in the Town of Horseheads, Chemung County, New York (Figure 1.1). The Site, Site No. 8-08-036, is currently listed as a potential hazardous waste site, or "P" site, by the New York State Department of Environmental Conservation (NYSDEC), because insufficient information exists to determine whether wastes were disposed of at the Site and whether, if present, those wastes pose a potential significant threat to public health or the environment (New York State [NYS], 1998). MACTEC Engineering and Consulting, P.C. (MACTEC) conducted field investigations as part of a Site Characterization (SC). The purpose of the SC is to gather sufficient information to evaluate environmental problems present at a site. The SC seeks to identify whether a source of waste is present at a site, determine if the waste poses a significant threat to human health or the environment, and evaluate migration routes to the surrounding environment through groundwater, soil gas, or surficial pathways.

The Former American Dry Cleaners property consists of approximately 0.25 acres and contains a cement block facility and a small dirt parking area. The location was reportedly used as a dry cleaner from the late 1940's to the mid-1990's, when the Site was changed into a carpet repair business (NYSDEC, 2005). The building is currently vacant. A real estate office is located just north of the Site property, and residential property borders the Site to the West and South. Forested property and the Newtown Creek border the property to the east.

The Site came to the attention of the NYSDEC after low concentrations (less than 11 micrograms per liter $[\mu g/L]$) of chlorinated solvents (specifically trichlorethene [TCE]) were first detected in the City of Elmira's Sullivan supply wells in the mid 1980's. These wells are located approximately 1.6 miles south of the Site, on the west side Newtown Creek (Figure 1.1). Although other sources of chlorinated solvents exit in the greater Horseheads/Elmira valley, it was not known if this Site is contributing to the contamination plume.

To determine whether the chlorinated solvent contamination detected in the City of Elmira's public supply wells originated from the Site and to collect sufficient information to allow re-classification of the Site, MACTEC conducted the following tasks:

- completed a file review of the Site;
- collected a groundwater sample from one existing private well;
- collected 5 direct-push soil samples from above the water table at five locations;
- collected 23 direct-push groundwater samples at 18 locations;
- installed four microwells for the purpose of measuring groundwater table elevations;
- collected three soil gas samples from around the Site property; and
- conducted a land survey of the Site.

A review of physical and chemical data collected during the SC resulted in the following findings:

- 1) The Site is located in a residential neighborhood that is serviced by public water. Low concentrations of TCE ($<10.3~\mu g/L$) have been detected in the City of Elmira's Sullivan Street public supply well, located approximately 1.6 miles south of the Site. Groundwater measurements collected at the Site indicate that groundwater flow is generally to the south south-east, towards this supply well.
- 2) TCE, a NYS listed hazardous waste, was detected in groundwater samples collected upgradient, at, and downgradient of the Site at concentrations ranging from 25 to 35 μ g/L (compared to the NYS Class GA standard for TCE of 5 μ g/L). Based on this data, it does not appear that the Site is a contributing source to the chlorinated solvent groundwater contamination.
- 3) Tetrachloroethene (PCE), the most common dry cleaning solvent, was only detected in one groundwater sample (from boring GW-11). The trace concentration (1 J μ g/L) was below the NYS Class GA standard of 5 μ g/L and not at a concentration that would indicate a source area.
- 4) Trace concentrations of 1.1.1-trichloroethane (1,1,1-TCA), PCE, and TCE were detected in soil gas samples collected around the Site property (highest concentrations of 7 BJ μ g/m³, 9 μ g/m³, and 21 μ g/m³, respectively). These concentrations are not indicative of source area concentrations.

Due to Site building access not being granted by the property owner, no soil, soil gas, or groundwater samples were collected below the Site building, and although not anticipated, it can not be confirmed that PCE contamination does not exist below the Site building.

1.0 INTRODUCTION

MACTEC Engineering and Consulting, P.C. (MACTEC), is submitting this Site Characterization Report (Report) to the New York State Department of Environmental Conservation (NYSDEC). This Report addresses the Site Characterization (SC) at the Former American Dry Cleaners site (Site) in Horseheads, New York (Figure 1.1). This Report was prepared in response to Work Assignment (WA) No. D0003826-20 (NYSDEC, 2005), and in accordance with the requirements of the July 1997 Superfund Standby Contract No. D003826 between the NYSDEC and MACTEC.

This Report is one of five Site-specific SC reports for the Region 8 Dry Cleaning Sites multiple Site Characterizations WA. The other four SC reports address the sites listed below:

- Loohn's Corning (Site No. 8-51-028 replaces Former Your Way Cleaners)
- Castle Cleaners (Site No. 8-08-034)
- Crystal Cleaners (Site No. 8-51-022)
- Former Helwigs Dry Cleaners (Site No. 8-51-023)

The Former American Dry Cleaners site, Site No. 8-08-036, is currently listed as a potential hazardous waste site, or "P" site, by the NYSDEC, because insufficient information exists to determine whether wastes were disposed of at the Site and whether, if present, those wastes pose a potential significant threat to public health or the environment (New York State (NYS), 1998).

The purpose of the SC is to provide information to be used by the NYSDEC to reclassify the Site to one of the following categories:

Class 1 Hazardous waste constitutes a significant threat to the environment, as described in Title 6 of the New York Codes, Rules, and Regulations (NYCRR) Part 375 (NYS, 1998); and the significant threat to the environment is causing, or presents an imminent danger of causing, either irreversible or irreparable damage to the environment.

NYSDEC Site Characterization Report Region 8 Dry Cleaning Sites – Former American Dry Cleaners MACTEC Engineering and Consulting, P.C., – 3612052036

September, 2006 Final

Class 2 Hazardous waste constitutes a significant threat to the environment as

described in NYCRR Part 375 (NYS, 1998).

Class 3 Hazardous waste does not presently constitute a significant threat to the

environment, as described in NYCRR Part 375 (NYS, 1998).

To complete its reclassification, the NYSDEC requires information to establish the following:

The existence of documented hazardous waste disposal, as defined in NYCRR Part 371

(NYS, 1999a).

The Site's significance with respect to the threat it poses to public health and the

environment as defined in 6 NYCRR Part 375 (NYSDEC, 1998).

Identification of contaminant source.

MACTEC collected reclassification documentation and is presenting it to the NYSDEC so it can

recommend follow up action for the Site (i.e., reclassify, delist, or perform additional

investigation).

The WA was divided into three tasks. During Task 1-Work Plan Development, MACTEC

conducted a search of state and county Site records, and performed a Site inspection to develop

information necessary for reclassification or delisting. The information collected is presented in

Section 2 of this document. Task 1 activities did not develop adequate data on which to base a

Therefore, additional field investigations were delist or reclassification recommendation.

conducted under Task 2 – Subsurface Investigations.

Section 3 of this Report presents the work conducted during the field investigations. Section 4

presents results of the field investigation. Section 5 presents an investigation summary.

Task 3-Reporting, was the preparation of this Report. Resources used to prepare this Report

include:

(1) information provided in the Work Assignment,

(2) appropriate guidelines in the NYSDEC Draft DER-10 Guidance (NYSDEC, 2002),

1-2

P:\Projects\nysdec1\projects\Region 8 Dry Cleaning Sites\4.0 Project Deliverables\4.1 Reports\American\Text\Report.hw808036.2006-

NYSDEC Site Characterization Report Region 8 Dry Cleaning Sites – Former American Dry Cleaners MACTEC Engineering and Consulting, P.C., – 3612052036

- (3) results of previous investigations, if applicable, and
- (4) results of the SC investigation.

2.0 SITE BACKGROUND AND PHYSICAL SETTING

On September 9 and 10, 2005, MACTEC personnel reviewed available records from the NYSDEC

office in Albany, New York, and visited the City of Elmira/Horseheads, New York town offices.

Information was also collected from the Site owner by the NYSDEC. As part of the review,

MACTEC ordered a copy of an Environmental Data Resources, Inc. (EDR) report which provides

a listing of federal and state governmental information pertaining to potential and documented

environmental impacts, both at the Site and within the American Society for Testing Materials

(ASTM) recommended search radii. Complete lists of all recommended ASTM record searches for

standard due diligence requirements are included in the EDR report provided under separate cover.

This information was reviewed to support a Site classification, and to help prepare the scope of work

for the SC field investigations. The information collected from these sources is summarized below.

2.1 SITE LOCATION

Former American Dry Cleaners is located at 3045 Lake Road in a mixed residential/commercial

neighborhood in the Town of Horseheads, Chemung County, New York (Figure 1.1). The Former

American Dry Cleaners property consists of approximately 0.25 acres and contains a cement block

facility and a small dirt parking area.

A real estate office is located just north of the Site property, and residential property borders the

site to the West and South. Forested property and the Newtown Creek border the property to the

east.

2.2 SITE HISTORY

According to the Horseheads Town Assessors, the Former American Dry Cleaners facility was

built in 1947. This date is confirmed based on the Dry Cleaner listed in the 1949 Elmira City

Directory, but not the 1944 Directory. The City Directory's reviewed from 1949 to 1987 list the

property address as 3039 Lake Road. The location was reportedly used as a dry cleaner from the

late 1940's to the mid-1990's, when the Site was changed into a carpet repair business (NYSDEC,

2005). The building is currently vacant.

2-1

NYSDEC Site Characterization Report Region 8 Dry Cleaning Sites – Former American Dry Cleaners MACTEC Engineering and Consulting, P.C., – 3612052036 September, 2006 Final

According to the Horseheads Water Department, the water main along Lake Road was installed in the mid-1940's, and the property at 3045 Lake (formerly 3039 Lake) was connected in 1954. The Sewer line was installed along Lake Road in 1963 and 1964. Horseheads water records indicated that the property was connected to the sewer line in 1965. The sewer line flows to a sewer treatment plant located approximately one mile south of the Site along Lake Road. Based on the dates of the sewer and water line installations, it is assumed that American Dry Cleaners used both a private supply well and septic system prior to connecting to public water and sewer. Additional homes within Horseheads/Elmira Heights were connected to public water supply when chlorinated solvents were detected in private wells in the Horseheads/Elmira Heights area in the mid 1980's (LaDouce, 2005).

2.3 PREVIOUS INVESTIGATIONS

It is not known if any previous site investigations have been completed for the Site property.

The site is of concern based on the presence of chlorinated solvents in the City of Elmira's Sullivan Street Supply Well. Although other sources of chlorinated solvents exit in the greater Horseheads/Elmira Valley, it is not known if this Site is contributing to the contamination plume. Chlorinated solvents (primarily trichloroethene [TCE]) were first detected in the City Sullivan supply wells in the mid 1980's. Samples collected between 1981 and 1992 indicated concentrations of TCE in the Sullivan Street Wells ranging from 5.0 to 10.3 micrograms per liter (µg/L), in relation to a NYS Groundwater Standard of 5 µg/L (NYSDOH, 1994). These wells are located approximately 1.6 miles south of the Site, on the west side of Newtown Creek (Figure 1.1). There are two supply wells in close proximity to each other. These wells can each produce approximately 3 million gallons per day. The 18-ich diameter wells have casings set to approximately 60 feet below ground surface (bgs), with shutter screen down to 98 feet bgs. Although an air stripper was installed in the late 1990's, the wells are currently not used (LaDouce, 2005). They are turned on twice per year and sampled.

MACTEC Engineering and Consulting, P.C., -3612052036

September, 2006 Final

2.4 PHYSICAL SETTING

Topography

The Site is located in the Newtown Creek Valley, which runs north-south, joining the Chemung

River Valley to the south, which runs east-west. The Site property is located at 870 feet above

mean sea level (msl) and is relatively flat. The valley slopes slightly down to the south and east.

Newtown Creek is located at an elevation of approximately 860 feet above msl 650 feet east of the

Site. Newtown Creek runs south, joining the Chemung River in 3.5 miles. The Chemung River is

located at an elevation of approximately 835 feet above msl at the confluence with Newtown

Creek. The topography to the west of the Site is relatively flat for approximately 0.8 miles, and

then rises to a ridge at 1600 feet above msl approximately 2.5 miles from the Site. The topography

east of Newtown Creek is flat for approximately 0.3 miles, and then rises sharply to a ridge at 1600

feet above msl approximately 1.3 miles from the Site.

Climate

The climate of the area is characterized by moderately warm summers and cold winters. Mean

monthly temperatures range from 24 degrees Fahrenheit (°F) in January to 70°F in July. Average

annual precipitation is 35 inches. Average annual snowfall is 43 inches (National Climatic Data

Center, 2004).

Surface Water Hydrology

Surface drainage from the Site generally follows the topography, flowing toward low areas and

then infiltrating into the ground. A storm drain dry well is located on the southern edge of the

south west edge of the Site property, by the Site parking area. According to the Town of

Horseheads Highway Department, the dry well does not tie into storm sewer lines. The Site is not

located within a 500 year flood zone (EDR, 2006).

2-3

NYSDEC Site Characterization Report Region 8 Dry Cleaning Sites – Former American Dry Cleaners

MACTEC Engineering and Consulting, P.C., -3612052036

Groundwater Hydrology

The Newtown Creek and eventually the Chemung River are local groundwater discharge areas.

September, 2006

Final

Groundwater at the Site was encountered at approximately 19 feet bgs, and is interpreted to flow

southeast towards Newtown Creek.

Geology

Overburden soils at the Site consist of lacustrine silts, sands and gravels. Surficial geology is

mapped as oxidized, non calcareous, fine sand to gravel (Muller, 1986). Based on regional

geologic mapping (Rickard and Fisher, 1970) bedrock is expected to consist of shale and siltstones

associated with the Upper Devonian West Falls Group. Specifically, the Beers Hill Shale; Grimes

Siltstone; Dunn Hill, Millport, and Moreland Shales (Rickard and Fisher, 1970).

Site Walkover

On September 9, 2005 the MACTEC Site Lead, Chuck Staples, and the NYSDEC Project

Manager, Matthew Dunham, conducted a walkover of the Site area.

The Site walkover consisted of viewing the Former American Dry Cleaners property (from the

outside), and the surrounding neighborhood to assess possible contamination sources and the

logistical concerns for the field program. MACTEC personnel documented the walkover with

photographs (Appendix A).

Observable sources of contamination (e.g., leaking drums) were not noted during the Site

walkover, however, detailed inspections of potential sources (such as Site soils and potential floor

drains) were not conducted during the Site walkover. Additional information for the purpose of

identifying potential sources was obtained during Task 2.

2.5 **FILE REVIEW**

MACTEC reviewed files from various state and local agency offices to develop information to

support a reclassification or delisting, and to help prepare the scope of work for the SC field

2-4

P:\Projects\nysdec1\projects\Region 8 Dry Cleaning Sites\4.0 Project Deliverables\4.1 Reports\American\Text\Report.hw808036.2006-

investigations. The Site EDR report was also reviewed in preparation of this report.

2.6 SUMMARY OF DATA RECORDS SEARCH AND ASSESSMENT FINDINGS

Under Federal and State regulations a solid waste may be regulated as a hazardous waste if it is a

material included in one of the United States Environmental Protection Agency's (USEPA) or the

NYSDEC's lists of hazardous wastes. If a material is regulated because of its inclusion on a federal

or state list, it is commonly referred to as a "listed hazardous waste." A waste may also be

regulated under the Resource Conservation and Recovery Act as a "characteristic hazardous waste"

if it exhibits one of the characteristics of toxicity, corrosivity, reactivity, or flammability.

Results of sampling and analysis of the Sullivan Street Supply Wells indicated the presence of TCE

in groundwater. Spent chlorinated solvents not originating from a household sources, including

TCE are included on both the USEPA's and the NYSDEC's lists of hazardous wastes. Under 6

NYCRR Part 371.4(a) (1), these spent solvents constitute hazardous waste from non-specified

sources. Disposal of these chlorinated solvents has been confirmed by available analytical results

from the Sullivan Street Wells, but the source area has not been identified.

As defined by 6 NYCRR Part 375, significant threat can be established by documenting a

contravention of environmental standards. Surface water and groundwater are the only media for

which NYS has promulgated standards. Under NYS Water Quality Regulations (6 NYCRR Parts

700-705) the state has set numeric standards that are the maximum concentration of compounds in

groundwater and surface water that protect public health and/or the environment (NYS, 1999b).

Analytical data had not been collected from the Site and therefore it was not known if the Site was

the source of the TCE contamination or if the Site posed a significant threat. As a result, Task 2,

the SC Field Investigation, was conducted to:

• collect the data necessary to verify the likelihood of uncontrolled waste disposal;

determine if potential contamination is present on the Site and is migrating offsite; and

provide sufficient information to allow the NYSDEC to re-classify the Site.

2-5

3.0 SCOPE OF WORK

To reclassify the Site, the NYSDEC requires data documenting hazardous waste disposal as set forth in 6 NYCRR Part 371, and the potential significant threat to human health and the environment as defined by 6 NYCRR Part 375. Because data necessary to determine if the chlorinated compounds present in the Sullivan Street Wells originated from the Site or if potential contamination present in Site media is migrating off-site and poses a potential significant threat to human health and the environment was not available in Federal and State files reviewed during Task 1, additional field investigations were performed as described below. Task 2 activities included the Field Investigation. The objective of Task 2 activities was to determine, if possible, whether the volatile organic compounds (VOCs) detected in the city supply well originated from the Site, or whether potential onsite VOCs contamination is migrating offsite. Task 3 was the preparation and distribution of this Report.

TASK 2 - FIELD INVESTIGATIONS

The following subsections describe the activities conducted during the field investigation portion of the Site SC. The work generally followed the Scope of Work as outlined in the SC Work Plan (MACTEC, 2005), with the exception that no access was given for the Site property. The field investigation was conducted in accordance with the specifications presented in the Quality Assurance Program Plans (QAPPs) (ABB Environmental Services [ABB-ES], 1995) and the site specific Quality Assurance Project Plans. Off-site laboratory analyses were performed by Chemtech Consulting Group, Inc. (Chemtech), a New York State Department of Health (NYSDOH) approved laboratory. Off-site laboratory analysis complied with the NYSDEC Analytical Services Protocols (ASP) (NYSDEC, 2000).

3.1 GENERAL FIELD ACTIVITIES

General field activities, including mobilization, health and safety, and decontamination, are described in the following subsections.

NYSDEC Site Characterization Report

Region 8 Dry Cleaning Sites – Former American Dry Cleaners

MACTEC Engineering and Consulting, P.C., -3612052036

3.1.1 Mobilization

After receiving the NYSDEC authorization to begin fieldwork, MACTEC and its subcontractors

September, 2006

Final

conducted utility clearance, mobilized to the Site and began the field exploration program.

A field team orientation meeting was held on-Site with MACTEC personnel to familiarize field

workers with Site history, health and safety requirements, equipment calibration procedures, and

other field procedures.

3.1.2 Health and Safety

Field investigation activities were conducted at Level D Personal Protection Equipment (PPE).

Based on photoionization detector (PID) readings, no upgrades of personal protection were

warranted.

3.1.3 Decontamination

Sampling methods and equipment for this field program were chosen to minimize investigation

derived wastes and minimize possibility of cross contamination. Disposable sampling equipment

was used as much as practical to minimize decontamination time and water disposal.

Non disposable sampling equipment was decontaminated by 1) scrubbing the sample collection

equipment with potable water and Liquinox, rinsing with potable water, rinsing with deionized

water, and then allowing the equipment to air dry, or 2) steam cleaning the equipment and then

allowing the equipment to air dry. Decontamination fluids did not exhibit visual or olfactory

evidence of contamination and were released to the ground surface in the area of the exploration, so

as to allow the liquids to infiltrate into the soil.

3-2

P:\Projects\nysdec1\projects\Region 8 Dry Cleaning Sites\4.0 Project Deliverables\4.1 Reports\American\Text\Report.hw808036.2006-

3.1.4 Investigation Derived Wastes

The field investigation did not result in the generation of wastes that were considered hazardous (i.e., no visual or olfactory signs of contamination, and no PID readings above 5 parts per million (ppm) were detected). Therefore drill cuttings and purge water resulting from the investigation were placed on the ground surface in the area of exploration, or used as backfill for the borings, and PPE and disposable sampling equipment were double bagged and disposed of as non-hazardous refuse.

3.2 PRIVATE WELL SAMPLING

MACTEC personnel collected samples from one existing homeowner well in the vicinity of the Site. The 25 foot deep well was located adjacent to the Site (Figure 3.1) and was sampled using a peristaltic pump. Groundwater parameters including water levels, turbidity, temperature, dissolved oxygen, specific conductance, pH and redox potential were recorded on a field log (included in Appendix B). A minimum of one sample tubing volume was purged before sampling and the sample was analyzed for target compound list (TCL) VOCs using USEPA OLM04.2 Methods as described in the NYSDEC ASP of June 2000.

Efforts were made to locate other private wells in the vicinity of the Site. The Elmira Water Board was contacted and a list of all properties that were either not connected to the public water supply, or were connected later than 1980 was created. Since most of the homes in the area were constructed prior to 1980, it was thought that homes connected after 1980 may have private wells. MACTEC personnel contacted homeowners on this list to determine if any of them had serviceable wells. Only one residence claimed to have a well that had not been filled in. MACTEC personnel attempted to collect a sample from the well that was located in the residence basement, but the pump was not in operation, and the well cap could not be opened. An additional residence that reportedly had a functioning well was vacant and the home boarded up.

3.3 GEOPROBE® BORINGS AND SAMPLING

Field investigation activities included the completion of Geoprobe® borings, the collection and analysis of groundwater, soil, and soil gas samples, and the installation of microwells. The six days of Geoprobe sampling was conducted from February 7, 2006 to February 14, 2006. The purpose of the activities was to provide groundwater data for comparison to NYS Class GA Groundwater Quality Standards set forth under 6 NYCRR Parts 700-705 (NYS, 1999b), and to assist the NYSDEC in evaluating significant threat to public health and the environment as defined by 6 NYCRR Part 375 (NYS, 1998). Soil sample analyses were used to assess whether hazardous waste constituents were present in Site soils, and, if possible, confirm a source of chlorinated solvents. Soil gas sample results were used to evaluate whether VOCs present in soil and/or groundwater are migrating towards occupied buildings via vapor migration.

MACTEC used a Geoprobe[®] sampling device to collect groundwater soil, and soil gas samples to identify potential chlorinated solvents. The Geoprobe[®] pushes and/or hammers rods and probe tips into the subsurface for sample collection. A total of 18 borings and three soil gas collection points were completed, including the installation of four microwells. A total of 23 groundwater samples and 5 soil, as well as 3 soil gas samples were collected.

MACTEC worked closely with the NYSDEC, the Former American Dry Cleaners owner, the neighboring property owners, and utility companies to obtain access to the exploration locations. Boring locations for borings GW-1 to GW-11, GW-19, and GV-1 to GV-3 are shown on Figure 3.1. Boring locations along Lake Road (GW-12 to GW-18, as well as GW-7) are shown on Figure 3.2. Locations were chosen to determine groundwater conditions upgradient and downgradient of, as well as adjacent to, the Site building. In addition, borings were located along Lake Road between Sullivan Street Wells and the Site to characterize general groundwater in the path between the Site and the supply wells.

Soil Sampling. Soil samples were collected using a 4-foot long 1-to-2 inch diameter core sampler with an acrylic liner for the collection of discrete subsurface soil samples. Soil samples were collected continuously from the ground surface to the top of the groundwater table. PID headspace readings were used to screen soil samples for the presence of VOCs as each soil sample was removed from the sample collection tube. One soil boring was selected for continuous soil

sampling to 25 feet bgs, to better characterize Site soils. Samples were described using the Unified Soil Classification System (USCS). The sample description and classification, VOC headspace reading, and boring observations were recorded on the Field Data Record, included in Appendix B. Based on the PID readings and physical evidence such as color or odor, five unsaturated soil samples were collected (one each from borings GW-1, GW-2, GW-4. GW-5, and GW-11) and submitted to the laboratory for analysis. Samples exhibiting the highest PID readings and physical evidence of contamination were selected for analysis. Soil samples were shipped to Chemtech Laboratory for analyses of TCL VOCs using USEPA OLM04.2 Methods as described in the NYSDEC ASP of June 2000. Off-site laboratory analysis included Category B deliverables.

Groundwater Sampling. Groundwater samples were collected using a small diameter stainless steel wire wound screen that was exposed to the aquifer, after being pushed to the desired depth interval. A peristaltic pump was used for the collection of discrete groundwater samples. One tubing volume of water was purged and one set of parameters including temperature, conductivity, pH, and turbidity was collected before sampling. VOC samples were collected at a low purge rate (approximately 100 milliliters per minute) to minimize potential volatilization.

To assess vertical extent of contamination, MACTEC attempted to collect groundwater samples from two locations in each boring, the water table and 10 feet into the water table (10 feet below the first sample). Samples from three depths (24, 32, and 38 feet bgs) were collected from GW-4. Due to cobble zones or tight soils, only one sample was collected (approximately 22-28 feet bgs) from borings GW-2, GW-5, GW-7, GW-9, GW-11, and GW-16. No groundwater samples were collected from four of the borings due to either refusal above the water table (GW-3, GW-6, and GW-8), or tight soils that did not produce water (GW-15 was dry at 24 feet bgs). Groundwater samples were shipped to Chemtech for analyses of TCL VOCs using USEPA OLM04.2 methods as described in the NYSDEC ASP of June 2000. Groundwater samples from GW-5 and GW-10 were also analyzed for SVOCs using USEPA OLM04.2 Methods. Off-site laboratory analysis included Category B deliverables.

Microwell Installation. To determine groundwater flow direction at the Site, four Geoprobe[®] borings, GW-2, GW-5, GW-9, and GW-11, were completed as microwells. Microwell locations are shown on Figure 3.1. Groundwater was encountered at approximately 19 feet bgs. Microwells were installed after soil and groundwater samples were collected from each boring. The

NYSDEC Site Characterization Report

Region 8 Dry Cleaning Sites – Former American Dry Cleaners

MACTEC Engineering and Consulting, P.C., – 3612052036

September, 2006

Final

microwells were installed as piezometers and used for water level measurements only. Microwells

were constructed with schedule 40 polyvinyl chloride (PVC), with 10 foot lengths of 0.01-inch

machine slotted well screens. The well screens were set with approximately 2 to 8 feet of screen above the water table to determine water table elevations and create a potentiometric map. The

wells were constructed with a # 0 sand pack or native backfill and sealed at the ground surface with

bentonite. The wells were completed with a six inch flush mount cover. The wells were developed

for twenty minutes with a peristaltic pump to clean the screen and determine if the wells were

conductive with groundwater. Well diagrams are included in Appendix B.

One round of groundwater levels was collected from the six microwells and one existing private

well. Well caps were opened to allow the water in the wells to equilibrate to atmospheric pressure.

Depth to water was measured with a conductivity probe from the top of the well riser.

Groundwater table elevations were calculated from the well riser elevations and are shown in Table

3.1.

Soil Gas Sampling. Based on proximity to nearby residences and/or businesses, and discussions

with the NYSDEC, three soil gas samples were collected to evaluate the potential vapor migration

of contaminants from the groundwater (Figure 3.1). Soil gas samples were collected using a

Geoprobe[®] sampling device.

The Geoprobe® rods were pushed to between 6 and 8 feet bgs, or the expected level of neighboring

basements (also expected to be below the rain infiltration line, but above the water table fringe

zone). Soil gas collected at approximate basement levels may give an indication of the possible

vapor migration from potentially contaminated groundwater, as well as possible health

implications.

Soil gas samples were collected from the Geoprobe® points. Upon reaching 6 feet bgs, the

Geoprobe[®] rods were pulled back 0.5 feet, exposing the bottom of the open rods to the soil. The

soil vapor sample was then collected using a sealed tubing system. In addition, the outside of the

rods were sealed at the ground surface with pre-hydrated bentonite. Approximately 2 liters of soil

gas, plus the volume of the tubing, was purged at a rate of 400 milliliters per minute (ml/min) using

580B OVM PID pump before collecting samples. During the soil gas purge, vapors were screened

using a PID. In addition, helium leak tests were conducted on a subset of the Region 8 Dry

3-6

 $P:\Projects\nysdec1\projects\American\Text\Report.hw808036.2006-09American.doc$

Region 8 Dry Cleaning Sites – Former American Dry Cleaners MACTEC Engineering and Consulting, P.C., – 3612052036

September, 2006

Final

Cleaners Sites soil gas samples to ensure samples were representative of sub-surface conditions and

not outdoor ambient air. Helium tests were set up by encapsulating the sample point with a bucket

sealed to the ground surface with bentonite. The soil gas samples were collected with one-liter

SUMMA®-type canisters with flow valves (set to approximately 30 minutes per sample). Flow

into the canisters was less than 0.1 liters per minute, as requested by the NYSDOH. Samples were

sent to Chemtech for VOC analysis by USEPA Method TO-15.

3.4 OPTIONAL SUB-SLAB SOIL VAPOR SAMPLING

One sub-slab soil vapor sample was scoped to be collected from below the Site building concrete

slab. Upon further discussions with the NYSDEC PM and the property owner, no property access was

obtained, and therefore no sub-slab soil vapor sample was collected.

3.5 SITE SURVEY

Upon completion of field investigation activities, MACTEC's survey subcontractor, Lu Engineers,

completed a survey of the Site and surrounding area and created a base map. Horizontal locations

were tied to the New York State Plane Coordinate System using North American Datum (NAD) of

1983. The Site plan provides horizontal locations of relevant Site features, including surrounding

homes and businesses at a scale of 1 inch to 50 feet. Relevant visible features include, but are not

limited to all structures, buildings, roads, fences, new monitoring wells, underground utilities, fire

plugs, and power poles.

Vertical elevations of the four new microwells were tied to msl, North Atlantic Vertical Datum

(NAVD) of 1988, and measured to an accuracy of 0.01 feet. Horizontal well measurements were

to an accuracy of 0.1 ft.

The base was used to accurately locate all Geoprobe[®] sample points, microwells, and any other

media sampling locations. Temporary sample points were located using a Trimble global

positioning system (GPS). Sample points are included on Figure 3.1 and Figure 3.2, and the Lu

Engineers survey map is included in Appendix C.

3-7

P:\Projects\nysdec1\projects\Region 8 Dry Cleaning Sites\4.0 Project Deliverables\4.1 Reports\American\Text\Report.hw808036.2006-

4.0 DATA ASSESSMENT

This section presents results of the laboratory analyses for soil, groundwater, and air samples collected during Task 2, as well as results of the water level survey.

4.1 ANALYTICAL RESULTS

Soil and groundwater analytical results were compared to appropriate standards or guidelines. Reported concentrations of individual analytes indicating contravention of standards or guidelines are summarized in the following sections, and noted on Tables 4.1 to 4.4.

A Data Usability Summary Report was completed in accordance with the NYSDEC's Guidance for the Development of Data Usability Summary Reports (NYSDEC, 1997). This report and complete analytical results including tentatively identified compounds (TICs) are presented in Appendix D.

Based on laboratory or data usability review, some of the data was qualified with a J, B, and/or a D. Compounds were qualified J if the concentration listed was an estimated value, which was less than the specified minimum reporting limit but greater than the instrument detection limit. Compounds qualified J were analyzed for and determined to be present in the sample, and the mass spectrum of the compound met the identification criteria of the method. The reporting limits for most target VOCs using the OLM04.2 Methods, including the target chlorinated solvents compounds were 10 µg/L. This is above most of the NYS Class GA groundwater standards; however, the actual instrument detection limit was below the NYS Class GA groundwater standards. A list of Chemtech's instrument reporting limits for the OLM04.2 Method is included in Appendix D.

Compounds qualified B indicate that the compound was detected in the trip blank, or laboratory blank, and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte.

Compounds qualified D indicate that the compound was reported from an analytical run that required a dilution due to concentrations greater than the highest calibration standard.

NYSDEC Site Characterization Report

Region 8 Dry Cleaning Sites – Former American Dry Cleaners

MACTEC Engineering and Consulting, P.C., – 3612052036

Analytical results were compared to the standards or guidelines described below.

Soil Samples. Analytical results were compared to the Recommended Soil Cleanup Objectives in

September, 2006

Final

the NYSDEC Technical and Administrative Guidance Memorandum No. 94-4046 (NYSDEC,

1994).

Groundwater Samples. Analytical results were compared to: (1) the NYS Class GA Groundwater

Quality Standards from 6 NYCRR Parts 700-706 (NYS, 1999b) or, where applicable, (2) the NYS

Class GA Groundwater Quality Guidance Values from the Division of Water Technical and

Operational Guidance Series 1.1.1 "Ambient Water Quality Standards and Guidance Values"

(NYSDEC, 1998).

Soil Gas Samples. Soil gas samples were looked at for the presence of potential contaminants of

concern.

4.1.1 Soil Sample Results

A summary of target VOCs detected in soil samples is presented in Table 4.1.

VOCs were not detected in soil samples above the NYSDEC Soil Cleanup Objectives.

Trace concentrations (<10 µg/Kg) of one or more of the following compounds were detected in all

five soil sample locations; 2-butanone, benzene, chloroform, ethyl benzene, toluene, TCE, and

m/p-xylene.

4.1.2 Groundwater Sample Results

A summary of target VOCs and semi volatile organic compounds (SVOCs) detected in

groundwater samples are presented in Tables 4.2 and 4.3, respectively. Maximum TCE detections

per groundwater sample location are presented on Figures 4.1 and 4.2.

TCE was detected at fourteen of the fifteen sample locations with detections ranging from 0.86 J

μg/L (GW-18) to 35 μg/L (GW-7). TCE concentrations in groundwater exceeded the NYS Class

4-2

P:\Projects\nysdec1\projects\Region 8 Dry Cleaning Sites\4.0 Project Deliverables\4.1 Reports\American\Text\Report.hw808036.2006-

NYSDEC Site Characterization Report

Region 8 Dry Cleaning Sites – Former American Dry Cleaners

MACTEC Fracing and Consulting P.C. 2612052026

MACTEC Engineering and Consulting, P.C., – 3612052036

GA groundwater standard for TCE of 5 $\mu g/L$ at eleven of the fifteen sample locations (see Table

September, 2006

Final

4.2).

m/p-Xylene was detected at two of the fifteen sample locations with detections ranging from 0.85

J μg/L (GW-4) to 20 J μg/L (GW-10). m/p xylene concentrations detected in the sample from

GW-10 exceeded the NYS Class GA groundwater standard for m/p-xylene of 5 μ g/L (see Table

4.2).

Isopropylbenzene was detected at one of the fifteen sample locations (GW-10) with a detection of

31 μ g/L, which exceeds the NYS Class GA groundwater standard of 5 μ g/L (see Table 4.2).

Chloroform was detected at one of the fifteen sample locations (GW-18) with a detection of 7.2 J

μg/L, which exceeds the NYS Class GA groundwater standard of 7 μg/L (see Table 4.2).

Acetone was detected at one of the fifteen sample locations with a detection of 290 B µg/L which

exceeds the NYS Class GA groundwater guidance of 50 µg/L (see Table 4.2).

Trace concentrations of cis-1,2-dichloroethene were detected at fourteen of the fifteen sample

locations with detections ranging from 0.89 J µg/L (GW-16) to 3.8 J µg/L (GW-10), which were all

below the NYS Class GA groundwater standard of 5 µg/L. In addition to cis-1,2-dichloroethene,

trace concentrations (<10 µg/L) of cis-1,2-dichloroethene, ethylbenzene, and methyl

cyclohexanone were detected in a sample from GW-10. A trace concentrations of PCE (1 J $\mu g/L$)

was detected in a sample from GW-11 and a trace concentration of bromodichloromethane (1.7 J

μg/L) was detected in a sample from GW-18. A trace concentration (1.7 J μg/L) of methyl ester

acetic acid was also detected in a sample from location PW-1.

The semi-volatile compound acetophenone was detected at one of the two SVOC sample locations

at a concentration of 210 D µg/L (GW-10). No NYS standard of guidance value has been

promulgated for this compound. A trace detection of naphthalene (5.5 J µg/L compared to NYS

Class GA groundwater guidance of 10 µg/L) was also detected at sample location GW-10.

Several TICs were also detected in the groundwater samples collected. TICs are reported in

Appendix D.

4-3

P:\Projects\nysdec1\projects\Region 8 Dry Cleaning Sites\4.0 Project Deliverables\4.1 Reports\American\Text\Report.hw808036.2006-00A region doe

MACTEC Engineering and Consulting, P.C., – 3612052036

4.1.3 **Soil Gas Sample Results**

A summary of target VOCs detected in soil gas samples is presented in Table 4.4.

There are no guidance values for exterior soil gas samples; guidance values for soil gas are only

applicable for sub-slab soil gas samples. Trace concentrations of 1,1,1-trichloroethane (1,1,1-

TCA), PCE, and TCE were detected in soil gas samples collected around the Site property (highest

7 BJ micrograms per cubic meter $[\mu g/m^3]$, 9 $\mu g/m^3$, and 21 $\mu g/m^3$, respectively).

September, 2006

Final

concentrations are not indicative of source area concentrations.

4.2 POTENTIOMETRIC SURFACE MAP

The microwell survey and depth to water measurements were used to create a potentiometric

surface water map (Figure 4.3). Microwell survey and water elevation data are presented in Table

3.1. Depth to water across the survey area varied from 18.7 feet bgs to 20.2 feet bgs. Groundwater

elevations varied from 856.82 feet above msl, to 857.36 feet above msl. The groundwater table

gradient appears to be relatively flat, varying by only 0.54 feet in elevation over 220 feet of

distance. Based on measured water table elevations, groundwater is interpreted to flow generally

south-southeast, angling slightly towards Newtown Creek, and ultimately towards the Chemung

River.

4-4

P:\Projects\nysdec1\projects\Region 8 Dry Cleaning Sites\4.0 Project Deliverables\4.1 Reports\American\Text\Report.hw808036.2006-09American.doc

5.0 INVESTIGATION FINDINGS

A review of physical and chemical data collected during the SC resulted in the following findings:

- 1) The Site is located in a residential neighborhood that is serviced by public water. Low concentrations of TCE ($<10.3~\mu g/L$) have been detected in the City of Elmira's Sullivan Street public supply well, located approximately 1.6 miles south of the Site. Groundwater measurements collected at the Site indicate that groundwater flow is generally to the south south-east, towards this supply well.
- 2) TCE, a NYS listed hazardous waste, was detected upgradient of the Site at locations GW-1 and GW-2 at concentrations of 30 μg/L and 26 μg/L, respectively, in comparison to the NYS standard of 5 μg/L. The highest concentration of TCE (35 μg/L) was detected in a groundwater sample collected potentially cross gradient of the Site building (GW-7). Groundwater samples collected further downgradient of the Site, at location GW-13 and GW-14, continued to indicate similar concentrations of TCE (25 μg/L at each location). Based on this data, it does not appear that the Site is a contributing source to the chlorinated solvent groundwater contamination.
- 3) PCE, the most common dry cleaning solvent, was only detected in one groundwater sample (from boring GW-11). The trace concentration (1 J μg/L) was below the NYS Class GA standard of 5 μg/L and not at a concentration that would indicate a source area.
- 4) Trace concentrations of 1,1,1-TCA, PCE, and TCE were detected in soil gas samples collected around the Site property (highest concentrations of 7 BJ μ g/m³, 9 μ g/m³, and 21 μ g/m³, respectively). These concentrations are not indicative of source area concentrations.

Data Gaps. Due to Site building access not being granted by the property owner, no soil, soil gas, or groundwater samples were collected below the Site building. Based on the SC, the following data gaps still exist.

1) Although not anticipated, it can not be confirmed that PCE contamination does not exist below the Site building.

NYSDEC Site Characterization Report Region 8 Dry Cleaning Sites – Former American Dry Cleaners MACTEC Engineering and Consulting, P.C., – 3612052036

concentrations in exceedence of NYSDOH guidance levels.

2) Sub slab soil gas samples were not collected below the Site building and, although not

anticipated, it is not known if soil vapor concentrations exist below the Site building at

September, 2006 Final

5-2

6.0 REFERENCES

September, 2006

Final

- ABB Environmental Services, 1995. Program Quality Assurance Program Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. June 1995.
- Environmental Data Resources, Inc.(EDR), 2006. EDR Radius Map with Goecheck, for 3045 Lake Street, Horseheads, New York. February 27, 2006.
- LaDouce, 2005. Telephone conversation between MACTEC and Mark LaDouce of the Elmira Water Board. September 9, 2005.
- MACTEC Engineering and Consulting, Inc. P.C., 2005. *Program Health and Safety Plan*. Prepared for New York State Department of Environmental Conservation, Albany, New York. 2005.
- Muller, et al., 1986. Surficial Geologic Map of New York, Finger Lakes Sheet, New York State Museum Geologic Survey, Map and Chart Series #40. 1986.
- National Climactic Data Center (NCDC), 2004. Comparative Climactic Data for the United States, 1971 to 2000. February, 2004.
- New York State (NYS), 1999a. New York Codes, Rules, and Regulations, Title 6, Part 371 Identification and Listing of Hazardous Wastes. Amended November 1999.
- New York State (NYS), 1999b. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- New York State (NYS), 1998. New York Codes, Rules, and Regulations, Title 6, Part 375 Inactive Hazardous Waste Disposal Sites Remedial Program. Amended January 1998.
- New York State Department of Environmental Conservation (NYSDEC), 2005. Work Assignment #D003826-20 Region 8 Dry Cleaning Sites- letter dated August 17, 2005.
- New York State Department of Environmental Conservation (NYSDEC), 2002. Draft DER-10, Technical Guidance for Site Investigation and Remediation. December 2002.
- New York State Department of Environmental Conservation (NYSDEC), 2000. "Analytical Services Protocols"; 6/00 Edition; June 2000.
- New York State Department of Environmental Conservation (NYSDEC), 1994. Revised Technical and Administrative Guidance Memorandum HWR 94-4046: Determination of Soil Cleanup Objectives and Cleanup Levels. January 1994.
- New York State Department of Health (NYSDOH), 2005. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", Public Comment Draft, February 2005.

- New York State Department of Health (NYSDOH), 1994. Public Health Assessment, Facet Enterprises. Prepared by NYSDOH. March 16, 1994.
- Rickard and Fisher, 1970. Geologic Map of New York, Finger Lakes Sheet, New York State Map and Chart Series 15. by L.V. Richard and D.W. Fisher. March, 1970.
- United States Environmental Protection Agency (USEPA), 1987. "Data Quality Objectives for Remedial Response Activities"; Office of Emergency and Remedial Response and Office of Waste Programs Enforcement; Washington DC; EPA/540/G-87/003; March, 1987.

TABLES

Table 3.1: Monitoring Well and Microwell Details

Location	Northing	Easting	Measured Well Depth	Casing Elevation	Riser Elevation	DTW 2/16/2006	Water Elevation 2/16/06
GW-01	777756.44	757807.07	21.4	876.10	876.02	18.66	857.36
GW-05	777704.96	757969.78	21.4	876.31	875.97	18.98	856.99
GW-09	777649.40	757963.70	25.4	876.50	876.15	19.29	856.86
GW-11	777555.85	757907.35	26.9	875.77	875.56	18.74	856.82
PW-1	777690.18	757822.91	33.4	877.40	877.40	20.24	857.16

Notes:

DTW = Depth to Water as measured from top of PVC riser by MACTEC Engineering. Wells surveyed by Lu Engineers.

Table 4.1: Soil Sample VOC Results

	tion Name Sample ID	()		GS-2 (GW-2) AMGS00201201XX			(GW-4) 401401XX	`	GW-5) 501001XX	GS-11 (GW-11) AMGS01101401XX		
Sample Depth (ft bgs) Field Sample Date		10-12		12-14 2/8/2006		14-16 2/14/2006		10	-12 2006	14-16 2/9/2006		
QC Code		FS		FS			72000 FS	_, .,	'S	FS		
Parameter	Criteria	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	
2-Butanone	300	280 UJ		53 U		52 U		4.2 J		3.9 J		
Benzene	60	9.9	9 J	11 U		0.74 J		11 U		0.64 J		
Chloroform	300	56 UJ		11 U		1.1 J		11 U		10 U		
Ethyl benzene	5500	6.6 J		0.56 J		10 U		0.64 J		10 U		
Toluene	1500	8.9 J		1.2 J		2.3 J		0.87 J		1.3	3 J	
Trichloroethene	700	56 UJ		0.9 J		10 U		11 U		10 U		
Xylene, m/p	1200	9.8	8 J	1.2 J		10 U		0.94 J		1 J		

Prepared/Date: ASZ 6/1/05

Notes:

Checked/Date: CRS 6/23/06

Results reported in micrograms per kilogram (µg/kg)

Only detected compounds shown. Samples analyzed for VOCs by EPA Method OLM04.2

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

Criteria = Values from Technical Administrative Guidance Memorandum (TAGM) 94-4046, "Determination of Soil Cleanup Objectives and Cleanup Levels" (NYSDEC, 1994)

Prepared/Date: ASZ 6/1/05

Checked/Date: KLT 06/23/06

Table 4.2: Groundwater VOC Results

	PW-1 AMPW00102101XX		GW-1 AMGW00101801XA		GW-1 AMGW00102601XX		GW-2		GW-4 AMGW00402401XA		GW-4 AMGW00403201XB			
F							AMGW00202601XX							
Sample			18		26		26		24		32			
Field Sample Date		2/7/2006		2/7/2006		2/7/2006		2/8/2006		2/14/2006		2/14/2006		
	QC Code FS FS			FS	FS	FS	FS	FS	FS	FS	FS	FS		
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
Acetic acid, methyl ester	NA	1.	1.7 J		10 UJ		10 UJ		10 UJ		10 U		10 U	
Acetone 50		50 UJ		50 UJ		50 UJ		50 UJ		50 U		50 U		
Bromodichloromethane	50	10	10 U		10 U		10 U		10 U		10 U		10 U	
Chloroform	7*	10	0 U	10 U		10 U		10 U		10 U		10 U		
Cis-1,2-Dichloroethene	5*	1.3 J		10 U		2.2 J		1.7 J		2 J		2 J		
Ethyl benzene	5*	10 U		10 U		10 U		10 U		10 U		10 U		
Isopropylbenzene	5*	10 U		10 U		10 U		10 U		10 U		10 U		
Methyl cyclohexane	NA	10	0 U	10 U		10 U		10 U		10 U		10 U		
Tetrachloroethene	5*	10	0 U	10	10 U		10 U		10 U		10 U		0 U	
Trichloroethene	chloroethene 5* 10 U		3.3 J		30		20		30		28			
Xylene, m/p	5*	10	0 U	10	10 U		10 U		10 U		10 U		0 U	

Notes:

Results in microgram per liter $(\mu g/L)$

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method OLM04.2

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

B = Analyte was detected in both the blank and field sample

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

* = New York State Standard

Results in BOLD exceed associated criteria

Table 4.2: Groundwater VOC Results

	GW-4		GW-5		GW-5		GW-7		GW-7		GW-9		GW-9		
	AMGW00403801XX		AMGW00502701XD		AMGW00502701XX		AMGW00702801XD		AMGW00702801XX		AMGW00902401XA		AMGW00903401XX		
Samp	38		27		27		28		28		24		34		
Field Sample Da		2/14/2006		2/8/2006		2/8/2006		2/13/2006		2/13/2006		2/13/2006		2/13/2006	
	QC Code	C Code FS I		FD FD		FS FS		FD FD		FS FS		FS FS		FS FS	
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acetic acid, methyl ester	Acetic acid, methyl ester NA) U	J 10 U		10 UJ		10 U		10 U		10 U		10 U	
Acetone	50	290) B	50 UJ		50 UJ		50 U		50 U		50 U		50 U	
Bromodichloromethane	Bromodichloromethane 50) U	10 U		10 U		10 U		10 U		10 U		10 U	
Chloroform	7*	10	U	10 U		10 U		10 U		10 U		10 U		10 U	
Cis-1,2-Dichloroethene	5*	2.1 J		2.3 J		2.3 J		2.4 J		2.4 J		2.1 J		2.1 J	
Ethyl benzene	5*	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Isopropylbenzene	5*	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Methyl cyclohexane	NA	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Tetrachloroethene	5*	10 U		10 U		10 U		10 U		10 U		10 U		10 U	
Trichloroethene	5*	28		30		31		35		33		29		28 J	
Xylene, m/p	5*	0.85 J		10 U		10 U		10 U		10 U		10 U		10 U	

Notes:

Results in microgram per liter $(\mu g/L)$

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method OLM04.2

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

B = Analyte was detected in both the blank and field sample

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

* = New York State Standard

Results in BOLD exceed associated criteria

Table 4.2: Groundwater VOC Results

I	ocation Name	GV	V-10	GV	V-10	GW	'-11	GV	V-12	GV	V-13	GW	V-13	GV	V-14
Fi	eld Sample ID	AMGW01	1002401XA	AMGW01	1003401XX	AMGW01	102601XX	AMGW0	1203401XX	AMGW01	1302401XA	AMGW01	303401XX	AMGW0	1402401XA
Sample Depth (ft bgs)		24		34		26		34		24		3	34	24	
Field	d Sample Date	2/14	/2006	2/14	/2006	2/9/2	2006	2/14	/2006	2/14	/2006	2/14/	2006	2/14	/2006
	QC Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acetic acid, methyl ester	NA	10	U	10) U	1	0 U	10	U	10	U	10	U	10	U
Acetone	50	50	U	50	U	5	0 U	50	U	50	U	50	U	50	U
Bromodichloromethane	50	10	U	10	U	1	0 U	10	U	10	U	10	U	10	U
Chloroform	7*	10	U	10	U	1	0 U	10	U	10	U	10	U	10	U
Cis-1,2-Dichloroethene	5*	3.8	J	2	2 J	3.	1 J	1.9	J	1.5	J	2	J	2.2	J
Ethyl benzene	5*	5	J	2	2 J	1	0 U	10	U	10	U	10	U	10	U
Isopropylbenzene	5*	31	J	9.5	J	1	0 U	10	U	10	U	10	U	10	U
Methyl cyclohexane	NA	8.8	J	10) U	1	0 U	10	U	10	U	10	U	10	U
Tetrachloroethene	5*	10	U	10	U		1 J	10	U	10	U	10	U	10	U
Trichloroethene	5*	19	J	27	1	1	6	26		23		25	•	23	
Xylene, m/p	5*	20	J	11		1	0 U	10	U	10	U	10	U	10	U

Results in microgram per liter $(\mu g/L)$

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method OLM04.2

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

B = Analyte was detected in both the blank and field sample

U = Not detected at a concentrationgreater than the reporting limit

J = Estimated value

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

* = New York State Standard

Results in BOLD exceed associated criteria

Table 4.2: Groundwater VOC Results

	Location Name		W-14		W-16		W-17	_	W-17		/-18	GW	
F	ield Sample ID	AMGW0	1403401XX	AMGW0	AMGW01602201XX		1702101XA	AMGW0	1702601XX	AMGW01	802401XX	AMGW01	181401XA
Sample	e Depth (ft bgs)	34		22		21			26	24		14	
Fie	ld Sample Date	2/14	1/2006	2/10	0/2006	2/10	0/2006	2/10	0/2006	2/9/2	2006	2/9/2	2006
	QC Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acetic acid, methyl ester	NA	10	U	10	U	10	U	10	U	10	0 U	10	0 U
Acetone	50	50	U	50	U	50	U	50	U	50	0 U	50	0 U
Bromodichloromethane	50	10	U	10	U	10	U	10	U	0.8	8 J	1.	7 J
Chloroform	7*	10	U	10	U	10	U	10	U	3.0	6 J	7.	2 J
Cis-1,2-Dichloroethene	5*	2.4	J	0.89	J	1	J	2.8	J	10	0 U	10	0 U
Ethyl benzene	5*	10	U	10	U	10	U	10	U	10	0 U	10	0 U
Isopropylbenzene	5*	10	U	10	U	10	U	10	U	10	0 U	10	0 U
Methyl cyclohexane	NA	10	U	10	U	10	U	10	U	10	0 U	10	0 U
Tetrachloroethene	5*	10	U	10	U	10	U	10	U	10	0 U	10	0 U
Trichloroethene	5*	25		10		10	U	3.1	J	0.92	2 J	0.80	6 J
Xylene, m/p	5*	10	U	10	U	10	U	10	U	10	0 U	10	0 U

Results in microgram per liter $(\mu\,g/L)$

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method OLM04.2

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

B = Analyte was detected in both

the blank and field sample

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

* = New York State Standard

Results in BOLD exceed associated criteria

Table 4.3: Groundwater SVOC Results

Locat	tion Name	GV	V-10	GW-5		
Field S	Sample ID	AMGW01	002401XA	AMGW00502701XX		
Sample Dep	th (ft bgs)	2	24	27		
Field Sa	mple Date	2/14	/2006	2/8/2006		
	QC Code		S	FS		
Parameter	Criteria	Result	Qualifier	Result	Qualifier	
Acetophenone	NA	210 D 1		U		
Naphthalene	10	5.:	5 J	10	U	

Prepared/Date: ASZ 6/1/05

Checked/Date: CRS 6/23/06

Notes:

Results reported in micrograms per liter $(\mu g/L)$

Only detected compounds shown. Samples analyzed for SVOCs by EPA Method OLM04.2 $\,$

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result reported from a diluted analytical run

Criteria = Values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

Table 4.4: Soil Gas Sample Results

Location ID	GV-01	GV-02	GV-03
	AMGV00100601XX	AMGV00200601XX	AMGV00300601XX
Sample Depth (ft bgs)	6-7	6-7	6-7
Field Sample Date	-	2/8/2006	2/8/2006
QC Code	FS	FS	FS
Q 0 00 	12	1.0	1.0
Parameter	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	7.07 BJ	2.94 UJ	0.98 UJ
1,1,2-Trichloro-1,2,2-Trifluoroethan	7.65 U	1.22	0.76 U
1,2,4-Trimethylbenzene	4.91 U	3.24	3.19
1,3,5-Trimethylbenzene	4.91 U	0.49 U	2.06
2-Butanone	5.89 U	5.04	4.03
2-Propanol	16.7	29.3	18.3
Acetone	210	54.6 D	49.6 D
Benzene	17.2	32.2	28.5
Carbon disulfide	3.11 U	2.98	3.89
Chloromethane	2.04 U	0.47	0.37
Cis-1,2-Dichloroethene	3.97 U	0.63	0.4 U
Cyclohexane	28.5	87.9 D	50.8
Dichlorodifluoromethane	4.95 U	2.23 J	2.38 J
Ethyl acetate	18.7	19.4	24.5
Ethyl benzene	4.34 U	1.91	1.3
Heptane	31.9	79.2	54.2
Hexane	79.1	244 D	167 D
o-Xylene	4.34 U	2.08	1.56
Propylene	126	472 D	298 D
Styrene	4.25 U	1.66	1.49
Tetrachloroethene	8.83	1.97	2.44
Tetrahydrofuran	7.66	0.59 U	0.59 U
Toluene	16.6	34.7	24.3
Trichloroethene	0.21 U	20.8	2.46
Trichlorofluoromethane	5.6 U	1.29	1.51
Xylene, m/p	8.67 U	6.76	4.9

Prepared/Date: ASZ 6/1/05

Notes: Checked/Date: CRS 6/23/06

Results reported in micrograms per cubic meter ($\mu g/m^3$)

Only detected compounds shown. Samples analyzed for VOCs by EPA Method TO-15

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result reported from a diluted analytical run

B = Analyte was detected in both the blank and field sample

September, 2006 Final

FIGURES

Project 3612-05-2036

Figure 4.3

Horseheads, New York

APPENDIX A

September, 2006

Final

SITE PHOTOGRAPHS

FORMER AMERICAN DRY CLEANERS SITE PHOTOGRAPHS

East side of the Site building – main door to work space.

Northeast side of Site building – Travel Agency is adjacent

FORMER AMERICAN DRY CLEANERS SITE PHOTOGRAPHS

View of the Northwest corner of building; seen from adjacent property.

Attached garage to the west of the Former American Dry Cleaners building.

FORMER AMERICAN DRY CLEANERS SITE PHOTOGRAPHS

Southern side of Former American Cleaners (looking northeast at property).

Private Well located on the west northwestern side of the building (view looking to the north east).

APPENDIX B

September, 2006

Final

FIELD DATA RECORDS

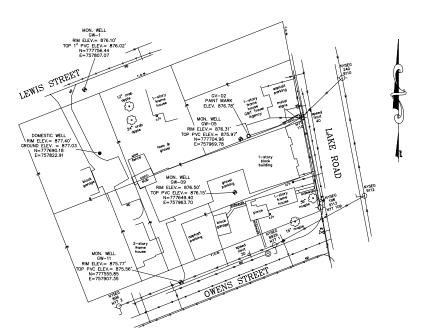
Drilling Contractor ADT Drilling Contractor ADT Drilling Contractor ADT Drilling Contractor ADT Drilling Method Vect RSW Protection Level D P.I.D. (eV) Casing Size 1/6 1 Auger Size 1 Auger Si	Client NSD		Helwigs	Sheet No.	of	
Drilling Method Nect Posh Rock Drilled Boring Monitoring Post Drilled Boring P.I.D. (eV) Casing Size 1/2 Auger Size		adan Short Good	Driller's Name	1 06 Fill	02/07/06	
Soil Drilled Rock Drilled Total Depth H. Depth to Groundwater/Date Piez Well Boring (ppm) Monitoring (ppm)		ADT	, ,	Hig Type	xo flobe St	00
Monitoring Description Sample Samble Sa		· ·	\mathcal{D}		a l'(z ' Auger S	ize /
Sample Description Sample Now Provided Sample Description Sample Description Sample Now Provided Sample The Sitty Sample Description Sample Description Sample Now Provided Sample The Sitty Sample Description Sample Descr	Soil Drilled	Rock Drilled	Total Depth 14. Depth to Groundw	ater/Date	Piez Well B	
D-0.7 OK Brown organic fine sity Fill Sound PG, MP, wet, routs 0.7-2 DKOINE clay my grovel and GC trace send, Stratfirst lenges at trace send, Stratfirst lenges at Black and owner streaks, a stiffing 2-3.5 unite/gray snowly grovel and rove K filow, m G, dry, N fine Sand and grovel, trace lenses of GP/GC L-5 Lt Brownish grey Sandy groves GW WG, Dy, 1005e, Some fines, NP/SP 5-8 (composite snople for volume). GM Lt Brown/Lt vrape, 5/Thy fire Sand and grovel, WG, net, mp Touts, organic Snell, MS (NSD here	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sample Sample Description	USCS Group Symbol	(ppm)	
	2-2% 3-14° 3-14° 7-14°		Sound, to, Mp, wet, routs 0.7-2 DKOINE day wy grovel. trace Sed, Stratfied Lenses. Black and maye strenks. Ast 2-3.5 Unite/grey Soundy gra and rock film, wG, dry, NP 3.5-4 Lt Brown/orage S.714 for Sand and gravel, trace lenses clay. MP, wet, WG 4-5 Lt Brownish grey Soundy g WG, DW, loose, Some fines, NP/ 5-8 (composite suple for now Lt Brown/Ltvrape, 5.114 fore Sand and gravel, ING wet mo	of GC iff we GP/m of GP/GC veres GW SP, GM. GC	21.0	

Drilling Contractor Drilling Method Vect PSSM Protection Level DP.I.D. (eV) Casing Size 11/2 Auger Size 11/2 Soil Drilled B Rock Drilled Total Depth Depth to Groundwater/Date Piez Well Boring Description Sample Description Sample Description Sample Description De	Logged By Braden Show	Grour	Hu.		t Date	Sheet No.		of	***************************************
Drilling Method West Posh Protection Level D P.I.D. (eV) Casing Size 1/6 / Auger Size 1/6 /	Drilling Contractor		Driller's Nam	<u> </u>		Rig Type	02/0	(e. 106	
Soil Drilled & Rock Drilled Total Depth Depth to Groundwater/Date Piez Well Boring (ppm) (ROSW	·		Oco Hab	Augor Sizo	
Monttoring (ppm) Sample Description Sample Description Sold Beneficial for the first street of the first street str				D					
Sample Description Sample Description Solution of Copyric graves. Solution of Copyric graves. Solution of Copyric graves.	<u> </u>		1 2						
MPKS) Sup any view to ut. Rounded John 12 1 By any view to ut. Rounded John 12 1 By any view to ut. Rounded John 15 1 By any view, April to ut. Super 15. 1. 1. (abb) in Impala Pieces 1. 1. 1. (abb) in Impala Pieces 1. 1. 1. 20 Mr. of use 1. 21 Mr. of use 1	Sample No. & Penetration/ Recovery (Feet) Sample Type SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.) Granhic Log		Descripti	ion	USCS Group Symbol	n Drilling (bb	om)	Lab Tests
3400	2-2-1/40 3-40 4-6-0-9/		MP/SP SV! 1.2-1' B] PG, V. Avy 1-1.1 (00) 1.1-2 D Sand and Q3' TYLLE 3'-4' Lt grand, nel 4-8' Lt W6, B1" SP, +vace	ack fine g ack fine g ilor - Angular blic Metal F K olive B Sraw , no Root - NG NPI - Brand Si clc sense roots Led Sim	is. Rouded, day roused, trace sould 1 HP, days, looke Piece? runs, silty fre 15t, WG, MP/SP 1. Silty sould 15P, 1605e HY Sound of grow from a 4 205! ple: composite	F11. Gm			Vo

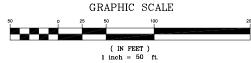
i .	EC - Region	∽ Site	8 Dry (lean	Boring/W	No.	Project	No. 1205263	6
Client NSDR			Helwigs d Elevation S	Start Date .	Sheet No.	nish Date.	of	***************************************
Drilling Contractor			Drillorio Namo	02/66/	06	02/	06.106	
	ADT		Driller's Name But			sco flot	x 5400	
Soil Drilled G			Protection Level D	196 pph	Casing Si		Auger Size	11/2
Soil Dillied	Rock Drilled		Total Depth Dep	oth to Groundwate	r/Date	Piez	Well Borin	ng P
Depth(Feet) Sample No. & Penetration/ Recovery (Feet) Sample Type	SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Graphic Log	Sam Descr		USCS Group Symbol	PI Meter God Scan God	PI Meter (3) Head Space	Lab Tests
2-4-2-4-0 3-4-0 7-4-0 7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			1.5 - 2.5 DKO Same grand, + MStiff, PG, HP 2.5 - 4 Lt brown	sup of the Sold of from said, deep from said, deep from the Soil of Dup here soil of Dup here from from from from from from from from	-6C -6M/GC -6W -6C	190 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		√ 0,
(D6B-24'.					- 			

· .	Client	ysdt	EC-P	eg.v Si		8 Dm (la Helvigs	makalan alam a am		Sheet No.	1	t No. 61205 of	1	Photography and
•	Logged By) /w(dan Sho	J Gr	ound	Elevation	Start	Date 02/01/2	do	Finish Date	104-1	106	
	Drilling Contra	ctor	ADT			Oriller's Name	oge	Buley	Rig Typ	Gco fla	bc 5	400	erinda (dere engliste de edec yle yn
	Drilling Metho	dDre	ect Rus	ih	F	Protection Level		P.I.D. (eV)	Casing	Size I'lz	Auge	r Size	1/2"
	Soil Drilled	₹'	Rock Drille	d	T	Total Depth 32	Depth t	o Groundwate	r/Date	Pie: □	z Well	Boring	Y
Si	Depth(Feet) Sample No. & Penetration/ Becovery (Feet)	Sample Type	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)	Graphic Log	0-1.5 Black	NP, WG	on d bedding, b. Dw.	USCS 全 Group Symbol	2)	PI Meter (mdd Head Space	-	El Lab Tests
>2	2-1.6/ 3-14-5 6-0.9 6-14-0 7-8-					purder, Ary (purder, Ary (2-2.5 Brum/18 5 md, growd, g w6, muist, NP fiberglass 2-5-3.5 Olive growd, subroma Sand, wet, in s 3.5-4 overgeli ground, WG, w 4-26. Black growd (fme s w6, Dry NP, 6-8 Lt Brum and growd mi	old v/ 1ca, Pc 5tiff 3rum Si ret, low 10x is. 10x is. 100sc. v orang r, well	preces of little fine in the fine in the frace The said and ose, NP(SP runn south fine gunel) e siff Sind loose, SP.	FII - CL Distro	x1.0			
	10-11-12-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	32 1	Vey 5	114/1	ine	Sud C			My	bony	U 5	Pum	
		· ·		Ę.						g Lawson	Associ	atos	

Logged By Bru	oden Show Grou	und Elevation Start Date 62 /c/6 /t	
Drilling Contractor	ADT	Driller's Name Roger Bulw	Rig Type Gco Plate 5400
Drilling Method	ect PuSh	Protection Level D P.I.D. (eV)	Casing Size 1'/2 Auger Size 1'/2
Soil Drilled &	Rock Drilled	Total Depth Depth to Groundwater/	/Date Piez Well Boring
Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sample Description 0-1.8' DK Burn Are Silly Sand of	Group Symbol Notes on Drilling PI Meter Field Scan PI Meter Head Space Head Space Lab Tests
1- 2-1-9 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		voots, PG, MP, Mast, MD ense. 1.8' to 23' Dt olive Silty fire Sind. N little line grows, net, Stiff, XG, eartenorm @ 225', MP, Roots 3-4 Lt Brens orango, clay or groves, wet, HP/MP, WG, roots, organic aloo 4-45 erange Brann. and Dt groys- Sondy grovel of Dt g-ey lease of sitt fine Sond., WG, NP/MP, Most. 4.5-5 Bink cobbie, rock floor 5-7 Lt Brann sity file sind + grovel, WG, wet, SP/NP, grande? cobbie @ 7' 7-8 Some as 5-7 but saturabled.	GM LI.O


9910003(e) L 33

September, 2006 Final


APPENDIX C

SITE SURVEY

SURVEY NOTES:

	LEGEND
└ �	UPL NYSEG UTILITY LIGHT POLE
-0-	NYSEG UTILITY POLE
××	WATER VALVE
**	WATER SEVICE VALVE
₩	GAS VALVE
Δ	SURVEY CONTROL POINT
0	MON. WELL CW-10 RIM ELEV.= 854.58' TOP PVC ELEV.= 854.17'N=764634.75 E-760549.21
0	CW-09 PAINT MARK ELEV.=935.06'
0	GV-02 PAINT MARK ELEV.=935.46'
	cab DRAINAGE CATCH BASIN
	GAS SERVICE LINE
	OVERHEAD ELECTRIC LINE
	UNDERGROUND ELECTRIC LINE
	OVERHEAD TELEPHONE LINE
	UNDERGROUND TELEPHONE LINE
	water line
	SANITARY SEWER LINE

REVISIONS

DRAWING ALTERATION

WARNING: It is a violation of the New York State Education
Low, Article 145, Section 7209, Special Provision 2, for any
person unless he is acting under the direction of a
Licensed Professional Engineer or Land Surveyor to
alter an item in any way. If an item bearing the seal
of an engineer or land surveyor is altered, the altering
engineer or land surveyor shall affix to the item his seal
and notation "attered by" followed by his signature and
date of such alteration, and a specific description of
the alteration.

LU ENGINEERS Civil and Environmental

JOSEPH C. LU ENGINEERING LAND SURVEYING, P.C. 2230 Penfield Road Penfield, New York 14526 (585) 377—1450 FAX: (585) 377—1266

PROJECT:

FORMER AMERICAN CLEANERS 3045 LAKE ROAD HORSEHEADS, NY

MACTEC ENGINERING, INC 551 CONGRESS STREET PORTLAND, ME 04101

DRAWING TITLE:

ENVIRONMENTAL MAP

DESIGNED BY: SCALE: 1"=50' DRAWN BY: JH,AM DATE: 3-13-06 CHECKED BY: CJR DRAWING No. 1 of 1

APPENDIX D

September, 2006

Final

DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT 2006 SAMPLING EVENT REGION 8 DRY CLEANERS-FORMER AMERICAN CLEANERS HORSEHEADS, NEW YORK

Introduction:

Soil, water, and air samples were collected at the Former American Cleaners site in February 2006 and submitted for off-site laboratory analyses. Samples were analyzed by Chemtech located in Mountainside, NJ. A listing of samples included in this investigation is presented in Table 1. A summary of analytical results is presented in Appendix D, Tables 1.1-1.7. Samples were analyzed for the following parameters:

- Soil: Contract Laboratory Program (CLP) procedures for volatile organic compounds (VOCs).
- Water: CLP procedures for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOC)
- Air: EPA Method TO-15 for VOCs

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 1995; NYSDEC, 2000).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 1997). Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. With the exception of the items discussed below, results are interpreted to be usable as reported by the laboratory. The following qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit J = concentration is estimated

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated R = target analyte was rejected

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

Air - Volatile Organic Compounds

Blank Contamination

Detections of 1,1,1-trichloroethane (0.76 $\mu g/m^3$, 1.2 $\mu g/m^3$) were reported in the method blanks associated with samples AMGV00200601XX and AMGV00300601XX . An action level was calculated at five times the detections reported in the blanks. Results for 1,1,1-trichloroethane were less than an action level in samples AMGV00200601XX and AMGV00300601XX and were qualified as non-detect (U).

Initial Calibration

The initial calibration had a percent relative standard deviation for 1,1,1-trichloroethane (35.27) that was greater than the validation limit of 30. In addition, the correlation coefficient associated with 4-methyl-2-pentanone (0.993) was less than the validation limit of 0.995. Results for these two compounds in samples AMGV00200601XX and AMGV00300601XX were non-detect and were qualified as estimated (UJ). The result for 1,1,1-trichloroethane in sample AMGV00100601XX was positive and was qualified as estimated (J). The result for 4-methyl-2-pentanone in sample AMGV00100601XX was non-detect and was qualified as estimated (UJ). The RRF for 1,3-butadiene (0.021) is less than the response limit of 0.05. The results for 1,3-butadiene were non-detect in samples AMGV00200601XX, AMGV00300601XX, and AMGV00100601XX and were rejected (R).

Laboratory Control Samples

The LCS had percent recoveries that were outside of laboratory control limits for dichlorodifluoromethane (144) and 1,4-dioxane (64). Samples AMGV00200601XX and AMGV00300601XX had positive results for dichlorodifluoromethane and were qualified as estimated (J). Results for 1,4-dioxane were both non-detect in these two samples and were qualified as estimated (UJ).

The LCS had a percent recovery for 1,4-dioxane (64) that was below laboratory control limits. The result for 1,4-dioxane in sample AMGV00100601XX was non-detect and was qualified as estimated (UJ).

Soil and Water Samples - Volatile Organic Compounds

Holding Times and Sample Collection

The percent solids for AMGS00101001XX (18) were determined to be less than 50%. Since percent solids were less than 50%, non-detect and positive results were qualified as estimated (J) in sample AMGS00101001XX.

Surrogates

The percent recovery for the surrogate 1,2-dichloroethane-d4 (117) was greater than laboratory control limits in sample AMGW00903401XX (RE) indicating a high bias. Positive results for AMGW00903401XX (RE) were qualified as estimated (J).

The percent recovery for the surrogate 4-bromofluorobenzene (228) was greater than the laboratory control limit in sample AMGW01002401XA indicating a high bias. Positive results in sample AMGW01002401XA were qualified as estimated (J).

Blank Contamination

Detections of acetone (5.7 to 27 µg/L and 17 to 21µg/kg), methylene chloride (0.88 to 2.1 µg/L and 2.0 to 5.3 µg/kg), and the TIC unknown22.99 were reported in the method and trip blanks, An action level was calculated at ten times the detections reported in the blanks for acetone and methylene chloride. The detections for acetone in samples AMGW00202601XX, AMGW00502701XD, AMGS00501001XX, AMGS00201201XX, AMGW01702101XA, AMGW01702601XX, AMGW01602201XX, AMGW01802401XX, AMGW0181401XA, AMGS01101401XX, AMPW00102101XX, AMGW00102601XX, AMGW00101801XA, AMGS00101001XX, AMGW00702801XX, AMGW00903401XX (RE), AMGS00401401XX (RE), AMGW00402401XA, AMGW01003401XX, AMGW01002401XA, AMGW01203401XX, AMGW01303401XX, AMGW01302401XA, and AMGW00403201XB were less than the action level and were qualified as non-detect (U). The detections for methylene chloride in samples AMGS00501001XX, AMGS00201201XX, AMGS01101401XX, AMGS00101001XX, and AMGS00401401XXRE were less than the action level and were qualified as non-detect (U). The TIC unknown22.99 was detected in sample AMGW00502701XD and was qualified as rejected (R).

<u>Initial Calibration</u>

The initial calibration had a percent relative standard deviation that was greater than the control limit of 30 for acetone (32.0). The results for acetone in samples AMGS00501001XX, AMGS00201201XX, AMGS01101401XX, AMGS00101001XX, and AMGS00401401XX (RE) were non-detect and were qualified as estimated (UJ).

Continuing Calibration

The continuing calibration had percent differences greater than the control limit of 25 for vinyl chloride (28.0), acetone (26.2), and methyl acetate (26.1). Results for these compounds in samples AMGW00202601XX, AMGW00502701XD, and AMGW00502701XX were non-detect and were qualified as estimated (UJ). Results for acetone and vinyl chloride were non-detect in samples AMPW00102101XX, AMGW00102601XX, and AMGW00101801XA and were qualified as estimated (UJ). The result for methyl acetate was positive in sample AMPW00102101XX and was

qualified as estimated (J). Results for methyl acetate in samples AMGW00102601XX and AMGW00101801XA were non-detect and were qualified as estimated (UJ).

The continuing calibration had a percent difference greater than 25 for trichlorofluoromethane (29.7). The result for trichlorofluoromethane in sample AMGS00501001XX was non-detect and was qualified as estimated (UJ).

The continuing calibration associated with sample AMGS00401401XXRE had a percent difference greater than the control limit of 25 for trichlorofluoromethane (34.9). The result for trichlorofluoromethane in sample AMGS00401401XXRE was non-detect and was qualified as estimated (UJ).

The continuing calibration associated with sample AMGS00201201XX had percent differences greater than 25 for dichlorodifluormethane (36.1), chloromethane (27.0), trichlorofluoromethane (50.2), 1,1,2-trichlorotrifluoroethane (35.8), acetone (30.3), 1,1,1-trichloroethane (25.7), 1,2-dichlorobenzene (26.3), and 1,2,4-trichlorobenzene (25.7). The results for all of these compounds in samples AMGS00201201XX and AMGS01101401XX were non-detect and were qualified as estimated (UJ).

The continuing calibration had a percent difference greater than the control limit of 25 for 2-hexanone (167.9). Results for 2-hexanone in samples AMGW00702801XX and AMGW00903401XXRE were non-detect and were qualified as estimated (UJ).

The continuing calibrations had percent differences greater than the control limit of 25 for 2-hexanone (184.0, 167.9) associated with samples AMGW01702101XA, AMGW01102601XX, AMGW00902401XA, AMGW00702801XD, AMGW00403801XX, AMGW00402401XA, AMGW01003401XX, AMGW01002401XA, AMGW01203401XX, AMGW01303401XX, AMGW01302401XA, AMGW01403401XX, AMGW01402401XA, and AMGW00403201XB. The results for 2-hexanone were all non-detect and were qualified as estimated (UJ).

Matrix Spike/Matrix Spike Duplicates

The MS/MSD associated with sample AMPW00102101XX had a percent recovery for 1,1-dichloroethene (64) that was less than laboratory control limits. The relative percent difference between the MS and MSD was also greater than laboratory control limits for 1,1-dichloroethene (27). The result for 1,1-dichloroethene in sample AMPW00102101XX was non-detect and was qualified as estimated (UJ).

Water Samples - Semivolatile Organic Compounds

Blank Contamination

Detections of bis (2-ethylhexyl)phthalate (2.0 and 94 μ g/L) and the TIC squalene were reported in the method blank associated with samples AMGW00502701XX and AMGW01002401XA (DL). An action level was calculated at ten times the detection reported in the blank for bis (2-ethylhexyl)phthalate. The detections for bis(2-ethylhexyl)phthalate in samples AMGW00502701XX and AMGW01002401XADL were less than the action level and were qualified as non-detect (U). The TIC of squalene was also detected in the sample and was qualified as rejected (R).

Initial Calibration

The initial calibration associated with sample AMGW00502701XX had a relative percent standard deviation that was greater than the control limit of 30 for 2,4-dinitrophenol (34.2). The result for 2,4-dinitrophenol in sample AMGW00502701XX was non-detect and was qualified as estimated (UJ).

Continuing Calibration

The continuing calibration associated with AMGW01002401XA had percent difference greater than the control limit of 25 for hexachlorocyclopentadiene (26.7). The result for hexachlorocyclopentadiene was non-detect in sample AMGW01002401XA and was qualified as estimated (UJ).

TABLE 1

SDG	Sample Name	Date Collected	Method	Parameter	Type
X1573	AMGW01702101XA	2/10/06	OLM 04.2	VOC	FS
X1573	AMGW01702601XX	2/10/06	OLM 04.2	VOC	FS
X1573	AMGW01602201XX	2/10/06	OLM 04.2	VOC	FS
X1523	AMPW00102101XX	2/7/06	OLM 04.2	VOC	FS
X1523	AMPW00102101MS	2/7/06	OLM 04.2	VOC	MS
X1523	AMPW00102101MD	2/7/06	OLM 04.2	VOC	MD
X1523	AMGS00101001XX	2/7/06	OLM 04.2	VOC	FS
X1523	AMGS00101001XX	2/7/06	D2216	Percent Moisture	FS
X1523	AMGS00101001MS	2/7/06	OLM 04.2	VOC	MS
X1523	AMGS00101001MS	2/7/06	D2216	Percent Moisture	MS
X1523	AMGS00101001MD	2/7/06	OLM 04.2	VOC	MD
X1523	AMGS00101001MD	2/7/06	D2216	Percent Moisture	MD
X1523	AMGW00102601XX	2/7/06	OLM 04.2	VOC	FS
X1523	AMGW00102601MS	2/7/06	OLM 04.2	VOC	MS
X1523	AMGW00102601MD	2/7/06	OLM 04.2	VOC	MD
X1523	AMGW00101801XA	2/7/06	OLM 04.2	VOC	FS
X1523	AMGV00100601XX	2/7/06	TO-15	VOC	FS
X1523	AMQT001XXX01XX	2/7/06	OLM 04.2	VOC	TB
X1588	AMGW00702801XX	2/13/06	OLM 04.2	VOC	FS
X1588	AMGW00903401XX	2/13/06	OLM 04.2	VOC	FS

SDG	Sample Name	Date Collected	Method	Parameter	Type
X1588	AMGW00902401XA	2/13/06	OLM 04.2	VOC	FS
X1588	AMQT004XXX01XX	2/13/06	OLM 04.2	VOC	TB
X1588	EBGW0003XXXXXX	2/13/06	OLM 04.2	VOC	EB
X1588	AMGW00702801XD	2/13/06	OLM 04.2	VOC	FD
X1593	AMGS00401401XX	2/14/06	OLM 04.2	VOC	FS
X1593	AMGS00401401XX	2/14/06	D2216	Percent Moisture	FS
X1593	AMGW00403801XX	2/14/06	OLM 04.2	VOC	FS
X1593	AMGW00402401XA	2/14/06	OLM 04.2	VOC	FS
X1593	AMGW01003401XX	2/14/06	OLM 04.2	VOC	FS
X1593	AMGW01002401XA	2/14/06	OLM 04.2	VOC	FS
X1593	AMGW01002401XA	2/14/06	OLM 04.2	SVOC	FS
X1593	AMGW01203401XX	2/14/06	OLM 04.2	VOC	FS
X1593	AMGW01303401XX	2/14/06	OLM 04.2	VOC	FS
X1593	AMGW01302401XA	2/14/06	OLM 04.2	VOC	FS
X1593	AMGW01403401XX	2/14/06	OLM 04.2	VOC	FS
X1593	AMGW01402401XA	2/14/06	OLM 04.2	VOC	FS
X1593	AMQT005XXX01XX	2/14/06	OLM 04.2	VOC	TB
X1593	AMGW00403201XB	2/14/06	OLM 04.2	VOC	FS
X1542	AMGS00201201XX	2/8/06	OLM 04.2	VOC	FS
X1542	AMGS00201201XX	2/8/06	D2216	Percent Moisture	FS
X1542	AMGS00501001XX	2/8/06	OLM 04.2	VOC	FS
X1542	AMGS00501001XX	2/8/06	D2216	Percent Moisture	FS
X1542	AMGW00202601XX	2/8/06	OLM 04.2	VOC	FS
X1542	AMGW00502701XX	2/8/06	OLM 04.2	VOC	FS
X1542	AMGW00502701XX	2/8/06	OLM 04.2	SVOC	FS
X1542	AMGW00502701XD	2/8/06	OLM 04.2	VOC	FD
X1542	AMGV00200601XX	2/8/06	TO-15	VOC	FS
X1542	AMGV00300601XX	2/8/06	TO-15	VOC	FS
X1542	AMQT002XXX01XX	2/8/06	OLM 04.2	VOC	TB
X1564	AMGW01102601XX	2/9/06	OLM 04.2	VOC	FS
X1564	AMGW01802401XX	2/9/06	OLM 04.2	VOC	FS
X1564	AMGW0181401XA	2/9/06	OLM 04.2	VOC	FS
X1564	AMQT003XXX01XX	2/9/06	OLM 04.2	VOC	TB
X1564	AMGS01101401XX	2/9/06	OLM 04.2	VOC	FS
X1564	AMGS01101401XX	2/9/06	D2216	Percent Moisture	FS

Reference:

New York State Department of Environmental Conservation (NYSDEC), 1995. "Analytical Services Protocols"; 10/95 Edition; October 1995.

New York State Department of Environmental Conservation (NYSDEC), 1997. "Guidance for the Development of Data Usability Reports"; Division of Environmental Remediation; September 1997.

Appendix D
Table 1.1: Soil VOC Results

Lab Sample ID	X1523	-04	X1542	-01	X1542	-02	X1564	-05	X1593	3-01	
Lab Sample Delivery Group	X152	23	X154	12	X154	12	X156	64	X159	93	
Loc Name	GS-	1	GS-	2	GS-	5	GS-1	1	GS-	4	
Field Sample ID	AMGS0010)1001XX	AMGS0020	1201XX	AMGS0050	1001XX	AMGS0110	1401XX	AMGS00401401XX		
Field Sample Date	2/7/20	006	2/8/20	06	2/8/20	06	2/9/20	06	2/14/2006		
QC Code	FS		FS		FS		FS		FS	1	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
1,1,1-Trichloroethane	56	UJ	11	UJ	11	U	10	UJ	10	U	
1,1,2,2-Tetrachloroethane	56	UJ	11	U	11	U	10	U	10	U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	56	UJ	11	UJ	11	U	10	UJ	10	U	
1,1,2-Trichloroethane	56	UJ	11	U	11	U	10	U	10	U	
1,1-Dichloroethane	56	UJ	11	U	11	U	10	U	10	U	
1,1-Dichloroethene	56	UJ	11	U	11	U	10	U	10	U	
1,2,4-Trichlorobenzene	56	UJ	11	UJ	11	U	10	UJ	10	U	
1,2-Dibromo-3-chloropropane	56		11	U	11	U	10	U	10	U	
1,2-Dibromoethane	56	UJ	11	U	11	U	10	U	10	U	
1,2-Dichlorobenzene	56	UJ	11	UJ	11	U	10	UJ	10	U	
1,2-Dichloroethane	56	UJ	11	U	11	U	10	U	10	U	
1,2-Dichloropropane	56	UJ	11	U	11	U	10	U	10	U	
1,3-Dichlorobenzene	56	UJ	11	U	11	U	10	U	10	U	
1,4-Dichlorobenzene	56	UJ	11	U	11	U	10	U	10	U	
2-Butanone	280	UJ	53	U	4.2	J	3.9	J	52	U	
2-Hexanone	280	UJ	53	U	53	U	52	U	52	U	
4-Methyl-2-pentanone	280	UJ	53	U	53	U	52	U	52	U	
Acetic acid, methyl ester	56	UJ	11	U	11	U	10	U	10	U	
Acetone	280	UJ	53	UJ	53	UJ	52	UJ	52	UJ	
Benzene	9.9	J	11	U	11	U	0.64	J	0.74	J	
Bromodichloromethane	56	UJ	11	U	11	U	10	U	10	U	
Bromoform	56	UJ	11	U	11	U	10	U	10	U	
Bromomethane	56	UJ	11	U	11	U	10	U	10	U	
Carbon disulfide	56	UJ	11	U	11	U	10	U	10	U	
Carbon tetrachloride	56	UJ	11	U	11	U	10	U	10	U	
Chlorobenzene	56	UJ	11	U	11	U	10	U	10	U	
Chlorodibromomethane	56	UJ	11	U	11	U	10	U	10	U	
Chloroethane	56	UJ	11	U	11	U	10	U	10	U	
Chloroform	56	UJ	11	U	11	U	10	U	1.1	J	
Chloromethane	56	UJ	11	UJ	11	U	10	UJ	10	U	
Cis-1,2-Dichloroethene	56	UJ	11	U	11	U	10	U	10	U	
cis-1,3-Dichloropropene		UJ	11	U	11	U	10	U	10	U	
Cyclohexane	56	UJ	11	U	11	U	10	U	10	U	
Dichlorodifluoromethane	56	UJ	11	UJ	11	U	10	UJ	10	U	
Ethyl benzene	6.6	J	0.56		0.64	J	10	U	10	U	
Isopropylbenzene	56	UJ	11	U	11	U	10	U	10	U	
Methyl cyclohexane		UJ	11		11	U	10		10		
Methyl Tertbutyl Ether	56	UJ	11	U	11	U	10	U	10	U	
Methylene chloride		UJ	11	_	11	_	10			U	
o-Xylene		UJ	11	_	11	_	10			U	

Appendix D
Table 1.1: Soil VOC Results

Lab Sample ID	X1523	-04	X1542	-01	X1542	-02	X1564	-05	X1593	-01
Lab Sample Delivery Group	X152	23	X1542 X1542		12	X156	64	X159	93	
Loc Name	GS-	GS-1		2	GS-	5	GS-1	1	GS-	4
Field Sample ID	AMGS00101001XX		AMGS0020	1201XX	AMGS0050	1001XX	AMGS0110	1401XX	AMGS0040	1401XX
Field Sample Date	2/7/2006		2/8/2006 2/8/2006		06	2/9/2006		2/14/2	006	
QC Code	FS		FS		FS		FS		FS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Styrene	56	UJ	11	U	11	U	10	U	10	U
Tetrachloroethene	56	UJ	11	U	11	U	10	U	10	U
Toluene	8.9	J	1.2	J	0.87	J	1.3	J	2.3	J
trans-1,2-Dichloroethene	56	UJ	11	U	11	U	10	U	10	U
trans-1,3-Dichloropropene	56	UJ	11	U	11	U	10	U	10	U
Trichloroethene	56	UJ	0.9	J	11	U	10	U	10	U
Trichlorofluoromethane	56	UJ	11	UJ	11	UJ	10	UJ	10	UJ
Vinyl chloride	56	UJ	11	U	11	U	10	U	10	U
Xylene, m/p	9.8	J	1.2	J	0.94	J	1	J	10	U

Results in micrograms per kilogram (µg/kg)

Samples analyzed for VOCs by Method EPA OLM04.2

QC Code:

FS = Field Sample

Qualifers:

U = Not detected at a concentration above the reporting limit

J = Result is estimated

Loc Name	2/9/2006 FS or Result Qualifier 10 U
Field Sample Date	X AMGW0181401XA 2/9/2006 FS TRESUIT QUAINFIEL 10 U
Field Sample Date 2772/06 2772	2/9/2006 FS or Result Qualifier 10 U
Parameter Result Qualifier Result Qualif	FS er Result Qualifier 10 U
Parameter	er Result Qualifier 10 U
1,1,1-frichloroethane	10 U
11,2,2-Titichloroethane	10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	10 U
11,12-Trichloroethane	10 U
1.1-Dichloroethane	10 U
1,1-Dichloroethene	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U
12,4-Trichlorobenzene	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U
12-Dibromo-3-chloropropane	10 U 10 U 10 U 10 U 10 U 10 U 10 U
12-Dibromoethane	10 U 10 U 10 U 10 U 10 U 10 U
12-Dichlorobenzene	10 U 10 U 10 U 10 U 10 U
12-Dichloroethane	10 U 10 U 10 U 10 U
12-Dichloropropane	10 U 10 U 10 U
13-Dichlorobenzene	10 U 10 U
1,4-Dichlorobenzene	10 U
2-Butanone 50 U 50	
2-Hexanone 50 U 50	
4-Methyl-2-pentanone 50 U 10 U<	50 U
Acetic acid, methyl ester 1.7 J 10 UJ 10 U	50 U
Acetone 50 W 50 W 50 W 50 W 27 JB 50 W 50 W 50 W 9.4 JB 50 U 50 W	50 U
Benzene 10 U 10	10 U
	50 U
	10 U
	1.7 J
Bromoform 10 10 10 10 10 10 10 10 10 10 10 10 10	10 U
Bromomethane 10 U 10	10 U
Carbon tetrachloride 10 U 10 U<	10 U
	10 U
Chlorodibromomethane	10 U
Childreform 10U	7.2 J
	7.2 J 10 U
Cis-12-Dichloroethene 1.3J 2.2J 10 U 10 U 1.7J 2.3J 2.3J 10 U 3.1J 10 U	10 U
Cis-1,2-Dichloropropene 10 U	10 U
Cyclohexane 10U	10 U
	10 U
Ethyl benzene 100 100 100 100 100 100 100 100 100 10	10 U
	10 U
	10 U
Methyl Technicular Energy (2001) (100 100 100 100 100 100 100 100 100 10	10 U
	10 U
0-Xylene 10 U	10 U
10 U	10 U
10 U	10 U
Toluene 10 U	10 U
Trans-1,2-Dichloroethene 10 U	10 U
Trans-1,3-Dichloropropene 10 U	10 U
Trichlorosthene 10 U 30 3.3 J 10 U 20 31 30 10 U 16 0.92 J	0.86 J
Trichlorofluoromethane 10 U	10 U
Vinyl chloride 10 UJ 10	10 U
Xylene, m/p 10 U	

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by Method EPA OLM04.2 QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

EB = Equipment Blank

Qualifers:

U = Not detected at a concentration above the reporting limit

J = Result is estimated

B = analyte found in blank in addition to sample

Lab Sample ID	X1564-04	X1573-01	X1573-02	X1573-03	X1588-01	X1588-02RE	X1588-03	X1588-04	X1588-05	X1588-06	X1593-02
Lab Sample Delivery Group	X1564	X1573	X1573	X1573	X1588	X1588	X1588	X1588	X1588	X1588	X1593
Loc Name	QC	GW-17	GW-17	GW-16	GW-7	GW-9	GW-9	QC	QC	GW-7	GW-4
							AMGW00902401XA				
Field Sample Date	2/9/2006	2/10/2006	2/10/2006	2/10/2006	2/13/2006	2/13/2006	2/13/2006	2/13/2006	2/13/2006	2/13/2006	2/14/2006
QC Code	TB	FS	FS	FŞ	FS	FS	FS	TB	EB	FD	FS
Parameter	Result Qualifier				Result Qualifier		Result Qualifier			Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	10 U 10 U	10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
1,1-Dichloroethane 1.1-Dichloroethene	10 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1.2-Dibromoethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloropropane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Butanone	50 U	50 U	50 U	50 U	50 U	50 U	50 U	1.7 J	50 U	50 U	50 U
2-Hexanone	50 U	50 UJ	50 U	50 U	50 UJ	50 UJ	50 UJ	50 U	50 U	50 UJ	50 UJ
4-Methyl-2-pentanone	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Acetic acid, methyl ester	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acetone	15 JB	50 U	50 U	50 U	50 U	50 U	50 U	25 JB	5.1 JB	50 U	290 B
Benzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromoform	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromomethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon disulfide	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon tetrachloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chlorodibromomethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cis-1,2-Dichloroethene	10 U	1 J	2.8 J	0.89 J	2.4 J	2.1 J	2.1 J	10 U 10 U	10 U	2.4 J	2.1 J
cis-1,3-Dichloropropene Cyclohexane	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U
Dichlorodifluoromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Ethyl benzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Isopropylbenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl cyclohexane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl Tertbutyl Ether	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	1.2 JB	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
o-Xylene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Toluene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethene	10 U	10 U	3.1 J	10	33	28 J	29	10 U	10 U	35	28
Trichlorofluoromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Vinyl chloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Xylene, m/p	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	0.85 J

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by Method EPA OLM04.2 QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

EB = Equipment Blank

Qualifers:

U = Not detected at a concentration above the reporting limit

J = Result is estimated

B = analyte found in blank in addition to sample

Lab Sample ID	X1593-03	X1593-04	X1593-05	X1593-06	X1593-07	X1593-08	X1593-09	X1593-10	X1593-11	X1593-12
Lab Sample Delivery Group		X1593								
Loc Name	GW-4	GW-10	GW-10	GW-12	GW-13	GW-13	GW-14	GW-14	QC	GW-4
Field Sample ID	AMGW00402401XA	AMGW01003401XX	AMGW01002401XA	AMGW01203401XX	AMGW01303401XX	AMGW01302401XA	AMGW01403401XX	AMGW01402401XA	AMQT005XXX01XX	AMGW00403201XB
Field Sample Date	2/14/2006	2/14/2006	2/14/2006	2/14/2006	2/14/2006	2/14/2006	2/14/2006	2/14/2006	2/14/2006	2/14/2006
QC Code	FS	TB	FS							
Parameter	Result Qualifier									
1,1,1-Trichloroethane	10 U									
1,1,2,2-Tetrachloroethane	10 U									
1,1,2-Trichloro-1,2,2-Trifluoroethane	10 U									
1,1,2-Trichloroethane	10 U									
1,1-Dichloroethane	10 U									
1,1-Dichloroethene	10 U									
1,2,4-Trichlorobenzene	10 U									
1,2-Dibromo-3-chloropropane	10 U									
1,2-Dibromoethane	10 U									
1,2-Dichlorobenzene	10 U									
1,2-Dichloroethane	10 U									
1,2-Dichloropropane	10 U									
1,3-Dichlorobenzene	10 U									
1,4-Dichlorobenzene	10 U									
2-Butanone	50 U									
2-Hexanone	50 UJ	50 U	50 UJ							
4-Methyl-2-pentanone	50 U									
Acetic acid, methyl ester	10 U									
Acetone	50 U	20 JB	50 U							
Benzene	10 U									
Bromodichloromethane	10 U									
Bromoform	10 U									
Bromomethane	10 U									
Carbon disulfide	10 U									
Carbon tetrachloride	10 U									
Chlorobenzene	10 U									
Chlorodibromomethane	10 U									
Chloroethane	10 U									
Chloroform	10 U									
Chloromethane	10 U									
Cis-1,2-Dichloroethene	2 J	2 J	3.8 J	1.9 J	2 J	1.5 J	2.4 J	2.2 J	10 U	2 J
cis-1,3-Dichloropropene	10 U 10 U	10 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cyclohexane		10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U 10 U
Dichlorodifluoromethane	10 U 10 U		10 U 5 J	10 U 10 U	10 U		10 U	10 U 10 U	10 U 10 U	10 U
Ethyl benzene	10 U	2 J 9.5 J	31 J	10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U
Isopropylbenzene Methyl cyclohexane	10 U	9.5 J 10 U	8.8 J	10 U						
Methyl Tertbutyl Ether	10 U	10 U	0.0 J 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	10 U									
o-Xylene	10 U									
Styrene	10 U									
Tetrachloroethene	10 U									
Toluene	10 U									
trans-1,2-Dichloroethene	10 U									
trans-1,3-Dichloropropene	10 U									
Trichloroethene	30	27	19 J	26	25	23	25	23	10 U	28
Trichlorofluoromethane	10 U									
Vinvl chloride	10 U									
Xylene, m/p	10 U	11	20 J	10 U						

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by Method EPA OLM04.2 QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

EB = Equipment Blank

Qualifers:

U = Not detected at a concentration above the reporting limit

J = Result is estimated

B = analyte found in blank in addition to sample

Appendix D
Table 1.3 Groundwater SVOC Results

Lab Sample ID	X1542	-04	X1593	-05		
Lab Sample Delivery Group	X154		X1593			
Loc Name	GW-		GW-	10		
Field Sample ID	AMGW0050		AMGW0100			
Field Sample Date	2/8/20	06	2/14/2	006		
QC Code	FS		FS			
Parameter	Result	Qualifier	Result	Qualifier		
2,4,5-Trichlorophenol	10		10			
2,4,6-Trichlorophenol	10		10			
2,4-Dichlorophenol	10		10			
2,4-Dimethylphenol	10		10			
2,4-Dinitrophenol	20		20			
2,4-Dinitrotoluene	10		10			
2,6-Dinitrotoluene	10		10	U		
2-Chloronaphthalene	10		10			
2-Chlorophenol	10		10	U		
2-Methylnaphthalene	10		10			
2-Methylphenol		U	10	U		
2-Nitroaniline	10		10			
2-Nitrophenol		U	10	U		
3,3`-Dichlorobenzidine	20		20	U		
3-Nitroaniline	10		10			
4,6-Dinitro-2-methylphenol	20		20			
4-Bromophenyl phenyl ether	10		10			
4-Chloro-3-methylphenol	10		10			
4-Chloroaniline	10	_	10			
4-Chlorophenyl phenyl ether	10		10	U		
4-Methylphenol	10		10			
4-Nitroaniline	10		10			
4-Nitrophenol	20		20			
Acenaphthene	10		10			
Acenaphthylene	10		10			
Acetophenone	10	_	210			
Anthracene	10		10			
Atrazine	10		10			
Benzaldehyde	10		10			
Benzo(a)anthracene	10		10			
Benzo(a)pyrene	10		10			
Benzo(b)fluoranthene	10		10	U		
Benzo(ghi)perylene	10		10			
Benzo(k)fluoranthene	10		10	U		
Biphenyl	10		10	U		
Bis(2-Chloroethoxy)methane	10		10			
Bis(2-Chloroethyl)ether		U	10	U		
Bis(2-Chloroisopropyl)ether	10		10			
Bis(2-Ethylhexyl)phthalate	10	U	77	U		
Butylbenzylphthalate	10	U	10	U		

Appendix D
Table 1.3 Groundwater SVOC Results

Lab Sample ID	X1542	-04	X1593	-05
Lab Sample Delivery Group	X154	2	X159	3
Loc Name	GW-	5	GW-1	10
Field Sample ID	AMGW0050	2701XX	AMGW0100	2401XA
Field Sample Date	2/8/20	06	2/14/20	006
QC Code	FS		FS	
Parameter	Result	Qualifier	Result	Qualifier
Caprolactum	10	U	10	U
Carbazole	10	U	10	U
Chrysene	10	U	10	U
Di-n-butylphthalate	10	U	10	U
Di-n-octylphthalate	10		10	U
Dibenz(a,h)anthracene	10	U	10	U
Dibenzofuran	10	U	10	U
Diethylphthalate	10	U	10	U
Dimethylphthalate	10	U	10	U
Fluoranthene	10	U	10	U
Fluorene	10	U	10	U
Hexachlorobenzene	10	U	10	U
Hexachlorobutadiene	10	U	10	U
Hexachlorocyclopentadiene	10	U	10	UJ
Hexachloroethane	10	U	10	U
Indeno(1,2,3-cd)pyrene	10	U	10	U
Isophorone	10	U	10	U
N-Nitrosodi-n-propylamine	10	U	10	U
N-Nitrosodiphenylamine	10	U	10	U
Naphthalene	10	U	5.5	J
Nitrobenzene	10	U	10	U
Pentachlorophenol	20	U	20	U
Phenanthrene	10		10	U
Phenol	10	U	10	U
Pyrene	10	U	10	U

Results in micrograms per liter (µg/L)

Samples analyzed for SVOCs by Method EPA OLM04.2

QC Code:

FS = Field Sample

Qualifers:

U = Not detected at a concentration above the reporting limit

J = Result is estimated

Appendix D
Table 1.4: Soil Vapor Results

Lab Sample ID	X1523	-11	X1542	-06	X1542	-07		
Lab Sample Delivery Group	X152	23	X154	12	X154	2		
Loc Name	GV-0)1	GV-0)2	GV-0	3		
Field Sample ID	AMGV0010	0601XX	AMGV0020	0601XX	AMGV0030	0601XX		
Field Sample Date	2/7/20	06	2/8/20	06	2/8/2006			
QC Code	FS		FS		FS			
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier		
1,1,1-Trichloroethane	7.07	BJ	2.94	UJ	0.98	UJ		
1,1,2,2-Tetrachloroethane	6.87	U	0.69	U	0.69	U		
1,1,2-Trichloro-1,2,2-Trifluoroethane	7.65	U	1.22		0.76	U		
1,1,2-Trichloroethane	5.44	U	0.54	U	0.54	U		
1,1-Dichloroethane	4.05	U	0.4	U	0.4	U		
1,1-Dichloroethene	3.97	U	0.4	U	0.4	U		
1,2,4-Trichlorobenzene	7.4	U	0.74	U	0.74	U		
1,2,4-Trimethylbenzene	4.91	U	3.24		3.19			
1,2-Dibromoethane	7.69	U	0.77	U	0.77	U		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	6.99		0.7		0.7			
1,2-Dichlorobenzene	6.01	U	0.6	U	0.6	U		
1,2-Dichloroethane	4.05	U	0.4	U	0.4	U		
1,2-Dichloropropane	4.62	U	0.46	U	0.46	U		
1,3,5-Trimethylbenzene	4.91	U	0.49	U	2.06			
1,3-Dichlorobenzene	6.01	U	0.6	U	0.6	U		
1,4-Dichlorobenzene	6.01	U	0.6	U	0.6	U		
1,4-Dioxane	7.2	UJ	0.72	UJ	0.72	UJ		
2-Butanone	5.89	U	5.04		4.03			
2-Hexanone	8.18	U	0.82	U	0.82	U		
2-Propanol	16.7		29.3		18.3			
4-Ethyltoluene	4.91	U	0.49	U	0.49	U		
4-Methyl-2-pentanone	8.18	UJ	0.82	UJ	0.82	UJ		
Acetone	210		54.6	D	49.6	D		
Allyl chloride	3.15	U	0.31	U	0.31	U		
Benzene	17.2		32.2		28.5			
Benzyl chloride	5.77	U	0.58	U	0.58	U		
Bromodichloromethane	6.71	U	0.67	U	0.67	U		
Bromoform	10.35	U	1.03	U	1.03	U		
Bromomethane	3.89	U	0.39	U	0.39	U		
Butadiene, 1,3-		R		R		R		
Carbon disulfide	3.11	U	2.98		3.89			
Carbon tetrachloride	6.3	U	0.63	U	0.63	U		
Chlorobenzene	4.62	U	0.46	U	0.46	U		
Chlorodibromomethane	8.51	U	0.85	U	0.85	U		
Chloroethane	2.66	U	0.27	U	0.27	U		
Chloroform	4.87	U	0.49	U	0.49	U		
Chloromethane	2.04	U	0.47		0.37			
Cis-1,2-Dichloroethene	3.97	U	0.63		0.4	U		
cis-1,3-Dichloropropene	4.54	U	0.45	U	0.45	U		
Cyclohexane	28.5		87.9	D	50.8			

Appendix D
Table 1.4: Soil Vapor Results

Lab Sample ID	X1523	-11	X1542	-06	X1542	-07		
Lab Sample Delivery Group	X152	23	X154	2	X154	12		
Loc Name	GV-0)1	GV-0	2	GV-0	3		
Field Sample ID	AMGV0010	0601XX	AMGV0020	0601XX	AMGV0030	0601XX		
Field Sample Date	2/7/20	06	2/8/20	06	2/8/2006			
QC Code	FS		FS		FS			
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier		
Dichlorodifluoromethane	4.95	U	2.23	J	2.38	J		
Ethyl acetate	18.7		19.4		24.5			
Ethyl benzene	4.34	U	1.91		1.3			
Heptane	31.9		79.2		54.2			
Hexachlorobutadiene	10.67	U	1.07	U	1.07	U		
Hexane	79.1		244	D	167			
Isooctane	4.66	U	0.47	U	0.47	U		
Methyl Tertbutyl Ether	3.6	U	0.36	J	0.36	U		
Methylene chloride	6.95	U	0.7	U	0.7	U		
o-Xylene	4.34	U	2.08		1.56			
Propylene	126		472	D	298	D		
Styrene	4.25	U	1.66		1.49			
Tetrachloroethene	8.83		1.97		2.44			
Tetrahydrofuran	7.66		0.59	U	0.59	U		
Toluene	16.6		34.7		24.3			
trans-1,2-Dichloroethene	3.97	U	0.4	U	0.4	U		
trans-1,3-Dichloropropene	4.54	U	0.45	U	0.45	U		
Trichloroethene	0.21	U	20.8		2.46			
Trichlorofluoromethane	5.6	U	1.29	,	1.51			
Vinyl acetate	3.52	U	0.35		0.35	U		
Vinyl bromide	4.38	U	0.44	U	0.44	U		
Vinyl chloride	2.56	U	0.26	U	0.26	U		
Xylene, m/p	8.67	U	6.76		4.9			

Results in micrograms per cubic meter ($\mu g/m^3$) Samples analyzed for VOCs by Method TO-15

QC Code:

FS = Field Sample

Qualifers:

- U = Not detected at a concentration above the reporting limit
- J = Result is estimated
- D = Result is reported from diluted run
- R = Result is rejected

Appendix D
Table 1.5: Soil VOC TICs

Matr	rix SOIL
Lab I	ID X1564-05
Sample N	No AMGS01101401XX
Samp Da	ate 2/9/2006
Parameter	Lab Result Lab Qual
2-Ethylhexyl mercaptoacetate	6.7 J
Dodecane	18 J
Dodecane, 6-methyl-	10 J
Eicosane	5.6 J
Octane, 4-ethyl-	8 J
Tetradecane	7.9 J
Tridecane	15 J
Undecane	9.9 J

Results reported in micrograms per kilogram ($\mu g/kg$) Samples analyzed for VOCs by Method EPA OLM04.2 Qualifiers:

J = Estimated Value

Appendix D
Table 1.6: Groundwater VOC TICs

	Matrix	WA	TER	WA	TER	WA	TER	WA'	ΓER	WAT	TER	WAT	ER	WAT	ER	WAT	ER
	Lab ID	X152	23-01	X152	23-07	X152	23-10	X154	2-03	X154	2-04	X1542	2-05	X1542	-08	X156	4-01
	Sample No	AMPW00	102101XX	AMGW00	102601XX	AMGW00	101801XA	AMGW00	202601XX	AMGW00	502701XX	AMGW005	02701XD	AMQT002X	XX01XX	AMGW011	02601XX
	Samp Date	2/7/2	2006	2/7/2	2006	2/7/2	2006	2/8/2	2006	2/8/2	006	2/8/20	006	2/8/20	006	2/9/2	006
Parameter		Lab Result	Lab Qual	Lab Result	Lab Qua	Lab Result	Lab Qua										
Ethyl Acetate																10	J
1-Ethyl-4-methylcyclohexane																	
3-Oxa-6-thia-2,7-disilaoctane, 2,2																	
4-Octene, 2,6-dimethyl-, [S-(E)]-																	
Benzene, 1,2,3,5-tetramethyl-																	
Benzene, 1,2,3-trimethyl-																	
Benzene, 1,3,5-trimethyl-																	
Benzene, 1-ethyl-2,3-dimethyl-																	
Benzene, 1-ethyl-2,4-dimethyl-																	
Benzene, 1-ethyl-2-methyl-																	
Benzene, 1-ethyl-3-methyl-																	
Benzene, 1-methyl-3-propyl-																	
Benzene, 1-methyl-4-propyl-																	
Benzene, 2-ethyl-1,3-dimethyl-																	
Cycloheptanemethanol																	
Cyclohexane, 1,1-dimethyl-																	
Cyclohexane, 1,3-dimethyl-, trans-																	
Cyclohexane, 1-ethyl-2-methyl-, tr																	
Cyclohexane, 1-methyl-4-(1-methyle																	
Cyclohexane, butyl-																	
Cyclohexane, propyl-																	
Cyclotetrasiloxane, octamethyl-		11	J														
Ethanedioic acid, bis(trimethylsil						5	J										
Ethyl Acetate																	
Heptane, 3,3,5-trimethyl-																	
Naphthalene, decahydro-																	
Naphthalene, decahydro-, trans-																	
Nonane, 4-methyl-																	
Octane, 3,6-dimethyl-																	
Undecane, 5,6-dimethyl-																	
unknown16.45																	
unknown16.93																	
Unknown20.79																	
unknown22.98		6.2	J					5.9	J	6	J						
unknown22.99				5.4	J												
unknown23.00						8	J										
unknown27.23																	
unknown27.32								15	J								
unknown27.33		15	J	15	J	18	J	13		15	J	14	J				
unknown27.34		10		- 15		- 10				10				5.4	J		
unknown7.13													1	5.4	<u> </u>		<u> </u>
Notes:			l	L	ſ			L		l			l	ſ		l	

Results reported in micrograms per liter ($\mu g/L$) Samples analyzed for VOCs by Method EPA OLM04.2

Qualifiers:

J = Estimated Value

Table 1.6: Groundwater VOC TICs

1	Matrix	WATE	ER	WAT	ER	WATI	ER	WAT	ER	WATE	R	WAT	TER	WAT	ER	WAT	ER
1	Lab ID	X1588-	-06	X1593	3-02	X1593	-04	X1593	3-05	X1593-05	DL	X1593	3-06	X1593	3-10	X1593	-11
Sam	iple No	AMGW0070	2801XD	AMGW004	03801XX	AMGW0100	3401XX	AMGW010	02401XA	AMGW010024	01XADL	XADL AMGW01203401X		AMGW014	02401XA	AMQT005X	XX01XX
Sam	ıp Date	2/13/20		2/14/2		2/14/20		2/14/2		2/14/20		2/14/2		2/14/2		2/14/2	
Parameter	_	Lab Result	Lab Qual	Lab Result	Lab Qua	Lab Result	Lab Qua	Lab Result	Lab Qual	Lab Result	Lab Qual						
Ethyl Acetate																	
1-Ethyl-4-methylcyclohexane				6.6	J			780	J			12	J				
3-Oxa-6-thia-2,7-disilaoctane, 2,2																5.4	J
4-Octene, 2,6-dimethyl-, [S-(E)]-								720	J								
Benzene, 1,2,3,5-tetramethyl-						78											
Benzene, 1,2,3-trimethyl-				15	J	290	J					19	J				
Benzene, 1,3,5-trimethyl-						100	J										
Benzene, 1-ethyl-2,3-dimethyl-						77	J										
Benzene, 1-ethyl-2,4-dimethyl-				5.5	J	110	J	270	J			10	J				
Benzene, 1-ethyl-2-methyl-				5.6	J												
Benzene, 1-ethyl-3-methyl-						86	J										
Benzene, 1-methyl-3-propyl-						130	J										
Benzene, 1-methyl-4-propyl-						76	J										
Benzene, 2-ethyl-1,3-dimethyl-						72	J										
Cycloheptanemethanol								360	J								
Cyclohexane, 1,1-dimethyl-								400	J								
Cyclohexane, 1,3-dimethyl-, trans-												19	J				
Cyclohexane, 1-ethyl-2-methyl-, tr								920	J								
Cyclohexane, 1-methyl-4-(1-methyle								290	J								
Cyclohexane, butyl-				7.6	J												
Cyclohexane, propyl-				9	J							13	J				
Cyclotetrasiloxane, octamethyl-																	
Ethanedioic acid, bis(trimethylsil																	
Ethyl Acetate														5.3	J		
Heptane, 3,3,5-trimethyl-												39	J				
Naphthalene, decahydro-								420	J								
Naphthalene, decahydro-, trans-				10	J												
Nonane, 4-methyl-								630	J			11	J				
Octane, 3,6-dimethyl-												18	J				
Undecane, 5,6-dimethyl-								350	J								
unknown16.45												19	J				
unknown16.93				5	J												
Unknown20.79				6.3													
unknown22.98																	
unknown22.99																	
unknown23.00																	
unknown27.23														5.1	J		
unknown27.32																	
unknown27.33		1															
unknown27.34		1															
unknown7.13		16	J														
Notes:				1													

Results reported in micrograms per liter (μ g/L) Samples analyzed for VOCs by Method EPA OLM04.2 Qualifiers:

J = Estimated Value

Appendix D **Table 1.7: Groundwater SVOC TICs**

Matrix	WATER		WA	TER	WATER			
Lab ID	X1542-04		X15	93-05	X1593-05DL			
Sample No	AMGW00	AMGW00502701XX AMGW01002401		1002401XA	AMGW01	002401XADL		
Samp Date	2/8/2	2006	2/14/2006		2/1	4/2006		
Parameter	Lab Result	Lab Qual	Lab Result	Lab Qual	Lab Result	Lab Qual		
1-Methyldecahydronaphthalene			32	J	69	JD		
2,6-Dimethyldecane			12	J				
4-Methylpropiophenone			14	J				
Benzene, 1,2,3-trimethyl-					130	JD		
Benzene, 1,2,4,5-tetramethyl-			23	J				
Benzene, 1,3,5-trimethyl-			15	J				
Benzene, 1-ethyl-3,5-dimethyl-					120	JD		
Benzene, 1-methyl-2-(1-methylethyl			53	J	110	JD		
Benzene, 1-methyl-3-propyl-					69	JD		
Cyclohexane, 1,4-dimethyl-, cis-			10	J				
Cyclohexane, 1-ethyl-2-methyl-, tr					66	JD		
Cyclohexane, butyl-			41	J	63	JD		
Cyclohexene			12	J				
Decane, 2,5,6-trimethyl-			16	J				
Decane, 4-methyl-					230	JD		
Heptane, 3-ethyl-2-methyl-			19	J	110	JD		
Nonane, 3-methyl-			36	J	240	JD		
Nonane, 3-methyl-5-propyl-			20	J				
Octane, 3,3-dimethyl-			26	J				
Oxirane, 2-methyl-2-phenyl-					100	JD		
Squalene								
Undecane, 5-methyl-					140	JD		
unknown10.13					57	JD		
unknown10.31					130	JD		
unknown10.35			51	J				
unknown10.54			18	J				
unknown6.02	2.2	J						
unknown6.77					120	JD		
unknown6.92					230	JD		
unknown6.97			33	J				
unknown7.18					80	JD		
unknown7.89			20	J				
unknown8.14					70	JD		
unknown8.66						JD		
unknown9.44					100			
unknown9.68			13	J				
unknown9.79			31					

Results reported in micrograms per liter $(\mu g/L)$

Samples analyzed for SVOCs by Method EPA OLM04.2 $\,$

Qualifiers:

Table Created by: ASZ 6/1/06 J = Estimated Value Table Checked by: KLT 07/24/06

D = Results reported from a diluted analytical run

The best of the delicated

Example Form I - Representative sample result showing CHEMIECH'S OLMO4.2 VOL Method Detection Limits

CHEMIECH

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Cli	ent:	MACTEC Inc.				Date Collect	ed:	02/0	07/06	
Pro	oject ID:	D003826 Region 8 Dry Cleaners	D003826 Region 8 Dry Cleaners-American MEC02060003				Date Received:		02/08/06	
	stomer mple No.:	AMPW00102101XX				Lab Sa ID:	mple	X152	23-01	
Te	st:	VOC-TCLVOA 4.3-10NP				SDG II) :	X15	23	
	alytical ethod:	EPA OLM04.2 - VOA				% Moi	sture:	100.	00 .	
Re	sult Type:	:				Datafi	e:	VF00	00987	
CAS Number Parameter		ResultsQ	QualifierUnits		DL	Retention Time	n	DF DIL/RE		
75	-71-8	Dichlorodifluoromethane	ND	U	ug/L	0.50		10	1	
74	-87-3	Chloromethane	ND	U	ug/L	0.50		10	1	
	-01-4	Vinyl Chloride	ND	U	ug/L	0.50		10	1	
	-83-9	Bromomethane	ND	U	ug/L	0.50		10	1	
75	-00-3	Chloroethane	ND	U	ug/L	0.50		10	1	
75	-69-4	Trichlorofluoromethane	ND	U	ug/L	0.50		10	1	
76	-13-1	1,1,2- Trichlorotrifluoroethane	ND	U	ug/L	0.50		10	1	
75	-35-4	1,1-Dichloroethene	ND	U	ug/L	0.50		10	1	
67	-64-1	Acetone	6.8	JB	ug/L	0.50		50	1	
75	-15-0	Carbon Disulfide	ND	U	ug/L	0.50		10	1	
16 4	34-04-	Methyl tert-butyl Ether	ND	U	ug/L	0.50		10	1	
79	-20-9	Methyl Acetate	1.7	J	ug/L	0.50		10	· 1	
75	-09-2	Methylene Chloride	ND	U	ug/L	0.50		10	1	
15	6-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	0.50		10	1	
75	-34-3	1,1-Dichloroethane	ND	U	ug/L	0.50		10	1	
11	0-82-7	Cyclohexane	ND	U	ug/L	0.50		10	1	
78	-93-3	2-Butanone	ND	U	ug/L	0.50		50	1	
56	-23-5	Carbon Tetrachloride	ND	U	ug/L	0.50		10	1	
15	6-59-2	cis-1,2-Dichloroethene	1.3	J	ug/L	0.50		10	1	
67	'-66-3	Chloroform	ND	U	ug/L	0.50		10	1	
71	-55-6	1,1,1-Trichloroethane	ND	U	ug/L	0.50		10	1	
10	8-87-2	Methylcyclohexane	ND	U	ug/L	0.50		10	1	
71	-43-2	Benzene	ND	U	ug/L	0.50		10	1	
10	7-06-2	1,2-Dichloroethane	ND	U	ug/L	0.50		10	1	
79	-01-6	Trichloroethene	ND	U	ug/L	0.50		10	1	
78	8-87-5	1,2-Dichloropropane	ND	U	ug/L	0.50		10	1	
	-27-4	Bromodichloromethane	ND	U	ug/L	0.50		10	1	
10	8-10-1	4-Methyl-2-Pentanone	ND	U	ug/L	0.50		50	1	

unknown22.98

unknown27.33

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	MACTEC Inc.				Date Collecte	ed:	02/0	07/06	
Project ID:	D003826 Region 8 Dry Cleaners-	American M	EC02	060003	Date Re	eceived:	02/0	08/06	
Customer Sample No.:	AMPW00102101XX				Lab Sar ID:	mple	X15	23-01	
Test:	VOC-TCLVOA 4.3-10NP	•			SDG ID	:	X15	23	
Analytical Method:	EPA OLM04.2 - VOA				% Mois	ture:	100.	00	
Result Type:					DataFil	e:	VFO	00987	
CAS Number	Parameter	Results Q	ualifi	erUnits	DL	Retenti Time		DF D	IL/RE
108-88-3	Toluene	ND	U	ug/L	0.50		10	1	
10061-02-6t-1,3-Dichloropropene		ND	U	ug/L	0.50		10	1	
	cis-1,3-Dichloropropene	ND	U	ug/L	0.50		10	1	
79-00-5	1,1,2-Trichloroethane	ND	U	ug/L	0.50		10	1	
591-78-6	2-Hexanone	ND	U	ug/L	0.50		50	1	
124-48-1	Dibromochloromethane	ND	U	ug/L	0.50		10	1	
106-93-4	1,2-Dibromoethane	ND	U	ug/L	0.50		10	1	
127-18-4	Tetrachloroethene	ND	U	ug/L	0.50		10	1	
108-90-7	Chlorobenzene	ND	U	ug/L	0.50		10	1	
100-41-4	Ethyl Benzene	ND	U	ug/L	0.50		10	1	
126777-61	m/p-Xylenes	ND	U	ug/L	0.50		10	1	
2 95-47-6	o-Yylono	ND	U	ug/L	0.50		10	1	
95-47-6 100-42-5	o-Xylene Styrene	ND	U	ug/L ug/L	0.50		10	1	
75-25-2	Bromoform	ND	U	ug/L ug/L	0.50		10	1	
98-82-8	Isopropylbenzene	ND	U	ug/L ug/L	0.50		10	1	
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L ug/L	0.50		10	1	
79-34-3 541-73-1	1,3-Dichlorobenzene	ND	U	ug/L ug/L	0.50		10	1	
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L ug/L	0.50		10	1	
95-50-1	1,2-Dichlorobenzene	ND ND	U	ug/L ug/L	0.50		10	1	
	1,2-Dictilorobenzene 1,2-Dibromo-3-								
96-12-8	Chloropropane	ND	U	ug/L	0.50		10	1	
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	0.50		10	1	
000556-67 2	-Cyclotetrasiloxane, octamethyl-	11	J	ug/L	0		0	1	TIC
		6.3	-	/1	•		0	4	TIC

6.2

15

0

ug/L

ug/L

1 TIC

1 TIC