FINAL SITE CHARACTERIZATION REPORT REGION 8 DRY CLEANERS – GROUP 2 HTS COIN OPERATED LAUNDRY & DRY CLEANERS SITE SITE NO. 8-08-038

WORK ASSIGNMENT NO. D004434-5

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, PC Portland, Maine

MACTEC: 3612062059

JULY 2007

This document was prepared for the sole use of New York State Department of Environmental Conservation, the only intended beneficiary of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering and Consulting, PC.

FINAL SITE CHARACTERIZATION REPORT REGION 8 DRY CLEANERS – GROUP 2 HTS COIN OPERATED LAUNDRY & DRY CLEANERS SITE SITE NO. 8-08-038

WORK ASSIGNMENT NO. D004434-5

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, PC Portland, Maine

MACTEC: 3612062059

JULY 2007

This document was prepared for the sole use of New York State Department of Environmental Conservation, the only intended beneficiary of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering and Consulting, PC.

Submitted by:

Charles R. Staples Task Manager

Approved by:

William J. Weber, P.E. Program Manager

TABLE OF CONTENTS

LIST OF TABLES iii
LIST OF FIGURES
LIST OF ACRONYMS
1.0 INTRODUCTION
2.0SITE BACKGROUND AND PHYSICAL SETTING2-12.1SITE LOCATION2-12.2SITE HISTORY2-12.3PREVIOUS INVESTIGATIONS2-22.4PHYSICAL SETTING2-22.5FULL RETURN2-2
 2.5 FILE REVIEW
3.0SCOPE OF WORK3-13.1GENERAL FIELD ACTIVITIES3-23.1.1Mobilization3-23.1.2Health and Safety3-23.1.3Decontamination3-23.1.4Investigation Derived Wastes3-33.2EXISTING MONITORING WELL SAMPLING3-33.3SURFACE SOIL SAMPLING3-43.4GEOPROBE® BORINGS AND SAMPLING3-43.5BASEMENT AIR SAMPLING3-73.6WATER LEVEL SURVEY3-83.7SITE SURVEY3-8
4.0DATA ASSESSMENT.4-14.1ANALYTICAL RESULTS.4-14.1.1Soil Sample Results4-34.1.2Groundwater Sample Results4-34.1.3Soil Vapor Sample Results4-44.1.4Basement Air Sample Results4-54.2POTENTIOMETRIC SURFACE MAP.4-5
5.0 INVESTIGATION FINDINGS
6.0 REFERENCES
TABLES

FIGURES

TABLE OF CONTENTS (CONTINUED)

APPENDICES

APPENDIX A	SITE OWNER RECORDS
APPENDIX B	SITE PHOTOGRAPHS
APPENDIX C	FIELD DATA RECORDS
APPENDIX D	SITE SURVEY
APPENDIX E	DATA USABILITY SUMMARY REPORT

LIST OF TABLES

Table

- 3.1 Monitoring Well Information and Water Level Data
- 4.1 Soil VOC Results
- 4.2 Groundwater VOC Results
- 4.3 Exterior Soil Vapor Results
- 4.4 Basement Air Results

LIST OF FIGURES

Figure

- 3.1 Site Map and Sampling Locations
- 3.2 Area Sampling Locations
- 4.1 PCE and TCE Results in Groundwater
- 4.2 Interpreted Groundwater Contours

LIST OF ACRONYMS

1,1,1-TCA	1,1,1-trichloroethane
ASP	Analytical Services Protocol
ASTM	American Standards of Testing and Measurements
bgs	below ground surface
Chemtech	Chemtech Consulting Group, Inc.
DUSR	Data Usability Summary Report
EDR	Environmental Data Resources, Inc.
°F	degrees Fahrenheit
MACTEC	MACTEC Engineering and Consulting, P.C.
msl	mean sea level
NYCRR	Title 6 of the New York Codes, Rules and Regulations
NYS	New York State
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PCE	tetrachloroethene
PID	photoionization detector
Report	Site Characterization Report
ROW	right of way
SC	Site Characterization

LIST OF ACRONYMS (CONTINUED)

Site	HTS Coin Operated Laundry & Dry Cleaners Site					
SVOC	semi-volatile organic compound					
TCE	trichloroethylene					
TCL	Target Compound List					
TICs	tentatively identified compounds					
μg/L	micrograms per Liter					
USEPA	United States Environmental Protection Agency					
VOC	volatile organic compound					
WA	Work Assignment					

1.0 INTRODUCTION

MACTEC Engineering and Consulting, P.C. (MACTEC), is submitting this Site Characterization (SC) Report (Report) to the New York State Department of Environmental Conservation (NYSDEC). This Report addresses the SC at the former HTS Coin Operated Laundry & Dry Cleaners site (Site) in the Village of Elmira Heights, New York (Figure 1.1). This Report was prepared in response to Work Assignment (WA) No. D0003826-29 (NYSDEC, 2006), and in accordance with the requirements of the July 1997 Superfund Standby Contract No. D003826 between the NYSDEC and MACTEC. The field work and report were conducted under WA# D0004434-5 and the April 2005 Superfund Standby Contract No. D0004434-5 between the NYSDEC and MACTEC.

This WP is one of six site-specific SC reports for the Region 8 Dry Cleaners – Group 2 multiple site, Site Characterizations WA. The other five SC work plans address the sites listed below:

- Ruddick's Dry Cleaners (Site No. 8-08-037)
- Universal Dry Cleaners (Site No. 8-08-040)
- Up to Date Cleaners (Site No. 8-26-019)
- Associated Textile Rental Services (Site No. 8-08-041-replaced Schmidt Brothers)
- Rolling Plains (Site No. 8-28-138 replaced Ace Cleaners)

The former HTS Coin Operated Laundry & Dry Cleaners site, Site No. 8-08-038, is currently listed as a potential hazardous waste site, or "P" site, by the NYSDEC, because insufficient information exists to determine whether wastes were disposed of at the site and whether, if present, those wastes pose a potential significant threat to public health or the environment (New York State (NYS), 2006).

The purpose of the SC is to provide information to be used by the NYSDEC to reclassify the site to one of the following categories:

Class 1 Hazardous waste constitutes a significant threat to public health or the environment, as described in Title 6 of the New York Codes, Rules and

Regulations (NYCRR) Part 375 (NYS, 2006); and the significant threat to public health or the environment is causing, or presents an imminent danger of causing, either irreversible or irreparable damage to the environment.

- Class 2 Hazardous waste constitutes a significant threat to public health or the environment as described in NYCRR Part 375 (NYS, 2006).
- Class 3 Hazardous waste does not presently constitute a significant threat to public health or the environment, as described in NYCRR Part 375 (NYS, 2006).

Not Classified Sites where hazardous waste disposal is not documented.

To complete its reclassification, the NYSDEC requires information to establish the following:

- The existence of documented hazardous waste disposal, as defined in 6 NYCRR Part 371 (NYS, 1999a).
- The site's significance with respect to the threat it poses to public health and the environment as defined in 6 NYCRR Part 375 (NYS, 2006).
- Identification of contaminant source.

MACTEC collected reclassification documentation and is presenting it to the NYSDEC so it can recommend follow up action for the Site (i.e., reclassify, delist, or perform additional investigation).

The WA was divided into three tasks. Task 1-Work Plan Development, included a search of state and county site records, and performance of a site inspection to develop information necessary for reclassification or delisting. Task 1 activities did not develop adequate data on which to base a delist or reclassification recommendation. Therefore, Task 2, Subsurface Investigation, was conducted. Task 3-Reporting, is the preparation of this Report. Resources used to prepare this Report include: (1) information provided in the WA, (2) appropriate guidelines in the NYSDEC Draft DER-10 Guidance (NYSDEC, 2002), (3) results of previous investigations, if applicable, and (4) results of the SC investigation.

This report is divided into five sections:

- Section 1 Introduction to the report.
- Section 2 Describes the site background and physical setting, including a summary of previous investigations.

Section 3 - Presents the work conducted during the field investigations.

Section 4 - Presents results of the field investigation.

Section 5 - Presents an investigation summary.

2.0 SITE BACKGROUND AND PHYSICAL SETTING

On May 2 and 3, 2006, MACTEC personnel reviewed available records from the NYSDEC office in Albany, New York, and visited the Chemung County, New York offices. Information was also collected from the Site owner by the NYSDEC. As part of the review, MACTEC obtained an Environmental Data Resources, Inc. (EDR) report which provides a listing of federal and state governmental information pertaining to potential and documented environmental impacts, both at the Site and within the American Standards of Testing and Measurements (ASTM) recommended search radii. Complete lists of all recommended ASTM record searches for standard due diligence requirements are included in the EDR report which was provided to the NYSDEC under separate cover. This information was reviewed to support a Site classification, and to help prepare the scope of work for the SC field investigations. The information collected from these sources is summarized below.

2.1 SITE LOCATION

The former HTS Coin Operated Laundry & Dry Cleaners site is located at 224 Oakwood Avenue in a mixed residential/commercial neighborhood of the Village of Elmira Heights, Chemung County, New York (Figure 1.1). The site property consists of approximately 0.14 acres. The Site is bordered by Oakwood Ave to the west, a pet grooming building to the north, and a small alley to the east and south. The Purolator Products Co. (formerly Facet Enterprises Superfund site), Site #808001, is located approximately 1500 feet north of the Site (TCE is the primary contaminants of concern at Site #808001). The Sullivan Street Public Supply Wells is located to the southeast of this site.

2.2 SITE HISTORY

It is not known when the Site was originally developed, but the Site building is listed as a 2-story grocer on the 1898 Sanborn Map. The structure that was reportedly used as a butcher shop (Schmidt, 2006) first appears on the 1931 Sanborn map. In addition, a structure in the general reported location of the former solvent tanks first appears on the 1931 Sanborn. According to the EDR-City Directory the site was the location of the former HTS Coin Operated Laundry & Dry

Cleaners facility from the approximately 1970 to 1990. A letter by the former Site owner (See Appendix A) claims that a coin operated dry cleaner using tetrachloroethene (PCE) was in operation from approximately 1968 to 1975, at which time the cleaner was replaced with an owner operated dry cleaner that used Valclean, a chlorofluorocarbon based solvent (Schmidt, 2006). Dry cleaning at the site ceased in approximately 1981-1982. The site building is currently used as a retail store (mattress sales) with an apartment above.

2.3 **PREVIOUS INVESTIGATIONS**

Previous site investigations have reportedly not been completed for the Site property.

The site is of concern based on the presence of chlorinated solvents in the City of Elmira's Sullivan Street Supply Well. Although other sources of chlorinated solvents exit in the Newtown Creek Aquifer, it is not known if this Site is contributing to the contamination plume. Chlorinated solvents (primarily trichloroethylene [TCE]) were first detected in the City Sullivan supply wells in the mid 1980's. Samples collected between 1981 and 1992 indicated concentrations of TCE in the Sullivan Street Wells ranging from 5.0 to 10.3 micrograms per Liter (μ g/L), in relation to a NYS groundwater standard of 5 μ g/L (NYSDOH, 1994). These wells are located approximately 1.7 miles southeast of the Site, on the west side Newtown Creek (Figure 1.1). There are two supply wells in close proximity to each other. These wells can each produce approximately 3 million gallons per day. The 18-inch diameter wells have casing set to approximately 60 feet below ground surface (bgs), with shutter screen down to 98 feet bgs. Although an air stripper was installed in the late 1990's, the wells are currently not used (LaDouce, 2005). They are turned on twice per year and sampled.

2.4 PHYSICAL SETTING

Topography

The Site is located in the Newtown Creek Valley, which runs north-south, joining the Chemung River Valley to the south, which runs east-west. The Site property is located at 878 feet above mean sea level (msl) and is relatively flat. The valley slopes slightly down to the south and east. Newtown Creek is located at an elevation of approximately 860 feet above msl 0.9 miles east of the

Site. Newtown Creek runs south, joining the Chemung River in 3.4 miles. The Chemung River is located at an elevation of approximately 835 feet above msl at the confluence with Newtown Creek. The topography to the west of the site is relatively flat for approximately 0.5 miles, and then rises to a ridge at 1600 feet above msl approximately 1.3 miles from the site. The topography east of Newtown Creek is flat for approximately 0.3 miles, and then rises sharply to a ridge at 1600 feet above msl approximately 1.9 miles from the site.

Climate

The climate of the area is characterized by moderately warm summers and cold winters. Mean monthly temperatures range from 24 degrees Fahrenheit (°F) in January to 70°F in July. Average annual precipitation is 35 inches. Average annual snowfall is 43 inches (National Climatic Data Center, 2004).

Surface Water Hydrology

Surface drainage from the site generally follows the topography, flowing toward low areas and then infiltrating into the ground. The Site property is not located within the 100 or 500 year FEMA flood zones (EDR, 2006).

Groundwater Hydrology

The Newtown Creek and eventually the Chemung River are local groundwater discharge areas. Groundwater at the Site was encountered at approximately 19 feet bgs, and based on water level measurements collected, is interpreted to flow southeast towards Newtown Creek.

Geology

Overburden soils at the site consisted of lacustrine silts, sands and gravels. Surficial geology is mapped as oxidized, non calcareous, fine sand to gravel (Muller, 1986). Based on regional geologic mapping (Rickard and Fisher, 1970) bedrock is expected to consist of shale and siltstones associated with the Upper Devonian West Falls Group, specifically, the Beers Hill Shale; Grimes Siltstone; Dunn Hill, Millport, and Moreland Shales (Rickard and Fisher, 1970).

Site Walkover

On May 3, 2006 MACTEC and the NYSDEC personnel, as well as the current and former Site property owners conducted a walkover of the Site area.

NAME	TITLE	AFFILIATION/TELEPHONE
Charles Staples	Site Lead	MACTEC Engineering and
		Consulting
		207-775-5401
Matthew Dunham	Environmental Engineer	NYSDEC Division of
	NYSDEC Project Manager	Environmental Remediation, Albany
		518-402-9812
Marty Schmidt		Former Site owner
John Schmidt		Son of former Site owner
William Goodwin		Current Site owner

SITE WALKOVER ATTENDEES

The site walkover consisted of viewing the former HTS Coin Operated and Dry Cleaners property, and the surrounding neighborhood to assess possible contamination sources and the logistical concerns for the field program. MACTEC personnel documented the walkover with photographs (Appendix B).

During the site walkover, Mr. Marty Schmidt indicated the location of a reported former above ground storage tank for PCE on the south side of the site building. Concrete footings were noted in the pavement. Visible sources of contamination (e.g., leaking drums) were not observed, however, detailed inspections of potential sources were not conducted during the site walkover.

2.5 FILE REVIEW

MACTEC reviewed files from various state and local agency offices, as well as the EDR Site report, to develop information to support a reclassification or delisting, and to help prepare the scope of work for the SC field investigations.

2.6 SUMMARY OF DATA RECORDS SEARCH AND ASSESSMENT FINDINGS

Under federal and state regulations a solid waste may be regulated as a hazardous waste if it is a material included in one of the United States Environmental Protection Agency's (USEPA) or the NYSDEC's lists of hazardous wastes. If a material is regulated because of its inclusion on a federal or state list, it is commonly referred to as a "listed hazardous waste." A waste may also be regulated under the Resource Conservation and Recovery Act (RCRA) as a "characteristic hazardous waste" if it exhibits one of the characteristics of toxicity, corrosivity, reactivity, or flammability.

Results of sampling and analysis of the Sullivan Street Supply Wells indicated the presence of chlorinated solvents (TCE) in groundwater. Spent chlorinated solvents not originating from a household sources, including TCE are included on both the USEPA's and the NYSDEC's lists of hazardous wastes. Under 6 NYCRR Part 371.4(a)(1), these spent solvents constitute hazardous waste from non-specified sources. Disposal of these chlorinated solvents has been confirmed by available analytical results from the Sullivan Street Wells, but the source area has not been identified.

As defined by 6 NYCRR Part 375, significant threat can be established by documenting a contravention of environmental standards. Surface water, soil and groundwater are the only media for which NYS has promulgated standards. Under NYS Water Quality Regulations (6 NYCRR Parts 701 to 706) the state has set numeric standards that are the maximum concentration of compounds in groundwater and surface water that protect public health and/or the environment (NYS, 1999b). In addition, standards for soils have been promulgated under the revised 6 NYCRR Part 375 Regulations (NYS, 2006).

No analytical data has been collected from the Site and therefore it was not known if the Site is the source of the TCE contamination or if the Site posed a significant threat. As a result, the SC field investigations were conducted to:

- collect the data necessary to verify the likelihood of uncontrolled waste disposal,
- determine if potential contamination on Site was migrating offsite in groundwater, and
- provide sufficient information to allow the NYSDEC to re-classify the site.

3.0 SCOPE OF WORK

To reclassify the Site, the NYSDEC requires data documenting hazardous waste disposal as set forth in 6 NYCRR Part 371, and the potential significant threat to human health and the environment as defined by 6 NYCRR Part 375. Because data necessary to determine if the chlorinated compounds present in the Sullivan Street Wells originated from the Site or if potential contamination present in Site media are migrating off-site and pose a potential significant threat to human health or the environment were not available in federal and state files reviewed during Task 1, additional field investigations were performed as described below. Task 2 activities included the Field Investigation. The objective of Task 2 activities was to determine, if possible, whether the volatile organic compounds (VOCs) detected in the city supply well originated from the Site, or whether potential onsite VOC contamination is migrating offsite. Task 3 was the preparation and distribution of the SC Data Summary Report.

TASK 2 - FIELD INVESTIGATIONS

Field investigations included:

- 1) Existing Monitoring Well Sampling
- 2) Geoprobe® Soil and Groundwater Sampling
- 3) Microwell Installation
- 4) Well Development
- 5) Basement Air Sampling
- 6) Synoptic Groundwater Measurement Round

The subsurface soil borings, groundwater monitoring well installation, subsurface soil and groundwater sample collection and well development activities were conducted from October 9 through October 13, 2006 and also from November 2 to November 3, 2006. Sample locations are shown on Figures 3.1 and 3.2.

The synoptic groundwater measurement round was conducted on November 2, 2006. A Site land survey was completed by Joseph Lu Engineers on December 14, 2006.

3.1 GENERAL FIELD ACTIVITIES

The following subsections describe the activities conducted during the field investigation, including mobilization, health and safety, and decontamination.

3.1.1 Mobilization

After receiving the NYSDEC authorization to begin fieldwork, MACTEC and its subcontractors conducted utility clearance, mobilized to the Site and began the field exploration program. Field investigations were conducted on-site from October 9 through October 13, 2006 and also from November 2 to November 3, 2006.

A field team orientation meeting was held on-site with MACTEC personnel to familiarize field workers with Site history, health and safety requirements, equipment calibration procedures, and other field procedures.

3.1.2 Health and Safety

Field investigation activities were conducted at Level D personal protection. Based on photoionization detector (PID) readings, no upgrades on personal protection were warranted.

3.1.3 Decontamination

Sampling methods and equipment for this field program were chosen to minimize investigation derived wastes and minimize possibility of cross contamination. Disposable sampling equipment was used as much as practical to minimize decontamination time and water disposal. Non disposable sampling equipment was decontaminated before and after the collection of each sample.

Non disposable sampling equipment was decontaminated by scrubbing the sample collection equipment with potable water and Liquinox, rinsing with potable water, rinsing with deionized water, and then allowing the equipment to air dry. Decontamination fluids were released on-site to the ground surface in the area of decontamination, allowing the liquid to infiltrate into the soil and

not run off-site. Decontamination fluids did not exhibit visual or olfactory evidence of contamination, so fluids were not containerized for off-site disposal.

3.1.4 Investigation Derived Wastes

The field investigation did not result in the generation of wastes that were considered hazardous (i.e., no visual or olfactory signs of contamination, and no PID readings above 5 parts per million were detected). Therefore drill cuttings and purge water resulting from the investigation were placed on the ground surface in the area of exploration and personal protective equipment and disposable sampling equipment were double bagged and disposed of as non-hazardous refuse.

3.2 EXISTING MONITORING WELL SAMPLING

Seven existing monitoring wells were sampled, six were presumed to be up gradient from the Site. Upgradient off-site wells sampled helped to assess Site groundwater conditions within the context of regional groundwater conditions. Groundwater samples were obtained from three existing groundwater wells (including MW-D13, MW-16U, and MW-16L on Figure 3.2) in the vicinity of West 17th Stret and Oakwood Avenue. Groundwater samples were collected from two existing groundwater wells (MW-7S and MW-7D) located in front of 238 Birchwood Street. А groundwater sample was collected from an existing well located in a parking lot northeast of the Site and east of College Avenue (labeled as MW-5 on Figure 3.2). Additionally, a groundwater sample was collected from an existing well located at the intersection of Elmwood Street and East 11th Street (labeled as MW-3 on Figure 3.2). These existing monitoring wells were sampled in accordance with the USEPA "low flow" guidance. Groundwater parameters including water levels, turbidity, temperature, dissolved oxygen, specific conductance, pH and redox potential were recorded in a field log and on a field data record. All low flow sampling requirements were met while sampling these five existing wells. Groundwater Field Data Records are available in Appendix C.

These samples were submitted to Chemtech Consulting Group, Inc. (Chemtech) and analyzed for Target Compound List (TCL) VOCs using USEPA OLM04.3 methods as described in the NYSDEC Analytical Services Protocol (ASP) of June 2000.

3.3 SURFACE SOIL SAMPLING

A surface soil sample was scoped in the Site Work Plan, but no obvious staining was noted and therefore a sample was not collected from the dirt basement floor of the Site building.

3.4 GEOPROBE[®] BORINGS AND SAMPLING

Field investigation activities included the drilling of Geoprobe[®] borings, the collection and analysis of groundwater, soil, and soil vapor samples, and the installation of microwells. Geoprobe[®] sampling was conducted for seven days during two separate events, from October 9 to October 13, 2006 and again from November 2 to November 3, 2006. The purpose of the activities was to provide groundwater data for comparison to NYS Class GA Groundwater Quality Standards set forth under 6 NYCRR Parts 700-705 (NYS, 1999b), and for assisting the NYSDEC in evaluating significant threat to public health and the environment as defined by 6 NYCRR Part 375 (NYS, 2006). Soil sample analyses were used to assess whether hazardous waste constituents are present in Site soils, and, if possible, confirm a source of chlorinated solvents. Soil vapor sampling results were used to evaluate whether VOCs present in soil and/or groundwater are migrating towards occupied buildings via vapor migration.

MACTEC used a Geoprobe[®] 66DT rubber-mounted track rig sampling device to collect groundwater, soil, and soil vapor samples to identify potential chlorinated solvents. The Geoprobe[®] pushed and/or hammered rods and probe tips into the subsurface for sample collection. A total of 21 borings were completed during this investigation, including 3 soil vapor borings and four microwells. A total of 31 groundwater samples, 5 soil samples and 3 soil vapor samples were collected.

MACTEC worked closely with the NYSDEC, the HTS Cleaners building owner, neighboring property owners, and utility companies while obtaining access to these exploration locations. Boring locations are shown on Figure 3.1 and 3.2 (GS locations correspond to GW locations). These locations were chosen to determine groundwater conditions upgradient and downgradient of, as well as adjacent to, the Site building. One of the borings, GW/GS-1, was completed in the vicinity of the reported former PCE above ground storage tank to determine if there had been spills at this location.

Subsurface Soil Sampling. Discrete subsurface soil samples were collected using a 4-foot long 2 inch diameter core sampler with an acrylic liner. Soil samples were collected continuously from the ground surface to five feet below the groundwater table. PID headspace readings were used to screen soil samples for the presence of VOCs as each soil sample was removed from the sample collection tube. One soil boring (SB-16) was selected for continuous soil sampling to 29 feet bgs, to better characterize site soils. Samples were described using the Unified Soil Classification System. The sample description and classification, VOC headspace reading, and boring observations were recorded on the Field Data Record, included in Appendix C. Based on the PID readings and physical evidence such as color or odor, five unsaturated soil samples were submitted to the laboratory for VOC analysis. Samples which exhibited the highest PID readings and physical evidence of contamination were selected for analysis. Soil samples were shipped to Chemtech for analyses of TCL VOCs using USEPA OLM04.3 methods as described in the NYSDEC ASP of June 2000, including calculation of % moisture. Off-site laboratory analysis included Category B deliverables.

Groundwater Sampling. Groundwater samples were collected using a small diameter stainless steel wire wound screen that was exposed to the aquifer, after being pushed to the desired depth interval. A peristaltic pump was used for the collection of discrete groundwater samples. A minimum of one tubing volume of water was purged and one set of parameters, including temperature, conductivity, pH, and turbidity, was collected prior to sampling. VOC samples were collected at a purge rate of 100 milliliters per minute, to minimize any potential volatilization.

To assess vertical extent of contamination, MACTEC attempted to collect groundwater samples from two locations in each boring, the water table and 10 feet into the water table (10 feet below the first sample). Each boring was advanced to at least 10 feet into the water table, which was encountered from 17 to 19 feet bgs.

Due to the soil formation, the actual number of samples per boring and sample collection depths varied. Only one groundwater sample was collected from four borings (GW-8, GW-9, and GW-13). No groundwater samples could be collected from GW-16. Two groundwater samples were collected at varying depths at all other boring locations. Groundwater samples were shipped to Chemtech for analyses of TCL VOCs using USEPA OLM04.3 Methods as described in the NYSDEC ASP of June 2000. In addition, one sample from boring GW-1 was collected for semi-

volatile organic compound (SVOC) analyses using USEPA OLM04.3 Methods. Two additional SVOC samples were scoped in the work plan, but could not be collected from the designated locations due to the low groundwater recharge rate. Off-site laboratory analysis included Category B deliverables.

Microwell Installation. To determine groundwater flow direction at the Site, four Geoprobe[®] borings were fitted with one-inch diameter microwells (GW-2, GW-5, GW-7 and GW-18). Microwell locations are shown on Figure 3.1. Microwell GW-2 was installed in the blacktop on the southwest corner of the site property. The second microwell, GW-5, was installed in the blacktop on the southeast corner of the site property. The third microwell, GW-7, was installed in the blacktop of the right of way (ROW) off West 14th Street, in front of Key West Tanning Salon. The fourth microwell, GW-18, was installed in the ROW off West 14th Street, due north of the Puppy Palace.

Groundwater was encountered at approximately 19 feet bgs. The one-inch diameter microwells were installed after groundwater samples were collected from each boring. The microwells were installed as piezometers and used primarily for water level measurements. Microwells were constructed with schedule 40 polyvinyl chloride, with 10 foot lengths of 0.01-inch machine slotted well screens. The well screens were set across the water table to collect surface water measurements and determine groundwater flow. The wells were constructed with a # 0 sand pack or the native soil backfill and sealed at the ground surface with cement. The wells were completed with a locking cap and a six inch flush mount cover. The wells were developed for a minimum of twenty minutes with a peristaltic pump to clean the screen and determine if the wells were conductive with groundwater. Well construction diagrams are included in Appendix C

Soil Vapor Sampling. Based on proximity to nearby residences and/or businesses, and discussions with the NYSDEC, three soil vapor samples were collected (GV-1, GV-2, GV-3) and used to evaluate the potential vapor migration of contaminants from the groundwater (Figure 3.1).

The Geoprobe[®] rods were pushed to 9 feet bgs, anticipated to be below the rain infiltration line, but above the water table fringe zone. Soil vapor was collected above the water table to give an indication of the possible vapor migration from potentially contaminated groundwater.

Soil vapor samples were collected from the Geoprobe[®] points using the Geoprobe[®] PRT system. To sample with the Geoprobe[®] PRT system, a specialized point was attached to the end of the Geoprobe[®] rods. The PRT point was exposed to the soil by allowing a disposable point to drop off the bottom of the rods while pulling the rods up 0.5 feet (after having been driven to the desired sampling depth). The PRT point allows ¹/₄-inch tubing to be threaded directly to the bottom of the rods, for a small discrete sample point. The tubing was run to the surface and connected directly to the sample collection device. The outside of the rods were sealed at the ground surface with pre-Approximately 2 liters of soil vapor, plus the volume of the tubing, was hydrated bentonite. purged at a rate of 400 ml/min using 580B OVM PID pump before collecting samples. During the soil vapor purge, vapors were screened using a PID. In addition, helium leak tests were conducted on a subset of the Region 8 Dry Cleaners Group 2 Sites soil vapor samples to ensure samples were representative of sub-surface conditions and not outdoor ambient air. Helium tests were conducted by encapsulating the sample point with a bucket sealed to the ground surface with bentonite. The encapsulated area was filled with helium. The soil vapor sample port was tested for helium breakthrough with a portable monitoring device both before and after collection of the soil vapor sample. No sample had greater than 10 percent of the tracer vapor breakthrough. The soil vapor samples were collected with one-liter SUMMA[®]-type canisters with flow valves (set to approximately 30 minutes per sample). Flow into the canisters was less than 0.1 liters per minute. Samples were sent to Chemtech for VOC analysis by USEPA Method TO-15.

3.5 BASEMENT AIR SAMPLING

Based on site observations during the field program, one basement air sample was collected. Because the basement had a dirt floor this sample is considered equivalent to a sub-slab sample, but since no additional first floor samples were collected, analytical results were compared to indoor air guidance values. The sample was collected in a 6-liter SUMMA[®]-type canister with a 24-hour flow valve. The time of sample collection, canister vacuum (in inches Hg), weather conditions, and barometric pressure was recorded in the field log book.

Approximately 24 hours after commencing sample collection, the flow valves were shut off. The time, remaining vacuum in the canister, and barometric pressure was noted in the field log book. The sample was shipped to Chemtech for analyses of VOCs via USEPA Method TO-15. Laboratory analysis included Category B deliverables.

3.6 WATER LEVEL SURVEY

Water level measurements were collected November 2, 2006. The water level round consisted of measuring water levels at the four newly installed microwells. Well caps were opened and the wells were allowed to equilibrate to atmospheric pressure. The depths of the wells as well as the depth to water were measured using a conductivity probe from the top of well risers. Groundwater table elevations were calculated from the well riser elevations (subsection 3.6). Well information and groundwater measurements are presented in Table 3.1.

3.7 SITE SURVEY

After completion of field sampling activities LU Engineers surveyed the Site, its surrounding area and microwell locations. A base map of the Site was created indicating locations of microwells and all other media sampling locations. Horizontal locations were tied to the NYS Plane Coordinate System using North American Datum of 1983. The Site plan provided horizontal locations of all relevant Site features, which included surrounding homes and businesses at a scale of 1 inch to 50 feet. Relevant features included, but are not limited to all structures, buildings, roads, fences, new monitoring wells, marked underground utilities, fire plugs, and power poles.

Vertical elevations of the four new microwells and five existing monitoring wells were tied to msl, North Atlantic Vertical Datum of 1988, and measured to an accuracy of 0.01 feet. Horizontal well measurements are accurate of 0.1 ft. The base map was used to accurately locate all Geoprobe[®] sample points, microwells, and all other media sampling locations. Temporary sample points were located using a Trimble global positioning system. Sample points are included on Figure 3.1 and 3.2, and the Joseph Lu Engineers survey map is included in Appendix D.

4.0 DATA ASSESSMENT

This section presents results of the laboratory analyses for soil, groundwater, and air samples collected during Task 2, as well as results of the water level survey.

4.1 ANALYTICAL RESULTS

Soil groundwater and indoor air analytical results were compared to appropriate standards, criteria or guidelines (SCGs). There are no exterior soil vapor standards or guidance values, but if detected concentrations exceeded the New York State Department of Health (NYSDOH) sub-slab soil vapor guidance values recommended for mitigation, these concentrations were noted as potential concerns. Reported concentrations of individual analytes indicating contravention of standards or guidelines are summarized in the following sections, and noted on Tables 4.1, 4.2, and 4.3.

A Data Usability Summary Report (DUSR) was completed in accordance with the NYSDEC's Guidance for the Development of DUSRs (NYSDEC, 1997). This report and complete analytical results, including tentatively identified compounds (TICS), are presented in Appendix E. TICS were not evaluated as part of the DUSR.

Based on laboratory or data usability review, some of the data was qualified with a J, B, D and/or an R. Compounds were qualified J if the concentration listed was an estimated value, which was less than the specified minimum reporting limit but greater than instrument detection limit. Compounds qualified J were analyzed for and determined to be present in the sample and the mass spectrum of the compound met the identification criteria of the method. The reporting limits for most target VOCs using the OLM04.3 Methods, including the target chlorinated solvents compounds were 10 μ g/L. This is above most of the NYS Class GA groundwater standards; however, the actual instrument detection limit was below the NYS Class GA groundwater standards. A list of Chemtech's instrument reporting limits for the OLM04.3 Method is included in Appendix E. Compounds qualified B indicated that the compound was found in the trip blank, or laboratory blank, and in the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte.

Compounds qualified D indicated that the compound was reported from an analytical run that required a dilution due to concentrations greater than the highest calibration standard.

Compounds qualified R indicated that the compound result was rejected during data validation. Results were deemed unusable and should not be used in the characterization of the site.

Analytical results were compared to the SCGs described below.

Soil Samples. Analytical results were compared to NYS Soil SCGs. Soil SCGs are based on the NYSDEC's Soil Cleanup Objectives (SCOs) from 1) 6 NYCRR Subpart 375-6 - Remedial Program Soil Cleanup Objectives for Unrestricted Use, and, if not listed in (1), then 2) "Technical and Administrative Guidance Memorandum 4046 (NYSDEC, 1994); Determination of SCOs and Cleanup Levels".

Groundwater Samples. Analytical results were compared to: (1) the NYS Class GA Groundwater Quality Standards from 6 NYCRR Parts 700-706 (NYS, 1999b) or, where applicable, (2) the NYS Class GA Groundwater Quality Guidance Values from the Division of Water Technical and Operational Guidance Series 1.1.1 "Ambient Water Quality Standards and Guidance Values" (NYSDEC, 1998).

Soil Vapor/Indoor Air Samples. There are currently no SCGs for concentrations of compounds in exterior soil vapor. Exterior soil vapor samples were collected to determine whether this environmental medium is contaminated, characterize the nature and extent of contamination, and identify possible sources of the contamination. The one basement air sample, although considered a sub-slab sample due to the presence of a dirt floor, was compared to the NYSDOH indoor air guidance values (currently promulgated for carbon tetrachloride, 1,1-dichloroethene, cis-1,2dichloroethene, tetrachloroethene, 1,1,1-trichloroethane, trichloroethene and vinyl chloride)(NYSDOH, 2007).

4.1.1 Soil Sample Results

A summary of target VOCs detected in soil samples is presented in Table 4.1. VOCs were not detected in soil samples above the NYSDEC Soil SCGs.

Trace concentrations of one or more of the following compounds were found at sample locations GS-3 and GS-16; 2-butanone, ethylbenzene, methylene chloride, o-xylene, PCE, toluene, and m,p-xylene.

4.1.2 Groundwater Sample Results

A summary of target VOCs detected in groundwater samples collected is presented in Table 4.2 and maximum detections of PCE and TCE per boring are presented on Figure 4.1. Because PCE is a common dry cleaning solvent and it was reportedly used at the Site, PCE results are presented on Figure 4.1, even though their were no PCE detections.

TCE was detected at sixteen of the seventeen Geoprobe[®] groundwater boring locations and all seven of the existing monitoring well locations. TCE detections range from 4.3 J μ g/L (GW-11) to 68 J μ g/L (MW-5). TCE concentrations in groundwater exceed the NYS Class GA groundwater standard for TCE of 5 μ g/L at fifteen of the seventeen groundwater boring locations and all of the existing monitoring well locations (see Table 4.1).

Cis-1,2-dichloroethene was detected at sixteen of the seventeen Geoprobe[®] groundwater boring locations and four of the seven existing monitoring well locations. Cis-1,2-dichloroethene detections range from 0.88 J μ g/L (MW-3) to 27 μ g/L (GW-7). Cis-1,2-dichloroethene concentrations in groundwater exceed the NYS Class GA groundwater standard of 5 μ g/L at thirteen of the seventeen soil boring locations and three of the five existing monitoring well locations (see Table 4.1).

Chloromethane was detected at one of the seventeen Geoprobe® groundwater boring locations (GW-11). Of the two samples from this boring, the sample with the highest detection (6.7 J μ g/L) (collected at thirty-one feet) exceeded the NYS Class GA groundwater standard of 5 μ g/L (see Table 4.1).

Vinyl chloride was detected at two of the seven existing monitoring well locations. Vinyl chloride was detected at location MW-16L at 5.5 J μ g/L, which exceeds the NYS Class GA groundwater standard of 2 μ g/L (see Table 4.1).

Trace concentrations of one or more of the following compounds were detected in samples GW-6, GW-11, GW-12, and GW-15; 2-butanone, acetic acid, acetone, benzene, chloroform, methyl cyclohexane, methylene chloride, and toluene. All results were below the NYS Class GA groundwater standards designated for these compounds (see Table 4.1).

One semi-volatile sample was collected at location GW-1. Target compound SVOCs were not detected. Because there were no SVOC detections, this sample is not presented on Table 4.1, but is included in Appendix E.

Several TICs were also detected in the VOC and SVOC groundwater samples collected. TICs are reported in Appendix E.

4.1.3 Soil Vapor Sample Results

A summary of target VOCs detected in soil vapor samples is presented in Table 4.3.

The NYSDOH has promulgated guidance values for soil vapor for TCE, PCE, 1,1,1trichloroethane (1,1,1-TCA), carbon tetrachloride, 1,1,-dichlorethene, cis-1,2-dichloroethene, and vinyl chloride. These guidance values are only applicable when evaluating sub-slab soil vapor samples in relation to indoor air concentrations, and not exterior soil vapor samples.

Although no exterior soil vapor criteria have been promulgated PCE, TCE, and 1,1,1-TCA detected in soil vapor samples were compared to the NYSDOH guidelines for sub-slab soil vapor recommending mitigation without need to consider indoor air concentrations. All results for PCE, TCE, and 1,1,1-TCA were detected at trace levels and thus well below sub-slab vapor recommendations. However, elevated concentrations of benzene, cyclohexane, heptane, hexane, and propylene were reported at sample locations GV-01 and GV-03 (see Table 4.3).

4.1.4 Basement Air Sample Results

A summary of target VOCs detected in the basement air sample is presented in Table 4.4.

The NYSDOH has promulgated guidance values for soil vapor/indoor air for TCE, PCE, 1,1,1-TCA, carbon tetrachloride, 1,1,-dichlorethene, cis-1,2-dichloroethene, and vinyl chloride. These guidance values are only applicable when evaluating sub-slab soil vapor samples in relation to indoor air concentrations, and not solely sub-slab or indoor air samples.

Low concentrations of several VOCs were detected in the basement air sample (see Table 4.4). Of the analytes with guidance values, only PCE was detected. The detected concentration was 1.77 $\mu g/M^3$ compared to a guidance indoor air value of 100 $\mu g/M^3$.

4.2 POTENTIOMETRIC SURFACE MAP

The microwell survey and depth to water measurements were used to calculate groundwater table elevations and create a potentiometric surface water map (Figure 4.2). Microwell survey and water elevation data are presented in Table 3.1. Depth to water across the survey area varied from approximately 17 feet bgs to 23 feet bgs. Groundwater elevations from MW-16U to GW-2 varied from 858.78 feet above msl, to 855.51 feet above msl. The groundwater table gradient appears to be relatively flat, varying by 3.27 feet in elevation over 1150 feet of distance, or 0.003 ft/ft (MW-16U to GW-2). Although groundwater measurements from Site microwells and MW-3, located approximately 1300 feet east/southeast of the Site, would appear to indicate that these locations are along the same gradient, MW-3 is interpreted to be cross-and slightly down gradient of the Site based on regional groundwater measurements. Interpreted groundwater flow, based on site groundwater elevations, as well as groundwater elevations measured at the other Region 8 Dry Cleaner's - Group II sites in the Elmira Valley, is to the south/southeast, towards the Newtown Creek.

5.0 INVESTIGATION FINDINGS

A review of physical and chemical data collected during the SC resulted in the following findings:

- 1) The Site is located in a residential neighborhood that is serviced by public water. Low concentrations of TCE (<10.3 μ g/L) have been detected in the City of Elmira's Sullivan Street public supply well, located approximately 1.7 miles southeast of the Site. Groundwater measurements collected at the Site and in the Newtown Creek Valley indicate that groundwater flow is generally to the south-east towards this supply well.
- 2) Chlorinated solvents were not detected above the NYSDEC Soil Cleanup objectives in the five soil samples collected. PCE, the only chlorinated solvent detected, was detected at a concentration 1000 times below the NYSDEC SCO for PCE. This detection was in a sample collected from the vicinity of the reported former PCE above ground storage tank.
- 3) PCE, a common dry cleaning solvent was reportedly used at the former dry cleaner at the Site (Schmidt, 2006). PCE was not detected in any of the groundwater samples collected, including from GW-1, which was completed in the vicinity of the reported location of the PCE above ground storage tank. As stated in Finding 2, PCE was detected at concentrations 1000 times below the SCO for PCE in the vicinity of the PCE storage tank. Based on this information, reported historic use of PCE does not appear to have resulted in soil or groundwater contamination at concentrations that would indicate a potential concern.
- 4) TCE, a NYS listed hazardous waste, was detected at locations at and adjacent to the Site at concentration up go 38 J μ g/L in comparison to the NYS standard of 5 μ g/L. The highest concentration detected was 68 μ g/L in a sample from monitoring well MW-5, located approximately 400 feet northeast of the Site, which is up, or slightly cross-gradient of the Site. TCE was detected at concentrations up to 26 μ g/L at location GW-9, located approximately 700 feet upgradient of the Site. Concentrations of TCE detected at the Site, upgradient of the Site, and downgradient of the Site, as well as slightly higher concentrations of TCE detected slightly up and cross-gradient of the Site, indicate that the Site is not likely a contributing source to the TCE detected in the Newtown Creek Aquifer, and thus in the city supply wells.
- 5) Exterior soil vapor samples and the basement indoor air sample do not indicate vapor intrusion as a potential issue at the Site.

Data Gaps.

1. The source of the TCE detected in groundwater at and in the vicinity of the Site is assumed to originate from the Purolator Products Co. (formerly Facet Enterprises Superfund Site), Site # 808001, located approximately 1500 feet upgradient of the Site, but this has not been confirmed.

6.0 **REFERENCES**

- Environmental Data Resources, Inc (EDR), 2006. EDR Radius Map with GeoCheck for Heights Dry Cleaners, 224 Oakwood, Elmira Heights, New York. May 18, 2006.
- LaDouce, 2005. Telephone conversation between MACTEC and Mark LaDouce of the Elmira Water Board. September 9, 2005.
- Muller, et al., 1986. Surficial Geologic Map of New York, Finger Lakes Sheet, New York State Museum Geologic Survey, Map and Chart Series #40. 1986.
- National Climactic Data Center (NCDC), 2004. Comparative Climactic Data for the United States, 1971 to 2000. February, 2004.
- New York State (NYS), 1999a. New York Codes, Rules, and Regulations, Title 6, Part 371 Identification and Listing of Hazardous Wastes. Amended November 1999.
- New York State (NYS), 1999b. New York Codes, Rules, and Regulations, Title 6, Part 700-706 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- New York State (NYS), 2006. New York Codes, Rules, and Regulations, Title 6, Part 375 Inactive Hazardous Waste Disposal Sites Remedial Program. Reissued October 2006.
- New York State Department of Environmental Conservation (NYSDEC), 2006. Work Assignment #D003826-29 Region 8 Dry Cleaners Group 2 letter dated March 28, 2006.
- New York State Department of Environmental Conservation (NYSDEC), 2002. Draft DER-10, Technical Guidance for Site Investigation and Remediation. December 2002.
- New York State Department of Environmental Conservation (NYSDEC), 2000. "Analytical Services Protocols"; 6/00 Edition; June 2000.
- New York State Department of Environmental Conservation (NYSDEC), 1998. Division of Water Technical and Operational Guidance Series 1.1.1: "Quality Standards and guidance Values and Groundwater Effluent Limitations"; June, 1998.

- New York State Department of Environmental Conservation (NYSDEC), 1997. "Guidance for the Development of Data Usability Reports"; Division of Environmental Remediation; September 1997.
- New York State Department of Environmental Conservation (NYSDEC), 1994. Revised Technical and Administrative Guidance Memorandum HWR 94-4046: Determination of Soil Cleanup Objectives and Cleanup Levels. January 1994.
- New York State Department of Health (NYSDOH), 2007; Letter from Gary A. Litman, Director, Bureau of Environmental Exposure Investigation, New York State Department of Health, to Dale Desnoyers, Director, Division of Environmental Remediation, New York State Department of Environmental Conservation, RE: Soil Vapor/Indoor Air Matrices, June 25, 2007.
- New York State Department of Health (NYSDOH), 2006. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", Final, October 2006.
- New York State Department of Health (NYSDOH), 1994. Public Health Assessment, Facet Enterprises. Prepared by NYSDOH. March 16, 1994.
- Rickard and Fisher, 1970. Geologic Map of New York, Finger Lakes Sheet, New York State Map and Chart Series 15. By L.V. Richard and D.W. Fisher. March, 1970.
- Schmidt, 2006. Letter from Marty Schmidt, Former owner of Heights Coin Operated Launders and Dry Cleaners building, explaining past history of Site. April, 2006.

TABLES

Location ID	Elevation Ground	Elevation (TOC)	Elevation (TOR)	Well Depth (feet BTOR) (12/06)	Depth to Water (feet BTOR) (11/02/2006)	Groundwater Elevation (11/02/2006)
MW-3	873.67	873.67	873.67	23.65	18.00	855.67
MW-D13	882.07	882.07	881.80	31.50	22.91	858.89
MW-5	878.92	881.62	881.56	32.80	25.46*	856.10*
MW-16L	880.83	880.83	880.43	32.65	21.65	858.78
MW-16U	880.87	880.87	880.09	23.28	21.31	858.78
GW-2	875.28	875.28	874.92	25.70	19.41	855.51
GW-5	872.84	872.84	872.47	22.28	17.05	855.42
GW-7	875.54	875.54	875.31	21.50	19.17	856.14
GW-18	875.67	875.67	875.27	27.42	19.74	855.53

Notes:

Wells surveyed by Joseph Lu Engineers on December 14, 2006.

Elevations in feet above mean sea level, using North Atlantic Vertical Datum of 1988.

Water level measurements collected by MACTEC Engineering.

TOC - Top of Casing

TOR - Top of Riser

BTOR - Below Top of Riser

* = Measured on 10/11/06

	Location	GS-1	GS-3	GS-6	GS-14	GS-16
	Sample Date	10/11/2006	10/11/2006	10/12/2006	10/9/2006	10/9/2006
	Sample ID	HTGS00100801XX	HTGS00300501XX	HTGS00600101XX	HTGS01400301XX	HTGS01601001XX
San	ple Depth (ft bgs)	8-10	5-7	1-3	3-5	10-12
	Qc Code	FS	FS	FS	FS	FS
Paraeter	Criteria	Result Qualifier				
2-Butanone	120	58 U	57 U	61 U	59 U	6.1 J
Ethyl benzene	1000	12 U	1.4 J	12 U	12 U	11 U
Methylene chloride	50	12 U	1.5 J	12 U	12 U	11 U
o-Xylene	260	12 U	1.4 J	12 U	12 U	11 U
Tetrachloroethene	1300	12 U	1.2 J	12 U	12 U	11 U
Toluene	700	12 U	1.3 J	12 U	12 U	11 U
Xylene, m/p	260	12 U	4.4 J	12 U	12 U	11 U
Percent Solids (%)	NA	86	87	81	85	93

Notes:

Only Detected Compounds shown. Samples analyzed for VOCs by USEPA Method OLM04.3. Percent Solids analyzed by EPA Method 160.3 Results in microgram per kilogram (μ g/kg) ft bgs = feet below ground surface QC Code: FS = Field Sample Qualifiers: U = Not detected at a concentration greater than the RL J = Estimated value Criteria = Values from Subpart 375-6.8(a)

Unrestricted Use Soil Cleanup, "Remedial Program Soil Clean-up Objectives"

(NYSDEC, 2006)
	Location	G	W-1	G	W-1	GW-2		GW-2		GW-3	
	Sample Date	10/1	1/2006	10/1	1/2006	10/1	0/2006	10/10/2006		10/1	1/2006
	Sample ID	D HTGW00102501XX		HTGW00103501XX		HTGW00202301XX		HTGW00203301XX		HTGW00302101XX	
San	ple Depth (ft bgs)		25		35		23		33		21
	Qc Code]	FS		FS		FS		FS]	FS
Parameter	Criteria	Result	Result Qualifier		Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
2-Butanone	50*	50	U	50	UJ	50 UJ		50	UJ	50	UJ
Acetic acid, methyl ester	NA	10	U	10	UJ	10 UJ		10	UJ	10	UJ
Acetone	50*	50	50 U		50 UJ) UJ	50 UJ		50	UJ
Benzene	1	10	U	10 UJ		10) UJ	10 UJ		10	UJ
Chloroform	7	10	U	10 UJ		10 UJ		10	UJ	10	UJ
Chloromethane	5	10	U	10	UJ	10 UJ		10 UJ		10	UJ
Cis-1,2-Dichloroethene	5	10		9.5	J	5.4	¦ J	9.7 J		7.1	J
Methyl cyclohexane	NA	10	U	10	UJ	10) UJ	10	UJ	10	UJ
Methylene chloride	5	10	10 U		UJ	10) UJ	10	UJ	10	UJ
Toluene	5	10 U		10	UJ	10) UJ	10	UJ	10	UJ
Trichloroethene	5	24 J		16 J		14 J		16 J		14	J
Vinyl chloride	2	10	U	10 UJ		10	10 UJ		10 UJ		UJ

	Location	G	W-3	G	W-4	GW-4		GW-5		GW-5	
	Sample Date	10/1	1/2006	10/1	0/2006	10/1	0/2006	10/10/2006		10/1	0/2006
	Sample ID	HTGW0	HTGW00303101XX		0402101XX	HTGW00403101XX		HTGW00502101XX		HTGW00503101XX	
Sam	ple Depth (ft bgs)		31		21		31		21		31
	Qc Code	de FS		FS		FS		1	FS]	FS
Parameter	Criteria	Result	Result Qualifier		Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
2-Butanone	50*	50	U	50	U	50 U		50	U	50 UJ	
Acetic acid, methyl ester	NA	10	U	10	U	10 U		10 U		10	UJ
Acetone	50*	50	50 U		50 U		U	50 U		50	UJ
Benzene	1	10	U	10 U		10	U	10 U		10	UJ
Chloroform	7	10	U	10 U		10 U		10 U		10	UJ
Chloromethane	5	10	U	10	U	10 U		10 U		10	UJ
Cis-1,2-Dichloroethene	5	11		13		18	18		J	18	J
Methyl cyclohexane	NA	10	U	10	U	10	U	10	U	10	UJ
Methylene chloride	5	10	10 U		U	10	U	10	U	10	UJ
Toluene	5	10 U		10	U	10	U	10 U		10	UJ
Trichloroethene	5	23 J		34 J		38 J		28 J		32	J
Vinyl chloride	2	10	U	10 U		10 U		10 U		10	UJ

	Location	GV	W-5	G	W-6	GW-6		GW-7		GW-7			
	Sample Date	10/10)/2006	10/12	2/2006	10/1	2/2006	10/12/2006		10/12	2/2006		
	Sample ID	HTGW00	HTGW00503101XD		HTGW00602301XX		HTGW00603301XX		HTGW00702301XX)702301XD		
San	ple Depth (ft bgs)	31		23		33		23		2	23		
	Qc Code	Qc Code FD		FS		FS		FS		I	FD		
Parameter	Criteria	Result	Result Qualifier		Result Qualifier		Result Qualifier		Result Qualifier		Qualifier		
2-Butanone	50*	50	UJ	50	U	50 U		50	U	50 U			
Acetic acid, methyl ester	NA	10	UJ	10	U	10 U		10 U		10	U		
Acetone	50*	50	50 UJ		50 U		50 U		50 U		U		
Benzene	1	10	UJ	10 U		10	10 U		10 U		U		
Chloroform	7	10	UJ	10 U		J 10 U 1.2 J		1.2 J		10	U	10	U
Chloromethane	5	10	UJ	10	U	10 U		10 U		10	U		
Cis-1,2-Dichloroethene	5	16	J	20	J	19	19			25			
Methyl cyclohexane	NA	10	UJ	10	U	10	U	10	U	10	U		
Methylene chloride	5	10 UJ		10	U	0.81	J	10	U	10	U		
Toluene	5	10 UJ		10	U	10	U	10 U		10	U		
Trichloroethene	5	27 J		31 J		30		40		38			
Vinyl chloride	2	10	UJ	10 U		10 U		10 U		10	U		

	Location	G	W-7	G	W-8	GW-9		GW-10		GW-10	
	Sample Date	10/12	2/2006	10/12	2/2006	11/3	3/2006	10/11/2006		10/1	1/2006
	Sample ID	HTGW0	HTGW00703301XX		HTGW00802601XX		HTGW00902701XX		HTGW01002501XX		1003101XX
San	ple Depth (ft bgs)		33		26		27		25		31
	Qc Code	FS]	FS		FS]	FS]	FS
Parameter	Criteria	Result	Result Qualifier		Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
2-Butanone	50*	50	U	50	U	50) U	50	U	50	U
Acetic acid, methyl ester	NA	10	U	10	U	10 UJ		10	U	10	U
Acetone	50*	50	50 U		50 U		U	50 U		50	U
Benzene	1	10	U	10 U		10	U	10 U		10	U
Chloroform	7	10	U	10 U		10 U		10 U		10	U
Chloromethane	5	10	U	10	U	10 U		10 U		10	U
Cis-1,2-Dichloroethene	5	3.9	J	2	J	6.2	6.2 J		J	13	
Methyl cyclohexane	NA	10	U	10	U	10	U	10	U	10	U
Methylene chloride	5	10	10 U		U	10	U	10	U	10	U
Toluene	5	10 U		10 U		10	U	10 U		10	U
Trichloroethene	5	7.9 J		20		26		15 J		21	J
Vinyl chloride	2	10	U	10 U		10 U		10 U		10	U

	Location	GV	V-11	GV	W-11	GW-12		GW-12		GW-13	
	Sample Date	10/12	2/2006	10/12	2/2006	10/1	2/2006	10/12	2/2006	11/3	3/2006
	Sample ID	HTGW01	HTGW01102301XX		HTGW01103101XX		HTGW01202301XX		HTGW01203101XX		1302701XX
San	ple Depth (ft bgs)	23		31		23		31			27
	Qc Code	1	FS		FS		FS	I	TS]	FS
Parameter	Criteria	Result	Result Qualifier		Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
2-Butanone	50*	4	J	6.3	J	3.2	3.2 J		J	50 UJ	
Acetic acid, methyl ester	NA	2.1	J	10	U	10 U		10	U	10	UJ
Acetone	50*	50	50 U		50 U		50 U		16 J		UJ
Benzene	1	10	U	0.8 J		10	U	0.84	J	10	UJ
Chloroform	7	1	J	1.1 J		10 U		10	U	10	UJ
Chloromethane	5	3.9	J	6.7 J		10	10 U		10 U		UJ
Cis-1,2-Dichloroethene	5	2.1	J	3	J	2.2	2.2 J		J	10	UJ
Methyl cyclohexane	NA	10	U	10	U	10	U	0.97	J	10 UJ	
Methylene chloride	5	10	10 U		U	10	U	10	U	10	UJ
Toluene	5	10 U		10	U	10	10 U 1.3 J		J	10	UJ
Trichloroethene	5	4.3 J		4.8 J		8.3 J		8.3 J 11 J		10	UJ
Vinyl chloride	2	10	U	10 U		10 U		10 U		10	UJ

	Location	GV	N-14	GV	N-14	GW-15		GW-15		GW-17		
	Sample Date	10/9	/2006	10/9	/2006	11/2	2/2006	11/2/2006		11/3	3/2006	
	Sample ID	HTGW01	HTGW01402501XX		HTGW01403501XX		HTGW01502501XX		HTGW01503401XX		1702101XX	
Sam	ple Depth (ft bgs)		25		35		25		34		21	
	Qc Code	FS		FS		FS		1	FS	1	FS	
Parameter	Criteria	Result	Result Qualifier		Result Qualifier		Result Qualifier		Result Qualifier		Qualifier	
2-Butanone	50*	50	U	50	U	50 U		50	U	50 U		
Acetic acid, methyl ester	NA	10	U	10	U	10 UJ		10 UJ		10	UJ	
Acetone	50*	50	50 U		50 U		U	50 U		50	U	
Benzene	1	10	U	10 U		10	U	10 U		10	U	
Chloroform	7	10	U	10 U		1.3 J		1.3 J		10	U	
Chloromethane	5	10	U	10 U		10 U		10 U		10	U	
Cis-1,2-Dichloroethene	5	23		17		9.5	9.5 J		J	7	J	
Methyl cyclohexane	NA	10	U	10	U	10	U	10	U	10	U	
Methylene chloride	5	10	10 U		U	10	U	10	U	10	U	
Toluene	5	10 U		10	U	10	U	U 10 U		10	U	
Trichloroethene	5	9.1 J		15		35		42		47		
Vinyl chloride	2	10	10 U		10 U		10 U		U 10 U		10	U

	Location	GV	N-17	GV	W-18	GW-18		MW-3		MW-5	
	Sample Date	11/3	3/2006	10/1	1/2006	10/1	1/2006	10/3	/2006	10/1	1/2006
	Sample ID	HTGW01	HTGW01703401XX		HTGW01802401XX		HTGW01803101XX		HTMW00301801XX		0503001XX
Sam	ple Depth (ft bgs)		34		24		31		18		30
	Qc Code	FS		FS		FS		1	FS]	FS
Parameter	Criteria	Result	Result Qualifier		Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
2-Butanone	50*	50	U	50	UJ	50	U	50	U	50	UJ
Acetic acid, methyl ester	NA	10	UJ	10	UJ	10 U		10 U		10	UJ
Acetone	50*	50	50 U		50 UJ		U	50 U		50	UJ
Benzene	1	10	U	10 UJ		10	U	10 U		10	UJ
Chloroform	7	10	10 U		10 UJ		10 U		U	10	UJ
Chloromethane	5	10	U	10	UJ	10 U		10 U		10	UJ
Cis-1,2-Dichloroethene	5	9.7	J	25	J	22	;	0.88	J	13	J
Methyl cyclohexane	NA	10	U	10	UJ	10	U	10	U	10	UJ
Methylene chloride	5	10	10 U		UJ	10	U	10	U	10	UJ
Toluene	5	10 U		10	UJ	10	U	J 10 U		10	UJ
Trichloroethene	5	53		45 J		40 J		25		68	J
Vinyl chloride	2	10	U	10 UJ		10 U		10 U		10	UJ

	Location	MW	/-D13	MW-16U		MW-16L		MW-7S		MW-7D	
	Sample Date	10/3	/2006	10/4	/2006	10/4	4/2006	5/10/2007		5/9/	/2007
	Sample ID	HTMWD	HTMWD1302601XX		HTMW16U02201XX		HTMW16L03001XX		HTMW07S02502XX		7D03502XX
Sam	ple Depth (ft bgs)	2	26		22		30		25		35
	Qc Code	FS		FS			FS	I	FS]	FS
Parameter	Criteria	Result	Result Qualifier		Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
2-Butanone	50*	50	U	50	U	50	U	50	U	50 U	
Acetic acid, methyl ester	NA	10	U	10	U	10 U		10 UJ		10	UJ
Acetone	50*	50	50 U		50 U		50 U		50 UJ		UJ
Benzene	1	10	U	10 U		10	U	10 U		10	U
Chloroform	7	10	U	10 U		10 U		10	U	10	U
Chloromethane	5	10	U	10	U	10 U		10 U		10	U
Cis-1,2-Dichloroethene	5	10	U	6.4	J	9.8	J	10	U	10	U
Methyl cyclohexane	NA	10	U	10	U	10	U	10	U	10	U
Methylene chloride	5	10	10 U		U	10	U	10	UJ	10	U
Toluene	5	10 U		10	U	10	U	10	U	10	U
Trichloroethene	5	15		11		10		5.5 J		5.9	J
Vinyl chloride	2	10	U	0.97 J		5.5 J		10 U		10	U

	Location	MW-7D
	Sample Date	5/9/2007
	Sample ID	HTMW07D03502XD
Samp	le Depth (ft bgs)	35
	Qc Code	FD
Parameter	Criteria	Result Qualifier
2-Butanone	50*	50 U
Acetic acid, methyl ester	NA	10 UJ
Acetone	50*	50 UJ
Benzene	1	10 U
Chloroform	7	10 U
Chloromethane	5	10 U
Cis-1,2-Dichloroethene	5	10 U
Methyl cyclohexane	NA	10 U
Methylene chloride	5	10 U
Toluene	5	10 U
Trichloroethene	5	6.4 J
Vinyl chloride	2	10 U

	Location	GV	/-01	GV	/-02	GV	/-03	
	Sample Date	10/13	3/2006	10/13/2006		10/13/2006		
	Sample ID	HTGV00	100801XX	HTGV00200801XX		HTGV00300801XX		
	Task Name	Remedial I	nvestigation	Remedial I	nvestigation	Remedial I	nvestigatior	
	Qc Code	ŀ	S	F	rs ő	F	S	
Paraeter	_	Result	Qualifier	Result	Qualifier	Result	Qualifier	
1,1,1-Trichloroethane		30.5		1.09	U	27.74	U	
1,1,2-Trichloro-1,2,2-Trifluo	roethane	29.7		4.28		39.01	U	
1,2,4-Trimethylbenzene		14.5		0.98	U	25.03	U	
1,3,5-Trimethylbenzene		6.38		0.98	U	25.03	U	
2-Butanone		14.5		4.12		29.45	U	
2-Propanol		0.98	U	2.5		24.54	U	
4-Ethyltoluene		7.95		0.98	U	25.03	U	
Acetone		0.95	U	30.4		23.72	U	
Benzene		47.7		2.81		76.5	D	
Carbon disulfide		13.2		5.97		15.85	U	
Chloroethane		0.69		0.53	U	13.56	U	
Chloroform		1.75		0.97	U	24.82	U	
Chloromethane		2.49		0.57		10.43	U	
Cyclohexane		311	D	1.81		265	D	
Dichlorodifluoromethane		2.47		2.28		25.24	U	
Ethyl benzene		12.2		0.87	U	22.11	U	
Heptane		505	D	1.64		269	D	
Hexane		1326	D	28.3		945	D	
Isooctane		0.93	U	4.57		23.78	U	
Methylene chloride		3.62		4.52		34.76	U	
o-Xylene		2.69		0.87	U	22.11	U	
Propylene		542	J	19.2		1626	D	
Tetrachloroethene		4.35		1.36	U	34.63	U	
Toluene		25.1		6.17		21.1	D	
Trichloroethene		3.11		1.07	U	35.5	D	
Trichlorofluoromethane		3.47		1.79		28.58	U	

77.8

2.08

43.35 U

Table 4.3: Exterion Soil Vapor Results

Notes:

Xylene, m/p

Only Detected Compounds shown. Samples analyzed for VOCs by USEPA Method TO-15. Results in microgram per cubic meter (µg/m3) QC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated value

D = Result is reported from a diluted analytical run

E = Result exceeded the calibration curve of the instrument

Table 4.4:	Basement Air	Results
-------------------	---------------------	---------

	Location	BA	-01
	Sample Date	10/12/	2006
	Sample ID	HTSV0012	XXX01XX
	Task Name	Remedial Ir	vestigation
	QC Code	F	S
Paraeter	Guidance Value	Result	Qualifier
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	0.84	
2-Butanone	NA	1.09	
Benzene	NA	0.99	
Carbon disulfide	NA	0.44	
Chloromethane	NA	0.86	
Cyclohexane	NA	0.77	
Dichlorodifluoromethane	NA	2.28	
Heptane	NA	0.7	
Hexane	NA	4.99	
Methylene chloride	NA	17.8	
Tetrachloroethene	100	1.77	
Toluene	NA	6.51	
Trichlorofluoromethane	NA	1.74	

Only Detected Compounds shown. Samples analyzed for VOCs by USEPA Method TO-15. Results in microgram per cubic meter (µg/m3) QC Code:

FS = Field Sample

Guidance Value = Indoor air guidance value from the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, Final, October 2006, and the Letter from Gary A. Litman, Director, Bureau of Environmental Exposure Investigation, New York State Department of Health, to Dale Desnoyers, Director, Division of Environmental Remediation, New York State Department of Environmental Conservation, RE: Soil Vapor/Indoor Air Matrices, June 25, 2007. NA = Not available FIGURES

ec1\proje egion_8_Dry_C

s\Region_8_Dry_Cleaners_II\4.0_Delive

Legend

Microwell (groundwater elevation)

Ν

100

200

Feet

- Existing Monitoring Well (groundwater elevation)
- Interpreted Groundwater Contours
- Approximate Site Property Lines

Notes: 2002 Aerial photograph from NYS GIS Clearinghouse Wells Surveyed by Joseph Lu Engineers, December 14, 2006. Groundwater elevations in feet above mean sea level, NAVD 88. Water levels collected by MACTEC in October and November 2006. Groundwater contours approximated from measured elevations in the general Elmira Valley.

> NYSDEC HTS Dry Cleaners Site Elmira Heights, NY

Interpreted Groundwater Contours

Prepared/Date: CRS 07/23/07

Checked/Date: JWP 07/23/07

Project 3612-06-2059

Figure 4.2

Document: P:\Projects\nysdec1\projects\Region_8_Dry_Cleaners_II\4.0_Deliverables\4.5_Databases\GIS\mapdocument\Heights.mxd PDF: P:\Projects\nysdec1\projects\Region_8_Dry_Cleaners_II\4.0_Deliverables\4.1_Reports\HTS\Figures\Fig_4.2_GW.pdf 07/23/2007 11:21 AM crstaples

APPENDIX A

SITE OWNER RECORDS

April 30, 2006

To Whom It May Concern:

What follows is a time line of when the property at 224 Oakwood Avenue, Elmira Heights, New York, contained dry cleaning machinery. As the times that the dry cleaning equipment in question was on this property were from thirty-eight years ago to about twenty-five years ago, some of this time frame is approximated.

224 Cakwood are

<u>January, 1968</u> -- The Heights Coin-Op and Dry Cleaning business opened at the above listed address. The business was a coin-operated laundramat, which contained two coin operated dry cleaning machines. These machines used Perchlorethylene as the cleaning agent. The owners of the business at that time recall that they purchased the Perchlorethylene from Brewer Oil Co. of Elmira, NY. They aver that the used cleaning agent was never dumped on the property nor disposed of through the sewer system.

1975 – At some time during 1975, the old coin operated machines were removed by Statewide Machinery of Rochester, NY, and replaced with one new machine that was not coin operated but was operated by the owners. This machine used Valclean as the cleaning agent.

<u>1981 or 1982</u> – The dry cleaning machine was removed and dry cleaning was never done on this property again.

Notes on the cleaning agents used at 224 Oakwood Avenue, Elmira Heights, NY:

Perchlorethylene

Perchlorethylene is a derivative of tetrachlorethylene, which, along with trichlorethylene, also was, and is, used as an industrial solvent.

Valclean

Valclean is a chlorofluorocarbon based cleaning agent that was evaporated by the drying cycle of the dry cleaning machine.

Summary

The years of 1968 to 1975 were the only years that any chemical derivative of tetrachlorethylene was used.

Other possible sources of trichlorethylene or tetrachlorethylene in the vicinity of 224 Oakwood Avenue, Elmira Heights, NY

- Less than one-half mile to the North is the site of the former Bendix Corporation, which was designated as a toxic "brown field" at sometime around 1990.
- About five hundred yards to the West of the old Bendix site there was the American Bridge plant, which manufactured steel.
- About one mile to the south is the former Hardinge, Inc. plant, which manufactured machine tools.
- About one-half mile south of the former Hardinge plant was a General Electric Foundry that produced cast iron.
- Just to the North of the Sullivan Street site is Eastern Metal, which manufactures metal signs.
- One-half mile North of Eastern Metal is Image Now, a printing company that is on the site of the former Artistic Greetings that was also a major printer.
- There are numerous sites that housed auto dealerships or auto repair garages between Oakwood Avenue and Sullivan Street.
- There are numerous sites that housed commercial dry cleaning business between Oakwood Avenue and Sullivan Street.

This list contains businesses or industries that could have used trichlorethylene or tetrachlorethylene as part of their daily operations. The list contains only those businesses that I can recall as I sit here writing this - a thorough investigation would most likely discover more businesses that would have had reason to use these chemicals. Most of these companies were in business a lot longer than the dry cleaning operation at 224 Oakwood Avenue, Elmira Heights, NY, and many of them operated on a much larger scale.

These are the pertinent facts as I see them. Please call me if more

APPENDIX B

SITE PHOTOGRAPHS

SITE PHOTOGRAPHS HTS COIN OPERATED LAUNDRY & DRY CLEANERS SITE

View looking east at Site (Empire Mattress Store is former Dry Cleaners).

Looking northeast – Geoprobe drilling GW-2.

Looking southwest towards Site (gray 2-story building). Drilling GW-7.

Looking southeast at property (two story gray building).

Looking west into basement. Concrete base and metal supports on left side reportedly installed to support former dry cleaning equipment on floor above.

Looking east across basement.

APPENDIX C

FIELD DATA RECORDS

JOB NO. 3612062059/022 SHEET 1 ÖF ΜΑСΤΕС PHASE INDER AV Supplitysk 02 JOB NAME REGION YD. C. Grup 2 - HTS MACTEC Engineering and Consulting, Inc. Brandon A. Shaw DATE 10/2/2016 511 Congress Street, P.O. Box 7050 Portland, ME 04112-7050 CHECKED BY DATE Oakwood Ave. N 40' 5 Icak window Sement etures Pumace (15100) Brick -80' Eleaky Scuple Winder for BA-1 2'Cerner Furnace * foundation Walks > Block, Stone Enerator ? Stucco; Some bricks; Waterline Centerfed old Door Ven dutside

FIELD DATA RECORD - LOW FLOW GROUNDWAT	TER SAMPLING
PROJECT Region 8 Group 2 Dry Cleaners SAMPLE I.D. N	NUMBER HTMW07507502KK SAMPLE TIME 0846
	SITE HTS. DATE 05/10/07
TIME START 0720 END (0572 JOB N	NUMBER 3012007059 FILE TYPE MISDEC
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT	Flush mont
X TOP OF WELL RISER TOP OF PROTECTIVE CA	ASING CASING STICKUP
INITIAL DEPTH 19.70 ET WEIT DEPTH 30.76	
FINAL DEPTH	FT AMBIENT AIR 20-1 PPM DIAMETER 2-MC IN
TO WATER	FT MOUTH VELL VES NO N/A
DRAWDOWN VOLUME (initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) COLUME (initial - final x 0.16 {2-inch} or x 0.65 {4-inch})	UME PRESSURE LOCKED LOCKED LOCKED
TOTAL VOL.	REFILL DISCHARGE
(purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliters	er) SETTING SECONDS TIMER SECONDS
PURGE DATA SPECIFIC	PH DISS 02 TURBIDITY REDOX INTAKE
TIME WATER (ft) RATE (ml/m) (deg. c) (ms/cm)	(units) (mg/L) (ntu) (mv) DEPTH (ft) COMMENTS
195 19.72 200 15.4 0.591 1	4 7.4 750 70 1 H
0800 9.72 200 3.7 0.571	6.8 7.5 370 40 Cloudy, argwar
0805 19-12 200 13.5 0.561 1810 1977 200 13.4 2545	1.0 7.0 320 20 ordnige
0815 19.72 200 13.5 0.561	7.2 7.0 146 30
0820 19.72 200 13.5 0.561 1	1926.9 150 30
0825 14.72 200 13.5 0.561	577 6.9 120 40
083 14.72 700 135 565 5	7.3 6.3 100 40
0840 Sample time	Sample time
opp pump off	
ODUTINISTICA (MW-1)	
	1,
	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL
MIRSCHAR BLADDER X SILASTIC	STAINLESS STEEL OTHER_MME
	OTHER VOWC
ANALYTICAL PARAMETERS To Be Collected METHOD	PRESERVATION VOLUME SAMPLE
X VOC 8260B	METHOD REQUIRED COLLECTED HCL / 4 DEG. C 3 X 40 mL X VOC
PEST/PCBs CLP	4 DEG. C 2 X 1 L AG SVOC 4 DEG. C 2 X 1 L AG PEST / PCBs
TAL INORGANICS CLP Other	HNO3 to pH <2 1 x 1 L PTAL INORGANIC\$
PURGE OBSERVATIONS PURGE MOTH ; (lovdy, orange	LOCATION SKETCH 238
PURGE WATER NUMBER OF GALLONS 2.1	VH23841 EI
NOTES	
All Equipment used either dedicated or deconned prior to	
arrival on site. No rinseate/ field blank required	Xmw-75 19
6	Birch word st
SIGRATURE:	- KAN

FIELD DATA RECORD - LOW FLOW G	FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING						
PROJECT Region 8 Group 2 Dry Cleaners	SAMPLE I.D. NUMBER	HTMW07DI	SSOLK (SAN				
	SITE	HTS	· · · · · · · · · · · · · · · · · · ·	DATE 050967			
TIME START GO END 920	JOB NUMBER	3612062	059	FILE TYPE NSSC			
WATER LEVEL / PUMP SETTINGS MEASUREM		FLUSH MOL	M	T/\/E			
INITIAL DEPTH GG FT WELL DEPTH	F PROTECTIVE CASING	CASING STICKUP (FROM GROUND)	FT DIFFERE	WELL 0,39 FT			
FINAL DEPTH 7.0.0	CPC.OFT		PPM DIAMETE	R 2-PV(IN			
TO WATER FT SCREEN DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) SCREEN LENGTH SCREEN LENGTH TO TOTA	DRAWDOWN VOLUME	PID WELL MOUTH PRESSURE TO PUMP	PPM WELL INTEGRI	YES NO N/A CASING			
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x time	0.00026 gal/milliliter)	REFILL TIMER SETTING	DISCHAF SECONDS TIMER SETTING	RGE			
PURGE DATA	SPECIFIC	KUSMU	I vereners	ан талан талан Ф			
TIME DEPTH TO PURGE TEMP. CC WATER (ft) RATE (ml/m) (deg. c) PUMP ON	ONDUCTANCE pH (ms/cm) (units)	DISS. O2 TURBID	REDOX INTAKE (mv) DEPTH (ft) ~35 F	COMMENTS PUMP ON			
1814 20.01 110 17.8 ().439 7.1	10.9 191	150				
824 20.01 150 16.2 0	542 12	6.7 90	130 -	# not using the			
1834 20.01 150 16.2 0.	546 72	57 110	80	Vegdings uhen			
1894 20.01 150 14.9	2.546 7.3	55 120	60	TUGING INTO GOCOLET			
1849, 20.01 150 17.1 13	553 7.3	5.2 110	30	GW			
1854 20.01 150 16.9 C	552 7.3	5,2 .00	30 20	(5)			
1905 Sample time Our	~553 7-3 W-70	92 96	20	00/04/07			
1907 pupp ott							
	\						
				ADDER MATERIAL			
SILASTIC	POLYETHYLENE	STAINLESS STEEL	OTHER	NAZ			
GEOPUMP OTHER		OTHER A		<i>,</i> , ,			
ANALYTICAL PARAMETERS METHOD PRESERVATION VOLUME SAMPLE To Be Collected MUMBER METHOD REQUIRED COLLECTED VOC GS VOC B260B HCL/4 DEG. C 3 X 40 mL X VOC SVOC CLP 4 DEG. C 2 X 1 L AG SVOC PEST/PCBs CLP 4 DEG. C 2 X 1 L AG PEST/PCBs TAL INORGANICS CLP HNO3 to pH <2							
PURGE OBSERVATIONS DUTGE WATER WAS	may that I	LOCATION SKETCH 28	K J3K				
PURGE WATER NUMBER OF GALL CONTAINERIZED YES NO GENERATED	ONS 2.1	Ref 250					
NOTES		-19-		adenatk			
All Equipment used either dedicated or deconned prior to arrival on site. No rinseate/ field blank required		3 Are	- MW-7D				
		AA A A A A A A A A A A A A A A A A A A	THE housed of				
SIGNATURE		~- N		MACTEC			
		angan mangan mangan Sa mangan sa mangan m Sa mangan sa mangan m					

revised 5/8/2007

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING										
PROJECT	NKSDI	EC- Regio	m 8 Dry	Cleaners 1	Group Z	- HTS	Bry Clea	ners	JOB NU	IMBER 3612062059
LOCATION	ID MW-	- D13	/	FIELD S	SAMPLE ID	HT	MUDIZ	Ø26Ø17	$\langle X \rangle$	EVENT NO.
ACTIVITY	START	4:30	END 5.	SAMPL	E TIME	B	15:40	0		DATE 17-93-96
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT										
INITIAL DEF TO WAT	PTH TER	23.25		P OF PROTECTIVE	CASING	CASING ST (FROM GRC		feet	DIFFER	ENCE feet
FINAL DEF TO WAT	PTH FER STATES	23.28	feet (TOR)	DEPTH 31.5	6 _{feet}	PID AMBIENT A		ppmv		
SCREEN LI		Luown	PRESS feet TO PUN	JRE IP	psi	PID WELL MOUTH		ppmv		RITY: YES NO N/A
	OL. GED	Z. (gall	REFILL ons SETTIN	G) illiliter)	DISCHARGI SETTING	E			AR
				SPECIFIC					PUMP	······································
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. C)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (NTU)	REDOX (+/- mV)	INTAKE DEPTH (ft)	COMMENTS
14:50	23.28	160	15	1.04	7.8	8.65	63	158	zla	
15:00	23.28	200	14	1.02	7.6	7.77	33	160		-
15:05	23.28	200	13	1.02	7.5	7.44	17	169		
15:10	23.28	200	[3	[.02	7.5	7.19	18	158		
15:20	23,20	200	13	1.02	7.5	6.99	-len	168		1 Harris I
16:25	23.28	200	13	0.969	7.5	7.04	(2.6	156		Lamothe Meter
15:00	23,28	200	13	0.965	7.5	6.11		156		
15:30	Bardongs	RICE	13	0,163	7.5	6.65		136		
15-30	23.28	200	13	0,969	1.5	6.50		157	v v	· · · · · · · · · · · · · · · · · · ·
15:40	23.09	200	Samp	sle		~00		100		
10:45	13.28	200	/3	1.03	15	1.52		107		
				\rightarrow			-			
EQUIPME			~~~~	5	1					I
	<u>DE PUIVIP</u> DICATED MARS			OTHER PERIS	taltic	- Geo	$pumb \square$		ING ISITY POLYI	
	N-DEDICATED	MARSCHALK BI						OTHER	ion i l'och	any T T T T Law Sum J Y Law
ANALYTIC	CAL PARAME	TERS								
CONTR			ME	THOD MBER	PRES M	ERVATION ETHOD		SAMF COLLE	PLE CTED S	AMPLE BOTTLE ID LETTERS
	Cs - 25 ml Purge	e (low conc.)		OLCO2.1	HC	L / 4 DEG. C	3 X 40 ML]	
1 Devo	Cs - 5 ml Purge		. (DLMO4.2	HC	L / 4 DEG. C	3 X 40 ML	4	\downarrow	
SV	OCs		(DLMO4.2	4 0	EG. C	2 X 1 L AG]	/
	TALS		(JLMO4.2	4 L HN	EG. C 103 to nH <2	2 X 1 L AG	P []	/
	NGANESE / IRC	- NC	SI	W846 6010	HN	103 to pH <2	1 X 500 ML	.P]	
. Su	LFATE / CHLOF	RIDE / ALKALINIT	Y USEPA	375.4 / 325.3 / 310.	.1 40	EG. C	1 x 1 L P]	
	2 - NO3		USEP	A 353.2 / 354.1	H2	SO4 to pH <2	2 1 X 500 ML	.P]	
	C THANE (ETHAI		US	SEPA 415.1	H2		2 1 X 250 ML	. AG	 	
	HER			- Region 1	ne	,L / 4 DEG. C	5 X 40 WL			
PURGE O	BSERVATION	is Al	nac			LOCATIO	N NOTES			
PURGE WA	ATER		<u> </u>			۵ ۱	1		C AN PO	Il risen
	RIZED YES				Å	\mathbf{A} $+100$	51 meun	T, FV		
NOTES:					P	1	$\left \cdot \right\rangle$		DNB	
							1 200	J. L	HUNDY	00
	D.L		Un				19 610	norano		KT.
SIGNATUR	E: <u>(1. 1000</u> 6.	ual c	TOUT				12 1-10			King
					<u> </u>		1 de			

FIELD I	FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING									
PROJECT MSDEC-Dry Cleaners - Group 2 - HIS Eleaners JOB NUMBER 361206205							MBER 3612062059			
LOCATION	10 MW-1	60		FIELD S	SAMPLE ID	HTI	MWIGU	Ø22Ø1	xx/ns/r	
ACTIVITY	START	145	END 90	5 SAMPL	ETIME	8:50	2			DATE 10-5-06
WATER LE	EVEL / PUMP \$	SETTINGS	MĘASU			DROTECTI	/r- ⁻		CASING	
INITIAL DEP TO WAT	PTH TER	21.50	feet	P OF WELL RISER P OF PROTECTIVE	CASING	CASING ST (FROM GRO		ush _{feet}	DIFFER	ENCE feet
FINAL DEP TO WAT	PTH TER	21.50	feet (TOR)	DEPTH 24	feet	PID AMBIENT A	IR	ppmv		TER <u>2</u> inches
SCREEN LE	ENGTH	5	PRESS feet TO PUN	URE 1P	psi	PID WELL MOUTH		ppm∨		NTY: YES NO N/A
TOTAL V PURG (purge v	OL. GED volume (milliliters	1.3 gall per minute) x tim	REFILL ons SETTIN ne duration (minu	G ites) x 0.00026 gal/m	nilliliter)	DISCHARG SETTING				
PURGE DA			TEMP		"щ					
TIME	WATER (ft)	RATE (ml/m)	(+/- deg. C)	(mS/cm)	(units)	(mg/L)	(NTU)	(+/- mV)	DEPTH (ft)	COMMENTS
8:10	21.82	120	17.1	0,589	7.5	6.12	230	64	22	
8:15	21.64	120	17.4	0.602	7.4	9,17	245	09	- BR	
8:20	21.66	120	17.4	0.603	1.7	265	10	-41		
9:25	21.66	120	<u>п.ч</u>	0.602	7.4	2.24	100	-50		
8:40	21.66	120	17.5	0.604	74	2.18	60	-54		
RUE	2166	120	17.5	0.605	7.4	2.16	5-1	-65		Launste Meter
8:50	21.66	120	17.5	0.607	7.4	2.12		-56		
a:50	Samol	le.	17.5	0.000				UE		
8:55	21 68	12.0	174	6.6A	74	743		-35		
	01.90					6-1-			-	·
			X	\sim		·				
EQUIPME	NT DOCUMEN	TATION	0							
TYPE OF PUMP										
	N-DEDICATED	MARSCHALK BI		POINER 1910	specific	Y	ury p	OTHER		
ANALYTIC	CAL PARAMET	ERS				· · · · · · · · · · · · · · · · · · ·				
CONTR			ME	THOD	PRES M	ERVATION		SAMF	PLE CTED S	AMPLE BOTTLE ID LETTERS
	Cs - 25 ml Purge	(low conc.)		OLCO2.1	нс	L/4 DEG. C	3 X 40 ML]	
Et voi	Cs - 5 ml Purge		1	DLMO4.2	HC	L/4 DEG. C	2,8 X 40 ML	A	j _×	XINSIMD
	OCs			OLMO4.2	4 0	DEG. C	2 X 1 L AG]	
	TALS			JLM04.2 ILM04.2	4 L HN	IO3 to pH <2	2 X T L AG 1 X 500 ML	P]]	/
	NGANESE / IRC)N -	SI	W846 6010	ни	1O3 to pH <2	1 X 500 ML	.P.]	
. 🔤 ຣບເ	LFATE / CHLOR	IDE / ALKALINIT	Y USEPA	375.4 / 325.3 / 310.	.1 40	DEG. C	1 x 1 L P]	
	2 - NO3		USEP	A 353.2 / 354.1	H2	SO4 to pH <	2 1 X 500 ML	.P [」	an ar an
	C THANE / ETHAN	E / ETHYLENE	EP	A Region 1	HC	2L / 4 DEG. C	3 X 40 ML		」 1	· / /
	HER		· · · · · · · · · · · · · · · · · · ·]	//
PURGE O	BSERVATION	s (lose			LOCATIO	N NOTES		- 6	205 127
PURGE WA	ATER					1.		n		juge 3
	RIZED YES) 00	King	11-101-11		Ave 7
NOTES:						1	MULTIN	No I	Ľ	4
							1 ver	-		S N
	- A.I		2-1-			5		L		131
SIGNATUR	RE: (/ CODO	feet C	May		+	mana and	K	Lh e	treet	E SI
LUNEUKER	ФY:					en e	<u> </u>	T11 >	ar I and the second second	Magneter T

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING											
NUKDEC - DO OLOGOGO GENERAL OF ALLONGES 100 NUMBER 73612059							067059				
FROJECT			unus ci			IFT	MINIL 6	(20/10)	XX		
LOCATION I		200	1010	FIELD S	AMPLE ID		NICLE	10001	$\frac{\Delta \Lambda}{1}$		4.00
ACTIVITY	START	1.20	END 10.3	SAMPLE	ETIME	10.1	0				7-00
	VEL / PUMP S	SETTINGS	MEASU	P OF WELL RISER		PROTECTIV	Έ		CASING	G/WELL	
INITIAL DEP TO WATI	TH ER	21.83 f	TO	P OF PROTECTIVE	CASING	CASING STI		sh _{feet}	DIFFER		feet
FINAL DEP TO WAT	TH ER	21.83 1	HISTOF WELL D Teet (TOR)	DEPTH 34.5	feet	Ct PID AMBIENT AI	R	ppmv			inches
SCREEN LE	NGTH	5	PRESS		nsi	PID WELL MOUTH		vmqq	WELL I INTEGR	NTERGRITY: RITY: YES I CAP	NO N/A
							= [CAS		· .
PURG			ons SETTIN	G	10104	SETTING	-		COLI	AR	· · ·
(purge vo		per minute) x tin	ne duration (minu	ites) x 0.00026 gal/m	militer)			****			
		PURGE RATE (ml/m)	TEMP.		pH (units)	DISS. O2		REDOX		COMME	NTS
9:35	21.83	160	(1)- deg. C)	0.575	7.7	2.95	170	60	30'	- CONTRACT	
9:40	21.83	160	110,6	0.577	7.7	2.28	140	.50	1		
9:45	21.83	160	16.3	0,585	7.7	1.94	160	37			
9:50	21.83	160	16.3	0,625	7.6	1.79	120	31			
9:55	21.83	160	16.2	0.651	7.5	1.70	90	26			
10:00	21.83	160	16.2	0.662	7.5	1.66	80	23			
10:05	21.83	160	16.2	0.664	7.5	1.59	60	22			
10:10	21.83	160	16.Z	0,668	7.5	1.54	(25)	21		Lamotte	Meter
10:10	Sampl	e									
10:15	21.83	160	16.2	0.665	7.4	1.64		24			
	<u> </u>										
			X	· · · · · · · · · · · · · · · · · · ·	-						
				·							
TYPE O	NT DOCUMEN	TATION					TY	PE OF TUB	NG		
Dedicated Marschalk Bladder											
NON-DEDICATED MARSCHALK BLADDER											
ANALYTICAL PARAMETERS METHOD PRESERVATION VOLUME SAMPLE											
CONTR	OL NUMBER		. <u>NU</u>	MBER	M	<u>IETHOD</u>	REQUIRED	COLLEC	CTED S	SAMPLE BOTTLE	E ID LETTERS
	Cs - 25 ml Purge	e (low conc.)		OLCO2.1	НС	CL/4 DEG. C	3 X 40 ML]	//	
	DCs			OLMO4.2 OLMO4.2	4 [DEG. C	2 X 1 L AG]	///////	-
PES	STICIDES		1	OLMO4.2	4 [DEG. C	2 X 1 L AG]	/	
MET	TALS			ILM04.2	1H LIN	NO3 to $pH < 2$	1 X 500 ML	P]		
	FATE / CHLOR	NDE / ALKALINIT	Y USEP	V 846 6010 A 375.4 / 325.3 / 310.	1 4 [NU3 to pH <2 DEG. C	1 x 1 L P		」 1		
	2 - NO3		USEP	A 353.2 / 354.1	H2	2SO4 to pH <2	2 1 X 500 ML	P .]	· · · · · · · · · · · · · · · · · · ·	
	0		US	SEPA 415.1	H2	2SO4 to pH <2	2 1 X 250 ML	AG]		
	THANE / ETHAN	NE / ETHYLENE	EP	A Region 1	H	CL / 4 DEG. C	3 X 40 ML]	/	<u>0</u>
								L		,)	A A
PURGE OBSERVATIONS (leas LOCATION NOTES								3.181			
CONTAINE	RIZED YES	(NO/						1 part	July Dia	2	131 2
NOTES:								и. 10	W & O		1 AM
								Him			1 - 10
							[] []				
SIGNATURE: Machael -					Constant and a second second second second		<1 h		2	E Co	
CHECKED BK						· **********************	11th	Smeet			

FIELD DATA RECORD - LOW FLOW	V GROUNDWATER S	SAMPLING	
PROJECT NYSDEC. Vegin 8D. (G.	oupI		JOB NUMBER 361205205 02. 2
LOCATION ID MW-5	FIELD SAMPLE ID	HTMW00503001XX	EVENT NO.
ACTIVITY START 615 END 7	15 SAMPLE TIME	1700	DATE 10/11/06
WATER LEVEL / PUMP SETTINGS		PROTECTIVE	
INITIAL DEPTH TO WATER 25.46 feet	OP OF PROTECTIVE CASING	(FROM GROUND) 2.7 feet	DIFFERENCE feet
FINAL DEPTH 25.94 WELL TO WATER 25.94 feet (TOR	DEPTH 32.80 feet	PID AMBIENT AIRppmv	DIAMETER <u>inches</u>
SCREEN LENGTH UN KNOWN feet TO P	SURE	PID WELL ppmv	INTEGRITY: YES NO N/A
TOTAL VOL. PURGED [1.3] gallons SETT (purge volume (milliliters per minute) x time duration (m	L ING inutes) x 0.00026 gal/milliliter)	DISCHARGE SETTING	ALOCKED
PURGE DATA	SPECIFIC	· · · · · · · · · · · · · · · · · · ·	PUMP
TIME WATER (ft) RATE (ml/m) (+/- deg. C)	CONDUCTANCE pH (mS/cm) (units)	DISS. 02 TURBIDITY REDOX II (mg/L) (NTU) (+/- mV) DI	TAKE EPTH (ft) COMMENTS
1646 25.74 200 13.8	N 837 71	52 0136 -	- 30 Fungen
1645 25-80 150 136	0.839 71	5.2 ~ 114	
1650 25.87 150 13.5	0.835 7.0	5.3 ~70/59 -	
1655 25-94 150 13.5	0.831 7.0	5.3 2 42	
17.11 DAME			Scuple
1700 Compost			trup & TF
() + mishia (South)			
# Turbe	lift is an est	timole; took	7
- Fra	1 The 4-10	; only (1) pt cal	bratin
TYPE OF PUMP	1	TYPE OF TUBING	
	OTHER GEO FUM		Y POLYETHYLENE
		U OTHER 3	
	ETHOD PRES		
VOCs - 25 ml Purge (low conject	OLOOZITOLM 42 HO	CL / 4 DEG. C 3 X 40 ML	
VOCs - 5 ml Purge	OLMO4.2 HC	CL / 4 DEG. C 3 X 40 ML	/
	OLMO4.2 4 L OLMO4.2 4 E	DEG.C 2X1LAG	/
METALS	ILM04.2 HN	NO3 to pH <2 1 X 500 ML P	
	SW846 6010 HN	NO3 to pH <2 1 X 500 ML P	
NO2 - NO3	PA 375.47325.37310.1 4 L PA 353 27354 1 H2	2SQ4 to pH <2 1 X 500 MLP	
	JSEPA 415.1 H2	2SO4 to pH <2 1 X 250 ML AG	
METHANE / ETHANE / ETHYLENE E	PA Region 1 HC	CL / 4 DEG. C 3 X 40 ML	//
		<u></u>	
PURGE OBSERVATIONS		LOCATION NOTES	X & X CEIM
CONTAINERIZED YES NO			V VI A
NOTES:		+ AZA	
		1 Prac	
SIGNATURE:	+	N S Davka	Thread 1.1
CHECKED BY:		the	
	V	•	

Project Boring/Well No. SBIGW-OD Project No. 3612062159/02. REGION 8 D.L. - GROUP I Client NYSDEC Site HTS Sheet No. Start Date Logged By Ground Elevation Finish Date Zoob 101) och Drilling Contractor Driller's Name **Rig Type** Jam seolofic, M 60 DT MMMM Casing Size 11/2 P.I.D. (eV) Drilling Method Protection Leve Auger Size JiVec Piez Well Boring Rock Drilled Soil Drilled Depth to Groundwater/Date Total Depth (Monitoring % Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % Notes on Drilling USCS Group Symbol Sample Type (ppm) Depth(Feet) Graphic Log Blows/Ft.) Lab Tests Sample PI Meter Head Space Description PI Meter Field Scan 0-0.5 Aspelt 6.1 W. Arn ? Dermic fiers, wet Hf, soft, slight (duf?) 石川 isppr ${}^{\mathcal{Y}}$ 4 to 9 orange Burn greely and y lot of sud mist-to uset, HP/MP, MStiff. io,1 m 21 HTGSOU W801XX. 9 to 14 S. Hy sad & grand cubbles @~ 10 (prinksmisture) mi \$ 13.5 (white); noist@_SM 4:1 0 5 ~12\$ 135 GM 56 ML SM6N IK **FIGURE 4-6** TYPICAL TEST BORING LOG NYSDEC QUALITY ASSURANCE PROGRAM PLAN ABB Environmental Services, Inc. 9404014D(z) L33

Test Boring Log Project No. 3612062059/12-2 Boring/Well No. SB GW~00 Project Kegnon & I - Gnn Client Site NÝSDEC -1TSSheet No. of Logged By R Finish Date Ground Elevation Start Date Lob 2006 10 Rig Type 66 M Driller's Name **Drilling Contractor** Lizm Chamins 50/0/14 Drilling Method Drect P.I.D. (eV) Casing Size Protection Level Auger Size 1/12 rush Piez Well Boring Soil Drilled 7 DP Rock Drilled Depth to Groundwater/Date Total Depth 46 ~ 21 10/1/06 Monitoring % Sample No. & Penetration/ Recovery (Feet) Notes on Drilling USCS Group Symbol or Core Rec./Rqd. ? (ppm) Sample Type SPT Blows/6" Depth(Feet) SPT-N (Blows/Ft.) Graphic Log Lab Tests Sample PI Meter Head Space Description PI Meter Field Scan gues of 1.ttle the s, day, SN 'PP <u>Sy</u> NP. Duse/ mounse, 300 19 to Z1.5 Sur as 14th 3pp SW 19 21.5+1235 Meansesud, Saturates, five gimes @ 'pp 48 22 ~21.5to 218, Monse 57 23.5 to 24, gromel of Soud S. silt/ Su to R UĘ SM SW K **FIGURE 4-6 TYPICAL TEST BORING LOG** NYSDEC QUALITY ASSURANCE PROGRAM PLAN ABB Environmental Services, Inc.-9404014D(z) L33

Test Boring Log Project Boring/Well No. SR GW - OU) Project No. 3612062059/020 REGION 8 D.L. - GROUP I Client Site NYSDEC Sheet No. of Logged By Start Date Ground Elevation Finish Date Shin Loob 10 D **Drilling Contractor** Driller's Name **Rig Type** Seolofic, N am Cummins 6 DT Casing Size 11/2 Drilling Method P.I.D. (eV) Auger Size Protection Level Uge Total Depth 31 Soil Drilled Rock Drilled Piez Well Boring Depth to Groundwater/Date SPT Blows/6" or Core Rec./Rqd. % Monitoring Sample No. & Penetration/ Recovery (Feet) Notes on Drilling Sample Type Group Symbol (ppm) Depth(Feet) SPT-N (Blows/Ft.) **Graphic Log** -ab Tests USCS Sample PI Meter Head Space Description PI Meter Field Scan 0.-4.3 Aspholt 0.3 - v - 8 Olive Silty Sund 61 30pgm 0.8-1.5 Fill-Ash, white/ july Zuppn 1.5-3 Once Silt-ely-Sid MX, Mp. noist 3-37 fine Sandy great, Org. 37-4 pieces at conents day 10 ppm V 1-105.2 Fill-Ash, ceranic 2.5ppm Snefol SI-J Sult S.2-7 Styfine Sudy's fire grand, dup mp/SP, m Deree ML 10 ppm 7-9 5-14 sandy gmilel, GМ dry wese ζM GM 9-10 Sme as 7-9 Sim ppy 10-12.5 Olive Brun Sundy GN day of grand, luminationsfrendes CL of broken cobbies; wish, HP, 6C 15-14 crean silly in coursesand, ωρ dup, NP, wose mouse SM 14 to 19 Silfy Sund squeed SMGM SY 18 COBBLS FIGURE 4-6 FIGURE 4-6 soud' NYSDEC QUALITY ASSURANCE PROGRAM PLAN 19 to 22 sime as 14 to 19 1 4D(z) 133 22 to 24 24 Bru coarse Smd FMG i grivel of iots of silt, softwarted SN 0 ~ 1L

les sorne loc Project Boring/Well No. SBIGN - 003 Project No. 3612062 REGIONS D.C. - GROUP I 159/02. Client Site NYSDEC Sheet No. Logged By Ground Elevation Start Date Finish Date Wir 2000 10 2 ad **Drilling Contractor** Driller's Name **Rig Type** Jam Seolofic, M 4mmm Casing Size 1 1/2 Drilling Method rivect Rig **Protection Level** P.I.D. (eV) Auger Size Soil Drilled 24 Total Depth 32 Rock Drilled Depth to Groundwater/Date Piez Well Boring SPT Blows/6" or Core Rec./Rqd. % Monitoring Sample No. & Penetration/ Recovery (Feet) Votes on Drilling USCS Group Symbol Sample Type **Depth(Feet)** (ppm) **Graphic Log** Blows/Ft.) Lab Tests Sample PI Meter Head Space Description PI Meter Field Scan 0-0.5 Asphet F721] ~2ppu 0.5- ~3 Brown Sty Sud : gimel, day, SANG, Merre 3 to 2 stile Bun Sardy -Chy, wet, HP, Soft/mstiff SM GM 3 CL 4455 Sweas 3to4 Lo. 0 0 5.5.1. 9' Silly sud 5 growel; trace cobbus; dry Dersefon suse, C 5M GM 9 to 14 silf sud of sue EnGM gravel: dul, Darse, stratification (D~12'; erange to graf- west arouned: wase of 4 olivertan Aver aby (P 14.8; Ko, 1 0 14 FIGURE 4-6 **TYPICAL TEST BORING LOG** NYSDEC QUALITY ASSURANCE PROGRAM PLAN -ABB Environmental Services, Inc. 9404014D(z) L33

Test Boring Log Project R Boring/Well No. SB/GW-003 Project No. 3612062039/1.2 equin 87 - Gron Client Site NÝSDEC Sheet No. Logged By P Finish Date Ground Elevation Start Date 2006 2006 10 Rig Type 66 M **Drilling Contractor** Driller's Name Lim Chamins 50/6/4 Drilling Method Drect-Tush P.I.D. (eV) Casing Size **Protection Level** Auger Size 1/12 Total Depth 32 Soil Drilled Rock Drilled Depth to Groundwater/Date Piez Well Boring M ~ 20.5 \Box \square SPT Blows/6" or Core Rec./Rqd. % Monitoring Sample No. & Penetration/ Recovery (Feet) Notes on Drilling USCS Group Symbol Sample Type (ppm) Depth(Feet) SPT-N (Blows/Ft.) Graphic Log Lab Tests Sample PI Meter Head Space Description PI Meter Field Scan SILY said & grave ly dry, m Duse, Or 18.5 dulting git soft. Clem silly Wer, V. Juse overist/net. 4.1 5M GM 74 24 SMG A Bun Soud (m/meaning Sud), Sut, Mouse, Some ronded graved 20.5 to ~ 22 Siltifice Said ust, V. Durge, NP Św Co. perthed HO Toge 6M 22 to 24 ONCE Bron Silly grand w lots of Sna, wise, subratal Иŧ FIGURE 4-6 **TYPICAL TEST BORING LOG** NYSDEC QUALITY ASSURANCE PROGRAM PLAN ABB Environmental Services, Inc.-9404014D(z) L33

	Projec	* REC	>)Q	N80	, C.		Test Boring Log GRUUP IT SB GY	I No. メーロ[HP	roject No. ZG12062	<u>159/</u>	02
	Client	NYS	DEC		Sit	9	HTS	Sheet N	0	of	2	
1	Logge	By B	SI	rul	Gro	bund	Elevation Start Date	Zoob	Finist Jo	Date 10 (200	6
B	Drillin	g Contract	G^{r}	eolofi	C, M		priller's Name Liam Cumming	Rig Typ		6 DT.		
V ·	Drillin	g Method	P	rect Pu	Sh_	F	Protection Level P.I.D. (eV)	Casing	Size	1/2 Auger	Size	1
	Soil D	rilled W	F	Rock Driller			otal Depth 1 Depth to Groundwate	r/Date	<i>ø</i> .		Boring	
• • • •	Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	Sample Type	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)	Graphic Log	Sample Description	USCS Group Symbol	Notes on Drilling	PI Meter Field Scan PI Meter Head Space		Lab Tests
S1 S2 S3	1-2- 3-4-5- 7-8- 10- 11-	1.9 4.0 32 5.0 4.0 4.0					0-0.5 Aspendt 0.5 to 1.5 dive Bun slysman 1.5 to 2 White/Ltjrey 1Bice Fil - Ash, glass, coal, ligh 2-3.5 olive sity day of the soft, 35000 on februs soudy day, we Refo 5 Sme as 3.5 to 4 5 to 9 Silty Sud & gravel, lenses of did ten day, mais NP, Wi Denses 9 to 13.6 Some as 5 to 9' Weist C ~ 12' 13.6 to 14' Brown, silt of Five said, V. Dense, and i	t- GM t- GM t- GM		Sppm ISppm Ioppm J Sppm J Sppm J Sppm J Sppm		
	15-14-			1		1	TY NYSDEC QUALITY ASS	PICAL URANC	TES E PF	FIGURE T BORING I ROGRAM PI ental Services	4-6 -OG LAN s, Inc	

. نړ

	Projec Client	t Rec NYS		8	D.C.	- (Test Boring Log Sroup # Boring We B-GN	11 No. - 0024	P	roject No. 361266	-2059/ - 2	162.2
	Logge	d By 2	6	nnl	Gŗo	und	Elevation Start Date	Sheet N	G. Finish	Date	106	
	Drilling	g Contract	orGe	0101			Driller's Name Lim Centring	Rig Typ		DT-		
	Drilling	g Method	D	reefi	Push	F	Protection Level DP.I.D. (eV)	Casing	Size	12" AI	uger Size 2	بر
	Soil D	rilled 辺	l F	Rock Drille	d	r	otal Depth 3レ Depth to Groundwat	er/Date	b	Piez W	/ell Borin	19
	et)	o. & on/ ⁻eet)	ed/	s/6" qd. %	()	bo.		lodn	rilling	Monito (ppm)	oring)	ts
	E Depth(Fe	Sample N Penetrati Recovery (I	Sample T	SPT Blow or Core Rec./R	SPT-N (Blows/F	Graphic [Sample Description	USCS Group Syr	Notes on D	PI Meter Field Scan PI Meter	Head Space	Lab Tes
54		3/5.0 NA 15.0					14-15 if Brann Sitt five sand of trace five any 15-185 Bilty sud i Sin Wist to voti in Deuse 18.5-19 sul as above, bu Saturested.	June J GM J SNG		Figure	JRE 4-6	
							NYSDEC QUALITY AS		E PF	ROGRAI	VI PLAN	

lest forme loc Project No. 3612062159/02 Boring Well No. SR 6W - OV Project REGIONS D.L. - GROUP I Client Site NYSDEC Sheet No. of Logged By B. Ground Elevation Start Date Finish Date Loob 10 101 Drilling Contractor Driller's Name Rig Type seolofic, M 6 DT um 4 mm nr Casing Size 11/2 Drilling Method Protection Level P.I.D. (eV) Auger Size Total Depth 32 Soil Drilled Rock Drilled 246 Depth to Groundwater/Date Piez/Well Boring W/10/2016 KIS. \square П Monitoring Core Rec./Rqd. % Sample No. & Penetration/ Recovery (Feet) Notes on Drilling SPT Blows/6" or USCS Group Symbol Sample Type (ppm) Depth(Feet) **Graphic Log** Blows/Ft.) Lab Tests Sample PI Meter Head Space Description PI Meter Field Scan 0-0.2 Block top 0.2-06 Brunn sillys and dry. 2 pp Fill :500 to white to Black, crange Ind 44p Unse @ -22; Counic pieces; " 3.4-4 Oive Bun Sand - Silts and 20ppm fires to course sud, net, Hp-CL 4+107 orange reduksh Bom 4 to Sppm GC ginely day al some skid, net(moist, HP, S.FF) in Stiff, 7+8-5 Bran Silty Sund Squid, Moerse, wet, MP 5.5+5816 LFTON dy cig SM 8.6-9 Sweas 7 to 8.5 GM Sman 4.10 Sppt-9 to 14 Sine as 8.6-9 14 FIGURE 4-6 **TYPICAL TEST BORING LOG** NYSDEC QUALITY ASSURANCE PROGRAM PLAN -ABB Environmental Services, Inc. '9404014D(z) L33

Test Boring Log Project Boring/Well No. SR GW - COV Project No. 3612062139/02. REGIONS D.C. - GROUP I Client Site NYSDEC HR Sheet No. of Logged By B Start Date Ground Elevation Finish Date Swar Zoob 10 10 **Drilling Contractor** Driller's Name **Rig Type** Seolofic, N Jam 6 4mm nr Casing Size 11/2 Auger Size **Drilling Method** P.I.D. (eV) Protection Level Total Depth 37 Rock Drilled Soil Drilled Depth to Groundwater/Date Piez Well Boring 24 SPT Blows/6" or Core Rec./Rqd. % Monitoring Sample No. & Penetration/ Recovery (Feet) Notes on Drilling Sample Type Group Symbol Depth(Feet) (ppm) SPT-N (Blows/Ft.) **Graphic Log** Lab Tests USCS Sample PI Meter Head Space Description PI Meter Field Scan 14 to - 18 SAN Sund ? grand, dry, cobiste iamatin SM. 6M 44 5pm 74 (2~17 18-19 redustoren gon Siltygrived, ul little Sna, saturatal, 10,50 ML GP 4 th Sppin SM 19 - 24 Silty send fres to mean & and Suturcted, Ut Bim, l **FIGURE 4-6** TYPICAL TEST BORING LOG NYSDEC QUALITY ASSURANCE PROGRAM PLAN -ABB Environmental Services, Inc. 9404014D(z) L33

, i .

Project Boring Well No. SB GW - OD6 Project No. 36170 REGIONSD.C. -GROUP I Client NYSDEC Site Sheet No. of Ground Elevation Logged By Start Date Finish Date Loob 20d 0 **Drilling Contractor** Driller's Name **Rig Type** Jam W, Ro Mmm 0 Casing Size 1 1/2 P.I.D. (eV) Drilling Method **Protection Level** Auger Size Vec Soil Drilled Total Depth 74 Rock Drilled Depth to Groundwater/Date Piez Well Boring M Monitoring % Sample No. & Penetration/ Recovery (Feet) Notes on Drilling SPT Blows/6" or Sample Type Group Symbol Core Rec./Rqd. Depth(Feet) SPT-N (Blows/Ft.) Graphic Log (ppm) _ab Tests USCS Sample PI Meter Head Space Description PI Meter Field Scan Armored 1.2' of coarse simed 6.1 confesite Suit ć 0-1 Dive Dayn Sity and I Ash 10pp Small n o. Thel White to fard Lori GSODGODIOTXY 4 1-1.4 Red Bricks Fill 14 -3 Black in Dive/Brun Sppi VOA S: IN sur, wist, glass, 4.0 0810 $(\alpha$ 3-11 olive it Bran sonay clay, Coord Sind net, HP/MP, MSHFF \mathcal{F} MLSC 3pp 280 4-4.55me as 3-4 MLS Loil 45-8 Olive Bron S.IN SM SL Course Sud, dup, trace dry cor in juni, 8-8:2 in mile grad chished grovel, V. Auguer duy, dens 8-2-9 olive Bun Silly Mccourt Y chen silt@~8.4, SP SM 9 to 14 Lt Bun Sive Sill 5 Lo. ζM five some 5 five (much, and 0 GM M. rondind groved Q9.5511.5 GP GM GM 15 14 FIGURE 4-6 **TYPICAL TEST BORING LOG** NYSDEC QUALITY ASSURANCE PROGRAM PLAN -ABB Environmental Services, Inc.-9404014D(z) L33

Test Boring Log Project No. 3612062059/02-2 Region & I Boring/Well No. SB 6W-006 Project Gron Client Site NÝSDEC Sheet No. of Logged By R Finish Date Start Date Ground Elevation 12 2006 Lodo Rig Type 66 M **Drilling Contractor** Driller's Name Lign Chamins (M 500 Drilling Method Protection Level P.I.D. (eV) Casing Size Auger Size 1/12 D ect-Tush Depth to Groundwater/Date Piez Well Boring Soil Drilled L **Rock Drilled** Total Depth \square Monitoring % Sample No. & Penetration/ Recovery (Feet) Notes on Drilling SPT Blows/6" or Group Symbol (ppm) Sample Type Core Rec./Rqd. Graphic Log SPT-N (Blows/Ft.) Depth(Feet) Lab Tests USCS Sample PI Meter Head Space Description PI Meter Field Scan L.J. 14-15.5 Sune as 9 to 14. 5M GM 15.5 to 19 Olik to Brin + L+ Bum Silt in course sand Su 16-1 Equies, dry to drup, henses of whiteforage mearres and Q-17 5 18.5.5 Lenge of yellow for dry City Q-16.5 SM GM 3P SMG W SM 19 to ~22.5 Sure as 15.5 G! to K; 225 to 224 it Burn saturated GM Lo.j Small gravel of some silt, monge; pink smalstone @ 22.5 to 22.8; 5W 3ppi ML R 51 UĘ \mathcal{V} FIGURE 4-6 **TYPICAL TEST BORING LOG** NYSDEC QUALITY ASSURANCE PROGRAM PLAN -ABB Environmental Services, Inc.-9404014D(z) L33

		GROUNDWA	TER SAMPLI	E FIELD DA	TA RECORD	
P	roject: <u>REGIONS</u>	Dry, CLEAME	25- bRUVP IF	 Site: 	HTS,	
P	roject Number: 361	2062059	1022	Date:	10/11/200	6
		Therette		Time: Star	t: <u>0035</u>	End: 0-103
5	ample Location ID:[H][]	GIN 0101001	BIZION NIX	Signature o	of Sampler:	
	Well Depth Ft.	Measured Historical	Top of Well Top of Protec Casing	Well Bieer	Stick-up Ft.	Protective Ft. Casing/Well Difference
Level/Well Data	Depth to Water Ft.	Well Material: PVC SS	Well Locked?	Well Dia.	2 inch 4 inch 6 inch	ProtectiveFt. Casing Water Level Equip. Used: Elect. Cond. Probe Float Activated Press. Transducer
Water	Height of Water Column X	16 Gal/Ft. (2 in.) 65 Gal/Ft. (4 in.) 1.5 Gal/Ft. (6 in.) Gal/Ft. (in.)	, [Gal/Vol. otal Gal Purged	Well Integrity: Prot. Casing Secure Concrete Collar Intact Other	Yes No
ation	Purging/S	ampling Equipment Us	sed:		Decontaminatio	n Fluids Used :
Equipment Document	(if Used For) Purging Sampling 	Peristaltic Pump Submersible Pump Bailer PVC/Silicon Tubing Teflor/Silicon Tubing Airlift Hand Pump In-line Filter Press/Vac Filter MUSJOL	Equipment ID		(All That Apply at Loc Methanol (100 25% Methano Deionized Wa Liquinox Solur Hexane HNO ₃ /D.I. Wa Potable Water None	cation) %) V75% ASTM Type II water ter tion ater Solution r
ata	PID: Ambient Air	ppm Well Mouth	ppm Purge D	ata Collected	Sample C In-lineTurb In ContainerColo	Dbservations: idClearCloudy redOdor
Field Analysis D	Purge Data Temperature, Deg. C pH, units Specific Conductivity (µn Turbidity (NTUS) Oxidation - Reduction, +/ Dissolved Oxygen, ppm	@~ 45/ ahos/cm) - mv - mv - M(L - 5=0	Gal. @	_Gal. @	Gal. @	_Gal. @Gal.
ts	Analytical Parameter	If Sample Pro Collected	eservation Method	Volume Required	Sample Bottle ILo	ot Nos,
ollection Requiremen equired at this Location)	VOCs SVOCs Cyanide Nitrate/Sulfate Nitrate/Phosphate Pest/PCB TPH TOC	V 4 4 4 H H H H H H H H H H H H H H H H H H H H H H H H H H	°C 3, °C INO, ,4°C IaOH,4°C I SO, ,4°C °C I SO, ,4°C I SO, ,4°C	Zx40 ml 2x1 liter AG 1x1 liter P 1x500mLP 1x1 liter P 1x1 liter P 3x1 liter AG 2x1 liter AG 1x1 liter P		90à
Sample Co	Notes: SROON'-	24 to 32'	= SIH -	groundw GROUNDW	ATER SAMPLE	FIGURE 4-1 DATA RECORD PROGRAM PLAN
940401	4D L22 Act	r bibblest	<u>~~</u>	-	ABB En	vironmental Services

í

i

Å

esi foring loc Project Boring Well No. SR GW - ON Project No. 36120621591 REGION 8 D.C. - GROUP I Client NYSDEC Site HTS Sheet No. of Logged By Ground Elevation Start Date Finish Date Swo Zoob 101 1200 Drilling Contractor Driller's Name **Rig Type** Jam seolofic.M 60 MMMM Casing Size 1 1/2 Auger Size Drilling Method **Protection Leve** P.I.D. (eV) JiVec Soil Drilled Rock Drilled Total Depth Depth to Groundwater/Date $\mathcal{N}\mathcal{W}5'$ Piez Well Boring \Box \Box SPT Blows/6" or Core Rec./Rqd. % Monitoring Sample No. & Penetration/ Recovery (Feet) USCS Group Symbol Notes on Drilling Sample Type Depth(Feet) Graphic Log Blows/Ft.) (ppm) Lab Tests Sample PI Meter Head Space PI Meter Field Scan Description An Asphelt in Share, pushel soil dun; 6.1 511 3 4405 1+ Brimish Drive dayed Smal samed, Fines to fine -Smel, Subneted, Viorse 5 to 6.5 Drive Silly Course sud GC 5py SM for strace fre (moi, het, Drift, 65 to ~8 Lt Bin Sundy melGW 40.1 duy, Some , Some robb top 8-9 olive (DKBun silly Soud i Soviel worst, Milling MGr unknen; mer got strektin fre macrocore NA 0 ANE NA 11.5 to 16 V. Duse, silt fine shid of since course Sud, My NTA muchum , Videuse Small (Gul NU FIGURE 4-6 source of fines, dry, TYPICAL RING LOG NYSDEC QUALITY ASSURANCE PROGRAM PLAN ABB Environmental Services, Inc. '9404014D(z) L33

36.5	GROUNDWATER SAMPLE FIELD DATA RECORD
P	oject: REGIONS DW, (LEAMERS-GRUVPIE Site: 475
Pi	oject Number: 36120102059 022 Date: 10/12/2006
	ample Location ID ILIT (1/10
	ample Location ID. ITI GIV US 10 13 UTI KK Signature of Sampler
	Well DepthFtMeasuredTop of Well Well Biser Stick-upFt. ProtectiveFt. HistoricalTop of Protective (from ground) Casing/Well Difference Casing Casing
vel/Well Data	Depth to Water Ft. Well Material: Well Locked?: Well Dia2 inch Water Level Equip. Used: PVC Yes 4 inch Elect. Cond. Probe SS
Water Le	Height of Water Cetumn X 65 Gal/Ft. (2 in.) Gal/Vol. Well Integrity: Yes No Ft.
tation	Purging/Sampling Equipment Used : Decontamination Fluids Used :
Equipment Document	(✓ If Used For) Equipment ID (✓ All That Apply at Location) ✓ ✓ Peristaltic Pump
ata	PID: Ambient Airppm Well Mouthppm Purge Data CollectedIn-lineTurbidClearCloudy
Field Analysis D	Purge Data @ ~ 1.5 Gal. @Gal. @
its	Analytical Parameter / If Sample Preservation Volume Sample Bottle ILot Nos.
Collection Requiremen Required at this Location)	VOCs $4^{\circ}C$ $3\mathbb{Z}x40 \text{ ml}$ SVOCs $4^{\circ}C$ $2x1 \text{ liter AG}$ Metals $4^{\circ}C$ $2x1 \text{ liter AG}$ CyanideNaOH, 4^{\circ}C $1x1 \text{ liter P}$ Nitrate/Sulfate $HSO, 4^{\circ}C$ $1x1 \text{ liter P}$ Nitrate/Phosphate $H_{SO}, 4^{\circ}C$ $1x1 \text{ liter AG}$ Pest/PCB $4^{\circ}C$ $3x1 \text{ liter AG}$ TPH $HSO, 4^{\circ}C$ $2x1 \text{ liter AG}$ Toc $H_{SO}, 4^{\circ}C$ $1x1 \text{ liter P}$
suble suble	Notes: <u>Juden My p. V.</u> FIGURE 4-1 FIGURE 4-1 GROUNDWATER SAMPLE DATA RECORD Ut Burn Joury NYSDEC QUALITY ASSURANCE PROGRAM PLAN ABB Environmental Services

í

. .

	GROUNDWATER SAMPLE	FIELD DATA RECORD
P	roject: Region & Mallemens - Group 2	Site: HTS cleaners
P	roject Number: 3612062059/02.2	Date:
		Time: Start: //06 End: //32
S	ample Location ID: HTGW0090270188	Signature of Sampler
	Well Depth Ft Measured Top of Well	Well Riser Stick-upFt. Protective Ft.
	HistoricalTop of Protectiv	re (from ground) Casing/Well Difference
Ø	Casily	Protective Ft
D C		Casing
B	Depth to Water Ft. Well Material: Well Locked?:	Well Dia. 2 inch Water Level Equip Linch
	Yes	4 inchElect. Cond. Probe
		6 inchFloat Activated
1	-001	
\$	16 Gal/Et (2 in) -	
	Height of Water Column X65 Gal/Ft. (4 in.) =	Prot. Casing Secure
	Ft1.5 Gal/Ft. (6 in.)	al Gal Purged Concrete Collar Intact
÷		Other
	Purging/Sampling Equipment Lond	
	- erantaraantahing Edolphoent Osed :	Decontamination Fluids Used :
	(If Used For)	
	Purging Sampling Equipment ID	(All That Apply at Location)
2	Submersible Pump	Methanol (100%) 25% Methanol/75% ASTM Type II water
Ś	Bailer	Deionized Water
	Teflon/Silicon Tubing	Liquinox Solution
	Airlift	HNO ₃ /D.I. Water Solution
5	In-line Filter	Potable Water
ц Ц	Press/Vac Filter	None
	× × SP-15	
100000		
5	PID: Ambient Air ppm Well Mouth ppm Purge Data	a CollectedIn-lineTurbid Clear Cloudy
Ś		In ContainerColoredOdor
2	Purge Data @ <u>~ 0 / Gai.</u> @ G	
•	Temperature Dec C 136	
	pH, units	
	Specific Conductivity (µmhos/cm)	
	Oxidation - Reduction, +/- mv	
	Dissolved Oxygen, ppm 13.6	
	Analytical Parameter	
	Collected Method R	lequired Sample Bottle ILot Nos.
•	VVOCs	10 ml
Ē	\$VOCs 4°C 2x	40 mi 1 liter AG
	Metals HN0,,4°C 1x	1 liter P
	Variate NaOH,4°C 1xl	500mLP
	Nitrate/Phosphate H ² S0, 4°C 1x	1 liter P / / / / / / / / / / / / / / / / / /
i s	Pest/PCB 4℃ 3x TPH 4℃ 3x	1 liter AG
	TOC H S0 .4°C 1v	1 liter P
5		
-	Notes: Screen: LT to 25	
2		
		FIGURE 4-1
	GI	ROUNDWATER SAMPLE DATA RECORD
	NYSDEC (OUALITY ASSURANCE PROCEDAM DUAN
-		ACCELLING AND FLAN

, ·

		GROUNDW	ATER SAMP	LE FIELD D	ATA RECORD	
P	roject: <u>Region 8</u>	Del Clemers -	- Group 2	Site:	ITS cleane	·~?
P	roject Numbér: 3 (61206205	1/02.2	Date:	10/12/06	
				Time: Sta	rt: <u>1750</u>	End: 1803
S	ample Location ID:	GW0///()23014	Z Signature	of Sampton	
	Well Depth F	t. <u>Measured</u> Historical	Top of We	Well Riser	Stick-up Ft.	Protective Ft.
			Casing	nacuve (noin gioc	and the second s	Casing/weil Difference
ata						ProtectiveFt.
				-		Castry
We	Depth to waterF	t. Well Material: PVC	Well Locked?:	Well Dia.	2 inch 4 inch	Water Level Equip. Used:
vel		SS	Oppover.	r .	6 inch	Float Activated
Ľ		-0	SEC 1			Press. Transducer
ater		16 Only 51 / 0 :-	- 1			
Ň	Height of Water Column	X65 Gal/Ft. (4 ii	n.) =	Gal/Vol.	Well Integrity: Prot. Casing Secure	Yes No
	Ft.	1.5 Gal/Ft. (6 ii Gal/Ft. (n.)	Total Gal Purced	Concrete Collar Intact	
					Other	
			NAMES OF A DECEMBER OF A D	an a		
ч	Purging	Sampling Equipment	Used :		Decontaminatio	on Fluids Used :
tatl	(If Used Feel)					
nen	Purging Sampling		Equipment ID)	(🖌 All That Apoly at Lo	cation)
uno	\downarrow \checkmark \checkmark	Peristaltic Pump		<u> </u>	Methanol (10	0%)
Õ	=/ =/	Bailer			25% Methan Deionized W	ater
ant		PVC/Silicon Tubing Teflon/Silicon Tubir		-	Liquinox Solu	ution
Ĕ		Airlift	.8	 	HNO3/D.I. W	ater Solution
lint		In-line Filter		-	Potable Wate	ər
ш	f = -1	Press/Vac Filter				· .
	<u> </u>	14:115101				
	PID: Ambient Air				Sample	Observations:
ata		ppin_weit.woutu	ppm Purg	e Data Collected	_ In-line Turi In Container Colu	oidClearCloudy pred Odor
a c	Purce Data	a Le.	Tone			
ysl	i aigo Dam				Gal. @	Gal. @Gal.
nal	pH, units		<u> </u>		(v	
∀ p	Specific Conductivity (umhos/cm)			$\leq \sum$	
Fiel	Oxidation - Reduction,	+/- mv				
	Dissolved Oxygen, ppr	n	<u></u>			
	Analytical Parameter	✓ If Sample	Preservation	Volume	Sample Bottle IL	ot Nos.
ti .		Collected	Method	Required		
len .	VOCs		4°C	2x40 ml		
lion)	Metals		4°C HN0, 4°C	2x1 liter AG 1x1 liter P		
oca	Cyanide Nitrate/Sulfate		NaOH,4°C	1x500mLP		
his L	Nitrate/Phosphate		H ² S0 ¹ ,4°C	1x1 liter P 1x1 liter P		1400
f at 1	Pest/PCB		4°C H S0 4°C	3x1 liter AG		
uirec	TOC 1		H ₂ S0 ₂ ,4°C	2x1 liter AG		-
Req	Or upp.	1:02(7.2	1			
8	Notes:	· 22 PL	4		•	
jur ,						
ŝ				GROUNDW	ATER SAMPLE	E DATA RECORD
			NYSDI	EC QUALITY	ASSURANCE	PROGRAM PI AN
40401	4D L 22	9499342945045049445464445446444749447429474294749444447494444444444		and a second	ABB Er	vironmental Services
	Wer bye lan					

ļ.

è

j, k I N − n N

	GROUNDWATER SAMPLE	E FIELD DATA RECORD
P	roject: Region & DN/Cleaners - Group 2	Site: HTS cleaners
P	roject Number: 36/2062059/02.2	Date: 10/12/06
		Time: Start: End:
s	ample Location ID: HTGW01103101XK	Signature of Sample
	Well Depth Ft Measured Top of Well	Well Riser Stick-upFt. ProtectiveFt.
	Line Historical Line Top of Protect	tive (from ground) Casing/Well Difference
ta		ProtectiveFt.
ã		Casing
Vel	Depth to Water Ft. Well Material: Well Locked?:	Well Dia2 inch Water Level Equip. Used:
eV	YVCYAL	6 inch Elect. Cond. Probe
Lev	-300	Press. Transducer
er		
Vat	Laight of Water Column X16 Gal/Ft. (2 in.)	Gal/Vol. Well Integrity: Yes No
	Ft1.5 Gal/Ft. (4 In.) ==	Prot. Casing Secure
	Gal/Ft. (in.) T	otal Gal Purged Other
-	Durain Complian Faultan (11)	
tio	rvrging/pampling roupment Used :	Decontamination Fluids Used :
inta	(If Used For)	
l line	Purging Sampling Equipment ID	(All That Apply at Location)
50	Submersible Pump	25% Methanol/75% ASTM Type II water
0	PVC/Silicon Tubing	Deionized Water
Den	Teflon/Silicon Tubing	
nd I	Hand Pump	Potable Water
n La	In-line Filter	None
	V V Milsit	
Saltobaldi Helenakerian		
8	PID: Ambient Airppm Well Mouthppm Purge D	ata Collected In-line Lurbid Clear Cloudy
Dat	•	In ContainerColoredOdor
<u>8</u>	Purge Data @ <u>Lo.</u> Gal. @	Gal. @Gal. @Gal. @Gal.
aly	Temperature, Deg. C	
An	pH, units	
eld	Turbidity (NTUS)	
Ē	Dissolved Oxygen, ppm	
Stateman Serie Astan	Analytical Parameter	
s	Collected Method	Required Sample Bottle ILot Nos.
ent	VOCs 4°C	2×40 mi
en)	SVOCs 4°C	2x1 liter AG
Cati	Cyanide HN0,,4°C	1x1 liter P
Hec 5 Lo	Nitrate/Sulfate H S0 ,4°C	1x1 liter P
at thi	Pest/PCB 4°C	3x1 liter AG
red	TPH	2x1 liter AG
olle equi		
0 E E	Notes: Screen: 32 to 30'	
jdr ,		
Sar		FIGURE 4-1
	NVODEO	OUALITY ACCURANCE PROOF THE
	NISDEC	ABB Environmental Service

ţ

and the	GROUNDWATER SA	MPLE FIELD DATA RECORD
P	Project: Legion & DN/Cleaners - Group	2 Site: HITS Cleaners
P	Project Number: 3612062059/022	2 Date: 10/12/06
		Time: Start: 1700 End: 1720
s	Sample Location ID: HTGW01202301	Signature of Sampler
	Well Depth Ft Measured Top	of Well Well Riser Stick-up Ft. Protective Ft.
	Cas	ing Casing/Weil Difference
ata		ProtectiveFt.
		Casing
We	Depth to Water Ft. Well Material: Well Locke	ed?: Well Dia2 inch Water Level Equip. Used:
Vel	SSOoV	
E	-1500	Press. Transducer
ter		
Wa	Height of Water Column X65 Gal/Ft. (2 in.)	Gal/Vol. Well Integrity: Yes No
	Ft1.5 Gal/Ft. (6 in.)	Total Cal Purgad
	Gaver. (in.)	Iotal Gal + Giged Other
	Purging/Sampling Equipment Used :	Decontamination Fluids Lised
atic		EXVANATION (10103 0560)
ent	(If Used For)	
L E	Peristaltic Pump	(I I hat Apply at Location)
l og	Submersible Pump	25% Methanol/75% ASTM Type II water
Ē	PVC/Silicon Tubing	
ů	Ietlon/Silicon Tubing Airlift	Hexane
녘	Hand Pump	Potable Water
ы	Press/Vac Filter	None
	r - millslot	
		. Sample Observations:
ta l	PID: Ambient Airppm Well Mouthppm	Purge Data Collected In-line UTurbidClearCloudy
Da		
sis/	Purge Data @ Gai. @	Gal. @Gal. @Gal.
llar	Temperature, Deg. C	
IAI	Specific Conductivity (µmhos/cm)	
lelo	Turbidity (NTUS)	
Ш.	Dissolved Oxygen, ppm	
	Analytical Parameter 🖌 It Sample Preservation	Volume Sample Pattle II at Mar
5	Collected Method	Required
len	VOCs 4°C	2x40 ml
ren on)	SVOCs 4°C	2x1 liter AG
qul	HN0,,4°C Cyanide NaOH.4°C	1X1 liter P 1X500mLP
He L	Nitrate/Sulfate H S0 .4°C	1x1 liter P
atth	Pest/PCB 4°C	3x1 liter AG
red	TPHH_SO,4°C	2x1 liter AG
olle equi		1x1 liter P
e C	Notes: Screen: 22 to 24	
id)	••••••••••••••••••••••••••••••••••••••	
San		FIGURE 4-1
		GROUNDWATER SAMPLE DATA RECORD
Rectanyys a ddiaethau	NY	SDEC QUALITY ASSURANCE PROGRAM PLAN
140401	4D L 22	ADD Environmental Services-

į.

à

Pr	oject Number: 3	61206205	-9/02.2	Date: //	1/03/06	<u> </u>
				Time: Star	: 1030	End: 105
Sa	ample Location ID:	TGW013	027011	Signature c	f Sampler:	
	Well DepthI	-t. <u>Measurec</u> Historical	d Top of M	Well Well Riser : Protective (from groun	Stick-up Ft.	ProtectiveF
			Casing		,	
5						Protective Casing
	Depth to Water F	-t. Well Material:	Wet Locked?	Well Dia.	2 inch	Water Level Equip 11
		PVC	-Yes	pe =	4 inch	Elect. Cond. Pro
	е		Cer (°°'		6 inch	—_Float Activated Press, Transduc
		C				
	Height of Water Column	16 Gal/Ft. (2 in.)	Gal/Vol.	Well Integrity:	Yes N
	Ft.	1.5 Gal/Ft. (6 in.) =	7 / 10 10 /	Prot. Casing Secure Concrete Collar Intact	
		Gal/Ft. (in.)	lotal Gal Purged	Other	
et the second		2947411010-19471-2047-00-00-00-00-00-00-00-00-00-00-00-00-00		An Make Biological States and the Constant States and the States and the States and the States and the States a		
5	Purging	/Sampling Equipme	ent Used :		Decontaminatio	n Fluids Used :
1	(If Used For)					
	Purging Sampling		Equipment	ID	(🖌 All That Apply at Loc	cation)
		Submersible Pur			Methanol (10))%) 1/75% ASTM Type II y
,	-/ -/	Bailer PVC/Silicon Tub			Deionized Wa	iter
	Angelia anternationa	Teflon/Silicon Tu	ibing		Hexane	uon
		 Hand Pump 		·······	HNO ₃ /D.I. Wi	ater Solution r
		In-line Filter Press/Vac Filter			None	
	$\overline{\mathbf{v}}$	SP-15				
					Sample (Observations:
		ppm Well Mouth	ppm Pu	irge Data Collected	In-lineTurb In Container Colo	idCleari red Odor
	Purge Data	@~ D.	Gal. @	 Gal @	 Gal @	
•	Temperature, Deg. C	11	·)		u	_ Gal. @
	pH, units	7		$=$ \geq		
	Turbidity (NTUS)	µmhos/cm) <u>(e)</u>	1010			
	Oxidation - Reduction Dissolved Oxygen, pp	, +/- mv	3.2			
	Analytical Parameter	✓ If Sample	Preservation	Volume	Sample Bottle IL	ot Nos.
62036	YOC:		Metriod	Required		
-	SVOCs		4°C 4°C	2x40 ml 2x1 liter AG		
ļ	Metals Cyanide	-	HN0,,4°C	1x1 liter P		
1	Nitrate/Sulfate		H S0 ,4°C	1x1 liter P		1041
	Pest/PCB		4°C	3x1 liter P	-(~~~	
			H_S0_,4°C H_S0_4°C	2x1 liter AG		
2	<u> </u>		···2···4, ··· ··	it inter P		
:	Notes: <u>Street</u>	VI: 25 TO	21		•	
						FIGURE
2				GROUNDW	ATER SAMPLE	DATA RECO

(

ł

į.

Test Boring Log Project No. 2612062059022 Boring/Well No. Project Kelionx BIGW-DN Client NYSDEC Site Sheet No. Finish Date Start Date Ground Elevation Logged By $D \subseteq$ hw 09106 10 106 26 Driller's Name **Rig Type** Drilling Contractor D7 \mathcal{M} Limming Geoboil P.I.D. (eV) Casing Size Auger Size... **Protection Level** Drilling Method 2 Total Depth 36 Rock Drilled Depth to Groundwater/Date Piez Well Boring N Monitoring % Sample No. & Penetration/ Recovery (Feet) Votes on Drilling USCS Group Symbol SPT Blows/6" or Core Rec./Rqd. % (ppm) Sample Type Graphic Log SPT-N (Blows/Ft.) Depth(Feet) Lab Tests Sample PI Meter Head Space Description PI Meter Field Scan 0-0.5- Bonstill local dup, works 0.5-1 Brun 544 growell sould 0.1 Fill 24ppm \$ curpsite Silt= MP, Fines of little course gave, No 5-Jan, 1-1-2 Black meganse sad; 1-2-2-2 Sime as 0.5-1 ZOPP TESO 4400 Joj XX 22-23 unitelgicy Brockash (coal Diyto ash) 2.3-4 silt ciay to silt - Sund - cover in Olice Dom, Met, HP: Mstiff, MI 1829 MUS(~ 10ppm 4 19 orange / 14 Brunn Sudy ciay Mamel; H1; ML 6 Saturated - ferched acter table, loosefsoft. 9-11.5 Sine as abure, but SM 9-11.5 Since as 1055 clay & more cause Sul, GN 11.5-11.6 Tandry Clay large chan 11.6-14 Birm (Tan Sondy any M Silty oldy of trace fine growch SL 12. Gм 10 to 17 M dw, NP: Fryable SM 14 FIGURE 4-6 **TYPICAL TEST BORING LOG** NYSDEC QUALITY ASSURANCE PROGRAM PLAN -ABB Environmental Services, Inc.-9404014D(z) L33

P	Project	Ret	ian	CI	1.									and the second second second
С	lient N		$\frac{1}{2}$	8	<u>B.C</u>		Group II	Baring/Wall	No.	R	roject No <u>12</u>). <u>062</u>	59/	02,2
		IYSDE	C		Site	ө ј	HTS		Sheet No	o	2	of	2	
L	.ogged By	BG	zhen	1	Gro	ound	Elevation Start [Date 10 [29]	-6	Finish	Date 10/0	9 10	Ь	
D	Prilling Cor	ntractor	St 0 (oly			riller's Name	Comming	Rig Typ	е	66	DT		
D	Drilling Met	hod T),VC	cti	Push	P	rotection Level D	P.I.D. (eV)	Casing	Size	rh'	Auger	Size 2	45
S	Soil Drilled	24	Rock	Drillec		Ť	otal Depth 36 Depth to	Groundwate	r/Date		Piez	Well	Boring	/
	Depth(Feet) Sample No. & Denatration/	Recovery (Feet) Samula Tuna	SPT Blows/6"	or Core Rec./Rqd. %	SPT-N (Blows/Ft.)	Graphic Log	Sample Descriptic	on	USCS Group Symbol	Notes on Drilling	ol Meter Tield Scan	ol Meter (u Head Space (u		Lab Tests
SJ 22 SJ 22 22 22 22 22 22 22 22 22 22 22 22 22		0.0					14 - 19 Buns 1 Some Coarses trace cobores, 1 dry ciay; 19 - 19.5 Ut gre Sond; Bry 19.5 - 21 silty Sun of trace Ciay; mp 21 - 21.5 oilve Brn S coarse vonded HP 21.5 - 24 silty sud S NP, House I'm Dise	V Clay ind; Miss enses of V solty fine d & gravel M solty cl gravel, ver	PL SG SGU SS		4 to 7ppm 1 10ppm 1 15pp 1 20ppm	m		
		с. /					NYSDEC QU	TI		TES E PF	FIG T BORI ROGRA		4-6 .OG .AN	

Project: Project: <th< th=""></th<>
Project Numbér: 3 6 1 2 0 6 2 0 5 9 0 2 . 2 Date: 1 1 2 0 6 Sample Location ID: ITCM 01 5 0 2 5 0 1 K X Signature of Sample End: 164 Sample Location ID: ITCM 01 5 0 2 5 0 1 K X Signature of Sample Protective Ft. Well Depth Ft. Méasured Top of Protective (form ground) Ft. Protective Ft. Depth Well Material: Well Dicked?: Well Dick. 2 inch Water Level Equip. Used: Signature of Water Ft. Well Material: Well Dicked?: Well Dick. 4 inch Elect. Cond. Prote Signature of Water Ft. Yee Yee 4 inch Elect. Cond. Prote Signature of Water Ft. Yee Yee 4 inch Elect. Cond. Prote Signature of Water Ft. Signature of Sample Yee No Protective Yee Height of Water Column X Signature of Gal/Ft. (4 in.) Equipment 10 Well Integrity: Yee No Prot. Casing Secure Concrete Collar Intact Other Dickersible Purp Dickersible Purp Dickersible Purp Dickersible Purp Dickersibl
Time: Start: L& f
Sample Location ID: HI GWDI GOLGOLAN Signature of Sampler Weil DepthFL
Weil Depth Ft. Measured Historical Top of Weil Top of Protective Casing Weil Riser Stick-up (from groupd) Ft. Protective Casing/Weil Difference Depth Mater Ft. Weil Material: PVC Vel Depth Weil Dia. 2 inch Water Level Equip. Used: 4 inch Elect. Cond. Probe So Ft. Yes No Float Activated Protective Fl. Casing Depth to Water Ft. Weil Material: Weil Column X Float Activated Protective
Weil Depth FL Measured Historical Top of Protective Casing FL (from group) Protective Casing FL Casing/Weil Difference Depth but water FL Weil Material: Weil Cocked?: SS Weil Dia. 2 inch 2 inch Water Level Equip. Used: Elect. Cond. Probe 6 inch Elect. Cond. Probe Height of Water FL 6 Gal/FL (2 in.)
Image: Standard S
Depth to WaterFt. Well Material: Well Cocked?: Well Dia. 2 inch Water Level Equip Used:
Depth to Water Ft. Well Material: Well Cocked?: Well Dia. 2 inch Water Level Equip. Used:
Depth to Water Fl. Well Material: Well Dia. 2 inch Water Level Equip. Used:
PVC Yes 4 inch Elect. Cond. Probe South of the set of t
Height of Water Column X
Height of Water Column X 65 Gal/Ft. (2 in.)
Height of Water Column X 16 Gal/Ft. (2 in.) 65 Gal/Ft. (4 in.) =
Height of Water Column X65 GaV/Ft (4 in.) = Prot. Casing Secure Concrete Collar Intact
Purging/Sampling Equipment Used :
Purging/Sampling Equipment Used : Decontamination Fluids Used : (* If Used For) Equipment ID (* All That Apply at Location) Purging Submersible Pump
Purging/Sampling Equipment Used : Decontamination Fluids Used : (✓ If Used For) Equipment ID (✓ All That Apply at Location) Purging Sampling Feristaltic Pump
Purging/Sampling Equipment Used : Decontamination Fluids Used : (✓ If Used For) Purging Sampling Equipment ID (✓ All That Apply at Location) Purging Sampling Equipment ID Methanol (100%) Purging Sampling Equipment ID (✓ All That Apply at Location) Purging Sampling Equipment ID Methanol (100%) Purging Sampling Equipment ID (✓ All That Apply at Location) Purging Sampling Equipment ID Methanol (100%) Purging Sampling Equipment ID (✓ All That Apply at Location) Purging Sampling Equipment ID Methanol (100%) Purging Equipment ID Image: Purging Equipment ID
<pre>(✓ If Used For) Purging Sampling Equipment ID (✓ All That Apply at Location) Methanol (100%) Methanol (100%) Deionized Water Solution Deionized Water Solution</pre>
Purging Sampling Equipment ID (✓ All That Apply at Location)
Image: Submersible Pump
Bailer
PVC/Silicon Tubing Teflor/Silicon Tubing Airlift Hand Pump Hand Pump Press/Vac Filter MIISIO Sample Observations: PID: Ambient Air ppm Purge Data Collected In-line In Container Colored
Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Second State of Tubing Image: Secon
Hand Pump Potable Water In-line Filter None Image: Press/Vac Filter None Image: Press/Vac Filter Image: Press/Vac Filter Image: Press/Vac Filter Image: Pre
Press/Vac Filter
PID: Ambient Airppm Weil Mouthppm Purge Data CollectedIn-line CloudyClearCloudy
PID: Ambient Airppm Well Mouthppm Purge Data CollectedIn-line Sample Observations: In ContainerColoredOdor
PID: Ambient Airppm Well Mouthppm Purge Data CollectedIn-lineTurbidClearCloudyin ContainerColoredOdor
Purge Data @ <u>~ / . 0</u> Gal. @Gal. @Gal. @Gal. @Gal. @Gal.
Temperature, Deg. C <u>12.3</u>
pH, Units
Turbidity (NTUS)
Oxidation - Reduction, +/- my
Analysical Parameter / It Sample Preservation Volume Sample Bottle ILot Nos. Collected Method Benuired
Metals HN0, 4°C 1x1 liter P
Nitrate/Sulfate H_S0_,4°C 1x500mLP
Nitrate/Phosphate H ² S0 [,] ,4°C 1x1 liter P
TPHH_S0,4°C 2x1 liter AG
TOC H ² ₂ S0 ² ,4°C 1x1 liter P
(ruppin: 2.71 to 1/2
Notes: SCRECTION MY VND
GROUNDWATER SAMPLE DATA BECORD
NYSDEC OHALITY ASSURANCE PROCEDUM DIAN
ABB Environmental Service

Project:
Project Numbér: <u>36/26/20579/02/2</u> Date: <u>11/2/06</u> Time: Start: <u>15/26</u> Sample Location ID: <u>HTCWDI 150/3740172</u> Signature of SampleA Well Depth <u>Ft</u> Meisured <u>Top of Well</u> Well Riser Stok-up <u>Ft</u> Protective <u>Ft</u> Casing Well Differoe <u>Casing Well Differoe</u> <u>Casing Well Differoe</u> <u>Casing Well Differoe</u> <u>Casing Well Differoe</u> <u>Protective <u>ft</u> <u>Casing Well Differoe</u> <u>Protective <u>ft</u> <u>Casing Well Differoe</u> <u>Casing Well Differoe</u> <u>Protective <u>ft</u> <u>Casing Well Differoe</u> <u>Casing Well Differoe</u> <u>Protective <u>ft</u> <u>Casing Secure</u> <u>Concrete Colar Intact</u> <u>Concrete Colar Intact</u> <u></u></u></u></u></u>
Time: Start: End:
Sample Location ID: IT C W DI ISO 3 Ho T K A Well Depth FL Meisured Top of Protective FL Protective FL Historical Top of Protective (from ground) Casing Protective Casing Protective Protective FL Output Neil Dia. 2 inch Water Lovel Equip. Used: SS South Colsent? Weil Dia. 2 inch Protective FL SS Gal/FL (2 in.) Eduptor Water Column X .65 Gal/FL (2 in.) Gal/Vol. Well Integrity: Yes Prot. Casing Secure Concrete Collar Intact Other Descritamination Fluids Used : Weil Mode Prot. Casing Secure Yes No Purging Sampling Eaulignen Tubing Methanol (100%) Stomersible Pu
Weil Depth FL Measured Historical Top of Weil Top of Protective Casing Weil Riser Stick-up (from groups) FL Protective Casing/Weil Difference Bepth to Water FL Weil Material: PVC PVC
Weil Depth FL Measured Historical Top of Weil Weil Riser Silck-up FL Protective Casing FL Upper Status Depth to Water FL Meil Material: Weil Cocked?: Weil Dia. 2 inch Water Level Equip. Used: Casing Depth to Water FL Weil Material: Weil Cocked?: Weil Dia. 2 inch Water Level Equip. Used: Casing Height of Water FL Meil Sched?: Weil Integrity: Yes No Pros. -16 GaVFL (2 in.)
In the protective [from ground] Casing/Well Difference Casing Protective Fit Depth to Water Fit Well Material: Well Clocked?; Well Dia. 2 inch Water Lavel Equip. Used:
Protective
Depth to WaterFt. Well Material: Well Coded?: Well Dia. 2 inch Water Level Equip. Used:
Depth to Water Ft. Weil Material: PVC Weil Tocked?: Yes Weil Dia. 2 inch Water Level Equip. Used: 4 inch Bit SS Gal/Vol. 6 inch Elect. Cond. Probe SS Gal/Vol. File Pros. Classing Secure Pros. Classing Secure Height of Water Column X .65 Gal/F1. (4 in.) =
Proc Yes // / / / / / / / / / / / / / / / / / /
Press. Transducer Height of Water Column X
In Gal/FL (2 in.) Height of Watter Column Yeight of Watter Column X 65 Gal/FL (4 in.)
Weil Height of Water Column X .16 Gal/Ft. (2 in.) .1.5 Gal/Ft. (4 in.) = Gal/Vol. Weil Integrity: Prot. Casing Secure Concrete Collar Intact Yes No Point Casing Secure
Profit Cairing Secure Profit Cairing Secure Concrete Collar Intact Other Decontamination Fluids Used: Decontamination Fluids Used: Other Decontamination Fluids Used: (/ If Used For) Purging Sampling Equipment Used: Decontamination Fluids Used: Other Decontamination Fluids Used: Other Decontamination Fluids Used: Other Decontamination Fluids Used: Other Othether Dec
Total Gal Purged Other Decontamination Fluids Used: Decontamination Fluids Used: Other Decontamer Decontamer Opticitie Decontamer Decontamer Opticitie <th< th=""></th<>
Purging/Sampling Equipment Used : Decontamination Fluids Used : (/ If Used For) Equipment ID (/ All That Apply at Location) Purging Sampling Equipment ID (/ All That Apply at Location) Purging Submersible Pump
Purging/Sampling Equipment Used : Decontamination Fluids Used :: (/ If Used For) Equipment ID (/ All That Apply at Location) Purging Sampling Equipment ID (/ All That Apply at Location) Purging Sampling Equipment ID (/ All That Apply at Location) Purging Sampling Equipment ID (/ All That Apply at Location) Purging Submersible Pump 25% Methanol(100%) Bailer Defonized Water Defonized Water PVC/Silicon Tubing Hexane Hexane Airlit HNO ₃ /D.I. Water Solution Hexane Inclusion Mainer Poss/Vac Filter None Press/Vac Filter None Colored Coder PID: Ambient Air ppm Purge Data Gal. @
Purging/Sampling Equipment Used : Decontamination Fluids Used : Operation Decontamin representation : Decontamina
Image: Strength of the second strengt of the second strength of the second strength
Purging Sampling Peristaltic Pump Equipment ID (/ All That Apply at Location) Methanol (100%) 25% Methanol/75% ASTM Type II water Deionized Water PVC/Silicon Tubing Teflor/Silicon Tubing Hand Pump Hand Pump Hexane Press/Vac Filter V / 15 PID: Ambient Airppm Well Mouthppm Purge Data CollectedInsline Purge Data @ <u>A 0.1</u> Gal. @Gal. @Gal. @Gal. @Gal. Purge Data @ <u>A 0.1</u> Gal. @Gal. @Gal. @Gal. @Gal. @Gal. Temperature, Deg. C720 Specific Conductivity (µumhos/cm)/Y70 Turbidity (NTUS)/V00
Topological Image: Constraint Pump Methanol (100%) Submersible Pump
Bailer Bailer Deionized Water PVC/Silicon Tubing Deionized Water Hand Pump HNO ₃ /D.I. Water Solution Hand Pump Press/Vac Filter V Press/Vac Filter V Semple Observations: V Press/Vac Filter V Semple Observations: V Press/Vac Filter V Semple Observations: V Semple Observations: Variable Water Clear Cloudy Colored Odor Odor
Image: Second Lubing Tetlon/Silicon Tubing Tetlon/Silicon Tubing Tetlon/Silicon Tubing Tetlon/Silicon Tubing Hexane Image: Liquinox Solution Hexane Image: Second Tetlon/Silicon Tubing Hand Pump Hand Pump Hand Pump Hand Pump Hand Pump Hand Perses/Vac Filter Image: Liquinox Solution Hexane Image: Second Tetlon/Silicon Tubing Hand Pump Pump Pumpe Data Collected Instine Colored Colo
Image: Street product of the second conductivity (µrmhos/cm) Image: Street product of the second conduct of the second c
Image: Hand Pump Image: Hand Pump Image: Potable Water Image: Hand Pump Image: Potable Water Image: None Image: Press/Vac Filter Image: Press/Vac Filter Image: Potable Water Image: Press/Vac Filter Image: Potable Water Image: Potable Water Image: Press/Vac Filter Image: Potable Water Image: Potable Water Image: Press/Vac Filter Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water Image: Potable Water
Press/Vac Filter Press/Vac Filter PID: Ambient Airppm Well Mouthppm Purge Data CollectedInstineTurbidClearCloudy In ContainerColoredOdor Purge Data @ <u>^ 0 · 1</u> Gal. @Gal. @
PID: Ambient Airppm Well Mouthppm Purge Data CollectedIn-lineTurbidClearCloudy Purge Data @ <u>^ 0 · l</u> Gal. @Gal. @
PID: Ambient Airppm Well Mouthppm Purge Data CollectedIn-lineTurbidClearCloudyIn ContainerColoredOdorColoredOdorColoredOdorColoredOdorColoredCOLORColored
growth Purge Data Clear Cloudy Purge Data @ O-l Gal. @ Gal. @ Gal. @ Gal. @ Purge Data @ O-l Gal. @ G
Purge Data @ O. l Gal. @
Purge Data @ <u>/ 0.11</u> Gal. @Gal. @
Temperature, Deg. C 13.4 pH, units 5.6 Specific Conductivity (µmhos/cm) 1570 Turbidity (NTUS) 7.600
Specific Conductivity (µmhos/cm) 1570 Turbidity (NTUS) 7,600
Turbidity (NTUS)
Ovidation Deduction /
L Dissolved Oxygen, ppm 10.4
Analytical Decomptor
Collected Method Required
E ⊆ _ SVOCs 4°C 2x40 mi
Metals HN0,,4°C 1x1 liter P S Cvanide NoOL 480
Nitrate/Sulfate
HS0, 4°C 1x1 liter P
TPH H,S0,4°C 2x1 liter AG
$\check{\mathbf{b}} = \frac{1}{2} - 10C \qquad \qquad$
$S \stackrel{\text{\tiny eff}}{=} $ $V \stackrel{\text{\tiny eff}}{=} \frac{72'}{72'} + 324'$
a Notes:
FIGURE 4-1
GROUNDWATER SAMPLE DATA RECORD
NYSDEC QUALITY ASSURANCE PROGRAM PLAN
404014D L22 ABB Environmental Services

ļ,

j.

į.

Test Boring Log Project No, Boring/Well No, Project Regim & D.C. - Grovo # 36.2062059/02.2 SB-016 Client Site NYŠDEC Sheet No. of Ground Elevation Start Date **Finish Date** Logged By 10/09/06 106 10/07 Driller's Namer **Rig Type Drilling Contractor** 66 BTim Commis 26/011 Casing Size P.I.D. (eV) **Drilling Method** Protection Level Auger Size Soil Drilled 24 Rock Drilled Depth to Groundwater/Date Piez Well Boring Total Depth -М Monitoring Sample No. & Penetration/ Recovery (Feet) % USCS Group Symbol Notes on Drilling SPT Blows/6" or Core Rec./Rqd. ? (ppm) Sample Type SPT-N (Blows/Ft.) Graphic Log Depth(Feet) Lab Tests Sample PI Meter Head Space Description PI Meter Field Scan 0-0.5 Lt Bran Silty 10m, MP, 1005 Fil 10.1 5-12 Bransilty lowing corre Fill Snoholmp, Sp, Sone quarts cobbe 17pf Sought dam. 1.2-3.5 Brun Sitysud, Sure Smekin moist, on perse 24 pg 35-4 fore sand if trace clay ? coarse grace, wet. loi 20 pp sc Ge 4 to 9 Brown / oneye Brom Sandy day of fine graves 2SA Suturcted, S. FF, MILHP Suntified 20ppm Compusited 9+09.5 Sine as 4 tog. 3 IZ your 9.5-10.5 Clean Micrassisant odor dup, odori miswese 10.5-14 sitty m course Sund & fine gived, dup HT650,601001 MOM migre 6 don 13 L **FIGURE 4-6** TYPICAL TEST BORING LOG NYSDEC QUALITY ASSURANCE PROGRAM PLAN -ABB Environmental Services, Inc.-9404014D(z) L33

Test Boring Log Project No. Project Boring/Well,No. 41mg D.C.- Group I SBOIL 361202059 102.2 Client Site NYSDEC わ TS Sheet No. of Logged By B . Finish Date Ground Elevation Start Date 106 m 601 10 10/09/6 Drilling Contractor **Rig Type** Driller's Name 66 Dr. ~m Cumming Casing Size P.I.D. (eV) Auger Size Drilling Method Protection Level D Piez Well Boring Rock Drilled (Depth to Groundwater/Date Soil Drilled Total Depth_ V Monitoring % Sample No. & Penetration/ Recovery (Feet) Notes on Drilling or Core Rec./Rqd. % Group Symbol (ppm) Sample Type SPT Blows/6" Graphic Log Depth(Feet) SPT-N (Blows/Ft.) Lab Tests USCS Sample PI Meter Head Space Description PI Meter Field Scan 14 + 16.5 Bonno stry Sund ign 20pm S Fine Sund, Dense, wist 6m 16.5 to 16-7 Sandy clay i five Sinces, HP/MP, net, Soft-4.0+ 19 L+ Bran V. Dense 50 Silty fire Sand fire Sundy stiffe trace readed course sind: glacier deposit/fluxics dipos bone dry: fryable. \sim GM 19 + 22 Sme as 16.7 H 15 19: 22-23 Haven finesund Sit; some day, dry, V Duse Sine rended counsegand; 10 pm M pyable. Spetn 95 22-23 Soul 8 ₽₽ 0 P Sure as 22+23 FIGURE 4-6 N TYPICAL TEST BORING LOG NYSDEC QUALITY ASSURANCE PROGRAM PLAN -ABB Environmental Services, Inc. 9404014D(z) L33

	GROUNDWATER SAM	APLE FIELD DATA RECORD
P	roject: Region & Dry Cleaners - Group	2 Site: HTS cleaners
P	roject Number: 3612062059/02-2	Date: 11/3/06
		Time: Start: 0800 End:
S	ample Location ID: HTGW01 70340/	K K Signature of Sampler:
	Well Depth Ft Measured Top of Historical Top of	Well Well Riser Stick-up Ft. Protective Ft. Protective (from ground) Ft. Casing/Well Difference
Data		ProtectiveFt.
ır Level/Well [Depth to Water Ft. Well Material: Well Locked PVC Yes SS	Well Dia2 inch Water Level Equip. Used: 4 inchElect. Cond. Probe 6 inchFloat Activated Press. Transducer
Wate	Height of Water Column X .16 Gal/Ft. (2 in.) Ft. .65 Gal/Ft. (4 in.) = Ft. Gal/Ft. (6 in.)	Gal/Vol. Well Integrity: Yes No Prot. Casing Secure Concrete Collar Intact Other
ation	Purging/Sampling Equipment Used :	Decontamination Fluids Used :
Equipment Document	(✔) If Used For) Equipmer Purging Sampling Equipmer Submersible Pump Bailer PVC/Silicon Tubing Peristaltic Pump Image: Submersible Pump Bailer PVC/Silicon Tubing Image: Submersible Pump Image: Submersible Pump Image: Submersible Pump </th <th>tt ID (✓ All That Apply at Location) Methanol (100%) 25% Methanol/75% ASTM Type II water Deionized Water ↓ Liquinox Solution Hexane HNO₃/D.I. Water Solution ✓ Potable Water None</th>	tt ID (✓ All That Apply at Location) Methanol (100%) 25% Methanol/75% ASTM Type II water Deionized Water ↓ Liquinox Solution Hexane HNO ₃ /D.I. Water Solution ✓ Potable Water None
Data	PID: Ambient Airppm Well Mouthppm P	Sample Observations: Purge Data CollectedIn-line
Field Analysis	Purge Data @ <u>~ l · (</u> Gal. @ Temperature, Deg. C pH, units Specific Conductivity (µmhos/cm) Turbidity (NTUS) Oxidation - Reduction, +/- mv Dissolved Oxygen, ppm	Gal. @Gal. @Gal. @Gal.
ts	Analytical Parameter If Sample Preservation Collected Method	Volume Sample Bottle ILot Nos. Required
Collection Requirement Required at this Location)	VOCs 4°C SVOCs 4°C Metals 4°C Cyanide NaOH,4°C Nitrate/Sulfate H S0,4°C Nitrate/Phosphate H S0,4°C Pest/PCB 4°C TPH H S0,4°C TOC H S0,4°C	2x40 ml 2x1 liter AG 1x1 liter P 1x500mLP 1x1 liter P 1x1 liter AG 2x1 liter AG 1x1 liter P
Sample (FIGURE 4-1 GROUNDWATER SAMPLE DATA RECORD
9404014	4D L 22	ABB Environmental Services

t i

<u>,</u>

į.

Project Boring/Well No. SR GW - O Project No. 36120 REGIONS D.L. - GROUP I Client Site NYSDEC Sheet No. of Logged By Ground Elevation Start Date Finish Date Zoob 101 ' , (200 10 **Drilling Contractor** Driller's Name Rig Type Jam 200 Pic, M 6 4mm nr Casing Size 1 1/2 Auger Size Drilling Method P.I.D. (eV) **Protection Level** Vec Rock Drilled Total Depth Depth to Groundwater/Date Piez/Well Boring ~21.5 \square \Box Monitoring % Sample No. & Penetration/ Recovery (Feet) Notes on Drilling SPT Blows/6" or Core Rec./Rqd. 9 USCS Group Symbol Sample Type Depth(Feet) SPT-N (Blows/Ft.) (ppm) **Graphic Log** Lab Tests Sample PI Meter Head Space Description PI Meter Field Scan 0:0.5 Asphant 1=11 Lo.1 0.5-1 Bran Silly Sud of grand Smbr 1-3 Olin Bun clayeysan i SL GL grand, fine to five groves, not mp/HP, mS+++ 3-4 Olik Sandy day, wet OL HP, MSTOFF. Spr 440 6.5 Save as 3-4, 4 Bin dry csay rense @ ~ 5 10.1 6.5-6.7 Cobble layor 6.7-6.8 yellow Bur moant send 6.8-9 Sindy gravel of lots - SP of Firel, woist to demp; MDuracow day Brown clay rense Q-7.5' 9 to 13 Brunsilty suds GM Lo.1 five finel, dry to daup 0 M Dinge / Durke, NISP. 13 to 14 Brown course sand S grave w/ Some Fines, damp loose/mouse, NP SW IŬ **FIGURE 4-6 TYPICAL TEST BORING LOG** NYSDEC QUALITY ASSURANCE PROGRAM PLAN ABB Environmental Services, Inc. [\]9404014D(z) L33

	GROUNDWA	TER SAMPLE	FIELD DA	TA RECORD		
P	roject: REGIONS DW, [LEAME]	25-6ROVPIE	Site:	175		
	roject Number: 3612012059	10.2	Date:	10/11/2000)	
	ample Langting 10 1 (1976 hal Alt C/ A	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Time: Star	t: <u>Na</u>	End:)546	>
5	ample Location ID: HILGINI ULI XIU	STUTIE	Signature c	of Sampler:	\sim	
	Well Depth Ft. Measured	Top of Well	Well Bie	Stick-up Et	Protocius	
	Historical	Top of Protect	tive (from grour	nd)	Casing/Well Differen	rt. Ce
a l		Casing			Protective	E +
Dat					Casing	ri, .
Vell	Depth to Water Ft. Well Material:	Well Locked?:	/ Well Dia	2 inch	Water Level Equip. Us	sed:
etv	PVC	Yes		4 inch	Elect. Cond. Pro	be
Lev		E DAY			Press. Transduo	er
ter		~				
Wat	Height of Water Catlumn X 16 Gal/Ft. (2 in.)	- Г G	Gal/Vol.	Well Integrity:	Yes No)
	Ft1.5 Gal/Ft. (6 in.)	=T	tel Cel Durand	Concrete Collar Intact		
	Gal/Ft. (in.)	· · · · · · · · · · · · · · · · · · ·	nai Gai Purgeo	Other	· · · · · · · · · · · · · · · · · · ·	····· .
	un alexandra and a characterization of the second statement of the second statement of the second second second					
L R	Purging/Sampling Equipment U	sed :		Decontaminatio	n Fluids Used	
tatl	(If light Ear)					
nen	Purging Sampling	Equipment ID		(🖌 All That Apply at Loc	cation)	
un o	Peristaltic Pump			Methanol (100)%)	
å	Bailer	·		25% Methano	v75% ASTM Type II w .ter	ater
ent	PVC/Silicon Tubing			Liquinox Solut	tion	
L E	Airlift Hand Pump	······································		HNO ₃ /D.I. Wa	ater Solution	
nb	In-line Filter			Potable water	r	
	- Press/Vac Filter + $ -$				· ·	
	PID: Ambient Airppm Well Mouth	ppm Purge Da	ata Collected	In-line Sample C	Dbservations: id Clear (Cloudy
Dat		-	\checkmark	In ContainerColor	red Odor	Journal
313	Purge Data @ - [.D	_ Gal. @	Gal. @	Gal. @	_Gal. @ (Gal.
aly:	Temperature, Deg. 5 / 17-1	6		Z		
An	Specific Conductivity (umboardon) / 24	<u> </u>	\leq	$=$ \leftarrow		_
eld	Turbidity (NTUS)	<u>,0</u>		\rightarrow		
Ē	Dissolved Oxygen, pp					
			nantanana nan an		<u> </u>	
-	Analytical Parameter	eservation	Volumo	Damala Dattle II.		CONTRACTOR AND INCOMENT
s	Collected	Method	Required	Sample Bottle ILC	DI NOS.	
len	4	•c	x40 ml			
ion)	SVOCs 4 Metais	°C 2	x1 liter AG			
qui	Cyanide N	aOH,4°C 1	x500mLP			
his L	Nitrate/Phosphate	1,50,4°C 1 1,50,4°C 1	x1 liter P x1 liter P	(3	
f at t	Pest/PCB 4	°C 3	x1 liter AG			
l lec	TOC H	S0,4°C 1	x1 mer AG x1 liter P			
Hed Col		\sim				_
9	Notes:	<u></u>				
am	DINNE M. Len Brinn Lenn	Toven			FIGURE 4	1-1
ů	Harder Martin Hard	G	ROUNDW	ATER SAMPLE	DATA RECOR	
		NYSDEC	QUALITY	ASSURANCE F	ROGRAM PL	AN
040404	4D 1 22	Gennis glans dynt Afpryna i far ywel ywlenn rawdyna a llyfraego		ABB En	vironmental Servi	ces

í

i

2

		Microwell C	Completion	Diagram			Well No:
Project No.: 3612062059/02.2		Project: Reg	ion 8 Group 2 ·	HTS Checked	By:	LONGLI	EY GW-2
Client Name: NY	SDEC	Logged By:	SHAW	Protection Level:	D Gr	ound El	evation:
Drilling Contractor:	GEO	DLOGIC	Drilling Met	hod: DIRECT P	PUSH	Driller LIAM	's Name: CUMMINS
Bit Type/Size:	Soi	I Drilled:	26'	Rig Type:	Start Date:		Finish Date:
GEOPROBE ROD - 1 1/2"		0 DVC		66 DT Track Rig	10/10/2	006	10/10/2006
	J. SCH 4	OPVC		F.I.D. (ev): NA	Casing Size	N/A	Auger Size: 2
O Depth (feet)	Graphic Log	Well Diagram	Well Construction Notes	Notes:			
			Flush casing	Well Construction Notes:	(all depths in feet fro	m ground s	surface)
2		<	Schedule 40	Depth to Water Levels:			
			PVC casing	11/2/2006: 19.41' (TOR)			
			Cement /				
6			blacktop: 0 - 0.5	noted water at 20.1 during in	nstallation		
			Backfill cave				
8			in:				
		16	0.5 - 10				
10							
			Bentonite seal, $10 - 14$				
12			10 - 14				
14							
16							
10			filter pack,				
18			00N, and cave				
		111111	14 - 20				
20			#10 slot PVC				
			cap, 15.8 -				
22		(Comments)	25.8				
24			Sump: 25.8 -				
\vdash \mid \mid			25.95	BOW: 25.70' (TOR) TD = 26.0'			
26							
30							-
MACTEC				1			1 of 1 GW-2

		Microwell C	ompletion	Diagram			Well No:
Project No.: 3612062059/02	.2	Project: Regi	on 8 Group 2 -	HTS Checked	By:	LONGLEY	GW-5
Client Name:	NYSDEC	Logged By:	SHAW	Protection Level:	D Gr	ound Elev	vation:
Drilling Contractor:	GEO	LOGIC	Drilling Met	hod: DIRECT P	PUSH	Driller's LIAM C	s Name: UMMINS
Bit Type/Size:	Soil	Drilled:	24'	Rig Type:	Start Date:		Finish Date:
GEOPROBE ROD - 1 1/2	'			66DT Track Rig	10/10/2	006	10/10/2006
Well Material: 1	" I.D. Sch 40) PVC		P.I.D. (eV): NA	Casing Size	N/A	Auger Size: 2"
o Depth (feet)	Graphic Log	Well Diagram	Well Construction Notes	Notes:			
				Well Construction Notes:	(all depths in feet fro	m ground su	rface)
			6" Flush casing Cement: 0 -	Depth to Water Levels:			-
3			0.5	<u> </u>			-
				10/31/2006: 17.02' (TOR) 11/02/2006: 17.05' (TOR)			-
			Schedule 40				-
5			PVC casing	noted water at 17.6' during in	nstallation		-
				5			-
			Backfill/				-
8			sandpack:				-
		.	0.5 - 11				-
10							-
10			Bentonite				-
			seal: 11 -13				-
12							-
		•					-
							-
14							-
			#10 slot PVC				-
		innin -	cap, 12.7 -				-
16			22.7				
							_
			Silica sand				_
18			filter pack,				-
		Summer State	00N, 13 - 24				-
			12 24				-
21			Sump: 22.7 -	BOW: 22.28' (TOR) TD = 24'			-
			22.8				-
		A Bestario					-
	555	1 your and		1			1 of 1
MACTEO							GW-5

	Microwell C	ompletion	Diagram			Well No:
Project No.: 3612062059/02.2	Project: Regi	on 8 Group 2 -	HTS Checked	By:	LONGLEY	GW-7
Client Name: NYSDE	C Logged By:	SHAW	Protection Level:	D Gro	ound Elev	ation:
Drilling Contractor: C	GEOLOGIC	Drilling Met	hod: DIRECT P	USH	Driller's	Name:
					LIAM CU	UMMINS
Bit Type/Size:	Soil Drilled:	22'	Rig Type:	Start Date:		Finish Date:
GEOPROBE ROD - 1 1/2"	h 40 DVC		BLD (aV): NA	10/12/20	JU6 N/A	10/12/2006
	II 40 F VC	-	F.I.D. (EV). NA	Casing Size	IN/A	
Depth (feet) Oxidation andFractures	Building Well Diagram	Well Construction Notes	Notes:			
		Sfa Camalta	Well Construction Notes: (all depths in feet from	n ground sur	face)
					5	•
		Cement /	Depth to Water Levels:			
		0.5	10/31/2006: 19.48' (TOR)			
			11/2/2006: 19.17 (TOR)			
4			perched zone noted at betwee	en 5' to 6' during drillir	ng	
ar an	+	Schedule 40	water noted at 19.95' at time	of setting well		
		r vC casing		U U		
6						
8		Bentonite seal,				
		/-11				
						_
10						_
		#10 slot PVC				
12		screen w/end				
		21.3				
						•
						•
		Silica sand				
16		filter pack, 11- 22				
						•
						•
		- Sump: 21.30 -	BOW: TD = 22'			•
22		21.45				•
MACTEC		·				1 of 1 GW-7

		Microwell C	ompletion	Diagram			Well No:
Project No.: 3612062059/02.	2	Project: Regi	on 8 Group 2 -	HTS Checked	By:	LONGLE	EY GW-18
Client Name:	NYSDEC	Logged By:	SHAW	Protection Level:	D Gr	ound El	evation:
Drilling Contractor:	GEO	LOGIC	Drilling Met	hod: DIRECT P	PUSH	Driller	's Name:
Rit Type/Size:	Soil	Drilled:		Rig Type:	Start Date:	LIAM	Einish Date:
GEOPROBE ROD - 1 1/2"	0011	28'		66DT Track Rig	10/11/20	006	10/11/2006
Well Material: 1"	' I.D. Sch 40) PVC		P.I.D. (eV): NA	Casing Size	N/A	Auger Size: 2"
o Depth (feet)	Graphic Log	Well Diagram	Well Construction Notes	Notes:			
			Blacktop	Well Construction Notes:	(all depths in feet fro	m ground s	surface)
		•	Backfill/ sandpack 0.5- 10 Schedule 40 PVC casing	Depth to Water Levels: 10/31/2006: 19.75' (TOR) 11/02/2006: 19.74' (TOR)			-
10 12 14			 Bentonite seal: 10 -14 Silica sand 				-
16 18 20 22 22 24 24			filter pack, 14 - 27.4 #10 slot PVC screen w/end cap, 17.2 - 27.2				-
28			- Sump: 27.2 - 27.4	BOW: 27.42' (TOR) TD = 28'			- - -
MACTEC	2		I	I			1 of 1 GW-18

APPENDIX D

SITE SURVEY

LEGEND

7Λ	TIONS	LIST	ED	HEREO	Ν.	ARE
н	AMERI	CAN	VE	RTICAL	DA	TUM

RDINATES SYSTEM, ON THE NAD 1983

$\boldsymbol{\mathcal{C}}$			and the second second		
(
DATE	REVIS	SIONS	BY		
UNITE	ne ne	Jone			
WARNII Law, A persor Licens alter of of an engine and n date of the al	NG: It is a violation of tricle 145, Section 720 in unless he is acting up ed Professional Enginee an item in any way. If engineer or land surveyor shi otation "altered by" follo of such alteration, and teration.	the New York State Educ 9, Special Provision 2, for noter the direction of a r or Land Surveyor to an item bearing the seal yor is altered, the alterin all affix to the item his s owed by his signature an a specific description of	ation r any eal i		
	BY: DATE:				
	LU E Civil an	NGINEER d Environmer	(S tal		
JOS	EPH C. LU EN				
	2230 Pen	field Road			
	(585)	377-1450			
	FAX: (585) 377-1266			
PROJEC	CT:				
	HTS CLEANERS				
CLIENT:	:				
MA	MACTEC ENGINEERING, INC. 511 CONGRESS STREET PORTLAND, ME 04101				
DRAWIN	IG TITLE:				
	Enviror	mental			
	IVI/	-\F ⁻			
DESIGN	ED BY:	SCALE: 1"= 50'			
CHECKE	ED BY: CJR	PROJECT No. 3641	4-03		
	SHEET	DRAWING No.			
· ∕ ⊓	UF 1	5- 1			

APPENDIX E

DATA USABILITY SUMMARY REPORT

DATA VALIDATION REPORT

Volatile Analyses

SDG No. X4779 & X4945 Sampling Date: October 3 & 13, 2006

Submitted to:

MACTEC, Inc., 511 Congress Street Portland, ME 04112 207-775-5401

Submitted by:

EDV, Inc., 1326 Orangewood Avenue Pittsburgh, PA 15216 412-341-5281

January 12, 2007

Site:	HTS Cleaners/NYSDEC
Client:	MACTEC, Inc.
Analytical Laboratory:	Chemtech 284 Sheffield Street Mountainside, NJ 07092
Sample Delivery Group (SDG):	X4779 & 4945
Sampling Date:	October 3 & 13, 2006
Analyses:	Volatile
Analytical Method: Summary of Data Validation:	CLP OLM 4.3 & USEPA TO-15

The adherence of laboratory analytical performance to CLP and USEPA TO-15 Analytical Specifications were evaluated during the data validation process. The USEPA Region II's data validation SOP Checklists (SOP HW-18 Rev 0, August 1994, SOP, HW-15 Rev 2, May 1993) and the National Functional Guidelines for Organic Data Review (October 1999), were used as guidelines for data qualifications.

SDG X4779: Trichlorofluoromethane results in both samples were qualified as estimated due to calibration issues.

SDG X4945: Hexachloro-1,3-butadiene and 1,2,4-trichlrobenzene were rejected in all samples due to LCS recovery issues.

The sample qualifiers applied by the data validator are in section 15.0 and Attachment A- Form 1s. The detailed discussions can be found in the report.

Table of Contents

1.0	Sample Identifications							
2.0	Comp	Deteness Checklist						
3.0	Detection Limits							
4.0	Holding Time							
	4.2	Sample Preservation						
	4.3	Chain of Custody Record						
5.0	Calib	ration Quality Control						
	5.1	Initial and Continuing Calibration (ICAL & CCAL)						
6.0	Blank	s Quality Control						
7.0	Surro	gate Recoveries						
8.0	Accu	racy						
	8.1	Laboratory Control Samples (LCS)/Blank Spikes						
	8.2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)						
		8.2.1 Frequency						
		8.2.2 Recovery						
9.0	Precis	sion4						
	9.1	Matrix Spike Duplicates						
	9.2	Matrix Duplicates						
10.0	Field	QC						
	10.1	Field Blanks/Rinse Blanks						
	10.2	Trip Blanks						
	10.3	Field Duplicate						
11.0	Inter	nal Standards						
	11.1	IS Area Counts						
	11.2	Retention Time						
12.0	Targe	et Compound Identification						
	12.1	Tentatively Identified Compounds (TICs)						
13.0	Calcu	lations and Transcription						
14.0	Addit	ional Comments						
15.0	Data Qualifier Table							

List of Appendices

- A Validated and Qualified Data Sheets (Form 1s)
- B Case Narrative and Chain of Custody

1.0 Sample Identifications The following table summarizes sample IDENTIFICATIONS, matrix of each sample and analyses present in the data package for each sample.

Client Sample ID	Matrix	Volatile	TO-15
SDG X4779			
HTMWD1302601XX	WATER	Х	-
HTMW00301801XX	WATER	Х	-
SDG X4945			
HTGV00100801XX	AIR	-	Х
HTGV00200801XX	AIR	-	Х
HTGV00300801XX	AIR	-	Х
HTSV001XXX01XX	AIR	-	Х
QC sample ID	Matrix		
LCS	WATER	Х	-
LCSD	WATER	Х	-
HTSV001XXX01XXMS	AIR	-	Х
HTSV001XXX01XXMSD	AIR	-	Х

2.0 Completeness Checklist

The following table identifies the summary form information and raw data found in the data package. Form numbers shown in parentheses refer to the current U.S. EPA CLP SOW equivalent reporting of results in an alternate summary format that has been determined to be acceptable. Analyses in this data package were performed in accordance with USEPA CLP and TO-15 Methods.

Х	Case Narrative
Х	Chain of Custody Records/Traffic Reports/Tracking Records
Х	Preservation Information
Х	Sample Cross Reference with Unique Identifiers
Х	Sample Results Summary Form (Form 1/Form 1-TIC)
Х	CLP Flagging used on Results Summary
Х	SMC/Surrogate Results Summary (Form 2)
NR	Matrix Spike/Matrix Spike Duplicate Results Summary (Form 3)
Х	Laboratory Control Sample (LCS)/ Blank Spike Results Summary (Form 3)
NR	Control Charts
Х	Method/Preparation Blank Results Summary (Form 4)
Х	Volatile Initial Calibration Summary (Forms 6)
Х	Volatile Continuing Calibration Summary (Form 7)
Х	Volatile Analytical Sequence (Form 8)
Х	Internal Standard Area Summary (Form X11)
Х	Raw Data (incl. IS, Surr/SMC, RT, quant. Reports, etc.)
Х	Samples
Х	Initial Calibration
NR	Clean-ups
Х	Continuing Calibration
NR	Instrument Blanks
Х	Preparation Blanks/Method Blanks
0	Other Blanks
Х	LCS/Blank Spike
Х	Matrix Spikes/Matrix Spike Duplicates
NR	Matrix Duplicates/Replicates
0	Field Blanks – Trip Blank
Х	Field Duplicates
Х	Extraction Log Benchsheets
Х	Instrument Run Logs
Х	Sample Descriptions
Х	Legible Pages
Х	Pages in Package Numbered and in Sequence
Х	Electronic Data Deliverable (EDD)

Completeness Checklist

X: Included in original Data Package

NR: Not Required

RS: Provided as a Resubmission

O: Not Included and/or Not Available

X/RS: Incomplete in original data package, completed as a resubmission

3.0 Detection Limits

Detection limits were acceptable.

4.0 Holding Time

Holding times were acceptable.

4.1 Sample Preservation

Samples were appropriately preserved.

4.2 Percent Moisture

Percent moisture results were not acceptable.

4.3 Chain of Custody Record

Chain of Custody Record was present.

5.0 Calibration Quality Control

5.1 Initial Calibration

The initial calibration was acceptable.

5.2 Continuing Calibration (CCAL)

SDG X4779: Trichlorofluoromethane-27% exceeded the 25% QC criterion. Affected compounds qualified as estimated "UJ" to indicate a low bias..

SDG X4945: Hexachloro-1,3-butadiene-74% and 1,2,4-trichlrobenzene exceeded the 30 %D. See Section 8.1.

6.0 Blanks Quality Control

SDDG X4779: Method blank reported acetone and methylene contamination but there were no detects thus, no qualification was necessary.

7.0 Surrogate Recoveries

Recoveries were acceptable.

8.0 Accuracy

8.1 Laboratory Control Samples (LCS)/Blank Spikes

SDG X4945: Hexachloro-1,3-butadiene-33% and 1,2,4-trichlrobenzene -52% were below the 65-135 % QC limits. Both these compounds were rejected in all samples.

8.2 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

8.2.1 Frequency

Frequency was met.

8.2.2 Recovery

Recoveries were not applicable.

9.0 Precision

9.1 Matrix Spike Duplicates

RPDs were not applicable.

9.2 Matrix Duplicate

RPDs were acceptable.

10.0 Field QC

10.1 Field Blanks/Rinse Blanks

No rinse blanks were reported with this SDG.

10.2 Trip Blanks

No trip blank was reported

10.3 Field Duplicate

No field duplicates were reported with these SDGs.

11.0 Internal Standards (IS)

11.1 IS Area Counts

IS area counts were within QC limit.

11.2 Retention Time (RT)

All RTs were within the method accepted criteria.

12.0 Target Compound Identification

All target compounds identification is acceptable.

12.1 Tentatively Identified Compounds (TICs)

No TICs were reported.

13.0 Calculations and Transcription

Raw data were accurately transcribed to summary data sheets.

14.0 Additional Comments

None

15.0 Data Qualifier Table

SDG X4779-Volatile

Sample Identification	Compound	Qualifier	Section Reference
HTMWD1302601XX, HTMW00301801XX	Trichlorofluoromethane	UJ	5.2

SDG X4945-Volatile

Sample Identification	Compound	Qualifier	Section
			Reference
HTGV00100801XX	Propene	J	14.0
HTGV00100801XX	1,2, 4-Trichlorobenzene, hexachloro-	R	8.1
HTGV00200801XX	1,3-butadiene		
HTGV00300801XX			
HTSV001XXX01XX			

DATA VALIDATION REPORT

Volatile Analyses

SDG No. X4826 Sampling Date: October 4 & 9, 2006

Submitted to:

MACTEC, Inc., 511 Congress Street Portland, ME 04112 207-775-5401

Submitted by:

EDV, Inc., 1326 Orangewood Avenue Pittsburgh, PA 15216 412-341-5281

January 12, 2007

Site:	HTS Cleaners/NYSDEC
Client:	MACTEC, Inc.
Analytical Laboratory:	Chemtech 284 Sheffield Street Mountainside, NJ 07092
Sample Delivery Group (SDG):	X4826
Sampling Date:	October 4 & 9, 2006
Analyses:	Volatile
Analytical Method: Summary of Data Validation:	CLP OLM 4.3

The adherence of laboratory analytical performance to CLP Analytical Specifications was evaluated during the data validation process. The USEPA Region II's data validation SOP Checklists (SOP HW-18 Rev 0, August 1994, SOP, HW-15 Rev 2, May 1993) and the National Functional Guidelines for Organic Data Review (October 1999), were used as guidelines for data qualifications.

Volatile: Tetrachloroethene results in some samples were qualified as estimated due to calibration issues. Acetone results in some samples were qualified as non-detects due to blank contamination.

The sample qualifiers applied by the data validator are in section 15.0 and Attachment A- Form 1s. The detailed discussions can be found in the report.

Table of Contents

1.0	Sample Identifications1		
2.0	Completeness Checklist		
3.0	Detection Limits		
4.0	Holdi	ng Time	
	4.2	Sample Preservation	
	4.3	Chain of Custody Record	
5.0	Calib	ration Quality Control	
	5.1	Initial and Continuing Calibration (ICAL & CCAL)	
6.0	Blanks Quality Control		
7.0	Surrogate Recoveries		
8.0	Accuracy		
	8.1	Laboratory Control Samples (LCS)/Blank Spikes	
	8.2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)	
		8.2.1 Frequency	
		8.2.2 Recovery	
9.0	Precision4		
	9.1	Matrix Spike Duplicates	
	9.2	Matrix Duplicates	
10.0	Field QC		
	10.1	Field Blanks/Rinse Blanks	
	10.2	Trip Blanks	
	10.3	Field Duplicate	
11.0	Inter	nal Standards4	
	11.1	IS Area Counts 4	
	11.2	Retention Time	
12.0	Targe	et Compound Identification4	
	12.1	Tentatively Identified Compounds (TICs)	
13.0	Calculations and Transcription		
14.0	Additional Comments		
15.0	Data Qualifier Table6		

List of Appendices

- A Validated and Qualified Data Sheets (Form 1s)
- B Case Narrative and Chain of Custody

1.0 Sample Identifications The following table summarizes sample IDENTIFICATIONS, matrix of each sample and analyses present in the data package for each sample.

Client Sample ID	Matrix	Volatile
SDG X4	826	
HTMW16L03001XX	WATER	Х
HTMW16U02201XX	WATER	Х
HTGS01400301XX	SOIL	Х
HTGW01402501XX	WATER	Х
HTGW01403501XX	WATER	Х
HTTB001XXX01XX	WATER	Х
AMGW01503102XX	WATER	Х
HTGS01601001XX	SOIL	Х
QC sample ID	Matrix	
HTMW16U02201XXMS	WATER	Х
HTMW16U02201XXMSD	WATER	Х

2.0 Completeness Checklist

The following table identifies the summary form information and raw data found in the data package. Form numbers shown in parentheses refer to the current U.S. EPA CLP SOW equivalent reporting of results in an alternate summary format that has been determined to be acceptable. Analyses in this data package were performed in accordance with USEPA CLP Method.

Х	Case Narrative
Х	Chain of Custody Records/Traffic Reports/Tracking Records
Х	Preservation Information
Х	Sample Cross Reference with Unique Identifiers
Х	Sample Results Summary Form (Form 1/Form 1-TIC)
Х	CLP Flagging used on Results Summary
Х	SMC/Surrogate Results Summary (Form 2)
NR	Matrix Spike/Matrix Spike Duplicate Results Summary (Form 3)
Х	Laboratory Control Sample (LCS)/ Blank Spike Results Summary (Form 3)
NR	Control Charts
Х	Method/Preparation Blank Results Summary (Form 4)
Х	Volatile Initial Calibration Summary (Forms 6)
Х	Volatile Continuing Calibration Summary (Form 7)
Х	Volatile Analytical Sequence (Form 8)
х	Internal Standard Area Summary (Form X11)
Х	Raw Data (incl. IS, Surr/SMC, RT, quant. Reports, etc.)
Х	Samples
Х	Initial Calibration
NR	Clean-ups
Х	Continuing Calibration
NR	Instrument Blanks
Х	Preparation Blanks/Method Blanks
0	Other Blanks
Х	LCS/Blank Spike
Х	Matrix Spikes/Matrix Spike Duplicates
NR	Matrix Duplicates/Replicates
0	Field Blanks – Trip Blank
Х	Field Duplicates
Х	Extraction Log Benchsheets
Х	Instrument Run Logs
Х	Sample Descriptions
Х	Legible Pages
х	Pages in Package Numbered and in Sequence
Х	Electronic Data Deliverable (EDD)

Completeness Checklist

X: Included in original Data Package NR: Not Required

RS: Provided as a Resubmission

O: Not Included and/or Not Available

X/RS: Incomplete in original data package, completed as a resubmission

3.0 Detection Limits

Detection limits were acceptable.

4.0 Holding Time

Holding times were acceptable.

4.1 Sample Preservation

Samples were appropriately preserved.

4.2 Percent Moisture

Percent moisture results were acceptable.

4.3 Chain of Custody Record

Chain of Custody Record was present.

5.0 Calibration Quality Control

5.1 Initial Calibration

The initial calibration was acceptable.

5.2 Continuing Calibration (CCAL)

Percent difference for tetrachloroethene-25.9% exceeded the required 25% criterion. This compound in affected samples was qualified as estimated due to this anomaly.

6.0 Blanks Quality Control

Method blank reported acetone contamination. All affected detected acetone results were qualified as non-detects due to this anomaly.

7.0 Surrogate Recoveries

Recoveries were acceptable.

8.0 Accuracy

8.1 Laboratory Control Samples (LCS)/Blank Spikes

Recoveries were acceptable.

8.2 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

8.2.1 Frequency

Frequency was met.

8.2.2 Recovery

Recoveries were acceptable.

9.0 Precision

9.1 Matrix Spike Duplicates

The results were acceptable.

9.2 Matrix Duplicate

RPDs were acceptable.

10.0 Field QC

10.1 Field Blanks/Rinse Blanks

No rinse blanks were reported with this SDG.

10.2 Trip Blanks

Trip blank reported acetone contamination. Affected detected results were qualified as non-detects.

10.3 Field Duplicate

No field duplicates were presented with this SDG.

11.0 Internal Standards (IS)

11.1 IS Area Counts

IS area counts were within QC limit.

11.2 Retention Time (RT)

All RTs were within the method accepted criteria.

12.0 Target Compound Identification

All target compounds identification is acceptable.

12.1 Tentatively Identified Compounds (TICs)

No TICs were reported.

13.0 Calculations and Transcription

Raw data were accurately transcribed to summary data sheets.

14.0 Additional Comments

None
15.0 Data Qualifier Table

Volatile

Sample Identification	Compound	Qualifier	Section Reference
HTMW16L03001XX, HTMW16U02201XX	Tetrachloroethene	UJ	5.2
HTGS01400301XX,	Acetone	U	6.0/10.2
HTGW1403501XX, HTGS01601001XX			

DATA VALIDATION REPORT

Volatile & Semi-volatile Analyses

SDG No. X4921 Sampling Date: October 10-11, 2006

Submitted to:

MACTEC, Inc., 511 Congress Street Portland, ME 04112 207-775-5401

Submitted by:

EDV, Inc., 1326 Orangewood Avenue Pittsburgh, PA 15216 412-341-5281

January 12, 2007

Site:	HTS Cleaners/NYSDEC
Client:	MACTEC, Inc.
Analytical Laboratory:	Chemtech 284 Sheffield Street Mountainside, NJ 07092
Sample Delivery Group (SDG):	X4587
Sampling Date:	October 10-11, 2006
Analyses:	Volatile & Semi volatile
Analytical Method: Summary of Data Validation:	CLP OLM 4.3

The adherence of laboratory analytical performance to CLP Analytical Specifications was evaluated during the data validation process. The USEPA Region II's data validation SOP Checklists (SOP HW-18 Rev 0, August 1994, SOP, HW-15 Rev 2, May 1993) and the National Functional Guidelines for Organic Data Review (October 1999), were used as guidelines for data qualifications.

Volatile: Some detected acetone results were qualified as non-detects due to blank contamination. Hexachloro-1,3-butadiene results in some samples were qualified as estimated due to calibration issues. One acetone sample result was qualified as estimated due to calibration range exceedance. Trichloroethene in one groundwater sample was qualified as estimated due to surrogate recovery issues.

The sample qualifiers applied by the data validator are in section 15.0 and Attachment A- Form 1s. The detailed discussions can be found in the report.

Table of Contents

1.0	Sample Identifications1			
2.0	Completeness Checklist 2			
3.0	Detec	tion Limits	3	
4.0	Holdi	ng Time	3	
	4.2	Sample Preservation	3	
	4.3	Chain of Custody Record	3	
5.0	Calib	ration Quality Control	3	
	5.1	Initial and Continuing Calibration (ICAL & CCAL)	3	
6.0	Blank	s Quality Control	3	
7.0	Surro	gate Recoveries	3	
8.0	Accui	racy	1	
	8.1	Laboratory Control Samples (LCS)/Blank Spikes	1	
	8.2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)	1	
		8.2.1 Frequency	1	
		8.2.2 Recovery	1	
9.0	Precis	sion ²	1	
	9.1	Matrix Spike Duplicates	1	
	9.2	Matrix Duplicates	1	
10.0	Field	QC	1	
	10.1	Field Blanks/Rinse Blanks	1	
	10.2	Trip Blanks ²	1	
	10.3	Field Duplicate	5	
11.0	Interi	nal Standards	5	
	11.1	IS Area Counts	5	
	11.2	Retention Time	5	
12.0	Targe	et Compound Identification	5	
	12.1	Tentatively Identified Compounds (TICs)	5	
13.0	.0 Calculations and Transcription			
14.0	4.0 Additional Comments			
15.0	Data	Qualifier Table	5	

List of Appendices

- A Validated and Qualified Data Sheets (Form 1s)
- B Case Narrative and Chain of Custody

1.0 Sample Identifications The following table summarizes sample IDENTIFICATIONS, matrix of each sample and analyses present in the data package for each sample.

Client Sample ID	Matrix	Volatile	Semi- volatile		
<i>SDG X4921</i>					
HTGS00100801XX	SOIL	Х	-		
HTGS00300501XX	SOIL	Х	-		
HTGW00102501XX	WATER	Х	Х		
HTGW00103501XX	WATER	Х	-		
HTGW00202301XX	WATER	Х	-		
HTGW00203301XX	WATER	Х	—		
HTGW00302101XX	WATER	Х	-		
HTGW00303101XX	WATER	Х	-		
HTGW00402101XX	WATER	Х	-		
HTGW00403101XX	WATER	Х	-		
HTGW00502101XX	WATER	Х	-		
HTGW00503101XX	WATER	Х	-		
HTGW00503101XD	WATER	Х	-		
HTGW01002501XX	WATER	Х	-		
HTGW01003101XX	WATER	Х	-		
HTGW01802401XX	WATER	Х	-		
HTGW01803101XX	WATER	Х	-		
HTTB002XXX01XX	WATER	Х	-		
HTMW005033001XX	WATER	Х	-		
QC sample ID	Matrix				
HTGS00100801XXMS	SOIL	Х	-		
HTGS00100801XXMSD	SOIL	Х	-		
HTGW00102501XXMS	WATER	Х	X		
HTGW00102501XXMSD	WATER	Х	Х		

2.0 Completeness Checklist

The following table identifies the summary form information and raw data found in the data package. Form numbers shown in parentheses refer to the current U.S. EPA CLP SOW equivalent reporting of results in an alternate summary format that has been determined to be acceptable. Analyses in this data package were performed in accordance with USEPA CLP Methods.

Х	Case Narrative
Х	Chain of Custody Records/Traffic Reports/Tracking Records
Х	Preservation Information
Х	Sample Cross Reference with Unique Identifiers
Х	Sample Results Summary Form (Form 1/Form 1-TIC)
Х	CLP Flagging used on Results Summary
Х	SMC/Surrogate Results Summary (Form 2)
NR	Matrix Spike/Matrix Spike Duplicate Results Summary (Form 3)
Х	Laboratory Control Sample (LCS)/ Blank Spike Results Summary (Form 3)
NR	Control Charts
Х	Method/Preparation Blank Results Summary (Form 4)
Х	Volatile Initial Calibration Summary (Forms 6)
Х	Volatile Continuing Calibration Summary (Form 7)
Х	Volatile Analytical Sequence (Form 8)
х	Internal Standard Area Summary (Form X11)
Х	Raw Data (incl. IS, Surr/SMC, RT, quant. Reports, etc.)
Х	Samples
Х	Initial Calibration
NR	Clean-ups
Х	Continuing Calibration
NR	Instrument Blanks
Х	Preparation Blanks/Method Blanks
0	Other Blanks
Х	LCS/Blank Spike
Х	Matrix Spikes/Matrix Spike Duplicates
NR	Matrix Duplicates/Replicates
0	Field Blanks – Trip Blank
Х	Field Duplicates
Х	Extraction Log Benchsheets
Х	Instrument Run Logs
Х	Sample Descriptions
Х	Legible Pages
х	Pages in Package Numbered and in Sequence
Х	Electronic Data Deliverable (EDD)

Completeness Checklist

X: Included in original Data Package NR: Not Required

RS: Provided as a Resubmission

O: Not Included and/or Not Available

X/RS: Incomplete in original data package, completed as a resubmission

3.0 Detection Limits

Detection limits were acceptable.

4.0 Holding Time

Holding times were acceptable.

4.1 Sample Preservation

Samples were appropriately preserved.

4.2 Percent Moisture

Percent moisture is not applicable.

4.3 Chain of Custody Record

Chain of Custody Record was present.

5.0 Calibration Quality Control

5.1 Initial Calibration

The initial calibration was acceptable.

5.2 Continuing Calibration (CCAL)

VOA: The following compounds exceeded the 25% QC criterion;

Compound	%D-10/20/03
Vinyl chloride	27
1,1,2-Trichlorotrifluoroethane	33
Methyl acetate	32
Cyclohexane	26

SVOA: Percent difference for 2,4-dinitrophenol -35.7% exceeded the 25% QC criterion. Result for this compound was qualified as estimated due to this anomaly.

6.0 Blanks Quality Control

Method blank reported acetone and 2-butanone contamination. All affected detected acetone results were qualified as non-detects due to this anomaly.

SVOA: Method blank reported bis (ethyl hexyl) phthalate contamination. This resulted in detected result for this compound being qualified as non-detect.

7.0 Surrogate Recoveries

Several samples reported surrogate recoveries that were outside QC limits. Based on professional judgment and technical information, the validator presented the best runs. See Section 15.0.

8.0 Accuracy

8.1 Laboratory Control Samples (LCS)/Blank Spikes

SVOA: Acenaphthene-29% and n-nitroso-di-n-propylamine-29% recovered below their minimum QC limits of 46 and 4% respectively. Both these compound will be rejected in all affected samples "R" and is usable.

8.2 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

8.2.1 Frequency

Frequency was met.

8.2.2 Recovery

For ground water samples 3 of 5 MS recoveries were above QC limits. Surrogate recoveries were also high for this MS. However, surrogate recoveries in the original sample were within QC limits. Therefore no qualification was made.

9.0 Precision

9.1 Matrix Spike Duplicates

RPD for all samples in the MS/MSD pair were outside QC limits. This is indicative of a systematic precision issue thus, all detected groundwater samples were qualified for all MS/MSD compounds. See below.

Compound	RPD (%)	QC limits (%)
1,1-Dichloroethene	19	14
Benzene	29	11
Trichloroethene	58	14
Toluene	24	13
Chlorobenzene	20	13

9.2 Matrix Duplicate

RPDs were acceptable.

10.0 Field QC

10.1 Field Blanks/Rinse Blanks

No rinse blanks were reported with this SDG.

10.2 Trip Blanks

Trip blank reported no contamination.

10.3 Field Duplicate

HTGW00503101XD was presented as a field duplicate. The original field sample is HTGW00503101XX. RPDs are calculated when both samples report detects. The RPDs are acceptable.

11.0 Internal Standards (IS)

11.1 IS Area Counts

IS area counts were within QC limit.

11.2 Retention Time (RT)

All RTs were within the method accepted criteria.

12.0 Target Compound Identification

All target compounds identification is acceptable.

12.1 Tentatively Identified Compounds (TICs)

No TICs were reported.

13.0 Calculations and Transcription

Raw data were accurately transcribed to summary data sheets.

14.0 Additional Comments

The laboratory experience difficulty performing on compounds acenaphthene and n-nitroso-di-npropylamine. Both compounds reported low recoveries in the LCS ,MS and MSD. Due to this both these compounds were qualified for low bias.

VOA: The data package was analyzed with some major deficiencies. For some groundwater samples surrogate recoveries were very low as well as LCS and blank samples. Based on professional judgment and technical information the validator presented the best runs for all samples involved. See Sections 8.2 and 15.0.

15.0 Data Qualifier Table

Volatile

Sample Identification	Compound	Qualifier	Section
			Reference
HTGW00102501XX	Trichloroethene	J	9.1
HTGW00303101XX			
HTGW00402101XX			
HTGW00403101XX			
HTGW01002501XX			
HTGW01003101XX			
HTGW01803101XX			
HTGS00100801XX	Vinyl chloride 112-	UI	5.2
HTGS00300501XX	trichlorotrifluoroethane methyl acetate	00	0.2
	cyclohevane		
HTGS00100801XX	Acetone 2-butanone	IT	6.0
HTGS00300501XX		U	0.0
111030030030122			
HTGW00303101XX	Acetone	U	6.0
HTGW00502101XX		C	0.0
HTGW01003101XX			
HTGW00502101XX	Cis1.2-dichloroethene.		7.0
	trichloroethene		1.0
HTGW00103501XXRE	Methylene chloride	UJ	7.0
HTGW00202301XXRE,	Carbon disulfide		
HTGW00203301XXRE	Bromoform		
HTGW00302101XXRE	Bromodichloromethane		
	1,1-Dichloroethane		
	I, I-DICNIOrOethene Triableraflueramethana		
	Dichlorodifluoromothano		
	1 1 2-Trichloro-1 2 2-Trifluoroethane		
	1.2-Dichloropropane		
	2-Butanone		
	1,1,2-Trichloroethane		
	Acetic acid, methyl ester		
	1,1,2,2-Tetrachloroethane		
	o-Xylene		
	1,2-Dichlorobenzene		
	1,2-Dibromo-3-chloropropane		
	Isopropyl benzene		
	cis-1 3-Dichloropropopo		
	trans-1 3-Dichloronronene		
	1.4-Dichlorobenzene		
	1.2-Dibromoethane		
	1,2-Dichloroethane		
	4-Methyl-2-pentanone		
	Methyl cyclohexane		
	Toluene		

Sample Identification	Compound	Qualifier	Section Reference
	Chlorobenzene Cyclohexane 1,2,4-Trichlorobenzene Chlorodibromomethane Tetrachloroethene trans-1,2-Dichloroethene Methyl Tertbutyl Ether 1,3-Dichlorobenzene Carbon tetrachloride 2-Hexanone Acetone Chloroform Benzene 1,1,1-Trichloroethane Bromomethane		
HTGW00103501XXRE HTGW00202301XXRE HTGW00203301XXRE,	Cis-1,2-Dichloroethene	J	7.0
HTGW00302101XXRE			
HTGW00503101XXRE, HTGW00503101XDRE, HTGW01802401XX, HTMW00503001XX	Methylene chloride Carbon disulfide Bromoform Bromodichloromethane 1,1-Dichloroethane 1,1-Dichloroethane Trichlorofluoromethane Dichlorodifluoromethane 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,2-Dichloropropane 2-Butanone 1,1,2-Trichloroethane Acetic acid, methyl ester 1,1,2,2-Tetrachloroethane o-Xylene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane Isopropylbenzene Xylene, m/p cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,4-Dichlorobenzene 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2,4-Trichlorobenzene Cyclohexane 1,2,4-Trichlorobenzene Chlorodibromomethane Tetrachloroethene trans-1,2-Dichloroethene Methyl Tertbutyl Ether 1,3-Dichlorobenzene	UJ	7.0

Sample Identification	Compound	Qualifier	Section Reference
	Carbon tetrachloride 2-Hexanone Acetone Chloroform Benzene 1,1,1-Trichloroethane Bromomethane		
HTGW00503101XXRE, HTGW00503101XDRE, HTGW01802401XX, HTMW00503001XX	Trichloroethene Cis-1,2-Dichloroethene	J	7.0

Semi-volatile

Sample Identification	Compound	Qualifier	Section
			Reference
HTGW00102501XX	N-nitroso-di-n-propyl amine,	R	8.1
	acenaphthene		
HTGW00102501XX	2,4-Dinitrophenol	UJ	5.2
HTGW00102501XX	Bis (2-ethyl hexyl) phthalate	U	6.0

DATA VALIDATION REPORT

Volatile Analysis

SDG No. X4926 Sampling Date: October 12, 2006

Submitted to:

MACTEC, Inc., 511 Congress Street Portland, ME 04112 207-775-5401

Submitted by:

EDV, Inc., 1326 Orangewood Avenue Pittsburgh, PA 15216 412-341-5281

January 12, 2007

Site:	HTS Cleaners/NYSDEC
Client:	MACTEC, Inc.
Analytical Laboratory:	Chemtech 284 Sheffield Street Mountainside, NJ 07092
Sample Delivery Group (SDG):	X4926
Sampling Date:	October 12, 2006
Analyses:	Volatile
Analytical Method: Summary of Data Validation:	CLP OLM 4.3

The adherence of laboratory analytical performance to CLP Analytical Specifications was evaluated during the data validation process. The USEPA Region II's data validation SOP Checklists (SOP, HW-15 Rev 2, May 1993) and the National Functional Guidelines for Organic Data Review (October 1999), were used as guidelines for data qualifications.

Volatile: Some compounds were qualified as estimated due to surrogate recovery issues. Some acetone and one 2-butanone result were qualified as non-detected due to blank contamination.

The sample qualifiers applied by the data validator are in section 15.0 and Attachment A- Form 1s. The detailed discussions can be found in the report.

Table of Contents

1.0	Sample Identifications 1		
2.0	Comp	oleteness Checklist	
3.0	Detec	tion Limits	
4.0	Holdi	ng Time	
	4.2	Sample Preservation	
	4.3	Chain of Custody Record	
5.0	Calib	ration Quality Control	
	5.1	Initial and Continuing Calibration (ICAL & CCAL)	
6.0	Blank	ss Quality Control	
7.0	Surro	gate Recoveries	
8.0	Accu	racy	
	8.1	Laboratory Control Samples (LCS)/Blank Spikes	
	8.2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)	
		8.2.1 Frequency	
		8.2.2 Recovery	
9.0	Precis	sion4	
	9.1	Matrix Spike Duplicates	
	9.2	Matrix Duplicates	
10.0	Field	QC	
	10.1	Field Blanks/Rinse Blanks	
	10.2	Trip Blanks	
	10.3	Field Duplicate	
11.0	Inter	nal Standards4	
	11.1	IS Area Counts 4	
	11.2	Retention Time	
12.0	Targe	et Compound Identification4	
	12.1	Tentatively Identified Compounds (TICs)	
13.0	Calculations and Transcription		
14.0	Addit	ional Comments5	
15.0	Data Qualifier Table		

List of Appendices

- A Validated and Qualified Data Sheets (Form 1s)
- B Case Narrative and Chain of Custody

1.0 Sample Identifications The following table summarizes sample IDENTIFICATIONS, matrix of each sample and analyses present in the data package for each sample.

Client Sample ID	Matrix	Volatile		
SDG X4926				
HTGS00600101XX	SOIL	Х		
HTGW00602301XX	WATER	Х		
HTGW00603301XX	WATER	Х		
HTGW00702301XX	WATER	Х		
HTGW00703301XX	WATER	Х		
HTGW00802601XX	WATER	Х		
HTGW01102301XX	WATER	Х		
HTGW01103101XX	WATER	Х		
HTGW01202301XX	WATER	Х		
HTGW01203101XX	WATER	х		
HTTB003XXX01XX	WATER	х		
QC sample ID	Matrix			
LCS	WATER	Х		
LCSD	WATER	X		

2.0 Completeness Checklist

The following table identifies the summary form information and raw data found in the data package. Form numbers shown in parentheses refer to the current U.S. EPA CLP SOW equivalent reporting of results in an alternate summary format that has been determined to be acceptable. Analyses in this data package were performed in accordance with USEPA CLP Method.

Х	Case Narrative
Х	Chain of Custody Records/Traffic Reports/Tracking Records
Х	Preservation Information
Х	Sample Cross Reference with Unique Identifiers
Х	Sample Results Summary Form (Form 1/Form 1-TIC)
Х	CLP Flagging used on Results Summary
Х	SMC/Surrogate Results Summary (Form 2)
NR	Matrix Spike/Matrix Spike Duplicate Results Summary (Form 3)
Х	Laboratory Control Sample (LCS)/ Blank Spike Results Summary (Form 3)
NR	Control Charts
Х	Method/Preparation Blank Results Summary (Form 4)
Х	Volatile Initial Calibration Summary (Forms 6)
Х	Volatile Continuing Calibration Summary (Form 7)
Х	Volatile Analytical Sequence (Form 8)
х	Internal Standard Area Summary (Form X11)
Х	Raw Data (incl. IS, Surr/SMC, RT, quant. Reports, etc.)
Х	Samples
Х	Initial Calibration
NR	Clean-ups
Х	Continuing Calibration
NR	Instrument Blanks
Х	Preparation Blanks/Method Blanks
0	Other Blanks
Х	LCS/Blank Spike
Х	Matrix Spikes/Matrix Spike Duplicates
NR	Matrix Duplicates/Replicates
0	Field Blanks – Trip Blank
Х	Field Duplicates
Х	Extraction Log Benchsheets
Х	Instrument Run Logs
Х	Sample Descriptions
Х	Legible Pages
х	Pages in Package Numbered and in Sequence
Х	Electronic Data Deliverable (EDD)

Completeness Checklist

X: Included in original Data Package NR: Not Required

RS: Provided as a Resubmission

O: Not Included and/or Not Available

X/RS: Incomplete in original data package, completed as a resubmission

3.0 Detection Limits

Detection limits were acceptable.

4.0 Holding Time

Holding times were acceptable.

4.1 Sample Preservation

Samples were appropriately preserved.

4.2 Percent Moisture

Percent moisture results were acceptable.

4.3 Chain of Custody Record

Chain of Custody Record was present.

5.0 Calibration Quality Control

5.1 Initial Calibration

The initial calibration was acceptable.

5.2 Continuing Calibration (CCAL)

The CCAL was acceptable.

6.0 Blanks Quality Control

Method blank reported no contamination.

7.0 Surrogate Recoveries

1,2-Dichloroethane-d4 in sample HTGW00602301XXRE and HTGW01203101XX recovered at 117% and 126% respectively and were outside the QC limits of 76-114%. All detected compounds in this sample were qualified as estimated "J" due to this anomaly.

8.0 Accuracy

8.1 Laboratory Control Samples (LCS)/Blank Spikes

Recoveries were acceptable.

8.2 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

8.2.1 Frequency

No MS/MSD pair was analyzed.

8.2.2 Recovery

Recoveries were not applicable.

9.0 Precision

9.1 Matrix Spike Duplicates

RPDs were not applicable.

9.2 Matrix Duplicate

RPDs were acceptable.

10.0 Field QC

10.1 Field Blanks/Rinse Blanks

No rinse blanks were reported with this SDG.

10.2 Trip Blanks

Trip blank reported acetone and methylene contamination. There were no detects thus no qualification was necessary.

10.3 Field Duplicate

HTGW00702301XD was presented as a field duplicate. The original field sample is HTGW00702301XX. RPDs are calculated when both samples report detects. The RPDs are acceptable.

11.0 Internal Standards (IS)

11.1 IS Area Counts

IS area counts were within QC limit.

11.2 Retention Time (RT)

All RTs were within the method accepted criteria.

12.0 Target Compound Identification

All target compounds identification is acceptable.

12.1 Tentatively Identified Compounds (TICs)

TICs were acceptable.

13.0 Calculations and Transcription

Raw data were accurately transcribed to summary data sheets.

14.0 Additional Comments

None

15.0 Data Qualifier Table

Volatile

Sample Identification	Compound	Qualifier	Section Reference
HTGS00600101XX	Acetone, 2-butanone	U	6.0
HTGW00602301XXRE	Trichloroethene Cis-1,2-Dichloroethene	J	7.0
HTGW00702301XX HTGW00703301XX HTGW01102301XX HTGW01103101XX HTGW01202301XX	Acetone	U	6.0
HTGW01203101XX	Trichloroethene	J	7.0

DATA VALIDATION REPORT

Volatile Analyses

SDG No. X5269 Sampling Date: November 2-3, 2006

Submitted to:

MACTEC, Inc., 511 Congress Street Portland, ME 04112 207-775-5401

Submitted by:

EDV, Inc., 1326 Orangewood Avenue Pittsburgh, PA 15216 412-341-5281

January 12, 2007

Site:	HTS Cleaners/NYSDEC
Client:	MACTEC, Inc.
Analytical Laboratory:	Chemtech 284 Sheffield Street Mountainside, NJ 07092
Sample Delivery Group (SDG):	X5269
Sampling Date:	November 2-3, 2006
Analyses:	Volatile
Analytical Method: Summary of Data Validation:	CLP OLM 4.3

The adherence of laboratory analytical performance to CLP Analytical Specifications was evaluated during the data validation process. The USEPA Region II's data validation SOP Checklists (SOP, HW-15 Rev 2, May 1993) and the National Functional Guidelines for Organic Data Review (October 1999), were used as guidelines for data qualifications.

Volatile: Some compounds were qualified as estimated due to surrogate recovery issues. Some compounds were qualified as estimated due to calibration issues.

The sample qualifiers applied by the data validator are in section 15.0 and Attachment A- Form 1s. The detailed discussions can be found in the report.

Table of Contents

1.0	Sample Identifications1		
2.0	Comp	Deteness Checklist	
3.0	Detec	tion Limits	
4.0	Holdi	ng Time	
	4.2	Sample Preservation	
	4.3	Chain of Custody Record	
5.0	Calib	ration Quality Control	
	5.1	Initial and Continuing Calibration (ICAL & CCAL)	
6.0	Blank	s Quality Control	
7.0	Surro	gate Recoveries	
8.0	Accu	racy	
	8.1	Laboratory Control Samples (LCS)/Blank Spikes	
	8.2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)	
		8.2.1 Frequency	
		8.2.2 Recovery	
9.0	Precis	sion4	
	9.1	Matrix Spike Duplicates	
	9.2	Matrix Duplicates	
10.0	Field	QC	
	10.1	Field Blanks/Rinse Blanks	
	10.2	Trip Blanks	
	10.3	Field Duplicate	
11.0	Inter	nal Standards	
	11.1	IS Area Counts	
	11.2	Retention Time	
12.0	Targe	et Compound Identification	
	12.1	Tentatively Identified Compounds (TICs)	
13.0	Calcu	lations and Transcription	
14.0	Addit	ional Comments	
15.0	Data Qualifier Table		

List of Appendices

- A Validated and Qualified Data Sheets (Form 1s)
- B Case Narrative and Chain of Custody

1.0 Sample Identifications The following table summarizes sample IDENTIFICATIONS, matrix of each sample and analyses present in the data package for each sample.

Client Sample ID	Matrix	Volatile		
SDG X5269				
HTGW00902701XX	WATER	Х		
HTGW01302701XX	WATER	Х		
HTGW01502501XX	WATER	Х		
HTGW01503401XX	WATER	Х		
HTGW01703401XX	WATER	Х		
HTGW01702101XX	WATER	Х		
HTTB001XXX01XX	WATER	Х		
QC sample ID	Matrix			
LCS	WATER	Х		
LCSD	WATER	Х		

2.0 Completeness Checklist

The following table identifies the summary form information and raw data found in the data package. Form numbers shown in parentheses refer to the current U.S. EPA CLP SOW equivalent reporting of results in an alternate summary format that has been determined to be acceptable. Analyses in this data package were performed in accordance with USEPA CLP Method.

Х	Case Narrative
Х	Chain of Custody Records/Traffic Reports/Tracking Records
Х	Preservation Information
Х	Sample Cross Reference with Unique Identifiers
Х	Sample Results Summary Form (Form 1/Form 1-TIC)
Х	CLP Flagging used on Results Summary
Х	SMC/Surrogate Results Summary (Form 2)
NR	Matrix Spike/Matrix Spike Duplicate Results Summary (Form 3)
Х	Laboratory Control Sample (LCS)/ Blank Spike Results Summary (Form 3)
NR	Control Charts
Х	Method/Preparation Blank Results Summary (Form 4)
Х	Volatile Initial Calibration Summary (Forms 6)
Х	Volatile Continuing Calibration Summary (Form 7)
Х	Volatile Analytical Sequence (Form 8)
х	Internal Standard Area Summary (Form X11)
Х	Raw Data (incl. IS, Surr/SMC, RT, quant. Reports, etc.)
Х	Samples
Х	Initial Calibration
NR	Clean-ups
Х	Continuing Calibration
NR	Instrument Blanks
Х	Preparation Blanks/Method Blanks
0	Other Blanks
Х	LCS/Blank Spike
Х	Matrix Spikes/Matrix Spike Duplicates
NR	Matrix Duplicates/Replicates
0	Field Blanks – Trip Blank
Х	Field Duplicates
Х	Extraction Log Benchsheets
Х	Instrument Run Logs
Х	Sample Descriptions
Х	Legible Pages
х	Pages in Package Numbered and in Sequence
Х	Electronic Data Deliverable (EDD)

Completeness Checklist

X: Included in original Data Package NR: Not Required

RS: Provided as a Resubmission

O: Not Included and/or Not Available

X/RS: Incomplete in original data package, completed as a resubmission

3.0 Detection Limits

Detection limits were acceptable.

4.0 Holding Time

Holding times were acceptable.

4.1 Sample Preservation

Samples were appropriately preserved.

4.2 Percent Moisture

Percent moisture results were not acceptable.

4.3 Chain of Custody Record

Chain of Custody Record was present.

5.0 Calibration Quality Control

5.1 Initial Calibration

The initial calibration was acceptable.

5.2 Continuing Calibration (CCAL)

VOA: The following compounds exceeded the 25% QC criterion;

Compound	%D-10/13/06
Dichlorodifluoromethane	27
Trichlorofluoromethane	28
1,1,2-Trichlorotrifluoroethane	26
Methyl acetate	74
Cyclohexane	30

All samples were affected; all were qualified as estimated due to this exceedance.

6.0 Blanks Quality Control

Method blank reported no contamination.

7.0 Surrogate Recoveries

Toluene-d8 in sample HTGW1302701XX recovered at 86% which is outside the QC limits of 88-110%. All compounds in this sample were qualified as estimated "UJ" due to this anomaly.

8.0 Accuracy

8.1 Laboratory Control Samples (LCS)/Blank Spikes

Recoveries were acceptable.

8.2 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

8.2.1 Frequency

No MS/MSD pair was analyzed.

8.2.2 Recovery

Recoveries were not applicable.

9.0 Precision

9.1 Matrix Spike Duplicates

RPDs were not applicable.

9.2 Matrix Duplicate

RPDs were acceptable.

10.0 Field QC

10.1 Field Blanks/Rinse Blanks

No rinse blanks were reported with this SDG.

10.2 Trip Blanks

Trip blank reported acetone and methylene contamination. There were no detects thus no qualification was necessary.

10.3 Field Duplicate

No field duplicates were presented with this SDG.

11.0 Internal Standards (IS)

11.1 IS Area Counts

IS area counts were within QC limit.

11.2 Retention Time (RT)

All RTs were within the method accepted criteria.

12.0 Target Compound Identification

All target compounds identification is acceptable.

12.1 Tentatively Identified Compounds (TICs)

No TICs were reported.

13.0 Calculations and Transcription

Raw data were accurately transcribed to summary data sheets.

14.0 Additional Comments

None

15.0 Data Qualifier Table

Volatile

Sample Identification	Compound	Qualifier	Section
		* * *	Reference
HTGW00902701XX	Dichlorodifluoromethane	UJ	5.2
HTGW01502501XX HTGW01503401XX	Trichlorofluoromethane		
HTGW01505401XX	1,1,2-Trichlorotrifluoroethane		
HTGW01702101XX	Methyl acetate		
HTTB001XXX01XX	Cyclohexane		
HTGW01302701XX	Methylene chloride	UJ	7.0
	Carbon disulfide		
	Bromoform		
	Bromodichloromethane		
	1,1-Dichloroethane		
	1.1-Dichloroethene		
	Trichlorofluoromethane		
	Dichlorodifluoromethane		
	1.1.2-Trichloro-1.2.2-		
	Trifluoroethane		
	1 2-Dichloropropane		
	2-Butanone		
	1 1 2-Trichloroethane		
	Trichloroethene		
	A cetic acid methyl ester		
	1 1 2 2 Tatrachloroathana		
	1,1,2,2-Tetrachioroeurane		
	0-Aylelle		
	1,2-Dichlorobelizelle		
	1,2-Dibromo-3-chioropropane		
	Isopropyi benzene		
	Xylene, m/p		
	cis-1,3-Dichloropropene		
	trans-1,3-Dichloropropene		
	1,4-Dichlorobenzene		
	1,2-Dibromoethane		
	1,2-Dichloroethane		
	4-Methyl-2-pentanone		
	Methyl cyclohexane		
	Toluene		
	Chlorobenzene		
	Cyclohexane		
	1,2,4-Trichlorobenzene		
	Chlorodibromomethane		
	Tetrachloroethene		
	Cis-1,2-Dichloroethene		

Sample Identification	Compound	Qualifier	Section Reference
	trans-1,2-Dichloroethene		
	Methyl Tertbutyl Ether		
	1,3-Dichlorobenzene		
	Carbon tetrachloride		
	2-Hexanone		
	Acetone		
	Chloroform		
	Benzene		
	1,1,1-Trichloroethane		
	Bromomethane		

DATA USABILITY SUMMARY REPORT OCTOBER 2006 SAMPLING EVENT HTS SITE REGION 8, NEW YORK

1.0 Introduction:

Water and air samples were collected at the HTS site in October 2006 and submitted for off-site laboratory analyses. Samples were analyzed by CHEMTECH in Mountainside, New Jersey. A listing of samples included in this investigation is presented in Table 1. Samples were analyzed for the following parameters:

- Air: EPA Method TO-15 for VOCs
- Water: VOCs and SVOCs by CLP OLM04.3
- Soil: VOCs by CLP OLM04.3

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 1995; NYSDEC, 2000).

Data validation was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 1997) and USEPA Region II Guidelines (USEPA, 1993; USEPA, 1994) and the USEPA National Functional Guidelines (USEPA, 1999). Samples were reported in lab sample delivery groups X4779, X4826, X4921, X4926, X4945, and X5269. Validation was completed by EDV, Inc. in Pittsburgh, Pennsylvania. Validation reports for each SDG are presented in Attachment 1. The validation reports were reviewed by the MACTEC QA Officer and the reports were accepted as presented by EDV with several exceptions that are documented in Sections 2 and 3, and Attachment 1.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

A summary of final sample results is presented in Appendix E. Tentatively identified compounds (TICs) were reported in accordance with the CLP methods if detected. A summary of detected TICs is provided in Appendix E. Only samples with reported TICs are listed on the summary table. Samples that are not listed had no TICs detected.

2.0 Water Samples

Water samples were reported in lab sample delivery groups X4779, X4826, X4921, X4926, and X5269. Data validation qualification actions are summarized for each SDG.

2.1 VOCs

X4779

Percent difference for trichlorofluoromethane (27%) in the continuing calibration associated with samples MW-13D and MW-3 exceeded the validation limit of 25 percent. Result were reported as non-detect in both samples and reporting limits were qualified estimated (UJ).
X4826

Percent difference for tetrachloroethene (26%) in the continuing calibration associated with samples MW-16L and MW-16U exceeded the validation limit of 25 percent. Result were reported as non-detect in both samples and reporting limits were qualified estimated (UJ).

Results for acetone were qualified non-detect (U) in samples due to method blank contamination.

X4926

High recovery of surrogate 1,2-dichloroethane-d4 was reported in samples HTGW00602301XXRE (117%) and HTGW01203101XX (126%) above the QC limits of 76-114 percent. All results for detected target compounds were qualified estimated (J) and may be biased high.

X5269

Percent difference for dichlorofluoromethane (27%), trichlorofluoromethane (28%), 1,1,2trichlorotrifluoroethane (26%), methyl acetate (74%), and cyclohexane (30%) in the continuing calibration associated with samples HTGW00902701XX, HTGW01302701XX, HTGW01502501XX, HTGW01503401XX, HTGW01703401XX, and HTGW01702101XX exceeded the validation limit of 25 percent. Result were reported as non-detect in both samples and reporting limits were qualified estimated (UJ).

Low recovery of surrogate toluene-d8 was reported in samples HTGW01302701XX (88%) below the QC limits of 76-114 percent. All results were reported as non-detect and reporting limits were qualified estimated (J) and may be biased low.

X4921

Percent difference for vinyl chloride (27%), 1,1,2-trichlorotrifluoroethane (33%), methyl acetate (74%), and cyclohexane (30%) in the continuing calibration associated with samples HTGS00100801XX and HTGS00300501XX exceeded the validation limit of 25 percent. Result were reported as non-detect in both samples and reporting limits were qualified estimated (UJ).

Results for acetone and 2-butanone were qualified non-detect (U) in samples due to method blank contamination.

All results in samples HTGW00103501XX, HTGW00202301XX, HTGW00203301XX, HTGW00302101XX, HTGW00503101XX, HTGW00503101XX, HTGW00503101XX and HTGW01802401XX were qualified estimated (J/UJ) due to low surrogate recoveries.

2.2 SVOCs

X4921

Percent difference for 2,4-dichlorophenol (36%) in the continuing calibration associated with sample HTGW00102501XX exceeded the validation limit of 25 percent. The Result was reported as non-detect and reporting limits were qualified estimated (UJ).

The result for bis(2ethylhexyl)phthalate in sample HTGW00102501XX was qualified non-detect (U) due to method blank contamination.

Low recovery was reported for acenaphthene (29%) and n-nitroso-di-n-propylamine (29%) in the LCS. Results in sample HTGW00102501XX were reported as non-detect and reporting limits were qualified estimated (UJ) and may be biased low.

Results for positive detections of trichloroethene in all samples in SDG 4921were qualified estimated (J) due to relative percent difference (58) in the MS/MSD that exceeded the QC limit of 14.

3.0 Air Samples

X4945

In the laboratory control sample (LCS) recovery for hexachloro-1,3-butadiene (33%) and 1,2,4trichlorobenzene (52%) were below the control limits of 65 - 135 percent. Results were reported as non-detect in samples and reporting limits were qualified estimated (UJ) and may be biased low.

SDG	Lab ID	Field Sample ID	Sample Date	Method	Media	QC Code
X4779	X4779-21	HTMW00301801XX	10/3/2006	OLM04.3_VOA	GW	FS
X4779	X4779-20	HTMWD1302601XX	10/3/2006	OLM04.3_VOA	GW	FS
X4826	X4826-05	HTGS01400301XX	10/9/2006	OLM04.3_VOA	Soil	FS
X4826	X4826-10	HTGS01601001XX	10/9/2006	OLM04.3_VOA	Soil	FS
X4826	X4826-06	HTGW01402501XX	10/9/2006	OLM04.3_VOA	GW	FS
X4826	X4826-07	HTGW01403501XX	10/9/2006	OLM04.3_VOA	GW	FS
X4826	X4826-01	HTMW16L03001XX	10/4/2006	OLM04.3_VOA	GW	FS
X4826	X4826-02	HTMW16U02201XX	10/4/2006	OLM04.3_VOA	GW	FS
X4826	X4826-08	HTTB001XXX01XX	10/9/2006	OLM04.3_VOA	BW	TB
X4921	X4921-05	HTGW00102501XX	10/11/2006	OLM04.3_SVOA	GW	FS
X4921	X4921-01	HTGS00100801XX	10/11/2006	OLM04.3_VOA	Soil	FS
X4921	X4921-04	HTGS00300501XX	10/11/2006	OLM04.3_VOA	Soil	FS
X4921	X4921-05	HTGW00102501XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-08RE	HTGW00103501XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-09RE	HTGW00202301XX	10/10/2006	OLM04.3_VOA	GW	FS
X4921	X4921-10RE	HTGW00203301XX	10/10/2006	OLM04.3_VOA	GW	FS
X4921	X4921-11RE	HTGW00302101XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-12	HTGW00303101XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-13	HTGW00402101XX	10/10/2006	OLM04.3_VOA	GW	FS

Table 1Summary of Samples

X4921	X4921-14	HTGW00403101XX	10/10/2006	OLM04.3_VOA	GW	FS
X4921	X4921-15RE	HTGW00502101XX	10/10/2006	OLM04.3_VOA	GW	FS
X4921	X4921-17RE	HTGW00503101XD	10/10/2006	OLM04.3_VOA	GW	FD
X4921	X4921-16RE	HTGW00503101XX	10/10/2006	OLM04.3_VOA	GW	FS
						QC
SDG	Lab ID	Field Sample ID	Sample Date	Method	Media	Code
X4921	X4921-18	HTGW01002501XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-19	HTGW01003101XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-20	HTGW01802401XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-21	HTGW01803101XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-23	HTMW00503001XX	10/11/2006	OLM04.3_VOA	GW	FS
X4921	X4921-22	HTTB002XXX01XX	10/11/2006	OLM04.3_VOA	BW	TB
X4926	X4926-01	HTGS00600101XX	10/12/2006	OLM04.3_VOA	Soil	FS
X4926	X4926-02RE	HTGW00602301XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-03	HTGW00603301XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-05	HTGW00702301XD	10/12/2006	OLM04.3_VOA	GW	FD
X4926	X4926-04	HTGW00702301XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-06	HTGW00703301XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-07	HTGW00802601XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-08	HTGW01102301XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-09	HTGW01103101XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-10	HTGW01202301XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-11	HTGW01203101XX	10/12/2006	OLM04.3_VOA	GW	FS
X4926	X4926-12	HTTB003XXX01XX	10/12/2006	OLM04.3_VOA	BW	TB
X4945	X4945-01DL	HTGV00100801XX	10/13/2006	TO-15	SV	FS
X4945	X4945-01	HTGV00100801XX	10/13/2006	TO-15	SV	FS
X4945	X4945-02	HTGV00200801XX	10/13/2006	TO-15	SV	FS
X4945	X4945-03DL	HTGV00300801XX	10/13/2006	TO-15	SV	FS
X4945	X4945-04	HTSV001XXX01XX	10/12/2006	TO-15	SV	FS
X5269	X5269-01	HTGW00902701XX	11/3/2006	OLM04.3_VOA	GW	FS
X5269	X5269-02	HTGW01302701XX	11/3/2006	OLM04.3_VOA	GW	FS
X5269	X5269-03	HTGW01502501XX	11/2/2006	OLM04.3_VOA	GW	FS
X5269	X5269-04	HTGW01503401XX	11/2/2006	OLM04.3_VOA	GW	FS
X5269	X5269-06	HTGW01702101XX	11/3/2006	OLM04.3_VOA	GW	FS
X5269	X5269-05	HTGW01703401XX	11/3/2006	OLM04.3_VOA	GW	FS
X5269	X5269-07	HTTB004XXX01XX	11/3/2006	OLM04.3_VOA	BW	TB

Reference:

New York State Department of Environmental Conservation (NYSDEC), 1995. "Analytical Services Protocols"; 10/95 Edition; October 1995.

New York State Department of Environmental Conservation (NYSDEC), 1997. "Guidance for the Development of Data Usability Reports"; Division of Environmental Remediation; September 1997.

U.S. Environmental Protection Agency (USEPA), 1993. "USEPA Region II Checklist SOP HW-15"; Revision 2; May 1993.

U.S. Environmental Protection Agency (USEPA), 1994. "USEPA Region II Checklist SOP HW-18"; Revision 0; August 1994.

Quality Assurance Officer: Chris Ricardi, NRCC-EAC

Chris Ricardo

Date: 3/16/07

ATTACHMENT 1 DATA VALIDATION REPORTS

SDG X4779 and 4945 SDG X4826 SDG X4921 SDG X4926 SDG X5269

DATA USABILITY SUMMARY REPORT MAY 2007 SAMPLING PROGRAM HTS REGION 8, NEW YORK

1.0 Introduction:

Three groundwater samples were collected at the HTS site in May 2007 and submitted for off-site laboratory analyses. Samples were analyzed by CHEMTECH in Mountainside, New Jersey. A listing of samples included in this investigation is presented in Table 1. A summary of the analytical results is presented in Appendix E, Tables 1.1. Samples were analyzed for the following parameters:

• VOCs by EPA Method OLM04.3

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 1995; NYSDEC, 2000).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002). Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification.

With the exception of the items discussed in the validation report in Attachment 1, results are interpreted to be usable as reported by the laboratory. A summary of final sample results is presented in Appendix E. The following qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit J = concentration is estimated UJ = target analyte is not detected at the reported detection limit and is estimated

2.0 Groundwater Samples - Volatile Organic Compounds

Initial Calibration

The initial calibration had relative standard deviations that were greater than the control limit of 30 for chloroethane (38), acetone (39), and methyl acetate (33). The results for these compounds in samples HTMW07S02502XX, HTMW07D03502XX, and HTMW07D03502XD were non-detect and were qualified as estimated (UJ).

Continuing Calibration

The continuing calibration had percent differences between the initial and continuing calibration responses factors that were greater than the control limit of 25 for trichlorofluoromethane (32) and bromoform (29). The results for these compounds in sample HTMW07D03502XD were non-detect and were qualified as estimated (UJ).

The continuing calibration had percent differences greater than the control limit of 25 for methylene chloride (-29). The results for methylene chloride in samples HTMW07S02502XX, and HTMW07D03502XX were non-detect and were qualified as estimated (UJ).

Laboratory Control Sample

The LCS had a percent recovery for trichloroethene (125) that was greater than the laboratory control limit of 70-120, indicating a potential high bias. The results for trichloroethene in sample HTMW07D03502XD was positive and were qualified as estimated (J).

Tentatively Identified Compounds

Tentatively identified compounds (TICs) were reported in accordance with the CLP methods if detected. A summary of detected TICs is provided in Appendix E Table 1.2. Only samples that reported TICs are included in Table 1.2.

TABLE 1SAMPLE SUMMARY TABLE

				Analysis		
SDG	Lab Sample ID	Field Sample ID	Sample Date	Method	Media	QC Code
Y2694	Y2694-05	UNTB004XXX02XX	5/10/07	OLM04.3-VOC	BW	TB
Y2694	Y2694-07	HTMW07S02502XX	5/10/07	OLM04.3-VOC	GW	FS
Y2694	Y2694-08	HTMW07D03502XX	5/9/07	OLM04.3-VOC	GW	FS
Y2694	Y2694-09	HTMW07D03502XD	5/9/07	OLM04.3-VOC	GW	FD

Reference:

New York State Department of Environmental Conservation (NYSDEC), 1995. "Analytical Services Protocols"; 10/95 Edition; October 1995.

New York State Department of Environmental Conservation (NYSDEC), 1997. "Guidance for the Development of Data Usability Reports"; Division of Environmental Remediation; September 1997.

U.S. Environmental Protection Agency (USEPA), 1993. "USEPA Region II Checklist SOP HW-15"; Revision 2; May 1993.

U.S. Environmental Protection Agency (USEPA), 1999. "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review"; Office of Emergency and Remedial Response; EPA-540/R-99/008; October 1999.

Data Validation Review: Amanda Zeidler

Signature: Junda Zeich

_Date: 6/6/07

	I ab Samula Id	V 4770 20	T	V 4770-21	V / Q	26.01	V/9	26.02	V/9	26.06
	SDG	X4779		X4779	X40.	826	А40. Х4	826	А40 Х4	<u>20-00</u> 4826
	Location	MW-13D		MW-3	MW	-16L	MW	-16U	GV	N-14
	Field Sample Id	HTMWD1302601	XX	HTMW00301801XX	HTMW16	102 1.03001XX	HTMW16	102201XX	HTGW01	402501XX
	Field Sample Date	10/3/2006		10/3/2006	10/4	2006	10/4	/2006	10/9	/2006
	Oc Code	FS		FS	F	rs	F	TS .		FS
Parameter		Result Quali	fier	Result Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane		10 U		10 U	10	U	10	U	10	U
1,1,2,2-Tetrachloroethane		10 U		10 U	10	U	10	U	10	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		10 U		10 U	10	U	10	U	10	U
1,1,2-Trichloroethane		10 U		10 U	10	U	10	U	10	U
1,1-Dichloroethane		10 U		10 U	10	U	10	U	10	U
1,1-Dichloroethene		10 U		10 U	10	U	10	U	10	U
1,2,4-Trichlorobenzene		10 U		10 U	10	U	10	U	10	U
1,2-Dibromo-3-chloropropane		10 U		10 U	10	U	10	U	10	U
1,2-Dibromoethane		10 U		10 U	10	U	10	U	10	U
1,2-Dichlorobenzene		10 U		10 U	10	U	10	U	10	U
1,2-Dichloroethane		10 U		10 U	10	U	10	U	10	U
1,2-Dichloropropane		10 U		10 U	10	U	10	U	10	U
1,3-Dichlorobenzene		10 U		10 U	10	U	10	U	10	U
1,4-Dichlorobenzene		10 U		10 U	10	U	10	U	10	U
2-Butanone		50 U		50 U	50	U	50	U	50	U
2-Hexanone		50 U		50 U	50	U	50	U	50	U
4-Methyl-2-pentanone		50 U		50 U	50	U	50	U	50	U
Acetic acid, methyl ester		10 U		10 U	10	U	10	U	10	U
Acetone		50 U		50 U	50	U	50	U	50	U
Benzene		10 U		10 U	10	U	10	U	10	U
Bromodichloromethane		10 U		10 U	10	U	10	U	10	U
Bromoform		10 U		10 U	10	U	10	U	10	U
Bromomethane		10 U		10 U	10	U	10	U	10	U
Carbon disulfide		10 U		10 U	10	U	10	U	10	U
Carbon tetrachloride		10 U		10 U	10	U	10	U	10	U
Chlorobenzene		10 U		10 U	10	U	10	U	10	U
Chlorodibromomethane		10 U		10 U	10	U	10	U	10	U
Chloroethane		10 U		10 U	10	U	10	U	10	U
Chloroform		10 U		10 U	10	U	10	U	10	U
Chloromethane		10 U		10 U	10	U	10	U	10	U
Cis-1,2-Dichloroethene		10 U		0.88 J	9.8	J	6.4	J	23	
cis-1,3-Dichloropropene		10 U		10 U	10	U	10	U	10	U
Cyclohexane		10 U		10 U	10	U	10	U	10	U
Dichlorodifluoromethane		10 U		10 U	10	U	10	U	10	U

Lab Sample Id	X47′	79-20	X47	79-21	X482	26-01	X482	26-02	X48	26-06
SDG	X4	779	X 4	779	X4	826	X4	826	X4	826
Location	MW	′-13D	M	W-3	MW	-16L	MW	-16U	GV	V-14
Field Sample Id	HTMWD	1302601XX	HTMW00	301801XX	HTMW16	L03001XX	HTMW16	U02201XX	HTGW01	402501XX
Field Sample Date	10/3/	/2006	10/3	/2006	10/4/	2006	10/4/	2006	10/9	/2006
Qc Code	F	FS	1	FS	F	S	FS		FS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Ethyl benzene	10	U	10	U	10	U	10	U	10	U
Isopropylbenzene	10	U	10	U	10	U	10	U	10	U
Methyl cyclohexane	10	U	10	U	10	U	10	U	10	U
Methyl Tertbutyl Ether	10	U	10	U	10	U	10	U	10	U
Methylene chloride	10	U	10	U	10	U	10	U	10	U
o-Xylene	10	U	10	U	10	U	10	U	10	U
Styrene	10	U	10	U	10	U	10	U	10	U
Tetrachloroethene	10	U	10	U	10	UJ	10	UJ	10	U
Toluene	10	U	10	U	10	U	10	U	10	U
trans-1,2-Dichloroethene	10	U	10	U	10	U	10	U	10	U
trans-1,3-Dichloropropene	10	U	10	U	10	U	10	U	10	U
Trichloroethene	15		25		10		11		9.1	J
Trichlorofluoromethane	10	UJ	10	UJ	10	U	10	U	10	U
Vinyl chloride	10	U	10	U	5.5	J	0.97	J	10	U
Xylene, m/p	10	U	10	U	10	U	10	U	10	U

Notes:

Results in micrograms per liter ($\mu g/L$)

Samples analyzed for VOCs by EPA Method OLM04.3

QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

	Lab Sample Id	X4826-07	X4826-08	X4921-05	X4921-08RE	X4921-09RE
	SDG	X4826	X4826	X4921	X4921	X4921
	Location	GW-14	QC	GW-1	GW-1	GW-2
	Field Sample Id	HTGW01403501XX	HTTB001XXX01XX	HTGW00102501XX	HTGW00103501XX	HTGW00202301XX
	Field Sample Date	10/9/2006	10/9/2006	10/11/2006	10/11/2006	10/10/2006
	Qc Code	FS	ТВ	FS	FS	FS
Parameter		Result Qualifier				
1,1,1-Trichloroethane		10 U	10 U	10 U	10 UJ	10 UJ
1,1,2,2-Tetrachloroethane		10 U	10 U	10 U	10 UJ	10 UJ
1,1,2-Trichloro-1,2,2-Trifluoroethane		10 U	10 U	10 U	10 UJ	10 UJ
1,1,2-Trichloroethane		10 U	10 U	10 U	10 UJ	10 UJ
1,1-Dichloroethane		10 U	10 U	10 U	10 UJ	10 UJ
1,1-Dichloroethene		10 U	10 U	10 U	10 UJ	10 UJ
1,2,4-Trichlorobenzene		10 U	10 U	10 U	10 UJ	10 UJ
1,2-Dibromo-3-chloropropane		10 U	10 U	10 U	10 UJ	10 UJ
1,2-Dibromoethane		10 U	10 U	10 U	10 UJ	10 UJ
1,2-Dichlorobenzene		10 U	10 U	10 U	10 UJ	10 UJ
1,2-Dichloroethane		10 U	10 U	10 U	10 UJ	10 UJ
1,2-Dichloropropane		10 U	10 U	10 U	10 UJ	10 UJ
1,3-Dichlorobenzene		10 U	10 U	10 U	10 UJ	10 UJ
1,4-Dichlorobenzene		10 U	10 U	10 U	10 UJ	10 UJ
2-Butanone		50 U	50 U	50 U	50 UJ	50 UJ
2-Hexanone		50 U	50 U	50 U	50 UJ	50 UJ
4-Methyl-2-pentanone		50 U	50 U	50 U	50 UJ	50 UJ
Acetic acid, methyl ester		10 U	10 U	10 U	10 UJ	10 UJ
Acetone		50 U	9.7 J	50 U	50 UJ	50 UJ
Benzene		10 U	10 U	10 U	10 UJ	10 UJ
Bromodichloromethane		10 U	10 U	10 U	10 UJ	10 UJ
Bromoform		10 U	10 U	10 U	10 UJ	10 UJ
Bromomethane		10 U	10 U	10 U	10 UJ	10 UJ
Carbon disulfide		10 U	10 U	10 U	10 UJ	10 UJ
Carbon tetrachloride		10 U	10 U	10 U	10 UJ	10 UJ
Chlorobenzene		10 U	10 U	10 U	10 UJ	10 UJ
Chlorodibromomethane		10 U	10 U	10 U	10 UJ	10 UJ
Chloroethane		10 U	10 U	10 U	10 UJ	10 UJ
Chloroform		10 U	10 U	10 U	10 UJ	10 UJ
Chloromethane		10 U	10 U	10 U	10 UJ	10 UJ
Cis-1,2-Dichloroethene		17	10 U	10	9.5 J	5.4 J
cis-1,3-Dichloropropene		10 U	10 U	10 U	10 UJ	10 UJ
Cyclohexane		10 U	10 U	10 U	10 UJ	10 UJ
Dichlorodifluoromethane		10 U	10 U	10 U	10 UJ	10 UJ

Lab Sample Id	X482	26-07	X48	26-08	X492	21-05	X4921	-08RE	X492	1-09RE
SDG	X4	826	X4	826	X4	921	X4	921	X4	921
Location	GV	V-14	(QC	GV	V-1	GV	N-1	G	W-2
Field Sample Id	HTGW01	403501XX	HTTB001	XXX01XX	HTGW00	102501XX	HTGW00	103501XX	HTGW00	202301XX
Field Sample Date	10/9/	/2006	10/9	/2006	10/11	/2006	10/11	/2006	10/10)/2006
Qc Code	F	FS	1	B	F	S	FS		FS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Ethyl benzene	10	U	10	U	10	U	10	UJ	10	UJ
Isopropylbenzene	10	U	10	U	10	U	10	UJ	10	UJ
Methyl cyclohexane	10	U	10	U	10	U	10	UJ	10	UJ
Methyl Tertbutyl Ether	10	U	10	U	10	U	10	UJ	10	UJ
Methylene chloride	10	U	10	U	10	U	10	UJ	10	UJ
o-Xylene	10	U	10	U	10	U	10	UJ	10	UJ
Styrene	10	U	10	U	10	U	10	UJ	10	UJ
Tetrachloroethene	10	U	10	U	10	U	10	UJ	10	UJ
Toluene	10	U	10	U	10	U	10	UJ	10	UJ
trans-1,2-Dichloroethene	10	U	10	U	10	U	10	UJ	10	UJ
trans-1,3-Dichloropropene	10	U	10	U	10	U	10	UJ	10	UJ
Trichloroethene	15		10	U	24	J	16	J	14	J
Trichlorofluoromethane	10	U	10	U	10	U	10	UJ	10	UJ
Vinyl chloride	10	U	10	U	10	U	10	UJ	10	UJ
Xylene, m/p	10	U	10	U	10	U	10	UJ	10	UJ

Notes:

Results in micrograms per liter ($\mu g/L$)

Samples analyzed for VOCs by EPA Method OLM04.3

QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

	Lab Sample Id	X4921	-10RE	X4921	I-11RE	X492	21-12	X492	21-13	X49	21-14
	SDG	X4	921	X4	921	X4	921	X4	921	X4	1921
	Location	GV	N-2	G	W-3	GV	V-3	GV	N-4	G	W-4
	Field Sample Id	HTGW00	203301XX	HTGW00	302101XX	HTGW00	303101XX	HTGW00	402101XX	HTGW0	0403101XX
	Field Sample Date	10/10	/2006	10/11	/2006	10/11	/2006	10/10	/2006	10/1	0/2006
	Qc Code	I	TS	I	FS	F	S	F	r S]	FS
Parameter		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane		10	UJ	10	UJ	10	U	10	U	10	U
1,1,2,2-Tetrachloroethane		10	UJ	10	UJ	10	U	10	U	10	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		10	UJ	10	UJ	10	U	10	U	10	U
1,1,2-Trichloroethane		10	UJ	10	UJ	10	U	10	U	10	U
1,1-Dichloroethane		10	UJ	10	UJ	10	U	10	U	10	U
1,1-Dichloroethene		10	UJ	10	UJ	10	U	10	U	10	U
1,2,4-Trichlorobenzene		10	UJ	10	UJ	10	U	10	U	10	U
1,2-Dibromo-3-chloropropane		10	UJ	10	UJ	10	U	10	U	10	U
1,2-Dibromoethane		10	UJ	10	UJ	10	U	10	U	10	U
1,2-Dichlorobenzene		10	UJ	10	UJ	10	U	10	U	10	U
1,2-Dichloroethane		10	UJ	10	UJ	10	U	10	U	10	U
1,2-Dichloropropane		10	UJ	10	UJ	10	U	10	U	10	U
1,3-Dichlorobenzene		10	UJ	10	UJ	10	U	10	U	10	U
1,4-Dichlorobenzene		10	UJ	10	UJ	10	U	10	U	10	U
2-Butanone		50	UJ	50	UJ	50	U	50	U	50	U
2-Hexanone		50	UJ	50	UJ	50	U	50	U	50	U
4-Methyl-2-pentanone		50	UJ	50	UJ	50	U	50	U	50	U
Acetic acid, methyl ester		10	UJ	10	UJ	10	U	10	U	10	U
Acetone		50	UJ	50	UJ	50	U	50	U	50	U
Benzene		10	UJ	10	UJ	10	U	10	U	10	U
Bromodichloromethane		10	UJ	10	UJ	10	U	10	U	10	U
Bromoform		10	UJ	10	UJ	10	U	10	U	10	U
Bromomethane		10	UJ	10	UJ	10	U	10	U	10	U
Carbon disulfide		10	UJ	10	UJ	10	U	10	U	10	U
Carbon tetrachloride		10	UJ	10	UJ	10	U	10	U	10	U
Chlorobenzene		10	UJ	10	UJ	10	U	10	U	10	U
Chlorodibromomethane		10	UJ	10	UJ	10	U	10	U	10	U
Chloroethane		10	UJ	10	UJ	10	U	10	U	10	U
Chloroform		10	UJ	10	UJ	10	U	10	U	10	U
Chloromethane		10	UJ	10	UJ	10	U	10	U	10	U
Cis-1,2-Dichloroethene		9.7	J	7.1	J	11		13		18	
cis-1,3-Dichloropropene		10	UJ	10	UJ	10	U	10	U	10	U
Cyclohexane		10	UJ	10	UJ	10	U	10	U	10	U
Dichlorodifluoromethane		10	UJ	10	UJ	10	U	10	U	10	U

Lab Sample Id	X4921	-10RE	X492	I-11RE	X492	21-12	X492	21-13	X49	21-14	
SDG	X4	921	X4	921	X4	921	X4	921	X4	921	
Location	GV	N-2	G	W-3	GV	V-3	GV	V-4	G	W-4	
Field Sample Id	HTGW00	203301XX	HTGW00	302101XX	HTGW00	303101XX	HTGW00402101XX		HTGW00403101XX		
Field Sample Date	10/10	/2006	10/11	/2006	10/11/2006		10/10/2006		10/10/2006		
Qc Code	F	FS		FS	F	FS		FS		FS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
Ethyl benzene	10	UJ	10	UJ	10	U	10	U	10	U	
Isopropylbenzene	10	UJ	10	UJ	10	U	10	U	10	U	
Methyl cyclohexane	10	UJ	10	UJ	10	U	10	U	10	U	
Methyl Tertbutyl Ether	10	UJ	10	UJ	10	U	10	U	10	U	
Methylene chloride	10	UJ	10	UJ	10	U	10	U	10	U	
o-Xylene	10	UJ	10	UJ	10	U	10	U	10	U	
Styrene	10	UJ	10	UJ	10	U	10	U	10	U	
Tetrachloroethene	10	UJ	10	UJ	10	U	10	U	10	U	
Toluene	10	UJ	10	UJ	10	U	10	U	10	U	
trans-1,2-Dichloroethene	10	UJ	10	UJ	10	U	10	U	10	U	
trans-1,3-Dichloropropene	10	UJ	10	UJ	10	U	10	U	10	U	
Trichloroethene	16	J	14	J	23	J	34	J	38	J	
Trichlorofluoromethane	10	UJ	10	UJ	10	U	10	U	10	U	
Vinyl chloride	10	UJ	10	UJ	10	U	10	U	10	U	
Xylene, m/p	10	UJ	10	UJ	10	U	10	U	10	U	

Notes:

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by EPA Method OLM04.3

QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

	Lab Sample Id	X4921	-15RE	X4921	I-16RE	X4921	-17RE	X492	21-18	X49	21-19
	SDG	X4	921								
	Location	GV	N-5	GV	W-5	GV	V-5	GW	V-10	GV	V-10
	Field Sample Id	HTGW00	502101XX	HTGW00	503101XX	HTGW00	503101XD	HTGW01	002501XX	HTGW01	003101XX
	Field Sample Date	10/10	/2006	10/10)/2006	10/10	/2006	10/11	/2006	10/12	1/2006
	Qc Code	F	FS	I	FS	F	D	F	FS	J	FS
Parameter		Result	Qualifier								
1,1,1-Trichloroethane		10	U	10	UJ	10	UJ	10	U	10	U
1,1,2,2-Tetrachloroethane		10	U	10	UJ	10	UJ	10	U	10	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		10	U	10	UJ	10	UJ	10	U	10	U
1,1,2-Trichloroethane		10	U	10	UJ	10	UJ	10	U	10	U
1,1-Dichloroethane		10	U	10	UJ	10	UJ	10	U	10	U
1,1-Dichloroethene		10	U	10	UJ	10	UJ	10	U	10	U
1,2,4-Trichlorobenzene		10	U	10	UJ	10	UJ	10	U	10	U
1,2-Dibromo-3-chloropropane		10	U	10	UJ	10	UJ	10	U	10	U
1,2-Dibromoethane		10	U	10	UJ	10	UJ	10	U	10	U
1,2-Dichlorobenzene		10	U	10	UJ	10	UJ	10	U	10	U
1,2-Dichloroethane		10	U	10	UJ	10	UJ	10	U	10	U
1,2-Dichloropropane		10	U	10	UJ	10	UJ	10	U	10	U
1,3-Dichlorobenzene		10	U	10	UJ	10	UJ	10	U	10	U
1,4-Dichlorobenzene		10	U	10	UJ	10	UJ	10	U	10	U
2-Butanone		50	U	50	UJ	50	UJ	50	U	50	U
2-Hexanone		50	U	50	UJ	50	UJ	50	U	50	U
4-Methyl-2-pentanone		50	U	50	UJ	50	UJ	50	U	50	U
Acetic acid, methyl ester		10	U	10	UJ	10	UJ	10	U	10	U
Acetone		50	U	50	UJ	50	UJ	50	U	50	U
Benzene		10	U	10	UJ	10	UJ	10	U	10	U
Bromodichloromethane		10	U	10	UJ	10	UJ	10	U	10	U
Bromoform		10	U	10	UJ	10	UJ	10	U	10	U
Bromomethane		10	U	10	UJ	10	U	10	U	10	U
Carbon disulfide		10	U	10	UJ	10	UJ	10	U	10	U
Carbon tetrachloride		10	U	10	UJ	10	UJ	10	U	10	U
Chlorobenzene		10	U	10	UJ	10	UJ	10	U	10	U
Chlorodibromomethane		10	U	10	UJ	10	UJ	10	U	10	U
Chloroethane		10	U	10	UJ	10	UJ	10	U	10	U
Chloroform		10	U	10	UJ	10	UJ	10	U	10	U
Chloromethane		10	U	10	UJ	10	UJ	10	U	10	U
Cis-1,2-Dichloroethene		18	J	18	J	16	J	9.4	J	13	
cis-1,3-Dichloropropene		10	U	10	UJ	10	UJ	10	U	10	U
Cyclohexane		10	U	10	UJ	10	UJ	10	U	10	U
Dichlorodifluoromethane		10	U	10	UJ	10	UJ	10	U	10	U

Lab Sample Id	X4921	l-15RE	X492	-16RE	X4921	-17RE	X492	21-18	X49	21-19
SDG	X4	921	X4	921	X4	921	X4	921	X4	921
Location	G	W-5	G	<i>N</i> -5	GV	V-5	GW	/-10	GV	V-10
Field Sample Id	HTGW00	502101XX	HTGW00	503101XX	HTGW00	503101XD	HTGW01	002501XX	HTGW01003101XX	
Field Sample Date	10/10)/2006	10/10	/2006	10/10	/2006	10/11	/2006	10/11/2006	
Qc Code	F	FS	I	FS	F	D	F	S	FS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Ethyl benzene	10	U	10	UJ	10	UJ	10	U	10	U
Isopropylbenzene	10	U	10	UJ	10	UJ	10	U	10	U
Methyl cyclohexane	10	U	10	UJ	10	UJ	10	U	10	U
Methyl Tertbutyl Ether	10	U	10	UJ	10	UJ	10	U	10	U
Methylene chloride	10	U	10	UJ	10	UJ	10	U	10	U
o-Xylene	10	U	10	UJ	10	UJ	10	U	10	U
Styrene	10	U	10	UJ	10	UJ	10	U	10	U
Tetrachloroethene	10	U	10	UJ	10	UJ	10	U	10	U
Toluene	10	U	10	UJ	10	UJ	10	U	10	U
trans-1,2-Dichloroethene	10	U	10	UJ	10	UJ	10	U	10	U
trans-1,3-Dichloropropene	10	U	10	UJ	10	UJ	10	U	10	U
Trichloroethene	28	J	32	J	27	J	15	J	21	J
Trichlorofluoromethane	10	U	10	UJ	10	UJ	10	U	10	U
Vinyl chloride	10	U	10	UJ	10	UJ	10	U	10	U
Xylene, m/p	10	U	10	UJ	10	UJ	10	U	10	U

Notes:

Results in micrograms per liter ($\mu g/L$)

Samples analyzed for VOCs by EPA Method OLM04.3

QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

	Lab Sample Id	X49	21-20	X49	21-21	X492	21-22	X49	21-23	X492	6-02RE
	SDG	X4	921	X4	921	X4	921	X4	921	X4926	
	Location	GV	V-18	GV	V-18	Q	C	M	W-5	G	W-6
	Field Sample Id	HTGW01	802401XX	HTGW01	803101XX	HTTB002	XXX01XX	HTMW00	503001XX	HTGW0)602301XX
	Field Sample Date	10/11	/2006	10/11	/2006	10/11	/2006	10/11	/2006	10/12	2/2006
	Qc Code	H	FS	I	FS	Т	В	I	F S	J	FS
Parameter		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane		10	UJ	10	U	10	U	10	UJ	10	U
1,1,2,2-Tetrachloroethane		10	UJ	10	U	10	U	10	UJ	10	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		10	UJ	10	U	10	U	10	UJ	10	U
1,1,2-Trichloroethane		10	UJ	10	U	10	U	10	UJ	10	U
1,1-Dichloroethane		10	UJ	10	U	10	U	10	UJ	10	U
1,1-Dichloroethene		10	UJ	10	U	10	U	10	UJ	10	U
1,2,4-Trichlorobenzene		10	UJ	10	U	10	U	10	UJ	10	U
1,2-Dibromo-3-chloropropane		10	UJ	10	U	10	U	10	UJ	10	U
1,2-Dibromoethane		10	UJ	10	U	10	U	10	UJ	10	U
1,2-Dichlorobenzene		10	UJ	10	U	10	U	10	UJ	10	U
1,2-Dichloroethane		10	UJ	10	U	10	U	10	UJ	10	U
1,2-Dichloropropane		10	UJ	10	U	10	U	10	UJ	10	U
1,3-Dichlorobenzene		10	UJ	10	U	10	U	10	UJ	10	U
1,4-Dichlorobenzene		10	UJ	10	U	10	U	10	UJ	10	U
2-Butanone		50	UJ	50	U	50	U	50	UJ	50	U
2-Hexanone		50	UJ	50	U	50	U	50	UJ	50	U
4-Methyl-2-pentanone		50	UJ	50	U	50	U	50	UJ	50	U
Acetic acid, methyl ester		10	UJ	10	U	10	U	10	UJ	10	U
Acetone		50	UJ	50	U	50	U	50	UJ	50	U
Benzene		10	UJ	10	U	10	U	10	UJ	10	U
Bromodichloromethane		10	UJ	10	U	10	U	10	UJ	10	U
Bromoform		10	UJ	10	U	10	U	10	UJ	10	U
Bromomethane		10	UJ	10	U	10	U	10	UJ	10	U
Carbon disulfide		10	UJ	10	U	10	U	10	UJ	10	U
Carbon tetrachloride		10	UJ	10	U	10	U	10	UJ	10	U
Chlorobenzene		10	UJ	10	U	10	U	10	UJ	10	U
Chlorodibromomethane		10	UJ	10	U	10	U	10	UJ	10	U
Chloroethane		10	UJ	10	U	10	U	10	UJ	10	U
Chloroform		10	UJ	10	U	10	U	10	UJ	10	U
Chloromethane		10	UJ	10	U	10	U	10	UJ	10	U
Cis-1,2-Dichloroethene		25	J	22		10	U	13	J	20	J
cis-1,3-Dichloropropene		10	UJ	10	U	10	U	10	UJ	10	U
Cyclohexane		10	UJ	10	U	10	U	10	UJ	10	U
Dichlorodifluoromethane		10	UJ	10	U	10	U	10	UJ	10	U

Lab Sample Id	X492	21-20	X49	21-21	X492	X4921-22		X4921-23		5-02RE
SDG	X4	921	X4921 X4921		921	X4921		X 4	926	
Location	GV	V-18	GV	V-18	Q	C	M	W-5	G	N-6
Field Sample Id	HTGW01	802401XX	HTGW01	803101XX	HTTB002	XXX01XX	HTMW00	503001XX	HTGW00	602301XX
Field Sample Date	10/11	/2006	10/11	/2006	10/11	/2006	10/11	/2006	10/12	2/2006
Qc Code	F	FS	1	FS	Т	B	F	ſS]	TS
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Ethyl benzene	10	UJ	10	U	10	U	10	UJ	10	U
Isopropylbenzene	10	UJ	10	U	10	U	10	UJ	10	U
Methyl cyclohexane	10	UJ	10	U	10	U	10	UJ	10	U
Methyl Tertbutyl Ether	10	UJ	10	U	10	U	10	UJ	10	U
Methylene chloride	10	UJ	10	U	10	U	10	UJ	10	U
o-Xylene	10	UJ	10	U	10	U	10	UJ	10	U
Styrene	10	UJ	10	U	10	U	10	UJ	10	U
Tetrachloroethene	10	UJ	10	U	10	U	10	UJ	10	U
Toluene	10	UJ	10	U	10	U	10	UJ	10	U
trans-1,2-Dichloroethene	10	UJ	10	U	10	U	10	UJ	10	U
trans-1,3-Dichloropropene	10	UJ	10	U	10	U	10	UJ	10	U
Trichloroethene	45	J	40	J	10	U	68	J	31	J
Trichlorofluoromethane	10	UJ	10	U	10	U	10	UJ	10	U
Vinyl chloride	10	UJ	10	U	10	U	10	UJ	10	U
Xylene, m/p	10	UJ	10	U	10	U	10	UJ	10	U

Notes:

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by EPA Method OLM04.3

QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

	Lab Sample Id	X492	X4926-03		26-04	X492	X4926-05		X4926-06		26-07
	SDG	X4	926	X4	926	X4	926	X4	926	X4	926
	Location	GV	V-6	GV	W-7	GV	V-7	GV	N-7	G	W-8
	Field Sample Id	HTGW00	HTGW00603301XX		HTGW00702301XX HTGW00702301XD		HTGW00703301XX		HTGW0	0802601XX	
]	Field Sample Date	10/12	/2006	10/12	2/2006	10/12/2006		10/12/2006		10/12	2/2006
	Qc Code	F	S	I	FS	F	D	FS]	FS
Parameter		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane		10	U	10	U	10	U	10	U	10	U
1,1,2,2-Tetrachloroethane		10	U	10	U	10	U	10	U	10	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		10	U	10	U	10	U	10	U	10	U
1,1,2-Trichloroethane		10	U	10	U	10	U	10	U	10	U
1,1-Dichloroethane		10	U	10	U	10	U	10	U	10	U
1,1-Dichloroethene		10	U	10	U	10	U	10	U	10	U
1,2,4-Trichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,2-Dibromo-3-chloropropane		10	U	10	U	10	U	10	U	10	U
1,2-Dibromoethane		10	U	10	U	10	U	10	U	10	U
1,2-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,2-Dichloroethane		10	U	10	U	10	U	10	U	10	U
1,2-Dichloropropane		10	U	10	U	10	U	10	U	10	U
1,3-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,4-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
2-Butanone		50	U	50	U	50	U	50	U	50	U
2-Hexanone		50	U	50	U	50	U	50	U	50	U
4-Methyl-2-pentanone		50	U	50	U	50	U	50	U	50	U
Acetic acid, methyl ester		10	U	10	U	10	U	10	U	10	U
Acetone		50	U	50	U	50	U	50	U	50	U
Benzene		10	U	10	U	10	U	10	U	10	U
Bromodichloromethane		10	U	10	U	10	U	10	U	10	U
Bromoform		10	U	10	U	10	U	10	U	10	U
Bromomethane		10	U	10	U	10	U	10	U	10	U
Carbon disulfide		10	U	10	U	10	U	10	U	10	U
Carbon tetrachloride		10	U	10	U	10	U	10	U	10	U
Chlorobenzene		10	U	10	U	10	U	10	U	10	U
Chlorodibromomethane		10	U	10	U	10	U	10	U	10	U
Chloroethane		10	U	10	U	10	U	10	U	10	U
Chloroform		1.2	J	10	U	10	U	10	U	10	U
Chloromethane		10	U	10	U	10	U	10	U	10	U
Cis-1,2-Dichloroethene		19		27		25		3.9	J	2	J
cis-1,3-Dichloropropene		10	U	10	U	10	U	10	U	10	U
Cyclohexane		10	U	10	U	10	U	10	U	10	U
Dichlorodifluoromethane		10	U	10	U	10	U	10	U	10	U

Lab Sample Id	X492	26-03	X49	26-04	X4926-05		X492	X4926-06		26-07
SDG	X4	926	X4	X4926 X4926		X4	X4926		926	
Location	GV	N-6	G	W-7	GV	N-7	GV	N-7	G	W-8
Field Sample Id	HTGW00	603301XX	HTGW00	702301XX	HTGW00	702301XD	HTGW00	703301XX	HTGW0	802601XX
Field Sample Date	10/12	2/2006	10/12	2/2006	10/12	/2006	10/12	/2006	10/12	2/2006
Qc Code	ŀ	FS	I	FS	F	D	F	ſS]	FS
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Ethyl benzene	10	U	10	U	10	U	10	U	10	U
Isopropylbenzene	10	U	10	U	10	U	10	U	10	U
Methyl cyclohexane	10	U	10	U	10	U	10	U	10	U
Methyl Tertbutyl Ether	10	U	10	U	10	U	10	U	10	U
Methylene chloride	0.81	J	10	U	10	U	10	U	10	U
o-Xylene	10	U	10	U	10	U	10	U	10	U
Styrene	10	U	10	U	10	U	10	U	10	U
Tetrachloroethene	10	U	10	U	10	U	10	U	10	U
Toluene	10	U	10	U	10	U	10	U	10	U
trans-1,2-Dichloroethene	10	U	10	U	10	U	10	U	10	U
trans-1,3-Dichloropropene	10	U	10	U	10	U	10	U	10	U
Trichloroethene	30		40		38		7.9	J	20	
Trichlorofluoromethane	10	U	10	U	10	U	10	U	10	U
Vinyl chloride	10	U	10	U	10	U	10	U	10	U
Xylene, m/p	10	U	10	U	10	U	10	U	10	U

Notes:

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by EPA Method OLM04.3

QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

	Lab Sample Id	X492	26-08	X49	26-09	X492	26-10	X49	X4926-11		26-12
	SDG	X4	926	X4	926	X4	926	X4	926	X4	1926
	Location	GW	V-11	GV	V-11	GW	/-12	GV	V-12	(QC
	Field Sample Id	HTGW01	102301XX	HTGW01	103101XX	HTGW01202301XX		HTGW01203101XX		HTTB003	3XXX01XX
	Field Sample Date	10/12	10/12/2006 10/12/2		2/2006	10/12/2006		10/12/2006		10/1	2/2006
	Qc Code	F	rs	I	FS	F	S	H	FS	r	ГВ
Parameter		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane		10	U	10	U	10	U	10	U	10	U
1,1,2,2-Tetrachloroethane		10	U	10	U	10	U	10	U	10	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		10	U	10	U	10	U	10	U	10	U
1,1,2-Trichloroethane		10	U	10	U	10	U	10	U	10	U
1,1-Dichloroethane		10	U	10	U	10	U	10	U	10	U
1,1-Dichloroethene		10	U	10	U	10	U	10	U	10	U
1,2,4-Trichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,2-Dibromo-3-chloropropane		10	U	10	U	10	U	10	U	10	U
1,2-Dibromoethane		10	U	10	U	10	U	10	U	10	U
1,2-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,2-Dichloroethane		10	U	10	U	10	U	10	U	10	U
1,2-Dichloropropane		10	U	10	U	10	U	10	U	10	U
1,3-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,4-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
2-Butanone		4	J	6.3	J	3.2	J	4.6	J	50	U
2-Hexanone		50	U	50	U	50	U	50	U	50	U
4-Methyl-2-pentanone		50	U	50	U	50	U	50	U	50	U
Acetic acid, methyl ester		2.1	J	10	U	10	U	10	U	10	U
Acetone		50	U	50	U	50	U	16	J	7.6	JB
Benzene		10	U	0.8	J	10	U	0.84	J	10	U
Bromodichloromethane		10	U	10	U	10	U	10	U	10	U
Bromoform		10	U	10	U	10	U	10	U	10	U
Bromomethane		10	U	10	U	10	U	10	U	10	U
Carbon disulfide		10	U	10	U	10	U	10	U	10	U
Carbon tetrachloride		10	U	10	U	10	U	10	U	10	U
Chlorobenzene		10	U	10	U	10	U	10	U	10	U
Chlorodibromomethane		10	U	10	U	10	U	10	U	10	U
Chloroethane		10	U	10	U	10	U	10	U	10	U
Chloroform		1	J	1.1	J	10	U	10	U	10	U
Chloromethane		3.9	J	6.7	J	10	U	10	U	10	U
Cis-1,2-Dichloroethene		2.1	J	3	J	2.2	J	2.1	J	10	U
cis-1,3-Dichloropropene		10	U	10	U	10	U	10	U	10	U
Cyclohexane		10	U	10	U	10	U	10	U	10	U
Dichlorodifluoromethane		10	U	10	U	10	U	10	U	10	U

Lab Sample Id	X492	26-08	X49	26-09	X492	26-10	X492	26-11	X49	26-12
SDG	X4	926	X4	926	X4	926	X4	926	X 4	926
Location	GV	V-11	GV	V-11	GW	/-12	GW	V-12	(QC
Field Sample Id	HTGW01	102301XX	HTGW01	103101XX	HTGW01	202301XX	HTGW01	203101XX	HTTB003	XXX01XX
Field Sample Date	10/12	2/2006	10/12	2/2006	10/12	/2006	10/12	/2006	10/12	2/2006
Qc Code	F	F S	I	FS	F	S	F	ſS]	В
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Ethyl benzene	10	U	10	U	10	U	10	U	10	U
Isopropylbenzene	10	U	10	U	10	U	10	U	10	U
Methyl cyclohexane	10	U	10	U	10	U	0.97	J	10	U
Methyl Tertbutyl Ether	10	U	10	U	10	U	10	U	10	U
Methylene chloride	10	U	10	U	10	U	10	U	10	U
o-Xylene	10	U	10	U	10	U	10	U	10	U
Styrene	10	U	10	U	10	U	10	U	10	U
Tetrachloroethene	10	U	10	U	10	U	10	U	10	U
Toluene	10	U	10	U	10	U	1.3	J	10	U
trans-1,2-Dichloroethene	10	U	10	U	10	U	10	U	10	U
trans-1,3-Dichloropropene	10	U	10	U	10	U	10	U	10	U
Trichloroethene	4.3	J	4.8	J	8.3	J	11	J	10	U
Trichlorofluoromethane	10	U	10	U	10	U	10	U	10	U
Vinyl chloride	10	U	10	U	10	U	10	U	10	U
Xylene, m/p	10	U	10	U	10	U	10	U	10	U

Notes:

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by EPA Method OLM04.3

QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

B = Analyte was detected in the method blank

July 2007

-	I ab Sampla Id	¥5260 01	X5260.02	¥5260.03	¥5260 04	X5269-05	
	Lab Sample Id SDG	X5269	X5269	X5269	X5269	X5269	
	Location	GW-9	GW-13	GW-15	GW-15	GW-17	
	Field Sample Id	HTGW00902701XX	HTGW01302701XX	HTGW01502501XX	HTGW01503401XX	HTGW01703401XX	
	Field Sample Date	11/3/2006	11/3/2006 11/2/2006		11/2/2006	11/3/2006	
	Oc Code	FS	FS	FS	FS	FS	
Parameter	C · · · · ·	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
1,1,1-Trichloroethane		10 U	10 UJ	10 U	10 U	10 U	
1,1,2,2-Tetrachloroethane		10 U	10 UJ	10 U	10 U	10 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane		10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	
1,1,2-Trichloroethane		10 U	10 UJ	10 U	10 U	10 U	
1,1-Dichloroethane		10 U	10 UJ	10 U	10 U	10 U	
1,1-Dichloroethene		10 U	10 UJ	10 U	10 U	10 U	
1,2,4-Trichlorobenzene		10 U	10 UJ	10 U	10 U	10 U	
1,2-Dibromo-3-chloropropane		10 U	10 UJ	10 U	10 U	10 U	
1,2-Dibromoethane		10 U	10 UJ	10 U	10 U	10 U	
1,2-Dichlorobenzene		10 U	10 UJ	10 U	10 U	10 U	
1,2-Dichloroethane		10 U	10 UJ	10 U	10 U	10 U	
1,2-Dichloropropane		10 U	10 UJ	10 U	10 U	10 U	
1,3-Dichlorobenzene		10 U	10 UJ	10 U	10 U	10 U	
1,4-Dichlorobenzene		10 U	10 UJ	10 U	10 U	10 U	
2-Butanone		50 U	50 UJ	50 U	50 U	50 U	
2-Hexanone		50 U	50 UJ	50 U	50 U	50 U	
4-Methyl-2-pentanone		50 U	50 UJ	50 U	50 U	50 U	
Acetic acid, methyl ester		10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	
Acetone		50 U	50 UJ	50 U	50 U	50 U	
Benzene		10 U	10 UJ	10 U	10 U	10 U	
Bromodichloromethane		10 U	10 UJ	10 U	10 U	10 U	
Bromoform		10 U	10 UJ	10 U	10 U	10 U	
Bromomethane		10 U	10 UJ	10 U	10 U	10 U	
Carbon disulfide		10 U	10 UJ	10 U	10 U	10 U	
Carbon tetrachloride		10 U	10 UJ	10 U	10 U	10 U	
Chlorobenzene		10 U	10 UJ	10 U	10 U	10 U	
Chlorodibromomethane		10 U	10 UJ	10 U	10 U	10 U	
Chloroethane		10 U	10 UJ	10 U	10 U	10 U	
Chloroform		10 U	10 UJ	1.3 J	1.3 J	10 U	
Chloromethane		10 U	10 UJ	10 U	10 U	10 U	
Cis-1,2-Dichloroethene		6.2 J	10 UJ	9.5 J	10 J	9.7 J	
cis-1,3-Dichloropropene		10 U	10 UJ	10 U	10 U	10 U	
Cyclohexane		10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	
Dichlorodifluoromethane		10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	

Lab Sample Id	X52	69-01	X52	69-02	X5269-03		X5269-04		X52	69-05
SDG	X5	269	X5	X5269		5269 X		269	X5	269
Location	GV	N-9	GV	V-13	GW	/-15	GW	V-15	GV	V-17
Field Sample Id	HTGW00	902701XX	HTGW01	302701XX	HTGW01	502501XX	HTGW01	503401XX	HTGW01	703401XX
Field Sample Date	11/3/	/2006	11/3	/2006	11/2/	2006	11/2/	/2006	11/3	/2006
Qc Code	F	FS	1	FS	F	S	F	ſS]	FS
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Ethyl benzene	10	U	10	UJ	10	U	10	U	10	U
Isopropylbenzene	10	U	10	UJ	10	U	10	U	10	U
Methyl cyclohexane	10	U	10	UJ	10	U	10	U	10	U
Methyl Tertbutyl Ether	10	U	10	UJ	10	U	10	U	10	U
Methylene chloride	10	U	10	UJ	10	U	10	U	10	U
o-Xylene	10	U	10	UJ	10	U	10	U	10	U
Styrene	10	U	10	UJ	10	U	10	U	10	U
Tetrachloroethene	10	U	10	UJ	10	U	10	U	10	U
Toluene	10	U	10	UJ	10	U	10	U	10	U
trans-1,2-Dichloroethene	10	U	10	UJ	10	U	10	U	10	U
trans-1,3-Dichloropropene	10	U	10	UJ	10	U	10	U	10	U
Trichloroethene	26		10	UJ	35		42		53	
Trichlorofluoromethane	10	UJ	10	UJ	10	UJ	10	UJ	10	UJ
Vinyl chloride	10	U	10	UJ	10	U	10	U	10	U
Xylene, m/p	10	U	10	UJ	10	U	10	U	10	U

Notes:

Results in micrograms per liter (µg/L) Samples analyzed for VOCs by EPA Method OLM04.3

QC Code:

FS = Field Sample

FD = Field Duplicate

TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

	Lab Sample Id	X5269-06		X52	69-07 Y2694-07		94-07	Y2694-08		Y269	94-09
	SDG	X5	269	X5	269	Y2	694	Y2	694	Y2	694
	Location	GW	V-17	C C	QC	MW	V-7S	MV	V-7D	MW	7 -7D
	Field Sample Id	HTGW01	702101XX	HTTB004XXX01XX		HTMW07S02502XX		HTMW07D03502XX		HTMW07	D03502XD
	Field Sample Date	11/3/	/2006	11/3	/2006	5/10/	2007	5/9/	5/9/2007		2007
	Qc Code	F	rs	Г	В	F	S	FS		F	D
Parameter		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane		10	U	10	U	10	U	10	U	10	U
1,1,2,2-Tetrachloroethane		10	U	10	U	10	U	10	U	10	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		10	UJ	10	U	10	U	10	U	10	U
1,1,2-Trichloroethane		10	U	10	U	10	U	10	U	10	U
1,1-Dichloroethane		10	U	10	U	10	U	10	U	10	U
1,1-Dichloroethene		10	U	10	U	10	U	10	U	10	U
1,2,4-Trichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,2-Dibromo-3-chloropropane		10	U	10	U	10	U	10	U	10	U
1,2-Dibromoethane		10	U	10	U	10	U	10	U	10	U
1,2-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,2-Dichloroethane		10	U	10	U	10	U	10	U	10	U
1,2-Dichloropropane		10	U	10	U	10	U	10	U	10	U
1,3-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
1,4-Dichlorobenzene		10	U	10	U	10	U	10	U	10	U
2-Butanone		50	U	50	U	50	U	50	U	50	U
2-Hexanone		50	U	50	U	50	U	50	U	50	U
4-Methyl-2-pentanone		50	U	50	U	50	U	50	U	50	U
Acetic acid, methyl ester		10	UJ	10	U	10	UJ	10	UJ	10	UJ
Acetone		50	U	9.7	J	50	UJ	50	UJ	50	UJ
Benzene		10	U	10	U	10	U	10	U	10	U
Bromodichloromethane		10	U	10	U	10	U	10	U	10	U
Bromoform		10	U	10	U	10	U	10	U	10	UJ
Bromomethane		10	U	10	U	10	U	10	U	10	U
Carbon disulfide		10	U	10	U	10	U	10	U	10	U
Carbon tetrachloride		10	U	10	U	10	U	10	U	10	U
Chlorobenzene		10	U	10	U	10	U	10	U	10	U
Chlorodibromomethane		10	U	10	U	10	U	10	U	10	U
Chloroethane		10	U	10	U	10	UJ	10	UJ	10	UJ
Chloroform		10	U	10	U	10	U	10	U	10	U
Chloromethane		10	U	10	U	10	U	10	U	10	U
Cis-1,2-Dichloroethene		7	J	10	U	10	U	10	U	10	U
cis-1,3-Dichloropropene		10	U	10	U	10	U	10	U	10	U
Cyclohexane		10	UJ	10	U	10	U	10	U	10	U
Dichlorodifluoromethane		10	UI	10	U	10	U	10	U	10	U

Lab Sample Id	X52	69-06	X52	69-07	Y269	94-07	Y269	94-08	Y269	4-09
SDG	X5	269	X5	269	Y2	694	Y2	694	Y20	594
Location	GW	/-17	C C	QC	MV	V-7S	MW	7 D	MW	′-7D
Field Sample Id	HTGW01	702101XX	HTTB004	XXX01XX	HTMW07	S02502XX	HTMW07	D03502XX	HTMW07	D03502XD
Field Sample Date	11/3/	2006	11/3	/2006	5/10/	2007	5/9/2	2007	5/9/2	2007
Qc Code	F	S	Т	B	F	S	F	ſS	F	D
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Ethyl benzene	10	U	10	U	10	U	10	U	10	U
Isopropylbenzene	10	U	10	U	10	U	10	U	10	U
Methyl cyclohexane	10	U	10	U	10	U	10	U	10	U
Methyl Tertbutyl Ether	10	U	10	U	10	U	10	U	10	U
Methylene chloride	10	U	1.4	J	10	UJ	10	UJ	10	U
o-Xylene	10	U	10	U	10	U	10	U	10	U
Styrene	10	U	10	U	10	U	10	U	10	U
Tetrachloroethene	10	U	10	U	10	U	10	U	10	U
Toluene	10	U	10	U	10	U	10	U	10	U
trans-1,2-Dichloroethene	10	U	10	U	10	U	10	U	10	U
trans-1,3-Dichloropropene	10	U	10	U	10	U	10	U	10	U
Trichloroethene	47		10	U	5.5	J	5.9	J	6.4	J
Trichlorofluoromethane	10	UJ	10	U	10	U	10	U	10	UJ
Vinyl chloride	10	U	10	U	10	U	10	U	10	U
Xylene, m/p	10	U	10	U	10	U	10	U	10	U

Notes:

Results in micrograms per liter (μ g/L) Samples analyzed for VOCs by EPA Method OLM04.3 QC Code: FS = Field Sample FD = Field Duplicate TB = Trip Blank

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated Value

D = Analyte was reported from a dilited analytical run.

	Lab Sample Id	Y2694-05	
	SDG	Y2	694
	Location	0	С
	Field Sample Id	UNTB004	XXX02XX
	Field Sample Date	5/10/	2007
	Qc Code	Т	В
Parameter	-	Result	Qualifier
1,1,1-Trichloroethane		10	U
1,1,2,2-Tetrachloroethane		10	U
1,1,2-Trichloro-1,2,2-Trifluoroethane		10	U
1,1,2-Trichloroethane		10	U
1,1-Dichloroethane		10	U
1,1-Dichloroethene		10	U
1,2,4-Trichlorobenzene		10	U
1,2-Dibromo-3-chloropropane		10	U
1,2-Dibromoethane		10	U
1,2-Dichlorobenzene		10	U
1,2-Dichloroethane		10	U
1,2-Dichloropropane		10	U
1,3-Dichlorobenzene		10	U
1,4-Dichlorobenzene		10	U
2-Butanone		50	U
2-Hexanone		50	U
4-Methyl-2-pentanone		50	U
Acetic acid, methyl ester		10	U
Acetone		50	U
Benzene		10	U
Bromodichloromethane		10	U
Bromoform		10	U
Bromomethane		10	U
Carbon disulfide		10	U
Carbon tetrachloride		10	U
Chlorobenzene		10	U
Chlorodibromomethane		10	U
Chloroethane		10	U
Chloroform		10	U
Chloromethane		10	U
Cis-1,2-Dichloroethene		10	U
cis-1,3-Dichloropropene		10	U
Cyclohexane		10	U
Dichlorodifluoromethane		10	U

Page 19 of 27

July 2007

Final

Lab Sample Id	Y2694-05			
SDG	Y2	694		
Location	Q	С		
Field Sample Id	UNTB0042	XXX02XX		
Field Sample Date	5/10/	2007		
Qc Code	Т	B		
Parameter	Result	Qualifier		
Ethyl benzene	10	U		
Isopropylbenzene	10	U		
Methyl cyclohexane	10	U		
Methyl Tertbutyl Ether	10	U		
Methylene chloride	10	U		
o-Xylene	10	U		
Styrene	1.3	JB		
Tetrachloroethene	10	U		
Toluene	10	U		
trans-1,2-Dichloroethene	10	U		
trans-1,3-Dichloropropene	10	U		
Trichloroethene	10	U		
Trichlorofluoromethane	10	U		
Vinyl chloride	10	U		
Xylene, m/p	10	U		

Notes: Results in micrograms per liter (μ g/L) Samples analyzed for VOCs by EPA Method OLM04.3 QC Code: FS = Field Sample FD = Field Duplicate TB = Trip BlankQualifiers: U = Not detected at a concentration greater than the RL J = Estimated Value D = Analyte was reported from a dilited analytical run.

 $\mathbf{B} = \mathbf{A}\mathbf{n}\mathbf{a}\mathbf{l}\mathbf{y}\mathbf{t}\mathbf{e}$ was detected in the method blank

I ah Samula Id	X4921-05				
	1 <u>A4921-05</u> V V4021				
SDG	X4	921 W 1			
	G	W-1			
Field Sample Id	HIGW00	102501XX			
Field Sample Date	10/11	1/2006			
Qc Code	Desult	S Ouglifian			
	Result	Quaimer			
2,4,5-Trichlorophenol	10	U			
2,4,6-Trichlorophenol	10	U			
2,4-Dichlorophenol	10	U			
2,4-Dimethylphenol	10	U			
2,4-Dinitrophenol	20	UJ			
2,4-Dinitrotoluene	10	U			
2,6-Dinitrotoluene	10	U			
2-Chloronaphthalene	10	U			
2-Chlorophenol	10	U			
2-Methylnaphthalene	10	U			
2-Methylphenol	10	U			
2-Nitroaniline	10	U			
2-Nitrophenol	10	U			
3,3°-Dichlorobenzidine	20	U			
3-Nitroaniline	10	U			
4,6-Dinitro-2-methylphenol	20	U			
4-Bromophenyl phenyl ether	10	U			
4-Chloro-3-methylphenol	10	U			
4-Chloroaniline	10	U			
4-Chlorophenyl phenyl ether	10	U			
4-Methylphenol	10	U			
4-Nitroaniline	10	U			
4-Nitrophenol	20	U			
Acenaphthene	10	UJ			
Acenaphthylene	10	U			
Acetophenone	10	U			
Anthracene	10	U			
Atrazine	10	U			
Benzaldehvde	10	U			
Benzo(a)anthracene	10	U			
Benzo(a)pyrene	10	U			
Benzo(h)fluoranthene	10	U			
Benzo(ghi)pervlene	10	U			
Benzo(k)fluoranthene	10	U			
Binhenvl	10	U			
Bis(2-Chloroethoxy)methane	10	U			
Bis(2-Chloroethyl)ether	10	U			
Bis(2-Chloroisopropyl)ether	10	U			
Bis(2-Ethylbeyyl)phthalate	13	U			
Butylbenzylphthalate	10	U			
Caprolactum	10	U			
Carbazole	10	U			
	10	U			
Di n butulottelete	10	U			
Di-n-butyiphinalate	10	U			
Di-n-octyppninalate	10	U			
Dibenz(a,n)anthracene	10	U			
	10	U			
Dietnyiphthalate	10	U			
Dimethylphthalate	10	U			
Fluoranthene	10	U			
Fluorene	10	U			
Hexachlorobenzene	10	U			
Hexachlorobutadiene	10	U			

	Lab Sample Id	X49	21-05		
	SDG	X4921			
	Location	G	W-1		
	Field Sample Id	HTGW00102501XX			
	Field Sample Date	10/11	1/2006		
	Qc Code	1	FS		
Parameter		Result	Qualifier		
Hexachlorocyclopentadiene		10	U		
Hexachloroethane		10	U		
Indeno(1,2,3-cd)pyrene		10	U		
Isophorone		10	U		
N-Nitrosodi-n-propylamine		10	UJ		
N-Nitrosodiphenylamine		10	U		
Naphthalene		10	U		
Nitrobenzene		10	U		
Pentachlorophenol		20	U		
Phenanthrene		10	U		
Phenol		10	U		
Pyrene		10	U		

Notes:

Results in micrograms per liter (µg/L) Samples analyzed for SVOCs by EPA Method OLM04.3 QC Code: FS = Field Sample Qualifiers:

 $\mathbf{U}=\mathbf{N}\mathbf{o}t$ detected at a concentration greater than the RL

 $J = Estimated \ Result$

 $\mathbf{R} = \mathbf{A}\mathbf{n}\mathbf{a}\mathbf{l}\mathbf{y}\mathbf{t}\mathbf{e}$ was rejected during data validation

Appendix E Table 1.3: Soil VOC Results

	Lab Sample Id	X4826-05	X4826-10	X4921-01	X4921-04	X4926-01
	SDG	X4826	X4826	X4921	X4921	X4926
	Location	GS-14	GS-16	GS-1	GS-3	GS-6
	Field Sample Id	HTGS01400301XX	HTGS01601001XX	HTGS00100801XX	HTGS00300501XX	HTGS00600101XX
	Field Sample Date	10/9/2006	10/9/2006	10/11/2006	10/11/2006	10/12/2006
	Qc Code	FS	FS	FS	FS	FS
Parameter		Result Qualifier				
1,1,1-Trichloroethane		12 U	11 U	12 U	11 U	12 U
1,1,2,2-Tetrachloroethane		12 U	11 U	12 U	11 U	12 U
1,1,2-Trichloro-1,2,2-Trifluoroethane		12 U	11 U	12 UJ	11 UJ	12 U
1,1,2-Trichloroethane		12 U	11 U	12 U	11 U	12 U
1,1-Dichloroethane		12 U	11 U	12 U	11 U	12 U
1,1-Dichloroethene		12 U	11 U	12 U	11 U	12 U
1,2,4-Trichlorobenzene		12 U	11 U	12 U	11 U	12 U
1,2-Dibromo-3-chloropropane		12 U	11 U	12 U	11 U	12 U
1,2-Dibromoethane		12 U	11 U	12 U	11 U	12 U
1,2-Dichlorobenzene		12 U	11 U	12 U	11 U	12 U
1,2-Dichloroethane		12 U	11 U	12 U	11 U	12 U
1,2-Dichloropropane		12 U	11 U	12 U	11 U	12 U
1,3-Dichlorobenzene		12 U	11 U	12 U	11 U	12 U
1,4-Dichlorobenzene		12 U	11 U	12 U	11 U	12 U
2-Butanone		59 U	6.1 J	58 U	57 U	61 U
2-Hexanone		59 U	54 U	58 U	57 U	61 U
4-Methyl-2-pentanone		59 U	54 U	58 U	57 U	61 U
Acetic acid, methyl ester		12 U	11 U	12 UJ	11 UJ	12 U
Acetone		59 U	54 U	58 U	57 U	61 U
Benzene		12 U	11 U	12 U	11 U	12 U
Bromodichloromethane		12 U	11 U	12 U	11 U	12 U
Bromoform		12 U	11 U	12 U	11 U	12 U
Bromomethane		12 U	11 U	12 U	11 U	12 U
Carbon disulfide		12 U	11 U	12 U	11 U	12 U
Carbon tetrachloride		12 U	11 U	12 U	11 U	12 U
Chlorobenzene		12 U	11 U	12 U	11 U	12 U
Chlorodibromomethane		12 U	11 U	12 U	11 U	12 U
Chloroethane		12 U	11 U	12 U	11 U	12 U
Chloroform		12 U	11 U	12 U	11 U	12 U
Chloromethane		12 U	11 U	12 U	11 U	12 U
Cis-1,2-Dichloroethene		12 U	11 U	12 U	11 U	12 U
cis-1,3-Dichloropropene		12 U	11 U	12 U	11 U	12 U
Cyclohexane		12 U	11 U	12 UJ	11 UJ	12 U
Dichlorodifluoromethane		12 U	11 U	12 U	11 U	12 U

Appendix E Table 1.3: Soil VOC Results

Lab Sampl	e Id 🛛 🛛 🛛	X4826-05		X4826-10		X4921-01		X4921-04		X4926-01	
S	DG	X4826	X 4	826	X4921		X4921		X4926		
Loca	tion	GS-14	GS	GS-16		GS-1		GS-3		GS-6	
Field Sampl	e Id HTGS	01400301XX	HTGS01	601001XX	HTGS001	100801XX	HTGS00300501XX		HTGS00600101XX		
Field Sample I	ate 1	0/9/2006	10/9	10/9/2006		10/11/2006		10/11/2006		10/12/2006	
Qc C	ode	FS]	FS		FS		FS		FS	
Parameter	Resu	t Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
Ethyl benzene		12 U	11	U	12	U	1.4	J	12	U	
Isopropylbenzene		12 U	11	U	12	U	11	U	12	U	
Methyl cyclohexane		12 U	11	U	12	U	11	U	12	U	
Methyl Tertbutyl Ether		12 U	11	U	12	U	11	U	12	U	
Methylene chloride		12 U	11	U	12	U	1.5	J	12	U	
o-Xylene		12 U	11	U	12	U	1.4	J	12	U	
Styrene		12 U	11	U	12	U	11	U	12	U	
Tetrachloroethene		12 U	11	U	12	U	1.2	J	12	U	
Toluene		12 U	11	U	12	U	1.3	J	12	U	
trans-1,2-Dichloroethene		12 U	11	U	12	U	11	U	12	U	
trans-1,3-Dichloropropene		12 U	11	U	12	U	11	U	12	U	
Trichloroethene		12 U	11	U	12	U	11	U	12	U	
Trichlorofluoromethane		12 U	11	U	12	U	11	U	12	U	
Vinyl chloride		12 U	11	U	12	UJ	11	UJ	12	U	
Xylene, m/p		12 U	11	U	12	U	4.4	J	12	U	

Notes:

Results in micrograms per kilogram (µg/kg) Samples analyzed for VOCs by EPA Method OLM04.3 QC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated value

Lab Sample Id	X49	45-01	X4945-02		X4945-03DL		X4945-04	
SDG	X 4	1945	X4945		X4945		X4	1945
Location	GV	V-01	G	V-02	GV-03		BA-01	
Field Sample Id	HTGV00	100801XX	HTGV00	200801XX	HTGV00300801XX		HTSV001XXX01X	
Field Sample Date	10/13	3/2006	10/1	3/2006	10/13/2006		10/12/2006	
Qc Code		FS]	FS	FS		FS	
Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane	30.5		1.09	U	27.74	U	0.54	U
1,1,2,2-Tetrachloroethane	1.37	U	1.37	U	35.04	U	0.69	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	29.7		4.28		39.01	U	0.84	
1,1,2-Trichloroethane	1.09	U	1.09	U	27.74	U	0.54	U
1,1-Dichloroethane	0.81	U	0.81	U	20.65	U	0.4	U
1,1-Dichloroethene	0.79	U	0.79	U	20.23	U	0.4	U
1,2,4-Trichlorobenzene	1.48	UJ	1.48	UJ	37.75	UJ	0.74	UJ
1,2,4-Trimethylbenzene	14.5		0.98	U	25.03	U	0.49	U
1,2-Dibromoethane	1.54	U	1.54	U	39.21	U	0.77	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	1.4	U	1.4	U	35.67	U	0.7	U
1,2-Dichlorobenzene	1.2	U	1.2	U	30.66	U	0.6	U
1,2-Dichloroethane	0.81	U	0.81	U	20.65	U	0.4	U
1,2-Dichloropropane	0.92	U	0.92	U	23.57	U	0.46	U
1,3,5-Trimethylbenzene	6.38		0.98	U	25.03	U	0.49	U
1,3-Dichlorobenzene	1.2	U	1.2	U	30.66	U	0.6	U
1,4-Dichlorobenzene	1.2	U	1.2	U	30.66	U	0.6	U
1,4-Dioxane	1.44	U	1.44	U	35.99	U	0.72	U
2-Butanone	14.5		4.12		29.45	U	1.09	
2-Hexanone	1.64	U	1.64	U	40.9	U	0.82	U
2-Propanol	0.98	U	2.5		24.54	U	0.49	U
4-Ethyltoluene	7.95		0.98	U	25.03	U	0.49	U
4-Methyl-2-pentanone	1.64	U	1.64	U	40.9	U	0.82	U
Acetone	0.95	U	30.4		23.72	U	0.47	U
Allyl chloride	0.63	U	0.63	U	16.06	U	0.31	U
Benzene	47.7		2.81		76.5	D	0.99	
Benzyl chloride	1.15	U	1.15	U	29.41	U	0.58	U
Bromodichloromethane	1.34	U	1.34	U	34.21	U	0.67	U
Bromoform	2.07	U	2.07	U	52.77	U	1.03	U
Bromomethane	0.78	U	0.78	U	19.82	U	0.39	U
Butadiene, 1,3-	0.44	U	0.44	U	11.26	U	0.22	U
Carbon disulfide	13.2		5.97		15.85	U	0.44	
Carbon tetrachloride	1.26	U	1.26	U	32.12	U	0.63	U
Chlorobenzene	0.92	U	0.92	U	23.57	U	0.46	U
Chlorodibromomethane	1.7	U	1.7	U	43.39	U	0.85	U
Chloroethane	0.69		0.53	U	13.56	U	0.27	U
Chloroform	1.75		0.97	U	24.82	U	0.49	U
Chloromethane	2.49		0.57		10.43	U	0.86	
Cis-1.2-Dichloroethene	0.79	U	0.79	U	20.23	U	0.4	U

	Lab Sample Id	X4945-01		X4945-02		X4945-03DL		X4945-04	
	SDG	X4	1945	X4	1945	X4945 GV-03 HTGV00300801XX		X4	1945
	Location	G	V-01	G	V-02			BA	A-01
	Field Sample Id	HTGV00	100801XX	HTGV00	200801XX			HTSV001XXX01XX	
	Field Sample Date	10/1	3/2006	10/1	3/2006	10/13	10/13/2006		2/2006
	Qc Code]	FS]	FS		FS		FS
Parameter		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
cis-1,3-Dichloropropene		0.91	U	0.91	U	23.15	U	0.45	U
Cyclohexane		311	D	1.81		265	D	0.77	
Dichlorodifluoromethane		2.47		2.28		25.24	U	2.28	
Ethyl acetate		0.72	U	0.72	U	18.36	U	0.36	U
Ethyl benzene		12.2		0.87	U	22.11	U	0.43	U
Heptane		505	D	1.64		269	D	0.7	
Hexachlorobutadiene		2.13	UJ	2.13	UJ	54.44	UJ	1.07	UJ
Hexane		1326	D	28.3		945	D	4.99	
Isooctane		0.93	U	4.57		23.78	U	0.47	U
Methyl Tertbutyl Ether		0.72	U	0.72	U	18.36	U	0.36	U
Methylene chloride		3.62		4.52		34.76	U	17.8	
o-Xylene		2.69		0.87	U	22.11	U	0.43	U
Propylene		542	J	19.2		1626	D	0.86	U
Styrene		0.85	U	0.85	U	21.69	U	0.43	U
Tetrachloroethene		4.35		1.36	U	34.63	U	1.77	
Tetrahydrofuran		1.18	U	1.18	U	29.45	U	0.59	U
Toluene		25.1		6.17		21.1	D	6.51	
trans-1,2-Dichloroethene		0.79	U	0.79	U	20.23	U	0.4	U
trans-1,3-Dichloropropene		0.91	U	0.91	U	23.15	U	0.45	U
Trichloroethene		3.11		1.07	U	35.5	D	0.54	U
Trichlorofluoromethane		3.47		1.79		28.58	U	1.74	
Vinyl acetate		0.7	U	0.7	U	17.94	U	0.35	U
Vinyl bromide		0.88	U	0.88	U	22.32	U	0.44	U
Vinyl chloride		0.51	U	0.51	U	13.04	U	0.26	U
Xvlene, m/p		77.8		2.08		43.35	U	0.87	U

Notes:

Results in micrograms per cubic meter ($\mu g/m^3$) Samples analyzed for VOCs by EPA Method TO-15 QC Code: FS = Field Sample Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated value

D = Analyte was reported from a diluted analytical run

R = Analyte was rejected during data validation

Final

Field Sample ID	Lab ID	SDG	Method	Chemical_name	Result	Final Qualifier	Unit
HTGW01203101XX	X4926-11	X4926	OLM04.3_VOA	Propene	25	NJ	ug/L
HTGW01203101XX	X4926-11	X4926	OLM04.3_VOA	1-Propene, 2-methyl-	23	NJ	ug/L
HTGW01203101XX	X4926-11	X4926	OLM04.3_VOA	1-Pentene	7.2	NJ	ug/L
HTGW01102301XX	X4926-08	X4926	OLM04.3_VOA	Propene	20	NJ	ug/L
HTGW01103101XX	X4926-09	X4926	OLM04.3_VOA	Propene	27	NJ	ug/L
HTGW01103101XX	X4926-09	X4926	OLM04.3_VOA	Cyclobutane, methyl-	6.6	NJ	ug/L
HTGW01202301XX	X4926-10	X4926	OLM04.3_VOA	Propene	7.2	NJ	ug/L
HTGW01202301XX	X4926-10	X4926	OLM04.3_VOA	1-Propene, 2-methyl-	6.8	NJ	ug/L
HTGW01202301XX	X4926-10RE	X4926	OLM04.3_VOA	Propene	13	NJ	ug/L
HTGW00102501XX	X4921-05	X4921	OLM04.3_SVOA	Trichloroacetic acid, hexadecyl es	6.1	NJ	ug/L
HTGW00102501XX	X4921-05	X4921	OLM04.3_SVOA	2,6,10,14,18,22-Tetracosahexaene,	4.2	NJ	ug/L
HTMW07802502XX	Y2694-07	Y2694	OLM04.3 VOA	Silanol, trimethyl-	13	NJ	ug/L

Notes:

Qualifiers:

NJ = Analyte was tenatively identified and the value is estimated

Appendix P

Example Form I - Representation sample result showing CHEMIECH'S OLMO4.3 Vou Method Detection Limits

CHEMIECH

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922 Report of Analysis

Client:	MACTEC Inc.	Date Collec	ted:	02/07/06					
Project ID:	D003826 Region 8 Dry Cleaners	Date I	Received:	02/0	08/06				
Customer Sample No.:	AMPW00102101XX	AMPW00102101XX							
Test:	VOC-TCLVOA 4.3-10NP	VOC-TCLVOA 4.3-10NP							
Analytical Method:	EPA OLM04.3 - VOA	EPA OLM04.3 - VOA							
Result Type				Datafi	le:	VFO	0987		
CAS Number	ResultsQ	ualifie	erUnits	DL	Retentio Time	on	DF DIL/	RE	
75-71-8	Dichlorodifluoromethane	ND	U	ug/L	0.50		10	1	
74-87-3	Chloromethane	ND	U	ug/L	0.50		10	1	
75-01-4	Vinyl Chloride	ND	U	ug/L	0.50		10	1	
74-83-9	Bromomethane	ND	U	ug/L	0.50		10	1	
75-00-3	Chloroethane	ND	U	ug/L	0.50		10	1	
75-69-4	Trichlorofluoromethane	ND	U	ug/L	0.50		10	1	
76-13-1	1,1,2- Trichlorotrifluoroethane	ND	U	ug/L	0.50		10	1	
75-35-4	1.1-Dichloroethene	ND	U	ua/L	0.50		10	1	
67-64-1	Acetone	6.8	JB	ua/L	0.50		50	1	
75-15-0	Carbon Disulfide	ND	U	ug/L	0.50		10	1	
1634-04- 4	Methyl tert-butyl Ether	ND	U	ug/L	0.50		10	1	
79-20-9	Methyl Acetate	1.7	J	ug/L	0.50		10	1	
75-09-2	Methylene Chloride	ND	U	ug/L	0.50		10	1	
156-60-5	trans-1,2-Dichloroethene	ND	U	ug/L	0.50		10	1	
75-34-3	1,1-Dichloroethane	ND	U	ug/L	0.50		10	1	
110-82-7	Cyclohexane	ND	U	ug/L	0.50		10	1	
78-93-3	2-Butanone	ND	U	ug/L	0.50		50	1	
56-23-5	Carbon Tetrachloride	ND	U	ug/L	0.50		10	1	
156-59-2	cis-1,2-Dichloroethene	1.3	J	ug/L	0.50		10	1	
67-66-3	Chloroform	ND	U	ug/L	0.50		10	1	
71-55-6	1,1,1-Trichloroethane	ND	U	ug/L	0.50		10	1	
108-87-2	Methylcyclohexane	ND	U	ug/L	0.50		10	1	
71-43-2	Benzene	ND	U	ug/L	0.50		10	1	
107-06-2	1,2-Dichloroethane	ND	U	ug/L	0.50		10	1	
79-01-6	Trichloroethene	ND	U	ug/L	0.50		10	1	
78-87-5	1,2-Dichloropropane	ND	U	ug/L	0.50		10	1	
75-27-4	Bromodichloromethane	ND	U	ug/L	0.50		10	1	
108-10-1	4-Methyl-2-Pentanone	ND	U	ua/L	0.50		50	1	

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922 Report of Analysis

Client:	MACTEC Inc.				Date Collected:		02/07/06		
Project ID:	D003826 Region 8 Dry Cleaners-American MEC02060003			Date Received:		02/08/06			
Customer Sample No.:	AMPW00102101XX				Lab Sample ID:		X1523-01		
Test:	VOC-TCLVOA 4.3-10NP	•			SDG ID:		X152	23	
Analytical Method:	EPA OLM04.3 - VOA				% Moisture:		100.00		
Result Type:					DataFile	:	VFOC	0098	7
CAS Number	Parameter	ResultsQualifierUnits			DL	Retenti Time	ention DF DIL		DIL/RE
108-88-3	Toluene	ND	U	ug/L	0.50		10	1	
10061-02-6	t-1,3-Dichloropropene	ND	U	ug/L	0.50		10	1	
10061-01-5 cis-1,3-Dichloropropene		ND	U	ug/L	0.50		10	1	
79-00-5	1,1,2-Trichloroethane	ND	U	uq/L	0.50		10	1	
591-78-6	2-Hexanone	ND	U	uq/L	0.50		50	1	
124-48-1	Dibromochloromethane	ND	U	uq/L	0.50		10	1	
106-93-4	1,2-Dibromoethane	ND	U	ug/L	0.50		10	1	
127-18-4	Tetrachloroethene	ND	U	ug/L	0.50		10	1	
108-90-7	Chlorobenzene	ND	U	ug/L	0.50		10	1	
100-41-4	Ethyl Benzene	ND	U	ug/L	0.50		10	1	
126777-61- 2	m/p-Xylenes	ND	U	ug/L	0.50		10	1	
95-47-6	o-Xylene	ND	U.	ug/L	0.50		10	1	
100-42-5	Styrene	ND	U	ug/L	0.50		10	1	
75-25-2	Bromoform	ND	U	ug/L	0.50		10	1	
98-82-8	Isopropylbenzene	ND	U	ug/L	0.50		10	1	
79-34-5	1,1,2,2-Tetrachloroethane	ND	U	ug/L	0.50		10	1	
541-73-1	1,3-Dichlorobenzene	ND	U	ug/L	0.50		10	1	
106-46-7	1,4-Dichlorobenzene	ND	U	ug/L	0.50		10	1	
95-50-1	1,2-Dichlorobenzene	ND	U	ug/L	0.50		10	1	
96-12-8	1,2-Dibromo-3- Chloropropane	ND	U	ug/L	0.50		10	1	
120-82-1	1,2,4-Trichlorobenzene	ND	U	ug/L	0.50		10	1	
000556-67-Cyclotetrasiloxane,		4.4			0		0	-1	TIC
2	octamethyl-	. 11	J	uy/L	U		U	Т	110
	unknown22.98	6.2	J	ug/L	0		0	1	TIC
	unknown27.33	15	J	ug/L	0		0	1	TIC