NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

<u>Via E-mail</u>

August 28, 2019

Mr. Kevin Krueger, PE Unisys Corporation Corporate Environmental Affairs 3199 Pilot Knob Road Eagan, MN 55121

Dear Mr. Krueger:

Re: Site Characterization Work Plan Addendum #3 Former Scott Technologies Site #808049 Elmira, Chemung County

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have reviewed "Site Characterization Work Plan Addendum #3" for the Former Scott Technologies Site #808049, updated 9 Dec 2019 and find the document to be consistent with the Department's 28 August 2019 conditional approval and inclusive of an acceptable work plan schedule.

Notice to proceed with field activities is authorized as soon as the document repository is appropriately updated.

If you have any questions, please contact me.

Sincerely,

Timothy Schneider, P.E. Professional Engineer 1

- P. Brookner
- A. Krasnopoler
- D. Pratt
- M. Cruden
- D. Hettrick
- J. Deming

Department of Environmental Conservation

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

<u>Via E-mail</u>

August 28, 2019

Mr. Kevin Krueger, PE Unisys Corporation Corporate Environmental Affairs 3199 Pilot Knob Road Eagan, MN 55121

Dear Mr. Krueger:

Re: Site Characterization Work Plan Addendum #3 Former Scott Technologies Site #808049 Elmira, Chemung County

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have completed the review of "Site Characterization Work Plan Addendum #3" for the Former Scott Technologies Site #808049, dated 20 December 2018 and approve contingent upon the following:

- 1. Figures are appropriately titled for the 0.17 to 2-ft. below ground soil sampling interval.
- 2. PAHs in excess of 100 ppm are delineated vertically (below 2')
- 3. Surface and shallow soil samples are delineated to residential use SCOs.

Please provide the requested information and an updated work plan schedule within 20 days. Additionally, a copy of the work plan, this approval and the updated schedule must be placed in the document repository for the site before proceeding with work.

Sincerely,

Timothy Schneider, P.E. Professional Engineer 1

P. Brookner A. Krasnopoler B. Schilling

M. Cruden

Department of Environmental Conservation

Beech and Bonaparte Pengineering p.c.

an affiliate of Geosyntec Consultants

10211 Wincopin Circle, Floor 4 Columbia, Maryland 21044 PH 410.381.4333 FAX 410.381.4499 www.geosyntec.com

9 December 2019

Mr. Timothy Schneider New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

Subject:Site Characterization Work Plan Addendum #3Former Scott Technologies Site (#808049)1051 South Main Street, City of Elmira, Chemung County, NY

Dear Mr. Schneider:

On behalf of Unisys Corporation (Unisys), Geosyntec Consultants, Inc. and its New York engineering affiliate, Beech and Bonaparte Engineering, P.C. (collectively, Geosyntec) are submitting this Addendum #3 to the Site Characterization Work Plan (SC Work Plan) for the Former Scott Technologies Site (Site #808049) (Site) in Elmira, New York. Unisys has been conducting Site Characterization (SC) activities at the Site in accordance with an Order on Consent and Administrative Settlement (Order) with New York State Department of Environmental Conservation (NYSDEC or agency) dated 16 July 2014, the SC Work Plan dated 5 December 2014 and subsequent SC Work Plan Addendum #1 (Addendum #1) dated 1 August 2016 and SC Work Plan Addendum #2 (Addendum #2) dated 3 March 2017. The objective of this SC Work Plan addendum is to delineate constituents of potential concern (COPCs) in soils, addressing data gaps identified following implementation of Addendum #2. This Addendum # 3 has been revised in response to agency comments received on 28 August 2019 (Attachment 1) and additional comments received by electronic mail on 21 November 2019.

BACKGROUND

The Site is located at 1051 South Main Street in Elmira, Chemung County, New York (see **Figure 1**) and is currently occupied by Southern Tier Commerce Center (STCC). A Preliminary Site Assessment (PSA) for the entire Former Sperry Remington Site was completed in 1988 on behalf of Unisys and submitted to NYSDEC (Dames & Moore, 1988). The Site has been the subject of additional environmental investigations between 1992 and 2012. In June 2013, NYSDEC identified potential areas of concern (PAOCs) at the Site based on new information related to historical use of the property and previous environmental investigations results.

Scott Technologies Inc. (STI), a former owner of the Site, entered into a Voluntary Cleanup Agreement with NYSDEC in January 1999 to conduct investigation and remedial activities at the Site. Prior actions included the removal of four (4) registered underground storage tanks (USTs) in 1993 (Versar, 1993) and voluntary investigations. STI conducted a voluntary remedial action between October 1999 and March 2000 (URS, 2000) that included removal and disposal of low voltage PCB capacitors, cleaning or

decommissioning of tanks/vessels, concrete clarification chambers or above ground storage tanks (ASTs), and excavation of polycyclic aromatic hydrocarbons (PAHs) in soil. PAHs in soils identified as exceeding the NYSDEC-approved cleanup goal total PAH concentration of less than or equal to 100 milligrams per kilogram (mg/kg) were excavated to depth of up to three (3) feet in areas north and east of Building 88 as shown on **Figure 2**. The total excavated area was approximately 0.75 acres. Supplemental investigation of the holding pond on the north side of the Site was conducted in 2002 (URS, 2002). Remedial activities for the holding pond were deemed unnecessary by NYSDEC due to a determination of low risk to wildlife and human health as documented in the 2004 NYSDEC fact sheet for the voluntary cleanup (NYSDEC, 2004). Holding pond sediments were identified as a PAOC by NYSDEC in June 2013.

STI conducted an additional voluntary remedial action in the former recreation area (FRA) in October 2004 following pre-characterization of soils in March 2004. The constituents of potential concern (COPCs) and approved clean up goals by NYSDEC for the FRA relevant to this Site Characterization were lead (1,000 mg/kg) and total PAHs (100 mg/kg). Shallow soils were excavated to depths of two (2) to eight (8) inches as shown on **Figure 2**. Approximately eighty-six (86) tons of hazardous fill material and one hundred and four (104) tons of non-hazardous fill material were excavated and transported off-Site for appropriate disposal. Deed restrictions were filed with Chemung County Clerk's Office in July 2005 that limited potential future use of the Site to commercial or industrial uses with the exception of day care facilities and also required maintenance of the vegetative cover. In August 2005, STI submitted a Site Management Plan (SMP) for the FRA that described procedures for excavation and maintenance of the existing vegetative cover, fencing and signage. The SMP was approved by NYSDEC in correspondence dated 13 October 2005. Voluntary cleanup activities at the Site were declared by NYSDEC to have been satisfactorily completed in October 2006.

In May 2017, Unisys reached an agreement with STCC to use a portion of the Site located south of Building 88 as a Material Staging Area (MSA) to stockpile soils excavated as part of an interim remedial measures (IRMs) conducted on the Former Sperry Remington Site – North Portion (NYSDEC #c808022) as shown on **Figure 2.** It is anticipated that the MSA will be decommissioned by May 2020.

PREVIOUS SITE CHARACTERIZATION ACTIVITIES

Previous Site Characterization activities included inspection of the former combined industrial sewer, soil investigation, groundwater investigation, and holding pond investigation. Surface (zero to two [0-2] inches below ground surface [bgs]) and shallow subsurface (two to twenty-four [2-24] inches bgs) soil samples were collected to characterize PAOCs not addressed by previous investigations and voluntary actions. Soil analytical results were compared to NYSDEC-approved cleanup goals for previous voluntary remedial actions at the STCC facility and the FRA. Previously approved cleanup goals for the voluntary remedial actions conducted by STI are applicable and relevant for consistency with prior actions at the Site. Those

criteria are total PAH¹ concentrations equal to or less than one hundred (100) mg/kg for the STCC facility and the FRA and lead concentrations equal to or less than one thousand (1,000) mg/kg for the FRA. For COPCs that are the focus of this Site Characterization where cleanup goals were not previously established, screening criteria are Soil Cleanup Objectives (SCOs) presented in 6 NYCRR Subpart 375 as appropriate based on current and potential land use. The current land use of the STCC facility and surrounding areas is considered to be industrial. The area outside the fenced portion of the FRA to the southwest is adjacent to residential properties. As discussed with NYSDEC and the New York State Department of Health (NYSDOH), residential screening criteria are also relevant to unfenced areas south of Building 88 that are adjacent to residential properties. Screening criteria, including NYSDEC SCOs and previous voluntary remedial action cleanup goals, are not being presented as cleanup goals for the Site. Cleanup goals will be proposed for IRMs or as part of a remedy selection process, as necessary.

PCB, PAH and metal COPCs were detected in soils above screening criteria, as noted above, were identified in the unfenced area south of Building 88 and the FRA. COPCs were not detected above screening criteria within the fenced areas east and north of Building 88. Additional soil investigations were conducted under Addendum #1 and Addendum #2 between 7 September and 16 September 2016 and between 18 and 19 May 2017, respectively. Validated analytical results are presented in **Tables 1** and **2** for soil samples collected to date in the unfenced areas south of Building 88 and outside of the fenced area of the FRA, respectively. The extent of COPC exceedances in surface and shallow subsurface soils in those unfenced areas are presented in **Figures 3A/D, 4A/D** and **5A/B**, respectively, for PCBs, PAHs and metals and include the following:

- Concentrations of total PCBs in surface soils south of Building 88 exceeded the Industrial SCO of twenty-five (25) mg/kg as shown in **Figure 3A** but not in shallow subsurface soils as shown in **Figure 3B**;
- Concentrations of total PCBs in surface soils and shallow subsurface soils south of Building 88 exceeded the Residential SCO of one (1) mg/kg as shown in **Figure 3C** and **3D**, respectively;
- Concentrations of total PAHs in surface and shallow subsurface soils south of Building 88 exceeded the previously approved cleanup goal of one hundred (100) mg/kg as shown in **Figures 4A** and **4B**, respectively;
- Concentrations of total PAHs in surface and shallow subsurface soils south of Building 88 exceeded Residential SCOs as shown in **Figures 4C** and **4D**, respectively;

¹ Total PAH concentrations: sum of naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, debenzo(a,h)anthracene, and benzo(g,h,i)perylene based on PAHs reported for confirmatory samples collected during the voluntary remedial action conducted by STI in 1999-2000.

- Concentrations of metals in surface and shallow subsurface soils south of Building 88 exceeded Residential SCOs for barium, total chromium, copper, and lead as shown in **Figures 5A** and **5B**, respectively. Concentrations of metals in surface and shallow subsurface soils south of Building 88 did not exceed Industrial SCOs as shown on **Tables 1** and **2**; and
- Concentrations of metals, including hexavalent chromium, in surface and shallow subsurface soils outside the fenced area of the FRA did not exceed Residential SCOs as shown in Figures 5A and 5B, respectively, bounding the previously detected exceedance of metal COPCs in surface soil shown in Figure 5A.

PROPOSED SCOPE OF WORK

Additional delineation of COPCs in soils is recommended in the area south of Building 88 and outside the fenced portion of the FRA to address data gaps in horizontal and vertical delineation. Site Characterization data may be used to design potential IRMs. The proposed scope for soil investigation will include:

- Additional horizontal delineation of PCBs in surface soil (0-2 inches) in the vicinities of STI-B27, STI-B34, STI-B35, STI-B36, STI-B37 and STI-B49 where PCB concentrations exceeded the Residential SCO of one (1) mg/kg as shown in **Figure 3C**;
- Additional horizontal delineation of PCBs in shallow subsurface (2-24 inches) soil in the vicinity of STI-B27 and STI-B37 where PCB concentrations where PCB concentrations exceeded the Residential SCO of one (1) mg/kg as shown in **Figure 3D**;
- Vertical delineation of PCBs below two (2) ft bgs at STI-B27 and STI-B37 as shown in Figure 3B;
- Additional horizontal delineation of PAHs in surface soil (0-2 inches) in the vicinity of STI-B56, STI-B57, STI-B58, STI-B59, STI-B60, STI-B61, STI-B62, and STI-B63 which had PAH concentrations greater than Residential SCOs as shown in **Figure 4C**;
- Additional horizontal delineation of PAHs in surface soil (0-2 inches) in the vicinity of STI-B43, STI-B51, STI-B53, STI-B54 and STI-B55 which had PAH concentrations greater than Residential SCOs as shown in **Figure 4C**;
- Additional horizontal delineation of PAHs in surface soil (0-2 inches) in the vicinity of STI-B26, STI-B27 and STI-B28 which had PAH concentrations greater than Residential SCOs as shown in **Figure 4C**;
- Additional horizontal delineation of PAHs in shallow subsurface soil (2-24 inches) in the vicinity of STI-B24, STI-B40, STI-B41, STI-B56, and STI-B62 which had total PAH concentrations greater Residential SCOs as shown in **Figure 4D**;

- Additional horizontal delineation of PAHs in shallow subsurface soil (2-24 inches) in the vicinity of STI-B42, STI-B43, STI-B44, and STI-B45 which had total PAH concentrations greater Residential SCOs as shown in **Figure 4D**;
- Additional horizontal delineation of PAHs in surface soil (2-24 inches) in the vicinity of STI-B26, STI-B27 and STI-B28 which had PAH concentrations greater than Residential SCOs as shown in **Figure 4D**;
- Vertical delineation of PAHs below two (2) ft bgs in the vicinity of STI-B24, STI-B62, STI-B41 and STI-B56 which had total PAH concentrations greater than one hundred (100) ppm as shown in **Figure 4B**;
- Additional horizontal delineation of metals including hexavalent chromium in surface soil (0-2 inches) in the vicinity of STI-B24 and STI-B29 which had metals concentrations exceeding Residential SCOs as shown on **Figure 5A**;
- Additional horizontal delineation of metals including hexavalent chromium in shallow subsurface soil (2-24 inches) in the vicinity of STI-B24, STI-B28 and STI-B30 which had metals concentrations exceeding residential criteria as shown on **Figure 5B**; and
- Vertical delineation of metals including hexavalent chromium i below two (2) ft bgs in the vicinity of STI-B24, STI-B28 and STI-B30 which had total metals concentrations exceeding Residential SCOs as shown in **Figure 5B**; and
- Additional horizontal delineation to residential SCO's of metals including hexavalent chromium in surface soil (0-2 inches) outside the fenced portion of the FRA as shown in **Figure 5A**.

Proposed primary soil sample locations are presented on **Table 3** for each investigation area with sampling intervals. Soil samples will be collected to address identified data gaps in horizontal and vertical delineation. Soil boring locations are shown on **Figure 6** with boring depths. Soil borings will be advanced using direct push technology (DPT) or hand augering (where appropriate or necessary) in accordance with the SC Work Plan's Quality Assurance Project Plan/Field Sampling Plan (QAPP/FSP). Surface soil samples will be collected from the soil interval 0-2 inches bgs. Shallow subsurface soil samples will be collected from the soil interval 0-2 inches bgs. Shallow subsurface soil samples will be collected from the soil interval for vertical delineation. Soil samples will be submitted to a fixed laboratory for COPC analyses with a standard ten-day (10-day) turnaround time (TAT) in accordance with the QAPP/FSP. Select samples will be held for analyses pending receipt of initial unvalidated results as shown on **Table 3**.

QUALITY ASSURANCE

Sample handling, including sample custody and sample control, will be conducted in accordance with the QAPP/FSP. Quality control samples, including field duplicates, matrix spike/matrix spike duplicates, trip blanks, and equipment blanks, will be collected at the frequency specified in the QAPP/FSP.

HEALTH AND SAFETY

A Site-specific Health and Safety Plan (HASP) was presented in the SC Work Plan. Each contractor will be required to prepare a project-specific HASP in accordance with DER-10 to be followed during implementation of the field program.

IDM MANAGEMENT

Solid investigation-derived material (IDM) that will be generated may include disposable personal protection equipment (PPE), disposable sampling equipment, and excavated material. Liquid IDM that will be generated will consist of water generated during decontamination of field equipment. Solid and liquid IDM will be stored in on-site fifty-five (55) gallon drums for waste characterization (if necessary) and appropriate off-site disposal in accordance with the QAPP/FSP.

SCHEDULE AND DELIVERABLES

A project schedule is provided in **Table 4**. Unisys will commence the implementation of this SC Work Plan Addendum upon receipt of written approval by NYSDEC, weather permitting and pending access granted by the property owner. Completion of the work will be dependent on weather conditions and access. Once initiated, Unisys anticipates that soil sample collection will take approximately two (2) days to complete. Samples will be analyzed on ten-day (10-day) TAT and will be reviewed upon receipt. Samples on hold for analysis will be released for analyses as indicated by the unvalidated results.

Unisys will provide NYSDEC with unvalidated laboratory analytical reports in monthly progress reports following receipt from the laboratory. Summary tables and maps of unvalidated soil and groundwater results will be provided to NYSDEC and NYSDOH following receipt of all analytical data. Data validation will begin upon receipt of all analytical data packages.

Validated results will be presented in a Shallow Soil IRM Work Plan to address COPCs in unfenced areas south of Building 88 and outside the fenced portion of the FRA. Pending agency approval, IRM construction is anticipated in Spring 2020 in coordination with MSA decommissioning.

Site Characterization and IRM activities will be documented in a Site Characterization Report.

CLOSING

Geosyntec appreciates the opportunity to submit this work plan to the NYSDEC and NYSDOH. If you have any questions, please contact Mr. Kevin Krueger of Unisys at (651) 687-2210.

Sincerely,

Geosyntec Consultants, Inc.

Paul A. Booder

Paul Brookner Senior Principal/Project Director Geosyntec Consultants, Inc.

aim Kampeli

Aron Krasnopoler, Ph.D., P.E. Project Engineer/Project Manager Beech and Bonaparte Engineering P.C.

Attachments:	Figure 1 – Site Location Map										
	Figure 2 – Site Map										
	Figure 3A – Total PCBs in Surface Soils (0-0.17 ft bgs) Compared to Industrial SCO										
	Figure 3B – Total PCBs in Shallow Subsurface Soils (0.17-2 ft bgs) Compared to										
	Industrial SCO										
	Figure 3C – Total PCBs in Surface Soils (0-0.17 ft bgs) Compared to Residential SCO										
	Figure 3D – Total PCBs in Shallow Subsurface Soils (0.17-2 ft bgs) Compared to Residential SCO										
	Figure 4A – Extent of Screening Criteria Exceedances for PAHs in Surface Soil (0-0.17 ft bgs)										
	Figure 4B – Extent of Screening Criteria Exceedances for PAHs in in Shallow Subsurface Soil (0.17-2 ft bgs)										
	Figure 4C – Extent of Screening Criteria Exceedances of Residential SCOs for PAHs in in Surface Soil (0-0.17 ft bgs)										
	Figure 4D – Extent of Screening Criteria Exceedances of Residential SCOs for PAHs inin in Shallow Subsurface Soil (0.17-2 ft bgs)										
	Figure 5A – Extent of Screening Criteria Exceedances for Metals in Surface Soil (0-0.17 ft bgs)										
	Figure 5B – Extent of Screening Criteria Exceedances for Metals in in Shallow Subsurface Soil (0.17-2 ft bgs)										
	Figure 6 - Proposed Soil Boring Locations										
	Table 1 – Summary of Analytical Result for Soils South of Building 88										
	Table 2 – Summary of Analytical Result for Soils Outside of FRA Fence										
	Table 3 – Proposed Soil Sampling										
	Table 4 – Project Schedule										
	Attachment 1 – NYSDEC Correspondence										

MN0832C/MD19215.SCWP_Add3.rv1 engineers | scientists | innovators

Copies to: Bernette Schilling, NYSDEC Benjamin Conlon, NYSDEC Dawn Hettrick, NYSDOH Michael Cruden, NYSDEC Heidi Dudek, NYSDEC Adam Meinstein, STCC Kevin Murphy, Wladis Law Firm Kevin Krueger, Unisys Beth Parker Unisys Michael G. Murphy, Beveridge & Diamond

FIGURES

而增加的		> ~~~
		N.
r Recreation Area		
what wh	机被制制的	
<u>← ★ ★ ★ ★ </u>	STI-B33	* * *
1 🗮 đ		AR VI
	1.1111	7
i han his	NAR D	
		<u>.</u>
200 100	0	200 Feet
Total PCBs in Shallo Compar	ow Subsurface Soils (0.1 ed to Residential SCO	I7-2 ft bgs)
Former Sc	ott Technologies Site #808049 Elmira, New York	
Beech and Be engine an affiliate of Geosynt	eering p.c.	Figure
Columbia, Maryland	December 2019	30

Notes and Disclaimer

Screening critieria for the STCC facility and the FRA are the previously approved cleanup goals for voluntary remedial actions (total PAHs less than or equal to 100 mg/kg). See text for details.

Areas of concern georeferenced from PDF drawings provided by New York State Department of Environmental Conservation (NYSDEC). Georeferenced items may include: historical site features, hand-drawn features, features that were not to scale, or features that were originally on a map that contained a different projection. Inherently, georeferencing introduces slight distortoritions and inaccuracies in spatial data, but these distortions and inaccuracies may be exacerbated by the factors listed above. All reasonable efforts were made to accurately reflect the data provided. MSA footprint is approximate

Aerial imagery accessed via ArcGIS Online and provided by Microsoft on 21 October 2019. Image is dated 2 June 2010.STCC - Southern Tier Commerce CenterFRA - Former Recreation AreaPAHs - polycyclic aromatic hydrocarbons

ft bgs - feet below ground surface

MSA - Material Staging Area

		2 10
Former Recreation Area		
		111月前二月
		1.14
With Altar	ACCOUNTS &	
	Park H. Spech Co.	
STI-B32 × × -+	<u>√</u> STI-B33 × × √	+- +- +
	9	
CE OF		
	STATE OF GRAVE	
		A. C. S.
	and the second	an ik
and Street	and the lot of the	
Alley In Alley	La T	33
		• 4
	- 400	10 m
		A all is
		AP
	Par Par	7
Aug State		- X
Allera Trend Tradit		
		1
A REAL PROPERTY		81
Park and the second		
200 100	0	200 Feet
Extent of Scre	eening Criteria Exceeda	nces
for PAHs in	Surface Soil (0-0.17 ft b	gs)
Former Sco	ott Technologies Site #808049 Elmira, New York	
LONG CREAT		
Beech and Bo	pering p.c.	Figure
an affiliate of Geosynta	ec Consultants	4A
Columbia, Maryland	December 2019	

	STI-B22- STI-B23- STI-B23- STI-B191 T 0 5 0 22 STI-B23- STI-B191 T 0 5 0 22 STI-B192 2 3 STI-B128 2 3 STI-B103 2 3 STI-B129 2 3 STI-B120 2 3 STI-B129 2 3 STI-B120 2 3 STI-B129 2 3 STI-B129 2 3 STI-B129 2 3 STI-B129 2 3 STI-B129 2 3 STI-B129 2 3 STI-B120 3 STI-B129 3 ST
	STI-B184 28 13. STI-B45 STI-B185 39 STI-B177 STI-B186 11 12 STI-B189 STI-B167 STI-B27 STI-B166 STI-B166
<u>ss0_2</u> .mxd; RDW; 02-Dec-2019;	Building 88
dances(Legend
's Excee	PAHs Compared to Residential SCOs
t of SVOC	Non-Detect
4D - Exten	Detected Does Not Exceed Residential SCO F = = =
1\Figure 4	
sport/IRN	Exceeds Residential SCO
and FRA Re	Notes and Disclaimer Screening critieria for the STCC facility and the FRA are the previously approved cleanup goals for voluntary remedial actions (total PAHs less than or equal to 100 mg/kg). See text for details.
laps/STI a	Areas of concern georeferenced from PDF drawings provided by New York State Department of Environmental Conservation (NYSDEC). Georeferenced items may include: historical site features, hand-drawn features, features that were not to scale, or features that were originally on a map that contained a different projection. Inherently, georeferencing introduces slight distortorions and inaccuracies in spatial data, but these distortions and inaccuracies may be exacerbated by the
N0832NM	factors listed above. All reasonable efforts were made to accurately reflect the data provided. MSA footprint is approximate.
nira - MI	Aerial imagery accessed via ArcGIS Online and provided by Microsoft on 02 December 2019. Image is dated 2 June 2010.

STCC - Southern Tier Commerce Center SCO - Soil Cleanup Objective FRA - Former Recreation Area PAHs - polycyclic aromatic hydrocarbons

ft bgs - feet below ground surface

MSA - Material Staging Area

TABLES

TABLE 1 Summary of Analytical Result for Soils South of Building 88 Former Scott Technologies Site Elmira, New York

					Location	STL B24	STL B24	STL B25	STL B25	STL B26	STL B26	STLB27	STLB27	STL B28	STL B28	STL B20	STL B20	STLB30	STLB30	STLB3/	STLB34	STLB35
				Comul	Donth Dongo	0.0.17	0.17.2	0.0.17	0.17.2	0.0.17	0 17 2	0.0.17	0.17.2	0.0.17	0 17 2	0.0.17	0.17.2	0.0.17	0.17.2	0.0.17	0 17 2	0.0.17
				Sample	e Depth Range	0-0.17	10/22/2015	0-0.17	0.17-2	0-0.17	0.17-2	0-0.17	0.17-2	10/02/0015	10/22/2015	0-0.17	10/02/2015	0-0.17	10/22/2015	0-0.17	0.17-2	0-0.17
					Sampled Date	10/22/2015	10/22/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	10/23/2015	9/16/2016	9/16/2016	9/16/2016
			Industrial	Residential	STI VCP																	
			-																			
Method_Name	ChemName	Units EQL																				
	Arochlor 1016	mg/kg 0.0079				<0.0099U	<0.0089U	<0.0085U	<0.0082U	<0.0095U	<0.0082U	<0.17U	<0.008U	<0.0089U	<0.0081U	<0.0091U	<0.0081U	<0.0091U	<0.0084U	<0.0083U	<0.0079U	<0.0084U
	Arochlor 1221	mg/kg 0.011				<0.016U	<0.014U	<0.013U	<0.013U	<0.015U	<0.013U	<0.26U	<0.013U	<0.014U	<0.013U	<0.014U	<0.013U	<0.014U	<0.013U	<0.013U	<0.013U	<0.013U
	Arochlor 1232	mg/kg 0.0043				<0.0054U	<0.0048U	<0.0046U	<0.0045U	<0.0052U	<0.0045U	<0.091U	<0.0044U	<0.0049U	<0.0044U	<0.005U	<0.0045U	<0.005U	<0.0046U	<0.0045U	<0.0043U	<0.0046U
	Arochlor 1242	mg/kg 0.0064			1	<0.008U	<0.0071U	<0.0068U	<0.0066U	<0.0076U	<0.0066U	<0.13U	<0.0064U	<0.0072U	<0.0065U	<0.0073U	<0.0066U	<0.0073U	<0.0068U	<0.0067U	<0.0064U	<0.0067U
DCD	Arochlor 1248	mg/kg 0.0041				0.041	0.014J	0.52	<0.0042U	0.033J	<0.0042U	24	3.4	0.045	0.0097J	0.3	0.027	0.008J	0.0047J	0.46J	0.018J	0.69J
PCBs	Arochlor 1254	mg/kg 0.0064				<0.008U	<0.0071U	<0.0068U	<0.0066U	<0.0076U	<0.0066U	<0.13U	<0.0064U	<0.0072U	<0.0065U	<0.0073U	<0.0066U	<0.0073U	<0.0068U	0.36J	0.013J	0.38J
	Arochlor 1260	mg/kg 0.006			1	0.063	<0.0066U	0.096	<0.0061U	0.013J	<0.0061U	3.5	0.49	0.014J	<0.0061U	0.068	0.0083J	<0.0068U	<0.0063U	0.17J	0.0068J	0.15J
	Arochlor 1268	mg/kg 0.0032			1	<0.004U	<0.0036U	<0.0034U	<0.0033U	<0.0039U	<0.0033U	<0.068U	<0.0032U	<0.0036U	<0.0033U	<0.0037U	<0.0033U	<0.0037U	<0.0034U	<0.0034U	<0.0032U	<0.0034U
	Arochlor 1262	mg/kg 0.0054				<0.0067U	<0.006U	<0.0057U	<0.0055U	<0.00570	<0.0055U	<0.11U	<0.00520	<0.006U	<0.0055U	<0.00570	<0.0055U	<0.00510	<0.0057U	<0.0056U	<0.0054U	<0.0057U
	Total PCPs	mg/kg 0.0034	25	1	-	0.104	0.014	0.616	<0.00550	0.00040	<0.00550	27.5	2 80	0.050	0.0007	0.268	0.0252	0.00010	0.0017	1.011	0.0570	1.241
	Panzo(a) pyrana	mg/kg	2.5	1		22	10 12	141	1.2	8.2	1	6.8	1.21	0.039	0.007	0.308	0.0555	0.008	0.0047	1.011	0.0379	1.241
	Denzo(a) pyrene	mg/kg 0.007	1.1	1		32	10 - 12	14J	1.2	0.2	1.4	0.0	1.23	0.97	0.17	0.47	0.57	0.41	0.50	-	-	
	Benzo(b)nuorantnene	mg/kg 0.011	11	1		40	12 - 14	195	1.0	10	1.4	9.5	1.0J	1.3	0.24	0.59	0.7	0.54	0.00	-	-	-
	Benzo(g,h,i)perylene	mg/kg 0.00/	1000	100		1/	5./-0.3	133	1.2	8./	1.1	7.5	1.6J	0.92	0.13	0.51	0.82	0.35	0.44	-	-	-
	Benzo(k)fluoranthene	mg/kg 0.014	110	1		14	5 - 7.1	5.9J	0.61	4	0.43	2.5	0.45J	0.57	0.0/J	0.27	0.3	0.19	0.26	-	-	-
	Chrysene	mg/kg 0.0084	110	1		36	13 - 14	15J	1.3	8.3	1	6.2	1J	1	0.24	0.47	0.44	0.48	0.65	-	-	-
	Dibenz(a,h)anthracene	mg/kg 0.0078	1.1	0.33		6.3	2 - 2.1	2.9J	0.3	1.8	0.23	1.6	0.29J	0.23	0.048J	0.085	0.16	0.1	0.15	-	-	-
	Dibenzofuran	mg/kg 0.034	1000	14		9.7	4 - 4.1	<0.36U	<0.035U	<0.2U	<0.035U	<0.36U	<0.035U	<0.038U	0.038J	<0.039U	<0.071U	0.068J	0.074J	-	-	-
PAHs	Fluoranthene	mg/kg 0.0075	1000	100		92	34 - 35E	21J	1.4	11	1.3	7.1	1.3J	1.5	0.26	0.74	0.32	0.5	0.7	-	-	-
	Fluorene	mg/kg 0.0092	1000	100		14	5.6 - 5.9	0.66J	0.061J	0.46	0.057J	0.3J	0.051J	<0.01U	<0.0093U	0.028J	<0.019U	<0.01U	<0.0095U	-	-	-
	Indeno(1,2,3-c,d)pyrene	mg/kg 0.0072	11	0.5		17	5.8 - 6.2	11J	0.96	6.8	0.89	5.8	1.1J	0.81	0.13	0.33	0.61	0.27	0.35	-	-	-
	Isophorone	mg/kg 0.02				<0.33U	<0.058U	<0.28U	<0.027U	<0.16U	<0.027U	<0.28U	<0.027U	<0.029U	<0.027U	<0.03U	<0.054U	<0.03U	<0.027U	-	-	-
	Naphthalene	mg/kg 0.006	1000	100	1	12	3.7 - 4.2	0.52J	0.13	0.48	0.079	0.33J	0.072	0.082	0.082	0.033J	<0.012U	0.2	0.33	-	-	-
	Phenanthrene	mg/kg 0.011	1000	100		85	32 - 36E	6.1J	0.46	2.7	0.35	1.6	0.42	0.38	0.18	0.29	0.082J	0.32	0.42	-	-	-
	Pvrene	mg/kg 0.0071	1000	100		61	23 - 24	24J	1.8	12	1.5	8.5	1.6J	1.4	0.25	0.78	0.42	0.53	0.78	-	-	-
	PAHs (Sum of total)	mg/kg			100	497.3	178.2 - 195.2	153.3	13.02	88.44	10.97	67.63	12.53	10.34	2.107	5.246	5.372	4.66	6.39	-	-	-
	Chromium (bexavalent)	mg/kg 0.42	800	22		-	-	-		-	-	-		-		-	-	-	-	-	-	-
	Aluminum	mg/kg 19			1	7900	7500	70001	8000	7900	10.000	6500	9100	5200	7200	7700	7900	7700	8200	-	-	
	Antimony	mg/kg 0.27				1.11	1.8	<0.2011	<0.2811	<0.22U	0.661	0.51	0.201	<0.2U	2	19	0.281	<0.2211	0.991			
	Antinony	mg/kg 0.27	16	16		1.13	9.7	6.2	5.5	7.2	6.0	7.2	7.1	5	0.2	16	5.2	7.1	7.5	-	-	-
	Aisenic	mg/kg 0.93	10000	250		700	720	2101	94	02	0.7	7.5	/.1	01	9.2	210	5.2	160	410	-	-	-
	Bariulli	111g/kg 19	10000	530		790	720	2103	0.247	0.271	00	90	04	91	820	210	33	100	410	-	-	-
	Beryllium	mg/kg 0.37	2/00	14		0.61	0.39J	0.31J	0.54J	0.3/J	0.39J	0.36J	0.39J	0.25J	0.55J	0.38J	0.34J	0.39J	0.42J	-	-	-
	Calmium	mg/kg 0.47	60	2.5		0.58J	0.26J	0.46J	0.14J	0.2/J	0.05/J	0.54J	0.14J	0.24J	0.72	0.48J	0.093J	0.2J	0.049J	-	-	-
	Calcium	mg/kg 470				5400	4000	47,000J	17,000	45,000	14,000	27,000	28,000	53,000	5000	11,000	20,000	43,000	10,000		-	
	Chromium (III+VI)	mg/kg 0.47	800	22		23B	18B	13J	10B	11B	12B	13B	11B	9.2B	39B	33B	10B	11B	51B	-	-	-
	Cobalt	mg/kg 4.7				6.2J	5.7	6.4	6.7	6.1	7	5.8	7.3	5J	7.5	11	6.7	6.4	5.9	-	-	-
	Copper	mg/kg 2.3	10000	270		65	910	39J	25	21	16	41	22	21	630	230	26J	29	24	-	-	-
Metals	Iron	mg/kg 9.3				23,000	22,000	18,000J	16,000	15,000	19,000	18,000	19,000	13,000	33,000	110,000	18,000	16,000	17,000	-	-	-
	Lead	mg/kg 0.93	3900	400		150	150	72J+	30	52	19	98	49J	56	740	160	22J	130	400	-	-	-
	Magnesium	mg/kg 470				2300	2000	11,000J	4300	10,000	4800	7200	6200J	12,000	2400	2500	4500	8100	2500	-	-	-
	Manganese	mg/kg 1.4	10000	2000		560	500	330J	500	290	310	310	410	340	540	610	300	390	430	-	-	-
	Nickel	mg/kg 3.7	10000	140		49	41	29	18	18	18	25	19	18	92	110	22	22	19	-	-	-
	Potassium	mg/kg 470				840	490J	680	490J	830	560	770	680	740	510J	730	600	1100	630	-	-	-
	Selenium	mg/kg 0.32	6800	36		0.94J	<0.36U	0.6J	0.51J	0.68J	0.4J	0.85J	0.51J	0.72J	1.2	1.3	0.46J	0.97J	0.67J	-	-	-
	Silver	mg/kg 0.067	6800	36		0.11J	0.5J	<0.071U	<0.069U	<0.082U	<0.072U	0.11J	<0.068U	<0.075U	4.3	0.096J	<0.069U	<0.078U	<0.072U	-	-	-
	Sodium	mg/kg 130				95J	66J	69J	62J	63J	44J	87J	72J	67J	69J	61J	78J	88J	94J	-	-	-
	Thallium	mg/kg 0.27			1	<0.38U	<0.31U	<0.29U	<0.28U	<0.33U	<0.29U	<0.3U	<0.28U	<0.3U	<0.28U	0.32J	<0.28U	<0.32U	<0.29U	-	-	-
	Vanadium	mg/kg 4.7	1		1	16	14	31	13	14	15	15	15	10	17	16	15	14	13	-	-	-
	Zinc	mg/kg 1 9	10000	2200		190	180	1501	92	76	59	130	58	69	480	360	701	83	61		-	-
	Mercury	mg/kg 0.011	57	0.81	1	0.17	0.57	0.0421	0.075	0.05	0.0251	0.0341	0.0111	0.030	0.082	0.052	0.0101	0.07	0.14	-		-
L	1 Horoury	1mg/kg [0.011	5.1	0.01	1	0.17	0.57	1 0.042JT	0.075	0.05	1 0.0233	0.0343	0.0113	0.037	1 0.062	0.052	0.0175	0.07	0.14			

<u>Notes:</u> Only detected analytes are shown. See analytical reports for full details.

Only detected analytes are shown. See analytical reports for full details. Screening critieria for the STCC facility are the previously approved cleanup goals for voluntary remedial actions (STI VCP) of total PAHs less than or equal to 100 mg/kg and Industrial SCOs for PCBs. Total PAH concentrations are calculated as the sum of detected concentrations of the following PAHs based on PAHs reported for confirmatory samples collected during the voluntary remedial action conducted by STI in 1999-2000 (URS, 2002): naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, debenzo(a,h)anthracene, and benzo(g,h,i)perylene. Total PAH concentrations are compared to the NYSDEC-approved voluntary action cleanup goal of 100 mg/kg.

SCO - Soil Cleanup Objective (6 NYCRR Subpart 375)

PCBs - Polychlorinated Biphenyls PAHs - polycyclic aromatic hydrocarbons

ft bgs - feet below ground surface mg/kg -milligrams/kilogram

J - estimated values U - values below the reporting limit

Shaded values exceed STI VCP screening criteria.

Shaded values exceed Residential screening criteria. Shaded values exceed Industrial screening criteria.

TABLE 1 Summary of Analytical Result for Soils South of Building 88 Former Scott Technologies Site Elmira, New York

					STLB35	STLB36	STLB36	STLB37	STLB37	STLB38	STLB38	STL-B39	STLB39	STLB40	STLB40	STLB41	STLB41	STLB42	STLB42	STLB43	STLB43	STLB44
				Some	0.17-2	0.0.17	0.17-2	0.0.17	0.17-2	0.0.17	0.17-2	0.0.17	0.17-2	0.0.17	0.17-2	0.0.17	0.17-2	0.0.17	0.17-2	0.0.17	0.17-2	0.17-2
				Sampi	60/16/2016	0/16/2016	0/16/2016	0/16/2016	0/16/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016	0/7/2016
				D 11 - C 1	29/10/2010	9/16/2016	9/10/2010	9/16/2010	9/16/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016	9/1/2016
			Industrial	Residential																		
			-																			
Method_Name	ChemName	Units EQL																				
	Arochlor 1016	mg/kg 0.0079			<0.0085U	<0.0082U	<0.0083U	<0.081U	<0.008U	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1221	mg/kg 0.011			<0.013U	<0.013U	<0.013U	<0.13U	<0.013U	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1232	mg/kg 0.0043			<0.0047U	<0.0045U	<0.0045U	<0.044U	<0.0044U	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1242	mg/kg 0.0064			<0.0069U	<0.0066U	<0.0067U	<0.065U	<0.0064U	-	-	-	-	-	-	-	-	-	-	-	-	-
DOD	Arochlor 1248	mg/kg 0.0041			0.21J	0.69J	0.077J	22J	0.64J	-	-	-	-	-	-	-	-	-	-		-	-
PCBs	Arochlor 1254	mg/kg 0.0064			0.099J	0.37J	0.041J	7.6J	0.26J	-	-	-	-	-	-	-	-	-	-		-	-
	Arochlor 1260	mg/kg 0.006			0.0361	0.151	0.0161	3.51	0.0941	-	-		-						-		-	-
	Arochlor 1268	mg/kg 0.0032			<0.0035U	<0.0033U	<0.0034U	<0.033U	<0.0032U								-					-
	Arochlor 1260	mg/kg 0.0052			<0.0058U	<0.0055U	<0.0056U	<0.055U	<0.0054U												-	
	Tatal DCDa	mg/kg 0.0054	25	1	0.2662	1.221	0.1549	22.2	1.014		-		-		-		-		-		-	-
	Panzo(a) pyrana	mg/kg 0.007	2.5	1	0.3002	1.231	0.1346		1.014	80.011	0.24	221	0.0721	1.2	- 1	621	9.5I	127	0.761	5.61	1.21	1.41
	Denzo(a) pyrene	mg/kg 0.00/	1.1				-		-	82 001	0.34	223	0.075J	13	1	033	8.5J	12J	0.70J	3.0J	1.2J	1.4J
	Benzo(b)nuoranthene	mg/kg 0.011	11	1 100			-		-	83 - 99J	0.46	293	0.11	1/	1.4	793	123	18J	1.2J	8.6J	1.5J	1.9J
	Benzo(g,h,1)perylene	mg/kg 0.007	1000	100			-		-	65 - 67J	0.19	12J	0.059J	6.5	0.55	38J	4.9J	10J	0.74J	5J	0.96J	1.2J
	Benzo(k)fluoranthene	mg/kg 0.014	110	1	-	-	-	-	-	37 - 46J	0.24	9.9J	0.046J	6.4	0.52	36J	3.4J	6J	0.33J	3.3J	0.56J	0.78J
	Chrysene	mg/kg 0.0084	110	1	-	-	-	-	-	97 - 100J	0.46	23J	0.12J	14	1.1	67J	8.8J	12J	0.79J	7.3J	1.1J	1.5J
	Dibenz(a,h)anthracene	mg/kg 0.0078	1.1	0.33	-	-	-	-	-	17 - 18J	0.081	4.4J	0.02J	2.4	0.18	12J	1.7J	2.6J	0.18J	1.3J	0.25J	0.29J
	Dibenzofuran	mg/kg 0.034	1000	14	-	-	-	-	-	36 - 42J	0.15J	5.1J	0.041J	3.6	0.4	17J	3J	<0.34UJ	<0.034UJ	<0.33UJ	<0.034UJ	0.046J
PAHs	Fluoranthene	mg/kg 0.0075	1000	100	-	-	-	-	-	220 - 280E	0.96	54J	0.15J	33	2.8	160J	23J	15J	0.99J	10J	1.2J	1.9J
	Fluorene	mg/kg 0.0092	1000	100	-	-	-	-	-	46 - 56J	0.16	8.3J	0.018J	5.2	0.56	25J	4.1J	0.72J	0.055J	0.52J	0.065J	0.093J
	Indeno(1,2,3-c,d)pyrene	mg/kg 0.0072	11	0.5	-	-	-	-	-	60 - 61J	0.19	12J	0.052J	6.7	0.57	36J	4.8J	8.5J	0.61J	4.1J	0.77J	0.96J
	Isophorone	mg/kg 0.02			-	-	-	-	-	<0.26U	<0.027U	<0.26U	J <0.028UJ	<0.27U	J <0.026U	<1.4UJ	<0.13UJ	<0.26UJ	<0.026UJ	<0.25UJ	<0.026UJ	<0.026UJ
	Naphthalene	mg/kg 0.006	1000	100	-	-	-	- 1	-	70 - 83J	0.16	6.3J	0.092J	3.2	0.46	21J	4.4J	0.8J	0.11J	0.36J	0.1J	0.069J
	Phenanthrene	mg/kg 0.011	1000	100	-	-	-	-	-	220 - 320E	1.2	59J	0.19J	37	3.5	170J	26J	6J	0.46J	7J	0.37J	0.97J
	Pyrene	mg/kg 0.0071	1000	100	-	-	-	- 1	-	150 - 170E	0.84	49J	0.17J	29	2.6	140J	18J	19J	1.31	13J	1.6J	2.5J
	PAHs (Sum of total)	mo/ko			· ·	-	-		-	1340 - 1592	6 132	335.4	1 254	201.8	17.73	977.3	138.2	130.4	9.015	77.88	11.75	15.9
	Chromium (bexavalent)	mg/kg 0.42	800	22		-			-			-			-		-	-	-		-	-
	Aluminum	mg/kg 10	000																			
	Antimony	mg/kg 0.27				-	-	-	-	-	-		-		-		-		-		-	-
	Antimony	mg/kg 0.27	16	16	-	-	-		-		-		-				-		-		-	-
	Ai seliic	mg/kg 0.95	10000	250			-		-				-						-		-	-
	Barium	mg/kg 19	10000	350	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-
	Beryllium	mg/kg 0.37	2/00	14			-		-												-	-
	Cadmium	mg/kg 0.47	60	2.5			-		-	-	-		-		-	-		-	-		-	-
	Calcium	mg/kg 470					-		-	-	-		-		-	-		-	-		-	-
	Chromium (III+VI)	mg/kg 0.47	800	22	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-
	Cobalt	mg/kg 4.7	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-
	Copper	mg/kg 2.3	10000	270	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
Metals	Iron	mg/kg 9.3			-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
	Lead	mg/kg 0.93	3900	400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Magnesium	mg/kg 470			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Manganese	mg/kg 1.4	10000	2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Nickel	mg/kg 3.7	10000	140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Potassium	mg/kg 470		1	-	-	-	- 1	-	-	-	-	-	-	-	-	-	- 1	-		-	-
	Selenium	mg/kg 0.32	6800	36	· -	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-		-	-
	Silver	mg/kg 0.067	6800	36	· .	-	-		-	-	-	-	-		-	-	-	-	-			-
	Sodium	mg/kg 130			· .	-	-								-		-		-	+ - +	-	-
	Thallium	mg/kg 0.27	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	Vonedium	mg/kg 0.27				+	-			+											-	
	Zine	mg/kg 4.7	10000	2200			-		-							-					-	-
		mg/kg 1.9	10000	2200			-		-			-		-		-		-			-	-
	Intercury	mg/kg 0.011	5./	0.81	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-

Notes:

Notes: Only detected analytes are shown. See analytical reports for full details. Screening critieria for the STCC facility are the previously approved cleanup goals for voluntary remedial actions (STI VCP) of total PAHs less than or equal to 100 mg/kg and Industrial SCOs for PCBs. Total PAH concentrations are calculated as the sum of detected concentrations of the following PAHs based on PAHs reported for confirmatory samples collected during the voluntary remedial action conducted by STI in 1999-2000 (URS, 2002): naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, debenzo(a,h)anthracene, and benzo(g,h,i)perylene. Total PAH concentrations are compared to the NYSDEC-approved voluntary action cleanup goal of 100 mg/kg.

SCO - Soil Cleanup Objective (6 NYCRR Subpart 375)

PCBs - Polychlorinated Biphenyls PAHs - polycyclic aromatic hydrocarbons

ft bgs - feet below ground surface

mg/kg -milligrams/kilogram

J - estimated values

U - values below the reporting limit

Shaded values exceed STI VCP screening criteria.

Shaded values exceed Residential screening criteria. Shaded values exceed Industrial screening criteria.

TABLE 1 Summary of Analytical Result for Soils South of Building 88 Former Scott Technologies Site Elmira, New York

						STLB45	STLB45	STL B40	STLB50	STLB51	STLB52	STL B53	STL B54	STL B55	STL B56	STLB56	STL B57	STL B58	STL B50	STLB60	STLB61	STLB62	STLB62	STLB63	STLB63
					Somple	0.0.17	0.17-2	0.0.17	0.0.17	0.0.17	0.0.17	0.0.17	0.0.17	0.0.17	0.0.17	0.17-2	0.0.17	0.0.17	0.0.17	0.0.17	0.0.17	0.0.17	0.17-2	0.0.17	0.17-2
					Sampa	60/16/2016	0.17-2	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/19/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/19/2017	5/10/2017	5/19/2017
				In deast of all	Desidential	29/10/2010	9/10/2010	3/19/2017	3/19/2017	3/19/2017	3/19/2017	3/19/2017	3/19/2017	3/19/2017	3/19/2017	3/18/2017	3/19/2017	3/19/2017	3/19/2017	3/19/2017	3/19/2017	3/19/2017	3/16/2017	3/19/2017	3/16/2017
				Industrial	Residential	1																			
						1																			
						1																			
						1																			
Method_Name	ChemName	Units	EQL																						
	Arochlor 1016	mg/kg	0.0079			-	-	<0.097U,F1	<0.011U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1221	mg/kg	0.011			-	-	<0.095U	<0.011U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1232	mg/kg	0.0043			-		<0.072U	<0.0081U	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1242	mg/kg	0.0064			-	-	<0.15U	<0.016U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DCD	Arochlor 1248	mg/kg	0.0041			-	-	8.4	0.077	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PCDS	Arochlor 1254	mg/kg	0.0064			- 1	-	4.5	0.035p	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1260	mg/kg	0.006			-	-	2.1	0.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1268	mg/kg	0.0032			-	-	<0.056U	<0.0063U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arochlor 1262	mg/kg	0.0054			· -	-	<0.13U	<0.015U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total PCBs	mg/kg		25	1	· .	-	15.3	0.2057	-		-	-	-	-		-	-	-	-		-	-	-	-
	Benzo(a) pyrene	mo/ko	0.007	11	1	14	12	-	-	3	53	4.6	14	63	120	6.3-65	15F1	4.4	25	5.2	2	11	63	13	0.49
	Benzo(b)fluoranthene	ma/ka	0.011	11	1	16	1.4			4.3	7.9	6.1	21	8.2	150	7 1	18F1	5.4	30	7	2.6	14	8.5	17	0.62
	Benzo(g h i)pervlene	mg/kg	0.007	1000	100	16	1.4			2.8	5.2	4.3	12	5.6	71	37.38	0.3	2.7	15	3.3	1.3	69	3.4	88	0.02
	Benzo(k)fluorenthono	mg/kg	0.007	110	100	8.2	0.52		-	1.5	2.6	2.5	7.2	3.0	71	3.1 - 3.0	0.0E1	2.7	13	3.5	1.5	5.6	2.1	8.0	0.51
	Chrussen	mg/kg	0.014	110	1	0.2	1.2		-	2.2	5.7	4.7	1.2	7.1	140	5.1 - 5.2	17E1	2.0	27	6.2	2.2	12	9.6	0.1	0.10
	Diharata	mg/kg	0.0084	110	0.22	13	0.22		-	5.2	3.7	4./	13	1.2	140	0.8 - /	2.1	3	5.1	0.5	2.5	15	0.0	13	0.01
	Dibenz(a,n)antiliacene	mg/kg	0.0078	1.1	0.55	4	0.55	-	-	0.74	1.2	1	3.2	1.5	25	1.1	5.1	0.94	5.1	1.1	0.45	2.5	1.1	2.7	0.090
DAIL	Dibenzoruran	mg/kg	0.034	1000	14	0.355	<0.0350	-	-	0.06J	<0.160	0.094J	<0.90	<0.150	62	2.3 - 2.0	4	1.1	7.3	1.4	0.35J	3.2	1./	4./	0.16J
PAHs	Fluoranthene	mg/kg	0.0075	1000	100	17	1.5	-	-	3.3	5.4	4.5	19	7.9	280	16 - 18E,F1	32	9.1	52	12	3.8	23	24	30	1.5
	Fluorene	mg/kg	0.0092	1000	100	0.73	0.044J		-	0.2	0.39J	0.3	0.98J	0.43	82	3.4 - 3.5	6F1	1.7	10	2	0.53	4.5	3.2	6.2	0.14
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.0072	11	0.5	12	1		-	2.3	4	3.4	10	4.5	68	3.5 - 3.8	8.9F1	2.6	14	3.2	1.3	6.4	3.5	8.4	0.31
	Isophorone	mg/kg	0.02			<0.27U	<0.027U	-	-	<0.039U	<0.11U	<0.042U	<0.62U	<0.11U	<1.1U	<0.021U	<0.11U	<0.046U	<0.11U	<0.044U	<0.023U	<0.095U	<0.084U	<0.23U	<0.02U
	Naphthalene	mg/kg	0.006	1000	100	0.62J	0.057J	-	-	0.22	0.35J	0.22	<0.81U	0.38	160	4 - 4.4	4.7F1	0.9	9.2	2.1	0.35	4	0.64	7.8	0.26
	Phenanthrene	mg/kg	0.011	1000	100	8	0.74	-	-	1.7	2.5	2.1	9.1	3.6	450	14 - 20F1	43	12	71	15	4.2	32	25	41	1.2
	Pyrene	mg/kg	0.0071	1000	100	19	1.5	-	-	5.3	9.1	7	26	13	310	11 - 12	36	10	56	12	4.3	26	18	33	0.91
	PAHs (Sum of total)	mg/kg				150	12.78	-	-	33.95	60.04	48.52	162.8	74.21	2237	95.49 - 103.1	236.3	67.65	382.9	83.68	28.22	171.5	122	219.4	7.679
	Chromium (hexavalent)	mg/kg	0.42	800	22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Aluminum	mg/kg	19			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Antimony	mg/kg	0.27			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Arsenic	mg/kg	0.93	16	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Barium	mg/kg	19	10000	350	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Beryllium	mg/kg	0.37	2700	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Cadmium	mg/kg	0.47	60	2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
	Calcium	mg/kg	470			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Chromium (III+VI)	mg/kg	0.47	800	22	· -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Cobalt	mg/kg	4.7			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Copper	mg/kg	2.3	10000	270	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Iron	mg/kg	9.3	10000	2.0		· .	-	-						-		-	-					-	+	-
Metals	Lead	mg/kg	0.93	3900	400	<u> </u>					<u> </u>													+	
	Magnesium	ma/ka	470	5700	100					-															
	Manganasa	ma/ka	1.4	10000	2000					-			-				-		-	-				+	
	Nichal	mg/Kg	3.7	10000	140	- ·															+ -	-	-	+	
	Potaccium	mg/Kg	470	10000	140	· ·						-											-	+	
	Solonium	mg/Kg	0.22	6800	26	- ·							+		+			+	+	+	+	+		+	
	Scientum Cilicon	mg/kg	0.52	6800	30	· ·	-	-	-	-													-		
	Suver	mg/kg	0.067	6800			-		-	-	-	-	-	-	-	-	-		-	-		-	-		
	Sodium	mg/kg	130				-		-	-	-	-								-		-	-		
	Thallium	mg/kg	0.27			-	-		-	-	-	-	-	-	-			-	-	-	-	-	-		
	Vanadium	mg/kg	4.7			· ·	-	-	-	-	-	-		-			-		-	-		-	-		-
	Zinc	mg/kg	1.9	10000	2200	· ·	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		
	Mercury	mg/kg	0.011	5.7	0.81	-	-	-	-	-		-	-	-	-	· ·	-		-	-		-		-	

Notes:

Notes: Only detected analytes are shown. See analytical reports for full details. Screening critieria for the STCC facility are the previously approved cleanup goals for voluntary remedial actions (STI VCP) of total PAHs less than or equal to 100 mg/kg and Industrial SCOs for PCBs. Total PAH concentrations are calculated as the sum of detected concentrations of the following PAHs based on PAHs reported for confirmatory samples collected during the voluntary remedial action conducted by STI in 1999-2000 (URS, 2002): naphthalene, accnaphthylene, accnaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fuoranthene benzo(b)fuoranthene benzo(a)thoreane indepx(1.2.3)cd/nurene debenzo(s) banthracene and SCO - Soil Cleanup Objective (6 NYCRR Subpart 375.)

PCBs - Polychlorinated Biphenyls PAHs - polycyclic aromatic hydrocarbons

ft bgs - feet below ground surface

mg/kg -milligrams/kilogram

J - estimated values U - values below the reporting limit

Shaded values exceed STI VCP screer

Shaded values exceed Residential scree Shaded values exceed Industrial scree

TABLE 2 Summary of Analytical Result for Soils Outside of FRA Fence Former Scott Technologies Site Elmira, New York

		Location S			STI-B31	STI-B31	STI-B32	STI-B32	STI-B33	STI-B33
			Sample Depth Rai	nge (ft bgs)	0-0.17	0.17-2	0-0.17	0.17-2	0-0.17	0.17-2
			Sa	mple Date	10/21/2015	10/21/2015	10/21/2015	10/21/2015	10/21/2015	10/21/2015
			Screening Crite	eria	-, ,					
Group	COPC Uni	EOL	Residential SCO	STI VCP						
Metals	Aluminum mg/	σ 19	Residential Seco		7500	11,000	9000	11,000	12 000	13,000
Wietuis	Antimony mg/	$\sigma 0.27$			0.971	0.861	15	0.871	12,000	0.691
	Arsenic mg/	g 0.93	16		5.8	5	1.0	73	7.6	6.6
	Barium mg/	σ 10	350		250	200	210	160	170	140
	Beryllium mg/	6 1) g 0 37	14		0.331	0.431	0.451	0.47	0.55	0.56
	Cadmium mg/	g 0.37	25		0.535	0.433	0.433	0.47	0.35	0.30
	Calaium mg/	g 0.47	2.3		2400	1700	5200	2100	2400	5201
	Chromium (III+VI) mg/	$\frac{g}{a} = 0.47$	22		12P	1700	3200	15P	14D	14P
	Chromium (hexevalent)	g 0.47	22		120	150	24D	150	14D	14D
	Cabalt (nexavalent) ing/	g 0.42	22		-	- 7.1	- 7.0	-		-
	Cobalt mg/	g 4.7	270		<u> </u>	/.1	1.2	7.9	8.4	9.2
	Copper mg/	g 2.3	270		24	12	41	27	16	21,000
	Iron mg/	g 9.3		1000	15,000	18,000	10,000	19,000	20,000	21,000
	Lead mg/	g 0.93		1000	110	04	2200	160	2700	10
	Magnesium mg/	$g \frac{4}{0}$	2000		1800	2200	2300	2600	2700	2600
	Manganese mg/	g 1.4	2000		480	080J	500	18	1000	800
	Determine mg/	g 3.7	140		13	14	18	18	18	18
	Polassium mg/	$\frac{g}{2}$ 4/0	26		1500	020	1300	8/U	0.621	//0
	Silver mg/	g 0.52	30		0.395	<0.370	0.00J	<0.300	0.05J	<0.340
		g 0.007	50		271	<0.0770	<0.0880	<0.0750	<0.0950	<0.0720
	Thellium mg/	$\frac{g}{2}$ 150				40J				
	Vanadium mg/	$\frac{g}{2}$ 0.27			<0.310	<0.510	<0.300	<0.30	<0.380	<0.290
		g 4.7	2200		200	85	260	130	120	58
	Mercury mg/	$\frac{g}{g} = 1.9$	0.81		0.079	0.0291	0.2	0.079	0.075	0.0361
PCBs	Total PCBs mg/	g 0.011	1		0.014	0.0293	0.2	0.079	0.075	0.0305
1003	Arochlor 1016 mg/	5 g 0.0079	1		<0.009211	<0.008811	<0.026	<0.008811	<0.01U	<0.008811
	Arochlor 1221 mg/	$\sigma = 0.0077$			<0.00720	<0.00000	<0.00500	<0.00000	<0.010	<0.0000C
	Arochlor 1222 mg/	$\sigma = 0.0013$			<0.005U	<0.0048U	<0.0150	<0.00110	<0.0100	<0.0048U
	Arochlor 1242 mg/	σ 0.0043			<0.0050	<0.00400	<0.00330	<0.0071U	<0.00300	<0.00400
	Arochlor 1248 mg/	$\sigma 0.0001$			<0.0047U	<0.00710	<0.00770	<0.0045U	<0.0052U	<0.00/10
	Arochlor 1254 mg/	σ 0.0011			<0.0074U	<0.00130	<0.0077U	<0.0071U	<0.00320	<0.00130
	Arochlor 1260 mg/	g 0.006			0.014J	<0.0066U	0.028	<0.0066U	<0.0076U	<0.0066U
	Arochlor 1268 mg/	g 0.0032			<0.0037U	<0.0036U	<0.0039U	<0.0036U	<0.0041U	<0.0036U
	Arochlor 1262 mg/	g 0.0054			<0.0062U	<0.006U	<0.0065U	<0.006U	<0.0069U	<0.0059U
PAHs	Total PAHs mg/	g		100	1.93	0.216	12.5	1.636	2.12	0.156
	Acenaphthene mg/	g 0.0067	100		<0.0077U	<0.0074U	0.063J	<0.0073U	<0.0085U	<0.0074U
	Acenaphthylene mg/	g 0.008	100		0.027J	<0.0088U	0.51	0.082	0.028J	<0.0088U
	Anthracene mg/	g 0.0069	100		0.034J	<0.0075U	0.43	0.052J	0.032J	<0.0075U
	Benz(a)anthracene mg/	g 0.0088	1		0.14	0.029J	0.9	0.13	0.14	0.025J
	Benzo(a) pyrene mg/	g 0.007	1		0.15	0.03J	0.98	0.14	0.17	<0.0077U
	Benzo(b)fluoranthene mg/	g 0.011	1		0.19	<0.012U	1.2	0.17	0.21	<0.012U
	Benzo(g,h,i)perylene mg/	g 0.007	100		0.15	<0.0077U	0.91	0.13	0.17	<0.0076U
	Benzo(k)fluoranthene mg/	g 0.014	1	1	0.086	<0.016U	0.38	0.072J	0.12	<0.015U
	Chrysene mg/	g 0.0084	1		0.19	0.034J	1.2	0.17	0.21	0.028J
	Dibenz(a,h)anthracene mg/	g 0.0078	0.33		0.043J	<0.0086U	0.24	<0.0085U	<0.0098U	<0.0085U
	Fluoranthene mg/	g 0.0075	100		0.36	0.054J	2.1	0.25	0.41	0.044J
	Fluorene mg/	g 0.0092	100		<0.011U	<0.01U	0.14J	<0.01U	<0.012U	<0.01U
	Indeno(1,2,3-c,d)pyrene mg/	g 0.0072	0.5		0.12	<0.0079U	0.75	0.13	0.13	<0.0079U
	Naphthalene mg/	g 0.006	100		<0.0069U	<0.0066U	0.064J	<0.0066U	<0.0076U	<0.0066U
	Phenanthrene mg/	g 0.011	100		0.18	0.028J	1.1	0.1	0.22	0.025J
	Durana mg/	g 0.0071	100		0.26	0.0411	1.6	0.21	0.28	0.0341

Notes:

Only detected analytes are shown. See analytical reports for full details.

Screening critieria for the FRAare the previously approved cleanup goals for voluntary remedial actions (total PAHs <= 100 mg/kg and lead <= 1,000 mg/kg) and Residential SCOs for PCB and other metal COPCs.

Total PAH concentrations are calculated as the sum of detected concentrations of the following PAHs based on PAHs reported for confirmatory samples collected during the voluntary remedial action conducted by STI in 1999-2000 (URS, 2002): naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, debenzo(a,h)anthracene, and benzo(g,h,i)perylene. Total PAH concentrations are compared to the NYSDEC-approved voluntary action cleanup goal of 100 mg/kg.

SCO - Soil Cleanup Objective (6 NYCRR Subpart 375) PCBs - Polychlorinated Biphenyls SVOCs - semi-volatile organic compounds ft bgs - feet below ground surface mg/kg -milligrams/kilogram

B - Compound was found in the blank and sample

J - estimated values

U - values below the reporting limit

Shaded values exceed screening criteria.

TABLE 2 Summary of Analytical Result for Soils Outside of FRA Fence Former Scott Technologies Site Elmira, New York

					Location	STI-B46	STI-B46	STI-B47	STI-B47	STI-B48	STI-B48
				Sample Depth Ran	ge (ft bgs)	0-0.17	0.17-2	0-0.17	0.17-2	0-0.17	0.17-2
				Sa	mple Date	9/9/2016	9/9/2016	9/9/2016	9/9/2016	9/9/2016	9/9/2016
				Screening Crite	ria						
Group	COPC	Units	EOL	Residential SCO	STI VCP						
Metals	Aluminum	mg/kg	19			9000	9700	11,000	12,000	9900	11,000
	Antimony	mg/kg	0.27			0.7J	<0.33U	<0.36U	<0.35U	0.73J	<0.35UJ
	Arsenic	mg/kg	0.93	16		9.5	8.9	6.6	5.6	7.7	7
	Barium	mg/kg	19	350		84	65	130	140	190	170
	Beryllium	mg/kg	0.37	14		0.44J	0.43	0.47	0.51	0.47	0.52
	Cadmium	mg/kg	0.47	2.5		0.39J	0.21J	0.23J	0.14J	0.54	0.3J
	Calcium	mg/kg	470			2700	1300	2200	710	2800	1300
	Chromium (III+VI)	mg/kg	0.47	22		12	13	12	12	13	13
	Chromium (hexavalent)	mg/kg	0.42	22		0.17J	0.2J	0.6	0.26J	0.35J	0.37J
	Cobalt	mg/kg	4.7			7.8	8.3	7.1	7.6	7.1	7.4
	Copper	mg/kg	2.3	270		25	21	14	26	28	22
	Iron	mg/kg	9.3			20,000	21,000	17,000	18,000	17,000	19,000
	Lead	mg/kg	0.93		1000	330	110	94	38	320	130J+
	Magnesium	mg/kg	470			2500	2700	2300	2300	2300	2400
	Manganese	mg/kg	1.4	2000		430	370	630	640	650	650
	Nickel	mg/kg	3.7	140		20	21	15	16	16	16
	Potassium	mg/kg	470			800	640	810	580	1000	670
	Selenium	mg/kg	0.32	36		0.56J	<0.37U,^	0.69J	0.63J	0.81J	0.86J
	Silver	mg/kg	0.067	36		<0.19U	<0.15U	<0.17U	<0.16U	0.23J	<0.17U
	Sodium	mg/kg	130			<160U	<130U	<140U	<140U	<140U	<140U
	Thallium	mg/kg	0.27			<0.57U	<0.46U	<0.51U	<0.49U	<0.52U	<0.5U
	Vanadium	mg/kg	4.7			17	16	15	16	15	17
	Zinc	mg/kg	1.9	2200		160	120	82	65	220	120J+
	Mercury	mg/kg	0.011	0.81		0.069	0.039	0.069	0.034	0.48	0.29J-
PCBs	Total PCBs	mg/kg		1		-	-	-	-	-	-
	Arochlor 1016	mg/kg	0.0079			-	-	-	-	-	-
	Arochlor 1221	mg/kg	0.011			-	-	-	-	-	-
	Arochlor 1232	mg/kg	0.0043			-	-	-	-	-	-
	Arochlor 1242	mg/kg	0.0064			-	-	-	-	-	-
	Arochlor 1248	mg/kg	0.0041			-	-	-	-	-	-
	Arochlor 1254	mg/kg	0.0064			-	-	-	-	-	-
	Arochlor 1260	mg/kg	0.006			-	-	-	-	-	-
	Arochlor 1268	mg/kg	0.0032			-	-	-	-	-	-
	Arochlor 1262	mg/kg	0.0054			-	-	-	-	-	-
PAHs	Total PAHs	mg/kg			100	-	-	-	-	-	-
	Acenaphthene	mg/kg	0.0067	100		-	-	-	-	-	-
	Acenaphthylene	mg/kg	0.008	100		-	-	-	-	-	-
	Anthracene	mg/kg	0.0069	100		-	-	-	-	-	-
	Benz(a)anthracene	mg/kg	0.0088	1		-	-	-	-	-	-
	Benzo(a) pyrene	mg/kg	0.007	1		-	-	-	-	-	-
	Benzo(b)fluoranthene	mg/kg	0.011	1		-	-	-	-	-	-
	Benzo(g,h,i)perylene	mg/kg	0.007	100		-	-	-	-	-	-
	Benzo(k)fluoranthene	mg/kg	0.014	1		-	-	-	-	-	-
	Chrysene	mg/kg	0.0084	1		-	-	-	-	-	-
	Dibenz(a,h)anthracene	mg/kg	0.0078	0.33		-	-	-	-	-	-
	Fluoranthene	mg/kg	0.0075	100		-	-	-	-	-	-
	Fluorene	mg/kg	0.0092	100		-	-	-	-	-	-
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.0072	0.5		-	-	-	-	-	-
	Naphthalene	mg/kg	0.006	100		-	-	-	-	-	-
	Phenanthrene	mg/kg	0.011	100		-	-	-	-	-	-
	Pvrene	mg/kg	0.0071	100		-	-	-	-	-	-
	1 <i>a</i> '	0.00									

Notes:

Only detected analytes are shown. See analtyical reports for full details.

Screening critieria for the FRAare the previously approved cleanup goals for voluntary remedial actions (total PAHs <= 100 mg/kg and lead <= 1,000 mg/kg) and Residential SCOs for PCB and other metal COPCs.

Total PAH concentrations are calculated as the sum of detected concentrations of the following PAHs based on PAHs reported for confirmatory samples collected during the voluntary remedial action conducted by STI in 1999-2000 (URS, 2002): naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, debenzo(a,h)anthracene, and benzo(g,h,i)perylene. Total PAH concentrations are compared to the NYSDEC-approved voluntary action cleanup goal of 100 mg/kg.

SCO - Soil Cleanup Objective (6 NYCRR Subpart 375) PCBs - Polychlorinated Biphenyls SVOCs - semi-volatile organic compounds ft bgs - feet below ground surface mg/kg -milligrams/kilogram B - Compound was found in the blank and sample

U - values below the reporting limit

J - estimated values

Shaded values exceed screening criteria.

TABLE 3PROPOSED SOIL SAMPLING

Former Scott Technologies Site Elmira, New York

	S	ampling Interv	al	Sar	Sample Analysis		Rationale	
Proposed Field ID	<u>Surface</u> 0 to 0.17 ft bgs	<u>Sub 1</u> 0.17 to 2 ft bgs	<u>Sub 2</u> 2 to 4 ft bgs	PAHs	Metals ¹	PCBs		
STI-B100		Х		х				
STLB101	x	x	н	x				
STI-B101	v	x v	11	v				
STI-B102	X	X	н	A V				
STI-B103	X	X	H	X				
STI-B104		X	Н	X				
STI-B105	Х	Х	Н	Х				
STI-B106	Х	Х	Н	Х				
STI-B107	Х	Х	Н	Х				
STI-B108	Х	Х	Н	Х				
STI-B109	х			х			Additional delineation of PAHs	
STLB110	x			x			in soil and surface soil adjacent	
STI-BIII	X			N N			to property line	
S11-B111	A			л 				
STI-B112	X			X				
STI-B113	X			X				
STI-B114	Х			Х				
STI-B115	Х			Х				
STI-B116	Х			Х				
STI-B117	Х	Х	Н	Х	Х		1	
STI-B118	Х			х			1	
STLR110	x			v				
GTI D 120	A V	v						
S11-B120	X	X		X	}		Additional delineation of PAHs	
STI-B121	Х	Х	Н	Х	 		in soil and surface soil in vicinity	
STI-B123	Х			Х	X		01 MISA	
STI-B125			Х	Х				
STI-B126			Х	Х			Additional delineation of PAHs	
STI-B127	Х	х	Н	Х	х		and metals in subsurface soils	
STLB128			x	x	x		adjacent to the property line	
STI-B120			X	X X	А			
S11-B129			Х	Х				
STI-B130	X	X		X	X			
STI-B131	Х	Х		Х	Х			
STI-B132	Х	Х		Х	Х			
STI-B134	Х	Х	Н		Х			
STI-B136	Х	Х	Н		Х		Additional delineation of motols	
STI-B137	x	x	н	x	x		in surface and shallow subsurface	
STI D130	v	v		v	v		soils adjacent to property line	
S11-B139	А	X	н	Х	X			
STI-B141		X	Н		X			
STI-B142		Х	Н		X			
STI-B143		Х	Н		Х			
STI-B144		Х	Н		Х			
STI-B145	Х	Х	Н			Х		
STI-B146	Х					Х		
STI-B147	Х					х		
STI-B148	x	x	н			x		
STI D140	v					v	Additional delinieation of PCBs	
311-B149	<u>л</u>					л 	soils in vicinity of MSA	
STI-B150	X					X		
STI-B153	X					X		
STI-B154	Х	Х	Н			Х		
STI-B155		Х	Н			Х		
STI-B156			Х			Х		
STI-B157			Х			Х	Additional delinication of metals	
STI-B158			Х		Х		and PCBs in at-depth soils adjacent to property line	
STI-B159			Х	1	Х		j_sent to property line	
STI-B163	Х	Х		Х				
STI-B164	Х	Х		Х			1	
STI-B166	Х	Х		Х			1	
STI-B167	X	X		X		х	1	
STI-B168	X			x			1	
STI-B169	x			x	1		1	
STI-B171	x			x			1	
STLR173	x			x				
STI-B175	x x			x x				
STI-D1/4 STLR177	Λ	v		л v				
STI-B177	v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		x			Additional delinieation of PAHs	
STI B170	л V			л v			soils in vicinity of MSA	
STI-D1/9	Λ	v		A V				
STI-D180	v	Λ		A V				
STI-D102	A V	v		A V	}			
S11-B184	X	X		X				
S11-B185		X		X				
S11-B186		X		X			1	
STI-B187		X		X	 			
STI-B189		X		X 	}			
S11-B190	Х	X		X				
STI-B191		X	<u> </u>	X				

Notes:

1. Metals analyses include TAL metals and hexavalent chromium.

FRA - Former Recreation Area ft bgs - feet below ground surface

MSA - Material Staging Area PAHs - Polynulclear aromatic hydrocarbons

PCB - Polychlorinated Biphenyls

H - Hold

TABLE 4 - PROJECT SCHEDULE Former Scott Technologies Site #808049 Elmira, New York

Task Name	Duration	Start	Finish	Notes
Site Characterization Work Plan	93 days	12/05/14	04/30/15	
SC Work Plan Field Activities	29 days	09/14/15	10/22/15	
SC Work Plan Data Analysis and Validation	64 days	10/22/15	01/19/16	
SC Work Plan Addendum #1	150 days	05/25/16	12/20/16	
SC Work Plan Addendum #2	787 days	01/04/17	01/09/20	
SC Work Plan Addendum #3	292 days	11/20/18	01/01/20	
Work Plan Addendum Development	20 days	11/20/18	12/17/18	
Work Plan Addendum Preparation	9 days	11/20/18	11/30/18	
Client Review	1 day	12/03/18	12/03/18	
STCC Review	10 days	12/04/18	12/17/18	
Submittal to NYSDEC	0 days	12/20/18	12/20/18	
NYSDEC Conditional Approval	0 days	08/28/19	08/28/19	
Work Plan Revision	43 days	08/28/19	10/25/19	
Submittal to NYSDEC	0 days	11/14/19	11/14/19	
NYSDEC Review	1 wk	11/14/19	11/20/19	
NYSDEC Conditional Approval	0 days	11/21/19	11/21/19	
Work Plan Revision	43 days	11/22/19	12/06/19	
Submittal to NYSDEC	0 days	12/09/19	12/09/19	
NYSDEC Approval and NTP	0 days	12/13/19	12/13/19	
Placement of Work Plan in Repository	1 wk	12/14/19	12/20/19	
Field Program	13 days	11/21/19	11/20/19	
Procurement/STCC Coordination	1 wk	11/22/19	11/28/19	Confirming access with STCC
Mobilization	1 wk	11/29/19	12/05/19	
Soil Investigation	3 days	12/18/19	12/20/19	
Data Review and Validation	4 wks	01/06/20	01/31/20	
Shallow Soil IRM Work Plan	60 days	01/20/20	03/27/20	
Work Plan Development	20 days	01/20/20	02/14/20	Includes STCC Review
Submittal to NYSDEC	0 days	02/14/20	02/14/20	
NYSDEC Review	6 wks	02/17/20	03/27/20	
NYSDEC Approval	0 days	03/27/20	03/27/20	
Shallow Soil IRM	40 days	03/30/20	05/20/20	
Procurement/STCC Coordination	2 wks	03/30/20	04/10/20	
Mobilization	2 wks	04/13/20	04/24/20	
Construction	3 wks	04/30/20	05/20/20	Coordiation with MSA Decommissioning
Shallow Soil IRM Construction Completion Report	3 mons	05/21/20	08/12/20	
Site Characterization Report	80 days	05/21/20	09/09/20	

NYSDEC Correspondence

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

<u>Via E-mail</u>

August 28, 2019

Mr. Kevin Krueger, PE Unisys Corporation Corporate Environmental Affairs 3199 Pilot Knob Road Eagan, MN 55121

Dear Mr. Krueger:

Re: Site Characterization Work Plan Addendum #3 Former Scott Technologies Site #808049 Elmira, Chemung County

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) have completed the review of "Site Characterization Work Plan Addendum #3" for the Former Scott Technologies Site #808049, dated 20 December 2018 and approve contingent upon the following:

- 1. Figures are appropriately titled for the 0.17 to 2-ft. below ground soil sampling interval.
- 2. PAHs in excess of 100 ppm are delineated vertically (below 2')
- 3. Surface and shallow soil samples are delineated to residential use SCOs.

Please provide the requested information and an updated work plan schedule within 20 days. Additionally, a copy of the work plan, this approval and the updated schedule must be placed in the document repository for the site before proceeding with work.

Sincerely,

Timothy Schneider, P.E. Professional Engineer 1

- P. Brookner
- A. Krasnopoler
- B. Schilling
- M. Cruden

Department of Environmental Conservation H. Dudek D. Harrington B. Conlon D. Hettrick J. Deming