

April 12, 2012

Jason Pelton, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 12th Floor 625 Broadway Albany, NY 12233-7017

Re: **Subsurface Investigation Report**

> **Lapp Insulator Company** Site No. 819017 130 Gilbert Street LeRoy, New York 14482

Dear Mr. Pelton:

Please find the enclosed Subsurface Investigation Report prepared by Groundwater & Environmental Services, Inc. (GES), on behalf The New York State Department of Environmental Conservation ["NYSDEC"] regarding the site subsurface boring investigation at the Lapp Insulator Company facility located at 130 Gilbert Street, New York.

Should you have any questions or comments regarding the attached report, please contact the undersigned at (866) 836-5195.

Sincerely,

Groundwater & Environmental Services, Inc.

Mary E. Russo

Junior Geologist

Enclosures

cc: File

-hiw

Paul Lindell

Senior Project Manager

April 2012

Prepared for:

Jason Pelton, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 12th Floor 625 Broadway Albany, NY 12233-7017

Prepared by:

GROUNDWATER & ENVIRONMENTAL SERVICES, INC.
Lower Hudson Valley
70 Jon Barrett Road, Suite B, Robin Hill Corp. Park, Patterson, New York

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	BACKGROUND1
2.1	Site Description and History1
2.2	Site Geology and Hydrogeology2
2.3	Potential Sensitive Receptors
3.0	SUBSURFACE INVESTIGATION ACTIVITIES2
3.1	Soil Boring Installation
3.2	Soil Sampling Methodology
3.3	Soil Descriptions
3.4	Groundwater Sampling Methodology and Results4
4.0	CONCLUSIONS
5.0	REFERENCES5
LIST OF	FIGURES
Figure 1 Figure 2 Figure 3	Site Location Map Soil Boring Location Map Groundwater Monitoring Map TABLES
Table 1 Table 2 Table 3	Soil PID Reading Data Soil Analytical Data - TCL 8260 Groundwater Monitoring Data - 8260 VOCs
LIST OF	FAPPENDICES
Appendix Appendix Appendix	X B Soil Boring Completion Logs X C Laboratory Analytical Reports - Soil

1.0 INTRODUCTION

Groundwater & Environmental Services, Inc. (GES), on behalf of The New York State Department of Environmental Conservation ["NYSDEC"], has prepared this report summarizing the subsurface boring activities conducted at the Lapp Insulator Company facility located at 130 Gilbert Street LeRoy, New York (Site). These site activities were performed to investigate soil and groundwater conditions in the southern area of Building 23. Activities and results associated with the subsurface investigation have been summarized below.

2.0 BACKGROUND

2.1 Site Description and History

The Site is located at 130 Gilbert Street LeRoy, New York (**Figure 1**) and is considered by the NYSDEC to be an inactive hazardous waste disposal site. The Site is comprised of approximately 66 acres of land with railroad tracks to the northeast and Oatka Creek to the southwest. The greater surrounding area is a mix of residential and commercial property.

The following site history is cited from the *Report on VOC-Contaminated Soils*, dated October 1995 (VOC Report). The Site has been engaged in the production of ceramic insulators and electrical transformer bushings since 1917. In 2004, PCore electronics took over the production of the electrical transformer bushings on the land east of Gilbert Street. The disposal and storage of the ceramic insulators and electrical transformer bushings continues to date. Additionally, records indicate the storage and utilization of hazardous substances such as oils, petroleum based products, and chlorinated solvents.

Areas of Concern at Building 23 that have been suspected of causing contamination include; two (2) former underground storage tanks (UST), and an aboveground storage tank (AST). The southeast portion of Building 23 is considered to be the Former Machine Shop Area in the VOC Report. Solvents were handled near the loading dock on the south side of the building of the Former Machine Shop Area. The VOC report indicated a UST containing 1,1,1-trichloroethane (1,1,1-TCA) to exist in the southeast corner of the building by the loading dock. However, a discussion between GES and an onsite PCore representative revealed that the former 1,1,1-TCA UST actually has been located inside Building 23. The former 1,1,1-TCA UST was removed in May of 1986 and there was no evidence of leakage from this tank. Additionally, the PCore representative confirmed the second former UST, reported to contain tricholoroethene (TCE), was located on the east side of Building 23. Lastly, the discussion with PCore regarding the AST, located east of Building 23 just north of the former TCE UST, confirmed that the AST contained virgin oil as provided in the VOC Report.

The subsurface investigation associated with the VOC Report, included forty one (41) soil borings advanced to depths up to 17.4 feet below grade (fbg). The primary detections for onsite screening of soil were chlorinated solvents such as TCE and cis 1,2-dicholoroethene (cis 1,2-DCE) with the highest detections focused on the south corner of Building 23. Laboratory analysis of six samples showed highest concentrations of TCE and 1,1,1-TCA. Additionally, high levels of TCE and 1,1,1-TCA in the influent vapor samples during a soil vapor extraction (SVE) pilot test were reported in the VOC Report. The SVE system was deemed ineffective and was shut down in September of 1999 by NYSDEC according to the 2009 NYSDEC *Record of Decision* (ROD).

In 1998, the NYSDEC listed the site as a Class 2 Inactive Hazardous Waste Disposal Site (Site No. 819017) in their registry classifying the onsite hazardous waste as a significant threat to the public health and/or the environment and deeming remedial action necessary.

According to information provided in the ROD, a Remedial Investigation (RI) was conducted between October 2001 and August 2003. The RI investigated the extent of onsite contamination at 130 Gilbert Street, LeRoy, NY by sampling soil, soil gas, groundwater, surface water, water seep and sediment in several phases. In addition, adjacent homeowner drinking water supply wells were sampled several times. Soil sampling revealed TCE and 1,1,1-TCA concentrations in the area southeast of Building 23 (Area A). Additionally, a soil gas/soil vapor study identified Area A as a hot spot for VOC's. Shallow bedrock groundwater samples in Area A the showed concentrations of TCE and 1,1,1-TCA at 37,000 parts per billion (ppb) and 320,000 ppb with some lesser concentrations of cis 1,2-DCE, 1,1-dicholoroethane (1,1-DCE), and acetone. Intermediate and deep bedrock groundwater samples contained lesser concentrations of VOC's than the shallow bedrock samples. Surface water samples from Oatka Creek southeast of Area A contained minor concentrations of TCE and 1,1,1-TCA. Based on the results of the RI GES was retained for further remedial investigation of the area southeast of Building 23.

2.2 Site Geology and Hydrology

Subsurface investigations carried out on November 14 through November 18, 2011 by GES indicate overburden geology generally consists of fill materials, glacial outwash, and clay. The fill deposit ranges in thickness from approximately 0.5 to 12 feet below grade (fbg), and consists of brown sandy silt, brown silty sands, and gravelly sands with fragments of debris. Glacial outwash deposits, consisting primarily of gravelly sand, were observed at depths of up to approximately twelve (12) fbg.

The underlying bedrock for this site consists of the Onondaga and Bois Blanc Limestones from the Lower Silurian period¹. The overburden at the site consists mostly of glacial till². The depth to groundwater measured from the two bedrock wells (BRW-1 and BRW-2) was between 28.8 fbg and 29.6 fbg.

3.0 SUBSURFACE INVESTIGATION ACTIVITIES

3.1 Soil Boring and Bedrock Well Installation

On November 14 through November 18, 2011 GES oversaw the installation of twenty (20) soil borings (GESB-1 through GESB-20) at 130 Gilbert Street in LeRoy, New York (Site). Soil borings were installed from the vicinity of the southern and eastern sides of Building 23 to investigate the possibility of reported former TCA and TCE UST's being the source of contamination. Soil boring GESB-13, installed on the south side of Building 23, was converted into a bedrock monitoring well (BRW-1). One additional bedrock monitoring well (BRW-2) was installed on the east side of Building 23.

Figure 2 illustrates the locations of the soil borings and bedrock wells. The soil boring installation activities were performed by Quality Inspection Services, Incorporated (QISI) of Buffalo, New York.

QISI advanced the soil borings using a track mounted drilling rig with a hollow stem auger. Soil borings were advanced to twelve (12) to sixteen (16) feet below grade (fbg). Soil boring GESB-13 met refusal at 11.5 fbg and QISI switched augers to drill through rock and advance the boring to sixteen (16) fbg where refusal was met again. At this time QISI installed a four (4) inch diameter steel casing to seventeen (17) fbg and switched to air rotary drilling to thirty (30) fbg to complete the installation of the bedrock monitoring well BRW-1. The same process was utilized for the installation of bedrock monitoring well

BRW-2. Prior to air rotary drilling from seventeen (17) to thirty (30) fbg, a cement/betonite mix was used to grout around the steel casing. A photo log illustrating the different stages of soil boring and bedrock well installation is included in **Appendix A**. Soil boring and bedrock well completion logs are included in **Appendix B**.

3.2 Soil Sampling Methodology and Analysis

Soil samples were collected from all soil borings advanced in the vicinity of the southern and eastern sides of Building 23 per the investigation. Since the interview with the PCore representative suggested the former TCA UST had been inside Building 23, no soil samples were collected the former UST area. Soil samples were collected in one (1) foot intervals as soil borings were advanced utilizing a split spoon sampler. Prior to collection, each sample was screened using a photoionization detector (PID) for the presence of volatile organic compounds (VOCs). Based on the PID readings, one (1) to three (3) samples from each soil boring were collected for laboratory analyses. Samples to be sent for laboratory analyses were collected into four (4) ounce (oz) unpreserved glass sample jars. No samples were collected from the BRW-2 soil boring. The soil samples were packaged in a cooler with ice and sent under chain of custody to TestAmerica of Buffalo in Amherst, New York for analysis of VOCs by Environmental Protection Agency (EPA) Method 8260B, targeted compound list (TCL). A summary of the PID readings can be seen in **Table 1** and a summary of the laboratory analytical results is included in **Table 2**. Additionally, the laboratory analytical report from TestAmerica is included in **Appendix C**.

Soil analytical results for GESB-2, GESB-4, GESB-8, GESB-9, GESB-10, GESB-11 reported 1,1,1 Trichloroethane (1,1,1-TCA) above the NYSDEC CP-51 Part 375.6 Restricted Use SCOs for Protection of Groundwater standard of 0.68 mg/kg. The highest concentration of 1,1,1-TCA was found in GESB-10 between ten (10) and (12) fbg. At this same depth GESB-10 soil analytical data for Trichloroethene, 1,1 Dichloroethene, and 1,1 Dichloroethane were reported above the Protection of Groundwater standard. Trichloroethene was detected in samples from GESB-2, GESB-3, GESB-4, GESB-7, GESB-8, GESB-9, and GESB-11 above the Protection of Groundwater standard. The sample collected for GESB-17 between one (1) and two (2) fbg had 0.13 mg/kg of acetone which is above the Protection of Groundwater standard of 0.05 mg/kg. All other soil samples analytical results remained below the NYSDEC CP-51 Part 375.6 Restricted Use SCOs for a residential and commercial property.

3.3 Soil Descriptions

- On average the top six (6) to ten (10) inches of soil was subbase.
- GESB-4 was reported to have a sheen on the rock at approximately ten (10) fbg.
- Soil samples from GESB-1, GESB-2, GESB-3, GESB-4, GESB-17 had a notable solvent odor.
- Bedrock well BRW-1 had a measured depth to water of 28.8 fbg and bedrock well BRW-2 had a depth to water of 29.6 fbg.

3.4 Groundwater Sampling Methodology and Results

On December 6, 2011, GES gauged and collected groundwater samples from bedrock well BRW-1 and BRW-2. The bedrock wells were purged of approximately three (3) standing well volumes in order to collect a representative groundwater sample utilizing clearviewTM polyethylene disposable bailers. Upon collection, the samples were poured into glassware containing hydrochloric acid (HCl) supplied by the laboratory, placed on ice to ensure proper sample preservation at a temperature of 4 degrees Celsius and were transported under a Chain of Custody (COC). The samples were analyzed within the applicable holding times. The collected samples were submitted to TestAmerica of Buffalo in Amherst, New York

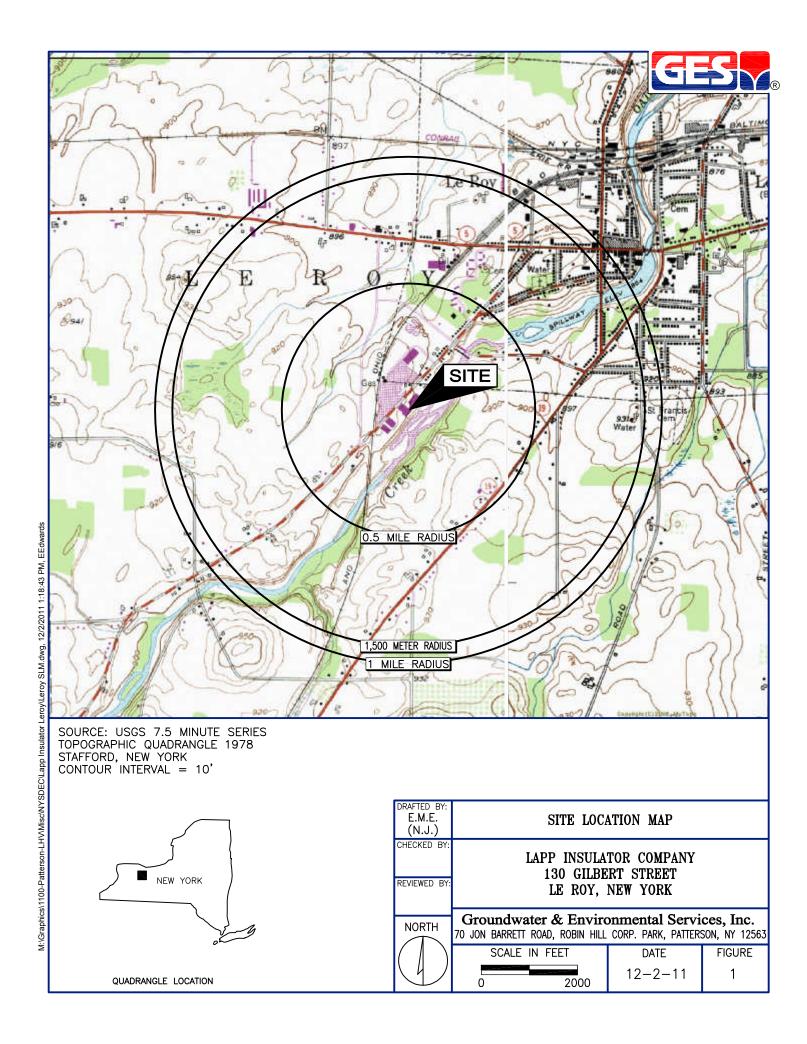
(TestAmerica) for analysis of the full list of VOCs via EPA Method 8260. The groundwater data is summarized in **Table 3** and illustrated on **Figure 3**. The laboratory analytical report provided by TestAmerica is included in **Appendix D**.

Both bedrock well BRW-1 and BRW-2 contained VOC concentrations above the New York State Department of Coservation (NYSDEC) Technical and Operations Guidance Series (TOGS) standards. The highest concentration of VOCs in Bedrock well BRW-1 was 190,000 micrograms per liter (μ g/L) for 1,1,1 Tricholoroethane. Additionally, compounds 1,1 Dichloroethane, 1,1 Dichloroethene, 1,1,2-Trichloroethane, 1,2-Dichloroethane, 2-Butanone, Acetone, Chloroethane, Methylene Chloride, Tetrachloroethene, trans-1,2-Dichloroethene, Trichloroethene, and Vinyl Chloride were detected at concentrations above NYSDEC TOGS standards in BRW-1. The highest VOC concentration above NYSDEC TOGS for BRW-2 was 8,100 μ g/L of 1,1 Dichloroethane. Total benzene, toulene, ethylbenzene, and xylene (BTEX) concentrations were 24 μ g/L and 26 μ g/L respectively for BRW-1 and BRW-2.

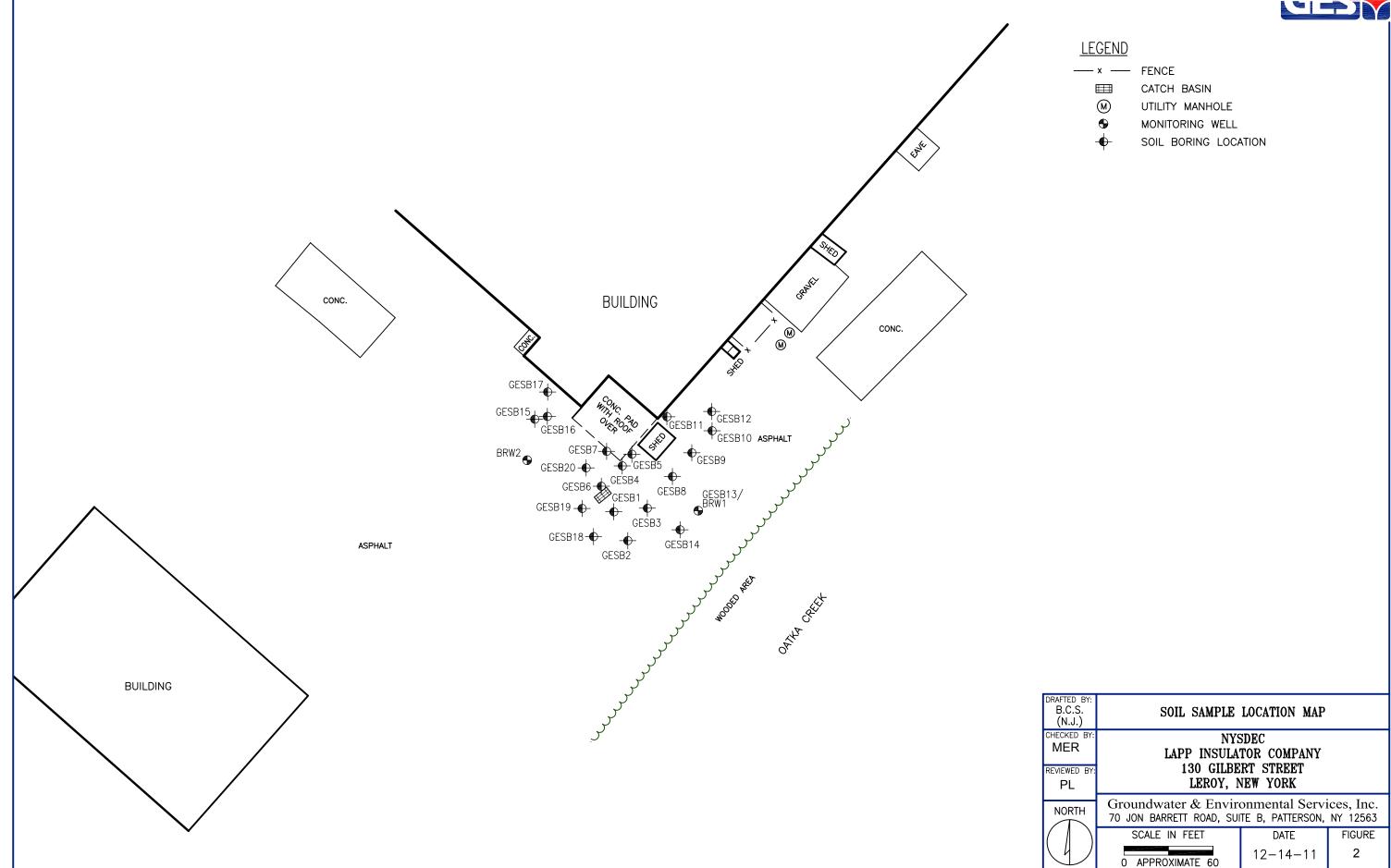
4.0 CONCLUSIONS

- Between November 14 and 18, 2011, GES advanced twenty-one (21) soil borings located at 130 Gilbert Street in LeRoy, New York (Site).
- Soil analytical results for GESB-2, GESB-4, GESB-8, GESB-9, GESB-10, GESB-11 reported 1,1,1 Trichloroethane (1,1,1-TCA) above the NYSDEC CP-51 Part 375.6 Restricted Use SCOs for Protection of Groundwater standard of 0.68 mg/kg. The highest concentration of 1,1,1-TCA was found in GESB-10 between ten (10) and (12) fbg. At this same depth GESB-10 soil analytical data for Trichloroethene, 1,1 Dichloroethene, and 1,1 Dichloroethane were reported above the Protection of Groundwater standard. Trichloroethene was detected in samples from GESB-2, GESB-3, GESB-4, GESB-7, GESB-8, GESB-9, GESB-10, GESB-11 above the Protection of Groundwater standard. The sample collected for GESB-17 between one (1) and two (2) fbg had 0.13 mg/kg of acetone which is above the Protection of Groundwater standard of 0.05 mg/kg. All other soil samples analytical results remained below the NYSDEC CP-51 Part 375.6 Restricted Use SCOs for a residential and commercial property.
- Groundwater samples exceeding NYSDEC TOGS standards in both bedrock wells BRW-1 and BRW-2.
- The highest concentrations in both wells were for the compounds 1,1,1 Trichloroethane and 1,1 Dichloroethane.
- The concentrations for BRW-1 were 190,000 μg/L and 45,000 μg/L respectively, and 5,000 and 8,100 for BRW-2 respectively.

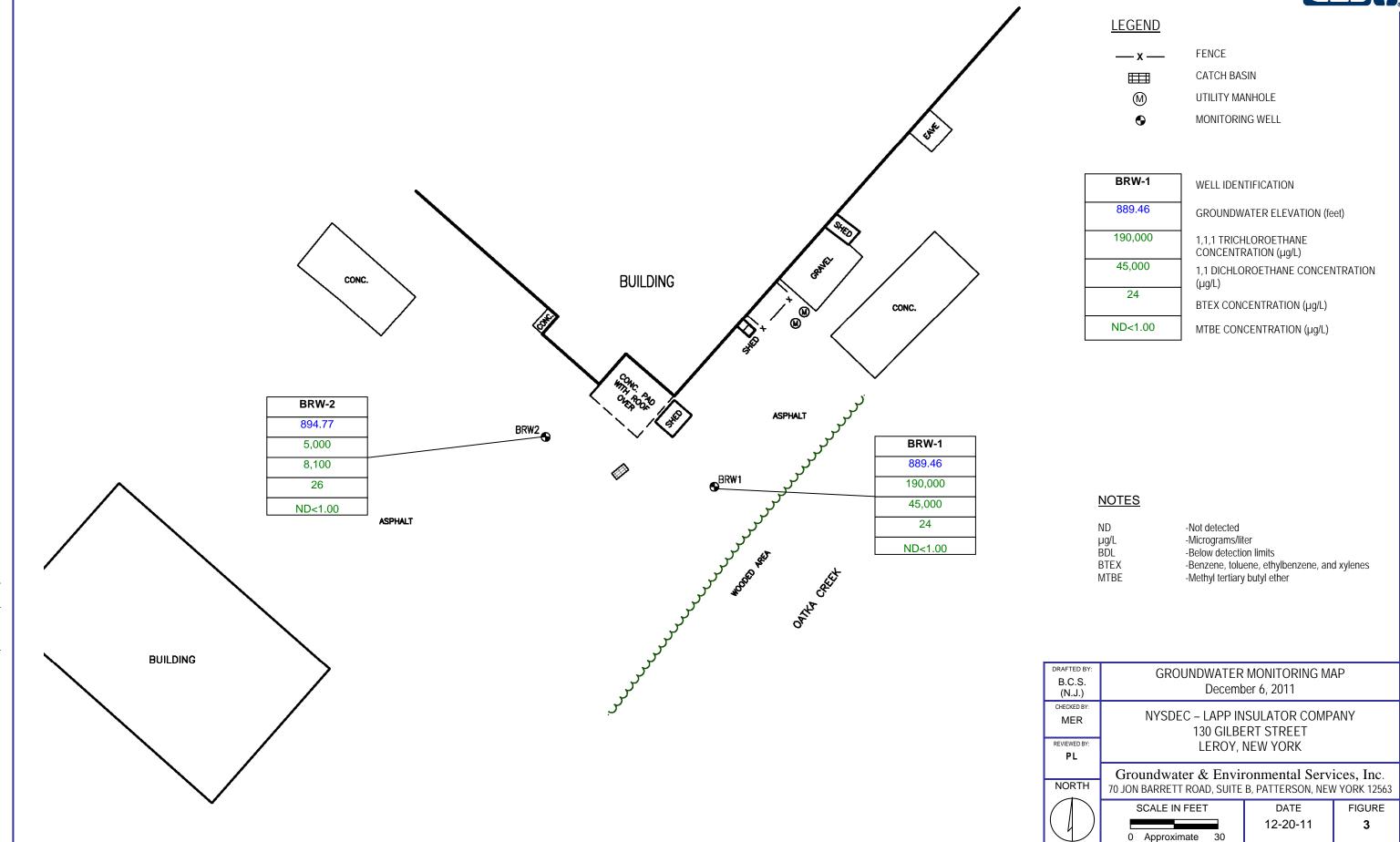
5.0 REFERENCES


- 1. H&A of New York. October 1995. Report on VOC-Contaminated Soils, Lapp Insulator Company
- 2. New York State Department of Environmental Conservation. March 2009. *Record of Decision, Lapp Insulator Company*
- 3. New York State Museum and Science Service. 1970. Surficial Geologic Map of New York
- 4. U.S. Geological Survey, October 4, 2011. Mineral Resources On-line Spatial Data, New York Geology

Prepared By:		Reviewed By:	
mpho		10 cco	1
Mary E. Russo	4/12/12 Date	Paul Lindell	4/12/12 Date
Junior Geologist		Senior Project Manager	



FIGURES


Figure 1 - Site Location Map Figure 2 - Soil Boring Location Map Figure 3 - Groundwater Monitoring Map

Administrative\ Staff Folders\ leff's Files\Base Mans\Baseman Template

TABLES

Table 1 - Soil PID Reading Data
Table 2 - Soil Analytical Data - TCL 8260
Table 3 - Groundwater Monitoring Data - 8260 VOCs

NYSDEC - Lapp Insulator Co. 130 Gilbert Street LeRoy, New York 14482

<u> </u>	 			1
Boring Location	Date	Depth (feet)	PID (ppm)	Lab Sample Collected
GESB1	11/14/2011	0-2	0.6	
		2-3	0.1	
		3-4	0.7	
		4-5	1.1	YES
		5-7	2.2	
		7-9	14.4	YES
		9-11	0.6	
		11-12.5	2.7	
GESB2	11/14/2011	0-1	4.0	
		1-2	6.4	
		2-3	6.0	
		3-4	7.1	YES
		4-6	18.1	YES
		6-8	2.2	YES
		8-10	4.8	
		10-11.5	1.9	
GESB3	11/14/2011	0-1	6.7	
		1-2	7.2	YES
		2-3	5.2	
		3-4	3.6	YES
		4-6	3.0	
		6-8	1.5	
		8-10	1.7	
		10-12	1.9	
GESB4	11/14/2011	0-1	9.5	
		1-2	2.6	
		2-3	1.3	
		3-4	1.8	
		4-6	1.3	YES
		6-8	0.6	
		8-10	8.4	YES
		10-12	1.7	
GESB5	11/15/2011	0-1	0.3	
		1-2	0.6	
		2-3	0.4	YES
		3-4	0.3	
		4-6	0.3	
		6-8	0.6	YES
		8-10	0.5	
		10-12	1.0	
GESB6	11/15/2011	0-2	0.9	
		2-3	0.5	
		3-4	0.3	YES
		4-6	0.9	

NYSDEC - Lapp Insulator Co. 130 Gilbert Street LeRoy, New York 14482

GESB6		6-8	1.7	YES
		8-10	1.7	1 ES
(continued)		10-12	1.9	
GESB7	11/15/2011	0-1.8	13.4	VEC
GESB/	11/15/2011			YES
		1.8-2	13.0	
		2-3	3.0	
		3-4	2.6	VEC
		4-6	1.6	YES
		6-8	0.9	
		8-10	No recovery	
CECDO	11/15/2011	10-12	1.0	
GESB8	11/15/2011	0-2	2.7	VEC
		2-3	1.5	YES
		3-4	1.0	
		4-6	1.2	
		6-8	4.7	
	-	8-10	1.6	XID0
	-	10-12	5.7	YES
GEGE 6	44/45/2044	12-14	1.8	
GESB9	11/15/2011	0-1	4.1	
		1-2	3.0	T T T T
		2-3	1.0	YES
		3-4	1.1	
		4-6	0.9	
		6-8	1.5	
		8-10	2.7	YES
GEGE 10	44/45/2044	10-12	1.6	
GESB10	11/15/2011	0-2	1.1	
		2-3	2.0	
		3-4	3.5	YES
	1	4-6	1.1	
	1	6-8	1.0	
		8-10	3.8	
	1	10-12	22.1	YES
		12-14	1.2	
GESB11	11/16/2011	0-2	0.3	
		2-3	0.2	YES
		3-4	0.7	
		4-6	1.8	
		6-8	1.4	
		8-10	5.6	
		10-12	12.2	YES
		12-14	3.6	
GESB12	11/16/2011	0-2	4.3	
		2-3	4.3	
		3-4	7.6	YES
		4-6	5.2	

NYSDEC - Lapp Insulator Co. 130 Gilbert Street LeRoy, New York 14482

CECD12	T I		2.0	I
GESB12	-	6-8	3.9	VEC
(continued)	-	8-10	10.1	YES
CECD 12	11/16/2011	10-12	5.0	
GESB13	11/16/2011	0-1	0.3	
		1-2	0.2	
		2-3	0.0	* TT-0
		3-4	1.1	YES
		4-6	0.5	
		6-8	1.0	
		8-10	0.6	
		10-12	4.0	YES
		12-14	2.5	
		14-16	2.3	
GESB14	11/16/2011	0-2	0.4	
		2-3	1.1	YES
		3-4	0.9	
		4-6	1.0	
		6-8	1.6	
		8-10	3.3	
		10-12	4.9	
		12-14	11.4	YES
		14-16	7.6	
GESB15	11/17/2011	0-2	1.2	YES
		2-3	1.0	
		3-4	0.9	YES
		4-6	0.7	
		6-8	0.3	
		8-10	0.3	
		10-12	0.3	
GESB16	11/17/2011	0-2	4.6	YES
		2-3	2.4	
		3-4	6.0	YES
		4-6	0.7	
		6-8	2.5	
		8-10	1.9	
		10-12	0.7	
GESB17	11/17/2011	0-2	0.7	YES
		2-3	0.3	
		3-4	0.5	
		4-6	0.3	YES
		6-8	0.3	
		8-10	0.3	
		10-12	0.5	
GESB18	11/18/2011	0-1	5.8	
		1-3	1.8	YES
		3-4	1.0	
	<u> </u>	4-6	0.6	

NYSDEC - Lapp Insulator Co. 130 Gilbert Street LeRoy, New York 14482

GEGE 16			0.0	1
GESB18		6-8	0.3	
(continued)		8-10	No recovery	
		10-12	6.0	YES
GESB19	11/18/2011	0-2	1.0	
		2-3	0.6	
		3-4	3.0	YES
		4-6	0.6	
		6-8	0.7	
		8-10	1.7	
		10-12	2.9	YES
GESB20	11/18/2011	0-2	1.7	YES
		2-3	1.6	
		3-4	0.7	
		4-6	0.8	YES
		6-8	0.5	
GESB20		8-10	0.6	
(continued)		10-12	0.8	
BRW-2	11/17/2011	0-1	0.1	
		1-2	0.2	
		2-3	0.1	
		3-4	0.3	
		4-6	0.2	
		6-8	0.2	
		8-10	0.2	
		10-11.5	0.3	
		11.5-13	No recovery	
		13-14.5	0.1	

Note:

ppm = Parts per million PID = Photoionization detector

SOIL ANALYTICAL DATA

NYSDEC - Lapp Insulator Co. 130 Gilbert Street LeRoy, New York 14482

II															1,1,2-									4-Methyl-2-			
							Total		Isopropyl	1,1	1,1	1,1,1	1,1,2,2,-	1,1,2-	Trichlorotriflu	1,2,4-	1,2-Dibromo-3	1,2-	1,2-	1,2-	1,2-	2-Butanone		pentanone		Bromodichlor	1
		Depth	Benzene	Toluene	Ethylbenzene	Total Xylenes	BTEX	MTBE	Benzene	Dichloroethan	Dichloroethen	Trichloroethane	Tetrachloroet	Trichloroetha	oroethane	Trichlorobenz	chloropropane	DiBromoethan	Dichlorobenze	DiChloroetha	Dichloropropa	(MEK)	2-Hexanone	(MIBK)	Acetone	o-methane	Bromoform
Soil Sample ID	Date	(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	e (mg/kg)	e (mg/kg)	(mg/kg)	hane (mg/kg)	ne (mg/kg)	(mg/kg)	ene (mg/kg)	(mg/kg)	e (mg/kg)	ne (mg/kg)	ne (mg/kg)	ne (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Part 375.6 Res	tricted Use SCO	Os -																									
Res	idential		2.9	100	30	100	**	62	100	26	100	100	**	***	**	**	**	**	100	3.1	**	**	**	**	100	**	**
Part 375.6 Res	tricted Use SCO	Os -																									
Con	nmercial		44	500	390	500	**	500	**	100	500	500	**	**	**	***	**	**	500	30	**	**	**	**	500	**	**
GESB-1	11/14/2011	4-5	ND<0.0056	0.00071	ND<0.0057	ND<0.0056	0.0007	ND<0.0056	ND<0.0057	ND<0.0056	ND<0.0056	0.11	ND<0.0057	0.00092 J	ND<0.0057	0.00046	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0057	ND<0.0057	ND<0.0056	ND<0.0056	ND<0.0057	0.0075	ND<0.0057	ND<0.0056
	11/14/2011	7-9	ND<0.13	ND<0.13	ND<0.13	ND<0.13	BDL	ND<0.13	ND<0.13	ND<0.13	ND<0.13	0.37	ND<0.13	ND<0.13	ND<0.13	ND<0.13	ND<0.13	ND<0.13	ND<0.13	ND<0.13	ND<0.13	ND<0.67	ND<0.67	ND<0.67	ND<0.67	ND<0.13	ND<0.13
GESB-2	11/14/2011	3-4	ND<0.1	ND<0.1	ND<0.1	ND<0.1	BDL	ND<0.1	ND<0.1	ND<0.1	ND<0.1	0.69	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.51	ND<0.51	ND<0.51	ND<0.51	ND<0.1	ND<0.1
	11/14/2011	4-6	ND<0.14	ND<0.14	ND<0.14	ND<0.14	BDL	ND<0.14	ND<0.14	ND<0.14	ND<0.14	0.24	ND<0.14	ND<0.14	ND<0.14	ND<0.14	ND<0.14	ND<0.14	ND<0.14	ND<0.14	ND<0.14	ND<0.7	ND<0.7	ND<0.7	ND<0.7	ND<0.14	ND<0.14
	11/14/2011	6-8	ND<0.0067	0.00016 J	ND<0.0067	ND<0.0067	0.0002	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	0.051	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	0.032	ND<0.0067	ND<0.0067
GESB-3	11/14/2011	1-2	ND<0.084	ND<0.084	ND<0.084	ND<0.084	BDL	ND<0.084	ND<0.084	ND<0.084	0.013 J	1.5	ND<0.084	0.16	ND<0.084	ND<0.42	ND<0.42	ND<0.42	ND<0.42	ND<0.084	ND<0.084						
GEOR 4	11/14/2011	3-4	ND<0.0059	0.00015 J	ND<0.0059	ND<0.0059	0.0002	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	0.021	ND<0.0059	0.0048 J	ND<0.0059	0.014	ND<0.0059	ND<0.0059									
GESB-4	11/15/2011	4-6	ND<0.0057	0.00013 J	ND<0.0057	ND<0.0057	0.0001	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.0057	0.017	ND<0.0057	0.00064 J	ND<0.0057												
CECD 5	11/15/2011	8-10	ND<0.24	ND<0.24 0.00018 J	ND<0.24	ND<0.24	BDL	ND<0.24 ND<0.006	ND<0.24	ND<0.24	0.08 J	20	ND<0.24	0.18 J	ND<0.24	ND<1.2	ND<1.2	ND<1.2	ND<1.2	ND<0.24	ND<0.24						
GESB-5	11/15/2011 11/15/2011	6-8	ND<0.006 ND<0.0052	0.00018 J 0.00027 J	ND<0.006 ND<0.0052	ND<0.006 ND<0.0052	0.000	ND<0.006 ND<0.0052	ND<0.006 ND<0.0052	ND<0.006 ND<0.0052	ND<0.006 0.00039 J	0.0083	ND<0.006 ND<0.0052	ND<0.006 0.0011 J	ND<0.006 ND<0.0052												
GESB-6	11/15/2011	0-8	ND<0.0052 ND<0.0057	0.00027 J 0.00016 J	ND<0.0052 ND<0.0057	ND<0.0052 ND<0.0057	0.0003	ND<0.0052 ND<0.0057	ND<0.0052 ND<0.0057	ND<0.0052 ND<0.0057	ND<0.0057	0.0065	ND<0.0052 ND<0.0057	ND<0.0057	ND<0.0052 ND<0.0057												
GESB-0	11/15/2011	6-8	ND<0.0037	0.00010 J	ND<0.0057	ND<0.0037	0.0002	ND<0.0057	ND<0.0057	ND<0.0037	ND<0.0037	0.0003	ND<0.0037	ND<0.0057	ND<0.0057	0.0003 J	ND<0.0057	ND<0.0037	ND<0.0057	ND<0.0037	ND<0.0037	ND<0.0057	ND<0.0057	ND<0.0037	0.0089	ND<0.0037	ND<0.0037
GESB-7	11/15/2011	1-2	ND<0.0001	ND<0.11	ND<0.0061	ND<0.0061	BDL	ND<0.0001	ND<0.0061	ND<0.0001	ND<0.0001 ND<0.11	0.001	ND<0.0001	ND<0.0061	ND<0.0001	ND<0.11	ND<0.0001 ND<0.11	ND<0.0001	ND<0.0001	ND<0.0001	ND<0.0001	ND<0.0001	ND<0.0001 ND<0.53	ND<0.0001 ND<0.53	ND<0.53	ND<0.0001	ND<0.0001
GESB-7	11/15/2011	4-8	ND<0.0055	ND<0.011	ND<0.011	ND<0.11	BDL	ND<0.011	ND<0.0055	0.0026 J	ND<0.011	0.027	ND<0.0055	0.0016 J	ND<0.011	ND<0.0055											
GESB-8	11/15/2011	2-3	ND<0.0052	ND<0.0053	ND<0.0053	ND<0.0053	BDL	ND<0.0053	ND<0.0053	ND<0.0052	ND<0.0053	0.027	ND<0.0053	0.0016 J	ND<0.0052	ND<0.0053	ND<0.0052	ND<0.0053	ND<0.0052								
GESB-6	11/15/2011	10-12	ND<0.0032	ND<0.0032	ND<0.0032	ND<0.0032	BDL	ND<0.0032	ND<0.0032	ND<0.0032	0.013 J	3.6	ND<0.0032	ND<0.089	ND<0.0032	ND<0.0052	ND<0.0032	ND<0.0032									
GESB-9	11/15/2011	2-3	ND<0.089	ND<0.089	ND<0.089	ND<0.089	BDL	ND<0.089	ND<0.089	ND<0.089	ND<0.11	0.63	ND<0.089	ND<0.089	ND<0.089	ND<0.089	ND<0.089	ND<0.089	ND<0.089	ND<0.089	ND<0.089	ND<0.45	ND<0.45	ND<0.45	ND<0.45	ND<0.089	ND<0.089
OLSB-7	11/15/2011	8-10	ND<0.11	ND<0.11	ND<0.11	ND<0.17	BDL	ND<0.11	ND<0.11	ND<0.17	ND<0.17	1.2	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.17	ND<0.11	ND<0.11	ND<0.17	ND<0.83	ND<0.83	ND<0.83	ND<0.83	ND<0.17	ND<0.11
GESB-10	11/15/2011	3-4	ND<0.11	ND<0.11	ND<0.11	ND<0.11	BDL	ND<0.11	ND<0.11	0.03 J	ND<0.11	1.2	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.54	ND<0.54	ND<0.54	ND<0.54	ND<0.11	ND<0.11
GLSB 10	11/15/2011	10-12	ND<1.3	ND<1.3	ND<1.3	ND<1.3	BDL	ND<1.3	ND<1.3	1 J	0.65 J	110	ND<1.3	ND<1.3	ND<1.3	ND<1.3	ND<1.3	ND<1.3	ND<1.3	ND<1.3	ND<1.3	ND<6.3	ND<6.3	ND<6.3	ND<6.3	ND<1.3	ND<1.3
GESB-11	11/16/2011	10-12	ND<0.0059	0.00062 J	ND<0.0059	ND<0.012	0.001	ND<0.0059	ND<0.0059	0.043	0.024	2.3	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.03	ND<0.03	ND<0.03	ND<0.03	ND<0.0059	ND<0.0059
GLGD 11	11/16/2011	2-3	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.011	BDL	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.027	ND<0.027	ND<0.027	ND<0.027	ND<0.0054	ND<0.0054
GESB-12	11/16/2011	3-4	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.011	BDL	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	0.0025 J	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.028	ND<0.028	ND<0.028	ND<0.028	ND<0.0056	ND<0.0056
	11/16/2011	8-10	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.011	BDL	ND<0.0057	ND<0.0057	0.0046 J	ND<0.0057	0.11	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.0057	ND<0.028	ND<0.028	ND<0.028	ND<0.028	ND<0.0057	ND<0.0057
GESB-13	11/16/2011	3-4	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.013	BDL	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.0065	0.04	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.0065	ND<0.033	ND<0.033	ND<0.033	ND<0.033	ND<0.0065	ND<0.0065
	11/16/2011	10-12	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.012	BDL	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	0.064	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.029	ND<0.029	ND<0.029	ND<0.029	ND<0.0058	ND<0.0058
GESB-14	11/16/2011	2-3	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.013	BDL	ND<0.0066	ND<0.0066	ND<0.0066	0.00099 J	0.066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.033	ND<0.033	ND<0.033	ND<0.033	ND<0.0066	ND<0.0066
	11/16/2011	12-14	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.011	BDL	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	0.053	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.027	ND<0.027	ND<0.027	ND<0.027	ND<0.0054	ND<0.0054
GESB-15	11/17/2011	1-2	ND<0.006	ND<0.006	ND<0.006	ND<0.012	BDL	ND<0.006	ND<0.006	0.039	0.0012 J	0.05	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.03	ND<0.03	ND<0.03	ND<0.03	ND<0.006	ND<0.006
	11/17/2011	3-4	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.011	BDL	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.027	ND<0.027	ND<0.027	ND<0.027	ND<0.0054	ND<0.0054
GESB-16	11/17/2011	1-2	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.011	BDL	ND<0.0054	ND<0.0054	0.0081	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.027	ND<0.027	ND<0.027	ND<0.027	ND<0.0054	ND<0.0054
	11/17/2011	3-4	ND<0.006	ND<0.006	ND<0.006	ND<0.012	BDL	ND<0.006	ND<0.006	0.038	0.0024 J	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.03	ND<0.03	ND<0.03	0.026 J	ND<0.006	ND<0.006
GESB-17	11/17/2011	1-2	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.013	BDL	ND<0.0066	ND<0.0066	0.014	ND<0.0066	0.093	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	ND<0.0066	0.036	ND<0.033	ND<0.033	0.13	ND<0.0066	ND<0.0066
	11/17/2011	4-6	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.012	BDL	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	0.0022 J	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.029	ND<0.029	ND<0.029	ND<0.029	ND<0.0058	ND<0.0058
GESB-18	11/18/2011	2-3	ND<0.0051	0.00096 J	ND<0.0051	0.00086 J	0.0018	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	0.0053	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.025	ND<0.025	ND<0.025	0.0053 J	ND<0.0051	ND<0.0051
	11/18/2011	10-12	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.01	BDL	ND<0.0051	ND<0.0051	ND<0.0051	0.00079 J	0.048	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.0051	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.0051	ND<0.0051
GESB-19	11/18/2011	3-4	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.012	BDL	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	0.0065	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.0058	ND<0.029	ND<0.029	ND<0.029	ND<0.029	ND<0.0058	ND<0.0058
	11/18/2011	10-12	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.011	BDL	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	0.03	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.028	ND<0.028	ND<0.028	ND<0.028	ND<0.0056	ND<0.0056
GESB-20	11/18/2011	1-2	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.011	BDL	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	0.011	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.027	ND<0.027	ND<0.027	ND<0.027	ND<0.0053	ND<0.0053
	11/18/2011	3-4	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.01	BDL	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.026	ND<0.026	ND<0.026	ND<0.026	ND<0.0052	ND<0.0052

Notes: mg/kg BTEX

MTBE

= Milligrams/kilograms
= Benzene, toluene, ethylbenzene, xylenes
= Methyl tertiary butyl ether
= Not Available or not analyzed for that specific compound
= Not detected (# is method detection limit)
= Exceeds standards
= No SCO for this compound NA

ND

BOLD **

**All results reported in parts per million (mg/kg)

SOIL ANALYTICAL DATA

NYSDEC - Lapp Insulator Co. 130 Gilbert Street LeRoy, New York 14482

		1 1	1		ı	1	1			1			ı	ı			1		1			ı	1			1
				Carbon	Carbon					cis-1, 2-	cis-1.3-		Dibromochlor	Dichlorodifluo	m-	Methyl		Methylene	, n			trans-1, 2-	trans-1.3-		Trichlorofluor	
		Depth	Bromomethan	disulfide	Tetrachloride	Chlorobenzen	Chloroethane	Chloroform	Chloromethan		Dichloroprope	Cyclohexane	o-methane	romethane	Dichlorobenze	Acetate	Methylcyclohe	Chloride	Dichlorobenze	Styrene	Tetrachloroet	,	Dichloroprope	Trichloroethene	omethane	Vinyl Chloride
Soil Sample ID	Date	(ft)	e (mg/kg)	(mg/kg)	(mg/kg)	e (mg/kg)	(mg/kg)	(mg/kg)	e (mg/kg)	e (mg/kg)	ne (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ne (mg/kg)	(mg/kg)	xane (mg/kg)	(mg/kg)	ne (mg/kg)	(mg/kg)	hene (mg/kg)	e (mg/kg)	ne (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		<u> </u>	- (g/g/	(88/	(9'9'	* (g'g/	(gg/	(99/	- (gg/	5 (g/g/	((88/	(9'9')	(9'9')	((88/	(gg)	(99)	(9/9/	(88/	(* (gg/	((8'8'	((88/
Part 375.6 Rest	icted Use SC lential	Os -	**	**	2.2	100	**	49	**	100	**	**	**	**	**	**	**	100	**	**	19	100	**	21	**	13
Part 375.6 Rest		'Os			2.2	100		72		100								100			17	100		21	 	13
	nercial	.os-	**	**	22	500	**	350	**	500	**	**	**	**	**	**	**	500	**	**	150	500	**	200	**	27
GESB-1	11/14/2011	4-5	ND<0.0056	ND<0.0056	ND<0.0056	ND<0.0057	ND<0.0057	0.00062 J	ND<0.0057	0.00065 J	ND<0.0056	ND<0.0057	ND<0.0056	ND<0.0057	ND<0.0057	ND<0.0056	ND<0.0057	ND<0.0056	ND<0.0056	ND<0.0057	ND<0.0057	ND<0.0056	ND<0.0056	0.078	ND<0.0057	ND<0.0057
GLOD 1	11/14/2011	7-9	0.078	ND<0.13	0.46	ND<0.13	ND<0.13																			
GESB-2	11/14/2011	3-4	0.058	ND<0.1	2.9	ND<0.1	ND<0.1																			
	11/14/2011	4-6	0.052	ND<0.14	1.2	ND<0.14	ND<0.14																			
	11/14/2011	6-8	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	ND<0.0067	0.00084 J	ND<0.0067	0.0014 J	ND<0.0067	0.22	ND<0.0067	ND<0.0067												
GESB-3	11/14/2011	1-2	0.033	ND<0.084	0.017 J	ND<0.084	ND<0.084	ND<0.084	0.03 J	ND<0.084	ND<0.084	4.2	ND<0.084	ND<0.084												
	11/14/2011	3-4	ND<0.0059	0.00054 J	ND<0.0059	0.00036 J	ND<0.0059	ND<0.0059	0.094	ND<0.0059	ND<0.0059															
GESB-4	11/15/2011	4-6	ND<0.0057	0.0038 J	ND<0.0057	0.048	ND<0.0057	ND<0.0057																		
	11/15/2011	8-10	0.088	ND<0.24	0.21 J	ND<0.24	ND<0.24	ND<0.24	ND<0.24	ND<0.24	ND<0.24	8.9	ND<0.24	ND<0.24												
GESB-5	11/15/2011	2-3	ND<0.006	0.0027 J	ND<0.006	0.041	ND<0.006	ND<0.006																		
	11/15/2011	6-8	ND<0.0052	0.00061 J	ND<0.0052	0.00071 J	ND<0.0052	ND<0.0052	0.11	ND<0.0052	ND<0.0052															
GESB-6	11/15/2011	3-4	ND<0.0057	0.016	ND<0.0057	ND<0.0057																				
	11/15/2011	6-8	ND<0.0061	0.0025 J	ND<0.0061	0.00052 J	ND<0.0061	ND<0.0061	0.2	ND<0.0061	ND<0.0061															
GESB-7	11/15/2011	1-2	0.041	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11	ND<0.11	0.12	ND<0.11	1.5	ND<0.11	ND<0.11												
	11/15/2011	4-8	ND<0.0055	0.0064	ND<0.0055	0.065	ND<0.0055	ND<0.0055																		
GESB-8	11/15/2011	2-3	ND<0.0052	0.00047 J	ND<0.0052	0.045	ND<0.0052	ND<0.0052																		
	11/15/2011	10-12	0.031	ND<0.089	1.5	ND<0.089	ND<0.089																			
GESB-9	11/15/2011	2-3	0.056	ND<0.11	0.25	ND<0.11	ND<0.11																			
	11/15/2011	8-10	0.084	ND<0.17	0.48	ND<0.17	ND<0.17																			
GESB-10	11/15/2011	3-4	0.044	ND<0.11	0.43	ND<0.11	ND<0.11																			
CECD 11	11/15/2011	10-12	ND<1.3	44	ND<1.3	ND<1.3																				
GESB-11	11/16/2011	10-12	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059 ND<0.0054	ND<0.0059	ND<0.0059	ND<0.0059 ND<0.0054	ND<0.0059 ND<0.0054	ND<0.0059	ND<0.0059	ND<0.0059	ND<0.0059 ND<0.0054	ND<0.0059	ND<0.0059	ND<0.0059 ND<0.0054	ND<0.0059	ND<0.0059	ND<0.0059	0.0016 J ND<0.0054	ND<0.0059	ND<0.0059	1.2 ND<0.0054	ND<0.0059 ND<0.0054	ND<0.0059 ND<0.0054
CECD 12	11/16/2011 11/16/2011	2-3	ND<0.0054 ND<0.0056	ND<0.0054 0.0026 J	ND<0.0054 ND<0.0056	ND<0.0054 ND<0.0056	ND<0.0054 ND<0.0056	ND<0.0054 ND<0.0056	ND<0.0054 ND<0.0056	0.0023 J	ND<0.0054 ND<0.0056	ND<0.0054 ND<0.0056														
GESB-12	11/16/2011	8-10	ND<0.0056 ND<0.0057	0.0026 J ND<0.0057	ND<0.0056 ND<0.0057	ND<0.0056	ND<0.0056 ND<0.0057	ND<0.0056 ND<0.0057	ND<0.0056 ND<0.0057	0.0023 J 0.051	ND<0.0056 ND<0.0057	ND<0.0056 ND<0.0057														
GESB-13	11/16/2011	3-4	ND<0.0057 ND<0.0065	ND<0.0057	ND<0.0057 ND<0.0065	ND<0.0057 ND<0.0065	ND<0.0057 ND<0.0065	ND<0.0057	ND<0.0057	ND<0.0057 ND<0.0065	ND<0.0057 ND<0.0065	ND<0.0057	ND<0.0057 ND<0.0065	ND<0.0057 ND<0.0065	ND<0.0057 ND<0.0065	ND<0.0057	0.031	ND<0.0057	ND<0.0057 ND<0.0065							
GESB-13	11/16/2011	10.12	ND<0.0065 ND<0.0058	ND<0.0065	ND<0.0065 ND<0.0058	ND<0.0065 ND<0.0058	ND<0.0058	ND<0.0065 ND<0.0058	ND<0.0058	ND<0.0065 ND<0.0058	ND<0.0065 ND<0.0058	ND<0.0065 ND<0.0058	ND<0.0058	ND<0.0065 ND<0.0058	ND<0.0065 ND<0.0058	ND<0.0063 ND<0.0058	0.028	ND<0.0065 ND<0.0058	ND<0.0065 ND<0.0058							
GESB-14	11/16/2011	2-3	ND<0.0038	ND<0.0058	ND<0.0058	ND<0.0038	ND<0.0058	ND<0.0038	ND<0.0058	ND<0.0038	ND<0.0058	ND<0.0058	ND<0.0038	ND<0.0038	ND<0.0058	ND<0.0056	ND<0.0058	0.063	ND<0.0058	ND<0.0058						
GLSD-14	11/16/2011	12-14	ND<0.0054	0.0029 J	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	0.064	ND<0.0054	ND<0.0054														
GESB-15	11/17/2011	1-2	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.0054	ND<0.006	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.006	ND<0.0054	0.002) J	ND<0.006	ND<0.0054	ND<0.0054	ND<0.006	ND<0.0054	0.023	ND<0.006	ND<0.0054
GLSD 15	11/17/2011	3-4	ND<0.0054	0.0015 J	ND<0.0054	ND<0.0054																				
GESB-16	11/17/2011	1-2	ND<0.0054	0.0093	ND<0.0054	0.0025 J	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	ND<0.0054	0.003 J	ND<0.0054	ND<0.0054												
GEGE TO	11/17/2011	3-4	ND<0.006	0.016	ND<0.006	0.018	ND<0.006	0.015	ND<0.006	ND<0.006																
GESB-17	11/17/2011	1-2	ND<0.0066	0.03	ND<0.0066	0.0038 J	ND<0.0066	ND<0.0066	0.0021 J	ND<0.0066	ND<0.0066	0.011	ND<0.0066	ND<0.0066												
	11/17/2011	4-6	ND<0.0058	0.0035 J	ND<0.0058	ND<0.0058	0.0013 J	ND<0.0058	ND<0.0058	0.0015 J	ND<0.0058	ND<0.0058														
GESB-18	11/18/2011	2-3	ND<0.0051	0.12	ND<0.0051	ND<0.0051																				
	11/18/2011	10-12	ND<0.0051	ND<0.0051	0.0015 J	ND<0.0051	ND<0.0051	0.0028 J	ND<0.0051	0.0098	ND<0.0051	0.00091 J	ND<0.0051	0.43	ND<0.0051	ND<0.0051										
GESB-19	11/18/2011	3-4	ND<0.0058	0.12	ND<0.0058	ND<0.0058																				
	11/18/2011	10-12	ND<0.0056	0.013	ND<0.0056	0.00082 J	0.0017 J	ND<0.0056	0.16	ND<0.0056	ND<0.0056															
GESB-20	11/18/2011	1-2	ND<0.0053	0.0026 J	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	ND<0.0053	0.076	ND<0.0053	ND<0.0053														
	11/18/2011	3-4	ND<0.0052	0.0027 J	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	ND<0.0052	0.015	ND<0.0052	ND<0.0052														

Notes:

MTBE

mg/kg BTEX

= Milligrams/kilograms
= Benzene, toluene, ethylbenzene, xylenes
= Methyl tertiary butyl ether
= Not Available or not analyzed for that specific compound
= Not detected (# is method detection limit)
= Exceeds standards
= No SCO for this compound
s reported in parts per million (me/kg) NA ND

BOLD

**All results reported in parts per million (mg/kg)

Table 3

GROUNDWATER MONITORING DATA

NYSDEC - Lapp Insulator Co. 130 Gilbert Street LeRoy, New York 14482

			Depth									1,1	1,1	1,1,1	1,1,2-	1,2-	2-						cis-1, 2-	Methyl		Tetra	trans-1, 2-		
		Top of	to	GW			Ethyl	Total	Total		Isopropyl	Dichloroet	Dichloroet	Trichloro	Trichloro	DiChloroe	Butanone		Carbon	Chloro		Chloro	Dichloro	cyclo	Methylene	chloro	Dichloro	Trichloro	Vinyl
Monitoring		Casing	Water	Elevation	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	Benzene	hane	hene	ethane	ethane	thane	(MEK)	Acetone	disulfide	ethane	Chloroform	methane	ethene	hexane	Chloride	ethene	ethene	ethene	Chloride
Well ID	Date	(ft)	(ft)	(ft)	$(\mu g/L)$	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)
	NYSDEC TO	GS 1.1.1 G	WQS		1	5	5	5	NA	10	5	5	5	5	1	0.6	NA	50	NA	5	7	NA	5	NA	5	5	5	5	2
BRW-1	12/06/2011	905.76	16.30	889.46	2.2	6.7	1.7	13	24	ND<1.0	ND<1.0	45000	8800	190000	20	89	ND<10	2000 E	3.5	49	5.4	1.1	ND<4000	9.2	31	11	33	33000	77
BRW-2	12/06/2011	906.79	12.02	894.77	0.68 J	6.0	2.3	17	26	ND<1.0	0.79 J	8100	290	5000	0.80 J	4.8	19	70	ND<1.0	15	ND<1.0	ND<1.0	0.96 J	14	1.2	ND<1.0	ND<1.0	13	3.5

Notes: <# = Less than the method detection limit of #

= Micrograms/liter $\mu g/L$

BTEX = Benzene, toluene, ethylbenzene, xylenes = Ground Water Quality Standard **GWQS**

MTBE = Methyl tertiary butyl ether

 Not Available or not analyzed for that specific compound
 Not detected (# is method detection limit) NA

BDL = Below Detection Limits

E = Result exceeded calibration range

J = Result is less than RL but greater than MDL and the concentration is an approximate value

RL = Reporting Limit

= Method detection limit MDL

APPENDIX A

Soil Boring and Bedrock Well Installation Photo Log

View of GESB-15 (closest to the bottom of the photo, pink flag), GESB-16 (to the right of the photo, below the doors of the building, white flag) and GESB-17 (adjacent to the building, pink flag) after backfilling.

View of GESB-4 (adjacent to the corner of the concrete loading area, pink flag) and GESB-5 (near shed, adjacent to ballard, pink flag) after backfilling.

View of BRW-1 after casing was installed, flag in the casing stick up for visual purposes (GESB-14 is the boring depicted by the pink flag at the bottom of the picture).

Drilling of BRW-1 after casing was installed (completion to depth through bedrock).

View of BRW-1 completed with well pad.

View of BRW-2 during onset of drilling.

Lapp Insulator Photo Documentation 130 Gilbert Street Le Roy, NY Subsurface Investigation Report

Alternate view of BRW-2 during drilling.

View of BRW-2 completed with well pad.

Lapp Insulator Photo Documentation 130 Gilbert Street Le Roy, NY Subsurface Investigation Report

APPENDIX B

Soil Boring Completion Logs

Groundwater & Environmental Services, Inc.

Adjective = 30-40%

And =

>40%

ID NO. GESB-1

Page 1 of 1

						ces, inc. Client: NY		Pogulator		04004#
-		Gilbert S	-				#: 1102236	•	ry Case #: {	819017 r:Jason Pelton
			511 661 1	zeroy,						Jason Petton
	ty: Gen						ect Mgr: Paul Lindell	Permit #:		Dia NA
	By: Nico Compar	ole Jarzynie	cki			Date Drilled:	11/14/11 Date: 11/14/11		n/Acetate Slee	ve Dia: NA ve Length: NA
_	erator: 1	-					od: Hollow Stem Auger			n: USCS/Burmister
		rack Moun	ted Rig				thod: Split Spoon			eV Lamp (ppm)
oreho	le Diame	eter: 4"				Surface Eleva	ation: NA	Abandonm	ent Method: B	ackfilled
otal D	epth: 12	2.5'				Depth to Wat	er: NA	Backfill Ma	terial: Sand	
	· I Depth: :					· Vell Diamete		Abandonm	ent Completion	n Date: 11/14/11
Depth	-	Recovery	Field S		Blow Cou	ints	Geologic Description		Comments	Abandonmen
eet)	Interval	_	(ppm)) 1 20	1	20				Detail
JOIJ		(inches)								
0	0.1	Lione				11	.			
	0-1	100%			\uparrow	<u>; (7.)</u>	FILL-SOIL: Sub base		Hand cleared	
									boring to 4 fbg.	
	1-2	100%	0.6			i i i i i i i i i i i i i i i i i i i	SM: silty sand, some rock of	content, brown,		
							dry, no odor			
1	2-3	100%	0.1				SM: silty sand, some rock of	content, brown,		
							dry, no odor			
-	3-4		0.7	1			SM: silty sand, some rock of	ontont brown		
							dry, no odor	ontent, brown,		
-	4-5	100%	1.1	1			SC: Clayey sand with some	silt and rock	Laboratory	
	7.5	10070	1.1				content, brown, dry to sligh		Sample	
5		250			Z	1.//, 1.7.	odor		GESB-1 (4-5 fbg)	
	5-7	25%	2.2	\	o Blo	<u> </u>	SC: Clayey sand, brown, m			
					Эw С	<u> </u>	greyish brown silt, dry to ve moist, no odor	ery stightly		
				N. I	No Blow Counts Recorded	<mark>/////</mark> ///				
					s Re	<mark>//////</mark>	<u>, </u>			
1	7-9	25%	14.4	/	cord	////// /	SC: Clayey sand, brown to	reddish	Laboratory	
				///	ed -	<u> </u>	brown, dry to very slightly		Sample GESB-1 (7-9	
-				/		<u> </u>	odor		fbg)	
				/		./://				
4	9-11	10%	0.6	1		1.77,7.7.7 1.77,7.7	<u> </u>			
	<i>)</i> -11	1070	0.0			././	SC: Clayey sand, brown to brown, dry to very slightly			
10 -						<u> </u>	.,,,,,g,	,		
_										
						<u> </u>				
1	11-12.5	25%	2.7			"//// //	SC: Clayey sand, brown to			
						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	brown, dry to very slightly	moist, no odor		
1						<u> </u>	SHALE: Shale			
L		1			¥		1		<u> </u>	
Orono	rtions Us	ed: Ne	ataa:				Blow Count Pentra	ation Resistance	ā	
Trace		<u> </u>	otes: not avail	able: fh	g. = feet bel	ow grade	Consistency (M&C)	Density (G&S	<u>_ = = = = = = = = = = = = = = = = = = </u>	<u>mbols:</u> nt Water Level 🤦
Few	y = 5-10	NO/			-	s per million	<2 = Very Soft	0-4 = Very Loc	ose	nt Water Level s
Little		0% Soil L				rvations only	. 4-8 – Medium	4-10 = Loose		
Som	e = 20-30	0%					8-15 = Stiff	10-30 = Medium		

15-30 = Very Stiff >30 = Hard

30-50 = Dense

 $50> = Very Dense \mid GESB-1$

p. 1 of 1

Groundwater & Environmental Services, Inc.

ID NO. GESB-2

Addre Coun	ess: 130 ty: Gen	Gilbert S esee	Street LeRoy,	sulator Client: NY GES Jo	b #: 1102236 oject Mgr: Paul Lindell	Regulatory Permit #:	NA	r:Jason Pelton
Drilling Drill Op	Compan			Completion Drilling Me	ed: 11/14/11 on Date: 11/14/11 ethod: Hollow Stem Auger Method: Split Spoon	Split Spoon	cation System	ve Dia: NA ve Length: NA n: USCS/Burmister PeV Lamp (ppm)
Boreho	ole Diame	eter: 4"		Surface E	levation: NA	Abandonme	ent Method: B	ackfilled
Total D	epth: 11	.5'		Depth to \	Water: NA	Backfill Mate	erial: Sand	
Refusa	I Depth: 1	NA		Well Diam	neter: 4	Abandonme	ent Completion	n Date: 11/14/11
Depth (feet)	Sample Interval	Recovery (inches)	Field Screen (ppm) 1 25	Blow Counts 1 20	Geologic Description		Comments	Abandonment Detail
0	0-1	100%			FILL-SOIL: Sub base		Hand cleared boring to 4	
	1-2	100%	4.0		SM: silty sand, some rock dry, no odor	content, brown,	fbg.	
	2-3	100%	6.4		SM: silty sand, some rock dry, no odor	content, brown,		
	3-4	100%	6.0		SM: silty sand, some rock dry, no odor	content, brown,	Laboratory Sample GESB-2 (3-4 fbg)	
5-	4-66-8	100% 25%	18.1	— No Blow Counts Recorded	SM: Silty sand, reddish brovery slightly moist, strong SM: silty sand with some of	odor	Laboratory Sample GESB-2 (4-6 fbg)	
-	8-10	15%	2.2	ecorded —	reddish brown, slightly mo	ist, no odor	Sample GESB-2 (6-8 fbg)	\mathbb{R}
10 -					SM: Silty sand and weathe odor, slightly moist to dry	rea rock, no		
-	10-11.5	15%	4.8		SM: siltly clay and weathe than above interval), no od moist to dry			
Trace	ortions Us	NA =	otes: not available; fb	g. = feet below grade	Blow Count Pentre Consistency (M&C)	Density (G&S)	Apparer	mbols: nt Water Level
Little	v = 5-10 e = 10-20 e = 20-30 e = 30-4	0% 0% Soil Li		ppm.= parts per milli on field observations of	2-4 = Soft 4-8 = Medium 8-15 = Stiff	0-4 = Very Loos 4-10 = Loose 10-30 = Medium 30-50 = Dense	se l ··	nple Location Exp. 1 of 1

Groundwater & Environmental Services, Inc.

Adjective = 30-40%

>40%

ID NO. GESB-3

50 > =Very Dense | **GESB-3**

p. 1 of 1

15-30 = Very Stiff >30 = Hard

		ter & En					•		D NO. GE		J
•		SDEC Lel	•							y Case #:	
		Gilbert S	Street I	LeRoy,	, NY			1102236			r: Jason Pelto
	ty: Gen							t Mgr: Paul Lindel			
	•	ole Jarzynie	cki				Drilled: 1			/Acetate Slee	
_	Compar	-						te: 11/14/11			ve Length: NA
	erator:]	Ron Frack Moun	ted Rig					Hollow Stem Auger			∩: USCS/Burmi PeV Lamp (ppn
	le Diame		acu rug				ce Elevat			ent Method: B	
									Backfill Ma		ackinieu
	epth: 12 Depth:						n to Water Diameter:				n Date: 11/14/1
	-		Field S	Screen	Blow Co		Diameter.	Geologic Description	Abandonin	Comments	Abandonm
		Recovery	(ppm		1			Geologic Description		Comments	Detail
eet)	Interval	(inches)		1 10							
_											
OΤ	05				\uparrow			FILL-SOIL: Sub base		Hand cleared	
	.5-1	100%						SM: silty sand, some ro	ack content brown	boring to 4	
-	1-2	100%	6.7	1				dry, no odor	/ ck coment, blown,	fbg.	
								SM: silty sand, some ro	ock content. brown	Laboratory	
4	2-3	1000/	7.3	}				dry, no odor	,	Sample	
	2-3	100%	7.2					SM: silty sand, some ro	ock content, brown,	GESB-3 (1-2 fbg)	
							<mark>iiiiiiiii</mark>	dry, no odor			
1	3-4	100%	5.2	1			<mark>iiliiliil</mark>	SM: silty sand, some ro			
							<mark>!¦¡!¦¡!¦i</mark>	dry to slightly moist, no	odor	Laboratory	
-	4-6	100%	3.6	1			<u> </u>	SC: Clayey sand, brown	n dry no odor	Sample GESB-3 (3-4	
								Sc. Clayey saild, blow	n, dry, no odoi	fbg)	
5-					No B						
					low						
				Į.	No Blow Counts Recorded						
	6-8	50%	3.0		nts R			SW: medium sand, bro	wn, dry, no odor		
					lecoi						
-1					rded						
-	8-10	50%	1.5								
								SW: medium sand, bro	wn, dry, no odor		
4											
							7 △:``				
10 -	10-12	50%	1.7	1				SW: medium sand, bro	wn, dry, rock in		
							74.	bottom, very mild odor	•		
-											
1					\downarrow		Y .				
-	rtions Us		otes:					Blow Count Pe Consistency (M&C	entration Resistance C) Density (G&S)	- 1 39	mbols:
Trace Few		1171			og. = feet b	_		<2 = Very Soft	$\frac{0.4 = \text{Very Loc}}{0.4 = \text{Very Loc}}$	Apparer	nt Water Level
	= 10-20	00%			ppm.= pa on field ob	_		2-4 = Soft	4-10 = Loose	Lab Sar	nple Location
	e = 20-30	0%	oiogic	o oasou (1101d UU	or vail	one only.	4-8 = Medium 8-15 = Stiff	10-30 = Medium		
diecti	ve = 30-4	0%						15-30 = Very Stiff	30-50 = Dense		

Groundwater & Environmental Services, Inc.

ID NO. GESB-4

0.0	anawa				u. 00.	7100	o,o.				-	
-	Project: NYSDEC LeRoy - Lapp InsulatorClient: NYSDEC Regulatory Case #: 819017 Address: 130 Gilbert Street LeRoy, NY GES Job #: 1102236 Regulatory Case Mgr: Jason Pelton											
			Street I	LeRoy,	NY				Regulator	ry Case Mg	r: Jason Pelton	1
Cour	ity: Gen	esee				GES	Project	Mgr: Paul Lindell	Permit #:	NA		
Logge	d By: Nic	ole Jarzynie	ecki			Date Drilled: 11/15/11 Split Spoo			on/Acetate Sleeve Dia: NA			
	g Compar	-									ve Length: NA	
	perator:]		4. 1 D'					Hollow Stem Auger		-	n: USCS/Burmist	
		Frack Mou	ntea Kig					od: Split Spoon			eV Lamp (ppm)	'
	ole Diame						e Elevation			ent Method: B	ackfilled	
	Depth: 12						to Water:			terial: Sand		
	al Depth:	NA	T		Diame		iameter:		Abandonm		n Date: 11/15/11	
Depth	Sample	Recovery	Field S (ppm))	Blow	Counts		Geologic Description		Comments	Abandonme	ent:
(feet)	Interval	(inches)		0 15		1 20	.				Detail	
	•						•					
0-	05				/	\wedge	: <	FILL-SOIL: Sub base				
	.5-1							TILL-SOIL. Sub base		Hand cleared boring to 4		
-	1-2	100%	9.5	,			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			fbg.		
		10070	7.3	/				SM: silty sand, brown, dry	y, no odor			
_				/			<mark>jiljiljil</mark>					
	2-3	100%	2.6				iiliiliil	SM: silty sand, brown, dry	y, no odor, some			
								clay content				
-	3-4	100%	1.3	l l			1;!!!!	ML: clay with sand, brow	n no odor	-		
							$!!_{i}!!_{i}!$	slightly moist	n, no odor,			
-	4-6	100%	1.8	l l						Laboratory		
	1-0	10070	1.0					ML: clay and silt, brown, some sand	moist, no odor,	Sample		
5-					3	Z	!!;!!;!	Some sand		GESB-4 (4-6 fbg)		
3					5	Rio						
						No Blow Counts Recorded						
-	6-8	60%	1.3	l l		inte		GM: silt and rock, some o	dor, orange, dry	-		
					3	R P		on and room, some o	aor, orange, ary			
-					1 8	orde						
					l '	_						
_												
	8-10	10%	0.6	\				GM: silt and weathered ro		Laboratory Sample		
				l\				sheen on rock, some odor,	, dry	GESB-4 (8-		
-										10 fbg)		
				1								
10 –	10-12	200/	8.4	 								
	10-12	20%	8.4					SW: sand and rock, odor,	dry			
-												
				I		V						
D	amtian - II							Play Count Dant	ration Pasistant	0:		
	ortions U: e = <5%		otes: not avail:	able: fb	or – fact	helow	rrade	Blow Count Penti Consistency (M&C)	ration Resistance Density (G&S	<u>, l 2 </u>	mbols:	
	w = 5-10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	inches; f		-	_		<2 = Very Soft	0-4 = Very Loc	Apparer		<u>▼</u> Ж
I ittl	e = 10-2			,	PP	ran per		2-4 = Soft	4-10 = Loose	Lau Sali	iipie Location	

Trace = <5% Few = 5-10% Little = 10-20% Some = 20-30% Adjective = 30-40%	NA = not available; fbg. = feet below grade in. = inches; ft.= feet; ppm.= parts per million Soil Lithologies based on field observations only.	Consistency (M&C) <2 = Very Soft 2-4 = Soft 4-8 = Medium 8-15 = Stiff 15 20 Very Stiff	0-4 = Very Loose 4-10 = Loose 10-30 = Medium 30-50 = Dense	Apparent Water Level Lab Sample Location
Adjective = $30-40\%$ And = $>40\%$		15-30 = Very Stiff >30 = Hard	50> = Very Dense	GESB-4 p. 1 of 1

	ındwa		vironmenta	al Services, Inc.	ID NO. ${f G}$	ESB-5		Page 1 of 1		
Proje	ct: NYS	SDEC Lel	Roy - Lapp In	sulatorClient: NYSD	EC	Regulator	Regulatory Case #: 819017			
-			Street LeRoy,			_	-	∵Jason Pelton		
	ty: Gen		• /		Mgr: Paul Lindell	Permit #:				
		ole Jarzynie	cki		e Drilled: 11/15/11 Split Spoon/Acetate Sleeve Dia: N					
	Compan			Completion Date	e: 11/15/11	Split Spoor	n/Acetate Slee	ve Length: NA		
	perator: I			•	Hollow Stem Auger		-	n: USCS/Burmister		
		Track Moun	ited Rig	Sampling Metho				eV Lamp (ppm)		
	ole Diame			Surface Elevation			ent Method: Ba	ackfilled		
	Depth: 12			Depth to Water:			terial: Sand	-		
	al Depth: 1		Field Screen	Well Diameter: 4		Abandonm		n Date: 11/15/11 Abandonment		
Depth		Recovery	(ppm)	1 20	Geologic Description		Comments	Detail		
(feet)	Interval	(inches)	0 5	T 20				Dotaii		
07	05			\uparrow \bigcirc	FILL-SOIL: Top soil with	50% rock	Hand cleared			
	.5-1	100%			content, dry, no odor, dark	brown	boring to 4 fbg.			
-	1-2	100%	0.3		SW: sand, trace topsoil, 30 content, dry, no odor, brow		log.			
-	2-3	100%	0.6		SW: sand, trace topsoil, 30 content, dry, no odor, brow					
-	3-4	100%	0.4		SW: sand, trace topsoil, 30 content, dry, no odor, brow clay content, very slightly decreasing rock content	vn, increasing	Laboratory Sample GESB-5 (2-3 fbg)			
_	4-6	100%	0.3	7	SW: sand, 30% rock conte odor, brown, increasing cla slightly moist, decreasing to	ay content, very				
5-	6-8	20%	0.3	No Blow Counts Recorded	CL: clay and rock, brown, CL: clay, sand and rock, br					
-				ecorded ——	wet, no odor		Laboratory Sample GESB-5 (6-8 fbg)			
_	8-10	20%	0.6		SC: rock and clay, brown,	no odor				
10 -	10-12	5%	0.5		SC: rock and clay, brown,	no odor				
Prop	ortions Us	sed: NZ	otes:		Blow Count Pentr	ation Resistance	e: c	mhole:		
Trac	e = <5%	NA =		g. = feet below grade	Consistency (M&C)	Density (G&S) Apparer	mbols: nt Water Level ▼		
	v = 5-10	m. = 1	nches; ft.= feet;	ppm.= parts per million	<2 = Very Soft 2-4 = Soft	0-4 = Very Loc	ose	nple Location		
Little Son	e = 10-20 $e = 20-30$	Soil L	ithologies based o	n field observations only.	4-8 = Medium	4-10 = Loose 10-30 = Medium				
	ive = 20-30	I			8-15 = Stiff	30-50 = Dense				
And					>30 = Hard	50> = Very Der	nse GESB-5	p. 1 of 1		

Groundwater & Environmental Services, Inc.

ID NO. GESB-6

Gro	undwa	ter & En	iviron	ment	ai Servic	ces, inc.	ID NO. GE	10 D -0		'	age i c	JI 1
Proje	ect: NYS	SDEC Lel	Roy - L	app In	sulatorCli	ient: NYSD	EC	Regulator	y Case #: 8	31901	7	
Addr	ess: 13 0	Gilbert S	Street L	eRoy,	NY GE	ES Job #:	1102236	Regulator	y Case Mgı	∵Jaso	n Pelt	on
Cour	nty: Gen	esee			GE	ES Project	Mgr: Paul Lindell	Permit #: NA				
Logge	d By: Nice	ole Jarzynie	cki		Da	Date Drilled: 11/15/11			Split Spoon/Acetate Sleeve Dia: NA			
Drilling	g Compar	ny: QISI			Co	mpletion Date	e: 11/15/11	Split Spoor	n/Acetate Sleev	/e Ler	gth: N	4
	perator:]						Hollow Stem Auger		ication System			
Drill R	ig Type: 1	Frack Moun	ted Rig		Sa	mpling Metho	d: Split Spoon	Field Scree	ening: PID 10.9	eV La	mp (pp	m)
Boreh	ole Diame	eter: 4"			Su	ırface Elevatio	n: NA	Abandonm	ent Method: Ba	ackfill	ed	
Total [Depth: 12	2'			De	epth to Water:	NA	Backfill Ma	terial: Sand			
Refusa	al Depth:	NA			We	ell Diameter:	4	Abandonm	ent Completior	n Date	: 11/15/	11
Depth	Sample	Recovery	Field S (ppm)		Blow Cou	nts	Geologic Description		Comments	Al	oandonr	ment
(feet)	Interval	(inches)	(ppiii)	0 5	1	20					Deta	il
		()		<u> </u>	-							
0-	0-1	I	_		1	···			I		.	
	0-1						FILL-SOIL: Sub base		Hand cleared			
									boring to 4 fbg.			
_	1-2	100%				<mark>iiliiliil</mark>	SM: sand with rock and silt, b	rown, no				
						<mark>!!¡!¦¡!¦</mark>	odor, dry					
-	2-3	100%	0.9	1		T. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NOT 21/2 24 1 1	1 1				
						11,11,1	ML: silt with clay, brown, no trace sand, wet	odor, dry,				
-												
	3-4	100%	0.5				ML: silt with clay, brown, no					
							approximately 20% sand, wet		Laboratory	\mathbb{H}		
-	4-6	100%	0.3				ML: silt and clay, brown, wet	no odor	Sample GESB-6 (3-4			
							WIL. SHE and clay, blown, wet	, no odoi	fbg)			
5-					No I	:::::::						
					Blow	11:11:1						
					No Blow Counts Recorded							
-	6-8	25%	0.9	1	ınts		CL: clay and sand, brown, we	t, no odor				
					Rec		·		Laboratory	M		
-					orde				Sample GESB-6 (6-8	\mathbb{H}		
					d				fbg)			
_												
	8-10	25%	1.7			7.4.4.4.5 7.4.4.4.5	CL: clay and sand, brown, we	t, no odor,				
						244	silt content					
-												
10 -				Į.								
	10-12	35%	1.0				CL: clay and sand, brown, mo	oist, no odor,				
							silt content, rock content					
-												
							DEFLICAT					
_					\downarrow	() () () () () () () () () ()	REFUSAL				: :	

Proportions Used:	Notes:		tration Resistance:	Symbols:
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location
Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	Lab Sample Location .
Some = 20-30%	Soil Lithologies based on field observations only.	4-8 = Medium 8-15 = Stiff	10-30 = Medium	
Adjective = 30-40%		6-13 = Sui1 15-30 = Very Stiff	30-50 = Dense	
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-6 p. 1 of 1
7 Hid = > 4070			e os , ery Bense	

		ter & En						T.C.	Б 1.	0 "		
-		SDEC Lei	•						-	ry Case #: 8		
		Gilbert S	street 1	лекоу,	NY				•	ry Case Mgr	Jason	Pelton
	ty: Gen		-1-!				rilled: 11		Permit #:		o Dio:	NT A
	о бу: Nic o g Compar	ole Jarzynie ov: OISI	скі					9: 11/15/11		n/Acetate Sleev n/Acetate Sleev		
	perator: 1	-						Hollow Stem Auger		fication System	_	
	•	Track Moun	ted Rig					od: Split Spoon		ening: PID 10.9		
Boreh	ole Diame	eter: 4"				Surface	e Elevation	on: NA	Abandonm	ent Method: Ba	ckfilled	
Total [Total Depth: 12'						to Water:	NA	Backfill Ma	terial: Sand		
Refusa	al Depth:	NA				Well D	iameter:	4	Abandonm	ent Completion	Date: 1	11/15/11
Depth	Sample	Recovery	Field S		Blow (Counts		Geologic Description		Comments	Aba	ndonment
(feet)	Interval	(inches)	(ppm)	0 15		1 20						Detail
()		(inches)										
0-	0.5	Г								1		
	05							ASPHALT: Asphalt		Hand cleared		
	.5-1	100%						FILL-SOIL: Sub base		boring to 4 fbg.		
1	1-2	100%						SW: sand and gravel, some s	ilt. drv			
								brown, moldy odor	nt, dry,	Laboratory		
-	2-3	100%	13.4					CW111	114 1	Sample GESB-7 (1-2		
								SW: sand and gravel, some s brown, no odor	iit, ary,	fbg)		
-	2.4	1000/	2.0	/								
	3-4	100%	3.0					CL: clay and silt, trace sand,	brown, no			
								odor, moist to slightly wet				
1	4-6	100%	2.6					CL: high clay content and sil	t, trace sand,			
					-	,		brown, no odor, moist, no od	or	Laboratory		
5-					No blow Coulits Recorded	5				Sample GESB-7 (4-8		
					l ow					fbg)		
_					5							
	6-8	50%	1.6				0.000000 1717-1717	CL: clay and sand, brown, m	oist to dry,			
					(000		il Glylylin il hlylyly	no odor				
1					ucu	1	HAHAN.					
-	8-10	40%	0.9	•						-		
	0-10	4070	0.5					No recovery				
]												
10 –	10-12	0%	NA				12.4.2.7.2.5m	CL: clay and sand, brown, m	oist dry to	-		
								cl: clay and sand, brown, m slightly moist, no odor	oist, ary to			
-								-				
		10%	1.0				19.19.11					<u>:</u>

ı	Proportions Usea:	Notes:		tration Resistance.	Symbols:	
	Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level	,
	Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location	-
	Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	Lab Gample Location	
	Some = 20-30%	Son Ethiologies based on field observations only.	4-8 = Medium 8-15 = Stiff	10-30 = Medium		
	Adjective = 30-40%		15-30 = Very Stiff	30-50 = Dense		
	And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-7 p. 1 of 1	
l	•		,	50> = Very Dense	GESB-7 p. 1 of 1	

Groundwater & Environmental Services, Inc.

ID NO. GESB-8

		ce a Li					-	.=	= •	_		-	
			•			orClient: NYSDEC			Regulatory Case #: 819017				
) Gilbert S	Street I	LeRoy,	NY			1102236	•	ry Case Mg	r:Jas	on P	elton
Cour	nty: Gen	iesee				GES	Project	Mgr: Paul Lindell	Permit #: NA				
•		ole Jarzynie	cki			Date Drilled: 11/15/11			Split Spoon/Acetate Sleeve Dia: NA				
1	g Compai	•				Completion Date: 11/15/11				n/Acetate Slee		-	
	perator:							Hollow Stem Auger		fication Systen			
		Track Moun	ited Rig					od: Split Spoon		ening: PID 10.9			(ppm)
Boreh	ole Diam	eter: 4''				Surfac	e Elevation	on: NA	Abandonm	ent Method: B	ackfil	led	
Total [Depth: 14	4'				Depth	to Water:	NA		terial: Sand			
Refusa	al Depth:	NA					iameter:	4	Abandonm	ent Completion			
Depth	Sample	Recovery	Field S (ppm)		Blow	Counts		Geologic Description		Comments	A	band	onment
(feet)	Interval	(inches)	(PP)	0 15		1 20						D	etail
		(/											
0-			_			^	<u> </u>					<u> </u>	
								FILL-SOIL: Sub base		Hand cleared boring to 4			
-	0-1	100%								fbg.			
	0-1	100%						SW: sand and gravel, some si content, dry, brown, no odor	lt and clay				
-	1, 2	1000/	2.7	1				Content, dry, brown, no odor					
	1-2	100%	2.7				iti iti iti	SM: sand with silt and clay, b	prown, no				
_							<mark>jiljiljil</mark>	odor, slightly moist		Laboratory Sample GESB-8 (2-3	\mathbb{H}		
	2-3	100%	1.5					CL: clay with some silt, brow slightly moist	n, no odor,	GESB-8 (2-3 fbg)			
-	3-4	100%	1.0				[2][2][2][2][2][2][2][2][2][2][2][2][2][SC: sand and clay, brown, dry	y, no odor	-			
5-													
					1 6	E E	1/////						
	4-6	15%	1.2		8	Tow .	$\sqrt{\sim}$	SW: sand and gravel, light br	own, dry, no				
								odor					
]						nte I							
					1	2000	74.						
1	6-8	50%	4.7		THO PION COMING INCOME	nder.		SW: sand, some gravel, some	clay, slight]			
					,			odor, dry					
1	1												
							$7\Delta^{\circ}$						
10 –	8-10	15%	1.6					SW: sand and gravel, some cl	lav. slight	1			
								odor, dry	,,5.11	Laboratory	\mathbb{R}		
-										Sample GESB-8 (10-			
							$\nabla \Delta_{\ell}$			12 fbg)			
-	10-12	25%	5.7	}				CXX 1 1 1 1	1, 1	-			
							···/	SW: sand and gravel, some si wet	It, no odor,				
-													
	12-14	20%	1.8	1									
	12-14	20/0	1.0			V							

Proportions Use Trace = <5% Few = 5-109 Little = 10-20	NA = not available; fbg. = feet below grade in. = inches; ft.= feet; ppm.= parts per million	Blow Count Pen Consistency (M&C) <2 = Very Soft 2-4 = Soft 4-8 = Medium	0-4 = Very Loose 4-10 = Loose	Symbols: Apparent Water Level ▼ Lab Sample Location
Some = 20-30 Adjective = 30-40		8-15 = Stiff 15-30 = Very Stiff	10-30 = Medium 30-50 = Dense	
And = $>40\%$		>30 = Very Stiff >30 = Hard	50> = Very Dense	GESB-8 p. 1 of 1

Groundwater & Environmental Services, Inc.

ID NO. GESB-9

		EDEC L						TC	Demiler	n. Oc "	-	
			-							ory Case #: 819017		
		Gilbert S	Street L	екоу,	NY				_	gulatory Case Mgr: Jason Pelton		
	ty: Gen					, , ,			Permit #:			
	-	ole Jarzynie	cki				rilled: 11			n/Acetate Slee		
-	Compar	-						e: 11/15/11			ve Length: NA	
	perator: 1					_		Hollow Stem Auger		-	n: USCS/Burmister	
		Track Moun	ited Kig			-		d: Split Spoon			eV Lamp (ppm)	
Boreho	ole Diame	eter: 4''				Surface	e Elevatio	n: NA	Abandonm	ent Method: B	ackfilled	
Total D	Depth: 12	: '				Depth 1	to Water:	NA	Backfill Ma	terial: Sand		
Refusa	al Depth:	NA				Well Di	iameter:	4	Abandonm	ent Completio	n Date: 11/15/11	
Depth	Sample	Recovery	Field S (ppm)		Blow C	Counts		Geologic Description		Comments	Abandonment	
(feet)	Interval	(inches)	(ppiii)	0 15		1 20					Detail	
` '		(ITICITICS)										
0-		Т					TYTYTYT			1		
		100%						ASPHALT	/	Hand cleared		
		100%					7 \sqr	FILL-SOIL: Sub base	/	boring to 4 fbg.		
-	0-1	100%	4.1				1.0.4.7.0m 1.1.1.1.7.4	CW sand and arrayal same a	slav bearin	105.		
								SW: sand and gravel, some of dry, no odor	ciay, brown,			
-	1-2	100%	3.0	ł				CL: clay and sand, brown, di	n, to moist			
	1-2	10070	3.0				<mark> </mark>	no odor	ly to moist,			
							Hililii	SM: sand with silt, brown, no	o odor	Laboratory Sample		
Ī	2-3	100%	1.0				/////	slightly moist	/ J Odor,	GESB-9 (2-3		
							/////	SC: sand and clay, brown, no	odor moist	fbg)		
-	3-4	100%	1.1				<u>7.7 7.</u>	to wet	odor, moist			
								CLAY: clay, reddish brown,	dry, no odor			
5-					0	Ť						
					5100	2		SW: dry sand and gravel, no	odor			
					2		$7\triangle$					
-	4-6	50%	0.9		No Blow Counts Recorded			SW: sand and gravel, dry, br	own no odor	-		
					S Ke			5 w : sand and graver, dry, or	own, no odor			
_					cord							
					l ed							
							$7\triangle$					
-	6-8	50%	1.5	1				SW: sand and gravel, dry, br	orve no odon	-		
								Sw: sand and gravel, dry, or	own, no odor	Laboratory		
										Sample		
										GESB-9 (8- 10 fbg)		
										1010g)		
10 –	8-10	50%	2.7	 				CTT 1 1 1 1 1		_		
								SW: sand and gravel, dry, br odor, red at bottom	own, no			
								,				
	10-12	40%	1.6	•		,						
										<u> </u>		
_								Diam C. 15	in a David			
Propo	ortions Us	sed: No	otes:					Blow Count Pentrat	Donaity (C. %-C	<u>e:</u> <u>Sy</u>	mbols:	

Proportions Used:	Notes:	Blow Count Pen	tration Resistance.	Symbols:
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location
T 11 10 200/		2-4 = Soft	4-10 = Loose	Lab cample Lecation 2
Some = 20-30%	Son Entitologies based on field observations only.	4-8 = Medium 8-15 = Stiff	10-30 = Medium	
Adjective = 30-40%		15-30 = Very Stiff	30-50 = Dense	
And = >40%		>30 = Hard	50> = Very Dense	GESB-9 p. 1 of 1

Groundwater & Environmental Services, Inc.

ID NO. GESB-10

		SDEC LeI				rClient		FC	Pogulator	y Case #: {	210017	
-) Gilbert S	-					1102236			51901/ r:Jason Pelton	
	ty: Ger		ou cet 1	zertoj,	111			Mgr: Paul Lindell	Permit #:		·· Jason I citon	
		ole Jarzynie	cki			Date Drilled: 11/15/11			Split Spoon/Acetate Sleeve Dia: NA			
	Compai	-	CM					e: 11/15/11			ve Length: NA	
-	perator:	-						Hollow Stem Auger			n: USCS/Burmister	
Drill Ri	g Type:	Track Moun	ted Rig			_		d: Split Spoon		-	eV Lamp (ppm)	
Boreho	ole Diam	eter: 4"				Surface	e Elevatio	n: NA	Abandonm	ent Method: B	ackfilled	
Total D	Depth: 14	4'				-	to Water:			terial: Sand		
Refusa	l Depth:	NA					iameter: 4	1	Abandonm	ent Completio	n Date: 11/15/11	
Depth	Sample	Recovery	Field S (ppm)		Blow	Counts		Geologic Description		Comments	Abandonment	
(feet)	Interval	(inches)		0 25		1 20					Detail	
		, ,										
0-7		1000/			/	\wedge		ASPHALT		TT 1 1 1		
		100%					V ₄		/	Hand cleared boring to 4		
-	0-1	100%					1919/11	FILL-SOIL: Sub base	/	fbg.		
							1.9.9.9.1 in 1.9.1.9.1.7.1.7	CL: sandy clay with gravel, b	orown,			
-	1-2	100%	1.1				/://,/://	slightly, moist, no odor	/	1		
_		1000/						SC: clayey sand, brown, sligh odor	htly moist, no			
	2-3	100%	2.0				<u> </u>	SC: clayey sand, brown, slight odor	htly moist, no	Laboratory Sample		
5-	3-4	100%	3.5					SM: sand and silt, some clay no odor, brown	content, dry,	GESB-10 (3- 4 fbg)		
-	4-6	15%	1.1		o blow Coults Ixe	No Blow Counts Recorded		SW: sand and gravel, no odo	r, dry, brown			
-	6-8	50%	1.0		Coluca	Sorded		SW: sand and gravel, some codor	clay, dry, no			
10 - -	8-10	15%	3.8					SW: sand and gravel, some codor	elay, dry, no	Laboratory Sample GESB-10		
-	10-12	25%	22.1					SW: sand and gravel, some codor	elay, wet, no	(10-12 fbg)		
	12-14	20%	1.2		\		$7\Delta^{\circ}$					
		1	•							ı	1 1 100 100	

Proportions Used: Notes: Blow Count Pentration Resistance: Symbols:				
Proportions Used:	Notes:	Blow Count Pen	tration Resistance.	Symbols:
Trace = <5%	$\overline{NA} = \text{not available}$; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level 🔽
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location
Little = 10-20%		2-4 = Soft	4-10 = Loose	Lab Sample Location 🔟
Some = 20-30%	Soil Lithologies based on field observations only.	4-8 = Medium	10-30 = Medium	
Adjective = $30-40\%$		8-15 = Stiff	30-50 = Dense	
· ·		15-30 = Very Stiff		GESB-10 p. 1 of 1
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-10 p. 1 of 1

Groundwater & Environmental Services, Inc.

ID NO. **GESB-11** Page 1 of 1

Grot	unawa	ter & En	iviron	ment	aı Ser\	/ices	, inc.	יון טו	o. GE	/1 / -11	'	age	1 01 1
Proje	ect: NYS	SDEC Lel	Roy - L	app In	sulator	· Client: NYSDEC			Regulatory Case #: 819017				
Addr	ess: 13 (Gilbert S	Street I	LeRoy,	NY	GES	Job #:	1102236	Regulatory Case Mgr: Jason Pelton				
Cour	nty: Gen	iesee				GES Project Mgr: Paul Lindell			Permit #: NA				
Logge	d By: Nic	ole Jarzynie	cki			Date I	Drilled: 1	1/16/11	Split Spoor	/Acetate Slee	ve Dia	: NA	
Drilling	g Compai	ny: QISI				Comp	letion Da	te: 11/16/11	Split Spoor	/Acetate Slee	ve Ler	ngth:	NA
	perator:							: Hollow Stem Auger		ication Systen			
		Track Moun	ited Rig			Samp	ling Metr	nod: Split Spoon		ening: PID 10.9			(ppm)
Boreh	ole Diam	eter: 4"					ce Elevat		Abandonm	ent Method: B	ackfill	led	
	Depth: 14						to Wate		Backfill Ma				
Refusa	al Depth:	NA	l =: · · · o		D: 0		Diameter:	4	Abandonm	ent Completio			
Depth	Sample	Recovery	Field S (ppm))	Blow Co			Geologic Description		Comments	A		onment
(feet)	Interval	(inches)	". '	0 20	1 <u>-</u>	20						D	etail
	•	1	•							•			
0		100%			\wedge		(X X X	FILL-GRAVEL: Gravel		Hand cleared			
		10070						\	/	boring to 4			
-	0-1.5							ASPHALT		fbg.			
		100%						SW: sandy gravel, brown, no	odor, moist				
-	1.5-2	100%	0.3	*				CL: clay and sand, some grave	el. brown.				
								moist, no odor	, ,	Laboratory	\mathbb{H}		
-	2-3	100%	0.2	1				CL: clay with some sand, brow	vn. moist to	Sample GESB-11 (2-			
								very moist, some silt content,		3 fbg)			
-	3-4	100%	0.7	·				CL: clay with some sand and s	gravel.				
								brown, wet, some silt content,					
5-													
					No No								
-	4-6	30%	1.8	•	Blov		1.7. (1.) .7. (1.)	SC: clayey sand, brown, moist	t. no odor.				
					v Co			little silt content	,				
-					unts		///////						
					Rec		!://,						
-	6-8	10%	1.4		No Blow Counts Recorded			SC: clayey sand, brown, moist	t. no odor				
					ا			little silt content, rock in appro					
-								50% of sample					
							//////						
10 –	8-10	15%	5.6				/////////	SC: clayey sand, brown, moist	t no odor				
								little silt content, rock in appro		Laboratory	\mathbb{H}		
-				\ \			<i>!/[!/</i>]	50% of sample		Sample GESB-11			
							/////			(10-12 fbg)			
-	10-12	25%	12.2)				SC: clayey sand, brown, moist	t no odor				
							<i>!://, !:/.</i> /	little silt content, rock in appro	oximately				
-							//////	50% of sample, lots of rock fra	agments				
	12-14	15%	3.6	1			/./. /./.	REFUSAL					
		1	1									· ·	

		DI 0 (D			_
Proportions Used:	Notes:	Blow Count Pen	tration Resistance:	Symbols:	
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level	
Few = 5-10%		<2 = Very Soft	0-4 = Very Loose	• • •	NZ
Little = 10-20%	in. = inches; ft.= feet; ppm.= parts per million	2-4 = Soft	4-10 = Loose	Lab Sample Location	\mathbb{H}
	Soil Lithologies based on field observations only.	4-8 = Medium			
Some = $20-30\%$		8-15 = Stiff	10-30 = Medium		
Adjective = $30-40\%$		15-30 = Very Stiff	30-50 = Dense		
And = >40%		>30 = Hard	50> = Very Dense	GESB-11 p. 1 of 1	1

Groundwater & Environmental Services, Inc.

ID NO. **GESB-12** Page 1 of 1

			Roy - Lapp			-	DEC	Regulator	y Case #:	819017			
Addre	ess: 130	0 Gilbert S	Street LeRo	y, NY	GES	S Job #:	1102236	Regulator	y Case Mg	:Jason Pelton			
Coun	ty: Gen	iesee			GES Project Mgr: Paul Lindell Date Drilled: 11/16/11 Completion Date: 11/16/11 Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon			Permit #:	Permit #: NA				
Drilling Drill Op	Compai							Split Spoor Soil Classif	Split Spoon/Acetate Sleeve Dia: NA Split Spoon/Acetate Sleeve Length: NA Soil Classification System: USCS/Burmist Field Screening: PID 10.9 eV Lamp (ppm)				
Boreho	ole Diam	eter: 4"			Surfa	ce Elevat	ion: NA	Abandonm	ent Method: B	ackfilled			
otal D	Depth: 12	2'			Depth	n to Wate	r: NA	Backfill Ma	terial: Sand				
	Il Depth:					Diameter:		Abandonm	ent Completion	n Date: 11/16/11			
Depth		Recovery	Field Scree	n Blow C	ounts		Geologic Description		Comments	Abandonmen			
feet)	Interval		(ppm) 0	20	1 20					Detail			
0-7							ACDIALE						
		100%					ASPHALT	/	Hand cleared boring to 4				
- {	0-1	100%					FILL-SOIL: Sub base		fbg.				
	0 1	10070					SM: silty sand, some clay, odor, dry	brown, no					
	1-2	100%	4.3			i Segem Hillion Hillion	CL: sandy clay, some silt a brown, moist, no odor	nd gravel,					
-	2-3	100%	4.3				ML: Clayey sand, some gra	avel, brown,	Laboratory Sample				
5-	3-4	100%	7.6	No Blow			ML: Clayey sand, some granor odor, moist	avel, brown,	GESB-12 (3- 4 fbg)				
-	4-6	30%	5.2	No Blow Counts Recorded -			ML: Clayey sand, some gra	ivel, brown,					
-	6-8	15%	3.9				SM: sandy silt, dry, no odo	r, brown	Laboratory Sample GESB-12 (8-	\mathbb{H}			
10 -	8-10	25%	10.1				SM: sandy silt, dry to mois brown, high rock content	it, no odor,	10 fbg)				
		30%	5.0		/								
Propo Trace	ortions U	<u></u>	otes: not available;	fbg. = feet	below g	rade	Blow Count Pentra Consistency (M&C)	ation Resistance Density (G&S	/ ~,	mbols:			
Fev Little		0% in. = i	nches; ft.= fe	et; ppm.= p	arts per	million	<2 = Very Soft 2-4 = Soft 4-8 = Medium	0-4 = Very Loc 4-10 = Loose	ise	nple Location			

Trace = <5% Few = 5-10% Little = 10-20% Some = 20-30% Adjective = 30-40%	NA = not available; fbg. = feet below grade in. = inches; ft.= feet; ppm.= parts per million Soil Lithologies based on field observations only.	 Consistency (M&C) <2 = Very Soft 2-4 = Soft 4-8 = Medium 8-15 = Stiff 15-30 = Very Stiff 	0-4 = Very Loose 4-10 = Loose 10-30 = Medium 30-50 = Dense	Apparent Water Level Lab Sample Location
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-12 p. 1 of 1

SOIL BORING/WELL COMPLETION LOG ID NO. GESB-13/BRW-1 Page 1 of 1 Groundwater & Environmental Services, Inc. Project: NYSDEC LeRoy - Lapp Insulator Client: NYSDEC Regulatory Case #: 819017 Address: 130 Gilbert Street LeRoy, NY Regulatory Case Mgr: Jason Pelton GES Job #: 1102236 County: Genesee GES Project Mgr: Paul Lindell Permit #: NA Logged By: Nicole Jarzyniecki Date Drilled: 11/18/11 Split Spoon/Acetate Sleeve Dia: NA Drilling Company: QISI Completion Date: 11/16/11 Split Spoon/Acetate Sleeve Length: NA Drill Operator: Ron Drilling Method: Hollow Stem Auger/Air Rotagoil Classification System: USCS/Burmister Drill Rig Type: Track Mounted Rig Sampling Method: Split Spoon Field Screening: PID 10.9 eV Lamp (ppm) Borehole Diameter: 4" Surface Elevation: NA Abandonment Method: Backfilled Total Depth: 12' Depth to Water: NA Backfill Material: Sand Refusal Depth: NA Well Diameter: 4 Abandonment Completion Date: NA Field Screen **Blow Counts** Abandonment Depth | Sample | Recovery Geologic Description Comments (ppm) Detail 1 20 0 15 Interval (feet) (inches) 0 100% Hand cleared **ASPHALT** boring to 4 0 - 1.5100% 0.3 fbg. FILL-SOIL: Sub base 1.5-2 100% 0.2 Well 2-3 100% SM: Silty sand and gravel, brown, no \mathbb{X} Laboratory 3-4 100% 1.1 Sample Seal 5 GESB-13 (3-100% SM: Silty sand and gravel, brown, no 4 fbg) odor, dry 0.5 4-6 SM: Silty sand and gravel, brown, no odor, moist 6-8 50% 1.0 Laboratory SM: Silty sand and gravel with clay, Casing Sample GESB-13 Grout 10 brown, no odor, moist 8-10 75% 0.6 (10-12 fbg) \mathbb{X} ML: Clay and silt with some sand, brown No Blow Counts Recorded to reddish brown, dry to slightly moist, no 10-11.5 40% 4.0 SC: Clayey sand, brown, slightly moist, 12.5-14 30% 2.5 no odor 15 75% 2.3 SM: Sandy silt to silt, yellowish brown to 14-16 orange brown, slightly moist, no odor SM: Silty sand, yellowish brown, some gravel, wet, no odor 20 REFUSAL: Cobble SM: Silty sand, yellowish brown, some gravel, wet, no odor SM: Silty sand, yellowish brown, some Open Core gravel, saturated, no odor 25 SHALE: Bedrock **BEDROCK** 30

Trace = <5% Few = 5-10% Little = 10-20% Some = 20-30% NA = not available; fbg. = feet below grade in. = inches; ft.= feet; ppm.= parts per million Soil Lithologies based on field observations only. NA = not available; fbg. = feet below grade in. = inches; ft.= feet; ppm.= parts per million Soil Lithologies based on field observations only. Consistency (M&C) Density (G&S) <p>22 = Very Soft 4-10 = Loose 4-8 = Medium 8-15 = Stiff 10-30 = Medium</p>	Prop	ortions	Used:	Notes:	Blow Count Pen	tration Resistance:	Symbols:
Few = 5-10% Little = 10-20% Some = 20 30% Little = 10-20% Soli Lithologies based on field observations only.	Trac	ce = <	<5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level
Little = 10-20% Soil Lithologies based on field observations only. 2-4 = SOIT 4-10 = Loose 4-8 = Medium 10-30 = Medium	Fe	ew = 5	5-10%	in. = inches: ft.= feet: ppm.= parts per million	,	0-4 = Very Loose	
Como = 20.200/	Litt	le = 10	0.200/			4-10 = Loose	Lab Cample Location .
	Soi	me = 20	0-30%	Soft Ethiologies based on field observations only.		10-30 = Medium	
Adjective = 30-40% 15-30 = Very Stiff 30-50 = Dense	Adie	ctive $= 3$	80-40%			30-50 = Dense	
And = $>40\%$ $>30 = \text{Hard}$ $50 > = \text{Very Dense}$ GESB-13/BRW-1 p. 1 of 1	J					50> = Very Dense	GESB-13/BRW-1 p. 1 of 1

Groundwater & Environmental Services, Inc.

ID NO. **GESB-14**

Address: 130 County: Gen Logged By: Nice Drilling Compar Drill Operator: 10 Drill Rig Type: 10 Borehole Diame Total Depth: 16 Refusal Depth:	Gilbert S esee ole Jarzynie ny: QISI Ron Frack Moun eter: 4"	Street L	eRoy,	GES Date Comp Drillin Samp Surfa Depth	nt: NYSDEC S Job #: 1102236 S Project Mgr: Paul Lindell Drilled: 11/16/11 pletion Date: 11/16/11 g Method: Hollow Stem Auger pling Method: Split Spoon ce Elevation: NA n to Water: NA Diameter: 4 Geologic Description	Regulatory Case Regulatory Case Permit #: NA Split Spoon/Acetate Split Spoon/Acetate Soil Classification Sy Field Screening: PID Abandonment Metho Backfill Material: San Abandonment Comp	Mgr: Ja Sleeve I Sleeve I vstem: U 0 10.9 eV od: Back ad	Dia: NA Length: NA SCS/Burmister Lamp (ppm)
(feet) Interval	(inches)	(ppiii)) 15	1 20				Detail
0-1 1-2 2-3 3-4 5- 4-6 - 6-8 10-12 10-12 12-14 15- 14-16	100% 100% 100% 100% 100% 30% 30%	0.4 1.1 0.9 1.0 1.6 3.3		No Blow Counts Recorded	ASPHALT FILL-SOIL: Sub base SM: silty sand and gravel, b odor, dry SM: silty sand and clay, son brown, no odor, moist SM: silty sand, up to approx clay, some gravel, brown to odor, moist ML: sand and clay, some silt reddish brown, dry, no odor SC: clayey sand, reddish brown, dry, no odor SM: sand and silt, some roccombrown, dry, no odor SM: sand and silt, some roccombrown, dry, no odor SM: sand and silt with appa weathered rock, brown to day, no odor ML: silt with clay, greyish be odor	rown, no Laborato Sample GESB-14 3 fbg) Laborato Sample GESB-14 3 fbg) Laborato Sample GESB-14 1	4 rry 1 1 1 1 1 1 1 1 1	

<u>Proportions used:</u>	Notes:		tration Resistance.	<u>Symbols:</u>	
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level 🔻	
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location	
Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	Lab cample Location .	٠
Some = $20-30\%$	Soft Ethiologies based on field observations only.	4-8 = Medium 8-15 = Stiff	10-30 = Medium		
Adjective = 30-40%		15-30 = Very Stiff	30-50 = Dense		
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-14 p. 1 of 1	
And = >=0/0			30> = very Bense	9-2 1	

Groundwater & Environmental Services, Inc.

ID NO. GESB-15

			TVII OIIIIIC							<u> </u>			
-									Regulatory Case #: 819017				
			Street LeRo	oy, NY				_	-	:Jason Pelton			
	ty: Gen						t Mgr: Paul Lindell	Permit #:					
	•	ole Jarzynie	cki			Drilled: 1		Split Spoon/Acetate Sleeve Dia: NA					
-	Compar	-					ate: 11/17/11		Split Spoon/Acetate Sleeve Length: NA				
	perator: 1	Ron Frack Moun	nted Rig			-				ssification System: USCS/Burmister reening: PID 10.9 eV Lamp (ppm)			
Boreh	ole Diame	eter: 4"			Surfa	ice Elevat	tion: NA	Abandonm	ent Method: B	ackfilled			
Total [Depth: 12	2'			Deptl	h to Wate	r: NA	Backfill Ma	terial: Sand				
Refusa	al Depth:	NA			Well	Diameter	: 4	Abandonm	ent Completio	n Date: 11/17/11			
Depth	Sample	Recovery	Field Scree (ppm)	n Blow	Counts		Geologic Description		Comments	Abandonment			
(feet)	Interval	(inches)	0	15	1 20					Detail			
		()	-	<u> </u>									
0¬		1		: 11						I I I I I I I I I I I I I I I I I I I			
							ASPHALT: 1" sub base follomultiple layers of asphalt	owed by	Hand cleared boring to 4 fbg.				
	0-1	100%					FILL-SOIL: Sub base with s silt, brown, no odor, dry	ome sand and					
-	1-2	100%	1.2				SM: sand and silt, some clay no odor, brown	content, dry,	Laboratory Sample				
-	2-3	100%	1.0				SM: sand and silt, some clay no odor, brown	content, dry,	GESB-15 (1- 2 fbg) Laboratory Sample				
5-	3-4	100%	0.9		—— No Blow (ML: silty clay, approximatel gravel, little sand, brown, mo		GESB-15 (3-4 fbg)				
-	4-6	30%	0.7		No Blow Counts Recorded —		ML: silty clay, approximatel gravel, little sand, brown, mo						
-	6-8	15%	0.3				ML: silty clay, approximatel gravel, little sand, brown, mo						
10 -	8-10	40%	0.5			V. Av	SW: gravely sand, some clay moist, no odor	content,					
	10-12	30%	0.3										

		DI 0 (D	5		
Proportions Used:	Notes:	Blow Count Pen	tration Resistance:	Symbols:	
Trace = <5%		Consistency (M&C)	Density (G&S)		
	NA = not available; fbg. = feet below grade	3 \ /		Apparent Water Level 🔈	Y
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Cample Leastion	\mathbb{H}
	iii. – inches, it.– feet, ppiii.– parts per infinon	2-4 = Soft	4-10 = Loose	Lab Sample Location	
Little = 10-20%	Soil Lithologies based on field observations only.	4-8 = Medium	4-10 = Loose		
Some = 20-30%	Bon Emilologico cuscu on nela cosci valiono omy.		10-30 = Medium		
		8-15 = Stiff	20.50 B		
Adjective = $30-40\%$		15-30 = Very Stiff	30-50 = Dense		
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-15 p. 1 of 1	1
Aliu – >40%		> 50 = 11ard	30/ = Very Delise	GEOD IC P C	

Groundwater & Environmental Services, Inc.

ID NO. GESB-16

Giot	iliuwa	lei & Ei	IVIIOIIII	nema	ai Seivi	ces, i	inc.	10 NO. G			•		·
Proje	ct: NYS	SDEC Lel	Roy - La	pp In	sulator C	Client:	NYS	DEC	Regulator	y Case #: 8	31901	7	
Addre	ess: 13 0	Gilbert S	Street L	eRoy,	NY (GES J	lob #:	1102236	Regulator	y Case Mgi	:Jaso	n Pelto	n
Coun	ty: Gen	esee			(GES F	Projec	t Mgr: Paul Lindell	Permit #:	NA			
Logge	d By: Nic e	ole Jarzynie	cki		D	Date Dri	illed: 1	1/17/11		n/Acetate Slee			
7	Compar	•						te: 11/17/11		n/Acetate Slee		-	
	perator:]					_		: Hollow Stem Auger		ication System			
		Frack Moun	ited Rig			-		od: Split Spoon		ening: PID 10.9)
	ole Diame							ion: NA	Abandonm	ent Method: B	ackfill	ed	
	Depth: 12					Depth to) Water	: NA		terial: Sand			
Refusa	al Depth:	NA	I =: · · · =			Vell Dia	ameter:	4	Abandonm	ent Completion			
Depth	Sample	Recovery	Field Sc (ppm)	reen	Blow Cou	ınts		Geologic Description		Comments	At	oandonme	ent
(feet)	Interval	(inches)	" ' 'C) 15	1	20						Detail	
											l		
0-		1			_	1						1 1	
						7		FILL-SOIL: Sub base		Hand cleared boring to 4			
_						×.				fbg.			
	0-1.5					7		SW: sand and gravel, some su	h basa dev				
		100%						blackish brown, mild odor	ib base, dry,		\mathbb{R}		
-	1.5-2	100%	4.6	1			111111	ML: silt and clay with approx	imataly	Laboratory			
				1			! ; ! ! ; ! : i ! ! ; !	25% sand, some gravel, brown		Sample GESB-16 (1-			
-	2.2	1000/		(1		dry		2 fbg)			
	2-3	100%	2.4	V			iiliil	ML: silt and clay with approx					
				\				25% sand, some gravel, brown moist	n, no odor,	Laboratory Sample	\mathbb{R}		
-	3-4	100%	6.0)					/	GESB-16 (3-			
				1			iiiiii	ML: silt and clay, trace gravel brown, no odor, moist	l and sand,	4 fbg)			
5-					No B	i							
				/	low		!;i!;i						
					Cou	i	iljilj						
	4-6	75%	0.7		ints l	i		ML: silt and clay, trace gravel	l and sand,				
					Reco			brown, no odor, moist					
-					No Blow Counts Recorded	i	iliili						
						į	iljilj						
	6-8	30%	2.5				iliili	ML: silt and clay, trace gravel	l and sand,				
							!;i!;i	brown, no odor, wet					
-						i	iljilj						
							$[\cdot, \cdot]$						
10 -	0.46	550					didi						
	8-10	75%	1.9					SM: silty sand, some clay and	gravel,				
						i;	!ij!ij!	saturated, no odor					
-							iliilii						
	10-12	75%	0.7			l li							
			1		\downarrow	ji	ljiljil					1 1	

Proportions Used:	Notes:		tration Resistance:	Symbols:
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location
T 11 10 200/	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	Lab Cample Location 25
Some = 20-30%	Son Ethiologies based on field observations only.	4-8 = Medium 8-15 = Stiff	10-30 = Medium	
Adjective = 30-40%		15-30 = Very Stiff	30-50 = Dense	
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-16 p. 1 of 1

Groundwater & Environmental Services, Inc.

ID NO. GESB-17

GIO	unuwa	lei & Ei	IVIIOIII	ment	ai Seiv	ices	, iiiC.	1D 110.		. ,		9	
Proje	ect: NYS	SDEC Lel	Roy - L	app Ir	sulator	Clier	nt: NYS	DEC	Regulator	y Case #:	8190	17	
Addr	ess: 13 0) Gilbert S	Street L	eRoy,	, NY	GES	3 Job #:	1102236	Regulator	y Case Mg	r:Ja	son]	Pelton
Cour	nty: Gen	iesee				GES	S Projec	t Mgr: Paul Lindell	Permit #:	NA			
	-	ole Jarzynie	cki			Date	Drilled: 1	1/17/11		n/Acetate Slee			
	g Compar	-						ite: 11/17/11		n/Acetate Slee		_	
	perator:		.4. J D!-				_	Hollow Stem Auger		ication System			
		Track Moun	nea Kig					nod: Split Spoon		ening: PID 10.9			(ppm)
	ole Diame						ce Elevat			ent Method: B	ackfi	lled	
	Depth: 12						n to Wate			terial: Sand	_		
	al Depth:		Field S	oroon	Blow Co		Diameter:		Abandonm	ent Completion			/17/11 donment
Depth		Recovery	(ppm)					Geologic Description		Comments	′		Detail
(feet)	Interval	(inches)		0 5	1	20 ——							Detail
_													
0-					\uparrow			FILL-SOIL: Sub base and a	asphalt	Hand cleared boring to 4			
-	0-1	100%						SW: black gravel and sand,	, mild odor, dry	fbg.			
-	1-2	100%	0.7					ML: silt and clay with sand brown, no odor, dry	and gravel,	Laboratory Sample GESB-17 (1- 2 fbg)	\mathbb{H}		
-	2-3	100%	0.3					ML: silty clay, trace gravel odor, moist	, brown, no	_ 2 10g)			
5-	3-4	100%	0.5		No Blow Co			ML: silty clay, trace gravel yellowish brown, no odor,		Laboratory Sample GESB-17 (4- 6 fbg)	\mathbb{H}		
-	4-6	40%	0.3		No Blow Counts Recorded ——			ML: sandy silt and clay, so brown, wet, no odor	me gravel,				
-	6-8	90%	0.3					ML: sandy silt and clay, so brown, moist to wet, no ode					
10 -	8-10	60%	0.3					ML: sandy silt and clay, so some weathered rock, brow wet, no odor					
-	10-12	50%	0.5		\downarrow								

Proportions Used:	Notes:		tration Resistance:	Symbols:
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level 🔻
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location
Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	Lab Sample Location
Some = 20-30%	Soil Lithologies based on field observations only.	4-8 = Medium	10-30 = Medium	
Adjective = $30-40\%$		8-15 = Stiff 15-30 = Very Stiff	30-50 = Dense	
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-17 p. 1 of 1
7 Hid = >4070		1,72	cos . ery Bense	· ·

Groundwater & Environmental Services, Inc.

ID NO. GESB-18

					al Sel Vices	-	.5 31		-		J	
-			•		sulatorClien				y Case #: {			
		Gilbert	Street 1	LeRoy,			1102236	Regulator	y Case Mg	r:Jaso	on Pelt	ton
Coun	ty: Gen	esee			GES	Project	Mgr: Paul Lindell	Permit #:	NA			
Logge	d By: Nic o	ole Jarzynio	ecki		Date D	Orilled: 11	/18/11	Split Spoon	/Acetate Slee	ve Dia	: NA	
Drilling	Compar	ny: QISI			Compl	etion Dat	e: 11/18/11	Split Spoon	/Acetate Slee	ve Ler	ngth: N	A
	perator: 1				-		Hollow Stem Auger		ication System			
Drill Ri	g Type: 1	Frack Mou	nted Rig		Sampl	ing Metho	od: Split Spoon	Field Scree	ening: PID 10.9	eV La	mp (pp	m)
Boreh	ole Diame	eter: 4"			Surfac	e Elevation	on: NA	Abandonme	ent Method: B	ackfill	ed	
Total [Depth: 12	2'			Depth	to Water:	NA NA	Backfill Mat	terial: Sand			
Refusa	al Depth:	NA			Well D	iameter:	4	Abandonme	ent Completio	n Date	: 11/18/	11
Depth	Sample	Recovery	Field S		Blow Counts		Geologic Description		Comments	Al	oandonr	ment
(feet)	Interval	(inches)	(ppm	0 10	1 20						Deta	ıil
(1001)		(IIICHES)										
0-							,					
					\uparrow		FILL-SOIL: Sub base and su		Hand cleared			
							with sandy material, dry, no	odor	boring to 4 fbg.			
	0-1	100%	5.8	1		: 0	FILL-SOIL: Sub base - airkn	ifed	log.			
							TIEE SOIE. Sub base ankii	ned				
-	1.0	00/	l _{NTA}	/		2/4			T -1			
	1-2	0%	NA			: <u></u>	FILL-SOIL: Sub base mixed		Laboratory Sample			
							and gravel, dry, no odor, brov	wn	GESB-18 (2-3 fbg)	\mathbb{R}		
-	2-3	100%	1.8				SM: silty sand and gravel, dr	v to slightly	3 10g)			
							moist, no odor, reddish brow					
-	2.4	1000/	1.0	1		<u> </u>						
	3-4	100%	1.0				SM: silty sand and gravel, dr moist, no odor, reddish brow					
_					Z		moist, no odor, reddish brow.	П				
5-					No Blow Counts Recorded							
) wc							
-	4-6	10%	0.6		oun							
	4-0	1070	10.0		ts R		SM: silty sand and gravel, dr moist, no odor, reddish brow					
					ecor		apparent rock	11, 1111				
_					ded							
-	6-8	5%	0.3	1		<u>lidlidlid</u>						
	0-8	370	10.3	\ \			ROCK					
_												
10 -	8-10	5%	NA									
	0-10	370	INA			iiliili	ML: clayey silt and gravel, di odor	ry, brown, no				
						!!i!!i!	odoi		Laboratory Sample	\mathbb{H}		
-				1					GESB-18			
	10-12	50%	6.0						(10-12 fbg)			
ا			1		\bigvee					Ш	3 3	
	ortions Us		otes:				Blow Count Pentrati		_ 2	mbols		
Trac	e = <5%	NA =	not avail	able; fb	g. = feet below g	grade	Consistency (M&C)	Density (G&S)	Apparer	nt Wat	er Level	l 👱

i Toportions Osea.	<u>Notes:</u>		tration recolotarioc.	Symbols:
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location
Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	
Some = 20-30%	Son Ethiologies based on field observations only.	4-8 = Medium 8-15 = Stiff	10-30 = Medium	
Adjective = 30-40%		15-30 = Very Stiff	30-50 = Dense	
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-18 p. 1 of 1

Groundwater & Environmental Services, Inc.

ID NO. GESB-19

Grou	ınawa	ter & En	iviron	ment	aı Serv	vices	, inc.	טאו טו	POD-17		'	age i	01 1
Proje	ct: NYS	SDEC Lel	Roy - L	app In	sulator	Client:	NYSD	DEC	Regulator	ry Case #: {	81901	17	
Addre	ess: 13 0	Gilbert S	Street I	LeRoy,	NY	GES .	Job #:	1102236	Regulator	ry Case Mg	r:Jas	on Pel	ton
Coun	ity: Gen	esee				GES F	Project	Mgr: Paul Lindell	Permit #:	NA			
Logge	d By: Nice	ole Jarzynie	cki			Date Dr	illed: 11	/18/11	Split Spoor	n/Acetate Slee	ve Dia	: NA	
Drilling	g Compar	ny: QISI				Comple	tion Date	e: 11/18/11	Split Spoor	n/Acetate Slee	ve Ler	ngth: N	J A
	perator:]							Hollow Stem Auger		fication System			
Drill Ri	ig Type: 1	Frack Moun	ted Rig		,	Samplir	ng Metho	od: Split Spoon	Field Scree	ening: PID 10.9	eV La	amp (pj	pm)
Boreh	ole Diame	eter: 4"				Surface	Elevation	on: NA	Abandonm	ent Method: B	ackfill	ed	
Total [Depth: 12	2'				Depth to	o Water:	NA	Backfill Ma	terial: Sand			
Refusa	al Depth:	NA			,	Well Dia	ameter:	4	Abandonm	ent Completion	n Date	: 11/18	/11
Depth	Sample	Recovery	Field S (ppm)		Blow C	ounts		Geologic Description		Comments	A	bandor	nment
(feet)	Interval	(inches)	(ppiii	0 5	,	1 20						Deta	ail
		()											
0¬		Ι	1				,			Ī		<u>. </u>	
							>	FILL-SOIL: Sub base and s with sandy material, dry, no		Hand cleared			
								with sandy material, dry, no	odor	boring to 4 fbg.			
	0-1	100%						SW: Stone and sand, dry, br	own, no odor				
-	1-2	100%	1.0	1			1/1/1/1/						
								SC: Clayey sand, some grav slightly moist, no odor	el, trace silt,				
							/://.//				\mathbb{H}		
	2-3	100%	0.6	N			<i>!://, !:/.</i>	SC: Clayey sand (increased					
				l N			/////	some gravel, trace silt, sligh odor, dark brown	tty moist, no	Laboratory			
-	3-4	100%	3.0)			/./. /./ //////	SC: Clayey sand with grave	1 ma adam	Sample GESB-19 (3-			
							!!/ !! !/://.;!	brown	i, iio odoi,	4 fbg)			
5-				/	<u>S</u>								
				1	No Blow Counts Recorded								
					3,		//////						
-	4-6	60%	0.6	1	unts		1.//, 1.1./	SC: Clayey sand with grave	l no odor	-			
					Rec		//////	brown, dry to slightly moist					
-					orde								
					~								
							//////						
-	6-8	30%	0.7					ML: Siltly clay and gravel,	brown.				
							11:11:1	slightly moist, no odor	,				
-													
4.0													
10 –	8-10	15%	1.7				:::::::	ML: Siltly clay and gravel,	brown.	-			
				\\			liiliil	slightly moist, no odor	,	Laboratory	NA		
-										Sample GESB-19	\mathbb{H}		
	10.15	150								(10-12 fbg)			
	10-12	15%	2.9		\downarrow	/	jiljilj						
_													

Proportions Used:	Notes:		tration Resistance:	Symbols:
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location
Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	Lab Sample Location
Some = 20-30%	Soil Lithologies based on field observations only.	4-8 = Medium	10-30 = Medium	
Adjective = 30-40%		8-15 = Stiff 15-30 = Very Stiff	30-50 = Dense	
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-19 p. 1 of 1
7 Hid = > 4070			e es very Bense	

Groundwater & Environmental Services, Inc.

ID NO. GESB-20

		SDEC Lel						DEC.	Desulate		2400		
-		Gilbert S	•					1102236		ry Case #: { ry Case Mg			14
			street 1	Lenoy,					_	-	. Jas	on Pe	llon
	ty: Gen							Mgr: Paul Lindell	Permit #:				
Logged By: Nicole Jarzyniecki Drilling Company: QISI							illed: 11			n/Acetate Slee			т 4
-		-						e: 11/18/11		n/Acetate Slee		-	
	perator: 1	коп Гrack Moun	ted Rig			_		Hollow Stem Auger od: Split Spoon		fication Systen ening: PID 10. 9			
Boreho	ole Diame	eter: 4"				Surface	Elevation	on: NA	Abandonm	ent Method: B	ackfil	led	
Total D	Depth: 12	:'			[Depth to	Water:	NA	Backfill Ma	terial: Sand			
Refusa	al Depth:	NA			١	Well Dia	ameter:	4	Abandonm	ent Completio	n Dat	e: 11/18	3/11
Depth	Sample	Recovery	Field S (ppm		Blow Co	ounts		Geologic Description		Comments	А	bandor	nment
(feet)	Interval	(inches)	(ppiii	0 5	1	1 20						Det	ail
		, ,											
0-7							:: <u>/</u>	FILL COIL Cod barr			П	1 1	
							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FILL-SOIL: Sub base		Hand cleared boring to 4			
_	0.1	1000/								fbg.			
	0-1	100%						SC: Clayey sand and gravel, be no odor	orown, dry,				
							/////	no odor		Laboratory Sample	\mathbb{H}		
_	1-2	100%	1.7				idgiyinh XXXXXX	CL: Clayey sand and sandy cl		GESB-20 (1-			
							14.4.4.4.5m 14.5.6.5.	interchanging with gravel, mo	oist, no odor,	2 fbg)			
-	2-3	100%	1.6	1						-			
	2-3	10070	1.0					ML: Clayey silt, slightly mois brown	st, no odor,				
							jiljilj	olowii		Laboratory Sample	\mathbb{H}		
Ī	3-4	100%	0.7					ML: Clayey silt and gravel, m	noist, no	GESB-20 (3-			
								odor, brown		4fbg)			
5-					lo B		jiljilj						
					low								
			l		Cou		jiljilj						
	4-6	60%	0.8		nts I		hi ii ii	SM: Silty sand and gravel, bro	own, dry, no				
					₹eco		ijijij	odor					
-					No Blow Counts Recorded		!!!!!!						
					lī		liiliilii						
_		2004					<u>iiliiliil</u>			_			
	6-8	30%	0.5					SM: Silty sand and gravel, bro	own, dry, no				
								odor					
-							!!!!!!!						
10 -	0.10	150/	0.6				<u>iiliiliil</u>						
	8-10	15%	0.6				igigig	SM: Silty sand and gravel, bro	own, dry, no				
								odor					
	10-12	10%	0.8			,							
							riljiljil					3	
D:	ortiona I le							Plow Count Pontration	on Docistor	0:			

Proportions Usea:	Notes:		tration Resistance.	Symbols:	
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level	,
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location	
Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	Lab Gample Location 2	7
Some = $20-30\%$	Son Entiologies based on field observations only.	4-8 = Medium 8-15 = Stiff	10-30 = Medium		
Adjective = 30-40%		15-30 = Very Stiff	30-50 = Dense		
And = $>40\%$		>30 = Hard	50> = Very Dense	GESB-20 p. 1 of 1	

SOIL BORING/WELL COMPLETION LOG

Groundwater & Environmental Services, Inc. ID NO. BRW-2

Project: NYSDEC LeRoy - Lapp InsulatorClient: NYSDEC

Address: 130 Gilbert Street LeRoy, NY GES Job #: 1102236

Regulatory Case #: 819017

Regulatory Case Mgr: Jason Pelton

County: NA GES Project Mgr: Paul Lindell Permit #: NA

Logged By: Nicole JarzynieckiDate Drilled: 11/17-18/11Split Spoon/Acetate Sleeve Dia: NADrilling Company: QISICompletion Date: 11/17/11Split Spoon/Acetate Sleeve Length: NADrill Operator: RonDrilling Method: Hollow Stem Auger/Air Rotar Soil Classification System: USCS/BurmisterDrill Rig Type: Track Mounted RigSampling Method: Split SpoonField Screening: PID 10.9 eV Lamp (ppm)

Page 1 of 1

Borehole Diameter: 4" Surface Elevation: NA Abandonment Method: NA

Total Depth: 30' Depth to Water: NA Backfill Material: N

Refusal Depth: NA Well Diameter: 4 Abandonment Completion Date: NA

Depth (feet)	Sample Interval	1	Field Screen (ppm) 0 5	Blow Counts 1 20	Geologic Description	Comments	Abandonment Detail
		•	•				•

Proportions Used:	Notes:		tration Resistance:	Symbols:
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)	Density (G&S)	Apparent Water Level
Few = $5-10\%$	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	Lab Sample Location
Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft	4-10 = Loose	Lab Sample Location 25
Some = 20-30%	Soil Lithologies based on field observations only.	4-8 = Medium	10-30 = Medium	
Adjective = 30-40%		8-15 = Stiff 15-30 = Very Stiff	30-50 = Dense	
And = $>40\%$		>30 = Hard	50> = Very Dense	BRW-2 p. 1 of 1
And = >4070			30> = very Bense	

APPENDIX C

Laboratory Analytical Reports - Soil

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-13036-1

Client Project/Site: NYSDEC - Lapp Insulators: Site#?

Revision: 1

For:

New York State D.E.C. 625 Broadway 9th Floor Albany, New York 12233-7258

Attn: Jason Pelton

Authorized for release by:

12/5/2011 8:40:59 AM

Melissa Deyo

Project Administrator

melissa.deyo@testamericainc.com

Designee for

Brian Fischer

Project Manager II

brian.fischer@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Melissa Deyo

Project Administrator 12/5/2011 8:40:59 AM

Melisso Deyo

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

TestAmerica Job ID: 480-13036-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Lab Chronicle	34
Certification Summary	37
Method Summary	38
Sample Summary	39
Chain of Custody	40
Receipt Checklists	42

2

4

5

6

8

9

10

4 -

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-13036-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

3

1

5

O

8

9

10

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Job ID: 480-13036-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-13036-1

Comments

This report was revised to change the units of measure form ug/kg to mg/kg.

Receipt

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): GESB-17 (4-6) (480-13036-14). The container labels list GESB-17 (4-8). The COC lists GESB-17 (4-6). The COC id was used for login.

All other samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) precision for batch 41619 was outside control limits The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision met acceptance criteria.

Method(s) 8260B: The following sample(s) was diluted due to the abundance of target analytes: GESB-11 (10-12) (480-13036-2). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

3

4

5

6

Ŏ

9

10

Client: New York State D.E.C.

Date Collected: 11/16/11 09:22

Date Received: 11/18/11 16:50

trans-1,2-Dichloroethene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,3-Dichloropropene

Project/Site: NYSDEC - Lapp Insulators: Site#?

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: GESB-11 (2-3)

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-1

Matrix: Solid Percent Solids: 88.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.0054	0.00039	mg/Kg	\		11/23/11 05:12	1
1,1,2,2-Tetrachloroethane	ND		0.0054	0.00087	mg/Kg	₽		11/23/11 05:12	1
1,1,2-Trichloroethane	ND		0.0054	0.00070	mg/Kg	₩		11/23/11 05:12	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0054	0.0012	mg/Kg	₽		11/23/11 05:12	1
1,1-Dichloroethane	ND		0.0054	0.00065	mg/Kg	₩		11/23/11 05:12	1
1,1-Dichloroethene	ND		0.0054	0.00066	mg/Kg	₩		11/23/11 05:12	1
1,2,4-Trichlorobenzene	ND		0.0054	0.00033	mg/Kg	₽		11/23/11 05:12	1
1,2-Dibromo-3-Chloropropane	ND		0.0054	0.0027	mg/Kg	₽		11/23/11 05:12	1
1,2-Dibromoethane	ND		0.0054	0.00069	mg/Kg	₩		11/23/11 05:12	1
1,2-Dichlorobenzene	ND		0.0054	0.00042	mg/Kg	₽		11/23/11 05:12	1
1,2-Dichloroethane	ND		0.0054	0.00027	mg/Kg	₩		11/23/11 05:12	1
1,2-Dichloropropane	ND		0.0054	0.0027	mg/Kg	₩		11/23/11 05:12	1
1,3-Dichlorobenzene	ND		0.0054	0.00028	mg/Kg	\$		11/23/11 05:12	1
1,4-Dichlorobenzene	ND		0.0054	0.00075	mg/Kg	₩		11/23/11 05:12	1
2-Hexanone	ND		0.027	0.0027	mg/Kg	₽		11/23/11 05:12	1
2-Butanone (MEK)	ND		0.027	0.0020	mg/Kg	₩		11/23/11 05:12	1
4-Methyl-2-pentanone (MIBK)	ND		0.027	0.0018	mg/Kg	₩		11/23/11 05:12	1
Acetone	ND		0.027	0.0045	mg/Kg	₩		11/23/11 05:12	1
Benzene	ND		0.0054	0.00026	mg/Kg	₩		11/23/11 05:12	1
Bromodichloromethane	ND		0.0054	0.00072	mg/Kg	₩		11/23/11 05:12	1
Bromoform	ND		0.0054	0.0027	mg/Kg	₩		11/23/11 05:12	1
Bromomethane	ND		0.0054	0.00048	mg/Kg			11/23/11 05:12	1
Carbon disulfide	ND		0.0054	0.0027	mg/Kg	₩		11/23/11 05:12	1
Carbon tetrachloride	ND		0.0054	0.00052	mg/Kg	₩		11/23/11 05:12	1
Chlorobenzene	ND		0.0054	0.00071	mg/Kg	₽		11/23/11 05:12	1
Dibromochloromethane	ND		0.0054	0.00069	mg/Kg	₩		11/23/11 05:12	1
Chloroethane	ND		0.0054	0.0012	mg/Kg	₩		11/23/11 05:12	1
Chloroform	ND		0.0054	0.00033	mg/Kg	₽		11/23/11 05:12	1
Chloromethane	ND		0.0054	0.00032	mg/Kg	₩		11/23/11 05:12	1
cis-1,2-Dichloroethene	ND		0.0054	0.00069	mg/Kg	₩		11/23/11 05:12	1
cis-1,3-Dichloropropene	ND		0.0054	0.00077	mg/Kg	₩		11/23/11 05:12	1
Cyclohexane	ND		0.0054	0.00075	mg/Kg	₩		11/23/11 05:12	1
Dichlorodifluoromethane	ND		0.0054	0.00044	mg/Kg	₩		11/23/11 05:12	1
Ethylbenzene	ND		0.0054	0.00037	mg/Kg	₩		11/23/11 05:12	1
Isopropylbenzene	ND		0.0054	0.00081	mg/Kg	₩		11/23/11 05:12	1
Methyl acetate	ND		0.0054	0.0010	mg/Kg	₩		11/23/11 05:12	1
Methyl tert-butyl ether	ND		0.0054	0.00053	mg/Kg	₽		11/23/11 05:12	1
Methylcyclohexane	ND		0.0054	0.00081	mg/Kg	₩		11/23/11 05:12	1
Methylene Chloride	ND		0.0054	0.0025	mg/Kg	₩		11/23/11 05:12	1
Styrene	ND		0.0054	0.00027	mg/Kg			11/23/11 05:12	1
Tetrachloroethene	ND		0.0054	0.00072	mg/Kg	₩		11/23/11 05:12	1
Toluene	ND		0.0054	0.00040	mg/Kg	₩		11/23/11 05:12	1

11/23/11 05:12

11/23/11 05:12

11/23/11 05:12

11/23/11 05:12

11/23/11 05:12

11/23/11 05:12

0.0054

0.0054

0.0054

0.0054

0.0054

0.011

ND

ND

ND

ND

ND

ND

0.00055 mg/Kg

0.0024 mg/Kg

0.0012 mg/Kg

0.00051 mg/Kg

0.00065 mg/Kg

0.00090 mg/Kg

ф

₩

₽

₽

₩

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-11 (2-3)

Date Collected: 11/16/11 09:22 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-1

TestAmerica Job ID: 480-13036-1

Matrix: Solid

Percent Solids: 88.4

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	64 - 126		11/23/11 05:12	1
Toluene-d8 (Surr)	102	71 - 125		11/23/11 05:12	1
4-Bromofluorobenzene (Surr)	109	72 - 126		11/23/11 05:12	1

5

5

6

Ω

9

10

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-11 (10-12)

Date Collected: 11/16/11 09:32 Date Received: 11/18/11 16:50

Toluene-d8 (Surr)

Lab Sample ID: 480-13036-2

Matrix: Solid Percent Solids: 82.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.0059	0.00096	mg/Kg	- -		11/23/11 05:37	1
1,1,2-Trichloroethane	ND		0.0059	0.00077	mg/Kg	₩		11/23/11 05:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0059	0.0013	mg/Kg	₽		11/23/11 05:37	1
1,1-Dichloroethane	0.043		0.0059	0.00072	mg/Kg	₽		11/23/11 05:37	1
1,1-Dichloroethene	0.024		0.0059	0.00072	mg/Kg	₩		11/23/11 05:37	1
1,2,4-Trichlorobenzene	ND		0.0059	0.00036	mg/Kg	₽		11/23/11 05:37	1
1,2-Dibromo-3-Chloropropane	ND		0.0059	0.0030	mg/Kg	₩		11/23/11 05:37	1
1,2-Dibromoethane	ND		0.0059	0.00076	mg/Kg	₩		11/23/11 05:37	1
1,2-Dichlorobenzene	ND		0.0059	0.00046	mg/Kg	₽		11/23/11 05:37	1
1,2-Dichloroethane	ND		0.0059	0.00030	mg/Kg	\$		11/23/11 05:37	1
1,2-Dichloropropane	ND		0.0059	0.0030	mg/Kg	₽		11/23/11 05:37	1
1,3-Dichlorobenzene	ND		0.0059	0.00030	mg/Kg	₽		11/23/11 05:37	1
1,4-Dichlorobenzene	ND		0.0059	0.00083	mg/Kg	φ		11/23/11 05:37	1
2-Hexanone	ND		0.030	0.0030	mg/Kg	₽		11/23/11 05:37	1
2-Butanone (MEK)	ND		0.030	0.0022		₽		11/23/11 05:37	1
4-Methyl-2-pentanone (MIBK)	ND		0.030	0.0019				11/23/11 05:37	1
Acetone	ND		0.030	0.0050		₩		11/23/11 05:37	1
Benzene	ND		0.0059	0.00029		₽		11/23/11 05:37	1
Bromodichloromethane	ND		0.0059	0.00079				11/23/11 05:37	1
Bromoform	ND		0.0059	0.0030	0 0	₽		11/23/11 05:37	1
Bromomethane	ND		0.0059	0.00053		₽		11/23/11 05:37	1
Carbon disulfide	ND		0.0059	0.0030		ф		11/23/11 05:37	1
Carbon tetrachloride	ND		0.0059	0.00057		₽		11/23/11 05:37	1
Chlorobenzene	ND		0.0059	0.00078		₽		11/23/11 05:37	1
Dibromochloromethane	ND		0.0059	0.00076				11/23/11 05:37	· 1
Chloroethane	ND.		0.0059		mg/Kg	\$		11/23/11 05:37	1
Chloroform	ND		0.0059	0.00036		₽		11/23/11 05:37	1
Chloromethane	ND		0.0059	0.00036		· · · · · · · · · · · ·		11/23/11 05:37	
cis-1,2-Dichloroethene	ND.		0.0059	0.00076		\$		11/23/11 05:37	1
cis-1,3-Dichloropropene	ND		0.0059	0.00085		₽		11/23/11 05:37	1
Cyclohexane	ND		0.0059	0.00083				11/23/11 05:37	
Dichlorodifluoromethane	ND		0.0059	0.00049		\$		11/23/11 05:37	1
Ethylbenzene	ND		0.0059	0.00041		₽		11/23/11 05:37	1
Isopropylbenzene	ND		0.0059	0.00089				11/23/11 05:37	· · · · · · · · · · · · · · · · · · ·
Methyl acetate	ND.		0.0059		mg/Kg	*		11/23/11 05:37	1
Methyl tert-butyl ether	ND		0.0059	0.00058		.⇔		11/23/11 05:37	1
Methylcyclohexane	ND		0.0059	0.00090		· · · · · · · ·		11/23/11 05:37	
Methylene Chloride	ND		0.0059		mg/Kg	*		11/23/11 05:37	1
Styrene	ND		0.0059	0.00030		₽		11/23/11 05:37	1
			0.0059	0.00030				11/23/11 05:37	
Tetrachloroethene Toluene	0.0016 0.00062		0.0059	0.00079		₽		11/23/11 05:37	1
trans-1,2-Dichloroethene	0.00062 ND	•	0.0059	0.00045		≎		11/23/11 05:37	1
	ND		0.0059		mg/Kg	~ 		11/23/11 05:37	ا 1
trans-1,3-Dichloropropene	ND ND		0.0059	0.0026		₩		11/23/11 05:37	
Trichlorofluoromethane						₩		11/23/11 05:37	1
Vilones, Total	ND		0.0059	0.00072					1 ₁
Xylenes, Total	ND		0.012	0.00099	ilig/ r .g	**		11/23/11 05:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		64 - 126			-		11/23/11 05:37	1

11/23/11 05:37

71 - 125

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-11 (10-12)

Date Collected: 11/16/11 09:32 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-2

Matrix: Solid

Percent Solids: 82.3

Method: 8260B - Volatile Organic									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		72 - 126					11/23/11 05:37	1
Method: 8260B - Volatile Organic Compounds (GC/MS) - DL Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa									
1,1,1-Trichloroethane	2.3		0.12	0.033	mg/Kg	‡	11/29/11 10:33	11/29/11 13:39	1
Trichloroethene	1.2		0.12	0.033	mg/Kg	₽	11/29/11 10:33	11/29/11 13:39	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	53 - 146	11/29/11 10:33	11/29/11 13:39	1
Toluene-d8 (Surr)	94	50 - 149	11/29/11 10:33	11/29/11 13:39	1
4-Bromofluorobenzene (Surr)	97	49 - 148	11/29/11 10:33	11/29/11 13:39	1

0

46

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-3

Matrix: Solid

Percent Solids: 85.7

Client Sample	ID: GESB-12 ((3-4)
---------------	---------------	-------

Date Collected: 11/16/11 10:35 Date Received: 11/18/11 16:50

Analyte	Result Q	·	MDL			Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	0.0025 J	0.0056	0.00041	mg/Kg	<u> </u>		11/28/11 15:59	
1,1,2,2-Tetrachloroethane	ND	0.0056	0.00091	mg/Kg	₽		11/28/11 15:59	
1,1,2-Trichloroethane	ND	0.0056	0.00073	mg/Kg	₽		11/28/11 15:59	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0056	0.0013	mg/Kg	₽		11/28/11 15:59	
1,1-Dichloroethane	ND	0.0056	0.00069	mg/Kg	₽		11/28/11 15:59	
1,1-Dichloroethene	ND	0.0056	0.00069	mg/Kg	₩		11/28/11 15:59	
1,2,4-Trichlorobenzene	ND	0.0056	0.00034	mg/Kg	₩		11/28/11 15:59	
1,2-Dibromo-3-Chloropropane	ND	0.0056	0.0028	mg/Kg	₩		11/28/11 15:59	
1,2-Dibromoethane	ND	0.0056	0.00072	mg/Kg	₽		11/28/11 15:59	
1,2-Dichlorobenzene	ND	0.0056	0.00044	mg/Kg	≎		11/28/11 15:59	
1,2-Dichloroethane	ND	0.0056	0.00028	mg/Kg	₽		11/28/11 15:59	
1,2-Dichloropropane	ND	0.0056	0.0028	mg/Kg	₽		11/28/11 15:59	
I,3-Dichlorobenzene	ND	0.0056	0.00029	mg/Kg	\$		11/28/11 15:59	
I,4-Dichlorobenzene	ND	0.0056	0.00079	mg/Kg	₩		11/28/11 15:59	
2-Hexanone	ND	0.028	0.0028	mg/Kg	₽		11/28/11 15:59	
2-Butanone (MEK)	ND	0.028	0.0021	mg/Kg	₽		11/28/11 15:59	
1-Methyl-2-pentanone (MIBK)	ND	0.028	0.0018	mg/Kg	₽		11/28/11 15:59	
Acetone	ND	0.028	0.0047	mg/Kg	₽		11/28/11 15:59	
Benzene	ND	0.0056	0.00028				11/28/11 15:59	
Bromodichloromethane	ND	0.0056	0.00075		≎		11/28/11 15:59	
Bromoform	ND	0.0056	0.0028		₽		11/28/11 15:59	
Bromomethane	ND	0.0056	0.00051				11/28/11 15:59	
Carbon disulfide	ND	0.0056	0.0028		₽		11/28/11 15:59	
Carbon tetrachloride	ND	0.0056	0.00055		₽		11/28/11 15:59	
Chlorobenzene	ND	0.0056	0.00074				11/28/11 15:59	
Dibromochloromethane	ND	0.0056	0.00072		₽		11/28/11 15:59	
Chloroethane	ND	0.0056	0.0013		₽		11/28/11 15:59	
Chloroform	ND	0.0056	0.00035		 Ф		11/28/11 15:59	
Chloromethane	ND	0.0056	0.00034		₽		11/28/11 15:59	
cis-1,2-Dichloroethene	ND	0.0056	0.00072		₽		11/28/11 15:59	
sis-1,3-Dichloropropene	ND	0.0056	0.00081				11/28/11 15:59	
Cyclohexane	ND	0.0056	0.00079		₩		11/28/11 15:59	
Dichlorodifluoromethane	ND	0.0056	0.00047		₩		11/28/11 15:59	
Ethylbenzene	ND	0.0056	0.00039				11/28/11 15:59	
sopropylbenzene	ND	0.0056	0.00085		₽		11/28/11 15:59	
Methyl acetate	ND	0.0056	0.0010		₽		11/28/11 15:59	
Methyl tert-butyl ether	ND	0.0056	0.00055				11/28/11 15:59	
Methylcyclohexane	ND	0.0056	0.00086		₽		11/28/11 15:59	
Methylene Chloride	0.0026 J		0.0026		₽		11/28/11 15:59	
Styrene	0.0026 J	0.0056	0.0028				11/28/11 15:59	
Fetrachloroethene	ND	0.0056	0.00026		₽		11/28/11 15:59	
Foluene	ND	0.0056					11/28/11 15:59	
rans-1,2-Dichloroethene	ND	0.0056	0.00043 0.00058		 \$		11/28/11 15:59	
,					₩			
rans-1,3-Dichloropropene	ND	0.0056	0.0025		₩		11/28/11 15:59	
Frichloroethene	0.0023 J		0.0012		¥ 		11/28/11 15:59	
Frichlorofluoromethane	ND	0.0056	0.00053		₩ ₩		11/28/11 15:59	
/inyl chloride Kylenes, Total	ND ND	0.0056 0.011	0.00069	mg/Kg mg/Kg	₩ ₩		11/28/11 15:59	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-12 (3-4)

Date Collected: 11/16/11 10:35 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-3

Matrix: Solid

Percent Solids: 85.7

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	64 - 126		11/28/11 15:59	1
Toluene-d8 (Surr)	102	71 - 125		11/28/11 15:59	1
4-Bromofluorobenzene (Surr)	117	72 - 126		11/28/11 15:59	1

5

5

7

8

9

Client: New York State D.E.C.

Date Collected: 11/16/11 10:39

Date Received: 11/18/11 16:50

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-12 (8-10)

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-4

Matrix: Solid

matrix. Cona	
Percent Solids: 83.3	

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	0.11		0.0057	0.00041		\$		11/23/11 06:27	
,1,2,2-Tetrachloroethane	ND		0.0057	0.00092		₩		11/23/11 06:27	
,1,2-Trichloroethane	ND		0.0057	0.00074	mg/Kg	₩		11/23/11 06:27	
,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0057	0.0013	mg/Kg	₽		11/23/11 06:27	
,1-Dichloroethane	0.0046	J	0.0057	0.00069	mg/Kg	₩		11/23/11 06:27	
,1-Dichloroethene	ND		0.0057	0.00070	mg/Kg	₩		11/23/11 06:27	
,2,4-Trichlorobenzene	ND		0.0057	0.00035	mg/Kg	₽		11/23/11 06:27	
,2-Dibromo-3-Chloropropane	ND		0.0057	0.0028	mg/Kg	₩		11/23/11 06:27	
,2-Dibromoethane	ND		0.0057	0.00073	mg/Kg	₩		11/23/11 06:27	
,2-Dichlorobenzene	ND		0.0057	0.00044	mg/Kg	₽		11/23/11 06:27	
,2-Dichloroethane	ND		0.0057	0.00029	mg/Kg	₽		11/23/11 06:27	
,2-Dichloropropane	ND		0.0057	0.0028	mg/Kg	₽		11/23/11 06:27	
,3-Dichlorobenzene	ND		0.0057	0.00029	mg/Kg	₽		11/23/11 06:27	
,4-Dichlorobenzene	ND		0.0057	0.00080	mg/Kg	₽		11/23/11 06:27	
?-Hexanone	ND		0.028	0.0028	mg/Kg	₩		11/23/11 06:27	
P-Butanone (MEK)	ND		0.028	0.0021	mg/Kg	₩		11/23/11 06:27	
-Methyl-2-pentanone (MIBK)	ND		0.028	0.0019	mg/Kg	₩		11/23/11 06:27	
Acetone	ND		0.028	0.0048	mg/Kg	₽		11/23/11 06:27	
Benzene	ND		0.0057	0.00028	mg/Kg	₽		11/23/11 06:27	
Bromodichloromethane	ND		0.0057	0.00076	mg/Kg	₩		11/23/11 06:27	
Bromoform	ND		0.0057	0.0028	mg/Kg	₩		11/23/11 06:27	
Bromomethane	ND		0.0057	0.00051	mg/Kg	Φ		11/23/11 06:27	
Carbon disulfide	ND		0.0057	0.0028		₩		11/23/11 06:27	
Carbon tetrachloride	ND		0.0057	0.00055		₩		11/23/11 06:27	
Chlorobenzene	ND		0.0057	0.00075	mg/Kg	Φ		11/23/11 06:27	
Dibromochloromethane	ND		0.0057	0.00073		₽		11/23/11 06:27	
Chloroethane	ND		0.0057	0.0013		₩		11/23/11 06:27	
Chloroform	ND		0.0057	0.00035				11/23/11 06:27	
Chloromethane	ND		0.0057	0.00034		₩		11/23/11 06:27	
sis-1,2-Dichloroethene	ND		0.0057	0.00073		₩		11/23/11 06:27	
is-1,3-Dichloropropene	ND		0.0057	0.00082				11/23/11 06:27	
Cyclohexane	ND		0.0057	0.00080		₽		11/23/11 06:27	
Dichlorodifluoromethane	ND		0.0057	0.00047		₩		11/23/11 06:27	
Ethylbenzene	ND		0.0057	0.00039				11/23/11 06:27	
sopropylbenzene	ND		0.0057	0.00086	0 0	₩		11/23/11 06:27	
Nethyl acetate	ND		0.0057	0.0011		₩		11/23/11 06:27	
Methyl tert-butyl ether	ND		0.0057	0.00056				11/23/11 06:27	
Methylcyclohexane	ND		0.0057	0.00086		₩		11/23/11 06:27	
Methylene Chloride	ND		0.0057	0.0026		₩		11/23/11 06:27	
Styrene	ND		0.0057	0.00028				11/23/11 06:27	
Tetrachloroethene	ND		0.0057	0.00026		₽		11/23/11 06:27	
oluene	ND		0.0057	0.00073		₩		11/23/11 06:27	
rans-1,2-Dichloroethene	ND		0.0057	0.00043		 \$		11/23/11 06:27	
						₩			
rans-1,3-Dichloropropene	ND 0.054		0.0057	0.0025		₩		11/23/11 06:27	
richloroethene	0.051		0.0057	0.0013		¥ 		11/23/11 06:27	
richlorofluoromethane	ND		0.0057	0.00054				11/23/11 06:27	
/inyl chloride	ND ND		0.0057 0.011	0.00069 0.00095		\$		11/23/11 06:27 11/23/11 06:27	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-12 (8-10)

Date Collected: 11/16/11 10:39 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-4

TestAmerica Job ID: 480-13036-1

Matrix: Solid

Percent Solids: 83.3

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		64 - 126		11/23/11 06:27	1
Toluene-d8 (Surr)	103		71 _ 125		11/23/11 06:27	1
4-Bromofluorobenzene (Surr)	109		72 - 126		11/23/11 06:27	1

5

5

8

4 C

Client: New York State D.E.C.

Date Collected: 11/16/11 14:18 Date Received: 11/18/11 16:50

Xylenes, Total

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-13 (3-4)

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-5

Percent Solids: 71.2

_		
	Matrix: Solid	
	Danis and Oallalas 74.0	

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.040	0.0065	0.00047	mg/Kg	\		11/23/11 06:52	
1,1,2,2-Tetrachloroethane	ND	0.0065	0.0011	mg/Kg	₽		11/23/11 06:52	
1,1,2-Trichloroethane	ND	0.0065	0.00085	mg/Kg	₽		11/23/11 06:52	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0065	0.0015	mg/Kg	₽		11/23/11 06:52	
1,1-Dichloroethane	ND	0.0065	0.00080	mg/Kg	₽		11/23/11 06:52	
1,1-Dichloroethene	ND	0.0065	0.00080	mg/Kg	₩		11/23/11 06:52	
1,2,4-Trichlorobenzene	ND	0.0065	0.00040	mg/Kg	₽		11/23/11 06:52	
1,2-Dibromo-3-Chloropropane	ND	0.0065	0.0033	mg/Kg	₽		11/23/11 06:52	
1,2-Dibromoethane	ND	0.0065	0.00084	mg/Kg	₽		11/23/11 06:52	
1,2-Dichlorobenzene	ND	0.0065	0.00051	mg/Kg	¢		11/23/11 06:52	
1,2-Dichloroethane	ND	0.0065	0.00033	mg/Kg	₩		11/23/11 06:52	
1,2-Dichloropropane	ND	0.0065	0.0033	mg/Kg	₽		11/23/11 06:52	
1,3-Dichlorobenzene	ND	0.0065	0.00034	mg/Kg	ф		11/23/11 06:52	
1,4-Dichlorobenzene	ND	0.0065	0.00091	mg/Kg	₽		11/23/11 06:52	
2-Hexanone	ND	0.033	0.0033	mg/Kg	₽		11/23/11 06:52	
2-Butanone (MEK)	ND	0.033	0.0024	mg/Kg	₽		11/23/11 06:52	
4-Methyl-2-pentanone (MIBK)	ND	0.033	0.0021	mg/Kg	₽		11/23/11 06:52	
Acetone	ND	0.033	0.0055	mg/Kg	₩		11/23/11 06:52	
Benzene	ND	0.0065	0.00032	mg/Kg	₩		11/23/11 06:52	
Bromodichloromethane	ND	0.0065	0.00087	mg/Kg	₩		11/23/11 06:52	
Bromoform	ND	0.0065	0.0033	mg/Kg	₩		11/23/11 06:52	
Bromomethane	ND	0.0065	0.00059	mg/Kg	₩		11/23/11 06:52	
Carbon disulfide	ND	0.0065	0.0033	mg/Kg	₩		11/23/11 06:52	
Carbon tetrachloride	ND	0.0065	0.00063	mg/Kg	₩		11/23/11 06:52	
Chlorobenzene	ND	0.0065	0.00086	mg/Kg	\$		11/23/11 06:52	
Dibromochloromethane	ND	0.0065	0.00084	mg/Kg	₩		11/23/11 06:52	
Chloroethane	ND	0.0065	0.0015	mg/Kg	₽		11/23/11 06:52	
Chloroform	ND	0.0065	0.00040	mg/Kg			11/23/11 06:52	
Chloromethane	ND	0.0065	0.00039	mg/Kg	₽		11/23/11 06:52	
cis-1,2-Dichloroethene	ND	0.0065	0.00084	mg/Kg	₽		11/23/11 06:52	
cis-1,3-Dichloropropene	ND	0.0065	0.00094	mg/Kg	₽		11/23/11 06:52	
Cyclohexane	ND	0.0065	0.00091	mg/Kg	₽		11/23/11 06:52	
Dichlorodifluoromethane	ND	0.0065	0.00054	mg/Kg	₽		11/23/11 06:52	
Ethylbenzene	ND	0.0065	0.00045	mg/Kg	\$		11/23/11 06:52	
Isopropylbenzene	ND	0.0065	0.00098	mg/Kg	₽		11/23/11 06:52	
Methyl acetate	ND	0.0065	0.0012	mg/Kg	₽		11/23/11 06:52	
Methyl tert-butyl ether	ND	0.0065	0.00064	mg/Kg	\$		11/23/11 06:52	
Methylcyclohexane	ND	0.0065	0.00099	mg/Kg	₽		11/23/11 06:52	
Methylene Chloride	ND	0.0065	0.0030	mg/Kg	₽		11/23/11 06:52	
Styrene	ND	0.0065	0.00033	mg/Kg	\$		11/23/11 06:52	
Tetrachloroethene	ND	0.0065	0.00088	mg/Kg	₽		11/23/11 06:52	
Toluene	ND	0.0065	0.00049	mg/Kg	₽		11/23/11 06:52	
trans-1,2-Dichloroethene	ND	0.0065	0.00067	mg/Kg	₽		11/23/11 06:52	
trans-1,3-Dichloropropene	ND	0.0065	0.0029	mg/Kg	₽		11/23/11 06:52	
Trichloroethene	0.028	0.0065	0.0014	mg/Kg	₩		11/23/11 06:52	
Trichlorofluoromethane	ND	0.0065	0.00062	mg/Kg	₩		11/23/11 06:52	
Vinyl chloride	ND	0.0065	0.00080	mg/Kg	₩		11/23/11 06:52	
V	ND	0.040	0.0044		×		11/22/11 06:52	

11/23/11 06:52

₩

0.013

0.0011 mg/Kg

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-13 (3-4)

Lab Sample ID: 480-13036-5

TestAmerica Job ID: 480-13036-1

·	• • • • • • • • • • • • • • • • • • • •
Matrix: Solid	Date Collected: 11/16/11 14:18
Percent Solids: 71.2	Date Received: 11/18/11 16:50

Percent Solids: 71.2

Surrogate	%Recovery	Qualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	64 - 12	11/23/11 06:52	1
Toluene-d8 (Surr)	102	71 - 12	5 11/23/11 06:52	1
4-Bromofluorobenzene (Surr)	108	72 - 12	5 11/23/11 06:52	1

Client: New York State D.E.C.

Date Collected: 11/16/11 14:20

Date Received: 11/18/11 16:50

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-13 (10-12)

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-6

Matrix: Solid Percent Solids: 81.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.064		0.0058	0.00042	mg/Kg	*		11/23/11 07:17	1
1,1,2,2-Tetrachloroethane	ND		0.0058	0.00094	mg/Kg	₩		11/23/11 07:17	1
1,1,2-Trichloroethane	ND		0.0058	0.00075	mg/Kg	₩		11/23/11 07:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0058	0.0013	mg/Kg	*		11/23/11 07:17	1
1,1-Dichloroethane	ND		0.0058	0.00071	mg/Kg	₩		11/23/11 07:17	1
1,1-Dichloroethene	ND		0.0058	0.00071	mg/Kg	₩		11/23/11 07:17	1
1,2,4-Trichlorobenzene	ND		0.0058	0.00035	mg/Kg	₩		11/23/11 07:17	1
1,2-Dibromo-3-Chloropropane	ND		0.0058	0.0029	mg/Kg	₩		11/23/11 07:17	1
1,2-Dibromoethane	ND		0.0058	0.00074	mg/Kg	₩		11/23/11 07:17	1
1,2-Dichlorobenzene	ND		0.0058	0.00045	mg/Kg	₽		11/23/11 07:17	1
1,2-Dichloroethane	ND		0.0058	0.00029	mg/Kg	₽		11/23/11 07:17	1
1,2-Dichloropropane	ND		0.0058	0.0029	mg/Kg	₩		11/23/11 07:17	1
1,3-Dichlorobenzene	ND		0.0058	0.00030	mg/Kg	\$		11/23/11 07:17	1
1,4-Dichlorobenzene	ND		0.0058	0.00081	mg/Kg	₽		11/23/11 07:17	1
2-Hexanone	ND		0.029	0.0029	mg/Kg	₽		11/23/11 07:17	1
2-Butanone (MEK)	ND		0.029	0.0021	mg/Kg	¢		11/23/11 07:17	1
4-Methyl-2-pentanone (MIBK)	ND		0.029	0.0019	mg/Kg	₽		11/23/11 07:17	1
Acetone	ND		0.029	0.0049	mg/Kg	₽		11/23/11 07:17	1
Benzene	ND		0.0058	0.00028	mg/Kg	¢		11/23/11 07:17	1
Bromodichloromethane	ND		0.0058	0.00078	mg/Kg	₽		11/23/11 07:17	1
Bromoform	ND		0.0058	0.0029	mg/Kg	₽		11/23/11 07:17	1
Bromomethane	ND		0.0058	0.00052	mg/Kg	¢		11/23/11 07:17	1
Carbon disulfide	ND		0.0058	0.0029	mg/Kg	₽		11/23/11 07:17	1
Carbon tetrachloride	ND		0.0058	0.00056	mg/Kg	₽		11/23/11 07:17	1
Chlorobenzene	ND		0.0058	0.00076	mg/Kg	\$		11/23/11 07:17	1
Dibromochloromethane	ND		0.0058	0.00074	mg/Kg	₽		11/23/11 07:17	1
Chloroethane	ND		0.0058	0.0013	mg/Kg	₩		11/23/11 07:17	1
Chloroform	ND		0.0058	0.00036	mg/Kg	\$		11/23/11 07:17	1
Chloromethane	ND		0.0058	0.00035	mg/Kg	₩		11/23/11 07:17	1
cis-1,2-Dichloroethene	ND		0.0058	0.00074	mg/Kg	₩		11/23/11 07:17	1
cis-1,3-Dichloropropene	ND		0.0058	0.00083	mg/Kg	*		11/23/11 07:17	1
Cyclohexane	ND		0.0058	0.00081	mg/Kg	₩		11/23/11 07:17	1
Dichlorodifluoromethane	ND		0.0058	0.00048	mg/Kg	₩		11/23/11 07:17	1
Ethylbenzene	ND		0.0058	0.00040	mg/Kg	*		11/23/11 07:17	1
Isopropylbenzene	ND		0.0058	0.00087	mg/Kg	₽		11/23/11 07:17	1
Methyl acetate	ND		0.0058	0.0011	mg/Kg	₽		11/23/11 07:17	1
Methyl tert-butyl ether	ND		0.0058	0.00057	mg/Kg	¢		11/23/11 07:17	1
Methylcyclohexane	ND		0.0058	0.00088	mg/Kg	₽		11/23/11 07:17	1
Methylene Chloride	ND		0.0058	0.0027	mg/Kg	₽		11/23/11 07:17	1
Styrene	ND		0.0058	0.00029	mg/Kg	\$		11/23/11 07:17	1
Tetrachloroethene	ND		0.0058	0.00078	mg/Kg	₩		11/23/11 07:17	1
Toluene	ND		0.0058	0.00044	mg/Kg	₽		11/23/11 07:17	1
trans-1,2-Dichloroethene	ND		0.0058	0.00060	mg/Kg	₩		11/23/11 07:17	1
trans-1,3-Dichloropropene	ND		0.0058	0.0025	mg/Kg	₩		11/23/11 07:17	1
Trichloroethene	0.062		0.0058	0.0013	mg/Kg	₩		11/23/11 07:17	1
						· -			

11/23/11 07:17

11/23/11 07:17

11/23/11 07:17

.

₩

₩

0.0058

0.0058

0.012

0.00055 mg/Kg

0.00071 mg/Kg

0.00097 mg/Kg

ND

ND

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-13 (10-12)

Date Collected: 11/16/11 14:20 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-6

Matrix: Solid

Percent Solids: 81.6

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	64 - 126		11/23/11 07:17	1
Toluene-d8 (Surr)	103	71 - 125		11/23/11 07:17	1
4-Bromofluorobenzene (Surr)	108	72 - 126		11/23/11 07:17	1

5

5

6

Ω

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-14 (2-3)

Date Collected: 11/16/11 12:55 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-7

Matrix: Solid Percent Solids: 74.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.066		0.0066	0.00048	mg/Kg	\tilde{\pi}		11/23/11 07:42	
1,1,2,2-Tetrachloroethane	ND		0.0066	0.0011	mg/Kg	₩		11/23/11 07:42	
1,1,2-Trichloroethane	ND		0.0066	0.00086	mg/Kg	₩		11/23/11 07:42	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0066	0.0015	mg/Kg	₩		11/23/11 07:42	
1,1-Dichloroethane	ND		0.0066	0.00081	mg/Kg	₩		11/23/11 07:42	
1,1-Dichloroethene	0.00099	J	0.0066	0.00081	mg/Kg	₩		11/23/11 07:42	
1,2,4-Trichlorobenzene	ND		0.0066	0.00040	mg/Kg	₩		11/23/11 07:42	
1,2-Dibromo-3-Chloropropane	ND		0.0066	0.0033	mg/Kg	₩		11/23/11 07:42	
1,2-Dibromoethane	ND		0.0066	0.00085	mg/Kg	₩		11/23/11 07:42	
1,2-Dichlorobenzene	ND		0.0066	0.00052	mg/Kg	₽		11/23/11 07:42	
1,2-Dichloroethane	ND		0.0066	0.00033	mg/Kg	₩		11/23/11 07:42	
1,2-Dichloropropane	ND		0.0066	0.0033	mg/Kg	₩		11/23/11 07:42	
1,3-Dichlorobenzene	ND		0.0066	0.00034	mg/Kg	₽		11/23/11 07:42	
1,4-Dichlorobenzene	ND		0.0066	0.00093	mg/Kg	₽		11/23/11 07:42	
2-Hexanone	ND		0.033	0.0033	mg/Kg	₩		11/23/11 07:42	
2-Butanone (MEK)	ND		0.033	0.0024	mg/Kg	₽		11/23/11 07:42	
4-Methyl-2-pentanone (MIBK)	ND		0.033	0.0022	mg/Kg	₩		11/23/11 07:42	
Acetone	ND		0.033	0.0056	mg/Kg	₽		11/23/11 07:42	
Benzene	ND		0.0066	0.00033	mg/Kg	₽		11/23/11 07:42	
Bromodichloromethane	ND		0.0066	0.00089	mg/Kg	₽		11/23/11 07:42	
Bromoform	ND		0.0066	0.0033	mg/Kg	₽		11/23/11 07:42	
Bromomethane	ND		0.0066	0.00060	mg/Kg	₽		11/23/11 07:42	
Carbon disulfide	ND		0.0066	0.0033	mg/Kg	₽		11/23/11 07:42	
Carbon tetrachloride	ND		0.0066	0.00064	mg/Kg	₽		11/23/11 07:42	
Chlorobenzene	ND		0.0066	0.00088	mg/Kg	₽		11/23/11 07:42	
Dibromochloromethane	ND		0.0066	0.00085	mg/Kg	₩		11/23/11 07:42	
Chloroethane	ND		0.0066	0.0015	mg/Kg	₩		11/23/11 07:42	
Chloroform	ND		0.0066	0.00041	mg/Kg	₽		11/23/11 07:42	
Chloromethane	ND		0.0066	0.00040	mg/Kg	₽		11/23/11 07:42	
cis-1,2-Dichloroethene	ND		0.0066	0.00085	mg/Kg	₽		11/23/11 07:42	
cis-1,3-Dichloropropene	ND		0.0066	0.00096	mg/Kg	₽		11/23/11 07:42	
Cyclohexane	ND		0.0066	0.00093	mg/Kg	₽		11/23/11 07:42	
Dichlorodifluoromethane	ND		0.0066	0.00055	mg/Kg	₽		11/23/11 07:42	
Ethylbenzene	ND		0.0066	0.00046	mg/Kg	₽		11/23/11 07:42	
Isopropylbenzene	ND		0.0066	0.0010	mg/Kg	₩		11/23/11 07:42	
Methyl acetate	ND		0.0066	0.0012	mg/Kg	₩		11/23/11 07:42	
Methyl tert-butyl ether	ND		0.0066	0.00065	mg/Kg	₩		11/23/11 07:42	
Methylcyclohexane	ND		0.0066	0.0010	mg/Kg	₩		11/23/11 07:42	
Methylene Chloride	ND		0.0066	0.0031	mg/Kg	₩		11/23/11 07:42	
Styrene	ND		0.0066	0.00033	mg/Kg	₽		11/23/11 07:42	
Tetrachloroethene	ND		0.0066	0.00089	mg/Kg	₩		11/23/11 07:42	
Toluene	ND		0.0066	0.00050	mg/Kg	₩		11/23/11 07:42	
trans-1,2-Dichloroethene	ND		0.0066	0.00069	mg/Kg	₩		11/23/11 07:42	
trans-1,3-Dichloropropene	ND		0.0066	0.0029	mg/Kg	₩		11/23/11 07:42	
Trichloroethene	0.063		0.0066	0.0015		₩		11/23/11 07:42	
Trichlorofluoromethane	ND		0.0066	0.00063	mg/Kg			11/23/11 07:42	
Vinyl chloride	ND		0.0066	0.00081		₩		11/23/11 07:42	
Xylenes, Total	ND		0.013	0.0011		₽		11/23/11 07:42	

5

7

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-14 (2-3)

Date Collected: 11/16/11 12:55 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-7

TestAmerica Job ID: 480-13036-1

Matrix: Solid

Percent Solids: 74.3

1					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	64 - 126		11/23/11 07:42	1
Toluene-d8 (Surr)	103	71 - 125		11/23/11 07:42	1
4-Bromofluorobenzene (Surr)	111	72 - 126		11/23/11 07:42	1

5

5

7

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-14 (12-14)

Date Collected: 11/16/11 12:50 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-8

Matrix: Solid Percent Solids: 91.2

Analyte	Compounds (GC/MS) Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	0.053	0.0054	0.00039	mg/Kg	<u> </u>		11/28/11 16:25	
I,1,2,2-Tetrachloroethane	ND	0.0054	0.00087	mg/Kg	₩		11/28/11 16:25	
I,1,2-Trichloroethane	ND	0.0054	0.00070	mg/Kg			11/28/11 16:25	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0054	0.0012	mg/Kg	₽		11/28/11 16:25	
1,1-Dichloroethane	ND	0.0054	0.00065	mg/Kg	₽		11/28/11 16:25	
1,1-Dichloroethene	ND	0.0054	0.00066	mg/Kg	₽		11/28/11 16:25	
1,2,4-Trichlorobenzene	ND	0.0054	0.00033	mg/Kg	₽		11/28/11 16:25	
1,2-Dibromo-3-Chloropropane	ND	0.0054	0.0027	mg/Kg	₩		11/28/11 16:25	
1,2-Dibromoethane	ND	0.0054	0.00069	mg/Kg	₩		11/28/11 16:25	
1,2-Dichlorobenzene	ND	0.0054	0.00042	mg/Kg	₩		11/28/11 16:25	
1,2-Dichloroethane	ND	0.0054	0.00027	mg/Kg	₽		11/28/11 16:25	
1,2-Dichloropropane	ND	0.0054	0.0027	mg/Kg	₽		11/28/11 16:25	
I,3-Dichlorobenzene	ND	0.0054	0.00028	mg/Kg	₽		11/28/11 16:25	
I,4-Dichlorobenzene	ND	0.0054	0.00075	mg/Kg	₩		11/28/11 16:25	
2-Hexanone	ND	0.027	0.0027	mg/Kg	₩		11/28/11 16:25	
2-Butanone (MEK)	ND	0.027	0.0020	mg/Kg	₽		11/28/11 16:25	
1-Methyl-2-pentanone (MIBK)	ND	0.027	0.0018	mg/Kg	₽		11/28/11 16:25	
Acetone	ND	0.027	0.0045	mg/Kg	₩		11/28/11 16:25	
Benzene	ND	0.0054	0.00026				11/28/11 16:25	
Bromodichloromethane	ND	0.0054	0.00072		₩		11/28/11 16:25	
Bromoform	ND	0.0054	0.0027		₽		11/28/11 16:25	
Bromomethane	ND	0.0054	0.00048				11/28/11 16:25	
Carbon disulfide	ND	0.0054	0.0027		₽		11/28/11 16:25	
Carbon tetrachloride	ND	0.0054	0.00052		₽		11/28/11 16:25	
Chlorobenzene	ND	0.0054	0.00071				11/28/11 16:25	
Dibromochloromethane	ND	0.0054	0.00069		₽		11/28/11 16:25	
Chloroethane	ND	0.0054	0.0012		₽		11/28/11 16:25	
Chloroform	ND	0.0054	0.00033		ф		11/28/11 16:25	
Chloromethane	ND	0.0054	0.00032		₩		11/28/11 16:25	
cis-1,2-Dichloroethene	ND	0.0054	0.00069		₽		11/28/11 16:25	
cis-1,3-Dichloropropene	ND	0.0054	0.00077				11/28/11 16:25	
Cyclohexane	ND	0.0054	0.00075		₩		11/28/11 16:25	
Dichlorodifluoromethane	ND	0.0054	0.00044		☼		11/28/11 16:25	
Ethylbenzene	ND	0.0054	0.00037				11/28/11 16:25	
sopropylbenzene	ND	0.0054	0.00081		₽		11/28/11 16:25	
Methyl acetate	ND	0.0054	0.0010		φ.		11/28/11 16:25	
Methyl tert-butyl ether	ND	0.0054	0.00053				11/28/11 16:25	
Methylcyclohexane	ND	0.0054	0.00033		₽		11/28/11 16:25	
• •		0.0054	0.00051		₩		11/28/11 16:25	
Methylene Chloride	0.0029 J ND	0.0054	0.0023				11/28/11 16:25	
Styrene Fetrachloroethene	ND		0.00027					
		0.0054			₩		11/28/11 16:25	
Foluene rans-1,2-Dichloroethene	ND ND	0.0054	0.00041		 \$		11/28/11 16:25	
,	ND ND	0.0054	0.00055		¥ \$		11/28/11 16:25	
rans-1,3-Dichloropropene	ND	0.0054	0.0024				11/28/11 16:25	
Frichland Community Commun	0.064	0.0054	0.0012		%		11/28/11 16:25	
Frichlorofluoromethane	ND	0.0054	0.00051		*		11/28/11 16:25	
/inyl chloride	ND	0.0054	0.00065	mg/Kg	₽		11/28/11 16:25	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-14 (12-14)

Lab Sample ID: 480-13036-8

Date Collected: 11/16/11 12:50

Matrix: Solid

Date Received: 11/18/11 16:50 Percent Solids: 91.2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		64 - 126		11/28/11 16:25	1
Toluene-d8 (Surr)	101		71 - 125		11/28/11 16:25	1
4-Bromofluorobenzene (Surr)	115		72 - 126		11/28/11 16:25	1

5

5

6

0

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-15 (1-2)

Date Collected: 11/17/11 09:38 Date Received: 11/18/11 16:50

Xylenes, Total

Lab Sample ID: 480-13036-9

Matrix: Solid Percent Solids: 81.7

Analyte	Result Q	ualifier RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.050	0.0060	0.00044	mg/Kg	\tilde{\pi}		11/28/11 16:50	
1,1,2,2-Tetrachloroethane	ND	0.0060	0.00098	mg/Kg	₩		11/28/11 16:50	
1,1,2-Trichloroethane	ND	0.0060	0.00078	mg/Kg	₩		11/28/11 16:50	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0060	0.0014	mg/Kg	₩		11/28/11 16:50	
1,1-Dichloroethane	0.039	0.0060	0.00073	mg/Kg	₩		11/28/11 16:50	
1,1-Dichloroethene	0.0012 J	0.0060	0.00074	mg/Kg	₩		11/28/11 16:50	
1,2,4-Trichlorobenzene	ND	0.0060	0.00037	mg/Kg	₽		11/28/11 16:50	
1,2-Dibromo-3-Chloropropane	ND	0.0060	0.0030	mg/Kg	₩		11/28/11 16:50	
1,2-Dibromoethane	ND	0.0060	0.00077	mg/Kg	₩		11/28/11 16:50	
1,2-Dichlorobenzene	ND	0.0060	0.00047	mg/Kg	₩		11/28/11 16:50	
1,2-Dichloroethane	ND	0.0060	0.00030	mg/Kg	₩		11/28/11 16:50	
1,2-Dichloropropane	ND	0.0060	0.0030	mg/Kg	₩		11/28/11 16:50	
1,3-Dichlorobenzene	ND	0.0060	0.00031	mg/Kg	₩		11/28/11 16:50	
1,4-Dichlorobenzene	ND	0.0060	0.00084	mg/Kg	₩		11/28/11 16:50	
2-Hexanone	ND	0.030	0.0030	mg/Kg	₩		11/28/11 16:50	
2-Butanone (MEK)	ND	0.030	0.0022	mg/Kg	₽		11/28/11 16:50	
4-Methyl-2-pentanone (MIBK)	ND	0.030	0.0020	mg/Kg	₩		11/28/11 16:50	
Acetone	ND	0.030	0.0051	mg/Kg	₩		11/28/11 16:50	
Benzene	ND	0.0060	0.00029	mg/Kg	\$		11/28/11 16:50	
Bromodichloromethane	ND	0.0060	0.00081	mg/Kg	₽		11/28/11 16:50	
Bromoform	ND	0.0060	0.0030	mg/Kg	₽		11/28/11 16:50	
Bromomethane	ND	0.0060	0.00054	mg/Kg	₽		11/28/11 16:50	
Carbon disulfide	ND	0.0060	0.0030	mg/Kg	₽		11/28/11 16:50	
Carbon tetrachloride	ND	0.0060	0.00058	mg/Kg	₽		11/28/11 16:50	
Chlorobenzene	ND	0.0060	0.00079	mg/Kg	\$		11/28/11 16:50	
Dibromochloromethane	ND	0.0060	0.00077	mg/Kg	₽		11/28/11 16:50	
Chloroethane	ND	0.0060	0.0014	mg/Kg	₽		11/28/11 16:50	
Chloroform	ND	0.0060	0.00037	mg/Kg	₽		11/28/11 16:50	
Chloromethane	ND	0.0060	0.00036	mg/Kg	₽		11/28/11 16:50	
cis-1,2-Dichloroethene	ND	0.0060	0.00077	mg/Kg	₽		11/28/11 16:50	
cis-1,3-Dichloropropene	ND	0.0060	0.00087	mg/Kg	₽		11/28/11 16:50	
Cyclohexane	ND	0.0060	0.00084	mg/Kg	₽		11/28/11 16:50	
Dichlorodifluoromethane	ND	0.0060	0.00050	mg/Kg	₩		11/28/11 16:50	
Ethylbenzene	ND	0.0060	0.00041	mg/Kg	₽		11/28/11 16:50	
Isopropylbenzene	ND	0.0060	0.00091	mg/Kg	₽		11/28/11 16:50	
Methyl acetate	ND	0.0060	0.0011	mg/Kg	₽		11/28/11 16:50	
Methyl tert-butyl ether	ND	0.0060	0.00059	mg/Kg	₽		11/28/11 16:50	
Methylcyclohexane	ND	0.0060	0.00091	mg/Kg	₩		11/28/11 16:50	
Methylene Chloride	0.0050 J	0.0060	0.0028	mg/Kg	₽		11/28/11 16:50	
Styrene	ND	0.0060	0.00030	mg/Kg	₽		11/28/11 16:50	
Tetrachloroethene	ND	0.0060	0.00081	mg/Kg	₩		11/28/11 16:50	
Toluene	ND	0.0060	0.00045	mg/Kg	₽		11/28/11 16:50	
trans-1,2-Dichloroethene	ND	0.0060	0.00062	mg/Kg			11/28/11 16:50	
trans-1,3-Dichloropropene	ND	0.0060	0.0026	mg/Kg	₩		11/28/11 16:50	
Trichloroethene	0.023	0.0060	0.0013	mg/Kg	₩		11/28/11 16:50	
Trichlorofluoromethane	ND	0.0060	0.00057	mg/Kg			11/28/11 16:50	
Vinyl chloride	ND	0.0060	0.00073		₩		11/28/11 16:50	
V	ND	0.010	0.0010		**		44/00/44 40 50	

_

8

9

11/28/11 16:50

₩

0.012

0.0010 mg/Kg

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-15 (1-2)

Date Collected: 11/17/11 09:38 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-9

TestAmerica Job ID: 480-13036-1

Matrix: Solid

Percent Solids: 81.7

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	64 - 126		11/28/11 16:50	1
Toluene-d8 (Surr)	101	71 - 125	i e e e e e e e e e e e e e e e e e e e	11/28/11 16:50	1
4-Bromofluorobenzene (Surr)	114	72 - 126	1	11/28/11 16:50	1

5

ວ

7

8

9

Client: New York State D.E.C.

Date Collected: 11/17/11 09:40 Date Received: 11/18/11 16:50

Trichloroethene

Vinyl chloride

Xylenes, Total

Trichlorofluoromethane

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-15 (3-4)

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-10

Percent Solids: 87.0

D	Sample	ID: 480-13036-10	
		Matrix: Solid	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.0054	0.00039	mg/Kg	\		11/28/11 17:16	1
1,1,2,2-Tetrachloroethane	ND		0.0054	0.00088	mg/Kg	₩		11/28/11 17:16	1
1,1,2-Trichloroethane	ND		0.0054	0.00071	mg/Kg	₩		11/28/11 17:16	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0054	0.0012	mg/Kg	₩		11/28/11 17:16	1
1,1-Dichloroethane	ND		0.0054	0.00066	mg/Kg	₩		11/28/11 17:16	
1,1-Dichloroethene	ND		0.0054	0.00066	mg/Kg	₩		11/28/11 17:16	
1,2,4-Trichlorobenzene	ND		0.0054	0.00033	mg/Kg	₩		11/28/11 17:16	
1,2-Dibromo-3-Chloropropane	ND		0.0054	0.0027	mg/Kg	₩		11/28/11 17:16	
1,2-Dibromoethane	ND		0.0054	0.00070	mg/Kg	₩		11/28/11 17:16	
1,2-Dichlorobenzene	ND		0.0054	0.00042	mg/Kg			11/28/11 17:16	
1,2-Dichloroethane	ND		0.0054	0.00027	mg/Kg	₩		11/28/11 17:16	
1,2-Dichloropropane	ND		0.0054	0.0027	mg/Kg	₩		11/28/11 17:16	
1,3-Dichlorobenzene	ND		0.0054	0.00028	mg/Kg			11/28/11 17:16	
1,4-Dichlorobenzene	ND		0.0054	0.00076		₽		11/28/11 17:16	1
2-Hexanone	ND		0.027	0.0027		₽		11/28/11 17:16	
2-Butanone (MEK)	ND		0.027	0.0020	mg/Kg			11/28/11 17:16	
4-Methyl-2-pentanone (MIBK)	ND		0.027	0.0018		₩		11/28/11 17:16	
Acetone	ND		0.027	0.0046		₩		11/28/11 17:16	
Benzene	ND		0.0054	0.00027				11/28/11 17:16	
Bromodichloromethane	ND		0.0054	0.00073		₩		11/28/11 17:16	
Bromoform	ND		0.0054	0.0027		₽		11/28/11 17:16	
Bromomethane	ND		0.0054	0.00049	mg/Kg			11/28/11 17:16	
Carbon disulfide	ND		0.0054	0.0027		₩		11/28/11 17:16	
Carbon tetrachloride	ND		0.0054	0.00053		₽		11/28/11 17:16	
Chlorobenzene	ND		0.0054	0.00072				11/28/11 17:16	
Dibromochloromethane	ND		0.0054	0.00070		₽		11/28/11 17:16	
Chloroethane	ND		0.0054	0.0012		₩		11/28/11 17:16	
Chloroform	ND		0.0054	0.00034		ф		11/28/11 17:16	
Chloromethane	ND		0.0054	0.00033		₽		11/28/11 17:16	
cis-1,2-Dichloroethene	ND		0.0054	0.00070		₽		11/28/11 17:16	
cis-1,3-Dichloropropene	ND		0.0054	0.00078		 ф		11/28/11 17:16	
Cyclohexane	ND		0.0054	0.00076	0 0	₽		11/28/11 17:16	
Dichlorodifluoromethane	ND		0.0054	0.00045		₽		11/28/11 17:16	
Ethylbenzene	ND		0.0054	0.00037				11/28/11 17:16	
Isopropylbenzene	ND		0.0054	0.00082		₩		11/28/11 17:16	
Methyl acetate	ND		0.0054	0.0010		₩		11/28/11 17:16	
Methyl tert-butyl ether	ND		0.0054	0.00053				11/28/11 17:16	
Methylcyclohexane	ND		0.0054	0.00083		₩		11/28/11 17:16	
Methylene Chloride	ND		0.0054	0.0025		₩		11/28/11 17:16	
Styrene	ND		0.0054	0.00027		Ф		11/28/11 17:16	
Tetrachloroethene	ND ND		0.0054	0.00027		₩		11/28/11 17:16	
Toluene	ND ND		0.0054	0.00073		₩		11/28/11 17:16	
trans-1,2-Dichloroethene	ND		0.0054	0.00041	-	· · · · · · · · · · · · · · · · · · ·		11/28/11 17:16	<i>.</i>
trans-1,3-Dichloropropene	ND ND		0.0054		mg/Kg	₩		11/28/11 17:16	
trans 1,0-Diomorphopene	ND		0.0004	0.0024	ing/itg			11/20/11 17.10	

11/28/11 17:16

11/28/11 17:16

11/28/11 17:16

11/28/11 17:16

0.0054

0.0054

0.0054

0.011

0.0012 mg/Kg

0.00051 mg/Kg

0.00066 mg/Kg

0.00091 mg/Kg

₽

₩

₩

0.0015 J

ND

ND

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-15 (3-4)

Date Collected: 11/17/11 09:40

Date Received: 11/18/11 16:50

Lab Sample ID: 480-13036-10

Matrix: Solid

Percent Solids: 87.0

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		64 - 126	_		11/28/11 17:16	1
Toluene-d8 (Surr)	101		71 - 125			11/28/11 17:16	1
4-Bromofluorobenzene (Surr)	115		72 - 126			11/28/11 17:16	1

5

5

7

8

9

Client: New York State D.E.C.

Date Collected: 11/17/11 10:45 Date Received: 11/18/11 16:50

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-16 (1'5"-2)

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-11

Percent Solids: 89.5

שו Sample וטו	480-13036-11	
	Matrix: Solid	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	0.0054	0.00040	mg/Kg	\		11/28/11 17:41	1
1,1,2,2-Tetrachloroethane	ND	0.0054	0.00088	mg/Kg	₽		11/28/11 17:41	1
1,1,2-Trichloroethane	ND	0.0054	0.00071	mg/Kg	₽		11/28/11 17:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0054	0.0012	mg/Kg	\$		11/28/11 17:41	1
1,1-Dichloroethane	0.0081	0.0054	0.00066	mg/Kg	₽		11/28/11 17:41	1
1,1-Dichloroethene	ND	0.0054	0.00067	mg/Kg	₩		11/28/11 17:41	1
1,2,4-Trichlorobenzene	ND	0.0054	0.00033	mg/Kg	₽		11/28/11 17:41	1
1,2-Dibromo-3-Chloropropane	ND	0.0054	0.0027	mg/Kg	₽		11/28/11 17:41	1
1,2-Dibromoethane	ND	0.0054	0.00070	mg/Kg	₩		11/28/11 17:41	1
1,2-Dichlorobenzene	ND	0.0054	0.00043	mg/Kg	₽		11/28/11 17:41	1
1,2-Dichloroethane	ND	0.0054	0.00027	mg/Kg	₩		11/28/11 17:41	1
1,2-Dichloropropane	ND	0.0054	0.0027	mg/Kg	₩		11/28/11 17:41	1
1,3-Dichlorobenzene	ND	0.0054	0.00028	mg/Kg	₽		11/28/11 17:41	1
1,4-Dichlorobenzene	ND	0.0054	0.00076	mg/Kg	₩		11/28/11 17:41	1
2-Hexanone	ND	0.027	0.0027	mg/Kg	₩		11/28/11 17:41	1
2-Butanone (MEK)	ND	0.027	0.0020	mg/Kg	\$		11/28/11 17:41	1
4-Methyl-2-pentanone (MIBK)	ND	0.027	0.0018	mg/Kg	₩		11/28/11 17:41	1
Acetone	ND	0.027	0.0046	mg/Kg	₩		11/28/11 17:41	1
Benzene	ND	0.0054	0.00027	mg/Kg	₽		11/28/11 17:41	1
Bromodichloromethane	ND	0.0054	0.00073	mg/Kg	₽		11/28/11 17:41	1
Bromoform	ND	0.0054	0.0027	mg/Kg	₩		11/28/11 17:41	1
Bromomethane	ND	0.0054	0.00049	mg/Kg	₽		11/28/11 17:41	1
Carbon disulfide	ND	0.0054	0.0027	mg/Kg	₽		11/28/11 17:41	1
Carbon tetrachloride	ND	0.0054	0.00053	mg/Kg	₩		11/28/11 17:41	1
Chlorobenzene	ND	0.0054	0.00072	mg/Kg	₽		11/28/11 17:41	1
Dibromochloromethane	ND	0.0054	0.00070	mg/Kg	₩		11/28/11 17:41	1
Chloroethane	ND	0.0054	0.0012	mg/Kg	₽		11/28/11 17:41	1
Chloroform	ND	0.0054	0.00034	mg/Kg	\$		11/28/11 17:41	1
Chloromethane	ND	0.0054	0.00033	mg/Kg	₩		11/28/11 17:41	1
cis-1,2-Dichloroethene	0.0093	0.0054	0.00070	mg/Kg	₩		11/28/11 17:41	1
cis-1,3-Dichloropropene	ND	0.0054	0.00078	mg/Kg	\$		11/28/11 17:41	1
Cyclohexane	ND	0.0054	0.00076	mg/Kg	₩		11/28/11 17:41	1
Dichlorodifluoromethane	ND	0.0054	0.00045	mg/Kg	₩		11/28/11 17:41	1
Ethylbenzene	ND	0.0054	0.00038	mg/Kg			11/28/11 17:41	1
Isopropylbenzene	ND	0.0054	0.00082	mg/Kg	₩		11/28/11 17:41	1
Methyl acetate	ND	0.0054	0.0010	mg/Kg	₩		11/28/11 17:41	1
Methyl tert-butyl ether	ND	0.0054	0.00053	mg/Kg			11/28/11 17:41	1
Methylcyclohexane	ND	0.0054	0.00083	mg/Kg	₩		11/28/11 17:41	1
Methylene Chloride	0.0025 J	0.0054	0.0025	mg/Kg	₩		11/28/11 17:41	1
Styrene	ND	0.0054	0.00027	mg/Kg	₽		11/28/11 17:41	1
Tetrachloroethene	ND	0.0054	0.00073	mg/Kg	₩		11/28/11 17:41	1
Toluene	ND	0.0054	0.00041	mg/Kg	₩		11/28/11 17:41	1
trans-1,2-Dichloroethene	ND	0.0054	0.00056	mg/Kg			11/28/11 17:41	1
trans-1,3-Dichloropropene	ND	0.0054	0.0024	mg/Kg	₽		11/28/11 17:41	1
Trichloroethene	0.0030 J	0.0054	0.0012	mg/Kg	₽		11/28/11 17:41	1
Tailele and the annual terms	ND	0.0054	0.00050				44/00/44 47-44	

11/28/11 17:41

11/28/11 17:41

11/28/11 17:41

.

₩

₩

0.0054

0.0054

0.011

0.00052 mg/Kg

0.00066 mg/Kg

0.00091 mg/Kg

ND

ND

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-16 (1'5"-2)

Date Collected: 11/17/11 10:45 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-11

TestAmerica Job ID: 480-13036-1

Matrix: Solid

Percent Solids: 89.5

1					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94	64 - 126		11/28/11 17:41	1
Toluene-d8 (Surr)	103	71 - 125		11/28/11 17:41	1
4-Bromofluorobenzene (Surr)	116	72 - 126		11/28/11 17:41	1

5

5

8

9

Client: New York State D.E.C.

Date Collected: 11/17/11 10:48

Date Received: 11/18/11 16:50

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-16 (3-4)

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-12

Matrix: Solid
Percent Solids: 80.6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	0.0060	0.00044	mg/Kg			11/28/11 18:06	
1,1,2,2-Tetrachloroethane	ND	0.0060	0.00098	mg/Kg	₽		11/28/11 18:06	
1,1,2-Trichloroethane	ND	0.0060	0.00079	mg/Kg	₽		11/28/11 18:06	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0060	0.0014	mg/Kg	*		11/28/11 18:06	
1,1-Dichloroethane	0.038	0.0060	0.00074	mg/Kg	₩		11/28/11 18:06	
1,1-Dichloroethene	0.0024 J	0.0060	0.00074	mg/Kg	₽		11/28/11 18:06	
1,2,4-Trichlorobenzene	ND	0.0060	0.00037	mg/Kg	\$		11/28/11 18:06	
1,2-Dibromo-3-Chloropropane	ND	0.0060	0.0030	mg/Kg	₽		11/28/11 18:06	
1,2-Dibromoethane	ND	0.0060	0.00078	mg/Kg	₩		11/28/11 18:06	
1,2-Dichlorobenzene	ND	0.0060	0.00047	mg/Kg	\$		11/28/11 18:06	
1,2-Dichloroethane	ND	0.0060	0.00030	mg/Kg	₽		11/28/11 18:06	
1,2-Dichloropropane	ND	0.0060	0.0030	mg/Kg	₽		11/28/11 18:06	
1,3-Dichlorobenzene	ND	0.0060	0.00031	mg/Kg	φ		11/28/11 18:06	
1,4-Dichlorobenzene	ND	0.0060	0.00085	mg/Kg	₽		11/28/11 18:06	
2-Hexanone	ND	0.030		mg/Kg	₽		11/28/11 18:06	
2-Butanone (MEK)	ND	0.030	0.0022	mg/Kg	ф		11/28/11 18:06	
4-Methyl-2-pentanone (MIBK)	ND	0.030		mg/Kg	₽		11/28/11 18:06	
Acetone	0.026 J	0.030	0.0051		₽		11/28/11 18:06	
Benzene	ND	0.0060	0.00030		ф		11/28/11 18:06	
Bromodichloromethane	ND	0.0060	0.00081		₽		11/28/11 18:06	
Bromoform	ND	0.0060		mg/Kg	₽		11/28/11 18:06	
Bromomethane	ND	0.0060	0.00054		ф.		11/28/11 18:06	
Carbon disulfide	ND	0.0060	0.0030		₽		11/28/11 18:06	
Carbon tetrachloride	ND	0.0060	0.00058	mg/Kg	₽		11/28/11 18:06	
Chlorobenzene	ND	0.0060	0.00080	mg/Kg			11/28/11 18:06	
Dibromochloromethane	ND	0.0060	0.00077		*		11/28/11 18:06	
Chloroethane	ND	0.0060		mg/Kg	*		11/28/11 18:06	
Chloroform	ND	0.0060	0.00037				11/28/11 18:06	
Chloromethane	ND	0.0060		mg/Kg	*		11/28/11 18:06	
cis-1,2-Dichloroethene	0.016	0.0060	0.00077		*		11/28/11 18:06	
cis-1,3-Dichloropropene	ND	0.0060	0.00087				11/28/11 18:06	
Cyclohexane	ND	0.0060	0.00085		*		11/28/11 18:06	
Dichlorodifluoromethane	ND	0.0060	0.00050		*		11/28/11 18:06	
Ethylbenzene	ND	0.0060	0.00042				11/28/11 18:06	
Isopropylbenzene	ND	0.0060	0.00042		₩		11/28/11 18:06	
Methyl acetate	ND	0.0060		mg/Kg	₩.		11/28/11 18:06	
					 \$			
Methyl tert-butyl ether	ND ND	0.0060	0.00059		₩		11/28/11 18:06	
Methylcyclohexane	ND	0.0060	0.00092		₩		11/28/11 18:06	
Methylene Chloride	ND	0.0060		mg/Kg	.		11/28/11 18:06	
Styrene	ND	0.0060	0.00030				11/28/11 18:06	
Tetrachloroethene	ND	0.0060	0.00081		‡		11/28/11 18:06	
Toluene	ND	0.0060	0.00046		· · · · · · <u>·</u>		11/28/11 18:06	
trans-1,2-Dichloroethene	0.018	0.0060	0.00062	mg/Kg	₽		11/28/11 18:06	

6

9

10

11/28/11 18:06

11/28/11 18:06

11/28/11 18:06

11/28/11 18:06

11/28/11 18:06

₩

₽

₩

₩

0.0060

0.0060

0.0060

0.0060

0.012

0.0027 mg/Kg

0.0013 mg/Kg

0.00057 mg/Kg

0.00074 mg/Kg

0.0010 mg/Kg

ND

ND

ND

ND

0.015

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-16 (3-4)

Date Collected: 11/17/11 10:48 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-12

Matrix: Solid

Percent Solids: 80.6

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		64 - 126	_		11/28/11 18:06	1
Toluene-d8 (Surr)	101		71 - 125			11/28/11 18:06	1
4-Bromofluorobenzene (Surr)	116		72 - 126			11/28/11 18:06	1

5

5

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Lab Sample ID: 480-13036-13

Matrix: Solid Percent Solids: 73.9

Client Sample ID: GESB-17 (1'1"-2)

Date Collected: 11/17/11 11:30 Date Received: 11/18/11 16:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.093		0.0066	0.00048	mg/Kg	- -		11/28/11 18:31	
1,1,2,2-Tetrachloroethane	ND		0.0066	0.0011	mg/Kg	₩		11/28/11 18:31	
1,1,2-Trichloroethane	ND		0.0066	0.00086	mg/Kg	₩		11/28/11 18:31	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0066	0.0015	mg/Kg			11/28/11 18:31	
1,1-Dichloroethane	0.014		0.0066	0.00081	mg/Kg	₩		11/28/11 18:31	
1,1-Dichloroethene	ND		0.0066	0.00081	mg/Kg	₩		11/28/11 18:31	
1,2,4-Trichlorobenzene	ND		0.0066	0.00040	mg/Kg			11/28/11 18:31	
1,2-Dibromo-3-Chloropropane	ND		0.0066	0.0033	mg/Kg	₩		11/28/11 18:31	
1,2-Dibromoethane	ND		0.0066	0.00085		₩		11/28/11 18:31	
1,2-Dichlorobenzene	ND		0.0066	0.00052		φ.		11/28/11 18:31	
1,2-Dichloroethane	ND		0.0066	0.00033		₩		11/28/11 18:31	
1,2-Dichloropropane	ND		0.0066	0.0033		₽		11/28/11 18:31	
1,3-Dichlorobenzene	ND		0.0066	0.00034				11/28/11 18:31	
1,4-Dichlorobenzene	ND		0.0066	0.00093		₽		11/28/11 18:31	
2-Hexanone	ND		0.033		mg/Kg	₽		11/28/11 18:31	
2-Butanone (MEK)	0.036		0.033	0.0024				11/28/11 18:31	
4-Methyl-2-pentanone (MIBK)	ND		0.033	0.0022		₩		11/28/11 18:31	
Acetone	0.13		0.033	0.0056		₩		11/28/11 18:31	
Benzene	ND		0.0066	0.00032				11/28/11 18:31	
Bromodichloromethane	ND		0.0066	0.00089	mg/Kg	₩		11/28/11 18:31	
Bromoform	ND		0.0066	0.0033		₩		11/28/11 18:31	
Bromomethane	ND		0.0066	0.00060	mg/Kg			11/28/11 18:31	
Carbon disulfide	ND		0.0066		mg/Kg	₩		11/28/11 18:31	
Carbon tetrachloride	ND		0.0066		mg/Kg	₩		11/28/11 18:31	
Chlorobenzene	ND		0.0066		mg/Kg	· · · · · · · · · · · · · · · · · · ·		11/28/11 18:31	
Dibromochloromethane	ND		0.0066	0.00085	mg/Kg			11/28/11 18:31	
Chloroethane	ND		0.0066	0.0015				11/28/11 18:31	
Chloroform	ND		0.0066	0.00041	mg/Kg	 \$		11/28/11 18:31	
Chloromethane	ND		0.0066	0.00041	mg/Kg			11/28/11 18:31	
cis-1,2-Dichloroethene	0.030		0.0066		mg/Kg	₩		11/28/11 18:31	
cis-1,3-Dichloropropene	ND		0.0066	0.00095				11/28/11 18:31	
Cyclohexane	ND		0.0066	0.00093				11/28/11 18:31	
Dichlorodifluoromethane	ND		0.0066	0.00055		₩		11/28/11 18:31	
Ethylbenzene	ND		0.0066	0.00035		· · · · · · · · · · · · · · · · · · ·		11/28/11 18:31	
Isopropylbenzene	ND		0.0066	0.0010				11/28/11 18:31	
Methyl acetate	ND		0.0066	0.0012		₩		11/28/11 18:31	
Methyl tert-butyl ether	ND		0.0066	0.00065				11/28/11 18:31	
Methylcyclohexane	ND ND		0.0066	0.00003				11/28/11 18:31	
	0.0038		0.0066	0.0010				11/28/11 18:31	
Methylene Chloride	0.0038 ND	J	0.0066	0.0033				11/28/11 18:31	
Styrene						₩			
Tetrachloroethene Toluene	0.0021 ND	J	0.0066 0.0066	0.00089 0.00050	mg/Kg	₩		11/28/11 18:31 11/28/11 18:31	
				0.00050	mg/Kg				
trans-1,2-Dichloroethene	ND		0.0066			₩		11/28/11 18:31	
rans-1,3-Dichloropropene	ND		0.0066	0.0029		☆		11/28/11 18:31	
Trichloroethene	0.011		0.0066	0.0015		¥		11/28/11 18:31	
Trichlorofluoromethane	ND		0.0066	0.00063		₩		11/28/11 18:31	
Vinyl chloride Xylenes, Total	ND ND		0.0066 0.013	0.00081 0.0011	mg/Kg	₩		11/28/11 18:31 11/28/11 18:31	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-17 (1'1"-2)

Date Collected: 11/17/11 11:30 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-13

Matrix: Solid

Percent Solids: 73.9

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		64 - 126		11/28/11 18:31	1
Toluene-d8 (Surr)	101		71 - 125		11/28/11 18:31	1
4-Bromofluorobenzene (Surr)	112		72 - 126		11/28/11 18:31	1

5

J

7

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Method: 8260B - Volatile Organic Compounds (GC/MS)

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-17 (4-6)

Date Collected: 11/17/11 11:38 Date Received: 11/18/11 16:50

Styrene

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Lab Sample ID: 480-13036-14

Matrix: Solid Percent Solids: 83.7

Analyte		Qualifier	RL	MDL	Unit	D Pr	epared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.0022	J	0.0058	0.00042	mg/Kg	\tilde{\pi}		11/28/11 18:57	1
1,1,2,2-Tetrachloroethane	ND		0.0058	0.00094	mg/Kg	₩		11/28/11 18:57	1
1,1,2-Trichloroethane	ND		0.0058	0.00075	mg/Kg	₩		11/28/11 18:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0058	0.0013	mg/Kg	\$		11/28/11 18:57	1
1,1-Dichloroethane	ND		0.0058	0.00071	mg/Kg	₩		11/28/11 18:57	1
1,1-Dichloroethene	ND		0.0058	0.00071	mg/Kg	₩		11/28/11 18:57	1
1,2,4-Trichlorobenzene	ND		0.0058	0.00035	mg/Kg	\$		11/28/11 18:57	1
1,2-Dibromo-3-Chloropropane	ND		0.0058	0.0029	mg/Kg	₩		11/28/11 18:57	1
1,2-Dibromoethane	ND		0.0058	0.00074	mg/Kg	₩		11/28/11 18:57	1
1,2-Dichlorobenzene	ND		0.0058	0.00045	mg/Kg	φ		11/28/11 18:57	1
1,2-Dichloroethane	ND		0.0058	0.00029	mg/Kg	₩		11/28/11 18:57	1
1,2-Dichloropropane	ND		0.0058	0.0029	mg/Kg	₩		11/28/11 18:57	1
1,3-Dichlorobenzene	ND		0.0058	0.00030	mg/Kg	ф		11/28/11 18:57	1
1,4-Dichlorobenzene	ND		0.0058	0.00081	mg/Kg	₩		11/28/11 18:57	1
2-Hexanone	ND		0.029	0.0029	mg/Kg	₩		11/28/11 18:57	1
2-Butanone (MEK)	ND		0.029	0.0021	mg/Kg	\$		11/28/11 18:57	1
4-Methyl-2-pentanone (MIBK)	ND		0.029	0.0019	mg/Kg	₩		11/28/11 18:57	1
Acetone	ND		0.029	0.0049	mg/Kg	₩		11/28/11 18:57	1
Benzene	ND		0.0058	0.00028	mg/Kg	\$		11/28/11 18:57	1
Bromodichloromethane	ND		0.0058	0.00078	mg/Kg	₩		11/28/11 18:57	1
Bromoform	ND		0.0058	0.0029	mg/Kg	₩		11/28/11 18:57	1
Bromomethane	ND		0.0058	0.00052	mg/Kg	\$		11/28/11 18:57	1
Carbon disulfide	ND		0.0058	0.0029	mg/Kg	₩		11/28/11 18:57	1
Carbon tetrachloride	ND		0.0058	0.00056	mg/Kg	₩		11/28/11 18:57	1
Chlorobenzene	ND		0.0058	0.00077	mg/Kg	φ		11/28/11 18:57	1
Dibromochloromethane	ND		0.0058	0.00074	mg/Kg	₩		11/28/11 18:57	1
Chloroethane	ND		0.0058	0.0013	mg/Kg	₩		11/28/11 18:57	1
Chloroform	ND		0.0058	0.00036	mg/Kg	\$		11/28/11 18:57	1
Chloromethane	ND		0.0058	0.00035	mg/Kg	₩		11/28/11 18:57	1
cis-1,2-Dichloroethene	ND		0.0058	0.00074	mg/Kg	₩		11/28/11 18:57	1
cis-1,3-Dichloropropene	ND		0.0058	0.00083	mg/Kg	\$		11/28/11 18:57	1
Cyclohexane	ND		0.0058	0.00081	mg/Kg	₩		11/28/11 18:57	1
Dichlorodifluoromethane	ND		0.0058	0.00048	mg/Kg	₩		11/28/11 18:57	1
Ethylbenzene	ND		0.0058	0.00040	mg/Kg	\$		11/28/11 18:57	1
Isopropylbenzene	ND		0.0058	0.00087	mg/Kg	₽		11/28/11 18:57	1
Methyl acetate	ND		0.0058	0.0011	mg/Kg	₽		11/28/11 18:57	1
Methyl tert-butyl ether	ND		0.0058	0.00057	mg/Kg			11/28/11 18:57	1
Methylcyclohexane	ND		0.0058	0.00088		₽		11/28/11 18:57	1
Methylene Chloride	0.0035	J	0.0058	0.0027		₽		11/28/11 18:57	1
04			0.0050	0.00000		-		44/00/44 40 57	

11/28/11 18:57

11/28/11 18:57

11/28/11 18:57

11/28/11 18:57

11/28/11 18:57

11/28/11 18:57

11/28/11 18:57

11/28/11 18:57

11/28/11 18:57

0.0058

0.0058

0.0058

0.0058

0.0058

0.0058

0.0058

0.0058

0.012

0.00029 mg/Kg

0.00078 mg/Kg

0.00044 mg/Kg

0.00060 mg/Kg

0.0026 mg/Kg

0.0013 mg/Kg

0.00055 mg/Kg

0.00071 mg/Kg

0.00097 mg/Kg

ā

₽

ġ

φ

₩

#

₽

₽

₽

ND

0.0013 J

ND

ND

ND

0.0015 J

ND

ND

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-17 (4-6)

Date Collected: 11/17/11 11:38 Date Received: 11/18/11 16:50 Lab Sample ID: 480-13036-14

Matrix: Solid

Percent Solids: 83.7

1								
;	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1	1,2-Dichloroethane-d4 (Surr)	93		64 - 126	_		11/28/11 18:57	1
	Toluene-d8 (Surr)	100		71 - 125			11/28/11 18:57	1
-	4-Bromofluorobenzene (Surr)	114		72 - 126			11/28/11 18:57	1

5

ວ

8

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-11 (2-3)

Date Collected: 11/16/11 09:22 Date Received: 11/18/11 16:50

Lab Sample ID: 480-13036-1

Matrix: Solid Percent Solids: 88.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41619	11/23/11 05:12	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-11 (10-12) Lab Sample ID: 480-13036-2

Date Collected: 11/16/11 09:32 Date Received: 11/18/11 16:50

Matrix: Solid Percent Solids: 82.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41619	11/23/11 05:37	RJ	TAL BUF
Total/NA	Prep	5030B	DL		41996	11/29/11 10:33	LH	TAL BUF
Total/NA	Analysis	8260B	DL	1	41988	11/29/11 13:39	LH	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-12 (3-4) Lab Sample ID: 480-13036-3

Date Collected: 11/16/11 10:35 Date Received: 11/18/11 16:50

Matrix: Solid Percent Solids: 85.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 15:59	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-12 (8-10) Lab Sample ID: 480-13036-4

Date Collected: 11/16/11 10:39 Date Received: 11/18/11 16:50

Matrix: Solid Percent Solids: 83.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41619	11/23/11 06:27	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-13 (3-4) Lab Sample ID: 480-13036-5

Date Collected: 11/16/11 14:18 Date Received: 11/18/11 16:50

Matrix: Solid Percent Solids: 71.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41619	11/23/11 06:52	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-13 (10-12) Lab Sample ID: 480-13036-6

Date Collected: 11/16/11 14:20 Date Received: 11/18/11 16:50

Matrix: Solid Percent Solids: 81.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41619	11/23/11 07:17	RJ	TAL BUF

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-13 (10-12)

Lab Sample ID: 480-13036-6 Date Collected: 11/16/11 14:20

Matrix: Solid

Date Received: 11/18/11 16:50

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 41937 11/28/11 17:59 KK TAL BUF

Client Sample ID: GESB-14 (2-3) Lab Sample ID: 480-13036-7

Date Received: 11/18/11 16:50

Date Collected: 11/16/11 12:55 Matrix: Solid Percent Solids: 74.3

İ		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B		1	41619	11/23/11 07:42	RJ	TAL BUF
	Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-14 (12-14) Lab Sample ID: 480-13036-8

Date Collected: 11/16/11 12:50

Matrix: Solid Date Received: 11/18/11 16:50 Percent Solids: 91.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 16:25	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-15 (1-2) Lab Sample ID: 480-13036-9

Date Collected: 11/17/11 09:38 Matrix: Solid Date Received: 11/18/11 16:50 Percent Solids: 81.7

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B			41900	11/28/11 16:50	RJ	TAL BUF	
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF	

Client Sample ID: GESB-15 (3-4) Lab Sample ID: 480-13036-10

Date Collected: 11/17/11 09:40 Date Received: 11/18/11 16:50 Percent Solids: 87.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 17:16	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-16 (1'5"-2) Lab Sample ID: 480-13036-11

Date Collected: 11/17/11 10:45 **Matrix: Solid** Date Received: 11/18/11 16:50 Percent Solids: 89.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 17:41	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Matrix: Solid

Lab Sample ID: 480-13036-12

TestAmerica Job ID: 480-13036-1

Client Sample ID: GESB-16 (3-4)

Matrix: Solid

Percent Solids: 80.6

Date Collected: 11/17/11 10:48 Date Received: 11/18/11 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 18:06	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-17 (1'1"-2)

Lab Sample ID: 480-13036-13

Date Collected: 11/17/11 11:30 Date Received: 11/18/11 16:50 Matrix: Solid
Percent Solids: 73.9

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 41900 11/28/11 18:31 Total/NA Analysis 8260B RJ TAL BUF 41937 11/28/11 17:59 ΚK Total/NA Analysis Moisture TAL BUF

Client Sample ID: GESB-17 (4-6)

Lab Sample ID: 480-13036-14

Date Collected: 11/17/11 11:38 Date Received: 11/18/11 16:50 Matrix: Solid
Percent Solids: 83.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 18:57	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

_aboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas	State Program	6	88-0686
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
estAmerica Buffalo	Georgia	State Program	4	956
estAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
estAmerica Buffalo	Iowa	State Program	7	374
estAmerica Buffalo	Kansas	NELAC	7	E-10187
estAmerica Buffalo	Kentucky	Kentucky UST	4	30
estAmerica Buffalo	Kentucky	State Program	4	90029
estAmerica Buffalo	Louisiana	NELAC	6	02031
estAmerica Buffalo	Maine	State Program	1	NY0044
estAmerica Buffalo	Maryland	State Program	3	294
estAmerica Buffalo	Massachusetts	State Program	1	M-NY044
estAmerica Buffalo	Michigan	State Program	5	9937
estAmerica Buffalo	Minnesota	NELAC	5	036-999-337
estAmerica Buffalo	New Hampshire	NELAC	1	2337
estAmerica Buffalo	New Hampshire	NELAC	1	68-00281
estAmerica Buffalo	New Jersey	NELAC	2	NY455
estAmerica Buffalo	New York	NELAC	2	10026
estAmerica Buffalo	North Dakota	State Program	8	R-176
estAmerica Buffalo	Oklahoma	State Program	6	9421
estAmerica Buffalo	Oregon	NELAC	10	NY200003
estAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
estAmerica Buffalo	Tennessee	State Program	4	TN02970
estAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
estAmerica Buffalo	USDA	USDA		P330-08-00242
estAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
estAmerica Buffalo	Virginia	State Program	3	278
estAmerica Buffalo	Washington	State Program	10	C1677
estAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

5

7

8

9

Method Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

0

_

Sample Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13036-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-13036-1	GESB-11 (2-3)	Solid	11/16/11 09:22	11/18/11 16:50
480-13036-2	GESB-11 (10-12)	Solid	11/16/11 09:32	11/18/11 16:50
480-13036-3	GESB-12 (3-4)	Solid	11/16/11 10:35	11/18/11 16:50
480-13036-4	GESB-12 (8-10)	Solid	11/16/11 10:39	11/18/11 16:50
480-13036-5	GESB-13 (3-4)	Solid	11/16/11 14:18	11/18/11 16:50
480-13036-6	GESB-13 (10-12)	Solid	11/16/11 14:20	11/18/11 16:50
480-13036-7	GESB-14 (2-3)	Solid	11/16/11 12:55	11/18/11 16:50
480-13036-8	GESB-14 (12-14)	Solid	11/16/11 12:50	11/18/11 16:50
480-13036-9	GESB-15 (1-2)	Solid	11/17/11 09:38	11/18/11 16:50
480-13036-10	GESB-15 (3-4)	Solid	11/17/11 09:40	11/18/11 16:50
480-13036-11	GESB-16 (1'5"-2)	Solid	11/17/11 10:45	11/18/11 16:50
480-13036-12	GESB-16 (3-4)	Solid	11/17/11 10:48	11/18/11 16:50
480-13036-13	GESB-17 (1'1"-2)	Solid	11/17/11 11:30	11/18/11 16:50
480-13036-14	GESB-17 (4-6)	Solid	11/17/11 11:38	11/18/11 16:50

2

4

5

6

8

a

Ť

Т

Property of the community of the communi	Consultant Name: GES	GES															TA Account#;	ount #:								ë ë					
Complete	Address:	: 158 Sonwil C	Srive										}				2	ice To:		accour	It num	ě									
Project Name 1900	City/State/Zip:	: Cheektowag	a, NY 1422	20				}]							Rep	ort To:	Paul	indell (F	Jindelli	@gesor	nline.cc	(mc							
Standard Comparing Compa	DEC Project Mgr:	Sal Calandra) (1) (1)	Project	Name		EC Lap	p insu	ator									
Sampler Signature 100 Sign	Consultant Project Mgr:	: Paul Lindell							1		1	Ì		-	1	A C	rale # (A	ARN#)	JSAN	JEC ()	uj uus	Sulate	7						}		١
Sampler Name (Print Note) Light	Consultant Telephone Number:	800-287-785					Eax	و ا	16-7	190	Į _s				_		Site A	ddrass	130	Ped S	i i		ŝ								
17.23 17.17 17.1	Sampler Name: (Print)	Nicole Jarzyr	njecki			1			1			ון				-	Clty, St	ite, Zip	LeRoy	È											1
1.1. 1.1.	Sampler Signature:	1	1	1	$\ $									1	æ	gulato	ry Distri	ct (CA)				1					Ì				
1,177,2011 1,123 1			•				L	1			1	-						l			١				l	l		_			
11/17/2011 1/1				}	f	ŀ	\dagger	ŢĻ	Tese.	- Vatily	<u>.</u>	+		TEW	×	F					¥ ~	lalyze /		-		-			(
1,1172011 0,18	Sample ID or Fleid ID	Dakqme2 alsQ	DelqmeS emiT	No. of Containers Shipped	dera			ejelitiziğ mulboğ			HNO ₂ (Red Label)						1CF 85e0											. (egrpelys; =val 1V1 HS(1)	ZYEO .eud (in Bus. Days	Esx <i>Results</i> (yes or no)	Due Date of Report
11/17/2011 1139 1	GESB-16 (1'5"-2)	11/17/2011	1645	-	-	×			 	<u> </u>	ļ	×		-	×	-	×												5 DAY		
11/17/2011 1130 1	GESB-16 (3-4)	11/17/2011	840/	1		×			_			×					×								<u>. </u>				5 DAY		ļ
6) 11/17/2011 1138 1	GESB-17 (1'1"-2)	11/17/2011	1130						_			×			_×		×												5 DAY		
Comparison Comments Comment	GESB-17 (4-6)	11/17/2011	1138	1		×			ļ			×					×												5 DAY		
edal instructions: Laboratory Comments: Temperature Upon Proceedings					_							_			 ı	_		j						r					ļ		
edial instructions: Laboratory Comments: Laboratory Comments: Temperature Upon Receipt: Sample Containers Intact? VOCS Free of Headspace? The Cobe of Comments of Comment												<u> </u>			_										_						
Laboratory Comments: Laboratory Comments: Temperature Upon Receipt: Sample Containers Intact? Younge Temperature Upon Receipt: Sample Containers Intact? Younge Temperature Upon Receipt: Sample Containers Intact? Younge Temperature Upon Receipt: Younge Temperature Upon Receipt								-				\vdash		H		-								<u> </u>							
Time Received by: Interportation of the project							-		4		口	\vdash		 	$\vdash \downarrow$																' أ
ecial instructions: Laboratory Comments: Temperature Upon Receipt: Sample Containment interc? Sample Containment interc? VOCS Free of Headspace? VOCS Free of Headspac				İ	\dashv	+	\dashv	\downarrow	-+	\exists	#	+		+	\dashv	\dashv]	\perp			\downarrow		\downarrow	\dashv	1	_				
Laboratory Comments: Temperature Uson Receipt: Sample Containers Intact? Sample Containers Intact? VOGS Fee of Headspace? Time Sceled Level 2 Level 2 Level 3 Level 3 Level 3 Level 3 Level 4 Chapter (Sponshielity of Examinoting in the the responshielity of Examinoting in the submitted of the projective submitted in the projective submitted submitted in the projective submitted sub			_	_						_		_	_		_													_		_	
Time Received by MM 11-18-11 13:30 Level 2 Level 3 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 5 Level 5 Level 5 Level 5 Level 5 Level 6 Level 6 Level 6 Level 6 Level 6 Level 6 Level 7 Lev	Commenis/Special Instructions: 5 DAY TA						j	1	, s										roger	atory C Tempt Sampl VOCs	Comme erature e Conti Free of	nts: Upon F giners ∄	Receipt Intact? space?	ي بيا			i	> >		ZZ	
11-17-11 1815 Level 3 Level 3 Level 3 Level 3 Level 3 Level 3 Level 3 Level 3 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 4 Level 5 Level 4 Level 5 Level 4 Level 5 Level 4 Level 6	Relinquished by:	te C		Ē	e <u>e</u>	xeived b		1	I	\				ğ	 e		Ţ		<u>8</u>	iverable	eald) Sa	ise circli	e one)								
Date Time Received Messuments Date Time controlled to Received Messuments Superior Controlled to Submitted. 11-18-11 12:50 The Received Messuments Controlled to Submitted. The Project Manager. Dates		~	_	\ ⋈		Ŀ	W		S. A	Ų	ĺ		?	3/-	1	_	3	Ĉ	Trwill	be the r	Suodea.	Level	3 Exxont	Mobil or	Level ifs	4		1	đ	ē	
	Reinquished by:	Date 1/4	, - \	15.3 15.5		eceived .	Testkii		L [<u> </u>	la O	in in in in in in in in in in in in in i		Į.		consu by pho TA Pro	tant to me or fa	notify th ix that a sager	o Testa	чтетса атріел	Project Will be su Date	Manage						

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-13036-1

Login Number: 13036 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kinecki, Kenneth

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	Common
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	2.9 C
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	GES
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

6

8

4.6

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-12888-1

Client Project/Site: NYSDEC - Lapp Insulators: Site#?

Revision: 1

For:

New York State D.E.C. 625 Broadway 9th Floor Albany, New York 12233-7258

Attn: Jason Pelton

Melisso Deyo

Authorized for release by: 12/6/2011 6:45:17 AM

Melissa Deyo

Project Administrator

melissa.deyo@testamericainc.com

Designee for

Brian Fischer

Project Manager II

brian.fischer@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

9

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

4

Melisso Deyo

6

Melissa Deyo Project Administrator 12/6/2011 6:45:17 AM

8

9

10

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Lab Chronicle	49
Certification Summary	54
Method Summary	55
Sample Summary	56
Chain of Custody	57
Receipt Checklists	60

Δ

9

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-12888-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
X	Surrogate is outside control limits
*	LCS or LCSD exceeds the control limits

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points

3

4

J

7

8

9

10

ΙU

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Job ID: 480-12888-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-12888-1

Comments

This report has been revised to change unit of meaure from ug/kg to mg/kg.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: Evidence of matrix interference is present;

Method(s) 8260B: Internal standard responses were outside of acceptance limits for the following sample(s): The sample(s) shows evidence of matrix interference.

Method(s) 8260B: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 29434, 29474 exceeded control limits for the following analytes: chloroethane.

Method(s) 8260B: The initial calibration curve was outside acceptance criteria for Bromomethane 17% RSD.

Method(s) 8260B: The continuing calibration verification (CCV) for analytical batch NFCI exceeded control criteria for Methyl acetate low 23%. The data have been qualified and reported.

Method(s) 8260B: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch NCFI exceeded control limits for the following analytes: Carbon disulfide low 78% R.

Method(s) 8260B: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 29347 exceeded control limits for the following analytes: carbon disulfide.

Method(s) 8260B: The initial calibration curve was outside acceptance criteria for Bromomethane. Analyte nondetect in associated sample.

Method(s) 8260B: NFCJ exceeded control limits for the following analytes: Carbon disulfide low 75%R.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

TestAmerica Buffalo 12/6/2011

2

3

4

5

O

0

9

10

Client: New York State D.E.C.

Client Sample ID: GESB-1 (4-5) Date Collected: 11/14/11 14:22 Date Received: 11/16/11 16:40

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-1

Lub Gampie 15: 400 12000 1
Matrix: Calid
Matrix: Solid
Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	0.00086	J	0.0057	0.00083	mg/Kg		11/21/11 12:01	11/21/11 20:03	
1,1,1-Trichloroethane	0.16		0.0057	0.00080	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
1,1,2,2-Tetrachloroethane	ND		0.0057	0.00030	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.0057	0.00038	mg/Kg		11/21/11 12:01	11/21/11 20:03	
1,1,2-Trichloroethane	0.0019	J	0.0057	0.00039	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
1,1-Dichloroethane	ND		0.0057	0.00047	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
1,1-Dichloroethene	ND		0.0057	0.00042			11/21/11 12:01	11/21/11 20:03	
1,2,4-Trichlorobenzene	ND		0.0057	0.00023		₩	11/21/11 12:01	11/21/11 20:03	
1,2-Dibromo-3-Chloropropane	ND		0.0057	0.0010		₽	11/21/11 12:01	11/21/11 20:03	
1,2-Dichlorobenzene	ND		0.0057		mg/Kg		11/21/11 12:01	11/21/11 20:03	
1,2-Dichloroethane	ND		0.0057	0.00071	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
1,2-Dichloropropane	ND		0.0057	0.00033	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
1,3-Dichlorobenzene	ND		0.0057	0.00017			11/21/11 12:01	11/21/11 20:03	
1,4-Dichlorobenzene	ND		0.0057	0.00026	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
2-Butanone	ND		0.0057	0.00020	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
2-Hexanone	ND		0.0057	0.00056	mg/Kg	φ.	11/21/11 12:01	11/21/11 20:03	
Acetone	0.0075		0.0057	0.0011	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
Benzene	0.0075 ND		0.0057	0.00081	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
Bromoform	ND		0.0057				11/21/11 12:01	11/21/11 20:03	
Bromomethane	ND ND			0.00023	mg/Kg		11/21/11 12:01	11/21/11 20:03	
	ND ND	*	0.0057		mg/Kg	₩			
Carbon disulfide			0.0057	0.00035	mg/Kg		11/21/11 12:01	11/21/11 20:03	
Carbon tetrachloride	ND		0.0057	0.00087	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
Chlorobenzene	ND		0.0057	0.000087	mg/Kg		11/21/11 12:01	11/21/11 20:03	
Chloroethane	ND		0.0057	0.00043	mg/Kg	<u></u>	11/21/11 12:01	11/21/11 20:03	
Chloroform	0.00062	J	0.0057	0.00037	mg/Kg	₩.	11/21/11 12:01	11/21/11 20:03	
Chloromethane	ND		0.0057	0.00030	mg/Kg	₩.	11/21/11 12:01	11/21/11 20:03	
cis-1,2-Dichloroethene	0.00065	J	0.0057	0.00048	mg/Kg		11/21/11 12:01	11/21/11 20:03	
cis-1,3-Dichloropropene	ND		0.0057	0.00040	mg/Kg	*	11/21/11 12:01	11/21/11 20:03	
Cyclohexane	ND		0.0057	0.00097	mg/Kg	*	11/21/11 12:01	11/21/11 20:03	
Dichlorodifluoromethane	ND		0.0057	0.00026	mg/Kg		11/21/11 12:01	11/21/11 20:03	
Ethylbenzene	ND		0.0057	0.000064		*	11/21/11 12:01	11/21/11 20:03	
Isopropylbenzene	ND		0.0057	0.000088	mg/Kg	**	11/21/11 12:01	11/21/11 20:03	
Methyl acetate	ND		0.0057	0.00072			11/21/11 12:01	11/21/11 20:03	
Methyl t-butyl ether	ND		0.0057	0.00034		₩	11/21/11 12:01	11/21/11 20:03	
Methylcyclohexane	ND		0.0057	0.00019		₩	11/21/11 12:01	11/21/11 20:03	
Methylene Chloride	ND		0.0057	0.00063	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
Styrene	ND		0.0057	0.00011	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
Tetrachloroethene	ND		0.0057	0.00013	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
Toluene	0.00071	J B	0.0057	0.00011	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
trans-1,2-Dichloroethene	ND		0.0057	0.00042	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
rans-1,3-Dichloropropene	ND		0.0057	0.00015	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
Trichloroethene	0.13		0.0057	0.00055	mg/Kg	₩	11/21/11 12:01	11/21/11 20:03	
Trichlorofluoromethane	ND		0.0057	0.00038	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
Vinyl chloride	ND		0.0057	0.00034	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
4-Methyl-2-pentanone	ND		0.0057	0.00068	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
Dibromochloromethane	ND		0.0057	0.00013	mg/Kg		11/21/11 12:01	11/21/11 20:03	
Bromodichloromethane	ND		0.0057	0.00024	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
1,2-Dibromoethane	ND		0.0057	0.00017	mg/Kg	₽	11/21/11 12:01	11/21/11 20:03	
1,2-Dichloroethene, Total	ND		0.0057	0.00088		ф.	11/21/11 12:01	11/21/11 20:03	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-1 (4-5)

Date Collected: 11/14/11 14:22 Date Received: 11/16/11 16:40 TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-1

Matrix: Solid

Percent Solids: 83.8

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	94		65 - 155	1	1/21/11 12:01	11/21/11 20:03	1
Toluene-d8	176	X	80 - 115	1	1/21/11 12:01	11/21/11 20:03	1
Bromofluorobenzene	229	X	80 - 115	1	1/21/11 12:01	11/21/11 20:03	1
1,2-Dichlorobenzene-d4	158	X	45 - 145	1	1/21/11 12:01	11/21/11 20:03	1

1,2-Dichlorobenzene-d4	158 .	X	45 - 145				11/21/11 12:01	11/21/11 20:03	1
Method: 8260B - Volatile Organic (
Analyte		Qualifier	RL .	MDL		D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		0.0056	0.00082	mg/Kg	*	11/21/11 12:01	11/22/11 11:42	1
1,1,1-Trichloroethane	0.11		0.0056	0.00079	mg/Kg	₽ .	11/21/11 12:01	11/22/11 11:42	1
1,1,2,2-Tetrachloroethane	ND		0.0056	0.00029	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.0056	0.00037		₽-	11/21/11 12:01	11/22/11 11:42	1
1,1,2-Trichloroethane	0.00092	J	0.0056	0.00038	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
1,1-Dichloroethane	ND		0.0056	0.00046	mg/Kg	₩	11/21/11 12:01	11/22/11 11:42	1
1,1-Dichloroethene	ND		0.0056	0.00042	mg/Kg	₩	11/21/11 12:01	11/22/11 11:42	1
1,2,4-Trichlorobenzene	0.00046	JB	0.0056	0.00022	mg/Kg	₩	11/21/11 12:01	11/22/11 11:42	1
1,2-Dibromo-3-Chloropropane	ND		0.0056	0.0010	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
1,2-Dichlorobenzene	ND		0.0056	0.00025	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
1,2-Dichloroethane	ND		0.0056	0.00070	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
1,2-Dichloropropane	ND		0.0056	0.00033	mg/Kg	₩	11/21/11 12:01	11/22/11 11:42	1
1,3-Dichlorobenzene	ND		0.0056	0.00017	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
1,4-Dichlorobenzene	ND		0.0056	0.00026	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
2-Butanone	ND		0.0056	0.0017	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
2-Hexanone	ND		0.0056	0.00055	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
Acetone	ND		0.0056	0.0011	mg/Kg	₩	11/21/11 12:01	11/22/11 11:42	1
Benzene	ND		0.0056	0.00080	mg/Kg	₩	11/21/11 12:01	11/22/11 11:42	1
Bromoform	ND		0.0056	0.00022	mg/Kg	\$	11/21/11 12:01	11/22/11 11:42	1
Bromomethane	ND		0.0056	0.00083	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
Carbon disulfide	ND '	*	0.0056	0.00035	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
Carbon tetrachloride	ND		0.0056	0.00085	mg/Kg	Φ.	11/21/11 12:01	11/22/11 11:42	1
Chlorobenzene	ND		0.0056	0.000085	mg/Kg	₩	11/21/11 12:01	11/22/11 11:42	1
Chloroethane	ND		0.0056	0.00043	mg/Kg	₩	11/21/11 12:01	11/22/11 11:42	1
Chloroform	ND		0.0056	0.00036	mg/Kg		11/21/11 12:01	11/22/11 11:42	1
Chloromethane	ND		0.0056	0.00029	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
cis-1,2-Dichloroethene	ND		0.0056	0.00047	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
cis-1,3-Dichloropropene	ND		0.0056	0.00039	mg/Kg		11/21/11 12:01	11/22/11 11:42	1
Cyclohexane	ND		0.0056		mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
Dichlorodifluoromethane	ND		0.0056	0.00026		₩	11/21/11 12:01	11/22/11 11:42	1
Ethylbenzene	ND		0.0056	0.000063			11/21/11 12:01	11/22/11 11:42	
Isopropylbenzene	ND		0.0056	0.000087		₩	11/21/11 12:01	11/22/11 11:42	1
Methyl acetate	ND		0.0056	0.00071		₩	11/21/11 12:01	11/22/11 11:42	1
Methyl t-butyl ether	ND		0.0056	0.00071			11/21/11 12:01	11/22/11 11:42	· · · · · · · 1
Methylcyclohexane	ND		0.0056	0.00019		₽	11/21/11 12:01	11/22/11 11:42	1
Methylene Chloride	ND		0.0056	0.00062		₽	11/21/11 12:01	11/22/11 11:42	1
Styrene	ND ND		0.0056	0.00011			11/21/11 12:01	11/22/11 11:42	
•	ND ND		0.0056	0.00011		т Ф			1
Tetrachloroethene						т Ф	11/21/11 12:01	11/22/11 11:42	
Toluene	0.00029	J 	0.0056	0.00011		¥	11/21/11 12:01	11/22/11 11:42	1
trans-1,2-Dichloroethene	ND		0.0056	0.00042			11/21/11 12:01	11/22/11 11:42	1
trans-1,3-Dichloropropene	ND		0.0056	0.00015		‡ **	11/21/11 12:01	11/22/11 11:42	1
Trichloroethene	0.078		0.0056	0.00054		<u></u>	11/21/11 12:01	11/22/11 11:42	1
Trichlorofluoromethane	ND		0.0056	0.00037		‡	11/21/11 12:01	11/22/11 11:42	1
Vinyl chloride	ND		0.0056	0.00034	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-1 (4-5) Date Collected: 11/14/11 14:22 Date Received: 11/16/11 16:40

Lab Sample ID: 480-12888-1

TestAmerica Job ID: 480-12888-1

Sample i	:טו	400-	40	00-	ı
		Mate	·iv·	Salid	a

Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone	ND		0.0056	0.00067	mg/Kg	\$	11/21/11 12:01	11/22/11 11:42	1
Dibromochloromethane	ND		0.0056	0.00012	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
Bromodichloromethane	ND		0.0056	0.00024	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
1,2-Dibromoethane	ND		0.0056	0.00017	mg/Kg	₽	11/21/11 12:01	11/22/11 11:42	1
1,2-Dichloroethene, Total	ND		0.0056	0.00087	mg/Kg	\$	11/21/11 12:01	11/22/11 11:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	85		65 - 155				11/21/11 12:01	11/22/11 11:42	1
Toluene-d8	107		80 - 115				11/21/11 12:01	11/22/11 11:42	1
Bromofluorobenzene	128	X	80 - 115				11/21/11 12:01	11/22/11 11:42	1
1.2-Dichlorobenzene-d4	87		45 - 145				11/21/11 12:01	11/22/11 11:42	1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Method: 8260B - Volatile Organic Compounds (GC/MS)

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-1 (7-9)

Date Collected: 11/14/11 14:15 Date Received: 11/16/11 16:40

Dibromochloromethane

Bromodichloromethane

1,2-Dichloroethene, Total

1,2-Dibromoethane

Lab Sample ID: 480-12888-2

Matrix: Solid Percent Solids: 74.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		0.13	0.087	mg/Kg	*	11/21/11 12:23	11/22/11 17:04	1
1,1,1-Trichloroethane	0.37		0.13	0.024	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,1,2,2-Tetrachloroethane	ND		0.13	0.028	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.13	0.019	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
1,1,2-Trichloroethane	ND		0.13	0.028	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,1-Dichloroethane	ND		0.13	0.024	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,1-Dichloroethene	ND		0.13	0.019	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,2,4-Trichlorobenzene	ND		0.13	0.033	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,2-Dibromo-3-Chloropropane	ND		0.13	0.068	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,2-Dichlorobenzene	ND		0.13	0.031	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
1,2-Dichloroethane	ND		0.13	0.028	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,2-Dichloropropane	ND		0.13	0.027	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,3-Dichlorobenzene	ND		0.13	0.029	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
1,4-Dichlorobenzene	ND		0.13	0.036	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
2-Butanone	ND		0.67	0.098	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
2-Hexanone	ND		0.67	0.096	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
Acetone	ND		0.67	0.11	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Benzene	ND		0.13	0.024	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Bromoform	ND		0.13	0.029	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
Bromomethane	0.078	JB	0.13	0.029	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Carbon disulfide	ND		0.13	0.021	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Carbon tetrachloride	ND		0.13	0.017	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Chlorobenzene	ND		0.13	0.031	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Chloroethane	ND	*	0.13	0.045	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Chloroform	ND		0.13	0.021	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
Chloromethane	ND		0.13	0.016	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
cis-1,2-Dichloroethene	ND		0.13	0.028	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
cis-1,3-Dichloropropene	ND		0.13	0.029	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
Cyclohexane	ND		0.13	0.021	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Dichlorodifluoromethane	ND		0.13	0.017	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Ethylbenzene	ND		0.13	0.029	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
Isopropylbenzene	ND		0.13	0.032	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Methyl acetate	ND		0.13	0.037	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Methyl t-butyl ether	ND		0.13	0.020	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Methylcyclohexane	ND		0.13	0.020	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Methylene Chloride	ND		0.13	0.033	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Styrene	ND		0.13	0.032	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Tetrachloroethene	ND		0.13	0.024	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Toluene	ND		0.13	0.027	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
trans-1,2-Dichloroethene	ND		0.13	0.023	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
trans-1,3-Dichloropropene	ND		0.13	0.036	mg/Kg	₩	11/21/11 12:23	11/22/11 17:04	1
Trichloroethene	0.46		0.13	0.025	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
Trichlorofluoromethane	ND		0.13	0.017	mg/Kg		11/21/11 12:23	11/22/11 17:04	1
Vinyl chloride	ND		0.13	0.016	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1
4-Methyl-2-pentanone	ND		0.67	0.079	mg/Kg	₽	11/21/11 12:23	11/22/11 17:04	1

A

8

9

11/22/11 17:04

11/22/11 17:04

11/22/11 17:04

11/22/11 17:04

0.13

0.13

0.13

0.13

0.028 mg/Kg

0.029 mg/Kg

0.031 mg/Kg

0.052 mg/Kg

11/21/11 12:23

11/21/11 12:23

11/21/11 12:23

11/21/11 12:23

₩

ND

ND

ND

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-1 (7-9)

Date Collected: 11/14/11 14:15 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-2

Matrix: Solid

Percent Solids: 74.8

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	96	65 - 155	11/21/11 12:23	11/22/11 17:04	1
Toluene-d8	97	80 - 115	11/21/11 12:23	11/22/11 17:04	1
Bromofluorobenzene	97	80 - 115	11/21/11 12:23	11/22/11 17:04	1
1,2-Dichlorobenzene-d4	94	45 - 145	11/21/11 12:23	11/22/11 17:04	1

5

ວ

7

R

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-2 (3-4)

Lab Sample ID: 480-12888-3

Date Collected: 11/14/11 14:45

Date Received: 11/16/11 16:40

Matrix: Solid
Percent Solids: 87.1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Xylenes, Total	ND	0.10	0.067	mg/Kg	*	11/21/11 12:23	11/22/11 17:36	
1,1,1-Trichloroethane	0.69	0.10	0.018	mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
1,1,2,2-Tetrachloroethane	ND	0.10	0.021	mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND	0.10	0.014	mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
1,1,2-Trichloroethane	ND	0.10	0.021	mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
1,1-Dichloroethane	ND	0.10	0.018	mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
1,1-Dichloroethene	ND	0.10	0.014	mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
1,2,4-Trichlorobenzene	ND	0.10	0.026	mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
1,2-Dibromo-3-Chloropropane	ND	0.10	0.052	mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
1,2-Dichlorobenzene	ND	0.10	0.024	mg/Kg		11/21/11 12:23	11/22/11 17:36	
1,2-Dichloroethane	ND	0.10	0.021	mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
1,2-Dichloropropane	ND	0.10	0.020	mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
1,3-Dichlorobenzene	ND	0.10	0.023	mg/Kg		11/21/11 12:23	11/22/11 17:36	
1,4-Dichlorobenzene	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
2-Butanone	ND	0.51		mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
2-Hexanone	ND	0.51		mg/Kg		11/21/11 12:23	11/22/11 17:36	
Acetone	ND	0.51	0.086	mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
Benzene	ND	0.10		mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
Bromoform	ND	0.10		mg/Kg		11/21/11 12:23	11/22/11 17:36	
Bromomethane	0.058 JB	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Carbon disulfide	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Carbon tetrachloride	ND	0.10		mg/Kg	φ.	11/21/11 12:23	11/22/11 17:36	
Chlorobenzene	ND	0.10		mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
Chloroethane	ND *	0.10		mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
Chloroform	ND	0.10		mg/Kg	·	11/21/11 12:23	11/22/11 17:36	
Chloromethane	ND	0.10		mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
cis-1,2-Dichloroethene	ND	0.10		mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
cis-1,3-Dichloropropene	ND	0.10		mg/Kg	 ф	11/21/11 12:23	11/22/11 17:36	
Cyclohexane	ND	0.10		mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
Dichlorodifluoromethane	ND	0.10		mg/Kg	₩	11/21/11 12:23	11/22/11 17:36	
Ethylbenzene	ND	0.10		mg/Kg	 ф	11/21/11 12:23	11/22/11 17:36	
Isopropylbenzene	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Methyl acetate	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Methyl t-butyl ether	ND	0.10		mg/Kg		11/21/11 12:23	11/22/11 17:36	
Methylcyclohexane	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Methylene Chloride	ND	0.10		mg/Kg	:	11/21/11 12:23	11/22/11 17:36	
Styrene	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Tetrachloroethene	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Toluene	ND	0.10		mg/Kg	₽			
trans-1,2-Dichloroethene		0.10			 \$	11/21/11 12:23	11/22/11 17:36	
	ND ND			mg/Kg	Φ.	11/21/11 12:23	11/22/11 17:36	
trans-1,3-Dichloropropene	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Trichloroethene Trichlorofluoromethane	2.9	0.10		mg/Kg		11/21/11 12:23	11/22/11 17:36 11/22/11 17:36	
	ND ND	0.10		mg/Kg	*	11/21/11 12:23		
Vinyl chloride	ND ND	0.10		mg/Kg		11/21/11 12:23	11/22/11 17:36	
4-Methyl-2-pentanone	ND	0.51		mg/Kg	X	11/21/11 12:23	11/22/11 17:36	
Dibromochloromethane	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
Bromodichloromethane	ND	0.10		mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	
1,2-Dibromoethane	ND	0.10	0.024	mg/Kg	₽	11/21/11 12:23	11/22/11 17:36	

J

7

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-2 (3-4)

Date Collected: 11/14/11 14:45 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-3

Matrix: Solid

Percent Solids: 87.1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	93	65 - 155	11/21/11 12:23	11/22/11 17:36	1
Toluene-d8	99	80 - 115	11/21/11 12:23	11/22/11 17:36	1
Bromofluorobenzene	98	80 - 115	11/21/11 12:23	11/22/11 17:36	1
1,2-Dichlorobenzene-d4	94	45 - 145	11/21/11 12:23	11/22/11 17:36	1

5

J

7

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-4

Matrix: Solid Percent Solids: 70.8

Client Sample ID: GESB-2 (4-6)

Date Collected: 11/14/11 14:47 Date Received: 11/16/11 16:40

1,2-Dichloroethene, Total

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND	0.14		mg/Kg	₽	11/21/11 12:23	11/22/11 18:08	
1,1,1-Trichloroethane	0.24	0.14	0.025	mg/Kg	\$	11/21/11 12:23	11/22/11 18:08	
1,1,2,2-Tetrachloroethane	ND	0.14	0.029	mg/Kg		11/21/11 12:23	11/22/11 18:08	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND	0.14	0.020	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,1,2-Trichloroethane	ND	0.14	0.029	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,1-Dichloroethane	ND	0.14	0.025	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,1-Dichloroethene	ND	0.14	0.020	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,2,4-Trichlorobenzene	ND	0.14	0.035	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,2-Dibromo-3-Chloropropane	ND	0.14	0.071	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,2-Dichlorobenzene	ND	0.14	0.032	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,2-Dichloroethane	ND	0.14	0.029	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,2-Dichloropropane	ND	0.14	0.028	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,3-Dichlorobenzene	ND	0.14	0.031	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
1,4-Dichlorobenzene	ND	0.14	0.038	mg/Kg	₽	11/21/11 12:23	11/22/11 18:08	
2-Butanone	ND	0.70		mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
2-Hexanone	ND	0.70	0.10	mg/Kg		11/21/11 12:23	11/22/11 18:08	
Acetone	ND	0.70		mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
Benzene	ND	0.14	0.025		₩	11/21/11 12:23	11/22/11 18:08	
Bromoform	ND	0.14	0.031			11/21/11 12:23	11/22/11 18:08	
Bromomethane	0.052 JB	0.14	0.031		₽	11/21/11 12:23	11/22/11 18:08	
Carbon disulfide	ND	0.14	0.022		₩	11/21/11 12:23	11/22/11 18:08	
Carbon tetrachloride	ND	0.14	0.018			11/21/11 12:23	11/22/11 18:08	
Chlorobenzene	ND	0.14	0.032		₩	11/21/11 12:23	11/22/11 18:08	
Chloroethane	ND *	0.14	0.048		₽	11/21/11 12:23	11/22/11 18:08	
Chloroform	ND	0.14	0.022		· · · · · · · · · · · · · · · · · · ·	11/21/11 12:23	11/22/11 18:08	
Chloromethane	ND	0.14	0.022		₽	11/21/11 12:23	11/22/11 18:08	
cis-1,2-Dichloroethene	ND	0.14		mg/Kg	₽	11/21/11 12:23	11/22/11 18:08	
		0.14	0.029			11/21/11 12:23	11/22/11 18:08	
cis-1,3-Dichloropropene	ND ND				₩			
Cyclohexane	ND	0.14	0.022		₩	11/21/11 12:23	11/22/11 18:08	
Dichlorodifluoromethane	ND	0.14	0.018			11/21/11 12:23	11/22/11 18:08	
Ethylbenzene	ND	0.14	0.031		☆	11/21/11 12:23	11/22/11 18:08	
sopropylbenzene	ND	0.14	0.034		☆	11/21/11 12:23	11/22/11 18:08	
Methyl acetate	ND	0.14	0.039		T	11/21/11 12:23	11/22/11 18:08	
Methyl t-butyl ether	ND	0.14	0.021		Ψ.	11/21/11 12:23	11/22/11 18:08	
Methylcyclohexane	ND	0.14	0.021		.	11/21/11 12:23	11/22/11 18:08	
Methylene Chloride	ND	0.14	0.035			11/21/11 12:23	11/22/11 18:08	
Styrene	ND	0.14	0.034	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
Tetrachloroethene	ND	0.14	0.025	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
Toluene	ND	0.14	0.028	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
rans-1,2-Dichloroethene	ND	0.14	0.024	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
rans-1,3-Dichloropropene	ND	0.14	0.038	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
Trichloroethene	1.2	0.14	0.027	mg/Kg	₽	11/21/11 12:23	11/22/11 18:08	
Trichlorofluoromethane	ND	0.14	0.018	mg/Kg	₽	11/21/11 12:23	11/22/11 18:08	
Vinyl chloride	ND	0.14	0.017	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
4-Methyl-2-pentanone	ND	0.70	0.083	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
Dibromochloromethane	ND	0.14	0.029	mg/Kg	₩	11/21/11 12:23	11/22/11 18:08	
Bromodichloromethane	ND	0.14	0.031		₽	11/21/11 12:23	11/22/11 18:08	
Diditionidionicinane	ND	0.14	0.031	my/rxy	~	11/21/11 12.23	11/22/11 10.00	

R

9

10

11/22/11 18:08

0.14

0.055 mg/Kg

11/21/11 12:23

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Lab Sample ID: 480-12888-4

TestAmerica Job ID: 480-12888-1

Matrix: Solid

Percent Solids: 70.8

Client Sample ID: GESB-2 (4-6)

Date Collected: 11/14/11 14:47 Date Received: 11/16/11 16:40

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	94		65 - 155	11/21/11 12:23	11/22/11 18:08	1
Toluene-d8	98		80 - 115	11/21/11 12:23	11/22/11 18:08	1
Bromofluorobenzene	98		80 - 115	11/21/11 12:23	11/22/11 18:08	1
1,2-Dichlorobenzene-d4	94		45 - 145	11/21/11 12:23	11/22/11 18:08	1

5

7

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-2 (6-8)

Date Collected: 11/14/11 15:27 Date Received: 11/16/11 16:40

Lab Sample ID: 480-12888-5

Matrix: Solid

	Percent Soli	ds: 74.3
Prepared	Analyzed	Dil Fac
21/11 12:01	11/22/11 12:43	1
21/11 12:01	11/22/11 12:43	1
21/11 12:01	11/22/11 12:43	1
21/11 12:01	11/22/11 12:43	1
21/11 12:01	11/22/11 12:43	1
21/11 12:01	11/22/11 12:43	1
21/11 12:01	11/22/11 12:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND		0.0067	0.00098	mg/Kg		11/21/11 12:01	11/22/11 12:43	-
1,1,1-Trichloroethane	0.051		0.0067	0.00094	mg/Kg	₩	11/21/11 12:01	11/22/11 12:43	
1,1,2,2-Tetrachloroethane	ND		0.0067	0.00035		₩	11/21/11 12:01	11/22/11 12:43	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.0067	0.00044			11/21/11 12:01	11/22/11 12:43	
1,1,2-Trichloroethane	ND		0.0067	0.00046		₩	11/21/11 12:01	11/22/11 12:43	
1,1-Dichloroethane	ND		0.0067	0.00055		₽	11/21/11 12:01	11/22/11 12:43	
1,1-Dichloroethene	ND		0.0067	0.00050			11/21/11 12:01	11/22/11 12:43	
1,2,4-Trichlorobenzene	ND		0.0067	0.00027		₩	11/21/11 12:01	11/22/11 12:43	
1,2-Dibromo-3-Chloropropane	ND		0.0067	0.0012		₽	11/21/11 12:01	11/22/11 12:43	
1,2-Dichlorobenzene	ND		0.0067	0.00029			11/21/11 12:01	11/22/11 12:43	
1,2-Dichloroethane	ND		0.0067	0.00083		₽	11/21/11 12:01	11/22/11 12:43	
1,2-Dichloropropane	ND		0.0067	0.00039		₽	11/21/11 12:01	11/22/11 12:43	
1,3-Dichlorobenzene	ND		0.0067	0.00020		- -	11/21/11 12:01	11/22/11 12:43	
1.4-Dichlorobenzene	ND		0.0067	0.00031	mg/Kg	₽	11/21/11 12:01	11/22/11 12:43	
2-Butanone	ND		0.0067	0.0020		₩	11/21/11 12:01	11/22/11 12:43	
2-Hexanone	ND		0.0067	0.00066			11/21/11 12:01	11/22/11 12:43	
Acetone	0.032		0.0067	0.0013		₩	11/21/11 12:01	11/22/11 12:43	
Benzene	ND		0.0067	0.00095		₩	11/21/11 12:01	11/22/11 12:43	
Bromoform	ND		0.0067	0.00027			11/21/11 12:01	11/22/11 12:43	
Bromomethane	ND		0.0067	0.00099	mg/Kg	₩	11/21/11 12:01	11/22/11 12:43	
Carbon disulfide	ND	*	0.0067	0.00041	mg/Kg	₽	11/21/11 12:01	11/22/11 12:43	
Carbon tetrachloride	ND		0.0067	0.0010			11/21/11 12:01	11/22/11 12:43	
Chlorobenzene	ND		0.0067	0.00010		₩	11/21/11 12:01	11/22/11 12:43	
Chloroethane	ND		0.0067	0.00051	mg/Kg	₽	11/21/11 12:01	11/22/11 12:43	
Chloroform	0.00084		0.0067	0.00043			11/21/11 12:01	11/22/11 12:43	
Chloromethane	0.00004 ND	3	0.0067	0.00045		₩	11/21/11 12:01	11/22/11 12:43	
cis-1,2-Dichloroethene	0.0014	1	0.0067	0.00056			11/21/11 12:01	11/22/11 12:43	
cis-1,3-Dichloropropene	0.0014 ND	.	0.0067	0.00047			11/21/11 12:01	11/22/11 12:43	
Cyclohexane	ND		0.0067	0.00047			11/21/11 12:01	11/22/11 12:43	
Dichlorodifluoromethane	ND		0.0067	0.00011	mg/Kg		11/21/11 12:01	11/22/11 12:43	
Ethylbenzene	ND		0.0067	0.00031		· · · · · · · · · · · · · · · · · · ·	11/21/11 12:01	11/22/11 12:43	
Isopropylbenzene	ND		0.0067				11/21/11 12:01	11/22/11 12:43	
• • •	ND ND		0.0067	0.00010 0.00084				11/22/11 12:43	
Methyl acetate				0.0004			11/21/11 12:01		
Methyl t-butyl ether	ND ND		0.0067 0.0067		mg/Kg	₩	11/21/11 12:01	11/22/11 12:43	
Methylogo Chlorida	ND ND		0.0067	0.00023		₩	11/21/11 12:01	11/22/11 12:43	
Methylene Chloride				0.00074			11/21/11 12:01	11/22/11 12:43	
Styrene	ND		0.0067	0.00013			11/21/11 12:01	11/22/11 12:43	
Tetrachloroethene	ND		0.0067	0.00015	0 0	₽	11/21/11 12:01	11/22/11 12:43	
Toluene	0.00016	J 	0.0067	0.00013		<u></u>	11/21/11 12:01	11/22/11 12:43	
rans-1,2-Dichloroethene	ND		0.0067	0.00050		₩	11/21/11 12:01	11/22/11 12:43	
rans-1,3-Dichloropropene	ND		0.0067	0.00017		₽	11/21/11 12:01	11/22/11 12:43	
Trichloroethene	0.22		0.0067	0.00064		<u></u>	11/21/11 12:01	11/22/11 12:43	
Frichlorofluoromethane	ND		0.0067	0.00044		₽	11/21/11 12:01	11/22/11 12:43	
/inyl chloride	ND		0.0067	0.00040		₩	11/21/11 12:01	11/22/11 12:43	
4-Methyl-2-pentanone	ND		0.0067	0.00080		<u></u>	11/21/11 12:01	11/22/11 12:43	
Dibromochloromethane	ND		0.0067	0.00015			11/21/11 12:01	11/22/11 12:43	
Bromodichloromethane	ND		0.0067	0.00028		₩	11/21/11 12:01	11/22/11 12:43	
1,2-Dibromoethane	ND		0.0067	0.00020			11/21/11 12:01	11/22/11 12:43	
1,2-Dichloroethene, Total	0.0014	J	0.0067	0.0010	mg/Kg	₽	11/21/11 12:01	11/22/11 12:43	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-2 (6-8)

Date Collected: 11/14/11 15:27 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-5

Matrix: Solid

Percent Solids: 74.3

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	86	65 - 155	11/21/11 12:01	11/22/11 12:43	1
Toluene-d8	94	80 - 115	11/21/11 12:01	11/22/11 12:43	1
Bromofluorobenzene	102	80 - 115	11/21/11 12:01	11/22/11 12:43	1
1,2-Dichlorobenzene-d4	92	45 - 145	11/21/11 12:01	11/22/11 12:43	1

5

1

ŏ

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-6

Matrix: Solid Percent Solids: 79.7

Client Sample ID: GESB-3 (1-2)

Date Collected: 11/14/11 15:30 Date Received: 11/16/11 16:40

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Kylenes, Total	ND		0.084	0.055	mg/Kg	*	11/21/11 12:23	11/22/11 18:40	
1,1,1-Trichloroethane	1.5		0.084	0.015	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
1,1,2,2-Tetrachloroethane	ND		0.084	0.018	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.084	0.012	mg/Kg	*	11/21/11 12:23	11/22/11 18:40	
1,1,2-Trichloroethane	0.16		0.084	0.018	mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
1,1-Dichloroethane	ND		0.084	0.015	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
1,1-Dichloroethene	0.013	J	0.084	0.012	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
1,2,4-Trichlorobenzene	ND		0.084	0.021	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
1,2-Dibromo-3-Chloropropane	ND		0.084	0.043	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
1,2-Dichlorobenzene	ND		0.084	0.019	mg/Kg		11/21/11 12:23	11/22/11 18:40	
1,2-Dichloroethane	ND		0.084	0.018	mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
1,2-Dichloropropane	ND		0.084	0.017	mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
1,3-Dichlorobenzene	ND		0.084	0.018	mg/Kg		11/21/11 12:23	11/22/11 18:40	
1,4-Dichlorobenzene	ND		0.084	0.023	mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
2-Butanone	ND		0.42	0.062	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
2-Hexanone	ND		0.42		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Acetone	ND		0.42		mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
Benzene	ND		0.084		mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
Bromoform	ND		0.084		mg/Kg	φ.	11/21/11 12:23	11/22/11 18:40	
Bromomethane	0.033	JB	0.084		mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
Carbon disulfide	ND	0.5	0.084		mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
Carbon tetrachloride	ND		0.084	0.011		φ.	11/21/11 12:23	11/22/11 18:40	
Chlorobenzene	ND		0.084		mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
Chloroethane	ND	*	0.084		mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
Chloroform	ND		0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Chloromethane	ND		0.084		mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
cis-1,2-Dichloroethene	ND		0.084		mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
cis-1,3-Dichloropropene	ND		0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Cyclohexane	ND		0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Dichlorodifluoromethane	ND		0.084		mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
Ethylbenzene	ND		0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
· ·	ND ND		0.084		mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
sopropylbenzene	ND ND					₽			
Methyl acetate			0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Methyl t-butyl ether	ND		0.084		mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
Methylcyclohexane	0.017	J	0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Methylene Chloride	ND		0.084		mg/Kg	. .	11/21/11 12:23	11/22/11 18:40	
Styrene	ND		0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Tetrachloroethene	0.030	J	0.084		mg/Kg	<u>~</u>	11/21/11 12:23	11/22/11 18:40	
Foluene	ND		0.084		mg/Kg	<u>T</u> .	11/21/11 12:23	11/22/11 18:40	
rans-1,2-Dichloroethene	ND		0.084		mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
rans-1,3-Dichloropropene	ND		0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Trichloroethene	4.2		0.084		mg/Kg		11/21/11 12:23	11/22/11 18:40	
Trichlorofluoromethane	ND		0.084		mg/Kg	*	11/21/11 12:23	11/22/11 18:40	
/inyl chloride	ND		0.084		mg/Kg	\$	11/21/11 12:23	11/22/11 18:40	
1-Methyl-2-pentanone	ND		0.42	0.050	mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	
Dibromochloromethane	ND		0.084	0.018	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
Bromodichloromethane	ND		0.084	0.018	mg/Kg	₩	11/21/11 12:23	11/22/11 18:40	
1,2-Dibromoethane	ND		0.084	0.019	mg/Kg	₽	11/21/11 12:23	11/22/11 18:40	

TestAmerica Buffalo 12/6/2011

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-3 (1-2)

Date Collected: 11/14/11 15:30 Date Received: 11/16/11 16:40

Lab Sample ID: 480-12888-6

Matrix: Solid

Percent Solids: 79.7

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	89	65 - 155	11/21/11 12:23	11/22/11 18:40	1
Toluene-d8	95	80 - 115	11/21/11 12:23	11/22/11 18:40	1
Bromofluorobenzene	93	80 - 115	11/21/11 12:23	11/22/11 18:40	1
1,2-Dichlorobenzene-d4	91	45 - 145	11/21/11 12:23	11/22/11 18:40	1

5

5

9

10

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-3 (3-4)

Date Collected: 11/14/11 13:12 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-7

Matrix: Solid
Percent Solids: 83.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND		0.0059	0.00086	mg/Kg	<u></u>	11/21/11 12:01	11/22/11 13:27	
1,1,1-Trichloroethane	0.021		0.0059	0.00082	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
1,1,2,2-Tetrachloroethane	ND		0.0059	0.00031	mg/Kg	₽	11/21/11 12:01	11/22/11 13:27	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.0059	0.00039	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
1,1,2-Trichloroethane	0.0048	J	0.0059	0.00040	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
1,1-Dichloroethane	ND		0.0059	0.00048	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
1,1-Dichloroethene	ND		0.0059	0.00043			11/21/11 12:01	11/22/11 13:27	· · · · · · · .
1,2,4-Trichlorobenzene	ND		0.0059	0.00023	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
1,2-Dibromo-3-Chloropropane	ND		0.0059	0.0011		₽	11/21/11 12:01	11/22/11 13:27	
1.2-Dichlorobenzene	ND		0.0059	0.00026	mg/Kg		11/21/11 12:01	11/22/11 13:27	
1,2-Dichloroethane	ND		0.0059	0.00073	mg/Kg	₽	11/21/11 12:01	11/22/11 13:27	
1,2-Dichloropropane	ND		0.0059	0.00034	mg/Kg	₽	11/21/11 12:01	11/22/11 13:27	
1,3-Dichlorobenzene	ND		0.0059	0.00018			11/21/11 12:01	11/22/11 13:27	
1,4-Dichlorobenzene	ND		0.0059	0.00027	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
2-Butanone	ND		0.0059	0.0018	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
2-Hexanone	ND		0.0059	0.00058	mg/Kg	φ.	11/21/11 12:01	11/22/11 13:27	
Acetone	0.014		0.0059	0.00030		₽	11/21/11 12:01	11/22/11 13:27	
Benzene	0.014 ND		0.0059	0.00083	mg/Kg		11/21/11 12:01	11/22/11 13:27	
Bromoform	ND		0.0059	0.00023			11/21/11 12:01	11/22/11 13:27	
Bromomethane	ND ND				mg/Kg			11/22/11 13:27	
Carbon disulfide	ND ND	*	0.0059	0.00087 0.00036	mg/Kg		11/21/11 12:01 11/21/11 12:01	11/22/11 13:27	
			0.0059		mg/Kg				
Carbon tetrachloride	ND		0.0059	0.00089	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
Chlorothean	ND		0.0059	0.000089	mg/Kg		11/21/11 12:01	11/22/11 13:27	
Chloroethane	ND		0.0059	0.00045	mg/Kg	<u></u>	11/21/11 12:01	11/22/11 13:27	
Chloroform	ND		0.0059	0.00038	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
Chloromethane	ND		0.0059	0.00031	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
cis-1,2-Dichloroethene	0.00054	J	0.0059	0.00049	mg/Kg	<u></u>	11/21/11 12:01	11/22/11 13:27	
cis-1,3-Dichloropropene	ND		0.0059	0.00041	mg/Kg	*	11/21/11 12:01	11/22/11 13:27	
Cyclohexane	ND		0.0059	0.0010	mg/Kg		11/21/11 12:01	11/22/11 13:27	
Dichlorodifluoromethane	ND		0.0059	0.00027	mg/Kg	<u></u> .	11/21/11 12:01	11/22/11 13:27	
Ethylbenzene	ND		0.0059	0.000066	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
Isopropylbenzene	ND		0.0059	0.000090	mg/Kg	₩.	11/21/11 12:01	11/22/11 13:27	
Methyl acetate	ND		0.0059	0.00074		₽ 	11/21/11 12:01	11/22/11 13:27	
Methyl t-butyl ether	ND		0.0059	0.00035	mg/Kg	*	11/21/11 12:01	11/22/11 13:27	
Methylcyclohexane	ND		0.0059	0.00020			11/21/11 12:01	11/22/11 13:27	
Methylene Chloride	ND		0.0059	0.00065			11/21/11 12:01	11/22/11 13:27	
Styrene	ND		0.0059	0.00012		*	11/21/11 12:01	11/22/11 13:27	
Tetrachloroethene	0.00036	J	0.0059	0.00013	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
Toluene	0.00015	J	0.0059	0.00012			11/21/11 12:01	11/22/11 13:27	
trans-1,2-Dichloroethene	ND		0.0059	0.00043		₩	11/21/11 12:01	11/22/11 13:27	
trans-1,3-Dichloropropene	ND		0.0059	0.00015	mg/Kg	₩	11/21/11 12:01	11/22/11 13:27	
Trichloroethene	0.094		0.0059	0.00056	mg/Kg		11/21/11 12:01	11/22/11 13:27	
Trichlorofluoromethane	ND		0.0059	0.00039	mg/Kg	₽	11/21/11 12:01	11/22/11 13:27	
Vinyl chloride	ND		0.0059	0.00035	mg/Kg	₽	11/21/11 12:01	11/22/11 13:27	
4-Methyl-2-pentanone	ND		0.0059	0.00070	mg/Kg	₽	11/21/11 12:01	11/22/11 13:27	
Dibromochloromethane	ND		0.0059	0.00013	mg/Kg	*	11/21/11 12:01	11/22/11 13:27	
Bromodichloromethane	ND		0.0059	0.00025	mg/Kg	₽	11/21/11 12:01	11/22/11 13:27	
1,2-Dibromoethane	ND		0.0059	0.00018	mg/Kg	₽	11/21/11 12:01	11/22/11 13:27	
1,2-Dichloroethene, Total	ND		0.0059	0.00090	mg/Kg	\$	11/21/11 12:01	11/22/11 13:27	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-3 (3-4)

Date Collected: 11/14/11 13:12 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-7

Matrix: Solid

Percent Solids: 83.5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	77	65 - 155	11/21/11 12:01	11/22/11 13:27	1
Toluene-d8	83	80 - 115	11/21/11 12:01	11/22/11 13:27	1
Bromofluorobenzene	91	80 - 115	11/21/11 12:01	11/22/11 13:27	1
1,2-Dichlorobenzene-d4	77	45 - 145	11/21/11 12:01	11/22/11 13:27	1

5

J

7

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-4 (4-6)

Date Collected: 11/15/11 13:07 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-8

. Matrix: Solid

Percent Solids: 82.9

Analyte	Compounds Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Xylenes, Total	ND		0.0057	0.00084	mg/Kg	<u></u>	11/21/11 12:01	11/22/11 13:57	
1,1,1-Trichloroethane	0.017		0.0057	0.00080	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
1,1,2,2-Tetrachloroethane	ND		0.0057	0.00030	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.0057	0.00038	mg/Kg		11/21/11 12:01	11/22/11 13:57	
1,1,2-Trichloroethane	0.00064	J	0.0057	0.00039	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
1,1-Dichloroethane	ND		0.0057	0.00047	mg/Kg	₽	11/21/11 12:01	11/22/11 13:57	
1,1-Dichloroethene	ND		0.0057		mg/Kg		11/21/11 12:01	11/22/11 13:57	
1,2,4-Trichlorobenzene	ND		0.0057	0.00023	mg/Kg	₽	11/21/11 12:01	11/22/11 13:57	
I,2-Dibromo-3-Chloropropane	ND		0.0057	0.0010	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
,2-Dichlorobenzene	ND		0.0057	0.00025	mg/Kg		11/21/11 12:01	11/22/11 13:57	
,2-Dichloroethane	ND		0.0057	0.00071	mg/Kg	≎	11/21/11 12:01	11/22/11 13:57	
,2-Dichloropropane	ND		0.0057	0.00033		₽	11/21/11 12:01	11/22/11 13:57	
,3-Dichlorobenzene	ND		0.0057	0.00017		φ.	11/21/11 12:01	11/22/11 13:57	
,4-Dichlorobenzene	ND		0.0057	0.00017		₽	11/21/11 12:01	11/22/11 13:57	
-A-Dichioroberizerie -Butanone	ND ND		0.0057	0.00026		₩	11/21/11 12:01	11/22/11 13:57	
-butanone	ND		0.0057	0.0017			11/21/11 12:01	11/22/11 13:57	
Acetone	ND ND		0.0057		mg/Kg		11/21/11 12:01	11/22/11 13:57	
	ND ND					₩			
Benzene			0.0057	0.00081	mg/Kg		11/21/11 12:01	11/22/11 13:57	
dromoform	ND		0.0057		mg/Kg		11/21/11 12:01	11/22/11 13:57	
dromomethane	ND		0.0057	0.00085	mg/Kg	*	11/21/11 12:01	11/22/11 13:57	
arbon disulfide	ND	·	0.0057	0.00036	mg/Kg	<u></u>	11/21/11 12:01	11/22/11 13:57	
Carbon tetrachloride	ND		0.0057	0.00087	mg/Kg	*	11/21/11 12:01	11/22/11 13:57	
Chlorobenzene	ND		0.0057	0.000087	mg/Kg	₩.	11/21/11 12:01	11/22/11 13:57	
Chloroethane	ND		0.0057	0.00044	mg/Kg	· <u>.</u> ·	11/21/11 12:01	11/22/11 13:57	
Chloroform	ND		0.0057	0.00037	mg/Kg		11/21/11 12:01	11/22/11 13:57	
Chloromethane	ND		0.0057	0.00030	mg/Kg		11/21/11 12:01	11/22/11 13:57	
is-1,2-Dichloroethene	0.0038	J	0.0057	0.00048	mg/Kg		11/21/11 12:01	11/22/11 13:57	
is-1,3-Dichloropropene	ND		0.0057	0.00040	mg/Kg	₽-	11/21/11 12:01	11/22/11 13:57	
Cyclohexane	ND		0.0057	0.00098	mg/Kg	*	11/21/11 12:01	11/22/11 13:57	
Dichlorodifluoromethane	ND		0.0057	0.00026	mg/Kg		11/21/11 12:01	11/22/11 13:57	
Ethylbenzene	ND		0.0057	0.000064	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
sopropylbenzene	ND		0.0057	0.000088	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
lethyl acetate	ND		0.0057	0.00072	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
Methyl t-butyl ether	ND		0.0057	0.00034	mg/Kg	₽	11/21/11 12:01	11/22/11 13:57	
Methylcyclohexane	ND		0.0057	0.00020	mg/Kg	≎	11/21/11 12:01	11/22/11 13:57	
lethylene Chloride	ND		0.0057	0.00063	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
styrene	ND		0.0057	0.00011	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
etrachloroethene	ND		0.0057	0.00013	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
oluene	0.00013	J	0.0057	0.00011	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
rans-1,2-Dichloroethene	ND		0.0057	0.00042	mg/Kg	₽	11/21/11 12:01	11/22/11 13:57	
rans-1,3-Dichloropropene	ND		0.0057	0.00015	mg/Kg	₽	11/21/11 12:01	11/22/11 13:57	
richloroethene	0.048		0.0057	0.00055	mg/Kg	₽	11/21/11 12:01	11/22/11 13:57	
richlorofluoromethane	ND		0.0057	0.00038	mg/Kg	₽	11/21/11 12:01	11/22/11 13:57	
inyl chloride	ND		0.0057	0.00034	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
-Methyl-2-pentanone	ND		0.0057	0.00069	mg/Kg	₩	11/21/11 12:01	11/22/11 13:57	
Dibromochloromethane	ND		0.0057	0.00013	mg/Kg	φ.	11/21/11 12:01	11/22/11 13:57	
romodichloromethane	ND		0.0057	0.00024		₩	11/21/11 12:01	11/22/11 13:57	
,2-Dibromoethane	ND		0.0057	0.00017		₽	11/21/11 12:01	11/22/11 13:57	
I,2-Dichloroethene, Total	0.0038		0.0057	0.00088			11/21/11 12:01	11/22/11 13:57	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-4 (4-6)

Date Collected: 11/15/11 13:07 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-8

Matrix: Solid

Percent Solids: 82.9

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	81	65 - 155	11/21/11 12:01	11/22/11 13:57	1
Toluene-d8	85	80 - 115	11/21/11 12:01	11/22/11 13:57	1
Bromofluorobenzene	94	80 - 115	11/21/11 12:01	11/22/11 13:57	1
1,2-Dichlorobenzene-d4	85	45 - 145	11/21/11 12:01	11/22/11 13:57	1

5

J

7

9

TestAmerica Job ID: 480-12888-1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-4 (8-10)

Date Collected: 11/15/11 13:35 Date Received: 11/16/11 16:40

Bromodichloromethane

1,2-Dichloroethene, Total

1,2-Dibromoethane

Lab Sample ID: 480-12888-9

Matrix: Solid

Percent Solids: 74.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND		0.24	0.15	mg/Kg	<u> </u>	11/21/11 12:23	11/23/11 11:56	
1,1,1-Trichloroethane	20		0.24	0.043	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
1,1,2,2-Tetrachloroethane	ND		0.24	0.050	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	:
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.24	0.033	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	:
1,1,2-Trichloroethane	0.18	J	0.24	0.050	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
1,1-Dichloroethane	ND		0.24	0.043	mg/Kg	₩	11/21/11 12:23	11/23/11 11:56	
1,1-Dichloroethene	0.080	J	0.24	0.033	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
1,2,4-Trichlorobenzene	ND		0.24	0.059	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
1,2-Dibromo-3-Chloropropane	ND		0.24	0.12	mg/Kg	₩	11/21/11 12:23	11/23/11 11:56	
1,2-Dichlorobenzene	ND		0.24	0.054	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
1,2-Dichloroethane	ND		0.24	0.050	mg/Kg	₩	11/21/11 12:23	11/23/11 11:56	
1,2-Dichloropropane	ND		0.24	0.047	mg/Kg	☼	11/21/11 12:23	11/23/11 11:56	
1,3-Dichlorobenzene	ND		0.24	0.052	mg/Kg	₩.	11/21/11 12:23	11/23/11 11:56	
1,4-Dichlorobenzene	ND		0.24	0.064	mg/Kg	☼	11/21/11 12:23	11/23/11 11:56	;
2-Butanone	ND		1.2	0.17	mg/Kg	₩	11/21/11 12:23	11/23/11 11:56	
2-Hexanone	ND		1.2	0.17	mg/Kg	₩	11/21/11 12:23	11/23/11 11:56	
Acetone	ND		1.2	0.20	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Benzene	ND		0.24		mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Bromoform	ND		0.24	0.052	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Bromomethane	0.088	JB	0.24		mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Carbon disulfide	ND		0.24		mg/Kg	₩	11/21/11 12:23	11/23/11 11:56	
Carbon tetrachloride	ND		0.24	0.031	mg/Kg		11/21/11 12:23	11/23/11 11:56	
Chlorobenzene	ND		0.24	0.054	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Chloroethane	ND	*	0.24	0.080	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Chloroform	ND		0.24	0.038	mg/Kg		11/21/11 12:23	11/23/11 11:56	
Chloromethane	ND		0.24	0.028	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
cis-1,2-Dichloroethene	ND		0.24	0.050	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
cis-1,3-Dichloropropene	ND		0.24	0.052	mg/Kg	φ.	11/21/11 12:23	11/23/11 11:56	
Cyclohexane	ND		0.24	0.038	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Dichlorodifluoromethane	ND		0.24	0.031	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Ethylbenzene	ND		0.24	0.052	mg/Kg	φ	11/21/11 12:23	11/23/11 11:56	
Isopropylbenzene	ND		0.24	0.057	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Methyl acetate	ND		0.24	0.066	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Methyl t-butyl ether	ND		0.24	0.035	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Methylcyclohexane	0.21	J	0.24	0.035	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Methylene Chloride	ND		0.24	0.059	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Styrene	ND		0.24	0.057	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Tetrachloroethene	ND		0.24	0.043	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Toluene	ND		0.24	0.047	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
trans-1,2-Dichloroethene	ND		0.24	0.040	mg/Kg	₩	11/21/11 12:23	11/23/11 11:56	
trans-1,3-Dichloropropene	ND		0.24	0.064	mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Trichloroethene	8.9		0.24		mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Trichlorofluoromethane	ND		0.24	0.031	mg/Kg	φ	11/21/11 12:23	11/23/11 11:56	
Vinyl chloride	ND		0.24		mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
4-Methyl-2-pentanone	ND		1.2		mg/Kg	₽	11/21/11 12:23	11/23/11 11:56	
Dibromochloromethane	ND		0.24		mg/Kg		11/21/11 12:23	11/23/11 11:56	
						u.			

11/23/11 11:56

11/23/11 11:56

2

2

11/21/11 12:23 11/23/11 11:56

11/21/11 12:23

11/21/11 12:23

0.24

0.24

0.24

0.052 mg/Kg

0.054 mg/Kg

0.092 mg/Kg

ND

ND

ND

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-4 (8-10)

Date Collected: 11/15/11 13:35 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-9

Matrix: Solid

Percent Solids: 74.3

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	93	65 - 155	11/21/11 12:23	11/23/11 11:56	2
Toluene-d8	98	80 - 115	11/21/11 12:23	11/23/11 11:56	2
Bromofluorobenzene	97	80 - 115	11/21/11 12:23	11/23/11 11:56	2
1,2-Dichlorobenzene-d4	93	45 - 145	11/21/11 12:23	11/23/11 11:56	2

5

5

7

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-5 (2-3)

Date Collected: 11/15/11 13:38 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-10

Matrix: Solid

Percent Solids: 76.9

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND	0.0060	0.00087	mg/Kg	*	11/21/11 12:01	11/22/11 14:27	
1,1,1-Trichloroethane	0.0083	0.0060	0.00084	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
1,1,2,2-Tetrachloroethane	ND	0.0060	0.00031	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND	0.0060	0.00039	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
1,1,2-Trichloroethane	ND	0.0060	0.00041	mg/Kg	₩	11/21/11 12:01	11/22/11 14:27	
1,1-Dichloroethane	ND	0.0060	0.00049	mg/Kg	₩	11/21/11 12:01	11/22/11 14:27	
1,1-Dichloroethene	ND	0.0060	0.00044	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
1,2,4-Trichlorobenzene	ND	0.0060	0.00024	mg/Kg	₩	11/21/11 12:01	11/22/11 14:27	
1,2-Dibromo-3-Chloropropane	ND	0.0060	0.0011	mg/Kg	₩	11/21/11 12:01	11/22/11 14:27	
1,2-Dichlorobenzene	ND	0.0060	0.00026	mg/Kg		11/21/11 12:01	11/22/11 14:27	
1,2-Dichloroethane	ND	0.0060	0.00074	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
1,2-Dichloropropane	ND	0.0060	0.00035	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
1,3-Dichlorobenzene	ND	0.0060	0.00018	mg/Kg		11/21/11 12:01	11/22/11 14:27	
1,4-Dichlorobenzene	ND	0.0060	0.00027	mg/Kg	₩	11/21/11 12:01	11/22/11 14:27	
2-Butanone	ND	0.0060	0.0018		₩	11/21/11 12:01	11/22/11 14:27	
2-Hexanone	ND	0.0060	0.00059			11/21/11 12:01	11/22/11 14:27	
Acetone	ND	0.0060	0.0012		₽	11/21/11 12:01	11/22/11 14:27	
Benzene	ND	0.0060	0.00085		₽	11/21/11 12:01	11/22/11 14:27	
Bromoform	ND	0.0060	0.00024		_ф -	11/21/11 12:01	11/22/11 14:27	
Bromomethane	ND	0.0060	0.00088	mg/Kg	₩	11/21/11 12:01	11/22/11 14:27	
Carbon disulfide	ND *	0.0060	0.00037	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
Carbon tetrachloride	ND	0.0060	0.00091	mg/Kg		11/21/11 12:01	11/22/11 14:27	
Chlorobenzene	ND	0.0060	0.000091	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
Chloroethane	ND	0.0060		mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	
Chloroform	ND	0.0060	0.00038			11/21/11 12:01	11/22/11 14:27	
Chloromethane	ND	0.0060	0.00031	mg/Kg		11/21/11 12:01	11/22/11 14:27	
	0.0027 J	0.0060				11/21/11 12:01	11/22/11 14:27	
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	0.0027 J ND	0.0060	0.00030			11/21/11 12:01	11/22/11 14:27	
	ND	0.0060	0.00042			11/21/11 12:01	11/22/11 14:27	
Cyclohexane Dichlorodifluoromethane	ND ND	0.0060	0.0010			11/21/11 12:01	11/22/11 14:27	
	ND						11/22/11 14:27	
Ethylbenzene	ND ND	0.0060	0.000067		₽	11/21/11 12:01		
Isopropylbenzene	ND ND	0.0060	0.000092		₽	11/21/11 12:01	11/22/11 14:27	
Methyl acetate		0.0060	0.00075		·	11/21/11 12:01	11/22/11 14:27	
Methyl t-butyl ether	ND	0.0060		mg/Kg	₩	11/21/11 12:01	11/22/11 14:27	
Methylcyclohexane	ND	0.0060	0.00020		**	11/21/11 12:01	11/22/11 14:27	
Methylene Chloride	ND	0.0060	0.00066		· ¾-	11/21/11 12:01	11/22/11 14:27	
Styrene	ND	0.0060	0.00012			11/21/11 12:01	11/22/11 14:27	
Tetrachloroethene	ND	0.0060	0.00013			11/21/11 12:01	11/22/11 14:27	
Foluene	0.00018 J	0.0060	0.00012		<u>.</u> .	11/21/11 12:01	11/22/11 14:27	
rans-1,2-Dichloroethene	ND	0.0060	0.00044		₩	11/21/11 12:01	11/22/11 14:27	
rans-1,3-Dichloropropene	ND	0.0060	0.00016			11/21/11 12:01	11/22/11 14:27	
Frichloroethene	0.041	0.0060	0.00057			11/21/11 12:01	11/22/11 14:27	
Trichlorofluoromethane	ND	0.0060		mg/Kg	*	11/21/11 12:01	11/22/11 14:27	
/inyl chloride	ND	0.0060	0.00036		*	11/21/11 12:01	11/22/11 14:27	
4-Methyl-2-pentanone	ND	0.0060	0.00072		₽	11/21/11 12:01	11/22/11 14:27	
Dibromochloromethane	ND	0.0060	0.00013		₩	11/21/11 12:01	11/22/11 14:27	
Bromodichloromethane	ND	0.0060	0.00025		₩	11/21/11 12:01	11/22/11 14:27	
1,2-Dibromoethane	ND	0.0060	0.00018	mg/Kg	₩	11/21/11 12:01	11/22/11 14:27	
1,2-Dichloroethene, Total	0.0027 J	0.0060	0.00092	mg/Kg	₽	11/21/11 12:01	11/22/11 14:27	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-5 (2-3)

Date Collected: 11/15/11 13:38 Date Received: 11/16/11 16:40

1,2-Dichlorobenzene-d4

Lab Sample ID: 480-12888-10

11/22/11 14:27

11/21/11 12:01

Matrix: Solid

Percent Solids: 76.9

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	84	65 - 155	11/21/11 12:01	11/22/11 14:27	1
Toluene-d8	94	80 - 115	11/21/11 12:01	11/22/11 14:27	1
Bromofluorobenzene	114	80 - 115	11/21/11 12:01	11/22/11 14:27	1

45 - 145

95

5

7

8

9

Client: New York State D.E.C.

Date Received: 11/16/11 16:40

1,2-Dichloroethene, Total

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-11

Matrix: Solid

Client Sample ID: GESB-5 (6-8) Date Collected: 11/15/11 12:49

Percent Solids: 81.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		0.0052	0.00076	mg/Kg	*	11/21/11 12:01	11/22/11 14:58	•
1,1,1-Trichloroethane	0.15		0.0052	0.00073	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	•
1,1,2,2-Tetrachloroethane	ND		0.0052	0.00027	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.0052	0.00034	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
1,1,2-Trichloroethane	0.0011	J	0.0052	0.00035	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
1,1-Dichloroethane	ND		0.0052	0.00043	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	•
1,1-Dichloroethene	0.00039	J	0.0052	0.00038	mg/Kg	\$	11/21/11 12:01	11/22/11 14:58	
1,2,4-Trichlorobenzene	ND		0.0052	0.00021	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
1,2-Dibromo-3-Chloropropane	ND		0.0052	0.00095	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
1,2-Dichlorobenzene	ND		0.0052	0.00023	mg/Kg	₽	11/21/11 12:01	11/22/11 14:58	
1,2-Dichloroethane	ND		0.0052	0.00064	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
1,2-Dichloropropane	ND		0.0052	0.00030	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
1,3-Dichlorobenzene	ND		0.0052	0.00016	mg/Kg	\$	11/21/11 12:01	11/22/11 14:58	
1,4-Dichlorobenzene	ND		0.0052	0.00024	mg/Kg	₽	11/21/11 12:01	11/22/11 14:58	
2-Butanone	ND		0.0052	0.0016	mg/Kg	₽	11/21/11 12:01	11/22/11 14:58	
2-Hexanone	ND		0.0052	0.00051	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Acetone	ND		0.0052	0.0010	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Benzene	ND		0.0052	0.00074	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Bromoform	ND		0.0052	0.00021	mg/Kg		11/21/11 12:01	11/22/11 14:58	· · · · · · · · ·
Bromomethane	ND		0.0052	0.00077	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Carbon disulfide	ND	*	0.0052	0.00032	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Carbon tetrachloride	ND		0.0052	0.00079	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	· · · · · · · · ·
Chlorobenzene	ND		0.0052	0.000079	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Chloroethane	ND		0.0052	0.00039	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Chloroform	ND		0.0052	0.00033			11/21/11 12:01	11/22/11 14:58	
Chloromethane	ND		0.0052	0.00027	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
cis-1,2-Dichloroethene	0.00061	J	0.0052	0.00044	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
cis-1,3-Dichloropropene	ND		0.0052	0.00036	mg/Kg		11/21/11 12:01	11/22/11 14:58	
Cyclohexane	ND		0.0052	0.00088	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Dichlorodifluoromethane	ND		0.0052	0.00024	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Ethylbenzene	ND		0.0052	0.000058	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
sopropylbenzene	ND		0.0052	0.000080	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Methyl acetate	ND		0.0052	0.00065	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Methyl t-butyl ether	ND		0.0052	0.00031	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Methylcyclohexane	ND		0.0052	0.00018	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Methylene Chloride	ND		0.0052	0.00057	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Styrene	ND		0.0052	0.00010	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	· · · · · · · · ·
Tetrachloroethene	0.00071	J	0.0052	0.00011	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Toluene	0.00027	J	0.0052	0.00010	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
rans-1,2-Dichloroethene	ND		0.0052	0.00038	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	· · · · · · · · ·
rans-1,3-Dichloropropene	ND		0.0052	0.00014	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	
Trichloroethene	0.11		0.0052	0.00050	mg/Kg	₽	11/21/11 12:01	11/22/11 14:58	
Trichlorofluoromethane	ND		0.0052	0.00034	mg/Kg	₽	11/21/11 12:01	11/22/11 14:58	
Vinyl chloride	ND		0.0052	0.00031	mg/Kg	₽	11/21/11 12:01	11/22/11 14:58	
4-Methyl-2-pentanone	ND		0.0052	0.00062	mg/Kg	₽	11/21/11 12:01	11/22/11 14:58	
Dibromochloromethane	ND		0.0052	0.00011		₽	11/21/11 12:01	11/22/11 14:58	
Bromodichloromethane	ND		0.0052	0.00022	mg/Kg	₩	11/21/11 12:01	11/22/11 14:58	•

11/22/11 14:58

11/21/11 12:01

0.0052

ND

0.00080 mg/Kg

Client: New York State D.E.C.

Date Received: 11/16/11 16:40

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Matrix: Solid

Client Sample ID: GESB-5 (6-8) Lab Sample ID: 480-12888-11 Date Collected: 11/15/11 12:49

Percent Solids: 81.8

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	83	65 - 155	11/21/11 12:01	11/22/11 14:58	1
Toluene-d8	93	80 - 115	11/21/11 12:01	11/22/11 14:58	1
Bromofluorobenzene	111	80 - 115	11/21/11 12:01	11/22/11 14:58	1
1 2-Dichlorobenzene-d4	86	45 - 145	11/21/11 12:01	11/22/11 14:58	1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-6 (3-4)

Date Collected: 11/15/11 12:53 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-12

Matrix: Solid

Percent Solids: 82.5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Xylenes, Total	ND	0.0057	0.00083	mg/Kg	₩	11/21/11 12:01	11/22/11 15:28	
1,1,1-Trichloroethane	0.0065	0.0057	0.00079	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
1,1,2,2-Tetrachloroethane	ND	0.0057	0.00029	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND	0.0057	0.00037	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
1,1,2-Trichloroethane	ND	0.0057	0.00038	mg/Kg	☼	11/21/11 12:01	11/22/11 15:28	
1,1-Dichloroethane	ND	0.0057	0.00046	mg/Kg	☼	11/21/11 12:01	11/22/11 15:28	
1,1-Dichloroethene	ND	0.0057	0.00042	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
1,2,4-Trichlorobenzene	ND	0.0057	0.00023	mg/Kg	☼	11/21/11 12:01	11/22/11 15:28	
1,2-Dibromo-3-Chloropropane	ND	0.0057	0.0010	mg/Kg	≎	11/21/11 12:01	11/22/11 15:28	
1,2-Dichlorobenzene	ND	0.0057	0.00025	mg/Kg	φ.	11/21/11 12:01	11/22/11 15:28	
1,2-Dichloroethane	ND	0.0057	0.00070	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
1,2-Dichloropropane	ND	0.0057	0.00033	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
1,3-Dichlorobenzene	ND	0.0057	0.00017	mg/Kg	φ.	11/21/11 12:01	11/22/11 15:28	
1,4-Dichlorobenzene	ND	0.0057	0.00026	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
2-Butanone	ND	0.0057	0.0017	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
2-Hexanone	ND	0.0057	0.00055		- -	11/21/11 12:01	11/22/11 15:28	
Acetone	ND	0.0057	0.0011	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
Benzene	ND	0.0057	0.00080	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
Bromoform	ND	0.0057		mg/Kg	-	11/21/11 12:01	11/22/11 15:28	
Bromomethane	ND	0.0057	0.00084		₽	11/21/11 12:01	11/22/11 15:28	
Carbon disulfide	ND *	0.0057	0.00035	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
Carbon tetrachloride	ND	0.0057	0.00086	mg/Kg	φ.	11/21/11 12:01	11/22/11 15:28	
Chlorobenzene	ND	0.0057		mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
Chloroethane	ND	0.0057		mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
Chloroform	ND	0.0057	0.00036		-	11/21/11 12:01	11/22/11 15:28	
Chloromethane	ND	0.0057	0.00029	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
cis-1,2-Dichloroethene	ND	0.0057	0.00023		₽	11/21/11 12:01	11/22/11 15:28	
cis-1,3-Dichloropropene	ND	0.0057	0.00047			11/21/11 12:01	11/22/11 15:28	
Cyclohexane	ND	0.0057	0.00046			11/21/11 12:01	11/22/11 15:28	
Dichlorodifluoromethane	ND	0.0057	0.00096		₽	11/21/11 12:01	11/22/11 15:28	
Ethylbenzene	ND ND	0.0057	0.000063		₽	11/21/11 12:01	11/22/11 15:28	
sopropylbenzene	ND ND	0.0057	0.000087		₽	11/21/11 12:01	11/22/11 15:28	
• • •	ND ND	0.0057	0.000087	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	
Methyl acetate Methyl t-butyl ether								
• •	ND ND	0.0057	0.00034 0.00019			11/21/11 12:01	11/22/11 15:28	
Methylcyclohexane		0.0057		0 0	т ж	11/21/11 12:01	11/22/11 15:28	
Methylene Chloride	ND	0.0057	0.00062		-	11/21/11 12:01	11/22/11 15:28	
Styrene	ND	0.0057	0.00011			11/21/11 12:01	11/22/11 15:28	
Tetrachloroethene	ND	0.0057	0.00012		₽	11/21/11 12:01	11/22/11 15:28	
Foluene	0.00016 J	0.0057	0.00011		<u>%</u>	11/21/11 12:01	11/22/11 15:28	
rans-1,2-Dichloroethene	ND	0.0057	0.00042		₩	11/21/11 12:01	11/22/11 15:28	
rans-1,3-Dichloropropene	ND	0.0057	0.00015		ψ.	11/21/11 12:01	11/22/11 15:28	
Frichloroethene	0.016	0.0057	0.00054		#-	11/21/11 12:01	11/22/11 15:28	
Trichlorofluoromethane	ND	0.0057	0.00037		₩	11/21/11 12:01	11/22/11 15:28	
Vinyl chloride	ND	0.0057	0.00034		₩	11/21/11 12:01	11/22/11 15:28	
4-Methyl-2-pentanone	ND	0.0057	0.00068		T-	11/21/11 12:01	11/22/11 15:28	
Dibromochloromethane	ND	0.0057	0.00012		₩.	11/21/11 12:01	11/22/11 15:28	
Bromodichloromethane	ND	0.0057	0.00024		₩	11/21/11 12:01	11/22/11 15:28	
1,2-Dibromoethane	ND	0.0057	0.00017	mg/Kg	₽	11/21/11 12:01	11/22/11 15:28	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-6 (3-4)

Date Collected: 11/15/11 12:53

Date Received: 11/16/11 16:40

Lab Sample ID: 480-12888-12

Matrix: Solid

Percent Solids: 82.5

Surrogate	%Recovery Qua	ıalifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	85	65 - 155	11/21/11 12:01	11/22/11 15:28	1
Toluene-d8	93	80 - 115	11/21/11 12:01	11/22/11 15:28	1
Bromofluorobenzene	103	80 - 115	11/21/11 12:01	11/22/11 15:28	1
1,2-Dichlorobenzene-d4	91	45 - 145	11/21/11 12:01	11/22/11 15:28	1

5

5

7

_

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-6 (6-8)

Lab Sample ID: 480-12888-13

Date Collected: 11/15/11 16:10

Date Received: 11/16/11 16:40

Matrix: Solid
Percent Solids: 72.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND		0.0061	0.00090	mg/Kg	<u></u>	11/21/11 12:01	11/23/11 12:14	
1,1,1-Trichloroethane	0.061		0.0061	0.00086	mg/Kg	₩	11/21/11 12:01	11/23/11 12:14	
1,1,2,2-Tetrachloroethane	ND		0.0061	0.00032	mg/Kg	₽	11/21/11 12:01	11/23/11 12:14	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.0061	0.00040	mg/Kg		11/21/11 12:01	11/23/11 12:14	
1,1,2-Trichloroethane	ND		0.0061	0.00042	mg/Kg	₩	11/21/11 12:01	11/23/11 12:14	
1,1-Dichloroethane	ND		0.0061	0.00050	mg/Kg	₽	11/21/11 12:01	11/23/11 12:14	
1,1-Dichloroethene	ND		0.0061	0.00045			11/21/11 12:01	11/23/11 12:14	
1,2,4-Trichlorobenzene	0.00030	J	0.0061	0.00025		₽	11/21/11 12:01	11/23/11 12:14	
1,2-Dibromo-3-Chloropropane	ND		0.0061	0.0011		₽	11/21/11 12:01	11/23/11 12:14	
1,2-Dichlorobenzene	ND		0.0061	0.00027			11/21/11 12:01	11/23/11 12:14	
1,2-Dichloroethane	ND		0.0061	0.00076		₽	11/21/11 12:01	11/23/11 12:14	
1,2-Dichloropropane	ND		0.0061	0.00036		₽	11/21/11 12:01	11/23/11 12:14	
1,3-Dichlorobenzene	ND		0.0061	0.00018			11/21/11 12:01	11/23/11 12:14	
1,4-Dichlorobenzene	ND		0.0061	0.00028		₽	11/21/11 12:01	11/23/11 12:14	
2-Butanone	ND		0.0061	0.0018		₽	11/21/11 12:01	11/23/11 12:14	
2-Hexanone	ND		0.0061	0.00060			11/21/11 12:01	11/23/11 12:14	
Acetone	0.0089		0.0061	0.0012		₩	11/21/11 12:01	11/23/11 12:14	
Benzene	ND		0.0061	0.00087		₩	11/21/11 12:01	11/23/11 12:14	
Bromoform	ND		0.0061	0.00025			11/21/11 12:01	11/23/11 12:14	
Bromomethane	ND		0.0061	0.00023	mg/Kg	₽	11/21/11 12:01	11/23/11 12:14	
Carbon disulfide	ND	*	0.0061	0.00031		₽	11/21/11 12:01	11/23/11 12:14	
Carbon tetrachloride	ND		0.0061	0.00093			11/21/11 12:01	11/23/11 12:14	
Chlorobenzene	ND ND		0.0061	0.00093	mg/Kg		11/21/11 12:01	11/23/11 12:14	
Chloroform	ND ND		0.0061	0.00047	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/21/11 12:01 11/21/11 12:01	11/23/11 12:14	
Chloroform Chloromethane	ND ND		0.0061	0.00039		₩		11/23/11 12:14	
			0.0061			₩	11/21/11 12:01	11/23/11 12:14	
cis-1,2-Dichloroethene	0.0025		0.0061	0.00052			11/21/11 12:01	11/23/11 12:14	
cis-1,3-Dichloropropene	ND		0.0061	0.00043		#	11/21/11 12:01	11/23/11 12:14	
Cyclohexane	ND		0.0061	0.0010			11/21/11 12:01	11/23/11 12:14	
Dichlorodifluoromethane	ND		0.0061	0.00028		<u></u> .	11/21/11 12:01	11/23/11 12:14	
Ethylbenzene 	ND		0.0061	0.000069		‡	11/21/11 12:01	11/23/11 12:14	
Isopropylbenzene	ND		0.0061	0.000094	0 0	₩.	11/21/11 12:01	11/23/11 12:14	
Methyl acetate	ND		0.0061	0.00077		<u></u> .	11/21/11 12:01	11/23/11 12:14	
Methyl t-butyl ether	ND		0.0061	0.00037	mg/Kg	*	11/21/11 12:01	11/23/11 12:14	
Methylcyclohexane	ND		0.0061	0.00021		*	11/21/11 12:01	11/23/11 12:14	
Methylene Chloride	ND		0.0061	0.00067			11/21/11 12:01	11/23/11 12:14	
Styrene	ND		0.0061	0.00012		₽	11/21/11 12:01	11/23/11 12:14	
Tetrachloroethene	0.00052	J	0.0061	0.00013	mg/Kg	₩	11/21/11 12:01	11/23/11 12:14	
Toluene	0.00021	JB	0.0061	0.00012			11/21/11 12:01	11/23/11 12:14	
trans-1,2-Dichloroethene	ND		0.0061	0.00045	mg/Kg	₩	11/21/11 12:01	11/23/11 12:14	
trans-1,3-Dichloropropene	ND		0.0061	0.00016		₩	11/21/11 12:01	11/23/11 12:14	
Trichloroethene	0.20		0.0061	0.00059	mg/Kg	₩	11/21/11 12:01	11/23/11 12:14	
Trichlorofluoromethane	ND		0.0061	0.00040	mg/Kg	₽	11/21/11 12:01	11/23/11 12:14	
Vinyl chloride	ND		0.0061	0.00037	mg/Kg	₩	11/21/11 12:01	11/23/11 12:14	
4-Methyl-2-pentanone	ND		0.0061	0.00074	mg/Kg	₩	11/21/11 12:01	11/23/11 12:14	
Dibromochloromethane	ND		0.0061	0.00013	mg/Kg	₽	11/21/11 12:01	11/23/11 12:14	
Bromodichloromethane	ND		0.0061	0.00026	mg/Kg	₽	11/21/11 12:01	11/23/11 12:14	
1,2-Dibromoethane	ND		0.0061	0.00018	mg/Kg	₽	11/21/11 12:01	11/23/11 12:14	
1,2-Dibromoethane 1,2-Dichloroethene, Total	ND 0.0025	J	0.0061 0.0061	0.00018 0.00094		ф ф	11/21/11 12:01 11/21/11 12:01	11/23/11 12:14 11/23/11 12:14	

9

TestAmerica Buffalo 12/6/2011

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-6 (6-8)

Lab Sample ID: 480-12888-13

Date Collected: 11/15/11 16:10 Matrix: Solid

Date Received: 11/16/11 16:40 Percent Solids: 72.1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	70	65 - 155	11/21/11 12:01	11/23/11 12:14	
Toluene-d8	100	80 - 115	11/21/11 12:01	11/23/11 12:14	
Bromofluorobenzene	111	80 - 115	11/21/11 12:01	11/23/11 12:14	
1,2-Dichlorobenzene-d4	79	45 - 145	11/21/11 12:01	11/23/11 12:14	

5

7

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-14

Matrix: Solid Percent Solids: 87.9

Client Sample ID: GESB-7 (1-1.8)

Date Collected: 11/15/11 16:15 Date Received: 11/16/11 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Xylenes, Total	ND		0.11	0.069	mg/Kg	*	11/21/11 12:23	11/22/11 19:44	
1,1,1-Trichloroethane	0.44		0.11	0.019	mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
1,1,2,2-Tetrachloroethane	ND		0.11	0.022	mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.11	0.015	mg/Kg		11/21/11 12:23	11/22/11 19:44	
1,1,2-Trichloroethane	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
1,1-Dichloroethane	ND		0.11	0.019		₩	11/21/11 12:23	11/22/11 19:44	
1,1-Dichloroethene	ND		0.11	0.015	mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
1,2,4-Trichlorobenzene	ND		0.11	0.027		₩	11/21/11 12:23	11/22/11 19:44	
1,2-Dibromo-3-Chloropropane	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
1,2-Dichlorobenzene	ND		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
1,2-Dichloroethane	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
1,2-Dichloropropane	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
1,3-Dichlorobenzene	ND		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
1,4-Dichlorobenzene	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
2-Butanone	ND		0.53		mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
2-Hexanone	ND		0.53		mg/Kg	φ.	11/21/11 12:23	11/22/11 19:44	
Acetone	ND		0.53		mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
Benzene	ND		0.33		mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
Bromoform	ND		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
			0.11				11/21/11 12:23	11/22/11 19:44	
Bromomethane Carbon disulfide	0.041 ND	JB	0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
					mg/Kg	· ~			
Carbon tetrachloride	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
Chlorobenzene	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
Chloroethane	ND		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
Chloroform	ND		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
Chloromethane	ND		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
cis-1,2-Dichloroethene	0.12		0.11		mg/Kg	<u></u> .	11/21/11 12:23	11/22/11 19:44	
cis-1,3-Dichloropropene	ND		0.11		mg/Kg	₩.	11/21/11 12:23	11/22/11 19:44	
Cyclohexane	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
Dichlorodifluoromethane	ND		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
Ethylbenzene	ND		0.11		mg/Kg	₽.	11/21/11 12:23	11/22/11 19:44	
Isopropylbenzene	ND		0.11	0.025	mg/Kg	**	11/21/11 12:23	11/22/11 19:44	
Methyl acetate	ND		0.11	0.030	mg/Kg		11/21/11 12:23	11/22/11 19:44	
Methyl t-butyl ether	ND		0.11	0.016	mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
Methylcyclohexane	ND		0.11	0.016	mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
Methylene Chloride	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
Styrene	ND		0.11	0.025	mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
Tetrachloroethene	ND		0.11	0.019	mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
Toluene	ND		0.11	0.021	mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
trans-1,2-Dichloroethene	ND		0.11	0.018	mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
trans-1,3-Dichloropropene	ND		0.11	0.029	mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
Trichloroethene	1.5		0.11	0.020	mg/Kg	₩	11/21/11 12:23	11/22/11 19:44	
Trichlorofluoromethane	ND		0.11	0.014	mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
Vinyl chloride	ND		0.11	0.013	mg/Kg	☼	11/21/11 12:23	11/22/11 19:44	
4-Methyl-2-pentanone	ND		0.53	0.063	mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
Dibromochloromethane	ND		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	
Bromodichloromethane	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
1,2-Dibromoethane	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 19:44	
1,2-Dichloroethene, Total	0.12		0.11		mg/Kg		11/21/11 12:23	11/22/11 19:44	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-7 (1-1.8)

Date Collected: 11/15/11 16:15 Date Received: 11/16/11 16:40

Lab Sample ID: 480-12888-14

Matrix: Solid

Percent Solids: 87.9

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	90	65 - 155	11/21/11 12:23	11/22/11 19:44	1
Toluene-d8	94	80 - 115	11/21/11 12:23	11/22/11 19:44	1
Bromofluorobenzene	93	80 - 115	11/21/11 12:23	11/22/11 19:44	1
1,2-Dichlorobenzene-d4	90	45 - 145	11/21/11 12:23	11/22/11 19:44	1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-7 (4-8)

Date Collected: 11/15/11 14:10 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-15

Matrix: Solid Percent Solids: 84.7

Method: 8260B - Volatile Organic C Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND		0.0055	0.00081	mg/Kg	-	11/21/11 12:01	11/22/11 16:29	
1,1,1-Trichloroethane	0.027		0.0055	0.00077	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
1,1,2,2-Tetrachloroethane	ND		0.0055	0.00029	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.0055	0.00036	mg/Kg		11/21/11 12:01	11/22/11 16:29	
1,1,2-Trichloroethane	0.0016	4	0.0055	0.00038	mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
1,1-Dichloroethane	0.0026		0.0055		mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
1,1-Dichloroethene	ND		0.0055	0.00041	mg/Kg		11/21/11 12:01	11/22/11 16:29	
1,2,4-Trichlorobenzene	ND		0.0055	0.00022		₩	11/21/11 12:01	11/22/11 16:29	
1,2-Dibromo-3-Chloropropane	ND		0.0055	0.0010		₽	11/21/11 12:01	11/22/11 16:29	
1,2-Dichlorobenzene	ND		0.0055	0.00024			11/21/11 12:01	11/22/11 16:29	
1,2-Dichloroethane	ND		0.0055		mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
1,2-Dichloropropane	ND		0.0055	0.00032		₽	11/21/11 12:01	11/22/11 16:29	
1,3-Dichlorobenzene	ND		0.0055	0.00032		· 🌣	11/21/11 12:01	11/22/11 16:29	
						₽			
1,4-Dichlorobenzene	ND		0.0055	0.00025	mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
2-Butanone	ND		0.0055	0.0017	mg/Kg	· · · · · · · · · · · · · · · · · · ·	11/21/11 12:01 11/21/11 12:01	11/22/11 16:29	
2-Hexanone	ND		0.0055	0.00054		₩		11/22/11 16:29	
Acetone	ND		0.0055	0.0011	mg/Kg		11/21/11 12:01	11/22/11 16:29	
Benzene 	ND		0.0055		mg/Kg	<u></u>	11/21/11 12:01	11/22/11 16:29	
Bromoform	ND		0.0055	0.00022		*	11/21/11 12:01	11/22/11 16:29	
Bromomethane	ND		0.0055	0.00082			11/21/11 12:01	11/22/11 16:29	
Carbon disulfide	ND	*	0.0055	0.00034		<u></u>	11/21/11 12:01	11/22/11 16:29	
Carbon tetrachloride	ND		0.0055	0.00084		₩	11/21/11 12:01	11/22/11 16:29	
Chlorobenzene	ND		0.0055		mg/Kg	₩.	11/21/11 12:01	11/22/11 16:29	
Chloroethane	ND		0.0055		mg/Kg		11/21/11 12:01	11/22/11 16:29	
Chloroform	ND		0.0055		mg/Kg	₩.	11/21/11 12:01	11/22/11 16:29	
Chloromethane	ND		0.0055	0.00029	mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
cis-1,2-Dichloroethene	0.0064		0.0055	0.00046	mg/Kg		11/21/11 12:01	11/22/11 16:29	
cis-1,3-Dichloropropene	ND		0.0055	0.00039	mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
Cyclohexane	ND		0.0055	0.00094	mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
Dichlorodifluoromethane	ND		0.0055	0.00025	mg/Kg	≎	11/21/11 12:01	11/22/11 16:29	
Ethylbenzene	ND		0.0055	0.000062	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
Isopropylbenzene	ND		0.0055	0.000085	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
Methyl acetate	ND		0.0055	0.00070	mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
Methyl t-butyl ether	ND		0.0055	0.00033	mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
Methylcyclohexane	ND		0.0055	0.00019	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
Methylene Chloride	ND		0.0055	0.00061	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
Styrene	ND		0.0055	0.00011	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
Tetrachloroethene	ND		0.0055	0.00012	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
Toluene	ND		0.0055	0.00011	mg/Kg	₩	11/21/11 12:01	11/22/11 16:29	
rans-1,2-Dichloroethene	ND		0.0055	0.00041	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
trans-1,3-Dichloropropene	ND		0.0055	0.00014	mg/Kg	₽	11/21/11 12:01	11/22/11 16:29	
Trichloroethene	0.065		0.0055	0.00053		₩	11/21/11 12:01	11/22/11 16:29	
Trichlorofluoromethane	ND		0.0055	0.00036			11/21/11 12:01	11/22/11 16:29	
Vinyl chloride	ND		0.0055	0.00033		₽	11/21/11 12:01	11/22/11 16:29	
4-Methyl-2-pentanone	ND		0.0055	0.00066		₩	11/21/11 12:01	11/22/11 16:29	
Dibromochloromethane	ND		0.0055	0.00012			11/21/11 12:01	11/22/11 16:29	
Bromodichloromethane	ND		0.0055	0.00012		₽	11/21/11 12:01	11/22/11 16:29	
1,2-Dibromoethane	ND		0.0055	0.00023		\$	11/21/11 12:01	11/22/11 16:29	
1,2-Dichloroethene, Total	0.0064		0.0055	0.00017			11/21/11 12:01	11/22/11 16:29	

Client: New York State D.E.C.

Date Collected: 11/15/11 14:10

Date Received: 11/16/11 16:40

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-7 (4-8)

TestAmerica Job ID: 480-12888-1

Matrix: Solid

Percent Solids: 84.7

Lab Sample ID: 480-12888-15

reiteilt 30ilus. 64.7	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	85	65 - 155	11/21/11 12:01	11/22/11 16:29	1
Toluene-d8	90	80 - 115	11/21/11 12:01	11/22/11 16:29	1
Bromofluorobenzene	99	80 - 115	11/21/11 12:01	11/22/11 16:29	1
1,2-Dichlorobenzene-d4	93	45 - 145	11/21/11 12:01	11/22/11 16:29	1

6

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-8 (2-3)

Date Collected: 11/15/11 14:10 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-16

Matrix: Solid

Percent Solids: 86.0

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND	0.0052	0.00076	mg/Kg	\	11/21/11 12:01	11/22/11 16:59	1
1,1,1-Trichloroethane	0.039	0.0052	0.00073	mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
1,1,2,2-Tetrachloroethane	ND	0.0052	0.00027	mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND	0.0052	0.00034	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
1,1,2-Trichloroethane	0.00036 J	0.0052	0.00035	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
1,1-Dichloroethane	ND	0.0052	0.00043	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
1,1-Dichloroethene	ND	0.0052	0.00039	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
1,2,4-Trichlorobenzene	ND	0.0052	0.00021	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
1,2-Dibromo-3-Chloropropane	ND	0.0052	0.00095	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
1,2-Dichlorobenzene	ND	0.0052	0.00023	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
1,2-Dichloroethane	ND	0.0052	0.00065	mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
1,2-Dichloropropane	ND	0.0052	0.00030	mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
1,3-Dichlorobenzene	ND	0.0052	0.00016	mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
1,4-Dichlorobenzene	ND	0.0052	0.00024	mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
2-Butanone	ND	0.0052	0.0016		₩	11/21/11 12:01	11/22/11 16:59	1
2-Hexanone	ND	0.0052	0.00051			11/21/11 12:01	11/22/11 16:59	1
Acetone	ND	0.0052	0.0010		₩	11/21/11 12:01	11/22/11 16:59	1
Benzene	ND	0.0052	0.00074		₩	11/21/11 12:01	11/22/11 16:59	1
Bromoform	ND	0.0052	0.00021	mg/Kg		11/21/11 12:01	11/22/11 16:59	1
Bromomethane	ND	0.0052	0.00077	mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
Carbon disulfide	ND *	0.0052		mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
Carbon tetrachloride	ND	0.0052		mg/Kg		11/21/11 12:01	11/22/11 16:59	1
Chlorobenzene	ND	0.0052	0.000079	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
Chloroethane	ND	0.0052	0.00040	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
Chloroform	ND	0.0052	0.00033			11/21/11 12:01	11/22/11 16:59	· · · · · · · · · · · · · · · · · · ·
Chloromethane	ND	0.0052		mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	1
cis-1,2-Dichloroethene	0.00047 J	0.0052	0.00044		₩	11/21/11 12:01	11/22/11 16:59	1
cis-1,3-Dichloropropene	ND	0.0052	0.00037			11/21/11 12:01	11/22/11 16:59	· · · · · · · · · · · · · · · · · · ·
Cyclohexane	ND	0.0052	0.00089	mg/Kg	₩	11/21/11 12:01	11/22/11 16:59	
Dichlorodifluoromethane	ND	0.0052	0.00024		₽	11/21/11 12:01	11/22/11 16:59	1
Ethylbenzene	ND	0.0052		mg/Kg		11/21/11 12:01	11/22/11 16:59	
Isopropylbenzene	ND	0.0052	0.000030	mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
Methyl acetate	ND	0.0052		mg/Kg	₽	11/21/11 12:01	11/22/11 16:59	1
Methyl t-butyl ether	ND	0.0052	0.00031	mg/Kg		11/21/11 12:01	11/22/11 16:59	
Methylcyclohexane	ND	0.0052	0.00031		₽	11/21/11 12:01	11/22/11 16:59	1
Methylene Chloride	ND	0.0052	0.00057		₩	11/21/11 12:01	11/22/11 16:59	
Styrene	ND	0.0052	0.00010			11/21/11 12:01	11/22/11 16:59	
Tetrachloroethene	ND	0.0052	0.00010		\$	11/21/11 12:01	11/22/11 16:59	1
Toluene	ND	0.0052			т Ф	11/21/11 12:01		1
	ND		0.00010		 \$	11/21/11 12:01	11/22/11 16:59	
trans-1,2-Dichloroethene	ND	0.0052 0.0052	0.00039		₽		11/22/11 16:59	'
trans-1,3-Dichloropropene					т Ф	11/21/11 12:01	11/22/11 16:59	1
Trichloroftuoromothano	0.045	0.0052	0.00050		 ⇔	11/21/11 12:01	11/22/11 16:59	۱ ء
Trichlorofluoromethane	ND	0.0052	0.00034		*	11/21/11 12:01	11/22/11 16:59	1
Vinyl chloride	ND	0.0052	0.00031			11/21/11 12:01	11/22/11 16:59	1
4-Methyl-2-pentanone	ND	0.0052	0.00063			11/21/11 12:01	11/22/11 16:59	1
Dibromochloromethane	ND	0.0052	0.00011		# #	11/21/11 12:01	11/22/11 16:59	1
Bromodichloromethane	ND	0.0052	0.00022		æ æ	11/21/11 12:01	11/22/11 16:59	1
1,2-Dibromoethane	ND	0.0052 0.0052	0.00016	rng/Kg	.	11/21/11 12:01	11/22/11 16:59	1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-8 (2-3)

Date Collected: 11/15/11 14:10 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-16

Matrix: Solid

Percent Solids: 86.0

1					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	84	65 - 155	11/21/11 12:01	11/22/11 16:59	
Toluene-d8	93	80 - 115	11/21/11 12:01	11/22/11 16:59	1
Bromofluorobenzene	105	80 - 115	11/21/11 12:01	11/22/11 16:59	1
1,2-Dichlorobenzene-d4	91	45 ₋ 145	11/21/11 12:01	11/22/11 16:59	1

5

6

0

__

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-8 (10-12)

Date Collected: 11/15/11 14:15 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-17

Matrix: Solid Percent Solids: 89.5

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND	0.089	0.058	mg/Kg	\$	11/21/11 12:23	11/22/11 20:16	
1,1,1-Trichloroethane	3.6	0.089		mg/Kg	.	11/21/11 12:23	11/22/11 20:16	
1,1,2,2-Tetrachloroethane	ND	0.089		mg/Kg		11/21/11 12:23	11/22/11 20:16	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND	0.089	0.013	mg/Kg	**	11/21/11 12:23	11/22/11 20:16	
1,1,2-Trichloroethane	ND	0.089	0.019	mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
1,1-Dichloroethane	ND	0.089	0.016	mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
1,1-Dichloroethene	0.013 J	0.089	0.013	mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
1,2,4-Trichlorobenzene	ND	0.089	0.022	mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
1,2-Dibromo-3-Chloropropane	ND	0.089	0.046	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
1,2-Dichlorobenzene	ND	0.089	0.021	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
1,2-Dichloroethane	ND	0.089	0.019	mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
1,2-Dichloropropane	ND	0.089	0.018	mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
1,3-Dichlorobenzene	ND	0.089	0.020	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
1,4-Dichlorobenzene	ND	0.089	0.024	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
2-Butanone	ND	0.45	0.066	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
2-Hexanone	ND	0.45	0.064	mg/Kg	\$	11/21/11 12:23	11/22/11 20:16	
Acetone	ND	0.45	0.075	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
Benzene	ND	0.089	0.016	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
Bromoform	ND	0.089	0.020	mg/Kg		11/21/11 12:23	11/22/11 20:16	
Bromomethane	0.031 JB	0.089		mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
Carbon disulfide	ND	0.089		mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
Carbon tetrachloride	ND	0.089		mg/Kg	ф	11/21/11 12:23	11/22/11 20:16	
Chlorobenzene	ND	0.089		mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
Chloroethane	ND *	0.089		mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
Chloroform	ND	0.089		mg/Kg		11/21/11 12:23	11/22/11 20:16	
Chloromethane	ND	0.089		mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
cis-1,2-Dichloroethene	ND	0.089		mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
cis-1,3-Dichloropropene	ND	0.089		mg/Kg		11/21/11 12:23	11/22/11 20:16	
·	ND	0.089			₽	11/21/11 12:23		
Cyclohexane Dichlorodifluoromethane	ND	0.089		mg/Kg		11/21/11 12:23	11/22/11 20:16 11/22/11 20:16	
				mg/Kg mg/Kg				
Ethylbenzene	ND ND	0.089			₩	11/21/11 12:23	11/22/11 20:16	
Isopropylbenzene	ND ND	0.089		mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
Methyl acetate	ND	0.089		mg/Kg		11/21/11 12:23	11/22/11 20:16	
Methyl t-butyl ether	ND	0.089		mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
Methylcyclohexane	ND	0.089		mg/Kg	₩.	11/21/11 12:23	11/22/11 20:16	
Methylene Chloride	ND	0.089		mg/Kg	<u>.</u>	11/21/11 12:23	11/22/11 20:16	
Styrene	ND	0.089		mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
Tetrachloroethene	ND	0.089		mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
Toluene	ND	0.089		mg/Kg		11/21/11 12:23	11/22/11 20:16	
trans-1,2-Dichloroethene	ND	0.089	0.015	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
trans-1,3-Dichloropropene	ND	0.089	0.024	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
Trichloroethene	1.5	0.089		mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
Trichlorofluoromethane	ND	0.089		mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
Vinyl chloride	ND	0.089		mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
4-Methyl-2-pentanone	ND	0.45	0.053	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
Dibromochloromethane	ND	0.089	0.019	mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
Bromodichloromethane	ND	0.089	0.020	mg/Kg	₩	11/21/11 12:23	11/22/11 20:16	
1,2-Dibromoethane	ND	0.089	0.021	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	
1,2-Dichloroethene, Total	ND	0.089	0.035	mg/Kg	₽	11/21/11 12:23	11/22/11 20:16	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-8 (10-12) Lab Sample ID: 480-12888-17

Date Collected: 11/15/11 14:15 Date Received: 11/16/11 16:40

Matrix: Solid

Percent Solids: 89.5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	90	65 - 155	11/21/11 12:23	11/22/11 20:16	1
Toluene-d8	95	80 - 115	11/21/11 12:23	11/22/11 20:16	1
Bromofluorobenzene	93	80 - 115	11/21/11 12:23	11/22/11 20:16	1
1,2-Dichlorobenzene-d4	89	45 ₋ 145	11/21/11 12:23	11/22/11 20:16	1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-18

Matrix: Solid Percent Solids: 77.5

Client Sample ID: GESB-9 (2-3)

Date Collected: 11/15/11 14:40 Date Received: 11/16/11 16:40

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND		0.11	0.073	mg/Kg	<u></u>	11/21/11 12:23	11/23/11 10:52	-
1,1,1-Trichloroethane	0.63		0.11	0.020	mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
1,1,2,2-Tetrachloroethane	ND		0.11	0.023	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.11	0.016	mg/Kg		11/21/11 12:23	11/23/11 10:52	
1,1,2-Trichloroethane	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
1,1-Dichloroethane	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
1,1-Dichloroethene	ND		0.11		mg/Kg	· -	11/21/11 12:23	11/23/11 10:52	
1,2,4-Trichlorobenzene	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
1,2-Dibromo-3-Chloropropane	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
1,2-Dichlorobenzene	ND		0.11		mg/Kg	· -	11/21/11 12:23	11/23/11 10:52	
1,2-Dichloroethane	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
1,2-Dichloropropane	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
1,3-Dichlorobenzene	ND		0.11		mg/Kg		11/21/11 12:23	11/23/11 10:52	
	ND ND		0.11			₽	11/21/11 12:23	11/23/11 10:52	
1,4-Dichlorobenzene				0.030	mg/Kg	₽			
2-Butanone	ND		0.56		mg/Kg	· ~	11/21/11 12:23	11/23/11 10:52	
2-Hexanone	ND		0.56	0.080	mg/Kg		11/21/11 12:23	11/23/11 10:52	
Acetone	ND		0.56		mg/Kg		11/21/11 12:23	11/23/11 10:52	
Benzene 	ND		0.11	0.020	mg/Kg	· <u>.</u>	11/21/11 12:23	11/23/11 10:52	
Bromoform	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Bromomethane	0.056	JB	0.11		mg/Kg		11/21/11 12:23	11/23/11 10:52	
Carbon disulfide	ND		0.11	0.018	mg/Kg		11/21/11 12:23	11/23/11 10:52	
Carbon tetrachloride	ND		0.11	0.015	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Chlorobenzene	ND		0.11	0.026	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Chloroethane	ND *	•	0.11	0.038	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Chloroform	ND		0.11	0.018	mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
Chloromethane	ND		0.11	0.013	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
cis-1,2-Dichloroethene	ND		0.11	0.023	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
cis-1,3-Dichloropropene	ND		0.11	0.025	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Cyclohexane	ND		0.11	0.018	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Dichlorodifluoromethane	ND		0.11	0.015	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Ethylbenzene	ND		0.11	0.025	mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
Isopropylbenzene	ND		0.11	0.027	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Methyl acetate	ND		0.11	0.031	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Methyl t-butyl ether	ND		0.11	0.017	mg/Kg		11/21/11 12:23	11/23/11 10:52	
Methylcyclohexane	ND		0.11	0.017	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Methylene Chloride	ND		0.11	0.028	mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Styrene	ND		0.11		mg/Kg		11/21/11 12:23	11/23/11 10:52	
Tetrachloroethene	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Toluene	ND		0.11		mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
trans-1,2-Dichloroethene	ND		0.11		mg/Kg		11/21/11 12:23	11/23/11 10:52	
trans-1,3-Dichloropropene	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
Trichloroethene	0.25		0.11		mg/Kg	₩	11/21/11 12:23	11/23/11 10:52	
Trichlorofluoromethane	ND		0.11		mg/Kg	φ.	11/21/11 12:23	11/23/11 10:52	
Vinyl chloride	ND		0.11		mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
4-Methyl-2-pentanone	ND ND		0.11		mg/Kg	₽	11/21/11 12:23	11/23/11 10:52	
Dibromochloromethane	ND		0.30		mg/Kg		11/21/11 12:23	11/23/11 10:52	
	ND ND		0.11		mg/Kg	₽			
Bromodichloromethane						₩	11/21/11 12:23	11/23/11 10:52	
1,2-Dibromoethane	ND		0.11	0.026	mg/Kg	244	11/21/11 12:23	11/23/11 10:52	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-9 (2-3)

Date Collected: 11/15/11 14:40 Date Received: 11/16/11 16:40

1,2-Dichlorobenzene-d4

Lab Sample ID: 480-12888-18

11/21/11 12:23 11/23/11 10:52

Matrix: Solid

Percent Solids: 77.5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	90	65 - 155	11/21/11 12:23	11/23/11 10:52	
Toluene-d8	95	80 - 115	11/21/11 12:23	11/23/11 10:52	
Bromofluorobenzene	93	80 115	11/21/11 12:23	11/23/11 10:52	

45 - 145

5

6

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-19

Matrix: Solid
Percent Solids: 81.1

Date Collected: 11/15/11 14:45 Date Received: 11/16/11 16:40

Client Sample ID: GESB-9 (8-10)

Method: 8260B - Volatile Organic C Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Xylenes, Total	ND		0.17	0.11	mg/Kg		11/21/11 12:23	11/23/11 11:24	-
1,1,1-Trichloroethane	1.2		0.17	0.030	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
1,1,2,2-Tetrachloroethane	ND		0.17	0.035	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND		0.17		mg/Kg		11/21/11 12:23	11/23/11 11:24	
1,1,2-Trichloroethane	ND		0.17		mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
1,1-Dichloroethane	ND		0.17	0.030	mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
1,1-Dichloroethene	ND		0.17		mg/Kg	φ.	11/21/11 12:23	11/23/11 11:24	
1,2,4-Trichlorobenzene	ND		0.17		mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
1,2-Dibromo-3-Chloropropane	ND		0.17		mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
1,2-Dichlorobenzene	ND		0.17		mg/Kg	ф	11/21/11 12:23	11/23/11 11:24	
1,2-Dichloroethane	ND		0.17		mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
1,2-Dichloropropane	ND		0.17		mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
1,3-Dichlorobenzene	ND		0.17		mg/Kg		11/21/11 12:23	11/23/11 11:24	
1,4-Dichlorobenzene	ND		0.17			₽	11/21/11 12:23	11/23/11 11:24	
7,4-Dichioropenzene 2-Butanone	ND ND		0.17		mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
2-Butarione 2-Hexanone	ND		0.83		mg/Kg		11/21/11 12:23	11/23/11 11:24	
					mg/Kg	₩			
Acetone	ND		0.83		mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
Benzene	ND		0.17		mg/Kg		11/21/11 12:23	11/23/11 11:24	
Bromoform	ND		0.17		mg/Kg	*	11/21/11 12:23	11/23/11 11:24	
Bromomethane	0.084	JB	0.17		mg/Kg	₩.	11/21/11 12:23	11/23/11 11:24	
Carbon disulfide	ND		0.17		mg/Kg	<u></u> .	11/21/11 12:23	11/23/11 11:24	
Carbon tetrachloride	ND		0.17		mg/Kg	*	11/21/11 12:23	11/23/11 11:24	
Chlorobenzene	ND		0.17		mg/Kg	*	11/21/11 12:23	11/23/11 11:24	
Chloroethane	ND	*	0.17		mg/Kg		11/21/11 12:23	11/23/11 11:24	
Chloroform	ND		0.17	0.027	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
Chloromethane	ND		0.17	0.020	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
cis-1,2-Dichloroethene	ND		0.17	0.035	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
cis-1,3-Dichloropropene	ND		0.17	0.037	mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
Cyclohexane	ND		0.17	0.027	mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
Dichlorodifluoromethane	ND		0.17	0.022	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
Ethylbenzene	ND		0.17	0.037	mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
Isopropylbenzene	ND		0.17	0.040	mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
Methyl acetate	ND		0.17	0.047	mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
Methyl t-butyl ether	ND		0.17	0.025	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
Methylcyclohexane	ND		0.17	0.025	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
Methylene Chloride	ND		0.17	0.042	mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
Styrene	ND		0.17	0.040	mg/Kg	φ.	11/21/11 12:23	11/23/11 11:24	
Tetrachloroethene	ND		0.17		mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
Toluene	ND		0.17	0.033	mg/Kg	₩	11/21/11 12:23	11/23/11 11:24	
trans-1,2-Dichloroethene	ND		0.17		mg/Kg	-	11/21/11 12:23	11/23/11 11:24	
trans-1,3-Dichloropropene	ND		0.17		mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
Trichloroethene	0.48		0.17		mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
Trichlorofluoromethane	ND		0.17		mg/Kg		11/21/11 12:23	11/23/11 11:24	
Vinyl chloride	ND		0.17		mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
4-Methyl-2-pentanone	ND ND		0.17		mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	
								11/23/11 11:24	
Dibromochloromethane	ND		0.17		mg/Kg	₩	11/21/11 12:23		
Bromodichloromethane	ND		0.17		mg/Kg		11/21/11 12:23	11/23/11 11:24	
1,2-Dibromoethane	ND		0.17		mg/Kg	<u></u>	11/21/11 12:23	11/23/11 11:24	
1,2-Dichloroethene, Total	ND		0.17	0.065	mg/Kg	₽	11/21/11 12:23	11/23/11 11:24	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-9 (8-10) Lab Sample ID: 480-12888-19

Date Collected: 11/15/11 14:45

Matrix: Solid

Date Received: 11/16/11 16:40 Percent Solids: 81.1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	92	65 - 155	11/21/11 12:23	11/23/11 11:24	1
Toluene-d8	96	80 - 115	11/21/11 12:23	11/23/11 11:24	1
Bromofluorobenzene	96	80 - 115	11/21/11 12:23	11/23/11 11:24	1
1,2-Dichlorobenzene-d4	93	45 - 145	11/21/11 12:23	11/23/11 11:24	1

Client Sample ID: GESB-10 (3-4)

Date Collected: 11/15/11 16:00 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-20

Matrix: Solid
Percent Solids: 79.1

	ı	•	

Analyte	Result Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil F
Xylenes, Total	ND	0.11	0.070	mg/Kg	*	11/21/11 12:23	11/22/11 20:48	
1,1,1-Trichloroethane	1.2	0.11		mg/Kg	\$	11/21/11 12:23	11/22/11 20:48	
1,1,2,2-Tetrachloroethane	ND	0.11	0.023	mg/Kg	 	11/21/11 12:23	11/22/11 20:48	
1,1,2-Trichloro-1,2,2-trichfluoroethane	ND	0.11	0.015	mg/Kg	\$	11/21/11 12:23	11/22/11 20:48	
1,1,2-Trichloroethane	ND	0.11	0.023	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,1-Dichloroethane	0.030 J	0.11	0.019	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,1-Dichloroethene	ND	0.11	0.015	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,2,4-Trichlorobenzene	ND	0.11	0.027	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,2-Dibromo-3-Chloropropane	ND	0.11	0.055	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,2-Dichlorobenzene	ND	0.11	0.025	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,2-Dichloroethane	ND	0.11	0.023	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,2-Dichloropropane	ND	0.11	0.022	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,3-Dichlorobenzene	ND	0.11	0.024	mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
1,4-Dichlorobenzene	ND	0.11	0.029	mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
2-Butanone	ND	0.54	0.080	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
2-Hexanone	ND	0.54		mg/Kg		11/21/11 12:23	11/22/11 20:48	
Acetone	ND	0.54	0.091	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Benzene	ND	0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Bromoform	ND	0.11		mg/Kg	-	11/21/11 12:23	11/22/11 20:48	
Bromomethane	0.044 JB	0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
Carbon disulfide	ND	0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Carbon tetrachloride	ND	0.11		mg/Kg		11/21/11 12:23	11/22/11 20:48	
Chlorobenzene	ND	0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Chloroethane	ND *	0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
Chloroform	ND	0.11		mg/Kg		11/21/11 12:23	11/22/11 20:48	
Chloromethane	ND	0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
	ND	0.11			т Ф	11/21/11 12:23	11/22/11 20:48	
cis-1,2-Dichloroethene				mg/Kg				
cis-1,3-Dichloropropene	ND	0.11		mg/Kg		11/21/11 12:23	11/22/11 20:48	
Cyclohexane	ND	0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
Dichlorodifluoromethane	ND	0.11		mg/Kg	<u></u>	11/21/11 12:23	11/22/11 20:48	
Ethylbenzene	ND	0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
Isopropylbenzene	ND	0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
Methyl acetate	ND	0.11		mg/Kg		11/21/11 12:23	11/22/11 20:48	
Methyl t-butyl ether	ND	0.11		mg/Kg	₩.	11/21/11 12:23	11/22/11 20:48	
Methylcyclohexane	ND	0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Methylene Chloride	ND	0.11	0.027	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Styrene	ND	0.11	0.026	mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
Γetrachloroethene	ND	0.11	0.019	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Toluene	ND	0.11	0.022	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
rans-1,2-Dichloroethene	ND	0.11	0.018	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
rans-1,3-Dichloropropene	ND	0.11	0.029	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Frichloroethene	0.43	0.11	0.021	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
Trichlorofluoromethane	ND	0.11	0.014	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
/inyl chloride	ND	0.11	0.013	mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
4-Methyl-2-pentanone	ND	0.54	0.064	mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
Dibromochloromethane	ND	0.11		mg/Kg		11/21/11 12:23	11/22/11 20:48	
Bromodichloromethane	ND	0.11		mg/Kg	₽	11/21/11 12:23	11/22/11 20:48	
1,2-Dibromoethane	ND	0.11		mg/Kg	₩	11/21/11 12:23	11/22/11 20:48	
1,2-Dichloroethene, Total	ND	0.11		mg/Kg	φ	11/21/11 12:23	11/22/11 20:48	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Client Sample ID: GESB-10 (3-4)

Date Collected: 11/15/11 16:00 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-20

Matrix: Solid

Percent Solids: 79.1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	90	65 - 155	11/21/11 12:23	11/22/11 20:48	1
Toluene-d8	96	80 - 115	11/21/11 12:23	11/22/11 20:48	1
Bromofluorobenzene	97	80 - 115	11/21/11 12:23	11/22/11 20:48	1
1,2-Dichlorobenzene-d4	93	45 ₋ 145	11/21/11 12:23	11/22/11 20:48	1

5

6

7

8

9

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Lab Sample ID: 480-12888-21

TestAmerica Job ID: 480-12888-1

Matrix: Solid

Percent Solids: 77.4

Client Sample ID: GESB-10 (10-12)

Date Collected: 11/15/11 15:57 Date Received: 11/16/11 16:40

nalyte	Result Qualifier	RL	MDL Un		D	Prepared	Analyzed	Dil
ylenes, Total	ND	1.3	0.82 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
,1,1-Trichloroethane	110	1.3	0.23 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
,1,2,2-Tetrachloroethane	ND	1.3	0.27 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
,1,2-Trichloro-1,2,2-trichfluoroethane	ND	1.3	0.18 mg	g/Kg	⇔	11/21/11 12:23	11/23/11 12:28	
,1,2-Trichloroethane	ND	1.3	0.27 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
,1-Dichloroethane	1.0 J	1.3	0.23 mg	g/Kg	≎	11/21/11 12:23	11/23/11 12:28	
,1-Dichloroethene	0.65 J	1.3	0.18 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
,2,4-Trichlorobenzene	ND	1.3	0.32 mg	g/Kg	≎	11/21/11 12:23	11/23/11 12:28	
,2-Dibromo-3-Chloropropane	ND	1.3	0.65 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
,2-Dichlorobenzene	ND	1.3	0.29 mg	g/Kg	₽	11/21/11 12:23	11/23/11 12:28	
,2-Dichloroethane	ND	1.3	0.27 mg	g/Kg	⇔	11/21/11 12:23	11/23/11 12:28	
,2-Dichloropropane	ND	1.3	0.25 mg	g/Kg	≎	11/21/11 12:23	11/23/11 12:28	
,3-Dichlorobenzene	ND	1.3	0.28 mg			11/21/11 12:23	11/23/11 12:28	
,4-Dichlorobenzene	ND	1.3	0.34 mg	-	₽	11/21/11 12:23	11/23/11 12:28	
-Butanone	ND	6.3	0.94 mg		₽	11/21/11 12:23	11/23/11 12:28	
-Hexanone	ND	6.3	0.91 mg			11/21/11 12:23	11/23/11 12:28	
cetone	ND	6.3	1.1 mg		₩	11/21/11 12:23	11/23/11 12:28	
enzene	ND	1.3	0.23 mg		₽	11/21/11 12:23	11/23/11 12:28	
romoform	ND	1.3	0.28 mg			11/21/11 12:23	11/23/11 12:28	
romomethane	ND	1.3	0.28 mg		₽	11/21/11 12:23	11/23/11 12:28	
arbon disulfide	ND	1.3	•	g/Kg g/Kg	₽	11/21/11 12:23	11/23/11 12:28	
arbon tetrachloride	ND	1.3	0.16 mg			11/21/11 12:23	11/23/11 12:28	
hlorobenzene	ND ND	1.3		g/Kg g/Kg		11/21/11 12:23	11/23/11 12:28	
			•		~ ⇔			
hloroethane	ND *	1.3	0.43 mg		· · · · · · · · · · · ·	11/21/11 12:23	11/23/11 12:28	
hloroform	ND	1.3	0.20 mg		*	11/21/11 12:23	11/23/11 12:28	
hloromethane	ND	1.3	0.15 mg	-		11/21/11 12:23	11/23/11 12:28	
s-1,2-Dichloroethene	ND	1.3	0.27 mg		<u></u> .	11/21/11 12:23	11/23/11 12:28	
s-1,3-Dichloropropene	ND	1.3	0.28 mg	-	φ.	11/21/11 12:23	11/23/11 12:28	
yclohexane	ND	1.3	0.20 mg	-	₩.	11/21/11 12:23	11/23/11 12:28	
ichlorodifluoromethane	ND	1.3	0.16 mg			11/21/11 12:23	11/23/11 12:28	
thylbenzene	ND	1.3	0.28 mg	-	₩	11/21/11 12:23	11/23/11 12:28	
opropylbenzene	ND	1.3	0.30 mg	g/Kg	**	11/21/11 12:23	11/23/11 12:28	
ethyl acetate	ND	1.3	0.35 mg	g/Kg		11/21/11 12:23	11/23/11 12:28	
ethyl t-butyl ether	ND	1.3	0.19 mg	g/Kg	₽	11/21/11 12:23	11/23/11 12:28	
lethylcyclohexane	ND	1.3	0.19 mg	g/Kg	₽	11/21/11 12:23	11/23/11 12:28	
ethylene Chloride	ND	1.3	0.32 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
tyrene	ND	1.3	0.30 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
etrachloroethene	ND	1.3	0.23 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
bluene	ND	1.3	0.25 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
ans-1,2-Dichloroethene	ND	1.3	0.22 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
ans-1,3-Dichloropropene	ND	1.3	0.34 mg	g/Kg	₽	11/21/11 12:23	11/23/11 12:28	
ichloroethene	44	1.3	0.24 mg	g/Kg	⇔	11/21/11 12:23	11/23/11 12:28	
ichlorofluoromethane	ND	1.3	0.16 mg	g/Kg	₽	11/21/11 12:23	11/23/11 12:28	
nyl chloride	ND	1.3	0.15 mg	g/Kg	₩	11/21/11 12:23	11/23/11 12:28	
Methyl-2-pentanone	ND	6.3	0.75 mg	-	₽	11/21/11 12:23	11/23/11 12:28	
bromochloromethane	ND	1.3	0.27 mg			11/21/11 12:23	11/23/11 12:28	
romodichloromethane	ND	1.3	0.28 mg	-	₩	11/21/11 12:23	11/23/11 12:28	
2-Dibromoethane	ND	1.3	0.29 mg	-	₩	11/21/11 12:23	11/23/11 12:28	

Client: New York State D.E.C.

Date Collected: 11/15/11 15:57

Date Received: 11/16/11 16:40

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-10 (10-12)

TestAmerica Job ID: 480-12888-1

Matrix: Solid

Lab Sample ID: 480-12888-21

Percent Solids: 77.4

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	98	65 - 155	11/21/11 12:23	11/23/11 12:28	10
Toluene-d8	101	80 ₋ 115	11/21/11 12:23	11/23/11 12:28	10
Bromofluorobenzene	101	80 ₋ 115	11/21/11 12:23	11/23/11 12:28	10
1,2-Dichlorobenzene-d4	97	45 - 145	11/21/11 12:23	11/23/11 12:28	10

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-1 (4-5)

Date Collected: 11/14/11 14:22 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-1

Matrix: Solid
Percent Solids: 83.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29347	11/21/11 20:03	MTP	TAL BUR
Total/NA	Prep	5035	RE		29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B	RE	1	29452	11/22/11 11:42	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-1 (7-9)

Lab Sample ID: 480-12888-2

 Date Collected: 11/14/11 14:15
 Matrix: Solid

 Date Received: 11/16/11 16:40
 Percent Solids: 74.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29434	11/22/11 17:04	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-2 (3-4)

Lab Sample ID: 480-12888-3

 Date Collected: 11/14/11 14:45
 Matrix: Solid

 Date Received: 11/16/11 16:40
 Percent Solids: 87.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29434	11/22/11 17:36	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-2 (4-6)

Lab Sample ID: 480-12888-4

 Date Collected: 11/14/11 14:47
 Matrix: Solid

 Date Received: 11/16/11 16:40
 Percent Solids: 70.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29434	11/22/11 18:08	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-2 (6-8)

Lab Sample ID: 480-12888-5

Date Collected: 11/14/11 15:27 Matrix: Solid
Date Received: 11/16/11 16:40 Percent Solids: 74.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29452	11/22/11 12:43	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

2

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-3 (1-2)

Date Collected: 11/14/11 15:30 Date Received: 11/16/11 16:40

Lab Sample ID: 480-12888-6

Matrix: Solid
Percent Solids: 79.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29434	11/22/11 18:40	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-3 (3-4)

Lab Sample ID: 480-12888-7

Date Collected: 11/14/11 13:12 Matrix: Solid
Date Received: 11/16/11 16:40 Percent Solids: 83.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29452	11/22/11 13:27	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-4 (4-6)

Lab Sample ID: 480-12888-8

Date Collected: 11/15/11 13:07 Matrix: Solid
Date Received: 11/16/11 16:40 Percent Solids: 82.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29452	11/22/11 13:57	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-4 (8-10)

Lab Sample ID: 480-12888-9

Date Collected: 11/15/11 13:35

Date Received: 11/16/11 16:40

Matrix: Solid
Percent Solids: 74.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		2	29474	11/23/11 11:56	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-5 (2-3)

Lab Sample ID: 480-12888-10

Date Collected: 11/15/11 13:38 Matrix: Solid
Date Received: 11/16/11 16:40 Percent Solids: 76.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29452	11/22/11 14:27	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-5 (6-8)

Date Collected: 11/15/11 12:49 Date Received: 11/16/11 16:40

Lab Sample ID: 480-12888-11

	Matrix: Solid	
Pe	rcent Solids: 81.8	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29452	11/22/11 14:58	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-6 (3-4)

Date Collected: 11/15/11 12:53

Date Received: 11/16/11 16:40

480-12888-12	ID:	ple	Samp	∟ab
Matrix: Solid				

Percent Solids: 82.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29452	11/22/11 15:28	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Lab Sample ID: 480-12888-13 Client Sample ID: GESB-6 (6-8)

Date Collected: 11/15/11 16:10

Date Received: 11/16/11 16:40

Matrix: Solid Percent Solids: 72.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035		- <u></u>	29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29586	11/23/11 12:14	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Lab Sample ID: 480-12888-14 Client Sample ID: GESB-7 (1-1.8)

Date Collected: 11/15/11 16:15

Date Received: 11/16/11 16:40

Matrix: Solid Percent Solids: 87.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29434	11/22/11 19:44	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-7 (4-8) Lab Sample ID: 480-12888-15

Date Collected: 11/15/11 14:10 Date Received: 11/16/11 16:40

Matrix: Solid Percent Solids: 84.7

Batch Batch Dilution Batch Prepared Method or Analyzed Prep Type Туре Run Factor Number Analyst Lab Total/NA Prep 5035 29245 11/21/11 12:01 JRH TAL BUR Total/NA 11/22/11 16:29 MTP TAL BUR Analysis 8260B 29452 29290 AJN TAL BUR Total/NA Analysis 11/21/11 16:50 Moisture 1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-8 (2-3)

Date Collected: 11/15/11 14:10 Date Received: 11/16/11 16:40 Lab Sample ID: 480-12888-16

Matrix: Solid
Percent Solids: 86.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035		· 	29245	11/21/11 12:01	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29452	11/22/11 16:59	MTP	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-8 (10-12)

Lab Sample ID: 480-12888-17

Date Collected: 11/15/11 14:15 Date Received: 11/16/11 16:40 Matrix: Solid Percent Solids: 89.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29434	11/22/11 20:16	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-9 (2-3)

Lab Sample ID: 480-12888-18

Date Collected: 11/15/11 14:40

Matrix: Solid Percent Solids: 77.5

Date Received: 11/16/11 16:40

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Prep Total/NA 5035 29247 11/21/11 12:23 JRH TAL BUR

 Total/NA
 Prep
 5035
 29247
 11/21/11 12:23
 JRH
 TAL BUR

 Total/NA
 Analysis
 8260B
 1
 29474
 11/23/11 10:52
 JRH
 TAL BUR

 Total/NA
 Analysis
 Moisture
 1
 29290
 11/21/11 16:50
 AJN
 TAL BUR

Client Sample ID: GESB-9 (8-10)

Lab Sample ID: 480-12888-19

Date Collected: 11/15/11 14:45

Matrix: Solid

Date Received: 11/16/11 16:40 Percent Solids: 81.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		1	29474	11/23/11 11:24	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Client Sample ID: GESB-10 (3-4)

Lab Sample ID: 480-12888-20

Date Collected: 11/15/11 16:00 Date Received: 11/16/11 16:40 Matrix: Solid Percent Solids: 79.1

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR	
Total/NA	Analysis	8260B		1	29434	11/22/11 20:48	JRH	TAL BUR	
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR	

Lab Chronicle

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-10 (10-12)

TestAmerica Job ID: 480-12888-1

Lab Sample ID: 480-12888-21

Date Collected: 11/15/11 15:57	Matrix: Solid
Date Received: 11/16/11 16:40	Percent Solids: 77.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			29247	11/21/11 12:23	JRH	TAL BUR
Total/NA	Analysis	8260B		10	29474	11/23/11 12:28	JRH	TAL BUR
Total/NA	Analysis	Moisture		1	29290	11/21/11 16:50	AJN	TAL BUR

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TestAmerica Job ID: 480-12888-1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TostAmmerica Buffairo Aframasa State Program 6 88-0688 TrasAmmerica Buffairo California NELAC 9 1150CA TestAmmerica Buffairo Connecticut State Program 1 PH-0568 TestAmmerica Buffairo Finida NELAC 4 B0772 TestAmmerica Buffairo Georgia Oscriga EPD 4 N/A TestAmmerica Buffairo Illinos NELAC 5 1003257 /2000003 TestAmmerica Buffairo Kamasa NELAC 7 0 1-11017 TestAmmerica Buffairo Kamasa NELAC 7 0 1-10187 TestAmmerica Buffairo Kamtucky State Program 4 30 1-10187 TestAmmerica Buffairo Maine State Program 3 22 1-10187 TestAmmerica Buffairo Maine State Program 3 24 4 TestAmmerica Buffairo Maine State Program 3 29 4 TestAmmerica Buffairo Michigan	Laboratory	Authority	Program	EPA Region	Certification ID
Teathwaricia Bulfalo Connecticut State Program 1 PH-0868 TeatAmerica Bulfalo Georgia NELAC 4 R8772 TeatAmerica Bulfalo Georgia State Program 4 86 TeatAmerica Bulfalo Illinois NELAC 5 100323 / 200003 TeatAmerica Bulfalo Illinois NELAC 5 100323 / 200003 TeatAmerica Bulfalo Kentucky State Program 7 27 E-10187 TeatAmerica Bulfalo Kentucky State Program 4 30 0 TeatAmerica Bulfalo Kentucky State Program 4 300 0 TeatAmerica Bulfalo Maine State Program 1 MY0044 0 TeatAmerica Bulfalo Maine State Program 1 MY0044 0	TestAmerica Buffalo	Arkansas	State Program	6	88-0686
ToestAmerica Buffalo Florida NELAC 4 ER772 TestAmerica Buffalo Georgia Georgia Georgia NA NA TestAmerica Buffalo Guorgia State Program 4 966 TestAmerica Buffalo Illois NELAC 5 1002527 20003 TestAmerica Buffalo Kansas NELAC 7 2-10187 TestAmerica Buffalo Kansas NELAC 7 2-10187 TestAmerica Buffalo Kantucky State Program 4 002231 TestAmerica Buffalo Louisiana NELAC 6 02231 TestAmerica Buffalo Maine State Program 1 NV044 TestAmerica Buffalo Mayland State Program 3 294 TestAmerica Buffalo Michigan State Program 6 003-999-337 TestAmerica Buffalo Michigan State Program 6 003-999-337 TestAmerica Buffalo New Hampahire NELAC 1 003-999-337 TestAmerica Buffal	TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmenica Buffalo Georgia Georgia EPD 4 N/A TostAmenica Buffalo Clergia State Program 4 96 6 6 7 7 7 6 7 7 7	TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
Teathmerica Buffalo Georgia State Program 4 958 TeatsAmerica Buffalo Ilinois NELAC 5 1003257 200003 TeatsAmerica Buffalo Iowa State Program 7 374 TeatsAmerica Buffalo Kanasa NELAC 7 E-10187 TeatsAmerica Buffalo Kentucky State Program 4 30 TeatsAmerica Buffalo Lousiana NELAC 6 0 02031 TeatsAmerica Buffalo Maine State Program 1 NY0044 1 TeatsAmerica Buffalo Mayand State Program 3 294 1 TeatsAmerica Buffalo Michigan State Program 1 MNY044 1 2037 TeatsAmerica Buffalo Michigan State Program 5 9937 3 TeatsAmerica Buffalo Michigan State Program 5 9937 3 TeatsAmerica Buffalo Michigan NELAC 5 0.06,90937 3 4 6 0.07261	TestAmerica Buffalo	Florida	NELAC	4	E87672
Test/America Buffalo Illinois NELAC 5 100326 / 200003 Test/America Buffalo Iowa State Program 7 37 47 47 47 47 47 47	TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
TestAmerica Buffalo Iowa State Program 7 374 E11087 TestAmerica Buffalo Kantucky Kentucky UST 4 30 30 TestAmerica Buffalo Kentucky State Program 4 90029 9029 TestAmerica Buffalo Maine State Program 4 90029 9029 TestAmerica Buffalo Maine State Program 1 NY0044 1 TestAmerica Buffalo Maine State Program 3 294 323 TestAmerica Buffalo Maine State Program 1 M-Y0044 3 TestAmerica Buffalo Michigan State Program 5 9937 9937 TestAmerica Buffalo Michigan State Program 5 9937 9937 TestAmerica Buffalo New Hampshire NELAC 5 0 36-699-337 TestAmerica Buffalo New Jersey NELAC 1 2337 1 TestAmerica Buffalo New Jersey NELAC 2 NY455	TestAmerica Buffalo	Georgia	State Program	4	956
Teathmetica Buffalo Kansas NELAC 7 E-10187 TestAmerica Buffalo Kentucky State Program 4 30 TestAmerica Buffalo Louisiana NELAC 6 02031 TestAmerica Buffalo Maine State Program 1 NY0044 TestAmerica Buffalo Manyland State Program 3 294 TestAmerica Buffalo Massachusetts State Program 1 M-NY044 TestAmerica Buffalo Michigan State Program 5 9937 TestAmerica Buffalo Michigan State Program 5 036-999-337 TestAmerica Buffalo Michigan NELAC 1 3337 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Jersey NELAC 2 0096-99-337 TestAmerica Buffalo New York NELAC 1 0026 TestAmerica Buffalo New York NELAC 2 00026 TestAmerica Buffalo Oregon<	TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo Kentucky Kentucky UST 4 300 TestAmerica Buffalo Kentucky State Program 4 90029 TestAmerica Buffalo Louisiana NELAC 6 02031 TestAmerica Buffalo Maine State Program 1 NY0044 TestAmerica Buffalo Massachusetts State Program 1 M-NY044 TestAmerica Buffalo Massachusetts State Program 5 9937 TestAmerica Buffalo Minnesota NELAC 1 2337 TestAmerica Buffalo New Hampshire NELAC 1 2337 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Hampshire NELAC 2 10026 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo Oregon NELAC 3 6 9421 TestAmerica Buffalo	TestAmerica Buffalo	Iowa	State Program	7	374
TestAmerica Buffalo Kentucky State Program 4 90029 TestAmerica Buffalo Louisinan NELAC 6 02031 TestAmerica Buffalo Maline State Program 1 NY0044 TestAmerica Buffalo Maryand State Program 3 294 TestAmerica Buffalo Michigan State Program 6 9937 TestAmerica Buffalo Michigan State Program 6 9937 TestAmerica Buffalo Michigan State Program 6 9937 TestAmerica Buffalo New Hampshire NELAC 1 036-999-337 TestAmerica Buffalo New Hampshire NELAC 1 08-00281 TestAmerica Buffalo New Hampshire NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 NY455 TestAmerica Buffalo Noth Dakota State Program 8 R-176 TestAmerica Buffalo Oregon NELAC 3 8 8-0281 TestAmerica Buffa	TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica Buffalo Louisiana NELAC 6 02031 TestAmerica Buffalo Maine State Program 1 NY0044 TestAmerica Buffalo Maryand State Program 3 294 TestAmerica Buffalo McNapan State Program 1 M-NY044 TestAmerica Buffalo McIncesota State Program 5 937 TestAmerica Buffalo McIncesota NELAC 5 093-999-37 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakota State Program 8 R-176 TestAmerica Buffalo Okono State Program 6 9421 TestAmerica Buffalo Okono State Program 6 9421 TestAmerica Buffalo Okono State Program 6 9421 TestAmerica Buffalo <td< td=""><td>TestAmerica Buffalo</td><td>Kentucky</td><td>Kentucky UST</td><td>4</td><td>30</td></td<>	TestAmerica Buffalo	Kentucky	Kentucky UST	4	30
TestAmerica Buffalo Maine State Program 1 NY0044 TestAmerica Buffalo Maryland State Program 3 294 TestAmerica Buffalo Massachusetts State Program 1 M-NY044 TestAmerica Buffalo Michigan State Program 5 9937 TestAmerica Buffalo New Hampshire NELAC 5 036-999-337 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Hampshire NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 NY456 TestAmerica Buffalo North Dakota State Program 8 R-176 TestAmerica Buffalo North Dakota State Program 6 9421 TestAmerica Buffalo Oregon NELAC 3 68-00281 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buf	TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo Maryland State Program 3 294 TestAmerica Buffalo Massachusetis State Program 1 M-NY044 TestAmerica Buffalo Michigan 5 9937 TestAmerica Buffalo Minnesota NELAC 5 036-999-337 TestAmerica Buffalo New Hampshire NELAC 1 2337 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Jersey NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakola State Program 8 R-176 TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Oregon NELAC 3 68-00281 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo USDA USDA USDA 10 10 10 10 10 10	TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo Massachusetts State Program 1 M-NY044 TestAmerica Buffalo Michigan State Program 5 9937 TestAmerica Buffalo Minnesota NELAC 5 036-999-37 TestAmerica Buffalo New Hampshire NELAC 1 2337 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Hampshire NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakota State Program 8 R-176 TestAmerica Buffalo Oklahoma State Program 6 9421 TestAmerica Buffalo Oregon NELAC 10 NY20003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo USDA USDA USDA 930-00242 TestAmerica Buffalo	TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica Buffalo Michigan State Program 5 9937 TestAmerica Buffalo Minnesota NELAC 5 036-999-337 TestAmerica Buffalo New Hampshire NELAC 1 2337 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Jersey NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakota State Program 8 R-176 TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo Virginia NELAC 5 330-08-00242 TestAmerica Buffalo <t< td=""><td>TestAmerica Buffalo</td><td>Maryland</td><td>State Program</td><td>3</td><td>294</td></t<>	TestAmerica Buffalo	Maryland	State Program	3	294
TestAmerica Buffalo Minnesota NELAC 5 036-999-337 TestAmerica Buffalo New Hampshire NELAC 1 233 TestAmerica Buffalo New Hampshire NELAC 2 NY455 TestAmerica Buffalo New Jersey NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakota State Program 6 9421 TestAmerica Buffalo Oklahoma State Program 6 9421 TestAmerica Buffalo O'regon NELAC 10 NY200003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo USDA USDA P330-08-0042 TestAmerica Buffalo USDA USDA P330-08-0042 TestAmerica Buffalo Virginia State Program 3 460185 TestAmerica Buffalo Washington State Program <td>TestAmerica Buffalo</td> <td>Massachusetts</td> <td>State Program</td> <td>1</td> <td>M-NY044</td>	TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica Buffalo New Hampshire NELAC 1 2337 TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Jersey NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakota State Program 8 R-176 TestAmerica Buffalo Oklahoma State Program 6 9421 TestAmerica Buffalo Oregon NELAC 10 NY20003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo USDA USDA P330-06-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 401185 TestAmerica Buffalo Virginia State Program 10 C1677 TestAmerica Buffalo Wisconsin	TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica Buffalo New Hampshire NELAC 1 68-00281 TestAmerica Buffalo New Jersey NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakota State Program 8 R-176 TestAmerica Buffalo Oklahoma State Program 6 9421 TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tensesse State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Wisconsin State Program 10 C1677 TestAmerica Buffalo ACLAS	TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
TestAmerica Buffalo New Jersey NELAC 2 NY455 TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakota State Program 8 R-176 TestAmerica Buffalo Oklahoma State Program 6 9421 TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 10 C1677 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 1 PH-0751 TestAmerica Buffington	TestAmerica Buffalo	New Hampshire	NELAC	1	2337
TestAmerica Buffalo New York NELAC 2 10026 TestAmerica Buffalo North Dakola State Program 8 R-176 TestAmerica Buffalo Oklahoma State Program 6 9421 TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Wisconsin State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 1 PH-0751 TestAmerica Burlington ACLASS DOD ELAP ADE-1492 TestAmerica Burlington Delaware <td>TestAmerica Buffalo</td> <td>New Hampshire</td> <td>NELAC</td> <td>1</td> <td>68-00281</td>	TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica Buffalo North Dakota State Program 8 R-176 TestAmerica Buffalo Oklahoma State Program 6 9421 TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Wisconsin State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Buffington ACLASS DOD ELAP ADE-1492 TestAmerica Buffington Connecticut State Program 1 PH-0751 TestAmerica Buffington	TestAmerica Buffalo	New Jersey	NELAC	2	NY455
TestAmerica Buffalo Oklahoma State Program 6 9421 TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 10 C1677 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington	TestAmerica Buffalo	New York	NELAC	2	10026
TestAmerica Buffalo Oregon NELAC 10 NY200003 TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington	TestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica Buffalo Pennsylvania NELAC 3 68-00281 TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Maine State Program 1 VT000008 TestAmerica Burlin	TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica Buffalo Tennessee State Program 4 TN02970 TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Maine State Program 5 050-999-436 TestAmerica	TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica Buffalo Texas NELAC 6 T104704412-08-TX TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Minnesota State Program 5 050-999-436 T	TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica Buffalo USDA USDA P330-08-00242 TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Burfialo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT000008 TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Jersey NELAC 1 200610 T	TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica Buffalo Virginia NELAC Secondary AB 3 460185 TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 4 E87467 TestAmerica Burlington Maine State Program 1 V700008 TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 V7972 TestAmerica Burlington New York NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington Rhode Island State Program 1 LAO00298	TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
TestAmerica Buffalo Virginia State Program 3 278 TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington Pennsylvania NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington Rhode Island USDA USDA	TestAmerica Buffalo	USDA	USDA		P330-08-00242
TestAmerica Buffalo Washington State Program 10 C1677 TestAmerica Buffalo Wisconsin State Program 5 998310390 TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington New York NELAC 2 10391 TestAmerica Burlington Pennsylvania NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington Rhode Island USDA	TestAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
TestAmerica Burlington ACLASS DoD ELAP ADE-1492 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Minnesota State Program 1 VT00008 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington New York NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington Nehode Island State Program 1 LAO00298 TestAmerica Burlington Nehode Island USDA USDA	TestAmerica Buffalo	Virginia	State Program	3	278
TestAmerica Burlington ACLASS DoD ELAP 1 PH-0751 TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington New York NELAC 2 10391 TestAmerica Burlington Pennsylvania NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington Rhode Island USDA USDA	TestAmerica Buffalo	Washington	State Program	10	C1677
TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington New York NELAC 2 10391 TestAmerica Burlington Pennsylvania NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington USDA USDA	TestAmerica Buffalo	Wisconsin	State Program	5	998310390
TestAmerica Burlington Connecticut State Program 1 PH-0751 TestAmerica Burlington Delaware Delaware DNREC 3 NA TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington New York NELAC 2 10391 TestAmerica Burlington Pennsylvania NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington USDA USDA					
TestAmerica BurlingtonDelawareDelaware DNREC3NATestAmerica BurlingtonFloridaNELAC Secondary AB4E87467TestAmerica BurlingtonLouisianaNELAC Secondary AB6176292TestAmerica BurlingtonMaineState Program1VT00008TestAmerica BurlingtonMinnesotaState Program5050-999-436TestAmerica BurlingtonNew HampshireNELAC1200610TestAmerica BurlingtonNew JerseyNELAC2VT972TestAmerica BurlingtonNew YorkNELAC210391TestAmerica BurlingtonPennsylvaniaNELAC368-00489TestAmerica BurlingtonRhode IslandState Program1LAC000298TestAmerica BurlingtonUSDAUSDAP330-11-00093	TestAmerica Burlington	ACLASS	DoD ELAP		ADE-1492
TestAmerica Burlington Florida NELAC Secondary AB 4 E87467 TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington New York NELAC 2 10391 TestAmerica Burlington Pennsylvania NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAC00298 TestAmerica Burlington USDA USDA P330-11-00093	TestAmerica Burlington	Connecticut	State Program	1	PH-0751
TestAmerica Burlington Louisiana NELAC Secondary AB 6 176292 TestAmerica Burlington Maine State Program 1 VT00008 TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington New York NELAC 2 10391 TestAmerica Burlington Pennsylvania NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAC00298 TestAmerica Burlington USDA USDA P330-11-00093	TestAmerica Burlington	Delaware	Delaware DNREC	3	NA
TestAmerica BurlingtonMaineState Program1VT00008TestAmerica BurlingtonMinnesotaState Program5050-999-436TestAmerica BurlingtonNew HampshireNELAC1200610TestAmerica BurlingtonNew JerseyNELAC2VT972TestAmerica BurlingtonNew YorkNELAC210391TestAmerica BurlingtonPennsylvaniaNELAC368-00489TestAmerica BurlingtonRhode IslandState Program1LAC00298TestAmerica BurlingtonUSDAUSDAP330-11-00093	TestAmerica Burlington	Florida	NELAC Secondary AB	4	E87467
TestAmerica Burlington Minnesota State Program 5 050-999-436 TestAmerica Burlington New Hampshire NELAC 1 200610 TestAmerica Burlington New Jersey NELAC 2 VT972 TestAmerica Burlington New York NELAC 2 10391 TestAmerica Burlington Pennsylvania NELAC 3 68-00489 TestAmerica Burlington Rhode Island State Program 1 LAO00298 TestAmerica Burlington USDA USDA P330-11-00093	TestAmerica Burlington	Louisiana	NELAC Secondary AB	6	176292
TestAmerica BurlingtonNew HampshireNELAC1200610TestAmerica BurlingtonNew JerseyNELAC2VT972TestAmerica BurlingtonNew YorkNELAC210391TestAmerica BurlingtonPennsylvaniaNELAC368-00489TestAmerica BurlingtonRhode IslandState Program1LAO00298TestAmerica BurlingtonUSDAUSDAP330-11-00093	TestAmerica Burlington	Maine	State Program	1	VT00008
TestAmerica BurlingtonNew JerseyNELAC2VT972TestAmerica BurlingtonNew YorkNELAC210391TestAmerica BurlingtonPennsylvaniaNELAC368-00489TestAmerica BurlingtonRhode IslandState Program1LAO00298TestAmerica BurlingtonUSDAUSDAP330-11-00093	TestAmerica Burlington	Minnesota	State Program	5	050-999-436
TestAmerica BurlingtonNew YorkNELAC210391TestAmerica BurlingtonPennsylvaniaNELAC368-00489TestAmerica BurlingtonRhode IslandState Program1LAO00298TestAmerica BurlingtonUSDAUSDAP330-11-00093	TestAmerica Burlington	New Hampshire	NELAC	1	200610
TestAmerica BurlingtonPennsylvaniaNELAC368-00489TestAmerica BurlingtonRhode IslandState Program1LAO00298TestAmerica BurlingtonUSDAUSDAP330-11-00093	TestAmerica Burlington	New Jersey	NELAC	2	VT972
TestAmerica BurlingtonRhode IslandState Program1LAO00298TestAmerica BurlingtonUSDAUSDAP330-11-00093	TestAmerica Burlington	New York	NELAC	2	10391
TestAmerica Burlington USDA USDA P330-11-00093	TestAmerica Burlington	Pennsylvania	NELAC	3	68-00489
•	TestAmerica Burlington	Rhode Island	State Program	1	LAO00298
TestAmerica Burlington Vermont State Program 1 VT-4000	TestAmerica Burlington	USDA	USDA		P330-11-00093
	TestAmerica Burlington	Vermont	State Program	1	VT-4000

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

9

Method Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-12888-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUR
Moisture	Percent Moisture	EPA	TAL BUR

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

3

4

7

8

4.6

Sample Summary

Client: New York State D.E.C.

480-12888-21

Project/Site: NYSDEC - Lapp Insulators: Site#?

GESB-10 (10-12)

TestAmerica Job ID: 480-12888-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-12888-1	GESB-1 (4-5)	Solid	11/14/11 14:22	11/16/11 16:40
480-12888-2	GESB-1 (7-9)	Solid	11/14/11 14:15	11/16/11 16:40
480-12888-3	GESB-2 (3-4)	Solid	11/14/11 14:45	11/16/11 16:40
480-12888-4	GESB-2 (4-6)	Solid	11/14/11 14:47	11/16/11 16:40
480-12888-5	GESB-2 (6-8)	Solid	11/14/11 15:27	11/16/11 16:40
480-12888-6	GESB-3 (1-2)	Solid	11/14/11 15:30	11/16/11 16:40
480-12888-7	GESB-3 (3-4)	Solid	11/14/11 13:12	11/16/11 16:40
480-12888-8	GESB-4 (4-6)	Solid	11/15/11 13:07	11/16/11 16:40
480-12888-9	GESB-4 (8-10)	Solid	11/15/11 13:35	11/16/11 16:40
480-12888-10	GESB-5 (2-3)	Solid	11/15/11 13:38	11/16/11 16:40
480-12888-11	GESB-5 (6-8)	Solid	11/15/11 12:49	11/16/11 16:40
480-12888-12	GESB-6 (3-4)	Solid	11/15/11 12:53	11/16/11 16:40
480-12888-13	GESB-6 (6-8)	Solid	11/15/11 16:10	11/16/11 16:40
480-12888-14	GESB-7 (1-1.8)	Solid	11/15/11 16:15	11/16/11 16:40
480-12888-15	GESB-7 (4-8)	Solid	11/15/11 14:10	11/16/11 16:40
480-12888-16	GESB-8 (2-3)	Solid	11/15/11 14:10	11/16/11 16:40
180-12888-17	GESB-8 (10-12)	Solid	11/15/11 14:15	11/16/11 16:40
180-12888-18	GESB-9 (2-3)	Solid	11/15/11 14:40	11/16/11 16:40
180-12888-19	GESB-9 (8-10)	Solid	11/15/11 14:45	11/16/11 16:40
480-12888-20	GESB-10 (3-4)	Solid	11/15/11 16:00	11/16/11 16:40

Solid

2

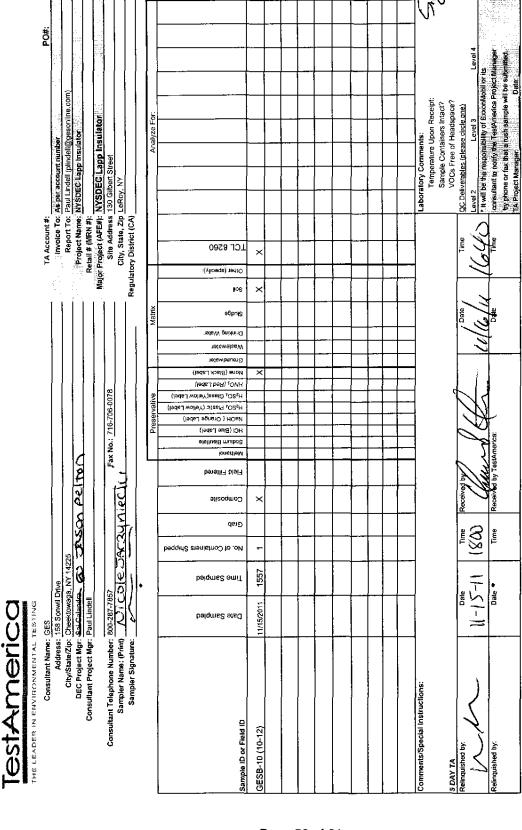
3

4

O

g

9


8

10

10

Suttant Name: GES Address: GES Address: Class Convell Onve ChyState Zay: Class Chystate Zay: Class Chystate Zay: Class Chystate Zay: Class Chystate Zay: Class Chystate Zay: Class Chystate Zay: Chyst	**Od	I A Account suitibility I PUB:	Report To: Paul Lindell (Indeel (Octoor))	Petton Project Name	Meno Brieffelt NXSDECT and Institution	Fax No. 716-706-0078 Sife Address 130 Gilbert Street	o	Regulatory District (CA)	Preservative Matrix Analyze For:	Composite Field Filtered Field Filtered TAT request (in Bus. Days) TAT request (in Bus. Days) Sodim Bestivate Sodim Bestivate Hyso. (Seas Label) More (Back Label) And (Size Label) And (Size Label) And (Size Label) And (Size Label) And (Size Label) And (Size Label) And (Size Label) Sodi Sodi Sodi And (Size Label) Sodi So	5 DAY	X X X X	X X X	X X X	X X X	X X X	X X X X X X X X X X X X X X X X X X X	X X X X X	X X X	X X X X X X X X X X X X X X X X X X X	Laboratory Comments: 5 t 6	Sample Containers Intact? VOCs Free of Heatstrape? V N	Received by Time OCDell Time OCDell	(March Grand Miller) (Grand training the responsibility of Exponsibility o	Time Received by TestAmerica: Date Time Consultant to notify their TestAmerica Project Managet.
100 New 14225						Fax No.: 716-706-			Preserva	Field Filtered Methano: Sodium Beufale HCI (Size Label) MaOH (Orange Label)	×	×	×	×	×	×	×	×	×	×		((Jarry D	leceived by TestAmerica:
25 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			55	احدا			3524M				-	-	-	-	-	-	-	-	1	1					
THE LEADER IN ENVIRONMENTAL TESTING Consultant Name: GES Address: 158 Sonwill City/StateCity of Part Calmus Consultant Project Mgr: Paul Lindel Consultant Telephone Number: 800-287-78 Sampler Name: (Print) N. 12, 2 Sampler Name: (Print) N. 12, 2 Sampler Name: (Print) N. 12, 2 Sampler Name: (Print) N. 12, 2 Sampler Signature: A. 11/15/2011 ESB-6 (3-4) 11/15/2011 ESB-7 (4-6) 11/15/2011 ESB-8 (2-3) 11/15/2011 ESB-9 (2-3) 11/15/2011 ESB-9 (2-3) 11/15/2011 ESB-9 (2-3) 11/15/2011 ESB-9 (2-10) 11/15/2011 ESB-10 (3-4) 11/15/2011 ESB-9 (2-10) 11/15/2011 ESB-10 (3-4) 11/15/2011 ESB-9 (2-10) 11/15/2011 ESB-9 (2-10) 11/15/2011 ESB-9 (2-10) 11/15/2011 ESB-10 (3-4) 11/15/2011	ij	ovi Orivo	wana NY 1425	DEC Project Mgr: Bat Calambia	Consultant Project Mgr. Paul Lindell	Consultant Telephone Number: 800-287-7857	cien			∳ Time Sampled	H	\longrightarrow	\rightarrow	11/15/2011 /6/C	11/15/2011 1615		-		\rightarrow	_			_	_	Date

TestAmerica

Fax Results (yes or no) Due Date of Report

(aysO .au& ni) tseuper TA

DAY

2 Z

4 -

TestAmerica

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-12888-1

Login Number: 12888 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kinecki, Kenneth

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	Comment
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	5.1 C
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

8

10

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-12888-1

List Source: TestAmerica Burlington
List Number: 1
List Creation: 11/18/11 01:49 PM

Creator: Marion, Greg T

oreator, marion, oreg r		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	977815,813,814,792206,792247
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.6,2.3,4.3,1.2,1.0°c IR GUN ID 96/CF=0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

4

7

9

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-13043-1

Client Project/Site: NYSDEC - Lapp Insulators: Site#?

Revision: 1

For:

New York State D.E.C. 625 Broadway 9th Floor Albany, New York 12233-7258

Attn: Jason Pelton

Melissa Delyo

Authorized for release by:

12/5/2011 8:43:16 AM Melissa Deyo

Project Administrator

melissa.deyo@testamericainc.com

Designee for

Brian Fischer

Project Manager II

brian.fischer@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Melisso Deyo

Melissa Deyo

Project Administrator

12/5/2011 8:43:16 AM

Page 2 of 24

12/5/2011

Client: New York State D.E.C.
Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receint Checklists	24

3

4

5

0

8

9

10

4 -

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-13043-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\(\tilde{\ti}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

6

4

-

5

6

0

10

10

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Job ID: 480-13043-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-13043-1

Comments

This report was revised to change the units of measure form ug/kg to mg/kg.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The following sample(s) was analyzed at 0.5 grams due to the abundance of target analytes: GESB-18 (10-12) (480-13043-2), GESB-19 (10-12) (480-13043-6). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

6

b

0

0

10

IU

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Client Sample ID: GESB-18 (2-3)

Date Collected: 11/18/11 16:25 Date Received: 11/21/11 13:25 Lab Sample ID: 480-13043-1

Matrix: Solid

Percent Solids: 94.3

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.0053	0.0051	0.00037	mg/Kg	\$		11/28/11 19:22	
1,1,2,2-Tetrachloroethane	ND	0.0051	0.00083	mg/Kg	₽		11/28/11 19:22	
1,1,2-Trichloroethane	ND	0.0051	0.00066	mg/Kg	₽		11/28/11 19:22	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0051	0.0012	mg/Kg	₩		11/28/11 19:22	
1,1-Dichloroethane	ND	0.0051	0.00062	mg/Kg	₩		11/28/11 19:22	
1,1-Dichloroethene	ND	0.0051	0.00062	mg/Kg	₩		11/28/11 19:22	
1,2,4-Trichlorobenzene	ND	0.0051	0.00031	mg/Kg	*		11/28/11 19:22	
1,2-Dibromo-3-Chloropropane	ND	0.0051	0.0025	mg/Kg	₽		11/28/11 19:22	
1,2-Dibromoethane	ND	0.0051	0.00065	mg/Kg	₽		11/28/11 19:22	
1,2-Dichlorobenzene	ND	0.0051	0.00040	mg/Kg	₽		11/28/11 19:22	
1,2-Dichloroethane	ND	0.0051	0.00026	mg/Kg	₽		11/28/11 19:22	
1,2-Dichloropropane	ND	0.0051	0.0025	mg/Kg	₽		11/28/11 19:22	
1,3-Dichlorobenzene	ND	0.0051	0.00026	mg/Kg			11/28/11 19:22	
1,4-Dichlorobenzene	ND	0.0051	0.00071	mg/Kg	₩		11/28/11 19:22	
2-Hexanone	ND	0.025	0.0025	mg/Kg	₩		11/28/11 19:22	
2-Butanone (MEK)	ND	0.025	0.0019				11/28/11 19:22	
4-Methyl-2-pentanone (MIBK)	ND	0.025	0.0017		₽		11/28/11 19:22	
Acetone	0.0053 J	0.025		mg/Kg	₽		11/28/11 19:22	
Benzene	ND	0.0051		mg/Kg			11/28/11 19:22	
Bromodichloromethane	ND	0.0051		mg/Kg	₩		11/28/11 19:22	
Bromoform	ND	0.0051	0.0025		₩		11/28/11 19:22	
Bromomethane	ND	0.0051	0.00046				11/28/11 19:22	
Carbon disulfide	ND	0.0051	0.0025		*		11/28/11 19:22	
Carbon tetrachloride	ND	0.0051	0.00049		*		11/28/11 19:22	
Chlorobenzene	ND	0.0051	0.00043				11/28/11 19:22	
Dibromochloromethane	ND	0.0051	0.00065		*		11/28/11 19:22	
Chloroethane	ND	0.0051	0.0012		₩		11/28/11 19:22	
Chloroform	ND	0.0051	0.00031				11/28/11 19:22	
Chloromethane	ND	0.0051	0.00031	mg/Kg	₩		11/28/11 19:22	
cis-1,2-Dichloroethene	ND	0.0051	0.00051		*		11/28/11 19:22	
	ND ND						11/28/11 19:22	
cis-1,3-Dichloropropene	ND ND	0.0051	0.00073					
Cyclohexane	ND ND	0.0051	0.00071	mg/Kg	₩		11/28/11 19:22 11/28/11 19:22	
Dichlorodifluoromethane		0.0051	0.00042					
Ethylbenzene	ND	0.0051	0.00035		*		11/28/11 19:22	
Isopropylbenzene	ND	0.0051	0.00077		**		11/28/11 19:22	
Methyl acetate	ND	0.0051	0.00095		*		11/28/11 19:22	
Methyl tert-butyl ether	ND	0.0051	0.00050		\$		11/28/11 19:22	
Methylcyclohexane	ND	0.0051	0.00077		₩		11/28/11 19:22	
Methylene Chloride	ND	0.0051	0.0023		₩		11/28/11 19:22	
Styrene	ND	0.0051	0.00025		₽		11/28/11 19:22	
Tetrachloroethene	ND	0.0051	0.00068		₩		11/28/11 19:22	
Toluene	0.00096 J	0.0051	0.00038		₩		11/28/11 19:22	
trans-1,2-Dichloroethene	ND	0.0051	0.00053		₩		11/28/11 19:22	
trans-1,3-Dichloropropene	ND	0.0051	0.0022		*		11/28/11 19:22	
Trichloroethene	0.12	0.0051	0.0011				11/28/11 19:22	
Trichlorofluoromethane	ND	0.0051	0.00048	mg/Kg	*		11/28/11 19:22	
Vinyl chloride	ND	0.0051	0.00062	mg/Kg	#		11/28/11 19:22	
Xylenes, Total	0.00086 J	0.010	0.00086	mg/Kg	☼		11/28/11 19:22	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-18 (2-3)

Date Collected: 11/18/11 16:25 Date Received: 11/21/11 13:25 Lab Sample ID: 480-13043-1

TestAmerica Job ID: 480-13043-1

Matrix: Solid

Percent Solids: 94.3

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	64 - 126		11/28/11 19:22	1
Toluene-d8 (Surr)	102	71 - 125		11/28/11 19:22	1
4-Bromofluorobenzene (Surr)	114	72 - 126		11/28/11 19:22	1

5

5

7

8

9

10

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-18 (10-12)

Date Collected: 11/18/11 16:29 Date Received: 11/21/11 13:25 Lab Sample ID: 480-13043-2

Matrix: Solid

Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.048		0.0051	0.00037	mg/Kg	\		11/28/11 19:48	1
1,1,2,2-Tetrachloroethane	ND		0.0051	0.00082	mg/Kg	₽		11/28/11 19:48	1
1,1,2-Trichloroethane	ND		0.0051	0.00066	mg/Kg	₽		11/28/11 19:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0051	0.0012	mg/Kg	₩		11/28/11 19:48	1
1,1-Dichloroethane	ND		0.0051	0.00062	mg/Kg	₩		11/28/11 19:48	1
1,1-Dichloroethene	0.00079	J	0.0051	0.00062	mg/Kg	₩		11/28/11 19:48	1
1,2,4-Trichlorobenzene	ND		0.0051	0.00031	mg/Kg	₩		11/28/11 19:48	1
1,2-Dibromo-3-Chloropropane	ND		0.0051	0.0025	mg/Kg	₩		11/28/11 19:48	1
1,2-Dibromoethane	ND		0.0051	0.00065	mg/Kg	₩		11/28/11 19:48	1
1,2-Dichlorobenzene	ND		0.0051	0.00040	mg/Kg	\$		11/28/11 19:48	1
1,2-Dichloroethane	ND		0.0051	0.00025	mg/Kg	₩		11/28/11 19:48	1
1,2-Dichloropropane	ND		0.0051	0.0025	mg/Kg	₩		11/28/11 19:48	1
1,3-Dichlorobenzene	ND		0.0051	0.00026	mg/Kg	φ		11/28/11 19:48	1
1,4-Dichlorobenzene	ND		0.0051	0.00071	mg/Kg	₽		11/28/11 19:48	1
2-Hexanone	ND		0.025	0.0025	mg/Kg	₽		11/28/11 19:48	1
2-Butanone (MEK)	ND		0.025	0.0019				11/28/11 19:48	1
4-Methyl-2-pentanone (MIBK)	ND		0.025	0.0017	mg/Kg	₩		11/28/11 19:48	1
Acetone	ND		0.025	0.0043		₩		11/28/11 19:48	1
Benzene	ND		0.0051	0.00025		ф		11/28/11 19:48	1
Bromodichloromethane	ND		0.0051	0.00068		₽		11/28/11 19:48	1
Bromoform	ND		0.0051	0.0025		₩		11/28/11 19:48	1
Bromomethane	ND		0.0051	0.00046				11/28/11 19:48	
Carbon disulfide	ND		0.0051	0.0025		₩		11/28/11 19:48	1
Carbon tetrachloride	0.0015	1	0.0051	0.00049		#		11/28/11 19:48	1
Chlorobenzene	ND		0.0051	0.00067				11/28/11 19:48	· · · · · · · · · · · · · · · · · · ·
Dibromochloromethane	ND		0.0051	0.00065		#		11/28/11 19:48	1
Chloroethane	ND		0.0051	0.0011		#		11/28/11 19:48	1
Chloroform	0.0028		0.0051	0.00031				11/28/11 19:48	· 1
Chloromethane	ND	•	0.0051	0.00031		*		11/28/11 19:48	1
cis-1,2-Dichloroethene	0.0098		0.0051	0.00065		*		11/28/11 19:48	1
cis-1,3-Dichloropropene	ND		0.0051	0.00073				11/28/11 19:48	· 1
Cyclohexane	ND		0.0051	0.00073		₽		11/28/11 19:48	1
Dichlorodifluoromethane	ND		0.0051	0.00042		*		11/28/11 19:48	1
Ethylbenzene	ND		0.0051	0.00035				11/28/11 19:48	
Isopropylbenzene	ND		0.0051	0.00033		₩		11/28/11 19:48	1
Methyl acetate				0.00076		-77-		11/28/11 19:48	1
Methyl tert-butyl ether	ND		0.0051						
Methylcyclohexane	ND ND		0.0051 0.0051	0.00050 0.00077		₩		11/28/11 19:48	1
• •						₩		11/28/11 19:48	1
Methylene Chloride	ND		0.0051	0.0023				11/28/11 19:48	
Styrene	ND		0.0051	0.00025		₩		11/28/11 19:48	1
Tetrachloroethene	ND		0.0051	0.00068		₩		11/28/11 19:48	1
Toluene	ND		0.0051	0.00038				11/28/11 19:48	1
trans-1,2-Dichloroethene	0.00091	J	0.0051	0.00052		\$		11/28/11 19:48	1
trans-1,3-Dichloropropene	ND		0.0051	0.0022		‡		11/28/11 19:48	1
Trichlorofluoromethane	ND		0.0051	0.00048		<u></u>		11/28/11 19:48	
Vinyl chloride	ND		0.0051	0.00062		‡		11/28/11 19:48	1
Xylenes, Total	ND		0.010	0.00085	mg/Kg	₽		11/28/11 19:48	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		64 - 126			_		11/28/11 19:48	1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Client Sample ID: GESB-18 (10-12)

Date Collected: 11/18/11 16:29 Date Received: 11/21/11 13:25 Lab Sample ID: 480-13043-2

Matrix: Solid

Percent Solids: 90.7

Method: 8260B -	Volatile	Organic	Compounds	(GC/MS)	(Continued)

l	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	Toluene-d8 (Surr)	102		71 - 125	-		11/28/11 19:48	1
l	4-Bromofluorobenzene (Surr)	117		72 - 126			11/28/11 19:48	1

	Method: 8260B - Volatile Orgar	nic Compounds	(GC/MS) - D)L						
1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1	Frichloroethene	0.43		0.054	0.012	mg/Kg	₩		11/29/11 13:52	1
;	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-	1,2-Dichloroethane-d4 (Surr)	92		64 - 126			-		11/29/11 13:52	1
	Toluene-d8 (Surr)	101		71 - 125					11/29/11 13:52	1
4	1-Bromofluorobenzene (Surr)	115		72 - 126					11/29/11 13:52	1

6

Ö

10

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Client Sample ID: GESB-20 (1-2)

Date Collected: 11/18/11 13:30 Date Received: 11/21/11 13:25 Lab Sample ID: 480-13043-3

Matrix: Solid

Percent Solids: 88.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.011		0.0053	0.00039	mg/Kg	#		11/28/11 20:13	_
1,1,2,2-Tetrachloroethane	ND		0.0053	0.00086	mg/Kg	₩		11/28/11 20:13	
1,1,2-Trichloroethane	ND		0.0053	0.00069	mg/Kg	₩		11/28/11 20:13	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0053	0.0012	mg/Kg	₽		11/28/11 20:13	
1,1-Dichloroethane	ND		0.0053	0.00065	mg/Kg	₩		11/28/11 20:13	
1,1-Dichloroethene	ND		0.0053	0.00065	mg/Kg	₽		11/28/11 20:13	
1,2,4-Trichlorobenzene	ND		0.0053	0.00032	mg/Kg	\$		11/28/11 20:13	
1,2-Dibromo-3-Chloropropane	ND		0.0053	0.0027	mg/Kg	₽		11/28/11 20:13	
1,2-Dibromoethane	ND		0.0053	0.00068	mg/Kg	₽		11/28/11 20:13	
1,2-Dichlorobenzene	ND		0.0053	0.00042	mg/Kg	¢		11/28/11 20:13	
1,2-Dichloroethane	ND		0.0053	0.00027	mg/Kg	₩		11/28/11 20:13	
1,2-Dichloropropane	ND		0.0053	0.0027	mg/Kg	₩		11/28/11 20:13	
1,3-Dichlorobenzene	ND		0.0053	0.00027	mg/Kg			11/28/11 20:13	
1,4-Dichlorobenzene	ND		0.0053	0.00074	mg/Kg	₩		11/28/11 20:13	
2-Hexanone	ND		0.027	0.0027	mg/Kg	₩		11/28/11 20:13	
2-Butanone (MEK)	ND		0.027	0.0019	mg/Kg	φ		11/28/11 20:13	
4-Methyl-2-pentanone (MIBK)	ND		0.027	0.0017	mg/Kg	₽		11/28/11 20:13	
Acetone	ND		0.027	0.0045	mg/Kg	₽		11/28/11 20:13	
Benzene	ND		0.0053	0.00026	mg/Kg			11/28/11 20:13	
Bromodichloromethane	ND		0.0053	0.00071	mg/Kg	₩		11/28/11 20:13	
Bromoform	ND		0.0053	0.0027		₩		11/28/11 20:13	
Bromomethane	ND		0.0053	0.00048				11/28/11 20:13	
Carbon disulfide	ND		0.0053	0.0027		₩		11/28/11 20:13	
Carbon tetrachloride	ND		0.0053	0.00051	mg/Kg	₩		11/28/11 20:13	
Chlorobenzene	ND		0.0053	0.00070				11/28/11 20:13	
Dibromochloromethane	ND		0.0053			₽		11/28/11 20:13	
Chloroethane	ND		0.0053	0.0012		₽		11/28/11 20:13	
Chloroform	ND		0.0053	0.00033		-		11/28/11 20:13	
Chloromethane	ND		0.0053	0.00032		₽		11/28/11 20:13	
cis-1,2-Dichloroethene	ND		0.0053			₽		11/28/11 20:13	
cis-1,3-Dichloropropene	ND		0.0053	0.00076				11/28/11 20:13	
Cyclohexane	ND		0.0053	0.00074		₽		11/28/11 20:13	
Dichlorodifluoromethane	ND		0.0053	0.00044		₽		11/28/11 20:13	
Ethylbenzene	ND		0.0053					11/28/11 20:13	
Isopropylbenzene	ND		0.0053	0.00080		₩		11/28/11 20:13	
Methyl acetate	ND		0.0053			₩		11/28/11 20:13	
Methyl tert-butyl ether	ND		0.0053	0.00052				11/28/11 20:13	
Methylcyclohexane	ND		0.0053	0.00081		₩		11/28/11 20:13	
Methylene Chloride	0.0026		0.0053	0.0024		₩		11/28/11 20:13	
Styrene	ND		0.0053	0.00027				11/28/11 20:13	
Tetrachloroethene	ND		0.0053	0.00027	mg/Kg	₩		11/28/11 20:13	
Toluene	ND ND		0.0053	0.00071	mg/Kg	₩		11/28/11 20:13	
trans-1,2-Dichloroethene	ND		0.0053	0.00040		 		11/28/11 20:13	
rans-1,3-Dichloropropene	ND		0.0053	0.00033				11/28/11 20:13	
Trichloroethene	0.076		0.0053	0.0023				11/28/11 20:13	
Trichlorofluoromethane	0.076 ND		0.0053	0.0012				11/28/11 20:13	
	ND ND		0.0053	0.00050		₩			
Vinyl chloride Xylenes, Total	ND ND		0.0053	0.00089		₩		11/28/11 20:13 11/28/11 20:13	

9

10

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Client Sample ID: GESB-20 (1-2)

Date Collected: 11/18/11 13:30

Date Received: 11/21/11 13:25

Lab Sample ID: 480-13043-3

Matrix: Solid

Percent Solids: 88.2

Surrogate		%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	e-d4 (Surr)	96		64 - 126	_			11/28/11 20:13	1
Toluene-d8 (Surr)		101		71 - 125				11/28/11 20:13	1
4-Bromofluorobenz	zene (Surr)	116		72 - 126				11/28/11 20:13	1

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Client Sample ID: GESB-20 (3-4)

Date Collected: 11/18/11 13:35 Date Received: 11/21/11 13:25

Styrene

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Lab Sample ID: 480-13043-4

Matrix: Solid Percent Solids: 89.4

Method: 8260B - Volatile Organic C	Compounds (GC/MS)								5
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1-Trichloroethane	ND	0.0052	0.00038	mg/Kg	*		11/28/11 20:38	1	
1,1,2,2-Tetrachloroethane	ND	0.0052	0.00085	mg/Kg	₩		11/28/11 20:38	1	
1,1,2-Trichloroethane	ND	0.0052	0.00068	mg/Kg	₩		11/28/11 20:38	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0052	0.0012	mg/Kg	₽		11/28/11 20:38	1	
1,1-Dichloroethane	ND	0.0052	0.00064	mg/Kg	₽		11/28/11 20:38	1	8
1,1-Dichloroethene	ND	0.0052	0.00064	mg/Kg	₽		11/28/11 20:38	1	
1,2,4-Trichlorobenzene	ND	0.0052	0.00032	mg/Kg	₽		11/28/11 20:38	1	q
1,2-Dibromo-3-Chloropropane	ND	0.0052	0.0026	mg/Kg	₽		11/28/11 20:38	1	
1,2-Dibromoethane	ND	0.0052	0.00067	mg/Kg	₽		11/28/11 20:38	1	
1,2-Dichlorobenzene	ND	0.0052	0.00041	mg/Kg	₽		11/28/11 20:38	1	
1,2-Dichloroethane	ND	0.0052	0.00026	mg/Kg	₽		11/28/11 20:38	1	
1,2-Dichloropropane	ND	0.0052	0.0026	mg/Kg	₩		11/28/11 20:38	1	
1,3-Dichlorobenzene	ND	0.0052	0.00027	mg/Kg	\$		11/28/11 20:38	1	
1,4-Dichlorobenzene	ND	0.0052	0.00073	mg/Kg	₩		11/28/11 20:38	1	

1,1-Dichloroethene	ND	0.0052	0.00064 mg/Kg	₩	11/28/11 20:38	1
1,2,4-Trichlorobenzene	ND	0.0052	0.00032 mg/Kg	\$	11/28/11 20:38	1
1,2-Dibromo-3-Chloropropane	ND	0.0052	0.0026 mg/Kg	₽	11/28/11 20:38	1
1,2-Dibromoethane	ND	0.0052	0.00067 mg/Kg	☼	11/28/11 20:38	1
1,2-Dichlorobenzene	ND	0.0052	0.00041 mg/Kg	\$	11/28/11 20:38	1
1,2-Dichloroethane	ND	0.0052	0.00026 mg/Kg	☼	11/28/11 20:38	1
1,2-Dichloropropane	ND	0.0052	0.0026 mg/Kg	☼	11/28/11 20:38	1
1,3-Dichlorobenzene	ND	0.0052	0.00027 mg/Kg	\$	11/28/11 20:38	1
1,4-Dichlorobenzene	ND	0.0052	0.00073 mg/Kg	₽	11/28/11 20:38	1
2-Hexanone	ND	0.026	0.0026 mg/Kg	₽	11/28/11 20:38	1
2-Butanone (MEK)	ND	0.026	0.0019 mg/Kg	\$	11/28/11 20:38	1
4-Methyl-2-pentanone (MIBK)	ND	0.026	0.0017 mg/Kg	₽	11/28/11 20:38	1
Acetone	ND	0.026	0.0044 mg/Kg	₽	11/28/11 20:38	1
Benzene	ND	0.0052	0.00026 mg/Kg	≎	11/28/11 20:38	1
Bromodichloromethane	ND	0.0052	0.00070 mg/Kg	₽	11/28/11 20:38	1
Bromoform	ND	0.0052	0.0026 mg/Kg	₽	11/28/11 20:38	1
Bromomethane	ND	0.0052	0.00047 mg/Kg	≎	11/28/11 20:38	1
Carbon disulfide	ND	0.0052	0.0026 mg/Kg	₽	11/28/11 20:38	1
Carbon tetrachloride	ND	0.0052	0.00051 mg/Kg	₽	11/28/11 20:38	1
Chlorobenzene	ND	0.0052	0.00069 mg/Kg	\$	11/28/11 20:38	1
Dibromochloromethane	ND	0.0052	0.00067 mg/Kg	₽	11/28/11 20:38	1
Chloroethane	ND	0.0052	0.0012 mg/Kg	₽	11/28/11 20:38	1
Chloroform	ND	0.0052	0.00032 mg/Kg	\$	11/28/11 20:38	1
Chloromethane	ND	0.0052	0.00032 mg/Kg	₽	11/28/11 20:38	1
cis-1,2-Dichloroethene	ND	0.0052	0.00067 mg/Kg	₩	11/28/11 20:38	1
cis-1,3-Dichloropropene	ND	0.0052	0.00075 mg/Kg	\$	11/28/11 20:38	1
Cyclohexane	ND	0.0052	0.00073 mg/Kg	₽	11/28/11 20:38	1
Dichlorodifluoromethane	ND	0.0052	0.00043 mg/Kg	₽	11/28/11 20:38	1
Ethylbenzene	ND	0.0052	0.00036 mg/Kg	≎	11/28/11 20:38	1
Isopropylbenzene	ND	0.0052	0.00079 mg/Kg	₩	11/28/11 20:38	1
Methyl acetate	ND	0.0052	0.00097 mg/Kg	₽	11/28/11 20:38	1
Methyl tert-butyl ether	ND	0.0052	0.00051 mg/Kg	\$	11/28/11 20:38	1
Methylcyclohexane	ND	0.0052	0.00080 mg/Kg	₩	11/28/11 20:38	1
Methylene Chloride	0.0027 J	0.0052	0.0024 mg/Kg	₩	11/28/11 20:38	1

11/28/11 20:38

11/28/11 20:38

11/28/11 20:38

11/28/11 20:38

11/28/11 20:38

11/28/11 20:38

11/28/11 20:38

11/28/11 20:38

11/28/11 20:38

0.0052

0.0052

0.0052

0.0052

0.0052

0.0052

0.0052

0.0052

0.010

0.00026 mg/Kg

0.00070 mg/Kg

0.00040 mg/Kg

0.00054 mg/Kg

0.0023 mg/Kg

0.0012 mg/Kg

0.00050 mg/Kg

0.00064 mg/Kg

0.00088 mg/Kg

₽

ġ

₩

#

φ.

₽

₩

ND

ND

ND

ND

ND

ND

ND

ND

0.015

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Client Sample ID: GESB-20 (3-4)

Date Collected: 11/18/11 13:35

Date Received: 11/21/11 13:25

Lab Sample ID: 480-13043-4

Matrix: Solid

Percent Solids: 89.4

Surrogate	%Recovery	Qualifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Sun	r) 95	64 - 126	11/28/11 20:	38 1
Toluene-d8 (Surr)	100	71 - 125	11/28/11 20:	38 1
4-Bromofluorobenzene (Sui	rr) 115	72 - 126	11/28/11 20:	38 1

5

5

7

8

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-19 (3-4)

TestAmerica Job ID: 480-13043-1

Lab Sample ID: 480-13043-5

Date Collected: 11/18/11 13:43 Date Received: 11/21/11 13:25	Matrix: Solid Percent Solids: 83.6

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.0065	0.0058	0.00042	mg/Kg	\		11/28/11 21:03	
1,1,2,2-Tetrachloroethane	ND	0.0058	0.00095	mg/Kg	₩		11/28/11 21:03	
1,1,2-Trichloroethane	ND	0.0058	0.00076	mg/Kg	₩		11/28/11 21:03	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.0058	0.0013	mg/Kg	₽		11/28/11 21:03	
1,1-Dichloroethane	ND	0.0058	0.00071	mg/Kg	₩		11/28/11 21:03	
1,1-Dichloroethene	ND	0.0058	0.00072	mg/Kg	₩		11/28/11 21:03	
1,2,4-Trichlorobenzene	ND	0.0058	0.00036	mg/Kg	₩		11/28/11 21:03	
1,2-Dibromo-3-Chloropropane	ND	0.0058	0.0029	mg/Kg	₩		11/28/11 21:03	
1,2-Dibromoethane	ND	0.0058	0.00075	mg/Kg	₩		11/28/11 21:03	
1,2-Dichlorobenzene	ND	0.0058	0.00046	mg/Kg	₽		11/28/11 21:03	
1,2-Dichloroethane	ND	0.0058	0.00029	mg/Kg	₽		11/28/11 21:03	
1,2-Dichloropropane	ND	0.0058	0.0029	mg/Kg	₩		11/28/11 21:03	
1,3-Dichlorobenzene	ND	0.0058	0.00030	mg/Kg	₽		11/28/11 21:03	
1,4-Dichlorobenzene	ND	0.0058	0.00082	mg/Kg	₩		11/28/11 21:03	
2-Hexanone	ND	0.029	0.0029	mg/Kg	₩		11/28/11 21:03	
2-Butanone (MEK)	ND	0.029	0.0021	mg/Kg	₩		11/28/11 21:03	
4-Methyl-2-pentanone (MIBK)	ND	0.029	0.0019	mg/Kg	₩		11/28/11 21:03	
Acetone	ND	0.029	0.0049	mg/Kg	₩		11/28/11 21:03	
Benzene	ND	0.0058	0.00029	mg/Kg	φ		11/28/11 21:03	
Bromodichloromethane	ND	0.0058	0.00078	mg/Kg	₩		11/28/11 21:03	
Bromoform	ND	0.0058	0.0029	mg/Kg	₩		11/28/11 21:03	
Bromomethane	ND	0.0058	0.00053				11/28/11 21:03	
Carbon disulfide	ND	0.0058	0.0029		₩		11/28/11 21:03	
Carbon tetrachloride	ND	0.0058	0.00057		₽		11/28/11 21:03	
Chlorobenzene	ND	0.0058	0.00077		ф		11/28/11 21:03	
Dibromochloromethane	ND	0.0058	0.00075		₽		11/28/11 21:03	
Chloroethane	ND	0.0058	0.0013		₽		11/28/11 21:03	
Chloroform	ND	0.0058	0.00036		ф		11/28/11 21:03	
Chloromethane	ND	0.0058	0.00035		₽		11/28/11 21:03	
cis-1,2-Dichloroethene	ND	0.0058	0.00075		₽		11/28/11 21:03	
cis-1,3-Dichloropropene	ND	0.0058	0.00084		ф		11/28/11 21:03	
Cyclohexane	ND	0.0058	0.00082		₽		11/28/11 21:03	
Dichlorodifluoromethane	ND	0.0058	0.00048		₽		11/28/11 21:03	
Ethylbenzene	ND	0.0058	0.00040		-		11/28/11 21:03	
Isopropylbenzene	ND	0.0058	0.00088		₩		11/28/11 21:03	
Methyl acetate	ND	0.0058	0.0011		₩		11/28/11 21:03	
Methyl tert-butyl ether	ND	0.0058	0.00057		□		11/28/11 21:03	
Methylcyclohexane	ND	0.0058	0.00089		₽		11/28/11 21:03	
Methylene Chloride	ND	0.0058	0.0027		₩		11/28/11 21:03	
Styrene	ND	0.0058	0.00027				11/28/11 21:03	
Tetrachloroethene	ND	0.0058	0.00023		₽		11/28/11 21:03	
Toluene	ND	0.0058	0.00078				11/28/11 21:03	
			0.00044					
trans-1,2-Dichloroethene	ND ND	0.0058			₩		11/28/11 21:03	
trans-1,3-Dichloropropene	ND	0.0058	0.0026		₩		11/28/11 21:03	
Trichloroethene	0.12	0.0058	0.0013		¥		11/28/11 21:03	
Trichlorofluoromethane	ND	0.0058	0.00055	0 0			11/28/11 21:03	
Vinyl chloride Xylenes, Total	ND ND	0.0058 0.012	0.00071 0.00098		\$		11/28/11 21:03 11/28/11 21:03	

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Client Sample ID: GESB-19 (3-4)

Date Collected: 11/18/11 13:43 Date Received: 11/21/11 13:25 Lab Sample ID: 480-13043-5

Matrix: Solid

Percent Solids: 83.6

Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	64 - 126		11/28/11 21:03	1
Toluene-d8 (Surr)	102	71 - 125		11/28/11 21:03	1
4-Bromofluorobenzene (Surr)	116	72 - 126		11/28/11 21:03	1

5

5

8

TestAmerica Job ID: 480-13043-1

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-19 (10-12)

Date Collected: 11/18/11 13:45 Date Received: 11/21/11 13:25

Client: New York State D.E.C.

Lab Sample ID: 480-13043-6

Matrix: Solid

Percent Solids: 85.7

O.030 ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056	0.00069 0.00069 0.00034 0.0028 0.00072 0.00044	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared	Analyzed 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056	0.00073 0.0013 0.00069 0.00069 0.00034 0.0028 0.00072	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$		11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29	1 1 1
ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056	0.0013 0.00069 0.00069 0.00034 0.0028 0.00072	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$		11/28/11 21:29 11/28/11 21:29 11/28/11 21:29 11/28/11 21:29	1 1 1
ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.0056 0.0056 0.0056 0.0056 0.0056 0.0056	0.0013 0.00069 0.00069 0.00034 0.0028 0.00072	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$		11/28/11 21:29 11/28/11 21:29 11/28/11 21:29	1
ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.0056 0.0056 0.0056 0.0056 0.0056 0.0056	0.00069 0.00069 0.00034 0.0028 0.00072 0.00044	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$		11/28/11 21:29 11/28/11 21:29 11/28/11 21:29	1
ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.0056 0.0056 0.0056 0.0056 0.0056 0.0056	0.00069 0.00034 0.0028 0.00072 0.00044	mg/Kg mg/Kg mg/Kg mg/Kg	ф Ф		11/28/11 21:29 11/28/11 21:29	1
ND ND ND ND ND ND ND ND ND ND ND ND ND		0.0056 0.0056 0.0056 0.0056 0.0056	0.00034 0.0028 0.00072 0.00044	mg/Kg mg/Kg mg/Kg	₩		11/28/11 21:29	
ND ND ND ND ND ND ND ND ND ND ND		0.0056 0.0056 0.0056 0.0056	0.0028 0.00072 0.00044	mg/Kg mg/Kg				
ND ND ND ND ND ND		0.0056 0.0056 0.0056	0.00072 0.00044	mg/Kg	₽			1
ND ND ND ND ND ND		0.0056 0.0056	0.00044				11/28/11 21:29	1
ND ND ND ND ND		0.0056		ma/Ka	ф		11/28/11 21:29	· · · · · · · · · · · · · · · · · · ·
ND ND ND ND				mg/Kg	₩		11/28/11 21:29	1
ND ND ND			0.0028		₩		11/28/11 21:29	1
ND ND ND		0.0056	0.00029		-		11/28/11 21:29	· · · · · · · · · · · · · · · · · · ·
ND ND		0.0056	0.00079		₽		11/28/11 21:29	1
ND		0.028	0.0028	0 0	₽		11/28/11 21:29	1
		0.028	0.0021				11/28/11 21:29	
ואט		0.028	0.0021				11/28/11 21:29	1
ND		0.028	0.0019				11/28/11 21:29	1
ND			0.00028				11/28/11 21:29	
ND ND		0.0056 0.0056			т Ф			1
ND ND		0.0056	0.00076				11/28/11 21:29 11/28/11 21:29	1
			0.0028		-			
ND		0.0056	0.00051				11/28/11 21:29	1
								1
								1
				0 0				1
								1
								1
								1
				0 0				1
								1
								1
								1
								1
								1
								1
								1
								1
ND		0.0056					11/28/11 21:29	1
0.00082	J	0.0056					11/28/11 21:29	1
ND		0.0056					11/28/11 21:29	1
0.0017	J	0.0056	0.00058	mg/Kg			11/28/11 21:29	1
ND		0.0056	0.0025	mg/Kg	₩		11/28/11 21:29	1
ND		0.0056	0.00053	mg/Kg	#		11/28/11 21:29	1
ND		0.0056	0.00069	mg/Kg	₽		11/28/11 21:29	1
ND		0.011	0.00095	mg/Kg	₽		11/28/11 21:20	1
							11/20/11 21.29	
	ND 0.0017 ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.0056 ND 0.0056	ND 0.0056 0.00055 ND 0.0056 0.00074 ND 0.0056 0.00072 ND 0.0056 0.0013 ND 0.0056 0.00035 ND 0.0056 0.00034 0.013 0.0056 0.00072 ND 0.0056 0.00072 ND 0.0056 0.00079 ND 0.0056 0.00047 ND 0.0056 0.00039 ND 0.0056 0.00085 ND 0.0056 0.0010 ND 0.0056 0.00056 ND 0.0056 0.00086 ND 0.0056 0.00026 ND 0.0056 0.00028 0.00082 J 0.0056 0.00076 ND 0.0056 0.00058 ND 0.0056 0.00058 ND 0.0056 0.00058 ND 0.0056 0.00058 ND 0.0056 0.00058 <	ND 0.0056 0.00055 mg/Kg ND 0.0056 0.00074 mg/Kg ND 0.0056 0.00072 mg/Kg ND 0.0056 0.00035 mg/Kg ND 0.0056 0.00035 mg/Kg ND 0.0056 0.00034 mg/Kg ND 0.0056 0.00072 mg/Kg ND 0.0056 0.00072 mg/Kg ND 0.0056 0.00081 mg/Kg ND 0.0056 0.00079 mg/Kg ND 0.0056 0.00047 mg/Kg ND 0.0056 0.00039 mg/Kg ND 0.0056 0.00085 mg/Kg ND 0.0056 0.00085 mg/Kg ND 0.0056 0.00086 mg/Kg ND 0.0056 0.00086 mg/Kg ND 0.0056 0.00028 mg/Kg ND 0.0056 0.00028 mg/Kg 0.0017 J	ND 0.0056 0.00055 mg/Kg ** ND 0.0056 0.00074 mg/Kg ** ND 0.0056 0.00072 mg/Kg ** ND 0.0056 0.00035 mg/Kg ** ND 0.0056 0.00035 mg/Kg ** ND 0.0056 0.00034 mg/Kg ** ND 0.0056 0.00072 mg/Kg ** ND 0.0056 0.00079 mg/Kg ** ND 0.0056 0.00047 mg/Kg ** ND 0.0056 0.00047 mg/Kg ** ND 0.0056 0.00085 mg/Kg ** ND 0.0056 0.00055 mg/Kg ** ND 0.0056 0.00056	ND 0.0056 0.00074 ND 0.0056 0.00074 Mg/Kg ND 0.0056 0.00072 Mg/Kg ND 0.0056 0.00072 Mg/Kg ND 0.0056 0.00035 Mg/Kg ND ND 0.0056 0.00035 Mg/Kg ND ND 0.0056 0.00034 Mg/Kg ND 0.013 0.0056 0.00034 Mg/Kg ND 0.0056 0.00072 Mg/Kg ND ND 0.0056 0.00072 Mg/Kg ND ND 0.0056 0.00071 Mg/Kg ND ND 0.0056 0.00072 Mg/Kg ND ND 0.0056 0.00079 Mg/Kg ND ND 0.0056 0.00047 Mg/Kg ND ND 0.0056 0.00047 Mg/Kg ND ND 0.0056 0.00085 Mg/Kg ND ND 0.0056 0.00086 Mg/Kg ND ND 0.0056 0.00088 Mg/Kg ND 0.0056 0.00076 Mg/Kg ND 0.0056 0.00078 Mg/Kg ND 0.0056 0.00058 Mg/Kg ND 0.00056 0.00056 ND 0.00056 0.000	ND 0.0056 0.00055 mg/Kg 11/28/11 21:29 ND 0.0056 0.00074 mg/Kg 11/28/11 21:29 ND 0.0056 0.00072 mg/Kg 11/28/11 21:29 ND 0.0056 0.0013 mg/Kg 11/28/11 21:29 ND 0.0056 0.00035 mg/Kg 11/28/11 21:29 ND 0.0056 0.00034 mg/Kg 11/28/11 21:29 ND 0.0056 0.00034 mg/Kg 11/28/11 21:29 ND 0.0056 0.00035 mg/Kg 11/28/11 21:29 ND 0.0056 0.00072 mg/Kg 11/28/11 21:29 ND 0.0056 0.00072 mg/Kg 11/28/11 21:29 ND 0.0056 0.00079 mg/Kg 11/28/11 21:29 ND 0.0056 0.00079 mg/Kg 11/28/11 21:29 ND 0.0056 0.00079 mg/Kg 11/28/11 21:29 ND 0.0056 0.00047 mg/Kg 11/28/11 21:29 ND 0.0056 0.00039 mg/Kg 11/28/11 21:29 ND 0.0056 0.00085 mg/Kg 11/28/11 21:29 ND 0.0056 0.00085 mg/Kg 11/28/11 21:29 ND 0.0056 0.00056 mg/Kg 11/28/11 21:29 ND 0.0056 0.00056 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00068 mg/Kg 11/28/11 21:29 ND 0.0056 0.00069 mg/Kg 11/28/11 21:29

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Lab Sample ID: 480-13043-6

Analyzed

Prepared

Client Sample ID: GESB-19 (10-12)

Date Collected: 11/18/11 13:45

Date Received: 11/21/11 13:25

Matrix: Solid

Percent Solids: 85.7

Method: 8260B -	Volatile	Organic	Compounds	(GC/MS)	(Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		71 - 125	·		11/28/11 21:29	1
4-Bromofluorobenzene (Surr)	115		72 - 126			11/28/11 21:29	1

ı	Method: 8260B - Volatile 0	Organic Compounds (GC/MS) - DL	
ı	Analyte	Result Qualifier	

Trichloroethene	0.16	0.054	0.012 mg/Kg	*	11/29/11 14:18	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	64 - 126			11/29/11 14:18	1
Toluene-d8 (Surr)	100	71 - 125			11/29/11 14:18	1
4-Bromofluorobenzene (Surr)	113	72 - 126			11/29/11 14:18	1

RL

MDL Unit

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: GESB-18 (2-3)

Date Collected: 11/18/11 16:25 Date Received: 11/21/11 13:25

Lab Sample ID: 480-13043-1

Matrix: Solid Percent Solids: 94.3

Matrix: Solid

Percent Solids: 88.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 19:22	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-18 (10-12) Lab Sample ID: 480-13043-2

Date Collected: 11/18/11 16:29 Date Received: 11/21/11 13:25

Matrix: Solid Percent Solids: 90.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 19:48	RJ	TAL BUF
Total/NA	Analysis	8260B	DL	1	41993	11/29/11 13:52	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-20 (1-2) Lab Sample ID: 480-13043-3

Date Collected: 11/18/11 13:30 Date Received: 11/21/11 13:25

Batch Dilution Prepared Batch Batch Prep Type Туре Method Factor Number or Analyzed Run Analyst Lab Total/NA Analysis 8260B 41900 11/28/11 20:13 RJ TAL BUF Total/NA Analysis Moisture 41937 11/28/11 17:59 ΚK TAL BUF 1

Lab Sample ID: 480-13043-4 Client Sample ID: GESB-20 (3-4)

Date Collected: 11/18/11 13:35

Matrix: Solid Date Received: 11/21/11 13:25 Percent Solids: 89.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 20:38	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-19 (3-4) Lab Sample ID: 480-13043-5

Date Collected: 11/18/11 13:43 Date Received: 11/21/11 13:25

Matrix: Solid Percent Solids: 83.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 21:03	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Client Sample ID: GESB-19 (10-12) Lab Sample ID: 480-13043-6

Date Collected: 11/18/11 13:45 Date Received: 11/21/11 13:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	41900	11/28/11 21:29	RJ	TAL BUF

Matrix: Solid

Percent Solids: 85.7

Lab Chronicle

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Client Sample ID: GESB-19 (10-12)

Lab Sample ID: 480-13043-6

 Date Collected: 11/18/11 13:45
 Matrix: Solid

 Date Received: 11/21/11 13:25
 Percent Solids: 85.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	1	41993	11/29/11 14:18	RJ	TAL BUF
Total/NA	Analysis	Moisture		1	41937	11/28/11 17:59	KK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

5

5

7

8

46

Certification Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas	State Program	6	88-0686
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	Iowa	State Program	7	374
TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica Buffalo	Kentucky	Kentucky UST	4	30
TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica Buffalo	Maryland	State Program	3	294
TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
TestAmerica Buffalo	New Hampshire	NELAC	1	2337
TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica Buffalo	New Jersey	NELAC	2	NY455
TestAmerica Buffalo	New York	NELAC	2	10026
TestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
estAmerica Buffalo	USDA	USDA		P330-08-00242
estAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
estAmerica Buffalo	Virginia	State Program	3	278
TestAmerica Buffalo	Washington	State Program	10	C1677
TestAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Method Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

8

46

Sample Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-13043-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-13043-1	GESB-18 (2-3)	Solid	11/18/11 16:25	11/21/11 13:25
480-13043-2	GESB-18 (10-12)	Solid	11/18/11 16:29	11/21/11 13:25
480-13043-3	GESB-20 (1-2)	Solid	11/18/11 13:30	11/21/11 13:25
480-13043-4	GESB-20 (3-4)	Solid	11/18/11 13:35	11/21/11 13:25
480-13043-5	GESB-19 (3-4)	Solid	11/18/11 13:43	11/21/11 13:25
480-13043-6	GESB-19 (10-12)	Solid	11/18/11 13:45	11/21/11 13:25

2

A

6

8

q

TestAmerica	O Serving													<u>.</u>													
Contulant Name: GES	565													1	TA Account 8:				1				Ž			1	
Address: 150 SBN-4 Orbos	Address: 150 SBRwil Office State Oliver Cleoch (Cleoch College M	1406 1400	Į,										7 				1 300	As per account number De if innel related formations related to the second sec					1	١	١		
DEC Project Mor.	Sel Citation												`	•	Project Name:	5 	BOEC L	PTROEC Lapp Instillator	IBIO	i i		1		l	l	l	l
Compliant Project Mgs: Paul Linder	Paul Linden										l		 	ē	Patade (MRN 8):	 				ا					ļ	l	
													<u></u>		Mejer Project (Artei): NYSDEC Lapp Insulator	<u></u>	YBDEC	Lapp	nsulat		$\ $	$\ $	1	$\ $	$\ $	$[\]$	Ш
Contoffert Tamphone Number: 880-267-7857	1 880-267-78				١	1	 -	Fee Man: 716-706-0076	8					,	Sile Address 170 Giben Siren	[]. []	O Guber	Į.				1		١	١	ļ	١
Security Security (Notes and Notes a	NECE STATES	<u></u>	h										 	,	City, State, App Lessoy, Mr. Recordships of District (CA)	의 학원	, vo.					1		١	ł		١
TOTAL PROPERTY.												ı	-	2		 <u>[</u>					ļ					l	
						Ч		Preservative	e dive	H		Mahx	벌	П			$\ \ $	*	AVRIYZE FOR	jo				Γ			
.·			peddylg		-1.5												 -		<u> </u>						.,		
×÷	pejdwes s	populat s) or Composite		ayand	towiH i	sistandim. Hade.l +ui2	eca ji agent () ji k wala 1) saka () d	Annie Verein , General Periori	(leds.) shalls!	no-tolet Toletani			(\press) /	6260										181 (Pn Cover	od nij traupa	o 884) şânes: 1946 til Azpor
Sample ID or Fletd ID	HY	ZWI I	. •N	සෙව	-		\$	KO#N	æiH	Bullet	$\overline{}$	_	PS4	-40	тсг										HEALR	_	
GESB-18 (2-3)	11c18/2011	1625	-	\exists	×					×			×	\Box	×										la la	5 DAY	
GESB-18 (10-12)	11/18/2011	1529	-		×	\dashv				×			<u>×</u>		×	-	-	\dashv							-5	5 DAY	-
GESB-20 (r-2)	1102001	1330	-	\dashv	×	\dashv	\exists		\exists	×	4	\dashv	×		×	\dashv	\dashv	4		\rfloor					_r;	SOMY	-
GESB-20 (3-4)	16/3/2/2014	1335	-	\dashv	×	+	\dashv	-	=	×	1	\dashv	×	1	×	+	+	\dashv		_[7	n	SDAY	\dashv
GESB-18 (3-4)	110462011	1343	-	\dashv	×	-	\exists	+		×	4	-	×	#	×	+	+	+						7	in	5 DAY	┪
GESB-19 (10-12)	117-8-2011	1345	-	\dashv	×	\dashv	╡		_	×	4	\dashv	×	7	×	\dashv		\dashv	_						-0	0.047	-
			\top	\dashv	\dashv	\dashv	#	#	_	_	4	\dashv	+	\dashv	\dashv	\dashv	+	4	_							-	Н
			\dagger	+	+	+	\pm	#	‡	#	1	+	+	\downarrow	+	+	+	+	4					+	Ť	+	+
					+	+	\pm	+	\pm		-	+	+	+			+	-						†	+	+	╬
Constrantificapedal Instructions:				1	+	1	1	1		†	-	+	-		+	3_	Polenod	Laboratory Commende: Temperature Upon Roceint	18 F					1	-	+	$\frac{1}{2}$
							`										S.	Sample Containing Integral	Darrens II	ntace?				> :		Z	
Sparta Reinquished by	å	,	F	8	Ma Diffusion	13	K	1/2	,		F	Dele			Jac.	<u>-8</u>	Orline	VOCO- Prese of Pedagadan OCO- Pedagadan Pedagagan OCO- Pedagadan Pedagagan P		DOM:				>		¥	
	11.1	//:0	Š			A	J)	12/		,	-	11-31-	?	_	12.45	•	Level		Level			Feb.		-	1	ģ	
Surveyabod by Mills	11-18-11		13.45	1º 1	A seed of the seed] _]	, \	7	11 12 h	, <u>-</u>	-	3261		Marca Branca o Project I	I will be the responsed of Exemblation for the conglider or configuration project Manages by phone of the misle analysempter will be submitted. The Project Manager.	2 (1 m s	Ecounill mento P mple sil	abloris apot M i besid Defet	daneger zwi ke d.					
		·:	r			7						_															
																	ſ	2									٠

 $,\,\omega^{d^{2\sigma}}$

.:

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-13043-1

Login Number: 13043 List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	GES
Samples received within 48 hours of sampling.	False	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

8

10

1-

APPENDIX D

Laboratory Analytical Reports - Groundwater

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-14264-1

Client Project/Site: NYSDEC - Lapp Insulators: Site#?

For:

New York State D.E.C. 625 Broadway 9th Floor Albany, New York 12233-7258

Attn: Jason Pelton

Authorized for release by: 12/20/2011 5:11:32 PM

Brian Fischer
Project Manager II

brian.fischer@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

6

Brian Fischer Project Manager II 12/20/2011 5:11:32 PM

9

10

Client: New York State D.E.C.
Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-14264-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Lab Chronicle	10
Certification Summary	
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

2

4

5

7

0

10

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-14264-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
E	Result exceeded calibration range.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-14264-1

Job ID: 480-14264-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-14264-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The following samples were diluted due to the abundance of target analytes: BRW-1 12-6-11 (480-14264-1), BRW-2 12-6-11 (480-14264-2). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: Several analytes were detected in the sample at a concentration above the linear range of the initial calibration curve. Due to the high dilution dictated by other target compounds, Acetone was diluted out in the re-analysis of the sample. Therefore, the value being reported is from the original analysis and is qualified as estimated with an E flag.

No other analytical or quality issues were noted.

3

4

_

6

1 0

TestAmerica Job ID: 480-14264-1

Client Sample ID: BRW-1 12-6-11

Date Collected: 12/06/11 14:38 Date Received: 12/19/11 17:10

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 480-14264-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND ND	1.0	0.21	ug/L		12/19/11 23:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L		12/19/11 23:00	1
1,1,2-Trichloroethane	20	1.0	0.23	ug/L		12/19/11 23:00	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L		12/19/11 23:00	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		12/19/11 23:00	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L		12/19/11 23:00	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		12/19/11 23:00	1
1,2-Dichloroethane	89	1.0	0.21	ug/L		12/19/11 23:00	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L		12/19/11 23:00	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L		12/19/11 23:00	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L		12/19/11 23:00	1
2-Butanone (MEK)	ND	10	1.3	ug/L		12/19/11 23:00	1
2-Hexanone	ND	5.0	1.2	ug/L		12/19/11 23:00	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L		12/19/11 23:00	1
Acetone	2000 E	10	3.0	ug/L		12/19/11 23:00	1
Benzene	2.2	1.0	0.41	ug/L		12/19/11 23:00	1
Bromodichloromethane	ND	1.0	0.39	ug/L		12/19/11 23:00	1
Bromoform	ND	1.0	0.26	ug/L		12/19/11 23:00	1
Bromomethane	ND	1.0	0.69	ug/L		12/19/11 23:00	1
Carbon disulfide	3.5	1.0	0.19	ug/L		12/19/11 23:00	1
Carbon tetrachloride	ND	1.0	0.27	ug/L		12/19/11 23:00	1
Chlorobenzene	ND	1.0	0.75	ug/L		12/19/11 23:00	1
Chloroethane	49	1.0	0.32	ug/L		12/19/11 23:00	1
Chloroform	5.4	1.0	0.34	ug/L		12/19/11 23:00	1
Chloromethane	1.1	1.0	0.35	ug/L		12/19/11 23:00	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L		12/19/11 23:00	1
Cyclohexane	ND	1.0	0.18	ug/L		12/19/11 23:00	1
Dibromochloromethane	ND	1.0	0.32	ug/L		12/19/11 23:00	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L		12/19/11 23:00	1
Ethylbenzene	1.7	1.0	0.74	ug/L		12/19/11 23:00	1
Isopropylbenzene	ND	1.0	0.79	ug/L		12/19/11 23:00	1
Methyl acetate	ND	1.0	0.50	ug/L		12/19/11 23:00	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L		12/19/11 23:00	1
Methylcyclohexane	9.2	1.0	0.16	ug/L		12/19/11 23:00	1
Methylene Chloride	31	1.0	0.44	ug/L		12/19/11 23:00	1
Styrene	ND	1.0	0.73	ug/L		12/19/11 23:00	1
Tetrachloroethene	11	1.0	0.36	ug/L		12/19/11 23:00	1
Toluene	6.7	1.0	0.51	ug/L		12/19/11 23:00	1
trans-1,2-Dichloroethene	33	1.0	0.90	ug/L		12/19/11 23:00	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L		12/19/11 23:00	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L		12/19/11 23:00	1
Vinyl chloride	77	1.0	0.90	ug/L		12/19/11 23:00	1
Xylenes, Total	13	2.0	0.66	ug/L		12/19/11 23:00	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
	415				-	10/10/11 00 00	

12/19/11 23:00

12/19/11 23:00

12/19/11 23:00

66 - 137

73 - 120

71 - 126

112

94

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: BRW-1 12-6-11

Date Collected: 12/06/11 14:38 Date Received: 12/19/11 17:10 Lab Sample ID: 480-14264-1

TestAmerica Job ID: 480-14264-1

Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds (GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	190000		4000	3300	ug/L			12/20/11 13:14	4000
1,1-Dichloroethane	45000		4000	1500	ug/L			12/20/11 13:14	4000
1,1-Dichloroethene	8800		4000	1200	ug/L			12/20/11 13:14	4000
cis-1,2-Dichloroethene	ND		4000	3200	ug/L			12/20/11 13:14	4000
Trichloroethene	33000		4000	1800	ug/L			12/20/11 13:14	4000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		66 - 137			-		12/20/11 13:14	4000
4-Bromofluorobenzene (Surr)	96		73 - 120					12/20/11 13:14	4000
Toluene-d8 (Surr)	107		71 - 126					12/20/11 13:14	4000

5

7

0

46

Project/Site: NYSDEC - Lapp Insulators: Site#?

Client Sample ID: BRW-2 12-6-11

Date Collected: 12/06/11 14:50 Date Received: 12/19/11 17:10

Toluene-d8 (Surr)

Client: New York State D.E.C.

Lab Sample ID: 480-14264-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/19/11 23:22	-
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/19/11 23:22	
1,1,2-Trichloroethane	0.80	J	1.0	0.23	ug/L			12/19/11 23:22	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/19/11 23:22	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/19/11 23:22	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/19/11 23:22	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/19/11 23:22	1
1,2-Dichloroethane	4.8		1.0	0.21	ug/L			12/19/11 23:22	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/19/11 23:22	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/19/11 23:22	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/19/11 23:22	1
2-Butanone (MEK)	19		10	1.3	ug/L			12/19/11 23:22	1
2-Hexanone	ND		5.0	1.2	ug/L			12/19/11 23:22	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/19/11 23:22	1
Acetone	70		10		ug/L			12/19/11 23:22	1
Benzene	0.68	J	1.0	0.41	ug/L			12/19/11 23:22	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/19/11 23:22	1
Bromoform	ND		1.0	0.26	-			12/19/11 23:22	1
Bromomethane	ND		1.0	0.69				12/19/11 23:22	
Carbon disulfide	ND		1.0	0.19	•			12/19/11 23:22	1
Carbon tetrachloride	ND		1.0	0.27				12/19/11 23:22	1
Chlorobenzene	ND		1.0	0.75				12/19/11 23:22	1
Chloroethane	15		1.0	0.32				12/19/11 23:22	1
Chloroform	ND		1.0	0.34	-			12/19/11 23:22	1
Chloromethane	ND		1.0	0.35				12/19/11 23:22	1
cis-1,2-Dichloroethene	0.96	J	1.0	0.81	_			12/19/11 23:22	1
cis-1,3-Dichloropropene	ND		1.0	0.36	-			12/19/11 23:22	1
Cyclohexane	ND		1.0	0.18				12/19/11 23:22	1
Dibromochloromethane	ND		1.0	0.32	-			12/19/11 23:22	1
Dichlorodifluoromethane	ND		1.0	0.68	-			12/19/11 23:22	1
Ethylbenzene	2.3		1.0	0.74				12/19/11 23:22	1
Isopropylbenzene	0.79	J.	1.0	0.79	_			12/19/11 23:22	1
Methyl acetate	ND		1.0	0.50	-			12/19/11 23:22	1
Methyl tert-butyl ether	ND		1.0	0.16				12/19/11 23:22	1
Methylcyclohexane	14		1.0	0.16	-			12/19/11 23:22	. 1
Methylene Chloride	1.2		1.0	0.44	•			12/19/11 23:22	. 1
Styrene	ND		1.0	0.73				12/19/11 23:22	1
Tetrachloroethene	ND		1.0	0.36	_			12/19/11 23:22	1
Toluene	6.0		1.0	0.51	-			12/19/11 23:22	1
trans-1,2-Dichloroethene	ND		1.0	0.90				12/19/11 23:22	' 1
trans-1,3-Dichloropropene	ND ND		1.0	0.90	_			12/19/11 23:22	1
			1.0		•			12/19/11 23:22	1
Trichloroethene Trichlorofluoromethane	13 ND		1.0	0.46	ug/L ug/L			12/19/11 23:22	ا 1
			1.0	0.90	•			12/19/11 23:22	1
Vilones Total	3.5		2.0	0.90	•			12/19/11 23:22	1
Xylenes, Total	17		2.0	0.00	ug/L			12/18/11 23.22	i.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137			-		12/19/11 23:22	1
4-Bromofluorobenzene (Surr)	99		73 - 120					12/19/11 23:22	1
` '									

12/19/11 23:22

71 - 126

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-14264-1

Client Sample ID: BRW-2 12-6-11

Date Collected: 12/06/11 14:50 Date Received: 12/19/11 17:10 Lab Sample ID: 480-14264-2

Matrix: Water

Method: 8260B - Volatile Orga Analyte	•	(GC/MS) - D Qualifier	L RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5000		130	100	ug/L		•	12/20/11 13:37	125
1,1-Dichloroethane	8100		130	48	ug/L			12/20/11 13:37	125
1,1-Dichloroethene	290		130	36	ug/L			12/20/11 13:37	125
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		66 - 137			-		12/20/11 13:37	125
4-Bromofluorobenzene (Surr)	97		73 - 120					12/20/11 13:37	125
Toluene-d8 (Surr)	106		71 - 126					12/20/11 13:37	125

5

7

8

9

Lab Chronicle

Client: New York State D.E.C.

Date Collected: 12/06/11 14:38

Date Received: 12/19/11 17:10

Project/Site: NYSDEC - Lapp Insulators: Site#?

Analysis

Client Sample ID: BRW-1 12-6-11

TestAmerica Job ID: 480-14264-1

Lab Sample ID: 480-14264-1

LH

TAL BUF

Matrix: Water

12/20/11 13:14

Batch Batch Dilution Batch Prepared Prep Type Method Factor or Analyzed Type Run Number Analyst Lab Total/NA Analysis 8260B 45164 12/19/11 23:00 LH TAL BUF 45227

4000

DL

Client Sample ID: BRW-2 12-6-11 Lab Sample ID: 480-14264-2

Date Collected: 12/06/11 14:50 Matrix: Water

Date Received: 12/19/11 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	е Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	45164	12/19/11 23:22	LH	TAL BUF
Total/NA	Analysis	8260B	DL	125	45227	12/20/11 13:37	LH	TAL BUF

Laboratory References:

Total/NA

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

8260B

Certification Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-14264-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas	State Program	6	88-0686
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
estAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	Iowa	State Program	7	374
estAmerica Buffalo	Kansas	NELAC	7	E-10187
estAmerica Buffalo	Kentucky	Kentucky UST	4	30
estAmerica Buffalo	Kentucky	State Program	4	90029
estAmerica Buffalo	Louisiana	NELAC	6	02031
estAmerica Buffalo	Maine	State Program	1	NY0044
estAmerica Buffalo	Maryland	State Program	3	294
estAmerica Buffalo	Massachusetts	State Program	1	M-NY044
estAmerica Buffalo	Michigan	State Program	5	9937
estAmerica Buffalo	Minnesota	NELAC	5	036-999-337
estAmerica Buffalo	New Hampshire	NELAC	1	2337
estAmerica Buffalo	New Hampshire	NELAC	1	68-00281
estAmerica Buffalo	New Jersey	NELAC	2	NY455
estAmerica Buffalo	New York	NELAC	2	10026
estAmerica Buffalo	North Dakota	State Program	8	R-176
estAmerica Buffalo	Oklahoma	State Program	6	9421
estAmerica Buffalo	Oregon	NELAC	10	NY200003
estAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
estAmerica Buffalo	Tennessee	State Program	4	TN02970
estAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
estAmerica Buffalo	USDA	USDA		P330-08-00242
estAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
estAmerica Buffalo	Virginia	State Program	3	278
estAmerica Buffalo	Washington	State Program	10	C1677
estAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

9

3

4

5

7

46

Method Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-14264-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

- - -

4

8

9

Sample Summary

Client: New York State D.E.C.

Project/Site: NYSDEC - Lapp Insulators: Site#?

TestAmerica Job ID: 480-14264-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-14264-1	BRW-1 12-6-11	Water	12/06/11 14:38	12/19/11 17:10
480-14264-2	BRW-2 12-6-11	Water	12/06/11 14:50	12/19/11 17:10

3

6

8

9

									[Far Regulac tyra or mil) The Regulac tyra or mil)	2	75				Ī				2 2	Quier		
	$\ $								ľ	zystz zuß my laeugen TAT	12	2		¦	+	\dashv	\dashv	\dashv	╁┤			,	
	ן					١		ſ	ļ	. (************************************	Ш				_	4	\dashv	+	1	> >		0	
<u>.</u>				l				$\ $	ŀ			_	_		\dashv	\dashv	4	+	+			6	
ġ	-			Ш				П	ŀ		Н	_		-	\dashv	\dashv	\dashv	4	+		9		
				Ш				П	ŀ		Н		_	4	\dashv	\dashv	\dashv	\perp	- -		ۇ م		1
		(1000		Ш				П	ŀ		-				\dashv	\dashv	\dashv		+	\$\pi	#		
		sortine		Ш	afor				<u>ه</u>						\dashv	긤	\dashv	┽	+	na Rece us antac	Table and A		
	 	est@le	oldin	Ш	o finsu	_			Analyze For					<u> </u>	\dashv	ᅴ		\dashv	+	ikey Comments: Temperature Upon Becelpt Sample Chulamers anact? VCCs Free of Headstace?	Pesser.		
	8 1000	티	9		C Lap	Pd Shea	١	Ш	ł			—				ᅦ	\dashv		+	empera e	Selection .		
	Ae Der eccount number	Раці седен рівлей@резотіле ажн	MISOEC Lapp Insulator		NYSDEC Lapp Insulator	8	PROY. N	Ш	ł		T						7	- -	\top	Laboratory Commenter Temperature Upy Sample Coutains VOCs Free of He	OC Delherades, chasse disju and tend 2		L
•	•			٠		Sibe Address 138 Cilbert Sheat	City. State, Zip <u>LeRoy, NY</u> ny Oletwei (CA)	'	Ì										_		<u></u>		
	I A ACCOUNTS	2	Project Marre:	Rocke & IMEN 6	Major Project (AFER):	3	City. State, Zip Regulatory Olstwei (CA)	1	ł	08S8 #aid llu=	×	×			T		_	_	_		F 17		
'	-		•	2	ajor Pr.		: :	ŀ	-	(Apredis) what	二					_	٠.	#	丰				
		ı			- 3≊ 	ŧ	ı.	- 1	<u>,</u>	PS	<u> </u>	_	_		\sqcup	_	_	_	+		٠ .	ا أ	
	\		֓֞֝֞֜֜֝֟֝֟֝	י ן				,	Ž Š	edipring Desputing for pure				-	_ļ			\dashv	+		3 0		j
	1	l	1	١,						wicenstern.								士	\pm		7	<u>- </u>	
	1	ļ	ļ] [4	.eevp.no.g	×	×						\exists	丁]			l
	Т	l							ł	нист вертемен иист вертемен	*	<i>.</i> *							-				l
	L	ļ			П	Fax No.; 715-705-0078		H	1	به 1967 و 1966 في المجاورة المواجعة والمجاورة المواجعة والمجاورة المواجعة والمجاورة المواجعة والمجاورة المحاجعة								\dashv				/	
	L	l		П	H	500		П	Present April	SALL SQUED HORN								-+	\pm	1	١١	,	r
	L	l			۱ ۱	틥		!	Ē	eqs eng ph	X	\boxtimes						\Box	1]	١ ١	ا ءاب	ı
	Т	l		Ι.	П	Ë		П	ł	konsidak Menag mubos	\vdash	⊢	┡	\vdash		-	Н	+	+	1	l		
					ļ	Ě	1		1	beward bland	\vdash	_								1	\ \ \		
							1		١	educoqme.	┪	-	Т			\exists	Т	\dashv	1	\ \c	Received by	Received	
							1				×	×	\vdash	-	$\vdash \dashv$			+	+	1 18	Œ Ø	7 -	
		<u> </u>					N			No. of Containers Shipped	6	7	7		$\vdash \dashv$		Н	\dashv	\top	\- <u>`</u>	E.	∄	
		14225					_ \		ł	bolome2 son	1	1	Ĭ							<i>'</i> Œ	<u> </u>		
5		M. Sliev	Ę	-		7857	D Laminect			• " =	+-	<u> </u>	\-					\perp		~	2 I	 9 8	•
	78.50m	Cheeklowaria, Mr. 14225	i i	All Lind		00-200	1			peybues eyen	710/18/2017	102:91:12	ĺ							2	Dame 1.0 - C.1	<u>.</u>	
TestAmerica THE LEADER IN FINANCIAL STRINGS	Consulant Name: GES Address: 158 Sorwal Deve		OEC Project Man. Joseph Peton	Consultant Project Mars Paul Linds	•	Consultant Talephone Number: 800-267-7857	Sample Mara Print Note Largerett	I			1 -4	ļţ		-			-	\dashv	_	RUSH 24 TA	广		
ΦI		CityStateZio	틸	rolec		\$.	ample Merre (Print) Semajer Signamire:	•			Ţ.	3								1 4			
ČIŽ		Ģ	ECP	F F		į	Ī			-	₩.	7								§ 0		1	
₩	,		٥	Sec.		474	2 1 1 1 1 1 1				_									Concent List per tel instructions:	N	레	
∢l ≟				ů			-			9										<u> </u>	1	$\setminus $	
+5						ŝ				ž.	=	<u>;</u>									[[//	N. I	
ЖE										2	걸	ř							1		13/1	· §	
Ψ										Sarrado II or Fadel II	BRW-1 12-6-11	BRW-2 12-6-11										Reinquebed by	
									l	Ž.	<u> </u>	55			Ш					10/16	19	<u>}</u> 1≝	

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-14264-1

Login Number: 14264 List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl

	_	_
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	GES
Samples received within 48 hours of sampling.	False	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

4

6

8

9

10