

#### LAPP INSULATOR SITE

### APRIL 2019 GROUNDWATER MONITORING WELL SAMPLING LETTER REPORT

#### WORK ASSIGNMENT D007622-11.2

LAPP INSULATOR LEROY (T)

SITE NO. 819017 GENESEE COUNTY, NY

Prepared for:
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
625 Broadway, Albany, New York

Basil Seggos, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION Remedial Bureau E

> URS Corporation 257 West Genesee Street Suite 400 Buffalo, New York 14202

#### LETTER REPORT

#### **APRIL 2019**

#### GROUNDWATER MONITORING WELL SAMPLING

#### FOR THE

#### LAPP INSULATOR SITE

**NYSDEC SITE NUMBER 819017** 

LEROY, GENESEE COUNTY, NEW YORK

#### PREPARED FOR:

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT NUMBER D007622-11,2

#### PREPARED BY:

URS CORPORATION
257 WEST GENESEE STREET, SUITE 400
BUFFALO, NEW YORK 14202

**July 2019** 

July 16, 2019

Ms. Lisa A. Gorton, P.E. 12th Floor Remedial Bureau E, Section A NYS Department of Environmental Conservation 625 Broadway Albany, New York 12233-5060

Re: NYSDEC Standby Contract, Work Assignment No. D007622-11.2 Lapp Insulator Site, Site ID No. 819017 Letter Report – Groundwater Monitoring Well Sampling

Dear Ms. Gorton:

URS Corporation - New York (URS) has prepared this letter report to summarize the analytical results associated with the groundwater sampling program for the Lapp Insulator site [New York State Department of Environmental Conservation (NYSDEC) Site Number 819017] located at 130 Gilbert Street, LeRoy, Genesee County, New York (Figure 1). The work was completed under Work Assignment No. D007622-11.2.

#### 1.0 <u>INTRODUCTION</u>

During the summer of 2014, remedial excavation of chlorinated solvent-contaminated soil took place at two locations at the Lapp Insulator site (Area A and Area C/D). Figure 2 shows an overall site plan and illustrates key features at the site, including the two excavation areas. Following the remediation and restoration work at these locations, groundwater monitoring wells were installed in shallow bedrock and a groundwater sampling program was implemented.

The purpose of the groundwater sampling program is to evaluate the nature and extent of the dissolved-phase chlorinated volatile organic compound (CVOC) groundwater plume in the shallow bedrock groundwater zone. The fieldwork included measuring water levels in monitoring wells to determine groundwater elevations and gradients, and to evaluate dissolved-phase concentrations of CVOCs and the emerging contaminant 1,4-dioxane in groundwater. In addition, natural attenuation parameters [total and dissolved iron and manganese, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate and sulfate] were added to the April 2019 analytical program for use in a remedial design to address CVOC contamination in shallow bedrock groundwater.

The purpose of this letter report is to present a discussion of all field activities associated with the groundwater sampling that took place at the site from April 17 through 22, 2019. This letter report includes the groundwater data collected from the site since December 2014.

#### 2.0 GROUNDWATER ELEVATION AND CONTOURS

On April 17, 2019, prior to commencing sample collection, groundwater elevation measurements were collected from each well in the sampling program. The groundwater levels were used to develop a groundwater elevation contour map so that groundwater flow directions could be determined. Water levels were measured to the nearest 0.01 foot (ft) using a 100-ft long Solinst water level meter. Figure 3 illustrates the groundwater elevations and contours for April 17, 2019. Groundwater elevation measurements are provided in Table 1. Overall groundwater flow direction varies, but is generally to the east towards Oatka Creek. The horizontal gradient ranges from 0.03 to 0.11 ft/ft.

#### 3.0 GROUNDWATER SAMPLING

The following wells are included in the groundwater sampling program: BRW-01, BRW-02, SR-001 through SR-006, SR-101, SR-104, SR-105, SR-106 and SR-108. Prior to the April 2019 sampling event, the groundwater sampling program consisted of using passive diffusion bags (PDBs) or HydraSleeves to collect groundwater samples. To facilitate the collection of 1,4-dioxane, metals and natural attenuation parameters, URS collected samples using a peristaltic pump with low-flow purging instead of PDBs or HydraSleeves during the April 2019 sampling event.

From April 17 through 22, 2019, URS collected groundwater samples from all 13 monitoring wells in the groundwater sampling program using low-flow sampling procedures. The wells were sampled using a GeoPump peristaltic pump, with dedicated low-density polyethylene (LDPE) tubing and dedicated silicone tubing. Water quality parameters (pH, conductivity, temperature, dissolved oxygen (DO), oxygen reduction potential (ORP), and turbidity) were recorded approximately every 5 minutes during well purging using a Horiba U-52 flow-thru cell. Each well was purged at a rate below one liter per minute until water quality parameters stabilized. Purge logs are provided in Attachment 1. Purge water was containerized in 55 gallon steel drums. Calibration data for the flow cell was recorded in a field notebook (field notes are presented as Attachment 2). Samples were collected from each monitoring well for the following analytical parameters:

- Target Compound List (TCL) Volatile Organic Compounds by SW8260C;
- 1,4-Dioxane by SW8270D Selected Ion Monitoring (SIM);
- Total and Dissolved Iron and Manganese by SW846 6010C;
- BOD<sub>5</sub> by SM5210B;
- COD by United States Environmental protection Agency (USEPA) 410.4; and
- Nitrate and Sulfate by USEPA 300.0.

One field duplicate sample and one matrix spike/matrix spike duplicate pair were collected for quality control. Following collection the samples were stored in coolers with ice. Trip blanks accompanied each sample shipment. The samples were transported under chain-of-custody control to TestAmerica Laboratories located in Amherst, New York.

#### 3.0.1 Groundwater Analytical Results

Full deliverable data packages (i.e., NYSDEC Analytical Service Protocol Category B or equivalent) were provided by the laboratory and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

URS prepared a Data Usability Summary Report (DUSR) following the guidelines provided NYSDEC Division of Environmental Remediation DER-10 *Technical Guidance for Site Investigation and Remediation, Appendix 2B - Guidance for Data Deliverables and the Development of Data Usability Summary Reports,* May 2010. The data packages were reviewed for compliance with analytical method requirements and the applicable USEPA Region II guidelines. The complete validated analytical results from the groundwater samples are presented in the DUSR in Attachment 3. Data summary tables and Form I's are provided in the DUSR and include the reporting limit for each non-detected compound.

The type and quality of analytical results met the project quality objectives (PQOs) for this sampling event. The analytical results were compared to:

- NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998 (including subsequent revisions and updates);
- USEPA Drinking Water Health Advisory (USEPA, May 2016); and

• New York State Department of Health (NYSDOH) Drinking Water Quality Council (DWQC) Recommended Screening Levels for 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS) (January 2019).

Table 2 presents the detected compounds along with the criteria for the samples collected on April 17 through 22, 2019. A statistical summary of the analytical results from the April 2019 sampling event is provided in Table 3. Table 4 provides all groundwater analytical results, except PFAS, for the December 2014, September 2018, and April 2019 sampling events. Figure 4 identifies the monitoring wells where VOCs and 1,4-dioxane were detected above criteria, and shows which compounds exceeded criteria in each well during the three sampling events.

As shown in Table 4, the most prevalent compounds found in the groundwater over the past three sampling events have been the CVOCs 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and 1,1-dichloroethene (1,1-DCE), all of which were all detected above 1,000 micrograms per liter ( $\mu$ g/L) at one or more well locations. Trans-1,2-DCE, chloroethane and vinyl chloride were other CVOCs detected above criteria in at least one well at the site, but the concentrations were below 1,000  $\mu$ g/L.

In addition to the CVOCs; benzene, toluene, xylene, and acetone have been detected above criteria in at least one well, although at relatively lower concentrations compared to the CVOCs.

1,4-Dioxane was detected in every sample location in the sampling program during the April 2019 sampling event, with concentrations ranging from 0.57  $\mu$ g/L in SR-004 to 3,100  $\mu$ g/L in SR-105. Eleven of 13 monitoring wells exceeded the DWQC recommended screening limit of 1  $\mu$ g/L.

Samples were not analyzed for PFAS in the April 2019 sampling event. Table 5 presents the September 2018 results for PFAS along with the USEPA Health Advisory limit and NYSDOH DWQC recommended screening limits. PFOA and PFOS were not detected in the four samples selected for analysis. The PFAS detected in September 2018 were below DWQC recommended screening limits, therefore continued sampling for this parameter was not necessary.

The CVOCs found at the highest concentrations during the April 2019 sampling event are discussed below:

- 1,1,1-TCA was the highest detected CVOC, and was detected above the criterion of 5  $\mu$ g/L in nine of the 13 monitoring wells sampled. The highest 1,1,1-TCA concentrations were found at wells SR-105 (200,000  $\mu$ g/L), BRW-02 (4,000  $\mu$ g/L), SR-006 (2,200  $\mu$ g/L), SR-005 (1,200  $\mu$ g/L), and SR-106 (1,100  $\mu$ g/L). The 1,1,1-TCA concentrations in the remaining wells were less than 1,000  $\mu$ g/L.
- TCE was detected above the criterion of 5 μg/L in 10 of the 13 monitoring wells sampled. The highest TCE concentrations were found at SR-105 (92,000 μg/L), SR-002 (4,300 μg/L), SR-104 (2,700 μg/L), and SR-005 (1,900 μg/L). The TCE concentrations in the remaining wells were less than 1,000 μg/L.
- 1,1-DCA was detected above the criterion of 5  $\mu$ g/L in 10 of the 13 monitoring wells sampled. The highest concentrations of 1,1-DCA were found at SR-105 (75,000  $\mu$ g/L), SR-005 (17,000  $\mu$ g/L), SR-006 (7,100  $\mu$ g/L), BRW-02 (3,700  $\mu$ g/L), and SR-106 (3,300  $\mu$ g/L). The 1,1-DCA concentrations in the remaining wells were less than 1,000  $\mu$ g/L.
- 1,1-DCE was detected above the criterion of 5  $\mu$ g/L in nine of the 13 monitoring wells sampled. The highest concentration of 1,1-DCE was found in well SR-105 (3,100  $\mu$ g/L). The 1,1-DCE concentrations in the remaining wells were less than 1,000  $\mu$ g/L.
- Cis-1, 2-DCE was detected above the criterion of 5  $\mu$ g/L in nine of the 13 monitoring wells sampled. The highest concentrations of cis-1,2-DCE were found in wells SR-105 (7,600  $\mu$ g/L),

SR-002 and SR-104 (both 1,800  $\mu$ g/L). The cis-1,2-DCE concentrations in the remaining wells were less than 1,000  $\mu$ g/L.

#### 3.1 Investigation-Derived Waste Disposal

All investigation-derived waste (IDW) (decon water, and purge water) was collected in DOT approved 55-gallon drums and stored on-site. Based on the analytical data for the samples collected during the April 2019 sampling event, it was assumed that the drum contents are hazardous. URS' subcontractor Sun Environmental Corp., is scheduled to pick up the drums on July 17, 2019 for off-site disposal at an approved facility. Copies of the hazardous waste manifests for IDW will be provided as Attachment 4 when they are available.

#### 4.0 CONCLUSIONS

Based upon the results of the sampling, the following conclusions are made.

- The overall groundwater flow is generally to the east towards Oatka Creek.
- TCE, 1,1,1-TCA, 1,1-DCA, 1,1-DCE and cis-1,2-DCE were detected above 1,000 μg/L at one or more wells in the two primary areas at the site; Area A and Area C/D. The highest levels of contamination exist in Area A.
- Wells SR-105, BRW-01, BRW-02, SR-005 and SR-006 exhibited the highest concentrations of CVOCs. These wells are located in the same vicinity in Area A. These wells are generally downgradient from the suspected source area in Area A.
- In wells BRW-01 and SR-006, both downgradient of Area A, CVOC concentrations have consistently decreased over the three sampling events since December 2014. For example, 1,1,1-TCA in well BRW-01 has decreased from 120,000 μg/L in December 2014 to 100 μg/L in April 2019 and in SR-006 1,1,1-TCA decreased from 77,000 μg/L in December 2014 to 2,200 μg/L in April 2019.
- Well SR-004, slightly upgradient from Area A, did not contain any CVOCs in exceedance of criteria.
- Upgradient well SR-101, located at the far northern end of the site, did not contain any CVOCs in exceedance of criteria.
- Downgradient well SR-106, located at the far eastern end of the site, contained several CVOCs in exceedance of criteria, two of which were over 1,000 μg/L.
- In Area C/D, wells SR-002 and SR-104 exhibited concentrations of CVOCs above 1,000 μg/L. Wells SR-001 and SR-108, also in Area C/D, exhibited concentrations of CVOCs above criteria but less than 1,000 μg/L.
- In well SR-003, downgradient of Area C/D, CVOC concentrations have consistently decreased over the three sampling events since December 2014. There were no CVOCs detected above criteria in April 2019; cis-1,2-DCE and TCE had both been detected over 1,000 μg/L during the December 2014 and September 2018 sampling events.
- The greatest concentrations of 1,4-dioxane were detected in Area A monitoring wells. The concentrations of 1,4-dioxane in monitoring wells located in Area C/D were significantly lower. Upgradient well SR-101 also had detections for 1,4-dioxane, similar to concentrations in Area C/D.

#### 5.0 **RECOMMENDATIONS**

URS is currently preparing a Design Memorandum to propose an approach for addressing CVOC contamination in shallow bedrock groundwater in Areas A and C/D. Groundwater sampling should continue on an annual basis.

#### 6.0 TABLES, FIGURES, AND ATTACHMENTS

The following tables, figures, and attachments are included as part of this letter report:

#### **TABLES** (following text)

| Table 1 | Groundwater Elevation Measurements                                          |
|---------|-----------------------------------------------------------------------------|
| Table 2 | Summary of Detected Compounds in April 2019 Groundwater Samples             |
| Table 3 | Statistical Summary of Detected Compounds in April 2019 Groundwater Samples |
| Table 4 | Historical Summary of Detected Compounds in Groundwater Samples             |
| Table 5 | Summary of PFAS in Groundwater Samples                                      |

#### **FIGURES** (following Tables)

| Figure 1 | Site Location                                           |
|----------|---------------------------------------------------------|
| Figure 2 | Site Plan                                               |
| Figure 3 | Bedrock Groundwater Elevation Contours (April 17, 2019) |
| Figure 4 | Groundwater Analytical Results (Exceedances Only)       |

#### **ATTACHMENTS** (following Figures)

| Attachment 1 | Purge Logs                                            |
|--------------|-------------------------------------------------------|
| Attachment 2 | Field Notes                                           |
| Attachment 3 | Data Usability Summary Reports (on CD with hard copy) |
| Attachment 4 | Investigation Derived Waste Disposal Documentation    |

Please contact me at 716-856-5636 if you have any questions or comments.

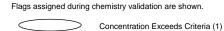
Sincerely,

#### **URS** Corporation

Charles Dusel, Jr. Senior Project Manager

cc: File: 11176787 (R-1)
Don McCall URS
George Kisluk URS
Dan McDaid URS

### **TABLES**


#### TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS LAPP INSULATOR SITE

| Location ID /<br>Type | Northing   | Easting     | Ground<br>Elevation (ft) | Meas.point<br>(Riser)Elev.(ft) | Geol.<br>Zone | Date / Ti | ime  | Depth to<br>Water (ft) | Water Elev.<br>(ft) | Remark           |
|-----------------------|------------|-------------|--------------------------|--------------------------------|---------------|-----------|------|------------------------|---------------------|------------------|
| BRW-01                | 1081955.7  | 1302497.01  | 906.2                    | 905.73                         | D             | 12/2/2014 | 0000 | 18.25                  | 887.48              |                  |
| MNW                   |            |             |                          |                                |               | 6/6/2018  | 1334 | 15.63                  | 890.10              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 1130 | 15.25                  | 890.48              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 1029 | 12.75                  | 892.98              |                  |
| BRW-02                | 1081989.96 | 1302381.13  | 907.3                    | 906.74                         | D             | 12/2/2014 | 0000 | 12.01                  | 894.73              |                  |
| MNW                   | 1001000.00 | 1002001.10  | 007.0                    | 000.7 1                        |               | 6/6/2018  | 0000 | NM                     | -                   | Could not locate |
|                       |            |             |                          |                                |               |           | 0000 | NM                     | -                   | Could not locate |
|                       |            |             |                          |                                |               | 4/17/2019 | 1142 | 12.77                  | 893.97              | Codia not locate |
| SR-001                | 1081544.97 | 1301853.72  | 912.7                    | 914.47                         | D             | 12/2/2014 | 0000 | 38.85                  | 875.62              |                  |
| MNW                   | 1001344.97 | 1301033.72  | 912.7                    | 914.47                         | Б             | 6/6/2018  | 1205 | 9.33                   | 905.14              |                  |
|                       |            |             |                          |                                |               |           |      |                        |                     |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 1017 | 9.77                   | 904.70              |                  |
| SR-002                | 4004407.04 | 4004070.05  | 040.7                    | 045.07                         |               | 4/17/2019 | 1011 | 9.46                   | 905.01              |                  |
| MNW                   | 1081427.91 | 1301972.95  | 912.7                    | 915.27                         | D             | 12/2/2014 | 0000 | 13.54                  | 901.73              |                  |
| IVIIAVV               |            |             |                          |                                |               | 6/6/2018  | 1240 | 14.25                  | 901.02              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 1006 | 15.13                  | 900.14              |                  |
| SD 002                |            |             |                          |                                |               | 4/17/2019 | 1009 | 12.88                  | 902.39              |                  |
| SR-003                | 1081298.23 | 1302026.42  | 908.6                    | 911.38                         | D             | 12/2/2014 | 0000 | 17.85                  | 893.53              |                  |
| MNW                   |            |             |                          |                                |               | 6/6/2018  | 1245 | 17.90                  | 893.48              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 1000 | 17.61                  | 893.77              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 1007 | 17.01                  | 894.37              |                  |
| SR-004                | 1082056.57 | 1302364.92  | 908.3                    | 907.77                         | D             | 12/2/2014 | 0000 | 7.95                   | 899.82              |                  |
| MNW                   |            |             |                          |                                |               | 6/6/2018  | 0000 | NM                     | -                   | Could not locate |
|                       |            |             |                          |                                |               | 9/27/2018 | 1355 | 7.16                   | 900.61              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 1111 | 5.52                   | 902.25              |                  |
| SR-005                | 1081969.28 | 1302451.49  | 906.7                    | 906.14                         | D             | 12/2/2014 | 0000 | 31.07                  | 875.07              |                  |
| MNW                   |            |             |                          |                                |               | 6/6/2018  | 1303 | 15.35                  | 890.79              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 1135 | 15.82                  | 890.32              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 1050 | 15.02                  | 891.12              |                  |
| SR-006                | 1081939.17 | 1302489.7   | 906.4                    | 906.02                         | D             | 12/2/2014 | 0000 | 19.16                  | 886.86              |                  |
| MNW                   |            |             |                          |                                |               | 6/6/2018  | 1346 | 17.42                  | 888.60              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 1128 | 17.45                  | 888.57              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 1024 | 15.90                  | 890.12              |                  |
| SR-101                | 1083000.81 | 1301985.55  | 913.8                    | 916.16                         | D             | 12/2/2014 | 0000 | 10.16                  | 906.00              |                  |
| MNW                   |            |             |                          |                                |               | 6/6/2018  | 1150 | 8.85                   | 907.31              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 0859 | 10.54                  | 905.62              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 1212 | 6.81                   | 909.35              |                  |
| SR-104                | 1081314.14 | 1301853.16  | 909.2                    | 910.74                         | D             |           | 0000 | 13.01                  | 897.73              |                  |
| MNW                   |            |             |                          |                                |               | 6/6/2018  | 1220 | 12.17                  | 898.57              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 1013 | 13.02                  | 897.72              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 1001 | 10.86                  | 899.88              |                  |
| SR-105                | 1082001 41 | 1302493.65  | 905.9                    | 905.20                         | D             |           | 0000 | 14.04                  | 891.16              |                  |
| MNW                   | 1002001111 | 1002 100.00 | 000.0                    | 000.20                         |               | 6/7/2018  | 0915 | 13.86                  | 891.34              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 0950 | 13.80                  | 891.40              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 1044 | 13.68                  | 891.52              |                  |
| SR-106                | 1082265 69 | 1302709 02  | 807.0                    | 808 01                         | D             |           |      |                        |                     |                  |
| MNW                   | 1002203.08 | 1302798.02  | 897.0                    | 898.81                         | ,             |           | 1428 | 23.88                  | 874.93<br>975.53    |                  |
| 1411.444              |            |             |                          |                                |               | 6/6/2018  | 1428 | 23.28                  | 875.53              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 0927 | 23.62                  | 875.19              |                  |
| SD-100                | 4004055.5  | 4004001 ==  | 000 :                    | 010.55                         |               | 4/17/2019 | 1204 | 22.68                  | 876.13              |                  |
| SR-108                | 1081256.31 | 1301824.97  | 908.1                    | 910.57                         | D             |           | 0000 | 14.41                  | 896.16              |                  |
| MNW                   |            |             |                          |                                |               | 6/6/2018  | 1233 | 12.56                  | 898.01              |                  |
|                       |            |             |                          |                                |               | 9/27/2018 | 1011 | 13.74                  | 896.83              |                  |
|                       |            |             |                          |                                |               | 4/17/2019 | 0959 | 12.10                  | 898.47              |                  |

NM - No Measurement Geologic Zone: D Bedrock Aquifer Monitoring Well Type: MNW

| Loca                                                             | tion ID     |                 |                 | BRW-01      | BRW-01                | BRW-02      | SR-001      | SR-002      |  |
|------------------------------------------------------------------|-------------|-----------------|-----------------|-------------|-----------------------|-------------|-------------|-------------|--|
| Sam                                                              | ple ID      |                 |                 | BRW-01      | FD-20190422           | BRW-02      | SR-001      | SR-002      |  |
| Ma                                                               | atrix       |                 |                 | Groundwater | Groundwater           | Groundwater | Groundwater | Groundwater |  |
|                                                                  | nterval (ft | :)              |                 | -           | -                     | -           | -           | -           |  |
| Date S                                                           | Sampled     |                 |                 | 04/22/19    | 04/22/19              | 04/19/19    | 04/18/19    | 04/18/19    |  |
| Parameter                                                        | Units       | Criteria<br>(1) | Criteria<br>(2) |             | Field Duplicate (1-1) |             |             |             |  |
| Volatile Organic Compo                                           | unds        |                 |                 |             |                       |             |             |             |  |
| 1,1,1-Trichloroethane                                            | UG/L        | 5               | -               | 100         | 99                    | 4,000       |             | 86          |  |
| 1,1-Dichloroethane                                               | UG/L        | 5               | -               | 210         | 200                   | 3,700       | 61          | 97          |  |
| 1,1-Dichloroethene                                               | UG/L        | 5               | -               | 54          | 51                    | 170         | 0.62 J      | 20          |  |
| 1,2-Dichloroethene (cis)                                         | UG/L        | 5               | -               | 52          | 50                    |             | 27          | 1,800 D     |  |
| 1,2-Dichloroethene (trans)                                       | UG/L        | 5               | -               |             |                       |             | 29          | 26          |  |
| Acetone                                                          | UG/L        | 50              | -               |             |                       |             |             |             |  |
| Benzene                                                          | UG/L        | 1               | -               | 0.85 J      | 0.78 J                |             |             |             |  |
| Carbon disulfide                                                 | UG/L        | 60              | -               |             |                       |             |             | 0.48 J      |  |
| Chloroethane                                                     | UG/L        | 5               | -               | 0.51 J      | 0.57 J                | 7.9 J       |             |             |  |
| Cyclohexane                                                      | UG/L        | -               | -               | 4.8 J       | 4.5 J                 | 20 J        |             |             |  |
| Ethylbenzene                                                     | UG/L        | 5               | -               | 0.39 J      | 0.41 J                |             |             |             |  |
| Isopropylbenzene (Cumene)                                        | UG/L        | 5               | -               |             |                       |             |             |             |  |
| Methylcyclohexane                                                | UG/L        | -               | -               | 8.2         | 7.8                   | 22 J        | 0.68 J      |             |  |
| Tetrachloroethene                                                | UG/L        | 5               | -               |             |                       |             |             |             |  |
| Toluene                                                          | UG/L        | 5               | -               | 1.7         | 1.7                   | 8.0 J       |             |             |  |
| Trichloroethene                                                  | UG/L        | 5               | -               | 76          | 75                    | 14 J        | 6.4         | 4,300 D     |  |
| Vinyl chloride                                                   | UG/L        | 2               | -               | 2.1         | 2.0                   |             | 3.9         | 2.8         |  |
| Xylene (total)                                                   | UG/L        | 5               | -               | 2.4 J       | 2.4 J                 | 13 J        |             |             |  |
| Total Volatile Organic<br>Compounds<br>Semivolatile Organic Comp | UG/L        | -               | -               | 512.95      | 495.16                | 7,954.9     | 128.6       | 6,332.28    |  |
|                                                                  | 1           | _               | 1               | 140         | 100                   |             | 7.5         | 0.00        |  |
| 1,4-Dioxane                                                      | UG/L        | -               | 1               | 110         | 120                   | 22          | 7.5         | 0.60        |  |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019



Concentration Exceeds Criteria (2)

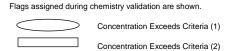
<sup>- -</sup> No criteria. \* - Criteria apllicable for unfiltered metals. UG/L - Micrograms per liter. MG/L - Milligrams per liter. Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis.

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

| Loca                            | tion ID    |                 |                 | BRW-01      | BRW-01                | BRW-02      | SR-001      | SR-002      |
|---------------------------------|------------|-----------------|-----------------|-------------|-----------------------|-------------|-------------|-------------|
| Sam                             | ple ID     |                 |                 | BRW-01      | FD-20190422           | BRW-02      | SR-001      | SR-002      |
| Ma                              | ıtrix      |                 |                 | Groundwater | Groundwater           | Groundwater | Groundwater | Groundwater |
| Depth In                        | terval (ft | :)              |                 | -           | -                     | -           | -           | -           |
| Date S                          | ampled     |                 |                 | 04/22/19    | 04/22/19              | 04/19/19    | 04/18/19    | 04/18/19    |
| Parameter                       | Units      | Criteria<br>(1) | Criteria<br>(2) |             | Field Duplicate (1-1) |             |             |             |
| Metals                          |            |                 |                 |             |                       |             |             |             |
| Iron                            | UG/L       | 300             | -               | 13,500      | 14,500                | 42,000      | 9,800       | 17,200      |
| Manganese                       | UG/L       | 300             | -               | 660 J+      | 660 J+                | 550 J+      | 39 J+       | 140 J+      |
| Dissolved Metals                |            |                 |                 |             |                       |             |             |             |
| Iron                            | UG/L       | 300 *           | -               | 6,500       | 6,100                 | 14,500      | 69 J-       | 990 J-      |
| Manganese                       | UG/L       | 300 *           | -               | 740 J+      | 720 J+                | 440 J+      | 13          | 71          |
| Miscellaneous Paramete          | ers        |                 |                 |             |                       |             |             |             |
| Biochemical Oxygen Demand (BOD) | MG/L       | -               | -               |             |                       |             |             |             |
| Chemical Oxygen Demand (COD)    | MG/L       | -               | -               | 24.8        | 31.1                  | 35.4        | 31.1        | 7.6 J       |
| Nitrate-Nitrogen                | MG/L       | 10000           | -               |             |                       |             |             |             |
| Sulfate (as SO4)                | MG/L       | 2.50E+05        | -               | 32.3        | 31.8                  | 5.2         | 2.4 J       | 17.7        |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.




<sup>- -</sup> No criteria. \* - Criteria apllicable for unfiltered metals. UG/L - Micrograms per liter. MG/L - Milligrams per liter. Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis.

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

| Loca                                                             | tion ID       |                 |                 | SR-003      | SR-004      | SR-005      | SR-006      | SR-101      |
|------------------------------------------------------------------|---------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|
| Sam                                                              | ple ID        |                 |                 | SR-003      | SR-004      | SR-005      | SR-006      | SR-101      |
| Ma                                                               | ıtrix         |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth In                                                         | terval (ft    | t)              |                 | -           | -           | -           | -           | -           |
| Date S                                                           | ampled        |                 |                 | 04/18/19    | 04/19/19    | 04/19/19    | 04/22/19    | 04/17/19    |
| Parameter                                                        | Units         | Criteria<br>(1) | Criteria<br>(2) |             |             |             |             |             |
| Volatile Organic Compounds                                       |               |                 |                 |             |             |             |             |             |
| 1,1,1-Trichloroethane                                            | UG/L          | 5               | -               |             |             | 1,200       | 2,200       |             |
| 1,1-Dichloroethane                                               | UG/L          | 5               | -               |             |             | 17,000      | 7,100       |             |
| 1,1-Dichloroethene                                               | UG/L          | 5               | -               |             |             | 500         | 360         |             |
| 1,2-Dichloroethene (cis)                                         | UG/L          | 5               | -               |             |             | 230         | 550         |             |
| 1,2-Dichloroethene (trans)                                       | UG/L          | 5               | -               |             |             |             |             |             |
| Acetone                                                          | UG/L          | 50              | -               | 24 J        |             |             |             |             |
| Benzene                                                          | UG/L          | 1               | -               | 12          | 6.8         | 83 J        | 33 J        |             |
| Carbon disulfide                                                 | UG/L          | 60              | -               |             |             |             |             |             |
| Chloroethane                                                     | UG/L          | 5               | -               |             |             | 78 J        |             |             |
| Cyclohexane                                                      | UG/L          | -               | -               | 54          | 6.9         | 72 J        |             |             |
| Ethylbenzene                                                     | UG/L          | 5               | -               | 3.3         | 1.5         |             |             |             |
| Isopropylbenzene (Cumene)                                        | UG/L          | 5               | -               | 0.62 J      |             |             |             |             |
| Methylcyclohexane                                                | UG/L          | -               | -               | 40          | 3.3 J       | 38 J        | 30 J        | 0.93 J      |
| Tetrachloroethene                                                | UG/L          | 5               | -               |             |             |             |             |             |
| Toluene                                                          | UG/L          | 5               | -               | 18          | 2.4         | 96 J        | (43 J       |             |
| Trichloroethene                                                  | UG/L          | 5               | -               |             |             | 1,900       | 680         |             |
| Vinyl chloride                                                   | UG/L          | 2               | -               |             |             |             |             |             |
| Xylene (total)                                                   | UG/L          | 5               | -               | 21          | 5.4         | )           |             |             |
| Total Volatile Organic<br>Compounds<br>Semivolatile Organic Comp | UG/L<br>ounds | -               | -               | 172.92      | 26.3        | 21,197      | 10,996      | 0.93        |
| 1,4-Dioxane                                                      | UG/L          | -               | 1               | 1.3         | 0.57        | 1,200       | 290         | 3.3         |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019



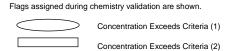
<sup>- -</sup> No criteria. \* - Criteria apllicable for unfiltered metals. UG/L - Micrograms per liter. MG/L - Milligrams per liter. Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis.

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

| Locat                           | ion ID     |                 |                 | SR-003      | SR-004      | SR-005      | SR-006      | SR-101      |
|---------------------------------|------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|
| Sam                             | ple ID     |                 |                 | SR-003      | SR-004      | SR-005      | SR-006      | SR-101      |
| Ma                              | trix       |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth In                        | terval (ft | :)              |                 | -           | -           | -           | -           | -           |
|                                 | ampled     | •               |                 | 04/18/19    | 04/19/19    | 04/19/19    | 04/22/19    | 04/17/19    |
| Parameter                       | Units      | Criteria<br>(1) | Criteria<br>(2) |             |             |             |             |             |
| Metals                          |            |                 |                 |             |             |             |             |             |
| Iron                            | UG/L       | 300             | -               | 86,400      | 48,900      | 140,000     | 16,000      | 4,100 J-    |
| Manganese                       | UG/L       | 300             | -               | 1,100 J+    | 620 J+      | 1,700 J+    | 280 J+      | 61          |
| Dissolved Metals                |            |                 |                 |             |             |             |             |             |
| Iron                            | UG/L       | 300 *           | -               | 3,300 J-    | 190         | 129,000     | 3,500       | 110         |
| Manganese                       | UG/L       | 300 *           | -               | 160         | 48 J+       | 1,500 J+    | 170 J+      | 28 J-       |
| Miscellaneous Paramete          | ers        |                 |                 |             |             |             |             |             |
| Biochemical Oxygen Demand (BOD) | MG/L       | -               | -               |             |             | 9.3         |             |             |
| Chemical Oxygen Demand (COD)    | MG/L       | -               | -               | 43.6        | 50.2        | 80.6        | 39.3        | 29.4        |
| Nitrate-Nitrogen                | MG/L       | 10000           | -               |             |             |             |             |             |
| Sulfate (as SO4)                | MG/L       | 2.50E+05        | -               | 106         | 23.3        | 31.4        | 31.2        | 118         |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.




<sup>- -</sup> No criteria. \* - Criteria apllicable for unfiltered metals. UG/L - Micrograms per liter. MG/L - Milligrams per liter. Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis.

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

| Loca                                | tion ID    |                 |                 | SR-104      | SR-105      | SR-106      | SR-108      |
|-------------------------------------|------------|-----------------|-----------------|-------------|-------------|-------------|-------------|
| Sam                                 | ple ID     |                 |                 | SR-104      | SR-105      | SR-106      | SR-108      |
| Ma                                  | atrix      |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth In                            | terval (ft | :)              |                 | -           | -           | -           | -           |
| Date S                              | ampled     |                 |                 | 04/18/19    | 04/22/19    | 04/17/19    | 04/18/19    |
| Parameter                           | Units      | Criteria<br>(1) | Criteria<br>(2) |             |             |             |             |
| Volatile Organic Compou             | ınds       |                 |                 |             |             |             |             |
| 1,1,1-Trichloroethane               | UG/L       | 5               | -               | 45          | 200,000     | 1,100       | 12          |
| 1,1-Dichloroethane                  | UG/L       | 5               | -               | 230         | 75,000      | 3,300       | 43          |
| 1,1-Dichloroethene                  | UG/L       | 5               | -               | 46          | 3,100       | 59          | 9.5         |
| 1,2-Dichloroethene (cis)            | UG/L       | 5               | -               | 1,800       | 7,600       | 250         | 480 D       |
| 1,2-Dichloroethene (trans)          | UG/L       | 5               | -               | 9.0 J       |             | 8.8 J       | 17          |
| Acetone                             | UG/L       | 50              | -               |             | 19,000 J    |             |             |
| Benzene                             | UG/L       | 1               | -               | 4.9 J       |             |             | 2.8         |
| Carbon disulfide                    | UG/L       | 60              | -               |             |             |             |             |
| Chloroethane                        | UG/L       | 5               | -               |             |             | 91          |             |
| Cyclohexane                         | UG/L       | -               | -               |             |             |             | 6.0         |
| Ethylbenzene                        | UG/L       | 5               | -               |             |             |             | 0.34 J      |
| Isopropylbenzene (Cumene)           | UG/L       | 5               | -               |             |             |             |             |
| Methylcyclohexane                   | UG/L       | -               | -               |             |             |             | 8.4         |
| Tetrachloroethene                   | UG/L       | 5               | -               | 10          |             |             | 0.35 J      |
| Toluene                             | UG/L       | 5               | -               |             |             |             | 1.4         |
| Trichloroethene                     | UG/L       | 5               | -               | 2,700 D     | 92,000      | 58          | 530 D       |
| Vinyl chloride                      | UG/L       | 2               | -               | 33          |             | 100         | 47          |
| Xylene (total)                      | UG/L       | 5               | -               |             |             |             |             |
| Total Volatile Organic<br>Compounds | UG/L       | -               | -               | 4,877.9     | 396,700     | 4,966.8     | 1,157.79    |
| Semivolatile Organic Comp           | ounds      |                 |                 |             |             |             |             |
| 1,4-Dioxane                         | UG/L       | -               | 1               | 12          | 3,100       | 240         | 1.7         |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019



<sup>- -</sup> No criteria. \* - Criteria apllicable for unfiltered metals. UG/L - Micrograms per liter. MG/L - Milligrams per liter. Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis.

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

| Locat                           | tion ID    |                 |                 | SR-104      | SR-105      | SR-106      | SR-108      |
|---------------------------------|------------|-----------------|-----------------|-------------|-------------|-------------|-------------|
| Sam                             | ple ID     |                 |                 | SR-104      | SR-105      | SR-106      | SR-108      |
| Ma                              | ıtrix      |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth In                        | terval (fi | t)              |                 |             |             | -           | -           |
| Date S                          | ampled     |                 |                 | 04/18/19    | 04/22/19    | 04/17/19    | 04/18/19    |
| Parameter                       | Units      | Criteria<br>(1) | Criteria<br>(2) |             |             |             |             |
| Metals                          |            |                 |                 |             |             |             |             |
| Iron                            | UG/L       | 300             | -               | 940         | 14,100      | 2,900 J-    | 28,500      |
| Manganese                       | UG/L       | 300             | -               | 61 J+       | 310 J+      | 49          | 160 J+      |
| Dissolved Metals                |            |                 |                 |             |             |             |             |
| Iron                            | UG/L       | 300 *           | -               | 380 J-      | 11,100      | 690         | 1,300 J-    |
| Manganese                       | UG/L       | 300 *           | -               | 51          | 270 J+      | 41 J-       | 58          |
| Miscellaneous Paramete          | ers        |                 |                 |             |             |             |             |
| Biochemical Oxygen Demand (BOD) | MG/L       | -               | -               |             | 57.8 J      |             |             |
| Chemical Oxygen Demand (COD)    | MG/L       | -               | -               | 11.3        | 127         | 119         | 21.2        |
| Nitrate-Nitrogen                | MG/L       | 10000           | -               |             | _           | 0.79        |             |
| Sulfate (as SO4)                | MG/L       | 2.50E+05        | -               | 36.4        | 11.8        | 142         | 11.8        |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



<sup>- -</sup> No criteria. \* - Criteria apllicable for unfiltered metals. UG/L - Micrograms per liter. MG/L - Milligrams per liter. Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis.

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

TABLE 3
STATISTICAL SUMMARY OF DETECTED COMPOUNDS IN APRIL 2019 GROUNDWATER SAMPLES
LAPP INSULATOR SITE

| Parameter                  | Units | Criteria* | No. of  | No. of     | Rang  | e of Detect | ions     | No.    | Location of |
|----------------------------|-------|-----------|---------|------------|-------|-------------|----------|--------|-------------|
|                            |       |           | Samples | Detections | Min   | Max         | Avg      | Exceed | Max Value   |
| Volatile Organic Compounds |       |           |         |            |       |             |          |        |             |
| 1,1,1-Trichloroethane      | UG/L  | 5         | 13      | 9          | 12.00 | 2.00E+05    | 2.32E+04 | 9      | SR-105      |
| 1,1-Dichloroethane         | UG/L  | 5         | 13      | 10         | 43.00 | 7.50E+04    | 1.07E+04 | 10     | SR-105      |
| 1,1-Dichloroethene         | UG/L  | 5         | 13      | 10         | 0.620 | 3,100       | 431.9    | 9      | SR-105      |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         | 13      | 9          | 27.00 | 7,600       | 1,421    | 9      | SR-105      |
| 1,2-Dichloroethene (trans) | UG/L  | 5         | 13      | 5          | 8.80  | 29.00       | 17.96    | 5      | SR-001      |
| Acetone                    | UG/L  | 50        | 13      | 2          | 24.00 | 1.90E+04    | 9,512    | 1      | SR-105      |
| Benzene                    | UG/L  | 1         | 13      | 7          | 0.850 | 83.00       | 20.48    | 6      | SR-005      |
| Carbon disulfide           | UG/L  | 60        | 13      | 1          | 0.480 | 0.480       | 0.480    | 0      | SR-002      |
| Chloroethane               | UG/L  | 5         | 13      | 4          | 0.570 | 91.00       | 44.37    | 3      | SR-106      |
| Cyclohexane                | UG/L  | -         | 13      | 6          | 4.80  | 72.00       | 27.28    | 0      | SR-005      |
| Ethylbenzene               | UG/L  | 5         | 13      | 4          | 0.340 | 3.30        | 1.39     | 0      | SR-003      |
| Isopropylbenzene (Cumene)  | UG/L  | 5         | 13      | 1          | 0.620 | 0.620       | 0.620    | 0      | SR-003      |
| Methylcyclohexane          | UG/L  | -         | 13      | 9          | 0.680 | 40.00       | 16.83    | 0      | SR-003      |
| Tetrachloroethene          | UG/L  | 5         | 13      | 2          | 0.350 | 10.00       | 5.18     | 1      | SR-104      |
| Toluene                    | UG/L  | 5         | 13      | 7          | 1.40  | 96.00       | 24.36    | 4      | SR-005      |
| Trichloroethene            | UG/L  | 5         | 13      | 10         | 6.40  | 9.20E+04    | 1.02E+04 | 10     | SR-105      |
| Vinyl chloride             | UG/L  | 2         | 13      | 6          | 2.10  | 100.0       | 31.47    | 6      | SR-106      |
| Xylene (total)             | UG/L  | 5         | 13      | 4          | 2.40  | 21.00       | 10.45    | 3      | SR-003      |

<sup>\*</sup> Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA or Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019.

Concentration Exceeds Criteria

TABLE 3
STATISTICAL SUMMARY OF DETECTED COMPOUNDS IN APRIL 2019 GROUNDWATER SAMPLES
LAPP INSULATOR SITE

| Parameter                       | Units | Criteria* | No. of  | No. of     | Rang  | e of Detecti | ions     | No.    | Location of<br>Max Value |
|---------------------------------|-------|-----------|---------|------------|-------|--------------|----------|--------|--------------------------|
|                                 | 00    |           | Samples | Detections | Min   | Max          | Avg      | Exceed |                          |
| Semivolatile Organic Compounds  |       |           |         |            |       |              |          |        |                          |
| 1,4-Dioxane                     | UG/L  | 1         | 13      | 13         | 0.570 | 3,100        | 384.5    | 11     | SR-105                   |
| Metals                          |       |           |         |            |       |              |          |        |                          |
| Iron                            | UG/L  | 300       | 13      | 13         | 940.0 | 1.40E+05     | 3.27E+04 | 13     | SR-005                   |
| Manganese                       | UG/L  | 300       | 13      | 13         | 39.00 | 1,700        | 440.8    | 6      | SR-005                   |
| Dissolved Metals                |       |           |         |            |       |              |          |        |                          |
| Iron                            | UG/L  | 300 *     | 13      | 13         | 69.00 | 1.29E+05     | 1.32E+04 | 10     | SR-005                   |
| Manganese                       | UG/L  | 300 *     | 13      | 13         | 13.00 | 1,500        | 276.2    | 3      | SR-005                   |
| Miscellaneous Parameters        |       |           |         |            |       |              |          |        |                          |
| Biochemical Oxygen Demand (BOD) | MG/L  | -         | 13      | 2          | 9.30  | 57.80        | 33.55    | 0      | SR-105                   |
| Chemical Oxygen Demand (COD)    | MG/L  | -         | 13      | 13         | 7.60  | 127.0        | 48.22    | 0      | SR-105                   |
| Nitrate-Nitrogen                | MG/L  | 10000     | 13      | 1          | 0.790 | 0.790        | 0.790    | 0      | SR-106                   |
| Sulfate (as SO4)                | MG/L  | 2.50E+05  | 13      | 13         | 2.40  | 142.0        | 43.81    | 0      | SR-106                   |

Concentration Exceeds Criteria

<sup>\*</sup> Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA or Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019.

| Loca                                 | tion ID     |                 |                 | BRW-01      | BRW-01      | BRW-01      | BRW-01                | BRW-02      |
|--------------------------------------|-------------|-----------------|-----------------|-------------|-------------|-------------|-----------------------|-------------|
| Sam                                  | ple ID      |                 |                 | BRW-1       | BRW-01      | BRW-01      | FD-20190422           | BRW-02      |
|                                      | atrix       |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater           | Groundwater |
|                                      | nterval (ft | :)              |                 | -           | -           | -           | -                     | -           |
|                                      | Sampled     |                 |                 | 12/02/14    | 09/27/18    | 04/22/19    | 04/22/19              | 04/19/19    |
| Parameter                            | Units       | Criteria<br>(1) | Criteria<br>(2) |             |             |             | Field Duplicate (1-1) |             |
| Volatile Organic Compo               | unds        |                 |                 |             |             |             |                       |             |
| 1,1,1-Trichloroethane                | UG/L        | 5               | -               | 120,000 D   | 1,700       | 100         | 99                    | 4,000       |
| 1,1,2-Trichloroethane                | UG/L        | 1               | -               |             |             |             |                       |             |
| 1,1-Dichloroethane                   | UG/L        | 5               | -               | 43,000 D    | 4,000       | 210         | 200                   | 3,700       |
| 1,1-Dichloroethene                   | UG/L        | 5               | -               | 8,600       | 840         | 54          | 51                    | 170         |
| 1,2-Dichloroethane                   | UG/L        | 0.6             | -               | 94 J        |             |             |                       |             |
| 1,2-Dichloroethene (cis)             | UG/L        | 5               | -               | 2,700       | 1,100       | 52          | 50                    |             |
| 1,2-Dichloroethene (trans)           | UG/L        | 5               | -               |             |             |             |                       |             |
| 1,4-Dioxane                          | UG/L        | -               | 1               | NA          | NA          | NA          | NA                    | NA          |
| 2-Hexanone                           | UG/L        | 50              | -               |             |             |             |                       |             |
| Acetone                              | UG/L        | 50              | -               |             |             |             |                       |             |
| Benzene                              | UG/L        | 1               | -               |             |             | 0.85 J      | 0.78 J                |             |
| Carbon disulfide                     | UG/L        | 60              | -               |             |             |             |                       |             |
| Chloroethane                         | UG/L        | 5               | -               | 40 J        |             | 0.51 J      | 0.57 J                | 7.9 J       |
| Chloroform                           | UG/L        | 7               | -               |             |             |             |                       |             |
| Chloromethane                        | UG/L        | 5               | -               |             |             |             |                       |             |
| Cyclohexane                          | UG/L        | -               | -               |             |             | 4.8 J       | 4.5 J                 | 20 J        |
| Ethylbenzene                         | UG/L        | 5               | -               |             |             | 0.39 J      | 0.41 J                |             |
| Isopropylbenzene (Cumene)            | UG/L        | 5               | -               |             |             |             |                       |             |
| Methyl ethyl ketone (2-<br>Butanone) | UG/L        | 50              | -               |             |             |             |                       |             |
| Methylcyclohexane                    | UG/L        | -               | -               |             |             | 8.2         | 7.8                   | 22 J        |
| Methylene chloride                   | UG/L        | 5               | -               |             |             |             |                       |             |
| Tetrachloroethene                    | UG/L        | 5               | -               |             |             |             |                       |             |
| Toluene                              | UG/L        | 5               | -               |             |             | 1.7         | 1.7                   | 8.0 J       |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria (1)

 $\label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

Concentration Exceeds Criteria (2)

 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.} \quad$ 

| Loca                                | tion ID    |                 |                 | BRW-01      | BRW-01      | BRW-01      | BRW-01                | BRW-02      |
|-------------------------------------|------------|-----------------|-----------------|-------------|-------------|-------------|-----------------------|-------------|
| Sam                                 | ple ID     |                 |                 | BRW-1       | BRW-01      | BRW-01      | FD-20190422           | BRW-02      |
| Ma                                  | atrix      |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater           | Groundwater |
| Depth In                            | terval (ft | :)              |                 | -           | -           | -           | -                     | -           |
| Date S                              | ampled     |                 |                 | 12/02/14    | 09/27/18    | 04/22/19    | 04/22/19              | 04/19/19    |
| Parameter                           | Units      | Criteria<br>(1) | Criteria<br>(2) |             |             |             | Field Duplicate (1-1) |             |
| Volatile Organic Compou             | ınds       |                 |                 |             |             |             |                       |             |
| Trichloroethene                     | UG/L       | 5               | -               | 14,000 D    | 350         | 76          | 75                    | 14 J        |
| Vinyl chloride                      | UG/L       | 2               | -               |             |             | 2.1         | 2.0                   |             |
| Xylene (total)                      | UG/L       | 5               | -               |             |             | 2.4 J       | 2.4 J                 | 13 J        |
| Total Volatile Organic<br>Compounds | UG/L       | -               | -               | 188,434     | 7,990       | 512.95      | 495.16                | 7,954.9     |
| Semivolatile Organic Compounds      |            |                 |                 |             |             |             |                       |             |
| 1,4-Dioxane                         | UG/L       | -               | 1               | NA          | NA          | 110         | 120                   | 22          |
| Metals                              |            |                 |                 |             |             |             |                       |             |
| Iron                                | UG/L       | 300             | -               | NA          | NA          | 13,500      | 14,500                | 42,000      |
| Manganese                           | UG/L       | 300             | -               | NA          | NA          | 660 J+      | 660 J+                | 550 J+      |
| Dissolved Metals                    |            |                 |                 |             |             |             |                       |             |
| Iron                                | UG/L       | 300 *           | -               | NA          | NA          | 6,500       | 6,100                 | 14,500      |
| Manganese                           | UG/L       | 300 *           | -               | NA          | NA          | 740 J+      | 720 J+                | 440 J+      |
| Miscellaneous Paramet               | ers        |                 |                 |             |             |             |                       |             |
| Biochemical Oxygen Demand (BOD)     | MG/L       | -               | -               | NA          | NA          |             |                       |             |
| Chemical Oxygen Demand (COD)        | MG/L       | -               | -               | NA          | NA          | 24.8        | 31.1                  | 35.4        |
| Nitrate-Nitrogen                    | MG/L       | 10000           | -               | NA          | NA          |             |                       |             |
| Sulfate (as SO4)                    | MG/L       | 2.50E+05        | -               | NA          | NA          | 32.3        | 31.8                  | 5.2         |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^*$- Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.} \quad$ 

Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis. NA - Not analyzed.

| Loca                                 | tion ID    |                 |                 | SR-001      | SR-001      | SR-001      | SR-002      | SR-002      |
|--------------------------------------|------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|
| Sam                                  | ple ID     |                 |                 | SR-1        | SR-001      | SR-001      | SR-2        | SR-002      |
|                                      | atrix      |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
|                                      | terval (ft | :)              |                 | -           | -           | -           | -           | -           |
|                                      | ampled     |                 |                 | 12/02/14    | 09/27/18    | 04/18/19    | 12/02/14    | 09/27/18    |
| Parameter                            | Units      | Criteria<br>(1) | Criteria<br>(2) |             |             |             |             |             |
| Volatile Organic Compou              | ınds       |                 |                 |             |             |             |             |             |
| 1,1,1-Trichloroethane                | UG/L       | 5               | -               |             |             |             | 19          | )           |
| 1,1,2-Trichloroethane                | UG/L       | 1               | -               |             |             |             |             |             |
| 1,1-Dichloroethane                   | UG/L       | 5               | -               | 1.9         |             | 61          | 140 D       | 46          |
| 1,1-Dichloroethene                   | UG/L       | 5               | -               |             |             | 0.62 J      | 25          | 2.9 J       |
| 1,2-Dichloroethane                   | UG/L       | 0.6             | -               |             |             |             |             |             |
| 1,2-Dichloroethene (cis)             | UG/L       | 5               | -               | 2.8         |             | 27          | 600 D       | 210         |
| 1,2-Dichloroethene (trans)           | UG/L       | 5               | -               |             |             | 29          | 38          | 12          |
| 1,4-Dioxane                          | UG/L       | -               | 1               | NA          | NA          | NA          | NA          | NA          |
| 2-Hexanone                           | UG/L       | 50              | -               |             |             |             |             |             |
| Acetone                              | UG/L       | 50              | -               | 9.8 J       | 28          |             |             | 17 J        |
| Benzene                              | UG/L       | 1               | -               | 69          | 37          |             | 150 D       | 170         |
| Carbon disulfide                     | UG/L       | 60              | -               |             |             |             |             |             |
| Chloroethane                         | UG/L       | 5               | -               |             |             |             |             |             |
| Chloroform                           | UG/L       | 7               | -               |             |             |             |             |             |
| Chloromethane                        | UG/L       | 5               | -               |             |             |             |             |             |
| Cyclohexane                          | UG/L       | -               | -               | 74          | 45          |             | 34          | 40          |
| Ethylbenzene                         | UG/L       | 5               | -               |             | 8.8         |             | 14          | 19          |
| Isopropylbenzene (Cumene)            | UG/L       | 5               | -               | 3.1         |             |             | 0.86 J      |             |
| Methyl ethyl ketone (2-<br>Butanone) | UG/L       | 50              | -               |             | 3.7 J       |             |             |             |
| Methylcyclohexane                    | UG/L       | -               | -               | 14          | 12          | 0.68 J      | 5.6         | 7.2         |
| Methylene chloride                   | UG/L       | 5               | -               |             |             |             |             |             |
| Tetrachloroethene                    | UG/L       | 5               | -               |             |             |             | 0.60 J      |             |
| Toluene                              | UG/L       | 5               | -               | 170 D       | 62          | )           | 200 D       | 81          |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

 $\label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.}$ 

| Loca                                | ion ID     |                 |                 | SR-001        | SR-001      | SR-001      | SR-002        | SR-002      |
|-------------------------------------|------------|-----------------|-----------------|---------------|-------------|-------------|---------------|-------------|
| Sam                                 | ple ID     |                 |                 | SR-1          | SR-001      | SR-001      | SR-2          | SR-002      |
| Ma                                  | trix       |                 |                 | Groundwater   | Groundwater | Groundwater | Groundwater   | Groundwater |
| Depth In                            | terval (ft | :)              |                 | -<br>12/02/14 | -           | -           | -<br>12/02/14 | -           |
| Date S                              | ampled     |                 |                 |               | 09/27/18    | 04/18/19    |               | 09/27/18    |
| Parameter Units                     |            | Criteria<br>(1) | Criteria<br>(2) |               |             |             |               |             |
| Volatile Organic Compounds          |            |                 |                 |               |             |             |               |             |
| Trichloroethene                     | UG/L       | 5               | -               | 24            |             | 6.4         | 570 D         | 8.5         |
| Vinyl chloride                      | UG/L       | 2               | -               |               |             | 3.9         | 28            | 160         |
| Xylene (total)                      | UG/L       | 5               | -               | 180 D         | 55          |             | 84            | 28          |
| Total Volatile Organic<br>Compounds | UG/L       | -               | -               | 571.6         | 251.5       | 128.6       | 1,909.06      | 801.6       |
| Semivolatile Organic Comp           | ounds      |                 |                 |               |             |             |               |             |
| 1,4-Dioxane                         | UG/L       | -               | 1               | NA            | NA          | 7.5         | NA            | NA          |
| Metals                              |            |                 |                 |               |             |             |               |             |
| Iron                                | UG/L       | 300             | -               | NA            | NA          | 9,800       | NA            | NA          |
| Manganese                           | UG/L       | 300             | -               | NA            | NA          | 39 J+       | NA            | NA          |
| Dissolved Metals                    |            |                 |                 |               |             |             |               |             |
| Iron                                | UG/L       | 300 *           | -               | NA            | NA          | 69 J-       | NA            | NA          |
| Manganese                           | UG/L       | 300 *           | -               | NA            | NA          | 13          | NA            | NA          |
| Miscellaneous Paramete              | ers        |                 |                 |               |             |             |               |             |
| Biochemical Oxygen Demand (BOD)     | MG/L       | -               | -               | NA            | NA          |             | NA            | NA          |
| Chemical Oxygen Demand (COD)        | MG/L       | -               | -               | NA            | NA          | 31.1        | NA            | NA          |
| Nitrate-Nitrogen                    | MG/L       | 10000           | -               | NA            | NA          |             | NA            | NA          |
| Sulfate (as SO4)                    | MG/L       | 2.50E+05        | -               | NA            | NA          | 2.4 J       | NA            | NA          |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.}$ 

 $\label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

| Loca                                 | tion ID     |                 |                 | SR-002      | SR-003                                                                        | SR-003      | SR-003                                                                    | SR-004      |
|--------------------------------------|-------------|-----------------|-----------------|-------------|-------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|-------------|
| Sam                                  | ple ID      |                 |                 | SR-002      | SR-3                                                                          | SR-003      | SR-003                                                                    | SR-4        |
| Ma                                   | atrix       |                 |                 | Groundwater | Groundwater                                                                   | Groundwater | Groundwater                                                               | Groundwater |
|                                      | nterval (ft | :)              |                 | -           | -                                                                             | -           | -                                                                         | -           |
| Date S                               | Sampled     |                 |                 | 04/18/19    | 12/02/14                                                                      | 09/27/18    | 04/18/19                                                                  | 12/02/14    |
| Parameter                            | Units       | Criteria<br>(1) | Criteria<br>(2) |             |                                                                               |             |                                                                           |             |
| Volatile Organic Compou              | unds        |                 |                 |             |                                                                               |             |                                                                           |             |
| 1,1,1-Trichloroethane                | UG/L        | 5               | -               | 86          | 300 D                                                                         |             |                                                                           |             |
| 1,1,2-Trichloroethane                | UG/L        | 1               | -               |             | 0.90 J                                                                        |             |                                                                           |             |
| 1,1-Dichloroethane                   | UG/L        | 5               | -               | 97          | 250 D                                                                         | 260         |                                                                           |             |
| 1,1-Dichloroethene                   | UG/L        | 5               | -               | 20          | $\bigcirc$ 70                                                                 | 57 J        |                                                                           |             |
| 1,2-Dichloroethane                   | UG/L        | 0.6             | -               |             | 0.50 J                                                                        |             |                                                                           |             |
| 1,2-Dichloroethene (cis)             | UG/L        | 5               | -               | 1,800 D     | 3,600 D                                                                       | 2,400       |                                                                           |             |
| 1,2-Dichloroethene (trans)           | UG/L        | 5               | -               | 26          | $\boxed{17}$                                                                  |             |                                                                           |             |
| 1,4-Dioxane                          | UG/L        | -               | 1               | NA          | NA                                                                            | 13          | NA                                                                        | NA          |
| 2-Hexanone                           | UG/L        | 50              | -               |             |                                                                               |             |                                                                           |             |
| Acetone                              | UG/L        | 50              | -               |             |                                                                               |             | 24 J                                                                      |             |
| Benzene                              | UG/L        | 1               | -               |             |                                                                               |             | 12                                                                        | 140 D       |
| Carbon disulfide                     | UG/L        | 60              | -               | 0.48 J      |                                                                               |             |                                                                           |             |
| Chloroethane                         | UG/L        | 5               | -               |             | 0.54 J                                                                        |             |                                                                           |             |
| Chloroform                           | UG/L        | 7               | -               |             | 0.69 J                                                                        |             |                                                                           |             |
| Chloromethane                        | UG/L        | 5               | -               |             |                                                                               |             |                                                                           |             |
| Cyclohexane                          | UG/L        | -               | -               |             |                                                                               |             | 54                                                                        | 39          |
| Ethylbenzene                         | UG/L        | 5               | -               |             |                                                                               |             | 3.3                                                                       | 8.9         |
| Isopropylbenzene (Cumene)            | UG/L        | 5               | -               |             |                                                                               |             | 0.62 J                                                                    |             |
| Methyl ethyl ketone (2-<br>Butanone) | UG/L        | 50              | -               |             |                                                                               |             |                                                                           |             |
| Methylcyclohexane                    | UG/L        | -               | -               |             | 0.62 J                                                                        |             | 40                                                                        | 5.8         |
| Methylene chloride                   | UG/L        | 5               | -               |             |                                                                               | 48 J        |                                                                           |             |
| Tetrachloroethene                    | UG/L        | 5               | -               |             | $\begin{array}{ c c c c c }\hline & 34 & \\ \hline & & \\ \hline \end{array}$ |             |                                                                           |             |
| Toluene                              | UG/L        | 5               | -               |             |                                                                               |             | $\begin{array}{ c c c }\hline & 18 & \\ \hline & & \\ \hline \end{array}$ | 160 D       |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis. NA - Not analyzed.

 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.} \quad$ 

| Locat                               | Location ID Sample ID |          |                 | SR-002      | SR-003      | SR-003           | SR-003        | SR-004      |
|-------------------------------------|-----------------------|----------|-----------------|-------------|-------------|------------------|---------------|-------------|
| Sam                                 | ple ID                |          |                 | SR-002      | SR-3        | SR-003           | SR-003        | SR-4        |
| Ma                                  | ıtrix                 |          |                 | Groundwater | Groundwater | Groundwater<br>- | Groundwater   | Groundwater |
| Depth In                            | terval (ft            | )        |                 | -           | -           |                  | -<br>04/18/19 | -           |
| Date S                              | ampled                |          |                 | 04/18/19    | 12/02/14    | 09/27/18         |               | 12/02/14    |
| Parameter Units Criteria (1)        |                       |          | Criteria<br>(2) |             |             |                  |               |             |
| Volatile Organic Compounds          |                       |          |                 |             |             |                  |               |             |
| Trichloroethene                     | UG/L                  | 5        | -               | 4,300 D     | 6,000 D     | 2,900            |               | 0.69 J      |
| Vinyl chloride                      | UG/L                  | 2        | -               | 2.8         | 28          |                  |               |             |
| Xylene (total)                      | UG/L                  | 5        | -               |             |             |                  | 21            | 130         |
| Total Volatile Organic<br>Compounds | UG/L                  | -        | -               | 6,332.28    | 10,302.25   | 5,678            | 172.92        | 484.39      |
| Semivolatile Organic Comp           | ounds                 |          |                 |             |             |                  |               |             |
| 1,4-Dioxane                         | UG/L                  | -        | 1               | 0.60        | NA          | NA               | 1.3           | NA          |
| Metals                              |                       |          |                 |             |             |                  |               |             |
| Iron                                | UG/L                  | 300      | -               | 17,200      | NA          | NA               | 86,400        | NA          |
| Manganese                           | UG/L                  | 300      | -               | 140 J+      | NA          | NA               | 1,100 J+      | NA          |
| Dissolved Metals                    |                       |          |                 |             |             |                  |               |             |
| Iron                                | UG/L                  | 300 *    | -               | 990 J-      | NA          | NA               | 3,300 J-      | NA          |
| Manganese                           | UG/L                  | 300 *    | -               | 71          | NA          | NA               | 160           | NA          |
| Miscellaneous Paramete              | ers                   |          |                 |             |             |                  |               |             |
| Biochemical Oxygen Demand (BOD)     | MG/L                  | -        | -               |             | NA          | NA               |               | NA          |
| Chemical Oxygen Demand (COD)        | MG/L                  | -        | -               | 7.6 J       | NA          | NA               | 43.6          | NA          |
| Nitrate-Nitrogen                    | MG/L                  | 10000    | -               |             | NA          | NA               |               | NA          |
| Sulfate (as SO4)                    | MG/L                  | 2.50E+05 | -               | 17.7        | NA          | NA               | 106           | NA          |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.}$ 

Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis. NA - Not analyzed.

| Locat                                | tion ID |                 |                 | SR-004      | SR-005      | SR-005      | SR-005      | SR-006      |
|--------------------------------------|---------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|
|                                      | ple ID  |                 |                 | SR-004      | SR-5        | SR-005      | SR-005      | SR-6        |
|                                      | ıtrix   |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth In                             |         | :)              |                 | -           | -           | -           | -           | -           |
| Date S                               | ampled  |                 |                 | 04/19/19    | 12/02/14    | 09/27/18    | 04/19/19    | 12/02/14    |
| Parameter                            | Units   | Criteria<br>(1) | Criteria<br>(2) |             |             |             |             |             |
| Volatile Organic Compou              | ınds    |                 |                 |             |             |             |             |             |
| 1,1,1-Trichloroethane                | UG/L    | 5               | -               |             | 7,000 D     | 13,000      | 1,200       | 77,000 D    |
| 1,1,2-Trichloroethane                | UG/L    | 1               | -               |             | 5.2         |             |             | 10          |
| 1,1-Dichloroethane                   | UG/L    | 5               | -               |             | 7,000 D     | 30,000      | 17,000      | 34,000 D    |
| 1,1-Dichloroethene                   | UG/L    | 5               | -               |             | 340 J       | 1,400       | 500         | 15,000 J    |
| 1,2-Dichloroethane                   | UG/L    | 0.6             | -               |             | 18          |             |             | 35          |
| 1,2-Dichloroethene (cis)             | UG/L    | 5               | -               |             | 26          | 2,200       | 230         | 4,200 D     |
| 1,2-Dichloroethene (trans)           | UG/L    | 5               | -               |             |             |             |             |             |
| 1,4-Dioxane                          | UG/L    | -               | 1               | NA          | NA          | NA          | NA          | NA          |
| 2-Hexanone                           | UG/L    | 50              | -               |             | 2.9 J       |             |             |             |
| Acetone                              | UG/L    | 50              | -               |             | 130         |             |             | 100         |
| Benzene                              | UG/L    | 1               | -               | 6.8         | 300 D       |             | 83 J        | 86          |
| Carbon disulfide                     | UG/L    | 60              | -               |             | 0.66 J      |             |             | 8.6 J       |
| Chloroethane                         | UG/L    | 5               | -               |             | 10          |             | 78 J        | 42          |
| Chloroform                           | UG/L    | 7               | -               |             | 0.82 J      |             |             | 2.9         |
| Chloromethane                        | UG/L    | 5               | -               | 0.0         | 44          |             | 70.1        |             |
| Cyclohexane                          | UG/L    |                 | -               | 6.9         | 14          |             | 72 J        |             |
| Ethylbenzene                         | UG/L    | 5               | -               | 1.5         | 12          |             |             | 19          |
| Isopropylbenzene (Cumene)            | UG/L    | 5               | -               |             |             |             |             | 1.7         |
| Methyl ethyl ketone (2-<br>Butanone) | UG/L    | 50              | -               |             | 15          |             | 20.1        |             |
| Methylcyclohexane                    | UG/L    |                 | -               | 3.3 J       | 3.0         |             | 38 J        | 12          |
| Methylene chloride                   | UG/L    | 5               | -               |             | 7.4         |             |             | 36          |
| Tetrachloroethene                    | UG/L    | 5               | -               |             |             |             |             | 3.2         |
| Toluene                              | UG/L    | 5               | -               | 2.4         | 250 D       |             | 96 J        | 140 J       |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

<sup>- -</sup> No criteria. \* - Criteria apllicable for unfiltered metals. UG/L - Micrograms per liter. MG/L - Milligrams per liter. Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis. NA - Not analyzed.

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

| Loca                                | Location ID Sample ID |          |                 |                  | SR-005        | SR-005        | SR-005      | SR-006      |
|-------------------------------------|-----------------------|----------|-----------------|------------------|---------------|---------------|-------------|-------------|
| Sam                                 | ple ID                |          |                 | SR-004           | SR-5          | SR-005        | SR-005      | SR-6        |
| Ma                                  | atrix                 |          |                 | Groundwater<br>- | Groundwater - | Groundwater   | Groundwater | Groundwater |
| Depth In                            | terval (ft            | :)       |                 |                  |               | -<br>09/27/18 | -           | -           |
| Date S                              | ampled                |          |                 | 04/19/19         | 12/02/14      |               | 04/19/19    | 12/02/14    |
|                                     |                       |          | Criteria<br>(2) |                  |               |               |             |             |
| Volatile Organic Compounds          |                       |          |                 |                  |               |               |             |             |
| Trichloroethene                     | UG/L                  | 5        | -               |                  | 1,300 D       | 3,200         | 1,900       | 9,500 D     |
| Vinyl chloride                      | UG/L                  | 2        | -               |                  | 5.4           |               |             | 150 J       |
| Xylene (total)                      | UG/L                  | 5        | -               | 5.4              | 68            |               |             | 120         |
| Total Volatile Organic<br>Compounds | UG/L                  | -        | -               | 26.3             | 16,508.38     | 49,800        | 21,197      | 140,466.4   |
| Semivolatile Organic Comp           | ounds                 |          |                 |                  |               |               |             |             |
| 1,4-Dioxane                         | UG/L                  | -        | 1               | 0.57             | NA            | NA            | 1,200       | NA          |
| Metals                              | •                     |          |                 |                  |               |               |             |             |
| Iron                                | UG/L                  | 300      | -               | 48,900           | NA            | NA            | 140,000     | NA          |
| Manganese                           | UG/L                  | 300      | -               | 620 J+           | NA            | NA            | 1,700 J+    | NA          |
| Dissolved Metals                    |                       |          |                 |                  |               |               |             |             |
| Iron                                | UG/L                  | 300 *    | -               | 190              | NA            | NA            | 129,000     | NA          |
| Manganese                           | UG/L                  | 300 *    | -               | 48 J+            | NA            | NA            | 1,500 J+    | NA          |
| Miscellaneous Paramet               | ers                   |          |                 |                  |               |               |             |             |
| Biochemical Oxygen Demand (BOD)     | MG/L                  | -        | -               |                  | NA            | NA            | 9.3         | NA          |
| Chemical Oxygen Demand (COD)        | MG/L                  | -        | -               | 50.2             | NA            | NA            | 80.6        | NA          |
| Nitrate-Nitrogen                    | MG/L                  | 10000    | -               |                  | NA            | NA            |             | NA          |
| Sulfate (as SO4)                    | MG/L                  | 2.50E+05 | -               | 23.3             | NA            | NA            | 31.4        | NA          |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.}$ 

 $\label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

| Locat                                | ion ID |                 |                 | SR-006      | SR-006          | SR-101                               | SR-101      | SR-101      |
|--------------------------------------|--------|-----------------|-----------------|-------------|-----------------|--------------------------------------|-------------|-------------|
| Sam                                  | ple ID |                 |                 | SR-006      | SR-006          | SR-101                               | SR-101      | SR-101      |
|                                      | trix   |                 |                 | Groundwater | Groundwater     | Groundwater                          | Groundwater | Groundwater |
| Depth In                             |        | :)              |                 | -           | -               | -                                    | -           | -           |
| Date S                               | ampled |                 |                 | 09/27/18    | 04/22/19        | 12/02/14                             | 09/27/18    | 04/17/19    |
| Parameter                            | Units  | Criteria<br>(1) | Criteria<br>(2) |             |                 |                                      |             |             |
| Volatile Organic Compou              | nds    |                 |                 |             |                 |                                      |             |             |
| 1,1,1-Trichloroethane                | UG/L   | 5               | -               | 2,900       | 2,200           |                                      |             |             |
| 1,1,2-Trichloroethane                | UG/L   | 1               | -               |             |                 |                                      |             |             |
| 1,1-Dichloroethane                   | UG/L   | 5               | -               | 31,000      | 7,100           |                                      |             |             |
| 1,1-Dichloroethene                   | UG/L   | 5               | -               | 850         | 360             |                                      |             |             |
| 1,2-Dichloroethane                   | UG/L   | 0.6             | -               |             |                 |                                      |             |             |
| 1,2-Dichloroethene (cis)             | UG/L   | 5               | -               |             | 550             |                                      |             |             |
| 1,2-Dichloroethene (trans)           | UG/L   | 5               | -               |             |                 |                                      |             |             |
| 1,4-Dioxane                          | UG/L   | -               | 1               | NA          | NA              | NA                                   | 2.8         | NA          |
| 2-Hexanone                           | UG/L   | 50              | -               |             |                 |                                      |             |             |
| Acetone                              | UG/L   | 50              | -               |             |                 |                                      | 3.8 J       |             |
| Benzene                              | UG/L   | 1               | -               |             | 33 J            | $ \begin{array}{c} 7.2 \end{array} $ | 0.59 J      |             |
| Carbon disulfide                     | UG/L   | 60              | -               |             |                 |                                      |             |             |
| Chloroethane                         | UG/L   | 5               | -               | 160 J       |                 |                                      |             |             |
| Chloroform                           | UG/L   | 7               | -               |             |                 |                                      |             |             |
| Chloromethane                        | UG/L   | 5               | -               |             |                 |                                      |             |             |
| Cyclohexane                          | UG/L   | -               | -               |             |                 |                                      |             |             |
| Ethylbenzene                         | UG/L   | 5               | -               |             |                 |                                      |             |             |
| Isopropylbenzene (Cumene)            | UG/L   | 5               | -               |             |                 |                                      |             |             |
| Methyl ethyl ketone (2-<br>Butanone) | UG/L   | 50              | -               |             | 06.1            |                                      |             | 0.62.1      |
| Methylcyclohexane                    | UG/L   | -               | -               |             | 30 J            |                                      |             | 0.93 J      |
| Methylene chloride                   | UG/L   | 5               | -               |             |                 |                                      |             |             |
| Tetrachloroethene                    | UG/L   | 5               | -               |             | 15:             |                                      |             |             |
| Toluene                              | UG/L   | 5               | -               |             | $\bigcirc$ 43 J |                                      |             |             |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

| r lags assigned during t | chemistry validation are shown.    |
|--------------------------|------------------------------------|
|                          | Concentration Exceeds Criteria (1) |
|                          | Concentration Exceeds Criteria (2) |

 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^*$- Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.} \quad$ 

 $<sup>\</sup>label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

| Locat                               | ion ID     |          |                 | SR-006      | SR-006      | SR-101           | SR-101        | SR-101      |
|-------------------------------------|------------|----------|-----------------|-------------|-------------|------------------|---------------|-------------|
| Sam                                 | ple ID     |          |                 | SR-006      | SR-006      | SR-101           | SR-101        | SR-101      |
| Ma                                  | trix       |          |                 | Groundwater | Groundwater | Groundwater<br>- | Groundwater   | Groundwater |
| Depth In                            | terval (ft | )        |                 | -           | -           |                  | -<br>09/27/18 | -           |
| Date S                              | ampled     |          |                 | 09/27/18    | 04/22/19    | 12/02/14         |               | 04/17/19    |
| Parameter Units Criteria C          |            |          | Criteria<br>(2) |             |             |                  |               |             |
| Volatile Organic Compounds          |            |          |                 |             |             |                  |               |             |
| Trichloroethene                     | UG/L       | 5        | -               | 3,600       | 680         |                  |               |             |
| Vinyl chloride                      | UG/L       | 2        | -               |             |             |                  |               |             |
| Xylene (total)                      | UG/L       | 5        | -               |             |             |                  |               |             |
| Total Volatile Organic<br>Compounds | UG/L       | -        | -               | 38,510      | 10,996      | 7.2              | 7.19          | 0.93        |
| Semivolatile Organic Compounds      |            |          |                 |             |             |                  |               |             |
| 1,4-Dioxane                         | UG/L       | -        | 1               | NA          | 290         | NA               | NA            | 3.3         |
| Metals                              |            |          |                 |             |             |                  |               |             |
| Iron                                | UG/L       | 300      | -               | NA          | 16,000      | NA               | NA            | 4,100 J-    |
| Manganese                           | UG/L       | 300      | -               | NA          | 280 J+      | NA               | NA            | 61          |
| Dissolved Metals                    |            |          |                 |             |             |                  |               |             |
| Iron                                | UG/L       | 300 *    | -               | NA          | 3,500       | NA               | NA            | 110         |
| Manganese                           | UG/L       | 300 *    | -               | NA          | 170 J+      | NA               | NA            | 28 J-       |
| Miscellaneous Paramete              | ers        |          |                 |             |             |                  |               |             |
| Biochemical Oxygen Demand (BOD)     | MG/L       | -        | -               | NA          |             | NA               | NA            |             |
| Chemical Oxygen Demand (COD)        | MG/L       | -        | -               | NA          | 39.3        | NA               | NA            | 29.4        |
| Nitrate-Nitrogen                    | MG/L       | 10000    | -               | NA          |             | NA               | NA            |             |
| Sulfate (as SO4)                    | MG/L       | 2.50E+05 | -               | NA          | 31.2        | NA               | NA            | 118         |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^*$- Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.} \quad$ 

 $\label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

|                                      | tion ID |                 |                 | SR-104      | SR-104                | SR-104      | SR-104      | SR-105                |
|--------------------------------------|---------|-----------------|-----------------|-------------|-----------------------|-------------|-------------|-----------------------|
|                                      | ple ID  |                 |                 | SR-104      | FD-092718             | SR-104      | SR-104      | FD-120214-01          |
|                                      | trix    |                 |                 | Groundwater | Groundwater           | Groundwater | Groundwater | Groundwater           |
| Depth In                             |         | :)              |                 | -           | -                     | -           | -           | -                     |
| Date S                               | ampled  | •               | •               | 12/02/14    | 09/27/18              | 09/27/18    | 04/18/19    | 12/02/14              |
| Parameter                            | Units   | Criteria<br>(1) | Criteria<br>(2) |             | Field Duplicate (1-1) |             |             | Field Duplicate (1-1) |
| Volatile Organic Compou              | ınds    |                 |                 |             |                       |             |             |                       |
| 1,1,1-Trichloroethane                | UG/L    | 5               | -               | 1.3         |                       |             | 45          | 220,000 D             |
| 1,1,2-Trichloroethane                | UG/L    | 1               | -               |             |                       |             |             |                       |
| 1,1-Dichloroethane                   | UG/L    | 5               | -               | 15          |                       |             | 230         | 79,000 D              |
| 1,1-Dichloroethene                   | UG/L    | 5               | -               | 4.2         |                       |             | 46          | 11,000 J              |
| 1,2-Dichloroethane                   | UG/L    | 0.6             | -               |             |                       |             |             | 160                   |
| 1,2-Dichloroethene (cis)             | UG/L    | 5               | -               | 280 D       | 800                   | 670         | 1,800       | 3,600                 |
| 1,2-Dichloroethene (trans)           | UG/L    | 5               | -               | 16          |                       |             | 9.0 J       |                       |
| 1,4-Dioxane                          | UG/L    | -               | 1               | NA          | NA                    | NA          | NA          | NA                    |
| 2-Hexanone                           | UG/L    | 50              | -               |             |                       |             |             |                       |
| Acetone                              | UG/L    | 50              | -               |             |                       |             |             | 1,300 J               |
| Benzene                              | UG/L    | 1               | -               |             |                       |             | 4.9 J       |                       |
| Carbon disulfide                     | UG/L    | 60              | -               |             |                       |             |             |                       |
| Chloroethane                         | UG/L    | 5               | -               |             |                       |             |             | 150                   |
| Chloroform                           | UG/L    | 7               | -               |             |                       |             |             |                       |
| Chloromethane                        | UG/L    | 5               | -               |             |                       |             |             |                       |
| Cyclohexane                          | UG/L    | -               | -               |             |                       |             |             |                       |
| Ethylbenzene                         | UG/L    | 5               | -               |             |                       |             |             |                       |
| Isopropylbenzene (Cumene)            | UG/L    | 5               | -               |             |                       |             |             |                       |
| Methyl ethyl ketone (2-<br>Butanone) | UG/L    | 50              | -               |             |                       |             |             |                       |
| Methylcyclohexane                    | UG/L    | -               | -               |             |                       |             |             |                       |
| Methylene chloride                   | UG/L    | 5               | -               |             |                       | 93 J        |             |                       |
| Tetrachloroethene                    | UG/L    | 5               | -               |             |                       |             | 10          |                       |
| Toluene                              | UG/L    | 5               | -               |             |                       |             |             |                       |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

| Flags assigned durin | g chemistry validation are shown.  |
|----------------------|------------------------------------|
|                      | Concentration Exceeds Criteria (1) |
|                      | Concentration Exceeds Critoria (2) |

 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.}$ 

 $<sup>\</sup>label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

| Location ID                         |       |                 | SR-104          | SR-104      | SR-104                | SR-104      | SR-105      |                       |
|-------------------------------------|-------|-----------------|-----------------|-------------|-----------------------|-------------|-------------|-----------------------|
| Sample ID                           |       |                 |                 | SR-104      | FD-092718             | SR-104      | SR-104      | FD-120214-01          |
| Matrix                              |       |                 | Groundwater     | Groundwater | Groundwater           | Groundwater | Groundwater |                       |
| Depth Interval (ft)                 |       | -               | -               | -           | -                     | -           |             |                       |
| Date Sampled                        |       |                 | 12/02/14        | 09/27/18    | 09/27/18              | 04/18/19    | 12/02/14    |                       |
| Parameter                           | Units | Criteria<br>(1) | Criteria<br>(2) |             | Field Duplicate (1-1) |             |             | Field Duplicate (1-1) |
| Volatile Organic Compou             | nds   |                 |                 |             |                       |             |             |                       |
| Trichloroethene                     | UG/L  | 5               | -               | 12,000 D    | 15,000                | 14,000      | 2,700 D     | 76,000 DJ             |
| Vinyl chloride                      | UG/L  | 2               | -               |             |                       |             | 33          | 120 J                 |
| Xylene (total)                      | UG/L  | 5               | -               |             |                       |             |             |                       |
| Total Volatile Organic<br>Compounds | UG/L  | -               | -               | 12,316.5    | 15,800                | 14,763      | 4,877.9     | 391,330               |
| Semivolatile Organic Comp           | ounds |                 |                 |             |                       |             |             |                       |
| 1,4-Dioxane                         | UG/L  | ı               | 1               | NA          | NA                    | NA          | 12          | NA                    |
| Metals                              |       |                 |                 |             |                       |             |             |                       |
| Iron                                | UG/L  | 300             | -               | NA          | NA                    | NA          | 940         | NA                    |
| Manganese                           | UG/L  | 300             | -               | NA          | NA                    | NA          | 61 J+       | NA                    |
| Dissolved Metals                    |       |                 |                 |             |                       |             |             |                       |
| Iron                                | UG/L  | 300 *           | -               | NA          | NA                    | NA          | 380 J-      | NA                    |
| Manganese                           | UG/L  | 300 *           | -               | NA          | NA                    | NA          | 51          | NA                    |
| Miscellaneous Paramete              | ers   |                 |                 |             |                       |             |             |                       |
| Biochemical Oxygen Demand (BOD)     | MG/L  | -               | -               | NA          | NA                    | NA          |             | NA                    |
| Chemical Oxygen Demand (COD)        | MG/L  | -               | -               | NA          | NA                    | NA          | 11.3        | NA                    |
| Nitrate-Nitrogen                    | MG/L  | 10000           | -               | NA          | NA                    | NA          | _           | NA                    |
| Sulfate (as SO4)                    | MG/L  | 2.50E+05        | -               | NA          | NA                    | NA          | 36.4        | NA                    |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.} \quad$ 

 $\label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

| Location ID                          |        |                 | SR-105          | SR-105      | SR-105      | SR-106      | SR-106      |                           |
|--------------------------------------|--------|-----------------|-----------------|-------------|-------------|-------------|-------------|---------------------------|
| Sam                                  | ple ID |                 |                 | SR-105      | SR-105      | SR-105      | SR-106      | FD2-092718<br>Groundwater |
|                                      | trix   |                 |                 | Groundwater | Groundwater | Groundwater | Groundwater |                           |
| Depth In                             |        | :)              |                 | -           | -           | -           | -           | -                         |
| Date Sampled                         |        |                 |                 | 12/02/14    | 09/27/18    | 04/22/19    | 12/02/14    | 09/27/18                  |
| Parameter                            | Units  | Criteria<br>(1) | Criteria<br>(2) |             |             |             |             | Field Duplicate (1-1)     |
| Volatile Organic Compou              | ınds   |                 |                 |             |             |             |             |                           |
| 1,1,1-Trichloroethane                | UG/L   | 5               | -               | 140,000 D   | 180,000 J   | 200,000     | 3,600 D     | NA                        |
| 1,1,2-Trichloroethane                | UG/L   | 1               | -               | 25          |             |             | 3.0         | NA                        |
| 1,1-Dichloroethane                   | UG/L   | 5               | -               | 64,000 D    | 94,000 J    | 75,000      | 9,900 D     | NA                        |
| 1,1-Dichloroethene                   | UG/L   | 5               | -               | 21,000 J    | 2,100 J     | 3,100       | 210 D       | NA                        |
| 1,2-Dichloroethane                   | UG/L   | 0.6             | -               | 130 J       |             |             | 2.0         | NA                        |
| 1,2-Dichloroethene (cis)             | UG/L   | 5               | -               | 3,200 J     | 7,600 J     | 7,600       | 450 D       | NA                        |
| 1,2-Dichloroethene (trans)           | UG/L   | 5               | -               |             |             |             |             | NA                        |
| 1,4-Dioxane                          | UG/L   | -               | 1               | NA          | 4,600       | NA          | NA          | 550                       |
| 2-Hexanone                           | UG/L   | 50              | -               | 1.6 J       |             |             |             | NA                        |
| Acetone                              | UG/L   | 50              | -               | 480 J       | 22,000 J    | 19,000 J    | 8.6 J       | NA                        |
| Benzene                              | UG/L   | 1               | -               | 1.2         |             |             | 0.68 J      | NA                        |
| Carbon disulfide                     | UG/L   | 60              | -               | 4.6 J       |             |             |             | NA                        |
| Chloroethane                         | UG/L   | 5               | -               | 160 J       |             |             | 100 J       | NA                        |
| Chloroform                           | UG/L   | 7               | -               | 3.9         |             |             | 0.34 J      | NA                        |
| Chloromethane                        | UG/L   | 5               | -               | 0.87 J      |             |             |             | NA                        |
| Cyclohexane                          | UG/L   | -               | -               |             |             |             |             | NA                        |
| Ethylbenzene                         | UG/L   | 5               | -               |             |             |             |             | NA                        |
| Isopropylbenzene (Cumene)            | UG/L   | 5               | -               |             |             |             |             | NA                        |
| Methyl ethyl ketone (2-<br>Butanone) | UG/L   | 50              | -               |             |             |             |             | NA                        |
| Methylcyclohexane                    | UG/L   | -               | -               |             |             |             | 0.57 J      | NA                        |
| Methylene chloride                   | UG/L   | 5               | -               | 87          | 2,200 J     |             | 1.5         | NA                        |
| Tetrachloroethene                    | UG/L   | 5               | -               | 8.0         |             |             | 13          | NA                        |
| Toluene                              | UG/L   | 5               | -               | 2.1         |             |             | 1.8         | NA                        |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria (1)

 $\hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.}$ 

Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis. NA - Not analyzed.

Concentration Exceeds Criteria (2)

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

| Location ID                             |       |                 | SR-105          | SR-105      | SR-105      | SR-106      | SR-106      |                       |
|-----------------------------------------|-------|-----------------|-----------------|-------------|-------------|-------------|-------------|-----------------------|
| Sam                                     |       |                 | SR-105          | SR-105      | SR-105      | SR-106      | FD2-092718  |                       |
| Matrix Depth Interval (ft) Date Sampled |       |                 | Groundwater     | Groundwater | Groundwater | Groundwater | Groundwater |                       |
|                                         |       |                 | -               | -           | -           | -           | =           |                       |
|                                         |       |                 | 12/02/14        | 09/27/18    | 04/22/19    | 12/02/14    | 09/27/18    |                       |
| Parameter                               | Units | Criteria<br>(1) | Criteria<br>(2) |             |             |             |             | Field Duplicate (1-1) |
| Volatile Organic Compou                 | ınds  |                 |                 |             |             |             |             |                       |
| Trichloroethene                         | UG/L  | 5               | -               | 45,000 DJ   | 82,000 J    | 92,000      | 69          | NA                    |
| Vinyl chloride                          | UG/L  | 2               | -               | 310 J       |             |             | 95          | NA                    |
| Xylene (total)                          | UG/L  | 5               | -               | 1.2 J       |             |             | 1.5 J       | NA                    |
| Total Volatile Organic<br>Compounds     | UG/L  | -               | -               | 274,415.47  | 394,500     | 396,700     | 14,467.99   | 550                   |
| Semivolatile Organic Comp               | ounds |                 |                 |             |             |             |             |                       |
| 1,4-Dioxane                             | UG/L  | -               | 1               | NA          | NA          | 3,100       | NA          | NA                    |
| Metals                                  |       |                 |                 |             |             |             |             |                       |
| Iron                                    | UG/L  | 300             | -               | NA          | NA          | 14,100      | NA          | NA                    |
| Manganese                               | UG/L  | 300             | -               | NA          | NA          | 310 J+      | NA          | NA                    |
| Dissolved Metals                        |       |                 |                 |             |             |             |             |                       |
| Iron                                    | UG/L  | 300 *           | -               | NA          | NA          | 11,100      | NA          | NA                    |
| Manganese                               | UG/L  | 300 *           | -               | NA          | NA          | 270 J+      | NA          | NA                    |
| Miscellaneous Paramet                   | ers   |                 |                 |             |             |             |             |                       |
| Biochemical Oxygen Demand (BOD)         | MG/L  | -               | -               | NA          | NA          | 57.8 J      | NA          | NA                    |
| Chemical Oxygen Demand (COD)            | MG/L  | -               | -               | NA          | NA          | 127         | NA          | NA                    |
| Nitrate-Nitrogen                        | MG/L  | 10000           | -               | NA          | NA          |             | NA          | NA                    |
| Sulfate (as SO4)                        | MG/L  | 2.50E+05        | -               | NA          | NA          | 11.8        | NA          | NA                    |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^\star$-Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.} \quad$ 

Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis. NA - Not analyzed.

| Location ID                          |             | SR-106          | SR-106          | SR-108      | SR-108      | SR-108<br>SR-108 |             |                                                        |  |
|--------------------------------------|-------------|-----------------|-----------------|-------------|-------------|------------------|-------------|--------------------------------------------------------|--|
| Sample ID                            |             |                 | SR-106          | SR-106      | SR-108      |                  |             | SR-108                                                 |  |
|                                      | Matrix      |                 |                 | Groundwater | Groundwater | Groundwater      | Groundwater | Groundwater                                            |  |
| _                                    | nterval (ft | t)              |                 | -           | -           | -                | -           | -                                                      |  |
| Date Sampled                         |             |                 | 09/27/18        | 04/17/19    | 12/02/14    | 09/27/18         | 04/18/19    |                                                        |  |
| Parameter                            | Units       | Criteria<br>(1) | Criteria<br>(2) |             |             |                  |             |                                                        |  |
| Volatile Organic Compo               | unds        |                 |                 |             |             |                  |             |                                                        |  |
| 1,1,1-Trichloroethane                | UG/L        | 5               | -               | 1,800       | 1,100       |                  |             | 12                                                     |  |
| 1,1,2-Trichloroethane                | UG/L        | 1               | -               |             |             |                  |             |                                                        |  |
| 1,1-Dichloroethane                   | UG/L        | 5               | -               | 7,200       | 3,300       | 190              | 130         | 43                                                     |  |
| 1,1-Dichloroethene                   | UG/L        | 5               | -               | 89 J        | 59          | 16 J             | 2.1 J       | 9.5                                                    |  |
| 1,2-Dichloroethane                   | UG/L        | 0.6             | -               |             |             |                  |             |                                                        |  |
| 1,2-Dichloroethene (cis)             | UG/L        | 5               | -               | 420         | 250         | 520              | 39          | 480 D                                                  |  |
| 1,2-Dichloroethene (trans)           | UG/L        | 5               | -               |             | 8.8 J       | 52               | 50          | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |  |
| 1,4-Dioxane                          | UG/L        | -               | 1               | 520         | NA          | NA               | NA          | NA                                                     |  |
| 2-Hexanone                           | UG/L        | 50              | -               |             |             |                  |             |                                                        |  |
| Acetone                              | UG/L        | 50              | -               |             |             |                  | 17 J        |                                                        |  |
| Benzene                              | UG/L        | 1               | -               |             |             |                  |             | 2.8                                                    |  |
| Carbon disulfide                     | UG/L        | 60              | -               |             |             |                  |             |                                                        |  |
| Chloroethane                         | UG/L        | 5               | -               | 160 J       | 91          |                  |             |                                                        |  |
| Chloroform                           | UG/L        | 7               | -               |             |             |                  |             |                                                        |  |
| Chloromethane                        | UG/L        | 5               | -               |             |             |                  |             |                                                        |  |
| Cyclohexane                          | UG/L        | -               | -               |             |             |                  | 2.0 J       | 6.0                                                    |  |
| Ethylbenzene                         | UG/L        | 5               | -               |             |             |                  |             | 0.34 J                                                 |  |
| Isopropylbenzene (Cumene)            | UG/L        | 5               | -               |             |             |                  |             |                                                        |  |
| Methyl ethyl ketone (2-<br>Butanone) | UG/L        | 50              | -               |             |             |                  |             |                                                        |  |
| Methylcyclohexane                    | UG/L        | -               | -               |             |             |                  | 2.2 J       | 8.4                                                    |  |
| Methylene chloride                   | UG/L        | 5               | -               |             |             |                  |             |                                                        |  |
| Tetrachloroethene                    | UG/L        | 5               | -               |             |             |                  |             | 0.35 J                                                 |  |
| Toluene                              | UG/L        | 5               | -               |             |             |                  |             | 1.4                                                    |  |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria (1)

Concentration Exceeds Criteria (2)

<sup>- -</sup> No criteria. \* - Criteria apllicable for unfiltered metals. UG/L - Micrograms per liter. MG/L - Milligrams per liter. Empty Cell - Not Detected. D - Result reported from a secondary dilution analysis. NA - Not analyzed.

J - The reported concentration is an estimated value. J- - Estimated value, low bias. J+ - Estimated value, high bias.

| Location ID Sample ID Matrix        |        |                 | SR-106           | SR-106      | SR-108      | SR-108      | SR-108                |          |
|-------------------------------------|--------|-----------------|------------------|-------------|-------------|-------------|-----------------------|----------|
|                                     |        |                 | SR-106           | SR-106      | SR-108      | SR-108      | SR-108<br>Groundwater |          |
|                                     |        |                 | Groundwater<br>- | Groundwater | Groundwater | Groundwater |                       |          |
| Depth Interval (ft)                 |        | -               |                  | -           | -           | -           |                       |          |
| Date S                              | ampled |                 |                  | 09/27/18    | 04/17/19    | 12/02/14    | 09/27/18              | 04/18/19 |
| Parameter                           | Units  | Criteria<br>(1) | Criteria<br>(2)  |             |             |             |                       |          |
| Volatile Organic Compou             | nds    |                 |                  |             |             |             |                       |          |
| Trichloroethene                     | UG/L   | 5               | -                |             | 58          | 200         | 3.5 J                 | 530 D    |
| Vinyl chloride                      | UG/L   | 2               | -                |             | 100         |             | 18                    | 47       |
| Xylene (total)                      | UG/L   | 5               | -                |             |             |             |                       |          |
| Total Volatile Organic<br>Compounds | UG/L   | -               | -                | 10,189      | 4,966.8     | 978         | 263.8                 | 1,157.79 |
| Semivolatile Organic Comp           | ounds  |                 |                  |             |             |             |                       |          |
| 1,4-Dioxane                         | UG/L   | 1               | 1                | NA          | 240         | NA          | NA                    | 1.7      |
| Metals                              |        |                 |                  |             |             |             |                       |          |
| Iron                                | UG/L   | 300             | -                | NA          | 2,900 J-    | NA          | NA                    | 28,500   |
| Manganese                           | UG/L   | 300             | -                | NA          | 49          | NA          | NA                    | 160 J+   |
| Dissolved Metals                    |        |                 |                  |             |             |             |                       |          |
| Iron                                | UG/L   | 300 *           | -                | NA          | 690         | NA          | NA                    | 1,300 J- |
| Manganese                           | UG/L   | 300 *           | -                | NA          | 41 J-       | NA          | NA                    | 58       |
| Miscellaneous Paramete              | ers    |                 |                  |             |             |             |                       |          |
| Biochemical Oxygen Demand (BOD)     | MG/L   | -               | -                | NA          |             | NA          | NA                    |          |
| Chemical Oxygen Demand (COD)        | MG/L   | -               | -                | NA          | 119         | NA          | NA                    | 21.2     |
| Nitrate-Nitrogen                    | MG/L   | 10000           | -                | NA          | 0.79        | NA          | NA                    |          |
| Sulfate (as SO4)                    | MG/L   | 2.50E+05        | -                | NA          | 142         | NA          | NA                    | 11.8     |

Criteria (1)- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 and 6/2004 Addenda) Class GA. Criteria (2)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019

Flags assigned during chemistry validation are shown.



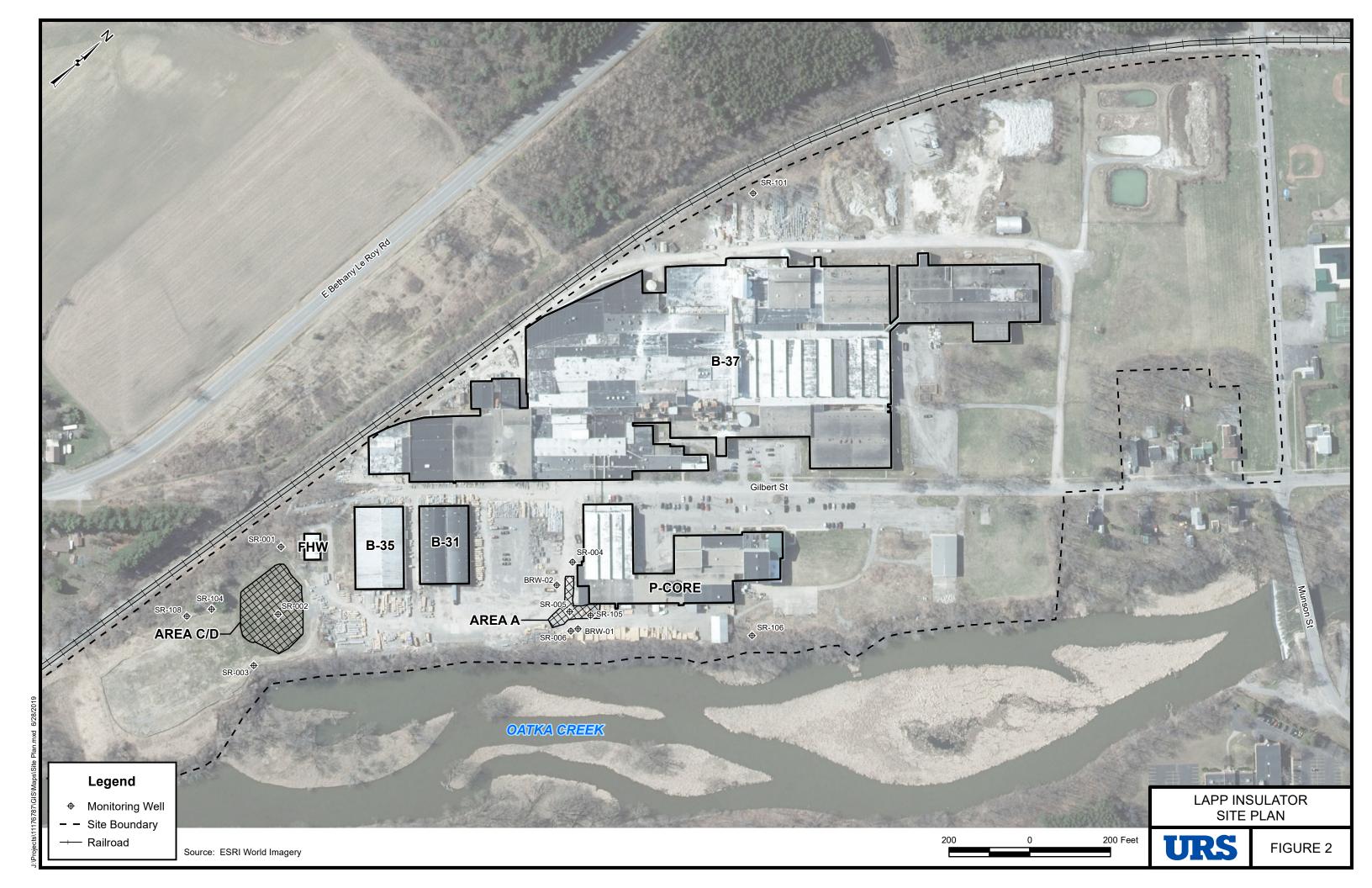
 $<sup>\</sup>hbox{--No criteria.} \quad \hbox{$^*$- Criteria apllicable for unfiltered metals.} \quad \hbox{UG/L-Micrograms per liter.} \quad \hbox{MG/L-Milligrams per liter.} \quad$ 

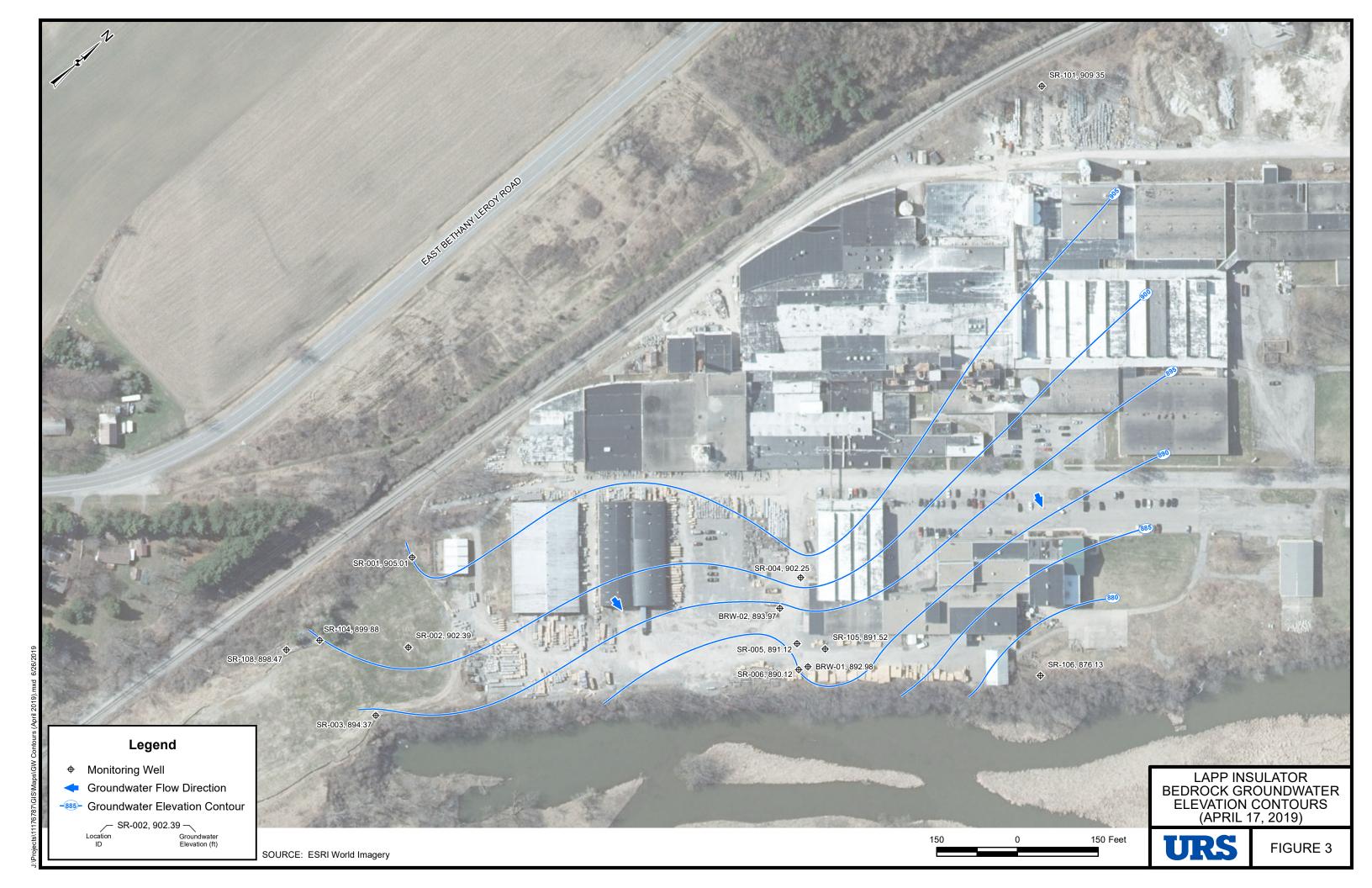
 $\label{eq:condary} \textit{Empty Cell - Not Detected.} \quad \textit{D - Result reported from a secondary dilution analysis.} \quad \textit{NA - Not analyzed.}$ 

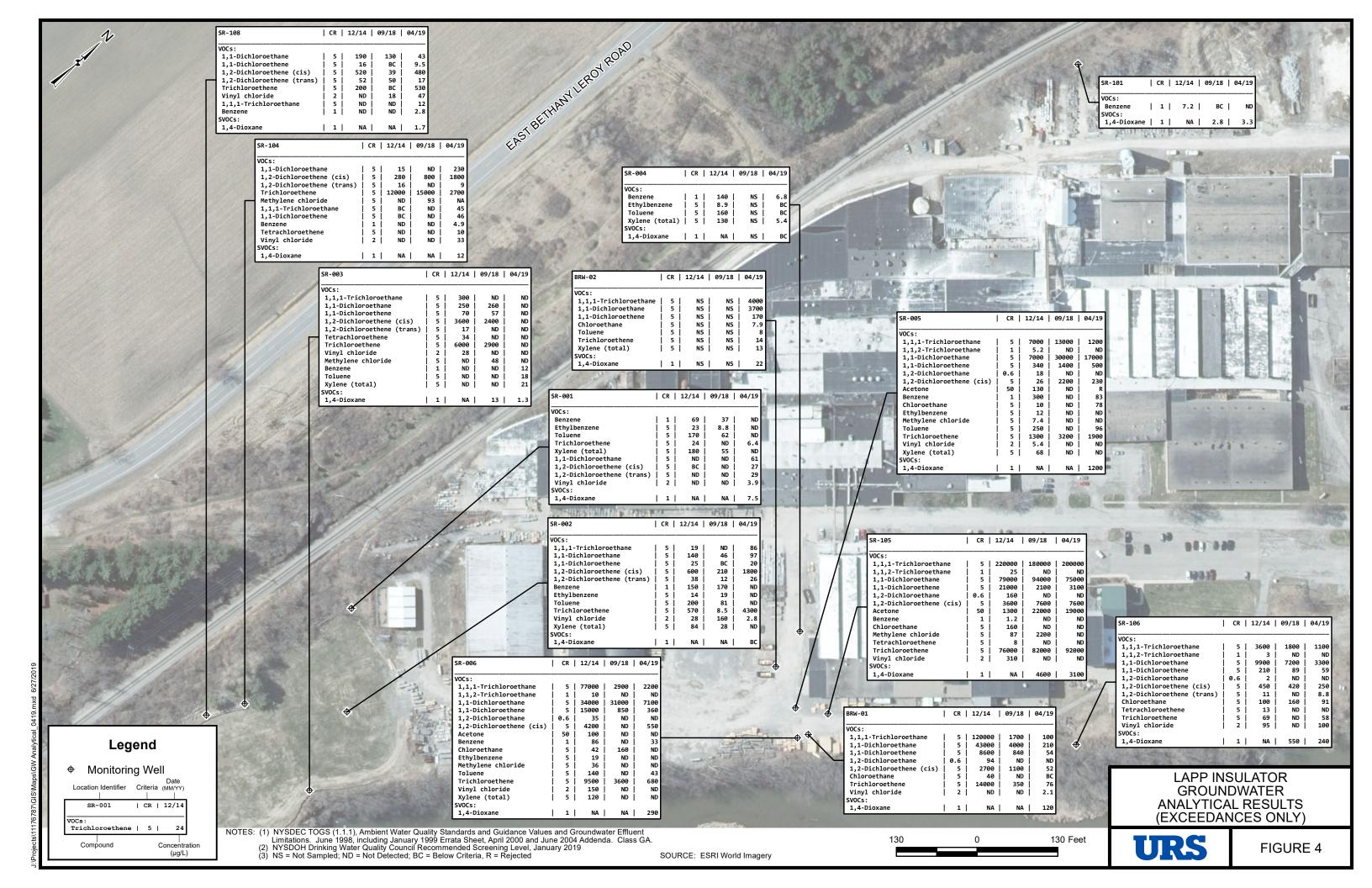
#### TABLE 5 SUMMARY OF PFAS IN GROUNDWATER SAMPLES LAPP INSULATOR SITE

| Sample ID                                                 |          | SR-003      | SR-101      | SR-105      | SR-106      |        |        |
|-----------------------------------------------------------|----------|-------------|-------------|-------------|-------------|--------|--------|
| Matrix                                                    |          | Groundwater | Groundwater | Groundwater | Groundwater |        |        |
| Date Sample                                               | t        | 09/27/18    | 09/27/18    | 09/27/18    | 09/27/18    |        |        |
| Parameter                                                 | Units    |             | Criteria    |             |             |        |        |
|                                                           | <u> </u> | (1)         | (2)         |             |             |        |        |
| Per- and Polyfluoroalkyl Substances                       |          |             |             |             |             |        |        |
| Perfluorobutanesulfonic acid (PFBS)                       | NG/L     | 100         | -           | 0.35 J      | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorobutanoic acid (PFBA)                             | NG/L     | 100         | -           | 6.8 U       | 3.1 U       | 1.9 U  | 1.8 U  |
| Perfluorodecane sulfonate (PFDS)                          | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorodecanoic acid (PFDA)                             | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorododecanoic acid (PFDoA)                          | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluoroheptanesulfonic acid (PFHpS)                     | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluoroheptanoic acid (PFHpA)                           | NG/L     | 100         | -           | 0.41 J      | 1.8 U       | 0.41 J | 0.36 J |
| Perfluorohexanesulfonic acid (PFHxS)                      | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorohexanoic acid (PFHxA)                            | NG/L     | 100         | -           | 1.2 J       | 1.8 U       | 0.68 J | 0.87 J |
| Perfluorononane sulfonate (PFNS)                          | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorononanoic acid (PFNA)                             | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 0.41 J | 1.8 U  |
| Perfluorooctane sulfonamide (PFOSA)                       | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorooctanesulfonic acid (PFOS)                       | NG/L     | 10          | 70          | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorooctanoic acid (PFOA)                             | NG/L     | 10          | 70          | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluoropentane sulfonate (PFPeS)                        | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluoropentanoic acid (PFPeA)                           | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorotetradecanoic acid (PFTeA)                       | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluorotridecanoic acid (PFTriA)                        | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Perfluoroundecanoic acid (PFUnA)                          | NG/L     | 100         | -           | 1.7 U       | 1.8 U       | 1.9 U  | 1.8 U  |
| Fluorotelomer sulfonate 4:2                               | NG/L     | 100         | -           | 17 U        | 18 U        | 19 U   | 18 U   |
| 1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2)            | NG/L     | 100         | -           | 17 U        | 18 U        | 9.5 J  | 18 U   |
| 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2)            | NG/L     | 100         | -           | 17 U        | 18 U        | 19 U   | 18 U   |
| N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)  | NG/L     | 100         | -           | 17 U        | 18 U        | 19 U   | 18 U   |
| N-Methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) | NG/L     | 100         | -           | 17 U        | 18 U        | 19 U   | 18 U   |
| Total PFOA and PFOS                                       | NG/L     | -           | 70          | ND          | ND          | ND     | ND     |
| Total Per- and Polyfluoroalkyl Substances                 | NG/L     | 500         | -           | 1.96        | ND          | 11     | 1.23   |

Criteria (1)- Recommended Screening Level - New York State Drinking Water Quality Council (DWQC), January 2019


Criteria (2)- USEPA Drinking Water Health Advisory (USEPA, May 2016)


Flags assigned during chemistry validation are shown.


- - No criteria. NG/L Nanograms per liter. ND Not detected.
- J The reported concentration is an estimated value. U Not detected above the reported quantitation limit.

### **FIGURES**









# ATTACHMENT 1 PURGE LOGS

| Project:                        | Laff.         | Insulat                              | 270          | Site:                                   | Le Roy      | NY                            | Well #:                          | BRW-0                       | 1_  |
|---------------------------------|---------------|--------------------------------------|--------------|-----------------------------------------|-------------|-------------------------------|----------------------------------|-----------------------------|-----|
| Sampling                        | Personnel:    | T- U                                 | Chan         |                                         | Date: L     | 1/22/19                       | Company:                         |                             |     |
| Purging/<br>Sampling<br>Device: | 600           | pump                                 |              | Tubing<br>Type:                         | LOPEX       | Silican                       | Tubing Inlet:                    |                             |     |
| Measuring<br>Point:             | Top of Riser  | Initial Depth<br>to Water<br>(feet): | 13.16        | Depth to<br>Well Bottom<br>(feet):      | 29.60       | Well<br>Diameter<br>(inches): | 4                                | Screen<br>Length<br>(feet): |     |
| Casing<br>Type:                 |               |                                      |              | Volume in 1<br>Well Casing<br>(liters): | 40.6        |                               | Estimated Purge Volume (liters): | 24.5ge                      | Q   |
| Sample ID:                      | BRW-          | 011-MS/                              | Sample Time: |                                         | 5           | QA/QC:                        | MS/MSI                           | ) + Field                   | Duj |
| Sample                          | e Parameters: | <u> </u>                             | 20/8-        | */0 >                                   |             |                               |                                  |                             |     |
|                                 | Comments:     | <u> </u>                             | 20190        | 456                                     | <del></del> |                               |                                  |                             |     |

#### **PURGE PARAMETERS**

| TIME       | pН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 1055       | 7.14 | 12.52     | 3.60             | 7.54                        | 219            | -79       | 350                       | 13.16                            |
| 1100       | 7-77 | 11.13     | 3.77             | 1.16                        | 188            | -149      | 350                       | 13-82                            |
| 1105       | 783  | 10.64     | 3.87             | 0.81                        | 165            | -175      | 35C                       | 14.62                            |
| 1110       | 7.87 | 10.23     | 3.89             | 0.74                        | 104            | -187      | 350                       | 15-25                            |
| 1115       | 7.59 | 10-34     | 3.86             | 0.69                        | 100            | -199      | 35C)                      | 15.95                            |
| IIZO       | 7.91 | 6.42      | 3.85             | 0.66                        | 94.0           | 7205      | 350                       | 16.62                            |
| 1125       | 7.92 | 10.64     | 3.82             | 0.63                        | 89.6           | -212      | 370                       | 17.35                            |
| 1130       | 7.93 | 10.48     | 3.83             | 0.63                        | 59.2           | -216      | 350                       | 18.17                            |
| 1135       | 7.94 | 10-49     | 3.84             | 0.62                        | 863            | -219      | 350                       | 18.95                            |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                | ,         |                           |                                  |
| 1          |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  | 1         | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{ovl} = \pi t^2 h$ )

| Project:                        | Lago.         | Insulat                              | or5          | Site:                                   | LeRo  | y NY                          | Well#:                           | BLW-02                      |
|---------------------------------|---------------|--------------------------------------|--------------|-----------------------------------------|-------|-------------------------------|----------------------------------|-----------------------------|
| Sampling                        | Personnel:    | T. c                                 | oban         |                                         | Date: | 4/19/19                       | Company:                         | 91                          |
| Purging/<br>Sampling<br>Device: | Geo           | pump                                 |              | Tubing<br>Type:                         | LPPEZ | -silican                      | Tubing Inlet:                    | é.                          |
| Measuring<br>Point:             | Top of Riser  | Initial Depth<br>to Water<br>(feet): | 17.65        | Depth to<br>Well Bottom<br>(feet):      | 29.50 | Well<br>Diameter<br>(inches): | 4                                | Screen<br>Length<br>(feet): |
| Casing<br>Type:                 |               |                                      |              | Volume in 1<br>Well Casing<br>(liters): | 41.6  | , E.                          | Estimated Purge Volume (liters): | ~5.5 yal                    |
| Sample ID:                      | BRW           | -07                                  | Sample Time: | 103                                     | 5     | QA/QC:                        | non                              | e                           |
| Sample                          | e Parameters: |                                      |              |                                         | 32    | e A                           |                                  | , il                        |
|                                 | Comments:     |                                      |              |                                         |       |                               |                                  | 2                           |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 0945       | 7.41 | 12.70     | 1.96             | 1.66                        | 295            | -146      | 5000                      | 12.65                            |
| 0950       | 7.57 | 12.73     | 1.97             | 0.95                        | 235            | -177      | 350                       | 13.70                            |
| 0955       | 7.59 | 12-45     | 1.98             | 0.77                        | 192            | -197      | 350                       | 14-74                            |
| 1000       | 7.60 | 12.53     | 1.98             | 0.68                        | 173            | -204      | 330                       | 15-30                            |
| 1005       | 7.63 | 12-30     | 1-99             | 0-68                        | 150            | -212      | 330                       | 16.05                            |
| 1000       | 7.59 | 12-25     | 1.99             | 0.67                        | 151            | -213      | 330                       | 16-61                            |
| 1015       | 7.55 | 12-20     | 7.00             | 0.66                        | 142            | -212      | 330                       | 17.15                            |
| 1020       | 7.44 | 1227      | 2.00             | 0-64                        | 136            | -211      | 330                       | 17.89                            |
| 1025       | 7.61 | 12.21     | 2.00             | 0-61                        | 124            | ~222      | 330                       | 18-48                            |
| 1030       | 7-54 | 12-22     | 2.00             | 0.62                        | 125            | -224      | 330                       | 19.19                            |
| 1035       | 7.58 | 1222      | 5,00             | 0.62                        | 124            | -225      | 330                       | 19.71                            |
|            |      |           |                  |                             | ,              |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cvl} = \pi r^2 h$ )

| Project:                        | Lage.        | Insu led                             | <i>2</i> /S  | _ Site:                                 | Lehoy   | NY                            | Well #:                          | 5R-001                      |
|---------------------------------|--------------|--------------------------------------|--------------|-----------------------------------------|---------|-------------------------------|----------------------------------|-----------------------------|
| Sampling                        | Personnel:   | Ton                                  | Urbo         | M                                       | Date: _ | 4/15/19                       | Company:                         |                             |
| Purging/<br>Sampling<br>Device: | 6004         | onf                                  |              | Tubing<br>Type:                         | LDPEds  | ilicon                        | Tubing Inlet:                    |                             |
| Measuring<br>Point:             | Top of Riser | Initial Depth<br>to Water<br>(feet): | 9.70         | Depth to<br>Well Bottom<br>(feet):      | 44.80   | Well<br>Diameter<br>(inches): | _4                               | Screen<br>Length<br>(feet): |
| Casing<br>Type:                 |              |                                      |              | Volume in 1<br>Well Casing<br>(liters): | 86-7    |                               | Estimated Purge Volume (liters): | r 8 gal                     |
| Sample ID:                      | 5R-0         | 01                                   | Sample Time: | 123                                     | 5       | QA/QC:                        | none                             | Ø*                          |
| Sample                          | Parameters:  | derk                                 | browd        | Color                                   |         |                               |                                  |                             |
|                                 | Comments.    | 901 6                                | -19 -1       | <del></del>                             |         |                               | <del></del>                      | +:                          |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 1130       | 7.5  | 15.08     | 1.68             | 1.60                        | 71000          | -139      | 500                       | 9.70                             |
| 1135       | 7.69 | 13,03     | 1.89             | 0.92                        | 71000          | -185      | 500                       | 10.35                            |
| 1140       | 7.81 | 12.53     | 1.87             | 0.82                        | 71000          | -212      | 500                       | 11.18                            |
| 1145       | 7.96 | 11.80     | 1.90             | 0.70                        | 71000          | -241      | 500                       | 12.15                            |
| 1150       | 8.00 | 11.84     | 1.86             | 0.94                        | 866            | -263      | 500                       | 15.21                            |
| 1155       | 7.80 | 10.91     | 1.84             | 1.47                        | 757            | -205      | 500                       | 14.42                            |
| 1200       | 7.64 | 10.82     | 1-83             | 7.04                        | 714            | -256      | 500                       | 15.40                            |
| 1205       | 7.59 | 11.94     | 1-74             | 2.29                        | 690            | -257      | 300                       | 1620                             |
| 1215       | 7-98 | 11.96     | 1-74             | 1.26                        | 659            | -278      | 300                       | 17.33                            |
| 1220       | 8.05 | 12.18     | 1.73             | 1.35                        | 733            | -288      | 3∞                        | 18.06                            |
| 1225       | 8.07 | 12,26     | 1.72             | 1.40                        | 800            | ~ 293     | 3∞                        | 18.80                            |
| 1230       | 8.09 | 12.25     | 1.71             | 1-42                        | 838            | -796      | 300                       | 19-10                            |
| 1235       | 8.09 | 12.40     | 1-72             | 1.45                        | 824            | -300      | 300                       | 17.81                            |
|            |      |           |                  | _                           |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cvl} = \pi r^2 h$ )

| Project:                        | Lagg         | Insul                     | tors         | Site:                                   | LeRoy | NY       | Well #:                          | 5R-002                      |
|---------------------------------|--------------|---------------------------|--------------|-----------------------------------------|-------|----------|----------------------------------|-----------------------------|
| Sampling                        | Personnel:   | Tic                       | rban         | £                                       | Date: | 4/18/19  | _Company:                        |                             |
|                                 |              |                           |              |                                         |       | *        |                                  |                             |
| Purging/<br>Sampling<br>Device: | Geo          | Pump                      |              | Tubing<br>Type:                         | LPPES | Silicon  | _ Tubing Inlet:                  |                             |
| Measuring<br>Point:             | Top of Riser | Initial Depth<br>to Water | 12-95        | Depth to<br>Well Bottom<br>(feet):      |       | Well     | 4                                | Screen<br>Length<br>(feet): |
| Casing<br>Type:                 |              |                           |              | Volume in 1<br>Well Casing<br>(liters): | 64-1  | -        | Estimated Purge Volume (liters): | ~ 8 gal                     |
| Sample ID:                      | 5R-0         | 02                        | Sample Time: | 1415                                    | 5     | _ QA/QC: | NOAC                             | ,                           |
| Sample                          | Parameters:  |                           |              |                                         |       |          |                                  |                             |
|                                 | Comments:    | cloud                     | 7            |                                         |       |          |                                  |                             |
|                                 |              |                           | r            |                                         |       |          |                                  |                             |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 1315       | 7,84 | 15.37     | 1.47             | 7.70                        | 733            | -145      | 400                       | 12.95                            |
| 1320       | 7.71 | 13.49     | 1.84             | 1-24                        | 693            | -184      | 400                       | 14.00                            |
| 1325       | 7.86 | 14.83     | 1.01             | 1.37                        | 423            | -223      | 400                       | 14.84                            |
| 1330       | 7.85 | 13.82     | 0-980            | 1.43                        | 3/2            | -23/      | 400                       | 15.52                            |
| 1335       | 7.84 | 12.74     | 0-923            | 1.49                        | 171            | -238      | 400                       | 15.95                            |
| 1340       | 7.76 | 12,06     | 0.932            | 1.19                        | 225            | -234      | 400                       | 16.42                            |
| 1345       | 7.69 | 12.38     | 0.908            | 1.07                        | 175            | -230      | 400                       | 16.65                            |
| 1350       | 7.62 | 13.27     | 0.890            | 1.00                        | 166            | -233      | 400                       | 16.85                            |
| 1355       | 7.61 | 12.55     | 0.910            | 1.03                        | 161            | -230      | 400                       | 17.05                            |
| 1400       | 7.59 | 13.01     | 0.900            | 0.95                        | 153            | -249      | 400                       | 1711                             |
| 1405       | 7.88 | 12.92     | 0.891            | 0.85                        | 142            | -251      | 400                       | 17.22                            |
| 1410       | 7.86 | 12.91     | 0.892            | 0.81                        | 137            | -250      | 400                       | 17.34                            |
| 1415       | 7.81 | 12.86     | 0.894            | 0.79                        | 134            | -246      | 400                       | 17.39                            |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cvl} = \pi r^2 h$ )

| Project:                        | Laff?        | Insola                               | fors         | Site:                                   | Leko          | NY                      | Well#:                           | 5R-003                      |
|---------------------------------|--------------|--------------------------------------|--------------|-----------------------------------------|---------------|-------------------------|----------------------------------|-----------------------------|
| Sampling                        | Personnel:   | T-U,                                 | Local        |                                         | _ Date:       | 4/18/19                 | Company:                         | (40)                        |
| Purging/<br>Sampling<br>Device: | Geop         | ~ mp                                 |              | Tubing<br>Type:                         | LOPES         | - 5. licon              | Tubing Inlet:                    |                             |
| Measuring<br>Point:             | Top of Riser | Initial Depth<br>to Water<br>(feet): | 17.10        | Depth to<br>Well Bottom<br>(feet):      | <u> 28.48</u> | Well Diameter (inches): | 4                                | Screen<br>Length<br>(feet): |
| Casing<br>Type:                 |              | ·····                                |              | Volume in 1<br>Well Casing<br>(liters): | 28,1          | -                       | Estimated Purge Volume (liters): | ~ 6 gal                     |
|                                 | SR-0         | 03                                   | Sample Time: | 153                                     | 5             | QA/QC:                  | nor                              | e                           |
|                                 | Comments: _  | clear                                | 7            |                                         |               |                         | 4)(                              | ii.                         |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 1435       | 7.61 | 13.65     | 0,771            | 3.98                        | 26-7           | -120      | 550                       | 17.16                            |
| 1446       | 7.07 | 12.97     | 0.76             | 4.63                        | 14.4           | -93       | 300                       | 17.95                            |
| 1445       | 7.07 | 13.05     | 0.761            | 4.22                        | 8.9            | -89       | 300                       | 18.22                            |
| 1450       | 7.07 | 13,77     | 0.762            | 3.57                        | 5.4            | -84       | 300                       | 18-40                            |
| 1455       | 7.13 | 13.04     | 0-778            | 1.66                        | 10.6           | -85       | 300                       | 18.55                            |
| 1500       | 7.08 | 13.14     | 0.781            | 1-58                        | 9.3            | -82       | 300                       | 18.60                            |
| 1505       | 6.98 | 12.90     | 0.784            | 1.49                        | 6.9            | -77       | 330                       | 18.75                            |
| 1510       | 6.92 | 13,02     | 0.780            | 1-39                        | 4.5            | -74       | 330                       | 18.90                            |
| 1515       | 6.86 | 12.54     | 0.787            | 1.34                        | 3-1            | -72       | 330                       | 19.00                            |
| 1520       | 6.82 | 11,72     | 0.818            | 1.32                        | 0.6            | -71       | 330                       | 19.02                            |
| 1525       | 7.0  | 11.49     | 0.822            | 1.26                        | <i>د</i> ٥     | -91       | 370                       | 1904                             |
| 1530       | 7.03 | 11.32     | 0.824            | 1.24                        | 0.0            | -53       | 330                       | 19.05                            |
| 1575       | 7.02 | 11.31     | 0.824            | 1-50                        | <i>گ</i> ِ ن   | -93       | 330                       | 19.06                            |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cyl} = \pi r^2 h$ )

| Project:                        | Lagg:                 | Insulato                             | 15           | Site:                                   | LeRoy | NY                            | Well #:                                   | 5R-004                      |                 |
|---------------------------------|-----------------------|--------------------------------------|--------------|-----------------------------------------|-------|-------------------------------|-------------------------------------------|-----------------------------|-----------------|
| Sampling                        | Personnel:            | T. U.                                | ban          |                                         | Date: | 4/19/19                       | _Company:                                 |                             |                 |
| Purging/<br>Sampling<br>Device: | Geople                | im p                                 |              | Tubing<br>Type:                         | LDPEL | si licon                      | _Tubing Inlet:                            |                             |                 |
| Measuring<br>Point:             | Top of Riser          | Initial Depth<br>to Water<br>(feet): | 5,60         | Depth to<br>Well Bottom<br>(feet):      | 34.55 | Well<br>Diameter<br>(inches): | 4                                         | Screen<br>Length<br>(feet): |                 |
| Casing<br>Type:                 |                       |                                      |              | Volume in 1<br>Well Casing<br>(liters): | 71.5  |                               | Estimated<br>Purge<br>Volume<br>(liters): | 29 gal                      |                 |
|                                 | SR-004                | 1                                    | Sample Time: | 090                                     | 5     | QA/QC:                        | FD ?                                      | ne<br>MS/MSD                | 一<br><u>テ</u> ひ |
| Sample                          | Parameters: Comments: | dork                                 | brown        | calan                                   |       |                               |                                           |                             |                 |

## **PURGE PARAMETERS**

| TIME       | pН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 0805       | 6.31 | 12.74     | 1-88             | 3.66                        | 71000          | 123       | 600                       | 5-60                             |
| 0810       | 7.72 | 12.16     | 1.83             | 1.07                        | 857            | -33       | 600                       | 7.30                             |
| 0315       | 8-12 | 12.50     | 1.77             | 0.83                        | 748            | -91       | 500                       | 8.05                             |
| 0820       | 8.32 | 11.96     | 1.78             | 0.79                        | 730            | -133      | 500                       | 8:05                             |
| 0825       | 8.32 | 11.99     | 1.77             | 0.69                        | 681            | -162      | 500                       | 8,05                             |
| 0830       | 8.32 | 12.11     | 1.75             | 0.68                        | 686            | -171      | 500                       | 8.05                             |
| 0840       | 5.68 | 11.84     | 1.74             | 0.62                        | 689            | -215      | 500                       | 14.10                            |
| 0845       | 8.61 | 11.88     | 1.73             | 0.62                        | 828            | - 27      | 500                       | 15,00                            |
| 3850       | 5.50 | 1203      | 1-72             | 0.64                        | 869            | -22/      | 500                       | 15.80                            |
| 0855       | 8.69 | 12.09     | 1.72             | 0.64                        | 837            | -234      | 350                       | 16.50                            |
| 0900       | 8.67 | 12.09     | 1.72             | 0.67                        | 822            | -236      | 350                       | 17.25                            |
| 0905       | 8.74 | 12.12     | 1.72             | 0.69                        | 824            | -241      | 350                       | 18.00                            |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cyl} = \pi r^2 h$ )

| Project:                        | Lapp         | Insul                                | ators        | Site:                                   | LeRO           | Y,NY                          | Well #:                          | 5R-005                      |
|---------------------------------|--------------|--------------------------------------|--------------|-----------------------------------------|----------------|-------------------------------|----------------------------------|-----------------------------|
| Sampling                        | Personnel:   | T. C                                 | o bun        |                                         | Date:          | 4/19/19                       | Company:                         | <del></del> -               |
| Purging/<br>Sampling<br>Device: | Geopo        | мρ                                   |              | Tubing<br>Type:                         | LDIEX          | silican                       | Tubing Inlet:                    |                             |
| Measuring<br>Point:             | Top of Riser | Initial Depth<br>to Water<br>(feet): | 15-10        | Depth to<br>Well Bottom<br>(feet):      | 3 <i>3.5</i> 0 | Well<br>Diameter<br>(inches): |                                  | Screen<br>Length<br>(feet): |
| Casing<br>Type:                 |              |                                      |              | Volume in 1<br>Well Casing<br>(liters): | 45.4           | 8                             | Estimated Purge Volume (liters): | 145 gal                     |
| Sample ID:                      | 5R-0         | 305                                  | Sample Time: | 120                                     | <u> </u>       | QA/QC:                        | non-                             | ۹                           |
| Sample                          | Parameters:  |                                      |              |                                         |                |                               | <del></del>                      |                             |
|                                 | Comments:    |                                      |              |                                         |                |                               |                                  |                             |

#### **PURGE PARAMETERS**

| TIME       | рН    | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|-------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 1120       | 6.90  | 12.15     | 5-31             | 2.60                        | 878            | -118      | 470                       | 15.10                            |
| 1125       | 7.14  | 11-40     | 5.43             | 1-12                        | 452            | -155      | 470                       | 1615                             |
| 1130       | 7.16  | 11.08     | 5.47             | 0.75                        | 466            | -191      | 470                       | 17.31                            |
| 1135       | 6.98  | 11.22     | 5.45             | 0.64                        | 590            | -186      | 470                       | 18.25                            |
| 1140       | 7.26  | 11.23     | 5-44             | 0.58                        | 899            | -212      | 340                       | 19.30                            |
| 1145       | 7.2 C | 11-30     | 5.44             | 0.61                        | 906            | -215      | 260                       | 19.85                            |
| 1150       | 7.24  | 11.47     | 5-42             | 0.59                        | 899            | -218      | 260                       | 20.50                            |
| 1155       | 7.21  | 11.39     | 5-45             | 0.59                        | 910            | -221      | 266                       | 21.42                            |
| 1200       | 7.18  | 11.42     | 5.47             | 0.62                        | 890            | -220      | 260                       | 21.80                            |
|            |       |           |                  |                             |                |           |                           |                                  |
|            |       |           |                  |                             |                |           |                           |                                  |
|            |       |           |                  |                             |                |           |                           |                                  |
|            |       |           |                  |                             |                |           |                           |                                  |
|            |       |           |                  |                             |                |           |                           |                                  |
|            |       |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1   | 1         | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cvl} = \pi r^2 h$ )

| Project:                        | Lapp          | Insula                               | entors       | Site:                                   | Lehoy,  | NY                            | _ Well #:                        | 5R-001                      | 6    |
|---------------------------------|---------------|--------------------------------------|--------------|-----------------------------------------|---------|-------------------------------|----------------------------------|-----------------------------|------|
| Sampling                        | Personnel:    | T. U.                                | rbeca        |                                         | _ Date: | 4/22/19                       | _Company:                        |                             |      |
| Purging/<br>Sampling<br>Device: | 6 eo,         | Punp                                 |              | Tubing<br>Type:                         | WHEN    | Silicon                       | Tubing Inlet:                    |                             |      |
| Measuring<br>Point:             | Top of Riser  | Initial Depth<br>to Water<br>(feet): | 16.11        | Depth to<br>Well Bottom<br>(feet):      | 34.44   | Well<br>Diameter<br>(inches): | 4                                | Screen<br>Length<br>(feet): | 2.23 |
| Casing<br>Type:                 |               |                                      |              | Volume in 1<br>Well Casing<br>(liters): | 45.3    |                               | Estimated Purge Volume (liters): | - 5-5 g                     | al   |
| Sample ID:                      | 5R-00         | Ь                                    | Sample Time: | 1030                                    | ٥       | QA/QC:                        | Done                             | 2                           | 8    |
| Sample                          | e Parameters: |                                      |              |                                         |         |                               |                                  |                             | -    |
|                                 | Comments:     | Th.                                  |              |                                         |         |                               |                                  |                             |      |
|                                 |               |                                      |              |                                         |         |                               |                                  |                             |      |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 0945       | 7.58 | 10-52     | 0.944            | 7.87                        | 365            | 751-      | 440                       | 16-11                            |
| 0950       | 7.49 | 10.54     | 0.911            | 1.54                        | 351            | -143      | 440                       | 16.80                            |
| 0955       | 7.61 | 10.47     | 0.881            | 90                          | 385            | -166      | 370                       | 17.71                            |
| 1000       | 7.62 | 10,50     | 0.873            | 6-93                        | 512            | -177      | 350                       | 1835                             |
| 1005       | 764  | 10.61     | 0-877            | 0-84                        | 535            | -185      | 350                       | 18.95                            |
| 1010       | 7.64 | 10.65     | 0.872            | 0.80                        | 542            | -190      | 350                       | 19-51                            |
| 1015       | 7.64 | 10.68     | 0-867            | 0-76                        | 553            | -195      | 350                       | 20-45                            |
| 1020       | 7.63 | 10.68     | 0.864            | 0.72                        | 515            | -178      | 350                       | 21.40                            |
| 1025       | 7.65 | 10.79     | 0.866            | 0,71                        | 458            | - 295     | 350                       | 27.48                            |
| 1030       | 7.66 | 10.67     | 0-867            | 0.70                        | 450            | -704      | 350                       | 23.15                            |
|            |      | 127       |                  | 2                           |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           | ь 1                              |
|            |      | _         |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 | =00                       |                                  |

Information: WATER VOLUMES—0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cyl} = \pi r^2 h$ )

| Project:                        | Lapp ]        | Ins.late                             | >3           | Site:                                   | LeRo  | 7,17                                    | _ Well #:                        | 5R-101                      |      |
|---------------------------------|---------------|--------------------------------------|--------------|-----------------------------------------|-------|-----------------------------------------|----------------------------------|-----------------------------|------|
| Sampling                        | Personnel:    | T.O.                                 | rb-en        |                                         | Date: | 4/17/19                                 | _Company:                        |                             |      |
| Purging/<br>Sampling<br>Device: | Ссер          | cmp                                  |              | Tubing<br>Type:                         | LDFEJ | silian                                  | _ Tubing Inlet:                  | 9                           |      |
| Measuring<br>Point:             | Top of Riser  | Initial Depth<br>to Water<br>(feet): | 6.81         | Depth to<br>Well Bottom<br>(feet):      | 44.58 | Well<br>Diameter<br>(inches):           | _4                               | Screen<br>Length<br>(feet): |      |
| Casing<br>Type:                 |               |                                      | 10           | Volume in 1<br>Well Casing<br>(liters): | 93,3  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Estimated Purge Volume (liters): | ~15 gal                     |      |
| Sample ID:                      | 5R-1          | 01                                   | Sample Time: | 1449                                    | 5     | QA/QC:                                  | no                               | ne                          |      |
| Sample                          | e Parameters: |                                      |              |                                         |       |                                         |                                  |                             |      |
|                                 | Comments:     | george                               | mp max       | ed out                                  |       |                                         |                                  |                             | -140 |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 1240       | 7.44 | 13,10     | 1-16             | 1-46                        | 71000          | -110      | 350                       | 681                              |
| 1245       | 7.33 | 11.70     | 1.24             | 1.32                        | 930            | -118      | 350                       | 7.07                             |
| 1250       | 7.22 | 11.54     | して多              | 1.05                        | 302            | -121      | 350                       | 7.18                             |
| 1255       | 7.05 | 12.02     | 1-18             | 0-86                        | 139            | -122      | 375                       | 7.25                             |
| 1300       | 6.90 | 11.42     | 1.06             | 0.90                        | 131            | -125      | 450                       | 7.25                             |
| 1305       | 681  | 11.05     | 1-11             | 0-88                        | 102            | -125      | 475                       | 7.36                             |
| 1310       | 6 69 | 10.95     | 1.04             | 0.98                        | 128            | -122      | 475                       | 7.30                             |
| 1315       | 6.69 | 10.94     | 1.06             | 1.11                        | 157            | -120      | 475                       | 7.30                             |
| 1320       | 6.69 | 10.93     | 1.06             | 094                         | 198            | -/17      | 475                       | 7.30                             |
| 1325       | 6.55 | 10.62     | 1.06             | 0-93                        | 243            | -12/      | 500                       | 7.38                             |
| 1330       | 6.50 | 10.70     | 1.06             | 0.80                        | 31-2           | -124      | 500                       | 7.44                             |
| 1335       | 6.48 | 10-70     | 1.06             | 0.85                        | 30.8           | -126      | 500                       | 7.47                             |
| 1340       | 4.46 | 10.69     | 1.06             | 0.92                        | 24.6           | -129      | 500                       | 7.50                             |
| 1345       | 6.45 | 10-70     | 1.07             | 1.09                        | 12.0           | -131      | 500                       | 7.52                             |
| 1350       | 6.44 | 10.72     | 1.08             | 1.15                        | 10-1           | -132      | 500                       | 7.52                             |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cvl} = \pi r^2 h$ )

| Project:                        | Lapp         | Insc                                 | lators       | Site:                                   | LeR     | DY, NY                  | _ Well #:                                 | SR-101                      |
|---------------------------------|--------------|--------------------------------------|--------------|-----------------------------------------|---------|-------------------------|-------------------------------------------|-----------------------------|
| Sampling                        | Personnel:   | T- U,                                | ben          |                                         | _ Date: | 4/17/19                 | _Company:                                 |                             |
| Purging/<br>Sampling<br>Device: | Leof         | Ромр                                 |              | Tubing<br>Type:                         | LOPE +  | 5. (icol                | _ Tubing Inlet:                           |                             |
| Measuring<br>Point:             | Top of Riser | Initial Depth<br>to Water<br>(feet): | L-81         | Depth to<br>Well Bottom<br>(feet):      | 44.58   | Well Diameter (inches): | 4                                         | Screen<br>Length<br>(feet): |
| Casing<br>Type:                 |              |                                      |              | Volume in 1<br>Well Casing<br>(liters): | 93.3    | ,<br>-                  | Estimated<br>Purge<br>Volume<br>(liters): | 15 gul                      |
| ·                               | SR-14        | 21                                   | Sample Time: | 1445                                    | 5       | _ QA/QC:                | Non                                       | e                           |
|                                 | Comments:    | geop                                 | cinp me      | axed c                                  | +<br>+  |                         |                                           |                             |

## **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 1355       | 6.44 | 10.76     | 1.08             | 1-28                        | 1-9            | -133      | 500                       | 7.55                             |
| 1400       | 6.38 | 10-71     | 1.08             | 0-64                        | 5.7            | -132      | 5000                      | 7.55                             |
| 1405       | 6.37 | 10.73     | 1.08             | 0-67                        | 0.5            | -133      | 500                       | 7.55                             |
| 1410       | 6.41 | 10.68     | 1.08             | 0.69                        | 0.0            | -136      | 500                       | 7.55                             |
| 1415       | 6.76 | 10.74     | 1-07             | 0.68                        | 0.0            | -153      | 500                       | 7.57                             |
| 1420       | 6.82 | 10.77     | 1.07             | 0.69                        | 0.0            | -159      | 500                       | 7.57                             |
| 1425       | 696  | 10.81     | 1.07             | 0.69                        | 0.0            | -165      | 500                       | 7.5%                             |
| 1430       | 6.83 | 10.78     | 1.07             | 0-69                        | 0.0            | -159      | 500                       | 7.60                             |
| 1435       | 6,72 | 10.82     | 1.07             | 0-69                        | 0.0            | -155      | 500                       | 7.60                             |
| 1440       | 1-67 | 10.86     | 1.07             | 0.69                        | <i>٥٥</i>      | -154      | 7500                      | 7.60                             |
| 1445       | 6.68 | 10.83     | 1.07             | 0-69                        | 0.0            | -158      | 500                       | 7.60                             |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  | 1         | 3%               | 10%                         | 10%            | + or - 10 |                           | 108-                             |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cyl} = \pi r^2 h$ )

| Project: Lapp Insulators Site: Leho                                            | 7, NT Well#: SR-104                           |
|--------------------------------------------------------------------------------|-----------------------------------------------|
| Sampling Personnel: Date:                                                      | 4/18/19 Company:                              |
| Purging/ Sampling Device: Geofonf Tubing Type: LPFE+                           | - Sごうこの Tubing Inlet:                         |
| Measuring Point: Top of Riser (feet): 10.75 Depth to Well Bottom (feet): 27.75 | Well Screen Diameter Length (inches): (feet): |
| Casing Volume in 1 Well Casing Type: (liters):                                 | Estimated Purge Volume (liters): 5 9          |
| Sample ID: 5 R - 10 Y Sample Time: 10 35  Sample Parameters:                   | QA/QC: 1012                                   |
| Comments: dark grey color                                                      |                                               |

#### **PURGE PARAMETERS**

| TIME       | pН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |              |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|--------------|
| 0945       | 8.03 | 12.12     | 0.571            | 2.44                        | 71000          | -45       | 400                       | 10.75                            |              |
| 0950       | 7.53 |           | 0.537            | 1.07                        | 452            | -102      | 400                       | 11.37                            |              |
| 1000       | 7.26 | 9.28      | 0.604            | 0-78                        | 269            | -108      | 430                       | 12.05                            |              |
| 1005       | 7.27 | 9.35      | 0.606            | 0-70                        | 212            | -112      | 350                       | 12-11                            |              |
| 1010       | 7.31 | 9.42      | 0.608            | 0.66                        | 166            | -115      | 350                       | 17.16                            | <b>:</b> .   |
| 1015       | 7.25 | 9.54      | 0.607            | 0.64                        | 148            | -114      | 350                       | (2.72)                           |              |
| 1020       | 7-21 | 10.27     | 0.597            | 0.60                        | 177            | -114      | 350                       | 12.22                            |              |
| 1025       | 7.17 | 10.35     | 0.598            | 0.58                        | 109            | -113      | 300                       | 12.30                            | - point mara |
| 1030       | 7.15 | 10-50     | 0.602            | 0.57                        | 101            | -114      | 300                       | 17-17                            |              |
| 1035       | 7-19 | 10-51     | 0-600            | 0.58                        | 97.3           | -1/6      | 300                       | 12.15                            |              |
|            |      |           |                  |                             |                |           |                           |                                  |              |
|            |      |           |                  |                             |                |           |                           |                                  |              |
|            |      |           |                  |                             |                |           |                           |                                  |              |
|            |      | ,         |                  |                             |                | . 7       |                           |                                  |              |
|            | r    |           |                  |                             |                |           |                           |                                  |              |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                                  | l            |

Information: WATER VOLUMES-0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{ovl} = \pi r^2 h$ )

| Project:                        | Lapp ]       | Insulate                             | ×'S          | Site:                                   | LeRoy  | y NY                          | _ Well #:                                 | 5K-105                      |
|---------------------------------|--------------|--------------------------------------|--------------|-----------------------------------------|--------|-------------------------------|-------------------------------------------|-----------------------------|
| Sampling                        | Personnel:   | T. U.                                | been         |                                         | Date:  | 4/22/19                       | _Company:                                 |                             |
| Purging/<br>Sampling<br>Device: | Geofu        | мр                                   |              | Tubing<br>Type:                         | LDPEOS | ilican                        | Tubing Inlet:                             |                             |
| Measuring<br>Point:             | Top of Riser | Initial Depth<br>to Water<br>(feet): | 13.47        | Depth to<br>Well Bottom<br>(feet):      | 27.30  | Well<br>Diameter<br>(inches): | 4                                         | Screen<br>Length<br>(feet): |
| Casing<br>Type:                 |              |                                      | 5            | Volume in 1<br>Well Casing<br>(liters): | 342    |                               | Estimated<br>Purge<br>Volume<br>(liters): | 24.5gel                     |
| Sample ID:                      | SR-10;       | 5                                    | Sample Time: | 0850                                    | )      | QA/QC:                        | none                                      | n                           |
| Sample                          | Parameters:  |                                      |              |                                         |        |                               |                                           | <u> </u>                    |
|                                 | Comments:    |                                      |              |                                         |        |                               |                                           |                             |

#### **PURGE PARAMETERS**

|            |      |           |                  | 100000                         |                |           |                           |                                  |
|------------|------|-----------|------------------|--------------------------------|----------------|-----------|---------------------------|----------------------------------|
| TIME       | pН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub><br>(mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
| 0800       | 6.14 | 12.36     | 3.67             | 2.88                           | 65.8           | 141       | 250                       | 13,47                            |
| 2805       | 6.55 | 12.31     | 3.70             | 2.05                           | 75-9           | 6         | 250                       | 13.91                            |
| 0810       | 6.67 | 12.21     | 3.73             | 1.59                           | 55.9           | -38       | 250                       | 14.05                            |
| 0815       | 6.75 | 11.88     | 3.79             | 1-11                           | 18-7           | -63       | 250                       | 14-70                            |
| 0820       | 6.69 | 11.56     | 3-80             | 1-00                           | 9.1            | -67       | 250                       | 15-24                            |
| 8825       | 6-63 | 11-40     | 3.83             | 0.93                           | 5-8            | -70       | 250                       | 15-72                            |
| 0830       | 6.55 | 11-26     | 3.85             | 0.88                           | 6              | -71       | 250                       | 16.33                            |
| 0835       | 6.51 | 11-12     | 3.86             | 0.85                           | 7.3            | -72       | 250                       | 16.78                            |
| 0840       | 6.72 | 11.09     | 3-87             | 0:79                           | 6.2            | -87       | 350                       | 17.45                            |
| 0845       | 6.68 | 10.95     | 3.88             | 0.79                           | 5.9            | -87       | 350                       | 17.80                            |
| 0850       | 6.66 | 11.04     | 3.88             | 0.77                           | 5-8            | -86       | 350                       | 18.42                            |
|            |      |           |                  |                                |                |           |                           |                                  |
|            | -    |           |                  |                                |                |           |                           |                                  |
|            |      |           |                  |                                |                |           |                           |                                  |
|            |      |           |                  |                                |                |           |                           | -                                |
| Tolerance: | 0.1  | 1         | 3%               | 10%                            | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cyl} = \pi r^2 h$ )

| Project:                        | Lafe         | Insulai            | tors         | Site:                                   | Leloy | 1,NT           | _ Well #:                        | 5R-106            |
|---------------------------------|--------------|--------------------|--------------|-----------------------------------------|-------|----------------|----------------------------------|-------------------|
| Sampling                        | Personnel:   | T- U               | ban          |                                         | Date: | 4/1/19         | Company:                         |                   |
| Purging/<br>Sampling<br>Device: | Gee          | PCMP Initial Depth |              | Tubing<br>Type:<br>Depth to             | LPF = | Sirsin<br>Well | _ Tubing Inlet:                  | Screen            |
| Measuring<br>Point:             | Top of Riser | to Water           | 22.68        |                                         | 34.90 |                | 4                                | Length<br>(feet): |
| Casing<br>Type:                 |              |                    |              | Volume in 1<br>Well Casing<br>(liters): | 30.7  |                | Estimated Purge Volume (liters): | 26 gal            |
| Sample ID:                      |              |                    | Sample Time: | 162                                     | 20    | QA/QC:         | Non                              | ۹                 |
| Sample                          | Parameters:  |                    |              | _ t d                                   |       |                |                                  | ¥                 |
|                                 | Comments.    | geofo              | arp weeks    | ed out                                  |       |                |                                  |                   |

#### **PURGE PARAMETERS**

| TIME       | РH   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O₂<br>(mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|--------------------|----------------|-----------|---------------------------|----------------------------------|
| 1520       | 7.01 | 13.16     | 1.99             | 1.37               | 54.3           | -97       | 400                       | 55-12                            |
| 1525       | 6.93 | 12-78     | 1-99             | 1.17               | 567            | -98       | 400                       | 27-56                            |
| 1530       | 4-88 | 13.54     | 1.94             | 0.92               | 41.5           | -162      | 400                       | 22.36                            |
| 1535       | 6.87 | 13-16     | 1.98             | 0.81               | 33.7           | -105      | 400                       | 22.88                            |
| 1540       | 6.94 | 12.99     | 2.00             | 0.76               | 28.1           | -112      | 400                       | 22-90                            |
| 1545       | 6.92 | 25. [3]   | 2-00             | 0.71               | 25.7           | -/13      | 400                       | 22.90                            |
| 1550       | 6.88 | 13.31     | 202              | 0.64               | 20-1           | -112      | 400                       | 72.98                            |
| 1555       | 6.84 | 14,90     | 2.00             | 0.56               | 19.3           | -112      | 400                       | 22.95                            |
| 1600       | 6.80 | 14.92     | 2.01             | 0.56               | 16-1           | -112      | 400                       | 22.95                            |
| 1605       | 6.77 | 14.87     | 2-14             | 0.54               | 150            | -//0      | 400                       | 22.95                            |
| 1610       | 6.96 | 14.85     | 2-17             | 0.52               | 14.3           | -120      | 400                       | 22.96                            |
| 1615       | 6-97 | 14.88     | 2-21             | 051                | 13.7           | -121      | 400                       | 2296                             |
| 1620       | 6-97 | 14.48     | 2.72             | 0.52               | 12.4           | -121      | 400                       | 2296                             |
|            |      |           |                  |                    |                |           |                           |                                  |
|            |      |           |                  |                    |                |           |                           |                                  |
| Tolerance: | 0.1  |           | 3%               | 10%                | 10%            | + or - 10 |                           |                                  |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cvl} = \pi l^2 h$ )

| Project:                        | Lapp I       | nsulat                               | er5          | Site:                                   | Lehoy  | , NY                    | _ Well #:                        | SR-108                      |
|---------------------------------|--------------|--------------------------------------|--------------|-----------------------------------------|--------|-------------------------|----------------------------------|-----------------------------|
| Sampling                        | Personnel:   | T-Url                                | æn_          |                                         | Date:  | 4/18/19                 | _Company:                        | _                           |
| Purging/<br>Sampling<br>Device: | Geope        | •                                    | ****         | •                                       | LDIEL: |                         | _Tubing Inlet:                   |                             |
| Measuring<br>Point:             | Top of Riser | Initial Depth<br>to Water<br>(feet): | 12.18        | Depth to<br>Well Bottom<br>(feet):      | 36.20  | Well Diameter (inches): | 4                                | Screen<br>Length<br>(feet): |
| Casing<br>Type:                 |              |                                      |              | Volume in 1<br>Well Casing<br>(liters): | 59.3   | <b>;</b><br>-           | Estimated Purge Volume (liters): | 25 gal                      |
| Sample ID:                      | SR-10        | 8                                    | Sample Time: | 0915                                    |        | _ QA/QC:                | Non                              | <u>e</u>                    |
| Sample                          | Parameters:  |                                      |              |                                         |        |                         |                                  |                             |
|                                 | Comments:    | rust                                 | color        | purge                                   | meter  |                         |                                  |                             |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | Eh (mV)   | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(feet btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|----------------------------------|
| 0820       | 8.46 | 12.61     | 0.893            | 5.90                        | 193            | 49        | 710                       | 12.18                            |
| 0825       | 8-61 | 11.16     | 0.898            | 1.69                        | 178            | -26       | 310                       | 13.30                            |
| 0830       | 8.59 | 11.17     | 0.894            | 1.17                        | 143            | -67       | 310                       | 13.82                            |
| 0835       | 8.58 | 11.20     | 0.887            | 0.99                        | 157            | -85       | 310                       | 14.40                            |
| 0840       | 8.55 | 10.80     | 0.895            | 0.92                        | 134            | -104      | 310                       | 14.94                            |
| 0845       | 8.42 | 10.69     | 0-897            | 0.85                        | 124            | -121      | 310                       | 15.60                            |
| 0850       | 8.38 | 10.76     | 0.895            | 0.81                        | 98.5           | -135      | 3/0                       | 16.25                            |
| 0855       | 8.33 | 10.85     | 0.892            | 0.79                        | 80.4           | -137      | 310                       | 16-67                            |
| 0900       | 8-18 | 10.61     | 0-896            | 0.80                        | 104            | -132      | 310                       | 17-17                            |
| 0905       | 8.19 | 10.86     | 0.890            | 0.72                        | 59.4           | -136      | 3/0                       | 17-70                            |
| 0910       | 8.16 | 10.89     | 0.889            | 0.70                        | 50,4           | -137      | 310                       | 18-10                            |
| 0915       | 8.12 | 10.95     | 0.890            | 0.68                        | 49-6           | -139      | 310                       | 18.65                            |
|            |      |           |                  |                             | <u>-</u>       |           |                           |                                  |
|            | _    |           |                  |                             |                |           |                           |                                  |
|            |      |           |                  |                             |                |           |                           |                                  |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           | -                                |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft ( $vol_{cyl} = \pi r^2 h$ )

# ATTACHMENT 2 FIELD NOTES

| 1 Wx: 49 | 5-65°F, far | tly electly, colu |
|----------|-------------|-------------------|
|          |             |                   |
|          |             |                   |
| LOCIO    | TIME        | DTW               |
| 5R-108   | 0959        | 12,10             |
| 5R-104   | 100i        | 10.86             |
| 5R-003   | 1007        | 17.01             |
| 52-002   | 1009        | 12.88             |
| 52-001   | 1011        | 9.46              |
| 5R-006   | 1024        | 15.90             |
| BRW-01   | 1029        | 12-75             |
| 5R-105   | 1044        | 13-68             |
| SR-005   | 1050        | 15-02             |
| 5R-004   | 101         | 5.52              |
| BRW-02   | 1142        | 12.77             |
| SR-1061  | 1204        | 27.68             |
| SR-1061  | 1212        | 6.81              |
|          |             |                   |
|          |             | 4 5 2 3           |
|          |             |                   |
|          |             |                   |
|          |             |                   |

| 0730                | calibrate | Horiba  |
|---------------------|-----------|---------|
|                     | Standard  | reading |
| PH                  | 4.0       | 4.00    |
| cond                | 4.49      | 4.49    |
| pH<br>cond<br>Turb. | 0.0       | 0.0     |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |
|                     |           |         |

Location LoRoy, NY Date 4/19/19 17

Project / Client Lorf Insulators

| 0 | 73  | <u>ن</u> |    | Cod  | i.   | ١  | 2+8 | > | H   | ٥.٠        | کار | -        |  |
|---|-----|----------|----|------|------|----|-----|---|-----|------------|-----|----------|--|
|   | HOI |          | 5+ | el a | وأحد | rd |     | • | r e | 3.5<br>4.5 | 11  | <u> </u> |  |
|   | i J |          |    | 11   |      |    |     |   | -   | 2 (        |     | 7        |  |
| 1 | 1 [ | ì.       |    | ',   | , ,  | C2 |     |   | •   | رين<br>ق   |     | _        |  |
| ( | 01  | - لای    |    | 4    | . 4  | 7  |     |   | 4   | 1. 5       | ' C |          |  |
|   | U   | トタ       | •  |      | O_   | 0  |     |   |     | 0          | -C  |          |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |
|   |     |          |    | -    |      |    |     |   |     |            |     |          |  |
|   |     |          | _  |      | _    |    |     |   |     |            |     |          |  |
|   |     |          |    |      | _    |    | _   |   |     |            | _   |          |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |
|   |     |          |    |      |      |    |     |   |     |            | _   |          |  |
|   |     | -        | _  | -    |      |    |     |   |     |            | _   |          |  |
| - |     | _        | j  |      |      |    |     |   |     |            |     | _        |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |
|   |     | i        |    |      |      |    |     |   |     |            |     |          |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |
|   |     | •        |    |      |      |    |     |   |     |            | _   |          |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |
|   |     |          |    | _    |      |    |     |   |     |            |     |          |  |
|   |     |          |    |      |      |    |     |   |     |            | _   |          |  |
|   |     |          |    |      |      |    |     |   |     |            | _   |          |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |
|   |     |          |    |      |      |    |     |   |     |            |     |          |  |

## **ATTACHMENT 3**

# DATA USABILITY SUMMARY REPORT

(on CD for hard copy)

#### DATA USABILITY SUMMARY REPORT

# LAPP INSULATOR COMPANY GROUNDWATER SAMPLING LEROY, NEW YORK WORK ASSIGNMENT NO. D007622-11.2 SITE ID# 819017

#### **Analyses Performed by:**

# EUROFINS TESTAMERICA AMHERST, NEW YORK AND NASHVILLE, TENNESSEE

#### Prepared for:

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION

Prepared by:

URS CORPORATION
257 WEST GENESEE STREET
BUFFALO, NY 14202

**JUNE 2019** 

#### TABLE OF CONTENTS

| Page No.                                                 |
|----------------------------------------------------------|
| INTRODUCTION1                                            |
| ANALYTICAL METHODOLOGIES AND DATA VALIDATION PROCEDURES1 |
| DATA DELIVERABLE COMPLETENESS2                           |
| SAMPLE RECEIPT/ PRESERVATION/HOLDING TIMES2              |
| NON-CONFORMANCES                                         |
| SAMPLE RESULTS AND REPORTING3                            |
| SUMMARY4                                                 |
|                                                          |
| TABLES                                                   |
| (Following Text)                                         |
| Validated Groundwater Sample Analytical Results          |
| Validated Field QC Sample Analytical Results             |
|                                                          |
|                                                          |

#### **ATTACHMENTS**

Attachment A – Form 1s

Attachment B - Support Documentation

#### I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B - Guidance for Data Deliverables and the Development of Data Usability Summary Reports, May 2010. The samples were collected from the Lapp Insulator site (Site No. 819017) in support of NYSDEC Work Assignment # D007622-11.2.

## II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION PROCEDURES

The data being evaluated is from the April 17-22, 2019 sampling of 13 groundwater samples, 1 matrix spike/matrix spike duplicate pair (MS/MSD), 1 field duplicate (FD) sample, and 4 trip blanks (TB). The analytical laboratory that performed the analyses is Eurofins TestAmerica located in Amherst, NY and Nashville, TN. The samples were analyzed for the following parameters. Not all samples were analyzed for all parameters.

| Matrix      | Parameter                                                      | Method      |
|-------------|----------------------------------------------------------------|-------------|
| Groundwater | Target Compound List (TCL) Volatile<br>Organic Compounds (VOC) | SW8260C     |
|             | 1,4-Dioxane                                                    | SW8270D SIM |
| # 57<br>#3  | Total/Dissolved Iron and Manganese                             | SW6010C     |
|             | Chemical Oxygen Demand (COD)                                   | 410.4       |
|             | Nitrate and Sulfate                                            | 300.0       |
|             | Biochemical Oxygen Demand (BOD <sub>5</sub> )                  | SM5210B     |

A limited data validation was performed following the guidelines in the following USEPA Region II document (where applicable):

Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry,
 SW-846 Method 8260B & 8260C, SOP HW-24, Rev. 4, October 2014;

- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry,
   SW-846 Method 8270D, SOP HW-22, Rev. 5, December 2010;
- ICP-AES Data Validation, SOP HW-3a, Rev. 1, September 2016; and
- Mercury and Cyanide Data Validation, SOP HW-3c, Rev. 1, September 2016.

The limited validation included a review of: completeness of all required deliverables; holding times; quality control (QC) results [blanks, instrument tunings, calibration standards, duplicate analyses, and laboratory control sample (LCS) recoveries] to determine if the data are within the protocol-required limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and laboratory data qualifiers.

Qualifications applied to the data during the limited data validation include 'J' (estimated concentration), 'J+' (estimated concentration biased high), 'J-' (estimated concentration biased low), 'UJ' (estimated quantitation limit), and 'R' (rejected). Definitions of USEPA data qualifiers are presented at the end of this text. A summary of data qualifications is presented on Table 1. The validated analytical results are presented on Table 2 (groundwaters) and Table 3 (field QC). Copies of validated laboratory analytical summaries (Form 1s) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

#### III. DATA DELIVERABLE COMPLETENESS

The laboratory deliverable data packages were equivalent to NYSDEC Analytical Services Protocol (ASP) Category B (or CLP-like) requirements.

#### IV. SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved and under proper chain-of-custody (COC). All samples were analyzed within the required holding times (HT) with the following exceptions:

Samples BRW-01, FD-20190422 (BRW-01), BRW-02, SR-004, SR-005, SR-006, and SR-105 were analyzed for nitrate outside of the 48 hr. HT due to laboratory error. The non-detect results for nitrate in these samples have been qualified 'UJ'.

Samples FD-20190422 (BRW-01), SR-002, SR-003, SR-004, and SR-106 were analyzed for BOD<sub>5</sub> outside of the 48 hr. HT due to a laboratory error. The results for BOD<sub>5</sub> in these samples have been qualified 'UJ'.

#### V. NON-CONFORMANCES

#### • Instrument Calibration

The relative response factor (RRF) for VOCs 2-butanone, 2-hexanone, 4-methyl-2-pentanone, acetone, and/or methyl acetate were below the QC limit of 0.100 in the initial and continuing calibrations (ICAL/CCAL). The non-detect results for the associated samples listed on Table 1 have been qualified 'R', while the detected results were qualified 'J'.

The percent difference (%D) between the ICAL average RRF and the RRFs in the CCAL standard were greater than 20% for VOC 1,2,4-trichlorobenzene, and showed a decreasing response. The results for the associated samples listed on Table 1 have been qualified 'UJ'.

The percent recoveries (%Rs) of manganese (Mn) in the metals continuing calibration verifications (CCVs) were greater than the upper QC limit (i.e., >110%, but  $\leq$  125%) in some of the analytical sequences. The detected results for Mn in the associated samples listed on Table 1 have been qualified 'J+'.

The %Rs of Mn and iron (Fe) in the metals CCVs were less than the lower QC limit (i.e., >75%, but< 89%) in some of the analytical sequences. The detected results for these metals in the associated samples listed on Table 1 have been qualified 'J-'.

#### • Laboratory Control Sample (LCS)

The %R of the BOD<sub>5</sub> LCS was below QC limits. The associated samples listed on Table 1 have been qualified 'UJ'.

#### • Field Duplicates

A FD was collected at the sample location BRW-01. The FD relative percent differences (RPD) exhibited good analytical precision (e.g., <50%).

#### VI. SAMPLE RESULTS AND REPORTING

All quantitation/detection limits were reported in accordance with method requirements and were adjusted for sample volume and dilution factors. Detected results below the quantitation limits were qualified 'J' by the laboratory.

Several samples were analyzed for VOCs utilizing dilutions due to elevated levels of target compounds. The detection limits reported for the non-detect compounds represent the lowest achievable at the dilution factor used during the analysis.

#### VII. **SUMMARY**

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified 'R' (rejected) are not useable. Those results qualified 'UJ' (estimated quantitation limit), 'J' (estimated concentration), 'J+' (estimated concentration biased high), and 'J-' (estimated concentration biased low) during the data review are considered conditionally usable. All other sample results are usable as reported. URS does not recommend the re-collection of any samples at this time.

Prepared By: Ann Marie Kropovitch, Chemist Date: 6/27/19

Reviewed By: Peter R. Fairbanks, Senior Chemist P Date: 6/27/19

#### **DEFINITIONS OF USEPA DATA QUALIFIERS**

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- (J+) The result is an estimated quantity. The associated numerical value is biased high.
- (J-) The result is an estimated quantity. The associated numerical value is biased low.
- UJ The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- D The sample result was reported from a secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified' and the associated numerical value represents its approximate concentration.

# TABLE 1 SUMMARY OF DATA QUALIFICATIONS LAPP INSULATOR COMPANY

|                                                                                                                                 |                  |                                                                                                                         | (4)                                                       |
|---------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| SAMPLE ID                                                                                                                       | FRACTION         | ANALYTICAL DEVIATION                                                                                                    | QUALIFICATION                                             |
| BRW-01, FD-20190422 (BRW-01), BRW-02, SR-004, SR-005, SR-006, SR-101, SR-105, SR-106, TB-20190417, TB-20190419, and TB-20190422 | VOC              | RRF < QC limit of 0.100 in the ICAL/CCAL for 2-butanone, 2-hexanone, 4-methyl-2-pentanone, acetone, and methyl acetate. |                                                           |
| SR-001, SR-002, SR-108, and<br>TB-20190418                                                                                      | VOC              | RRF < QC limit of 0.100 in the ICAL/CCAL for 2-butanone, 2-hexanone, and acetone.                                       | Qualify non-detect results 'R'.                           |
| SR-003 and SR-104                                                                                                               | VOC              | RRF < QC limit of 0.100 in the ICAL/CCAL for 2-butanone and acetone.                                                    | Qualify detected results 'J' and non-detect results 'R'.  |
| SR-105 and TB-20190422                                                                                                          | VOC              | %D between the ICAL average RRF and the CCAL RRF >20% for 1,2,4-trichlorobenzene.                                       | Qualify non-detect results 'UJ'.                          |
| BRW-01, FD-20190422 (BRW-<br>01), BRW-02, SR-004, and SR-<br>005, SR-006, and SR-105                                            | Metals           | CCV %R between 110%-125% for Mn (Dissolved).                                                                            | Qualify detected results 'J+'.                            |
| BRW-01, FD-20190422 (BRW-01), BRW-02, SR-001, SR-002, SR-003, SR-004, and SR-005, SR-006, SR-104, SR-105, and SR-108            | Metals           | CCV %R between 110%-125% for Mn (Total).                                                                                | Qualify detected results 'J+'.                            |
| SR-101 and SR-106                                                                                                               | Metals           | CCV %R between 75%-89% for Mn (Dissolved).                                                                              | Qualify detected results 'J-'.                            |
| SR-101 and SR-106                                                                                                               | Metals           | CCV %R between 75%-89% for Fe (Total).                                                                                  | Qualify detected results 'J-'.                            |
| SR-001, SR-002, SR-003, SR-<br>104, and SR-108                                                                                  | Metals           | CCV %R between 75%-89% for Fe (Dissolved).                                                                              | Qualify detected results 'J-'.                            |
| FD-20190422 (BRW-01), SR-<br>002, SR-003, SR-004, and SR-<br>106                                                                | Wet<br>Chemistry | BOD <sub>5</sub> analyzed outside of the 48 hr. holding time.                                                           | Qualify non-detect results 'UJ'.                          |
| BRW-01, FD-20190422 (BRW-01), BRW-02, SR-004, SR-005, SR-006, and SR-105                                                        | Wet<br>Chemistry | Nitrate analyzed outside of the 48 hr. holding time.                                                                    | Qualify non-detect results 'UJ'.                          |
| BRW-01, SR-105, and SR-006                                                                                                      | Wet<br>Chemistry | LCS %R < QC limit for BOD₅.                                                                                             | Qualify detected results 'J' and non-detect results 'UJ'. |

| Location ID                            |       | BRW-01      | BRW-01                | BRW-02      | SR-001      | SR-002      |  |
|----------------------------------------|-------|-------------|-----------------------|-------------|-------------|-------------|--|
| Sample ID                              |       | BRW-01      | FD-20190422           | BRW-02      | SR-001      | SR-002      |  |
| Matrix                                 |       | Groundwater | Groundwater           | Groundwater | Groundwater | Groundwater |  |
| Depth Interval (ft)                    |       | •           | •                     | -           | -           |             |  |
| Date Sampled                           |       | 04/22/19    | 04/22/19              | 04/19/19    | 04/18/19    | 04/18/19    |  |
| Parameter                              | Units |             | Field Duplicate (1-1) |             |             |             |  |
| Volatile Organic Compounds             |       |             | -                     |             |             |             |  |
| 1,1,1-Trichloroethane                  | UG/L  | 100         | 99                    | 4,000       | 1.0 U       | 86          |  |
| 1,1,2,2-Tetrachioroethane              | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 ປ       | 1.0 U       |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,1,2-Trichloroethane                  | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,1-Dichloroethane                     | UG/L  | 210         | 200                   | 3,700       | 61          | 97          |  |
| 1,1-Dichloroethene                     | UG/L  | 54          | 51                    | 170         | 0.62 J      | 20          |  |
| 1,2,4-Trichlorobenzene                 | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 10 U        | 10 U                  | 200 U       | 10 U        | 10 U        |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,2-Dichlorobenzene                    | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,2-Dichloroethane                     | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,2-Dichloroethene (cis)               | UG/L  | 52          | 50                    | 20 U        | 27          | 1,800 D     |  |
| 1,2-Dichloroethene (trans)             | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | . 29        | 26          |  |
| 1,2-Dichloropropane                    | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,3-Dichlorobenzene                    | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,3-Dichloropropene (cis)              | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,3-Dichloropropene (trans)            | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 1,4-Dichlorobenzene                    | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |
| 2-Hexanone                             | UG/L  | R           | R                     | - R         | R           | R           |  |
| 4-Methyl-2-pentanone                   | UG/L  | R           | R                     | R ·         | 10 U        | 10 U        |  |
| Acetone                                | UG/L  | R           | R                     | R           | R           | R           |  |
| Benzene                                | UG/L  | 0.85 J      | 0.78 J                | 20 U        | 1.0 U       | 1.0 U       |  |
| Bromodichloromethane                   | UG/L  | 1.0 U       | 1.0 U                 | 20 U        | 1.0 U       | 1.0 U       |  |

Flags assigned during chemistry validation are shown.

| Location ID                      |             | BRW-01      | BRW-01                            | BRW-02      | SR-001      | SR-002      |  |
|----------------------------------|-------------|-------------|-----------------------------------|-------------|-------------|-------------|--|
| Sample ID                        |             | BRW-01      | FD-20190422                       | BRW-02      | SR-001      | SR-002      |  |
| Matrix                           |             | Groundwater | Groundwater                       | Groundwater | Groundwater | Groundwater |  |
| Depth Interval (ft)              |             | -           | -                                 | •           | -           | -           |  |
| Date Sampled                     | <del></del> | 04/22/19    | 04/22/19<br>Field Duplicate (1-1) | 04/19/19    | 04/18/19    | 04/18/19    |  |
| Parameter                        | Units       |             | Troid Supiloate (1-1)             |             |             | <           |  |
| Volatile Organic Compounds       |             |             |                                   |             |             |             |  |
| Bromoform                        | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Bromomethane                     | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Carbon disulfide                 | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 0.48 J      |  |
| Carbon tetrachloride             | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Chlorobenzene                    | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Chloroethane                     | UG/L        | 0.51 J      | 0.57 J                            | 7.9 J       | 1.0 U       | 1.0 U       |  |
| Chloroform                       | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Chloromethane                    | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Cyclohexane                      | UG/L        | 4.8 J       | 4.5 J                             | 20 J        | 5.0 U       | 5.0 U       |  |
| Dibromochloromethane             | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | _ 1.0 U     |  |
| Dichlorodifluoromethane          | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Ethylbenzene                     | UG/L        | 0.39 J      | 0.41 J                            | 20 U        | 1.0 U       | _ 1.0 U     |  |
| Isopropylbenzene (Cumene)        | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Methyl acetate                   | UG/L        | R           | R                                 | Я           | 10 U        | 10 U        |  |
| Methyl ethyl ketone (2-Butanone) | UG/L        | R           | R                                 | R           | R           | R           |  |
| Methyl tert-butyl ether          | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Methylcyclohexane                | UG/L        | 8.2         | 7.8                               | 22 J        | 0.68 J      | 5.0 U       |  |
| Methylene chloride               | UG/L        | 5.0 U       | 5.0 U                             | 100 U       | 5.0 U       | 5.0 U       |  |
| Styrene                          | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Tetrachloroethene                | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |
| Toluene                          | UG/L        | 1.7         | 1.7                               | 8.0 J       | 1.0 U       | 1.0 U       |  |
| Trichloroethene                  | UG/L        | 76          | 75                                | 14 J        | 6.4         | 4,300 D     |  |
| Trichlorofluoromethane           | UG/L        | 1.0 U       | 1.0 U                             | 20 U        | 1.0 U       | 1.0 U       |  |

Flags assigned during chemistry validation are shown.

| Location ID Sample ID Matrix Depth Interval (ft) Date Sampled |      | BRW-01<br>BRW-01<br>Groundwater<br>-<br>04/22/19 | BRW-01                                      | BRW-02<br>BRW-02<br>Groundwater<br>-<br>04/19/19 | SR-001<br>SR-001<br>Groundwater<br>-<br>04/18/19 | SR-002<br>SR-002<br>Groundwater<br>-<br>04/18/19 |                            |       |     |                       |      |     |     |
|---------------------------------------------------------------|------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------|-------|-----|-----------------------|------|-----|-----|
|                                                               |      |                                                  | FD-20190422<br>Groundwater<br>-<br>04/22/19 |                                                  |                                                  |                                                  |                            |       |     |                       |      |     |     |
|                                                               |      |                                                  |                                             |                                                  |                                                  |                                                  | Parameter                  | Units |     | Field Duplicate (1-1) |      |     | 33  |
|                                                               |      |                                                  |                                             |                                                  |                                                  |                                                  | Volatile Organic Compounds |       | 10  |                       | •    |     |     |
|                                                               |      |                                                  |                                             |                                                  |                                                  |                                                  | Vinyl chloride             | UG/L  | 2.1 | 2.0                   | 20 U | 3.9 | 2.8 |
| Xylene (total)                                                | UG/L | 2.4 J                                            | 2.4 J                                       | 13 J                                             | 3.0 U                                            | 3.0 U                                            |                            |       |     |                       |      |     |     |
| Semivolatile Organic Compounds                                |      |                                                  |                                             |                                                  |                                                  |                                                  |                            |       |     |                       |      |     |     |
| 1,4-Dioxane                                                   | UG/L | 110                                              | 120                                         | 22                                               | 7.5                                              | 0.60                                             |                            |       |     |                       |      |     |     |
| Metals                                                        |      |                                                  |                                             |                                                  |                                                  |                                                  |                            |       |     |                       |      |     |     |
| lron                                                          | UG/L | 13,500                                           | 14,500                                      | 42,000                                           | 9,800                                            | 17,200                                           |                            |       |     |                       |      |     |     |
| Manganese                                                     | UG/L | 660 J+                                           | 660 J+                                      | 550 J+                                           | 39 J+                                            | 140 J+                                           |                            |       |     |                       |      |     |     |
| Dissolved Metals                                              |      |                                                  |                                             |                                                  |                                                  |                                                  |                            |       |     |                       |      |     |     |
| lron                                                          | UG/L | 6,500                                            | 6,100                                       | 14,500                                           | 69 J-                                            | 990 J-                                           |                            |       |     |                       |      |     |     |
| Manganese                                                     | UG/L | 740 J+                                           | 720 J+                                      | 440 J+                                           | 13                                               | 71                                               |                            |       |     |                       |      |     |     |
| Miscellaneous Parameters                                      |      |                                                  |                                             |                                                  |                                                  |                                                  |                            |       |     |                       |      |     |     |
| Biochemical Oxygen Demand (BOD)                               | MG/L | 2.0 UJ                                           | 30.0 UJ                                     | 2.0 U                                            | 2.0 U                                            | 6.0 UJ                                           |                            |       |     |                       |      |     |     |
| Chemical Oxygen Demand (COD)                                  | MG/L | 24.8                                             | 31.1                                        | 35.4                                             | 31.1                                             | 7.6 J                                            |                            |       |     |                       |      |     |     |
| Nitrate-Nitrogen                                              | MG/L | 0.050 UJ                                         | 0.050 UJ                                    | 0.050 UJ                                         | 0.10 U                                           | 0.050 U                                          |                            |       |     |                       |      |     |     |
| Sulfate (as SO4)                                              | MG/L | 32.3                                             | 31.8                                        | 5.2                                              | 2.4 J                                            | 17.7                                             |                            |       |     |                       |      |     |     |

Flags assigned during chemistry validation are shown.

| Location ID                                          |      | SR-003                       | SR-004                       | SR-005                       | SR-006                       | SR-101                       |                            |       |                                         |  |     |  |    |
|------------------------------------------------------|------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|-------|-----------------------------------------|--|-----|--|----|
| Sample ID  Matrix  Depth Interval (ft)  Date Sampled |      | SR-003                       | SR-004                       | SR-005                       | SR-006                       | SR-101                       |                            |       |                                         |  |     |  |    |
|                                                      |      | Groundwater<br>-<br>04/18/19 | Groundwater<br>-<br>04/19/19 | Groundwater<br>-<br>04/19/19 | Groundwater<br>-<br>04/22/19 | Groundwater<br>-<br>04/17/19 |                            |       |                                         |  |     |  |    |
|                                                      |      |                              |                              |                              |                              |                              | Parameter                  | Units |                                         |  | i i |  | #: |
|                                                      |      |                              |                              |                              |                              |                              | Volatile Organic Compounds |       | · - · · · · · · · · · · · · · · · · · · |  |     |  |    |
| 1,1,1-Trichloroethane                                | UG/L | 1.0 U                        | 1.0 U                        | 1,200                        | 2,200                        | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,1,2,2-Tetrachloroethane                            | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,1,2-Trichloroethane                                | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,1-Dichloroethane                                   | UG/L | 1.0 U                        | 1.0 U                        | 17,000                       | 7,100                        | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,1-Dichloroethene                                   | UG/L | 1.0 U                        | 1.0 U                        | 500                          | 360                          | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,2,4-Trichlorobenzene                               | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,2-Dibromo-3-chloropropane                          | UG/L | 10 U                         | 10 U                         | 1,000 U                      | 500 U                        | 10 U                         |                            |       |                                         |  |     |  |    |
| 1,2-Dibromoethane (Ethylene dibromide)               | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,2-Dichlorobenzene                                  | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,2-Dichloroethane                                   | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,2-Dichloroethene (cis)                             | UG/L | 1.0 U                        | 1.0 U                        | 230                          | 550                          | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,2-Dichloroethene (trans)                           | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,2-Dichloropropane                                  | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,3-Dichlorobenzene                                  | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,3-Dichloropropene (cis)                            | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,3-Dichloropropene (trans)                          | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 1,4-Dichlorobenzene                                  | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| 2-Hexanone                                           | UG/L | 10 U                         | R                            | R                            | R                            | R                            |                            |       |                                         |  |     |  |    |
| 4-Methyl-2-pentanone                                 | UG/L | 10 U                         | R                            | R                            | R                            | R                            |                            |       |                                         |  |     |  |    |
| Acetone                                              | UG/L | 24 J                         | R                            | R                            | R                            | R                            |                            |       |                                         |  |     |  |    |
| Benzene                                              | UG/L | 12                           | 6.8                          | 83 J                         | 33 J                         | 1.0 U                        |                            |       |                                         |  |     |  |    |
| Bromodichloromethane                                 | UG/L | 1.0 U                        | 1.0 U                        | 100 U                        | 50 U                         | 1.0 U                        |                            |       |                                         |  |     |  |    |

Flags assigned during chemistry validation are shown.

| Location ID                                          |      | SR-003<br>SR-003<br>Groundwater<br>-<br>04/18/19 | SR-004<br>SR-004<br>Groundwater<br>-<br>04/19/19 | SR-005<br>SR-005<br>Groundwater<br>-<br>04/19/19 | SR-006<br>SR-006<br>Groundwater<br>-<br>04/22/19 | SR-101<br>SR-101<br>Groundwater<br>-<br>04/17/19 |                            |       |       |       |       |      |       |
|------------------------------------------------------|------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------|-------|-------|-------|-------|------|-------|
| Sample ID  Matrix  Depth Interval (ft)  Date Sampled |      |                                                  |                                                  |                                                  |                                                  |                                                  |                            |       |       |       |       |      |       |
|                                                      |      |                                                  |                                                  |                                                  |                                                  |                                                  | Parameter                  | Units | =     |       |       |      |       |
|                                                      |      |                                                  |                                                  |                                                  |                                                  |                                                  | Volatile Organic Compounds |       |       |       |       |      | 2     |
|                                                      |      |                                                  |                                                  |                                                  |                                                  |                                                  | Bromoform                  | UG/L  | 1.0 U | 1.0 U | 100 U | 50 U | 1.0 U |
| Bromomethane                                         | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Carbon disulfide                                     | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Carbon tetrachioride                                 | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Chlorobenzene                                        | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U 🗵                                          | 50 U                                             | = 1.0 U                                          |                            |       |       |       |       |      |       |
| Chloroethane                                         | UG/L | 1.0 U                                            | 1.0 U                                            | 78 J                                             | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Chloroform                                           | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Chloromethane                                        | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Cyclohexane                                          | UG/L | 54                                               | 6.9                                              | 72 J                                             | 250 U                                            | 5.0 U                                            |                            |       |       |       |       |      |       |
| Dibromochloromethane                                 | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Dichlorodifluoromethane                              | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Ethylbenzene                                         | UG/L | 3.3                                              | 1.5                                              | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Isopropylbenzene (Cumene)                            | UG/L | 0.62 J                                           | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Methyl acetate                                       | UG/L | 10 U                                             | R                                                | R =                                              | R                                                | R                                                |                            |       |       |       |       |      |       |
| Methyl ethyl ketone (2-Butanone)                     | UG/L | a R                                              | R                                                | R                                                | R                                                | R                                                |                            |       |       |       |       |      |       |
| Methyl tert-butyl ether                              | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Methylcyclohexane                                    | UG/L | 40                                               | 3.3 J                                            | 38 J                                             | 30 J                                             | 0.93 J                                           |                            |       |       |       |       |      |       |
| Methylene chloride                                   | UG/L | 5.0 U                                            | 5.0 U                                            | 500 U                                            | 250 U                                            | 5.0 U                                            |                            |       |       |       |       |      |       |
| Styrene                                              | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Tetrachloroethene                                    | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Toluene                                              | UG/L | 18                                               | 2.4                                              | 96 J                                             | 43 J                                             | 1.0 U                                            |                            |       |       |       |       |      |       |
| Trichloroethene                                      | UG/L | 1.0 U                                            | 1.0 U                                            | 1,900                                            | 680                                              | 1.0 U                                            |                            |       |       |       |       |      |       |
| Trichlorofluoromethane                               | UG/L | 1.0 U                                            | 1.0 U                                            | 100 U                                            | 50 U                                             | 1.0 U                                            |                            |       |       |       |       |      |       |

Flags assigned during chemistry validation are shown.

| Location ID                     |       | SR-003      | SR-004      | SR-005      | SR-006      | SR-101      |
|---------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                       |       | SR-003      | SR-004      | SR-005      | SR-006      | SR-101      |
| Matrix                          |       | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)             |       | -           | -           | •           | •           | -           |
| Date Sampled                    |       | 04/18/19    | 04/19/19    | 04/19/19    | 04/22/19    | 04/17/19    |
| Parameter                       | Units |             |             |             |             |             |
| Volatile Organic Compounds      |       | ű =         |             | 9           |             |             |
| Vinyl chloride                  | UG/L  | 1.0 U       | 1.0 U       | 100 U       | 50 U        | 1.0 U       |
| Xylene (total)                  | UG/L  | 21          | 5.4         | 300 U       | 150 U       | 3.0 U       |
| Semivolatile Organic Compounds  |       |             |             |             | 2           |             |
| 1,4-Dioxane                     | UG/L  | 1.3         | 0.57        | 1,200       | 290         | 3.3         |
| Metals                          |       |             |             | -           |             |             |
| ron                             | UG/L  | 86,400      | 48,900      | 140,000     | 16,000      | 4,100 J-    |
| Manganese                       | UG/L  | 1,100 J+    | 620 J+      | 1,700 J+    | 280 J+      | 61          |
| Dissolved Metals                |       |             |             |             | ·           |             |
| ron                             | UG/L  | 3,300 J-    | 190         | 129,000     | 3,500       | 110         |
| Manganese                       | UG/L  | 160         | 48 J+       | 1,500 J+    | 170 J+      | 28 J-       |
| Miscellaneous Parameters        |       | =           | ×           |             |             |             |
| Biochemical Oxygen Demand (BOD) | MG/L  | 3.0 UJ      | 2.0 UJ      | 9.3         | 2.0 UJ      | 2.0 U       |
| Chemical Oxygen Demand (COD)    | MG/L  | 43.6        | 50.2        | 80.6        | 39.3        | 29.4        |
| Nitrate-Nitrogen                | MG/L  | 0.25 U      | 0.050 UJ    | 0.050 UJ    | 0.050 UJ    | - 0.10 U    |
| Sulfate (as SO4)                | MG/L  | 106         | 23.3        | 31.4        | 31.2        | 118         |

Flags assigned during chemistry validation are shown.

| Location ID                            | ··· <del>·</del> | SR-104   | SR-105      | SR-106      | SR-108      |  |
|----------------------------------------|------------------|----------|-------------|-------------|-------------|--|
| Sample ID                              |                  | SR-104   | SR-105      | SR-106      | SR-108      |  |
| Matrix                                 | Matrix           |          | Groundwater | Groundwater | Groundwater |  |
| Depth Interval (ft)                    |                  |          | -           | -           | -           |  |
| Date Sampled                           |                  | 04/18/19 | 04/22/19    | 04/17/19    | 04/18/19    |  |
| Parameter                              | Units            |          |             | =           | 80          |  |
| Volatile Organic Compounds             |                  |          |             |             |             |  |
| 1,1,1-Trichloroethane                  | UG/L             | 45       | 200,000     | 1,100       | 12          |  |
| 1,1,2,2-Tetrachloroethane              | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,1,2-Trichloroethane                  | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,1-Dichloroethane                     | UG/L             | 230      | 75,000      | 3,300       | 43          |  |
| 1,1-Dichloroethene                     | UG/L             | 46       | 3,100       | 59          | 9.5         |  |
| 1,2,4-Trichlorobenzene                 | UG/L             | 10 U     | 500 UJ      | 20 U        | 1.0 U       |  |
| 1,2-Dibromo-3-chloropropane            | UG/L             | 100 U    | 5,000 U     | 200 U       | 10 U        |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,2-Dichlorobenzene                    | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,2-Dichloroethane                     | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,2-Dichloroethene (cis)               | UG/L             | 1,800    | 7,600       | 250         | 480 D       |  |
| 1,2-Dichloroethene (trans)             | UG/L             | 9.0 J    | 500 U       | 8.8 J       | 17          |  |
| 1,2-Dichloropropane                    | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,3-Dichlorobenzene                    | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,3-Dichloropropene (cis)              | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,3-Dichloropropene (trans)            | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 1,4-Dichlorobenzene                    | = UG/L           | 10 U     | 500 U       | 20 U        | 1.0 U       |  |
| 2-Hexanone                             | UG/L             | 100 U    | R           | R           | R           |  |
| 4-Methyl-2-pentanone                   | UG/L             | 100 U    | R           | R           | 10 U        |  |
| Acetone                                | UG/L             | R        | 19,000 J    | R           | R           |  |
| Benzene                                | UG/L             | 4.9 J    | 500 U       | 20 U        | 2.8         |  |
| Bromodichloromethane                   | UG/L             | 10 U     | 500 U       | 20 U        | 1.0 U       |  |

Flags assigned during chemistry validation are shown.

| Location ID                      |       | SR-104                                  | SR-105      | SR-106      | SR-108      |
|----------------------------------|-------|-----------------------------------------|-------------|-------------|-------------|
| Sample ID                        |       | SR-104                                  | SR-105      | SR-106      | SR-108      |
| Matrix                           | 1     | Groundwater                             | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)              |       | •                                       | -           | • _         | •           |
| Date Sampled                     |       | 04/18/19                                | 04/22/19    | 04/17/19    | 04/18/19    |
| Parameter                        | Units |                                         |             |             |             |
| Volatile Organic Compounds       |       | " " " " " " " " " " " " " " " " " " " " |             |             |             |
| Bromoform                        | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Bromomethane                     | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Carbon disulfide                 | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Carbon tetrachloride             | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Chlorobenzene                    | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Chloroethane                     | UG/L  | 10 U                                    | 500 U       | 91          | 1.0 U       |
| Chloroform                       | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Chloromethane                    | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Cyclohexane                      | UG/L  | 50 U                                    | 2,500 U     | 100 U       | 6.0         |
| Dibromochloromethane             | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Dichlorodifluoromethane          | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Ethylbenzene                     | UG/L  | 10 U                                    | 500 U       | 20 U        | 0.34 J      |
| Isopropylbenzene (Cumene)        | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Methyl acetate                   | UG/L  | 100 U                                   | R           | R           | 10 U        |
| Methyl ethyl ketone (2-Butanone) | UG/L  | R                                       | R           | R           | R           |
| Methyl tert-butyl ether          | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Methylcyclohexane                | UG/L  | 50 U                                    | 2,500 U     | 100 U       | 8.4         |
| Methylene chloride               | UG/L  | 50 U                                    | 2,500 U     | 100 U       | 5.0 U       |
| Styrene                          | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |
| Tetrachloroethene                | UG/L  | 10                                      | 500 U       | 20 U        | 0.35 J      |
| Toluene                          | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.4         |
| Trichloroethene                  | UG/L  | 2,700 D                                 | 92,000      | 58          | 530 D       |
| Trichlorofluoromethane           | UG/L  | 10 U                                    | 500 U       | 20 U        | 1.0 U       |

Flags assigned during chemistry validation are shown.

| Location ID Sample ID           |       | SR-104      | SR-105      | SR-106      | SR-108      |  |
|---------------------------------|-------|-------------|-------------|-------------|-------------|--|
|                                 |       | SR-104      | SR-105      | SR-106      | SR-108      |  |
| Matrix                          |       | Groundwater | Groundwater | Groundwater | Groundwater |  |
| Depth Interval (ft)             |       | -           | -           | -           | -           |  |
| Date Sampled                    |       | 04/18/19    | 04/22/19    | 04/17/19    | 04/18/19    |  |
| Parameter                       | Units | F- 40       |             | =           | i           |  |
| Volatile Organic Compounds      |       |             |             |             | -           |  |
| Vinyl chloride                  | UG/L  | 33          | 500 U       | 100         | 47          |  |
| Kylene (total)                  | UG/L  | 30 U        | 1,500 U     | 60 U        | 3.0 U       |  |
| Semivolatile Organic Compounds  |       |             |             |             |             |  |
| 1,4-Dioxane                     | UG/L  | 12          | 3,100       | 240         | 1.7         |  |
| Metals                          | ×     |             |             |             |             |  |
| ron                             | UG/L  | 940         | 14,100      | 2,900 J-    | 28,500      |  |
| Manganese                       | UG/L  | 61 J+       | 310 J+      | 49          | 160 J+      |  |
| Dissolved Metals                |       |             |             |             |             |  |
| ron                             | UG/L  | 380 J-      | 11,100      | 690         | 1,300 J-    |  |
| Manganese                       | UG/L  | 51          | 270 J+      | 41 J-       | 58          |  |
| Miscellaneous Parameters        |       |             |             |             | ï           |  |
| liochemical Oxygen Demand (BOD) | MG/L  | 2.0 U       | 57.8 J      | 2.0 UJ      | 3.0 U       |  |
| Chemical Oxygen Demand (COD)    | MG/L  | 11.3        | 127         | 119         | 21.2        |  |
| litrate-Nitrogen                | MG/L  | 0.10 U      | 0.050 UJ    | 0.79        | 0.10 U      |  |
| sulfate (as SO4)                | MG/L  | 36.4        | 11.8        | 142         | 11.8        |  |

Flags assigned during chemistry validation are shown.

# TABLE 3 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS LAPP INSULATOR COMPANY

| Location ID Sample ID                  |       | FIELDQC          | FIELDQC          | FIELDQC          | FIELDQC          |  |
|----------------------------------------|-------|------------------|------------------|------------------|------------------|--|
|                                        |       | TB-20190417      | TB-20190418      | TB-20190419      | TB-20190422      |  |
| Matrix                                 |       | Water Quality    | Water Quality    | Water Quality    | Water Quality    |  |
| Depth Interval (ft)                    |       | -                | -                | -                | -                |  |
| Date Sampled                           |       | 04/17/19         | 04/18/19         | 04/19/19         | 04/22/19         |  |
| Parameter                              | Units | Trip Blank (1-1) | Trip Blank (1-1) | Trip Blank (1-1) | Trip Blank (1-1) |  |
| Volatile Organic Compounds             |       |                  |                  |                  |                  |  |
| 1,1,1-Trichloroethane                  | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 1.0 U ,          | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,1,2-Trichloroethane                  | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,1-Dichloroethane                     | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,1-Dichloroethene                     | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,2,4-Trichlorobenzene                 | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 UJ           |  |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 10 U             | 10 U             | 10 U             | . 10 U           |  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,2-Dichlorobenzene                    | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,2-Dichloroethane                     | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| 1,2-Dichloroethene (cis)               | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| ,2-Dichloroethene (trans)              | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| ,2-Dichloropropane                     | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| ,3-Dichlorobenzene                     | UG/L  | . 1.0 ປ          | 1.0 U            | 1.0 U            | 1.0 U            |  |
| ,3-Dichloropropene (cis)               | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| ,3-Dichloropropene (trans)             | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| ,4-Dichlorobenzene                     | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| -Hexanone                              | UG/L  | R                | R                | R                | R                |  |
| -Methyl-2-pentanone                    | UG/L  | R                | 10 U             | R                | R                |  |
| cetone                                 | UG/L  | R                | R                | 9.3 J            | R                |  |
| enzene                                 | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| romodichloromethane                    | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |

Flags assigned during chemistry validation are shown.

## TABLE 3 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS LAPP INSULATOR COMPANY

| Location ID                      |       | FIELDQC          | FIELDQC          | FIELDQC          | FIELDQC          |
|----------------------------------|-------|------------------|------------------|------------------|------------------|
| Sample ID                        | •     | TB-20190417      | TB-20190418      | TB-20190419      | TB-20190422      |
| Matrix                           |       | Water Quality    | Water Quality    | Water Quality    | Water Quality    |
| Depth Interval (ft)              |       | -                |                  | -                | -                |
| Date Sampled                     |       | 04/17/19         | 04/18/19         | 04/19/19         | 04/22/19         |
| Parameter                        | Units | Trip Blank (1-1) | Trip Blank (1-1) | Trip Blank (1-1) | Trip Blank (1-1) |
| Volatile Organic Compounds       |       |                  |                  |                  |                  |
| Bromoform                        | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Bromomethane                     | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Carbon disulfide                 | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Carbon tetrachloride             | UG/L  | 1.0 U            | - 1.0 U          | 1.0 U            | 1.0 U            |
| Chlorobenzene                    | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Chloroethane                     | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U a          |
| Chloroform                       | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Chloromethane                    | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Cyclohexane                      | UG/L  | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            |
| Dibromochloromethane             | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Dichlorodifluoromethane          | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Ethylbenzene                     | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| sopropylbenzene (Cumene)         | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Methyl acetate                   | UG/L  | R                | 10 U             | R                | · R              |
| Methyl ethyl ketone (2-Butanone) | UG/L  | R                | R                | R                | R                |
| Methyl tert-butyl ether          | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| Methylcyclohexane                | UG/L  | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            |
| Methylene chloride               | UG/L  | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            |
| Styrene                          | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| etrachloroethene                 | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| oluene                           | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| richloroethene                   | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |
| richlorofluoromethane            | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |

Flags assigned during chemistry validation are shown.

# TABLE 3 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS LAPP INSULATOR COMPANY

| Location ID                |       | FIELDQC          | FIELDQC          | FIELDQC          | FIELDQC          |  |
|----------------------------|-------|------------------|------------------|------------------|------------------|--|
| Sample ID                  |       | TB-20190417      | TB-20190418      | TB-20190419      | TB-20190422      |  |
| Matrix                     |       | Water Quality    | Water Quality    | Water Quality    | Water Quality    |  |
| Depth Interval (ft)        |       | •                | -                | •                | -                |  |
| Date Sampled               |       | 04/17/19         | 04/18/19         | 04/19/19         | 04/22/19         |  |
| Parameter                  | Units | Trip Blank (1-1) | Trip Blank (1-1) | Trip Blank (1-1) | Trip Blank (1-1) |  |
| Volatile Organic Compounds |       |                  |                  |                  |                  |  |
| /inyl chloride             | UG/L  | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            |  |
| Kylene (total)             | UG/L  | 3.0 U            | 3.0 U            | 3.0 U            | 3.0 U            |  |

Flags assigned during chemistry validation are shown.

### **ATTACHMENT A**

FORM 1s

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1 SDG No.: Client Sample ID: BRW-01 Lab Sample ID: 480-152320-3 Matrix: Water Lab File ID: 043019-18.D Analysis Method: 8260C Date Collected: 04/22/2019 11:35 Sample wt/vol: 10(mL) Date Analyzed: 04/30/2019 17:21 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 ID: 0.18 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 591468 Units: ug/L

| CAS NO.  | COMPOUND NAME                        | RESULT | Q  | RL   | MDL  |
|----------|--------------------------------------|--------|----|------|------|
| 71-55-6  | 1,1,1-Trichloroethane                | 100    |    | 1.0  | 0.19 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND     |    | 1.0  | 0.19 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     | *  | 1.0  | 0.15 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND     |    | 1.0  | 0.19 |
| 75-34-3  | 1,1-Dichloroethane                   | 210    |    | 1.0  | 0.24 |
| 75-35-4  | 1,1-Dichloroethene                   | 54     |    | 1.0  | 0.25 |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND     |    | 1.0  | 0.20 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND     |    | 10   | 0.94 |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     |    | 1.0  | 0.19 |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | */ | 1.0  | 0.20 |
| 78-87-5  | 1,2-Dichloropropane                  | ND     |    | 1.0  | 0.25 |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     |    | 1.0  | 0.18 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     |    | 1.0  | 0.17 |
| 78-93-3  | 2-Butanone (MEK)                     | NB     | 2  | . 50 | 2.6  |
| 591-78-6 | 2-Hexanone                           | ND     | R  | 10   | 1.3  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | NĐ     | R  | 10   | 0.81 |
| 67-64-1  | Acetone                              | ,NB    | R  | 25   | 2.7  |
| 71-43-2  | Benzene                              | 0.85   | J  | 1.0  | 0.20 |
| 75-25-2  | Bromoform                            | ND     |    | 1.0  | 0.29 |
| 74-83-9  | Bromomethane                         | ND     |    | 1.0  | 0.35 |
| 75-15-0  | Carbon disulfide                     | ND     |    | 1.0  | 0.22 |
| 56-23-5  | Carbon tetrachloride                 | ND     |    | 1.0  | 0.18 |
| 108-90-7 | Chlorobenzene                        | ND     |    | 1.0  | 0.18 |
| 124-48-1 | Dibromochloromethane                 | ND     |    | 1.0  | 0.25 |
| 75-00-3  | Chloroethane                         | 0.51   | J  | 1.0  | 0.36 |
| 67-66-3  | Chloroform                           | ND     |    | 1.0  | 0.23 |
| 74-87-3  | Chloromethane                        | ND     |    | 1.0  | 0.36 |
| 156-59-2 | cis-1,2-Dichloroethene               | 52     |    | 1.0  | 0.21 |
| 110-82-7 | Cyclohexane                          | 4.8    | J  | 5.0  | 0.13 |
| 75-27-4  | Bromodichloromethane                 | ND     |    | 1.0  | 0.17 |
| 75-71-8  | Dichlorodifluoromethane              | ND     | F1 | 1.0  | 0.17 |
| 100-41-4 | Ethylbenzene                         | 0.39   | J  | 1.0  | 0.19 |
| 106-93-4 | 1,2-Dibromoethane                    | ND     |    | 1.0  | 0.21 |
| 98-82-8  | Isopropylbenzene                     | ND     |    | 1.0  | 0.33 |
| 79-20-9  | Methyl acetate                       | ND     | 0. | 10   | 0.58 |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1 SDG No.: Client Sample ID: BRW-01 Lab Sample ID: 480-152320-3 Lab File ID: 043019-18.D Matrix: Water Analysis Method: 8260C Date Collected: 04/22/2019 11:35 Date Analyzed: 04/30/2019 17:21 Sample wt/vol: 10(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: \_\_\_\_ ID: 0.18 (mm) GC Column: ZB-624 Level: (low/med) Low % Moisture: Units: ug/L Analysis Batch No.: 591468

| CAS NO.    | COMPOUND NAME             | RESULT | Q    | RL  | MDL   |
|------------|---------------------------|--------|------|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |      | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | 8.2    |      | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     |      | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |      | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | 1.7    |      | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |      | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |      | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | 76     | ,    | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     | F.I. | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | 2.1    |      | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | 2.4    | J    | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |      | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |      | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 120  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 93   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 93   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 113  |   | 70-130 |





Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1 SDG No.: Lab Sample ID: 480-152320-4 Client Sample ID: FD-20190422 Lab File ID: 043019-19.D Matrix: Water Date Collected: 04/22/2019 00:00 Analysis Method: 8260C Date Analyzed: 04/30/2019 17:47 Sample wt/vol: 10(mL) Dilution Factor: 1 Soil Aliquot Vol: GC Column: ZB-624 ID: 0.18 (mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Units: ug/L Analysis Batch No.: 591468

| CAS NO.  | COMPOUND NAME                        | RESULT | Q  | RL  | MDL  |
|----------|--------------------------------------|--------|----|-----|------|
| 71-55-6  | 1,1,1-Trichloroethane                | 99     |    | 1.0 | 0.19 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND     |    | 1.0 | 0.19 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     | /k | 1.0 | 0.15 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND     |    | 1.0 | 0.19 |
| 75-34-3  | 1,1-Dichloroethane                   | 200    |    | 1.0 | 0.24 |
| 75-35-4  | 1,1-Dichloroethene                   | 51     |    | 1.0 | 0.25 |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND     |    | 1.0 | 0.20 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND     |    | 10  | 0.94 |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     |    | 1.0 | 0.19 |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | y  | 1.0 | 0.20 |
| 78-87-5  | 1,2-Dichloropropane                  | ND     |    | 1.0 | 0.25 |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     |    | 1.0 | 0.18 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     |    | 1.0 | 0.17 |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | R  | 50  | 2.6  |
| 591-78-6 | 2-Hexanone                           | ND     | R  | 10  | 1.3  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | ND     | R  | 10  | 0.81 |
| 67-64-1  | Acetone                              | ND     | (2 | 25  | 2.7  |
| 71-43-2  | Benzene                              | 0.78   | J  | 1.0 | 0.20 |
| 75-25-2  | Bromoform                            | ND     |    | 1.0 | 0.29 |
| 74-83-9  | Bromomethane                         | ND     |    | 1.0 | 0.35 |
| 75-15-0  | Carbon disulfide                     | ND     |    | 1.0 | 0.22 |
| 56-23-5  | Carbon tetrachloride                 | ND     |    | 1.0 | 0.18 |
| 108-90-7 | Chlorobenzene                        | ND     |    | 1.0 | 0.18 |
| 124-48-1 | Dibromochloromethane                 | ND     |    | 1.0 | 0.25 |
| 75-00-3  | Chloroethane                         | 0.57   | J  | 1.0 | 0.36 |
| 67-66-3  | Chloroform                           | ND     |    | 1.0 | 0.23 |
| 74-87-3  | Chloromethane                        | ND     |    | 1.0 | 0.36 |
| 156-59-2 | cis-1,2-Dichloroethene               | 50     |    | 1.0 | 0.21 |
| 110-82-7 | Cyclohexane                          | 4.5    | J  | 5.0 | 0.13 |
| 75-27-4  | Bromodichloromethane                 | ND     |    | 1.0 | 0.17 |
| 75-71-8  | Dichlorodifluoromethane              | ND     |    | 1.0 | 0.17 |
| 100-41-4 | Ethylbenzene                         | 0.41   | J  | 1.0 | 0.19 |
| 106-93-4 | 1,2-Dibromoethane                    | ND     |    | 1.0 | 0.21 |
| 98-82-8  | Isopropylbenzene                     | ND     |    | 1.0 | 0.33 |
| 79-20-9  | Methyl acetate                       | ND     | 0  | 10  | 0.58 |

05/22/2019



| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152320-1            |  |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|--|
| SDG No.:                                  |                                  |  |  |  |  |
| Client Sample ID: FD-20190422             | Lab Sample ID: 480-152320-4      |  |  |  |  |
| Matrix: Water                             | Lab File ID: 043019-19.D         |  |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/22/2019 00:00 |  |  |  |  |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/30/2019 17:47  |  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18 (mm)  |  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |  |
| Analysis Batch No.: 591468                | Units: ug/L                      |  |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q  | RL  | MDL   |
|------------|---------------------------|--------|----|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     | 1  | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | 7.8    |    | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     | 12 | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |    | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | 1.7    |    | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |    | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |    | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | 75     |    | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     |    | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | 2.0    |    | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | 2.4    | J  | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND ND  |    | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |    | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 117  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 96   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 94   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 115  |   | 70-130 |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152241-1

SDG No.:

Client Sample ID: BRW-02 Lab Sample ID: 480-152241-2

Matrix: Water Lab File ID: 0426-13.D

Analysis Method: 8260C Date Collected: 04/19/2019 10:35

Sample wt/vol: 10 (mL) Date Analyzed: 04/26/2019 20:32

Soil Aliquot Vol: Dilution Factor: 20

Soil Extract Vol.: GC Column: ZB-624 ID: 0.18 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 590877 Units: ug/L

| CAS NO.  | COMPOUND NAME                        | RESULT | Q | RL   | MDL |
|----------|--------------------------------------|--------|---|------|-----|
| 71-55-6  | 1,1,1-Trichloroethane                | 4000   |   | 20   | 3.8 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND     |   | 20   | 3.8 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |   | 20   | 3.0 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND     |   | 20   | 3.8 |
| 75-34-3  | 1,1-Dichloroethane                   | 3700   |   | 20   | 4.8 |
| 75-35-4  | 1,1-Dichloroethene                   | 170    |   | 20   | 5.0 |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND     |   | 20   | 4.0 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND     |   | 200  | 19  |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     |   | 20   | 3.8 |
| 107-06-2 | 1,2-Dichloroethane                   | ND     |   | 20   | 4.0 |
| 78-87-5  | 1,2-Dichloropropane                  | ND     |   | 20   | 5.0 |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     |   | 20   | 3.6 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     |   | 20   | 3.4 |
| 78-93-3  | 2-Butanone (MEK)                     | NÐ     | 2 | 1000 | 53  |
| 591-78-6 | 2-Hexanone                           | ND     | 0 | 200  | 26  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | ND     | 0 | 200  | 16  |
| 67-64-1  | Acetone                              | ND     | 0 | 500  | 53  |
| 71-43-2  | Benzene                              | ND     |   | 20   | 4.0 |
| 75-25-2  | Bromoform                            | ND     |   | 20   | 5.8 |
| 74-83-9  | Bromomethane                         | ND     |   | 20   | 7.0 |
| 75-15-0  | Carbon disulfide                     | ND     |   | 20   | 4.4 |
| 56-23-5  | Carbon tetrachloride                 | ND     |   | 20   | 3.6 |
| 108-90-7 | Chlorobenzene                        | ND     |   | 20   | 3.6 |
| 124-48-1 | Dibromochloromethane                 | ND     |   | 20   | 5.0 |
| 75-00-3  | Chloroethane                         | 7.9    | J | 20   | 7.2 |
| 67-66-3  | Chloroform                           | ND     |   | 20   | 4.6 |
| 74-87-3  | Chloromethane                        | ND     |   | 20   | 7.2 |
| 156-59-2 | cis-1,2-Dichloroethene               | ND     |   | 20   | 4.2 |
| 110-82-7 | Cyclohexane                          | 20     | J | 100  | 2.6 |
| 75-27-4  | Bromodichloromethane                 | ND     |   | 20   | 3.4 |
| 75-71-8  | Dichlorodifluoromethane              | ND     |   | 20   | 3.4 |
| 100-41-4 | Ethylbenzene                         | ND     |   | 20   | 3.8 |
| 106-93-4 | 1,2-Dibromoethane                    | ND     |   | 20   | 4.2 |
| 98-82-8  | Isopropylbenzene                     | ND     |   | 20   | 6.6 |
| 79-20-9  | Methyl acetate                       | ND     | _ | 200  | 12  |

FORM I 8260C

Oright

 Lab Name: Eurofins TestAmerica, Nashville
 Job No.: 480-152241-1

 SDG No.:
 Lab Sample ID: 480-152241-2

 Client Sample ID: BRW-02
 Lab Sample ID: 480-152241-2

 Matrix: Water
 Lab File ID: 0426-13.D

 Analysis Method: 8260C
 Date Collected: 04/19/2019 10:35

 Sample wt/vol: 10 (mL)
 Date Analyzed: 04/26/2019 20:32

 Soil Aliquot Vol:
 Dilution Factor: 20

 Soil Extract Vol.:
 GC Column: ZB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 590877
 Units: ug/L

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL |
|------------|---------------------------|--------|---|-----|-----|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 20  | 3.4 |
| 108-87-2   | Methylcyclohexane         | 22     | J | 100 | 1.8 |
| 75-09-2    | Methylene Chloride        | ND     |   | 100 | 20  |
| 127-18-4   | Tetrachloroethene         | ND     |   | 20  | 2.8 |
| 108-88-3   | Toluene                   | 8.0    | J | 20  | 3.4 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 20  | 4.6 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 20  | 3.4 |
| 79-01-6    | Trichloroethene           | 14     | J | 20  | 4.0 |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 20  | 4.2 |
| 75-01-4    | Vinyl chloride            | ND     |   | 20  | 3.6 |
| 1330-20-7  | Xylenes, Total            | 13     | J | 60  | 12  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |   | 20  | 3.4 |
| 100-42-5   | Styrene                   | ND     |   | 20  | 5.6 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 92   |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 100  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 95   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 98   |   | 70-130 |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1 SDG No.: Lab Sample ID: 480-152143-3 Client Sample ID: SR-001 Lab File ID: 04251914.D Matrix: Water Date Collected: 04/18/2019 12:35 Analysis Method: 8260C Date Analyzed: 04/25/2019 19:36 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 1 ID: 0.18 (mm) GC Column: DB-624 Soil Extract Vol.: Level: (low/med) Low % Moisture:

Units: ug/L

COMPOUND NAME RESULT RLMDL CAS NO. 1.0 0.19 ND 71-55-6 1,1,1-Trichloroethane 1.0 0.19 ND 79-34-5 1,1,2,2-Tetrachloroethane 1.0 0.15 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethan ND ND 1.0 0.19 79-00-5 1,1,2-Trichloroethane 1.0 0.24 61 75-34-3 1,1-Dichloroethane 0.25 0.62 1.0 75-35-4 1,1-Dichloroethene 1,2,4-Trichlorobenzene ND 1.0 0.20 120-82-1 0.94 ND 10 1,2-Dibromo-3-Chloropropane 96-12-8 0.19 1.0 ND 95-50-1 1,2-Dichlorobenzene 0.20 ND 1.0 107-06-2 1,2-Dichloroethane 0.25 ND 1.0 78-87-5 1,2-Dichloropropane 1.0 0.18 541-73-1 1,3-Dichlorobenzene ND 106-46-7 1,4-Dichlorobenzene ND 1.0 0.17 2.6 78-93-3 2-Butanone (MEK) ND 10 1.3 591-78-6 2-Hexanone ND 108-10-1 4-Methyl-2-pentanone (MIBK) ND 10 0.81 25 2.7 67-64-1 Acetone ND 0.20 ND 1.0 71-43-2 Benzene 0.29 75-25-2 Bromoform ND 1.0 74-83-9 Bromomethane ND 1.0 0.35 ND 1.0 0.22 75-15-0 Carbon disulfide 1.0 0.18 56-23-5 Carbon tetrachloride ND 1.0 0.18 108-90-7 Chlorobenzene Dibromochloromethane 1.0 0.25 ND 124-48-1 1.0 0.36 75-00-3 Chloroethane ND ND 1.0 0.23 67-66-3 Chloroform 1.0 0.36 Chloromethane ND 74-87-3 156-59-2 cis-1,2-Dichloroethene 27 1.0 0.21 5.0 0.13 110-82-7 Cyclohexane 1.0 0.17 Bromodichloromethane ND 75-27-4 0.17 75-71-8 Dichlorodifluoromethane ND 1.0 1.0 0.19 100-41-4 Ethylbenzene ND 1.0 0.21 ND 106-93-4 1,2-Dibromoethane 0.33 98-82-8 Isopropylbenzene ND 1.0 0.58 79-20-9 Methyl acetate

Analysis Batch No.: 590455

 Lab Name: Eurofins TestAmerica, Nashville
 Job No.: 480-152070-1

 SDG No.:
 Lab Sample ID: 480-152143-3

 Matrix: Water
 Lab File ID: 04251914.D

 Analysis Method: 8260C
 Date Collected: 04/18/2019 12:35

 Sample wt/vol: 5(mL)
 Date Analyzed: 04/25/2019 19:36

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 590455
 Units: ug/L

| CAS NO.    | COMPOUND NAME             | RESULT | Q   | RL  | MDL   |
|------------|---------------------------|--------|-----|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |     | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | 0.68   | J   | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     |     | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |     | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | ND     | 750 | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | 29     |     | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |     | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | 6.4    |     | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     |     | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | 3.9    |     | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | ND     |     | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |     | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |     | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 103  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 96   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 104  |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 107  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|
| SDG No.:                                  |                                  |  |  |  |
| Client Sample ID: SR-002                  | Lab Sample ID: 480-152143-4      |  |  |  |
| Matrix: Water                             | Lab File ID: 04251916.D          |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 14:15 |  |  |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/25/2019 20:29  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |
| Soil Extract Vol.:                        | GC Column: DB-624 ID: 0.18 (mm)  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |
| Analysis Batch No.: 590455                | Units: ug/L                      |  |  |  |

| CAS NO.   | COMPOUND NAME                        | RESULT | Q  | RL  | MDL  |
|-----------|--------------------------------------|--------|----|-----|------|
| 71-55-6   | 1,1,1-Trichloroethane                | 86     |    | 1.0 | 0.19 |
| 79-34-5   | 1,1,2,2-Tetrachloroethane            | ND     |    | 1.0 | 0.19 |
| 76-13-1   | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |    | 1.0 | 0.15 |
| 79-00-5   | 1,1,2-Trichloroethane                | ND     |    | 1.0 | 0.19 |
| 75-34-3   | 1,1-Dichloroethane                   | 97     |    | 1.0 | 0.24 |
| 75-35-4   | 1,1-Dichloroethene                   | 20     |    | 1.0 | 0.25 |
| 120-82-1  | 1,2,4-Trichlorobenzene               | ND     |    | 1.0 | 0.20 |
| 96-12-8   | 1,2-Dibromo-3-Chloropropane          | ND     |    | 10  | 0.94 |
| 95-50-1   | 1,2-Dichlorobenzene                  | ND     |    | 1.0 | 0.19 |
| 107-06-2  | 1,2-Dichloroethane                   | ND     |    | 1.0 | 0.20 |
| 78-87-5   | 1,2-Dichloropropane                  | ND     |    | 1.0 | 0.25 |
| 541-73-1  | 1,3-Dichlorobenzene                  | ND     |    | 1.0 | 0.18 |
| 106-46-7  | 1,4-Dichlorobenzene                  | ND     |    | 1.0 | 0.17 |
| 78-93-3   | 2-Butanone (MEK)                     | ND     | 2  | 50  | 2.6  |
| 591-78-6  | 2-Hexanone                           | ND     | 12 | 10  | 1.3  |
| 108-10-1  | 4-Methyl-2-pentanone (MIBK)          | ND     |    | 10  | 0.81 |
| 67-64-1   | Acetone                              | CHA    | 2  | 25  | 2.7  |
| 71-43-2   | Benzene                              | ND     |    | 1.0 | 0.20 |
| 75-25-2   | Bromoform                            | ND     | ,  | 1.0 | 0.29 |
| 74-83-9   | Bromomethane                         | ND     | J. | 1.0 | 0.35 |
| 75-15-0   | Carbon disulfide                     | 0.48   | J  | 1.0 | 0.22 |
| 56-23-5   | Carbon tetrachloride                 | ND     |    | 1.0 | 0.18 |
| 108-90-7  | Chlorobenzene                        | ND     |    | 1.0 | 0.18 |
| 124-48-1  | Dibromochloromethane                 | ND     |    | 1.0 | 0.25 |
| 75-00-3   | Chloroethane                         | ND     |    | 1.0 | 0.36 |
| 67-66-3   | Chloroform                           | ND     |    | 1.0 | 0.23 |
| 74-87-3   | Chloromethane                        | ND     |    | 1.0 | 0.36 |
| 110-82-7  | Cyclohexane                          | ND     |    | 5.0 | 0.13 |
| 75-27-4   | Bromodichloromethane                 | ND     |    | 1.0 | 0.17 |
| 75-71-8   | Dichlorodifluoromethane              | ND     |    | 1.0 | 0.17 |
| 100-41-4  | Ethylbenzene                         | ND     |    | 1.0 | 0.19 |
| 106-93-4  | 1,2-Dibromoethane                    | ND     |    | 1.0 | 0.21 |
| 98-82-8   | Isopropylbenzene                     | ND     |    | 1.0 | 0.33 |
| 79-20-9   | Methyl acetate                       | ND     |    | 10  | 0.58 |
| 1634-04-4 | Methyl tert-butyl ether              | ND     |    | 1.0 | 0.17 |

FORM I 8260C

05/17/2019

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|--|
| SDG No.:                                  |                                  |  |  |  |  |
| Client Sample ID: SR-002                  | Lab Sample ID: 480-152143-4      |  |  |  |  |
| Matrix: Water                             | Lab File ID: 04251916.D          |  |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 14:15 |  |  |  |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/25/2019 20:29  |  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |  |
| Soil Extract Vol.:                        | GC Column: DB-624 ID: 0.18 (mm)  |  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |  |
| Analysis Batch No.: 590455                | Units: ug/L                      |  |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL   |
|------------|---------------------------|--------|---|-----|-------|
| 108-87-2   | Methylcyclohexane         | ND     |   | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     |   | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |   | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | ND     |   | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | 26     |   | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 1.0 | 0.17  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | 2.8    |   | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | ND     |   | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |   | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |   | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 102  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 99   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 106  |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 111  |   | 70-130 |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-002 Lab Sample ID: 480-152143-4 Lab File ID: 04261912.D Matrix: Water Analysis Method: 8260C Date Collected: 04/18/2019 14:15 Date Analyzed: 04/26/2019 18:01 Sample wt/vol: 5(mL) Soil Aliquot Vol: Dilution Factor: 25 GC Column: DB-624 ID: 0.18 (mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 590775 Units: ug/L

| CAS NO.  | COMPOUND NAME          | RESULT | Q | RL | MDL |
|----------|------------------------|--------|---|----|-----|
| 156-59-2 | cis-1,2-Dichloroethene | 1800   |   | 25 | 5.3 |
| 79-01-6  | Trichloroethene        | 4300   |   | 25 | 5.0 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 101  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 98   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 105  |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 105  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|--|
| SDG No.:                                  |                                  |  |  |  |  |
| Client Sample ID: SR-003                  | Lab Sample ID: 480-152143-5      |  |  |  |  |
| Matrix: Water                             | Lab File ID: 04251947.D          |  |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 15:35 |  |  |  |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/26/2019 11:18  |  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |  |
| Soil Extract Vol.:                        | GC Column: RTX-624 ID: 0.18 (mm) |  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |  |
| Analysis Batch No.: 590664                | Units: ug/L                      |  |  |  |  |

| CAS NO.  | COMPOUND NAME                        | RESULT | Q . | RL  | MDL  |
|----------|--------------------------------------|--------|-----|-----|------|
| 71-55-6  | 1,1,1-Trichloroethane                | ND     |     | 1.0 | 0.19 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND     | 1   | 1.0 | 0.19 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |     | 1.0 | 0.15 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND     |     | 1.0 | 0.19 |
| 75-34-3  | 1,1-Dichloroethane                   | ND     |     | 1.0 | 0.24 |
| 75-35-4  | 1,1-Dichloroethene                   | ND     |     | 1.0 | 0.25 |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND     |     | 1.0 | 0.20 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND     |     | 10  | 0.94 |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     |     | 1.0 | 0.19 |
| 107-06-2 | 1,2-Dichloroethane                   | ND     |     | 1.0 | 0.20 |
| 78-87-5  | 1,2-Dichloropropane                  | ND     |     | 1.0 | 0.25 |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     |     | 1.0 | 0.18 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     |     | 1.0 | 0.17 |
| 78-93-3  | 2-Butanone (MEK)                     | NB     | 2   | 50  | 2.6  |
| 591-78-6 | 2-Hexanone                           | ND     |     | 10  | 1.3  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | ND     |     | 10  | 0.81 |
| 67-64-1  | Acetone                              | 24     | J   | 25  | 2.7  |
| 71-43-2  | Benzene                              | 12     |     | 1.0 | 0.20 |
| 75-25-2  | Bromoform                            | ND     |     | 1.0 | 0.29 |
| 74-83-9  | Bromomethane                         | ND     |     | 1.0 | 0.35 |
| 75-15-0  | Carbon disulfide                     | ND     |     | 1.0 | 0.22 |
| 56-23-5  | Carbon tetrachloride                 | ND     |     | 1.0 | 0.18 |
| 108-90-7 | Chlorobenzene                        | ND     |     | 1.0 | 0.18 |
| 124-48-1 | Dibromochloromethane                 | ND     |     | 1.0 | 0.25 |
| 75-00-3  | Chloroethane                         | ND     |     | 1.0 | 0.36 |
| 67-66-3  | Chloroform                           | ND     |     | 1.0 | 0.23 |
| 74-87-3  | Chloromethane                        | ND     |     | 1.0 | 0.36 |
| 156-59-2 | cis-1,2-Dichloroethene               | ND     |     | 1.0 | 0.21 |
| 110-82-7 | Cyclohexane                          | 54     |     | 5.0 | 0.13 |
| 75-27-4  | Bromodichloromethane                 | ND     | j   | 1.0 | 0.17 |
| 75-71-8  | Dichlorodifluoromethane              | ND     | y   | 1.0 | 0.17 |
| 100-41-4 | Ethylbenzene                         | 3.3    |     | 1.0 | 0.19 |
| 106-93-4 | 1,2-Dibromoethane                    | ND     |     | 1.0 | 0.21 |
| 98-82-8  | Isopropylbenzene                     | 0.62   | J   | 1.0 | 0.33 |
| 79-20-9  | Methyl acetate                       | ND     |     | 10  | 0.58 |

05/17/2019

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |
|-------------------------------------------|----------------------------------|--|--|
| SDG No.:                                  |                                  |  |  |
| Client Sample ID: SR-003                  | Lab Sample ID: 480-152143-5      |  |  |
| Matrix: Water                             | Lab File ID: 04251947.D          |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 15:35 |  |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/26/2019 11:18  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |
| Soil Extract Vol.:                        | GC Column: RTX-624 ID: 0.18(mm)  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |
| Analysis Batch No.: 590664                | Units: ug/L                      |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q        | RL  | MDL   |
|------------|---------------------------|--------|----------|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |          | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | 40     | <u> </u> | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     |          | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |          | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | 18     |          | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |          | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |          | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | ND     |          | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     | ,        | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | ND     | *        | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | 21     |          | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |          | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |          | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 113  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 111  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 90   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 102  |   | 70-130 |



| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152241-1            |
|-------------------------------------------|----------------------------------|
| SDG No.:                                  |                                  |
| Client Sample ID: SR-004                  | Lab Sample ID: 480-152241-1      |
| Matrix: Water                             | Lab File ID: 0426-12.D           |
| Analysis Method: 8260C                    | Date Collected: 04/19/2019 09:05 |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/26/2019 20:05  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |
| % Moisture:                               | Level: (low/med) Low             |
| Analysis Batch No.: 590877                | Units: ug/L                      |

| CAS NO.  | COMPOUND NAME                        | RESULT  | Q   | RL  | MDL  |
|----------|--------------------------------------|---------|-----|-----|------|
| 71-55-6  | 1,1,1-Trichloroethane                | ND ND   |     | 1.0 | 0.19 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND      |     | 1.0 | 0.19 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND      |     | 1.0 | 0.15 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND      |     | 1.0 | 0.19 |
| 75-34-3  | 1,1-Dichloroethane                   | ND      |     | 1.0 | 0.24 |
| 75-35-4  | 1,1-Dichloroethene                   | ND      |     | 1.0 | 0.25 |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND      |     | 1.0 | 0.20 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND      |     | 10  | 0.94 |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND      |     | 1.0 | 0.19 |
| 107-06-2 | 1,2-Dichloroethane                   | ND      |     | 1.0 | 0.20 |
| 78-87-5  | 1,2-Dichloropropane                  | ND      |     | 1.0 | 0.25 |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND      |     | 1.0 | 0.18 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND      |     | 1.0 | 0.17 |
| 78-93-3  | 2-Butanone (MEK)                     | NE      | 2   | 50  | 2.6  |
| 591-78-6 | 2-Hexanone                           | NÐ      | 2   | 10  | 1.3  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | ND      | 2   | 10  | 0.81 |
| 67-64-1  | Acetone                              | 0 195.3 | 7   | 25  | 2.1  |
| 71-43-2  | Benzene                              | 6.8     |     | 1.0 | 0.20 |
| 75-25-2  | Bromoform                            | ND      |     | 1.0 | 0.29 |
| 74-83-9  | Bromomethane                         | ND      |     | 1.0 | 0.35 |
| 75-15-0  | Carbon disulfide                     | ND      | - 1 | 1.0 | 0.22 |
| 56-23-5  | Carbon tetrachloride                 | ND      |     | 1.0 | 0.18 |
| 108-90-7 | Chlorobenzene                        | ND      |     | 1.0 | 0.18 |
| 124-48-1 | Dibromochloromethane                 | ND      |     | 1.0 | 0.25 |
| 75-00-3  | Chloroethane                         | ND      |     | 1.0 | 0.36 |
| 67-66-3  | Chloroform                           | ND      |     | 1.0 | 0.23 |
| 74-87-3  | Chloromethane                        | ND      |     | 1.0 | 0.36 |
| 156-59-2 | cis-1,2-Dichloroethene               | ND      |     | 1.0 | 0.21 |
| 110-82-7 | Cyclohexane                          | 6.9     |     | 5.0 | 0.13 |
| 75-27-4  | Bromodichloromethane                 | ND      |     | 1.0 | 0.17 |
| 75-71-8  | Dichlorodifluoromethane              | ND      |     | 1.0 | 0.17 |
| 100-41-4 | Ethylbenzene                         | 1.5     | -   | 1.0 | 0.19 |
| 106-93-4 | 1,2-Dibromoethane                    | ND      |     | 1.0 | 0.21 |
| 98-82-8  | Isopropylbenzene                     | ND      |     | 1.0 | 0.33 |
| 79-20-9  | Methyl acetate                       | ND      |     | 10  | 0.58 |

05/23/2019

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152241-1 SDG No.: Client Sample ID: SR-004 Lab Sample ID: 480-152241-1 Lab File ID: 0426-12.D Matrix: Water Analysis Method: 8260C Date Collected: 04/19/2019 09:05 Sample wt/vol: 10(mL) Date Analyzed: 04/26/2019 20:05 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: ZB-624 ID: 0.18 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 590877 Units: ug/L

| CAS NO.    | COMPOUND NAME             | RESULT | Q        | RL  | MDL   |
|------------|---------------------------|--------|----------|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |          | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | 3.3    | J        | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     | <u> </u> | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |          | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | 2.4    |          | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |          | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |          | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | ND     |          | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     | <u> </u> | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | ND     |          | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | 5.4    |          | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |          | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |          | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 99   |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 98   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 96   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 105  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152241-1            |  |  |
|-------------------------------------------|----------------------------------|--|--|
| SDG No.:                                  |                                  |  |  |
| Client Sample ID: SR-005                  | Lab Sample ID: 480-152241-3      |  |  |
| Matrix: Water                             | Lab File ID: 0425-25.D           |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/19/2019 12:00 |  |  |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/26/2019 00:18  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 100             |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18 (mm)  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |
| Analysis Ratch No · 590503                | Units: ua/L                      |  |  |

| CAS NO.  | COMPOUND NAME                          | RESULT | Q   | RL   | MDL |
|----------|----------------------------------------|--------|-----|------|-----|
| 71-55-6  | 1,1,1-Trichloroethane                  | 1200   |     | 100  | 19  |
| 79-34-5  | 1,1,2,2-Tetrachloroethane              | ND     |     | 100  | 19  |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |     | 100  | 15  |
| 79-00-5  | 1,1,2-Trichloroethane                  | ND     | İ   | 100  | 19  |
| 75-34-3  | 1,1-Dichloroethane                     | 17000  |     | 100  | 24  |
| 75-35-4  | 1,1-Dichloroethene                     | 500    |     | 100  | 25  |
| 120-82-1 | 1,2,4-Trichlorobenzene                 | ND     |     | 100  | 20  |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane            | ND     |     | 1000 | 94  |
| 95-50-1  | 1,2-Dichlorobenzene                    | ND     |     | 100  | 19  |
| 107-06-2 | 1,2-Dichloroethane                     | ND     |     | 100  | 20  |
| 78-87-5  | 1,2-Dichloropropane                    | ND     |     | 100  | 25  |
| 541-73-1 | 1,3-Dichlorobenzene                    | ND     |     | 100  | 18  |
| 106-46-7 | 1,4-Dichlorobenzene                    | ND     |     | 100  | 17  |
| 78-93-3  | 2-Butanone (MEK)                       | ND     | R   | 5000 | 260 |
| 591-78-6 | 2-Hexanone                             | ND     | 2   | 1000 | 130 |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)            | ND     | 2   | 1000 | 81  |
| 67-64-1  | Acetone                                | 1800   | 7 2 | 2500 | 276 |
| 71-43-2  | Benzene                                | 83     | J   | 100  | 20  |
| 75-25-2  | Bromoform                              | ND     |     | 100  | 29  |
| 74-83-9  | Bromomethane                           | ND     |     | 100  | 35  |
| 75-15-0  | Carbon disulfide                       | ND     |     | 100  | 22  |
| 56-23-5  | Carbon tetrachloride                   | ND     |     | 100  | 18  |
| 108-90-7 | Chlorobenzene                          | ND     |     | 100  | 18  |
| 124-48-1 | Dibromochloromethane                   | ND     |     | 100  | 25  |
| 75-00-3  | Chloroethane                           | 78     | J   | 100  | 36  |
| 67-66-3  | Chloroform                             | ND     |     | 100  | 23  |
| 74-87-3  | Chloromethane                          | ND     |     | 100  | 36  |
| 156-59-2 | cis-1,2-Dichloroethene                 | 230    |     | 100  | 21  |
| 110-82-7 | Cyclohexane                            | 72     | J   | 500  | 13  |
| 75-27-4  | Bromodichloromethane                   | ND     |     | 100  | 17  |
| 75-71-8  | Dichlorodifluoromethane                | ND     |     | 100  | 17  |
| 100-41-4 | Ethylbenzene                           | ND     |     | 100  | 19  |
| 106-93-4 | 1,2-Dibromoethane                      | ND     |     | 100  | 21  |
| 98-82-8  | Isopropylbenzene                       | ND     |     | 100  | 33  |
| 79-20-9  | Methyl acetate                         | ND     | 0   | 1000 | 58  |

05/23/2019

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152241-1            |  |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|--|
| SDG No.:                                  |                                  |  |  |  |  |
| Client Sample ID: SR-005                  | Lab Sample ID: 480-152241-3      |  |  |  |  |
| Matrix: Water                             | Lab File ID: 0425-25.D           |  |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/19/2019 12:00 |  |  |  |  |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/26/2019 00:18  |  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 100             |  |  |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18 (mm)  |  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |  |
| Analysis Batch No.: 590503                | Units: ug/L                      |  |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL |
|------------|---------------------------|--------|---|-----|-----|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 100 | 17  |
| 108-87-2   | Methylcyclohexane         | 38     | J | 500 | 9.0 |
| 75-09-2    | Methylene Chloride        | ND     |   | 500 | 100 |
| 127-18-4   | Tetrachloroethene         | ND     |   | 100 | 14  |
| 108-88-3   | Toluene                   | 96     | J | 100 | 17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 100 | 23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 100 | 17  |
| 79-01-6    | Trichloroethene           | 1900   |   | 100 | 20  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 100 | 21  |
| 75-01-4    | Vinyl chloride            | ND     |   | 100 | 18  |
| 1330-20-7  | Xylenes, Total            | ND     |   | 300 | 58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | - | 100 | 17  |
| 100-42-5   | Styrene                   | ND     |   | 100 | 28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 98   |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 100  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 96   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 102  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152320-1            |  |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|--|
| SDG No.:                                  |                                  |  |  |  |  |
| Client Sample ID: SR-006                  | Lab Sample ID: 480-152320-2      |  |  |  |  |
| Matrix: Water                             | Lab File ID: 043019-20.D         |  |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/22/2019 10:30 |  |  |  |  |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/30/2019 18:13  |  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 50              |  |  |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |  |
| Analysis Batch No.: 591468                | Units: ug/L                      |  |  |  |  |

| CAS NO.  | COMPOUND NAME                        | RESULT | ,Q | RL   | MDL |
|----------|--------------------------------------|--------|----|------|-----|
| 71-55-6  | 1,1,1-Trichloroethane                | 2200   |    | 50   | 9.5 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND     |    | 50   | 9.5 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     | *  | 50   | 7.5 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND     |    | 50   | 9.5 |
| 75-34-3  | 1,1-Dichloroethane                   | 7100   |    | 50   | 12  |
| 75-35-4  | 1,1-Dichloroethene                   | 360    |    | 50   | 13  |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND     |    | 50   | 10  |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND     |    | 500  | 47  |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     |    | 50   | 9.5 |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | *  | 50   | 10  |
| 78-87-5  | 1,2-Dichloropropane                  | ND     |    | 50   | 13  |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     |    | 50   | 9.0 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     |    | 50   | 8.5 |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | 2  | 2500 | 130 |
| 591-78-6 | 2-Hexanone                           | ND     | 2  | 500  | 64  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | ND     | 2  | 500  | 41  |
| 67-64-1  | Acetone                              | NE     | 2  | 1300 | 130 |
| 71-43-2  | Benzene                              | 33     | J  | 50   | 10. |
| 75-25-2  | Bromoform                            | ND     |    | 50   | 15  |
| 74-83-9  | Bromomethane                         | ND     |    | 50   | 18  |
| 75-15-0  | Carbon disulfide                     | ND     |    | 50   | 11  |
| 56-23-5  | Carbon tetrachloride                 | ND     |    | 50   | 9.0 |
| 108-90-7 | Chlorobenzene                        | ND     |    | 50   | 9.0 |
| 124-48-1 | Dibromochloromethane                 | ND     |    | 50   | 13  |
| 75-00-3  | Chloroethane                         | ND     |    | 50   | 18  |
| 67-66-3  | Chloroform                           | ND     |    | 50   | 12  |
| 74-87-3  | Chloromethane                        | ND     |    | 50   | 18  |
| 156-59-2 | cis-1,2-Dichloroethene               | 550    |    | 50   | 11  |
| 110-82-7 | Cyclohexane                          | ND     |    | 250  | 6.5 |
| 75-27-4  | Bromodichloromethane                 | ND     |    | 50   | 8.5 |
| 75-71-8  | Dichlorodifluoromethane              | , ND   |    | 50   | 8.5 |
| 100-41-4 | Ethylbenzene                         | ND     |    | 50   | 9.5 |
| 106-93-4 | 1,2-Dibromoethane                    | ND     |    | 50   | 11  |
| 98-82-8  | Isopropylbenzene                     | ND     |    | 50   | 17  |
| 79-20-9  | Methyl acetate                       | ND     | 2  | 500  | 29  |

05/2

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152320-1            |
|-------------------------------------------|----------------------------------|
| SDG No.:                                  |                                  |
| Client Sample ID: SR-006                  | Lab Sample ID: 480-152320-2      |
| Matrix: Water                             | Lab File ID: 043019-20.D         |
| Analysis Method: 8260C                    | Date Collected: 04/22/2019 10:30 |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/30/2019 18:13  |
| Soil Aliquot Vol:                         | Dilution Factor: 50              |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |
| % Moisture:                               | Level: (low/med) Low             |
| Analysis Batch No.: 591468                | Units: ug/L                      |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL |
|------------|---------------------------|--------|---|-----|-----|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 50  | 8.5 |
| 108-87-2   | Methylcyclohexane         | 30     | J | 250 | 4.5 |
| 75-09-2    | Methylene Chloride        | ND     |   | 250 | 50  |
| 127-18-4   | Tetrachloroethene         | ND     |   | 50  | 7.0 |
| 108-88-3   | Toluene                   | 43     | J | 50  | 8.5 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 50  | 12  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 50  | 8.5 |
| 79-01-6    | Trichloroethene           | 680    |   | 50  | 10  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 50  | 11  |
| 75-01-4    | Vinyl chloride            | ND     |   | 50  | 9.0 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 150 | 29  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |   | 50  | 8.5 |
| 100-42-5   | Styrene                   | ND     |   | 50  | 14  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 118  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 93   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 98   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 112  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|
| SDG No.:                                  |                                  |  |  |  |
| Client Sample ID: SR-101                  | Lab Sample ID: 480-152070-1      |  |  |  |
| Matrix: Water                             | Lab File ID: 042519-16.D         |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/17/2019 14:45 |  |  |  |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/25/2019 19:14  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |
| Analysis Batch No : 500475                | Units: ua/L                      |  |  |  |

| CAS NO.  | COMPOUND NAME                        | RESULT | Q     | RL  | MDL  |
|----------|--------------------------------------|--------|-------|-----|------|
| 71-55-6  | 1,1,1-Trichloroethane                | ND     |       | 1.0 | 0.19 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND     |       | 1.0 | 0.19 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |       | 1.0 | 0.15 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND     |       | 1.0 | 0.19 |
| 75-34-3  | 1,1-Dichloroethane                   | ND     |       | 1.0 | 0.24 |
| 75-35-4  | 1,1-Dichloroethene                   | ND     |       | 1.0 | 0.25 |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND     |       | 1.0 | 0.20 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND     |       | 10  | 0.94 |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     |       | 1.0 | 0.19 |
| 107-06-2 | 1,2-Dichloroethane                   | ND     | , How | 1.0 | 0.20 |
| 78-87-5  | 1,2-Dichloropropane                  | -ND    |       | 1.0 | 0.25 |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     |       | 1.0 | 0.18 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     |       | 1.0 | 0.17 |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | 2     | 50  | 2.6  |
| 591-78-6 | 2-Hexanone                           | ND     | 2     | 10  | 1.3  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | , NED  | 12    | 10  | 0.81 |
| 67-64-1  | Acetone                              | ND     | R     | 25  | 2.7  |
| 71-43-2  | Benzene                              | ND     |       | 1.0 | 0.20 |
| 75-25-2  | Bromoform                            | ND     |       | 1.0 | 0.29 |
| 74-83-9  | Bromomethane                         | ND     |       | 1.0 | 0.35 |
| 75-15-0  | Carbon disulfide                     | ND     |       | 1.0 | 0.22 |
| 56-23-5  | Carbon tetrachloride                 | ND     |       | 1.0 | 0.18 |
| 108-90-7 | Chlorobenzene                        | ND     |       | 1.0 | 0.18 |
| 124-48-1 | Dibromochloromethane                 | ND     |       | 1.0 | 0.25 |
| 75-00-3  | Chloroethane                         | ND     |       | 1.0 | 0.36 |
| 67-66-3  | Chloroform                           | ND     |       | 1.0 | 0.23 |
| 74-87-3  | Chloromethane                        | ND     |       | 1.0 | 0.36 |
| 156-59-2 | cis-1,2-Dichloroethene               | ND     |       | 1.0 | 0.21 |
| 110-82-7 | Cyclohexane                          | ND     |       | 5.0 | 0.13 |
| 75-27-4  | Bromodichloromethane                 | ND     |       | 1.0 | 0.17 |
| 75-71-8  | Dichlorodifluoromethane              | ND     | ¥     | 1.0 | 0.17 |
| 100-41-4 | Ethylbenzene                         | ND     |       | 1.0 | 0.19 |
| 106-93-4 | 1,2-Dibromoethane                    | ND     |       | 1.0 | 0.21 |
| 98-82-8  | Isopropylbenzene                     | ND     |       | 1.0 | 0.33 |
| 79-20-9  | Methyl acetate                       | ND     | 0     | 10  | 0.58 |

05/17/2019

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-101 Lab Sample ID: 480-152070-1 Matrix: Water Lab File ID: 042519-16.D Analysis Method: 8260C Date Collected: 04/17/2019 14:45 Sample wt/vol: 10(mL) Date Analyzed: 04/25/2019 19:14 Soil Aliquot Vol: \_\_\_\_ Dilution Factor: 1 Soil Extract Vol.: GC Column: ZB-624 ID: 0.18 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 590475 Units: ug/L

| CAS NO.    | COMPOUND NAME             | RESULT | Q  | RL  | MDL   |
|------------|---------------------------|--------|----|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |    | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | 0.93   | J  | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     |    | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |    | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | ND     |    | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |    | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |    | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | ND     |    | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     |    | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | ND     |    | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | ND     |    | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 1) | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |    | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q   | LIMITS |
|------------|------------------------------|------|-----|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 113  |     | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 93   |     | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 95   | - 1 | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 107  | _   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|
| SDG No.:                                  |                                  |  |  |  |
| Client Sample ID: SR-104                  | Lab Sample ID: 480-152143-2      |  |  |  |
| Matrix: Water                             | Lab File ID: 04251950.D          |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 10:35 |  |  |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/26/2019 12:37  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 10              |  |  |  |
| Soil Extract Vol.:                        | GC Column: RTX-624 ID: 0.18 (mm) |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |
| Analysis Batch No.: 590664                | Units: ug/L                      |  |  |  |

| CAS NO.  | COMPOUND NAME                        | RESULT | Q   | RL  | MDL |
|----------|--------------------------------------|--------|-----|-----|-----|
| 71-55-6  | 1,1,1-Trichloroethane                | 45     |     | 10  | 1.9 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND     |     | 10  | 1.9 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |     | 10  | 1.5 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND     |     | 10  | 1.9 |
| 75-34-3  | 1,1-Dichloroethane                   | 230    |     | 10  | 2.4 |
| 75-35-4  | 1,1-Dichloroethene                   | 46     |     | 10  | 2.5 |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND     |     | 10  | 2.0 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND     |     | 100 | 9.4 |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     |     | 10  | 1.9 |
| 107-06-2 | 1,2-Dichloroethane                   | ND     |     | 10  | 2.0 |
| 78-87-5  | 1,2-Dichloropropane                  | ND     |     | 10  | 2.5 |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     |     | 10  | 1.8 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     |     | 10  | 1.7 |
| 78-93-3  | 2-Butanone (MEK)                     | ND     | - 2 | 500 | 26  |
| 591-78-6 | 2-Hexanone                           | ND     |     | 100 | 13  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | ND     |     | 100 | 8.1 |
| 67-64-1  | Acetone                              | ND     | 2   | 250 | 27  |
| 71-43-2  | Benzene                              | 4.9    | J   | 10  | 2.0 |
| 75-25-2  | Bromoform                            | ND     |     | 10  | 2.9 |
| 74-83-9  | Bromomethane                         | ND     |     | 10  | 3.5 |
| 75-15-0  | Carbon disulfide                     | ND     |     | 10  | 2.2 |
| 56-23-5  | Carbon tetrachloride                 | ND     |     | 10  | 1.8 |
| 108-90-7 | Chlorobenzene                        | ND     |     | 10  | 1.8 |
| 124-48-1 | Dibromochloromethane                 | ND     |     | 10  | 2.5 |
| 75-00-3  | Chloroethane                         | ND     |     | 10  | 3.6 |
| 67-66-3  | Chloroform                           | ND     |     | 10  | 2.3 |
| 74-87-3  | Chloromethane                        | ND     |     | 10  | 3.6 |
| 156-59-2 | cis-1,2-Dichloroethene               | 1800   |     | 10  | 2.1 |
| 110-82-7 | Cyclohexane                          | ND     |     | 50  | 1.3 |
| 75-27-4  | Bromodichloromethane                 | ND     | /   | 10  | 1.7 |
| 75-71-8  | Dichlorodifluoromethane              | ND     | *   | 10  | 1.7 |
| 100-41-4 | Ethylbenzene                         | ND     | -   | 10  | 1.9 |
| 106-93-4 | 1,2-Dibromoethane                    | ND     |     | 10  | 2.1 |
| 98-82-8  | Isopropylbenzene                     | ND     |     | 10  | 3.3 |
| 79-20-9  | Methyl acetate                       | ND     |     | 100 | 5.8 |

05/17/2019

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |
|-------------------------------------------|----------------------------------|--|
| SDG No.:                                  |                                  |  |
| Client Sample ID: SR-104                  | Lab Sample ID: 480-152143-2      |  |
| Matrix: Water                             | Lab File ID: 04251950.D          |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 10:35 |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/26/2019 12:37  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 10              |  |
| Soil Extract Vol.:                        | GC Column: RTX-624 ID: 0.18 (mm) |  |
| % Moisture:                               | Level: (low/med) Low             |  |
| Analysis Batch No.: 590664                | Units: ug/L                      |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL | MDL  |
|------------|---------------------------|--------|---|----|------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 10 | 1.7  |
| 108-87-2   | Methylcyclohexane         | ND     |   | 50 | 0.90 |
| 75-09-2    | Methylene Chloride        | ND     |   | 50 | 10   |
| 127-18-4   | Tetrachloroethene         | 10     |   | 10 | 1.4  |
| 108-88-3   | Toluene                   | ND     |   | 10 | 1.7  |
| 156-60-5   | trans-1,2-Dichloroethene  | 9.0    | J | 10 | 2.3  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 10 | 1.7  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 10 | 2.1  |
| 1330-20-7  | Xylenes, Total            | ND     |   | 30 | 5.8  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |   | 10 | 1.7  |
| 100-42-5   | Styrene                   | ND     |   | 10 | 2.8  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 106  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 106  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 96   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 98   |   | 70-130 |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1 SDG No.: Lab Sample ID: 480-152143-2 Client Sample ID: SR-104 Lab File ID: 04301912.D Matrix: Water Date Collected: 04/18/2019 10:35 Analysis Method: 8260C Date Analyzed: 04/30/2019 15:28 Sample wt/vol: 5(mL) Dilution Factor: 10 Soil Aliquot Vol: GC Column: DB-624 ID: 0.18 (mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 591541 Units: ug/L

| CAS NO. | COMPOUND NAME  | RESULT | Q | RL | MDL |
|---------|----------------|--------|---|----|-----|
| 75-01-4 | Vinyl chloride | 33     |   | 10 | 1.8 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 106  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 102  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 105  |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 104  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |
|-------------------------------------------|----------------------------------|--|--|
| SDG No.:                                  |                                  |  |  |
| Client Sample ID: SR-104                  | Lab Sample ID: 480-152143-2      |  |  |
| Matrix: Water                             | Lab File ID: 04251948.D          |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 10:35 |  |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/26/2019 11:44  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 100             |  |  |
| Soil Extract Vol.:                        | GC Column: RTX-624 ID: 0.18 (mm) |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |
| Analysis Batch No.: 590664                | Units: ug/L                      |  |  |

| CAS NO. | COMPOUND NAME   | RESULT | Q | RL  | MDL |
|---------|-----------------|--------|---|-----|-----|
| 79-01-6 | Trichloroethene | 2700   |   | 100 | 20  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 108  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 105  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 98   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 96   |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152320-1            |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|
| SDG No.:                                  |                                  |  |  |  |
| Client Sample ID: SR-105                  | Lab Sample ID: 480-152320-1      |  |  |  |
| Matrix: Water                             | Lab File ID: 042919-23.D         |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/22/2019 08:50 |  |  |  |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/29/2019 19:29  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 500             |  |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18 (mm)  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |
| Analysis Batch No : 591225                | Units: ug/L                      |  |  |  |

| CAS NO.  | COMPOUND NAME                          | RESULT | Q  | RL    | MDL  |
|----------|----------------------------------------|--------|----|-------|------|
| 71-55-6  | 1,1,1-Trichloroethane                  | 200000 |    | 500   | 95   |
| 79-34-5  | 1,1,2,2-Tetrachloroethane              | ND     |    | 500   | 95   |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |    | 500   | 75   |
| 79-00-5  | 1,1,2-Trichloroethane                  | ND     |    | 500   | 95   |
| 75-34-3  | 1,1-Dichloroethane                     | 75000  |    | 500   | 120  |
| 75-35-4  | 1,1-Dichloroethene                     | 3100   |    | 500   | 130  |
| 120-82-1 | 1,2,4-Trichlorobenzene                 | ND     | 05 | 500   | 100  |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane            | ND     |    | 5000  | 470  |
| 95-50-1  | 1,2-Dichlorobenzene                    | ND     |    | 500   | 95   |
| 107-06-2 | 1,2-Dichloroethane                     | ND     |    | 500   | 100  |
| 78-87-5  | 1,2-Dichloropropane                    | ND     |    | 500   | 130  |
| 541-73-1 | 1,3-Dichlorobenzene                    | ND     |    | 500   | 90   |
| 106-46-7 | 1,4-Dichlorobenzene                    | ND     |    | 500   | 85   |
| 78-93-3  | 2-Butanone (MEK)                       | ND     | 2  | 25000 | 1300 |
| 591-78-6 | 2-Hexanone                             | ND     | R  | 5000  | 640  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)            | ND     | R  | 5000  | 410  |
| 67-64-1  | Acetone                                | 19000  | 3  | 13000 | 1300 |
| 71-43-2  | Benzene                                | ND     |    | 500   | 100  |
| 75-25-2  | Bromoform                              | ND     |    | 500   | 150  |
| 74-83-9  | Bromomethane                           | ND     |    | 500   | 180  |
| 75-15-0  | Carbon disulfide                       | ND     |    | 500   | 110  |
| 56-23-5  | Carbon tetrachloride                   | ND     |    | 500   | 90   |
| 108-90-7 | Chlorobenzene                          | ND     |    | 500   | 90   |
| 124-48-1 | Dibromochloromethane                   | ND     |    | 500   | 130  |
| 75-00-3  | Chloroethane                           | ND     |    | 500   | 180  |
| 67-66-3  | Chloroform                             | ND     |    | 500   | 120  |
| 74-87-3  | Chloromethane                          | ND     |    | 500   | 180  |
| 156-59-2 | cis-1,2-Dichloroethene                 | 7600   |    | 500   | 110  |
| 110-82-7 | Cyclohexane                            | ND     |    | 2500  | 65   |
| 75-27-4  | Bromodichloromethane                   | ND     |    | 500   | 85   |
| 75-71-8  | Dichlorodifluoromethane                | ND     |    | 500   | 85   |
| 100-41-4 | Ethylbenzene                           | ND     |    | 500   | 95   |
| 106-93-4 | 1,2-Dibromoethane                      | ND     |    | 500   | 110  |
| 98-82-8  | Isopropylbenzene                       | ND     |    | 500   | 170  |
| 79-20-9  | Methyl acetate                         | ND'    | (2 | 5000  | 290  |

05/22

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152320-1            |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|
| SDG No.:                                  | и                                |  |  |  |
| Client Sample ID: SR-105                  | Lab Sample ID: 480-152320-1      |  |  |  |
| Matrix: Water                             | Lab File ID: 042919-23.D         |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/22/2019 08:50 |  |  |  |
| Sample wt/vol: 10 (mL)                    | Date Analyzed: 04/29/2019 19:29  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 500             |  |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |
| Analysis Batch No.: 591225                | Units: ug/L                      |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL   | MDL |
|------------|---------------------------|--------|---|------|-----|
| 1634-04-4  | Methyl tert-butyl ether   | ND     | 1 | 500  | 85  |
| 108-87-2   | Methylcyclohexane         | ND     |   | 2500 | 45  |
| 75-09-2    | Methylene Chloride        | ND     |   | 2500 | 500 |
| 127-18-4   | Tetrachloroethene         | ND     |   | 500  | 70  |
| 108-88-3   | Toluene                   | ND     |   | 500  | 85  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     | - | 500  | 120 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 500  | 85  |
| 79-01-6    | Trichloroethene           | 92000  |   | 500  | 100 |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 500  | 110 |
| 75-01-4    | Vinyl chloride            | ND     |   | 500  | 90  |
| 1330-20-7  | Xylenes, Total            | ND     |   | 1500 | 290 |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |   | 500  | 85  |
| 100-42-5   | Styrene                   | ND     |   | 500  | 140 |

| CAS NO.    | SURROGATE                    | %REC | Q , | LIMITS |
|------------|------------------------------|------|-----|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 110  |     | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 101  |     | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 98   |     | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 113  |     | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |              |  |  |
|-------------------------------------------|----------------------------------|--------------|--|--|
| SDG No.:                                  |                                  |              |  |  |
| Client Sample ID: SR-106                  | Lab Sample ID: 480-152070-2      |              |  |  |
| Matrix: Water                             | Lab File ID: 042619-13.D         |              |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/17/2019 16:20 |              |  |  |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/26/2019 1      | 17:28        |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 20              |              |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624                | D: 0.18 (mm) |  |  |
| % Moisture:                               | Level: (low/med) Low             |              |  |  |
| Analysis Batch No + 500929                | Units ug/L                       |              |  |  |

| CAS NO.  | COMPOUND NAME                          | RESULT | Q  | RL   | MDL |
|----------|----------------------------------------|--------|----|------|-----|
| 71-55-6  | 1,1,1-Trichloroethane                  | 1100   |    | 20   | 3.8 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane              | ND     |    | 20   | 3.8 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |    | 20   | 3.0 |
| 79-00-5  | 1,1,2-Trichloroethane                  | ND     |    | 20   | 3.8 |
| 75-34-3  | 1,1-Dichloroethane                     | 3300   |    | 20   | 4.8 |
| 75-35-4  | 1,1-Dichloroethene                     | 59     |    | 20   | 5.0 |
| 120-82-1 | 1,2,4-Trichlorobenzene                 | ND     |    | 20   | 4.0 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane            | ND     |    | 200  | 19  |
| 95-50-1  | 1,2-Dichlorobenzene                    | ND     |    | 20   | 3.8 |
| 107-06-2 | 1,2-Dichloroethane                     | ND     |    | 20   | 4.0 |
| 78-87-5  | 1,2-Dichloropropane                    | ND     |    | 20   | 5.0 |
| 541-73-1 | 1,3-Dichlorobenzene                    | ND     |    | 20   | 3.6 |
| 106-46-7 | 1,4-Dichlorobenzene                    | ND     |    | 20   | 3.4 |
| 78-93-3  | 2-Butanone (MEK)                       | ND     | R  | 1000 | 53  |
| 591-78-6 | 2-Hexanone                             | ND     | R  | 200  | 26  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)            | ND     | 0_ | 200  | 16  |
| 67-64-1  | Acetone                                | ND     | (2 | 500  | 53  |
| 71-43-2  | Benzene                                | ND     |    | 20   | 4.0 |
| 75-25-2  | Bromoform                              | ND     |    | 20   | 5.8 |
| 74-83-9  | Bromomethane                           | ND     |    | 20   | 7.0 |
| 75-15-0  | Carbon disulfide                       | ND     |    | 20   | 4.4 |
| 56-23-5  | Carbon tetrachloride                   | ND     |    | 20   | 3.6 |
| 108-90-7 | Chlorobenzene                          | ND     |    | 20   | 3.6 |
| 124-48-1 | Dibromochloromethane                   | ND     |    | 20   | 5.0 |
| 75-00-3  | Chloroethane                           | 91     |    | 20   | 7.2 |
| 67-66-3  | Chloroform                             | ND     |    | 20   | 4.6 |
| 74-87-3  | Chloromethane                          | ND     |    | 20   | 7.2 |
| 156-59-2 | cis-1,2-Dichloroethene                 | 250    |    | 20   | 4.2 |
| 110-82-7 | Cyclohexane                            | ND     |    | 100  | 2.6 |
| 75-27-4  | Bromodichloromethane                   | ND     |    | 20   | 3.4 |
| 75-71-8  | Dichlorodifluoromethane                | ND     |    | 20   | 3.4 |
| 100-41-4 | Ethylbenzene                           | ND     |    | 20   | 3.8 |
| 106-93-4 | 1,2-Dibromoethane                      | ND     |    | 20   | 4.2 |
| 98-82-8  | Isopropylbenzene                       | ND     |    | 20   | 6.6 |
| 79-20-9  | Methyl acetate                         | ND     | (2 | 200  | 12  |

FORM I 8260C

05/17/2019

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-106 Lab Sample ID: 480-152070-2 Matrix: Water Lab File ID: 042619-13.D Analysis Method: 8260C Date Collected: 04/17/2019 16:20 Sample wt/vol: 10(mL) Date Analyzed: 04/26/2019 17:28 Dilution Factor: 20 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 ID: 0.18 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 590828 Units: ug/L

| CAS NO.    | COMPOUND NAME             | RESULT | Q   | RL  | MDL  |
|------------|---------------------------|--------|-----|-----|------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |     | 20  | 3.4  |
| 108-87-2   | Methylcyclohexane         | ND     | 135 | 100 | 1.8  |
| 75-09-2    | Methylene Chloride        | ND     |     | 100 | 20   |
| 127-18-4   | Tetrachloroethene         | ND     |     | 20  | 2.8  |
| 108-88-3   | Toluene                   | ND     |     | 20  | 3.4  |
| 156-60-5   | trans-1,2-Dichloroethene  | 8.8    | J   | 20  | 4.6  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |     | 20  | 3.4  |
| 79-01-6    | Trichloroethene           | 58     |     | 20  | 4.0  |
| 75-69-4    | Trichlorofluoromethane    | ND     |     | 20  | 4.2  |
| 75-01-4    | Vinyl chloride            | 100    |     | 20  | 3.6  |
| 1330-20-7  | Xylenes, Total            | ND     |     | 60  | . 12 |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |     | 20  | 3.4  |
| 100-42-5   | Styrene                   | ND     |     | 20  | 5.6  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 105  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 97   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 97   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 105  |   | 70-130 |



| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|
| SDG No.:                                  |                                  |  |  |  |
| Client Sample ID: SR-108                  | Lab Sample ID: 480-152143-1      |  |  |  |
| Matrix: Water                             | Lab File ID: 04251915.D          |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 09:15 |  |  |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/25/2019 20:03  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |
| Soil Extract Vol.:                        | GC Column: DB-624 ID: 0.18 (mm)  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |
| Analysis Batch No.: 590455                | Units: ug/L                      |  |  |  |

| CAS NO.   | COMPOUND NAME                          | RESULT | Q              | RL  | MDL  |
|-----------|----------------------------------------|--------|----------------|-----|------|
| 71-55-6   | 1,1,1-Trichloroethane                  | 12     |                | 1.0 | 0.19 |
| 79-34-5   | 1,1,2,2-Tetrachloroethane              | ND     |                | 1.0 | 0.19 |
| 76-13-1   | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |                | 1.0 | 0.15 |
| 79-00-5   | 1,1,2-Trichloroethane                  | ND     |                | 1.0 | 0.19 |
| 75-34-3   | 1,1-Dichloroethane                     | 43     |                | 1.0 | 0.24 |
| 75-35-4   | 1,1-Dichloroethene                     | 9.5    |                | 1.0 | 0.25 |
| 120-82-1  | 1,2,4-Trichlorobenzene                 | ND     |                | 1.0 | 0.20 |
| 96-12-8   | 1,2-Dibromo-3-Chloropropane            | ND     |                | 10  | 0.94 |
| 95-50-1   | 1,2-Dichlorobenzene                    | ND     |                | 1.0 | 0.19 |
| 107-06-2  | 1,2-Dichloroethane                     | ND     |                | 1.0 | 0.20 |
| 78-87-5   | 1,2-Dichloropropane                    | ND     |                | 1.0 | 0.25 |
| 541-73-1  | 1,3-Dichlorobenzene                    | ND     |                | 1.0 | 0.18 |
| 106-46-7  | 1,4-Dichlorobenzene                    | ND     |                | 1.0 | 0.17 |
| 78-93-3   | 2-Butanone (MEK)                       | ND     | - 0            | 50  | 2.6  |
| 591-78-6  | 2-Hexanone                             | ND     | 0              | 10  | 1.3  |
| 108-10-1  | 4-Methyl-2-pentanone (MIBK)            | ND     |                | 10  | 0.81 |
| 67-64-1   | Acetone                                | ND     | .15            | 25  | 2.7  |
| 71-43-2   | Benzene                                | 2.8    |                | 1.0 | 0.20 |
| 75-25-2   | Bromoform                              | ND     |                | 1.0 | 0.29 |
| 74-83-9   | Bromomethane                           | ND     | j <del>k</del> | 1.0 | 0.35 |
| 75-15-0   | Carbon disulfide                       | ND     |                | 1.0 | 0.22 |
| 56-23-5   | Carbon tetrachloride                   | ND     |                | 1.0 | 0.18 |
| 108-90-7  | Chlorobenzene                          | ND     |                | 1.0 | 0.18 |
| 124-48-1  | Dibromochloromethane                   | ND     |                | 1.0 | 0.25 |
| 75-00-3   | Chloroethane                           | ND     |                | 1.0 | 0.36 |
| 67-66-3   | Chloroform                             | ND     |                | 1.0 | 0.23 |
| 74-87-3   | Chloromethane                          | ND     |                | 1.0 | 0.36 |
| 110-82-7  | Cyclohexane                            | 6.0    |                | 5.0 | 0.13 |
| 75-27-4   | Bromodichloromethane                   | ND     |                | 1.0 | 0.17 |
| 75-71-8   | Dichlorodifluoromethane                | ND     |                | 1.0 | 0.17 |
| 100-41-4  | Ethylbenzene                           | 0.34   | J              | 1.0 | 0.19 |
| 106-93-4  | 1,2-Dibromoethane                      | ND     |                | 1.0 | 0.21 |
| 98-82-8   | Isopropylbenzene                       | ND     |                | 1.0 | 0.33 |
| 79-20-9   | Methyl acetate                         | ND     |                | 10  | 0.58 |
| 1634-04-4 | Methyl tert-butyl ether                | ND     | +              | 1.0 | 0.17 |

Plakery P

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|
| SDG No.:                                  |                                  |  |  |  |
| Client Sample ID: SR-108                  | Lab Sample ID: 480-152143-1      |  |  |  |
| Matrix: Water                             | Lab File ID: 04251915.D          |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 09:15 |  |  |  |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/25/2019 20:03  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |
| Soil Extract Vol.:                        | GC Column: DB-624 ID: 0.18 (mm)  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |
| Analysis Batch No.: 590455                | Units: ug/L                      |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL   |
|------------|---------------------------|--------|---|-----|-------|
| 108-87-2   | Methylcyclohexane         | 8.4    |   | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     |   | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | 0.35   | J | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | 1.4    |   | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | 17     |   | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 1.0 | 0.17  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | 47     |   | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | ND     |   | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |   | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |   | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 105  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 98   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 108  |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 104  |   | 70-130 |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-108 Lab Sample ID: 480-152143-1 Matrix: Water Lab File ID: 04261911.D Analysis Method: 8260C Date Collected: 04/18/2019 09:15 Sample wt/vol: 5(mL) Date Analyzed: 04/26/2019 17:34 Dilution Factor: 5 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-624 ID: 0.18 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 590775 Units: ug/L

| CAS NO.  | COMPOUND NAME          | RESULT | Q | RL  | MDL |
|----------|------------------------|--------|---|-----|-----|
| 156-59-2 | cis-1,2-Dichloroethene | 480    | Ī | 5.0 | 1.1 |
| 79-01-6  | Trichloroethene        | 530    | 1 | 5.0 | 1.0 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 103  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 101  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 107  | - | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 108  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|--|
| SDG No.:                                  |                                  |  |  |  |  |
| Client Sample ID: TB-20190417             | Lab Sample ID: 480-152070-3      |  |  |  |  |
| Matrix: Water                             | Lab File ID: 042519-11.D         |  |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/17/2019 00:00 |  |  |  |  |
| Sample wt/vol: 10 (mL)                    | Date Analyzed: 04/25/2019 17:04  |  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |  |
| Analysis Batch No.: 590475                | Units: ug/L                      |  |  |  |  |

| CAS NO.  | COMPOUND NAME                          | RESULT | Q        | RL  | MDL  |
|----------|----------------------------------------|--------|----------|-----|------|
| 71-55-6  | 1,1,1-Trichloroethane                  | ND     |          | 1.0 | 0.19 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane              | ND     |          | 1.0 | 0.19 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |          | 1.0 | 0.15 |
| 79-00-5  | 1,1,2-Trichloroethane                  | ND     |          | 1.0 | 0.19 |
| 75-34-3  | 1,1-Dichloroethane                     | ND     |          | 1.0 | 0.24 |
| 75-35-4  | 1,1-Dichloroethene                     | ND     |          | 1.0 | 0.25 |
| 120-82-1 | 1,2,4-Trichlorobenzene                 | ND     |          | 1.0 | 0.20 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane            | ND     |          | 10  | 0.94 |
| 95-50-1  | 1,2-Dichlorobenzene                    | ND     | ,        | 1.0 | 0.19 |
| 107-06-2 | 1,2-Dichloroethane                     | ND     | *        | 1.0 | 0.20 |
| 78-87-5  | 1,2-Dichloropropane                    | ND     |          | 1.0 | 0.25 |
| 541-73-1 | 1,3-Dichlorobenzene                    | ND     |          | 1.0 | 0.18 |
| 106-46-7 | 1,4-Dichlorobenzene                    | ND     |          | 1.0 | 0.17 |
| 78-93-3  | 2-Butanone (MEK)                       | ND     | 2        | 50  | 2.6  |
| 591-78-6 | 2-Hexanone                             | ND     | 2        | 10  | 1.3  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)            | ND     | 2        | 10  | 0.81 |
| 67-64-1  | Acetone                                | ND     | 2        | 25  | 2.7  |
| 71-43-2  | Benzene                                | ND     |          | 1.0 | 0.20 |
| 75-25-2  | Bromoform                              | ND     |          | 1.0 | 0.29 |
| 74-83-9  | Bromomethane                           | ND     |          | 1.0 | 0.35 |
| 75-15-0  | Carbon disulfide                       | ND     |          | 1.0 | 0.22 |
| 56-23-5  | Carbon tetrachloride                   | ND     |          | 1.0 | 0.18 |
| 108-90-7 | Chlorobenzene                          | ND     | <u> </u> | 1.0 | 0.18 |
| 124-48-1 | Dibromochloromethane                   | ND     |          | 1.0 | 0.25 |
| 75-00-3  | Chloroethane                           | ND     |          | 1.0 | 0.36 |
| 67-66-3  | Chloroform                             | ND     |          | 1.0 | 0.23 |
| 74-87-3  | Chloromethane                          | ND     |          | 1.0 | 0.36 |
| 156-59-2 | cis-1,2-Dichloroethene                 | ND     |          | 1.0 | 0.21 |
| 110-82-7 | Cyclohexane                            | ND     |          | 5.0 | 0.13 |
| 75-27-4  | Bromodichloromethane                   | ND     |          | 1.0 | 0.17 |
| 75-71-8  | Dichlorodifluoromethane                | ND     | ¥        | 1.0 | 0.17 |
| 100-41-4 | Ethylbenzene                           | ND     |          | 1.0 | 0.19 |
| 106-93-4 | 1,2-Dibromoethane                      | ND     |          | 1.0 | 0.21 |
| 98-82-8  | Isopropylbenzene                       | ND     | -        | 1.0 | 0.33 |
| 79-20-9  | Methyl acetate                         | ND     | 0        | 10  | 0.58 |

05/17/2019

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |  |  |
|-------------------------------------------|----------------------------------|--|--|
| SDG No.:                                  | ¥                                |  |  |
| Client Sample ID: TB-20190417             | Lab Sample ID: 480-152070-3      |  |  |
| Matrix: Water                             | Lab File ID: 042519-11.D         |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/17/2019 00:00 |  |  |
| Sample wt/vol: 10 (mL)                    | Date Analyzed: 04/25/2019 17:04  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18 (mm)  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |
| Analysis Batch No.: 590475                | Units: ug/L                      |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q  | RL  | MDL   |
|------------|---------------------------|--------|----|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |    | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | ND     |    | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     |    | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |    | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | ND     |    | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |    | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |    | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | ND     |    | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     |    | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | ND     |    | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | ND     |    | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 51 | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |    | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | 7 7 | %REC | Q   | LIMITS |
|------------|------------------------------|-----|------|-----|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) |     | 115  | P-1 | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  |     | 95   |     | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            |     | 98   |     | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  |     | 109  |     | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |
|-------------------------------------------|----------------------------------|
| SDG No.:                                  |                                  |
| Client Sample ID: TB-20190418             | Lab Sample ID: 480-152143-6      |
| Matrix: Water                             | Lab File ID: 04251912.D          |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 00:00 |
| Sample wt/vol: 5 (mL)                     | Date Analyzed: 04/25/2019 18:44  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |
| Soil Extract Vol.:                        | GC Column: DB-624 ID: 0.18 (mm)  |
| % Moisture:                               | Level: (low/med) Low             |
| Analysis Batch No.: 590455                | Units: ug/L                      |

|                      |                                      | 3112     |              |     |     |
|----------------------|--------------------------------------|----------|--------------|-----|-----|
| CAS NO.              | COMPOUND NAME                        | RESULT   | Q            | RL  | MDL |
| 71-55-6              | 1,1,1-Trichloroethane                | ND       |              | 1.0 | 0.1 |
| 79-34-5              | 1,1,2,2-Tetrachloroethane            | ND       |              | 1.0 | 0.1 |
| 76-13-1              | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND       |              | 1.0 | 0.1 |
| 79-00-5              | 1,1,2-Trichloroethane                | ND       |              | 1.0 | 0.1 |
| 75-34-3              | 1,1-Dichloroethane                   | ND       |              | 1.0 | 0.2 |
| 75-35-4              | 1,1-Dichloroethene                   | ND       |              | 1.0 | 0.2 |
| 120-82-1             | 1,2,4-Trichlorobenzene               | ND       |              | 1.0 | 0.2 |
| 96-12-8              | 1,2-Dibromo-3-Chloropropane          | ND       |              | 10  | 0.9 |
| 95-50-1              | 1,2-Dichlorobenzene                  | ND       |              | 1.0 | 0.1 |
| 107-06-2             | 1,2-Dichloroethane                   | ND       |              | 1.0 | 0.2 |
| 78-87-5              | 1,2-Dichloropropane                  | ND       | <del>-</del> | 1.0 | 0.2 |
| 541-73-1             | 1,3-Dichlorobenzene                  | ND       |              | 1.0 | 0.1 |
| 106-46-7             | 1,4-Dichlorobenzene                  | ND       |              | 1.0 | 0.1 |
| 78-93-3              | 2-Butanone (MEK)                     | ND       | 0            | 50  | 2.  |
| 591-78-6             | 2-Hexanone                           | ND       | 12           | 10  | 1.  |
| 108-10-1             | 4-Methyl-2-pentanone (MIBK)          | ND       |              | 10  | 0.8 |
| 67-64-1              | Acetone                              | NĐ       | 2            | 25  | 2.  |
| 71-43-2              | Benzene                              | ND       |              | 1.0 | 0.2 |
| 75-25-2              | Bromoform                            | ND       | ,            | 1.0 | 0.2 |
| 74-83-9              | Bromomethane                         | ND       | /            | 1.0 | 0.3 |
| 75-15-0              | Carbon disulfide                     | ND       | -            | 1.0 | 0.2 |
| 56-23-5              | Carbon tetrachloride                 | ND       |              | 1.0 | 0.1 |
| 108-90-7             | Chlorobenzene                        | ND       |              | 1.0 | 0.1 |
| 124-48-1             | Dibromochloromethane                 | ND       |              | 1.0 | 0.2 |
| 75-00-3              | Chloroethane                         | ND       |              | 1.0 | 0.3 |
| 67-66-3              | Chloroform                           | ND       |              | 1.0 | 0.2 |
| 74-87-3              | Chloromethane                        | ND       |              | 1.0 | 0.3 |
| 156-59-2             | cis-1,2-Dichloroethene               | ND       |              | 1.0 | 0.2 |
| 110-82-7             | Cyclohexane                          | ND       | -            | 5.0 | 0.1 |
| 75-27-4              | Bromodichloromethane                 | ND       |              | 1.0 | 0.1 |
| 75-71-8              | Dichlorodifluoromethane              | ND       |              | 1.0 | 0.1 |
|                      | Ethylbenzene                         | ND       |              | 1.0 | 0.1 |
| 100-41-4             | Lucity Excitation                    |          |              |     |     |
| 100-41-4<br>106-93-4 | 1,2-Dibromoethane                    | ND       | +            | 1.0 | 0.2 |
|                      |                                      | ND<br>ND |              | 1.0 | 0.2 |

FORM I 8260C

05/17/2019

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152070-1            |
|-------------------------------------------|----------------------------------|
| SDG No.:                                  |                                  |
| Client Sample ID: TB-20190418             | Lab Sample ID: 480-152143-6      |
| Matrix: Water                             | Lab File ID: 04251912.D          |
| Analysis Method: 8260C                    | Date Collected: 04/18/2019 00:00 |
| Sample wt/vol: 5(mL)                      | Date Analyzed: 04/25/2019 18:44  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |
| Soil Extract Vol.:                        | GC Column: DB-624 ID: 0.18(mm)   |
| % Moisture:                               | Level: (low/med) Low             |
| Analysis Batch No.: 590455                | Units: ug/L                      |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL   |
|------------|---------------------------|--------|---|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | ND     |   | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     |   | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |   | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | ND     |   | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | ND     |   | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | ND     |   | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | ND     |   | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |   | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |   | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 101  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 98   |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 108  |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 108  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152241-1            |
|-------------------------------------------|----------------------------------|
| SDG No.:                                  |                                  |
| Client Sample ID: TB-20190419             | Lab Sample ID: 480-152241-4      |
| Matrix: Water                             | Lab File ID: 0426-17.D           |
| Analysis Method: 8260C                    | Date Collected: 04/19/2019 00:00 |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/26/2019 22:20  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |
| % Moisture:                               | Level: (low/med) Low             |
| Analysis Batch No.: 590877                | Units: ug/L                      |

| CAS NO.  | COMPOUND NAME                        | RESULT | Q | RL   | MDL  |
|----------|--------------------------------------|--------|---|------|------|
| 71-55-6  | 1,1,1-Trichloroethane                | ND     |   | 1.0  | 0.19 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane            | ND     |   | 1.0  | 0.19 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |   | 1.0  | 0.15 |
| 79-00-5  | 1,1,2-Trichloroethane                | ND     |   | 1.0  | 0.19 |
| 75-34-3  | 1,1-Dichloroethane                   | ND     |   | 1.0  | 0.24 |
| 75-35-4  | 1,1-Dichloroethene                   | ND     |   | 1.0  | 0.25 |
| 120-82-1 | 1,2,4-Trichlorobenzene               | ND     |   | 1.0  | 0.20 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane          | ND     |   | 10   | 0.94 |
| 95-50-1  | 1,2-Dichlorobenzene                  | ND     |   | 1.0  | 0.19 |
| 107-06-2 | 1,2-Dichloroethane                   | ND     |   | 1.0  | 0.20 |
| 78-87-5  | 1,2-Dichloropropane                  | ND     |   | 1.0  | 0.25 |
| 541-73-1 | 1,3-Dichlorobenzene                  | ND     | 1 | 1.0  | 0.18 |
| 106-46-7 | 1,4-Dichlorobenzene                  | ND     |   | 1.0  | 0.17 |
| 78-93-3  | 2-Butanone (MEK)                     | NB     | 2 | 50   | 2.6  |
| 591-78-6 | 2-Hexanone                           | ND     | 0 | . 10 | 1.3  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)          | ND     | 2 | 10   | 0.81 |
| 67-64-1  | Acetone                              | 9.3    | J | 25   | 2.7  |
| 71-43-2  | Benzene                              | ND     |   | 1.0  | 0.20 |
| 75-25-2  | Bromoform                            | ND     |   | 1.0  | 0.29 |
| 74-83-9  | Bromomethane                         | ND     |   | 1.0  | 0.35 |
| 75-15-0  | Carbon disulfide                     | ND     |   | 1.0  | 0.22 |
| 56-23-5  | Carbon tetrachloride                 | ND     |   | 1.0  | 0.18 |
| 108-90-7 | Chlorobenzene                        | ND .   |   | 1.0  | 0.18 |
| 124-48-1 | Dibromochloromethane                 | ND     |   | 1.0  | 0.25 |
| 75-00-3  | Chloroethane                         | ND     |   | 1.0  | 0.36 |
| 67-66-3  | Chloroform                           | ND     |   | 1.0  | 0.23 |
| 74-87-3  | Chloromethane                        | ND     |   | 1.0  | 0.36 |
| 156-59-2 | cis-1,2-Dichloroethene               | ND     |   | 1.0  | 0.21 |
| 110-82-7 | Cyclohexane                          | ND     |   | 5.0  | 0.13 |
| 75-27-4  | Bromodichloromethane                 | ND     |   | 1.0  | 0.17 |
| 75-71-8  | Dichlorodifluoromethane              | ND     |   | 1.0  | 0.17 |
| 100-41-4 | Ethylbenzene                         | ND     |   | 1.0  | 0.19 |
| 106-93-4 | 1,2-Dibromoethane                    | ND     |   | 1.0  | 0.21 |
| 98-82-8  | Isopropylbenzene                     | ND     |   | 1.0  | 0.33 |
| 79-20-9  | Methyl acetate                       | ND     | 0 | 10   | 0.58 |

Dusk 19

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152241-1            |  |  |  |  |
|-------------------------------------------|----------------------------------|--|--|--|--|
| SDG No.:                                  |                                  |  |  |  |  |
| Client Sample ID: TB-20190419             | Lab Sample ID: 480-152241-4      |  |  |  |  |
| Matrix: Water                             | Lab File ID: 0426-17.D           |  |  |  |  |
| Analysis Method: 8260C                    | Date Collected: 04/19/2019 00:00 |  |  |  |  |
| Sample wt/vol: 10(mL)                     | Date Analyzed: 04/26/2019 22:20  |  |  |  |  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |  |  |  |  |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |  |  |  |  |
| % Moisture:                               | Level: (low/med) Low             |  |  |  |  |
| Analysis Batch No.: 590877                | Units: ug/L                      |  |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | $\mathtt{MDL}$ |
|------------|---------------------------|--------|---|-----|----------------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     | İ | 1.0 | 0.17           |
| 108-87-2   | Methylcyclohexane         | ND     |   | 5.0 | 0.090          |
| 75-09-2    | Methylene Chloride        | ND     |   | 5.0 | 1.0            |
| 127-18-4   | Tetrachloroethene         | ND     |   | 1.0 | 0.14           |
| 108-88-3   | Toluene                   | ND     | 1 | 1.0 | 0.17           |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 1.0 | 0.23           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 1.0 | 0.17           |
| 79-01-6    | Trichloroethene           | ND     |   | 1.0 | 0.20           |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 1.0 | 0.21           |
| 75-01-4    | Vinyl chloride            | ND     |   | 1.0 | 0.18           |
| 1330-20-7  | Xylenes, Total            | ND     | 1 | 3.0 | 0.58           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |   | 1.0 | 0.17           |
| 100-42-5   | Styrene                   | ND     |   | 1.0 | 0.28           |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 94   |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 100  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 94   |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 106  |   | 70-130 |

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152320-1            |
|-------------------------------------------|----------------------------------|
| SDG No.:                                  |                                  |
| Client Sample ID: TB-20190422             | Lab Sample ID: 480-152320-5      |
| Matrix: Water                             | Lab File ID: 042919-21.D         |
| Analysis Method: 8260C                    | Date Collected: 04/22/2019 00:00 |
| Sample wt/vol: 10 (mL)                    | Date Analyzed: 04/29/2019 18:37  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18 (mm)  |
| % Moisture:                               | Level: (low/med) Low             |
| Analysis Batch No.: 591225                | Units: ug/L                      |

| CAS NO.  | COMPOUND NAME                          | RESULT | Q  | RL  | MDL  |
|----------|----------------------------------------|--------|----|-----|------|
| 71-55-6  | 1,1,1-Trichloroethane                  | ND     |    | 1.0 | 0.19 |
| 79-34-5  | 1,1,2,2-Tetrachloroethane              | ND     |    | 1.0 | 0.19 |
| 76-13-1  | 1,1,2-Trichloro-1,2,2-trifluoroethan e | ND     |    | 1.0 | 0.15 |
| 79-00-5  | 1,1,2-Trichloroethane                  | ND     |    | 1.0 | 0.19 |
| 75-34-3  | 1,1-Dichloroethane                     | ND     |    | 1.0 | 0.24 |
| 75-35-4  | 1,1-Dichloroethene                     | ND     |    | 1.0 | 0.25 |
| 120-82-1 | 1,2,4-Trichlorobenzene                 | ND     | 35 | 1.0 | 0.20 |
| 96-12-8  | 1,2-Dibromo-3-Chloropropane            | ND     |    | 10  | 0.94 |
| 95-50-1  | 1,2-Dichlorobenzene                    | ND     |    | 1.0 | 0.19 |
| 107-06-2 | 1,2-Dichloroethane                     | ND     |    | 1.0 | 0.20 |
| 78-87-5  | 1,2-Dichloropropane                    | ND     |    | 1.0 | 0.25 |
| 541-73-1 | 1,3-Dichlorobenzene                    | ND     | 1  | 1.0 | 0.18 |
| 106-46-7 | 1,4-Dichlorobenzene                    | ND     |    | 1.0 | 0.17 |
| 78-93-3  | 2-Butanone (MEK)                       | ND     | 2  | 50  | 2.6  |
| 591-78-6 | 2-Hexanone                             | ND     | R  | 10  | 1.3  |
| 108-10-1 | 4-Methyl-2-pentanone (MIBK)            | ND     | R  | 10  | 0.81 |
| 67-64-1  | Acetone                                | ND     | 2  | 25  | 2.7  |
| 71-43-2  | Benzene                                | ND     |    | 1.0 | 0.20 |
| 75-25-2  | Bromoform                              | ND     |    | 1.0 | 0.29 |
| 74-83-9  | Bromomethane                           | ND     |    | 1.0 | 0.35 |
| 75-15-0  | Carbon disulfide                       | ND     |    | 1.0 | 0.22 |
| 56-23-5  | Carbon tetrachloride                   | ND     |    | 1.0 | 0.18 |
| 108-90-7 | Chlorobenzene                          | ND     |    | 1.0 | 0.18 |
| 124-48-1 | Dibromochloromethane                   | ND     |    | 1.0 | 0.25 |
| 75-00-3  | Chloroethane                           | ND     | 1  | 1.0 | 0.36 |
| 67-66-3  | Chloroform                             | ND     |    | 1.0 | 0.23 |
| 74-87-3  | Chloromethane                          | ND     |    | 1.0 | 0.36 |
| 156-59-2 | cis-1,2-Dichloroethene                 | ND     |    | 1.0 | 0.21 |
| 110-82-7 | Cyclohexane                            | ND     |    | 5.0 | 0.13 |
| 75-27-4  | Bromodichloromethane                   | ND     |    | 1.0 | 0.17 |
| 75-71-8  | Dichlorodifluoromethane                | ND     |    | 1.0 | 0.17 |
| 100-41-4 | Ethylbenzene                           | ND     |    | 1.0 | 0.19 |
| 106-93-4 | 1,2-Dibromoethane                      | ND     |    | 1.0 | 0.21 |
| 98-82-8  | Isopropylbenzene                       | ND     |    | 1.0 | 0.33 |
| 79-20-9  | Methyl acetate                         | ND     | 0  | 10  | 0.58 |

grange of

| Lab Name: Eurofins TestAmerica, Nashville | Job No.: 480-152320-1            |
|-------------------------------------------|----------------------------------|
| SDG No.:                                  |                                  |
| Client Sample ID: TB-20190422             | Lab Sample ID: 480-152320-5      |
| Matrix: Water                             | Lab File ID: 042919-21.D         |
| Analysis Method: 8260C                    | Date Collected: 04/22/2019 00:00 |
| Sample wt/vol: 10 (mL)                    | Date Analyzed: 04/29/2019 18:37  |
| Soil Aliquot Vol:                         | Dilution Factor: 1               |
| Soil Extract Vol.:                        | GC Column: ZB-624 ID: 0.18(mm)   |
| % Moisture:                               | Level: (low/med) Low             |
| Analysis Batch No.: 591225                | Units: ug/L                      |

| CAS NO.    | COMPOUND NAME             | RESULT | Q   | RL  | MDL   |
|------------|---------------------------|--------|-----|-----|-------|
| 1634-04-4  | Methyl tert-butyl ether   | ND     |     | 1.0 | 0.17  |
| 108-87-2   | Methylcyclohexane         | ND     |     | 5.0 | 0.090 |
| 75-09-2    | Methylene Chloride        | ND     | . 1 | 5.0 | 1.0   |
| 127-18-4   | Tetrachloroethene         | ND     |     | 1.0 | 0.14  |
| 108-88-3   | Toluene                   | ND     |     | 1.0 | 0.17  |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |     | 1.0 | 0.23  |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |     | 1.0 | 0.17  |
| 79-01-6    | Trichloroethene           | ND     |     | 1.0 | 0.20  |
| 75-69-4    | Trichlorofluoromethane    | ND     |     | 1.0 | 0.21  |
| 75-01-4    | Vinyl chloride            | ND     |     | 1.0 | 0.18  |
| 1330-20-7  | Xylenes, Total            | ND     |     | 3.0 | 0.58  |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     |     | 1.0 | 0.17  |
| 100-42-5   | Styrene                   | ND     |     | 1.0 | 0.28  |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 107  |   | 70-130 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 101  |   | 70-130 |
| 2037-26-5  | Toluene-d8 (Surr)            | 100  |   | 70-130 |
| 1868-53-7  | Dibromofluoromethane (Surr)  | 111  |   | 70-130 |

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1 SDG No.: Client Sample ID: BRW-01 Lab Sample ID: 480-152320-3 Matrix: Water Lab File ID: U33150199.D Analysis Method: 8270D SIM ID Date Collected: 04/22/2019 11:35 Extract. Method: 3510C Date Extracted: 04/24/2019 15:38 Sample wt/vol: 1000(mL) Date Analyzed: 05/03/2019 00:00 Con. Extract Vol.: 1(mL) Dilution Factor: 20 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 470920 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q    | RL  | MDL |
|----------|---------------|--------|------|-----|-----|
| 123-91-1 | 1,4-Dioxane   | 110    | E F2 | 4.0 | 2.0 |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 19   |   | 15-110 |



Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1 SDG No.: Client Sample ID: FD-20190422 Lab Sample ID: 480-152320-4 Lab File ID: U33150190.D Matrix: Water Analysis Method: 8270D SIM ID Date Collected: 04/22/2019 00:00 Extract. Method: 3510C Date Extracted: 04/24/2019 15:38 Sample wt/vol: 1000(mL) Date Analyzed: 05/02/2019 20:25 Con. Extract Vol.: 1(mL) Dilution Factor: 20 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 470920 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL  | MDL |
|----------|---------------|--------|---|-----|-----|
| 123-91-1 | 1,4-Dioxane   | 120    | E | 4.0 | 2.0 |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 17   |   | 15-110 |

J. 18/19

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1 SDG No.: Client Sample ID: BRW-02 Lab Sample ID: 480-152241-2 Lab File ID: U33150194.D Matrix: Water Analysis Method: 8270D SIM ID Date Collected: 04/19/2019 10:35 Extract. Method: 3510C Date Extracted: 04/24/2019 15:38 Sample wt/vol: 1000(mL) Date Analyzed: 05/02/2019 22:00 Dilution Factor: 5 Con. Extract Vol.: 1(mL) Injection Volume: 1(uL) Level: (low/med) Low GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 470920 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL  | MDL  |
|----------|---------------|--------|---|-----|------|
| 123-91-1 | 1,4-Dioxane   | 22     | E | 1.0 | 0.50 |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 25   |   | 15-110 |

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-001 Lab Sample ID: 480-152143-3 Matrix: Water Lab File ID: U33149934.D Analysis Method: 8270D SIM ID Date Collected: 04/18/2019 12:35 Extract. Method: 3510C Date Extracted: 04/19/2019 15:37 Sample wt/vol: 1000(mL) Date Analyzed: 04/23/2019 15:58 Con. Extract Vol.: 1(mL) Dilution Factor: 5 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 469309 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL  | MDL  |
|----------|---------------|--------|---|-----|------|
| 123-91-1 | 1,4-Dioxane   | 7.5    | Z | 1.0 | 0.50 |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 21   |   | 15-110 |

Del 8/19

| Lab Name: Eurofins TestAmerica, Buffalo | Job No.: 480-152070-1            |
|-----------------------------------------|----------------------------------|
| SDG No.:                                |                                  |
| Client Sample ID: SR-002                | Lab Sample ID: 480-152143-4      |
| Matrix: Water                           | Lab File ID: <u>U33149921.D</u>  |
| Analysis Method: 8270D SIM ID           | Date Collected: 04/18/2019 14:15 |
| Extract. Method: 3510C                  | Date Extracted: 04/19/2019 15:37 |
| Sample wt/vol: 1000 (mL)                | Date Analyzed: 04/23/2019 03:45  |
| Con. Extract Vol.: 1(mL)                | Dilution Factor: 1               |
| Injection Volume: 1(uL)                 | Level: (low/med) Low             |
| % Moisture:                             | GPC Cleanup: (Y/N) N             |
| Analysis Batch No.: 469131              | Units: ug/L                      |

| COMPOUND NAME | RESULT | Q | RL   | MDL  |
|---------------|--------|---|------|------|
| 1,4-Dioxane   | 0.60   |   | 0.20 | 0.10 |
|               |        |   |      |      |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 22   |   | 15-110 |

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-003 Lab Sample ID: 480-152143-5 Matrix: Water Lab File ID: U33149922.D Analysis Method: 8270D SIM ID Date Collected: 04/18/2019 15:35 Extract. Method: 3510C Date Extracted: 04/19/2019 15:37 Sample wt/vol: 1000(mL) Date Analyzed: 04/23/2019 04:09 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) Level: (low/med) Low GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 469131 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL   | MDL  |
|----------|---------------|--------|---|------|------|
| 123-91-1 | 1,4-Dioxane   | 1.3    | Z | 0.20 | 0.10 |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | .25  |   | 15-110 |



| Lab Name: Eurofins TestAmerica, Buffalo | Job No.: 480-152241-1            |
|-----------------------------------------|----------------------------------|
| SDG No.:                                |                                  |
| Client Sample ID: SR-004                | Lab Sample ID: 480-152241-1      |
| Matrix: Water                           | Lab File ID: U33150048.D         |
| Analysis Method: 8270D SIM ID           | Date Collected: 04/19/2019 09:05 |
| Extract. Method: 3510C                  | Date Extracted: 04/24/2019 15:38 |
| Sample wt/vol: 1000(mL)                 | Date Analyzed: 04/26/2019 12:21  |
| Con. Extract Vol.: 1(mL)                | Dilution Factor: 1               |
| Injection Volume: 1(uL)                 | Level: (low/med) Low             |
| % Moisture:                             | GPC Cleanup: (Y/N) N             |
| Analysis Batch No.: 469803              | Units: ug/L                      |

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL   | MDL  |
|----------|---------------|--------|---|------|------|
| 123-91-1 | 1,4-Dioxane   | 0.57   |   | 0.20 | 0.10 |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 18   |   | 15-110 |

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1 SDG No.: Client Sample ID: SR-005 Lab Sample ID: 480-152241-3 Matrix: Water Lab File ID: U33150195.D Analysis Method: 8270D SIM ID Date Collected: 04/19/2019 12:00 Extract. Method: 3510C Date Extracted: 04/24/2019 15:38 Sample wt/vol: 1000(mL) Date Analyzed: 05/02/2019 22:24 Con. Extract Vol.: 1(mL) Dilution Factor: 500 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 470920 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL  | MDL |
|----------|---------------|--------|---|-----|-----|
| 123-91-1 | 1,4-Dioxane   | 1200   | E | 100 | 50  |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 17   |   | 15-110 |

Styl Challe

Job No.: 480-152320-1 Lab Name: Eurofins TestAmerica, Buffalo SDG No.: Client Sample ID: SR-006 Lab Sample ID: 480-152320-2 Matrix: Water Lab File ID: U33150189.D Analysis Method: 8270D SIM ID Date Collected: 04/22/2019 10:30 Extract. Method: 3510C Date Extracted: 04/24/2019 15:38 Sample wt/vol: 1000(mL) Date Analyzed: 05/02/2019 20:01 Con. Extract Vol.: 1(mL) Dilution Factor: 100 Injection Volume: 1(uL) Level: (low/med) Low GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 470920 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL | MDL |
|----------|---------------|--------|---|----|-----|
| 123-91-1 | 1,4-Dioxane   | 290    | Z | 20 | 10  |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 18   |   | 15-110 |



Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-101 Lab Sample ID: 480-152070-1 Lab File ID: U33149912.D Matrix: Water Analysis Method: 8270D SIM ID Date Collected: 04/17/2019 14:45 Extract. Method: 3510C Date Extracted: 04/19/2019 15:37 Sample wt/vol: 1000(mL) Date Analyzed: 04/23/2019 00:10 Dilution Factor: 1 Con. Extract Vol.: 1(mL) Injection Volume: 1(uL) Level: (low/med) Low GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 469131 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL   | MDL  |
|----------|---------------|--------|---|------|------|
| 123-91-1 | 1,4-Dioxane   | 3.3    | E | 0.20 | 0.10 |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 23   |   | 15-110 |



Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-104 Lab Sample ID: 480-152143-2 Matrix: Water Lab File ID: U33149933.D Analysis Method: 8270D SIM ID Date Collected: 04/18/2019 10:35 Extract. Method: 3510C Date Extracted: 04/19/2019 15:37 Sample wt/vol: 1000(mL) Date Analyzed: 04/23/2019 15:33 Con. Extract Vol.: 1(mL) Dilution Factor: 5 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 469309 Units: ug/L CAS NO. COMPOUND NAME RESULT -Q MDL RL123-91-1 1,4-Dioxane 12 1.0 0.50

ISOTOPE DILUTION

OUN HAPPA

Q

LIMITS

15-110

%REC

CAS NO.

1,4-Dioxane-d8

17647-74-4

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1 SDG No.: Client Sample ID: SR-105 Lab Sample ID: 480-152320-1 Matrix: Water Lab File ID: U33150253.D Analysis Method: 8270D SIM ID Date Collected: 04/22/2019 08:50 Extract. Method: 3510C Date Extracted: 04/24/2019 15:38 Sample wt/vol: 1000(mL) Date Analyzed: 05/05/2019 16:46 Con. Extract Vol.: 1(mL) Dilution Factor: 100 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 471268 Units: ug/L

| CAS NO.  | COMPOUND N  | NAME | RESULT | Q. | RL | MDL |
|----------|-------------|------|--------|----|----|-----|
| 123-91-1 | 1,4-Dioxane |      | 3100   | B  | 20 | 10  |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 28   |   | 15-110 |

Just a

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-106 Lab Sample ID: 480-152070-2 Lab File ID: U33149932.D Matrix: Water Analysis Method: 8270D SIM ID Date Collected: 04/17/2019 16:20 Extract. Method: 3510C Date Extracted: 04/19/2019 15:37 Sample wt/vol: 1000(mL) Date Analyzed: 04/23/2019 15:09 Con. Extract Vol.: 1(mL) Dilution Factor: 100 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 469309 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL | MDL |
|----------|---------------|--------|---|----|-----|
| 123-91-1 | · ·- ·- ·     | 240    | Z | 20 | 10  |

| CAS NO    |    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|-----------|----|------------------|------|---|--------|
| 17647-74- | -4 | 1,4-Dioxane-d8   | 22   |   | 15-110 |

248 ball9

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1 SDG No.: Client Sample ID: SR-108 Lab Sample ID: 480-152143-1 Matrix: Water Lab File ID: U33149918.D Analysis Method: 8270D SIM ID Date Collected: 04/18/2019 09:15 Extract. Method: 3510C Date Extracted: 04/19/2019 15:37 Sample wt/vol: 1000(mL) Date Analyzed: 04/23/2019 02:33 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 469131 Units: ug/L

| CAS NO.  | COMPOUND NAME | RESULT | Q | RL   | MDL  |
|----------|---------------|--------|---|------|------|
| 123-91-1 | 1,4-Dioxane   | 1.7    | Z | 0.20 | 0.10 |

| CAS NO.    | ISOTOPE DILUTION | %REC | Q | LIMITS |
|------------|------------------|------|---|--------|
| 17647-74-4 | 1,4-Dioxane-d8   | 24   |   | 15-110 |

المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراجل المراج

## 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: BRW-01 Lab Sample ID: 480-152320-3

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG ID.:

Matrix: Water Date Sampled: 04/22/2019 11:35

Reporting Basis: WET Date Received: 04/22/2019 17:00

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron      | 13.5   | 0.050  | 0.019   | mg/L  |   |     | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.66   | 0.0030 | 0.00040 | mg/L  |   | 257 | 1   | 6010C  |

Droft 1941/9

# 1A-IN INORGANIC ANALYSIS DATA SHEET METALS - DISSOLVED

Client Sample ID: BRW-01 Lab Sample ID: 480-152320-3

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG ID.:

Matrix: Water Date Sampled: 04/22/2019 11:35

Reporting Basis: WET Date Received: 04/22/2019 17:00

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 6.5    | 0.050  | 0.019   | mg/L  |   |     | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.74   | 0.0030 | 0.00040 | mg/L  |   | -54 | 1   | 6010C  |



## 1A-IN INORGANIC ANALYSIS DATA SHEET METALS



| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron      | 14.5   | 0.050  | 0.019   | mg/L  |   |    | . 1 | 6010C  |
| 7439-96-5 | Manganese | 0.66   | 0.0030 | 0.00040 | mg/L  |   | BS | 1   | 6010C  |

Jest 19

## 1A-IN INORGANIC ANALYSIS DATA SHEET METALS - DISSOLVED



| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 6.1    | 0.050  | 0.019   | mg/L  |   |    | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.72   | 0.0030 | 0.00040 | mg/L  |   | 54 | 1   | 6010C  |

Dright a

## 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: BRW-02 Lab Sample ID: 480-152241-2

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG ID.:

Matrix: Water Date Sampled: 04/19/2019 10:35

Reporting Basis: WET Date Received: 04/19/2019 13:50

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron      | 42.0   | 0.050  | 0.019   | mg/L  |   | B  | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.55   | 0.0030 | 0.00040 | mg/L  |   | 5+ | 1   | 6010C  |



### 1A-IN INORGANIC ANALYSIS DATA SHEET METALS - DISSOLVED

Lab Sample ID: 480-152241-2 Client Sample ID: BRW-02

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG ID.:

Date Sampled: 04/19/2019 10:35 Matrix: Water

Date Received: 04/19/2019 13:50 Reporting Basis: WET

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 14.5   | 0.050  | 0.019   | mg/L  |   |    | . 1 | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.44   | 0.0030 | 0.00040 | mg/L  |   | づ十 | 1   | 6010C  |

## 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q     | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|-------|-----|--------|
| 7439-89-6 | Iron      | 9.8    | 0.050  | 0.019   | mg/L  |   |       | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.039  | 0.0030 | 0.00040 | mg/L  |   | B. 54 | -1  | 6010C  |



### 1A-IN INORGANIC ANALYSIS DATA SHEET METALS - DISSOLVED

Client Sample ID: SR-001

Lab Sample ID: 480-152143-3

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG ID.:

Matrix: Water

Date Sampled: 04/18/2019 12:35

Reporting Basis: WET

Date Received: 04/18/2019 17:20

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 0.069  | 0.050  | 0.019   | mg/L  |   | -3- | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.013  | 0.0030 | 0.00040 | mg/L  |   |     | 1   | 6010C  |



# 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: SR-002 Lab Sample ID: 480-152143-4

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

Matrix: Water Date Sampled: 04/18/2019 14:15

Reporting Basis: WET Date Received: 04/18/2019 17:20

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron      | 17.2   | 0.050  | 0.019   | mg/L  |   | ,   | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.14   | 0.0030 | 0.00040 | mg/L  |   | B5+ | 1   | 6010C  |



## 1A-IN INORGANIC ANALYSIS DATA SHEET METALS - DISSOLVED

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 0.99   | 0.050  | 0.019   | mg/L  |   | 3- | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.071  | 0.0030 | 0.00040 | mg/L  |   |    | 1   | 6010C  |

Arsk Jaha

Client Sample ID: SR-003

Lab Sample ID: 480-152143-5

Lab Name: Eurofins TestAmerica, Buffalo

SDG ID.:

Matrix: Water

Date Sampled: 04/18/2019 15:35

Reporting Basis: WET

Date Received: 04/18/2019 17:20

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q    | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|------|-----|--------|
| 7439-89-6 | Iron      | 86.4   | 0.050  | 0.019   | mg/L  |   |      | 1   | 6010C  |
| 7439-96-5 | Manganese | 1.1    | 0.0030 | 0.00040 | mg/L  |   | 8-54 | 1   | 6010C  |

Sept Stalla

Client Sample ID: SR-003

Lab Sample ID: 480-152143-5

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG ID.:

Matrix: Water

Date Sampled: 04/18/2019 15:35

Reporting Basis: WET

Date Received: 04/18/2019 17:20

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 3.3    | 0.050  | 0.019   | mg/L  |   | -5- | - 1 | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.16   | 0.0030 | 0.00040 | mg/L  |   |     | 1   | 6010C  |



Client Sample ID: SR-004 Lab Sample ID: 480-152241-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG ID.:

Matrix: Water Date Sampled: 04/19/2019 09:05

Reporting Basis: WET Date Received: 04/19/2019 13:50

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q          | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|------------|-----|--------|
| 7439-89-6 | Iron      | 48.9   | 0.050  | 0.019   | mg/L  |   | , <b>B</b> | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.62   | 0.0030 | 0.00040 | mg/L  |   | 5+         | 1   | 6010C  |

Det St

Client Sample ID: SR-004 Lab Sample ID: 480-152241-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG ID.:

Matrix: Water Date Sampled: 04/19/2019 09:05

Reporting Basis: WET Date Received: 04/19/2019 13:50

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 0.19   | 0.050  | 0.019   | mg/L  |   |    | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.048  | 0.0030 | 0.00040 | mg/L  |   | ゴナ | 1   | 6010C  |

Orden Ca

Client Sample ID: SR-005 Lab Sample ID: 480-152241-3

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG ID.:

Matrix: Water Date Sampled: 04/19/2019 12:00

Reporting Basis: WET Date Received: 04/19/2019 13:50

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron      | 140    | 0.050  | 0.019   | mg/L  |   | B  | . 1 | 6010C  |
| 7439-96-5 | Manganese | 1.7    | 0.0030 | 0.00040 | mg/L  |   | 5+ | 1   | 6010C  |



Client Sample ID: SR-005

Lab Sample ID: 480-152241-3

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152241-1

SDG ID.:

Matrix: Water

Date Sampled: 04/19/2019 12:00

Reporting Basis: WET

Date Received: 04/19/2019 13:50

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 129    | 0.050  | 0.019   | mg/L  |   |    | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 1.5    | 0.0030 | 0.00040 | mg/L  |   | ゴナ | 1   | 6010C  |



Client Sample ID: SR-006

Lab Sample ID: 480-152320-2

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152320-1

SDG ID.:

Matrix: Water

Date Sampled: 04/22/2019 10:30

Reporting Basis: WET

Date Received: 04/22/2019 17:00

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|---|-----|--------|
| 7439-89-6 | Iron      | 16.0   | 0.050  | 0.019   | mg/L  |   |   | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.28   | 0.0030 | 0.00040 | mg/L  |   | 8 | 1   | 6010C  |



Client Sample ID: SR-006 Lab Sample ID: 480-152320-2

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG ID.:

Matrix: Water Date Sampled: 04/22/2019 10:30

Reporting Basis: WET Date Received: 04/22/2019 17:00

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 3.5    | 0.050  | 0.019   | mg/L  |   | 1  | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.17   | 0.0030 | 0.00040 | mg/L  |   | 54 | 1   | 6010C  |



Client Sample ID: SR-101 Lab Sample ID: 480-152070-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

Matrix: Water Date Sampled: 04/17/2019 14:45

Reporting Basis: WET Date Received: 04/17/2019 18:15

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron      | 4.1    | 0.050  | 0.019   | mg/L  |   | -5- | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.061  | 0.0030 | 0.00040 | mg/L  |   |     | 1   | 6010C  |

Drok Jaha

Client Sample ID: SR-101

Lab Sample ID: 480-152070-1

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG ID.:

Matrix: Water

Date Sampled: 04/17/2019 14:45

Reporting Basis: WET

Date Received: 04/17/2019 18:15

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|---|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 0.11   | 0.050  | 0.019   | mg/L  |   |   | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.028  | 0.0030 | 0.00040 | mg/L  |   | 7 | 1   | 6010C  |



Client Sample ID: SR-104 Lab Sample ID: 480-152143-2

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

Matrix: Water Date Sampled: 04/18/2019 10:35

Reporting Basis: WET Date Received: 04/18/2019 17:20

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q    | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|------|-----|--------|
| 7439-89-6 | Iron      | 0.94   | 0.050  | 0.019   | mg/L  |   |      | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.061  | 0.0030 | 0.00040 | mg/L  |   | B-5+ | 1   | 6010C  |

ON Jala

Client Sample ID: SR-104

Lab Sample ID: 480-152143-2

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG ID.:

Matrix: Water

Date Sampled: 04/18/2019 10:35

Reporting Basis: WET

Date Received: 04/18/2019 17:20

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 0.38   | 0.050  | 0.019   | mg/L  |   | -5- | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.051  | 0.0030 | 0.00040 | mg/L  |   |     | 1   | 6010C  |

Client Sample ID: SR-105 Lab Sample ID: 480-152320-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG ID.:

Matrix: Water Date Sampled: 04/22/2019 08:50

Reporting Basis: WET Date Received: 04/22/2019 17:00

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q    | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|------|-----|--------|
| 7439-89-6 | Iron      | 14.1   | 0.050  | 0.019   | mg/L  |   |      | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.31   | 0.0030 | 0.00040 | mg/L  |   | B-5+ | 1   | 6010C  |

Dry Silla

Client Sample ID: SR-105 Lab Sample ID: 480-152320-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG ID.:

Matrix: Water Date Sampled: 04/22/2019 08:50

Reporting Basis: WET Date Received: 04/22/2019 17:00

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 11.1   | 0.050  | 0.019   | mg/L  |   |     | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.27   | 0.0030 | 0.00040 | mg/L  |   | -54 | 1   | 6010C  |



Client Sample ID: SR-106

Lab Sample ID: 480-152070-2

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG ID.:

Matrix: Water

Date Sampled: 04/17/2019 16:20

Reporting Basis: WET

Date Received: 04/17/2019 18:15

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q   | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|-----|-----|--------|
| 7439-89-6 | Iron      | 2.9    | 0.050  | 0.019   | mg/L  |   | -3- | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.049  | 0.0030 | 0.00040 | mg/L  |   |     | 1   | 6010C  |



Client Sample ID: SR-106

Lab Sample ID: 480-152070-2

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG ID.:

Matrix: Water

Date Sampled: 04/17/2019 16:20

Reporting Basis: WET

Date Received: 04/17/2019 18:15

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 0.69   | 0.050  | 0.019   | mg/L  |   |    | 1 1 | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.041  | 0.0030 | 0.00040 | mg/L  |   | 15 | 1   | 6010C  |



Client Sample ID: SR-108

Lab Sample ID: 480-152143-1

Lab Name: Eurofins TestAmerica, Buffalo

SDG ID.:

Matrix: Water

Date Sampled: 04/18/2019 09:15

Reporting Basis: WET Date Received: 04/18/2019 17:20

| CAS No.   | Analyte   | Result | RL     | MDL     | Units | С | Q | DIL | Method |
|-----------|-----------|--------|--------|---------|-------|---|---|-----|--------|
| 7439-89-6 | Iron      | 28.5   | 0.050  | 0.019   | mg/L  |   |   | 1   | 6010C  |
| 7439-96-5 | Manganese | 0.16   | 0.0030 | 0.00040 | mg/L  |   | B | 1   | 6010C  |

der Layla

Client Sample ID: SR-108 Lab S

Lab Sample ID: 480-152143-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

.....

Matrix: Water Date Sampled: 04/18/2019 09:15

Reporting Basis: WET Date Received: 04/18/2019 17:20

| CAS No.   | Analyte              | Result | RL     | MDL     | Units | С | Q  | DIL | Method |
|-----------|----------------------|--------|--------|---------|-------|---|----|-----|--------|
| 7439-89-6 | Iron, Dissolved      | 1.3    | 0.050  | 0.019   | mg/L  |   | 51 | 1   | 6010C  |
| 7439-96-5 | Manganese, Dissolved | 0.058  | 0.0030 | 0.00040 | mg/L  |   |    | 1   | 6010C  |



Client Sample ID: BRW-01

Lab Sample ID: 480-152320-3

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152320-1

SDG ID.:

Matrix: Water

Date Sampled: 04/22/2019 11:35

Reporting Basis: WET

Date Received: 04/22/2019 17:00

| CAS No.    | Analyte                      | Result | RL    | MDL   | Units | С | Q   | DIL | Method   |
|------------|------------------------------|--------|-------|-------|-------|---|-----|-----|----------|
|            | Chemical Oxygen<br>Demand    | 24.8   | 10.0  | 5.0   | mg/L  |   |     | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.050 | 0.025 | mg/L  |   | A y | 1   | 300.0    |
| 14808-79-8 | Sulfate                      | 32.3   | 2.0   | 0.35  | mg/L  |   |     | 1   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 2.0   | 2.0   | mg/L  |   | × 5 | 1   | SM 5210B |





| CAS No.    | Analyte                      | Result | RL    | MDL   | Units | С | Q     | DIL | Method   |
|------------|------------------------------|--------|-------|-------|-------|---|-------|-----|----------|
| _          | Chemical Oxygen<br>Demand    | 31.1   | 10.0  | 5.0   | mg/L  |   | ,     | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.050 | 0.025 | mg/L  |   | JY O- | 1   | 300.0    |
| 14808-79-8 | Sulfate                      | 31.8   | 2.0   | 0.35  | mg/L  |   |       | 1   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 30.0  | 30.0  | mg/L  |   | ل كلا | 5 5 | SM 5210B |



Client Sample ID: BRW-02 Lab Sample ID: 480-152241-2

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG ID.:

Matrix: Water Date Sampled: 04/19/2019 10:35

Reporting Basis: WET Date Received: 04/19/2019 13:50

| CAS No.    | Analyte                      | Result | RL    | MDL   | Units | С | Q   | DIL | Method   |
|------------|------------------------------|--------|-------|-------|-------|---|-----|-----|----------|
|            | Chemical Oxygen<br>Demand    | 35.4   | 10.0  | 5.0   | mg/L  |   |     | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.050 | 0.025 | mg/L  |   | H T | 1   | 300.0    |
| 14808-79-8 | Sulfate                      | 5.2    | 2.0   | 0.35  | mg/L  |   |     | 1   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 2.0   | 2.0   | mg/L  |   |     | 1   | SM 5210B |



Client Sample ID: SR-001 Lab Sample ID: 480-152143-3

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

Matrix: Water Date Sampled: 04/18/2019 12:35

Reporting Basis: WET Date Received: 04/18/2019 17:20

| CAS No.     | Analyte                      | Result | RL   | MDL   | Units | С | g Q | DIL | Method   |
|-------------|------------------------------|--------|------|-------|-------|---|-----|-----|----------|
| <del></del> | Chemical Oxygen<br>Demand    | 31.1   | 10.0 | 5.0   | mg/L  |   |     | 1   | 410.4    |
| 14797-55-8  | Nitrate as N                 | ND     | 0.10 | 0.050 | mg/L  |   |     | 2   | 300.0    |
| 14808-79-8  | Sulfate                      | 2.4    | 4.0  | 0.70  | mg/L  | J |     | 2   | 300.0    |
|             | Biochemical Oxygen<br>Demand | ND     | 2.0  | 2.0   | mg/L  |   |     | 1   | SM 5210B |

Client Sample ID: SR-002

Lab Sample ID: 480-152143-4

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG ID.:

Matrix: Water

Date Sampled: 04/18/2019 14:15

Reporting Basis: WET

Date Received: 04/18/2019 17:20

| CAS No.    | Analyte                      | Result | RL    | MDL   | Units | С | Q    | DIL | Method   |
|------------|------------------------------|--------|-------|-------|-------|---|------|-----|----------|
|            | Chemical Oxygen<br>Demand    | 7.6    | 10.0  | 5.0   | mg/L  | J |      | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.050 | 0.025 | mg/L  |   |      | 1   | 300.0    |
| 14808-79-8 | Sulfate                      | 17.7   | 2.0   | 0.35  | mg/L  |   |      | 1   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 6.0   | 6.0   | mg/L  |   | JH . | 1   | SM 5210E |



Client Sample ID: SR-003 Lab Sample ID: 480-152143-5

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

Matrix: Water Date Sampled: 04/18/2019 15:35

Reporting Basis: WET Date Received: 04/18/2019 17:20

| CAS No.     | Analyte                      | Result | RL   | MDL  | Units | С | Q  | DIL | Method   |
|-------------|------------------------------|--------|------|------|-------|---|----|-----|----------|
| <del></del> | Chemical Oxygen Demand       | 43.6   | 10.0 | 5.0  | mg/L  |   |    | 1   | 410.4    |
| 14797-55-8  | Nitrate as N                 | ND     | 0.25 | 0.13 | mg/L  |   |    | 5   | 300.0    |
| 14808-79-8  | Sulfate                      | 106    | 10.0 | 1.7  | mg/L  |   |    | 5   | 300.0    |
|             | Biochemical Oxygen<br>Demand | ND     | 3.0  | 3.0  | mg/L  |   | JH | 1   | SM 5210B |



Client Sample ID: SR-004 Lab Sample ID: 480-152241-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG ID.:

Matrix: Water Date Sampled: 04/19/2019 09:05

Reporting Basis: WET Date Received: 04/19/2019 13:50

| CAS No.    | Analyte                      | Result | RL    | MDL   | Units | С | Q     | DIL | Method   |
|------------|------------------------------|--------|-------|-------|-------|---|-------|-----|----------|
|            | Chemical Oxygen Demand       | 50.2   | 10.0  | 5.0   | mg/L  | L |       | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.050 | 0.025 | mg/L  |   | H 3   | 1   | 300.0    |
| 14808-79-8 | Sulfate                      | 23.3   | 2.0   | 0.35  | mg/L  |   |       | 1   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 2.0   | 2.0   | mg/L  |   | H ( ) | 7 1 | SM 5210B |



Client Sample ID: SR-005 Lab Sample ID: 480-152241-3

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG ID.:

Matrix: Water Date Sampled: 04/19/2019 12:00

Reporting Basis: WET Date Received: 04/19/2019 13:50

| CAS No.    | Analyte                      | Result | RL    | MDL   | Units | С | Q   | DIL | Method   |
|------------|------------------------------|--------|-------|-------|-------|---|-----|-----|----------|
|            | Chemical Oxygen<br>Demand    | 80.6   | 10.0  | 5.0   | mg/L  |   |     | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.050 | 0.025 | mg/L  |   | H ( | 1   | 300.0    |
| 14808-79-8 | Sulfate                      | 31.4   | 2.0   | 0.35  | mg/L  |   |     | 1   | 300.0    |
|            | Biochemical Oxygen<br>Demand | 9.3    | 2.0   | 2.0   | mg/L  |   | 100 | 1   | SM 5210E |



| CAS No.    | Analyte                      | Result | RL    | MDL   | Units | С | Q        | DIL | Method   |
|------------|------------------------------|--------|-------|-------|-------|---|----------|-----|----------|
| -          | Chemical Oxygen Demand       | 39.3   | 10.0  | 5.0   | mg/L  |   | <u> </u> | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.050 | 0.025 | mg/L  |   | B/ \ )"  | 1   | 300.0    |
| 14808-79-8 | Sulfate                      | 31.2   | 2.0   | 0.35  | mg/L  |   |          | 1   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 2.0   | 2.0   | mg/L  |   | 105      | 1   | SM 5210B |



Client Sample ID: SR-101 Lab Sample ID: 480-152070-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

Matrix: Water Date Sampled: 04/17/2019 14:45

Reporting Basis: WET Date Received: 04/17/2019 18:15

| CAS No.    | Analyte                      | Result | RL   | MDL   | Units | С | Q    | DIL | Method   |
|------------|------------------------------|--------|------|-------|-------|---|------|-----|----------|
| _          | Chemical Oxygen<br>Demand    | 29.4   | 10.0 | 5.0   | mg/L  |   |      | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.10 | 0.050 | mg/L  |   |      | 2   | 300.0    |
| 14808-79-8 | Sulfate                      | 118    | 4.0  | 0.70  | mg/L  |   |      | 2   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 2.0  | 2.0   | mg/L  |   | . ** | 1   | SM 52101 |

028 dalla

Client Sample ID: SR-104

Lab Sample ID: 480-152143-2

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG ID.:

Matrix: Water

Date Sampled: 04/18/2019 10:35

Reporting Basis: WET

Date Received: 04/18/2019 17:20

| CAS No.    | Analyte                      | Result | RL   | MDL   | Units | С | Q | DIL | Method   |
|------------|------------------------------|--------|------|-------|-------|---|---|-----|----------|
|            | Chemical Oxygen Demand       | 11.3   | 10.0 | 5.0   | mg/L  |   |   | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.10 | 0.050 | mg/L  |   |   | 2   | 300.0    |
| 14808-79-8 | Sulfate                      | 36.4   | 4.0  | 0.70  | mg/L  |   |   | 2   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 2.0  | 2.0   | mg/L  |   |   | 1   | SM 5210B |

Client Sample ID: SR-105 Lab Sample ID: 480-152320-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG ID.:

Matrix: Water Date Sampled: 04/22/2019 08:50

Reporting Basis: WET Date Received: 04/22/2019 17:00

| CAS No.    | Analyte                      | Result | RL    | MDL   | Units | С | Q   | DIL | Method   |
|------------|------------------------------|--------|-------|-------|-------|---|-----|-----|----------|
|            | Chemical Oxygen<br>Demand    | 127    | 10.0  | 5.0   | mg/L  |   |     | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.050 | 0.025 | mg/L  |   | B - | 1   | 300.0    |
| 14808-79-8 | Sulfate                      | 11.8   | 2.0   | 0.35  | mg/L  |   |     | 1   | 300.0    |
|            | Biochemical Oxygen<br>Demand | 57.8   | 24.0  | 24.0  | mg/L  |   | 15  | 1   | SM 5210B |



Client Sample ID: SR-106 Lab Sample ID: 480-152070-2

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

Matrix: Water Date Sampled: 04/17/2019 16:20

Reporting Basis: WET Date Received: 04/17/2019 18:15

| CAS No.    | Analyte                      | Result | RL   | MDL  | Units | С | Q    | DIL | Method   |
|------------|------------------------------|--------|------|------|-------|---|------|-----|----------|
|            | Chemical Oxygen<br>Demand    | 119    | 50.0 | 25.0 | mg/L  |   |      | 5   | 410.4    |
| 14797-55-8 | Nitrate as N                 | 0.79   | 0.25 | 0.13 | mg/L  |   |      | 5   | 300.0    |
| 14808-79-8 | Sulfate                      | 142    | 10.0 | 1.7  | mg/L  |   | t t  | 5   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 2.0  | 2.0  | mg/L  |   | H' U | 1   | SM 5210B |

Ors Jaka

Client Sample ID: SR-108 Lab Sample ID: 480-152143-1

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG ID.:

Matrix: Water Date Sampled: 04/18/2019 09:15

Reporting Basis: WET Date Received: 04/18/2019 17:20

| CAS No.    | Analyte                      | Result | RL   | MDL   | Units | С | Q | DIL | Method   |
|------------|------------------------------|--------|------|-------|-------|---|---|-----|----------|
|            | Chemical Oxygen<br>Demand    | 21.2   | 10.0 | 5.0   | mg/L  |   |   | 1   | 410.4    |
| 14797-55-8 | Nitrate as N                 | ND     | 0.10 | 0.050 | mg/L  |   |   | 2   | 300.0    |
| 14808-79-8 | Sulfate                      | 11.8   | 4.0  | 0.70  | mg/L  |   |   | 2   | 300.0    |
|            | Biochemical Oxygen<br>Demand | ND     | 3.0  | 3.0   | mg/L  |   |   | 1   | SM 5210B |

#### **ATTACHMENT B**

#### **SUPPORT DOCUMENTATION**

🔆 curofins

Chain of Custody Record

Eurofins TestAmerica, Buffalo
10 Hazelwood Drive
Amherst NY 14228-2298
Phone (716) 691-2600 Fax (716) 691 7991

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampler                    |          |                                           | 9 36.7                                      |                                              |              |                  |                                            |                       | ľ            | Camer Tracking Note:        | CKING NO          | (6)             |            | COCNS                                                                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------------------------------------------|---------------------------------------------|----------------------------------------------|--------------|------------------|--------------------------------------------|-----------------------|--------------|-----------------------------|-------------------|-----------------|------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.4                       | るとう      |                                           | John                                        | Johnson, Oriette S                           | ente S       |                  |                                            |                       |              |                             |                   |                 |            |                                                                                                                                          | -29154       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nacc<br>Kr <u>st</u> uk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7:6-75                     | 30       | 3636                                      | E-Mail<br>Oriette                           | E-Ma-l<br>oriette johnson@testamericainc com | on@te        | stamer           | ICAINC (                                   | E                     | -            |                             |                   |                 |            | Page of                                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Company<br>AECOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |          |                                           |                                             |                                              |              |                  | Ana                                        | Vais                  | Regi         | Analucie Rennested          |                   |                 |            | g qo/                                                                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address<br>257 West Genesee Street Suite 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Due Date Requested         | 10       |                                           |                                             | \$200                                        | H            | :<br>1           |                                            |                       |              |                             |                   |                 |            | seervation Codes                                                                                                                         | Codes:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAT Requested (days):      | (B/A     |                                           |                                             |                                              |              |                  |                                            |                       |              |                             |                   |                 |            | - HOL.                                                                                                                                   | ¥ 2.<br>¥ 2. | W - Hexane<br>N - None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Buralo<br>Star 4202-2657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +5                         | Strastan | منه<br>نو                                 |                                             |                                              | <del></del>  | -                |                                            |                       |              |                             |                   |                 |            | - Zn Acetate<br>- flimc Acid<br>- flansOM                                                                                                | 0 1 0        | AsN302<br>N3204S<br>N32503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 #<br>CallOut ID: 136077 | 7.7      |                                           |                                             | (c                                           |              | = 4              | 80-15                                      | 070                   | ried:        | 480-152070 Chain of Custody | ģ                 |                 | =          | - MeOH<br>- Amerikar                                                                                                                     | ar so +      | Na2S2O3<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ептан<br>george kisluk@aecom com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |          |                                           |                                             | (on                                          | 5,51         |                  |                                            | ALIE                  |              | - uiN                       |                   |                 | 9.1        | I - Ica<br>J - O: Water                                                                                                                  | C - Acetor   | Lor conscaryolate<br>Acetons<br>MCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Project Name<br>Lapp Insulator Site# 819017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ployaca #<br>48018841      |          |                                           |                                             | 10 ae                                        | N TO I       |                  | (0)                                        | 1010-6                |              | 86 Fe,                      |                   |                 | eniate     |                                                                                                                                          | 10 · Z       | W - pM 4-5<br>Z - other (specdy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lago Instructor - Le Ray, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SSOWs.                     |          |                                           |                                             | रा<br>१) प्रश                                |              | 23.70            |                                            | '1 - Al               | ols          | VIDERIC                     |                   |                 | 105 10     | Other:                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Sample   | Sample<br>Type<br>(C=comp,                | Matrix<br>(western<br>8-velot<br>Oversteber | benediti bio<br>MVBM mnohe                   | eec - (WOD)  | 04 COD           | 10C - Fe, Mn                               | 008 801<br>SM WIS 002 | - 48HB - NIE | 10C · (MOD)                 |                   |                 | 191 Number | <u> </u>                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Date                |          | Gagrab) atotissa And<br>Preservation Code | 3                                           | A X                                          | +=           |                  | -+=                                        | =                     | _            | 09 6                        | $\pm$             | 1               | o7   X     |                                                                                                                                          | al Instruc   | Special Instructions/Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SR-10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/11/19                    | 25.      | (3)                                       | Water                                       |                                              | ~            |                  |                                            | T .                   |              |                             |                   |                 | 1=         |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5K-106.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 151/21/6                   | 1620     | J                                         | Water                                       |                                              | 3            | -                | 2                                          | -                     | Ξ            | _                           |                   |                 | =          |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TB-20190417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/17/19                    | ١        | J                                         | Water                                       |                                              | 7            |                  |                                            |                       |              |                             |                   | -               | 4          |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                           | Water                                       |                                              |              |                  |                                            |                       |              |                             |                   |                 | -          |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                           | Water                                       |                                              |              |                  |                                            |                       |              |                             |                   |                 |            |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                           | Water                                       |                                              |              |                  |                                            | _                     |              |                             |                   |                 |            |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                           | Water                                       |                                              |              |                  |                                            |                       |              |                             |                   |                 |            |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                           |                                             |                                              |              |                  | -                                          |                       |              |                             |                   |                 |            |                                                                                                                                          |              | TO AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PRO |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                           |                                             |                                              | $\dashv$     |                  |                                            | _                     |              |                             |                   |                 | 7          |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                           |                                             |                                              | $\dashv$     |                  | $\pm$                                      | _                     |              |                             |                   |                 |            |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Possible Havard Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |          |                                           |                                             | - 5                                          | -            |                  |                                            | -1                    |              | -                           |                   |                 |            |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Non-Hazard Telanimable Skin imfant Poison B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on B Unknown               | U        | Radiological                              |                                             |                                              | Retu         | spose<br>in To ( | Sient                                      | e may                 | Ž<br>X       | esseo<br>bosal B            | r samp<br>y Lab   | nes are         | Arch       | Service Lisposal ( A lee may be assessed it samples are retained longer than 1 month)  Return 10 Cient Disposal By Lab Archive For Month | n 1 monti    | ntn)<br>Monibs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Deliverable Requested 1, II, III, IV, Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |          |                                           |                                             | Spe                                          | cial Ins     | ituctio          | Special Instructions/OC Requirements       | Requir                | ement        |                             |                   |                 |            |                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Empty Kit Relinquished by.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Dafe     |                                           |                                             | Time                                         |              |                  |                                            |                       |              | Meth                        | Method of Shipmen | preent          | Des        | 10 of                                                                                                                                    | 4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hendussed by Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/1171/4                | @        | 3 ( ) 3                                   | AECOM<br>AECOM                              |                                              | Hecaned by   | 7, 5             | 7                                          | 1                     |              |                             | å '\              | 0.000 Times   1 | 7-10       | 181 6                                                                                                                                    | Some S       | だなの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| An all the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | Cater me                   |          | 3                                         | упевно                                      |                                              | Recti. of Ju | à                |                                            | 5                     |              |                             | Ĝ.                | Date/Tume       |            |                                                                                                                                          | Cores        | Augdura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oate/ime                   |          | <u>u</u>                                  | Сптрапу                                     | -                                            | Received by  | à                |                                            |                       |              |                             | å                 | Cale/Time       |            |                                                                                                                                          | Com          | Completery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Custody Seals Infact Custody Seal No A Yes. A No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |          |                                           |                                             |                                              | Cooler 3     | втрега           | Cooler Temperature(s) °C and Coner Remarks | S pue :               | her Ren      | arks                        |                   |                 | ~          | 172                                                                                                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |                                           |                                             |                                              |              |                  |                                            |                       | l            |                             |                   |                 | 1          |                                                                                                                                          | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

CUrofins | Environment Testing N - None
O - ANADOZ
P - NAZO4S
Q - NAZSC3
R - NAZSC3
S - LZSO4
T - TSP Dodecahydrals
U - Aceinne
W - MCAA
W - PH 4-5
Z - other (specify) Company CA-745 Company Vote: Since laboratory accreditations are subject to change. TestAmerica Laboratories, Int., places the ownerably of method: analysis & accreditation compilance upon out subcoratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not custody maintain accreditation in the State of Origin listed above for analysis/lests/metric being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status about the be brought to TestAmerica accreditation immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to seld compilicance to TestAmerica Laboratories, inc. Special instructions/Note: Ver: 01/16/2019 Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mor Preservation Codes C - ZA Costate
D - Nint Acad
E - NaHSO4
F - MeOH
G - Amchior
H - Ascorbic Acid 480-152070-1 OC No: 80-49163.1 .age: Page 1 of 1 Job#: 04.30 I - Ica J - DI Water K - EDTA L - EDA Date/Time: D4/734/14 Date/Time: arenightop to redmitM laigT Ġ 8 480-152070 Date/Time: Method of Shipment New York Analysis Requested Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: Lab PW:
Johnson, Orlette S
E-Mail:
orlette, johnson@testamericainc.com
Accreditations Required (See note):
NELAP - New York
Analysi mma Received by: Received by: Chain of Custody Record × × × G=grab) BT=Tanne, Antir Company Company Preservation Code. Water Water Water Сотралу Type (C=comp, Sample 620 Primary Deliverable Rank: 1 14:45 Eastem 16:20 Sample. Eastern Eastern Due Date Requested: 5/9/2018 TAT Requested (days): Date/Time: 4-93-19 Sample Date 4/17/19 4/17/19 4/17/19 Project#: 48018841 SSOW#: Datte/Time: å Ø Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Eurofins TestAmerica, Buffalo Custody Seal No.: Sample Identification - Cilent ID (Lab ID) Phone (716) 891-2600 Fax (716) 691-7991 615-726-0177(Tel) 615-726-3404(Fax) ossible Hazard Identification estAmerica Laboratories, Inc TB-20190417 (480-152070-3) 2980 Foster Craighton Drive, Lapp Insulator Site# 819017 Empty Kit Relinquished by. Amherst, NY 14228-2298 Custody Seals Intact: A Yes A No SR-106 (480-152070-2) SR-101 (480-152070-1) Shipping/Receiving Binquished by: nconfirmed State, Zip: TN, 37204 ... Nashville

Page 5775 of 5778

05/17/2019

# Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone (716) 691-2600 Fax (715) 691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

N. None
O. Astidacz
O. Astidacz
P. NazOds
O. NazSO3
R. NazSZ03
S. H7SC04
T. T.SP Dedecahydrate
U. Aceriore
W. AMG-AA Special instructions/Note: Company Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Solisposal By Lab Archive For Moni COC No 480-129178-29154.1 reservation Codes 770 A - HCL
B - NsOH
C - Zn Acetate
C - Zn Acetate
E - Nitro Acid
E - NaH5O4
F - MeOH
G - Amchior
H - Ascorbic Acid ナナリ Page Page 1 of \$ Ce Water EDIA EDA Dreep Cate/Time Total Number of containers Date/Time Method of Shupment **Analysis Requested** 480-152143 Chain of Custody coler Temperatura(s) "C and Other Remarks 4 + 1 + 4 Ced 8010C - (MOD) Dissolved Fe, Mn Special Instructions/QC Requirements oriette johnson@testamericainc.com 7 anexolG-b,t - Gi\_SM\_Mi2\_G0758 6 8010C - Fe, Mn 000 - 9'011 eceived by Received by Lab PM Johnson, Oriette S E-Mail .7 W S260C - (MOD) TCL IISt OLMO4.2 1 Perform MS/MSD (Yes or No) Company
Acto.4
Company Field Filtered Sample (Yes or No) G=grab) BT=TBsue, A=Atr Matrix Preservation Code Water Water Water Water Water Water Water Water Water Water Water Company 5636 Sample Type (C=comp, Radiological ٥ 9 9 و. でかっつ Sterodard S 1415 .535 815 1235 Sample 5501/51/51/17 Priore 7:5 - 85-C Date Unknown PO # CallOut ID: 136077 WO# Due Date Requested: AT Requested (days 4/18/14 Sampler 61181/4 4118111 Sample Date 4/18/10 4/18/19 4/18/16 Project # 48018841 SSCW#. Date/Time Doison B Ligh Instation-LeRus, NY Skin Imtant Deliverable Requested 1. II. III IV Other (specify) Custody Seal No 257 West Genesee Street Suite 400 201904 Flammab Possible Hazard Identification 901 401app Insulator Site# 819017 201 leorge kısluk@aecom com SR160 Empty Kit Refinguished by 5-R-10-8 Custody Seals Intact
A Yes A No Client Information Sample Identification NY 14202-2657 とな George Kısluk snished by inquished by AECOM Buffato

### Job Narrative 480-152070-1

#### Receipt

The samples were received on 4/17/2019 6:15 PM and 4/18/2019 5:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 2.3° C, 3.9° C and 5.0° C.

#### GC/MS VOA

Method(s) 8260C: The following samples were diluted due to the nature of the sample matrix: SR-104 (480-152143-2) and SR-106 (480-152070-2). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 490-590475 recovered outside control limits for the following analytes: Dichlorodifluoromethane. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data has been reported.

Method(s) 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 490-590455 recovered outside control limits for the following analytes: Bromomethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260C: The matrix spike/matrix spike duplicate associated with analytical batch 490-590455 was unable to be analyzed due to instrument communication error. LCS/LCSD has been provided: (LCS 490-590455/3).

Method(s) 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 490-591541 recovered outside control limits for the following analytes: Bromomethane and Trichlorofluoromethane. These analytes were biased high in the LCS.

Method(s) 8260C: The laboratory control sample duplicate (LCSD) for analytical batch 490-590664 recovered outside control limits for the following analytes: Vinyl chloride and Dichlorodifluoromethane. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260C: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch analytical batch 490-590475 recovered outside control limits for the following analytes: 1,2-Dichloroethane.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC/MS Semi VOA

Method(s) 8270D SIM ID: The 1,4-Dioxane result reported for samples SR-101 (480-152070-1), SR-106 (480-152070-2), SR-108 (480-152143-1), SR-104 (480-152143-2), SR-001 (480-152143-3), and SR-003 (480-152143-5) have an E flag qualifier indicating the results are over the calibration range on the raw data. The actual amounts are within the calibration range; however, the E flag is generated based upon the bias corrected concentration. The LIMS system calculates a bias correction based on the recovery of the 1,4-Dioxane-d8 isotope.

Method(s) 8270D SIM ID: The following samples were diluted to bring the concentration of target analytes within the calibration range: SR-106 (480-152070-2), SR-104 (480-152143-2) and SR-001 (480-152143-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### HPLC/IC

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: SR-101 (480-152070-1) and SR-106 (480-152070-2). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following samples were diluted due to the abundance of non-target analytes: SR-101 (480-152070-1) and SR-106 (480-152070-2), SR-108 (480-152143-1), SR-001 (480-152143-3) and SR-003 (480-152143-5). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following sample was diluted due to the nature of the sample matrix: SR-104 (480-152143-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **General Chemistry**

Method(s) SM 5210B: The following samples were analyzed outside of analytical holding time due to laboratory error: SR-106 (480-152070-2), SR-002 (480-152143-4) and SR-003 (480-152143-5).. The client was notified and data were requested to be reported.

Method(s) SM 5210B: Due to the matrix, the initial volume(s) used for the following samples deviated from the standard procedure: SR-108 (480-152143-1), SR-002 (480-152143-4) and SR-003 (480-152143-5). The reporting limits (RLs) have been adjusted

#### proportionately.

Method(s) SM 5210B: The glucose-glutamic acid standard recovered low outside the recovery limits specified in the method in batch 480-468872 .

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **VOA Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Analy Batch No.: 582618 Job No.: 480-152070-1 Lab Name: Eurofins TestAmerica, Nashville

SDG No.:

Heated Purge: (Y/N) N Calibration ID: 74626 Calibration End Date: 03/21/2019 23:20 ID: 0.18 (mm) GC Column: RTX-624 Calibration Start Date: 03/21/2019 19:50 Instrument ID: HP33

| ANALYTE                  |        |        | RRF    |        |            | CURVE  |        | COEFFICIENT | ENT | # | MIN RRF | &RSD # | MAX  | R^2    | # MIN  | R^2    |
|--------------------------|--------|--------|--------|--------|------------|--------|--------|-------------|-----|---|---------|--------|------|--------|--------|--------|
|                          | LVL 1  | LVL 2  | LVL 3  | LVL 4  | LVL 5      | TYPE   | m      | M1          | M2  | 1 |         |        | &RSD | OR COD | e<br>R | OR COD |
|                          | TAT 6  | LVL 7  |        | LVL 9  |            |        |        |             |     |   |         |        |      |        |        |        |
| Acetone                  | +++++  | 0.0222 | 0.0238 | 0.0192 | 0.0199     | Ave    |        | 0.0211      |     |   | 0.0100  | 8.0    | 20.0 |        |        |        |
| Iodomethane              | +++++  | +++++  |        | 0.2172 | 0.2849     | Lin1   | -0.402 | 0.3514      |     |   | 0.1000  |        |      | 0.9980 | 0      | 0.9900 |
| Isopropyl alcohol        | ++++   | +++++  | 0.0128 | 0.0085 | 0.0110     | Ave    |        | 0.0111      | W.  | - | 0.0010  | 11.7   | 20.0 |        |        | 0      |
| Carbon disulfide         | 0.9298 | 0.8997 | 0.8651 | 0.7819 | 0.8036     | Ave    |        | 0.8413      |     |   | 0.1000  | 5.9    | 20.0 |        |        | (3     |
| 3-Chloro-1-propene       | 0.2701 | 0.2941 | 0.2367 | 0.2533 | 0.2684     | Ave    |        | 0.2696      |     |   | 0.1000  | 8.4    | 20.0 |        |        |        |
| Methyl acetate           | +++++  | 0.1837 |        | 0.1685 | 0.1701     | Ave    |        | 0.1727      |     |   | 0.1000  | 9.5    | 20.0 |        |        |        |
| Acetonitrile             | +++++  | 0.0422 | 0.0372 | 0.0394 | 0.0368     | Ave    |        | 0.0404      |     | - | 0.0010  | 6.9    | 20.0 |        |        |        |
| Methylene Chloride       | 0.5909 | 0.4311 | 0.3709 | 0.3085 | 0.3044     | Lin2 ( | 0.1452 | 0.2951      |     |   | 0.0100  |        |      | 0.9990 | 0      | 0.9900 |
| 2-Methyl-2-propanol      | 1.2277 | 1.2724 | 1.1379 | 1.2345 | 1.3450     | Ave    |        | 1.2612      |     |   | 0.0010  | 7.4    | 20.0 |        |        |        |
| Methyl tert-butyl ether  | 0.7056 | 0.8648 |        | 0.8322 | 0.8450     | Ave    |        | 0.8347      |     |   | 0.1000  | 6.2    | 20.0 |        |        |        |
| trans-1,2-Dichloroethene | 0.4456 | 0.4226 | 0.4281 | 0.4172 | 0.4179     | Ave    |        | 0.4344      |     |   | 0.1000  | 3.2    | 20.0 |        |        |        |
| Acrylonitrile            | 0.1037 | 0.0849 |        | 0.0918 | 0.0920     | Ave    |        | 0.0943      |     |   | 0.0100  | 5.8    | 20.0 |        |        |        |
| n-Hexane                 | 0.4721 | 0.4474 |        | 0.4024 | 0.3676     | Ave    |        | 0.4138      |     |   | 0.1000  | 7.4    | 20.0 |        |        |        |
|                          | 0.5282 | 0.4839 | 0.5326 | 0.5718 | 0.5336     | Ave    |        | 0.5506      |     |   | 0.2000  | 6.1    | 20.0 |        |        |        |
| Isopropyl ether          | 1.0422 | 1.0220 | 1.0003 | 0.9626 | 0.9532     | Ave    |        | 0.9843      |     |   | 0.1000  | 3.3    | 20.0 |        |        |        |
| Vinyl acetate            | +++++  | 0.0640 | 0.0535 | 0.0658 | 0.0636     | Ave    |        | 0.0639      |     | * | 0.1000  | 8.2    | 20.0 |        |        |        |
| 3-buta                   | 0.5289 | 0.5071 | 0.5086 | 0.4781 | 0.4703     | Ave    |        | 0.5060      |     |   | 0.1000  | 4.3    | 20.0 |        |        |        |
| Tert-butyl ethyl ether   | 0.9328 | 0.9099 | 0.9441 | 0.9116 | 0.9281     | Ave    |        | 0.9194      |     |   | 0.1000  | 1.4    | 20.0 |        |        |        |
| 2,2-Dichloropropane      | 0.5275 | 0.5255 | 0.5364 | 0.5008 | 0.4946     | Ave    |        | 0.5110      |     |   | 0.1000  | 2.9    | 20.0 |        |        |        |
| cis-1,2-Dichloroethene   | 0.3508 | 0.3178 | 0.3285 | 0.3144 | 0.3304 Ave | Ave    |        | 0.3284      |     |   | 0.1000  | 3.3    | 20.0 |        |        |        |

Lab Name: Eurofins TestAmerica, Nashville

Job No.: 480-152070-1

Analy Batch No.: 582618

Instrument ID: HP33

GC Column: RTX-624

Heated Purge: (Y/N) N ID: 0.18 (mm)

Calibration ID: 74626

Calibration Start Date: 03/21/2019 19:50

Calibration End Date: 03/21/2019 23:20

| ANALYTE                |        |        | RRF    |        |                  | CURVE  |        | COEFFICIENT | ENT | # MIN | MIN RRF & | &RSD #  | -    | R^2    | # MIN | MIN R^2 |
|------------------------|--------|--------|--------|--------|------------------|--------|--------|-------------|-----|-------|-----------|---------|------|--------|-------|---------|
|                        | LWL 1  | LVL 2  | LVL 3  | LVL 4  | LVL 5            | TYPE   | m      | M1          | M2  |       |           |         | *RSD | OR COD | OR    | OR COD  |
|                        | TAT 6  | LVL 7  | LVL 8  | IVL 9  |                  |        |        | (           |     |       |           |         |      |        |       |         |
| 2-Butanone (MEK)       | 0.0105 | 0.0249 | 0.0242 | 0.0245 | 0.0284           | Lin2   | -0.042 | 0.0290      |     | 0.    | 0.0100    |         |      | 0.9920 | 0     | 0.9900  |
| D+h1 0004111           | 0.0266 | 0.0282 | 0.0298 | 0.0313 |                  |        |        |             |     |       |           |         |      |        |       |         |
| ברוואד מכפרמופ         | 0.0287 | 0.0390 | 0.0304 | 0.0297 | 0.0288           | Ave    |        | 0.0310      |     | •     | 0.0100    | 11.0    | 20.0 |        |       |         |
| Propionitrile          | 0.0294 | 0.0309 | 0.0293 | 0.0326 | 0.0338           | Ave    |        | 0.0323      |     | 0     | 0.0100    | 6.0     | 20.0 |        |       |         |
|                        | 0.0331 | 0.0330 | 0.0336 | 0.0347 | $\overline{}$    |        |        |             |     |       |           |         |      |        |       |         |
| Chlorobromomethane     | 0.1882 | 0.1918 |        | 0.1886 | 0.1892           | Ave    |        | 0.1901      |     | 0     | 0.1000    | 1.6     | 20.0 |        | _     |         |
|                        | 0.1847 | 0.1900 |        | 0.1953 |                  |        |        |             |     |       |           |         |      |        |       |         |
| rectangutotutan        | 0.0965 | 0.0941 | 0.1014 | 0.0929 | 0.0892           | Ave    |        | 0.1004      |     |       | 0.0500    | 8.7     | 20.0 |        |       |         |
| Methacrylonitrile      | 0.1452 | 0.1474 | 0.1536 | 0.1587 | 0.1590           | Ave    |        | 0.1598      |     | 0     | 0.1000    | 0.9     | 20.0 |        |       |         |
|                        | 0.1671 | 0.1646 | 0.1725 | 0.1696 |                  |        |        |             |     | ,     |           |         |      |        |       |         |
| Chloroform             | 0.5801 | 0.5508 | 0.5424 | 0.5183 | 0.5174           | Ave    |        | 0.5400      |     | 0     | 0.2000    | 3.7     | 20.0 |        | -     |         |
|                        | 0.5275 | 0.5275 | 0.5425 | 0.5535 |                  |        |        |             |     |       |           |         | *    |        | -     |         |
| Cyclohexane            | 0.5421 | 0.6132 | 0.5894 | 0.5424 | 0.5279           | Ave    |        | 0.5664      |     | o.    | 0.1000    | 4.9     | 20.0 |        |       |         |
|                        | 0.5898 | 0.5732 | 0.5603 | 0.5596 | $\overline{}$    |        |        |             |     |       |           |         |      |        |       |         |
| 1,1,1-Trichloroethane  | 0.5027 | 0.5060 | 0.4938 | 0.4782 | 0.4781           | Ave    |        | 0.4970      |     |       | 0.1000    | 2.4     | 20.0 |        |       | Ī       |
| Carbon tetrachloride   | 0 4035 | 42000  | 00000  | 0.3003 | 4164             | 1      |        | 0007        |     | -     |           |         |      |        | 1     |         |
|                        | 0.4409 | 0.4580 | 0.4268 | 0.4331 | 0.4⊥04<br>0.4⊥04 | Ave    |        | 0.4282      |     |       | 0.1000    | ٦.,     | 20.0 |        | _     |         |
| 1,1-Dichloropropene    | 0.4278 | ╀      | 0.4496 | 0.4154 | 0.4307 AVP       | Ave    |        | 0 4413      |     |       | 1000      | 2 2     | 200  |        | +     |         |
|                        | 0.4600 | _      | 0.4423 | 0.4437 |                  | )<br>! |        |             |     | :<br> | -         | 7.      | 0.0  |        |       |         |
| Isobutyl alcohol       | +++++  | -      | 0900.0 | 0.0074 | 0.0084           | Ave    |        | 0.0075      |     | 0     | 0.0010    | 11.2    | 20.0 |        |       |         |
|                        | 0.0079 | 0.0068 | 0.0078 | 0.0082 |                  |        |        |             |     |       |           |         |      |        |       |         |
| Benzene                | 1.1726 | 1.2389 | 1.1821 | 1.2111 | 1.2262           | Ave    |        | 1.2108      |     | o     | 0.5000    | 2.0     | 20.0 |        |       |         |
| t-Amvl alcohol         | 6020   | 0 0192 | 0 0155 | 0 0170 | 07.10            | 0440   |        | 0 0175      |     | •     | 0,00      |         | 0    |        | +     |         |
|                        | 0.0167 | 0.0163 | 0.0171 | 0.0179 |                  |        |        | 0.10.0      |     |       | 0100      | ر.<br>د | 0.0  | -      |       |         |
| 1,2-Dichloroethane     | 0.4290 | 0.4470 | 0.4045 | 0.3854 | 0.3820           | Ave    |        | 0.4080      |     | .0    | 0.1000    | 5.2     | 20.0 |        |       |         |
| - 1                    | 0.3954 | 0.3954 | 0.4158 | 0.4175 |                  |        |        |             |     |       |           |         |      |        |       |         |
| Tert-amy1 methyl ether | 0.9561 | 1,0616 | 0.9484 | 0.9748 | 1.0062           | Ave    |        | 0.9807      |     |       | 0.1000    | 3.8     | 20.0 |        |       |         |
|                        | 0.9357 | 0.9637 | 0.9888 | 0.9909 |                  |        |        |             |     |       |           |         |      |        |       | -       |
| n-Heptane              | +++++  | 0.4189 |        | 0.4189 | 0.3878           | Ave    |        | 0.3923      |     | 0     | 0.1000    | 4.4     | 20.0 |        |       |         |
|                        | 0.3855 | 0.3779 | 0.3920 | 0.3732 |                  |        |        |             |     |       |           |         |      |        | -     | ٠       |
| Trichloroethene        | 0.2760 | 0.3220 |        | 0.2940 | 0.3128           | Ave    |        | 0.3028      |     | 0     | 0.2000    | 4.8     | 20.0 |        |       |         |
|                        | 0.2898 | 0.3184 | 0.3086 | 0.3036 |                  |        |        |             |     |       |           |         |      |        |       |         |
| n-Butanol              | +++++  | ++++++ | 0.0027 | 0.0028 | 0.0032           | Ave    |        | 0.0031      |     | o.    | 0.00.0    | 13.4    | 20.0 |        |       |         |
|                        | 0.0026 | 0.0033 | 0.0036 | 0.0037 |                  |        |        |             |     |       |           |         |      |        |       |         |
| Ethyl acrylate         | ++++   | 0.6648 |        | 0.6148 | 0.6497 Ave       | Ave    |        | 0.6730      |     | 0     | 0.1000    | 5.3     | 20.0 |        |       |         |
|                        | 0.6823 | 0.7055 | 0.6981 | 0.7220 |                  |        |        |             |     |       |           |         |      |        |       |         |

Analy Batch No.: 545531 Job No.: 480-152070-1 Lab Name: Eurofins TestAmerica, Nashville

ID: 0.18(mm) GC Column: DB-624 Calibration Start Date: 09/26/2018 11:45 Instrument ID: HP34 SDG No.:

Calibration End Date: 09/26/2018 15:18

Calibration ID: 72791

Heated Purge: (Y/N) N

|                          |        |        | RRF    |        |        | CURVE  |        | COEFFICIENT | INI.       | # WIN  | RRF       | &RSD # | MAX  | R^2    | # WIN    | MIN R^2 |
|--------------------------|--------|--------|--------|--------|--------|--------|--------|-------------|------------|--------|-----------|--------|------|--------|----------|---------|
|                          | LVL 1  | LVI. 2 | LVI. 3 | LVL 4  | LVL 5  | TYPE   | Ø      | M1          | M2         |        |           |        |      | OR COD | g        | ов сор  |
| 1 1 10 - 11              | 2      |        | 7 7 7  | 7 7 7  |        |        |        |             |            |        |           | 7      |      |        |          |         |
| 1,1-Dichioroethene       | 0.2019 | 0.2055 | 0.2388 | 0.2440 | 0.2102 | Ave    |        | 0.2206      |            | ·<br>- | 0.1000    | 8.7    | 20.0 |        | _        |         |
| Acetone                  | 0.0200 | ⊥      | 0 0207 | 1000   | 0 0163 | Arro   |        | 01.10       |            | -      |           |        | 0    |        |          |         |
|                          | 0.0170 |        | 0.0163 | 0.0176 | 2      | ۵<br>د |        |             | \          | ;<br>— | 0.0100    | y.     | 20.0 |        |          |         |
| lsopropyl alcohol        | 0.0097 | 0.0128 | 0.0112 | 0.0116 | 0.0095 | Ave    | ,      | 0.0103      |            | 0      | 0.0010    | 13.2   | 20.0 |        |          |         |
| Iodomethane              | 0.2706 |        | 0.1436 | 0.2237 | 0.2262 | Lin1   | -0.540 | 0.3316      |            | .0     | 0.1000    |        |      | 0.9980 | 0        | 9900    |
| Carbon disulfide         | 0.7806 | 0.7474 | 0.7335 | 0.7538 | 0.6553 | Ave    |        | 0.7079      |            | 0      | 0.1000    | 6.8    | 20.0 |        |          |         |
| Acetonitrile             | 0.0715 |        | 0.0732 | 0.0758 | 0.0628 | Ave    |        | 0.0656      | _          | 0      | 0.0010    | 10.7   | 20.0 |        |          |         |
| 3-Chloro-1-propene       | 0.1488 |        | 0.1574 | 0.2120 | 0.1626 | Ave    |        | 0.1795      |            |        | 0.1000    | 13.0   | 20.0 |        | <u> </u> |         |
| Methyl acetate           | 0.1725 |        | 0.1850 | 0.2013 | 0.1545 | Ave    |        | 0.1667      |            | 0      | 0.1000 1  | 13.0   | 20.0 |        |          |         |
| Methylene Chloride       | +++++  |        | 0.3295 | 0.3185 | 0.2699 | Lin2   | 0.1255 | 0.2549      |            | 0.     | 0.0100    | -      |      | 0.9920 | 0.0      | 0.9900  |
| 2-Methyl-2-propanol      | 0.8072 |        | 0.9285 | 0.9348 | 0.8987 | Ave    |        | 0.8810      |            | 0      | 0.0010    | 6.8    | 20.0 |        |          |         |
| Acrylonitrile            | 0.0850 | 0.0876 | 0.0913 | 0.0878 | 0.0837 | Ave    |        | 0.0843      |            | 0      | 0.0100    | 5.8    | 20.0 |        |          |         |
| Methyl tert-butyl ether  | 0.7045 | 0.6947 | 0.6882 | 0.7420 | 0.6908 | Ave    |        | 0.6862      | 120        | 0      | 0.1000    | 5.1    | 20.0 |        |          |         |
| trans-1,2-Dichloroethene | 0.3053 |        | 0.3715 | 0.3348 | 0.3130 | Ave    |        | 0.3169      |            | 0      | 0.1000    | 8.0    | 20.0 |        |          |         |
| n-Hexane                 | 0.3757 | 0.4100 | 0.4242 | 0.3978 | 0.3881 | Ave    |        | 0.3749      |            | 0      | 0.1000    | 10.2   | 20.0 |        |          |         |
|                          | 0.3794 | 0.4667 | 0.5059 | 0.4434 | 0.4730 | Ave    |        | 0.4268      |            | 0      | 0.2000    | 12.1   | 20.0 |        | -        |         |
|                          | +++++  | +++++  | 0.0510 | 0.0575 | 0.0534 | Ave    |        | 0.0507      |            | *      | 0.1000    | 10.0   | 20.0 |        |          |         |
| isopropyl ether          | 0.8035 | 0.8667 | 0.8395 | 0.7826 | 0.8699 | Ave    |        | 0.7666      |            | 0      | 0.1000    | 11.9   | 20.0 |        |          |         |
|                          | 0.4465 | 0.4477 | 0.4372 | 0.4062 | 0.4168 | Ave    |        | 0.3916      |            | 0      | 0.1000 13 | 3.3    | 20.0 |        |          |         |
| Tert-butyl ethyl ether   | 0.6913 | 0.7765 | 0.8088 | 0.7853 | 0.8004 | Ave    |        | 0.7472      |            | 0      | 0.1000    | 8.7    | 20.0 |        |          |         |
| cis-1,2-Dichloroethene   | 0.2789 | 0.2979 | 0.2954 | 0.2906 | 0.3056 | Ave    |        | 0.2851      | <b>a</b> 9 | 0      | 0.1000    | 8.2    | 20.0 |        | -        |         |

20.0

12.8

0.0010

0.0059

Ave

0.0056

0.0055

0.3169

9.9

0.2000

## FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

545531 Analy Batch No.: No.: 480-152070-1 Job Eurofins TestAmerica, Nashville **HP34** iD: Instrument Lab Name: SDG No.

R^2 COD 0.9900 MIN OR ( R^2 OR COD 0.9960 Z 72791 (X/N)20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 MAX %RSD ID: Purge: 12.6 Calibration &RSD 11.9 10.8 9.9 4.6 2.2 10.5 9.8 2.8 9.6 6.8 4.0 5.4 6.7 9.7 0.0100 0.1000 Heated RRF 0.1000 0.0100 0.1000 0.1000 0.0100 0.1000 0.2000 0.0500 0.1000 0.1000 0.1000 0.5000 0.1000 0.1000 0.0010 0.0010 MIN # Æ 15:18 COEFFICIENT 0.0252 0.0238 0.0315 0.1431 0.4354 0.3663 0.4043 0.1795 0.3994 0.3436 0.4234 0.18 (mm) 0.0561 0.4617 0.0091 0.0152 1.1449 0.3806 0.7921 Ξ Date: 09/26/2018 0.1623 М ID: CURVE 0.0744 Linl 0.0276 Ave Ave Ave 0.4811 Ave Ave Ave 0.3987 Ave 0.3702 Ave 0.3520 Ave Ave Ave Ave Ave Ave Ave 0.4687 Ave 0.0341 0.3999 0.1528 0.1959 0.0148 0.0091 1.1017 0.4163 DB-624 End IM 0.4059 0.4069 0.4538 0.3515 0.3515 0.3568 0.0093 0.0085 1.1146 1.0790 0.3653 0.3563 0.8125 Calibration 0.0324 0.1852 0.4471 0.0721 0.4052 0.0163 0.0266 0.1421 0.1416 Column: 0.0322 0.0253 0.1522 0.1174 0.1610 0.0828 0.0530 0.4181 0.3828 0.4442 0.3457 0.0108 0.0080 0.4897 0.0254 0.3354 0.0238 0.0208 0.0149 1.1220 0.8024 0.3814 0.0156 1.1980 0.1837 0.4060 0.3785 ကေထ LVL RE ပ္ပ 0.3307 0.0211 0.0334 0.0263 0.1563 0.1251 0.1828 0.4246 0.0561 0.3846 0.4037 0.3211 0.3570 0.0097 0.0085 0.0147 0.4432 0.3584 0.4094 0.5106 1.1249 1.122511:45 0.0347 0.0340 0.1420 0.1583 0.1633 0.4149 0.0683 0.3980 0.4085 0.5014 0.3391 0.2683 0.0093 0.0140 0.0159 1.2833 1.1585 0.3816 0.4108 0.0212 0.0287 0.7734 0.4073 0.45020.0268 ++++ 09/26/2018 Calibration Start Date: ANALYTE Tert-amyl methyl ether 1, 1, 1-Trichloroethane Carbon tetrachloride 2,2-Dichloropropane 1,1-Dichloropropene Chlorobromomethane 1,2-Dichloroethane Methacrylonitrile 2-Butanone (MEK) Isobutyl alcohol Tetrahydrofuran Ethyl acetate t-Amyl alcohol Propionitrile Cyclohexane Chloroform n-Heptane Benzene

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

Trichloroethene

n-Butano]

Analy Batch No.: 582279 Job No.: 480-152070-1 Lab Name: Eurofins TestAmerica, Nashville SDG No.:

ID: 0.18 (mm) GC Column: ZB-624 Calibration Start Date: 03/20/2019 16:25 Instrument ID: HP39

Calibration End Date: 03/20/2019 20:17

Calibration ID: 74622

Heated Purge: (Y/N) N

|                                         |        | 3       |        |         |               |        |          |             |    |         |               |       |        |         |
|-----------------------------------------|--------|---------|--------|---------|---------------|--------|----------|-------------|----|---------|---------------|-------|--------|---------|
| ANALYTE                                 |        |         | RRF    |         |               | CURVE  | υ        | COEFFICIENT | #  | MIN RRF | &RSD          | # MAX | R^2 #  | MIN R^2 |
|                                         |        | LVL 2   | LVL 3  | 4       |               | TYPE   | Д        | M<br>M      | M2 |         |               | &RSD  | OR COD | OR COD  |
|                                         | IVI 6  | LVL 7   | LVL 8  | LVL 9   | LVL 10        |        |          |             |    |         |               |       |        |         |
| 1,1-Dichloroethene                      | 0.3314 | 0.2562  | 0.2808 | 0.3348  | $\overline{}$ | Ave    |          | 0.3093      |    | 0.1000  | 8.0           | 20.0  |        |         |
| Acetone                                 | 111111 | 0.3132  | 0.3036 | 0.3233  | 0.32/4        |        |          |             |    |         | -+            |       |        |         |
|                                         | 0.0135 | 0.0120  | 0.0129 | 0.0131  |               | ν<br>> | .لي      | 0.0137      | ,  | 0010.0  | 11.0          | 20.0  | -      |         |
| Iodomethane                             | 0.4798 | 0.3834  | 0.4181 | 0.5539  | +             | Ave    |          | 0.5013      |    | 0.1000  | 11.5          | 20.0  |        |         |
| Tannami = lackal                        | 0.5514 | 0.5268  | 0.5343 | 0.5275  | -             |        |          |             |    |         |               |       |        |         |
| rachiopy: arconor                       | 0.0068 | 0.0080  | 0.0083 | 0.0078  | 0.0077        | Ave    |          | 0.0071      |    | 0.0010  | 11.5          | 20.0  |        |         |
| Carbon disulfide                        | 1.1293 | 0.7583  | 0.8423 | 0.9666  | -             | Lin1 0 | 0.1920   | 0.7766      |    | 0.1000  |               |       | 0.9970 | 0.9900  |
| 3-Chloro-1-propene                      | 7150.0 | 20 +    | 0.7733 | 0.029.0 | $\overline{}$ | 1,01   | 117      | 27.70       |    |         |               |       |        |         |
|                                         | 0.2623 | 0.2963  | 0.3604 | 0.3529  |               |        |          | 7/15        |    | 0.1000  |               |       | 0.9940 | 0066.0  |
| Methyl acetate                          | +++++  | 0.1245  | 0.1326 | 0.1321  | 0.1159 7      | Ave    |          | 0.1132      |    | 0.1000  | 12.3          | 20.0  |        |         |
| Acetonitrile                            | ++++   | ‡ ‡ ‡ ‡ | 0.0110 | 0.0109  | +             | Ave    |          | 0.0109      |    | 0.0010  | 5.8           | 20.0  |        |         |
| 10 mm                                   | 0.0103 | 0.0105  | 0.0111 | 0.0113  | 0.0121        |        |          |             |    |         |               |       |        |         |
| Metnylene Chloride                      | +++++  | +++++   | 0.4540 | 0.4429  | 0.3947 1      | Ave    |          | 0.3762      |    | 0.0100  | 13.2          | 20.0  |        |         |
| 2-Methyl-2-propanol                     | ++++   | 1.1492  | 1.3006 | 1.8117  | +-            | Ave    |          | 1.4266      |    | 0.0010  | 14.6          | 20.0  |        |         |
| tout but                                | 1.4140 | 1.36/3  | 1.5082 | 1.5951  | +++++         |        |          |             |    |         |               |       |        |         |
| Metnyi tert-butyi ether                 | 0.8586 | 0.7401  | 0.7278 | 0.8391  | _             | Ave    |          | 0.7291      |    | 0.1000  | 9.8           | 20.0  |        |         |
| trans-1,2-Dichloroethene                | 0 5915 | 0.075   | 0 3036 | 6699    | _             |        |          | 27.7        |    |         | $\rightarrow$ |       |        |         |
|                                         | 0.4773 | 0.4516  | 0.4452 | 0.4636  | 0.4702        | Ave    |          | 0.4/48      |    | 0.1000  | 11.2          | 20.0  |        |         |
| Acrylonitrile                           | 0.0667 | 0.0571  | 0.0565 | 0.0642  | 1 .           | Ave    |          | 0.0592      |    | 0.0100  | 9.9           | 20.0  |        |         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.0604 | 0.0570  | 0.0549 | 0.0569  | $\rightarrow$ |        |          |             |    |         |               |       |        |         |
| ii nevalle                              | 0.4821 | 0.3344  | 0.4064 | 0.4741  | 0.4213 1      | Ave    |          | 0.4269      |    | 0.1000  | 9.6           | 20.0  |        |         |
| Isopropyl ether                         | 1.2988 | 1.0389  | 0.9544 | 1.0860  | +             | Lin2 0 | 0.1878 ( | 0.9036      |    | 1000    |               |       | 0000   | 0000    |
|                                         | 0.9634 | 0.8897  | 0.8671 | 0.8712  |               |        |          | )<br>)      |    |         |               |       | 0.66.0 | 00000   |
| Vinyl acetate                           | 0.0708 | 0.0496  | 0.0528 | 0.0608  | +             | Ave    |          | 0.0557      | *  | 0.1000  | 11.2          | 20.0  |        |         |
|                                         | 0.0557 | 0.0523  | 0.0497 | _       | 0.0570        |        |          |             |    |         |               |       |        |         |
| I, I-Dichloroethane                     | 0.6896 | 0.5741  | 0.6001 | _       |               | Ave    |          | 0.6320      | -  | 0.2000  | 5.3           | 20.0  |        |         |
|                                         | 0.6564 | 0.6237  | 0.6071 | 0.6326  | 0.6364        |        |          |             |    |         |               |       |        |         |
| 2-Chloro-1,3-butadiene                  | 0.6475 | 0.5623  | 0.5167 | 0.6059  | _             | Ave    |          | 0.5391      |    | 0.1000  | 9.3           | 20.0  |        |         |
| 14.4                                    | 0.5204 | 0.5038  | 0.5024 |         | 0.5110        |        |          |             |    |         |               |       |        |         |
| reir-burgi etngr                        | 1.0219 | 0.9278  | 0.8713 | 1.0377  | 0.9050        | Ave    |          | 0.9019      |    | 0.1000  | 8.4           | 20.0  |        |         |
| 2,2-Dichloropropane                     | 0.7549 | 0.5071  | 0.5260 | +-      | +             | Lin1 0 | 0.0287   | 0.5617      |    | 0.1000  |               |       | 0.9990 | 0.9900  |
|                                         | 0.5576 | 0.5482  | 0.5387 |         | 0.5691        |        | _        |             |    | 1       |               |       | ,      | ,       |

Analy Batch No.: 582279 ID: 0.18 (mm) Job No.: 480-152070-1 GC Column: ZB-624 Lab Name: Eurofins TestAmerica, Nashville Instrument ID: HP39 SDG No.:

Heated Purge: (Y/N) N Calibration ID: 74622 Calibration End Date: 03/20/2019 20:17 16:25 Calibration Start Date: 03/20/2019

| amy retike             |        |                |        |                |                 |        |        |             |    |           |        |       |        |        |
|------------------------|--------|----------------|--------|----------------|-----------------|--------|--------|-------------|----|-----------|--------|-------|--------|--------|
| T T TRANS              |        |                | RRF    |                |                 | CURVE  | -      | COEFFICIENT | IN | # MIN RRF | &RSD   | # MAX | R^2 #  | _      |
|                        | IVL 1  | LVL 2<br>LVL 7 | LVL 3  | LVL 4<br>LVL 9 | LVL 5<br>LVL 10 | AAXI.  | В      | Æ           | M2 |           |        | \$RSD | OR COD | OR COD |
| cis-1,2-Dichloroethene | 0.5311 | 0.3750         | 0.4166 | 0.5024         | <del>1</del>    | Ave    |        | 0.4322      |    | 0.1000    | 0 11.2 | 20.0  |        |        |
| Ethyl acetate          | +++++  | 0.0232         | 0.0161 | 0.0253         | 0.0205 2        | Ave    |        | 0.0205      |    | 0010      | 12 0   | 000   |        |        |
|                        | 0.0208 | _ 1            | 0.0185 | 0.0199         |                 | •      |        | (           |    | -         |        | 70.0  |        |        |
| z-bucanone (MEK)       | 0.0195 | 0.0206         | 0.0213 | 0.0238         | 0.0211          | Ave    |        | 0.0200      |    | 0.0100    | 8.9    | 20.0  |        |        |
| Propionitrile          | 0.0216 |                | 0.0193 | 0.0250         | _               | Ave    |        | 0.0221      |    | 0.0100    | 7.0    | 20.0  |        |        |
| Methacrylonitrile      | 0.1335 | 0.1124         | 0.1034 | 0.1240         |                 | Ave    |        | 0.1082      |    | 0.1000    | 11.6   | 20.0  |        |        |
| Chlorobromoethane      | 0.2459 |                | 0.2314 | 0.2806         | 0.2505 A        | Ave    |        | 0.2385      |    | 0.1000    | 7.3    | 20.0  |        |        |
| Tetrahydrofuran        | +++++  |                | 0.0642 | 0.0698         | $\overline{}$   | Ave    |        | 0.0603      |    | 0.0500    | 9.5    | 20.0  |        |        |
| Chloroform             | 0.7400 | 0.5641         | 0.6466 | 0.7226         |                 | Ave    |        | 0.6391      |    | 0.2000    | 8.8    | 20.0  |        |        |
| 1,1,1-Trichloroethane  | 0.7117 | 0.5730         | 0.5986 | 0.6084         | _               | Ave    |        | 0.5930      |    | 0.1000    | 8.6    | 20.0  |        |        |
| Cyclohexane            | +++++  | 0.5027         | 0.5403 | 0.5907         |                 | Ave    |        | 0.5493      |    | 0.1000    | 5.0    | 20.0  |        |        |
| Carbon tetrachloride   | 0.6350 | 0.4706         | 0.4710 | 0.5637         | _               | Ave    |        | 0.5348      |    | 0.1000    | 8.9    | 20.0  |        |        |
| 1,1-Dichloropropene    | 0.6086 | _L.            | 0.4797 | 0.5304         | 0.4877 A        | Ave    |        | 0.5015      |    | 0.1000    | 8.1    | 20.0  |        |        |
|                        | 0.0134 |                | 0.0115 | 0.0124         | +               | Ave    | 1      | 0.0112      |    | 0.0010    | 6.6    | 20.0  |        |        |
| t-Amyl alcohol         | 0.0148 | 0.0112         | 0.0120 | 0.0141         |                 | Ave    |        | 0.0123      |    | 0.0010    | 10.7   | 20.0  |        |        |
| Benzene                | 1.9672 | 1.5166         | 1.5266 | 1.6966         | +               | Ave    |        | 1.5278      |    | 0.5000    | 12.6   | 20.0  |        |        |
| Tert-amyl methyl ether | 1.1808 | +              | 0.8692 | 0.9969         | _               | Ave    |        | 0.9116      |    | 0.1000    | 11.8   | 20.0  |        |        |
| 1,2-Dichloroethane     | 0.5608 | -              | 0.3798 | 0.4388         | +               | Lin2 0 | 0.0763 | 0.3815      |    | 0.1000    |        |       | 0.9940 | 0066.0 |
| n-neprane              | +++++  | 0.3226         | 0.2751 | 0.3722         | 0.3438 A        | Ave    | -      | 0.3461      |    | 0.1000    | 6.0    | 20.0  |        |        |
| n-buranol              | +++++  | 0.0030         |        | 0.0037         | 0.0032 A        | Ave    |        | 0.0032      |    | 0.0010    | 6.7    | 20.0  |        |        |
| Trichloroethene        | 0.5580 | 0.4323         | 0.4325 | 0.4984         | 0.4500 A        | Ave    |        | 0.4563      |    | 0.2000    | 9.1    | 20.0  |        |        |

#### FORM V

### GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab File ID: 04251901.D BFB Injection Date: 04/25/2019

Instrument ID: HP34 BFB Injection Time: 13:55

Analysis Batch No.: 590455

| M/E | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |
|-----|------------------------------------|-------------------------|
| 50  | 15.0 - 40.0 % of mass 95           | 16.0                    |
| 75  | 30.0 - 60.0 % of mass 95           | 46.5                    |
| 95  | Base Peak, 100% relative abundance | 100.0                   |
| 96  | 5.0 - 9.0 % of mass 95             | 7.7                     |
| 173 | Less than 2.0 % of mass 174        | 0.5 (0.5) 1             |
| 174 | 50.0 - 120.00 % of mass 95         | 100.0                   |
| 175 | 5.0 - 9.0 % of mass 174            | 8.6 (8.6) 1             |
| 176 | 95.0 - 101.0 % of mass 174         | 98.3 (98.3) 1           |
| 177 | 5.0 - 9.0 % of mass 176            | 6.2 (6.3) 2             |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | CCVIS 490-590455/2 | 04251902.D     | 04/25/2019       | 14:22            |
|                  | LCS 490-590455/3   | 04251903.D     | 04/25/2019       | 14:48            |
|                  | LCSD 490-590455/4  | 04251904.D     | 04/25/2019       | 15:14            |
| 4                | MB 490-590455/6    | 04251906.D     | 04/25/2019       | 16:07            |
| TB-20190418      | 480-152143-6       | 04251912.D     | 04/25/2019       | 18:44            |
| SR-001           | 480-152143-3       | 04251914.D     | 04/25/2019       | 19:36            |
| SR-108           | 480-152143-1       | 04251915.D     | 04/25/2019       | 20:03            |
| SR-002           | 480-152143-4       | 04251916.D     | 04/25/2019       | 20:29            |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab Sample ID: CCVIS 490-590455/2

Calibration Date: 04/25/2019 14:22

Calib Start Date: 09/26/2018 11:45

Instrument ID: HP34

GC Column: DB-624

ID: 0.18 (mm)

Calib End Date: 09/26/2018 15:18

Lab File ID: 04251902.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|---------|-----------|
| Tetrahydrofuran             | Lin1          |         | 0.0576 | 0.0500  | 38.2           | 40.0            | -4.5    | 20.0      |
| 1,1,1-Trichloroethane       | Ave           | 0.3994  | 0.4112 | 0.1000  | 20.6           | 20.0            | 2.9     | 20.0      |
| Cyclohexane                 | Ave           | 0.4617  | 0.4094 | 0.1000  | 17.7           | 20.0            | -11.3   | 20.0      |
| 1,1-Dichloropropene         | Ave           | 0.3663  | 0.3727 | 0.1000  | 20.4           | 20.0            | 1.8     | 20.0      |
| Carbon tetrachloride        | Ave           | 0.3436  | 0.3691 | 0.1000  | 21.5           | 20.0            | 7.4     | 20.0      |
| Isobutyl alcohol            | Ave           | 0.0091  | 0.0056 | 0.0010  | 308            | 500             | -38.5*  | 20.0      |
| t-Amyl alcohol              | Ave           | 0.0152  | 0.0099 | 0.0010  | 131            | 200             | -34.6*  | 20.0      |
| 1,2-Dichloroethane          | Ave           | 0.3806  | 0.3283 | 0.1000  | 17.2           | 20.0            | -13.8   | 20.0      |
| Benzene                     | Ave           | 1.145   | 1.020  | 0.5000  | 17.8           | 20.0            | -10.9   | 20.0      |
| Tert-amyl methyl ether      | Ave           | 0.7921  | 0.6071 | 0.1000  | 15.3           | 20.0            | -23.4*  | 20.0      |
| n-Heptane                   | Ave           | 0.4234  | 0.2117 | 0.1000  | 10.0           | 20.0            | -50.0*  | 20.0      |
| n-Butanol                   | Ave           | 0.0059  | 0.0034 | 0.0010  | 288            | 500             | -42.4*  | 20.0      |
| Trichloroethene             | Ave           | 0.3154  | 0.3229 | 0.2000  | 20.5           | 20.0            | 2.4     | 20.0      |
| Ethyl acrylate              | Ave           | 0.3368  | 0.2724 | 0.1000  | 16.2           | 20.0            | -19.1   | 20.0      |
| Methylcyclohexane           | Ave           | 0.5279  | 0.4028 | 0.1000  | 15.3           | 20.0            | C-23.7* |           |
| 1,2-Dichloropropane         | Ave           | 0.2904  | 0.2492 | 0.1000  | 17.2           | 20.0            | -14.2   | 20.0      |
| Methyl methacrylate         | Ave           | 0.2508  | 0.1982 | 0.1000  | 31.6           | 40.0            | -21.0*  | 20.0      |
| Dibromomethane              | Ave           | 0.1655  | 0.1481 | 0.0500  | 17.9           | 20.0            | -10.5   | 20.0      |
| 1,4-Dioxane                 | Ave           | 0.7410  | 0.7736 | 0.0010  | 418            | 400             | 4.4     | 20.0      |
| Bromodichloromethane        | Ave           | 0.3485  | 0.3094 | 0.2000  | 17.8           | 20.0            | -11.2   | 20.0      |
| 2-Nitropropane              | Ave           | 0.0772  | 0.0600 | 0.0100  | 31.1           | 40.0            | -22.3*  | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.1937  | 0.1720 | 0.1000  | 17.8           | 20.0            | -11.2   | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 0.4827  | 0.4673 | 0.2000  | 19.4           | 20.0            | -3.2    | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.1047  | 0.0965 | 0.0500  | 92.2           | 100             | -7.8    | 20.0      |
| Toluene                     | Ave           | 1.397   | 1.367  | 0.4000  | 19.6           | 20.0            | -2.2    | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.4361  | 0.4081 | 0.0100  | 18.7           | 20.0            | -6.4    | 20.0      |
| Ethyl methacrylate          | Ave           | 0.3866  | 0.3374 | 0.1000  | 17.5           | 20.0            | -12.7   | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.2870  | 0.2798 | 0.1000  | 19.5           | 20.0            | -2.5    | 20.0      |
| Tetrachloroethene           | Ave           | 0.4072  | 0.4326 | 0.2000  | 21.2           | 20.0            | 6.2     | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.5007  | 0.4738 | 0.1000  | 18.9           | 20.0            | -5.4    | 20.0      |
| 2-Hexanone                  | Ave           | 0.1036  | 0.0894 | 0.0500  | 86.3           | 100             | -13.7   | 20.0      |
| n-Butyl acetate             | Ave           | 0.4812  | 0.3180 | 0.1000  | 13.2           | 20.0            | -33.9*  | 20.0      |
| Dibromochloromethane        | Lin2          |         | 0.2311 | 0.1000  | 19.5           | 20.0            | -2.4    | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.2886  | 0.2822 | 0.1000  | 19.6           | 20.0            | -2.2    | 20.0      |
| 1-Chlorohexane              | Ave           | 0.5012  | 0.3407 | 0.1000  | 13.6           | 20.0            | -32.0*  | 20.0      |
| Chlorobenzene               | Ave           | 1.023   | 0.9228 | 0.5000  | 18.0           | 20.0            | -9.8    | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.3284  | 0.3204 | 0.1000  | 19.5           | 20.0            | -2.4    | 20.0      |
| Ethylbenzene                | Ave           | 1.692   | 1.466  | 0.1000  | 17.3           | 20.0            | -13.3   | 20.0      |
| m-Xylene & p-Xylene         | Ave           | 1.302   | 1.129  | 0.1000  | 17.4           | 20.0            | -13.2   | 20.0      |
| o-Xylene                    | Ave           | 1.357   | 1.131  | 0.3000  | 16.7           | 20.0            | -16.6   | 20.0      |
| Styrene                     | Ave           | 1.173   | 0.9643 | 0.3000  | 16.4           | 20.0            | -17.8   | 20.0      |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab Sample ID: CCVIS 490-590455/2

Calibration Date: 04/25/2019 14:22

Instrument ID: HP34

Calib Start Date: 09/26/2018 11:45

GC Column: DB-624 ID: 0.18 (mm)

Calib End Date: 09/26/2018 15:18

Lab File ID: 04251902.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | ₹D     | MAX<br>%D |
|----------------------------------------|---------------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Propene                                | Ave           | 0.2344  | 0.2407  | 0.1000  | 20.5           | 20.0            | 2.7    | 20.0      |
| Dichlorodifluoromethane                | Ave           | 0.3067  | 0.3164  | 0.1000  | 20.6           | 20.0            | 3.2    | 20.0      |
| Chloromethane                          | Ave           | 0.3180  | 0.3539  | 0.1000  | 22.3           | 20.0            | 11.3   | 20.0      |
| Vinyl chloride                         | Ave           | 0.2852  | 0.3140  | 0.1000  | 22.0           | 20.0            | 10.1   | 20.0      |
| Butadiene                              | Ave           | 0.2460  | 0.2934  | 0.1000  | 23.9           | 20.0            | 19.3   | 20.0      |
| Bromomethane                           | Ave           | 0.1039  | 0.1772  | 0.1000  | 34.1           | 20.0            | (70.63 | 20.0      |
| Chloroethane                           | Lin1          |         | 0.1814  | 0.1000  | 21.3           | 20.0            | 6.5    | 20.0      |
| Dichlorofluoromethane                  | Ave           | 0.3908  | 0.4409  | 0.1000  | 22.6           | 20.0            | 12.8   | 20.0      |
| Trichlorofluoromethane                 | Ave           | 0.3578  | 0.4289  | 0.1000  | 24.0           | 20.0            | 19.9   | 20.0      |
| Ethanol                                | Ave           | 0.0006  | 0.0003* | 0.0010  | 434            | 800             | -45.8* | 20.0      |
| Ethyl ether                            | Ave           | 0.1866  | 0.1710  | 0.1000  | 18.3           | 20.0            | -8.3   | 20.0      |
| Acrolein                               | Ave           | 0.0336  | 0.0276  | 0.0100  | 40.6           | 49.4            | -17.9  | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2351  | 0.2506  | 0.1000  | 21.3           | 20.0            | 6.6    | 20.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2206  | 0.2606  | 0.1000  | 23.6           | 20.0            | 18.1   | 20.0      |
| Acetone                                | Ave           | 0.0179  | 0.0183  | 0.0100  | 102            | 100             | 2.1    | 20.0      |
| Isopropyl alcohol                      | Ave           | 0.0103  | 0.0074  | 0.0010  | 144            | 200             | -28.2* | 20.0      |
| Iodomethane                            | Linl          |         | 0.4153  | 0.1000  | 26.7           | 20.0            | 33.4*  | 20.0      |
| Carbon disulfide                       | Ave           | 0.7079  | 0.6852  | 0.1000  | 19.4           | 20.0            | -3.2   | 20.0      |
| 3-Chloro-1-propene                     | Ave           | 0.1795  | 0.2440  | 0.1000  | 27.2           | 20.0            | 35.9*  | 20.0      |
| Acetonitrile                           | Ave           | 0.0656  | 0.0605  | 0.0010  | 185            | 200             | -7.7   | 20.0      |
| Methyl acetate                         | Ave           | 0.1667  | 0.1504  | 0.1000  | 36.1           | 40.0            | -9.8   | 20.0      |
| Methylene Chloride                     | Lin2          |         | 0.2653  | 0.0100  | 20.3           | 20.0            | 1.6    | 20.0      |
| 2-Methyl-2-propanol                    | Ave           | 0.8810  | 0.9413  | 0.0010  | 214            | 200             | 6.8    | 20.0      |
| Acrylonitrile                          | Ave           | 0.0843  | 0.0808  | 0.0100  | 192            | 200             | -4.2   | 20.0      |
| Methyl tert-butyl ether                | Ave           | 0.6862  | 0.6123  | 0.1000  | 17.8           | 20.0            | -10.8  | 20.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.3169  | 0.3591  | 0.1000  | 22.7           | 20.0            | 13.3   | 20.0      |
| n-Hexane                               | Ave           | 0.3749  | 0.2957  | 0.1000  | 15.8           | 20.0            | -21.1* | 20.0      |
| 1,1-Dichloroethane                     | Ave           | 0.4268  | 0.4623  | 0.2000  | 21.7           | 20.0            | 8.3    | 20.0      |
| Vinyl acetate                          | Ave           | 0.0507  | 0.0402* | 0.1000  | 31.7           | 40.0            | -20.7* | 20.0      |
| Isopropyl ether                        | Ave           | 0.7666  | 0.6749  | 0.1000  | 17.6           | 20.0            | -12.0  | 20.0      |
| 2-Chloro-1,3-butadiene                 | Ave           | 0.3916  | 0.3602  | 0.1000  | 18.4           | 20.0            | -8.0   | 20.0      |
| Tert-butyl ethyl ether                 | Ave           | 0.7472  | 0.6267  | 0.1000  | 16.8           | 20.0            | -16.1  | 20.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.2851  | 0.3007  | 0.1000  | 21.1           | 20.0            | 5.5    | 20.0      |
| 2,2-Dichloropropane                    | Ave           | 0.4043  | 0.3663  | 0.1000  | 18.1           | 20.0            | -9.4   | 20.0      |
| 2-Butanone (MEK)                       | Ave           | 0.0252  | 0.0244  | 0.0100  | 97.1           | 100             | -2.9   | 20.0      |
| Ethyl acetate                          | Ave           | 0.0238  | 0.0225  | 0.0100  | 37.9           | 40.0            | -5.3   | 20.0      |
| Propionitrile                          | Ave           | 0.0315  | 0.0300  | 0.0100  | 190            | 200             | -5.0   | 20.0      |
| Methacrylonitrile                      | Ave           | 0.1431  | 0.1278  | 0.1000  | 179            | 200             | -10.7  | 20.0      |
| Chlorobromomethane                     | Ave           | 0.1795  | 0.1902  | 0.1000  | 21.2           | 20.0            | 6.0    | 20.0      |
| Chloroform                             | Ave           | 0.4354  | 0.4356  | 0.2000  | 20.0           | 20.0            | 0.0    | 20.0      |

#### FORM V

## GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab File ID: 042519-01.D BFB Injection Date: 04/25/2019

Instrument ID: HP39 BFB Injection Time: 12:44

Analysis Batch No.: 590475

| M/E | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |
|-----|------------------------------------|-------------------------|
| 50  | 15.0 - 40.0 % of mass 95           | 15.2                    |
| 75  | 30.0 - 60.0 % of mass 95           | 49.1                    |
| 95  | Base Peak, 100% relative abundance | 100.0                   |
| 96  | 5.0 - 9.0 % of mass 95             | 6.1                     |
| 173 | Less than 2.0 % of mass 174        | 0.7 (0.7) 1             |
| 174 | 50.0 - 120.00 % of mass 95         | 103.1                   |
| 175 | 5.0 - 9.0 % of mass 174            | 7.9 (7.7) 1             |
| 176 | 95.0 - 101.0 % of mass 174         | 100.0 (97.0) 1          |
| 177 | 5.0 - 9.0 % of mass 176            | 6.6 (6.6) 2             |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | CCVIS 490-590475/2 | 042519-02.D    | 04/25/2019       | 13:10            |
|                  | LCS 490-590475/3   | 042519-03.D    | 04/25/2019       | 13:36            |
|                  | LCSD 490-590475/4  | 042519-04.D    | 04/25/2019       | 14:02            |
|                  | MB 490-590475/8    | 042519-08.D    | 04/25/2019       | 15:46            |
| TB-20190417      | 480-152070-3       | 042519-11.D    | 04/25/2019       | 17:04            |
| SR-101           | 480-152070-1       | 042519-16.D    | 04/25/2019       | 19:14            |
| SR-106           | 480-152070-2       | 042519-19.D    | 04/25/2019       | 20:32            |
| SR-106 MS        | 480-152070-2 MS    | 042519-27.D    | 04/25/2019       | 23:59            |
| SR-106 MSD       | 480-152070-2 MSD   | 042519-28.D    | 04/26/2019       | 00:25            |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab Sample ID: CCVIS 490-590475/2 Calibration Date: 04/25/2019 13:10

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18 (mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 042519-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|----------------------------------------|-------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Propene                                | Ave   | 0.3476  | 0.1756  | 0.1000  | 10.1           | 20.0            | -49.5* | 20.0      |
| Dichlorodifluoromethane                | Ave   | 0.4093  | 0.5305  | 0.1000  | 25.9           | 20.0            | 29.6*  | 20.0      |
| Chloromethane                          | Ave   | 0.4315  | 0.3636  | 0.1000  | 16.9           | 20.0            | -15.7  | 20.0      |
| Vinyl chloride                         | Ave   | 0.4196  | 0.3703  | 0.1000  | 17.6           | 20.0            | -11.8  | 20.0      |
| Butadiene                              | Ave   | 0.3829  | 0.3341  | 0.1000  | 17.4           | 20.0            | -12.8  | 20.0      |
| Bromomethane                           | Ave   | 0.2325  | 0.2321  | 0.1000  | 20.0           | 20.0            | -0.2   | 20.0      |
| Chloroethane                           | Lin2  |         | 0.2237  | 0.1000  | 17.8           | 20.0            | -10.9  | 20.0      |
| Dichlorofluoromethane                  | Ave   | 0.6262  | 0.5652  | 0.1000  | 18.1           | 20.0            | -9.7   | 20.0      |
| Trichlorofluoromethane                 | Ave   | 0.5901  | 0.6868  | 0.1000  | 23.3           | 20.0            | 16.4   | 20.0      |
| Ethanol                                | Ave   | 0.0005  | 0.0003* | 0.0010  | 413            | 800             | -48.4* | 20.0      |
| Ethyl ether                            | Ave   | 0.2020  | 0.1947  | 0.1000  | 19.3           | 20.0            | -3.6   | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave   | 0.2837  | 0.2949  | 0.1000  | 20.8           | 20.0            | 4.0    | 20.0      |
| Acrolein                               | Ave   | 0.0216  | 0.0178  | 0.0100  | 40.6           | 49.4            | -17.8  | 20.0      |
| 1,1-Dichloroethene                     | Ave   | 0.3093  | 0.2996  | 0.1000  | 19.4           | 20.0            | -3.1   | 20.0      |
| Acetone                                | Ave   | 0.0137  | 0.0118  | 0.0100  | 85.8           | 100             | -14.2  | 20.0      |
| Iodomethane                            | Ave   | 0.5013  | 0.5486  | 0.1000  | 21.9           | 20.0            | 9.4    | 20.0      |
| Isopropyl alcohol                      | Ave   | 0.0071  | 0.0039  | 0.0010  | 109            | 200             | -45.6* | 20.0      |
| Carbon disulfide                       | Linl  |         | 0.8345  | 0.1000  | 21.2           | 20.0            | 6.2    | 20.0      |
| 3-Chloro-1-propene                     | Linl  |         | 0.2580  | 0.1000  | 16.0           | 20.0            | -19.8  | 20.0      |
| Methyl acetate                         | Ave   | 0.1132  | 0.0897* | 0.1000  | 31.7           | 40.0            | -20.7* | 20.0      |
| Acetonitrile                           | Ave   | 0.0109  | 0.0067  | 0.0010  | 124            | 200             | -38.2* | 20.0      |
| Methylene Chloride                     | Ave   | 0.3762  | 0.3365  | 0.0100  | 17.9           | 20.0            | -10.6  | 20.0      |
| 2-Methyl-2-propanol                    | Ave   | 1.427   | 1.243   | 0.0010  | 174            | 200             | -12.8  | 20.0      |
| Methyl tert-butyl ether                | Ave   | 0.7291  | 0.7525  | 0.1000  | 20.6           | 20.0            | 3.2    | 20.0      |
| trans-1,2-Dichloroethene               | Ave   | 0.4748  | 0.4270  | 0.1000  | 18.0           | 20.0            | -10.1  | 20.0      |
| Acrylonitrile                          | Ave   | 0.0592  | 0.0509  | 0.0100  | 172            | 200             | -14.0  | 20.0      |
| n-Hexane                               | Ave   | 0.4269  | 0.3547  | 0.1000  | 16.6           | 20.0            | -16.9  | 20.0      |
| Isopropyl ether                        | Lin2  |         | 0.7884  | 0.1000  | 17.2           | 20.0            | -13.8  | 20.0      |
| 1,1-Dichloroethane                     | Ave   | 0.6320  | 0.5650  | 0.2000  | 17.9           | 20.0            | -10.6  | 20.0      |
| Vinyl acetate                          | Ave   | 0.0557  | 0.0536* | 0.1000  | 38.5           | 40.0            | -3.8   | 20.0      |
| 2-Chloro-1,3-butadiene                 | Ave   | 0.5391  | 0.5152  | 0.1000  | 19.1           | 20.0            | -4.4   | 20.0      |
| Tert-butyl ethyl ether                 | Ave   | 0.9019  | 0.8788  | 0.1000  | 19.5           | 20.0            | -2.6   | 20.0      |
| 2,2-Dichloropropane                    | Linl  |         | 0.5865  | 0.1000  | 20.8           | 20.0            | 4.1    | 20.0      |
| cis-1,2-Dichloroethene                 | Ave   | 0.4322  | 0.4151  | 0.1000  | 19.2           | 20.0            | -4.0   | 20.0      |
| Ethyl acetate                          | Ave   | 0.0205  | 0.0199  | 0.0100  | 38.7           | 40.0            | -3.2   | 20.0      |
| 2-Butanone (MEK)                       | Ave   | 0.0200  | 0.0181  | 0.0100  | 90.5           | 100             | -9.5   | 20.0      |
| Propionitrile                          | Ave   | 0.0221  | 0.0185  | 0.0100  | 168            | 200             | -16.1  | 20.0      |
| Methacrylonitrile                      | Ave   | 0.1082  | 0.0929* | 0.1000  | 172            | 200             | -14.2  | 20.0      |
| Chlorobromomethane                     | Ave   | 0.2385  | 0.2441  | 0.1000  | 20.5           | 20.0            | 2.3    | 20.0      |
| Tetrahydrofuran                        | Ave   | 0.0603  | 0.0488* | 0.0500  | 32.3           | 40.0            | -19.2  | 20.0      |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab Sample ID: CCVIS 490-590475/2 Calibration Date: 04/25/2019 13:10

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18 (mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 042519-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|--------|-----------|
| Chloroform                  | Ave           | 0.6391  | 0.6534 | 0.2000  | 20.4           | 20.0            | 2.2    | 20.0      |
| 1,1,1-Trichloroethane       | Ave           | 0.5930  | 0.6492 | 0.1000  | 21.9           | 20.0            | 9.5    | 20.0      |
| Cyclohexane                 | Ave           | 0.5493  | 0.4489 | 0.1000  | 16.3           | 20.0            | -18.3  | 20.0      |
| Carbon tetrachloride        | Ave           | 0.5348  | 0.5838 | 0.1000  | 21.8           | 20.0            | 9.2    | 20.0      |
| 1,1-Dichloropropene         | Ave           | 0.5015  | 0.4792 | 0.1000  | 19.1           | 20.0            | -4.4   | 20.0      |
| Isobutyl alcohol            | Ave           | 0.0112  | 0.0068 | 0.0010  | 302            | 500             | -39.6* | 20.0      |
| Benzene                     | Ave           | 1.528   | 1.493  | 0.5000  | 19.5           | 20.0            | -2.3   | 20.0      |
| t-Amyl alcohol              | Ave           | 0.0123  | 0.0098 | 0.0010  | 159            | 200             | -20.5* | 20.0      |
| Tert-amyl methyl ether      | Ave           | 0.9116  | 0.9293 | 0.1000  | 20.4           | 20.0            | 1.9    | 20.0      |
| 1,2-Dichloroethane          | Lin2          |         | 0.4194 | 0.1000  | 21.8           | 20.0            | 8.9    | 20.0      |
| n-Heptane                   | Ave           | 0.3461  | 0.2256 | 0.1000  | 13.0           | 20.0            | -34.8* | 20.0      |
| n-Butanol                   | Ave           | 0.0032  | 0.0019 | 0.0010  | 296            | 500             | -40.9* | 20.0      |
| Trichloroethene             | Ave           | 0.4563  | 0.4692 | 0.2000  | 20.6           | 20.0            | 2.8    | 20.0      |
| Ethyl acrylate              | Ave           | 0.2418  | 0.2278 | 0.1000  | 18.8           | 20.0            | -5.8   | 20.0      |
| Methylcyclohexane           | Ave           | 0.6114  | 0.5459 | 0.1000  | 17.9           | 20.0            | -10.7  | 20.0      |
| 1,2-Dichloropropane         | Ave           | 0.3409  | 0.2908 | 0.1000  | 17.1           | 20.0            | -14.7  | 20.0      |
| Methyl methacrylate         | Ave           | 0.1961  | 0.1640 | 0.1000  | 33.4           | 40.0            | -16.4  | 20.0      |
| 1,4-Dioxane                 | Ave           | 1.249   | 0.7423 | 0.0010  | 238            | 400             | -40.6* | 20.0      |
| Dibromomethane              | Ave           | 0.1585  | 0.1648 | 0.0500  | 20.8           | 20.0            | 4.0    | 20.0      |
| Bromodichloromethane        | Ave           | 0.4491  | 0.4854 | 0.2000  | 21.6           | 20.0            | 8.1    | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.1920  | 0.1752 | 0.1000  | 18.3           | 20.0            | -8.7   | 20.0      |
| 2-Nitropropane              | Ave           | 0.1064  | 0.1019 | 0.0100  | 38.3           | . 40.0          | -4.2   | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 0.7007  | 0.6928 | 0.2000  | 19.8           | 20.0            | -1.1   | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.0871  | 0.0713 | 0.0500  | 81.8           | 100             | -18.2  | 20.0      |
| Toluene                     | Ave           | 2.180   | 2.002  | 0.4000  | 18.4           | 20.0            | -8.2   | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.5776  | 0.5761 | 0.0100  | 19.9           | 20.0            | -0.3   | 20.0      |
| Ethyl methacrylate          | Ave           | 0.4068  | 0.3527 | 0.1000  | 17.3           | 20.0            | -13.3  | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.3127  | 0.2940 | 0.1000  | 18.8           | 20.0            | -6.0   | 20.0      |
| Tetrachloroethene           | Ave           | 0.6029  | 0.5747 | 0.2000  | 19.1           | 20.0            | -4.7   | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.5521  | 0.4894 | 0.1000  | 17.7           | 20.0            | -11.4  | 20.0      |
| 2-Hexanone                  | Ave           | 0.0786  | 0.0622 | 0.0500  | 79.2           | 100             | -20.8* | 20.0      |
| n-Butyl acetate             | Lin2          |         | 0.2298 | 0.1000  | 15.7           | 20.0            | -21.3* | 20.0      |
| Dibromochloromethane        | Ave           | 0.3082  | 0.3233 | 0.1000  | 21.0           | 20.0            | 4.9    | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.3106  | 0.2950 | 0.1000  | 19.0           | 20.0            | -5.0   | 20.0      |
| 1-Chlorohexane              | Ave           | 0.5398  | 0.4467 | 0.1000  | 16.5           | 20.0            | -17.3  | 20.0      |
| Chlorobenzene               | Ave           | 1.405   | 1.367  | 0.5000  | 19.5           | 20.0            | -2.7   | 20.0      |
| Ethylbenzene                | Ave           | 2.311   | 2.198  | 0.1000  | 19.0           | 20.0            | -4.9   | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.5201  | 0.5154 | 0.1000  | 19.8           | 20.0            | -0.9   | 20.0      |
| m-Xylene & p-Xylene         | Ave           | 1.827   | 1.778  | 0.1000  | 19.5           | 20.0            | -2.7   | 20.0      |
| o-Xylene                    | Ave           | 1.847   | 1.764  | 0.3000  | 19.1           | 20.0            | -4.5   | 20.0      |
| Styrene                     | Ave           | 1.548   | 1.482  | 0.3000  | 19.2           | 20.0            | -4.2   | 20.0      |

## FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab File ID: 04251929.D BFB Injection Date: 04/26/2019

Instrument ID: HP33 BFB Injection Time: 03:25

Analysis Batch No.: 590664

| M/E | ION ABUNDANCE CRITERIA             |       | LATIVE<br>IDANCE |
|-----|------------------------------------|-------|------------------|
| 50  | 15.0 - 40.0 % of mass 95           | 21.1  |                  |
| 75  | 30.0 - 60.0 % of mass 95           | 50.1  |                  |
| 95  | Base Peak, 100% relative abundance | 100.0 |                  |
| 96  | 5.0 - 9.0 % of mass 95             | 6.7   |                  |
| 173 | Less than 2.0 % of mass 174        | 0.7   | (0.8) 1          |
| 174 | 50.0 - 120.00 % of mass 95         | 85.5  |                  |
| 175 | 5.0 - 9.0 % of mass 174            | 6.6   | (7.7) 1          |
| 176 | 95.0 - 101.0 % of mass 174         | 84.6  | (99.0) 1         |
| 177 | 5.0 - 9.0 % of mass 176            | 5.7   | (6.8) 2          |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCVIS 490-590664/2 | 04251930.D     | 04/26/2019       | 03:51            |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | LCS 490-590664/3   | 04251931.D     | 04/26/2019       | 04:18            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LCSD 490-590664/4  | 04251932.D     | 04/26/2019       | 04:44            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB 490-590664/7    | 04251935.D     | 04/26/2019       | 06:03            |
| SR-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 480-152143-5       | 04251947.D     | 04/26/2019       | 11:18            |
| SR-104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 480-152143-2       | 04251948.D     | 04/26/2019       | 11:44            |
| SR-104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 480-152143-2       | 04251950.D     | 04/26/2019       | 12:37            |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab Sample ID: CCVIS 490-590664/2 Calibration Date: 04/26/2019 03:51

Instrument ID: HP33 Calib Start Date: 03/21/2019 19:50

GC Column: RTX-624 ID: 0.18 (mm) Calib End Date: 03/21/2019 23:20

Lab File ID: 04251930.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                           | CURVE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|-----------------------------------|-------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Dichlorodifluoromethane           | Ave   | 0.2187  | 0.2512  | 0.1000  | 23.0           | 20.0            | 14.9   | 20.0      |
| Chloromethane                     | Ave   | 0.3341  | 0.4099  | 0.1000  | 24.5           | 20.0            | 22.7*  | 20.0      |
| Vinyl chloride                    | Ave   | 0.3518  | 0.3934  | 0.1000  | 22.4           | 20.0            | 11.8   | 20.0      |
| Butadiene                         | Ave   | 0.3411  | 0.4029  | 0.1000  | 23.6           | 20.0            | 18.1   | 20.0      |
| Bromomethane                      | Lin2  |         | 0.1895  | 0.1000  | 19.5           | 20.0            | -2.7   | 20.0      |
| Chloroethane                      | Lin2  |         | 0.2522  | 0.1000  | 20.5           | 20.0            | 2.6    | 20.0      |
| Dichlorofluoromethane             | Ave   | 0.5442  | 0.5409  | 0.1000  | 19.9           | 20.0            | -0.6   | 20.0      |
| Trichlorofluoromethane            | Ave   | 0.5007  | 0.4752  | 0.1000  | 19.0           | 20.0            | -5.1   | 20.0      |
| Ethanol                           | Linl  |         | 0.0013  | 0.0010  | 1200           | 800             | 49.5*  | 20.0      |
| Ethyl ether                       | Ave   | 0.2314  | 0.2755  | 0.1000  | 23.8           | 20.0            | 19.1   | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu      | Ave   | 0.2845  | 0.2903  | 0.1000  | 20.4           | 20.0            | 2.1    | 20.0      |
| oroethane<br>Acrolein             | 1     | 0.007   | 0.0220  | 0.0100  | 54.4           | 40.4            | 1.00   |           |
| 1,1-Dichloroethene                | Ave   | 0.0307  | 0.0338  | 0.0100  | 54.4           | 49.4            | 10.2   | 20.0      |
| Acetone                           | Ave   | 0.2811  | 0.2744  | 0.1000  | 19.5           | 20.0            | 22.8*  | 20.0      |
| Iodomethane                       | Linl  | 0.0211  | 0.0259  | 0.1000  | 20.9           | 20.0            | 4.4    | 20.0      |
| Isopropyl alcohol                 | Ave   | 0.0111  | 0.3466  | 0.1000  | 20.9           | 20.0            | 40.5*  | 20.0      |
| Carbon disulfide                  | Ave   | 0.8413  | 0.0156  |         |                |                 |        |           |
| 3-Chloro-1-propene                |       | 0.8413  | 0.8347  | 0.1000  | 19.8           | 20.0            | -0.8   | 20.0      |
| Methyl acetate                    | Ave   | 0.2696  | 0.2947  | 0.1000  | 21.9           | 20.0            | 9.3    | 20.0      |
| Acetonitrile                      | Ave   | 0.1727  | 0.2261  | 0.1000  | 52.4           | 40.0            | 30.9*  |           |
| Methylene Chloride                | Lin2  | 0.0404  | 0.0380  |         | 188            | 200             | -5.8   | 20.0      |
| 2-Methyl-2-propanol               |       | 1 061   |         | 0.0100  | 20.8           | 20.0            | 3.9    | 20.0      |
|                                   | Ave   | 1.261   | 1,329   | 0.0010  | 211            | 200             | 5.4    | 20.0      |
| Methyl tert-butyl ether           | Ave   | 0.8347  | 0.8885  | 0.1000  | 21.3           | 20.0            | 6.4    | 20.0      |
| trans-1,2-Dichloroethene          | Ave   | 0.4344  | 0.4749  | 0.1000  | 21.9           | 20.0            | 9.3    | 20.0      |
| Acrylonitrile<br>n-Hexane         | Ave   | 0.0943  | 0.1137  | 0.0100  | 241            | 200             | 20.6*  | 20.0      |
| 1,1-Dichloroethane                | Ave   | 0.4138  | 0.4143  | 0.1000  | 20.0           | 20.0            | 0.1    | 20.0      |
|                                   | Ave   | 0.5506  | 0.6114  | 0.2000  | 22.2           | 20.0            | 11.0   | 20.0      |
| Isopropyl ether Vinyl acetate     | Ave   | 0.9843  | 1.188   | 0.1000  | 24.1           | 20.0            | 20.7*  | 20.0      |
| 2-Chloro-1,3-butadiene            |       | 0.0639  | 0.0461* | 0.1000  | 28.9           | 40.0            | -27.9* | 20.0      |
| Tert-butyl ethyl ether            | Ave   | 0.5060  | 0.5642  | 0.1000  | 22.3           | 20.0            | 11.5   | 20.0      |
|                                   | Ave   | 0.9194  | 1.016   | 0.1000  | 22.1           | 20.0            | 10.5   | 20.0      |
| 2,2-Dichloropropane               | Ave   | 0.5110  | 0.4315  | 0.1000  | 16.9           | 20.0            | ~15.6  | 20.0      |
| cis-1,2-Dichloroethene            | Ave   | 0.3284  | 0.3236  | 0.1000  | 19.7           | 20.0            | -1.5   | 20.0      |
| 2-Butanone (MEK)                  | Lin2  | 0.0210  | 0.0323  | 0.0100  | 113            | 100             | 12.9   | 20.0      |
| Ethyl acetate                     | Ave   | 0.0310  | 0.0304  | 0.0100  | 39.3           | 40.0            | -1.9   | 20.0      |
| Propionitrile<br>Chlorehamanathan | Ave   | 0.0323  | 0.0420  | 0.0100  | 260            | 200             | 30.0*  | 20.0      |
| Chlorobromomethane                | Ave   | 0.1901  | 0.1898  | 0.1000  | 20.0           | 20.0            | -0.2   | 20.0      |
| Methacrylonitrile                 | Ave   | 0.1598  | 0.2182  | 0.1000  | 273            | 200             | 36.6*  | 20.0      |
| Tetrahydrofuran                   | Ave   | 0.1004  | 0.1236  | 0.0500  | 49.3           | 40.0            | 23.2*  | 20.0      |
| Chloroform                        | Ave   | 0.5400  | 0.5185  | 0.2000  | 19.2           | 20.0            | -4.0   | 20.0      |

#### FORM V

## GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab File ID: 042619-01.D BFB Injection Date: 04/26/2019

Instrument ID: HP39 BFB Injection Time: 12:17

Analysis Batch No.: 590828

| M/E | ION ABUNDANCE CRITERIA             |       | LATIVE<br>IDANCE |
|-----|------------------------------------|-------|------------------|
| 50  | 15.0 - 40.0 % of mass 95           | 18.2  |                  |
| 75  | 30.0 - 60.0 % of mass 95           | 51.0  |                  |
| 95  | Base Peak, 100% relative abundance | 100.0 |                  |
| 96  | 5.0 - 9.0 % of mass 95             | 6.1   |                  |
| 173 | Less than 2.0 % of mass 174        | 1.0   | (1.0) 1          |
| 174 | 50.0 - 120.00 % of mass 95         | 103.3 |                  |
| 175 | 5.0 - 9.0 % of mass 174            | 8.0   | (7.8) 1          |
| 176 | 95.0 - 101.0 % of mass 174         | 100.3 | (97.1) 1         |
| 177 | 5.0 - 9.0 % of mass 176            | 6.7   | (6.7) 2          |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID                       | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|----------------------------------------|--------------------|----------------|------------------|------------------|
| #1. 2                                  | CCVIS 490-590828/2 | 042619-02.D    | 04/26/2019       | 12:43            |
|                                        | LCS 490-590828/3   | 042619-03.D    | 04/26/2019       | 13:08            |
|                                        | LCSD 490-590828/4  | 042619-04.D    | 04/26/2019       | 13:34            |
| 1 1 22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | MB 490-590828/8    | 042619-08.D    | 04/26/2019       | 15:18            |
| SR-106                                 | 480-152070-2       | 042619-13.D    | 04/26/2019       | 17:28            |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab Sample ID: CCVIS 490-590828/2 Calibration Date: 04/26/2019 12:43

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 042619-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | 용D     | MAX<br>%D |
|----------------------------------------|-------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Propene                                | Ave   | 0.3476  | 0.2179  | 0.1000  | 12.5           | 20.0            | -37.3* | 20.0      |
| Dichlorodifluoromethane                | Ave   | 0.4093  | 0.4692  | 0.1000  | 22.9           | 20.0            | 14.6   | 20.0      |
| Chloromethane                          | Ave   | 0.4315  | 0.3607  | 0.1000  | 16.7           | 20.0            | -16.4  | 20.0      |
| Vinyl chloride                         | Ave   | 0.4196  | 0.3577  | 0.1000  | 17.0           | 20.0            | -14.8  | 20.0      |
| Butadiene                              | Ave   | 0.3829  | 0.3436  | 0.1000  | 17.9           | 20.0            | -10.3  | 20.0      |
| Bromomethane                           | Ave   | 0.2325  | 0.2463  | 0.1000  | 21.2           | 20.0            | 5.9    | 20.0      |
| Chloroethane                           | Lin2  |         | 0.2313  | 0.1000  | 18.4           | 20.0            | -7.8   | 20.0      |
| Dichlorofluoromethane                  | Ave   | 0.6262  | 0.6015  | 0.1000  | 19.2           | 20.0            | -3.9   | 20.0      |
| Trichlorofluoromethane                 | Ave   | 0.5901  | 0.6497  | 0.1000  | 22.0           | 20.0            | 10.1   | 20.0      |
| Ethyl ether                            | Ave   | 0.2020  | 0.1807  | 0.1000  | 17.9           | 20.0            | -10.6  | 20.0      |
| Ethanol                                | Ave   | 0.0005  | 0.0002* | 0.0010  | 259            | 800             | -67.6* | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave   | 0.2837  | 0.2930  | 0.1000  | 20.7           | 20.0            | 3.3    | 20.0      |
| Acrolein                               | Ave   | 0.0216  | 0.0174  | 0.0100  | 39.7           | 49.4            | -19.6  | 20.0      |
| 1,1-Dichloroethene                     | Ave   | 0.3093  | 0.2796  | 0.1000  | 18.1           | 20.0            | -9.6   | 20.0      |
| Acetone                                | Ave . | 0.0137  | 0.0113  | 0.0100  | 82.1           | 100             | -17.9  | 20.0      |
| Iodomethane                            | Ave   | 0.5013  | 0.5521  | 0.1000  | 22.0           | 20.0            | 10.1   | 20.0      |
| Isopropyl alcohol                      | Ave   | 0.0071  | 0.0033  | 0.0010  | 92.0           | 200             | -54.0* | 20.0      |
| Carbon disulfide                       | Linl  |         | 0.8378  | 0.1000  | 21.3           | 20.0            | 6.6    | 20.0      |
| 3-Chloro-1-propene                     | Lin1  |         | 0.2283  | 0.1000  | 14.3           | 20.0            | -28.3* | 20.0      |
| Methyl acetate                         | Ave   | 0.1132  | 0.0826* | 0.1000  | 29.2           | 40.0            | -27.0* | 20.0      |
| Acetonitrile                           | Ave   | 0.0109  | 0.0081  | 0.0010  | 148            | 200             | -26.0* | 20.0      |
| Methylene Chloride                     | Ave   | 0.3762  | 0.3421  | 0.0100  | 18.2           | 20.0            | -9.1   | 20.0      |
| 2-Methyl-2-propanol                    | Ave   | 1.427   | 1.248   | 0.0010  | 175            | 200             | -12.5  | 20.0      |
| Methyl tert-butyl ether                | Ave   | 0.7291  | 0.7054  | 0.1000  | 19.3           | 20.0            | -3.3   | 20.0      |
| trans-1,2-Dichloroethene               | Ave   | 0.4748  | 0.4466  | 0.1000  | 18.8           | 20.0            | -5.9   | 20.0      |
| Acrylonitrile                          | Ave   | 0.0592  | 0.0481  | 0.0100  | 163            | 200             | -18.7  | 20.0      |
| n-Hexane                               | Ave   | 0.4269  | 0.3704  | 0.1000  | 17.4           | 20.0            | -13.2  | 20.0      |
| Isopropyl ether                        | Lin2  |         | 0.8026  | 0.1000  | 17.6           | 20.0            | -12.2  | 20.0      |
| 1,1-Dichloroethane                     | Ave   | 0.6320  | 0.6013  | 0.2000  | 19.0           | 20.0            | -4.9   | 20.0      |
| Vinyl acetate                          | Ave   | 0.0557  | 0.0525* | 0.1000  | 37.7           | 40.0            | -5.8   | 20.0      |
| 2-Chloro-1,3-butadiene                 | Ave   | 0.5391  | 0.5517  | 0.1000  | 20.5           | 20.0            | 2.3    | 20.0      |
| Tert-butyl ethyl ether                 | Ave   | 0.9019  | 0.8668  | 0.1000  | 19.2           | 20.0            | -3.9   | 20.0      |
| 2,2-Dichloropropane                    | Lin1  |         | 0.6235  | 0.1000  | 22.1           | 20.0            | 10.7   | 20.0      |
| cis-1,2-Dichloroethene                 | Ave   | 0.4322  | 0.4180  | 0.1000  | 19.3           | 20.0            | -3.3   | 20.0      |
| 2-Butanone (MEK)                       | Ave   | 0.0200  | 0.0177  | 0.0100  | 88.4           | 100             | -11.6  | 20.0      |
| Ethyl acetate                          | Ave   | 0.0205  | 0.0206  | 0.0100  | 40.1           | 40.0            | 0.4    | 20.0      |
| Propionitrile                          | Ave   | 0.0221  | 0.0163  | 0.0100  | 148            | 200             | -26.2* | 20.0      |
| Methacrylonitrile                      | Ave   | 0.1082  | 0.0896* | 0.1000  | 166            | 200             | -17.2  | 20.0      |
| Chlorobromomethane                     | Ave   | 0.2385  | 0.2478  | 0.1000  | 20.8           | 20.0            | 3.9    | 20.0      |
| Tetrahydrofuran                        | Ave   | 0.0603  | 0.0494* | 0.0500  | 32.7           | 40.0            | -18.1  | 20.0      |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152070-1

SDG No.:

Lab Sample ID: CCVIS 490-590828/2 Calibration Date: 04/26/2019 12:43

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 042619-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|--------|-----------|
| Chloroform                  | Ave           | 0.6391  | 0.6510 | 0.2000  | 20.4           | 20.0            | 1.9    | 20.0      |
| 1,1,1-Trichloroethane       | Ave           | 0.5930  | 0.6260 | 0.1000  | 21.1           | 20.0            | 5.6    | 20.0      |
| Cyclohexane                 | Ave           | 0.5493  | 0.4846 | 0.1000  | 17.6           | 20.0            | -11.8  | 20.0      |
| 1,1-Dichloropropene         | Ave           | 0.5015  | 0.4937 | 0.1000  | 19.7           | 20.0            | -1.6   | 20.0      |
| Carbon tetrachloride        | Ave           | 0.5348  | 0.5853 | 0.1000  | 21.9           | 20.0            | 9.4    | 20.0      |
| Isobutyl alcohol            | Ave           | 0.0112  | 0.0061 | 0.0010  | 271            | 500             | -45.7* | 20.0      |
| t-Amyl alcohol              | Ave           | 0.0123  | 0.0085 | 0.0010  | 138            | 200             | -31.0* | 20.0      |
| Benzene                     | Ave           | 1.528   | 1.493  | 0.5000  | 19.5           | 20.0            | -2.3   | 20.0      |
| Tert-amyl methyl ether      | Ave           | 0.9116  | 0.8442 | 0.1000  | 18.5           | 20.0            | -7.4   | 20.0      |
| 1,2-Dichloroethane          | Lin2          |         | 0.4415 | 0.1000  | 22.9           | 20.0            | 14.7   | 20.0      |
| n-Heptane                   | Ave           | 0.3461  | 0.2327 | 0.1000  | 13.4           | 20.0            | -32.8* | 20.0      |
| n-Butanol                   | Ave           | 0.0032  | 0.0014 | 0.0010  | 225            | 500             | -55.0* | 20.0      |
| Trichloroethene             | Ave           | 0.4563  | 0.4750 | 0.2000  | 20.8           | 20.0            | 4.1    | 20.0      |
| Ethyl acrylate              | Ave           | 0.2418  | 0.2117 | 0.1000  | 17.5           | 20.0            | -12.4  | 20.0      |
| Methylcyclohexane           | Ave           | 0.6114  | 0.5029 | 0.1000  | 16.5           | 20.0            | -17.7  | 20.0      |
| 1,2-Dichloropropane         | Ave           | 0.3409  | 0.2997 | 0.1000  | 17.6           | 20.0            | -12.1  | 20.0      |
| Methyl methacrylate         | Ave           | 0.1961  | 0.1743 | 0.1000  | 35.6           | 40.0            | -11.1  | 20.0      |
| 1,4-Dioxane                 | Ave           | 1.249   | 0.7673 | 0.0010  | 246            | 400             | -38.6* | 20.0      |
| Dibromomethane              | Ave           | 0.1585  | 0.1583 | 0.0500  | 20.0           | 20.0            | -0.2   | 20.0      |
| Bromodichloromethane        | Ave           | 0.4491  | 0.4563 | 0.2000  | 20.3           | 20.0            | 1.6    | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.1920  | 0.1695 | 0.1000  | 17.7           | 20.0            | -11.7  | 20.0      |
| 2-Nitropropane              | Ave           | 0.1064  | 0.0979 | 0.0100  | 36.8           | 40.0            | -8.0   | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 0.7007  | 0.6697 | 0.2000  | 19.1           | 20.0            | -4.4   | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.0871  | 0.0649 | 0.0500  | 74.5           | 100             | -25.5* | 20.0      |
| Toluene                     | Ave           | 2.180   | 1.954  | 0.4000  | 17.9           | 20.0            | -10.4  | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.5776  | 0.5558 | 0.0100  | 19.2           | 20.0            | -3.8   | 20.0      |
| Ethyl methacrylate          | Ave           | 0.4068  | 0.3284 | 0.1000  | 16.1           | 20.0            | -19.3  | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.3127  | 0.2839 | 0.1000  | 18.2           | 20.0            | -9.2   | 20.0      |
| Tetrachloroethene           | Ave           | 0.6029  | 0.5583 | 0.2000  | 18.5           | 20.0            | -7.4   | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.5521  | 0.4609 | 0.1000  | 16.7           | 20.0            | -16.5  | 20.0      |
| 2-Hexanone                  | Ave           | 0.0786  | 0.0583 | 0.0500  | 74.1           | 100             | -25.9* | 20.0      |
| n-Butyl acetate             | Lin2          |         | 0.2082 | 0.1000  | 14.2           | 20.0            | -28.8* | 20.0      |
| Dibromochloromethane        | Ave           | 0.3082  | 0.2997 | 0.1000  | 19.5           | 20.0            | -2.7   | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.3106  | 0.2714 | 0.1000  | 17.5           | 20.0            | -12.6  | 20.0      |
| 1-Chlorohexane              | Ave           | 0.5398  | 0.4373 | 0.1000  | 16.2           | 20.0            | -19.0  | 20.0      |
| Chlorobenzene               | Ave           | 1.405   | 1.296  | 0.5000  | 18.4           | 20.0            | -7.8   | 20.0      |
| Ethylbenzene                | Ave           | 2.311   | 2.136  | 0.1000  | 18.5           | 20.0            | -7.6   | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.5201  | 0.4711 | 0.1000  | 18.1           | 20.0            | -9.4   | 20.0      |
| m-Xylene & p-Xylene         | Ave           | 1.827   | 1.708  | 0.1000  | 18.7           | 20.0            | -6.5   | 20.0      |
| o-Xylene                    | Ave           | 1.847   | 1.651  | 0.3000  | 17.9           | 20.0            | -10.6  | 20.0      |
| Styrene                     | Ave           | 1.548   | 1.421  | 0.3000  | 18.4           | 20.0            | -8.2   | 20.0      |

#### 13-IN ANALYSIS RUN LOG METALS

| Lab Name: E  | urofins TestAmerica, Buffalo | Job No.: 480-152070-1      |
|--------------|------------------------------|----------------------------|
| SDG No.:     |                              |                            |
| Instrument I | D: ICAP1                     | Method: 6010C              |
| Start Date:  | 04/22/2019 10:10             | End Date: 04/22/2019 22:00 |

| Start Date: 04/22/ | /2019 10:10  |        |       |              |                |                                                  |               | Da  |          |          | 04       |          |          |          |              |          |          |                                                  |              |              |          |          |          |
|--------------------|--------------|--------|-------|--------------|----------------|--------------------------------------------------|---------------|-----|----------|----------|----------|----------|----------|----------|--------------|----------|----------|--------------------------------------------------|--------------|--------------|----------|----------|----------|
|                    |              |        |       | 2            |                |                                                  |               |     |          |          |          | P        | na.      | lyt      | es           |          |          |                                                  |              |              |          |          |          |
| Lab                | D            | Т      |       | F<br>e       | M<br>n         |                                                  |               |     |          |          |          |          |          |          |              | K        |          | 6                                                |              |              |          |          |          |
| Sample             | /            | У      |       |              |                | •                                                |               |     |          |          |          |          |          |          |              |          |          |                                                  |              |              |          |          |          |
| ID                 | F            | p<br>e | Time  |              |                |                                                  |               |     |          |          |          |          |          |          |              |          | 10       |                                                  |              |              |          |          |          |
| ICIS 480-469213/1  | 1            |        | 10:10 | X            | X              |                                                  |               |     | <u> </u> | <u> </u> | 1        | _        | <u> </u> |          |              |          | $\vdash$ |                                                  | <u> </u>     | <u> </u>     | 1        | <u> </u> | $_{\pm}$ |
| IC 480-469213/2    | -            | 1      | 10:14 | X            | X              |                                                  |               | _   |          |          | -        |          | -        |          |              | $\vdash$ | -        | -                                                |              | -            |          |          | +        |
| IC 480-469213/3    |              |        | 10:18 | X            | X              | $\vdash$                                         |               |     |          |          | +        | -        |          | -        | <del> </del> | <u> </u> | ┼        | -                                                |              |              |          |          | +        |
| IC 480-469213/4    |              |        | 10:22 | X            | X              |                                                  | _             |     |          |          |          |          |          |          |              |          | $\vdash$ |                                                  | -            | -            |          | ┈        | +        |
| ICV 480-469213/5   | 1            | -      | 10:26 | Х            | Х              |                                                  | -             |     |          | -        | -        | ╁        | -        | -        | -            | <u> </u> | -        | -                                                |              |              | -        |          | +        |
| ICB 480-469213/6   | 1            |        | 10:29 | X            | X              | + +                                              |               |     | _        |          | -        | $\vdash$ | -        |          |              | -        |          |                                                  |              |              | -        |          | +        |
| ICVL 480-469213/7  | 1            |        | 10:33 | X            | X              |                                                  | -             |     |          | -        | +        |          | -        |          |              |          |          | -                                                |              | -            |          | $\vdash$ | +        |
| ICSA 480-469213/8  | 1            |        | 10:37 | X            | X              | $\vdash$                                         | -             |     |          |          | +        | -        | $\vdash$ | -        | _            |          |          | -                                                | -            |              | -        | _        | +        |
| ICSAB 480-469213/9 | 1            | -      | 10:41 | X            | X              | <del>   </del>                                   |               |     | -        | $\vdash$ | $\vdash$ | -        | -        | -        | -            |          | -        | -                                                | <u> </u>     | <del> </del> | $\vdash$ |          | +        |
| ZZZZZZ             | <del>-</del> | -      | 10:45 | +            | 1-             | +                                                |               |     | _        |          | +        | $\vdash$ |          | -        |              |          |          | -                                                | <del> </del> | $\vdash$     | -        | -        | +        |
| ZZZZZZ             |              |        | 10:49 | -            |                | <del>                                     </del> | -             |     |          | -        | +        | -        | -        | -        | -            |          | -        | -                                                |              | -            |          |          | +        |
| ZZZZZZ             | -            |        | 10:53 | +            |                |                                                  |               |     |          | -        | -        | -        |          |          |              | -        |          | -                                                |              |              |          |          | +        |
| ZZZZZZ             |              |        | 10:57 | +            | -              | -                                                | $\dashv$      |     |          |          | $\vdash$ |          | -        |          |              | -        |          | -                                                | -            |              |          | -        | +        |
| ZZZZZZ             |              |        | 11:00 | -            |                |                                                  | $\dashv$      |     |          |          | -        |          | -        | -        | _            |          |          | -                                                | -            |              |          | $\vdash$ | +        |
| CCV 480-469213/15  | -            | -      | 11:04 | +            | _              |                                                  | $\rightarrow$ |     |          |          | $\vdash$ |          |          | -        | $\vdash$     | $\vdash$ |          |                                                  |              |              |          |          | +        |
| CCB 480-469213/16  |              |        | 11:08 | +            |                |                                                  | -             |     |          |          |          |          |          |          | -            | $\vdash$ | -        |                                                  |              |              |          | _        | +        |
| CCV 480-469213/17  | 1            |        | 18:49 | х            | х              |                                                  | $\dashv$      |     |          |          | -        |          | -        |          |              |          | -        | -                                                |              |              |          |          | +        |
| CCB 480-469213/18  | 1            |        | 18:53 | X            | X              |                                                  | $\dashv$      |     |          | -        |          | -        | -        |          | -            | -        |          |                                                  |              |              | -        |          | +        |
| CCVL 480-469213/19 | 1            |        | 18:57 | - X          | Х              |                                                  | -             |     |          | -        | -        |          |          |          |              | -        |          |                                                  |              |              |          |          | +-       |
| MB 480-468809/1-A  | 1            | R      | 19:28 | Х            | Х              |                                                  | -             |     |          |          |          | -        |          |          |              |          | 14       |                                                  |              |              |          |          | +        |
| LCS 480-468809/2-A | 1            | R      | 19:32 | х            | х              |                                                  | -             |     |          | -        | 1        |          | $\vdash$ |          |              | -        |          | -                                                |              |              |          |          | ╁        |
| CCV 480-469213/22  | 1            |        | 19:35 | Х            | Х              |                                                  | $\dashv$      |     |          |          |          |          | -        | -        |              |          |          | <del>                                     </del> |              |              |          |          | ╁        |
| CCB 480-469213/23  | 1            |        | 19:39 | х            | Х              |                                                  | $\dashv$      | 20  |          |          |          |          | -        | <u> </u> |              |          |          | -                                                | -            |              |          | -        | +        |
| CCVL 480-469213/24 | 1            |        | 19:43 | x            | Х              |                                                  |               | - 1 | ni.      | -        |          | 20       |          |          |              |          |          |                                                  |              |              |          |          | +        |
| ZZZZZZ             |              |        | 19:47 |              |                |                                                  | $\dashv$      | _   |          |          |          |          |          |          |              |          |          | -                                                | _            |              |          |          | ╁        |
| ZZZZZZ             | -            |        | 19:51 |              |                |                                                  | $\dashv$      | -   |          |          | $\vdash$ |          |          |          |              |          |          |                                                  |              |              | $\vdash$ |          | +        |
| ZZZZZZ             | 10           |        | 19:55 | -            |                | $\vdash$                                         | $\dashv$      |     |          | -        |          |          |          |          |              |          |          |                                                  |              |              |          | -        | +        |
| ZZZZZZ             | -            |        | 19:58 | <del> </del> |                |                                                  |               |     |          |          |          |          |          |          |              | -        |          |                                                  |              |              |          |          | +        |
| ZZZZZZ             |              |        | 20:02 | -            |                |                                                  | $\dashv$      |     |          |          | -        |          |          |          |              |          |          |                                                  |              |              |          |          | +        |
| ZZZZZZ             |              |        | 20:06 |              |                |                                                  | $\dashv$      |     |          |          | -        | 1        |          | -        | -            |          |          |                                                  |              |              |          |          | +        |
| ZZZZZZ             |              |        | 20:09 | $\vdash$     |                | $\vdash$                                         | -             |     |          |          |          |          |          |          | <u> </u>     |          |          | $\vdash$                                         |              |              |          |          | +        |
| ZZZZZZ             |              |        | 20:13 |              | $\vdash\vdash$ | $\vdash$                                         | -             |     |          |          | -        |          | -        |          |              |          | -        |                                                  |              |              |          |          | +        |
| ZZZZZZ             |              |        | 20:17 | $\vdash$     | $\vdash$       | $\vdash$                                         | $\dashv$      | -   | -        |          | $\vdash$ |          | $\vdash$ | _        |              |          | _        |                                                  |              |              |          |          | +        |
| CCV 480-469213/34  | 1            |        | 20:21 | X            | Х              | -                                                | +             | -   |          |          | $\vdash$ |          |          |          |              |          |          |                                                  |              |              |          |          | +        |
| CCB 480-469213/35  | 1            | -      | 20:25 | Х            | Х              | $\vdash$                                         | $\dashv$      | _   |          |          |          |          | $\vdash$ |          |              |          |          |                                                  |              |              |          |          | +        |
| CCVL 480-469213/36 | 1            |        | 20:28 | Х            | х              |                                                  | -             |     |          |          | -        |          |          |          |              |          | _        | $\vdash$                                         | -            |              | -        |          | +        |
| 480-152143-1       | 1            | D      | 20:32 | Х            | Х              | +                                                | $\dashv$      |     |          |          |          |          | $\vdash$ |          |              |          |          |                                                  |              | _            |          |          | +        |
| 480-152143-2       | 1            | D      | 20:36 | Х            | Х              | -                                                |               | -   |          |          |          |          |          |          |              |          |          |                                                  |              |              |          |          | +        |
| 480-152143-3       | 1            | D      | 20:40 | Х            | Х              | +                                                | +             | -   |          | 121      |          | $\vdash$ |          |          |              |          |          | $\vdash$                                         |              |              |          |          | +        |
| 480-152143-4       | 1            | D      | 20:44 | X            | х              | -                                                | $\dashv$      |     |          |          |          |          |          |          |              | _        | _        |                                                  |              |              |          |          | $\vdash$ |
| 480-152143-5       | 1            | ם      | 20:48 | Х            | х              | +                                                | +             | -   |          |          |          | <b></b>  |          |          |              |          |          |                                                  |              | $\dashv$     | _        |          | +        |
| 400-132143-3       |              |        |       |              |                |                                                  |               |     |          |          |          |          |          |          |              | - 1      |          |                                                  |              | - 1          |          |          |          |

#### 13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG No.:

Instrument ID: ICAP1 Method: 6010C

Start Date: 04/22/2019 10:10 End Date: 04/22/2019 22:00

|                     |             |                  | ·     | -        |   |          |   |                                                  |          |   |                                                  |     |          |          |    |     |          |          |          |          |          | <br>     |
|---------------------|-------------|------------------|-------|----------|---|----------|---|--------------------------------------------------|----------|---|--------------------------------------------------|-----|----------|----------|----|-----|----------|----------|----------|----------|----------|----------|
|                     |             |                  |       |          |   |          |   |                                                  |          |   |                                                  | A   | nal      | Lyt      | es |     |          |          |          |          |          |          |
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>P<br>e | Time  | Fe       | M |          |   | -                                                |          |   |                                                  |     |          |          |    |     |          |          |          |          |          |          |
| 22222               |             |                  | 20:56 | 1        | 1 |          |   | 1                                                | <u> </u> |   | Ī                                                |     |          | <u> </u> |    | I   |          | l        |          |          | <u> </u> | 一        |
| ZZZZZZ              |             |                  | 20:59 | +        |   | <u> </u> |   | <del>                                     </del> |          |   |                                                  | -   |          |          |    |     |          |          | $\vdash$ |          |          | 2        |
| 222222              |             |                  | 21:03 |          |   |          |   |                                                  |          |   |                                                  |     |          |          |    |     |          |          |          |          |          | $\vdash$ |
| CCV 480-469213/46   | ī           | <u> </u>         | 21:07 | х        | х |          | - | <del>                                     </del> |          | - | <u> </u>                                         |     |          | -        |    |     | -        |          |          | <u> </u> |          |          |
| CCB 480-469213/47   | 1           |                  | 21:11 | Х        | Х |          |   |                                                  |          |   |                                                  |     |          |          |    |     |          |          | H        |          | _        |          |
| CCVL 480-469213/48  | 1           | <b></b>          | 21:15 | х        | Х | $\vdash$ |   | _                                                | 11       |   |                                                  |     |          |          | -  |     | $\vdash$ |          |          |          |          |          |
| ZZZZZZ              |             |                  | 21:18 | 1        |   |          |   |                                                  |          |   | <del>                                     </del> |     |          |          |    | - 5 |          |          |          |          |          |          |
| ZZZZZZ              |             |                  | 21:22 | _        |   |          |   |                                                  | _        |   |                                                  |     |          | 1 11     |    | 7   |          |          |          |          |          |          |
| ZZZZZZ              |             |                  | 21:26 |          |   |          |   |                                                  |          |   |                                                  |     |          |          |    |     |          |          |          |          |          |          |
| ZZZZZZ              |             |                  | 21:30 | <u> </u> |   |          |   |                                                  |          |   | Г                                                | .21 | $\vdash$ |          |    |     |          | <u> </u> |          |          |          |          |
| ZZZZZZ              |             |                  | 21:34 |          |   |          |   |                                                  |          |   |                                                  |     |          |          |    |     |          |          |          |          |          |          |
| ZZZZZZ              |             |                  | 21:38 |          | Ш |          |   |                                                  |          |   |                                                  |     |          |          |    |     |          |          |          |          |          |          |
| CCV 480-469213/55   |             |                  | 21:53 | 1        |   |          |   |                                                  |          |   |                                                  |     |          |          |    |     |          |          |          |          |          |          |
| CCB 480-469213/56   |             |                  | 21:56 |          |   |          |   |                                                  |          |   |                                                  |     |          |          |    |     | 1        |          |          |          |          |          |
| CCVL 480-469213/57  |             |                  | 22:00 |          |   |          |   |                                                  |          |   |                                                  |     |          |          |    |     |          |          |          |          |          |          |

#### Prep Types

D = Dissolved

R = Total Recoverable

## 2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00245 Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00245

|                         |         |   | -469213/3<br>019 20:28 | _   |         |   | -469213/4<br>019 21:1 |     |       |   |      |    |
|-------------------------|---------|---|------------------------|-----|---------|---|-----------------------|-----|-------|---|------|----|
| Analyte                 | Found   | С | True                   | ₹R  | Found   | С | True                  | ₹R  | Found | С | True | ₽R |
| Iron,<br>Dissolved      | 0.0402  | J | 0.0500                 | 80  | 0.0400  | J | 0.0500                | 80  | )     |   |      |    |
| Manganese,<br>Dissolved | 0.00323 |   | 0.00300                | 108 | 0.00318 |   | 0.00300               | 106 |       |   |      |    |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

#### 13-IN ANALYSIS RUN LOG METALS

| Lab Name:  | Eurofi | ns TestAmerica, | Buffalo | Job No.: | 480-152070-1 |  |
|------------|--------|-----------------|---------|----------|--------------|--|
| SDG No.:   |        |                 |         |          |              |  |
| Instrument | TD: T  | CAP1            |         | Method:  | 6010C        |  |

Instrument ID: ICAP1 Method: 6010C

Start Date: 04/25/2019 11:00 End Date: 04/25/2019 20:46

| Start Date: <u>04/25</u> | /2019 | 11:    | 00    |     |   | En | d         | Da     | te: | : | 04, | /25 | /20 | 19        | 20 | :40 | 5<br> |     |   |   |   | _    |
|--------------------------|-------|--------|-------|-----|---|----|-----------|--------|-----|---|-----|-----|-----|-----------|----|-----|-------|-----|---|---|---|------|
|                          |       |        |       |     |   |    |           |        | ••• |   |     |     | ma. | <br>  17+ |    |     |       |     |   |   |   | <br> |
|                          |       |        |       | F   | М |    |           |        | Π   | _ | Т   | T - | T . | Lyc       | -  |     |       | I   | 1 |   |   | T    |
| Lab<br>Sample            | D /   | T      |       | е   | n |    |           |        |     |   |     |     |     |           |    |     |       |     | i |   |   |      |
| ID                       | F     | p<br>e | Time  |     |   |    |           |        |     |   |     |     |     | İ         |    |     |       |     |   |   |   |      |
| ICIS 480-469920/1        | 1     |        | 11:00 | Х   | Х |    | Ì         |        |     |   | Ī   | Ī   |     |           |    |     | Ì     | Ť   |   | İ | İ | T    |
| IC 480-469920/2          |       |        | 11:04 | х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| IC 480-469920/3          |       |        | 11:08 | Х   | Х |    | I         |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| IC 480-469920/4          |       |        | 11:12 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     | T |   |   |      |
| ZZZZZZ                   |       |        | 11:16 | ii. |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   | İ |   |      |
| ZZZZZZ                   |       |        | 11:19 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ICV 480-469920/7         | 1     |        | 11:26 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ICB 480-469920/8         | 1     |        | 11:30 | X   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ICVL 480-469920/9        | 1     |        | 11:34 | х   | Х |    | $\exists$ |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ICSA 480-469920/10       | 1     |        | 11:37 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ICSAB 480-469920/11      | 1     |        | 11:41 | X   | Х |    | $\dashv$  |        |     |   |     |     |     |           |    |     |       |     |   |   |   | Г    |
| ZZZZZZ                   |       |        | 11:45 |     |   |    | $\neg$    |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   | _     |        | 11:49 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 11:53 |     |   |    |           |        |     |   |     |     | 11  |           |    |     |       |     |   |   |   |      |
| 222222                   |       |        | 11:57 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   | П    |
| ZZZZZZ                   |       |        | 12:01 |     |   | 20 |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCV 480-469920/17        |       |        | 12:05 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCB 480-469920/18        |       |        | 12:08 |     |   |    | 1         |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCV 480-469920/19        | 1     |        | 19:07 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCB 480-469920/20        | 1     |        | 19:10 | Х   | X |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   | Г    |
| CCVL 480-469920/21       | 1     |        | 19:14 | Х   | Х |    | 7         |        |     |   |     |     |     |           |    |     |       | +1  |   |   |   |      |
| MB 480-468661/1-A        | 1     | R      | 19:30 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 19:34 |     |   |    | T         |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| 480-152070-1             | 1     | D      | 19:37 | Х   | Х |    | T         |        |     |   |     |     |     |           |    |     |       |     |   |   |   | П    |
| 480-152070-2             | 1     | D      | 19:41 | Х   | Х |    | T         |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 19:45 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 19:49 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCV 480-469920/28        | 1     |        | 19:53 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCB 480-469920/29        | 1     |        | 19:56 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCVL 480-469920/30       | 1     | 11     | 20:00 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:04 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:08 |     |   |    |           |        |     |   |     |     |     | - 0       |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:12 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:15 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:19 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:23 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:27 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:31 | _   |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| ZZZZZZ                   |       |        | 20:34 |     |   |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCV 480-469920/40        | 1     |        | 20:39 | Х   | Х |    | $\top$    |        |     |   |     |     |     |           |    |     |       | 2.1 |   |   |   |      |
| CCB 480-469920/41        | 1     |        | 20:42 | Х   | Х |    |           |        |     |   |     |     |     |           |    |     |       |     |   |   |   |      |
| CCVL 480-469920/42       | 1     |        | 20:46 | Х   | Х |    | $\top$    | $\neg$ |     |   |     |     |     |           |    |     |       |     |   |   |   |      |

## 2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG No.:

ICV Source: MEI 10 CCVL 00245

Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00245

|                         | ICVL<br>04/2 |   | 0-469920/<br>019 11:3 | _   | CCVL<br>04/2 |   | -469920/2<br>019 19:14 |    | CCVL<br>04/2 |   | 0-469920/3<br>019 20:00 |     |
|-------------------------|--------------|---|-----------------------|-----|--------------|---|------------------------|----|--------------|---|-------------------------|-----|
| Analyte                 | Found        | С | True                  | ₽R  | Found        | С | True                   | %R | Found        | С | True                    | %R_ |
| Iron,<br>Dissolved      | 0.0523       |   | 0.0500                | 105 | 0.0468       | J | 0.0500                 | 94 | 0.0382       | J | 0.0500                  | 76  |
| Manganese,<br>Dissolved | 0.00236      | J | 0.00300               | 79  | 0.00217      | J | 0.00300                | 72 | 0.00224      | J | 0.00300                 | 75  |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

#### 13-IN ANALYSIS RUN LOG METALS

| Lab Name:  | Eurofins TestAmerica, Buffalo | Job No.: 480-152070-1      |  |
|------------|-------------------------------|----------------------------|--|
| SDG No.:   |                               |                            |  |
| Instrument | ID: ICAP2                     | Method: 6010C              |  |
| Start Date | : 04/26/2019 10:04            | End Date: 04/26/2019 21:22 |  |

| Start Date: 04/26   | 5/2019      | 10:              | : 04  |     | End         | i i          | Da       | te:      |          | 04/      | 26       | /20          | )19      | 21       | : 2          | 2        |              |                                                  |          |          |          | _                                                |
|---------------------|-------------|------------------|-------|-----|-------------|--------------|----------|----------|----------|----------|----------|--------------|----------|----------|--------------|----------|--------------|--------------------------------------------------|----------|----------|----------|--------------------------------------------------|
|                     |             |                  |       |     |             |              |          |          |          |          |          | ına.         | 1 vt     | es       |              |          |              |                                                  |          |          |          |                                                  |
|                     |             |                  |       | F   |             |              |          |          |          |          |          |              |          |          | Т            |          |              |                                                  |          | Τ        |          | T                                                |
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>P<br>e | Time  | e   |             |              |          |          |          |          |          |              |          |          |              |          |              |                                                  |          |          |          | 63                                               |
| ICIS 480-470206/1   | 1           | <del> </del>     | 10:04 | X   |             | <u></u>      |          | i        |          |          |          | <del> </del> | T        |          | <del> </del> | T        |              | <del> </del>                                     | T        | T        |          | H                                                |
| IC 480-470206/2     |             |                  | 10:07 | x   |             | Ť            | $\dashv$ | 25       |          |          |          |              |          |          | +-           |          | $\vdash$     |                                                  |          |          |          | +                                                |
| IC 480-470206/3     |             | <u> </u>         | 10:11 | х   |             | +            | _        |          |          |          |          | _            |          |          | $\dagger$    |          |              | $\vdash$                                         |          |          |          | t                                                |
| IC 480-470206/4     |             |                  | 10:15 | X   |             | +            |          | $\dashv$ |          | <u> </u> |          | <b>†</b>     |          |          |              |          |              | 1                                                | $\vdash$ |          | $\vdash$ | +                                                |
| ICV 480-470206/5    | 1           |                  | 10:18 | x   |             | $\dagger$    |          | _        |          |          |          |              | $\vdash$ | 1        | +-           |          |              | 1                                                | +        |          |          | -                                                |
| ICB 480-470206/6    | 1           |                  | 10:22 | X   |             | $\dagger$    | $\dashv$ |          |          |          |          |              | -        |          |              |          | 1            |                                                  | 1        | $\vdash$ |          | $\vdash$                                         |
| ICVL 480-470206/7   | 1           |                  | 10:25 | х   |             | $^{+}$       | $\dashv$ |          |          |          |          |              |          | 1        | 2            |          | +            |                                                  | -        |          |          | $\vdash$                                         |
| ICSA 480-470206/8   | 1           |                  | 10:29 | X   |             | $^{\dagger}$ | $\dashv$ |          |          |          |          |              |          |          | -            |          |              |                                                  |          |          |          | 1                                                |
| ICSAB 480-470206/9  | 1           | <u> </u>         | 10:33 | X   |             | $^{\dagger}$ |          | -        | _        |          |          |              |          |          | 1            |          | $\vdash$     |                                                  | +        |          | -        | $\vdash$                                         |
| 22222               |             |                  | 10:36 |     |             | $^{+}$       | $\dashv$ |          |          |          |          |              | <b>!</b> |          |              | $\vdash$ | $\vdash$     |                                                  |          |          |          | $\vdash$                                         |
| ZZZZZZ              |             |                  | 10:40 |     |             | +            |          |          |          |          |          | H            |          | -        |              |          |              | +-                                               |          | +        |          | $\vdash$                                         |
| ZZZZZZ              |             | <u> </u>         | 10:44 |     |             | $\dagger$    | 1        |          |          |          |          | -            | <u> </u> |          | $\vdash$     |          | $\vdash$     | <del>                                     </del> |          | <u> </u> |          | $\vdash$                                         |
| ZZZZZZ              |             |                  | 10:48 | + + |             | t            | $\dashv$ |          |          | (3)      |          |              |          |          | -            |          |              | +-                                               | $\vdash$ |          |          | <del>                                     </del> |
| ZZZZZZ              | 2           |                  | 10:51 |     |             | +            | -        |          |          |          |          |              |          | -        |              | -        |              |                                                  | $\vdash$ | +        |          | -                                                |
| CCV 480-470206/15   | <u> </u>    |                  | 10:55 |     |             | $\dagger$    | $\dashv$ | $\dashv$ |          |          |          |              |          |          |              |          | <del> </del> | -                                                |          | +        |          |                                                  |
| CCB 480-470206/16   |             |                  | 10:59 | +++ |             | +            | $\dashv$ | -        | _        |          | -        |              |          |          | -            | 1        | -            |                                                  |          |          |          |                                                  |
| CCV 480-470206/17   | 1           |                  | 18:21 | х   |             | +            | +        |          |          |          |          |              | -        | -        | <u> </u>     |          |              |                                                  | -        |          |          | -                                                |
| CCB 480-470206/18   | 1           |                  | 18:24 | х   |             | +            | $\dashv$ |          |          |          |          |              |          | <u> </u> |              | -        |              |                                                  |          | -        |          | -                                                |
| CCVL 480-470206/19  | 1           |                  | 18:28 | x   | -           | +            | +        | -        |          |          | _        | -            |          |          |              |          |              |                                                  |          | -        |          | $\vdash$                                         |
| MB 480-469142/1-A   | 1           | T                | 18:57 | x   |             | +            | $\dashv$ | _        |          |          |          |              |          |          | -            | -        | 2            |                                                  |          |          |          | -                                                |
| LCS 480-469142/2-A  | 1           | Т                | 19:00 | х   |             | +            | +        |          |          |          |          |              | -        | -        |              |          |              |                                                  |          |          | _        |                                                  |
| CCV 480-470206/22   | 1           |                  | 19:04 | х   |             | +            | $\dashv$ |          | _        |          |          |              |          |          |              |          | -            |                                                  |          |          |          | -                                                |
| CCB 480-470206/23   | 1           |                  | 19:07 | x   |             | $^{+}$       | $\dashv$ |          |          |          |          |              |          | -        |              | -        | -            |                                                  |          |          | -        | -                                                |
| CCVL 480-470206/24  | 1           |                  | 19:11 | x   | <del></del> | +            | $\dashv$ | $\dashv$ | _        |          |          | _            |          | -        |              |          |              |                                                  |          | -        |          |                                                  |
| ZZZZZZ              |             |                  | 19:15 |     |             | +            | +        | +        |          |          |          |              |          | -        | -            | -        |              |                                                  | ┼─       | -        |          |                                                  |
| ZZZZZZ              |             |                  | 19:19 |     |             | +            | +        | -        |          |          |          |              |          | -        |              |          |              |                                                  |          | -        |          |                                                  |
| ZZZZZZ              |             |                  | 19:22 | + + |             | +            | +        | $\dashv$ |          |          |          |              |          |          |              |          |              | 40                                               |          |          |          |                                                  |
| ZZZZZZ              | 1           | -                | 19:26 | 1 1 |             | +            | +        |          |          |          |          | L            |          |          |              |          | -            |                                                  |          | -        | _        |                                                  |
| 22222               | 1           | -                | 19:29 |     |             | +            | +        |          |          |          |          |              |          |          |              | _        | -            |                                                  |          | _        |          | -                                                |
| ZZZZZZ              |             |                  | 19:33 | + + |             | t            | +        |          |          |          |          |              | -        |          |              |          |              | _                                                | _        | -        |          | -                                                |
| ZZZZZZ              |             |                  | 19:36 |     | +           | +            | +        |          |          | -        |          |              |          |          |              |          |              |                                                  |          |          |          |                                                  |
| ZZZZZZ              |             |                  | 19:40 | + + |             | -            | -        | +        | -        | $\dashv$ |          | - 7          |          |          |              |          | _            |                                                  |          |          |          |                                                  |
| ZZZZZZ              | + +         |                  | 19:44 | ++  |             | +            | +        | +        |          |          | .01      |              |          | _        |              |          | _            |                                                  |          |          |          |                                                  |
| CCV 480-470206/34   | 1           | -                | 19:47 | x   |             | +-           | +        | +        |          |          |          |              |          |          |              |          |              |                                                  |          |          |          | <u> </u>                                         |
| CCB 480-470206/35   | 1           |                  | 19:51 | X   |             | t            | +        | +        |          |          |          |              |          |          |              |          |              |                                                  |          |          |          |                                                  |
| CCVL 480-470206/36  | 1           |                  | 19:55 | х   |             | +            | +        | +        | -        |          |          |              |          |          |              |          |              |                                                  |          |          |          |                                                  |
| ZZZZZZ              | +           |                  | 19:58 |     |             | +            | +        | +        | $\dashv$ | +        |          |              |          |          |              |          | _            | -                                                |          |          |          |                                                  |
| ZZZZZZ              |             |                  | 20:02 | ++  |             | $^{+}$       | +        | +        | $\dashv$ | $\dashv$ |          |              |          |          |              |          | -            |                                                  |          | $\vdash$ |          |                                                  |
| ZZZZZZ              | +           |                  | 20:06 | +   |             | +            | +        | -        |          | -        |          |              |          |          | 3.5          |          |              |                                                  |          | $\vdash$ |          |                                                  |
| ZZZZZZ              | + +         |                  | 20:09 | +-  |             | +            | +        | +        | -        | -        |          |              |          |          |              |          | _            |                                                  | -        |          | -        |                                                  |
| ZZZZZZ              | +           |                  | 20:13 | ++  |             | +            | +        | -+       |          | $\dashv$ |          |              |          | _        |              |          |              |                                                  |          |          |          |                                                  |
| 222222              |             |                  | 20:16 | +++ |             | -            | +        | +        | $\dashv$ | +        | $\dashv$ |              |          |          |              |          |              |                                                  |          |          |          |                                                  |

#### 13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG No.:

Instrument ID: ICAP2 Method: 6010C

Start Date: 04/26/2019 10:04 End Date: 04/26/2019 21:22

|                     |             |                  |       |        |          |               |       |          |          |          | A        | na:      | Lyt                                              | es |                                                  |          |   |                                                  |          |          |          |          |
|---------------------|-------------|------------------|-------|--------|----------|---------------|-------|----------|----------|----------|----------|----------|--------------------------------------------------|----|--------------------------------------------------|----------|---|--------------------------------------------------|----------|----------|----------|----------|
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>y<br>p<br>e | Time  | Fe     |          | 2.7           |       | 1        |          | 11       |          |          |                                                  |    |                                                  |          |   |                                                  |          |          |          |          |
| ZZZZZZ              |             |                  | 20:20 | Ť      |          |               |       | <u> </u> |          |          |          | <u> </u> |                                                  |    | <u> </u>                                         | <u> </u> |   |                                                  | <u> </u> | $\Box$   | 岢        | =        |
| ZZZZZZ              | +           | <del> </del>     | 20:24 | $\top$ |          | $\vdash$      |       |          |          |          | $\vdash$ |          |                                                  |    |                                                  |          | - |                                                  |          | $\vdash$ | $\dashv$ | $\vdash$ |
| 480-152070-1        | 1           | Т                | 20:27 | Х      |          |               |       |          |          |          |          |          |                                                  |    | <del>                                     </del> |          |   | <del>                                     </del> |          |          | -        | -        |
| CCV 480-470206/46   | · 1         |                  | 20:31 | х      | t        |               | <br>  |          | $\vdash$ | -        |          |          |                                                  |    | -                                                |          |   | -                                                |          | $\vdash$ | $\dashv$ | $\vdash$ |
| CCB 480-470206/47   | 1           |                  | 20:35 | Х      |          |               |       |          |          |          |          |          | -                                                |    | -                                                |          |   |                                                  | -        | -        |          |          |
| CCVL 480-470206/48  | 1           |                  | 20:38 | x      | 1        |               |       |          |          | $\vdash$ |          | -        |                                                  |    |                                                  | -        | - |                                                  |          | $\vdash$ | $\neg$   | $\vdash$ |
| 480-152070-2        | 1           | Т                | 20:42 | x      |          |               |       |          |          |          |          | -        | <del>                                     </del> |    |                                                  |          | - |                                                  |          |          | $\dashv$ |          |
| ZZZZZZ              |             |                  | 20:46 | _      | +        | <del>  </del> | -     |          |          |          |          |          |                                                  |    |                                                  | -        |   |                                                  |          | П        | $\dashv$ |          |
| ZZZZZZ              | -           |                  | 20:49 |        | 1        |               |       |          |          | $\vdash$ | -        |          |                                                  | E  |                                                  |          |   |                                                  |          |          | -        |          |
| ZZZZZZ              | 1           |                  | 20:53 |        |          |               |       |          |          |          | -        |          |                                                  |    |                                                  |          |   |                                                  |          |          | $\neg$   |          |
| ZZZZZZ              |             | <b></b>          | 20:57 |        | 1        |               |       | -        |          |          |          |          |                                                  |    |                                                  |          |   |                                                  |          |          |          |          |
| ZZZZZZ              |             |                  | 21:00 | +      |          |               |       |          | -        |          | _        |          | -                                                | _  |                                                  |          |   |                                                  |          |          | $\neg$   | $\vdash$ |
| CCV 480-470206/55   | 1           |                  | 21:15 | x      |          | $\vdash$      | <br>- | -        |          | <b>-</b> |          |          |                                                  |    |                                                  |          | - | $\vdash$                                         |          | $\vdash$ | $\dashv$ | $\vdash$ |
| CCB 480-470206/56   | 1           |                  | 21:18 | x      | $\vdash$ |               |       |          |          |          |          |          |                                                  |    |                                                  |          |   | $\vdash$                                         |          | -        | $\dashv$ |          |
| CCVL 480-470206/57  | 1           |                  | 21:22 | Х      |          |               |       |          |          |          | $\vdash$ | -        |                                                  |    |                                                  |          |   |                                                  |          |          | $\dashv$ |          |

Prep Types

T = Total/NA

## 2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00245 Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00245

|           | CCVL<br>04/2 |   | -470206/3<br>019 19:55 |    | CCVL<br>04/2 |   | -470206/4<br>019 20:38 | -  | CCVL<br>04/2 |   | -470206/5<br>)19 21:22 |    |
|-----------|--------------|---|------------------------|----|--------------|---|------------------------|----|--------------|---|------------------------|----|
| Analyte   | Found        | С | True                   | %R | Found        | С | True                   | %R | Found        | С | True                   | ₹R |
| Iron      | 0.0443       | J | 0.0500                 | 89 | 0.0468       | J | 0.0500                 | 94 | 0.0440       | J | 0.0500                 | 88 |
| Manganese |              |   | -                      |    | 0.00209      | J | 0.00300                | 70 |              |   |                        |    |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

#### 13-IN ANALYSIS RUN LOG METALS

| Lab Name:  | Euro | fins | TestAmerica, | Buffalo | Job No.: | 480-152070-1 | 44.00.000 |  |
|------------|------|------|--------------|---------|----------|--------------|-----------|--|
| SDG No.:   |      |      |              |         |          |              |           |  |
| Instrument | ID:  | ICA  | ?2           |         | Method:  | 6010C        |           |  |

Start Date: 05/13/2019 11:52 End Date: 05/13/2019 19:17

| Start Date: 05/13   | /2019        | , 11:            | 52         |        |        | _ Enc                                            | 1 1          | Dat      | ce:      |   | 05/           | 13 | /20      | 119     | 19       | ::1                                              | _       |          |    |   | -        |          |                                                  |
|---------------------|--------------|------------------|------------|--------|--------|--------------------------------------------------|--------------|----------|----------|---|---------------|----|----------|---------|----------|--------------------------------------------------|---------|----------|----|---|----------|----------|--------------------------------------------------|
|                     |              |                  |            |        |        |                                                  |              |          |          |   |               | A  | na.      | lyt     | es       |                                                  |         |          |    |   |          |          |                                                  |
|                     |              |                  | <b>2</b> . | F<br>e | M<br>n |                                                  |              |          |          |   |               |    |          | Ī       |          |                                                  | 21      |          |    |   |          |          |                                                  |
| Lab<br>Sample<br>ID | D<br>/<br>F  | T<br>Y<br>P<br>e | Time       |        |        |                                                  |              |          |          |   |               |    |          |         |          |                                                  | 5       |          |    |   |          |          |                                                  |
| ICIS 480-472702/1   | 1            | Ī                | 11:52      | X      | X      |                                                  | T            | 寸        |          |   |               |    | ,        |         |          | <del>i </del>                                    |         |          |    | Ħ |          | <u> </u> | T                                                |
| IC 480-472702/2     |              |                  | 11:56      | х      | Х      |                                                  | $^{\dagger}$ | $\dashv$ | 1        |   |               |    |          |         |          |                                                  |         |          |    |   |          |          | $\vdash$                                         |
| IC 480-472702/3     |              | <b></b>          | 12:00      | X      | Х      | <del>                                     </del> | +            | _        | $\neg$   |   |               |    |          |         |          |                                                  |         |          |    |   |          |          | $\vdash$                                         |
| IC 480-472702/4     |              |                  | 12:03      | x      | Х      |                                                  | $\dagger$    | $\dashv$ | 1        |   |               |    |          |         |          |                                                  | t       |          |    |   |          |          |                                                  |
| ICV 480-472702/5    | 1            |                  | 12:07      | X      | Х      |                                                  | $\dagger$    | $\dashv$ | $\dashv$ |   |               |    |          |         |          |                                                  |         |          | 0: |   |          |          | $\vdash$                                         |
| ICB 480-472702/6    | 1            |                  | 12:10      | x      | Х      |                                                  | +            |          | $\dashv$ |   |               |    | $\vdash$ |         | -        |                                                  | <b></b> |          |    | - |          |          | -                                                |
| ICVL 480-472702/7   | 1            |                  | 12:14      | x      | Х      | <del>                                     </del> | $^{\dagger}$ | $\dashv$ |          |   |               | -  |          |         | -        | <del>                                     </del> |         |          |    |   | <u> </u> | -        | $\vdash$                                         |
| ICSA 480-472702/8   | 1            |                  | 12:18      | х      | Х      |                                                  | $^{\dagger}$ | 1        |          |   |               |    |          | <b></b> | <b>-</b> | <del> </del>                                     |         |          |    |   |          | -        | +-                                               |
| ICSAB 480-472702/9  | 1            | <b></b>          | 12:22      | X      | Х      | <del>  </del>                                    | +            | $\dashv$ |          |   |               |    |          | t       | - 11     |                                                  |         |          |    |   | t        |          | +                                                |
| ZZZZZZ              | 1            |                  | 12:25      | +      |        |                                                  | +            | +        |          |   |               |    |          |         |          |                                                  |         | -        |    |   |          | -        |                                                  |
| ZZZZZZ              |              |                  | 12:29      | _      |        |                                                  | $^{\dagger}$ | $\top$   |          |   |               |    |          |         |          |                                                  |         |          | †  |   | 17       |          | $\vdash$                                         |
| ZZZZZZ              | <del> </del> |                  | 12:33      | _      |        |                                                  | +            | +        |          |   |               |    |          |         | _        | 1                                                |         |          |    |   |          |          | +                                                |
| ZZZZZZ              | -            | -                | 12:37      |        |        |                                                  | +            | $\dashv$ |          |   |               |    |          |         |          |                                                  |         | ┢        |    |   |          |          | $\vdash$                                         |
| ZZZZZZ              | +            |                  | 12:40      |        |        |                                                  | +            | $\dashv$ | _        |   |               |    |          |         |          |                                                  |         |          |    |   |          |          | $\vdash$                                         |
| CCV 480-472702/15   | <del> </del> |                  | 12:44      |        |        |                                                  | +            | -        | _        |   | -             |    | -        | -       |          | -                                                |         | $\vdash$ |    |   | -        |          | <del> </del>                                     |
| CCB 480-472702/16   | 1            |                  | 12:48      | +      |        |                                                  | +            | $\dashv$ | $\dashv$ |   |               | -  | -        |         | -        | -                                                |         | · · · ·  | -  |   | -        |          | $\vdash$                                         |
| CCV 480-472702/17   | 1            |                  | 16:12      | x      | х      |                                                  | +            | +        | +        |   |               |    |          |         |          | <del>                                     </del> |         |          |    |   |          |          | $\vdash$                                         |
| CCB 480-472702/18   | 1            |                  | 16:15      | х      | х      |                                                  | +            | $\dashv$ | $\dashv$ |   |               |    |          |         |          |                                                  |         |          |    |   |          |          | $\vdash$                                         |
| CCVL 480-472702/19  | 1            |                  | 16:19      | Х      | х      |                                                  | +            | $\dashv$ |          |   | -             |    |          | -       |          |                                                  | -       | -        | -  |   | -        |          | -                                                |
| MB 480-470921/1-A   | 1            | T                | 16:45      | x      | Х      |                                                  | +            | $\dashv$ | +        |   |               |    |          |         |          | -                                                |         | -        |    | - |          |          | $\vdash$                                         |
| LCS 480-470921/2-A  | 1            | T                | 16:49      | x      | Х      |                                                  | +            | $\dashv$ | $\dashv$ |   |               |    |          |         |          |                                                  |         |          |    |   | _        |          | $\vdash$                                         |
| ZZZZZZ              | +            |                  | 16:52      |        |        |                                                  | +            | +        | +        |   |               |    |          |         |          | 1                                                |         | $\vdash$ |    |   | -        |          | -                                                |
| CCV 480-472702/23   | 1            |                  | 16:56      | x      | Х      |                                                  | +            | +        | +        |   |               |    |          |         |          |                                                  |         |          |    |   |          |          | $\vdash$                                         |
| CCB 480-472702/24   | 1            |                  | 17:00      | X      | Х      |                                                  | +            | +        | +        |   |               |    |          |         |          |                                                  |         |          |    |   |          |          |                                                  |
| CCVL 480-472702/25  | 1            |                  | 17:03      | x      | Х      |                                                  | ╁            | +        | $\dashv$ |   |               |    |          |         |          |                                                  |         |          |    |   |          |          | $\vdash$                                         |
| ZZZZZZ              | +            |                  | 17:07      | +      |        |                                                  | +            | +        | $\dashv$ |   |               |    |          |         | -        | -                                                |         |          |    |   |          |          | $\vdash$                                         |
| ZZZZZZ              |              |                  | 17:11      | +      |        |                                                  | +            | +        | $\dashv$ |   |               |    |          |         |          |                                                  |         |          |    |   |          | _        |                                                  |
| ZZZZZZ              | +            |                  | 17:15      | +-     |        |                                                  | ╁            | +        | $\dashv$ |   |               | -  |          | -       |          | -                                                |         |          |    |   |          |          |                                                  |
| ZZZZZZ              | +            |                  | 17:18      | +      |        |                                                  | +            | +        | $\dashv$ | _ |               |    |          |         |          |                                                  |         |          |    |   | _        |          | -                                                |
| ZZZZZZ              |              |                  | 17:22      |        |        |                                                  | +            | +        | $\dashv$ |   |               |    |          |         |          |                                                  |         |          |    |   |          |          |                                                  |
| ZZZZZZ              | +            | -                | 17:26      |        |        |                                                  | +            | +        | $\dashv$ |   | -             |    |          |         |          |                                                  | -       | _        |    |   |          |          |                                                  |
| ZZZZZZ              | +            |                  | 17:29      | +      |        |                                                  | +            | +        | $\dashv$ |   | _             |    |          |         |          |                                                  |         |          |    |   |          |          | -                                                |
| 480-152143-1        | 1            | Т                | 17:33      | х      | Х      |                                                  | +            | +        | $\dashv$ |   |               |    |          |         |          |                                                  |         |          |    |   |          |          |                                                  |
| 480-152143-2        | 1            | T                | 17:37      | x      | Х      |                                                  | +            | +        | $\dashv$ |   |               |    |          |         | -        | -                                                |         |          |    |   |          |          | -                                                |
| CCV 480-472702/35   | 1            |                  | 17:41      | x      | Х      |                                                  | +            | +        | $\dashv$ | _ |               |    |          |         |          |                                                  |         |          |    |   |          |          |                                                  |
| CCB 480-472702/36   | 1            |                  | 17:44      | x      | х      |                                                  | +            | +        | $\dashv$ |   |               |    |          |         |          |                                                  |         |          |    |   |          |          |                                                  |
| CCVL 480-472702/37  | 1            |                  | 17:48      | Х      | Х      |                                                  | +            | +        | +        |   |               |    |          |         |          |                                                  |         |          |    |   |          |          |                                                  |
| 480-152143-3        | 1            | T                | 17:52      | X      | х      |                                                  | +            | +        | +        |   |               |    |          |         |          |                                                  | _       |          |    |   |          |          | $\vdash$                                         |
| 480-152143-4        | 1            | T                | 17:55      | Х      | Х      | -                                                | +            | +        | +        | - | $\dashv$      |    |          |         |          | <u> </u>                                         |         |          |    |   | -        |          | <del></del>                                      |
| 480-152143-5        | 1            | T                | 17:59      | X      | х      |                                                  | +            | +        | -+       |   | $\rightarrow$ |    | -        | -       |          |                                                  |         | _        |    |   |          |          | <del>                                     </del> |
| ZZZZZZ              | +            |                  | 18:03      | +      |        |                                                  | +            | +        | +        | - |               |    |          |         |          |                                                  |         | _        |    |   |          |          | <u> </u>                                         |
| ZZZZZZ              | -            |                  | 18:07      | +      |        | $\dashv$                                         | +            | +        | +        |   |               |    |          |         |          | $\vdash$                                         |         |          |    |   |          |          | <del></del>                                      |

#### 13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG No.:

Instrument ID: ICAP2 Method: 6010C

Start Date: 05/13/2019 11:52 End Date: 05/13/2019 19:17

|                     |             |                  |       |               |                                                  |                                                  |                                                  |    |   |       | A        | na] | Lyt | es       |          |   |   |       |   |               |
|---------------------|-------------|------------------|-------|---------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----|---|-------|----------|-----|-----|----------|----------|---|---|-------|---|---------------|
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>P<br>e | Time  | F             | M                                                |                                                  |                                                  |    |   |       |          |     |     |          |          |   |   |       |   |               |
| ZZZZZZ              | 1           | l                | 18:10 | $\overline{}$ |                                                  | Ť                                                |                                                  |    |   |       | $\vdash$ | T   |     |          |          |   |   |       |   |               |
| ZZZZZZ              |             |                  | 18:14 | -             | <del>                                     </del> |                                                  |                                                  |    |   |       |          |     |     |          |          |   |   |       |   | М             |
| ZZZZZZ              |             |                  | 18:18 |               |                                                  | -                                                |                                                  |    |   | -     |          |     | 17  |          |          |   |   |       |   |               |
| ZZZZZZ              |             |                  | 18:21 | +             | -                                                | †                                                |                                                  |    |   |       |          |     |     |          |          |   |   |       |   | Н             |
| CCV 480-472702/47   | 1           |                  | 18:25 | х             | X                                                |                                                  |                                                  | -  |   |       |          |     |     | -        |          |   |   |       |   | Н             |
| CCB 480-472702/48   | 1           |                  | 18:29 | X             | Х                                                | <del>                                     </del> | <del>                                     </del> |    |   |       |          |     |     |          |          | - | - |       |   | $\vdash$      |
| CCVL 480-472702/49  | 1           |                  | 18:32 | X             | X                                                |                                                  |                                                  |    |   |       |          |     |     |          | <u> </u> | - |   |       |   | М             |
| ZZZZZZ              |             |                  | 18:36 | 1             |                                                  |                                                  |                                                  | 25 | - | <br>- |          |     |     |          | -        |   |   |       |   | $\Box$        |
| ZZZZZZ              |             |                  | 18:40 |               |                                                  |                                                  |                                                  |    |   |       | <b> </b> |     |     |          |          |   |   | <br>- |   | $\Box$        |
| ZZZZZZ              |             |                  | 18:44 |               |                                                  |                                                  |                                                  |    |   |       |          |     |     | _        |          |   |   |       |   | $\Box$        |
| ZZZZZZ              |             |                  | 18:47 |               |                                                  |                                                  |                                                  |    |   |       |          |     |     |          |          |   |   |       |   | $\Box$        |
| ZZZZZZ              |             |                  | 18:51 | †             |                                                  |                                                  |                                                  |    |   |       |          |     |     |          |          |   |   |       |   | $\overline{}$ |
| CCV 480-472702/55   |             |                  | 19:09 | 1             |                                                  |                                                  |                                                  |    |   |       |          |     |     |          |          |   |   |       |   | $\neg$        |
| CCB 480-472702/56   |             |                  | 19:13 | 1             |                                                  |                                                  |                                                  |    |   |       |          |     |     | $\vdash$ |          |   |   |       |   | $\exists$     |
| CCVL 480-472702/57  |             |                  | 19:17 | +             |                                                  | $\vdash$                                         | -                                                |    |   |       |          |     |     |          |          |   |   |       | _ | $\dashv$      |

Prep Types

T = Total/NA

## 2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152070-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00248 Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00248

|           | ICVL<br>05/1 |          | 0-472702/<br>019 12:1 |     | CCVL<br>05/1 |   | -472702/1<br>019 16:1 |     | CCVL<br>05/1 |   | -472702/2<br>019 17:03 |     |
|-----------|--------------|----------|-----------------------|-----|--------------|---|-----------------------|-----|--------------|---|------------------------|-----|
| Analyte   | Found        | С        | True                  | ₹R  | Found        | С | True                  | %R  | Found        | С | True                   | ₹Ř  |
| Iron      | 0.0538       | <u> </u> | 0.0500                | 108 | 0.0512       |   | 0.0500                | 102 | 0.0516       |   | 0.0500                 | 103 |
| Manganese | 0.00344      |          | 0.00300               | 115 | 6.00337      |   | 0.00300               | 112 | 0.00343      |   | 0.00300                | 114 |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

## 2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-152070-1

SDG No.:

ICV Source: MEI 10 CCVL 00248

Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00248

| 9         | 1       |   | -472702/3<br>019 17:4 |     | V       |   | -472702/4<br>019 18:3 | - 1 |       |   |      |          |
|-----------|---------|---|-----------------------|-----|---------|---|-----------------------|-----|-------|---|------|----------|
| Analyte   | Found   | С | True                  | ₹R  | Found   | С | True                  | ₽R  | Found | С | True | ₹R       |
| Iron      | 0.0531  |   | 0.0500                | 106 | 0.0521  |   | 0.0500                | 104 |       |   |      | <u> </u> |
| Manganese | 0.00344 |   | 0.00300               | 115 | 0.00344 |   | 0.00300               | 115 |       |   |      |          |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

10 Hazelwood Drive Amberst, NY 14228-2288 Phone (716) 661-2600 Fax (716) 691-7991

| Client Information                          | Sampler                    | したなっつ  | ,                          | Lab PM                                          | 6                                  | 07.             |                                            |              |            | 0          | Camer Tracking No(s) | ung No(s)           |           | COC No<br>480-120178-20164-1                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|----------------------------|--------|----------------------------|-------------------------------------------------|------------------------------------|-----------------|--------------------------------------------|--------------|------------|------------|----------------------|---------------------|-----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                            |        |                            | T                                               |                                    |                 |                                            |              |            | Т          |                      |                     |           | Page                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| istuk                                       | 7/5                        | 320    | 5636                       |                                                 | orlette johnson@lestamericainc.com | @tes            | americ                                     | ainc.co      | E          | -          |                      |                     |           | Page 1 of                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Company AECOM                               |                            |        |                            |                                                 |                                    |                 |                                            | Anal         | sis        | Regn       | Analysis Requested   |                     |           | # qof                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address 257 West Genesee Street Suite 400   | Due Date Requested:        | ij     |                            |                                                 | ess                                | L               |                                            | }-           |            | -          | P3/                  | F                   | F         | Preservation Codes                                                                   | 95:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cry<br>Buffalo                              | TAT Requested (days):      | -      |                            |                                                 | in e                               |                 |                                            | _            |            | -          | 라1'                  | -                   | =         | ₹<br>•                                                                               | M - Herane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sate 2p<br>NY, 14202 2657                   | <i>y</i>                   | Strate | ξ                          |                                                 | SUSTE                              |                 |                                            |              |            | 1-7-       | ردع خ                |                     |           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone                                       | Po #<br>CallOut ID: 136077 | 1      |                            |                                                 | To                                 | -               | _                                          | - 4          |            |            |                      |                     |           |                                                                                      | 9 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Email<br>george.kisluk@aecom.com            | WO #-                      |        |                            |                                                 | (oN                                | 2.40            |                                            | 908          |            |            | LIN                  | 480-152241          |           | Chain of Custody                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Name<br>Lapp insulator Site# 819017 | Project #<br>48018841      |        |                            |                                                 | jo de                              | I OF M          |                                            | rolO->       |            |            | 94.59                |                     | s:=0:00   | L-EDA                                                                                | Z - other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| She Leap DAS is ter - Ce Roy, NY            | SSOW                       |        |                            |                                                 | r) asi                             |                 |                                            | .t - GI      |            |            | NOSBIC               |                     |           | of coi                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Samole Identification                       | Samole Date                | Sample | Sample<br>Type<br>(C=comp, | Matrix<br>(www.star.<br>Barotte.<br>Owentshoot, | beretiii blei:<br>M&M mohe         | 100.0_28D - Sul | GOD - NOH                                  | 1276D_SIM_MS | GO8 - 8015 | - AH8+_000 | 1 (GOM) - 2010       |                     |           | redmuM lato                                                                          | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |
|                                             | $\langle \rangle$          | X      | -1 75                      | 3                                               | X                                  | +=              | 8                                          | +=           | +=         | +=         | 90                   | F                   | +         |                                                                                      | au actions/note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 52-004                                      | 4/19/19                    | 0905   | 0                          | Water                                           |                                    | M               |                                            | 1_           | _          | T          | Ę                    | F                   | H         |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B2W-02                                      | 4112114                    | 1035   | J                          | Water                                           |                                    | 2               | =                                          | 1            | -          | -          |                      | H                   |           | 31                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58-005                                      | 4/19/19                    | 12951  | J                          | Water                                           |                                    | 3               |                                            | - 2          | 5          | E          | Ę                    |                     |           | Ξ                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TB-201907FA                                 | 4/14/19                    | )      | 0                          | Water                                           |                                    | =               |                                            |              |            |            |                      |                     |           | =                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                            |        |                            | Water                                           |                                    |                 |                                            |              |            |            |                      |                     |           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                            |        |                            | Water                                           |                                    |                 |                                            |              | _          |            |                      |                     |           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                            |        |                            | Water                                           |                                    |                 |                                            |              |            |            |                      |                     |           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                            |        |                            | Water                                           |                                    |                 |                                            |              |            |            |                      |                     |           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                            |        |                            | Water                                           |                                    |                 |                                            |              | _          |            |                      |                     |           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                            |        |                            | Water                                           |                                    |                 |                                            |              |            |            |                      |                     |           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                            |        |                            | Water                                           |                                    |                 |                                            |              |            |            |                      |                     |           |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| aut                                         | Poison B Unknown           |        | Radiological               |                                                 | San                                | nple D          | sposa                                      | I ( A fe     | e may      | S A        | Sessed<br>Sporal R   | if sample           | ane se    | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) | month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| sted I II III (V)Other (specify)            |                            | 1      |                            |                                                 | Sp                                 | cral            | Special Instructions/QC Requirements       | s/QC         | Requi      | emen       | s                    |                     |           |                                                                                      | Sulfragi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Empty Kit Relinquished by                   |                            | Date.  |                            |                                                 | Time                               | ١.              | 1                                          |              | L          | 1          | Mem                  | Method of Shipment. | nent.     | Mar of                                                                               | وا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reinquisher by                              | Date/Time                  | 7 / 3  | 5                          | ACTOM                                           | ź                                  |                 | A A                                        |              |            |            |                      | <u></u>             | 1-        | C> 18 CO                                                                             | Complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Relinquished by                             | Date/Time                  |        |                            | Company                                         |                                    | Receive         | 1                                          | P            |            |            |                      | 10                  | Data/Time |                                                                                      | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             | Date/Time                  |        |                            | Company                                         |                                    | Received by     | d by                                       |              |            |            |                      |                     | Date/Time |                                                                                      | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Custody Seals Intact. Custody Seal No:      |                            |        |                            |                                                 |                                    | Cooler          | Cooler Temperature(s) "C and Other Remarks | (s)e.m       | C and C    | ther Re    | marks                | 7                   | $\alpha$  | #17CE                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                            |        |                            |                                                 |                                    |                 |                                            |              |            | 1          |                      |                     |           |                                                                                      | Ver 01/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Environment Testing TestAmerica N. None
O-Ashlaco
P-NazOcs
Q-NazScos
R-NazScos
S-1250
T-175 Dodecahydr
U-Acatona
V-pH 4-5
Z-other (specify) Company Note: Since isboratory accreditations are subject to change, TestAmerica Laboratories, inc. places the ownership of method analyze & accreditation compliance upon out subcentract laboratories. This samples to accreditation is the TestAmerica laboratory or other hatructors will be provided. Any changes to accreditation status should be brought to TestAmerica laboratory or other hatructors will be provided. Any changes to accreditation status should be brought to TestAmerica laboratories, inc. attention immediately. If all inquested accreditations are current to date, return the signed Chain of Custody attesting to seld complicance to TestAmerica Laboratories, inc. Special Instructions/Note: Ver: 01/16/2019 Months Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Leb Archive For Mor eurofins | 480-152241-1 Preservation Code 04:30 A- HCL
B- NaOH
C- Zn Acette
D- Nitric Acid
E- na NaSO4
F- MacOH
G- Amchlor
F- Amchlor
F- Les
J- DI Water
J- LES
L- EDA IC No: . age 1 of 1 Job #: Data/Time: OH/24/16 Data/Time: Total Number of containers 'n 9 480-152241 Date/Time: **Wethod of Shipment** 7.7 **Analysis Requested** Cooler Temperature(s) C and Other Remarks: Lab PN:
Johnson, Orlette S
E-Mail:
orlette johnson@testamericainc.com Received by: A Accreditations Required (See note): NELAP - New York eceived by: Chain of Custody Record × × × × 8560C/5030C TCL Int OLMO4.2 Preservation Code: Company Matrix (versets, presite, Water Water Water Water Company Type (C=comp G=grab) Sample 1630 Primary Deliverable Rank: 1 09:05 Eastern 10:35 Eastern 12:00 Sample Eastern Eastern Due Date Requested: 5/13/2019 TAT Requested (days): 4-93-15 Destartine: Sample Date 4/19/18 4/19/18 4/19/19 4/19/19 Project #: 48018841 SSOW#: Sata/Time: \* Q # 0 Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Custody Seals Intact: Custody Seal No.: Sample identification - Client ID (Lab ID) Amherst, NY 14228-2298 Phone (718) 691-2600 Fax (718) 691-7991 615-726-0177(Tel) 615-726-3404(Fax) Possible Hazard Identification estAmerica Laboratories, Inc. TB-20180419 (480-152241-4) 2960 Foster Creighton Drive, Project Name: Lapp Insulator Site# 819017 Empty Kit Relinquished by BRW-02 (480-152241-2) SR-005 (480-152241-3) SR-004 (480-152241-1) 10 Hazelwood Drive Radhard Shed By Shipping/Receiving telinquished by: Unconfirmed Relinquished by: State, Zip: TN, 37204 Vashville

Page 1343 of 1344

05/23/2019

Eurofins TestAmerica, Buffalo

#### Job Narrative 480-152241-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 4/19/2019 1:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

#### GC/MS VOA

Method(s) 8260C: The following sample was diluted due to the nature of the sample matrix: SR-005 (480-152241-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample was diluted due to the nature of the sample matrix: BRW-02 (480-152241-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC/MS Semi VOA

Method(s) 8270D SIM ID: The following samples were diluted to bring the concentration of target analytes within the calibration range: BRW-02 (480-152241-2) and SR-005 (480-152241-3). Elevated reporting limits (RLs) are provided.

Method(s) 8270D SIM ID: The 1,4-Dioxane result reported for samples BRW-02 (480-152241-2) and SR-005 (480-152241-3) have an E flag qualifier indicating the results are over the calibration range on the raw data. The actual amounts are within the calibration range; however, the E flag is generated based upon the bias corrected concentration. The LIMS system calculates a bias correction based on the recovery of the 1,4-Dioxane-d8 isotope.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### HPLC/IC

Method(s) 300.0: The following samples were analyzed outside of analytical holding time due to the samples being unavailable for testing after receipt: SR-004 (480-152241-1), BRW-02 (480-152241-2) and SR-005 (480-152241-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **General Chemistry**

Method(s) SM 5210B: The RPD between the lowest and highest values used in averaging the final result exceeds 30%. SR-005 (480-152241-3)

Method(s) SM 5210B: The following sample was analyzed outside of analytical holding time due to laboratory error: SR-004 (480-152241-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Organic Pres

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **VOA Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

## FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152241-1

SDG No.:

Lab File ID: 0426-01.D BFB Injection Date: 04/26/2019

Instrument ID: HP48 BFB Injection Time: 15:07

Analysis Batch No.: 590877

| M/E | ION ABUNDANCE CRITERIA             |       | ATIVE<br>DANCE |
|-----|------------------------------------|-------|----------------|
| 50  | 15.0 - 40.0 % of mass 95           | 16.0  |                |
| 75  | 30.0 - 60.0 % of mass 95           | 44.7  |                |
| 95  | Base Peak, 100% relative abundance | 100.0 |                |
| 96  | 5.0 - 9.0 % of mass 95             | 6.8   |                |
| 173 | Less than 2.0 % of mass 174        | 0.0   | (0.0) 1        |
| 174 | 50.0 - 120.00 % of mass 95         | 97.3  |                |
| 175 | 5.0 - 9.0 % of mass 174            | 7.5   | (7.7) 1        |
| 176 | 95.0 - 101.0 % of mass 174         | 95.2  | (97.8) 1       |
| 177 | 5.0 - 9.0 % of mass 176            | 6.2   | (6.5) 2        |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | CCVIS 490-590877/2 | 0426-02.D      | 04/26/2019       | 15:34            |
|                  | LCS 490-590877/3   | 0426-03.D      | 04/26/2019       | 16:02            |
|                  | LCSD 490-590877/4  | 0426-04.D      | 04/26/2019       | 16:29            |
| ***              | MB 490-590877/7    | 0426-07.D      | 04/26/2019       | 17:50            |
| SR-004           | 480-152241-1       | 0426-12.D      | 04/26/2019       | 20:05            |
| BRW-02           | 480-152241-2       | 0426-13.D      | 04/26/2019       | 20:32            |
| TB-20190419      | 480-152241-4       | 0426-17.D      | 04/26/2019       | 22:20            |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152241-1

SDG No.:

Lab Sample ID: CCVIS 490-590877/2 Calibration Date: 04/26/2019 15:34

Instrument ID: HP48 Calib Start Date: 03/11/2019 20:05

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/12/2019 00:11

Lab File ID: 0426-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|----------------------------------------|-------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Propene                                | Ave   | 0.3596  | 0.2680  | 0.1000  | 14.9           | 20.0            | -25.5* | 20.0      |
| Dichlorodifluoromethane                | Ave   | 0.3524  | 0.3226  | 0.1000  | 18.3           | 20.0            | -8.5   | 20.0      |
| Chloromethane                          | Ave   | 0.3850  | 0.3380  | 0.1000  | 17.6           | 20.0            | -12.2  | 20.0      |
| Vinyl chloride                         | Ave   | 0.3657  | 0.3251  | 0.1000  | 17.8           | 20.0            | -11.1  | 20.0      |
| Butadiene                              | Ave   | 0.3589  | 0.3059  | 0.1000  | 17.0           | 20.0            | -14.8  | 20.0      |
| Bromomethane                           | Ave   | 0.1734  | 0.1696  | 0.1000  | 19.6           | 20.0            | -2.2   | 20.0      |
| Chloroethane                           | Ave   | 0.2181  | 0.1881  | 0.1000  | 17.2           | 20.0            | -13.8  | 20.0      |
| Dichlorofluoromethane                  | Ave   | 0.4708  | 0.4144  | 0.1000  | 17.6           | 20.0            | -12.0  | 20.0      |
| Trichlorofluoromethane                 | Ave   | 0.3881  | 0.3956  | 0.1000  | 20.4           | 20.0            | 1.9    | 20.0      |
| Ethanol                                | Linl  |         | 0.0002* | 0.0010  | 849            | 800             | 6.1    | 20.0      |
| Ethyl ether                            | Ave   | 0.1491  | 0.1312  | 0.1000  | 17.6           | 20.0            | -12.0  | 20.0      |
| Acrolein                               | Lin2  |         | 0.0162  | 0.0100  | 59.5           | 49.4            | 20.4*  | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave   | 0.2300  | 0.2485  | 0.1000  | 21.6           | 20.0            | 8.0    | 20.0      |
| 1,1-Dichloroethene                     | Ave   | 0.2335  | 0.2330  | 0.1000  | 20.0           | 20.0            | -0.2   | 20.0      |
| Acetone                                | Lin2  |         | 0.0080* | 0.0100  | 102            | 100             | 1.9    | 20.0      |
| Iodomethane                            | Ave   | 0.3672  | 0.3600  | 0.1000  | 19.6           | 20.0            | -2.0   | 20.0      |
| Isopropyl alcohol                      | Lin2  |         | 0.0034  | 0.0010  | 175            | 200             | -12.4  | 20.0      |
| Carbon disulfide                       | Ave   | 0.7485  | 0.6470  | 0.1000  | 17.3           | 20.0            | -13.6  | 20.0      |
| 3-Chloro-1-propene                     | Ave   | 0.2212  | 0.2064  | 0.1000  | 18.7           | 20.0            | -6.7   | 20.0      |
| Acetonitrile                           | Ave   | 0.0563  | 0.0476  | 0.0010  | 169            | 200             | -15.6  | 20.0      |
| Methyl acetate                         | Ave   | 0.0790  | 0.0709* | 0.1000  | 35.9           | 40.0            | -10.2  | 20.0      |
| Methylene Chloride                     | Lin2  |         | 0.2293  | 0.0100  | 19.1           | 20.0            | -4.5   | 20.0      |
| 2-Methyl-2-propanol                    | Ave   | 0.9780  | 0.8873  | 0.0010  | 181            | 200             | -9.3   | 20.0      |
| Methyl tert-butyl ether                | Ave   | 0.4588  | 0.4199  | 0.1000  | 18.3           | 20.0            | -8.5   | 20.0      |
| trans-1,2-Dichloroethene               | Ave   | 0.3538  | 0.3264  | 0.1000  | 18.4           | 20.0            | -7.8   | 20.0      |
| Acrylonitrile                          | Lin1  |         | 0.0359  | 0.0100  | 191            | 200             | -4.7   | 20.0      |
| n-Hexane                               | Lin2  |         | 0.3480  | 0.1000  | 20.3           | 20.0            | 1.6    | 20.0      |
| Isopropyl ether                        | Lin2  |         | 0.6468  | 0.1000  | 16.8           | 20.0            | -16.2  | 20.0      |
| 1,1-Dichloroethane                     | Ave   | 0.4962  | 0.4157  | 0.2000  | 16.8           | 20.0            | -16.2  | 20.0      |
| Vinyl acetate                          | Ave   | 0.0244  | 0.0291* | 0.1000  | 47.6           | 40.0            | 19.0   | 20.0      |
| 2-Chloro-1,3-butadiene                 | Ave   | 0.3737  | 0.3693  | 0.1000  | 19.8           | 20.0            | -1.2   | 20.0      |
| Tert-butyl ethyl ether                 | Ave   | 0.6285  | 0.5548  | 0.1000  | 17.7           | 20.0            | -11.7  | 20.0      |
| 2,2-Dichloropropane                    | Ave   | 0.3926  | 0.3683  | 0.1000  | 18.8           | 20.0            | -6.2   | 20.0      |
| cis-1,2-Dichloroethene                 | Ave   | 0.3063  | 0.2695  | 0.1000  | 17.6           | 20.0            | -12.0  | 20.0      |
| 2-Butanone (MEK)                       | Ave   | 0.0109  | 0.0108  | 0.0100  | 98.4           | 100             | -1.6   | 20.0      |
| Ethyl acetate                          | Lin2  |         | 0.0121  | 0.0100  | 38.8           | 40.0            | -3.1   | 20.0      |
| Propionitrile                          | Ave   | 0.0135  | 0.0126  | 0.0100  | 186            | 200             | -7.1   | 20.0      |
| Methacrylonitrile                      | Lin2  |         | 0.0731* | 0.1000  | 208            | 200             | 3.8    | 20.0      |
| Chlorobromomethane                     | Ave   | 0.1633  | 0.1534  | 0.1000  | 18.8           | 20.0            | -6.0   | 20.0      |
| Chloroform                             | Ave   | 0.4602  | 0.4040  | 0.2000  | 17.6           | 20.0            | -12.2  | 20.0      |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152241-1

SDG No.:

Lab Sample ID: CCVIS 490-590877/2 Calibration Date: 04/26/2019 15:34

Instrument ID: HP48 Calib Start Date: 03/11/2019 20:05

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/12/2019 00:11

Lab File ID: 0426-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|-----------------------------|---------------|---------|---------|---------|----------------|-----------------|-------|-----------|
| Tetrahydrofuran             | Ave           | 0.0292  | 0.0316* | 0.0500  | 43.3           | 40.0            | 8.2   | 20.0      |
| 1,1,1-Trichloroethane       | Lin2          | -       | 0.3755  | 0.1000  | 19.2           | 20.0            | -4.2  | 20.0      |
| Cyclohexane                 | Ave           | 0.4851  | 0.4319  | 0.1000  | 17.8           | 20.0            | -11.0 | 20.0      |
| 1,1-Dichloropropene         | Lin2          |         | 0.3528  | 0.1000  | 19.8           | 20.0            | -1.2  | 20.0      |
| Carbon tetrachloride        | Ave           | 0.3487  | 0.3329  | 0.1000  | 19.1           | 20.0            | -4.5  | 20.0      |
| Isobutyl alcohol            | Linl          |         | 0.0024  | 0.0010  | 511            | 500             | 2.2   | 20.0      |
| t-Amyl alcohol              | Lin1          |         | 0.0042  | 0.0010  | 192            | 200             | -3.8  | 20.0      |
| Benzene                     | Ave           | 1.117   | 1.001   | 0.5000  | 17.9           | 20.0            | -10.4 | 20.0      |
| 1,2-Dichloroethane          | Lin1          |         | 0.2420  | 0.1000  | 19.4           | 20.0            | -2.8  | 20.0      |
| Tert-amyl methyl ether      | Ave           | 0.5522  | 0.4873  | 0.1000  | 17.7           | 20.0            | -11.7 | 20.0      |
| n-Heptane                   | Lin1          |         | 0.3028  | 0.1000  | 20.6           | 20.0            | 3.2   | 20.0      |
| n-Butanol                   | Ave           | 0.0016  | 0.0014  | 0.0010  | 450            | 500             | -10.1 | 20.0      |
| Trichloroethene             | Ave           | 0.3301  | 0.3116  | 0.2000  | 18.9           | 20.0            | -5.6  | 20.0      |
| Ethyl acrylate              | Ave           | 0.1578  | 0.1509  | 0.1000  | 19.1           | 20.0            | -4.4  | 20.0      |
| Methylcyclohexane           | Ave           | 0.5243  | 0.4520  | 0.1000  | 17.2           | 20.0            | -13.8 | 20.0      |
| 1,2-Dichloropropane         | Ave           | 0.2678  | 0.2354  | 0.1000  | 17.6           | 20.0            | -12.1 | 20.0      |
| Methyl methacrylate         | Lin2          |         | 0.1220  | 0.1000  | 41.5           | 40.0            | 3.8   | 20.0      |
| 1,4-Dioxane                 | Ave           | 0.7752  | 0.6872  | 0.0010  | 355            | 400             | -11.4 | 20.0      |
| Dibromomethane              | Ave           | 0.1100  | 0.1042  | 0.0500  | 18.9           | 20.0            | -5.3  | 20.0      |
| Bromodichloromethane        | Ave           | 0.3251  | 0.2874  | 0.2000  | 17.7           | 20.0            | -11.6 | 20.0      |
| 2-Nitropropane              | Lin1          |         | 0.0541  | 0.0100  | 39.1           | 40.0            | -2.3  | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.1020  | 0.0950* | 0.1000  | 18.6           | 20.0            | -6.9  | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 0.5458  | 0.4761  | 0.2000  | 17.4           | 20.0            | -12.8 | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.0548  | 0.0518  | 0.0500  | 94.4           | 100             | -5.6  | 20.0      |
| Toluene                     | Ave           | 1.644   | 1.415   | 0.4000  | 17.2           | 20.0            | -13.9 | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.4237  | 0.3573  | 0.0100  | 16.9           | 20.0            | -15.7 | 20.0      |
| Ethyl methacrylate          | Ave           | 0.2665  | 0.2461  | 0.1000  | 18.5           | 20.0            | -7.7  | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.2254  | 0.2000  | 0.1000  | 17.7           | 20.0            | -11.3 | 20.0      |
| Tetrachloroethene           | Ave           | 0.4997  | 0.4359  | 0.2000  | 17.4           | 20.0            | -12.8 | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.3989  | 0.3580  | 0.1000  | 17.9           | 20.0            | -10.3 | 20.0      |
| 2-Hexanone                  | Ave           | 0.0480  | 0.0458* | 0.0500  | 95.4           | 100             | -4.6  | 20.0      |
| n-Butyl acetate             | Lin1          |         | 0.1975  | 0.1000  | 19.5           | 20.0            | -2.4  | 20.0      |
| Dibromochloromethane        | Ave           | 0.2126  | 0.1981  | 0.1000  | 18.6           | 20.0            | -6.8  | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.2210  | 0.2060  | 0.1000  | 18.6           | 20.0            | -6.8  | 20.0      |
| 1-Chlorohexane              | Ave           | 0.4688  | 0.3931  | 0.1000  | 16.8           | 20.0            | -16.2 | 20.0      |
| Chlorobenzene               | Ave           | 1.080   | 0.9338  | 0.5000  | 17.3           | 20.0            | -13.6 | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.3586  | 0.3059  | 0.1000  | 17.1           | 20.0            | -14.7 | 20.0      |
| Ethylbenzene                | Lin2          |         | 1,533   | 0.1000  | 17.6           | 20.0            | -12.1 | 20.0      |
| m-Xylene & p-Xylene         | Lin2          |         | 1.220   | 0.1000  | 17.6           | 20.0            | -12.2 | 20.0      |
| o-Xylene                    | Ave           | 1.478   | 1.263   | 0.3000  | 17.1           | 20.0            | -14.5 | 20.0      |
| Styrene                     | Ave           | 1.188   | 1.031   | 0.3000  | 17.4           | 20.0            | -13.2 | 20.0      |

### FORM V

# GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152241-1

SDG No.:

Lab File ID: 0425-01.D BFB Injection Date: 04/25/2019

Instrument ID: HP48 BFB Injection Time: 13:27

Analysis Batch No.: 590503

| M/E | ION ABUNDANCE CRITERIA             | % RELATIVE<br>ABUNDANCE |   |
|-----|------------------------------------|-------------------------|---|
| 50  | 15.0 - 40.0 % of mass 95           | 15.2                    |   |
| 75  | 30.0 - 60.0 % of mass 95           | 43.6                    |   |
| 95  | Base Peak, 100% relative abundance | 100.0                   |   |
| 96  | 5.0 - 9.0 % of mass 95             | 7.2                     |   |
| 173 | Less than 2.0 % of mass 174        | 0.0 (0.0)               | 1 |
| 174 | 50.0 - 120.00 % of mass 95         | 97.3                    |   |
| 175 | 5.0 - 9.0 % of mass 174            | 7.2 (7.4)               | 1 |
| 176 | 95.0 - 101.0 % of mass 174         | 94.8 (97.4)             | 1 |
| 177 | 5.0 - 9.0 % of mass 176            | 6.2 (6.5)               | 2 |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID             | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------------------|--------------------|----------------|------------------|------------------|
|                              | CCVIS 490-590503/2 | 0425-02.D      | 04/25/2019       | 13:54            |
| 2 10                         | LCS 490-590503/3   | 0425-03.D      | 04/25/2019       | 14:21            |
|                              | LCSD 490-590503/4  | 0425-04.D      | 04/25/2019       | 14:48            |
| AC. CONSTRUCTION CONTRACT AS | MB 490-590503/7    | 0425-07.D      | 04/25/2019       | 16:10            |
| SR-005                       | 480-152241-3       | 0425-25.D      | 04/26/2019       | 00:18            |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152241-1

SDG No.:

Lab Sample ID: CCVIS 490-590503/2 Calibration Date: 04/25/2019 13:54

Instrument ID: HP48 Calib Start Date: 03/11/2019 20:05

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/12/2019 00:11

Lab File ID: 0425-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | 용D     | MAX<br>%D |
|----------------------------------------|---------------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Propene                                | Āve           | 0.3596  | 0.2394  | 0.1000  | 13.3           | 20.0            | -33.4* | 20.0      |
| Dichlorodifluoromethane                | Ave           | 0.3524  | 0.2925  | 0.1000  | 16.6           | 20.0            | -17.0  | 20.0      |
| Chloromethane                          | Ave           | 0.3850  | 0.3395  | 0.1000  | 17.6           | 20.0            | -11.8  | 20.0      |
| Vinyl chloride                         | Ave           | 0.3657  | 0.3183  | 0.1000  | 17.4           | 20.0            | -13.0  | 20.0      |
| Butadiene                              | Ave           | 0.3589  | 0.2930  | 0.1000  | 16.3           | 20.0            | -18.4  | 20.0      |
| Bromomethane                           | Ave           | 0.1734  | 0.1635  | 0.1000  | 18.9           | 20.0            | -5.7   | 20.0      |
| Chloroethane                           | Ave           | 0.2181  | 0.1877  | 0.1000  | 17.2           | 20.0            | -13.9  | 20.0      |
| Dichlorofluoromethane                  | Ave           | 0.4708  | 0.4215  | 0.1000  | 17.9           | 20.0            | -10.5  | 20.0      |
| Trichlorofluoromethane                 | Ave           | 0.3881  | 0.3823  | 0.1000  | 19.7           | 20.0            | -1.5   | 20.0      |
| Ethanol                                | Lin1          |         | 0.0003* | 0.0010  | 1010           | 800             | 26.3*  | 20.0      |
| Ethyl ether                            | Ave           | 0.1491  | 0.1317  | 0.1000  | 17.7           | 20.0            | -11.7  | 20.0      |
| Acrolein                               | Lin2          |         | 0.0145  | 0.0100  | 52.8           | 49.4            | 6.8    | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2300  | 0.2158  | 0.1000  | 18.8           | 20.0            | -6.2   | 20.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2335  | 0.2162  | 0.1000  | 18.5           | 20.0            | -7.4   | 20.0      |
| Acetone                                | Lin2          |         | 0.0079* | 0.0100  | 100            | 100             | 0.4    | 20.0      |
| Iodomethane                            | Ave           | 0.3672  | 0.3577  | 0.1000  | 19.5           | 20.0            | -2.6   | 20.0      |
| Isopropyl alcohol                      | Lin2          |         | 0.0044  | 0.0010  | 235            | 200             | 17.5   | 20.0      |
| Carbon disulfide                       | Ave           | 0.7485  | 0.6361  | 0.1000  | 17.0           | 20.0            | -15.0  | 20.0      |
| 3-Chloro-1-propene                     | Ave           | 0.2212  | 0.1973  | 0.1000  | 17.8           | 20.0            | -10.8  | 20.0      |
| Acetonitrile                           | Ave           | 0.0563  | 0.0498  | 0.0010  | 177            | 200             | -11.6  | 20.0      |
| Methyl acetate                         | Ave           | 0.0790  | 0.0698* | 0.1000  | 35.4           | 40.0            | -11.6  | 20.0      |
| Methylene Chloride                     | Lin2          |         | 0.2161  | 0.0100  | 17.9           | 20.0            | -10.3  | 20.0      |
| 2-Methyl-2-propanol                    | Ave           | 0.9780  | 1.029   | 0.0010  | 210            | 200             | 5.2    | 20.0      |
| Methyl tert-butyl ether                | Ave           | 0.4588  | 0.4023  | 0.1000  | 17.5           | 20.0            | -12.3  | 20.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.3538  | 0.3248  | 0.1000  | 18.4           | 20.0            | -8.2   | 20.0      |
| Acrylonitrile                          | Lin1          |         | 0.0348  | 0.0100  | 185            | 200             | -7.6   | 20.0      |
| n-Hexane                               | Lin2          |         | 0.3031  | 0.1000  | 17.7           | 20.0            | -11.7  | 20.0      |
| Isopropyl ether                        | Lin2          |         | 0.6414  | 0.1000  | 16.6           | 20.0            | -16.9  | 20.0      |
| 1,1-Dichloroethane                     | Ave           | 0.4962  | 0.3969  | 0.2000  | 16.0           | 20.0            | -20.0  | 20.0      |
| Vinyl acetate                          | Ave           | 0.0244  | 0.0264* | 0.1000  | 43.1           | 40.0            | 7.8    | 20.0      |
| 2-Chloro-1,3-butadiene                 | Ave           | 0.3737  | 0.3513  | 0.1000  | 18.8           | 20.0            | -6.0   | 20.0      |
| Tert-butyl ethyl ether                 | Ave           | 0.6285  | 0.5492  | 0.1000  | 17.5           | 20.0            | -12.6  | 20.0      |
| 2,2-Dichloropropane                    | Ave           | 0.3926  | 0.3586  | 0.1000  | 18.3           | 20.0            | -8.7   | 20.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3063  | 0.2763  | 0.1000  | 18.0           | 20.0            | -9.8   | 20.0      |
| 2-Butanone (MEK)                       | Ave           | 0.0109  | 0.0109  | 0.0100  | 99.7           | 100             | -0.3   | 20.0      |
| Ethyl acetate                          | Lin2          |         | 0.0116  | 0.0100  | 37.0           | 40.0            | -7.6   | 20.0      |
| Propionitrile                          | Ave           | 0.0135  | 0.0130  | 0.0100  | 192            | 200             | -3.8   | 20.0      |
| Methacrylonitrile                      | Lin2          |         | 0.0713* | 0.1000  | 202            | 200             | 1.1    | 20.0      |
| Chlorobromomethane                     | Ave           | 0.1633  | 0.1469  | 0.1000  | 18.0           | 20.0            | -10.0  | 20.0      |
| Tetrahydrofuran                        | Ave           | 0.0292  | 0.0274* | 0.0500  | 37.5           | 40.0            | -6.2   | 20.0      |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152241-1

SDG No.:

Lab Sample ID: CCVIS 490-590503/2 Calibration Date: 04/25/2019 13:54

Instrument ID: HP48 Calib Start Date: 03/11/2019 20:05

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/12/2019 00:11

Lab File ID: 0425-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|-----------------------------|---------------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Chloroform                  | Ave           | 0.4602  | 0.3944  | 0.2000  | 17.1           | 20.0            | -14.3  | 20.0      |
| 1,1,1-Trichloroethane       | Lin2          | -       | 0.3607  | 0.1000  | 18.4           | 20.0            | -8.0   | 20.0      |
| Cyclohexane                 | Ave           | 0.4851  | 0.4128  | 0.1000  | 17.0           | 20.0            | -14.9  | 20.0      |
| 1,1-Dichloropropene         | Lin2          |         | 0.3398  | 0.1000  | 19.0           | 20.0            | -4.9   | 20.0      |
| Carbon tetrachloride        | Ave           | 0.3487  | 0.3100  | 0.1000  | 17.8           | 20.0            | -11.1  | 20.0      |
| Isobutyl alcohol            | Lin1          |         | 0.0025  | 0.0010  | 534            | 500             | 6.8    | 20.0      |
| t-Amyl alcohol              | Linl          |         | 0.0049  | 0.0010  | 222            | 200             | 11.2   | 20.0      |
| Benzene                     | Ave           | 1.117   | 0.9592  | 0.5000  | 17.2           | 20.0            | -14.1  | 20.0      |
| 1,2-Dichloroethane          | Linl          |         | 0.2306  | 0.1000  | 18.5           | 20.0            | -7.5   | 20.0      |
| Tert-amyl methyl ether      | Ave           | 0.5522  | 0.4697  | 0.1000  | 17.0           | 20.0            | -14.9  | 20.0      |
| n-Heptane                   | Lin1          |         | 0.2448  | 0.1000  | 16.6           | 20.0            | -16.9  | 20.0      |
| n-Butanol                   | Ave           | 0.0016  | 0.0016  | 0.0010  | 496            | 500             | -0.8   | 20.0      |
| Trichloroethene             | Ave           | 0.3301  | 0.2933  | 0.2000  | 17.8           | 20.0            | -11.2  | 20.0      |
| Ethyl acrylate              | Ave           | 0.1578  | 0.1473  | 0.1000  | 18.7           | 20.0            | -6.7   | 20.0      |
| Methylcyclohexane           | Ave           | 0.5243  | 0.4271  | 0.1000  | 16.3           | 20.0            | -18.5  | 20.0      |
| 1,2-Dichloropropane         | Ave           | 0.2678  | 0.2288  | 0.1000  | 17.1           | 20.0            | -14.6  | 20.0      |
| Methyl methacrylate         | Lin2          |         | 0.1091  | 0.1000  | 36.9           | 40.0            | -7.7   | 20.0      |
| Dibromomethane              | Ave           | 0.1100  | 0.0983  | 0.0500  | 17.9           | 20.0            | -10.6  | 20.0      |
| 1,4-Dioxane                 | Ave           | 0.7752  | 1.046   | 0.0010  | 540            | 400             | 34.9*  | 20.0      |
| Bromodichloromethane        | Ave           | 0.3251  | 0.2632  | 0.2000  | 16.2           | 20.0            | -19.1  | 20.0      |
| 2-Nitropropane              | Lin1          |         | 0.0460  | 0.0100  | 33.2           | 40.0            | -17.0  | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.1020  | 0.0875* | 0.1000  | 17.2           | 20.0            | -14.1  | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 0.5458  | 0.4658  | 0.2000  | 17.1           | 20.0            | -14.7  | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.0548  | 0.0507  | 0.0500  | 92.5           | 100             | -7.5   | 20.0      |
| Toluene                     | Ave           | 1.644   | 1.405   | 0.4000  | 17.1           | 20.0            | -14.6  | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.4237  | 0.3479  | 0.0100  | 16.4           | 20.0            | -17.9  | 20.0      |
| Ethyl methacrylate          | Ave           | 0.2665  | 0.2364  | 0.1000  | 17.7           | 20.0            | -11.3  | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.2254  | 0.1966  | 0.1000  | 17.4           | 20.0            | -12.8  | 20.0      |
| Tetrachloroethene           | Ave           | 0.4997  | 0.4164  | 0.2000  | 16.7           | 20.0            | -16.7  | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.3989  | 0.3452  | 0.1000  | 17.3           | 20.0            | -13.5  | 20.0      |
| 2-Hexanone                  | Ave           | (0.0480 | 0.0450* | 0.0500  | 93.8           | 100             | -6.2   | 20.0      |
| n-Butyl acetate             | Lin1          |         | 0.1968  | 0.1000  | 19.5           | 20.0            | -2.7   | 20.0      |
| Dibromochloromethane        | Ave           | 0.2126  | 0.1780  | 0.1000  | 16.7           | 20.0            | -16.3  | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.2210  | 0.1944  | 0.1000  | 17.6           | 20.0            | -12.0  | 20.0      |
| 1-Chlorohexane              | Ave           | 0.4688  | 0.3724  | 0.1000  | 15.9           | 20.0            | -20.6* | 20.0      |
| Chlorobenzene               | Ave           | 1.080   | 0.9158  | 0.5000  | 17.0           | 20.0            | -15.2  | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.3586  | 0.2941  | 0.1000  | 16.4           | 20.0            | -18.0  | 20.0      |
| Ethylbenzene                | Lin2          |         | 1.508   | 0.1000  | 17.3           | 20.0            | -13.5  | 20.0      |
| m-Xylene & p-Xylene         | Lin2          |         | 1.235   | 0.1000  | 17.8           | 20.0            | -11.1  | 20.0      |
| o-Xylene                    | Ave           | 1.478   | 1.249   | 0.3000  | 16.9           | 20.0            | -15.5  | 20.0      |
| Styrene                     | Ave           | 1.188   | 1.022   | 0.3000  | 17.2           | 20.0            | -14.0  | 20.0      |

| Lab | Name: | Eurofins | TestAmerica, | Buffalo | Job No.: | 480-152241-1 |  |
|-----|-------|----------|--------------|---------|----------|--------------|--|
| SDG | No.:  |          |              |         |          |              |  |
|     |       |          |              |         |          |              |  |

Instrument ID: ICAP2 Method: 6010C

Start Date: 05/08/2019 10:14 End Date: 05/08/2019 15:14

| Start Date: 05/08  | 7 2 0 2 3    |        | -211  |          |   | ===             |   |          | te       |   |                                                  |              | /20                                              | 25.00 |    |          |   |          |         |               |                                                  |          |              |
|--------------------|--------------|--------|-------|----------|---|-----------------|---|----------|----------|---|--------------------------------------------------|--------------|--------------------------------------------------|-------|----|----------|---|----------|---------|---------------|--------------------------------------------------|----------|--------------|
|                    |              |        |       |          |   |                 |   |          |          |   |                                                  | A            | na:                                              | Lyt   | es |          |   |          |         |               |                                                  |          |              |
|                    |              |        |       | F        | М |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          |              |
|                    |              | _      |       | е        | n |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          |              |
| Lab<br>Sample      | D /          | T<br>Y |       |          |   |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               | 11                                               |          |              |
| ID                 | F            | p      |       |          |   |                 |   |          |          |   |                                                  |              |                                                  |       |    |          | 1 |          |         |               |                                                  |          |              |
|                    |              | е      | Time  |          |   |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          |              |
| ICIS 480-472000/1  | 1            |        | 10:14 | - X      | Х |                 |   |          | Ī        |   | T                                                | Ī            | Ī                                                |       |    |          | Γ |          |         | <u> </u>      |                                                  |          | T            |
| IC 480-472000/2    |              |        | 10:18 | Х        | Х |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          |              |
| IC 480-472000/3    |              |        | 10:22 | Х        | Х |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | T            |
| IC 480-472000/4    |              |        | 10:25 | Х        | Х |                 |   |          |          |   |                                                  |              | <u> </u>                                         |       |    |          |   |          |         |               | $\vdash$                                         |          | T            |
| ICV 480-472000/5   | 1            |        | 10:29 | Х        | Х |                 |   | <b>†</b> |          |   |                                                  |              | 1                                                |       |    | $\vdash$ |   | <u> </u> |         |               |                                                  |          | T            |
| ICB 480-472000/6   | 1            |        | 10:32 | X        | Х |                 |   | -        |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | T            |
| ICVL 480-472000/7  | 1            |        | 10:36 | х        | Х |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | $\vdash$     |
| ICSA 480-472000/8  | 1            |        | 10:40 | Х        | Х |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | $\Box$       |
| ICSAB 480-472000/9 | 1            |        | 10:43 | Х        | Х |                 |   | Ť.       | <u> </u> |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | $\vdash$     |
| ZZZZZZ             |              |        | 10:47 |          |   |                 |   |          |          |   |                                                  | <u> </u>     |                                                  |       |    | T        |   |          |         |               |                                                  |          | $\Box$       |
| ZZZZZZ             |              |        | 10:51 |          |   |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | ⇈            |
| ZZZZZZ             |              |        | 10:55 | 1        |   |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         | 65            |                                                  |          |              |
| ZZZZZZ             |              |        | 10:58 |          |   |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | $\vdash$     |
| ZZZZZZ             | -            |        | 11:02 |          |   | <u> </u>        |   | <b></b>  |          |   |                                                  |              |                                                  |       |    |          |   |          | -       |               |                                                  |          | T            |
| CCV 480-472000/15  |              |        | 11:06 |          |   |                 |   | -        |          |   |                                                  | <del> </del> | <del>                                     </del> |       |    |          |   |          |         |               |                                                  |          | 1            |
| CCB 480-472000/16  |              |        | 11:09 | <b>-</b> | - |                 |   |          |          |   |                                                  | 1            |                                                  |       |    | _        |   |          |         |               |                                                  | $\vdash$ | $^{\dagger}$ |
| CCV 480-472000/17  | 1            |        | 12:53 | x        | Х |                 | • | 1        |          | - |                                                  |              |                                                  |       |    |          |   |          | <b></b> |               |                                                  |          | T            |
| CCB 480-472000/18  | 1            |        | 12:57 | х        | x |                 |   |          |          |   |                                                  |              |                                                  |       |    | -        |   | -        | -       | $\overline{}$ |                                                  | $\vdash$ | Т            |
| CCVL 480-472000/19 | 1            | 100    | 13:01 | х        | Х |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          | -       |               |                                                  |          | $\vdash$     |
| MB 480-470105/1-A  | 1            | R      | 13:08 | х        | Х | $\vdash$        |   |          |          |   |                                                  | -            | 1                                                |       | 7  |          |   |          |         |               |                                                  | $\vdash$ | ⇈            |
| LCS 480-470105/2-A | 1            | R      | 13:12 | x        | Х | $\vdash$        |   |          | -        |   |                                                  |              |                                                  |       |    |          |   | -        |         |               | -                                                |          | H            |
| ZZZZZZ             |              |        | 13:15 | +        |   |                 |   |          |          |   |                                                  | -            | -                                                |       |    |          |   |          |         |               |                                                  | <u> </u> | T            |
| ZZZZZZ             |              |        | 13:19 | +        | - |                 | - | -        |          |   |                                                  |              |                                                  |       | -  | -        | - |          |         |               | <del>                                     </del> |          | $\vdash$     |
| ZZZZZZ             |              |        | 13:23 |          |   |                 |   |          |          |   | -                                                |              |                                                  |       |    |          |   |          |         |               |                                                  |          | $\vdash$     |
| ZZZZZZ             |              |        | 13:26 | _        |   |                 |   |          |          |   |                                                  | .1.          |                                                  |       | -  | <u> </u> |   | -        |         |               |                                                  |          | $\vdash$     |
| ZZZZZZ             | <del> </del> | (6)    | 13:30 | +        |   |                 | _ |          |          |   |                                                  |              |                                                  |       |    |          | _ |          |         | -             |                                                  |          | $\vdash$     |
| ZZZZZZ             |              |        | 13:34 | _        |   |                 |   |          |          |   | <del>                                     </del> |              |                                                  |       | -  |          |   |          |         |               |                                                  |          | T            |
| CCV 480-472000/28  | 1            |        | 13:38 | x        | Х |                 | _ |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | $\vdash$     |
| CCB 480-472000/29  | 1            |        | 13:41 | x        | Х | Н               |   |          |          |   | _                                                |              | -                                                |       |    |          |   |          |         |               |                                                  |          | $\vdash$     |
| CCVL 480-472000/30 | 1-           |        | 13:45 | х        | X |                 |   | -        |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  |          | H            |
| ZZZZZZ             |              |        | 13:49 | +-       |   |                 |   |          |          |   |                                                  | -            | -                                                |       |    |          |   |          |         |               |                                                  |          | T            |
| ZZZZZZ             |              |        | 13:52 |          |   |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          | -       |               |                                                  |          | H            |
| ZZZZZZ             |              |        | 13:56 | -        |   |                 |   | -        |          |   | $\vdash$                                         |              |                                                  |       |    |          |   |          |         |               |                                                  |          | $\vdash$     |
| ZZZZZZ             | -            |        | 14:00 | - 1      |   |                 |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  | Н        | -            |
| ZZZZZZ             |              |        | 14:04 | +        | _ |                 |   |          |          |   |                                                  |              |                                                  | _     |    |          |   |          |         |               | -                                                |          | Н            |
| ZZZZZZ             | -            |        | 14:07 |          |   |                 |   | _        |          |   |                                                  |              |                                                  |       |    |          |   |          |         | -             |                                                  |          |              |
| 480-152241-1       | 1            | D      | 14:11 | Х        | Х | $\vdash$        |   |          | $\vdash$ |   |                                                  |              | -                                                |       | -  |          |   | -        |         |               |                                                  |          | -            |
| 480-152241-2       | 1            | D      | 14:15 | X        | Х | $\vdash \vdash$ |   |          |          |   |                                                  |              |                                                  |       | _  |          |   | -        |         |               |                                                  | Н        | $\vdash$     |
| 480-152241-3       | 1            | D      | 14:19 | х        | X | $\vdash$        |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  | $\vdash$ | $\vdash$     |
| CCV 480-472000/40  | 1            |        | 14:23 | Х        | Х | -               |   |          | $\vdash$ |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  | $\vdash$ | $\vdash$     |
| CCB 480-472000/41  | 1            |        | 14:26 | Х        | X | $\vdash$        |   |          |          |   |                                                  |              |                                                  |       |    |          |   |          |         |               |                                                  | $\vdash$ | -            |
| CCVL 480-472000/42 | 1            |        | 14:30 | X        | Х |                 |   | _        |          |   | -                                                | $\vdash$     |                                                  |       |    | _        |   |          |         |               |                                                  | ┌╌┤      | $\vdash$     |

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG No.:

Instrument ID: ICAP2 Method: 6010C

Start Date: 05/08/2019 10:14 End Date: 05/08/2019 15:14

|                                               |             |                  |       |        |                                                  |   |          |   |          |                                                  | A        | na]      | yt | es |          |          |              |                                                  |          |          |          |
|-----------------------------------------------|-------------|------------------|-------|--------|--------------------------------------------------|---|----------|---|----------|--------------------------------------------------|----------|----------|----|----|----------|----------|--------------|--------------------------------------------------|----------|----------|----------|
| Sample ID ZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZ | D<br>/<br>F | T<br>y<br>p<br>e | Time  | F<br>e | M                                                |   |          |   |          |                                                  |          |          |    |    |          |          |              |                                                  |          |          |          |
| ZZZZZZ                                        |             |                  | 14:34 | +      | _                                                |   |          |   |          |                                                  |          |          |    |    |          |          | Ī            |                                                  |          |          | <u> </u> |
| ZZZZZZ                                        | +           |                  | 14:37 |        | <del>                                     </del> |   |          |   |          |                                                  |          |          |    |    | -        |          |              |                                                  |          |          | $\vdash$ |
| ZZZZZZ                                        |             |                  | 14:41 |        | t                                                |   | $\vdash$ |   |          | -                                                |          |          |    | -  |          |          | <u> </u>     |                                                  |          | <u> </u> | +        |
| ZZZZZZ                                        |             |                  | 14:45 | $\top$ | <b>†</b>                                         |   | 1        |   |          |                                                  |          |          |    |    | -        |          |              | -                                                |          |          | Ť        |
| ZZZZZZ                                        |             |                  | 14:49 |        | $\vdash$                                         |   |          |   |          |                                                  | -        |          | _  | -  |          |          |              |                                                  |          |          | ╁        |
| 222222                                        |             |                  | 14:52 |        | $\vdash$                                         |   |          |   | -        | <del>                                     </del> | <u> </u> |          |    |    |          | <u> </u> |              |                                                  | <br>     |          | t        |
| ZZZZZZ                                        |             |                  | 14:56 | _      |                                                  |   | t        | - | -        | -                                                | _        |          |    |    |          |          | <del> </del> | <del>                                     </del> | <br>-    |          | $\vdash$ |
| ZZZZZZ                                        | -           |                  | 15:00 |        | <del>                                     </del> | - |          |   |          |                                                  | $\vdash$ |          |    |    | -        |          | -            |                                                  | <br>     |          | $\vdash$ |
| CCV 480-472000/51                             | 1           |                  | 15:07 |        | -                                                |   |          |   |          | <del>                                     </del> |          |          |    |    |          |          |              |                                                  |          |          | +        |
| CCB 480-472000/52                             | +           | -                | 15:11 |        |                                                  |   |          |   |          |                                                  |          | $\vdash$ |    |    | $\vdash$ |          |              |                                                  |          |          | -        |
| CCVL 480-472000/53                            | + -         |                  | 15:14 |        |                                                  |   |          |   | $\vdash$ | $\vdash$                                         |          | $\vdash$ |    |    | -        | -        | <del> </del> | -                                                | $\vdash$ |          | $\vdash$ |

### Prep Types

D = Dissolved

R = Total Recoverable

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG No.:

ICV Source: MEI\_10\_CCVL 00247 Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00247

|                         | ICVL<br>05/08 |      | 0-472000/<br>019 10:30 |       |         |      | 0-472000/1<br>019 13:0 |       | CCVL<br>05/0 |      | -472000/3<br>019 13:45 |     |
|-------------------------|---------------|------|------------------------|-------|---------|------|------------------------|-------|--------------|------|------------------------|-----|
| Analyte                 | Found         | True | %R                     | Found | С       | True | ₽R                     | Found | С            | True | %R                     |     |
| Iron,<br>Dissolved      | 0.0577        |      | 0.0500                 | 115   | 0.0545  |      | 0.0500                 | 109   | 0.0528       |      | 0.0500                 | 106 |
| Manganese,<br>Dissolved | 0.00352       |      | 0.00300                | 117   | 0.00344 |      | 0.00300                | 115   | 0.00346      |      | 0.00300                | 115 |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00247 Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00247

|                         |         |   | -472000/4<br>019 14:3 |     |       |   |      |    |       |   |      |    |
|-------------------------|---------|---|-----------------------|-----|-------|---|------|----|-------|---|------|----|
| Analyte                 | Found   | С | True                  | ₹R  | Found | С | True | ₽R | Found | С | True | ₽R |
| Iron,<br>Dissolved      | 0.0530  |   | 0.0500                | 106 |       |   | •    |    |       |   |      |    |
| Manganese,<br>Dissolved | 0.00347 |   | 0.00300               | 116 |       |   |      |    |       |   |      |    |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

| Lab | Name: | Eurofins TestAmerica, | Buffalo | Job No.: | 480-152241-1 |  |
|-----|-------|-----------------------|---------|----------|--------------|--|
| SDG | No.:  |                       |         |          |              |  |

Instrument ID: ICAP2 Method: 6010C

Start Date: 05/08/2019 10:14 End Date: 05/08/2019 17:27

| Start Date: 05/08  | 3/2019 | 10:      | 14    |   |   | _ <u> </u> | nd  | סכו      | ite | •        | 05, | /08      | / 20                                             | 19  | Τ,       | : 2 |    |          |   |          |   |   | _            |
|--------------------|--------|----------|-------|---|---|------------|-----|----------|-----|----------|-----|----------|--------------------------------------------------|-----|----------|-----|----|----------|---|----------|---|---|--------------|
|                    |        |          |       |   |   |            |     |          |     |          |     | A        | na:                                              | Lyt | es       |     |    |          |   |          |   |   |              |
|                    |        |          |       | F | М |            | 7.5 |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | Т            |
|                    | İ      |          |       | е | n |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| Lab<br>Sample      | D      | T        |       |   |   |            |     |          |     |          |     |          | .7                                               |     |          |     |    |          |   |          |   |   |              |
| ID                 | F      | y<br>P   |       |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
|                    |        | e        | Time  |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ICIS 480-472001/1  | 1      | <u> </u> | 10:14 | Х | Х |            |     |          |     |          |     | +        | <del>                                     </del> |     | <u> </u> |     |    | <u> </u> |   |          |   | ļ | Ť            |
| IC 480-472001/2    | 1 -    | 1        | 10:18 | х | Х |            |     | $\vdash$ |     |          |     |          |                                                  |     |          |     |    | 10       |   |          |   |   | T            |
| IC 480-472001/3    |        |          | 10:22 | х | Х |            |     |          | 1   |          | 1   |          |                                                  |     |          |     |    | İ        |   |          | - |   | T            |
| IC 480-472001/4    |        |          | 10:25 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | T            |
| ICV 480-472001/5   | 1      |          | 10:29 | Х | Х |            |     |          |     |          | 1   |          |                                                  |     |          |     |    |          |   | <b>!</b> |   |   | T            |
| ICB 480-472001/6   | 1      | <u> </u> | 10:32 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          | - |   | T            |
| ICVL 480-472001/7  | 1      |          | 10:36 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | T            |
| ICSA 480-472001/8  | 1      |          | 10:40 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | $\top$       |
| ICSAB 480-472001/9 | 1      |          | 10:43 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        |          | 10:47 |   |   | $\Box$     |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        |          | 10:51 |   |   |            |     |          | 1   |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | $\Box$       |
| ZZZZZZ             |        |          | 10:55 | - |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | Γ            |
| ZZZZZZ             |        |          | 10:58 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        |          | 11:02 |   |   |            |     | T        |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | Т            |
| CCV 480-472001/15  |        |          | 11:06 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| CCB 480-472001/16  |        |          | 11:09 |   |   |            | 11  |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| CCV 480-472001/17  | 1      |          | 14:23 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | Г            |
| CCB 480-472001/18  | 1      |          | 14:26 | Х | X |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | П            |
| CCVL 480-472001/19 | 1      |          | 14:30 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| MB 480-470109/1-A  | 1      | T        | 15:03 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| CCV 480-472001/21  | 1      |          | 15:07 | X | X |            |     | -        |     |          | - 1 |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| CCB 480-472001/22  | 1      |          | 15:11 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| CCVL 480-472001/23 | 1      |          | 15:14 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | L            |
| LCS 480-470109/2-A | 1      | T        | 15:18 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | $oxed{oxed}$ |
| ZZZZZZ             |        |          | 15:22 |   |   |            |     |          |     | L_       |     |          |                                                  |     |          |     |    |          |   |          |   |   | L            |
| ZZZZZZ             |        |          | 15:25 |   |   |            |     | >        |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        |          | 15:29 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| 22222Z             |        |          | 15:33 |   |   |            | - 2 |          |     | L_       |     | <u> </u> |                                                  |     |          |     |    |          | _ |          |   |   | $\perp$      |
| ZZZZZZ             |        |          | 15:36 | ļ |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   | 111      |   |   | $\perp$      |
| ZZZZZZ             |        |          | 15:40 |   |   |            |     | <u> </u> |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | L            |
| ZZZZZZ             |        |          | 15:43 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        |          | 15:47 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | L            |
| CCV 480-472001/33  | 1      |          | 15:51 | Х | Х |            |     |          |     | <u>_</u> |     |          |                                                  |     |          |     |    |          |   |          | _ |   | L            |
| CCB 480-472001/34  | 1      |          | 15:54 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| CCVL 480-472001/35 | 1      |          | 15:58 | Х | Х |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        | _        | 16:02 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        |          | 16:05 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        |          | 16:09 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     | 11 |          |   |          |   |   | <u> </u>     |
| ZZZZZZ             |        |          | 16:13 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          | ] |   |              |
| ZZZZZZ             |        |          | 16:16 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |
| ZZZZZZ             |        |          | 16:20 |   |   |            |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   | 2            |
| ZZZZZZ             |        |          | 16:24 |   |   | $\neg$     |     |          |     |          |     |          |                                                  |     |          |     |    |          |   |          |   |   |              |

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG No.:

Instrument ID: ICAP2 Method: 6010C

Start Date: 05/08/2019 10:14 End Date: 05/08/2019 17:27

|                     |       |                  |       |        |   |        |    |   |      | r        | A | na] | Lyt | es | si |     |  |   |    |        |
|---------------------|-------|------------------|-------|--------|---|--------|----|---|------|----------|---|-----|-----|----|----|-----|--|---|----|--------|
| Lab<br>Sample<br>ID | D / F | T<br>Y<br>p<br>e | Time  | F<br>e | M |        |    |   |      |          |   |     |     | 12 |    | 4   |  |   |    |        |
| ZZZZZZ              |       |                  | 16:27 | Ì      |   |        |    |   |      |          |   |     |     |    |    |     |  |   |    |        |
| ZZZZZZ              | 1     |                  | 16:31 |        |   |        |    |   |      |          |   |     |     | 11 |    |     |  |   |    | $\Box$ |
| CCV 480-472001/45   | 1     |                  | 16:35 | Х      | Х |        |    |   | <br> | <u> </u> |   |     |     |    |    |     |  |   |    |        |
| CCB 480-472001/46   | 1     | 21               | 16:38 | Х      | Х |        |    |   |      |          |   |     |     |    |    |     |  |   |    | П      |
| CCVL 480-472001/47  | 1     |                  | 16:42 | Х      | Х |        |    |   |      |          |   |     |     |    |    |     |  |   |    | П      |
| ZZZZZZ              | 2     |                  | 16:46 |        |   | $\Box$ |    |   |      |          |   |     |     |    |    |     |  |   |    |        |
| ZZZZZZ              |       |                  | 16:50 | 1      |   | 10     |    |   |      |          |   |     |     |    |    |     |  |   |    |        |
| ZZZZZZ              |       |                  | 16:53 |        |   |        |    |   |      |          |   |     |     |    |    |     |  |   |    |        |
| 480-152241-1        | 1     | T                | 16:57 | Х      | Х |        |    |   |      |          |   |     |     |    |    |     |  |   |    |        |
| 480-152241-2        | 1     | T                | 17:01 | Х      | Х |        |    | 1 |      |          |   |     |     |    |    | 1,7 |  |   |    |        |
| 480-152241-3        | 1-    | T                | 17:05 | Х      | Х |        | 47 |   |      |          |   |     |     |    |    |     |  |   |    |        |
| CCV 480-472001/54   | 1     |                  | 17:20 | Х      | Х |        |    |   |      |          |   |     |     |    |    |     |  |   |    |        |
| CCB 480-472001/55   | 1     |                  | 17:23 | Х      | Х |        |    |   |      |          |   |     |     |    |    |     |  | 0 | 12 |        |
| CCVL 480-472001/56  | 1     |                  | 17:27 | Х      | Х |        |    |   |      |          |   |     |     |    |    |     |  |   |    |        |

Prep Types
T = Total/NA

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152241-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00247 Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00247

|           | CCVL<br>05/0 |   | -472001/3<br>019 15:58 |     | CCVL<br>05/0 |   | -472001/4<br>019 16:4 |     | CCVL<br>05/08 |   | -472001/5<br>019 17:27 |     |
|-----------|--------------|---|------------------------|-----|--------------|---|-----------------------|-----|---------------|---|------------------------|-----|
| Analyte   | Found        | С | True                   | ₽R  | Found        | С | True                  | ₽R  | Found         | С | True                   | ₹R  |
| Iron      | 0.0506       |   | 0.0500                 | 101 | 0.0507       |   | 0.0500                | 101 | 0.0525        |   | 0.0500                 | 105 |
| Manganese | 0.00343      |   | 0.00300                | 114 | 0.00348      |   | 0.00300               | 116 | 0.00347       |   | 0.00300                | 116 |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

∴ curofins

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Amherst NY 14228-2298 Phone (715) 691-2600 Fax (716) 691-7991

pH 4 4 other (specify) Special Instructions/Note Bew-0 Months sre retained longer than 1 month) Ш OC No 480-129178-29154 480-152320 Chain of Custody Preservation Codes 0 Page Page 1 of 1 J-Urwaien K-EDTA L-EDA Archive For - Vis Total Number of containers Sate/Time defined of Shipment Sample Disposal ( A fee may be assessed if samples of Return To Clent Disposal By Lab Tracking Not NON Analysis Requested Cooler Temperature(s) \*C and Other Remarks BOLDC - (MOD) Dissolved Fe, Mn Special Instructions/OC Requirements DO ABHR - NITTED 008 - 80LZS E Mo!! oriette johnson@teslamericamc com 2 enexplO-4,1 - GL SM MIZ GOTS 110.4 - COD dece ved by Pacery 63 by BCBIVED by mishud - Gas\_0 con Lab PM Johnson, Orlette S M M M S260C - (MOD) TCL US! OLMO4 2 MSMISD (Yes of No) Company AZCO.4 Type (recessor (Caccamp, Caccamp, er Water Water Water Water Preservation Code Water Water Water Water Water Water ompa's Radiological 252-258-216 Sample J 3 ) Sternderd Tax Orban 5220 4/22/19/102 Sample 4/22/19/1135 4/22/19 1135 ī Date 3 W22/h Unknown PO # Califout ID 136077 WG # (AT Requested (days): Due Date Requested 4/22/12 Sample Date 4/22/14 4/22/12 Project 8 48018841 SSOw# Sate/I-me Pouson B ジア Skin Imtant とれる 1-01- MS/MSi Deliverable Requested 1 II III(N)Other (specify) -20190722 Custody Seal No 2006102 257 West Genesee Street Suite 400 ١ Flammable Possible Hazard Identification SR-OCE BRWOI 212 juston app Insulator Site# 819017 george kısluk@aecom com mpty Kit Relinquished by 105 Custody Seals Intact
A Yes A No Client Information Sample Identification Non-Hazard BRV State Zuo NY, 14202-2657 Industred by dushed by George Kısluk rainshed by AECOM Buffalo

Curofins | Environment Testing | Festing N - None
O - Antacots
O - Antacots
Q - Na2SQ3
R - Na2SQ3
S - H2SO4
T - TSP Dodecalydrate
U - Acetone
W - PH 4-5
Z - other (specity) Company ALS Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyse & accreditation out subcontract laboratories. This sample stripment is forwarded under chain-of-custbdy. If the laboratory does not be subcontract laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica laboratories, inc. attendon immediately. If all requested accreditations are current to date, return the signed Chain of Custbdy attention to said complicance to TestAmerica Laboratories, inc. Special Instructions/Note: Ver: 01/16/2019 Months Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mor 480-152320-1 Preservation Codes A - HCL B - NaCH C - Zn Acelsta D - Nitric Acid E - NaHSO4 F - MeCH G - Amchlor G - Amchlor H - Ascorbic Acid I - Ice 04:30 XOC No: 180-49241.1 Page 1 of 1 Job#: J - DI Water K - EDTA L - EDA 04/27/19 Detertine enenistance to pedmuti jeto [ ÷ w. ķ n-'n e က 480-152320 Date/Time. Wethod of Shipment 2,3 New YORK Analysis Requested Cooler Temperature(s) \*C and Other Remarks: Special Instructions/QC Requirements: Lab PM:
Johnson, Oriette S
E-Mail:
oriette\_Johnson@testamericainc.com
Accreditations Required (See note):
NELAP - New York 5.5 aunu Return To Cilent Received by: Received by Chain of Custody Record × × × × × SEGOCIEDZOC TOL IISt OLMO4.2 在基本的工程的Con Jo on Jo gaming Time: Preservation Code. (waterix (water, onelid, Water Water Water Water Water Water -Water Company Туре (С=сощр. G=grab) Sample B MSD SΕ Primary Deliverable Rank: 1 Eastern 10:30 Fastem 11:35 Easten 11:35 Eastern 11:35 Eastern Eastern Eastern 08:50 Due Date Requested: 5/14/2019 TAT Requested (days): Sample Date 4/22/19 4/22/19 4/22/19 4/22/19 4/22/19 4/22/19 4/22/19 Project #: 48018841 SSOW#: Date/Time: hone ₩ ₩ ģ Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Custody Seal No.: ال (Lab ID) المجالة: المجالة: Sample identification - Client ID Phone (716) 691-2600 Fax (716) 691-7991 815-726-0177(Tel) 615-728-3404(Fax) Possible Hazard Identification TB-20190422 (480-152320-5) estAmerica Laboratories, Inc FD-20190422 (480-152320-4) BRW-01 (480-152320-3MSD) 2960 Foster Creighton Drive, app Insulator Site# 819017 BRW-01 (480-152320-3MS) Empty Kit Relinquieted by: Amherst, NY 14228-2298 Custody Seals Intact:
A Yes A No SR-006 (480-152320-2) BRW-01 (480-152320-3) SR-105 (480-152320-1) 10 Hazelwood Drive Shipping/Receiving elinquished by: Unconfirmed State, Zip: TN, 37204 Nashville

**Eurofins TestAmerica, Buffalo** 

### Job Narrative 480-152320-1

### Receipt

The samples were received on 4/22/2019 5:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 3.5° C and 4.2° C.

#### **GC/MS VOA**

Method(s) 8260C: The following sample was diluted due to the nature of the sample matrix: SR-006 (480-152320-2). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The method blank for analytical batch 490-591225 contained 1,4-Dichlorobenzene, 1,3-Dichlorobenzene, lsopropylbenzene and Methylcyclohexane above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Method(s) 8260C: The method blank for preparation batch 490-591225 contained 1,2,4-Trichlorobenzene above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed.

Method(s) 8260C: The laboratory control sample duplicate (LCSD) for analytical batch 490-591468 recovered outside control limits for the following analytes: 1,2-Dichloroethane. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260C: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch analytical batch 490-591468 recovered outside control limits for the following analytes: 1,1,2-Trichloro-1,2,2-trifluoroethane and 1,2-Dichloroethane.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC/MS Semi VOA

Method(s) 8270D SIM ID: The following samples were diluted to bring the concentration of target analytes within the calibration range: SR-105 (480-152320-1), SR-006 (480-152320-2), BRW-01 (480-152320-3), BRW-01 (480-152320-3[MSD]), BRW-01 (480-152320-4). Elevated reporting limits (RLs) are provided.

Method(s) 8270D SIM ID: The following samples were diluted due to the abundance of target analytes: BRW-01 (480-152320-3[MS]) and BRW-01 (480-152320-3[MSD]). Because of this dilution, the matrix spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8270D SIM ID: The 1,4-Dioxane result reported for samples SR-006 (480-152320-2), BRW-01 (480-152320-3), BRW-01 (480-152320-3[MS]), BRW-01 (480-152320-3[MSD]) and FD-20190422 (480-152320-4) have an E flag qualifier indicating the results are over the calibration range on the raw data. The actual amounts are within the calibration range; however, the E flag is generated based upon the bias corrected concentration. The LIMS system calculates a bias correction based on the recovery of the 1,4-Dioxane-d8 isotope.

Method(s) 8270D SIM ID: The recovery of 1,4-Dioxane in the following sample was over the upper range of the initial calibration: SR-105 (480-152320-1). Re-analysis was performed at a higher dilution. Due to the level of dilution required, the IDA 1,4-Dioxane-d8 was diluted to a level that could not be detected; therefore, the recovery of 1,4-Dioxane could not be calculated. The results from the lower dilution have been qualified with an "E" flag and reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### HPLC/IC

Method(s) 300.0: The following samples were analyzed outside of analytical holding time due to laboratory error: SR-105 (480-152320-1), SR-006 (480-152320-2), BRW-01 (480-152320-3), BRW-01 (480-152320-3[MSD]) and FD-20190422 (480-152320-4). The client has been notified and instructed to report the data.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### **General Chemistry**

Method(s) SM 5210B: The glucose-glutamic acid standard recovered low outside the recovery limits specified in the method in batch 480-469403.

Method(s) SM 5210B: The following sample was analyzed outside of analytical holding time due to laboratory error: FD-20190422 (480-152320-4). The client has been notified and instructed to report the data.

Method(s) SM 5210B: Elevated reporting limits are provided for the following sample due to insufficient sample for preparation/analysis: FD-20190422 (480-152320-4). Raw result is 18.2 mg/L.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **Organic Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### **VOA Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

# GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION FORM VI

Job No.: 480-152320-1 Lab Name: Eurofins TestAmerica, Nashville

Analy Batch No.: 582279

SDG No.:

Instrument ID: HP39

ID: 0.18 (mm) GC Column: ZB-624

Heated Purge: (Y/N) N

Calibration Start Date: 03/20/2019 16:25

Calibration End Date: 03/20/2019 20:17

Calibration ID: 74622

| ANALYTE                  |        |        | RRF    |        |        | CURVE |        | COEFFICIENT   | ENT    | # MIN RRF | RF &RSD       | D # MAX | 1         | * | MIN R^2 |
|--------------------------|--------|--------|--------|--------|--------|-------|--------|---------------|--------|-----------|---------------|---------|-----------|---|---------|
|                          | LVL 1  | LVL 2  | LVL 3  | LVL 4  | LVL 5  | TYPE  | m      | Œ             | M2     |           |               | *       | SD OR COD |   | OR COD  |
|                          | IVL 6  | LVL 7  | LVL 8  | IVL 9  | LVL 10 |       |        |               |        |           |               |         |           |   |         |
| 1,1-Dichloroethene       | 0.3314 | 0.2562 | 0.2808 | 0.3348 | 0.3007 | Ave   |        | 0.3093        |        | 0.1000    | 000           |         | 20.0      | - |         |
| Nontono                  | 0.3130 | 0.3152 | 0.3056 | 0.3255 | 0.32/4 |       |        |               |        | -         | -+            | 1       |           | - |         |
| Acerone                  | 0.0135 | 0.01/4 | 0.0138 | 0.0131 | 0.0132 | Ave   |        | 0.0137        | $\sim$ | 0.0100    | 100   11.0    |         | 20.0      |   |         |
| Iodomethane              | 0.4798 | L      | 0.4181 | 0.5539 | 0.5135 | Ave   |        | 0.5013        |        | 0.1000    | 000 11.5      |         | 20.0      | - |         |
| - 1                      | 0.5514 |        | 0.5343 | 0.5275 | 0.5247 |       |        |               |        |           |               |         |           |   |         |
| Isopropyl alcohol        | 0.0062 | 0.0080 | 0.0083 | 0.0078 | 0.0077 | Ave   |        | 0.0071        |        | 0.0010    | Ξ.            | 5       | 20.0      | _ |         |
|                          | 0.0068 | 0.0062 | 0.0061 | 0.0065 | 0.0072 | _     |        |               |        |           |               |         |           |   |         |
| Carbon disulfide         | 1.1293 | 0.7583 | 0.8423 | 0.9666 | 0.8400 | Lin1  | 0.1920 | 0.7766        |        | 0.1000    | 000           |         | 0.9970    |   | 0.9900  |
| 3-Chloro-1-propene       | +++++  | +++++  | 0.2223 | 0.2700 | 0.3029 | Lin1  | -0.411 | 0.3472        |        | 0.1000    | 000           |         | 0.9940    |   | 0.9900  |
| - 1                      | 0.2023 | 0.2963 | 4.004  | 0.3329 | ++++   | -     |        |               |        |           | $\rightarrow$ |         |           | + |         |
| Methyl acetate           | 0.1070 | 0.1245 | 0.1326 | 0.1321 | 0.1159 | Ave   |        | 0.1132        |        | 0.1000    | 000 12.3      |         | 20.0      |   |         |
| Acetonitrile             | +++++  | +++++  | 0.0110 | 0.0109 | 0.0100 | Ave   |        | 0.0109        |        | 0.0010    | 5.8           | L       | 20.0      | - |         |
|                          | 0.0103 | 0.0105 | 0.0111 | 0.0113 | 0.0121 |       |        |               |        |           |               |         |           |   |         |
| Methylene Chloride       | +++++  | +++++  | 0.4540 | 0.4429 | 0.3947 | Ave   |        | 0.3762        |        | 0.0100    | 100 13.2      | -       | 20.0      | - |         |
|                          | 0.3706 | 0.3340 | 0.3303 | 0.3414 | 0.3418 |       |        |               |        |           |               |         | <u> </u>  |   |         |
| 2-Methyl-2-propanol      | +++++  | 1.1492 | 1.3006 | 1.8117 | 1.2670 | Ave   |        | 1.4266        |        | 0.0010    | 010 14.6      |         | 20.0      | - |         |
|                          | 1.4140 |        | 1.5082 | 1.5951 | ++++   |       |        |               |        |           |               |         | 1         |   |         |
| Methyl tert-butyl ether  | 0.8586 |        | 0.7278 | 0.8391 | 0.7373 | Ave   |        | 0.7291        |        | 0.1000    | 9.6 000       |         | 20.02     |   |         |
|                          | 0.7321 |        |        | 0.6659 | 0.6664 |       |        |               |        |           |               |         |           |   |         |
| trans-1,2-Dichloroethene | 0.5915 |        |        | 0.5321 | 0.4552 | Ave   |        | 0.4748        |        | 0.1000    | 000 11.2      |         | 20.0      |   |         |
|                          | 0.4//3 |        | 0.4452 | 0.4636 | 0.4702 |       |        |               |        |           | _             |         |           |   |         |
| ACIVIONICINE             | 0.0604 | 0.05/1 | 0.0549 | 0.0642 | 0.0615 | Ave   |        | 0.0592        |        | 0.0100    | 100 6.6       |         | 20.0      |   |         |
| n-Hexane                 | 0.4821 |        |        | 0.4741 | 0.4213 | Ave   |        | 0.4269        |        | 0.1000    | 9.6 000       |         | 20.0      |   |         |
|                          | 0.4230 |        | 0.4187 | 0.4483 | 0.4425 |       |        |               |        |           |               |         |           |   |         |
| Isopropyl ether          | 1.2988 | 1.0389 | 0.9544 | 1.0860 | 0.9688 | Lin2  | 0.1878 | 0.9036        |        | 0.1000    | 000           |         | 0.9930    | - | 0.9900  |
| Vinyl acetate            | 0.0708 | _      | 0.0528 | 0.0608 | 0.0544 | Ave   |        | 0.0557        |        | * 0.1000  | 2 11 2        | $\pm$   | 20.0      | + |         |
|                          | 0.0557 |        | 0.0497 | 0.0542 | 0.0570 |       |        |               |        | -         |               |         | -         |   |         |
| 1,1-Dichloroethane       | 0.6896 | L.     |        | 0.6328 | 0.6676 | Ave   |        | 0.6320        |        | 0.2000    | 5.3           |         | 20.0      | - |         |
|                          | 0.6564 |        |        | 0.6326 | 0.6364 |       |        |               |        |           |               |         |           |   |         |
| 2-Chloro-1,3-butadiene   | 0.6475 |        |        | 0.6059 | 0.5084 | Ave   |        | 0.5391        |        | 0.1000    | 6 000         |         | 20.02     |   |         |
|                          | 0.5204 | 0.5038 | 0.5024 | 0.5128 | 0.5110 |       |        |               |        |           |               |         |           |   |         |
| Tert-butyl ethyl ether   | 1.0219 | 0.9278 | 0.8713 | 1.0377 | 0.9050 | Ave   |        | 0.9019        |        | 0.1000    | 9.4           |         | 20.02     |   |         |
| 2 2-Di ah ] anamana      | 0.3012 |        | 0.0211 | 0.0433 | 0.0300 |       |        |               | i      |           |               | +       | 1         | - |         |
| z,z-nicnioropropane      | 0.7549 | 0.5071 | 0.5260 | 0.6198 | 0.5441 | Linl  | 0.0287 | 0.0287 0.5617 |        | 0.1000    | 000           |         | 0.9990    |   | 0.9900  |
|                          | ,      |        |        | 222.0  | 10000  |       |        |               |        |           | -             | -       |           |   |         |

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

# GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION FORM VI

Analy Batch No.: 582279 Job No.: 480-152320-1 Lab Name: Eurofins TestAmerica, Nashville SDG No.:

| Instrument ID: HP39        |                 |                | GC Col         | Column: ZB   | ZB-624          | 10:     |            | 0.18 (mm)   |    | Heated Purge: | Purge: | (X/N)     | z        |           |
|----------------------------|-----------------|----------------|----------------|--------------|-----------------|---------|------------|-------------|----|---------------|--------|-----------|----------|-----------|
| Calibration Start Date: 03 | 03/20/2019 16:2 | 25             | Calibr         | libration E  | End Date:       |         | 03/20/2019 | 19 20:17    |    | Calibration   |        | ID: 74622 | 22       |           |
| ANALYTE                    |                 |                | RRF            |              |                 | CURVE   | 8          | COEFFICIENT | #  | MIN RRF       | &RSD # | MAX       | <b>_</b> | # MIN R^2 |
|                            | LVL 1 1 LVL 6   | LVL 2<br>LVL 7 | LVL 3<br>LVL 8 | LVL 4 J      | LVL 5<br>LVL 10 | TYPE    | ф          | M           | M2 |               |        | &RSD      | OR COD   | OR COD    |
| cis-1,2-Dichloroethene     | 0.5311 (        |                | 0.4166         | 0.5024       | 0.4365 7        | Ave     | 0          | 0.4322      |    | 0.1000        | 11.2   | 20.0      |          |           |
| Ethyl acetate              | 1               |                | 0.0161         | <del> </del> |                 | Ave     | 0          | 0.0205      |    | 0.0100        | 12.8   | 20.0      |          |           |
| 2-Butanone (MEK)           | +               |                | 0.0213         |              | _               | Ave     | e,         | 0.0200      |    | 0.0100        | 6.8    | 20.0      |          |           |
| Propionitrile              | <del> </del>    | 1              | 0.0193         | ↓            | +               | Ave     | 10         | 0.0221      |    | 0.0100        | 7.0    | 20.0      |          |           |
| Methacrylonitrile          | 1               | -              | 0.1034         | _            |                 | Ave     | 0          | 0.1082      |    | 0.1000        | 11.6   | 20.0      |          |           |
| Chlorobromoethane          | 0.2459 (        | ├              | 0.2314         |              |                 | Ave     | 0          | 0.2385      |    | 0.1000        | 7.3    | 20.0      |          |           |
| Tetrahydrofuran            |                 | -              | 0.0642         |              | 0.0615 7        | Ave     | 0          | 0.0603      |    | 0.0500        | 9.5    | 20.0      |          |           |
| Chloroform                 | 0.7400 (        |                | 0.6466         |              |                 | Ave     | 0          | 0.6391      |    | 0.2000        | 80     | 20.0      |          |           |
| 1,1,1-Trichloroethane      |                 | -              | 0.5986         |              |                 | Ave     | 0          | 0.5930      |    | 0.1000        | 9.8    | 20.0      |          |           |
|                            |                 |                | 0.5403         |              | 0.5194 A        | Ave     |            | 0.5493      |    | 0.1000        | 5.0    | 20.0      |          |           |
| Carbon tetrachloride       |                 |                | 0.4710         | 0.5637 (     | 0.5112 A        | Ave     | 0          | 0.5348      |    | 0.1000        | 8.9    | 20.0      |          |           |
|                            |                 | 1              | 0.4797         |              | 1               | Ave     | 0,         | 0.5015      |    | 0.1000        | 8.1    | 20.0      |          |           |
| Isobutyl alcohol           |                 | -              | 0.0115         | 0.0124 (     | 0.0107 A        | Ave     | 0          | 0.0112      |    | 0.0010        | 6.6    | 20.0      |          |           |
| t-Amyl alcohol             |                 | -              | 0.0120         | 0.0141       | 0.0123 A        | Ave     | 0          | 0.0123      |    | 0.0010        | 10.7   | 20.0      |          |           |
|                            |                 |                | 1.5266         |              | 1.5443 P        | Ave     | -          | 1.5278      |    | 0.5000        | 12.6   | 20.0      |          |           |
| Tert-amyl methyl ether     |                 | 0.9000         | 692<br>178     | L            | 0.9185 A        | Ave     | 0          | 0.9116      |    | 0.1000        | 11.8   | 20.0      |          |           |
| 1,2-Dichloroethane         | 0.5608 (        |                |                |              |                 | Lin2 0. | 0.0763 0   | 0.3815      |    | 0.1000        |        |           | 0.9940   | 0066.0    |
| n-Heptane                  | 0.3607          | 0.3226         | 0.2751         |              |                 | Ave     | 0          | 0.3461      |    | 0.1000        | 6.8    | 20.0      |          |           |
| n-Butanol                  |                 | 0.0030         |                |              |                 | Ave     | 0          | 0.0032      |    | 0.0010        | 6.7    | 20.0      |          |           |
| Trichloroethene            | 0.5580 (        | 0.4323         | 0.4325         | 0.4984 (     | 0.4500          | Ave     | 0          | 0.4563      |    | 0.2000        | 9.1    | 20.0      |          |           |

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

# GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION FORM VI

Analy Batch No.: 582279 Job No.: 480-152320-1 Lab Name: Eurofins TestAmerica, Nashville

Instrument ID: HP39 SDG No.:

Calibration Start Date: 03/20/2019 16:25

Calibration End Date: 03/20/2019 20:17 GC Column: ZB-624

Heated Purge: (Y/N) N Calibration ID: 74622 ID: 0.18 (mm)

| LVL 2 LVL 3 LVL 3 LVL 7 LVL 7 LVL 8 LVL 7 LVL 8 LVL 8 0.2266 0.2397 0.2271 0.2215 0.5637 0.6037 0.3090 0.3090 0.1767 0.1768 0.1518 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1508 0.1636 0.1508 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.16 | 4 LVL 5<br>9 LVL 10         | B M1 M2          | *RSD             | OR COD OR COD |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|------------------|---------------|
| acrylate         ++++         0.2266         0.2397           cyclohexane         0.7386         0.5255         0.5037           cyclohexane         0.7386         0.5255         0.5637           chloropropane         0.4304         0.3090         0.3399           chloropropane         0.1934         0.1767         0.1786           coxane         ++++         0.2090         0.1860           coxane         1.5630         0.1767         0.1788           ichloromethane         0.1633         0.1518         0.1636           ichloromethane         0.4758         0.4319         0.1806           oroethyl vinyl ether         0.1628         0.1502         0.1806           opropane         0.4511         0.4385         0.4319           oroethyl vinyl ether         0.1243         0.1836         0.1806           3-Dichloropropene         0.1243         0.1839         0.1806           3-Dichloropropene         0.1056         0.0997         0.0965         0.0966           iv 3-Dichloropropene         0.2072         0.2050         0.5198         0.3729           in 3-Dichloropropene         0.5209         0.3915         0.3729           oroethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                  |                  |               |
| 0.7386 0.5255 0.5637 0.5921 0.4304 0.6037 0.5921 0.4304 0.3090 0.3399 0.3392 0.3194 0.3075 +++++ 0.2090 0.1846 0.1934 0.1073 1.1846 +++++ 1.0273 1.1846 0.1628 0.1628 0.1628 0.1628 0.1631 0.1631 0.1632 0.1631 0.1632 0.1631 0.1632 0.1961 0.1672 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.1915 0.10914 0.1056 0.0997 0.0965 0.0999 0.1056 0.0997 0.0965 0.0999 0.1056 0.0997 0.0965 0.0997 0.0965 0.0997 0.0965 0.0997 0.0965 0.0997 0.0965 0.0997 0.0965 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0997 0.0998 0.2998 0.2998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32 0.2352 Ave               | 0.2418           | 0.1000 6.7 20.0  |               |
| 0.4304 0.3090 0.3399<br>0.3392 0.3194 0.3075<br>+++++ 0.2090 0.1860<br>0.1934 0.1767 0.1788<br>+++++ 1.0273 1.1846<br>1.5630 1.2450 1.0331<br>0.1633 0.1518 0.1636<br>0.4758 0.4301 0.4468<br>0.4758 0.4301 0.4163<br>0.2193 0.1502 0.1448<br>0.2193 0.1502 0.1448<br>0.1219 0.1639 0.0998<br>0.0997 0.0965 0.0998<br>0.0997 0.0965 0.0998<br>0.0901 0.0798 0.0775<br>2.2474 2.0395 1.9816<br>0.5209 0.3190<br>0.5209 0.3151 0.3729<br>0.4194 0.3292 0.3190<br>0.5209 0.3151 0.3298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                    | 0.6114           | 0.1000 9.3 20.0  |               |
| H++++ 0.2090 0.1860<br>0.1934 0.1767 0.1788<br>+++++ 1.0273 1.1846<br>1.5630 1.2450 1.0331<br>0.1633 0.1518 0.1636<br>0.1633 0.1502 0.1448<br>0.4758 0.4301 0.4163<br>0.4511 0.4385 0.4319<br>0.2193 0.1961 0.1672<br>0.1915 0.1935 0.0999<br>0.0997 0.0965 0.0989<br>0.0997 0.0965 0.0989<br>0.1056 0.0897 0.0867<br>0.2474 0.5693 0.5494 0.5504<br>0.5804 0.5504<br>0.5804 0.5504<br>0.5209 0.3915 0.3729<br>0.4194 0.5528 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\vdash$                    | 0.3409           | 0.1000 11.0 20.0 |               |
| H++++ 1.0273 1.1846 1.5630 1.2450 1.0331 0.1633 0.1518 0.1636 0.1628 0.1518 0.1448 0.4758 0.4301 0.4448 0.4511 0.4385 0.04419 0.2193 0.1961 0.1672 0.1915 0.1839 0.1806 0.1915 0.1839 0.1806 0.1097 0.0965 0.0998 0.1243 0.1135 0.0998 0.1243 0.1135 0.0998 0.1243 0.1135 0.0998 0.1273 0.135 0.0967 0.7209 0.6643 0.6619 0.7209 0.6643 0.6619 0.7209 0.6691 0.0775 2.2474 2.0395 1.9816 0.6691 0.5494 0.5071 0.6691 0.5494 0.5071 0.6691 0.5494 0.3729 0.4194 0.3843 0.3737 0.3330 0.2985 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŀ                           | 0.1961           | 0.1000 9.6 20.0  |               |
| (A) 1633 0.1518 0.1636<br>0.1628 0.1502 0.1448<br>0.4511 0.4385 0.4319<br>0.2193 0.1965 0.4319<br>0.1915 0.1839 0.1806<br>0.1915 0.1839 0.1806<br>0.0997 0.0965 0.0998<br>0.0997 0.0965 0.0989<br>0.0901 0.0997 0.0867<br>0.2209 0.0998 0.0775<br>2.2474 2.0395 1.9816<br>0.5691 0.5594 0.5071<br>0.5209 0.3310 0.5553 0.5504<br>0.5209 0.3151 0.3298 0.3319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ļ                           | 1.2487           | 0.0010 14.6 20.0 |               |
| 0.4758 0.4301 0.4163<br>0.4511 0.4385 0.4319<br>0.12193 0.1961 0.1672<br>0.1915 0.1839 0.1806<br>0.0997 0.0989 0.0989<br>0.0917 0.0683 0.6819<br>0.7209 0.6863 0.6819<br>0.1056 0.0897 0.0867<br>0.0901 0.0798 0.0775<br>2.2474 2.0395 1.9816<br>0.6691 0.5434 0.5504<br>0.5209 0.3915 0.3729<br>0.4194 0.3843 0.3737<br>0.3330 0.2985 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39 0.1562 Ave               | 0.1585           | 0.0500 8.3 20.0  |               |
| (A) 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ↓                           | 0.4491           | 0.2000 5.0 20.0  |               |
| (K) 0.1243 0.1135 0.0998 0.0997 0.0997 0.0965 0.0989 0.0117 0.6494 0.6619 0.07209 0.6897 0.0867 0.0867 0.0901 0.0901 0.0798 0.0775 2.7373 2.3057 2.2720 2.2474 2.0395 1.9816 0.5691 0.5594 0.5071 0.5209 0.3151 0.3729 0.3151 0.3785 0.2988 0.3330 0.2985 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 0.1900 Ave 50 0.1937     | 0.1920           | 0.1000 7.7 20.0  |               |
| K) 0.8117 0.6494 0.6364<br>0.7209 0.6863 0.6819<br>0.1056 0.0897 0.0867<br>0.0901 0.0798 0.0775<br>2.7373 2.3057 2.2720<br>2.2474 2.0395 1.9816<br>0.6691 0.5494 0.5071<br>0.5840 0.5553 0.5504<br>0.5209 0.3915 0.3729<br>0.4194 0.3843 0.3737<br>0.3330 0.2922 0.3190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70 0.1006 Ave               |                  | 0.0100 8.7 20.0  |               |
| (K) 0.1056 0.0897 0.0867<br>0.0901 0.0798 0.0775<br>2.7373 2.3057 2.2720<br>2.2474 2.0395 1.9816<br>0.6691 0.5494 0.5071<br>0.5840 0.5524 0.5504<br>0.4194 0.3843 0.3729<br>0.3330 0.2922 0.3190<br>0.3151 0.2985 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 0.6690 Ave 74 0.6986     | 00.7007          | 0.2000 7.6 20.0  |               |
| 2.7373 2.3057 2.2720<br>2.2474 2.0395 1.9816<br>0.6691 0.5494 0.5071<br>0.5209 0.5553 0.5504<br>0.4194 0.3843 0.3729<br>0.3330 0.2922 0.3190<br>0.3151 0.2985 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 0.0877 Ave               | 0.0871           | 0.0500 9.6 20.0  |               |
| 0.6691 0.5494 0.5071<br>0.5840 0.553 0.5504<br>0.5209 0.3915 0.3729<br>0.4194 0.3843 0.3737<br>0.3330 0.2922 0.3190<br>0.3151 0.2985 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39 2.1585 Ave 24 1.7180     | 2.1802           | 0.4000 13.2 20.0 |               |
| e 0.5209 0.3915 0.3729  0.4194 0.3843 0.3737  0.3330 0.2922 0.3190  0.3151 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75 0.5630 Ave               | 0.5776           | 0.0100 8.3 20.0  |               |
| hane 0.3330 0.2922 0.3190 0.3310 0.2988 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 0.3908 Ave               | 0.4068           | 0.1000 11.2 20.0 |               |
| CONT. C. STON C. CONT. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                           | 0.3127           | 0.1000 7.5 20.0  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 0.5823 Ave               | 0.6029           | 0.2000 4.0 20.0  |               |
| 1,3-Dichloropropane 0.6291 0.5216 0.5404 0.6434 0.5592 0.5181 0.5201 0.5191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34 0.5432 Ave               | 0.5521           | 0.1000 8.4 20.0  |               |
| 0.0924 0.0809 0.<br>0.0776 0.0709 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 0.0784 Ave               | 0.0786           | 0.0500 8.9 20.0  |               |
| 0.4170 0.2888 0.2927<br>0.3029 0.2866 0.2669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31 0.3111 Lin2<br>12 0.2943 | 12 0.0510 0.2886 | 0.1000           | 0.9900 0096.0 |
| Dibromochloromethane 0.3237 0.2795 0.2900 0.3280 0.3170 0.3091 0.3131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 0.2957 Ave               | 0.3082           | 0.1000 5.3 20.0  |               |

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

### FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1

SDG No.:

Lab File ID: 043019-01.D

BFB Injection Date: 04/30/2019

Instrument ID: HP39

BFB Injection Time: 09:59

Analysis Batch No.: 591468

| M/E | ION ABUNDANCE CRITERIA             | · · · · · · · · · · · · · · · · · · · | ELATIVE<br>NDANCE |
|-----|------------------------------------|---------------------------------------|-------------------|
| 50  | 15.0 - 40.0 % of mass 95           | 18.1                                  |                   |
| 75  | 30.0 - 60.0 % of mass 95           | 50.7                                  |                   |
| 95  | Base Peak, 100% relative abundance | 100.0                                 |                   |
| 96  | 5.0 - 9.0 % of mass 95             | 7.0                                   |                   |
| 173 | Less than 2.0 % of mass 174        | 0.3                                   | (0.3) 1           |
| 174 | 50.0 - 120.00 % of mass 95         | 98.6                                  |                   |
| 175 | 5.0 - 9.0 % of mass 174            | 7.8                                   | (7.9) 1           |
| 176 | 95.0 - 101.0 % of mass 174         | 98.7                                  | (100.2) 1         |
| 177 | 5.0 - 9.0 % of mass 176            | 6.0                                   | (6.0) 2           |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | CCVIS 490-591468/2 | 043019-02.D    | 04/30/2019       | 10:25            |
| 15               | LCS 490-591468/3   | 043019-03.D    | 04/30/2019       | 10:51            |
|                  | LCSD 490-591468/4  | 043019-04.D    | 04/30/2019       | 11:17            |
|                  | MB 490-591468/5    | 043019-05.D    | 04/30/2019       | 11:43            |
| BRW-01           | 480-152320-3       | 043019-18.D    | 04/30/2019       | 17:21            |
| FD-20190422      | 480-152320-4       | 043019-19.D    | 04/30/2019       | 17:47            |
| SR-006           | 480-152320-2       | 043019-20.D    | 04/30/2019       | 18:13            |
| BRW-01 MS        | 480-152320-3 MS    | 043019-24.D    | 04/30/2019       | 19:57            |
| BRW-01 MSD       | 480-152320-3 MSD   | 043019-25.D    | 04/30/2019       | 20:23            |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1

SDG No.:

Lab Sample ID: CCVIS 490-591468/2 Calibration Date: 04/30/2019 10:25

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 043019-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|----------------------------------------|---------------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Propene                                | Ave           | 0.3476  | 0.1996  | 0.1000  | 11.5           | 20.0            | -42.6* | 20.0      |
| Dichlorodifluoromethane                | Ave           | 0.4093  | 0.4076  | 0.1000  | 19.9           | 20.0            | -0.4   | 20.0      |
| Chloromethane                          | Ave           | 0.4315  | 0.3433  | 0.1000  | 15.9           | 20.0            | -20.4* | 20.0      |
| Vinyl chloride                         | Ave           | 0.4196  | 0.3368  | 0.1000  | 16.1           | 20.0            | -19.7  | 20.0      |
| Butadiene                              | Ave           | 0.3829  | 0.2992  | 0.1000  | 15.6           | 20.0            | -21.9* | 20.0      |
| Bromomethane                           | Ave           | 0.2325  | 0.2486  | 0.1000  | 21.4           | 20.0            | 6.9    | 20.0      |
| Chloroethane                           | Lin2          |         | 0.2199  | 0.1000  | 17.5           | 20.0            | -12.4  | 20.0      |
| Dichlorofluoromethane                  | Ave           | 0.6262  | 0.5752  | 0.1000  | 18.4           | 20.0            | -8.1   | 20.0      |
| Trichlorofluoromethane                 | Ave           | 0.5901  | 0.5931  | 0.1000  | 20.1           | 20.0            | 0.5    | 20.0      |
| Ethanol                                | Ave           | 0.0005  | 0.0006* | 0.0010  | 868            | 800             | 8.5    | 20.0      |
| Ethyl ether                            | Ave           | 0.2020  | 0.1943  | 0.1000  | 19.2           | 20.0            | -3.8   | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2837  | 0.2895  | 0.1000  | 20.4           | 20.0            | 2.0    | 20.0      |
| Acrolein                               | Ave           | 0.0216  | 0.0184  | 0.0100  | 42.0           | 49.4            | -15.0  | 20.0      |
| 1,1-Dichloroethene                     | Ave           | 0.3093  | 0.3191  | 0.1000  | 20.6           | 20.0            | 3.2    | 20.0      |
| Acetone                                | Ave           | 0.0137  | 0.0130  | 0.0100  | 94.7           | 100             | -5.3   | 20.0      |
| Iodomethane                            | Ave           | 0.5013  | 0.5848  | 0.1000  | 23.3           | 20.0            | 16.7   | 20.0      |
| Isopropyl alcohol                      | Ave           | 0.0071  | 0.0076  | 0.0010  | 213            | 200             | 6.7    | 20.0      |
| Carbon disulfide                       | Linl          |         | 0.8438  | 0.1000  | 21.5           | 20.0            | 7.4    | 20.0      |
| 3-Chloro-1-propene                     | Lin1          |         | 0.2519  | 0.1000  | 15.7           | 20.0            | -21.5* | 20.0      |
| Methyl acetate                         | Ave           | 0.1132  | 0.0945* | 0.1000  | 33.4           | 40.0            | -16.5  | 20.0      |
| Acetonitrile                           | Ave           | 0.0109  | 0.0088  | 0.0010  | 161            | 200             | -19.5  | 20.0      |
| Methylene Chloride                     | Ave           | 0.3762  | 0.3159  | 0.0100  | 16.8           | 20.0            | -16.0  | 20.0      |
| 2-Methyl-2-propanol                    | Ave           | 1.427   | 1.197   | 0.0010  | 168            | 200             | -16.1  | 20.0      |
| Methyl tert-butyl ether                | Ave           | 0.7291  | 0.7334  | 0.1000  | 20.1           | 20.0            | 0.6    | 20.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.4748  | 0.4383  | 0.1000  | 18.5           | 20.0            | -7.7   | 20.0      |
| Acrylonitrile                          | Ave           | 0.0592  | 0.0556  | 0.0100  | 188            | 200             | -6.1   | 20.0      |
| n-Hexane                               | Ave           | 0.4269  | 0.3954  | 0.1000  | 18.5           | 20.0            | -7.4   | 20.0      |
| Isopropyl ether                        | Lin2          |         | 0.8046  | 0.1000  | 17.6           | 20.0            | -12.0  | 20.0      |
| 1,1-Dichloroethane                     | Ave           | 0.6320  | 0.5915  | 0.2000  | 18.7           | 20.0            | -6.4   | 20.0      |
| Vinyl acetate                          | Ave           | 0.0557  | 0.0577* | 0.1000  | 41.4           | 40.0            | 3.5    | 20.0      |
| 2-Chloro-1,3-butadiene                 | Ave           | 0.5391  | 0.5122  | 0.1000  | 19.0           | 20.0            | -5.0   | 20.0      |
| Tert-butyl ethyl ether                 | Ave           | 0.9019  | 0.8534  | 0.1000  | 18.9           | 20.0            | -5.4   | 20.0      |
| 2,2-Dichloropropane                    | Linl          |         | 0.6003  | 0.1000  | 21.3           | 20.0            | 6.6    | 20.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.4322  | 0.4243  | 0.1000  | 19.6           | 20.0            | -1.8   | 20.0      |
| 2-Butanone (MEK)                       | Ave           | 0.0200  | 0.0206  | 0.0100  | 103            | 100             | 2.7    | 20.0      |
| Ethyl acetate                          | Ave           | 0.0205  | 0.0220  | 0.0100  | 42.8           | 40.0            | 7.0    | 20.0      |
| Propionitrile                          | Ave           | 0.0221  | 0.0221  | 0.0100  | 200            | 200             | 0.2    | 20.0      |
| Methacrylonitrile                      | Ave           | 0.1082  | 0.0990* | 0.1000  | 183            | 200             | -8.5   | 20.0      |
| Chlorobromomethane                     | Ave           | 0.2385  | 0.2523  | 0.1000  | 21.2           | 20.0            | 5.8    | 20.0      |
| Tetrahydrofuran                        | Ave           | 0.0603  | 0.0551  | 0.0500  | 36.5           | 40.0            | -8.7   | 20.0      |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1

SDG No.:

Lab Sample ID: CCVIS 490-591468/2 Calibration Date: 04/30/2019 10:25

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18 (mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 043019-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|--------|-----------|
| Chloroform                  | Ave           | 0.6391  | 0.6482 | 0.2000  | 20.3           | 20.0            | 1.4    | 20.0      |
| 1,1,1-Trichloroethane       | Ave           | 0.5930  | 0.6225 | 0.1000  | 21.0           | 20.0            | 5.0    | 20.0      |
| Cyclohexane                 | Ave           | 0.5493  | 0.4909 | 0.1000  | 17.9           | 20.0            | -10.6  | 20.0      |
| 1,1-Dichloropropene         | Ave           | 0.5015  | 0.4674 | 0.1000  | 18.6           | 20.0            | -6.8   | 20.0      |
| Carbon tetrachloride        | Ave           | 0.5348  | 0.5690 | 0.1000  | 21.3           | 20.0            | 6.4    | 20.0      |
| Isobutyl alcohol            | Ave           | 0.0112  | 0.0097 | 0.0010  | 436            | 500             | -12.8  | 20.0      |
| t-Amyl alcohol              | Ave           | 0.0123  | 0.0138 | 0.0010  | 225            | 200             | 12.6   | 20.0      |
| Benzene                     | Ave           | 1.528   | 1.477  | 0.5000  | 19.3           | 20.0            | -3.3   | 20.0      |
| Tert-amyl methyl ether      | Ave           | 0.9116  | 0.9052 | 0.1000  | 19.9           | 20.0            | -0.7   | 20.0      |
| 1,2-Dichloroethane          | Lin2          |         | 0.4391 | 0.1000  | 22.8           | 20.0            | 14.1   | 20.0      |
| n-Heptane                   | Ave           | 0.3461  | 0.2903 | 0.1000  | 16.8           | 20.0            | -16.1  | 20.0      |
| n-Butanol                   | Ave           | 0.0032  | 0.0040 | 0.0010  | 622            | 500             | 24.3*  | 20.0      |
| Trichloroethene             | Ave           | 0.4563  | 0.4486 | 0.2000  | 19.7           | 20.0            | -1.7   | 20.0      |
| Ethyl acrylate              | Ave           | 0.2418  | 0.2274 | 0.1000  | 18.8           | 20.0            | -6.0   | 20.0      |
| Methylcyclohexane           | Ave           | 0.6114  | 0.5801 | 0.1000  | 19.0           | 20.0            | -5.1   | 20.0      |
| 1,2-Dichloropropane         | Ave           | 0.3409  | 0.3017 | 0.1000  | 17.7           | 20.0            | -11.5  | 20.0      |
| Methyl methacrylate         | Ave           | 0.1961  | 0.1755 | 0.1000  | 35.8           | 40.0            | -10.5  | 20.0      |
| 1,4-Dioxane                 | Ave           | 1.249   | 1.145  | 0.0010  | 367            | 400             | -8.3   | 20.0      |
| Dibromomethane              | Ave           | 0.1585  | 0.1579 | 0.0500  | 19.9           | 20.0            | -0.4   | 20.0      |
| Bromodichloromethane        | Ave           | 0.4491  | 0.4661 | 0.2000  | 20.8           | 20.0            | 3.8    | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.1920  | 0.1777 | 0.1000  | 18.5           | 20.0            | -7.4   | 20.0      |
| 2-Nitropropane              | Ave           | 0.1064  | 0.1037 | 0.0100  | 39.0           | 40.0            | -2.5   | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 0.7007  | 0.6597 | 0.2000  | 18.8           | 20.0            | -5.8   | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.0871  | 0.0702 | 0.0500  | 80.6           | 100             | -19.4  | 20.0      |
| Toluene                     | Ave           | 2.180   | 1.911  | 0.4000  | 17.5           | 20.0            | -12.3  | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.5776  | 0.5335 | 0.0100  | 18.5           | 20.0            | -7.6   | 20.0      |
| Ethyl methacrylate          | Ave           | 0.4068  | 0.3511 | 0.1000  | 17.3           | 20.0            | -13.7  | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.3127  | 0.2863 | 0.1000  | 18.3           | 20.0            | -8.5   | 20.0      |
| Tetrachloroethene           | Ave           | 0.6029  | 0.5660 | 0.2000  | 18.8           | 20.0            | -6.1   | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.5521  | 0.4639 | 0.1000  | 16.8           | 20.0            | -16.0  | 20.0      |
| 2-Hexanone                  | Ave           | 0.0786  | 0.0638 | 0.0500  | 81.2           | 100             | -18.8  | 20.0      |
| n-Butyl acetate             | Lin2          |         | 0.2080 | 0.1000  | 14.2           | 20.0            | -28.8* | 20.0      |
| Dibromochloromethane        | Ave           | 0.3082  | 0.2876 | 0.1000  | 18.7           | 20.0            | -6.7   | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.3106  | 0.2835 | 0.1000  | 18.3           | 20.0            | -8.7   | 20.0      |
| 1-Chlorohexane              | Ave           | 0.5398  | 0.4428 | 0.1000  | 16.4           | 20.0            | -18.0  | 20.0      |
| Chlorobenzene               | Ave           | 1.405   | 1.299  | 0.5000  | 18.5           | 20.0            | -7.5   | 20.0      |
| Ethylbenzene                | Ave           | 2.311   | 2.118  | 0.1000  | 18.3           | 20.0            | -8.3   | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.5201  | 0.4794 | 0.1000  | 18.4           | 20.0            | -7.8   | 20.0      |
| m-Xylene & p-Xylene         | Ave           | 1.827   | 1.656  | 0.1000  | 18.1           | 20.0            | -9.4   | 20.0      |
| o-Xylene                    | Ave           | 1.847   | 1.663  | 0.3000  | 18.0           | 20.0            | -10.0  | 20.0      |
| Styrene                     | Ave           | 1.548   | 1.391  | 0.3000  | 18.0           | 20.0            | -10.1  | 20.0      |

# FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1

SDG No.:

Lab File ID: 042919-01.D BFB Injection Date: 04/29/2019

Instrument ID: HP39 BFB Injection Time: 09:57

Analysis Batch No.: 591225

| M/E | ION ABUNDANCE CRITERIA             |       | LATIVE<br>IDANCE |
|-----|------------------------------------|-------|------------------|
| 50  | 15.0 - 40.0 % of mass 95           | 15.8  |                  |
| 75  | 30.0 - 60.0 % of mass 95           | 52.2  | <del></del>      |
| 95  | Base Peak, 100% relative abundance | 100.0 |                  |
| 96  | 5.0 - 9.0 % of mass 95             | 7.2   |                  |
| 173 | Less than 2.0 % of mass 174        | 0.1   | (0.1) 1          |
| 174 | 50.0 - 120.00 % of mass 95         | 96.3  |                  |
| 175 | 5.0 - 9.0 % of mass 174            | 7.0   | (7.3) 1          |
| 176 | 95.0 - 101.0 % of mass 174         | 92.4  | (96.0) 1         |
| 177 | 5.0 - 9.0 % of mass 176            | 6.8   | (7.3) 2          |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

| CLIENT SAMPLE ID | LAB SAMPLE ID      | LAB<br>FILE ID | DATE<br>ANALYZED | TIME<br>ANALYZED |
|------------------|--------------------|----------------|------------------|------------------|
|                  | CCVIS 490-591225/2 | 042919-02.D    | 04/29/2019       | 10:23            |
|                  | LCS 490-591225/3   | 042919-03.D    | 04/29/2019       | 10:49            |
|                  | LCSD 490-591225/4  | 042919-04.D    | 04/29/2019       | 11:15            |
|                  | MB 490-591225/8    | 042919-08.D    | 04/29/2019       | 12:59            |
| TB-20190422      | 480-152320-5       | 042919-21.D    | 04/29/2019       | 18:37            |
| SR-105           | 480-152320-1       | 042919-23.D    | 04/29/2019       | 19:29            |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1

SDG No.:

Lab Sample ID: CCVIS 490-591225/2 Calibration Date: 04/29/2019 10:23

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 042919-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE | AVE RRF | RRF     | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|----------------------------------------|-------|---------|---------|---------|----------------|-----------------|--------|-----------|
| Propene                                | Ave   | 0.3476  | 0.2445  | 0.1000  | 14.1           | 20.0            | -29.6* | 20.0      |
| Dichlorodifluoromethane                | Ave   | 0.4093  | 0.5200  | 0.1000  | 25.4           | 20.0            | 27.0*  | 20.0      |
| Chloromethane                          | Ave   | 0.4315  | 0.3679  | 0.1000  | 17.1           | 20.0            | -14.7  | 20.0      |
| Vinyl chloride                         | Ave   | 0.4196  | 0.3810  | 0.1000  | 18.2           | 20.0            | -9.2   | 20.0      |
| Butadiene                              | Ave   | 0.3829  | 0.3572  | 0.1000  | 18.7           | 20.0            | -6.7   | 20.0      |
| Bromomethane                           | Ave   | 0.2325  | 0.2810  | 0.1000  | 24.2           | 20.0            | 20.8*  | 20.0      |
| Chloroethane                           | Lin2  |         | 0.2425  | 0.1000  | 19.3           | 20.0            | -3.3   | 20.0      |
| Dichlorofluoromethane                  | Ave   | 0.6262  | 0.6180  | 0.1000  | 19.7           | 20.0            | -1.3   | 20.0      |
| Trichlorofluoromethane                 | Ave   | 0.5901  | 0.6964  | 0.1000  | 23.6           | 20.0            | 18.0   | 20.0      |
| Ethanol                                | Ave   | 0.0005  | 0.0003* | 0.0010  | 483            | 800             | -39.7* | 20.0      |
| Ethyl ether                            | Ave   | 0.2020  | 0.1816  | 0.1000  | 18.0           | 20.0            | -10.1  | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave   | 0.2837  | 0.2666  | 0.1000  | 18.8           | 20.0            | -6.0   | 20.0      |
| Acrolein                               | Ave   | 0.0216  | 0.0170  | 0.0100  | 38.9           | 49.4            | -21.3* | 20.0      |
| 1,1-Dichloroethene                     | Ave   | 0.3093  | 0.3321  | 0.1000  | 21.5           | 20.0            | 7.4    | 20.0      |
| Acetone                                | Ave   | 0.0137  | 0.0126  | 0.0100  | 91.9           | 100             | -8.1   | 20.0      |
| Iodomethane                            | Ave   | 0.5013  | 0.6099  | 0.1000  | 24.3           | 20.0            | 21.7*  | 20.0      |
| Isopropyl alcohol                      | Ave   | 0.0071  | 0.0048  | 0.0010  | 134            | 200             | -33.1* | 20.0      |
| Carbon disulfide                       | Lin1  |         | 0.8686  | 0.1000  | 22.1           | 20.0            | 10.6   | 20.0      |
| 3-Chloro-1-propene                     | Lin1  |         | 0.2981  | 0.1000  | 18.4           | 20.0            | -8.2   | 20.0      |
| Methyl acetate                         | Ave   | 0.1132  | 0.0990* | 0.1000  | 35.0           | 40.0            | -12.5  | 20.0      |
| Acetonitrile                           | Ave   | 0.0109  | 0.0076  | 0.0010  | 139            | 200             | -30.3* | 20.0      |
| Methylene Chloride                     | Ave   | 0.3762  | 0.3429  | 0.0100  | 18.2           | 20.0            | -8.9   | 20.0      |
| 2-Methyl-2-propanol                    | Ave   | 1.427   | 1.380   | 0.0010  | 194            | 200             | -3.2   | 20.0      |
| Methyl tert-butyl ether                | Ave   | 0.7291  | 0.7424  | 0.1000  | 20.4           | 20.0            | 1.8    | 20.0      |
| trans-1,2-Dichloroethene               | Ave   | 0.4748  | 0.4638  | 0.1000  | 19.5           | 20.0            | -2.3   | 20.0      |
| Acrylonitrile                          | Ave   | 0.0592  | 0.0544  | 0.0100  | 184            | 200             | -8.0   | 20.0      |
| n-Hexane                               | Ave   | 0.4269  | 0.3533  | 0.1000  | 16.5           | 20.0            | -17.3  | 20.0      |
| Isopropyl ether                        | Lin2  |         | 0.9002  | 0.1000  | 19.7           | 20.0            | -1.4   | 20.0      |
| 1,1-Dichloroethane                     | Ave   | 0.6320  | 0.6159  | 0.2000  | 19.5           | 20.0            | -2.6   | 20.0      |
| Vinyl acetate                          | Ave   | 0.0557  | 0.0576* | 0.1000  | 41.3           | 40.0            | 3.3    | 20.0      |
| 2-Chloro-1,3-butadiene                 | Ave   | 0.5391  | 0.5516  | 0.1000  | 20.5           | 20.0            | 2.3    | 20.0      |
| Tert-butyl ethyl ether                 | Ave   | 0.9019  | 0.9193  | 0.1000  | 20.4           | 20.0            | 1.9    | 20.0      |
| 2,2-Dichloropropane                    | Linl  |         | 0.6264  | 0.1000  | 22.3           | 20.0            | 11.3   | 20.0      |
| cis-1,2-Dichloroethene                 | Ave   | 0.4322  | 0.4290  | 0.1000  | 19.9           | 20.0            | -0.7   | 20.0      |
| Ethyl acetate                          | Ave   | 0.0205  | 0.0223  | 0.0100  | 43.4           | 40.0            | 8.5    | 20.0      |
| 2-Butanone (MEK)                       | Ave   | 0.0200  | 0.0209  | 0.0100  | 104            | 100             | 4.3    | 20.0      |
| Propionitrile                          | Ave   | 0.0221  | 0.0207  | 0.0100  | 188            | 200             | -6.1   | 20.0      |
| Chlorobromomethane                     | Ave   | 0.2385  | 0.2572  | 0.1000  | 21.6           | 20.0            | 7.8    | 20.0      |
| Methacrylonitrile                      | Ave   | 0.1082  | 0.0966* | 0.1000  | 179            | 200             | -10.7  | 20.0      |
| Tetrahydrofuran                        | Ave   | 0.0603  | 0.0528  | 0.0500  | 35.0           | 40.0            | -12.5  | 20.0      |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1

SDG No.:

Lab Sample ID: CCVIS 490-591225/2 Calibration Date: 04/29/2019 10:23

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18(mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 042919-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|--------|-----------|
| Chloroform                  | Ave           | 0.6391  | 0.6820 | 0.2000  | 21.3           | 20.0            | 6.7    | 20.0      |
| 1,1,1-Trichloroethane       | Ave           | 0.5930  | 0.6238 | 0.1000  | 21.0           | 20.0            | 5.2    | 20.0      |
| Cyclohexane                 | Ave           | 0.5493  | 0.4459 | 0.1000  | 16.2           | 20.0            | -18.8  | 20.0      |
| 1,1-Dichloropropene         | Ave           | 0.5015  | 0.5035 | 0.1000  | 20.1           | 20.0            | 0.4    | 20.0      |
| Carbon tetrachloride        | Ave           | 0.5348  | 0.5706 | 0.1000  | 21.3           | 20.0            | 6.7    | 20.0      |
| Isobutyl alcohol            | Ave           | 0.0112  | 0.0078 | 0.0010  | 351            | 500             | -29.9* | 20.0      |
| Benzene                     | Ave           | 1.528   | 1.522  | 0.5000  | 19.9           | 20.0            | -0.4   | 20.0      |
| t-Amyl alcohol              | Ave           | 0.0123  | 0.0112 | 0.0010  | 184            | 200             | -8.2   | 20.0      |
| Tert-amyl methyl ether      | Ave           | 0.9116  | 0.8927 | 0.1000  | 19.6           | 20.0            | -2.1   | 20.0      |
| 1,2-Dichloroethane          | Lin2          |         | 0.4469 | 0.1000  | 23.2           | 20.0            | 16.1   | 20.0      |
| n-Heptane                   | Ave           | 0.3461  | 0.2469 | 0.1000  | 14.3           | 20.0            | -28.7* | 20.0      |
| n-Butanol                   | Ave           | 0.0032  | 0.0024 | 0.0010  | 371            | 500             | -25.7* | 20.0      |
| Trichloroethene             | Ave           | 0.4563  | 0.4769 | 0.2000  | 20.9           | 20.0            | 4.5    | 20.0      |
| Ethyl acrylate              | Ave           | 0.2418  | 0.2369 | 0.1000  | 19.6           | 20.0            | -2.0   | 20.0      |
| Methylcyclohexane           | Ave           | 0.6114  | 0.4966 | 0.1000  | 16.2           | 20.0            | -18.8  | 20.0      |
| 1,2-Dichloropropane         | Ave           | 0.3409  | 0.3113 | 0.1000  | 18.3           | 20.0            | -8.7   | 20.0      |
| Methyl methacrylate         | Ave           | 0.1961  | 0.1858 | 0.1000  | 37.9           | 40.0            | -5.2   | 20.0      |
| 1,4-Dioxane                 | Ave           | 1.249   | 1.132  | 0.0010  | 363            | 400             | -9.3   | 20.0      |
| Dibromomethane              | Ave           | 0.1585  | 0.1648 | 0.0500  | 20.8           | 20.0            | 4.0    | 20.0      |
| Bromodichloromethane        | Ave           | 0.4491  | 0.4857 | 0.2000  | 21.6           | 20.0            | 8.2    | 20.0      |
| 2-Chloroethyl vinyl ether   | Ave           | 0.1920  | 0.1819 | 0.1000  | 19.0           | 20.0            | -5.2   | 20.0      |
| 2-Nitropropane              | Ave           | 0.1064  | 0.1047 | 0.0100  | 39.4           | 40.0            | -1.6   | 20.0      |
| cis-1,3-Dichloropropene     | Ave           | 0.7007  | 0.7188 | 0.2000  | 20.5           | 20.0            | 2.6    | 20.0      |
| 4-Methyl-2-pentanone (MIBK) | Ave           | 0.0871  | 0.0757 | 0.0500  | 86.9           | 100             | -13.1  | 20.0      |
| Toluene                     | Ave           | 2.180   | 2.089  | 0.4000  | 19.2           | 20.0            | -4.2   | 20.0      |
| trans-1,3-Dichloropropene   | Ave           | 0.5776  | 0.5862 | 0.0100  | 20.3           | 20.0            | 1.5    | 20.0      |
| Ethyl methacrylate          | Ave           | 0.4068  | 0.3569 | 0.1000  | 17.5           | 20.0            | -12.3  | 20.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.3127  | 0.3041 | 0.1000  | 19.5           | 20.0            | -2.7   | 20.0      |
| Tetrachloroethene           | Ave           | 0.6029  | 0.5551 | 0.2000  | 18.4           | 20.0            | -7.9   | 20.0      |
| 1,3-Dichloropropane         | Ave           | 0.5521  | 0.5180 | 0.1000  | 18.8           | 20.0            | -6.2   | 20.0      |
| 2-Hexanone                  | Ave           | (0.0786 | 0.0653 | 0.0500  | 83.0           | 100             | -17.0  | 20.0      |
| n-Butyl acetate             | Lin2          |         | 0.2225 | 0.1000  | 15.2           | 20.0            | -23.8* | 20.0      |
| Dibromochloromethane        | Ave           | 0.3082  | 0.3397 | 0.1000  | 22.0           | 20.0            | 10.2   | 20.0      |
| 1,2-Dibromoethane           | Ave           | 0.3106  | 0.3050 | 0.1000  | 19.6           | 20.0            | -1.8   | 20.0      |
| 1-Chlorohexane              | Ave           | 0.5398  | 0.4105 | 0.1000  | 15.2           | 20.0            | -24.0* | 20.0      |
| Chlorobenzene               | Ave           | 1.405   | 1.376  | 0.5000  | 19.6           | 20.0            | -2.0   | 20.0      |
| Ethylbenzene                | Ave           | 2.311   | 2.117  | 0.1000  | 18.3           | 20.0            | -8.4   | 20.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.5201  | 0.5070 | 0.1000  | 19.5           | 20.0            | -2.5   | 20.0      |
| m-Xylene & p-Xylene         | Ave           | 1.827   | 1.649  | 0.1000  | 18.1           | 20.0            | -9.7   | 20.0      |
| o-Xylene                    | Ave           | 1.847   | 1.706  | 0.3000  | 18.5           | 20.0            | -7.6   | 20.0      |
| Styrene                     | Ave           | 1.548   | 1.443  | 0.3000  | 18.6           | 20.0            | -6.8   | 20.0      |

Lab Name: Eurofins TestAmerica, Nashville Job No.: 480-152320-1

SDG No.:

Lab Sample ID: CCVIS 490-591225/2 Calibration Date: 04/29/2019 10:23

Instrument ID: HP39 Calib Start Date: 03/20/2019 16:25

GC Column: ZB-624 ID: 0.18 (mm) Calib End Date: 03/20/2019 20:17

Lab File ID: 042919-02.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|---------|-----------|
| Bromoform                    | Ave           | 0.2447  | 0.2352 | 0.0100  | 19.2           | 20.0            | -3.9    | 20.0      |
| Isopropylbenzene             | Ave           | 2.256   | 1.954  | 0.1000  | 17.3           | 20.0            | -13.4   | 20.0      |
| Cyclohexanone                | Ave           | 0.0048  | 0.0039 | 0.0010  | 162            | 200             | -18.9   | 20.0      |
| Bromobenzene                 | Ave           | 1.071   | 1.076  | 0.1000  | 20.1           | 20.0            | 0.5     | 20.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.5739  | 0.5467 | 0.3000  | 19.1           | 20.0            | -4.7    | 20.0      |
| N-Propylbenzene              | Ave           | 4.517   | 4.028  | 0.1000  | 17.8           | 20.0            | -10.8   | 20.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.1949  | 0.2056 | 0.1000  | 21.1           | 20.0            | 5.5     | 20.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.1738  | 0.1914 | 0.1000  | 22.0           | 20.0            | 10.1    | 20.0      |
| 4-Ethyltoluene               | Ave           | 2.750   | 1.897  | 0.1000  | 13.8           | 20.0            | -31.0*  | 20.0      |
| 2-Chlorotoluene              | Ave           | 3.217   | 2.917  | 0.1000  | 18.1           | 20.0            | -9.3    | 20.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 3.397   | 3.012  | 0.1000  | 17.7           | 20.0            | -11.3   | 20.0      |
| 4-Chlorotoluene              | Ave           | 2.724   | 2.636  | 0.1000  | 19.4           | 20.0            | -3.2    | 20.0      |
| tert-Butylbenzene            | Ave           | 2.971   | 2.479  | 0.1000  | 16.7           | 20.0            | -16.6   | 20.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 3.286   | 2.887  | 0.1000  | 17.6           | 20.0            | -12.1   | 20.0      |
| sec-Butylbenzene             | Ave           | 3.825   | 3.158  | 0.1000  | 16.5           | 20.0            | -17.4   | 20.0      |
| 4-Isopropyltoluene           | Ave           | 3.443   | 2.920  | 0.1000  | 17.0           | 20.0            | -15.2   | 20.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.832   | 1.679  | 0.6000  | 18.3           | 20.0            | -8.3    | 20.0      |
| Dicyclopentadiene            | Ave           | 4.784   | 2.832  | 0.1000  | 11.8           | 20.0            | -40.8*  | 20.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.837   | 1.675  | 0.5000  | 18.2           | 20.0            | -8.8    | 20.0      |
| 1,2,3-Trimethylbenzene       | Ave           | 3.281   | 2.970  | 0.1000  | 18.1           | 20.0            | -9.5    | 20.0      |
| Benzyl chloride              | Ave           | 0.6556  | 0.7068 | 0.0100  | 21.6           | 20.0            | 7.8     | 20.0      |
| n-Butylbenzene               | Ave           | 2.527   | 2.045  | 0.1000  | 16.2           | 20.0            | -19.1   | 20.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.643   | 1.528  | 0.4000  | 18.6           | 20.0            | -7.0    | 20.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.1200  | 0.1258 | 0.0100  | 21.0           | 20.0            | 4.9     | 20.0      |
| 1,3,5-Trichlorobenzene       | Ave           | 1.084   | 0.8101 | 0.1000  | 14.9           | 20.0            | -25.3*  | 20.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 0.8079  | 0.6180 | 0.2000  | 15.3           | 20.0            | (-23.5* | 20.0      |
| Hexachlorobutadiene          | Ave           | 0.4126  | 0.2714 | 0.1000  | 13.2           | 20.0            | -34.2*  | 20.0      |
| Naphthalene                  | Ave           | 1.587   | 1.493  | 0.0100  | 18.8           | 20.0            | -5.9    | 20.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.6315  | 0.4884 | 0.1000  | 15.5           | 20.0            | -22.7*  | 20.0      |
| 2-Methylnaphthalene          | Ave           | 0.6238  | 0.5928 | 0.0100  | 19.0           | 20.0            | -5.0    | 20.0      |
| 1-Methylnaphthalene          | Ave           | 0.4971  | 0.4419 | 0.1000  | 17.8           | 20.0            | -11.1   | 20.0      |
| Dibromofluoromethane (Surr)  | Ave           | 0.2262  | 0.2374 |         | 26.2           | 25.0            | 4.9     | 20.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.2292  | 0.2425 |         | 26.4           | 25.0            | 5.8     | 20.0      |
| Toluene-d8 (Surr)            | Ave           | 1.257   | 1.217  |         | 24.2           | 25.0            | -3.2    | 20.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.8068  | 0.8274 |         | 25.6           | 25.0            | 2.6     | 20.0      |

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG No.:

Instrument ID: ICAP2 Method: 6010C

| IC 480-472000/2 IC 480-472000/3 IC 480-472000/4 ICV 480-472000/5 ICB 480-472000/6                                                  | D / F  | T<br>Y<br>P<br>e | Time  | Fe | M        |               |               |        |          |   |          | A      | nal      | .yt    | es       |          |   |          |   |        |   |   |          |
|------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-------|----|----------|---------------|---------------|--------|----------|---|----------|--------|----------|--------|----------|----------|---|----------|---|--------|---|---|----------|
| Sample<br>ID<br>ICIS 480-472000/1<br>IC 480-472000/2<br>IC 480-472000/3<br>IC 480-472000/4<br>ICV 480-472000/5<br>ICB 480-472000/6 | /<br>F | y<br>p           |       |    | 1 1      |               |               |        |          |   |          | $\neg$ |          |        |          |          |   |          |   |        |   |   |          |
| Sample<br>ID  ICIS 480-472000/1  IC 480-472000/2  IC 480-472000/3  IC 480-472000/4  ICV 480-472000/5  ICB 480-472000/6             | /<br>F | y<br>p           |       |    | 11       |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| IC 480-472000/2 IC 480-472000/3 IC 480-472000/4 ICV 480-472000/5 ICB 480-472000/6                                                  | 1      |                  | 10.14 | l. |          |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| IC 480-472000/3 IC 480-472000/4 ICV 480-472000/5 ICB 480-472000/6                                                                  |        |                  | 10:14 | Х  | Х        |               | $\overline{}$ |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| IC 480-472000/4<br>ICV 480-472000/5<br>ICB 480-472000/6                                                                            |        |                  | 10:18 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   | <u> </u> |   |        |   |   |          |
| ICV 480-472000/5<br>ICB 480-472000/6                                                                                               |        |                  | 10:22 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| ICB 480-472000/6                                                                                                                   |        |                  | 10:25 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
|                                                                                                                                    | 1      |                  | 10:29 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
|                                                                                                                                    | 1      |                  | 10:32 | X  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| ICVL 480-472000/7                                                                                                                  | ī      |                  | 10:36 | X  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   | ļ        |
| ICSA 480-472000/8                                                                                                                  | ī      |                  | 10:40 | Х  | Х        | $\vdash$      |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| ICSAB 480-472000/9                                                                                                                 | 1      |                  | 10:43 | Х  | Х        | $\vdash$      |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| ZZZZZZ                                                                                                                             |        |                  | 10:47 |    | $\vdash$ |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   | $\vdash$ |
| ZZZZZZ                                                                                                                             |        |                  | 10:51 |    |          |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| ZZZZZZ                                                                                                                             |        |                  | 10:55 |    |          |               | $\neg$        |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| ZZZZZZ                                                                                                                             |        |                  | 10:58 |    |          |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| ZZZZZZ                                                                                                                             |        |                  | 11:02 |    |          |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| CCV 480-472000/15                                                                                                                  |        |                  | 11:06 |    |          |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| CCB 480-472000/16                                                                                                                  |        |                  | 11:09 |    |          |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| CCV 480-472000/17                                                                                                                  | 1      |                  | 12:53 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| CCB 480-472000/18                                                                                                                  | 1      |                  | 12:57 | Х  | Х        | -             |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| CCVL 480-472000/19                                                                                                                 | 1      |                  | 13:01 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| MB 480-470105/1-A                                                                                                                  | 1      | R                | 13:08 | Х  | Х        |               | $\dashv$      |        |          |   |          |        |          |        |          | -        |   |          |   |        |   |   | $\vdash$ |
| LCS 480-470105/2-A                                                                                                                 | 1      | R                | 13:12 | Х  | Х        |               | $\dashv$      |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| 480-152320-1                                                                                                                       | 1      | D                | 13:15 | Х  | Х        |               |               |        |          |   |          |        |          | _      |          |          |   |          |   |        |   |   |          |
| 480-152320-2                                                                                                                       | 1      | D                | 13:19 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   | _ |          |
| 480-152320-3                                                                                                                       | 1      | D                | 13:23 | Х  | Х        |               | _             |        |          |   |          |        |          |        |          |          | L |          |   |        |   |   |          |
| 480-152320-3 SD                                                                                                                    | 5      | D                | 13:26 | Х  | Х        |               |               |        |          | - |          |        |          |        |          |          |   |          |   |        |   |   |          |
| 480-152320-3 PDS                                                                                                                   | 1      | D                | 13:30 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| 480-152320-3 MS                                                                                                                    | 1      | D                | 13:34 | Х  | Х        |               | -             | $\neg$ |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| CCV 480-472000/28                                                                                                                  | 1      |                  | 13:38 | Х  | Х        | +             |               |        |          |   | $\vdash$ |        |          |        |          |          |   |          |   |        |   |   |          |
| CCB 480-472000/29                                                                                                                  | 1      |                  | 13:41 | Х  | Х        |               |               |        |          |   |          |        |          | $\neg$ |          |          |   |          | - |        |   |   |          |
| CCVL 480-472000/30                                                                                                                 | 1      |                  | 13:45 | Х  | Х        | $\rightarrow$ | $\dashv$      |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   | <u> </u> |
| 480-152320-3 MSD                                                                                                                   | 1      | D                | 13:49 | Х  | Х        | $\dashv$      | $\dashv$      |        | -        |   |          |        |          |        |          |          |   |          |   |        |   |   | <u> </u> |
|                                                                                                                                    | 1      | D                | 13:52 | Х  | Х        |               |               |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| 22222                                                                                                                              |        |                  | 13:56 |    |          | $\overline{}$ |               |        |          |   | $\vdash$ |        | $\dashv$ |        |          |          |   |          |   |        |   |   |          |
| 22222                                                                                                                              | _      |                  | 14:00 |    |          | +             | -             |        |          |   |          |        | _        |        |          |          |   |          |   | $\neg$ |   |   |          |
| ZZZZZZ                                                                                                                             |        |                  | 14:04 |    |          | _             |               | $\neg$ |          |   |          | -      | -        |        |          |          |   |          |   |        |   |   |          |
| ZZZZZZ                                                                                                                             |        |                  | 14:07 |    |          | $\rightarrow$ | $\dashv$      |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| ZZZZZZ                                                                                                                             | -      |                  | 14:11 |    |          |               | $\dashv$      |        |          |   |          |        |          |        |          |          |   |          |   |        |   |   |          |
| 22222                                                                                                                              | +      |                  | 14:15 |    |          | -+            | +             |        | -        |   |          | -      | -        |        | $\dashv$ | $\dashv$ |   |          |   | -      |   |   |          |
| ZZZZZZ                                                                                                                             |        |                  | 14:19 |    | $\vdash$ | -             | $\dashv$      | -      | $\dashv$ |   | -        |        |          |        |          |          |   | $\vdash$ |   |        |   |   |          |
|                                                                                                                                    | 1      |                  | 14:23 | Х  | Х        |               |               | -      |          |   |          |        |          |        |          | _        |   |          |   |        | - |   |          |
|                                                                                                                                    | 1      |                  | 14:26 | Х  | Х        | +             |               |        |          |   | -        | +      | -        |        |          |          |   |          |   |        | - |   |          |
|                                                                                                                                    | ī      | -                | 14:30 | Х  | Х        |               |               |        | -        |   |          |        |          |        |          |          |   |          |   |        |   | - |          |

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG No.:

Instrument ID: ICAP2 Method: 6010C

Start Date: 05/08/2019 10:14 End Date: 05/08/2019 15:14

|                     |             |                  |       |        |   |           |   |        |        |   | A | nal | yt | es |  |   |   |  |  |
|---------------------|-------------|------------------|-------|--------|---|-----------|---|--------|--------|---|---|-----|----|----|--|---|---|--|--|
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>P<br>e | Time  | F<br>e | M |           |   |        |        |   |   |     |    |    |  |   |   |  |  |
| ZZZZZZ              | <del></del> |                  | 14:34 |        |   | T         | T | Ť      | Ī      | Ť |   |     |    |    |  | Γ |   |  |  |
| ZZZZZZ              |             |                  | 14:37 |        |   | $\dagger$ | _ | $\top$ |        |   |   |     |    |    |  |   |   |  |  |
| ZZZZZZ              |             |                  | 14:41 |        |   | T         |   |        | $\top$ |   |   |     |    |    |  |   |   |  |  |
| ZZZZZZ              | İ           |                  | 14:45 |        |   | T         |   | $\top$ | $\top$ |   |   |     |    |    |  |   |   |  |  |
| ZZZZZZ              |             |                  | 14:49 |        |   | Ť         |   | 1      | $\top$ |   |   |     |    |    |  |   |   |  |  |
| ZZZZZZ              |             |                  | 14:52 |        |   | T         |   |        |        |   |   |     |    |    |  |   |   |  |  |
| ZZZZZZ              |             |                  | 14:56 |        |   |           |   | 1      |        |   |   |     |    |    |  |   |   |  |  |
| ZZZZZZ              |             |                  | 15:00 |        |   |           |   |        |        |   |   |     |    |    |  |   | 9 |  |  |
| CCV 480-472000/51   |             |                  | 15:07 |        |   | T         |   | T      |        |   |   |     |    |    |  |   |   |  |  |
| CCB 480-472000/52   |             |                  | 15:11 |        |   | T         |   |        |        | _ |   |     |    |    |  |   |   |  |  |
| CCVL 480-472000/53  |             |                  | 15:14 |        |   | T         |   |        |        |   |   |     |    |    |  |   |   |  |  |

Prep Types

D = Dissolved

R = Total Recoverable

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00247 Concent

Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00247

|                         | ICVL<br>05/0 |   | 0-472000/<br>019 10:3 |     | CCVL<br>05/08 |   | -472000/1<br>019 13:0 |     | CCVL<br>05/0 |   | -472000/3<br>)19 13:4! |     |
|-------------------------|--------------|---|-----------------------|-----|---------------|---|-----------------------|-----|--------------|---|------------------------|-----|
| Analyte                 | Found        | С | True                  | ₽R  | Found         | С | True                  | ₹R  | Found        | С | True                   | ₹R  |
| Iron,<br>Dissolved      | 0.0577       |   | 0.0500                | 115 | 0.0545        |   | 0.0500                | 109 | 0.0528       |   | 0.0500                 | 106 |
| Manganese,<br>Dissolved | 0.00352      |   | 0.00300               | 117 | 0.00344       |   | 0.00300               | 115 | 0.00346      |   | 0.00300                | 115 |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

| Lab | Name:  | Eurofins  | TestAmerica, | Buffalo | Job No.: | 480-152320-1      |  |
|-----|--------|-----------|--------------|---------|----------|-------------------|--|
| SDG | No.:   |           |              |         |          |                   |  |
| TCV | Source | e: MEI 10 | CCVL 00247   |         | Concentr | ation Units: mg/L |  |

CCV Source: MEI\_10\_CCVL\_00247

|                         | 1       |   | -472000/4<br>019 14:30 |     |       |   |      |    |       |   |      |    |
|-------------------------|---------|---|------------------------|-----|-------|---|------|----|-------|---|------|----|
| Analyte                 | Found   | С | True                   | %R  | Found | С | True | %R | Found | С | True | %R |
| Iron,<br>Dissolved      | 0.0530  |   | 0.0500                 | 106 |       |   |      |    |       |   |      |    |
| Manganese,<br>Dissolved | 0.00347 |   | 0.00300                | 116 |       |   |      |    |       |   |      |    |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG No.:

Instrument ID: ICAP2 Method: 6010C

| Start Date: 05/13   | /2019        | 11:              | 52    |    |          | -<br>End | Da | te:                                              |          | 05/          | 13/      | 20  | 19  | 19       | :17      |          |                                                  |                                                  |                                                  |          |                                                  | _            |
|---------------------|--------------|------------------|-------|----|----------|----------|----|--------------------------------------------------|----------|--------------|----------|-----|-----|----------|----------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|--------------|
|                     |              |                  |       |    | -        |          |    |                                                  |          |              | Ar       | nal | yte | es       |          |          |                                                  | _                                                |                                                  |          |                                                  | _            |
|                     |              |                  |       | F  | M<br>n   |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| Lab<br>Sample<br>ID | D<br>/<br>F  | T<br>Y<br>p<br>e | Time  |    |          | :        |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| ICIS 480-472702/1   | 1            |                  | 11:52 | Х  | Х        |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | I            |
| IC 480-472702/2     |              |                  | 11:56 | X  | Х        |          | T  |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | L            |
| IC 480-472702/3     |              |                  | 12:00 | Х  | Х        |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| IC 480-472702/4     |              |                  | 12:03 | Х  | Х        |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | L            |
| ICV 480-472702/5    | 1            |                  | 12:07 | Х  | Х        |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| ICB 480-472702/6    | 1            |                  | 12:10 | Х  | Х        |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  | 9        |                                                  | $\perp$      |
| ICVL 480-472702/7   | 1            |                  | 12:14 | Х  | Х        |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | L            |
| ICSA 480-472702/8   | 1            |                  | 12:18 | Х  | Х        |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | L            |
| ICSAB 480-472702/9  | 1            |                  | 12:22 | Х  | Х        |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| ZZZZZZ              |              |                  | 12:25 |    |          |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| ZZZZZZ              |              |                  | 12:29 | 1  |          |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| ZZZZZZ              |              |                  | 12:33 | 1- |          |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| ZZZZZZ              |              |                  | 12:37 |    |          |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | Г            |
| ZZZZZZ              |              |                  | 12:40 |    |          |          |    |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | Τ            |
| CCV 480-472702/15   | <del> </del> |                  | 12:44 | +  |          |          |    |                                                  |          | 1            |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | Γ            |
| CCB 480-472702/16   | +            |                  | 12:48 | 1- |          |          | T  |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | T            |
| CCV 480-472702/17   | 1            |                  | 16:12 | X  | х        |          | 1  |                                                  |          |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  |              |
| CCB 480-472702/18   | 1            |                  | 16:15 | X  | Х        |          |    |                                                  |          | 1            |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | T            |
| CCVL 480-472702/19  | 1            |                  | 16:19 | Х  | х        |          |    |                                                  | -        |              |          |     |     |          | _        |          |                                                  |                                                  |                                                  |          |                                                  | T            |
| MB 480-470921/1-A   | 1            | Т                | 16:45 | Х  | х        |          | +  | _                                                | $\vdash$ |              |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | T            |
| LCS 480-470921/2-A  | 1            | T                | 16:49 | X  | х        |          | +  | -                                                |          | 1            |          |     |     |          |          |          |                                                  |                                                  |                                                  | -        |                                                  | $\uparrow$   |
| 480-152320-1        | 1            | T                | 16:52 | X  | Х        |          | 1  | -                                                |          | 1            |          |     | _   |          | _        |          | <del>                                     </del> |                                                  |                                                  |          |                                                  | $\uparrow$   |
| CCV 480-472702/23   | 1            |                  | 16:56 | X  | х        |          | +  |                                                  |          | +            |          |     |     |          | _        |          | _                                                |                                                  |                                                  |          |                                                  | t            |
| CCB 480-472702/24   | 1            |                  | 17:00 | Х  | Х        | -        | +  |                                                  |          |              |          |     |     |          |          |          |                                                  | <del>                                     </del> |                                                  |          |                                                  | t            |
| CCVL 480-472702/25  | 1            |                  | 17:03 | X  | х        | -        | +  |                                                  | -        | +            |          |     |     |          |          |          |                                                  | 1                                                |                                                  |          | _                                                | $^{\dagger}$ |
| 480-152320-2        | 1            | T                | 17:07 | X  | Х        |          | +  | $\vdash$                                         |          | +            |          |     |     |          |          |          |                                                  |                                                  |                                                  |          |                                                  | $\dagger$    |
| 480-152320-3        | 1            | T                | 17:11 | Х  | Х        | _        | +  |                                                  | -        | $\vdash$     | $\vdash$ |     |     |          | -        |          |                                                  |                                                  | -                                                |          | _                                                | $^{\dagger}$ |
| 480-152320-3 SD     | 5            | T                | 17:15 | X  | х        | -+       | +  | -                                                | -        | $\vdash$     | $\vdash$ |     |     | -        |          |          |                                                  |                                                  | <del>                                     </del> |          | <del>                                     </del> | +            |
| 480-152320-3 PDS    | 1            | T                | 17:18 | X  | x        |          | +  | <del>                                     </del> |          | $\vdash$     |          |     | -   | -        | $\vdash$ |          |                                                  | 1                                                | _                                                |          |                                                  | t            |
| 480-152320-3 MS     | 1            | T                | 17:22 | X  | X        | _        | +  | -                                                | -        | +            |          |     | -   | -        | -        |          | -                                                | <u> </u>                                         |                                                  | $\vdash$ | -                                                | $\dagger$    |
| 480-152320-3 MSD    | 1            | T                | 17:26 | X  | х        | -        | +  |                                                  | -        | -            |          |     | -   | -        |          | _        | +-                                               | -                                                | $\vdash$                                         |          | -                                                | +            |
| 480-152320-3 M3D    | 1            | T                | 17:29 | X  | X        |          | +  | -                                                | -        | <del> </del> |          | -   | _   |          |          |          | -                                                |                                                  |                                                  | -        | $\vdash$                                         | +            |
| ZZZZZZ              | 1            | -                | 17:33 |    |          | -        | +  | -                                                |          | +-           |          |     |     |          |          | -        | $\vdash$                                         | -                                                |                                                  |          | -                                                | +            |
| 22222               |              |                  | 17:37 |    |          | -        | +  | -                                                | -        |              |          |     | -   |          |          | -        | -                                                | -                                                |                                                  | $\vdash$ | -                                                | +            |
| CCV 480-472702/35   | 1            | -                | 17:37 | х  | Х        | _        | +  |                                                  |          | -            |          |     |     | -        |          | -        | -                                                |                                                  |                                                  | -        | -                                                | +            |
| CCB 480-472702/36   | 1            |                  | 17:41 | X  | X        |          | -  | -                                                | -        | +            |          |     | _   | -        | -        | -        | -                                                |                                                  | -                                                |          | -                                                | +            |
| CCVL 480-472702/37  | 1            | -                | 17:44 | X  | X        | -        | -  | -                                                |          |              |          |     |     | -        | -        | -        | +                                                | -                                                | $\vdash$                                         | -        |                                                  | +            |
|                     | 1            |                  |       | ^_ | ^        |          | +  | -                                                | -        | -            |          |     | _   | -        |          | -        | -                                                | -                                                |                                                  |          | -                                                | +            |
| ZZZZZZ              |              |                  | 17:52 | _  | $\sqcup$ |          | +  | -                                                | -        |              |          |     |     | -        | _        | -        |                                                  | -                                                | -                                                | -        | -                                                | +            |
| ZZZZZZ              |              |                  | 17:55 |    |          |          |    | <u> </u>                                         | <u> </u> | -            |          |     |     | _        |          | -        | <u> </u>                                         | -                                                |                                                  |          | -                                                | +            |
| ZZZZZZ              |              |                  | 17:59 |    |          |          | _  | -                                                | _        | $\vdash$     |          |     | ļ   |          |          |          | -                                                | <u> </u>                                         | -                                                | -        | -                                                | +            |
| ZZZZZZ              |              |                  | 18:03 |    |          |          | _  | -                                                | <u> </u> | -            |          |     |     | <u> </u> |          | <u> </u> | _                                                | <u> </u>                                         | <u> </u>                                         | _        | -                                                | +            |
| ZZZZZZ              |              |                  | 18:07 |    |          |          |    |                                                  | L_       |              |          |     |     | <u> </u> | L        | <u> </u> | 1                                                |                                                  | <u> </u>                                         |          | _                                                | $\perp$      |

 Lab Name:
 Eurofins TestAmerica, Buffalo
 Job No.:
 480-152320-1

 SDG No.:
 Instrument ID: ICAP2
 Method: 6010C

 Start Date: 05/13/2019 11:52
 End Date: 05/13/2019 19:17

|                     |              |                  |       |        |   |  |  |  | A | nal | yt | es |  |   |  |   |
|---------------------|--------------|------------------|-------|--------|---|--|--|--|---|-----|----|----|--|---|--|---|
| Lab<br>Sample<br>ID | D / F        | T<br>Y<br>P<br>e | Time  | F<br>e | M |  |  |  |   | 25  |    |    |  |   |  |   |
| ZZZZZZ              | Ī            |                  | 18:10 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| ZZZZZZ              | <del> </del> |                  | 18:14 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| ZZZZZZ              | 1            |                  | 18:18 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| ZZZZZZ              |              |                  | 18:21 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| CCV 480-472702/47   |              |                  | 18:25 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| CCB 480-472702/48   |              |                  | 18:29 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| CCVL 480-472702/49  |              |                  | 18:32 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| ZZZZZZ              |              |                  | 18:36 |        |   |  |  |  |   |     |    |    |  |   |  | Ш |
| ZZZZZZ              |              |                  | 18:40 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| ZZZZZZ              |              |                  | 18:44 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| ZZZZZZ              |              | _                | 18:47 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| ZZZZZZ              |              |                  | 18:51 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| CCV 480-472702/55   |              |                  | 19:09 |        |   |  |  |  |   |     |    |    |  |   |  |   |
| CCB 480-472702/56   |              |                  | 19:13 |        |   |  |  |  |   |     |    |    |  | L |  |   |
| CCVL 480-472702/57  |              |                  | 19:17 |        |   |  |  |  |   |     |    |    |  |   |  |   |

Prep Types

T = Total/NA

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG No.:
ICV Source: MEI\_10\_CCVL\_00248

Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00248

FORM II-IN

|           |         |          | 0-472702/<br>019 12:1 |     | 4       |   | -472702/1<br>019 16:19 |     | CCVL<br>05/13 |   | -472702/2<br>019 17:03 |     |
|-----------|---------|----------|-----------------------|-----|---------|---|------------------------|-----|---------------|---|------------------------|-----|
| Analyte   | Found   | С        | True                  | %R  | Found   | С | True                   | %R  | Found         | С | True                   | %R  |
| Iron      | 0.0538  | <u> </u> | 0.0500                | 108 | 0.0512  |   | 0.0500                 | 102 | 0.0516        |   | 0.0500                 | 103 |
| Manganese | 0.00344 |          | 0.00300               | 115 | 0.00337 |   | 0.00300(               | 112 | 0,00343       |   | 0.00300                | 114 |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG No.:

ICV Source: MEI\_10\_CCVL\_00248

Concentration Units: mg/L

CCV Source: MEI\_10\_CCVL\_00248

|           |         |             | -472702/3<br>019 17:48 |     |       |   |      |    |       |   |         |    |
|-----------|---------|-------------|------------------------|-----|-------|---|------|----|-------|---|---------|----|
| Analyte   | Found   | С           | True                   | %R  | Found | С | True | %R | Found | С | True    | %R |
| Iron      | 0.0531  | <del></del> | 0.0500                 | 106 |       | i |      |    |       |   |         |    |
| Manganese | 0.00344 |             | 0.00300                | 115 | )     |   |      |    |       |   | <u></u> |    |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

# 7A-IN LAB CONTROL SAMPLE GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-152320-1

SDG No.:

Matrix: Water

| Method      | Lab Sample ID        | Analyte                      | Result | C Unit | Spike P<br>Amount R | ct.<br>ec. Limits | RPD Limit | Q |
|-------------|----------------------|------------------------------|--------|--------|---------------------|-------------------|-----------|---|
| Batch       | ID: 469819           | Date: 04/25/2019 16:10       |        | ĹC     | S Source: IC        | ANTON LCS 00      | 255       |   |
| 300.0       | LCS<br>480-469819/3  | Sulfate                      | 47.94  | mg/L   | _                   | 96 90-110         |           |   |
| Batch       | ID: 469822           | Date: 04/25/2019 16:10       |        |        |                     |                   |           |   |
|             |                      |                              |        | LC     | S Source: IC_       | ANION_LCS00       | 255       |   |
| 300.0       | LCS<br>480-469822/3  | Nitrate as N                 | 4.91   | mg/L   | 5.00                | 98 90-110         |           |   |
| Batch       | ID: 473299           | Date: 05/16/2019 10:51       |        |        |                     |                   |           |   |
|             |                      |                              |        | LC     | S Source: COD       | 25 ppm_00034      |           |   |
| 410.4       | LCS<br>480-473299/4  | Chemical Oxygen Demand       | 26.11  | mg/L   | 25.0                | 104 90-110        |           |   |
| Batch       | ID: 473299           | Date: 05/16/2019 10:51       |        |        |                     |                   |           |   |
|             |                      |                              |        | LC     | S Source: COD       | 25 ppm_00034      |           |   |
| 410.4       | LCS<br>480-473299/76 | Chemical Oxygen Demand       | 25.12  | mg/L   | 25.0                | 100 90-110        |           |   |
| Batch       | ID: 473310           | Date: 05/16/2019 12:22       |        |        |                     |                   |           |   |
|             |                      |                              |        |        | S Source: COD       | <del>-</del>      |           |   |
| 410.4       | 480-473310/4         | Chemical Oxygen Demand       | 27.10  | mg/L   | 25.0                | 108 90-110        |           |   |
| Batch       | ID: 473310           | Date: 05/16/2019 12:22       |        |        |                     |                   |           |   |
|             |                      |                              |        |        | S Source: COD       | <del>-</del>      |           |   |
| 410.4       | LCS<br>480-473310/52 | Chemical Oxygen Demand       | 27.43  | mg/L   | 25.0                | 110 90-110        |           |   |
| Batch       | ID: 469403           | Date: 04/24/2019 02:47       |        |        |                     | -                 |           |   |
|             |                      |                              |        | LC     | S Source: GGA       | 00010             |           |   |
| SM<br>5210B | LCS<br>480-469403/2  | Biochemical Oxygen<br>Demand | 151.4  | mg/L   | 198                 | 76 85-115         |           | * |
| Batch       | ID: 471504           | Date: 05/07/2019 02:15       |        |        |                     |                   |           |   |
|             |                      |                              |        | LC     | S Source: GGA       | _00010            |           |   |
| SM<br>5210B | LCS<br>480-471504/2  | Biochemical Oxygen<br>Demand | 212.3  | mg/L   | 198                 | 107 85-115        | -         |   |

Calculations are performed before rounding to avoid round-off errors in calculated results.

### **ATTACHMENT 4**

# INVESTIGATION DERIVED WASTE DISPOSAL DOCUMENTATION

(pending)