Remedial Investigation/ Focused Feasibility Study Report

Batavia Former MGP Site NYSDEC Site Number 819019 11 Evans Street Batavia, New York

July 2019

0333-015-001

Prepared For:

R&J Enterprises of Batavia, LLC

BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE FLLC

2558 Hamburg Turnpike, Suite 300, Buffalo, New York 14218 | phone: (716) 856-0599 | fax: (716) 856-0583

BATAVIA FORMER MGP SITE NYSDEC SITE 819019 11 EVANS STREET BATAVIA, NEW YORK

July 2019

0333-015-001

Prepared for:

R&J Enterprises of Batavia, LLC

Prepared by:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0635

In Association With: Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

Batavia Former MGP Site NYSDEC Site No. 819019

Table of Contents

1.0	INTRODUCTION1			
	1.1	Background	2	
	1.2	Previous Investigations	2	
		1.2.1 December 2012 – NYSDEC Site Characterization	3	
		1.2.2 December 2014 – Interim Remedial Measure Work Plan	5	
		1.2.3 March 2015 Soil Vapor Intrusion Assessment	6	
	1.3	Remedial Investigation/Focused Feasibility Study Report Outline	6	
2.0	Rem	EDIAL INVESTIGATION		
	2.1	Ground Penetrating Radar	8	
	2.2	Soil/Fill Investigation	9	
	2.3	Groundwater Investigation	10	
		2.3.1 Groundwater Well Development	10	
		2.3.2 Groundwater Well Sample Collection	11	
		2.3.3 Field Specific Quality Assurance/Quality Control Sampling	11	
	2.4	Decontamination & Investigation-Derived Waste Management	11	
	2.5	Deviations from RI/FS Work Plan	12	
2 0	0		10	
3.0	SITE	C PHYSICAL CHARACTERISTICS		
	3.1	Site Topography and Drainage		
	3.2	Geology and Hydrogeology		
		3.2.1 Bedrock		
		3.2.2 Overburden	14	
	2.2	3.2.3 Hydrogeology	14	
	3.3	Climate	15	
	3.4	Population and Land Use	15	
	<i>3.5</i>	Utilities and Groundwater Use	15	
	3.6	Wetlands and Floodplains	16	
4.0	INVESTIGATION RESULTS BY MEDIA17			
	4.1	Soil/Fill	18	
		4.1.1 Surface Soil/Fill	18	
		4.1.2 Subsurface Soil/Fill	19	
		4.1.2.1 Volatile Organic Compounds	19	
		4.1.2.2 Semi-Volatile Organic Compounds	19	
		4.1.2.3 Metals	21	

Batavia Former MGP Site

NYSDEC Site No. 819019

Table of Contents

		4.1.2.4 Pesticides	21
		4.1.2.5 PCBs	21
	4.2	Groundwater	22
		4.2.1 Volatile Organic Compounds	22
		4.2.2 Semi-Volatile Organic Compounds	23
		4.2.3 Metals	23
		4.2.4 Pesticides	23
		4.2.5 PCBs	23
		4.2.6 Field Parameters	24
	4.3	Soil Vapor Intrusion	24
	4.4	Summary of Previous Investigations and RI Findings	25
	4.5	Data Usability Summary	27
	4.6	Constituents of Concern (COCs)	29
5.0	Fati	e and Transport of COCs	30
	5.1	Fugitive Dust Generation	30
	5.2	Volatilization	30
	5.3	Surface Water Runoff	31
	5.4	Leaching	31
	5.5	Groundwater Transport	31
	5.6	Exposure Pathways	32
6.0	OUALITATIVE EXPOSURE ASSESSMENT		
	6.1	Human Health Exposure Assessment	33
		6.1.1 Receptor Population	33
		6.1.2 Contaminant Sources	34
		6.1.3 Contaminant Release and Transport Mechanisms	34
		6.1.4 Point of Exposure	35
		6.1.5 Route of Exposure	35
		6.1.6 Exposure Assessment Summary	35
	6.2	Potential Ecological Assessments	36
7.0	Remedial Alternative Evaluation		
	7.1	Land Use Evaluation	37
	7.2	Development of Remedial Action Objectives and General Response Actions.	37
	7.3	Remedial Action Objectives	38
	7.4	General Response Actions	38

ii

TURNKEY CBENCHMARK

Batavia Former MGP Site NYSDEC Site No. 819019

Table of Contents

	7.5	Standards, Criteria and Guidance	
		7.5.1 Chemical-Specific SCGs	40
		7.5.2 Location-Specific SCGs	40
		7.5.3 Action-Specific SCGs	40
	7.6	Evaluation of Remedial Alternatives	40
	7.7	Alternatives Evaluation	42
	7.8	Volume, Nature, and Extent of Contamination	42
		7.8.1 Comparison to Unrestricted SCOs (Track 1 Cleanup)	42
		7.8.2 Comparison to Commercial SCOs (Track 4 Cleanup)	43
		7.8.3 Groundwater Impacts	44
		7.8.4 Soil Vapor Intrusion	44
	7.9	Alternative 1: No Further Action	44
	7.10	Alternative 2: Unrestricted Use (Track 1) Cleanup	45
	7.11	Alternative 3 – Commercial Use (Track 4) Cleanup	48
	7.12	Comparison of Remedial Alternatives	
	7.13	Recommended Remedial Alternative	52
	_		
8.0	POST	'-REMEDIAL REQUIREMENTS	54
	8.1	Final Engineering Report	54
	8.2	Site Management Plan	54
		8.2.1 Engineering and Institutional Control Plan	55
		8.2.2 Site Monitoring Plan	55
		8.2.3 Operation and Maintenance Plan	56
		8.2.4 Inspections, Reporting, and Certifications	57
9.0	RI/A	A Summary and Conclusions	59
10.0	Refe	ERENCES	61

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY Batavia Former MGP Site NYSDEC Site No. 819019

Table of Contents

LIST OF TABLES

Table 1	Summary of Previous Site Characterization Soil/Fill Analytical Results
Table 2	Summary of Previous Site Characterization Groundwater Analytical Results
Table 3	Summary of Previous Site Characterization Soil Vapor & Ambient Air Analytical Results
Table 4A	Summary of 2015 Soil Vapor Intrusion Sample Analytical Results
Table 4B	Comparison of 2015 Soil Vapor Intrusion Sample Results vs. NYSDOH Matrices
Table 5	Summary of Remedial Investigation Sampling and Analysis Program
Table 6	Summary of Remedial Investigation Soil/Fill Sample Analytical Results
Table 7	Summary of Remedial Investigation Groundwater Sample Analytical Results
Table 8	Standards, Criteria, and Guidance (SCGs)
Table 9	Cost Estimate for Unrestricted Use Alternative
Table 10	Cost Estimate for Commercial Use Alternative
Table 11	Comparison of Remedial Alternatives

LIST OF FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Aerial Site Plan
Figure 3	Former MGP Structures & Previous Investigation Locations
Figure 4	GPR Anomalies and RI Sample Locations
Figure 5	Groundwater Isopotential Map & Groundwater Contamination Exceedances
Figure 6	Commercial Soil Cleanup Objective Exceedance Locations
Figure 7	Unrestricted Soil Cleanup Objectives
Figure 8	Commercial Soil Cleanup Objectives

iv

TURNKEY C

BENCHMARK

Batavia Former MGP Site NYSDEC Site No. 819019

Table of Contents

APPENDICES

- Appendix A Soil Boring / Monitoring Well Logs
- Appendix B Groundwater Development & Sampling Field Forms
- Appendix C Remedial Investigation Laboratory Report
- Appendix D Data Usability Summary Report (DUSR)
- Appendix E Fish and Wildlife Resource Impact Analysis Decision Key
- Appendix F Land Use Evaluation

Certification

I, Thomas H. Forbes, certify that I am currently a NYS registered professional engineer and that this July 2019 Remedial Investigation/Focused Feasibility Study (RI/FFS) Report for the Batavia Former MGP Site (819019) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plans and any DER-approved modifications.

7-13-19

Date

1.0 INTRODUCTION

This Remedial Investigation and Focused Feasibility Study (RI/FFS) report has been prepared for the Batavia Former MGP Site (Site No. 819019), located at 11 Evans Street in Batavia, New York (see Figure 1). An Order on Consent, dated March 5, 2014, was executed between New York State Department of Environmental Conservation (NYSDEC) and the Site owner, R&J Enterprises of Batavia, LLC (R&J), regarding actions to be taken at the Site due to its listing on the New York State Inactive Hazardous Waste Registry (Registry). R&J was not responsible for the contaminants at the Site, but is completing this RI/FFS under the terms of the Consent Order.

The RI/FS Work Plan was submitted to the NYSDEC on April 21, 2014 by Conestoga-Rovers & Associates. The NYSDEC requested modifications to the RI/FS Work Plan in a letter dated June 17, 2014. After discussions concerning the requested modifications and a recent change in the New York Brownfield Cleanup Program (BCP) regulations, it was agreed that R&J would like fulfill its obligations under the existing Consent Order (e.g., complete RI/FFS) and then apply for entry of the Site into the BCP to complete any remedial activities. TurnKey Environmental Restoration, LLC (TurnKey) prepared a Remedial Investigation Work Plan (RIWP) dated March 30, 2016 (Ref. 1) to fulfill the Consent Order requirements, which was approved by NYSDEC in a letter dated April 6, 2016.

TurnKey, in association with Benchmark Environmental Engineering & Science, PLLC (Benchmark) implemented the remedial investigation (RI) activities and has prepared this RI/FFS report on behalf of the property owner, R&J. The RI activities were completed in general accordance with the RIWP and associated April 6, 2016 NYSDEC RIWP approval letter. Deviations from the Work Plan are identified in Section 2.0.

This RI/FFS report describes and presents the findings of: the previous investigations completed by NYSDEC in September/October 2011 (documented in Final Site Characterization Report (Ref. 2)); soil vapor intrusion work completed by TurnKey in March 2015 (Ref. 3); and, the April 2016 RI field investigation activities (to fulfill the Consent Order obligations) and includes a remedial alternatives evaluation based on the previously collected data and RI data.

NYSDEC will issue a Record of Decision (ROD) for the Site upon approval of this RI/FFS. Upon issuance of the ROD, the existing Consent Order requirements for the Site

will be considered fulfilled, and R&J intends to apply for entry in to the BCP to complete the remediation.

1.1 Background

The Site is approximately 1.16 acres in size and is currently developed with an asphalt parking lot and a 2,800-square foot, single story structure used for commercial purposes (see Figure 2). The single story structure is the shell of a former manufactured gas plant (MGP) gas holder and has been renovated for commercial use. R&J purchased the property similar to its current configuration in 2001.

The Batavia Gas Light Company (BGLC) occupied the Site as far back as June 1855 and constructed the original gasholder (total capacity of 13,500 cubic feet). In 1878, a new gasholder was constructed under a new business entity named Batavia Gas and Electric Company (BGEC). This new gasholder was almost triple the size of the original at 35,000 cubic feet. Less than 10 years later, BGEC constructed new gas works infrastructure and began manufacturing gas from crude petroleum. In 1890, Consolidated Gas and Electric Company acquired the assets of BGEC.

Sometime between 1906 and 1912, the MGP was not longer in operation and the Site became occupied by Roberts Brothers flouring mills. Other Site occupants from 1912 through 1931 have also included Lang's Bakery, Genesee County, Granger & Co. Wholesale grocery, and Batavia Motor Lines, Inc.

1.2 Previous Investigations

A summary of the previous investigations at the Site are presented below. The primary concern identified for the Site is coal tar. Coal tar contains both volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) and is often present as non-aqueous phase liquid (NAPL).

For purposes of discussion, the previous investigation analytical sample results will be compared to the following criteria.

Subsurface Soil:

Soil Cleanup Objectives (SCOs) per 6 New York Code Rules and Regulation (6 NYCRR) Part 375 Environmental Remediation Programs, Subparts 375-1 to 375-4 &

375-6, effective December 14, 2006. Specifically, the Commercial Soil Cleanup Objectives (CSCOs) are the Soil Cleanup Objectives that are most applicable to the current and future use of the Site and are considered to be the most applicable health risk-based comparative criteria.

Groundwater

Class GA Groundwater Quality Standards and Guidance Values (GWQS/GVs) per NYSDEC's Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1), June 1998, amended April 2000.

Soil Vapor Intrusion

Decision matrices 1 and 2 per New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 (SVI Guidance).

1.2.1 December 2012 – NYSDEC Site Characterization

Shaw Environmental & Infrastructure Engineering of New York, P.C. (Shaw) completed the Site Characterization (SC) work in accordance with the Work Authorization D006132-23 with NYSDEC. The SC activities consisted of:

- Ten (10) soil borings (SB-1 through SB-10) of which four (4) were converted to groundwater monitoring wells (MW-1 through MW-4);
- Five (5) exploratory test pits (TP-1 through TP-5); and
- Installation of three (3) soil gas implants (SVP-1 through SVP-3) to facilitate collection of soil gas samples.

Soil, soil vapor, ambient air, and groundwater samples were collected and submitted for laboratory analysis. Based on the findings of the SC, the Site was listed in the Registry of Inactive Hazardous Waste Disposal Sites (Registry) in New York State as a Class 2 site (Site Number 819019). An Order on Consent, dated March 5, 2014, was executed between NYSDEC and the Site owner, R&J.

Coal tar was reportedly observed within monitoring well, MW-1, installed within soil boring SB-8, indicating the potential presence of non-aqueous phase liquid (NAPL) in the

subsurface (see Figure 3). This location is adjacent to the former tar house structure. Based on the review of the soil boring/well log for SB-8/MW-1, coal tar may be present in the subsurface from approximately 5 to 10 fbgs. The monitoring well screen for MW-1, spans for 5 to 20 fbgs, which intersects the potential depth in which the coal tar was present.

Table 1 is a summary of the 11 soil/fill samples sent for laboratory analysis. Table 2 is a summary of the 3 groundwater samples sent for laboratory analysis. Table 3 is a summary of the 3 soil vapor and 1 ambient air samples sent for laboratory analysis.

Soil/Fill Sample Results

In addition to the coal tar, impacted soil/fill exceeding their respective CSCOs were identified at the following locations.

- SB-4, 25 to 26 fbgs, arsenic
- SB-8, 10 to 14 fbgs, benzene and SVOCs
- SB-9, 5 to 10 fbgs, SVOCs

We note that naphthalene, a common constituent of coal tar, was reported on both the VOC and SVOC analytical compound lists used by the Spectrum Analytical, Inc. during the SC. For purposes of the data discussion herein, naphthalene (considered to be a SVOC and polycyclic aromatic hydrocarbon (PAH)) will be discussed as a SVOC. However, the analytical results summary of the SC data provided on Tables 1 and 2, provided the naphthalene results as initially reported.

The arsenic detected at SB-4 (see Figure 3) is not considered a concern. The sample was collected from native soil at a depth of 25 to 26 fbgs and the detected concentration of 16.9 mg/kg slightly exceeds its CSCO of 16 mg/kg.

Elevated levels of benzene and SVOCs were identified at SB-8, 10 to 14 fbgs. This sample interval is below the depth at which coal tar may be present in the subsurface and is in the vicinity of the former tar house structure. This sample interval is potentially a combination of fill (10 to 11 fbgs) and native soil (11 to 14 fbgs) and is from below the groundwater table. The water level noted on the boring log is 6 fbgs and the water levels measured at the other Site well locations are approximately 8 fbgs. Therefore, the elevated concentrations detected may be due to NAPL present in the groundwater.

A few SVOCs were detected at SB-9 in a fill material sample from 5 to 10 fbgs exceeding their respective CSCOs. This location is in the vicinity of a former oil underground storage tank (UST).

Groundwater Sample Results

Groundwater was not collected from MW-1 due to the presence of NAPL identified during well development.

Low-level VOCs above their respective GWQS/GVs were detected in groundwater samples collected from MW-2, installed at SB-9, in the vicinity of the former oil UST and MW-3 installed at SB-5 in the eastern central portion of the Site.

Based on the SC, groundwater impacts appear to be limited to the area directly around the former tar house structure and historic oil UST.

Soil Vapor Sample Results

Soil vapor results indicated that VOCs were present in the subsurface based on the results of the three (3) samples collected in the northern portion of the Site (see Table 3). No indoor or sub-slab air samples were collected as part of the SC work. A soil vapor intrusion (SVI) assessment was completed within the on-site building in March 2015, as discussed in Section 1.2.3.

1.2.2 December 2014 – Interim Remedial Measure Work Plan

In December 2014, Conestoga-Rovers & Associates prepared an Interim Remedial Measure Work Plan (IRMWP, Ref. 4) for the Site on behalf of R&J which was approved by NYSDEC by letter dated January 6, 2015. The IRMWP discusses the activities planned for the implementation of the IRM, including the delineation, excavation and off-site disposal of grossly contaminated soil at the Site associated with the former operations.

The full scope of work outlined in the IRMWP was not implemented. As discussed in Section 1.0, R&J has had discussions with NYSDEC regarding implementing work necessary to fulfill the existing Consent Order and transitioning the Site into the BCP to complete the necessary remedial action, as R&J was not responsible for the discharge of the contaminants present at the Site. The following tasks from the IRMWP were deemed necessary by the NYSDEC to fulfill Consent Order and were implemented.

- Soil Vapor Intrusion Evaluation (see Section 1.2.3);
- Ground penetrating radar (GPR) survey (see Section 2.1); and
- Installation and sampling of five (5) soil borings and monitoring wells (see Section 2.2 and 2.3, respectively).

1.2.3 March 2015 Soil Vapor Intrusion Assessment

In March 2015, a soil vapor intrusion (SVI) assessment was conducted within the office building (former gas holder). In accordance with SVI Guidance sampling protocols, two (2) sub-slab air samples and two (2) interior air samples were collected from within the office building; and one (1) outdoor ambient air sample were collected for VOC analysis via EPA TO-15 (see Figure 3). Tables 4 and 5 summarize the analytical results associated with the SVI assessment.

The majority of VOCs were reported by the laboratory as non-detect or as estimated values below the laboratory method detection limit. Low-level detections of several VOCs were detected in the sub-slab, indoor, and outdoor air samples. The data sets were compared to SVI Guidance, NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes (Ref. 5), NYSDEC DAR-1, Guidelines for the Control of Toxic Ambient Air Contaminants (Ref. 6), and Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs). The results do not demonstrate a sub-slab source of VOCs impacting indoor air quality. Based on this assessment, no air quality concerns were identified at the Site, soil vapor intrusion into the office building was not evident, and no further action is recommended.

In a letter dated June 19, 2015, NYSDEC and NYSDOH concurred with the SVI assessment and concluded that no further action was necessary to evaluate the potential for SVI to occur.

1.3 **Remedial Investigation/Focused Feasibility Study Report Outline**

This report contains ten sections:

- Section 1.0 provides the Site background and summarizes previous environmental investigations.
- Section 2.0 presents the investigation approach, including deviations from the RI/FFS Work Plan.
- Section 3.0 describes the Site physical characteristics of the Site and surrounding land use as they pertain to the investigation findings.
- Section 4.0 presents the investigation results by media.
- Section 5.0 describes the fate and transport of detected chemical constituents of concern (COCs).

- Section 6.0 presents the qualitative risk assessment based on the RI data.
- Section 7.0 summarizes the findings of the RI.
- Section 8.0 presents the Remedial Alternatives Evaluation for the Site.
- Section 9.0 describes the institutional and engineering controls to be implemented for the Site.
- Section 10.0 provides a list of references cited in this report.

2.0 **Remedial Investigation**

RI field activities were completed during the period of April 9 through April 27, 2016 in general accordance with the NYSDEC-approved RIWP. Investigation activities, including any deviations from the RIWP, are described below.

2.1 Ground Penetrating Radar

On April 9th, a GPR survey was completed throughout the Site and off-site portion of the parking lot to the northwest associated with 32 Ellicott Street, which is owned by R&J. The purpose of the GPR survey was to locate and identify any underground utilities and/or underground structures that are present, specifically:

- subsurface structures that may be related to the product observed in MW-1;
- the extent of the void space identified at former TP-3;
- a historic oil underground storage tank (UST) in the southeast portion of the Site in an effort to locate the extent of the tank grave or associated features; and,
- to identify whether historic underground piping associated with the former MGP is present.

The Site was surveyed with a Mala Easy Locator system which can locate metallic and non-metallic objects. The depth of the survey was approximately 5 fbgs and data was collected along traverse lines spaced approximately 2 feet apart. The traverse lines were orientated in the north-south and east-west directions across the Site.

The GPR survey identified three (3) anomalous areas as shown on Figure 4. Anomaly 1 was identified as an area of debris and possible piping on the western portion of the Site in the vicinity of the former petroleum gas works holder. The anomaly was approximately 20 feet (east-west) by 30 feet (north-south) and present at a depth of 3 to 4 fbgs. Previous investigation location SB-5 was located in the approximate center of this anomaly. The soil boring log for this location indicated the subsurface consisted of gravel subbase, sand, silt, cobbles, and fine to coarse gravel (a mix of subsurface conditions). No odors or PID measurements were noted. Soil from 5 to 10 ft consisted of brown sandy silt to silty sand. No elevated PID readings or odors were noted. There does not appear to be evidence of debris or impacts for potential piping that would warrant further investigation.

Anomaly 2 was identified as a change in soil type on the south-central portion of the Site in the vicinity of the former purifier house. The anomaly was approximately 30 feet

(northwest-southeast) by 15 feet (northeast-southwest) and present at a depth of 1 to 4 fbgs. This anomaly is located in the vicinity of the former coal house. It is possible the change in soil type is due to backfill material used in the general vicinity of this former structure. This finding does not warrant further investigation.

Anomaly 3 is identified as an area of debris northwest at an off-site location within the parking lot near Evans Street. The anomaly was approximately 5 feet (east-west) by 4 feet (north-south) and present at a depth of 1.5 fbgs. RI investigation location TKMW-9 was completed just south of Anomaly 3. The subsurface conditions consisted of sand and silty sand. No elevated PID readings or odors were noted. This finding does not warrant further investigation.

The GPR survey did not identify subsurface structures that may be related to the product observed at MW-1; the extent of void space in the vicinity of TP-3; or the tank grave or associated features of the former oil UST. Anomalies that were identified do not warrant further investigation as discussed.

2.2 Soil/Fill Investigation

On April 13, 2016, five (5) soil borings were completed at the locations of the five (5) monitoring wells that were installed (see Section 2.3). Soil borings were advanced using direct push methodology via hydraulic hammer on a track-mounted rig. Soil samples were collected with a macrocore sampler which contained a 2-inch outer diameter by 48-inch long acetate liner. A new acetate liner was used for each 4-foot sample run.

The soil/fill samples retrieved from the borings allowed for visual, olfactory, photoionization detector (PID) assessment of subsurface conditions by TurnKey's Project Geologist. The soil borings (TKMW-5 through TKMW-9) were completed to a depth of approximately 16 fbgs, with the exception of TKMW-5 and TKMW-6, which were extended to a depth of 20 fbgs. Figure 4 identifies the approximate locations of the five (5) soil borings locations. Boring Logs describing the soil types, samples collected, and other observations are presented in Appendix A.

One (1) soil/fill sample was selected from each of the five (5) soil borings completed. The soil/fill sample selection was based on the area of the soil boring exhibiting the highest PID measurements. The selected soil/fill samples were placed in pre-cleaned laboratory provided sample jars, cooled to 4°C in the field, and transported under chain-of-custody

command to TestAmerica for analysis. Table 5 is a summary of the soil/fill samples submitted, sample depths, and analysis performed.

2.3 **Groundwater Investigation**

Five (5) new groundwater monitoring wells (TKMW-5 through TKMW-9) were installed at the locations shown on Figure 4, in addition to the four (4) existing monitoring well (MW-1 through MW-4) that were installed as part of the SC.

After the completion of the soil borings discussed in Section 2.2, the rig used was equipped with a built-in rotary spindle to utilize 4 1/4 inch hollow stem augers to facilitate the well installation. The augers were advanced to a depth of 15 fbgs and the monitoring well were installed to that depth. The monitoring wells were constructed with 2-inch inside diameter flush-threaded PVC pipe. The well screens were 10 feet in length and were installed to straddle the water table as groundwater was present at approximately 7 to 8 fbgs. The annulus space between the borehole and well was backfilled with sand to approximately 1 foot over the top of the well screen and capped with an approximate 3-foot bentonite chip seal. The monitoring wells were completed with lockable J-plug, and a steel flush mounted road The monitoring well construction details are presented on the Soil Boring Logs in box. Appendix A.

2.3.1 Groundwater Well Development

The newly installed monitoring wells were developed prior to sampling to remove residual sediments and ensure hydraulic connection within the water-bearing zone. As stated in the RI/FFS Work Plan, no wells were developed within 48 hours of installation. Development of the monitoring wells was completed with dedicated disposable polyethylene bailers via surge and purge methodology. Field parameters were measured periodically during well development (see Groundwater Field Forms for well development in Appendix B). Stability was defined as variation between measurements of approximately 10 percent or less with no overall upward or downward trend in the measurements; or a minimum of three well volumes. A minimum of 10 wells volumes were removed from each well during development in order to reduce the suspended sediment and turbidity. Development water from the monitoring wells was containerized and staged on-site. Pending the results of the groundwater sample analysis, the water will be discharged to ground surface at the Site or properly disposed.

BENCHMARK

TURNKEY

2.3.2 Groundwater Well Sample Collection

Prior to sample collection, static water levels were measured and recorded for the five (5) newly installed wells. The monitoring wells were purged and sampled using a down-hole pump and dedicated tubing following low-flow/minimal drawdown purge and sample collection procedures. Field measurements for pH, specific conductance, temperature, turbidity, and water level as well as visual and olfactory field observations were periodically recorded and monitored for stabilization. The water quality measurements at the time of purging and sampling were recorded (see Groundwater Field Forms for well sampling in Appendix B). The groundwater samples from the newly installed wells were placed in precleaned laboratory provided sample containers with appropriate preservatives, as required, cooled to 4°C in the field, and transported under chain-of-custody command to TestAmerica for analysis. Table 5 is a summary of the groundwater samples submitted and analysis performed.

2.3.3 Field Specific Quality Assurance/Quality Control Sampling

In addition to the soil/fill and groundwater samples described above, field-specific quality assurance/quality control (QA/QC) samples were collected and analyzed to ensure the reliability of the generated data as described in the QAPP and to support the required third-party data usability assessment effort. Site-specific QA/QC samples included matrix spikes, matrix spike duplicates, blind duplicates, and trip blanks.

2.4 Decontamination & Investigation-Derived Waste Management

Every attempt was made to utilize dedicated sampling equipment during the RI, however, non-dedicated equipment was required and/or used (e.g., macrocore sampler) and was decontaminated with a non-phosphate detergent (i.e., Alconox®) and potable water mixture, rinsed with distilled water, and air-dried before each use.

RI generated drilling spoils, decontamination water and groundwater development water were containerized and staged on-site. Pending the results of the analytical samples, the soil/fill and water may be reused, discharged to the ground surface at the Site, or properly disposed. IDW will be reused, recycled, and/or disposed off-Site, in accordance with the approved remedial activities.

2.5 Deviations from RI/FS Work Plan

There were no significant deviations from the RIWP, as submitted, for the implementation of the RI. However, the location of soil boring/monitoring well, TKMW-9, was moved approximately 3 to 5 feet south of the proposed location due to the presence of a storm sewer line.

3.0 SITE PHYSICAL CHARACTERISTICS

The physical characteristics of the Site observed during the RI are described in the following sections.

3.1 Site Topography and Drainage

The Site is generally flat lying and primarily covered with hardscape (see Figure 2). There is one (1) round, single-story commercial structure at the Site used as a doctor's office. The structure is the shell of the former MGP gas holder and has been renovated for commercial use. The majority of the Site surface is covered by the commercial structure, asphalt parking areas, and/or concrete walkways. There is limited vegetative cover along the eastern and southern portions of the Site as well as a gravel driveway along the southern portion of the Site.

Precipitation (i.e., rain or melting snow) on the majority of the Site moves via sheet flow to on-site storm water catch basins, to Evans Street, or to the vegetated areas along the eastern and southern portions of the Site. Precipitation on the vegetated areas along the eastern and southern portions of the Site infiltrates into the subsurface or ponds at the surface until it evaporates/infiltrates.

3.2 Geology and Hydrogeology

3.2.1 Bedrock

Based on the Geologic Map of New York, Niagara Sheet (Ref. 7), the Site is situated over the Marcellus Formation, Oatka Creek Shale Member of the Middle Devonian Period Hamilton Group. The Oatka Creek Shale is described as dark gray to black organic-rich shale and present beneath the Site at depths of 30 fbgs. The RI activities completed did not investigate bedrock depth or type. However, one (1) soil boring (SB-5) completed as part of the SC was extended to 30.2 fbgs and the soil description at that depth was listed as fractured shale.

3.2.2 Overburden

The Site is located within the Erie-Ontario lake plain physiographic province, which is typified by little topographic relief and gentle slopes toward Lake Ontario, except in the immediate vicinity of major drainage ways.

According to the Soil Survey of Genesee County (Ref. 8), the native soils present in the vicinity of the Site are Palmyra gravelly loam, which are described as nearly level soil occupying the tops of large outwash terraces. The deposits are generally 30 to 70 feet thick consisting mainly of gravel and partly of sand.

Based on the RI activities and the previous soil boring completed as part of the SC, subsurface lithology is described as follows.

<u>Fill materials</u> consisting of varying amounts of brick, coal fragments, wood, silt, sand gravel and clay were present below the asphalt or vegetative cover to depths of 4 to 10 fbgs. The deeper fill materials (approximately 10 feet) were present in the northeastern portion of the Site in the vicinity of the former tar house and former petroleum gas works building. No fill appeared to be present along the western portion of the Site, the soil present below the asphalt cover was either silty clay (TKMW-8) in the southwestern corner or sand (TKMW-9) in the northwestern corner of the parking lot.

Native soil underlying the fill material generally consists of a sandy silt, sand with lesser and varying amounts of silt, and a sand with silt and gravel. The sandy silt was encountered at depths ranging from 4 to 10 fbgs, the sand with lesser and varying amounts of silt were encountered at depths ranging from 4 to 15 fbgs, and the sand with silt and gravel were encountered at depths of 9 to 16 fbgs. Refusal was encountered at one (1) RI soil boring, TKMW-9 at approximately 15.5 fbgs.

3.2.3 Hydrogeology

Groundwater elevation data was collected during the RI, which included water levels measurements on May 23, 2016 from the five (5) newly installed monitoring wells and three (3) previously installed wells (MW-2, -3, and -4). Monitoring well, MW-1 could not be located and it was presumed to be located underneath a solid waste dumpster present in the vicinity.

Depths to groundwater ranged from approximately 6.9 fbgs (TKMW-8) to 8.3 fbgs (TKMW-6). The depth to groundwater is consistent with those identified during the SC.

Groundwater flow direction appears to be easterly in the western and northeastern portion of the Site and southernly in the central and southern portion of the Site as shown on Figure 5 - Groundwater Isopotential Map, with a very low hydraulic gradient, as discussed in Section 5.5. We note that a groundwater measurement could not be obtained from MW-1 due to the presence of the LNAPL in the well which can affect groundwater elevations due to its presence.

3.3 Climate

Batavia's weather is typical of western New York and has a cold continental climate, with moisture from Lake Erie causing increased precipitation. Average annual precipitation is reportedly 35.4 inches and snowfall is 74 inches (Ref. 9). Annual average high temperature is 58.1 degrees Fahrenheit and the annual average low temperature is 39.6 degrees Fahrenheit, with an average temperature of 48.9 degrees Fahrenheit (Ref. 9). The ground and lakes typically remain frozen from late December to March. Winds are generally from the southwest (240 degrees) with a mean velocity of 10 miles per hour (Ref. 9).

3.4 **Population and Land Use**

The City of Batavia, encompassing 5.2 square miles, has an estimated population of 15,274 persons (Ref. 10), a decrease of 2.4% from the 2010 U.S. census. Based on these data, the average population density in the City is 2,940 people per square mile. Batavia is primarily zoned residential with commercial use and community services mixed in along major roads. The Site is located in an area of the City zoned commercial. The Site is surrounded by other commercial properties, community services, and storage warehouse facilities.

3.5 Utilities and Groundwater Use

The Site is connected to the major public and private utilities, including water, sanitary and storm water sewers (City of Batavia, Bureau of Water & Wastewater), electric (National Grid), and natural gas (National Fuel Gas Corporation).

Groundwater at the Site is assigned Class "GA" by 6NYCRR Part 701.15. However, Site groundwater is not used as a potable water source.

3.6 Wetlands and Floodplains

The NYSDEC Environmental Resource Mapper (Ref. 11) shows that State wetlands do not exist on the subject property. A State wetlands is present approximately 0.6 miles southwest of the Site. The National Wetlands Inventory (Ref. 12) shows that Federal wetlands do not exist on the subject property. A federal wetland is present approximately 0.3 miles southwest of the Site. Tonawanda Creek is located approximately 0.1 miles northwest of the Site. The FEMA Flood Map (Ref. 13) indicates that the Site is in a Zone A4, which is an area inundated by 100 year flooding, for which no base flood zone elevation have been established.

4.0 INVESTIGATION RESULTS BY MEDIA

The nature and extent of contamination at the Site was further characterized using soil and groundwater samples collected and analyzed as part of the RI. As described in Section 1.2, soil, groundwater, and soil vapor intrusion samples collected during previous investigations were used to supplement this RI. Sampling protocols and methodologies for samples collected during the RI investigation were performed in accordance with the Quality Assurance Project Plan (QAPP) which was included as Appendix B of the IRMWP.

The soil and groundwater samples collected during the RI sampling events were submitted for analyses under chain-of-custody to TestAmerica Laboratories, Inc. (TestAmerica) located in Amherst, New York. Analytical services were performed in accordance with the most current SW-846 analytical methods and protocols. Appendix C contains analytical reports for samples analyzed from the RI investigation. Analytical data discussed in this section includes results from prior investigations as well as the RI data collected by TurnKey personnel. Tabulated analytical results, which have been validated, are shown only for those parameters for which a value greater than the laboratory method detection limit was detected at a minimum of one (1) sample location.

Figure 3 shows the sampling locations for soil and groundwater samples collected during historic investigations and Figure 6 shows both the historic and RI investigations.

The analytical summary tables from the previous investigations discussed in this section are included as Tables 1 through 4B. Table 5 summarizes the sampling and analysis program of the RI. Tables 6 and 7 summarize the RI soil and groundwater analytical results, respectively. The Data Usability Summary Report (DUSR) for the RI soil and groundwater data is included in Appendix D.

For discussion purposes, analytical results for the RI were compared with the following Standards, Criteria, and Guidance values (SCGs).

Subsurface Soil:

Soil Cleanup Objectives (SCOs) per 6 New York Code Rules and Regulation (6 NYCRR) Part 375 Environmental Remediation Programs, Subparts 375-1 to 375-4 & 375-6, effective December 14, 2006.

Specifically, the Restricted Commercial Soil Cleanup Objectives (CSCOs) are the Soil Cleanup Objectives that are most applicable to the current existing use of the Site and are considered to be the most applicable health risk-based comparative criteria.

<u>Groundwater</u>

Class GA Groundwater Quality Standards and Guidance Values (GWQS/GVs) per NYSDEC's Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1), June 1998, amended April 2000.

Soil Vapor Intrusion

The SVI work completed as part of previous investigations were compared to:

- New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006) Decision Matrices;
- NYSDOH, Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes, revised November 14, 2005; and
- Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) criteria for air contaminants.

Sample results compared to the above criteria are described below according to media and contaminant class.

4.1 Soil/Fill

Table 6 compares the RI soil/fill data to a range of health risk-based SCOs as published in 6NYCRR Part 375, including Unrestricted SCOs (USCOs) and CSCOs. The previous investigation soil/fill data tables included on Table 1 also compared the results to the USCOs and CSCOs.

4.1.1 Surface Soil/Fill

No surface soil/fill samples were collected as part of the RI or from the previous SC, as the majority of the Site is covered by building, asphalt parking or concrete walkways. The small amount of existing surface soil that is present is covered with topsoil and vegetation along the eastern and southern portions of the Site.

4.1.2 Subsurface Soil/Fill

Five (5) subsurface soil/fill samples (excluding QA/QC samples) were collected and analyzed as part of the RI and eleven (11) subsurface soil samples were collected as part of historic SC as shown on Figure 3. Table 6 summarizes the results of the RI subsurface soil/fill samples and Table 1 summarizes the results of the SC subsurface soil/fill samples. The results are discussed below as they compare to their respective Part 375 CSCOs.

4.1.2.1 Volatile Organic Compounds

The majority of the analyzed VOCs were reported as non-detectable or as an estimated concentration (J qualifier) due to the concentration reported being below the reporting limit. No VOCs were detected above their respective CSCO in the five (5) samples submitted as part of the RI (see Table 6).

Acetone was detected in two sample locations, SB-1, 5 to 10 ft and SB-9, 5 to 10 ft above its Protection of Groundwater SCO.

Benzene (150 milligram per kilogram (mg/kg)) was detected above its respective CSCOs at one (1) SC investigation location, SB-8, 10 to 14 fbgs in addition to six other VOC which were detected above their respective Protection of Groundwater SCO. [Naphthalene was also detected in this sample, but as discussed earlier is considered to be a SVOC.]

SB-8 was completed in the vicinity of the former Tar House in the northern portion of the Site, along the northern property line. Elevated benzene levels detected at SB-8 are likely associated with the NAPL present at this location starting at a depth of approximately 5 fbgs. The depth to groundwater on the drilling log was noted to be approximately 6 fbgs. As discussed in Section 4.2, NAPL was detected at monitoring well, MW-1, installed at this location.

4.1.2.2 Semi-Volatile Organic Compounds

SVOCs were detected above their respective CSCOs at two (2) of the five (5) samples analyzed as part of the RI and at three (3) of the eleven (11) samples analyzed as part of the SC. Investigation locations with SVOC CSCO exceedances were as follows:

- TKMW-6, 8 to 10 fbgs: benzo(a)pyrene (total SVOCs detected 89 mg/kg; total PAHs detected 82 mg/kg)
- TKMW-7, 2 to 5 fbgs: five (5) compounds (total SVOCs detected 644 mg/kg; total PAHs detected 637.5 mg/kg)

TURNKEY BENCHMARK

- SB-7, 9 to 12 fbgs: benzo(a)pyrene (total SVOCs and total PAHs detected 22 mg/kg)
- SB-8, 10 to 14 fbgs: 14 compounds (total SVOCs detected 17,429 mg/kg; total PAHs detected 14,269 mg/kg)
- SB-9, 5 to 10 fbgs: five (5) compounds (total SVOCs detected 118 mg/kg; total PAHs detected 113 mg/kg)

RI soil boring TKMW-6 was installed in the southeastern portion of the Site, along the eastern property line. One SVOC (benzo(a)pyrene, 3.2 mg/kg) was detected in the soil/fill in TKMW-6 (8-10 fbgs) above its respective CSCO and four PAHs were detected above their respective Protection of Groundwater SCO.

RI soil boring TKMW-7 was installed in the southern-central portion of the Site, along the southern property line. Seven (7) individual SVOCs, which are all PAHs, were detected in the soil/fill in TKMW-7 (2-5 fbgs) above their respective CSCOs and/or Protection of Groundwater SCOs. The elevated PAHs (greater than 500 ppm total PAHs) detected in the soil/fill sample interval from 2 to 5 fbgs were likely associated with the fill material present in the sample interval which was noted to be mostly brick and coal fines. TKMW-7 was completed adjacent (west) of former TP-5 completed during the SC. Fill material encountered at TP-5 consisted of sand, silt, gravel, brick, concrete, coal slag, and wood, similar to material identified at TP-4, located 45 feet to the east of TP-5.

SC soil boring SB-7 was installed along the southeastern side of the Site building, a former gas holder. One SVOC (benzo(a)pyrene, 2.5 mg/kg) was detected above its CSCO and three (3) compounds were detected above their respective Protection of Groundwater SCOs in the 9 to 12 fbgs interval, but at concentrations well below 500 mg/kg total PAHs

SC soil boring SB-8 was completed in the vicinity of the former tar house in the northern portion of the Site, along the northern property line. Twenty (20) individual SVOCs, which are predominantly PAHs, were detected in the soil/fill in SB-8 (10-14 fbgs) above their respective CSCOs and/or Protection of Groundwater SCOs. The elevated PAHs, (greater than 500 ppm total PAHs) detected at SB-8 (10-14 fbgs) were likely associated with the NAPL at this location starting at a depth of approximately 5 fbgs. The depth to groundwater on the drilling log was noted to be approximately 6 fbgs. As discussed in Section 4.2, NAPL was detected in the monitoring well installed at this location.

SC soil boring SB-9 was installed in the southwestern corner of the Site in the vicinity of the former oil UST. Six (6) individual SVOCs, which are PAHs, were detected in the soil/fill in SB-9 (5-10 fbgs) above their respective CSCOs and/or Protection of Groundwater SCOs, but at concentrations well below 500 mg/kg total PAHs. During the SC, test pit TP-1 was completed adjacent to SB-9. At a depth of 6 fbgs, black soil, strong product odors, and PID measurements of 399 ppm were observed within TP-1 at a depth of 6 to 7 fbgs. This is likely contamination associated with the former UST that was reportedly present in this area of the Site.

4.1.2.3 Metals

Metal analytes were detected above MDLs in the five (5) samples analyzed as part of the RI and in the eleven (11) samples analyzed as part of the SC. Of the analytes detected, arsenic was detected at one (1) location TKMW-7, 2 to 5 fbgs at a concentrations (16.1 mg/kg) slightly above its CSCO (16 mg/kg). The sample interval from TKMW-7, 2 to 5 fbgs, contained coal fines, which may be the cause of the elevated arsenic. The arsenic CSCO exceedance was in the duplicate sample collected at this location, compared to the actual sample which had an arsenic concentration of 14.7 mg/kg which is below its CSCO.

Arsenic was also detected at SB-4, 25 to 26 fbgs (16.9 mg/kg) slightly above its CSCO. Nickel was also detected at this sample location above its respective Protection of Groundwater SCO. The sample interval at SB-4, 25 to 26 fbgs was of native soil collected 1 foot above equipment refusal (presumed to be associated with the top of bedrock) and associated with natural conditions.

4.1.2.4 Pesticides

No pesticide analysis was completed as part of the RI because the results of the previous SC did not identify pesticides as a concern. Four (4) samples were collected and submitted for pesticides as part of the SC. One (1) compound, endosulfan sulfate was detected at one (1) sample location, SB-9, 5 to 10 fbgs, at a concentration below its USCO.

4.1.2.5 PCBs

No PCBs analysis was completed as part of the RI because the results of the previous SC did not identify PCBs as a concern. Four (4) samples were collected and submitted as part of the SC for PCBs. PCBs were not detected above MDLs in those four (4) samples.

BENCHMARK

TURNKEY

4.2 Groundwater

Groundwater samples were collected from the five (5) new monitoring wells during the RI in April 2016. The analytical data from the SC for MW-2, -3 and -4 was collected in September 2011. The analytical results for detected constituents from the RI are summarized on Table 7 and the groundwater sample results from the SC are summarized on Table 2. During the SC, MW-1 was not sampled due to the presence of NAPL. A discussion of the results is presented below.

4.2.1 Volatile Organic Compounds

VOCs were detected above their respective GWQS/GVs in two (2) of the five (5) groundwater samples submitted during the RI for analysis and in two (2) of the three (3) submitted during the SC for analysis. Investigation locations with GWQS/GV exceedances were as follows:

- TKMW-5: benzene (total VOCs detected 5.7 micrograms per liter (ug/l))
- TKMW-6: four (4) compounds (total VOCs detected 288 ug/l)
- MW-02: four (4) compounds (total VOCs detected 69 ug/l)
- MW-03: benzene (total VOCs detected 4 ug/l)

TKMW-5 is located along the eastern property line of the Site. Benzene (1.4 ug/l) was detected at this location with a slight exceedance of its GWQS/GVs of 1 ug/l. The other four (4) VOCs detected were below their respective GWQS/GVs or do not have a GWQS/GVs. This location is downgradient of the former gas holders and former tar house.

TKMW-6 is also located along the eastern property line of the Site. Benzene (25 ug/l), ethylbenzene (11 ug/l), isopropylbenezene (8.9 ug/l) and total xylene (21 ug/l) were detected above their respective GWQS/GVs. This location is also downgradient of the former gas holders and former tar house.

MW-2 is located in the southeast corner of the Site, along the property line. Three (3) VOCs, 1,2,4-trimethylbenzene (25 ug/l), 1,3,5-trimetylbenzene (9 ug/l), and total xylene (6.3 ug/l) were detected above their respective GWQS/GVs. The other four (4) VOCs detected were below their respective GWQS/GVs. Total VOCs detected in the groundwater were approximately 69 ug/l. This location is also downgradient of the former gas holders and former tar house, and in the vicinity of a former oil UST.

MW-3 is located in the eastern-central portion of the Site. Benzene (2.6 ug/l) was detected at this location with a slight exceedance of its GWQS/GVs. This location is in the vicinity of the former petroleum gas holder and downgradient of the former tar house.

4.2.2 Semi-Volatile Organic Compounds

SVOCs were detected above their respective GWQS/GVs in one (1) of the five (5) groundwater samples analyzed as part of the RI. No SVOCs exceedances of the GWQS/GVs were identified in the three (3) groundwater samples collected and analyzed as part of the SC.

Naphthalene was detected in the sample collected from TKMW-6 (320 ug/l) above its respective GWQS/GVs of 10 ug/l. This location is in the southeastern portion of the Site along the property line. MW-2 is south and downgradient of TKMW-6 by approximately 35 feet where the naphthalene concentration decreases two orders of magnitude (320 ug/l to 6 mg/l) to below its respective GWQS/GV.

4.2.3 Metals

Metal analytes were detected above MDLs in the five (5) samples analyzed as part of the RI and in the three (3) samples analyzed as part of the SC. Of the analytes detected four (4) analytes were detected above their respective GWQS/GVs: iron (6 well locations), magnesium (2 well locations), manganese (7 well locations), and sodium (8 well locations). Monitoring well TKMW-9, the upgradient monitoring well location, also had elevated levels of these four (4) analytes. It is not uncommon to encounter elevated levels of these naturally-occurring elements in groundwater, especially in urban environments.

4.2.4 Pesticides

No pesticide analysis was completed as part of the RI. Three (3) groundwater samples were collected and submitted as part of the SC for pesticides and were not detected above MDLs in those samples.

4.2.5 PCBs

No PCBs analysis was completed as part of the RI. Three (3) groundwater samples were collected and submitted as part of the SC for PCBs and were not detected above MDLs in those samples.

BENCHMARK

TURNKEY

4.2.6 Field Parameters

As indicated on Table 7, the pH of the groundwater was in the range of at 6.9 to 7.3 SU (i.e., neutral). Other field parameters were within typical ranges for overburden groundwater in the Western New York area. We note that the turbidity at TKMW-9 was outside the preferred range for groundwater sampling (less than 50 NTUs), however the elevated turbidity at this location did not appear to have an impact on the VOC, SVOC or metal results.

4.3 Soil Vapor Intrusion

As discussed in Section 1.2.2 soil vapor samples were collected from three (3) locations (SVP-1 through SVP-3) in the norther portion of the Site, near the existing on-site office building (former gas holder) and former Tar House in October 2011. Soil vapor results indicated that VOCs were present in the subsurface. No indoor or outdoor air samples were collected as part of the SC work.

A soil vapor intrusion (SVI) assessment was completed within the on-site office building in March 2015, as discussed in Section 1.2.3. Two (2) sub-slab vapor samples and two (2) interior air samples were collected from within the office building, and one (1) outdoor ambient air sample was collect for background. The samples were analyzed for VOC analysis via EPA TO-15. Tables 4A and 4B contain a summary of the analytical results and Figure 3 identifies locations of the sample collected as part of the SVI assessment.

The majority of VOCs were reported by the laboratory as non-detect or as estimated values below the laboratory method detection limit. Low-level detections of several VOCs were detected in the sub-slab vapor, indoor air, and outdoor air samples. The data sets were compared to NYSDOH SVI Guidance (Ref. 15), NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes (Ref. 5), NYSDEC DAR-1, Guidelines for the Control of Toxic Ambient Air Contaminants (Ref. 6), and Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs). The results did not demonstrate a sub-slab source of VOCs impacting indoor air quality. Based on this assessment, no air quality concerns were identified at the Site, soil vapor intrusion into the office building was not evident, and no further action is recommended.

In a letter dated June 19, 2015, NYSDEC and NYSDOH concurred with the SVI assessment and concluded that no further action was necessary to evaluate the potential for SVI to occur. SVI is not considered to be a concern within the existing Site building.

4.4 Summary of Previous Investigations and RI Findings

The following is a summary of the Historic Investigations and RI findings.

Surface Soils:

No samples were collected from surface soils as the majority of the Site is covered by building, asphalt parking or concrete walkways. The small amount of existing surface soil that is present is covered with topsoil and vegetation along the eastern and southern portions of the Site.

Subsurface Soils:

One (1) VOC, benzene (150 mg/kg) was detected above its respective CSCO at one (1) location, SB-8, 10 to 14 fbgs. SB-8 was completed in the vicinity of the former tar house in the northern portion of the Site, along the northern property line, where NAPL was identified in the subsurface. With the exception of benzene in the area of SB-8, VOCs are not considered to be a concern in subsurface soils at the Site.

SVOCs were detected above their respective CSCOs and/or Protection of Groundwater SCOs at five (5) sample locations, which were generally well below 500 mg/kg total PAHs with the exception of locations TKMW-7 and SB-8.

- TKMW-7 was installed in the southern-central portion of the Site, along the southern property line. The sample was a fill material sample from 2 to 5 fbgs which was noted to be mostly brick and coal fines. Similar fill materials were also noted at TP-4 and TP-5, completed during the SC.
- SB-8 was completed in the vicinity of the former tar house in the northern portion of the Site, along the northern property line, where NAPL was identified in the subsurface. Naphthalene detected at a concentration of 3,800 mg/kg.
- Although total SVOCs concentrations at SB-9 were below 500 ppm, the findings at adjacent TP-1 indicated the presence of black soil, strong product odors, and PID measurements of 399 ppm at approximately 6 to 7 fbgs. The

test pit was terminated at 7 fbgs. This is likely contamination associated with the former UST that was reportedly present in this area of the Site.

Arsenic was the only metal analyte detected at a concentration slight above its CSCO at two (2) locations, TKMW-7, 2 to 5 fbgs and SB-4, 25 to 26 fbgs. The sample interval from TKMW-7, 2 to 5 fbgs, contained coal fines and is likely the cause of the elevated arsenic. The sample interval at SB-4, 25 to 26 fbgs was of native soil collected 1 foot above equipment refusal (presumed to be associated with the top of bedrock) and associated with natural conditions. Metals are not considered to be a concern for subsurface soils at the Site.

One (1) pesticide, was detected at one (1) sample location, SB-9 5 to 10 fbgs, above MDLs but below its USCO. Pesticides are not considered a concern for the Site.

PCBs were not detected above MDLs and are not considered a concern for the Site.

Groundwater:

VOCs were detected above their respective GWQS/GVs at four (4) locations, MW-02, MW-03, TKMW-5, and TKMW-6.

MW-02: Three (3) VOCs were detected above their respective GWQS/GVs at this location and the total VOCs concentration is approximately 56 ug/l. This location is also downgradient of the former gas holders and former tar house, and in the vicinity of a former oil UST.

MW-03: Benzene (2.6 ug/l) was the only VOC detected at this location with a slight exceedance of its GWQS/GVs. This location is in the vicinity of the former petroleum gas holder.

TKMW-5: Benzene (1.4 ug/l) was the only VOC detected at this location with a slight exceedance of its GWQS/GVs and the total VOCs concentration is approximately 5.7 ug/l. This location is downgradient of the former gas holders and former tar house.

TKMW-6: Four (4) VOCs were detected above their respective GWQS/GVs at this location and the total VOCs concentration is approximately 288 ug/l. This location is downgradient of the former gas holders and former tar house.

VOCs, while present, are not considered a significant concern for the Site groundwater given their relatively low concentrations detected and publically-supplied drinking water system on-Site and the surrounding area.

Naphthalene was the only SVOC detected above their respective GWQS/GVs at one (1) location (TKMW-6) in the groundwater samples collected from the Site. With the exception of the NAPL present at MW-1 and naphthalene at TKMW-6, SVOCs in groundwater are not considered a concern at the Site given their relatively low concentrations detected and publically-supplied drinking water system on-Site and surrounding area.

Three (3) metal analytes were detected above their respective GWQS/GVs in the groundwater at the Site, iron, magnesium, and sodium. It is not uncommon to encounter elevated levels of iron, magnesium, and sodium in groundwater. Magnesium and sodium are common to road salt used on the parking lot and city streets and because the Site and surrounding area are on public water supply, the metal analytes detected are not considered to be of concern at the Site.

Pesticides were not detected above MDLs in the groundwater samples analyzed from the Site. Pesticides are not considered a concern for the Site.

PCBs were not detected above MDLs in the groundwater samples analyzed from the Site. PCBs are not considered a concern for the Site.

Soil Vapor Intrusion:

Low-level detections of several VOCs were detected in the two (2) sub-slab vapor, two (2) indoor air, and one (1) outdoor air samples. The SVI results did not demonstrate a sub-slab source of VOCs impacting indoor air quality. Based on this assessment, soil vapor intrusion into the office building was not evident. In a letter dated June 19, 2015, NYSDEC and NYSDOH concurred with the SVI assessment and concluded that no further action was necessary to evaluate the potential for SVI.

4.5 Data Usability Summary

In accordance with the Quality Assurance Project Plan (QAPP), the laboratory analytical data was independently assessed and, as required, submitted for independent review. Ms. Judy Harry of Data Validation Services located in North Creek, New York performed the data usability summary assessment for the soil/fill and groundwater samples, which involved

a review of the summary form information and sample raw data, and a limited review of associated QC raw data. Specifically, the following items were reviewed:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate Recoveries
- Field Duplicate Correlation
- Preparation/Calibration Blanks
- Control Spike/Laboratory Control Samples
- Instrumental IDLs
- Calibration/CRI/CRA Standards
- ICP Interference Check Standards
- ICP Serial Dilution Correlations
- Sample Results Verification

The Data Usability Summary Reports (DUSRs) were conducted using guidance from the USEPA Region 2 validation Standard Operating Procedures, the USEPA National Functional Guidelines for Data Review, as well as professional judgment. Appendix D includes the DUSRs for the soil/fill and groundwater analytical data, which were prepared in accordance with Appendix 2B of NYSDEC's DER-10 guidance. Those items listed above that demonstrated deficiencies are discussed in detail in the DUSR narrative sections. Analytical results were edited or qualified per the DUSR with changes reflected on the summary tables. In general, most sample results are usable either as reported or with minor qualification or edit. The following issues were noted in the DUSR:

> Four (4) SVOCs (3,3-dichlorobenzidine, 3-nitroaniline, 4-chloroaniline, and caprolactum) were rejected in one groundwater sample (TKMW-6) because the matrix spikes produced no recovery.

The findings of the DUSR do not significantly impact the analytical data for the Site. The rejected data were in the one groundwater were not detected above method detection limits or were they detected in other soil/fill and/or groundwater samples at the Site.
4.6 Constituents of Concern (COCs)

Based on previous investigations and the RI findings to date, the Constituents of Concern (COCs) for a commercial reuse and development at the Site are as follows, presented by media:

- <u>Subsurface Soil/Fill</u>: Benzene and SVOCs in the soil/fill present in the vicinity of the former tar house in the northern portion of the Site; elevated SVOCs (greater than 500 mg/kg) detected from 2 to 5 fbgs at TKMW-7, likely associated with fill material present at that location; and black soil, strong product odors, and PID measurements of 399 ppm identified at TP-1 from approximately 6 to 7 fbgs.
- <u>Groundwater</u>: NAPL present in SB-8/MW-1 in the vicinity of the former tar house in the northern portion of the Site.

TURNKEY

5.0 FATE AND TRANSPORT OF COCS

The subsurface soil/fill, groundwater and SVI sample analytical results associated with the previous investigations and the RI were incorporated with the physical characterization of the Site to evaluate the fate and transport of COCs in Site media. The mechanisms by which the COCs can migrate to other areas or media are discussed below.

5.1 Fugitive Dust Generation

Volatile and non-volatile chemicals present in subsurface soil/fill can be released to ambient air as a result of fugitive dust generation. Impacted subsurface soil/fill has been identified at the Site and, as such, fugitive dust generation during excavations related to remediation and redevelopment activities is considered a relevant potential short-term migration pathway. Impacted soil/fill above CSCOs are currently covered as the majority of the Site is covered by asphalt, building, concrete walkways, or vegetation that would prevent the suspension of soil/fill particles.

Particulate monitoring in accordance with the approved Community Air Monitoring Plan (CAMP) will be completed during intrusive activities and, if required, dust mitigation measures will be employed during future remediation and redevelopment.

5.2 Volatilization

Volatile chemicals present in soil/fill and groundwater may be released to ambient or indoor air. Volatile chemicals typically have a low organic-carbon partition coefficient (K_{oc}), low molecular weight, and a high Henry's Law constant.

Benzene and naphthalene (typically considered a SVOC) were detected in Site soil/fill above their CSCOs. NAPL (MW-1 only) has been detected in the Site groundwater on the eastern portion of the Site in the vicinity of the former tar house, and VOCs and naphthalene were detected in the groundwater to the southeast.

A SVI study was completed for the existing commercial Site building in the vicinity of the VOC, SVOC, and NAPL detections and it was determined not to be a concern for the building.

Therefore, the release of volatiles from impacted soil/fill, groundwater, and NAPL is not considered relevant in association with vapor intrusion but could be considered relevant

in association with soil excavation and/or remedial activities in which impacted materials are handled.

Volatile organic monitoring in accordance with an approved (CAMP) would be implemented during remedial activities and, if required, mitigation measures will be employed during future remediation and redevelopment to minimize the potential exposure. Therefore, volatilization is considered a relevant but unlikely migration pathway.

5.3 Surface Water Runoff

The potential for soil particle transport due to surface water runoff is low, as the entire Site is currently covered by concrete, asphalt, and buildings, and future redevelopment plans include the same. Any outdoor intrusive activity will incorporate erosion controls that would be implemented in accordance with an approved stormwater pollution prevention plan (SWPPP) or Master Erosion Control Plan (MECP). As such, surface water runoff is not considered a relevant migration pathway.

5.4 Leaching

Leaching refers to chemicals present in soil/fill migrating downward to groundwater as a result of infiltration of precipitation. The Site is predominantly covered by asphalt, building, and concrete walkways that mitigates infiltration of precipitation.

The field findings and analytical results collected from the Site, indicates some VOC and SVOC impact, and NAPL are present at one (1) location, SB-8/MW-1. The soil/fill samples collected from in the vicinity of the NAPL identified have the highest concentrations. As such, leaching is considered a relevant pathway in the limited location where NAPL is present at the Site.

5.5 Groundwater Transport

Groundwater underlying the Site flows southeasterly (see Figure 5) with a calculated average hydraulic gradient of 0.004 to 0.07. SC and RI groundwater analytical results (see Tables 2 and 7) indicate VOCs, naphthalene and limited metal analytes (typical of urban environments) were detected in the groundwater above their respective GWQS.

The Site and surrounding areas are serviced by a municipal (supplied) potable water service (City of Batavia) with no evidence of pumping wells in the area of the Site. VOCs and naphthalene present in the groundwater are limited to the eastern portion of the Site. NAPL is present at one (1) location, MW-1. VOC groundwater concentrations appear to decrease from MW-1, where NAPL is present, through TKMW-6 and MW-02 to the south. As such, transport via groundwater migration is a relevant migration pathway; however, COCs present would not reach receptors at significant exposure point concentrations.

5.6 Exposure Pathways

Based on the analysis of chemical fate and transport provided above, the pathways through which Site COCs could reach receptors at significant exposure point concentrations are: fugitive dust during intrusive activities, volatilization during remedial activities, and leaching.

Remedial activities will be necessary to address the NAPL, which significantly reduce and/or eliminates the potential for leaching on-Site and the associated groundwater contamination. During remediation and/or redevelopment construction activities, the use of proper personal protective equipment (PPE), CAMP and erosion and sediment control strategies will be implemented to mitigate the potential for on- and off-site exposure; and, if necessary, excavation dewatering will be completed in accordance with an approved City of Batavia, Bureau of Water and Sewer temporary discharge permit.

TURNKEY BENCHMARK

6.0 QUALITATIVE EXPOSURE ASSESSMENT

6.1 Human Health Exposure Assessment

A qualitative exposure assessment consists of characterizing the exposure setting (including the physical environment and potentially exposed human populations), identifying exposure pathways, and evaluating contaminant fate and transport.

An exposure pathway describes the means by which an individual may be exposed to contaminants originating from a site. An exposure pathway has five (5) elements:

- Receptor population
- Contaminant source
- Contaminant release and transport mechanism
- Point of exposure
- Route of exposure

An exposure pathway is complete when all five elements of an exposure pathway are documented; a potential exposure pathway exists when any one or more of the five elements comprising an exposure pathway is not documented but could reasonably occur. An exposure pathway may be eliminated from further evaluation when any one of the five elements comprising an exposure pathway does not exist in the present and will not exist in the future.

6.1.1 Receptor Population

The receptor population includes the people who are or may be exposed to contaminants at a point of exposure. The identification of potential human receptors is based on the characteristics of the Site, the surrounding land uses, and the probable future land uses. The Site is presently used for commercial office space (family medical practice and associated parking) and the surrounding properties include other commercial facilities (offices, bar/restaurant, ice rink) and a fire department.

Under current Site use conditions (i.e., commercial office and remediation) potential receptors would include employees and patrons of the commercial business, construction workers involved in the remediation and/or redevelopment of the Site, and trespassers who may traverse the property during intrusive activities.

Construction workers and employees of the medical office will be comprised of adults, and patrons of the medical office and trespassers would likely be both adolescents and adults. In these instances, exposure frequency is expected to be minimal (short-term). SVI has not been identified as a concern for the building, therefore exposure is not a concern for employees and patrons inside the building.

6.1.2 Contaminant Sources

The source of contamination is defined as either the source of contaminant release to the environment (such as a waste disposal area or point of discharge) or the impacted environmental medium (soil, air, biota, water) at the point of exposure. Section 4.0 discusses the COCs present in unremediated Site media at elevated concentrations. The COCs present in Site media at elevated concentrations are generally limited to VOCs, SVOCs and NAPL present in the vicinity of the former Tar House in the northern portion of the Site. The lowlevel groundwater contamination present in the vicinity of the former Tar House and to the southeast are likely due to the NAPL present. Although VOCs have been identified at the Site, SVI has not been identified as a concern for the Site building.

6.1.3 Contaminant Release and Transport Mechanisms

Contaminant release and transport mechanisms carry contaminants from the source to points where people may be exposed, and are specific to the type of contaminant and site use. For the non-volatile COCs present in Site soil/fill, contaminant release and transport mechanisms will generally be limited to fugitive dust migration, direct contact during future planned intrusive work/remedial activities since the Site is predominantly covered by hardscape (building/asphalt/concrete, and leaching. For the volatile COCs in the unsaturated zone, the contaminant release and transport mechanism is limited to volatilization during intrusive remedial activities and future Site redevelopment. Although volatile COCs have been identified at the Site, SVI has not been identified as a concern for the Site building.

6.1.4 Point of Exposure

The point of exposure is a location where actual or potential human contact with a contaminated medium may occur. Based on the limited exceedances of CSCOs in soil/fill for benzene and SVOCs, the point of exposure is defined as those areas that will remain after planned remedial activities. For both the current and future use scenarios, groundwater is not considered a relevant mechanism for exposure due to groundwater management procedures during intrusive activities; the availability of a municipal potable water source; and the requirement for an Environmental Easement that will restrict the use of Site groundwater.

6.1.5 Route of Exposure

The route of exposure is the manner in which a contaminant actually enters or contacts the body (i.e., ingestion, inhalation, dermal absorption). Based on the types of receptors and points of exposure identified above, potential routes of exposure are listed below:

Current Use Scenario

- Construction Worker (short-term) Skin contact, incidental ingestion, inhalation of vapor or fugitive dust from COCs present in the impacted subsurface soil/fill, groundwater and NAPL.
- Site Employee/Site Visitor/Trespasser (short-term) inhalation of fugitive dusts from excavation activities completed in areas of the Site impacted with COCs.

Future Use Scenario (Unremediated)

- Construction Worker (short-term) Skin contact, incidental ingestion, inhalation of vapor or fugitive dust from COCs present in the impacted subsurface soil/fill, groundwater and NAPL.
- Site Employee/Site Visitor/Trespasser (short-term) inhalation of fugitive dusts from excavation activities completed in areas of the Site impacted with COCs.

6.1.6 Exposure Assessment Summary

Based on the above assessment of potential exposure receptors, sources, transport mechanisms, exposure points, and routes of exposure, potential exposure pathways exist if the Site is left unremediated or without proper controls.

Construction workers or maintenance workers contact, incidental ingestion, inhalation of vapor or fugitive dust from COCs present in the impacted subsurface could occur. These

potential exposure routes could be mitigated through the use of proper PPE and control measures during excavation activities and/or servicing of utilities.

Site employees, site visitors, and/or trespassers inhalation of fugitive dust impacted with COCs from excavation activities could occur. This potential exposure route could be mitigated through the use of control measures during excavation activities and/or servicing of utilities.

6.2 Potential Ecological Assessments

The historical use of the Site has eliminated the majority of native species. The Site is located in a mainly commercial area of downtown Batavia, currently used for commercial purposes and the majority of the Site is covered in hardscape (asphalt, building, and concrete walkways), providing no wildlife habitat or food value.

There are no significant natural communities within ½-mile of the Site according to the NYSDEC's Environmental Resource Mapper (ERM), with the exception a federal wetland located approximately 0.3 miles southwest and Tonawanda Creek located approximately 0.1 miles northwest of the Site.

The Site is used commercially as a doctor office, which is consistent with surrounding property use and zoning. The existing buildings, asphalt/ concrete, and maintained ornamental landscaping substantially limit availability of suitable cover type for reestablishment of biota. Based on the Fish and Wildlife Resource Impact Analysis Decision Key included as Appendix E (NYSDEC DER-10 Appendix 3C), no FWRIA is warranted.

7.0 **REMEDIAL ALTERNATIVE EVALUATION**

This section of the RI/FFS involves an assessment of remedial alternatives to address remedial action at the Site or media as necessary to assure that it is protective of human health and the environment under the current and reasonably anticipated future use scenario (commercial use), and that measures are put in place to mitigate potential use of the Site consistent with the anticipated future use.

7.1 Land Use Evaluation

In developing and screening remedial alternatives, NYSDEC's Part 375 regulations require that the reasonableness of the anticipated land use be factored into the evaluation. The regulations identify 16 criteria that must be considered. These criteria and the resultant outcome for the Batavia Former MGP Site are presented in Appendix F. As indicated, Appendix F supports continued commercial use and commercial redevelopment as the reasonably anticipated future use of the Site, consistent with past use. Accordingly, remedial alternatives to remediate the Site to restricted commercial end use are identified and evaluated herein.

In addition to the evaluation of alternatives to remediate to the likely end use of the Site, commercial use, NYSDEC regulation and policy calls for evaluation of more restrictive end-use scenarios. This will include an unrestricted use scenario (considered under 6NYCRR Part 375-2.8 to be representative of cleanup to pre-disposal conditions). Per NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation (Ref. 14), evaluation of a "no-action" alternative is also required to provide a baseline for comparison against other alternatives. These alternatives are discussed in greater detail in later in this report.

7.2 Development of Remedial Action Objectives and General Response Actions

The development of an appropriate remedial approach begins with definition of sitespecific Remedial Action Objectives (RAOs) to address human health and ecological risk or other significant environmental issues identified in the Remedial Investigation. General Response Actions (GRAs) are then developed as potential means to achieve the RAOs.

7.3 Remedial Action Objectives

The remedial actions for the Batavia Former MGP Site must satisfy Remedial Action Objectives (RAOs). RAOs are site-specific statements that convey the goals for minimizing substantial risks to public health and the environment. For the Site, appropriate RAOs have been defined as:

Soil/Fill RAOs

- Remove, treat, or mitigate contaminated soil/fill to the degree possible to protect public health and the environment and prevent further degradation of on-site and off-site groundwater quality.
- Prevent ingestion/direct contact with contaminated soil/fill.
- Prevent migration of contaminants that may further result in groundwater or surface water contamination.
- Prevent inhalation of or exposure to contaminants volatilizing from contaminated soil/fill.

Groundwater RAOs

- Prevent ingestion of groundwater containing contaminant levels exceeding NYSDEC Class GA GWQS/GVs or with visual/olfactory evidence of impact.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.
- Prevent degradation of on-site and off-site water quality.

7.4 General Response Actions

General Response Actions (GRAs) are broad classes of actions that are developed to achieve the RAOs and form the foundation for the identification and screening of remedial technologies and alternatives.

The GRAs available to address the RAOs for soil/fill include:

- Institutional controls (e.g., Site Management Plan, Environmental Easement)
- Engineering controls (e.g., cover system)
- Treatment (e.g., in-situ or ex-situ)
- Excavation and off-site disposal

TURNKEY

The GRAs available to address the RAOs for groundwater include:

- Monitored natural attenuation
- Institutional controls
- Engineering controls (e.g., pump-and-treat)
- Treatment (e.g., in-situ or ex-situ)

Although several GRAs may be considered for addressing groundwater impacted by VOCs, NAPL, and naphthalene, the focused nature of the groundwater impact, the absence of off-site concerns, and the relatively low levels of the detected compounds (less than 1 mg/l) suggest that treatment or removal of the source of the groundwater contamination which will reduce VOC concentrations is the most feasible means to address this issue, followed by monitored natural attenuation. Accordingly, the GRA applicable for groundwater impacted by low level petroleum-VOCs and naphthalene is to address the source (COC-contaminated soil and NAPL) present in the vicinity of SB-8/MW-01, followed by monitored natural attenuation.

7.5 Standards, Criteria and Guidance

According to DER-10 Section 1.3(b)71, standards, criteria, and guidance (SCGs) refers to: "standards and criteria that are generally applicable, consistently applied, and officially promulgated, that are either directly applicable or not directly applicable but are relevant and appropriate, unless good cause exists why conformity should be dispensed with, and with consideration being given to guidance determined, after the exercise of scientific and engineering judgment, to be applicable. This term incorporates both the CERCLA concept of 'applicable or relevant and appropriate requirements' (ARARs) and the USEPA's 'to be considered' (TBCs) category of non-enforceable criteria or guidance. For purposes of this Guidance, 'soil SCGs' means the soil cleanup objectives and supplemental soil cleanup objectives identified in 6NYCRR 375-6.8 and the Commissioner Policy on Soil Cleanup Guidance (CP-51)."

Additional discussions concerning the specific chemical-, action-, and location-specific SCGs that may be applicable, relevant, or appropriate to remedy selection for the Site are presented below. In each case, the identified SCGs are generally limited to regulations or technical guidance in lieu of the environmental laws from which they are authorized, as the laws are typically less prescriptive in nature and inherently considered in the regulatory and

guidance evaluations. Table 8 summarizes the SCGs by media that may be applicable or relevant and appropriate to the Site.

7.5.1 Chemical-Specific SCGs

Chemical-specific SCGs are usually health- or risk-based concentrations in environmental media (e.g., air, soil, water), or methodologies that when applied to site-specific conditions, result in the establishment of concentrations of a chemical that may be found in, or discharged to, the ambient environment. The determination of potential chemical-specific SCGs for a site is based on the nature and extent of contamination; potential migration pathways and release mechanisms for site contaminants; reasonably anticipated future site use; and likelihood that exposure to site contaminants will occur.

The RI and previous investigation sampling events included the collection and analysis of subsurface soil/fill, sub-slab vapor and indoor air, groundwater, and soil vapor samples.

7.5.2 Location-Specific SCGs

Location-specific SCGs are restrictions placed on the concentration of hazardous substances or the conduct of activities solely because they are in a specific location. Some examples of these unique locations include floodplains, wetlands, historic places, and sensitive ecosystems or habitats. The location of the site is a fundamental determinant of its impact on human health and the environment.

7.5.3 Action-Specific SCGs

Action-specific SCGs are restrictions placed on particular treatment or disposal technologies. Examples of action-specific SCGs are effluent discharge limits and hazardous waste manifest requirements.

7.6 Evaluation of Remedial Alternatives

NYSDEC's Environmental Remediation Program calls for remedy evaluation in accordance with DER-10 - Technical Guidance for Site Investigation and Remediation (Ref. 14). Specifically, the guidance states "When proposing an appropriate remedy, the person responsible for conducting the investigation and/or remediation should identify and develop a remedial action that is based on the following criteria..:"

- Overall Protection of Public Health and the Environment. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced, or controlled through removal, treatment, engineering controls, or institutional controls.
- **Compliance with Standards, Criteria, and Guidance (SCGs)**. Compliance with SCGs addresses whether a remedy will meet applicable environmental laws, regulations, standards, and guidance.
- Long-Term Effectiveness and Permanence. This criterion evaluates the longterm effectiveness of the remedy after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: (i) the magnitude of the remaining risks (i.e., will there be any significant threats, exposure pathways, or risks to the community and environment from the remaining wastes or treated residuals), (ii) the adequacy of the engineering and institutional controls intended to limit the risk, (iii) the reliability of these controls, and (iv) the ability of the remedy to continue to meet RAOs in the future.
- Reduction of Toxicity, Mobility or Volume with Treatment. This criterion evaluates the remedy's ability to reduce the toxicity, mobility, or volume of site contamination. Preference is given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the site.
- Short-Term Effectiveness. Short-term effectiveness is an evaluation of the potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during construction and/or implementation. This includes a discussion of how the identified adverse impacts and health risks to the community or workers at the site will be controlled, and the effectiveness of the controls. This criterion also includes a discussion of engineering controls that will be used to mitigate short term impacts (i.e., dust control measures), and an estimate of the length of time needed to achieve the remedial objectives.
- **Implementability**. The implementability criterion evaluates the technical and administrative feasibility of implementing the remedy. Technical feasibility includes the difficulties associated with the construction and the ability to monitor the effectiveness of the remedy. For administrative feasibility, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc.
- **Cost**. Capital, operation, maintenance, and monitoring costs are estimated for the remedy and presented on a present worth basis.
- **Community Acceptance**. This criterion evaluates the public's comments, concerns, and overall perception of the remedy. Remedial alternatives are not

typically evaluated against this criterion in the context of the feasibility study; assessment of a proposed remedy for community acceptance is performed during the public comment period on the proposed remedial action plan.

7.7 Alternatives Evaluation

In addition to the evaluation of alternatives to remediate to commercial use (i.e., the likely end use of the Site), NYSDEC regulation and policy calls for evaluation of more restrictive end-use scenarios, such as an unrestricted use scenario (considered under 6NYCRR Part 375 to be representative of cleanup to pre-disposal conditions), and a scenario less restrictive than the reasonably anticipated future use. Per NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, evaluation of a "no action" alternative is also required to provide a baseline for comparison against other alternatives. The alternatives evaluated below include:

- Alternative 1: No Action
- Alternative 2: Unrestricted Use Cleanup
- Alternative 3: Restricted Commercial Use Cleanup

7.8 Volume, Nature, and Extent of Contamination

Estimation of the volume, nature, and extent of media that may require remediation to satisfy the RAOs or that needs to be quantified to facilitate evaluation of remedial alternatives is presented in this section. For the unrestricted use scenario, the cleanup goal would be to achieve USCOs. For the reasonably anticipated future use scenario, the cleanup goal would be to achieve CSCOs. The volume and extent of media requiring cleanup under these scenarios is presented in Sections 7.8.1 and 7.8.2. In all instances, these volume estimates (and associated cost estimates presented later in this AAR) are projected based on data collected and observations made during the previous SC and RI activities.

7.8.1 Comparison to Unrestricted SCOs

Exceedances of the USCOs were noted in discrete soil/fill samples collected, primarily for benzene, PAHs, and arsenic. Figure 7 shows the approximate aerial extent of USCO exceedances (15,700 square feet) that defines the unrestricted use cleanup approach. The depth of impact varies across these five areas and ranged from fill material present below the asphalt parking lot to 26 fbgs.

TURNKEY

The locations, parameter(s), and estimated impacted depth at each of the five areas are as follows:

- SB-1, Acetone: 5 feet 481 cubic yards (CY)
- SB-4, Arsenic: 15 feet 1,055 CY
- SB-7 & SB-8, NAPL, benzene and PAHs: 13 feet 2,528 CY
- TKMW-6 & SB-9, PAHs: 15 feet 1,589 CY
- TKMW-7, PAHs and Arsenic: 6 feet 255 CY

Therefore, the volume of impacted soil/fill requiring remediation under the unrestricted use scenario is approximately 5,961 CY.

7.8.2 Comparison to Commercial Use SCOs

The soil/fill data indicates three (3) areas that would require remedial action under a restricted commercial use cleanup scenario in addition to the use of a DER-10 compliant cover system at the Site. The three (3) areas are as follows, as shown on Figure 8:

<u>SB-8/MW-1</u>: Subsurface conditions identified in this area indicated the presence of NAPL and grossly impacted soil/fill and is considered a source area that should be addressed. Remedial action in this area would involve addressing the NAPL and grossly impacted source area materials from approximately 5 to 15 fbgs. The volume of soil/fill to be addressed is estimated at 500 CY.

<u>TP-1/SB-9/TKMW-6</u>: Subsurface conditions identified in this area indicate the presence of grossly impacted soil/fill which is considered a source area that should be addressed. Remedial action in this area would involve addressing the grossly impacted materials, NAPLs, visual waste material, PAHs greater than 500 mg/kg, and nuisance conditions from approximately 7 to 15 fbgs. The volume of soil/fill to be addressed is estimated at 445 CY.

<u>TKMW-7</u>: Subsurface conditions consist of fill material below the topsoil in this area to a depth of 5 to 6 fbgs that contain total PAHs at a concentration of 637.5 mg/kg that should be addressed. Remedial action in this area would involve addressing the

fill material greater than 500 mg/kg total PAHs from approximately ground surface to 6 fbgs. The volume of soil/fill to be addressed is estimated at 90 CY.

Remedial actions under restricted commercial use cleanup scenario would involve removal or treatment of NAPL and grossly impacted source area materials in the three (3) areas discussed above and the use of a DER-10 compliant cover system across the Site.

Therefore, the volume of impacted soil/fill requiring remediation under the commercial use scenario is approximately 1,035 CY.

7.8.3 Groundwater Impacts

Petroleum-VOCs, naphthalene, and metals were detected above GWQS. The metals detected (iron, magnesium, manganese, and sodium) are not considered to be a concern as discussed in Section 4.2.

The petroleum-VOCs and naphthalene present are likely associated with migration from the source area at SB-8/MW-1 and are well below 1 mg/l in concentration and not considered to be significant. Treatment or removal of the source area and natural attenuation will further reduce the groundwater contamination present at the Site.

7.8.4 Soil Vapor Intrusion

Based on the site-specific data soil vapor intrusion is not a concern.

7.9 Alternative 1: No Further Action

The "no further action" alternative is defined as taking no additional measures to address soil or groundwater at the Site.

Overall Protection of Public Health and the Environment – The Site is not protective of human health and the environment, due to the presence of contamination remaining on-site above SCGs; and the absence of institutional controls to prevent more restrictive forms of future site use (e.g., unrestricted, residential, and restricted residential) or the export of Site soils to uncontrolled off-site locations. Accordingly, the no action alternative is not protective of public health and does not satisfy the RAOs.

Compliance with SCGs – Under the current and reasonably anticipated future use scenario (commercial use), the contamination detected in soil/fill and groundwater does not comply with applicable SCGs.

Long-Term Effectiveness and Permanence – The no action alternative involves no remedial activities, equipment, institutional controls, or facilities subject to maintenance, and provides no long-term effectiveness or permanence toward achieving the RAOs.

Reduction of Toxicity, Mobility, or Volume with Treatment – The no action alternative does not reduce the toxicity, mobility, or volume of contamination beyond natural degradation/attenuation and, therefore, is not protective of public health and does not satisfy the RAOs.

Short-Term Effectiveness – There would be no short-term adverse impacts and risks to the community, workers, or the environment attributable to implementation of the no further action alternative.

Implementability – No technical or administrative implementability issues are associated with the no further action alternative.

Cost – There are no capital or long-term operation, maintenance, or monitoring costs associated with the no further action alternative.

Community Acceptance – Community acceptance will be evaluated based on comments received from the public in response to Fact Sheets and other planned citizen participation activities, including a public comment period for the RI/FFS Report.

7.10 Alternative 2: Unrestricted Use Cleanup

An Unrestricted Use Cleanup alternative would necessitate remediation of soil/fill where concentrations exceed the USCO per 6NYCRR Part 375. For unrestricted use scenarios, excavation and off-site disposal of impacted soil/fill is generally regarded as the

most applicable remedial measure because long-term engineering and institutional controls cannot be used to supplement the remedy. As such, the unrestricted use alternative assumes that those areas that exceed USCOs would be excavated and disposed at an off-site commercial solid waste landfill. Therefore, as described in Section 7.8.1, an estimated 5,195 CY of soil/fill would be excavated to achieve USCOs. In order to access impacted material at depth, the asphalt parking lot within these five areas would need to be removed and the existing site building may require shoring for excavation activities in the vicinity of SB-7 and SB-8/MW-1.

It is anticipated that the excavation activities in the vicinity of SB-8/MW-1 would remove the NAPL (source area) present at the Site as it have not been identified at other areas of the Site. Removal of the source area would also further improve the groundwater quality at the Site, which would continue to attenuate under natural conditions.

Overall Protection of Public Health and the Environment – The Unrestricted Use Cleanup would be protective of public health under any reuse scenario. However, this alternative would permanently use and displace approximately 5,961 CY of valuable landfill airspace, causing ancillary environmental issues due to reduced landfill capacity, and require excavating, transporting, and placing 5,961 CY of clean soil from an offsite borrow source to backfill the excavation, also contributing to significant detrimental off-site environmental issues. The unrestricted use alternative would achieve the corresponding Part 375 SCOs, which are designed to be protective of public health under any reuse scenario.

Compliance with SCGs – The Unrestricted Use Cleanup would need to be performed in accordance with applicable, relevant, and appropriate SCGs. Soil excavation activities would necessitate preparation of and adherence to a CAMP in accordance with Appendices 1A and 1B of DER-10.

Long-Term Effectiveness and Permanence – The Unrestricted Use Cleanup alternative would achieve removal of all residual impacted soil/fill; therefore, no soil/fill exceeding the USCOs would remain on the Site. In addition, groundwater

quality would improve with the removal of the source area. As such, the unrestricted use alternative would provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment – Through removal of all impacted soil/fill, the unrestricted use alternative would reduce the toxicity, mobility, and volume of Site contamination permanently and significantly. However, since this alternative transfers Site soil/fill from one environment to another, an overall reduction of toxicity and volume would not occur. Mobility of soluble constituents would be reduced in the commercial landfill with a liner, cover system, and leachate collection. Removal of the source area and natural attenuation would improve the groundwater quality reducing the contamination present.

Short-Term Impacts and Effectiveness – The principal advantage of a large-scale excavation to achieve USCOs is reliability of effectiveness in the long-term. In the short-term, there would be significant increase in exposure of impacted soil/fill to onsite workers and the community under this alternative. Excavation activities would be completed over an approximate one month period, and backfilling/asphalt repair would take approximately one to two weeks. Commercial construction equipment would be used, a health and safety plan would be followed, and community air monitoring would be completed during excavation activities. However, primary disadvantages include: increased truck traffic during excavation and backfill; noise; and, air emissions, including fugitive dust and odors. This action would result in potential storm water impacts at the borrow source(s) and on-site; diesel fuel consumption on the order of 1,500 gallons (assuming 30 miles round trip to a local landfill; 8 miles per gallon) to transport the 400 truckloads of impacted soil/fill, with several thousands of gallons also consumed by construction equipment. The USEPA's estimated CO₂ generation rate for diesel engines is approximately 22.2 pounds per gallon of diesel consumed. Accordingly, this alternative would produce over 33,000 pounds of greenhouse gas. Therefore, this alternative represents a significant adverse effect in the short-term; however, the RAOs would be achieved once the soil/fill is removed from

the Site, which would remove the source of groundwater contamination and improve groundwater quality.

Implementability – Excavating to depths of 13 to 15 fbgs in sandy soil, poses several technical implementability concerns. Sloughing of excavation walls could occur and shoring/stabilizing excavation sidewalls may be necessary. Groundwater handling, treatment, and/or discharge/disposal would be required. Given the volume of soil/fill required for removal, a high volume of truck traffic in the City of Batavia would be needed to transport the impacted soil/fill off-site.

Cost-Effectiveness – The capital cost of implementing the unrestricted use alternative is estimated at \$1.57 million with a total operation, maintenance and monitoring estimate of \$40,000. Table 9 provides a detailed breakdown of these costs.

Community Acceptance – Community acceptance will be evaluated based on comments received from the public in response to Fact Sheets and other planned citizen participation activities.

7.11 Alternative 3 – Restricted Commercial Use Cleanup

Under Alternative 3, the Site would be cleaned up to facilitate the current and reasonably anticipated continued future commercial use including:

- In-situ stabilization (ISS) of soil/fill/NAPL present in the source area. A treatability study/pre-design investigation will be completed prior to implementation of the ISS to determine proper stabilization mixture/methods and the extent of area to be treated.
- Excavation and off-site disposal of soil/fill present at in the source area at TP-1/SB-9/TKMW-6.
- Excavation and off-site disposal of soil/fill with concentrations of total PAHs greater than 500 mg/kg in the area of TKMW-7.
- Use of a DER-10 compliant cover system to prevent exposure to remaining subsurface contamination.
- Managing impacted water encountered during remedial activities.

- Engineering Controls:
 - Maintaining existing cover system consisting of the building foundation and asphalt parking lot. Asphalt cover removed for future development must be replaced by 6 inches of concrete or asphalt (including sub-base material), or a minimum of 1 foot of clean soil/gravel meeting CSCOs.
- Institutional Controls:
 - Implementing a Site Management Plan (SMP) including an Environmental Easement, EC/IC Plan, Site Monitoring Plan, Excavation Work Plan, O&M Plan, Site use limitations, and groundwater use restrictions.

The following criteria will be used for determining the limits of the excavation remedial element:

- Grossly contaminated soil/fill, as defined by 6 NYCRR Part 375-1.2(u);
- Presence of NAPLs;
- Soil/fill with visual waste material or NAPL;
- Soil/fill containing total PAHs exceeding 500 mg/kg;
- Soil which exceed the protection of groundwater soil cleanup objectives (PGWSCOs) as defined by 6NYCRR Part 375-6.8 for those contaminants found in the site groundwater above standards; and
- Soil/fill that creates a nuisance condition as defined by the Commissioner Policy CP-51 Section G.

The following criteria will be used for determining the limits of the ISS treatment remedial element:

- Grossly contaminated soil/fill, as defined by 6 NYCRR Part 375-1.2(u);
- Presence of NAPLs;
- Soil/fill containing total PAHs exceeding 500 mg/kg;

Specific details of the remediation will be provided in the Remedial Action Work Plan (RAWP) which will be submitted to the Department for review and approval.

49

Overall Protection of Public Health and the Environment – This alternative will meet NYSDEC requirements for a commercial use cleanup and is protective of public health and the environment. As discussed in Section 1, R&J would like to fulfill its obligations under the existing Consent Order (e.g., complete RI/FFS) and apply for

entry of the Site into the BCP to complete any remedial activities. R&J was not responsible for the discharge of the contamination present and subject to the RI/FFS.

The RAOs for the Site would be satisfied through the planned extent of remedial activities listed above including source area soil/fill treatment and/or removal; cover system installation; management of water encountered during remedial actions; maintaining the existing cover systems; and, the use of ICs to prevent potential future exposure and limit the future use to commercial purposes. Groundwater quality will be monitored over time in accordance with the SMP. Accordingly, the Commercial Use Cleanup alternative is protective of public health and fully satisfies the soil and groundwater RAOs.

Compliance with SCGs – The planned commercial use remedial activities comply with the SCGs for a restricted use commercial cleanup, as the source areas of contamination (SB-8/MW-1 and TP-1/SB-9/TKMW-6) and fill material with greater than 500 mg/kg total PAHs (TKMW-7) will be addressed. Addressing these areas will allow groundwater quality conditions to naturally restore to the extent practical and the use of a DER-10 compliant cover system will prevent exposure to remaining contamination in the subsurface.

The commercial use cleanup will require a SMP that will include an EC/IC Plan that describes the procedures for the implementation and management of all EC/ICs at the Site; a Site Monitoring Plan that describes the measures for evaluating the performance and effectiveness of the remedy to reduce, mitigate or prevent exposure to contamination at the Site, including cover system maintenance; an Excavation Work Plan to address any impacted soil/fill encountered during post-development intrusive and/or maintenance activities; a Sampling Plan to monitor groundwater; and a Sitewide inspection program to assure that the EC/ICs placed on the Site have not been altered and remain effective.

Long-Term Effectiveness and Permanence – Treatment and/or removal of source area soil/fill, installation of additional cover system as needed and maintenance of the

existing cover systems will prevent direct contact with soil/fill exceeding CSCOs and address the source of the groundwater contamination at the Site. A SMP will address any impacted soil/fill encountered during future Site intrusive/maintenance activities, and provides a mechanism to assure that the EC/ICs placed on the Site have not been altered and remain effective. Furthermore, an Environmental Easement for the Site will be filed with Genesee County, which will limit future Site use to commercial uses, restrict groundwater use, and reference the Department-approved SMP. As such, this alternative will provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume of Contamination through *Treatment* – This alternative will reduce the toxicity, mobility, and volume of source area contamination by addressing soil/fill/NAPL present in the vicinity of SB-8/MW-1 and TP-1/SB-9. Treatment and/or removal of the source areas will also address the source of the groundwater contamination present at the Site which will further improve groundwater quality. Installation of additional cover system and maintenance of the existing cover system will prevent direct contact with soil/fill exceeding CSCOs. The SMP will include an Excavation Work Plan to address any impacted soil/fill encountered during future Site intrusive/maintenance activities and a Site-wide inspection program to assure that the EC/ICs placed on the Site have not been altered and remain effective. Accordingly, this alternative satisfies this criterion.

Short-Term Impacts and Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment will be controlled during implementation During intrusive remedial activities, including soil/fill of the remedy. treatment/excavation, backfilling, and handling of contaminated soil/fill, could potentially cause adverse short-term effects. Community air monitoring for vapors, dust particulates, and odors will be performed during intrusive activities to assure conformance with community air monitoring action levels. The potential for chemical exposure and physical injury are reduced through safe work practices; proper personal protection equipment (PPE); environmental monitoring; establishment of work zones and Site control; and appropriate decontamination procedures. The planned remedial activities will be completed within one construction season and performed in

accordance with a Department-approved Work Plan, including a HASP and CAMP. This alternative achieves the RAOs for the Site.

Implementability – No technical or action-specific administrative implementability issues are associated with the Commercial Use Cleanup alternative.

Cost – The capital cost of implementing a Commercial Use alternative is estimated at \$323,000 with a total operation, maintenance and monitoring estimate of \$40,000. The total cost of this alternative is approximately \$363,000. Table 10 presents the capital and O&M cost estimate.

Community Acceptance – Community acceptance will be evaluated based on comments received from the public in response to Fact Sheets and other planned citizen participation activities.

7.12 Comparison of Remedial Alternatives

The previous sections describe remedial alternatives for the Batavia Former MGP Site and evaluate these alternatives against the screening criteria. Table 11 provides a comparison of the alternatives by media to identify remedial measures that will achieve the RAOs for the Site.

7.13 Recommended Remedial Alternative

Based on the alternatives analysis evaluation, *Alternative 3 – Commercial Use Cleanup* is the recommended final remedial approach for the Batavia Former MGP Site. This alternative is fully protective of public health and the environment; significantly less disruptive to the Site and community; consistent with current and future land use; and represents a more cost-effective approach than other alternatives while fully satisfying the RAOs. The recommended remedial alternative would involve:

- A treatability study/pre-design investigation will be completed prior to implementation of the ISS to determine proper stabilization mixture/methods and the extent of area to be treated.
- Treatment via in-situ stabilization of soil/fill/NAPL present in the source area, SB-8/MW-1 from depths of approximately 5 to 15 fbgs.

- Excavation and off-site disposal of soil/fill present in the source area TP-1/SB-9/TKMW-6 to a depth of approximately 7 to 15 fbgs
- Excavation and off-site disposal of fill material with total PAHs greater than 500 mg/kg present in the area of TKMW-7 from approximately ground surface to 6 fbgs.
- Managing impacted water encountered during remedial activities.
- Use of a DER-10 compliant cover system across the Site. Areas void of hardscape along the perimeter of the Site will either be covered with additional hardscape or sampled to determine if upper 1 foot is compliant with a restricted commercial use cover system.
- Engineering Controls:
 - Maintaining cover system consisting of the building foundation and asphalt parking lot. Asphalt cover removed for future development must be replaced by 6 inches of concrete or asphalt (including sub-base material), or a minimum of 1 foot of clean soil/gravel meeting CSCOs.
- Institutional Controls:
 - Implementing a Site Management Plan (SMP) including an Environmental Easement, EC/IC Plan, Site Monitoring Plan, Excavation Work Plan, O&M Plan, Site use limitations, and groundwater use restrictions.

This remedy is fully protective of public health and the environment; is advantageous over other remedies when evaluated against the remedy selection criteria; fully satisfies the RAOs for the Site; and comports with the current commercial use at the Site. The components and details of the remaining tasks will be more fully described in an RAWP.

8.0 POST-REMEDIAL REQUIREMENTS

8.1 Final Engineering Report

Following completion of the remedial measures, a Final Engineering Report (FER) will be submitted to the NYSDEC. The FER will include the following information and documentation, consistent with the NYSDEC regulations contained in 6NYCRR Part 375-1.6(c):

- Background and Site description.
- Summary of the Site remedy that satisfied the RAOs for the Site.
- Certification by a Professional Engineer to satisfy the requirements outlined in 6NYCRR Part 375-1.6(c)(4).
- Description of engineering and institutional controls at the Site.
- Site map showing the areas remediated.
- Documentation of imported materials.
- Documentation of materials disposed off-site.
- Copies of daily inspection reports and, if applicable, problem identification and corrective measure reports.
- Air monitoring data and reports.
- Photo documentation of remedial activities.
- Text describing the remedial activities performed; a description of any deviations from the Work Plan and associated corrective measures taken; and other pertinent information necessary to document that the site activities were carried out in accordance with this Work Plan.
- Analytical data packages and DUSRs.

8.2 Site Management Plan

The SMP for the Batavia Former MGP Site will be prepared and submitted concurrent with the FER. The purpose of the SMP is to assure that proper procedures are in place to provide for long-term protection of public health and the environment after remedial construction is complete. The SMP is comprised of four main components:

- Engineering and Institutional Control Plan ۲
- Site Monitoring Plan
- Operation and Maintenance Plan
- Inspections, Reporting, and Certifications

8.2.1 Engineering and Institutional Control Plan

An institutional control in the form of an Environmental Easement will be necessary to limit future use of the Site to restricted commercial applications and prevent groundwater use for potable purposes or as industrial process water without prior approval from NYSDOH or an authorized county health department.

The Engineering and Institutional Control (EC/IC) Plan will include a complete description of all institutional and/or engineering controls employed at the Site, including the mechanisms that will be used to continually implement, maintain, monitor, and enforce such controls. The EC/IC Plan will include:

- A description of all EC/ICs on the Site.
- The basic implementation and intended role of each EC/IC.
- A description of the key components of the ICs set forth in the Environmental Easement.
- A description of the features to be evaluated during each required inspection and periodic review, including the EC/IC certification, reporting, and Site monitoring.
- A description of plans and procedures to be followed for maintenance of the cover system as required.
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the Site remedy, as determined by the NYSDEC.

8.2.2 Site Monitoring Plan

The Site Monitoring Plan will describe the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site, including:

- Sampling and analysis of all appropriate media (e.g., groundwater).
- Assessing compliance with applicable NYSDEC SCGs, particularly ambient groundwater standards and Part 375 RRSCOs for soil.

- Assessing achievement of the remedial performance criteria.
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.
- Preparing the necessary reports for the various monitoring activities.

To address these issues adequately, this Site Monitoring Plan will provide information on:

- Sampling locations, protocol, and frequency.
- Information on all designed monitoring systems (e.g., well logs).
- Analytical sampling program requirements.
- Reporting requirements.
- Quality assurance/quality control (QA/QC) requirements.
- Inspection and maintenance requirements for monitoring wells.
- Monitoring well decommissioning procedures.
- Annual inspection and periodic certification.

Annual groundwater monitoring to assess overall reduction in contamination on-site will be conducted for the first 5 years. The frequency thereafter will be discussed with the NYSDEC. Trends in contaminant levels in groundwater in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals.

8.2.3 Operation and Maintenance Plan

An Operation & Maintenance (O&M) Plan governing maintenance of the cover system will:

- Include the O&M activities necessary to allow individuals unfamiliar with the Site to maintain the cover systems
- Include an O&M contingency plan.
- Evaluate Site information periodically to confirm that the remedy continues to be effective for the protection of public health and the environment. If necessary, the O&M Plan will be updated to reflect changes in Site conditions or the manner in which the cover system is maintained.

8.2.4 Inspections, Reporting, and Certifications

Site-wide inspections will be conducted annually or as otherwise approved by the NYSDEC. All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the Site during the reporting period will be provided in electronic format in a Periodic Review Report (PRR).

The PRR will be submitted to the NYSDEC annually (or as otherwise approved) beginning 18 months after the Certificate of Completion or equivalent document is issued. The PRR will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. The PRR will include:

- Identification, assessment, and certification of all EC/ICs required by the remedy for the Site.
- Results of the required annual Site inspections and severe condition inspections, if applicable.
- All applicable inspection forms and other records generated for the Site during the reporting period in electronic format.
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions.
- Data summary tables and graphical representations of contaminants of concern by media (e.g., groundwater), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format.
- A Site evaluation that includes the following:
 - The compliance of the remedy with the requirements of the site-specific RAWP, and/or Decision Document.
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications.
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Site Monitoring Plan for the media being monitored.

- Recommendations regarding any necessary changes to the remedy and/or Site Monitoring Plan.
- The overall performance and effectiveness of the remedy.

The signed EC/IC Certification will be included in the PRR. For each institutional or engineering control identified for the Site, a Professional Engineer licensed to practice in New York State will certify that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the EC/ICs required by the remedial program was performed under my direction.
- The EC/ICs employed at this Site are unchanged from the date the control was put in place, or last approved by the NYSDEC.
- Nothing has occurred that would impair the ability of the control to protect the public health and environment.
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control.
- Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control.
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document.
- Use of the Site is compliant with the Environmental Easement.
- The EC systems are effective and performing as designed.
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the Site remedial program and generally accepted engineering practices.
- The information presented in this report is accurate and complete.

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a Corrective Measures Plan will be submitted to the NYSDEC for approval. This Plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Plan until it is approved by the NYSDEC.

9.0 **RI/FFS SUMMARY AND CONCLUSIONS**

Based on the data and analyses presented in the preceding sections, we offer the following summary and conclusions:

- NAPL was present in SB-8/MW-01 in the vicinity of the former tar house in the northern portion of the Site and is the likely cause of the VOCs and SVOCs contamination in soil/fill and groundwater.
- VOCs (specifically benzene) and SVOCs are present in the soil/fill at SB-8 (vicinity of the former tar house in the northern portion of the Site, see Figure 6) at concentrations above their respective CSCOs. This is also the location of the NAPL discussed above.
- Previous findings at TP-1 indicated the presence of black soil, strong product odors, and PID measurements of 399 ppm at approximately 6 to 7 fbgs. This is likely contamination associated with the former UST that was reportedly present in this area of the Site.
- Elevated SVOCs/PAHs (greater than 500 mg/kg) were also detected from 2 to 5 fbgs at TKMW-7. The elevated SVOCs are likely associated with fill material present at TKMW-7, TP-4 and TP-5 to the west and are not associated with impacts from the NAPL identified at SB-8/MW-1.
- Low-level VOCs and SVOCs were detected in the groundwater at the Site. Although not considered a significant concern, the low-level contamination (total concentrations less than 1 mg/L) is likely associated with the NAPL present in the vicinity of the former tar house (see Figure 5) and contamination present in the vicinity of TP-1 in the southeastern corner of the Site. Treatment and/or removal of the source areas at the Site will address the source of groundwater contamination at the Site and improve groundwater quality.
- Based on the previously completed SVI investigation and NYSDOH/NYSDEC concurrence, vapor intrusion is not a concern of the on-site building and will not require further action.
- Given the nature and extent of contamination present in the soil/fill and groundwater, and the long history of commercial/industrial use, it is not reasonably practicable to remediate the property to pre-release (Unrestricted Use) or Restricted-Commercial Use conditions in the upper 15 feet.

Based on the Alternatives Analysis, a Restricted Commercial Use cleanup would achieve the Site's RAOs and is the selected remedy. Additional components of the remedial measures to achieve the selected remedy include:

- A treatability study/pre-design investigation will be completed prior to implementation of the ISS to determine proper stabilization mixture/methods and the extent of area to be treated.
- Treatment via in-situ stabilization of soil/fill/NAPL present in the source area, SB-8/MW-1 from depths of approximately 5 to 15 fbgs.
- Excavation and off-site disposal of soil/fill present in the source area TP-1/SB-9/TKMW-6 to a depth of approximately 7 to 15 fbgs
- Excavation and off-site disposal of fill material with total PAHs greater than 500 mg/kg present in the area of TKMW-7 from approximately ground surface to 6 fbgs.
- Managing impacted water encountered during remedial activities.
- Use of a DER-10 compliant cover system across the Site. Areas void of hardscape along the perimeter of the Site will either be covered with additional hardscape or sampled to determine if the upper 1 foot is compliant with a restricted commercial use cover system.
- Engineering Controls:
 - Maintaining the cover system consisting of the building foundation and asphalt parking lot. Asphalt cover removed for future development must be replaced by 6 inches of concrete or asphalt (including sub-base material), or a minimum of 1 foot of clean soil/gravel meeting CSCOs.
- Institutional Controls:
 - Implementing a Site Management Plan (SMP) including an Environmental Easement, EC/IC Plan, Site Monitoring Plan, Excavation Work Plan, O&M Plan, Site use limitations, and groundwater use restrictions.

10.0 REFERENCES

- 1. TurnKey Environmental Restoration, LLC. Remedial Investigation Work Plan, 11 Evans Street, Batavia, NY – Site No. 819019. March 30, 2016.
- 2. The Shaw Group Inc. Site Characterization Report, Batavia Former MGP, 11 Evans Street, Batavia, Genesee County, New York, 14021, Site No. 89019, Contract Work Authorization No. D006132-23. November 2012.
- 3. TurnKey Environmental Restoration, LLC. Former Batavia MGP Site (819019), Subslab/Indoor Air Sampling Report. May 8, 2015.
- 4. Connestoga-Rovers & Associates. Interim Remedial Measures Work Plan, Batavia Former MGP Site, NYSDEC Site No. 819019. December 2014.
- 5. New York State Department of Health. Summary of Indoor and Outdoor Levels of Volatile Organic Compounds from Fuel Oil Heated Homes in NYS, 1997 2003. November 14, 2005.
- 6. New York State Department of Environmental Conservation. DAR-1, Guidelines for the Control of Toxic Ambient Air Contaminants. November 12, 1997.
- 7. The University of the State of New York. Geologic Map of New York, Niagara Sheet. 1970.
- 8. United States Department of Agriculture (USDA), Soil Conservation Service. Soil Survey of Genesee County, New York. 1969.
- 9. USClimatedata.com. http://www.usclimatedata.com/climate/batavia/new-york/united-states/usny0090
- 10. United States Census Data. http://censusreporter.org/profiles/16000US3604715-batavia-ny/
- 11. New York State Department of Environmental Conservation. *Environmental Resource Mapper*.
- 12. United States Fish and Wildlife Services. National Wetlands Inventory, Wetlands Map.
- 13. Federal Emergency Management Agency. *Flood Map 3602790001B*. September 16, 1982.
- 14. New York State Department of Environmental Conservation. *Draft DER-10; Technical Guidance for Site Investigation and Remediation.* December 2002.
- 15. New York State Department of Health. *Guidance for Evaluating Soil V apor Intrusion in the State of New York.* October 2006 (and subsequent updates).

TABLES

TABLE 1

SUMMARY OF PREVIOUS SITE CHARACTERIZATION SOIL-FILL ANALYTICAL RESULTS

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT **BATAVIA FORMER MGP SITE** NYSDEC SITE NO. 819019 11 EVANS STREET

BATAVIA, NEW YORK

		Protection of												
	Unrestricted	Groundwater	Commercial	SB-1	SB-2	SB-3	SB-4	SB-4	SB-5	SB-6	SB-7	SB-8	SB-9	SB-10
	SCOs ²	SCOs ³	SCOs ³	5-10'	10-15'	10-15'	10-15'	25-26'	10-15'	10-15'	9-12'	10-14'	5-10'	10-15'
				9/6/2011	9/6/2011	9/6/2011	9/7/2011	9/7/2011	9/7/2011	9/7/2011	9/8/2011	9/12/2011	9/12/2011	9/13/2011
Volatile Organic Compounds (VOCs) - mg/Kg ³														
1,2,4-Trimethylbenzene	3.6	3.6	190	ND	ND	ND	ND	ND	ND	ND	ND	140	0.024	ND
1,3,5- I rimethylbenzene	8.4	8.4	190	ND	ND	ND	ND	ND	ND	ND	ND	72	0.0096	ND
Acetone	0.05	0.05	500	0.11.1	0.017.1	0.0096.1	0.00103	0.014.1	0.013.1	0.0092.1	0.0091.1	ND	0.0045 J	0.024.1
Benzene	0.06	0.06	44	ND	ND	ND	ND	ND	0.0031 J	ND	0.0031 J	150	ND	ND
Carbon disulfide				ND	ND	0.0027 J	0.0068	ND	0.0014 J	ND	ND	ND	ND	ND
Ethylbenzene	1	1	390	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND
Isopropylbenzene				ND	ND	ND	ND	ND	ND	ND	ND	13	0.0064	ND
n-Butylbenzene	12	12	500	ND	ND	ND	ND	ND	ND	ND	ND	5.6 J	0.0029 J	ND
n-Propyidenzene	3.9	3.9	500	ND	ND	ND	ND	ND	ND	ND	ND	5.2 J	0.0043 J	ND
Styrene				ND	ND	ND	ND	ND	ND	ND	ND	48	ND	ND
Toluene	0.7	0.7	500	ND	ND	ND	ND	ND	ND	ND	0.0012 J	140	ND	ND
Xylene (total)	0.26	1.6	500	ND	ND	ND	ND	ND	ND	ND	ND	220	0.0025 J	ND
Semi Volatile Organic Compounds	s (SVOCs)- mg/kg	4	-	-					-					
2,4-Dimethylphenol				ND	ND	ND	ND	ND	ND	ND	ND	450 EJ	ND	ND
2-Methylphenol (o-Cresol)	0.33	0.33	500	ND	ND	ND	ND	ND	ND	ND	ND	450 EJ	ND	ND
4-ivietnyiphenoi (p-Cresoi) Bis(2-ethylbeyyl)phthalate	0.33	0.33	500	ND	0.096.1	0.47	0.045 1	0.046.1	0.063.1	0.24	0.17	200 DJ	0.058 J	ND
Butylbenzylphthalate				ND	ND	ND	ND	ND	ND	ND	ND	ND	0.55 0 ND	ND
Carbazole				ND	ND	0.062 J	0.12 J	ND	ND	0.084 J	0.047 J	290 DJ	2.1	0.066 J
Dibenzofuran	7	210	350	ND	ND	ND	0.1 J	ND	ND	0.12 J	0.049 J	650 D	1.6	0.065 J
Phenol	0.33	0.33	500	ND	ND	ND	ND	ND	ND	ND	ND	120 DJ	ND	ND
Acenaphthene	20	98	500	ND	ND	ND	0.28	ND	0.28	ND	0.12 J	450 D	2.2	ND
Acenaphthylene	100	107	500	0.059 J	ND	0.21	0.47	ND	0.046 J	0.082 J	0.59	630 D	1.1	0.081 J
Renzo(a)anthracene	100	1000	56	0.049 J	ND	0.097 J	0.27	ND	ND	0.21	0.28 27	640 D	84D	0.15 J
Benzo(a)pyrene	1	22	1	0.47	ND	0.52	0.58	ND	ND	0.22	2.5	450 D	8 D	0.13 J
Benzo(b)fluoranthene	1	1.7	5.6	0.59	ND	0.79	0.79	ND	ND	0.29	2.2	530 D	9.7 D	0.12 J
Benzo(g,h,i)perylene	100	1000	500	0.3	ND	0.43	0.4	ND	ND	0.14 J	1.4	200 DJ	5.4 D	0.053 J
Benzo(k)fluoranthene	0.8	1.7	56	0.27	ND	0.31	0.34	ND	ND	0.18 J	1.6	190 DJ	3.2 D	0.049 J
Dibenzo(a,h)anthracene	0.33	1000	0.56	0.11 J	ND	0.12 J	0.097 J	ND	ND	0.042 J	0.35	69	1.6	ND
Eluoranthene	1	1000	500	0.32	ND 0.045 L	0.67	0.88	ND	ND	0.3	2.3	520 D	18 D	0.13 J
Fluorene	30	386	500	ND	0.043 J	0.04.1	0.33	ND	ND	ND	01.1	780 D	27	0.098.1
Indeno(1,2,3-cd)pyrene	0.5	8.2	5.6	0.29	ND	0.35	0.34	ND	ND	0.13 J	1.1	190 DJ	4.4 D	0.047 J
Naphthalene	12	12	500	0.26	0.12 J	ND	0.38	ND	ND	ND	0.083 J	3800 D	1.4	ND
2-Methylnaphthalene			-	ND	ND	ND	0.13 J	ND	ND	ND	ND	1000 D	0.63	ND
Phenanthrene	100	1000	500	0.098 J	ND	0.26	2	0.041 J	ND	0.81	0.2	2400 D	18 D	0.44
Pyrene	100	1000	500	0.39	ND 0.26	0.8	2.2	ND	ND	0.54	3.4 D	1200 D	15 D	0.26
Total PAHs			500	3.90	0.20	5.95	12.74	0.09	0.39	4.45	21.99	14,269	112.90	1.98
Total PCBs- mg/kg ⁴				0.00	0.17	0.00	12.00	0.04	0.00	4.00	21.02	14,200	112.00	1.00
Total PCBs	0.1	3.2	1			ND					ND	ND	ND	
Metals- mg/kg														
Aluminum				4840	3140	5070	4260	3880	5270	5730	2280	3350	4900	2420
Antimony				0.65 J	ND	0.3 J	0.47 J	0.73 J	ND	ND	0.43 J	ND	0.75 J	ND
Arsenic	13	16	16	3	6	3.6	4.2	16.9 40.2	3.8	4.9	7.1	5.1	5.2	2.6
Bervilium	72	<u> </u>	590	0.24 B	23.3 0.16 B	0.19	0.16	0.34	0.27	0.42	0.097 B	23.1 0.16 B	0.2 B	0.11 B
Cadmium	2.5	7.5	9.3	0.26	0.25 J	0.37 J	0.4 J	0.18 J	ND	ND	0.57 J	0.45 J	2.1 J	0.3 J
Calcium			-	2440	76700	73600	131000	68400	12300	28100	17600	71300	65300	116000
Chromium	30	NS	1500	7.6	6.7	7.7	6.6	7.6	8.7	12.6	3.6	6.5	7.6	4.6
Cobalt				4.1 J	4.1 J	3.8 J	3.8 J	12.4 J	4.5 J	6.3 J	2.3 J	1.7 EJ	4.1 EJ	2.1 EJ
Copper - Total	50	1750	270	19.4	17.3	18.5	14.7	63.2	18.8	21.3	9.8	11	22.6	8.6
Iron - Total				34.6	9520	21.6	7970	18900	11700	8.1	8930	6520 33.2	27900	6710
Magnesium - Total				1850	16900	20200	17200	12900	4980	6940	36400	33100	10500	28100
Manganese - Total			10000	320	317	315	341	235	286	186	495	208	331	364
Nickel - Total	30	130	310	15.7 J	14.3 J	11.4 J	11 J	64.3 J	14.7 J	16.3 J	7.5 J	4.9	12.3 EJ	6.4 EJ
Potassium - Total				545	669	847	900	1140	486	773	747	803	946	733
Selenium - Total	3.9	4	1500	ND	ND	ND	ND	2.4	ND	ND	ND	ND	ND	ND
Silver - Lotal	2	8.3	1500	ND 70.4	ND	ND 240	ND 106	ND 144	ND	ND 202	ND	ND 247	ND 246	ND 200
Thallium - Total				70.1 ND	0.35 B	310 ND	ND ND	2	ND	393 ND	0.23 R	247 05 R		200
Vanadium - Total				9.2	8.7	10.6	9.3	18.8	11.9	14.6	7.5	7.7	9.7	7.5
Zinc - Total	109	2480	10000	43.2 J	35.9 J	68.4 J	68.9 J	30.2 J	38.8 J	38.4 J	36.1 J	53.4 EJ	1250 EJ	17.8 EJ
Mercury - Total	0.18	0.73	2.8	0.017 B	0.012 B	0.02 B	0.018 B	0.034 B	0.049	0.044	0.059	0.035 B	0.037 B	0.0068 B
Cyanide	27	40	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pesticides and Herbicides- mg/kg ⁴			000	1	1	- A1-						117	0.0070	
Endosultan sultate	2.4	1000	200			ND					ND	ND	0.0052 J	NA

Notes

Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
Values per 6NYCRR NYSDEC Part 375 Soil Cleanup Objectives (SCOs).

Values per NYSDEC Part 375 Restricted-Commercial Soli Cleanup Objectives (SCOs).
Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs

5. Naphthalene was report on both the VOC and SVOC analytical compound lists used by the Spectrum Analytical, Inc. during the Site Characterization. For purposes of discussion in the RI/FFS report, naphthalene is discussed as a SVOC.

Definitions:

ND = Parameter not detected above laboratory detection limit.

NA = Parameter not analyzed for. "--" = No value available for the parameter or compound was not analyzed for.

- Ect

but gre

B = Analyte was detected in associated method blank.

E = Results exceeded calibration range.

EJ= Concentration exceeded calibration standards in initial analyses. But was not detected in the subsequent dilution. The concentration is estimated.

D= Analysis was performed under a sample dilution.

DJ= Analysis was performed under a sample dilution. The compound was positively identified, but the concentration is below the adjusted reporting limit of dilution. R= Result was of poor quality and rejected through third party validation.

Bold	= Result exceeds Unrestricted SCOs.
Bold	= Results exceed Protection of Groundwater SCOs.
Bold	= Result exceeds Commercial SCOs.

TABLE 2

SUMMARY OF PREVIOUS SITE CHARACTERIZATION GROUNDWATER ANALYTICAL RESULTS

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT BATAVIA FORMER MGP SITE NYSDEC SITE NO. 819019 11 EVANS STREET BATAVIA, NEW YORK

PARAMETER ¹	NYSDEC T.O.G.S 1.1.1 Groundwater	MW-02	MW-03	MW-04					
	Quality Standard ⁻	10/5/2011	9/29/2011	9/29/2011					
Volatile Organic Compounds (VOCs) ug/L									
1,2,4-Trimethylbenzene	5*	25	ND	ND					
1,3,5-Trimethylbenzene	5*	9	ND	ND					
4-Isopropyltoluene	5*	2	ND	ND					
Acetone	50	ND	ND	11 J					
Benzene	1	0.71 J	2.6	ND					
Isopropylbenzene	5*	2.8	ND	ND					
m,p-Xylene	5*	5.4	ND	ND					
n-Propylbenzene	5*	2.4	ND	ND					
o-Xylene	5*	0.97 J	ND	ND					
sec-Butylbenzene	5*	0.73 J	ND	ND					
Toluene	5	0.74 J	ND	ND					
Xylene (total)	5*	6.3	ND	ND					
Semi Volatile Organic Compounds (SVOCs) ug/L									
Carbazole		1.5 J	ND	ND					
Fluoranthene	50	ND	1.7 J	ND					
Naphthalene	10	6 J	ND	ND					
PCBs ug/L									
		ND	ND	ND					
Pesticides ug/L									
		ND	ND	ND					
Metals ug/L									
Aluminum		ND	75.3 B	1120					
Arsenic	25	4.7	ND	ND					
Barium	1,000	194 B	261	203					
Calcium	-	182000	159000	280000					
Chromium	50	ND	ND	2.3 B					
Cobalt		ND	ND	1.5 B					
Copper	200	ND	ND	7 B					
Iron	300	8460	3570	3670					
Magnesium	35,000	28900	26500	77300					
Maganese	300	984	824	399					
Nickel	100	0.2 B	ND	5.7 B					
Potassium		13100	21100	25300					
Sodium	20,000	100000	194000	31400					
Vanadium		ND	ND	5.6					
Zinc	2,000	ND	ND	20.2					
Cyanide	200	ND	105	6.4 B					

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table;

all other compounds were reported as non-detect.

2. Values per NYSDEC T.O.G.S 1.1.1 Groundwater Quality Standard

3. Values reported as micrograms per liter (ug/L) or parts per billion (ppb).

4. The results presented for MW-02 are the higher of the actual sample result or its respective duplicate sample. **Definitions:**

ND = Parameter not detected above laboratory detection limit.

NA = Parameter not analyzed for.

"--" = No value available for the parameter.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was detected in associated method blank.

R= The data was rejected through third party data validation and deemed unusable.

* = The compound is a Principle Organic Contaminant and the class standard of 5 ug/L applies.

Bold = NYSDEC T.O.G.S 1.1.1 Groundwater Quality Standard

SUMMARY OF PREVIOUS SITE CHARACTERIZATION SOIL VAPOR AND AMBIENT AIR ANALYTICAL RESULTS

REMEDIAL INVESTIGATION / FOUSED FEASIBILITY STUDY REPORT BATAVIA FORMER MGP SITE NYSDEC SITE NO. 819019 11 EVANS STREET BATAVIA, NEW YORK

PARAMETERS	SVP-1	SVP-2	SVP-3	AMBIENT
Volatile Organic Compounds (VOCs) - micrograms	s per cubic meter (ug/m ³)			•
Propene	ND	4.4	0.99 J	1.2
Dichlorodifluoromethane (CFC 12)	2.3 J	1.9	2.1 J	2
Chloromethane	ND	0.27 J	0.49 J	0.38 J
1,3-Butadiene	ND	0.23 NJ	ND	ND
Ethanol	ND	ND	4.4 J	3.4 J
Acetonitrile	ND	7.4	ND	ND
Acrolein	ND	ND	0.93 J	0.69 J
Acetone	ND	19 B	ND	ND
Trichlorofluoromethane	ND	1.1	1.1 J	1.1
2-Propanol (Isopropyl Alcohol)	25	ND	2.3 J	2.2
Trichlorofluoroethane	ND	0.46 J	0.51 J	0.49 J
Carbon Disulfide	ND	1.4 J	1.2 J	ND
Vinyl Acetate	ND	0.83 J	ND	ND
2-Butanone (MEK)	4.1 J	3.8 J	1.4 J	0.69 J
n-Hexane	ND	0.91	0.32 J	0.45 J
Chloroform	ND	0.38 J	0.24 J	ND
Benzene	ND	15	0.32 J	0.85
Carbon Tetrachloride	ND	0.31 J	0.31 J	0.35 J
Cyclohexane	ND	0.42 J	ND	ND
Bromodichloromethane	ND	0.15 NJ	ND	ND
Trichloroethene	ND	ND	0.14 J	ND
n-Heptane	ND	0.57 J	0.26 J	0.26 J
4-Methyl-2-pentanone	ND	0.61 J	ND	ND
Toluene	3 J	8.9	1.8 J	1.8
2-Hexanone	ND	1 NJ	0.34 J	ND
n-Octane	ND	0.32 J	0.27 J	ND
Tetrachloroethene	1.8 J	0.18 J	0.21 J	ND
Ethylbenzene	ND	1.5	0.44 J	0.4 J
m,p-Xylenes	8.5 J	7.3	1.5 J	1.1
Styrene	ND	0.83	ND	ND
o-Xylene	3.6 J	5.5	0.5 J	0.44 J
n-Nonane	4.2 J	0.76	0.53 J	0.45 J
Cumene	ND	0.17 J	ND	ND
alpha-Pinene	ND	0.67	0.18 J	ND
n-Propylbenzene	ND	0.21 J	ND	ND
4-Ethyltoluene	ND	0.54 J	ND	ND
1,3,5-Trimethylbenzene	3.1 J	3.9	0.22 NJ	ND
1,2,4-Trimethylbenzene	11	5.7 NJ	0.67 J	0.55 J
d-Limonene	ND	0.29 NJ	ND	ND
Naphthalene	41	100	ND	ND

Notes:

1. Only those parameters detected above the method detection limits, at a minimum of one location are presented in this table.

2. ND = compound concentration below reporting limit.

3. J = The compound was positively identified, but the concentration is an estimated value.

4. NJ = The result could is tentative in identification and could potentially be a false-positive. The reported value is an estimate.

5. B = Compound was detected in associated method blank.

TABLE 4A

SUMMARY OF 2015 SOIL VAPOR INTRUSION SAMPLE ANALYTICAL RESULTS

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT **BATAVIA FORMER MGP SITE** NYSDEC SITE NO. 819019 11 EVANS STREET **BATAVIA, NEW YORK**

	NYSDOH				1			
	Indoor 90 th	DAR-1	OSHA	Lo	bby	Utility	Room	
Parameter ¹	Percentile	AGCs	PELs			· · · · · · · · · · · · · · · · · · ·		
	Comparison	(µɑ/m3) ³	(µɑ/m3) ⁴	Subclab	Indoor	Subclab	Indoor	Outdoor
	(µg/m3) ²	(1-3)	(1-3)	Subsiab	indoor	Subsiab	maoor	
Volatile Organic Compounds (VOCs	s) - µa/m3							
1.1.2.2-Tetrachloroethane	<0.25	NA	NA	1.3	ND	ND	ND	ND
1.1.1- Trichloroethane	3.1	NA	NA	ND	0.27 J	2.2	ND	ND
1.1-Dichloroethene	<0.25	NA	NA	ND	0.52 J	ND	ND	ND
1.2.4-Trichlorolbenzene	3.4	NA	NA	ND	ND	ND	ND	0.43 J
1,2,4-Trimethylbenzene	9.5	NA	NA	0.93 J	1.2 B	4.1	ND	0.078 J B
1,2-Dichlorobenzene	0.7	200	300,000	ND	1.2 J B	ND	ND	ND
1,2-Dichloroethene, Total	<0.25	63	790,000	ND	1.6	ND	ND	ND
1,3,5-Trimethylbenzene	3.6	NA	NA	ND	0.89 J	1.4	ND	ND
1.4-Dichlorobenzene	1.3	NA	NA	ND	0.21 J B	ND	ND	ND
4-Ethyltoluene		NA	NA	0.21 J	0.66 J	1.1	ND	ND
4-lsopropyltoluene		NA	NA	ND	ND	1.1	ND	ND
Acetone	110	NA	NA	23	17	25	12	4.1 J
Benzene	15	NA	NA	2.3	0.9	2.6	0.64	0.52 J
Carbon disulfide		NA	NA	2.1	ND	2.9	ND	ND
Carbon tetrachloride	0.81	NA	NA	0.37	0.78	0.24 J	0.59	0.52
Chloroethane	<0.25	10,000	2,600,000	0.77 J	2.6	ND	1.9	ND
Chloroform	1.4	ŃA	NÁ	0.5 J	ND	ND	0.19 J	ND
Cyclohexane	8.1	NA	NA	12 J	ND	25	ND	ND
Chloromethane	3.3	NA	NA	ND	1.5	0.16 J	1.2	1.2
cis-1,2-Dichloroethene	<0.25	63	790,000	ND	1.6	ND	ND	ND
Cumene		NA	NA	0.4 J	0.2 J	0.91 J	ND	ND
Dichlorodifluoromethane	15.0	NA	NA	2.3 J	3.6	2.3 J	3.1	2.9
Ethylbenzene	7.4	NA	NA	1.4	2.3	2.9	0.13 J	0.12 J
Freon 22		NA	NA	0.75 J	ND	4.9	ND	1.2 J
Freon TF		NA	NA	0.52 J	0.86 J	0.54 J	0.73 J	0.7 J
Hexachlorobutadiene	4.6	NA	NA	ND	ND	ND	ND	0.77 J
Isopropyl alcohol		NA	NA	110 E	730 E	11 J	350 E	2.7 J
Methyl Ethyl Ketone	16.0	NA	NA	2.1	1.3 J	5	0.91 J	ND
Methylene Chloride	22.0	NA	NA	1.1 J	0.74 J	1.1 J	ND	0.78 J
Naphthalene		NA	NA	ND	1.1 J	ND	ND	ND
n-Butane		NA	NA	24	2.8	28.0	2.3	1.3
n-Heptane	19.0	NA	NA	27	0.26 J	55	ND	ND
n-Hexane	18.0	NA	NA	22	0.39 J	49	ND	0.27 J
Styrene	1.3	NA	NA	1	ND	4.2	ND	ND
n-Propylbenzene	1.7	NA	NA	ND	0.49 J	0.99	ND	ND
tert-Butyl alcohol		NA	NA	ND	2.4 J	4.3 J	ND	ND
Tetrachloroethene	2.9	NA	NA	9.7	1.4	12	ND	ND
Toluene	58.0	NA	NA	12	39	26	1	0.89
Trichloroethene	0.5	NA	NA	23	ND	ND	ND	ND
Trichlorofluoromethane	17.0	NA	NA	1.2	2	1.2	1.6	1.5
Xylene (total)		NA	NA	7.6	11	17	0.24 J	0.51 J
m,p-Xylene	12.0	NA	NA	5.7	8.9 B	13	0.24 J B	0.37 J B
o-Xylene	7.6	NA	NA	1.9	2.8	4.4	ND	0.15 J

Notes:

1. Only those parameters detected above the method detection limit, at a minimum of one location, are presented in this table.

2. Indoor Air sampling results compared to the NYSDOH Summary of Indoor and Outdoor Levels of Volatile Organic Compounds for Fuel Oil Heated Homes in NYS (November 2005)

3. NYSDEC Policy DAR-1, Guidelines for the Control of Toxic Ambient Air Contaminants, Annual Guideline Concentration (AGC).

4. Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL).

5. Sampling completed on March 18-19, 2015.

a Estimated value.
 B = Compound was detected in the associated method blank at a concentration that may have contributed to sample result.
 E = Result exceeds calibration range.
 ND = Compound analyzed but not detected at a concentration above the reporting limit.
 - = No value set for this

= NYSDOH Matrix 1 compound - carbon tetrachloride, trichloroethene, vinyl chloride (see Table 2)

= NYSDOH Matrix 2 compound - Tetrachloroethene, 1,1,1-trichloroethane, cis-1,2-dichloroethene, and 1,1-dichlrooethene (see Table 2)

= Value exceeds NYSDOH Indoor Air Guidance - 90th percentile (see Note 2).

TABLE 4B

COMPARISON OF 2015 SOIL VAPOR INTRUSION SAMPLE RESULTS VS. NYSDOH MATRICES

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT BATAVIA FORMER MGP SITE NYSDEC SITE NO. 819019 11 EVANS STREET BATAVIA, NEW YORK

	Carbon Te	trachloride	Trichloroet	hene (TCE)	Vinyl C	hloride	Tetrachloroe	ethene (PCE)	1,1,1 -Trich	loroethane	cis-1,2-Dich	loroethene	1,1-Dichlo	proethene
Sample Location	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 1	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 1	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 1	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 2
Lobby														
Subslab	0.37		23		ND		9.7		ND		ND		ND	
Indoor	0.78	I,R	ND	NFA	ND	NFA	1.4	NFA	0.27	NFA	1.6	NFA	0.52	NFA

	Carbon Te	trachloride	Trichloroet	hene (TCE)	Vinyl C	hloride	Tetrachloroe	ethene (PCE)	1,1,1 -Trich	loroethane	cis-1,2-Dich	loroethene	1,1-Dichlo	oroethene
Sample Location	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 1	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 1	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 1	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 2	Lab Reported Concentration (ug/m ³)	Soil Vapor / Indoor Air Matrix 2
Utility Room														
Subslab	0.24		ND		ND		ND		2.2		ND		ND	
Indoor	0.59	I,R	ND	NFA										

Notes:

ND = Not Detected

NFA = No further action.

I, R = Take reasonable and practical actions to identify source(s) and reduce exposures.

= NYSDOH Matrix 1 Compounds = NYSDOH Matrix 2 Compounds

SUMMARY OF REMEDIAL INVESTIGATION SAMPLING AND ANALYSIS PROGRAM

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT BATAVIA FORMER MGP SITE NYSDEC SITE NO. 819019 11 EVANS STREET BATAVIA, NEW YORK

				Analysis				
Sample Identifier	Depth Sampled/ Screened (fbgs)	TCL VOCs	TCL SVOCs	TAL Metals	TAL Metals (Dissolved)	Total Cyanide	Date Sampled	Notes
Subsurface Soil/Fill			Х					
TKMW-5	9 to 11	Х	Х	Х		Х	04/13/2016	
TKMW-6	8 to 10	Х	Х	Х		Х	04/13/2016	
TKMW-7	2 to 5	Х	Х	Х		Х	04/13/2016	Duplicate
TKMW-8	5.5 to 7.5	Х	Х	Х		Х	04/13/2016	MS/MSD
TKMW-9	5 to 7	Х	Х	Х		Х	04/13/2016	
Groundwater								
TKMW-5	5 to 15	Х	Х	Х		Х	04/27/2016	
TKMW-6	5 to 15	Х	Х	Х		Х	04/27/2016	MS/MSD
TKMW-7	5 to 15	Х	Х	Х		Х	04/27/2016	
TKMW-8	5 to 15	Х	Х	Х		Х	04/27/2016	Duplicate
TKMW-9	5 to 15	Х	Х	Х		Х	04/27/2016	

SUMMARY OF REMEDIAL INVESTIGATION SOIL/FILL SAMPLE ANALYTICAL RESULTS

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT BATAVIA FORMER MGP SITE NYSDEC SITE NO. 819019 **11 EVANS STREET BATAVIA, NEW YORK**

PARAMETER ¹	Unrestricted Use SCOs ²	Protection of Groundwater SCOs ²	Commercial Use SCOs ²	TKMW-5 (9-11')	TKMW-6 (8-10')	TKMW-7 ⁴ (2-5')	TKMW-8 (5.5-7.5')	TKMW-9 (5-7')
		04/13/2016						
Volatile Organic Compounds (VOCs) - mg/Kg	4	4	200	ND	12	ND	ND	ND
				ND	0.59	ND		
Methylevelehexane				ND	0.30 3	ND		
Methylopa chlorida	0.05	0.05		ND	2.9 ND	ND	0.0041	0.0022 1
Total Xylenes	0.05	0.05	500	ND	35	ND	0.0041 J	0.0000 J
Semi-Volatile Organic Compounds (SVOCs) - mg/Kg ³	0.20	0.20	500		5.5	ND		ND
2-Methylnaphthalene				ND	4.6	ND	ND	ND
	20	98		ND	3.2	4.1	ND	ND
Acenaphthylene	100	107	500	ND	0.88.1	ND	ND	ND
Anthracene	100	100	500	ND	33	10.1	ND	
Benzo(a)anthracene	1	1	5.6	0.18.1	3.5	66.1	ND	ND
Benzo(a)nvrene	1	22	5.0	0.10.0	3.2	90.1	ND	ND
Benzo(b)fluoranthene	1	17	5.6	0.16.1	3.4	98.1	ND	ND
Benzo(chi)nervlene	100	1000	5.0	ND	23	66.1	ND	ND
Benzo(k)fluoranthene	0.8	17	56	0.091.1	12	45.1	ND	ND
Binhenvl			50	ND	0.46.1	ND	ND	ND
Carbazole				ND	1.400	47.1	ND	ND
Chrysene	1	1	56	0.19.1	33	-4.7 U	ND	ND
Dihenzo(a h)anthracene	0.33	1000	0.56	ND	ND	9.8.1	ND	ND
Dibenzofuran	7	210	350	0.64	11	18.1	ND	ND
Fluoranthene	100	1000	500	0.04	9.2	53.1	ND	0.068.1
Fluorene	30	386	500	1.4	21	24.1	ND	ND
Indeno(1 2 3-cd)pyrene	0.5	8.2	5.6	ND	1.6	60 J	ND	ND
Naphthalene	12	12	500	ND	23 D	13.1	ND	ND
Nitrobenzene				ND	ND	ND	ND	ND
Phenanthrene	100	1000	500	ND	12	26.1	ND	0.032.1
Pyrene	100	1000	500	0.28	9.8	53.1	ND	0.061.1
Total SVOCs		-		3.271	89.34	644 J	0	0.161
Total PAHs			500	2.631	82.44	637.5	0	0.161
Total Metals - mg/Kg				<u> </u>				
Aluminum				5410	6520	6210	9750	16400
Arsenic	13	16	16	3.5	2.9	16.1	4.6	5.7
Barium	350	820	400	18.2	18.9	90.7	25.9 J	63.4
Bervllium	7.2	47	590	0.27	0.33	0.59	0.38	0.75
Calcium				96200	1340	39600 J	29500 F2	3520
Chromium	30		1500	8.2	10.4	11	12.4	22.1
Cobalt				4	4.8	6.5	4.9	9
Copper	50	1.720	270	11.2	14.9	38.6 J	14.8	21.1
Iron		-		9150	12300	12500	13100	21800
Lead	63	450	1000	9.4	7.6	86.9	9.9	21.5
Magnesium				11300	2050	8120	4070 J	3830
Manganese	1600	2000	10000	257	208	216	163 F1F2	275
Mercury	0.18	0.73	2.8	ND	ND	0.18	ND	0.03
Nickel	30	130	310	12.4	19.9	17.1	15.7	27.9
Potassium		-		1860	1890	1200	1470 J	3110
Sodium				220	ND	532	282	456
Vanadium				14.6	20.2	19.3	20.7 F1	37.8
Zinc	109	2480	10000	32.6	42.4	80.7	37.6	65
Cyanide - Total	27	40	27	ND	ND	ND	ND	ND

Notes

Northy those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 Values per NYSDEC Part 375 Soil Cleanup Objectives (SCOs).
 Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.
 The results presented for TKMV-7, 2 to 5 th are the higher of the direct sample results or its duplicate.

Definitions:

ND = Parameter not detected above laboratory detection limit. "--" = No value available for the parameter; Parameter not analysed for.

Bold Result exceeds Unrestricted Use SCOs. = Result exceeds Commercial Use SCOs. Bold

SUMMARY OF REMEDIAL INVESTIGATION GROUNDWATER SAMPLE ANALYTICAL RESULTS

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT BATAVAIA FORMER MGP SITE NYSDEC SITE NO. 819019 **11 EVANS STREET BATAVIA, NEW YORK**

PARAMETER ¹	GWQS ²	TKMW-5	TKMW-6	TKMW-7	TKMW-8 ³	TKMW-9
Volatilo Organic Compounds (VOCs) - u	a/l	ļ				
Acotopo	50	24.1	ND	ND	57.1	0.1 L
Benzene		3.4 JT	25	ND		9.1 3+
Carbon disulfide	120	ND	ND	ND	0.30 1	0.81 1
Cyclobexane		0.36.1	22.1	ND	0.35 J	ND
Ethylbenzene	5	ND	11	ND	ND	ND
Isopropylbenzene	5	ND	8.9.1	ND	ND	ND
Methylcyclohexane		0.56.1	200 F1	ND	ND	ND
Total Xylene	5	ND	21	ND	ND	ND
Semi-Volatile Organic Compounds (SVO	Cs) - ua/L			1 110	1 110	
2-Methylnaphthalene		ND	20	ND	ND	ND
Acenaphthene	20	7.3 J	7.6	ND	ND	ND
Anthracene		0.48 J	1.6 J	ND	ND	ND
Benzaldehvde		ND	ND	0.59 J *	ND	ND
Carbazole		ND	8.3	ND	ND	ND
Dibenzofuran		0.56 J	2.7 J	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	0.35 J	0.35 J
Fluoranthene	50	ND	1.1 J	ND	ND	ND
Fluorene	50	2.5 J	4 J	ND	ND	ND
Napthalene	10	ND	320 J-	ND	ND	ND
Phenanthrene	50	1.8 J	8.9	ND	ND	ND
Pyrene	50	ND	0.88 J	ND	ND	ND
Total Metals - ug/L	-		•		•	•
Aluminum		260	ND	ND	ND	4,100
Barium	1000	320	220	38	140	110
Calcium		186,000	189,000	109,000	200,000	229,000
Chromium	50	ND	ND	ND	ND	6
Cyanide	200	12	16	ND	ND	ND
Iron	300	2,900	25,000	120	280 J	5,400
Magnesium	35000	27,400	21,700	18,600	34,000	58,300
Manganese	300	550	2,300	68	600	310
Potassium		10,400	13,100	3,700	11,100	15,700
Sodium	20000	236,000	192,000	45,700	396,000	399,000
Vanadium	14	ND	ND	ND	ND	7.9
Zinc	2000	ND	ND	ND	ND	19
Field Measurements (Units as Indicated)						
pH (units)	6.5 - 8.5	7.05	6.9	7.3	7.09	7.09
Temperature (oC)		11.2	12	10.1	10	10.3
Specific Conductance (uS)		2190	2001	799.8	3010	3500
Turbidity		29.3	19.8	12.3	11.8	664
DO (ppm)		1.09	1.19	2.95	4.2	1.28
ORP (mV)		-60	-107	115	112	73

Notes

Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds or analytes were reported as non-detect
 Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations - Class GA (TOGS 1.1.1)

3. The results presented for TKMW-8 are the higher of the direct sample results or its duplicate.

Definitions:

ND = Parameter not detected above laboratory detection limit. *--² = No value available for the parameter. J = Estimated value.

J = estimated value, J + = estimated value may be biased high. J - estimated value may be biased low. * = Laboratory control sample or laboratory control sample duplcate is outside acceptance limits. F1 = matrix spike and/or matrix spike duplicate recovery is outside acceptance limits. BOLD = Result exceeds GWQS.

STANDARDS, CRITERIA, AND GUIDANCE (SCGs)

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY

BATAVIA FORMER MGP SITE 11 EVANS STREET BATAVIA, NEW YORK

Citation	Title	Regulatory Agency
General		
29CFR 1910.120	Hazardous Waste Operations and Emergency Response	US Dept. of Labor, OSHA
29CFR 1910.1000	OSHA General Industry Air Contaminants Standard	US Dept. of Labor, OSHA
29CFR 1926	Safety and Health Regulations for Construction	US Dept. of Labor, OSHA
Not Applicable	Analytical Services Protocol	NYSDEC
6NYCRR Part 608	Use and Protection of Waters	NYSDEC
6NYCRR Part 621	Uniform Procedures Regulations	NYSDEC
6NYCRR Parts 750-757	State Pollutant Discharge Elimination System	NYSDEC
Not Applicable	New York State Stormwater Management Design Manual	NYSDEC
Section 404	Clean Water Act	USACE
Soil/Fill		
6NYCRR Part 375	Environmental Remediation Programs	NYSDEC
DEC Policy CP-51	Soil Cleanup Guidance	NYSDEC
NYSDEC, June 2014	Technical Guidance for Screening Contaminated Sediments: LEL/SEL	NYSDEC
Groundwater		
6NYCRR Part 700-705	Surface Water and Ground Water Classification Standards	NYSDEC
TOGS 1.1.1	Ambient Water Quality Standards and Guidance Values	NYSDEC
TOGS 2.1.3	Primary and Principal Aquifer	NYSDEC
Air/Soil Vapor		
DER-10 Appendix 1B	Fugitive Dust Suppression and Particulate Monitoring Program at Inactive Hazardous Waste Sites	NYSDEC
NYSDOH, October 2006	Final - Guidance for Evaluating Soil Vapor Intrusion in the State of NY	NYSDOH
Solid Waste		
6NYCRR 360	Solid Waste Management Facilities	NYSDEC
6NYCRR 364	Waste Transporters	NYSDEC

COST ESTIMATE FOR UNRESTRICTED USE (TRACK 1) ALTERNATIVE

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT

BATAVIA FORMER MGP SITE 11 EVANS STREET BATAVIA, NEW YORK

Item	Quantity	Units	Unit Cost		Total Cost	Remarks
Demolition						
ACM Abatement & Building Demolition	1	EST	\$ 15,000	\$	15,000	
Loading/Trucking/Disposing C&D Material	25	TON	\$ 45	\$	1,125	
Subtotal:				\$	17,000	
Impacted Soil/Fill Removal & Water Management						
Excavation Dewatering and Treatment	100,000	GAL	\$ 0.35	\$	35,000	30% porosity, approx. 2 excavation volumes
Discharge Permit	1	EST	\$ 1,500	\$	1,500	Aquire permit & sampling
Vacuum Removal of Sediments/NAPL & Disposal	1	EST	\$ 15,000	\$	15,000	
Soil/Fill Excavation and Loading	9,538	TON	\$ 6	\$	57,228	5,961 CY from 5 Areas (1.6 tons per CY)
Transportation and Disposal at TSDF	8,898	TON	\$ 45	\$	400,410	Assumes non-haz waste disposal
Ttransportation and Disposal Hazardous Out-of State	640	TON	\$ 450	\$	288,000	Assumes 640 tons of Hazardous Soil from SB-8/MW-1
Post-Excavation Confirmatory Sampling	73	EA	\$ 420	\$	30,660	1 sidewall every 30 LF, 1 bottom per 900 SF in each area plus QA/QC
Data Validation	73	EA	\$ 105	\$	7,665	
Subtotal:				\$	836,000	
Backfilling/Site Restoration						
Geotextile	1	SF	\$ 1.50	\$	2	
Import, Backfill, Place & Compact	9,538	TON	\$ 16	\$	152,608	
Backfill Characterization Sampling	19	EA	\$ 100	\$	1,900	VOCo
Data Validation	19	EA	\$ 25	\$	475	vocs
Backfill Characterization Sampling	8	EA	\$ 500	\$	4,000	SV/OCa BCRa Bastisidas Matala
Data Validation	8	EA	\$ 80	\$	640	
Asphalt Pavement Restoration	18,547	SF	\$ 5.00	\$	92,735	excavation square footage plus 15%
Subtotal:				\$	253,000	
Subtotal Capital Cost				\$	1,106,000	
Operator Mahilipetien (Demokilipetien (50())				¢	55 000	
Contractor Mobilization/Demobilization (5%)				\$	55,300	
Health and Safety (2%)				\$	22,120	
Engineering/Contingency (35%)				\$	387,100	
Total Capital Cost				\$	1,571,000	
Operation, Maintenance & Monitoring:		-				
Groundwater Monitoring	5	Events	\$ 6,000	\$	30,000	Annual for 5 years
Annual Certification	5	Yr	\$ 2,000	\$	10,000	GW Report
Total OM&M Cost				\$	40,000	
Total Capital Cost for Unrestricted Use (Track 1)				\$	1,611,000	

COST ESTIMATE FOR COMMERCIAL USE (TRACK 4) ALTERNATIVE

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT

BATAVIA FORMER MGP SITE 11 EVANS STREET BATAVIA, NEW YORK

Item	Quantity	Units		Unit Cost		Total Cost	Remarks
Area 1 - In-situ Soil Stabilization (ISS) SB-8/MW-1							
Treatability Study & Pre-Design Investigation	1	EST	\$	15,000	\$	15,000	includes sample collection and determination of extent of treatment area.
Erosion Control	500	LF	\$	3	\$	1,500	Siltsoxx
Excavation Dewatering and Treatment	50,000	GAL	\$	0.35	\$	17,500	30% porosity, approx. 2 excavation volumes
Soil/Fill Excavation and Staging	356	TON	\$	6	\$	2,133	Assume upper 5 feet can be used for backfill
Mix Type I Portland Cement In-situ with MGP-Impacted Soils	800		\$	45	\$	35,843	ISS 500 CY of sol/fill to be treated
Verification of Mixed Solis	6	EA	\$ ¢	1,000	\$ ¢	6,000 5,000	Measure Leachable PAHs & VOCs, and Ultimate Compressive Strength
Subtotal:	I	L3	φ	5,000	Ф \$	83 000	Allowance
Area 1 - Backfilling/Site Restoration			<u> </u>		Ψ	00,000	
Geotextile/Demarcation	1.200	SF	\$	1.50	\$	1.800	
Backfill, Place & Compact	356	TON	\$	10	\$	3,556	Backfill Stockpiled Soils
Asphalt Pavement Restoration	1,380	SF	\$	6.00	\$	8,280	excavation square footage plus 15%
Subtotal:					\$	14,000	
Area 2 - Impacted Soil/Fill Removal TP-1/SB-9/TKMW-6	1	-					
Soil/Fill Excavation and Loading	715	TON	\$	6	\$	4,290	445 CY from TP-1/SB-9/TKMW-6 (25 ft x 60 ft x 8 ft; 1.6 tons per CY)
Transportation and Disposal at TSDF	715	TON	\$	45	\$	32,175	Assumes non-haz waste disposal
Post-Excavation Confirmatory Sampling	11	EA	\$	420	\$	4,620	1 sidewall every 30 LF, 1 bottom per 900 SF in each area plus QA/QC
Data Validation	11	EA	\$	105	\$	1,155	
Subtotal:			•		\$	43,000	
Area 2 - Backfilling/Site Restoration	1 500	00	¢	1.00	¢	1 500	
Geotextile/Demarcation	1,500		\$	1.00	\$ ¢	1,500	
Import, Backfill, Place & Compact	715		\$ ¢	10	\$ ¢	11,440 500	
Date Validation	5		ф Ф	100	ф Ф	125	VOCs
Data Valluation	5		ф Ф	20 500	ф Ф	1 000	
Date Validation	2		ф Ф	500	ф Ф	1,000	SVOCs, PCBs, Pesticides, Metals
Asphalt Payement Restoration	1 725	SE	¢ ¢	00	ф Ф	10 350	evenuation square footage plus 15%
Asphait i avenient Restoration	1,725	01	ψ	0.00	ф Ф	26 000	
Area 3 - Impacted Soil/Fill Removal TKMW-7					Ψ	20,000	
Soil/Fill Excavation and Loading	145	TON	\$	6	\$	870	90 CY from TKMW-7 (20 ft x 20 ft x 6 ft: 1.6 tons per CY)
Transportation and Disposal at TSDF	145	TON	\$	45	\$	6.525	Assumes non-haz waste disposal
Post-Excavation Confirmatory Sampling	8	EA	\$	420	\$	3,360	1 sidewall every 30 LF, 1 bottom per 900 SF in each area plus QA/QC
Data Validation	8	EA	\$	105	\$	840	
Subtotal:					\$	12,000	
Area 3 - Backfilling/Site Restoration	-						
Geotextile/Demarcation	500	SF	\$	1.00	\$	500	
Import, Backfill, Place & Compact	145	TON	\$	16	\$	2,320	
Backfill Characterization Sampling	3	EA	\$	100	\$	300	VOCs
Data Validation	3	EA	\$	25	\$	75	
Backfill Characterization Sampling	1	EA	\$	500	\$	500	SVOCs, PCBs, Pesticides, Metals
Data Validation	1	EA	\$	80	\$	80	
Asphalt Pavement Restoration	150	SF	\$	6.00	\$	900	
Subtotal:					\$	5,000	
Asphalt & Greenspace Cover System Installation	8,600	00	¢	1.00	¢	0.000	Area of capital placement and graphings to be addressed
Apphalt placement in Southaast Dertion of Site	8,600 5,000	OF OF	¢	1.00 6.00	¢ ¢	30,000	Area of asphalt placement and greenspace to be addressed
Import Backfill Place & Compact	3,000		ф Ф	0.00	ф Ф	30,000	3 600 sq foot at 1 foot thick: 133 cuds @1.6 tons par cud
Backfill Characterization Sampling	215 A	FΔ	ф ¢	100	ф Ф	3,440	3,000 sq reet at 1 100t thick, 133 cyus @ 1.0 tons per cyu
Data Validation	4	ΕA	\$	25	\$	100	
Backfill Characterization Sampling	1	FA	\$	500	\$	500	
Data Validation	1	EA	\$	80	\$	80	SVOCs, PCBs, Pesticides, Metals
Subtotal:	-		Ŧ		\$	44.000	
Subtotal Capital Cost					\$	227.000	
						,	
Contractor Mobilization/Demobilization (5%)					\$	11,350	
Health and Safety (2%)					\$	4,540	
Engineering/Contingency (35%)					\$	79,450	
					•		
Total Capital Cost					\$	323,000	<u> </u>
Operation Maintenance & Monitoring:							
Groundwater Monitoring	5	Events	\$	6,000	\$	30,000	Annual for 5 years
Annual Certification	5	Yr	\$	2,000	\$	10,000	GW Report
Total OM&M Cost					\$	40,000	
					1		

Total Capital Cost for Commercial Use	(Track 4) \$ 36	363,000

Notes:

COMPARISON OF REMEDIAL ALTERNATIVES

REMEDIAL INVESTIGATION / FOCUSED FEASIBILITY STUDY REPORT

BATAVIA FORMER MGP SITE 11 EVANS STREET BATAVIA, NEW YORK

		NYSDEC DER-10 Evaluation Criteria											
Remedial Alternative	1. Overall	2. SCGs	3. Eff & Perm	4. Reduction	5. Imp & Eff	6. Implement	7. Cost Eff	8. Community	9. Land Use				
Alternative 1 - No Action						~	\$0	TBE					
Alternative 2 - Track 1 Cleanup	✓	✓	~	~		~	\$1.61 million	TBE	✓				
Alternative 3 - Track 4 Cleanup	√	✓	✓	✓	✓	√	\$363,000	TBE	✓				

 \checkmark

Notes:

1. Overall Protectiveness of Public Health and the Environment

2. Compliance with Standards, Criteria, and Guidance (SCGs)

3. Long-Term Effectiveness and Permanence

4. Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment

5. Short-Term Impacts and Effectiveness

6. Implementability (Technical and Administrative)

7. Cost Effectiveness

8. Community Acceptance

9. Land Use

= Alternative satisfies criterion

TBE = To be evaluated following public comment period

FIGURES

FIGURE 1

and the second		
FIGURE 5	GROUNDWATER ISOPOTENTIAL MAP (MAY 23, 2016) AND GROUNDATER CONTAMINATION EXCEEDANCES REMEDIAL INVESTIGATION AND FOCUSED FEASIBILITY STUDY REPORT FORMER BATAVIA MGP SITE NYSDEC SITE No. 819019 11 EVANS STREET BATAVIA, NEW YORK REPARED FOR R&J ENTERPRISES OF BATAVIA, LLC	JOB NO.: 0333-015-001
DISCLAIMEF PROPERTY DISCLOSED	R: ^c OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJ) OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSI	ECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE INT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

IN-SITU OURCE AREA TREATMENT	ORT 2558 HAMBURG TURNI ENTER 10 2558 HAMBURG TURNI ENTER 300 200 ENTER 300 BUFFALO, NY 14218 JOB NO.: 0333-015-001 (716) 856-0635	AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NC JT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.
TKMW-5 PARAMETER TKMW-6 (8-10') Inzo(a)pyrene 3.2 CMW-6	COMMERCIAL USE CLEANUP I AND FOCUSED FEASIBILITY STUDY REP MER BATAVIA MGP SITE SDEC SITE No. 819019 11 EVANS STREET ATAVIA, NEW YORK PREPAREDFOR ERPRISES OF BATAVIA, LLC	TTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE A. S OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOU
AMETER SB-9 (5-10') to(a)anthracene 8.4 to(a)pyrene 8 to(b)fluoranthene 9.7 nzo(a,h)anthracene 1.6	RESTRICTED (REMEDIAL INVESTIGATION FORM NYS B/ B/ R&J ENTE	R. OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPOR. OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES
is the state	FIGURE 8	DISCLAIME. PROPERTY DISCLOSEL

APPENDIX A

SOIL BORING / MONITORING WELL LOGS

Pr Cl. Sii	oject: Ba ient: R&J te Locati	tavia Former MGP Site Enterprises of Batavia LLC on: 11 Evans Street SUBSURFACE PROFILE	A.K.A.: Logged Checke	By: d By: SAM	PWV CZE	/ 3		TurnKey 2558 PID	Env Han E	vironmen nburg Tur Buffalo, N (716) 85	tal Restoration, LLC ropike, Suite 300 Y 14218 6-0635 Well Completion Details
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Valu	Recovery (f	Symbol	0	ppm 250	500	Sample	or Remarks
-1.0	0.0	Ground Surface Topsoil Fill Black, moist, mostly brick and coal fines, some fine to coarse sand, little non-plastic fines, trace gravel, loose when disturbed, massive	S-1	NA	2.8		0.0 0.0 0.0				VC Riser Concrete
4.0	-7.0 -7.0 -8.0	Sandy Silt Brown, moist, mostly non-plastic fines, low dry strength and toughness, some fine sand, trace angular gravel, medium dense massive Well Graded Sand Brown, moist to wet (7'), mostly fine to coarse sand,	S-2	NA	3.2		0.0				2" P
9.0 —	-12.0	trace silt, loose when disturbed, massive, petroleum- like odor, sheen on water As above, wet	S-3	NA	3.2		78.0	3.0		Sampled (9-11')	2" PVC Screen, 0.010" stot -
	-15.0 -15.0 -16.0	As above, slight petroleum-like odor Sand with Silt and Gravel Yellowish brown, wet, mostly fine sand, some non-	S-4	NA	4.0		5.6 5.0				
- 19.0 —	-20.0	As above, grey, no odors	S-5	NA	4.0		3.1 0.0 0.0				
_	20.0	End of Borehole									

Borehole Number: TKMW-5

Project No: 0333-015-001

Drilled By: Trec Environmental Drill Rig Type: Track Mounted Geoprobe 6620DT Drill Method: Direct-push with 4' macro-core Comments: Wells installed using 4.25" hollow stem augers Drill Date(s): 4-13-16 Hole Size: 8.25" Stick-up: NA Datum: Mean Sea Level

TURNKEY

Pr Cl Si	oject: Ba ient: R&J te Locati	tavia Former MGP Site Enterprises of Batavia LLC on: 11 Evans Street	A.K.A.: Logged Checke	l By: ed By	PWW :: CZE	/ 3		TurnKey En 2558 Har	vironmen nburg Tur 3uffalo, N (716) 85	tal Restoration, LLC rnpike, Suite 300 Y 14218 6-0635
		SUBSURFACE PROFILE	\$	SAM	PLE					
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	0	PID VOCs 500 1000	Lab Sample	Well Completion Details or Remarks
-1.0 —										
-	0.0 0.0	Ground Surface Topsoil				_	2.6			
-	-4.0	<i>Fill</i> Black, moist, mostly brick and coal fines, some fine to coarse sand, little non-plastic fines, trace gravel, loose when disturbed, massive	S-1	NA	2.5		3.0 4.6			VC Riser Concrete
4.0	-7.0 7.0	Sandy Silt Brown, moist, mostly non-plastic fines, low dry strength and toughness, some fine sand, trace angular gravel, petroleum-like odor, medium dense massive	S-2	NA	3.0		22.4 63.0			2" P
_	-8.0	Brown, moist to wet (7'), mostly fine to coarse sand,								
9.0 —	-12.0	petroleum-like odor, sheen on water As above, wet	S-3	NA	4.0			914.0 567.0	Sampled (8-10')	2" PVC Screen, 0.010" slot
 14.0 	-15.0 -15.0 -16.0 16.0	As above Sand with Silt and Gravel Yellowish brown, wet, mostly fine sand, some non- plastic fines, some fine to coarse gravel medium	S-4	NA	4.0		22.1	362.0		
- 19.0 —	-20.0	dense, massive, slight petroleum-like odors As above, grey, no odors	S-5	NA	4.0		3.4 3.0 2.0			
-	20.0	End of Borehole								

Borehole Number: TKMW-6

Project No: 0333-015-001

Drilled By: Trec Environmental Drill Rig Type: Track Mounted Geoprobe 6620DT Drill Method: Direct-push with 4' macro-core Comments: Wells installed using 4.25" hollow stem augers Drill Date(s): 4-13-16 Hole Size: 8.25" Stick-up: NA Datum: Mean Sea Level

TURNKEY

Pi	roject No	: 0333-015-001 Borehole Number:	N-7				4	TURN	EY			
Pi	r oject: Ba	tavia Former MGP Site	A.K.A.					RESTORATION, LLC				
C	lient: R&.	I Enterprises of Batavia LLC	Logge	d By:	PWV	V		TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300				
Si	te Locati	on: 11 Evans Street	Check	ed By	: CZ	В		Buffalo, NY 14218 (716) 856-0635				
		SUBSURFACE PROFILE		SAN	IPLE	Ξ						
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	0	PID VOCs 12.5 25	Lab Sample	Well Completion Details or Remarks		
-1.0-	0.0	Ground Surface										
-	0.0	Topsoil Fill Black, moist, mostly brick and coal fines, some fine to coarse sand, little non-plastic fines, trace gravel, loose when disturbed, massive	S-1	NA	2.7		0.0			er Concrete		
4.0-	-4.0 4.0	As above					0.0		Sampled (2-5')	2" PVC Ris		
-	-6.0 6.0	Well Graded Sand Brown, moist to wet (7'), mostly fine to coarse sand, trace silt, loose when disturbed, massive	— S-2	NA	2.7		0.0			11111111111111111111111111111111111111		
9.0-	8.0	As above, wet	S-3	NA	4.0		0.0			2" PVC Screen, 0.010" slot		
- - 14.0	-12.0 12.0 -14.0 14.0	Sand with Silt and Gravel Yellowish brown, wet, mostly fine sand, some non- plastic fines, some fine to coarse gravel, medium dense, massive As above, grey	S-4	NA	4.0		0.0			A		
	16.0	End of Borehole										

Drilled By: Trec Environmental Drill Rig Type: Track Mounted Geoprobe 6620DT Drill Method: Direct-push with 4' macro-core Comments: Wells installed using 4.25" hollow stem augers Drill Date(s): 4-13-16 Hole Size: 8.25" Stick-up: NA Datum: Mean Sea Level

Pi	oject No	: 0333-015-001 Borehole Number:	4	TURN	EY							
Pi	r oject: Ba	tavia Former MGP Site	A.K.A.:					RESTORATION, LLC				
C	<i>ient:</i> R&.	J Enterprises of Batavia LLC	Logge	l By:	PWV	V		TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300				
Si	te Locati	ion: 11 Evans Street	Check	ed By	: CZI	3		Buffalo, NY 14218 (716) 856-0635				
		SUBSURFACE PROFILE	SAMPLE									
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	0	PID VOCs ppm 12.5 25	Lab Sample	Well Completion Details or Remarks		
-1.0	0.0	Ground Surface Asphalt Silty Clay Yellowish brown, moist, mostly medium plasticity fines,					0.0 0.0			Increte		
	-4.0	some non-plastic fines, soft, massive	S-1	NA	2.6		0.0			" PVC Riser CC		
-	4.0	<i>Well Graded Sand</i> Brown, moist to wet (7.5'), mostly fine to coarse sand, trace silt, loose when disturbed, massive	S-2	NA	3.6		0.0		Sampled (5.5-7.5')	2		
9.0	-8.0 8.0 -9.0 9.0	As above, wet Sand with Silt and Gravel Yellowish brown, wet, mostly fine sand, some non- plastic fines, some fine to coarse gravel, medium dense, massive	S-3	NA	3.2		0.0			- 2" PVC Screen, 0.010" stot		
	-13.0 -13.0 -13.0 -16.0 16.0	As above As above, grey	S-4	NA	3.8		0.0					
- 19.0												

Drilled By: Trec Environmental Drill Rig Type: Track Mounted Geoprobe 6620DT Drill Method: Direct-push with 4' macro-core Comments: Wells installed using 4.25" hollow stem augers Drill Date(s): 4-13-16 Hole Size: 8.25" Stick-up: NA Datum: Mean Sea Level

Pi	roject No	Borehole Number:	TKN	IW-9	9				4		EY		
C	roject: Ba lient: R&.	I Enterprises of Batavia LLC	A.K.A Logg	ed B	y: P\	ww			TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Butfalo, NX 14218				
Si	te Locati	on: 11 Evans Street	Chec	ked	By: (CZB			Buttalo, NY 14218 (716) 856-0635				
		SUBSURFACE PROFILE		SA	MP	LE							
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Comple Mo			Recovery (ft)	Symbol	0	PID VOCs 12.5 25	Lab Sample	Well F	Comp Detail or Remar	bletion Is ks
-1.0	0.0 0.0	Ground Surface Asphalt Well Graded Sand Brown, moist, mostly fine to coarse sand, trace silt, loose when disturbed, massive	S	-1 N	IA 2	2.5		0.0			Concrete 7		Road box
 4.0 	-4.0 4.0	Sandy Silt Brown, moist to wet (7'), mostly non-plastic fines, low dry strength and toughness, some fine sand, trace medium plasticity fines, medium dense, massive	s	-2 N	IA 3	3.8		0.0		Sampled (5-7')	2" PVC Riser	↓DTW = 7 fbgs]]	Bentonite chips ⁻
9.0	-8.0 8.0 -10.0 10.0	As above, wet Sand with Silt and Gravel Grey, wet, mostly fine sand, some non-plastic fines, some fine to coarse gravel, medium dense, massive	s	-3 N	IA 3	3.3		0.0			' PVC Screen, 0.010" slot		
- - 14.0	-12.0 12.0 -15.0 15.0	As above Refusal	s	-4 N	IA 2	2.9		0.0			2		00N Silica Sar
		Eria of Borenole											

Drilled By: Trec Environmental Drill Rig Type: Track Mounted Geoprobe 6620DT Drill Method: Direct-push with 4' macro-core Comments: Wells installed using 4.25" hollow stem augers Drill Date(s): 4-13-16 Hole Size: 8.25" Stick-up: NA Datum: Mean Sea Level

Shaw

Drilling Log

Soil Boring **SB-1**

JIA							Page: 1 of 1
Project _E	Batavia I	Former M	GP			Owner NYSDEC	COMMENTS
Location	Batavia	, Geness	e Cour	nty, New	York	Proj No. 134685.23	Soil sample collected from 5'-10'
Surface El	ov 89	0.8 ft.	Tot	al Hole F)onth	20.5 ft. North 42.995445 ft. East -78.186477 ft.	bgs at 1200.
	sing N	A	_ 100			∇ 9.0 ft. Static NA Diameter 2 in	
	. NA	•	_ vva		1 11 11 U.A. 1		
Screen: Di	a <u> </u>		_ Ler	igtn <u>19</u>	1		
Casing: Di		Lefill	_ Ler	igth <u>1</u>	٦		
Fill Materia		K//// 				Rig/Core Geoprobe/Macro	
Drill Co	Zebra E	nvironme	entai	M	ethod		
Driller	be Hutch	nns	_ Log	By Ke	evin Ci	onin Date _9/6/11 Permit # _NA	
Checked E	By				Li	cense No.	
			k It		SS.	Description	
ft.)	₽Ê	ple cove	Cou	iphic og	Cla	Description	
D D	ਰ ਹੁੰ	s Re	3low Rec	Gra	scs	(Color, Texture, Structure)	
			ш		S	Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
			_				
					GW	Hand cleared to 5' bgs. Loose, gray to black Fine G	ravel.
						Hand cleared to 5' bgs. Brownish tan Fine Sand wit	h Silt and trace Clay. No
	0.4				SW	staining of odor observed.	
					SM		
- 4 -							
			H		SW	Moist firm brownish tan to black Sandy Silt to Silty	Sand with little Fine to
- 6 -			M	<u></u>	SM	Coarse Subround Gravel.	
		SB-1(5'-	XI			Damp to moist, brownish tan Fine Sand. Wet below	9' bgs. Thin bedding
- o	0.1	10')			en	observed. Brown color below 8'. No staining or odo	r observed.
× ° ⊽		10%	\square		35		
8							
ಏ는 10 -					SP	Same as above	
			X		GW GM	Saturated grayish brown Clayey Silt to Silty Clay wi	th some Gravel.
12 –			M			Moist, dark grav Fine to Medium Sand and Fine to (Coarse Subround
£	0.0	50%				Gravel; Trace clay.	
[∞] – 14 –					GWS		
ž ω							
			М			Wet, stiff, dark gray Silty Sand to Sandy Silt with tra	ace to little Clay and
			Μ			Some Gravel. No Staining of Ouor Observed.	
ġ	0.0	10%	Ħ	ڋ؞؋ ڹ؋	swg		
뛽는 18 -							
ಠ್ರ⊢ 20 ⊣	0.1	44000	\square		SWG	Same as above. Refusal at 20' bos. 1" of thin, fract	ired Shale at 20 4' bos
₹ -		140%				No staining or odor observed.	area onaic at 20.4 bys.
∡ ∡ – 22 –						-	
ź – 24 –							
36/9/							
- 26 -							
뢼- 28 -							
₩ 20							
<u>ا الح</u>							

Shaw

Drilling Log

Soil Boring

SB-2 Page: 1 of 1

Pro	oject _	atavia I	-ormer MG	;P			Owner <u>NYSDEC</u>	Soil sample collected from
Lo	cation _	Batavia	, Genesse	Cour	nty, New	York	Proj. No. <u>134685.23</u>	10'-15' bgs at 1335.
Su	Irface El	ev. <u>89</u>	1.0 ft.	Tot	al Hole D	Depth	<u>30.0 ft.</u> North <u>42.995406 ft.</u> East <u>-78.186316 ft.</u>	
То	p of Cas	ing _ <i>N</i>	A	Wa	ter Level	Initia	I <u>NA</u> Static <u>NA</u> Diameter <u>2 in.</u>	
Sc	reen: Di	a <u>NA</u>		Ler	ngth _NA	4	Type/SizeNA	
Са	sing: Di	a <u>NA</u>		Ler	ngth _NA	4	ТуреА	
Fill	I Materia	Baci	kfill				Rig/Core6620DT Geoprobe/Macro	
Dri	ill Co.	Zebra E	Invironmer	ntal	M	ethod	Direct Push	
Dri	iller Jo	e Hutch	nins	Loc	By Ke	vin C	ronin Date 9/6/11 Permit # NA	
Ch	necked P							
		·y	1					
			민출	ti >	0	ISS.	Description	
	epth ft.)	Dig Qind	scov	C O	aphi og	Ö		
	ă)	ਜ ਰੇ	6 Re	Rec	л В П	SC 8	(Color, Texture, Structure)	
							Geologic descriptions are based on ASTM Standard D 248	37-93 and the USCS.
L	0							
	0					SW	Hand cleared to 5' bgs. Loose, damp, gray to black	Sand, Silt, and Fine to
						SIVI	Coarse Gravel. Hand cleared to 5' bos. Damp, brownish tan, loose f	-
F	-	0.5					or odor observed.	ine odila. No stalling
						SW		
	5 _				•••••••••			
	5			M			Damp to moist, loose, brownish tan Fine to Medium	Sand; Wet below 9'.
				X			I ransitions to Silty Sand with wet, loose Gravel in la	st 5" of interval.
-	-	0.1	60%	\square	••••••••	SW		
4/12								
7/2	10 -				•••••••			
BDT				M		sw	Wet, loose, brown Fine to Medium Sand	
RP.(SB-2(10'-	X			Wat oof Sandy Silt	
Ŭ-	-	0.0	<u>15')</u> 60%	\square		MLS		
							Wet loose grav Fine to Coarse Sand and Fine to C	oarse Subround to
1.GF	15 —			Ц		GPS	Angular Gravel. No staining or odor observed.	
/201				M	000		Moist, stiff, Sandy to Clayey Silt with Fine to Coarse	Subround to
ÓN_				M	$P_{a} \mid P$		Subangular Gravel.	
SG	-	0.0	100%	X		MLG		
M LC								
₽-d	20 –			\square	-64		Wat to maint dark grow stiff Clause Old with a set 5	ing to Coorse
L-DN	-			M	[. <u>.</u>		Subround to Subangular Gravel Little Sand and occ	casional fractured Shale
ORI				X			Partings. No staining or odor observed.	
JE	-	0.0	70%	$\langle \rangle$		MLG		
A_S(\square	p K			
-IAI	25 —			\vdash	ؠؖڣٛٳۻۛ	$\left - \right $	Mojet stiff dark gray Clayov Sand with some Fine to	Coarse Gravel
BA				M			worst, sun, dark gray Grayey Sand with Some Fifte to	Udaise Uldvel.
DEC		0.0		X				
NYS	-	0.0	75%	$ \rangle$		SWG		
66/				H				
12/6/	30 -			Ц	· · · · f · · · ·	$\left - \right $		
ev:								
L L								
SCIA								
AME								
ő–	35 —							
⊑Ľ_								

Sha

Drilling Log

Soil Boring SB-3

Project Location Surface Ele Top of Cass Screen: Di Casing: Dia Fill Materia Drill Co Driller Checked E	Batavia i Batavia ev. <u>89</u> sing <u>N</u> a <u>NA</u> a <u>NA</u> a <u>Back</u> Zebra E be Hutch By	kfill	Coun Coun Vat Len Len tal	ty, New al Hole D er Level gth <u>N4</u> gth <u>N4</u> By <u>Ke</u>	York Depth Initial A ethod evin Cr Li		Soil sample collected from 10 [:] -15 [:] bgs at 1600. Original Retort House.
Dept (ft.)	OId	Sample % Reco	Blow Co Recov	Graph	NSCS C	(Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 248	97-93 and the USCS.
- 0 - - 2 - - 4 -	0.0				FILL	Hand cleared to 5' bgs. Gravel subbase over Sand, Trace Wood. No odor or staining observed.	Silt, Gravel, and Brick.
RP:GDT 7/24/12 10 1 8 1 1 10 1 1 0 10 10 10 10 10 10 1	0.3	25%			FILL	Damp, loose Sand, Silt, Fine to Coarse Subround to and Brick. Wet in last 2".	Subangular Gravel,
es Nov2011.6PU IT CC	0.4	<u>SB-3(10'-</u> <u>15')</u> 65%			SM	Loose, gray to brown Silty Sand transitioning to wet, with little Silt. Rainbow sheen observed on soil.	Fine to Medium Sand
01 MW-dL-504 PM - 16	0.0	90%			MLG	sheen observed in free groundwater. No staining ob	served.

S

Drilling Log

Soil Boring SB-4 Page: 1 of 1

•••••							
Project _E	Batavia I	Former MC	GP			Owner <u>NYSDEC</u>	COMMENTS
Location _	Batavia	, Genesse	e Cou	nty, New	York	Proj. No. <u>134685.23</u>	10'-15' bgs at 0950 and 25'-26'
Surface El	ev89	1.2 ft.	_ To	tal Hole D)epth	26.0 ft North42.995547 ft. East78.185947 ft.	bgs at 0955.
Top of Cas	sing _N	A	_ Wa	ater Level	Initial	NA Static Diameter2 in.	
Screen: Di	aŇA		Le	nath NA	A	Type/Size NA	
Casing: Di	a NA		lei	nath NA	ł	Type NA	
Fill Materia	a Baci	kfill				Big/Core 6620DT Geoprobe/Macro	
	" Zebra E	nvironme	ntal	Ν.	othod	Direct Push	
	e Hutch	nins			vin Cr	Conin Data 9/7/11 Demait # NA	
			_ L0	уву			
Спескеа Е	sy						
			ŧ,		ss.	Description	
). tr	⊇Ê	cove	Cou	phic	Cla	Description	
De (ff	I dd	Rec	Seco	Ca	SCS	(Color, Texture, Structure)	
		vi%	Шш		S	Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
			Γ			Hand cleared to 5' bgs. Gravel subbase over Sand,	Silt, Gravel, Bricks, and
F -						trace Wood. Several wire rope sections across borin	ng were observed. No
- 2 -						staining or odor observed.	
	0.0				FILL		
–							
			N			Grayish brown, damp Sand, Silt, Fine Gravel, Brick,	and Wood. Moist to
6 -			Δ			wet, bluish gray Sand and Fine Gravel in bottom 2".	
	04				FUI		
∛⊢ 8 ⊣	0.4	30%					
5							
원 10 -							
			M			Fill in top 3" over grayish brown, wet Fine to Mediun	n Sand and Fine to
-			X			and Fine Sand in bottom 3". No staining or odor obs	served.
<u>- 12</u>	2.5	<u>SB-4(10'-</u> 15')			swg		
		55%					
š − 14 –							
<u>-</u>					$\mid \mid \mid$	Wet loose grav Fine to Medium Sand and Fine to (Coarse Gravel with little
Ž 16 –			Ŋ			Silt and trace Clay. No staining observed.	
			\square				
	0.0	40%			swg		
				0			
हू⊢ 20 ⊣				<u> <u></u></u>	$\left -\right $	Wet, loose, gray Fine to Medium Sand and Fine to (Coarse Gravel with little
<u>-</u>			W	8. 1. 8.		Silt and trace Clay. No staining observed.	
≩⊢ 22 ⊣			M				
	0.1	50%	-		SWG		
z							
	0.0	<u> SB-4(25'-</u> <u>26'</u>)	X	ĨŢŢŢ	MLG	Refusal at 26' bgs. Wet, stiff, dark gray Fine Sandy	Silt to Clayey Silt with
≟⊢ 26 ⊣		90%	Ľ			Fine to Coarse Angular to Subround Gravel. No stat	ining or odor observed.
₹ - 28 -							
5 <u>30</u>							
				ul	· · · · · ·		

S

Drilling Log

Monitoring Well **SB-5/MW-3** Page: 1 of 1

Project Date MYSDEC Counce MYSDEC Counce Counce Counce Project Project Counce Counce Project Counce Project Counce Counce Project Counce Counce Counce Project Counce Project Counce Counce Counce Project				_								
Location Batavia. Centrase Ecourty. New York Proj. No. 124682.21 Strafee Elev. 401:12.1 Top of Casing. 890:857.1 Noth 42.995281.1 Top and 12.8. Top of Casing. Big. 21.8. Length 10.8. Yge. 50:40 PVC PVC Fill Material Weil Sand Method Direct Purchase Mayer Diameter 4.28 in. PVC 10.9. Fill Material Weil Sand Method Direct Purchase Mayer Description Dote 97711 Permit # MA Drill Co. Zebta Environmental Method Direct Purchase Mayer Description Dote 97711 Permit # MA Drill Co. Zebta Environmental Method Direct Purchase Mayer Description Dote 97711 Permit # MA Drill Co. Zebta Environmental Method Direct Purchase Mayer Description Dote 97711 Permit # MA Drill Co. Zebta Environmental Method Direct Purchase Mayer Description Dote 97711 Permit # MA Drill Co. Zebta Environmental Method Direct Purchase Mayer Description Dote 97711 Permit # MA Drill Co. Zebta Environmental Method Direct Purchase Mayer Description Dote 97713 Permit # MA Drill Co. Zebta Environmental Method Searce Courte Searced on ASTIM Sandard	Project _	COMMENTS										
Surface Elev. 891.2 ft. Top of Casing B08.95 ft. Seren: Dia 2 in. Length 10 ft. Casing Dia 2 in. Length 47.8 ft. Type Size. PVC Slotted Screen 0.010 in. Type Size. PVC Slotted Screen 0.010 in. Casing Dia 2 in. Length 47.8 ft. Type Size. PVC Slotted Screen 0.010 in. Type Size. PVC Slotted Screen 0.010 in. Type Size. PVC Slotted Screen 0.010 in. Casing Dia 2 in. Length 47.8 ft. Type Size. PVC Slotted Screen 0.010 in. Casing Dia 2 in. Length 47.8 ft. Type Size. PVC Slotted Screen 0.010 in. Casing Dia 2 in. Length 47.8 ft. Description (Color, Texture, Structure) Colorer 1.000 in 0.000 in 0.0000 in 0.00000 in 0.0000 in 0.00000 in 0.000000 in 0.000000 in 0.000000 in 0.0000000 in 0.000000 in 0.0000000000	Location	Batavia, Ge	enesse	County, N	lew Yo	rk		Proj. No. <u>134685.23</u>	10'-15' bgs at 1240.			
Top of Casing B20.85.h. Water Level Intil № 9.0.h. State. ♥ 1.0 Diameter 4.25 h. Diameter 4.25 h. Screen Dia 2.h. Length 10.h. Type Size. PVC State Screen0.070 h. Diameter 4.25 h. Diameter 4.25 h. FII Matenal Wei Sand Mendo Direct Public Voice Scatter Screen0.070 h. Diameter 4.25 h. Diameter 4.25 h. Diameter 4.25 h. Drill o. Zeite Directometal Mendo Direct Public Voice Scatter Screen0.070 h. Diameter 4.25 h. Diameter 4.25 h. Diameter 4.25 h. Drill o. Zeite Directometal Mendo Direct Public Voice Scatter Screen0.070 h. Diameter 4.25 h. Diameter 4.25 h. Diameter 4.25 h. Drill o. Zeite Directometal Mendo Direct Public Voice Scatter Scheduler Scatter Scheduler	Surface El	ev. <u>891.2</u>	ft.	Total Ho	ole Dep	oth30.	2 ft.	North <u>42.995628 ft.</u> East <u>-78.185909 ft.</u>	Groundwater sample collected from MW-3 on 09/29/11 at 1545.			
Screen: Dia 2 n. Length 10 n. Type/Size PVC Skided ScreenQ.010 in. Director In. Casing: Dia 2 n. Length 4.75 n. Type/Size PVC Skided ScreenQ.010 in. Director In. Fill Material Length 4.75 n. Type/Size PVC Skided ScreenQ.010 in. Director In. Direl Location: Log By Kevin Cronin Date 97/11 Permit # MA Direl Job Hutchins Log By Kevin Cronin Date 97/11 Permit # MA Checked By Uccess No. Log By Kevin Cronin Description (Calor, Texture, Structure) Screen Using 0.0 Big By	Top of Cas	sing890.8	5 ft.	Water L	evel In	itial 💻	9.0 ft.	Static 7.9 ft Diameter4.25 in	Duplicate-1 collected from MW-3			
Casing Dia <u>2 n</u> . Length <u>4.75 ft</u> Type <u>Sch 40 PVC</u> Fill Material <u>Well Sard</u> Dell Co. <u>Zabe Environmental</u> <u>Heater Direct Plust/Holes Sim Auger</u> Driller <u>Joe Hutchins</u> Log By <u>Kevin Cronin</u> Date <u>977/11</u> Permit <u># MA</u> Checked By License No.	Screen: Di	a 2 in.		Lenath	10 ft.			Type/Size PVC Slotted Screen/0.010 in.	01110/03/11 at 1255.			
Casing, Dial Use function Use function Use function Environmental Dill Co. Zabra Environmental Method Dired Plashthetice Stem Auger Dill Co. Zabra Environmental Method Dired Plashthetice Stem Auger Dill Co. Zabra Environmental Method Dired Plashthetice Stem Auger Dill Co. Zabra Environmental Log By Kevin Conin Date 97711 Permit # MA Dill Co. Zabra Environmental Log By Kevin Conin Date 97711 Permit # MA Dill Co. Zabra Environmental Log By Kevin Conin Date 97711 Permit # MA Dill Co. Environmental Log By Kevin Conin Date 97711 Permit # MA Dill Co. Environmental Log By Kevin Conin Description (Color, Toxture, Structure) Co. Environmental Hand Cleared to 5' bgs. Gravel subbase, Sand, Silt, Cobbles, and Fine to Coarse Gravel. Fine to Coarse Gravel. Hand Cleared to 5' bgs. Gravel subbase, Sand, Silt Cobbles, and Fine to Medium Sand and Fine to Medium Sand with instand or Coarse Gravel. Type O.0 BS BS <td< td=""><td>Cooing: Di</td><td>~ 2 in</td><td></td><td>Longth</td><td>4 75</td><td>ft</td><td></td><td>Type Sch 40 PVC</td><td></td></td<>	Cooing: Di	~ 2 in		Longth	4 75	ft		Type Sch 40 PVC				
Fill National Triol Construction Note Hubble Step Public Action Note Hubble Step Public Action Drill co. Zoar Environmental Log by Kevin Cronin Date 97/11 Permit # NA Checked By Log by Kevin Cronin Date 97/11 Permit # NA Checked By Log by Kevin Cronin Date 97/11 Permit # NA Checked By Log by Kevin Cronin Date 97/11 Permit # NA Checked By Log by Kevin Cronin Date 97/11 Permit # NA Checked By Log by Kevin Cronin Date 97/11 Permit # NA Checked By Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. File to Coarse Gravel Moist, firm, brown Sandy Silt to Silty Sand with orange motiling. Grades to vet, firm, brown Sandy Silt to Silty Sand with orange motiling. Grades to vet, firm, brown Silty Sand To Staining or dor observed. Wet, toose, dark firms Sund and Gravel Wet, toose, dark firm to Coarse Sund and Gravel Wet, toose, dark firms Sund and Fine to Coarse Gravel. No staining or odor observed. 10 Staining or odor observed. Wet, toose, gray to dark gray Silt of Silt and Here Sund and Fire to Coarse Gravel. No staining or odor obser		d <u></u> 1 Wall Sar	nd	Lengin				6620DT Geoprobe/Macro/HSA				
Drill Co. Log By Method Date 97/11 Permit # MA Checked By Log By Kein Crown Date 97/11 Permit # MA Checked By Loense No. IColor. Texture. Structure) Geologic descriptions are based on ASTM Standard D 2487-49 and the UBCS. Image: Structure in the intervention of the interventintervention of the intervention of the int	Fill Materia	al <u>wengan</u>		-1								
Date Date Primit# Two Checked By License No. Description	Drill Co	Zebra Envir	onment	ai	Meth	nod <u>Dir</u>	ect Push					
License No. Endexed By License No. Endexed By Endexed By Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-83 and the USCS. 0 Image: Structure in the USCS in the USCS in the USCS in the USCS. 0 Image: Structure in the USCS in the USCS in the USCS in the USCS. 0 Image: Structure in the USCS in the USCS in the USCS in the USCS. 0 Image: Structure in the USCS in the USCS in the USCS in the USCS. 0 Image: Structure in the USCS in the USCS in the USCS in the USCS. 0 Image: Structure in the USCS in the USCS in the USCS in the USCS. 10 Image: Structure in the USCS in the USCS in the USCS in the USCS. 10 Image: Structure in the USCS in the USCS in the USCS in the USCS. 10 Image: Structure in the USCS in the USCS in the USCS in the USCS in the USCS. 110 Image: Structure in the USCS in the USCS in the USCS in the USCS in the USCS. 110 Image: Structure in the USCS in the	Driller	be Hutchins		Log By	Kevir	n Cronin		_ Date _ <u>9///11</u> Permit # _ <u></u>				
Image: Structure Image: Structure Image: Structure Image: Structure Image: Structure 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 10 0 00 00 00 00 00 00 00 10 0 00 00 00 00 00 00 00 00 10 0 00 000	Checked E	Зу				License	e No					
3 3 3 3 3 3 6 3 Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 <td>Depth (ft.)</td> <td>Well mpletion</td> <td>PID (ppm)</td> <td>mple ID Recovery</td> <td>w Count scovery</td> <td>iraphic Log</td> <td>CS Class.</td> <td>Description (Color, Texture, Structu</td> <td>re)</td>	Depth (ft.)	Well mpletion	PID (ppm)	mple ID Recovery	w Count scovery	iraphic Log	CS Class.	Description (Color, Texture, Structu	re)			
0 0 0 0 Hand cleared to 5' bgs. Gravel subbase, Sand, Silt, Cobbles, and Fine to Coarse Gravel. 5 0 00 80% Fill Moist, firm, brown Sandy Silt to Silty Sand with orange mottling. Grades to wet, firm, brown to dark brown Fine to Medium Sand in bottom 2". No staining or odor observed. 10 0.0 80% Wet, firm, brown Silty Sand Wet, loose, dark gray Fine to Medium Sand and Gravel Wet, loose, dark gray Silty Sand Wet, loose, dark gray Silty Sand Wet, loose, dark gray Silty Sand Wet, loose, dark gray Fine to Medium Sand and Fine to Coarse Sand and Gravel Wet, some Fine to Coarse Sand and Fine to Coarse Gravel With some Fine to Coarse Subround to Subangular Gravel. No staining or odor observed. 20 0.0 50% SWG 22 0.0 50% SWG 23 0.0 65% SWG 30 0.0 65% SWG 30 <td>_</td> <td>ပိ</td> <td>-</td> <td>Sa F</td> <td>ol angle and a second s</td> <td></td> <td>NS(</td> <td>Geologic descriptions are based on ASTM Standard</td> <td>D 2487-93 and the USCS.</td>	_	ပိ	-	Sa F	ol angle and a second s		NS(Geologic descriptions are based on ASTM Standard	D 2487-93 and the USCS.			
0 Hand cleared to 5' bgs. Gravel subbase, Sand, Silt, Cobbles, and Fine to Coarse Gravel. 5 0.0 5 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 0.0 80% 15 0.0 0.0 80% 0.0												
5 0.0 80% Moist, firm, brown Sandy Silt to Silty Sand with orange mottling. Grades to wet, firm, brown to dark brown Fine to Medium Sand in bottom 2". No staining or odor observed. 10 0.0 80% Wet, firm, brown Silty Sand Wet, loose, dark gray Silt to Silty Clay and Gravel Wet, loose, dark gray Silt to Silty Clay and Fine Sand with some Fine to Coarse Subround to Subangular Gravel. No staining or odor observed. 15 0.0 50% Wet, loose, gray to dark gray Fine to Medium Sand and Fine to Coarse Gravel with some Fine to Coarse Subround to Subangular Gravel. No staining or odor observed. 20 0.0 50% Wet, loose, gray to dark gray Fine to Medium Sand and Fine to Coarse Gravel with some Silt. No staining or odor observed. 20 0.0 50% Wet, loose, gray to dark gray Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. 25 0.0 65% Moist, firm Clayey Silt with little Fine gravel in bottom 2". No staining or odor observed. 30 5.6 100% Moist, Bray, Sandy Silt with little to some Fine to Coarse Angular to Subround Gravel. No staining or odor observed. 33 5.6 100% BOROX Refusal at 30.2". Damp, fractured Shale.	- 0 -		0.0				FILL	Hand cleared to 5' bgs. Gravel subbase, S Fine to Coarse Gravel.	Sand, Silt, Cobbles, and			
Image: Internet of the second seco	- 5 -				H			Moist firm brown Sandy Silt to Silty Sand	with orange mottling			
 a 10 b 10 c 10 <lic 10<="" li=""> c 10 c 10 <lic< td=""><td></td><td>했글옷에</td><td></td><td></td><td>M</td><td></td><td></td><td>Grades to wet, firm, brown to dark brown F</td><td>Fine to Medium Sand</td></lic<></lic>		했글옷에			M			Grades to wet, firm, brown to dark brown F	Fine to Medium Sand			
 a 10 b 10 c 10 <lic 10<="" li=""> c 10 c 10 <lic< td=""><td>_</td><td></td><td></td><td></td><td>X</td><td></td><td></td><td>with little Silt. Dark gray Fine to Medium S</td><td>and in bottom 2". No</td></lic<></lic>	_				X			with little Silt. Dark gray Fine to Medium S	and in bottom 2". No			
10 0.0 SB-5(10* 15) 100% Wet, firm, brown Silty Sand Wet, loose, dark gray Silty Sand Wet, loose, dark gray Silty Sand Wet, loose, dark gray Silty Clay and Fine Sand with some Fine to Coarse Subround to Subangular Gravel. No staining or odor observed. 15 0.0 50% Wet, loose, dark gray Silty Sand Wet, loose, gray Fine to Medium Sand and Fine to Coarse Gravel with some Silt. No staining or odor observed. 20 0.0 50% Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace (Lay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. 25 0.0 66% Wet, loose, gray, sandy Silt with little Fine to Coarse Gravel. Dark gray, moist, firm Clayey Silt with Fine to Coarse Angular to Subround Gravel. No staining or odor observed. 30 5.6 100% BEOROCK Refusal at 30.2". Damp, fractured Shale.			0.0	80%			SM	staining or odor observed.				
10 0.0 SB-5(10: 100% 0.0 SM SM SM SM SM SM SM SM SM SM SM SM SM S	Ž Į				Ц							
10 10 <td< td=""><td>[≋]⊢ 10 −</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	[≋] ⊢ 10 −											
 Wet, loose, black Fine to Coarse Sand and Gravel Wet, loose, black Fine to Coarse Sand and Gravel Wet, loose, black Fine to Coarse Subround to Subangular Gravel. No staining or odor observed. Wet, loose, gray Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt. No staining or odor observed. Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. Wet, loose, gray to dark gry Fine to Coarse Gravel. Muts Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. Wet, loose, gray to dark gry Fine to Coarse Gravel. Moist, gray, Sandy Silt with little to some Fine to Coarse Gravel. Dark gray, moist, firm Clayey Silt with Fine to Coarse Angular to Subround Gravel. No staining or odor observed. Wet, gray, moist, firm Clayey Silt with Fine to Coarse Angular to Subround Gravel. No staining or odor observed. 					M		SM	Wet, firm, brown Silty Sand				
 15 15 15 10% Wet, soft, medium gray Clayey Silt to Silty Clay and Fine Sand with some Fine to Coarse Subround to Subangular Gravel. No staining or odor observed. Wet, loose, gray Fine to Medium Sand and Fine to Coarse Gravel with some Silt. No staining or odor observed. 20 20 20 20 20 20 0.0 50% 50% Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. 25 25 30 5.6 100% Wet, loose, gray to dark gry Fine to Coarse Gravel. Dark gray, moist, firm Clayey Silt with Fine to Coarse Angular to Subround Gravel. No staining or odor observed. Refusal at 30.2'. Damp, fractured Shale. 	0. 1X			SB-5(10'-	W	. • •	GWS	Wet, loose, dark gray Silly Salid	d Gravel			
 15 16 100% 15 16 100% 15 16 100% 15 16 100% 16 16 100% 16 16 16 100% 16 16 100% 16 16 100% 17 18 10 16 10 16 16 10 16 17 18 18 18 18 18 18 18 19 10 1	S		0.0	<u>15')</u>	X			Wet, soft, medium gray Clayey Silt to Silty	Clay and Fine Sand			
 15 - 15 - 0.0 50% 20 - 0.2 60% 25 - 0.0 65% 30 - 5.6 100% 35 - 36 - 36 - 36 - 37 - 38 - 38 - 38 - 39 - 30 -	=			100%			MLS	with some Fine to Coarse Subround to Su	bangular Gravel. No			
 Wet, loose, gray Fine to Medium Sand and Fine to Coarse Gravel with some Silt. No staining or odor observed. 20 - 20 - 0.2 60% 25 - 0.0 65% 30 - 5.6 100% Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. Moist, gray, Sandy Silt with little to some Fine to Coarse Angular to Subround Gravel. No staining or odor observed. 30 - 5.6 100% Strong BEDROCK Refusal at 30.2'. Damp, fractured Shale. 	15 15							staining or odor observed.				
 20 - 20 - 0.0 50% 0.2 60% 25 - 0.0 65% 30 - 5.6 100% 35 - 0.0 65% 0.0 65%<td></td><td></td><td></td><td></td><td>Μ</td><td></td><td></td><td>Wet, loose, gray Fine to Medium Sand and</td><td>d Fine to Coarse Gravel</td>					Μ			Wet, loose, gray Fine to Medium Sand and	d Fine to Coarse Gravel			
 20 - 20 - 0.2 60% 25 - 0.0 65% 30 - 36 - 36 - 36 - 37 - 38 - 38 - 38 - 38 - 38 - 38 - 39 - 30 -					X	\$ O.S		with some Silt. No staining or odor observe	ed.			
 20 - 0.2 60% 25 - 0.0 65% 30 - 5.6 100% Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. MLG MLG			0.0	50%	Ĥ		SWG					
 20 20 0.2 60% 25 0.0 65% 30 5.6 100% Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. Moist, gray, Sandy Silt with little to some Fine to Coarse Gravel. Dark gray, moist, firm Clayey Silt with Fine to Coarse Angular to Subround Gravel. No staining or odor observed. 30 30 5.6 100% BEDROCK Refusal at 30.2". Damp, fractured Shale. 	Ĭ											
 20 20 0.2 60% 25 0.0 65% 30 5.6 100% Wet, loose, gray to dark gry Fine to Medium Sand and Fine to Coarse Subround to Subangular Gravel with some Silt and trace Clay. Moist, firm, gray Sandy Silt with little Fine gravel in bottom 2". No staining or odor observed. Moist, gray, Sandy Silt with little to some Fine to Coarse Gravel. Dark gray, moist, firm Clayey Silt with Fine to Coarse Angular to Subround Gravel. No staining or odor observed. Refusal at 30.2'. Damp, fractured Shale. 												
0.2 60% Image: Construction of the second seco	<u>e</u> ⊢ 20 −				\square			Wet, loose, gray to dark gry Fine to Mediu	m Sand and Fine to			
 25 - 25 - 0.0 65% 30 - 5.6 100% BEDROCK Refusal at 30.2'. Damp, fractured Shale. 	SNN SNN				X			Coarse Subround to Subangular Gravel w	ith some Silt and trace			
25 - 0.0 65% 30 - 5.6 100% 5.6 1	<u></u>		0.2	60%	$ \wedge $		swg	Ciay. Moist, firm, gray Sandy Silt with little	Fine gravel in bottom			
 A 25 - 0.0 65% MLG A 30 - 5.6 100% B DROCK Moist, gray, Sandy Silt with little to some Fine to Coarse Gravel. Dark gray, moist, firm Clayey Silt with Fine to Coarse Angular to Subround Gravel. No staining or odor observed. Refusal at 30.2'. Damp, fractured Shale. 				00%	H			2. NO Staining OF OUDE ODSERVED.				
 A Construction of the second se	<u> </u>											
0.0 65% 0.0 65% 5.6 100% 0.0 65% 0.0	≩⊢ 25 ⊣				\square	ٳۑڡڸؠۏ		Moist, gray, Sandy Silt with little to some F	ine to Coarse Gravel.			
0.0 65% Dark gray, moist, firm Clayey Silt with Fine to Coarse Angular to Subround Gravel. No staining or odor observed. 30 5.6 100% Refusal at 30.2'. Damp, fractured Shale. 35 35 100% 100%	B				W		MLG					
Subround Gravel. No staining or odor observed.			0.0		M			Dark gray, moist, firm Clayey Silt with Fine	e to Coarse Angular to			
5.6 100% EEDROCK Refusal at 30.2'. Damp, fractured Shale.	ž		0.0	65%	Ц	5 PT 6	MLG	Subround Gravel. No staining or odor obse	erved.			
30 − 5.6 100% BEDROCK Refusal at 30.2'. Damp, fractured Shale.	66/					p q						
	∞2 − 30 −		5.6	100%	×		DROCK	Refusal at 30.2' Damn fractured Shale				
	ev:			100 /0				Refusar at 50.2. Damp, nactured Shale.				
	ш _											
	ME											
	§ 35 -											

Drilling Log

Monitoring Well SB-6/MW-4

Page: 1 of 1

	CD.		ANYSDEC						
Project Batavia Former N	Soil sample collected from								
		лк "	Proj. No. <u>734085.23</u>	10'-15' bgs at 1530. Groundwater sample and					
Surface Elev. <u>890.7 II.</u>	_ Total Hole De	pth 29.0n	North <u>42.99556 /l.</u> East <u>-76.166223 /l.</u>	MS/MSD collected from MW-4 on 09/29/11 at 1225 New Retort					
Top of Casing <u>090.40 II.</u>	_ Water Level In	nitial <u> </u>	<u> TL.</u> Static <u> </u>	location.					
Screen: Dia 2111.	_ Length _1010	. д	Type/Size PVC Sidled Screen/0.010 In.						
Casing: Dia <u>2 In.</u>	_ Length _ <u>4.75</u>	η.	Type <u>Scn. 40 PVC</u>						
Fill Material <u>Well Sand</u>									
Drill Co. <u>Zebra Environme</u>	ental Met	hod <u>Direct P</u>	Push/Hollow Stem Auger						
Driller Joe Hutchins	Driller _Joe Hutchins Log By _Kevin Cronin Date _9/7/11 Permit # _NA								
Checked By License No									
Depth (ft.) (ft.) (ft.)	Sample ID % Recovery Blow Count Recovery	Graphic Log USCS Class.	Description (Color, Texture, Structu Geologic descriptions are based on ASTM Standard	ire) d D 2487-93 and the USCS.					
			Hand cleared to 5' bgs. Silt, Sand, Gravel, staining or odor observed.	, and crushed Brick. No					
	V	FILL MLS	As Described Above. Brown, moist, firm Sandy Silt with gray and Moist to wet, firm, brown to gravish brown	d rust color mottling. Fine to Medium Sand					
8 - 8 - 0.0 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	80%	SM	with little Silt. No staining or odor observed Wet to saturated, brown, Fine to Medium S	d. Sand with little Silt and					
		SM	trace Clay.						
0.0	<u>SB-6(10-</u> <u>15')</u> 100%		Wet to moist, grayish brown Sandy Silt wit Subround to Subangular Gravel and little (odor observed.	th some Fine to Coarse Clay. No staining or					
	N/		Wet, hard, dark gray Fine to Medium Sand	d and Fine to Coarse					
	II IX			ay.					
	60%	Swc Swc Swc Swc Swc Swc Swc Swc Swc Swc							
g − 20 −		Swc.	Sand and Gravel as above.						
	II IV		Weathered light grav crushed Limestone	over damp hard dark					
	Å		brown to black fractured Shale.	oror dump, nard, dan					
	70%	WR							
≚⊢ 24 −									
			Moist, stiff, dark brown to black Sandy Silt	to Clavey Silt Fine to					
26 -	N N		Coarse Angular to Subround Gravel. No s	taining or odor					
۵.0 <u>الأ</u>	65%	°́р ∂ ́мLG	observed.						
령는 28 -									
			4						
8⊣ 30 −									
<u> </u>									

Shaw

Drilling Log

Soil Boring

SB-7 Page: 1 of 1

Project Location Surface EI Top of Cas Screen: Di Casing: Di Fill Materia Drill Co Driller Checked E	Owner NYSDEC COMMENTS 29.5 ft. North 42.995783 ft. East -78.185984 ft. Soil sample collected from 9'-12' 29.5 ft. North 42.995783 ft. East -78.185984 ft. bgs at 0850. 1 ✓ 9.0 ft. Static NA Diameter 2 in. bgs at 0850.				
Depth (ft.)	(mqq) DIA	% Recov	Blow Cc Recove Graphi Log	USCS CI	(Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS
					Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.
- 2 - - 2 - - 4 -	0.0			FILL	Hand clear to 5' bgs. Sand, Silt, Fine to Coarse Gravel, and occasional wood fragments. No staining or odor observed.
	1.2	75%		SW SM	Thin (0.5") layer of red brick fragments over wet, soft to firm, brown, Sandy Silt with little Clay. Transitions to wet, loose, brown Fine to Medium Sand with little Fine Subround Gravel. Material is black at 9.3' bgs.
10 - 10	24.0	<u>SB-7(9'-</u> 12') 50%		SWG GW GM	Black, stained, wet, loose, Fine to Medium Sand and Fine to Coarse Gravel. Wet, firm Clayey Silt with some Fine to Coarse Subround to Subangular Gravel (unstained).
16 - 16 - 18 - 18 - 18 - 18 - 18 - 18 -	0.4	70%		MLG	Wet, firm to stiff, grayish brown Sandy Silt to Silty Sand with little to some Fine to Coarse Subround to Subangular Gravel. No staining or odor observed.
	1.1	75%		GWS	Wet to damp, dark brown Sandy Silt with some Fine to Coarse Gravel, fractured Shale, and Fine Sand. No staining or odor observed.
AL Rev: 12/6/99 M	0.7	60%		GWS	As Described Above

Drilling Log

Monitoring Well SB-8/MW-1

Page: 1 of

Project Batavia Former MGP Owner NYSDEC							COMMENTS		
Location Batavia, Genesse County, New York Proj. No 134685.23								Soli sample collected from 10'-14' bgs at 1130.	
Surface El	ev. <u>890.8</u>	ft.	Total Ho	ole Dep	pth	0 ft.	North <u>42.995842 ft.</u> East <u>-78.185846 ft.</u>	Groundwater sample collected on 10/05/11 at 1050.	
Top of Ca	sing890.3	3 ft.	Water L	evel Ir	nitial 👱	6.0 ft	Static <u>NA</u> Diameter <u>4.25 in.</u>		
Screen: D	a <u>2 in.</u>		Length	15 ft.			Type/Size _PVC Slotted Screen/0.010 in.		
Casing: Di	a <u>2 in.</u>		Length	2.75	ft.		TypeSch. 40 PVC		
Fill Materia	al _ Well Sa	nd				_ Ri	g/Core6620DT Geoprobe/Macro/HSA		
Drill Co.	Zebra Envii	ronment	al	Met	hod _ <i>Dir</i>	ect Pi	ush/Hollow Stem Auger		
Driller _Jo									
Checked By License No									
f	etion	_ ج	very	ount ery	i i i i i i i i i i i i i i i i i i i	Class	Description		
(ft.)	Wel	DIG Dbn	Seco	w C ecov	Loc	SC SC	(Color, Texture, Structu	re)	
	ပိ		SI%	ol Ba		nsc	Geologic descriptions are based on ASTM Standard	D 2487-93 and the USCS.	
							Hand clear to 5' bgs. Sand, Silt, Gravel, ar	nd Brick fragments.	
2 -		0.0				FILL			
- 4 -									
					· XXXX		Black stained wet Brick Sand Silt and C	Gravel with	
- 6 ⊻				Α			creosote/sweet odor and rainbow sheen.		
N									
8 -		9.6	20%			FILL			
10									
				M			As Above		
=				- IV			Brown, wet, splintered wood. Wet black stained Sand and Gravel fill w	ith sheen. Transitions	
- 12 –		80.0	<u> SB-8(10'-</u> 14')	M		0.4/0	to moist, firm, grayish brown Sandy Silt with	h little Fine to Coarse	
			70%			Gws	Gravel. Decreasing odor.		
§ − 14 −									
				H		\vdash	Moist, firm, gravish brown Sandy Silt to Cl	avev Silt with little to	
- 16 -				M			some Fine to Coarse Subangular to Subro	und Gravel. No	
				X			staining or odor observed. Boring ended a	t 20' bgs.	
- 2 - 18 -		0.3	70%	//	[0]	MLG			
				H					
<u> </u>					60.				
≩ - 24 -									
- 26 -									
Ř –									
₫ 28 -									
§ – 30 –									
_									

Drilling Log

Monitoring Well SB-9/MW-2

								Fage. 1 01 1	
Project Batavia Former MGP Owner NYSDEC							COMMENTS		
Location Batavia, Genesse County, New York Proj. No. 134685.23 Soil sample collected from 5'-10								Soil sample collected from 5'-10' bas at 1350. Groundwater	
Surface FI	ev. 891.6	sample collected on 10/05/11 at							
Top of Cor	sing 890.3	2 ft.	Water	eval In	itial 🗵	5.0 ft	Static ¥ 8.3 ft. Diameter 4.25 in.	1000.	
Corocas D	~ 2 in	-		10 ff	ai		Tupo/Sizo PVC Slotted Screen/0.010 in		
Screen. Di	a <u></u> 2 in		Length	1 75	#		Type/Size Control Control Control and Cont		
Casing: Di			Length	4.75	<i>n</i> .		Type		
Fill Materia		na .				_ Ri	g/Core 6620D1 Geoprobe/Macro/HSA		
Drill Co	Zebra Envir	ronment	al	Meth	nod <i>Dir</i>	ect P	ush/Hollow Stem Auger		
Driller <u>Jo</u>	e Hutchins		Log By	Kevii	n Cronin		Date _ <u>9/12/11</u> Permit # _ <u>NA</u>		
Checked By License No									
	tion		_ S P D S	and a	<u>.</u>	ass.	Description		
(ff.)	Nell	DIG	eco	0 0 00	aph	S CI	(Color, Toyturo, Structu		
	Con	щ	San %	Blow	5_	SC	(Color, Texture, Structu	IE)	
			0`				Geologic descriptions are based on ASTM Standard	D 2487-93 and the USCS.	
							Hand clear to 5' bgs. Sand, Silt, Fine to Co	barse Gravel, Brick, and	
							Coal.		
- 2 -		0.0				FUL			
		0.0							
4 -									
				Μ			Wet, loose wood (1") over moist, loose, br	own to black Fine to	
- 6 -				M			Medium Sand, little Silt, and Fine to Coars	e Gravel. Becomes wet	
		0.0	<u>SB-9(5'-</u>				alter a second layer (2) of wood. Slight of	101.	
₹ 8 -		6.9	<u>10')</u> 35%			FILL			
						MLS	Wet, firm to stiff, grayish brown Silty Sand	to Sandy Silt with little	
				M	$\begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	000	Clay.		
⊒ – 12 –						SPG	Brown to brownish gray Fine to Medium S	and, some Fine Gravel	
		0.1	95%		° 0° °		Wet, stiff, gravish brown Sandy Silt with lit	tle Fine to Coarse	
						MLG	Gravel.		
				Ц	$\left \begin{array}{c} c \\ c$				
				\square			Wet, firm, gray Fine to Medium Sand and	Fine to Coarse	
≩ - 16 -				- IVI			Subround to Subangular Gravel with some	e Silt and trace Clay. No	
₽ -				M		GW	staining or odor observed.		
- 18 -		0.6	60%	Ц	L d'I	GM			
°≓ 20 –				Π			Wet, firm, gray Fine to Medium Sand and	Fine to Coarse	
				M			Subround to Subangular Gravel with little	Silt. No staining or odor	
≩⊢ 22 −				X			observed.		
<u> </u>		0.0	75%	[/ \		GWS			
				Ц					
z 24 -									
- 26 −									
₹ <mark></mark>									
₫ <u>⊢ 28 –</u>									
30 -									
= L			1						

Shaw

Drilling Log

Soil Boring

SB-10 Page: 1 of 1

Project Batavia Former MGP Owner NYSDEC Location Batavia, Genesse County, New York Proj. No. 134685.23 Surface Elev. 890.1 ft. Total Hole Depth 25.0 ft. North 42.995875 ft. East -78.186218 Top of Casing NA Water Level Initial	COMMENTS Soil sample collected from 10'-15' bgs at 0830. ft.									
Location Batavia, Genesse County, New York Proj. No. 134685.23 Surface Elev. 890.1 ft. Total Hole Depth 25.0 ft. North 42.995875 ft. East -78.186218 Top of Casing NA Water Level Initial ∑ 7.0 ft. Static NA Diameter 2 in.	Soli sample collected from 10'-15' bgs at 0830. ft.									
Surface Elev. 890.1 ft. Total Hole Depth 25.0 ft. North 42.995875 ft. East -78.186218 Top of Casing NA Water Level Initial \$\overline{2}\$ 7.0 ft. Static NA Diameter 2 in.	<u>ft.</u>									
Top of Casing <u>NA</u> Water Level Initial <u>7.0 ft.</u> Static <u>NA</u> Diameter <u>2 in.</u>										
-	_									
Screen: Dia <u>NA</u> Length <u>NA</u> Type/Size <u>NA</u>	_									
Casing: Dia NA Length NA Type NA										
Fill Material Backfill Rig/Core 6620DT Geoprobe/Macro	—									
Drill Co Zebra Environmental Method Direct Push										
Driller Joe Hutchins Log By Kevin Cronin Date 9/13/11 Permit # NA	—									
Checked By										
Description										
)									
Geologic descriptions are based on ASTM Standard E	2487-93 and the USCS.									
Hand clear to 5' bgs. Sand, Silt, Fine to Coarse C	Fravel, Brick and Brick									
tragments.										
6 – Nioist to wet, firm, brown to dark brown Fine San	ay shit to shity sand.									
Moist to wet, medium dense Fine to Medium Sar	d and Fine to Coarse									
+ 10 - Wet brown compacted Sand and Gravel as abc	ve									
	ma Fina ta Oranza									
5 Wet, soft to firm, grayish brown Silty Sand with s	ome Fine to Coarse									
SI A SI	neo sun. No staining U									
Wet to damp, firm to stiff, brownish gray to gray f	o dark brown Sandy Silt									
↓ 16 → with some Fine to Coarse Subround to Subangul	ar Gravel. Trace Clay with									
	a.									
Moist to dry, dark brown to blackish brown, firm t	o stiff Clayey Silt and Fine									
to Coarse Gravel (weathered Shale). No staining	or odor observed. Refusal									
[-22] - 12 $[-22] - 12$ $[-2$										
g										
§ → 30 →										

SI

Drilling Log

Soil Boring Test Pit 1

•••••			
Project Batavia Former MGP		Owner <u>NYSDEC</u>	COMMENTS
Location Batavia, Genesse Cou	inty, New Yo	Proj. No. <u>134685.23</u>	 Near former Oil UST. See Figure 3A of July 2012 SC Report.
Surface Elev. 891.1 ft. To	otal Hole Dep	7.0 ft. North 5089.08 ft. East 5270.8 ft.	
Top of Casing NA W	ater Level In	al NA Static NA Diameter	-
Screen: Dia NA	anath NA	Type/Size NA	_
Casing: Dia NA	angth NA		_
Fill Material Backfill	.ngtn	Pig/Core Komatsu PC40R	_
	Moth	RigiCole	-
Driller Rich Brown	Weu	$\frac{2}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt$	-
Driller <u>ricer Brown</u> LC	од Ву <u>- не и н</u>		-
		License No.	-
(ft.)	aphic	Description	
		(COIDI, TEXLUTE, Structure) Geologic descriptions are based on ASTM Standard D (2487-93 and the LISCS
		Dry, loose, brown to gray-brown silty SAND with G Have corroded 1.5" metal pipe with red flagging th Asbestos Hazard". Lumber, concrete, rebar, glass present.	RAVEL and cinders. at reads, "Danger , and wood cribbing also
- 2 -	FI		
	SI SI SI	Black to gray clayey SILT to silty CLAY with strong ppm). Plastic sheeting, old bottles, pottery, broker iron also present. Appears wood cribbing on south banding is the former oil UST.	g product odor (PID = 399 iron pipe, and wrought i side of pit with metal
SI

Drilling Log

Soil Boring Test Pit 2

U							Page: 1 of 1
Project _	Batavia Fo	ormer M	GP			Owner <u>NYSDEC</u>	COMMENTS
Location	Batavia,	Geness	e Cour	nty, New	York	Proj. No. <u>134685.23</u>	Gasworks structures on East
Surface El	ev. 891	.3 ft.	Tot	al Hole D	Depth	5.8 ft North _5140.55 ft East _5251.95 ft.	site of Site. See figure 3A of July
Top of Cas	sing NA		Wa	ter I evel	Initia	NA Static NA Diameter	2012 30 Керон.
Screen: Di	ia NA		er	nath NA	4	Type/Size NA	
Casing: Di	a NA		0.	ngth NA	٩		
Eill Matoric	a Backi	fill		igin		BigCore Komatsu PC40R	
	Nature's	Wav		Ν.4	othod	Excavator	
	ich Brow	n			ethoù win Ci	$\frac{2}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$	
Driller <u></u>		1	_ LOG	јву <u>- ле</u>			
	зу				L		
Depth (ft.)	(mqq)	Sample ID 6 Recovery	llow Count Recovery	Graphic Log	SCS Class.	Description (Color, Texture, Structure)	
		\$% \$	ш		S	Geologic descriptions are based on ASTM Standard D 24	487-93 and the USCS.
- 0 -					FILL	SAND, SILT, GRAVEL, and bricks.	
2 -						COBBLES and small BOULDERS with ash.	
2						BI	
5					SW	ailty CLAV to alayou CILT with mattles condy CILT	No odor or otoining
2					SVV	Sitty CLAY to clayey SiLT with motiles sandy SiLT. Noted	
						NYSDEC PM directs equipment operator to dig fur	ther and extend test pit
						to the west and north. At 4ft bgs, dark brown to pur	ple slag-like material
- 4 -					sw	with naphthalene-like odor encountered.	
				<u></u>			
6 -							
-							
<u>+</u>							
Į I							

S

Drilling Log

Soil Boring

Test Pit 3

Project _	Batavia I	Former N	1GP			Owner <u>NYSDEC</u>	COMMENTS
Location	Batavia	, Geness	se Cour	nty, New	York	Proj. No. <u>134685.23</u>	See Figure 3A of July 2012 SC
Surface E	lev. <u>89</u>	0.4 ft.	_ Tot	al Hole D	Depth	4.0 ft North5189.48 ft East5194.69 ft	Report.
Top of Ca	sing _ <i>N</i>	4	_ Wa	ter Leve	I Initia	NA Static Diameter	
Screen: D	ia <u>NA</u>		_ Ler	ngth _NA	4	Type/Size <i>NA</i>	
Casing: Di	ia <u>N</u> A		_ Ler	ngth <u>N</u> A	4	Type _NA	
Fill Materia	al Back	kfill		J		Rig/Core Komatsu PC40R	
Drill Co	Nature's	s Way		м	lethod	Excavator	
Driller R	ich Brow	/n	Loc	Ке ч Ву – <i>К</i> е	evin Ci	ronin Date 9/27/11 Permit # NA	
	Rv.			, D,	L		
		₽ [∑]	t n	U	ass.	Description	
epth ft.)	D d	scov	C O	aphi og	Ö		
ăŬ	н д	% Re	Blow	Ga	SCS	(Color, Texture, Structure)	107 00
						Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
						SAND, SILI, GRAVEL. Bricks present at 1ft bgs. V	old encountered at 3tt
						with former tar holder.	at may be associated
- 2 -					FILL		
0							
24/12							
2							
<u></u>							
ORP							
ō ⊢							
4 —							
11.0							
V201							
2 Z							
2 2							
4- 4_							
ġ⊢ 6 —							
SOR							
OILE							
N N							
BA							
DEC							
≚⊢ 8 –							
66/							
12/6							
Sev:							
RCIA							
AME							
ଚି⊢ 10 −							
⊢							

S

Drilling Log

Soil Boring

Test Pit 4

U							
Project	Batavia F	ormer M	GP			Owner <u>NYSDEC</u>	COMMENTS
Location	Batavia	, Geness	e Cour	nty, New	York	Proj. No. <u>134685.23</u>	See Figure 3A of July 2012 SC
Surface E	lev89	0.9 ft.	_ Tot	al Hole D	Depth	<u>3.9 ft.</u> North <u>5040.94 ft.</u> East <u>5228.61 ft.</u>	Report.
Top of Ca	sing _ <i>N</i> /	4	Wa	iter Level	l Initia	Static Diameter	
Screen: D	ia NA		_ Ler	ngth <u>N</u> A	4	Type/SizeNA	
Casing: D	ia NA		Ler	nath NA	4	Type NA	
Fill Materia	al Back	cfill				Rig/Core Komatsu PC40R	
Drill Co	Nature's	: Way		М	ethod	Excavator	
Driller R	rich Brow	'n	Loc	Ke	evin C	onin Date 9/27/11 Permit # NA	
	2.7		_ LUS	, Dy			
	Jy	1					
÷.	∩ Ê	le ID overy	count /ery	g hic	Class.	Description	
Dep (ft.	II dd	Rec		Grap Lo	CS	(Color, Texture, Structure)	
		<u>س</u> اي	щ к	-	SN	Geologic descriptions are based on ASTM Standard D 24	187-93 and the USCS.
- 0 -						SAND, SILT, and fine to coarse GRAVEL. Bricks, I	oroken glass, concrete
						pieces, and 10" gear also encountered.	
					FILL		
- 2 -							
/12							
7/24							
5							
CP.O							
Ō				$\bigcap \bigcap \bigcap $	MIS	Mottled sandy SILT (native) encountered. No stain	ng or odor noted.
⊨ ⊐⊢ 4						· · · ·	-
4 —							
2011							
202							
VLO							
NM-0							
- 6 –							
Щ. Ш							
S							
BAT.							
ы Ш							
≚⊢ 8 –							
2/6/9							
2 2							
&⊢ –							
CIAL							
MER							
2 − 10 −							

S

Drilling Log

Soil Boring Test Pit 5

Project _	Batavia F	ormer M	GP			OwnerNYSDEC	COMMENTS Near Original Retort structure
Location .	Batavia,	Geness	e Cour	nty, New	York	Proj. No. <u>134685.23</u>	See Figure 3A of July 2012 SC
Surface El	ev. 891	.2 ft.	_ Tot	al Hole D	epth	<u>5.0 ft.</u> North <u>5019.28 ft.</u> East <u>5191.09 ft.</u>	
Top of Ca	sing <u>NA</u>		_ Wa	iter Level	Initia	NA Static <u>NA</u> Diameter	
Screen: D	ia <u>NA</u>		_ Ler	ngth <u>N</u> A	4	Type/Size	
Casing: Di	a <u>IVA</u>	£;11	_ Ler	ngth _/VA	4		
Fill Materia	A	//// /////				Rig/Core <u>Komalsu PC40R</u>	
	ich Brow	vvay n		M	ethod win Ci		
			_ Log	јву <u>- ле</u>			
	∍y			1			
		ery ID	is rut	.u	ass.	Description	
(ft.)	DI d DI d	<u>nple</u> ecov	v Co cove	raphi Log	S CI	(Color Texture Structure)	
	-	<u>Sar</u> % R	Blov Re	Ō	nsc	Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
					_		
- 0 -						SAND, SILT, GRAVEL, brick, concrete, coal, slag,	coke, and wood
						encountered. Observed steel and orange plastic ell former das holder. Possibly former das line from da	oow runnin toward as holder. Line not
						marked by utility locator.	
- 2 -							
1							
;							
- 4							
- ° -							
- 8 -							
- 10 -							

APPENDIX B

GROUNDWATER DEVELOPMENT & SAMPLING FIELD FORMS

TURNKEY Ens PRAMPERA RESTRICTANTER IIC				·		Ç	GROUND	WATER	FIELD FORM	l
Project Name:	Eugns	st	site		• د مد م		Date:	4/18	116	
ocation: 11 EVax	<u>s st</u>	Batavia	Project	<u>No.: (</u>)35	<u>55~015~</u>	OD Field Te	am:	plat	
Well No. TKMIN	-9	Diameter (in	iches):	<u>h</u>	T	Sample Dat	e / Time:	4/18/	16]
Product Depth (fbTOR):	(William	Water Colu	nn (ft): 6	.3		DTW when	sampled:	1 1		
DTW (static) (fbTOR):	3.28	One Weil V	olume (gal):	1.02		Purpose: D	Development	Sample	Purge & Sample	
Total Depth (fbTOR):	4.58	Total Volum	e Purged (gal):	10.0		Purge Metho	od:	Bailes		
Water Time Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)		Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
9.55 o Initial	6,25	6.75	13.6	1		71000	2.94	127	Turbid brown ! No	0
0:05 1 8.25	1.0	6.97	12.4			n II	4.84	118	11 1	
10:10 2 8.30	2.0	7.03	11.5			- n	4.87	121	jî	
10:15 3830	3.0	7.06	11.4			ļ	478	92	μ I	
10:20 4 11	4.0	7.11	11.1			11	11 -	97	11	
10:25 \$ 8050	5.0	7.16	10,83			11	5.45	94	E FI	
10:30 6 11	6.0	7.21	11.1 0		· -	þ	5.69	88	l)	
10:35 7 11	7.0	7.24	11.4			11	5.58	89	η μ	
10:40 " "	8.0	7.26	11.5			li	5.51	92]1	
10:45 9 11	9.0	7,77	11.3			μ		97	11	
10:50 10 11	10.0	7.29)	11.3			- li		95	17	
Sample Information:		-186 -		I				ž	,	
SI				1	T		ſ			
S2									· · · · · · · · · · · · · · · · · · ·]

	Well No	D. TKMW	- 8	Diameter (ir	nches):	2"		Sample Da	te / Time:	<u>4/18/K</u>		
	Product De	pth (fbTOR):	~~~~	Water Colu	mn (ft): 🛛 💈	3.53	3	DTW when	sampled:	· · · · · · · · · · · · · · · · · · ·		
	DTW (static	c) (fbTOR):	6.45	One Well V	olume (gai):	1,3	9	Purpose:	🔀 Developmeni	t 🗌 Sample	e 🗌 Purge & Sample	
	Total Depth	(fbTOR):	4.98	Total Volum	e Purged (gai):			Purge Meth	10d: B #	uler		
	Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	S((u\$	0	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	,
	11.10	o Initial	4.25	9.0	13.7)		>1000	6.56	210	Turbid brown No	odor
	11115	18.10	1.5	6.97	10.8		,	<u>A</u>	6.58	172	μ /	
	11:20	29.0	3.0	6.98	10,8		1	n.	6.78	402	11	
	11:26	3 11.20	4.5	6.86	11.0			h	6.88	219	4	
	11:30	4 11.40	6.0	4.85	10.9			h	6.62	190	4	
	11:35	5 11.70	7.5	4.83	10.7			4	6,57	187	<i> </i> ¢	
	11:610	6 12 2	9	6,84	11.0			11	6.80	163	11	
	11-45	12.7	10.5	6,33	10.9			4	6.24	167	1	
	11:50	813.0	12.0	6.84	10.7			11	6.10	166	II a Second	
:	11:55	913.4	13.5	6. RU	10.9			4	5.80	166	- (C) - 2	
	12:00	10/3.6	15.0	6.86	10.8			п	5.72	165		1997 - 1997 -
	Semple I	nformation	, <u>, , , , , , , , , , , , , , , , , , </u>				· · · ·				Ultra	
	Campier	SI	1			,			6 68			
		S2							I WEEK	5		
	<u>L</u>	1		1	<u> </u>					Stat	pilization Criteria	0
<i>c</i> .	REMARK	S: Con	Juctivit	4 Mete	r adm	VD		Vol	ume Calculation	Parame	eter Criteria]
ð ⁷	;		SE I	/	7	7		DÍ	am Vol. (g/ft)	pH	± 0.1 unit	
	<u>.</u>	A 64.2	(ist						1" 0.041	SC	± 3%	
• 🕴 📖	<u> </u>	1 . Star	9 	į	,				2" 0.163	Turbid	lity ± 10%	-
	A CAL								4" 0.653		± 0.3 mg/L	1
	Apte: All me	pasurements	are in feet, i	distance from	n top of riser.				6 1.469]
	े हैं।					ים ח	/.	1	914	31 L	(÷ 11
	Soundwater Field SWFF - TK	Form.xis			FREFAKI	וםחב	•	A G	and the	N/	· `	-
		ng - 1	·.								1	

TURNKE	Y F					G	ROUND	WATER	FIELD FORM
REPROVEMENTA REPRESENTATION	ÎC	n de la companya de l La companya de la comp					Deter	ylali	6
Project Nam	1e: 11 E	ians St	Site				Date.		0 •
Location:	11- Frans St	reat Bat	aun	Project I	No.: 0353	-015-001	Field re		<u>v</u>
27							4	halle	
Well No	TKML)-6	Diameter (in	ches): 2		Sample Date	/Time:		
Product Dep	th (fbTOR):		Water Colun	nn (ft):	7.25	DTW when s	ampled:		Durge & Sample
DTW (static)) (fbTOR):	2.78	One Well Vo	lume (gal):	18	Purpose: 12	Development		
Total Depth	(fbTOR):	5.03	Total Volum	e Purged (gal):	<u> </u>	Purge Metho	<u>a: L>n</u>	<u> 1 [-K_)</u>	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
14:00	o Initial	6.25	7.06	14.3		71000		-102	Turbidbream
14.05	10.02	1.25	7.14	2.5		<u> </u>	·		
14:10	$^{2}/1.10$	2.5	-1.05	11.7				- 1/-	
14:15	» 11, D	3.75	7.09	1.6				<u> • 00</u>	
14:20	11.10	4	7.09	11.5				<u>*/5</u>	<u>├</u>
14:26	\$ 11.30	6.25	7.06	11.5		 		-75	
14:30	· 11.10	7.50	7.03	11.6				<u> </u>	
14:35	7 11.0	8.75	7.02	11.6				-80	
14:40	· 11.25	10	7.03	<u> </u>				- 150	
14.45	\$ 11.30	10 11.25	7.05	11.7	/	- 1/		- 94	
14:50	10 11.34	12050	7.08	11.6	₩	<u> </u>	¥	07	¥
Sample	nformation	r		. <u></u>				T	Т
	\$1			· · ·	· · ·			<u> </u>	
	S2		· ·	<u>]</u>	<u> </u>			<u> </u>	

Well N	0.	······	Diameter (ir	nches):		Sample Dal	e / Time:		<u></u>
Product De	with (fbTOR);		Water Colu	mn (ft):		DTW when	sampled:		
DTW (stati	e) (fbTOR):		One Well V	olume (gal):		Purpose:	Development	Sample	Purge & Sample
Total Denti	b (fbTOR):		Total Volum	ne Purged (gal):		Purge Meth	od:		
Tîme	Water Level (fbTOR)	Acc. Volume (gallons)	ρΗ (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial					<u> </u>			
	1								· · · · · · · · · · · · · · · · · · ·
	2					<u> </u>	╂╼────┾		<u> </u>
	3								
	4						┝─────────────────────────────────────		<u> </u>
	5						╂━────────────────────────────────────		
	6		ļ				<u>}</u>		<u></u>
	7						╊		
	8	<u></u>			<u> </u>	<u> </u>	<u>↓</u>		
	9	<u> </u>	. <u> </u>			<u> </u>	╂		
	10	<u> </u>			<u> </u>	<u> </u>	11		
Sample	Information	<u>.</u>			· · ·	<u> </u>			· · · · · · · · · · · · · · · · · · ·
	St								<u>. </u>
	S2		<u> </u>	<u> </u>	<u> </u>			Stahi	lization Criteria
	-	1 1.1	1	$\sum I \cap$	dias	Vo	tume Catculation	Parame	ter Criteria
REMAR	KS: Lon	JUCTIVIT	7 Meste	5 MATU	ALTER		am. Vol. (g/ft)	pН	± 0.1 unit
Heavy	j sheen≥	<u>>DO_NC</u>	ot_colle	CTeC			1" 0.041	SC	± 3%
l							2" 0.163	Turbidi	ty ± 10%
							4" 0.653	DO	± 0.3 mg/L
Note: All n	neasurement	s are in feet.	distance fro	m top of rise.	r		6" 1.469	ORP	± 10 mV
						-		O MA	and a second

Groundwater Field Form.xls GWFF - TK TURNKEY En promuting The Rest outpool LLC

GROUNDWATER FIELD FORM

RESTORATION	ũ.c				. 1	ч. ¹			
D	1. 19	e.t.	0	•	•	5,300	Date:	4/18/	16
Project Nan	ne: 11 FV	ANS 5T	2110	Project N	h. 0222	-015-00	/ Field Te	am: Pu	
Location:	1 Evans S	treet Isa	tavla	FIUJOUT	<u></u>	-013 00	<u>ا</u>		1
						Sample Date	e / Time:	1/18/16	
Well No	D. TKMW.	• 37	Diameter (inc	nes): 6	00	DTM when	sampled:		
Product Dep	oth (fbTOR):		Water Colum	in (fl): <u>/</u>	1100	DIVWINCH	Development	Sample	Purge & Sample
DTW (static	:) (fbTOR):	7.2	One Well Vo	lume (gat):	115	Purge Methr	od Ba	101	
Total Depth	(fbTOR):	14:28		Purgeo (gai).	<u>ಕ್</u>	1 digo mod		000	Anochrance &
Time	Water Level (fbTOR)	Acc. ` Volume (galions)	⁺pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	(mg/L)	(mV)	Odor Odor
11.10	lo Initial	6.25	7.41	12.9	1	71000	5.01	212	Turbid brown / N
12:10	120	120	7.34	10.9			5.04	196	
-16.12	2 3 30	24	7 36	10.6			4.81	187	<u></u>
10.90	3800	316	7.37	10,4			4.58	176	
11 15	40.05	4.8	7 38	10.0			4.90	174	
12.50	$\frac{\gamma}{5}$		7.26	10.0			4.85	167	· · · · · · · · · · · · · · · · · · ·
12.59		0.0	7.20	97			4.51	167	
12.40		GI	7151	98			4.20	162	
12.45	↓	8.4	0.31	a 7			4,13	163	
12,50	8	7.6	1.3/	al			<u> /// </u>	160	
-12:55	9	10.8	1.51				<u> </u>	168	V
13:00	10	120	1.57	915	<u> </u>		<u> </u>		
<u>Sample</u>	Information	:	······				1	1	
2	S1								
	S2			<u> </u>		<u> </u>			
	a TEAN	1-5	Diameter (ir	ches):	711	Sample Da	ate / Time:	4/18/	16
	U. / (11/10)		Mater Colu	mn (ft)	7.75	DTW wher	sampled:	/ /	
Product De			One Well V	olume (gal):	1.26 1	Purpose:	Developmen	it 🗌 Samp	le Purge & Sample
UIW (stat		153	Total Volum	ne Purged (gal):		Purge Met	hod:	Bay ler	
lotal Dept		1 316 D	Total Volum	0.0000000		Turbidibe	0	ORP	Appearance &
Ţime	Level	Volume (gallons)	pH (units)	Temp. (deg. C)	US)	(NTU)	(mg/L)	(mV)	Odor
13:05	o Initial	6:25	7.20	14,0		71000	- 4	1-19	Indie brown
12:10	18.0	1,75	7.04	12.0	-04		<u> </u>	-28	<u></u>
10.10°	2 8 3	9.5	7.08	11.4			<u> </u>	-28	
- <u>15-10</u> 13:77	3 0 90	2.75	7.12	11.1				-25	
13:00	40 90	Bar .	7.11	11.1				-25	
13:23	5 0 20		7.15	11.0				-24	
19.3	· D · X	3.60	1-1-9	11.0				- 24	`
13:35		10 30	7.10	10.00				- 26	
13:00	<u> </u>	10 10	110	10 12.	┼──┼╼─	+ + -		-27	
13:45	1 ⁸	10,00		10.02	┼─┼─	+ + -		- 28	
13:50	9	11.25	7.4	10.7	┼─┼─	+ 1/	$+ \sqrt{-}$	-29	V
13:55		12 50	7.12	10.1				r	
Sample	e Information	n:	·	······································				1	
	St		<u> </u>					+	<u> </u>
1	60	1	1	1	1		I		

REMARKS: Conductivity meter multimetion TKMW-5 Leavy slear no po collected

 Volume Calculation

 Diam.
 Vol. (g/fl)

 1"
 0.041

 2"
 0.163

 4"
 0.653

 6"
 1.469

Stabilization Criteria Criteria Parameter ± 0.1 unit pН ± 3% SC Turbidity ± 10% DO ± 0.3 mg/L ORP ± 10 mV

12

W

Vote: All measurements are in feet, distance from top of riser.

PREPARED BY:

.

GRA

TURNKEY

EQUIPMENT CALIBRATION LOG MIBK response factor = 1.0 SETTINGS エッズ Rental 0 4 K 60 Ś 20 2% 8 51.72 21.72 POST CAL. READING 8.8 6.99 800 100% 202 1416 NO N BM \mathcal{D} < 0.4 or 10 for 2100 Q 14/2ms@25°C ppm Iso. Gas background area 100% Satuartion STANDARD open air zero open air Instrument Source: 10.01 open air 4/18 /K open air 2.00 zero air open air 4.00 100 800 20 CAL. BY Real Date: PUL Puel R SERIAL NUMBER 13120C030432 07110C026405 06120C020523 凶 \Box Ŕ 0807000023281 140200100319 10050041867 6212375 6213516 6223973 6213516 6212375 6223973 Myron L Company Ultra Meter 6P Myron L Company Uttra Meter 6P HACH Model HQ30d Hach 2100P or MAKE/MODEL MinRAE 2000 Turbidimeter Batavia 2100Q 11 Evens 54 Site 03333-015-001 UNITS TIME Enterprises of URIH mg/m³ units NTU sn Sm mdd mdd 6 шdd bpm % PROJECT INFORMATION: METER TYPE Sp. Cond. meter Pissolved Oxygen M M Linin Neter Carbon monoxide Hydrogen sulfide Particulate meter Turbidity meter Rt J Project Name: pH meter Oxygen Project No.: ЦЦ Client: \bowtie Q \Box

(a	TURNKEY
6	Remonstron LLC
	and the second se

11

Project Name:

Location:

GROUNDWATER FIELD FORM

II Evans	Street "	Site	
Evans St	Batavia	Project No .: 0333-	015-003

4/27/16 Date: Field Team. pun

	-		1			r		1 12		Ê	
Well No	O. TKMI	w-5	Diameter (ir	nches): 2.	i l	Sample Da	te / Time: 🛛 🦌	127/16			
Product De	epth (fbTOR):	4	Water Colu	mn (ft):	7.51	DTW when	sampled:	1			
DTW (stati	c) (fbTOR):	7.54	One Well V	olume (gal):	1.23	Purpose: Development Sample A Purge & Sample					
Total Depth	n (fbTOR)	5.08	Total Volum	e Purged (gal):		Purge Method: Cowflow					
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
12:45	o Initial	6.1	7.21	13.3	2019	21000	1.57	- 83	Typid peter life	6	
12:47	1 7.78	,25	7.07	12.0	2013	483	1.49	-66	W/Felle II		
12:49	2 7.78	6.5	7.06	11.4	2055	B44	1.39	- 61	н		
17:51	3 7.78	.5	Tick	11.3	2120	214	1.43	-60	11		
12:53	4 7.78	C.75	1.05	11.0	2160	106	1.34	-58	11		
- 552	5							5			
	6										
	7										
	8										
	9										
	10										
Sample	Information:	9			2					,	
12:55	S1 7,78	175	7:03	11.1	2163	49	2.69	-55	cier/febre	-1	
13:20	S2		7.05	11.2	2190	29.3	1.09	-60	£ 2		

Well N	0.		Diameter (i	nches):		Sample Date / Time:					Sample Date / Time:							
Product De	epth (fbTOR);		Water Colu	ımn (ft):		DTW	when sam	pled:										
DTW (stati	ic) (fbTOR):	N.	One Well V	/olume (gal):		Purpo	ose: 🗌 D	evelopment	Sample	Purge & Sample								
Total Dept	h (fbTOR):	14	Total Volun	Purge Method:														
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbio (NTU	dity J)	DO (mg/L)	ORP (mV)	Appearance & Odor								
	o Initial	ļ																
	2																	
	3																	
	5																	
	6																	
3	8	-																
	9																	
Sample	Information:																	
	S1																	
	S2								Stabil	ization Criteria								
REMARK	S: I	11 1	10			ξ¢.	Volume	Calculation	Paramete	er Criteria								
Equ:	D Blank	collect	eda	13:45			Diam.	Vol. (g/ft)	ρН	± 0.1 unit								
. 0				1			1"	0.041	SC	± 3%								
			·				2"	0.163	Turbidit	/ ± 10%								
Nata: All -	ocouromente	are in fact	diatonoo fur	m tan af vic-r			4"	0.653	DO	± 0.3 mg/L								
NOLE. All M	easurements	are in reet, o	ustance froi	n top of riser				1.469	LORP	<u>±10 mV</u>								
Groundwater Field	d Form xls		ж.	PREPARE	DBY:	Ya	h	10	he A									

Groundwater Field Form xls GWFF - TK

11:40

S2 7.5

1.0

GROUNDWATER FIELD FORM

Project Name: 11 Evans Street Location: 11 Evans St. Batavia Date: 4/7.1/1/

Field Team:

Well No	. TKMU	, - 7	Diameter (in	ches): Z	4	Sample Date	e / Time: 4	127/16	11:28			
Product Dep	oth (fbTOR):		Water Colum	nn (ft): 🛛 🔏	. 86	DTW when sampled: 7.56						
DTW (static) (fbTOR);	7.42	One Well Vo	lume (gal):	112	Purpose: Development Sample Purge & Sample						
Total Depth	(fbTOR):	14.28	Total Volum	e Purged (gal):	1.0	Purge Metho	od: lou	stlow				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor			
11:20	o Initial	Cil	7.62	12.0	842.6	163	4,19	116	Clear No oder			
11:22	1 7.5	.25	7.37	10:1	812.0	91.Z	3.45	121	a			
11:24	² 7,5	.5	7.30	9.8	840.7	63.5	3.15	122	n			
11:26	3 7.5	. 75	7.29	9,5	826,5	36.8	3.15	119	(1			
	4				(N. 200	1000						
	5											
	6	- 1										
	7											
	8							-				
	9											
	10											
Sample I	nformation:											
11:28	S1 7.5	41.0	7.27	9.6	814.7	22.0	3.15	119	11			

Project No.: 0333-015-063

S

10.

7.30

24 12:08 Well No. TKMW-G Diameter (inches): Sample Date / Time: 41 41 7.25 Product Depth (fbTOR): Water Column (ft): DTW when sampled: 12 Purge & Sample DTW (static) (fbTOR): 7.78 1,10 Purpose: Development Sample One Well Volume (gal): How Total Depth (fbTOR): 5.03 Total Volume Purged (gal): Purge Method: . 0 NI Water Acc. pН SC Turbidity DO ORP Temp. Appearance & Time Level Volume (units) (deg, C) (uS) (NTU) (mg/L)(mV) Odor (fbTOR) (gallons) 12:00 Initial Cil 13.4 - 95 6.78 239 1.78 slight tuch etro-like 2063 1.18 111 colo 8.28 11.0 82.8 -110 12:02 0 75 . 833 2245 clear 114 12:001 3.31 2.5 6.82 2213 4 13.0 77.1 -117 61.2 8.37 . 63 -114 ,85 11.0 2345 1.05 11 2:06 10 Sample Information: 40.3 75 518.41 6.86 11 12:00 11.0 2252 1.02 -112 slight sh 221 S2 R C 90 12.0 1.19 - 107 4 O 6. 2.001 12:30 Stabilization Criteria MS/MSD Taken REMARKS: TKMW-6 Volume Calculation Parameter Criteria Diam. Vol. (g/ft) ± 0.1 unit pН

799.8

12.3

2.95

0.041

0.163

0.653

1.469

SC

Turbidity

DO

ORP

± 3%

± 10%

± 0.3 mg/L

± 10 mV

1"

2"

4"

6"

115

11

Note: All measurements are in feet, distance from top of riser.

Groundwater Field Form xls

GWFF - TK

PREPARED BY:

6		
Q	ENUMONIACHTAL THE RESIDUATION, LLC	1

GROUNDWATER FIELD FORM

	-	-	11	-1	2		×	111	1.	
Project Nar	me:	Evans	Street	SITE			Date:	7/27	14	
Location:	11 Evans	st Ba	tavia	Project	No.: 033	3-015-00	5 Field Te	am: 🍎 Pu	in	
<u></u>					-				· · · · · · · · · · · · · · · · · · ·	5
Well No	o. Att Th	$t_{MW}-7$	Diameter (in	iches): 🛛 🔽	9	Sample Dat	te / Time: 🛛 🍕	27/16	9:35	
Product De	pth (fbTOR):		Water Colur	mn (ft): 🏾 🏹	.34	DTW when	sampled:	8.75]
DTW (statio	c) (fbTOR):	7.29	One Well Vo	olume (gal):	1.19	Purpose:	Development	Sample	Purge & Sample	
Total Depth	(fbTOR):	4.63	Total Volum	e Purged (gal):	1.25	Purge Meth	od: 1000	flow		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
9:26	o Initial	4.1	6.34	10.1	3735	71000	2.5	727	Turbidbrown	Noda
9:28	18,68	6.25	6.98	10.1	3635	11	1.56	178	11 1	1.000
9:30	2 8.72	025	6.97	10.2	3706	11	1.32	142	//	
9:32	39.73	. 5	7.01	10.3	3671	1000	1.07	103	S 11	
	4	· 1977			No. D.M.			1.1.		
	5									
	6						-			
	7						×			
	8									
	9								2m	
	10									
Sample	Information:									
9:35	S1 8.75	. 75	7.03	10.3	3563	11	1.15	65	11	
9:40	S2 //	1.25	7.19	103	2500	611	120	72	- U	

Well No	D. TKMU)-8	Diameter (ii	nches): 21	1	Sample Date / Time: 4/27/16							
Product De	pth (fbTOR):	-	Water Colu	mn (ft): 🛛 🔗	.44	DTW when	sampled:						
DTW (statio	c) (fbTOR):	6.54	One Well V	olume (gal):	1.37	Purpose:	Development	Sample	Purge & Sample				
Total Depth	(fbTOR):	4.98	Total Volum	ne Purged (gal):		Purge Meth	9.7 -						
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor				
10:30	10:30 • Initial c. (6.89	11.3	3208	71000	4.21	105	Turbed No ode				
16.32	16.98	1.25	6.99	10.0	3207	191	4.61	107	charl "				
10:34	2 6.99	.25	7.00	10.1	3220	120	4.46	110	u				
10:36	36.99	15	7.62	9.7	3147	72	4.23	110	ti -				
	4								· · · · · · · · · · · · · · · · · · ·				
	5						·		19				
	6												
	7												
	В												
	9	34											
	10												
Sample I	nformation:								240				
10:38	51 6.99	.75	7.01	9.9	3129	37.5	4.13	108	11/11				
(1).50	52 6,99	1.25	7.09	10.0	3010	11.8	4.20	112	11/1				
	- and the				. 1			Stabi	lization Criteria				
REMARK	S: TKAA	3-9 ave	-1000	ATU-	Silect	Za Volu	me Calculation	Paramet	ter Criteria				
Solar	ste me	terts to	fille	yn fo	ab	Dia	am, Vol. (g/ft)	рH	± 0_1 unit				
TKMO	7 1	15/M.D	Colle	cled ,	NID.		0.041	SC	± 3%				
TLM	0	21.1	Din	allert.	. 1		0.163		y ± 10%				
Note: All me	~ 0	are in feet	distance from	n top of riser	0	F	0.003 5" 1.469	ORP	± 0.3 mg/L				
noto. / in file	acaromonto	aro in root, i		in top of fider	15								
Groundwater Field	Form xis			PREPARI	ED BY:	Ja	h	1 hla	·b				

Groundwater Field Form xls GWFF - TK

EQUIPMENT CALIBRATION LOG	27/16	e: 🕅 BM 🔲 Rental	VDARD POST CAL. SETTINGS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns@25°C (414 (413 ek	air zero MIBK response om Iso. Gas factor = 1.0	Satuartion $\left[\begin{array}{c} 0.0\% \\ 78.4\% \\ 78.4\% \\ 56pe \end{array} \right] 100\% \\ 78.4\% \\ 78.4\% \\ 56pe \end{array}$	ro air	en air	en air	en air	en air	ound area			
	Date: 4 / 7	Instrument Source	CAL. BY STAN	Pw 11	 < 0.4 or 	IT mond	open pp	Pur 100% 5	zei	do	do	ope	ob	backgro		6	
			SERIAL NUMBER	6213516 6212375 6223973	06120C020523 07110C026405 13120C030432	6213516 [] 6212375 [] 6223973 []		0807000023281 10050041867 140200100319								DATE: 1/24	1]
	Site	of Betavia	MAKE/MODEL	Myron L Company Ultra Meter 6P	Hach 2100P or 2100Q Turbidimeter	Myron L Company Ultra Meter 6P	MinRAE 2000	HACH Model HQ30d									
	St	Ses.	TIME	6 ₆₀	605	809		96									
	EL LAN	-33-	UNITS	units	NTU	uS mS	bpm	mqq	mg/m ³	%	mdd	mdq	%	uR/H		1	
RESTERATION, LLC	ProJECT INFORMATION Project Name:	Client: Rt S	METER TYPE	DH meter	Turbidity meter	Sp. Cond. meter	DIA	Dissolved Oxygen	Particulate meter	Oxygen	Hydrogen sulfide	Carbon monoxide		Radiation Meter	ADDITIONAL REMARKS:	PREPARED BY:	Equipment Calibration Log xls

APPENDIX C

REMEDIAL INVESTIGATION LABORATORY REPORTS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-98326-1

Client Project/Site: Benchmark - 11 Evan St., Batavia, NY

For:

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, New York 14218

Attn: Mr. Christopher Z Boron

Authorized for release by: 4/21/2016 5:21:18 PM

Brian Fischer, Manager of Project Management (716)504-9835 brian.fischer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	10
Surrogate Summary	34
QC Sample Results	36
QC Association Summary	54
Lab Chronicle	58
Certification Summary	61
Method Summary	62
Sample Summary	63
Chain of Custody	64
Receipt Checklists	65

3

Qualifiers

GC	2M	VO	Δ
00			

Qualifier	Qualifier Description	
F1	MS and/or MSD Recovery is outside acceptance limits.	- 5
F2	MS/MSD RPD exceeds control limits	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	•
*	ISTD response or retention time outside acceptable limits	
GC/MS Semi	VOA	
Qualifier	Qualifier Description	8
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	- 0
Х	Surrogate is outside control limits	0
F2	MS/MSD RPD exceeds control limits	2
F1	MS and/or MSD Recovery is outside acceptance limits.	
Metals		
Qualifier	Qualifier Description	
F1	MS and/or MSD Recovery is outside acceptance limits.	
F2	MS/MSD RPD exceeds control limits	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
^	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.	
Glossary		- 1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1
		_

Abbieviation	mese commonly used abbreviations may of may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

1 2 3 4 5 6 7 8 9 10 11 12 13

Job ID: 480-98326-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-98326-1

Comments

No additional comments.

Receipt

The samples were received on 4/14/2016 11:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.1° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-296128 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: TKMW-7 (2-5') (480-98326-3), TKMW-8 (5.5-7.5') (480-98326-4), TKMW-9 (5-7) (480-98326-5) and BLIND DUP (480-98326-6).

Method(s) 8260C: Reported analyte concentrations in the following samples are below 200 ug/kg and may be biased low due to the samples not being collected according to 5035-L/5035A-L low-level specifications: TKMW-7 (2-5') (480-98326-3), TKMW-8 (5.5-7.5') (480-98326-4), TKMW-9 (5-7) (480-98326-5) and BLIND DUP (480-98326-6).

Method(s) 8260C: Internal standard (ISTD) response for the following sample was outside control limits: TKMW-7 (2-5') (480-98326-3). The sample was re-analyzed with concurring results, and the original set of data has been reported.

Method(s) 8260C: The following samples were analyzed using medium level soil analysis due to the nature of the sample matrix: TKMW-5 (9-11') (480-98326-1), (480-98326-B-1-B MS) and (480-98326-B-1-C MSD). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples were analyzed using medium level soil analysis and diluted to bring the concentration of target analytes within the calibration range: TKMW-6 (8-10') (480-98326-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 480-296357 was outside the method criteria for the following analytes: Benzaldehyde and Pentachlorophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: TKMW-6 (8-10') (480-98326-2), TKMW-8 (5.5-7.5') (480-98326-4) and TKMW-8 (5.5-7.5') (480-98326-4[MS]). Elevated reporting limits (RL) are provided.

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: TKMW-7 (2-5') (480-98326-3) and BLIND DUP (480-98326-6). As such, surrogate recoveries are below the calibration range and may not be reported. Elevated reporting limits (RLs) are provided.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-296885 recovered outside acceptance criteria, low biased, for Benzaldehyde. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: TKMW-8 (5.5-7.5') (480-98326-4[MSD]). Elevated reporting limits (RL) are provided.

Method(s) 8270D: The following sample was diluted due to an abundance of target analytes : TKMW-6 (8-10') (480-98326-2). As such, surrogate recoveries are below the calibration range, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1 2 3 4 5 6 7 8 9 10 11

Job ID: 480-98326-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Metals

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-296691/44) contained Total Iron outside the control limits. The reported samples BLIND DUP (480-98326-6) associated with this CCVL were either below the laboratory's standard reporting limit for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of the samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Lab Sample ID: 480-98326-1

5

Client Sample ID: TKMW-5 (9-11')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	50	JBF1	130	25	ug/Kg	1	₽	8260C	Total/NA
Benzo[a]anthracene	180	J	200	20	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	110	J	200	29	ug/Kg	1	₽	8270D	Total/NA
Benzo[b]fluoranthene	160	J	200	32	ug/Kg	1	₽	8270D	Total/NA
Benzo[k]fluoranthene	91	J	200	26	ug/Kg	1	₽	8270D	Total/NA
Chrysene	190	J	200	44	ug/Kg	1	₽	8270D	Total/NA
Dibenzofuran	640		200	23	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	220		200	21	ug/Kg	1	₽	8270D	Total/NA
Fluorene	1400		200	23	ug/Kg	1	₽	8270D	Total/NA
Pyrene	280		200	23	ug/Kg	1	₽	8270D	Total/NA
Aluminum	5410		12.7		mg/Kg	1	₽	6010C	Total/NA
Arsenic	3.5		2.5		mg/Kg	1	₽	6010C	Total/NA
Barium	18.2		0.64		mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.27		0.25		mg/Kg	1	₽	6010C	Total/NA
Calcium	96200		63.5		mg/Kg	1	₽	6010C	Total/NA
Chromium	8.2		0.64		mg/Kg	1	¢	6010C	Total/NA
Cobalt	4.0		0.64		mg/Kg	1	₽	6010C	Total/NA
Copper	11.2		1.3		mg/Kg	1	₽	6010C	Total/NA
Iron	9150		12.7		mg/Kg	1	¢	6010C	Total/NA
Lead	9.4		1.3		mg/Kg	1	₽	6010C	Total/NA
Magnesium	11300		25.4		mg/Kg	1	₽	6010C	Total/NA
Manganese	257		0.25		mg/Kg	1	¢	6010C	Total/NA
Nickel	12.4		6.4		mg/Kg	1	₽	6010C	Total/NA
Potassium	1860		38.1		mg/Kg	1	₽	6010C	Total/NA
Sodium	220		178		mg/Kg	1	¢	6010C	Total/NA
Vanadium	14.6		0.64		mg/Kg	1	₽	6010C	Total/NA
Zinc	32.6		2.5		mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: TKMW-6 (8-10')

Lab Sample ID: 480-98326-2

_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ethylbenzene	1300		610	180	ug/Kg	5	☆	8260C	Total/NA
lsopropylbenzene	580	J	610	91	ug/Kg	5	₽	8260C	Total/NA
Methylcyclohexane	29000		610	280	ug/Kg	5	₽	8260C	Total/NA
Xylenes, Total	3500		1200	340	ug/Kg	5	₽	8260C	Total/NA
Biphenyl	460	J	980	140	ug/Kg	5	₽	8270D	Total/NA
2-Methylnaphthalene	4600		980	200	ug/Kg	5	₽	8270D	Total/NA
Acenaphthene	3200		980	140	ug/Kg	5	₽	8270D	Total/NA
Acenaphthylene	880	J	980	130	ug/Kg	5	₽	8270D	Total/NA
Anthracene	3300		980	240	ug/Kg	5	₽	8270D	Total/NA
Benzo[a]anthracene	3500		980	98	ug/Kg	5	₽	8270D	Total/NA
Benzo[a]pyrene	3200		980	140	ug/Kg	5	₽	8270D	Total/NA
Benzo[b]fluoranthene	3400		980	160	ug/Kg	5	₽	8270D	Total/NA
Benzo[g,h,i]perylene	2300		980	100	ug/Kg	5	₽	8270D	Total/NA
Benzo[k]fluoranthene	1200		980	130	ug/Kg	5	₽	8270D	Total/NA
Carbazole	1200		980	120	ug/Kg	5	₽	8270D	Total/NA
Chrysene	3300		980	220	ug/Kg	5	₽	8270D	Total/NA
Dibenzofuran	1100		980	120	ug/Kg	5	₽	8270D	Total/NA
Fluoranthene	9200		980	100	ug/Kg	5	₽	8270D	Total/NA
Fluorene	2100		980	120	ug/Kg	5	\$	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: TKMW-6 (8-10') (Continued)

Lab Sample ID: 480-98326-2

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Indeno[1,2,3-cd]pyrene	1600		980	120	ug/Kg	5	₽	8270D	Total/NA
Phenanthrene	12000		980	140	ug/Kg	5	₽	8270D	Total/NA
Pyrene	9800		980	120	ug/Kg	5	₽	8270D	Total/NA
Naphthalene - DL	23000		4900	630	ug/Kg	25	₽	8270D	Total/NA
Aluminum	6520		11.3		mg/Kg	1	₽	6010C	Total/NA
Arsenic	2.9		2.3		mg/Kg	1	₽	6010C	Total/NA
Barium	18.9		0.57		mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.33		0.23		mg/Kg	1	₽	6010C	Total/NA
Calcium	1340		56.7		mg/Kg	1	\$	6010C	Total/NA
Chromium	10.4		0.57		mg/Kg	1	₽	6010C	Total/NA
Cobalt	4.8		0.57		mg/Kg	1	₽	6010C	Total/NA
Copper	14.9		1.1		mg/Kg	1	₽	6010C	Total/NA
Iron	12300		11.3		mg/Kg	1	₽	6010C	Total/NA
Lead	7.6		1.1		mg/Kg	1	₽	6010C	Total/NA
Magnesium	2050		22.7		mg/Kg	1	\$	6010C	Total/NA
Manganese	208		0.23		mg/Kg	1	₽	6010C	Total/NA
Nickel	19.9		5.7		mg/Kg	1	₽	6010C	Total/NA
Potassium	1890		34.0		mg/Kg	1	\$	6010C	Total/NA
Vanadium	20.2		0.57		mg/Kg	1	₽	6010C	Total/NA
Zinc	42.4		2.3		mg/Kg	1	⇔	6010C	Total/NA

Client Sample ID: TKMW-7 (2-5')

Lab Sample ID: 480-98326-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	4000	J	11000	1600	ug/Kg	50	₽	8270D	Total/NA
Anthracene	10000	J	11000	2700	ug/Kg	50	₽	8270D	Total/NA
Benzo[a]anthracene	66000		11000	1100	ug/Kg	50	₽	8270D	Total/NA
Benzo[a]pyrene	90000		11000	1600	ug/Kg	50	\$	8270D	Total/NA
Benzo[b]fluoranthene	98000		11000	1700	ug/Kg	50	₽	8270D	Total/NA
Benzo[g,h,i]perylene	66000		11000	1200	ug/Kg	50	₽	8270D	Total/NA
Benzo[k]fluoranthene	45000		11000	1400	ug/Kg	50	\$	8270D	Total/NA
Carbazole	4700	J	11000	1300	ug/Kg	50	₽	8270D	Total/NA
Chrysene	53000		11000	2500	ug/Kg	50	₽	8270D	Total/NA
Dibenz(a,h)anthracene	9800	J	11000	1900	ug/Kg	50	₽	8270D	Total/NA
Dibenzofuran	1800	J	11000	1300	ug/Kg	50	₽	8270D	Total/NA
Fluoranthene	53000		11000	1200	ug/Kg	50	₽	8270D	Total/NA
Fluorene	2400	J	11000	1300	ug/Kg	50	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	60000		11000	1400	ug/Kg	50	₽	8270D	Total/NA
Phenanthrene	26000		11000	1600	ug/Kg	50	₽	8270D	Total/NA
Pyrene	53000		11000	1300	ug/Kg	50	\$	8270D	Total/NA
Aluminum	6210		13.9		mg/Kg	1	₽	6010C	Total/NA
Arsenic	14.7		2.8		mg/Kg	1	₽	6010C	Total/NA
Barium	90.7		0.69		mg/Kg	1	\$	6010C	Total/NA
Beryllium	0.59		0.28		mg/Kg	1	₽	6010C	Total/NA
Calcium	21000		69.4		mg/Kg	1	₽	6010C	Total/NA
Chromium	10.6		0.69		mg/Kg	1	₽	6010C	Total/NA
Cobalt	6.3		0.69		mg/Kg	1	₽	6010C	Total/NA
Copper	24.8		1.4		mg/Kg	1	₽	6010C	Total/NA
Iron	12500		13.9		mg/Kg	1	₽	6010C	Total/NA
Lead	61.6		1.4		mg/Kg	1	₽	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: TKMW-7 (2-5') (Continued)

Lab Sample ID: 480-98326-3

Lab Sample ID: 480-98326-4

Lab Sample ID: 480-98326-5

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	6060		27.8		mg/Kg	1	₽	6010C	Total/NA
Manganese	184		0.28		mg/Kg	1	₽	6010C	Total/NA
Nickel	17.1		6.9		mg/Kg	1	₽	6010C	Total/NA
Potassium	1010		41.7		mg/Kg	1	₽	6010C	Total/NA
Sodium	532		194		mg/Kg	1	₽	6010C	Total/NA
Vanadium	19.3		0.69		mg/Kg	1	₽	6010C	Total/NA
Zinc	51.8		2.8		mg/Kg	1	₽	6010C	Total/NA
Mercury	0.12		0.026		mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: TKMW-8 (5.5-7.5')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.1	J	5.9	2.7	ug/Kg	1	₽	8260C	Total/NA
Aluminum	9750		12.3		mg/Kg	1	₽	6010C	Total/NA
Arsenic	4.6		2.5		mg/Kg	1	₽	6010C	Total/NA
Barium	25.9	F1	0.62		mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.38		0.25		mg/Kg	1	₽	6010C	Total/NA
Calcium	29500	F2	61.7		mg/Kg	1	₽	6010C	Total/NA
Chromium	12.4		0.62		mg/Kg	1	₽	6010C	Total/NA
Cobalt	4.9		0.62		mg/Kg	1	₽	6010C	Total/NA
Copper	14.8		1.2		mg/Kg	1	₽	6010C	Total/NA
Iron	13100		12.3		mg/Kg	1	¢	6010C	Total/NA
Lead	9.9		1.2		mg/Kg	1	₽	6010C	Total/NA
Magnesium	4070	F1	24.7		mg/Kg	1	₽	6010C	Total/NA
Manganese	163	F2 F1	0.25		mg/Kg	1	¢	6010C	Total/NA
Nickel	15.7		6.2		mg/Kg	1	₽	6010C	Total/NA
Potassium	1470	F1	37.0		mg/Kg	1	₽	6010C	Total/NA
Sodium	282		173		mg/Kg	1	¢	6010C	Total/NA
Vanadium	20.7	F1	0.62		mg/Kg	1	₽	6010C	Total/NA
Zinc	37.6		2.5		mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: TKMW-9 (5-7)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	3.3	J	5.9	2.7	ug/Kg	1	₽	8260C	Total/NA
Fluoranthene	68	J	200	21	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	32	J	200	29	ug/Kg	1	₽	8270D	Total/NA
Pyrene	61	J	200	23	ug/Kg	1	₽	8270D	Total/NA
Aluminum	16400		12.7		mg/Kg	1	₽	6010C	Total/NA
Arsenic	5.7		2.5		mg/Kg	1	₽	6010C	Total/NA
Barium	63.4		0.63		mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.75		0.25		mg/Kg	1	₽	6010C	Total/NA
Calcium	3520		63.4		mg/Kg	1	₽	6010C	Total/NA
Chromium	22.1		0.63		mg/Kg	1	₽	6010C	Total/NA
Cobalt	9.0		0.63		mg/Kg	1	₽	6010C	Total/NA
Copper	21.1		1.3		mg/Kg	1	₽	6010C	Total/NA
Iron	21800		12.7		mg/Kg	1	₽	6010C	Total/NA
Lead	21.5		1.3		mg/Kg	1	₽	6010C	Total/NA
Magnesium	3830		25.4		mg/Kg	1	₽	6010C	Total/NA
Manganese	275		0.25		ma/Ka	1	¢	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: TKMW-9 (5-7) (Continued)

Lab Sample ID: 480-98326-5

Lab Sample ID: 480-98326-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	27.9		6.3		mg/Kg	1	₽	6010C	Total/NA
Potassium	3110		38.0		mg/Kg	1	₽	6010C	Total/NA
Sodium	456		178		mg/Kg	1	¢	6010C	Total/NA
Vanadium	37.8		0.63		mg/Kg	1	₽	6010C	Total/NA
Zinc	65.0		2.5		mg/Kg	1	₽	6010C	Total/NA
Mercury	0.030		0.023		mg/Kg	1	¢	7471B	Total/NA

Client Sample ID: BLIND DUP

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	1600	J	9500	1400	ug/Kg	50	₽	8270D	Total/NA
Anthracene	3700	J	9500	2400	ug/Kg	50	₽	8270D	Total/NA
Benzo[a]anthracene	25000		9500	950	ug/Kg	50	₽	8270D	Total/NA
Benzo[a]pyrene	39000		9500	1400	ug/Kg	50	¢	8270D	Total/NA
Benzo[b]fluoranthene	45000		9500	1500	ug/Kg	50	₽	8270D	Total/NA
Benzo[g,h,i]perylene	29000		9500	1000	ug/Kg	50	₽	8270D	Total/NA
Benzo[k]fluoranthene	15000		9500	1200	ug/Kg	50	¢	8270D	Total/NA
Carbazole	2000	J	9500	1100	ug/Kg	50	₽	8270D	Total/NA
Chrysene	22000		9500	2100	ug/Kg	50	¢	8270D	Total/NA
Dibenz(a,h)anthracene	3500	J	9500	1700	ug/Kg	50	φ.	8270D	Total/NA
Fluoranthene	22000		9500	1000	ug/Kg	50	¢	8270D	Total/NA
Fluorene	1100	J	9500	1100	ug/Kg	50	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	26000		9500	1200	ug/Kg	50	¢	8270D	Total/NA
Naphthalene	1300	J	9500	1200	ug/Kg	50	₽	8270D	Total/NA
Phenanthrene	10000		9500	1400	ug/Kg	50	₽	8270D	Total/NA
Pyrene	24000		9500	1100	ug/Kg	50	¢	8270D	Total/NA
Aluminum	5420		12.1		mg/Kg	1	₽	6010C	Total/NA
Arsenic	16.1		2.4		mg/Kg	1	₽	6010C	Total/NA
Barium	67.1		0.60		mg/Kg	1	¢	6010C	Total/NA
Beryllium	0.54		0.24		mg/Kg	1	₽	6010C	Total/NA
Calcium	39600		60.4		mg/Kg	1	¢	6010C	Total/NA
Chromium	11.0		0.60		mg/Kg	1	φ.	6010C	Total/NA
Cobalt	6.5		0.60		mg/Kg	1	₽	6010C	Total/NA
Copper	38.6		1.2		mg/Kg	1	₽	6010C	Total/NA
Iron	12500	٨	12.1		mg/Kg	1	¢	6010C	Total/NA
Lead	86.9		1.2		mg/Kg	1	₽	6010C	Total/NA
Magnesium	8120		24.1		mg/Kg	1	₽	6010C	Total/NA
Manganese	216		0.24		mg/Kg	1	φ.	6010C	Total/NA
Nickel	15.8		6.0		mg/Kg	1	₽	6010C	Total/NA
Potassium	1200		36.2		mg/Kg	1	₽	6010C	Total/NA
Sodium	451		169		mg/Kg	1	¢	6010C	Total/NA
Vanadium	18.6		0.60		mg/Kg	1	₽	6010C	Total/NA
Zinc	80.7		2.4		mg/Kg	1	₽	6010C	Total/NA
Mercury	0.18		0.023		mg/Kg	1	¢	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: TKMW-5 (9-11')

Date Collected: 04/13/16 12:50

Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-1 Matrix: Solid

Percent Solids: 84.2

5

6

Method: 8260C - Volatile Organic Analyte	Compounds Result	by GC/MS Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
1.1.1-Trichloroethane		F1	130	35	ua/Ka	— -	04/19/16 19:21	04/20/16 00:54	1
1.1.2.2-Tetrachloroethane	ND		130	21	ua/Ka	¢	04/19/16 19:21	04/20/16 00:54	1
1.1.2-Trichloroethane	ND		130	27	ua/Ka	¢	04/19/16 19:21	04/20/16 00:54	1
1 1 2-Trichloro-1 2 2-trifluoroethane	ND	F1	130	64	ua/Ka	¢.	04/19/16 19:21	04/20/16 00:54	
1.1-Dichloroethane	ND		130	39	ua/Ka	¢	04/19/16 19:21	04/20/16 00:54	1
1 1-Dichloroethene	ND		130	44	ua/Ka	⇔	04/19/16 19:21	04/20/16 00:54	1
1 2 4-Trichlorobenzene	ND		130	48	ug/Ka		04/19/16 19:21	04/20/16 00:54	
1 2-Dibromo-3-Chloropropane	ND		130	64	ug/Ka	¢	04/19/16 19:21	04/20/16 00:54	1
1 2-Dichlorobenzene	ND		130	33	ua/Ka	⇔	04/19/16 19:21	04/20/16 00:54	1
1.2-Dichloroethane	ND		130	52	ug/Kg		04/19/16 19:21	04/20/16 00:54	1
1.2-Dichloropropage	ND		130	21	ug/Ka	÷	04/19/16 19:21	04/20/16 00:54	1
1 3-Dichlorobenzene	ND		130	34	ug/Ka	÷	04/19/16 19:21	04/20/16 00:54	1
1.4-Dichlorobenzene	ND		130	18	ug/Kg		04/10/16 10:21	04/20/16 00:54	1
2-Butanone (MEK)			640	380	ug/Kg	ä	04/19/16 19:21	04/20/16 00:54	1
2-Hevanone	ND		640	260	ug/Kg	÷	04/19/16 19:21	04/20/16 00:54	1
4-Methyl-2-pentanone (MIBK)	ND		640	200	ug/Kg		04/10/16 10:21	04/20/16 00:54	
			640	530	ug/Kg	ä	04/19/16 19:21	04/20/16 00:54	1
Benzene			130	24	ug/Kg	ä	04/19/16 19:21	04/20/16 00:54	1
Bromodichloromothano	ND		130	27	ug/Kg		04/10/16 10:21	04/20/16 00:54	
Bromoform			130	20 64	ug/Kg	ä	04/19/16 19:21	04/20/16 00:54	1
Bromomothano			130	29	ug/Kg	а. С	04/19/10 19:21	04/20/16 00:54	1
Carbon disulfide			130	59	ug/Kg		04/19/16 19:21	04/20/16 00:54	
			130	20	ug/Kg	ŭ.	04/19/10 19:21	04/20/16 00:54	1
Chlorobonzono			130	17	ug/Kg	а. Т	04/19/16 19:21	04/20/16 00:54	1
Dibromochloromethane			130	62	ug/Kg		04/19/16 19:21	04/20/16 00:54	
Chloroothano	ND		130	27	ug/Kg	а. Т	04/10/16 10:21	04/20/16 00:54	1
Chloroform		E1	130	21	ug/Kg	а. Т	04/19/16 19:21	04/20/16 00:54	1
Chloromothano			130	30	ug/Kg		04/19/16 10:21	04/20/16 00:54	1
			130	35	ug/Kg	а. Т	04/19/16 19:21	04/20/16 00:54	1
cis-1,2-Dichloropropaga			130	31	ug/Kg	а. Т	04/19/16 19:21	04/20/16 00:54	1
Cyclobeyane		E1	130	20	ug/Kg		04/10/16 10:21	04/20/16 00:54	1
Dichlorodifluoromethane		F2	130	20	ug/Kg	а. Т	04/19/16 19:21	04/20/16 00:54	1
Ethylborgono		F1	130	27	ug/Kg	ŭ.	04/19/10 19:21	04/20/16 00:54	1
			130	22	ug/Kg		04/19/16 19:21	04/20/16 00:54	
		E1	130	10	ug/Kg	ŭ.	04/19/16 19:21	04/20/16 00:54	1
Mathyl acetate			130	61	ug/Kg	ŭ.	04/19/10 19:21	04/20/16 00:54	1
Methyl tert hutyl ether			130	10	ug/Kg		04/19/16 19:21	04/20/16 00:54	
Methyleveloboxopo		E1	130	40	ug/Kg	т т	04/19/10 19.21	04/20/16 00:54	1
			130	25	ug/Kg	ň	04/19/10 19.21	04/20/16 00:54	1
Methylene Chloride			130	20	ug/Kg	·····	04/19/10 19.21	04/20/16 00:54	1
Stylene		FI	130	17	ug/Kg	~ *	04/19/10 19.21	04/20/16 00:54	1
		E 1	100	1/	ug/Kg	ř	04/10/16 10:21	04/20/10 00.54	1
trans 1.2 Diableroothere	ND		100	34	ug/Kg	···· *	04/10/16 10:21	04/20/10 00.54	ا ۲
	ND		130	30	ug/Kg	*	04/19/10 19:21	04/20/16 00:54	Т 4
	ND	F 4	130	13	ug/Kg	ۍد بر	04/19/16 19:21	04/20/16 00:54	1
Tricklereflueremether	ND		130	30	ug/r.g	ۍد 	04/19/10 19:21	04/20/10 00:54	۲ ۲
Linchloromuoromethane	ND		130	60	ug/Kg	ۍد بند	04/19/16 19:21	04/20/16 00:54	1
	ND	E 4	130	43	ug/Kg	*	04/19/16 19:21	04/20/16 00:54	1
Xylenes, Lotal	ND	⊢1	260	71	ug/Kg	ф.	04/19/16 19:21	04/20/16 00:54	1

Limits

50 - 149

53 - 146

49 - 148

%Recovery Qualifier

93

91

101

Client Sample ID: TKMW-5 (9-11')

Date Collected: 04/13/16 12:50

Date Received: 04/14/16 11:55

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Surrogate

Chrysene

Toluene-d8 (Surr)

Lab Sample ID: 480-98326-1

Analyzed

04/20/16 00:54

04/20/16 00:54

04/20/16 00:54

Prepared

04/19/16 19:21

04/19/16 19:21

04/19/16 19:21

Matrix: Solid

Dil Fac

1

1

1

Percent Solids: 84.2

6

Dibromofluoromethane (Surr)	96		60 - 140				04/19/16 19:21	04/20/16 00:54	1
- Method: 8270D - Semivolatile (Organic Compou	nds (GC/MS	;)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		200	29	ug/Kg	\$	04/15/16 07:29	04/16/16 22:56	1
bis (2-chloroisopropyl) ether	ND		200	40	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
2,4,5-Trichlorophenol	ND		200	54	ug/Kg	\$	04/15/16 07:29	04/16/16 22:56	1
2,4,6-Trichlorophenol	ND		200	40	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
2,4-Dichlorophenol	ND		200	21	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
2,4-Dimethylphenol	ND		200	48	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
2,4-Dinitrophenol	ND		1900	920	ug/Kg	\$	04/15/16 07:29	04/16/16 22:56	1
2,4-Dinitrotoluene	ND		200	41	ug/Kg	₽	04/15/16 07:29	04/16/16 22:56	1
2,6-Dinitrotoluene	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
2-Chloronaphthalene	ND		200	33	ug/Kg	\$	04/15/16 07:29	04/16/16 22:56	1
2-Chlorophenol	ND		200	36	ug/Kg	⇔	04/15/16 07:29	04/16/16 22:56	1
2-Methylphenol	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
2-Methylnaphthalene	ND		200	40	ug/Kg	¢.	04/15/16 07:29	04/16/16 22:56	1
2-Nitroaniline	ND		390	29	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
2-Nitrophenol	ND		200	56	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
3.3'-Dichlorobenzidine	ND		390	230	ua/Ka	÷ · · · · · · · · · · · · · · · · · · ·	04/15/16 07:29	04/16/16 22:56	1
3-Nitroaniline	ND		390	55	ua/Ka	¢	04/15/16 07:29	04/16/16 22:56	1
4.6-Dinitro-2-methylphenol	ND		390	200	ua/Ka	¢	04/15/16 07:29	04/16/16 22:56	1
4-Bromophenyl phenyl ether	ND		200	28	ua/Ka	÷ · · · · · · · · · · · · · · · · · · ·	04/15/16 07:29	04/16/16 22:56	
4-Chloro-3-methylphenol	ND		200	49	ua/Ka	¢	04/15/16 07:29	04/16/16 22:56	1
4-Chloroaniline	ND		200	49	ua/Ka	¢	04/15/16 07:29	04/16/16 22:56	1
4-Chlorophenyl phenyl ether	ND		200	25	ug/Ka		04/15/16 07:29	04/16/16 22:56	
4-Methylphenol	ND		390	23	ua/Ka	¢	04/15/16 07:29	04/16/16 22:56	1
4-Nitroaniline			390	100	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
			390	140	ug/Kg		04/15/16 07:29	04/16/16 22:56	
Aconantition			200	20	ug/Kg	ä	04/15/16 07:29	04/16/16 22:56	1
Acenaphthylene			200	29	ug/Kg	ö	04/15/16 07:29	04/16/16 22:56	1
Acetophonono			200	20	ug/Kg		04/15/16 07:20	04/16/16 22:56	
Actiophenone			200	21	ug/Kg	ň	04/15/16 07:29	04/10/10 22:50	1
Attesting			200	49	ug/Kg	т ř	04/15/10 07.29	04/10/10 22.50	1
Audzine			200	109	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/15/16 07:29	04/10/10 22.50	
Benzaldenyde	ND		200	100	ug/Kg	~ 	04/15/16 07:29	04/10/10 22.50	1
Benzolajanthracene	180	J	200	20	ug/Kg	*	04/15/16 07.29	04/10/10 22.50	1
Benzo[a]pyrene	110	J	200	29	ug/Kg	····.	04/15/16 07:29	04/16/16 22:56	
Benzo[b]fluoranthene	160	J	200	32	ug/Kg	*	04/15/16 07:29	04/16/16 22:56	1
Benzo[g,h,I]perylene	ND		200	21	ug/Kg	**	04/15/16 07:29	04/16/16 22:56	1
Benzo[k]fluoranthene	91	J	200	26	ug/Kg	÷÷	04/15/16 07:29	04/16/16 22:56	1
Bis(2-chloroethoxy)methane	ND		200	42	ug/Kg	æ.	04/15/16 07:29	04/16/16 22:56	1
Bis(2-chloroethyl)ether	ND		200	26	ug/Kg	æ	04/15/16 07:29	04/16/16 22:56	1
Bis(2-ethylhexyl) phthalate	ND		200	68	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
Butyl benzyl phthalate	ND		200	33	ug/Kg	\$	04/15/16 07:29	04/16/16 22:56	1
Caprolactam	ND		200	60	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1
Carbazole	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1

TestAmerica Buffalo

1

04/16/16 22:56

200

44 ug/Kg

¢

04/15/16 07:29

190 J

Client Sample ID: TKMW-5 (9-11') Date Collected: 04/13/16 12:50 Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-1 Matrix: Solid

Percent Solids: 84.2

5

6

Iethod: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Dibenz(a,h)anthracene	ND		200	35	ug/Kg	<u>\$</u>	04/15/16 07:29	04/16/16 22:56	1		
Di-n-butyl phthalate	ND		200	34	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Di-n-octyl phthalate	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Dibenzofuran	640		200	23	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Diethyl phthalate	ND		200	26	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Dimethyl phthalate	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Fluoranthene	220		200	21	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Fluorene	1400		200	23	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Hexachlorobenzene	ND		200	27	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Hexachlorobutadiene	ND		200	29	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Hexachlorocyclopentadiene	ND		200	27	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Hexachloroethane	ND		200	26	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Indeno[1,2,3-cd]pyrene	ND		200	25	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Isophorone	ND		200	42	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
N-Nitrosodi-n-propylamine	ND		200	34	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
N-Nitrosodiphenylamine	ND		200	160	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Naphthalene	ND		200	26	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Nitrobenzene	ND		200	22	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Pentachlorophenol	ND		390	200	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Phenanthrene	ND		200	29	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Phenol	ND		200	30	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		
Pyrene	280		200	23	ug/Kg	¢	04/15/16 07:29	04/16/16 22:56	1		

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	86		34 - 132	04/15/16 07:29	04/16/16 22:56	1
Phenol-d5 (Surr)	77		11 - 120	04/15/16 07:29	04/16/16 22:56	1
p-Terphenyl-d14 (Surr)	88		65 _ 153	04/15/16 07:29	04/16/16 22:56	1
2,4,6-Tribromophenol (Surr)	89		39 - 146	04/15/16 07:29	04/16/16 22:56	1
2-Fluorobiphenyl	81		37 _ 120	04/15/16 07:29	04/16/16 22:56	1
2-Fluorophenol (Surr)	77		18 - 120	04/15/16 07:29	04/16/16 22:56	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	5410		12.7		mg/Kg		04/16/16 08:30	04/19/16 01:23	1
Antimony	ND		19.1		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Arsenic	3.5		2.5		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Barium	18.2		0.64		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Beryllium	0.27		0.25		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Cadmium	ND		0.25		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Calcium	96200		63.5		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Chromium	8.2		0.64		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Cobalt	4.0		0.64		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Copper	11.2		1.3		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Iron	9150		12.7		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Lead	9.4		1.3		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Magnesium	11300		25.4		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Manganese	257		0.25		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Nickel	12.4		6.4		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Potassium	1860		38.1		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Selenium	ND		5.1		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1

Client Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-98326-1

Client Sample ID: TKMW-5 (9-11') Date Collected: 04/13/16 12:50 Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-1 Matrix: Solid

Percent Solids: 84.2

5 6

Method: 6010C - Metals (ICP) (Conti	nued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.76		mg/Kg	<u>⇒</u>	04/16/16 08:30	04/19/16 01:23	1
Sodium	220		178		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Thallium	ND		7.6		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Vanadium	14.6		0.64		mg/Kg	¢	04/16/16 08:30	04/19/16 01:23	1
Zinc	32.6		2.5		mg/Kg	\$	04/16/16 08:30	04/19/16 01:23	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.024		mg/Kg	<u></u>	04/19/16 09:50	04/19/16 13:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.2		mg/Kg	₿ Ø	04/20/16 04:05	04/20/16 13:53	1

Client Sample ID: TKMW-6 (8-10')

Date Collected: 04/13/16 12:00

Lab Sample ID: 480-98326-2 Matrix: Solid

Percent Solids: 85.3

6

Date Received: 04/14/16 11:55 Method: 8260C - Volatile Organic Compounds by GC/MS Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac ☆ 610 1,1,1-Trichloroethane ND 170 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 ND 1.1.2.2-Tetrachloroethane 610 99 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 1.1.2-Trichloroethane ND 610 130 ug/Kg ₫ 04/19/16 19:21 04/20/16 01:21 5 ND 610 ug/Kg 5 1,1,2-Trichloro-1,2,2-trifluoroethane 300 04/19/16 19:21 04/20/16 01:21 Ö 1.1-Dichloroethane ND 610 190 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 ND 610 04/19/16 19:21 04/20/16 01.21 5 1.1-Dichloroethene 210 ug/Kg 1,2,4-Trichlorobenzene ND 610 04/19/16 19:21 04/20/16 01:21 5 230 ug/Kg 1,2-Dibromo-3-Chloropropane ND 610 æ 04/19/16 19:21 04/20/16 01:21 5 300 ug/Kg ¢ 1,2-Dichlorobenzene ND 610 150 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 ₽ 1,2-Dichloroethane ND 610 250 ua/Ka 04/19/16 19:21 04/20/16 01:21 5 1,2-Dichloropropane ND 610 98 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 ug/Kg ¢ 1,3-Dichlorobenzene ND 610 160 04/19/16 19:21 04/20/16 01:21 5 à ND 5 1,4-Dichlorobenzene 610 85 ug/Kg 04/19/16 19:21 04/20/16 01:21 2-Butanone (MEK) ND 3000 1800 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 5 ND 3000 1200 04/19/16 19:21 04/20/16 01:21 2-Hexanone ug/Kg à 04/19/16 19:21 5 4-Methyl-2-pentanone (MIBK) ND 3000 190 ug/Kg 04/20/16 01:21 æ 04/19/16 19:21 Acetone ND 3000 04/20/16 01.21 5 2500 ug/Kg Benzene ND 610 120 04/19/16 19:21 04/20/16 01:21 5 ug/Kg ¢ 04/19/16 19:21 5 Bromodichloromethane ND 610 120 ug/Kg 04/20/16 01.21 Bromoform ND 610 300 04/19/16 19:21 04/20/16 01:21 5 ug/Kg ₽ ND 610 04/19/16 19:21 04/20/16 01:21 5 Bromomethane 130 ug/Kg à ug/Kg Carbon disulfide ND 610 280 04/19/16 19:21 04/20/16 01:21 5 Carbon tetrachloride ND 610 ¢ 04/19/16 19:21 04/20/16 01:21 5 150 ua/Ka Chlorobenzene ND 610 80 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 Dibromochloromethane ND 610 290 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 ₽ Chloroethane ND 610 130 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 Chloroform ND 610 420 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 ND 610 04/19/16 19:21 5 Chloromethane 140 ug/Kg 04/20/16 01:21 ₫ 5 cis-1,2-Dichloroethene ND 610 170 ug/Kg 04/19/16 19:21 04/20/16 01:21 æ ND 610 ug/Kg 5 cis-1,3-Dichloropropene 140 04/19/16 19:21 04/20/16 01:21 Cyclohexane ND 610 130 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 Dichlorodifluoromethane ND 610 04/19/16 19:21 04/20/16 01.21 5 260 ug/Kg Ö Ethylbenzene 1300 610 180 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 φ 1,2-Dibromoethane ND 610 04/19/16 19:21 04/20/16 01:21 5 110 ug/Kg ¤ 580 610 91 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 Isopropylbenzene ₽ ND 610 04/19/16 19:21 04/20/16 01:21 5 Methyl acetate 290 ua/Ka Methyl tert-butyl ether ND 610 230 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 Methylcyclohexane æ 29000 610 280 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 ¢ ND 5 Methylene Chloride 610 120 ug/Kg 04/19/16 19:21 04/20/16 01:21 ò 04/19/16 19:21 Styrene ND 610 150 ug/Kg 04/20/16 01:21 5 ġ ND 04/19/16 19:21 5 Tetrachloroethene 610 82 ug/Kg 04/20/16 01:21 610 Ö 04/19/16 19:21 5 Toluene ND 160 ug/Kg 04/20/16 01:21 à ND 04/19/16 19:21 5 trans-1,2-Dichloroethene 610 04/20/16 01.21 140 ug/Kg 610 04/19/16 19:21 04/20/16 01:21 5 trans-1,3-Dichloropropene ND 60 ug/Kg ND 610 æ 04/19/16 19:21 04/20/16 01:21 5 Trichloroethene 170 ug/Kg à Trichlorofluoromethane ND 610 280 ug/Kg 04/19/16 19:21 04/20/16 01:21 5 ₽ Vinyl chloride 610 04/19/16 19:21 5 ND 200 ug/Kg 04/20/16 01:21 **Xylenes**, Total 3500 1200 340 ug/Kg 04/19/16 19:21 04/20/16 01:21 5

Lab Sample ID: 480-98326-2 Matrix: Solid Percent Solids: 85.3

5

6

Client Sample ID: TKMW-6 (8-10') Date Collected: 04/13/16 12:00 Date Received: 04/14/16 11:55

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		50 - 149	04/19/16 19:21	04/20/16 01:21	5
1,2-Dichloroethane-d4 (Surr)	96		53 - 146	04/19/16 19:21	04/20/16 01:21	5
4-Bromofluorobenzene (Surr)	101		49 - 148	04/19/16 19:21	04/20/16 01:21	5
Dibromofluoromethane (Surr)	94		60 - 140	04/19/16 19:21	04/20/16 01:21	5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	460	J	980	140	ug/Kg	<u>\$</u>	04/15/16 07:29	04/16/16 23:22	5
bis (2-chloroisopropyl) ether	ND		980	200	ug/Kg	₽	04/15/16 07:29	04/16/16 23:22	5
2,4,5-Trichlorophenol	ND		980	260	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2,4,6-Trichlorophenol	ND		980	200	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2,4-Dichlorophenol	ND		980	100	ug/Kg	₽	04/15/16 07:29	04/16/16 23:22	5
2,4-Dimethylphenol	ND		980	240	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2,4-Dinitrophenol	ND		9600	4500	ug/Kg	\$	04/15/16 07:29	04/16/16 23:22	5
2,4-Dinitrotoluene	ND		980	200	ug/Kg	₽	04/15/16 07:29	04/16/16 23:22	5
2,6-Dinitrotoluene	ND		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2-Chloronaphthalene	ND		980	160	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2-Chlorophenol	ND		980	180	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2-Methylphenol	ND		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2-Methylnaphthalene	4600		980	200	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2-Nitroaniline	ND		1900	140	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
2-Nitrophenol	ND		980	280	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
3,3'-Dichlorobenzidine	ND		1900	1200	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
3-Nitroaniline	ND		1900	270	ug/Kg	₽	04/15/16 07:29	04/16/16 23:22	5
4,6-Dinitro-2-methylphenol	ND		1900	980	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
4-Bromophenyl phenyl ether	ND		980	140	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
4-Chloro-3-methylphenol	ND		980	240	ug/Kg	₽	04/15/16 07:29	04/16/16 23:22	5
4-Chloroaniline	ND		980	240	ug/Kg	₽	04/15/16 07:29	04/16/16 23:22	5
4-Chlorophenyl phenyl ether	ND		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
4-Methylphenol	ND		1900	120	ug/Kg	₽	04/15/16 07:29	04/16/16 23:22	5
4-Nitroaniline	ND		1900	510	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
4-Nitrophenol	ND		1900	690	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Acenaphthene	3200		980	140	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Acenaphthylene	880	J	980	130	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Acetophenone	ND		980	130	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Anthracene	3300		980	240	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Atrazine	ND		980	340	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Benzaldehyde	ND		980	780	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Benzo[a]anthracene	3500		980	98	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Benzo[a]pyrene	3200		980	140	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Benzo[b]fluoranthene	3400		980	160	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Benzo[g,h,i]perylene	2300		980	100	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Benzo[k]fluoranthene	1200		980	130	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Bis(2-chloroethoxy)methane	ND		980	210	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Bis(2-chloroethyl)ether	ND		980	130	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Bis(2-ethylhexyl) phthalate	ND		980	330	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Butyl benzyl phthalate	ND		980	160	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Caprolactam	ND		980	290	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Carbazole	1200		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Chrysene	3300		980	220	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5

Client Sample ID: TKMW-6 (8-10') Date Collected: 04/13/16 12:00 Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-2 Matrix: Solid

04/15/16 07:29 04/16/16 23:22

04/15/16 07:29 04/16/16 23:22

Percent Solids: 85.3

5

6

5

5

Method: 8270D - Semivolatile	Organic Compou	inds (GC/M	S) (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		980	170	ug/Kg	<u></u>	04/15/16 07:29	04/16/16 23:22	5
Di-n-butyl phthalate	ND		980	170	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Di-n-octyl phthalate	ND		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Dibenzofuran	1100		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Diethyl phthalate	ND		980	130	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Dimethyl phthalate	ND		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Fluoranthene	9200		980	100	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Fluorene	2100		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Hexachlorobenzene	ND		980	130	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Hexachlorobutadiene	ND		980	140	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Hexachlorocyclopentadiene	ND		980	130	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Hexachloroethane	ND		980	130	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Indeno[1,2,3-cd]pyrene	1600		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Isophorone	ND		980	210	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
N-Nitrosodi-n-propylamine	ND		980	170	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
N-Nitrosodiphenylamine	ND		980	790	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Nitrobenzene	ND		980	110	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Pentachlorophenol	ND		1900	980	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Phenanthrene	12000		980	140	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Phenol	ND		980	150	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Pyrene	9800		980	120	ug/Kg	¢	04/15/16 07:29	04/16/16 23:22	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	81		34 - 132				04/15/16 07:29	04/16/16 23:22	5
Phenol-d5 (Surr)	72		11 - 120				04/15/16 07:29	04/16/16 23:22	5
p-Terphenyl-d14 (Surr)	81		65 - 153				04/15/16 07:29	04/16/16 23:22	5
2,4,6-Tribromophenol (Surr)	90		39 - 146				04/15/16 07:29	04/16/16 23:22	5

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL

82

73

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	23000		4900	630	ug/Kg		04/15/16 07:29	04/20/16 02:55	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	71		34 - 132				04/15/16 07:29	04/20/16 02:55	25
Phenol-d5 (Surr)	58		11 - 120				04/15/16 07:29	04/20/16 02:55	25
p-Terphenyl-d14 (Surr)	77		65 - 153				04/15/16 07:29	04/20/16 02:55	25
2,4,6-Tribromophenol (Surr)	155	X	39 - 146				04/15/16 07:29	04/20/16 02:55	25
2-Fluorobiphenyl	77		37 _ 120				04/15/16 07:29	04/20/16 02:55	25
2-Fluorophenol (Surr)	60		18 - 120				04/15/16 07:29	04/20/16 02:55	25

37 - 120

18 - 120

Method: 6010C - Metals (ICP)

2-Fluorobiphenyl

2-Fluorophenol (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6520		11.3		mg/Kg	⇒ ₽	04/16/16 08:30	04/19/16 01:26	1
Antimony	ND		17.0		mg/Kg	₽	04/16/16 08:30	04/19/16 01:26	1
Arsenic	2.9		2.3		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Barium	18.9		0.57		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Beryllium	0.33		0.23		mg/Kg	₽	04/16/16 08:30	04/19/16 01:26	1
Cadmium	ND		0.23		mg/Kg	Ϋ́	04/16/16 08:30	04/19/16 01:26	1

TestAmerica Buffalo

Page 16 of 65

Client Sample ID: TKMW-6 (8-10')

Date Collected: 04/13/16 12:00

Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-2 Matrix: Solid Percent Solids: 85.3

5

6

Method: 6010C - Metals (ICP) (Contin	ued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	1340		56.7		mg/Kg	<u> </u>	04/16/16 08:30	04/19/16 01:26	1
Chromium	10.4		0.57		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Cobalt	4.8		0.57		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Copper	14.9		1.1		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Iron	12300		11.3		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Lead	7.6		1.1		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Magnesium	2050		22.7		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Manganese	208		0.23		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Nickel	19.9		5.7		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Potassium	1890		34.0		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Selenium	ND		4.5		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Silver	ND		0.68		mg/Kg	⇔	04/16/16 08:30	04/19/16 01:26	1
Sodium	ND		159		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Thallium	ND		6.8		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Vanadium	20.2		0.57		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Zinc	42.4		2.3		mg/Kg	¢	04/16/16 08:30	04/19/16 01:26	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.022		mg/Kg	<u></u>	04/19/16 09:50	04/19/16 13:36	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.2		mg/Kg	\$	04/20/16 04:05	04/20/16 13:55	1

Client Sample ID: TKMW-7 (2-5')

Date Collected: 04/13/16 11:20

Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-3 Matrix: Solid

Percent Solids: 77.1

5

6

Method: 8260C - Volatile Organic Compounds	by GC/MS						
Analyte Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane ND		59 4.3	ug/Kg	₩	04/15/16 09:24	04/15/16 18:05	1
1,1,2,2-Tetrachloroethane ND	*	59 9.6	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
1,1,2-Trichloroethane ND		59 7.7	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane ND		59 13	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
1,1-Dichloroethane ND		59 7.2	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
1,1-Dichloroethene ND		59 7.2	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
1,2,4-Trichlorobenzene ND	*	59 3.6	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	1
1,2-Dibromo-3-Chloropropane ND	*	59 29	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	1
1,2-Dichlorobenzene ND	*	59 4.6	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
1,2-Dichloroethane ND		59 3.0	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	1
1,2-Dichloropropane ND		59 29	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	1
1,3-Dichlorobenzene ND	*	59 3.0	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	1
1,4-Dichlorobenzene ND	*	59 8.3	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	1
2-Butanone (MEK) ND	2	290 22	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	1
2-Hexanone ND	2	290 29	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
4-Methyl-2-pentanone (MIBK) ND		290 19	ug/Kg	÷¢	04/15/16 09:24	04/15/16 18:05	1
Acetone ND	2	290 50	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
Benzene ND		59 2.9	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
Bromodichloromethane ND		59 7.9	ua/Ka	¢	04/15/16 09:24	04/15/16 18:05	1
Bromoform ND		59 29	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
Bromomethane		59 5.3	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
Carbon disulfide ND		59 29	ua/Ka	¢.	04/15/16 09:24	04/15/16 18:05	
Carbon tetrachloride ND		59 57	ua/Ka	¢	04/15/16 09:24	04/15/16 18:05	1
Chlorobenzene ND		59 7.8	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
Dibromochloromethane ND		59 7.5	ua/Ka	¢	04/15/16 09:24	04/15/16 18:05	
Chloroethane ND		59 13	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
Chloroform ND		59 3.6	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
Chloromethane ND		59 3.6	ua/Ka	÷.	04/15/16 09:24	04/15/16 18:05	
cis-1.2-Dichloroethene ND		59 7.5	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
cis-1.3-Dichloropropene ND		59 8.5	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
Cyclohexane ND		59 8.3	ua/Ka	¢	04/15/16 09:24	04/15/16 18:05	
Dichlorodifluoromethane ND		59 4 9	ug/Ka	¢	04/15/16 09:24	04/15/16 18:05	1
Ethylbenzene ND		59 41	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
1 2-Dibromoethane ND		59 76	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	
Isopropylbenzene ND	*	59 8.9	ug/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
Methyl acetate ND		59 36	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
Methyl tert-butyl ether ND		59 5.8	ug/Kg	¢	04/15/16 09:24	04/15/16 18:05	
Methylcyclohexane ND		59 9.0	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
Methylene Chloride ND		59 27	ug/Kg	₽	04/15/16 09:24	04/15/16 18:05	1
Styrene ND		59 29	ug/Kg	ġ.	04/15/16 09:24	04/15/16 18:05	
Tetrachloroethene ND		59 7 Q	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1
		59 1.5	ua/Ka	¢	04/15/16 00:24	04/15/16 18:05	1
trans-1 2-Dichloroethene		59 61		¢	04/15/16 09:24	04/15/16 18:05	· · · · · · · · · · · · · · · · · · ·
trans_1_3_Dichloronronene ND		50 0.1	ug/Kg	¢.	04/15/16 00:24	04/15/16 18:05	1
Trichloroethene ND		50 20 50 13	ua/Ka	¢	04/15/16 00:24	04/15/16 18:05	1
Trichlorofluoromethane		50 56	ug/Kg	ġ.	04/15/16 00:24	04/15/16 18:05	
Vinvl chloride		59 7 2	ug/Kg	¢.	04/15/16 09:24	04/15/16 18:05	י 1
Xvlenes Total	1	120 9.2	ua/Ka	₽	04/15/16 09:24	04/15/16 18:05	1

Lab Sample ID: 480-98326-3 Matrix: Solid Percent Solids: 77.1

Date Collected: 04/13/16 11:20 Date Received: 04/14/16 11:55

Client Sample ID: TKMW-7 (2-5')

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	112		71 - 125	04/15/16 09:24	04/15/16 18:05	1
1,2-Dichloroethane-d4 (Surr)	87		64 - 126	04/15/16 09:24	04/15/16 18:05	1
4-Bromofluorobenzene (Surr)	84		72 - 126	04/15/16 09:24	04/15/16 18:05	1
Dibromofluoromethane (Surr)	96		60 - 140	04/15/16 09:24	04/15/16 18:05	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		11000	1600	ug/Kg	<u>Å</u>	04/15/16 07:29	04/16/16 23:49	50
bis (2-chloroisopropyl) ether	ND		11000	2200	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2,4,5-Trichlorophenol	ND		11000	3000	ug/Kg	₽	04/15/16 07:29	04/16/16 23:49	50
2,4,6-Trichlorophenol	ND		11000	2200	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2,4-Dichlorophenol	ND		11000	1200	ug/Kg	₽	04/15/16 07:29	04/16/16 23:49	50
2,4-Dimethylphenol	ND		11000	2700	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2,4-Dinitrophenol	ND		110000	51000	ug/Kg	\$	04/15/16 07:29	04/16/16 23:49	50
2,4-Dinitrotoluene	ND		11000	2300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2,6-Dinitrotoluene	ND		11000	1300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2-Chloronaphthalene	ND		11000	1800	ug/Kg	\$	04/15/16 07:29	04/16/16 23:49	50
2-Chlorophenol	ND		11000	2000	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2-Methylphenol	ND		11000	1300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2-Methylnaphthalene	ND		11000	2200	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2-Nitroaniline	ND		21000	1600	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
2-Nitrophenol	ND		11000	3100	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
3,3'-Dichlorobenzidine	ND		21000	13000	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
3-Nitroaniline	ND		21000	3000	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
4,6-Dinitro-2-methylphenol	ND		21000	11000	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
4-Bromophenyl phenyl ether	ND		11000	1600	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
4-Chloro-3-methylphenol	ND		11000	2700	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
4-Chloroaniline	ND		11000	2700	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
4-Chlorophenyl phenyl ether	ND		11000	1400	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
4-Methylphenol	ND		21000	1300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
4-Nitroaniline	ND		21000	5800	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
4-Nitrophenol	ND		21000	7700	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Acenaphthene	4000	J	11000	1600	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Acenaphthylene	ND		11000	1400	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Acetophenone	ND		11000	1500	ug/Kg	₽	04/15/16 07:29	04/16/16 23:49	50
Anthracene	10000	J	11000	2700	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Atrazine	ND		11000	3800	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Benzaldehyde	ND		11000	8700	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Benzo[a]anthracene	66000		11000	1100	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Benzo[a]pyrene	90000		11000	1600	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Benzo[b]fluoranthene	98000		11000	1700	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Benzo[g,h,i]perylene	66000		11000	1200	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Benzo[k]fluoranthene	45000		11000	1400	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Bis(2-chloroethoxy)methane	ND		11000	2300	ug/Kg	\$	04/15/16 07:29	04/16/16 23:49	50
Bis(2-chloroethyl)ether	ND		11000	1400	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Bis(2-ethylhexyl) phthalate	ND		11000	3800	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Butyl benzyl phthalate	ND		11000	1800	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Caprolactam	ND		11000	3300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Carbazole	4700	J	11000	1300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Chrysene	53000		11000	2500	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50

TestAmerica Buffalo

TestAmerica Job ID: 480-98326-1

Lab Sample ID: 480-98326-3 Matrix: Solid

Percent Solids: 77.1

5

6

Client Sample ID: TKMW-7 (2-5') Date Collected: 04/13/16 11:20 Date Received: 04/14/16 11:55

Cadmium

Calcium

Cobalt

Copper

Iron

Lead

Nickel

Magnesium

Manganese

Potassium

Selenium

Chromium

Method: 8270D - Semivolatile Org	ganic Compou	nds (GC/M	S) (Continued)			_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	9800	J	11000	1900	ug/Kg	ф. Д	04/15/16 07:29	04/16/16 23:49	50
Di-n-butyl phthalate	ND		11000	1900	ug/Kg	÷¢	04/15/16 07:29	04/16/16 23:49	50
Di-n-octyl phthalate	ND		11000	1300	ug/Kg	¢.	04/15/16 07:29	04/16/16 23:49	50
Dibenzofuran	1800	J	11000	1300	ug/Kg	¢.	04/15/16 07:29	04/16/16 23:49	50
Diethyl phthalate	ND		11000	1400	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Dimethyl phthalate	ND		11000	1300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Fluoranthene	53000		11000	1200	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Fluorene	2400	J	11000	1300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Hexachlorobenzene	ND		11000	1500	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Hexachlorobutadiene	ND		11000	1600	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Hexachlorocyclopentadiene	ND		11000	1500	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Hexachloroethane	ND		11000	1400	ug/Kg	\$	04/15/16 07:29	04/16/16 23:49	50
Indeno[1,2,3-cd]pyrene	60000		11000	1400	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Isophorone	ND		11000	2300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
N-Nitrosodi-n-propylamine	ND		11000	1900	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
N-Nitrosodiphenylamine	ND		11000	8900	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Naphthalene	ND		11000	1400	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Nitrobenzene	ND		11000	1200	ug/Kg	\$	04/15/16 07:29	04/16/16 23:49	50
Pentachlorophenol	ND		21000	11000	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Phenanthrene	26000		11000	1600	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Phenol	ND		11000	1700	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Pyrene	53000		11000	1300	ug/Kg	¢	04/15/16 07:29	04/16/16 23:49	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	72		34 - 132				04/15/16 07:29	04/16/16 23:49	50
Phenol-d5 (Surr)	69		11 - 120				04/15/16 07:29	04/16/16 23:49	50
p-Terphenyl-d14 (Surr)	71		65 - 153				04/15/16 07:29	04/16/16 23:49	50
2,4,6-Tribromophenol (Surr)	0	X	39 - 146				04/15/16 07:29	04/16/16 23:49	50
2-Fluorobiphenyl	70		37 - 120				04/15/16 07:29	04/16/16 23:49	50
2-Fluorophenol (Surr)	68		18 - 120				04/15/16 07:29	04/16/16 23:49	50
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6210		13.9		mg/Kg	\ ₽	04/16/16 08:30	04/19/16 01:29	1
Antimony	ND		20.8		mg/Kg	¢	04/16/16 08:30	04/19/16 01:29	1
Arsenic	14.7		2.8		mg/Kg	¢	04/16/16 08:30	04/19/16 01:29	1
Barium	90.7		0.69		mg/Kg	¢	04/16/16 08:30	04/19/16 01:29	1
Bervllium	0.59		0.28		mg/Kg	¢	04/16/16 08:30	04/19/16 01:29	1

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

₽

¢

₽

₽

₽

04/16/16 08:30

04/16/16 08:30

04/16/16 08:30

04/16/16 08:30

04/16/16 08:30

TestAmerica Buffalo

04/19/16 01:29

04/19/16 01:29

04/19/16 01:29

04/19/16 01:29

04/19/16 01:29

1

1

1

1

1

0.28

69.4

0.69

0.69

1.4

ND

21000

10.6

6.3

24.8

Client Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-98326-1

Client Sample ID: TKMW-7 (2-5') Date Collected: 04/13/16 11:20 Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-3 Matrix: Solid

Percent Solids: 77.1

Method: 6010C - Metals (ICP) (Conti	nued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.83		mg/Kg	<u></u>	04/16/16 08:30	04/19/16 01:29	1
Sodium	532		194		mg/Kg	¢	04/16/16 08:30	04/19/16 01:29	1
Thallium	ND		8.3		mg/Kg	¢	04/16/16 08:30	04/19/16 01:29	1
Vanadium	19.3		0.69		mg/Kg	¢	04/16/16 08:30	04/19/16 01:29	1
Zinc	51.8		2.8		mg/Kg	¢	04/16/16 08:30	04/19/16 01:29	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.12		0.026		mg/Kg	\	04/19/16 09:50	04/19/16 13:38	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.3		mg/Kg	\ ₽	04/20/16 04:05	04/20/16 13:56	1

Client Sample ID: TKMW-8 (5.5-7.5')

Date Collected: 04/13/16 10:30

Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-4 Matrix: Solid

Percent Solids: 83.7

5

6

Method: 8260C - Volatile Organi	c Compounds	by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.9	0.43	ug/Kg	<u>Å</u>	04/15/16 09:24	04/15/16 18:31	1
1,1,2,2-Tetrachloroethane	ND	F1	5.9	0.96	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
1,1,2-Trichloroethane	ND	F1	5.9	0.77	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.9	1.4	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
1,1-Dichloroethane	ND		5.9	0.72	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
1,1-Dichloroethene	ND		5.9	0.73	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
1,2,4-Trichlorobenzene	ND	F1	5.9	0.36	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
1,2-Dibromo-3-Chloropropane	ND	F1	5.9	3.0	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
1,2-Dichlorobenzene	ND		5.9	0.46	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
1,2-Dichloroethane	ND	F1	5.9	0.30	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
1,2-Dichloropropane	ND		5.9	3.0	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
1,3-Dichlorobenzene	ND		5.9	0.30	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
1,4-Dichlorobenzene	ND		5.9	0.83	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
2-Butanone (MEK)	ND	F1	30	2.2	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
2-Hexanone	ND	F1	30	3.0	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
4-Methyl-2-pentanone (MIBK)	ND	F1	30	1.9	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Acetone	ND		30	5.0	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Benzene	ND		5.9	0.29	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Bromodichloromethane	ND		5.9	0.79	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Bromoform	ND		5.9	3.0	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Bromomethane	ND		5.9	0.53	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Carbon disulfide	ND		5.9	3.0	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Carbon tetrachloride	ND		5.9	0.57	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Chlorobenzene	ND		5.9	0.78	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Dibromochloromethane	ND		5.9	0.76	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Chloroethane	ND		5.9	1.3	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Chloroform	ND		5.9	0.37	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Chloromethane	ND		5.9	0.36	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
cis-1,2-Dichloroethene	ND		5.9	0.76	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
cis-1,3-Dichloropropene	ND	F1	5.9	0.85	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Cyclohexane	ND		5.9	0.83	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Dichlorodifluoromethane	ND		5.9	0.49	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Ethylbenzene	ND		5.9	0.41	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
1,2-Dibromoethane	ND	F1	5.9	0.76	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Isopropylbenzene	ND		5.9	0.89	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Methyl acetate	ND	F1	5.9	3.6	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Methyl tert-butyl ether	ND		5.9	0.58	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Methylcyclohexane	ND		5.9	0.90	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Methylene Chloride	4.1	J	5.9	2.7	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Styrene	ND	F1	5.9	0.30	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Tetrachloroethene	ND		5.9	0.80	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Toluene	ND		5.9	0.45	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
trans-1,2-Dichloroethene	ND		5.9	0.61	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
trans-1,3-Dichloropropene	ND		5.9	2.6	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Trichloroethene	ND		5.9	1.3	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Trichlorofluoromethane	ND		5.9	0.56	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Vinyl chloride	ND		5.9	0.72	ug/Kg	¢	04/15/16 09:24	04/15/16 18:31	1
Xylenes, Total	ND		12	1.0	ug/Kg	₽	04/15/16 09:24	04/15/16 18:31	1
Limits

71 - 125

64 - 126

72 - 126

%Recovery Qualifier

97

89

105

Client Sample ID: TKMW-8 (5.5-7.5')

Date Collected: 04/13/16 10:30

Date Received: 04/14/16 11:55

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Surrogate

Toluene-d8 (Surr)

Lab Sample ID: 480-98326-4

Analyzed

04/15/16 18:31

04/15/16 18:31

Prepared

04/15/16 09:24

04/15/16 09:24

04/15/16 09:24 04/15/16 18:31

Matrix: Solid

Dil Fac

1

1

1

Percent Solids: 83.7

6

Mathod: Result Qualifier RL MDL Unit D Prepared Analyzes Dil Fac Bijchenyi ND 1000 1000 200 g/kg 0 0417616 22.30 5 bij (2-chironsaporopi) efter ND 1000 200 g/kg 0 0417616 07.29 041616 22.30 5 2.4.5-Tricitorophenol ND F2 1000 100 200 ug/kg 0 041516 07.29 041616 22.30 5 2.4-Dintriptyphenol ND F2 1000 120 ug/kg 0 041516 07.29 041616 22.30 5 2.4-Dintriptyphenol ND 1000 120 ug/kg 0 041516 07.29 041616 22.30 5 2.Chironophenol ND 1000 120 ug/kg 0 041516 07.29 041616 22.30 5 2.Chironophenol ND F1 1000 120 ug/kg 0 041516 07.29 041616 22.30 5 2.Alteryinghineline <th>Dibromofluoromethane (Surr)</th> <th>95</th> <th></th> <th>60 - 140</th> <th></th> <th></th> <th></th> <th>04/15/16 09:24</th> <th>04/15/16 18:31</th> <th>1</th>	Dibromofluoromethane (Surr)	95		60 - 140				04/15/16 09:24	04/15/16 18:31	1
Analyse Result Qualityer RL MDU Onth D Onth Onth<	- Method: 8270D - Semivolatile C	Organic Compou	nds (GC/MS	;)						
Biphenyi ND 1000 150 up/4 9 04/15/16 0/23 5 2.4.5 Thichwophenol ND F2 1000 270 up/4/8 0 4/15/16 0/23 04/15/16 0/23 <t< th=""><th>Analyte</th><th>Result</th><th>Qualifier</th><th>RL</th><th>MDL</th><th>Unit</th><th> D</th><th>Prepared</th><th>Analyzed</th><th>Dil Fac</th></t<>	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
bis (2.4.5.1.7.cbic/orosphenol ND F2 1000 200 0g/K 0 0.4.15/16 07.29 0.4/15/16 07.29 0.4	Biphenyl	ND		1000	150	ug/Kg	ф.	04/15/16 07:29	04/16/16 22:30	5
24.6 Trichicrophenol ND P2 1000 270 up/Kg 0 04/15/16 07.29 04/15/	bis (2-chloroisopropyl) ether	ND		1000	200	ug/Kg	æ	04/15/16 07:29	04/16/16 22:30	5
24.61 ND ND 1000 200 ug/kg 0 04/15/16 07.20 04/16/16 22.30 5 2.4-Dinktophenol ND F2 1000 140 ug/kg 0 04/15/16 07.20 04/16/16 22.30 5 2.4-Dinktophenol ND 1000 120 ug/kg 0 04/15/16 07.20 04/15/1	2,4,5-Trichlorophenol	ND	F2	1000	270	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2.4-Dischydphenol ND P1 1000 4.40 94/15/16 07.20 04/15/16 07.20 04/16/16 2.30 5 2.4-Dinitryphenol ND P1 1000 4700 94/16 07.20 04/16/16 2.30 5 2.4-Dinitryphenol ND 1000 170 94/16 07.20 04/16/16 2.30 5 2.4-Dinitryphenol ND 1000 170 94/16 02.00 04/15/16 07.20 04/15/16	2,4,6-Trichlorophenol	ND		1000	200	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2.4-Dimtrophenol ND F1 1000 4700 up/Kq 0 4/15/16 07.29 0/16/16 22.30 5 2.4-Dimtrophenol ND 1000 210 up/Kq 0 04/15/16 07.29 0/16/16 22.30 5 2.4-Dimtrophenol ND 1000 120 up/Kq 0 04/15/16 07.29 0/16/16 22.30 5 2.4-Dimtrophenol ND 1000 120 up/Kq 0 04/15/16 07.29 0/16/16 22.30 5 2.4-Methynaphthalene ND 1000 120 up/Kq 0 04/15/16 07.29 0/16/16 22.30 5 2.4-Methynaphthalene ND 11000 1200 up/Kq 0 04/15/16 07.29 0/16/16 22.30 5 2.4-Methynaphthalene ND F1 2000 120 up/Kq 0 04/15/16 07.29 0/16/16 22.30 5 3.4-Methynaphthalene ND F1 2000 120 up/Kq 0 04/15/16 07.29 0/16/16 22.30 5 3.4-Methynaphtenol	2,4-Dichlorophenol	ND	F2	1000	110	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2.4-Dinitrobulence ND 9900 4700 ug/Kq 0 04/15/16 07:29 04/16/16 22:30 5 2.4-Dinitrobulence ND 1000 120 ug/Kq 0 04/15/16 07:29 04/16/16 22:30 5 2.Chiorophenol ND 1000 170 ug/Kq 0 04/15/16 07:29 04/16/16 22:30 5 2.Chiorophenol ND 1000 120 ug/Kq 0 04/15/16 07:29 04/16/16 22:30 5 2.Methylophenol ND F1 1000 120 ug/Kq 0 04/15/16 07:29 04/16/16 22:30 5 2.Mitonalline ND F1 F2 2000 1000 ug/Kq 0 04/15/16 07:29 04/16/16 22:30 5 3.Nitolonbendidine ND F1 2000 1000 ug/Kq 0 04/15/16 07:29 04/16/16 22:30 5 3.Nitolonbendidine ND F2 2000 1000 ug/Kq 0 04/15/16 07:29 04/16/16 22:30 5 4.Choronbenyt phenyt ether ND F1 2000 1000 ug/Kq 0	2,4-Dimethylphenol	ND	F1	1000	240	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2.4-Dintrobulene ND 1000 210 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 2.6-Dintrobulene ND 1000 170 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 2.Chlorophenol ND 1000 180 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 2.Methylphenol ND F1 1000 120 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 2.Methylphenol ND F1 F2 2000 180 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 3.Nitrobenol ND F1 F2 2000 1200 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 3.Nitrobenol ND F1 2 2000 1200 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4.Chointo-zhentrybhenol ND F2 1000 140 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4.Chointo-zhentrybhenol ND F1 1000 150 ug/Kg 0<	2,4-Dinitrophenol	ND		9900	4700	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2.4-Dintrobuleme ND 1000 120 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Chioropaphtaleme ND 1000 170 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Methylaphthaleme ND F1 1000 120 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Methylaphthaleme ND F1 1000 200 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Niropathine ND F1 2000 1200 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 3-Niropathine ND F1 2000 1200 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 3-Niropathine ND F1 2000 1200 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 4-Niropathine/phenyl ether ND F2 2000 1000 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 4-Chioropathinghenol ND F1 1000 120 u	2,4-Dinitrotoluene	ND		1000	210	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2-Chorophenie ND 1000 170 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Chorophenol ND F1 1000 120 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Methylphenol ND F1 1000 200 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Nitrophine ND F1 200 120 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Nitrophine ND F1 2000 1200 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 3-Nitrophine ND F1 2000 200 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 3-Nitrophine/iphenol ND F2 2000 1000 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 4-Chorophenylphenol ND F1 1000 200 ug/Kg 0 04/15/16 07.29 04/16/16 22.30 5 <td>2,6-Dinitrotoluene</td> <td>ND</td> <td></td> <td>1000</td> <td>120</td> <td>ug/Kg</td> <td>¢</td> <td>04/15/16 07:29</td> <td>04/16/16 22:30</td> <td>5</td>	2,6-Dinitrotoluene	ND		1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2-Chorophenol ND 1000 180 ug/kg 0 04/15/16 07:29 0	2-Chloronaphthalene	ND		1000	170	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2-Methylphenol ND F1 1000 120 ug/kg 0 04/15/16 07:29 04/15/16 07:	2-Chlorophenol	ND		1000	180	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2-Metry hap hthalene ND IOO 200 ug/kg 0 04/15/16 07.29 04/16/16 22.30 5 2-Nitropeniol ND F1 F2 2000 150 ug/kg 0 04/15/16 07.29 04/16/16 22.30 5 3.3-Dichorobenzidine ND F1 2000 1200 ug/kg 0 04/15/16 07.29 04/16/16 22.30 5 3.4-Dichorobenzidine ND F1 2000 1200 ug/kg 0 04/15/16 07.29 04/16/16 22.30 5 4-Borntorobenzidine ND F2 2000 1000 ug/kg 0 04/15/16 07.29 04/16/16 22.30 5 4-Chioroshenyi phenyl ether ND F2 1000 250 ug/kg 0 04/15/16 07.29 04/16/16 22.30 5 4-Chioroshenyi phenyl ether ND F1 2000 710 ug/kg 0 04/15/16 07.29 04/16/16 22.30 5 4-Nitrophinel ND F1 2000 710 ug/kg 0 04/15/16 07.29	2-Methylphenol	ND	F1	1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2-NicoanlineNDF1 F22000150up/kg004/15/16 07.2904/15/16 2.2.3052-NicrophenolNDF120001200up/kg004/15/16 07.2904/16/16 2.2.3053-NicroanlineNDF120001200up/kg004/15/16 07.2904/16/16 2.2.3053-NicroanlineNDF220001000up/kg004/15/16 07.2904/16/16 2.2.3054-Chora-methylphenolNDF21000250up/kg004/15/16 07.2904/16/16 2.2.3054-Chora-methylphenyl etherNDF11000250up/kg004/15/16 07.2904/16/16 2.2.3054-Chora-methylphenyl etherNDF12000120up/kg004/15/16 07.2904/16/16 2.2.3054-Mitrophenyl phenyl etherNDF12000120up/kg004/15/16 07.2904/16/16 2.2.3054-MitrophenolNDF12000120up/kg004/15/16 07.2904/16/16 2.2.3054-NitrophenolNDF12000130up/kg004/15/16 07.2904/16/16 2.2.305A-chorphenoneNDF11000140up/kg004/15/16 07.2904/16/16 2.2.305A-cetophenoneNDF11000130up/kg004/15/16 07.2904/16/16 2.2.305A-cetophenoneNDF11000100u	2-Methylnaphthalene	ND		1000	200	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
2-Nirophenol ND 1000 200 ug/kg 0 04/16/16 07:29 04/16/16 22:30 5 3.3'-Dichlorobenzidine ND F1 2000 1200 ug/kg 0 04/15/16 07:29 04/16/16 22:30 5 4.6-Dinitro2-zmethylphenol ND F2 2000 1000 ug/kg 0 04/15/16 07:29 04/16/16 22:30 5 4.6-Dinitro2-zmethylphenol ND F2 1000 250 ug/kg 0 04/15/16 07:29 04/16/16 22:30 53 4.Chioroanine ND F1 1000 250 ug/kg 0 04/15/16 07:29 04/16/16 22:30 53 4.Chioroanine ND F1 1000 250 ug/kg 0 04/15/16 07:29 04/16/16 22:30 53 4.Nitrophenol ND F1 2000 120 ug/kg 0 04/15/16 07:29 04/16/16 22:30 53 4.Nitrophenol ND F1 2000 70 ug/kg 0 04/15/16 07:29 04/16/16 22:30 53 Acenaphthene ND F1 2000 150 </td <td>2-Nitroaniline</td> <td>ND</td> <td>F1 F2</td> <td>2000</td> <td>150</td> <td>ug/Kg</td> <td>¢</td> <td>04/15/16 07:29</td> <td>04/16/16 22:30</td> <td>5</td>	2-Nitroaniline	ND	F1 F2	2000	150	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
3.3-Dichlorobenzidine ND F1 2000 1200 ug/Kg © 04/16/16 07.29 04/16/16 22.30 5 3-Nitroanline ND F1 2000 1200 ug/Kg © 04/15/16 07.29 04/16/16 22.30 5 4-Borntory-zmethylphenol ND F2 2000 1000 ug/Kg © 04/15/16 07.29 04/16/16 22.30 5 4-Choros-Amethylphenol ND F2 1000 250 ug/Kg © 04/15/16 07.29 04/16/16 22.30 55 4-Choros-Amethylphenol ND F1 1000 250 ug/Kg © 04/15/16 07.29 04/16/16 22.30 55 4-Choros-Amethylphenol ND F1 2000 120 ug/Kg © 04/15/16 07.29 04/16/16 22.30 55 4-Ahtroanline ND F1 F2 2000 130 ug/Kg © 04/15/16 07.29 04/16/16 22.30 55 4-Antroanline ND F1 F2 1000 130 ug/Kg © 04/15/16 07.29 04/16/16 22.30 55 4-Antroache ND F1 F2<	2-Nitrophenol	ND		1000	290	ug/Kg	₽	04/15/16 07:29	04/16/16 22:30	5
3-Nitroaniline ND F1 2000 280 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4-Bromophenyl phenyl ether ND F2 1000 120 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Chioro-3-methylphenol ND F2 1000 250 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Chioro-3-methylphenol ND F1 1000 250 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Chioro-3-methylphenol ND F1 2000 120 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Nitrophenol ND F1 2000 170 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Nitrophenol ND F1 2000 170 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 55 Acenaphthylene ND F1 1000 150 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 55 Acenaphthylene ND F1 F2	3,3'-Dichlorobenzidine	ND	F1	2000	1200	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
4.6-Dintro-2-methylphenol ND F2 2000 1000 ug/kg © 04/15/16 07.29 04/16/16 22.30 5 4-Bromophenyl phenyl phethyl ND F2 1000 140 ug/kg © 04/15/16 07.29 04/16/16 22.30 55 4-Chloroshinghenyl phenyl ether ND F1 1000 250 ug/kg © 04/15/16 07.29 04/16/16 22.30 55 4-Chloroshinghenyl phenyl ether ND F1 2000 120 ug/kg © 04/15/16 07.29 04/16/16 22.30 55 4-Mitrophenol ND F1 F2 2000 120 ug/kg © 04/15/16 07.29 04/16/16 22.30 55 4-Nitrophenol ND F1 F2 1000 150 ug/kg © 04/15/16 07.29 04/16/16 22.30 55 Acceaphthene ND F1 F2 1000 150 ug/kg © 04/15/16 07.29 04/16/16 22.30 55 Acceaphthene ND F1 F2 1000 150 ug/kg © 04/15/16 07.29 04/16/16 22.30 55 Acceaphthene ND	3-Nitroaniline	ND	F1	2000	280	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
4-Bromophenyl phenyl ether ND 1000 140 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4-Chloro-3-methylphenol ND F2 1000 250 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4-Chlorophenyl phenyl ether ND F1 1000 120 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4-Methylphenol ND F1 2000 120 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4-Nitrophenol ND F1 2000 530 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4-Nitrophenol ND F1 2000 710 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Accenaphthene ND F1 1000 150 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Accetophenone ND F1 1000 160 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Antracene ND F1 1000 160	4,6-Dinitro-2-methylphenol	ND	F2	2000	1000	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
4-Chloro-3-methylphenol ND F2 1000 250 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 4-Chlorophenyl phenyl ether ND F1 1000 120 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Chlorophenyl phenyl ether ND F1 1000 120 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 51 4-Methylphenol ND F1 2000 530 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 51 4-Nitroanline ND F1 2000 710 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 51 Acenaphthene ND F1 1000 150 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 51 Acenaphthylene ND F1 F2 1000 150 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 51 Acetophenone ND F1 F2 1000 150 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 51 Benzolalehyde ND F1 F2	4-Bromophenyl phenyl ether	ND		1000	140	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
4-Chloroaniline ND F1 1000 250 ug/kg 0 04/15/16 07:29 04/16/16 22:30 5 4-Chlorophenyl phenyl ether ND F1 F2 2000 120 ug/kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Methylphenol ND F1 F2 2000 70 ug/kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Nitroaniline ND F1 F2 2000 70 ug/kg 0 04/15/16 07:29 04/16/16 22:30 55 4-Nitroaniline ND F1 F2 1000 130 ug/kg 0 04/15/16 07:29 04/16/16 22:30 55 Acenaphthylene ND F1 F2 1000 130 ug/kg 0 04/15/16 07:29 04/16/16 22:30 55 Acetaphthylene ND F1 F2 1000 100 ug/kg 0 04/15/16 07:29 04/16/16 22:30 55 Antrazene ND F1 F2 1000 100 ug/kg 0 04/15/16 07:29 04/16/16 22:30 55 Benzalglahtracene ND F1 F2	4-Chloro-3-methylphenol	ND	F2	1000	250	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
4-Chlorophenyl phenyl pheny	4-Chloroaniline	ND	F1	1000	250	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
4-Methylphenol ND F1 F2 2000 120 ug/Kg Independent of the second of the secon	4-Chlorophenyl phenyl ether	ND		1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
4-Nitroaniline ND F1 2000 530 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 4-Nitrophenol ND F2 2000 710 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Acenaphthylene ND F1 F2 1000 150 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Acetophenone ND F1 F2 1000 150 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Acetophenone ND F1 F2 1000 160 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Anthracene ND F1 F2 1000 250 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Benzolajanthracene ND F2 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Benzolajanthracene ND F1 F2 1000 100 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Benzolajanthracene ND F1 F2 1000	4-Methylphenol	ND	F1 F2	2000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
4-Nitrophenol ND F2 2000 710 ug/kg 204/15/16 07:29 04/16/16 22:30 5 Acenaphthene ND ND F1 F2 1000 130 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Acetophenone ND F1 F2 1000 140 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Actophenone ND F1 F2 1000 140 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Anttracene ND F1 F2 1000 250 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Atrazine ND F2 1000 350 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Benzolajanthracene ND F2 1000 350 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Benzolajanthracene ND F1 F2 1000 150 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Benzolajanthracene ND F1 F2 1000 150 ug/kg 04/15/16 07:29 04/16/16 22:30 5 <	4-Nitroaniline	ND	F1	2000	530	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Acenaphthene ND I000 150 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Acenaphthylene ND F1 F2 1000 130 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Acetophenone ND F1 F2 1000 140 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Anthracene ND F1 F2 1000 250 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Atrazine ND F2 1000 350 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Benzolajanthracene ND F2 1000 800 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Benzolajpyrene ND F1 F2 1000 100 ug/Kg 0 04/15/16 07:29 04/16/16 22:30 5 Benzolgi,hijperylene ND F1 F2 1000 160 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Benzolgi,hijperylene ND F1 F2 1000 100 ug/Kg	4-Nitrophenol	ND	F2	2000	710	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Acenaphthylene ND F1 F2 1000 130 ug/Kg ug/Kg <thug kg<="" th=""> <</thug>	Acenaphthene	ND		1000	150	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Acetophenone ND 1000 140 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Anthracene ND F1 F2 1000 250 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Atrazine ND F2 1000 350 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Benzaldehyde ND F2 1000 800 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Benzolg]anthracene ND F2 1000 100 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Benzolg]pyrene ND F1 F2 1000 150 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Benzolg]n,i]perylene ND F1 F2 1000 160 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Benzolg,h,i]perylene ND F1 F2 1000 100 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethxy)methane ND F1 F2 1000 130 ug/kg 04/15/16 07:29 04/16/16 22:30 5 Bis(2-c	Acenaphthylene	ND	F1 F2	1000	130	ug/Kg	₽	04/15/16 07:29	04/16/16 22:30	5
Anthracene ND F1 F2 1000 250 ug/Kg 20 04/15/16 07:29 04/16/16 22:30 5 Atrazine ND F2 1000 350 ug/Kg 20 04/15/16 07:29 04/16/16 22:30 5 Benzaldehyde ND F2 1000 100 ug/Kg 20 04/15/16 07:29 04/16/16 22:30 5 Benzo[ajanthracene ND F2 1000 100 ug/Kg 20 04/15/16 07:29 04/16/16 22:30 5 Benzo[ajpyrene ND F1 F2 1000 150 ug/Kg 20 04/15/16 07:29 04/16/16 22:30 5 Benzo[g]h,i]perylene ND F1 F2 1000 100 ug/Kg 20 04/15/16 07:29 04/16/16 22:30 5 Benzo[k]fluoranthene ND F1 F2 1000 130 ug/Kg 20 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND 1000 130 ug/Kg 20 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethyl)ether ND 1000 340	Acetophenone	ND		1000	140	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Atrazine ND F2 1000 350 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Benzaldehyde ND 1000 800 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Benzo[a]anthracene ND F2 1000 100 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Benzo[a]pyrene ND F1 F2 1000 150 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Benzo[b]fluoranthene ND F1 F2 1000 160 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Benzo[b]fluoranthene ND F1 F2 1000 160 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Benzo[k]fluoranthene ND F1 1000 100 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND F1 1000 130 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethyl)ether ND 1000 130 ug/Kg 04/15/16 07:29 04/16/16 22:30 5 Butyl ben	Anthracene	ND	F1 F2	1000	250	ug/Kg	₽	04/15/16 07:29	04/16/16 22:30	5
Benzaldehyde ND 1000 800 ug/Kg 0/1/15/16 07:29 0/1/16/16 22:30 5 Benzo[a]anthracene ND F2 1000 100 ug/Kg 0/1/15/16 07:29 0/1/16/16 22:30 5 Benzo[a]pyrene ND F1 F2 1000 150 ug/Kg 0/1/15/16 07:29 0/1/16/16 22:30 5 Benzo[g],hi]perylene ND F1 F2 1000 160 ug/Kg 0/1/15/16 07:29 0/1/16/16 22:30 5 Benzo[g],hi]perylene ND F1 F2 1000 110 ug/Kg 0/1/15/16 07:29 0/1/16/16 22:30 5 Benzo[k]fluoranthene ND F1 F2 1000 130 ug/Kg 0/1/15/16 07:29 0/1/16/16 22:30 5 Bis(2-chloroethoxy)methane ND F1 F2 1000 130 ug/Kg 0/1/15/16 07:29 0/1/16/16 22:30 5 Bis(2-chloroethoxy)methane ND 1000 130 ug/Kg 0/1/15/16 07:29 0/1/16/16 22:30 5 Bis(2-ethylhexyl) phthalate ND 100	Atrazine	ND	F2	1000	350	ug/Kg	₽	04/15/16 07:29	04/16/16 22:30	5
Benzo[a]anthracene ND F2 1000 100 ug/Kg ** 04/15/16 07:29 04/16/16 22:30 5 Benzo[a]pyrene ND F1 F2 1000 150 ug/Kg ** 04/15/16 07:29 04/16/16 22:30 5 Benzo[g],h,i]perylene ND F1 F2 1000 160 ug/Kg ** 04/15/16 07:29 04/16/16 22:30 5 Benzo[k]fluoranthene ND F1 F2 1000 100 ug/Kg ** 04/15/16 07:29 04/16/16 22:30 5 Benzo[k]fluoranthene ND F1 F2 1000 130 ug/Kg ** 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND F1 F2 1000 130 ug/Kg ** 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND 1000 130 ug/Kg ** 04/15/16 07:29 04/16/16 22:30 5 Bis(2-ethylhexyl) phthalate ND 1000 130 ug/Kg ** 04/15/16 07:29 04/16/16 22:30 5 Butyl benzyl phthalate ND	Benzaldehyde	ND		1000	800	ug/Kg	¢.	04/15/16 07:29	04/16/16 22:30	5
Benzo[a]pyrene ND F1 F2 1000 150 ug/Kg Columbra 04/15/16 07:29 04/16/16 22:30 5 Benzo[b]fluoranthene ND F1 F2 1000 160 ug/Kg Columbra 04/15/16 07:29 04/16/16 22:30 5 Benzo[g],h,i]perylene ND F1 1000 110 ug/Kg Columbra 04/15/16 07:29 04/16/16 22:30 5 Benzo[k]fluoranthene ND F1 1000 130 ug/Kg Columbra 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND F1 F2 1000 130 ug/Kg Columbra 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND 1000 130 ug/Kg O4/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethyl)ether ND 1000 130 ug/Kg O4/15/16 07:29 04/16/16 22:30 5 Bis(2-ethylhexyl) phthalate ND 1000 340 ug/Kg O4/15/16 07:29 04/16/16 22:30 5 Butyl benzyl phthalate ND 1000 300 ug/K	Benzo[a]anthracene	ND	F2	1000	100	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Benzo[b]fluoranthene ND F1 F2 1000 160 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Benzo[g,h,i]perylene ND F1 1000 110 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Benzo[k]fluoranthene ND F1 F2 1000 130 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND F1 F2 1000 130 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND 1000 210 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethyl)ether ND 1000 130 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-ethylhexyl) phthalate ND 1000 340 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Butyl benzyl phthalate ND 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30	Benzo[a]pyrene	ND	F1 F2	1000	150	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Benzo[g,h,i]perylene ND F1 1000 110 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Benzo[k]fluoranthene ND F1 F2 1000 130 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND 1000 210 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethyl)ether ND 1000 130 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethyl)ether ND 1000 130 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Bis(2-ethylhexyl) phthalate ND 1000 340 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Butyl benzyl phthalate ND 1000 170 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Caprolactam ND 1000 300 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Carbazole ND 1000 300 ug/Kg Ø 04/15/16 07:29 <t< td=""><td>Benzo[b]fluoranthene</td><td>ND</td><td>F1 F2</td><td>1000</td><td>160</td><td>ug/Kg</td><td>¢.</td><td>04/15/16 07:29</td><td>04/16/16 22:30</td><td>5</td></t<>	Benzo[b]fluoranthene	ND	F1 F2	1000	160	ug/Kg	¢.	04/15/16 07:29	04/16/16 22:30	5
Benzo[k]fluoranthene ND F1 F2 1000 130 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND 1000 210 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethoxy)methane ND 1000 130 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethyl)ether ND 1000 130 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-ethylhexyl) phthalate ND 1000 340 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Butyl benzyl phthalate ND 1000 170 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Caprolactam ND 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Carbazole ND 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Chrysene ND	Benzo[g,h,i]perylene	ND	F1	1000	110	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Bis(2-chloroethoxy)methane ND 1000 210 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-chloroethyl)ether ND 1000 130 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-ethylhexyl) phthalate ND 1000 340 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Butyl benzyl phthalate ND 1000 170 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Caprolactam ND 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Carbazole ND 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Chrysene ND F2 1000 20 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5	Benzo[k]fluoranthene	ND	F1 F2	1000	130	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Bis(2-chloroethyl)ether ND 1000 130 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Bis(2-ethylhexyl) phthalate ND 1000 340 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Butyl benzyl phthalate ND 1000 170 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Caprolactam ND 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Carbazole ND 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Chrysene ND F2 1000 230 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5	Bis(2-chloroethoxy)methane	ND		1000	210	uq/Kq	¢	04/15/16 07:29	04/16/16 22:30	5
Bis(2-ethylhexyl) phthalate ND 1000 340 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Butyl benzyl phthalate ND 1000 170 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Caprolactam ND 1000 300 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Carbazole ND F2 1000 120 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Chrysene ND F2 1000 230 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5	Bis(2-chloroethyl)ether	ND		1000	130	ug/Ka	¢	04/15/16 07:29	04/16/16 22:30	5
Butyl benzyl phthalate ND 1000 170 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Caprolactam ND 1000 300 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Carbazole ND F2 1000 120 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5 Chrysene ND F2 1000 230 ug/Kg Ø 04/15/16 07:29 04/16/16 22:30 5	Bis(2-ethylhexyl) phthalate	ND		1000	340	ug/Ka	¢	04/15/16 07:29	04/16/16 22:30	5
Caprolactam ND 1000 300 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Carbazole ND F2 1000 120 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Chrysene ND F2 1000 230 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5	Butyl benzyl phthalate	ND		1000	170	uq/Ka	¢.	04/15/16 07:29	04/16/16 22:30	5
Carbazole ND F2 1000 120 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5 Chrysene ND F2 1000 230 ug/Kg © 04/15/16 07:29 04/16/16 22:30 5	Caprolactam	ND		1000	300	uq/Ka	¢	04/15/16 07:29	04/16/16 22:30	5
Chrysene ND F2 1000 230 ua/Ka 04/15/16 07:29 04/16/16 22:30 5	Carbazole	ND	F2	1000	120	uq/Ka	¢	04/15/16 07:29	04/16/16 22:30	5
	Chrysene	ND	F2	1000	230	ug/Kg	• • • • • • • • •	04/15/16 07:29	04/16/16 22:30	5

Lab Sample ID: 480-98326-4 Matrix: Solid

Percent Solids: 83.7

5

6

Client Sample ID: TKMW-8 (5.5-7.5') Date Collected: 04/13/16 10:30 Date Received: 04/14/16 11:55

Method: 8270D - Semivolatile Org	ganic Compou	inds (GC/M	S) (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND	F1	1000	180	ug/Kg	<u></u>	04/15/16 07:29	04/16/16 22:30	5
Di-n-butyl phthalate	ND		1000	170	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Di-n-octyl phthalate	ND		1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Dibenzofuran	ND		1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Diethyl phthalate	ND		1000	130	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Dimethyl phthalate	ND		1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Fluoranthene	ND	F1 F2	1000	110	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Fluorene	ND		1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Hexachlorobenzene	ND		1000	140	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Hexachlorobutadiene	ND		1000	150	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Hexachlorocyclopentadiene	ND		1000	140	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Hexachloroethane	ND		1000	130	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Indeno[1,2,3-cd]pyrene	ND	F1	1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Isophorone	ND		1000	210	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
N-Nitrosodi-n-propylamine	ND		1000	170	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
N-Nitrosodiphenylamine	ND	F1	1000	820	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Naphthalene	ND		1000	130	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Nitrobenzene	ND		1000	110	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Pentachlorophenol	ND	F1	2000	1000	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Phenanthrene	ND	F2	1000	150	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Phenol	ND		1000	150	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Pyrene	ND		1000	120	ug/Kg	¢	04/15/16 07:29	04/16/16 22:30	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	76		34 - 132				04/15/16 07:29	04/16/16 22:30	5
Phenol-d5 (Surr)	75		11 - 120				04/15/16 07:29	04/16/16 22:30	5
p-Terphenyl-d14 (Surr)	90		65 _ 153				04/15/16 07:29	04/16/16 22:30	5
2,4,6-Tribromophenol (Surr)	78		39 - 146				04/15/16 07:29	04/16/16 22:30	5
2-Fluorobiphenyl	86		37 _ 120				04/15/16 07:29	04/16/16 22:30	5
2-Fluorophenol (Surr)	73		18 - 120				04/15/16 07:29	04/16/16 22:30	5
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9750		12.3		mg/Kg	<u></u>	04/16/16 08:30	04/19/16 01:33	1

-						•	•	
Aluminum	9750		12.3	mg/Kg	₽	04/16/16 08:30	04/19/16 01:33	1
Antimony	ND	F1	18.5	mg/Kg	₽	04/16/16 08:30	04/19/16 01:33	1
Arsenic	4.6		2.5	mg/Kg	₽	04/16/16 08:30	04/19/16 01:33	1
Barium	25.9	F1	0.62	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Beryllium	0.38		0.25	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Cadmium	ND		0.25	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Calcium	29500	F2	61.7	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Chromium	12.4		0.62	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Cobalt	4.9		0.62	mg/Kg	₽	04/16/16 08:30	04/19/16 01:33	1
Copper	14.8		1.2	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Iron	13100		12.3	mg/Kg	₽	04/16/16 08:30	04/19/16 01:33	1
Lead	9.9		1.2	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Magnesium	4070	F1	24.7	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Manganese	163	F2 F1	0.25	mg/Kg	₽	04/16/16 08:30	04/19/16 01:33	1
Nickel	15.7		6.2	mg/Kg	₽	04/16/16 08:30	04/19/16 01:33	1
Potassium	1470	F1	37.0	mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Selenium	ND		4.9	mg/Kg	₽	04/16/16 08:30	04/19/16 01:33	1

Client Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-98326-1

Client Sample ID: TKMW-8 (5.5-7.5') Date Collected: 04/13/16 10:30 Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-4 Matrix: Solid Percent Solids: 83.7

Method: 6010C - Metals (ICP) (Conti	nued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.74		mg/Kg	<u>\$</u>	04/16/16 08:30	04/19/16 01:33	1
Sodium	282		173		mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Thallium	ND		7.4		mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Vanadium	20.7	F1	0.62		mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Zinc	37.6		2.5		mg/Kg	¢	04/16/16 08:30	04/19/16 01:33	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	F1	0.024		mg/Kg	\	04/19/16 09:50	04/19/16 13:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.2		mg/Kg	\\\\	04/20/16 04:05	04/20/16 13:49	1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: TKMW-9 (5-7)

Date Collected: 04/13/16 10:05

Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-5 Matrix: Solid

Percent Solids: 83.7

6

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac ☆ ug/Kg 1,1,1-Trichloroethane ND 5.9 0.43 04/15/16 09:24 04/15/16 18:56 ¢ ND 1.1.2.2-Tetrachloroethane 5.9 0.96 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 1.1.2-Trichloroethane ND 5.9 0.77 ug/Kg ₫ 04/15/16 09:24 04/15/16 18:56 1 ND 1,1,2-Trichloro-1,2,2-trifluoroethane 5.9 1.4 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 1.1-Dichloroethane ND 5.9 0.72 ug/Kg Ö 04/15/16 09:24 04/15/16 18:56 1 ND 0.73 04/15/16 09:24 1.1-Dichloroethene 5.9 ug/Kg 04/15/16 18:56 1 1,2,4-Trichlorobenzene ND 5.9 0.36 04/15/16 09:24 04/15/16 18:56 ug/Kg 1 1,2-Dibromo-3-Chloropropane ND æ 04/15/16 09:24 04/15/16 18:56 5.9 3.0 ug/Kg 1 ¢ 1,2-Dichlorobenzene ND 5.9 0.46 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 ₽ 1.2-Dichloroethane ND 5.9 0.30 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 1,2-Dichloropropane ND 5.9 3.0 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 ¢ 1,3-Dichlorobenzene ND 5.9 0.30 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 ND ò 1,4-Dichlorobenzene 5.9 0.83 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 2-Butanone (MEK) ND 30 2.2 04/15/16 09:24 04/15/16 18:56 ug/Kg 1 ¢ ND 30 3.0 04/15/16 09:24 1 2-Hexanone ug/Kg 04/15/16 18:56 30 ġ 4-Methyl-2-pentanone (MIBK) ND 1.9 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 æ Acetone ND 30 5.0 04/15/16 09:24 04/15/16 18:56 1 ug/Kg Benzene ND 5.9 04/15/16 09:24 04/15/16 18:56 0.29 ug/Kg 1 ¢ Bromodichloromethane ND 59 0.79 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 ND 04/15/16 09:24 04/15/16 18:56 Bromoform 5.9 3.0 ug/Kg 1 æ ND 0.53 04/15/16 09:24 04/15/16 18:56 Bromomethane 5.9 ug/Kg 1 à ug/Kg Carbon disulfide ND 5.9 3.0 04/15/16 09:24 04/15/16 18:56 ND 5.9 ¢ 04/15/16 09:24 Carbon tetrachloride 0.57 ua/Ka 04/15/16 18:56 1 Chlorobenzene ND 5.9 0.78 ug/Kg 04/15/16 09:24 04/15/16 18:56 Dibromochloromethane ND 5.9 0.76 ₽ 04/15/16 09:24 04/15/16 18:56 ua/Ka ¢ Chloroethane ND 5.9 1.3 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 Chloroform ND 5.9 0.37 ug/Kg 04/15/16 09:24 04/15/16 18:56 Chloromethane ND 5.9 0.36 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 ₫ cis-1,2-Dichloroethene ND 5.9 0.76 ug/Kg 04/15/16 09:24 04/15/16 18:56 æ ND 0.85 ug/Kg 04/15/16 18:56 cis-1,3-Dichloropropene 5.9 04/15/16 09:24 1 Cyclohexane ND 5.9 0.83 ug/Kg 04/15/16 09:24 04/15/16 18:56 Dichlorodifluoromethane ND 59 0.49 04/15/16 09:24 04/15/16 18:56 ug/Kg 1 Ö Ethylbenzene ND 5.9 0.41 ug/Kg 04/15/16 09:24 04/15/16 18:56 φ 1,2-Dibromoethane ND 5.9 0.76 04/15/16 09:24 04/15/16 18:56 ug/Kg 1 ¤ Isopropylbenzene ND 5.9 0.89 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 ND ug/Ka ¢ 04/15/16 09:24 Methyl acetate 5.9 3.6 04/15/16 18:56 1 Methyl tert-butyl ether ND 5.9 0.58 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 æ Methylcyclohexane ND 5.9 0.90 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 ¢ **Methylene Chloride** 3.3 5.9 2.7 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 à 04/15/16 09:24 Styrene ND 5.9 0.30 ug/Kg 04/15/16 18:56 ġ ND 04/15/16 09:24 Tetrachloroethene 5.9 0.80 ug/Kg 04/15/16 18:56 1 Ö 04/15/16 09:24 Toluene ND 5.9 0.45 ug/Kg 04/15/16 18:56 à ND 04/15/16 09:24 trans-1,2-Dichloroethene 5.9 0.61 04/15/16 18:56 ug/Kg 1 Å ND 04/15/16 09:24 trans-1,3-Dichloropropene 5.9 2.6 ug/Kg 04/15/16 18:56 ND ug/Kg æ 04/15/16 09:24 Trichloroethene 59 1.3 04/15/16 18:56 1 ġ Trichlorofluoromethane ND 5.9 0.56 ug/Kg 04/15/16 09:24 04/15/16 18:56 1 Vinyl chloride ND æ 04/15/16 09:24 5.9 0.72 ug/Kg 04/15/16 18:56 1 Xylenes, Total ND 12 ug/Kg 04/15/16 09:24 04/15/16 18:56 1.0 1

Client Sample ID: TKMW-9 (5-7)

Date Collected: 04/13/16 10:05

Date Received: 04/14/16 11:55

Chrysene

Prepared Analyzed Dil Fac 5 //15/16 09:24 04/15/16 18:56 1 6

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	111		71 _ 125				04/15/16 09:24	04/15/16 18:56	1
1,2-Dichloroethane-d4 (Surr)	103		64 - 126				04/15/16 09:24	04/15/16 18:56	1
4-Bromofluorobenzene (Surr)	122		72 - 126				04/15/16 09:24	04/15/16 18:56	1
Dibromofluoromethane (Surr)	110		60 - 140				04/15/16 09:24	04/15/16 18:56	1
- Method: 8270D - Semivolatile (Organic Compou	nds (GC/MS	5)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		200	29	ug/Kg		04/15/16 07:29	04/17/16 00:15	1
bis (2-chloroisopropyl) ether	ND		200	40	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2,4,5-Trichlorophenol	ND		200	54	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2,4,6-Trichlorophenol	ND		200	40	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2,4-Dichlorophenol	ND		200	21	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2,4-Dimethylphenol	ND		200	48	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2,4-Dinitrophenol	ND		1900	910	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2,4-Dinitrotoluene	ND		200	41	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2,6-Dinitrotoluene	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2-Chloronaphthalene	ND		200	33	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2-Chlorophenol	ND		200	36	ug/Kg	₽	04/15/16 07:29	04/17/16 00:15	1
2-Methylphenol	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2-Methylnaphthalene	ND		200	40	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2-Nitroaniline	ND		380	29	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
2-Nitrophenol	ND		200	56	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
3.3'-Dichlorobenzidine	ND		380	230	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	
3-Nitroaniline	ND		380	55	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
4,6-Dinitro-2-methylphenol	ND		380	200	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
4-Bromophenyl phenyl ether	ND		200	28	ug/Kg		04/15/16 07:29	04/17/16 00:15	
4-Chloro-3-methylphenol	ND		200	49	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
4-Chloroaniline	ND		200	49	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
4-Chlorophenyl phenyl ether	ND		200	24	ug/Kg		04/15/16 07:29	04/17/16 00:15	1
4-Methylphenol	ND		380	23	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
4-Nitroaniline	ND		380	100	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
4-Nitrophenol	ND		380	140	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	
Acenaphthene	ND		200	29	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Acenaphthylene	ND		200	26	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Acetophenone	ND		200	27	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	
Anthracene	ND		200	49	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Atrazine	ND		200	69	ua/Ka	¢	04/15/16 07:29	04/17/16 00:15	1
Benzaldehvde	ND		200	160	ua/Ka	÷	04/15/16 07:29	04/17/16 00:15	1
Benzo[a]anthracene	ND		200	20	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Benzo[a]pyrene	ND		200	29	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Benzo[b]fluoranthene	ND		200	31	ug/Kg		04/15/16 07:29	04/17/16 00:15	1
Benzo[q,h,i]perylene	ND		200	21	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Benzo[k]fluoranthene	ND		200	26	ug/Ka	¢	04/15/16 07:29	04/17/16 00:15	1
Bis(2-chloroethoxy)methane	ND		200	42	uq/Ka	¢	04/15/16 07:29	04/17/16 00:15	1
Bis(2-chloroethyl)ether	ND		200	26	uq/Ka	¢	04/15/16 07:29	04/17/16 00:15	1
Bis(2-ethylhexyl) phthalate	ND		200	68	uq/Ka	¢	04/15/16 07:29	04/17/16 00:15	1
Butyl benzyl phthalate	ND		200	33	uq/Ka	¢.	04/15/16 07:29	04/17/16 00:15	1
Caprolactam	ND		200	59	ug/Ka	¢	04/15/16 07:29	04/17/16 00:15	1
Carbazole	ND		200	23	ua/Ka	₽	04/15/16 07:29	04/17/16 00:15	1

TestAmerica Buffalo

1

04/17/16 00:15

200

44 ug/Kg

¢.

04/15/16 07:29

ND

RL

200

MDL Unit

35 ug/Kg

D

₽

Ż

₽

mg/Kg

mg/Kg

04/16/16 08:30

04/16/16 08:30

Prepared

04/15/16 07:29

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

TestAmerica Job ID: 480-98326-1

Lab Sample ID: 480-98326-5 Matrix: Solid

Analyzed

04/17/16 00:15

Percent Solids: 83.7

Dil Fac

1

6

Client Sample ID: TKMW-9 (5-7) Date Collected: 04/13/16 10:05 Date Received: 04/14/16 11:55

Analyte

Potassium

Selenium

Dibenz(a,h)anthracene

Di-n-butyl phthalate	ND		200	34	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Di-n-octyl phthalate	ND		200	23	ug/Kg	₽	04/15/16 07:29	04/17/16 00:15	1
Dibenzofuran	ND		200	23	ug/Kg	₽	04/15/16 07:29	04/17/16 00:15	1
Diethyl phthalate	ND		200	26	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Dimethyl phthalate	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Fluoranthene	68	J	200	21	ug/Kg	₽	04/15/16 07:29	04/17/16 00:15	1
Fluorene	ND		200	23	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Hexachlorobenzene	ND		200	27	ug/Kg	₽	04/15/16 07:29	04/17/16 00:15	1
Hexachlorobutadiene	ND		200	29	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Hexachlorocyclopentadiene	ND		200	27	ug/Kg	₽	04/15/16 07:29	04/17/16 00:15	1
Hexachloroethane	ND		200	26	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Indeno[1,2,3-cd]pyrene	ND		200	24	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Isophorone	ND		200	42	ug/Kg	₽	04/15/16 07:29	04/17/16 00:15	1
N-Nitrosodi-n-propylamine	ND		200	34	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
N-Nitrosodiphenylamine	ND		200	160	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Naphthalene	ND		200	26	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Nitrobenzene	ND		200	22	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Pentachlorophenol	ND		380	200	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Phenanthrene	32	J	200	29	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Phenol	ND		200	30	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Pyrene	61	J	200	23	ug/Kg	¢	04/15/16 07:29	04/17/16 00:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	80		34 - 132				04/15/16 07:29	04/17/16 00:15	1
Phenol-d5 (Surr)	78		11 - 120				04/15/16 07:29	04/17/16 00:15	1
p-Terphenyl-d14 (Surr)	93		65 - 153				04/15/16 07:29	04/17/16 00:15	1
2,4,6-Tribromophenol (Surr)	87		39 - 146				04/15/16 07:29	04/17/16 00:15	1
2-Fluorobiphenyl	84		37 _ 120				04/15/16 07:29	04/17/16 00:15	1
2-Fluorophenol (Surr)	73		18 - 120				04/15/16 07:29	04/17/16 00:15	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	16400		12.7		mg/Kg	\	04/16/16 08:30	04/19/16 01:49	1
Antimony	ND		19.0		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Arsenic	5.7		2.5		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Barium	63.4		0.63		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Beryllium	0.75		0.25		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Cadmium	ND		0.25		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Calcium	3520		63.4		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Chromium	22.1		0.63		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Cobalt	9.0		0.63		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Copper	21.1		1.3		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Iron	21800		12.7		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Lead	21.5		1.3		mg/Kg	₽	04/16/16 08:30	04/19/16 01:49	1
Magnesium	3830		25.4		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Manganese	275		0.25		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Nickel	27.9		6.3		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1

TestAmerica Buffalo

1

1

04/19/16 01:49

04/19/16 01:49

38.0

5.1

3110

ND

Client Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-98326-1

Client Sample ID: TKMW-9 (5-7) Date Collected: 04/13/16 10:05 Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-5 Matrix: Solid

Percent Solids: 83.7

Method: 6010C - Metals (ICP) (Cont	tinued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.76		mg/Kg	<u>\$</u>	04/16/16 08:30	04/19/16 01:49	1
Sodium	456		178		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Thallium	ND		7.6		mg/Kg	₽	04/16/16 08:30	04/19/16 01:49	1
Vanadium	37.8		0.63		mg/Kg	₽	04/16/16 08:30	04/19/16 01:49	1
Zinc	65.0		2.5		mg/Kg	¢	04/16/16 08:30	04/19/16 01:49	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.030		0.023		mg/Kg	\\\\	04/19/16 09:50	04/19/16 13:48	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.2		mg/Kg	<u>Å</u>	04/20/16 04:05	04/20/16 13:58	1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: BLIND DUP

Date Collected: 04/13/16 08:00

Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-6 Matrix: Solid

Percent Solids: 86.7

5

6

	Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.6	0.41	ug/Kg	<u>Å</u>	04/15/16 09:24	04/15/16 19:22	1
1,1,2,2-Tetrachloroethane	ND	5.6	0.91	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,1,2-Trichloroethane	ND	5.6	0.73	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.6	1.3	ug/Kg	₽	04/15/16 09:24	04/15/16 19:22	1
1,1-Dichloroethane	ND	5.6	0.69	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,1-Dichloroethene	ND	5.6	0.69	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,2,4-Trichlorobenzene	ND	5.6	0.34	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,2-Dibromo-3-Chloropropane	ND	5.6	2.8	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,2-Dichlorobenzene	ND	5.6	0.44	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,2-Dichloroethane	ND	5.6	0.28	ug/Kg	¢.	04/15/16 09:24	04/15/16 19:22	1
1,2-Dichloropropane	ND	5.6	2.8	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,3-Dichlorobenzene	ND	5.6	0.29	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
1,4-Dichlorobenzene	ND	5.6	0.79	ug/Kg	ф.	04/15/16 09:24	04/15/16 19:22	1
2-Butanone (MEK)	ND	28	2.1	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
2-Hexanone	ND	28	2.8	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
4-Methyl-2-pentanone (MIBK)	ND	28	1.8	ua/Ka		04/15/16 09:24	04/15/16 19:22	
Acetone	ND	28	4.7	ua/Ka	¢	04/15/16 09:24	04/15/16 19:22	1
Benzene	ND	5.6	0.28	ua/Ka	¢	04/15/16 09:24	04/15/16 19:22	1
Bromodichloromethane	ND	5.6	0.75	ua/Ka		04/15/16 09:24	04/15/16 19:22	
Bromoform	ND	5.6	28	ua/Ka	¢	04/15/16 09:24	04/15/16 19:22	1
Bromomethane	ND	5.6	0.51	ua/Ka	¢	04/15/16 09:24	04/15/16 19:22	1
Carbon disulfide	ND	5.6	2.8	ug/Kg		04/15/16 09:24	04/15/16 19:22	
Carbon tetrachloride	ND	5.6	0.54	ug/Kg	÷	04/15/16 09:24	04/15/16 19:22	1
Chlorobenzene	ND	5.6	0.74	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
Dibromochloromethane	ND	5.6	0.72	ug/Kg		04/15/16 09:24	04/15/16 19:22	
Chloroethane	ND	5.6	13	ug/Kg	÷	04/15/16 09:24	04/15/16 19:22	1
Chloroform	ND	5.6	0.35	ug/Kg	¢	04/15/16 09:24	04/15/16 19:22	1
Chloromethane	ND	5.6	0.34	ug/Kg		04/15/16 09:24	04/15/16 19:22	
cis_1 2-Dichloroethene	ND	5.6	0.34	ug/Kg	÷	04/15/16 09:24	04/15/16 19:22	1
cis-1 3-Dichloropropene	ND	5.6	0.72	ug/Kg	÷.	04/15/16 09:24	04/15/16 10:22	1
Cyclobexane	ND	5.6	0.79	ug/Kg		04/15/16 09:24	04/15/16 10:22	
	ND	5.6	0.75	ug/Kg	÷.	04/15/16 09:24	04/15/16 10:22	1
Ethylbonzono	ND	5.6	0.40	ug/Kg	ä	04/15/16 09:24	04/15/16 10:22	1
1 2 Dibromoethane		5.6	0.39	ug/Kg	·····	04/15/16 09:24	04/15/16 10:22	
	ND	5.6	0.72	ug/Kg	ň	04/15/16 09:24	04/15/16 10:22	1
Methyl acetate		5.6	0.05	ug/Kg	ä	04/15/16 09:24	04/15/16 10:22	1
Methyl tort butul othor		5.0	0.55	ug/Kg	· · · · ·	04/15/16 09:24	04/15/16 10:22	
Methyleveleboxene		5.0	0.00	ug/Kg	ň	04/15/16 09:24	04/15/16 10:22	1
Methylope Chloride		5.0	0.00	ug/Kg	ň	04/15/16 09:24	04/15/16 19:22	1
Methylene Chioride		5.0	2.0	ug/Kg	····	04/15/16 09.24	04/15/16 19.22	
	ND	5.0	0.20	ug/Kg	×	04/15/16 09.24	04/15/10 19.22	1
		5.0	0.70	ug/Kg	*	04/15/16 09:24	04/15/10 19:22	Т 4
		0.0	0.43	ug/ng	* 	04/15/10 09:24	04/15/10 19:22	۲ ۲
		5.6	0.58	ug/Kg	بر بر	04/15/16 09:24	04/15/16 19:22	1
uans-1,3-Dichloropropene		5.6	2.5	ug/Kg	ж ж	04/15/10 09:24	04/15/10 19:22	1
		5.6	1.2	ug/Kg	بد 	04/15/16 09:24	04/15/16 19:22	1
		5.6	0.53	ug/Kg	*	04/15/16 09:24	04/15/16 19:22	1
vinyi chloride	ND	5.6	0.69	ug/Kg	ب د ~	04/15/16 09:24	04/15/16 19:22	1
Xylenes, I otal	ND	11	0.95	ug/Kg	- 1 2-	04/15/16 09:24	04/15/16 19:22	1

Client Sample ID: BLIND DUP Date Collected: 04/13/16 08:00 Date Received: 04/14/16 11:55

Lab Sample	ID:	480-983	26-6
		Matrix:	Solid

Percent Solids: 86.7

5

6

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		71 - 125				04/15/16 09:24	04/15/16 19:22	1
1,2-Dichloroethane-d4 (Surr)	92		64 - 126				04/15/16 09:24	04/15/16 19:22	1
4-Bromofluorobenzene (Surr)	106		72 - 126				04/15/16 09:24	04/15/16 19:22	1
Dibromofluoromethane (Surr)	98		60 - 140				04/15/16 09:24	04/15/16 19:22	1
Method: 8270D - Semivolatile	e Organic Compou	nds (GC/M	5)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		9500	1400	ug/Kg	<u> </u>	04/15/16 07:29	04/17/16 00:41	50
bis (2-chloroisopropyl) ether	ND		9500	1900	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2,4,5-Trichlorophenol	ND		9500	2600	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2,4,6-Trichlorophenol	ND		9500	1900	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2,4-Dichlorophenol	ND		9500	1000	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2,4-Dimethylphenol	ND		9500	2300	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2,4-Dinitrophenol	ND		93000	44000	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2,4-Dinitrotoluene	ND		9500	2000	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2,6-Dinitrotoluene	ND		9500	1100	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2-Chloronaphthalene	ND		9500	1600	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2-Chlorophenol	ND		9500	1700	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2-Methylphenol	ND		9500	1100	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2-Methylnaphthalene	ND		9500	1900	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2-Nitroaniline	ND		19000	1400	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
2-Nitrophenol	ND		9500	2700	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
3,3'-Dichlorobenzidine	ND		19000	11000	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
3-Nitroaniline	ND		19000	2600	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
4,6-Dinitro-2-methylphenol	ND		19000	9500	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
4-Bromophenyl phenyl ether	ND		9500	1300	ug/Kg	¢.	04/15/16 07:29	04/17/16 00:41	50
4-Chloro-3-methylphenol	ND		9500	2400	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
4-Chloroaniline	ND		9500	2400	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
4-Chlorophenyl phenyl ether	ND		9500	1200	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
4-Methylphenol	ND		19000	1100	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
4-Nitroaniline	ND		19000	5000	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
4-Nitrophenol	ND		19000	6700	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
Acenaphthene	1600	J	9500	1400	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
Acenaphthylene	ND		9500	1200	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
Acetophenone	ND		9500	1300	ua/Ka	¢.	04/15/16 07:29	04/17/16 00:41	50
Anthracene	3700	J	9500	2400	uq/Kq	¢	04/15/16 07:29	04/17/16 00:41	50
Atrazine	ND		9500	3300	ua/Ka	¢	04/15/16 07:29	04/17/16 00:41	50
Benzaldehvde	ND		9500	7600	ua/Ka	¢.	04/15/16 07:29	04/17/16 00:41	50
Benzolalanthracene	25000		9500	950	ua/Ka	¢	04/15/16 07:29	04/17/16 00:41	50
Benzolalpyrene	39000		9500	1400	ua/Ka	¢	04/15/16 07:29	04/17/16 00:41	50
Benzo[b]fluoranthene	45000		9500	1500	ua/Ka		04/15/16 07:29	04/17/16 00:41	50
Benzola h ilpervlene	29000		9500	1000	ua/Ka	¢	04/15/16 07:29	04/17/16 00:41	50
Benzo[k]fluoranthene	15000		9500	1200	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
Bis(2-chloroethoxy)methane			9500	2000	ua/Ka	÷.	04/15/16 07:29	04/17/16 00:41	50
Bis(2-chloroethyl)ether			9500	12000	ua/Ka	¢	04/15/16 07:29	04/17/16 00:41	50
Bis(2-ethylhexyl) phthalate			9500	3300	ua/Ka	¢	04/15/16 07:29	04/17/16 00:41	50
Butyl benzyl ohtbalate			9500	1600	ug/Kg	÷	04/15/16 07:29	04/17/16 00:41	50
Caprolactam			9500	2000	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
Carbazole	2000		9500	1100	ua/Ka	¢	04/15/16 07:29	04/17/16 00:41	50
Chrysona	2000		9500	2100	ua/Ka	÷.	04/15/16 07:29	04/17/16 00:41	50
omysene	22000		0000	2100	~9,		5 11 151 10 01.20	5 II II I I O OO+1	

Lab Sample ID: 480-98326-6 Matrix: Solid

Date Collected: 04/13/16 08:00 Date Received: 04/14/16 11:55

Client Sample ID: BLIND DUP

Percent Solids: 86.7

Dil Fac

50

50

50

50 50

50

50

50

50

50

50

50 50

50

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Dibenz(a,h)anthracene	3500	J	9500	1700	ug/Kg	<u></u>	04/15/16 07:29	04/17/16 00:41
Di-n-butyl phthalate	ND		9500	1600	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Di-n-octyl phthalate	ND		9500	1100	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Dibenzofuran	ND		9500	1100	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Diethyl phthalate	ND		9500	1200	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Dimethyl phthalate	ND		9500	1100	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Fluoranthene	22000		9500	1000	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Fluorene	1100	J	9500	1100	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Hexachlorobenzene	ND		9500	1300	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Hexachlorobutadiene	ND		9500	1400	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Hexachlorocyclopentadiene	ND		9500	1300	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Hexachloroethane	ND		9500	1200	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Indeno[1,2,3-cd]pyrene	26000		9500	1200	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
Isophorone	ND		9500	2000	ug/Kg	¢	04/15/16 07:29	04/17/16 00:41
	· · · · · · · · · · · · · · · · · · ·							

N-Nitrosodi-n-propylamine	ND	9500	1600 ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
N-Nitrosodiphenylamine	ND	9500	7700 ug/Kg	₽	04/15/16 07:29	04/17/16 00:41	50
Naphthalene	1300 J	9500	1200 ug/Kg	☆	04/15/16 07:29	04/17/16 00:41	50
Nitrobenzene	ND	9500	1100 ug/Kg	¢	04/15/16 07:29	04/17/16 00:41	50
Pentachlorophenol	ND	19000	9500 ug/Kg	☆	04/15/16 07:29	04/17/16 00:41	50
Phenanthrene	10000	9500	1400 ug/Kg	☆	04/15/16 07:29	04/17/16 00:41	50
Phenol	ND	9500	1500 ug/Kg	₽	04/15/16 07:29	04/17/16 00:41	50
Pyrene	24000	9500	1100 ug/Kg	☆	04/15/16 07:29	04/17/16 00:41	50

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	65		34 - 132	04/15/16 07:29	04/17/16 00:41	50
Phenol-d5 (Surr)	78		11 - 120	04/15/16 07:29	04/17/16 00:41	50
p-Terphenyl-d14 (Surr)	72		65 - 153	04/15/16 07:29	04/17/16 00:41	50
2,4,6-Tribromophenol (Surr)	0	X	39 - 146	04/15/16 07:29	04/17/16 00:41	50
2-Fluorobiphenyl	69		37 _ 120	04/15/16 07:29	04/17/16 00:41	50
2-Fluorophenol (Surr)	62		18_120	04/15/16 07:29	04/17/16 00:41	50

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	5420		12.1		mg/Kg		04/16/16 08:30	04/19/16 02:02	1
Antimony	ND		18.1		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Arsenic	16.1		2.4		mg/Kg	₽	04/16/16 08:30	04/19/16 02:02	1
Barium	67.1		0.60		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Beryllium	0.54		0.24		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Cadmium	ND		0.24		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Calcium	39600		60.4		mg/Kg	₽	04/16/16 08:30	04/19/16 02:02	1
Chromium	11.0		0.60		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Cobalt	6.5		0.60		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Copper	38.6		1.2		mg/Kg	₽	04/16/16 08:30	04/19/16 02:02	1
Iron	12500	^	12.1		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Lead	86.9		1.2		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Magnesium	8120		24.1		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Manganese	216		0.24		mg/Kg	₽	04/16/16 08:30	04/19/16 02:02	1
Nickel	15.8		6.0		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Potassium	1200		36.2		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Selenium	ND		4.8		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1

Client Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-98326-1

Client Sample ID: BLIND DUP Date Collected: 04/13/16 08:00

Date Received: 04/14/16 11:55

Lab Sample ID: 480-98326-6 Matrix: Solid

Percent Solids: 86.7

Method: 6010C - Metals (ICP) (Cont	inued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.72		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Sodium	451		169		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Thallium	ND		7.2		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Vanadium	18.6		0.60		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Zinc	80.7		2.4		mg/Kg	¢	04/16/16 08:30	04/19/16 02:02	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.18		0.023		mg/Kg	\	04/19/16 09:50	04/19/16 13:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.1		mg/Kg	\ ☆	04/20/16 04:05	04/20/16 13:59	1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

			Percent Surrogate Recovery (Acceptan					
		TOL	12DCE	BFB	DBFM			
Lab Sample ID	Client Sample ID	(50-149)	(53-146)	(49-148)	(60-140)			
480-98326-1	TKMW-5 (9-11')	93	91	101	96			
480-98326-1 MS	TKMW-5 (9-11')	96	85	104	92			
480-98326-1 MSD	TKMW-5 (9-11')	96	87	102	93			
480-98326-2	TKMW-6 (8-10')	94	96	101	94			
Surrogate Legend								
TOL = Toluene-d8 (Surr	·)							
12DCE = 1.2-Dichloroet	hane-d4 (Surr)							

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

		Percent Surrogate Recovery (Acceptance Limits)						
		TOL	12DCE	BFB	DBFM			
Lab Sample ID	Client Sample ID	(71-125)	(64-126)	(72-126)	(60-140)			
480-98326-3	TKMW-7 (2-5')	112	87	84	96			
480-98326-4	TKMW-8 (5.5-7.5')	97	89	105	95			
480-98326-4 MS	TKMW-8 (5.5-7.5')	98	78	107	94			
480-98326-4 MSD	TKMW-8 (5.5-7.5')	104	86	111	103			
480-98326-5	TKMW-9 (5-7)	111	103	122	110			
480-98326-6	BLIND DUP	99	92	106	98			
LCS 480-296125/1-A	Lab Control Sample	98	90	110	98			
MB 480-296125/2-A	Method Blank	97	89	110	95			

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid

latrix: Solid								Prep Type: Total/NA		
-			Percent Surrogate Recovery (Acceptance Limits)							
		NBZ	PHL	TPH	TBP	FBP	2FP			
Lab Sample ID	Client Sample ID	(34-132)	(11-120)	(65-153)	(39-146)	(37-120)	(18-120)			
480-98326-1	TKMW-5 (9-11')	86	77	88	89	81	77			
480-98326-2	TKMW-6 (8-10')	81	72	81	90	82	73			
480-98326-2 - DL	TKMW-6 (8-10')	71	58	77	155 X	77	60			
480-98326-3	TKMW-7 (2-5')	72	69	71	0 X	70	68			
480-98326-4	TKMW-8 (5.5-7.5')	76	75	90	78	86	73			
480-98326-4 MS	TKMW-8 (5.5-7.5')	85	82	91	98	86	80			
480-98326-4 MSD	TKMW-8 (5.5-7.5')	84	79	92	89	85	76			
480-98326-5	TKMW-9 (5-7)	80	78	93	87	84	73			
480-98326-6	BLIND DUP	65	78	72	0 X	69	62			
LCS 480-296082/2-A	Lab Control Sample	86	85	102	95	86	80			
MB 480-296082/1-A	Method Blank	85	78	93	83	85	77			

Surrogate Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-98326-1

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr) PHL = Phenol-d5 (Surr) TPH = p-Terphenyl-d14 (Surr) TBP = 2,4,6-Tribromophenol (Surr) FBP = 2-Fluorobiphenyl 2FP = 2-Fluorophenol (Surr)

RL

5.0

MDL Unit

0.36 ug/Kg

D

Prepared

04/15/16 09:24 04/15/16 11:58

Lab Sample ID: MB 480-296125/2-A

Matrix: Solid

1,1,1-Trichloroethane

Analyte

Analysis Batch: 296128

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

ND

Result Qualifier

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA

Prep Batch: 296125

2 3 4 5

5
8
g

Dil Fac

1

1,1,2,2-Tetrachloroethane	ND	5.0	0.81 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,1,2-Trichloroethane	ND	5.0	0.65 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,1-Dichloroethane	ND	5.0	0.61 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,1-Dichloroethene	ND	5.0	0.61 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,2,4-Trichlorobenzene	ND	5.0	0.30 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,2-Dichlorobenzene	ND	5.0	0.39 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,2-Dichloroethane	ND	5.0	0.25 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,2-Dichloropropane	ND	5.0	2.5 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,3-Dichlorobenzene	ND	5.0	0.26 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,4-Dichlorobenzene	ND	5.0	0.70 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
2-Butanone (MEK)	ND	25	1.8 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
2-Hexanone	ND	25	2.5 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
4-Methyl-2-pentanone (MIBK)	ND	25	1.6 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Acetone	14.8 J	25	4.2 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Benzene	ND	5.0	0.24 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Bromodichloromethane	ND	5.0	0.67 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Bromoform	ND	5.0	2.5 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Bromomethane	ND	5.0	0.45 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Carbon disulfide	ND	5.0	2.5 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Carbon tetrachloride	ND	5.0	0.48 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Chlorobenzene	ND	5.0	0.66 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Dibromochloromethane	ND	5.0	0.64 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Chloroethane	ND	5.0	1.1 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Chloroform	ND	5.0	0.31 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Chloromethane	ND	5.0	0.30 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
cis-1,2-Dichloroethene	ND	5.0	0.64 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
cis-1,3-Dichloropropene	ND	5.0	0.72 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Cyclohexane	ND	5.0	0.70 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Dichlorodifluoromethane	ND	5.0	0.41 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Ethylbenzene	ND	5.0	0.34 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
1,2-Dibromoethane	ND	5.0	0.64 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Isopropylbenzene	ND	5.0	0.75 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Methyl acetate	ND	5.0	3.0 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Methyl tert-butyl ether	ND	5.0	0.49 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Methylcyclohexane	ND	5.0	0.76 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Methylene Chloride	ND	5.0	2.3 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Styrene	ND	5.0	0.25 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Tetrachloroethene	ND	5.0	0.67 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Toluene	0.514 J	5.0	0.38 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
trans-1,2-Dichloroethene	ND	5.0	0.51 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
trans-1,3-Dichloropropene	ND	5.0	2.2 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Trichloroethene	ND	5.0	1.1 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Trichlorofluoromethane	ND	5.0	0.47 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Vinyl chloride	ND	5.0	0.61 ug/Kg	04/15/16 09:24 04/15/16 11:58	1
Xylenes, Total	1.03 J	9.9	0.83 ug/Kg	04/15/16 09:24 04/15/16 11:58	1

QC Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		71 - 125	04/15/16 09:24	04/15/16 11:58	1
1,2-Dichloroethane-d4 (Surr)	89		64 - 126	04/15/16 09:24	04/15/16 11:58	1
4-Bromofluorobenzene (Surr)	110		72 - 126	04/15/16 09:24	04/15/16 11:58	1
Dibromofluoromethane (Surr)	95		60 - 140	04/15/16 09:24	04/15/16 11:58	1

Lab Sample ID: LCS 480-296125/1-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

5

8

Analysis Batch: 296128							Prep Batch: 296	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	49.3	48.7		ug/Kg		99	77 _ 121	
1,1,2,2-Tetrachloroethane	49.3	40.7		ug/Kg		83	80 - 120	
1,1,2-Trichloroethane	49.3	43.4		ug/Kg		88	78 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	49.3	53.8		ug/Kg		109	60 - 140	
ne								
1,1-Dichloroethane	49.3	43.5		ug/Kg		88	73 - 126	
1,1-Dichloroethene	49.3	48.2		ug/Kg		98	59 - 125	
1,2,4- I richlorobenzene	49.3	44.9		ug/Kg		91	64 - 120	
1,2-Dibromo-3-Chloropropane	49.3	39.0		ug/Kg		79	63 - 124	
1,2-Dichlorobenzene	49.3	45.8		ug/Kg		93	75 - 120	
1,2-Dichloroethane	49.3	43.0		ug/Kg		87	77 _ 122	
1,2-Dichloropropane	49.3	41.4		ug/Kg		84	75 ₋ 124	
1,3-Dichlorobenzene	49.3	45.1		ug/Kg		91	74 - 120	
1,4-Dichlorobenzene	49.3	44.9		ug/Kg		91	73 - 120	
2-Butanone (MEK)	247	225		ug/Kg		91	70 - 134	
2-Hexanone	247	208		ug/Kg		84	59 ₋ 130	
4-Methyl-2-pentanone (MIBK)	247	206		ug/Kg		84	65 - 133	
Acetone	247	288		ug/Kg		117	61 - 137	
Benzene	49.3	45.5		ug/Kg		92	79 - 127	
Bromodichloromethane	49.3	45.0		ug/Kg		91	80 - 122	
Bromoform	49.3	48.4		ug/Kg		98	68 - 126	
Bromomethane	49.3	47.9		ug/Kg		97	37 _ 149	
Carbon disulfide	49.3	45.1		ug/Kg		91	64 - 131	
Carbon tetrachloride	49.3	49.8		ug/Kg		101	75 _ 135	
Chlorobenzene	49.3	45.8		ug/Kg		93	76 - 124	
Dibromochloromethane	49.3	48.8		ug/Kg		99	76 - 125	
Chloroethane	49.3	50.1		ug/Kg		102	69 - 135	
Chloroform	49.3	46.3		ug/Kg		94	80 - 118	
Chloromethane	49.3	46.0		ug/Kg		93	63 - 127	
cis-1,2-Dichloroethene	49.3	45.8		ug/Kg		93	81 - 117	
cis-1,3-Dichloropropene	49.3	42.3		ug/Kg		86	82 _ 120	
Cyclohexane	49.3	45.9		ug/Kg		93	65 - 106	
Dichlorodifluoromethane	49.3	47.1		ug/Kg		96	57 _ 142	
Ethylbenzene	49.3	46.2		ug/Kg		94	80 - 120	
1,2-Dibromoethane	49.3	44.6		ug/Kg		90	78 - 120	
Isopropylbenzene	49.3	43.9		ug/Kg		89	72 - 120	
Methyl acetate	247	208		ug/Kg		84	55 - 136	
Methyl tert-butyl ether	49.3	44.2		ug/Kg		90	63 - 125	
Methylcyclohexane	49.3	47.6		ug/Kg		97	60 - 140	
Methylene Chloride	49.3	43.4		ug/Kg		88	61 - 127	
Styrene	49.3	44.5		ug/Kq		90	80 - 120	
Tetrachloroethene	49.3	50,2		uq/Ka		102	74 - 122	
Toluene	49.3	45.9		uq/Ka		93		
trans-1.2-Dichloroethene	49.3	47.1		ua/Ka		96	78 - 126	

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-296 Matrix: Solid Analysis Batch: 296128	125/1-A						Client	Sample	ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 296125
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
trans-1,3-Dichloropropene			49.3	43.4		ug/Kg		88	73 - 123
Trichloroethene			49.3	44.6		ug/Kg		90	77 _ 129
Trichlorofluoromethane			49.3	53.0		ug/Kg		107	65 - 146
Vinyl chloride			49.3	51.4		ug/Kg		104	61 - 133
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		71 - 125
1,2-Dichloroethane-d4 (Surr)	90		64 - 126
4-Bromofluorobenzene (Surr)	110		72 - 126
Dibromofluoromethane (Surr)	98		60 - 140

Lab Sample ID: 480-98326-4 MS Matrix: Solid

Analysis Batch: 296128

Client Sample ID: TKMW-8 (5.5-7.5')

Prep

	•		
Type:	Total	/NA	

Prep Batch: 296125	
Rec.	

5

8

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND	·	58.0	55.8		ug/Kg	<u> </u>	96	77 _ 121	
1,1,2,2-Tetrachloroethane	ND	F1	58.0	34.1	F1	ug/Kg	¢	59	80 - 120	
1,1,2-Trichloroethane	ND	F1	58.0	41.3	F1	ug/Kg	¢	71	78 ₋ 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		58.0	61.1		ug/Kg	¢	105	60 - 140	
ne										
1,1-Dichloroethane	ND		58.0	50.2		ug/Kg	¢	86	73 ₋ 126	
1,1-Dichloroethene	ND		58.0	55.7		ug/Kg	¢	96	59 - 125	
1,2,4-Trichlorobenzene	ND	F1	58.0	40.0		ug/Kg	₽	69	64 _ 120	
1,2-Dibromo-3-Chloropropane	ND	F1	58.0	26.7	F1	ug/Kg	₽	46	63 - 124	
1,2-Dichlorobenzene	ND		58.0	45.9		ug/Kg	¢	79	75 ₋ 120	
1,2-Dichloroethane	ND	F1	58.0	43.9	F1	ug/Kg	\$	76	77 _ 122	
1,2-Dichloropropane	ND		58.0	45.2		ug/Kg	☆	78	75 - 124	
1,3-Dichlorobenzene	ND		58.0	47.3		ug/Kg	₽	82	74 - 120	
1,4-Dichlorobenzene	ND		58.0	46.8		ug/Kg	÷.	81	73 - 120	
2-Butanone (MEK)	ND	F1	290	147	F1	ug/Kg	¢	51	70 ₋ 134	
2-Hexanone	ND	F1	290	146	F1	ug/Kg	☆	50	59 ₋ 130	
4-Methyl-2-pentanone (MIBK)	ND	F1	290	155	F1	ug/Kg	☆	54	65 - 133	
Acetone	ND		290	177		ug/Kg	☆	61	61 - 137	
Benzene	ND		58.0	51.0		ug/Kg	☆	88	79 - 127	
Bromodichloromethane	ND		58.0	48.5		ug/Kg	₩	84	80 - 122	
Bromoform	ND		58.0	41.3		ug/Kg	¢	71	68 ₋ 126	
Bromomethane	ND		58.0	56.7		ug/Kg	₽	98	37 - 149	
Carbon disulfide	ND		58.0	51.3		ug/Kg	☆	88	64 - 131	
Carbon tetrachloride	ND		58.0	57.5		ug/Kg	₽	99	75 - 135	
Chlorobenzene	ND		58.0	50.2		ug/Kg	₽	87	76 ₋ 124	
Dibromochloromethane	ND		58.0	48.1		ug/Kg	÷.	83	76 ₋ 125	
Chloroethane	ND		58.0	58.6		ug/Kg	¢	101	69 ₋ 135	
Chloroform	ND		58.0	52.3		ug/Kg	¢	90	80 ₋ 118	
Chloromethane	ND		58.0	51.4		ug/Kg	¢	89	63 - 127	
cis-1,2-Dichloroethene	ND		58.0	51.6		ug/Kg	₽	89	81 - 117	
cis-1,3-Dichloropropene	ND	F1	58.0	43.3	F1	ug/Kg	¢	75	82 - 120	
Cyclohexane	ND		58.0	49.1		ug/Kg	₽	85	65 ₋ 106	

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-98326-4 MS							Clie	ent Sam	ple ID: TKMW-8 (5.5-7.5')
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 296128	Somela	Samula	Spike	ме	Me				Prep Batch: 296125
• • •	Sample	Sample	Бріке	11/15	WI5		_	a/ B	%Rec.
	Result	Qualifier	Added	Result	Qualifier		<u> </u>	%Rec	
Dichlorodifluoromethane	ND		58.0	54.0		ug/Kg	÷	93	57 - 142
Ethylbenzene	ND		58.0	51.7		ug/Kg	₽ 	89	80 - 120
1,2-Dibromoethane	ND	F1	58.0	40.9	F1	ug/Kg	¢	71	78 - 120
Isopropylbenzene	ND		58.0	49.0		ug/Kg	¢	84	72 - 120
Methyl acetate	ND	F1	290	152	F1	ug/Kg	¢	52	55 - 136
Methyl tert-butyl ether	ND		58.0	42.0		ug/Kg	₽	72	63 - 125
Methylcyclohexane	ND		58.0	49.5		ug/Kg	¢	85	60 - 140
Methylene Chloride	4.1	J	58.0	52.8		ug/Kg	¢	84	61 - 127
Styrene	ND	F1	58.0	47.9		ug/Kg	₽	83	80 - 120
Tetrachloroethene	ND		58.0	56.0		ug/Kg	¢	97	74 - 122
Toluene	ND		58.0	51.0		ug/Kg	¢	88	74 - 128
trans-1,2-Dichloroethene	ND		58.0	54.1		ug/Kg	₽	93	78 - 126
trans-1,3-Dichloropropene	ND		58.0	42.6		ug/Kg	₽	73	73 - 123
Trichloroethene	ND		58.0	49.9		ug/Kg	¢	86	77 - 129
Trichlorofluoromethane	ND		58.0	63.8		ug/Kg	₽	110	65 - 146
Vinyl chloride	ND		58.0	56.6		ug/Kg	¢	98	61 - 133
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Toluene-d8 (Surr)	98		71 _ 125						
1,2-Dichloroethane-d4 (Surr)	78		64 - 126						
4-Bromofluorobenzene (Surr)	107		72 - 126						
Dibromofluoromethane (Surr)	94		60 - 140						

Lab Sample ID: 480-98326-4 MSD Matrix: Solid Analysis Batch: 296128

Client Sample ID: TKMW-8 (5.5-7.5')

Prep Type: Total/NA

Analysis Batch: 296128									Prep	Batch: 2	96125
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		57.9	54.8		ug/Kg	\\\\	95	77 _ 121	2	30
1,1,2,2-Tetrachloroethane	ND	F1	57.9	36.5	F1	ug/Kg	¢	63	80 - 120	7	30
1,1,2-Trichloroethane	ND	F1	57.9	42.0	F1	ug/Kg	¢	73	78 - 122	2	30
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		57.9	58.6		ug/Kg	\$	101	60 _ 140	4	30
1,1-Dichloroethane	ND		57.9	50.4		ug/Kg	¢	87	73 - 126	0	30
1,1-Dichloroethene	ND		57.9	54.2		ug/Kg	¢	94	59 - 125	3	30
1,2,4-Trichlorobenzene	ND	F1	57.9	35.0	F1	ug/Kg	¢	60	64 - 120	14	30
1,2-Dibromo-3-Chloropropane	ND	F1	57.9	28.4	F1	ug/Kg	¢	49	63 - 124	6	30
1,2-Dichlorobenzene	ND		57.9	44.9		ug/Kg	¢	77	75 - 120	2	30
1,2-Dichloroethane	ND	F1	57.9	45.5		ug/Kg	¢	79	77 _ 122	4	30
1,2-Dichloropropane	ND		57.9	44.9		ug/Kg	¢	78	75 - 124	0	30
1,3-Dichlorobenzene	ND		57.9	45.8		ug/Kg	¢	79	74 - 120	3	30
1,4-Dichlorobenzene	ND		57.9	45.3		ug/Kg	¢	78	73 - 120	3	30
2-Butanone (MEK)	ND	F1	290	163	F1	ug/Kg	¢	56	70 - 134	11	30
2-Hexanone	ND	F1	290	164	F1	ug/Kg	₽	57	59 - 130	12	30
4-Methyl-2-pentanone (MIBK)	ND	F1	290	168	F1	ug/Kg	¢	58	65 - 133	8	30
Acetone	ND		290	199		ug/Kg	¢	69	61 - 137	12	30
Benzene	ND		57.9	51.0		ug/Kg	¢	88	79 - 127	0	30
Bromodichloromethane	ND		57.9	49.2		ug/Kg	¢	85	80 - 122	1	30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-98326-4 MSD							Clie	ent Sam	ple ID: TKN	/W-8 (5.	5-7.5')
Matrix: Solid									Prep T	ype: Tot	al/NA
Analysis Batch: 296128									Prep I	Batch: 2	96125
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromoform	ND		57.9	41.8		ug/Kg	<u></u>	72	68 - 126	1	30
Bromomethane	ND		57.9	57.2		ug/Kg	☆	99	37 _ 149	1	30
Carbon disulfide	ND		57.9	50.1		ug/Kg	¢	87	64 - 131	2	30
Carbon tetrachloride	ND		57.9	55.8		ug/Kg	☆	96	75 - 135	3	30
Chlorobenzene	ND		57.9	48.3		ug/Kg	⇔	83	76 - 124	4	30
Dibromochloromethane	ND		57.9	47.8		ug/Kg	\$	83	76 - 125	1	30
Chloroethane	ND		57.9	58.9		ug/Kg	⇔	102	69 _ 135	1	30
Chloroform	ND		57.9	52.6		ug/Kg	⇔	91	80 - 118	1	30
Chloromethane	ND		57.9	51.5		ug/Kg	\$	89	63 - 127	0	30
cis-1,2-Dichloroethene	ND		57.9	50.9		ug/Kg	₽	88	81 - 117	1	30
cis-1,3-Dichloropropene	ND	F1	57.9	43.3	F1	ug/Kg	¢	75	82 - 120	0	30
Cyclohexane	ND		57.9	46.7		ug/Kg	\$	81	65 _ 106	5	30
Dichlorodifluoromethane	ND		57.9	56.1		ug/Kg	⇔	97	57 _ 142	4	30
Ethylbenzene	ND		57.9	49.1		ug/Kg	₽	85	80 - 120	5	30
1,2-Dibromoethane	ND	F1	57.9	41.4	F1	ug/Kg	\$	71	78 - 120	1	30
Isopropylbenzene	ND		57.9	48.2		ug/Kg	¢	83	72 - 120	1	30
Methyl acetate	ND	F1	290	166		ug/Kg	¢	57	55 _ 136	9	30
Methyl tert-butyl ether	ND		57.9	44.2		ug/Kg	¢	76	63 - 125	5	30
Methylcyclohexane	ND		57.9	46.0		ug/Kg	¢	79	60 - 140	7	30
Methylene Chloride	4.1	J	57.9	53.6		ug/Kg	₽	86	61 - 127	1	30
Styrene	ND	F1	57.9	45.3	F1	ug/Kg	¢	78	80 - 120	5	30
Tetrachloroethene	ND		57.9	52.8		ug/Kg	¢	91	74 - 122	6	30
Toluene	ND		57.9	49.2		ug/Kg	¢	85	74 - 128	3	30
trans-1,2-Dichloroethene	ND		57.9	52.7		ug/Kg	¢	91	78 - 126	3	30
trans-1,3-Dichloropropene	ND		57.9	42.2		ug/Kg	¢	73	73 - 123	1	30
Trichloroethene	ND		57.9	48.7		ug/Kg	₽	84	77 - 129	2	30
Trichlorofluoromethane	ND		57.9	62.1		ug/Kg	¢	107	65 _ 146	3	30
Vinyl chloride	ND		57.9	57.1		ug/Kg	₽	99	61 - 133	1	30

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		71 - 125
1,2-Dichloroethane-d4 (Surr)	86		64 - 126
4-Bromofluorobenzene (Surr)	111		72 - 126
Dibromofluoromethane (Surr)	103		60 - 140

Lab Sample ID: 480-98326-1 MS Matrix: Solid Analysis Batch: 296925

Client Sample ID: TKMW-5 (9-11')
Prep Type: Tot	al/NA

Prep Batch: 296922

Analysis Baton. Loose									1100 0	
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND	F1	2860	3830	F1	ug/Kg	<u>*</u>	134	64 _ 116	
1,1,2,2-Tetrachloroethane	ND		2860	2200		ug/Kg	⇔	77	75 ₋ 120	
1,1,2-Trichloroethane	ND		2860	3130		ug/Kg	₽	109	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	F1	2860	3910	F1	ug/Kg	¢	137	40 - 120	
ne										
1,1-Dichloroethane	ND		2860	3560		ug/Kg	☆	124	82 - 138	
1,1-Dichloroethene	ND		2860	3950		ug/Kg	¢	138	50 _ 147	
1,2,4-Trichlorobenzene	ND		2860	2310		ug/Kg	¢	81	40 - 160	

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-98326-1 MS Matrix: Solid							С	lient Sa	mple ID: TKMW-5 (9-11') Prep Type: Total/NA	
Analysis Batch: 296925									Prep Batch: 296922	5
	Sample	Sample	Spike	MS	MS		_		%Rec.	J
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromo-3-Chloropropane	ND		2860	2900		ug/Kg	-Q-	101	60 - 110	
1,2-Dichlorobenzene	ND		2860	3170		ug/Kg	æ	111	80 - 132	
1,2-Dichloroethane	ND		2860	2930		ug/Kg	₩ ₩	103	78 - 129	
1,2-Dichloropropane	ND		2860	3510		ug/Kg	¢	123	76 - 125	
1,3-Dichlorobenzene	ND		2860	3320		ug/Kg	¢	116	63 - 134	8
1,4-Dichlorobenzene	ND		2860	3290		ug/Kg	¢	115	60 - 134	
2-Butanone (MEK)	ND		14300	12600		ug/Kg	¢	88	54 - 149	9
2-Hexanone	ND		14300	13900		ug/Kg	¢	97	70 _ 127	
4-Methyl-2-pentanone (MIBK)	ND		14300	13500		ug/Kg	¢	95	74 - 120	
Acetone	ND		14300	12400		ug/Kg	¢	87	47 _ 141	
Benzene	ND		2860	3530		ug/Kg	₽	124	77 _ 125	
Bromodichloromethane	ND		2860	3300		ug/Kg	\$	115	71 ₋ 121	
Bromoform	ND		2860	2890		ug/Kg	¢	101	48 - 125	
Bromomethane	ND		2860	2500		ug/Kg	₽	87	39 - 149	
Carbon disulfide	ND		2860	3710		ug/Kg	÷ · · · · · · · · · · · · · · · · · · ·	130	40 - 136	
Carbon tetrachloride	ND		2860	3790		ug/Kg	¢	133	54 - 135	13
Chlorobenzene	ND		2860	3480		ug/Kg	¢	122	76 - 126	
Dibromochloromethane	ND		2860	3260		ug/Kg		114	64 - 118	
Chloroethane	ND		2860	2560		ua/Ka	⇔	90	23 - 164	
Chloroform	ND	F1	2860	3540	F1	ua/Ka	¢	124	78 - 118	
Chloromethane	ND		2860	3040		ua/Ka	с	106	61 - 124	
cis-1 2-Dichloroethene	ND		2860	3440		ua/Ka	¢	121	79 - 124	
cis-1 3-Dichloropropene	ND		2860	3400		ua/Ka	¢	119	75 - 121	
Cyclohexane	ND	F1	2860	3990	F1	ua/Ka		140	49 129	
Dichlorodifluoromethane	ND	F2	2860	2900		ug/Kg	¢	102	10 150	
Ethylbenzene		F1	2860	3500	⊑1	ug/Ka	ġ	126	78 124	
1 2-Dibromoethane			2860	2000		ug/Kg		102	81 119	
Isopropylhenzene		⊑1	2860	3660	F1	ug/Kg	ä	128	76 119	
Methyl acetate			14300	14400		ug/Kg		101	70 - 113	
Methyl tort butul other			2960	2000		ug/Kg		101	67 127	
Methylevelebovene		F 4	2000	3000	F 1	ug/Kg	т т	105	67 - 137 50 - 130	
Methylone Chloride	ND 50		2000	3000		ug/Kg	~ **	135	50 - 150 75 110	
	00		2000	3440		ug/Kg	·····	119	75 - 116	
	ND	F1	2860	3620	F1	ug/Kg	**	127	04 - 119	
	ND	-	2860	3610	-	ug/Kg	*	127	73 - 133	
loluene	ND	F1	2860	3590	F1	ug/Kg		126	75 - 124	
trans-1,2-Dichloroethene	ND		2860	3640		ug/Kg	÷4:	127	74 - 129	
trans-1,3-Dichloropropene	ND		2860	3320		ug/Kg	44 14	116	73 - 118	
Trichloroethene	ND	F1	2860	3760	F1	ug/Kg	÷¢:	132	75 - 131	
Irichlorofluoromethane	ND		2860	3710		ug/Kg	æ 	130	29 - 158	
Vinyl chloride	ND		2860	3380		ug/Kg	¢	118	59 - 124	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Toluene-d8 (Surr)	96		50 - 149							
1,2-Dichloroethane-d4 (Surr)	85		53 - 146							
4-Bromofluorobenzene (Surr)	104		49 - 148							
Dibromofluoromethane (Surr)	92		60 - 140							

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-98326-1 MSD Matrix: Solid							C	lient Sa	mple ID: T Prep T	KMW-5 (ype: Tot	9-11') al/NA
Analysis Batch: 296925									Prep I	Batch: 2	96922
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND	F1	2840	3760	F1	ug/Kg	<u> </u>	132	64 - 116	2	20
1,1,2,2-Tetrachloroethane	ND		2840	2140		ug/Kg	¢	75	75 _ 120	3	20
1,1,2-Trichloroethane	ND		2840	3060		ug/Kg	¢	108	70 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	F1	2840	3590	F1	ug/Kg	¢	126	40 _ 120	8	20
ne											
1,1-Dichloroethane	ND		2840	3520		ug/Kg	¢	124	82 - 138	1	20
1,1-Dichloroethene	ND		2840	3760		ug/Kg	¢	132	50 - 147	5	20
1,2,4-Trichlorobenzene	ND		2840	2100		ug/Kg	¢	74	40 - 160	10	20
1,2-Dibromo-3-Chloropropane	ND		2840	2890		ug/Kg	¢	102	60 _ 110	0	20
1,2-Dichlorobenzene	ND		2840	3040		ug/Kg	⇔	107	80 - 132	4	20
1,2-Dichloroethane	ND		2840	2950		ug/Kg	\$	104	78 _ 129	1	20
1,2-Dichloropropane	ND		2840	3380		ug/Kg	¢	119	76 - 125	4	20
1,3-Dichlorobenzene	ND		2840	3300		ug/Kg	¢	116	63 - 134	1	20
1,4-Dichlorobenzene	ND		2840	3220		ug/Kg	¢	113	60 - 134	2	20
2-Butanone (MEK)	ND		14200	12400		ug/Kg	¢	87	54 ₋ 149	1	20
2-Hexanone	ND		14200	13500		ug/Kg	¢	95	70 ₋ 127	3	20
4-Methyl-2-pentanone (MIBK)	ND		14200	13600		ua/Ka		96	74 - 120		20
Acetone	ND		14200	13100		ua/Ka	¢	92	47 _ 141	5	20
Benzene	ND		2840	3370		ua/Ka	¢	119	77 125	4	_0 20
Bromodichloromethane			2840	3270		ug/Kg		115	71 121		20
Bromoform			2840	2850		ug/Kg	ä	100	/1 - 121	2	20
Bromomothana			2040	2000		ug/Kg	ö	75	20 140	16	20
			2040	2120		ug/Kg		104	39 - 149 40 - 126		20
			2040	3530		ug/Kg	~~ .~.	124	40 - 130	5	20
	ND		2640	3760		ug/Kg	*	132	54 - 155 70 - 100	1	20
Chlorobenzene	ND		2840	3360		ug/Kg	**	118	/6 - 126	3	20
Dibromochloromethane	ND		2840	3200		ug/Kg	**	113	64 - 118	2	20
Chloroethane	ND		2840	2210		ug/Kg	т. Ф	78	23 - 164	15	20
Chloroform	ND	F1	2840	3490	F1	ug/Kg	£₽ 	123	78 - 118	2	20
Chloromethane	ND		2840	2530		ug/Kg	\$	89	61 - 124	18	20
cis-1,2-Dichloroethene	ND		2840	3460		ug/Kg	\$	122	79 - 124	0	20
cis-1,3-Dichloropropene	ND		2840	3330		ug/Kg	¢	117	75 _ 121	2	20
Cyclohexane	ND	F1	2840	3780	F1	ug/Kg	¢	133	49 - 129	5	20
Dichlorodifluoromethane	ND	F2	2840	1990	F2	ug/Kg	¢	70	10 _ 150	37	20
Ethylbenzene	ND	F1	2840	3550	F1	ug/Kg	¢	125	78 - 124	1	20
1,2-Dibromoethane	ND		2840	2900		ug/Kg	¢	102	81 _ 119	0	20
Isopropylbenzene	ND	F1	2840	3650	F1	ug/Kg	¢	128	76 ₋ 119	0	20
Methyl acetate	ND		14200	14100		ug/Kg	¢	99	71 - 123	2	20
Methyl tert-butyl ether	ND		2840	3000		ug/Kg	¢	106	67 _ 137	0	20
Methylcyclohexane	ND	F1	2840	3760	F1	ug/Kg	⇔	132	50 _ 130	3	20
Methylene Chloride	50	JBF1	2840	3440	F1	ug/Kg	⇔	119	75 - 118	0	20
Styrene	ND	F1	2840	3480	F1	ug/Kg	₩	123	84 _ 119	4	20
Tetrachloroethene	ND		2840	3440		ua/Ka	¢	121	73 - 133	5	20
Toluene	ND	F1	2840	3470		uq/Ka	¢	122	75 - 124	4	20
trans-1.2-Dichloroethene	ND		2840	3530		ua/Ka	 ¢	124	74 - 129	3	20
trans-1.3-Dichloropropene	ND		2840	3210		ua/Ka	₽	113	73 _ 118	3	20
Trichloroethene		F1	2840	3730		∽a⁄rsa ⊔a/Ka	¢	131	75 - 131	1	20
Trichlorofluoromethane			2840	3120		ug/Ka		112	29 158	15	20
Vinyl chloride			2840	3150		ug/Kg	¤	111	59 124	7	20
this onondo			2070	5150		uging			00 - 127	'	20

Lab Sample ID: 480-98326-1 MSD

. .

Matrix: Solid

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: TKMW-5 (9-11')

Prep Type: Total/NA

1 2 3 4 5 6 7 8 9 10

 $\begin{array}{c} - \\ \mathbf{k} \\ \mathbf{A} \\ \mathbf{2} \\ \mathbf{2} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array}$

12 13 14

Analysis Batch: 296925								Prep Batch	: 296922
	MSD I	NSD							
Surrogate	%Recovery	Qualifier	Limits						
Toluene-d8 (Surr)	96		50 - 149						
1,2-Dichloroethane-d4 (Surr)	87		53 - 146						
4-Bromofluorobenzene (Surr)	102		49 - 148						
Dibromofluoromethane (Surr) -	93		60 - 140						
/lethod: 8270D - Semivo	latile Organic	Compou	nds (GC/MS	5)					
Lab Sample ID: MB 480-296 Matrix: Solid	082/1-A						Client Sa	mple ID: Metho Prep Type: 1	od Blank Fotal/NA
Analysis Batch: 296357								Prep Batch	296082
	1	МВ МВ							
Analyte	Res	ult Qualifier	R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl		ND	17	0 25	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
bis (2-chloroisopropyl) ether		ND	17	0 33	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2,4,5-Trichlorophenol		ND	17	0 45	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2,4,6-Trichlorophenol		ND	17	0 33	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2,4-Dichlorophenol		ND	17	0 18	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2,4-Dimethylphenol		ND	17	0 40	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2,4-Dinitrophenol		ND	160	0 770	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2,4-Dinitrotoluene		ND	17	0 34	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2,6-Dinitrotoluene		ND	17	0 20	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2-Chloronaphthalene		ND	17	0 28	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2-Chlorophenol		ND	17	0 30	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2-Methylphenol		ND	17	0 20	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2-Methylnaphthalene		ND	17	0 33	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2-Nitroaniline		ND	32	0 25	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
2-Nitrophenol		ND	17	0 47	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
3.3'-Dichlorobenzidine		ND	32	0 200	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
3-Nitroaniline		ND	32	0 46	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
4.6-Dinitro-2-methylphenol		ND	32	0 170	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
4-Bromophenyl phenyl ether		ND		0 24	ug/Kg		04/15/16 07:29	04/16/16 20:44	
4-Chloro-3-methylphenol		ND	17	0 41	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
4-Chloroaniline		ND	17	0 41	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
4-Chlorophenyl phenyl ether		ND	17	0 21	ug/Kg		04/15/16 07:29	04/16/16 20:44	1
4-Methylphenol		ND	32	0 20	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
4-Nitroaniline		ND	32	0 87	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
4-Nitrophenol		ND	32	0 120	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
Acenaphthene		ND	17	0 25	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
Acenaphthylene		ND	17	0 22	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
Acetophenone		ND	17	0 23	ua/Ka		04/15/16 07:29	04/16/16 20:44	
Anthracene		ND	17	0 41	ug/Ka		04/15/16 07:29	04/16/16 20:44	1
Atrazine		ND	17	0 58	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
Benzaldehvde		ND	17	0 130	ua/Ka		04/15/16 07:29	04/16/16 20:44	
Benzolalanthracene		ND	17	0 17	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
Benzolalpyrene		ND	17	0 25	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
Benzolblfluoranthene		ND	17	0 27	ua/Ka		04/15/16 07:29	04/16/16 20:44	
Benzola, h.ilpervlene		ND	17	0 18	ua/Ka		04/15/16 07:29	04/16/16 20:44	1
Popzo[k]fluoronthono			17	0 00	······································		04/15/16 07:20	04/40/40 00:44	

RL

170

170

170

170

170

170

MDL Unit

35 ug/Kg

22 ug/Kg

57 ug/Kg

28 ug/Kg

50 ug/Kg

20 ug/Kg

D

Prepared

04/15/16 07:29

04/15/16 07:29

04/15/16 07:29

04/15/16 07:29

04/15/16 07:29

04/15/16 07:29

Lab Sample ID: MB 480-296082/1-A

Matrix: Solid

Analyte

Analysis Batch: 296357

Bis(2-chloroethoxy)methane

Bis(2-ethylhexyl) phthalate

Bis(2-chloroethyl)ether

Butyl benzyl phthalate

Caprolactam

Carbazole

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

ND

ND

ND

ND

ND

Result Qualifier

Client Sample ID: Method Blank

Analyzed

04/16/16 20:44

04/16/16 20:44

04/16/16 20:44

04/16/16 20:44

04/16/16 20:44

04/16/16 20:44

Prep Type: Total/NA

Prep Batch: 296082

Dil Fac

1

1

1

1

1

1

5

8

	9		

Surrogate	ND <i>MB</i> %Recovery	MB Qualifier	170 <i>Limits</i>	20	ug/Kg	Prepared	Analyzed	Dil Fac
	ND		170	20	ug/Kg	04/15/10 07.29	04/10/10 20.44	1
	ND		170	20	ug/Kg	04/15/10 07.29	04/10/10 20.44	1
Pyrene			170	00		04/15/16 07:20	04/16/16 20:44	4
Phenol	ND		170	26	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Phenanthrene	ND		170	25	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Pentachlorophenol	ND		320	170	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Nitrobenzene	ND		170	19	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Naphthalene	ND		170	22	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
N-Nitrosodi-n-propylamine	ND		170	28	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Isophorone	ND		170	35	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Indeno[1,2,3-cd]pyrene	ND		170	21	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Hexachloroethane	ND		170	22	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Hexachlorobutadiene	ND		170	25	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Hexachlorobenzene	ND		170	23	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Fluorene	ND		170	20	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Fluoranthene	ND		170	18	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Dimethyl phthalate	ND		170	20	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Diethyl phthalate	ND		170	22	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Dibenzofuran	ND		170	20	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Di-n-octyl phthalate	ND		170	20	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Di-n-butyl phthalate	ND		170	28	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Dibenz(a,h)anthracene	ND		170	29	ug/Kg	04/15/16 07:29	04/16/16 20:44	1
Chrysene	ND		170	37	ug/Kg	04/15/16 07:29	04/16/16 20:44	1

Surrogate	%Recovery	Qualifier I	limits	F	repared	Analyzed	DII Fa
Nitrobenzene-d5 (Surr)	85	3	4 - 132	04/1	15/16 07:29	04/16/16 20:44	
Phenol-d5 (Surr)	78	1	1 - 120	04/1	15/16 07:29	04/16/16 20:44	
p-Terphenyl-d14 (Surr)	93	6	5 - 153	04/1	15/16 07:29	04/16/16 20:44	
2,4,6-Tribromophenol (Surr)	83	3	9 - 146	04/1	15/16 07:29	04/16/16 20:44	
2-Fluorobiphenyl	85	3	87 - 120	04/1	15/16 07:29	04/16/16 20:44	
2-Fluorophenol (Surr)	77	1	8 - 120	04/1	15/16 07:29	04/16/16 20:44	

Lab Sample ID: LCS 480-296082/2-A Matrix: Solid Analysis Batch: 296357

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Biphenyl	1660	1420		ug/Kg	_	85	71 _ 120	
bis (2-chloroisopropyl) ether	1660	1290		ug/Kg		78	44 _ 120	
2,4,5-Trichlorophenol	1660	1490		ug/Kg		90	59 ₋ 126	
2,4,6-Trichlorophenol	1660	1470		ug/Kg		88	59 ₋ 123	
2,4-Dichlorophenol	1660	1470		ug/Kg		88	52 - 120	

TestAmerica Buffalo

Prep Type: Total/NA

Prep Batch: 296082

Client Sample ID: Lab Control Sample

8

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-296082/2-A	Client Sample ID: Lab Contro								
Matrix: Solid							Prep Typ	e: Total/NA	
Analysis Batch: 296357							Prep Ba	tch: 296082	
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
2,4-Dimethylphenol	1660	1500		ug/Kg		90	36 - 120		
2,4-Dinitrophenol	3320	2920		ug/Kg		88	35 ₋ 146		
2,4-Dinitrotoluene	1660	1620		ug/Kg		98	55 ₋ 125		
2,6-Dinitrotoluene	1660	1520		ug/Kg		91	66 - 128		
2-Chloronaphthalene	1660	1430		ug/Kg		86	57 ₋ 120		
2-Chlorophenol	1660	1410		ug/Kg		85	38 - 120		
2-Methylphenol	1660	1460		ug/Kg		88	48 ₋ 120		
2-Methylnaphthalene	1660	1460		ug/Kg		88	47 - 120		
2-Nitroaniline	1660	1480		ug/Kg		89	61 - 130		
2-Nitrophenol	1660	1440		ug/Kg		87	50 ₋ 120		
3,3'-Dichlorobenzidine	3320	2450		ug/Kg		74	48 - 126		
3-Nitroaniline	1660	1130		ug/Kg		68	61 - 127		
4,6-Dinitro-2-methylphenol	3320	2960		ug/Kg		89	49 ₋ 155		
4-Bromophenyl phenyl ether	1660	1620		ug/Kg		97	58 ₋ 131		
4-Chloro-3-methylphenol	1660	1610		ug/Kg		97	49 ₋ 125		
4-Chloroaniline	1660	881		ug/Kg		53	49 - 120		
4-Chlorophenyl phenyl ether	1660	1530		ug/Kg		92	63 ₋ 124		
4-Methylphenol	1660	1470		ug/Kg		89	50 ₋ 119		
4-Nitroaniline	1660	1400		ug/Kg		84	63 - 128		
4-Nitrophenol	3320	3470		ug/Kg		104	43 ₋ 137		
Acenaphthene	1660	1510		uq/Kq		91	53 ₋ 120		
Acenaphthylene	1660	1460		ug/Kg		88	58 - 121		
Acetophenone	1660	1500		ug/Kg		90	66 - 120		
Anthracene	1660	1490		ua/Ka		90	62 - 129		
Atrazine	3320	3150		ua/Ka		95	60 - 164		
Benzaldehvde	3320	1650		ua/Ka		50	21 - 120		
Benzolalanthracene	1660	1580		ua/Ka		95	65 - 133		
Benzolalpyrene	1660	1510		ua/Ka		91	64 - 127		
Benzo[h]fluoranthene	1660	1590		ua/Ka		96	64 135		
Benzola h ilpervlene	1660	1290		ug/Kg		77	50 152		
Benzo[k]fluoranthene	1660	1580		ug/Kg		95	58 138		
Bis(2-chloroethoxy)methane	1660	1450		ug/Kg		87	61 133		
Bis(2-chloroethyl)ether	1660	1400		ug/Kg		84	45 120		
Bis(2-ethylbeyd) phthalate	1660	1710		ug/Kg		103	61 133		
Butyl benzyl phthalate	1660	1710		ug/Kg		103	61 120		
	3320	3100		ug/Kg		06	54 133		
Carbazolo	1660	1530		ug/Kg		90	59 120		
Chrisene	1660	1530		ug/Kg		92	59 - 129 64 131		
	1000	1010		ug/Kg		91	04 - 131 54 - 149		
	1660	1620		ug/Kg		02	54 - 140		
	1000	1030		ug/Kg		90	50 - 130		
	1660	1580		ug/Kg		95	62 - 133		
	1660	1490		ug/Kg		90	50 - 120		
	1660	1650		ug/Kg		99	00 - 120		
	1660	1580		ug/Kg		95	05 - 124		
Fluorantnene	1660	1480		ug/Kg		89	62 - 131		
Fluorene	1660	1490		ug/Kg		90	63 - 126		
Hexachlorobenzene	1660	1580		ug/Kg		95	60 - 132		
Hexachlorobutadiene	1660	1420		ug/Kg		85	45 _ 120		

Client Sample ID: TKMW-8 (5.5-7.5')

Prep Type: Total/NA

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-2960 Matrix: Solid Analysis Batch: 296357)82/2-A					Client Sample ID: Lab Control Samp Prep Type: Total/N Prep Batch: 2960{				
-			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachlorocyclopentadiene			1660	1370		ug/Kg		82	31 - 120	
Hexachloroethane			1660	1420		ug/Kg		85	41 - 120	
Indeno[1,2,3-cd]pyrene			1660	1350		ug/Kg		81	56 - 149	
Isophorone			1660	1520		ug/Kg		91	56 - 120	
N-Nitrosodi-n-propylamine			1660	1530		ug/Kg		92	46 ₋ 120	
N-Nitrosodiphenylamine			1660	1530		ug/Kg		92	20 - 119	
Naphthalene			1660	1400		ug/Kg		84	46 - 120	
Nitrobenzene			1660	1390		ug/Kg		84	49 - 120	
Pentachlorophenol			3320	2650		ug/Kg		80	33 - 136	
Phenanthrene			1660	1480		ug/Kg		89	60 - 130	
Phenol			1660	1490		ug/Kg		90	36 - 120	
Pyrene			1660	1750		ug/Kg		105	51 - 133	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	86		34 - 132
Phenol-d5 (Surr)	85		11 - 120
p-Terphenyl-d14 (Surr)	102		65 - 153
2,4,6-Tribromophenol (Surr)	95		39 - 146
2-Fluorobiphenyl	86		37 - 120
2-Fluorophenol (Surr)	80		18 - 120

Lab Sample ID: 480-98326-4 MS Matrix: Solid Analysis Batch: 296357

Analysis Batch: 296357									Prep Batch: 296082
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Biphenyl	ND		1970	1720		ug/Kg	¢	87	71 - 120
bis (2-chloroisopropyl) ether	ND		1970	1500		ug/Kg	¢	76	44 - 120
2,4,5-Trichlorophenol	ND	F2	1970	1760		ug/Kg	¢	89	59 - 126
2,4,6-Trichlorophenol	ND		1970	1800		ug/Kg	¢	91	59 _ 123
2,4-Dichlorophenol	ND	F2	1970	1800		ug/Kg	¢	91	52 - 120
2,4-Dimethylphenol	ND	F1	1970	1710		ug/Kg	¢	86	36 - 120
2,4-Dinitrophenol	ND		3950	ND		ug/Kg	¢	NC	35 - 146
2,4-Dinitrotoluene	ND		1970	2050		ug/Kg	¢	104	55 - 125
2,6-Dinitrotoluene	ND		1970	1960		ug/Kg	¢	99	66 - 128
2-Chloronaphthalene	ND		1970	1650		ug/Kg	¢	84	57 _ 120
2-Chlorophenol	ND		1970	1670		ug/Kg	¢	85	38 - 120
2-Methylphenol	ND	F1	1970	1740		ug/Kg	¢	88	48 - 120
2-Methylnaphthalene	ND		1970	1870		ug/Kg	¢	95	47 _ 120
2-Nitroaniline	ND	F1 F2	1970	1970	J	ug/Kg	¢	100	61 - 130
2-Nitrophenol	ND		1970	1580		ug/Kg	¢	80	50 - 120
3,3'-Dichlorobenzidine	ND	F1	3950	3340		ug/Kg	¢	85	48 - 126
3-Nitroaniline	ND	F1	1970	1750	J	ug/Kg	₽	89	61 - 127
4,6-Dinitro-2-methylphenol	ND	F2	3950	3440		ug/Kg	₽	87	49 - 155
4-Bromophenyl phenyl ether	ND		1970	1910		ug/Kg	¢	97	58 - 131
4-Chloro-3-methylphenol	ND	F2	1970	1840		ug/Kg	₽	93	49 - 125
4-Chloroaniline	ND	F1	1970	1310		ug/Kg	⇔	66	49 - 120
4-Chlorophenyl phenyl ether	ND		1970	1760		ug/Kg	÷.	89	63 - 124

p-Terphenyl-d14 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-98326-4 MS							Clie	ent Sam	ple ID: TKMW-8 (5.5-7.5')	
									Prep Type: Total/NA	
Analysis Batch: 296357	Comula	Commis	Creika	ме	ме				Prep Batch: 296082	5
Analyta	Booult	Ouglifier	Spike	Beault	Qualifiar	Unit		% Baa	%Rec.	
Analyte	Result		1070	1620	Quaimer			%Rec		
4 Nitroanilina			1970	1750	J	ug/Kg	ř	02	50 - 119	
4-Nitronhonol			1970	1/50	J	ug/Kg	····	00	03 - 120	
		FZ	3950	3000		ug/Kg	~~ .×.	90	43 - 137	
Acenaphthylana		F1 F2	1970	1870		ug/Kg	* *	95	53 - 120	0
Acenaphthylene	ND	FIFZ	1970	1790		ug/Kg	····	91	58 - 121	ð
Acetophenone	ND		1970	1750		ug/Kg	*	89	66 - 120	
Anthracene	ND		1970	1810		ug/Kg	*	92	62 - 129	9
Atrazine	ND	FZ	3950	3940		ug/Kg	·····	100	60 - 164	
Benzaldehyde	ND	50	3950	2390		ug/Kg	*	61	21 - 120	
Benzolajanthracene	ND	F2	1970	2080		ug/Kg		105	65 - 133	
Benzolajpyrene	ND	F1 F2	1970	2010		ug/Kg	÷÷	102	64 - 127	
Benzo[b]fluoranthene	ND	F1 F2	1970	2190		ug/Kg	ф. Д	111	64 - 135	
Benzo[g,h,i]perylene	ND	F1	1970	1960		ug/Kg	÷¢	99	50 - 152	
Benzo[k]fluoranthene	ND	F1 F2	1970	1870		ug/Kg	æ	95	58 - 138	
Bis(2-chloroethoxy)methane	ND		1970	1770		ug/Kg	\$	90	61 - 133	12
Bis(2-chloroethyl)ether	ND		1970	1610		ug/Kg	÷.	82	45 - 120	
Bis(2-ethylhexyl) phthalate	ND		1970	2040		ug/Kg	¢	103	61 - 133	
Butyl benzyl phthalate	ND		1970	1930		ug/Kg	\$	98	61 - 129	
Caprolactam	ND		3950	3980		ug/Kg	\$	101	54 - 133	
Carbazole	ND	F2	1970	1890		ug/Kg	\$	96	59 ₋ 129	
Chrysene	ND	F2	1970	2020		ug/Kg	¢	102	64 - 131	
Dibenz(a,h)anthracene	ND	F1	1970	1830		ug/Kg	¢	93	54 - 148	
Di-n-butyl phthalate	ND		1970	1850		ug/Kg	¢	94	58 - 130	
Di-n-octyl phthalate	ND		1970	1980		ug/Kg	\$	100	62 - 133	
Dibenzofuran	ND		1970	1800		ug/Kg	\$	91	56 - 120	
Diethyl phthalate	ND		1970	1880		ug/Kg	¢	95	66 - 126	
Dimethyl phthalate	ND		1970	1870		ug/Kg	¢	95	65 - 124	
Fluoranthene	ND	F1 F2	1970	2600	F1	ug/Kg	¢	132	62 - 131	
Fluorene	ND		1970	1830		ug/Kg	¢	93	63 - 126	
Hexachlorobenzene	ND		1970	1690		ug/Kg	¢	85	60 - 132	
Hexachlorobutadiene	ND		1970	1690		ug/Kg	¢	86	45 - 120	
Hexachlorocyclopentadiene	ND		1970	1600		ug/Kg	¢	81	31 - 120	
Hexachloroethane	ND		1970	1590		ug/Kg		81	41 ₋ 120	
Indeno[1,2,3-cd]pyrene	ND	F1	1970	1900		ug/Kg	¢	96	56 - 149	
Isophorone	ND		1970	1740		ug/Kg	¢	88	56 - 120	
N-Nitrosodi-n-propylamine	ND		1970	1650		ua/Ka		84	46 - 120	
N-Nitrosodiphenvlamine	ND	F1	1970	1790		ua/Ka	¢	91	20 - 119	
Naphthalene	ND		1970	1670		ua/Ka	¢	84	46 - 120	
Nitrobenzene	ND		1970	1680		ua/Ka		85	49 - 120	
Pentachlorophenol	ND	F1	3950	2640		ua/Ka	¢	67	33 136	
Phenanthrene		F2	1970	2180		nu/Ku	¢	110	60 - 130	
Phenol		· -	1970	1750		ug/Kg		20	36 120	
Pyrene			1970	2530		ug/Ka	Å	128	51 133	
- Jone	ND		1370	2000		ugniy		120	01-100	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Nitrobenzene-d5 (Surr)	85		34 - 132							
Phenol-d5 (Surr)	82		11 - 120							

65 - 153

91

Bis(2-ethylhexyl) phthalate

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

	{	3	3	
)		

Lab Sample ID: 480-98326-4 MS Matrix: Solid Analysis Batch: 296357						Clie	ent Sam	ple ID: TKN Prep T Prep I	IW-8 (5. ype: Tot Batch: 2	5-7.5') tal/NA 96082	
-	MS	MS									
Surrogato	WJ %Pecoverv	Nualifier	Limite								
2.4.6-Tribromonbenol (Surr)		Quanner									
2-Eluorobinbenyl	90 86		37 120								
2-Fluorophenol (Surr)	80 80		18 - 120								
 Lab Sample ID: 480-98326-4 MS Matrix: Solid Analysis Batch: 296885	D						Clie	ent Sam	ple ID: TKN Prep T Prep I	1W-8 (5.) ype: Tot 3atch: 2	5-7.5') tal/NA 96082
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Biphenyl	ND		1960	1630		ug/Kg	¢	83	71 - 120	6	20
bis (2-chloroisopropyl) ether	ND		1960	1390		ug/Kg	¢	71	44 _ 120	7	24
2,4,5-Trichlorophenol	ND	F2	1960	1780		ug/Kg	₽ 	91	59 - 126		18
2,4,6-Trichlorophenol	ND		1960	1740		ug/Kg	¢	89	59 _ 123	3	19
2,4-Dichlorophenol	ND	F2	1960	1720		ug/Kg	¢	88	52 _ 120	5	19
2,4-Dimethylphenol	ND	F1	1960	1770		ug/Kg	¢	90	36 - 120	4	42
2,4-Dinitrophenol	ND		3920	ND		ug/Kg	₽	NC	35 - 146	NC	22
2,4-Dinitrotoluene	ND		1960	1970		ug/Kg	¢	100	55 _ 125	4	20
2,6-Dinitrotoluene	ND		1960	1890		ug/Kg	¢	97	66 - 128	3	15
2-Chloronaphthalene	ND		1960	1710		ug/Kg	₽	87	57 _ 120	3	21
2-Chlorophenol	ND		1960	1530		ug/Kg	¢	78	38 - 120	9	25
2-Methylphenol	ND	F1	1960	1660		ug/Kg	¢	85	48 _ 120	5	27
2-Methylnaphthalene	ND		1960	1740		ug/Kg	¢	89	47 _ 120	7	21
2-Nitroaniline	ND	F1 F2	1960	1820	J	ug/Kg	¢	93	61 _ 130	8	15
2-Nitrophenol	ND		1960	1590		ug/Kg	¢	81	50 _ 120	0	18
3,3'-Dichlorobenzidine	ND	F1	3920	3140		ug/Kg	¢	80	48 - 126	6	25
3-Nitroaniline	ND	F1	1960	1620	J	ug/Kg	¢	83	61 _ 127	8	19
4,6-Dinitro-2-methylphenol	ND	F2	3920	3420		ug/Kg	¢	87	49 _ 155	1	15
4-Bromophenyl phenyl ether	ND		1960	1640		ug/Kg	¢	84	58 ₋ 131	15	15
4-Chloro-3-methylphenol	ND	F2	1960	1930		ug/Kg	¢	98	49 _ 125	5	27
4-Chloroaniline	ND	F1	1960	1280		ug/Kg	¢	65	49 - 120	2	22
4-Chlorophenyl phenyl ether	ND		1960	1830		ug/Kg	\$	93	63 _ 124	4	16
4-Methylphenol	ND	F1 F2	1960	1670	J	ug/Kg	¢	85	50 ₋ 119	3	24
4-Nitroaniline	ND	F1	1960	1740	J	ug/Kg	¢	89	63 _ 128	0	24
4-Nitrophenol	ND	F2	3920	3720		ug/Kg	¢	95	43 - 137	2	25
Acenaphthene	ND		1960	1840		ug/Kg	¢	94	53 - 120	2	35
Acenaphthylene	ND	F1 F2	1960	1710		ug/Kg	¢	87	58 _ 121	5	18
Acetophenone	ND		1960	1760		ug/Kg	¢	90	66 - 120	0	20
Anthracene	ND	F1 F2	1960	1770		ug/Kg	¢	90	62 _ 129	3	15
Atrazine	ND	F2	3920	3960		ug/Kg	₽	101	60 - 164	0	20
Benzaldehyde	ND		3920	2340		ug/Kg	¢	60	21 - 120	2	20
Benzo[a]anthracene	ND	F2	1960	1970		ug/Kg	¢	100	65 - 133	5	15
Benzo[a]pyrene	ND	F1 F2	1960	1890		ug/Kg	¢	96	64 - 127	6	15
Benzo[b]fluoranthene	ND	F1 F2	1960	1970		ug/Kg	¢	101	64 - 135	10	15
Benzo[g,h,i]perylene	ND	F1	1960	1880		ug/Kg	¢	96	50 - 152	4	15
Benzo[k]fluoranthene	ND	F1 F2	1960	1930		ug/Kg	₽	98	58 - 138	3	22
Bis(2-chloroethoxy)methane	ND		1960	1640		ug/Kg	¢.	84	61 _ 133	8	17
Bis(2-chloroethyl)ether	ND		1960	1610		ug/Kg	¢	82	45 _ 120	0	21

TestAmerica Buffalo

2

15

₽

102

61 - 133

ug/Kg

2000

1960

ND

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-98326-4 MSD						Client Sample ID: TKMW-8 (5.5-7.5')					
Matrix: Solid									Prep T	ype: Tot	al/NA
Analysis Batch: 296885									Prep I	Batch: 2	96082
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Butyl benzyl phthalate	ND		1960	2090		ug/Kg	\$	107	61 - 129	8	16
Caprolactam	ND		3920	3620		ug/Kg	¢	92	54 - 133	10	20
Carbazole	ND	F2	1960	1810		ug/Kg	¢	92	59 - 129	5	20
Chrysene	ND	F2	1960	2000		ug/Kg	¢	102	64 - 131	1	15
Dibenz(a,h)anthracene	ND	F1	1960	1760		ug/Kg	¢	90	54 - 148	4	15
Di-n-butyl phthalate	ND		1960	1890		ug/Kg	¢	97	58 - 130	3	15
Di-n-octyl phthalate	ND		1960	1940		ug/Kg	¢	99	62 - 133	2	16
Dibenzofuran	ND		1960	1730		ug/Kg	¢	88	56 - 120	4	15
Diethyl phthalate	ND		1960	1900		ug/Kg	¢	97	66 - 126	1	15
Dimethyl phthalate	ND		1960	1860		ug/Kg	¢	95	65 - 124	0	15
Fluoranthene	ND	F1 F2	1960	2570		ug/Kg	¢	131	62 - 131	1	15
Fluorene	ND		1960	1890		ug/Kg	¢	96	63 _ 126	3	15
Hexachlorobenzene	ND		1960	1780		ug/Kg	\$	91	60 - 132	5	15
Hexachlorobutadiene	ND		1960	1930		ug/Kg	¢	98	45 _ 120	13	44
Hexachlorocyclopentadiene	ND		1960	1300		ug/Kg	¢	66	31 _ 120	21	49
Hexachloroethane	ND		1960	1600		ug/Kg	¢	81	41 - 120	0	46
Indeno[1,2,3-cd]pyrene	ND	F1	1960	1870		ug/Kg	¢	95	56 _ 149	2	15
Isophorone	ND		1960	1690		ug/Kg	¢	86	56 - 120	3	17
N-Nitrosodi-n-propylamine	ND		1960	1640		ug/Kg	¢	84	46 - 120	1	31
N-Nitrosodiphenylamine	ND	F1	1960	1650		ug/Kg	¢	84	20 _ 119	8	15
Naphthalene	ND		1960	1730		ug/Kg	¢	88	46 - 120	4	29
Nitrobenzene	ND		1960	1670		ug/Kg	¢	85	49 _ 120	1	24
Pentachlorophenol	ND	F1	3920	2720		ug/Kg	¢	69	33 - 136	3	35
Phenanthrene	ND	F2	1960	2100		ug/Kg	¢	107	60 - 130	4	15
Phenol	ND		1960	1540		ug/Kg	¢	78	36 - 120	13	35
Pyrene	ND		1960	2410		ug/Kg	¢	123	51 - 133	5	35
	MSD	MSD									
Surrogate %	Recovery	Qualifier	Limits								
Nitrobenzene-d5 (Surr)	84		34 - 132								
Phenol-d5 (Surr)	79		11 - 120								
p-Terphenyl-d14 (Surr)	92		65 - 153								
2,4,6-Tribromophenol (Surr)	89		39 - 146								
2-Fluorobiphenyl	85		37 - 120								
2-Fluorophenol (Surr)	76		18 - 120								

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-296273/1-A Matrix: Solid Analysis Batch: 296691							Client Sample ID: Method B Prep Type: Tota Prep Batch: 29				
	MB	MB									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Aluminum	ND		10.3		mg/Kg		04/16/16 08:30	04/19/16 01:03	1		
Antimony	ND		15.5		mg/Kg		04/16/16 08:30	04/19/16 01:03	1		
Arsenic	ND		2.1		mg/Kg		04/16/16 08:30	04/19/16 01:03	1		
Barium	ND		0.52		mg/Kg		04/16/16 08:30	04/19/16 01:03	1		
Beryllium	ND		0.21		mg/Kg		04/16/16 08:30	04/19/16 01:03	1		
Cadmium	ND		0.21		mg/Kg		04/16/16 08:30	04/19/16 01:03	1		

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-296273/1-A

Matrix: Solid

Lead

Magnesium

Manganese

Nickel

Client Sample ID: Method Blank

35.6 - 163. 9

72.5 - 126.

64.4 - 136.

76.3 - 123.

73.2 - 126. 8

9

0

9

104.8

97.6

100.0

116.3

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

8

Analysis Batch: 296691	мр	MD						Prep Batch	: 296273
Analyte	Result	Qualifier	RL	MDL U	Init	DF	Prepared	Analvzed	Dil Fac
Calcium	ND		51.6	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Chromium	ND		0.52	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Cobalt	ND		0.52	r	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Copper	ND		1.0	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Iron	ND		10.3	r	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Lead	ND		1.0	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Magnesium	ND		20.6	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Manganese	ND		0.21	r	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Nickel	ND		5.2	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Potassium	ND		30.9	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Selenium	ND		4.1	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Silver	ND		0.62	r	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Sodium	ND		144	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Thallium	ND		6.2	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Vanadium	ND		0.52	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Zinc	ND		2.1	n	ng/Kg	04/1	16/16 08:30	04/19/16 01:03	1
Analysis Batch: 290091		Spike	LCSSRM		RM	_	~ 5	%Rec.	: 296273
Analyte		Added	Result	Qualifi	er Unit	D	%Rec	Limits	
Aluminum		7930	9326	i	mg/Kg		117.6	39.0 - 161.	
Antimony		105	83.25	i	mg/Kg		79.3	4 20.4 - 254.	
Arsenic		98.5	91.73	1	mg/Kg		93.1	5 69.3 - 145.	
Barium		308	293.0		mg/Kg		95.1	74.0 - 126. 0	
Beryllium		66.0	61.30)	mg/Kg		92.9	73.6 - 126.	
Cadmium		146	144.3	•	mg/Kg		98.9	73.3 - 126. 7	
Calcium		6610	6001		mg/Kg		90.8	74.1 - 125. 9	
Chromium		182	172.9)	mg/Kg		95.0	70.9 - 129. 7	
Cobalt		162	185.7		mg/Kg		114.7	74.1 - 125. 3	
Copper		106	96.37		mg/Kg		90.9	74.5 - 125. 5	
Iron		14400	13950)	mg/Kg		96.9	35.6 - 163.	

TestAmerica Buffalo

130

2640

410

149

136.2

2576

410.2

173.3

Spike

Added

2550

154

40.9

2480

175

96.7

191

LCSSRM LCSSRM

2900

146.7

36.34

2721

191.5

101.2

180.0

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-296273/2-A

Matrix: Solid

Analyte

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Zinc

Analysis Batch: 296691

Prep Type: Total/NA

Prep Batch: 296273

Client Sample ID: Lab Control Sample

%Rec.

Limits

60.8 - 138.

67.5 - 132.

66.0 - 133.

65.3 - 134. 3 68.6 - 130.

8

5

7

9

64.4 - 135. 5

69.6 - 130.

4

%Rec

113.7

95.3

88.8

109.7

109.4

104.7

94.2

ö

mg/Kg

98

75 - 125

D

5

Lab Sample ID: 480-98326-4 MS Matrix: Solid

Analysis Batch: 296691									Prep Batch: 29627
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	9750		2400	17400	4	mg/Kg	\ \\\	319	75 - 125
Antimony	ND	F1	48.0	26.48	F1	mg/Kg	¢	54	75 - 125
Arsenic	4.6		48.0	45.76		mg/Kg	¢	86	75 - 125
Barium	25.9	F1	48.0	102.4	F1	mg/Kg	¢	159	75 ₋ 125
Beryllium	0.38		48.0	40.99		mg/Kg	¢	85	75 ₋ 125
Cadmium	ND		48.0	39.83		mg/Kg	¢	83	75 ₋ 125
Calcium	29500	F2	2400	37860	4	mg/Kg	¢	347	75 - 125
Chromium	12.4		48.0	57.94		mg/Kg	¢	95	75 ₋ 125
Cobalt	4.9		48.0	55.66		mg/Kg	₽	106	75 ₋ 125
Copper	14.8		48.0	63.43		mg/Kg	₽	101	75 ₋ 125
Iron	13100		2400	15850	4	mg/Kg	¢	115	75 ₋ 125
Lead	9.9		48.0	62.69		mg/Kg	₽	110	75 - 125
Magnesium	4070	F1	2400	5904		mg/Kg	¢	76	75 ₋ 125
Manganese	163	F2 F1	48.0	547.4	F1	mg/Kg	₽	800	75 ₋ 125
Nickel	15.7		48.0	71.91		mg/Kg	₽	117	75 - 125
Potassium	1470	F1	2400	6944	F1	mg/Kg	¢	228	75 ₋ 125
Selenium	ND		48.0	40.14		mg/Kg	¢	84	75 - 125
Silver	ND		12.0	10.13		mg/Kg	₽	84	75 - 125
Sodium	282		2400	2488		mg/Kg	¢	92	75 - 125
Thallium	ND		48.0	47.49		mg/Kg	¢	99	75 ₋ 125
Vanadium	20.7	F1	48.0	76.60		mg/Kg	¢	116	75 - 125

Lab Sample ID: 480-98326-4 MSD Client Sample ID: TKMW-8 (5.5-7.5') Matrix: Solid Prep Type: Total/NA Analysis Batch: 296691 Prep Batch: 296273 Sample Sample Spike MSD MSD %Rec. Added Analyte **Result Qualifier Result Qualifier** Unit D %Rec Limits RPD 9750 ₽ Aluminum 2410 19530 4 mg/Kg 407 75 - 125 12 ₽ Antimony ND F1 48.1 29.38 F1 mg/Kg 60 75 - 125 10

84.62

48.0

37.6

TestAmerica Buffalo

RPD

Limit

20

20

Method: 6010C - Metals (ICP) (Continued)

Sample Sample

4.6

ND

29500 F2

12.4

4.9

14.8 13100

9.9

15.7

1470 F1

ND

ND

282

ND

37.6

20.7 F1

4070 F1 163 F2 F1

Result Qualifier

Lab Sample ID: 480-98326-4 MSD

Analysis Batch: 296691

Matrix: Solid

Analyte

Arsenic

Cadmium

Calcium

Cobalt

Copper

lron Lead

Chromium

Magnesium

Manganese Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Zinc

Vanadium

2 3 4

		Client Sample ID: TKMW-8 (5.5-7.5') Prep Type: Total/NA							
Spike	MSD	MSD				Prep %Rec.	Batch: 2	96273 RPD	5
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
48.1	48.66		mg/Kg	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	92	75 - 125	6	20	
48.1	106.6	F1	mg/Kg	¢	168	75 _ 125	4	20	
48.1	44.26		mg/Kg	¢	91	75 _ 125	8	20	
48.1	41.98		mg/Kg	¢	87	75 - 125	5	20	_
2410	3504	4 F2	mg/Kg	¢.	-1081	75 _ 125	166	20	8
48.1	65.30		mg/Kg	¢	110	75 - 125	12	20	
48.1	55.54		mg/Kg	¢	105	75 - 125	0	20	9
48.1	62.23		mg/Kg	¢	98	75 - 125	2	20	
2410	17060	4	mg/Kg	¢	165	75 - 125	7	20	
48.1	61.65		mg/Kg	¢	108	75 _ 125	2	20	
2410	5133	F1	mg/Kg	¢	44	75 - 125	14	20	
48.1	225.3	F1 F2	mg/Kg	¢	129	75 ₋ 125	83	20	
48.1	67.21		mg/Kg	¢	107	75 ₋ 125	7	20	
2410	6809	F1	mg/Kg	¢	222	75 _ 125	2	20	
48.1	42.62		mg/Kg	¢	89	75 _ 125	6	20	40
12.0	10.63		mg/Kg	₽	88	75 - 125	5	20	13

ä

₽

₽

¢

98

101

128

97

75 - 125

75 - 125

75 - 125

75 - 125

6

2

7

0

20

20

20

20

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Barium 25.9 F1 Beryllium 0.38

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-296729/1-A Matrix: Solid Analysis Batch: 296838	МВ	МВ							•	Client S	Sample ID: Prep T Prep	Method 'ype: To Batch: 2	Blank tal/NA 296729
Analyte	Result	Qualifier		RL	MDL	Unit		D	Pr	epared	Analyz	zed	Dil Fac
Mercury	ND			0.020		mg/Kg	J	0	4/19	/16 09:50	0 04/19/16	13:28	1
Lab Sample ID: LCDSRM 480-296729 Matrix: Solid Analysis Batch: 296838	9/3-A ^5		Spike	LCDSRM	LCD	SRM	Cli	ent S	amı	ple ID:	Lab Contro Prep T Prep %Rec.	ol Samp Type: To Batch: 2	le Dup tal/NA 296729 RPD
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Mercury			7.10	6.96			mg/Kg			98.0	51.3 - 149. 3	4	20
Lab Sample ID: LCSSRM 480-296729 Matrix: Solid Analysis Batch: 296838	9/2-A ^5							Clie	ent	Sample	e ID: Lab C Prep T Prep	ontrol S ype: To Batch: 2	ample tal/NA 296729
· · · · · · · · · · · · · · · · · · ·			Spike	LCSSRM	LCS	SRM					%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Mercury			7.10	6.70			mg/Kg			94.3	51.3 - 149.		

2410

48.1

48.1

48.1

2648

48.65

84.36

82.42 F1

8 9

Method: 7471B - Mercury (CVAA) (Continued)

						Clie	ent Sam	ple ID: TKN Prep T	IW-8 (5.9	5-7.5') al/NA
								Prep	Batch: 2	96729
Sample	Sample	Spike	MS	MS				%Rec.		
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
ND	F1	0.396	0.285	F1	mg/Kg	<u></u>	68	80 - 120		
						Clie	ent Sam	ple ID: TKN	IW-8 (5.	5-7.5')
								Prep T	ype: Tot	al/NA
								Prep I	Batch: 2	96729
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND	F1	0.407	0.285	F1	ma/Ka	- \	66	80 - 120	0	20
	Sample Result ND Sample Result	Sample Sample Result Qualifier ND F1 Sample Sample Result Qualifier ND F1	SampleSampleSpikeResultQualifierAddedNDF10.396SampleSampleSpikeResultQualifierAddedNDF10.407	SampleSampleSpikeMSResultQualifierAddedResultNDF10.3960.285SampleSampleSpikeMSDResultQualifierAddedResultNDF10.4070.285	SampleSampleSpikeMSMSResultQualifierAddedResultQualifierNDF10.3960.285F1SampleSampleSpikeMSDMSDResultQualifierAddedResultQualifierNDF10.4070.285F1	SampleSampleSpikeMSMSResultQualifierAddedResultQualifierUnitNDF10.3960.285F1mg/KgSampleSampleSpikeMSDMSDResultQualifierAddedResultQualifierUnitNDF10.4070.285F1mg/Kg	Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D ND F1 0.396 0.285 F1 mg/Kg Image: Clice Sample Sample Sample Spike MSD MSD Clice ND F1 0.407 0.285 F1 mg/Kg Image: Clice	Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D %Rec ND F1 0.396 0.285 F1 mg/Kg Image: Client Sample Client Sample Sample Sample Sample Spike MSD MSD MSD Result Qualifier Added Result Qualifier Unit D %Rec ND F1 0.407 0.285 F1 mg/Kg Image: Client Sample	Sample Spike MS MS Client Sample ID: TKM Sample Spike MS MS Prep T Result Qualifier Added Result Qualifier Unit D %Rec. MRec. ND F1 0.396 0.285 F1 mg/Kg $\overline{\alpha}$ 68 80 - 120 Client Sample ID: TKM ND F1 0.396 0.285 F1 mg/Kg $\overline{\alpha}$ 68 80 - 120 Sample Sample Sample Spike MSD MSD MSD %Rec. %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits ND F1 0.407 0.285 F1 mg/Kg $\overline{\alpha}$ 66 80 - 120	Client Sample ID: TKMW-8 (5.4) Prep Type: Tod Prep Type: Tod Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit D %Rec. Ms ND F1 0.396 0.285 F1 Unit D %Rec. Prep Type: Tod ND F1 0.396 0.285 F1 mg/Kg Client Sample ID: TKMW-8 (5.4) Client Sample ID: TKMW-8 (5.4) Prep Type: Tod Prep Type: Tod Prep Type: Tod Prep Batch: 2 Prep Batch: 2 Sample Spike MSD MSD %Rec. Result Qualifier Unit D %Rec RPD ND F1 0.407 0.285 F1 mg/Kg G 80 - 120 0

Method: 9012B - Cyanide, Total andor Amenable

- Lab Sample ID: MB 480-297022/1-4	4											Client S	Sample ID:	Method	Blank
Matrix: Solid													Prep [·]	Type: To	tal/NA
Analysis Batch: 297139													Prep	Batch: 2	97022
		MB	MB												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	P	repared	Analy	zed	Dil Fac
Cyanide, Total		ND			0.97			mg/Kg			04/2	0/16 04:05	5 04/20/16	3 13:42	1
Lab Sample ID: LCSSRM 480-2970	22/2-A ^	2								С	lient	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid													Prep [·]	Type: To	tal/NA
Analysis Batch: 297139													Prep	Batch: 2	97022
-				Spike	LCS	SRM	LCS	SRM					%Rec.		
Analyte				Added	Re	sult	Qual	ifier	Unit		D	%Rec	Limits		
Cyanide, Total				39.6	4	2.56			mg/Kg		_	107.5	33.3 - 195.		
_													2		
											Clie	ent Sam	ple ID: TK	MW-8 (5.	5-7.5')
Matrix: Solid													Prep [·]	Type: To	tal/NA
Analysis Batch: 297139													Prep	Batch: 2	97022
	Sample	Sam	ple	Spike		MS	MS						%Rec.		
Analyte	Result	Qual	lifier	Added	Re	sult	Qual	ifier	Unit		D	%Rec	Limits		
Cyanide, Total	ND			11.7	1	1.97			mg/Kg		₽	102	85 - 115		
Lab Sample ID: 480-98326-4 MSD											Clie	ent Sam	ple ID: TK	MW-8 (5.	5-7.5')
Matrix: Solid													Prep	Type: To	tal/NA
Analysis Batch: 297139													Prep	Batch: 2	97022
-	Sample	Sam	ple	Spike	1	ISD	MSD						%Rec.		RPD
Analyte	Result	Qual	lifier	Added	Re	sult	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Cyanide, Total	ND			11.6	1	2.28			mg/Kg		\\\	106	85 - 115	3	15

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client Sample ID

TKMW-8 (5.5-7.5')

TKMW-8 (5.5-7.5')

TKMW-8 (5.5-7.5')

Lab Control Sample

TKMW-9 (5-7)

BLIND DUP

Method Blank

Client Sample ID

TKMW-8 (5.5-7.5')

TKMW-8 (5.5-7.5')

TKMW-8 (5.5-7.5')

Lab Control Sample

TKMW-9 (5-7)

BLIND DUP

Method Blank

TKMW-7 (2-5')

TKMW-7 (2-5')

Method

5035A

5035A

5035A

5035A

5035A

5035A

5035A

5035A

Method

8260C

8260C

8260C

8260C

8260C

8260C

8260C

8260C

Prep Batch

Prep Batch

296125

296125

296125

296125

296125

296125

296125

296125

10 11 12 13

9

Prep Batch: 296922

LCS 480-296125/1-A

MB 480-296125/2-A

GC/MS VOA

480-98326-3

480-98326-4

480-98326-5

480-98326-6

480-98326-4 MS

480-98326-4 MSD

LCS 480-296125/1-A

MB 480-296125/2-A

Lab Sample ID

480-98326-3

480-98326-4

480-98326-5

480-98326-6

480-98326-4 MS

480-98326-4 MSD

Analysis Batch: 296128

Prep Batch: 296125

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-98326-1	TKMW-5 (9-11')	Total/NA	Solid	5035A	
480-98326-1 MS	TKMW-5 (9-11')	Total/NA	Solid	5035A	
480-98326-1 MSD	TKMW-5 (9-11')	Total/NA	Solid	5035A	
480-98326-2	TKMW-6 (8-10')	Total/NA	Solid	5035A	

Analysis Batch: 296925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-98326-1	TKMW-5 (9-11')	Total/NA	Solid	8260C	296922
480-98326-1 MS	TKMW-5 (9-11')	Total/NA	Solid	8260C	296922
480-98326-1 MSD	TKMW-5 (9-11')	Total/NA	Solid	8260C	296922
480-98326-2	TKMW-6 (8-10')	Total/NA	Solid	8260C	296922

GC/MS Semi VOA

Prep Batch: 296082

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-98326-1	TKMW-5 (9-11')	Total/NA	Solid	3550C	
480-98326-2 - DL	TKMW-6 (8-10')	Total/NA	Solid	3550C	
480-98326-2	TKMW-6 (8-10')	Total/NA	Solid	3550C	
480-98326-3	TKMW-7 (2-5')	Total/NA	Solid	3550C	
480-98326-4	TKMW-8 (5.5-7.5')	Total/NA	Solid	3550C	
480-98326-4 MS	TKMW-8 (5.5-7.5')	Total/NA	Solid	3550C	
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA	Solid	3550C	
480-98326-5	TKMW-9 (5-7)	Total/NA	Solid	3550C	
480-98326-6	BLIND DUP	Total/NA	Solid	3550C	
LCS 480-296082/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-296082/1-A	Method Blank	Total/NA	Solid	3550C	

Client Sample ID

TKMW-5 (9-11')

TKMW-6 (8-10')

TKMW-7 (2-5')

TKMW-9 (5-7)

BLIND DUP

TKMW-8 (5.5-7.5')

TKMW-8 (5.5-7.5')

Lab Control Sample

GC/MS Semi VOA (Continued)

Analysis Batch: 296357

Lab Sample ID

480-98326-1

480-98326-2

480-98326-3

480-98326-4

480-98326-5

480-98326-6

480-98326-4 MS

LCS 480-296082/2-A

Method

8270D

8270D

8270D

8270D

8270D

8270D

8270D

8270D

8270D

Method

8270D

8270D

Method

3050B

3050B

3050B

3050B 3050B

3050B

3050B

3050B

3050B

3050B

Method

6010C

Prep Batch

296082

296082

296082

296082

296082

296082

296082

296082

296082

Prep Batch

Prep Batch

Prep Batch

296273

296273

296273

296273

296273

296273

296273

296273

296273

296273

296082

296082

MB 480-296082/1-A	Method Blank	Total/NA
Analysis Batch: 296885		
Lab Sample ID	Client Sample ID	Prep Type
480-98326-2 - DL	TKMW-6 (8-10')	Total/NA
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA
Metals		
Prep Batch: 296273		
Lab Sample ID	Client Sample ID	Prep Type
480-98326-1	TKMW-5 (9-11')	Total/NA
480-98326-2	TKMW-6 (8-10')	Total/NA
480-98326-3	TKMW-7 (2-5')	Total/NA
480-98326-4	TKMW-8 (5.5-7.5')	Total/NA
480-98326-4 MS	TKMW-8 (5.5-7.5')	Total/NA
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA
480-98326-5	TKMW-9 (5-7)	Total/NA
480-98326-6	BLIND DUP	Total/NA
LCSSRM 480-296273/2-A	Lab Control Sample	Total/NA
MB 480-296273/1-A	Method Blank	Total/NA
Analysis Batch: 296691		
Lab Sample ID	Client Sample ID	Prep Type
480-98326-1	TKMW-5 (9-11')	Total/NA
480-98326-2	TKMW-6 (8-10')	Total/NA
480-98326-3	TKMW-7 (2-5')	Total/NA
480-98326-4	TKMW-8 (5.5-7.5')	Total/NA
480-98326-4 MS	TKMW-8 (5.5-7.5')	Total/NA
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA
480-98326-5	TKMW-9 (5-7)	Total/NA
480-98326-6	BLIND DUP	Total/NA

Lab Control Sample

Method Blank

Prep Batch: 296729

MB 480-296273/1-A

LCSSRM 480-296273/2-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-98326-1	TKMW-5 (9-11')	Total/NA	Solid	7471B	
480-98326-2	TKMW-6 (8-10')	Total/NA	Solid	7471B	
480-98326-3	TKMW-7 (2-5')	Total/NA	Solid	7471B	
480-98326-4	TKMW-8 (5.5-7.5')	Total/NA	Solid	7471B	
480-98326-4 MS	TKMW-8 (5.5-7.5')	Total/NA	Solid	7471B	

Total/NA

Total/NA

TestAmerica Buffalo

Total/NA Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Matrix

Solid

Matrix

Solid

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA	Solid	7471B	
480-98326-5	TKMW-9 (5-7)	Total/NA	Solid	7471B	
480-98326-6	BLIND DUP	Total/NA	Solid	7471B	
LCDSRM 480-296729/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-296729/2-A ^5	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-296729/1-A	Method Blank	Total/NA	Solid	7471B	
Analysis Batch: 296838					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-98326-1	TKMW-5 (9-11')	Total/NA	Solid	7471B	296729
480-98326-2	TKMW-6 (8-10')	Total/NA	Solid	7471B	296729
480-98326-3	TKMW-7 (2-5')	Total/NA	Solid	7471B	296729
480-98326-4	TKMW-8 (5.5-7.5')	Total/NA	Solid	7471B	296729
480-98326-4 MS	TKMW-8 (5.5-7.5')	Total/NA	Solid	7471B	296729
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA	Solid	7471B	296729
480-98326-5	TKMW-9 (5-7)	Total/NA	Solid	7471B	296729
480-98326-6	BLIND DUP	Total/NA	Solid	7471B	296729
LCDSRM 480-296729/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	7471B	296729
LCSSRM 480-296729/2-A ^5	Lab Control Sample	Total/NA	Solid	7471B	296729
MB 480-296729/1-A	Method Blank	Total/NA	Solid	7471B	296729

General Chemistry

Analysis Batch: 296051

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-98326-1	TKMW-5 (9-11')	Total/NA	Solid	Moisture	
480-98326-2	TKMW-6 (8-10')	Total/NA	Solid	Moisture	
480-98326-3	TKMW-7 (2-5')	Total/NA	Solid	Moisture	
480-98326-4	TKMW-8 (5.5-7.5')	Total/NA	Solid	Moisture	
480-98326-4 MS	TKMW-8 (5.5-7.5')	Total/NA	Solid	Moisture	
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA	Solid	Moisture	
480-98326-5	TKMW-9 (5-7)	Total/NA	Solid	Moisture	
480-98326-6	BLIND DUP	Total/NA	Solid	Moisture	

Prep Batch: 297022

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-98326-1	TKMW-5 (9-11')	Total/NA	Solid	9012B	
480-98326-2	TKMW-6 (8-10')	Total/NA	Solid	9012B	
480-98326-3	TKMW-7 (2-5')	Total/NA	Solid	9012B	
480-98326-4	TKMW-8 (5.5-7.5')	Total/NA	Solid	9012B	
480-98326-4 MS	TKMW-8 (5.5-7.5')	Total/NA	Solid	9012B	
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA	Solid	9012B	
480-98326-5	TKMW-9 (5-7)	Total/NA	Solid	9012B	
480-98326-6	BLIND DUP	Total/NA	Solid	9012B	
LCSSRM 480-297022/2-A ^2	Lab Control Sample	Total/NA	Solid	9012B	
MB 480-297022/1-A	Method Blank	Total/NA	Solid	9012B	

Analysis Batch: 297139

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-98326-1	TKMW-5 (9-11')	Total/NA	Solid	9012B	297022

TestAmerica Buffalo

Analysis Batch: 297139 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-98326-2	TKMW-6 (8-10')	Total/NA	Solid	9012B	297022
480-98326-3	TKMW-7 (2-5')	Total/NA	Solid	9012B	297022
480-98326-4	TKMW-8 (5.5-7.5')	Total/NA	Solid	9012B	297022
480-98326-4 MS	TKMW-8 (5.5-7.5')	Total/NA	Solid	9012B	297022
480-98326-4 MSD	TKMW-8 (5.5-7.5')	Total/NA	Solid	9012B	297022
480-98326-5	TKMW-9 (5-7)	Total/NA	Solid	9012B	297022
480-98326-6	BLIND DUP	Total/NA	Solid	9012B	297022
LCSSRM 480-297022/2-A ^2	Lab Control Sample	Total/NA	Solid	9012B	297022
MB 480-297022/1-A	Method Blank	Total/NA	Solid	9012B	297022

Dilution

Factor

Dilution

Factor

1

1

1

1

1

Run

Run

Batch

Number

296051

Batch

Number

296922

296925

296082

296357

296273

296691

Prepared

or Analyzed

04/14/16 21:03

Prepared

or Analyzed

04/19/16 19:21

04/20/16 00:54

04/15/16 07:29

04/16/16 22:56

04/16/16 08:30

04/19/16 01:23

Analyst

Analyst

GVF

SWO

JLS

LMW

CMM

LMH

CMK

Lab

Lab TAL BUF

Batch

Method

Moisture

Batch

5035A

8260C

3550C

8270D

3050B

6010C

7471B

7471B

9012B

9012B

Method

Client Sample ID: TKMW-5 (9-11')

Batch

Туре

Batch

Туре

Prep

Prep

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Client Sample ID: TKMW-5 (9-11')

Analysis

Date Collected: 04/13/16 12:50

Date Received: 04/14/16 11:55

Date Collected: 04/13/16 12:50

Date Received: 04/14/16 11:55

Prep Type

Prep Type

Total/NA

Lab Sample ID: 480-98326-1

Lab Sample ID: 480-98326-1

Lab Sample ID: 480-98326-2

Lab Sample ID: 480-98326-2

Matrix: Solid

Matrix: Solid

Percent Solids: 84.2

2 3 4 5 6 7 8 9 10 11

1

Matrix: Solid

Matrix: Solid

Percent Solids: 85.3

296729	04/19/16 09:50	TAS	TAL BUF
296838	04/19/16 13:35	TAS	TAL BUF
297022	04/20/16 04:05	LAW	TAL BUF
297139	04/20/16 13:53	JJK	TAL BUF

Client Sample ID: TKMW-6 (8-10')

Date Collected: 04/13/16 12:00 Date Received: 04/14/16 11:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	296051	04/14/16 21:03	CMK	TAL BUF

Client Sample ID: TKMW-6 (8-10')

Date Collected: 04/13/16 12:00 Date Received: 04/14/16 11:55

•	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			296922	04/19/16 19:21	GVF	TAL BUF
Total/NA	Analysis	8260C		5	296925	04/20/16 01:21	SWO	TAL BUF
Total/NA	Prep	3550C			296082	04/15/16 07:29	JLS	TAL BUF
Total/NA	Analysis	8270D		5	296357	04/16/16 23:22	LMW	TAL BUF
Total/NA	Prep	3550C	DL		296082	04/15/16 07:29	JLS	TAL BUF
Total/NA	Analysis	8270D	DL	25	296885	04/20/16 02:55	LMW	TAL BUF
Total/NA	Prep	3050B			296273	04/16/16 08:30	CMM	TAL BUF
Total/NA	Analysis	6010C		1	296691	04/19/16 01:26	LMH	TAL BUF
Total/NA	Prep	7471B			296729	04/19/16 09:50	TAS	TAL BUF
Total/NA	Analysis	7471B		1	296838	04/19/16 13:36	TAS	TAL BUF
Total/NA	Prep	9012B			297022	04/20/16 04:05	LAW	TAL BUF
Total/NA	Analysis	9012B		1	297139	04/20/16 13:55	JJK	TAL BUF
Dilution

Factor

1

Run

Batch

Number

296051

Prepared

or Analyzed

04/14/16 21:03

Analyst

CMK

Lab

TAL BUF

Lab Sample ID: 480-98326-3

Lab Sample ID: 480-98326-3

Matrix: Solid

Matrix: Solid

Percent Solids: 77.1

10

13

Lab Sample ID: 480-98326-4

Lab Sample ID: 480-98326-4

Matrix: Solid

Matrix: Solid

Percent Solids: 83.7

Client Sample ID: TKMW-7 (2-5')	
Date Collected: 04/13/16 11:20	
Date Received: 04/14/16 11:55	

Batch

Туре

Analysis

Batch

Method

Moisture

Client Sample ID: TKMW-7 (2-5')

Date Collected: 04/13/16 11:20

Date Received: 04/14/16 11:55

Prep Type

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			296125	04/15/16 09:24	CDC	TAL BUF
Total/NA	Analysis	8260C		1	296128	04/15/16 18:05	NMD1	TAL BUF
Total/NA	Prep	3550C			296082	04/15/16 07:29	JLS	TAL BUF
Total/NA	Analysis	8270D		50	296357	04/16/16 23:49	LMW	TAL BUF
Total/NA	Prep	3050B			296273	04/16/16 08:30	CMM	TAL BUF
Total/NA	Analysis	6010C		1	296691	04/19/16 01:29	LMH	TAL BUF
Total/NA	Prep	7471B			296729	04/19/16 09:50	TAS	TAL BUF
Total/NA	Analysis	7471B		1	296838	04/19/16 13:38	TAS	TAL BUF
Total/NA	Prep	9012B			297022	04/20/16 04:05	LAW	TAL BUF
Total/NA	Analysis	9012B		1	297139	04/20/16 13:56	JJK	TAL BUF

Client Sample ID: TKMW-8 (5.5-7.5')

Date Collected: 04/13/16 10:30 Date Received: 04/14/16 11:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method Moisture	Run	Factor1	Number 296051	or Analyzed	Analyst CMK	TAL BUF

Client Sample ID: TKMW-8 (5.5-7.5') Date Collected: 04/13/16 10:30

Date Received: 04/14/16 11:55

—	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			296125	04/15/16 09:24	CDC	TAL BUF
Total/NA	Analysis	8260C		1	296128	04/15/16 18:31	NMD1	TAL BUF
Total/NA	Prep	3550C			296082	04/15/16 07:29	JLS	TAL BUF
Total/NA	Analysis	8270D		5	296357	04/16/16 22:30	LMW	TAL BUF
Total/NA	Prep	3050B			296273	04/16/16 08:30	CMM	TAL BUF
Total/NA	Analysis	6010C		1	296691	04/19/16 01:33	LMH	TAL BUF
Total/NA	Prep	7471B			296729	04/19/16 09:50	TAS	TAL BUF
Total/NA	Analysis	7471B		1	296838	04/19/16 13:39	TAS	TAL BUF
Total/NA	Prep	9012B			297022	04/20/16 04:05	LAW	TAL BUF
Total/NA	Analysis	9012B		1	297139	04/20/16 13:49	JJK	TAL BUF

Batch

Number

296051

Prepared

or Analyzed

04/14/16 21:03

Analyst

CMK

Lab

TAL BUF

Dilution

Factor

1

Run

Lab Sample ID: 480-98326-5

Lab Sample ID: 480-98326-5

Matrix: Solid

Matrix: Solid Percent Solids: 83.7

10

13

Lab Sample ID: 480-98326-6

Lab Sample ID: 480-98326-6

Matrix: Solid

Matrix: Solid

Percent Solids: 86.7

Client Sample ID: TKMW-9 (5-7)
Date Collected: 04/13/16 10:05
Date Received: 04/14/16 11:55

Batch

Туре

Analysis

Batch

Method

Moisture

Client Sample ID: TKMW-9 (5-7)

Date Collected: 04/13/16 10:05

Date Received: 04/14/16 11:55

Prep Type

Total/NA

[Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A		·	296125	04/15/16 09:24	CDC	TAL BUF
Total/NA	Analysis	8260C		1	296128	04/15/16 18:56	NMD1	TAL BUF
Total/NA	Prep	3550C			296082	04/15/16 07:29	JLS	TAL BUF
Total/NA	Analysis	8270D		1	296357	04/17/16 00:15	LMW	TAL BUF
Total/NA	Prep	3050B			296273	04/16/16 08:30	CMM	TAL BUF
Total/NA	Analysis	6010C		1	296691	04/19/16 01:49	LMH	TAL BUF
Total/NA	Prep	7471B			296729	04/19/16 09:50	TAS	TAL BUF
Total/NA	Analysis	7471B		1	296838	04/19/16 13:48	TAS	TAL BUF
Total/NA	Prep	9012B			297022	04/20/16 04:05	LAW	TAL BUF
Total/NA	Analysis	9012B		1	297139	04/20/16 13:58	JJK	TAL BUF

Client Sample ID: BLIND DUP

Date Collected: 04/13/16 08:00 Date Received: 04/14/16 11:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method Moisture	Run	Factor	Number 296051	or Analyzed	Analyst CMK	TAL BUF

Client Sample ID: BLIND DUP Date Collected: 04/13/16 08:00

Date Received: 04/14/16 11:55

-	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			296125	04/15/16 09:24	CDC	TAL BUF
Total/NA	Analysis	8260C		1	296128	04/15/16 19:22	NMD1	TAL BUF
Total/NA	Prep	3550C			296082	04/15/16 07:29	JLS	TAL BUF
Total/NA	Analysis	8270D		50	296357	04/17/16 00:41	LMW	TAL BUF
Total/NA	Prep	3050B			296273	04/16/16 08:30	CMM	TAL BUF
Total/NA	Analysis	6010C		1	296691	04/19/16 02:02	LMH	TAL BUF
Total/NA	Prep	7471B			296729	04/19/16 09:50	TAS	TAL BUF
Total/NA	Analysis	7471B		1	296838	04/19/16 13:51	TAS	TAL BUF
Total/NA	Prep	9012B			297022	04/20/16 04:05	LAW	TAL BUF
Total/NA	Analysis	9012B		1	297139	04/20/16 13:59	JJK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date	
New York	NELAP	NELAP		10026	03-31-17	
The following analytes	are included in this report, bu	t certification is not offer	ed by the governing a	authority:		
The following analytes Analysis Method	are included in this report, bu Prep Method	t certification is not offer Matrix	ed by the governing a Analyt	authority: e		
I he tollowing analytes Analysis Method Moisture	are included in this report, bu Prep Method	t certification is not offer <u>Matrix</u> Solid	ed by the governing a	authority: e nt Moisture		

La

5
8
9
12
13

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF
Protocol R	eferences:		
EPA =	US Environmental Protection Agency		
SW846	= "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E	Edition, November 1986 And Its Updates.	

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-98326-1

ab Sample ID	Client Sample ID	Matrix	Collected	Received
30-98326-1	TKMW-5 (9-11')	Solid	04/13/16 12:50	04/14/16 11:55
30-98326-2	TKMW-6 (8-10')	Solid	04/13/16 12:00	04/14/16 11:55
30-98326-3	TKMW-7 (2-5')	Solid	04/13/16 11:20	04/14/16 11:55
30-98326-4	TKMW-8 (5.5-7.5')	Solid	04/13/16 10:30	04/14/16 11:55
30-98326-5	TKMW-9 (5-7)	Solid	04/13/16 10:05	04/14/16 11:55
30-98326-6	BLIND DUP	Solid	04/13/16 08:00	04/14/16 11:55

Chain of Custody Record	Temperature on Receipt Drinking Water? Yes Note: The Leader IN ENVI	ROJ 480-98326 Chain of Custody
Client TURAKEY Address 2558 Hamburg TURAPIKE	Project Manager CWIS BOFON Telephone Number (Area Code)/Fax Number (716) 856-0599 Site Control	Date Chain of Custody Number 4/13/16 190623 Lab Number Page of
Buffalo Project Name and Location (State) <u>ILEVOUS Street Site</u> Contract/Purchase Order/Quote No. 0333-015-001	Paul Wwwthman BFischer mo Carrier/Waybill Number Matrix Preservatives	space is needed) Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description Date (Containers for each sample may be compiled on one line) $Date$ TKMW-5 ($3\pi 4^{+}$) $4-13-16$ TKMW-6 ($8-10^{+}$)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
R TKMW-8 (5.5-7.5)(MS/MSD) R TKMW-9 (5-7) Blind DQ V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B Turn Around Time Required	Sample Disposal Sample Disposal Unknown Return To Client C	(A fee may be assessed if samples are retained Months longer than 1 month)
24 Hours 2 49 Hours 21 Days 14 Days 21 Day	VS A Other Stander C	Date 1155 Date Date 19-19-16 15-16
3. Relinquished By Comments DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stavs	Date Time 3. Received By 3. Received	Date Time

			10	00		4.5	4.5	
					107		001	

Login Number: 98326 List Number: 1

Creator: Conway, Curtis R

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	False	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

```
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
```

Job Number: 480-98326-1

List Source: TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-99240-1

Client Project/Site: Benchmark - 11 Evan St., Batavia, NY

For:

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, New York 14218

Attn: Mr. Christopher Z Boron

Joeph V. Giscomayer

Authorized for release by: 5/5/2016 9:37:09 AM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835 brian.fischer@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	9
Surrogate Summary	37
QC Sample Results	38
QC Association Summary	56
Lab Chronicle	59
Certification Summary	62
Method Summary	63
Sample Summary	64
Chain of Custody	65
Receipt Checklists	66

Definitions/Glossary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

3 5 6 7 8 9 10 11 12

Qualifiers

GC/MS VC		
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
F1	MS and/or MSD Recovery is outside acceptance limits.	
GC/MS Se	emi VOA	
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
F1	MS and/or MSD Recovery is outside acceptance limits.	
F2	MS/MSD RPD exceeds control limits	

Е Result exceeded calibration range.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

Metals

Qualifier **Qualifier Description**

4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Job ID: 480-99240-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-99240-1

Receipt

The samples were received on 4/28/2016 3:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 2.2° C, 2.8° C and 3.6° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-299754 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane, 2-Butanone (MEK), 2-Hexanone, Acetone, and Carbon tetrachloride. The samples associated with this CCV had no detections above the reporting limit for the affected analytes; therefore, the data have been reported. The following samples are impacted: BLIND DUP (480-99240-1), TKMW-9 (480-99240-2), TKMW-8 (480-99240-3), TKMW-7 (480-99240-4), TKMW-6 (480-99240-5) and EQUIPMENT BLANK (480-99240-7).

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-299754 recovered outside control limits for the following analyte: Acetone. This analyte was biased high in the LCS and was not detected above the reporting limit in the associated samples; therefore, the data have been reported. The following samples are affected: BLIND DUP (480-99240-1), TKMW-9 (480-99240-2), TKMW-8 (480-99240-3), TKMW-7 (480-99240-4), TKMW-6 (480-99240-5) and EQUIPMENT BLANK (480-99240-7).

Method(s) 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: TKMW-6 (480-99240-5), TKMW-6 (480-99240-5[MS]) and TKMW-6 (480-99240-5[MSD]). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-299852 recovered outside control limits for the following analyte: Acetone. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The following sample is impacted: TKMW-5 (480-99240-6)

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-299852 recovered above the upper control limit for Acetone, 1,1,2-Trichloro-1,2,2-trifluoroethane and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: TKMW-5 (480-99240-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-299234 recovered outside acceptance criteria, low biased, for Bis(2-chloroethoxy)methane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method(s) 8270D: The laboratory control sample (LCS) for preparation batch 480-299050 and analytical batch 480-299234 recovered outside control limits for the following analytes: Benzaldehyde. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-299371 recovered outside acceptance criteria, low biased, for Bis(2-chloroethoxy)methane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method(s) 8270D: The following sample was diluted to bring the concentration of target analytes within the calibration range: TKMW-6 (480-99240-5). Elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following sample required a dilution due to the nature of the sample matrix: TKMW-6 (480-99240-5). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) 8270D: The laboratory control sample (LCS) for preparation batch 480-299050 and analytical batch 480-299371 recovered outside control limits for the following analytes: Benzaldehyde. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Job ID: 480-99240-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 3005A: MS/MSD volumes do not appear to look the same as the parent sample. Parent samples are not clear and has an orange tint, MS/MSD volumes are completely clear.

TKMW-6 (480-99240-5), TKMW-6 (480-99240-5[MS]) and TKMW-6 (480-99240-5[MSD])

Method(s) 7470A: Sample 5 matrix appears to be darker in color compared to sample 5 client matrix assigned ms/msd.

TKMW-6 (480-99240-5), TKMW-6 (480-99240-5[MS]) and TKMW-6 (480-99240-5[MSD])

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Elevated reporting limits are provided for the following sample due to insufficient sample provided for preparation: TKMW-7 (480-99240-4).

Method(s) 3510C: Due to an inadvertent spiking error, the following sample was spiked with 2mLs of surrogate mix: TKMW-5 (480-99240-6). Final volumes have been updated accordingly and final results are calculated based off the adjusted volume.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: BLIND DUP

Lab Sample ID: 480-99240-1

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	5.7	J *	10	3.0	ug/L	1	_	8260C	Total/NA
Carbon disulfide	0.39	J	1.0	0.19	ug/L	1		8260C	Total/NA
Di-n-butyl phthalate	0.30	J	4.8	0.30	ug/L	1		8270D	Total/NA
Barium	0.14		0.0020		mg/L	1		6010C	Total/NA
Calcium	202		0.50		mg/L	1		6010C	Total/NA
Iron	0.28		0.050		mg/L	1		6010C	Total/NA
Magnesium	34.0		0.20		mg/L	1		6010C	Total/NA
Manganese	0.60		0.0030		mg/L	1		6010C	Total/NA
Potassium	11.1		0.50		mg/L	1		6010C	Total/NA
Sodium	396		1.0		mg/L	1		6010C	Total/NA

Client Sample ID: TKMW-9

Lab Sample ID: 480-99240-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	9.1	J *	10	3.0	ug/L	1	_	8260C	Total/NA
Benzene	0.76	J	1.0	0.41	ug/L	1		8260C	Total/NA
Carbon disulfide	0.81	J	1.0	0.19	ug/L	1		8260C	Total/NA
Di-n-butyl phthalate	0.35	J	4.7	0.29	ug/L	1		8270D	Total/NA
Aluminum	4.1		0.20		mg/L	1		6010C	Total/NA
Barium	0.11		0.0020		mg/L	1		6010C	Total/NA
Calcium	229		0.50		mg/L	1		6010C	Total/NA
Chromium	0.0060		0.0040		mg/L	1		6010C	Total/NA
Iron	5.4		0.050		mg/L	1		6010C	Total/NA
Magnesium	58.3		0.20		mg/L	1		6010C	Total/NA
Manganese	0.31		0.0030		mg/L	1		6010C	Total/NA
Potassium	15.7		0.50		mg/L	1		6010C	Total/NA
Sodium	399		1.0		mg/L	1		6010C	Total/NA
Vanadium	0.0079		0.0050		mg/L	1		6010C	Total/NA
Zinc	0.019		0.010		mg/L	1		6010C	Total/NA

Client Sample ID: TKMW-8

Lab Sample ID: 480-99240-3

Lab Sample ID: 480-99240-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	4.0	J *	10	3.0	ug/L	1	_	8260C	Total/NA
Carbon disulfide	0.39	J	1.0	0.19	ug/L	1		8260C	Total/NA
Di-n-butyl phthalate	0.35	J	4.8	0.30	ug/L	1		8270D	Total/NA
Barium	0.14		0.0020		mg/L	1		6010C	Total/NA
Calcium	200		0.50		mg/L	1		6010C	Total/NA
Iron	0.20		0.050		mg/L	1		6010C	Total/NA
Magnesium	33.2		0.20		mg/L	1		6010C	Total/NA
Manganese	0.58		0.0030		mg/L	1		6010C	Total/NA
Potassium	11.0		0.50		mg/L	1		6010C	Total/NA
Sodium	392		1.0		mg/L	1		6010C	Total/NA

Client Sample ID: TKMW-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Р гер Туре
Benzaldehyde	0.59	J *	8.3	0.44	ug/L	1	_	8270D	Total/NA
Barium	0.038		0.0020		mg/L	1		6010C	Total/NA
Calcium	109		0.50		mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-4

Lab Sample ID: 480-99240-5

Client Sample ID: TKMW-7 (Continued)

Analyte Iron	Result 0.12	Qualifier RL 0.050	MDL Unit mg/L	Dil Fac	D <u>Method</u> 6010C	Prep Type Total/NA
Magnesium	18.6	0.20	mg/L	1	6010C	Total/NA
Manganese	0.068	0.0030	mg/L	1	6010C	Total/NA
Potassium	3.7	0.50	mg/L	1	6010C	Total/NA
Sodium	45.7	1.0	mg/L	1	6010C	Total/NA

Client Sample ID: TKMW-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	25		10	4.1	ug/L	10	_	8260C	Total/NA
Cyclohexane	22		10	1.8	ug/L	10		8260C	Total/NA
Ethylbenzene	11		10	7.4	ug/L	10		8260C	Total/NA
Isopropylbenzene	8.9	J	10	7.9	ug/L	10		8260C	Total/NA
Methylcyclohexane	200	F1	10	1.6	ug/L	10		8260C	Total/NA
Xylenes, Total	21		20	6.6	ug/L	10		8260C	Total/NA
2-Methylnaphthalene	20		4.7	0.57	ug/L	1		8270D	Total/NA
Acenaphthene	7.6		4.7	0.39	ug/L	1		8270D	Total/NA
Anthracene	1.6	J	4.7	0.26	ug/L	1		8270D	Total/NA
Carbazole	8.3		4.7	0.28	ug/L	1		8270D	Total/NA
Dibenzofuran	2.7	J	9.4	0.48	ug/L	1		8270D	Total/NA
Fluoranthene	1.1	J	4.7	0.38	ug/L	1		8270D	Total/NA
Fluorene	4.0	J	4.7	0.34	ug/L	1		8270D	Total/NA
Phenanthrene	8.9		4.7	0.42	ug/L	1		8270D	Total/NA
Pyrene	0.88	J	4.7	0.32	ug/L	1		8270D	Total/NA
Naphthalene - DL	320		47	7.2	ug/L	10		8270D	Total/NA
Barium	0.22		0.0020		mg/L	1		6010C	Total/NA
Calcium	189		0.50		mg/L	1		6010C	Total/NA
Iron	25.0		0.050		mg/L	1		6010C	Total/NA
Magnesium	21.7		0.20		mg/L	1		6010C	Total/NA
Manganese	2.3		0.0030		mg/L	1		6010C	Total/NA
Potassium	13.1		0.50		mg/L	1		6010C	Total/NA
Sodium	192		1.0		mg/L	1		6010C	Total/NA
Cyanide, Total	0.016		0.010		mg/L	1		9012B	Total/NA

Client Sample ID: TKMW-5

Lab Sample ID: 480-99240-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.4	J *	10	3.0	ug/L	1	—	8260C	Total/NA
Benzene	1.4		1.0	0.41	ug/L	1		8260C	Total/NA
Cyclohexane	0.36	J	1.0	0.18	ug/L	1		8260C	Total/NA
Methylcyclohexane	0.56	J	1.0	0.16	ug/L	1		8260C	Total/NA
Acenaphthene	7.3		4.9	0.40	ug/L	1		8270D	Total/NA
Anthracene	0.48	J	4.9	0.27	ug/L	1		8270D	Total/NA
Dibenzofuran	0.56	J	9.7	0.50	ug/L	1		8270D	Total/NA
Fluorene	2.5	J	4.9	0.35	ug/L	1		8270D	Total/NA
Phenanthrene	1.8	J	4.9	0.43	ug/L	1		8270D	Total/NA
Aluminum	0.26		0.20		mg/L	1		6010C	Total/NA
Barium	0.32		0.0020		mg/L	1		6010C	Total/NA
Calcium	186		0.50		mg/L	1		6010C	Total/NA
Iron	2.9		0.050		mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: TKMW-5 (Continued)

Lab Sample ID: 480-99240-6

Lab Sample ID: 480-99240-7

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Magnesium	27.4		0.20		mg/L	1	6010C	Total/NA
Manganese	0.55		0.0030		mg/L	1	6010C	Total/NA
Potassium	10.4		0.50		mg/L	1	6010C	Total/NA
Sodium	236		1.0		mg/L	1	6010C	Total/NA
Cyanide, Total	0.012		0.010		mg/L	1	9012B	Total/NA

Client Sample ID: EQUIPMENT BLANK

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzaldehyde	0.41	J *	4.7	0.25	ug/L	1	8270D	Total/NA
Barium	0.021		0.0020		mg/L	1	6010C	Total/NA
Calcium	33.4		0.50		mg/L	1	6010C	Total/NA
Copper	0.012		0.010		mg/L	1	6010C	Total/NA
Iron	0.075		0.050		mg/L	1	6010C	Total/NA
Magnesium	8.9		0.20		mg/L	1	6010C	Total/NA
Potassium	1.7		0.50		mg/L	1	6010C	Total/NA
Sodium	14.2		1.0		mg/L	1	6010C	Total/NA

Client Sample ID: BLIND DUP

Date Collected: 04/27/16 08:00 Date Received: 04/28/16 15:00

Method: 8260C - Volatile Organ	nic Compo	unds by GC/	MS	MDI	Unit	D	Bronarad	Applyzod	
			1.0				Flepaleu	05/04/16 03:50	
			1.0	0.02	ug/L			05/04/10 03:59	1
1 1 2-Trichloroethane			1.0	0.21	ug/L			05/04/16 03:59	1
1 1 2-Trichloro-1 2 2-trifluoroethane	ND		1.0	0.20	ug/L			05/04/16 03:59	
1 1-Dichloroethane	ND		1.0	0.38	ug/L			05/04/16 03:59	1
1 1-Dichloroethene			1.0	0.00	ug/L			05/04/16 03:59	1
1.2.4-Trichlorobenzene	ND		1.0	0.23	ug/L			05/04/16 03:59	· · · · · · · · · 1
1 2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/04/16 03:59	1
1.2-Dichlorobenzene	ND		1.0	0.00	ug/L			05/04/16 03:59	1
1.2-Dichloroethane	ND		1.0	0.70	ug/L			05/04/16 03:59	· · · · · · · 1
1 2-Dichloropropane	ND		1.0	0.72	ug/L			05/04/16 03:59	1
1 3-Dichlorobenzene	ND		1.0	0.72	ug/L			05/04/16 03:59	1
1 4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/04/16 03:59	
2-Butanone (MEK)	ND		10	1.3	ug/L			05/04/16 03:59	1
2-Hexanone	ND		5.0	1.0	ua/l			05/04/16 03:59	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	21	ug/L			05/04/16 03:59	
Acetone	5 7	1*	10	3.0	ug/L			05/04/16 03:59	1
Benzene	ND	°	10	0.41	ua/l			05/04/16 03:59	1
Bromodichloromethane	ND		10	0.39	ug/l			05/04/16 03:59	
Bromoform	ND		1.0	0.26	ua/l			05/04/16 03:59	1
Bromomethane	ND		1.0	0.69	ua/l			05/04/16 03:59	1
Carbon disulfide	0.39	J	1.0	0.19	ua/L			05/04/16 03:59	
Carbon tetrachloride	ND	č	1.0	0.27	ua/l			05/04/16 03:59	1
Chlorobenzene	ND		1.0	0.75	ua/L			05/04/16 03:59	1
Dibromochloromethane	ND		1.0	0.32	ua/L			05/04/16 03:59	
Chloroethane	ND		1.0	0.32	ua/L			05/04/16 03:59	1
Chloroform	ND		1.0	0.34	ua/L			05/04/16 03:59	1
Chloromethane	ND		1.0	0.35	ug/L			05/04/16 03:59	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/04/16 03:59	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/04/16 03:59	1
Cyclohexane	ND		1.0	0.18	ug/L			05/04/16 03:59	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/04/16 03:59	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/04/16 03:59	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/04/16 03:59	
Isopropylbenzene	ND		1.0	0.79	ug/L			05/04/16 03:59	1
Methyl acetate	ND		2.5	1.3	ug/L			05/04/16 03:59	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/04/16 03:59	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/04/16 03:59	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/04/16 03:59	1
Styrene	ND		1.0	0.73	ug/L			05/04/16 03:59	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/04/16 03:59	1
Toluene	ND		1.0	0.51	ug/L			05/04/16 03:59	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/04/16 03:59	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/04/16 03:59	1
Trichloroethene	ND		1.0	0.46	ug/L			05/04/16 03:59	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/04/16 03:59	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/04/16 03:59	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/04/16 03:59	1

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-1 Matrix: Water

60 - 140

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: BLIND DUP Date Collected: 04/27/16 08:00 Date Received: 04/28/16 15:00

Dibromofluoromethane (Surr)

Lab Sample ID: 480-99240-1 Matrix: Water

Analyzed

05/04/16 03:59

05/04/16 03:59

05/04/16 03:59

05/04/16 03:59

Prepared

Dil Fac

1

1

1

1

Date Received: 04/28/16 15:0	00		
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		71 - 126
1,2-Dichloroethane-d4 (Surr)	119		66 - 137
4-Bromofluorobenzene (Surr)	90		73 - 120

112

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4.8	0.62	ug/L		04/29/16 14:15	05/01/16 15:27	1
bis (2-chloroisopropyl) ether	ND		4.8	0.50	ug/L		04/29/16 14:15	05/01/16 15:27	1
2,4,5-Trichlorophenol	ND		4.8	0.46	ug/L		04/29/16 14:15	05/01/16 15:27	1
2,4,6-Trichlorophenol	ND		4.8	0.58	ug/L		04/29/16 14:15	05/01/16 15:27	1
2,4-Dichlorophenol	ND		4.8	0.49	ug/L		04/29/16 14:15	05/01/16 15:27	1
2,4-Dimethylphenol	ND		4.8	0.48	ug/L		04/29/16 14:15	05/01/16 15:27	1
2,4-Dinitrophenol	ND		9.5	2.1	ug/L		04/29/16 14:15	05/01/16 15:27	1
2,4-Dinitrotoluene	ND		4.8	0.43	ug/L		04/29/16 14:15	05/01/16 15:27	1
2,6-Dinitrotoluene	ND		4.8	0.38	ug/L		04/29/16 14:15	05/01/16 15:27	1
2-Chloronaphthalene	ND		4.8	0.44	ug/L		04/29/16 14:15	05/01/16 15:27	1
2-Chlorophenol	ND		4.8	0.51	ug/L		04/29/16 14:15	05/01/16 15:27	1
2-Methylphenol	ND		4.8	0.38	ug/L		04/29/16 14:15	05/01/16 15:27	1
2-Methylnaphthalene	ND		4.8	0.57	ug/L		04/29/16 14:15	05/01/16 15:27	1
2-Nitroaniline	ND		9.5	0.40	ug/L		04/29/16 14:15	05/01/16 15:27	1
2-Nitrophenol	ND		4.8	0.46	ug/L		04/29/16 14:15	05/01/16 15:27	1
3,3'-Dichlorobenzidine	ND		4.8	0.38	ug/L		04/29/16 14:15	05/01/16 15:27	1
3-Nitroaniline	ND		9.5	0.46	ug/L		04/29/16 14:15	05/01/16 15:27	1
4,6-Dinitro-2-methylphenol	ND		9.5	2.1	ug/L		04/29/16 14:15	05/01/16 15:27	1
4-Bromophenyl phenyl ether	ND		4.8	0.43	ug/L		04/29/16 14:15	05/01/16 15:27	1
4-Chloro-3-methylphenol	ND		4.8	0.43	ug/L		04/29/16 14:15	05/01/16 15:27	1
4-Chloroaniline	ND		4.8	0.56	ug/L		04/29/16 14:15	05/01/16 15:27	1
4-Chlorophenyl phenyl ether	ND		4.8	0.33	ug/L		04/29/16 14:15	05/01/16 15:27	1
4-Methylphenol	ND		9.5	0.34	ug/L		04/29/16 14:15	05/01/16 15:27	1
4-Nitroaniline	ND		9.5	0.24	ug/L		04/29/16 14:15	05/01/16 15:27	1
4-Nitrophenol	ND		9.5	1.5	ug/L		04/29/16 14:15	05/01/16 15:27	1
Acenaphthene	ND		4.8	0.39	ug/L		04/29/16 14:15	05/01/16 15:27	1
Acenaphthylene	ND		4.8	0.36	ug/L		04/29/16 14:15	05/01/16 15:27	1
Acetophenone	ND		4.8	0.52	ug/L		04/29/16 14:15	05/01/16 15:27	1
Anthracene	ND		4.8	0.27	ug/L		04/29/16 14:15	05/01/16 15:27	1
Atrazine	ND		4.8	0.44	ug/L		04/29/16 14:15	05/01/16 15:27	1
Benzaldehyde	ND	*	4.8	0.25	ug/L		04/29/16 14:15	05/01/16 15:27	1
Benzo[a]anthracene	ND		4.8	0.34	ug/L		04/29/16 14:15	05/01/16 15:27	1
Benzo[a]pyrene	ND		4.8	0.45	ug/L		04/29/16 14:15	05/01/16 15:27	1
Benzo[b]fluoranthene	ND		4.8	0.32	ug/L		04/29/16 14:15	05/01/16 15:27	1
Benzo[g,h,i]perylene	ND		4.8	0.33	ug/L		04/29/16 14:15	05/01/16 15:27	1
Benzo[k]fluoranthene	ND		4.8	0.70	ug/L		04/29/16 14:15	05/01/16 15:27	1
Bis(2-chloroethoxy)methane	ND		4.8	0.33	ug/L		04/29/16 14:15	05/01/16 15:27	1
Bis(2-chloroethyl)ether	ND		4.8	0.38	ug/L		04/29/16 14:15	05/01/16 15:27	1
Bis(2-ethylhexyl) phthalate	ND		4.8	2.1	ug/L		04/29/16 14:15	05/01/16 15:27	1
Butyl benzyl phthalate	ND		4.8	0.95	ug/L		04/29/16 14:15	05/01/16 15:27	1
Caprolactam	ND		4.8	2.1	ug/L		04/29/16 14:15	05/01/16 15:27	1
Carbazole	ND		4.8	0.29	ug/L		04/29/16 14:15	05/01/16 15:27	1
Chrysene	ND		4.8	0.32	ug/L		04/29/16 14:15	05/01/16 15:27	1

Di-n-butyl phthalate	0.30 J	4.8	0.30 ug/L	04/29/16 14:15 05/01/16 15:27	1
Di-n-octyl phthalate	ND	4.8	0.45 ug/L	04/29/16 14:15 05/01/16 15:27	1
Dibenzofuran	ND	9.5	0.49 ug/L	04/29/16 14:15 05/01/16 15:27	1
Diethyl phthalate	ND	4.8	0.21 ug/L	04/29/16 14:15 05/01/16 15:27	1
Dimethyl phthalate	ND	4.8	0.34 ug/L	04/29/16 14:15 05/01/16 15:27	1
Fluoranthene	ND	4.8	0.38 ug/L	04/29/16 14:15 05/01/16 15:27	1
Fluorene	ND	4.8	0.34 ug/L	04/29/16 14:15 05/01/16 15:27	1
Hexachlorobenzene	ND	4.8	0.49 ug/L	04/29/16 14:15 05/01/16 15:27	1
Hexachlorobutadiene	ND	4.8	0.65 ug/L	04/29/16 14:15 05/01/16 15:27	1
Hexachlorocyclopentadiene	ND	4.8	0.56 ug/L	04/29/16 14:15 05/01/16 15:27	1
Hexachloroethane	ND	4.8	0.56 ug/L	04/29/16 14:15 05/01/16 15:27	1
Indeno[1,2,3-cd]pyrene	ND	4.8	0.45 ug/L	04/29/16 14:15 05/01/16 15:27	1
Isophorone	ND	4.8	0.41 ug/L	04/29/16 14:15 05/01/16 15:27	1
N-Nitrosodi-n-propylamine	ND	4.8	0.52 ug/L	04/29/16 14:15 05/01/16 15:27	1
N-Nitrosodiphenylamine	ND	4.8	0.49 ug/L	04/29/16 14:15 05/01/16 15:27	1
Naphthalene	ND	4.8	0.73 ug/L	04/29/16 14:15 05/01/16 15:27	1
Nitrobenzene	ND	4.8	0.28 ug/L	04/29/16 14:15 05/01/16 15:27	1
Pentachlorophenol	ND	9.5	2.1 ug/L	04/29/16 14:15 05/01/16 15:27	1
Phenanthrene	ND	4.8	0.42 ug/L	04/29/16 14:15 05/01/16 15:27	1
Phenol	ND	4.8	0.37 ug/L	04/29/16 14:15 05/01/16 15:27	1
Pyrene	ND	4.8	0.32 ug/L	04/29/16 14:15 05/01/16 15:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	91		46 - 120	04/29/16 14:15	05/01/16 15:27	1
Phenol-d5 (Surr)	38		16 - 120	04/29/16 14:15	05/01/16 15:27	1
p-Terphenyl-d14 (Surr)	85		67 - 150	04/29/16 14:15	05/01/16 15:27	1
2,4,6-Tribromophenol (Surr)	99		52 - 132	04/29/16 14:15	05/01/16 15:27	1
2-Fluorobiphenyl	89		48 - 120	04/29/16 14:15	05/01/16 15:27	1
2-Fluorophenol (Surr)	56		20 - 120	04/29/16 14:15	05/01/16 15:27	1

Method: 6010C - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		04/29/16 11:25	04/29/16 23:29	1
Antimony	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:29	1
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 23:29	1
Barium	0.14		0.0020		mg/L		04/29/16 11:25	04/29/16 23:29	1
Beryllium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 23:29	1
Cadmium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 23:29	1
Calcium	202		0.50		mg/L		04/29/16 11:25	04/29/16 23:29	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:29	1
Cobalt	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:29	1
Copper	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:29	1
Iron	0.28		0.050		mg/L		04/29/16 11:25	04/29/16 23:29	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:29	1
Magnesium	34.0		0.20		mg/L		04/29/16 11:25	04/29/16 23:29	1
Manganese	0.60		0.0030		mg/L		04/29/16 11:25	04/29/16 23:29	1
Nickel	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:29	1
Potassium	11.1		0.50		mg/L		04/29/16 11:25	04/29/16 23:29	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 23:29	1

TestAmerica Buffalo

Client Sample Results

RL

4.8

MDL Unit

0.40 ug/L

D

Prepared

Project/Site: Benchmark - 11 Evan St., Batavia, NY **Client Sample ID: BLIND DUP**

Client: Turnkey Environmental Restoration, LLC

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

Date Collected: 04/27/16 08:00 Date Received: 04/28/16 15:00

Analyte

Dibenz(a,h)anthracene

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-1 Matrix: Water

04/29/16 14:15 05/01/16 15:27

Analyzed

6

Dil Fac

1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-99240-1

Client Sample ID: BLIND DUP Date Collected: 04/27/16 08:00 Date Received: 04/28/16 15:00

Lab Sample ID: 480-99240-1 Matrix: Water

Method: 6010C - Metals (ICP Analyte	(Continued) (Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060		mg/L		04/29/16 11:25	04/29/16 23:29	1
Sodium	396		1.0		mg/L		04/29/16 11:25	04/29/16 23:29	1
Thallium	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:29	1
Vanadium	ND		0.0050		mg/L		04/29/16 11:25	04/29/16 23:29	
Zinc	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:29	
Method: 7470A - Mercury (C	VAA) Bosult	Qualifier	Ы	МП	Unit	Р	Broparad	Applyzod	Dil Ea
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:02	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cyanide, Total	ND		0.010		mg/L		05/02/16 21:25	05/03/16 09:43	

Client Sample ID: TKMW-9 Date Collected: 04/27/16 09:35

Date Received: 04/28/16 15:00

Method: 8260C - Volatile Orga Analyte	nic Compo Result	unds by GC Qualifier	/ <mark>MS</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		•	05/04/16 04:26	1
1.1.2.2-Tetrachloroethane	ND		1.0	0.21	ua/L			05/04/16 04:26	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/04/16 04:26	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/04/16 04:26	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/04/16 04:26	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/04/16 04:26	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/04/16 04:26	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/04/16 04:26	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/04/16 04:26	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/04/16 04:26	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/04/16 04:26	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/04/16 04:26	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/04/16 04:26	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/04/16 04:26	1
2-Hexanone	ND		5.0	1.2	ug/L			05/04/16 04:26	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/04/16 04:26	1
Acetone	9.1	J *	10	3.0	ug/L			05/04/16 04:26	1
Benzene	0.76	J	1.0	0.41	ug/L			05/04/16 04:26	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/04/16 04:26	1
Bromoform	ND		1.0	0.26	ug/L			05/04/16 04:26	1
Bromomethane	ND		1.0	0.69	ug/L			05/04/16 04:26	1
Carbon disulfide	0.81	J	1.0	0.19	ug/L			05/04/16 04:26	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/04/16 04:26	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/04/16 04:26	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/04/16 04:26	1
Chloroethane	ND		1.0	0.32	ug/L			05/04/16 04:26	1
Chloroform	ND		1.0	0.34	ug/L			05/04/16 04:26	1
Chloromethane	ND		1.0	0.35	ug/L			05/04/16 04:26	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/04/16 04:26	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/04/16 04:26	1
Cyclohexane	ND		1.0	0.18	ug/L			05/04/16 04:26	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/04/16 04:26	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/04/16 04:26	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/04/16 04:26	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/04/16 04:26	1
Methyl acetate	ND		2.5	1.3	ug/L			05/04/16 04:26	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/04/16 04:26	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/04/16 04:26	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/04/16 04:26	1
Styrene	ND		1.0	0.73	ug/L			05/04/16 04:26	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/04/16 04:26	1
Toluene	ND		1.0	0.51	ug/L			05/04/16 04:26	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/04/16 04:26	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/04/16 04:26	1
Trichloroethene	ND		1.0	0.46	ug/L			05/04/16 04:26	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/04/16 04:26	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/04/16 04:26	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/04/16 04:26	1

Lab Sample ID: 480-99240-2

Matrix: Water

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Lab Sample ID: 480-99240-2 Matrix: Water

5

6

Date Collected: 04/27/16 09:35 Date Received: 04/28/16 15:00

Client Sample ID: TKMW-9

Surrogate	%Recovery Q	Qualifier Limits	Prepared A	nalyzed	Dil Fac
Toluene-d8 (Surr)	98	71 - 126	05/0	04/16 04:26	1
1,2-Dichloroethane-d4 (Surr)	116	66 - 137	05/0)4/16 04:26	1
4-Bromofluorobenzene (Surr)	91	73 - 120	05/0)4/16 04:26	1
Dibromofluoromethane (Surr)	110	60 - 140	05/0)4/16 04:26	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4.7	0.62	ug/L		04/29/16 14:15	05/01/16 15:56	1
bis (2-chloroisopropyl) ether	ND		4.7	0.49	ug/L		04/29/16 14:15	05/01/16 15:56	1
2,4,5-Trichlorophenol	ND		4.7	0.45	ug/L		04/29/16 14:15	05/01/16 15:56	1
2,4,6-Trichlorophenol	ND		4.7	0.58	ug/L		04/29/16 14:15	05/01/16 15:56	1
2,4-Dichlorophenol	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 15:56	1
2,4-Dimethylphenol	ND		4.7	0.47	ug/L		04/29/16 14:15	05/01/16 15:56	1
2,4-Dinitrophenol	ND		9.5	2.1	ug/L		04/29/16 14:15	05/01/16 15:56	1
2,4-Dinitrotoluene	ND		4.7	0.42	ug/L		04/29/16 14:15	05/01/16 15:56	1
2,6-Dinitrotoluene	ND		4.7	0.38	ug/L		04/29/16 14:15	05/01/16 15:56	1
2-Chloronaphthalene	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 15:56	1
2-Chlorophenol	ND		4.7	0.50	ug/L		04/29/16 14:15	05/01/16 15:56	1
2-Methylphenol	ND		4.7	0.38	ug/L		04/29/16 14:15	05/01/16 15:56	1
2-Methylnaphthalene	ND		4.7	0.57	ug/L		04/29/16 14:15	05/01/16 15:56	1
2-Nitroaniline	ND		9.5	0.40	ug/L		04/29/16 14:15	05/01/16 15:56	1
2-Nitrophenol	ND		4.7	0.45	ug/L		04/29/16 14:15	05/01/16 15:56	1
3,3'-Dichlorobenzidine	ND		4.7	0.38	ug/L		04/29/16 14:15	05/01/16 15:56	1
3-Nitroaniline	ND		9.5	0.45	ug/L		04/29/16 14:15	05/01/16 15:56	1
4,6-Dinitro-2-methylphenol	ND		9.5	2.1	ug/L		04/29/16 14:15	05/01/16 15:56	1
4-Bromophenyl phenyl ether	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 15:56	1
4-Chloro-3-methylphenol	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 15:56	1
4-Chloroaniline	ND		4.7	0.56	ug/L		04/29/16 14:15	05/01/16 15:56	1
4-Chlorophenyl phenyl ether	ND		4.7	0.33	ug/L		04/29/16 14:15	05/01/16 15:56	1
4-Methylphenol	ND		9.5	0.34	ug/L		04/29/16 14:15	05/01/16 15:56	1
4-Nitroaniline	ND		9.5	0.24	ug/L		04/29/16 14:15	05/01/16 15:56	1
4-Nitrophenol	ND		9.5	1.4	ug/L		04/29/16 14:15	05/01/16 15:56	1
Acenaphthene	ND		4.7	0.39	ug/L		04/29/16 14:15	05/01/16 15:56	1
Acenaphthylene	ND		4.7	0.36	ug/L		04/29/16 14:15	05/01/16 15:56	1
Acetophenone	ND		4.7	0.51	ug/L		04/29/16 14:15	05/01/16 15:56	1
Anthracene	ND		4.7	0.26	ug/L		04/29/16 14:15	05/01/16 15:56	1
Atrazine	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 15:56	1
Benzaldehyde	ND	*	4.7	0.25	ug/L		04/29/16 14:15	05/01/16 15:56	1
Benzo[a]anthracene	ND		4.7	0.34	ug/L		04/29/16 14:15	05/01/16 15:56	1
Benzo[a]pyrene	ND		4.7	0.44	ug/L		04/29/16 14:15	05/01/16 15:56	1
Benzo[b]fluoranthene	ND		4.7	0.32	ug/L		04/29/16 14:15	05/01/16 15:56	1
Benzo[g,h,i]perylene	ND		4.7	0.33	ug/L		04/29/16 14:15	05/01/16 15:56	1
Benzo[k]fluoranthene	ND		4.7	0.69	ug/L		04/29/16 14:15	05/01/16 15:56	1
Bis(2-chloroethoxy)methane	ND		4.7	0.33	ug/L		04/29/16 14:15	05/01/16 15:56	1
Bis(2-chloroethyl)ether	ND		4.7	0.38	ug/L		04/29/16 14:15	05/01/16 15:56	1
Bis(2-ethylhexyl) phthalate	ND		4.7	2.1	ug/L		04/29/16 14:15	05/01/16 15:56	1
Butyl benzyl phthalate	ND		4.7	0.95	ug/L		04/29/16 14:15	05/01/16 15:56	1
Caprolactam	ND		4.7	2.1	ug/L		04/29/16 14:15	05/01/16 15:56	1
Carbazole	ND		4.7	0.28	ug/L		04/29/16 14:15	05/01/16 15:56	1
Chrysene	ND		4.7	0.31	ug/L		04/29/16 14:15	05/01/16 15:56	1

Client Sample ID: TKMW-9 Date Collected: 04/27/16 09:35 Date Received: 04/28/16 15:00

Method: 8270D - Semivolati Analyte	le Organic Co Result	mpounds (G Qualifier	iC/MS) (Co RL	ntinued MDL) Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a.h)anthracene			4.7	0.40	ua/L		04/29/16 14:15	05/01/16 15:56	1
Di-n-butyl phthalate	0.35	J	4.7	0.29	ug/L		04/29/16 14:15	05/01/16 15:56	1
Di-n-octvl phthalate	ND		4.7	0.44	ua/L		04/29/16 14:15	05/01/16 15:56	1
Dibenzofuran	ND		9.5	0.48	ug/L		04/29/16 14:15	05/01/16 15:56	1
Diethyl phthalate	ND		4.7	0.21	ug/L		04/29/16 14:15	05/01/16 15:56	1
Dimethyl phthalate	ND		4.7	0.34	ug/L		04/29/16 14:15	05/01/16 15:56	1
Fluoranthene	ND		4.7	0.38	ug/L		04/29/16 14:15	05/01/16 15:56	1
Fluorene	ND		4.7	0.34	ug/L		04/29/16 14:15	05/01/16 15:56	1
Hexachlorobenzene	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 15:56	1
Hexachlorobutadiene	ND		4.7	0.64	ug/L		04/29/16 14:15	05/01/16 15:56	1
Hexachlorocyclopentadiene	ND		4.7	0.56	ug/L		04/29/16 14:15	05/01/16 15:56	1
Hexachloroethane	ND		4.7	0.56	ug/L		04/29/16 14:15	05/01/16 15:56	1
Indeno[1,2,3-cd]pyrene	ND		4.7	0.44	ug/L		04/29/16 14:15	05/01/16 15:56	1
Isophorone	ND		4.7	0.41	ug/L		04/29/16 14:15	05/01/16 15:56	1
N-Nitrosodi-n-propylamine	ND		4.7	0.51	ug/L		04/29/16 14:15	05/01/16 15:56	1
N-Nitrosodiphenylamine	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 15:56	1
Naphthalene	ND		4.7	0.72	ug/L		04/29/16 14:15	05/01/16 15:56	1
Nitrobenzene	ND		4.7	0.27	ug/L		04/29/16 14:15	05/01/16 15:56	1
Pentachlorophenol	ND		9.5	2.1	ug/L		04/29/16 14:15	05/01/16 15:56	1
Phenanthrene	ND		4.7	0.42	ug/L		04/29/16 14:15	05/01/16 15:56	1
Phenol	ND		4.7	0.37	ug/L		04/29/16 14:15	05/01/16 15:56	1
Pyrene	ND		4.7	0.32	ug/L		04/29/16 14:15	05/01/16 15:56	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	77		46 - 120	04/29/16 14:15	05/01/16 15:56	1
Phenol-d5 (Surr)	37		16 - 120	04/29/16 14:15	05/01/16 15:56	1
p-Terphenyl-d14 (Surr)	88		67 - 150	04/29/16 14:15	05/01/16 15:56	1
2,4,6-Tribromophenol (Surr)	88		52 - 132	04/29/16 14:15	05/01/16 15:56	1
2-Fluorobiphenyl	76		48 - 120	04/29/16 14:15	05/01/16 15:56	1
2-Fluorophenol (Surr)	55		20 - 120	04/29/16 14:15	05/01/16 15:56	1

Method: 6010C - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	4.1		0.20		mg/L		04/29/16 11:25	04/29/16 23:32	1
Antimony	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:32	1
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 23:32	1
Barium	0.11		0.0020		mg/L		04/29/16 11:25	04/29/16 23:32	1
Beryllium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 23:32	1
Cadmium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 23:32	1
Calcium	229		0.50		mg/L		04/29/16 11:25	04/29/16 23:32	1
Chromium	0.0060		0.0040		mg/L		04/29/16 11:25	04/29/16 23:32	1
Cobalt	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:32	1
Copper	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:32	1
Iron	5.4		0.050		mg/L		04/29/16 11:25	04/29/16 23:32	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:32	1
Magnesium	58.3		0.20		mg/L		04/29/16 11:25	04/29/16 23:32	1
Manganese	0.31		0.0030		mg/L		04/29/16 11:25	04/29/16 23:32	1
Nickel	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:32	1
Potassium	15.7		0.50		mg/L		04/29/16 11:25	04/29/16 23:32	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 23:32	1

TestAmerica Buffalo

5 6 9

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-2

Matrix: Water

5/5/2016

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-99240-1

Client Sample ID: TKMW-9 Date Collected: 04/27/16 09:35 Date Received: 04/28/16 15:00

Lab Sample ID: 480-99240-2 Matrix: Water

Method: 6010C - Metals (IC Analyte	(Continued) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060		mg/L		04/29/16 11:25	04/29/16 23:32	1
Sodium	399		1.0		mg/L		04/29/16 11:25	04/29/16 23:32	1
Thallium	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:32	1
Vanadium	0.0079		0.0050		mg/L		04/29/16 11:25	04/29/16 23:32	1
Zinc	0.019		0.010		mg/L		04/29/16 11:25	04/29/16 23:32	1
Method: 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.010		mg/L		05/02/16 21:25	05/03/16 09:45	1

Client Sample ID: TKMW-8 Date Collected: 04/27/16 10:38

Date Received: 04/28/16 15:00

Method: 8260C - Volatile Organ	nic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/04/16 04:53	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/04/16 04:53	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/04/16 04:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/04/16 04:53	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/04/16 04:53	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/04/16 04:53	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/04/16 04:53	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/04/16 04:53	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/04/16 04:53	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/04/16 04:53	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/04/16 04:53	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/04/16 04:53	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/04/16 04:53	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/04/16 04:53	1
2-Hexanone	ND		5.0	1.2	ug/L			05/04/16 04:53	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/04/16 04:53	1
Acetone	4.0	J *	10	3.0	ug/L			05/04/16 04:53	1
Benzene	ND		1.0	0.41	ug/L			05/04/16 04:53	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/04/16 04:53	1
Bromoform	ND		1.0	0.26	ug/L			05/04/16 04:53	1
Bromomethane	ND		1.0	0.69	ug/L			05/04/16 04:53	1
Carbon disulfide	0.39	J	1.0	0.19	ug/L			05/04/16 04:53	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/04/16 04:53	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/04/16 04:53	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/04/16 04:53	1
Chloroethane	ND		1.0	0.32	ug/L			05/04/16 04:53	1
Chloroform	ND		1.0	0.34	ug/L			05/04/16 04:53	1
Chloromethane	ND		1.0	0.35	ug/L			05/04/16 04:53	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/04/16 04:53	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/04/16 04:53	1
Cyclohexane	ND		1.0	0.18	ug/L			05/04/16 04:53	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/04/16 04:53	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/04/16 04:53	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/04/16 04:53	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/04/16 04:53	1
Methyl acetate	ND		2.5	1.3	ug/L			05/04/16 04:53	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/04/16 04:53	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/04/16 04:53	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/04/16 04:53	1
Styrene	ND		1.0	0.73	ug/L			05/04/16 04:53	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/04/16 04:53	1
Toluene	ND		1.0	0.51	ug/L			05/04/16 04:53	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/04/16 04:53	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/04/16 04:53	1
Trichloroethene	ND		1.0	0.46	ug/L			05/04/16 04:53	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/04/16 04:53	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/04/16 04:53	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/04/16 04:53	1
					-				

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-3

Matrix: Water

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Lab Sample ID: 480-99240-3 Matrix: Water

5

6

Client Sample ID: TKMW-8 Date Collected: 04/27/16 10:38 Date Received: 04/28/16 15:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		71 - 126	<u>_</u>	05/04/16 04:53	1
1,2-Dichloroethane-d4 (Surr)	119		66 - 137		05/04/16 04:53	1
4-Bromofluorobenzene (Surr)	89		73 - 120		05/04/16 04:53	1
Dibromofluoromethane (Surr)	111		60 - 140		05/04/16 04:53	1
— —						

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4.8	0.63	ug/L		04/29/16 14:15	05/01/16 16:25	1
bis (2-chloroisopropyl) ether	ND		4.8	0.50	ug/L		04/29/16 14:15	05/01/16 16:25	1
2,4,5-Trichlorophenol	ND		4.8	0.46	ug/L		04/29/16 14:15	05/01/16 16:25	1
2,4,6-Trichlorophenol	ND		4.8	0.59	ug/L		04/29/16 14:15	05/01/16 16:25	1
2,4-Dichlorophenol	ND		4.8	0.49	ug/L		04/29/16 14:15	05/01/16 16:25	1
2,4-Dimethylphenol	ND		4.8	0.48	ug/L		04/29/16 14:15	05/01/16 16:25	1
2,4-Dinitrophenol	ND		9.7	2.1	ug/L		04/29/16 14:15	05/01/16 16:25	1
2,4-Dinitrotoluene	ND		4.8	0.43	ug/L		04/29/16 14:15	05/01/16 16:25	1
2,6-Dinitrotoluene	ND		4.8	0.39	ug/L		04/29/16 14:15	05/01/16 16:25	1
2-Chloronaphthalene	ND		4.8	0.44	ug/L		04/29/16 14:15	05/01/16 16:25	1
2-Chlorophenol	ND		4.8	0.51	ug/L		04/29/16 14:15	05/01/16 16:25	1
2-Methylphenol	ND		4.8	0.39	ug/L		04/29/16 14:15	05/01/16 16:25	1
2-Methylnaphthalene	ND		4.8	0.58	ug/L		04/29/16 14:15	05/01/16 16:25	1
2-Nitroaniline	ND		9.7	0.41	ug/L		04/29/16 14:15	05/01/16 16:25	1
2-Nitrophenol	ND		4.8	0.46	ug/L		04/29/16 14:15	05/01/16 16:25	1
3,3'-Dichlorobenzidine	ND		4.8	0.39	ug/L		04/29/16 14:15	05/01/16 16:25	1
3-Nitroaniline	ND		9.7	0.46	ug/L		04/29/16 14:15	05/01/16 16:25	1
4,6-Dinitro-2-methylphenol	ND		9.7	2.1	ug/L		04/29/16 14:15	05/01/16 16:25	1
4-Bromophenyl phenyl ether	ND		4.8	0.43	ug/L		04/29/16 14:15	05/01/16 16:25	1
4-Chloro-3-methylphenol	ND		4.8	0.43	ug/L		04/29/16 14:15	05/01/16 16:25	1
4-Chloroaniline	ND		4.8	0.57	ug/L		04/29/16 14:15	05/01/16 16:25	1
4-Chlorophenyl phenyl ether	ND		4.8	0.34	ug/L		04/29/16 14:15	05/01/16 16:25	1
4-Methylphenol	ND		9.7	0.35	ug/L		04/29/16 14:15	05/01/16 16:25	1
4-Nitroaniline	ND		9.7	0.24	ug/L		04/29/16 14:15	05/01/16 16:25	1
4-Nitrophenol	ND		9.7	1.5	ug/L		04/29/16 14:15	05/01/16 16:25	1
Acenaphthene	ND		4.8	0.40	ug/L		04/29/16 14:15	05/01/16 16:25	1
Acenaphthylene	ND		4.8	0.37	ug/L		04/29/16 14:15	05/01/16 16:25	1
Acetophenone	ND		4.8	0.52	ug/L		04/29/16 14:15	05/01/16 16:25	1
Anthracene	ND		4.8	0.27	ug/L		04/29/16 14:15	05/01/16 16:25	1
Atrazine	ND		4.8	0.44	ug/L		04/29/16 14:15	05/01/16 16:25	1
Benzaldehyde	ND	*	4.8	0.26	ug/L		04/29/16 14:15	05/01/16 16:25	1
Benzo[a]anthracene	ND		4.8	0.35	ug/L		04/29/16 14:15	05/01/16 16:25	1
Benzo[a]pyrene	ND		4.8	0.45	ug/L		04/29/16 14:15	05/01/16 16:25	1
Benzo[b]fluoranthene	ND		4.8	0.33	ug/L		04/29/16 14:15	05/01/16 16:25	1
Benzo[g,h,i]perylene	ND		4.8	0.34	ug/L		04/29/16 14:15	05/01/16 16:25	1
Benzo[k]fluoranthene	ND		4.8	0.70	ug/L		04/29/16 14:15	05/01/16 16:25	1
Bis(2-chloroethoxy)methane	ND		4.8	0.34	ug/L		04/29/16 14:15	05/01/16 16:25	1
Bis(2-chloroethyl)ether	ND		4.8	0.39	ug/L		04/29/16 14:15	05/01/16 16:25	1
Bis(2-ethylhexyl) phthalate	ND		4.8	2.1	ug/L		04/29/16 14:15	05/01/16 16:25	1
Butyl benzyl phthalate	ND		4.8	0.97	ug/L		04/29/16 14:15	05/01/16 16:25	1
Caprolactam	ND		4.8	2.1	ug/L		04/29/16 14:15	05/01/16 16:25	1
Carbazole	ND		4.8	0.29	ug/L		04/29/16 14:15	05/01/16 16:25	1
Chrysene	ND		4.8	0.32	ug/L		04/29/16 14:15	05/01/16 16:25	1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: TKMW-8 Date Collected: 04/27/16 10:38 Date Received: 04/28/16 15:00

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (Co	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		4.8	0.41	ug/L		04/29/16 14:15	05/01/16 16:25	1
Di-n-butyl phthalate	0.35	J	4.8	0.30	ug/L		04/29/16 14:15	05/01/16 16:25	1
Di-n-octyl phthalate	ND		4.8	0.45	ug/L		04/29/16 14:15	05/01/16 16:25	1
Dibenzofuran	ND		9.7	0.49	ug/L		04/29/16 14:15	05/01/16 16:25	1
Diethyl phthalate	ND		4.8	0.21	ug/L		04/29/16 14:15	05/01/16 16:25	1
Dimethyl phthalate	ND		4.8	0.35	ug/L		04/29/16 14:15	05/01/16 16:25	1
Fluoranthene	ND		4.8	0.39	ug/L		04/29/16 14:15	05/01/16 16:25	1
Fluorene	ND		4.8	0.35	ug/L		04/29/16 14:15	05/01/16 16:25	1
Hexachlorobenzene	ND		4.8	0.49	ug/L		04/29/16 14:15	05/01/16 16:25	1
Hexachlorobutadiene	ND		4.8	0.66	ug/L		04/29/16 14:15	05/01/16 16:25	1
Hexachlorocyclopentadiene	ND		4.8	0.57	ug/L		04/29/16 14:15	05/01/16 16:25	1
Hexachloroethane	ND		4.8	0.57	ug/L		04/29/16 14:15	05/01/16 16:25	1
Indeno[1,2,3-cd]pyrene	ND		4.8	0.45	ug/L		04/29/16 14:15	05/01/16 16:25	1
Isophorone	ND		4.8	0.42	ug/L		04/29/16 14:15	05/01/16 16:25	1
N-Nitrosodi-n-propylamine	ND		4.8	0.52	ug/L		04/29/16 14:15	05/01/16 16:25	1
N-Nitrosodiphenylamine	ND		4.8	0.49	ug/L		04/29/16 14:15	05/01/16 16:25	1
Naphthalene	ND		4.8	0.73	ug/L		04/29/16 14:15	05/01/16 16:25	1
Nitrobenzene	ND		4.8	0.28	ug/L		04/29/16 14:15	05/01/16 16:25	1
Pentachlorophenol	ND		9.7	2.1	ug/L		04/29/16 14:15	05/01/16 16:25	1
Phenanthrene	ND		4.8	0.42	ug/L		04/29/16 14:15	05/01/16 16:25	1
Phenol	ND		4.8	0.38	ug/L		04/29/16 14:15	05/01/16 16:25	1
Pyrene	ND		4.8	0.33	ug/L		04/29/16 14:15	05/01/16 16:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	95		46 - 120				04/29/16 14:15	05/01/16 16:25	1
Phenol-d5 (Surr)	35		16 - 120				04/29/16 14:15	05/01/16 16:25	1
p-Terphenyl-d14 (Surr)	89		67 - 150				04/29/16 14:15	05/01/16 16:25	1

Method: 6010C - Metals (ICP)			
2-Fluorophenol (Surr)	53	20 - 120	04/29/16 14:15 05/01/16 16:25
2-Fluorobiphenyl	91	48 - 120	04/29/16 14:15 05/01/16 16:25
2,4,6-Tribromophenol (Surr)	98	52 - 132	04/29/16 14:15 05/01/16 16:25
p-Terphenyl-d14 (Surr)	89	67 - 150	04/29/16 14:15 05/01/16 16:25
Phenol-d5 (Surr)	35	16 - 120	04/29/16 14:15 05/01/16 16:25

Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		04/29/16 11:25	04/29/16 23:36	1
Antimony	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:36	1
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 23:36	1
Barium	0.14		0.0020		mg/L		04/29/16 11:25	04/29/16 23:36	1
Beryllium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 23:36	1
Cadmium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 23:36	1
Calcium	200		0.50		mg/L		04/29/16 11:25	04/29/16 23:36	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:36	1
Cobalt	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:36	1
Copper	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:36	1
Iron	0.20		0.050		mg/L		04/29/16 11:25	04/29/16 23:36	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:36	1
Magnesium	33.2		0.20		mg/L		04/29/16 11:25	04/29/16 23:36	1
Manganese	0.58		0.0030		mg/L		04/29/16 11:25	04/29/16 23:36	1
Nickel	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:36	1
Potassium	11.0		0.50		mg/L		04/29/16 11:25	04/29/16 23:36	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 23:36	1

TestAmerica Buffalo

5 6

1

1

1

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-3

Matrix: Water

5/5/2016

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-99240-1

Client Sample ID: TKMW-8 Date Collected: 04/27/16 10:38 Date Received: 04/28/16 15:00

Lab Sample ID: 480-99240-3 Matrix: Water

Method: 6010C - Metals (ICP) (0	Continued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060		mg/L		04/29/16 11:25	04/29/16 23:36	1
Sodium	392		1.0		mg/L		04/29/16 11:25	04/29/16 23:36	1
Thallium	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:36	1
Vanadium	ND		0.0050		mg/L		04/29/16 11:25	04/29/16 23:36	1
Zinc	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:36	1
- Method: 7470A - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:06	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.010		mg/L		05/02/16 21:25	05/03/16 09:46	1

1,1-Dichloroethene	ND	1.0	0.29	ug/L	05/04/16 05:21	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L	05/04/16 05:21	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L	05/04/16 05:21	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L	05/04/16 05:21	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L	05/04/16 05:21	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L	05/04/16 05:21	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L	05/04/16 05:21	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L	05/04/16 05:21	1
2-Butanone (MEK)	ND	10	1.3	ug/L	05/04/16 05:21	1
2-Hexanone	ND	5.0	1.2	ug/L	05/04/16 05:21	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L	05/04/16 05:21	1
Acetone	ND *	10	3.0	ug/L	05/04/16 05:21	1
Benzene	ND	1.0	0.41	ug/L	05/04/16 05:21	1
Bromodichloromethane	ND	1.0	0.39	ug/L	05/04/16 05:21	[`] 1
Bromoform	ND	1.0	0.26	ug/L	05/04/16 05:21	1
Bromomethane	ND	1.0	0.69	ug/L	05/04/16 05:21	1
Carbon disulfide	ND	1.0	0.19	ug/L	05/04/16 05:21	1
Carbon tetrachloride	ND	1.0	0.27	ug/L	05/04/16 05:21	1
Chlorobenzene	ND	1.0	0.75	ug/L	05/04/16 05:21	1
Dibromochloromethane	ND	1.0	0.32	ug/L	05/04/16 05:21	1
Chloroethane	ND	1.0	0.32	ug/L	05/04/16 05:21	1
Chloroform	ND	1.0	0.34	ug/L	05/04/16 05:21	1
Chloromethane	ND	1.0	0.35	ug/L	05/04/16 05:21	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L	05/04/16 05:21	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L	05/04/16 05:21	1
Cyclohexane	ND	1.0	0.18	ug/L	05/04/16 05:21	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L	05/04/16 05:21	1
Ethylbenzene	ND	1.0	0.74	ug/L	05/04/16 05:21	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L	05/04/16 05:21	1
Isopropylbenzene	ND	1.0	0.79	ug/L	05/04/16 05:21	1
Methyl acetate	ND	2.5	1.3	ug/L	05/04/16 05:21	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L	05/04/16 05:21	1
Methylcyclohexane	ND	1.0	0.16	ug/L	05/04/16 05:21	1
Methylene Chloride	ND	1.0	0.44	ug/L	05/04/16 05:21	1
Styrene	ND	1.0	0.73	ug/L	05/04/16 05:21	1
Tetrachloroethene	ND	1.0	0.36	ug/L	05/04/16 05:21	1
Toluene	ND	1.0	0.51	ug/L	05/04/16 05:21	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L	05/04/16 05:21	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L	05/04/16 05:21	1
Trichloroethene	ND	1.0	0.46	ug/L	05/04/16 05:21	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L	05/04/16 05:21	1
Vinyl chloride	ND	1.0	0.90	ug/L	05/04/16 05:21	1
Xylenes, Total	ND	2.0	0.66	ug/L	05/04/16 05:21	1

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

ND

Client Sample ID: TKMW-7 Date Collected: 04/27/16 11:28

Date Received: 04/28/16 15:00

1,1,2-Trichloro-1,2,2-trifluoroethane

Analyte

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1,2,2-Tetrachloroethane

Client Sample Results

RL

1.0

1.0

1.0

1.0

1.0

MDL Unit

0.82 ug/L

0.21 ug/L

0.23 ug/L

0.31 ug/L

0.38 ug/L

D

Prepared

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-4

Analyzed

05/04/16 05:21

05/04/16 05:21

05/04/16 05:21

05/04/16 05:21

05/04/16 05:21

Matrix: Water

Dil Fac

1

1

1

1

1

6

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Lab Sample ID: 480-99240-4 Matrix: Water

5

6

Date Collected: 04/27/16 11:28 Date Received: 04/28/16 15:00

Client Sample ID: TKMW-7

Surrogate	%Recovery Qualifier	Limits	Prepared A	nalyzed	Dil Fac
Toluene-d8 (Surr)	96	71 - 126	05/04	4/16 05:21	1
1,2-Dichloroethane-d4 (Surr)	119	66 - 137	05/0-	4/16 05:21	1
4-Bromofluorobenzene (Surr)	87	73 - 120	05/0-	4/16 05:21	1
Dibromofluoromethane (Surr)	111	60 - 140	05/04	4/16 05:21	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		8.3	1.1	ug/L		04/29/16 14:15	05/01/16 16:53	1
bis (2-chloroisopropyl) ether	ND		8.3	0.86	ug/L		04/29/16 14:15	05/01/16 16:53	1
2,4,5-Trichlorophenol	ND		8.3	0.80	ug/L		04/29/16 14:15	05/01/16 16:53	1
2,4,6-Trichlorophenol	ND		8.3	1.0	ug/L		04/29/16 14:15	05/01/16 16:53	1
2,4-Dichlorophenol	ND		8.3	0.85	ug/L		04/29/16 14:15	05/01/16 16:53	1
2,4-Dimethylphenol	ND		8.3	0.83	ug/L		04/29/16 14:15	05/01/16 16:53	1
2,4-Dinitrophenol	ND		17	3.7	ug/L		04/29/16 14:15	05/01/16 16:53	1
2,4-Dinitrotoluene	ND		8.3	0.74	ug/L		04/29/16 14:15	05/01/16 16:53	1
2,6-Dinitrotoluene	ND		8.3	0.66	ug/L		04/29/16 14:15	05/01/16 16:53	1
2-Chloronaphthalene	ND		8.3	0.76	ug/L		04/29/16 14:15	05/01/16 16:53	1
2-Chlorophenol	ND		8.3	0.88	ug/L		04/29/16 14:15	05/01/16 16:53	1
2-Methylphenol	ND		8.3	0.66	ug/L		04/29/16 14:15	05/01/16 16:53	1
2-Methylnaphthalene	ND		8.3	0.99	ug/L		04/29/16 14:15	05/01/16 16:53	1
2-Nitroaniline	ND		17	0.70	ug/L		04/29/16 14:15	05/01/16 16:53	1
2-Nitrophenol	ND		8.3	0.80	ug/L		04/29/16 14:15	05/01/16 16:53	1
3,3'-Dichlorobenzidine	ND		8.3	0.66	ug/L		04/29/16 14:15	05/01/16 16:53	1
3-Nitroaniline	ND		17	0.80	ug/L		04/29/16 14:15	05/01/16 16:53	1
4,6-Dinitro-2-methylphenol	ND		17	3.6	ug/L		04/29/16 14:15	05/01/16 16:53	1
4-Bromophenyl phenyl ether	ND		8.3	0.75	ug/L		04/29/16 14:15	05/01/16 16:53	1
4-Chloro-3-methylphenol	ND		8.3	0.75	ug/L		04/29/16 14:15	05/01/16 16:53	1
4-Chloroaniline	ND		8.3	0.98	ug/L		04/29/16 14:15	05/01/16 16:53	1
4-Chlorophenyl phenyl ether	ND		8.3	0.58	ug/L		04/29/16 14:15	05/01/16 16:53	1
4-Methylphenol	ND		17	0.60	ug/L		04/29/16 14:15	05/01/16 16:53	1
4-Nitroaniline	ND		17	0.41	ug/L		04/29/16 14:15	05/01/16 16:53	1
4-Nitrophenol	ND		17	2.5	ug/L		04/29/16 14:15	05/01/16 16:53	1
Acenaphthene	ND		8.3	0.68	ug/L		04/29/16 14:15	05/01/16 16:53	1
Acenaphthylene	ND		8.3	0.63	ug/L		04/29/16 14:15	05/01/16 16:53	1
Acetophenone	ND		8.3	0.90	ug/L		04/29/16 14:15	05/01/16 16:53	1
Anthracene	ND		8.3	0.46	ug/L		04/29/16 14:15	05/01/16 16:53	1
Atrazine	ND		8.3	0.76	ug/L		04/29/16 14:15	05/01/16 16:53	1
Benzaldehyde	0.59	J *	8.3	0.44	ug/L		04/29/16 14:15	05/01/16 16:53	1
Benzo[a]anthracene	ND		8.3	0.60	ug/L		04/29/16 14:15	05/01/16 16:53	1
Benzo[a]pyrene	ND		8.3	0.78	ug/L		04/29/16 14:15	05/01/16 16:53	1
Benzo[b]fluoranthene	ND		8.3	0.56	ug/L		04/29/16 14:15	05/01/16 16:53	1
Benzo[g,h,i]perylene	ND		8.3	0.58	ug/L		04/29/16 14:15	05/01/16 16:53	1
Benzo[k]fluoranthene	ND		8.3	1.2	ug/L		04/29/16 14:15	05/01/16 16:53	1
Bis(2-chloroethoxy)methane	ND		8.3	0.58	ug/L		04/29/16 14:15	05/01/16 16:53	1
Bis(2-chloroethyl)ether	ND		8.3	0.66	ug/L		04/29/16 14:15	05/01/16 16:53	1
Bis(2-ethylhexyl) phthalate	ND		8.3	3.6	ug/L		04/29/16 14:15	05/01/16 16:53	1
Butyl benzyl phthalate	ND		8.3	1.7	ug/L		04/29/16 14:15	05/01/16 16:53	1
Caprolactam	ND		8.3	3.6	ug/L		04/29/16 14:15	05/01/16 16:53	1
Carbazole	ND		8.3	0.50	ug/L		04/29/16 14:15	05/01/16 16:53	1
Chrysene	ND		8.3	0.55	ug/L		04/29/16 14:15	05/01/16 16:53	1

Client Sample ID: TKMW-7 Date Collected: 04/27/16 11:28 Date Received: 04/28/16 15:00

Method: 8270D - Semivolati	le Organic Co	mpounds	(GC/MS) (Cor) Unit	п	Propared	Analyzod	Dil Eac
		Quaimer							
	ND		0.3	0.70	uy/L		04/29/10 14:15	05/01/10 10.55	
	ND		8.3	0.51	ug/L		04/29/16 14:15	05/01/16 16:53	1
Di-n-octyl phthalate	ND		8.3	0.78	ug/L		04/29/16 14:15	05/01/16 16:53	1
Dibenzofuran	ND		17	0.85	ug/L		04/29/16 14:15	05/01/16 16:53	1
Diethyl phthalate	ND		8.3	0.36	ug/L		04/29/16 14:15	05/01/16 16:53	1
Dimethyl phthalate	ND		8.3	0.60	ug/L		04/29/16 14:15	05/01/16 16:53	1
Fluoranthene	ND		8.3	0.66	ug/L		04/29/16 14:15	05/01/16 16:53	1
Fluorene	ND		8.3	0.60	ug/L		04/29/16 14:15	05/01/16 16:53	1
Hexachlorobenzene	ND		8.3	0.85	ug/L		04/29/16 14:15	05/01/16 16:53	1
Hexachlorobutadiene	ND		8.3	1.1	ug/L		04/29/16 14:15	05/01/16 16:53	1
Hexachlorocyclopentadiene	ND		8.3	0.98	ug/L		04/29/16 14:15	05/01/16 16:53	1
Hexachloroethane	ND		8.3	0.98	ug/L		04/29/16 14:15	05/01/16 16:53	1
Indeno[1,2,3-cd]pyrene	ND		8.3	0.78	ug/L		04/29/16 14:15	05/01/16 16:53	1
Isophorone	ND		8.3	0.71	ug/L		04/29/16 14:15	05/01/16 16:53	1
N-Nitrosodi-n-propylamine	ND		8.3	0.90	ug/L		04/29/16 14:15	05/01/16 16:53	1
N-Nitrosodiphenylamine	ND		8.3	0.85	ug/L		04/29/16 14:15	05/01/16 16:53	1
Naphthalene	ND		8.3	1.3	ug/L		04/29/16 14:15	05/01/16 16:53	1
Nitrobenzene	ND		8.3	0.48	ug/L		04/29/16 14:15	05/01/16 16:53	1
Pentachlorophenol	ND		17	3.6	ug/L		04/29/16 14:15	05/01/16 16:53	1
Phenanthrene	ND		8.3	0.73	ug/L		04/29/16 14:15	05/01/16 16:53	1
Phenol	ND		8.3	0.65	ug/L		04/29/16 14:15	05/01/16 16:53	1
Pyrene	ND		8.3	0.56	ug/L		04/29/16 14:15	05/01/16 16:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	91		46 - 120	04/29/16 14:15	05/01/16 16:53	1
Phenol-d5 (Surr)	62		16 - 120	04/29/16 14:15	05/01/16 16:53	1
p-Terphenyl-d14 (Surr)	116		67 - 150	04/29/16 14:15	05/01/16 16:53	1
2,4,6-Tribromophenol (Surr)	88		52 - 132	04/29/16 14:15	05/01/16 16:53	1
2-Fluorobiphenyl	90		48 - 120	04/29/16 14:15	05/01/16 16:53	1
2-Fluorophenol (Surr)	77		20 - 120	04/29/16 14:15	05/01/16 16:53	1

Method: 6010C - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		04/29/16 11:25	04/29/16 23:39	1
Antimony	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:39	1
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 23:39	1
Barium	0.038		0.0020		mg/L		04/29/16 11:25	04/29/16 23:39	1
Beryllium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 23:39	1
Cadmium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 23:39	1
Calcium	109		0.50		mg/L		04/29/16 11:25	04/29/16 23:39	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:39	1
Cobalt	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:39	1
Copper	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:39	1
Iron	0.12		0.050		mg/L		04/29/16 11:25	04/29/16 23:39	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:39	1
Magnesium	18.6		0.20		mg/L		04/29/16 11:25	04/29/16 23:39	1
Manganese	0.068		0.0030		mg/L		04/29/16 11:25	04/29/16 23:39	1
Nickel	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:39	1
Potassium	3.7		0.50		mg/L		04/29/16 11:25	04/29/16 23:39	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 23:39	1

TestAmerica Buffalo

5 6

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-4

Matrix: Water

5/5/2016

RL

1.0

0.0060

0.020

0.0050

0.010

RL

RL

0.010

0.00020

Result Qualifier

Result Qualifier

Result Qualifier

ND

45.7

ND

ND

ND

ND

ND

MDL Unit

MDL

mg/L

mg/L

mg/L

mg/L

mg/L

Unit

mg/L

mg/L

MDL Unit

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Method: 6010C - Metals (ICP) (Continued)

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-4

04/29/16 11:25 04/29/16 23:39

04/29/16 11:25 04/29/16 23:39

04/29/16 11:25 04/29/16 23:39

04/29/16 11:25 04/29/16 23:39

04/29/16 11:25 04/29/16 23:39

05/02/16 09:10 05/02/16 13:08

05/02/16 21:25 05/03/16 09:48

Prepared

Prepared

Prepared

D

D

D

Client Sample ID: TKMW-7 Date Collected: 04/27/16 11:28 Date Received: 04/28/16 15:00

Method: 7470A - Mercury (CVAA)

Analyte

Sodium

Thallium

Analyte

Mercury

Analyte

Cyanide, Total

General Chemistry

Vanadium

Silver

Zinc

Matrix: Water

Analyzed

Analyzed

Analyzed

Dil Fac	5
1 1	6
1	
	8
Dil Fac 1	9
Dil Fac	
1	
	13

Client Sample ID: TKMW-6 Date Collected: 04/27/16 12:08

Date Received: 04/28/16 15:00

Method: 8260C - Volatile Organ	ic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10	8.2	ug/L			05/04/16 05:48	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			05/04/16 05:48	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			05/04/16 05:48	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			05/04/16 05:48	10
1,1-Dichloroethane	ND		10	3.8	ug/L			05/04/16 05:48	10
1,1-Dichloroethene	ND		10	2.9	ug/L			05/04/16 05:48	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			05/04/16 05:48	10
1,2-Dibromo-3-Chloropropane	ND	F1	10	3.9	ug/L			05/04/16 05:48	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			05/04/16 05:48	10
1,2-Dichloroethane	ND		10	2.1	ug/L			05/04/16 05:48	10
1,2-Dichloropropane	ND		10	7.2	ug/L			05/04/16 05:48	10
1,3-Dichlorobenzene	ND		10	7.8	ug/L			05/04/16 05:48	10
1,4-Dichlorobenzene	ND		10	8.4	ug/L			05/04/16 05:48	10
2-Butanone (MEK)	ND		100	13	ug/L			05/04/16 05:48	10
2-Hexanone	ND		50	12	ug/L			05/04/16 05:48	10
4-Methyl-2-pentanone (MIBK)	ND		50	21	ug/L			05/04/16 05:48	10
Acetone	ND	* F1	100	30	ug/L			05/04/16 05:48	10
Benzene	25		10	4.1	ug/L			05/04/16 05:48	10
Bromodichloromethane	ND		10	3.9	ug/L			05/04/16 05:48	10
Bromoform	ND		10	2.6	ug/L			05/04/16 05:48	10
Bromomethane	ND	F1	10	6.9	ug/L			05/04/16 05:48	10
Carbon disulfide	ND		10	1.9	ug/L			05/04/16 05:48	10
Carbon tetrachloride	ND		10	2.7	ug/L			05/04/16 05:48	10
Chlorobenzene	ND		10	7.5	ug/L			05/04/16 05:48	10
Dibromochloromethane	ND		10	3.2	ug/L			05/04/16 05:48	10
Chloroethane	ND		10	3.2	ug/L			05/04/16 05:48	10
Chloroform	ND		10	3.4	ug/L			05/04/16 05:48	10
Chloromethane	ND		10	3.5	ug/L			05/04/16 05:48	10
cis-1,2-Dichloroethene	ND		10	8.1	ug/L			05/04/16 05:48	10
cis-1,3-Dichloropropene	ND		10	3.6	ug/L			05/04/16 05:48	10
Cyclohexane	22		10	1.8	ug/L			05/04/16 05:48	10
Dichlorodifluoromethane	ND		10	6.8	ug/L			05/04/16 05:48	10
Ethylbenzene	11		10	7.4	ug/L			05/04/16 05:48	10
1,2-Dibromoethane	ND		10	7.3	ug/L			05/04/16 05:48	10
Isopropylbenzene	8.9	J	10	7.9	ug/L			05/04/16 05:48	10
Methyl acetate	ND		25	13	ug/L			05/04/16 05:48	10
Methyl tert-butyl ether	ND		10	1.6	ug/L			05/04/16 05:48	10
Methylcyclohexane	200	F1	10	1.6	ug/L			05/04/16 05:48	10
Methylene Chloride	ND		10	4.4	ug/L			05/04/16 05:48	10
Styrene	ND		10	7.3	ug/L			05/04/16 05:48	10
Tetrachloroethene	ND		10	3.6	ug/L			05/04/16 05:48	10
Toluene	ND		10	5.1	ug/L			05/04/16 05:48	10
trans-1,2-Dichloroethene	ND		10	9.0	ug/L			05/04/16 05:48	10
trans-1,3-Dichloropropene	ND		10	3.7	ug/L			05/04/16 05:48	10
Trichloroethene	ND		10	4.6	ug/L			05/04/16 05:48	10
Trichlorofluoromethane	ND		10	8.8	ug/L			05/04/16 05:48	10
Vinyl chloride	ND		10	9.0	ug/L			05/04/16 05:48	10
Xylenes, Total	21		20	6.6	ug/L			05/04/16 05:48	10

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-5 Matrix: Water

5

6

Limits

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

%Recovery Qualifier

Lab Sample ID: 480-99240-5 Matrix: Water

Analyzed

Dil Fac

5

6

Prepared

Client Sample ID: TKMW-6 Date Collected: 04/27/16 12:08 Date Received: 04/28/16 15:00

Surrogate

Chrysene

Toluene-d8 (Surr)	100		71 - 126					05/04/16 05:48	10
1,2-Dichloroethane-d4 (Surr)	118		66 - 137					05/04/16 05:48	10
4-Bromofluorobenzene (Surr)	91		73 - 120					05/04/16 05:48	10
Dibromofluoromethane (Surr)	109		60 - 140					05/04/16 05:48	10
 Matheda 0070D0aminalatii			0/110)						
Method: 8270D - Semivolatile Analyte	e Organic Co Result	Qualifier	C/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4 7	0.62	μα/Ι		04/29/16 14 15	05/01/16 14:58	1
bis (2-chloroisopropyl) ether	ND		4 7	0.49	ua/l		04/29/16 14:15	05/01/16 14:58	. 1
2 4 5-Trichlorophenol	ND		4 7	0.45	ua/l		04/29/16 14 15	05/01/16 14:58	1
2 4 6-Trichlorophenol	ND		4 7	0.58	ug/l		04/29/16 14:15	05/01/16 14:58	
2 4-Dichlorophenol	ND		4 7	0.48	ua/l		04/29/16 14:15	05/01/16 14:58	1
2 4-Dimethylphenol	ND		4 7	0.10	ug/L		04/29/16 14:15	05/01/16 14:58	1
2 4-Dinitrophenol	ND		94	21	ug/L		04/29/16 14:15	05/01/16 14:58	
2 4-Dinitrotoluene			47	0.42	ug/L		04/29/16 14:15	05/01/16 14:58	1
2.6-Dinitrotoluene			4.7	0.32	ug/L		04/29/16 14:15	05/01/16 14:58	1
2 Chloronanhthalana			4.7	0.00	ug/L		04/20/16 14:15	05/01/16 14:59	
2 Chlorophonol			4.7	0.43	ug/L		04/29/10 14:15	05/01/16 14:58	1
2 Mothylphonol			4.7	0.30	ug/L		04/29/10 14:15	05/01/16 14:58	1
			4.7	0.30	ug/∟		04/29/10 14.15	05/01/10 14.50	۱ ۲
	20		4.7	0.57	ug/∟		04/29/10 14.15	05/01/10 14.50	1
2-Nitroaniline	ND		9.4	0.40	ug/L		04/29/16 14:15	05/01/16 14:58	1
	ND		4.7	0.45	ug/L		04/29/16 14:15	05/01/16 14:58	1
	ND	F1	4.7	0.38	ug/L		04/29/16 14:15	05/01/16 14:58	1
3-Nitroaniline	ND	F1	9.4	0.45	ug/L		04/29/16 14:15	05/01/16 14:58	1
4,6-Dinitro-2-methylphenol	ND		9.4	2.1	ug/L		04/29/16 14:15	05/01/16 14:58	1
4-Bromophenyl phenyl ether	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 14:58	1
4-Chloro-3-methylphenol	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 14:58	1
4-Chloroaniline	ND	F1	4.7	0.56	ug/L		04/29/16 14:15	05/01/16 14:58	1
4-Chlorophenyl phenyl ether	ND		4.7	0.33	ug/L		04/29/16 14:15	05/01/16 14:58	1
4-Methylphenol	ND		9.4	0.34	ug/L		04/29/16 14:15	05/01/16 14:58	1
4-Nitroaniline	ND	F2 F1	9.4	0.24	ug/L		04/29/16 14:15	05/01/16 14:58	1
4-Nitrophenol	ND		9.4	1.4	ug/L		04/29/16 14:15	05/01/16 14:58	1
Acenaphthene	7.6		4.7	0.39	ug/L		04/29/16 14:15	05/01/16 14:58	1
Acenaphthylene	ND		4.7	0.36	ug/L		04/29/16 14:15	05/01/16 14:58	1
Acetophenone	ND		4.7	0.51	ug/L		04/29/16 14:15	05/01/16 14:58	1
Anthracene	1.6	J	4.7	0.26	ug/L		04/29/16 14:15	05/01/16 14:58	1
Atrazine	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 14:58	1
Benzaldehyde	ND	F1 *	4.7	0.25	ug/L		04/29/16 14:15	05/01/16 14:58	1
Benzo[a]anthracene	ND	F2	4.7	0.34	ug/L		04/29/16 14:15	05/01/16 14:58	1
Benzo[a]pyrene	ND	F2	4.7	0.44	ug/L		04/29/16 14:15	05/01/16 14:58	1
Benzo[b]fluoranthene	ND	F2	4.7	0.32	ug/L		04/29/16 14:15	05/01/16 14:58	1
Benzo[g,h,i]perylene	ND	F2	4.7	0.33	ug/L		04/29/16 14:15	05/01/16 14:58	1
Benzo[k]fluoranthene	ND	F2	4.7	0.69	ug/L		04/29/16 14:15	05/01/16 14:58	1
Bis(2-chloroethoxy)methane	ND		4.7	0.33	ug/L		04/29/16 14:15	05/01/16 14:58	1
Bis(2-chloroethyl)ether	ND		4.7	0.38	ug/L		04/29/16 14:15	05/01/16 14:58	1
Bis(2-ethylhexyl) phthalate	ND	F2	4.7	2.1	ug/L		04/29/16 14:15	05/01/16 14:58	1
Butyl benzyl phthalate	ND		4.7	0.94	ug/L		04/29/16 14:15	05/01/16 14:58	1
Caprolactam	ND	F1	4.7	2.1	ug/L		04/29/16 14:15	05/01/16 14:58	1
Carbazole	8.3		4.7	0.28	ug/L		04/29/16 14:15	05/01/16 14:58	1
					-				

TestAmerica Buffalo

04/29/16 14:15 05/01/16 14:58

4.7

0.31 ug/L

ND F2

1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: TKMW-6 Date Collected: 04/27/16 12:08 Date Received: 04/28/16 15:00

Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS) (Co	ntinued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND	F2	4.7	0.40	ug/L		04/29/16 14:15	05/01/16 14:58	1
Di-n-butyl phthalate	ND		4.7	0.29	ug/L		04/29/16 14:15	05/01/16 14:58	1
Di-n-octyl phthalate	ND	F2	4.7	0.44	ug/L		04/29/16 14:15	05/01/16 14:58	1
Dibenzofuran	2.7	J	9.4	0.48	ug/L		04/29/16 14:15	05/01/16 14:58	1
Diethyl phthalate	ND		4.7	0.21	ug/L		04/29/16 14:15	05/01/16 14:58	1
Dimethyl phthalate	ND		4.7	0.34	ug/L		04/29/16 14:15	05/01/16 14:58	1
Fluoranthene	1.1	J	4.7	0.38	ug/L		04/29/16 14:15	05/01/16 14:58	1
Fluorene	4.0	J	4.7	0.34	ug/L		04/29/16 14:15	05/01/16 14:58	1
Hexachlorobenzene	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 14:58	1
Hexachlorobutadiene	ND		4.7	0.64	ug/L		04/29/16 14:15	05/01/16 14:58	1
Hexachlorocyclopentadiene	ND		4.7	0.56	ug/L		04/29/16 14:15	05/01/16 14:58	1
Hexachloroethane	ND		4.7	0.56	ug/L		04/29/16 14:15	05/01/16 14:58	1
Indeno[1,2,3-cd]pyrene	ND	F2 F1	4.7	0.44	ug/L		04/29/16 14:15	05/01/16 14:58	1
Isophorone	ND		4.7	0.41	ug/L		04/29/16 14:15	05/01/16 14:58	1
N-Nitrosodi-n-propylamine	ND		4.7	0.51	ug/L		04/29/16 14:15	05/01/16 14:58	1
N-Nitrosodiphenylamine	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 14:58	1
Nitrobenzene	ND		4.7	0.27	ug/L		04/29/16 14:15	05/01/16 14:58	1
Pentachlorophenol	ND		9.4	2.1	ug/L		04/29/16 14:15	05/01/16 14:58	1
Phenanthrene	8.9		4.7	0.42	ug/L		04/29/16 14:15	05/01/16 14:58	1
Phenol	ND		4.7	0.37	ug/L		04/29/16 14:15	05/01/16 14:58	1
Pyrene	0.88	J	4.7	0.32	ug/L		04/29/16 14:15	05/01/16 14:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	87		46 - 120				04/29/16 14:15	05/01/16 14:58	1
Phenol-d5 (Surr)	45		16 - 120				04/29/16 14:15	05/01/16 14:58	1
p-Terphenyl-d14 (Surr)	90		67 - 150				04/29/16 14:15	05/01/16 14:58	1
2,4,6-Tribromophenol (Surr)	119		52 - 132				04/29/16 14:15	05/01/16 14:58	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - DL

90

69

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	320		47	7.2	ug/L		04/29/16 14:15	05/02/16 20:54	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	80		46 - 120				04/29/16 14:15	05/02/16 20:54	10
Phenol-d5 (Surr)	40		16 - 120				04/29/16 14:15	05/02/16 20:54	10
p-Terphenyl-d14 (Surr)	77		67 - 150				04/29/16 14:15	05/02/16 20:54	10
2,4,6-Tribromophenol (Surr)	94		52 - 132				04/29/16 14:15	05/02/16 20:54	10
2-Fluorobiphenyl	82		48 - 120				04/29/16 14:15	05/02/16 20:54	10
2-Fluorophenol (Surr)	57		20 - 120				04/29/16 14:15	05/02/16 20:54	10

48 - 120

20 - 120

Method: 6010C - Metals (ICP)

2-Fluorobiphenyl

2-Fluorophenol (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		04/29/16 11:25	04/29/16 23:52	1
Antimony	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:52	1
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 23:52	1
Barium	0.22	0	0.0020		mg/L		04/29/16 11:25	04/29/16 23:52	1
Beryllium	ND	0	0.0020		mg/L		04/29/16 11:25	04/29/16 23:52	1
Cadmium	ND	0	0.0020		mg/L		04/29/16 11:25	04/29/16 23:52	1

TestAmerica Buffalo

1

1

TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-5

04/29/16 14:15 05/01/16 14:58

04/29/16 14:15 05/01/16 14:58

Matrix: Water

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-99240-1

Lab Sample ID: 480-99240-5 Matrix: Water

5

6

Client Sample ID: TKMW-6 Date Collected: 04/27/16 12:08 Date Received: 04/28/16 15:00

Method: 6010C - Metals (ICP)	(Continued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	189		0.50		mg/L		04/29/16 11:25	04/29/16 23:52	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:52	1
Cobalt	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 23:52	1
Copper	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:52	1
Iron	25.0		0.050		mg/L		04/29/16 11:25	04/29/16 23:52	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:52	1
Magnesium	21.7		0.20		mg/L		04/29/16 11:25	04/29/16 23:52	1
Manganese	2.3		0.0030		mg/L		04/29/16 11:25	04/29/16 23:52	1
Nickel	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:52	1
Potassium	13.1		0.50		mg/L		04/29/16 11:25	04/29/16 23:52	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 23:52	1
Silver	ND		0.0060		mg/L		04/29/16 11:25	04/29/16 23:52	1
Sodium	192		1.0		mg/L		04/29/16 11:25	04/29/16 23:52	1
Thallium	ND		0.020		mg/L		04/29/16 11:25	04/29/16 23:52	1
Vanadium	ND		0.0050		mg/L		04/29/16 11:25	04/29/16 23:52	1
Zinc	ND		0.010		mg/L		04/29/16 11:25	04/29/16 23:52	1
Method: 7470A - Mercury (CV	' AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.016		0.010		mg/L		05/02/16 21:25	05/03/16 09:49	1

Client Sample ID: TKMW-5 Date Collected: 04/27/16 12:55

Date Received: 04/28/16 15:00

	ic Compo	unds by GC	/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/04/16 14:21	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/04/16 14:21	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/04/16 14:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/04/16 14:21	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/04/16 14:21	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/04/16 14:21	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/04/16 14:21	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/04/16 14:21	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/04/16 14:21	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/04/16 14:21	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/04/16 14:21	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/04/16 14:21	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/04/16 14:21	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/04/16 14:21	1
2-Hexanone	ND		5.0	1.2	ug/L			05/04/16 14:21	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/04/16 14:21	1
Acetone	3.4	J *	10	3.0	ug/L			05/04/16 14:21	1
Benzene	1.4		1.0	0.41	ug/L			05/04/16 14:21	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/04/16 14:21	1
Bromoform	ND		1.0	0.26	ug/L			05/04/16 14:21	1
Bromomethane	ND		1.0	0.69	ug/L			05/04/16 14:21	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/04/16 14:21	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/04/16 14:21	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/04/16 14:21	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/04/16 14:21	1
Chloroethane	ND		1.0	0.32	ug/L			05/04/16 14:21	1
Chloroform	ND		1.0	0.34	ug/L			05/04/16 14:21	1
Chloromethane	ND		1.0	0.35	ug/L			05/04/16 14:21	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/04/16 14:21	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/04/16 14:21	1
Cyclohexane	0.36	J	1.0	0.18	ug/L			05/04/16 14:21	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/04/16 14:21	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/04/16 14:21	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/04/16 14:21	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/04/16 14:21	1
Methyl acetate	ND		2.5	1.3	ug/L			05/04/16 14:21	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/04/16 14:21	1
Methylcyclohexane	0.56	J	1.0	0.16	ug/L			05/04/16 14:21	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/04/16 14:21	1
Styrene	ND		1.0	0.73	ug/L			05/04/16 14:21	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/04/16 14:21	1
Toluene	ND		1.0	0.51	ug/L			05/04/16 14:21	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/04/16 14:21	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/04/16 14:21	1
	ND		1.0	0.46	ug/L			05/04/16 14:21	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/04/16 14:21	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/04/16 14:21	1
Xylenes, I otal	ND		2.0	0.66	ug/L			05/04/16 14:21	1

Lab Sample ID: 480-99240-6 Matrix: Water

5

6
Client Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Lab Sample ID: 480-99240-6 Matrix: Water

5

6

Client Sample ID: TKMW-5 Date Collected: 04/27/16 12:55 Date Received: 04/28/16 15:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		71 - 126					05/04/16 14:21	1
1,2-Dichloroethane-d4 (Surr)	112		66 - 137					05/04/16 14:21	1
4-Bromofluorobenzene (Surr)	89		73 - 120					05/04/16 14:21	1
Dibromofluoromethane (Surr)	103		60 - 140					05/04/16 14:21	1
Method: 8270D - Semivolat	tile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Biphenyl	ND	4.9	0.64 ug/L	<u>04/29/16 14:15</u> <u>05/02/16 21:23</u> <u>1</u>
bis (2-chloroisopropyl) ether	ND	4.9	0.51 ug/L	04/29/16 14:15 05/02/16 21:23 1
2,4,5-Trichlorophenol	ND	4.9	0.47 ug/L	04/29/16 14:15 05/02/16 21:23 1
2,4,6-Trichlorophenol	ND	4.9	0.59 ug/L	04/29/16 14:15 05/02/16 21:23 1
2,4-Dichlorophenol	ND	4.9	0.50 ug/L	04/29/16 14:15 05/02/16 21:23 1
2,4-Dimethylphenol	ND	4.9	0.49 ug/L	04/29/16 14:15 05/02/16 21:23 1
2,4-Dinitrophenol	ND	9.7	2.2 ug/L	04/29/16 14:15 05/02/16 21:23 1
2,4-Dinitrotoluene	ND	4.9	0.44 ug/L	04/29/16 14:15 05/02/16 21:23 1
2,6-Dinitrotoluene	ND	4.9	0.39 ug/L	04/29/16 14:15 05/02/16 21:23 1
2-Chloronaphthalene	ND	4.9	0.45 ug/L	04/29/16 14:15 05/02/16 21:23 1
2-Chlorophenol	ND	4.9	0.52 ug/L	04/29/16 14:15 05/02/16 21:23 1
2-Methylphenol	ND	4.9	0.39 ug/L	04/29/16 14:15 05/02/16 21:23 1
2-Methylnaphthalene	ND	4.9	0.58 ug/L	04/29/16 14:15 05/02/16 21:23 1
2-Nitroaniline	ND	9.7	0.41 ug/L	04/29/16 14:15 05/02/16 21:23 1
2-Nitrophenol	ND	4.9	0.47 ug/L	04/29/16 14:15 05/02/16 21:23 1
3,3'-Dichlorobenzidine	ND	4.9	0.39 ug/L	04/29/16 14:15 05/02/16 21:23 1
3-Nitroaniline	ND	9.7	0.47 ug/L	04/29/16 14:15 05/02/16 21:23 1
4,6-Dinitro-2-methylphenol	ND	9.7	2.1 ug/L	04/29/16 14:15 05/02/16 21:23 1
4-Bromophenyl phenyl ether	ND	4.9	0.44 ug/L	04/29/16 14:15 05/02/16 21:23 1
4-Chloro-3-methylphenol	ND	4.9	0.44 ug/L	04/29/16 14:15 05/02/16 21:23 1
4-Chloroaniline	ND	4.9	0.57 ug/L	04/29/16 14:15 05/02/16 21:23 1
4-Chlorophenyl phenyl ether	ND	4.9	0.34 ug/L	04/29/16 14:15 05/02/16 21:23 1
4-Methylphenol	ND	9.7	0.35 ug/L	04/29/16 14:15 05/02/16 21:23 1
4-Nitroaniline	ND	9.7	0.24 ug/L	04/29/16 14:15 05/02/16 21:23 1
4-Nitrophenol	ND	9.7	1.5 ug/L	04/29/16 14:15 05/02/16 21:23 1
Acenaphthene	7.3	4.9	0.40 ug/L	04/29/16 14:15 05/02/16 21:23 1
Acenaphthylene	ND	4.9	0.37 ug/L	04/29/16 14:15 05/02/16 21:23 1
Acetophenone	ND	4.9	0.53 ug/L	04/29/16 14:15 05/02/16 21:23 1
Anthracene	0.48 J	4.9	0.27 ug/L	04/29/16 14:15 05/02/16 21:23 1
Atrazine	ND	4.9	0.45 ug/L	04/29/16 14:15 05/02/16 21:23 1
Benzaldehyde	ND *	4.9	0.26 ug/L	04/29/16 14:15 05/02/16 21:23 1
Benzo[a]anthracene	ND	4.9	0.35 ug/L	04/29/16 14:15 05/02/16 21:23 1
Benzo[a]pyrene	ND	4.9	0.46 ug/L	04/29/16 14:15 05/02/16 21:23 1
Benzo[b]fluoranthene	ND	4.9	0.33 ug/L	04/29/16 14:15 05/02/16 21:23 1
Benzo[g,h,i]perylene	ND	4.9	0.34 ug/L	04/29/16 14:15 05/02/16 21:23 1
Benzo[k]fluoranthene	ND	4.9	0.71 ug/L	04/29/16 14:15 05/02/16 21:23 1
Bis(2-chloroethoxy)methane	ND	4.9	0.34 ug/L	04/29/16 14:15 05/02/16 21:23 1
Bis(2-chloroethyl)ether	ND	4.9	0.39 ug/L	04/29/16 14:15 05/02/16 21:23 1
Bis(2-ethylhexyl) phthalate	ND	4.9	2.1 ug/L	04/29/16 14:15 05/02/16 21:23 1
Butyl benzyl phthalate	ND	4.9	0.97 ug/L	04/29/16 14:15 05/02/16 21:23 1
Caprolactam	ND	4.9	2.1 ug/L	04/29/16 14:15 05/02/16 21:23 1
Carbazole	ND	4.9	0.29 ug/L	04/29/16 14:15 05/02/16 21:23 1
Chrysene	ND	4.9	0.32 ug/L	04/29/16 14:15 05/02/16 21:23 1

•••

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: TKMW-5 Date Collected: 04/27/16 12:55 Date Received: 04/28/16 15:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DIIFac
Dibenz(a,h)anthracene	ND		4.9	0.41	ug/L		04/29/16 14:15	05/02/16 21:23	1
Di-n-butyl phthalate	ND		4.9	0.30	ug/L		04/29/16 14:15	05/02/16 21:23	1
Di-n-octyl phthalate	ND		4.9	0.46	ug/L		04/29/16 14:15	05/02/16 21:23	1
Dibenzofuran	0.56	J	9.7	0.50	ug/L		04/29/16 14:15	05/02/16 21:23	1
Diethyl phthalate	ND		4.9	0.21	ug/L		04/29/16 14:15	05/02/16 21:23	1
Dimethyl phthalate	ND		4.9	0.35	ug/L		04/29/16 14:15	05/02/16 21:23	1
Fluoranthene	ND		4.9	0.39	ug/L		04/29/16 14:15	05/02/16 21:23	1
Fluorene	2.5	J	4.9	0.35	ug/L		04/29/16 14:15	05/02/16 21:23	1
Hexachlorobenzene	ND		4.9	0.50	ug/L		04/29/16 14:15	05/02/16 21:23	1
Hexachlorobutadiene	ND		4.9	0.66	ug/L		04/29/16 14:15	05/02/16 21:23	1
Hexachlorocyclopentadiene	ND		4.9	0.57	ug/L		04/29/16 14:15	05/02/16 21:23	1
Hexachloroethane	ND		4.9	0.57	ug/L		04/29/16 14:15	05/02/16 21:23	1
Indeno[1,2,3-cd]pyrene	ND		4.9	0.46	ug/L		04/29/16 14:15	05/02/16 21:23	1
Isophorone	ND		4.9	0.42	ug/L		04/29/16 14:15	05/02/16 21:23	1
N-Nitrosodi-n-propylamine	ND		4.9	0.53	ug/L		04/29/16 14:15	05/02/16 21:23	1
N-Nitrosodiphenylamine	ND		4.9	0.50	ug/L		04/29/16 14:15	05/02/16 21:23	1
Naphthalene	ND		4.9	0.74	ug/L		04/29/16 14:15	05/02/16 21:23	1
Nitrobenzene	ND		4.9	0.28	ug/L		04/29/16 14:15	05/02/16 21:23	1
Pentachlorophenol	ND		9.7	2.1	ug/L		04/29/16 14:15	05/02/16 21:23	1
Phenanthrene	1.8	J	4.9	0.43	ug/L		04/29/16 14:15	05/02/16 21:23	1
Phenol	ND		4.9	0.38	ug/L		04/29/16 14:15	05/02/16 21:23	1
Pyrene	ND		4.9	0.33	ug/L		04/29/16 14:15	05/02/16 21:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	104		46 - 120				04/29/16 14:15	05/02/16 21:23	1
Phenol-d5 (Surr)	50		16 - 120				04/29/16 14:15	05/02/16 21:23	1

p-Terphenyl-d14 (Surr)	109	67 - 150	
2,4,6-Tribromophenol (Surr)	120	52 - 132	
2-Fluorobiphenyl	93	48 - 120	
2-Fluorophenol (Surr)	73	20 - 120	

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Method: 6010C - Metals (ICP)						_	_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.26		0.20		mg/L		04/29/16 11:25	04/30/16 00:09	1
Antimony	ND		0.020		mg/L		04/29/16 11:25	04/30/16 00:09	1
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/30/16 00:09	1
Barium	0.32		0.0020		mg/L		04/29/16 11:25	04/30/16 00:09	1
Beryllium	ND		0.0020		mg/L		04/29/16 11:25	04/30/16 00:09	1
Cadmium	ND		0.0020		mg/L		04/29/16 11:25	04/30/16 00:09	1
Calcium	186		0.50		mg/L		04/29/16 11:25	04/30/16 00:09	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/30/16 00:09	1
Cobalt	ND		0.0040		mg/L		04/29/16 11:25	04/30/16 00:09	1
Copper	ND		0.010		mg/L		04/29/16 11:25	04/30/16 00:09	1
Iron	2.9		0.050		mg/L		04/29/16 11:25	04/30/16 00:09	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/30/16 00:09	1
Magnesium	27.4		0.20		mg/L		04/29/16 11:25	04/30/16 00:09	1
Manganese	0.55		0.0030		mg/L		04/29/16 11:25	04/30/16 00:09	1
Nickel	ND		0.010		mg/L		04/29/16 11:25	04/30/16 00:09	1
Potassium	10.4		0.50		mg/L		04/29/16 11:25	04/30/16 00:09	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/30/16 00:09	1

TestAmerica Buffalo

04/29/16 14:15 05/02/16 21:23

04/29/16 14:15 05/02/16 21:23

04/29/16 14:15 05/02/16 21:23

04/29/16 14:15 05/02/16 21:23

TestAmerica Job ID: 480-99240-1 Lab Sample ID: 480-99240-6 Matrix: Water 5 6

1

1

1

1

5/5/2016

Client Sample Results

RL

1.0

0.020

0.0050

0.010

RL

RL

0.010

0.00020

0.0060

MDL Unit

MDL

MDL Unit

mg/L

mg/L

mg/L

mg/L

mg/L

Unit

mg/L

mg/L

D

D

D

Result Qualifier

Result Qualifier

Result Qualifier

ND

236

ND

ND

ND

ND

0.012

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Method: 6010C - Metals (ICP) (Continued)

TestAmerica Job ID: 480-99240-1

Client Sample ID: TKMW-5 Date Collected: 04/27/16 12:55 Date Received: 04/28/16 15:00

Method: 7470A - Mercury (CVAA)

Analyte

Sodium

Thallium

Analyte

Mercury

Analyte

Cyanide, Total

General Chemistry

Vanadium

Silver

Zinc

Lab Sample ID: 480-99240-6 Matrix: Water

Prepared	Analyzed	Dil Fac	
04/29/16 11:25	04/30/16 00:09	1	-
04/29/16 11:25	04/30/16 00:09	1	
04/29/16 11:25	04/30/16 00:09	1	
04/29/16 11:25	04/30/16 00:09	1	
04/29/16 11:25	04/30/16 00:09	1	
Prepared	Analyzed	Dil Fac	
05/02/16 09:10	05/02/16 13:19	1	
Prepared	Analyzed	Dil Fac	
05/02/16 21:25	05/03/16 09:56	1	

Client Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: EQUIPMENT BLANK Date Collected: 04/27/16 13:45

Date Received: 04/28/16 15:00

Method: 8260C - Volatile Organ	ic Compou	nds by GC/	MS						
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/04/16 06:42	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/04/16 06:42	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/04/16 06:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/04/16 06:42	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/04/16 06:42	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/04/16 06:42	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/04/16 06:42	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/04/16 06:42	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/04/16 06:42	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/04/16 06:42	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/04/16 06:42	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/04/16 06:42	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/04/16 06:42	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/04/16 06:42	1
2-Hexanone	ND		5.0	1.2	ug/L			05/04/16 06:42	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/04/16 06:42	1
Acetone	ND *		10	3.0	ug/L			05/04/16 06:42	1
Benzene	ND		1.0	0.41	ug/L			05/04/16 06:42	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/04/16 06:42	1
Bromoform	ND		1.0	0.26	ug/L			05/04/16 06:42	1
Bromomethane	ND		1.0	0.69	ug/L			05/04/16 06:42	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/04/16 06:42	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/04/16 06:42	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/04/16 06:42	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/04/16 06:42	1
Chloroethane	ND		1.0	0.32	ug/L			05/04/16 06:42	1
Chloroform	ND		1.0	0.34	ug/L			05/04/16 06:42	1
Chloromethane	ND		1.0	0.35	ug/L			05/04/16 06:42	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/04/16 06:42	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/04/16 06:42	1
Cyclohexane	ND		1.0	0.18	ug/L			05/04/16 06:42	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/04/16 06:42	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/04/16 06:42	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/04/16 06:42	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/04/16 06:42	1
Methyl acetate	ND		2.5	1.3	ug/L			05/04/16 06:42	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/04/16 06:42	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/04/16 06:42	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/04/16 06:42	1
Styrene	ND		1.0	0.73	ug/L			05/04/16 06:42	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/04/16 06:42	1
Toluene	ND		1.0	0.51	ug/L			05/04/16 06:42	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/04/16 06:42	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/04/16 06:42	1
Trichloroethene	ND		1.0	0.46	ug/L			05/04/16 06:42	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/04/16 06:42	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/04/16 06:42	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/04/16 06:42	1

Lab Sample ID: 480-99240-7 Matrix: Water

5/5/2016

Lab Sample ID: 480-99240-7

Matrix: Water

5

6

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: EQUIPMENT BLANK Date Collected: 04/27/16 13:45 Date Received: 04/28/16 15:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		71 - 126		05/04/16 06:42	1
1,2-Dichloroethane-d4 (Surr)	117		66 - 137		05/04/16 06:42	1
4-Bromofluorobenzene (Surr)	89		73 - 120		05/04/16 06:42	1
Dibromofluoromethane (Surr)	112		60 - 140		05/04/16 06:42	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4.7	0.61	ug/L		04/29/16 14:15	05/01/16 17:51	1
bis (2-chloroisopropyl) ether	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 17:51	1
2,4,5-Trichlorophenol	ND		4.7	0.45	ug/L		04/29/16 14:15	05/01/16 17:51	1
2,4,6-Trichlorophenol	ND		4.7	0.57	ug/L		04/29/16 14:15	05/01/16 17:51	1
2,4-Dichlorophenol	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 17:51	1
2,4-Dimethylphenol	ND		4.7	0.47	ug/L		04/29/16 14:15	05/01/16 17:51	1
2,4-Dinitrophenol	ND		9.3	2.1	ug/L		04/29/16 14:15	05/01/16 17:51	1
2,4-Dinitrotoluene	ND		4.7	0.42	ug/L		04/29/16 14:15	05/01/16 17:51	1
2,6-Dinitrotoluene	ND		4.7	0.37	ug/L		04/29/16 14:15	05/01/16 17:51	1
2-Chloronaphthalene	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 17:51	1
2-Chlorophenol	ND		4.7	0.49	ug/L		04/29/16 14:15	05/01/16 17:51	1
2-Methylphenol	ND		4.7	0.37	ug/L		04/29/16 14:15	05/01/16 17:51	1
2-Methylnaphthalene	ND		4.7	0.56	ug/L		04/29/16 14:15	05/01/16 17:51	1
2-Nitroaniline	ND		9.3	0.39	ug/L		04/29/16 14:15	05/01/16 17:51	1
2-Nitrophenol	ND		4.7	0.45	ug/L		04/29/16 14:15	05/01/16 17:51	1
3,3'-Dichlorobenzidine	ND		4.7	0.37	ug/L		04/29/16 14:15	05/01/16 17:51	1
3-Nitroaniline	ND		9.3	0.45	ug/L		04/29/16 14:15	05/01/16 17:51	1
4,6-Dinitro-2-methylphenol	ND		9.3	2.0	ug/L		04/29/16 14:15	05/01/16 17:51	1
4-Bromophenyl phenyl ether	ND		4.7	0.42	ug/L		04/29/16 14:15	05/01/16 17:51	1
4-Chloro-3-methylphenol	ND		4.7	0.42	ug/L		04/29/16 14:15	05/01/16 17:51	1
4-Chloroaniline	ND		4.7	0.55	ug/L		04/29/16 14:15	05/01/16 17:51	1
4-Chlorophenyl phenyl ether	ND		4.7	0.33	ug/L		04/29/16 14:15	05/01/16 17:51	1
4-Methylphenol	ND		9.3	0.34	ug/L		04/29/16 14:15	05/01/16 17:51	1
4-Nitroaniline	ND		9.3	0.23	ug/L		04/29/16 14:15	05/01/16 17:51	1
4-Nitrophenol	ND		9.3	1.4	ug/L		04/29/16 14:15	05/01/16 17:51	1
Acenaphthene	ND		4.7	0.38	ug/L		04/29/16 14:15	05/01/16 17:51	1
Acenaphthylene	ND		4.7	0.35	ug/L		04/29/16 14:15	05/01/16 17:51	1
Acetophenone	ND		4.7	0.50	ug/L		04/29/16 14:15	05/01/16 17:51	1
Anthracene	ND		4.7	0.26	ug/L		04/29/16 14:15	05/01/16 17:51	1
Atrazine	ND		4.7	0.43	ug/L		04/29/16 14:15	05/01/16 17:51	1
Benzaldehyde	0.41	J *	4.7	0.25	ug/L		04/29/16 14:15	05/01/16 17:51	1
Benzo[a]anthracene	ND		4.7	0.34	ug/L		04/29/16 14:15	05/01/16 17:51	1
Benzo[a]pyrene	ND		4.7	0.44	ug/L		04/29/16 14:15	05/01/16 17:51	1
Benzo[b]fluoranthene	ND		4.7	0.32	ug/L		04/29/16 14:15	05/01/16 17:51	1
Benzo[g,h,i]perylene	ND		4.7	0.33	ug/L		04/29/16 14:15	05/01/16 17:51	1
Benzo[k]fluoranthene	ND		4.7	0.68	ug/L		04/29/16 14:15	05/01/16 17:51	1
Bis(2-chloroethoxy)methane	ND		4.7	0.33	ug/L		04/29/16 14:15	05/01/16 17:51	1
Bis(2-chloroethyl)ether	ND		4.7	0.37	ug/L		04/29/16 14:15	05/01/16 17:51	1
Bis(2-ethylhexyl) phthalate	ND		4.7	2.0	ug/L		04/29/16 14:15	05/01/16 17:51	1
Butyl benzyl phthalate	ND		4.7	0.93	ug/L		04/29/16 14:15	05/01/16 17:51	1
Caprolactam	ND		4.7	2.0	ug/L		04/29/16 14:15	05/01/16 17:51	1
Carbazole	ND		4.7	0.28	ug/L		04/29/16 14:15	05/01/16 17:51	1
Chrysene	ND		4.7	0.31	ug/L		04/29/16 14:15	05/01/16 17:51	1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: EQUIPMENT BLANK Date Collected: 04/27/16 13:45 Date Received: 04/28/16 15:00

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Dibenz(a,h)anthracene	ND		4.7	0.39	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Di-n-butyl phthalate	ND		4.7	0.29	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Di-n-octyl phthalate	ND		4.7	0.44	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Dibenzofuran	ND		9.3	0.48	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Diethyl phthalate	ND		4.7	0.20	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Dimethyl phthalate	ND		4.7	0.34	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Fluoranthene	ND		4.7	0.37	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Fluorene	ND		4.7	0.34	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Hexachlorobenzene	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Hexachlorobutadiene	ND		4.7	0.63	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Hexachlorocyclopentadiene	ND		4.7	0.55	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Hexachloroethane	ND		4.7	0.55	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Indeno[1,2,3-cd]pyrene	ND		4.7	0.44	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Isophorone	ND		4.7	0.40	ug/L		04/29/16 14:15	05/01/16 17:51	1	
N-Nitrosodi-n-propylamine	ND		4.7	0.50	ug/L		04/29/16 14:15	05/01/16 17:51	1	
N-Nitrosodiphenylamine	ND		4.7	0.48	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Naphthalene	ND		4.7	0.71	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Nitrobenzene	ND		4.7	0.27	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Pentachlorophenol	ND		9.3	2.0	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Phenanthrene	ND		4.7	0.41	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Phenol	ND		4.7	0.36	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Pyrene	ND		4.7	0.32	ug/L		04/29/16 14:15	05/01/16 17:51	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	86	46 - 120	04/29/16 14:15	05/01/16 17:51	1
Phenol-d5 (Surr)	39	16 - 120	04/29/16 14:15	05/01/16 17:51	1
p-Terphenyl-d14 (Surr)	113	67 - 150	04/29/16 14:15	05/01/16 17:51	1
2,4,6-Tribromophenol (Surr)	92	52 - 132	04/29/16 14:15	05/01/16 17:51	1
2-Fluorobiphenyl	86	48 - 120	04/29/16 14:15	05/01/16 17:51	1
2-Fluorophenol (Surr)	58	20 - 120	04/29/16 14:15	05/01/16 17:51	1

Method: 6010C - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		04/29/16 11:25	04/30/16 00:12	1
Antimony	ND		0.020		mg/L		04/29/16 11:25	04/30/16 00:12	1
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/30/16 00:12	1
Barium	0.021		0.0020		mg/L		04/29/16 11:25	04/30/16 00:12	1
Beryllium	ND		0.0020		mg/L		04/29/16 11:25	04/30/16 00:12	1
Cadmium	ND		0.0020		mg/L		04/29/16 11:25	04/30/16 00:12	1
Calcium	33.4		0.50		mg/L		04/29/16 11:25	04/30/16 00:12	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/30/16 00:12	1
Cobalt	ND		0.0040		mg/L		04/29/16 11:25	04/30/16 00:12	1
Copper	0.012		0.010		mg/L		04/29/16 11:25	04/30/16 00:12	1
Iron	0.075		0.050		mg/L		04/29/16 11:25	04/30/16 00:12	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/30/16 00:12	1
Magnesium	8.9		0.20		mg/L		04/29/16 11:25	04/30/16 00:12	1
Manganese	ND		0.0030		mg/L		04/29/16 11:25	04/30/16 00:12	1
Nickel	ND		0.010		mg/L		04/29/16 11:25	04/30/16 00:12	1
Potassium	1.7		0.50		mg/L		04/29/16 11:25	04/30/16 00:12	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/30/16 00:12	1

TestAmerica Buffalo

TestAmerica Job ID: 480-99240-1

Client Sample Results

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY TestAmerica Job ID: 480-99240-1

Client Sample ID: EQUIPMENT BLANK Date Collected: 04/27/16 13:45 Date Received: 04/28/16 15:00

Lab Sample ID: 480-99240-7 Matrix: Water

Method: 6010C - Metals (ICP) (C Analyte	Continued) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0060		mg/L		04/29/16 11:25	04/30/16 00:12	1
Sodium	14.2		1.0		mg/L		04/29/16 11:25	04/30/16 00:12	1
Thallium	ND		0.020		mg/L		04/29/16 11:25	04/30/16 00:12	1
Vanadium	ND		0.0050		mg/L		04/29/16 11:25	04/30/16 00:12	1
Zinc	ND		0.010		mg/L		04/29/16 11:25	04/30/16 00:12	1
Method: 7470A - Mercury (CVA)	A) Result	Qualifier	RI	МП	Unit	п	Prenared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:21	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.010		mg/L		05/02/16 21:25	05/03/16 09:59	1

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix:	W	ate
---------	---	-----

			Pe	ercent Surre	ogate Recov
		TOL	12DCE	BFB	DBFM
Lab Sample ID	Client Sample ID	(71-126)	(66-137)	(73-120)	(60-140)
480-99240-1	BLIND DUP	98	119	90	112
480-99240-2	TKMW-9	98	116	91	110
480-99240-3	TKMW-8	98	119	89	111
480-99240-4	TKMW-7	96	119	87	111
480-99240-5	TKMW-6	100	118	91	109
480-99240-5 MS	TKMW-6	101	116	95	109
480-99240-5 MSD	TKMW-6	102	118	99	112
480-99240-6	TKMW-5	97	112	89	103
480-99240-7	EQUIPMENT BLANK	95	117	89	112
LCS 480-299754/4	Lab Control Sample	101	113	98	110
LCS 480-299852/4	Lab Control Sample	98	108	93	104
MB 480-299754/6	Method Blank	98	117	93	110
MB 480-299852/6	Method Blank	98	111	91	107

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) Matrix: Water

			Pe	ercent Surro	ogate Reco	very (Accep	otance Limi
		NBZ	PHL	TPH	TBP	FBP	2FP
Lab Sample ID	Client Sample ID	(46-120)	(16-120)	(67-150)	(52-132)	(48-120)	(20-120)
480-99240-1	BLIND DUP	91	38	85	99	89	56
480-99240-2	TKMW-9	77	37	88	88	76	55
480-99240-3	TKMW-8	95	35	89	98	91	53
480-99240-4	TKMW-7	91	62	116	88	90	77
480-99240-5	TKMW-6	87	45	90	119	90	69
480-99240-5 - DL	TKMW-6	80	40	77	94	82	57
480-99240-5 MS	TKMW-6	86	54	101	113	92	72
480-99240-5 MSD	TKMW-6	87	54	84	120	91	72
480-99240-6	TKMW-5	104	50	109	120	93	73
480-99240-7	EQUIPMENT BLANK	86	39	113	92	86	58
LCS 480-299050/2-A	Lab Control Sample	103	55	114	108	102	77
MB 480-299050/1-A	Method Blank	97	43	113	84	96	64

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-299754/6 Matrix: Water

Analysis Batch: 299754

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/04/16 00:35	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/04/16 00:35	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/04/16 00:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/04/16 00:35	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/04/16 00:35	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/04/16 00:35	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/04/16 00:35	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/04/16 00:35	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/04/16 00:35	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/04/16 00:35	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/04/16 00:35	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/04/16 00:35	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/04/16 00:35	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/04/16 00:35	1
2-Hexanone	ND		5.0	1.2	ug/L			05/04/16 00:35	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/04/16 00:35	1
Acetone	ND		10	3.0	ug/L			05/04/16 00:35	1
Benzene	ND		1.0	0.41	ug/L			05/04/16 00:35	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/04/16 00:35	1
Bromoform	ND		1.0	0.26	ug/L			05/04/16 00:35	1
Bromomethane	ND		1.0	0.69	ug/L			05/04/16 00:35	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/04/16 00:35	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/04/16 00:35	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/04/16 00:35	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/04/16 00:35	1
Chloroethane	ND		1.0	0.32	ug/L			05/04/16 00:35	1
Chloroform	ND		1.0	0.34	ug/L			05/04/16 00:35	1
Chloromethane	ND		1.0	0.35	ug/L			05/04/16 00:35	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/04/16 00:35	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/04/16 00:35	1
Cyclohexane	ND		1.0	0.18	ug/L			05/04/16 00:35	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/04/16 00:35	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/04/16 00:35	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/04/16 00:35	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/04/16 00:35	1
Methyl acetate	ND		2.5	1.3	ug/L			05/04/16 00:35	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/04/16 00:35	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/04/16 00:35	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/04/16 00:35	1
Styrene	ND		1.0	0.73	ua/L			05/04/16 00:35	1
Tetrachloroethene	ND		1.0	0.36	ua/L			05/04/16 00:35	1
Toluene	ND		1.0	0.51	ua/l			05/04/16 00:35	1
trans-1 2-Dichloroethene	ND		1.0	0.90	ua/l			05/04/16 00:35	
trans-1.3-Dichloropropene	ND		1.0	0.37	ug/L			05/04/16 00:35	1
Trichloroethene	ND		1 0	0.46	ua/L			05/04/16 00:35	1
Trichlorofluoromethane	ND		1.0	0.88	ua/L			05/04/16 00:35	· · · · · · · · · · · · · · · · · · ·
Vinvl chloride	ND		1.0	0.00	ua/l			05/04/16 00:35	1
Xylenes Total	ND		2.0	0.00	ua/l			05/04/16 00:35	1
,, ·				0.00	· J –				•

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

MB MB Surrogate %Recovery Qualifier Limits Dil Fac Prepared Analyzed Toluene-d8 (Surr) 98 71 - 126 05/04/16 00:35 1 1,2-Dichloroethane-d4 (Surr) 117 66 - 137 05/04/16 00:35 1 4-Bromofluorobenzene (Surr) 93 73 - 120 05/04/16 00:35 1 60 - 140 Dibromofluoromethane (Surr) 110 05/04/16 00:35 1

Lab Sample ID: LCS 480-299754/4 Matrix: Water

Analysis Batch: 299754

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	0
1,1,1-Trichloroethane	25.0	29.3		ug/L		117	73 - 126	- —
1,1,2,2-Tetrachloroethane	25.0	29.0		ug/L		116	70 - 126	
1,1,2-Trichloroethane	25.0	26.3		ug/L		105	76 - 122	9
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	32.0		ug/L		128	52 - 148	10
1,1-Dichloroethane	25.0	26.7		ug/L		107	71 - 129	
1,1-Dichloroethene	25.0	28.5		ug/L		114	58 - 121	
1,2,4-Trichlorobenzene	25.0	26.6		ug/L		106	70 - 122	
1,2-Dibromo-3-Chloropropane	25.0	31.1		ug/L		124	56 ₋ 134	
1,2-Dichlorobenzene	25.0	26.3		ug/L		105	80 - 124	
1,2-Dichloroethane	25.0	27.8		ug/L		111	75 ₋ 127	
1,2-Dichloropropane	25.0	26.4		ug/L		106	76 - 120	
1,3-Dichlorobenzene	25.0	25.9		ug/L		104	77 - 120	
1,4-Dichlorobenzene	25.0	25.6		ug/L		102	75 - 120	
2-Butanone (MEK)	125	170		ug/L		136	57 - 140	
2-Hexanone	125	147		ug/L		118	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	146		ug/L		117	71 - 125	
Acetone	125	220	*	ug/L		176	56 - 142	
Benzene	25.0	26.5		ug/L		106	71 - 124	
Bromodichloromethane	25.0	28.7		ug/L		115	80 - 122	
Bromoform	25.0	29.0		ug/L		116	52 - 132	
Bromomethane	25.0	32.3		ug/L		129	55 ₋ 144	
Carbon disulfide	25.0	27.6		ug/L		111	59 ₋ 134	
Carbon tetrachloride	25.0	30.3		ug/L		121	72 - 134	
Chlorobenzene	25.0	24.8		ug/L		99	72 - 120	
Dibromochloromethane	25.0	27.9		ug/L		112	75 - 125	
Chloroethane	25.0	27.4		ug/L		110	69 - 136	
Chloroform	25.0	27.9		ug/L		111	73 - 127	
Chloromethane	25.0	23.5		ug/L		94	68 - 124	
cis-1,2-Dichloroethene	25.0	27.1		ug/L		108	74 - 124	
cis-1,3-Dichloropropene	25.0	26.5		ug/L		106	74 ₋ 124	
Cyclohexane	25.0	27.7		ug/L		111	59 - 135	
Dichlorodifluoromethane	25.0	26.1		ug/L		105	59 ₋ 135	
Ethylbenzene	25.0	25.8		ug/L		103	77 - 123	
1,2-Dibromoethane	25.0	26.7		ug/L		107	77 - 120	
Isopropylbenzene	25.0	27.2		ug/L		109	77 - 122	
Methyl acetate	125	155		ug/L		124	74 - 133	
Methyl tert-butyl ether	25.0	27.8		ug/L		111	64 - 127	
Methylcyclohexane	25.0	28.1		ug/L		112	61 - 138	
Methylene Chloride	25.0	25.8		ug/L		103	57 - 132	
Styrene	25.0	24.8		ug/L		99	70 - 130	
Tetrachloroethene	25.0	25.7		ug/L		103	74 - 122	
Toluene	25.0	25.4		ug/L		102	80 - 122	
trans-1.2-Dichloroethene	25.0	27.0		ua/L		108	73 - 127	

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480 Matrix: Water					Clie	ent Sa	mple ID	: Lab Contro Prep Type:	ol Sample Total/NA	
Analysis Batch: 299754										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,3-Dichloropropene			25.0	26.8		ug/L		107	72 - 123	
Trichloroethene			25.0	27.4		ug/L		109	74 ₋ 123	
Trichlorofluoromethane			25.0	28.9		ug/L		115	62 - 152	
Vinyl chloride			25.0	23.5		ug/L		94	65 - 133	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Toluene-d8 (Surr)	101		71 - 126							
1.2-Dichloroethane-d4 (Surr)	113		66 - 137							

73 - 120 60 - 140

4-Bromofluorobenzene (Surr)	98	
Dibromofluoromethane (Surr)	110	
Lab Sample ID: 480.00240.5	MC	

Lab Sample ID: 480-99240-5 MS Matrix: Water Analysis Batch: 299754

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		250	303		ug/L		121	73 - 126
1,1,2,2-Tetrachloroethane	ND		250	310		ug/L		124	70 - 126
1,1,2-Trichloroethane	ND		250	279		ug/L		112	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		250	316		ug/L		127	52 - 148
ne									
1,1-Dichloroethane	ND		250	270		ug/L		108	71 - 129
1,1-Dichloroethene	ND		250	287		ug/L		115	58 - 121
1,2,4-Trichlorobenzene	ND		250	267		ug/L		107	70 - 122
1,2-Dibromo-3-Chloropropane	ND	F1	250	334		ug/L		134	56 - 134
1,2-Dichlorobenzene	ND		250	270		ug/L		108	80 - 124
1,2-Dichloroethane	ND		250	285		ug/L		114	75 - 127
1,2-Dichloropropane	ND		250	266		ug/L		106	76 - 120
1,3-Dichlorobenzene	ND		250	264		ug/L		106	77 - 120
1,4-Dichlorobenzene	ND		250	260		ug/L		104	75 - 120
2-Butanone (MEK)	ND		1250	1600		ug/L		128	57 - 140
2-Hexanone	ND		1250	1490		ug/L		119	65 - 127
4-Methyl-2-pentanone (MIBK)	ND		1250	1500		ug/L		120	71 - 125
Acetone	ND	* F1	1250	1740		ug/L		139	56 - 142
Benzene	25		250	294		ug/L		108	71 - 124
Bromodichloromethane	ND		250	291		ug/L		116	80 - 122
Bromoform	ND		250	265		ug/L		106	52 - 132
Bromomethane	ND	F1	250	422	F1	ug/L		169	55 - 144
Carbon disulfide	ND		250	273		ug/L		109	59 ₋ 134
Carbon tetrachloride	ND		250	313		ug/L		125	72 - 134
Chlorobenzene	ND		250	251		ug/L		101	72 - 120
Dibromochloromethane	ND		250	274		ug/L		110	75 - 125
Chloroethane	ND		250	316		ug/L		126	69 - 136
Chloroform	ND		250	287		ug/L		115	73 - 127
Chloromethane	ND		250	228		ug/L		91	68 - 124
cis-1,2-Dichloroethene	ND		250	269		ug/L		107	74 - 124
cis-1,3-Dichloropropene	ND		250	250		ug/L		100	74 - 124
Cyclohexane	22		250	285		ug/L		105	59 ₋ 135

Client Sample ID: TKMW-6 Prep Type: Total/NA

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: TKMW-6

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

109

Lab Sample ID: 480-99240-5 MS Matrix: Water

Ana	lvsi	s B	atcl	h• 2	997	754

····· , ··· · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	ND		250	276		ug/L		110	59 - 135	-
Ethylbenzene	11		250	276		ug/L		106	77 - 123	
1,2-Dibromoethane	ND		250	275		ug/L		110	77 - 120	
Isopropylbenzene	8.9	J	250	287		ug/L		111	77 - 122	
Methyl acetate	ND		1250	1570		ug/L		125	74 - 133	
Methyl tert-butyl ether	ND		250	273		ug/L		109	64 - 127	
Methylcyclohexane	200	F1	250	594	F1	ug/L		158	61 - 138	
Methylene Chloride	ND		250	264		ug/L		106	57 - 132	
Styrene	ND		250	253		ug/L		101	70 - 130	
Tetrachloroethene	ND		250	263		ug/L		105	74 - 122	
Toluene	ND		250	265		ug/L		106	80 - 122	
trans-1,2-Dichloroethene	ND		250	277		ug/L		111	73 - 127	
trans-1,3-Dichloropropene	ND		250	261		ug/L		104	72 - 123	
Trichloroethene	ND		250	276		ug/L		110	74 - 123	
Trichlorofluoromethane	ND		250	301		ug/L		120	62 - 152	
Vinyl chloride	ND		250	227		ug/L		91	65 - 133	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Toluene-d8 (Surr)	101		71 - 126							
1,2-Dichloroethane-d4 (Surr)	116		66 - 137							
4-Bromofluorobenzene (Surr)	95		73 - 120							

60 - 140

Lab Sample ID: 480-99240-5 MSD Matrix: Water Analysis Batch: 299754

Dibromofluoromethane (Surr)

Client Sample ID: TKMW-6 Prep Type: Total/NA

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		250	313		ug/L		125	73 - 126	3	15
1,1,2,2-Tetrachloroethane	ND		250	309		ug/L		123	70 - 126	0	15
1,1,2-Trichloroethane	ND		250	279		ug/L		112	76 - 122	0	15
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		250	333		ug/L		133	52 - 148	5	20
1,1-Dichloroethane	ND		250	278		ug/L		111	71 - 129	3	20
1,1-Dichloroethene	ND		250	298		ug/L		119	58 - 121	4	16
1,2,4-Trichlorobenzene	ND		250	274		ug/L		110	70 - 122	3	20
1,2-Dibromo-3-Chloropropane	ND	F1	250	344	F1	ug/L		137	56 - 134	3	15
1,2-Dichlorobenzene	ND		250	271		ug/L		109	80 - 124	1	20
1,2-Dichloroethane	ND		250	291		ug/L		117	75 - 127	2	20
1,2-Dichloropropane	ND		250	273		ug/L		109	76 - 120	2	20
1,3-Dichlorobenzene	ND		250	264		ug/L		106	77 - 120	0	20
1,4-Dichlorobenzene	ND		250	263		ug/L		105	75 - 120	1	20
2-Butanone (MEK)	ND		1250	1640		ug/L		131	57 - 140	2	20
2-Hexanone	ND		1250	1520		ug/L		122	65 - 127	3	15
4-Methyl-2-pentanone (MIBK)	ND		1250	1520		ug/L		121	71 - 125	1	35
Acetone	ND	* F1	1250	1800	F1	ug/L		144	56 - 142	4	15
Benzene	25		250	297		ug/L		109	71 - 124	1	13
Bromodichloromethane	ND		250	298		ug/L		119	80 - 122	3	15

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: TKMW-6

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-99240-5 MSD Matrix: Water

Analysis Batch: 299754

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromoform	ND		250	281		ug/L		112	52 - 132	6	15
Bromomethane	ND	F1	250	411	F1	ug/L		165	55 - 144	2	15
Carbon disulfide	ND		250	296		ug/L		118	59 - 134	8	15
Carbon tetrachloride	ND		250	325		ug/L		130	72 - 134	4	15
Chlorobenzene	ND		250	257		ug/L		103	72 - 120	2	25
Dibromochloromethane	ND		250	281		ug/L		112	75 - 125	3	15
Chloroethane	ND		250	305		ug/L		122	69 - 136	4	15
Chloroform	ND		250	292		ug/L		117	73 - 127	2	20
Chloromethane	ND		250	234		ug/L		94	68 - 124	3	15
cis-1,2-Dichloroethene	ND		250	278		ug/L		111	74 - 124	3	15
cis-1,3-Dichloropropene	ND		250	263		ug/L		105	74 - 124	5	15
Cyclohexane	22		250	333		ug/L		125	59 - 135	16	20
Dichlorodifluoromethane	ND		250	280		ug/L		112	59 - 135	1	20
Ethylbenzene	11		250	281		ug/L		108	77 - 123	2	15
1,2-Dibromoethane	ND		250	281		ug/L		112	77 - 120	2	15
Isopropylbenzene	8.9	J	250	294		ug/L		114	77 - 122	2	20
Methyl acetate	ND		1250	1600		ug/L		128	74 - 133	2	20
Methyl tert-butyl ether	ND		250	280		ug/L		112	64 - 127	3	37
Methylcyclohexane	200	F1	250	622	F1	ug/L		170	61 - 138	5	20
Methylene Chloride	ND		250	265		ug/L		106	57 - 132	0	15
Styrene	ND		250	257		ug/L		103	70 - 130	2	20
Tetrachloroethene	ND		250	272		ug/L		109	74 - 122	3	20
Toluene	ND		250	266		ug/L		107	80 - 122	1	15
trans-1,2-Dichloroethene	ND		250	284		ug/L		114	73 - 127	2	20
trans-1,3-Dichloropropene	ND		250	267		ug/L		107	72 - 123	2	15
Trichloroethene	ND		250	282		ug/L		113	74 - 123	2	16
Trichlorofluoromethane	ND		250	309		ug/L		124	62 - 152	3	20
Vinyl chloride	ND		250	238		ug/L		95	65 - 133	5	15

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		71 - 126
1,2-Dichloroethane-d4 (Surr)	118		66 - 137
4-Bromofluorobenzene (Surr)	99		73 - 120
Dibromofluoromethane (Surr)	112		60 - 140

Lab Sample ID: MB 480-299852/6 Matrix: Water Analysis Batch: 299852

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/04/16 12:03	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/04/16 12:03	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/04/16 12:03	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/04/16 12:03	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/04/16 12:03	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/04/16 12:03	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/04/16 12:03	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/04/16 12:03	1

TestAmerica Buffalo

Lab Sample ID: MB 480-299852/6

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Method Blank

2 3 4 5

5
8
9

14

Matrix: Water								Prep Type: To	otal/NA
Analysis Batch: 299852									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/04/16 12:03	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/04/16 12:03	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/04/16 12:03	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/04/16 12:03	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/04/16 12:03	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/04/16 12:03	1
2-Hexanone	ND		5.0	1.2	ug/L			05/04/16 12:03	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/04/16 12:03	1
Acetone	ND		10	3.0	ug/L			05/04/16 12:03	1
Benzene	ND		1.0	0.41	ug/L			05/04/16 12:03	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/04/16 12:03	1
Bromoform	ND		1.0	0.26	ug/L			05/04/16 12:03	1
Bromomethane	ND		1.0	0.69	ug/L			05/04/16 12:03	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/04/16 12:03	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/04/16 12:03	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/04/16 12:03	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/04/16 12:03	1
Chloroethane	ND		1.0	0.32	ug/L			05/04/16 12:03	1
Chloroform	ND		1.0	0.34	ug/L			05/04/16 12:03	1
Chloromethane	ND		1.0	0.35	ug/L			05/04/16 12:03	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/04/16 12:03	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/04/16 12:03	1
Cyclohexane	ND		1.0	0.18	ug/L			05/04/16 12:03	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/04/16 12:03	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/04/16 12:03	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/04/16 12:03	
Isopropylbenzene	ND		1.0	0.79	ug/L			05/04/16 12:03	1
Methyl acetate	ND		2.5	1.3	ug/L			05/04/16 12:03	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/04/16 12:03	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/04/16 12:03	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/04/16 12:03	1
Styrene	ND		1.0	0.73	ug/L			05/04/16 12:03	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/04/16 12:03	1
Toluene	ND		1.0	0.51	ug/L			05/04/16 12:03	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/04/16 12:03	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/04/16 12:03	1
Trichloroethene	ND		1.0	0.46	ug/L			05/04/16 12:03	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/04/16 12:03	1
Vinvl chloride	ND		1.0	0.90	ug/L			05/04/16 12:03	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/04/16 12:03	1
• •					0				
	MB	MB					_ -	.	
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		71 - 126					05/04/16 12:03	1
1,2-Dichloroethane-d4 (Surr)	111		66 - 137					05/04/16 12:03	1
4-Bromofluorobenzene (Surr)	91		73 - 120					05/04/16 12:03	1
Dibromofluoromethane (Surr)	107		60 - 140					05/04/16 12:03	1

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-299852/4 Matrix: Water

Client Sample ID:	Lab C	ontrol Sample	•
	Prep 1	Type: Total/NA	

Analysis Batch: 299852							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	28.0		ug/L		112	73 - 126
1,1,2,2-Tetrachloroethane	25.0	28.5		ug/L		114	70 - 126
1,1,2-Trichloroethane	25.0	25.4		ug/L		102	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	30.3		ug/L		121	52 - 148
1,1-Dichloroethane	25.0	25.0		ug/L		100	71 - 129
1,1-Dichloroethene	25.0	26.7		ug/L		107	58 - 121
1,2,4-Trichlorobenzene	25.0	25.1		ug/L		100	70 - 122
1,2-Dibromo-3-Chloropropane	25.0	29.9		ug/L		119	56 - 134
1,2-Dichlorobenzene	25.0	25.7		ug/L		103	80 - 124
1,2-Dichloroethane	25.0	25.8		ug/L		103	75 - 127
1,2-Dichloropropane	25.0	24.9		ug/L		99	76 - 120
1,3-Dichlorobenzene	25.0	24.7		ug/L		99	77 - 120
1,4-Dichlorobenzene	25.0	24.8		ug/L		99	75 - 120
2-Butanone (MEK)	125	153		ug/L		123	57 - 140
2-Hexanone	125	140		ug/L		112	65 - 127
4-Methyl-2-pentanone (MIBK)	125	140		ug/L		112	71 - 125
Acetone	125	188	*	ug/L		151	56 - 142
Benzene	25.0	24.8		ug/L		99	71 ₋ 124
Bromodichloromethane	25.0	26.6		ug/L		106	80 - 122
Bromoform	25.0	27.3		ug/L		109	52 - 132
Bromomethane	25.0	34.2		ug/L		137	55 - 144
Carbon disulfide	25.0	25.8		ug/L		103	59 ₋ 134
Carbon tetrachloride	25.0	28.8		ug/L		115	72 - 134
Chlorobenzene	25.0	24.0		ug/L		96	72 - 120
Dibromochloromethane	25.0	26.7		ug/L		107	75 - 125
Chloroethane	25.0	26.0		ua/L		104	69 - 136
Chloroform	25.0	26.1		ua/L		105	73 - 127
Chloromethane	25.0	23.1		ua/L		93	68 - 124
cis-1.2-Dichloroethene	25.0	25.0		ua/L		100	74 - 124
cis-1.3-Dichloropropene	25.0	24.9		ua/L		99	74 - 124
Cvclohexane	25.0	26.7		ua/L		107	59 - 135
Dichlorodifluoromethane	25.0	24.5		ua/l		98	59 - 135
Ethylbenzene	25.0	24.9		ug/L		100	77 - 123
1.2-Dibromoethane	25.0	25.7		ua/L		103	77 - 120
Isopropylbenzene	25.0	26.6		ua/l		107	77 - 122
Methyl acetate	125	145		ua/l		116	74 - 133
Methyl tert-butyl ether	25.0	25.3		ug/L		101	64 - 127
Methylcyclohexane	25.0	26.6		ug/l		106	61 - 138
Methylene Chloride	25.0	24.4		ug/L		98	57 132
Styrene	25.0	23.6		ug/L		94	70 130
Tetrachloroethene	25.0	25.0		ug/L		100	74 122
	25.0	20.0		ug/L		08	80 122
trans 1.2 Dichlereethene	25.0	24.0		ug/L		102	73 127
trans-1,2-Dichloropropene	20.0	20.4		ug/L		102	70 103
	25.0	20.0		ug/L		101	74 123
Trichlorofluoromethane	25.0	20.7 20.0		ug/L		115	62 152
Vinul chlorido	20.0	20.0 22 F		ug/L		110	65 133
virtyr chionae	20.0	23.5		ug/L		94	00 - 100

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-299852/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 299852 LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 98 71 - 126 1,2-Dichloroethane-d4 (Surr) 108 66 - 137 4-Bromofluorobenzene (Surr) 93 73 - 120 Dibromofluoromethane (Surr) 104 60 - 140 Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-2990	0 50/1-A						Client Samp	le ID: Method	Blank
Matrix: Water							I	Prep Type: To	otal/NA
Analysis Batch: 299234								Prep Batch: 2	299050
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0	0.65	ug/L		04/29/16 14:15	05/01/16 13:02	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		04/29/16 14:15	05/01/16 13:02	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		04/29/16 14:15	05/01/16 13:02	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		04/29/16 14:15	05/01/16 13:02	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		04/29/16 14:15	05/01/16 13:02	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		04/29/16 14:15	05/01/16 13:02	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		04/29/16 14:15	05/01/16 13:02	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		04/29/16 14:15	05/01/16 13:02	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		04/29/16 14:15	05/01/16 13:02	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		04/29/16 14:15	05/01/16 13:02	1
2-Chlorophenol	ND		5.0	0.53	ug/L		04/29/16 14:15	05/01/16 13:02	1
2-Methylphenol	ND		5.0	0.40	ug/L		04/29/16 14:15	05/01/16 13:02	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		04/29/16 14:15	05/01/16 13:02	1
2-Nitroaniline	ND		10	0.42	ug/L		04/29/16 14:15	05/01/16 13:02	1
2-Nitrophenol	ND		5.0	0.48	ug/L		04/29/16 14:15	05/01/16 13:02	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		04/29/16 14:15	05/01/16 13:02	1
3-Nitroaniline	ND		10	0.48	ug/L		04/29/16 14:15	05/01/16 13:02	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		04/29/16 14:15	05/01/16 13:02	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		04/29/16 14:15	05/01/16 13:02	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		04/29/16 14:15	05/01/16 13:02	1
4-Chloroaniline	ND		5.0	0.59	ug/L		04/29/16 14:15	05/01/16 13:02	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		04/29/16 14:15	05/01/16 13:02	1
4-Methylphenol	ND		10	0.36	ug/L		04/29/16 14:15	05/01/16 13:02	1
4-Nitroaniline	ND		10	0.25	ug/L		04/29/16 14:15	05/01/16 13:02	1
4-Nitrophenol	ND		10	1.5	ug/L		04/29/16 14:15	05/01/16 13:02	1
Acenaphthene	ND		5.0	0.41	ug/L		04/29/16 14:15	05/01/16 13:02	1
Acenaphthylene	ND		5.0	0.38	ug/L		04/29/16 14:15	05/01/16 13:02	1
Acetophenone	ND		5.0	0.54	ug/L		04/29/16 14:15	05/01/16 13:02	1
Anthracene	ND		5.0	0.28	ug/L		04/29/16 14:15	05/01/16 13:02	1
Atrazine	ND		5.0	0.46	ug/L		04/29/16 14:15	05/01/16 13:02	1
Benzaldehyde	ND		5.0	0.27	ug/L		04/29/16 14:15	05/01/16 13:02	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		04/29/16 14:15	05/01/16 13:02	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		04/29/16 14:15	05/01/16 13:02	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		04/29/16 14:15	05/01/16 13:02	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		04/29/16 14:15	05/01/16 13:02	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		04/29/16 14:15	05/01/16 13:02	1

RL

5.0

MDL Unit

0.35 ug/L

D

Prepared

Analysis Batch: 299234

Bis(2-chloroethoxy)methane

Analyte

Client Sample ID: Method Blank

04/29/16 14:15 05/01/16 13:02

Analyzed

Prep Type: Total/NA Prep Batch: 299050

Dil Fac

1

8

Bis(2-chloroethyl)ether	ND	5.0	0.40 ug/L	04/29/16 14:15 05/01/16 13:02	1
Bis(2-ethylhexyl) phthalate	ND	5.0	2.2 ug/L	04/29/16 14:15 05/01/16 13:02	1
Butyl benzyl phthalate	ND	5.0	1.0 ug/L	04/29/16 14:15 05/01/16 13:02	1
Caprolactam	ND	5.0	2.2 ug/L	04/29/16 14:15 05/01/16 13:02	1
Carbazole	ND	5.0	0.30 ug/L	04/29/16 14:15 05/01/16 13:02	1
Chrysene	ND	5.0	0.33 ug/L	04/29/16 14:15 05/01/16 13:02	1
Dibenz(a,h)anthracene	ND	5.0	0.42 ug/L	04/29/16 14:15 05/01/16 13:02	1
Di-n-butyl phthalate	ND	5.0	0.31 ug/L	04/29/16 14:15 05/01/16 13:02	1
Di-n-octyl phthalate	ND	5.0	0.47 ug/L	04/29/16 14:15 05/01/16 13:02	1
Dibenzofuran	ND	10	0.51 ug/L	04/29/16 14:15 05/01/16 13:02	1
Diethyl phthalate	ND	5.0	0.22 ug/L	04/29/16 14:15 05/01/16 13:02	1
Dimethyl phthalate	ND	5.0	0.36 ug/L	04/29/16 14:15 05/01/16 13:02	1
Fluoranthene	ND	5.0	0.40 ug/L	04/29/16 14:15 05/01/16 13:02	1
Fluorene	ND	5.0	0.36 ug/L	04/29/16 14:15 05/01/16 13:02	1
Hexachlorobenzene	ND	5.0	0.51 ug/L	04/29/16 14:15 05/01/16 13:02	1
Hexachlorobutadiene	ND	5.0	0.68 ug/L	04/29/16 14:15 05/01/16 13:02	1
Hexachlorocyclopentadiene	ND	5.0	0.59 ug/L	04/29/16 14:15 05/01/16 13:02	1
Hexachloroethane	ND	5.0	0.59 ug/L	04/29/16 14:15 05/01/16 13:02	1
Indeno[1,2,3-cd]pyrene	ND	5.0	0.47 ug/L	04/29/16 14:15 05/01/16 13:02	1
Isophorone	ND	5.0	0.43 ug/L	04/29/16 14:15 05/01/16 13:02	1
N-Nitrosodi-n-propylamine	ND	5.0	0.54 ug/L	04/29/16 14:15 05/01/16 13:02	1
N-Nitrosodiphenylamine	ND	5.0	0.51 ug/L	04/29/16 14:15 05/01/16 13:02	1
Naphthalene	ND	5.0	0.76 ug/L	04/29/16 14:15 05/01/16 13:02	1
Nitrobenzene	ND	5.0	0.29 ug/L	04/29/16 14:15 05/01/16 13:02	1
Pentachlorophenol	ND	10	2.2 ug/L	04/29/16 14:15 05/01/16 13:02	1
Phenanthrene	ND	5.0	0.44 ug/L	04/29/16 14:15 05/01/16 13:02	1
Phenol	ND	5.0	0.39 ug/L	04/29/16 14:15 05/01/16 13:02	1
Pyrene	ND	5.0	0.34 ug/L	04/29/16 14:15 05/01/16 13:02	1

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	97		46 - 120	04/29/16 14:15	05/01/16 13:02	1
Phenol-d5 (Surr)	43		16 - 120	04/29/16 14:15	05/01/16 13:02	1
p-Terphenyl-d14 (Surr)	113		67 - 150	04/29/16 14:15	05/01/16 13:02	1
2,4,6-Tribromophenol (Surr)	84		52 - 132	04/29/16 14:15	05/01/16 13:02	1
2-Fluorobiphenyl	96		48 - 120	04/29/16 14:15	05/01/16 13:02	1
2-Fluorophenol (Surr)	64		20 - 120	04/29/16 14:15	05/01/16 13:02	1

Lab Sample ID: LCS 480-299050/2-A **Matrix: Water** Analysis Batch: 299234

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Biphenyl	16.0	15.4		ug/L		96	30 - 140	
bis (2-chloroisopropyl) ether	16.0	15.7		ug/L		98	28 - 136	
2,4,5-Trichlorophenol	16.0	15.7		ug/L		98	65 - 126	
2,4,6-Trichlorophenol	16.0	15.7		ug/L		98	64 - 120	
2,4-Dichlorophenol	16.0	16.0		ug/L		100	64 - 120	

TestAmerica Buffalo

Prep Type: Total/NA

Prep Batch: 299050

Client Sample ID: Lab Control Sample

Lab Sample ID: MB 480-299050/1-A **Matrix: Water**

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB **Result Qualifier**

MD MD

ND

4 5

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-299050/2-A		Client Sample ID: Lab Contr						
Matrix: Water							Prep Type: Total/NA	
Analysis Batch: 299234	0						Prep Batch: 299050	
• • •	Spike	LCS	LCS		_	~ -	%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec		
	16.0	14.7		ug/L		92	57 - 120	
2,4-Dinitrophenol	32.0	26.2		ug/L		82	42 - 153	
2,4-Dinitrotoluene	16.0	15.2		ug/L		95	65 - 154	
2,6-Dinitrotoluene	16.0	16.5		ug/L		103	74 - 134	
2-Chloronaphthalene	16.0	14.8		ug/L		92	41 - 124	
2-Chlorophenol	16.0	14.8		ug/L		92	48 - 120	
2-Methylphenol	16.0	14.0		ug/L		88	39 - 120	
2-Methylnaphthalene	16.0	15.2		ug/L		95	34 - 122	
2-Nitroaniline	16.0	16.7		ug/L		104	67 - 136	
2-Nitrophenol	16.0	15.4		ug/L		97	59 - 120	
3,3'-Dichlorobenzidine	32.0	38.0		ug/L		119	33 - 140	
3-Nitroaniline	16.0	15.2		ug/L		95	28 - 130	
4,6-Dinitro-2-methylphenol	32.0	30.0		ug/L		94	64 - 159	
4-Bromophenyl phenyl ether	16.0	15.4		ug/L		96	71 - 126	
4-Chloro-3-methylphenol	16.0	16.1		ug/L		100	64 - 120	
4-Chloroaniline	16.0	12.4		ua/L		78	10 - 130	
4-Chlorophenyl phenyl ether	16.0	15.1		ua/L		95	71 - 122	
4-Methylphenol	16.0	13.8		ua/L		86	39 - 120	
4-Nitroaniline	16.0	18.4		ug/l		115	47 - 130	
4-Nitronhenol	32.0	22.3		ug/L		70	16 120	
	16.0	15 /		ug/L		96	60 120	
	16.0	15.4		ug/L		08	63 120	
	16.0	15.7		ug/L		90	45 120	
Actione	10.0	10.0		ug/L		90	45 - 120	
	10.0	10.7		ug/L		105	50 - 140	
Atrazine	32.0	39.3		ug/L		123	50-179	
Benzaldenyde	32.0	99.1	Εî	ug/L		310	30 - 140	
Benzolajanthracene	16.0	17.0		ug/L		106	55 - 151	
Benzolajpyrene	16.0	16.6		ug/L		103	60 - 145	
Benzo[b]fluoranthene	16.0	17.6		ug/L		110	54 - 140	
Benzo[g,h,i]perylene	16.0	16.7		ug/L		104	66 - 152	
Benzo[k]fluoranthene	16.0	17.5		ug/L		109	51 - 153	
Bis(2-chloroethoxy)methane	16.0	16.0		ug/L		100	50 - 128	
Bis(2-chloroethyl)ether	16.0	15.1		ug/L		95	51 - 120	
Bis(2-ethylhexyl) phthalate	16.0	18.1		ug/L		113	53 - 158	
Butyl benzyl phthalate	16.0	18.8		ug/L		118	58 - 163	
Caprolactam	32.0	11.8		ug/L		37	14 - 130	
Carbazole	16.0	17.9		ug/L		112	59 - 148	
Chrysene	16.0	17.4		ug/L		109	69 - 140	
Dibenz(a,h)anthracene	16.0	16.7		ug/L		104	57 - 148	
Di-n-butyl phthalate	16.0	17.9		ug/L		112	58 - 149	
Di-n-octyl phthalate	16.0	19.0		ug/L		118	55 - 167	
Dibenzofuran	16.0	15.9		ug/L		99	49 - 137	
Diethyl phthalate	16.0	16.7		ug/L		104	59 - 146	
Dimethyl phthalate	16.0	17.0		ua/L		106	59 - 141	
Fluoranthene	16.0	17.9		ua/L		112	55 - 147	
Fluorene	16.0	16.2				102	55 - 143	
Hexachlorobenzene	16.0	14.5		ug/L		90	14 - 130	
Hexachlorobutadiene	16.0	12.4		ug/l		78	14 - 130	

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

108

102

77

Lab Sample ID: LCS 480-2 Matrix: Water	99050/2-A					Client Sample ID: Lab Control Sam Prep Type: Total/							
Analysis Batch: 299234			Spike	LCS	LCS				Prep Batch: 299050 %Rec.				
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits				
Hexachlorocyclopentadiene			16.0	12.4		ug/L		77	13 - 130				
Hexachloroethane			16.0	13.3		ug/L		83	14 - 130				
Indeno[1,2,3-cd]pyrene			16.0	16.9		ug/L		105	69 - 146				
Isophorone			16.0	16.1		ug/L		100	48 - 133				
N-Nitrosodi-n-propylamine			16.0	15.5		ug/L		97	56 - 120				
N-Nitrosodiphenylamine			16.0	15.6		ug/L		98	25 - 125				
Naphthalene			16.0	15.0		ug/L		94	35 - 130				
Nitrobenzene			16.0	15.5		ug/L		97	45 - 123				
Pentachlorophenol			32.0	27.8		ug/L		87	39 - 136				
Phenanthrene			16.0	17.0		ug/L		106	57 - 147				
Phenol			16.0	8.86		ug/L		55	17 - 120				
Pyrene			16.0	17.2		ug/L		107	58 - 136				
	LCS	LCS											
Surrogate	%Recovery	Qualifier	Limits										
Nitrobenzene-d5 (Surr)	103		46 - 120										
Phenol-d5 (Surr)	55		16_120										
p-Terphenyl-d14 (Surr)	114		67 - 150										

52 - 132

48 - 120

20 - 120

Lab Sample ID: 480-99240-5 MS Matrix: Water Analysis Batch: 299234

2,4,6-Tribromophenol (Surr)

2-Fluorobiphenyl

2-Fluorophenol (Surr)

Analysis Batch: 299234									Prep Batch: 299050
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Biphenyl	ND		15.6	13.4		ug/L		86	30 - 140
bis (2-chloroisopropyl) ether	ND		15.6	14.6		ug/L		94	28 - 136
2,4,5-Trichlorophenol	ND		15.6	15.7		ug/L		101	65 - 126
2,4,6-Trichlorophenol	ND		15.6	15.0		ug/L		97	64 - 120
2,4-Dichlorophenol	ND		15.6	13.8		ug/L		89	64 - 120
2,4-Dimethylphenol	ND		15.6	13.3		ug/L		85	57 - 120
2,4-Dinitrophenol	ND		31.2	36.7		ug/L		118	42 - 153
2,4-Dinitrotoluene	ND		15.6	15.6		ug/L		100	62 - 148
2,6-Dinitrotoluene	ND		15.6	16.5		ug/L		106	65 - 154
2-Chloronaphthalene	ND		15.6	13.0		ug/L		84	41 - 124
2-Chlorophenol	ND		15.6	13.6		ug/L		87	48 - 120
2-Methylphenol	ND		15.6	13.9		ug/L		89	39 - 120
2-Methylnaphthalene	20		15.6	33.6		ug/L		85	34 - 122
2-Nitroaniline	ND		15.6	15.4		ug/L		99	67 - 136
2-Nitrophenol	ND		15.6	12.6		ug/L		81	59 - 120
3,3'-Dichlorobenzidine	ND	F1	31.2	ND	F1	ug/L		0	33 - 140
3-Nitroaniline	ND	F1	15.6	ND	F1	ug/L		0	69 - 129
4,6-Dinitro-2-methylphenol	ND		31.2	29.1		ug/L		93	64 - 159
4-Bromophenyl phenyl ether	ND		15.6	14.4		ug/L		92	71 - 126
4-Chloro-3-methylphenol	ND		15.6	14.6		ug/L		94	64 - 120
4-Chloroaniline	ND	F1	15.6	ND	F1	ug/L		0	60 - 124
4-Chlorophenyl phenyl ether	ND		15.6	14.1		ug/L		91	48 - 145

TestAmerica Buffalo

Client Sample ID: TKMW-6

Prep Type: Total/NA

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lap Sample ID: 480-9924 Matrix: Water	U-5 MS							Clien	TKMW-6 Pren Type: Total/NA	
Analysis Batch: 299234									Pren Batch: 299050	
Analysis Baton. 200204	Sample	Sample	Spike	MS	MS				%Rec.	5
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Methylphenol	ND		15.6	13.5		ug/L		87	36 - 120	
4-Nitroaniline	ND	F2 F1	15.6	4.23	J F1	ug/L		27	64 - 135	
4-Nitrophenol	ND		31.2	26.7		ug/L		86	16 - 120	
Acenaphthene	7.6		15.6	22.6		ug/L		96	60 - 120	
Acenaphthylene	ND		15.6	15.3		ug/L		98	63 - 120	8
Acetophenone	ND		15.6	14.8		ug/L		95	45 - 120	
Anthracene	1.6	J	15.6	16.9		ug/L		99	58 - 148	Q
Atrazine	ND		31.2	30.3		ug/L		97	56 - 179	3
Benzaldehyde	ND	F1 *	31.2	90.4	E F1	ug/L		290	30 - 140	
Benzo[a]anthracene	ND	F2	15.6	14.8		ug/L		95	55 - 151	
Benzo[a]pyrene	ND	F2	15.6	14.5		ug/L		93	60 - 145	
Benzo[b]fluoranthene	ND	F2	15.6	15.7		ug/L		101	54 - 140	
Benzo[q,h,i]pervlene	ND	F2	15.6	14.0		ug/L		90	66 - 152	
Benzo[k]fluoranthene	ND	F2	15.6	13.7		ua/L		88	51 - 153	
Bis(2-chloroethoxy)methane	ND		15.6	14.4		ug/L		92	50 - 128	
Bis(2-chloroethyl)ether	ND		15.6	14.0		ua/L		90	51 - 120	13
Bis(2-ethylhexyl) phthalate	ND	F2	15.6	15.2		ua/L		98	53 - 158	
Butvl benzvl phthalate	ND		15.6	17.5		ua/L		112	58 - 163	
Caprolactam	ND	F1	31.2	ND	F1	ug/L		0	30 - 140	
Carbazole	8.3		15.6	26.1		ua/L		114	59 - 148	
Chrysene	ND	F2	15.6	14.6		ua/l		93	69 - 140	
Dibenz(a,h)anthracene	ND	F2	15.6	14.0		ua/L		90	57 - 158	
Di-n-butyl phthalate	ND		15.6	16.5		ua/L		106	58 - 149	
Di-n-octyl phthalate	ND	F2	15.6	16.7		ua/L		107	55 - 167	
Dibenzofuran	2.7	J	15.6	17.8		ua/L		97	49 - 137	
Diethyl phthalate	ND	-	15.6	16.6		ua/l		107	59 - 146	
Dimethyl phthalate	ND		15.6	16.6		ug/L		106	59 - 141	
Fluoranthene	1.1	J	15.6	16.9		ua/L		101	55 - 147	
Fluorene	4.0	J	15.6	19.4		ua/l		99	55 - 143	
Hexachlorobenzene	ND		15.6	13.5		ug/l		87	38 - 131	
Hexachlorobutadiene	ND		15.6	9.86		ug/L		63	14 - 130	
Hexachlorocyclopentadiene	ND		15.6	10.2		ug/L		66	13 - 130	
Hexachloroethane	ND		15.6	11.7		ug/L		75	14 - 130	
Indeno[1.2.3-cd]pyrene	ND	F2 F1	15.6	14.3		ug/l		92	69 - 146	
Isophorone	ND	1211	15.6	13.4		ug/L		86	48 133	
N-Nitrosodi-n-propylamine	ND		15.6	15.4		ug/L		97		
N-Nitrosodinhenvlamine	ND		15.6	15.2		ug/L		101	25 125	
Nanhthalene	160	F	15.6	166	F4	ug/L		18	35 130	
Nitrobenzene			15.6	13.8		ug/L		80	45 123	
Pentachlorophenol			31.2	38.0		ug/L		122	39 136	
Phenanthrene	80		15.6	24.2		ug/L		08	57 147	
Phenol	0.9 חוא		15.6	24.2 0 1 2		ug/L		50	17 120	
Pyrene	טעו ספַר		15.0	9.10 17 A		ug/L		107	58 136	
	0.00	Me	15.0	17.0		uy/L		107	00 - 100	
Surrorate	MS % December 20	MS Ouclifier	1							
	%Recovery	Qualifier								
Nitropenzene-a5 (Surr)	86		46 - 120							
Prienol-d5 (Surr)	54		16 - 120							
p-Terphenyl-d14 (Surr)	101		67 - 150							

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MS MS

Lab Sample ID: 480-99240-5 MS

Analysis Batch: 299234

Matrix: Water

Bis(2-chloroethyl)ether

Bis(2-ethylhexyl) phthalate

Client Sample ID: TKMW-6 Prep Type: Total/NA Prep Batch: 299050

8

Surrogate	%Recovery	Qualifier	Limits								
2,4,6-Tribromophenol (Surr)	113		52 - 132								
2-Fluorobiphenyl	92		48 - 120								
2-Fluorophenol (Surr)	72		20 - 120								
Lab Sample ID: 480-99240	0-5 MSD							Clien	t Sample	ID: TK	MW-6
Matrix: water									Prep Ty		al/NA
Analysis Batch: 299234	Sampla	Sampla	Spiko	Men	Men					atch: 29	19050 000
Analyta	Sample	Sample	Spike	Booult	Qualifiar	Unit	п	% Doo	%Rec.	חחם	
Rinhonyl		Quaimer		12.1	Quaimer			%Rec	20 140	2	20
his (2-chloroisopropyl) ether			14.0	14.3		ug/L		96	28 136	2	20
2 4 5-Trichloronhenol			14.8	14.0		ug/L		96	65 126	11	18
2,4,6-Trichlorophenol	ND		14.0	14.6		ug/L		90	64 120	······································	10
2 4-Dichlorophenol			14.8	13.4		ug/L		90 90	64 120	3	10
2.4-Dimethylphenol	ND		14.8	13.4		ug/L		80	57 120	1	42
2.4-Dinitrophenol			29.7	34.5		ug/L		116	42 153		22
2 4-Dinitrophenol			29.7 14 8	14.5		ug/L		98	62 148	8	20
2.6-Dinitrotoluene	ND		14.8	15.3		ug/L		103	65 154	7	15
2-Chloronanhthalene	ND		14.0	12.8		ug/L		86	41 124	2	21
2-Chlorophenol			14.8	12.0		ug/L		88	48 120	4	25
2-Methylphenol			14.0	13.1		ug/L		89	39 120	5	23
2-Methylpanhthalene	20		14.8	33.0		ug/L		92	34 122	1	21
2-Nitroaniline			14.8	15.5		ug/L		104	67 136	1	15
2-Nitrophenol	ND		14.8	10.0		ug/L		86	59 - 120	1	18
3 3'-Dichlorobenzidine	ND	F1	29.7	ND	F1	ug/L		0	33 - 140	NC.	25
3-Nitroaniline	ND	F1	14.8	1 42	 J F1	ug/L		10	69 - 129	NC	19
4.6-Dinitro-2-methylphenol	ND		29.7	28.1	011	ug/L		95	64 - 159	4	15
4-Bromophenyl phenyl ether	ND		14.8	13.6		ug/l		92	71_126	5	15
4-Chloro-3-methylphenol	ND		14.8	14 0		ug/l		94	64 _ 120	5	27
4-Chloroaniline	ND	F1	14.8	ND	F1	ug/l		0	60 - 124	NC	22
4-Chlorophenyl phenyl ether	ND		14.8	13.5		ug/L		91	48 - 145	5	16
4-Methylphenol	ND		14.8	13.1		ug/L		88	36 - 120	3	24
4-Nitroaniline	ND	F2 F1	14.8	5.88	J F1 F2	ua/l		40	64 - 135	33	24
4-Nitrophenol	ND		29.7	18.7		ua/L		63	16 - 120	35	48
Acenaphthene	7.6		14.8	21.8		ua/L		96	60 - 120	4	24
Acenaphthylene	ND		14.8	14.6		ua/L		99	63 - 120	5	18
Acetophenone	ND		14.8	14.4		ug/L		97	45 - 120	3	20
Anthracene	1.6	J	14.8	16.3		ua/L		99	58 ₋ 148	4	15
Atrazine	ND		29.7	28.0		ug/L		94	56 ₋ 179	8	20
Benzaldehvde	ND	F1 *	29.7	88.0	E F1	ua/L		297	30 - 140	3	20
Benzo[a]anthracene	ND	F2	14.8	12.1	F2	ug/L		82	55 ₋ 151	20	15
Benzo[a]pyrene	ND	F2	14.8	10.7	F2	ug/L		72	60 - 145	30	15
Benzo[b]fluoranthene	ND	F2	14.8	11.0	F2	ug/L		74	54 - 140	35	15
Benzo[g,h,i]perylene	ND	F2	14.8	9.83	F2	ug/L		66	66 - 152	35	15
Benzo[k]fluoranthene	ND	F2	14.8	10.4	F2	ug/L		70	51 - 153	27	22
Bis(2-chloroethoxy)methane	ND		14.8	14.5		ug/L		98	50 - 128	1	17

TestAmerica Buffalo

13.9

11.7 F2

ug/L

ug/L

94

79

51 - 120

53 - 158

14.8

14.8

ND

ND F2

0

26

21

15

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-99240 Matrix: Water Analysis Batch: 299234)-5 MSD	Sampla	Spiko	Men	MSD			Clien	t Sample Prep Ty Prep Ba	ID: TKI pe: Tota atch: 29	MW-6 al/NA 99050
Analyte	Result	Qualifier		Result	Qualifier	Unit	р	%Rec	/intec.	RPD	Limit
Butyl benzyl phthalate			14.8	15.4		ua/L		104	58 - 163	13	16
Caprolactam	ND	F1	29.7	ND	F1	ua/L		0	30 - 140	NC	20
Carbazole	8.3		14.8	25.1		ua/L		114	59 - 148	4	20
Chrysene	ND	F2	14.8	11.7	F2	ua/L		79	69 - 140	21	15
Dibenz(a.h)anthracene	ND	F2	14.8	9.93	F2	ua/L		67	57 - 158	34	15
Di-n-butyl phthalate	ND		14.8	15.5		ua/L		104	58 - 149	7	15
Di-n-octyl phthalate	ND	F2	14.8	12.5	F2	ug/L		84	55 ₋ 167	29	16
Dibenzofuran	2.7	J	14.8	16.8		ug/L		95	49 - 137	5	15
Diethyl phthalate	ND		14.8	15.5		ug/L		104	59 - 146	7	15
Dimethyl phthalate	ND		14.8	14.7		ug/L		99	59 ₋ 141	12	15
Fluoranthene	1.1	J	14.8	15.9		ug/L		100	55 - 147	6	15
Fluorene	4.0	J	14.8	18.8		ug/L		99	55 ₋ 143	3	15
Hexachlorobenzene	ND		14.8	12.4		ug/L		83	38 - 131	9	15
Hexachlorobutadiene	ND		14.8	10.4		ug/L		70	14 - 130	5	44
Hexachlorocyclopentadiene	ND		14.8	10.1		ug/L		68	13 - 130	1	49
Hexachloroethane	ND		14.8	11.3		ug/L		76	14 - 130	4	46
Indeno[1,2,3-cd]pyrene	ND	F2 F1	14.8	9.97	F1 F2	ug/L		67	69 - 146	36	15
Isophorone	ND		14.8	13.2		ug/L		89	48 - 133	1	17
N-Nitrosodi-n-propylamine	ND		14.8	14.8		ug/L		100	56 - 120	3	31
N-Nitrosodiphenylamine	ND		14.8	15.6		ug/L		105	25 - 125	1	15
Naphthalene	160	Е	14.8	168	E 4	ug/L		30	35 - 130	1	29
Nitrobenzene	ND		14.8	13.5		ug/L		91	45 - 123	3	24
Pentachlorophenol	ND		29.7	37.6		ug/L		127	39 - 136	1	37
Phenanthrene	8.9		14.8	24.1		ug/L		102	57 ₋ 147	1	15
Phenol	ND		14.8	8.54		ug/L		58	17 - 120	7	34
Pyrene	0.88	J	14.8	16.1		ug/L		103	58 - 136	9	19
	MSD	MSD									
Surrogate	%Recoverv	Qualifier	Limits								
Nitrobenzene-d5 (Surr)	87	·	46 - 120								
Phenol-d5 (Surr)	54		16 - 120								
p-Terphenyl-d14 (Surr)	84		67 - 150								
2,4,6-Tribromophenol (Surr)	120		52 - 132								
2-Fluorobiphenyl	91		48 - 120								
2-Fluorophenol (Surr)	72		20 - 120								

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-299013/1-A Matrix: Water Analysis Batch: 299362

	MB	B MB									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Aluminum	ND		0.20		mg/L		04/29/16 11:25	04/29/16 22:47	1		
Antimony	ND		0.020		mg/L		04/29/16 11:25	04/29/16 22:47	1		
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 22:47	1		
Barium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 22:47	1		
Beryllium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 22:47	1		
Cadmium	ND		0.0020		mg/L		04/29/16 11:25	04/29/16 22:47	1		

TestAmerica Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 299013

RL

0.50

0.0040

0.0040

0.010

0.050

0.010

0.20

0.0030

0.010

0.50

0.025

0.0060

0.020

0.0050

0.010

1.0

MDL Unit

mg/L

D

Prepared

Method: 6010C - Metals (ICP) (Continued)

MB MB

ND

Result Qualifier

Lab Sample ID: MB 480-299013/1-A

Matrix: Water

Analyte

Calcium

Cobalt

Copper

Iron

Lead

Nickel

Silver

Zinc

Sodium

Thallium

Vanadium

Magnesium

Manganese

Potassium

Selenium

Chromium

Analysis Batch: 299362

Client Sample ID: Method Blank

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

04/29/16 11:25 04/29/16 22:47

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 299013

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Analyzed

6 7 8 9 10

14

Lab Sample ID: LCS 480-299013/2-A Matrix: Water Analysis Batch: 299362

Analysis Batch: 299362	Snike	1.05	1.05				Prep Batch: 299013
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	10.0	9.85		mg/L		98	80 - 120
Antimony	0.400	0.394		mg/L		99	80 - 120
Arsenic	0.400	0.422		mg/L		105	80 - 120
Barium	0.200	0.203		mg/L		101	80 - 120
Beryllium	0.400	0.384		mg/L		96	80 - 120
Cadmium	0.400	0.384		mg/L		96	80 - 120
Calcium	20.0	19.11		mg/L		96	80 - 120
Chromium	0.400	0.399		mg/L		100	80 - 120
Cobalt	0.400	0.387		mg/L		97	80 - 120
Copper	0.400	0.383		mg/L		96	80 - 120
Iron	20.0	19.68		mg/L		98	80 - 120
Lead	0.400	0.403		mg/L		101	80 - 120
Magnesium	20.0	20.42		mg/L		102	80 - 120
Manganese	0.400	0.387		mg/L		97	80 - 120
Nickel	0.400	0.381		mg/L		95	80 - 120
Potassium	10.0	9.83		mg/L		98	80 - 120
Selenium	0.400	0.393		mg/L		98	80 - 120
Silver	0.0500	0.0417		mg/L		83	80 - 120
Sodium	10.0	9.91		mg/L		99	80 - 120
Thallium	0.400	0.401		mg/L		100	80 - 120
Vanadium	0.400	0.392		mg/L		98	80 - 120
Zinc	0.400	0.428		mg/L		107	80 - 120

Client Sample ID: TKMW-6

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 48	0-99240-5 MS
Matrix: Water	

Matrix: Water									Prep Type: Total/NA	
Analysis Batch: 299362			-						Prep Batch: 299013	ļ
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	ND		10.0	10.21		mg/L		100	75 - 125	
Antimony	ND		0.400	0.412		mg/L		103	75 - 125	
Arsenic	ND		0.400	0.454		mg/L		110	75 - 125	
Barium	0.22		0.200	0.429		mg/L		103	75 - 125	
Beryllium	ND		0.400	0.392		mg/L		98	75 - 125	8
Cadmium	ND		0.400	0.397		mg/L		99	75 - 125	
Calcium	189		20.0	204.0	4	mg/L		75	75 - 125	
Chromium	ND		0.400	0.398		mg/L		99	75 - 125	
Cobalt	ND		0.400	0.402		mg/L		101	75 - 125	
Copper	ND		0.400	0.403		mg/L		101	75 - 125	
Iron	25.0		20.0	46.31		mg/L		107	75 - 125	
Lead	ND		0.400	0.413		mg/L		103	75 - 125	
Magnesium	21.7		20.0	41.72		mg/L		100	75 - 125	
Manganese	2.3		0.400	2.57	4	mg/L		78	75 - 125	
Nickel	ND		0.400	0.393		mg/L		98	75 - 125	
Potassium	13.1		10.0	22.88		mg/L		98	75 - 125	
Selenium	ND		0.400	0.406		mg/L		102	75 - 125	
Silver	ND		0.0500	0.0443		mg/L		89	75 - 125	
Sodium	192		10.0	201.3	4	mg/L		92	75 - 125	
Thallium	ND		0.400	0.395		mg/L		99	75 - 125	
Vanadium	ND		0.400	0.403		mg/L		101	75 - 125	
Zinc	ND		0.400	0.425		mg/L		106	75 - 125	

Lab Sample ID: 480-99240-5 MSD **Matrix: Water** Analysis Batch: 299362

Client Sample ID: TKMW-6 Prep Type: Total/NA Prep Batch: 299013

Analysis Baton: 200002	Samplo	Samolo	Sniko	MSD	MSD				%Pac		PPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	ND		10.0	10.42		mg/L		102	75 - 125	2	20
Antimony	ND		0.400	0.418		mg/L		105	75 - 125	1	20
Arsenic	ND		0.400	0.459		mg/L		111	75 - 125	1	20
Barium	0.22		0.200	0.427		mg/L		102	75 - 125	1	20
Beryllium	ND		0.400	0.398		mg/L		99	75 - 125	1	20
Cadmium	ND		0.400	0.401		mg/L		100	75 - 125	1	20
Calcium	189		20.0	203.4	4	mg/L		72	75 - 125	0	20
Chromium	ND		0.400	0.403		mg/L		101	75 - 125	1	20
Cobalt	ND		0.400	0.407		mg/L		102	75 - 125	1	20
Copper	ND		0.400	0.406		mg/L		102	75 - 125	1	20
Iron	25.0		20.0	46.26		mg/L		107	75 - 125	0	20
Lead	ND		0.400	0.420		mg/L		105	75 - 125	2	20
Magnesium	21.7		20.0	41.40		mg/L		99	75 - 125	1	20
Manganese	2.3		0.400	2.51	4	mg/L		65	75 - 125	2	20
Nickel	ND		0.400	0.398		mg/L		99	75 - 125	1	20
Potassium	13.1		10.0	22.83		mg/L		97	75 - 125	0	20
Selenium	ND		0.400	0.413		mg/L		103	75 - 125	2	20
Silver	ND		0.0500	0.0442		mg/L		88	75 - 125	0	20
Sodium	192		10.0	204.3	4	mg/L		122	75 - 125	1	20
Thallium	ND		0.400	0.402		mg/L		101	75 - 125	2	20

5

8

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-99240-5 MSD Matrix: Water Analysis Batch: 299362								Client Sample ID: TK Prep Type: To Prep Batch: 2				
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Vanadium	ND		0.400	0.402		mg/L		101	75 - 125	0	20	
Zinc	ND		0.400	0.426		mg/L		106	75 - 125	0	20	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-299 Matrix: Water	9049/1-A									Clie	nt Sam	ole ID: M Prep Ty	ethod I pe: Tot	Blank al/NA
Analysis Batch: 299430		МВ	MD									Ргер Ва	atch: 28	9049
Analyta	Po		Qualifier		ы				п	D	roparod	Analy	rod I	
			Quaimer		<u>1020</u>			L			2/16 00.10	05/02/16	12.51	
Mercury		ND		0.00	020		iiig/	L		05/0	2/10 09.10	05/02/10	12.51	1
Lab Sample ID: LCS 480-29	9049/2-A							CI	ient	Sar	nple ID:	Lab Cor	ntrol Sa	mple
Matrix: Water												Prep Tv	ne: Tot	al/NA
Analysis Batch: 299430												Pren Ba	atch: 20	9049
				Spike		LCS	LCS					%Rec.		
Analyte				Added	R	esult	Qualifie	Unit		D	%Rec	Limits		
Mercury				0.00667	0.0	0637		mg/L		_	95	80 - 120		
								-						
Lab Sample ID: LCSD 480-2	299049/3-A							Client S	Sam	ple	ID: Lab	Control	Sample	Dup
Matrix: Water												Prep Ty	pe: Tot	al/NA
Analysis Batch: 299430												Prep Ba	atch: 29	9049
				Spike	L	CSD	LCSD					%Rec.		RPD
Analyte				Added	R	esult	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Mercury				0.00667	0.0	0638		mg/L		_	96	80 - 120	0	20
								-						
Lab Sample ID: 480-99240-	5 MS										Client	Sample	ID: TKI	NW-6
Matrix: Water												Prep Ty	pe: Tot	al/NA
Analysis Batch: 299430												Prep Ba	atch: 29	9049
-	Sample	Sam	ple	Spike		MS	MS					%Rec.		
Analyte	Result	Qual	lifier	Added	R	esult	Qualifier	Unit		D	%Rec	Limits		
Mercury	ND			0.00667	0.0	0683		mg/L		_	102	80 - 120		
_														
Lab Sample ID: 480-99240-	5 MSD										Client	Sample	ID: TKI	NM-6
Matrix: Water												Prep Ty	pe: Tot	al/NA
Analysis Batch: 299430												Prep Ba	atch: 29	9049
	Sample	Sam	ple	Spike		MSD	MSD					%Rec.		RPD
Analyte	Result	Qual	ifier	Added	R	esult	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Mercury	ND			0.00667	0.0	0677		mg/L		_	101	80 - 120	1	20

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-299514/1-A Matrix: Water Analysis Batch: 299620							Client Samp	le ID: Methoc Prep Type: To Prep Batch: :	l Blank otal/NA 299514
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.010		mg/L		05/02/16 21:25	05/03/16 09:39	1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Matrix: Water Analysis Batch: 299620	99514/2-A					Clie	nt Saı	nple ID	: Lab Cor Prep Tyj Prep Ba	itrol Sa be: Tota itch: 29	mple al/NA 9514
			Spike	LCS	LCS		_	~-	%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Total			0.250	0.254		mg/L		102	90 - 110		
Lab Sample ID: 480-99240 Matrix: Water	-5 MS							Clien	t Sample Prep Tyj	ID: TKI be: Tota	MW-6 al/NA
Analysis Batch: 299620	. .	<u> </u>							Prep Ba	itch: 29	9514
	Sample	Sample	Spike	MS	MS		_		%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Total	0.016		0.100	0.115		mg/L		99	90 - 110		
Lab Sample ID: 480-99240 Matrix: Water	-5 MSD							Clien	t Sample		NW-6
Analysis Batch: 299620									Prep Typ Prep Ba	oe: Tota atch: 29	al/NA 9514
Analysis Batch: 299620	Sample	Sample	Spike	MSD	MSD				Prep Typ Prep Ba %Rec.	oe: Tota atch: 29	al/NA 9514 RPD
Analysis Batch: 299620 Analyte	Sample Result	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	%Rec	Prep Typ Prep Ba %Rec. Limits	ntch: 29 RPD	al/NA 9514 RPD Limit
Analysis Batch: 299620 Analyte Cyanide, Total	Sample Result	Sample Qualifier	Spike Added 0.100	MSD Result 0.117	MSD Qualifier	Unit mg/L	D	%Rec 101	Prep Typ Prep Ba %Rec. Limits 90 - 110	RPD 2	al/NA 9514 RPD Limit 15
Analysis Batch: 299620 Analyte Cyanide, Total Lab Sample ID: 480-99240 Matrix: Water Analysis Batch: 299620	Sample Result 0.016	Sample Qualifier	Spike Added 0.100	MSD Result 0.117	MSD Qualifier	Unit mg/L	<u>D</u>	%Rec 101 Clien	Prep Typ Prep Ba %Rec. Limits 90 - 110 t Sample Prep Typ Prep Ba	RPD RPD 2 ID: TKI ce: Tota atch: 29	al/NA 99514 RPD Limit 15 MW-5 al/NA 99514
Analysis Batch: 299620 Analyte Cyanide, Total Lab Sample ID: 480-99240 Matrix: Water Analysis Batch: 299620	Sample Result 0.016 -6 MS Sample	Sample Qualifier Sample	Spike Added 0.100	MSD Result 0.117 MS	MSD Qualifier MS	Unit mg/L	D	%Rec 101 Clien	Prep Typ Prep Ba %Rec. Limits 90 - 110 t Sample Prep Typ Prep Ba %Rec.	RPD 2 ID: TKI be: Tota itch: 29	al/NA 99514 RPD Limit 15 MW-5 al/NA 99514
Analysis Batch: 299620 Analyte Cyanide, Total Lab Sample ID: 480-99240 Matrix: Water Analysis Batch: 299620 Analyte	Sample Result 0.016 -6 MS Sample Result	Sample Qualifier Sample Qualifier	Spike Added 0.100 Spike Added	MSD Result 0.117 MS Result	MSD Qualifier MS Qualifier	Unit mg/L Unit	D	%Rec 101 Clien %Rec	Prep Typ Prep Ba %Rec. Limits 90 - 110 t Sample Prep Typ Prep Ba %Rec. Limits	RPD RPD 2 ID: TKI ce: Tota atch: 29	al/NA 99514 RPD Limit 15 VIW-5 al/NA 99514

QC Association Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

GC/MS VOA

Analysis Batch: 299754

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99240-1	BLIND DUP	Total/NA	Water	8260C	
480-99240-2	TKMW-9	Total/NA	Water	8260C	
480-99240-3	TKMW-8	Total/NA	Water	8260C	
480-99240-4	TKMW-7	Total/NA	Water	8260C	
480-99240-5	TKMW-6	Total/NA	Water	8260C	
480-99240-5 MS	TKMW-6	Total/NA	Water	8260C	
480-99240-5 MSD	TKMW-6	Total/NA	Water	8260C	
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	8260C	
LCS 480-299754/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-299754/6	Method Blank	Total/NA	Water	8260C	
—					

Analysis Batch: 299852

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-99240-6	TKMW-5	Total/NA	Water	8260C	
LCS 480-299852/4	Lab Control Sample	Total/NA	Water	8260C	
MB 480-299852/6	Method Blank	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 299050

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99240-1	BLIND DUP	Total/NA	Water	3510C	
480-99240-2	TKMW-9	Total/NA	Water	3510C	
480-99240-3	TKMW-8	Total/NA	Water	3510C	
480-99240-4	TKMW-7	Total/NA	Water	3510C	
480-99240-5 - DL	TKMW-6	Total/NA	Water	3510C	
480-99240-5	TKMW-6	Total/NA	Water	3510C	
480-99240-5 MS	TKMW-6	Total/NA	Water	3510C	
480-99240-5 MSD	TKMW-6	Total/NA	Water	3510C	
480-99240-6	TKMW-5	Total/NA	Water	3510C	
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	3510C	
LCS 480-299050/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-299050/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 299234

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99240-1	BLIND DUP	Total/NA	Water	8270D	299050
480-99240-2	TKMW-9	Total/NA	Water	8270D	299050
480-99240-3	TKMW-8	Total/NA	Water	8270D	299050
480-99240-4	TKMW-7	Total/NA	Water	8270D	299050
480-99240-5	TKMW-6	Total/NA	Water	8270D	299050
480-99240-5 MS	TKMW-6	Total/NA	Water	8270D	299050
480-99240-5 MSD	TKMW-6	Total/NA	Water	8270D	299050
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	8270D	299050
LCS 480-299050/2-A	Lab Control Sample	Total/NA	Water	8270D	299050
MB 480-299050/1-A	Method Blank	Total/NA	Water	8270D	299050

Analysis Batch: 299371

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99240-5 - DL	TKMW-6	Total/NA	Water	8270D	299050

QC Association Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID

TKMW-5

GC/MS Semi VOA (Continued) Analysis Batch: 299371 (Continued)

Lab Sample ID

480-99240-6

Method

8270D

Prep Batch

Prep Batch

Prep Batch

299050

9

letals				
Prep Batch: 299013				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
480-99240-1	BLIND DUP	Total/NA	Water	3005A
480-99240-2	TKMW-9	Total/NA	Water	3005A
480-99240-3	TKMW-8	Total/NA	Water	3005A
480-99240-4	TKMW-7	Total/NA	Water	3005A
480-99240-5	TKMW-6	Total/NA	Water	3005A
480-99240-5 MS	TKMW-6	Total/NA	Water	3005A
480-99240-5 MSD	TKMW-6	Total/NA	Water	3005A
480-99240-6	TKMW-5	Total/NA	Water	3005A
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	3005A
LCS 480-299013/2-A	Lab Control Sample	Total/NA	Water	3005A
MB 480-299013/1-A	Method Blank	Total/NA	Water	3005A
Prep Batch: 299049				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
480-99240-1	BLIND DUP	Total/NA	Water	7470A
480-99240-2	TKMW-9	Total/NA	Water	7470A
480-99240-3	TKMW-8	Total/NA	Water	7470A
480-99240-4	TKMW-7	Total/NA	Water	7470A
480-99240-5	TKMW-6	Total/NA	Water	7470A
480-99240-5 MS	TKMW-6	Total/NA	Water	7470A
480-99240-5 MSD	TKMW-6	Total/NA	Water	7470A
480-99240-6	TKMW-5	Total/NA	Water	7470A
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	7470A
LCS 480-299049/2-A	Lab Control Sample	Total/NA	Water	7470A
LCSD 480-299049/3-A	Lab Control Sample Dup	Total/NA	Water	7470A
MB 480-299049/1-A	Method Blank	Total/NA	Water	7470A
analysis Batch: 2993	62			
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
480-99240-1	BLIND DUP	Total/NA	Water	6010C
480-99240-2	TKMW-9	Total/NA	Water	6010C
480-99240-3	TKMW-8	Total/NA	Water	6010C
480-99240-4	TKMW-7	Total/NA	Water	6010C
480-99240-5	TKMW-6	Total/NA	Water	6010C
480-99240-5 MS	TKMW-6	Total/NA	Water	6010C
480-99240-5 MSD	TKMW-6	Total/NA	Water	6010C
480-99240-6	TKMW-5	Total/NA	Water	6010C
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	6010C
LCS 480-299013/2-A	Lab Control Sample	Total/NA	Water	6010C

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-99240-1	BLIND DUP	Total/NA	Water	7470A	299049

TestAmerica Buffalo

Prep Type

Total/NA

Matrix

Water

QC Association Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Metals (Continued)

Analysis Batch: 299430 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99240-2	TKMW-9	Total/NA	Water	7470A	299049
480-99240-3	TKMW-8	Total/NA	Water	7470A	299049
480-99240-4	TKMW-7	Total/NA	Water	7470A	299049
480-99240-5	TKMW-6	Total/NA	Water	7470A	299049
480-99240-5 MS	TKMW-6	Total/NA	Water	7470A	299049
480-99240-5 MSD	TKMW-6	Total/NA	Water	7470A	299049
480-99240-6	TKMW-5	Total/NA	Water	7470A	299049
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	7470A	299049
LCS 480-299049/2-A	Lab Control Sample	Total/NA	Water	7470A	299049
LCSD 480-299049/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	299049
MB 480-299049/1-A	Method Blank	Total/NA	Water	7470A	299049

General Chemistry

Prep Batch: 299514

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-99240-1	BLIND DUP	Total/NA	Water	9012B	
480-99240-2	TKMW-9	Total/NA	Water	9012B	
480-99240-3	TKMW-8	Total/NA	Water	9012B	
480-99240-4	TKMW-7	Total/NA	Water	9012B	
480-99240-5	TKMW-6	Total/NA	Water	9012B	
480-99240-5 MS	TKMW-6	Total/NA	Water	9012B	
480-99240-5 MSD	TKMW-6	Total/NA	Water	9012B	
480-99240-6	TKMW-5	Total/NA	Water	9012B	
480-99240-6 MS	TKMW-5	Total/NA	Water	9012B	
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	9012B	
LCS 480-299514/2-A	Lab Control Sample	Total/NA	Water	9012B	
MB 480-299514/1-A	Method Blank	Total/NA	Water	9012B	

Analysis Batch: 299620

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99240-1	BLIND DUP	Total/NA	Water	9012B	299514
480-99240-2	TKMW-9	Total/NA	Water	9012B	299514
480-99240-3	TKMW-8	Total/NA	Water	9012B	299514
480-99240-4	TKMW-7	Total/NA	Water	9012B	299514
480-99240-5	TKMW-6	Total/NA	Water	9012B	299514
480-99240-5 MS	TKMW-6	Total/NA	Water	9012B	299514
480-99240-5 MSD	TKMW-6	Total/NA	Water	9012B	299514
480-99240-6	TKMW-5	Total/NA	Water	9012B	299514
480-99240-6 MS	TKMW-5	Total/NA	Water	9012B	299514
480-99240-7	EQUIPMENT BLANK	Total/NA	Water	9012B	299514
LCS 480-299514/2-A	Lab Control Sample	Total/NA	Water	9012B	299514
MB 480-299514/1-A	Method Blank	Total/NA	Water	9012B	299514

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Lab Sample ID: 480-99240-1 Matrix: Water

Client Sample ID: BLIND DUP Date Collected: 04/27/16 08:00 Date Received: 04/28/16 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	299754	05/04/16 03:59	CDC	TAL BUF
Total/NA	Prep	3510C			299050	04/29/16 14:15	JIL	TAL BUF
Total/NA	Analysis	8270D		1	299234	05/01/16 15:27	DMR	TAL BUF
Total/NA	Prep	3005A			299013	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299362	04/29/16 23:29	AMH	TAL BUF
Total/NA	Prep	7470A			299049	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:02	TAS	TAL BUF
Total/NA	Prep	9012B			299514	05/02/16 21:25	JJK	TAL BUF
Total/NA	Analysis	9012B		1	299620	05/03/16 09:43	MDL	TAL BUF

Client Sample ID: TKMW-9 Date Collected: 04/27/16 09:35 Date Received: 04/28/16 15:00

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	299754	05/04/16 04:26	CDC	TAL BUF
Total/NA	Prep	3510C			299050	04/29/16 14:15	JIL	TAL BUF
Total/NA	Analysis	8270D		1	299234	05/01/16 15:56	DMR	TAL BUF
Total/NA	Prep	3005A			299013	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299362	04/29/16 23:32	AMH	TAL BUF
Total/NA	Prep	7470A			299049	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:04	TAS	TAL BUF
Total/NA	Prep	9012B			299514	05/02/16 21:25	JJK	TAL BUF
Total/NA	Analysis	9012B		1	299620	05/03/16 09:45	MDL	TAL BUF

Client Sample ID: TKMW-8 Date Collected: 04/27/16 10:38 Date Received: 04/28/16 15:00

Lab Sample ID: 480-99240-3 Matrix: Water

Lab Sample ID: 480-99240-2

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	299754	05/04/16 04:53	CDC	TAL BUF
Total/NA	Prep	3510C			299050	04/29/16 14:15	JIL	TAL BUF
Total/NA	Analysis	8270D		1	299234	05/01/16 16:25	DMR	TAL BUF
Total/NA	Prep	3005A			299013	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299362	04/29/16 23:36	AMH	TAL BUF
Total/NA	Prep	7470A			299049	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:06	TAS	TAL BUF
Total/NA	Prep	9012B			299514	05/02/16 21:25	JJK	TAL BUF
Total/NA	Analysis	9012B		1	299620	05/03/16 09:46	MDL	TAL BUF

Batch

Number

299754

Prepared

or Analyzed

05/04/16 05:21

299050 04/29/16 14:15 JIL

299234 05/01/16 16:53 DMR

299013 04/29/16 11:25 BAE

299362 04/29/16 23:39 AMH

299049 05/02/16 09:10 TAS

299430 05/02/16 13:08 TAS

299514 05/02/16 21:25 JJK

299620 05/03/16 09:48 MDL

Analyst

CDC

Lab

TAL BUF

Lab Sample ID: 480-99240-5

Lab Sample ID: 480-99240-6

Matrix: Water

Matrix: Water

Dilution

Factor

1

1

1

1

1

Run

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Batch

8260C

3510C

8270D

3005A

6010C

7470A

7470A

9012B

9012B

Method

Client Sample ID: TKMW-7 Date Collected: 04/27/16 11:28 Date Received: 04/28/16 15:00

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Batch

Туре

Prep

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Lab Sample ID: 480-99240-4 Matrix: Water

Client Sample ID: TKMW-6

Date Collected: 04/27/16 12:08 Date Received: 04/28/16 15:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		10	299754	05/04/16 05:48	CDC	TAL BUF
Total/NA	Prep	3510C			299050	04/29/16 14:15	JIL	TAL BUF
Total/NA	Analysis	8270D		1	299234	05/01/16 14:58	DMR	TAL BUF
Total/NA	Prep	3510C	DL		299050	04/29/16 14:15	JIL	TAL BUF
Total/NA	Analysis	8270D	DL	10	299371	05/02/16 20:54	PJQ	TAL BUF
Total/NA	Prep	3005A			299013	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299362	04/29/16 23:52	AMH	TAL BUF
Total/NA	Prep	7470A			299049	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:13	TAS	TAL BUF
Total/NA	Prep	9012B			299514	05/02/16 21:25	JJK	TAL BUF
Total/NA	Analysis	9012B		1	299620	05/03/16 09:49	MDL	TAL BUF

Client Sample ID: TKMW-5 Date Collected: 04/27/16 12:55 Date Received: 04/28/16 15:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	299852	05/04/16 14:21	SMY	TAL BUF
Total/NA	Prep	3510C			299050	04/29/16 14:15	JIL	TAL BUF
Total/NA	Analysis	8270D		1	299371	05/02/16 21:23	PJQ	TAL BUF
Total/NA	Prep	3005A			299013	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299362	04/30/16 00:09	AMH	TAL BUF
Total/NA	Prep	7470A			299049	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:19	TAS	TAL BUF
Total/NA	Prep	9012B			299514	05/02/16 21:25	JJK	TAL BUF
Total/NA	Analysis	9012B		1	299620	05/03/16 09:56	MDL	TAL BUF

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Client Sample ID: EQUIPMENT BLANK Date Collected: 04/27/16 13:45

Lab Sample ID: 480-99240-7 Motrix: Wotor

Date Collecte	d: 04/27/16 d: 04/28/16 1	13:45 15:00							Matrix: water	
-	Batch	Batch		Dilution	Batch	Prepared				5
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		J
Total/NA	Analysis	8260C		1	299754	05/04/16 06:42	CDC	TAL BUF		
Total/NA	Prep	3510C			299050	04/29/16 14:15	JIL	TAL BUF		
Total/NA	Analysis	8270D		1	299234	05/01/16 17:51	DMR	TAL BUF		
Total/NA	Prep	3005A			299013	04/29/16 11:25	BAE	TAL BUF		
Total/NA	Analysis	6010C		1	299362	04/30/16 00:12	AMH	TAL BUF		8
Total/NA	Prep	7470A			299049	05/02/16 09:10	TAS	TAL BUF		
Total/NA	Analysis	7470A		1	299430	05/02/16 13:21	TAS	TAL BUF		9
Total/NA	Prep	9012B			299514	05/02/16 21:25	JJK	TAL BUF		
Total/NA	Analysis	9012B		1	299620	05/03/16 09:59	MDL	TAL BUF		10
Laboratory Ref	erences:									11
TAL BUF = Test	America Buffalo	, 10 Hazelwood E	Drive, Amherst,	NY 14228-229	8, TEL (716)	691-2600				

5/5/2016

Laboratory: TestAmerica Buffalo The certifications listed below are applicable to this report.

Project/Site: Benchmark - 11 Evan St., Batavia, NY

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-17

Method Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

TestAmerica Job ID: 480-99240-1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-99240-1	BLIND DUP	Water	04/27/16 08:00	04/28/16 15:00
480-99240-2	TKMW-9	Water	04/27/16 09:35	04/28/16 15:00
480-99240-3	TKMW-8	Water	04/27/16 10:38	04/28/16 15:00
480-99240-4	TKMW-7	Water	04/27/16 11:28	04/28/16 15:00
480-99240-5	TKMW-6	Water	04/27/16 12:08	04/28/16 15:00
480-99240-6	TKMW-5	Water	04/27/16 12:55	04/28/16 15:00
480-99240-7	EQUIPMENT BLANK	Water	04/27/16 13:45	04/28/16 15:00

Chain of	Tomporatura	n Possiet	Te	stAn	nerica	
Custody Record		песері				
••••••	Drinking Wate	r? Yes⊡ .		EADER IN ENVIR	ONMENTAL TESTING	
TAL-4124 (1007)	Project Manager	دي			Date 1	Chain of Custody Number
IUrnKey	Chris	Boros)		4/27/16	290025
2558 Hamburg Turnpike		-05%	ax ivumber			Page of
City State Zip Code	Site Contact	Han La	p.Contact	Ana	lysis (Attach list if	
Buffalo MI, 14 C18 Project Name and Location (State)	Carrier/Wavbill No	mber	D FISCE			T
11 Evan street Site				1 Sol		Special Instructions/
Contract/Purchase Order/Quote No.	M	atrix	Containers & Preservatives	NN NN	210	Conditions of Receipt
Sample I.D. No. and Description			0 8 7 07	7722.	and the	
(Containers for each sample may be combined on one line)	Time Jane Adule	Sed. Soll	HNC HIS	RALL,		
Blind Dup 4/27/4	3° X	<u> </u>		XXXX	X	
TKMW-9	9:35 X	<u> </u>		XXXXX	K	Scendel
TKMW-8	10-38 K	X		XXXXX	(
TKMW-7	11-28 X	X		XXXXX		TE T
TKMW-G (MS/MSD)	12:08 X	X		XXXX	<	
TKMW-5	2:55 X	X	XX	XXXXX		
Equipped + Black 13-11	345 K	ΪX	Y X	VVXXXX	480-99240) Chain of Custody
595	STVR and					
the space filter and a	ald I	1 tor	intradin	Pd and	het for I	NI Motok
Note I Place IIIO and II		- mp	U per			
						· · · · · · · · · · · · · · · · · · ·
Possible Hazard Identification	Sample	Disposal			(A fee may be a	ssessed if samples are retained
Non-Hazard 🔲 Flammable 🗌 Skin Irritant 🗌 Poison B	Unknown 🛛 Rei	turn To Client	Disposal By Lab	Archive For	Months longer than 1 mo	, onth)
Turn Around Time Hequired	Other Ste	ded_		<i>v)</i>		
1. Relinguisted By	Date 4/27/16	Time	1. Received By	Hil		Date 4/28/16 Time 1205
2. Relinquished By	Date 1201	Time	E. Received By	1 Tala	TA	Date Time
3. Retinquished By	Date	Ime	3. Received By	Vnouv	1 / 1	Date Time
			<u></u>	······································		
Comments			Tem	07.23	62.841	
DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with	th the Sample; PINK	- Field Copy	1014	T -		
		an a			<u> </u>	

Page 65 of 66

5/5/2016
Login Sample Receipt Checklist

Client: Turnkey Environmental Restoration, LLC

Login Number: 99240 List Number: 1 Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TURNKEY
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked	N/A	

Job Number: 480-99240-1

APPENDIX D

DATA USABILITY SUMMARY REPORT

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

August 25, 2016

Heidi Higgins Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Suite 300 Buffalo, NY 14218

RE: Data Usability Summary Report for the 11 Evan St, Batavia, NY MGP Site TAL SDG Nos. 480-98326-1 and 480-99240-1

Dear Mr. Boron:

Review has been completed for the data generated by TestAmerica Laboratories (TA) that pertain to samples collected 04/13/16 and 04/27/16 at the 11 Evan Street site. Five aqueous samples, five soil samples and field duplicates of each matrix were processed for TCL volatiles, TCL semivolatiles, TAL metals, and total cyanide. The analytical protocols utilized are those of the USEPA SW846.

The data packages submitted contain full deliverables for validation, and this usability report is generated from review of the summary form information, with full review of sample raw data, and limited review of associated QC raw data. The reported summary forms have been reviewed for application of validation qualifiers, using guidance from the USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, the specific laboratory methodologies, and professional judgment, as affects the usability of the data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Blind Field Duplicate Correlations
- * Preparation and Calibration/Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration/Low Level Standards
- * ICP Serial Dilution
- * Instrument IDLs
- * Sample Result Verification

The data review includes evaluation of the specific items noted in The NYS DER-10 Appendix B section 2.0 (c). The items listed above that show deficiencies are discussed within the text of this narrative. The laboratory QC forms illustrating the excursions can be found within the laboratory data package.

In summary, most sample results are usable either as reported, with edit, or with qualification. However, the results for four semivolatile target analytes are rejected in one aqueous sample due to an apparent matrix effect.

Data completeness, accuracy, precision, representativeness, and the analytical method comparability are acceptable.

Included with this report are listings of sample identifications covered in this report and laboratory EDDs that reflect qualifications recommended within this report.

The following text discusses quality issues of concern.

Sample Receipt/Chain-of-Custody

Writeovers and scratch outs on the custody form should have been initialed.

Blind Field Duplicates

Blind field duplicate evaluations were performed on TKMW-7(2-5) and TKMW-8. Correlations fall within validation guidelines, with the following exceptions, the results for which have been qualified as estimated in in the indicated parent sample and its associated field duplicate:

- iron in TKMW-8
- calcium and copper in TKMW-7(2-5)
- detected concentrations of semivolatile analytes in the parent sample TKMW-7(2-5) are more than twice those in the field duplicate

TCL Volatile Analyses by EPA 8260C

Matrix spikes were processed on TKMW-6, TKMW-5(9-11'), and TKMW-8(5.5-7.5'), and show recoveries and correlations within validation guidelines, with the following exceptions, results for which are qualified as indicated in the parent sample:

Parent Sample		Outlying %
TKMW-8(5.5-7.5')	Analyte	<u>Recoveries</u>
	1,1,2,2-tetrachloroethane	59,63
	1,1,2-trichloroethane	71,73
	1,2-dibromo-3-chloropropane	46,49
	2-butanone	51,56
	2-hexanone	50,57
	4-methyl-2-pentanone	54,58
	cis-1,3-dichloropropane	75,75
	1,2-dibromoethane	71,71

TKMW-7(2-5) exhibited a low internal standard (IS) recovery, and the results for the seven quantitatively associated compounds have been qualified as estimated in value in that sample. The blind duplicate of that sample did not exhibit the same outlying response, and can be considered usable without qualification for that location.

The detection of methylene chloride in TKMW-5(9-11) is considered contamination and has been edited to non-detection due to presence of that compound in the associated blank.

The detections of acetone in the aqueous samples are qualified as estimated, with a possible high bias, due to elevated recoveries (176% And 151%) in the associated LCSs.

Calibration standards show acceptable responses.

Some of the aqueous samples foamed when run undiluted. They were therefore processed at dilution with subsequent proportionally elevated reporting limits.

TCL Semivolatiles by EPA 8270C

Surrogate and internal standard responses are within required range. Blanks show no contamination. Holding times were met.

Results for analytes reported with the "E" flag have been derived from the dilution analyses of the samples.

The matrix spikes of TKMW-8(5.5-7.5) were performed at dilution due to sample viscosity, and the accuracy evaluation is therefore not available.

The matrix spikes of TKMW-6 produced no recovery for 3,3-dichlorobenzidine, 3-nitroaniline, 4-chloroaniline, and caprolactum. Therefore, the results for those four compounds have been rejected in that parent sample. The results for naphthalene, 4-nitroaniline, and indeno(1,2,3-cd)perylene have been qualified as estimated in the parent sample due to low recoveries (27% to 67%) and an outlying duplicate correlation of 36%), in those matrix spikes.

Calibration standards showed acceptable responses, with the exception of those for benzaldehyde and pentachlorophenol (22%D and 42%D) in the calibration associated with the soil samples. The results for those two compounds have been qualified as estimated in the soil samples.

TAL Metals by EPA 6010C, 6020, 7470, and 7471

TAL metals matrix spikes of TKMW-6 and TKMW-8(5.5-7.5') show acceptable recoveries and correlations, with the following exceptions, the results for which are qualified as estimated in the indicated parent sample:

		Outlying %	Outlying
Parent Sample	Element	Recoveries	<u>%RPD</u>
TKMW-8 (5.5-7.5')	antimony	54,60	
	barium	159,168	
	manganese	800,129	83
	potassium	228,222	
	mercury	68,66	

The ICP serial dilution evaluations of TKMW-6 and TKMW-8(5.5-7.5') show acceptable correlations.

Instrument performance was compliant. Blanks how no contamination affecting sample reported results.

Wet Chemistry Analyses for Total Cyanide by 9012

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples, unless noted specifically within this text.

Cyanide matrix spikes of TKMW-6 and TKMW-8(5.5-7.5') show acceptable accuracy and precision.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION DATA QUALIFIER DEFINITIONS

- **U** The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- **UJ** The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- **NJ** The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- **R** The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- **EMPC** The results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

Client and Laboratory Sample IDs

T

Sample Summary

TestAmerica Job ID: 480-98326-1

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-98326-1	TKMW-5 (9-11')	Solid	04/13/16 12:50	04/14/16 11:55
480-98326-2	TKMW-6 (8-10')	Solid	04/13/16 12:00	04/14/16 11:55
480-98326-3	TKMW-7 (2-5')	Solid	04/13/16 11:20	04/14/16 11:55
480-98326-4	TKMW-8 (5.5-7.5')	Solid	04/13/16 10:30	04/14/16 11:55
480-98326-5	TKMW-9 (5-7)	Solid	04/13/16 10:05	04/14/16 11:55
480-98326-6	BLIND DUP	Solid	04/13/16 08:00	04/14/16 11:55

Sample Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark - 11 Evan St., Batavia, NY

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
480-99240-1	BLIND DUP	Water	04/27/16 08:00	04/28/16 15:00	
480-99240-2	TKMW-9	Water	04/27/16 09:35	04/28/16 15:00	
480-99240-3	TKMW-8	Water	04/27/16 10:38	04/28/16 15:00	
480-99240-4	TKMW-7	Water	04/27/16 11:28	04/28/16 15:00	
480-99240-5	TKMW-6	Water	04/27/16 12:08	04/28/16 15:00	
480-99240-6	TKMW-5	Water	04/27/16 12:55	04/28/16 15:00	
480-99240-7	EQUIPMENT BLANK	Water	04/27/16 13:45	04/28/16 15:00	

......

APPENDIX E

FISH & WILDLIFE RESOURCE IMPACT ANALYSIS DECISION KEY

	Appendix 3C Fish and Wildlife Resources Impact Analysis Decision Key	If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	(13)	2
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4	9
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	5
5.	Has the contamination gone off-site?	6	14
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7	14
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8
8.	Does contamination exist at concentrations that could exceed ecological impact SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14
9.	 Does the site or any adjacent or downgradient property contain any of the following resources? i. Any endangered, threatened or special concern species or rare plants or their habitat ii. Any DEC designated significant habitats or rare NYS Ecological Communities iii. Tidal or freshwater wetlands iv. Stream, creek or river v. Pond, lake, lagoon vi. Drainage ditch or channel vii. Other surface water feature viii. Other marine or freshwater habitat ix. Forest x. Grassland or grassy field xi. Parkland or woodland xii. Shrubby area xiii. Urban wildlife habitat 	11	10
10.	Is the lack of resources due to the contamination?	3.10.1	14
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14	12
12.	Does the site have widespread surface soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	12
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact DEC for information regarding endangered species.)	Section 3.10.1	14
14.	No Fish and Wildlife Resources Impact Analysis needed.		

APPENDIX F

LAND USE EVALUATION

NYSDEC's Part 375 regulations require that the reasonableness of the anticipated future land be factored into the evaluation of remedial alternatives. The regulations identify 16 criteria that must be considered. These criteria and the resultant outcome for the Batavia Former MGP Site at 11 Evans Avenue, Batavia, NY are presented below.

- 1. Current use and historical and/or recent development patterns: The Batavia Former MGP Site was used as a manufacture gas plant from 1855 to the early 1900s. The Site was also used as a flour mill, bakery, county office, and grocery through 1931. The Site is currently used as a commercial office (family medical practice) which is housed in the former shell of the MGP gas holder which was renovated for commercial use. The Site is zoned commercial as is the future anticipate use and/or redevelopment. Accordingly, commercial site use/redevelopment would be consistent with historic site use.
- 2. Applicable zoning laws and maps: The Site is located in an area of the City of Batavia zoned commercial. Continued use in a commercial capacity is therefore consistent with current zoning.
- 3. Brownfield opportunity areas as designated set forth in GML 970-r: The Brownfield Opportunity Areas Program provides municipalities and community based organizations with assistance, to complete revitalization plans and implementation strategies for areas or communities affected by the presence of brownfield sites, and site assessments for strategic sites. The Batavia Former MGP Site is located within City of Batavia Brownfield Opportunity Area (BOA) Nomination Study Area. As such, the site is in a location where environmental impacts are ubiquitous. **Reuse in a restricted capacity is expected in areas where background conditions** preclude achieving unrestricted use soil cleanup objectives.
- 4. Applicable comprehensive community master plans, local waterfront revitalization plans as provided for in EL article 42, or any other applicable land use plan formally adopted by a municipality: The Site does not fall within the boundaries of a formal community master plan or local waterfront revitalization program. The current and future use of the site are consistent with current zoning (commercial) and will not require rezoning or change in use.

- 5. Proximity to real property currently used for residential use, and to urban, commercial, industrial, agricultural, and recreational areas: The Site is surrounded by commercial and recreational (ice rink) within the downtown area of the City of Batavia. Land use beyond the Site boundaries includes mostly mixed business/commercial/retail. Maintaining use of the site in a commercial capacity is consistent with surrounding property and zoning.
- 6. Any written and oral comments submitted by members of the public on the proposed use as part of the activities performed pursuant to the citizen participation plan: No comments have been received from the public relevant to site use concerns.
- 7. Environmental justice concerns, which include the extent to which the proposed use may reasonably be expected to cause or increase a disproportionate burden on the community in which the site is located, including low-income minority communities, or to result in a disproportionate concentration of commercial or industrial uses in what has historically been a mixed use or residential community: Nearby and adjacent property is actively used in a non-residential capacity. Maintaining use of the site in a commercial capacity does not pose environmental justice issues.
- 8. Federal or State land use designations: The property is located within the BOA Nomination Area within the City of Batavia. Urban land typically contains ubiquitous contaminants. Reuse in a restricted capacity is typical in areas where background conditions preclude achieving unrestricted use soil cleanup objectives.
- 9. Population growth patterns and projections: The City of Batavia, encompassing 5.2 square miles, has a population of 15,274 persons, a decrease of 2.4% from the 2010 U.S. census. A declining population indicates a surplus housing market. Reuse of the Site in a non-residential capacity does not materially affect opportunities for residential growth.
- 10. Accessibility to existing infrastructure: Evans Street provides access to the Site off of Ellicott Street, a main east-west orientated street in the City of Batavia. Utilities (sewer, water, electric, gas) are present along Evans Avenue service the Site. Existing infrastructure supports current and future use in a commercial capacity.

- 11. Proximity of the site to important cultural resources, including federal or State historic or heritage sites or Native American religious sites: No such resources or sites are known to be present on or near the property.
- 12. Natural resources, including proximity of the site to important federal, State or local natural resources, including waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species: According to the NYSDEC Environmental Resource Mapper, State or Federal wetlands do not exist on the subject property. A Federal wetland is located approximately 0.3 miles to the southwest and Tonawanda Creek located approximately 0.1 miles northwest of the Site. The absence of significant ecological resources on or adjacent to the Site indicates that cleanup to restricted use conditions will not pose an ecological threat.
- 13. Potential vulnerability of groundwater to contamination that might emanate from the site, including proximity to wellhead protection and groundwater recharge areas and other areas identified by the Department and the State's comprehensive groundwater remediation and protection program established set forth in ECL article 15 title 31: Groundwater at the Site is assigned Class "GA" by 6NYCRR Part 701.15. Nine (9) environmental monitoring wells exist on the Site. Groundwater data obtained during the RI indicate some impact to the eastern portion of the Site. Detected constituents consist of VOCs, naphthalene and naturally occurring metals. Although VOCs are present at low-level part per billion range detections, they are expected to naturally attenuate. The City of Batavia obtains its drinking water from two pumping wells along Cedar Street, over one-mile away from the Site, and the Tonawanda River. Water is processed in the City of Batavia will not pose a drinking water threat.
- 14. *Proximity to flood plains:* According to the Federal Emergency Management Agency website, the Site is in a Zone A4, which is an area inundated by 100 year flooding, for which no base flood zone elevation have been established. However the majority of the Site is covered with Hardscape (e.g., building, concrete and asphalt) which would prevent significant soil erosion due to flooding. As such, cleanup to commercial standards does not pose a threat to surface water.
- 15. Geography and geology: The Site is located within the Erie-Ontario lake plain physiographic province, which is typified by little topographic relief and gentle slope toward Lake Ontario, except in the immediate vicinity of major drainage ways. According to the Soil Survey of Genesee County, the native soils present in the

vicinity of the Site are Palmyra gravelly loam, which are described as nearly level soil occupying the tops of large outwash terraces. The deposits are generally 30 to 70 feet thick consisting mainly of gravel and partly of sand. The Site is primarily covered with hardscape and fill material/remains of the former MGP operations are present in the subsurface, which is not uncommon for urban environments. **Geography and geology are consistent with a commercial use and will not be affected by the planned commercial cleanup and continued commercial use of the property.**

16. Current institutional controls applicable to the site: No institutional controls are present that would affect redevelopment options.

Based on the above analysis, continued use of the site in a commercial capacity is consistent with past and current development and zoning on and around the site, and does not pose additional environmental or human health risk.