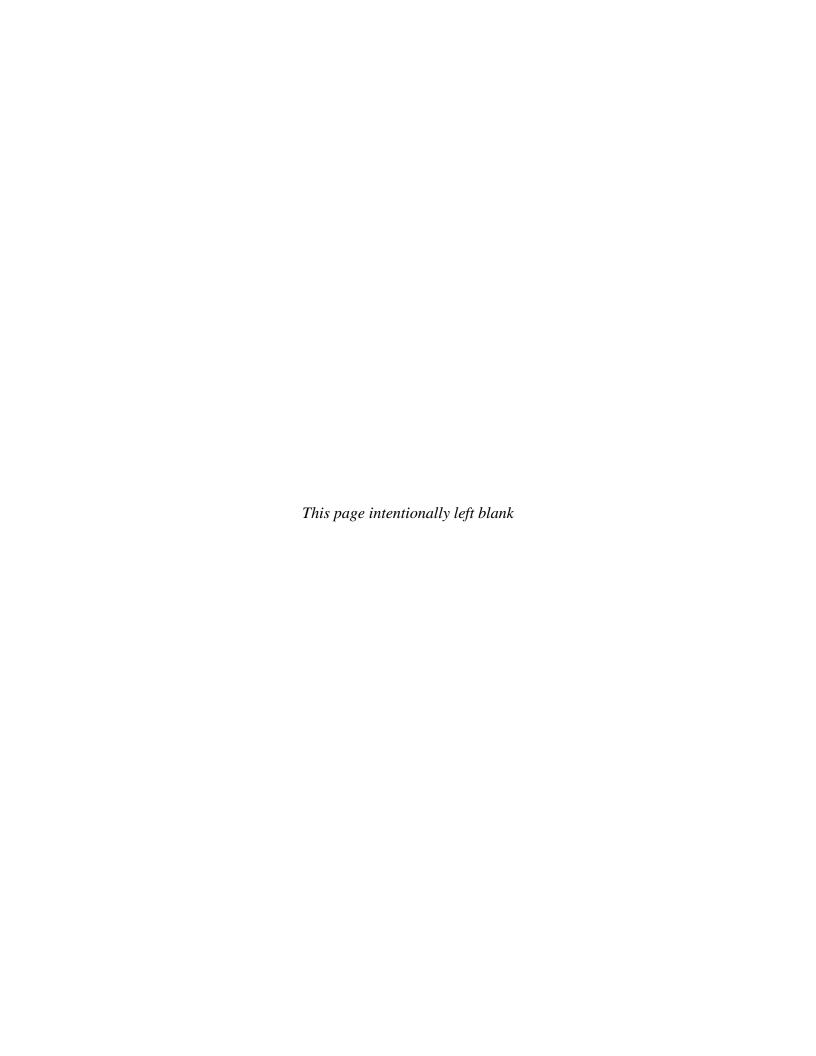
JANUARY 2015 – DECEMBER 2017 PERIODIC REVIEW REPORT

William Benson Landfill Site (826007) Livingston County, Livonia, New York

Prepared for:


New York State Department of Environmental Conservation Division of Environmental Remediation

Prepared by:

EA ENGINEERING, P.C. and Its Affiliate EA SCIENCE and TECHNOLOGY

January 2018

Periodic Review Report January 2015 – December 2017 William Benson Landfill

Town of Livonia Livingston County, New York

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7012

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

> January 2018 Version: DRAFT EA Project No. 14907.12

Periodic Review Report January 2015 – December 2017 William Benson Landfill

Town of Livonia Livingston County, New York

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7012

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

Donald Conan, P.E.	Date
Vice President	
Christopher Schroer	Date
Project Manager	

January 2018 Version: DRAFT EA Project No. 14907.12

January 2018

TABLE OF CONTENTS

		<u>]</u>	<u>Page</u>
LIS	T OF FIG	GURES	iii
LIS	T OF TA	BLES	iv
LIS	T OF AC	RONYMS AND ABBREVIATIONS	V
ES.	EXECU	TIVE SUMMARY I	ES-1
1.		ODUCTION	
1.			
	1.1	SITE BACKGROUND	1
		1.1.1 Site Description	
	1.2	REMEDIAL HISTORY	
	1.2		
		1.2.1 Summary of Remedial Actions	2
		1.2.2 Remaining Contamination	
		1.2.3 Operations, Maintenance, and Monitoring Plan1.2.4 Site Management Plan	3
	1.3	SITE GEOLOGY AND HYDROGEOLOGY	
	1.4 1.5	SITE MANAGEMENT OBJECTIVESPERIODIC REVIEW REPORT	
2			
2.		LUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND FECTIVENESS	7
	2.1	MONITORING PLAN COMPLIANCE REPORT	7
	2.1	MONTORING LETTY COM EETINCE REFORT	/
		2.1.1 GROUNDWATER MONITORING WELL AND PIEZOMETER	7
		MONITORING2.1.2 GROUNDWATER SAMPLING PROCEDURES AND ANALYSIS	
		2.1.3 GROUNDWATER SAMPLING RESULTS	
3.	SITE	INSPECTION AND SURVEY	11
	3.1	LANDFILL INSPECTION AND GAS MONITORING	11
4.	COST	Γ EVALUATION	13
	4.1	SUMMARY OF COSTS	13

EA Project No.: 14907.12 Version: DRAFT Page ii January 2018 EA Engineering, P.C. and Its Affiliate EA Science and Technology

5.	RECO	MMENDATIONS	15
	5.1	GROUNDWATER MONITORING	15
	5.2	LANDFILL INSPECTION AND AIR MONITORING	15
	5.3	SUMMARY	15
6.	REFEI	RENCES	17
APPE	ENDIX A	: INSTITUTIONAL/ENGINEERING CONTROL CERTIFICATION	
APPE	ENDIX B	: LANDFILL INSPECTION REPORT AND GROUNDWATER FIELD FORMS	
		2: DAILY FIELD REPORTS 2: ANALYICAL RESULTS 2017	

Version: DRAFT

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page iii January 2018

LIST OF FIGURES

<u>Number</u>	<u>Title</u>
1	Site Location
2	Site Layout
3	Groundwater Elevation and Predicted Flow Path October 2017

Version: DRAFT

Page iv January 2018

EA Engineering, P.C. and Its Affiliate EA Science and Technology

LIST OF TABLES

<u>Number</u>	<u>Title</u>
1	Historical Groundwater Elevations
2	Historical Summary of Metals/Inorganics in Groundwater Samples
3	Summary of Detected Per/Poly Fluorinated Compounds and 1,4-Dioxane in Groundwater Samples
4	Historical Landfill Monitoring 2007–2017
5	Historical Gas Vent Monitoring 2007–2017

Version: DRAFT

EA Engineering, P.C. and Its Affiliate

Page v EA Science and Technology January 2018

LIST OF ACRONYMS AND ABBREVIATIONS

AWQS Ambient Water Quality Standard

DO Dissolved oxygen

EA EA Engineering, P.C. and Its Affiliate EA Science and Technology

EC Engineering control

Environmental Protection Agency EPA

FS Feasibility Study

Feet (foot) ft

IC Institutional control

IRIS Integrated Risk Information System

NYCRR New York Code of Rules and Regulations

NTU Nephelometric turbidity unit

New York State Department of Environmental of Conservation **NYSDEC**

OMMP Operations, Maintenance, and Monitoring Plan

ORP Oxidation reduction potential

PFC Per/poly fluorinated compounds

Periodic Review Report **PRR**

RI Remedial Investigation Record of Decision ROD

SCG Standards, Criteria, and Guidance

SMP Site Management Plan

Semi-volatile organic compound **SVOC**

VOC Volatile organic compound

WBLF William Benson Landfill

Version: DRAFT

EA Engineering, P.C. and Its Affiliate Page vi EA Science and Technology January 2018

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page ES-1 January 2018

ES. EXECUTIVE SUMMARY

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering, P.C. and Its Affiliate EA Science and Technology to provide site management at the William Benson Landfill in the Town of Livonia, Livingston County, New York (**Figure 1**). This Work Assignment is conducted under the NYSDEC State Superfund Standby Contract (Work Assignment Number D007624-12) for site management from January 2015 to December 2017.

Post-closure monitoring and facility maintenance program activities were conducted at the William Benson Landfill in April 2015, June 2016, and October 2017 in accordance with New York State Solid Waste Management Facilities Regulations (6 New York State Code of Rules and Regulations Part 360-2.15[k][4]) and as stipulated in Section 8, Paragraph 3 of the Record of Decision (NYSDEC 2000).

Groundwater sampling coincided with the October 2017 landfill inspection. Site monitoring wells were inspected and observed to be in serviceable condition. Monitoring wells MW-8S and MW-8U were not located; and thus, not sampled during the October 2017 sampling event.

Landfill inspections were completed in every 15 months starting in 2015. Landfill cover material and surrounding areas were consistently observed to be in good condition with minimal human and animal disturbance. No major deterioration, damage, or erosion to cover materials, drainage swales, or access roads was noted during inspections. Some stressed vegetation was noted, but was attributed to animal activities such as grazing and bed downs.

Additionally, landfill gas concentrations were consistently within acceptable limits along the landfill perimeter and over the surface of the landfill cover material.

The landfill cover materials continue to provide protection to human health and the environment from contaminants of concern and landfill gases at this time. A completed institutional/engineering controls certification is included in $Appendix\ A$.

Page ES-2

January 2018

EA Engineering, P.C. and Its Affiliate EA Science and Technology

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page 1 January 2018

1. INTRODUCTION

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering, P.C. and Its Affiliate EA Science and Technology (EA) to provide site management at the William Benson Landfill (WBLF) in the Town of Livonia, Livingston County, New York (**Figure 1**). This Work Assignment is being conducted under the NYSDEC State Superfund Standby Contract (Work Assignment Number D007624-12) for site management from January 2015 to December 2017.

Post-closure monitoring and facility maintenance program activities were conducted at the WBLF in April 2015, June 2016, and October 2017 in accordance with New York State Solid Waste Management Facilities Regulations (6 New York State Code of Rules and Regulations [NYCRR] Part 360-2.15[k][4]) and as stipulated in Section 8, Paragraph 3 of the Record of Decision (ROD) (NYSDEC 2000).

1.1 SITE BACKGROUND

The site is located off Richmond Mills Road in the Town of Livonia, Livingston County, New York. The site is surrounded by forest and agricultural land. The WBLF is a 13-acre landfill that received hazardous waste during its operational history (approximately 1970–1984) and was not properly closed.

1.1.1 Site Description

The site is located in the Town of Livonia, Livingston County, New York and is identified as Block 6 and Lot 18.21 on the Livingston County Tax Map. The site is an approximately a 13-acre area bounded by fields to the north, south, east, and west. The site is accessed by a private drive off Richmond Mills Road (**Figure 1**).

1.1.2 Site History

The site is a historic landfill that received hazardous waste during its operational history (approximately 1970–1984). According to a 1985 Community Right-to Know survey produced by the NYSDEC, wastes disposed of at the site included 40 tons of halogenated aliphatics, halogenated aromatics, plasticizers, esters, ethers, alcohols, and inorganic salts by the Lucidol Division of Pennwalt Corporation from approximately 1970 to 1978. The survey also indicated that Pennwalt Corporation disposed an unknown quantity of organic peroxide prior to 1981. Throughout the landfilling activities, the landfill operator never obtained the Part 360 permit to operate a sanitary landfill and never closed the landfill according to the Part 360 regulations.

Page 2 January 2018

1.2 REMEDIAL HISTORY

A site assessment (Malcom Pirnie 1998) and a remedial investigation (RI) (Malcolm Pirnie 1999a) identified contaminants of concern including metals, volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs) in the surface and subsurface soil, leachate, and groundwater.

As described in the RI Report, soil, groundwater, leachate, surface water, and sediment samples were collected at the site to characterize the nature and extent of contamination. The categories of contaminants, which exceeded their Standards, Criteria, and Guidance (SCGs) are inorganics (metals), VOCs, SVOCs, and pesticides. The inorganic contaminants, which exceeded their SCGs, are aluminum, antimony, arsenic, barium, cadmium, iron, lead, magnesium, manganese, sodium, selenium, and zinc. The VOC contaminants, which exceeded their SCGs were benzene, toluene, ethylbenzene, xylenes; acetone; chloroethane; 1,1-dichloroethane; and methyl-ethyl-ketone. The pesticide contaminants, which exceeded SCGs are heptachlor, aldrin, 4,4'-dichlorodiphenyldichloroethylene, endrin, dieldrin, and 4,4'-dichlorodiphenyldichloroethane.

A Focused Feasibility Study (FS) was finalized in November 1999 (Malcolm Pirnie, Inc. 1999b) and recommended Alternative 4, which was the construction of a modified 6 NYCRR Part 360 cover system and implementation of a long-term monitoring plan. Based on the RI and FS, a ROD (NYSDEC 2000) was issued selecting Alternative 4. The ROD indicated that the pesticide contaminants were consistent with the concentrations that would be found in an agricultural setting and were not considered to be contaminants of concern.

1.2.1 Summary of Remedial Actions

The site was remediated in accordance with the NYSDEC-approved Remedial Action Work Plan (GeoSyntec 2002).

The following is a summary of the remedial actions performed at the site:

- Relocation and compaction of waste within landfill to achieve design grades.
- Construction and maintenance of a cover system consisting of, from waste to top, a cover foundation layer, a geosynthetic gas venting layer, a geomembrane layer, a geosynthetic drainage layer, a soil barrier protection layer, and a vegetative layer to prevent human exposure to remaining contaminated soil/fill remaining at the site and infiltration of rain water into the waste.
- Installation of gas vents within the landfill to vent built up landfill gases.
- Execution and recording of a deed restriction to restrict land use and prevent future exposure to any contamination remaining at the site.

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page 3 January 2018

- Other major remedial elements including all institutional controls (ICs) listed here:
 - Compliance with an Environmental Easement and the Site Management Plan (SMP) (EA 2013, 2017).
 - All ECs must be operated and maintained as specified in the SMP.
 - All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.
 - Groundwater monitoring must be performed as defined in the SMP.
 - Data and information pertinent to site management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.
- Development and implementation of a SMP for long-term management of remaining contamination as required by the deed restriction, which includes plans for: (1) ICs and engineering controls (ECs), (2) monitoring, (3) operation and maintenance, and (4) reporting.

Remedial activities were substantially completed at the site in October 2003.

1.2.2 Remaining Contamination

No contaminated material was removed from the site as part of the remedial action; although, it was consolidated under a Part 360 landfill cap; the waste was not characterized. Any site contamination is the same as that prior to the remedial action.

1.2.3 Operations, Maintenance, and Monitoring Plan

An Operations, Maintenance, and Monitoring Plan (OMMP) (GeoSyntec 2004) was finalized in August 2004. The OMMP provided direction for implementation of the remedy selected by the ROD (NYSDEC 2000).

1.2.4 Site Management Plan

The SMP (EA 2007) was completed in October 2007 and detailed the future management of the WBLF. The SMP was revised in 2013 and 2017 (EA 2013, 2017) to comply with NYSDEC requirements.

1.3 SITE GEOLOGY AND HYDROGEOLOGY

The site is located on the glaciated upland area of the Appalachian Plateau physiographic province. Situated near a topographic saddle, the surface topography generally slopes to the north on the west flank of the landfill and toward the south on the east flank. Subsurface

Version: DRAFT Page 4 January 2018

conditions were determined from the results of 13 overburden borings completed by Malcolm Pirnie during the RI, and a total of 8 piezometers and 5 existing wells completed during previous investigations. The generalized stratigraphy of the units characterized at the site includes waste/fill, glaciolacustrine deposits, and glacial till. Waste/fill identified consisted of paper, glass, rubber, wood, and cover material.

The geologic formations that underlie Livingston County are composed of a glacial till, glaciolustrine, and glacial outwash sediments. Glacial till deposits occur as lodgement or ablation tills. Lodgment tills were deposited sub-glacially and are a dense, poorly-sorted aggregate of clay, silt, sand, and gravel. Ablation till is less dense and has a coarser clastic component due to reworking by lacustrine and fluvial sorting processes. These deposits are underlain by various types of sedimentary rock.

The bedrock of Livingston County is comprised of flat lying to gently dipping (approximately 40–50 feet [ft]/mile to the southwest) sedimentary rocks deposited during the middle- to late-Devonian period. Shales and siltstones of the Hamilton, Genesee, Sonyea, West Falls, and Java groups underlie the overburden deposits of Livingston County. Combined thickness of these middle Devonian shales is approximately 200–250 ft.

Groundwater is present in overburden at WBLF at a depth of 4–9 ft below ground surface. The water bearing aquifer beneath the site is dense sandy-silt ablation till interspersed with slightly more fine gravel than clay. Hydraulic conductivities calculated for groundwater monitoring wells ranged from a low of 8.8×10^{-7} centimeters per second to a high of 2.0×10^{-6} centimeters per second. Shallow groundwater flows generally to the northeast within the landfill, and to the northwest and east off the sides of the landfill.

1.4 SITE MANAGEMENT OBJECTIVES

Environmental monitoring points at the WBLF have been maintained and sampled during the post-closure monitoring period in accordance with the SMP (EA 2013, 2017). This included collection of groundwater samples at various locations surrounding the landfill and inspection of the landfill cover material. Sampling locations, sampling methodology, list of analytes, analytical methods, and landfill cover material inspection methodology, and site maintenance objectives are documented in the SMP.

The objectives of the post-closure monitoring and facility maintenance program are to:

- Collect representative groundwater samples in order to monitor any potential leachate migration from the landfill.
- Evaluate the data to determine whether any potential impacts may be occurring that could affect human health or the environment.
- Periodically inspect the landfill and provide minor maintenance, as necessary.

Page 5
January 2018

• Document and report this information to the NYSDEC.

1.5 PERIODIC REVIEW REPORT

The purpose of this Periodic Review Report (PRR) is to summarize the results of the 2017 groundwater-monitoring event and the 2015, 2016, and 2017 landfill inspection events; and to provide sufficient documentation that the remedy remains in place, is performing properly and effectively, and is protective of public health and the environment. Specifically, this report provides the following information:

- Results of groundwater monitoring
- Results of landfill gas monitoring
- Results of landfill cover and monitoring systems inspections.

This report also documents any problems or changes necessary for the site to be in compliance with the SMP (EA 2017) including removal of ICs/ECs that are no longer applicable; modifications in monitoring or OMMP (GeoSyntec 2004) requirements, as applicable; or a Corrective Action Work Plan and schedule, as necessary. A completed ICs/ECs certification is included in **Appendix A**.

Version: DRAFT

Page 6 January 2018

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page 7 January 2018

2. EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

2.1 MONITORING PLAN COMPLIANCE REPORT

This PRR assesses whether the WBLF site has been remediated and managed as set forth in the SMP (EA 2013, 2017) and ROD (NYSDEC 2000). The Monitoring Plan includes a description of the methods and rationale to be used for assessing the remedy effectiveness, including the following elements:

- Sampling and analysis of all appropriate media (i.e., groundwater).
- Assessing compliance with applicable NYSDEC SCGs, particularly ambient water quality standards (AWQS).
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

In 2013, the NYSDEC approved a change to no longer sample for VOCs and pesticides based on the recommendations of the PRR. Detections of site contaminants from those classes in groundwater were routinely concentrations less than SCGs.

2.1.1 GROUNDWATER MONITORING WELL AND PIEZOMETER MONITORING

The site monitoring wells and piezometers were gauged prior to the October 2017 sampling event. An independent gauging event was also performed in June 2016. Monitoring well and piezometer locations are illustrated in **Figure 2**. Monitoring wells 6S, 13S, and 13D were decommissioned during the 2010 monitoring period under direction of the NYSDEC. Monitoring wells MW-8S and MW-8D could not be located during either event. Water elevation data for all sampling events conducted as part of this Work Assignment are summarized in **Table 1**.

Groundwater elevations were calculated based on data from the shallow monitoring wells and piezometers, and used to construct the groundwater flow map for the October 2017 gauging event (**Figure 3**). Shallow groundwater flows generally to the northwest within the landfill.

2.1.2 GROUNDWATER SAMPLING PROCEDURES AND ANALYSIS

Groundwater monitoring wells were sampled in October 2017. Wells were purged using low-flow sampling techniques (peristaltic pump) and water quality readings were allowed to stabilize prior to sample collection. Monitoring well MW-8U was purged dry during the event and was allowed to recharge prior to sample collection.

Field groundwater quality parameters were collected using a water quality meter that was calibrated in accordance with manufacturer's specifications prior to use (i.e., pH, dissolved oxygen (DO), temperature, conductivity, turbidity, and oxidation-reduction potential).

Purging was considered complete once three consecutive field parameter readings satisfied the following criteria.

Turbidity	<5 Nephelometric turbidity unit (NTU), or within 10 percent of each
DO	< 0.5 milligrams per liter or within 10 percent of each
Conductance	Within 3 percent of each
pН	+/- 0.1 unit
Oxidation reduction potential (ORP)	+/- 10 Millivolts (mV)

Groundwater quality data were recorded on field purging and sampling forms, and are provided in **Appendix B**. Daily field reports are provided in **Appendix C**.

Samples were submitted to Con-Test Analytical Laboratory, located in East Longmeadow, Massachusetts, for analysis of target analyte list metals using U.S. Environmental Protection Agency Method 6010; for per/poly fluorinated compound (PFC) analysis using Method SOP 434-PFAAS; and for 1,4 dioxane using Method SW-846 8270D.

Samples from three well locations were analyzed for PFCs and 1,4 dioxane as part of this sampling event. Due to the high sensitivity of these parameters and the potential sources of trace levels of PFCs, several precautions were taken to reduce the risk of false detections within samples.

The following general preparations were taken prior to and during the sampling event:

• Food Considerations

 Field personnel avoided	the use of paper	bags, paper	packaging,	aluminum fo	il, and
coated paper packaging	or coated textiles	s to be in cor	ntact with fo	ood products.	

- Avoided eating any fried foods.
- Did not eat snacks or meals within the immediate vicinity of the monitoring wells or inside the vehicle.
- Removed gloves prior to eating.
- Ate downwind of the well locations, if necessary.

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page 9 January 2018

• Field Gear

- Field personnel avoided plastic coating or glued materials, waterproof field books/paper, pens and sharpie markers. The use of aluminum clipboards was allowed with loose-leaf paper.
- Wore disposable nitrile gloves at all times and changed them frequently.
- Did not wear water resistant, waterproof, or stain-treated clothing. Field clothing was laundered with minimal use of soap and no fabric softeners or scented products were used. Clothing was rinsed with water after the initial cleaning.

• Field Vehicle

— The field vehicle seats were covered with a well-laundered cotton blanket for the duration of the sampling event.

• Personal Hygiene

- Field personnel did not use shampoo, conditioner, hand cream, etc. as part of their personal cleaning/showering routine on the day of the sampling event. A shower the night before the sampling event, or a rinse with water the day of was acceptable.
- Moisturizers, cosmetics, sunscreen, or insect repellent were not used throughout the duration of the sampling event.
- Handwashing with soap was allowed and the field personnel allowed extra rinsing time with water after use of soap.

Samples were collected using a high-density polyethylene tubing. The tubing that was connected to the Horiba during the collection of water quality parameters was cut prior to sampling. Sample tubing did not touch the sample jars during sample collection.

After samples were collected, they were placed in a cooler with ice that was bagged in high-density polyethylene tubing bags for shipment to the laboratory. Groundwater samples were submitted to Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts.

2.1.3 GROUNDWATER SAMPLING RESULTS

Groundwater sampling results for the October 2017 event and each previous event conducted under the previous Work Assignment were compared to NYSDEC AWQS (NYSDEC 1999) for Class GA waters. In addition, select analytes were compared to SCG values as identified in the OMMP (GeoSyntec 2004). Analytical results for metals from previous events are summarized in

Version: DRAFT Page 10

January 2018

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Table 2. Analytical results from previous groundwater sampling events are discussed in detail within the PRR for that year.

Concentrations of metals contaminants detected in groundwater at WBLF have generally remained consistent with previous groundwater sampling events. Analytes which were detected in groundwater at concentrations greater than SCGs during the 2017 sampling event are barium (1 of 5 samples), iron (5 of 5 samples), magnesium (2 of 5 samples), and sodium (5 of 5 samples). Selenium was not detected, but the method detection limit exceeded its respective SCG. Generally, the greatest concentrations of inorganics were detected in the sample collected at groundwater monitoring well MW-8U; this is consistent with the March 2014 monitoring event. During the October 2017 sampling event, concentrations of aluminum, antimony, barium, iron, iron, magnesium, manganese, and sodium have decreased significantly in comparison to previous sampling events.

Analytical results for 1,4-dioxane are compared to the U.S. Environmental Protection Agency's (EPA) Integrated Risk Information System (IRIS) 2013 for drinking water representing a 1 x 10-6 cancer risk level. Analytical results for PFCs are compared to EPA health advisory level for drinking water, a combined concentration of perfluorooctanoic acid and perfluorooctanesulfonic acid. Results for PFCs and 1,4-Dioxane are summarized in **Table 3**. Complete analytical results for the October 2017 sampling event are included in **Appendix D**.

PFC samples and 1,4-Dioxane were collected from 3 of the 5 wells sampled. Concentrations of 1,4-Dioxane were detected above the EPAs IRIS 2013 guidance value for drinking water of 0.35 micrograms per liter (μ g/L) in MW-5 (2.2 μ g/L) and MW-8U (6.9 μ g/L). PFC compounds were detected in all three wells (MW-5, MW-8U and MW-9D) but were not detected above the EPA health advisory level of 70 nanograms per liter for drinking water.

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page 11 January 2018

3. SITE INSPECTION AND SURVEY

3.1 LANDFILL INSPECTION AND GAS MONITORING

Landfill inspections were performed during April 2015, June 2016, and October 2017 to ensure that the landfill cover materials, site drainage structures, passive gas outlets, onsite monitoring wells, and general site security have been maintained and are functioning within the design standards.

Landfill cover material and surrounding areas were consistently observed to be in good condition with minimal human and animal disturbance. No major deterioration, damage, or erosion to cover materials, drainage swales, or access roads was noted during inspections. Some stressed vegetation was noted, but was attributed to animal activities such as grazing and bed downs.

In addition, monitoring wells were inspected during each event and have been observed to generally be in good condition. During the October 2017 event, GP-8 was found damaged as a tree had fallen on the well. The metal stick-up pipe and concrete pad were tipped over at a 45-degree angle. Areal flooding had filled the cracked PVC casing at the base of the well. GP-24 was previously noted as damaged, but during the October 2017 sampling event, the piezometer was missing, and therefore, not gauged. GP-12 was blocked and could not be gauged. MW-7S, GP-24 and GP-7 were not located. These locations are not sampled as part of the groundwater monitoring. MW-8S and MW-8D could not be located during the June 2016 and the October 2017 events. These wells are part of the existing monitoring well network for groundwater sampling at the site.

Landfill and vent gas monitoring activities were performed by taking readings for carbon monoxide, hydrogen sulfide, lower explosive limit, oxygen, and total VOCs from within 2 ft of the landfill cover material surface along the entire landfill perimeter and across the landfill using an approximate 100-ft on-center grid pattern. Monitoring was conducted at the passive gas vent outlets by taking a reading within 6 inches of the passive gas vent opening. Locations of passive gas vent outlets are shown in the site plan (**Figure 2**).

The landfill gas concentration readings were consistently within acceptable limits along the perimeter and over the surface of the landfill cover material. Trends of landfill gas monitoring along the landfill perimeter and cover material, as well as gas vent monitoring data, are presented in **Tables 2 and 3**, respectively. There is no indication of any landfill gas migration through the perimeter or cover material, indicating significant wear or deterioration of the material has not occurred. Landfill inspection and gas monitoring data for April 2015, June 2016, and December 2017 are included in the landfill inspection reports provided in **Appendix B**. Daily field reports from inspection events are included in **Appendix C**.

Version: DRAFT

Page 12 January 2018

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Version: DRAFT

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Page 13 January 2018

4. COST EVALUATION

4.1 **SUMMARY OF COSTS**

Total costs for site management services, including groundwater monitoring and sampling, site inspection, and monitoring well maintenance was \$28,483 for the three-year reporting period. A breakdown of major costs January 2015 through December 2017 is provided in the following table.

Site Management Activity	Cost Incurred for the period of January 2015 - December 2017
Site Management and Site Management Plan (EA)	\$8,582
Site Inspections, Monitoring, Sampling, Oversight, Supplies/Equipment, Travel, and Reporting (EA)	\$17,546
Analytical Laboratory (Con-Test Analytical, Inc.)	\$2,355

The monitoring, sampling, inspection, oversight and reporting costs, which are billed by EA, include costs associated with project management, quality assurance, and periodic reporting throughout the reporting period. These monitoring and reporting costs are based on fiscal data generated and tracked by an EA internal financial management system and includes travel expenses, equipment/supply costs, and other direct charges.

The analytical costs, billed by Con-Test Analytical Laboratory, of East Longmeadow, Massachusetts covered groundwater analyses.

Version: DRAFT

EA Engineering, P.C. and Its Affiliate Page 14
EA Science and Technology January 2018

Page 15 January 2018

5. RECOMMENDATIONS

5.1 GROUNDWATER MONITORING

Based on requirements for the ROD (NYSDEC 2000) and results from the previous 5 years of monitoring, groundwater monitoring should continue. Inorganics, such as iron, sodium, and magnesium are consistently detected at concentrations greater than their respective NYSDEC AWQS. At some wells (e.g., MW-8U), concentrations have been detected at an order of magnitude greater than their respective NYSDEC AWQS. However, in general, concentrations of metals have remained stable, if not slightly declining, and there is no evidence that contaminants are migrating off-site.

5.2 LANDFILL INSPECTION AND AIR MONITORING

The landfill cover material and surrounding areas were consistently observed to be in good condition with minimal human and animal encroachment during the 2015, 2016, and 2017 inspections. Although some minor areas exist where the cover material has been eroded slightly and the geo-membrane fabric has been exposed, the degree and extent of erosion has not further intensified during the monitoring program.

The field readings of landfill gas concentrations were within acceptable limits along the perimeter and over the surface of the landfill cover material. There was no indication of any landfill gas migration through the perimeter or cover material, indicating no significant wear or deterioration of the material.

5.3 SUMMARY

The following actions are recommended:

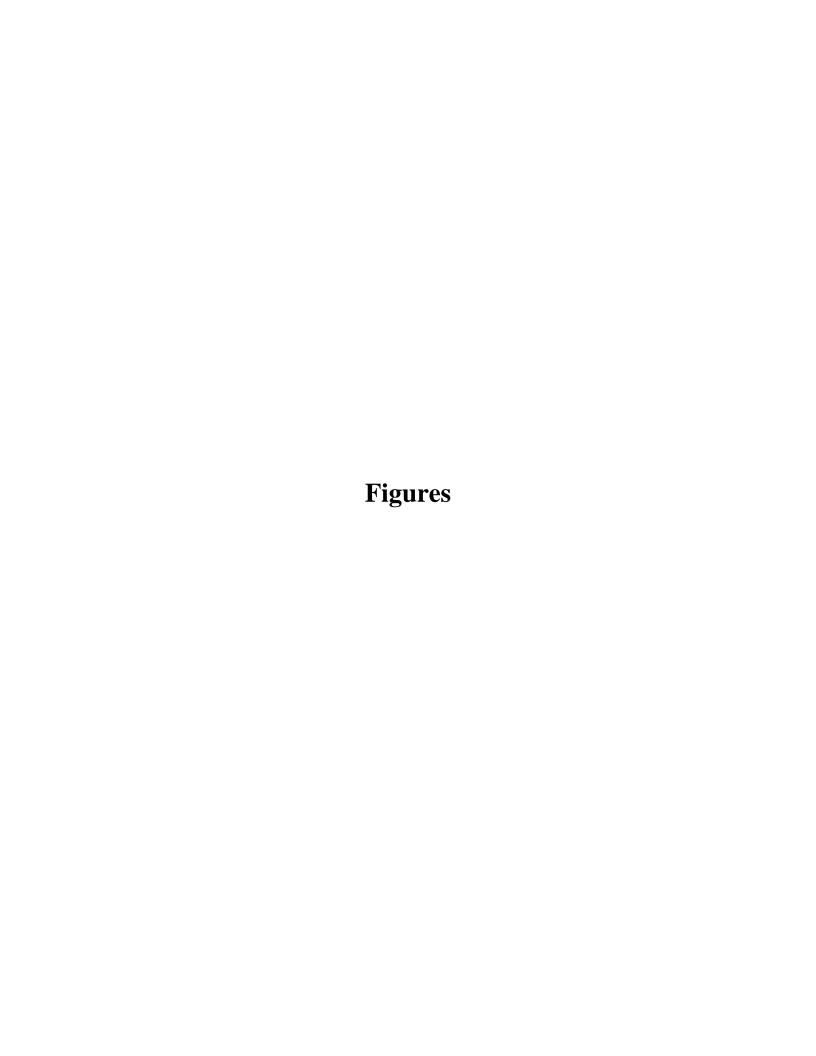
- It is recommended that the monitoring period continue once every 3 years for inorganics.
- Site management tasks should continue. Landfill inspections and gas vent monitoring should continue at once every 15 months or as needed in the event of a catastrophic weather event, which could erode the cover system. Annual mowing should continue.
- General landfill maintenance activities (e.g., mowing) are performed by the NYSDEC and should continue as needed.
- Repair/replace groundwater monitoring wells GP-8, GP-24, and GP-12.
- Locate and install flagging or visible posts for MW-7S, GP-24, GP-7, MW-8S, and MW-8D.
- Update the site survey and reestablish locations and top of casing elevations for groundwater monitoring wells and piezometers.

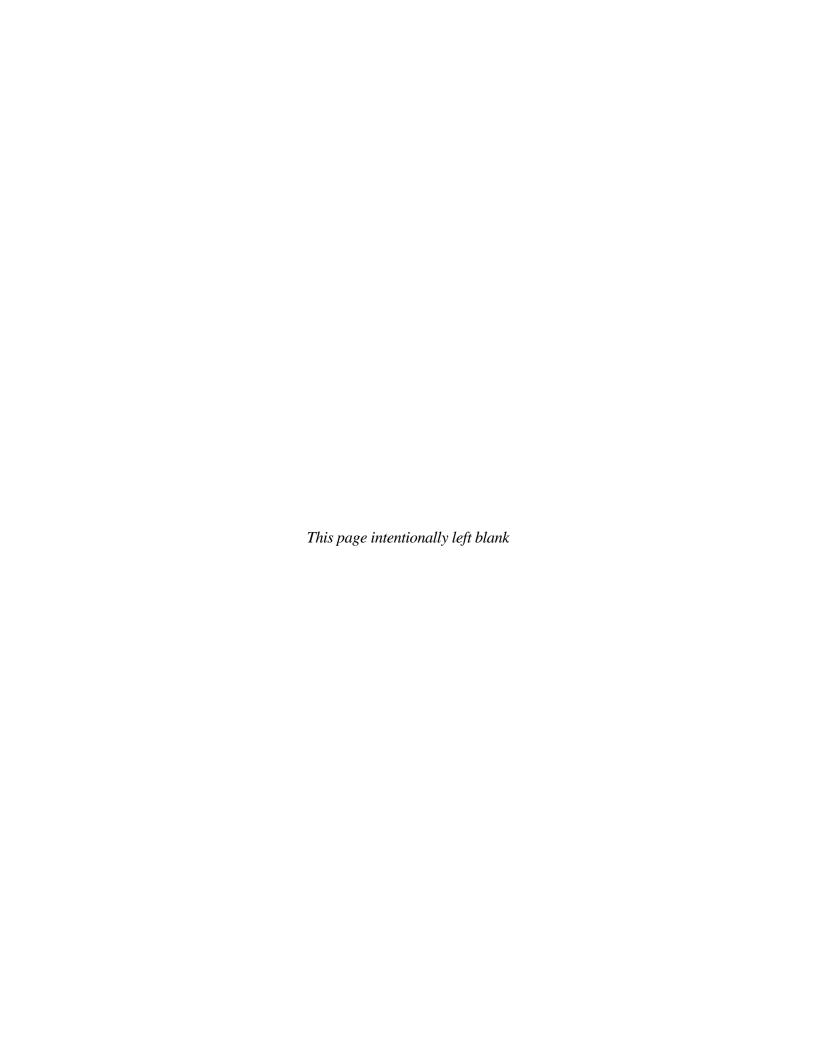
Version: DRAFT Page 16

EA Engineering, P.C. and Its Affiliate EA Science and Technology

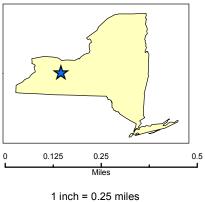
January 2018

EA Engineering, P.C. and Its Affiliate EA Science and Technology

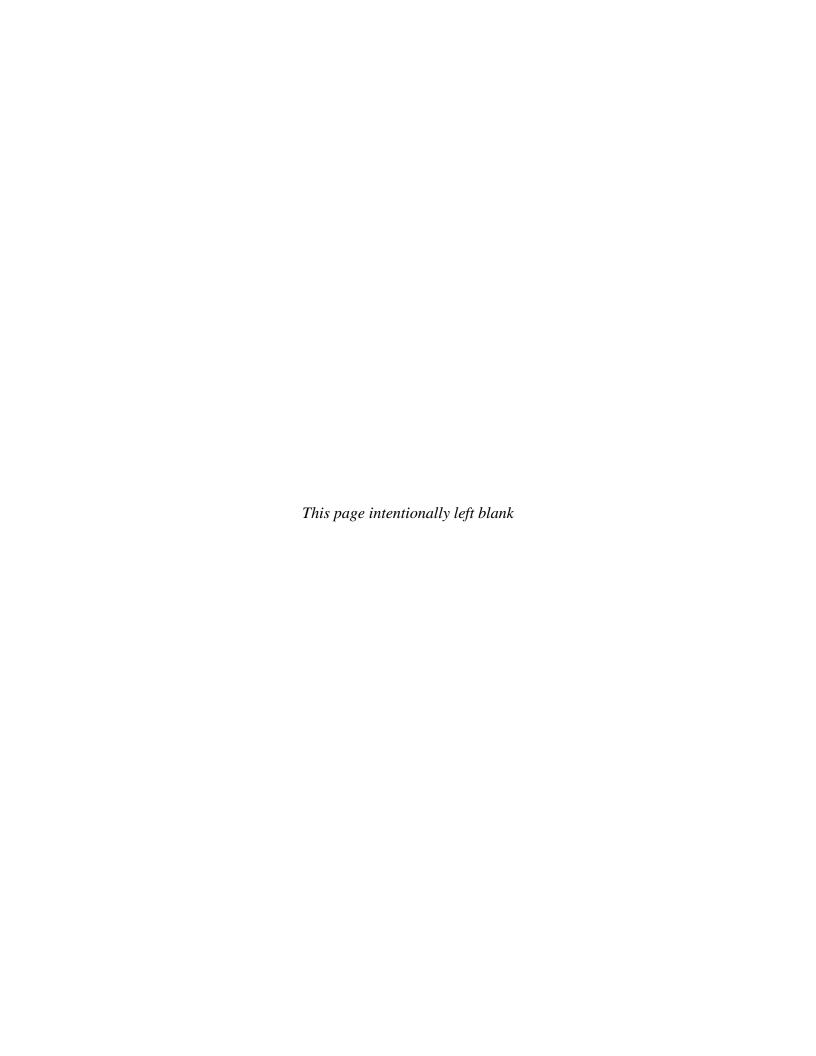

Version: DRAFT Page 17 January 2018


6. REFERENCES

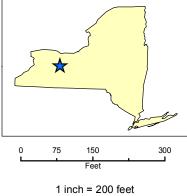
EA. 2007. Site Management Plan William Benson Landfill (8-26-007) Livonia, New York. October.
—. 2013. SMP for the WBLF, Livonia, New York, NYSDEC Site No. 8-26-007. February.
—. 2017. SMP for the WBLF, Livonia, New York, NYSDEC Site No. 8-26-007. September.
GeoSyntec Consultants. 2002. Remedial Action Work Plan. William Benson Landfill Livingston County, New York.
—. 2004. Final Revision 2 Operation, Maintenance, and Monitoring Plan. William Benson Landfill Livingston County, New York. August.
Malcolm Pirnie, Inc. 1998. Preliminary Site Characterization Report. September.
—. 1999a. Remedial Investigation for the William Benson Landfill (Vol 1-3). March.
—. 1999b. Focused Feasibility Study for the William Benson Landfill. November.
NYSDEC. 1999. Water Quality Regulations – Surface Water and Groundwater Classifications and Standards NYCRR Title 6, Chapter X Parts 700-706.
—. 2000. Record of Decision, William Benson Landfill Site, Livonia (T) Livingston County, Site Number 826007. March.

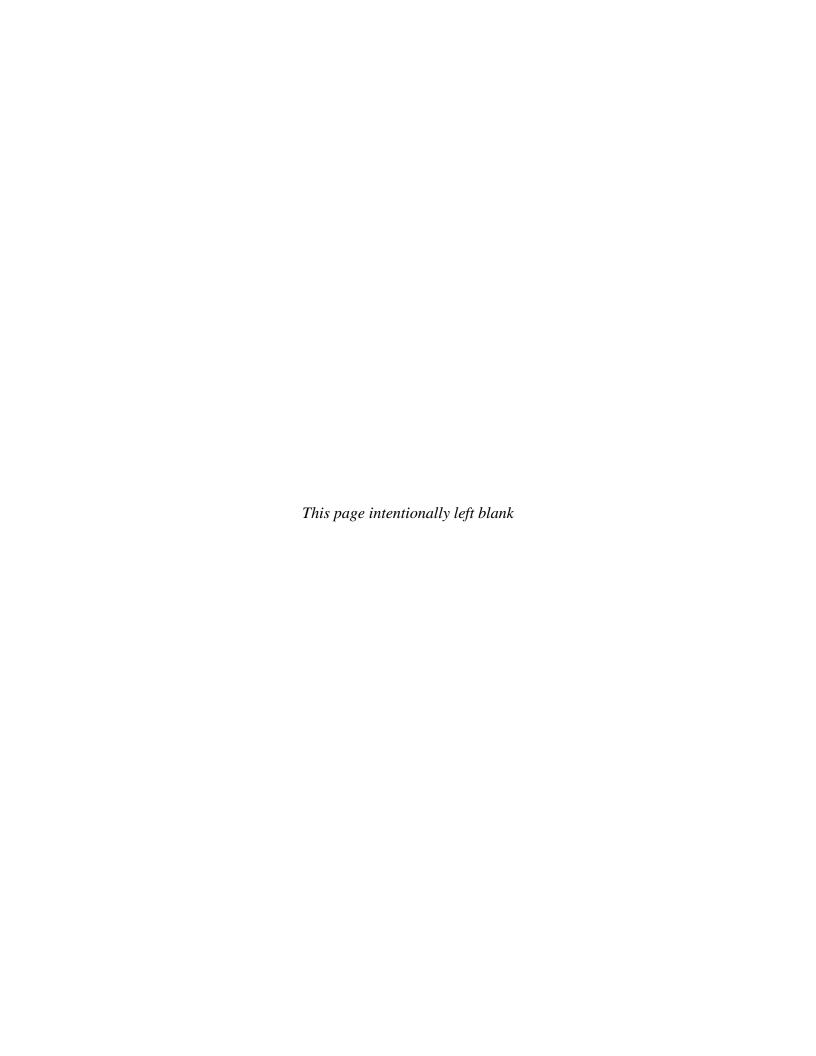

Version: DRAFT

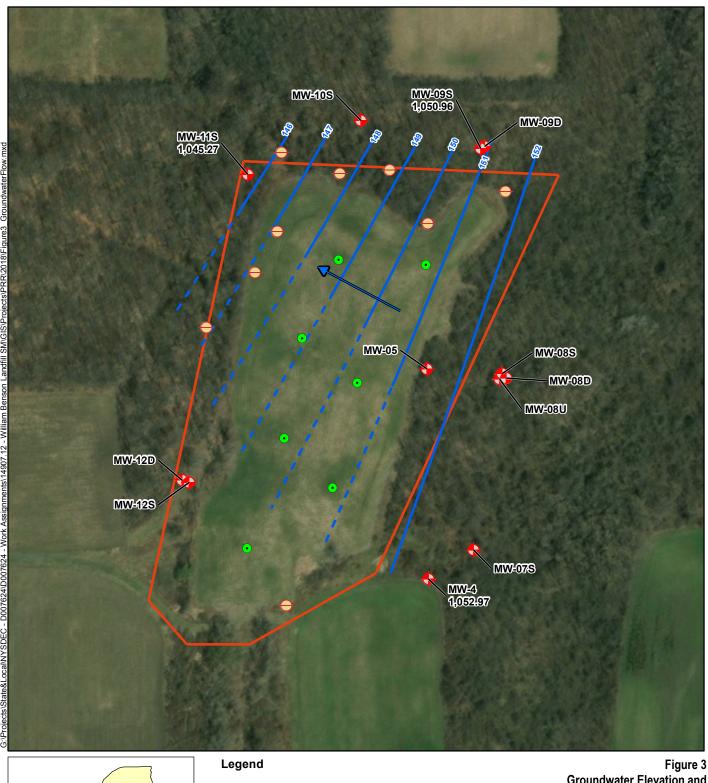
EA Engineering, P.C. and Its Affiliate Page 18
EA Science and Technology January 2018

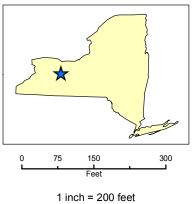

Site Boundary

Livonia, New York


Map Date: 1/14/2018 Projection: NAD 1983 StatePlane New York West FIPS 3103 Feet


- Piezometer
- Monitoring Well
- Landfill Gas Vent
- Survey Control Point


Periodic Review Report 2018 William Benson Landfill Livonia, New York


Map Date: 1/14/2018 Projection: NAD 1983 StatePlane New York West FIPS 3103 Feet

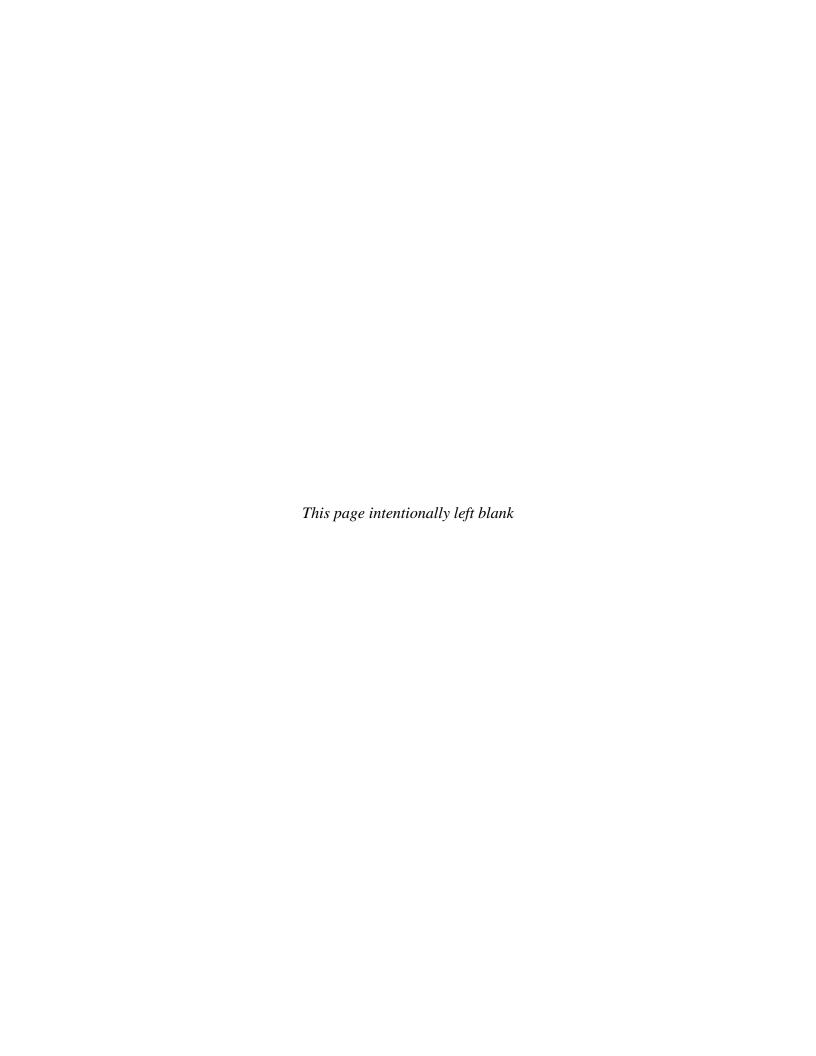
Site Boundary

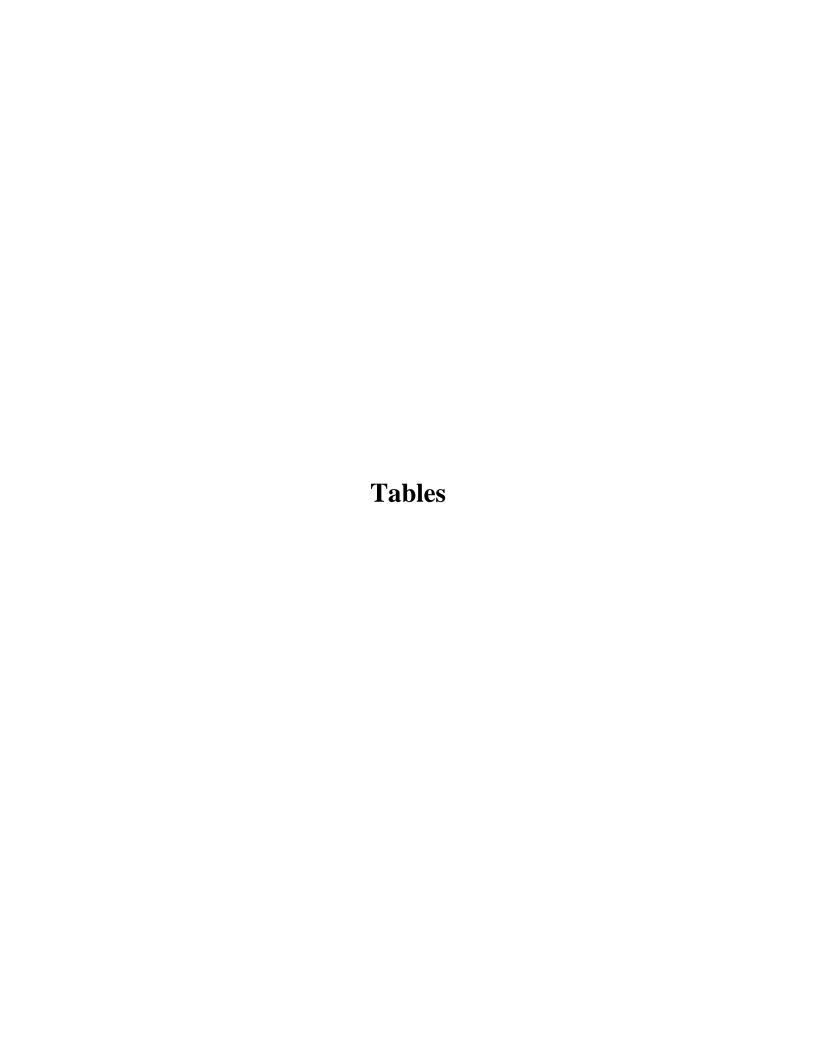
Groundwater Monitoring Well

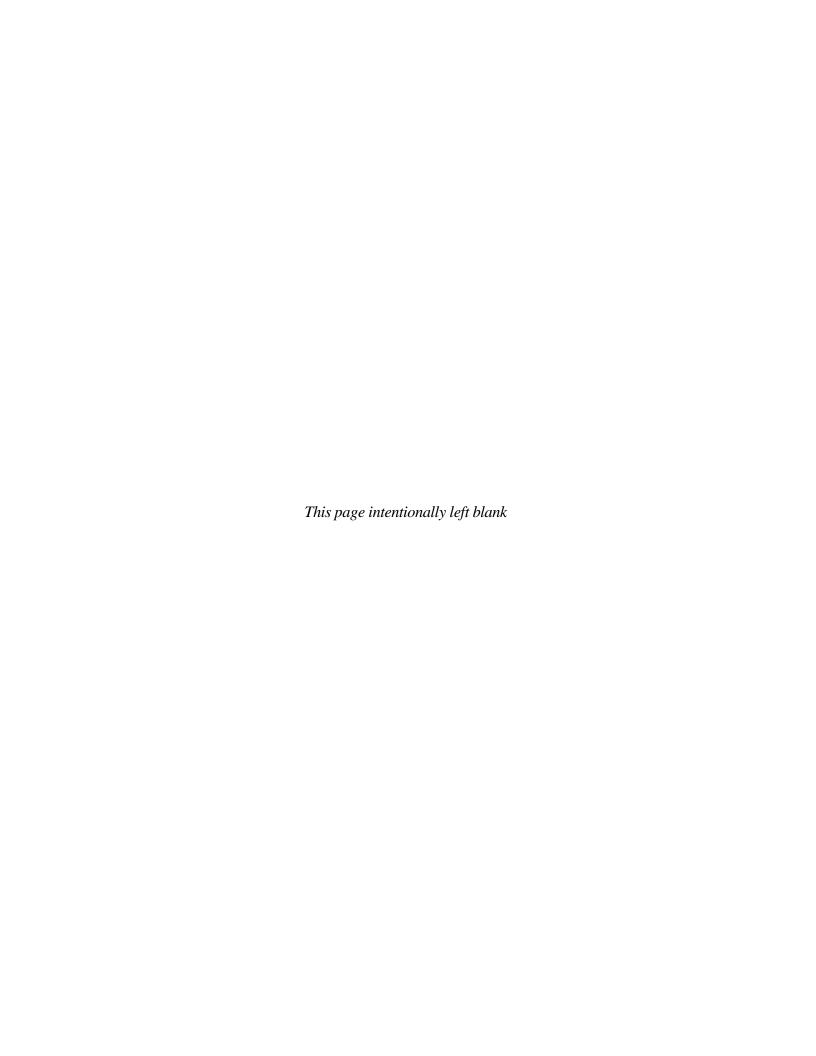
Piezometers

1-Foot Groundwater Contour (Dashed Where Inferred)

Groundwater Flow Direction


Groundwater Elevation and Predicted Flow Path October 2017


Periodic Review Report 2018 William Benson Landfill Livonia, New York


Map Date: 1/15/2018 Projection: NAD 1983 StatePlane New York West FIPS 3103 Feet

Project No.: 14907.12 Revision: Draft Table 1, Page 1 of 1 January 2018

Table 1 Historical Groundwater Elevations

Monitoring					V	Vater Elevat	ion (ft AMSL	<i>i</i>)			
Well / Piezometer	TOC (ft AMSL)	December 2007	March 2008	September 2008	June 2009	March 2010	January 2012	March 2013	June 2014	June 2016	October 2017
OP-1	1084.06	NA	NA	NA	NA	NA	NA	NA	NA	NA	1065.37
GP-6	1072.21	1057.1	1058.07	NA	NA	1055.31	1055.26	1066.21	NA	NA	1063.7
GP-7	1053.98	1055.31	1055.37	NA	NA	1055.4	1054.38	NA	NA	NA	NA
GP-8	1055	1056.31	1057.19	NA	NA	1056.71	1056.62	NA	NA	NA	NA
GP-11	1048	1049.41	1049.1	NA	NA	1049.68	1049.64	NA	NA	NA	1045.82
GP-12	1055.99	1057.73	1059.14	NA	NA	1057.34	1057.49	NA	NA	NA	NA
GP-13	1061.74	NA	NA	NA	NA	1062.55	1060.8	NA	NA	NA	1050.2
GP-21	1058.8	1061.35	1061.78	NA	NA	1061.47	1061.04	NA	NA	NA	1057.7
GP-22	1051.93	1055.37	1055.54	NA	NA	1056.12	1055.59	NA	NA	NA	1049.57
MW-4	1057.29	1057.57	1059.08	1055.33	1058.24	1059.39	1059.02	1053.44	NA	NA	1052.97
MW-5	1058.65	1055.53	1060.18	1054.58	1057.17	1058.08	1057.62	1054.15	1053.03	1052.64	NA
MW-6S	NA	1055.63	1066.96	NA	1064.17	1067	DECOM	DECOM	DECOM	NA	NA
MW-7S	1053.69	1055.14	1056.95	1052.92	1056.12	1056.66	1056.04	NA	NA	NA	NA
MW-8D	1054.63	1055.69	1057.9	1053.26	1055.99	1056.21	1056.53	1052.09	1049.71	NA	NA
MW-8S	1055.19	1055.86	1056.82	1052.97	1056.01	1057.1	1057.53	1052.42	1050.37	NA	NA
MW-8U	1054.93	NA	NA	NA	NA	NA	NA	1052.38	1048.43	1049.83	NA
MW-9D	1061.88	1051.47	1062.05	1055.23	1059.97	1062.03	1061.97	1056.81	1052.82	1053.16	1037.48
MW-9S	1061.41	1051	1062.11	1054.86	1060.51	1062.94	1062.16	1057.02	1054.92	1053.23	1050.96
MW-11D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-11S	1047.61	1049.44	1049.93	1046.99	1048.9	1050.08	1049.67	1045.09	1043.59	1042.33	1045.27
MW-12D	1066.31	1064.07	1066.56	1062.38	1063.84	1066.36	NA	1061.91	NA	NA	1058.75
MW-13D	NA	1067.59	1075.25	NA	1075.5	1075.09	DECOM	DECOM	DECOM	NA	NA
MW-13S	NA	1070.73	1076.2	NA	1075.81	1076.38	DECOM	DECOM	DECOM	NA	NA

NOTE:

ft = Foot (feet)

TOC = Top of Casing

AMSL = Above Mean Sea Level

NA = Not Available

DECOM = Decommissioned

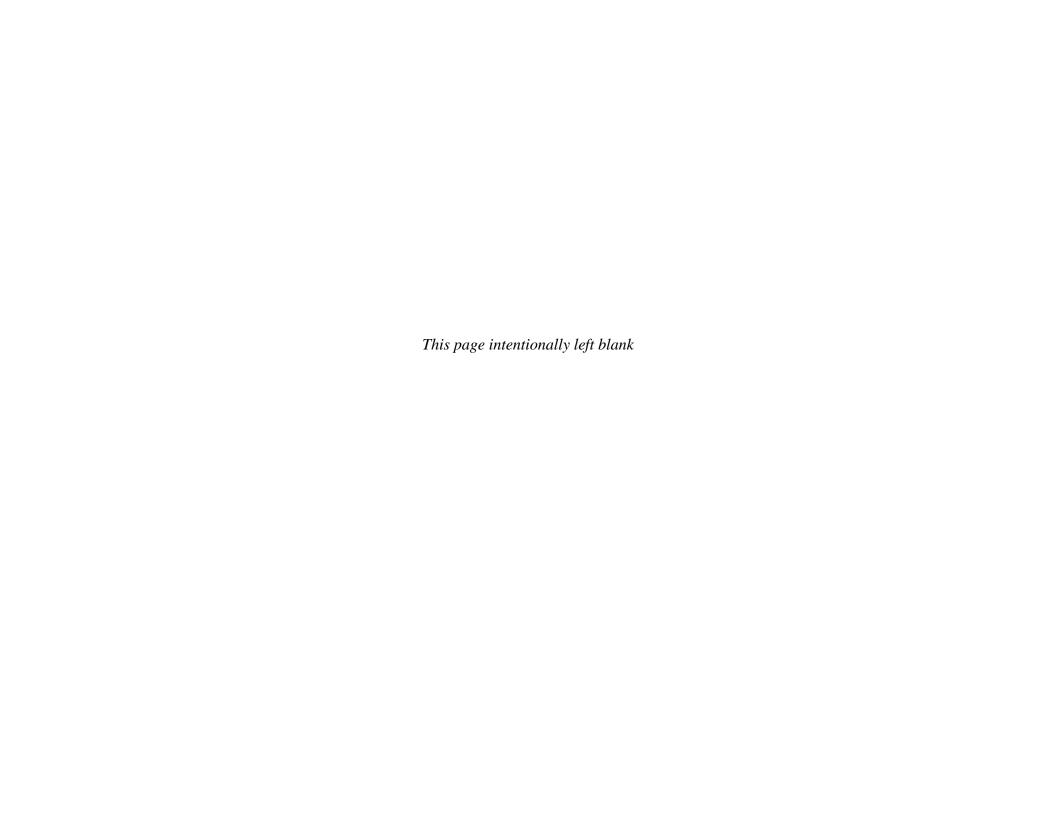


Table 2 Historical Summary of Metals/Inorganics in Groundwater Samples Parameter Lis YSDEC Ambien Well ID 8-26-007-MW-05 EPA Method Water Quality Sep-07 Dec-07 Mar-08 Sep-08 Jun-09 Mar-13 Sample Date Jun-07 Mar-10 Jun-11 Jun-14 Oct-17 6010 Standard (µg/L) 76.8 37 117 56 56 111 66 1,800 109 (<37) Aluminum μg/L 37 100 (s) 9.3 Antimony $\mu \, g/L$ H H 6.1 5.1 B 93 93 H (<0.48)3 (s) 68.8 83.8 62.2 72.3 77.5 59.7 54.8 51.6 40.7 22.1 23 25 (s) Arsenic μg/L Barium 1,410 1,250 1,250 1,380 1,280 1.140 1.060 1,220 865 830 360 1.000 (s) μg/L Bervllium ug/L 5 0.051 0.051 0.051 0.13 0.13 U 0.080 В 0.26 0.26 .26 П (<0.61) 3 (g) Cadmium μg/L 0.11 0.11 H 0.11 H 0.61 0.14 0.14 U 0.54 В 0.89 0.89 .89 U (<0.48) 5 (s) 221,000 Calcium μg/L 144.000 120.000 115.000 140.000 137.000 136 000 138 000 167 000 147.000 91.000 Chromium μg/L 0.22 0.71 0.22 1.3 1.1 53.0 0.77 (<2.5) 50 (s) 3.9 В 2.6 Cobalt $\mu\,g/L$ 6 7 B 4.6 B 4.2 3.40 4.5 3.3 4.0 В 1.2 5 (s) 1.7 1.7 U 1.7 П 1.7 5 U 6.8 U 4.7 U 3.6 9.0 В 0.67 U (<1.8) 200 (s) Copper ug/L Iron 15,400 13,500 12,500 18,300 14,600 13,400 14,800 11,700 14,900 10,600 4,600 300 (s) μg/L Lead 1.2 2.2 3.7 4.2 4.2 4.2 (<0.69) 25 (s) μg/L 1.2 11.1 1.2 2.2 59,300 67,300 63,600 51,500 52,300 35,000 (g) Magnesium μg/L 63,200 58,200 57,600 52,500 57,100 47.2 B 53.4 222 100 300 (s) Manganese μg/L 48 3 48 1 B 43.1 41.2 46 1 114 198 Mercury 0.2 0.11 0.11 0.11 0.016 0.056 0.056 0.028 0.7 0.028 (<0.034) 0.7 (s) μg/L Nickel 58.4 57.9 52.5 50.9 51.4 43.4 35.2 В 44.1 63.2 36.2 В 8.5 100 (s) μg/L Potassium 29,200 26,100 23,600 25,100 26,500 24.300 17.300 17.300 14,400 8750 Е 6,600 ug/L Selenium 11.6 21 12 5.2 6.6 6.6 10.4 12 12 (<11) 10 (s) μg/L 12 U IJ Silver 8.9 1.2 U 1.2 U 1.2 0.59 0.59 U 2.4 IJ 6.9 U 69 U 50 (s) $\mu \, g/L$ 6.9 (<0.38)Sodium μg/L 299,000 242,000 239,000 285,000 241,000 209,000 148,000 195,000 119,000 139,000 28,000 20,000 (s) Thallium μg/L 2.8 2.8 H 2.8 U 2.8 4.2 11 4.2 U 5.7 U 6.2 6.2 6.2 U (<0.37)0.5(g)0.4 1.2 В 1.5 1.3 0.96 1.0 3.8 3.8 U (<13) 14 (s) Vanadium n/a U J В В 1.1 U В ug/L n/a 18.7 В 12.4 В 20.3 J 14.7 В 10.0 24.4 В 12.5 В 24.8 В 11.9 В (<24) 2 000 (9) Zino μg/L YSDEC Ambier Parameter Lis Well ID 8-26-007-MW-08D EPA Method Water Ouality Sample Date Jun-07 Sep-07 Dec-07 Mar-08 Sep-08 Jun-09 Mar-10 Jun-11 Mar-13 Jun-14 Oct-17* Standard (µg/L 93.0 Aluminum 56 56 H 107 B 66 66 100 (s) μg/L B n/a 9.3 9.3 Antimony 4.6 U 9.7 9.3 n/a 3 (s) ug/L Arsenic μg/L 2.5 2.5 U 2.5 U 5.3 11 5.3 U 3.1 U 4.3 4.3 4.3 U n/a 25 (s) 129 132 128 В 119 126 102 122 118 127 119 В 1.000 (s) Barium ug/L В В n/a Beryllium 0.051 П 0.051 H 0.051 0.13 H 0.13 H 0.037 0.26 0.26 0.26 П n/a 3 (g) $\mu g/L$ В 0.55 0.23 В U В 0.89 Cadmium 0.11 0.85 В 0.77 0.210 0.67 1.6 В 1.1 В n/a 5 (s) μg/L Calcium 16,800 18,100 17,400 17.800 16,700 14,900 18,200 16,500 16,400 17,600 n/a μg/L 0.22 0.25 0.44 8.0 50 (s) Chromium $\mu g/L$ 0.41 В В 1.1 H 1.1 U 0.96 В 0.64 B 8.0 H n/a Cobalt 0.068 0.36 0.3 В 0.068 1.2 1.2 0.67 0.67 0.67 0.67 U n/a 5 (s) ug/L Copper 1.7 1.9 В U 6.20 U 4.7 3.6 8.5 В 8.5 200 (s) μg/L 332 490 323 316 443 324.0 501 445 1.380 688 n/a 300 (s) Iron μg/L Lead $\mu g/L$ 1.2 4.2 В 1.2 П 1.3 2.2 2.2 2.1 4.2 4.2 4.2 n/a 25 (s) 21,300 Magnesium $\mu \, g/L$ 21,500 21,400 21 000 20,900 19,600 20,800 20,100 22,900 22,800 n/a 35,000 (g) Manganese 10.3 14.2 14.6 13 18.1 12.4 18.4 12.5 23.9 14.6 n/a 300 (s) μg/L Mercury μg/L 0.2 0.11 U 0.11 0.11 0.016 0.056 0.076 В 0.028 10 10 U n/a 0.7 (s) Nickel 0.79 1.7 В 1.7 0.67 1.5 1.5 H 0.65 В 0.85 6.5 6.5 F 100 (s) ug/L n/a 2,590 2,520 2,420 2,370 2,240 2,180 2,290 2,190 2,300 2,220 Potassium μg/L H n/a 9.3 7.3 5.2 5.2 6.6 12 12 12 10 (s) Selenium μg/L U 7.2 10 H n/a Silver 1.2 1.2 0.59 0.59 2.4 6.9 6.9 6.9 n/a 50 (s) μg/L 1.2 1.2 20,000 (s) Sodium $\mu g/L$ 30,500 29,800 29,800 29,300 28,400 27,800 28,500 29,600 31,900 31,700 n/a

IOTE: EPA = U.S. Environmental Protection Agency

ug/L

μg/L

U

NYSDEC = New York State Department of Environmental Conservation

2.8

0.4 U

22.2 B

 $\mu g/L \hspace{1cm} = Micrograms \hspace{1mm} per \hspace{1mm} Liter$

= Not Analyzed

= The analyte ws analyzed for, but was not detected above the sample reporting limit.

H

B = indicates a "trace" concentration below the reporting limit and equal to or above the detection limit.

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

2.8

0.4 U

14.5 J

4.2

0.96 U

26.5

B 16.4

4.2

0.96 U 0.34

U 5.7

U

U 1.1

B 27.5

31.7

6.2

6.2

1.1 U

25.5

B 30.6

6.2

1.1

U

В

U

n/a

n/a

2.8

0.47 B

23.7 B

(s) = Value is listed as a standard value
 (g) = Value is listed as a guidance value

2.8

n/a

n/a

* = Well could not be found.

All analytical data results provided by Mitkem Corporation

Only parameters that had at least one detection from the data set are shown

Bold values indicate that the analyte was detected above the NYSDEC AWQS

0.5 (g)

14 (s)

2,000 (g)

Thallium

Vanadium

Zino

Table 2 Historical Summary of Metals/Inorganics in Groundwater Samples

Donomoton List	I	1					Ť	uoie 2 Iliotoi	icai i					Groundwater	, Juni	pics							-	NYSDEC Ambient
Parameter List EPA Method	Well ID											-26-007-MV												Water Quality
6010	Sample Date	Jun-07		Sep-07		Dec-07		Mar-08		Sep-08		Jun-09		Mar-10		Jun-11		Mar-13		Jun-14		Oct-17*		Standard (µg/L)
Aluminum	μg/L	37	U	185	В	112	В	37	U	65.5	В	56	U	104	В	66	U	583	В	66	U	n/a		100 (s)
Antimony	ug/L		U		U		U		U			4.6	U	4.2	U	9.3	U	9.3	U	9.3	U	n/a		3 (s)
Arsenic	μg/L	2.5	U	2.5	U	2.5	U	2.5	U	5.3	U	5.3	U	3.1	U	4.3	U	4.3	U	4.3	U	n/a		25 (s)
Barium	μg/L	341		507		103	В	417		124	В	113		231		128	В	233	В	176	В	n/a		1,000 (s)
Beryllium	μg/L	5	U	0.051	U	0.051	U	0.058	J	0.13	U	0.13	U	0.037	U	0.26	U	0.26	U	0.26	U	n/a		3 (g)
Cadmium	μg/L	0.11	U	0.11	U	0.11	U	0.11	U	0.43	В	0.14	U	0.5	U	0.89	U	0.89	U	0.89	U	n/a		5 (s)
Calcium	μg/L	139,000		140,000		96,300		140,000		99,800		99,900		131,000		104,000		126,000		104,000		n/a		
Chromium	μg/L	0.22	U	0.33	В	0.22	U	0.68	J	1.1	U	1.1	U	1.1	В	0.66	В	3.3	В	3.3	U	n/a		50 (s)
Cobalt	μg/L	0.068	U	3.1	В	0.23	В	0.44	J	1.2	U	1.2	U	1.1	В	0.67	U	0.96	В	0.96	U	n/a		5 (s)
Copper	μg/L	1.7	U	1.7	U	1.7	U	1.7	U	5	U	10.9	U	17.9	В	3.6	U	7.1	В	7.1	U	n/a		200 (s)
Iron	μg/L	3,020		7,160		203		5,490		234		61	U	1,110		465		3,130		2,110		n/a		300 (s)
Lead	μg/L	1.2	U	3.4	В	1.2	U	1.4	J	2.2	U	2.2	U	4.1	В	4.2	U	4.2	U	4.2	U	n/a		25 (s)
Magnesium	μg/L	47,500		54,000		27,400		53,600		28,100		28,500	<u> </u>	47,400		27,400		45,700		33,000		n/a		35,000 (g)
Manganese	μg/L	41	J	43.2	В	19.9	В	42.9	J	18.5	В	14.6		79.9		44.3	В	93.3		133		n/a		300 (s)
Mercury	μg/L	0.2	U	0.11	U	0.11	U	0.15	J	0.016	UN	0.056	U	0.056	U	0.028	U	0.85	U	0.85	U	n/a		0.7 (s)
Nickel	μg/L	12.1	J	17.1	В	4.5	В	13.6	J	2.4	В	1.70		10.7	В	1.3	В	11.5	В	4.3	В	n/a		100 (s)
Potassium	μg/L	1,420		1840		1,160		1,530		1,000		849		1,260		981	В	1,680		1,240	Е	n/a		
Selenium	μg/L	6.2	J	21.7	В	19.2	В	5.2	U	6.6	U	6.6	U	10.1	В	12	U	12	U	12	U	n/a		10 (s)
Silver	μg/L	10.7	J	1.2	U	1.2	U	1.2	U	0.59	U	0.59	U	2.4	U	6.9	U	6.9	U	6.9	U	n/a		50 (s)
Sodium	μg/L	82,800		98,700		27,900		118,000		32,700		37,200		88,400		33,300		82,900		48,300		n/a		20,000 (s)
Thallium	μg/L	2.8	U	2.8	U	2.8	U	2.8	U	4.2	U	4.2	U	5.7	U	6.2	U	6.2	U	6.2	U	n/a		0.5 (g)
Vanadium	μg/L	n/a		0.4	U	1.5	В	0.67	J	0.96	U	0.96	U	0.46	В	1.1	U	2.3	В	2.3	U	n/a		14 (s)
Zinc	μg/L	n/a		23	В	9.7	В	19.9	J	14.5	В	9.5		18.9	В	16.1	В	49.9	В	4.9	U	n/a		2,000 (g)
Parameter List	Well ID																							
	Well ID										8	-26-007-MV	V-08	U										NYSDEC Ambient
EPA Method		Jun-07		Sep-07		Dec-07		Mar-08	;	Sep-08					,	Jun-11		Mar-13		Jun-14		Oct-17		Water Quality
6010	Sample Date	Jun-07		Sep-07		Dec-07		Mar-08	_	Sep-08		Jun-09		Mar-10		Jun-11	TT	Mar-13		Jun-14		Oct-17	TT	Water Quality Standard (µg/L)
6010 Aluminum	Sample Date µg/L	Jun-07 37	U	Sep-07 70.8	В	Dec-07	U	Mar-08	U	Sep-08		Jun-09	U	Mar-10 79.6	В	66	U	2,580		21,400		(<37)	U	Water Quality Standard (µg/L) 100 (s)
Aluminum Antimony	Sample Date µg/L ug/L	37	U U	70.8	B U	37	U	37	U U	65	В	Jun-09 56 4.6	U	79.6 4.2	B U	66 9.3	U	2,580 9.3	U	21,400 10.3	В	(<37) 0.97		Water Quality Standard (µg/L) 100 (s) 3 (s)
6010 Aluminum Antimony Arsenic	Sample Date μg/L ug/L μg/L μg/L	37 2.5	U	70.8	B U U	37 2.5	U U U	37 2.5	U U	65 5.3	B	Jun-09 56 4.6 5.3	U	79.6 4.2 3.1	B U U	66 9.3 4.3	U U	2,580 9.3 4.3		21,400 10.3 4.3		(<37) 0.97 (<1.8)	U	Water Quality Standard (μg/L) 100 (s) 3 (s) 25 (s)
Aluminum Antimony Arsenic Barium	Sample Date μg/L ug/L μg/L μg/L μg/L	2.5 89.9	U U J	70.8 2.5 95.7	B U U B	2.5 101	U U U B	2.5 96	U U J	5.3 99.9	B U B	Jun-09 56 4.6 5.3 91.20	U U U	79.6 4.2 3.1 99.5	B U U B	66 9.3 4.3 102	U U B	2,580 9.3 4.3 2,080	U	21,400 10.3 4.3 2,500	B	(<37) 0.97 (<1.8) 1,800	U	Water Quality Standard (μg/L) 100 (s) 3 (s) 25 (s) 1,000 (s)
Aluminum Antimony Arsenic Barium Beryllium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L	2.5 89.9 5	U U J U	70.8 2.5 95.7 0.051	B U U B	2.5 101 0.051	U U U B	2.5 96 0.051	U U U J	65 5.3 99.9 0.13	B U B U	Jun-09 56 4.6 5.3 91.20 0.13	U U U	79.6 4.2 3.1 99.5 0.037	B U U B	66 9.3 4.3 102 0.26	U U B U	2,580 9.3 4.3 2,080 0.26	U U	21,400 10.3 4.3 2,500	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61)	U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g)
Aluminum Antimony Arsenic Barium Beryllium Cadmium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L µg/L µg/L	2.5 89.9 5 0.11	U U J	70.8 2.5 95.7 0.051	B U U B	2.5 101 0.051 1.1	U U U B	2.5 96 0.051 0.58	U U J	5.3 99.9 0.13 0.23	B U B	Jun-09 56 4.6 5.3 91.20 0.13 0.43	U U U	79.6 4.2 3.1 99.5 0.037 1.5	B U U B	66 9.3 4.3 102 0.26 0.89	U U B	2,580 9.3 4.3 2,080 0.26 2.5	U	21,400 10.3 4.3 2,500 1.1 1.5	B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48)	U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2.5 89.9 5 0.11 13,700	1 1 0 0	70.8 2.5 95.7 0.051 0.5 14,100	B U U B U B	2.5 101 0.051 1.1 14,300	U U U B U B	2.5 96 0.051 0.58 14,600	U U U J	5.3 99.9 0.13 0.23 13,100	B U B U B	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100	U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500	B U U B U B	66 9.3 4.3 102 0.26 0.89 14,100	U U B U U	2,580 9.3 4.3 2,080 0.26 2.5 146,000	U U U	21,400 10.3 4.3 2,500 1.1 1.5 727,000	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000	U U	Water Quality Standard (μg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Sample Date µg/L	37 2.5 89.9 5 0.11 13,700 0.22		70.8 2.5 95.7 0.051 0.5 14,100 0.47	B U U B U B	37 2.5 101 0.051 1.1 14,300 0.25	U U U B U B	37 2.5 96 0.051 0.58 14,600 0.36	U U U J	65 5.3 99.9 0.13 0.23 13,100 1.1	B U B U B U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1	U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77	B U U B U B	66 9.3 4.3 102 0.26 0.89 14,100 0.64	U U B U U	2,580 9.3 4.3 2,080 0.26 2.5 146,000 4.5	U U U B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5)	U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Sample Date µg/L	37 2.5 89.9 5 0.11 13,700 0.22 0.068		70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32	B U U B U B B	2.5 101 0.051 1.1 14,300 0.25 0.2	U U U B U B	37 2.5 96 0.051 0.58 14,600 0.36 0.068	U U U J J J	65 5.3 99.9 0.13 0.23 13,100 1.1 1.2	B U B U B U U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2	U U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67	B U U B U B	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67	U U B U U U U U	2,580 9.3 4.3 2,080 0.26 2.5 146,000 4.5 4.3	U U U B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2	U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Sample Date µg/L	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.7		70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7	B U U B U B	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1	U U U B U B	2.5 96 0.051 0.58 14,600 0.36 0.068	U U U J	5.3 99.9 0.13 0.23 13,100 1.1 1.2	B U B U B U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4	U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7	B U U B U B	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6	U U B U U	2,580 9.3 4.3 2,080 0.26 2.5 146,000 4.5 4.3	U U U B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3 60.3	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6	U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Claium Chromium Cobalt Copper	Sample Date µg/L	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673	U U U U	70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651	B U U B U B B	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643	U U U B U B B B	2.5 96 0.051 0.58 14,600 0.36 0.068 1.7	n n l n n n	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5	B U B U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0	U U U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7 631	B U B B U B U U B U U D U U D U D U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6 726	U U B U U U U U U U U	2,580 9.3 4.3 2,080 0.26 2.5 146,000 4.5 4.3 18.2 8,180	U U B B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3 60.3 48,100	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900	U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	Sample Date µg/L	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2		70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651	B U U B U B B	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2	U U U B U B	37 2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2	U U U J J J	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2	B U B U B U U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2	U U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7 631 2.1	B U U B U B	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6 726 4.2	U U B U U U U U	2,580 9,3 4,3 2,080 0.26 2.5 146,000 4.5 4.3 18.2 8,180 5.2	U U U B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3 60.3 48,100 37.6	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69)	U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	Sample Date	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000		70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651 2 20,700	B U B B B B B B	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100	U U B U B B B U	37 2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2 20,500	1 1 1 1 1 0 1 0 1 1 0 1	65 5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300	B U B U U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200	U U U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7 2.1 21,200	B U B U B U U U U U U U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6 726 4.2 21,000	U U B U U U U U U U U U	2,580 9,3 4,3 2,080 0.26 2.5 146,000 4.5 4.3 18.2 8,180 5.2 52,200	U U B B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3 60.3 48,100 37.6 140,000	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69) 41,000	U U U	Water Quality Standard (µg/L) 13 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 35,000 (g)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	Sample Date µg/L	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000 41	U U U U U U U U U U U U B	70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651 2 20,700 14.5	B U B B B B B B B B	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100 12.5	U U B B B B B U	37 2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2 20,500 13.5	1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 0	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 18.8	B U B U U U U U U U B B	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200 13.0	U U U U U U U U U U U U U U U U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7 631 2.1 21,200 13.4	B U B U B U U B U U B U U B B U U U B B	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6 726 4.2 21,000 12.6	U B U U U U U U U B B	2,580 9,3 4,3 2,080 0.26 2.5 146,000 4.5 4.3 18.2 8,180 5.2 52,200 374	U U B B B B B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3 60.3 48,100 37.6 140,000 2,860	B U B B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69) 41,000	U U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	Sample Date µg/L	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000 41 0.2		70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651 2 20,700 14.5 0.11	B U U B U B B U B B U B U U B U U U U B U	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100 12.5 0.11	U U U B U B B B B U U B U U U U U U U U	37 2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2 20,500 13,5 0.11	1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0	65 5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 18.8 0.058	B U U B U U U U U U U U B B B B B B B B	Jun-099 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200 13.0 0.056	U U U U U U U U U U U U U U U U U U U	Mar-10 79.6 4.2 3.1 99.5 1.5 14,500 0.77 0.631 2.1 21,200 13.4 0.056	B U U B U B U U B U U B U U U U U U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.64 3.6 726 4.2 21,000 12.6 0.028	U U U U U U U U U U U U U U U U U U U	2,580 9,3 4,3 2,080 0,26 2,5 146,000 4,5 4,3 18,2 8,180 5,2 52,200 374 0,7	U U B B B B B U U U	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3 60.3 48,100 37.6 140,000 2,860 0.040	B U B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69) 41,000 150 (<0.034)	U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 35,000 (g) 300 (s) 0,7 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	Sample Date µg/L	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000 41 0.2 0.76	U U U U U U U U U U U U B	70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651 2 20,700 14.5 0.11	B U B B B B B B B B	37 2.5 101 0.05 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100 12.5 0.11	U U B B B B B U	2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2 20,500 13.5 0.11 0.53	1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 0	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 1.5	B U B U U U U U U U B B	Jun-09 56 4.6 5.3 91.20 0.13 14,100 1.1 1.2 7.4 624.0 2.2 20,200 13.0 0.056 1.5	U U U U U U U U U U U U U U U U U U U	Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7 21,200 13.4 0.056 0.64	B U B U B U U B U U B U U B B U U U B B	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 726 4.2 21,000 12.6 0.028 0.85	U B U U U U U U U B B	2,580 9,3 4,3 2,080 0,26 2,5 146,000 4,5 4,3 18,2 8,180 5,2 52,200 374 0,7	U U B B B B B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3 60.3 48,100 37.6 140,000 2,860 0.040	B U B B B B B B B B B B B B B B B B B B	(<37) 0.97 (<1.8) 1.800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69) 41,000 150 (<0.033)	U U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 50 (s) 200 (s) 300 (s) 25 (s) 300 (s) 25 (s) 1,000 (g) 300 (s) 25 (s) 1,000 (g) 1,000 (g) 1,000 (g) 1,000 (g)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	Sample Date	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000 41 0.2 0.76 2,150	U U U U U U U U U U U U B	70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651 2 20,700 14.5 0.11 1.1 2,220	B U U B U B B B B U B U B B B B U B	2.5 101 0.051 1.1 14,300 0.2 0.2 3.1 643 1.2 21,100 12.5 0.11 1.7	U U U B U B U B B U B U B U U B B U B	2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2 20,500 13.5 0.11 0.53 2,010	1 1 1 0 1 1 1 1 1 1 1 1 1 1 1	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 18.8 0.058 1.5 1,840	B U B B U U U U U U U U U U U U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200 13.0 0.056 1.5		Mar-10 79.6 4.2 3.1 9.0037 1.5 14,500 0.77 0.67 4.7 631 2.1 21,200 13.4 0.056 0.64 1,940	B U U B U B U U B U U U U U U U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.67 3.6 726 4.2 21,000 12,6 0.028 0.85 2,070	U U U U U U U U U U U U U U U U U U U	2,580 9,3 4,3 2,080 0,26 2,5 146,000 4,5 18,2 8,180 5,2 5,2 52,200 374 0,7 49,4 35,700	U U U B B B B B B B B B B B B B B B B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 20.3 60.3 48,100 37.6 140,000 2,860 0.040 80.2 43,000	B B B B B B B B B B B B B B B B B B B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69) 41,000 150 (<0.034) 30 41,000	U U U U	Water Quality Standard (µg/L) 30 (s) 30 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 200 (s) 300 (s) 25 (s) 300 (s) 25 (s) 300 (s) 100 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	Sample Date	37 2.5 89.9 5 0.11 13,700 0.22 0.068 1.2 20,000 41 0.2 0.76 2,150 4.2	U U U U U U U U U U U U U U U U U U U	70.8 2.5 95.7 0.051 0.5 14,100 0.47 651 2 20,700 14.5 0.11 1.1 2,2220 5,2	B U U B U B B B B U B U B U U U U U U U	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100 12.5 0.11 1.7 1,960 5.6	U U U B B U B B B B U U B B B B B B B B	37 2.5 96 0.051 0.58 14,600 0.36 0.068 1.2 20,500 13.5 0.11 0.53 2,010 5.2	1 U U U U U U U U U U U U U U U U U U U	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 1.8 0.058 1.5 1,840 6.6	B B U U U U U U U U U U U U U U U U U U	Jun-099 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200 13.0 0.056 1.5 1,920 6.6	U U U U U U U U U U U U U U U U U U U	Mar-10 79.6 4.2 3.1 79.6 99.5 0.037 1.5 14,500 0.77 0.67 4.7 631 2.1 21,200 13.4 0.056 0.64 1,940	B U U B B U U U U U U U U U U U U U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6 726 4.2 21,000 12.6 0.028 0.89	U U U U U U U U U U U U U U U U U U U	2,580 9,3 4,3 2,080 0,26 2,5 146,000 4,5 4,3 18,2 8,180 5,2 2,00 3,74 0,7 49,4 35,700 12	U U B B B B B U U	21,400 10.3 4.3 2,500 1.1 1.5 727,000 39.0 20.3 48,100 37.6 140,000 2,860 0.040 80.2 43,000 12	B B B B B B B B B B B B B B B B B B B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69) 41,000 (<0.034) 30 41,000 (<11)	U U U U U U U U U U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 5 (s) 50 (s) 200 (s) 300 (s) 25 (s) 300 (s) 27 (s) 300 (s) 10 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	Sample Date µg/L µg/L	2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000 41 0.2 0.76 2,150 4.2	U U U U U U U U U U U U B	70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651 2 20,700 14.5 0.11 1.1 2,220 5.2 1.2	B U U B U B B B B U B U B B B B U B	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100 12.5 0.11 1.7 1,960 5.6 1.6	U U U B U B U B B U B U B U U B B U B	2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2 20,500 13.5 0.11 0.53 2,010 5.2 1.2	1 1 1 0 1 1 1 1 1 1 1 1 1 1 1	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 1.5 1,5 1,840 6.6 6.6 0.59	B U B B U U U U U U U U U U U U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200 13.0 0.056 1.5 1,920 0.59		Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7 2.1 21,200 13.4 0.056 0.64 1,940 10 2.4	B U U B U B U U B U U U U U U U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6 726 4.2 21,000 12.6 0.028 0.85 2,070 12 6.9	U U U U U U U U U U U U U U U U U U U	2,580 9.3 4.3 2,080 0.26 2.5 146,000 4.5 4.3 18.2 5.2 52,200 374 0.7 49.4 35,700 12 6.9	U U U B B B B B B B B B B B B B B B B B	21,400 10.3 4.3 2,500 1.1 1.5 727,000 20.3 60.3 48,100 37.6 140,000 2,860 0.040 80.2 43,000 12 6.9	B B B B B B B B B B B B B B B B B B B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69) 41,000 (<0.034) 30 41,000 (<1.038)	U U U U U U U U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 50 (s) 200 (s) 300 (s) 25 (s) 1,000 (s) 1
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	Sample Date	2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000 41 0.2 0.76 2,150 4.2 1.4 29,000	1 B B C C D D D D D D D D D D D D D D D D	70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651 2 20,700 14.5 0.11 1.1 2,220 5.2 29,100	B U B B B B U B U B U U B U U U U U U U	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100 12.5 0.1 1.7 1,960 5.6 28,600	UUUBBUBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2 20,500 13.5 0.11 0.53 2,010 5.2 1.2	1 1 1 1 1 1 0 1 1 1 1 1 1 1	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 18.8 0.058 1.5 1,840 6.6 0.59 26,600	B U U B U U U U U U U U U U U U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200 13.0 0.056 1.5 1,920 6.6 0.59 28,600		Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7 2.1 21,200 13.4 0.056 0.64 1,940 10 2.4 29,800	B U U B B U U U U U U U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6 4.2 21,000 12.6 0.85 2,070 12 6.9	U U U U U U U U U U U U U U U U U U U	2,580 9,3 4,3 2,080 0,26 2,5 146,000 4,5 4,3 18,2 8,180 5,2 52,200 374 0,4 35,700 12 6,9 191,000	U U B B B B B B U U B B U U U	21,400 10.3 4.3 2,500 1.1 1.5 727,000 20.3 60.3 43,000 43,76 140,000 2,860 0,860 0,860 12 6.9 173,000	B B B B B E U U U	(<37) 0.97 (<1.8) 1.800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6.900 41,000 (<0.69) 41,000 (<11) (<0.38) 30 41,000 (<11)	U U U U U U U U U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 35,000 (g) 300 (s) 10 (s) 50 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	Sample Date	2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000 41 0.2 21,50 4.2 1.4 29,000	U U U U U U U U U U U U U U U U U U U	70.8 2.5 95.7 0.051 0.5 14,100 0.32 1.7 651 2 20,700 14.5 0.11 1.1 2,220 5.2 1.2 29,100 2.8	B U B B B B U B B U B U U B U U U U U U	2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100 12.5 0.11 1.7 1,960 5.6 1.6 28,600 2.8	U U U B B B B B B U U B B U B B B B U U B	2.5 96 0.051 0.58 14,600 0.068 1.7 681 1.2 20,500 13.5 0.11 0.53 2,010 5.2 1.2 29,600 2.8	0 U U U U U U U U U U U U U U U U U U U	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 18.8 0.058 1.5 1.340 6.6 0.59 26,600 4.2	B U U B U U U U U U U U U U U U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200 0.056 1.5 1,920 6.6 0.59 28,600 4.2		Mar-10 79.6 4.2 3.1 9.0037 1.5 14,500 0.77 0.67 4.7 631 2.1 21,200 13.4 0.056 0.64 1,940 10 2.4	B U U B B U U U U U U U U U U U U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.67 3.6 726 4.2 21,000 12.6 0.028 0.85 2,070 12 6.9 6.2	U U U U U U U U U U U U U U U U U U U	2,580 9,3 4,3 2,080 0,26 2,5 146,000 4,5 18,2 8,180 5,2 52,200 374 0,7 49,4 35,700 12 6,9 191,000 6,2	U U B B B B U U U U U U U U U U U U U U	21,400 10.3 4.3 2,500 1.1 1.5 727,000 20.3 60.3 48,100 37.6 140,000 2,860 0.040 80.2 43,000 12 6.9 173,000 6.2	B B B B B B B B B B B B B B B B B B B	(<37) 0.97 (<1.8) 1,800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6,900 (<0.69) 41,000 150 (<0.034) 30 41,000 (<11) (<0.38) 120,000 (<0.37)	U U U U U U U U U U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 200 (s) 300 (s) 25 (s) 300 (s) 25 (s) 300 (s) 100 (s) 10 (s) 50 (s) 50 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	Sample Date	2.5 89.9 5 0.11 13,700 0.22 0.068 1.7 673 1.2 20,000 41 0.2 0.76 2,150 4.2 1.4 29,000	1 B B C C D D D D D D D D D D D D D D D D	70.8 2.5 95.7 0.051 0.5 14,100 0.47 0.32 1.7 651 2 20,700 14.5 0.11 1.1 2,220 5.2 29,100	B U B B B B U B U B U U B U U U U U U U	37 2.5 101 0.051 1.1 14,300 0.25 0.2 3.1 643 1.2 21,100 12.5 0.1 1.7 1,960 5.6 28,600	UUUBBUBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	2.5 96 0.051 0.58 14,600 0.36 0.068 1.7 681 1.2 20,500 13.5 0.11 0.53 2,010 5.2 1.2	1 1 1 1 1 1 0 1 1 1 1 1 1 1	5.3 99.9 0.13 0.23 13,100 1.1 1.2 5 673 2.2 19,300 18.8 0.058 1.5 1,840 6.6 0.59 26,600	B U U B U U U U U U U U U U U U U U U U	Jun-09 56 4.6 5.3 91.20 0.13 0.43 14,100 1.1 1.2 7.4 624.0 2.2 20,200 13.0 0.056 1.5 1,920 6.6 0.59 28,600		Mar-10 79.6 4.2 3.1 99.5 0.037 1.5 14,500 0.77 0.67 4.7 2.1 21,200 13.4 0.056 0.64 1,940 10 2.4 29,800	B U U B B U U U U U U U U U	66 9.3 4.3 102 0.26 0.89 14,100 0.64 0.67 3.6 4.2 21,000 12.6 0.85 2,070 12 6.9	U U U U U U U U U U U U U U U U U U U	2,580 9,3 4,3 2,080 0,26 2,5 146,000 4,5 4,3 18,2 8,180 5,2 52,200 374 0,4 35,700 12 6,9 191,000	U U B B B B B B U U B B U U U	21,400 10.3 4.3 2,500 1.1 1.5 727,000 20.3 60.3 43,000 43,76 140,000 2,860 0,860 0,860 12 6.9 173,000	B B B B B E U U U	(<37) 0.97 (<1.8) 1.800 (<0.61) (<0.48) 95,000 (<2.5) 3.2 2.6 6.900 41,000 (<0.69) 41,000 (<11) (<0.38) 30 41,000 (<11)	U U U U U U U U U U U	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 35,000 (g) 300 (s) 10 (s) 50 (s)

NOTE:

EPA = U.S. Environmental Protection Agency
NYSDEC = New York State Department of Environmental Conservation

μg/L = Micrograms per Liter

= Not Analyzed n/a

= The analyte ws analyzed for, but was not detected above the sample reporting limit.

= indicates a "trace" concentration below the reporting limit and equal to or above the detection limit.

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

= Value is listed as a standard value (s) = Value is listed as a guidance value (g)

= Well could not be found.

All analytical data results provided by Mitkem Corporation

Only parameters that had at least one detection from the data set are shown

Table 2 Historical Summa v of Matale/Inorganics in Groundwater Sample

							1	able 2 Histor	icai a	Summary of	Meta	is/Inorganic	s in C	Groundwater	Sam	pies								
Parameter List	Well ID		_								8	-26-007-MV	V-09	D										NYSDEC Ambient
EPA Method 6010	Sample Date	Jun-07		Sep-07	•	Dec-07		Mar-08		Sep-08		Jun-09		Mar-10	1	Jun-11		Mar-13	}	Jun-14		Oct-17		Water Quality Standard (µg/L)
Aluminum	μg/L	37	U	89	В	37	U	37	U	56	U	56	U	56.9	В	66	U	66.1	В	66.1	U	(<37)	U	100 (s)
Antimony	ug/L		U		U		U		U			4.6	U	9	В	9.3	U	9.3	U	9.3	U	(<0.48)	U	3 (s)
Arsenic	μg/L	2.5	U	2.5	U	3.9	В	3	U	5.3	U	5.3	U	5.1	В	4.3	U	4.3	U	13.8	В	(<1.8)	U	25 (s)
Barium	μg/L	88.4	J	88.7	В	96.3	В	83.4	J	98	В	80.90		85.5	В	87.6	В	95.4	В	108	В	100		1,000 (s)
Beryllium	μg/L	5	U	0.051	U	0.051	U	0.051	U	0.13	U	0.13	U	0.04	В	0.26	U	0.26	U	0.26	U	(<0.61)	U	3 (g)
Cadmium	μg/L	0.11	U	0.39	В	0.11	U	0.52	J	0.14	U	0.14	U	0.5	U	4.4	В	0.89	U	1.3	В	(<0.48)	U	5 (s)
Calcium	μg/L	61,300 0.22	U	60,600 0.22	U	63,800 0.22	U	63,800 0.37	J	59,400	U	57,100	U	60,200	ь.	58,200	Б	59,400 5.3	Б	60,700	Б	,	U	50 (s)
Chromium Cobalt	μg/L μg/L	0.22	J	1.5	В	0.22	В	0.068	U	1.1	U	1.1	U	1.4 0.74	B	0.68	B U	0.67	B U	1.6 0.67	B U	(<2.5)	U	50 (s) 5 (s)
Copper	μg/L μg/L	1.7	U	1.7	U	3.1	В	1.7	U	6.4	В	10.6	U	4.7	U	3.6	U	14.0	В	6.6	В	(<1.8)	U	200 (s)
Iron	μg/L μg/L	1870	U	1020	U	1420	ь	169	J	1,450	ь	478	U	659	U	304	U	664	ь	2,740	ь	590	U	300 (s)
Lead	μg/L μg/L	1.2	U	6	В	1.2	U	1.9	I	2.2	U	2.2	U	2.4	В	4.2	U	5.7	В	4.5	В	(<0.69)	U	25 (s)
Magnesium	μg/L	30,800	U	30,300	1	31,600	Ü	30,600	,	28,700	Ü	28,100	-	29,600	ь	28,900	U	30,300	ь	30,100	ь	27,000		35,000 (g)
Manganese	μg/L	39.7	J	52.8		44.5	В	17	J	53.7		58.2	1	12.2	В	31.3	В	28.4	В	26.2	В	46		300 (s)
Mercury	μg/L	0.2	U	0.11	U	0.11	U	0.11	U	0.016	UN	0.056	U	0.056	U	0.028	U	0.7	U	0.7	U	(<0.034)	U	0.7 (s)
Nickel	μg/L	2.2	J	4	В	2.9	В	0.97	J	1.6	В	1.5	U	1.5	В	0.97	В	4.7	В	1.3	В	(<1.9)	U	100 (s)
Potassium	μg/L	2,250		2,270		2,160		2,150		1,890		1,850		2,030		2,100		2,140		2,140	Е	1,800		
Selenium	μg/L	10.1	J	14.8	В	17.6	В	5.2	U	6.6	U	6.6	U	12.3	В	12	U	12	U	12	U	(<11)	U	10 (s)
Silver	μg/L	4.4	J	1.2	U	1.2	U	1.2	U	0.59	U	0.59	U	2.4	U	6.9	U	6.9	U	6.9	U	(<0.38)	U	50 (s)
Sodium	μg/L	26,200		25,100		21,600		25,200		22,100		22,800		26,400		25,100		27,600		26,300		24,000		20,000 (s)
Thallium	μg/L	2.8	U	3.2	В	2.8	U	2.8	U	4.2	U	4.2	U	5.7	U	6.2	U	6.2	U	6.2	U	(<0.37)	U	0.5 (g)
Vanadium	μg/L	n/a		0.4	U	0.72	В	0.4	U	0.96	U	0.96	U	0.8	В	1.1	U	1.1	U	1.1	U	(<13)	U	14 (s)
Zinc	μg/L	n/a		17.9	В	12.8	В	16.7	J	27.7	В	10.40		32.8	В	32.9	В	23.7	В	15.6	В	54		2,000 (g)
				17.7	ь	12.0	ь	10.7		21.1	Б	10.40		32.8	D	32.9	D	23.1	Б	15.0	ь	57	_	
Parameter List	Well ID			17.9	ь	12.0	ь	10.7	<u> </u>	21.1		-26-007-MV	V-09		Б	32.9	Б	23.7	ь	15.0	ь	34		NYSDEC Ambient
EPA Method	Well ID Sample Date	Jun-07	,	Sep-07		Dec-07	ь	Mar-08		Sep-08	8					32.9 Jun-11	Б	23.7 Mar-13		Jun-14		Oct-17		NYSDEC Ambient Water Quality
	Sample Date	Jun-07	, U	Sep-07		1	U	1			8	-26-007-MV		S			U						U	NYSDEC Ambient
EPA Method 6010 Aluminum	Sample Date μg/L				U	Dec-07		Mar-08		Sep-08	8	Jun-09		Mar-10	В	Jun-11	U	Mar-13		Jun-14	U	Oct-17		NYSDEC Ambient Water Quality Standard (µg/L) 100 (s)
EPA Method 6010	Sample Date μg/L ug/L		U	Sep-07	U	Dec-07 37	U	Mar-08	U	Sep-08 56	8	-26-007-MV Jun-09	U	Mar-10 107 4.2		Jun-11 66 9.3		Mar-13 228 9.3		Jun-14 66 4.6		Oct-17 (<37)	U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s)
EPA Method 6010 Aluminum Antimony	Sample Date μg/L	37	U U	Sep-07	U	Dec-07	U	Mar-08	U	Sep-08	U	Jun-09 56 4.6	U	Mar-10	B	Jun-11	U	Mar-13	U	Jun-14	U	Oct-17 (<37) (<0.48)	U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s)
EPA Method 6010 Aluminum Antimony Arsenic	Sample Date μg/L ug/L μg/L	37 2.5	U U	Sep-07 37 2.5	U U U	Dec-07 37 2.9	U U B	Mar-08 37 2.5	U U U	Sep-08 56 5.3	U	Jun-09 56 4.6 5.3	U	Mar-10 107 4.2 3.1	B U U	Jun-11 66 9.3 4.3	U U U	Mar-13 228 9.3 4.3	U	Jun-14 66 4.6 5.3	U U U	Oct-17 (<37) (<0.48) (<1.8)	U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium	Sample Date μg/L ug/L μg/L μg/L μg/L	2.5 128	U U J	Sep-07 37 2.5 133	U U U U B	Dec-07 37 2.9 123	U U B B	Mar-08 37 2.5 75	U U U	Sep-08 56 5.3 84	U U B	56 4.6 5.3 55.90	U	Mar-10 107 4.2 3.1 63	B U U	Jun-11 66 9.3 4.3	U U U B	Mar-13 228 9.3 4.3 77.1	U U B	Jun-14 66 4.6 5.3 87.2	U U U B	Oct-17 (<37) (<0.48) (<1.8)	U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L µg/L	2.5 128 5	U U U	Sep-07 37 2.5 133 0.051	U U U B U	Dec-07 37 2.9 123 0.051	U U B B	Mar-08 37 2.5 75 0.051	U U U J	Sep-08 56 5.3 84 0.13	U U B U U	56 4.6 5.3 55.90 0.13	U U U	Mar-10 107 4.2 3.1 63 0.086	B U U B B	Jun-11 66 9.3 4.3 117 0.26	U U U B	Mar-13 228 9.3 4.3 77.1 0.26	U U B U	Jun-14 66 4.6 5.3 87.2 0.26	U U U B	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61)	U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Sample Date µg/L	37 2.5 128 5 0.11 113,000 0.22		Sep-07 37 2.5 133 0.051 0.11 116,000 0.22	U U U U U U U U U U U U U U	2.9 123 0.051 0.11 111,000 0.22	U U B B U U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91	U U U	Sep-08 56 5.3 84 0.13 0.14 91,900 1.1	U U B U U U U U U U U	3-26-007-MV Jun-09 56 4.6 5.3 55.90 0.13 0.14	U U U	Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1	B U U B B U	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64	U U U B U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0	U U B U U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0	U U U B U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48)	U U U	NYSDEC Ambient Water Quality Standard (ng/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Sample Date µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	37 2.5 128 5 0.11 113,000 0.22 0.068		Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5	U U U B U U	2.9 123 0.051 0.11 111,000 0.22 0.21	U U B B U U	Mar-08 37 2.5 75 0.51 0.11 103,000 0.91 0.068	1 0 0 1 0 0 0	Sep-08 56 5.3 84 0.13 0.14 91,900 1.1 1.2	U U B U U U U U	56 4.6 5.3 55.90 0.13 0.14 97,500 1.1 1.2	U U U U	Mar-10 107 4.2 3.1 6.3 0.86 0.5 97,100 1.1 0.67	B U U B B U	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67	U U U B U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67	U U B U U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67	U U U B U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.1	U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Crobalt Copper	Sample Date µg/L	37 2.5 128 5 0.11 113,000 0.22 0.068 1.7		Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5 1.7	U U U U U U U U U U U U U U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21	U U B B U U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7	U U U	Sep-08 56 5.3 84 0.13 0.14 91,900 1.1 1.2 11.4	U U B U U U U U U U U	56 4.6 5.3 55.90 0.13 0.14 97,500 1.1 1.2	U U U U U U U	Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7	B U U B B U	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6	U U U B U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6	U U B U U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6	U U U B U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.64) 110,000 (<2.5) 1.1 (<1.8)	U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Sample Date µg/L	37 2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640		Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5 1.7 1,030	U U U B U U B U U U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 125	U U B B U U U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 890	1 1 0 1 0 1 0	Sep-08 56 5.3 84 0.13 0.14 91,900 1.1 1.2 11.4 237	U U B U U U U B B	56 4.6 5.3 55.90 0.13 0.14 97,500 1.1 1.2 11.2	U U U U U U	Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 538	B U U B B U U	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6 2,380	U U U B U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490	U U U U U U U U U U U U U U U U U U U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6 371	U U U B U U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.8) 1,500	U U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead	Sample Date µg/L ug/L µg/L	37 2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640 1.2		Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5 1,030 8	U U U B U U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 1.25 1.2	U U B B U U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 890 1.2	1 0 0 1 0 0 0	Sep-08 56 5.3 84 0.13 0.14 91,900 1.1 1.2 1.37 2.2	U U B U U U U U	56 4.6 5.3 55.90 0.13 0.14 97,500 1.1 1.2 61 2.2	U U U U U U U	Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 538 2.1	B U U B B U	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 2,380 4.2	U U U B U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2	U U B U U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6 371 4.2	U U U B U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.8) 1,500 (<0.69)	U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	Sample Date µg/L	37 2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640 1.2 33,300		Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5 1.7 1,030 8 34,300	U U U B U U B U U U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 125 1.2 32,800	U U B B U U U B U B U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 89 1.2 27,000	U U U U U U U	\$\frac{\$\sep\$-08}{56}\$ \$5.3 \$84 \$0.13 \$0.14 \$91,900 \$1.1 \$1.2 \$11.4 \$237 \$2.2 \$24,000	U U B U U U U U U U U U U U U U U U U U	-26-007-MY	U U U U U U U U U U U U U	Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 538 2.1 25,300	B U U B B U U U U U U U	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6 2.380 4.2 33,000	U U U B U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500	U U U U U U U U U U U U U U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6 371 4.2 28,600	U U U U U U U U U U U U U U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.80 (<0.69) 32,000	U U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 35,000 (g)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	Sample Date μg/L ug/L μg/L	37 2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640 1.2 33,300 44.1	1 0 0 0 0 0 1 0 0	Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5 1.7 1,030 8 8 34,300 66.7	U U U B U U U B U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 125 1.2 32,800 43,4	U U B B U U U B U B U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 890 1.2 27,000 19.8		\$\frac{5.3}{84}\$ 0.13 0.14 91,900 1.1 1.2 11.4 237 2.2 24,000 13.8	U	56 4.6 5.3 55.90 0.13 0.14 97,500 1.1 1.2 61 2.2,900 6.80	U U U U U U	S Mar-10 107 4.2 3.1 0.086 0.5 97,100 1.1 0.67 4.7 538 2.1 25,300 12.2	B U U B B U U U U U U B B	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6 2,380 4.2 33,000 71,4	U U U U U U U U U U U U U U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500 42.4	U U U U U U U U U U U U U U U U U U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6 371 4.2 28,600 37.5	U U U U B U U U U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.8) 1,500 (<0.69) 32,000 170	U U U U U U U U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	Sample Date µg/L ug/L µg/L	37 2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640 1.2 33,300 44.1 0.2		\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$	U U U B U U B B U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 125 1.2 32,800 43.4 0.11	U U B B U U B U B U B U B U U B U B U U B U D B U U B U D B U D D D D	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 890 1.2 27,000 1.9 1.000 1.100 1.	U U U U U U U U U U U U U U U U U U U	\$\frac{5}{56}\$ \$5.3 84 0.13 0.14 91,900 1.1 1.2 11.4 237 2.2 24,000 13.8 0.034	U U U U U U B B U U U B B B B B B B B B	-26-007-MV Jun-09 56 4.6 5.3 55.90 0.13 0.14 97,500 1.1 1.2 61 2.2 23,900 6.80 0.056	U U U U U U U U U U U U U U U U U U U	Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 538 2.1 25,30 2,122 0.056	B U U B B U U U U U U B B B U U U	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6 2,380 4.2 33,000 71.4 0.028	U U U B U U U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500 42.4 0.7	U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6 3.71 4.2 28,600 3.7.5 0.7	U U U U U U U U U U U U U U U U U U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.500 (<0.69) 32,000 170 (<0.034)	U U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s) 0.7 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	Sample Date µg/L	2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640 1.2 33,300 44.1 0.2 4	1 0 0 0 0 0 1 0 0	Sep-07 37 2.5 133 0.051 0.11 116,000 1,022 2.5 1.7 1,030 8 34,300 66.7 0.11 6.2	U U U B U U U B U	Dec-07 37 2.9 123 0.051 0.11 111,002 0.21 1.7 125 1.2 32,800 43.4 4.1	U U B B U U U B U B U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.901 0.068 1.7 27,000 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		\$\frac{5}{56}\$ 5.3 84 0.13 0.14 91,900 1.1 1.2 11.4 237 2.2 24,000 13.8 0.034 1.9	U U U U U U U B B U U U B B B B N B	-26-007-MV Jun-09 56 4.6 5.3 55.90 0.13 0.14 97,500 1.1 1.2 11.2 11.2 2.2 23,900 6.80 0.056 1.5	U U U U U U U U U U U U U	S Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 538 2.1 25,300 1.2 0.86	B U U B B U U U U U U B B	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6 2.380 4.2 33,000 71.4 0.028 0.93	U U U U U U U U U U U U U U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500 42.4 0.7 3.7	U U U U U U U U U U U U U U U U U U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 0.67 3.6 37.1 4.2 28,600 37.5 0.37 3.7	U U U U U U U U U U U U U U U U U U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.8) 1.0 (<0.69) 32,000 170 (<0.034)	U U U U U U U U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s) 100 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	Sample Date µg/L	2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640 1.2 33,300 44.1 0.2 4	1 0 0 0 0 0 1 0 0	Sep-07 37 2.5 133 0.051 0.11 116,000 10,22 2.5 1.7 1,030 8 34,300 66.7 0.11 6.2 1,940	U U U B U U B B U U B B U U B B	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 125 1.2 32,800 43.4 0.11 4.1 1,860	U U B B U U B B U U B B U B B U B B U B B U B B U B B U B B U B B B U B B B U B B B U B B B B B U B	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 890 1.2 27,000 19.8 0.11 0.85 1,110		\$\frac{5}{56}\$ \$5.3 84 0.13 0.14 91,900 1.1 1.2 11.4 237 2.2 24,000 13.8 0.034 1.9 835	U U U U U U U U B B B B B B B B B B B	-26-007-MV Jun-09 56 4.6 5.3 5.5 55.90 0.13 0.14 97.500 1.1 1.2 11.2 61 2.2 23,900 6.80 0.056 1.5 777		S Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 538 2.1 25,300 12.2 0.056 0.81	B U U B B U U U B B U U B B U B B U B B U B B U B B U B B B U B B B B U B B B B U B	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 64 0.67 3.6 2,380 4.2 33,000 71.4 0.028 0.93	U U U U U U U U U U U B B	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500 42.4 0.7 3.7 1,230	U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6 371 4.2 28,600 37.5 0.7 1,800	U U U U U U U U U U U U E B	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.8) 1,500 (<0.69) 32,000 170 (<0.034) 3.2 1,300	U U U U U U U U U U U U U U U U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s) -7 (s) 100 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	Sample Date µg/L	2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640 1.2 33,300 44.1 0.2 4 1,410 7.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5 1,030 8 34,300 66,7 0.11 6.2 1,940 26,7	U U U U U U U U U U U U U U U U U U U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 125 1.2 32,800 43.4 0.11 4.1 1,860 19.3	U U B B U U B B U B B U B B B B B B B B	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 890 1.2 27,000 1.9,8 0.11 0.85 1,110 5.2		Sep-08 56 5.3 84 0.13 0.14 91,900 1.1 1.2 2.7 2.2 24,000 1.3 8 0.034 1.9 8.9 6.6	UUUBBUUUBBBNBBBNBBBNBBBNBBBNBBBBNU	-26-007-MV Jun-09 56 4.6 5.3 55.90 0.13 0.14 97.500 1.1 1.2 61 2.2 23,900 6.80 0.056 1.5 777 6.6	U U U U U U U U U U U U U U U U U U U	S Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 538 2.1 25,300 12.2 0.056 0.81 1,000	B U U B B U U U U B B U U B U B U U B B U U U B B U U U B B U U U B B U U U B B U U U B B U U U B B U U U B B U U U B B U U U U B B U U U B B U U U B B U U U B B U U U B B U U U B B U U U B B U U U D U D	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6 2,380 4.2 33,000 71.4 0.028 0.93 1,460 12	U U U U U U U U U U U U U U U U U U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500 42.4 0.7 3.7 1,230 12	U	Jun-14 66 4.6 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6 371 4.2 28,600 37.5 0.7 3.7 1,800 12	U U U U U U U U U U U U U U E E U U	Oct-17 (<37) (<0.48) (<1.8) (<1.8) 120 (<0.61) (<0.61) 110,000 (<2.5) 1.1 (<1.8) 1,500 (<0.69) 32,000 (70,00) 170 (<0.034) 3.2 1,300 (<11)		NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 300 (s) 25 (s) 300 (s) 10 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	Sample Date µg/L ug/L µg/L	2.5 128 5 0.11 113,000 0.22 0.068 1.7 2.3 33,300 44.1 0.2 4 1,410 7.6 8.5	1 0 0 0 0 0 1 0 0	Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5 1.7 1,030 8 34,300 66.7 0.11 6.2 1,940 2,40 1,940	U U U B U U B B U U B B U U B B	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 125 1.2 32,800 43.4 0.11 4.1 1,860 19.3	U U B B U U B B U U B B U B B U B B U B B U B B U B B U B B U B B B U B B B U B B B U B B B B B U B	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 890 1.2 27,000 19.8 0.11 0.85 1,110 5.2 1.2		\$\frac{5}{56}\$ \$5.3 84 0.13 0.14 91,000 1.12 1.1. 1.2 24,000 1.3.8 0.034 1.9 835 6.6 0.59	U U U U U U U U B B B B B B B B B B B	-26-007-MV Jun-09 56 4.6 5.3 55:90 0.13 0.14 97,500 1.1 1.2 11.2 11.2 22 23,900 6.80 0.056 1.5 777 6.6 0.59		S Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 2.1 25,300 1.25,300 0.81 1,000	B U U B B U U U B B U U B B U B B U B B U B B U B B U B B B U B B B B U B B B B U B	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6 4.2 33,000 71.4 0.028 0.93 1,460 12 6.9	U U U U U U U U U U U B B	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1.490 4.2 27,500 42.4 0.7 3.7 1,230 12 6.9	U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 5.0 0.67 3.6 371 4.2 28,600 37.5 0.7 3.7 1,800 12 6.9	U U U U U U U U U U U U E B	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.80 1,500 (<0.69) 32,000 170 (<0.034) 3.2 1,300 (<11) (<1.80 1,500 (<0.034) 3.2 1,300 (<1) (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<1.90 (<	U U U U U U U U U U U U U U U U U U U	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s) 100 (s) 10 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	Sample Date µg/L µg/L	2.5 128 5 0.11 113,00 0.22 0.068 1.7 2,640 1.2 33,300 44.1 0.2 4 1,410 7.6 8.5 4,120	1 1 1 1 1 0 0 0 0 0	\$ep-07 37 2.5 133 0.051 0.11 116,000 0.020 2.5 1.7 1,030 8 34,300 66.7 0.11 6.2 1,940 26.7 1.2 4,630	U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.21 1.7 12,2 32,800 43.4 4.1 1,860 19.3 1.2 4,880	U U U B B U U U B B U U B U U B U U B U U B U U B U U B U U B U U B U U B U U U B U U U B U U B U U U B U U B U U U B U U U B U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.901 0.068 1.7 227,000 19.8 0.11 0.85 1,110 5.2 4,830		\$\frac{5}{56}\$ 5.3 84 0.13 0.14 91,900 1.1 1.2 11.4 237 2.2 24,000 13.8 0.034 1.9 835 6.6 0.59 3,320	U U U U U U U U U U U U U U U U U U U	-26-007-MV Jun-09 56 4.6 5.3 55.90 0.13 0.14 97.500 1.1 1.2 11.2 61 2.2 23,900 6.80 0.056 1.5 777 6.6 0.59 3,630		S Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 25,300 12.2 25,300 12.2 0.081 1,000 10 2.4 3,750	B U U B B U U U U B B U U U U U U B B U U U U U B B U U U U D U D	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 64 0.67 3.6 2.380 4.2 33,000 71.4 0.028 0.93 1,460 12 6.9 4,190	U U U U U U U U U U U U U U U U U U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500 42.4 0.7 1,230 12 6.9 6,470	U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 0.67 3.6 371 4.2 28,600 37.5 0.7 3.7 1,800 12 6.9 4,450	U U U U U U U U U U U U U U U U U U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.8) 1,500 170 (<0.09) 32,000 170 (<0.034) 3.2 1,300 (<11) (<0.38) 4,800		NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 3300 (s) 25 (s) 330,000 (g) 300 (s) 10 (s) 10 (s) 50 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	Sample Date	2.5 128 5 0.11 113,000 0.22 0.068 1.7 2,640 1.2 33,300 44.1 0.2 4 1,410 7.6 8.5 4,120 2.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sep-07 37 2.5 133 0.051 0.11 116,000 0.22 2.5 1.7 1,030 8 34,300 66.7 0.11 6.2 1,940 26.7 1.2 4.8	U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.22 0.21 1.7 125 1.2 32,800 43.4 0.11 4.1 1.860 19.3 1.2 4.880 2.8	U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.91 0.068 1.7 890 1.2 27,000 1.9,8 0.11 0.85 1,110 0.85 1,110 0.85 2,200 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0		Sep-08 56 5.3 84 0.13 0.14 91,900 1.1 1.2 237 2.2 24,000 13.8 0.034 1.9 835 6.6 0.59 3,3320 4.2	U U U U U U U U U U U U U U U U U U U	-26-007-MV Jun-09 56 4.6 5.3 55.90 0.13 0.14 97,500 1.1 1.2 61 2.2 23,900 6.80 0.056 1.5 777 6.6 0.59 3,630 4.2		S Mar-107 4.2 3.1 63 0.086 0.085 97,100 1.1 0.67 4.7 538 2.1 25,300 12.2 0.056 0.81 1,000 10 2.4 3.7	B	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 0.64 0.67 3.6 2.380 4.2 33,000 0.028 0.93 1,460 12 6.9 4,190 6.2	U U U U U U U U U U U U U U U U U U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500 42.4 0.7 3.7 1,230 12 6.9 6.470 6.2	U U U B U U U U U B B U U U U U	Jun-14 66 4.6 4.6 5.3 87.2 0.26 0.8 104,000 5.0 0.67 3.6 371 4.2 28.600 37.5 0.7 3.7 1,800 12 6.9 4,450 6.2	U U U U U U U U U U U U U U U U U U U	Oct-17 (<37) (<0.48) (<1.8) (120 (<0.61) (<0.61) 110,000 (<2.5) 1.1 (<1.8) 1,500 (<0.69) 32,000 170 (<0.034) 3.2 (<1.30 (<11) (<0.38) 4,800 (<0.37)		NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s) 10 (s) 50 (s) 20,000 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	Sample Date µg/L µg/L	2.5 128 5 0.11 113,00 0.22 0.068 1.7 2,640 1.2 33,300 44.1 0.2 4 1,410 7.6 8.5 4,120	1 1 1 1 1 0 0 0 0 0	\$ep-07 37 2.5 133 0.051 0.11 116,000 0.020 2.5 1.7 1,030 8 34,300 66.7 0.11 6.2 1,940 26.7 1.2 4,630	U	Dec-07 37 2.9 123 0.051 0.11 111,000 0.21 1.7 12,2 32,800 43.4 4.1 1,860 19.3 1.2 4,880	U U U B B U U U B B U U B U U B U U B U U B U U B U U B U U B U U B U U B U U U B U U U B U U B U U U B U U B U U U B U U U B U	Mar-08 37 2.5 75 0.051 0.11 103,000 0.901 0.068 1.7 227,000 19.8 0.11 0.85 1,110 5.2 4,830		\$\frac{5}{56}\$ 5.3 84 0.13 0.14 91,900 1.1 1.2 11.4 237 2.2 24,000 13.8 0.034 1.9 835 6.6 0.59 3,320	U U U U U U U U U U U U U U U U U U U	-26-007-MV Jun-09 56 4.6 5.3 55.90 0.13 0.14 97.500 1.1 1.2 11.2 61 2.2 23,900 6.80 0.056 1.5 777 6.6 0.59 3,630		S Mar-10 107 4.2 3.1 63 0.086 0.5 97,100 1.1 0.67 4.7 25,300 12.2 25,300 12.2 0.081 1,000 10 2.4 3,750	B U U B B U U U U B B U U U U U U B B U U U U U B B U U U U D U D	Jun-11 66 9.3 4.3 117 0.26 0.89 113,000 64 0.67 3.6 2.380 4.2 33,000 71.4 0.028 0.93 1,460 12 6.9 4,190	U U U U U U U U U U U U U U U U U U U	Mar-13 228 9.3 4.3 77.1 0.26 0.89 102,000 5.0 0.67 3.6 1,490 4.2 27,500 42.4 0.7 1,230 12 6.9 6,470	U	Jun-14 66 4.6 5.3 87.2 0.26 0.89 104,000 0.67 3.6 371 4.2 28,600 37.5 0.7 3.7 1,800 12 6.9 4,450	U U U U U U U U U U U U U U U U U U U	Oct-17 (<37) (<0.48) (<1.8) 120 (<0.61) (<0.61) (<0.48) 110,000 (<2.5) 1.1 (<1.8) 1,500 170 (<0.09) 32,000 170 (<0.034) 3.2 1,300 (<11) (<0.38) 4,800		NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 3300 (s) 25 (s) 330,000 (g) 300 (s) 10 (s) 10 (s) 50 (s)

NOTE:

EPA = U.S. Environmental Protection Agency
NYSDEC = New York State Department of Environmental Conservation

μg/L = Micrograms per Liter n/a

= Not Analyzed

= The analyte ws analyzed for, but was not detected above the sample reporting limit.

= indicates a "trace" concentration below the reporting limit and equal to or above the detection limit.

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

= Value is listed as a standard value (s) (g) = Value is listed as a guidance value

All analytical data results provided by Mitkem Corporation

Only parameters that had at least one detection from the data set are shown

Table 2 Historical Summary of Metals/Inorganics in Groundwater Samples

							1	able 2 Histor	icai s	Summary of	Meta	ls/Inorganic	s in (<i>-</i> roundwatei	San	npies								
Parameter List	Well ID											8-26-007-MV	V-11	S										NYSDEC Ambient
EPA Method 6010	Sample Date	Jun-07		Sep-07		Dec-07		Mar-08	;	Sep-08		Jun-09		Mar-10)	Jun-11		Mar-13	,	Jun-14		Oct-17		Water Quality Standard (µg/L)
Aluminum	μg/L	37	U	62.6	В	37	U	37	U	56	U	56	U	59.1	В	66	U	515		318		(<37)	U	100 (s)
Antimony	ug/L		U		U		U		U			4.6	U	5.2	В	9.3	U	9.3	U	9.5	В	(<0.48)	U	3 (s)
Arsenic	μg/L	2.5	U	6.4	В	17.7	В	28.3		6.8	В	5.80		10.7	В	12.5	В	20.9		4.7	В	19		25 (s)
Barium	μg/L	821		571		610		711		615		1,080		809		654		783		785		450		1,000 (s)
Beryllium	μg/L	5	U	0.051	U	0.051	U	0.051	U	0.13	U	0.13	U	0.08	В	0.26	U	0.26	U	0.26	U	(<0.61)	U	3 (g)
Cadmium	μg/L	0.11	U	0.11	U	0.26	В	0.28	J	0.14	U	0.14	U	0.5	U	0.89	U	0.89	U	2.4	В	(<0.48)	U	5 (s)
Calcium	μg/L	140,000		112,000		109,000		124,000		117,000		143,000		123,000		108,000		123,000		123,000		98,000		
Chromium	μg/L	0.22	U	0.22	U	0.22	U	0.76	J	1.1	U	1.1	U	1.2	В	0.69	В	23.9		0.83	В	(<2.5)	U	50 (s)
Cobalt	μg/L	0.068	U	3.1	В	1.1	В	0.54	J	1.2	U	1.2	U	1.6	В	0.68	В	1.3	В	1.2	В	0.74		5 (s)
Copper	μg/L	1.7	U	1.7	U	1.7	U	1.7	U	5	U	10.80	U	4.7	U	3.6	U	3.6	U	4.5	В	(<1.8)	U	200 (s)
Iron	μg/L	11,300		6,820	D	14,300	**	20,600	ī	7,270 2.2	U	9,350		11,300	-	5,850		14,600	U	7,290	U	7,400		300 (s) 25 (s)
Lead	μg/L	1.2 64,700	U	2.9 52,500	В	1.2 51,600	U	57,100	J	54,300	U	2.2	U	2.8	В	4.2	U	4.2 60,500	U	4.2 59.000	U	(<0.69) 47.000	U	
Magnesium Manganese	μg/L μg/L	45	т	38.9	В	38.5	В	37.7	J	40.9	В	68,100 33.4		59,300 34.2	В	52,300 32.6	В	67.6		42.7	В	26		35,000 (g) 300 (s)
Mercury	μg/L μg/L	0.2	U	0.11	U	0.11	U	0.11	U	0.016	UN	0.056	U	0.056	U	0.028	U	0.7	U	0.7	U	(<0.034)	U	0.7 (s)
Nickel	μg/L μg/L	19.5	J	14.3	В	12.4	В	10.3	J	10.6	В	13.20	U	10.9	В	7.4	В	26.2	В	10	В	4.4	U	100 (s)
Potassium	μg/L μg/L	2190	,	1,880	ь	1,710	ь	1,700	Ť	1,940	ь	3,910	-	2,720	ь	2,810	ь	3,410	ь	4230	Е	1,900		100 (s)
Selenium	μg/L μg/L	8	ī	22.5	В	18.3	В	5.2	U	6.6	U	6.6	U	10	U	12	U	12	U	12.9	В	(<11)	U	10 (s)
Silver	μg/L μg/L	9.2	J	1.2	U	1.2	U	1.2	U	0.59	U	0.59	U	2.4	U	6.9	U	6.9	U	6.9	U	(<0.38)	U	50 (s)
Sodium	μg/L	123,000	Ť	80,600	Ĕ	77,700	Ť	87,000	Ť	82,700	Ť	123,000	Ť	87,800	Ť	73,300	Ť	78,600	Ť	82,300		44,000	Ħ	20,000 (s)
Thallium	μg/L	2.8	U	3.3	В	2.8	U	2.8	U	4.2	U	4.2	U	5.7	U	6.2	U	6.2	U	6.2	U	(<0.37)	U	0.5 (g)
Vanadium	μg/L	n/a		0.4	U	1	В	2.4	J	0.96	U	1.10		1.4	В	1.1	U	2.1	В	1.3	В	(<13)	U	14 (s)
Zinc	μg/L	n/a		18.3	В	13.7	В	17.5	J	29.4	В	9.5		19.6	В	20.1	В	10.6	В		В	(<24)	U	2,000 (g)
Parameter List	Well ID											DUPLICA	TE											NYSDEC Ambient
EPA Method	-	(8	a)		b)	()		d)	(1	2)				(a)	0)		i)	6)	(k)	Water Quality
6010	Sample Date	Jun-07 ^{(a}	_	Sep-07 ⁽¹		Dec-07 ^{(c}		Mar-08 ^{(*}		Sep-08 ^{(c}	,	Jun-09		Mar-10		Jun-11 ⁽¹		Mar-13	,	Jun-14 ^{(j}		Oct-17 ^(k)		Standard (µg/L)
Aluminum	μg/L	37	U	81	В	37	U	37	U	665		56	U	72.5	В	66	U	1,570		66	U	(<37)	U	100 (s)
Antimony	ug/L μg/L	69.4	U	2.5	U	2.5	U	2.5	U	5.3	U	4.6 5.3	U	4.2 16.1	U B	9.3 4.3	U	9.3 36.3	U	9.3 4.3	U	(<0.48) (<1.8)	U	3 (s) 25 (s)
Arsenic Barium	μg/L μg/L	1,380		76.6	В	196	В	76.7	J	237	U	77.4	U	837	ь	100	В	840		86.4	В	98	U	1,000 (s)
Beryllium	μg/L μg/L	5	U	0.051	U	0.051	U	0.051	U	0.13	U	0.13	U	0.054	В	0.26	U	0.26	U	0.26	U	(<0.61)	U	3 (g)
Cadmium	μg/L	0.11	U	0.15	В	0.11	U	0.031	U	0.13	U	0.13	U	0.5	U	0.89	U	0.89	U	0.89	U	(<0.48)	U	5 (s)
Calcium	μg/L	141,000	Ü	83,500		61,200	Ŭ	89,500	Ü	140,000	Ü	59,300	Ŭ	128,000	Ť	13,600		142,000	Ŭ	103,000		58,000		
Chromium	μg/L	0.22	U	0.53	В	0.22	U	0.51	J	1.7	В	1.1	U	0.94	В	0.64	U	50.3		0.64	U	(<2.5)	U	50 (s)
Cobalt	μg/L	6	J	1.8	В	0.37	В	0.1	J	1.2	U	1.2	U	1.3	В	0.67	U	3.6	В	3.6	U	(<0.45)	U	5 (s)
Copper	μg/L	1.7	U	1.7	U	1.7	U	1.7	U	5	U	5.10	U	4.7	U	3.6	U	7.4	В	7.4	U	(<1.8)	U	200 (s)
Iron	μg/L	15,200		523		958		338		5,910		500		12,000		732		14,000		393		450		300 (s)
Lead	μg/L	1.2	U	4.8	В	1.2	U	2.5	J	2.2	U	2.2	U	2.1	U	4.2	U	4.2	U	4.2	U	(<0.69)		25 (s)
Magnesium	μg/L	62,800		27,800		28,700		24,100		38,700		28,800		61,600		20,400		51,000		28,200		27,000		35,000 (g)
Manganese	μg/L	42.5	J	34.2	В	15.3	В	76.1		185		57.8		33.3	В	10	U	206		36.8	В	46		300 (s)
Mercury	μg/L	0.2	U	0.11	U	0.11	U	0.12	J	0.016	UN	0.056	U	0	U	0.028	U	0.7	U	0.028	U	(<0.034)	U	0.7 (s)
Nickel	μg/L	58.8	igspace	5.8	В	2.4	В	0.89	J	3.4	В	1.5	U	10.8	В	0.85	U	59.9		0.97	U	(<1.9)	U	100 (s)
Potassium	μg/L	29,400		1,260	\sqcup	975	В	1,070		1,280	<u> </u>	1,860	<u> </u>	2,790	_	2,030	<u> </u>	14,500		2,400	Е	1,800	Щ	
Selenium	μg/L	13.1	J	27.9	В	13	В	6	J	6.6	U	6.6	U	10.6	В	12	U	13.4	В	12	U	(<11)	U	10 (s)
Silver	μg/L	8.5	J	1.2	U	1.2	U	1.2	U	0.59	U	0.59	U	2.4	U	6.9	U	6.9	U	6.9	U	(<0.38)	U	50 (s)
Sodium	μg/L	292,000	11	4,620	D	11,700	11	18,900	U	30,300	U	23,100	17	90,000	IJ	29,700	U	116,000	U	4,500	U	25,000	7.7	20,000 (s)
Thallium	μg/L	2.8	U	0.91	В	2.8	U B	2.8 2.2	J	4.2	_	4.2	U	6		6.2	U	6.2	_	6.2	U	(<0.37)	U	0.5 (g)
Vanadium Zinc	μg/L μg/L	n/a n/a		22.9	B	9.2	В	35.9	J	18.7	B	0.96 13.10	U	1.6 20.2	B	1.1 19.4	B	3.6 21.0	B	3.6 7.8	В	(<13) 44	U	14 (s) 2,000 (g)
NOTE:		US. Environmental Protection Agency 42.79 B 7.2 B 33.9 J 16.7 B 13.10 20.2 B 19.4 B 21.0 B 7.0 B 44 J J J J J J J J											2,000 (g)											
NOIE.		= U.S. Environmental Protection Agency (a) Duplicate sample was collected at MW-5 C = New York State Department of Environmental Conservation (b) Duplicate sample was collected at MW-13S																						
	$\mu g/L \qquad = Mic$	rograms per L																(c) Duplicate	samp	le was collecte	d at N	/IW-13D		
		Analyzed																		le was collecte				
		= The analyte was analyzed for, but was not detected above the sample reporting limit. (e) Duplicate sample was collected at MW 4																						
		= indicates a "trace" concentration below the reporting limit and equal to or above the detection limit. (f) Duplicate sample was collected at MW-9S = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample (g) Duplicate sample was collected at MW-11S																						
		= Analyte was opstitively identified; the associated numerical value is the approximate concentration of the analyte in the sample (g) Duplicate sample was collected at MW-11S = Value is listed as a standard value (h) Duplicate sample was collected at MW-08U																						
	(g) = Va	lue is listed as	a gui	dance value														(i) Duplicate	samp	le was collected	d at N	IW-5		
	All analytical data																			le was collected				
	Only parameters t Bold values indica							S										(K) Duplicate	samp	ole was collecte	a at M	иw-9D.		
		time the dile																						

Table 2 Historical Summa v of Matale/Inorganics in Groundwater Sample

							1	able 2 Histor	icai a	Juninary or	Meta	is/morganic	s in C	Froundwater San	ipies				
Parameter List	Well ID										8	-26-007-MV	V-12	D					NYSDEC Ambient
EPA Method 6010	Sample Date	Jun-07		Sep-07		Dec-07		Mar-08	;	Sep-08		Jun-09		Mar-10	Jun-11	Mar-13	Jun-14	Oct-17	Water Quality Standard (µg/L)
Aluminum	μg/L	37	U	85.7	В	37	U	37	U	56	U	56	U	n/a	n/a	n/a	n/a	n/a	100 (s)
Antimony	ug/L		U		U		U		U			4.6	U	n/a	n/a	n/a	n/a	n/a	3 (s)
Arsenic	μg/L	2.5	U	4.7	В	4.2	В	3.1	J	5.3	U	5.3	U	n/a	n/a	n/a	n/a	n/a	25 (s)
Barium	μg/L	490		602		834		178	J	750		278		n/a	n/a	n/a	n/a	n/a	1,000 (s)
Beryllium	μg/L	5	U	0.051	U	0.051	U	0.051	U	0.13	U	0.13	U	n/a	n/a	n/a	n/a	n/a	3 (g)
Cadmium	μg/L	0.11	U	0.11	U	0.11	U	0.11	U	0.14	U	0.14	U	n/a	n/a	n/a	n/a	n/a	5 (s)
Calcium	μg/L	153,000		153,000		182,000		139,000		174,000		40,600		n/a	n/a	n/a	n/a	n/a	
Chromium	μg/L	0.22	U	0.22	U	0.22	U	0.3	J	1.1	U	1.1	U	n/a	n/a	n/a	n/a	n/a	50 (s)
Cobalt	μg/L	0.068	U	3	В	0.41	В	0.73	J	1.2	U	1.2	U	n/a	n/a	n/a	n/a	n/a	5 (s)
Copper	μg/L	1.7	U	1.7	U	1.7	U	1.7	U	11.8	В	12.8	U	n/a	n/a	n/a	n/a	n/a	200 (s)
Iron	μg/L	7,730		8,210		8,140		2,590		7,370		2,440		n/a	n/a	n/a	n/a	n/a	300 (s)
Lead	μg/L	1.2	U	3.9	В	1.2	U	1.3	J	2.2	U	2.2	U	n/a	n/a	n/a	n/a	n/a	25 (s)
Magnesium	μg/L	65,800		68,900		81,000		46,700		75,600		25,800		n/a	n/a	n/a	n/a	n/a	35,000 (g)
Manganese	μg/L	267		155		120		279		123		14.70		n/a	n/a	n/a	n/a	n/a	300 (s)
Mercury	μg/L	0.2	U	0.11	U	0.11	U	0.11	J	0.016	UN	0.056	U	n/a	n/a	n/a	n/a	n/a	0.7 (s)
Nickel	μg/L	6	J	8.9	В	8.4	В	2.7	J	3.9	В	1.5	U	n/a	n/a	n/a	n/a	n/a	100 (s)
Potassium	μg/L	1,520		1,820		1,950		1,400		1,890		1,470		n/a	n/a	n/a	n/a	n/a	
Selenium	μg/L	5.9	J	20.3	В	19.8	В	5.2	U	6.6	U	6.6	U	n/a	n/a	n/a	n/a	n/a	10 (s)
Silver	μg/L	11.4	J	1.2	U	1.2	U	1.2	U	0.59	U	0.59	U	n/a	n/a	n/a	n/a	n/a	50 (s)
Sodium	μg/L	24,700		29,400		47,100		18,900		43,700		22,200		n/a	n/a	n/a	n/a	n/a	20,000 (s)
Thallium	μg/L	2.8	U	5	В	2.8	U	2.8	U	4.2	U	4.2	U	n/a	n/a	n/a	n/a	n/a	0.5 (g)
Vanadium	μg/L	n/a		0.4	U	1.9	В	0.57	J	0.96	U	0.96	U	n/a	n/a	n/a	n/a	n/a	14 (s)
Zinc	μg/L	n/a		19.3	В	10.2	В	20.3	J	20.4	В	11.0		n/a	n/a	n/a	n/a	n/a	2,000 (g)
					_					20.1	ъ	11.0		10 a	11 4	10 tt			
Parameter List	Well ID									2011	_	-26-007-MV	V-13		100	100			NYSDEC Ambient
EPA Method		Jun-07		Sep-07		Dec-07		Mar-08		Sep-08	8		V-13		Jun-11	Mar-13	Jun-14	Oct-17	NYSDEC Ambient Water Quality
EPA Method 6010	Sample Date			Sep-07						Sep-08	8	-26-007-MV Jun-09		D Mar-10	Jun-11	Mar-13	Jun-14	Oct-17	NYSDEC Ambient Water Quality Standard (µg/L)
EPA Method 6010 Aluminum	Sample Date μg/L	Jun-07 37	U	Sep-07 38.1	В	Dec-07	U	Mar-08	U	Sep-08	8	-26-007-MV Jun-09	U	Mar-10	Jun-11 n/a	Mar-13	Jun-14 n/a	Oct-17	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s)
EPA Method 6010 Aluminum Antimony	Sample Date μg/L ug/L	37	U U	38.1	B	37	U	37	U U	Sep-08 n/a n/a	8	-26-007-MV Jun-09 56 4.6	U	Mar-10 n/a n/a	Jun-11 n/a n/a	Mar-13 n/a n/a	Jun-14 n/a n/a	Oct-17 n/a n/a	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s)
EPA Method 6010 Aluminum Antimony Arsenic	Sample Date μg/L ug/L μg/L μg/L	37 2.5	U	38.1	B U U	37 2.5	U	37	U	Sep-08	8	Jun-09 56 4.6 5.3	U	Mar-10 n/a n/a n/a	Jun-11 n/a n/a n/a	Mar-13 n/a n/a n/a n/a	Jun-14 n/a n/a n/a	Oct-17 n/a n/a n/a n/a	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium	Sample Date μg/L ug/L μg/L μg/L μg/L	37	U U	38.1	B U U	37	U U U	37 3 185	U U	Sep-08 n/a n/a n/a	8	-26-007-MV Jun-09 56 4.6	U	Mar-10 n/a n/a	Jun-11 n/a n/a	Mar-13 n/a n/a	Jun-14 n/a n/a	Oct-17 n/a n/a	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L	2.5 183 5	U U J U	38.1 2.5 188 0.051	B U U B U	2.5 205 0.051	U U U	37 3 185 0.051	U U U	Sep-08 n/a n/a n/a n/a	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13	U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a	Jun-11 n/a n/a n/a n/a n/a n/a n/a	Mar-13 n/a n/a n/a n/a n/a n/a n/a	Jun-14 n/a n/a n/a n/a n/a n/a n/a	Oct-17 n/a n/a n/a n/a n/a n/a n/a	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L µg/L µg/L	2.5 183 5 0.11	U U J	38.1 2.5 188 0.051 0.11	B U U	2.5 205 0.051 0.11	U U U	37 3 185 0.051 0.12	U U U J	Sep-08 n/a n/a n/a n/a n/a n/a n/a n/a	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14	U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Sample Date μg/L	2.5 183 5 0.11 62,400	U U J U	38.1 2.5 188 0.051 0.11 59,600	B U U B U U	2.5 205 0.051 0.11 63,900	U U U	37 3 185 0.051 0.12 64,200	U U U J	Sep-08 n/a n/a n/a n/a n/a n/a n/a	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300	U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a	Jun-11 n/a n/a n/a n/a n/a n/a n/a	Mar-13 n/a n/a n/a n/a n/a n/a n/a	Jun-14 n/a n/a n/a n/a n/a n/a n/a	Oct-17 n/a n/a n/a n/a n/a n/a n/a	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2.5 183 5 0.11 62,400 0.22		38.1 2.5 188 0.051 0.11 59,600 0.22	B U U B U U U U U	2.5 205 0.051 0.11 63,900 0.22	U U U U	37 3 185 0.051 0.12 64,200 0.39	U U U J	Sep-08 n/a	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (ng/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Sample Date µg/L	37 2.5 183 5 0.11 62,400 0.22 0.068		38.1 2.5 188 0.051 0.11 59,600 0.22 1.2	B U U B U U	2.5 205 0.051 0.11 63,900 0.22 0.068	U U U U U	37 185 0.051 0.12 64,200 0.39 0.068	1 1 1 0 1 0	Sep-08 n/a	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Sample Date μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	37 2.5 183 5 0.11 62,400 0.22 0.068 1.7		38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7	B U U B U U U U U	2.5 205 0.051 0.11 63,900 0.22 0.068 1.7	U U U U	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7	U U U J	Sep-08	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2 18.1	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Sample Date	37 2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840		38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7 1,190	B U U B U U U B	37 2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995	U U U U U U U U U U	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050	1 1 1 1 0 1 1 0 1	Sep-08 n/a n/a n/a n/a n/a n/a n/a n/	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2 18.1 1,670	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (tig/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron	Sample Date µg/L µg/L	37 2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2		38.1 2.5 188 0.051 0.11 59,600 0.22 1.7 1,190 3.3	B U U B U U	37 2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2	U U U U U	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050 2.1	1 1 1 0 1 0	Sep-08 n/a n/a n/a n/a n/a n/a n/a n/	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2 1.670 2.2	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	Sample Date µg/L	37 2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2 28,700		38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7 1,190 3.3 27,800	B U U U U B B U U B B U U	37 2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2 29,900	U U U U U U U U U U U U U U U U U U U	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050 2.1 29,200	1 1 1 1 0 1 1 0 1	Sep-08	8	-26-007-MV Jun-09 Jun-09 56 4.6 5.3 179 0.13 0.14 0.14 1.2 18.1 1.670 2.2 27,300	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 35,000 (g)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	Sample Date µg/L	37 2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2 28,700 17.3	U U U U U U U U	38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7 1,190 3.3 27,800 14.8	B U U U B B U U B B U U B B U B B B	37 2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2 29,900 16.9	U U U U U U U U U U U U U U U U U U U	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050 2.1 29,200 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sep-08 n/a n/a n/a n/a n/a n/a n/a n/	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2 1.670 2.2	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (tig/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 3300 (s) 35,000 (g) 300 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	Sample Date pg'L ug'L ug'L pg'L pg'L	37 2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2 28,700 17.3 0.2		38.1 2.5 188 0.051 0.11 59,600 0.22 1.7 1,190 3.3 27,800 14.8 0.11	B U U B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B B U U B B B U U B	37 2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2 29,900 16.9 0.11	U U U U U U U U U U U U U U U U U U U	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050 2.1 29,200 16 0.11	1 0 1 1 1 0 1 0 1	Sep-08	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2 18.1 1,670 2.2 27,300 13.4 0.056	U U U U U U	Mar-10 n/a n/a	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (ng/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s) 0.77 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	Sample Date pg/L ug/L ug/L pg/L pg/L	37 2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2 28,700 17.3	U U U U U U U U U U U U U U U U U U U	38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7 1,190 3.3 27,800 14.8	B U U U B B U U B B U U B B U B B B	37 2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2 29,900 16.9	U U U U U U U U U U U U U U U U U U U	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050 2.1 29,200 16	1 U U U U U U U U U U U U U U U U U U U	Sep-08	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2 18.1 1,670 2.2 27,300 13.4	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (tig/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 3300 (s) 35,000 (g) 300 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	Sample Date	2.5 183 5 0.11 62,400 0.068 1.7 1,840 1.2 28,700 17.3 0.2 2.1	U	38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7 1,190 3.3 27,800 14.8 0.11 3.2 1,050	B	2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2 29,900 16.9 0.11 2.3 1,000	U U U U U U U U B B U B B	37 3 185 0.051 0.12 64,200 0.068 1.7 2,050 2.1 29,200 16 0.11 0.74 974	1 1 1 1 1 0 1 1 1 1 1 1 1 1 1	Sep-08	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2 18.1 1,670 2.2 27,300 13.4 0.056 1.5 889	U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s) 0.7 (s) 100 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	Sample Date pg'L ug'L ug'L pg'L pg'L	2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2 28,700 17.3 0.2 2.1 978 5.8	U	38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7 1,190 3.3 27,800 14.8 0.11 3.2 1,050 16.5	B	2.5 205 0.051 0.11 63,900 0.22 0.068 1.2 29,900 1.6,9 0.11 2.3 1,000 17.1	U U U U U U U U B B B B B	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050 2.1 29,200 16 0.11 0.74 974 5.2	1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Sep-08	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 1.2 18.1 1.670 2.2 27,300 13.4 0.056 1.5 8.89 6.6	U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (Ing/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 5 (s) 5 (s) 5 (s) 200 (s) 300 (s) 25 (s) 300 (s) 0,7 (s) 100 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	Sample Date pg'L ug'L ug'L pg'L pg'L	2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2 28,700 17.3 0.2 2.1 978 5.8 4.8	U U U U U U U U U U U U U U U U U U U	38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7 1,190 3.3 27,800 14.8 0.11 3.2 1,050 16.5 1.5	B	2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2 29,900 16.9 0.11 2.3 1,000	U U U U U U U U B B U B B	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 29,200 16 0.11 0.74 974 5.2 1.2	1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sep-08	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58.300 1.1 1.2 18.1 1.670 2.2 27.300 13.4 0.056 1.5 889 6.6 0.59	U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 35,000 (g) 300 (s) 10 (s) 50 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium	Sample Date pg/L ug/L ug/L pg/L pg/L	2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2 28,700 17.3 0.2 2.1 978 5.8	U U U U U U U U U U U U U U U U U U U	38.1 2.5 188 0.051 0.11 59,600 1.2 1.7 1,190 3.3 27,800 14.8 0.11 3.2 1,050 16.5 1.2 13,500	B	2.5 205 0.051 0.11 63,900 0.22 0.068 1.2 29,900 1.6,9 0.11 2.3 1,000 17.1	U U U U U U U U B B B B B	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050 2.1 29,200 16 0.11 0.74 974 5.2 1.2 13,300	1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Sep-08	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 1.2 18.1 1.670 2.2 27,300 13.4 0.056 1.5 8.89 6.6	U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 50 (s) 200 (s) 3300 (s) 25 (s) 35,000 (g) 300 (s) 10 (s) 50 (s) 20,000 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Cadmium Cadmium Calcium Chobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	Sample Date	2.5 183 5 0.11 62,400 0.22 0.068 1.7 1,840 1.2 28,700 17.3 0.2 2.1 978 5.8 4.8	1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1	38.1 2.5 188 0.051 0.11 59,600 0.22 1.2 1.7 1,190 3.3 27,800 14.8 0.11 3.2 1,050 16.5 1.2 13,500 12,800 13,500 14,900 14,900 16,500 16	B	2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2 29,900 16,9 0.1,000 17.1 1.2	U U U U U U U B B U B U U	37 3 185 0.051 0.12 64,200 0.068 1.7 2,050 2.1 29,200 16 0.11 0.74 974 5.2 1.2 13,300 2.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sep-08	8	26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 58,300 1.1 1.2 18.1 1,670 2.2 27,300 13.4 0.056 1.5 889 6.6 0.59 12,900	U U U U U U U	Mar-10 N/a n/a n/a n/a n/a n/a n/a n/a	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (tig/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 5 (s) 5 (s) 5 (s) 5 (s) 5 (s) 1,000 (s) 300 (s) 200 (s) 300 (s) 215 (s) 300 (s) 25 (s) 100 (s) 5 (s) 100 (s) 0.7 (s) 100 (s) 5 (s) 5 (s)
EPA Method 6010 Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	Sample Date pg/L ug/L ug/L pg/L pg/L	2.5 183 5 0.11 62,400 0.068 1.7 1,840 1.2 28,700 17.3 0.2 2.1 978 5.8 4.8 17,900 2.8	1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1	38.1 2.5 188 0.051 0.11 59,600 1.2 1.7 1,190 3.3 27,800 14.8 0.11 3.2 1,050 16.5 1.2 13,500	B	2.5 205 0.051 0.11 63,900 0.22 0.068 1.7 995 1.2 29,900 16.9 0.11 2.3 1,000 17.1 1.2 12,300 2.8	U U U U U U U U U U U U U U U U U U U	37 3 185 0.051 0.12 64,200 0.39 0.068 1.7 2,050 2.1 29,200 16 0.11 0.74 974 5.2 1.2 13,300	1 U U U U U U U U U U U U U U U U U U U	Sep-08	8	-26-007-MV Jun-09 56 4.6 5.3 179 0.13 0.14 1.2 18.1 1.670 2.2 27,300 13.4 0.056 1.5 889 6.6 0.59 12,900 4.2	U U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	Jun-11 n/a n/a n/a n/a n/a n/a n/a n	Mar-13 n/a n/a n/a n/a n/a n/a n/a n/	Jun-14 n/a n/a n/a n/a n/a n/a n/a n/	Oct-17 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/	NYSDEC Ambient Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 50 (s) 200 (s) 3300 (s) 25 (s) 35,000 (g) 300 (s) 10 (s) 50 (s) 20,000 (s)

NOTE:

EPA = U.S. Environmental Protection Agency
NYSDEC = New York State Department of Environmental Conservation

μg/L = Micrograms per Liter n/a

= Not Analyzed

= The analyte ws analyzed for, but was not detected above the sample reporting limit.

= indicates a "trace" concentration below the reporting limit and equal to or above the detection limit.

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

= Value is listed as a standard value (s) (g) = Value is listed as a guidance value

All analytical data results provided by Mitkem Corporation

Only parameters that had at least one detection from the data set are shown

Table 2 Historical Summary of Metals/Inorganics in Groundwater Samples

Parameter List	Well ID									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	wicu	8-26-007-M		Groundwater San	присэ				NYSDEC Ambient
EPA Method								1 35 00		g 00								0.45	Water Quality
6010	Sample Date	Jun-07	_	Sep-07	_	Dec-07		Mar-08	_	Sep-08	_	Jun-09	_	Mar-10	Jun-11	Mar-13	Jun-14	Oct-17	Standard (µg/L)
Aluminum	μg/L	2,700		3,040	l	472		2,910		238	<u> </u>	655	_	n/a	n/a	n/a	n/a	n/a	100 (s)
Antimony	μg/L		U		U		U		U		١	4.6	U	n/a	n/a	n/a	n/a	n/a	3 (s)
Arsenic	μg/L	2.5	U	2.5	U	2.5	U	3	U	5.3	U	5.3	U	n/a	n/a	n/a	n/a	n/a	25 (s)
Barium	μg/L	265		267		252		269		170	В	203		n/a	n/a	n/a	n/a	n/a	1,000 (s)
Beryllium	μg/L	5	U	0.051	U	0.051	U	0.26	J	0.13	U		U	n/a	n/a	n/a	n/a	n/a	3 (g)
Cadmium	μg/L	0.11	U	0.11	U	0.11	U	0.29	J	0.14	U	0.14	U	n/a	n/a	n/a	n/a	n/a	5 (s)
Calcium	μg/L	147,000		149,000		131,000		317,000		96,500		127,000		n/a	n/a	n/a	n/a	n/a	
Chromium	μg/L	2.6	J	2.8	В	0.22	U	5	J	1.1	U	1.2		n/a	n/a	n/a	n/a	n/a	50 (s)
Cobalt	μg/L	2.9	J	4.4	В	0.51	В	2.9	J	1.2	U	1.2	U	n/a	n/a	n/a	n/a	n/a	5 (s)
Copper	μg/L	9.8	J	1.7	U	1.7	U	13	J	5	U		U	n/a	n/a	n/a	n/a	n/a	200 (s)
Iron	μg/L	8,920		7,960		5,470		13,700		2,890	<u> </u>	6,200		n/a	n/a	n/a	n/a	n/a	300 (s)
Lead	μg/L	3.3	J	12.5		1.2	U	9.1	J	2.2	U	2.2	U	n/a	n/a	n/a	n/a	n/a	25 (s)
Magnesium	μg/L	38,700		42,100		35,800		91,300		25,500		35,300		n/a	n/a	n/a	n/a	n/a	35,000 (g)
Manganese	μg/L	239		236		143		1,010		84.3		145		n/a	n/a	n/a	n/a	n/a	300 (s)
Mercury	μg/L	0.2	U	0.2	U	0.11	U	0.12	J	0.04	BN	0.056	U	n/a	n/a	n/a	n/a	n/a	0.7 (s)
Nickel	μg/L	9.1	J	10.9	В	5.4	В	7.7	J	2.3	В			n/a	n/a	n/a	n/a	n/a	100 (s)
Potassium	μg/L	1,900		1,870		1,300		1,660		1,370		1,130		n/a	n/a	n/a	n/a	n/a	
Selenium	μg/L	9.8	J	26.4	В	19.6	В	7.2	J	6.6	U	6.6	U	n/a	n/a	n/a	n/a	n/a	10 (s)
Silver	μg/L	10.5	J	1.2	U	1.2	U	1.2	U	0.59	U	0.59	U	n/a	n/a	n/a	n/a	n/a	50 (s)
Sodium	μg/L	35,900		31,800		35,100		30,200		23,900		27,300		n/a	n/a	n/a	n/a	n/a	20,000 (s)
Thallium	μg/L	2.8	U	5.8	В	2.8	U	2.8	U	4.2	U	4.2	U	n/a	n/a	n/a	n/a	n/a	0.5 (g)
Vanadium	μg/L	n/a		4.1	В	2.1	В	8.8	J	1	В	1.2		n/a	n/a	n/a	n/a	n/a	14 (s)
Zinc	μg/L	n/a		25.5	В	11	В	55.8		18.4	В	13.5		n/a	n/a	n/a	n/a	n/a	2,000 (g)
Parameter List	Well ID																		
												8-26-007-MV	N-13	S					NYSDEC Ambient
EPA Method 6010	Sample Date	Jun-07		Sep-07		Dec-07		Mar-08		Sep-08		8-26-007-MV Jun-09		S Mar-10	Jun-11	Mar-13	Jun-14	Oct-17	Water Quality
6010 Aluminum	Sample Date	Jun-07	U	Sep-07	В	Dec-07	U	Mar-08	J	Sep-08					Jun-11 n/a	Mar-13	Jun-14	Oct-17	
6010 Aluminum	Sample Date µg/L			_	B				_			Jun-09		Mar-10					Water Quality Standard (µg/L) 100 (s)
Aluminum Antimony	Sample Date μg/L ug/L		U	70	_	37	U		J U	n/a		Jun-09		Mar-10 n/a	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s)
6010 Aluminum Antimony Arsenic	Sample Date μg/L ug/L μg/L	2.5	U	70	U	37 2.5	U U U	73	J	n/a n/a		Jun-09 56 7.50 5.3	U	Mar-10 n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s)
Aluminum Antimony Arsenic Barium	Sample Date µg/L ug/L µg/L µg/L µg/L	2.5 66.8	U U U	70 2.5 74	U U	2.5 93	U U U B	73	J U U	n/a n/a n/a		Jun-09 56 7.50 5.3 91.7	U	Mar-10 n/a n/a n/a	n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s)
Aluminum Antimony Arsenic Barium Beryllium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L	2.5 66.8 5	U U U J	70 2.5 74 0.051	U U B U	2.5 93 0.051	U U U B	73 2.5 76 0.051	J U J U	n/a n/a n/a n/a		Jun-09 56 7.50 5.3 91.7 0.13	UUUUUUU	Mar-10 n/a n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a	n/a n/a n/a n/a	n/a n/a n/a n/a n/a	Water Quality Standard (μg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g)
Aluminum Antimony Arsenic Barium Beryllium Cadmium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L µg/L µg/L	2.5 66.8 5 0.11	U U U	70 2.5 74 0.051 0.11	U U B	2.5 93 0.051 0.11	U U U B	73 2.5 76	J U U	n/a n/a n/a n/a n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67	U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a n/a	Water Quality Standard (μg/L) 100 (s) 3 (s) 25 (s) 1,000 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	2.5 66.8 5 0.11 86,000	U U U	2.5 74 0.051 0.11 80,700	U U B U U	2.5 93 0.051 0.11 96,400	U U U B U U	73 2.5 76 0.051 0.11 90,400	U U U U	n/a n/a n/a n/a n/a n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a n/a n/a n/a	Water Quality Standard (μg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Sample Date µg/L ug/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	37 2.5 66.8 5 0.11 86,000 0.22	U U U J	70 2.5 74 0.051 0.11 80,700 0.47	U U B U	37 2.5 93 0.051 0.11 96,400 0.22	U U U B	73 2.5 76 0.051 0.11 90,400 0.77	J U U J U U	n/a n/a n/a n/a n/a n/a n/a n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1	UUUUUUU	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Sample Date µg/L	2.5 66.8 5 0.11 86,000 0.22 0.068	U U U U U U	70 2.5 74 0.051 0.11 80,700 0.47 1.7	U B U U U B B	2.5 93 0.051 0.11 96,400 0.22 0.33	U U U B U U	73 2.5 76 0.051 0.11 90,400 0.77 0.068	J U U U U U	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Sample Date μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7		2.5 74 0.051 0.11 80,700 0.47 1.7	U U B U U	2.5 93 0.051 0.11 96,400 0.22 0.33 1.7	U U U B U U	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9	J U U J U U	n/a n/a n/a n/a n/a n/a n/a n/a n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Sample Date μg/L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494		2.5 74 0.051 0.11 80,700 0.47 1.7 483	U U B U U B U U U U	2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383	U U U B U U U B	73 2.5 76 0.051 0.11 90,400 0.77 0.068	J U U U U U	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 1,370	U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	Sample Date µg/L µg/L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2	U U U U U U	70 2.5 74 0.051 0.11 80,700 0.47 1.7 1.7 483 7.3	U B U U U B B	37 2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383 1.2	U U U B U U	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442	J U U U U U	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 1,370 2.6	U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	Sample Date µg/L µg/L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300	U U U U U U U U U U U U U U U U U U U	70 2.5 74 0.051 0.11 80,700 0.47 1.7 1.7 483 7.3 26,800	U U B U U B B B B U	37 2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383 1.2 25,800	U U U B U U U B	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442 2 24,700	J U U U U U	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 1.370 2.6 25,800	U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	Sample Date µg/L µg/L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300 23.4	1 U	70 2.5 74 0.051 0.11 80,700 0.47 1.7 1.7 483 7.3 26,800 36.2	U U U U U U U U U U U U U U U U U U U	37 2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383 1.2 25,800 117	U U U B U U U U U U U U U U U U U U U U	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442 2 24,700 84] U U U U U	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 1,370 2.6 25,800 769	U U U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 33,000 (g) 300 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury	Sample Date µg'L µg'L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300 23,4 0.2	U U U U U U U U U U U U U U U U U U U	70 2.5 74 0.051 0.11 80,700 0.47 1.7 1.7 483 7.3 26,800 36,2 0.11	U U U U U U U U U U U U U U U U U U U	37 2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383 1.2 25,800 117 0.11	U U U U U U U U U U U U U U U U U U U	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442 2 24,700 84 0.11	1 1 1 1 1 0 1 1 1 1	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 1,370 2.6 25,800 769 0.056	U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 300 (s) 0.7 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	Sample Date µg/L µg/L	2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300 23.4 0.2 3.2	1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1	70 2.5 74 0.051 0.11 80,700 0.47 1.7 483 7.3 26,800 36.2 0.11 4.7	U U U U U U U U U U U U U U U U U U U	2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383 1.2 25,800 1.11 1.17	U U U B U U U U U U U U U U U U U U U U	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442 2 24,700 84 0.11] U U U U U	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92.200 1.1 2.3 16.20 1,370 2.6 25,800 769 0.056 1.8	U U U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 330,000 (g) 300 (s) 100 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	Sample Date µg/L µg/L	2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300 23.4 0.2 3.2 933	1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	70 2.5 74 0.051 0.11 80,700 0.47 1.7 1.7 483 7.3 26,800 36.2 0.11 4.7 1,250	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	2.5 93 0.051 0.11 96,400 0.23 1.7 383 1.2 25,800 117 0.11 3.8 1,100	U U U B U U U U U U U U U U B U U U B U U U B B U U U B B U U U B B U U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U U B B U U U B B U U U B B U U U U B B U U U U D B U U U U	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442 2 24,700 84 0.11 0.99 1,020	1 1 1 1 1 1 0 1 1 1 1 0	n/a		Jun-09 56 7.50 5.3 5.3 0.67 92,200 1.3 16.20 1,370 2.6 25,800 769 0.056 1.8 1.130	U U U U U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 300 (s) 0,7 (s) 100 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	Sample Date #g/L #g/L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300 23.4 0.2 3.2 933 11.4	1 J U U U U U U U U U U U U U U U U U U	70 2.5 74 0.051 0.11 80,700 0.47 1.7 483 7.3 26,802 0.11 4.7 1,250 21.6	U U U U U U U U U U U U U U U U U U U	2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383 1.2 25,800 117 0.11 3.8 1.100	U U U U B U U U U B B U U U B B U U U B B U U B B B B B	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442 2 24,700 84 0.11 0.99 1,020 5.2	1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 2.6 25,800 769 0.056 1.8 1,130 6.6		Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 200 (s) 300 (s) 25 (s) 3300 (s) 25 (s) 100 (s) 100 (s) 10 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver	Sample Date µg/L µg/L	2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300 23.4 0.2 933 11.4 7	1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	70 2.5 74 0.051 0.11 80,700 0.47 1.7 1.7 1.7 26,800 36.2 0.11 4.7 1,250 21.6 1.2	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 25,800 117 0.11 3.8 1,100	U U U B U U U U U U U U U U B U U U B U U U B B U U U B B U U U B B U U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U B B U U U B B U U U B B U U U B B U U U U B B U U U U D B U U U U	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442 2 24,700 84 0.11 0.99 1,020 5.2 1.5	1 1 1 1 1 1 0 1 1 1 1 0	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16,20 1,370 2.6 25,800 769 0.056 1.8 1,130 6.6 0.59	U U U U U U U U U U	Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 330,000 (g) 300 (s) 100 (s) 10 (s) 50 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	Sample Date pg/L ug/L ug/L pg/L pg/L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300 23.4 0.2 3.2 933 11.4 7 6,570	1 J J J J J J J J J J J J J J J J J J J	70 2.5 74 0.051 0.11 80,700 0.47 1.7 1.7 1.7 26,800 36.2 0.11 4.7 1,250 21.6 1.2 4,620	U	2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383 1.2 25,800 117 0.11 3.8 1,100 18	U U U B U U U B B U U U B B U U U B B U U U B B U U D B B B U U D B B B U U D D D D	73 2.5 76 0.051 0.11 90.400 0.77 0.068 2.9 442 2 24,700 84 0.99 1,020 5.2 1.5 18,100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 1,370 2.6 25,800 769 0.056 1.8 1,130 6.6 0.59 10,200		Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 25 (s) 300 (s) 100 (s) 10 (s) 5 (s) 20 (s) 30,000 (g) 30,000 (g) 30,000 (g) 30,000 (g) 25 (s) 27 (s) 29 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	Sample Date #g/L	2.5 66.8 5 0.11 86,002 0.02 0.068 1.7 494 1.2 27,300 23.4 0.2 3.2 933 11.4 7 6,570 2.8	1 J U U U U U U U U U U U U U U U U U U	70 2.5 74 0.051 0.11 80,700 0.47 1.7 483 7.3 26,800 36.2 0.11 4.7 1.250 21.6 1.2 4.620 3.3	U	2.5 93 0.051 0.11 96,400 0.23 1.7 383 1.2 25,800 117 0.11 3.8 1,100 18 1.2 25,800	U U U B B U U U B B U U U B B U U U U B B U U U U D B D U U D D D D	73 2.5 76 0.051 0.11 90,400 0.77 0.068 2.9 442 2 24,700 84 0.11 0.99 1,020 5.2 1.5 18,100 2.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/a 10/a 10/a 10/a 10/a 10/a 10/a 10/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 1,370 2.6 25,800 0.056 1.8 1.130 6.6 0.59 10,200 4.2		Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 100 (s) 3 (s) 25 (s) 1,000 (s) 5 (s) 50 (s) 200 (s) 300 (s) 25 (s) 300 (s) 0.7 (s) 100 (s) 10 (s) 50 (s) 50 (s)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	Sample Date pg/L ug/L ug/L pg/L pg/L	37 2.5 66.8 5 0.11 86,000 0.22 0.068 1.7 494 1.2 27,300 23.4 0.2 3.2 933 11.4 7 6,570	1 J J J J J J J J J J J J J J J J J J J	70 2.5 74 0.051 0.11 80,700 0.47 1.7 1.7 1.7 26,800 36.2 0.11 4.7 1,250 21.6 1.2 4,620	U	2.5 93 0.051 0.11 96,400 0.22 0.33 1.7 383 1.2 25,800 117 0.11 3.8 1,100 18	U U U B U U U B B U U U B B U U U B B U U U B B U U D B B B U U D B B B U U D D D D	73 2.5 76 0.051 0.11 90.400 0.77 0.068 2.9 442 2 24,700 84 0.99 1,020 5.2 1.5 18,100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n/a		Jun-09 56 7.50 5.3 91.7 0.13 0.67 92,200 1.1 2.3 16.20 1,370 2.6 25,800 769 0.056 1.8 1,130 6.6 0.59 10,200		Mar-10 n/a n/a n/a n/a n/a n/a n/a n/	n/a	n/a	n/a	n/a	Water Quality Standard (µg/L) 3 (s) 25 (s) 1,000 (s) 3 (g) 5 (s) 50 (s) 5 (s) 200 (s) 300 (s) 305 (s) 25 (s) 100 (s) 5 (s) 200 (s) 300 (s) 100 (s) 100 (s) 5 (s) 200 (s)

NOTE:

EPA = U.S. Environmental Protection Agency
NYSDEC = New York State Department of Environmental Conservation

μg/L = Micrograms per Liter n/a

= Not Analyzed

= The analyte ws analyzed for, but was not detected above the sample reporting limit.

= indicates a "trace" concentration below the reporting limit and equal to or above the detection limit.

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

= Value is listed as a standard value (s) = Value is listed as a guidance value

All analytical data results provided by Mitkem Corporation

Only parameters that had at least one detection from the data set are shown

Table 2 Historical Summary of Metals/Inorganics in Groundwater Samples

Parameter List	I	l					T:	able 2 Histor	ical S	Summary of				Froundwater San	ıples				NYSDEC Ambient
EPA Method	Well ID										8	8-26-007-MV	V-06	S					Water Quality
6010	Sample Date	Jun-07	'	Sep-07		Dec-07		Mar-08	1	Sep-08		Jun-09		Mar-10	Jun-11	Mar-13	Jun-14	Oct-17	Standard (µg/L)
Aluminum	μg/L	797		316		333		3,280		n/a		300		n/a	n/a	n/a	n/a	n/a	100 (s)
Antimony	μg/L		U		U		U		U	n/a		4.6	U	n/a	n/a	n/a	n/a	n/a	3 (s)
Arsenic	μg/L	2.5	U	2.5	U	3.2	В	2.5	U	n/a		5.3	U	n/a	n/a	n/a	n/a	n/a	25 (s)
Barium	μg/L	32.7	J	41.5	В	50.1	В	39.3	J	n/a		35.3		n/a	n/a	n/a	n/a	n/a	1,000 (s)
Beryllium	μg/L	5	U	0.051	U	0.067	В	0.22	J	n/a		0.13	U	n/a	n/a	n/a	n/a	n/a	3 (g)
Cadmium	μg/L	0.11	U	0.011	U	0.11	U	0.29	J	n/a		0.14	U	n/a	n/a	n/a	n/a	n/a	5 (s)
Calcium	μg/L	96,800		103,000		104,000		97,300		n/a		86,400		n/a	n/a	n/a	n/a	n/a	
Chromium	μg/L	0.22	U	0.44	В	0.22	U	1.4	J	n/a		1.1	U	n/a	n/a	n/a	n/a	n/a	50 (s)
Cobalt	μg/L	0.068	U	2.8	В	1.9	В	1.2	J	n/a		1.2	U	n/a	n/a	n/a	n/a	n/a	5 (s)
Copper	μg/L	1.7	U	1.7	U	1.7	U	2.6	J	n/a		6.9	U	n/a	n/a	n/a	n/a	n/a	200 (s)
Iron	μg/L	1,010		683		770		1,670		n/a		568		n/a	n/a	n/a	n/a	n/a	300 (s)
Lead	μg/L	3	J	4.7	В	1.3	В	8.9	J	n/a		2.2	U	n/a	n/a	n/a	n/a	n/a	25 (s)
Magnesium	μg/L	18,000		26,100		22,900		21,700		n/a		17,100		n/a	n/a	n/a	n/a	n/a	35,000 (g)
Manganese	μg/L	27.2	J	21.7	В	163		66.3		n/a		26.1		n/a	n/a	n/a	n/a	n/a	300 (s)
Mercury	μg/L	0.2	U	0.11	U	0.11	U	0.11	J	n/a		0.056	U	n/a	n/a	n/a	n/a	n/a	0.7 (s)
Nickel	μg/L	3.8	J	5.8	В	4.6	В	2	J	n/a		1.5	U	n/a	n/a	n/a	n/a	n/a	100 (s)
Potassium	μg/L	721	J	773	В	1,060		1,000		n/a		986		n/a	n/a	n/a	n/a	n/a	
Selenium	μg/L	15.8	J	23.2	В	15.9	В	5.2	U	n/a		8.1		n/a	n/a	n/a	n/a	n/a	10 (s)
Silver	μg/L	7.7	J	1.2	U	1.2	U	1.2	U	n/a		0.59	U	n/a	n/a	n/a	n/a	n/a	50 (s)
Sodium	μg/L	3,740		4,850		5,170		7,840		n/a		8,800		n/a	n/a	n/a	n/a	n/a	20,000 (s)
Thallium	μg/L	2.8	U	4	В	2.8	U	2.8	U	n/a		4.2	U	n/a	n/a	n/a	n/a	n/a	0.5 (g)
Vanadium	μg/L	n/a		0.4	U	1.4	В	1.3	J	n/a		0.96	U	n/a	n/a	n/a	n/a	n/a	14 (s)
Zinc	μg/L	n/a		23.9	В	11.7	В	21.6	J	n/a		12.8		n/a	n/a	n/a	n/a	n/a	2,000 (g)
Parameter List	Well ID										8	8-26-007-MV	V-07	S					NYSDEC Ambient
EPA Method	Sample Date	Jun-07		Sep-07		Dec-07		Mar-08		Sep-08		Jun-09		Mar-10	Jun-11	Mar-13	Jun-14	Oct-17	Water Quality
6010			_		_		-		_										Standard (µg/L)
Aluminum	μg/L	37	U	37	U	56.4	В	37	U	56	U	56	U	n/a	n/a	n/a	n/a	n/a	100 (s)
Antimony	μg/L		U	2.5	U	2.5	U	2.5	U			4.6	U	n/a	n/a	n/a	n/a	n/a	3 (s)
Arsenic	μg/L	2.5	U	2.5	U	2.5	U	2.5	U	5.3	U	5.3	U	n/a	n/a	n/a	n/a	n/a	25 (s)
Barium	μg/L	834		504		492		463		466		391		n/a	n/a	n/a	n/a	n/a	1,000 (s)
Beryllium	μg/L	5	U	0.051	U	0.051	U	0.051	U	0.13	U	0.13	U	n/a	n/a	n/a	n/a	n/a	3 (g)
Cadmium	μg/L	0.11	U	0.11	U	0.11	U	0.11	U	0.14	U	0.14	U	n/a	n/a	n/a	n/a	n/a	5 (s)
Calcium	μg/L	139,000		132,000	L.	132,000		134,000	<u> </u>	131,000		118,000		n/a	n/a	n/a	n/a	n/a	
Chromium	μg/L	0.22	U	0.22	U	0.22	U	0.44	J	1.1	U	1.1	U	n/a	n/a	n/a	n/a	n/a	50 (s)
Cobalt	μg/L	1.3	J	2.6	В	0.068	U	0.068	U	1.2	U	1.2	U	n/a	n/a	n/a	n/a	n/a	5 (s)
Copper	μg/L	1.7	U	1.7	U	1.7	U	1.7	U	5	U	6.7	U	n/a	n/a	n/a	n/a	n/a	200 (s)
Iron	μg/L	76,900		4,950		4,610		6,010		4,380		4,520		n/a	n/a	n/a	n/a	n/a	300 (s)
Lead	μg/L	2	J	2.2	В	1.2	U	1.2	U	2.2	U	2.2	U	n/a	n/a	n/a	n/a	n/a	25 (s)
Magnesium	μg/L	50,500		50,800		50,800		51,400		49,600		45,100		n/a	n/a	n/a	n/a	n/a	35,000 (g)
Manganese	μg/L	35.1	J	24.2	В	26	В	26.3	J	26.6	В	22.7		n/a	n/a	n/a	n/a	n/a	300 (s)
Mercury	μg/L	0.2	U	0.11	U	0.11	U	0.11	J	0.016	UN	0.056	U	n/a	n/a	n/a	n/a	n/a	0.7 (s)
Nickel	μg/L	9.9	J	12.2	В	10.7	В	8.3	J	7.5	В	5.3	<u> </u>	n/a	n/a	n/a	n/a	n/a	100 (s)
Potassium	μg/L	1,390	Ш	1,570	Ш	1,500	L	1,390	<u> </u>	1,370	Щ	1,300	L	n/a	n/a	n/a	n/a	n/a	
Selenium	μg/L	10.3	J	20.2	В	20.6	В	5.2	U	6.6	U	6.6	U	n/a	n/a	n/a	n/a	n/a	10 (s)
Silver	μg/L	1.2	U	1.2	U	1.2	U	1.2	U	0.59	U	0.59	U	n/a	n/a	n/a	n/a	n/a	50 (s)
II Codium		36,800	1 1	42,300	1 1	43,000	1	54,200	ı	42,700		40,700	1	n/a	n/a	n/a	n/a	n/a	20,000 (s)
Sodium	μg/L		4		_	_		_	_				-						
Thallium	μg/L	10.5	J	5.1	В	2.8	U	2.8	U	4.2	U	4.2	U	n/a	n/a	n/a	n/a	n/a	0.5 (g)
			J		B U B	_	U B B	_	U J J		U U B		U	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	

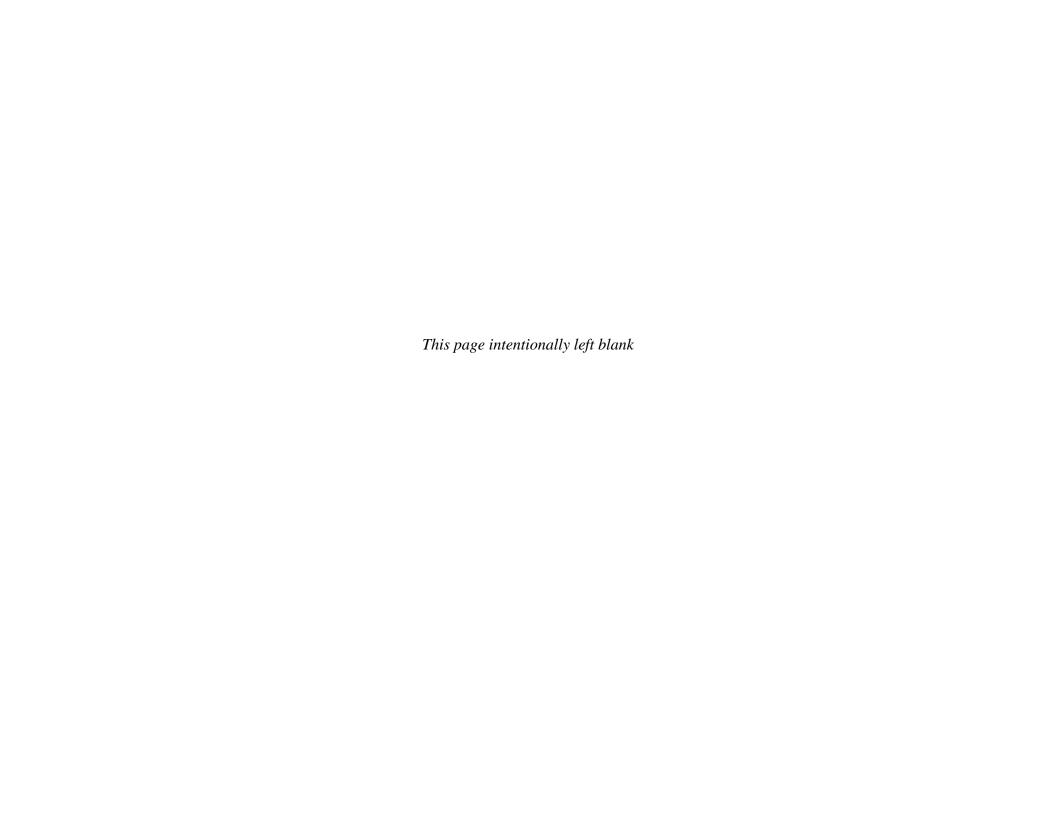
NOTE:

EPA = U.S. Environmental Protection Agency
NYSDEC = New York State Department of Environmental Conservation

μg/L = Micrograms per Liter n/a

= Not Analyzed

= The analyte ws analyzed for, but was not detected above the sample reporting limit.


= indicates a "trace" concentration below the reporting limit and equal to or above the detection limit.

= Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

= Value is listed as a standard value (s) = Value is listed as a guidance value

All analytical data results provided by Mitkem Corporation

Only parameters that had at least one detection from the data set are shown

EA Project No.: 14907.12 Version: DRAFT Table 3, Page 1 of 1 January 2018

Table 3 Summary of Detected Per/Poly Fluorinated Compounds and 1,4-Dioxane in Groundwater Samples

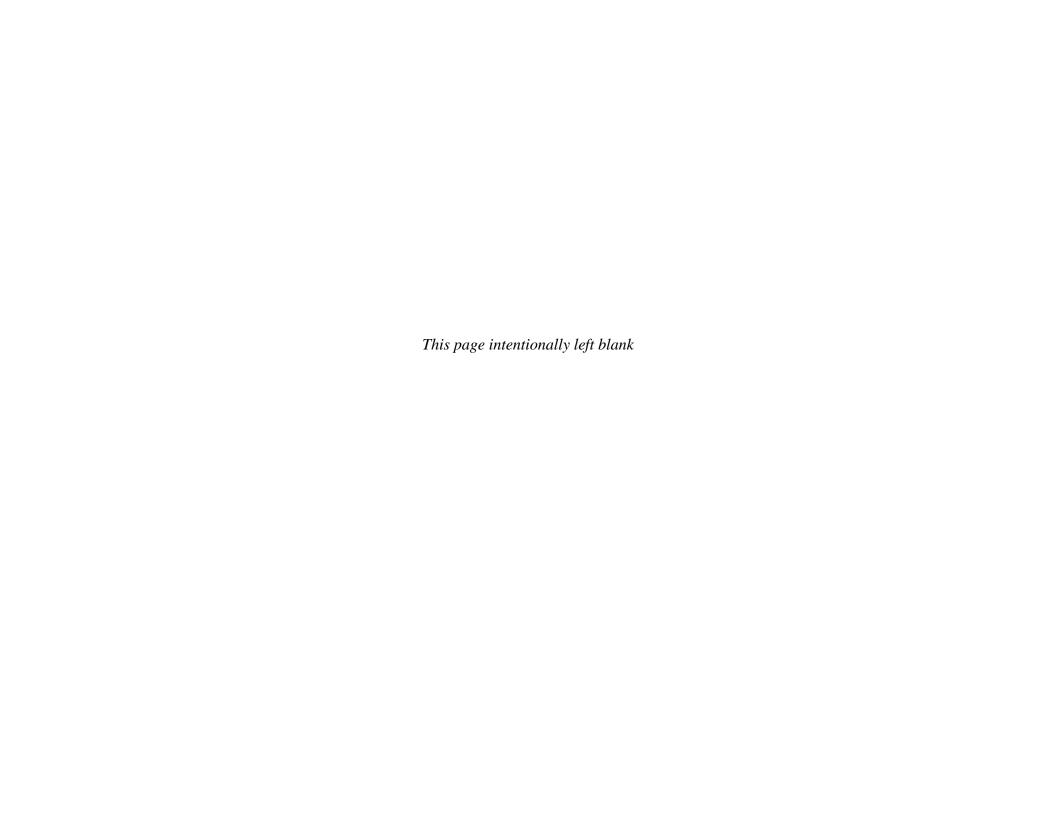
	Location ID	MW-9D		MW-5		MW-8U		MW-Duplica	te-01	
	Lab ID	17K0048-0	1	17K0048-0	3	17K0048-0	4	17K0048-0)7	
	Sample Type	Groundwat	er	Groundwat	er	Groundwat	er	Groundwa	ter	Guidance
Parameter List	Sample Date	10/30/2017	7	10/30/2017	7	10/30/2017	7	10/30/201	7	Values
		Method	SW-	846 8270D						
1,4-Dioxane	μg/l	< 0.033	U	2.2		6.9		< 0.033	U	0.35 1
		Method	SOP	434-PFAAS						
Perfluorobutanesulfonic acid (PFBS)	ng/l	(<2.0)	U	(<2.0)	U	5.7		(<2.0)	U	
Perfluorohexanoic acid (PFHxA)	ng/l	4.5		11		82		4.8		
Perfluoroheptanoic acid (PFHpA)	ng/l	(<2.0)	U	3.4		38		(<2.0)	U	
Perfluorohexanesulfonic acid (PFHxS)	ng/l	(<2.0)	U	4.8		16		(<2.0)	U	
Perfluorooctanoic acid (PFOA)	ng/l	(<2.0)	U	9.3		17		(<2.0)	U	70 ²
Perfluorooctanesulfonic acid (PFOS)	ng/l	(<2.0)	U	3.8		(<2.0)	U	(<2.0)	U	70 ²

NOTE:

Values shown in **bold** exceed the guidance value indicated.

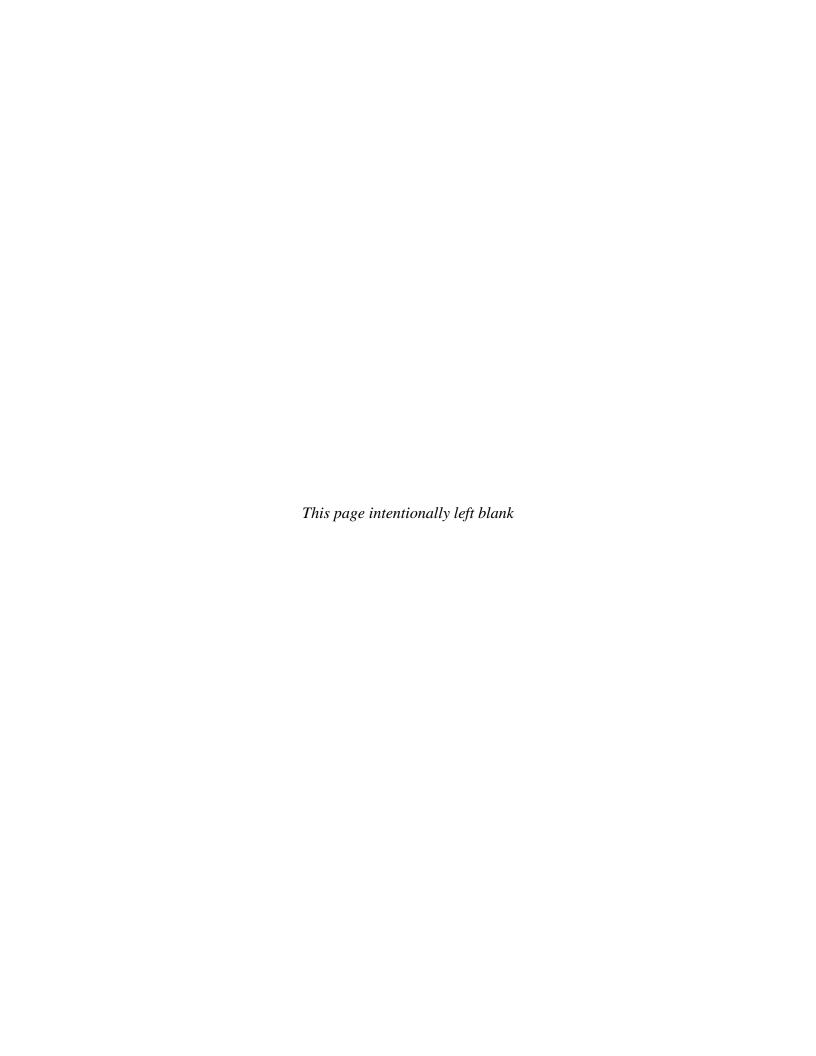
Data provided by Con-Test Analytical.

¹ Environmental Protection Agency (EPA)'s Integrated Risk Information System (IRIS) 2013 for drinking water representing a 1 x 10-6 cancer risk level.


² EPA health advisory level for drinking water - combined concentrations of PFOA and PFAS.

^{-- =} Not analyzed.

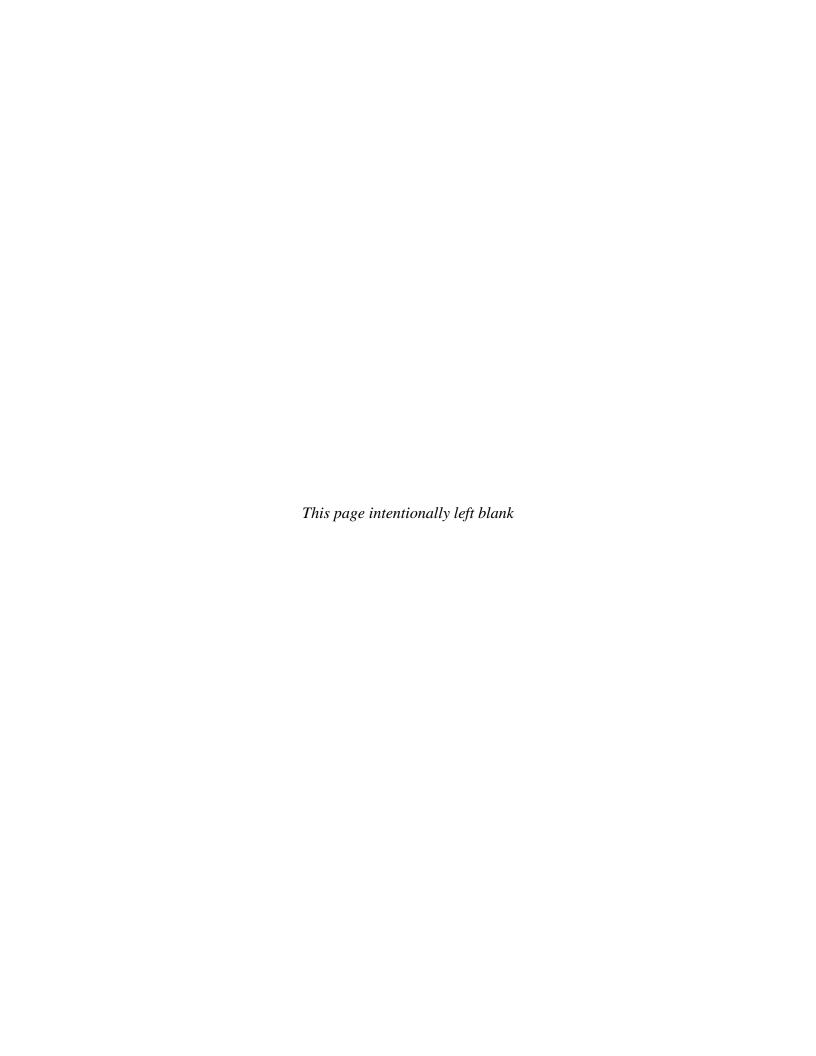
U = The analyte was analyzed for, but was not detected above the sample reporting limit.


μg/l = micrgrams per liter = parts per billion (ppb)

ng/l = nanograms per liter = parts per trillion (ppt)

Project No.: 14907.12 Revision: DRAFT Table 4, Page 1 of 1 January 2018

		Table 4	Historical I	andfill Mor	nitoring 200'	7-2017			
	Sampling Point				Da	ate			
Product	Location	2007-Jun	2007-Sept	2007-Dec	2008-Mar	2008-Sept	2008-Dec	2009-Mar	2009-Jun
	Base	0	0	0	0	0	0-2	0-1	0
Carbon Monoxide	Grid over landfill	0	0	0	0	0	0	0	0
Lower Explosive	Base	0	0	0-5	0	0	0	0	0
Limit	Grid over landfill	0	0	0-5	0	0	0	0	0
	Base	0	0	0-1	0	0	0	0	0
Hydrogen Sulfide	Grid over landfill	0	0	0-1	0	0	0	0	0
	Base	20.3	19.9-21.4	20.3-20.6	14-16	20.6-20.7	20.9	20.9	20.9
Oxygen	Grid over landfill	20.2-20.3	19.9-21.2	20.3-20.6	14-16	20.6-20.7	20.9	20.9	20.9
	Sampling Point				D	ate			
Product	Location	2009-Sept	2009-Dec	2010-Mar	2011-Mar	2011-June	2011-Oct	2011-Dec	2012-Apr
	Base	0	0	0	0	0	0	0	0-2
Carbon Monoxide	Grid over landfill	0	0	0	0	0	0	0	0-2
Lower Explosive	Base	0	0	0	0	0	0	0	0
Limit	Grid over landfill	0	0	0	0	0	0	0	0
	Base	0	0	0	0	0	0	0	0
Hydrogen Sulfide	Grid over landfill	0	0	0	0	0	0	0	0
	Base	20.4	20.9	20.5-20.9	20.9	20.5-20.9	20.9	20.9	20.9
Oxygen	Grid over landfill	20.4	20.9	20.5-20.9	20.9	20.5-20.9	20.9	20.9	20.9
	Sampling Point				D:	ate			
Product	Location	2012- Nov	2012-Dec	2012-Apr	2012- Nov	2012-Dec	2013-Mar	2013-Jun	2013-Sep
	Base	0	0	0-2	0	0	0	0	0
Carbon Monoxide	Grid over landfill	0	0	0-2	0	0	0	0	0
Lower Explosive	Base	0	0	0	0	0	0	0	0
Limit	Grid over landfill	0	0	0	0	0	0	0	0
	Base	0	0	0	0	0	0	0	0
Hydrogen Sulfide	Grid over landfill	0	0	0	0	0	0	0	0
	Base	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
Oxygen	Grid over landfill	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
	Sampling Point				Da	ate			
Product	Location	2013-Dec	2014-Mar	2014-Jun	2014-Sep	2014-Dec	2015-Apr	2016-Jun	2017-Oct
	Base	0	0	0	0	0	0	0	0
Carbon Monoxide	Grid over landfill	0	0	0	0	0	0	0	0
Lower Explosive	Base	0	0	0	0	0	0	0	0
Limit	Grid over landfill	0	0	0	0	0	0	0	0
	Base	0	0	0	0	0	0	0	0
Hydrogen Sulfide	Grid over landfill	0	0	0	0	0	0	0	0
-	Base	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
Oxygen	Grid over landfill	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9


Table 5 Historical Gas Vent Monitoring 2007-2017

												1	able 5 Histo	nicai Gas		ate	-2017												
Product	Vent	2007-Jun	2007-Sep	2007-Dec	2008-Mar	2008-Sep	2008-Dec	2009-Mar	2009-Jun	2009-Sep	2009-Dec	2010-Mar	2011-Mar	2011-Jun	2011-Oct	2011-Dec	2012-Apr	2012-Nov	2012-Dec	2013-Mar	2013-Jun	2013-Dec	2014-Mar	2014-Jun	2014-Sep	2014-Dec	2015-Apr	2016-Jun	2017-Oct
	Vent 1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	0	0	0
	Vent 3	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 4	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 7	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	0	1	0	0	0	1	0	0	0	0	0	0
Carbon	Base	0	0	0	0	0	0-2	0-1	0	0	0	0	0	0	0	0	0-2	0	0	0	0	0	0	0	0	0	0	0	0
Monoxide	Grid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0-2	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 1	0	1	91	82	0	0	98	73	0	0	0	0	100	7	0	2	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 2	0	0	22	100	0	0	100	100	0	0	0	7	100	6	0	0	0	92	0	0	0	92	0	0	0	0	0	0
	Vent 3	0	0	72	27	0	0	100	100	0	1	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 4	0	20	18	100	0	0	71	80	0	0	0	0	52	3	0	7	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 5	0	1	2	100	0	0	86	65	0	0	0	0	100	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 6	1	47	59	100	1	0	12	88	0	0	0	0	100	7	0	3	0	0	0	0	0	0	0	0	0	0	0	0
Lower	Vent 7	10	33	60	100	0	0	100	100	0	22	0	0	100	7	0	6	0	17	0	0	0	17	0	0	0	0	0	0
Explosive		0	0	0-5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Limit	Grid	0	0	0-5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 5	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydrogen	Base	0	0	0-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sulfide	Grid	0	0	0-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vent 1	20.3	21.3	15.9	-	20.7	20.9	19.5	20.5	20.4	20.9	20.9	20.9	19.3	20.9	20.9	20.6	21.7	20.9	20.2	20.9	20.9	20.9	20.2	20.9	20.9	20.9	20.9	20.9
	Vent 2	20.3	21.3	12.9	-	20.7	20.9	18.1	19.3	20.4	20.9	20.9	20.9	18.2	20.9	20.9	20.4	20.9	17.4	20.2	20.9	20.9	17.4	20.2	20.9	20.9	20.9	20.9	20.9
	Vent 3	20.3	20.7	14.9	-	20.7	20.9	19	17.5	20.4	20.9	20.7	20.9	19	20.9	20.1	20.4	20.9	20.5	20.2	20.9	20.9	20.5	20.2	20.9	20.9	20.9	20.9	20.9
	Vent 4	20.2	21.5	16.8	-	20.7	20.9	19.5	19.4	20.4	20.9	20.7	20.9	20.1	20.9	20.4	20.5	22.3	20.9	20.3	20.9	20.9	20.9	20.3	20.9	20.9	20.9	20.9	20.9
	Vent 5	20.5	21.5	20.9	-	20.7	20.9	19.3	20.9	20.4	20.9	20.6	20.9	14.9	20.9	20.3	20.4	20.9	20.9	20.3	20.9	20.9	20.9	20.3	20.9	20.9	20.9	20.9	20.9
	Vent 6	20.5	14.7	10	-	20.7	20.9	20.3	19.7	20.4	20.9	20.5	20.9	10	20.9	20.9	20.9	20.9	20.9	20.3	20.9	20.9	20.9	20.3	20.9	20.9	20.9	20.9	20.9
	Vent 7	20.2	20.3	19.8	-	20.7	20.9	18.1	19.8	20.4	20.9	20.5	20.6	18.8	20.9	20.9	20.3	20.9	20.2	20.2	20.9	20.9	20.2	20.2	20.9	20.9	20.9	20.9	20.9
	Base	20.3	21.4	20.6	16	20.7	20.9	20.9	20.4	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.2	20.9	20.9	20.9	20.2	20.9	20.9	20.9	20.9	20.9
Oxygen	Grid	20.2	21.2	20.6	16	20.7	20.9	20.9	20.9	20.4	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.2	20.9	20.9	20.9	20.2	20.9	20.9	20.9	20.9	20.9

Appendix A

Institutional/Engineering Control Certification

Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

Site New 20007		Box 1
Site No. 826007		
Site Name William Benson Landfill		
Site Address: 7404 Richmond Mills Road Zip Code: 14487 City/Town: Livonia		
County: Livingston Site Acreage: 13.0		
Reporting Period: December 31, 2014 to December 31, 2017		
and the second of the second o	YES	NO
1. Is the information above correct?	X	
If NO, include handwritten above or on a separate sheet.		
To your knowledge has some or all of the site property been sold, subdivide merged, or undergone a tax map amendment during this Reporting Period?		×
To your knowledge has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×
4. To your knowledge have any federal, state, and/or local permits (e.g., buildi discharge) been issued for or at the property during this Reporting Period?	ng,	×
If you answered YES to questions 2 thru 4, include documentation or e that documentation has been previously submitted with this certificati		
5. To your knowledge is the site currently undergoing development?		
		Box 2
	YES	NO
6. Is the current site use consistent with the use(s) listed below? Closed Landfill	\prec	
7. Are all ICs/ECs in place and functioning as designed?	\times	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below an DEC PM regarding the development of a Corrective Measures Work Plan to ac		es.
Signature of Standby Consultant/Contractor Date		

SITE NO. 826007

Box 3

Description of Institutional Controls

Parcel

76-1-18.21

<u>Owner</u>

Benson William J.

Institutional Control

Monitoring Plan Site Management Plan

IC/EC Plan

Ground Water Use Restriction

Landuse Restriction

O&M Plan

Institutional Control: A Deed Restriction is in place that restricts site use to commercial/industrial and restricts groundwater usage.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

76-1-18.21

Cover System

Engineering Control: Modified 6 NYCRR Part 360 cover system consisting of, from top to bottom, a vegetativ layer, a soil barrier protection layer, a geosynthetic drainage layer, a geomembrane, a geosynthetic gas venting layer and a cover foundation layer.

Box	5

	Periodic Review Re	port (PRR) Certification	on Statements			
	I certify by checking "YES" belo	ow that:				
	 a) the Periodic Review reviewed by, the party me contractors for the current 	aking the certification, in	ncluding data and r			
	 b) to the best of my know are in accordance with the engineering practices; and the 	ne requirements of the s	ite remedial progra	m, and gen		
	Samuel A Land On P. La	HOOLE WILL			YES	NO
	HY 1321	Syracuse			X	
	If this site has an IC/EC Plan (cor Engineering control listed in following statements are true: (a) the Institutional Contisince the date that the Countries (b) nothing has occurred	Boxes 3 and/or 4, I cert rol and/or Engineering (ontrol was put in-place, I that would impair the a	ify by checking "YE Control(s) employed or was last approve	S" below the site at this site by the D	nat all of t is uncha epartmer	nged at;
	the environment (c) nothing has occurred or equivalent if no Site M	that would constitute a		ith the Site	Managei	ment Pla
	Varion	that would constitute a		ith the Site	Managei YES	ment Pla
	(c) nothing has occurred	that would constitute a		ith the Site		
	(c) nothing has occurred	I that would constitute a lanagement Plan exists. 2 IS NO, sign and date	below and contact	the	YES	NO
D	(c) nothing has occurred or equivalent if no Site M	Tthat would constitute a lanagement Plan exists. 2 IS NO, sign and date nent of a Corrective Me	below and contact	the	YES	NO
D	(c) nothing has occurred or equivalent if no Site M THE ANSWER TO QUESTION EC PM regarding the developm	Tthat would constitute a lanagement Plan exists. 2 IS NO, sign and date nent of a Corrective Me	below and contact	the to address	YES	NO
D	(c) nothing has occurred or equivalent if no Site M THE ANSWER TO QUESTION EC PM regarding the developm	Tthat would constitute a lanagement Plan exists. 2 IS NO, sign and date nent of a Corrective Me	below and contact	the to address	YES	NO
D	(c) nothing has occurred or equivalent if no Site M THE ANSWER TO QUESTION EC PM regarding the developm	Tthat would constitute a lanagement Plan exists. 2 IS NO, sign and date nent of a Corrective Me	below and contact	the to address	YES	NO

IC/EC CERTIFICATIONS

Professional Engineer Signature

I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Donald Conan at	EA Engineering,	P.C.
print name	6712 Brooklawn	Pkwy
\times . $ imes_{0}$	Syracuse NY	1321
am certifying as a Professional Engineer. OMULIA COM Signature of Professional Engineer	(print business address) OF NEW ON N	1/31/18 Date

Enclosure 1 Institutional and Engineering Controls - Property Owner Survey

Sit	Site Details e No. 826007	В	ox 1	
	e Name William Benson Landfill			
Site City Co	e Address: 7404 Richmond Mills Road Zip Code: 14487 y/Town: Livonia unty: Livingston e Acreage: 13.0			
Reporting Period: December 31, 2014 to December 31, 2017				
		YES	NO	
1.	Is the information above correct?	Á		
	If NO, include handwritten above or on a separate sheet.			
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?			
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X	
· 4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	Larray (X	
	If you answered YES to questions 2, 3 or 4, include documentation with this form.			
5.	Is the site currently undergoing development?		X	
			Box 2	
		YES	NO	
6.	Is the current site use consistent with the use(s) listed below? Closed Landfill	K		
7.	Are all Institutional Controls (ICs) in place and functioning as designed?	X		
***************************************	Ran m Benson 12	· [4	17	
Sig	phature of Property Owner Date			

SITE NO. 826007

Box 3

Description of Institutional Controls

Parcel

Owner

76-1-18.21

Benson William J. Deceased

Institutional Control

Monitoring Plan Site Management Plan

IC/EC Plan

Ground Water Use Restriction

Landuse Restriction

O&M Plan

Institutional Control: A Deed Restriction is in place that restricts site use to commercial/industrial and restricts groundwater usage.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

76-1-18.21

Cover System

Engineering Control: Modified 6 NYCRR Part 360 cover system consisting of, from top to bottom, a vegetative layer, a soil barrier protection layer, a geosynthetic drainage layer, a geomembrane, a geosynthetic gas venting layer and a cover foundation layer.

Box 5

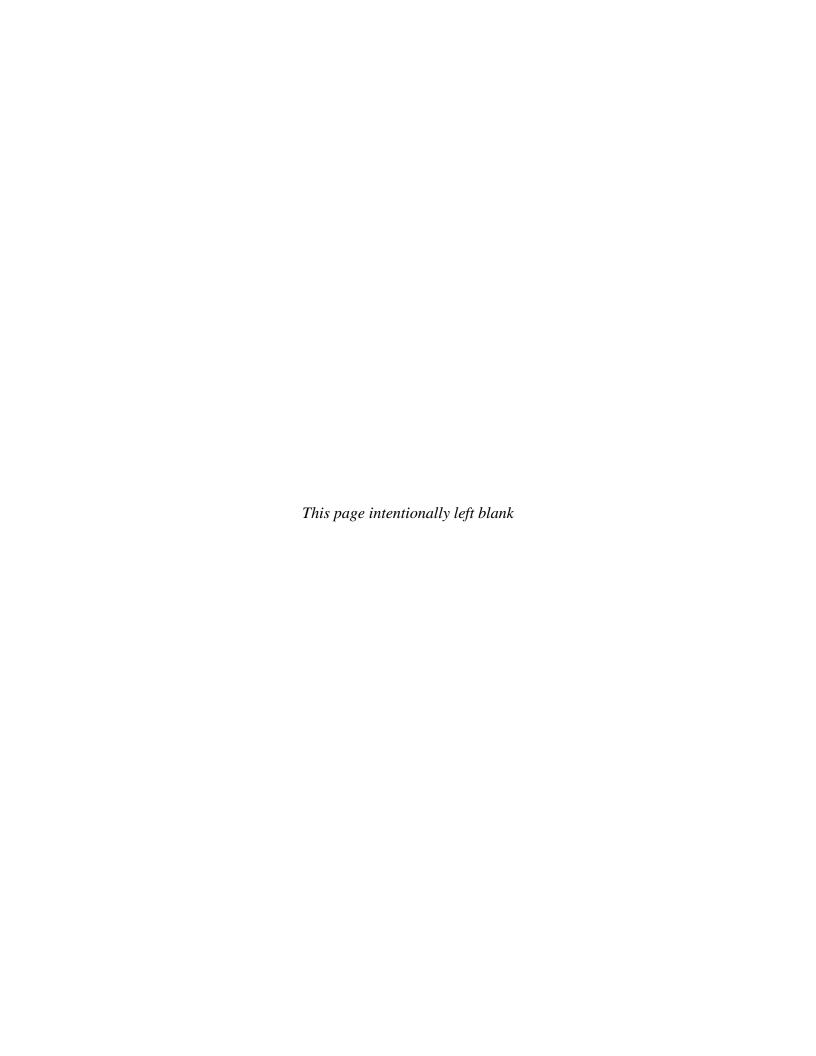
Periodic Review Report (PRR) Survey Statements

For each Institutional or Engineering control listed in Boxes 3 and/or 4, by checking "YES" below I believe all of the following statements to be true:

- (a) the Institutional Control(s) and/or Engineering Control(s) employed at this site remain unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
- (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; and
- (d) if a Site Management Plan (SMP) exists, nothing has occurred that would constitute a violation or failure to comply with the SMP for this Control.

Signature of Property Owner

12-14-17


Date

DEC 30 2017

REMEDICA CAMEA

Appendix B

Landfill Inspection Reports and Groundwater Field Forms

LANDFILL INSPECTION REPORT

Temperature: (F) 45 (am) N/A (pm) **NYSDEC** N 5 N/A Wind Direction: (am) (pm) mph **WILLIAM BENSON LANDFILL** (am) Sunny Weather: (pm) N/A NYSDEC Site # 8-26-007 Contract # 14907.12 Arrive at site 0815 am Leave site: 0945 am Livonia, New York **Site Security** Evidence of vandalism (wells, vents, protective cover damage): None Evidence of cover system intrusion (ruts, burrows, excavations): None. Evidence of penetrations (poles, posts, stakes): None Evidence of human encroachment (trash, fire pits, tire/footprints): None General site condition: Good. **Additional Comments:** No evidence of disturbance.

Day: Thursday Date: 4/16/15

Landfill Inspection Report Page 1 of 5

Vegetative Cover and Geosynthetics
Evidence of erosion, settlement, rutting, potholes, slippage:
None.
Evidence of stressed vegetation or bare spots:
None.
Exposed geosynthetics, if so, any visible signs of damage to geosynthetics:
Exposed geosynthetics, it so, any visible signs of damage to geosynthetics.
None.
Additional Comments:
None.
Cas Venting System 9 Croundwater Menitoring Dainte
Gas Venting System & Groundwater Monitoring Points
Evidence of damage to wells/vents or surrounding area (cracking, misalignment, missing pieces):
GP-24: Piezometer well pad is broken.
Evidence of cover system subsidence or upheaval near wells/vents:
None
Evidence of wildlife intrusion (nests, burrows, wasp nests):
Deer beds.
Evidence of spilled liquids (well tampering/vent blowout):
None
GAS VENTS: Unusual conditions – belching, whistling, excessive gas (odor) production:
None
MONITORING WELLS: Well covers in place and secure:
MONTONING WELLS. Well covers in place and secure.
All wells are covered and secure.

Day: Thursday Date: 4/16/15

Landfill Inspection Report Page 2 of 5

LANDFILL INSPECTION REPORT

		Jay		liooday	Jui	0. 0.220
E A®	NYSDEC	Temperature: (F)	75	(am)	85	(pm)
		Wind Direction:		(am)		(pm)
WILLIAM BENSON	ILLIAM BENSON LANDFILL		(am) Su	nny		
NYSDEC Site # 8-2	NYSDEC Site # 8-26-007		(pm) N/	'A		
Contract # 14907.12		Arrive at site	1120	am		
		Leave site:	320	pm		
Livonia, New York		Loave site.	320	рш		
		te Security				
Evidence of vandalism	n (wells, vents, protective co	over damage):				
None.						
Evidence of cover sys	tem intrusion (ruts, burrows	s, excavations):				
None.						
Evidence of penetration	ons (poles, posts, stakes):					
None.						
Evidence of human en	croachment (trash, fire pits	s, tire/footprints):				
None.						
General site condition						
Good, very overgrown	, lots of deer and deer beds	5.				
Additional Comments:						

Day: Wednesday Date: 6.22.16

Landfill Inspection Report Page 1 of 4

Vegetative Cover and Geosynthetics
Evidence of erosion, settlement, rutting, potholes, slippage:
None.
Evidence of stressed vegetation or bare spots:
None.
Exposed geosynthetics, if so, any visible signs of damage to geosynthetics:
None.
Additional Comments:
Overgrown, grass was chest high, trees and plants had covered the gas vents and wells.
Gas Venting System & Groundwater Monitoring Points
Evidence of damage to wells/vents or surrounding area (cracking, misalignment, missing pieces):
None, some vents were covered with plants.
Evidence of cover system subsidence or upheaval near wells/vents:
None.
Evidence of wildlife intrusion (nests, burrows, wasp nests):
None.
Evidence of spilled liquids (well tampering/vent blowout):
None.
GAS VENTS: Unusual conditions – belching, whistling, excessive gas (odor) production:
None.
MONITORING WELLS: Well covers in place and secure:
On the wells that were found. Most wells, were covered in growth and not visible or found.

Day: Wednesday Date: 6.22.16

Landfill Inspection Report Page 2 of 4

LANDFILL INSPECTION REPORT

Additional Comments:
andfill/Gas Vent Monitoring Data

Day: Wednesday Date: 6.22.16

	Landfill Mo	nitoring		G	as Vent Monitoring
۸۳۵۵	СО	FID Reading (ppm)	Gas	СО	FID Reading (ppm)
Area	%LEL	O ₂ / H ₂ S	Vent	%LEL	O ₂ / H ₂ S
South	0	0	1	0	0
	0	20.9 / 0	'	0	20.9 / 0
West	0	0	2	0	0
	0	20.9 / 0		0	20.9 / 0
North	0	0	3	0	0
	0	20.9 / 0	3	0	20.9 / 0
East	0	0	4	0	0
	0	20.9 / 0	4	0	20.9 / 0
Top of	0	0	5	0	0
Landfill	0	20.9 / 0	3	0	20.9 / 0
			6	0	0
			0	0	20.9 / 0
				0	0
			7	0	20.9 / 0

Landfill Inspection Report Page 3 of 4

Inspection Photo log

Day: Wednesday Date: 6.22.16

Landfill Inspection Report Page 4 of 4

	Day:	Thursday	Date:	4/16/15
--	------	----------	-------	---------

Additional Comments:

Removed 5.25" from OP-1 casing so it will close properly

Landfill/Gas Vent Monitoring Data

	Landfill Mo	nitoring	Gas Vent Monitoring				
A = 0.0	СО	FID Reading (ppm)	Gas	СО	FID Reading (ppm)		
Area	%LEL	O ₂	Vent	%LEL	O ₂		
South	0	0	4	0	0		
	0	20.9] ' [0	20.9		
West	0	0	2	0	0		
	0	20.9	2	0	20.9		
North	0	0	3	0	0		
	0	20.9]	0	20.9		
East	0	0	4	0	0		
	0	20.9	4	0	20.9		
Top of	0	0	5	0	0		
Landfill	0	20.9	3	0	20.9		
			6	0	0		
			_ °_ [0	20.9		
			7	0	0		
			'	0	20.9		

Landfill Inspection Report Page 3 of 5

Inspection Photo log

Day: Thursday Date: 4/16/15

Looking North.

Looking South.

Landfill Inspection Report Page 4 of 5

Day: Thursday Date: 4/16/15

West side of Landfill.

Northeast side of Landfill.

LANDFILL INSPECTION REPORT

LANDFILL INSPEC	Day	: <u>Mon</u>	<u>iday</u>	Date:	10.30.17		
₽ A®	NYSDEC	Temperature: (F)	45	(am)	46	(pm)	
		Wind Direction:	NNE	(am)	NE	(pm)	
WILLIAM BENSON	LANDFILL	Weather:	(am) Col	(am) Cold, overcast, light rain			
NYSDEC Site # 8-2	6-007		(pm) wir	ndy, colo	d, overcast	t	
Contract # 14907.12	815	am					
Livonia, New York		Leave site:	430	pm			
Livolita, New York	Site :	Coourity,					
Evidence of vandalism	(wells, vents, protective cover	Security					
None.	(wells, velts, protective cover	uamaye).					
Evidence of cover syst	em intrusion (ruts, burrows, ex	xcavations):					
None.	(,	,.					
Evidence of penetratio	ns (poles, posts, stakes):						
None.							
Evidence of human en	croachment (trash, fire pits, tire	e/footprints):					
None.							
General site condition:							
Good, area around the v	vells were overgrown. Gas vents	were cleared of debris	i.				
Additional Comments:							
Gate was locked and secured in place. The gate area was slightly overgrown.							

Landfill Inspection Report Page 1 of 4

Vegetative Cover and Geosynthetics
Evidence of erosion, settlement, rutting, potholes, slippage:
None.
Evidence of stressed vegetation or bare spots:
None.
Exposed geosynthetics, if so, any visible signs of damage to geosynthetics:
None.
Additional Comments:
Sampling was conducted in the fall, natural dying processes were starting to take place.
Gas Venting System & Groundwater Monitoring Points
Evidence of damage to wells/vents or surrounding area (cracking, misalignment, missing pieces):
None.
Evidence of cover system subsidence or upheaval near wells/vents:
None.
Evidence of wildlife intrusion (nests, burrows, wasp nests):
None.
Evidence of spilled liquids (well tampering/vent blowout):
None.
GAS VENTS: (Unusual conditions – belching, whistling, excessive gas (odor) production):
None. Area around gas vents was clear.
MONITORING WELLS: (Well covers in place and secure)
Tried to gauged GP-8, the well and pad was tipped over by a tree. Also, the rain from the previous day caused area flooding. Water was under the well and possibly had entered the pvc casing. Cut the well locks on GP-6, GP-12, GP-11 and GP-22. GP-12 had something blocking the well and the well could not be gauged. GP-21 did not have a casing around the PVC. MW-8S and MW-8D were not found during the sampling event. Could not locate MW-7S, GP-24 and GP-7.

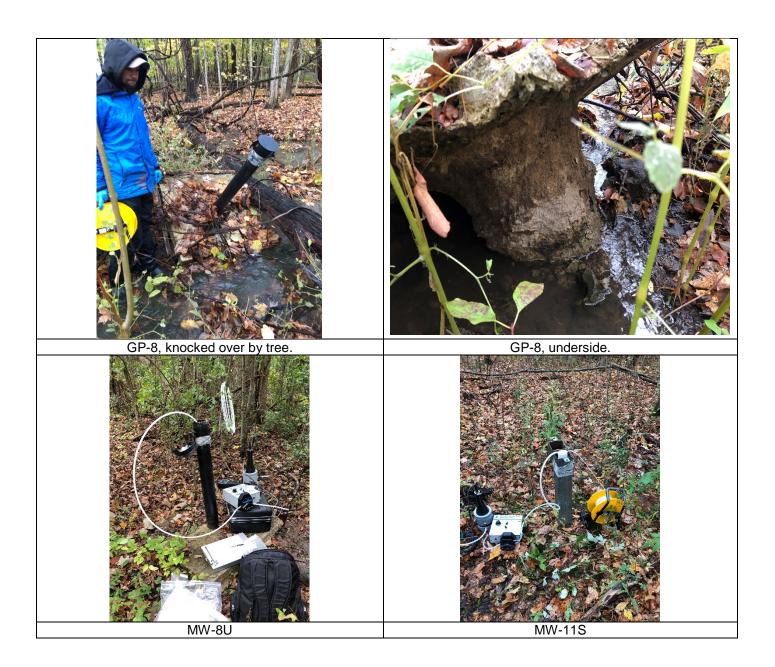
Day: Monday Date: 10.30.17

Landfill Inspection Report Page 2 of 4

LANDFILL INSPECTION REPORT

ANDFILL INSPECTION REPORT	Day:	<u>Monday</u>	Date:	<u>10.30.17</u>
Additional Comments:				
Rain from the previous day caused area flooding at the site.				

Landfill/Gas Vent Monitoring Data


	Landfill Mo	nitoring	Gas Vent Monitoring				
A = 0	СО	PID Reading (ppm)	Gas	СО	PID Reading (ppm)		
Area	%LEL	O ₂ / H ₂ S	Vent	%LEL	O ₂ / H ₂ S		
South	0	0.0	1	0	0.2		
	0	20.9 /0] '	0	20.9 /0		
West	0	0.0	2	0	0.0		
	0	20.9 /0	7 2	0	20.9 /0		
North	0	0.0	3	0	0.0		
	0	20.9 /0]	0	20.9 /0		
East	0	0.0	4	0	0.0		
	0	20.9 /0	7 4	0	20.9 /0		
Top of	0	0.0	5	0	0.0		
Landfill	0	20.9 /0] 3 [0	20.9 /0		
			6	0	0.0		
			0	0	20.9 /0		
				0	0.0		
			7	0	20.9 /0		

Landfill Inspection Report Page 3 of 4

Inspection Photo log

Day:

Monday Date: 10.30.17

Landfill Inspection Report Page 4 of 4

EA Engineering, PC and Its Affiliate EA Science and Technology

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:
MW-5	S. Nelson / J. Marra	NYSDEC
Location:	Well Condition:	Weather:
William Benson Landfill	good, overgrown	light rain, ~46 F, cloudy, cold
Sounding Method:	Gauge Date:	Measurement Ref:
100-ft Solinst WLI	10.30.17	TOC
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
up 2.5'	1310	2"

Purge Date:	Purge Time:		
10.30.17	1318-1342		
Purge Method:	Field Technician:		
Low Flow - Peristaltic Pump	S. Nelson / J. Marra		

Well Volume								
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:						
	0.163	up 2.5'						
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:						
	0	Peristaltic						
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:						
0	0	20.00'						

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp	Cond	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
1318		0	0.25	6.06	-44	12.25	0.79	1.87	216
1322		1	0.25	6.07	-49	12.35	0.708	1.14	112
1326		2	0.25	6.00	-50	12.34	0.70	0.81	47.5
1330		3	0.25	5.99	-51	12.38	0.698	0.63	30.1
1334		4	0.25	5.99	-54	12.38	0.702	0.48	23.6
1338		5	0.25	5.94	-53	12.41	0.711	0.38	23.8
1342		6	0.25	6.08	-55	12.42	0.719	0.36	25.2
		·							
		·							
		·							

Total Quantity of Water Removed (Lite	er): 6	Sampling Time:	1342	
Samplers:	SN/JM	Split Sample With:	MS/MSD	
Sampling Date:	10.30.17	Sample Type:	grab, GW	

COMMENTS AND OBSERVATIONS: Collected PFC and 1,4 Dioxane samples at this location, could not collect gauging information due to the sensitivity of the sampling. The well was not gauged to prevent contamination in the samples.

EA Engineering, PC and its Affliate EA Science and Technology

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:		Client:	
MW-8U	S. Nelson / J. Marra		NYSDEC	
Location:	Well Condition:		Weather:	
William Benson Landfill	ok		~46 F, cloudy, cold, windy	
Sounding Method:	Gauge Date:		Measurement Ref:	
100-ft Solinst WLI	10.30.17		тос	
Stick Up/Down (ft):	Gauge Time:		Well Diameter (in):	
up 2.5'			2"	
Purge Date:		Purge Time		
_		Purge Time		
10.30.17			1405-1411	
Purge Method:		Field Technician:		
Low Flow - Peristaltic Pump		S. Nelson /	J. Marra	

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
	0.163	up 2.5'			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
	0	Peristaltic			
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:			
0	0	20.00'			

	Water Quality Parameters								
Time	DTW (ft btoo)	Volume	Rate	pH (mll.umita)	ORP	Temp	Cond	DO (ver/L)	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
1405		0	0.25	6.97	-27	11.94	1.53	6.36	181
1408		0.75	0.25	6.90	-20	11.36	1.5	4.43	112
1411		1.5	0.25	6.84	-20	11.75	1.53	2.36	194

Total Quantity of Water Removed (Lite	r): 1.5	Sampling Time:	1445
Samplers:	SN/JM	Split Sample With:	none
Sampling Date:	10.30.17	Sample Type:	
	_		

COMMENTS AND OBSERVATIONS: Collected PFC and 1,4 Dioxane samples at this location, could not collect gauging information due to the sensitivity of the sampling. The well was not gauged to prevent contamination in the samples. Well went dry during purging at 1412, was allowed to recharge prior to sampling.

EA Engineering, PC and its Affliate EA Science and Technology

GROUNDWATER SAMPLING PURGE FORM

EA Personnel:	Client:
S. Nelson / J. Marra	NYSDEC
Well Condition:	Weather:
good	~46 F, cloudy, cold, windy
Gauge Date:	Measurement Ref:
10.30.17	TOC
Gauge Time:	Well Diameter (in):
1155	2"
	S. Nelson / J. Marra Well Condition: good Gauge Date: 10.30.17 Gauge Time:

Purge Date:	Purge Time:
10.30.17	1204-1232
Purge Method:	Field Technician:
Low Flow - Peristaltic Pump	S. Nelson / J. Marra

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
22.38	0.163	up 2.5'			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
10.45	1.94459	Peristaltic			
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:			
11.93	9.72295	20.00'			

	Water Quality Parameters								
Time	DTW	Volume	Rate	pН	ORP	Temp	Cond	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
1204	10.67	0	0.25	6.48	82	11.71	0.684	20.59	315
1208	10.81	1	0.25	5.70	50	11.99	0.684	5.03	42.1
1212	10.81	2	0.25	5.70	49	12.07	0.678	3.73	37.9
1216	10.85	3	0.25	5.71	60	12.15	0.676	2.51	42.0
1220	10.87	4	0.25	5.89	106	12.05	0.683	3.66	41.2
1224	10.89	5	0.25	5.81	94	12.13	0.682	2.09	40.0
1228	10.91	6	0.25	5.80	100	12.17	0.682	2.03	39.1
1232	10.96	7	0.25	5.82	102	12.3	0.682	2.17	37.1

Total Quantity of Water Removed	(Liter): 7	Sampling Time:	1232
Samplers:	SN/JM	Split Sample With:	none
Sampling Date:	10.30.17	Sample Type:	grab, GW
COMMENTS AND OBSERVATION	S:		
	_	_	

EA Engineering, PC and its Affliate EA Science and Technology

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:
MW-9D	S. Nelson / J. Marra	NYSDEC
Location:	Well Condition:	Weather:
William Benson Landfill	good	~46 F, cloudy, cold, windy
Sounding Method:	Gauge Date:	Measurement Ref:
100-ft Solinst WLI	10.30.17	TOC
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
up 2.5'	1145	2"

Purge Date:	Purge Time:
10.30.17	1057-1117
Purge Method:	Field Technician:
Low Flow - Peristaltic Pump	S. Nelson / J. Marra

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
35.9	0.163	up 2.5'				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
24.4	1.8745	Peristaltic				
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:				
11.5	9.3725	20.00'				

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp	Cond	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
1057		0	0.25	7.41	-96	12.84	0.11	0.525	4.0
1101		1	0.25	7.40	-89	11.93	0.0	0.535	2.0
1105		2	0.25	7.37	-83	11.84	0.0	0.533	1.1
1109		3	0.25	7.34	-82	11.43	0.0	0.537	1.8
1113		4	0.25	7.33	-81	11.36	0.0	0.536	1.7
1117		5	0.25	7.32	-81	11.29	0.0	0.536	1.4

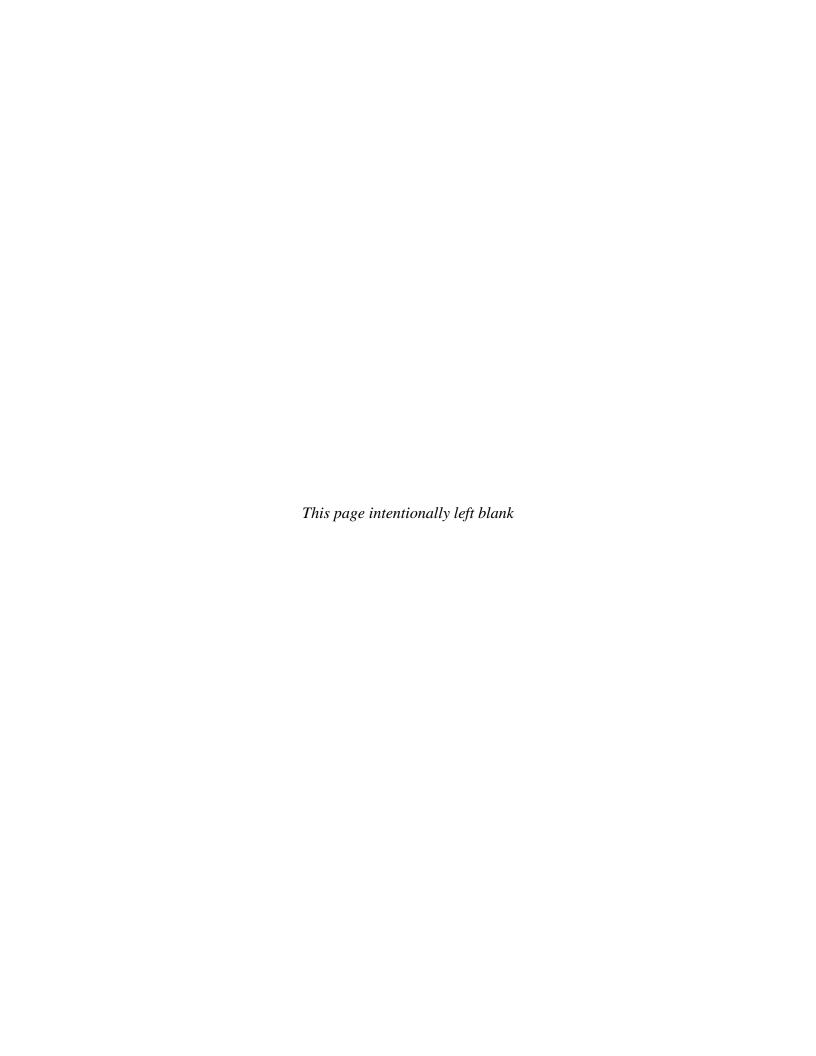
Total Quantity of Water Removed (Li	ter): 5	Sampling Time:	1117
Samplers:	SN/JM	Split Sample With:	duplicate
Sampling Date:	10.30.17	Sample Type:	grab, GW
		-	

COMMENTS AND OBSERVATIONS: Collected PFC and 1,4 Dioxane samples at this location, could not collect gauging information due to the sensitivity of the sampling. The well was not gauged to prevent contamination in the samples.

EA Engineering, PC and its Affiliate EA Science and Technology

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:
MW-11S	S. Nelson / J. Marra	NYSDEC
Location:	Well Condition:	Weather:
William Benson Landfill	good	~46 F, cloudy, cold, windy
Sounding Method:	Gauge Date:	Measurement Ref:
100-ft Solinst WLI	10.30.17	тос
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
up 2.5'	1500	2"


Purge Date:	Purge Time:
10.30.17	1512-1544
Purge Method:	Field Technician:
Low Flow - Peristaltic Pump	S. Nelson / J. Marra

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
22.79	0.163	up 2.5'				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
2.34	3.33335	Peristaltic				
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:				
20.45	16.66675	20.00'				

	Water Quality Parameters								
Time	e DTW Volume Rate pH ORP Temp Cond DO Turbidity							Turbidity	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
1512	3.22	0	0.25	6.97	-45	11.17	0.968	11.59	200
1516	3.30	1	0.25	6.73	-74	11.88	0.966	2.26	93.0
1520	3.34	2	0.25	6.62	-73	11.98	0.965	1.29	73.0
1524	3.35	3	0.25	6.57	-71	12.01	0.964	0.90	61.3
1528	3.50	4	0.25	6.55	-70	12.13	0.966	0.74	56.4
1532	3.61	5	0.25	6.53	-70	12.21	0.967	0.58	53.2
1536	3.75	6	0.25	6.58	-69	12.28	0.968	0.51	50.5
1540	3.81	7	0.25	6.52	-69	12.31	0.969	0.47	48.2
1544	3.90	8	0.25	6.51	-69	12.31	0.971	0.45	49.6

Total Quantity of Water Removed	(Liter): 8	Sampling Time:	1544
Samplers:	SN/JM	Split Sample With:	none
Sampling Date:	10.30.17	Sample Type:	grab / GW
COMMENTS AND OBSERVATION	S:		
	_	_	

Appendix C Daily Field Reports

William Benson Landfill

NYSDEC Site # 8-26-007

Temperature: (F) 70 (am) 80 (pm)

Day: Wednesday

Wind Direction: (am) (pm)

Weather: (am) Sunny, hot, some clouds

(pm) sunny, hot, some clouds

Date: 6.22.16

 Contract # 149074.12
 Arrive at site
 1120
 (am)

 Livonia, New York
 Leave site:
 320
 (pm)

HEALTH & SAFETY:

Project Name

Are there any changes to the Health & Safety Plan? Yes () No (X) (If yes, list the deviation under items for concern)

Are monitoring results at acceptable levels? Soil Yes () n/a (X) * No ()

Waters Yes () n/a (X) * No () Air Yes () n/a (X) * No ()

OTHER ITEMS:

• If No, provide comments

Site Sketch Attached: Yes () No (X) Photos Taken: Yes (X) No ()

DESCRIPTION OF DAILY WORK PERFORMED:

Conducted an inspection of the landfill cap and surrounding area, including the gas vents and monitoring wells. Photos recorded and included in Inspection Report.

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: Sarah Nelson (Name of Subcontractor) personnel: none

(Name of contractor) equipment: 5 gas meter, WLI, pickup truck

(*Indicates active equipment)
Other Subcontractors: none

VISITORS TO SITE:

1. None

PROJECT SCHEDULE ISSUES:

NONE

PROJECT BUDGET ISSUES:

NONE

ITEMS OF CONCERN:

NONE

COMMENTS:

NONE

Daily Observation Report Page 1 of 2

ATTACHMENT(S) TO THIS REPORT:

Day: Wednesday Date: 6.22.16

NONE

SITE REPRESENTATIVE:

Name: Sarah Nelson

Daily Observation Report Page 2 of 2

®		Temperature: (F)	45	5	(am)	48	(pm)
		Wind Direction:	S 20mp		(am)	SE 25mph	(pm)
Project Name William Benson Landfill		Weather:	·		rain, ov	ercast, co	ld, windy
NYSDEC Site # 8-26-007				(pm) over	rcast, wi	ndy, cold	
Contract # 149074.12		Arrive at site	815		(am)		
Livonia, New York		Leave site:	445		(pm)		
HEALTH & SAFETY:							
Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)	?	Yes ()		No (X)			
Are monitoring results at acceptable levels?	Soil	Yes ()		n/a (X)	* No) ()	
	Waters Air	Yes () Yes ()		n/a (X) n/a (X)	* No * No) ()) ()	
OTHER ITEMS:		()	•	If No, provi		` '	

Day: Monday

Date: 10.30.17

DESCRIPTION OF DAILY WORK PERFORMED:

Yes ()

Yes (X)

No (X)

No ()

Site Sketch Attached:

Photos Taken:

Onsite for groundwater sampling and landfill inspection. JM and SN onsite at 815 am. Gauged 15 wells prior to sampling. Conducted landfill inspection and used a 5 part gas meter to collect readings of H2S, CO2, LEL, O2 and VOCs at seven gas vent locations. Collected groundwater samples at 5 locations. Monitoring wells MW-8S and MW-8D were missing and could not be found. GP-8 was knocked over by a tree and a large amount of water that had accumulated from the previous days rain event was flowing under the well, therefore the well was not gauged.

SAMPLING (Soil/Water/Air) Sample ID:	Sample Date / Time:	Description of analysis:
MW-9D (duplicate)	10.30.17 / 1117	TAL metals, T Cyanide, 1,4-Dioxane, PFC
MW-9S	10.30.17 / 1232	TAL metals, T Cyanide
MW-8U	10.30.17 / 1445	TAL metals, T Cyanide, 1,4-Dioxane, PFC
MW-5 (ms/msd)	10.30.17 / 1342	TAL metals, T Cyanide, 1,4-Dioxane, PFC
MW-11S	10.30.17 / 1544	TAL metals, T Cyanide

Daily Observation Report Page 1 of 3

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: Sarah Nelson, Justin Marra

(Name of Subcontractor) personnel: none

(Name of contractor) equipment: 5 gas meter, WLI, pickup truck, peristaltic pump, tubing, Horiba-U52,

Date: 10.30.17

Day: Monday

(*Indicates active equipment)
Other Subcontractors: none

VISITORS TO SITE:

1. None

PROJECT SCHEDULE ISSUES:

NONE

PROJECT BUDGET ISSUES:

NONE

ITEMS OF CONCERN:

NONE

COMMENTS:

NONE

ATTACHMENT(S) TO THIS REPORT:

NONE

SITE REPRESENTATIVE:

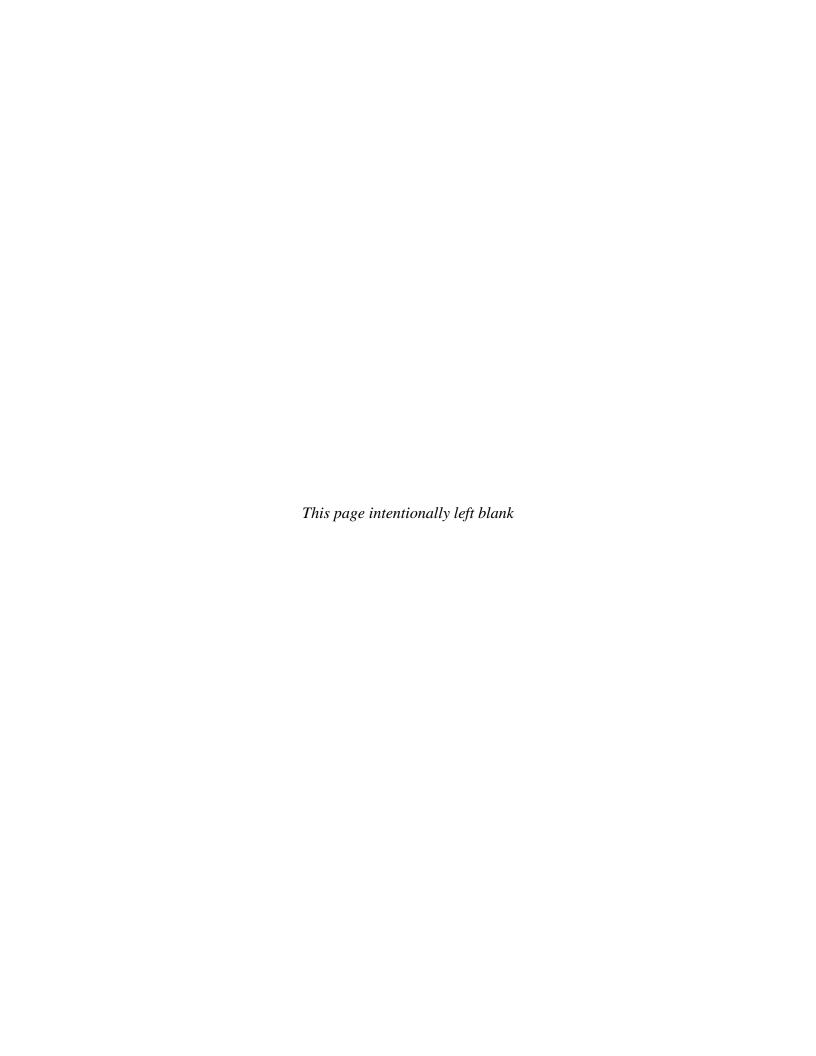
Name: Sarah Nelson

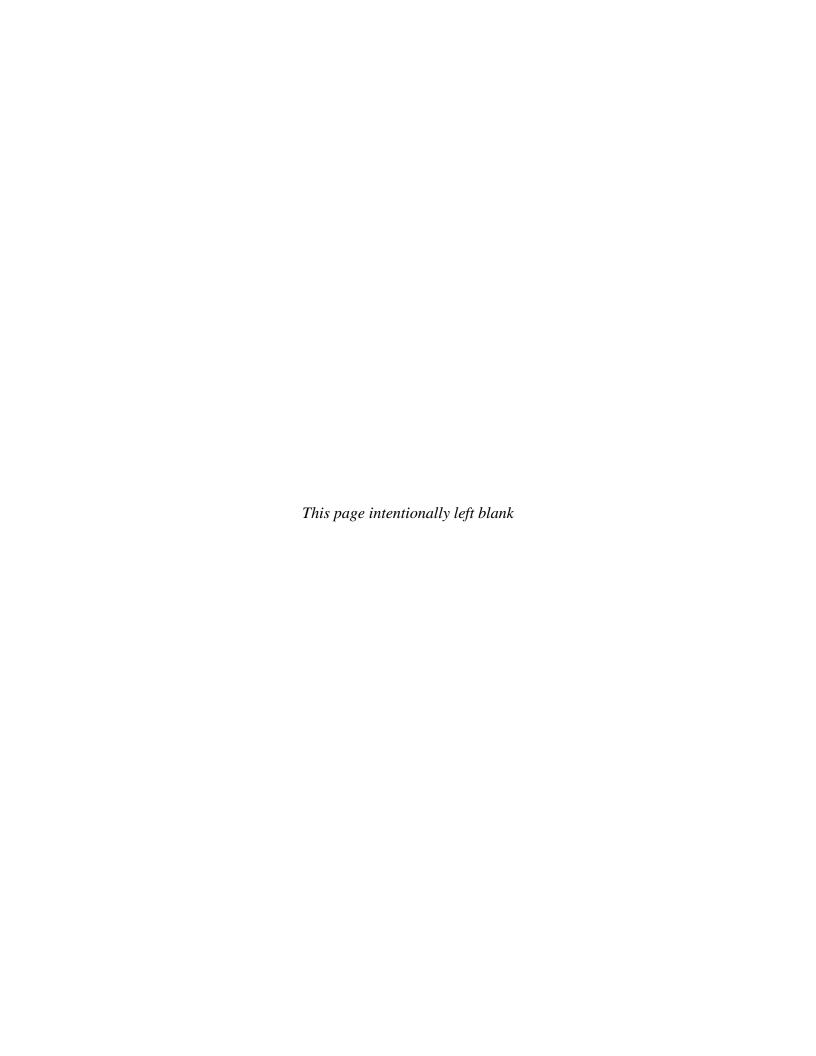
Daily Observation Report Page 2 of 3

PHOTO LOG

Day: <u>Monday</u>

Date: 10.30.17


MW-11S GP-08



Daily Observation Report Page 3 of 3

Appendix D Analytical Results 2017

November 10, 2017

Christopher Schroer EA Engineering, Science & Tech. - NY 6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211

Project Location: William Benson Landfill - Livonia, NY

Client Job Number: Project Number: 14907.12

Laboratory Work Order Number: 17K0048

Enclosed are results of analyses for samples received by the laboratory on November 1, 2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
17K0048-01	5
17K0048-02	8
17K0048-03	10
17K0048-04	13
17K0048-05	16
17K0048-06	18
17K0048-07	19
Sample Preparation Information	22
QC Data	23
1,4-Dioxane by isotope dilution GC/MS	23
B190132	23
Metals Analyses (Total)	24
B190439	24
B190440	25
B190529	27
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	28
B190009	28
Flag/Qualifier Summary	29
Certifications	30
Chain of Custody/Sample Receipt	32

REPORT DATE: 11/10/2017

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

EA Engineering, Science & Tech. - NY 6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211

ATTN: Christopher Schroer

DED 1411 (DED 14007.12

PURCHASE ORDER NUMBER: 14907.12

PROJECT NUMBER: 14907.12

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 17K0048

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: William Benson Landfill - Livonia, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-9D	17K0048-01	Ground Water		SW-846 6010C-D	
				SW-846 6020A-B	
				SW-846 7470A	
				SW-846 8270D	
				SW-846 9014	
MW-9S	17K0048-02	Ground Water		SW-846 6010C-D	
				SW-846 6020A-B	
				SW-846 7470A	
				SW-846 9014	
MW-5	17K0048-03	Ground Water		SW-846 6010C-D	
				SW-846 6020A-B	
				SW-846 7470A	
				SW-846 8270D	
				SW-846 9014	
MW-8U	17K0048-04	Ground Water		SW-846 6010C-D	
				SW-846 6020A-B	
				SW-846 7470A	
				SW-846 8270D	
				SW-846 9014	
MW-11S	17K0048-05	Ground Water		SW-846 6010C-D	
				SW-846 6020A-B	
				SW-846 7470A	
				SW-846 9014	
Rinse Blank	17K0048-06	Rinse Blank		SW-846 8270D	
MW-Duplicate-01	17K0048-07	Ground Water		SW-846 6010C-D	
				SW-846 6020A-B	
				SW-846 7470A	
				SW-846 8270D	
				SW-846 9014	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 6010C-D

Qualifications:

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated. Analyte & Samples(s) Qualified:

17K0048-03[MW-5], B190439-MS1, B190439-MSD1

Magnesium

17K0048-03[MW-5], B190439-MSD1

Sodium

17K0048-03[MW-5], B190439-MSD1

SW-846 6010C/D SW-846 6020A/B

For NC, Metals methods SW-846 6010D and SW-846 6020B are followed, and for all other states methods SW-846 6010C and SW-846 6020A are followed.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Project Manager

Lua Warrengton

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-9D Sampled: 10/30/2017 11:17

Sample ID: 17K0048-01
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		ND	0.20	0.033	μg/L	1		SW-846 8270D	11/3/17	11/9/17 18:26	СЈМ
	Surrogates		% Reco	very	Recovery Limits	3	Flag/Qual				
1,4-Dioxane-d8			21.4		15-110					11/9/17 18:26	

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-9D Sampled: 10/30/2017 11:17

Sample ID: 17K0048-01
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aluminum	ND	0.050	0.037	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 20:57	QNW
Antimony	ND	5.0	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Arsenic	ND	2.0	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Barium	100	50	26	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Beryllium	ND	2.0	0.61	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Cadmium	ND	2.5	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Calcium	59	0.15	0.11	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 20:57	QNW
Chromium	ND	5.0	2.5	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Cobalt	ND	5.0	0.45	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Copper	ND	25	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Iron	0.59	0.050	0.040	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 20:57	QNW
Lead	ND	5.0	0.69	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Magnesium	27	0.15	0.026	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 20:57	QNW
Manganese	46	5.0	0.97	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Mercury	ND	0.00010	0.000034	mg/L	1		SW-846 7470A	11/9/17	11/9/17 18:19	TJK
Nickel	ND	25	1.9	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Potassium	1.8	2.0	0.32	mg/L	1	J	SW-846 6010C-D	11/8/17	11/9/17 20:57	QNW
Selenium	ND	25	11	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Silver	ND	2.5	0.38	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Sodium	24	2.0	0.28	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 20:57	QNW
Thallium	ND	1.0	0.37	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Vanadium	ND	25	13	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD
Zinc	54	50	24	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:26	WSD

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-9D Sampled: 10/30/2017 11:17

Sample ID: 17K0048-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.010	0.0080	mg/L	1		SW-846 9014	11/2/17	11/3/17 10:20	VAK

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-9S Sampled: 10/30/2017 12:32

Sample ID: 17K0048-02
Sample Matrix: Ground Water

Metals	Analyses	(Total)	

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aluminum	ND	0.050	0.037	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:02	QNW
Antimony	ND	5.0	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Arsenic	ND	2.0	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Barium	120	50	26	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Beryllium	ND	2.0	0.61	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Cadmium	ND	2.5	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Calcium	110	0.15	0.11	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:02	QNW
Chromium	ND	5.0	2.5	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Cobalt	1.1	5.0	0.45	$\mu g/L$	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Copper	ND	25	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Iron	1.5	0.050	0.040	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:02	QNW
Lead	ND	5.0	0.69	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Magnesium	32	0.15	0.026	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:02	QNW
Manganese	170	5.0	0.97	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Mercury	ND	0.00010	0.000034	mg/L	1		SW-846 7470A	11/9/17	11/9/17 18:20	TJK
Nickel	3.2	25	1.9	μg/L	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Potassium	1.3	2.0	0.32	mg/L	1	J	SW-846 6010C-D	11/8/17	11/9/17 21:02	QNW
Selenium	ND	25	11	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Silver	ND	2.5	0.38	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Sodium	4.8	2.0	0.28	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:02	QNW
Thallium	ND	1.0	0.37	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Vanadium	ND	25	13	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD
Zinc	ND	50	24	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:36	WSD

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-9S Sampled: 10/30/2017 12:32

Sample ID: 17K0048-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.010	0.0080	mg/L	1		SW-846 9014	11/2/17	11/3/17 10:20	VAK

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-5 Sampled: 10/30/2017 13:42

Sample ID: 17K0048-03
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	2.2	0.20	0.033	μg/L	1		SW-846 8270D	11/3/17	11/9/17 18:45	СЈМ
Surrogates		% Reco	overy	Recovery Limit	ts	Flag/Qual				
1.4-Dioyane-d8		28.2		15-110			-		11/9/17 18:45	

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-5 Sampled: 10/30/2017 13:42

Sample ID: 17K0048-03
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aluminum	ND	0.050	0.037	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 20:53	QNW
Antimony	ND	5.0	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Arsenic	23	2.0	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Barium	360	50	26	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Beryllium	ND	2.0	0.61	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Cadmium	ND	2.5	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Calcium	91	0.15	0.11	mg/L	1	MS-19	SW-846 6010C-D	11/8/17	11/9/17 20:53	QNW
Chromium	ND	5.0	2.5	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Cobalt	1.2	5.0	0.45	$\mu g/L$	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Copper	ND	25	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Iron	4.6	0.050	0.040	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 20:53	QNW
Lead	ND	5.0	0.69	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Magnesium	24	0.15	0.026	mg/L	1	MS-19	SW-846 6010C-D	11/8/17	11/9/17 20:53	QNW
Manganese	100	5.0	0.97	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Mercury	ND	0.00010	0.000034	mg/L	1		SW-846 7470A	11/9/17	11/9/17 18:06	TJK
Nickel	8.5	25	1.9	μg/L	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Potassium	6.6	2.0	0.32	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 20:53	QNW
Selenium	ND	25	11	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Silver	ND	2.5	0.38	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Sodium	28	2.0	0.28	mg/L	1	MS-19	SW-846 6010C-D	11/8/17	11/9/17 20:53	QNW
Thallium	ND	1.0	0.37	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Vanadium	ND	25	13	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD
Zinc	ND	50	24	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:23	WSD

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-5 Sampled: 10/30/2017 13:42

Sample ID: 17K0048-03
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.010	0.0080	mg/L	1		SW-846 9014	11/2/17	11/3/17 10:20	VAK

Project Location: William Benson Landfill - Livonia Work Order: 17K0048 Sample Description:

Date Received: 11/1/2017

Sampled: 10/30/2017 14:45 Field Sample #: MW-8U

Sample ID: 17K0048-04 Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		6.9	0.20	0.032	μg/L	1		SW-846 8270D	11/3/17	11/9/17 19:05	СЈМ
	Surrogates		% Reco	very	Recovery Limits	S	Flag/Qual				
1,4-Dioxane-d8			30.3		15-110		-			11/9/17 19:05	

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-8U Sampled: 10/30/2017 14:45

Sample ID: 17K0048-04
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aluminum	ND	0.050	0.037	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:07	QNW
Antimony	0.97	5.0	0.48	$\mu g/L$	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Arsenic	ND	2.0	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Barium	1800	50	26	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Beryllium	ND	2.0	0.61	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Cadmium	ND	2.5	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Calcium	95	0.15	0.11	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:07	QNW
Chromium	ND	5.0	2.5	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Cobalt	3.2	5.0	0.45	$\mu g/L$	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Copper	2.6	25	1.8	$\mu g/L$	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Iron	6.9	0.050	0.040	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:07	QNW
Lead	ND	5.0	0.69	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Magnesium	41	0.15	0.026	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:07	QNW
Manganese	150	5.0	0.97	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Mercury	ND	0.00010	0.000034	mg/L	1		SW-846 7470A	11/9/17	11/9/17 18:22	TJK
Nickel	30	25	1.9	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Potassium	41	2.0	0.32	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:07	QNW
Selenium	ND	25	11	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Silver	ND	2.5	0.38	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Sodium	120	2.0	0.28	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:07	QNW
Thallium	ND	1.0	0.37	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Vanadium	ND	25	13	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD
Zinc	ND	50	24	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:40	WSD

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-8U Sampled: 10/30/2017 14:45

Sample ID: 17K0048-04
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.010	0.0080	mg/L	1		SW-846 9014	11/2/17	11/3/17 10:20	VAK

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-11S Sampled: 10/30/2017 15:44

Sample ID: 17K0048-05
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aluminum	ND	0.050	0.037	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:11	QNW
Antimony	ND	5.0	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Arsenic	19	2.0	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Barium	450	50	26	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Beryllium	ND	2.0	0.61	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Cadmium	ND	2.5	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Calcium	98	0.15	0.11	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:11	QNW
Chromium	ND	5.0	2.5	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Cobalt	0.74	5.0	0.45	$\mu g/L$	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Copper	ND	25	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Iron	7.4	0.050	0.040	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:11	QNW
Lead	ND	5.0	0.69	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Magnesium	47	0.15	0.026	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:11	QNW
Manganese	26	5.0	0.97	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Mercury	ND	0.00010	0.000034	mg/L	1		SW-846 7470A	11/9/17	11/9/17 18:24	TJK
Nickel	4.4	25	1.9	$\mu g/L$	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Potassium	1.9	2.0	0.32	mg/L	1	J	SW-846 6010C-D	11/8/17	11/9/17 21:11	QNW
Selenium	ND	25	11	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Silver	ND	2.5	0.38	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Sodium	44	2.0	0.28	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:11	QNW
Thallium	ND	1.0	0.37	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Vanadium	ND	25	13	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD
Zinc	ND	50	24	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:43	WSD

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-11S Sampled: 10/30/2017 15:44

Sample ID: 17K0048-05
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.010	0.0080	mg/L	1		SW-846 9014	11/2/17	11/3/17 10:20	VAK

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: Rinse Blank Sampled: 10/30/2017 14:25

Sample ID: 17K0048-06

Sample Matrix: Rinse Blank

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	ND	0.20	0.032	μg/L	1		SW-846 8270D	11/3/17	11/9/17 19:24	СЈМ
Surrogates		% Reco	very	Recovery Limits	S	Flag/Qual				
1,4-Dioxane-d8		25.8		15-110					11/9/17 19:24	

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-Duplicate-01 Sampled: 10/30/2017 00:00

Sample ID: 17K0048-07
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
Analy	yte Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	ND	0.20	0.033	μg/L	1		SW-846 8270D	11/3/17	11/9/17 19:43	СЈМ
Surrog	ates	% Reco	overy	Recovery Limits	1	Flag/Qual				
1,4-Dioxane-d8		24.8		15-110					11/9/17 19:43	

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-Duplicate-01 Sampled: 10/30/2017 00:00

Sample ID: 17K0048-07
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aluminum	ND	0.050	0.037	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:16	QNW
Antimony	ND	5.0	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Arsenic	ND	2.0	1.8	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Barium	98	50	26	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Beryllium	ND	2.0	0.61	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Cadmium	ND	2.5	0.48	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Calcium	58	0.15	0.11	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:16	QNW
Chromium	ND	5.0	2.5	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Cobalt	ND	5.0	0.45	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Copper	ND	25	1.8	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Iron	0.45	0.050	0.040	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:16	QNW
Lead	ND	5.0	0.69	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Magnesium	27	0.15	0.026	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:16	QNW
Manganese	46	5.0	0.97	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Mercury	ND	0.00010	0.000034	mg/L	1		SW-846 7470A	11/9/17	11/9/17 18:25	TJK
Nickel	ND	25	1.9	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Potassium	1.8	2.0	0.32	mg/L	1	J	SW-846 6010C-D	11/8/17	11/9/17 21:16	QNW
Selenium	ND	25	11	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Silver	ND	2.5	0.38	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Sodium	25	2.0	0.28	mg/L	1		SW-846 6010C-D	11/8/17	11/9/17 21:16	QNW
Thallium	ND	1.0	0.37	μg/L	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Vanadium	ND	25	13	$\mu g/L$	5		SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD
Zinc	44	50	24	μg/L	5	J	SW-846 6020A-B	11/8/17	11/9/17 13:46	WSD

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0048

Date Received: 11/1/2017

Field Sample #: MW-Duplicate-01 Sampled: 10/30/2017 00:00

Sample ID: 17K0048-07
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.010	0.0080	mg/L	1		SW-846 9014	11/2/17	11/3/17 10:20	VAK

Sample Extraction Data

Prep Method: SW-846 3005A-SW-846 6010C-D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17K0048-01 [MW-9D]	B190439	50.0	50.0	11/08/17	
17K0048-02 [MW-9S]	B190439	50.0	50.0	11/08/17	
17K0048-03 [MW-5]	B190439	50.0	50.0	11/08/17	
17K0048-04 [MW-8U]	B190439	50.0	50.0	11/08/17	
17K0048-05 [MW-11S]	B190439	50.0	50.0	11/08/17	
17K0048-07 [MW-Duplicate-01]	B190439	50.0	50.0	11/08/17	

Prep Method: SW-846 3005A-SW-846 6020A-B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
17K0048-01 [MW-9D]	B190440	50.0	50.0	11/08/17
17K0048-02 [MW-9S]	B190440	50.0	50.0	11/08/17
17K0048-03 [MW-5]	B190440	50.0	50.0	11/08/17
17K0048-04 [MW-8U]	B190440	50.0	50.0	11/08/17
17K0048-05 [MW-11S]	B190440	50.0	50.0	11/08/17
17K0048-07 [MW-Duplicate-01]	B190440	50.0	50.0	11/08/17

Prep Method: SW-846 7470A Prep-SW-846 7470A

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17K0048-01 [MW-9D]	B190529	6.00	6.00	11/09/17	
17K0048-02 [MW-9S]	B190529	6.00	6.00	11/09/17	
17K0048-03 [MW-5]	B190529	6.00	6.00	11/09/17	
17K0048-04 [MW-8U]	B190529	6.00	6.00	11/09/17	
17K0048-05 [MW-11S]	B190529	6.00	6.00	11/09/17	
17K0048-07 [MW-Duplicate-01]	B190529	6.00	6.00	11/09/17	

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17K0048-01 [MW-9D]	B190132	1000	1.00	11/03/17	
17K0048-03 [MW-5]	B190132	1000	1.00	11/03/17	
17K0048-04 [MW-8U]	B190132	710	0.700	11/03/17	
17K0048-06 [Rinse Blank]	B190132	920	0.900	11/03/17	
17K0048-07 [MW-Duplicate-01]	B190132	1000	1.00	11/03/17	

SW-846 9014

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17K0048-01 [MW-9D]	B190009	50.0	50.0	11/02/17	
17K0048-02 [MW-9S]	B190009	50.0	50.0	11/02/17	
17K0048-03 [MW-5]	B190009	50.0	50.0	11/02/17	
17K0048-04 [MW-8U]	B190009	50.0	50.0	11/02/17	
17K0048-05 [MW-11S]	B190009	50.0	50.0	11/02/17	
17K0048-07 [MW-Duplicate-01]	B190009	50.0	50.0	11/02/17	

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B190132 - SW-846 3510C		· ·									
Blank (B190132-BLK1)				Prepared: 11	/03/17 Anal	yzed: 11/09/	17				
1,4-Dioxane	ND	0.20	μg/L								
Surrogate: 1,4-Dioxane-d8	2.21		μg/L	10.0		22.1	15-110				
LCS (B190132-BS1)		Prepared: 11/03/17 Analyzed: 11/09/17									
1,4-Dioxane	10.4	0.20	μg/L	10.0		104	40-140				
Surrogate: 1,4-Dioxane-d8	2.53		μg/L	10.0		25.3	15-110				
LCS Dup (B190132-BSD1)				Prepared: 11	/03/17 Analy	yzed: 11/09/	17				
1,4-Dioxane	11.9	0.20	μg/L	10.0		119	40-140	13.3	30		
Surrogate: 1,4-Dioxane-d8	2.50		μg/L	10.0		25.0	15-110				
Matrix Spike (B190132-MS2)	Sou	rce: 17K0048-	-03	Prepared: 11/03/17 Analyzed: 11/09/17							
1,4-Dioxane	13.4	0.20	μg/L	10.0	2.23	112	40-140				
Surrogate: 1,4-Dioxane-d8	3.04		μg/L	10.0		30.4	15-110				
Matrix Spike Dup (B190132-MSD2)	Sou	Prepared: 11/03/17 Analyzed: 11/09/17									
1,4-Dioxane	14.2	0.20	μg/L	10.0	2.23	120	40-140	5.47	20		
Surrogate: 1,4-Dioxane-d8	2.78		μg/L	10.0		27.8	15-110				

QUALITY CONTROL

		Reporting		Spike	Course		%REC		RPD	
Analyte	Result	Limit	Units	Level	Source Result	%REC	Limits	RPD	Limit	Notes
Batch B190439 - SW-846 3005A										
Blank (B190439-BLK1)				Prepared: 11	/08/17 Analy	zed: 11/09/	17			
Aluminum	ND	0.050	mg/L							
Calcium	ND	0.15	mg/L							
ron	ND	0.050	mg/L							
Magnesium	ND	0.15	mg/L							
Potassium	ND	2.0	mg/L							
Sodium	ND	2.0	mg/L							
.CS (B190439-BS1)				Prepared: 11	/08/17 Analy	zed: 11/09/	17			
Aluminum	0.465	0.050	mg/L	0.500		93.0	80-120			
Calcium	4.20	0.15	mg/L	4.00		105	80-120			
fron	4.23	0.050	mg/L	4.00		106	80-120			
Magnesium	4.09	0.15	mg/L	4.00		102	80-120			
Potassium	4.10	2.0	mg/L	4.00		103	80-120			
Sodium	4.16	2.0	mg/L	4.00		104	80-120			
LCS Dup (B190439-BSD1)				Prepared: 11	/08/17 Analy	zed: 11/09/	17			
Aluminum	0.453	0.050	mg/L	0.500		90.6	80-120	2.61	20	
Calcium	4.11	0.15	mg/L	4.00		103	80-120	2.02	20	
ron	4.15	0.050	mg/L	4.00		104	80-120	2.11	20	
Magnesium	4.01	0.15	mg/L	4.00		100	80-120	2.08	20	
Potassium	4.03	2.0	mg/L	4.00		101	80-120	1.90	20	
Sodium	4.08	2.0	mg/L	4.00		102	80-120	1.91	20	
Duplicate (B190439-DUP1)	Sour	ce: 17K0048-	03	Prepared: 11	/08/17 Analy	zed: 11/09/	17			
Aluminum	ND	0.050	mg/L		ND			NC	20	
Calcium	94.3	0.15	mg/L		90.8			3.76	20	
ron	4.71	0.050	mg/L		4.56			3.16	20	
Magnesium	24.5	0.15	mg/L		23.6			3.44	20	
Potassium	6.85	2.0	mg/L		6.63			3.26	20	
Sodium	29.0	2.0	mg/L		28.0			3.46	20	
Matrix Spike (B190439-MS1)	Sour	ce: 17K0048-	03	Prepared: 11	/08/17 Analy	zed: 11/09/	17			
Aluminum	0.492	0.050	mg/L	0.500	ND	98.4	75-125			
Calcium	99.1	0.15	mg/L	4.00	90.8	206 *	75-125			MS-19
ron	9.04	0.050	mg/L	4.00	4.56	112	75-125			
Magnesium	28.4	0.15	mg/L	4.00	23.6	120	75-125			
Potassium	11.0	2.0	mg/L	4.00	6.63	109	75-125			
Sodium	33.0	2.0	mg/L	4.00	28.0	125	75-125			
Matrix Spike Dup (B190439-MSD1)	Sour	ce: 17K0048-	03	Prepared: 11	/08/17 Analy	zed: 11/09/	17			
Aluminum	0.484	0.050	mg/L	0.500	ND	96.7	75-125	1.73	20	
Calcium	103	0.15	mg/L	4.00	90.8	299 *		3.65	20	MS-19
ron	9.14	0.050	mg/L	4.00	4.56	114	75-125	1.20	20	
Magnesium	29.2	0.15	mg/L	4.00	23.6	140 *		2.71	20	MS-19
-										
Potassium	11.0	2.0	mg/L	4.00	6.63	110	75-125	0.270	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B190440 - SW-846 3005A										
Blank (B190440-BLK1)				Prepared: 11	/08/17 Analy	zed: 11/09/	17			
Antimony	ND	5.0	μg/L							
Arsenic	ND	2.0	$\mu \text{g/L}$							
Barium	ND	50	$\mu \text{g/L}$							
Beryllium	ND	2.0	μg/L							
Cadmium	ND	2.5	μg/L							
Chromium	ND	5.0	μg/L							
Cobalt	ND	5.0	μg/L							
Copper	ND	25	μg/L							
Lead	ND	5.0	μg/L							
Manganese	ND	5.0	μg/L							
Nickel	ND	25	μg/L							
Selenium	ND	25	μg/L							
Silver Thallium	ND	2.5	μg/L							
Thallium Vanadium	ND	1.0 25	μg/L							
	ND	50	μg/L							
Zinc	ND	30	μg/L							
LCS (B190440-BS1)				Prepared: 11	/08/17 Analy	zed: 11/09/	17			
Antimony	541	10	μg/L	500		108	80-120			
Arsenic	536	4.0	μg/L	500		107	80-120			
Barium	521	100	μg/L	500		104	80-120			
Beryllium	547	4.0	μg/L	500		109	80-120			
Cadmium	526	5.0	μg/L	500		105	80-120			
Chromium	520	10	μg/L	500		104	80-120			
Cobalt	523	10	μg/L	500		105	80-120			
Copper	1030	50	μg/L	1000		103	80-120			
Lead	549	10	μg/L	500		110	80-120			
Manganese	534	10	μg/L	500		107	80-120			
Nickel	511	50	μg/L	500		102	80-120			
Selenium	531	50	μg/L	500		106	80-120			
Silver	492	5.0	μg/L	500		98.4	80-120			
Thallium	474	2.0	μg/L	500		94.7	80-120			
Vanadium	533	50	μg/L	500		107	80-120			
Zinc	1120	100	μg/L	1000		112	80-120			
LCS Dup (B190440-BSD1)					/08/17 Analy	zed: 11/09/	17			
Antimony	529	10	$\mu \text{g/L}$	500		106	80-120	2.27	20	
Arsenic	525	4.0	μg/L	500		105	80-120	2.05	20	
Barium	511	100	μg/L	500		102	80-120	1.95	20	
Beryllium	538	4.0	μg/L	500		108	80-120	1.75	20	
Cadmium	516	5.0	μg/L	500		103	80-120	1.99	20	
Chromium	507	10	μg/L	500		101	80-120	2.67	20	
Cobalt	508	10	μg/L	500		102	80-120	2.86	20	
Copper	1000	50	μg/L	1000		100	80-120	2.60	20	
Lead	534	10	μg/L	500		107	80-120	2.67	20	
Manganese	519	10	μg/L	500		104	80-120	2.79	20	
Nickel	499	50	μg/L	500		99.8	80-120	2.39	20	
Selenium	530	50	μg/L	500		106	80-120	0.211	20	
Silver	484	5.0	μg/L	500		96.8	80-120	1.61	20	
Thallium	463	2.0	μg/L	500		92.6	80-120	2.24	20	
Vanadium Z	521	50	μg/L	500		104	80-120	2.37	20	
Zinc	1080	100	μg/L	1000		108	80-120	3.65	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B190440 - SW-846 3005A											
Duplicate (B190440-DUP1)	Sou	rce: 17K0048-	-03	Prepared: 11/08/17 Analyzed: 11/09/17							
Antimony	ND	5.0	μg/L		ND			NC	20		
Arsenic	22.3	2.0	$\mu g\!/\!L$		22.5			0.932	20		
Barium	368	50	$\mu g \! / \! L$		364			0.965	20		
Beryllium	ND	2.0	$\mu \text{g/L}$		ND			NC	20		
Cadmium	ND	2.5	μg/L		ND			NC	20		
Chromium	ND	5.0	μg/L		ND			NC	20		
Cobalt	1.27	5.0	$\mu g/L$		1.25			1.56	20	J	
Copper	ND	25	$\mu g/L$		ND			NC	20		
Lead	ND	5.0	$\mu g/L$		ND			NC	20		
Manganese	103	5.0	$\mu g/L$		102			0.655	20		
Nickel	8.60	25	$\mu g/L$		8.53			0.744	20	J	
Selenium	ND	25	μg/L		ND			NC	20		
Silver	ND	2.5	μg/L		ND			NC	20		
Γhallium	ND	1.0	μg/L		ND			NC	20		
Vanadium 	ND	25	μg/L		ND			NC	20		
Zinc	ND	50	μg/L		ND			NC	20		
Matrix Spike (B190440-MS1)		rce: 17K0048-			/08/17 Analy						
Antimony	548	10	μg/L	500	ND		75-125				
Arsenic	567	4.0	μg/L	500	22.5	109	75-125				
Barium	905	100	μg/L	500	364	108	75-125				
Beryllium	545	4.0	μg/L	500	ND	109	75-125				
Cadmium	531	5.0	μg/L	500	ND	106	75-125				
Chromium	531	10	μg/L	500	ND	106	75-125				
Cobalt	531	10	μg/L	500	1.25	106	75-125				
Copper	1020	50	μg/L	1000	ND	102	75-125				
Lead	548	10	μg/L	500	ND	110	75-125				
Manganese	642	10	μg/L	500	102	108	75-125				
Nickel	525	50	μg/L	500	8.53	103	75-125				
Selenium	549	50	μg/L	500	ND	110	75-125				
Silver Thallium	438	5.0	μg/L	500	ND	87.7	75-125				
	480	2.0	μg/L	500	ND	96.1	75-125				
Vanadium Zinc	552	50 100	μg/L μg/L	500 1000	ND	110 110	75-125 75-125				
ZIIIC	1100	100	μg/L		ND						
Matrix Spike Dup (B190440-MSD1)		rce: 17K0048-			/08/17 Analy						
Antimony	543	10	μg/L	500	ND		75-125	1.08	20		
Arsenic	568	4.0	μg/L	500	22.5	109	75-125	0.0676	20		
Barium Beryllium	904	100	μg/L μg/I	500	364	108	75-125	0.105	20		
Cadmium	537	4.0	μg/L μg/I	500	ND	107	75-125	1.44	20		
Caronium	524	5.0 10	μg/L μg/L	500	ND ND	105	75-125 75-125	1.17	20		
Cobalt	530	10	μg/L μg/L	500 500	ND	106 105	75-125 75-125	0.222	20 20		
Copper	529	50	μg/L μg/L	1000	1.25 ND	105	75-125 75-125	0.416 0.865	20		
Lead	1010 50 µg/L 1000 ND 101 553 10 µg/L 500 ND 111		75-125 75-125	0.865	20						
Manganese	553 646	10	μg/L μg/L	500	ND 102	109	75-125 75-125	0.638	20		
Nickel	522	50	μg/L μg/L	500	8.53	103	75-125 75-125	0.612	20		
Selenium	552	50	μg/L μg/L	500	8.53 ND	110	75-125 75-125	0.387	20		
Silver	446	5.0	μg/L μg/L	500	ND ND	89.2	75-125 75-125	1.76	20		
Thallium	446 492	2.0	μg/L μg/L	500	ND ND	98.4	75-125 75-125	2.40	20		
	548	50	μg/L μg/L	500	ND ND	110	75-125 75-125	0.678	20		
Vanadium			119/1.	500							

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B190529 - SW-846 7470A Prep											
Blank (B190529-BLK1)				Prepared & A	Analyzed: 11	/09/17					
Mercury	ND	0.00010	mg/L								
LCS (B190529-BS1)				Prepared & Analyzed: 11/09/17							
Mercury	0.00190	0.00010	mg/L	0.00200		95.0	80-120				
LCS Dup (B190529-BSD1)				Prepared & A	Analyzed: 11	/09/17					
Mercury	0.00191	0.00010	mg/L	0.00200		95.5	80-120	0.536	20		
Duplicate (B190529-DUP1)	Sour	ce: 17K0048-	03	Prepared & A	Analyzed: 11	/09/17					
Mercury	ND	0.00010	mg/L		NE)		NC	20		
Matrix Spike (B190529-MS1)	Sour	ce: 17K0048-	03	Prepared & A	Analyzed: 11	/09/17					
Mercury	0.00195	0.00010	mg/L	0.00200	NE	97.3	75-125				
Matrix Spike Dup (B190529-MSD1)	Sour	ce: 17K0048-	03	Prepared & Analyzed: 11/09/17							
Mercury	0.00193	0.00010	mg/L	0.00200	NE	96.5	75-125	0.859	20		

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)\ -\ Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B190009 - SW-846 9014										
Blank (B190009-BLK1)				Prepared: 11	/02/17 Anal	yzed: 11/03/	17			
Cyanide ND 0.010 mg/L										
LCS (B190009-BS1)				Prepared: 11	/02/17 Anal	yzed: 11/03/	17			
Cyanide	0.64	0.010	mg/L	0.672		94.5	80-120			
LCS Dup (B190009-BSD1)				Prepared: 11	/02/17 Anal	yzed: 11/03/	17			
Cyanide	0.63	0.010	mg/L	0.672		93.3	80-120	1.29	20	
Matrix Spike (B190009-MS1)	Sour	ce: 17K0048-	03	Prepared: 11	/02/17 Anal	yzed: 11/03/	17			
Cyanide	0.30	0.010	mg/L	0.382	NE	79.7	75-125			
Matrix Spike Dup (B190009-MSD1)	Sour	ce: 17K0048-	03	Prepared: 11	/02/17 Anal	yzed: 11/03/	17			
Cyanide	0.31	0.010	mg/L	0.382	NE	81.3	75-125	1.98	20	

MS-19

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit
DL	Method Detection Limit
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).

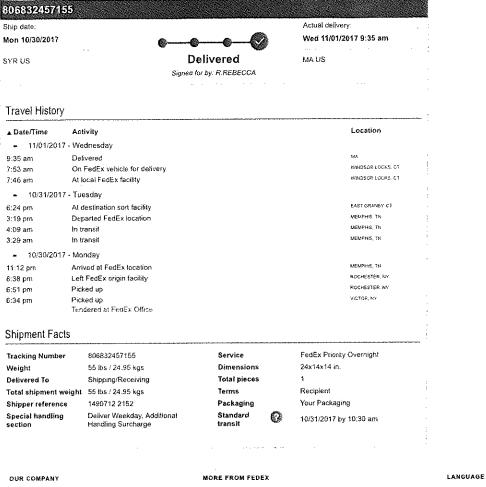
the sample. Appropriate or meaningful recoveries cannot be calculated.

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 6010C-D in Water	
Aluminum	CT,NH,NY,ME,VA,NC
Calcium	CT,NH,NY,ME,VA,NC
Iron	CT,NH,NY,ME,VA,NC
Magnesium	CT,NH,NY,ME,VA,NC
Potassium	CT,NH,NY,ME,VA,NC
Sodium	CT,NH,NY,ME,VA,NC
SW-846 6020A-B in Water	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,ME,VA,NC
Barium	CT,NH,NY,ME,VA,NC
Beryllium	CT,NH,NY,ME,VA,NC
Cadmium	CT,NH,NY,RI,ME,VA,NC
Chromium	CT,NH,NY,ME,VA,NC
Cobalt	CT,NH,NY,ME,VA,NC
Copper	CT,NH,NY,ME,VA,NC
Lead	CT,NH,NY,ME,VA,NC
Manganese	CT,NH,NY,ME,VA,NC
Nickel	CT,NH,NY,ME,VA,NC
Selenium	CT,NH,NY,ME,VA,NC
Silver	CT,NH,NY,ME,VA,NC
Thallium	CT,NH,NY,ME,VA,NC
Vanadium	CT,NH,NY,ME,VA,NC
Zinc	CT,NH,NY,ME,VA,NC
SW-846 7470A in Water	
Mercury	CT,NH,NY,NC,ME,VA
SW-846 8270D in Water	
1,4-Dioxane	NY
SW-846 9014 in Water	
Cyanide	NY,CT,NH,NC,ME,VA


The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2018
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2018
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2018
RI	Rhode Island Department of Health	LAO00112	12/30/2017
NC	North Carolina Div. of Water Quality	652	12/31/2017
NJ	New Jersey DEP	MA007 NELAP	06/30/2018
FL	Florida Department of Health	E871027 NELAP	06/30/2018
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2018
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2017
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2018
NC-DW	North Carolina Department of Health	25703	07/31/2018

							· · · · · · · · · · · · · · · · · · ·													
Table of Contents	Janiyoc Hon					_					.8W		bləi	Inwor	8 🔲	City				[
nte	Jeinkos noM		277'd		_						цэς			. (1	L	Federal		Date/Time:		F 🛱 ved by: (signature)
Ō	Soxhiet Soxhiet		mergo	itemo)	1_		1	ATAW		A9	WM		yatitey	qioinul	W 🗀	50vernment				of
₽ -	A INO GOG				02002000000000000000000000000000000000	тэнлО				/4						<u>γ</u>	Project Enti	:əmiT\ətsO		F 🞖 thished by: (signature)
<u>e</u>				-wan	TI 'dV	i welv	17.00	000000000000000000000000000000000000000	VIII TO THE	-										P Ved by: (signature)
व्र	(əuɪɹəp	λ εpp	1110-63	111 660	131 I AI			JEUR)							AY Part 375	None Carlo	Date/Time:		ր ved by: (signature)
	T = Tedlar Bag O = Other (please		noseiui													NY Unrestric				, L J
	S = Summa Canister		andard			\ 5	1									Part 360 GW NY Restricte		Date/Time:	2	Relinkquished by: (signature)
	IsiV = V	ı	inda o			X						i.	4A Cb-2.			NYC Sewet E Part 360 CW		Date/Fime: 9:35	2:2/8	Received by: (agnature)
	P = Plastic 5T = Sterile	ì			euequ3								VY TOGS			SQTS DWA		QQ31 LITEO		CANAN MALAS
	C = Class		O CHIRDON PROPERTY OF THE PARTY	derev	an wasanaan maasaa	L									kicateletia.	g merbara	L	Date/Time:		Kelinduished by: (signature)
	³ Container Codes: A = Amber Glass						¥4							T				.omiT/otefl		Reliffquished by: (signature)
	3 Container Code		ume	Ղուհոց) - A :u							lgіH - H								
	(aujue)	1100	3 13 11004	100.04	троле:	auun;	oo əp	იე ၁૫	၀၅ ခ	ti nid	fivv									
	O = Other (please	doite	sitaair	app cor	uwes a	dissoa	atea	ibui 01	. səpç	o puiv	volloì	əqi əsn	Please							
	Thiosulfate	1				T	1	T	· ·	T.,	\ \ \	n	1 ~~	+			11.08:01	10 020 00	V3C3	Соттепся:
	X = Sodium Hydroxide $T = Sodium$	-		_		_		ļ	X	×	×	11	(mb	X			those or	10- Dr 40	ru-mw	G
	B = Sodium Bisultate										8	n	10	X		Schi	TI-08.1	א פטור	51320171	8
	M = Mitric Acid												 	1					7	
	M = Methanol	-		-		+		 		-	-		 	 						
	H = HCF													1						
:	2 Preservation Codes																			
				\neg		†			Т	1	X	n	<u>106</u>	7		PHSI	Clasa		JI-MW	0
	(enfleb	-	-			+-	-	-		 ' -	3	77	-							G
	O = Other (pleme			_		ļ	<u> </u>		1		L		nt.	<u>'</u> ×			noson	<u> </u>	8-MW	ho
	95 = 708 97 = 708								ફ	િ	9	N	106	X		AyE1	nas a		SMW	$Q_{\mathcal{S}}$
	1 V = V			\top					П	1	,	n	M	X		हिट्ट	11:08:01	<	b-MW	හ
				十		1			×	×	Ę,	n	<u>m6</u>			14111	11.09.01	~	Ib-MW	0
	GW = Ground Water WW = Wester Water	-		\dashv	-	+			+				6.0000000000000000000000000000000000000						30 010	
	HANNE CANADA								\circ	7	7	apon apon	Matrix	deno	atisognio	O Senting	gninniged emiT\eteO	ile ID / Description	Client Samp	Con-1est Work Order#
		7							CY	ć	1 1					# OT X67			(20)	29mbled By SOLO IN DELS
	Lab to Filter] 							ani.	3	Diox	(COV)	" 1520	00	MYS	Email To: 🗘	u)	क्रिस्टस्टर्		
	Field Filtered	71							$\hat{\circ}$	کے	Ŝ		,			CLP Like Data			-4 3 11	Con-Test Quote Name/Number:
sər	dues areydsoydoyryg		}						9	tals	ane	500	8+00	Sm	7 <u>64.8</u> x	$\sigma_{ m CDGE} = U_{ m C}$	1		ರಾಗುತ್ತ	
									ľ	V	6		\boxtimes	XCEL	Ot. 🗍 E				1 %	Project Number: 14 GC 7,1
	Lab to Filter]											Agreement & Comment and Prompted Vision	Клэлц	an sien					Project Location: ADDOLG
	Field Filtered]												yed-	Þ	Z-Day		بتهمطهناك	<i>उल्डल</i> न	Andles III An
59)	gme2 aleaeM bevloead			0	JESTEI	<u> </u>	SISA	JANA				[Yed-	ε	J - Day		1		DIONE: 315 431 4015
	Container Code	L1_							Ď		A		разіп	eog ji	alanldy-ig	ma.		hom	<u>Mrog aw</u>	Address: (1/3, 600Kl2
	Preservation Code					<u> </u>			×	N						Due Date:			विकार करा	— əlush tasqarağ
L	of Containers	#				<u> </u>	<u> </u>		B	8				yed-0			l	moo.edeltestnoo@otni	:Jism3	and the second s
			8201	0 AM .	Jesqow	ивиоп	tesst				h		aluli ji	i i de la	un persen	ibey		3-525-6405		ANOTHER TRACES 111th
	Page of	1	0001		Street							York)	' waM) (ЕСОВ	a yaotsuc	CHAIN OF (413-525-2332	:əuoud	* CON-LEGE LABORATORY
	1' '						7102	0354	gen j	380 F	Doc #		woo sqe	ıjsəjü	O) MMM//	djių	·	7 KOOUB	[344 - 1

Sign In

FedEx ® Tracking

About FedEx FedEx Blog FedEx Compatible Change Country

Our Portfolio Corporate Responsibility Developer Resource Center

Investor Relations Newsroom FedEx Cross Border

Careers Contact Us

FOLLOW FEDEX

3 flatio **1995-201**7

Fredback

Site Map

Terms of Uso

Security 8 Privacy

Ask FedEx

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 www.contestlabs.com

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Are there Short Holds? Is there enough Volume? Is there Headspace where applicable? Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? Who was notified? MS/MSD? Is splitting samples required? On COC? Base	
Were samples within Temperature? 2-6°C Was Custody Seal Intact? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Did COC include all Pertinent Information? Are Sample labels filled out and legible? Are there Rushes? Are there Short Holds? Are there	
Were samples within Temperature? 2-6°C Was Custody Seal Intact? Was Coc Relinquished? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Did COC include all Client pertinent Information? Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? Are there Short Holds? Is there enough Volume? Is there Headspace where applicable? Froper Media/Containers Used? Did COC? Froper Media/Containers Used? Did COC include All Client pertinent Information? Froper Media/Containers Used? Froper Media/Containers Used? Froper Media/Containers Dised? Acid Tremp - 3.3 2.2 Actual Temp - Act	
Temperature? 2-6°C	
Temperature? 2-6°C	
Was Custody Seal Intact? Was COC Relinquished? Does Chain Agree With Samples? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Did COC include all Client Pertinent Information? Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? Are there Rushes? Are there Short Holds? Is there enough Volume? Is there Headspace where applicable? Proper Media/Containers Used? Who was notified? MS/MSD? Is splitting samples required? Were trip blanks received? Do all samples have the proper pH? Were Samples Tampered with? Were samples Tampered with? Were samples received within holding time? To Collection Dates/Times Who was notified? Who was notified? Who was notified? Who was notified? Is splitting samples required? On COC? Base	
Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Did COC include all Client pertinent Information? Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? Are there Short Holds? Is there enough Volume? Is there Headspace where applicable? Were samples received within holding time? Analysis There Sampler Name There Collection Dates/Times Who was notified? Is shere Headspace where applicable? Is splitting samples required? Were trip blanks received? Do all samples have the proper pH? Acid Do all samples have the proper pH?	
Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible?	
Did COC include all Client Analysis T Sampler Name pertinent Information? Project I ID's Collection Dates/Times T Collect	
Did COC include all Client Analysis T Sampler Name pertinent Information? Project I ID's Collection Dates/Times T Collect	
Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? Are there Short Holds? Is there enough Volume? Is there Headspace where applicable? Proper Media/Containers Used? Who was notified? Acid The properties of the properties	
Are there Lab to Filters? Are there Rushes? Are there Short Holds? Is there enough Volume? Is there Headspace where applicable? Proper Media/Containers Used? Who was notified? On COC? Add Base	
Are there Rushes? Are there Short Holds? Is there enough Volume? Is there Headspace where applicable? Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? Who was notified? Who was notified? MS/MSD? Is splitting samples required? On COC? Base	
Are there Short Holds? Is there enough Volume? Is there Headspace where applicable? Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? Who was notified? MS/MSD? Is splitting samples required? On COC? Base	
Is there enough Volume? Is there Headspace where applicable? Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? T MS/MSD? Is splitting samples required? On COC? Base	
Is there Headspace where applicable? F	
Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? T Is splitting samples required? On COC? Base	
Were trip blanks received? Do all samples have the proper pH? Acid Base	
Were trip blanks received? Do all samples have the proper pH? Acid Base Base Base Control Base	
Vials # Containers: # #	Ħ
Unp- 1 Liter Amb. 14 1 Liter Plastic 16 oz Amb.	
HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear	
Meoh- 250 mL Amb. 250 mL Plastic 1 0 4oz Amb/Clear	
Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear	
DI- Other Plastic Other Glass Encore	
Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock	
Epicer	
Unused Media Vials # Containers: # # #	n.
	#
HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear	
Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear	
DI- Other Plastic Other Glass Encore	
Thiosulfate- SOC Kit Plastic Bag Frozen:	
Sulfuric- Perchlorate Ziplock	
Comments:	
Samples were received in 2 coolers, The cooler that was 3.30 was received on 10/31/17 at 937. The 2.20 cooler was received on	

November 10, 2017

Christopher Schroer EA Engineering, Science & Tech. - NY 6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211

Project Location: William Benson Landfill - Livonia, NY

Client Job Number: Project Number: 14907.12

Laboratory Work Order Number: 17K0055

Enclosed are results of analyses for samples received by the laboratory on November 1, 2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
17K0055-01	5
17K0055-02	6
17K0055-03	7
17K0055-04	8
17K0055-05	9
17K0055-06	10
Sample Preparation Information	11
QC Data	12
Miscellaneous Organic Analyses	12
B189926	12
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	16

EA Engineering, Science & Tech. - NY 6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211

ATTN: Christopher Schroer

REPORT DATE: 11/10/2017

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 14907.12

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 17K0055

14907.12

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: William Benson Landfill - Livonia, NY

SUB LAB

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP 434-PFAAS

Qualifications:

S-18

Surrogate recovery is outside of control limits, matrix interference suspected. Insufficient sample available for reanalysis.

Analyte & Samples(s) Qualified:

13C-PFDA

17K0055-03[MW-8U]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0055

Date Received: 11/1/2017

Sampled: 10/30/2017 11:17 Field Sample #: MW-9D

Sample ID: 17K0055-01 Sample Matrix: Ground Water

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorohexanoic acid (PFHxA)	4.5	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 16:49	BLM
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
13C-PFHxA		98.9	70-130					11/9/17 16:49	
12C DEDA		100	70 120					11/0/17 16:40	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	98.9	70-130		11/9/17 16:49
13C-PFDA	109	70-130		11/9/17 16:49
d5-NEtFOSAA	90.8	70-130		11/9/17 16:49

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0055

Date Received: 11/1/2017

Field Sample #: MW-5 Sampled: 10/30/2017 13:42

Sample ID: 17K0055-02

Sample Matrix: Ground Water

d5-NEtFOSAA

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorohexanoic acid (PFHxA)	11	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluoroheptanoic acid (PFHpA)	3.4	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorohexanesulfonic acid (PFHxS)	4.8	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorooctanoic acid (PFOA)	9.3	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorooctanesulfonic acid (PFOS)	3.8	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:02	BLM
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
13C-PFHxA		84.7	70-130					11/9/17 17:02	
13C-PFDA		104	70-130					11/9/17 17:02	

70-130

80.8

11/9/17 17:02

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0055

Date Received: 11/1/2017

Field Sample #: MW-8U Sampled: 10/30/2017 14:45

Sample ID: 17K0055-03
Sample Matrix: Ground Water

Miscellaneous Organic Analyses

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	5.7	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorohexanoic acid (PFHxA)	82	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluoroheptanoic acid (PFHpA)	38	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorohexanesulfonic acid (PFHxS)	16	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorooctanoic acid (PFOA)	17	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 20:10	BLM
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
13C-PFHxA		101	70-130					11/9/17 20:10	
AAG DED :			= 0.400						

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0055

Date Received: 11/1/2017

Field Sample #: Field Blank Sampled: 10/30/2017 14:40

Sample ID: 17K0055-04

Sample Matrix: Field Blank

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:27	BLM
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
13C-PFHxA		93.5	70-130					11/9/17 17:27	
13C-PFDA		100	70-130					11/9/17 17:27	
d5-NEtFOSAA		80.9	70-130					11/9/17 17:27	

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0055

Date Received: 11/1/2017

Field Sample #: Rinse Blank Sampled: 10/30/2017 14:25

Sample ID: 17K0055-05

Sample Matrix: Rinse Blank

d5-NEtFOSAA

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:40	BLM
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
13C-PFHxA		109	70-130					11/9/17 17:40	
13C-PFDA		114	70-130					11/9/17 17:40	

70-130

96.7

11/9/17 17:40

Project Location: William Benson Landfill - Livonia Sample Description: Work Order: 17K0055

Date Received: 11/1/2017

Field Sample #: MW- Duplicate Sampled: 10/30/2017 00:00

Sample ID: 17K0055-06

Sample Matrix: Ground Water

Miccellaneous	Organic	Analyeae

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorohexanoic acid (PFHxA)	4.8	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
NMeFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
NEtFOSAA	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		SOP 434-PFAAS	11/2/17	11/9/17 17:53	BLM
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
13C-PFHxA		88.6	70-130					11/9/17 17:53	
13C-PFDA		95.1	70-130					11/9/17 17:53	
d5-NEtFOSAA		84.6	70-130					11/9/17 17:53	

Sample Extraction Data

Prep Method: EPA 537-SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
17K0055-01 [MW-9D]	B189926	250	1.00	11/02/17	
17K0055-02 [MW-5]	B189926	250	1.00	11/02/17	
17K0055-03 [MW-8U]	B189926	250	1.00	11/02/17	
17K0055-04 [Field Blank]	B189926	250	1.00	11/02/17	
17K0055-05 [Rinse Blank]	B189926	250	1.00	11/02/17	
17K0055-06 [MW- Duplicate]	B189926	250	1.00	11/02/17	

QUALITY CONTROL

Miscellaneous Organic Analyses - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B189926 - EPA 537										
Blank (B189926-BLK1)				Prepared: 11	1/01/17 Anal	yzed: 11/07/	17			
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
NMeFOSAA	ND	2.0	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
NEtFOSAA	ND	2.0	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
Surrogate: 13C-PFHxA	40.0		ng/L	40.0		100	70-130			
Surrogate: 13C-PFDA	41.0		ng/L	40.0		102	70-130			
Surrogate: d5-NEtFOSAA	143		ng/L	160		89.4	70-130			
LCS (B189926-BS1)				Prepared: 11	1/01/17 Anal	yzed: 11/07/	17			
Perfluorobutanesulfonic acid (PFBS)	1.77	2.0	ng/L	1.77		99.9	70-130			
Perfluorohexanoic acid (PFHxA)	2.09	2.0	ng/L	2.00		105	70-130			
Perfluoroheptanoic acid (PFHpA)	1.75	2.0	ng/L	2.00		87.3	70-130			
Perfluorohexanesulfonic acid (PFHxS)	1.53	2.0	ng/L	1.82		83.8	70-130			
Perfluorooctanoic acid (PFOA)	1.73	2.0	ng/L	2.00		86.4	70-130			
Perfluorooctanesulfonic acid (PFOS)	2.04	2.0	ng/L	1.85		110	70-130			
Perfluorononanoic acid (PFNA)	1.64	2.0	ng/L	2.00		82.0	70-130			
Perfluorodecanoic acid (PFDA)	1.90	2.0	ng/L	2.00		94.8	70-130			
NMeFOSAA	1.71	2.0	ng/L	2.00		85.6	70-130			
Perfluoroundecanoic acid (PFUnA)	1.56	2.0	ng/L	2.00		77.9	70-130			
NEtFOSAA	1.66	2.0	ng/L	2.00		83.1	70-130			
Perfluorododecanoic acid (PFDoA)	1.72	2.0	ng/L	2.00		86.2	70-130			
Perfluorotridecanoic acid (PFTrDA)	1.51	2.0	ng/L	2.00		75.7	70-130			
Perfluorotetradecanoic acid (PFTA)	1.81	2.0	ng/L	2.00		90.5	70-130			
Surrogate: 13C-PFHxA	34.8		ng/L	40.0		87.1	70-130			
Surrogate: 13C-PFDA	36.8		ng/L	40.0		91.9	70-130			
Surrogate: d5-NEtFOSAA	136		ng/L	160		85.3	70-130			
Matrix Spike (B189926-MS1)	Sou	rce: 17K0055-	-02	Prepared: 11	1/01/17 Anal	yzed: 11/09/	17			
Perfluorobutanesulfonic acid (PFBS)	3.52	2.0	ng/L	1.77	1.46	117	70-130			
Perfluorohexanoic acid (PFHxA)	13.0	2.0	ng/L	2.00	10.7	113	70-130			
Perfluoroheptanoic acid (PFHpA)	5.60	2.0	ng/L	2.00	3.42	109	70-130			
Perfluorohexanesulfonic acid (PFHxS)	6.40	2.0	ng/L	1.82	4.80	87.8	70-130			
Perfluorooctanoic acid (PFOA)	11.7	2.0	ng/L	2.00	9.30	120	70-130			
Perfluorooctanesulfonic acid (PFOS)	5.81	2.0	ng/L	1.85	3.80	109	70-130			
Perfluorononanoic acid (PFNA)	2.16	2.0	ng/L	2.00	ND	108	70-130			
Perfluorodecanoic acid (PFDA)	2.31	2.0	ng/L	2.00	ND	115	70-130			
NMeFOSAA	2.02	2.0	ng/L	2.00	ND	101	70-130			
Perfluoroundecanoic acid (PFUnA)	2.00	2.0	ng/L	2.00	ND	100	70-130			
NEtFOSAA	2.47	2.0	ng/L	2.00	ND	123	70-130			
Perfluorododecanoic acid (PFDoA)	1.73	2.0	ng/L	2.00	ND	86.6	70-130			
Perfluorotridecanoic acid (PFTrDA)	1.83	2.0	ng/L	2.00	ND	91.5	70-130			
Perfluorotetradecanoic acid (PFTA)	1.90	2.0	ng/L	2.00	ND	94.9	70-130			

Surrogate: 13C-PFHxA

Surrogate: d5-NEtFOSAA

Surrogate: 13C-PFDA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Miscellaneous Organic Analyses - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits		Limit	Notes
Batch B189926 - EPA 537										
Matrix Spike (B189926-MS1)	Source	ce: 17K0055-	02	Prepared: 11	/01/17 Analy	zed: 11/09/	17			
Surrogate: 13C-PFHxA	40.2		ng/L	40.0		101	70-130			
Surrogate: 13C-PFDA	49.6		ng/L	40.0		124	70-130			
Surrogate: d5-NEtFOSAA	154		ng/L	160		96.1	70-130			
Matrix Spike Dup (B189926-MSD1)	Source	Prepared: 11	/01/17 Analy:	zed: 11/09/	17					
Perfluorobutanesulfonic acid (PFBS)	2.95	2.0	ng/L	1.77	1.46	84.2	70-130	17.7	30	
Perfluorohexanoic acid (PFHxA)	12.9	2.0	ng/L	2.00	10.7	109	70-130	0.676	30	
Perfluoroheptanoic acid (PFHpA)	5.68	2.0	ng/L	2.00	3.42	113	70-130	1.30	30	
Perfluorohexanesulfonic acid (PFHxS)	6.30	2.0	ng/L	1.82	4.80	82.2	70-130	1.61	30	
Perfluorooctanoic acid (PFOA)	11.5	2.0	ng/L	2.00	9.30	108	70-130	2.02	30	
Perfluorooctanesulfonic acid (PFOS)	5.85	2.0	ng/L	1.85	3.80	111	70-130	0.718	30	
Perfluorononanoic acid (PFNA)	1.69	2.0	ng/L	2.00	ND	84.4	70-130	24.7	30	
Perfluorodecanoic acid (PFDA)	1.89	2.0	ng/L	2.00	ND	94.7	70-130	19.6	30	
NMeFOSAA	1.50	2.0	ng/L	2.00	ND	75.1	70-130	29.6	30	
Perfluoroundecanoic acid (PFUnA)	1.85	2.0	ng/L	2.00	ND	92.4	70-130	8.14	30	
NEtFOSAA	2.06	2.0	ng/L	2.00	ND	103	70-130	17.7	30	
Perfluorododecanoic acid (PFDoA)	1.65	2.0	ng/L	2.00	ND	82.4	70-130	4.88	30	
Perfluorotridecanoic acid (PFTrDA)	1.56	2.0	ng/L	2.00	ND	78.1	70-130	15.8	30	
Perfluorotetradecanoic acid (PFTA)	1.77	2.0	ng/L	2.00	ND	88.3	70-130	7.16	30	

ng/L

ng/L

ng/L

40.0

40.0

160

86.8

102

79.3

70-130

70-130

70-130

34.7

40.8

127

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit

DL Method Detection Limit
MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

S-18 Surrogate recovery is outside of control limits, matrix interference suspected. Insufficient sample available for

reanalysis.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

No certified Analyses included in this Report

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2018
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2018
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2018
RI	Rhode Island Department of Health	LAO00112	12/30/2017
NC	North Carolina Div. of Water Quality	652	12/31/2017
NJ	New Jersey DEP	MA007 NELAP	06/30/2018
FL	Florida Department of Health	E871027 NELAP	06/30/2018
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2018
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2017
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2018
NC-DW	North Carolina Department of Health	25703	07/31/2018

A CONTRACTOR OF THE PARTY OF TH	
	CON-LEST.

17K0055 Phone: 413-525-2332

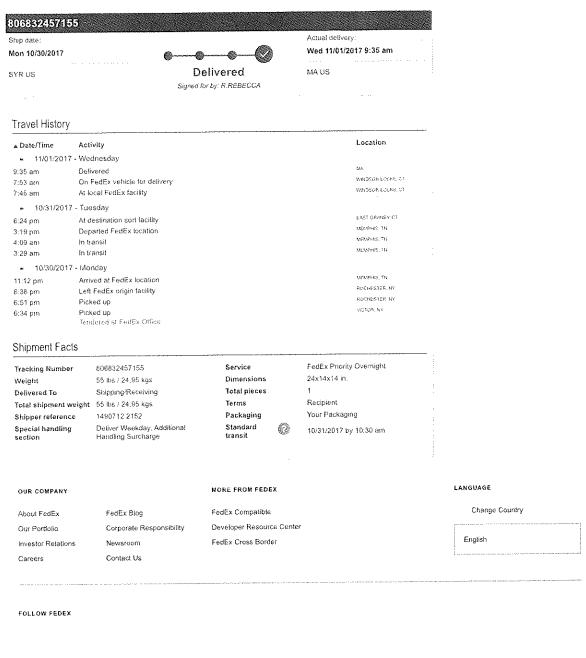
http://www.contestlabs.com

CHAIN OF CUSTODY RECORD (New York)

Doc # 380 Rev 1_03242017

39 Spruce Street	
East Longmeadow,	MA 01028

	1		è
Page		of	


IIIIIII AMACTICAL CABORATORI	Fax: 413-525-6405		Pe	quested Ti	12:181 E	irid Time						3				
	Email: info@contestlabs.com	1	7-Day		10-Day	у 🗀		8								# of Containers
Company Name: FAE	CIAORANG		Due Date:					I P								² Preservation Code
Address: 6712 BOOKLO		ase, 14		Rush-Aspre	val Re	quired		P								³ Container Code
Phone: 315 431 4416	0	•	1-Day		3-Day]			ANAL	rsis R	EQUE	STED			Dissolved Metals Samples
Project Name	LANIBONDON LF		2-Day		4-Day]									☐ Field Filtered
oject Location: LivoMa 14				Data	eliver	y		d								Lab to Filter
Project Number: 4	907.17		Format:	PDF	EXCEL	×	1	$\frac{2}{2}$								
Project Manager: Juge 1.1	7 Chrisschnoer		Other:	MSEG	uis	at	BUS	82								Ordnoiphosphate Samples
Con-Test Quote Name/Number:			4	ata Pkg Rec				'								Field Filtered
Invoice Recipient:	_octheastap@eaes	<u>t.com</u>	Email To:	Cscho	\mathcal{CC}	Deal	st co	\sim								Lab to Filter
Sampled By: Sarahn	elson '	0.0 2004 61653221 V0.00531 (Final Ave V0.005	Fax To #:	Was in North County of Carolic	43035553045144966	· AANAMARININA VALUE	Manager continuous	\mathcal{I}								
Con-Test Work Order#	Client Sample ID / Description	Beginning Date/Time	Ending Date /Time	Composite	Grab	¹ Matrix Code	Conc Code	177								¹ Matrix Codes: GW = Ground Water
01	nw-90	10.30.1	רווו ל		Х	96	u	1								WW = Waste Water DW = Drinking Water
	mwas	10:30 17	1352		X	900	u	++				İ				A = Air 3 = Soit
O9					 	1.	ч	3					1			SL = Studge
	mw.5	10.30		 	 	19W		12		┼─┼	+	+	╂	\vdash		SOL = Solid O = Other (please
<u> </u>	mw-su	10.3.17	1445		X	900	u									define)
						"					1					diviation
					†				1	1 1		1	1			² Preservation Codes:
					<u> </u>			-		+-+	_	_				I = Iced H = HCL
																M = Methanol
YO	Field Blank	10.30.17	1440		ΙX	0	u	(N = Nitric Acid
05			1		ΤĊ	h	u					1				S = Sulfuric Acid B = Sodium Bisulfate
and the second contract of the	Rinse Blank	10.30.17			 ^	0	 	+	_	+-+				╂┼-		X = Sodium Hydroxide
06	MW Duplicate	10:30:17			X	gw	u									T = Sodium Thiosulfate
Comments:																O = Other (please
						Please	e use the	followir :	ng codes in the C				,	e concent	tration	define)
							H - Hig	gh; M - N						ıknown		
								•								³ Container Codes: A = Amber Glass
Refinquished by: (s/gnature)	Date/Time:		Program	r& Regular	ary Inf	ormatilo	1						082000000000000000000000000000000000000	erables		G = Glass
Med um	10.3017 180		AWQ STD	S		NY TOO								ed Data i	-	1 SI - Storilo
Received by (signature)	Date/Time:			er Discharg		NY CP-	51					Ā		SDEC EQ		V = Vial
1//~ / 3.	7/2 11/11/935		Part 360 NY Restri	GW (Landfi	11)							_		(Standa		
Relinquished by (signature)	Date/Time:			ctea use tricted Use							I.			Regulat gs Hits-O	-	O = Other (please
F w ved by: (signature)	Date/Time:	1	NY Part 3							Other			w ne	g3 111L3-U	my EDD	define)
ved by: (signature) ຕື່	voter time.	Ceres	11. 70.2								100 X	JIHA-LJ	IP, LLC	Accred	ited	
quished by: (signature)	Date/Time:	Project Er	ntity								08024007803802	ther			1	PCB ONLY
of			Governme	ent 🔲	Munic	cipality		MWR	А 🔲	WRTA	4		Chro	omatogra	ım	Soxhlet
f	Date/Time:	7 0	Federal		21 J	•		Schoo	ol			L] AIH	4- <i>LAP, LL</i>	.C	Non Soxhlet
			City		Brow	nfield		MBT	A		1					1

89年6月 1995-2017

Sign la

FedEx * Tracking

Site Man

Ask FedEx

Security & Privacy

Terms of tilea

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 www.contestlabs.com

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client =	EA Englesing			, ,				
Received By	pal	0 ()	Date	(())]-	1	Time	935	
How were the samples	In Cooler	T	No Cooler	, ,	On Ice	T	No Ice	
received?	Direct from Sample	ina	,		- Ambient		- Melted Ice	
	Direct Holli Sampi	•				. 1 2	_ Mened ice	
Were samples within		By Gun #			Actual Tem			-
Temperature? 2-6°C		By Blank #			Actual Tem			<u></u>
Was Custody Se	<u> </u>	NA			s Tampered		NA	<u></u>
Was COC Relinquished? Does Chain Agree With Samples?								-
Are there broken/leaking/loose caps on any samples? Second in int/ Logibles Word samples received within holding times								
Is COC in ink/ Legible?				nple <u>s</u> recei	ved within ho	•		•
Did COC include all	Client		Analysis		•	er Name		-
pertinent Information?	Project	7	ID's		Collection	Dates/Times	T	
Are Sample labels filled out and legible?								
Are there Lab to Filters?			Who was notified?					•
Are there Rushes?			Who was notified?					
Are there Short Holds?	_			Who wa	s notified?			
Is there enough Volume	-							
is there Headspace whe	•	<u> </u>		MS/MSD?			4	
Proper Media/Container	***	T			samples req	uired?	<u></u>	
Were trip blanks receive	// -	<u> </u>		On COC?				
Do all samples have the	proper pH? N(P)		Acid ₋		•	Base	***************************************	
	Containers:	#			#			
Unp-	1 Liter Amb.		1 Liter				: Amb.	
HCL-	500 mL Amb.		500 mL		-		nb/Clear	
Meoh-	250 mL Amb.		250 mL		8		nb/Clear	
Bisulfate-	Col./Bacteria		Flashpoint			2oz Amb/Clear		
DI-	Other Plastic		Other				core	
Thiosulfate- Sulfuric-	SOC Kit Perchlorate		Plastic	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Frozen:		
Sullunc-	Perchiorate		Ziple	ock				
			Unused N	Nedia				
	Containers:	#	4		#		-	#
Unp-	1 Liter Amb.		1 Liter	····			: Amb.	
HCL-	500 mL Amb.	· · · · · · · · · · · · · · · · · · ·	500 mL				nb/Clear	
Meoh- Bisulfate-	250 mL Amb.		250 mL				nb/Clear	
DI-	Col./Bacteria Other Plastic		Flash Other	~~~~			nb/Clear core	
Thiosulfate-	SOC Kit		Plastic			Frozen:	ore	<u> </u>
Sulfuric-	Perchlorate		Ziplo			i iozen.		
Comments:	· oronioroco		2.1010	JUN				