

March 5, 2024

Mr. Charles T. Gregory, P.G.
New York State Department of Environmental Conservation (NYSDEC)
Project Manager
Section C, Bureau E
Division of Environmental Remediation
625 Broadway
Albany, NY 12233-7011

Re: Former Enarc-O Machine Products Site

NYSDEC Site No. 8-26-011

December 2023 Post-Remedial Groundwater Monitoring Report

Mr. Gregory:

Roux Environmental Engineering and Geology, D.P.C. ("Roux"), has prepared this letter report to transmit the results of the December 2023 post-remedial groundwater monitoring event at the former Enarc-O Machine Products Site (NYSDEC Site No.8-26-011) located in Lima, NY (see Figure 1). The Site is currently owned by Alco Manufacturing Corporation, LLC.

Field Sampling Procedure

In accordance with the NYSDEC approved workplan (Prepared and Revised by Roux (Formally Benchmark Environmental Engineering & Science, PLLC) on October 3, 2008, four (4) groundwater monitoring locations (MW-3, MW-5, MW-201D, and the former Supply Well) were designated for sampling during the subject 15-month sampling event. In lieu of passive diffusion bags (PDBs), traditional sampling methods (i.e. disposable PVC bailers) were used to purge wells to dryness or until water quality parameters (pH and conductivity) stabilized. Groundwater field data sheets are included as Attachment 1 of this report.

Roux field staff purged and sampled site monitoring wells on December 6th, 2023. The groundwater samples were transferred to laboratory supplied, sample containers and transported under chain of custody control to Alpha Analytical (Alpha) in Westborough, MA for analysis of Target Compound List (TCL) VOCs per USEPA Method 8260B and 1,4-dioxane per EPA method 8270 Selective Ion Monitoring (SIM) mode.

Analytical Results

Attachment 2 of this report includes the laboratory analytical data package. from Alpha. Table 1 summarizes the detected compounds with a comparison to NY State Groundwater Quality Standards and Guidance Values (GWQS/GV), (NYSDEC TOGS 1.1.1, June 1998). As indicated on Table 1. Total chlorinated VOC detections were generally limited to trace concentrations at MW-3, MW-5 and SUPPLY WELL (below 1 part per million). Total chlorinated VOC concentrations at monitoring well MW-201D were slightly above 1 part per million.

Elevated concentrations of 1,4-Dioxane above GWQS/GV were detected at monitoring locations MW-5, MW-201D and SUPPLY WELL.

Groundwater Flow Direction

On December 6th, 2023, groundwater levels were measured at all on-site wells (MW-1 through MW-6, MW-201D, MW-202, and Supply Well). Groundwater elevations are summarized on Table 2 and presented as an isopotential map on Figure 1. The SUPPLY WELL, with a total depth of 185 feet below ground surface (fbgs), reflects the deeper groundwater aquifer, and was therefore not used to develop the isopotential map. In addition, an artificial mound has been historically observed at well MW-201D and is thought to be caused from unconsolidated structural fill materials that were used to backfill the remedial excavation in this area of the Site. As such, the water level collected from well MW-201D is reflective of the trapped water. As shown on Figure 1, groundwater flow is generally to the north and northwest, with a localized component flowing northeast toward Honeoye Creek on the east side of the Site consistent with previous studies.

Historical Comparisons

Attachment 3 graphically depicts the December 2023 total VOC concentrations at each of the sampled locations with historical concentrations for key parameters including 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), and TCE.

The December 2023 data indicates a slight increase in the total concentration of VOCs at wells MW-3 and SUPPLY WELL when compared to September 2022 sampling event, however, concentrations are consistent with the historic fluctuating seasonal trends. Conversely, the total VOC concentrations detected at MW-5 and MW-201D during the December 2023 event slightly decreased as compared to the September 2022 sampling event. These fluctuations are again consistent with historical sampling trends. Overall, the concentrations detected at all of the sampling locations are well below historic highs and indicate that natural attenuation processes continue to reduce downgradient concentrations and mitigate associated off-site environmental impact.

In January of 2020 monitoring wells MW-3 and MW-5 were sampled for 1,4-Dioxane. Concentrations of 1,4-dioxane at both these sampling locations are consistent with the December 2023 event. Monitoring locations MW-201D and Supply Well were added to the sampling program for the December 2023 event. Historical data comparisons and graphical depiction of 1,4-Dioxane at MW-201D and SUPPLY WELL will be prepared following future sampling events.

The electronic data delivery (EDD) format is currently being uploaded to NYSDEC's EQuIS database. The next sampling event is scheduled for March of 2025.

Sincerely,

ROUX ENVIRONMENTAL ENGINEERING AND GEOLOGY, D.P.C

Thomas H. Forbes, P.E.

Vice President

TABLES

TABLE 1

POST-REMEDIAL GROUNDWATER MONITORING RESULTS December 2023

Enarc-O Machine Products, Inc. Lima, New York NYSDEC Registry No. 8-26-011

PARAMETER ¹	MW-3	MW-5	MW-201D	SUPPLY WELL	GWQS ²
Volatile Organic Compoun	ds (ug/L):				
1,1,1-Trichloroethane	16	ND	11 J	4.7 J	5
1,1-Dichloroethane	3.6 J	2 J	8.9 J	ND	5
1,1-Dichloroethene	8.1	0.79 J	8.4	2.2	5
cis-1,2-Dichloroethene	67	73	440	16	5
Tetrachloroethene	15	2.8	18	3.2	5
Trichloroethene	730	210	890	170	5
Vinyl chloride	ND	ND	29	ND	2
Total VOCs	839.7	288.59	1405.3	196.1	
Semi Volatile Organic Com	pounds (ng.	/L):			
1,4 Dioxane	71.8	1780	72000	474	350

Notes:

- 1. Only those compounds detected above the method detection limit at a minimum of one sample location are reported in this table.
- 2. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) as per 6 NYCRR Part 703. Guidance value used when Standard value not available.

Acronvms:

ND = Parameter was not detected above laboratory reporting limit.

J = Indicates an estimated value.

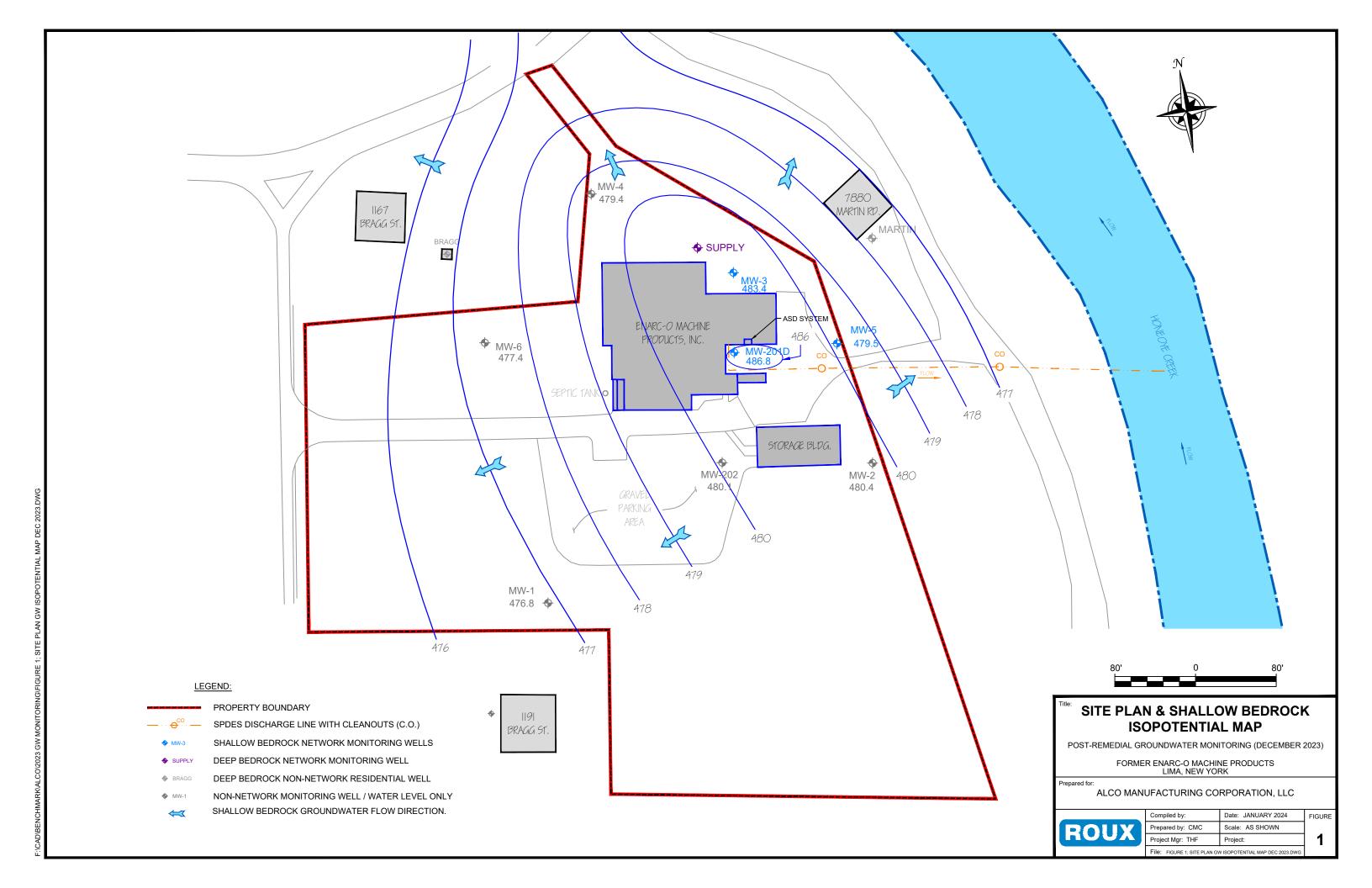
NA = Not Analyzed.

BOLD

= Value exceeds GWQS.

TABLE 2

SUMMARY OF GROUNDWATER ELEVATIONS December 6, 2023


Enarc-O Machine Products, Inc. Lima, New York NYSDEC Registry No. 8-26-011

WELL ID	Depth to Water	TOR Elevation ¹	Groundwater Elevation	Bottom Depth	
MW - 1	25.90	502.69	476.79	35.83	
MW - 2	26.39	506.79	480.4	33.78	
MW - 3	21.80	505.27	483.47	34.58	
MW - 4	21.36	500.73	479.37	34.32	
MW - 5	22.93	502.38	479.45	30.49	
MW - 6	27.49	504.86	477.37	37.88	
MW - 202	24.23	504.28	480.05	34.81	
MW - 201D	14.28	501.04	486.76	29.35	
Supply Well	108.25	503.39	395.14	185.00	

Notes:

1. Top of riser survey was completed on 5/31/2016.

FIGURES

ATTACHMENT 1

Groundwater Field Data Sheets

EQUIPMENT CALIBRATION LOG

Project Name: Alco Martialium	N:	3	À		Date:	Date: 12/6/23		
roject No.:	Mound	Jun Jun			Instrument Source;	rt Source;	BM	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
á			Myron I Company			4.00	4.0	4
PH meter	nnits	77.70	Ultra Meter 6P	6243084 6212375		7.00	202	14
ζ.		(6243003	-	10.01	0.0	0
						10 NTU verification	7.01	10.0
			Hach 2100P or	06120C020523 (P)	(<0.4		•
I urbidity meter	D Z	7	2100Q Turbidimeter	13120C030432 (Q) 17110C062619 (Q)	(1/2)	100		
				۷.		800		
Sp. Cond. meter	Sm Sm	ع «در	Myron L Company Ultra Meter 6P	6213516	C.A.V	mS @ 55 °C		
old []	800		Miss DA			open air zero		MiBK response
			WILLIAMS 2000			ppm Iso, Gas		factor = 1.0
Dissolved Oxygen	8		POSCO TO STANK	171932597009				A
DEKY) POLICE	<u></u>	シェン		100500041867		100% Satuartion		0 50
				22293299821				
☐ Particulate meter	mg/m ₃					zero air		
Radiation Meter	uR/H					background area		
DDITIONAL REMARKS:								
REPARED BY: TACK	- 6			DATE:	879/23			

RO	

GROUNDWATER FIELD FORM

Project Name: Alan Mu Location: Lima	Ny Project No.:	Date: 12/6/23 Field Team: TA 3
Well No. MW-5	Diameter (inches):	Sample Date / Time: 12/1/23 22.+7
Product Depth (fbTOR)	Water California (III)	10/14/20

Well No	o. Mw.	5	Diameter (ir	nches):	411	Sample Dat	ate / Time:	1211/23	22.43	7
Product De	epth (fbTOR):		Water Colu	ımn (ft):	3.52	DTW when		22.	Al Color to U	\dashv
DTW (statio	c) (fbTOR):	22.53		/olume (gal):	7.33	Purpose:	Development			4
Total Depth	ı (fbTOR):	2650		me Purged (gal):		Purge Metho		11	Landige & Sumple	4 -
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1008	o Initial	0	5.969	11.5	761.8	366	7.27	131	Bonn Tal. 2	26 1
1016	1 77.51	25	6.70	10,X	7231		7.51	921	11 11	New Own
1066	2 27 53	500	6.90	10.6	716.7	71000	8,23	166	11 18	1
1030	3 22.53	75	7.0	100	7.09.3	>110.0	8.38	ルカス	16 11	1
	4		¥.	2			0	, 0		1
	5	!	- 5x - 5	4	"					1
	6	<u> </u>		8						1
	7		1,500	13 h						1
	8				1				; <u>#</u>	1
	10									1
263	nformation:								#4	
	si 27 53	7.5	[-]	931	6970	71600	8,44	99		
	S2		- 1	1	0110	27000	5177	77	/	1

Well N		1W-2010	Diameter (ir	nches):	9 11	Sample Da	te / Time:		
	epth (fbTOR):		Water Colu	mn (ft): ノゲ	.0	DTW when	sampled:		
	tic) (fbTOR):	4.28	One Well V	olume (gal):	0 044	Purpose:	Development	Sample	Purge & Sample
Total Dep	th (fbTOR): 2	9.28	Total Volum	e Purged (gal):	0.00	Purge Meth			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1053	o Initial	0	7.12	137	834,4	99.0	8.47	102	d 10 1
1059	170.0	25	7.19	9.9	8125	740	7.86	94	Cler Noo!
1-11/199	2 25119	K,5	7.19	11.7	821.1	71000	1-,90	101	Muchal 11
1119	3 089	6.0	7.70	11.8	805.1	>1000	277	69	gry oder stem
	5								· ·
	6								
	7								
	8	, g							
	9	100				†			
	10					11			
Sample	Information:								100
[UU]	S1 7 3 . 9 1	***	7.14	12.7	781.4	32.0	8.95	74	Che Noode
	02								

Note: All water level measurements are in feet, distance from top of riser.

 Volume Calculation

 Diam.
 Vol. (g/ft)

 1"
 0.041

 2"
 0.163

 4"
 0.653

 6"
 1.469

 Stabilization Criteria

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

Groundwater Field Form-Roux xls GWFF - BM

PREPARED BY:

DAG

GROUNDWATER FIELD FORM

1 876 00

Project Nar Location:	ne: Alca	o. Man	Decta	Project	t No.;	7.	ie:	Date: Field T		2161	2.5	
Well No	. MW-	3	Diameter (ii	nches):) 11	Sam	ple Date	/Time: 3	2/1	123	19	55
	oth (fbTOR):		Water Colu		.77		when s		7 8	175	13	33
DTW (statio		21.81	One Well V		8.33			Developmen	60	75.3	. ()	0.0
		4.58				Purp			t [Sampl	e UP	urge & Sample
Total Depth		T	rotal Volum	ne Purged (gal)	X	Purg	e Method	13.	حأم		-	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbi (NT		DO (mg/L)		ORP (mV)	Ар	pearance & Odor
1123	o Initial	0	7,23	12.3	628.4	14,	2	8.61	1	5	Colo	r No sl
1151	1 DRY 2 3	8	7.22	11.0	693.X	13		8.75		72	11	11
	5 6											
	7 8 9											
	nformation:	1			1000							
1355	S1 & 5.33		7.12	10.5	623.7	17/		8.42	11	2	41.1	"1'5 N
					<u> </u>							
Well No	oth (fbTOR):	10x.24	Diameter (in Water Colur		// // // // // // // // // // // // //		le Date / when sa		14:	23		234
DTW (static) (fbTOR):	168,2x	One Well Vo		(Admin)	Purpo	se:	Development		Sample	Pu-Pu	rge & Sample
Total Depth	(fbTOR):	1,450	Total Volum	e Purged (gal):	1500	Purge	Method:	R.	h	1		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbio (NTU		DO (mg/L)		ORP mV)	Арр	earance & Odor
1217	o Initial	0	7,76	10,2	887.7	62.	3	6.01	41		CT	bizsylc
1242	11:09.31	50	7.09	8.11	892.0	70	.3	5.87	4	1	17	
1301	2 1/16 21	10	7.06	9.3	8828	152		6.30	$\overline{}$	4	17	No. 5
1775	3 109. 11	15	7.09	9.4	8741	410		6.56	- 102	_	_	100 6
150	4		1.01		0 7 1,1	-10		ما د، ال	70	,	G 31	
	6											
	7											100/
	8			3								
	9		T	SEN!	- AR							
	10				•							18
Sample II	nformation:									-		
1334	s1 09, 0	_	7.09	9.3	881.0	8.71	5	5.61	11	3	Turb.	1 Noch
										Stabil	ization Cri	iteria
REMARK	S:						Volume	Calculation		Paramet		Criteria
							Diam.	Vol. (g/ft)		pН		± 0,1 unit
							1"	0.041		sc		± 3%
							2"	0.163		Turbidit	y	± 10%
							4"	0.653		DO		£ 0.3 mg/L
lote: All wa	ter level mea	asurements a	re in feet, di	stance from	top of riser.		6"	1.469		ORP		± 10 mV
Groundwater Field F GWFF - BM	orm-Roux xls			PREPARE	D BY:	T	A13					₹

ATTACHMENT 2

Analytical Data Package

ANALYTICAL REPORT

Lab Number: L2372271

Client: Roux

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Thomas Forbes Phone: (716) 856-0599

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

Report Date: 12/21/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061 Lab Number: L2372271 Report Date:

12/21/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2372271-01	MW-3	WATER	HONEOYE FALLS NY	12/06/23 13:55	12/07/23
L2372271-02	MW-5	WATER	HONEOYE FALLS NY	12/06/23 10:35	12/07/23
L2372271-03	MW-201D	WATER	HONEOYE FALLS NY	12/06/23 14:01	12/07/23
L2372271-04	SUPPLY WELL	WATER	HONEOYE FALLS NY	12/06/23 13:34	12/07/23
L2372271-05	TRIP BLANK	WATER	HONEOYE FALLS NY	12/06/23 00:00	12/07/23

Project Name:ALCO MANUFACTURING GWMLab Number:L2372271Project Number:B0672-024-001-061Report Date:12/21/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:ALCO MANUFACTURING GWMLab Number:L2372271Project Number:B0672-024-001-061Report Date:12/21/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Leley Well Kelly O'Neill

Authorized Signature:

Title: Technical Director/Representative

Date: 12/21/23

ORGANICS

VOLATILES

L2372271

12/21/23

Not Specified

12/07/23

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

SAMPLE RESULTS

Date Collected: 12/06/23 13:55

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2372271-01 D

Client ID: MW-3

Sample Location: HONEOYE FALLS NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/16/23 22:21

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	12	3.5	5	
1,1-Dichloroethane	3.6	J	ug/l	12	3.5	5	
Chloroform	ND		ug/l	12	3.5	5	
Carbon tetrachloride	ND		ug/l	2.5	0.67	5	
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5	
Dibromochloromethane	ND		ug/l	2.5	0.74	5	
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5	
Tetrachloroethene	15		ug/l	2.5	0.90	5	
Chlorobenzene	ND		ug/l	12	3.5	5	
Trichlorofluoromethane	ND		ug/l	12	3.5	5	
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5	
1,1,1-Trichloroethane	16		ug/l	12	3.5	5	
Bromodichloromethane	ND		ug/l	2.5	0.96	5	
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5	
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5	
Bromoform	ND		ug/l	10	3.2	5	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5	
Benzene	ND		ug/l	2.5	0.80	5	
Toluene	ND		ug/l	12	3.5	5	
Ethylbenzene	ND		ug/l	12	3.5	5	
Chloromethane	ND		ug/l	12	3.5	5	
Bromomethane	ND		ug/l	12	3.5	5	
Vinyl chloride	ND		ug/l	5.0	0.36	5	
Chloroethane	ND		ug/l	12	3.5	5	
1,1-Dichloroethene	8.1		ug/l	2.5	0.84	5	
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5	
Trichloroethene	730		ug/l	2.5	0.88	5	
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5	

12/21/23

Dilution Factor

Report Date:

MDL

RL

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061

SAMPLE RESULTS

Lab ID: L2372271-01 D Date Collected: 12/06/23 13:55

Client ID: MW-3 Date Received: 12/07/23

Result

Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Qualifier

Units

Sample Depth:

Parameter

Parameter	Result	Qualifier Offi	is RL	IVIDE	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND	ug	/I 12	3.5	5	
1,4-Dichlorobenzene	ND	ug	/ 12	3.5	5	
Methyl tert butyl ether	ND	ug	/ 12	3.5	5	
p/m-Xylene	ND	ug	/ 12	3.5	5	
o-Xylene	ND	ug	/ 12	3.5	5	
cis-1,2-Dichloroethene	67	ug	/ 12	3.5	5	
Styrene	ND	ug	/ 12	3.5	5	
Dichlorodifluoromethane	ND	ug	/ 25	5.0	5	
Acetone	ND	ug	/ 25	7.3	5	
Carbon disulfide	ND	ug	/I 25	5.0	5	
2-Butanone	ND	ug	/ 25	9.7	5	
4-Methyl-2-pentanone	ND	ug	/I 25	5.0	5	
2-Hexanone	ND	ug	/I 25	5.0	5	
Bromochloromethane	ND	ug	/ 12	3.5	5	
1,2-Dibromoethane	ND	ug	/I 10	3.2	5	
n-Butylbenzene	ND	ug	/ 12	3.5	5	
sec-Butylbenzene	ND	ug	/J 12	3.5	5	
1,2-Dibromo-3-chloropropane	ND	ug	/ 12	3.5	5	
Isopropylbenzene	ND	ug	/ 12	3.5	5	
p-Isopropyltoluene	ND	ug	/ 12	3.5	5	
n-Propylbenzene	ND	ug	/I 12	3.5	5	
1,2,3-Trichlorobenzene	ND	ug	/ 12	3.5	5	
1,2,4-Trichlorobenzene	ND	ug	/ 12	3.5	5	
1,3,5-Trimethylbenzene	ND	ug	/J 12	3.5	5	
1,2,4-Trimethylbenzene	ND	ug	/ 12	3.5	5	
Methyl Acetate	ND	ug	/I 10	1.2	5	
Cyclohexane	ND	ug	/I 50	1.4	5	
1,4-Dioxane	ND	ug	/l 1200	300	5	
Freon-113	ND	ug	/l 12	3.5	5	
Methyl cyclohexane	ND	ug	íl 50	2.0	5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	104	70-130	

L2372271

12/21/23

Not Specified

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

SAMPLE RESULTS

Date Collected: 12/06/23 10:35

Lab ID: L2372271-02 D

MW-5

Date Received: 12/07/23

Lab Number:

Report Date:

Client ID: M Sample Location: H

HONEOYE FALLS NY Field Prep:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/16/23 22:46

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methylene chloride	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethane	2.0	J	ug/l	6.2	1.8	2.5	
Chloroform	ND		ug/l	6.2	1.8	2.5	
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5	
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5	
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5	
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5	
Tetrachloroethene	2.8		ug/l	1.2	0.45	2.5	
Chlorobenzene	ND		ug/l	6.2	1.8	2.5	
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5	
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5	
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5	
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5	
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5	
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5	
Bromoform	ND		ug/l	5.0	1.6	2.5	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5	
Benzene	ND		ug/l	1.2	0.40	2.5	
Toluene	ND		ug/l	6.2	1.8	2.5	
Ethylbenzene	ND		ug/l	6.2	1.8	2.5	
Chloromethane	ND		ug/l	6.2	1.8	2.5	
Bromomethane	ND		ug/l	6.2	1.8	2.5	
Vinyl chloride	ND		ug/l	2.5	0.18	2.5	
Chloroethane	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethene	0.79	J	ug/l	1.2	0.42	2.5	
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	
Trichloroethene	210		ug/l	1.2	0.44	2.5	
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	

12/21/23

Report Date:

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061

SAMPLE RESULTS

Lab ID: L2372271-02 D Date Collected: 12/06/23 10:35

Client ID: MW-5 Date Received: 12/07/23 Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5
p/m-Xylene	ND		ug/l	6.2	1.8	2.5
o-Xylene	ND		ug/l	6.2	1.8	2.5
cis-1,2-Dichloroethene	73		ug/l	6.2	1.8	2.5
Styrene	ND		ug/l	6.2	1.8	2.5
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5
Acetone	ND		ug/l	12	3.6	2.5
Carbon disulfide	ND		ug/l	12	2.5	2.5
2-Butanone	ND		ug/l	12	4.8	2.5
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5
2-Hexanone	ND		ug/l	12	2.5	2.5
Bromochloromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5
sec-Butylbenzene	ND		ug/l	6.2	1.8	2.5
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5
Methyl Acetate	ND		ug/l	5.0	0.58	2.5
Cyclohexane	ND		ug/l	25	0.68	2.5
1,4-Dioxane	ND		ug/l	620	150	2.5
Freon-113	ND		ug/l	6.2	1.8	2.5
Methyl cyclohexane	ND		ug/l	25	0.99	2.5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	105	70-130	

L2372271

12/21/23

Not Specified

12/07/23

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

SAMPLE RESULTS

Date Collected: 12/06/23 14:01

Lab Number:

Report Date:

Date Received:

Lab ID: L2372271-03 D

Client ID: MW-201D

Sample Location: HONEOYE FALLS NY

NEOYE FALLS NY Field Prep:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/16/23 23:10

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	8.9	J	ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	18		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	11	J	ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	29		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	8.4		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	890		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

12/21/23

Report Date:

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061

SAMPLE RESULTS

Lab ID: L2372271-03 D Date Collected: 12/06/23 14:01

Client ID: MW-201D Date Received: 12/07/23

Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Sample Depth:

1.4-Dichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene ND	Volatile Organics by GC/MS - Wes	stborough Lab					
1,4-Dichlorobenzene ND ugfl 25 7.0 10 Methyl terb buyl ether ND ugfl 25 7.0 10 cyflene ND ugfl 25 7.0 10 cyflene ND ugfl 25 7.0 10 cis-1,2-Dichlorothene 440 ugfl 25 7.0 10 Styrene ND ugfl 25 7.0 10 Dichlorodifluoromethane ND ugfl 50 10 10 Acetone ND ugfl 50 15 10 Carbon disulfide ND ugfl 50 10 10 2-Butanone ND ugfl 50 10 10 4-Methyl-2-pentanone ND ugfl 50 10 10 2-Butanone ND ugfl 25 7.0 10 2-Butanone ND ugfl 25 7.0 10 1,2-Dibromothane	1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether ND ug/l 25 7.0 10 p/m-Xylene ND ug/l 25 7.0 10 o-Xylene ND ug/l 25 7.0 10 cis-1,2-Dichloroethene 440 ug/l 25 7.0 10 Styrene ND ug/l 50 10 10 Dichlorodifluoromethane ND ug/l 50 10 10 Acetone ND ug/l 50 10 10 Carbon disulfide ND ug/l 50 10 10 2-Butanone ND ug/l 50 10 10 2-Butanone ND ug/l 50 10 10 2-Hexanone ND ug/l 50 10 10 1,2-Dibromothane ND ug/l 25 7.0 10 1,2-Dibromothane ND ug/l 25 7.0 10 1,2-Dibromothane <	1,4-Dichlorobenzene	ND			25	7.0	10
o-Xylene ND ug/l 25 7.0 10 cis-1,2-Dichloroethene 440 ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 15. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 25 7.0 10 1-2-Dibromoethane ND ug/l 25 7.0 10 1-2-Dibromoethane ND ug/l 25 7.0 10 1-2-Dibromoetha	Methyl tert butyl ether	ND			25	7.0	10
co-Xylene ND ug/l 25 7.0 10 cis-1,2-Dichloroethene 440 ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 10. 10 2-Butanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 25 7.0 10 2-Hexanone ND ug/l 25 7.0 10 1-2-Distomoethane ND ug/l 25 7.0 10 1-2-Ditylomoethane ND ug/l 25 7.0 10 1-2-Ditylomoethane	p/m-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene 440 ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodiffuoromethane ND ug/l 50 10. 10 Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 25 7.0 10 1,2-Dibromoethane ND ug/l 25 7.0 10 1,2-Dibro	o-Xylene	ND			25	7.0	10
Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 25 7.0 10 1,2-Dibromothane ND ug/l 25 7.0 10 1,2-Dibromothane ND ug/l 25 7.0 10 n-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromothane ND ug/l 25 7.0 10 1,2-Dibromothane ND ug/l 25 7.0 10 1,2-Dibromothane	cis-1,2-Dichloroethene	440			25	7.0	10
Actione ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 Bromochloromethane ND ug/l 25 7.0 10 1,2-Dibromoethane ND ug/l 25 7.0 10 n-Butylbenzene ND ug/l 25 7.0 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 Is	Styrene	ND			25	7.0	10
Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 Bromochloromethane ND ug/l 25 7.0 10 1,2-Dibromoethane ND ug/l 25 7.0 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 l_2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 lsopropylbenzene ND ug/l 25 7.0 10 lsopropylbenzene ND ug/l 25 7.0 10 <	Dichlorodifluoromethane	ND		ug/l	50	10.	10
2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 Bromochloromethane ND ug/l 25 7.0 10 1,2-Dibromoethane ND ug/l 25 7.0 10Butylbenzene ND ug/l 25 7.0 10Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 I-2,3-Trichlorobenzene ND ug/l 25 7.0 10 I,2,3-Trichlorobenzene ND ug/l 25 7.0 10 I,2,4-Trichlorobenzene ND ug/l 25 7.0 10 I,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Indethyl Acetate ND ug/l 25 7.0 10 Indethyl Acet	Acetone	ND		ug/l	50	15.	10
4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 Bromochloromethane ND ug/l 25 7.0 10 1,2-Dibromoethane ND ug/l 25 7.0 10	Carbon disulfide	ND		ug/l	50	10.	10
2-Hexanone ND ug/l 50 10. 10 Bromochloromethane ND ug/l 25 7.0 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 lsopropylbenzene ND ug/l 25 7.0 10 sportopylbenzene ND ug/l 25 7.0 10	2-Butanone	ND		ug/l	50	19.	10
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	50	10.	10
1,2-Dibromoethane	2-Hexanone	ND		ug/l	50	10.	10
n-Butylbenzene ND ug/l 25 7.0 10 sec-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 lsopropylbenzene ND ug/l 25 7.0 10 sp-lsopropylbenzene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,3-Trichlorobenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 20 2.3 10 Cyclohexane ND ug/l 25 7.0 610 1,4-Dioxane ND ug/l 2500 610 10 Freon-113	Bromochloromethane	ND		ug/l	25	7.0	10
sec-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,3-Trichlorobenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 2500 610 10 1,4-Dioxane ND ug/l 250 7.0 10	1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene ND ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,3-Trichlorobenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 2500 610 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	n-Butylbenzene	ND		ug/l	25	7.0	10
Isopropylbenzene ND ug/l 25 7.0 10 10 10 10 10 10 10	sec-Butylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 1,2,3-Trichlorobenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 1,4-Dioxane ND ug/l 100 2.7 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
n-Propylbenzene ND ug/l 25 7.0 10 1,2,3-Trichlorobenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	Isopropylbenzene	ND		ug/l	25	7.0	10
1,2,3-Trichlorobenzene ND ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	p-Isopropyltoluene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene ND ug/l 25 7.0 10 1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	n-Propylbenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene ND ug/l 25 7.0 10 1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trimethylbenzene ND ug/l 25 7.0 10 Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
Methyl Acetate ND ug/l 20 2.3 10 Cyclohexane ND ug/l 100 2.7 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10
Cyclohexane ND ug/l 100 2.7 10 1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10
1,4-Dioxane ND ug/l 2500 610 10 Freon-113 ND ug/l 25 7.0 10	Methyl Acetate	ND		ug/l	20	2.3	10
Freon-113 ND ug/l 25 7.0 10	Cyclohexane	ND		ug/l	100	2.7	10
	1,4-Dioxane	ND		ug/l	2500	610	10
Methyl cyclohexane ND ug/l 100 4.0 10	Freon-113	ND		ug/l	25	7.0	10
	Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Accep Qualifier Crit	
1,2-Dichloroethane-d4	103	70	-130
Toluene-d8	102	70	-130
4-Bromofluorobenzene	96	70	-130
Dibromofluoromethane	104	70	-130

L2372271

12/21/23

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2372271-04 D Date Collected: 12/06/23 13:34

Client ID: SUPPLY WELL Date Received: 12/07/23
Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/16/23 23:35

Analyst: MAG

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westbo	rough Lab					
1,1-Dichloroethane ND ug/l 5.0 1.4 2 Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 1.0 0.30 2 Dibromochloromethane ND ug/l 3.0 1.0 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane ND ug/l 5.0 1.4 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,1,2-Trichloroethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2 1,1,1-Trichloroethane ND ug/l 1.0 0.33 2 Bromodichloromethane ND ug/l 1.0 0.33 <	Methylene chloride	ND		ug/l	5.0	1.4	2
Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,1,1-Trichloroethane ND ug/l 1.0 0.26 2 Bromochloromethane ND ug/l 1.0 0.38 2 Bromochloromethane ND ug/l 1.0 0.33 2 Bromochloromethane ND ug/l 1.0 0.33 2 Bromochloromethane ND ug/l 1.0 0.33 2	1,1-Dichloroethane	ND		-	5.0	1.4	2
1,2-Dichloropropane ND ug/l 2.0 0.27 2	Chloroform	ND		ug/l	5.0	1.4	2
Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethene 3.2 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane 4.7 J ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.26 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 terns-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 5.0 1.4 2 Toluene ND ug/l 5.0	Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Tetrachloroethene 3.2 ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane 4.7 J ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 4.0 1.3 2 Benzene ND ug/l 1.0 0.33 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2	Dibromochloromethane	ND		ug/l	1.0	0.30	2
Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane 4.7 J ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2	1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane A.7 J ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 1.0 0.29 2 Bromoform ND ug/l 1.0 0.33 2 trans-1,2-Etrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.33 2 Toluene ND ug/l 1.0 0.32 2 Toluene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Tichloroethane ND ug/l 5.0 1.4 2	Tetrachloroethene	3.2		ug/l	1.0	0.36	2
1,2-Dichloroethane ND ug/l 1,0 0.26 2 1,1,1-Trichloroethane 4.7 J ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Winyl chloride ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 5.0 1.4 2	Chlorobenzene	ND		ug/l	5.0	1.4	2
1,1,1-Trichloroethane 4.7	Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
ND	1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Emomoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Emomoform ND ug/l 1.0 0.33 2 Emomoform ND ug/l 1.0 0.33 2 Emomoform ND ug/l 1.0 0.32 2 Emomoform ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Emomofientane ND ug/l 5.0 1.4 2 Emomofientan	1,1,1-Trichloroethane	4.7	J	ug/l	5.0	1.4	2
cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 2.2 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	Bromodichloromethane	ND		ug/l	1.0	0.38	2
Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 2.2 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethene 2.2 ug/l 1.0 0.34 2 Christopoethene ND ug/l 5.0 1.4 2 Christopoethen	Bromoform	ND		ug/l	4.0	1.3	2
Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Tichloroethene DND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.34 2 Trichloroethene 170 ug/l 1.0 0.35 2	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 2.2 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	Benzene	ND		ug/l	1.0	0.32	2
Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 2.2 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	Toluene	ND		ug/l	5.0	1.4	2
Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride ND ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 2.2 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	Ethylbenzene	ND		ug/l	5.0	1.4	2
Vinyl chloride ND ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 2.2 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	Chloromethane	ND		ug/l	5.0	1.4	2
Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 2.2 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	Bromomethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene 2.2 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	Vinyl chloride	ND		ug/l	2.0	0.14	2
trans-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Trichloroethene 170 ug/l 1.0 0.35 2	Chloroethane	ND		ug/l	5.0	1.4	2
Trichloroethene 170 ug/l 1.0 0.35 2	1,1-Dichloroethene	2.2		ug/l	1.0	0.34	2
	trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
1,2-Dichlorobenzene ND ug/l 5.0 1.4 2	Trichloroethene	170		ug/l	1.0	0.35	2
	1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2

12/21/23

Report Date:

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061

SAMPLE RESULTS

Lab ID: L2372271-04 D Date Collected: 12/06/23 13:34

Client ID: SUPPLY WELL Date Received: 12/07/23
Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	16		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	105	70-130	

L2372271

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

SAMPLE RESULTS

Report Date: 12/21/23

Lab Number:

Lab ID: Date Collected: 12/06/23 00:00 L2372271-05

Client ID: Date Received: 12/07/23 TRIP BLANK Field Prep: Sample Location: Not Specified HONEOYE FALLS NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/16/23 21:57

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061 **Report Date:** 12/21/23

SAMPLE RESULTS

Lab ID: L2372271-05 Date Collected: 12/06/23 00:00

Client ID: TRIP BLANK Date Received: 12/07/23
Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Parameter	Kesuit	Qualifier	Ullita	NL.	MIDE	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	107	70-130	

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061 **Report Date:** 12/21/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/16/23 19:06

Analyst: PID

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-05 Batch:	WG1865850-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061 **Report Date:** 12/21/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/16/23 19:06

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-05 Batch:	WG1865850-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061 **Report Date:** 12/21/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/16/23 19:06

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-05 Batch: WG1865850-5

		-		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	107		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

Lab Number: L2372271

Report Date: 12/21/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-05 Batch:	WG1865850-3	WG1865850-4			
Methylene chloride	100		97		70-130	3	20	
1,1-Dichloroethane	98		99		70-130	1	20	
Chloroform	96		100		70-130	4	20	
Carbon tetrachloride	88		98		63-132	11	20	
1,2-Dichloropropane	89		94		70-130	5	20	
Dibromochloromethane	86		88		63-130	2	20	
1,1,2-Trichloroethane	92		95		70-130	3	20	
Tetrachloroethene	93		95		70-130	2	20	
Chlorobenzene	97		98		75-130	1	20	
Trichlorofluoromethane	92		90		62-150	2	20	
1,2-Dichloroethane	90		96		70-130	6	20	
1,1,1-Trichloroethane	89		98		67-130	10	20	
Bromodichloromethane	87		96		67-130	10	20	
trans-1,3-Dichloropropene	92		92		70-130	0	20	
cis-1,3-Dichloropropene	94		97		70-130	3	20	
Bromoform	87		87		54-136	0	20	
1,1,2,2-Tetrachloroethane	92		93		67-130	1	20	
Benzene	98		100		70-130	2	20	
Toluene	96		98		70-130	2	20	
Ethylbenzene	96		98		70-130	2	20	
Chloromethane	95		90		64-130	5	20	
Bromomethane	86		86		39-139	0	20	
Vinyl chloride	94		90		55-140	4	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

Lab Number: L2372271

Report Date: 12/21/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s):	01-05 Batch: \	NG1865850-3	WG1865850-4				
Chloroethane	98		96		55-138	2		20	
1,1-Dichloroethene	96		97		61-145	1		20	
trans-1,2-Dichloroethene	96		100		70-130	4		20	
Trichloroethene	82		86		70-130	5		20	
1,2-Dichlorobenzene	99		99		70-130	0		20	
1,3-Dichlorobenzene	99		100		70-130	1		20	
1,4-Dichlorobenzene	98		99		70-130	1		20	
Methyl tert butyl ether	95		98		63-130	3		20	
p/m-Xylene	95		100		70-130	5		20	
o-Xylene	95		100		70-130	5		20	
cis-1,2-Dichloroethene	98		100		70-130	2		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	82		81		36-147	1		20	
Acetone	96		87		58-148	10		20	
Carbon disulfide	98		94		51-130	4		20	
2-Butanone	94		91		63-138	3		20	
4-Methyl-2-pentanone	84		86		59-130	2		20	
2-Hexanone	81		83		57-130	2		20	
Bromochloromethane	100		100		70-130	0		20	
1,2-Dibromoethane	94		92		70-130	2		20	
n-Butylbenzene	100		98		53-136	2		20	
sec-Butylbenzene	96		96		70-130	0		20	
1,2-Dibromo-3-chloropropane	93		88		41-144	6		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

Lab Number: L2372271

Report Date: 12/21/23

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough	•		· · · · · · · · · · · · · · · · · · ·	WG1865850-3		2	300	
0)		,						
Isopropylbenzene	95		98		70-130	3		20
p-Isopropyltoluene	100		99		70-130	1		20
n-Propylbenzene	94		96		69-130	2		20
1,2,3-Trichlorobenzene	120		100		70-130	18		20
1,2,4-Trichlorobenzene	110		99		70-130	11		20
1,3,5-Trimethylbenzene	98		100		64-130	2		20
1,2,4-Trimethylbenzene	100		100		70-130	0		20
Methyl Acetate	91		95		70-130	4		20
Cyclohexane	82		89		70-130	8		20
1,4-Dioxane	146		132		56-162	10		20
Freon-113	85		94		70-130	10		20
Methyl cyclohexane	83		85		70-130	2		20

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	98	102	70-130	
Toluene-d8	102	102	70-130	
4-Bromofluorobenzene	103	104	70-130	
Dibromofluoromethane	103	104	70-130	

SEMIVOLATILES

Project Name: Lab Number: ALCO MANUFACTURING GWM L2372271

Project Number: Report Date: B0672-024-001-061 12/21/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/06/23 13:55 L2372271-01

Date Received: 12/07/23 Client ID: MW-3

Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 12/11/23 13:51 Analytical Method: 1,8270E-SIM Analytical Date: 12/15/23 11:15

Analyst: TPR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,4 Dioxane by 8270E-SIM - Mansfield La	b						
1,4-Dioxane	71.8	J	ng/l	134	30.3	1	
Surrogate			% Recovery	Qualifier	Accep Crit	otance teria	
1,4-Dioxane-d8			33		15	5-110	

Project Name: Lab Number: ALCO MANUFACTURING GWM L2372271

Project Number: Report Date: B0672-024-001-061 12/21/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/06/23 10:35 L2372271-02

Date Received: Client ID: MW-5 12/07/23 Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

12/15/23 11:40

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 12/11/23 13:51 Analytical Method: 1,8270E-SIM

Analyst: **TPR**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270E-SIM - Mansfie	ld Lab					
1,4-Dioxane	1780		ng/l	150	33.9	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,4-Dioxane-d8			38		1	5-110

Project Name: Lab Number: ALCO MANUFACTURING GWM L2372271

Project Number: Report Date: B0672-024-001-061 12/21/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/06/23 14:01 L2372271-03

Date Received: 12/07/23 Client ID: MW-201D Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 12/11/23 13:51 Analytical Method: 1,8270E-SIM Analytical Date: 12/15/23 12:05

Analyst: **TPR**

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270E-SIM - Ma	nsfield Lab				
1,4-Dioxane	72000	ng/l	156	35.3	1
Surrogate		% Recove	ry Qualifi		eptance riteria
1,4-Dioxane-d8		36			15-110

Project Name: Lab Number: ALCO MANUFACTURING GWM L2372271

Project Number: Report Date: B0672-024-001-061 12/21/23

SAMPLE RESULTS

Lab ID: Date Collected: 12/06/23 13:34 L2372271-04

Date Received: Client ID: SUPPLY WELL 12/07/23 Sample Location: HONEOYE FALLS NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 12/11/23 13:51 Analytical Method: 1,8270E-SIM Analytical Date: 12/15/23 12:30

Analyst: **TPR**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270E-SIM - Mansfield	Lab					
1,4-Dioxane	474.		ng/l	134	30.3	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			32		1	15-110

Project Name: ALCO MANUFACTURING GWM Lab Number: L2372271

Project Number: B0672-024-001-061 **Report Date:** 12/21/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 12/13/23 09:53 Extraction Date: 12/11/23 13:51

Analyst: TPR

Parameter	Result	Qualifier	Units	RL	. MDL	
1,4 Dioxane by 8270E-SIM -	Mansfield Lab for s	sample(s):	01-04	Batch:	WG1862362-1	
1,4-Dioxane	ND		ng/l	150	33.9	

Surrogate %Recovery Qualifier Criteria

1,4-Dioxane-d8 36 15-110

Lab Control Sample Analysis Batch Quality Control

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061 Lab Number:

L2372271

Report Date:

12/21/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
1,4 Dioxane by 8270E-SIM - Mansfield Lab	Associated sample	e(s): 01-04	Batch: WG186	62362-2	WG1862362-3		
1,4-Dioxane	122		122		40-140	0	30

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	I %Recovery Qual	Criteria
1,4-Dioxane-d8	40	38	15-110

Project Name: ALCO MANUFACTURING GWM

Project Number: B0672-024-001-061

Lab Number: L2372271
Report Date: 12/21/23

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2372271-01A	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-01B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-01C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-01D	Amber 250ml unpreserved	Α	7	7	2.4	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2372271-01E	Amber 250ml unpreserved	Α	7	7	2.4	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2372271-02A	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-02B	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-02C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-02D	Amber 250ml unpreserved	Α	7	7	2.4	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2372271-02E	Amber 250ml unpreserved	Α	7	7	2.4	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2372271-03A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-03B	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-03C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-03D	Amber 250ml unpreserved	Α	7	7	2.4	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2372271-03E	Amber 250ml unpreserved	Α	7	7	2.4	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2372271-04A	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-04B	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-04C	Vial HCl preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-04D	Amber 250ml unpreserved	Α	7	7	2.4	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2372271-04E	Amber 250ml unpreserved	Α	7	7	2.4	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2372271-05A	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2372271-05B	Vial HCI preserved	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)

Project Name:ALCO MANUFACTURING GWMLab Number:L2372271Project Number:B0672-024-001-061Report Date:12/21/23

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from dilutions, concentrations of moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Organic Tic only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:ALCO MANUFACTURING GWMLab Number:L2372271Project Number:B0672-024-001-061Report Date:12/21/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:ALCO MANUFACTURING GWMLab Number:L2372271Project Number:B0672-024-001-061Report Date:12/21/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:ALCO MANUFACTURING GWMLab Number:L2372271Project Number:B0672-024-001-061Report Date:12/21/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 20

Page 1 of 1

Published Date: 6/16/2023 4:52:28 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ΔLPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Way	105	Pag	ge of /		Date F	Rec'd	21	812	3	ALPHA Job# L237227	1
Westborough, MA 01581	Mansfield, MA 02048 320 Forbes Blvd	Project Information		100	100		Deli	verables					Billing Information	
8 Walkup Dr. TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Alco	Many	ecterity	GUM		T	ASP-A			ASP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Hov		Falls ,	1/4		1 E	EQuis	(1 File)	Ē	EQuIS	(4 File)	PO#	
Client Information	STATE OF THE PARTY NAMED IN			-001-06	-1		1 =	Other			100	<i>ii ii</i>		
STREET, STREET	DOMESTIC STREET			, 4001 306	21		Rec	1	Requirem	ent	E 200		Disposal Site Information	-
Client: Koux	151	(Use Project name as Pr					Meg	NY TO		JAL .	NY Part	275		134
Address: 2558 H			on T	Forbes			-1 ⊱			-	•		Please identify below location applicable disposal facilities.	of
Lacquer NY	14218	ALPHAQuote #:		-	_			AWQ S		_	NY CP-	51		
Phone: (716) 85(6-0579	Turn-Around Time	101				<u> </u>	NY Res	tricted Use	L	Other		Disposal Facility:	
Fax:		Standard		Due Date	3:			NY Unr	estricted U	se			NJ NY	
Email: Befulle	Rouxine	Rush (only if pre approved	0) [# of Days	E.			NYC Se	wer Disch	arge			Other:	
These samples have be		d by Alpha					ANA	LYSIS					Sample Filtration	J
Other project specific	THE RESERVE OF THE PARTY OF THE						150	0 3		T			Done	0
							2	27 S.M.					Lab to do	а
							20	\$					Preservation	
Please specify Metals	or TAI						7 5	1 7		1			Lab to do	В
riease specify wetais (OF TAL.	-11					127	1 2			1 1			0
							9%			1	1 1		(Please Specify below)	t
ALPHA Lab ID	Sar	mple ID	Coll	ection	Sample	Sampler's	t	40			1 1			
(Lab Use Only)	Gai	riple to	Date	Time	Matrix	Initials	751	7					Sample Specific Comments	е
12271 -01	MW-3		12/6/23	1355	avelo	TUB	K	V		\top				15
-02	MW-5		1	1035	1	1	X	X						15
-03	MW-2011)			1401			×		-					16
-04							1	2	_	1				1
	Supply well		4	1334		-	X	1	_	+	+ +			-,
-05	Trop Blan	(_			-		-		_	-	\vdash	_	0	+
Reministration								\vdash		_	\vdash			+
West State of the														
reservative Code: C	Container Code	Westboro: Certification N	o: MA025							\vdash			Disease and other transfer to the	la la c
	= Plastic				Cor	tainer Type	V	A		1	1 1		Please print clearly, legit and completely. Sample:	
	= Amber Glass = Vial	Mansfield: Certification N	o: MA015					10	_	-	-	-	not be logged in and	5 Call
	= Glass				F	reservative	B	A			1 1		turnaround time clock wi	ill not
= NaOH B	-= Bacteria Cup						-	n					start until any ambiguitie	s are
1110011	= Cube	, Relinquished E	Зу:	Date/	Time		Recei	yed By:	11.	,	Date/T	ime	resolved. BY EXECUTIN	
Truition _	= Other = Encore	14/1/		12/7/23	1000	2012		182		12/-	1/20	1340	THIS COC, THE CLIENT	
- 14030303	= BOD Bottle	SOO AAL		12/1/23	1570	01	_^		_		8/23		HAS READ AND AGREE TO BE BOUND BY ALPI	
= Other	2.21.2011.00.000.000	000 10110		191/43	12/0	-				64	OBC 5	0100	TERMS & CONDITIONS	
remark CCCT		<u> </u>								-			(See reverse side.)	
rm No: 01-25 HC (rev. 30-5	Sept-2013)									1			1500 1515150 010017	

Historical Data Trends

SUMMARY OF HISTORIC ON-SITE GROUNDWATER ANALYTICAL RESULTS

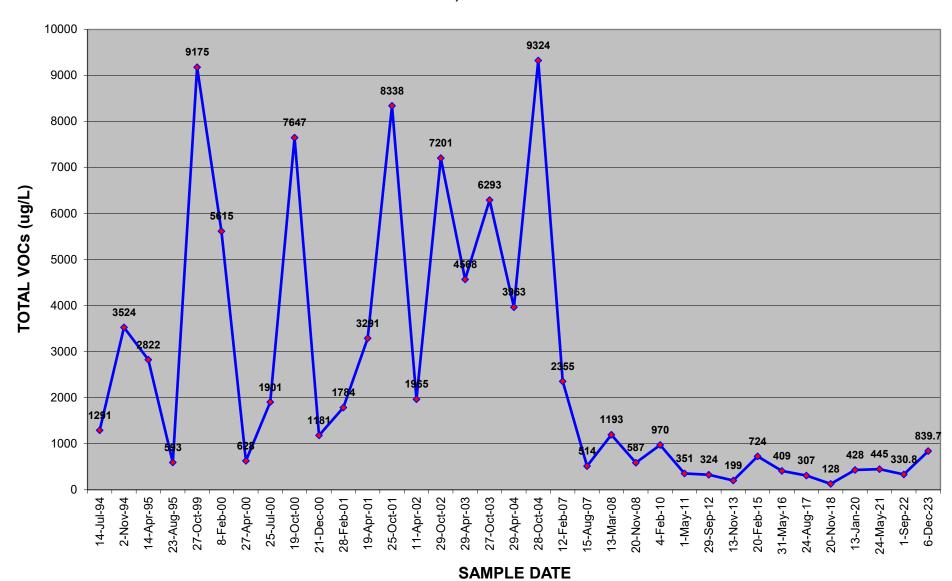
Enarc-O Machine Products, Inc. Lima, New York NYSDEC Registry No. 8-26-011

				COMP	OUND					Total
WELL	DATE	1,1,1-TCA	1,1-DCE	cis-1,2-DCE	TCE	PCE	Toluene	Vinyl Chloride	1,1-DCA	VOCs
	25-Feb-91									0
	14-Jul-94	130	14 J	30 J	1100	17 J				1291
	2-Nov-94	250		51 J	3200	23 J				3524
	14-Apr-95	190	12	98	2500	22				2822
	23-Aug-95	47	4 J	22	510	10	L			593
	27-Oct-99	525			8650	T		i		9175
	8-Feb-00	365			5250					5615
	27-Apr-00	43.2			585					628
	25-Jul-00	121			1780					1901
	19-Oct-00	502		315	6830					7647
	21-Dec-00	57.8		103	1020					1181
	28-Feb-01			154	1630					1784
	19-Apr-01	167		174	2950					3291
	25-Oct-01	382		746	7210					8338
	11-Apr-02			105	1860					1965
	29-Oct-02	464		347	6390					7201
	29-Apr-03	250		268	4050					4568
MW-3	27-Oct-03	285		288	5720					6293
	29-Apr-04	261		152	3550					3963
	28-Oct-04	390		504	8430					9324
	12-Feb-07	97	18	440	1800					2355
	15-Aug-07	24		45	440	4.7 J				514
	13-Mar-08	38	10	210	930 D	4.5 J				1193
	20-Nov-08	22	5.9	63	490	6				587
	4-Feb-10	ND	ND	140	830	ND	ND			970
	1-May-11	11	ND	40	300	ND	ND			351
	29-Sep-12	ND	ND	24	300	ND	ND			324
	13-Nov-13	7.3	ND	12	180	ND	ND			199
	20-Feb-15	11	ND	95 D	610 D	8.4	ND			724
	31-May-16	ND	ND	49	360	ND	ND			409
	24-Aug-17	13	10	19	260	4.9	ND			307
	20-Nov-18	ND	ND	7.9	120	ND	ND			128
	13-Jan-20	10	7.4	24	380	6.3	ND			428
	24-May-21	9.8	4.2	45	380	6.4	ND		ND	445
	1-Sep-22	8.1	3.4	24	290	5.3	ND	ND	ND	330.8
	6-Dec-23 7-Jan-91	16	8.1	67	730	15	ND	ND	3.6 J	839.7 ND
	25-Feb-91									ND ND
	14-Jul-94	23 J		58	510					591
	2-Nov-94	55	5 J	72	1100	9 J				1241
	14-Apr-95	15		63	400	4 J				482
	23-Aug-95 27-Oct-99	73 33	7 J 7	67	540 657	7 J 6		<u>{</u>		694 703
	8-Feb-00	8.5	,	27.4 J	170					179
	27-Apr-00	5.24			161					166
	25-Jul-00	47.8			1120					1168
	19-Oct-00	8.6	2.01	30.1	199					240
	21-Dec-00 28-Feb-01	7.14 2.03		36.1 29.3	163 78.3					206 110
	28-Feb-01 19-Apr-01	2.03	2.46	29.3 49.3	78.3 114					168
MW-5	25-Oct-01	35.6	2.40	139	758					933
	11-Apr-02	4.8		89	191					285
	29-Oct-02	45		158	953	10.8				1167
	29-Apr-03	6.17	2.78	84.8	222					316
	27-Oct-03 29-Apr-04	28.5 4.01		90.2 71.7	698 178					817 254
	28-Oct-04	88	24	324	2300					2736
	12-Feb-07	42	20	490	970					1522
	15-Aug-07	28	11 J	360	1300					1699
	12-Mar-08	1.3	21 J	27	88	0.51 J				138
	20-Nov-08 4-Feb-10	38 ND	15 ND	390 110	1400 290	13 ND	ND			1856 400
	1-May-11	ND ND	ND ND	35	290 81	ND ND	ND			116
	29-Sep-12	10	8.9	270 D	740 D	6.7	ND	<u> </u>		1035.6

SUMMARY OF HISTORIC ON-SITE GROUNDWATER ANALYTICAL RESULTS

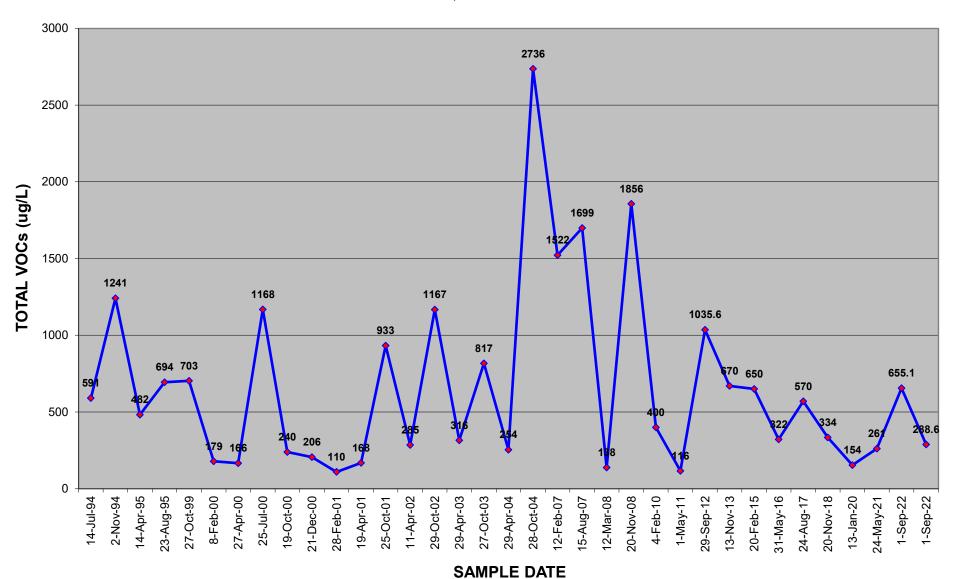
Enarc-O Machine Products, Inc. Lima, New York NYSDEC Registry No. 8-26-011

				COMF	POUND					Total
WELL	DATE	1,1,1-TCA	1,1-DCE	cis-1,2-DCE	TCE	PCE	Toluene	Vinyl Chloride	1,1-DCA	VOCs
	13-Nov-13	ND	ND	180	490	ND	ND			670
	20-Feb-15	ND	ND	200	450	ND	ND			650
	31-May-16	ND	ND	92	230	ND	ND			322
	24-Aug-17	3.2	2.9	130	430	3.4	ND			570
MW-5	20-Nov-18	ND	ND	84	250	ND	ND			334
	13-Jan-20 24-May-21	ND ND	0.62 1	42 58	110 200	1.2 1.7	ND ND			154 261
	1-Sep-22	4 J	2.4	140	500	5.3	ND ND		3.4	655.1
	1-Sep-22	ND	0.79 J	73	210	2.8	ND ND	ND	2	288.6
	7-Jan-91	NA	NA	NA	NA	NA	NA	ND	NA	NA
	25-Feb-91	NA	NA	NA	NA	NA	NA		NA	NA
	14-Jul-94	390 J		1100	7400	160 J				9050
	2-Nov-94	100 J		830	4000	61 J				4991
	14-Apr-95	200 J	10	680	3800	130 J				4820
	23-Aug-95	660	<u> </u>	1500	7700	140 J			. — . — . — . — . —	10000
	27-Oct-99	250		4000 1	3510					3760
	8-Feb-00 27-Apr-00	254 450		1920 J	4320 6430	125				6494 7005
	25-Jul-00	729			12200	162				13091
	19-Oct-00	503		2810	9840	217				13370
	21-Dec-00	197		1670	3240	46.6				5154
	28-Feb-01	267		1960	4780					7007
	19-Apr-01	252		2300	4220	110				6882
	25-Oct-01	301		2840	4770					7911
	11-Apr-02	103		2450	1850					4403
	29-Oct-02	312		2690	5810	136				8948
MW 204D	29-Apr-03	277		3030	3980					7287
MW-201D	27-Oct-03	354 201		2890 2620	8430 1890					11674 4711
	29-Apr-04 28-Oct-04	271		3320	5230	141				8962
	12-Feb-07	190	38	1000	1600	130	ND			2958
	15-Aug-07	2700 D	660	9600 D	46000 D	440	ND			59400
	13-Mar-08	92	21 J	810	3300	40 J	ND			4263
	20-Nov-08	190	34 J	2000	5900	56 J				8180
	4-Feb-10	ND	ND	800	3100	ND	ND			3900
	1-May-11	150	ND	1100	4100	ND	ND			5350
	29-Sep-12	200	ND	1200	5200 D	ND	ND			6600
	13-Nov-13	ND	ND	710	3400	ND	ND			4110
	20-Feb-15	ND ND	ND ND	410 720	2500 4600	ND ND	ND ND			2910 5320
	31-May-16 24-Aug-17	190	ND ND	1100	5900	110	ND ND			7300
	20-Nov-18	ND	ND	430	2300	ND	ND			2730
	13-Jan-20	49	19	510	2600	44	ND			3222
	24-May-21	150	60	750	5300	64	ND			6324
	1-Sep-22	160	70	1200	6000	54	ND		ND	7484
	6-Dec-23	11	8.4	440	890	ND	ND	29	8.9	1387.3
	7-Jan-91	NA	NA	NA	NA	NA	NA			NA
1	25-Feb-91	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			NA NA
1	14-Jul-94 2-Nov-94	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			NA NA
1	14-Apr-95	6 J	11/4	6 J	42	1 J	INA.			55
	23-Aug-95		2 J	3 J	160	4 J				169
1	27-Oct-99	3			20	T	2			25
	27-Apr-00	3.37	_		33.9					37
1	25-Jul-00	NS	NS	NS	NS	NS	NS			NS
1	19-Oct-00	186	29.9	44.4	1490		1			1750
1	21-Dec-00 28-Feb-01	4.3 6.36	1	5.44 4.68	52.5 70		1			62 81
	19-Apr-01	0.30	1	4.00	17.4		1			17
SUPPLY	25-Oct-01	43.5	5.13	23.4	456		1			528
1	11-Apr-02	3.73	1	5.15	48.5		1			57
1	29-Oct-02	100	12.2	35.6	980	10.3	1			1138
1	29-Apr-03	2.94	1	10.9	47		1			61
1	27-Oct-03	126	20.4	52.9	1890		1			2089
1	29-Apr-04	20.4	2.04	45.7	20.5	2.4	1			21
1	28-Oct-04 12-Feb-07	22.4	2.91	15.7	245	2.1	1			288
	12-Feb-07 15-Aug-07	8.8 0.91 J		11 3.1	120 18					140 22
1	12-Mar-08	8.1	2	30	180 D	2.3	1			222
1	20-Nov-08	1.1	2.9	21	240	2.2 J	1			267
1	4-Feb-10	ND	ND	12	87	ND	ND			99
	1-May-11	ND	ND	ND	7.9	ND	ND			8

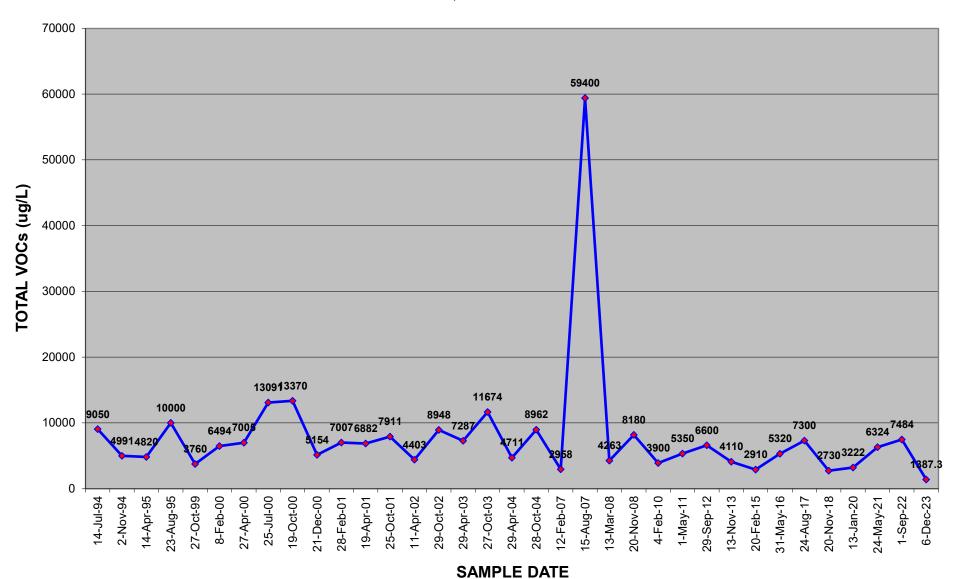

SUMMARY OF HISTORIC ON-SITE GROUNDWATER ANALYTICAL RESULTS

Enarc-O Machine Products, Inc. Lima, New York NYSDEC Registry No. 8-26-011

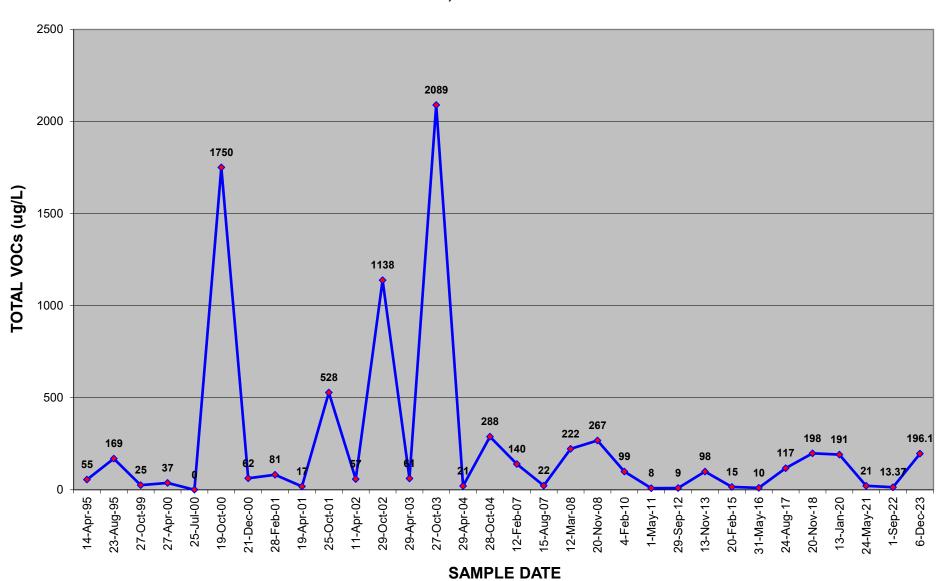
WELL	DATE	COMPOUND									
		1,1,1-TCA	1,1-DCE	cis-1,2-DCE	TCE	PCE	Toluene	Vinyl Chloride	1,1-DCA	VOCs	
	29-Sep-12	ND	ND	ND	8.7	ND	ND			9	
	13-Nov-13	ND	ND	5.3	93	ND	ND			98	
	20-Feb-15	ND	ND	ND	15	ND	ND			15	
	31-May-16	ND	ND	ND	9.8	ND	ND			10	
SUPPLY	24-Aug-17	5	3.6	6.2	100	1.8 J	ND			117	
SUPPLY	20-Nov-18	6	ND	12	180	ND	ND			198	
	13-Jan-20	4.9	2.8	ND	180	2.8 J	ND			191	
	24-May-21	ND	0.38 J	2.2 J	18	0.35 J	ND			21	
	1-Sep-22	ND	0.27 J	1.1 J	12	ND	ND		ND	13.37	
	6-Dec-23	4.7 J	2.2 J	16	170	3.2 J	ND	ND	ND	196.1	
2. J = Indicates ar 3. U = Indicates of 4. D = Compound 5. NA = Not analy 6. NS = Not Samp 7. ND = None det 8. Heavy dashed	pled. lected (blank space also and dotted line indicates	n. ut not detected. ary dillution factor. indicates not detected).	was observed in MW	-201D.							
	ntration data provided by encentrations indicate the										
10. Highlighted co	oncentrations indicate the	e December 2023 samp	iing event.								



HISTORIC ANALYTICAL RESULTS MW-3



HISTORIC ANALYTICAL RESULTS MW-5



HISTORIC ANALYTICAL RESULTS MW-201D

HISTORIC ANALYTICAL RESULTS SUPPLY WELL

