300 Gateway Park Drive • North Syracuse, New York 13212 • 800-220-3069 • Fax 315-452-3237

November 10, 2010

Mr. Vivek Nattanmai, P.E. Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233-7013

Re:

2010 Annual Site Summary Report Trimmer Road Landfill Site #8-28-012 Parma, New York

Dear Mr. Nattanmai,

Please find the enclosed Site Summary Report for 2010 prepared by Groundwater & Environmental Services, Inc., (GES) on behalf of NYSDEC, for the above referenced site. This report includes the photographic logs for the mowing events conducted on July 15, August 25, and October 22, of 2010. Additionally, the analytical results and corresponding documentation from the August 2010 sampling event has been provided.

Please disregard the previously submitted report from November 5, 2010 as this report represents a complete summary of the 2010 site activities. If you have any questions about these activities or the photo documentation, please feel free to contact GES, Inc. at 1-800-220-3069.

Sincerely,

GROUNDWATER & ENVIRONMENTAL SERVICES, INC.

Richard A. Mayer Jr. Staff Hydrogeologist

Justin Domago Hydrogeologist / Project Manager

SITE SUMMARY REPORT

2010 November 10, 2010

<u>Trimmer Road Landfill</u> Parma, Monroe County, New York

NYSDEC Site No.: 82-8012

NYSDEC Contact: Mr. Vivek Nattanmai, P.E.

2010 SITE ACTIVITIES:

- **July 8, 2010**: Initial site walk and reconnaissance. Each vegetative buffer zone was inspected to determine the appropriate clearing and grubbing equipment needed to remove brush between trees. During the site walk, a fallen tree was discovered across the main access road leading toward vegetative buffer #1.
- **July 15, 2010**: Completed site maintenance, including the removal of a fallen tree across the main access road and mowing of all three vegetative buffers. One damaged poplar tree was identified and photographic documentation was submitted.
- **July 29, 2010**: Installation of passive diffusion bags (PDBs) into select monitoring wells (MW-4s, MW-5s, MW-6s, MW-8s, MW-9s, MW-13, MW-14, MW-15, MW-16, MW-17, MW-18 and MW-19).
- August 25, 2010: Completed site mowing of all three vegetative buffers and collection of groundwater samples from PDBs installed in MW-4s, MW-5s, MW-6s, MW-8s, MW-9s, MW-13, MW-14, MW-15, MW-16, MW-17, MW-18 and MW-19.
- October 22, 2010: Completed site mowing of all three vegetative buffers. Existing hardy plants and/or weeds around the trunks of the planted poplar trees were removed by hand to prevent tree damage.

FUTURE ACTIVITIES:

- Mowing with photographic documentation of the three vegetative buffers conducted during the following months for 2011:
 - o Mid June/July
 - o Mid to late August
 - Mid to late October
- Annual groundwater sampling using passive diffusion bags to be conducted in mid June/July 2011.

MONITORING:

Well Specifications:

Twelve 2-inch diameter PVC monitoring wells

Sample Method:

Volatiles via EPA method 8260

Sample Frequency:

Annually (MW-4S, 5S, 6S, 8S, 9S, 13, 14, 15, 16, 17, 18, and 19)

Analytical Laboratory Used:

Environmental Laboratory Services, North Syracuse, NY (ELAP# 42694)

2010 Site Summary Report Trimmer Road Landfill NYSDEC Site No. 82-8012 Parma, NY November 10, 2010

ATTACHMENTS:

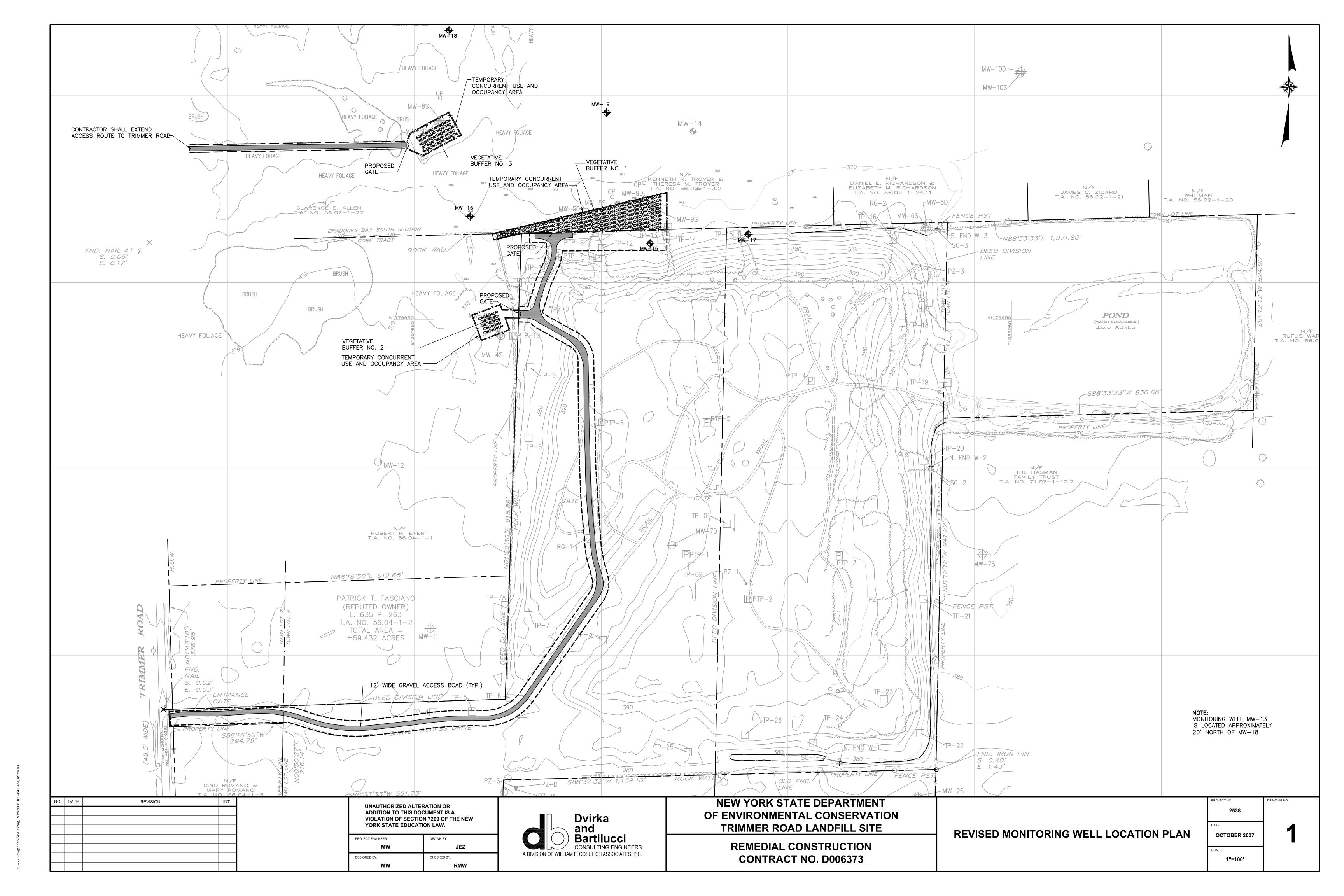

Figure 1: Revised Monitoring Well Location Plan

Table 1: Groundwater Analytical Data

Table 2: Groundwater Analytical Data – Tentatively Identified Compounds (TICs)

Photographic Log – Complete 2010 Site Activities

Laboratory Analytical Reports

Table 1

GROUNDWATER ANALYTICAL DATA

Trimmer Road Landfill Site Site #8-28-012 Parma, New York August 26, 2010

2	TOGS 1.1.1 Ground Water						
Well ID	Standards (µg/l)	MW-4S	MW-5S	MW-6S	MW-8S	MW-9S	MW-13
1,1,1,2-tetrachloroethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,1,1-trichloroethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,1,2,2-tetrachloroethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,1,2-trichloroethane	1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,1-dichloroethane	5	ND<1	ND<1	ND<1	ND<1	57	7.91
1,1-dichloroethene	0.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2,3-trichlorobenzene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2,4-trichlorobenzene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2-dichlorobenzene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2-dichloroethane	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2-dichloropropane	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,3-dichlorobenzene	NA ·	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,4-dichlorobenzene	NA	ND<1	2.57	1.88	ND<1	2.89	ND<1
2-butanone	NA	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
2-chlorotoluene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
2-hexanone	NA	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
4-chlorotoluene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
4-methyl-2-pentanone	NA	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
acetone	50	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
benzene	1	ND<0.7	7.57	2.87	ND<0.7	5.13	1.18
bromochloromethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
bromodichloromethane	50	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
bromoform	50	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
bromomethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
carbon disulfide	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
carbon tetrachloride	0.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
chlorobenzene	5	ND<1	17.5	12.3	ND<1	24.4	1.97
chloroethane	5	ND<1	15	2.12	ND<1	57.4	8.24
chloroform	7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
chloromethane	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
cis- 1,2 - dichloroethene	5	ND<1	4.75	ND<1	ND<1	4.2	9.48
cis- 1,3- dichloropropene	0.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
dibromochloromethane	50	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
dichlorodifluoromethane	5	ND<1	1.25	1.71	ND<1	ND<1	ND<1
ethylbenzene	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
methylene chloride	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
MtBE	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
styrene	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
tetrachloroethene	0.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
tolune	5	1.05	ND<1	ND<1	ND<1	ND<1	ND<1
trans- 1,2- dichloroethene	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
trans- 1,3- dichloropropene	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
trichloroethene	5	ND<1	ND<1	ND<1	ND<1	2.24	2.98
trichlorofluoromethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
vinyl acetate	NA 0.2	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
vinyl chloride	0.3	ND<1	19.8	ND<1	ND<1	4.32	4.45
xylene, m+p	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
xylenes, o	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
Total BTEX Compounds	NA	1.05	7.57	2.87	ND	5.13	1.18
Total 8260 STARS Compounds	NA	1.05	68.44	20.88	ND	157.58	36.21

Notes:

All concentrations reported in $\mu g/l$.

ND< = none detected above laboratory limit indicated.

 \boldsymbol{Bold} type indicates that compound exceedes TOGS 1.1.1 limit.

NA= TOGS Groundwater Standard not available

Table 1

GROUNDWATER ANALYTICAL DATA

Trimmer Road Landfill Site Site #8-28-012 Parma, New York August 26, 2010

	TOGS 1.1.1 Ground Water						
Well ID	Standards (µg/l)	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19
1,1,1,2-tetrachloroethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,1,1-trichloroethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,1,2,2-tetrachloroethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,1,2-trichloroethane	1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,1-dichloroethane	5	ND<1	ND<1	14.8	4.31	5.92	26.3
1,1-dichloroethene	0.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2,3-trichlorobenzene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2,4-trichlorobenzene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2-dichlorobenzene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2-dichloroethane	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,2-dichloropropane	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,3-dichlorobenzene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
1,4-dichlorobenzene	NA	ND<1	ND<1	2.87	1.72	ND<1	1.86
2-butanone	NA	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
2-chlorotoluene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
2-hexanone	NA	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
4-chlorotoluene	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
4-methyl-2-pentanone	NA	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
acetone	50	ND<5	5.43	6.24	ND<5	ND<5	ND<5
benzene	1	ND<0.7	3.58	7.9	6.24	1.8	3.99
bromochloromethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
bromodichloromethane	50	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
bromoform	50	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
bromomethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
carbon disulfide	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
carbon tetrachloride	0.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
chlorobenzene	5	1.38	8.11	23.5	13.4	4.19	15.3
chloroethane	5	ND<1	1.14	17.6	3.96	9.48	25.8
chloroform	7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
chloromethane	NA	ND<1	ND<1	1.04	ND<1	ND<1	ND<1
cis- 1,2 - dichloroethene	5	ND<1	3.7	4.49	ND<1	19.7	6.96
cis- 1,3- dichloropropene	0.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
dibromochloromethane	50	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
dichlorodifluoromethane	5	ND<1	ND<1	1.01	3.8	ND<1	ND<1
ethylbenzene	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
methylene chloride	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
MtBE	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
styrene	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
tetrachloroethene	0.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
tolune	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
trans- 1,2- dichloroethene	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
trans- 1,3- dichloropropene	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
trichloroethene	5	ND<1	ND<1	ND<1	ND<1	5.6	3.14
trichlorofluoromethane	5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
vinyl acetate	NA	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
vinyl chloride	0.3	ND<1	5.49	25.5	ND<1	11	7.31
xylene, m+p	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
xylenes, o	NA	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
Total BTEX Compounds	NA	ND	3.58	7.9	6.24	1.8	3.99
Total 8260 STARS Compounds	NA	1.38	27.45	104.95	33.43	57.69	90.66

Notes:

All concentrations reported in $\mu g/l$.

ND< = none detected above laboratory limit indicated.

Bold type indicates that compound exceedes TOGS 1.1.1 limit.

NA= TOGS Groundwater Standard not available

Table 2

GROUNDWATER ANALYTICAL DATA

Tentatively Identified Compounds (TICs)
Trimmer Road Landfill Site
Site #8-28-012
Parma, New York

August 26, 2010

					2				-	
Well ID	MW-5S	MW-6S	MW-9S	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19
Tentatively Identified Compounds						27	,			
Ethyl ether	15.2	21.5	5.7	4.1	2.1	10.1	17.3	20.4	6.3	6.8
Indane	1.3									
Unknown hydrocarbon		1.5					1	1		
Unknown alkane				91		# 11	1	3	12 ·	×
Substituted benzene	~					× 3		2	81	
Total TICs Concentration	16.5	23	5.7	4.1	2.1	10.1	19.3	25.8	6.3	6.8

Notes:

All concentrations reported in $\mu g/l$.

Blank cells indicate compound not detected at location.

TICs not detected in MW-4S or MW-8S.

Photo #1: July 8, 2010 – Tree across main access road.

Photo #2: July 15, 2010 – Tree crossing main access road following removal.

Photo #3: July 8, 2010 – Vegetative buffer #1 prior to site mowing.

Photo #4: July 15, 2010 – Vegetative Buffer #1 following site mowing.

Photo #5: July 8, 2010 – Vegetative buffer #2 prior to site mowing.

Photo #6: July 15, 2010 – Vegetative buffer #2 following site mowing.

Photo #7: July 8, 2010 – Vegetative buffer #3 prior to site mowing.

Photo #8: July 15, 2010 – Vegetative buffer #3 following site mowing.

Photo #9: July 15, 2010 – Damaged tree in vegetative buffer #1.

Photo #10: July 29, 2010 – PDB install at MW-4s.

Photo #11: July 29, 2010 – PDB install at MW-4s complete.

Photo #12: July 29, 2010 – PDB install at MW-17.

Photo #13: July 29, 2010 – PDB install at MW-17 complete.

Photo #14: July 29, 2010 – PDB install at MW-6s.

Photo #15: July 29, 2010 – PDB install complete at MW-6s.

Photo #16: July 29, 2010 – PDB install at MW-16.

Photo #17: July 29, 2010 – PDB install complete at MW-16.

Photo #18: July 29, 2010 – PDB install at MW-5s.

Photo #19: July 29, 2010 – PDB install complete at MW-5s.

Photo #20: July 29, 2010 – PDB install at MW-9s.

Photo #21: July 29, 2010 – PDB install complete at MW-9s.

Photo #22: July 29, 2010 – PDB install at MW-8s.

Photo #23: July 29, 2010 – PDB install complete at MW-8s.

Photo #24: July 29, 2010 – PDB install at MW-18.

Photo #25: July 29, 2010 – PDB install complete at MW-18.

Photo #26: July 29, 2010 – PDB install at MW-13.

Photo #27: July 29, 2010 – PDB install complete at MW-13.

Photo #28: July 29, 2010 – PDB install at MW-15.

Photo #29: July 29, 2010 – PDB install complete at MW-15.

Photo #30: July 29, 2010 – PDB install at MW-19.

Photo #31: July 29, 2010 – PDB install complete at MW-19.

Photo #32: July 29, 2010 – PDB install at MW-14.

Photo #33: July 29, 2010 – PDB install complete at MW-14.

Photo #34: August 25, 2010 – Vegetative buffer #1 prior to site mowing.

Photo #35: August 25, 2010 – Vegetative buffer #1 following site mowing

Photo #36: August 25, 2010 – Vegetative buffer #2 following site mowing

Photo #37: August 25, 2010 – Vegetative buffer #3 prior to site mowing.

Photo #38: August 25, 2010 – Vegetative buffer #3 following site mowing.

Photo #39: October 22, 2010 – Vegetative buffer #1 (East) prior to site mowing.

Photo #40: October 22, 2010 – Vegetative buffer #1 (East) following site mowing.

Photo #41: October 22, 2010 – Vegetative buffer #1 (West) prior to site mowing.

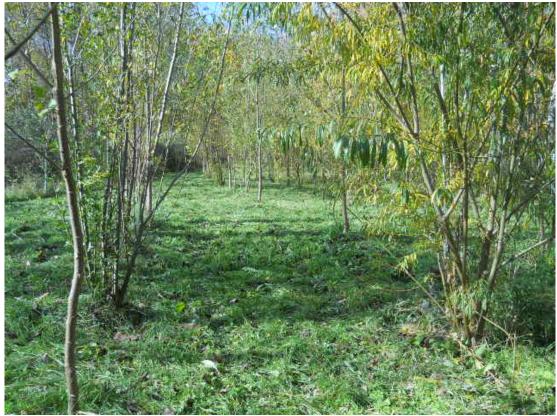


Photo #42: October 22, 2010 – Vegetative buffer #1 (West) following site mowing.

Photo #43: October 22, 2010 – Vegetative buffer #1 (Gate) prior to site mowing.

Photo #44: October 22, 2010 – Vegetative buffer #1 (Gate) following site mowing.

Photo #45: October 22, 2010 – Vegetative buffer #2 prior to site mowing.

Photo #46: October 22, 2010 – Vegetative buffer #2 following site mowing.

Photo #47: October 22, 2010 – Vegetative buffer #3 prior to site mowing.

Photo #48: October 22, 2010 – Vegetative buffer #3 following site mowing.

Environmental

RECEIVED SEP 0 9 2010

7280 Caswell Street, Hancock Air Park, North Syracuse, NY 13212 (315) 458-8033, FAX (315) 458-0526, (800) 842-4667

Laboratory Analysis Report

GROUNDWATER ENVIRONMENTAL SERVICES 300 Gateway Park Dr.

PROJECT#: RECEIVED:

08/26/2010 @ 14:40

North Syracuse, NY 13212 ATTN: Ken Hubbard

Site Address: TRIMMER ROAD PARMA, NY

PO#: 06-02278

SPILL#: 82-8012

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 654989 Volatile - 8260	CLIENT SAMPLE ID:	MVV-48	, , , , , , , , , , , , , , , , , , , ,		DATE/TIME SAMPLED:	08/25/10 @ 12:40
1,1,1,2-tetrac	chlomethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,1-trichlor		<1.00	UG/L	08/31/10	EPA 8260B	ASI
	chloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2-trichlor		<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,1-dichloros		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1-dichloros		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2,3-trichlor		<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2,4-trichlor		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichlorol		<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2-dichloros		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichlorog		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,3-dichloroi	•	<1.00	UG/L	0B/31/10	EPA 8260B	ASI
1,4-dichloroi		<1.00	UG/L	08/31/10	EPA 8260B	ASI
2-butanone		<5.00	UG/L	08/31/10	EPA 8260B	ASI
2-chlorotolue	ene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
2-hexanone		<5.00	UG/L	08/31/10	EPA 8260B	ASI
4-chlorotolue	she	<1.00	UG/L	08/31/10	EPA 8260B	ASI
4-methyl-2-p	entanone	<5.00	UG/L	08/31/10	BPA 8260B	ASI
acetone		<5.00	UG/L	08/31/10	EPA 8260B	ASI
benzene		< 0.700	UG/L	08/31/10	EPA 8260B	ASI
bromochloro	methane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
bromodichlo	romethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
bromoform		<1.00	UG/L	08/31/10	BPA 8260B	ASI
bromometha	ene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
carbon disul	līde	<1.00	UG/L	08/31/10	EPA 8260B	ASI
carbon teira	chloride	<1.00	UG/L	08/31/10	EPA 8260B	ASI
chlorobenze	ne	<1.00	UG/L	08/31/10	EPA 8260B	ASI
chloroethan	8	<1.00	UG/L	08/31/10	EPA 8260B	ASI
chloroform		<1.00	UG/L	08/31/10	BPA 8260B	ASI
chlorometha	ine	<1.00	UG/L	08/31/10	EPA 8260B	ASI
cis-1,2-dichi	oroethene	<1.00	UG/L	08/31/10	EPA 8260B	ASI

GROUNDWATER ENVIRONMENTAL SERVICES 300 Gateway Park Dr.

PROJECT#: RECEIVED:

245666

08/26/2010 @ 14:40

North Syracuse, NY 13212 ATTN: Ken Hubbard

Site Address:

TRIMMER ROAD

PO#: 06-02278

PARMA, NY

SPILL#: 82-8012

TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 654989 CLIENT SAMPLE ID:	MV-46			DATE/TIME SAMPLED:	08/25/10 @ 12:40
Volatile - 8260				,	
cis-1,3-dichloropropene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
dibromochloromethane	<1.00	UG/L	-08/31/10	BPA 8260B	ASI
dichlorodifluoromethane	<1.00	UG/L	08/31/10	BPA 8260B	ASI
ethylbenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
methylene chloride	<1.00	UG/L	08/31/10	EPA 8260B	ASI
mibe	<1.00	UG/L	08/31/10	EPA 8260B	ASI
styrene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
tetrachloroethene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
toluene	1.05	UG/L	08/31/10	BPA 8260B	ASI
trans-1,2-dichloroethene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
trans-1,3-dichloropropene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
trichloroethene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
trichloroffuoromethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
vinyl acetate	<5.00	·UG/L	08/31/10	EPA 8260B	ASI
vinyi chloride	<1.00	UG/L	08/31/10	EPA 8260B	ASI
xylene, m+p	<1.00	UG/L	08/31/10	EPA 8260B	ASI
xylene, o	<1.00	UG/L	08/31/10	EPA 8260B	ASI
Surrogate (fluorobenzene): 108 % 1 % recovery. Surrogate recovery ac	ecovery,(toluene-	d8): 98 % reco	very.(bromofluorobenzene): 97	% recovery,(1,2-dichlorobe nz	ene-d4): 112

Volatile - LIBRARY SEARCH (VOLATILE)See Attached - -

08/31/10

ASI

SAMPLE#: 554990	CLIENT SAMPLE ID:	MW-58			DATE/TIME SAMPLED: 0	B/25/10 @ 13:00
Volatile - 8260						4 004
1,1,1,2-tetra	chloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,1-trichlor	roethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2,2-tetra	chloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2-trichlor	roethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1-dichloro	ethane	<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,1-dichloro		<1.00	UG/L	08/31/10	EPA.8260B	ASI
1,2,3-trichio	robenzene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2,4-trichlo	robenzene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2-dichioro		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloro		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloro	•	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1.3-dichloro		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1.4-dichloro		2.57	UG/L	08/31/10	EPA 8260B	ASI
2-butanone		<5.00	UG/L	08/31/10	EPA 8260B	ASI
2-chlorotolu		<1.00	UG/L	08/31/10	EPA 8260B	ASI
2-hexanone		<5.00	UG/L	08/31/10	BPA 8260B	ASI
4-chlorotolu		<1.00	UG/L	08/31/10	EFA 8260B	ASI
4-methyl-2-		<5.00	UG/L	08/31/10	EPA 8260B	ASI
acetone	to constitution	<6.00	UG/L	08/31/10	EPA 8260B	ASI

GROUNDWATER ENVIRONMENTAL SERVICES 300 Gateway Park Dr.

North Syracuse, NY 13212

ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED	· •	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 554990	CLIENT SAMPLE ID:	MW-5S			DATE/TIME SAMPLED:	08/25/10 @ 13:00
Volatile - 8260				08/31/10	EPA 8260B	ASI
benzene		7.57	UG/L	08/31/10	BPA 8260B	ASI
bromachiord		<1.00	UG/L	08/31/10	EPA 8260B	ASI
bromodichic	romethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
bromoform		<1.00	UG/L	08/31/10	EPA 8260B	ASI
bromomethe		<1.00	UG/L	08/31/10	EPA 8260B	ASI
carbon disu		<1.00	UG/L		EPA 8260B	ASI
carbon tetra		<1.00	UG/L	0B/31/10	EPA 8260B	ASI
chlorobenze	ene	17.5	UG/L	08/31/10	EPA 8260B	ASI
chloroethan	8	15.0	UG/L	08/31/10		ASI
chloroform.	•	<1.00	UG/L	08/31/10	EPA 8260B	ASI
chlorometh	ane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
cis-1,2-dich	loroethene	4.75	UG/L	08/31/10	EPA 8260B	ASI
cis-1,3-dich	loropropene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
	oromethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI ASI
dichlorodifi	uoromethane	1.25	UG/L	08/31/10	EPA 8260B	ASI ASI
ethylbenze	ne	<1.00	UG/L	08/31/10	EPA 8260B	
methylene		<1,00	UG/L	08/31/10	EPA 8260B	ASI
mtbe		<1.00	UG/L	08/31/10	BPA 8260B	ASI
styrene		<1.00	UG/L	08/31/10	EPA 8260B	ASI
tetrachloro	ethene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
toluene		<1.00	UG/L	08/31/10	EPA 8260B	ASI
	lichloroethene	<1.00	UG/L	0B/31/10	EPA 8260B	ASI
*	lichioropropene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
trichloroeti		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,141.141.	oromethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
vinyl aceta		<5.00		08/31/10	EPA 8260B	ASI
vinyi aceta		19.8		08/31/10	EPA 8260B	ASI
xylene, m		<1.00		08/31/10	EPA 8260B	. ASI
	•	<4.00	HG/L	08/31/10	EPA 8260B	ASI
xylene, o Surri % re	ogale (fluorobenzene): 107 % covery. Surrogale recovery c	recovery,(toluene	d8): 97 % reco	ery,(bromofluorobenzane): 1	01 % recovery,(1,2-dichlorober	
	RY SEARCH (VOLATILI			08/31/10		ASI
SAMPLE #: 55499	CLIENT SAMPLE ID	: MW-6S			DATE/TIME SAMPLE	o: 08/25/10 @ 13

<1.00 UG/L

<1.00 UG/L

<1.00

<1.00

<1.00

<1.00

<1.00

UG/L

UG/L

UG/L

UG/L

UG/L

1,1,1,2-tetrachloroethane

1,1,2,2-tetrachloroethane

1,1,1-trichloroethane

1,1,2-trichioroethane

1,1-dichloroethane

1,1-dichloroethene

1,2,3-trichiorobenzene

Volatile - 8260

ASI

ASI

ASI

ASI

ASI

ASI

ASI

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

BPA 8260B

EPA 8260B

EPA 8260B

08/31/10

08/31/10

08/31/10

08/31/10

08/31/10

08/31/10

08/31/10

GROUNDWATER ENVIRONMENTAL SERVICES 300 Gateway Park Dr.

.

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address: TRIMMER ROAD

PARMA, NY

TEST PERFORMED	RESULTS	UNITS	DATE/TIMĒ PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 554991 CLIENT SAMPLE ID:	MW-65	<u></u>		DATE/TIME SAMPLED:	08/25/10 @ 13:45
Volatile - 8260	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2,4-trichlorobenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichlorobenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloropropane	<1.00 <1.00	UG/L	08/31/10	EPA 8260B	ASI
1,3-dichlorobenzene	1.88	UG/L	08/31/10	EPA 8260B	ASI
1,4-dichlorobenzene	7.00 75.00	UG/L	08/31/10	EPA 8260B	ASI
2-butanone	<1.00	UG/L	08/31/10	EPA 8260B	ASI
2-chlorotoluene	<5.00	UG/L	08/31/10	BPA 8260B	ASI
2-hexanone		UG/L	08/31/10	EPA 8260B	ASI
4-chlorotoluene	<1.00 <5.00	UG/L	08/31/10	EPA 8260B	ASI
4-methyl-2-pentanone			08/31/10	EPA 8260B	ASI
acetone	< 5.00		08/31/10	EPA 8260B	ASI
benzene	2.87	UG/L UG/L	08/31/10	BPA 8260B	ASI
bromochloromethane	<1.00		08/31/10	EPA 8260B	ASI
bromodichloromethane	<1.00		08/31/10	EPA 8260B	ASI
bromoform	<1.00		08/31/10	BPA 8260B	ASI
bromomethane	<1.00		08/31/10	EPA 8260B	ASI
carbon disulfide	<1.00		08/31/10	EPA 8260B	ASI
carbon tetrachloride	<1.00		08/31/10	EPA 8260B	ASI
chlorobenzene	12,3		08/31/10	EPA 8260B	ASI
chloroethane	2.12			BPA 8260B	ASI
chloroform	<1.00		08/31/10	EPA 8260B	ASI
chloromethane	<1.00		08/31/10	BPA 8260B	ASI
cis-1,2-dichloroethene	<1.00		08/31/10	BPA 8260B	ASI
cis-1,3-dichloropropene	<1.00		08/31/10	EPA 8260B	ASI
dibiomochloromethane 🐪 🐪	<1.0		08/31/10	EPA 8260B	ASI
dichlorodifluoromethane	1.7		08/31/10		ASI
ethylbenzene	<1.0		08/31/10	EPA 8260B	ASI
methylene chloride	<1.0		08/31/10	BPA 8260B	ASI
mtbe	<1.0		08/31/10	EPA 8260B	ASI
styrene	<1.0		08/31/10	EPA 8260B	ASI
tetrachioroethene	<1.0		08/31/10	EPA 8260B	ASI
toluene	<1.0		08/31/10	EPA 8260B	ASI
trans-1,2-dichloroethene	<1.0		08/31/10	EPA 8260B	
trans-1,3-dichloropropene	<1.0		08/31/10	EPA 8260B	ASI
trichloroethene	<1.0		08/31/10	EPA 8260B	ASI
trichlorofluoromethane	<1.0		08/31/10	EPA 8260B	ASI
vinyl acetate	<5.0		08/31/10	EPA 8260B	ASI
vinyl chloride	<1.0		08/31/10	EPA 8260B	ASI
xylene, m+p	<1.0		08/31/10	EPA 8260B	ASI
xylene, o	<1.0	O UG/L	08/31/10	EPA 8260B 99 % recovery, (1,2-dichlorober	ASI

Surrogate (fluorobenzene): 105 % recovery, (toluene-d8): 96 % recovery, (bromofluorobenzene): 99 % recovery, (1,2-dichlorobenzene-d4): 111 % recovery. Surrogate recovery acceptance limits are 85-115%

GROUNDWATER ENVIRONMENTAL SERVICES 300 Gateway Park Dr.

PROJECT#: RECEIVED:

245666

08/26/2010 @ 14:40

North Syracuse, NY 13212 ATTN: Ken Hubbard

Site Address:

TRIMMER ROAD

PO#: 06-02278

PARMA, NY

SPILL#: 82-8012

TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 554991 CLIENT SAMPLE ID:	MW-65			DATE/TIME SAMPLED:	08/25/10 @ 13:45
Volatile - LIBRARY SEARCH (VOLATILE)	See Attached -	~	08/31/10		ISA
SAMPLE #: 554992 CLIENT SAMPLE ID:	MW-8S			DATE/TIME SAMPLED:	08/25/10 @ 10:40
Volatile - 8260 1,1,1,2-tetrachlöroetharie	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,1-richloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2,2-tetrachloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2-trichloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1-dichloroethane	<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,1-dichloroethene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2,3-trichlorobenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2,4-trichlorobenzene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2-dichlorobenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloropropane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,3-dichlorobenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,4-dichlorobenzene	<1.00	UG/L	08/31/10	. EPA 8260B	ASI
2-butanone	<5.00	UG/L	08/31/10	EPA 8260B	ASI
2-chiorotoluene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
2-hexanone	<5.00	UG/L	08/31/10	EPA 8260B	ASI
4-chlorotoluene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
4-methyl-2-pentanone	<5.00	UG/L	08/31/10	EPA 8260B	ASI
acetone	<5.00	UG/L	08/31/10	BPA 8260B	ASI
benzene	<0.700	UG/L	08/31/10	EPA 8260B	ASI
bromochloromethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
bromodichloromethane	<1.00	UG/L	08/31/10	EPA 8260B	ISA
bromoform	<1.00	UG/L	08/31/10	BPA 8260B	ASI
bromomethane	<1.00	UG/L	08/31/10	EPA 8260B	· ASI .
carbon disulfide	<1.00	UG/L	08/31/10	EPA 8260B	ASI
carbon tetrachloride	<1.00	UG/L	0B/31/10	EPA 8260B	ASI
chlorobenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
chloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
chioroform	<1.00	UG/L	08/31/10	EPA 8260B	ASI
chloromethane	<1.00		08/31/10	EPA 8260B	ASI
cis-1,2-dichloroethene	<1.00		08/31/10	EPA. 8260B	ASI
cis-1,3-dichloropropene	<1.00		08/31/10	EPA 8260B	ASI
dibromochloromethane	<1.00		08/31/10	EPA 8260B	ASI
dichlorodilluoromethane	<1.00		08/31/10	EPA 8260B	ASI
ethylbenzene	71,00		08/31/10	EPA 8260B	ASI
methylene chloride	<1.00		08/31/10	EPA 8260B	ASI
mlbe	<1.00		08/31/10	EPA 8260B	ASI
styrene	<1.00) UG/L	08/31/10	BPA 8260B	ASI

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 554992 CLIENTS	SAMPLEID: MW-85			DATE/TIME SAMPLED:	08/26/10 @ 10:40
Voletile - 8260					
tetrachloroethene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
toluene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
trans-1,2-dichloroethen	e <1.00	UG/L	08/31/10	EPA 8260B	ASI
trans-1,3-dichloroprope	•	UG/L	08/31/10	EPA 8260B	ASI
trichlorcethene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
frichloroffuoromethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
vinyl acetate	<5.00	UG/L	08/31/10	BPA 8260B	ASI
vinyl chloride	<1.00	UG/L	08/31/10	EPA 8260B	ASI
xylene, m+p	<1.00	UG/L	08/31/10	EPA 8260B	ASI
xylene, o	<1.00	UG/L	08/31/10	EPA 8260B	ASI
Surrogate (fluorober	nzene): 107 % recovery,(toluene- ale recovery acceptance limits an	dB): 97 % recov	ery,(bromofluorobenzene): 94		
Volatile - LIBRARY SEARCH	(VOLATILE)See Attached -	-	08/31/10		ASI

SAMPLE#: 554993	CLIENT SAMPLE ID:	MW-9S			DATE/TIME SAMPLED: 0	3/25/10 @ 13:1 5
Volatile - 8260						A IDI
1,1,1,2-tetrar	chloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1.1-trichior	oethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2,2-tetra	chloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2-trichiot	roethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1-dichloros	ethane	57.0	UG/L	08/31/10	EPA 8260B	ASI
1,1-dichloroe	ethene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2,3-trichlo	robenzene	<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2,4-trichlor	robenzene	<1.00	UG/L	08/31/10	BPA.8260B	ASI
1,2-dichlorol	benzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloro	•	<1,00	UG/L	08/31/10	BPA 8260B	ASI
1,2-dichloro		<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,3-dichloro	benzene	<1.00	UG/L	08/31/10	EPA 8250B	ASI
1,4-dichloro		2,89	UG/L	08/31/10	EPA 8260B	ASI
2-butanone		<5.00	UG/L	08/31/10	EPA 8260B	ASI
2-chlorotolu	ene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
2-hexanone)	<5.00	UG/L	08/31/10	EPA 8260B	ASI
4-chlorotolu	ene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
4-methyl-2-	pentanone	<5.00	UG/L	08/31/10	EPA 8260B	ASI
acetone		<5.00	UG/L	08/31/10	EPA 8260B	ASI
benzene		5.13	UG/L	08/31/10	EPA 8260B	ASI
bromochion	omethane	<1.00	UG/L	0B/31/10	EPA 8260B	ASI
bromodichi	promethane	<1.00	UG/L	08/31/10	EPA, 8260B	ASI
bromoform		<1.00	UG/L	0B/31/10	EPA 8260B	ASI
bromometh	ane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
carbon disu		<1.00	UG/L	08/31/10	EPA 8260B	ASI
carbon fetre	***	<1.00	UG/L	0B/31/10	EPA 8260B	ASI

GROUNDWATER ENVIRONMENTAL SERVICES

300 Gateway Park Dr.

245666

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

PROJECT#: RECEIVED:

08/26/2010 @ 14:40

North Syracuse, NY 13212

ATTN: Ken Hubbard

Site Address: TRIMMER ROAD

PARMA, NY

PO#: 08-02278

SPILL#: 82-8012

PERFORMED DATE/TIME METHOD NUMBER **TEST PERFORMED** RESULTS UNITS PERFORMED DATE/TIME SAMPLED: 08/25/10 @ 13:15 SAMPLE #: 554993 CLIENT SAMPLE ID: MW-95 Volatile - 8260 ASI **EPA 8260B** 08/31/10 chlorobenzene 24.4 UG/L **EPA 8260B** ASI 08/31/10 57.4 UG/L chloroethane **EPA 8260B** ASI <1.00 UG/L 08/31/10 chloroform ASI **EPA 8260B** <1.00 UG/L 08/31/10 chloromethane ASI **EPA 8260B** cis-1,2-dichloroethene 4.20 UG/L 08/31/10 ASI EPA 8260B · <1.00 UG/L 08/31/10 cls-1,3-dichloropropene ASI **EPA 8260B** <1.00 UG/L 08/31/10 dibromochloromethane <1.00 **EPA 8260B** ASI UG/L 08/31/10 dichlorodifluoromethane ASI UG/L 08/31/10 EPA 8260B ethylbanzene <1.00 ASI methylene chloride <1.00 UG/L 08/31/10 **EPA 8260B** 08/31/10 **EPA. 8260B** ASI mibe <1.00 UG/L 08/31/10 **EPA 8260B** ASI <1.00 UG/L styrene ASI <1.00 UG/L 08/31/10 **EPA 8260B** tetrachloroethene ASI 08/31/10 **BPA 8260B** toluene <1.00 UG/L 08/31/10 **EPA 8260B** ASI trans-1,2-dichloroethene <1.00 UG/L ASI <1.00 UG/L 08/31/10 **EPA 8260B** trans-1,3-dichloropropene ASI 08/31/10 **EPA 8260B** trichloroethene 2.24 UG/L

Surrogate (fluorobenzene): 106 % recovery, (toluene-d8): 98 % recovery, (bromoftworobenzene): 98 % recovery, (1,2-dichlorobenzene-d4): 112

% recovery. Surrogate recovery acceptance limits are 85-115%

<1.00

<5.00

4.32

<1.00

<1.00

UG/L

UG/L

UG/L

UG/L

UGA.

Volatile - LIBRARY SBARCH (VOLATILE)See Attached -

irichloroffuoromethane

vinyl acetate

vinyl chloride

xylene, m+p

xylene, o

08/31/10

08/31/10

08/31/10

08/31/10

08/31/10

08/31/10

ASI

ASI

ASI

ASI

AS!

ASI

SAMPLE#: 554994	CLIENT SAMPLE ID:	MW-13			DATE/TIME SAMPLED: 08	<i> </i> /25/10 @ 11:10
Volatile - 8260						
1,1,1,2-tetra	chloroethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,1-trichlo	roethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2,2-tetra	chlorcethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2-trichlo	roethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1.1-dichloro	ethane	7.91	UG/L	08/31/10	EPA 8260B	ASI
1.1-dichloro	ethene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2,3-trichlo	robenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2,4-trichlo	robenzene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1.2-dichloro	benzena	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1.2-dichloro	ethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloro	propane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1.3-dichloro		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1.4-dichloro		<1.00	UG/L	08/31/10	EPA 8260B	ASI
2-butanone		<5.00	UG/L	08/31/10	EPA 8260B	ASI

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

08/31/10

EPA 8260B

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 554994	CLIENT SAMPLE ID:	MW-13			DATE/TIME SAMPLED: (08/25/10 @ 11:10
Volatile - 8260					•	
2-chlorotolus	ane.	<1.00	UG/L	08/31/10	BPA 8260B	ASI
2-hexanone	,,,,,	< 5.00	UG/L	08/31/10	EPA 8260B	ASI
4-chlorotolus	ana	<1.00	UG/L	08/31/10	BPA 8260B	ASI
4-methyl-2-r		<6.00	UG/L	08/31/10	EPA 8260B	ASI
acetone	GIRATION	<5.00	UG/L	08/31/10	BPA 8260B	ASI
benzene		1.18	UG/L	08/31/10	BPA 8260B	ASI
bromachlara		<1.00	UG/L	08/31/10	EPA 8260B	ASI
		<1.00	UG/L	08/31/10	EPA 8260B	ASI
bromodichic	HOHIERIANE	<1.00	UG/L	08/31/10	EPA 8260B	ASI
bromoform		<1.00	UG/L	08/31/10	BPA 8260B	ASI
bromometh		<1.00	UG/L	08/31/10	EPA 8260B	ASI
carbon disu		<1.00	UG/L	08/31/10	BPA 8260B	ASI
carbon telra		1.97	UG/L	08/31/10	EPA 8260B	ASI
chlorobenzo			UG/L UG/L	08/31/10	EPA 8260B	ASI
chloroethar	ie	8.24		08/31/10	EPA 8260B	ASI
chloroform		<1.00	UG/L		EPA 8260B	ASI
chlorometh	ane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
cls-1,2-dlch		9,48	UG/L	08/31/10	EPA 8260B	ASI
	iloropropene	<1.00	UG/L	08/31/10		ASI
dibromochl	oromethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
dichtorodifl	uoromethane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
ethylbenze	ne	<1.00	UG/L	08/31/10	EPA 8260B	ASI
methylene		<1.00	UG/L	08/31/10	HPA 8260B	
mtbe		<1.00	UG/L	08/31/10	EPA 8260B	ASI
styrene		<1.00	UG/L	08/31/10	EPA 8260B	ASI
tetrachloro	ethene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
toluene		<1.00	UG/L	08/31/10	EPA 8260B	ASI
*****	lichloroethene	<1.00	UG/L	. 08/31/10 -	EPA 8260B	ASI
	lichioropropene	<1.00	UG/L	08/31/10	EPA 8260B	ASI
trichloroet		2.98	UG/L	08/31/10	EPA 8260B	ASI
	oromethane	<1.00		08/31/10	EPA 8260B	ASI
		<5.00		08/31/10	EPA 8260B	ASI
vinyl aceta		4.48		08/31/10	BPA 8260B	ASI.
vinyl chlor		<1.00		08/31/10	EPA 8260B	ASI
xylene, m	*p	<1.00		D8/31/10	EPA 8260B	ASI
xylene, o		· 1.01	, JOI AC OL vaca		14 % recovery.(1,2-dichlorobens	zene-d4): 114
Surr % re	ogale (fluorobenzene): 103 % covery. Surrogale recovery	o recovery, (totuent acceptance limits t	re 85-115%	sor Man amalesan anesternishe s		
	RY SEARCH (VOLATIL			08/31/10		ASI
SAMPLE #: 55499	5 CLIENT SAMPLE IC): N/VV-14			DATE/TIME SAMPLE	D: 08/25/10 @ 12:
Volatile - 8260	turuklara dhana	e1 N	n LiG/i	08/31/10	EPA 8260B	ASI

<1.00 UG/L

<1.00 UG/L

1,1,1,2-tetrachioroethane

1,1,1-trichloroethane

ASI

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address: TRIMMER ROAD PARMA, NY

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SANPLE#: 554995	CLIENT SAMPLE ID:	MW-14			DATE/TIME SAMPLED:	08/25/10 @ 12:05
Volatile - 8260 1,1,2,2-tetrad	-t-laranthrane	<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1,2-trichlor		<1.00	UG/L	OB/31/10	EPA 8260B	ASI
1,1,2-thenion		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,1-dichioros		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2,3-trichlor		<1.00	UG/L:	08/31/10	EPA 8260B	ASI
1,2,4-trichlor		<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2,4-memoral		<1.00	UG/L	08/31/10	BPA 8260B	ASI
1,2-dichloro		<1.00	·UG/L	08/31/10	EPA 8260B	ASI
1,2-dichlore		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,2-dichloro	-	<1.00	UG/L	08/31/10	EPA 8260B	ASI
- 7		<1.00	UG/L	08/31/10	EPA 8260B	ASI
1,4-dichloro 2-butanone	panzene	<5.0D	UG/L	08/31/10	EPA 8260B	ASI
		<1.00	UG/L	08/31/10	EPA 8260B	ASI
2-chlorotolu		<5.0D	UG/L	08/31/10	EPA 8260B	ASI
2-hexanone 4-chlorotolu		<1.00	UG/L	08/31/10	EPA 8260B	ASI
4-cniorotoiu 4-methyl-2-		<5.00	UG/L	08/31/10	EPA 8260B	ASI
4-memyr-z- acelone	penianone	<5,00		08/31/10	EPA 8260B	ASI
acetone benzene		<0.700		08/31/10	BPA.8260B	ASI
bromochlor	omothana	<1.00		08/31/10	EPA 8260B	ASI
	oromethane	<1.00		08/31/10	EPA 8260B	ASI
bromoform	Officialic	<1.00		08/31/10	EPA 8260B	ASI
bromometh	artists.	<1.00		08/31/10	BPA 8260B	ASI
carbon dist		<1.00		08/31/10	EPA 8260B	ASI
carbon tetr		<1.00		08/31/10	BPA 8260B	ASI
chiorobenz		1.38		08/31/10	EPA 8260B	ASI
chloroetha		<1.00		08/31/10	EPA 8260B	ASI
chloroform		<1.00		08/31/10	EPA 8260B	ASI
chloromet		<1.00		08/31/10	EPA 8260B	ASI
	hloroethene	<1,00		08/31/10	EPA 8260B	ASI
	hioropropene	<1.00		08/31/10	EPA 8260B	ASI
	loromethane	<1.01		08/31/10	EPA 8260B	ASI
	iconethane	<1.0		08/31/10	EPA 8260B	ASI
1		<1.0		08/31/10	EPA 8260B ·	ASI
ethylbenze methylene		<1.0		08/31/10	EPA 8260B	ASI
mibe	GINOLIGE	<1.0		OB/31/10	EPA 8260B	ASI
		<1.0		08/31/10	EPA 8260B	ASI
styrene tetrachlore	nathana	<1.0		08/31/10	EPA 8260B	ASI
1	7001C11C	<1.0		08/31/10	EPA 8260B	ASI
toluene	dichloroethene	<1.0		08/31/10	EPA 8260B	ASI
	dichloropropene	<1,0		08/31/10	EPA 8260B	ASI
trans-1,3-	· · ·	<1.0		08/31/10	EPA 8260B	ASI
	urene uoromethane	<1.0		08/31/10	EPA 8260B	ASI
HIGHOION .	man at tends (m) sp	1.00				

PROJECT#: RECEIVED:

245666

08/26/2010 @ 14:40

North Syracuse, NY 13212 ATTN: Ken Hubbard

Site Address:

PO#: 06-02278 SPILL#: 82-8012 TRIMMER ROAD PARMA, NY

SAMPLE #: 554995 CLIENT SAMPLE ID: MW-14 DATE/TIME SAMPLED: 08/25/10 ©	
Volatile - 8260 CLIENT SAMPLE ID. WARD No. 100 Medical Sample ID. WARD No. 100 Medical Sample ID. WARD No. 100 Medical Sample ID. A Section of the sample ID. A Sectio	DRMEI 3Y
vinyl acetate <5.00 UG/L 08/31/10 EPA 8260B A vinyl chloride <1.00	12:05
Vinyl chloride <1.00 UG/L	
Volatile - Library Search (Volatile) See Attached - OB/31/10 BPA 8260B A	
xylene, o	

PROJECT 批 RECEIVED:

245666

08/26/2010 @ 14:40

North Syracuse, NY 13212 ATTN: Ken Hubbard

Site Address: TRIMMER ROAD

PO#: 06-02278

PARMA, NY

SPILL#: 82-8012

TEST PERFORMED	•	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 554996	CLIENT SAMPLE ID:	MW-15	,		DATE/TIME SAMPLED: (08/25/10 @ 11:35
Volatile - 8260						ASI
dibromochlo	romethane	<1.00	UG/L	09/01/10	EPA 8260B	
dichlorodifiu	oromethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
ethylbenzen	e	<1.00	UG/L	09/01/10	EPA 8260B	ASI
methylene c		<1.00	UG/L	09/01/10	EPA 8260B	ASI
mtbe		<1.00	UG/L	09/01/10	EPA 8260B	ASI .
styrene		<1.00	UG/L	09/01/10	EPA.8260B	ASI
tetrachloroe	ihana	<1.00	UG/L	09/01/10	EPA 8260B	ASI
toluene	Hielio	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	-Llava-thana	<1.00	UG/L	09/01/10	EPA 8260B	ASI
· ·	chloroethene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	chloropropene	<1.00 <1.00	UG/L	09/01/10	EPA 8260B	ASI
trichloroeth				09/01/10	EPA 8260B	ASI
trichlorofluc		<1.00	UG/L		EPA 8260B	ASI
vinyl acetat		<5,00	UG/L	09/01/10		ASI
vinyi chloric	le '	5.49	UG/L	09/01/10	EPA 8260B	
xylene, m+∣	p	<1.00	UG/L	09/01/10	EPA 8260B	ASI
xylene, o		<1.00	UG/L	09/01/10	BPA 8260B	ASI
Suro	gate (fluorobenzene): 108 % : overy. Surrogate recovery ac	recovery,(toluene- cceptance limits a	d8); 95 % recov e 85-115%	ery.(bromofluorobenz ene): 90	í % recovery,(I,2-dichtorobenze	
						ASI

Voletile - LIBRARY SEARCH (VOLATILE)See Attached - -

09/01/10

SAMPLE#: 554997	CLIENT SAMPLE ID:	MW-16			DATE/TIME SAMPLED:	08/25/10 @ 13:25
Volatile - 8260	+ - 1					
1,1,1,2-tetrac	hloroelhane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1,1-trichlor		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1,2,2-tetrac		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1,2-trichlor		<1.00	UG/L	09/01/10	BPA 8260B	ASI
1,1-dichloros		14.8	UG/L	09/01/10	EPA 8260B	ASI
1.1-dichloros		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2,3-trichlor		<1.00	UG/L	09/01/10	BPA 8260B	ASI
1,2,4-trichlor		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichlorot		<1.00	UG/L	09/01/10	EPA 8260B	ISA
1,2-dichloros		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichloror	•	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,3-dichloroi	•	<1.00	UG/L	09/01/10	BPA 8260B	ASI
1.4-dichlorol		2.87	UG/L	09/01/10	EPA 8260B	ASI
2-butanone		<5.00	UG/L	09/01/10	EPA 8260B	ASI
2-chlorotolu	ane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
2-hexanone		< 5.00	UG/L	09/01/10	EPA 8260B	ASI
4-chlorotolu		<1.00	UG/L	09/01/10	EPA 8260B	ASI
4-methyl-2-1		<5.00	UG/L	09/01/10	EPA 8260B	ASI
acetone		6.24	UG/L	09/01/10	EPA 8260B	ASI
benzene		7.90	UG/L	09/01/10	EPA 8260B	ASI

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 564997 Volatile - 8260	CLIENT SAMPLE ID:	MVV-16			DATE/TIME SAMPLED:	
bromochloror	nethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
bromodichlet		<1.00	UG/L	09/01/10	EPA 8260B	ASI
bromoform		<1.00	UG/L	09/01/10	EPA 8260B	ASI
bromometha	ne	<1.00	UG/L	09/01/10	EPA 8260B	ASI
carbon disulf		<1.00	UG/L	09/01/10	EPA 8260B	ASI
carbon tetrac		<1.00	UG/L	09/01/10	EPA 8260B	ASI
chlorobenzer		23.5	UG/L	09/01/10	EPA 8260B	ASI
chloroethane		17.6	UG/L	09/01/10	EPA 8260B	ASI
chloroform		<1.00	UG/L	09/01/10	EPA 8260B	ASI
chlorometha	ne	1.04	UG/L	09/01/10	EPA 8260B	ASI
cis-1,2-dichit		4.49	UG/L	09/01/10	EPA 8260B	ASI
cls-1,3-dichle		<1.00	UG/L	09/01/10	EPA 8260B	ASI
dibromochlo	- ,	<1.00	UG/L	09/01/10	EPA 8260B	ASI
dichlorodiflu		1.01	UG/L	09/01/10	EPA 8260B	ASI
ethylbenzen		<1.00	UG/L	01/10/60	BPA 8260B	ASI
methylene c		<1.00	UG/L	09/01/10	EPA 8260B	ASI
mibe	11101100	<1.00	UG/L	09/01/10	EPA 8260B	ASI
styrene		<1.00		09/01/10	EPA 8260B	ASI
tetrachloroe	fhene	<1.00		09/01/10	EPA 8260B	ASI
toluene	H10110	<1.00		09/01/10	EPA 8260B	ASI
	chloroethene	<1.00	15	09/01/10	EPA 8260B	ASI
•	chloropropene	<1.00		09/01/10	EPA 8260B	ASI
trichloroethe	•	<1.00	UG/L	09/01/10	EPA 8260B	ASI
trichiorofluo		<1.00		09/01/10	EPA 8260B	ASI
vinyi acetati		< 6.00	UG/L	09/01/10	BPA 8260B	ASI
vinyl chlorid		25.5	UG/L	09/01/10	EPA 8260B	ASI
xylene, m+j		<1.00	UG/L	09/01/10	BPA 8260B	ASI
indema o	•	<1.00	UG/L	09/01/10	EPA 8260B	ASI
Surros	ate (fluorobenzene): 108 % i very. Surrogate recovery ac	recovery,(toluene sceptance limits o	-d8): 92 % re re 85-115%	covery,(bromofluorobenzene): 1)] % recovery,(T,2-dichlorobe	nzene-d4): 115
	y search (volatile			09/01/10		ASI
SAMPLE #: 554998	CLIENT SAMPLE ID:	MW-17			DATE/TIME SAMPLE	D: 08/25/10 @ 13:35
Volatile - 8260	** **	نسد دهن	n tima	09/01/10	EPA 8260B	ASI
* * .*	achloroethane	<1.0		09/01/10 09/01/10	EPA 8260B	ASI
1,1,1-trichl		<1,0		09/01/10	EPA 8260B	ASI
	achioroethane	<1.0		09/01/10	EPA 8260B	ASI
1,1,2-trichi		<1.0			EPA 8260B	ASI
1,1-dichlor		4.3		09/01/10 09/01/10	BPA 8260B	ASI
1,1-dichlor		<1.0		09/01/10	EPA 8260B	ASI
1 ' '	orobenzene lorobenzene	<1.0 <1.0		09/01/10	EPA 8260B	ASI

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT# RECEIVED:

245666

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED	•	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 554998	CLIENT SAMPLE ID:	MW-17	-		DATEITIME SAMPLED: (18/25/10 @ 13:35
Volatile - 8260	1			sam à bà stà	en a cocoss	ASI
1,2-dichlorol	benzene	<1.00	UG/L .	09/01/10	EPA 8260B	ASI
1,2-dichloro	ethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichloro	propane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,3-dichloro	benzene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1.4-dichloro	benzene	1.72	UG/L	09/01/10	EPA 8260B	ASI
2-bulanone.	•	<5.00	UG/L	09/01/10	EPA 8260B	ASI
2-chlorofolu	ene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
2-hexanone	•	<5.00	UG/L	09/01/10	EPA 8260B	ASI
4-chlorotolu	iene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
4-methyl-2-	pentanone	< 6.00	UG/L	09/01/10	EPA 8260B	
acetone	•	<5.00	UG/L	09/01/10	EPA 8260B	ASI
benzene		6,24	UG/L	09/01/10	BPA 8260B	ASI
bromochlor	omethane	<1.00	UG/L	09/01/10	BPA 8260B	ASI
	oromethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
bromoform		<1.00	UG/L	09/01/10	EPA 8260B	ASÌ
bromomet		<1.00	UG/L	09/01/10	BPA 8260B	ASI
carbon dist		<1.00	UG/L	09/01/10	BPA 8260B	ASI
carbon tetr		<1.00	UG/L	09/01/10	EPA 8260B	ASI
chlorobenz		13.4	UG/L	09/01/10	BPA 8260B	ASI
chloroetha		3,96	UG/L	09/01/10	EPA 8260B	ASI
chloroform		<1.00	UG/L	09/01/10	EPA 8260B	ASI
chlorometi		<1.00		09/01/10	BPA 8260B	ASI
	hloroethene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	hloropropene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
,	loromethane	<1.00		09/01/10	EPA 8260B	ASI
	luoromethane	3.80		09/01/10	EPA 8260B	ASI
ethylbenze		<1.00		09/01/10	EPA 8260B	ASI
methylene		<1.00		09/01/10	EPA 8260B	ASI
mibe	: Undine	<1.0		09/01/10	EPA 8260B	ASI
styrene		<1.00		09/01/10	EPA 8260B	AS1
styrene tetrachlor	nathana	<1.0		09/01/10	EPA 8260B	ASI
toluene	Oetiferie.	<1.0		09/01/10	EPA 8260B	ASI
	dintiluranthama	<1.0	_	09/01/10	BPA 8260B	ASI
	dichloroethene	<1.0		09/01/10	EPA 8260B	ASI
•	dichloropropene	<1.0		09/01/10	EPA 8260B	ASI
trichlores		<1.0 <1.0		09/01/10	EPA 8260B	ASI
	uoromethane	<5.0		09/01/10	EPA 8260B	ASI
vinyi acei		~0.0 <1.0		09/01/10	BPA 8260B	ASI
vinyl chlo		<1.0 <1.0		09/01/10	EPA 8260B	ASI
xylene, m		<1.0 <1.0		09/01/10	EPA 8260B	ASI
xylene, o		<1.0	U UU/L		101 % recovery,(1,2-dichlorobe	nzene-d4): 112

Surrogate (fluorobenzene): 110 % recovery,(toluene-d8): 93 % recovery,(bromofluorobenzene): 101 % recovery,(1,2-dichlorobenzene-d4): 112 % recovery. Surrogate recovery acceptance limits are 85-115%

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT #:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED		REBULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 554998	CLIENT SAMPLE ID:	MW-17			DATE/TIME SAMPLED:	: 08/25/10 @ 13:35 ASI
	SEARCH (VOLATILE)S	ce Attached -	•	09/01/10		ASI
5AMPLE#: 554999	CLIENT SAMPLE ID:	MW-18			DATE/TIME SAMPLED	: 08/25/10 @ 11:00
Volatile - 8260	OMENT OF HIS MAILET	,,,,,,				
1,1,1,2-tetrac	hioroethene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1,1-trichlor		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1,2,2-tetrac		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1,2-trichlor		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1-dichloros		5.92	UG/L	09/01/10	EPA 8260B	ASI
1,1-dichloros		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2,3-irichlor		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2,4-trichlor		<1.00	UG/L	09/01/10	BPA 8260B	ASI
1,2,4-incinol 1,2-dichlorol		<1.00	UG/L	09/01/10	BPA 8260B	ASI
		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,3-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,4-dichloro	Denzene	<5.00 <5.00	UG/L	09/01/10	EPA 8260B	ASI
2-butanone		<1.00		09/01/10	EPA 8260B	ASI
2-chlorotolu		<5.00		09/01/10	EPA 8260B	ASI
2-hexanone		<1.00 <1.00		09/01/10	EPA 8260B	ASI
4-chlorotolu		<1,00 <5,00		09/01/10	EPA 8260B	ASI
4-methyl-2-	pentanone			09/01/10	EPA 8260B	ASI
acetone	·	<5.00		09/01/10	EPA 8260B	ASI
benzene		1.80		09/01/10	EPA 8260B	ASI
bromochlor		<1.00			EPA 8260B	ASI
	oromethane .*	<1.00		09/01/10	· EPA 8260B	- ASI
bromoform	•	<1.00		09/01/10	EPA 8260B	ASI
bromometh		<1.00		09/01/10	EPA 8260B	ASI
carbon dist	ılfide	<1.00		· · ·	EPA 8260B	ASI
carbon tetr	achloride	<1.00		09/01/10	EPA 8260B	ASI
chlorobenz	ene	4.19		09/01/10	EPA 8260B	ASI
chloroetha	ne	9.48		09/01/10	EPA 8260B	ASI
chloroform		<1.0		09/01/10		ASI
chlorometh	iene	<1.0		09/01/10	EPA 8260B	ASI
cis-1,2-dic	hioroethene	19.		09/01/10	BPA 8260B	ASI
cis-1,3-dic	hioropropene	<1.0		09/01/10	EPA 8260B	
	loromethane	<1.0		09/01/10	EPA 8260B	ASI
r	luoromethane	<1.0	o UG/L	09/01/10	EPA 8260B	ASI
ethylbenzo		<1.0	O UG/L		EPA 8260B	- ASI
methylene		<1.0	D UG/L		EPA 8260B	ASI
mtbe		<1.0	o UG/L		EPA 8260B	ASI
styrene		<1.0	O UG/L	09/01/10	EPA 8260B	ASI
34,500						

Control Control to the Control of th

· ·

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

S

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 554999	CLIENT SAMPLE ID:	MW-18			DATE/TIME SAMPLED:	08/25/10 @ 11:00
Volatile - 8260 fetrachioroeti foluene		<1.00 <1.00 <1.00	UG/L UG/L UG/L	09/01/10 09/01/10 09/01/10	EPA 8260B EPA 8260B EPA 8260B	ASI ASI ASI
trichloroethe	hioropropene ne	<1,00 5,60	UG/L UG/L UG/L	09/01/10 09/01/10 09/01/10	EPA 8260B EPA 8260B EPA 8260B	ASI ASI ASI
trichlorofluor vinyl acetate vinyl chloride	<u>.</u>	<1.00 <5.00 11.0	UG/L UG/L	09/01/10 09/01/10 09/01/10	BPA 8260B EPA 8260B EPA 8260B	ASI ASI ASI
xylene, m+p xylene, o	nto (Heisrobensons): 96 % re	<1.00 1.00 covery (toluene-d)	UG/L 8): 95 % rec	09/01/10 09/01/10 overy,(bromofluorobenzene): 93 7	EPA 8260B	ASI ns-d4): 114%
recover	y. Surrogate recovery accept SEARCH (VOLATILE)	nance umus are c	13-11370	09/01/10		ASI

SAMPLE#: 555000	CLIENT SAMPLE ID:	MW-19			DATEITIME SAMPLED: 08	/25/10 @ 11:50
Volatile - 8260				noma ido	BPA 8260B	ASI
1,1,1,2-tetra	chloroelhane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1,1-trichio	roethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1,2,2-tetra	chloroethane	<1.00	UG/L	09/01/10		ASI
1,1,2-trichio		<1.00	UG/L	09/01/10	EPA 8260B EPA 8260B	ASI
1,1-dichloro	ethane	26.3	UG/L	09/01/10		ASI
1,1-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2,3-irichio		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2,4-trichlo		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichlore		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,3-dichlore		<1.00	UG/L	09/01/10	EPA 8260B	
1,4-dichloro		1.86	UG/L	09/01/10	EPA 8260B	ASI
2-butenone		<5.00	UG/L	09/01/10	EPA 8260B	ASI
2-chlorotok	*	<1.00	UG/L	09/01/10	EPA 8260B	ASI
2-hexenone		<5.00	UG/L	09/01/10	EPA 8260B	ASI
4-chlorotol	-	<1.00	UG/L	09/01/10	EPA 8260B	ASI
4-methyl-2		<5.0D	UG/L	09/01/10	EPA 8260B	ASI
acelone	-pericarions	<5.00	UG/L	09/01/10	EPA 8260B	ASI
benzene		3.99	UG/L	09/01/10	EPA 8260B	ASI
bromochlo	mmathana	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	loromethane	<1.00		09/01/10	BPA 8260B	ASI
	• • • • • • • • • • • • • • • • • • • •	<1.00		09/01/10	EPA 8260B	ASI
bromoform		<1.00		09/01/10	EPA 8260B	ASI
bromomet		<1.00		09/01/10	EPA 8260B	ASI
carbon dis carbon tet		<1.00		09/01/10	EPA 8260B	ASI

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED	,	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 655000	CLIENT SAMPLE ID:	MW-19			DATE/TIME SAMPLED:	08/25/10 @ 11:50
Volatile - 8260					was a species	ASI
chlorobenze	ne	15.3	UG/L	09/01/10	EPA 8260B	ASI
chloroethan	∌	25.8	UG/L	09/01/10	EPA 8260B	
chloroform		<1.00	UG/L	09/01/10	EPA 8260B	ASI
chlorometha	ine	<1.00	UG/L	09/01/10	EPA 8260B	ASI
cls-1,2-dichi	oroethene	6,96	UG/L	09/01/10	EPA 8260B	ASI
cis-1,3-dichi		<1.00	UG/L	09/01/10	EPA 8260B	ASI
dibromochic		<1.00	UG/L	09/01/10	BPA 8260B	ASI
	oromethane	<1.00	UG/L	09/01/10	BPA 8260B	ASI
ethylbenzer		<1.00	UG/L	09/01/10	EPA 8260B	ASI
methylene o		<1.00	UG/L	09/01/10	EPA 8260B	ASI
mibe	Anonice	<1.00	UG/L	09/01/10	EPA 8260B	ASI
		<1.00	UG/L	09/01/10	EPA 8260B	ASI
styrene tetrachloros	-th-ma-a	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	Hiene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
toluene		<1.00	UG/L	09/01/10	EPA 8260B	ASI
,	chloroethene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
•	chloropropene	3.14	UG/L	09/01/10	EPA 8260B	ASI
trichloroeth			UG/L UG/L	09/01/10	EPA 8260B	ASI
***************************************	promethane	<1.00		09/01/10	EPA 8260B	ASI
vinyi acetal		<5.00	UG/L	09/01/10	EPA 8260B	ASI
vinyl chlorid	ie	7.31	UG/L		EPA 8260B	ASI
xylene, m+	p	<1.00		09/01/10	EPA 8260B	ASI
xylene, o		<1.00	UG/L	09/01/10		
Surro. % rec	gate (fluorobenzene): 108 % overy. Surrogate recovery a	racovery,(toluene- cceptance limits at	d8): 93 % recov re 85-115%	ery,(bromafluarobenzene): 9	8 % recovery,(1,2-dichlorobenze	
	Y SEARCH (VOLATILE			09/01/10		ASI

Volatile - LIBRARY SEARCH (VOLATILE) See Attached - -

SAMPLE #: 555001	CLIENT SAMPLE ID:	FIELD DUP			DATE/TIME SAMPLED: 08	1/25/10 @ 12:45
SAMPLE #: 555001 Volatile - 8260 1,1,1,2-tetrac 1,1,2-tetrac 1,1,2-trichlor 1,1-dichloros 1,1-dichloros 1,2-4-trichlor 1,2-dichlorol 1,2-dichlorol 1,2-dichlorol 1,2-dichlorol 1,3-dichlorol 1,3-dichlorol	chloroethane pethane chloroethane chloroethane chloroethane chloroe chloroethane chloroethane chloroethane cobenzene cobenzene chloroethane chloroethane chloroethane chloroethane chloroethane coppane	<pre>FIELD DUP <1.00 <1.00<<1.00<<1.00</pre>	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	09/01/10 09/01/10 09/01/10 09/01/10 09/01/10 09/01/10 09/01/10 09/01/10 09/01/10 09/01/10	BPA 8260B EPA 8260B	ASI ASI ASI ASI ASI ASI ASI ASI ASI
1,4-dichloro 2-butanone		<1,00 <5,00	UG/L UG/L	09/01/10 09/01/10	BPA 8260B BPA 8260B	ASI ASI

GROUNDWATER ENVIRONMENTAL SERVICES

300 Gateway Park Dr.

North Syracuse, NY 13212

ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT作

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED	•	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 565001	CLIENT SAMPLE ID:	FIELD DUP			DATE/TIME SAMPLED: ()8/25/10 @ 12:46
Volatile - 8260						ASI
2-chlorotolus	ene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
2-hexanone		<5.00	UG/L	09/01/10	BPA 8260B	ASI
4-chlorotolu	ene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
4-methyl-2-y		<6,00	UG/L	09/01/10	EPA 8260B	ASI
acetone		<5.00	UG/L	09/01/10	BPA 8260B	ASI
benzene		<0.700	UG/L.	09/01/10	EPA 8260B	ASI
bromochlore	omethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
bromodichio	promethane	<1.00	UG/L	09/01/10	BPA 8260B	ASI
bromoform		<1.00	UG/L	09/01/10	EPA 8260B	ASI
bromometh	ane	<1.00	UG/L ,	09/01/10	EPA 8260B	ASI ASI
carbon disu	lfide	<1.00	UG/L	09/01/10	EPA 8260B	
carbon tetra		<1.00	UG/L	09/01/10	EPA 8260B	ASI
chlorobenz		<1,00	UG/L	09/01/10	EPA 8260B	ASI
chloroethar	5.7	<1,00	NG/L	09/01/10	BPA 8260B	ASI
chloroform	•••	<1.00	UG/L	09/01/10	BPA 8260B	ASI
chlorometh	ane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	nlorcethene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	nloropropene	<1,00	UG/L	09/01/10	EPA 8260B	ASI
	loromethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	luoromethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
ethylbenze		<1.00	UG/L	09/01/10	EPA 8260B	ASI
methylene		<1.00	UG/L	09/01/10	EPA 8260B	ASI
mibe	-,11	<1.00	UG/L	09/01/10	EPA 8260B	ASI
styrene		<1.00	UG/L	09/01/10	EPA 8260B	ASI
letrachioro	nethene	<1.00	UG/L.	09/01/10	BPA 8260B	ASI
toluene		<1.00	UG/L	09/01/10	EPA 8260B	ASI
	dichloroethene	<1.00) UG/C	09/01/10	EPA 8260B	AS1
	dichloropropene	<1.00		09/01/10	BPA 8260B	ASI
trichloroet		<1.0		09/01/10	EPA 8260B	ASI
	oromethane	<1.01		09/01/10	EPA 8260B	ASI
vinyi acet		<5.0		09/01/10	EPA 8260B	ASI
vinyi chloi		<1.0		09/01/10	EPA 8260B	ASI
xylene, m		<1.0		09/01/10	EPA 8260B	ASI
	·	-4 D	n HGA	09/01/10	EPA 8260B	ASI
C.n.	rogale (fluorobenzene): 108 % scovery. Surrogale recovery	% recovery.(toluen	e-d8): 96 % rec	overy,(bromofluorobenzene): 9	2 % recovery.(1,2-dichloroben	zene-d4): 112
70 TE		the state of		00/01/10		ASI

DATE/TIME SAMPLED: 08/26/10 @ 13:00 CLIENT SAMPLE ID: SAMPLE#: 555002 Volatile - 8260 ASI

09/01/10 EPA 8260B PERCENT 1,1,1,2-letrachlorcethane AŚI **EPA 8260B** 09/01/10 131 PERCENT 1,1,1-trichloroethane

09/01/10

Volatile - LIBRARY SEARCH (VOLATILE)See Attached - -

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 555002 CLIENT SAMPLE ID:	MW-65 MS		<u> </u>	DATE/TIME SAMPLED: 0	B/25/10 @ 13:00
Volatile - 8260			an to A M A	EPA 8260B	ASI
1,1,2,2-letrachloroethane	130	PERCENT	09/01/10 09/01/10	EPA 8260B	ASI .
1,1,2-trichloroethane	136	PERCENT	09/01/10	BPA 8260B	ASI
1,1-dichloroethane	123	PERCENT	09/01/10	EPA 8260B	ASI
1,1-dichloroethene	103	PERCENT	09/01/10	EPA 8260B	ASI
1,2,3-trichlorobenzene	91	PERCENT	09/01/10	EPA 8260B .	ASI
1,2,4-trichlorobenzene	84	PERCENT	09/01/10	EPA 8260B	ASI
1,2-dichlorobenzene	111	PERCENT	09/01/10	EPA 8260B	ASI
1,2-dichioroethane	121	PERCENT		EPA 8260B	ASI
1,2-dichloropropane	137	PERCENT	09/01/10 09/01/10	EPA 8260B	ASI
1,3-dichlorobenzene	122	PERCENT		EPA 8260B	ASI
1,4-dichlorobenzene	102		09/01/10	EPA 8260B	ASI
2-butanone	106		09/01/10	EPA 8260B	ASI
2-chlorotoluene	128		09/01/10	BPA 8260B	ASI
2-hexanone	108		09/01/10	BPA 8260B	ASI
4-chiorotoluene	127		09/01/10	EPA 8260B	ASI
4-methyl-2-pentanone	98	•	09/01/10	BPA 8260B	ASI
acetone	49		09/01/10	EPA 8260B	ASI
benzene	92		09/01/10	EPA 8260B	ASI
bromochloromethane	118	and the second second	09/01/10		ASI
bromodichloromethane	146		09/01/10	EPA 8260B	ASI
bromoform	131		09/01/10	EPA 8260B	ASI
bromomethane	88		09/01/10	EPA 8260B	ASI
carbon disulfide	12		09/01/10	EPA 8260B	ASI
carbon tetrachioride	13		09/01/10	BPA 8260B	ASI
chiorobenzene	11		09/01/10	BPA 8260B	ASI
chloroethane	6	6 PERCENT	09/01/10	EPA 8260B	· ASI
chloroform	12		09/01/10	EPA 8260B	ASI
chloromethane	11	1 PERCENT	09/01/10	BPA 8260B	ASI
cis-1,2-dichloroethene	9	8 PERCENT	09/01/10	EPA 8260B	ASI
cls-1,3-dichloropropene	11	6 PERCENT	09/01/10	EPA 8260B	ASI
dibromochloromethane	18		09/01/10	EPA 8260B	ASI
dichlorodifluoromethane	11		09/01/10	EPA 8260B	
ethylbenzene	11	9 PERCENT	09/01/10	EPA 8260B	ASI
methylene chloride	11	3 PERCENT	09/01/10	EPA 8260B	ASI
mtbe .	9	2 PERCENT	09/01/10	EPA 8260B	ASI
stvrene	10	B PERCENT	09/01/10	EPA 8260B	ASI
tetrachloroethene	1:	28 PERCENT	09/01/10	EPA 8260B	ASI
toluene		24 PERCENT	09/01/10	EPA 8260B	ASI
trans-1,2-dichloroethene		DY PERCENT	09/01/10	EPA 8260B	ASI
trans-1,3-dichloropropene	•	20 PERCENT	09/01/10	EPA 8260B	ASI
trichloroethene		23 PERCENT	09/01/10	EPA 8260B	ASI
trichlorofluoromethane	-	68 PERCENT	09/01/10	EPA 8260B	ASI

GROUNDWATER ENVIRONMENTAL SERVICES

300 Gateway Park Dr.

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

TEST PERFORMED		RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE#: 555002	CLIENT SAMPLE ID:	MW-55 MS			DATE/TIME SAMPLED	: 08/25/10 @ 13:00
Volatile - 8260 vinyl acetate vinyl chloride xylene, m+p xylene, o		73 52 114 122	PERCENT PERCENT PERCENT PERCENT	09/01/10 09/01/10 09/01/10 09/01/10	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	ASI ASI ASI ASI

Surrogate (fluorobenzene): 92 % recovery, (toluene-d8): 94 % recovery, (bromofluorobenzene): 109 % recovery, (1,2-dichlorobenzene-d4): 104 % recovery. Surrogate recovery acceptance limits are 85-115%

SAMPLE#: 555003	CLIENT SAMPLE ID:	MW-58 MSD		·	DATE/TIME SAMPLED: 08	3/25/10 @ 13:00
Volatile - 8260		445	es respected to the Sale.	09/01/10	EPA 8260B	ASI
1,1,1,2-tetrac		113	PERCENT	09/01/10	EPA 8260B	ASI
1,1,1-trichion		126	PERCENT	09/01/10	EPA 8260B	ASI
1,1,2,2-tetrat		112	PERCENT	09/01/10	EPA 8260B	ASI
1,1,2-trichlor		122	PERCENT	D9/01/10	EPA 8260B	ASI
1,1-dichloros		122	PERCENT	09/01/10	EPA 8260B	ASI
1,1-dichloroe		110	PERCENT	09/01/10	EPA 8260B	ASI
1,2,3-trichlor		101	PERCENT	09/01/10	EPA 8260B	ASI
1,2,4-trichlor		95	PERCENT	09/01/10	EPA 8260B	ASI
1,2-dichloroi		119	PERCENT	09/01/10	EPA 8260B	ASI
1,2-dichloro		128	PERCENT	09/01/10	EPA 8260B	ASI
1,2-dichloro	•	136	PERCENT	09/01/10	EPA 8260B	ASI
1,3-dichloro		109	PERCENT	09/01/10	EPA 8260B	ASI
1,4-dichloro	benzene	116	PERCENT	09/01/10	EPA 8260B	ASI
2-butanone		102	PERCENT	09/01/10	BPA 8260B	ASI
2-chlorotolu		111	PERCENT	09/01/10	EPA 8260B	ASI
2-hexanone		114	PERCENT	09/01/10	EPA 8260B	ASI
4-chlorotolu		114	PERCENT	09/01/10	EPA 8260B	ASI
4-methyl-2-	pentanone	109	PERCENT	09/01/10	EPA 8260B	ASI
acetone		63	PERCENT	09/01/10	EPA 8260B	ASI
benzene		104	PERCENT	09/01/10	EPA 8260B	ASI
bromochlor		121	PERCENT	09/01/10	EPA 8260B	ASI
	oromethane	147	PERCENT	09/01/10	EPA 8260B	ASI
mo io mord		113	PERCENT	09/01/10	EPA 8260B	ASI
bromometh		97	PERCENT	09/01/10	EPA 8260B	IZA
carbon dist		131	PERCENT	09/01/10	EPA 8260B	ASI
carbon tetr		130			EPA 8260B	ASI
chlorobenz	ene	74		09/01/10	EPA 8260B	ASI
chloroetha		82		09/01/10	EPA 8260B	ASI
chloroform		127		09/01/10	EPA 8260B	ASI
chlorometh		119		09/01/10	EPA 8260B	ASI
•	hloroethene	96		09/01/10	EPA 8260B	ASI
-	hloropropene	125		09/01/10	EPA 8260B	ASI
dibromoch	loromethane	134	PERCENT	09/01/10	EFN OZUVD	,,01

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

North Syracuse, NY 13212 ATTN: Ken Hubbard

Site Address:

TRIMMER ROAD

PO#: 06-02278

PARMA, NY

SPILL#: 82-8012

TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 555003 CLIENT SAMPLE ID:	MW-5S MSD	<u>, , , , , , , , , , , , , , , , , , , </u>		DATE/TIME SAMPLED:	08/25/10 @ 13:00
Volatile - 8260	440	PERCENT	09/01/10	EPA 8260B	ASI
dichlorodifluoromethane	118	PERCENT	09/01/10	EPA 8260B	ASI
ethylbenzene	107	PERCENT	09/01/10	EPA 8260B	ASI
methylene chloride	128 101	PERCENT	09/01/10	EPA 8260B	ASI
mibe	98	PERCENT	09/01/10	EPA 8260B	ASI
styrene	126	PERCENT	09/01/10	EPA 8260B	ASI
tetrachloroethene	124	PERCENT	09/01/10	EPA 8260B	ASI
toluene	116	PERCENT	09/01/10	EPA 8260B	ASI
trans-1,2-dichloroethene	127	PERCENT	09/01/10	EPA 8260B	ASI
trans-1,3-dichloroproperie	119	PERCENT	09/01/10	EPA 8260B	ASI
trichloroethene	181	PERCENT	09/01/10	EPA 8260B	ASI
trichlorofluoromethane	77	PERCENT	09/01/10	EPA 8260B	ASI
vinyl acetate	85	PERCENT	09/01/10	EPA 8260B	AŞI
vinyl chloride	100	PERCENT	09/01/10	EPA 8260B	ASI
xylene, m+p xylene, o	109	PERCENT	09/01/10	EPA 8260B	ASI

Surrogale (fluorobenzane): 100 % recovery,(toluene-d8): 92 % recovery,(bromofluorobenzene): 97 % recovery,(1,2-dichlorobenzene-d4): 104 % recovery. Surrogate recovery acceptance limits are 85-115%

SAMPLE#: 555004	CLIENT SAMPLE ID:	TRIP BLANK		•	DATE/TIME SAMPLED:	07/15/10 @ :
Volatile - 8260	ODJENI ON WIN CONTROL					
1,1,1,2-tetrac	hioroelhane	<1.00	UG/L	09/01/10	EPA 8260B	ISA
1,1,1-trichlor		<1.00	UG/L	09/01/10	EPA 8260B	ASI
, ,	chloroethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1.1.2-trichlor		<1.00	UG/L	09/01/10	EPA 8260B	. ASI
1.1-dichloros		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,1-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2,3-trichlor		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2,4-trichlo		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichlorol		<1.00	ÚG/L	09/01/10	EPA 8260B	ASI
1.2-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,2-dichloro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,3-dichloro	• •	<1.00	UG/L	09/01/10	EPA 8260B	ASI
1,4-dichlaro		<1.00	UG/L	09/01/10	EPA 8260B	ASI
2-butanone		<5.00	UG/L	09/01/10	EPA 8260B	ASI
2-chlorotolu		<1.00	UG/L	09/01/10	EPA 8260B	ASI
2-hexanons		<5.00	UG/L	09/01/10	EPA 8260B	ASI
4-chlorotolu		<1.00	UG/L	09/01/10	EPA 8260B	ASI
4-methyl-2-		<5.00	UG/L	09/01/10	EPA 8260B	ASI
acetone	portion	<5.00	UG/L	09/01/10	BPA 8260B	ASI
benzene		<0.700	UG/L	09/01/10	BPA 8260B	ASI
bromochlor	omethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
	oromethane	<1.00		09/01/10	EPA 8260B	ASI

North Syracuse, NY 13212 ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address: TRIMMER ROAD PARMA, NY

TEST PERFORMED	RESULTS	UNITS	DATE/TIME PERFORMED	METHOD NUMBER	PERFORMED BY
SAMPLE #: 555004 CLIENT SAMPLE ID:	TRIP BLANK			DATE/TIME SAMPLED: 0	7/15/10 @ :
Volatile - 8260		3 5 din 15	09/01/10	EPA 8260B	ASI
bromoform	<1.00	UG/L	09/01/10	EPA 8260B	ASI
bromomethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
carbon disulfide	<1.00	UG/L	09/01/10	EPA 8260B	ASI
carbon tetrachioride	<1.00	UG/L	=	EPA 8260B	ASI
chlorobenzene	<1.0p	UG/L	09/01/10 09/01/10	EPA 8260B	ASI
chloroethane	<1.00	UG/L	09/01/10 09/01/10	EPA 8260B	ASI
chloroform	<1.00	UG/L	09/01/10	EPA 8260B	ASI
chloromethane	<1.00	UG/L		EPA 8260B	ASI
cis-1,2-dichloroethene	<1.00	UG/L	09/01/10 09/01/10	EPA 8260B	ASI
cls-1,3-dichloropropene	<1.00	UG/L	# F7	EPA 8260B	ASI
dibromochloromethane	<1.00	UG/L	09/01/10	BPA 8260B	ASI
dichlorodifluoromethane	<1.00	UG/L	09/01/10	EPA 8260B	ASI
ethylbenzene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
methylene chloride	<1.00	UG/L	09/01/10	EPA 8260B	ASI
mtbe	<1.00	UG/L	09/01/10	EPA 8260B	ASI
styrene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
tetrachtoroethene	<1.00	UG/L	09/01/10	BPA 8260B	ASI
toluene	<1.00	UG/L	09/01/10		ASI
trans-1,2-dichloroethene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
trans-1,3-dichloropropene	<1.00	UG/L	09/01/10	EPA 8260B	ASI
trichloroethene	<1.00		09/01/10	EPA 8260B	ASI
trichlorofluoromethane	<1.00		09/01/10	BPA 8260B	ASI
vinyl acetate	<5.0 0		09/01/10	EPA 8260B	ASI
vinyl chloride	<1.00		09/01/10	EPA 8260B	ASI
xylene, m+p	<1.00		09/01/10	EPA 8260B	ASI
xylene, o	<1.00) UG/L	09/01/10	EPA 8260B 93 % recovery, (1,2-dichlorobens)	* *

Surragate (fluorobenzene): 108 % recovery, (toluene-d8): 96 % recovery, (bromofluorobenzene): 93 % recovery, (1,2-dichlorobenzene-d4): 114 % recovery.

Surragate recovery acceptance limits are 85-115%

GROUNDWATER ENVIRONMENTAL SERVICES

300 Gateway Park Dr.

North Syracuse, NY 13212

ATTN: Ken Hubbard

PO#: 06-02278

SPILL#: 82-8012

PROJECT#:

245666

RECEIVED:

08/26/2010 @ 14:40

Site Address:

TRIMMER ROAD

PARMA, NY

DATE/TIME

METHOD

PERFORMED

EY

TEST PERFORMED

RESULTS UNITS

PERFORMED

NUMBER

Sample Receipt Temperature: 10 Degrees C

Samples received above acceptable temperature requirements of 0-6 degrees C.

David R. Hill **Laboratory Director** 09/03/2010 Print Date

All NELAC Quality Control requirements pertaining to the analyses were met, unless otherwise specified. All analyses performed by NYS ELAP Laboratory Certification #11375, unless otherwise stated. Report relates only to the samples as received by the laboratory and shall not be reproduced except in full, without written approval from Environmental Laboratory Services.

The information contained in this report is confidential and intended for the addressee only. If the reader is not the intended recipient or agent responsible for delivering the report to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this report is strictly prohibited. If you have received this report in error, please notify sender by reply small or telaphone, delete or destroy the report and/or any attachments.

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. ____554989______ TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Environmental Lab S	ervices Project:	245666	Client ID:	MW-4S
Lab Code: 11375 Case N	o	_SAS No	Lab Sample ID:	554989
Sample Wt/Vol : 5	_(g/ml) <u>ml</u>).	Lab File ID:	083108.D
Level: (low/med)			Date Received:	8/26/10
% Moisture: NA decant	ed: (Y/N) N	_	Date Extracted:	NA
Concentrated Extract Volume:	NA	_(uL)	Date Analyzed:	8/31/10
Injection Volume: NA.	(uL)		Dilution Factor:	1X
GPC CLEANUP: (Y/N) N	pH:		CONCENTRAT	
Number TICs Found: 0	·		Detection Limit	t: <u>1.00</u>
CAS NUMBER	COMPOUND NA	AMB	RT ES	r. conc. q
Nn Lihran	Search Volatiles F	ໃດນາກຕີ.		


VOLATILE ORGANICS ANALYSIS DATA SHEET BLS SAMPLE NO. 554990 TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Environmental Lab Services Pro	oject: 245666	Client ID:	MW-58	
Lab Code: 11375 Case No.	SAS No	Lab Sample	ID: <u>554990</u>	
Sample Wt/Vol : 5 (g/ml) mi		Lab File ID:	083109.D	
Level: (low/med)		Date Receiv	ed: 8/26/10	
% Moisture: NA decanted: (Y/N) N		Date Extrac	ted: NA	
Concentrated Extract Volume: NA		Date Analy:	æd: 8/31/10	
Injection Volume: NA (uL)		Dilution Fa	ctor: 1X	
GPC CLEANUP: (Y/N) N pH:	•		RATION UNIT	
Number TICs Found: 2		Detection l	Limit: 1.00	<u></u>
CAS NUMBER COMPOUN	ID NAME	RT	EST. CONC.	Q
000060-29-7 Ethyl ether 000496-11-7 Indane		7.40 22.06	15.2 1.30	<u>86</u> <u>93</u>

Lab Name: Environment	al Lab Services	Project:	245666	Client ID:	MW-6S	
Lab Code: 11375	Case No		SAS No	Lab Sample	ID: <u>554991</u>	
Sample Wt/Vol :	5 (g/ml)_	ml	···	Lab File ID:	083110.D	
Level: (low/med)	••			Date Receive	ed: 8/26/10	
% Moisture: NA	_decanted: (Y/N)_	N	,	Date Extract	ed: <u>NA</u>	·
Concentrated Extract Vol	ume: NA		_(uL)	Date Analyz	ed: 8/31/10	
Injection Volume:	NA (uL)			Dilution Fac	stor: 1X	
GPC CLEANUP: (Y/N)	N pH:				RATION UNIT /kg)_ug/L	S:
Number TICs Found:	2			Detection I.	.imit: 1.00	
CAS NUMBER	COMPO	NA CIND	4ME	RT	BST. CONC.	Q
	iyl ether known hydrocarb	on.		7.40 9.86	<u>21.5</u> <u>1.50</u>	<u>86</u> <u>NA</u>

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. ______ 554992_____ TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Environmental Lab Se	ervices Project:	245666	Client ID:	MW-8S
Lab Code: 11375 Case No)	SAS No	Lab Sample ID:	554992
Sample Wt/Vol : 5	_(g/ml) <u></u>		Lab File ID:	083111.D
Level: (low/med)			Date Received:_	8/26/10
% Moisture: NA decante	d: (Y/N) N	nguari	Date Extracted:	<u>NA</u>
Concentrated Extract Volume:	NA	_(uL)	Date Analyzed:	8/31/10
Injection Volume: NA	_(uL)		Dilution Factor:	IX
GPC CLEANUP: (Y/N) N	_pH:		CONCENTRATion (ug/L or mg/kg)	. aus
Number TICs Found: 0			Detection Limi	t: 1.00
CAS NUMBER	COMPOUND N	ÁME	RT ES	T. CONC. Q
No Library	Search Volatiles	Cound.		

Lab Name: Environmental Lab Se	rvices Project:	245666	Client ID:	MW-98	
Lab Code: 11375 Case No		SAS No	Lab Sample II	D: <u>554993</u>	
Sample Wt/Vol : 5				083112.D	
Level: (low/med)			Date Received	1: <u>8/26/10</u>	a) of a pure property of the second s
% Moisture: NA decante	d: (Y/N) <u>N</u>		Date Extracte	d: <u>NA</u>	· · · · · · · · · · · · · · · · · · ·
Concentrated Extract Volume:	NA	_(uL)	Date Analyze	d: 8/31/10	······································
Injection Volume: NA	_(uL)		Dilution Fact	or: <u>1X</u>	······································
GPC CLBANUP: (Y/N) N	_pH:			ATION UNITS	3:
Number TICs Found: 1			Detection Li	mit: <u>1.00</u>	
CAS NUMBER	COMPOUND N	AMB	RT	EST. CONC.	Q
000060-29-7 Ethyl ether			7.39	<u>5.70</u>	<u>86</u>

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. 554994 TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name:	Environment	al Lab Serv	ices Proj	ect: 245666	Client ID:	<u>MW-13</u>	
Lab Code:	11375	_Case No		SAS No	Lab Sample	ID: <u>554994</u>	
Sample Wt/\						083113.D	·
Level: (lov	v/med)				Date Receiv	red: 8/26/10	.,
•	NA		(Y/N) <u>N</u>		Date Extrac	ted: NA	
	d Extract Vo			,	Date Analy	zed: 8/31/10	
	dume:				Dilution Fa	ctor: 1X	
-	NUP: (Y/N					TRATION UNIT g/kg) <u>ug/L</u>	
Number Ti	Os Found:	1	w		Detection	Limit: 1.00	
CAS NUM	BER	c	OMPOUN	NAME	RT	EST. CONC.	Q
000060-29	<u>7 B</u>	hyl ether			<u>7.40</u>	<u>4.10</u>	<u>80</u>

VOLATILE ORGANICS ANALYSIS DATA SHEET BLS SAMPLE NO. _____554995 TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Environmental Lab Se	ervices Project:	245666	_Client ID:	MW-14	
Lab Code: 11375 Case No)	SAS No	_Lab Sample I	D: <u>554995</u>	
Sample Wt/Vol : 5	_(g/ml) <u>ml</u> .	مس ید	Lab File ID:	083114.D	······································
Level: (low/med)			Date Received	1: 8/26/10	
% Moisture: NA decante	d: (Y/N) <u>N</u>		Date Extracte	d: NA	
Concentrated Extract Volume:	NA	(uL)	Date Analyze	d: <u>8/31/10</u>	
Injection Volume: NA	(uL)		Dilution Fact	or: <u>1X</u>	
GPC CLEANUP: (Y/N) N	_pH:			ATION UNIT	S:
Number TICs Found: 1	<u></u>		Detection Li	mit: 1.00	
CAS NUMBER	COMPOUND N	АМВ	RT 1	EST. CONC.	Q
000060-29-7 Ethyl ether			7.40	<u>2.10</u>	<u>72</u>

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. _____S54996 TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: <u>Environmenta</u>	l Lab Services	Project:	245666	_Client ID:	MW-15	
Lab Code: 11375	Case No		SAS No	Lab Sample II	D:_554996_	
Sample Wt/Vol :	5 (g/ml)	ml	_	Lab File ID:_	083115.D	
Level: (low/med)	-			Date Received	: 8/26/10	no/w/normanananana
% Moisture: NA	decanted: (Y/N)_	N		Date Extracted	i: NA	
Concentrated Extract Volu	me: NA		_(uL)	Date Analyze	1: 9/1/10	***************************************
Injection Volume:	NA (uL)			Dilution Facto	r:_1X	······································
GPC CLEANUP: (Y/N)	N pH:	_		CONCENTRA (ug/L or mg/k		S:
Number TICs Found:	1			Detection Lin	nit: 1.00	······································
CAS NUMBER	COMPO	UND NA	ME .	RT E	ST. CONC.	Q
000060-29-7 Ethy	<u>yl ether</u>			<u>7.40</u> <u>1</u>	0.1	<u>80</u>

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. ________. TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Environmental Lab Services Project: 245666	Client ID:MW-16_
Leb Code: 11375 Case No. SAS No.	Lab Sample ID: <u>554997</u>
Sample Wt/Vol : 5 (g/ml) ml	Lab File ID: 083116.D
Level: (low/med)	Date Received: 8/26/10
% Moisture: NA decanted: (Y/N) N	Date Extracted: NA
Concentrated Extract Volume: NA (uL)	Date Analyzed: 9/1/10
Injection Volume: NA (uL)	Dilution Factor: 1X
GPC CLEANUP: (Y/N) N pH:	CONCENTRATION UNITS: (ug/L or mg/kg)_ug/L_
Number TICs Found: 3	Detection Limit: 1.00
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
000060-29-7 Ethyl ether NA Unknown hydrocarbon Unknown alkane	7.40 17.3 86 7.54 1.0 NA 22.06 1.0 NA

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. ____554998_______ TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: <u>Environmental Lab Services</u> Project	245666	Client ID:	MW-17	
Lab Code: 11375 Case No.	_SAS No	_Lab Sample ID	: 554998	
Sample Wt/Vol : 5 (g/ml) ml	·····	Lab File ID:	083117.D	
Level: (low/med)		Date Received:	8/26/10	
% Moisture: NA decanted: (Y/N) N	orana.	Date Extracted:	NA	
Concentrated Extract Volume: NA	(uL)	Date Analyzed:	9/1/10	
Injection Volume: NA (uL)		Dilution Factor	:_1X	
GPC CLEANUP: (Y/N) N pH:		CONCENTRA' (ug/L or mg/kg		
Number TICs Found: 4		Detection Lim	it: 1.00	
CAS NUMBER COMPOUND N	AMB	RT ES	T. CONC. Q	
000060-29-7 NA Unknown hydrocarbon Unknown alkane NA Substituted benzene	:	7.40 20 20.86 1.1 22.06 2.3 22.39 1.6	10 <u>NA</u> 70 NA	

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. 554999 TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: <u>Environmental Lab Services</u>	Project: 245666	Client ID:	MW-18
Lab Code: 11375 Case No.	SAS No	_Lab Sample ID:	: 554999
Sample Wt/Vol : 5 (g/ml)	ml	Lab File ID:	083118.D
Level: (low/med)		Date Received:	8/26/10
% Moisture: NA decanted: (Y/N)	N	Date Extracted:	NA
Concentrated Extract Volume: NA	(uL)	Date Analyzed:	9/1/10
Injection Volume: NA (uL)	•	Dilution Factor:	_1X
GPC CLEANUP: (Y/N) N pH:	****	CONCENTRAT	
Number TICs Found: 1		Detection Limi	t: <u>1.00</u>
CAS NUMBER COMPO	OUND NAME	RT ES	T. CONC. Q
000060-29-7 Ethyl ether		<u>7.40</u> <u>6.3</u>	<u>80</u>

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. ____555000 TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: <u>Buvironmental Lab Services</u> Proje	ect: 245666	Client ID:	MW-19	
Lab Code: 11375 Case No.	SAS No	Lab Sample	ID: <u>555000</u>	
Sample Wt/Vol : 5 (g/ml) ml	11-111	Lab File ID:	083119.D	<u></u>
Level: (low/med)		Date Receive	ed: 8/26/10	
% Moisture: NA decanted: (Y/N) N	durieranum	Date Extract	ed: NA	
Concentrated Extract Volume: NA	(uL)	Date Analyz	ed: <u>9/1/10</u>	
Injection Volume: NA (uL)		Dilution Fac	tor: 1X	
GPC CLEANUP: (Y/N) N PH:			kation units: kg) ug/L	
Number TICs Found: 1		Detection L	imit: 1.00	
CAS NUMBER COMPOUND	NAME	RT	EST. CONC.)
000060-29-7 Ethyl ether		<u>7.40</u>	<u>6.80</u> <u>80</u>	

VOLATILE ORGANICS ANALYSIS DATA SHEET ELS SAMPLE NO. 555001 TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: <u>Environmental Lab S</u>	Services Project:	245666	_Client ID:	FIELD DUP
Lab Code: 11375 Case N	To	_SAS No	_Lab Sample ID:	555001
Sample Wt/Vol : 5	(g/ml)ml		Lab File ID:	083120.D
Level: (low/med)			Date Received:	8/26/10
% Moisture: NA decant	ed: (Y/N) <u>N</u>	unana,	Date Extracted:	NA
Concentrated Extract Volume:	NA	_(uL)	Date Analyzed:	9/1/10
Injection Volume: NA	(uL)		Dilution Factor:	1X
GPC CLEANUP: (Y/N) N	_pH:		CONCENTRAT (ug/L or mg/kg)	
Number TICs Found: 0	out of the state		Detection Limit	: 1.00
CAS NUMBER	COMPOUND NA	AME	RT ES	r. conc. q
54. 4 M				

No Library Search Volatiles Found.

245666

Addi Selhi Sel	pany NYSC 1682 625 B Inee (518)	roadwa	У		Raz (518) 40	2-981	SON STATE OF	amer(DOW:	dec.s	tate.	ny.us	i								Limn			
com	piny GES resi 300 G	afovan	Park	Drive			, 	2016 25 CA 2016	an s	racusi	2. NY '	13212	25%	· .			· :		╅	·		·		<u> </u>	
					流刻3	15 452	3237	. Kni	ioban	(C) UE	SOIII	ontal	nor ty		reserv						Analy	1928	ques	ned s	
38	um Arouni	la me		Weens	rix Coc	loszki Enkist		Remarks/Specialinstructions/ Normal TAT										1	100					ŀ	1
	24 Hour	i		ol =	Groun	d Wate		Fax results DEC								78 (8 200)			8260 (See Attached Compound List			ŀ			
	72 Hour		Ė	ÞC ∵∴	Painr	Chips:		Mail copy of report to GES:		tives			9	ò	8			1		ana		l	900		
				er =				e-mail results to K. Hubbard (GES)	- 2	8			667.E	e Z	8				200	豐	ļ	ľ	Tari		
	☑ 10 Worl	Day	Į*.	SD	*****			GES PO NUMBER 08-02278	18	Plastic/, No Preserva	Piesto / HNO.	Q.	Plasto / Nico	Flast C/Glass / h	Glass / No Preservativ	9	B		₹.	Trichlorofluromethane		state	4-Methyl-2-pentarione	D.T.E	
	☐ 30 Day			SVV.	Surtac	e vvau			ō	Ž		- Ti	Z	ğ	Š	3	2		2		one	Vinyi Acetate	(F)	ź-Hexanone	10 TICS
				WP = -	Wipe	Ď.,				13	ast)SB	e.	last	- ST	gas	ĝ	5	8260	풀	Acatona	ŝ	\$	7.7	5
(ELS	Hise Only	izaj ai		June 6	Cmp	Gfb ji		Sampling Location Sample: 0	2	£0	, G. C.	## EL ####	:: L1271.1	, 11=(.e.			x	_	×	x	×	x	х	х	х
J.		60	514/	2:40		9	3W	MW-48	2	├						7	×		×	×	х	·x	x	×	x
	490	1		3:00		(WE	MW-5s		╫							×	十	×	·x	х	x	·x	x	×
	991			3:45		- (3W	MW-6s	.2	-						-	x	十	×	×	×	×	. ×	×	x
	992			0:40		(we	MW-8s	2	╀	├-						x	十	×	×	х	x	х	ж	·×
	693		1	TU√13:	4		ЭW	WW-9s	2	\vdash	├-				·		x	十	×	×	×	×	X.	×	×
	ciqu			1:10			GW	MW-13	2	 	-	 -			•		×		X	. X	×	×	х	· x	х
	ge/s			2:05		1	GW	MW-14	2		┡					-	$\frac{x}{x}$	十	×	x	x	×	. x	х	*
	GA I			1:35			GW	MW-15	2	-	<u> </u>	<u> </u>					×	╅	×	×	×	×	×	х	×
	l oc			13:05			GW	MW-18	2	<u> -</u>		<u> </u>		_				╅	x	×	x	х	×	×	X.5
	600			13:35			GW	MW-17	2	·	 	_	<u> </u>		 	-	×	┪	x	×	х	×	×	×	×
	100			11:00			GW	MW-18	2	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	├-		-	╌╂	×	<u>*</u>	×	×	×	×	×
	55 6 6 G			1:50	1		GW	MW-19	2	<u> </u>	<u> </u>	<u> </u>	ļ	 			X			x	X	×	х	'х	×
	ee l	2		2:45	1		GW	Field DUP	2			<u> </u>		<u> </u>	_		<u> </u>	-	X		 	×	×	X	×
	600			13:00	1	1	GW	MWJS MS	2		<u> </u>	<u> </u>	Ļ_	ļ			×		X	X	×		X	x	x
		-	7	13:00	1	 	GW	MW-SS MSD	2		L	<u> </u>	Λ	L_			×		X	X	Š	×	<u> </u>	<u>.j</u>	<u></u>
倒	7 807		ali o	1	10		TB	1000 8/2 7/0 Time //23	Re	elved	8/7	n	1	11	1	······································	7-7				De	16/1	<u>}</u>	Time	0
Rei	Inquished B	11/20		45	3 (-),	11		max 26/10 Time 142	5 Re	ceived	Ву		1		20	14		B			Date	5/26	191	Time	4
Rei	Inquished B	y: /\/X	<u>ead</u>			-		Date 2/26/10 Time 2 40	D Re	ceivad	By	1/	4		51		4	1		20/1				Orme	
Rei	inquished B	y:		1690	ستيس	-can			H		1100	and the	mper	alure			G A	San	plus	Red		/G8	a de de	dior	E
San	npler Signal	me:				MPC			10000	72	70	M	, 7	ΛΙ											

Page 36 / 36