MONTHLY PROGRESS REPORT

Rochester Fire Academy Site 1190 Scottsville Road Rochester, New York 14624

Site Number # 828015

Reporting Period: June 2013

Prepared By:

City of Rochester Division of Environmental Quality 30 Church Street Rochester, NY 14614

Introduction and Background

The NYSDEC requested that the City of Rochester (City) complete a Periodic Review Report (PRR) and also certify that applicable Engineering Controls (EC) and Institutional Controls (IC) for the Rochester Fire Academy Site (Site No. 828015) are still in place and functioning as designed. The reporting period in the PRR was listed as March 1, 2006 through December 31, 2012.

The Rochester Fire Academy (RFA) Site located at 1190 Scottsville Road, Rochester, New York consists of four distinct areas as illustrated on Figure 1 in Attachment #1:

- North Disposal Area (NDA),
- Southern Disposal Area (SDA),
- Training Grounds Area (TGA)
- Police Obstacle Course and Firing Range (PFR)

The NDA, TGA, and SDA were involved in historical chemical use and disposal. The Genesee Valley Park Area (GVPA) adjacent to the eastern perimeter of the Site was also found to contain elevated contaminant concentrations in the soil and was also included in the remedial effort. A series of remedial investigations of the Site was performed in the early to mid-1990s. A Record of Decision (ROD) was issued in March 1993 that required the following remedial measures be implemented at the RFA Site:

- Excavation and treatment of contaminated soils in the SDA and TGA followed by on-site soil conditioning and on-site disposal in the NDA. Off-site disposal of a smaller volume of contaminated soils was also completed.
- Excavation and placement of GVP A soils in the NDA.
- Restoration of the remediation areas (SDA, TGA, and GVP A) and the capping of the NDA.
- Groundwater collection and treatment in the SDA consists of an approximate 200-foot long (approximately 191-foot installed), 22-foot deep groundwater collection trench.

The remedial measures listed above were implemented by the City in the mid to late 1990s. Subsequent to completion of the intrusive remedial measures, the SDA was backfilled with clean fill and the ground surface was restored using six inches of seeded topsoil. TGA grades were reestablished with clean fill up to a prevailing grade of 523 feet above mean sea level (msl) in the eastern portion of the area and to 522 feet above msl in the western portion, which is above the 100year flood elevation calculated at that time. An asphalt cover system was placed over the TGA under a separate Monroe County Construction contract for the Aircraft Rescue Firefighting Facility (ARFF) project. The GVPA was remediated and then backfilled with clean fill and the asphalt bicycle path was replaced. The NDA was cleared and grubbed, and fill and soil excavated from GVPA, SDA and TGA were placed in the NDA. A composite synthetic/soil cover system consisting of a 6-inch sand layer, followed by a 40-mil HDPE synthetic membrane, a geocomposite drainage layer, 24-inches of barrier soil, and 6-inches of seeded topsoil was placed over the NDA fill. Storm water drainage was provided in the TGA, NDA and PFR.

The groundwater collection system installed in the SDA consists of a 191-foot long, 22-foot deep groundwater collection trench installed in the saturated zone within the overburden. The trench consists of two layers of gravel with a slotted 6-inch collection pipe that slopes from the manhole at each end to the centrally placed sump (i.e., pumping station) which is approximately 24-feet deep.

Groundwater containing volatile organic compounds (VOCs) is collected in the sump and pumped to the on-site treatment system located in a metal building located on the southwestern portion of the SDA. Groundwater from the collection trench is conveyed to the treatment system via a PVC pipeline. The groundwater treatment system currently utilizes air stripping remove VOCs from the collected groundwater. Effluent is collected in a discharge tank prior to being pumped to the sanitary sewer in accordance with a Groundwater Treatment System Sewer Use Permit issued by Monroe County Pure Waters.

In 1998 a declaration of covenant and restrictions was filed with the Monroe County Clerk's Office for the Site in accordance with the Consent Order. These Institutional Controls were established in order to give notice to the public and bind any successors in title to the provisions in the consent order.

As stated in an email dated March 26, 2013 from the City to Ms. Valerie Woodward, Engineering Geologist, NYSDEC, Albany, New York, the nearly 15 year old groundwater recovery and treatment system at the Rochester Fire Academy Site has been essentially inoperable for more than a year due to ongoing equipment failures and operating problems, compounded by what appears to be the need for comprehensive system-wide maintenance including de-scaling of equipment and process piping. As a result of these issues, the Periodic Review Report and IC and EC certifications cannot be fully completed at the current time. As a result, the City understands the NYSDEC has put the RFA Site in a Corrective Measures status.

In an email dated March 27, 2013 the NYSDEC requested that the City prepare and submit monthly progress reports summarizing the progress of the Corrective Measures accomplished during the reporting period, and summarizing anticipated tasks and activities which will be completed for the next month. Progress reports will be submitted to NYSDEC DER on a monthly basis. Each monthly progress report will be submitted approximately one week after the monthly reporting period until a point in time when the corrective measures have resulted in full compliance with existing requirements. At that point, monthly progress reports will be terminated and annual reporting and certification will be completed as required.

1. Significant Activities Completed During Reporting Period (June 2013)

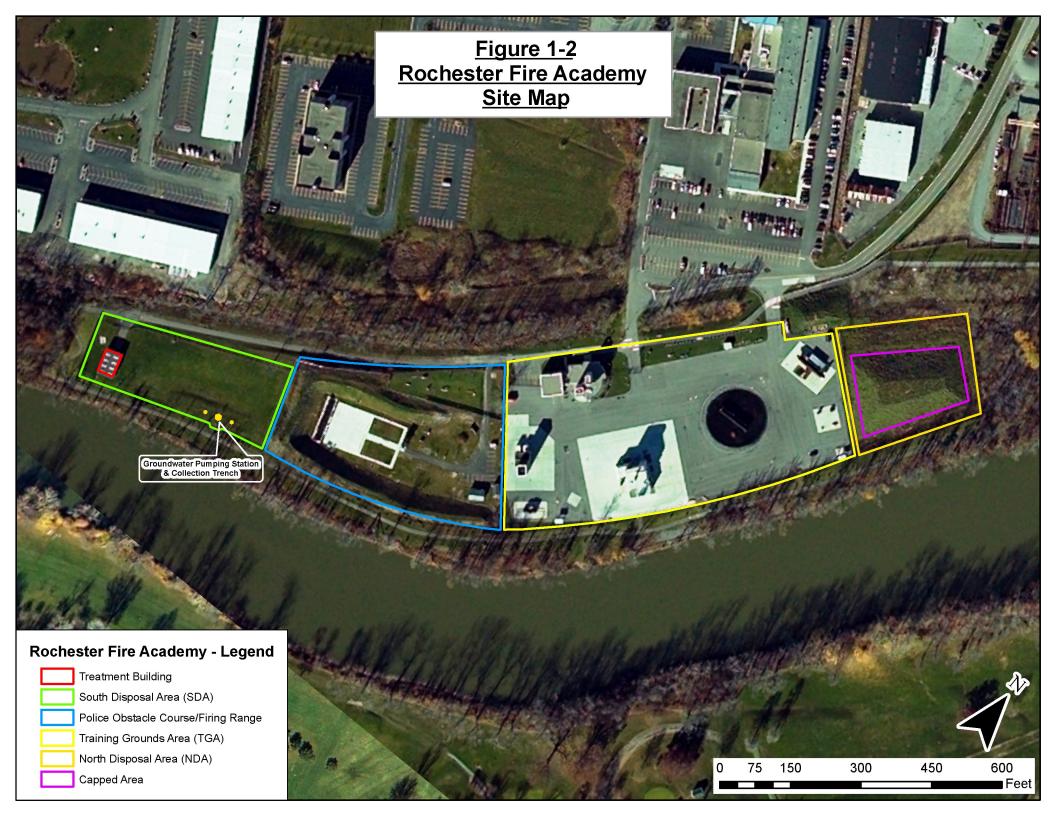
The significant activities and tasks completed during the month of June 2013 are summarized below.

- 1.1. The City operated the SDA groundwater treatment plant in an automated mode for the month of June 2013. No significant operating issues were experienced during the month of June 2013. The water level in the SDA groundwater collection sump is approximately 20 feet below grade, consistent with plant recommended operating specifications.
- 1.2. As stated in a July 9, 2013 letter from City DEQ to Monroe County DES, Division of Pure Waters, the SDA groundwater treatment plant total effluent volume for the month of June 2013 was 232,844 gallons. The total effluent volume for the calendar year 2013 through June 30, 2013 was 470,531 gallons. A copy of this letter is attached as Attachment 2.
- 1.3. Monthly effluent permit sampling was performed by City DEQ on June 14, 2013. Laboratory analyses indicate that the effluent discharge concentrations were below the industrial sewage discharge permit limits. Copies of the June 14, 2013 laboratory analysis results are also attached as Attachment 2.

- 1.3.1. Collected depth to groundwater measurements from the MW-7 and MW-9 series monitoring wells and piezometers in proximity to the groundwater collection trench to document the drawdown in the overburden groundwater table to evaluate the hydraulic capture zone and radius of influence of the groundwater recovery trench.
- 1.3.2. Summarized analytical laboratory results for groundwater samples on May 22, 2013 collected as part of the required semi-annual groundwater sampling event from on-site monitoring wells. The summary table and Paradigm Environmental Services, Inc. laboratory analytical sampling report dated May 30, 2013 is attached as Attachment 3.
- 1.3.3. The City issued a Request for Proposal dated July 1, 2013 to Day Environmental, Inc. (DAY) for professional services associated with completing the remaining portions of the PRR and SDA groundwater plant upgrades and enhancements. The DAY proposal scope of work which includes recommendations for groundwater treatment system upgrades and modifications to reduce downtime and maintenance costs, and improve system operational efficiency is included in Attachment 4.

2. <u>Pending Project Activities During the Next Reporting Period (July 2013)</u>

During the next month (July 2013) the following tasks and activities will be performed:


- 2.1. Continue testing and inspection of SDA groundwater treatment system equipment and components, and continuing making equipment repairs and conducting routine maintenance efforts.
- 2.2. Continue to operate the SDA groundwater treatment system in an automated mode. Continue to collect static water level measures from monitoring wells, the sump in the groundwater recovery trench, and the two recovery trench piezometers to document the hydraulic control under typical operating condition.
- 2.3. Continue to review of documentation applicable to Site remediation, including Record of Decision, the OM&M plans, construction "As-Built" plans, NYSDEC PRR and IC/EC requirements pertaining to the Site, and a review of associated Site monitoring and analytical data for purposes of determining compliance status with remedial requirements.
- 2.4. Development of a proposal identifying the tasks and additional costs to address: (1) recommended groundwater treatment plant upgrades and modifications to operate the system in an automated mode; and (2) Site remedial compliance documentation requirements including Periodic Review Report and IC/EC Certification submittals. As indicated in the previous Progress Report, a second proposal from DAY will be executed to fully implement the compliance plan sometime around July 1, 2013.

3. <u>Schedule</u>

No significant deviations or delays were encountered during the month of June 2013.

A schedule of projected tasks, including inspections, repairs and maintenance activities for the RFA Site has been developed and is included as Attachment #5. This schedule will be revised on a monthly basis as deemed warranted based on the actual scope for work required or performed, and to account for any anticipated delays or due to unanticipated change in scope.

Attachment #1

Attachment #2

City of Rochester

Office of the Commissioner Department of Environmental Services City Hall Room 300B, 30 Church Street Rochester, New York 14614-1290 www.cityofrochester.gov

Monroe County DES Division of Pure Waters 145 Paul Rd. Building 10 Rochester, New York 14624 Attn: Sean Keenan

Re: Rochester Fire Academy Effluent Totals and Permit #705 Sampling Results June 2013- revised

Dear Mr. Keenan:

Attached please find the total effluent readings for the treatment plant at the above referenced site. The total effluent volume for the month of June 2013 was 232,844 gallons. The total effluent volume for the calendar year 2013 through June 30 was 470,531 gallons. Copies of the Log sheets for June 2013 are included with this package.

Monthly effluent permit sampling was performed on June 14, 2013. Laboratory analyses indicate that the effluent discharge concentrations were below allowable contaminant concentrations. Copies of the June 14, 2013 laboratory analysis results are attached. Please feel free to contact me at (585) 428-6884 if you have any questions.

Sincerely, Division of Environmental Quality

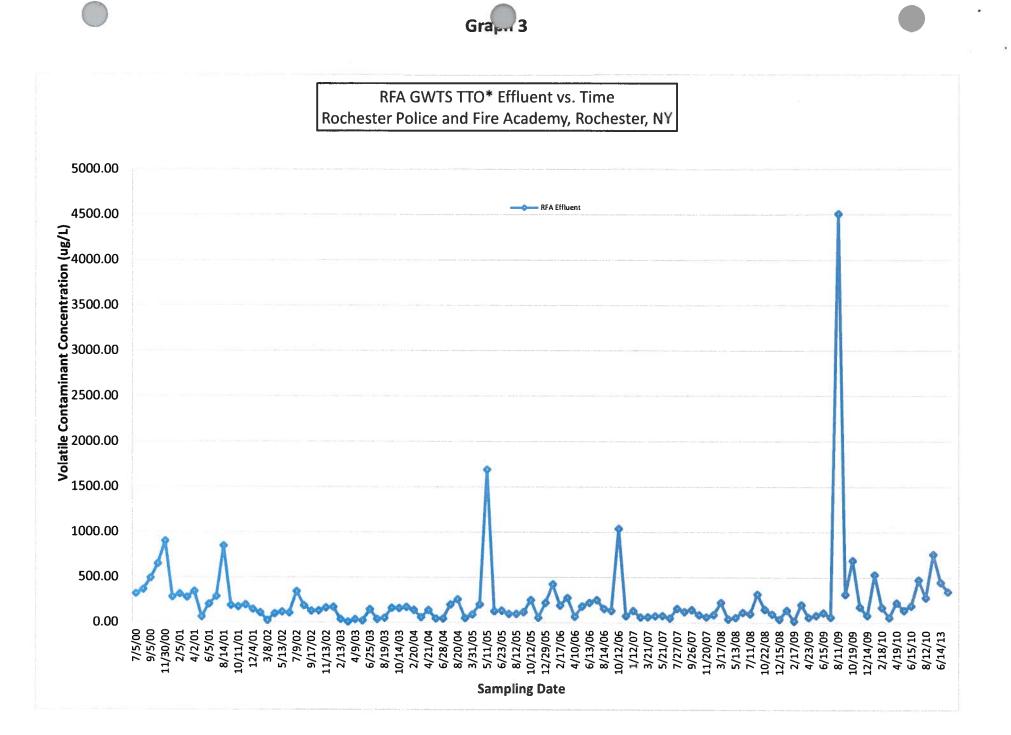
Dennis M. Peck

Environmental Technician

cc: file

G:\ENVQUAL\DENNIS\Jobs\Rochester Fire Academy\Monthly Update letters\Update 102 - June 2013 revised.docx

Division of


Environmental Quality

Date	6/3/13	6/4/13	6/5/13	6/6/13	6/7/13	6/10/B	6/11/13
Daily Influent Meter Reading (gal)	8046645	8053917	8059284	8066000	8093071	8127825	813500
Total Influent since 1/1/2010 (gal)		00,2211					
Daily Effluent Meter Reading (gal)	8252677	8259471	8264062	8 27/630	8298397	8332597	834118
Total Effluent since 1/1/2010 (gal)							
Building Inlet Gauge (gpm)	46E	46W	45E		46E	46W	46E
Lead Bag Filter Inlet/ Outlet (psi)	5/7	5/7	5/1		5/7	5/7	5/7
Lag Bag Filter Inlet/Outlet (psi)	0/2	0/2	0/2		0/2	012	0/2
Feed Tank Pump (5 to 20 psi)	6	6	6		6	6	6
Air Stripper Pressure (psi)	12	12	12	12	12	12	
Pump 400 (psi)	19	19	19	19	19	19	
Pump 401 (psi)	24	24	24	23	23	23	
Carbon Drum 300 (inlet/outlet)						,	
Carbon Drum 301 (inlet/outlet)							
Carbon Drum 302 (inlet/outlet)							
Carbon Drum 303 (inlet/outlet)							
Carbon Drum 304 (inlet/outlet)							
Carbon Drum 305 (inlet/outlet)							
Carbon Drum 306 (inlet/outlet)							
Carbon Drum 307 (inlet/outlet)							
Sequestering Agent Level (inches)	44.7	44.6	44.4	44.2	43.7	42.7	42.7
Visual Inspection NDA	V	7	V	~	V	V	V
Visual Inspection TGA	V	~	\sim	V		V	2
Cleaned/Changed Bag Filter #1	-	(-	-	1	1
Cleaned/Changed Bag Filter #2	-	-		J	1	v	ĺ
Cleaned Feed/ Discharge Tanks	~	()	(· ·		(
Performed Monthly/Quarterly Sampling	-		-	_	· ·	-	1
Fested Sump Pump Operation	~	_	-	(-	1	-
Cleaned Sump and Drain	V	/	/	(-	/	
Additional Tasks/ Notes:							
ON:	-20	~ 20	-20	-20	-20	-20	-20
OFF:	-15	-15	-15	-15	-15	- 15	-15
6/6/13 the Rain most of 6/11/13 The Steady rai 6/12/13	. 17	>1" Total 1	(76)				

Date	6/12/13	6/13/13	6/14/13	6/17/13	6/18/13	6/19/13	620/13
Daily Influent Meter Reading (gal)	8142950	8150142	8173503	8199213	8208569	8215791	822435
Total Influent since 1/1/2010 (gal)							
Daily Effluent Meter Reading (gal)	8348364	8355452	8378000	8404133	8413624	8 421245	8 429656
Total Effluent since 1/1/2010 (gal)							
Building Inlet Gauge (gpm)		46E			46E		46/n
Lead Bag Filter Inlet/ Outlet (psi)		5/7			5/7		517
Lag Bag Filter Inlet/Outlet (psi)		0/2			0/2		0/2
Feed Tank Pump (5 to 20 psi)		ک			6		7
Air Stripper Pressure (psi)			12	12	12		
Pump 400 (psi)			19	19	19		
Pump 401 (psi)			22	22	22		
Carbon Drum 300 (inlet/outlet)	~						/
Carbon Drum 301 (inlet/outlet)							
Carbon Drum 302 (inlet/outlet)			/				
Carbon Drum 303 (inlet/outlet)							
Carbon Drum 304 (inlet/outlet)							
Carbon Drum 305 (inlet/outlet)							
Carbon Drum 306 (inlet/outlet)							
Carbon Drum 307 (inlet/outlet)							
Sequestering Agent Level (inches)	42.6	42.2	41.7	41.1	40.9	40.7	40,5
Visual Inspection NDA	V	V			V	V	V
Visual Inspection TGA	V	V	\checkmark		V	L	
Cleaned/Changed Bag Filter #1	~	\$	· · ·		-	(<u> </u>
Cleaned/Changed Bag Filter #2	-	^	(-	<u> </u>	(-
Cleaned Feed/ Discharge Tanks	~	-	1	-	-	_	
Performer Monthly/Quarterly Sampling		1	F	_			_
Tested Sump Pump Operation	-	(5		-		
Cleaned Sump and Drain	/	(1	-	-	_	
Additional Tasks/ Notes:							
ON:	-20	-20	-20	-20	-20	-20	-20
OFF:	-15	-15	-15	-15	-15	-15	-15
c/12/13 clean + 75°							
6/13/13 Very rainy NYSDEC site		6/17 Ma	stly dry	6/18-6/1	is coolidy	y 6/20 W	arm+5u

ж

Date	6/21/13	6/24/13	6/25/13	6/26/13	6/27/13	6/28/13	63
Daily Influent Meter Reading (gal)	8229906	8248758	8253852	825972	8264809	8270284	828
Total Influent since 1/1/2010 (gal)							
Daily Effluent Meter Reading (gal)	8434362	8453508	8459242	8464499	8470187	8475052	848
Total Effluent since 1/1/2010 (gal)							
Building Inlet Gauge (gpm)		46W			46E		
Lead Bag Filter Inlet/ Outlet (psi)		3/7			5/7		
Lag Bag Filter Inlet/Outlet (psi)		0/2			0/2		
Feed Tank Pump (5 to 20 psi)		7			7		
Air Stripper Pressure (psi)							
Pump 400 (psi)							
Pump 401 (psi)							
Carbon Drum 300 (inlet/outlet)							
Carbon Drum 301 (inlet/outlet)							
Carbon Drum 302 (inlet/outlet)							
Carbon Drum 303 (inlet/outlet)							
Carbon Drum 304 (inlet/outlet)							
Carbon Drum 305 (inlet/outlet)							
Carbon Drum 306 (inlet/outlet)							
Carbon Drum 307 (inlet/outlet)							
Sequestering Agent Level (inches)	40.2	39.7	39.7	39.6	39.6		
Visual Inspection NDA	V	V	V	V	V	V	1
Visual Inspection TGA	V	V	V	V	\checkmark	1	2
Cleaned/Changed Bag Filter #1	\frown	`	5	_)	
Cleaned/Changed Bag Filter #2	-	_	(`	-	/	
Cleaned Feed/ Discharge Tanks			(((((
Performed Monthly/Quarterly Sampling		~	-	()	(
Tested Sump Pump Operation	-	~	_	^	-	-	~
Cleaned Sump and Drain	-	-	-	<u>^</u>	-	-	~
Additional Tasks/ Notes:							
ON:	-20	-20	-20	-20	-20	-20	-2
OFF:	-15	-15	-15	-15	-15	-15	~13
6/21-6/24 Hot+dry	6/25	Occasion	nd 3 hours	on 6/26	dry		
· · · · · · · · · · · · · · · · · · ·	Rainy un	2			V		
	¢γ						

Analytical Report For

City of Rochester

For Lab Project ID

132203

Referencing

RFA Monthly Sampling, DEQ-98045

Prepared Friday, June 28, 2013

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

.

Lab Project ID: 132203

Client:	<u>City o</u>	<u>f Rochester</u>				
Project Reference:	RFA M	Ionthly Samplin	g, DEQ-98045			
Sample Identifier:	Efflu	ent				
Lab Sample ID:	1322	03-01		Date S	ampled: 6	/14/2013
Matrix:	Wast	ewater			Received: 6	· ·
<u>PCBs</u>						
Analyte			Result	<u>Units</u>	Qualifier	Date/Time Analyzed
PCB-1016			< 1.00	ug/L		6/20/2013 7:15:12 AM
PCB-1221			< 1.00	ug/L		6/20/2013 7:15:12 AM
PCB-1232			< 1.00	ug/L		6/20/2013 7:15:12 AM
PCB-1242			< 1.00	ug/L		6/20/2013 7:15:12 AM
PCB-1248			< 1.00	ug/L		6/20/2013 7:15:12 AM
PCB-1254			< 1.00	ug/L		6/20/2013 7:15:12 AM
PCB-1260			< 1.00	ug/L		6/20/2013 7:15:12 AM
Method Refere	nce(s):	EPA 608				
рН						
Analyte			Result	<u>Units</u>	Qualifier	Date/Time Analyzed
pН			8.19 @ 21.5 C	S.U.		6/14/2013 2:40:00 PM
Method Referen	ıce(s):	SM 4500 H+ B				
<u>Semi-Volatile Org</u>	anics (/	<u>Acids)</u>				
Analyte			Result	Units	Qualifier	Date/Time Analyzed
2,4,6-Trichlo	rophenol		< 10.0	ug/L		6/19/2013 9:29:00 PM
2,4-Dichloroj	ohenol		< 10.0	ug/L		6/19/2013 9:29:00 PM
2,4-Dimethyl	phenol		< 10.0	ug/L		6/19/2013 9:29:00 PM
2,4-Dinitroph	enol		< 20.0	ug/L		6/19/2013 9:29:00 PM
2-Chloropher	nol		< 10.0	ug/L		6/19/2013 9:29:00 PM
2-Nitropheno	ol –		< 10.0	ug/L		6/19/2013 9:29:00 PM
4,6-Dinitro-2	-methylpl	nenol	< 20.0	ug/L		6/19/2013 9:29:00 PM
4-Chloro-3-m	ethylphe	nol	< 10.0	ug/L		6/19/2013 9:29:00 PM
4-Nitropheno	ol -		< 20.0	ug/L		6/19/2013 9:29:00 PM
Pentachlorop			< 20.0	ug/L		6/19/2013 9:29:00 PM
Phenol			< 10.0	ug/L		6/19/2013 9:29:00 PM
Method Referen Data Fi		EPA 625 S70405.D				

Fails report is part of a midniplage document and should indy be evolution in its entirity. The Orbits of Dustridy priorides additional sample and manifold including completioner with the sample condition requirements upon fossilpt.

.

Client:	<u>City of Rochester</u>				
Project Reference:	RFA Monthly Samplin	ng, DEQ-98045			
Sample Identifier:	Effluent				
Lab Sample ID: Matrix:	132203-01 Wastewater			ampled: 6 Received: 6	
Semi-Volatile Or	ganics (Base Neutrals)	1 - PL			
Analyte		Result	<u>Units</u>	<u>Qualifier</u>	Date/Time Analyzed
1,2,4-Trichlo	robenzene	< 10.0	ug/L		6/18/2013 11:04:00 PM
1,2-Dichloro	benzene	< 10.0	ug/L		6/18/2013 11:04:00 PM
1,3-Dichloro	benzene	< 10.0	ug/L		6/18/2013 11:04:00 PM
1,4-Dichloro	benzene	< 10.0	ug/L		6/18/2013 11:04:00 PM
2,4-Dinitroto	luene	< 10.0	ug/L		6/18/2013 11:04:00 PM
2,6-Dinitroto	oluene	< 10.0	ug/L		6/18/2013 11:04:00 PM
2-Chloronap	hthalene	< 10.0	ug/L		6/18/2013 11:04:00 PM
3,3'-Dichloro	benzidine	< 10.0	ug/L		6/18/2013 11:04:00 PM
4-Bromophe	nyl phenyl ether	< 10.0	ug/L		6/18/2013 11:04:00 PI
4-Chlorophe	nyl phenyl ether	< 10.0	ug/L		6/18/2013 11:04:00 PM
Acenaphther	ne	< 10.0	ug/L		6/18/2013 11:04:00 PM
Acenaphthyl	ene	< 10.0	ug/L		6/18/2013 11:04:00 PM
Anthracene		< 10.0	ug/L		6/18/2013 11:04:00 PM
Benzidine		< 20.0	ug/L		6/18/2013 11:04:00 PM
Benzo (a) an	thracene	< 10.0	ug/L		6/18/2013 11:04:00 PM
Benzo (a) py		< 10.0	ug/L		6/18/2013 11:04:00 PN
Benzo (b) flu		< 10.0	ug/L		6/18/2013 11:04:00 PM
Benzo (g,h,i)		< 10.0	ug/L		6/18/2013 11:04:00 PM
Benzo (k) flu	oranthene	< 10.0	ug/L		6/18/2013 11:04:00 PM
Bis (2-chloro	ethoxy) methane	< 10.0	ug/L		6/18/2013 11:04:00 PM
Bis (2-chloro		< 10.0	ug/L		6/18/2013 11:04:00 PN
	isopropyl) ether	< 10.0	ug/L		6/18/2013 11:04:00 PM
•	exyl) phthalate	< 10.0	ug/L		6/18/2013 11:04:00 PM
Butylbenzylp		< 10.0	ug/L		6/18/2013 11:04:00 PM
Chrysene		< 10.0	ug/L		6/18/2013 11:04:00 PM
Dibenz (a,h)	anthracene	< 10.0	ug/L		6/18/2013 11:04:00 PM
Diethyl phtha		13.4	ug/L		6/18/2013 11:04:00 PM
Dimethyl pht		< 20.0	ug/L		6/18/2013 11:04:00 PM

(Fit)seeport is part of a multipage document and should only be enablated in its entirity. The Chain of Castady provides additional sumple lifetimation, behalong compliance with the sample condition requirements upon receipt.

Client:

City of Rochester

Effluent

Project Reference:

RFA Monthly Sampling, DEQ-98045

Sample Identifier: Lab Sample ID: Matrix

ib Sample ID: atrix:	132203-01 Wastewater		ampled: 6/14/2013 eceived: 6/14/2013		
Di-n-butyl	phthalate	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Di-n-octyl	phthalate	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Fluoranth	ene	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Fluorene		< 10.0	ug/L	6/18/2013 11:04:00 PM	
Hexachlor	obenzene	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Hexachlor	obutadiene	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Hexachlor	ocyclopentadiene	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Hexachlor	oethane	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Indeno (1,	2,3-cd) pyrene	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Isophoron	e	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Naphthale	ne	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Nitrobenz	ene	< 10.0	ug/L	6/18/2013 11:04:00 PM	
N-Nitroso	dimethylamine	< 10.0	ug/L	6/18/2013 11:04:00 PM	
N-Nitroso	di-n-propylamine	< 10.0	ug/L	6/18/2013 11:04:00 PM	
N-Nitroso	diphenylamine	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Phenanthi	rene	< 10.0	ug/L	6/18/2013 11:04:00 PM	
Pyrene		< 10.0	ug/L	6/18/2013 11:04:00 PM	
Method Refe Dat	erence(s): EPA 625 a File: S70374.D				
<u>Volatile Organ</u>	ics				
Analyte		Result	<u>Units</u>	Qualifier Date/Time Analyzed	
1,1,1-Tricl	loroethane	107	ug/L	6/18/2013 5:03:00 PM	

1,1,1-Trichloroethane	107	ug/L	6/18/2013 5:03:00 PM
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	6/18/2013 5:03:00 PM
1,1,2-Trichloroethane	< 2.00	ug/L	6/18/2013 5:03:00 PM
1,1-Dichloroethane	67.5	ug/L	6/18/2013 5:03:00 PM
1,1-Dichloroethene	3.62	ug/L	6/18/2013 5:03:00 PM
1,2-Dichlorobenzene	< 2.00	ug/L	6/18/2013 5:03:00 PM
1,2-Dichloroethane	2.35	ug/L	6/18/2013 5:03:00 PM
1,2-Dichloropropane	< 2.00	ug/L	6/18/2013 5:03:00 PM
1,3-Dichlorobenzene	< 2.00	ug/L	6/18/2013 5:03:00 PM
1,4-Dichlorobenzene	< 2.00	ug/L	6/18/2013 5:03:00 PM

.

<u>City of Rochester</u>

Project Reference:

RFA Monthly Sampling, DEQ-98045

-										
Sample Identifier: Lab Sample ID: Matrix:	Efflue 1322 Waste				Sampled: 6/14/2013 Received: 6/14/2013					
2-Chloroethyl	vinyl Eth	er	< 10.0	ug/L		6/18/2013 5:03:00 PM				
Benzene			< 0.700	ug/L		6/18/2013 5:03:00 PM				
Bromodichlor	omethane	2	< 2.00	ug/L		6/18/2013 5:03:00 PM				
Bromoform			< 5.00	ug/L		6/18/2013 5:03:00 PM				
Bromomethar	e		< 2.00	ug/L		6/18/2013 5:03:00 PM				
Carbon Tetrac	hloride		< 2.00	ug/L		6/18/2013 5:03:00 PM				
Chlorobenzen	e		< 2.00	ug/L		6/18/2013 5:03:00 PM				
Chloroethane			7.50	ug/L		6/18/2013 5:03:00 PM				
Chloroform			< 2.00	ug/L		6/18/2013 5:03:00 PM				
Chloromethar	e		< 2.00	ug/L		6/18/2013 5:03:00 PM				
cis-1,3-Dichlo	ropropen	e	< 2.00	ug/L		6/18/2013 5:03:00 PM				
Dibromochlor	omethane	2	< 2.00	ug/L		6/18/2013 5:03:00 PM				
Ethylbenzene			< 2.00	ug/L		6/18/2013 5:03:00 PM				
Methylene chl	oride		< 5.00	ug/L		6/18/2013 5:03:00 PM				
Tetrachloroet	hene		< 2.00	ug/L		6/18/2013 5:03:00 PM				
Toluene			4.88	ug/L		6/18/2013 5:03:00 PM				
trans-1,2-Dich	loroether	ie in the second se	< 2.00	ug/L		6/18/2013 5:03:00 PM				
trans-1,3-Dich	loroprop	ene	< 2.00	ug/L		6/18/2013 5:03:00 PM				
Trichloroethe	ne		18.0	ug/L		6/18/2013 5:03:00 PM				
Trichlorofluor	omethan	e	< 2.00	ug/L		6/18/2013 5:03:00 PM				
Vinyl chloride			25.0	ug/L		6/18/2013 5:03:00 PM				
Method Referen Data Fil		EPA 624 X06121.D								
Volatile Organics										
Analyte			<u>Result</u>	Units	Qualifier	Date/Time Analyzed				
2-Butanone			40.0	ug/L		6/18/2013 5:03:00 PM				
2-Hexanone			< 5.00	ug/L		6/18/2013 5:03:00 PM				
4-Methyl-2-pe	ntanone		18.8	ug/L		6/18/2013 5:03:00 PM				
Acetone			46.0	ug/L		6/18/2013 5:03:00 PM				
Method Referen Data Fil		EPA 624 X06121.D								

The report is partial a multipage document an island, budy be enduated in its entirely. The Charled Cast of provid relational sample laterization, beloding compliance with the sample criticition requirements upon incent.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

"I" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"C" = Concentration differs by more than 40% between the primary and secondary analytical columns.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multiplice decoment and should injube evoluated in its improve. The theory of furtishappenduse additional sample intermation, activities, complaince with the sample condition requirements upon for dry.

Sampled By: UPINIS PECK Relinquished By: Received By: Received By:	9 8	**LAB USE ONLY**	9		7 6	О Т	24		1 6/14/13	DATE TIME		RFA Monthly sampling	PROJECT NAME/SITE NAME:	(585) 647-2530 * (800) 724-1997	Rochester, NY 14608	179 Lake Avenue	SERVICES, INC.	ENVIRONMENTAL	PARADIGM
				$\left \right $						m⊣-∽∽⊙⊐≅⊙∩									\leq
	l g								×	סת≪ס		COMMENTS:	TTN: D	HONE:	ITY: R	DDRESS	OMPAN		
$\begin{array}{c c} & & & \\ & & & \\$	PRESE								Effluent	SAMPLE LOCATION/FIELD ID		COMMENTS: email reults to peckd@cityofrochester.gov	ATTN: DENNIS PECK	PHONE: 585-428-6884 FAX: 585-428-6010	CITY: ROCHESTER STATE: NY	ADDRESS: 30 CHURCH STREET, ROOM 300B	COMPANY: CITY OF ROCHESTER	REPORT TO:	
Received By: Received @ Lab By:	ATIONS:				_	$\left \right $	+	_	5			cityofi		10	zip: 1/	300B			
Py: By:									Water	X-J-X		roche			14614 CITY:	5			CHA
v: Lab By:		1							ω	IJ m @ S C Z J m Z > Z O C の		ster.g	ATTN:	PHONE:	ITY:	ADDRESS:	COMPANY:		CHAIN OF CUSTODY
Ċ.					_	┞╌┟			××	601/602	2	20				Ï			Ĩ
a Hone	E E			┢╌┠	+	┼┼			×	8015 625 +4-Methyl pheno	REQUESTED								2
1 A				+		┢─┼	+	+	×	608 PCBs	ES.							₹	ST
200	HOLDING TIME:						+	+	×	pH								INVOICE TO:	<u>0</u>
E] <u>₹</u>			FAX:	ĺ			Сщ. П	ĸ
6.		4			_						ANALYSIS				STATE:			ö	
14/13	L_										SIS				ü				
				\vdash	+	+	+												
						╉┼┼		-	P						ZIP:				
Date/Time: Date/Time: / ()	TEM								JS 1										
	15°C								plus 1 extra liter	REMARKS			1		TURNAROUND TIME: (WORKING DAYS)	132203	LAB PROJECT #:		
P.I.F.								\perp					ω	(0)	ORKIN		CLIEP		
Š:				┢┈┝	_	┝╌┡	_	+	0	P4 SAN			5	STD	G DAY		CLIENT PROJECT #:		
						┞┼	+	+	8 CT	PARADIGM LAB SAMPLE NUMBER					's		VECT		10fa
				╞╌┠╴	+	$\left \right $	+	+		SM LA		·	×	2			#		دېغ
							+			щ Ш			X-10	OTHER					

•

2072

÷

Chain of Custody Supplement

Client:	Cityof Roch	Completed by:	Mail
Lab Project ID:	132203	Date:	6/14/13
	Sample Conditio Per NELAC/ELAP 210	n Requirements D/241/242/243/244	
Condition	NELAC compliance with the sample of Yes	condition requirements upo No	n receipt N/A
Container Type			
Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments	SVOA- VOA:		
Holding Time Comments	Ţ		
Temperature Comments	5°C		
Sufficient Sample Quantity Comments			
	<u></u>		

Attachment #3

Table 3-6City of Rochester Division of Environmental QualityRochester Fire AcademyMonitoring Well Sampling Results 5/22/2013	
--	--

	Parameter	MW6S	MW6I	MW7S	ILWM	MW7D	MW8S	MW8I	Q6WM	S6WM	MW10S	MW10I	MW11S	IIIWM	MW15S
Total Volatiles (601/602) (ug/L)	Vinyl Chloride	N/A	6.03	306.00	328.00	ND(2.0)	N/A	220.00	33.50	N/A	ND(2.0)	ND(2.0)	N/A	245.00	ND(2.0)
	Chloroethane	N/A	ND(2.0)	85.60	117.00	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)
	1,1 - Dichloroethene	N/A	ND(2.0)	ND(20.0)	ND(20.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	ND(2.0)	A/A	ND(4.0)	ND(2.0)
	1,1 - Dichloroethane	N/A	ND(2.0)	507.00	607.00	ND(2.0)	N/A	ND(4.0)	6.40	N/A	ND(2.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)
	1,2 - Dichloroethane	N/A	ND(2.0)	ND(20.0)	ND(20.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)
	Tetrachloroethene	N/A	ND(2.0)	ND(20.0)	ND(20.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	ND(2.0)	A/A	ND(4.0)	ND(2.0)
	1,1,1 - Trichloroethane	N/A	ND(2.0)	106.00	56.50	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	ND(2.0)	A/A	ND(4.0)	ND(2.0)
	Trichloroethene	N/A	ND(2.0)	ND(20.0)	ND(20.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	ND(2.0)	A/A	ND(4.0)	ND(2.0)
	MTBE	N/A	ND(2.0)	ND(20.0)	ND(20.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	4.72	A/N	ND(4.0)	ND(2.0)
	Benzene	N/A	ND(0.7)	ND(7.0)	ND(7.0)	ND(0.7)	N/A	ND(1.4)	ND(0.7)	N/A	ND(0.7)	ND(0.7)	A/A	ND(1.4)	ND(2.0)
	Toluene	N/A	ND(2.0)	ND(20.0)	ND(20.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	ND(2.0)	A/A	ND(4.0)	ND(2.0)
	Ethylbenzene	N/A	ND(2.0)	42.80	ND(20.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)	N/A	ND(2.0)	ND(2.0)	N/A	ND(4.0)	ND(2.0)

Analytical Report For

City of Rochester

For Lab Project ID

131860

Referencing

RFA Semi-Annual GW Sampling, DEQ-98045 Prepared

Thursday, May 30, 2013

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

				,	•••
Client:	<u>City of Rochester</u>				
Project Reference:	RFA Semi-Annual GW	/ Sampling, DEQ-	98045		
Sample Identifier:	MW 61				
Lab Sample ID:	131860-01		Date Sam	pled: 5/22/2013	1:15 PM
Matrix:	Groundwater			eived: 5/22/2013	1.151 M
Volatile Organics	£				
Analyte		Result	<u>Units</u> O	ualifier Date/Time	e Analvzed
1,1,1-Trichlo	roethane	< 2.00	ug/L	5/23/2013 1	
1,1,2,2-Tetra	chloroethane	< 2.00	ug/L	5/23/2013 1	
1,1,2-Trichlo	roethane	< 2.00	ug/L	5/23/2013 1	
1,1-Dichloroe	ethane	< 2.00	ug/L	5/23/2013 1	
1,1-Dichloroe	ethene	< 2.00	ug/L	5/23/2013 1	
1,2-Dichlorol	penzene	< 2.00	ug/L	5/23/2013 1	
1,2-Dichloroe	ethane	< 2.00	ug/L	5/23/2013 1	
1,2-Dichlorop	propane	< 2.00	ug/L	5/23/2013 1	
1,3-Dichlorot	Denzene	< 2.00	ug/L	5/23/2013 1	
1,4-Dichlorot	penzene	< 2.00	ug/L	5/23/2013 1	
2-Chloroethy	l vinyl Ether	< 10.0	ug/L	5/23/2013 1	
Benzene		< 0.700	ug/L	5/23/2013 1	
Bromodichlo	romethane	< 2.00	ug/L	5/23/2013 1	
Bromoform		< 5.00	ug/L	5/23/2013 10	
Bromometha	ne	< 2.00	ug/L	5/23/2013 10	
Carbon Tetra	chloride	< 2.00	ug/L	5/23/2013 10	
Chlorobenzer	ie	< 2.00	ug/L	5/23/2013 10	
Chloroethane		< 2.00	ug/L	5/23/2013 10	
Chloroform		< 2.00	ug/L	5/23/2013 10	
Chlorometha	ne	< 2.00	ug/L	5/23/2013 10	
cis-1,3-Dichlo	ropropene	< 2.00	ug/L	5/23/2013 10	
Dibromochlor	omethane	< 2.00	ug/L	5/23/2013 10	
Ethylbenzene		< 2.00	ug/L	5/23/2013 10	
Methyl tert-bi	ıtyl Ether	< 2.00	ug/L	5/23/2013 10	
Methylene chi	oride	< 5.00	ug/L	5/23/2013 10	
Tetrachloroet	hene	< 2.00	ug/L	5/23/2013 10	
Toluene		< 2.00	ug/L	5/23/2013 10	
trans-1,2-Dich	lloroethene	< 2.00	ug/L	5/23/2013 10	

Prostructure is protected multipleige document, and should only be exclusived in its entructs. The draw of dustady provides additional simple informations including compliance with the sample condition reducements upon receipt.

Client:	<u>City c</u>	of Rochester			
Project Reference:	RFA S	emi-Annual GW Sa	mpling, DEQ-	98045	
Sample Identifier: Lab Sample ID: Matrix:		61 360-01 Indwater		-	ed: 5/22/2013 1:15 PM ved: 5/22/2013
trans-1,3-Dic	hloropro	pene	< 2.00	ug/L	5/23/2013 10:08:00 PM
Trichloroeth	ene		< 2.00	ug/L	5/23/2013 10:08:00 PM
Trichlorofluc	romethai	ıe	< 2.00	ug/L	5/23/2013 10:08:00 PM
Vinyl chlorid	e		6.03	ug/L	5/23/2013 10:08:00 PM
Method Refere Data Fi		EPA 624 Modified X05481.D			

This construction part of a multipage document and sinced a sety be evaluated on its entirety. The Chain of Mustady provides, additional sompleans manual normalizing controls trace with the sample condition requirements upon the entit.

			_		
Client:	<u>City of Rochester</u>				
Project Reference:	RFA Semi-Annual GW	/ Sampling, DEQ-	98045		
Sample Identifier:	MW 71				
Lab Sample ID:	131860-02		Date Sa	mpled: 5/22/2013	1:23 PM
Matrix:	Groundwater			ceived: 5/22/2013	1120 1 11
Volatile Organic	S				
Analyte		<u>Result</u>	<u>Units</u>	Qualifier Date/Tin	ne Analyzed
1,1,1-Trichle	oroethane	56.5	ug/L		10:31:00 PM
1,1,2,2-Tetra	achloroethane	< 20.0	ug/L		10:31:00 PM
1,1,2-Trichle	oroethane	< 20.0	ug/L		10:31:00 PM
1,1-Dichloro	oethane	607	ug/L		10:31:00 PM
1,1-Dichloro	ethene	< 20.0	ug/L		10:31:00 PM
1,2-Dichloro	benzene	< 20.0	ug/L		10:31:00 PM
1,2-Dichloro	ethane	< 20.0	ug/L		10:31:00 PM
1,2-Dichloro	propane	< 20.0	ug/L	5/23/2013	10:31:00 PM
1,3-Dichloro	benzene	< 20.0	ug/L	-	10:31:00 PM
1,4-Dichloro	benzene	< 20.0	ug/L		10:31:00 PM
2-Chloroeth	yl vinyl Ether	< 100	ug/L		10:31:00 PM
Benzene		< 7.00	ug/L		10:31:00 PM
Bromodichle	oromethane	< 20.0	ug/L		10:31:00 PM
Bromoform		< 50.0	ug/L		10:31:00 PM
Bromometha	ane	< 20.0	ug/L	•	10:31:00 PM
Carbon Tetra	achloride	< 20.0	ug/L		10:31:00 PM
Chlorobenze	ne	< 20.0	ug/L		10:31:00 PM
Chloroethan	e	117	ug/L		10:31:00 PM
Chloroform		< 20.0	ug/L	5/23/2013	
Chlorometha	ine	< 20.0	ug/L		10:31:00 PM
cis-1,3-Dichl	oropropene	< 20.0	ug/L		10:31:00 PM
Dibromochlo	oromethane	< 20.0	ug/L	5/23/2013	
Ethylbenzen	e	< 20.0	ug/L	5/23/2013	L0:31:00 PM
Methyl tert-b	outyl Ether	< 20.0	ug/L	5/23/2013	
Methylene ch	loride	< 50.0	ug/L	5/23/2013	
Tetrachloroe	thene	< 20.0	ug/L	5/23/2013 1	
Toluene		< 20.0	ug/L	5/23/2013 1	
trans-1,2-Dic	hloroethene	< 20.0	ug/L	5/23/2013 1	

The case is part of traditional document and should adjude address during matrices. The distance distance provides additional sample provident inducting compilates with the sample condition tradition interferences regime.

Client:	<u>City o</u>	<u>f Rochester</u>			
Project Reference:	RFA S	emi-Annual GW Sa	mpling, DEQ-	98045	
Sample Identifier: Lab Sample ID: Matrix:		71 60-02 ndwater		-	d: 5/22/2013 1:23 PM ed: 5/22/2013
trans-1,3-Dic	hloroprop	ene	< 20.0	ug/L	5/23/2013 10:31:00 P
Trichloroeth	ene		< 20.0	ug/L	5/23/2013 10:31:00 P
Trichlorofluc	romethan	e	< 20.0	ug/L	5/23/2013 10:31:00 P
Vinyl chlorid	e		328	ug/L	5/23/2013 10:31:00 P
Method Refere Data F		EPA 624 Modified X05482.D			

This report is a new produced a subsensing denial only in evidants if which interpet this fitting. Francisco, prior has additional subset of contation, including simplement with the complex condition requirements upon everytic

Client:	City of Rochester					
Project Reference:	RFA Semi-Annual GW	Sampling, DEQ-	98045			
Sample Identifier: Lab Sample ID:	MW 7D 131860-03					
Matrix:	Groundwater			ampled: 5	-	1:25 PM
Volatile Organics						
Analyte		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date/Tin	<u>ne Analyzed</u>
1,1,1-Trichlo	roethane	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,1,2,2-Tetra	chloroethane	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,1,2-Trichlo	roethane	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,1-Dichloroe	ethane	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,1-Dichloroe	ethene	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,2-Dichlorot	benzene	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,2-Dichloroe	ethane	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,2-Dichlorop	propane	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,3-Dichlorot	benzene	< 2.00	ug/L		5/23/2013	10:54:00 PM
1,4-Dichlorot	benzene	< 2.00	ug/L		5/23/2013	10:54:00 PM
2-Chloroethy	l vinyl Ether	< 10.0	ug/L		5/23/2013	10:54:00 PM
Benzene		< 0.700	ug/L		5/23/2013	10:54:00 PM
Bromodichlo	romethane	< 2.00	ug/L		5/23/2013	10:54:00 PM
Bromoform		< 5.00	ug/L		5/23/2013	10:54:00 PM
Bromometha	ne	< 2.00	ug/L		5/23/2013	10:54:00 PM
Carbon Tetra	chloride	< 2.00	ug/L		5/23/2013	10:54:00 PM
Chlorobenzer	ne	< 2.00	ug/L		5/23/2013	10:54:00 PM
Chloroethane	2	< 2.00	ug/L		5/23/2013	10:54:00 PM
Chloroform		< 2.00	ug/L		5/23/2013	10:54:00 PM
Chlorometha	ne	< 2.00	ug/L		5/23/2013	10:54:00 PM
cis-1,3-Dichlo	oropropene	< 2.00	ug/L		5/23/2013	10:54:00 PM
Dibromochlo	romethane	< 2.00	ug/L		5/23/2013	10:54:00 PM
Ethylbenzene	9	< 2.00	ug/L		5/23/2013	10:54:00 PM
Methyl tert-b	utyl Ether	< 2.00	ug/L		5/23/2013	10:54:00 PM
Methylene ch	loride	< 5.00	ug/L		5/23/2013	10:54:00 PM
Tetrachloroe	thene	< 2.00	ug/L			10:54:00 PM
Toluene		< 2.00	ug/L			10:54:00 PM
trans-1,2-Dic	hloroethene	< 2.00	ug/L			10:54:00 PM

This report is put of the dispate document and should will be explored and a statement. The disease flusted, provides addictional sample information including to statematic with the sample condition requirementation of receipt.

Client:	<u>City of Rock</u>	lester				
Project Reference:	RFA Semi-A	nnual GW Sampli	ing, DEQ-	98045		
Sample Identifier: Lab Sample ID: Matrix:	MW 7D 131860-03 Groundwat			-	d: 5/22/2013 ed: 5/22/2013	1:25 PM
trans-1,3-Dio	hloropropene		< 2.00	ug/L	5/23/2013	10:54:00 PM
Trichloroeth	ene		< 2.00	ug/L	5/23/2013	10:54:00 PM
Trichlorofluc	promethane		< 2.00	ug/L	5/23/2013	10:54:00 PM
Vinyl chlorid	e		< 2.00	ug/L	5/23/2013	10:54:00 PM
Method Refere Data F		24 Modified 3.D				

The concept is part of a multiple of the multiple should bely to be able to defer the short. The short of a sold by Add to off-completed for a solarity of the concept of the first of the sound of the solar concepts and the oper

Client:	City of Rochester					
Project Reference:	RFA Semi-Annual GW	/ Sampling, DEQ-	98045			
Sample Identifier: Lab Sample ID: Matrix:	MW 7S 131860-04 Groundwater			ampled: 5 Received: 5		1:20 PM
Volatile Organic	<u></u>					
Analyte		Result	<u>Units</u>	Qualifier	Date/Tin	ne Analyzed
1,1,1-Trichl	oroethane	106	ug/L	-	•	11:17:00 PN
1,1,2,2-Tetr	achloroethane	< 20.0	ug/L		5/23/2013	11:17:00 PN
1,1,2-Trichl	oroethane	< 20.0	ug/L		5/23/2013	11:17:00 PN
1,1-Dichloro	oethane	507	ug/L		5/23/2013	11:17:00 PM
1,1-Dichloro	oethene	< 20.0	ug/L		5/23/2013	11:17:00 PN
1,2-Dichloro	obenzene	< 20.0	ug/L		5/23/2013	11:17:00 PM
1,2-Dichloro	oethane	< 20.0	ug/L		5/23/2013	11:17:00 PN
1,2-Dichloro	opropane	< 20.0	ug/L		5/23/2013	11:17:00 PN
1,3-Dichloro	obenzene	< 20.0	ug/L		5/23/2013	11:17:00 PN
1,4-Dichloro	obenzene	< 20.0	ug/L		5/23/2013	11:17:00 PN
2-Chloroeth	yl vinyl Ether	< 100	ug/L		5/23/2013	11:17:00 PN
Benzene		< 7.00	ug/L		5/23/2013	11:17:00 PN
Bromodichl	oromethane	< 20.0	ug/L		5/23/2013	11:17:00 PN
Bromoform		< 50.0	ug/L		5/23/2013	11:17:00 PM
Bromometh	ane	< 20.0	ug/L		5/23/2013	11:17:00 PN
Carbon Tetr	achloride	< 20.0	ug/L		5/23/2013	11:17:00 PN
Chlorobenzo	ene	< 20.0	ug/L		5/23/2013	11:17:00 PN
Chloroethar	ne	85.6	ug/L		5/23/2013	11:17:00 PN
Chloroform		< 20.0	ug/L		5/23/2013	11:17:00 PM
Chlorometh	ane	< 20.0	ug/L		5/23/2013	11:17:00 PN
cis-1,3-Dich	loropropene	< 20.0	ug/L		5/23/2013	11:17:00 PM
Dibromochl	oromethane	< 20.0	ug/L		5/23/2013	11:17:00 PM
Ethylbenzer	ie	42.8	ug/L		5/23/2013	11:17:00 PM
Methyl tert-	butyl Ether	< 20.0	ug/L		5/23/2013	11:17:00 PM
Methylene c	hloride	< 50.0	ug/L		5/23/2013	11:17:00 PM
Tetrachloro	ethene	< 20.0	ug/L		5/23/2013	11:17:00 PM
Toluene		< 20.0	ug/L		5/23/2013	
trans-1,2-Di	chloroethene	< 20.0	ug/L		5/23/2013	

First supply is part of final leages, becament initialized, injetic evaluated in an entire of first of first described of entering of orders. Additional samely intermitted interaction rise is Birthessingle.com/interfegurent-resupering-cept.

Client:	<u>City of</u>	Rochester			
Project Reference:	RFA Se	emi-Annual GW Sa	mpling, DEQ-	98045	
Sample Identifier: Lab Sample ID: Matrix:		7S 60-04 ndwater		-	ed: 5/22/2013 1:20 PM ved: 5/22/2013
trans-1,3-Dic	hloroprop	ene	< 20.0	ug/L	5/23/2013 11:17:00 PM
Trichloroeth	ene		< 20.0	ug/L	5/23/2013 11:17:00 PM
Trichlorofluc	romethan	е	< 20.0	ug/L	5/23/2013 11:17:00 PM
Vinyl chlorid	e		306	ug/L	5/23/2013 11:17:00 PM
Method Refere Data F	.,	EPA 624 Modified X05484.D			

This report, a protocol tribubly age destret, etc. set and only the Acabittestic Resentively. The linter of the output is a set of a set of the state of the set of t

Client:	<u>City of Rochester</u>					
Project Reference:	RFA Semi-Annual GW	/ Sampling, DEQ-	98045			
Sample Identifier: Lab Sample ID: Matrix:	MW 8I 131860-05 Groundwater			ampled: 5 Received: 5		12:50 PM
<u>Volatile Organic</u>	s				adad 2010 - 11	
Analyte	_	Result	<u>Units</u>	Qualifier	Date/Tin	<u>ne Analyzed</u>
1,1,1-Trichlo	proethane	< 4.00	ug/L	•	-	3:16:00 AM
1,1,2,2-Tetra	achloroethane	< 4.00	ug/L		5/25/2013	3:16:00 AM
1,1,2-Trichlo	oroethane	< 4.00	ug/L		5/25/2013	3:16:00 AM
1,1-Dichloro	ethane	< 4.00	ug/L		5/25/2013	3:16:00 AM
1,1-Dichloro	ethene	< 4.00	ug/L		5/25/2013	3:16:00 AM
1,2-Dichloro	benzene	< 4.00	ug/L		5/25/2013	3:16:00 AM
1,2-Dichloro	ethane	< 4.00	ug/L		5/25/2013	3:16:00 AM
1,2-Dichloro	propane	< 4.00	ug/L		5/25/2013	3:16:00 AM
1,3-Dichloro	benzene	< 4.00	ug/L		5/25/2013	3:16:00 AM
1,4-Dichloro	benzene	< 4.00	ug/L		5/25/2013	3:16:00 AM
2-Chloroethy	yl vinyl Ether	< 20.0	ug/L		5/25/2013	3:16:00 AM
Benzene		< 1.40	ug/L		5/25/2013	3:16:00 AM
Bromodichle	oromethane	< 4.00	ug/L		5/25/2013	3:16:00 AM
Bromoform		< 10.0	ug/L		5/25/2013	3:16:00 AM
Bromometha	ane	< 4.00	ug/L		5/25/2013	3:16:00 AM
Carbon Tetra	achloride	< 4.00	ug/L		5/25/2013	3:16:00 AM
Chlorobenze	ene	< 4.00	ug/L		5/25/2013	3:16:00 AM
Chloroethan	e	< 4.00	ug/L		5/25/2013	3:16:00 AM
Chloroform		< 4.00	ug/L		5/25/2013	3:16:00 AM
Chlorometha	ane	< 4.00	ug/L		5/25/2013	3:16:00 AM
cis-1,3-Dichl	oropropene	< 4.00	ug/L		5/25/2013	3:16:00 AM
Dibromochlo	oromethane	< 4.00	ug/L		5/25/2013	3:16:00 AM
Ethylbenzen	e	< 4.00	ug/L		5/25/2013	3:16:00 AM
Methyl tert-l	butyl Ether	< 4.00	ug/L		5/25/2013	3:16:00 AM
Methylene cl	hloride	< 10.0	ug/L		5/25/2013	3:16:00 AM
Tetrachloroe	ethene	< 4.00	ug/L		5/25/2013	3:16:00 AM
Toluene		< 4.00	ug/L		5/25/2013	3:16:00 AM
trans-1,2-Dio	chloroethene	< 4.00	ug/L		5/25/2013	3:16:00 AM

Providental Site of unutilipage document metals all to be be evidented in its entirety. The chain of hist dy operades a Min will simple internation in ticheding complication with the sample condition restrictions upon a scope

Client:	City of Rochester				
Project Reference:	RFA Semi-Annual GW Sa	mpling, DEQ-	98045		
Sample Identifier: Lab Sample ID:	MW 81 131860-05		Data Samul	ada 5 /22 /2012	12.50 DM
Matrix:	Groundwater		-	ed: 5/22/2013 red: 5/22/2013	12:50 PM
trans-1,3-Die	chloropropene	< 4.00	ug/L	5/25/2013	3:16:00 AM
Trichloroeth	ene	< 4.00	ug/L	5/25/2013	3:16:00 AM
Trichloroflue	oromethane	< 4.00	ug/L	5/25/2013	3:16:00 AM
Vinyl chlorid	e	220	ug/L	5/25/2013	3:16:00 AM
Method Refere Data F	.,				

The stated is pair with maloping deduce on the standards. Build with the states of the stream of the second s

Client:	<u>City of Rochester</u>					
Project Reference:	RFA Semi-Annual GW	Sampling, DEQ-	98045			
Sample Identifier:	MW 9D					
Lab Sample ID:	131860-06		Date S	ampled: 5	/22/2013	1:30 PM
Matrix:	Groundwater			eceived: 5	•	
Volatile Organics	Σ					
Analyte		Result	<u>Units</u>	Qualifier	Date/Tin	ne Analyzeo
1,1,1-Trichlo	roethane	< 2.00	ug/L		5/25/2013	3:39:00 AN
1,1,2,2-Tetra	chloroethane	< 2.00	ug/L		5/25/2013	3:39:00 AN
1,1,2-Trichlo	oroethane	< 2.00	ug/L		5/25/2013	3:39:00 AM
1,1-Dichloroe	ethane	6.40	ug/L		5/25/2013	3:39:00 AM
1,1-Dichloroe	ethene	< 2.00	ug/L		5/25/2013	3:39:00 AM
1,2-Dichlorol	benzene	< 2.00	ug/L		5/25/2013	3:39:00 AM
1,2-Dichloroe	ethane	< 2.00	ug/L		5/25/2013	3:39:00 AM
1,2-Dichloroj	propane	< 2.00	ug/L		5/25/2013	3:39:00 AN
1,3-Dichlorol	benzene	< 2.00	ug/L		5/25/2013	3:39:00 AN
1,4-Dichlorol	benzene	< 2.00	ug/L		5/25/2013	3:39:00 AN
2-Chloroethy	/l vinyl Ether	< 10.0	ug/L		5/25/2013	3:39:00 AN
Benzene		< 0.700	ug/L		5/25/2013	3:39:00 AM
Bromodichlo	oromethane	< 2.00	ug/L		5/25/2013	3:39:00 AN
Bromoform		< 5.00	ug/L		5/25/2013	3:39:00 AN
Bromometha	ine	< 2.00	ug/L		5/25/2013	3:39:00 AN
Carbon Tetra	achloride	< 2.00	ug/L		5/25/2013	3:39:00 AM
Chlorobenze	ne	< 2.00	ug/L		5/25/2013	3:39:00 AM
Chloroethane	e	< 2.00	ug/L		5/25/2013	3:39:00 AM
Chloroform		< 2.00	ug/L		5/25/2013	3:39:00 AM
Chlorometha	ine	< 2.00	ug/L		5/25/2013	3:39:00 AM
cis-1,3-Dichle	oropropene	< 2.00	ug/L		5/25/2013	3:39:00 AM
Dibromochlo		< 2.00	ug/L		5/25/2013	3:39:00 AM
Ethylbenzene	e	< 2.00	ug/L		5/25/2013	3:39:00 AM
Methyl tert-b	outyl Ether	< 2.00	ug/L		5/25/2013	3:39:00 AM
Methylene ch	-	< 5.00	ug/L		5/25/2013	3:39:00 AM
Tetrachloroe		< 2.00	ug/L		5/25/2013	
Toluene		< 2.00	ug/L		5/25/2013	3:39:00 AN
trans-1,2-Dic	chloroethene	< 2.00	ug/L		5/25/2013	3:39:00 AM

This report is proto of multipage documentantly should rate by evaluated or measure yo the fibrar who estudy provides additional simple information, including complement with the sample condition requirements up to receipt.

Client:	<u>City of Rochester</u> RFA Semi-Annual GW Sampling, DEQ-98045				
Project Reference:					
Sample Identifier:	MW 9D			·	
Lab Sample ID:	131860-06		Date Sampl	ed: 5/22/2013 1:30 PM	
Matrix:	Groundwater		Date Received: 5/22/2013		
trans-1,3-Dichloropropene		< 2.00	ug/L	5/25/2013 3:39:00 AM	
Trichloroethene		< 2.00	ug/L	5/25/2013 3:39:00 AM	
Trichlorofluoromethane		< 2.00	ug/L	5/25/2013 3:39:00 AM	
Vinyl chloride		35.5	ug/L	5/25/2013 3:39:00 AM	
Method Refere Data F					

ens interneties pint let enably de calculation participals de contratente les centrats. The Goule of Gastony free tex Altria de sança de facement en la classifie consultance subsite subsite autorité de l'estenie une de calculat

Client:	City of Rochester					
Project Reference:	RFA Semi-Annual GW	/ Sampling, DEQ-'	98045			
Sample Identifier: Lab Sample ID: Matrix:	MW 10I 131860-07 Groundwater			2/2013 2/2013	1:00 PM	
Volatile Organics	ĩ					
Analyte		Result	<u>Units</u>	Qualifier	Date/Time	Analyzed
1,1,1-Trichlo	roethane	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,1,2,2-Tetra	chloroethane	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,1,2-Trichlo	roethane	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,1-Dichloroe	ethane	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,1-Dichloroe	ethene	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,2-Dichlorol	benzene	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,2-Dichloroe	ethane	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,2-Dichloro	propane	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,3-Dichlorol	benzene	< 2.00	ug/L		5/25/2013 4	:02:00 AM
1,4-Dichlorol	benzene	< 2.00	ug/L		5/25/2013 4	:02:00 AM
2-Chloroethy	vl vinyl Ether	< 10.0	ug/L		5/25/2013 4	:02:00 AM
Benzene		< 0.700	ug/L		5/25/2013 4	:02:00 AN
Bromodichlo	romethane	< 2.00	ug/L		5/25/2013 4	:02:00 AM
Bromoform		< 5.00	ug/L		5/25/2013 4	:02:00 AM
Bromometha	ine	< 2.00	ug/L		5/25/2013 4	:02:00 AM
Carbon Tetra	chloride	< 2.00	ug/L	:	5/25/2013 4	:02:00 AN
Chlorobenzei	ne	< 2.00	ug/L	:	5/25/2013 4	:02:00 AN
Chloroethane	9	< 2.00	ug/L	:	5/25/2013 4	:02:00 AM
Chloroform		< 2.00	ug/L	:	5/25/2013 4	:02:00 AM
Chlorometha	ne	< 2.00	ug/L	!	5/25/2013 4	:02:00 AM
cis-1,3-Dichle	oropropene	< 2.00	ug/L	:	5/25/2013 4	:02:00 AN
Dibromochlo		< 2.00	ug/L		5/25/2013 4	
Ethylbenzene		< 2.00	ug/L		,,, 5/25/2013 4	
Methyl tert-b		4.72	ug/L		5/25/2013 4	
Methylene ch	•	< 5.00	ug/L		,,, 5/25/2013 4	
Tetrachloroe		< 2.00	ug/L		,,, 5/25/2013 4	
Toluene		< 2.00	ug/L		, , 5/25/2013 4	
trans-1,2-Dic	hloroethene	< 2.00	ug/L		5/25/2013 4	

interpretive and the multipage decarrient and should be evolvated units entriety. "Nethermat Castady provides address above the information including control near with the sample condition requirement according to a decimation and a second seco

Client:	<u>City of Rochester</u>				
Project Reference:	RFA Semi-Annual GW Sampling, DEQ-98045				
Sample Identifier:	MW 10I				
Lab Sample ID:	131860-07		Date Sampl	ed: 5/22/2013 1:00 PM	
Matrix:	Groundwater		Date Receiv	/ed: 5/22/2013	
trans-1,3-Dic	hloropropene	< 2.00	ug/L	5/25/2013 4:02:00 AM	
Trichloroeth	ene	< 2.00	ug/L	5/25/2013 4:02:00 AM	
Trichlorofluc	oromethane	< 2.00	ug/L	5/25/2013 4:02:00 AM	
Vinyl chlorid	e	< 2.00	ug/L	5/25/2013 4:02:00 AM	
Method Refere	nce(s): EPA 624 Modified				
Data F	ile: X05527.D				

o'his cum et is pait of a multipage document and should only be evaluated in excentrety. Ene Chain o Mustody provides Taldetenal sample information including complants, with the sample condition requirements spon receipt.

Client:	<u>City of Rochester</u>					
Project Reference:	RFA Semi-Annual GW	Sampling, DEQ-	98045			
Sample Identifier: Lab Sample ID: Matrix:	MW 10S 131860-08 Groundwater			ampled: 5/ eceived: 5/	•	1:02 PM
Volatile Organics	2					
Analyte	_	Result	<u>Units</u>	Qualifier	Date/Tin	<u>ie Analyzed</u>
1,1,1-Trichlo	oroethane	< 2.00	ug/L	-		4:25:00 AM
1,1,2,2-Tetra	chloroethane	< 2.00	ug/L		5/25/2013	4:25:00 AM
1,1,2-Trichlo	oroethane	< 2.00	ug/L		5/25/2013	4:25:00 AM
1,1-Dichloro	ethane	< 2.00	ug/L		5/25/2013	4:25:00 AM
1,1-Dichloro	ethene	< 2.00	ug/L		5/25/2013	4:25:00 AM
1,2-Dichloro	benzene	< 2.00	ug/L		5/25/2013	4:25:00 AM
1,2-Dichloro	ethane	< 2.00	ug/L		5/25/2013	4:25:00 AM
1,2-Dichloro	propane	< 2.00	ug/L		5/25/2013	4:25:00 AM
1,3-Dichloro	benzene	< 2.00	ug/L		5/25/2013	4:25:00 AM
1,4-Dichloro	benzene	< 2.00	ug/L		5/25/2013	4:25:00 AM
2-Chloroethy	/l vinyl Ether	< 10.0	ug/L		5/25/2013	4:25:00 AM
Benzene		< 0.700	ug/L		5/25/2013	4:25:00 AM
Bromodichlo	oromethane	< 2.00	ug/L		5/25/2013	4:25:00 AM
Bromoform		< 5.00	ug/L		5/25/2013	4:25:00 AM
Bromometha	ine	< 2.00	ug/L		5/25/2013	4:25:00 AM
Carbon Tetra	achloride	< 2.00	ug/L		5/25/2013	4:25:00 AM
Chlorobenze	ne	< 2.00	ug/L		5/25/2013	4:25:00 AM
Chloroethan	e	< 2.00	ug/L		5/25/2013	4:25:00 AM
Chloroform		< 2.00	ug/L		5/25/2013	4:25:00 AM
Chlorometha	ine	< 2.00	ug/L		5/25/2013	4:25:00 AM
cis-1,3-Dichl	oropropene	< 2.00	ug/L		5/25/2013	4:25:00 AM
Dibromochlo	oromethane	< 2.00	ug/L		5/25/2013	4:25:00 AM
Ethylbenzen	e	< 2.00	ug/L		5/25/2013	4:25:00 AM
Methyl tert-b	outyl Ether	< 2.00	ug/L		5/25/2013	4:25:00 AM
Methylene cl	nloride	< 5.00	ug/L		•	4:25:00 AM
Tetrachloroe		< 2.00	ug/L			4:25:00 AM
Toluene		< 2.00	ug/L			4:25:00 AM
trans-1,2-Dic	chloroethene	< 2.00	ug/L			4:25:00 AM

This report separt of a multipage document and should only be evaluated in its entireity. The dhain of lastedy provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>City o</u>	<u>f Rochester</u>					
Project Reference:	RFA Semi-Annual GW Sampling, DEQ-98045						
Sample Identifier:	MW	10S					
Lab Sample ID:	1318	60-08		Date Sample	ed: 5/22/2013 1:02 PM		
Matrix:	Groundwater			-	red: 5/22/2013		
trans-1,3-Dic	hloroprop	ene	< 2.00	ug/L	5/25/2013 4:25:00 AM		
Trichloroeth	ene		< 2.00	ug/L	5/25/2013 4:25:00 AM		
Trichlorofluc	romethan	e	< 2.00	ug/L	5/25/2013 4:25:00 AM		
Vinyl chlorid	е		< 2.00	ug/L	5/25/2013 4:25:00 AM		
Method Refere Data F	.,	EPA 624 Modified X05528.D					

Enviropent is plot a formalligage document and should only be or white-d in the winterpy "like-(it or of the study provides" SUBMORTHMITTEE IN WINTED IN THE LINE COMPLETERS WITH the Sample condition requirements open rescope.

Client:	<u>City of Rochester</u>					
Project Reference:	RFA Semi-Annual GW	Sampling, DEQ-	98045			
Sample Identifier: Lab Sample ID:	MW 11I 131860-09					
Matrix:	Groundwater			ampled: 5,	•	12:53 PN
	Groundwater		Date R	eceived: 5	/22/2013	
Volatile Organics	Σ					
Analyte		Result	<u>Units</u>	Qualifier	Date/Tin	<u>ne Analyze</u>
1,1,1-Trichlo	roethane	< 4.00	ug/L	-	5/28/2013	-
1,1,2,2-Tetra	chloroethane	< 4.00	ug/L		5/28/2013	4:20:00 PN
1,1,2-Trichlo	roethane	< 4.00	ug/L		5/28/2013	4:20:00 PN
1,1-Dichloro	ethane	< 4.00	ug/L		5/28/2013	4:20:00 PN
1,1-Dichloro	ethene	< 4.00	ug/L		5/28/2013	4:20:00 PN
1,2-Dichloro	benzene	< 4.00	ug/L		5/28/2013	4:20:00 PN
1,2-Dichloro	ethane	< 4.00	ug/L		5/28/2013	4:20:00 PN
1,2-Dichloro	propane	< 4.00	ug/L		5/28/2013	4:20:00 PN
1,3-Dichloro	benzene	< 4.00	ug/L		5/28/2013	
1,4-Dichloro	benzene	< 4.00	ug/L		5/28/2013	4:20:00 PN
2-Chloroethy	ıl vinyl Ether	< 20.0	ug/L		5/28/2013	
Benzene		< 1.40	ug/L		5/28/2013	
Bromodichlo	romethane	< 4.00	ug/L		5/28/2013	
Bromoform		< 10.0	ug/L		5/28/2013	
Bromometha	ine	< 4.00	ug/L		5/28/2013	
Carbon Tetra	chloride	< 4.00	ug/L		5/28/2013	
Chlorobenze		< 4.00	ug/L		5/28/2013	
Chloroethane	2	< 4.00	ug/L		5/28/2013	
Chloroform		< 4.00	ug/L		5/28/2013	
Chlorometha	ne	< 4.00	ug/L		5/28/2013	
cis-1,3-Dichl		< 4.00	ug/L		5/28/2013	
Dibromochlo		< 4.00	ug/L		5/28/2013	
Ethylbenzene		< 4.00	ug/L		5/28/2013	
Methyl tert-b		< 4.00	ug/L		5/28/2013	
Methylene ch	•	< 10.0	ug/L		5/28/2013	
Tetrachloroe		< 4.00	ug/L		5/28/2013	
Toluene		< 4.00	ug/L		5/28/2013	
trans-1,2-Dic	hloroethene	< 4.00	ug/L		5/28/2013	

This coport is part of a multipage document and should only be evoluated in its entropy. The Dram of dustedy provides additional sample information including compliance with the sample condition requirements upon receipt.

Client:	<u>City of Rochester</u>						
Project Reference:	RFA Semi-Annual GW Sampling, DEQ-98045						
Sample Identifier:	MW 11I						
Lab Sample ID:	131860-09		Date Sample	ed: 5/22/2013 12:53 PM			
Matrix:	Groundwater		Date Received: 5/22/2013				
trans-1,3-Dio	chloropropene	< 4.00	ug/L	5/28/2013 4:20:00 PM			
Trichloroeth	Trichloroethene		ug/L	5/28/2013 4:20:00 PM			
Trichlorofluoromethane		< 4.00	ug/L	5/28/2013 4:20:00 PM			
Vinyl chloride		245	ug/L	5/28/2013 4:20:00 PM			
Surrogate outlie Method Refere Data F	•••						

This report report of a multipage document and should only be completed to its entire ty. The Obilin of Caste by priviales additioned simple before the inclusion prophysics with the sample condition requirements upon every.

Project Reference: RFA Semi-Annual GW Sample Sample Identifier: MW 15S Lab Sample ID: 131860-10 Matrix: Groundwater Volatile Organics Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	oling, DEQ-98	3045	
Lab Sample ID:131860-10Matrix:GroundwaterVolatile OrganicsMalyte1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2.Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2-Dichloroethane1,2-Dichloroethane1,2-Dichloroethane1,2-Dichloropropane			
Analyte1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2-Dichlorobenzene1,2-Dichloroethane1,2-Dichloroethane1,2-Dichloropropane		Date Sampled: 5, Date Received: 5,	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane			
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	<u>Result</u>	<u>Units Qualifier</u>	Date/Time Analyzed
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	< 2.00	ug/L	5/25/2013 5:11:00 AM
1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	< 2.00	ug/L	5/25/2013 5:11:00 AM
1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	< 2.00	ug/L	5/25/2013 5:11:00 AM
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	< 2.00	ug/L	5/25/2013 5:11:00 AM
1,2-Dichloroethane 1,2-Dichloropropane	< 2.00	ug/L	5/25/2013 5:11:00 AM
1,2-Dichloropropane	< 2.00	ug/L	5/25/2013 5:11:00 AM
	< 2.00	ug/L	5/25/2013 5:11:00 AM
	< 2.00	ug/L	5/25/2013 5:11:00 AM
1,3-Dichlorobenzene	< 2.00	ug/L	5/25/2013 5:11:00 AM
1,4-Dichlorobenzene	< 2.00	ug/L	5/25/2013 5:11:00 AM
2-Chloroethyl vinyl Ether	< 10.0	ug/L	5/25/2013 5:11:00 AM
Benzene	< 0.700	ug/L	5/25/2013 5:11:00 AM
Bromodichloromethane	< 2.00	ug/L	5/25/2013 5:11:00 AM
Bromoform	< 5.00	ug/L	5/25/2013 5:11:00 AM
Bromomethane	< 2.00	ug/L	5/25/2013 5:11:00 AM
Carbon Tetrachloride	< 2.00	ug/L	5/25/2013 5:11:00 AM
Chlorobenzene	< 2.00	ug/L	5/25/2013 5:11:00 AM
Chloroethane	< 2.00	ug/L	5/25/2013 5:11:00 AM
Chloroform	< 2.00	ug/L	5/25/2013 5:11:00 AM
Chloromethane	< 2.00	ug/L	5/25/2013 5:11:00 AM
cis-1,3-Dichloropropene	< 2.00	ug/L	5/25/2013 5:11:00 AM
Dibromochloromethane	< 2.00	ug/L	5/25/2013 5:11:00 AM
Ethylbenzene	< 2.00	ug/L	5/25/2013 5:11:00 AM
Methyl tert-butyl Ether	< 2.00	ug/L	5/25/2013 5:11:00 AM
Methylene chloride	< 5.00	ug/L	5/25/2013 5:11:00 AM
Tetrachloroethene	< 2.00	ug/L	5/25/2013 5:11:00 AM
Toluene	< 2.00		
trans-1,2-Dichloroethene	< 2.00	ug/L	5/25/2013 5:11:00 AM

This sensitive parts of a multiple essentiated and shired both the scalar test is intrated. The Chamor Sustange provides additional sample interaction including compliance with the sample of a difference transmission receipt.

Client:	ient: <u>City of Rochester</u>						
Project Reference:	RFA Semi-Annual GW Sampling, DEQ-98045						
Sample Identifier: Lab Sample ID: Matrix:	MW 15S 131860-10 Groundwater			-	ed: 5/22/2013 12:45 PM red: 5/22/2013		
trans-1,3-Dio	hloroprop	oene	< 2.00	ug/L	5/25/2013 5:11:00 AM		
Trichloroeth	ene		< 2.00	ug/L	5/25/2013 5:11:00 AM		
Trichlorofluc	Trichlorofluoromethane		< 2.00	ug/L	5/25/2013 5:11:00 AM		
Vinyl chlorid	е		< 2.00	ug/L	5/25/2013 5:11:00 AM		
Method Refere Data F		EPA 624 Modified X05530.D					

Physiched is part of a multipage de control mid should only be grabuited acits anonyo. The Clean of Sustaid, provides, additional sampled diaments in Jaciallide complicates with the sample condition requirements approximents.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"NC" = Non Calculable due to Non Detect Results.

"*" = Quality Control Outlier

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multiplige document and should only be estileated in its entirety. The Charp of Castody provider additional sample information, including compliance with the sample condition requirements up in receipt.

CHAIN C REPORT TO: COMPANY: CITY OF ROCHESTER COMPANY: CITY OF ROCHESTER Sochester, NV 14608 COMPANY: CITY OF ROCHESTER COMPANY: CITY OF ROCHESTER COMPANY: CITY OF ROCHESTER COMPANY: CITY OF ROCHESTER COMPANY Rochester, NV 14608 CITY: ROCHESTER STATE: NY IP: 14614 CITY: ROCHESTER STATE: NY IP: 14614 CITY: PROJECT NAMESTE NAME: ATTN: DENNIS PECK ATTN: DENNIS PECK M OC OATE I'IME C NOTE TIME COMPAN ATTN: DENNIS PECK M N OC ATTN: DENNIS PECK M N ATTME Contester.gov ATTME ATTN: DENNIS PECK M ATTME ATTM ATTM: DENNIS <th></th> <th>DE HATBE REQUESTED ANALYSIS FAX:</th>		DE HATBE REQUESTED ANALYSIS FAX:
	LAB PROJECT #: /3/8 (C C) TURNAROUND TIME: 1 2	

PARADIGM	<u>Chain of Custody Supplement</u>						
Client:	City of Rochester- 131860	Completed by:	EAH				
Lab Project ID:	131860	Date:	5/22				
	Sample Condition Per NELAC/ELAP 210/2						
Condition	NELAC compliance with the sample con Yes	ndition requirements upon No	n receipt N/A				
Container Type Comments							
Transferred to method- compliant container							
Headspace (<1 mL) Comments							
Preservation Comments							
Chlorine Absent (<0.10 ppm per test strip) Comments	CI: PUT						
Holding Time Comments							
l'emperature Comments	Incided - pres.	begun in fie					
Sufficient Sample Quantity Comments							

2 of 2

Attachment #4

FEE PROPOSAL AND CHANGE IN SCOPE OF SERVICES REQUEST FORM

To be completed by consultant for Phase II, Industrial and Hazardous Waste, System Operation and Maintenance, and Laboratory services.

UNDERSTANDIN	CRIPTION OF PROJECT NG, BACKGROUND,		
Date of Proposal:	ND SCOPE OF WORK July 3, 2013	Consultant Name	: <u>Day Environmental, Inc.</u>
Agreement No.:	<u>123243</u>	DEQ Project #:	
Site Location:	Rochester Fire Academy	Acreage:	Approximately 18 Acres

Scope of Services

3.

In response to a City of Rochester (City) Request for Professional Services and Proposal dated July 1, 2013, Day Environmental, Inc. (DAY) is submitting this proposal to the City for various professional services at the Rochester Fire Academy Site located at 1190 Scottsville Road, Rochester, New York (Site). The services to be provided are presented in the tasks outlined below.

Task 1.0 Geographical Information System (GIS)

The purpose of this task is to develop GIS files for use in the City's GIS database, for evaluation of investigation findings, and for possible future modeling applications, such as development of potentiometric groundwater contour maps, identification of areas of contaminated media, and development of contaminated media volumes with respect to standards, criteria, and guidance values that apply to this specific Site. The scope of services proposed by DAY is outlined below.

- 1. Prepare for and attend up to three meetings with representatives of the City. Assumes up to two meetings to obtain data for input into GIS, and one meeting to present the electronic GIS deliverables.
- 2. Although not anticipated, this task includes budget to use GPS in the field for up to two days to collect additional location information as deemed necessary by the City.
 - Create a geo-database in GIS using the following data and information provided by the City:
 - a. Site boundaries, features, aerial photographs, and environmental test location files. DAY will take existing GIS data provided by the City and organize these items into a geo-database. The geo-database will centralize GIS data and imagery.
 - b. Historic drawings and aerial imagery from previous projects conducted on the Site. This proposal assumes the City will provide the drawings in electronic format (e.g., PDF, JPEG). Each drawing pertinent to the Site will be geo-referenced to the GIS Site plan. Overlaying each drawing with the existing Site features will allow for a better understanding of where previous structures existed on the Site. This information can be used to plan future test locations and gain understanding of potential sources of contamination that exist at the Site.
 - c. Upon completion of the geo-referencing; the features of each drawing will be converted into GIS shapefiles. Such features would include previous sample locations, structures, areas of concern, contamination plumes, etc.

Task 2.0 Groundwater Treatment Plant Upgrades

The purpose of this task is to upgrade the existing groundwater treatment system to improve system operations and reliability, and reduce operational labor requirements. The existing system has been experiencing increasingly frequent and/or prolonged service outages, and a recently completed engineering evaluation upon the system identified various deficiencies in equipment, operations and controls.

The following scope of work is proposed by DAY to address the identified deficiencies and minimize the potential for tank overflows, system outages, and/or other remedial program/regulatory agency program issues:

- 1. Expand the PLC control system to enable complete, centralized control of the water treatment system operations. This will include:
 - a. Rewiring of four pump control panels;
 - b. Installation of control wiring and terminations to connect four pump control panels and facility flow and level instrumentation to the existing PLC cabinet;
 - c. Installation of redundant level controls to provide a safeguard against tank overflows in the event of primary level control failure;
 - d. PLC upgrade (I/O cards) as needed to accommodate the new inputs and outputs identified above;
 - e. PLC programming to provide centralized control;
 - f. Installation of new HMI interface panel to enable the on-site system operator to view systems status (tank levels, pump operations and run time, flow rates, system alarms, etc.);
 - g. Installation of internet access and HMI panel tie-in to enable remote monitoring of treatment system status.
 - 2. Upgrade and replace up to three system transfer pumps that are inadequately sized and/or are otherwise not suited for use in their current application.
 - 3. Provide upgrades to piping and valves as needed for system operations and pump access.
 - 4. Start-up and testing of system modifications identified above.
 - 5. Operator training, troubleshooting and follow-up operations support (up to 8 hours per month of on-site support for a period of up to 6 months).
 - 6. Associated project management, meetings with client, etc.
 - 7. Contingency funding of 10% is included to cover additional (out-of-scope) expenses that may be incurred during completion of the groundwater treatment system upgrade, including upgrade of unlisted item(s) that may be warranted due to identification of additional minor deficiencies that occur during completion of the work identified above. Additional funding will be required for any out-of-scope items that exceed this contingency amount.

Task 3.0 Periodic Review Report

The purpose of this task is to complete the Periodic Review Report (PRR) required by the New York State Department of Environmental Conservation (NYSDEC) for ongoing remedial program operations at the Site. A PRR has not been previously prepared or submitted for the Site, and as such, this initial PRR will cover the period from start-up to current operations.

The following scope of work is proposed by DAY to complete this report, and to provide a shell for future PRR submittals for this Site:

- 1. Prepare a draft PRR in general accordance with NYSDEC DER-10 requirements, with PRR sections to include:
 - a. Identification, assessment and certification of the ECs/ICs required by the remedy for the Site;
 - b. Results of required Site inspections and completed Site inspection forms;
 - c. An overall site evaluation, which includes the following:
 - d. The compliance of the remedy with respect to the requirements of the Site-specific Record of Decision (ROD);
 - e. The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - f. Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;

- g. Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and the overall performance and effectiveness of the remedy.
- h. A performance summary for all treatment systems at the Site during the calendar year, including information such as:
- i. The number of days the system was run for the reporting period;
- j. The average, high, and low flow rates;
- k. An estimate of the contaminant mass removed;
- 1. A description of breakdowns and/or repairs along with an explanation for any significant downtime;
- m. A description of the resolution of performance problems;
- n. A summary of the performance, effluent and/or effectiveness monitoring; and
- o. Comments, conclusions, and recommendations based on data evaluation.
- 2. A summary of discharge monitoring data and/or information generated during the reporting period with comments and conclusions (City to provide data summary tables);
- 3. Data summary tables for 2006 to present, which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted (City to provide these data tables for all applicable monitoring completed over the reporting period, including groundwater/monitoring well data and treatment system influent and effluent monitoring data);
- 4. Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period (City to provide PDF copies of laboratory analytical reports it is assumed that submittal of data in EQUIIS format will not be required);
- 5. Submit a draft electronic copy (PDF) of the PRR to the City for review and comment, and subsequently submit the PRR to the City and the NYSDEC.
- 6. Complete revisions to the PRR as needed based on City and/or NYSDEC comments.
- 7. Provide up to three hard-copies and one electronic Copy (PDF) of a final PRR, signed and sealed by a New York State licensed professional engineer, for submittal to NYSDEC and/or placement in local repository, as needed.
- 8. Provide follow-up assistance to the City for implementation of recommendations for changes to the Site monitoring plan and/or remedial plan, including Site documentation changes, development/revision of inspection forms, etc. (up to 16 hours of time is allotted for this).
- 9. Associated project management, meetings with client, etc.
- 10. Contingency funding of 10% is included to cover additional (out-of-scope) expenses that are incurred during completion of the PRR preparation, including compliance issues that may be identified during completion of the IC/EC certifications, and/or other Site review and evaluation activities. Additional funding will be required for any out-of-scope services that exceed this contingency amount.

Attachment #5

Rochester Fire Academy (RFA) Schedule 2013

TASK	March-13	April-13	May-13	June-13	July-13	August-13	September-13	October-13
Retrieve and Review RFA As Built Drawings and OM&M Volume I and II								
Solicit and Execute Proposal with Environmental Consultant								
Submit Monthly Progress Reports								
Initiate Preliminary Evaluation of Groundwater Treatment Plant Condition and Maintenance								
Initiate Preliminary Groundwater Treatment Plant Maintenance and Repairs								
Resume Manual Start-Up of Groundwater Treatment Plant								
Review and Inspect RFA Engineering Controls (e.g., Cover, Drainage. Etc.)								
Review RFA Instituational Controls								
Develop Compliance Plan with Recommendations for Groundwater Plant Repairs and Upgrades								
Complete RFA Semi-Annual Groundwater Monitoring Well Sampling								
Solicit Proposal from Environmental Consultant for Additional Maintenace and Repairs								
Initiate Additional Groundwater Treatment Plant Maintenance and Repairs and Operate Plant in Automated Mode								
Complete and Submit RFA PRR and Certifciation of Engineering and Institutional Controls								
Address Comments from NYSDEC								