SURFACE WATER AND GROUNDWATER MONITORING PROGRAM FALL 2001 MONITORING REPORT

ARCH CHEMICALS
ROCHESTER PLANT SITE
ROCHESTER, NEW YORK

ARCH CHEMICALS, INC.
CHARLESTON, TENNESSEE

February 2002

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM FALL 2001 MONITORING REPORT

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

Prepared by

HARDING ESE, INC. Portland, Maine

for

ARCH CHEMICALS, INC. Charleston, Tennessee

February 2002

This document was prepared for the sole use of Arch Chemicals, Inc., the only intended beneficiary(ies) of our work. No other party shall rely on the information contained herein without prior written consent of Harding ESE.

This document meets standards prescribed in project planning documents and has been properly reviewed by qualified professionals.

Nelson M. Breton, C.G.

Project Geologist

Øeffréy E. Brandow, P.E. Quality Control Reviewer

TABLE OF CONTENTS

			<u>Page</u>						
Execu	itive Su	ımmary	1						
1.0	Introd	luction	2						
2.0	Sample Collection and Analysis								
	2.1	2.1 Groundwater							
	2.2	Surface Water							
	2.3	Analytical Procedures							
	2.4	Quality Control							
	Analy	Analytical Results							
	3.1	Groundwater	4						
		3.1.1 Chloropyridines	4						
		3.1.2 Selected VOCs	5						
	3.2	Surface Water	5						
		3.2.1 Quarry	5						
		3.2.2 Barge Canal	6						
4.0	Extraction System Performance and Maintenance								
5.0	Other	Issues	6						
6.0	2.4 Quality Control Analytical Results 3.1 Groundwater 3.1.1 Chloropyridines 3.1.2 Selected VOCs 3.2 Surface Water 3.2.1 Quarry 3.2.2 Barge Canal Extraction System Performance and Maintenance								

APPENDICES

Appendix A	Groundwater Field Sampling Data Sheets

Appendix B Well Trend Data

LIST OF FIGURES

Figure 1	Off-Site Groundwater Monitoring Well Locations
Figure 2	On-Site Monitoring Well Locations
Figure 3	November 2001, Overburden Groundwater Interpreted Piezometric Contours
Figure 4	November 2001, Bedrock Groundwater Interpreted Piezometric Contours
Figure 5	November 2001, Deep Bedrock Groundwater Interpreted Piezometric Contours
Figure 6	Sample Locations - Erie Barge Canal
Figure 7	Sample Locations - Dolomite Products Quarry
Figure 8	November 2001, Selected Chloropyridine Concentration Contours for Groundwater
Figure 9	November 2001, Selected Volatile Organic Compound Concentration Contours for Groundwater

LIST OF TABLES

Table 1	Fall 2001 Sampling and Analytical Program
Table 2	Fall 2001 Groundwater Monitoring Results - Chloropyridines
Table 3	Fall 2001 Groundwater Monitoring Results - Volatile Organic Compounds
Table 4	Comparison of Fall 2001 Chloropyridines and Volatile Organic Concentrations in Groundwater to Previous Results
Table 5	Fall 2001 Canal/Quarry Monitoring Results
Table 6	Extraction Well Weekly Flow Measurements – July 2001 through December 2001
Table 7	Mass Removal Summary, Period: 6/2/01 – 11/30/01
Table 8	2001/2002 Sampling Schedule

EXECUTIVE SUMMARY

This monitoring report presents the results of an on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility. Results in this report include surface and groundwater samples collected from November 28, 2001 through December 4, 2001.

During this monitoring event, samples from a total of 22 groundwater monitoring or pumping wells and three locations associated with the Dolomite Products Quarry seep and outfall were collected and analyzed by Severn Trent Laboratories in Amherst, New York. Sixteen of the 22 groundwater samples were collected in accordance with the revised semiannual monitoring schedule which was agreed to by Arch Chemicals and the New York State Department of Environmental Conservation (NYSDEC) in October 2001. In addition, at the request of NYSDEC, five overburden wells (B-1, B-2, W-2, W-3, and W-4) located along the facility's western boundary were sampled to re-examine concentrations downgradient of the former Lab Sample Disposal Area, and one new offsite bedrock well (MW-16), at the former General Circuits Site, was sampled to further evaluate the possible presence of chloropyridines. Chloropyridines were suspected to be present in the General Circuits well based on findings from prior investigations that were completed by the former property owner.

Groundwater analytical results were compared with previous average concentrations from selected on-site and off-site wells. On-site wells continue to show significant shifts in concentration that are believed to be in response to increased extraction well pumping rates over the past twelve months. Off-site wells located immediately southwest of the facility show increases in chloropyridine concentrations, which are believed to be the result of off-site migration prior to the recent improvements in extraction system performance. Arch expects these levels to start to decrease in future monitoring events.

The analytical results from the additional wells along the western plant boundary generally showed low to non-detectable levels of site-related contaminants, consistent with previous interpretations of the distribution of VOCs and pyridines. These results do not suggest the presence of undetected source areas in the northern portion of the plant.

Two chloropyridine isomers (2-chloropyridine [150 ug/L], and 2,6-dichloropyridine [9 ug/L]) along with p-fluoroaniline (18 ug/L) were detected at the former General Circuits Site well (MW-16). The detection of chloropyridines in bedrock groundwater east of the Arch plant confirms that historical migration of site-related contaminants occurred in that direction. Operation of the current groundwater extraction system is believed to be preventing further migration to the east. Additional monitoring east and southeast of the Arch plant may be warranted to confirm that migration is no longer occurring.

1.0 INTRODUCTION

In accordance with the Order on Consent executed between Olin Corporation and New York State Department of Environmental Conservation (NYSDEC), effective August 23, 1993 and transferred to Arch Chemicals, Inc. (Arch) on February 15, 1999, Arch has been completing a Remedial Investigation and Feasibility Study at its facility on McKee Road in Rochester, New York. As part of this program, Arch conducts regular monitoring events consisting of sampling and chemical analysis of groundwater and surface water in the vicinity of the Rochester facility.

In October 2001, Arch and NYSDEC agreed to a revised monitoring schedule for the Fall 2001 and calendar year 2002 sampling events. In accordance with that schedule, a total of twenty-five groundwater, surface water, and seep samples were collected from off-site and on-site locations from November 28, 2001 through December 4, 2001 for analysis of selected chloropyridines and volatile organic compounds (VOCs). This report has been prepared to present the results of the Fall 2001 monitoring event.

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 GROUNDWATER

Groundwater samples were collected from off-site wells, on-site wells and piezometers for analysis of selected chloropyridines (2-chloropyridine, 2,6-dichloropyridine, 3-chloropyridine, 4-chloropyridine, pyridine, and p-fluoroaniline) and target compound list (TCL) VOCs. Samples were collected by Severn Trent Laboratories and transported to their laboratory in Amherst, New York for analysis. The off-site and on-site locations of these sampling points are shown in Figures 1 and 2, respectively. Table 1 lists the wells that were sampled and the requested analyses. Groundwater sampling data sheets are provided in Appendix A.

Groundwater was collected with the low flow/low stress purging technique from most of the wells using bladder or peristaltic pumps. Samples from pumping wells (BR-5A, BR-6A, BR-9, PW10, PW11, and PW12) were collected from the discharge lines.

Groundwater piezometric elevations were measured on November 29, 2001. Piezometric contour maps were constructed for each water-bearing zone (overburden, bedrock, and deep bedrock) and are presented in Figures 3, 4, and 5.

2.2 SURFACE WATER

Surface water and quarry samples were collected as part of the on-going monitoring program for the Arch Rochester site. The location of the quarry and its outfall in relation to the site is shown on Figure 6. Samples of the quarry seep, the quarry outfall, and the Barge Canal were collected by Severn Trent Laboratories on December 3, 2001 for selected chloropyridine and TCL VOCs analysis. The three locations sampled during this event are listed below and are shown on Figure 7.

2.3 ANALYTICAL PROCEDURES

The analytical procedures, data review findings, and validated data for the Fall 2001 groundwater monitoring event are discussed in the following paragraphs.

Groundwater samples were analyzed for the Arch suite of selected chloropyridines and TCL VOCs by USEPA SW-846 Methods 8270C and 8260B, respectively. The reporting limits for the chloropyridines and VOCs are 10 micrograms per liter (μ g/L) and 5 to 25 μ g/L, respectively, for undiluted samples.

2.4 QUALITY CONTROL

All laboratory analytical results were reviewed and qualified following USEPA Region II modifications to "Laboratory Data Validation Functional Guidelines for Validating Organic Analyses" (USEPA, 9/1994). The following summarizes the chemistry review findings in accordance with these guidelines.

Sample results were reviewed for holding time compliance, surrogate standard recoveries, blank contamination, matrix spike blank/matrix spike blank duplicate (MSB/MSBD), and matrix spike/matrix spike duplicate (MS/MSD) accuracy and precision.

Based on the information provided by the laboratory, the overall data quality for both VOCs and the selected pyridine analysis appears to be good and all results are deemed usable. Results reported for both analyses are a compilation of results from several analytical runs to best represent the most usable data for a given compound.

Analytical holding times were met for all samples and surrogate percent recoveries were within QC limits for all undiluted analyses. Several samples were associated with MS/MSD with percent recoveries and relative percent differences (RPDs) outside QC limits. Chemist review findings and qualifying statements are described below:

- MS/MSD SVOC analyses was performed using sample BR-105.
 Chloropyridine and 2,6-dichloropyridine were above percent recovery control limits and were qualified estimated (J) in the un-spiked and duplicate sample.
- The result for 3-chloropyridine for PW-10 was reported from a lower dilution that exceeded the instrument calibration range, therefore, this compound result was qualified as estimated (J).
- Trichloroethene was qualified as not detected in sample PZ-107 (5.33 U μg/L) due to method blank contamination.

3.0 ANALYTICAL RESULTS

3.1 GROUNDWATER

The validated results from the November 2001 groundwater monitoring event are provided in Tables 2 and 3. Table 4 provides a comparison of the Fall 2001 analytical results for selected chloropyridines and VOCs in representative wells to mean concentrations since 1997 (March 1997 through May 2001). Long term trends for both selected chloropyridines and VOCs are also presented as time-series plots for representative wells in Appendix B. A summary of the analytical findings is presented below by parameter class.

3.1.1 Chloropyridines

<u>On-Site.</u> With the exception of well W-2, chloropyridines were detected above sample quantitation limits in groundwater samples from all the on-site wells. Concentrations of chloropyridines ranged from estimated low-level micrograms per liter (μg/L) to 61,000 μg/L (sum of all chloropyridine isomer concentrations). Pumping wells BR-5A, BR-6A, BR-7A, and PW12 along with monitoring well PZ-107 show selected chloropyridines concentrations above the mean for the prior monitoring events.

<u>Off-Site.</u> One or more of the chloropyridine isomers were detected above sample quantitation limits in each of the nine off-site wells that were sampled. Concentrations of total selected chloropyridines detected ranged from estimated low-level micrograms per liter (μ g/L) to approximately 58,000 μ g/L (PZ-103). Eight of these wells contained total chloropyridines concentrations in exceedance of their 5-year mean.

Concentration Contours. Chloropyridine distribution in groundwater is shown as a set of concentration contours on Figure 8. The drawing has been enlarged relative to prior submittals to include MW-16 at the former General Circuits Site. The contours were developed using data from both overburden and bedrock monitoring wells. As shown on Figure 8, total chloropyridine concentrations exceeding 10,000 μg/L are present in on-site wells and in off-site wells (PZ-102, PZ-103, and BR-106/MW-106) located west of the Site. In addition, based on the detection of chloropyridines in MW-16 due east of the site, Figure 8 shows an updated distribution pattern in which chloropyridines are intepreted to have migrated eastward in bedrock groundwater. Previous investigations (Phase I RI) in this direction were limited to overburden groundwater.

The rise in chloropyridine concentrations in on-site pumping wells may be attributed to unusually low water level conditions. During periods of low water, the capture zones for pumping wells expand outward and may draw in additional amounts of chloropyridines. This phenomenon may also have been enhanced by the fact that pumping rates were dramatically increased and incidences of pump outages were decreased beginning in April 2000.

Increases in chloropyridine concentrations in off-site wells along the western boundary are likely the result of lower pumping rates during 1999 and 2000. Based on groundwater travel times estimated from data collected during the Remedial Investigation, contaminants that may have migrated beyond the facility boundary during 1999-2000 (which is also prior to the installation and start-up of pumping well PW-11) would potentially be reaching the off-site wells at the present time. With the improved configuration and operation of the

groundwater extraction system implemented in 2001, Arch anticipates that concentrations in these off-site wells will begin falling in future monitoring events.

3.1.2 Selected VOCs.

<u>On-Site.</u> Concentrations of VOCs ranged from not detected to 40,000 μg/L for several site-related contaminants (carbon tetrachloride, chloroform, methylene chloride, tetrachloroethene, and trichloroethene). Three (PW11, BR-5A, and PW12) of the eight wells, sampled in November 2001 and tracked from March 1997 to May 2001, show VOC concentrations greater than the 5-year mean for the prior monitoring events. Pumping well PW11, which has been sampled only twice before November 2001, showed first ever detections of chloroform (1,300 ug/L), methylene chloride (32 ug/L), and trichloroethene (1.6 ug/L). Other notable constituents detected in PW11 that have been detected previously are 1,2-dichloroethene (260 ug/L) and vinyl chloride (130 ug/L). Chlorobenzene was also detected in all eight on-site wells at concentrations up to 900 ug/L (PW12).

Off-Site. Selected VOCs were not detected in any of the 10 off-site wells sampled in November 2001. Among the other VOCs, chlorobenzene was detected at the highest frequency (8 of 10) and concentration (up to 4,000 ug/L in MW-106) in off site wells. Although chlorobenzene appears to be significant in wells on and near the Site, concentrations in wells located more than 200 feet from the site boundary have not exceeded 8 ug/L within the last 5 years.

<u>Concentration Contours</u>. Selected VOCs distribution in groundwater is shown as a set of concentration contours on Figure 9. These contours were developed using both overburden and bedrock groundwater data. Concentrations and the distribution of VOCs resemble those from recent prior sampling events.

3.2 SURFACE WATER

Results from the Fall 2001 canal and quarry monitoring event are presented in Table 5.

3.2.1 Quarry

For samples collected from the Dolomite products quarry seep (QS-4) and discharge outfall (QO-2) the following chloropyridines and VOCs were detected:

	LOCATION	QO-2	QS-4
PARAMETER ¹			
2,6-Dichloropyridine		ND	90
2-Chloropyridine		3 J	320
Acetone		4 J	ND
Benzene		1.4 J	ND
Toluene		1.7 J	ND

Notes:

- J = The positive result reported for this analyte is a quantitative estimate (below sample quantitation limit, but above method detection limit).
 - = Concentrations reported in micrograms per liter (µg/L)

All chloropyridine concentrations are below historical average concentrations.

3.2.2 Barge Canal

Neither chloropyridines nor VOCs were detected in QO-2S1, the only sample collected from the Erie Barge Canal.

4.0 EXTRACTION SYSTEM PERFORMANCE AND MAINTENANCE

The continuing efforts to improve operation of the groundwater extraction system were apparent in the second half of calendar year 2001. Table 6 is a summary of the system flow measurements for the seven extraction wells from July through December 2001. The total volume pumped during the six-month period is approximately 56 percent greater than in the prior six months. Maintenance activities during the period included pump replacements in wells BR-5A, BR-6A, and BR-7A, and meter replacements at wells BR-5A, BR-7A, PW-10, and PW-12.

Substantial contaminant mass removal was also observed during the period. Table 7 provides a calculation of mass removal rates since the previous groundwater monitoring event (i.e., June 2001 through November 2001). Arch estimates that approximately 200 pounds of target VOCs and 1,100 pounds of pyridine compounds were removed by the groundwater extraction system and treated by the plant's activated carbon adsorption units over that time period.

5.0 OTHER ISSUES

At NYSDEC's request, Arch sampled several additional overburden wells along the northwestern facility property boundary during this sampling event. These wells included: B-1, B-2, W-2, W-3, and W-4. The analytical results from these wells are consistent with previous interpretations of the distribution of VOCs and pyridines. The data do not suggest the presence of undetected source areas in the northern portion of the plant, and Arch does not recommend any changes in the current monitoring program in this area.

The detection of chloropyridines in bedrock groundwater at the former General Circuits facility east of the Arch plant confirms that historical migration of site-related contaminants occurred in that direction. Operation of the current groundwater extraction system is believed to be preventing further migration to the east. Arch and NYSDEC should discuss the need for modifications to the monitoring program to confirm that this historical migration pathway has been cut off.

Arch has previously suggested the installation of an overburden groundwater cutoff trench along the southeastern property boundary of the facility to ensure that off-site migration in the overburden in this area is controlled. The water level measurements collected in November 2001 indicate there is now only about five or six feet of saturated thickness in the overburden soils along the proposed alignment of the trench. If this trend continues, the proposed trench may become unnecessary.

6.0 NEXT MONITORING EVENT

The next monitoring event will occur in May 2002 and will include groundwater, surface water, and seep sampling.

Table 8 shows the current monitoring program for the Arch Rochester site.

TABLE 1 FALL 2001 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM

ARCH CHEMICALS, INC **ROCHESTER, NEW YORK**

		ANALYSI	S PYRIDINES1	VOCs ²
SITE / AREA	WELL	DATE		_
AID TO HOSPITALS	BR-106	11/30/01	X	X
	MW-106	11/30/01	X	X
	PZ-101	11/29/01	X	X
	PZ-102	11/30/01	X	X
	PZ-103	11/30/01	X	X
AMERICAN RECYCLE MANUF. (58 MCKEE ROAD)	PZ-104	11/30/01	×	Х
ARCH ROCHESTER	B-1	11/28/01	X	X
	B-2	11/28/01	X	X
	BR-5A	11/30/01	X	X_
	BR-6A	11/30/01	X	Х
	BR-7A	12/3/01	X	X
	BR-9	11/30/01	X	X
	PW10	11/30/01	X	X
	PW11	12/4/01	X	<u> </u>
	PW12_	11/30/01	X	X
	PZ-107	11/30/01	X	X
	W-2	11/29/01	Х	X
	W-3	11/29/01	X	X
	W-4	11/29/01	X	X
DOLOMITE PRODUCTS, INC.	QS-4	12/3/01	X	X
ERIE BARGE CANAL (surface	QO-2	12/3/01	X	X
water)	QO-2S1	12/3/01	X	
FORMER GENERAL CIRCUITS	MW-16	11/30/01	X	
RG & E RIGHT OF WAY	BR-105	11/30/01	X	X
	BR-105D	11/30/01	X	X
Totals			25	24

¹⁾ Pyridines analysis by USEPA SW-846 Method 8270C. 2) VOCs analysis by USEPA SW-846 Method 8260B.

TABLE 2 FALL 2001 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-1	B-2	BR-105	BR-105D	BR-106	BR-5A	BR-6A
SAMPLE DATE:	11/28/01	11/28/01	11/30/01	11/30/01	11/30/01	11/30/01	11/30/01
BY SW-846 Method 8270C (µg/L)							
2,6-Dichloropyridine	4] J	67	530 J	150 J	4,400	56	5,600
2-Chloropyridine	2 J	72	3,700 J	4,200	20,000	140	44,000
3-Chloropyridine	9 U	9 U	500 U	500 U	500 U	9 U	1,200
4-Chloropyridine	9 U	9 U	500 U	500 U	500 U	9 U	1,000 U
p-Fluoroaniline	9 U	16	500 U	500 U	170 J	41	1,000 U
Pyridine	23 U	23 U	1,200 U	1,200 U	1,200 U	_ 23 U	5,500

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 2 FALL 2001 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-7A	BR-9	MW-106	MW-16	PW10	PW11	PW12	PZ-101
SAMPLE DATE:	12/3/01	11/30/01	11/30/01	11/30/01	11/30/01	12/4/01	11/30/01	11/29/01
BY SW-846 Method 8270C (μg/L)		_						
2,6-Dichloropyridine	12,000	51	6,400	9	7,900	260	1,500	330
2-Chloropyridine	49,000	160	26,000	150	47,000	1,000	2,900	5,000
3-Chloropyridine	1,000 U	10 U	500 U	9 U	1,400 J	250 U	78 J	13 J
4-Chloropyridine	1,000 U	10 U	500 U	9 U	130	250 U	160 U	50 U
p-Fluoroaniline	240 J_	6 J	240 J	18	51	250 U	550	110
Pyridine	2,500 U	24 Ū	1,200 U	23 U	2,500 J	620 Ú	190 J	120 U

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 2 FALL 2001 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-102	PZ-103	PZ-104	PZ-107	W-2	W-3	W-4
SAMPLE DATE:	11/30/01	11/30/01	11/30/01	11/30/01	11/29/01	11/29/01	11/29/01
BY SW-846 Method 8270C (µg/L)						T	
2,6-Dichloropyridine	1,700	13,000	670	690	190 U	9 <u> </u> U_	30
2-Chloropyridine	11,000	44,000	7,800	1,700	190 U	10	16
3-Chloropyridine	200 U	300 J	160	U 120	190 U	9 U	9 U
4-Chloropyridine	200 U	1,000 U	160	U 100	U 190 U	9 U	9 U
p-Fluoroaniline	140 J	340 J	23	J 100	U 190 U	9 U	9 U
Pyridine	500[U	2,500 U	400	U 250	U 470 U	6 J	23 U

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 3 FALL 2001 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

	LOCATION:	B-1	B-2	BR-105	BR-105D	BR-106	BR-5A	BR-6A	BR-7A	BR-9	MW-106	PW10
	SAMPLE DATE:	11/28/01	11/28/01	11/30/01	11/30/01	11/30/01	11/30/01	11/30/01	12/3/01	11/30/01	11/30/01	11/30/01
VOLATILE ORGANIC COMPOUNDS												-
BY SW-846 Method 8260/5ML (µg/L)					[]							
1,1,1-Trichloroethane		5 Ü	5 U	5 U	5 U	5 U	5 U	200 U	20 U	4 J	100 U	500 U
1,1,2,2-Tetrachioroethane		5 U	5 U	5 U	5 U	5 U	5 U	200 U	20 U	5 U	100 U	500 U
1,1,2-Trichloroethane		5 U	5 U	5 U	5 U	5 U	_ 5 U	200 U	20 U	5 U	100 U	500 U
1,1-Dichloroethane		5 U	5 U	5 U	10	5 U	5 U	200 U	15 J	16	100 U	500 U
1,1-Dichloroethene		5 U	5 U	5 U	5 U_	5 U	5 U	200 U	20 U	3 J	100 U	500 U
1,2-Dichloroethane		5 U	5 U	_ 5 U	5 U	5 U	5 U	200 ⊔	20 U	5 U	100 U	500 U
1,2-Dichloroethene (total)		1 J	8	5 U	2 J	2 J	17	200 U	170	640	21 J	130 J
1,2-Dichloropropane		5 U	5 U	5 U	5U	5 U	5 U	200 U	20 U	5 U	100 U	500 U
2-Butanone		10 U	400 U	40 U	10 U	200 U	1,000 U					
2-Hexanone		10 U	400 U	40 U	10 U	200 U	1,000 ປ					
4-Methyl-2-pentanone		10 U	400 U	40 U	10 U	200 U	1,000 U					
Acetone		25 U	25 U	25 U	25 U	2 J	25 U	1,000 U	100 U	25 U	500 U	2,500 U
Benzene		5 U_	2 J	5 J	7	40	12	200 U	64	100	520	500 ป
Bromodichloromethane		5 U	5 U	5 U	5 U	5 U	5 U	200 U	20 U	5 U	100 U	500 U
Bromoform		5 U	5 U	_ 5 U	5 U	5U	5 U	200 U	20 U	5 U	100 U	340 J
Bromomethane		10 U	400 U	40 U	10 U	200 U	1,000 U					
Carbon disulfide		5 U	5 U	5 U	2 J	3 J	5 U	580	20 U	5 U	100 U	360 J
Carbon tetrachloride		5 U	5 U	5 U	5 U	5 U	5 Ü	780	16 J	5 J	100 U	2,900
Chlorobenzene		5 U	2.1 J	20	5 U	350	12	45 J	530	17	4000	190 J
Chloroethane		10 U	400 U	40 U	10 U	200 U	1,000 U					
Chloroform		5 U	5 U	5 U	5 U	5 U	29	3,800	110	6	100 U	36,000
Chloromethane		10 U	400 U	40 U	10 U	200 U	1,000 U					
cis-1,3-Dichloropropene		5 U	5 U	5 U	5 U	5 U	5 U	200 U	20 U	5 U	100 U	500 U
Dibromochloromethane		5 U	5 U	5 U	5 U	5 U	5 U	200 U	20 U	5 U	100 U	500 U
Ethylbenzene		5 U	5 U	5 U	5 ป	5 U	5 U	200 U	5 J	18	100 U	500 U
Methylene chloride		5 U	5 U	5 U	5 U	5 U	40	310	40	5 U	100 U	820
Styrene		5 U	5 U	5 U	5 U	5 U	5 U	200 U	20 U	5 U	100 U	500 U
Tetrachioroethene		5 U	1 J	5 U	5 U	5 U	5 U	220	8 J	5 U	100 U	380 J
Toluene		5 U	5 U	5 U	5 U	5	9	130 J	30	11	68 J	220 J
Total Xylenes		15 U	15 U	15 U	15 U	1 J	15 U	600 U	60 U	5 J	300 U	1,500 U
trans-1,3-Dichloropropene		5 U	5 U	5 U	5 Ū	_ 5 U	5 U	200 U	20 U	5 U	100 U	500 U
Trichloroethene		5 U	1 J	5 U	5 U	5 U	75	200 U	20 U	4 J	100 U	500 U
Vinyl acetate		10 U	400 U	40 U	10 U	200 U	1,000 U					
Vinyl chloride		4 J	2 J	5 U	5 U	5 U	7	200 U	140	470	100 U	120 J

Notes:

J = Estimated value.

U = Compound not detected; value represents sample quantitation limit.

TABLE 3 FALL 2001 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

	LOCATION:	PW11	PW12	PZ-101	PZ-102	PZ-103	PZ-104	PZ-107	W-2	W-3	W-4
	SAMPLE DATE:	12/4/01	11/30/01	11/29/01	11/30/01	11/30/01	11/30/01	11/30/01	11/29/01	11/29/01	11/29/01
VOLATILE ORGANIC COMPOUNDS											
BY SW-846 Method 8260/5ML (µg/L)											
1,1,1-Trichloroethane		2 J	120 U	_ 5 U	10 U	40 U	_ 5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane		5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane		5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane		10	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	3 J
1,1-Dichloroethene		5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane		5 U	120 U	1 J	10 U	40 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethene (total)		260	120 U	5 U	10 U	10 J	5 U	6	5 U	5 U	99
1,2-Dichloropropane		5 U	120 U	5 U	10 U	_40 U	5 U	5 U	5 ป	5 U	5 U
2-Butanone		10 U	250 U	10 U	20 U	80 U	10 U				
2-Hexanone		10 U	250 U	10 U	20 U	80 U	10 U				
4-Methyl-2-pentanone		10 U	250 U	10 U	20 U	80 U	10 U				
Acetone		10 J	64 J	25 U	50 U	200 U	25 U	25 U	25 U	25 U	25 U
Benzene		30	270	35	38	73	4 J	3,1	5 U	5 U	1] J
Bromodichloromethane		5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
Bromoform		5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
Bromomethane		10 U	250 U	10 U	20 U	80 U	10 U	10 U	_10 U	10 U	10 U_
Carbon disulfide		5 U	120 U	5 U	10 U	22 J	5 U	5 U	5 U	5 U	5 U
Carbon tetrachloride		_5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene		76	900	150	360	1600	5.3	13	5 U	5 U	5 U
Chloroethane		10 U	250 U	10 U	20 U	80 U	10 U				
Chloroform		1,300	7,700	5 U	10 U	40 U	5 U	5 U	5 U	ธุบ	1 J
Chloromethane	_	10 U	250 U	10 U	20 U	80 U	10 U				
cis-1,3-Dichloropropene		5 U	120 U	5 U	10 U	40 U	5 Ú	_ 5]U	5 U	5 U	5 U
Dibromochloromethane		5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
Ethylbenzene		3 J	54 J	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
Methylene chloride		32	2,700	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
Styrene		5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5U
Tetrachloroethene		5 U	120 U	5 U	10 U	40 U	5 Ū	5 U	5 U	5 U	5 U
Toluene		4 J	1,400	5 U	3 J	160	5 U	1 J	5 U	5 U	5 U
Total Xylenes		15 U	230 J	15 U	30 U	120 U	15 U	15 U	15 U	15 U	15 U
trans-1,3-Dichloropropene		5 U	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene		2 J	120 U	5 U	10 U	40 U	5 U	5 U	5 U	5 U	5 U
Vinyl acetate		10 U	250 U	10 U	20 U	80 U	10 U				
Vinyl chloride		130	120 U	5 U	10 U	40 U	5 U	5	5 U	5 U	19
Notes:											

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 4 COMPARISON OF FALL 2001 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - FALL 2001

WELL		SELECTED CHL	OROPYRIDIN	NES		-	SELECTED VOCs							
	# EVENTS	HISTORIC	5-YEAR	NOV-2001	=<	>	# EVENTS	HISTORIC	5-YEAR	NOV-2001	=<	>		
	(PRIOR 5	MAXIMUM	MEAN	RESULT	MEAN	MEAN	(PRIOR 5	MAXIMUM	MEAN	RESULT	MEAN	MEAN		
	YRS)				OR ND		YRS)				OR ND	'		
ON-SITE WE	LLS/LOCAT	IONS							_					
B-17	6	28,000,000	160,000	NA			6	345,000	81,000	NA				
BR-3	5	6,500,000	170,000	NA			5	600,000	450,000	NA				
BR-5A	8	1,700	150	240		Х	8	9400	55	150		Х		
BR-6A	8	93,000	31,000	56,000		Х	8	26,000	10,000	5,100	Х			
BR-7A	8	510,000	15,000	61,000		Х	8	3000	590	180	Х			
BR-8	8	57,000	10,000	NA			8	6900	1	NA				
BR-9	5	720	600	220	X		5	160	110	17	Х			
E-3	8	600	39	NA			8	12000	120	NA				
PW10*	4	160,000	97,000	59,000	Х		4	120,000	71,000	40,000	Х			
PW11*	2	27,000	15,000	1,300	Х		2	ND	ND	1,300		Х		
PW12	6	11,000	2,500	5,200		Х	6	120,000	7,500	10,000		Х		
PZ-106	6	110,000	12,000	NA			6	960,000	450,000	NA				
PZ-107	6	11,000	1,800	2,500		Х	6	12,000	930	ND	Х			
S-3	4	6,800	5,700	NA			4	260	360	NA				

TABLE 4 COMPARISON OF FALL 2001 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - FALL 2001

WELL		SELECTED CHL	OROPYRIDI	NES	SELECTED VOCs							
	# EVENTS	HISTORIC	5-YEAR	NOV-2001	=<	>	# EVENTS	HISTORIC	5-YEAR	NOV-2001	=<	>
	(PRIOR 5	MAXIMUM	MEAN	RESULT	MEAN	MEAN	(PRIOR 5	MAXIMUM	MEAN	RESULT	MEAN	MEAN
	YRS)	l			OR ND		YRS)				OR ND	
OFF-SITE W	ELLS/LOCA	TIONS		_		<u> </u>						
BR-103	7	400	36	NA			5	1	ND	NA		
BR-104	8	3,100	14	NA			- 6	9	ND	NA		
BR-105	8	24,000	2,700	4,200		Х	6	310	6	ND	Х	
BR-105D	8	10,000	3,300	4,400		Х	6	230	20	ND	Х	
BR-106	8	21,000	8,000	25,000		Х	5	6,300	4	ND	Х	
BR-108	8	1,700	230	NA			5	ND	ND	NA		
BR-112D	8	310	70	NA			3	4	0	NA	Х	
BR-113D	8	490	120	NA			0	3	NA	NA		
BR-114	8	450	160	NA			5	5	5	NA		Х
MW-106	5	130,000	17,000	33,000		Х	5	89	ND	ND	Х	
MW-114	8	18	4	NA			5	11	10	NA		
NESS-E	7	5,000	560	NA			5	700	ND	NA		
NESS-W	7	2,100	550	NA			5	89	0	NA		
PZ-101	5	27,000	1,500	5,500		Х	3	0	ND	ND	Х	
PZ-102	5	58,000	8,200	13,000		Х	3	10,000	ND	ND	Х	
PZ-103	5	73,000	31,000	58,000		Х	3	4,900	ND	ND	Х	
PZ-104	4	9,100	2,700	8,500		Х	3	40	ND	ND	Х	
QS-4	19	3,400	760	410	Х		5	ND	ND	ND	Х	

- 1) Number of samples and mean reflect 5-year sampling period from March 1997 through September 2001. Historic maximum based on all available results from March 1990 through September 2001
- 2) Chloropyridines represented by: 2-Chloropyridine, 2,6-Dichloropyridine, and 3-Chloropyridine, p-Fluoroaniline, and Pyridine.
- 3) Selected VOCs represented by Carbon Tetrachloride, Chloroform, Methylene Chloride, Tetrachloroethene, and Trichloroethene.
- 4) X = Comparison of November 2001 concentration to 5-year mean.
- 5) NA = Not analyzed or not applicable ND = Not detected
- * = PW10 and PW11 were first sampled in January 1999 and May 2000, respectively.

TABLE 5 FALL 2001 CANAL/QUARRY MONITORING RESULTS

ARCH CHEMICAL, INC. ROCHESTER, NEW YORK

WELL / POINT	QO-2		QO-2S1		QS-4	
DATE	12/3/01		12/3/01		12/3/01	٦
VOLATILE ORGANIC COMPOUNDS						٦
BY SW-846 Method 8260/5ML (µg/L)						
1,1,1-Trichloroethane	5	U	5	U	5 U	
1,1,2,2-Tetrachloroethane	5	Ú	5	U	5 U	_
1,1,2-Trichloroethane	5	Ü	5	Ū	5 U	\neg
1,1-Dichloroethane	5	U	5	U	5 U	$\overline{}$
1,1-Dichloroethene	5	U	5	U	5 U	Ī
1,2-Dichloroethane	5	Ū	5	U	5 U	П
1,2-Dichloroethene (total)	5	U	5	U	5 U	J
1,2-Dichloropropane	5	U	5	Ü	5 Ū	
2-Butanone	10	U	10	Ū	10 Ú	ī
2-Hexanone	10	U	10	Ü	10 U	įΠ
4-Methyl-2-pentanone	10	U	10	Ü	10 U	Ī
Acetone	4	Ĵ	25	Ū	25 U	,
Benzene	1.4	J	5	U	5 U	ī
Bromodichloromethane	5	U	5	Ū	5 U	<u> </u>
Bromoform	- 5	U	5	Ü	5 U	_
Bromomethane	10	U	10	U	10 U	<u> </u>
Carbon disulfide	5	U	5	U	5 U	<u> </u>
Carbon tetrachloride	5	Ū	5	Ü	5 U	<u> </u>
Chlorobenzene	5	U	5	Ū	5 U	<u> </u>
Chloroethane	10	Ü	10	U	10 U	<u> </u>
Chloroform	5	υ	5	U	5 Ú	j
Chloromethane	10	U	10	Ū	10 U	ī
cis-1,3-Dichloropropene	5	U	5	U	5 U	ī
Dibromochloromethane	5	Ū	5	U	5 U	ĵ
Ethylbenzene	5	Ü	5	Ü	5 U	Ī
Methylene chloride	5	U	5	U	5 U	ī
Styrene	5	U	5	Ū	5 Ú	<u> </u>
Tetrachloroethene		Ū	5	Ü	5 U	Ī
Toluene	1.7	J	5	υ	5 U	<u>, </u>
Total Xylenes	15	Ū	15	U	15 U	Ī
trans-1,3-Dichloropropene	5	U	5	U	5 U	厂
Trichloroethene	5	U	5	U	5 U	Ī
Vinyl acetate	10	Ü	10	U	10 U	ī
Vinyl chloride	5	U	5	U	5 U	Ţ
SELECTED CHLOROPYRIDINES						
BY SW-846 Method 8270C (µg/L)						
2,6-Dichloropyridine	10	U	9	U	90	
2-Chloropyridine	3	J	9	U	320	
3-Chloropyridine	10	U	9	Ū	40 U	j
4-Chloropyridine	10	Ū	9	Ú	40 U	ī
p-Fluoroaniline	10	U		U	40 U	j
Pyridine	25	U	23	Ü	100 U	j

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

NA = Not analyzed

TABLE 6 EXTRACTION WELL WEEKLY FLOW MEASUREMENTS - JULY 2001 THROUGH DECEMBER 2001

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

Week	BR-5A	BR-6A	BR-7A	- BR-9	PW-10	: PW-11	PW.12	. :: . Total
Ending	[Gal./Wk]	[Gal./Wk]	[Gal:/Wk]	[Gal./Wk]	[Gal,/Wk]	[Gal:/Wk]	[Gál:/Wk]	[Gal./Wk]
July	4044	70.005	70.407	10 105	4.070	04.050	10.505	0.40 507
07/06/01	4,841	78,965	76,137	43,165	1,978	24,956	10,525	240,567
07/13/01	41,178	48,394	84,061	49,682	10,230	25,210	20,860	279,615
07/20/01	44,695	81,541	85,990	53,725	9,750	26,396	9,413	311,510
07/27/01	26,401	61,301	84,223	57,227	7,240	26,337	20,765 Total [Gal.]	283,494 1,115,186
							rotal [Gal.]	1,115,100
August								
08/03/01	72,918	68,848	75,780	63,363	9,260	26,497	23,040	339,706
08/10/01	20,929	40,884	86,217	62,928	6,530	12,848	13,077	243,413
08/17/01	46,083	71,547	81,987	59,701	10,230	26,328	24,500	320,376
08/24/01	37,119	54,670	73,472	62,424	9,820	26,576	40,672	304,753
08/31/01	35,053	39,042	72,193	57,902	9,550	27,914	39,483	281,137
							Total [Gal.]	1,489,385
September								
09/07/01	39,630	55,161	3,951	55,786	9,710	32,022	40,949	237,209
09/14/01	16,886	15,612	56,523	23,718	3,080	10,716	18,172	144,707
09/21/01	1,389	36,803	84,252	52,254	8,810	22,155	23,459	229,122
09/28/01	15,386	55,841	87,429	61,168	9,710	26,294	42,505	298,333
							Total [Gal.]	909,371
October								
10/05/01	398	54,238	59,428	43,184	6,870	18,604	29,369	212,091
10/12/01	57,720	63,952	94,900	65,190	10,060	26,888	46,823	365,533
10/19/01	37,433	54,914	106,901	59,393	8,420	24,471	42,968	334,500
10/26/01	17,020	54,892	102,667	59,515	7,420	25,978	44,926	312,418
	,	• ,,= - =		22,212	.,		Total [Gal.]	1,224,542
								,
November								
11/02/01	26,085	18,060	83,687	50,676	7,520	19,872	40,718	246,618
11/09/01	48,526	10,269	117,886	57,779	7,780	18,461	53,042	313,743
11/16/01	28,127	34,580	90,946	51,660	7,990	21,127	42,405	276,835
11/23/01	14,182	0	82,948	54,715	5,000	11,617	40,137	208,599
11/30/01	34,791	65,313	84,164	55,257	699	15,193	38,246	293,663
							Total [Gal.]	1,339,458
December								
12/07/01	51,145	10	66,240	48,236	326	12,145	39,592	217,694
12/07/01	44,410	79,471	87,365	40,230	752	15,351	39,392 851	228,200
12/21/01	58,709	64,447	96,408	1,700	771	17,759	61	239,855
12/28/01	58,321	50,827	92,321	1,962	711	16,545	1,262	221,949
	,	,		. ,			Total [Gal.]	907,698
						 		

Total 6 Mo.

Removal 879,375 1,259,582 2,118,076 1,252,310 170,217 558,260 747,820 6,985,640

(Gal.)

TABLE 7

MASS REMOVAL SUMMARY PERIOD: 6/2/01 - 11/30/01

ARCH ROCHESTER FALL 2001 GROUNDWATER MONITORING REPORT

Well	Total Vol. Pumped	Avg. VOC	Avg. PYR.	VOCs Removed	PYR. Removed
	(gallons)	Conc. (ppm)	Conc. (ppm)	(pounds)	(pounds)
BR-5A	775,000	0.18	0.235	1.2	1.5
BR-6A	1,350,000	7.55	36.5	85	410
BR-7A	2,134,000	0.22	35.4	4	629
BR-9	1,282,000	0.075	0.345	0.8	3.7
PW-10	179,000	38	30.6	57	46
PW-11	601,000	0.65	2.15	3.3	11
PW-12	763,000	7.4	2.74	47	17.4
Totals:	7,084,000			197.7	1118.7

Note: VOC and pyridine concentrations used in this table are an average of the analytical results from the 2nd quarter 2001 and 4th quarter 2001 sampling events for each well

TABLE 8 2001 / 2002 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

MONTORING PROGRAM	ARCH ROCHESTE	FR				<u> </u>	-	ised				กกอง		
West Zone Area Alexander Alexand	ARCH ROCHESTE	EK.						70 1				002		_
OFF-SITE MM-103 OB KODAK EAST amust monitoring, VOCS & PYPR International monitoring Voca Voc	MONITORING PR	OGRAM			·		-	LL	_	RING		ALL	_	AL
OFF-SITE MW-103 OFF-SITE MW-104 OFF-SITE MW-105 OFF-SITE MW-105 OFF-SITE MW-105 OFF-SITE MW-105 OFF-SITE MW-105 OFF-SITE O							idines	S	idines	ડ	idines	క	idines	ပ္ပ
MONITORING BR-rad BR MODAR EAST annual monitoring VCCs & 9YPR tree monitoring brill		Wel/	zone	area	Recommendation:	Reason:	Py	2	Руг	2	Pyr	8	νд	VOCs
MW-104 SB SUPFALOR DIS SUPFA		MW-103				trend monitoring			1				1	1
BR-105 BR BR-105 BR AID-HGSP BR-105 BR-105	MONITORING					_		1	1	1				1
SR-105 SR esp AD-HOSP Semi-anual monitoring, VOCs & PVR S						ı			1					0
SR-109					J.		١.							0
MW.106 BR AD-HOSP MW.108 BR AD-HOSP MW.108 BR AD-HOSP MW.108 BR AD-HOSP monitoring monitoring Most AD-HOSP monitoring MW.108 BR AD-HOSP monitoring MW.108 BR MW.107 BR.112A BR MW.107 BR.114 BR AD-HOSP monitoring moni						Γ,					1			3
SR - 109					•	Ι,					1.1	l .		3
MW-108 OB						l,						l		3
SR 104 SR AD-HOSP BR-1111 BR deep NYSDOT NYSDOT SR-1130 BR deep CUARRY SR-113						1,	Ι'	,	l '	!	'	ו		3
SR-1110 SR deep NYSDOT no monitoring SR-1120 SR deep NYSDOT no monitoring no monitoring no monitoring NYSDOT no monitoring no						1			۱ ،					o
BR-1110 BR deep NYSDOT monotioning adequate database, minimal impacts ade						_			['					0
BR-1120 BR deep NYSDOT BR 130 BR deep NYSDOT BR-130 BR deep OLARRY BR-130 BR-130 BR deep OLARRY BR-130 BR-130 BR deep OLARRY BR-130 BR-1			_		_									Ö
BR-1120 BR deep NYSDOT BR-1130 BR deep NYSDOT BR-1130 BR deep NYSDOT BR-1140 BR deep JACKSCON BR-1140 BR-													,	ō
BR-1190 BR-196 BR-197					_				1				1 1	0
MW-114		BR-113	BR	NYSDOT	no monitoring	adequate database; minimal impacts	1						0	0
BR-116			BR deep		annual monitoring, PYR		1	1	1				1	0
BR-1161 BR deep PFAUDLER annual montloring, PYR tend montloring tend mon							1	ì	1	1			1	1
BR-119D BR deep PFAUDLER BR-119D BR-119D BR-119D BR-119D BR-119D BR-120D BR-						-	1	1	1	1			1	1
BR-119D														0
BR-119D BR deep QUARRY BR-120D BR deep QUARRY BR-121D BR deep QUARRY Commonitoring BR-121D BR deep QUARRY Commonitoring BR-121D BR deep QUARRY Commonitoring Adequate database; minimal impacts BR-121D BR deep QUARRY Commonitoring Adequate database; minimal impacts BR-121D BR deep QUARRY Commonitoring Adequate database; minimal impacts Commonitoring Co			,		•	-	1	1						0
BR-119D BR deep QUARRY Domointoring adequate database; minimal impacts BR-1210 BR deep QUARRY Domointoring Annual monitoring						-	1	1						0
BR-120D BR deep QUARRY Demokroring SR-121D BR deep QUARRY SR-122D SR deep QUARRY SR-122D S									1		۱ ۱	1		0
BR-1210 BR deep QUARRY BR-1220 BR deep QUARRY BR-1220 BR deep QUARRY SR-1240 BR deep NESS SR-1240 BR deep NESS BR deep NESS SR-1240 BR deep NE			•											0
BR-1220 BR deep CUARRY BR-1240 BR deep CUARRY BR-1240 BR deep CUARRY BR-1240 BR deep CUARRY DR-1240 BR deep CUARRY DR-1240 BR deep CUARRY DR-1240 BR deep DR-1240			•			1								0
BR-1230 BR deep			•						١,				- 1	0
BR.1440 BR. deep CUARRY no monitoring no monitoring								ŀ						0
NESS-E BR deep NESS NESS P?-101 BR McKee Rd NESS P?-103 BR McKee Rd P?-103 BR McKee Rd P?-103 BR McKee Rd P?-104 BR McKee Rd P?-104 BR McKee Rd P?-105 BR McKee Rd Semi-annual monitoring, VOCs & PYR Primeter sentine/trend monitoring 1 1 1 1 1 1 3 3 1 1									l '					0
NESS-W BR deep NESS P2-102 BR McKee Rd P2-102 BR McKee Rd P2-103 BR McKee Rd P2-104 BR McKee Rd P2-104 BR McKee Rd P2-104 BR McKee Rd P2-105 BR McKee Rd P2-106 BR McKee Rd P2-106 BR McKee Rd P2-106 BR ON-SITE BR-102 BR ON-SITE BR-102 BR ON-SITE BR-102 BR ON-SITE BR-103 BR ON-SITE BR-103 BR-104 BR ON-SITE BR-104 BR ON-SITE BR-105 BR-10			•		_	1 .			1					0
P2-101 BR McKee Rd BR McKee Rd P2-103 BR McKee Rd P2-103 BR McKee Rd P2-104 BR ALH Semi-annual monitoring, VOCs & PVR Semi-annu			•			·								0
P2-102 BR McKee Rd BR McKee Rd BR Ref Ref BR McKee Rd BR Ref BR Ref BR Ref							1	1		1	1	1		3
PZ-103 BR						Į. ·		1				l		3
PZ-104 BR							1	1			1	1		3
MONITORING		PZ-104	BR	ALH_	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	1	1	3	3
PZ-105 BR ON-SITE BR-102 BR ON-SITE BR-3 BR ON-SITE BR-3 BR ON-SITE BR-9 BR-5 BR-9 Dumping well ON-SITE Semi-annual monitoring, VOCs & PYR BR-5 BR-5 Dumping well ON-SITE Semi-annual monitoring, VOCs & PYR BR-7 OB ON-SITE BR-9 ON-SITE BR-7 OB ON-SITE BR-9 OB ON-SITE BR-17 OB ON-SITE BR-9 OB ON-SITE BR-17 OB ON-SITE OB ON-					semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	1	1	3	3
BR-102 BR ON-SITE ON-SITE BR-3 BR ON-SITE BR-3 BR-3 BR ON-SITE BR-3 BR-3 BR ON-SITE BR-3 BR-3 BR-3 BR-3 BR ON-SITE BR-3 BR-3 BR-3 BR-3 BR-3 BR-3 BR-3 BR ON-SITE BR-3 BR	MONITORING					1			1	1			1	1
BR-8 BR ON-SITE annual monitoring, VOCs & PYR semi-annual monitoring, VOCs					•	_		ĺ	1	1		l		1
BR-8 BR ON-SITE semi-annual monitoring, VOCs & PYR semi-annual monitoring,						1 *							0	0
BR-9 Pumping well ON-SITE Semi-annual monitoring, VOCs & PYR Pumping well ON-SITE S-3 OB ON-SITE OB OB OB OB OB OB OB O														1
BR-5A Pumping well ON-SITE pumping well ON-SITE pumping well ON-SITE semi-annual monitoring, VOCs & PYR semi-annual monitoring 1 1 1 1 1 1 1 1 1 3 3 semi-annual monitoring, VOCs & PYR semi-annual monitoring, VOCs & PYR semi-annual monitoring S-3 OB ON-SITE semi-annual monitoring, VOCs & PYR semi-annual monitoring S-3 OB ON-SITE semi-annual monitoring, VOCs & PYR semi-annual monitoring 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Ι.	١.						1
BR-6A BR-7A BR-7A BR-7A BR-7A BR-7A BR-7A DB ON-SITE Annual monitoring, VOCs & PYR BR-7A DB ON-SITE Annual monitoring, VOCs & PYR Annual monitoring DR-7A DB ON-SITE Annual monitoring, VOCs & PYR Annual monitoring DR-7A DB ON-SITE Annual monitoring, VOCs & PYR Annual monitoring DR-7A DB ON-SITE Annual monitoring, VOCs & PYR Annual monitoring DR-7A DB ON-SITE Annual monitoring, VOCs & PYR Annual monitoring DR-7A DB ON-SITE OB ON-SITE DPW10 Dumping well ON-SITE DPW11 Dumping well ON-SITE DPW11 DPW11 DPW11 DPW11 DPW11 DPW11 DPW11 DPW11 DPW12 DPW11 DPW12 DPW12 DPW12 DPW12 DPW12 DPW13 DR-7A DR-7A						1						ı		3
BR-7A pumping well ON-SITE Semi-annual monitoring, VOCs & PYR annual monitoring, VOC			, , ,			_						ı		3
B-17					<u>-</u> .	1					1 1			3
B-7							Ι'	'	I ¦		'	'		1
B-9						_	1		Ιi					1
S-3						-	1	1	Ιì				i	1
S-4 OB		S-3			no monitoring		1		`				0	Ö
E-3		S-4	ОВ		no monitoring		1							ō
PW10 PW10 PW11 PW11 PW11 PW11 PW11 PW12 PW12 PW12 PW12 PW12 PW12 PW12 PW12 PW12 PW13 PW14 PW15					1 5		1							0
PW11 PW12 pumping well pu							1		1	1			1	1
PW12 pumping well ON-SITE semi-annual monitoring, VOCs & PYR mass removal/trend monitoring 1 1 1 1 1 1 3 3 3 3								1 .		1	1	1		3
QUARRY/CANAL QS-4 quarry seep quarry outfall CANAL Semi-annual monitoring, VOCs & PYR trend monitoring 1 1 1 1 1 1 3 3 3 3										1	1	l		3
MONITORING								+			_			3
QO-2S1 canal at outfall CANAL Semi-annual monitoring, VOCs & PYR Surface water monitoring 1								1	1		1	1		3
SW-1 barge canal CANAL no monitoring adequate database; minimal impacts 3W-2 barge canal CANAL no monitoring adequate database; minimal impacts 3dequate database; minimal imp	MUNITORING							1	1		1	1		3
SW-2 barge canal CANAL no monitoring adequate database; minimal impacts adequate adequate database; minimal impacts adequate database; minimal impacts adequate adequate database; minimal impacts adequate adequat							1	1	¹	1	1	1		3
SW-3							1		l					0
SW-6 barge canal CANAL no monitoring adequate database; minimal impacts adequate database; minimal impacts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							1		l					0
SW-12 barge canal CANAL no monitoring adequate database; minimal impacts 0 0 0							1		l					0
ONE-TIME B-1 OB ON-SITE 1 1 1 1 1 1 1 1 1							1	l	l					0
NOV. 2001 B-2 OB ON-SITE SAMPLING W-2 OB ON-SITE W-3 OB ON-SITE W-4 OB ON-SITE MW-16 BR GENERAL CIRCUITS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ONE-TIME						1	1					 1 	1
SAMPLING W-2 OB ON-SITE OB ON-SITE W-3 OB ON-SITE W-4 OB ON-SITE MW-16 BR GENERAL CIRCUITS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									1				1	1
W-3 OB ON-SITE W-4 OB ON-SITE MW-16 BR GENERAL CIRCUITS														1
W-4 OB ON-SITE MW-16 BR GENERAL CIRCUITS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														1
MW-16 BR GENERAL CIRCUITS 1 1 0							1	1	l					1
		MW-16	BR	GENERAL			1							0
				CIRCUITS			1		l					
TOTAL SAMPLES 25 24 44 31 19 19 82 6							\perp	L	L	L_ l	L_ I			

Note: Wells W-2, W-3, and W-4 were substituted for wells B-3, B-4, and B-5 because these B-series wells were found to be inaccessible

Appendix A

Groundwater Field Sampling Data Sheets

Sampling Su Table HARDING LAWSON ASSOCIATES NOVEMBER 2001 RI SAMPLING/ROCHESTER NY FACILITY

Page: Rept: AN0821

Sample	—-Water Leve	l- Water	Water	Bottom	Field Measu	rements	pН	Spec.				
Point	Date T	ime Level (ft)		Of Well (ft)*	Date	Time	(STD) (Units)	Cond. (umhos)	Temp (°C)	Turb. (NTU)	Other Field Measure	ments
-1	11/28/2001 1	210 13.1	0 N/A	17.30	11/28/2001	1235	7.50	311	12.9	107.30	EH(mv)= 30	DO(ppm) = 0.79
-2	11/28/2001 1	115 11.7	′5 N/A	17.50	11/28/2001	1145	7.00	3210	10.7	13.50	EH(mv)= -30	DO(ppm)= 0
₹-101	11/30/2001 1	415 0.0	0 N/A	N/A	11/30/2001	1415	7.72	5563	16.3	0.89	EH(mv)= -181	
	Comments: WE	LL OBSTRUCT	ED									
R-105	11/30/2001 1	230 25.6	6 N/A	44.60	11/30/2001	1305	7.24	2091	13.1	13.29	EH(mv)= -169	DO(ppm) = 0.87
R-105D	11/30/2001 1	130 32.9	71 N/A	79.50	11/30/2001	1210	7.57	6205	12.5	2.93	EH(m∨)≈ -252	DO(ppm) = 0.67
R-106	11/30/2001 1	400 30.7	75 N/A	43.22	11/30/2001	1435	7.33	3855	12.9	112.00	EH(mv)= ~193	00(ppm) = 0.33
R-5A	11/30/2001 1	355 30.5	5 N/A	N/A	11/30/2001	1355	7.38	2008	14.4	41.40	EH(mv)= -75	
R-6A	11/30/2001 1	330 14.6	0 N/A	N/A	11/30/2001	1330	9.44	4607	17.4	0.80	EH(mv)= -228	
R-7A	12/03/2001 1	010 35.7	'2 N/A	N/A	12/03/2001	1010	7.42	3 325	14.9	8.83	£H(m∨)= -70	
R-9	11/30/2001 1	430 31.3	0 N/A	N/A	11/30/2001	1430	6.76	2220	16.1	83.30	EH(mv)= 34	
.W-106	11/30/2001 1	315 12.7	'1 N/A	19.35	11/30/2001	1350	7.48	3001	13.0	26.50	EH(mv)= -175	DO(ppm) = 0.87
IW-16	11/30/2001 1	020 13.5	0 N/A	34.44	11/30/2001	1100	7.07	3339	15.9	5.43	EH(m∨)= -215	DO(ppm) = 0.87
	Comments: GE	NERAL CIRCU	ITS									
'W~10	11/30/2001 1	345 17.4	5 N/A	N/A	11/30/2001	1345	9.17	4751	16.3	3.54	EH(m∨)= -136	
'W-11	12/04/2001 1	040 19.4	0 N/A	N/A	12/04/2001	1040	6.29	2076	12.0	70.60	EH(mv)= -14	
'Z-101	11/29/2001 1	325 16.5	5 N/A	21.69	11/29/2001	1345	7.12	5966	13.3	3.03	EH(mv)= 14	DO(ppm) = 0
2-102	11/30/2001 1	105 17.0	5 N/A	32.60	11/30/2001	1140	7.63	3784	11.1	2.19	EH(mv)= -165	DO(ppm) = 0
¹ Z-103	11/30/2001 1	205 14.0	5 N/A	32.52	11/30/2001	1230	7.53	4950	12.7	0.28	EH(mv)= -267	DO(ppm) = 0
°Z-104	11/30/2001 1	015 16.1	5 N/A	23.93	11/30/2001	1040	7.20	208 3	15.4	4.30	EH(mv) = -174	DO(ppm)≃ 0
²Z-107	11/30/2001 1	252 9.4	0 N/A	27.90	11/30/2001	1310	7.60	2190	13.5	4.09	EH(m∨)≍ -116	DO(ppm) = 0
30-5	12/03/2001 1	140 0.0	0 N/A	N/A	12/03/2001	1140	8.25	2773	10.6	9.64	EH(mv)= 51	
20-281	12/03/2001 1	155 0.0	0 N/A	N/A	12/03/2001	1155	7.84	691	8.9	11.50	EH(mv)= 68	
1 S-4	12/03/2001 1	115 0.0	0 N/A	N/A	12/03/2001	1115	8.19	1632	9.7	2.43	EH(mv)= 13	
1-2	11/29/2001 1	155 13.0	0 N/A	17.20	11/29/2001	1225	8.10	299	14.2	87.30	EH(mv)= 70	DO(ppm) = 0
	Comments: SAM	MPLED FOR B	-3									
W-3	11/29/2001 1	100 9.0	0 N/A	15.37	11/29/2001	1120	8.12	248	13.1	13.01	EH(mv)= 46	DO(ppm)= 0
	Comments: SAM	MPLED FOR B	-4									
W-4	11/29/2001 1	010 4.3	2 N/A	14.72	11/29/2001	1035	7.75	1940	12.0	2.11	EH(mv)= 74	00(ppm)≃ 0
	Comments: SAM	MPLED FOR B	-5									

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

ate: 12/06/1 1 ime: 14:35:22

Groundwater E. .tion Report HARDING LAWSON ASSOC. NOVEMBER 2001

ARCH-ROCHESTER WATER LEVEL MEASUREMENTS

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments	· · · · · · · · · · · · · · · · · · ·
-1	11/27/2001	1004	0.00	10.49	N/A		
; - 10	11/27/2001		0.00	9.85	N/A		
⊱11	11/27/2001	844	0.00	6.37	N/A		
3−13	11/27/2001	1033	0.00	N/A	N/A	DRY	
3-14	11/27/2001		0.00	12.33	N/A		
3-15	11/27/2001		0.00	9.27	N/A		
3-16	11/27/2001		0.00	7.74	N/A		
3-17	11/27/2001	822	0.00	10.44	N/A		
3-2	11/27/2001		0.00	11.81	N/A		
3-3	11/27/2001	953	0.00	15.36	N/A		
3-4	11/27/2001	1011	0.00	15.55	N/A		
3-5	11/27/2001	1015	0.00	12.80	N/A		
3-7	11/27/2001	928	0.00	17.59	N/A		
3-8	11/27/2001	902	0.00	12.98	N/A		
3–9	11/27/2001	854	0.00	7.35	N/A		
3R-1	11/27/2001	1105	0.00	9.57	N/A		
3R−102	11/27/2001	954	0.00	23.55	N/A		
3R-103	11/27/2001	758	0.00	7.29	N/A		
3R-104	11/27/2001	837	0.00	10.43	N/A		
3R-105	11/27/2001	901	0.00	25.71	N/A		
3R-105D	11/27/2001	902	0.00	33.89	N/A		
BR-106	11/27/2001	900	0.00	30.82	N/A		
BR-107	11/27/2001	0	0.00	N/A	N/A	DESTROYED	
BR-108	11/27/2001	852	0.00	28.95	N/A		
BR-111	11/27/2001		0.00	31.11	N/A		
BR-111D	11/27/2001	1127	0.00	38.29	N/A		
BR-112A	11/27/2001	1123	0.00	36.05	N/A		
BR-112D	11/27/2001	1120	0.00	45.59	N/A		
BR-113	11/27/2001	1113	0.00	40.62	N/A		
BR-113D	11/27/2001	1115	0.00	40.52	N/A		
BR-114	11/27/2001	757	0.00	16.32	N/A		
BR-116	11/27/2001	818	0.00	31.09	N/A		
BR-116D	11/27/2001		0.00	43.89	N/A		
BR-117	11/27/2001	948	0.00	36.15	N/A		

ate: 12/10/1 1 ime: 10:05:34

Groundwater E. tion Report HARDING LAWSON ASSOC.

ARCH-ROCHESTER WATER LEVEL MEASUREMENTS

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
R-117D	11/27/2001	950	0.00	53.11	N/A	
R-113	11/27/2001		0.00	38.26	N/A	
R-118D	11/27/2001	1000	0.00	52.82	N/A	
IR-119D	11/27/2001		0.00	72.39	N/A	
IR-120D	11/27/2001		0.00	60.34	N/A	
3R-121D	11/27/2001		0.00	59.84	N/A	
3R-122D	11/27/2001	1100	0.00	52.23	N/A	
3R-123D	11/27/2001	1055	0.00	52.97	N/A	
3R-124D	11/27/2001	1052	0.00	38.21	N/A	
3R-2	11/27/2001	816	0.00	N/A	N/A	DRY
3R-2A	11/27/2001	817	0.00	11.34	N/A	
3R-2D	11/27/2001	818	0.00	1.11	N/A	
3R-3	11/27/2001	851	0.00	12.96	N/A	
3R-3D	11/27/2001	852	0.00	69.99	N/A	
3R-4	11/27/2001	842	0.00	9.40	N/A	
3R-5	11/27/2001	757	,0.00	15.24	N/A	
3R-5A	11/27/2001	758	0.00	29.22	N/A	4.53GPM = FLOW RATE
3R-6	11/27/2001	858	0.00	13.50	N/A	
BR-6A	11/27/2001	859	0.00	15.02		0.00GPM = FLOW RATE
BR-7	11/27/2001	932	0.00	34.87	•	7.99GPM = FLOW RATE
BR-7A	11/27/2001	933	0.00	22.15	N/A	
BR8	11/27/2001	1017	0.00	12.58	N/A	
BR-9	11/27/2001	955	0.00	32.71	N/A	FLOW RATE= 5.49 GPM
C-1	11/27/2001	. 0	0.00	N/A	N/A	BROKEN/BURIED
C-2A	11/27/2001	81.5	0.00	10.21	N/A	
C-3	11/27/2001	802	0.00	N/A	N/A	
C-4	11/27/2001	. 0	0.00	N/A	N/A	BUILDING IN THIS AREA/WELL NO LONGER EXISTS
C-5	11/27/2001	850	0.00	12.42	N/A	
E-1	11/27/2001	341	0.00	1.80	N/A	
E-2	11/27/2001	943	0.00	3.01	N/A	
E-C				7, 5		
E-4	11/2//2001	753	0.00	N/A	A/E	
E-5	11/27/2001	752	0.00	N/A	N/A	DRY
EC-1	11/07/2001	1140	0.00	19.29	n/A	

ate: 12/10/2 1 ime: 10:06:34

Groundwater E. Ation Report HARDING LAWSON ASSOC.

ARCH-ROCHESTER WATER LEVEL MEASUREMENTS

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
IC-2	11/27/2001	1117	0.00	N/A	N/A	DRY AT 12.75
RIE CANAL	11/27/2001		0.00	42.35	N/A	
1W-103	11/27/2001		0.00	2.88	N/A	
1W−104	11/27/2001	835	0.00	10.26	N/A	
1₩-105	11/27/2001		0.00	N/A	N/A	DRY AT 19.01
W−106	11/27/2001		0.00	12.69	N/A	
∕W-107	11/27/2001		0.00	N/A	N/A	DESTROYED
√W-108	11/27/2001	850	0.00	19.12	N/A	
W-114	11/27/2001		0.00	14.29	N/A	
MW-16	11/27/2001	1040	0.00	13.77	N/A	GENERAL CIRCUITS
MW-2	11/27/2001	843	0.00	6.02	N/A	
.MW-3	11/27/2001	840	0.00	6.76	N/A	
MW-G6	11/27/2001	740	0.00	5.71	N/A	
MW-G7	11/27/2001		0.00	4.99	N/A	
MW-G8	11/27/2001		0.00	8.55	N/A	·
MW-G9	11/27/2001	734	0.00	12.01	N/A	
N-1	11/27/2001	1106	0.00	N/A	N/A	DAMAGED CASING/BAILER STUCK IN WELL
N-2	11/27/2001		0.00	6.31	N/A	
N-3	11/27/2001	749	0.00	8.81	N/A	
NESS-E	11/27/2001	750	0.00	42.75	N/A	
NESS-W	11/27/2001	745	0.00	40.71	N/A	
PW-10	11/27/2001	827	0.00	18.40	N/A	
PW-11	11/27/2001	1025	0.00	19.52	N/A	
PW-12 (BR-101)	11/27/2001	803	0.00	N/A	N/A	OBSTRUCTION
PZ-101	11/27/2001	1049	0.00	16.55	N/A	
PZ-102	11/27/2001	1048	0.00	17.16	N/A	
PZ-103	11/27/2001	1047	0.00	14.31	N/A	
PZ-104	11/27/2001	1030	0.00	15.21	N/A	
PZ-105	11/27/2001	904	0.00	12.75	N/A	
PZ-106	11/27/2001		0.00	12.50	N/A	
PZ-:		: 7	0.60	9.83	11/A	
PZ-108	11/27/2001	. 0	0.00	N/A	N/A	DESTROYED
S-1	11/27/2001	903	0.00	10.92	N/A	
S-2	11/27/2001	901	0.00	9.92	N/A	

Date: 12/06/ 1 Pime: 14:35:22

Groundwater A ation Report HARDING LAWSON ASSOC. NOVEMBER 2001 ARCH-ROCHESTER WATER LEVEL MEASUREMENTS

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
3-3	11/27/2001	857	0.00	6.76	N/A	
3-4	11/27/2001		0.00	1.04	N/A	
√ −1	11/27/2001	1003	0.00	N/A	N/A	UNABLE TO OBTAIN MEASUREMENT/OBSTRUCTION
√-2	11/27/2001	1000	0.00	13.00	N/A	·
√-3	11/27/2001	1025	0.00	13.37	N/A	
√ -4	11/27/2001	1030	0.00	4.25	N/A	
√ -5	11/27/2001		0.00	N/A	N/A	UNABLE TO OBTAIN MEASUREMENT/OBSTRUCTION
N-6	11/27/2001		0.00	11.22	N/A	·

Facility: ARCH	Sample Point ID:
Field Personnel: PL/TB	Sample Matrix:
MONITORING WELL INSPECTION:	(**Grab () Composite
11-28-61 Date/Time 12-10 PC 1210	Cond. of seal:
Prot. casing/riser height:	Cond. of prot. casing/riser: () Unlocked 서 Good () Loose () Flush Moun
If prot. casing; depth to riser below:	• •
Gas Meter (Calibration/Reading): % G	Gas: % LEL:
Vol. Org Meter (Calibration/Reading): Vola	atiles(ppm):
PURGE INFORMATION:	
Date / Time Initiated: 11-28-01 1220	Date/Time Completed: 11-28-01 1235
Surf. Meas. Pt.: () Prot. Casing M Riser	Riser Diameter,Inches: 2.0
Initial Water Level, Feet: 13.10	Elevation, G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Peristelt. Jump
One (1) Riser Volume, Gal:	Dedicated: Y / D
Total Volume Purged, Gal:	Purged To Dryness: Y / 🕟
Purge Observations: Start TURBIN	Finish St TURBIO
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other Oc. (ms/L)	027 MU pi
1220	12.90	0	11.5	7.50	318	192	1.03	1922
1225	j3.05		12.5	7.51	308	145.8	0.89	26.0
1230	13.40		12.6	67751 pl	3/0	132.6	0.84	28.0
1235	13.55	1,5	12.9	7.50	311	107.3	0.79	230 m
								4

SAMAL PAGE 1 OF 2 SAMAL AT 1235 ON 11-28-01

Facility: ARCH	Sample Point ID:
Field Personnel: PL/TB	
MONITORING WELL INSPECTION:	ØGrab () Composite
Date/Time _11-28-01 1 1115	Cond. of seal: PKGood () Cracked% () None () Buried
Prot. casing/riser height:	Cond. of prot. casing/riser: () Unlocked ₱₹ Good () Loose () Flush Mount
If prot. casing; depth to riser below:	
Gas Meter (Calibration/Reading): % Ga	s: % LEL:
Vol. Org Meter (Calibration/Reading): Volat	iles(ppm):
PURGE INFORMATION:	
Date / Time Initiated: 11-28-61 1120	Date/Time Completed: //-28-0/ //45
Surf. Meas. Pt.: () Prot. Casing Riser	Riser Diameter,Inches:
Initial Water Level, Feet:	
Well Total Depth, Feet: 17.50	Method of Well Purge: Postilic Pump
One (1) Riser Volume, Gal:	Dedicated: Y / 🐿
Total Volume Purged, Gal:	Purged To Dryness: Y / 🕥
Purge Observations: Start SL TURKED	Finish
PURGE DATA: (if applicable)	

Time	WL Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other <u>Po</u> (mu/L)	ORP
1125	12,50		10.0	7.06	4046	43.0	0	48.0
// 3c	12.50		9.60	7.05	3003	42.1	0	-25-
1135	12.50		10.02	7.04	3569	34.7	0	-28
1140	12.50		10.5	7.02	3302	20.4	0	-29
1145	12.50	2,0	10.7	7.00	3210	13.5	0_	30

SIMP AT 1145 ON 11-28-01

		FIELD (DBSERVA	Tions	S B	2-101	
Facility: A	RCH		Sample	Point ID:		v-12	
Field Personn	iel: Paul	Litt 18	Sample	Matrix: _	6 i	<i>U</i>	
SAMPLING II	NFORMATIO	N:			CIGRAS (ICOM <i>P</i> OSITE	
Date/Time:_/	1-30-01 1	415	Water L	evel @ Sa	ampling, F	eet:	<i>,</i>
Method of Sa	ampling:	Praisetire Pur	n/		Dedica	ated:	Ø N
Multi-phased	layered:	()Yes PNo	; If yes; (}light	()hear	vy	
SAMPLING (DATA:			•			_
Time	Temp. (°C)	pH (Std. Units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other (///)	Other	
1415	16.3	7.72	5563	0.89	-181		
		,					
INSTRUMENT	CHECK DA	TA:					
Turbidity Seri	al #: <u>374</u>	<u>/_</u> N1	ΓU std. =	NTU	N	ITU std. = _	NTU
pH Serial #: _	2601347	4.0 std	. = 7	.0 std. =	7.0	10.0 std. =	10.0
Conductivity	Serial #:) <u>///7</u> un	nhos/cm = <u>/4</u>	7	u	mhos/cm =	
GENERAL IN	ORMATION:						
Weather Con-	ditions @ tim	ne of sampling:	C/000 /1	RAIN .	5°0°		
		Clar					
сомментѕ	AND OBSER	VATIONS: <u>4</u>	III OBSTEL	rus 6	y Pum	<i>y</i>	
Cann	of ostan	A WATER	LEWI		<u>-</u>		
I certify that s	ampling proc	edures were in a	iccordance with	all applic	able EPA,	State and Si	te-Specific
Date: <u>// /3c/</u>	<u>ог</u> Ву: <u>1</u> -	1 Letter	Compar	ny: _ <i>57</i>	-<		
			PAGE 1 OF 1				

Facility: ARCH	Sample Point ID: BR - 105
Field Personnel: R. SENE/CS	Sample Matrix:
MONITORING WELL INSPECTION:	(/Grab () Composite
Date/Time <u>//-30-0/ 1/230</u>	Cond. of seal: KGood () Cracked% () None () Buried
Prot. casing/riser height: f prot. casing; depth to riser below:	() Loose X Flush Me
	Gas:/ % LEL:/
Vol. Org Meter (Calibration/Reading): Vol	
PURGE INFORMATION:	
Date / Time Initiated: <u>//-30-0/ 1 /235</u>	Date/Time Completed: //-30-01 /3 00
Surf. Meas. Pt.: () Prot. Casing Kiser	Riser Diameter,Inches:
initial Water Level, Feet: 25.66	Elevation, G/W MSL:
Well Total Depth, Feet: 44.60	Method of Well Purge: BLADORA PUNO
One (1) Riser Volume, Gal:	_ Dedicated: Y /N
One (1) Riser Volume, Gal:	

Time	_	Rate m/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct.	Turb. (NTU)	Other (44)	DO
1240	150	25.71		12,9	7,30	2077	13.82	-/43	0.58
1245	ĵ	25,70		13.0	7.34	2095	13.75	-/67	0.90
1250				13.0	7,35	2100	13.87	-167	0.91
1255		25.70	V	13:1	7.29	2098	13.58	-168	0.89
1300	V	25.70	1,5	/3./	7.24	2091	13.29	-16.9	0,87

PAGE 1 OF 2

Facility: <u>ARCH</u>	Sample Point ID: BR - 105 D
Field Personnel: R. SKNF / CS	Sample Matrix: G/w
MONITORING WELL INSPECTION:	() Grab () Composite
Date/Time //-30-0/ 1 //30	Cond. of seal: // Good () Cracked% () None () Buried
Prot. casing/riser height:	Cond. of prot. casing/riser: () Unlocked () Good
If prot. casing; depth to riser below:	() Loose XFlush Mount () Damaged
Gas Meter (Calibration/Reading): % Ga	s: % LEL:
Vol. Org Meter (Calibration/Reading): Volat	iles(ppm):
PURGE INFORMATION:	
Date / Time Initiated: <u>//-30-0/ //3.5</u>	Date/Time Completed: 11-30-01 1205
Surf. Meas. Pt.: () Prot. Casing Riser	Riser Diameter,Inches:
Initial Water Level, Feet: 32.9/	Elevation, G/W MSL:
Well Total Depth, Feet: 79,50	Method of Well Purge: BLADDER Purs
One (1) Riser Volume, Gal:	Dedicated: Y / (N)
Total Volume Purged, Gal:	Purged To Dryness: Y / N
Purge Observations: Start CLEA1	FinishCCEQA
PURGE DATA: (if applicable)	

Time	1	ge Rate	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other 020 (4-)	DO
1145	150	34.20		13,1	7.39	6048	3.79	-241	0.27
1150		34.75		12.6	7.67	6170	3.20	-243	0,68
1155		34.90		12.5	7.56	6137	3.23	-240	0.65
1200		35.02		12.5	7.55	6170	3.09	-250	0.65
1205	Ý	3.5,00		12.5	7.5 7	6205	2.93	-252	0.67

PAGE 1 OF 2

5 AMPLEO AT 1210/11-30-01

Facility: <u>ARCH</u>	Sample Point ID: BR - 106				
Field Personnel: P. SENE/CS	Sample Matrix:				
MONITORING WELL INSPECTION:	(Grab () Composite				
Date/Time 11-30-01 1400	Cond. of seal: () Good () Cracked% () None () Buried				
Prot. casing/riser height: If prot. casing; depth to riser below:	Cond. of prot. casing/riser: () Unlocked () Good () Loose X Flush Mod () Damaged				
Gas Meter (Calibration/Reading): % Ga	as: % LEL: /				
Vol. Org Meter (Calibration/Reading): Volat	iles(ppm):/				
PURGE INFORMATION:					
Date / Time Initiated: 11-30-011 1410	Date/Time Completed: 11-30-01 1430				
Surf. Meas. Pt.: () Prot. Casing Riser	Riser Diameter, Inches: 4.0				
Initial Water Level, Feet: 30,75	Elevation, G/W MSL:				
Well Total Depth, Feet: 43,22	Method of Well Purge: BLADORE Pumo				
One (1) Riser Volume, Gal:	Dedicated: Y / N				
Total Volume Purged, Gal: 1.5	Purged To Dryness: Y /N				
Purge Observations: Start 54, Tuna	10 Finish SL, TUZBIO				
PURGE DATA: (if applicable)					

Time	_	WL e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other (20)	DC: PDL:
1410	160	30.90		13.0	7 27	3790	130,0	-169	0.28
1415		30.95		12.9	7.39	3856	121.0	-189	0.37
1420		30.92		13.0	7.32	3846	114,0		0.35
1425		30.90		13.0	7.35	3860	110,0	-199	0.33
1430	V	30.87	1.5	12.9	2.33	3855	112,0	-/93	0,33
		:							

PAGE 1 OF 2 .SAMPLAO AT 1435 /11-30-01

Facility:	Facility: ARCH			Sample Point ID: BR-5A Sample Matrix: 6 w			
Field Personn	el: <u><i>P. Li ff</i></u>	1. 170	Sample	Matrix:	60	<i>U</i>	
SAMPLING IN	FORMATIO	N:			# JGRAB (COMPOSITE	
Date/Time:	1-30-01 13	355	Water L	evel @ S	ampling, F	eet: <u>30.</u>	55
Method of Sampling: Tw-Situ P.mp					Dedica	ated:	Ø1 N
Multi-phased/layered: ()Yes KNo; If yes; ()light					()heav	vy	
SAMPLING D	DATA:			·		=	-
Time	Temp. (°C)	pH (Std. Units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other OK/ (MV)	Other	
1355	14.4	7.38	2008	41.4	-75		
							<u> </u>
INSTRUMENT	CHECK DA	ГА :					
Turbidity Seria	al #: <u>37</u> 94	<u>ჯ.</u> სე	ΓU std. = <u></u>	NTU	N	ITU std. = _	NTU
pH Serial #: _		_	. = 7				
		2 <u>/4)</u> un					
GENERAL INF	ORMATION:						
Weather Cond	ditions @ tim	ne of sampling:	RAIN /cl	outly	<i>څ</i> و د ا		
Sample Chara	cterisitics: _	SL I	CRB.D				
COMMENTS	AND OBSER'	VATIONS:	<u> </u>		_		
•							
I certify that s	ampling proc	edures were in a	accordance with	all applic	able EPA,	State and Si	te-Specific
Date: ///3c/	01 By:	RI LUTE	Compar	ک :y	72		

Facility: ARCH			Sample	Sample Point ID: BR-GA			
Field Personn	el: <i>Pu_l</i>	TB	Sample	Sample Matrix:			
SAMPLING IN	IFORMATIO	N:			XIGRAB (COMPOSITE	
Date/Time:	-300/ / /	330	Water L	evel @ S	ampling, F	eet: <u>/%</u>	60
Method of Sa	PUM		Dedica	ated:	(Y) N		
Multi-phased/	layered:	()Yes &No	; If yes; (light	()hear	vy	
SAMPLING D	DATA:				· 		_
Time	_	pH (Std. Units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other	Other	
1330	17.4	9.44	4607	0.80	- 228		
INSTRUMENT	CHECK DA	TA:					
Turbidity Seria	al #: <u>3794</u>	<u> </u>	TU std. = <u>5. υ</u>	NTU	N	TU std. = _	NTU
pH Serial #:_	60347	4.0 std	l. = 7	'.0 std. =	7.0	10.0 std. =	10.0
Conductivity :	Serial #: 🕹	<u>/ 147</u> un	nhos/cm = <u>/4</u>	<u>7</u>	u	mhos/cm =	
GENERAL INF	ORMATION:						
Weather Cond	ditions @ tim	ne of sampling:	<u> Claids</u>	45"			
Sample Chara	cterisitics: _	AM6	STRONS C	SOER			
COMMENTS	AND OBSER	VATIONS:			- <u>-</u>		
				_			
		·					
I certify that s	ampling proc	edures were in a	accordance with	all applic	able EPA,	State and Si	te-Specific
Date: <u>11 30 </u>	01 By: 1	I Les	Compar	רץ:	517		

Facility:	Facility: ARCH			Sample Point ID: BR-7A			
Field Personn	el: <u>PL/</u> 7	TB	Sample	Matrix: _			
SAMPLING IN	FORMATIO	N:			YIGRAB ()	COMPOSITE	
Date/Time: 12-3-0/ 10/0 Water Level @ Sa						eet: _ <i>35-</i>	72
Method of Sampling:				Dedica	ated:	(D) N	
Multi-phased/	layered:	(IYes &ANo	; If yes; (l light	()heav	/Y	
SAMPLING D	DATA:						_
Time	Temp. (°C)	pH (Std. Units)	Conduct.	Turb. (NTU)	Other	Other ()	
1610	14.9	7.42	3325	8.83	-70		
pH Serial #: _ Conductivity : GENERAL INF	al #: <u>3799</u> <u>6c1347</u> Serial #: CORMATION:	<u> </u>	. = 7 nhos/cm = <u>/</u> 4	7.0 std. =	7.0	10.0 std.=	K.()
Sample Chara	cterisitics:	Class					····
		VATIONS:					
protocols.		cedures were in a					

Facility: ARCH			Sample	Point ID:		R-9	
Field Personn	el: <u><i>P. Li</i>+</u>	4./TB		Matrix: _	6RI	/	
SAMPLING IN	NFORMATIO	N:			OFGRAS ()	COMPOSITE	
Date/Time:_//	1-30-0/1 1	430	Water L	evel @ Sa	ampling, F	eet: <u>3/.</u>	30
Method of Sa	ımpling:	IN-SITU P	omp		Dedica	ated:	(V) N
Multi-phased/	layered:	()Yes Mo	; If yes; () light	()heav	vy	
SAMPLING D	DATA:						=
Time	Temp. (°C)	pH (Std. Units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other (MU)	Other	
1436	16.1	6.76	2220	83.30	34		
INSTRUMENT	CHECK DA	TA:					
Turbidity Seria	al #: <u>3794</u>	5-0 N	TU std. = <u>೨೯೮</u>	NTU	N	TU std. = _	NTU
pH Serial #: _	601347	4.0 std	. = 7	.0 std. =	7.0	10.0 std.=	10.0
Conductivity	Serial #: 处		nhos/cm = <u>/4</u>	7	u	mhos/cm =	
GENERAL INF	ORMATION:	:					
Weather Cond	ditions @ tim	ne of sampling:	Clouds	/RAIN	5ë°		
Sample Chara	cterisitics:	Clear					
COMMENTS	AND OBSER	VATIONS:	·				
			·				
I certify that s protocols.	ampling proc	cedures were in a	accordance with	all applic	able EPA,	State and Si	te-Specific
Date: <u>// / 3 </u>	o/ By: <u></u>	If Lott	Compar	אר: <u>כ</u>	R		

Facility: ARCH	Sample Point ID: MW-106			
Field Personnel: R.Save/CS	Sample Matrix: G/W (Grab () Composite			
MONITORING WELL INSPECTION:	Grab () Composite			
Date/Time 11-30-01 1/3/5	Cond. of seal:			
Prot. casing/riser height:	Cond. of prot. casing/riser: () Unlocked () Good			
If prot. casing; depth to riser below:	() Loose Flush Mount () Damaged			
Gas Meter (Calibration/Reading): % G	as: % LEL:			
Vol. Org Meter (Calibration/Reading): Vola	tiles(ppm):			
PURGE INFORMATION:				
Date / Time Initiated: 11-30-01 / 1320	Date/Time Completed: 11-30-01 1350			
Surf. Meas. Pt.: () Prot. Casing (Riser	Riser Diameter,Inches: 2.0			
initial Water Level, Feet:	Elevation, G/W MSL:			
Well Total Depth, Feet: 19.35	Method of Well Purge: BCADDER PUMP			
One (1) Riser Volume, Gal:	Dedicated: Y / N			
Total Volume Purged, Gal: 2.0	Purged To Dryness: Y / N			
Purge Observations: Start St., Tues.	Finish BLACK TINT			
PURGE DATA: (if applicable)				

Time		Wし Rate (htz)	Cumulative Volume	Temp.	pH (std units)	Conduct.	Turb. (NTU)	Other	D0 D0.c
1325	150	12,75		12.9	7.16	26 1.5	39.5	-150	1.0.3
1330	İ	12.90		13.0	7.21	2680	38.0	-142	0.82
1335		13.01		13.1	7,35	2850	37,3	-/65	0.94
1340		13.05		13,0	238	2889	27.2	-167	0.89
1345	.,	13.05		12.5	7.42	2919	26.7	-170	0.88
1350	1	13,05	2.0	13,0	7.48	3001	26.5	-175	0.87

PAGE 1 OF 2 59MPLRO AT 1350/11-30-01

FIELD OBSERVATIONS 77.7 Sample Point ID: MW - 16 Field Personnel: R. SENE C. SCARDING Sample Matrix: KGrab () Composite MONITORING WELL INSPECTION: Date/Time 11-30-01 | 1020 Cond. of seal: () None () Buried Prot. casing/riser height: Cond. of prot. casing/riser: () Unlocked () Good () Loose > Flush Mount () Damaged If prot. casing; depth to riser below: Gas Meter (Calibration/Reading): % Gas: ___ / __ % LEL: ___ /__ Vol. Org Meter (Calibration/Reading): Volatiles(ppm): PURGE INFORMATION: Date / Time Initiated: 1/-30-01 | 1030 Date/Time Completed: 11-30-01 | 1055 Riser Diameter,Inches: 4.0 Surf. Meas. Pt.: () Prot. Casing Riser Initial Water Level, Feet: 13.50 Elevation, G/W MSL: Method of Well Purge: BLADOM PUMP Well Total Depth, Feet: 34,44 One (1) Riser Volume, Gal: Dedicated: Total Volume Purged, Gal: _____/, (N) Purged To Dryness: Y / (N) Start CLRAR Finish CLRAR Purge Observations: PURGE DATA: (if applicable)

Time	_	WL Rate	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other (-71)	D0 PP-1
1035	100	13.51		16.2	6.96	3510	10.35	-194	1.20
1040		13.50		16.1	7.00	3420	253	-221	0.90
1045		13,50		15.9	7.03	3350	5,60	-211	0.87
10.50		13.50		15.9	7,07	3346	5,50	-2/3	0.85
1055	V	13.50		15.9	7.07	3339	5.43	-215	0.87
		1							

PAGE 1 OF 2 SAMBURA AT 1100/11-30-01

Facility:	ARCH	Sample	Sample Point ID:				
Field Personn	el: <i>P. Liff</i>	1 ITB	Sample	Matrix: _	6 n	<u> </u>	
SAMPLING IN	FORMATIO	N:			≈ GRAB ()	COMPOSITE	
Date/Time:_/	1-30-01 1	145	Water L	evel @ Sa	ampling, F	eet: <i>17. (</i>	45
Method of Sampling:			PUAP		Dedica	ated:	(Y)/ N
Multi-phased/	layered:	()Yes MNo	; If yes; (llight	()heav	′ Y	
SAMPLING DATA:							7
Time	Temp. (°C)	pH (Std. Units)	Conduct. (µmhos/cm)	Ţαrb. (NTU)	Other ax	Other	
1345	16.3	9.17	4751	3.54	-136		
]
INSTRUMENT	CHECK DA	TA:					
Turbidity Seri	al #: <u>3794</u>		ال std. = <u>ح</u> و	NTU	N	TU std. = _	NTU
pH Serial #: _	601347	4.0 std	. = 7	.0 std. =	7.0	10.0 std.=	10.0
GENERAL INF	ORMATION:						
Weather Con-	ditions @ tim	ne of sampling:	RAIN/C	lev els	50°		
		AMBER	STRONG				
		Ĺ	NPILS.				
·							
					_		
I certify that s	ampling proc	edures were in a	accordance with	all applic	able EPA,	State and Si	te-Specific
Date: <u>// /3</u> c/	<u>ి(</u> By:	Is Litt	Compar	ک :۲۲	7		

Facility: ARCH CHEMICAL			Sample	Sample Point ID: PW-//				
Field Personn	el: <i></i>	PLITB	Sample	Matrix: _	Gu			
SAMPLING IN	IFORMATIO	N:			() BAR ƏI (COMPOSITE		
Date/Time: 13	2-4-01/ /0	040	Water L	evel @ Sa	ampling, F	eet: <u> </u>	40	
Method of Sa			Dedica	ated:	(Ý) N			
Multi-phased/	layered:	()Yes DNO	; If yes; (llight	()heav	γγ		
SAMPLING D	DATA:						·	
Time	Temp. (°C)	pH (Std. Units)	Conduct. (µmhos/cm)	Ţurb. (NTU)	Other 059	Other		
10:40	12.0	6.29	2076	70.6	-14		1	
		<u> </u>						
INSTRUMENT	CHECK DA	ΓA:						
Turbidity Seria	al #: <u>3794</u>	<u> 5.0</u> N	TU std. = <u>5.0</u>	NTU	N	TU std. = _	NTU	
pH Serial #: _	601347	4.0 std	i. = 7	.0 std. =	7.0	10.0 std. ≃	10.0	
Conductivity	Serial #:	V 147 ur	mhos/cm = <u>//</u>	7	u	mhos/cm =		
GENERAL INF	ORMATION:							
Weather Cond	ditions @ tim	ne of sampling:	clouds 6	50'		_		
Sample Chara	cterisitics:	TURBIA	DRANGE					
сомментя	AND OBSER	VATIONS:	limited vote	mr ca	sty Able	t. 06	ten_	
2 0001	1 Ame	p.m						
						-		
I certify that s protocols.	ampling proc	edures were in a	accordance with	all applic	able EPA,	State and S	ite-Specific	
Date: <u>[고] 4</u> [<u>al</u> By: <u>Y</u>	1 Little	Compar	کے :۲۷	グ (

Facility: ARCI+	Sample Point ID:	P2-101
Field Personnel: PL/TB	Sample Matrix:	
MONITORING WELL INSPECTION:		AGrab () Composite
Date/Time 11-29-01 / 1325	Cond. of seal:	AM Good () Cracked% () None () Buried
Prot. casing/riser height:	Cond. of prot. cas	ing/riser: () Unlocked 🚜 Good
If prot. casing; depth to riser below:		() Loose () Flush Mount () Damaged
Gas Meter (Calibration/Reading): % Ga	as:	% LEL:/
Vol. Org Meter (Calibration/Reading): Volation	tiles(ppm):	
PURGE INFORMATION:		
Date / Time Initiated: 11-21-61/ 1330	_ Date/Time Comple	ted: 11-29-01 1345
Surf. Meas. Pt.: () Prot. Casing KRiser	Riser Diameter,Incl	hes: <u>2.0</u>
Initial Water Level, Feet: 16.55	Elevation, G/W MS	SL:
Well Total Depth, Feet: 21.69	Method of Well Pu	irge: Peristetic funt
One (1) Riser Volume, Gal:	Dedicated:	Ø/ N
Total Volume Purged, Gal: 2.0	Purged To Drynes:	s: Y/ 🛱
Purge Observations: Start Class	Finish	47
PURGE DATA: (if applicable)		

		-		units)	(°C)	Cumulative Volume	Purge Rate (gpm/htz)	Time
	49 0	9.30	5930	7.14	13.7	0	17.30	133°
1346 1751 123 714 (9/4) 710	19 C	4.50	5956	7.14	13.4		17.44	1335
13.5 1.11 316 3.10	15 0	3.10	5964	7.14	13.3		17.51	13 46
1345 17.60 2.0 13.3 7.12 5966 3.03	14 0	3.03	5966	7.12	13.3	2.0	17.60	1345 1

Facility: ARCIH	Sample Point ID: P2-102
Field Personnel: PL/TR	Sample Matrix: 6 W
MONITORING WELL INSPECTION:	Grab () Composite
Date/Time <u>11-30-01 1 1105</u>	Cond. of seal:
Prot. casing/riser height:	Cond. of prot. casing/riser: () Unlocked KGood
If prot. casing; depth to riser below:	() Loose () Flush Mount () Damaged
Gas Meter (Calibration/Reading): % Ga	as: % LEL:
Vol. Org Meter (Calibration/Reading): Volat	iles(ppm):/
PURGE INFORMATION:	
Date / Time Initiated: 11-30-0/ / 1120	Date/Time Completed: 11-30-01 / 1140
Surf. Meas. Pt.: () Prot. Casing X Riser	Riser Diameter,Inches:
Initial Water Level, Feet: 17.05	Elevation, G/W MSL:
Well Total Depth, Feet: 32.60	Method of Well Purge: Peristadic Punk
One (1) Riser Volume, Gal:	Dedicated: (Y) / N
Total Volume Purged, Gal:	Purged To Dryness: Y / (N)
Purge Observations: Start_clar-	Finish
BUDGE DATA CE C - 11 1	•

PURGE DATA: (if applicable)

Time	Purge Rate	Cumulative	Temp.	pH (std	Conduct.	Turb.	Other	00 ms/L
Time	(gpm/htz)	Volume	(°C)	units)	(µmhos/cm)	(NTU)	(Wr)	11.5/2
11.25	17.75		11.7	7.53	3651	1.55	-110	0
113c	18.00		11.7	7.66	3651	1.45	-140	0
1135	18.10		10.9	7.66	3720	2.80	-164	0
1140	18.14	1.0	11.1	7.63	3784	2.19	-165	0
								-

PAGE 1 OF 2 SAMPIC AT 1140/243 11-30-01

fl Live

- 265

- 261

0.31

FIELD OBSERVATIONS

Facility:	ARCH		s	ample Point	ID: <u>P2</u>	-103		
Field Pers	onnel: PL	TB	s	ample Matri	x:6W			
MONITOR	ING WELL INS	PECTION:			₩Gusp () C			
Date/Time	11-30-01	1 too 1205	С	ond, of seal		() Crack () Buried		
Prot. casir	ng/riser height:		C	ond. of prot	. casing/riser: (
If prot. ca	sing; depth to	riser below:			•	Loose (Damage		
Gas Meter	r (Calibration/Re	eading):	% Gas:		% LEL: _			
Vol. Org N	Meter (Calibratio	on/Reading):	Volatiles	(ppm):				
PURGE IN	FORMATION:							
Date / Tim	ne Initiated:	1-30-et 1 1210	<u>)</u> D	ate/Time Co	mpleted: <u>//-3</u>	°c. 61 /	1230	
Surf. Meas	s. Pt.: () Prot.	Casing M Ris			r,Inches:	_		
Initial Wat	er Level, Feet:	14.05	EI	ievation, G∧	V MSL:			
Well Total	Depth, Feet:	32.52	N	lethod of W	ell Purge: <u>/e.</u>	ristalt.c	PURT	-
One (1) Ri	ser Volume, Ga	al:	D	edicated:	Ø/ 1	N		
Total Volu	ıme Purged, Ga	al:	P	urged To Dr	yness: Y //	\tilde{N}		
Purge Obs	servations:	Start_ Cle		Finish	¥			
	ATA: (if applica							
	WL	=======================================					Other	DO
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	(<u>nn</u>)	MSI
1215	15.40		12.7	7.58	4831	0.38	- 218	C
1220	15.59		12,7	7.64	4862	0.41	-245	C.

SAMILE AT 1200 ON 11-30-01 flx

12.8

12.7

7.58

7,53

4908

1225

1230

15.63

15.70

100

Facility: ARCH	Sample Point ID: P2-104
Field Personnel: PL/TB	Sample Matrix: 6W
MONITORING WELL INSPECTION:	ØQGr∎b () Composite
Date/Time 11-3c 0/ 1 1015	Cond. of seal: 49 Good () Cracked% () None () Buried
	Cond. of prot. casing/riser: () Unlocked () Good () Loose (Flush Mount () Damaged
If prot. casing; depth to riser below:	
Gas Meter (Calibration/Reading): % Gas:	: % LEL:
Vol. Org Meter (Calibration/Reading): Volatile	es(ppm):
PURGE INFORMATION:	
Date / Time Initiated: 1+30-01 1020	Date/Time Completed: //-30-0/ //6 40
Surf. Meas. Pt.: () Prot. Casing () Riser	Riser Diameter,Inches: 2.0
Initial Water Level, Feet: 16.15	Elevation, G/W MSL:
Well Total Depth, Feet: 23.93	Method of Well Purge: Pensulic Pum
One (1) Riser Volume, Gal:	Dedicated: Y/N
Total Volume Purged, Gal: 1.0	Purged To Dryness: Y /N
Purge Observations: Start Clar	Finish
PURGE DATA: (if applicable)	

Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other	DO MS/L
16.20		15.5	7.09	2105	14.15	-153	0
16.26		15.4	7.19	2095	14.1334	-158	0
16.20		15.4	7.26	2082	7.57	- 17入	0
16.20	1.0	15.4	7.20	2083	4.30	-174	0
	(gpm/htz) /30 /6.20 /6.26 /6.26	(gpm/htz) Volume 16.20 16.26 16.26	(gpm/htz) Volume (°C) 15.5 16.26 15.4 16.26 15.4	(gpm/htz) Volume (°C) units) 15.5 7.09 16.26 15.4 7.19 16.26 15.4 7.26	(gpm/htz) Volume (°C) units) (µmhos/cm) 150 15.5 7.09 2105 16.26 15.4 7.19 20.95 16.26 15.4 7.26 20.82	(gpm/htz) Volume (°C) units) (µmhos/cm) (NTU) 150 16.20 15.5 7.09 2105 14.15 16.26 15.4 7.19 20.95 14.1334 16.26 15.4 7.26 20.82 7.53	Purge Rate (gpm/htz) Cumulative Volume Temp. (°C) pH (std units) Conduct. (μmhos/cm) Turb. (NTU) Δε/ (NTU) 15.20 15.5 7.09 2105 14.15 -153 16.26 15.4 7.19 2095 14.15 -158 16.26 15.4 7.26 2082 7.53 -172

SAMPINO AT 1040/11-30-01

Sample Point ID: PZ-107
Sample Matrix: 6 W
✓ Grab () Composite
Cond. of seal: PGood () Cracked% () None () Buried
Cond. of prot. casing/riser: () Unlocked
s:/ % LEL:/
es(ppm):
//-30 c i
Date/Time Completed: #3-11-304 /3/0
Riser Diameter,Inches: 2. 0
Elevation, G/W MSL:
Method of Well Purge:
Dedicated: Ø/ N
Purged To Dryness: Y / (N)
FinishClear
Other 0

	WL			18			Other	00
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	(mu)	MUZ
1300	9.60		1.7.5	7.20	2140	10.82	-80	0
1305	9,60		13.5	7.59	2177	5,32	-115	0
1310	9.60	1.0	13.5	7.60	2190	4.09	-116	0
			1					

SAMPLES AT 1310 ON 11-30-01 PS INT.

Facility:	ARCH		Sample	Point ID:	QO	-2	
Field Personn	el: P. Liff	14 /10	Sample	Matrix: _		ace WATE	<u>12</u> 1
SAMPLING IN	IFORMATIO	N:			A∳GRAB (1	COMPOSITE	
Date/Time:_/	2-3-01/11	40	Water L	evel @ Sa	ımpling, F	eet:	<u>-</u>
Method of Sa	ımpling:	MANUAL G.	KAB		Dedica	ated:	Y /🕥
Multi-phased/	layered:	()Yes ⋈No	; If yes; (}light	()heav	ν γ	
SAMPLING D	DATA:			·			-
Time	Temp. (°C)	pH (Std. Units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other OR/	Other ()	
1140	10.6	8.25	27 73	9.64			
INSTRUMENT	CHECK DA	TA:					
Turbidity Seri	al #: <u>379%</u>	<u> 50</u> N	ΓU std. = <u>5.</u> 0	NTU	N	ITU std. = _	ити
pH Serial #: _	60/347	4.0 std	i. = 7	.0 std. =	7.0	10.0 std.=	10.0
Conductivity	Serial #: 📐	<u>/47</u> un	nhos/cm = <u>/4</u>	12	u	mhos/cm =	
GENERAL INF	ORMATION:						
Weather Cond	ditions @ tim	ne of sampling:	SUMMY S	50°			
Sample Chara		. (1		_			
		VATIONS:					
•							
							
I certify that s	ampling proc	cedures were in a	accordance with	all applic	able EPA,	State and Si	te-Specific
Date: 12 3	<u>ο/</u> Βγ: <u>/</u>	I Lite	Compa	م: <u>ک</u>	7		

Facility: A	RCH		Sample	Point ID:	_ Qo	-251	
Field Personn	el: <i>P.Li4</i>	1. /TB	Sample	Matrix: _	SULA	COMPOSITE	<u>. </u>
SAMPLING IN	IFORMATIO	N:			XIGRAB (COMPOSITE	
Date/Time: 1	2-3-011	1155	Water L	evel @ Sa	ampling, F	eet:	
Method of Sa	ımpling:	SS BALLER	·		Dedica	ated:	Y /(N)
Multi-phased/	layered:	(IYes K)No	; If yes; (light	()hear	vy	
SAMPLING D	DATA:						
Time	Temp. (°C)	pH (Std. Units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other	Other ()	
120011	8.9	7.84	691	7.11.50	68		
1155							
pH Serial #: _ Conductivity : GENERAL INF	al #: <u>379</u> 60/347 Serial #: CORMATION ditions @ tin	4.0 std 4.0 std /// un : ne of sampling:	nhos/cm = <u>/</u> /	7.0 std. =	7.0	10.0 std. = .	10.0
COMMENTS	AND OBSER	VATIONS:					
I certify that s protocols.	ampling prod	cedures were in a	accordance with	n all applic	able EPA,	State and Site	e-Specific
Date: 1 <u>3</u> <u>3</u>	<u>01</u> By: <u>≠</u>	I dear	Compa	ny:	572		

Facility: HKC	<i>[]</i>		Sample	Point ID:	_ 6/3	- 4	
Field Personnel:	PAUL	L. 444/TB	Sample	Matrix: _	GW	<u>/</u>	_
SAMPLING INF	ORMATIO	N:	·		DIGRAB ()	COMPOSITE	
Date/Time: 12-	3-0/ 11	15	Water L	evel @ Sa	ampling, F	ampling, Feet:	
Method of Sam	pling:	55 Bucket			Dedica	ated:	Y / (N)
Multi-phased/lay	yered:	()Yes MNo	; If yes; (llight	()heav	vγ	
SAMPLING DA	TA:			·			1
Time	Temp. (°C)	pH (Std. Units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other	Other ()	
	9.7	8.19	1632	2.43	2013		
1115							
INSTRUMENT C	HECK DA	TA:					
Turbidity Serial	#: <u>3794</u>	<u>۲ محک</u> ۱۸۱	ΓU std. = <u>ડ</u> ο	NTU	N	ITU std. = _	NTU
pH Serial #:6	601347	4.0 std	l. = 7	.0 std. =	7.0	10.0 std.=	10.0
Conductivity Se	erial #: 🜙	<u>/47</u> un	nhos/cm = <u>/4</u>	<u> </u>	u	mhos/cm =	
GENERAL INFO	RMATION:	:					
Weather Condit	ions @ tim	ne of sampling:	SUARY.	50°			
Sample Charact	terisitics:	cler					
COMMENTS AN	ND OBSER	VATIONS:					
			<u> </u>				
			_				
I certify that san	mpling proc	cedures were in a	accordance with	all applic	able EPA,	State and Si	te-Specific
Date: 121310/	Вү: <u>Ж</u>	el Zou	Compa	ny:	77		

Facility: _	ARCH	-	Sa	mple Point I	D: <u>W-2</u>	FOR B	-3	
Field Perso	onnel: <u>PL</u> /	TB	Sa	ımple Matrix	: <u>6</u> w			
MONITOR	ING WELL INST	PECTION:			XIGrab () Co	emposite		
Date/Time	11-29-01	1 1155	Co	ond. of seal:		() Cracke () Buried		
Prot. casir	ng/riser height:	*	Co	and, of prot.	casing/riser: ()			
If prot. ca	sing; depth to r	iser below:				Loose () Damaged		unt
Gas Meter	Calibration/Re	eading):	% Gas: _		% LEL: _			
Vol. Org N	Meter (Calibratio	on/Reading):	Volatiles	ppm):				
PURGE IN	FORMATION:	12						
Date / Tim	ne Initiated:	121 1-29-01/ 120		ate/Time Cor	mpleted: 11-2	29-01/	1225	
Surf. Mea	s. Pt.: () Prot.	Casing 💢 Rise	er Ri	ser Diamete	,Inches: 2.	0		
Initial Wat	er Level, Feet:	13.00	EI	evation, G/V	v MSL:		<u>-</u>	
Well Total	Depth, Feet:	17.20	м	ethod of We	ell Purge: Per	stelder 1	PUMP	
One (1) Ri	iser Volume, Ga	al:	ם	edicated:	Y / (Ð		
Total Volu	ıme Purged, Ga	l:	Pı	urged To Dry	yness: Y / <i>(</i> (Ď		
		Start St To			_			
	ATA: (if applica							
							Other	
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	(<u>mu</u>)	MS
1215	13.40	0	14.3	7.97	299	80.1	88	0
RZO	14.90		14.2	8.01	299	85.2	76	0
1225	15.71	1.0	14.2	8.10	299	87.3	70	0

Pursed TO Almost DRY AND SAME

PAGE 1 OF 2 SAMPILI AT 1225 /11-29-01 PAI JUL.

Facility: ARCH			Sa	mple Point l	D: <u>W-3</u>	W-3 FOR B-4				
Field Personnel: PL/TB				mple Matrix	atrix: 6 C					
MONITOR	ING WELL INS	PECTION:			∭Grab () C	omposite				
Date/Time	11-29-01	1 1100	Co	end. of seal:		d() Good () Cracked% () None () Buried				
	ng/riser height:	riser below:		ind. of prot.		Unlocked Loose () Damaged	Flush Mo	unt		
					% LEL: _			-		
	(Calibration/Re	-								
		on/Reading):	Volatiles(ppm):						
PURGE IN	FORMATION:									
Date / Tim	e Initiated:	1-29-01 1 1105	Da	ite/Time Cor	mpleted: <u>//-2</u>	9-61 111	20			
Surf. Meas	s. Pt.: 👏 Prot.	Casing & Rise	er Ris	ser Diameter	,Inches: 2.	0				
Initial Wat	er Level, Feet:	9.00	Ele	evation, G/M	/ MSL:					
Well Total	Depth, Feet:	15.37 T.o.	P. Me	ethod of We	Il Purge: Peru	static Pu	حر س			
		al:		edicated:	Y / d	\mathcal{D}				
		al: 1.0			ness: Y /(1	_				
	_			_						
Purge Obs	ervations:	Start_ Clear	<u> </u>	_Finishc	114-					
PURGE DA	ATA: (if applica	ble)	T		=_ =	, ————		1		
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other <u>のペ</u> <u>(Mン</u>)	00 M5/L		
11 10	9.30		13.1	8.30	248	15.75	79	0		
1115	9.35		13,1	8.20	248	14.19	50	0		
1120	9.41	1.0	13.1	8.12	248	13.01	46	6		
					,					

SAMPLES AT 1120 PAGE 1 OF 2

3.86

2.11

0

74

74

FIELD OBSERVATIONS

Facility: _	ARCH		Sa	Sample Point ID: W-4 For B-5					
Field Perso	onnel: PL	PETP	Sa	Sample Matrix: 6W					
MONITORI	ING WELL INSI	PECTION:			(XGrab () Co	amposite			
Date/Time	11-29-01	1 1010	Co	Cond. of seal: Good () Cracked% () None () Buried					
Prot. casin	g/riser height:	.—	Co	nd. of prot.	casing/riser: ()				
If prot. cas	sing; depth to	riser below:			* *	Loose () Damaged			
Gas Meter	(Calibration/Re	eading):	% Gas: _	- , -	% LEL: _				
Vol. Org M	feter (Calibratio	on/Reading):	Volatiles(ppm):	_,_				
	ORMATION:								
Date / Tim	e Initiated:	1-29-61/1015	Da	ite/Time Co	mpleted: 11-2	9-0/1/0	075		
Surf. Meas	s. Pt.: () Prot.	Casing K Rise	er Ri:	ser Diamete	r,Inches:	. 0			
Initial Wate	er Level, Feet:	4 32	Ele	evation, G/V	v MSL:				
Well Total	Depth, Feet:	14.72 T.	<u>o</u> .P M	ethod of We	ell Purge: <u>Perish</u>	ilie fun	. P	.	
One (1) Ris	ser Volume, G	al:	De	edicated:	Y / 6	D			
		al:		irged To Dr	yness: Y/A	D			
		Start Cler			_				
	TA: (if applica								
Time	ωL Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct. (µmhos/cm)	Turb. (NTU)	Other OR (me)	1	
16-76	4.32	yft	12.4	7.73	1968	7.27	93	-	
1025	4.32		12.2	7.72	1460	5.65	81	6	

12.1

12.0

2.0

4.32

4.32

1030

1035

SAMPINAT 1015 ON 11-29-01 Pl LUTE

7.73

7.75

1946

1940

Appendix B

Well Trend Data

70,000

- 000'09

- 000,03

40,000

CONCENTRATION (ug/L)

Jan-02

_ -- ა6-იგს

10,000

20,000

30,000

PZ-103

PZ-104