SURFACE WATER AND GROUNDWATER MONITORING PROGRAM SPRING 2003 MONITORING REPORT

ARCH CHEMICALS
ROCHESTER PLANT SITE
ROCHESTER, NEW YORK

ARCH CHEMICALS, INC. CHARLESTON, TENNESSEE

AUGUST 2003

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM SPRING 2003 MONITORING REPORT

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

Prepared by

MACTEC Engineering & Consulting, Inc. Portland, Maine

for

ARCH CHEMICALS, INC. Charleston, Tennessee

August 2003

This document was prepared for the sole use of Arch Chemicals, Inc., the only intended beneficiary(ies) of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering & Consulting, Inc.

This document meets standards prescribed in project planning documents and has been properly reviewed by qualified professionals.

Nelson M. Breton, C.G.

Project Geologist

Jeffrey E/Brandow, P.E. Quality Control Reviewer

TABLE OF CONTENTS

<u>Page</u>

Execut	Executive Summary 1								
1.0	Introdu	uction		2					
2.0	Sampl	e Collec	ction and Analysis	2					
	2.1	Ground	dwater						
	2.2	Surfac	e Water	2					
	2.3	Analyti	ical Procedures	3					
	2.4	Quality	Quality Control						
3.0	Analyt	ical Res	sults	4					
	dwater	4							
		3.1.1	Chloropyridines	4					
		3.1.2	Selected VOCs	4					
	3.2	Surfac	e Water	5					
		3.2.1	Quarry	5					
		3.2.2	Barge Canal	6					
4.0	Extrac	tion Sy	stem Performance and Maintenance	6					
5.0	Other	Issues		6					
6.0	Next N	Monitori	ng Event	6					
APPE	NDICE	S							
Apper	ndix A		Groundwater Field Sampling Data Sheets						
Apper	ndix B		Well Trend Data						
Apper	ndix C		Re-sampling of Wells PW-11, PZ-103, and BR-106,	2/17/03					

LIST OF FIGURES

Figure 1	Off-Site Groundwater Monitoring Well Locations
Figure 2	On-Site Monitoring Well Locations
Figure 3	Spring 2003 Overburden Groundwater Interpreted Piezometric Contours
Figure 4	Spring 2003 Bedrock Groundwater Interpreted Piezometric Contours
Figure 5	Spring 2003 Deep Bedrock Groundwater Interpreted Piezometric Contours
Figure 6	Sample Locations - Erie Barge Canal
Figure 7	Sample Locations – Dolomite Products Quarry
Figure 8	Spring 2003 Selected Chloropyridine Concentration Contours for Groundwater
Figure 9	Spring 2003 Selected Volatile Organic Compound Concentration Contours for Groundwater

LIST OF TABLES

Table 1	Spring 2003 Sampling and Analytical Program
Table 2	Spring 2003 Groundwater Monitoring Results - Chloropyridines
Table 3	Spring 2003 Groundwater Monitoring Results – Volatile Organic Compounds
Table 4	Comparison of Spring 2003 Chloropyridines and Volatile Organic Concentrations in Groundwater to Previous Results
Table 5	Spring 2003 Canal/Quarry Monitoring Results
Table 6	Extraction Well Weekly Flow Measurements – December 2002 through May 2003
Table 7	Mass Removal Summary, Period: 11/30/02 - 5/31/03
Table 8	2003 Sampling Schedule

EXECUTIVE SUMMARY

This monitoring report presents the results of an on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility. Results in this report include surface and groundwater samples collected from May 27, 2003 through June 4, 2003.

During this monitoring event, samples from a total of 43 groundwater monitoring or pumping wells and three locations associated with the Dolomite Products Quarry seep and outfall were collected and analyzed by Severn Trent Laboratories in Amherst, New York.

As in prior reports, groundwater monitoring results were compared with previous average concentrations for the on-site and off-site monitoring wells. Out of the 46 total monitoring locations sampled for chloropyridines, 10 had contaminant concentrations exceeding their respective 5-year prior averages. For the 33 monitoring locations sampled for volatile organic compounds, 13 had concentrations exceeding their 5-year prior averages. Contaminant contour plots are generally consistent with past observations.

Samples from the quarry seep and outfall remained below historical averages. No chloropyridines or volatile organic compounds were detected in the sample collected from the Erie Barge Canal.

During the period November 30, 2002 through May 31, 2003, the on-site groundwater extraction system pumped approximately 5.8 million gallons of groundwater to the on-site treatment system, containing an estimated 414 pounds of chloropyridines and 162 pounds of target volatile organic compounds. The system experienced a number of operational problems during the period, including reduced yields from wells BR-6A and PW-10, malfunctioning meters at PW-11 and PW-12, heavy precipitate build-up in well BR-6A that caused clogging in the discharge line, and frozen discharge lines during February and March 2003. Pump replacements were required in wells PW-12 and BR-9.

Well rehabilitation is scheduled during the summer of 2003 for all on-site pumping wells.

Arch Chemicals expects to sign a new Administrative Order on Consent in the near future that will establish additional remedial measures for the site. These measures will include two additional bedrock extraction wells, an overburden groundwater interceptor trench in the southeast corner of the plant, and other actions as described in the site's Record of Decision, issued on March 29, 2002.

1.0 INTRODUCTION

In accordance with the Order on Consent executed between Olin Corporation and the New York State Department of Environmental Conservation (NYSDEC), effective August 23, 1993 and transferred to Arch Chemicals, Inc. (Arch) on February 15, 1999, Arch has completed a Remedial Investigation and Feasibility Study at its facility on McKee Road in Rochester, New York. As part of this program, Arch conducts twice-yearly monitoring events consisting of sampling and chemical analysis of groundwater and surface water in the vicinity of the Rochester facility.

The Spring 2003 sampling event included the collection and analysis of a total of forty-six groundwater, surface water, and seep samples from off-site and on-site locations. Samples were collected from May 27 through June 4, 2003, for analysis of selected chloropyridines and volatile organic compounds (VOCs).

This report presents the full results of the Spring 2003 monitoring event.

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 GROUNDWATER

Groundwater samples were collected from off-site wells, on-site wells and piezometers for analysis of selected chloropyridines (2-chloropyridine, 2,6-dichloropyridine, 3-chloropyridine, 4-chloropyridine, pyridine, and p-fluoroaniline). In addition, certain well samples were analyzed for target compound list (TCL) VOCs in accordance with the approved monitoring schedule. Samples were collected by Severn Trent Laboratories and transported to their laboratory in Amherst, New York for analysis. The off-site and on-site locations of these sampling points are shown in Figures 1 and 2, respectively. Table 1 lists the wells that were sampled and the requested analyses. Groundwater sampling data sheets are provided in Appendix A.

Groundwater was collected with the low flow/low stress purging technique from most of the wells using bladder or peristaltic pumps. Samples from pumping wells (BR-5A, BR-6A, BR-9, PW10, PW11, and PW12) were collected from the discharge lines.

Groundwater piezometric elevations were measured on May 27, 2003. Piezometric contour maps were constructed for each water-bearing zone (overburden, bedrock, and deep bedrock) and are presented in Figures 3, 4, and 5.

One overburden monitoring well scheduled for sampling, B-9 (located along the southern boundary of the plant approximately 80 feet east of pumping well BR-6A), has been destroyed. There are two other overburden monitoring wells within 70 feet of former well B-9, so the loss of this well is not considered critical.

2.2 SURFACE WATER

Surface water and quarry seep samples were collected as part of the on-going monitoring program for the Arch Rochester site. The location of the quarry and its outfall in relation to

the site is shown on Figure 6. Samples of the quarry seep, the quarry outfall, and the Barge Canal were collected by Severn Trent Laboratories on May 28, 2003. Samples were analyzed for selected chloropyridines and TCL VOCs. The three locations sampled during this event are listed below and are shown on Figure 7.

<u>Canal Sample</u>

QO-2S1 (100 ft south of QO-2)

Quarry Samples
QS-4 (Quarry Seep)
QO-2 (Quarry Outfall)

2.3 ANALYTICAL PROCEDURES

The analytical procedures, data review findings, and validated data for this groundwater monitoring event are discussed in the following paragraphs.

Samples were analyzed for the Arch suite of selected chloropyridines and TCL VOCs by USEPA SW-846 Methods 8270C and 8260B, respectively. The reporting limits for the chloropyridines and VOCs are 10 micrograms per liter (μ g/L) and 5 to 25 μ g/L, respectively, for undiluted samples.

2.4 QUALITY CONTROL

All laboratory analytical results were reviewed and qualified following USEPA Region II modifications to "Laboratory Data Validation Functional Guidelines for Validating Organic Analyses" (USEPA, September 1994). Analytical results were evaluated for the following parameters:

Collection and Preservation*
Holding Times*
Surrogate Recoveries
Blanks*
Duplicates*
Laboratory Control Samples*
Matrix Spike/Matrix Spike Duplicates

With the exception of the items discussed below, results are determined to be usable without qualifying statements as reported by the laboratory.

<u>Surrogates Recoveries.</u> One SVOC surrogate standard (2-fluorobiphenyl) recovery was below the QC limits in sample PZ-106 and (p-Terphenyl-d14) in sample BR-116D. Validation guidelines indicate corrective action should be taken by the laboratory only if two or more SVOC surrogates are outside QC limits, therefore, since all other surrogate recoveries for PZ-101 and BR-116D were within QC limits, no qualifications were necessary.

Matrix Spike/Matrix Spike Duplicates. The matrix spike duplicate (MSD) percent recoveries and relative percent differences (RPD) for 2-chloropyridine and 2,6-dichloropyridine exceeds the control limits in sample BR-7A. The results for 2-

^{* -} all criteria were met for this parameter

chloropyridine and 2,6-dichloropyridine in the original unspiked sample were qualified estimated (J). The matrix spike (MS) percent recovery for 2-chloropyridine in sample B-7 was less than ten percent. The RPDs for 2-chloropyridine and 2,6-dichloropyridine in sample B-7 exceed the control limits. The results for 2-chloropyridine and 2,6-dichloropyridine in the original unspiked sample were qualified estimated (J).

3.0 ANALYTICAL RESULTS

3.1 GROUNDWATER

The validated results from the Spring 2003 groundwater monitoring event are provided in Tables 2 and 3. Table 4 provides a comparison of the Spring 2003 analytical results for selected chloropyridines and VOCs in representative wells to mean concentrations of the prior five years (Spring 1998 through Fall 2002). Long term trends for both selected chloropyridines and VOCs are also presented as time-series plots for representative wells in Appendix B. A summary of the analytical findings is presented below by parameter class.

3.1.1 Chloropyridines

<u>On-Site.</u> Chloropyridines were detected above sample quantitation limits in each of the eighteen on-site wells sampled in the Spring 2003 event. Concentrations of chloropyridines ranged from 133 micrograms per liter (μ g/L) to 170,000 μ g/L (sum of all chloropyridine isomer concentrations). Pumping wells BR-5A and BR-6A, along with monitoring wells B-7, E-1, E-3 and S-3, show selected chloropyridines concentrations above the mean from monitoring events over the previous five years.

Off-Site. Chloropyridines were detected above sample quantitation limits in eighteen of the twenty-five off-site wells that were sampled. Concentrations of total selected chloropyridines ranged from non-detect to approximately 10,000 μg/L. Four of the off-site wells (BR-114, BR-117D, BR-118D, and NESS-W) contained total chloropyridines concentrations in exceedence of their 5-year prior means.

Concentration Contours. Chloropyridine distribution in groundwater is shown as a set of concentration contours on Figure 8. The contours were developed using data from both overburden and bedrock monitoring wells. As shown on Figure 8, and consistent with previous sampling rounds, total chloropyridine concentrations exceeding 1,000 μ g/L extend both east and west of the Site property boundary.

3.1.2 Selected VOCs.

<u>On-Site.</u> Concentrations of VOCs ranged from non-detect to 1,360,000 μg/L for the sum of several site-related contaminants (carbon tetrachloride, chloroform, methylene chloride, tetrachloroethene, and trichloroethene). Eight of the eighteen on-site wells sampled in the Spring 2003 event (BR-3, BR-5A, BR-7A, BR-8, PW-12, PZ-105, PZ-106, and PZ-107) had VOC concentrations greater than their 5-year prior mean. In addition to the selected VOCs, other notable constituents detected in on-site wells include chlorobenzene (in 15

out of 18 wells), benzene (10 of 18), toluene (9 of 18), carbon disulfide (8 of 18), bromoform (5 of 18) and vinyl chloride (4 of 18).

Off-Site. Selected VOCs were detected in ten of the twelve off-site wells sampled for VOCs in the Spring 2003 event. Total concentrations of selected VOCs ranged from non-detect to approximately 7,600 ug/L. Five of the twelve off-site wells had selected VOC concentrations above their prior 5-year mean. In addition to the selected VOCs, other notable constituents detected in off-site wells include benzene (in 8 out of 12 wells), chlorobenzene (7 of 12), and toluene (3 of 12).

Concentration Contours. The distribution of selected VOCs in groundwater is shown as a set of concentration contours on Figure 9. These contours were developed using both overburden and bedrock groundwater data. As noted in the Fall 2002 monitoring event, the VOC contours show a limited extent of off-site migration in shallow bedrock groundwater from the southwest portion of the plant. In the Fall 2002 event, a significant increase in VOC concentrations was observed in this area in wells PZ-103 and PW-11. In February 2003, Arch re-sampled those wells (and well BR-106, which is immediately downgradient of PZ-103) for VOCs only. The re-sampling confirmed the elevated concentrations (see Appendix C). The Spring 2003 data from each of these three wells now shows VOC levels declining rapidly toward their previous levels. These observations support the decision to install an additional bedrock extraction well in this portion of the site as part of the selected remedial action. The concentrations and distribution of VOCs over the remainder of the site resemble those from recent prior sampling events.

3.2 SURFACE WATER

Results from the Spring 2003 canal and quarry monitoring event are presented in Table 5.

3.2.1 Quarry

For samples collected from the Dolomite products quarry seep (QS-4) and discharge outfall (QO-2), the chloropyridine analyses yielded the following results:

	LOCATION	QO-2	QS-4
PARAMETER1			
pyridine		ND	ND
2,6-Dichloropyridine		ND	ND
2-Chloropyridine		6 J	260
3-Chloropyridine		ND	ND
p-Fluoroanaline		ND	ND

Notes:

- J = The positive result reported for this analyte is a quantitative estimate (below sample quantitation limit, but above method detection limit).
- 1 = Concentrations reported in micrograms per liter (µg/L)

These chloropyridine concentrations are below historical averages.

No VOCs were detected in either of the quarry samples.

3.2.2 Barge Canal

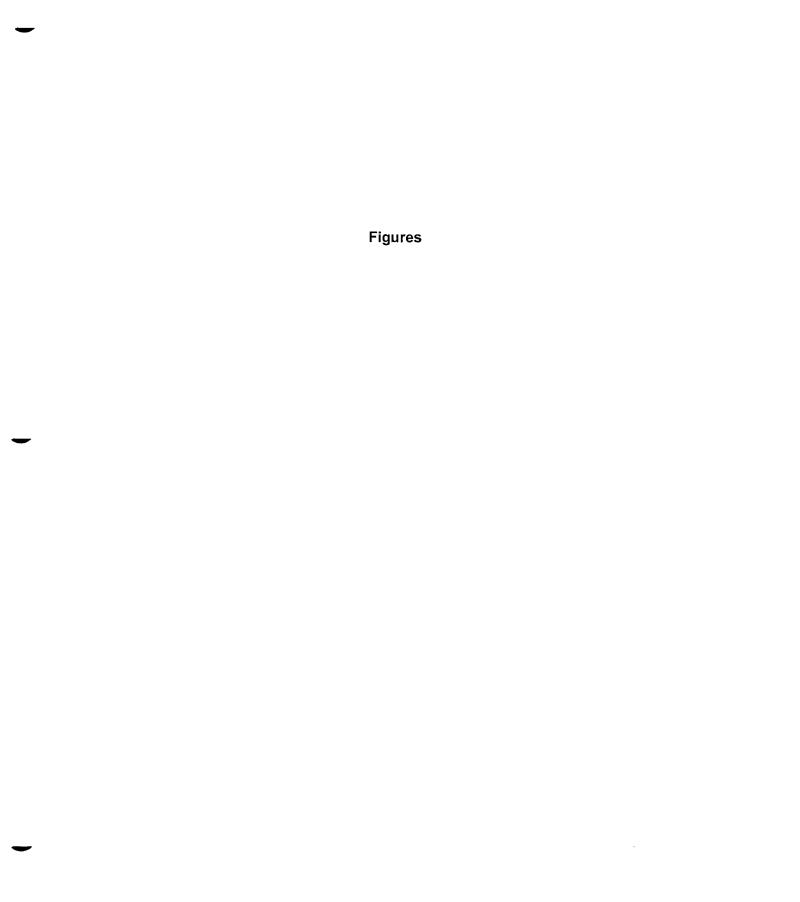
No chloropyridines or VOCs were detected in QO-2S1, the only sample collected from the Erie Barge Canal.

4.0 EXTRACTION SYSTEM PERFORMANCE AND MAINTENANCE

Table 6 is a summary of the system flow measurements for the seven extraction wells from December 2002 through May 2003. The total volume pumped during the six-month period is approximately 5.8 million gallons. The system experienced a number of operational problems during the period, including reduced yields from wells BR-6A and PW-10, malfunctioning meters at PW-11 and PW-12, heavy precipitate build-up in well BR-6A that caused clogging in the discharge line, and frozen discharge lines during February and March 2003. Pump replacements were required in wells PW-12 and BR-9.

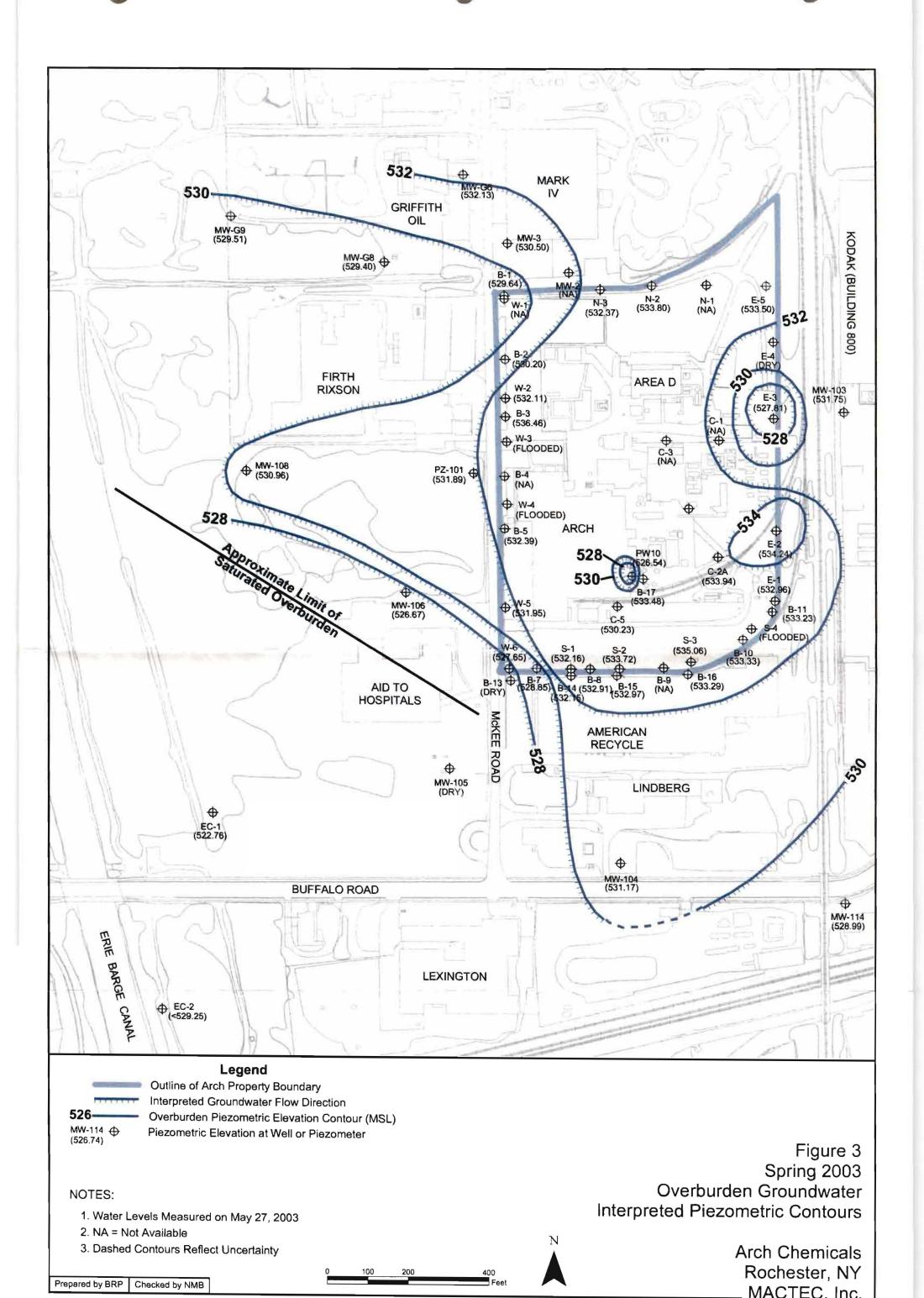
Well rehabilitation is scheduled during the summer of 2003 for all on-site pumping wells.

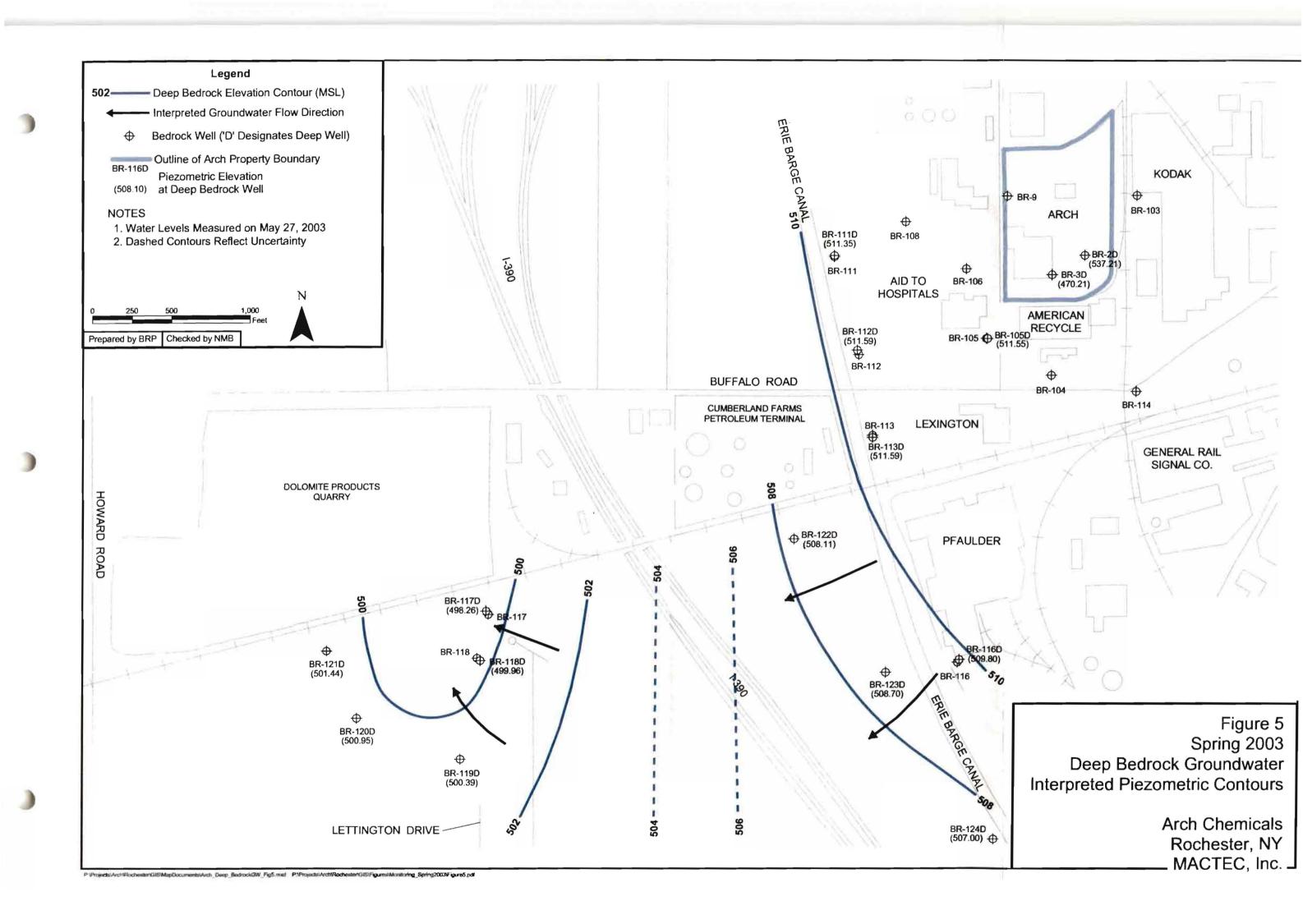
Table 7 provides a calculation of mass removal rates since the previous groundwater monitoring event (i.e., from December 2002 through May 2003). Arch estimates that approximately 162 pounds of target VOCs and 414 pounds of chloropyridine compounds were removed by the groundwater extraction system and treated by the plant's activated carbon adsorption units over that time period.

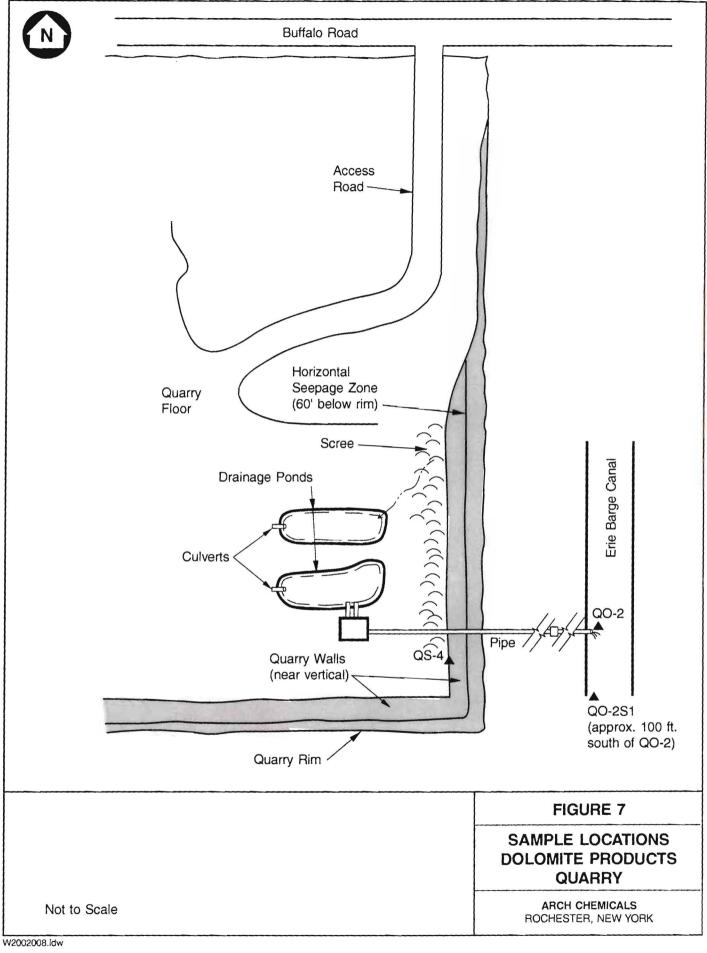

5.0 OTHER ISSUES

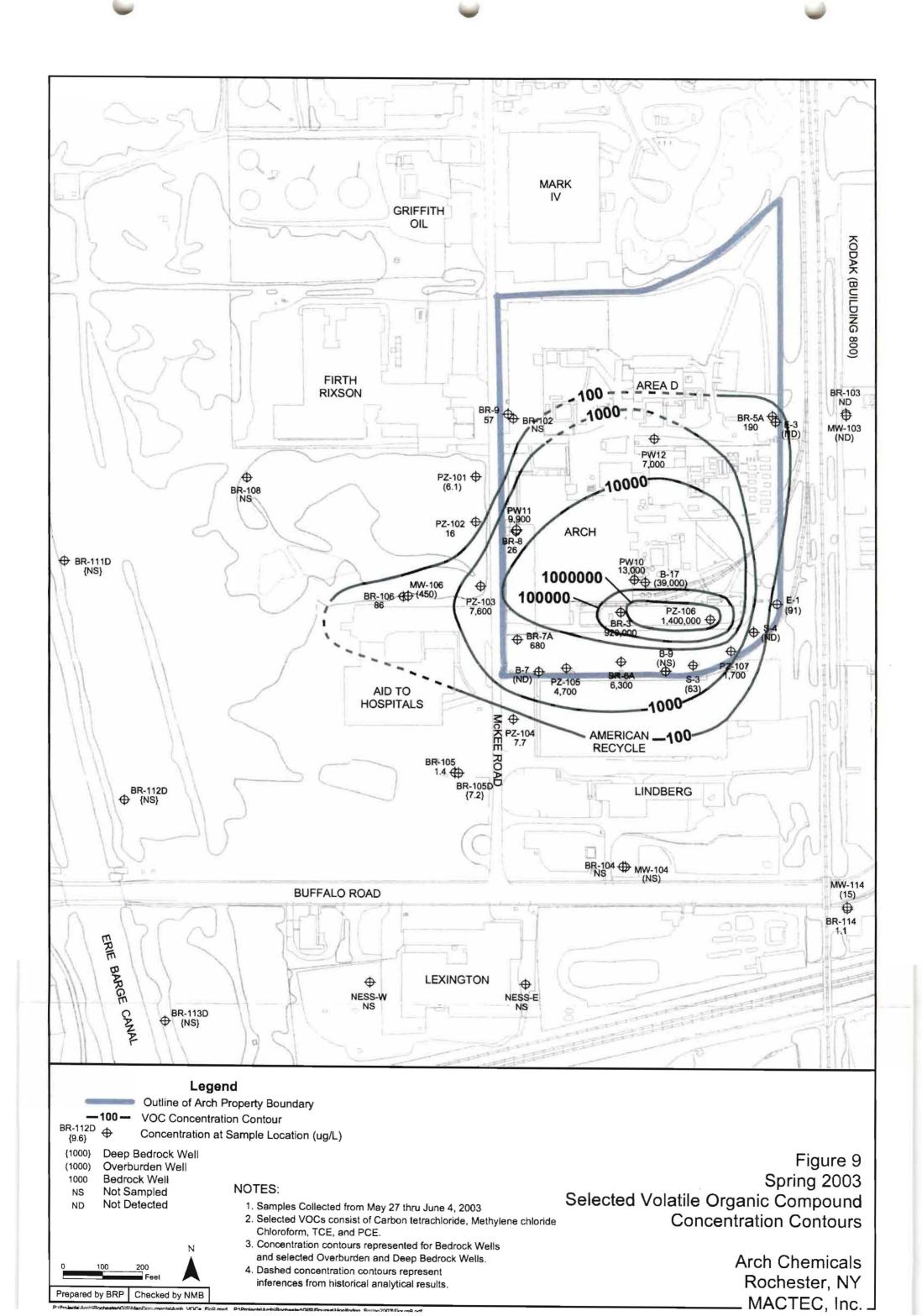
Arch Chemicals expects to sign a new Administrative Order on Consent in the near future that will establish requirements for additional remedial measures at the site. These measures will include a new bedrock extraction well along the western plant property boundary and an overburden groundwater interceptor trench in the southeast corner of the plant that are expected to improve groundwater capture in those areas of the site. In addition, an off-site extraction well will be installed near the southeast corner of the Dolomite Products quarry to capture low levels of chloropyridines currently discharging from a seepage zone in the quarry wall. These and other new remedial measures are documented in the site Record of Decision, which was finalized on March 29, 2002.

6.0 NEXT MONITORING EVENT


The next monitoring event will occur in November 2003 and will include groundwater, surface water, and seep sampling.


Table 8 shows the current monitoring program for the Arch Rochester site.




1		

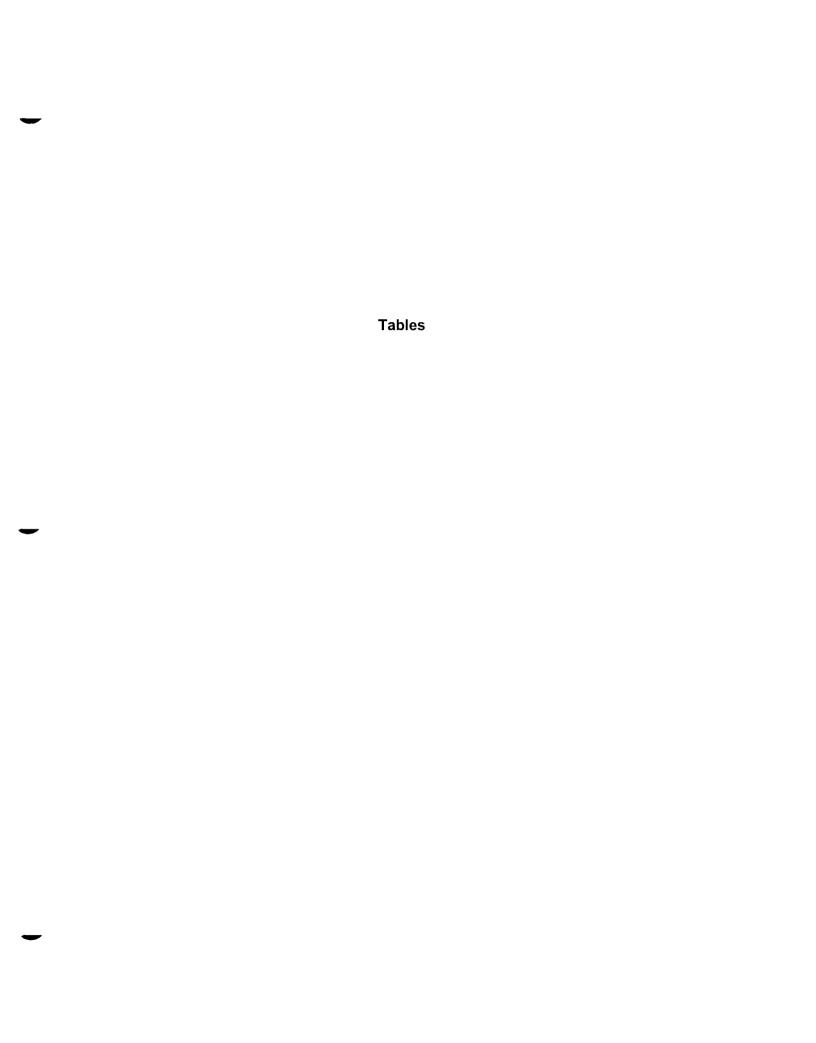


TABLE 1 SPRING 2003 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM

ARCH CHEMICALS, INC ROCHESTER, NEW YORK

				PYRIDINES1	VOCs ²
SITE / AREA	WELL / POINT	DATE	QC TYPE		
AID TO HOSPITALS	BR-106	6/2/2003	Sample	X	X
	BR-108	6/3/2003	Sample	X	
	MW-106	6/2/2003	Sample	X	Х
	PZ-101	5/29/2003	Sample	Х	Х
	P Z -102	5/29/2003	Sample	Х	X
	PZ-103	5/29/2003	Sample	<u>x</u>	Х
AMERICAN RECYCLE MANUF.					
(58 MCKEE ROAD)	PZ-104	5/29/2003	_	X	X
ARCH ROCHESTER	B-17	5/28/2003	Sample	X	Χ
	B-7	6/4/2003	Sample	Х	Х
	BR-3	5/28/2003	Sample	Х	Х
	BR-5A	6/3/2003	Sample	X	Х
	BR-6A	6/4/2003	Sample	X	Х
	BR-7A	6/3/2003	Sample	X	Х
	BR-8	6/4/2003	Duplicate	Х	Х
	BR-8	6/4/2003	Sample	Х	Х
	BR-9	6/3/2003	Sample	X	X
	E-1	5/30/2003		X	Х
	E-3	5/30/2003		X	Х
	PW10	6/4/2003		X	Х
	PW11	6/3/2003		X	Х
	PW12	6/3/2003		X	Х
	P Z -105	5/28/2003		X	X
	PZ-106	5/28/2003		X	X
	PZ-107	5/28/2003	· · · · · · · · · · · · · · · · · · ·	X	X
	S-3	5/30/2003	<u> </u>	X	X
	S-4	5/30/2003	· ·	X	X
DOLOMITE PRODUCTS, INC.	BR-117D	5/27/2003	· · · · · · · · · · · · · · · · · · ·	X	 -
	BR-118D	5/27/2003		X	
	QS-4	5/28/2003		X	X
EASTMAN KODAK (FORMERLY	BR-103	5/30/2003		$\frac{x}{x}$	X
GERBER PROPERTY)	MW-103	5/30/2003		X	X
ERIE BARGE CANAL	BR-112D	6/4/2003		X	
	BR-113D	6/4/2003		X	
	BR-122D	5/28/2003		X	
	BR-123D	5/28/2003		X	
	QO-2	5/28/2003	Sample	X	Х
	QO-2S1	5/28/2003		X	$\frac{\lambda}{X}$
JACKSON WELDING	BR-114	6/4/2003		X	X
	MW-114		Sample	x	X
LEXINGTON MACHINING	NESS-E	5/29/2003		X	^
	NESS-W	5/29/2003		$\frac{\lambda}{x}$	
PFAUDLER, INC.	BR-116	5/28/2003		X	
TAODELL, INC.	BR-116D	5/28/2003	<u> </u>	$\frac{\hat{x}}{x}$	
RG & E RIGHT OF WAY	BR-104	5/30/2003		X	•
NO & ENIGHT OF WAT	BR-105		Sample	X	Х
	BR-105D		Sample	X	
	MW-104		Sample	X	X

Notes:

- 1) Pyridines analysis by USEPA SW-846 Method 8270C.
- 2) VOCs analysis by USEPA SW-846 Method 8260B.

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-17	B-7	BR-103	BR-104	BR-105	BR-105D	BR-106	BR-108	BR-112D	BR-113D
SAMPLE DATE:	05/28/03	06/04/03	05/30/03	05/30/03	06/02/03	06/02/03	06/02/03	06/03/03	06/04/03	06/04/03
QC TYPE:	N	N	N	N	N	N	N	N	N	N
BY SW-846 Method 8270C (μg/L)						-				
2,6-Dichloropyridine	40000 U	1300 J	9 U	9 U	500 U	400 U	2500 U	10 U	9 U	9 U
2-Chloropyridine	76000	7800 J	9 U_	3 J	950	1400	6900	10 U	20	54
3-Chloropyridine	40000 U	200 U	9 U	9 U	500 U	400 U	2500 U	10 U	9 U	9 U
4-Chloropyridine	40000 U	200 U	9 U	9 U	500 U	400 U	2500 U	10 U	9 U	9 U
p-Fluoroaniline	40000 U	200 U	9 U	9 U	500 U	400 U	2500 U	10 U	9 U	9 U
Pyridine	100000 U	500 U	23 U	24 U	1200 U	1000 U	6200 U	24 U	24 U	24 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-114	BR-116	BR-116D	BR-117D	BR-118D	BR-122D	BR-123D	BR-3	BR-5A	BR-6A
SAMPLE DATE:	06/04/03	05/28/03	05/28/03	05/27/03	05/27/03	05/28/03	05/28/03	05/28/03	06/03/03	06/04/03
QC TYPE:	N	N	N	N	N	N	N	N	N	N
BY SW-846 Method 8270C (µg/L)										
2,6-Dichloropyridine	71	10 U	47 U	9 U	9 U	47 U	48 U	25000 U	100	9000
2-Chloropyridine	450	10 U	64	22	140	160	90	110000	710	120000
3-Chloropyridine	42 U	10 U	47 U	9 U	9 U	47 U	48 U	25000 U	49 U	4000
4-Chloropyridine	42 U	10 U	47 U	9 U	9 U	47 U	48 U	25000 U	49 U	4000
p-Fluoroaniline	42 U	10 U	47 U	9 U	9 U	47 U	48 U	25000 U	59	4000 U
Pyridine	100 U	24 U	120 U	24 U	24 U	120 U	120 U	62000 U	120 U	7500 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-7A	BR-8	BR-8	BR-9	E-1	E-3	MW-103	MW-104	MW-106	MW-114
SAMPLE DATE:	06/03/03	06/04/03	06/04/03	06/03/03	05/30/03	05/30/03	05/30/03	05/30/03	06/02/03	06/04/03
QC TYPE:	N	Duplicate	N	N_	N	N	N	N	N	N
BY SW-846 Method 8270C (μg/L)		1								
2,6-Dichloropyridine	5000 U.	500 U	500 U	54	59000	24	9 U	9 U	2500 U	10 U
2-Chloropyridine	11000 J	350 J	330 J	320	110000	150	9 U	9 U	10000	10 U
3-Chloropyridine	5000 U	500 U	500 U	48 U	440	9 U	9 U	9 U	2500 U	10 U
4-Chloropyridine	5000 U	500 U	500 U	48 U	440	9 U	9 U	9 U	2500 U	10 U
p-Fluoroaniline	5000 U	500 U	500 U	48 U	400 U	9 U	9 U	9 U	2500 U	10 U
Pyridine	12000 U	1200 U	1200 U	120 U	1800	23 U	23 U	23 U	6200 U	26 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	NESS-E	NESS-W	PW10	PW11	PW12	PZ-101	PZ-102	PZ-103	PZ-104	PZ-105
SAMPLE DATE:	05/29/03	05/29/03	06/04/03	06/03/03	06/03/03	05/29/03	05/29/03	05/29/03	05/29/03	05/28/03
QC TYPE:	N	N	N	N	N	N	N	N	_ N	N
BY SW-846 Method 8270C (µg/L)										
2,6-Dichloropyridine	47 U	48 U	4900	550	340	50 U	1400	5000 U	500 U	6200 U
2-Chloropyridine	310	540	36000	3700	830	23 J	5400	3800 J	2700	23000
3-Chloropyridine	47 U	48 U	2500 U	250 U	200 U	50 U	1000 U	5000 U	500 U	6200 U
4-Chloropyridine	47 U	48 U	2500 U	250 U	200 U	50 U	1000 U	5000 U	500 U	6200 U
p-Fluoroaniline	47 U	48 U	2500 U	250 U	200 U	50 U	1000 U	5000 U	500 U	6200 U
Pyridine	120 U	88 J	4800 J	620 U	500 U	120 U	2500 U	12000 U	1200 U	16000 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-106		PZ-107		S -3		S-4	
SAMPLE DATE:	05/28/0	3	05/28/0	3	05/30/0	3	05/30/0	3
QC TYPE:	N		N		N		N	
BY SW-846 Method 8270C (µg/L)								
2,6-Dichloropyridine	5500		1000	U	4000		110	
2-Chloropyridine	21000		1800		14000		23	J
3-Chloropyridine	2000	U	1000	U	120		50	U
4-Chloropyridine	2000	U	1000	U	120		50	U
p-Fluoroaniline	2000	U	1000	U	100	U	50	U
Pyridine	5000	U	2500	U	250	U	120	U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

SPRING 2003 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATIO	N: B-17	B-7	BR-103	BR-105	BR-105D	BR-106	BR-114	BR-3	BR-5A	BR-6A	BR-7A
SAMPLE DAT	E: 05/28/03	06/04/03	05/30/03	06/02/03	06/02/03	06/02/03	06/04/03	05/28/03	06/03/03	06/04/03	06/03/03
QC TYF	E: N	N	Ν	N .	Ν	N	N	N	N	N	N_
VOLATILE ORGANIC COMPOUNDS		_									
BY SW-846 Method 8260/5ML (μg/L)										_	
1,1,1-Trichloroethane	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
1,1,2,2-Tetrachloroethane	500 U	5 U	5 U	5 U_	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
1,1,2-Trichloroethane	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
1,1-Dichloroethane	500 U	5 U	5 U	1.3 J	5.7 J	50 U	5 U	25000 U	5 U	120 U	25 U
1,1-Dichloroethene	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
1,2-Dichloroethane	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
1,2-Dichloroethene (total)	1000 U	10 U	7.7 J	77	50 V	100 U	10 U	50000 U	13	250 U	50 U
1,2-Dichloropropane	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
2-Butanone	2500 U	25 U	25 U	25 U	120 U	250 U	25 U	120000 U	25 U	620 U	120 U
2-Hexanone	2500 U	25 U	25 U	25 U	120 U	250 U	25 U	120000 U	25 U	620 U	120 U
4-Methyl-2-pentanone	2500 U	25 U	25 U	25 U	120 U	250 U	25 U	120000 U	25 U_	620 U	120 U
Acetone	2500 U	25 U	25 U	25 U	120 U	250 U	25 U	120000 U	25 U	620 U	120 U
Benzene	500 U	2.6 J	5 U	2.9 J	7.8 J	32 J	6.8	25000 U	11	120 U	47
Bromodichloromethane	500 U	5 U	5 U_	5 U_	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
Bromoform	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 <u>U</u>	40 J	25 U
Bromomethane	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
Carbon disulfide	600	5 U	5 U	5 U	25 U	50 U	5 U	14000 J	5 U	120 U	8.4 J
Carbon tetrachloride	3400	5 U	5 U	5 U	25 U	50 U	5 U	80000	5 U	1600	25 U
Chlorobenzene	270 J	27	5 U	4.9 J	25 U	220	5 U	6700 J	17	66 J	720
Chloroethane	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
Chloroform	32000	5 U	5 U	5 U	7.2 J	86	1.1 J	740000	72	4100	420
Chloromethane	500 U	5 ป_	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
cis-1,3-Dichloropropene	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
Dibromochloromethane	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
Ethylbenzene	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U_	120 U	25 U
Methylene chloride	2200	5 U	5 U	5 U	25 U	50 U	5 U	55000	88	300	260
Styrene	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
Tetrachloroethene	1800	5 U	5 U	5 U	25 U	50 U	5 U	45000	5 U	290	25 U
Toluene	750	5 U	5 U	5 U	25 U	11 J	5 U	18000 J	13	150	77
Total Xylenes	1500 U	15 U	15 U	15 U	75 U	150 U	1.9 J	75000 U	15 U	380 U	75 U
trans-1,3-Dichloropropene	500 U	5 U	5 U	5 U	25 U	50 U	5 U	25000 U	5 U	120 U	25 U
Trichloroethene	500 U	5 U	5 U	1.4 J	25 U	50 U	5 U	25000 U	34	32 J	25 U
Vinyl acetate	2500 U	25 U	25 U	25 U	120 U	250 U	25 U	120000 U	25 U	620 U	120 U
Vinyl chloride	500 U	5 U	4.3 J	23	25 U	50 U	5 U	25000 U	3.8 J	120 U	25 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample; D = Field duplicate.

TABLE 3 SPRING 2003 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

	LOCATION:	BR-8	BR-8	BR-9	E-1	E-3	MW-103	MW-106	MW-114	PW10	PW11	PW12
SA	MPLE DATE:	06/04/03	06/04/03	06/03/03	05/30/03	05/30/03	05/30/03	06/02/03	06/04/03	06/04/03	06/03/03	06/03/03
	QC TYPE:	Duplicate	N	N	N	N	N	N	N	N	N	N
VOLATILE ORGANIC COMPOUNDS												
BY SW-846 Method 8260/5ML (µg/L)												
1,1,1-Trichloroethane		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
1,1,2,2-Tetrachloroethane		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
1,1,2-Trichloroethane		5 U	5 U	20 U	25 U	5 U	5 U	25 ป	5 U_	250 U	250 U	120 U
1,1-Dichloroethane		5 U	5 U	1 4 J	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
1,1-Dichloroethene		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
1,2-Dichloroethane		16	16	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
1,2-Dichloroethene (total)		10 U	10 U	500	50 U	10 U	10 U	50 U	10 U	500 U	500 U	250 U
1,2-Dichloropropane		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
2-Butanone		25 U	25 U	100 U	120 U	25 U	25 U	120 U	25 U	1200 U	1200 U	620 U
2-Hexanone		25 U	25 U	100 U	120 U	25 U	25 U	120 U	25 U	1200 U	1200 U	620 U
4-Methyl-2-pentanone		25 U	25 U	100 U	120 U	25 U	25 U	120 U	25 U	1200 U	1200 U	620 U
Acetone		25 U	25 U	100 U	1000	25 U	25 U	120 U	25 U	1200 U	1200 U	620 U
Benzene		3.4 J	3.3 J	76	25 U	5 U	5 U	44	5 U	250 U	250 U	99 J
Bromodichloromethane		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
Bromoform		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	380	250 U	120 U
Bromomethane		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
Carbon disulfide		5 U	5 U	20 U	21 J	_ 5 U	5 U	25 U	_ 5 U	1100	250 U	510
Carbon tetrachloride		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	3600	250 U	1900
Chlorobenzene		120	120	34	54	5 U	5 U	390	5 U	460	330	560
Chloroethane		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U_	120 U
Chloroform		26	26	19 J	65	5 U	5 U	400	4.4 J	7300	9300	4200
Chloromethane		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
cis-1,3-Dichloropropene		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	_250 U	120 U
Dibromochloromethane		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
Ethylbenzene		5 U	5 U	8.7 J	25 U	5 U	5 U	25 U	5 U	250 U	250 U	43 J
Methylene chloride		5 U	5 U	34	26	5 U	5 U	53	5 U	1600	630	750
Styrene		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
Tetrachloroethene		5 U	5 U	20 U	25 U	5 U	5 U	25 U	3.5 J	660	250 U	160
Toluene		5 U	5 U	7.9 J	25 U	5 U	5 U	33	5 U	220 J	250 U	870
Total Xylenes		15 U	15 U	60 U	75 U	15 U	15 U	75 U	15 U	750 U	750 U	200 J
trans-1,3-Dichloropropene		5 U	5 U	20 U	25 U	5 U	5 U	25 U	5 U	250 U	250 U	120 U
Trichloroethene		5 U	5 U	4.4 J	25 U	5 U	5 U	25 U	6.9	250 U	250 U	120 U
Vinyl acetate		25 U	25 U	100 U	120 U	25 U	25 U	120 U	25 U	1200 U	1200 U	620 U
Vinyl chloride		5 U	5 U_	180	25 U	5 U	5 U	25 U	5 U_	98 J	250 U	120 U_

Notes

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample; D = Field duplicate.

SPRING 2003 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION	: PZ-101	PZ-102	PZ-103	PZ-104	PZ-105	PZ-106	PZ-107	S-3	S-4
SAMPLE DATE	: 05/29/03	05/29/03	05/29/03	05/29/03	05/28/03	05/28/03	05/28/03	05/30/03	05/30/03
QC TYPE	: N	N	N	N	N	N	N	N	N
VOLATILE ORGANIC COMPOUNDS									
BY SW-846 Method 8260/5ML (µg/L)									
1,1,1-Trichloroethane	5 U	25 U	50 U	5 U	25 U	25000 U	5 บ	5 U	25 U
1,1,2,2-Tetrachloroethane	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
1,1,2-Trichloroethane	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
1,1-Dichloroethane	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	3.8 J	25 U
1,1-Dichloroethene	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
1,2-Dichloroethane	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
1,2-Dichloroethene (total)	10 U	50 U	100 U	10 U	50 U	50000 U	10 U	15	50 U
1,2-Dichloropropane	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
2-Butanone	25 U	120 U	250 U	25 U	120 U	120000 U	25 U	25 U	120 U
2-Hexanone	25 U	120 U	250 U	25 U	120 U	120000 U	25 U	25 U	120 U
4-Methyl-2-pentanone	25 U	120 U	250 U	25 U	120 U	120000 U	25 U	25 U	120 U
Acetone	25 U	120 U	250 U	25 U	120 U	120000 U	25 U	25 U	120 U
Benzene	5 U	28	45 J	2.9 J	34	25000 U	_ 3.8 J	14	25 U
Bromodichloromethane	5 U	25 U	50 U	5 U_	25 U	25000 U	5 U	5 U	25 U
Bromoform	5 U	25 U	50 U	4.5 J	160	15000 J	62	5 U	25 U
Bromomethane	5 <u>U</u>	25 U	50 U	5 U	25 U	25000 ∪	5 U	5 U	25 U
Carbon disulfide	5 U	25 U	50 U	5 U	490	140000	140	5 U	25 U
Carbon tetrachloride	5 U	25 U	50 U	6.6	950	130000	680	_ 5[U	25 U
Chlorobenzene	6.2	600	1000	3.7 J	280	25000 U	4.1 J	110	25 U
Chloroethane	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
Chloroform	6.1	16 J	6300	1.1 J	3500	1200000	930	55	25 U
Chloromethane	5 U	25 U	50 U	5U	25 U	25000 U	5 U	5 U	25 U
cis-1,3-Dichloropropene	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
Dibromochloromethane	5 U	25 U	50 U	5 U	13 J	25000 U	4.9 J	5 U	25 U
Ethylbenzene	5 U	25 U	50 U	5 U	25 U_	25000 U	5 U	1.4 J	25[U
Methylene chloride	5 U	25 U	1300	5 U	190	29000	26	5 U	25 U
Styrene	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
Tetrachloroethene	5 U	25 U	50 U	5 U	19 J	25000 U	14	6.3	25 U
Toluene	5 U	25 U	92	5 U	65	25000 U	27	8.3	25 U
Total Xylenes	15 U	75 U	150 U	15 U	75 U	75000 U	15 U	15 U	75 U
trans-1,3-Dichloropropene	5 U	25 U	50 U	5 U	25 U	25000 U	5 U	5 U	25 U
Trichlorgethene	5 U	25 U	50 U	5 U	25 U	25000 U	2.9 J	1.2 J	25 U
Vinyl acetate	25 U	120 U	250 U	25 U	120 U	120000 U	25 U	25 U	120 U
Vinyl chloride	5 U	25 U	50 U	5 U	25 U	25000 U	5.7	17	25 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample; D = Field duplicate.

TABLE 4 COMPARISON OF SPRING 2003 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - SPRING 2003

WELL	S	ELECTED CHL	OROPYRIDINES			SELECT	ED VOCs	
	# EVENTS IN	HISTORIC	5-YEAR MEAN	MAY-2003	# EVENTS IN	HISTORIC	5-YEAR MEAN	MAY-2003
	PRIOR 5 YRS	MAXIMUM		RESULT	PRIOR 5 YRS	MUMIXAM		RESULT
ON-SITE WELLS/LOCAT	i TIONS							
B-17	7	28,000,000	200,000	76,000	7	345,000	77,000	39,000
B-7	5	6,100	2,400	9,100		91	69	ND
B-9	5	4,000	1,700	NA	5	1500	320	NA
BR-3	6	6,500,000	160,000	110,000	6	600,000	450,000	920,000
BR-5A	9	1,700	270	870	9	9,400	72	190
BR-6A	9	93,000	26,000	140,000	9	26,000	7,000	6,300
BR-7A	9	510,000	22,000	11,000	9	3,000	320	680
BR-8	7	57,000	12,000	330	7	6,900	0.57	26
BR-9	7	720	480	370	7	160	82	57
E-1	6	43,000	19,000	170,000	6	5,300	680	91
E-3	7	600	41	170	7	12,000	200	ND
PW10	7	160,000	79,000	46,000	7	120,000	47,000	13,000
PW11	5	27,000	6,900	4,300	6	30,000	10000	9,900
PW12	9	15,000	4,200	1,200	9	120,000	6,800	7,000
PZ-105	6	190,000	35,000	23,000	5	9,700	830	4,700
PZ-106	7	120,000	28,000	26,500	7	1,100,000	550,000	1,400,000
PZ-107	9	11,000	2,000	1,800	9	12,000	730	1,700
S-3	6	9,500	6,600	18,000	6	2,500		63
S-4	6	_3,200	1,200	130	6	870	150	ND

TABLE 4

COMPARISON OF SPRING 2003 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - SPRING 2003

WELL	SELECTED CHLOROPYRIDINES SELECTED						ED VOCs	
	# EVENTS IN	HISTORIC	5-YEAR MEAN	MAY-2003	# EVENTS IN	HISTORIC	5-YEAR MEAN	MAY-2003
	PRIOR 5 YRS	MAXIMUM		RESULT	PRIOR 5 YRS	MAXIMUM	}	RESULT
OFF-SITE WELLS/LOCA	TIONS						<u> </u>	
BR-103	6	400	15	ND	5	1	1	ND
BR-104	7	3,100	12	_ 3	_ 5	9	ND	NA
BR-105	9	24,000	2,100	950	8	310	5.2	1.4
BR-105D	9	10,000	2,400	1,400	8	230	8.5	7.2
BR-106	9	21,000	10,000	6,900	9	6,300	390	86
BR-108	7	1,700	10	ND	4	ND	ND	NA
BR-112D	7	310	47	20	3	4	0.43	NA
BR-113D	7	490	89	54	NS	3	NA	NA
BR-114	7	510	180	520	6	5	3.9	1.1
BR-116	5	12	ND	ND	NS	84	NA NA	NA]
BR-116D	6	710	160	64	1]	120	ND	NA
BR-117D	5	80	18	22	NS	1.9	NA	NA
BR-118D	5	330	130	140	NS	6.6	NA	NA
BR-122D	7	650	160	160	3	ND	ND	NA
BR-123D	7	860	430	90	3	4	1.3	NA
MW-103	5	82	5.2	ND_	5	ND	150	ND
MW-104	5	180	2.3	ND	4	1	ND	NA
MW-106	8	130,000	17,000	10,000	8	89	0.98	450
MW-114	7	18	1.3	ND	6	19	11	15
MW-16	2	360	270	NA	NS	ND	NA	NA
NESS-E	7	5,000	530	310	5	700	ND	NA_
NESS-W	7	2,100	260	630	5	89	0.22	NA

TABLE 4

COMPARISON OF SPRING 2003 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - SPRING 2003

WELL	S	ELECTED CHL	OROPYRIDINES		SELECTED VOCs						
	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	MAY-2003 RESULT	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	MAY-2003 RESULT			
OFF-SITE WELLS/LOC	_II ATIONS										
PZ-101	8	27,000	1,700	23	6	2	0.27	6.1			
PZ-102	8	58,000	8,200	6,800	6	10,000	0.98				
PZ-103	8	73,000	30,000	3,800	7:	27,000	10,000	7,600			
PZ-104	7	9,100	4,400	2,700	6	40	0.62	7.7			
QO-2	19	380	41	6	8	ND	ND	ND			
QO-2S1	18	27	1.5	ND	3	ND	ND	ND			
QS-4	19	3,400	740	260	8	ND	ND	NE			

Note:

- 1) Number of samples and mean reflect 5-year sampling period from December 1997 through February 2003. Historic maximum based on all available results from March 1990 through February 2003
- 2) Chloropyridines represented by: 2-Chloropyridine, 2,6-Dichloropyridine, and 3-Chloropyridine, 4-Chloropyridine, p-Fluoroaniline, and Pyridine.
- 3) Selected VOCs represented by Carbon Tetrachloride, Chloroform, Methylene Chloride, Tetrachloroethene, and Trichloroethene.
- 4) Bold and shade May 2003 exceeds 5-year mean.
- 5) NA = Not analyzed or not applicable

ND = Not detected

NS = Not sampled

TABLE 5 SPRING 2003 CANAL/QUARRY MONITORING RESULTS

ARCH CHEMICAL, INC. ROCHESTER, NEW YORK

DATE 5/28/2003	WELL / POINT	QO-2		QO-2S1		QS-4	
VOLATILE ORGANIC COMPOUNDS BY SW-846 Method 2260/5ML (µg/L) 1,1,1-Trichloroethane 5 U 5 U 5 U 5 U 1,1,2-Trichloroethane 5 U 5 U 5 U 5 U 1,1,2-Trichloroethane 5 U 5 U 5 U 5 U 1,1,2-Trichloroethane 5 U 5 U 5 U 5 U 1,1-Dichloroethane 5 U 5 U 5 U 5 U 1,1-Dichloroethane 5 U 5 U 5 U 1,2-Dichloroethane 5 U 5 U 5 U 1,2-Dichloroethane 5 U 5 U 5 U 1,2-Dichloroethene (total) 10 U 10 U 10 U 10 U 1,2-Dichloropropane 5 U 5 U 25			3				3
BY SW-846 Method 8260/5ML (µg/L) 1,1,1-Trichloroethane		0/20/200				0.20.200	
1,1,1-Trichloroethane							
1,1,2,2-Tetrachloroethane			П	5	11	5	11
1,1,2-Trichloroethane							
1,1-Dichloroethane 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 10							
1,1-Dichloroethane 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 10 U 5 U 25							
1,2-Dichloroethane 5 U 5 U 5 U 10 U 25 U 2							
1,2-Dichloroethene (total) 10 U							
1,2-Dichloropropane 5 U 5 U 5 U 25 U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
2-Butanone							
2-Hexanone							
4-Methyl-2-pentanone 25 U 5 U							
Acetone							
Benzene							
Bromodichloromethane							_
Bromoform							
Bromomethane			_				
Carbon disulfide 5 U							
Carbon tetrachloride 5 U 5 U 5 U Chlorobenzene 5 U 5 U 5 U Chloroethane 5 U 5 U 5 U Chloroform 5 U 5 U 5 U Chloromethane 5 U 5 U 5 U Chloromethane 5 U 5 U 5 U Cis-1,3-Dichloropropene 5 U 5 U 5 U Dibromochloromethane 5 U 5 U 5 U Ethylbenzene 5 U 5 U 5 U 5 U Methylene chloride 5 U 5 U 5 U 5 U Styrene 5 U 5 U 5 U 5 U Tetrachloroethene 5 U 5 U 5 U 5 U Total Xylenes 15 U 15 U 15 U 15 U Trichloroethene 5 U 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U 5 U SELECTED CHLOR					_		
Chlorobenzene 5 U 5 U 5 U Chloroethane 5 U 5 U 5 U Chloroform 5 U 5 U 5 U Chloromethane 5 U 5 U 5 U Cis-1,3-Dichloropropene 5 U 5 U 5 U Dibromochloromethane 5 U 5 U 5 U Ethylbenzene 5 U 5 U 5 U Ethylbenzene 5 U 5 U 5 U Methylene chloride 5 U 5 U 5 U Styrene 5 U 5 U 5 U Styrene 5 U 5 U 5 U Tetrachloroethene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Total Xylenes 15 U 15 U 15 U Total Xylenes 15 U 5 U 5 U Trichloropthene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Chloroethane 5 U 5 U 5 U Chloroform 5 U 5 U 5 U Chloromethane 5 U 5 U 5 U Cis-1,3-Dichloropropene 5 U 5 U 5 U Dibromochloromethane 5 U 5 U 5 U Ethylbenzene 5 U 5 U 5 U Methylene chloride 5 U 5 U 5 U Styrene 5 U 5 U 5 U Styrene 5 U 5 U 5 U Tetrachloroethene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Total Xylenes 15 U 15 U 15 U Total Xylenes 15 U 5 U 5 U Trichloropthene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SW-846 Method 8270C (μg/L) 2 2 0							
Chloroform 5 U 5 U 5 U Chloromethane 5 U 5 U 5 U cis-1,3-Dichloropropene 5 U 5 U 5 U Dibromochloromethane 5 U 5 U 5 U Ethylbenzene 5 U 5 U 5 U Methylene chloride 5 U 5 U 5 U Styrene 5 U 5 U 5 U Styrene 5 U 5 U 5 U Tetrachloroethene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Total Xylenes 15 U 15 U 15 U Total Xylenes 15 U 15 U 15 U Trichloropropene 5 U 5 U 5 U Trichloroptehene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES 8 Y Y							
Chloromethane 5 U 5 U 5 U cis-1,3-Dichloropropene 5 U 5 U 5 U Dibromochloromethane 5 U 5 U 5 U Ethylbenzene 5 U 5 U 5 U Methylene chloride 5 U 5 U 5 U Styrene 5 U 5 U 5 U Tetrachloroethene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Total Xylenes 15 U 15 U 15 U Trotal Xylenes 15 U 15 U 15 U Trichloropropene 5 U 5 U 5 U Trichloroethene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES 8 8YSW-846 Method 8270C (μg/L) 2,6-Dichloropyridine 10 U 9 U 96 U 2-Chloropyridine 10 U					_		
cis-1,3-Dichloropropene 5 U 5 U 5 U Dibromochloromethane 5 U 5 U 5 U Ethylbenzene 5 U 5 U 5 U Methylene chloride 5 U 5 U 5 U Styrene 5 U 5 U 5 U Tetrachloroethene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Total Xylenes 15 U 15 U 15 U Trichloroethene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (μg/L) 2 5 U 5 U 2,6-Dichloropyridine 10 U 9 U 96 U 2-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U					_		
Dibromochloromethane							
Ethylbenzene 5 U 5 U 5 U Methylene chloride 5 U 5 U 5 U Styrene 5 U 5 U 5 U Tetrachloroethene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Total Xylenes 15 U 15 U 15 U Total Xylenes 15 U 5 U 5 U Trichloropropropene 5 U 5 U 5 U Trichloroethene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES 5 U 5 U 5 U SP SW-846 Method 8270C (μg/L) 2.6-Dichloropyridine 10 U 9 U 96 U 2-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U			_				
Methylene chloride 5 U 5 U 5 U Styrene 5 U 5 U 5 U Tetrachloroethene 5 U 5 U 5 U Toluene 5 U 5 U 5 U Total Xylenes 15 U 15 U 15 U Trotal Xylenes 15 U 5 U 5 U Trichloropropropene 5 U 5 U 5 U Trichloroethene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES 5 U 5 U 5 U BY SW-846 Method 8270C (μg/L) 2 2 9 U 96 U 2-Chloropyridine 6 J 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U 4-Chloroparidine 10 U 9 U 96 U							
Styrene							
Tetrachloroethene			_				
Total Xylenes							
Total Xylenes							
trans-1,3-Dichloropropene 5 U 5 U 5 U Trichloroethene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (μg/L) 9 U 96 U 2,6-Dichloropyridine 10 U 9 U 96 U 2-Chloropyridine 6 J 9 U 96 U 3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U							Ū
Trichloroethene 5 U 5 U 5 U Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (μg/L) 9 U 96 U 2-Chloropyridine 6 J 9 U 260 3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U			Ū				_
Vinyl acetate 25 U 25 U 25 U Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (μg/L) 9 U 96 U 2-Chloropyridine 6 J 9 U 260 3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U					_		
Vinyl chloride 5 U 5 U 5 U SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (μg/L) 9 U 96 U 2,6-Dichloropyridine 10 U 9 U 96 U 2-Chloropyridine 10 U 9 U 96 U 3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U	Vinyl acetate	25	Ū			25	Ū
SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (μg/L) 2,6-Dichloropyridine 10 U 9 U 96 U 2-Chloropyridine 6 J 9 U 260 3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U							
BY SW-846 Method 8270C (μg/L) 10 U 9 U 96 U 2,6-Dichloropyridine 6 J 9 U 260 3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U							
2,6-Dichloropyridine 10 U 9 U 96 U 2-Chloropyridine 6 J 9 U 260 3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U							
2-Chloropyridine 6 J 9 U 260 3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U		10	Ü	9	U	96	U
3-Chloropyridine 10 U 9 U 96 U 4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U							
4-Chloropyridine 10 U 9 U 96 U p-Fluoroaniline 10 U 9 U 96 U							
p-Fluoroaniline 10 U 9 U 96 U							_
	p-Fluoroaniline						
				23	U		

Notes

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

NA = Not analyzed

TABLE 6 EXTRACTION WELL WEEKLY FLOW MEASUREMENTS - DECEMBER 2002 THROUGH MAY 2003

ARCH CHEMICALS, INC. **ROCHESTER, NEW YORK**

Week	BR-5A	BR-6A		BR-9		PW-11*	PW-12**	, Total
	[Gal./Week] [C	ai./weekj [sai./weekj [Gal./Week] [0	Sal./Week] [G	al:/week]	Gat./weekj	·[Gai.]
Dec. '02	00.000	5 4 4 5	74 070	00.040	4-	47.047	00.400	005.000
12/06/02	60,226	5,145	71,879	60,016	15	17,847	20,160	235,288
12/13/02	41,217	15,765	48,690	50,341	47,586	18,129	20,160	241,888
12/20/02	34,957	0	41,685	51,251	23,233	20,989	20,160	192,275
12/27/02	43,280	0	36,601	49,374	2,453	20,129	20,160	171,997
							Total [Gal.]	841,448
Jan. '03								
01/04/03	37,519	0	51,957	31,350	2,613	12,043	20,160	155,642
01/11/03	56,009	9,525	97,162	58,652	12,220	22,314	20,160	276,042
01/18/03	59,047	20,315	100,301	59,401	360	21,640	20,160	281,224
01/25/03	57,089	20,120	86,702	48,792	13,007	22,174	20,160	268,044
							Total [Gal.]	980,953
Feb. '03	 ;					_		
02/01/03	51,308	18,745	99,941	40	920	26,857	20,160	217,970
02/08/03	48,564	13,847	79,685	26,705	710	21,412	20,160	211,083
02/15/03	25,406	11,455	45,446	50,550	844	17,027	20,160	170,888
02/22/03	23,216	2,042	19,379	19,498	15,258	5,163	20,160	104,716
							Total [Gal.]	704,657
Mar. '03								
03/01/03	51,127	15,324	63,325	4,770	1,372	20,055	20,160	176,133
03/08/03	68,768	21,601	82,917	2,841	2,300	28,578	20,160	227,165
03/15/03	61,707	9,755	32,009	17,152	20,058	14,439	20,160	175,280
03/22/03	66,307	174	80,931	45,519	2,390	23,643	20,160	239,124
03/29/03	54,154	6,632	113,038	59,108	1,400	20,476	20,160	274,968
	,	-,	,	,	.,	,	Total [Gal.]	1,092,670
Apr. '03	_			_				
04/05/03	32,467	1,202	115,830	32,608	51	20,476	20,160	222,794
04/12/03	53,582	2,775	82,738	41,124	1	20,476	20,160	220,856
04/19/03	43,194	5,763	61,090	40,292	1,075	11,389	20,160	182,963
04/26/03	67,950	4,324	95,079	26,392	4,425	22,658	20,160	240,988
	,	.,	,	,	., .=-	,,	Total [Gal.]	867,600
May '03								
05/03/03	61,139	9,892	103,420	44,268	3,960	22,812	20,160	265,651
05/10/03	63,312	7,805	122,626	66,908	5,040	20,155	20,160	306,006
05/17/03	68,533	10,585	70,396	46,684	3,720	30,903	20,160	250,981
05/24/03	72,420	10,581	47,165	51,387	4,410	31,990	20,160	238,113
05/31/03	77,170	201	66,098	60,817	4,670	32,137	20,160	261,253
	•		-,	,	,	,	Total [Gal.]	1,322,003
Total 6 Mo. Removal	1,379,668	223,573	1,916,090	1,045,839	174,091	545,908	524,160	5,809,330
Kemovai [1,013,000	223,313	1,510,050	1,040,008	174,081	343,800	J4+, 10U	5,609,530

Notes:

(Gal.)

Pumped volumes for PW-11 are estimated due to error in meter setting
 Due to numerous failures of meter, pumped volumes for PW-12 are assumed to be 2 gpm

TABLE 7

MASS REMOVAL SUMMARY PERIOD: 11/30/02 - 5/31/03

ARCH ROCHESTER SPRING 2003 GROUNDWATER MONITORING REPORT

Well	Total Vol. Pumped	Avg. VOC	Avg. PYR.	VOCs Removed	PYR. Removed
	(gallons)_	Conc. (ppm)	Conc. (ppm)	(pounds)	(pounds)
BR-5A	1,380,000	0.15	0.99	1.7	11.4
BR-6A	224,000	11	83	21	155
BR-7A	1,916,000	0.94	9.4	15	150
BR-9	1,046,000	0.06	0.34	0.5	3.0
PW-10	174,000	8.6	33	12	48
PW-11	546,000	20	2.6	91.0	12
PW-12	524,000	4.7	8.1	21	35.4
Totals:	5,810,000			161.7	414.3

Note: VOC and pyridine concentrations used in this table are an average of the analytical results from the Fall 2002 and Spring 2003 sampling events for each well

Prepared by: NMB Checked by: JEB

TABLE 8 2003 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

KCH KUCHESTE	=R					├			003		
MONITORING PRO	OGRAM					SPR	ING	FΑ	LL	то	TΑ
						es		es		es	
	1	OB KODAK EAST annual monitoring, VOCs & PYI annual monitoring, PYR BR deep AID-HOSP BR AID			Pyridines	VOCs	Pyridines	VOCs	Pyridines		
	Well	zone	area	Frequency/Parameters	Purpose	کم	8	λ'n	8	λd	
		ОВ	KODAK EAST	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	Π
					trend monitoring] 1	1			1	l
OFF-SITE MW-103 OB KODAK EAST annual monitorin MONITORING BR-103 BR KODAK EAST annual monitorin MW-104 OB BUFFALO RD annual monitorin BR-105 BR BUFFALO RD annual monitorin BR-105 BR AID-HOSP semi-annual monitorin BR-106 BR AID-HOSP semi-annual monitorin BR-108 BR AID-HOSP semi-annual monitorin BR-108 BR AID-HOSP semi-annual monitorin BR-108 BR AID-HOSP semi-annual monitorin BR-112D BR deep NYSDOT annual monitorin MW-114 OB JACKSON annual monitorin BR-116 BR deep PAUDLER annual monitorin BR-117D BR deep QUARRY annual monitorin BR-123D BR deep QUARRY annual monitorin BR-122D BR deep NESS annual monitorin PZ-101 BR McKee Rd		annual monitoring, PYR	trend monitoring	1 1		lí		1	l		
Well Zone Area Frequency/P		annual monitoring, PYR	trend monitoring	1 1				1	l		
	BR-105	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1 1	1	1	1	2	l
	BR-105D	BR deep	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1 1	1	1	1	2	l
	MW-106	ОВ	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1 1	1	1	1	2	ļ
	BR-106	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	Ì
	BR-108	BR			trend monitoring	1 1				1	
	_			<u> </u>	trend monitoring	1				1	
				<u> </u>	trend monitoring	1				1	
		,		J ,	trend monitoring	1	1			1	
				J.	trend monitoring	1 1	1			1	1
					trend monitoring		l '			1	
					trend monitoring					1	
		,									
		,			trend monitoring					1	
				·	trend monitoring	1				1	
					trend monitoring	1 1				1	
					trend monitoring	1				1	
					trend monitoring	1				1	
		•			trend monitoring	1				1	
				semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1 1	1	2	
				semi-annual monitoring, VOCs & PYR	perimeter sentinet/trend monitoring	1	1	1	1	2	:
				semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	1
				semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	
				annual monitoring, PYR	trend monitoring			1		1	
				semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	Γ
MONITORING			ON-SITE	annual monitoring, VOCs & PYR	trend monitaring	1	1			1	
	PZ-105	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	BR-3	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	BR-8	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	BR-9	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1 1	1	2	
	BR-5A			semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	
	BR-6A			semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	
				semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1 1	1	2	
					trend monitoring		1	`		1	
					trend monitoring	1	1	ļ		1	
					continue until replaced by trench	1 1	1	1	1	2	
				,	continue until replaced by trench	1	1		1	2	
						1				2	
				3 ,	continue until replaced by trench			l '	' '		1
				, o.	trend monitoring	[1	1			1	l
		, , ,		semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	
		, , ,		semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1 1	1	1	1	2	1
	PW12	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	
QUARRY/CANAL	QS-4	quarry seep	QUARRY	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	Γ
MONITORING	QO-2	quarry outfall	CANAL	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	
	QO-2S1	canal at outfall	CANAL	semi-annual monitoring, VOCs & PYR	surface water monitoring	1	1	1	1	2	
	LES LES	<u> </u>		<u> </u>		4	33	23	22	69	1

Appendix A Groundwater Field Sampling Data Sheets

FIELD REPORT

REMEDIAL INVESTIGATION SAMPLING ARCH CHEMICAL ROCHESTER, NEW YORK

Spring 2003 Event

Prepared For:

Harding Lawson Associates

511 Congress Street Portland, Maine 04112-7050

Attention: Mr. Nelson Breton

Prepared By:

SEVERN TRENT LABORATORIES, INC.

Audubon Business Center 10 Hazelwood Drive Amherst, New York 14228-2298

NY5A5762

Written By:

Roger Senf

Reviewed By:

Date:

Daic

1.0 INTRODUCTION

This report describes the sampling of the following points:

- Fourty-three (43) monitoring wells (Well B-9 destroyed)
- One (1) barge canal sample
- One (1) quarry outfall sample
- One (1) quarry seep sample

These activities were in support of the Phase II Remediation Investigation being conducted at the Arch Chemical facility in Rochester, New York. The samples were collected from May 27 through June 4, 2003 by Severn Trent Laboratories, Inc. (STL) personnel.

2.0 METHODOLOGIES

2.1 Water Level Measurements

Static water levels in all groundwater wells were measured from the top of the well casing/riser with an electronic water level indicator. All well bottoms were sounded with the weighted steel measuring tape. All measurements were recorded to the nearest hundredth of a foot (0.01 feet). The length of the measuring device which contacted the water was cleaned between wells with a deionized water rinse and paper towel wipe. These data are presented on Sampling Summary Table and Field Observation forms.

2.2 Well Purging

Monitoring wells were evacuated prior to sampling employing one of the following methods:

- Purging three (3) times the standing water volume using precleaned or dedicated 1.25" X
 stainless steel bailers, 2" X 5' polyvinyl chloride bailers, peristaltic pump or QED Low-Flow Bladder pumps.
- Evacuated with the low flow/low stress puring technique using either QED Low-Flow Bladder pumps or a variable rate peristaltic pump.

Wells that were purged of three (3) standing volumes were mainly wells located on or very near the Erie Canal and historically purged with this method prior to sampling. The remaining wells were evacuated with a low flow/low stress purging technique. This technique involves the use of a variable flow rate bladder or peristaltic pump. The pumps were employed to purge the monitoring wells at a flow rate such that drawdown of the water column from static conditions is minimal. Field measurements of pH, specific

conductance, temperature, ORP, dissolved oxygen and turbidity are monitored every 3-5 minutes until stabilization of parameters is realized. Once stabilization has occurred, sampling can be conducted. All purged water was collected into 55-gallon drums for disposal at the on-site wastewater treatment facility. Data pertaining to each evacuation are presented on the Sampling Summary Table and field Observation Forms.

2.3 Surface Water Samples

Surface water samples were collected from one (1) location on the Erie Barge Canal, one (1) outfall sample and one (1) Quarry Seep Sample. Samples were taken from the following locations:

- QO-2 Quarry outfall collected at discharge point to Erie Barge Canal approximately 600' north of Chili Avenue
- QO-2SI Collected from canal, 100' South of QO-2.
- QS-4 Collected from Quarry Seep

3.0 SAMPLING

3.1 Monitoring Wells

All groundwater wells were sampled using precleaned or dedicated 1.25" X 1.25" X 5' stainless steel bailers, perisaltic pumps or bladder (SamplePro) pumps when low flow purging techniques were used. Each bailer was constructed with teflon, bottom-filling check valve and was assembled without glues or welds. New ¼" poly rope was attached to each bailer. The bailer was slowly lowered into the water column, minimizing agitation and devolatilization. Low density polyethylene (LDPE) tubing was used with both the bladder (QED) and the peristaltic pumps. The bladder pumps were decontaminated between sample locations in accordance with the work plan. Personnel exercised care in all aspects of the sampling to ensure the collection of a representative sample An additional sample container was collected from each well in order to facilitate the measurement of field analytical parameters. Data pertaining to sampling are presented on the Sampling Summary Table and the Field Observation Forms.

3.2 Canal Sampling

When possible, samples were collected directly from the canal into appropriate sample containers. Otherwise, samples were collected with the use of a unique, laboratory-cleaned stainless steel bailer. The bailers were immersed just below the surface and removed. Sample was poured directly into the appropriate container. An additional container was

collected to facilitate the measurement of field parameters. Additional data pertaining to these samples is presented in the Sampling Summary Table and Field Observation Forms.

3.3 Seep Sampling

A groundwater sample was collected from a seep at the quarry (QS-4) located on Buffalo Road. The sample was collected with the use of a laboratory cleaned stainless steel bucket and was then poured directly into the appropriate containers. An additional container was collected to facilitate the measurement of field parameters. Data pertaining to this sampling is presented in the Sampling Summary Table and Field Observation Forms.

4.0 SAMPLE CONTAINERS

Monitoring wells and surface water samples requiring analysis for volatile organics were collected into 40 ml glass vials with teflon septa. Samples for semi-volatile and Pyridine analysis were collected into one (1) liter amber glass bottles with teflon-lined caps. All bottles were purchased new and cleaned (Protocol A, 300 series) from Environmental Supply Services. Each container was labeled with the following information:

- Sample Identification (Well/Point I.D.)
- Date
- Project Number
- Sampler's Initials

5.0 FIELD MEASUREMENTS

On-site field measurements were made of each sample's pH, specific conductance and temperature. All measurements were made in accordance with protocols outlined in Methods for Chemical Analysis of Water and Wastes (EPA – 600/4-79-9020). These data were presented on the Sampling Summary Table and Field Observation Forms.

6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

6.1 Trip Blanks

Trip blanks were collected with each sample shipment requiring volatile organic analysis. Each trip blank consisted of two 920 40 ml glass vials with teflon septa which were filled with deionized water at the STL laboratory. These blanks were transported to the site, stored with field collected samples and submitted to the STL facility for analysis.

6.2 Equipment Rinse Blank

Equipment rinse blanks were collected as required by the work plan.

7.0 CHAIN OF CUSTODY

Chain of custody was initiated at the time of sample collection and maintained through delivery to the STL facility in Amherst, New York. Copies of these documents are included in the analytical report package.

Sampling mary Table
HARDING LA ASSOCIATES
SPRING 2003

RI SAMPLING/ROCHESTER NY FACILITY

Page: Rept: ANO82'

Sample	—Water Level—	Water	Water	Bottom	Field Measur	ements	рн	Spec.				
Point	Date Time	Level (ft)*	Elevation (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond. (umhos)	Temp (°C)	Turb. (NTU)	Other Field Measurer	nents
B-17	05/28/2003 1116 Comments: CLEAR/A	5.19 5.19	N/A	16.23	05/28/2003	1140	9.70	12440	13.4	1.12	EH(mv)= -99	DO(ppm)= 1.33
в-7	06/04/2003 1222 Comments: SL.TURE	12.20	N/A	20.90	06/04/2003	1245	7.28	1624	15.0	33.30	EH(mv)= -40	DO(ppm)= .93
B-9	06/04/2003 0 Comments: WELL IS	0.00	N/A UNDER STONE	N/A	06/04/2003	0	N/A	N/A	N/A	N/A		
BR-103	05/30/2003 1055 Comments: CLEAR	5.45	N/A	43.45	05/30/2003	1120	7.59	1473	12.4	7.20	EH(mv)= 226	DO(ppm)= .83
BR-104	05/30/2003 1236 Comments: CLEAR	7.04	N/A	19.20	05/30/2003	1300	8.73	259	14.6	38.40	EH(mv)= 300	DO(ppm)= 1.12
BR-105	06/02/2003 1315 Comments: CLEAR	22.28	N/A	44.60	06/02/2003	1350	7.26	2160	12.4	5.00	EH(mv)= -21	DO(ppm)= .85
BR-105D	06/02/2003 1220 Comments: CLEAR	24.22	N/A	79.50	06/02/2003	1255	7.18	15290	13.9	1.52	EH(mv)= -288	DO(ppm)= .70
BR-106	06/02/2003 1020 Comments: SL.TURE	22.48	N/A	43.22	06/02/2003	1100	7.42	2951	11.8	94.60	EH(mv)= -116	DO(ppm)= .81
BR-108	06/02/2003 1405 Comments: TURBID	27.25	N/A	29.75	06/03/2003	1030	7.43	848	15.7	85.40	EH(mv)= 24	
BR-112D	06/04/2003 1335 Comments: CI EAR	36.27	N/A	72.26	06/04/2003	1410	7.33	1500	10.8	2.25	EH(mv)= -263	DO(ppm)≈ .13
BR-113D	06/04/2003 1235 Comments: BLACK T	31.28	N/A	79.25	06/04/2003	1310	7.35	2610	11.7	2.63	EH(mv)= -283	DO(ppm)= .14
BR-114	06/04/2003 1125 Comments: CLEAR	12.80	N/A	36.93	06/04/2003	1155	7.35	2020	14.1	5.15	EH(mv)= 129	DO(ppm)= .17
BR-116	05/28/2003 1415 Comments: CLEAR	27.05	N/A	62.20	05/28/2003	1450	7.25	2280	14.5	18.57	EH(mv)= -203	DO(ppm)= .32
BR-116D	05/28/2003 1330 Comments: SL.BLAC	35.40	N/A	98.10	05/28/2003	1405	7.67	1850	15.3	35.20	EH(mv)= -225	DO(ppm)= .49
BR-117D	05/27/2003 1240 Comments: BLACK T	48.90	N/A	82.24	05/27/2003	1320	7.79	2020	10.6	22.80	EH(mv)= -162	DO(ppm)= .80
BR-118D	05/27/2003 1150 Comments: CLEAR	47.97	N/A	87.27	05/27/2003	1215	7.43	2110	12.3	8.23	EH(mv)= -217	DO(ppm)= .42

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Date: 06/13/2 Time: 11:42:3

Sampling nary Table . ASSOCIATES HARDING L SPRING 2003 RI SAMPLING/ROCHESTER NY FACILITY Page:

Rept: AN082

Sample	—Water Leve		Water	Bottom	Field Measur		рн	Spec.	_	- ·		
Point	Date T	Time Level (ft)*	Elevation f (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond. (umhos)	Temp (°C)	Turb. (NTU)	Other Field Measurer	ments
BR-122D	05/28/2003 1 Comments: CLI		4 N/A	82.57	05/28/2003	1130	7.30	2320	11.5	1.12	EH(mv)= -255	DO(ppm)= .37
BR-123D	05/28/2003 1		S N/A	97.56	05/28/2003	1230	8.93	1660	10.8	26.80	EH(m∨)= -283	DO(ppm)= .17
	Comments: CLI	.EAR										
BR-3	05/28/2003 1	1244 8.99	N/A	23.25	05/28/2003	1305	6.99	20840	12.8	2.74	EH(mv)= -72	DO(ppm)= .56
	Comments: CLI	.EAR										
BR-5A	06/03/2003	900 25.53	S N/A	N/A	06/03/2003	905	7.63	1966	14.9	5.12	EH(mv)= -68	
	Comments: CLI	.EAR										
BR-6A	06/04/2003 1	1435 8.09	N/A	N/A	06/04/2003	1440	8.96	5630	17.2	31.50	EH(mv)= -118	
	Comments: BRO	OWN TINT/SL.	TURBID									
BR-7A	06/03/2003 1	1000 27.36	S N/A	N/A	06/03/2003	1005	7.49	3364	17.5	37.90	EH(m∨)= -170	
	Comments: SL	.TURBID										
BR-8	06/04/2003 1	1125 7.44	N/A	31.74	06/04/2003	1150	7.98	2660	14.6	26.60	EH(m∨)= -175	DO(ppm) = .97
	Comments: CLE	EAR/FIELD DU	PLICATE									
BR-9	06/03/2003	840 30.50	N/A	N/A	06/03/2003	840	7.04	3024	14.7	3.38	EH(m∨)= -34	
	Comments: CLE	EAR										
E-1	05/30/2003 13	300 2.23	N/A	9.75	05/30/2003	1340	9.75	26820	16.2	41.60	EH(mv)= -196	DO(ppm) = 0.96
	Comments: SL.	. TRUBID BLA	CK TINT									• •
E-3	05/28/2003 10			12.05	05/30/2003	1055	6.86	1552	12.7	11.71	EH(m∨)= 79	DO(ppm)= 0.97
	Comments: CLE											
MW-103	05/30/2003 10	010 1.65	N/A	8.05	05/30/2003	1040	7.85	537	18.6	1.37	EH(mv)= 280	DO(ppm)= 1.19
	Comments: CLE	EAR									•	
MW-104	05/30/2003 1	140 5.74	N/A	18.10	05/30/2003	1210	7.69	504	14.8	126.70	EH(mv)= 250	DO(ppm)= .60
	Comments: SL.	.TURBID										
MW-106	06/02/2003 1	120 8.94	N/A	19.35	06/02/2003	1155	7.32	2672	13.1	25.50	EH(m∨)= -155	DO(ppm)= .80
	Comments: SL.	.TURBID										· -, •
MW-114	06/04/2003 10	040 10.73	N/A	15.76	06/04/2003	1110	7.33	2130	14.7	10.99	EH(mv)= 185	DO(ppm)= .42
	Comments: CLE	EAR										= -1 1 ···-
NESS-E	05/29/2003 1	138 30.94	N/A	74.52	05/29/2003	1205	7.13	3570	13.4	74.90	EH(mv)= 250	DO(ppm)= 1.86
	Comments: CLE	EAR										-, ,
NESS-W	05/29/2003 10	020 31.29	N/A	77.23	05/29/2003	1110	9.20	4000	13.1	187.00	EH(mv)= 279	DO(ppm)= 2.5
	Comments: BLA	ACK SI TIIRRII	3									* ***

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Date: 06/13/201 Time: 11:42:3

Sampling. mary Table HARDING I ASSOCIATES

SPRING 2003

RI SAMPLING/ROCHESTER NY FACILITY

Sample ---Water Level---Water Water Rottom Field Measurements На Spec. Point Of Well (STD) Time Level Elevation Date Time Cond. Turb. Date Temp (ft)* (ft)** (ft)* (Units) (°C) (NTU) Other Field Measurements (umhos) PW-10 06/04/2003 1055 11.67 N/A N/A 06/04/2003 1100 9.17 4832 19.0 37.90 EH(mv) = -115Comments: BROWN STRONG ODER PW-11 06/03/2003 755 17.86 06/03/2003 6.91 3770 N/A N/A 800 13.9 16.49 EH(mv) = -97Comments: CLEAR PW-12(BR-101) 06/03/2003 930 7.06 N/A N/A 06/03/2003 935 7.32 6458 17.5 2.37 EH(mv) = -77Comments: CLEAR PZ-101 05/29/2003 1250 11.19 N/A 21.69 05/29/2003 1315 7.18 1136 13.3 1.72 EH(mv) = 87DO(ppm) = .97Comments: CLEAR PZ-102 05/29/2003 1210 10.86 N/A 32.60 05/29/2003 1235 7.43 3601 14_4 0.95 EH(mv) = -122DO(ppm) = .85Comments: CLEAR PZ-103 05/29/2003 1135 9.78 N/A 32.52 05/29/2003 1200 7.49 3251 13.3 3.78 EH(mv) = -159DO(ppm) = 1.09Comments: CLEAR PZ-104 05/29/2003 1050 12.39 N/A 23.93 05/29/2003 1115 7.38 1849 13.3 3.36 EH(mv) = -97DO(ppm) = .93Comments: CLEAR PZ-105 05/28/2003 1327 8.90 N/A 32,86 05/28/2003 1350 7.49 3010 14.1 69.70 EH(mv) = 1089. = (mqq)00Comments: BLACK TINT/SL.TURBID 26.70 PZ-106 05/28/2003 1155 8.81 N/A 27.90 05/28/2003 1220 6.29 17130 14.5 EH(mv) = 110DO(ppm) = .87Comments: SL.TURBID PZ-107 05/28/2003 1415 4.88 N/A 27.90 05/28/2003 1440 7.74 2890 12.5 1.56 EH(mv) = -100DO(ppm) = .90Comments: CLEAR QO-2 05/28/2003 1300 0.00 N/A N/A 05/28/2003 1305 7.72 2071 15.6 7.82 EH(mv) = 94Comments: CLEAR 1320 723 5.87 QO-2S1 05/28/2003 1315 0.00 N/A N/A 05/28/2003 N/A 18.4 EH(mv) = 78Comments: CLEAR QS-4 05/28/2003 1530 0.00 N/A N/A 05/28/2003 1535 7.43 1801 13.4 3.22 EH(mv) = 74Comments: CLEAR s-3 05/30/2003 1135 2.21 N/A N/A 05/30/2003 1200 8.15 2928 15.2 16.30 EH(mv) = -18500(ppm) = .89Comments: CLEAR S-4 05/30/2003 1100 13.05 05/30/2003 1125 19.98 0.76 N/A 8.69 649 13.5 EH(mv) = -151DO(ppm) = 0.91Comments: CLEAR

Page:

Rept: ANO82

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Date: 06/1 003 Time: 09:35:04

Groundwater vation Report HARDING LAWSON ASSOC. MAY 2003

				D (3	~ .	
Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
B-1	05/27/2003	1232	0.00	8.11	N/A	
B-10	05/27/2003	1150	0.00	5.47	N/A	
B-11	05/27/2003	1147	0.00	2.77	N/A	
B-13	05/27/2003	1301	0.00	11.54	N/A	DRY
B-14	05/27/2003	1305	0.00	5.80	N/A	
B-15	05/27/2003	1306	0.00	2.32	N/A	
B-16	05/27/2003	1307	0.00	2.92	N/A	
B-17	05/27/2003	1134	0.00	5.26	N/A	
B-2	05/27/2003		0.00	8.82	N/A	
B-3	05/27/2003		0.00	5.35	N/A	
B-4	05/27/2003		0.00	3.75	N/A	
B-5	05/27/2003		0.00	7.82	N/A	
B-7	05/27/2003		0.00	12.26	N/A	
B-8	05/27/2003		0.00	5.97	N/A	
B-9	05/27/2003		0.00	N/A	N/A	DESTROYED
BR-1	05/27/2003	1114	0.00	7.05	N/A	
BR-102	05/27/2003		0.00	22.51	N/A	
BR-103	05/27/2003		0.00	5.55	N/A	
BR-104	05/27/2003		0.00	7.17	N/A	
BR-105	05/27/2003		0.00	22.07	N/A	
BR-105D	05/27/2003		0.00	24.94	N/A	
BR-106	05/27/2003		0.00	20.85	N/A	
BR-107	05/27/2003	0	0.00	N/A	N/A	DESTROYED
BR-108	05/27/2003		0.00	24.07	N/A	
BR-111	05/27/2003		0.00	28.73	N/A	
BR-111D	05/27/2003		0.00	28.99	N/A	
BR-112A	05/27/2003		0.00	27.22	N/A	
BR-112D	05/27/2003		0.00	36.32	N/A	
BR-113	05/27/2003		0.00	31.28	N/A	
BR-113D	05/27/2003		0.00	31.34	N/A	
BR-114	05/27/2003		0.00	12.73	N/A	
BR-116	05/27/2003		0.00	27.09	N/A	
BR-116D	05/27/2003		0.00	35.42	N/A	
BR-117	05/27/2003		0.00	35.20	N/A	
	, , ,				, -	

Date: 06/1 1003 Time: 09:3..04

Groundwater vation Report HARDING 1. SON ASSOC. MAY 2003

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
BR-117D	05/27/2003	1240	0.00	48.90	N/A	
BR-118	05/27/2003	1146	0.00	27.02	N/A	
BR-118D	05/27/2003	1145	0.00	47.97	•N/A	
BR-119D	05/27/2003	1135	0.00	66.67	N/A	
BR-120D	05/27/2003	1120	0.00	56.48	N/A	
BR-121D	05/27/2003	1130	0.00	53.35	N/A	
BR-122D	05/27/2003		0.00	44.23	N/A	
BR-123D	05/27/2003		0.00	44.92	N/A	
BR-124D	05/27/2003	1340	0.00	30.45	N/A	
BR-2	05/27/2003		0.00	N/A		DRY
BR-2A	05/27/2003		0.00	6.71	N/A	
BR-2D	05/27/2003		0.00	0.05	N/A	
BR-3	05/27/2003		0.00	9.03	N/A	
BR-3D	05/27/2003		0.00	67.46	N/A	
BR-4	05/27/2003		0.00	5.23	N/A	
BR-5	05/27/2003		0.00	15.64	N/A	
BR-5A	05/27/2003		0.00	16.75		8.24 G.P.M.
BR-6	05/27/2003		0.00	12.04	N/A	
BR-6A	05/27/2003		0.00	8.26	•	0.00GPM = FLOW RATE
BR-7	05/27/2003		0.00	N/A		DRY
BR-7A	05/27/2003		0.00	28.10		6.52 G.P.M
BR-8	05/27/2003		0.00	7.57	N/A	
BR-9	05/27/2003	1225	0.00	27.10	•	6.79 G.P.M.
C-1	05/27/2003	0	0.00	N/A	N/A	DESTROYED
C-2A	05/27/2003		0.00	5.72	N/A	
C-3	05/27/2003	1122	0.00	5.00	N/A	
C-4	05/27/2003	0	0.00	A\N	N/A	BUILDING IN THIS AREA/WELL NO LONGER EXISTS
C-5	05/27/2003		0.00	9.40	N/A	
E-1	05/27/2003		0.00	2.05	N/A	FLOODED
E-2	05/27/2003		0.00	4.08	N/A	
E-3	05/27/2003		0.00	8.78	N/A	
E-4	05/27/2003		0.00	N/A	N/A	DRY
E-5	05/27/2003		0.00	5.81	N/A	
EC-1	05/27/2003	1420	0.00	17.23	N/A	

Date: 06/1 003 Time: 09:35:04 Groundwater vation Report
HARDING LAWSON ASSOC.
MAY 2003

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
EC-2	05/27/2003	1405	0.00	 N/A	—— N/A	DRY AT 12.75
ERIE CANAL	05/27/2003		0.00	34.20	N/A	DRI AI 12.75
MW-103	05/27/2003		0.00	1.50	N/A	
MW-104	05/27/2003		0.00	6.37	N/A	FLOODED
MW-105	05/27/2003		0.00	N/A	N/A	
MW-106	05/27/2003		0.00	8.77	N/A	
MW-107	05/27/2003		0.00	N/A	N/A	DESTROYED
MW-108	05/27/2003		0.00	9.73	N/A	
MW-114	05/27/2003		0.00	10.70	N/A	
MW-16	05/27/2003		0.00	10.87	N/A	
MW-2	05/27/2003	0	0.00	N/A	n/A	BURIED
MW-3	05/27/2003	1343	0.00	5.39	N/A	
MW-G6	05/27/2003	1349	0.00	2.52	N/A	
MW-G7	05/27/2003		0.00	2.63	N/A	
MW-G8	05/27/2003	1351	0.00	4.85	N/A	
MW-G9	05/27/2003	1353	0.00	7.09	N/A	
N-1	05/27/2003	1113	0.00	N/A	N/A	DAMAGED CASING/BAILER STUCK IN WELL
N-2	05/27/2003	1107	0.00	3.53	N/A	
N-3	05/27/2003	1105	0.00	5.01	N/A	
NESS-E	05/27/2003	1425	0.00	30.96	N/A	
NESS-W	05/27/2003	1430	0.00	31.27	N/A	
PW-10	05/27/2003	1136	0.00	12.22	N/A	
PW-11	05/27/2003	1245	0.00	17.90	N/A	
PW-12 (BR-101)	05/27/2003	1100	0.00	7.16	N/A	0.00 G.P.M.
PZ-101	05/27/2003		0.00	11.06	N/A	
PZ-102	05/27/2003	1338	0.00	10.91	N/A	
PZ-103	05/27/2003		0.00	9.82	N/A	
PZ-104	05/27/2003		0.00	12.46	N/A	
PZ-105	05/27/2003		0.00	8.90	N/A	
PZ-106	05/27/2003		0.00	8.91	N/A	
PZ-107	05/27/2003		0.00	4.88	N/A	
PZ-108	05/27/2003		0.00	N/A	N/A	DESTROYED
S-1	05/27/2003		0.00	5.33	N/A	
S-2	05/27/2003	1202	0.00	3.43	N/A	

Date: 06/1 '003 Time: 09:3..04 Groundwater :vation Report HARDING L .SON ASSOC.

MAY 2003

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments	
S-3	05/27/2003	1200	0.00	2.13	N/A		
S-4	05/27/2003	1148	0.00	0.67	N/A		
W-1	05/27/2003	1236	0.00	N/A	· N/A	UNABLE TO OBTAIN MEASUREMENT/OBSTRUCTION	
₩-2	05/27/2003	1230	0.00	8.21	N/A		
W-3	05/27/2003	1240	0.00	4.35	N/A		
W-4	05/27/2003	1243	0.00	3.75	N/A		
₩-5	05/27/2003	1250	0.00	6.58	N/A		
W-6	05/27/2003	1255	0.00	11.34	N/A		

·	
cility: ARCH CHRMLCAC	Sample Point ID: B-17
Field Personnel: R.S. R.J. D. C. M. D.	Sample Point ID: $B-17$ Sample Matrix: G/w
MONITORTING WELL INSPECTION:	
Date/Time 5-28-03 / ///6	Cond of seal: (*) Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 5-28-0 1 1/26	Date / Time Completed: 5-26-03 / 1140
Surf. Meas. Pt: () Prot. Casing KI Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 5.19	Elevation. G/W MSL:
Well Total Depth, Feet: 16.23	Method of Well Purge: Peristita Pont
One (1) Riser Volume, Gal:	Dedicated: 💮 / N
Total Volume Purged, Gal: 2.0	Purged To Dryness Y / N
Purge Observations:	Start Anur Finish Anur

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other 20	Other ONP
1125	5.21		13.8	9.63	12,210	2.12	1.57	-97
1130	5.2[13.8	9.67	12,360	1.95	1.48	78
1135	5.21		131	9.68	12,450	1.21	1.40	-97
1)40	5.21		13,4	9.70	12,440	1.12	1.33	-99
			l					

SAMPLES At 1140/5-28-03 Gl Lia

PAGE 1 OF 2

SAMPLING	INFORMATI	ON:		POINT ID					
Date/Time				Water Le	vel @ Sampling	, Feet:			
Method of S	Sampling:				_Dedicated:	Y/N			
Multi-phase	d/ layered:	()Yes	() No	If YES:	() light	() heavy			
SAMPLING	DATA:								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()			
INSTRUME	NT CHECK D	ATA:							
=			= <u>Sio</u> ntu		NTU std. = <u>5.0</u>	_NTU			
pH Serial #: Solutions:	4-2188,	4.0 std.= <u>_ 4</u> フ- <i>ス</i> 190	10/ 7 10-2	.0 std.=	<u>? ec</u> 1	0.0 std. = 10.00			
Conductivity Solutions:	y Serial #: <u> </u>	-26-1	146.9	umhos/cm=	= <u>/47</u> _ -	umhos/cm=			
GENERAL	INFORMATIO	ON:							
Weather co	nditions @ tim	e of sampling:	· · · · · · · · · · · · · · · · · · ·			<u></u> _			
Sample Cha	aracteristics:				a and some				
COMMENT	S AND OBSE	ERVATIONS:							
									
			 						
									
I certify that protocals.	t sampling pro	ocedures were i	in accordance	with all app	olicable EPA, St	ate and Site-Specific			
Date:	1 1	By:			Company:				
			PAGE 2 OF	: 9					

Facility: AKCH CHEMICAL	Sample Point ID: B-7
Field Personnel: R. Senf, P. 11H4, TR. OC	Sample Matrix: <u>6</u> W
MONITORTING WELL INSPECTION:	
Date/Time 6-4-03 1 1222	Cond of seal: (Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (≯Good () Loose () Flush Mount () Damaged
If prot.casIng; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'
PURGE INFORMATION:	
Date / Time Initiated: 6-4-031 1225	Date / Time Completed: 6-4-631 1245
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 20.90	Method of Well Purge:
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal: /. c	Purged To Dryness Y (N)
Purge Observations:	Start MANGE PHATS Finish SC TON BIRD
DUDOT DATA (If a well-all)	

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
1230	13.61		15.7	7.16	1529	151.5	- 38	1.76
1235	13.65		14.6	7.30	1600	71.9	-40	1-19
1240	13.68		14.6	7.28	1620	55.6	20 4/C	1.07
1245	13.70	1.0	15.0	7.28	1624	32.3	-40	وج .
				-	 			

SAMMES AT 1245 /6-4-03
PAGE 1 OF 2

SAMPLING INF	ORMATI	ON:		POINT ID			
Date/Time				Water Lev	vel @ Sampling,	Feet:	
Method of Samp	ling:				_Dedicated:	Y/N	
Multi-phased/ la	yered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING DA	TA:		_	_			
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
					,		
INSTRUMENT	CHECK D	DATA:		'			
Turbidity Serial : Solutions:		NTU std.				NTU	
pH Serial #: Solutions:					10).0 std. =	
Conductivity Se				ımhos/cm=	·	umhos/cm=	
GENERAL INF		•					
Weather condition	ons @ tim						
Sample Charact	eristics:			· .			
COMMENTS A	ND OBSI					· .	
							_
I certify that san	mpling pro	ocedures were li	n accordance v	vith all app	licable EPA, Stat	te and Site-Specific	
Date:	1 1	Ву:			Company:		

PAGE 2 OF 2

Facility: ARCH CHEMICAL			Sample Point ID: B-9						
Field Personnel: R. Sent, P. 1144, TR. O			2c Sample	e Matrix:	5W_				
MONITO	RTING WELL	INSPECTION:							
Date/Time 6-4-03 1			Cond	of seal: () Good () Non	() Cracked e () Buried	-	<u>%</u>		
Prot. Casing/riser height:			_ Cond o	of prot. Casing/i	riser: () Unic () Loose () Damaged	() Flush M			
If prot.cas	ing; depth to r	iser below:				() Damageu			
Gas Mete	r (Calib r ation/ F	Reading):	% Gas:		% LEL:				
Vol. Orga	nic Meter (Calib	oration/Reading	ı):	Volatil	es (ppm <u>'</u>	<i>1</i>			
PURGE I	NFORMATION	٧:							
Date / Tim	Date / Time Initiated:			Date /					
Surf. Mea	s. Pt: () Prot. C	asing	⋉ Riser	Riser I					
Initial Wat	ter Level, Feet:			Elevat					
Well Tota	Depth, Feet:			_ Metho	Method of Well Purge:				
One (1) R	iser Volume, G	al:		_ Dedica	Dedicated: Y / N				
Total Volu	ıme Purged, Ga	al:	<u>.</u>	Purge	Purged To Dryness Y / N				
Purge Ob	servations:			Start		Finish			
	DATA: (if appl								
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other	
	<u> </u>								
				-					
				·					
			- 						
ļ———	<u></u>	 		 		 	 		

PAGE 1 OF 2

10.00

SAMPLING	INFORMATI	ON: `		POINT I			
Date/Time /			Water Lev	, Feet:			
Method of Sampling:					Y/N		
Multi-phased	i/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
					 		
				 -			
INSTRUME	NT CHECK D	PATA:					
-		NTU std.			NTU std. ≈	_NTU	
		4.0 std.=			1 _	0.0 std. =	
Conductivity Solutions:	/ Serial #:			umhos/cm=	<u> </u>	umhos/cm=	
	INFORMATIO						
Weather con	iditions @ tim	e of sampling:					
Sample Cha	racteristics:				· · · · · · · · · · · · · · · · · · ·		
COMMENT	S AND OBSE					Burned CONDER	
Rock	Pole	· · · · · · · · · · · · · · · · · · ·					
• . • • • • • • • • • • • • • • • • • •							
							_
			· · · · · · · · · · · · · · · · · · ·		 		
I certify that	sampling pro	cedures were i	n accordance v	vith all app	licable EPA, Sta	ate and Site-Specific	
Date:		Ву:			Company:		

PAGE 2 OF 2

Facility: AKCH CHEMICAL	Sample Point ID: BA- 103
Teld Personnel: R. Sent P. little, TR. OC	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-30-03 1055	Cond of seal (Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	1- % LEL: 1
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 530 -01 1006	Date / Time Completed: 5-30-03 1/2c
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 5.45	Elevation. G/W MSL:
Well Total Depth, Feet: 43.45	Method of Well Purge: Binder Poul
One (1) Riser Volume, Gal:	Dedicated: (Ŷ/ N
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations:	Start Clear Finish Ckin
DUDCE DATA: /if oppliesble)	

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DC
1105	5.65		127	7-64	1448	205	2%	2.02
1110			12.5	7.65	1468	12.70	227	1.47
1115			12.5	7.60	1471	10.30	226	.98
1120			12.4	7:59	1473	7.20	226	-83
			-					

SAMBLES AT 1120/5.30-03

(Lat PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID		
•			Water Lev	, Feet:		
				·	_Dedicated:	Y/N
		()Yes	() No	If YES:	() light	() heavy
SAMPLING	DATA:					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()
INSTRUME	NT CHECK E	PATA:				
_		NTU std.				_NTU
•		4.0 std.=		.0 std.=		10.0 std. =
Conductivity Solutions:	Serial #:			umhos/cm=	<u>-</u>	umhos/cm=
	NFORMATIO					
Weather con	ditions @ tim	e of sampling:				
Sample Char	racteristics:		·	<u>.</u>		1 8 m - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
COMMENTS	S AND OBSI	ERVATIONS:			·. ·	
<u>.</u>						
i certify that protocals.	sampling pro	cedures were i	n accordance v	vith all app	licable EPA, St	ate and Site-Specific
Date:		Ву:			Company:	

PAGE 2 OF 2

Facility: AKCH CHEMICAL	Sample Point ID: BR-104
Field Personnel: R. Senf, P. 1144, TB. DC	Sample Matrix: <u>G</u>
MONITORTING WELL INSPECTION:	
Date/Time 5-30-03 / 1236	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose ﴿﴿ Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'/
PURGE INFORMATION:	
Date / Time Initiated: 5-30-031 1246	Date / Time Completed: 5-30-03 1 /300
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initiai Water Level, Feet: 7.0 /	Elevation. G/W MSL:
Well Total Depth, Feet: 19.20	Method of Well Purge: BLADDER FUND
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal: 2.0	Purged To Dryness Y (N)
Purge Observations:	Start Clean Finish Clean
PURGE DATA: (if applicable)	•

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
1245	7.32		13.2	8.35	263	50.2	300	3.25
1250	7.32		14.1	8.57	259	19.3	36/	2.11
1255		_	14.6	8.71	259	40.7	300	1.97
1300	J		14:6	8.73	259	38.4	700	1.12
						-		

SAMPLED At 1300/5.30-03 Del Lui

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID				
Date/Time				Water Level @ Sampling, Feet:				
Method of Sa	ampling:				_Dedicated:	Y / N		
Multi-phased	l/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:	_						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
INSTRUME	NT CHECK DA	ATA:						
-			=NTU	-	NTU std. =	_UTM_		
			7.			10.0 std. =		
Conductivity	Serial #:			umhos/cm=	<u> </u>	umhos/cm=		
	INFORMATIO				-			
Weather con	ditions @ time	of sampling:						
Sample Cha	racteristics:			•				
COMMENT	S AND OBSE			· · · · · · · · · · · · · · · · · · ·		· .		
				·				
			···					
					-			
I certify that protocals.	sampling prod	edures were i	n accordance v	vith all app	licable EPA, St	ate and Site-Specific		
Date:	1 1	_ Ву:			_ Company:			

PAGE 2 OF 2

Facility: AKCH CHEMICAL	Sample Point ID: $R - 05$
Fleid Personnel: R. Sent, P. IIHL, TA. DC	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6/2/03 1 # 13/5	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked & Good () Loose & Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL: ~ 1
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'/
PURGE INFORMATION: $ au_{\mathcal{R}}$	•
Date / Time Initiated: $6/2/03$ 1 $\frac{713}{20}$	Date / Time Completed: 6/2/63 / /350
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 22-25	Elevation. G/W MSL:
Well Total Depth, Feet: 49.60	Method of Well Purge: Blacks pump
One (1) Riser Volume, Gal: 3-64	Dedicated:
Total Volume Purged, Gal: 1.	Purged To Dryness Y / N
Purge Observations:	Start Clear Finish Cent
PURGE DATA: (if applicable)	H Conduct Turb Other Other
Time Purme Rate Cumulative Temp n	M I LANDOUCT I IUM. I LANDE I LANDER I

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (00)
1325	22.26		13.7	7.22	2149	23.7	-62	1.19
1330	2226		12.9	7.25	2150	19.5	-42	1:05
1335	2224		12.6	7.26	2117	12.05	-33	.47
1340	22.26		12.7	7:26	2/56	9.12	-23	. 95
1345	22.26		12.4	7,25	2165	4.90	1B/1	.90
1350	22,26		12,4	7.26	2160	5.00	-21	. 85

T. Behand 6/2/03 PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID		
Date/Time /			Water Level @ Sampling, Feet:			
Method of Sa	impling:				_Dedicated:	Y / N
Multi-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy
SAMPLING	DATA:					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
				\	ļ	
				<u> </u>		
				<u> </u>		·
INSTRUME	NT CHECK DA	ATA:				
			=NTU		ITU std. =	_ NTU
-		_	7		1 _	0.0 std. =
Conductivity	Serial #:			umhos/cm=		umhos/cm=
	NFORMATIO	•			-	
Weather con	ditions @ time	of sampling:				
Sample Char	acteristics:					
COMMENTS	S AND OBSE	RVATIONS:		· · · · · · · · · · · · · · · · · · ·		·
I certify that protocals.	sampling proc	edures were Ir	n accordance v	vith all appl	icable EPA, Sta	ate and Site-Specific
Date:	1 1	_ By:	•		_ Company:	

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: BR 105 D
Field Personnel: R. Senf P. 11H4, TB. OC	Sample Matrix: <u>GW</u>
MONITORTING WELL INSPECTION:	
Date/Time $6/2/03$ / $1/220$	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm' /
PURGE INFORMATION:	
Date / Time Initiated: 42631 1225	Date / Time Completed: $\sqrt{2/03}$ 1/255
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2-6
Initial Water Level, Feet: 24.22	Elevation. G/W MSL:
Well Total Depth, Feet: 79.50	Method of Well Purge: Blade pans
One (1) Riser Volume, Gal: 158-85 962	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y
Purge Observations:	Start Cleut Finish clean
DIDOR DATA (II. II.)	

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)				pH (std units)	•		Other (cRP)	Other
1230	150	25.50		14.7	7.21	14720	8-10	-279	2.12
1235	150	26.25	_	14.4	7.17	15/70	4.50	-28/	1.75
1240	150	26,60		/3,8	7,15	15300	1.85	-284	1.00
1245	150	26,10		13.9	7.16	15300	1.84	-287	,47
1250	150	26.65		14.0	7,20	15 300	1.63	-286	(D)
1255	150	26.70		13.9	7.18	15290	1.52	-288	.70

Sumpled C 1255 T. Behandt 6/2/03 PAGE 1 OF 2

SAMPLING	INFORMATIC	ON:		POINT ID				
Date/Time				Water Lev	Feet:	_		
Method of Sa	ampling:				_Dedicated:	Y / N		
Multi-phased	l/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
				\	,			
				<u></u>				
INSTRUME	NT CHECK DA	ATA:						
_			=NTU		NTU std. =	NTU		
-			7		10 -).0 std. =		
					<u> </u>	umhos/cm=		
	INFORMATIO		•					
Weather con	ditions @ time	of sampling:		·				
Sample Cha	racteristics:		···	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
COMMENT	S AND OBSE			٠	· V. ·			
	_							
						.,		
I certify that protocals.	sampling prod	cedures were li	n accordance v	vith all app	licable EPA, Sta	te and Site-Specific		
Date:	1 1	_ Ву:			Company:			

•••	20 (
Facility: ARCH CHEMICAL	Sample Point ID: BR-/OL
Tield Personnel: R. Senf P. little, TR. OC	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6/2/03 1 /020	Cond of seal: () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose — () Flush Mount () Damaged
If prot.casIng; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'
PURGE INFORMATION:	
Date / Time Initiated: 6/1/031 1035	Date / Time Completed: 6/2/07/1/00
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 43.22	Method of Well Purge: Blader pump
One (1) Riser Volume, Gal:	Dedicated: (Y) N
Total Volume Purged, Gal: 2.0	Purged To Dryness Y (N)
Purge Observations:	Start JL. Tous bid Finish St. Turbid
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (o(?)	Other (♪c)
1040	27.48		12.3	7.10	2950	116.7	-120	1.97
1045	22.98	.5	11.8	7.11	2956	98.4	-//3	1.10
1050	22.48	1.0	11.7	7.18	2463	107.5	-115	. 98
1055	22-48	1.5	11.9	7.42	2953	91.7	-117	.90
/10 v	22,48	2-0	11.8	7.42	295/	946	-116	:81
								Ε.

Sumpled @ 1100
Tightmet 6/2/03

PAGE 1 OF 2

SAMPLING I	NFORMATIC	ON: `		POINT I		
Date/Time				Water Lev	g, Feet:	
Method of San	npling:	•			_Dedicated:	Y/N
Multi-phased/	layered:	() Yes	() No	If YES:	() light	() heavy
SAMPLING D	ATA:		· 			
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
INSTRUMEN					<u> </u>	
Solutions:	130R-11	/ /	= <u>.5%_</u> NTU			_
			<u>co</u> 7		<u> </u>	10.0 std. = / 6.00
Conductivity S	Serial #:	1201	r	umhos/cm=	= 14c. 4	umhos/cm=
GENERAL IN		,				
Weather cond	itions @ time	of sampling:				
Sample Chara	cteristics:	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
COMMENTS	AND OBSE	RVATIONS:	·	· 	·.	
						
				 _		
						
I certify that s protocals.	ampling proc	edures were i	n accordance v	vith all app	licable EPA, Si	tate and Site-Specific
Date:	1 1	_ By:			Company	:
_			-			

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: BR-108					
Fleid Personnel: R. Sent, P. 1144, TR. OC	Sample Matrix: <u>GW</u>					
MONITORTING WELL INSPECTION:						
Date/Time 6/2/03 1 1465	Cond of seal: (Good () Cracked % () None () Buried					
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount					
If prot.casing; depth to riser below:	() Damaged					
Gas Meter (Calibration/ Reading): % Gas:	~ / ~ % LEL: _ /					
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)					
PURGE INFORMATION:						
Date / Time Initiated: 6/2/63 / 14/5	Date / Time Completed: $6/2/03 1/930$					
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:					
Initial Water Level, Feet: 27.25	Elevation. G/W MSL:					
Well Total Depth, Feet: 29.75	Method of Well Purge: 3/5 Bules					
One (1) Riser Volume, Gal:	Dedicated: (Y) N					
Total Volume Purged, Gal: 1.6	Purged To Dryness 🐧 🖟 T 13					
Purge Observations:	Start Turbil Finish Turbil					
PURGE DATA: (if applicable)						
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C) (s	pH Conduct Turb. Other Other other (Umhos/cm) (NTU)					

PAGE 1 OF 2

SAMPLING INFORMATION:	POINT ID				
Date/Time <u>BR 105 1 1025</u>	, - 				
	Dedicated: Y / N				
Multi-phased/ layered: () Yes No	If YES: () light () heavy				
SAMPLING DATA:					
Time Temp. pH Conduct (°C) (std units) (Umhos/cm)	Turb. Other Other (NTU) (▷♥) (▷♥)				
1030 15.7 7.43 848	85.4 24				
INSTRUMENT CHECK DATA:					
Turbidity Serial #:NTU std. =NTU Solutions:	NTU std. =NTU				
pH Serial #: 4.0 std.= Solutions:	7.0 std.=				
Conductivity Serial #: Solutions:	umhos/cm=umhos/cm=				
GENERAL INFORMATION:					
Weather conditions @ time of sampling:	y clas calu 601-				
Sample Characteristics: Tarbid no	0 0 60 5				
COMMENTS AND OBSERVATIONS:					
·					
I certify that sampling procedures were in accordance protocals. Date: 6 13163 By: 1616 57	with all applicable EPA, State and Site-Specific Company: 574				

PAGE 2 OF 2

rility: ARCH CHAMICAC Field Personnel: R.SRNF D. CIMWI	Sample Point ID: $BR - 1/2D$ Sample Matrix: G/W
MONITORTING WELL INSPECTION:	
Date/Time 6-04-03 1/335	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked ➤ Good () Loose () Flush Mount
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 6-04-031 /340	Date / Time Completed: $6-04-03$ 1410
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 36,27	Elevation. G/W MSL:
Well Total Depth, Feet: 72.26	Method of Well Purge: B(ADD&L Pund Pund
One (1) Riser Volume, Gal:	Dedicated: Y / N
Total Volume Purged, Gal:	Purged To Dryness Y KN
Purge Observations:	Start CCRAR Finish CCRAC

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Po
1355	200 36.50		10.9	7,26	1470	3.01	-260	0.18
1400	36.55	.)	10.8	7.27	1475	2.51	-264	0.15
1405	34,55		10,8	7,30	1489	2,35	-261	0.13
1410	34.55	1.5	10.8	7. 33	1500	2.25	-263	0,13

SAMPLING	3 INFORMATIO	ON:		POINT ID BR-112 D					
Date/Time 6-04-03 1415					Water Level @ Sampling, Feet: 36,55				
Method of Sampling: Bladder puns					Dedicated: Y/N				
Multi-phase	ed/ layered:	() Yes	No	If YES:	() light	() heavy			
SAMPLING			,						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
				 					
						·			
INSTRUME	ENT CHECK DA	ATA:							
	erial #:				ITU std. =	UTM_			
pH Serial #: Solutions:		4.0 std.=	7.	0 std.≃	1	0.0 std. =			
Conductivit	y Serial #:				- -	umhos/cm=			
GENERAL	INFORMATIO	N:							
Weather co	nditions @ time	of sampling:	Cloudy	65°F					
Sample Cha	aracteristics:	CCEAR			· · · ·				
COMMENT	rs and obse	RVATIONS:			·				
					,				
		· · · · · · · · · · · · · · · · ·							
I certify that protocals.	at sampling proc	cedures were i	n accordance v	with all app	licable EPA, St	ate and Site-Specific —			
Date:	6 10403	_ Ву:	031		Company:	570			
			PAGE 2 OF	2					

cility: ARCH CHRMICAC	Sample Point ID: BR - 113 D
Field Personnel: R.Shur D. CIMWI	Sample Point ID: $BR - 113 D$ Sample Matrix: G/w
MONITORTING WELL INSPECTION:	
Date/Time/G-04-03 1 1235	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Danageu
Gas Meter (Calibration/ Reading): % Gas:	/% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'/
PURGE INFORMATION:	
Date / Time Initiated: 6-04-03 1 1240	Date / Time Completed: 6-04-03 1 / 3 / 0
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 31.28	Elevation. G/W MSL:
Well Total Depth, Feet: 79.25	Method of Well Purge: (ADDRA (AUM)
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal: 1.0	Purged To Dryness Y IN
Purge Observations:	Start BLACK Finish TINT

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other
1250	me/mi	31.35		11,6	7,48	2450	2.77	-27/	0.21
1300		31.35		11,6	7.43	2460	2.31	-277	0.17
1305		31.35		11.6	7.39	2590	2.45	-280	0,15
1310	1	31,35		11.7	7.35	2610	2,63	-283	0,14

PAGE 1 OF 2

SAMPLING INFORM	MATION:	POINT ID BR-113 D			
Date/Time 6-04	1 1315	Water Level @ Sampling, Feet: 3/35			
Method of Sampling:		Dedicated: Y/N			
Multi-phased/ layered	: () Yes No	If YES: () light () heavy			
SAMPLING DATA:					
Time Tem	. , . , ,	Turb. Other Other (NTU) ()			
INSTRUMENT CHEC	CK DATA:				
	NTU std. =NTU	NTU std. =NTU			
	4.0 std.= 7.0				
Conductivity Serial #: Solutions:	un	mhos/cm=umhos/cm=			
GENERAL INFORM	ATION:				
Weather conditions @	time of sampling: CCOUOY, C	65%			
Sample Characteristi	CS: BLACK TINT	en e			
COMMENTS AND C	BSERVATIONS:				
I certify that sampling protocals.	g procedures were in accordance wi	ith all applicable EPA, State and Site-Specific			
Date: 6 1041	0 ³ By:	Company: 57C			

Field Personnel: CHRMLCAC CHRMLCAC P.SENT D. CIMWI	Sample Point ID: BR-114				
Field Personnel: R.Shur D. CIMWI	Sample Matrix: 6/w				
MONITORTING WELL INSPECTION:					
Date/Time 6-04-03 1 //25	Cond of seal: () Good () Cracked % () None () Buried				
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount				
If prot.casing; depth to riser below:	() Damaged				
Gas Meter (Calibration/ Reading): % Gas:	/% LEL:/				
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/				
PURGE INFORMATION:					
Date / Time Initiated: 6-04-03 / //30	Date / Time Completed: 6-04-03 1 1/55				
Surf. Meas. Pt: () Prot. Casing (XRiser	Riser Diameter, Inches: 4,0				
'nitial Water Level, Feet: 12.80	Elevation. G/W MSL:				
Well Total Depth, Feet: 36,53	Method of Well Purge: BLADDER Pune				
One (1) Riser Volume, Gai:	Dedicated: Y / N				
Total Volume Purged, Gal:	Purged To Dryness Y N				
Purge Observations:	Start CLEAR Finish CLAAR				

PURGE DATA: (if applicable)

Time	Purg	e Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1140	200	WL 12.85		14.1	7,38	2030	16.80	135	0,29
1145		12.85		14.2	7.29	20 30	7.88	133	0.19
1150				14,3	7,32	2030	5.75	132	0.17
1155		12.85		14,1	7,35	2020	5.15	129	0,17

PAGE 1 OF 2

SAMPLING INFORM	MATION:	POINT ID BR-114				
	-03 11200	Water Level @ Sampling, Feet: 12.85				
Method of Sampling:	BLADDER PUMP	Dedicated:	YN			
	i: ()Yes No		() heavy			
SAMPLING DATA:	, 		·			
Time Tem	• • •	Turb. Other (NTU) () (Other)			
<u> </u>						
INSTRUMENT CHEC	CK DATA:					
	NTU std. =NTU	NTU std. =NTU				
	4.0 std.= 7.		td. =			
Conductivity Serial #: Solutions:	:u	imhos/cm=	umhos/cm=			
GENERAL INFORM	ATION:					
Weather conditions @	time of sampling: CLOUPY	65°F				
Sample Characteristic						
COMMENTS AND C	DBSERVATIONS:					
I certify that sampling protocals.	g procedures were in accordance v	vith all applicable EPA, State ar	nd Site-Specific			
Date: 6 1041	103 By: 31	Company: 5	<u> </u>			

Field Personnel: R. Shar D. Cl-7wi	Sample Point ID: BR - 1/6 Sample Matrix: G/W
MONITORTING WELL INSPECTION:	
Date/Time 5-28-03 1/4/5	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5-28-03 1 1420	Date / Time Completed: 5-28-03 / 1450
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 27,05	Elevation. G/W MSL:
Well Total Depth, Feet: 62,20	Method of Well Purge: BLADDER Pune
One (1) Riser Volume, Gal:	Dedicated: Y (N)
Total Volume Purged, Gal: 1.0	Purged To Dryness Y N
Purge Observations:	Start CLEAR Finish CLAAL
DUDGE DATA (If and Parkle)	

PURGE DATA: (if applicable)

FUNGE DATA. (II applicable)												
Time	, –	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other OCA	Other Po			
1435	250	27.15		14.4	7,32	2290	29.8	-210	0.35			
1440		27.25		14,4	7.31	2280	21./	-209	0,33			
1445		27.25		14.5	7,28	2280	19.25	-208	0.31			
1450	V	27.25		14,5	7,25	2280	18.57	-203	0,32			
							_					

PAGE 1 OF 2

SAMPLING	INFORMATIO	ON:		POINT ID BR-116				
Date/Time	5-28-0	3 1/	450	Water Level @ Sampling, Feet:				
	ampling:	B(000	WAP	. <u></u>	_Dedicated:	(Y)N		
Multi-phase	d/ layered:	() Yes	At) No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()		
						1		
INSTRUME	NT CHECK DA	ATA:						
	rial #:				NTU std. =	_NTU		
pH Serial #: Solutions:			7.		1 _	10.0 std. =		
Conductivity Solutions:	y Serial #:					umhos/cm=		
GENERAL	INFORMATIO	N:						
Weather co	nditions @ time	of sampling:	RAIN,	65°F				
Sample Cha	racteristics:							
COMMENT	S AND OBSE	RVATIONS:	THUNDAR	STORM	HEAVY	RAIN		
			- <u>-</u>		· ·			
I certify tha	t sampling prod	cedures were i	n accordance v	with all app	licable EPA, St	ate and Site-Specific		
Date:	5128103	By:	02		Company:	576		

PAGE 2 OF 2

ility: ARCH CHRMLCAC	Sample Point ID: $BR-116D$ Sample Matrix: G/W
Field Personnel: R.Shur D. Cimui	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5-28-03 1330	Cond of seal: (x) Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose → Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm;
PURGE INFORMATION:	
Date / Time Initiated: $5^{-28^{-03}}$ /335	Date / Time Completed: 5-28-03 / 1405
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
nitial Water Level, Feet: 35,40	Elevation. G/W MSL:
Well Total Depth, Feet: 98,10	Method of Well Purge: BLADDER PU-10
One (1) Riser Volume, Gal:	Dedicated: Y (N)
Total Volume Purged, Gal: 1.0	Purged To Dryness Y (N)
Purge Observations:	Start BLACK Finish SC. TINT

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other Oae	Other ,බර්
1350	m ² /mi- 250	35.55		15,3	7.61	1830	32,5	-218	0.83
1355		35,60		15,3	7.63	1840	33.2	-221	0,59
1400		35,60		15,3	7,64	1840	34.4	-223	0.53
1405	1	35.40		15,3	7.67	1850	35,2	-225	0,49

SAMPLING	INFORMATIO	ON:	POINT ID BR-116 D				
Date/Time	5-28-03	1,	Water Level @ Sampling, Feet: 35,60				
					_Dedicated:		
Multi-phase	d/ layered:	() Yes	⋈ No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
				-			
INSTRUME	NT CHECK DA	ATA:					
			=NTU		NTU std. =	_NTU	
pH Serial #:		4.0 std.=	7.	0 std.=	1	0.0 std. =	
Solutions:			· · · · · · · · · · · · · · · · · · ·		_		
Conductivity Solutions:				ımhos/cm=	<u> </u>	umhos/cm=	
GENERAL	INFORMATIO	N:					
Weather co	nditions @ time	of sampling:	RAIN +	THUNDA	1 , 65°F		
Sample Cha	racteristics:	CLEAR		· · ·			
COMMENT	S AND OBSE	RVATIONS:					
							
							
-	t sampling prod	cedures were i	n accordance v	vith all app	licable EPA, Sta	ate and Site-Specific -	
protocals. Date:	5128103	By:	02/1)	Company:	570	
			PAGE 2 OF	2			

Fleid Personnel: R. SENT D. CIMINI	Sample Point ID: BR -117 D Sample Matrix: 6/W
MONITORTING WELL INSPECTION:	
Date/Time 5 - 27 - 03 1 /240	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser helght: 2.10	Cond of prot. CasIng/riser: () Unlocked 💢 Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below: 0.30	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	-/- % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: 5-27-03/ 1245	Date / Time Completed: 5-27-03 1 /320
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 48.90	Elevation. G/W MSL:
Well Total Depth, Feet: 82.24	Method of Well Purge: BLADDAL pune
One (1) Riser Volume, Gal:	Dedicated: Y /N
Total Volume Purged, Gal: 1,5	Purged To Dryness Y / N
Purge Observations:	Start CCEAR Finish BLACK

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1255	200	48.97		10,6	8.55	1983	20,9	-253	0.91
1300		49.00		10.6	8.49	1999	21.2	-247	0.83
1305		49.00		10.6	7,85	1999	20.5	-25/	0.79
1310		49,00		10.6	7,79	2010	21.0	-187	0.82
1315		49.00		10.6	7.75	2018	21.7	-165	0,81
1320		49.00		10.6	7.79	2020	22.8	-162	0.80

SAMPLING	INFORMATIC	N:		POINT ID BR-117 D				
Date/Time	5-27- 03 ampling:	1 /	325	Water Lev	vel @ Sampling	g, Feet:	49,00	
Method of Sa	ampling:	BCADI	PHUP		_Dedicated:	Y/N		
Multi-phased	I/ layered:	() Yes	Ø No	If YES:	() light	() heavy		
SAMPLING	DATA:	,						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()		
INSTRUME	NT CHECK DA	ATA:					_	
-	rial #:				ITU std. =	_NTU		
-		="				10.0 std. =		
Conductivity Solutions:	/ Serial #: 			mhos/cm=	<u> </u>	umhos/cm	n=	
	NFORMATIO							
Weather con	ditions @ time	of sampling:	Cloudy	75°F				
	racteristics:			·				
	S AND OBSEI							
						<u>.</u>		
	· · · · · · · · · · · · · · · · · · ·					 _		
I certify that protocals.	sampling proc	edures were in	accordance w	ith all appl	icable EPA, St	ate and Site-Spe	cific	
Date:	5127103	_ Ву:	3/	1	_ Company:	570		

PAGE 2 OF 2

acility: ARCH CHRMICAL	Sample Point ID: BR-118D
Field Personnel: R. SRNF/D, CIMIUI	Sample Matrix: 60
MONITORTING WELL INSPECTION:	
Date/Time 5-27-03 1 1150	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height: 2,/0	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	· · · · · · · · · · · · · · · · · · ·
Gas Meter (Calibration/ Reading): % Gas:	/— % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm;
PURGE INFORMATION:	
Date / Time Initiated: 5-27-03 / //55	Date / Time Completed: 5-27-03 11220
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 47,97	Elevation. G/W MSL:
Well Total Depth, Feet: 87.27	Method of Well Purge: BLADDER PHONE
One (1) Riser Volume, Gal:	Dedicated: Y / N
Total Volume Purged, Gal: / . O	Purged To Dryness Y / N
Purge Observations:	Start CLEAR Finish CLEAR
PUPGE DATA: (if applicable)	

PURGE DATA: (if applicable)

TONOL	PURGE DATA: (It applicable)												
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other OQP	Other Dರ					
1200	250 48.07		12,2	7.36	2126	8.45	-185	0.95					
1205	48.10		12.2	7.38	2110	8,30	-199	0.47					
1210	148,50		12.2	7.41	2110	8.20	-215	0.45					
1215	48.10		12,3	7,43	2110	8,23	-217	0.42					

PAGE 1 OF 2

SAMPLING INFORMATION:					POINT ID BR-118 D			
Date/Time	5-27-0	03 112	226	Water Level @ Sampling, Feet: $\frac{48.10}{}$				
Method of S	ampling:	BLADDA	n Pump		Dedicated:	YN		
Multi-phase	d/ layered:	() Yes	№ No	If YES:	() light	() heavy		
SAMPLING	DATA:	. /	/					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
				\ \				
			<u> </u>	 	 	<u> </u>		
INSTRUME	NT CHECK D	ΔΤΔ·			<u> </u>	<u> </u>		
Turbidity Se Solutions:	rial #: <u>3093</u> 	NTU std.			NTU std. = <u>క</u> ెం - <u>ఁలల</u> 1	0.0 std. = /o. eo		
Conductivity	y Serial #:	1201	•	umhos/cm	= 14/6.9	umhos/cm=		
GENERAL	INFORMATIO	ON:						
Weather cor	nditions @ tim	e of sampling:	Clousy	70°F				
Sample Cha	racteristics:	CLEAR						
COMMENT	S AND OBSE	ERVATIONS:						
				~				
								
								
I certify that	t sampling pro	cedures were i	in accordance	with all app	olicable EPA, St	ate and Site-Specific		
Date:	5 127103	Ву:	3/1		Company:	57(
			PAGE 2 OF	2				

Field Personnel: CHRM1CAC CHRM1CAC CHRM1CAC CHRM1CAC D. CIMWI	Sample Point I <u>D: BR - 122 D</u> Sample Matrix: G/W
MONITORTING WELL INSPECTION:	
Date/Time_5-28-03 1 1045	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height: 2.70	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount
If prot.casing; depth to riser below:	Damaged CAR BROKEN
Gas Meter (Calibration/ Reading): % Gas:	/% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 5-28-03 1 1050	Date / Time Completed: 5-28-03 / //30
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4.0
nitial Water Level, Feet: 44,24	Elevation. G/W MSL:
Well Total Depth, Feet: 82.57	Method of Well Purge: BLADDAR PUMP
One (1) Riser Volume, Gal:	Dedicated: Y (N)
Total Volume Purged, Gal: /->	Purged To Dryness Y / N
Purge Observations:	Start TIVE Finish CLEAR

PURGE DATA: (if applicable)

Time		ge Rate m/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other
1115	250	44.30		11.5	7.42	2330	1.15	-247	0.70
1120		44.30		11.5	7.31	2320	1.19	-250	0,45
1125		44.30		11.5	7.30	2320	1.15	-253	0.35
1130		44.30		11.5	7.30	2320	1,12	-255	0,37

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID BR-122 D				
	5-28-03			Water Le	vel @ Sampling	, Feet: 44,30		
Method of S	ampling:	BLADO.	CA 		Dedicated:	(Y) N		
Multi-phase	d/ layered:	() Yes	() Yes () No		() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other (Do)		
				 				
			 -					
INSTRUME	NT CHECK D	ATA:						
Turbidity Se	rial #: <u>3093</u>	NTU std.	= <u>\$>@</u> NTU	<u>5.0</u>	NTU std. = <u>5-0</u>	_NTU		
Solutions:	130K-1							
pH Serial #:	1201	-				0.0 std. = /e.oo		
		•	c, 10-2					
			146.9	umhos/cm	= 146.9	umhos/cm=		
	146.9 -			 -	_			
	INFORMATIO							
Weather co	nditions @ time	of sampling:	CLOUSY	1 65°	<u> </u>			
Sample Cha	racteristics:	CLEAR		· · · · · · · · · · · · · · · · · · ·				
COMMENT	S AND OBSE	RVATIONS:						
<u>. </u>								
l certify tha	t sampling pro	cedures were	in accordance	with all ap	olicable EPA, St	ate and Site-Specific		
Date:	5 128103	By:	8/1)	Company:	570		
								

PAGE 2 OF 2

Field Personnel: MONITORTING WELL INSPECTION:	Sample Point ID: BR-123 D Sample Matrix: G/W
Date/Time 5-28-03 1 1150	Cond of seal; () Good () Cracked
Prot. Casing/riser height: 2,56	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/- % LEL: / _
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm /
PURGE INFORMATION:	
Date / Time Initiated: 5-28-03 / 1200	Date / Time Completed: 5-28-03 1 1230
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4.0
nitial Water Level, Feet: 44, 95	Elevation. G/W MSL:
Well Total Depth, Feet: 97.56	Method of Well Purge: ### Purse
One (1) Riser Volume, Gal:	Dedicated: Y (N)
Total Volume Purged, Gal: /->	Purged To Dryness Y N
Purge Observations:	Start CLASE Finish CERAL

PURGE DATA: (if applicable)

Time		e Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other Oce	Other Do
1215	25 ⁰	45.05		16.7	8.90	1660	24,9	-275	0.19
1220		45.05		10,7	8.91	1660	25, 3	-278	0.17
1225		45.05		10.7	8,93	1660	25.9	-281	0,20
1230	V	45,05		10.8	8,93	1660	26.8	-283	0.17

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID BR-123 P				
Date/Time	5-28-0	3 1/3	235	Water Lev	vel @ Sampling	, Feet: 45,05		
Method of S	ampling:	BLADOF	Puso		_Dedicated:	(Y)/N		
Multi-phase	d/ layered:	() Yes	NO NO	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
		···						
						·		
INSTRUME	NT CHECK DA	TA:						
	rial #:			N	ITU std. =	_NTU		
pH Serial #:	*	4.0 std.=	7.0	0 std.=	1	0.0 std. =		
Solutions:					-			
Conductivity Solutions:			u	mhos/cm=		umhos/cm=		
GENERAL	INFORMATION	N:						
Weather cor	nditions @ time	of sampling:	THUNDAL	STORM	70°F			
	racteristics:							
COMMENT	S AND OBSER	RVATIONS:						
			· · · · · · · · · · · · · · · · · · ·					
	·							
I certify that protocals.	t sampling proc	edures were in	n accordance w	vith all app	licable EPA, St	ate and Site-Specific		
Date:	5 28,03	By:	0 /	1_	Company:	572		
		- -	PAGE 2 OF	2	· · · · · · · · · · · · · · · · · · ·			

cility: ARCH CHRMLAC	Sample Point ID: BR-3
Field Personnel: R. SRUK D. CIMWI	Sample Point ID: BR-3 Sample Matrix: G/W
MONITORTING WELL INSPECTION:	
Date/Time 5- 28.03 1244	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5-29-27 / 1245	Date / Time Completed: 5-28-03 / 1365 Riser Diameter Inches: 4/.0
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 8.99	Elevation. G/W MSL:
Well Total Depth, Feet: 23.25	Method of Well Purge: PARR ISTALTIC PUNT
One (1) Riser Volume, Gal:	Dedicated: (Ŷ) N
Total Volume Purged, Gal: / O	Purged To Dryness Y / (N)
Purge Observations:	Start Chen Finish Clear

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other Do	Other
1250	wc 9.52		13.6	6.92	19,410	77.6	1.12	-65
1255	10.19		12.6	6-95	20,580	13.06	1.01	-76
1300	10-63		12.9	7.01	20,686	3.84	.68	-73
1305	164	1.0	12.8	6-99	20,840	2.74	.56	-72

SAMMEN AT 1305/5-28-07

PAGE 1 OF 2

SAMPLING	INFORMATI	ON:	POINT ID				
Date/Time				Water Le	vel @ Sampling	, Feet:	
Method of S	ampling:				_Dedicated:	Y / N	
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUME	NT CHECK D	ATA:					
			=NTU		NTU std. =	_NTU	
			7		1	0.0 std. =	
Conductivity Solutions:					= 	umhos/cm=	
GENERAL	INFORMATIC	DN:					
Weather cor	nditions @ tim	e of sampling:		-			
Sample Cha	racteristics:						
COMMENT	S AND OBSE	ERVATIONS:					
	_						
I certify that	t sampling pro	cedures were i	in accordance	with all app	olicable EPA, St	ate and Site-Specific	
Date:	1 1	Ву:			Company:		

LeachField Form Revision 0 March 15,2002

Facility: Arch Cleni	cul	Sample Point ID: Sample Matrix:	3R-5A
Field Personnel:	/DC	Sample Matrix:	Groved water.
SAMPLING INFORMATION:	•		Grab () Composite
Date/Time <u> </u>	, 960	Water Level @ Sampling	g, Feet: 25.53
Method of Sampling: <u>Sα</u>	mple Port	Dedicated:	YN
Multi-phased/ layered: () \	es YNo	If YES: () light	() heavy
SAMPLING DATA:			
Time Temp.	pH Conduct d units) (Umhos/cm)	Turb. Other (NTU) (もで?)	Other (DO)
905 14.9 7	.63 1966	5.12 -68	
INSTRUMENT CHECK DATA:			
Turbidity Serial #:l	NTU std. =NTU	NTU std. =	_NTU
H Serial #: 4.0	std.= 7.	0 std.=	10.0 std. =
Conductivity Serial #:			umhos/cm=
GENERAL INFORMATION:			
Weather conditions @ time of sa	mpling: Sun Ny	Calm 6	60 F
Sample Characteristics:	eis No Od	lo r	
COMMENTS AND OBSERVAT	IONS:	_	
			
			
			
I and to the to a second conservation		M	A
I certify that sampling procedure protocals.	s were in accordance w	ith all applicable EPA, St	ate and Site-Specific
-vate: 63162	By: 11mi5 /	Company:	

PAGE 1 OF 1

LeachField Form Revision 0 March 15,2002

Facility:	Facility: ARcl!			Sample Po	oint ID:	BR-6A		
ield Person	inel:	Pl. O	<u>'C</u>	Sample M	atrix:	60		
SAMPLING	INFORMATIO	N:				() Composite		
Date/Time	6-4-03		1435	Water Lev	el @ Sampling	, Feet:	8.09	
Method of Sa	ampling:	<u> </u>	BAILER		Dedicated:	Y / N		
Multi-phased	d/ layered:	() Yes	(D) No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other (
1440	17.2	8.96	5630	31.5	-/18			
			<u> </u>					
INSTRUME	NT CHECK DA	ATA:		·				
Turbidity Se	rial #:		=NTU		TU std. =	_NTU		
oH Serial #: ِ نـــنolutions:		4.0 std.=	7.	0 std.=		10.0 std. =		
Conductivity Solutions:	/ Serial #:		u	mhos/cm=	- -	umhos/cm	-	
GENERAL I	INFORMATION	N:						
Weather con	ditions @ time	of sampling:	Clou	21 6	0			
Sample Chai	racteristics:	BR			- · · ·			
COMMENTS	S AND OBSER							
						<u> </u>		
		 -						
								
				<u> </u>				
1						, , , , , , -		
I certify that protocals.	sampling proce	edures were in	accordance w	ith all appli	cable EPA, Sta	ite and Site-Spec	ific	
ate:	61403	Ву:	Al Zun		_ Company:	572		

LeachField Form Revision 0 March 15,2002

Facility: Arch Chemical			Sample Po	olnt ID:	BR-7A		
eld Perso	ield Personnel:			Sample Matrix:		Groudwater	
SAMPLING	3 INFORMATIO	ON:				(√) Grab ()	Composite
Date/Time	6/3/03		006	Water Leve	el @ Sampling,	Feet:	27.36
Method of S	Sampling:	Sampl	e port		Dedicated:	(Y) N	
Multi-phase	ed/ layered:	() Yes	KN0,	If YES:	() light	() heav	у
SAMPLING	3 DATA:						_
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other (DO)	
1005	17.5	7.49	3364	37.9	-176		
INSTRUME	ENT CHECK DA	ATA:					
Turbidity So	erial #:	NTU std. =		N	TU std. =	NTU_	
nH Serial #: نوناolutions:	:	4.0 std.=	7.	.0 std.=	1	0.0 std. =	
Conductivit				ımhos/cm=_		umhos/c	m=
GENERAL	INFORMATIO	N:		f			
Weather co	nditions @ time	of sampling:	Sann	/ Cla	m_60°	<u> </u>	
Sample Cha	aracteristics:	Slight	0/05	, <u>5L.</u>	Turbid	-	
COMMENT	TS AND OBSE	RVATIONS:					
I certify tha protocals.	t sampling proc	edures were in	accordance w	rith all applic	cable EPA, Stat	e and Site-Sp	ecific
ate:	613163	By:	Thomas L	KA	Company:	STL	

PAGE 1 OF 1

Facility: AKCH CHEMICAL	Sample Point ID: $BR-B$
Field Personnel: R. Sent P. little, TR. OC	Sample Matrix: 6w
MONITORTING WELL INSPECTION:	
Date/Time 6-4-03 11125	Cond of seal: (Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm
PURGE INFORMATION:	
Date / Time Initiated: /- 1-03 1135	Date / Time Completed: 6403 1 1150
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 7.44	Elevation. G/W MSL:
Well Total Depth, Feet: 31.77	Method of Well Purge: fearshille fame
One (1) Riser Volume, Gal:	Dedicated: 🕥 N
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations:	Start Clean Finish Clean
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other OA/	Other 10
1175	W 7,50		14.9	7,78	2637	34.1	ن 15س	1-32
1140	7.52		14.6	7.90	2640	39.9	-175	1.12
1145	755		14.6	7.91	2656	34.8	-175	1,00
1150	7-35	1.5	14.6	7.98	2660	26.6	-175	-87

SAMPLE AT 1150 /6-4-03 F. CIU DOP Rl Zitt PAGE 1 OF 2

SAMPLING	INFORMATIO	N: ¹		POINT ID)	
Date/Time				Water Level @ Sampling, Feet:		
Method of Sampling:					_Dedicated:	Y/N
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy
SAMPLING	DATA:	_				
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
] 		·			ļ	
			ļ	<u> </u>		
	<u> </u>					
INSTRUME	NT CHECK DA	NTA:				
	rial #: <u>3799</u> 		_	. <u>5.</u> e_N	NTU std. = <u>೨೯</u> ೦ –	NTU
	600750 4-2188					0.0 std. = <u>/0.00</u>
Conductivity Solutions:	y Serial #:	-20-1	146.91	ımhos/cm=	: <u>1409</u> _	umhos/cm=
	INFORMATION	,	. A			
Weather cor	nditions @ time	of sampling:				
Sample Cha	racteristics:		·			
COMMENT	S AND OBSER	RVATIONS:		·	·.	
						
				·		
I certify that protocals.	I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.					
Date:		Ву:	·		Company:	

PAGE 2 OF 2

LeachField Form Revision 0 March 15,2002

Facility: Arch chemical s	ample Point ID: 3R-9					
ield Personnel: TB/DC s	ample Matrix: 73 30.50 6W					
SAMPLING INFORMATION:	(C) Grab (C) Composite					
Date/Time 6/3/6203 1 840 W	later Level @ Sampling, Feet: <u>30.50</u>					
Method of Sampling: Sample port	Dedicated:					
Multi-phased/ layered: () Yes No If	YES: () light () heavy					
SAMPLING DATA:						
Time Temp. pH Conduct (°C) (std units) (Umhos/cm)	Turb. Other Other (NTU) (GCP) (アン)					
840 14.7 7.04 3024	3,38 -34					
INSTRUMENT CHECK DATA:						
Turbidity Serial #:NTU std. =NTU Solutions:	NTU std. =NTU					
ಌH Serial #: 4.0 std.= 7.0 s olutions:	std.= 10.0 std. =					
	hos/cm=umhos/cm=					
GENERAL INFORMATION:	_					
Weather conditions @ time of sampling:	calm 60°F					
- 1	ode!					
COMMENTS AND OBSERVATIONS:						
I certify that sampling procedures were in accordance with protocals.	all applicable EPA, State and Site-Specific					
_ate: 6 13163 By: Monwis A	RA Company: STL					

____ate:

Facility: AKCH CHEMICAL	Sample Point ID: E-/
Field Personnel: R. Sinf P. little, TR. OC	Sample Matrix: 6ω
MONITORTING WELL INSPECTION:	
Date/Time 5/36/03 1 1300	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'
PURGE INFORMATION:	
Date / Time Initiated: $5/30/231/320$	Date / Time Completed: 5/3963 1 /346
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 223	Eievation. G/W MSL:
Well Total Depth, Feet: 9,75	Method of Well Purge: Parastalta pump
One (1) Riser Volume, Gai:	Dedicated: Y N
Total Volume Purged, Gal: 2/00	Purged To Dryness Y /N
Purge Observations:	Start & Way Two id Finish Stronger BLACK
PURGE DATA: (if applicable)	(Search 34, Sheen)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
1325		125	16.6	9.22	26,350	59.9	1.15	-165
1330		.50	16-2	9.6(26720	49,4	1001	-195
<i>[335</i>		.75	16-[9.68	26810	45.3	.98	-194
1340		1.00	16-2	9:75	26820	41.6	.96	=196

SAMPLE AT 1340/5-30-03

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID				
Date/Time				Water Level @ Sampling, Feet:				
Method of Sa	ampling:			Dedicated: Y / N				
Multi-phased	l/ layered:	()Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
			<u> </u>	<u> </u>	<u> </u>			
INSTRUME	NT CHECK D	ATA:						
-			=NTU		ITU std. =	_NTU		
-			7.		1 -	0.0 std. =		
-				ımhos/cm=		umhos/cm=		
	NFORMATIO	•			-			
Weather con	ditions @ time	of sampling:			<u>.</u>			
Sample Chai	racteristics:							
COMMENT	S AND OBSE		•		`.			
· .								
			_	<u> </u>				
								
I certify that protocals.	sampling prod	edures were li	n accordance w	ith all appl	icabie EPA, Sta	ate and Site-SpecIfic		
Date: By:					Company:			

cility: ARCH CHRMLCAC	Sample Point ID: <i>E-J</i>	•
rility: ARCH CHRNICAC Field Personnel: R.Shur D. CIMWI	Sample Matrix: 6/w	
MONITORTING WELL INSPECTION:	A STATE OF THE STA	
Date/Time 5-28-03 1041	Cond of seal:�∳ Good () Cracked () None () Buried	
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked ✔ Good () Loose () Flush Moun () Damaged	t
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas:	-1- % LEL: -1-	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)	
PURGE INFORMATION:		
Date / Time Initiated: 5.28-3 / 1045	Date / Time Completed: 5-28-03 1 100	<u></u>
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:	
Initial Water Level, Feet: 8.77	Elevation. G/W MSL:	
Well Total Depth, Feet: 12.05	Method of Well Purge: Perishits	سمر بعرده
One (1) Riser Volume, Gal:	Dedicated: Y N	
Total Volume Purged, Gal: /, 0	Purged To Dryness (Y) N	
Purge Observations:	Start clar Finish Clar	
DURGE DATA: (if applicable)	· · · · · · · · · · · · · · · · · · ·	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other 00	Other
1050	_	1.0	12.6	6.75	1527	11.79	1.03	97
1055	8.68		12.7	6.86	1552	1(-7/		79
				1	 			

SAMPLING INFORMATION:				POINT ID E-3			
Date/Time	5/20/03	1 (0	755	Water Level @ Sampling, Feet:			
Method of S	ampling:	parastolkic	punp		_Dedicated:	Y / N	
Multi-phased	d/ layered:	() Yes	Y No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Do)	Other (ORP)	
1055	12.7	6.86	1552	11.71	.97	79	
INSTRUME	NT CHECK DA	ATA:					
Turbidity Se	rial #: <u>3093</u>	NTU std. :	= <u>5%</u> NTU	<u>5:0</u> 1	عري = ا	_NTU	
Solutions:	130R-11				-		
		=				0.0 std. = 10.00	
Solutions:	4-2188,	7-2140	10-2150		-		
					146.9	umhos/cm=	
Solutions:	146.9	-26-1					
GENERAL	INFORMATIO	N:					
Weather cor	nditions @ time	of sampling:					
Sample Cha	racteristics:	cle	ca				
COMMENT	S AND OBSE	RVATIONS:					
(Sumbs	C 100	55				
							
							
							
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.							
Date:	5 1301 03	_ By:	flowest	400	Company:	STL	
Date:	5 1301 03	_ Ву:	Moust	900	Company:	STL	

Control of the State of the Sta

PAGE 2 OF 2

Facility: AKCH CHEMICAL	Sample Point ID: Mw-103
Teld Personnel: R. Sent, P. little, Tt. OC	Sample Matrix: <u>GW</u>
MONITORTING WELL INSPECTION:	
Date/Time 5.30.03 1 1010	Cond of seal: (Cood (Cracked %) (Cood (Cood (Cood)) (Cood (Cood)) (Cood (Cood)) (Cood)
Prot. Casing/riser helght:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5/3000 1 /020	Date / Time Completed: 5-Jo-03 / /640
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: School /201
One (1) Riser Volume, Gai:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations:	Start Cler Finish Clerk
DUDGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other DO	Other
1625	1.85		18-6	7.76	576	5.20	219	263
1030			18.6	7.79	546	3.65	1.51	280
1035			18.7	7.80	540	2.60	1-37	280
1040	\bigvee	1,0	16.6	7:37	537	1.37	1.19	289
	,							
	·							

SAMPLE. AT 1040 /5-20.03

PAGE 1 OF 2

SAMPLING INFORMATION:					POINT ID				
Date/Time			· · · · · · · · · · · · · · · · · · ·	Water Le	vel @ Sampling,	Feet:	· ·		
Method of Sampling: Multi-phased/ layered: (_Dedicated:	Y/N			
		()Yes	() No	If YES:	() light	() heavy			
SAMPLING	DATA:								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()			
<u></u>									
INSTRUME	NT CHECK D	ATA:							
Solutions:			= <u>5.c</u> NTU		NTU std. = <u>ح د د</u>	_NTU			
pH Serial #:	1201					0.0 std. = /0.00			
Solutions:	4-2100	<u> </u>	140 10-2	7150	_				
Conductivity	y Serial #: } 46.9	1201	1469	umhos/cm	= 146.9	umhos/cm=			
	INFORMATIO								
٠		e of sampling:							
	racteristics:			-					
COMMENT	S AND OBSE	ERVATIONS:		·					
		 			·				
		·							
I certify that protocals.	t sampling pro		n accordance v	vith all app	olicable EPA, Sta	ate and Site-Specific			
Date:		Ву:			Company:				
		e e e e e e e e e e e e e e e e e e e	PAGE 2 OF	2					

Facility: AKCH CHEMICAL	Sample Point ID: Mw-164
Fleid Personnel: R. Sent P. little, Tt. OC	Sample Matrix: 6w
MONITORTING WELL INSPECTION:	
Date/Time 5-30-03 1140	Cond of seal: (S Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose → ⟨⟨↑ Flush Mount () Damaged
If prot.caslng; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm 1 1 1
PURGE INFORMATION:	
Date / Time Initiated: 5-30-00 / 1145	Date / Time Completed: 5 steel 1 1210
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 524	Elevation. G/W MSL:
Well Total Depth, Feet: 18.10	Method of Well Purge:
One (1) Riser Volume, Gal:	Dedicated: (ŷ/ N
Total Volume Purged, Gal: // 0	Purged To Dryness Y / N
Purge Observations:	Start St. Tunded Finish SC TUNDED

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other PC
1150	7.57		14.8	8.03	502	195.5	216	2.69
1185	8-01		14.5	7.82	500	190.2	245	1.16
1200	8.10		14.6	7.73	498	161.3	250	-85
1205			14.9	7.74	500	141.5	251	.69
1210	8.30	1.0	14.8	7.69	504	126.7	250	.60
	,							

SAMPLEN AT 1210/5.30-03

PAGE 1 OF 2

SAMPLING	INFORMATI	ON: `		POINT ID				
Date/Time				Water Level @ Sampling, Feet:				
Method of Sa	ampling:			Dedicated: Y / N				
Multi-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:			_	_			
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
					<u> </u>			
INSTRUME	NT CHECK [DATA:		<u> </u>				
		NTU std.			NTU std. =	NTU		
_		4.0 std.=			10	0.0 std. =		
Conductivity Solutions:	Serial #:			umhos/cm=	<u> </u>	umhos/cm=	_	
	NFORMATION							
Weather con	ditions @ tim	e of sampling:						
Sample Chai	racteristics:							
COMMENT	S AND OBSI	ERVATIONS:						
	<u> </u>							
I certify that protocals.	sampling pro	ocedures were i	n accordance v	vith all app	licable EPA, Sta	te and Site-Specific		
Date:	11	By:			Company:		,	

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: NW lob
Field Personnel: R. Sent P. little, TR. OC	Sample Matrix:
MONITORTING WELL INSPECTION:	
Date/Time 6/3/03 / //20	Cond of seal: (-) Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (**Good () Loose
If prot.casing; depth to riser below:	······································
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: $6/2/07$ //25	Date / Time Completed: 6/2/031 1/55
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2.0 "
Initial Water Level, Feet: 8.94	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Black pump
One (1) Riser Volume, Gal: 1.70	Dedicated: (Y) N
Total Volume Purged, Gal: 1.0	Purged To Dryness Y
Purge Observations:	Start Tubic Finish St. Tuchie
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (<(\$P\$)	Other (D)
1130	110 01.82		13.1	7.23	2064	76.3	-79	2.15
1135	9.53		12,4	7,27	2354	56.8	-112	1.90
1/40	9.58		12,5	7.33	2545	37.7	-32	1.16
1145	9.60		12.0	7.32	2615	31.2	-157	1.0/
1150	9.60		12.0	7.34	2644	30,7	-156	.97
1155	1.66		13.1	7.32	2672	25.5	-155	.80

Sampled @ 1155 Trahamot 6/2/03

PAGE 1 OF 2

SAMPLING IN	FORMATIC	ON:		POINT ID				
Date/Time			····	Water Level @ Sampling, Feet:				
Method of Sam	oling:				_Dedicated:	Y / N		
Multi-phased/ la	yered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING DA	ΛΤΑ:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
INCTOLINENT	CHECK D	ΔΤΔ:						
INSTRUMENT								
Turbidity Serial Solutions:					NTU std. = _	_NTU		
pH Serial #: Solutions:					1	0.0 std. =	_	
Conductivity Se					:	umhos/cm=	_ _	
GENERAL INF		•						
Weather condit	ions @ time	e of sampling:						
Sample Charac	teristics:			· .				
COMMENTS	ND OBSE	RVATIONS:						
								
							 _	
· · · · · · · · · · · · · · · · · · ·								
		·						
I certify that sa protocals.	mpling pro	cedures were i	n accordance v	vith all appl	licable EPA, Sta	te and Site-Specific		
Date:	1 1	Ву:		. <u></u>	Company:			
			PAGE 2 OF	2				

•	
:ility: ARCH CHRMICAC	Sample Point ID: MW-114
Field Personnel: R.Shar D. CIMWI	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 6-04-03 1 1040	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damageo
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 6-04-031 1045	Date / Time Completed: 6-04-03 / ///0
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2.0
nitial Water Level, Feet: 10,73	Elevation. G/W MSL:
Well Total Depth, Feet: 15,76	Method of Well Purge: BCAOOK! PUNA
One (1) Riser Volume, Gal:	Dedicated: Y /N
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations:	Start CCFAC Finish CCRAR

PURGE DATA: (if applicable)

Time	(gpr	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1055	150	WL 11.43		14,3	7,31	2110	30,6	201	0.73
1100		11.05		14.5	7,29	220	12,20	190	0.49
1105		11.75		14.6	7,30	2120	11.43	188	0,45
1110	V	11.78		14.7	7.33	2130	10,99	185	0,42

PAGE 1 OF 2

SAMPLING INFORMATION:					POINT ID MW-114			
Date/Time	6-04-03	1 /	115	Water Level @ Sampling, Feet: 11.78				
Method of S	Sampling:	BLADDAG	Pune		_Dedicated:	Y /N		
Multi-phase	d/ layered:	() Yes	X) No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
INSTRUME	ENT CHECK D	ATA:						
•	erial #: <u>3693</u> 		= <u>5.0</u> NTU	5.0	NTU std. = <u>5.0</u>	_NTU		
pH Serial #:	1201	4.0 std.=_4	-00 7.	.0 std.= <u>▽</u>	40	0.0 std. = 10.00		
Solutions:	4-2188	7-214	10, 10-215	fc	_			
	y Serial #: 			ımhos/cm=	= 146.9	umhos/cm=		
	INFORMATIO							
			CLOUDY (- 60K				
	nations @ time aracteristics:	_	Clousy,					
COMMENT	rs and obse	RVATIONS:						
								
								
								
								
I certify that protocals.	at sampling pro	cedures were	in accordance v	with all app	olicable EPA, St	ate and Site-Specific		
Date:	6 104 103	_ Ву:	94		Company:	570		
			PAGE 2 OF	2				

Facility: ARCH CHEMICAL	Sample Point ID: NESS - E
Field Personnel: R. Sent, P. little, To. OC	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-29-03 178	Cond of seal: (/ Good () Cracked% () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/% LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5-24-3 1 1145	Date / Time Completed: 5.21-03 1/205
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 30.94	Elevation. G/W MSL:
Well Total Depth, Feet: 74.52	Method of Well Purge: BEADDER Pump
One (1) Riser Volume, Gal:	Dedicated: (Ŷ/N
Total Volume Purged, Gal: 20	Purged To Dryness Y / (N)
Purge Observations:	Start Cloub Finish Cloud
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other 641	Other Oc
1150	31:10		134	7.08	3570	76.2	244	2.00
1155	31.26		13.5	7.07	35763	74.7	247	1-98
1200	31.35		13.4	7.15	3570	75.1	250	1.90
1205	31,50	2,0	13.4	7,13	3570	74.9	250	1.80

SAMPLES AT 1205/5-29-03

PAGE 1 OF 2

SAMPLING	INFORMATIO	ON:		POINT IE			
Date/Time			·	Water Lev	vel @ Sampling,	Feet:	-
Method of Sa	mpling:				_Dedicated:	YIN	
Multi-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUMEN	IT CHECK D	ATA:		<u> </u>		<u> </u>	
_		NTU std.			NTU std. =	_NTU	
		4.0 std.=			1	0.0 std. =	
Conductivity Solutions:	Serial #:			ımhos/cm=	:	umhos/cm=	_
	NFORMATIO		•				
Weather con	ditions @ time	of sampling:					
Sample Char	acteristics:			· .	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
COMMENTS	S AND OBSE	RVATIONS:					
					· · · · · · · · · · · · · · · · · · ·		
I certify that protocals.	sampling prod		n accordance v	vith all appl	icable EPA, Sta	te and Site-Specific	
Date:	1 1	Ву:		·	_ Company:		

PAGE 2 OF 2

Facility: ARCH CHEMICAL Field Personnel: R. Senf P. IIHL, TR. DC	Sample Point ID: NESS - W Sample Matrix:
MONITORTING WELL INSPECTION:	
Date/Time 5-29-03 1 /020	Cond of seal: (Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 5-29-03 1 /0 45	Date / Time Completed: S-29-03 // CO
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4-0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 77.23	Method of Well Purge: Bensom Runs
One (1) Riser Volume, Gal:	Dedicated: Y (N)
Total Volume Purged, Gal: 7.0	Purged To Dryness Y IN
Purge Observations:	Start Strong Finish Strong

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other // c
1050	31,30		13.1	9.38	4/330	7200	283	340
1055			131	9.34	4180	7200	280	3.02
1100			13.1	9.25	4000	7197	279	3.00
1105			13.1	9.20	4001	190	279	2.57
[110	4	3.0	13.1	9,20	4000	187	279	2.50
	r							

SAMPLE 14+ 1110 /529-03 Pl Lut

PAGE 1 OF 2

SAMPLING	SAMPLING INFORMATION: `			POINT ID	NESS	w
Date/Time				Water Lev	vel @ Sampling,	Feet:
Method of S	ampling:				_Dedicated:	Y/N
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy
SAMPLING	DATA:					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
		·				
} 				<u> </u>		
			<u> </u>	<u> </u>	<u> </u>	
INSTRUME	NT CHECK DA	TA:				
=				<u>5-e</u>	ا	UTN
Solutions:	130 R-11				_	
-	1201	4.0 std.= <u>//</u>				0.0 std. = <u>/ 0. 0 °</u>
Solutions:	4-2188)-214	0, 16-2K	<u> </u>	-	
Conductivity	/ Serial #:	710	140.5	ımhos/cm=	140.9	umhos/cm=
	146.9-				-	
GENERAL	INFORMATION	v:				
Weather cor	nditions @ time	of sampling:				
Sample Cha	racteristics:		····			
COMMENT	S AND OBSER	RVATIONS:			4.	
						· · · · · · · · · · · · · · · · · · ·
I certify that protocals.	sampling proce	edures were Ir	n accordance w	rith all appl	licable EPA, Stat	te and Site-Specific
Date:	<i>II</i>	Ву:			Company:	_

LeachField Form Revision 0 March 15,2002

Facility:	ARCH			Sample Po		BA-10	
eld Persor	nnel:	PLOC		Sample M	atrix:	Giw	
SAMPLING	INFORMATIC	N:				(x) Grab () Co	omposite
Date/Time	6-4-03	1 jo	:55	Water Lev	el @ Sampling	, Feet:	Tre 7
Method of S	ampling:	IN 5,10	Pump		_Dedicated:	(Ŷ/N	
						() heavy	
SAMPLING	DATA:					_	
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (A A)	Other (
1100	19.0	9.17	4832	37.9	-115		
INSTRUME	NT CHECK DA	ATA:					
	erial #:				TU std. =	_טדא	
ກH Serial #: olutions:		4.0 std.=		0 std.=	1 -	0.0 std. =	
Conductivity Solutions:	y Serial #: 					umhos/cm	=
GENERAL	INFORMATIO	N:					
Weather co	nditions @ time	of sampling:	Cles 8.	600			
Sample Cha	racteristics:	Sic	in STR	on't Cour			
COMMENT	S AND OBSER	RVATIONS:					
						_	
			_				
-		 -	· · · · · · · · · · · · · · · · · · ·				
Logrify that	sampling proc	adurae wara in	accordance w	ith all annli	cable EDA Sta	ite and Site-Spec	ific
protocals.	. samping proce	saul es weit in	accordance w	ші ан аррн	vavie EFA, Sta	ite anu oite-opec	.IIIC
ate:	6 14103	Ву:	fl Lin	<u> </u>	_ Company:	576	

LeachField Form Revision 0 March 15.2002

	, \ \	1				D.	1/
Facility:	Arch (Lemical		Sample Po	oint ID:	- Pw-1	
eld Persor	nnel:	TB/DC		Sample Ma	atrix:	6W	
SAMPLING	INFORMATIO	N:				Grab ()C	composite
Date/Time	6/3/02		_		el @ Sampling	ı, Feet:	17.86
Method of S	ampling:	Sample	c post	•	Dedicated:	ŶN	
Multi-phase	d/ layered:	() Yes /	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						_
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other	
800	13.9	6.91	3770	16-49	1		
		_					
INSTRUME	NT CHECK DA	ATA:					
Turbidity Se	rial #: <u>3093</u>	NTU std.:	=,5%° NTU	SO N	TU std. = <i>5.c</i>	NTU	
	1301-11				_	_,	
	600750 4-2188,				<u>co</u>	10.0 std. = <u>/০.</u>	<u>o</u>
	•				- 146-57	umhos/cn	n=
Solutions:	7 146.9	-26-1	· —				·
GENERAL	INFORMATIO	N:					
Weather cor	ditions @ time	of sampling:	Sann	Calu	n 60	7=	
Sample Cha		Clear	/	Jor			
COMMENT	S AND OBSEI	RVATIONS:					
	_ ,		-				
							_
I certify that protocals.	sampling proc	edures were in	accordance w	vith all appli	cable EPA, Sta	ate and Site-Spe	cific
•	1	ŗ	I.	10.0		ST1	
ate:	6 13163	_ By:	1 Mornes -	H W	Company:	<u> </u>	·

LeachField Form Revision 0 March 15,2002

Facility:	John C	leaice		Sample Po	oint ID:	PW 12	
eld Persor	nnel:	TB/PC		Sample Ma	atrix:	Ground	
SAMPLING	INFORMATIC	N:				(() Grab () C	omposite
Date/Time	6/3/03	1 7	30	Water Lev	el @ Sampling	, Feet:	7.06
Method of S	<u>⊌/3∫ø3</u> ampling: d/ layered:	Samp	k por	+	Dedicated:	Y / N	
Multi-phased	d/ layered:	() Yes (ANO 1	If YES:	() light	() heavy	,
SAMPLING	DATA:						_
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	O ther (<i>P</i> ○)	
935	17.5	7.32	6458	2.37	77		
INSTRUME	NT CHECK DA	ATA:		_			_
Turbidity Se Solutions:	rial #:		=NTU		TU std. =	_NTU	
າH Serial #: —olutions:		4.0 std.=	7.	0 std.=	1	0.0 std. =	
	y Serial #:		_	ımhos/cm=		umhos/cn	n=
GENERAL	INFORMATIO	N:					
Weather cor	nditions @ time	of sampling:	Sunn	6	0°F	Caln	
Sample Cha	racteristics:	<i>sL</i>	6005	<u> </u>	W		
COMMENT	S AND OBSER	RVATIONS:		,			
						-	
I certify that protocals.	sampling proce	edures were in	accordance w	rith all appli	cable EPA, Sta	te and Site-Spe	cific
ate:	6 13103	By:	Nouvest	Jea	Company:	514	

PAGE 1 OF 1

Field Personnel: CHRM1CAC CHRM1CAC P.SANN D. CIMWI	Sample Point ID: 77 /0/ Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5/29/03 1 1250	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked 1 Good () Loose () Flush Mount
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	/ - % LEL: _ /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm/
PURGE INFORMATION:	
Date / Time Initiated: 5/29/031 1255	Date / Time Completed: 5/24/631 1315
Surf. Meas. Pt: () Prot. Casing (Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 21.69	Method of Well Purge: Low flow (Gcofump)
One (1) Riser Volume, Gal:	Dedicated: (Ý) N
Total Volume Purged, Gal: / . O	Purged To Dryness Y / N
Purge Observations:	Start Clew Finish Clerk

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other Do	Other つRP
1360	11.63		13.9	7.16	5137	4.50	1.17	74
1305	11.79		13.8	7,26	1134	4.30	1.09	84
1310	11.80		13.5	7.21	1128	2.02	1.02	86
1315	1(.80		13,3	7.18	1136	1.72	.97	87
								,

SAMPLE AT TRIS / 5-29-03

PAGE 1 OF 2

SAMPLING INF	ORMATI	ON:		POINT ID				
Date/Time				Water Le	vel @ Sampling	, Feet:		
Method of Sampl	ing:				Dedicated:	Y/N		
Multi-phased/ lay	ered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING DAT	TA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
INSTRUMENT O	HECK D	ATA:						
Turbidity Serial # Solutions:	:	NTU std.			NTU std. =	_NTU		
pH Serial #: Solutions:			7.			0.0 std. =		
Conductivity Seri					<u></u> -	umhos/cm=		
GENERAL INFO								
Weather conditio	ns @ time	of sampling:		-				
Sample Characte	ristics:			· · · · · ·	مير معادلون الريد			
COMMENTS AN	ID OBSE	RVATIONS:						
		······································						
					· · · · · · · · · · · · · · · · · · ·			
I certify that sam protocals.	pling pro	cedures were i	n accordance v	with all app	licable EPA, St	ate and Site-Specific —		
Date:	<u> </u>	Ву:			Company:			

PAGE 2 OF 2

Field Personnel: R.S. R.J. D. C. M. D. D. D. C. M. D.	Sample Point ID: P2/02 Sample Matrix: 6/w
Field Personnel: R.Shur D. Cinwi	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5/29/23 1 2/0	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Daniageu
Gas Meter (Calibration/ Reading): % Gas:	/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm:/
PURGE INFORMATION:	
Date / Time Initiated: 5/25/231 12/5	Date / Time Completed: 5/29/031 1235
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
'nitial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 32,60	Method of Well Purge: proudultic punp
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal: 1,0	Purged To Dryness Y / N
Purge Observations:	Start Clew Finish Ceas
PURGE DATA: (if applicable)	LW/BRLK t/kles)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Do)	Other (oRP)
1220	in L 4.25		15.8	7.40	3445	1.23	1.03	-90
1125	[[-3]		15.5	7.39	3567	.80	-97	-120
1230	16.36		14.7	7-39	3588	,90	,90	-121
1235	11.41		14.4	7-43	3661	.95	.85	-122

SAMPLE AT 1235/5-29-03 Maines APT

PAGE 1 OF 2

Date/Time				Waterle	ual A Camaniin II				
Method of Samplin	Date/Time /				Water Level @ Sampling, Feet:				
monitor of carrie	g: .		·		Dedicated:	Y/N			
Multi-phased/ layer	ed:	() Yes	() No	If YES:	() light	() heavy			
SAMPLING DATA	۸:								
· ·	omp. °C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()			
INSTRUMENT CH	ECK DA	TA:				<u>. </u>			
Turbidity Serial #: _ Solutions:			=NTU		VTU std. =	ַעדע			
pH Serial #: Solutions:			7.			0.0 std. =			
Conductivity Serial Solutions:					: _	umhos/cm=			
GENERAL INFOR	MATION	٧:							
Weather conditions	s @ time	of sampling:							
Sample Characteri	stics:								
COMMENTS AND	OBSEF	RVATIONS:							
									
									
_	ing proc	edures were i	in accordance v	with all app	olicable EPA, Sta	ate and Site-Specific			
protocals.									

cility: ARCH CHRMLCAC	Sample Point ID: P2/03 Sample Matrix: 6/w
Field Personnel: R.Shur D. CIMWI	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5/29/03 1 //35	Cond of seal: (f) Good () Cracked // // // // // // // // // // // // //
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	% LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: 5/29/031 //96	Date / Time Completed: 5/29/031/200@
Surf. Meas. Pt: () Prot. Casing ARiser	Riser Diameter, Inches:
Initial Water Level, Feet: 9.78	Elevation. G/W MSL:
Well Total Depth, Feet: 32,52	Method of Well Purge: Low flow (gcopamp)
One (1) Riser Volume, Gal:	Dedicated: Ø/ N
Total Volume Purged, Gal: 1.5	Purged To Dryness Y / (N)
Purge Observations:	Start Clear Finish clear

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (DO)	Other (ORP)
1140	inh 11.05		13.1	7.32	3347	7.22	2.17	-152
1145	11.38		13.3	7.43	3263	310	1.85	-137
1150	11,62		13.8	7.42	3258	3.38	132	-157
1155	1,62		13,2	7.50	3247	3.79	1.20	-162
1206	11.62		13,3	7,49	3251	3.78	1.09	-159

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID						
Date/Time	Date/Time				Water Level @ Sampling, Feet:					
Method of Sa	mpling:			Dedicated: Y / N						
Multi-phased	/ layered:	()Yes	() No	If YES:	() light	() heavy				
SAMPLING	DATA:									
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()				
NSTRUMEN	IT CHECK D	ATA:								
			=NTU		NTU std. =	_NTU				
			7.			0.0 std. =				
Conductivity	Serial #:			umhos/cm=		umhos/cm=				
GENERAL II	NFORMATIC	N:								
Weather cond	ditions @ time	e of sampling:								
Sample Char	acteristics:									
COMMENTS	S AND OBSE	RVATIONS:								
				· · · · · · · · · · · · · · · · · · ·						
			 							
										
	 									
l certify that :	sampling pro	cedures were i	in accordance v	with all app	olicable EPA, St	ate and Site-Specific				
•										

cility: ARCH CHRMLCAC	Sample Point ID: PZ 104
Field Personnel: R.Shur D. CIMWI	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time # 5/29/03 1 /050	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	/_ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm; 1
PURGE INFORMATION:	
Date / Time Initiated: 5/29/03 1 (05)	Date / Time Completed: $5/29/031$ ///5 Riser Diameter Inches:
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
'nitial Water Level, Feet: 12.39	Elevation. G/W MSL:
Well Total Depth, Feet: 23.93	Method of Well Purge: Low flow (900 pamp)
One (1) Riser Volume, Gal:	Dedicated: (Ý) N
Total Volume Purged, Gal: 1.0	Purged To Dryness Y
Purge Observations:	Start Clear Finish Clear

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other Do	Other 6FP
1055	12 50		14.3	7.24	1848	13.02	1.19	-60
1800	12.50		13.5	7.31	1832	9,41	1.07	-116
405	12.50		13.1	7,42	1842	5.92	1.00	-99
1110	12.50		13.4	7.48	1896	3/0	-97	-98
llc5	12.50		13.3	7.38	1849	3.36	-93	-97

SAMON AT 1115/5-25-03 TROMO A PA

PAGE 1 OF 2

SAMPLING	INFORMAT	ION:	POINT ID						
Date/Time	Date/Time/				Water Level @ Sampling, Feet:				
Method of S	ampling:			Dedicated: Y / N					
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy			
SAMPLING	DATA:			<u> </u>					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
INSTRUME	NT CHECK I	DATA:							
		NTU std.			NTU std. =	_NTU			
		4.0 std.=				10.0 std. =			
Conductivity Solutions:					<u> </u>	umhos/cm=			
GENERAL	INFORMATI	ON:							
Weather cor	nditions @ tin	ne of sampling:		_					
Sample Cha	racteristics:			· .					
COMMENT	S AND OBS	ERVATIONS:							
·									
									
	·								
I certify that protocals.	t sampling pr	ocedures were	in accordance	with all app	olicable EPA, S	tate and Site-Specific			
Date:	1 1	Ву:			Company	:			
Date.					Company				

Field Personnel: P. Shar D. CIMWI	Sample Point ID: $f2-105$ Sample Matrix: G/w
MONITORTING WELL INSPECTION:	
Date/Time 5-28-03 1327	Cond of seal: (2) Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose & Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	1- % LEL: 1
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5 30 31 /330	Date / Time Completed: 5-28-071 /350
Surf. Meas. Pt: () Prot. Casing ∯Riser	Riser Diameter, Inches: 2.0
nitial Water Level, Feet: 8.90	Elevation. G/W MSL:
Well Total Depth, Feet: 32.86	Method of Well Purge: PAKISTAINE PURE
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal: 1.0	Purged To Dryness Y / N
Purge Observations:	Start Sc Tursin Finish Sc 7 und as

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other Of NO	Other OKP
1335	11.80		15,6	7.92	36.27	70.20	1.10	10
1340			14.7	7.69	2994	70.6	1-03	10
1345	12.90		14.1	7.49	3001	75.9	8.00	10
1350	13.05	1-0	14.1	7.49	3010	69.7	.98	10
								

SAMME AT 1350/5-28-03

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID					
Date/Time	~ 			Water Level @ Sampling, Feet:					
Method of Sa	ampling:				_Dedicated:	Y / N			
Multi-phased	i/ layered:	() Yes	() No	If YES:	() light	() heavy			
SAMPLING	DATA:	· · · · · · · · · · · · · · · · · · ·							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
				 					
INSTRUME	NT CHECK DA	ATA:							
			=NTU		NTU std. =	_NTU			
-		_	7.		1 _	0.0 std. =			
Conductivity Solutions:						umhos/cm=			
GENERAL I	NFORMATIO	N:							
Weather con	ditions @ time	of sampling:							
Sample Chai	racteristics:			· ·	garanta da				
COMMENT	S AND OBSE	RVATIONS:							
		~							
I certify that protocals.	sampling prod	edures were i	n accordance v	vith all app	ilicable EPA, St	ate and Site-Specific -			
Date:	1 1	Ву:			Company:				

sility: ARCH CHRMICAC	Sample Point ID: P2-106
Field Personnel: R. S. R. S. P. C. L. D. C. L. D	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5-28-03 1/55	Cond of seaf: (X) Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 5-2845 1 1200	Date / Time Completed: 52603 1 1220
Surf. Meas. Pt: () Prot. Casing (*) Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 8.81	Elevation. G/W MSL:
Well Total Depth, Feet: 27-90	Method of Well Purge: PARISTAIN TOTAL
One (1) Riser Volume, Gal:	Dedicated: Ø/ N
Total Volume Purged, Gal: 1.0	Purged To Dryness Y / (Ñ)
Purge Observations:	Start St TULLIA Finish SCTURAR
DUDGE DATA (If any Bookle)	

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other 10	Other ORC
1205	10.17		15.3	6.19	17,000	25.2	-97	67
1210	11.65		14.5	6.57	17,060	26-9	-90	106
1215	12.22		14-3	6.34	17,130	25.9	.90	111
1220	12.45	1.0	14.5	6.29	17,130	26-7	-87	110

SAMLE AT 1220/5-28.67 fl Zut

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID				
Date/Time				Water Lev	vel @ Sampling	, Feet:		
Method of Sa	ampling:				_Dedicated:	Y/N		
Multi-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
	NT CHECK DA							
			=NTU		NTU std. =	_NTU		
_		 -	7.		1	0.0 std. =		
Conductivity Solutions:					·	umhos/cm=		
	NFORMATIO							
Weather con	ditions @ time	of sampling:						
Sample Char	acteristics:				. we are seen			
COMMENTS	S AND OBSE	RVATIONS:						
I certify that protocals.	sampling pro	cedures were i	n accordance v	with all app	olicable EPA, St	ate and Site-Specific		
Date:	<u> </u>	Ву:			Company:			

cility: ARCH CHAMICAC	Sample Point ID: P2-107
	Cumple to the 15.
Field Personnel: P. Shur D. CIMWI	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5-28-03 14/15	Cond of seal: (A) Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked & Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	1 - % LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm / /
PURGE INFORMATION:	
Date / Time Initiated: 5-280-7 /420	Date / Time Completed: 5-2800 1 1440
Surf. Meas. Pt: () Prot. Casing 🙀 Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 4.88	Elevation. G/W MSL:
Well Total Depth, Feet: 27.90	Method of Well Purge: Persyche May
One (1) Riser Volume, Gal:	Dedicated: (9) / N
Total Volume Purged, Gal: /- 🔿	Purged To Dryness Y / N
Purge Observations:	Start Clean Finish Clean

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other \$\Delta c\$	Other
1425	5.28		12.6	7.64	2792	4.17	1:19	-101
1430	5.28		12-2	7.70	2886	3.11	1.00	-/00
1435]		12.0	7.70	2839	2.15	.47	-101
1440			12.5	7.74	2890	1 ,5-6	.90	~100

SAMPLES AT 1440/5-26.03

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID			
Date/Time /			Water Level @ Sampling, Feet:				
			Dedicated:	Y /N			
: () Yes	() No	If YES:	() light	() heavy			
	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
CK DATA:	<u> </u>						
				_NTU			
4.0 std.=	7.	0 std.=	1	0.0 std. =			
			<u> </u>				
				umhos/cm=			
		······································	~-				
_							
BSERVATIONS:							
· · · · · · · · · · · · · · · · · · ·							
	<u></u>						
,							
							
g procedures were	in accordance v	vith all app	olicable EPA, St	ate and Site-Specific			
Ву:		· · · · · · · · · · · · · · · · · · ·	Company:				
	PAGE 2 OF	2					
	d: () Yes p. pH (std units) CK DATA: NTU std. 4.0 std.= ATION: time of sampling: cs: DBSERVATIONS:	d: () Yes () No p. pH Conduct (Umhos/cm) CK DATA: NTU std. =NTU 4.0 std.=7. ATION: Ditime of sampling: cs: DBSERVATIONS: By:	## Water Le ## () Yes () No If YES: ## Conduct Turb. (NTU) ## C	/ Water Level @ Sampling			

LeachField Form Revision 0 March 15,2002

Facility:	<u> PRCH</u>	CANAL		Sample Point ID:		90-2	
─ Field Persor			D. Curvi		atrix:	5/w (x) Gráb () Co	
SAMPLING	INFORMATIO				,	Grab ()Co	mposite
Date/Time	5-28-03		300	Water Lev	el @ Sampling,	, Feet:	N/A
	ampling:						
Multi-phase	d/ layered:	() Yes	No No	If YES:	() light	() heavy	
SAMPLING		/	,				
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other ()	
1305	15.6	7. 72	2071	7.82	94		
INSTRUME	NT CHECK DA	ATA:					
Turbidity Se	erial #:	NTU std. :	=NTU	N	TU std. =	_NTU	
oH Serial #: ■Solutions:		4.0 std.=	7.	0 std.=	1	0.0 std. =	
Conductivit	y Serial #:		u	ımhos/cm=	- 	umhos/cm=	<u> </u>
GENERAL	INFORMATIO	N:					
Weather co	nditions @ time	of sampling:	LT. RAIN	, 65°F			
	aracteristics:	CCEAR					
COMMENT	S AND OBSE	RVATIONS:					
							
	t sampling proc	edures were in	accordance w	ith all appli	cable EPA, Sta	te and Site-Speci	fic
protocals. → Date:	5 1281 03	Rv	0-1		Company:	511	
Duic.	- 1 10-	,	' _/27~		_ company.		

PAGE 1 OF 1

LeachField Form Revision 0 March 15,2002

Field Personnel: R. Sant D. CIMINI					Sample Po	oint ID:	90-251	
Field Personnel: R. Sant D. CIMIN'				O. CIMIN'	Sample Ma	atrix:	S/W (X) Grab () Composite	
		INFORMATIO					() Grab () Co	omposite
	Date/Time	5-28-03	1 /	315	Water Lev	el @ Sampling	, Feet:	01/4
		ampling:					$(\bigcirc$	
	Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
	SAMPLING		,	/ 				
	Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb.	Other	Other (
	1320		7.84	723	5.87			
					1			
L	INSTRUME	NT CHECK DA		'	-!			
		rial #:		=NTU	N	TU std. =	_NTU	
_	H Serial #: Solutions:		4.0 std.=	7.	.0 std.=	1	0.0 std. =	
	•	/ Serial #:					umhos/cm	=
	GENERAL I	INFORMATION	N:					
	Weather con	iditions @ time	of sampling:	C'COUS-1	60°E			
		racteristics:						
	-	S AND OBSER						
	OOMMENT	O AND ODOLI	Willows.					
								
								
								
	I certify that protocals.	sampling proce	edures were in	accordance w	ith all appli	cable EPA, Sta	te and Site-Spec	ific
-	-⊃ate:	5 1281 03	Ву:	03/1	_	_ Company:	52	

PAGE 1 OF 1

LeachField Form Revision 0 March 15,2002

Facility: ARCH				Sample Po	oint ID:	$\frac{GS-A\left(SEEP\right)}{\text{M}}$ M Grab () Composite		
Field Personnel: R. Save D. Circuit			Sample Matrix: 5/W			_ 		
SAMPLING	INFORMATIC	N:				(X) Grab () Co	omposite	
Date/Time	5-28-03	3 1/5	530	Water Lev	el @ Sampling,	Feet:	NIA	
Method of S	ampling:	MANUAC	Gans		_Dedicated:	(Y) / N		
Multi-phase	d/ layered:	() Yes	(X) No	If YES:	() light	() heavy		
SAMPLING								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (O.C.P.)	Other ()		
1535	13.4	7,43	1801	3.22	74			
INSTRUME	NT CHECK DA	ATA:						
Turbidity Se Solutions:	rial #:		=NTU		ITU std. =	_NTU		
hH Serial #: Solutions:		4.0 std.=		0 std.=	1 -	0.0 std. =		
Conductivity Solutions:	y Serial #:			ımhos/cm=		umhos/cm	=	
GENERAL	INFORMATIO	N:						
Weather cor	nditions @ time	of sampling:	Clousy,	65°F				
Sample Cha	racteristics:	CLEAR						
	S AND OBSE							
I certify that	sampling proc	edures were in	accordance w	ith all appli	cable EPA, Sta	te and Site-Spec	ific	
-Date:	5 128103	By:	03/1	7	_ Company:	576		

PAGE 1 DE 1

•	_
Facility: AKCH CHEMICAL	Sample Point ID: 3-3
Field Personnel: R. Senf P. IIHK, TR. OC	Sample Matrix: GW
MONITORTING WELL INSPECTION:	·
Date/Time 5/36/03 1 1/35	Cond of seal () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'
PURGE INFORMATION:	
Date / Time Initiated: 5/30/031 //40	Date / Time Completed: 5/39071 1200
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 2.21 (Floods)	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Personal Dent
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal: ~ 2.00	Purged To Dryness Y / N
Purge Observations:	Start 32 Tushid Finish Cleur
PURGE DATA: (if applicable)	Corgana Flakes)

PURGE	DATA:	(if	ap	plicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (i>)°)	Other
1145	wc 2.21	.50	14.8	7.93	2898	75.0	1,11	-183
liso)	1.00	15,1	6.07	29/4	16.69	1.00	-182
1155		1.50	14.9	8.il	2922	16.20	.73	-180
1200		2.00	15.2	8.15	2928	16.30	·89	-185

SAMPLES AT BOCKS-30-63

PAGE 1 OF 2

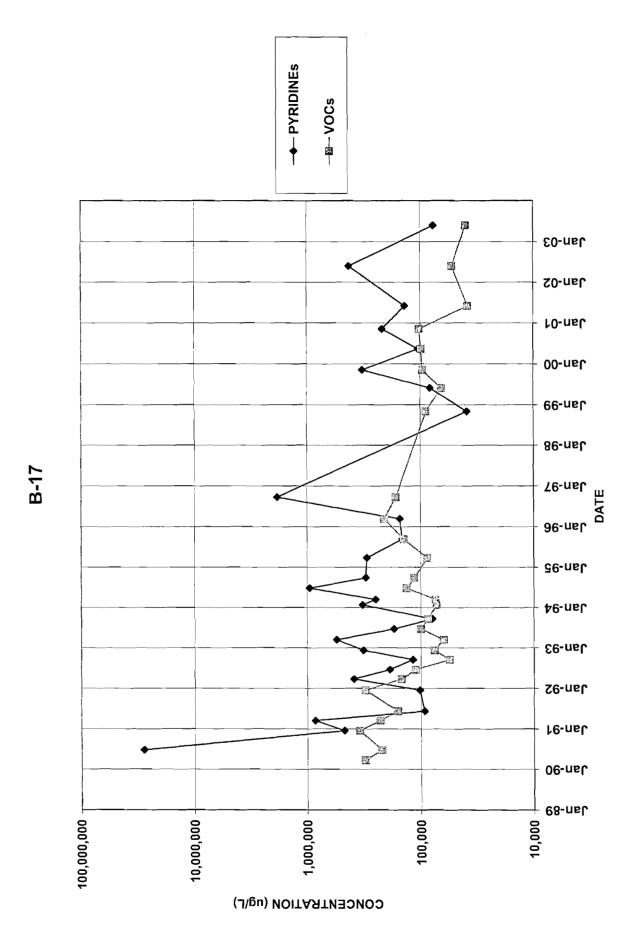
SAMPLING	INFORMATION	ON: '		POINT ID		•	
Date/Time /			Water Level @ Sampling, Feet:				
Method of S	ampling:				_Dedicated:	Y/N	
Multi-phase	d/ iayered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
		 					
	<u> </u>	-	 				
INSTRUME	NT CHECK D	ATA:					
-		NTU std.	_		NTU std. =	NTU	
-		4.0 std.=			10).0 std. =	
Conductivity Solutions:	•				: -	umhos/cm=	
	INFORMATIC	•	·				
Weather cor	nditions @ tim	e of sampling:					
Sample Cha	racteristics:	-		•			
COMMENT	S AND OBSE	RVATIONS:	-		·		
· · · · · · · · · · · · · · · · · · ·		·					
I certify that protocals.	t sampling pro	cedures were i	n accordance v	vith all app	licable EPA, Stat	te and Site-Specific	
Date:		Ву:			Company:		

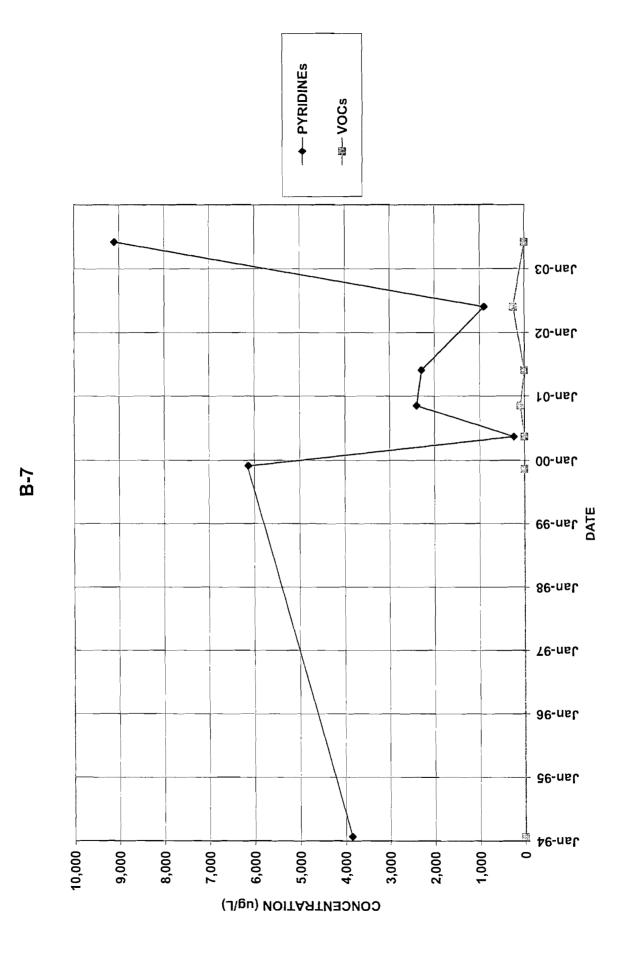
PAGE 2 OF 2

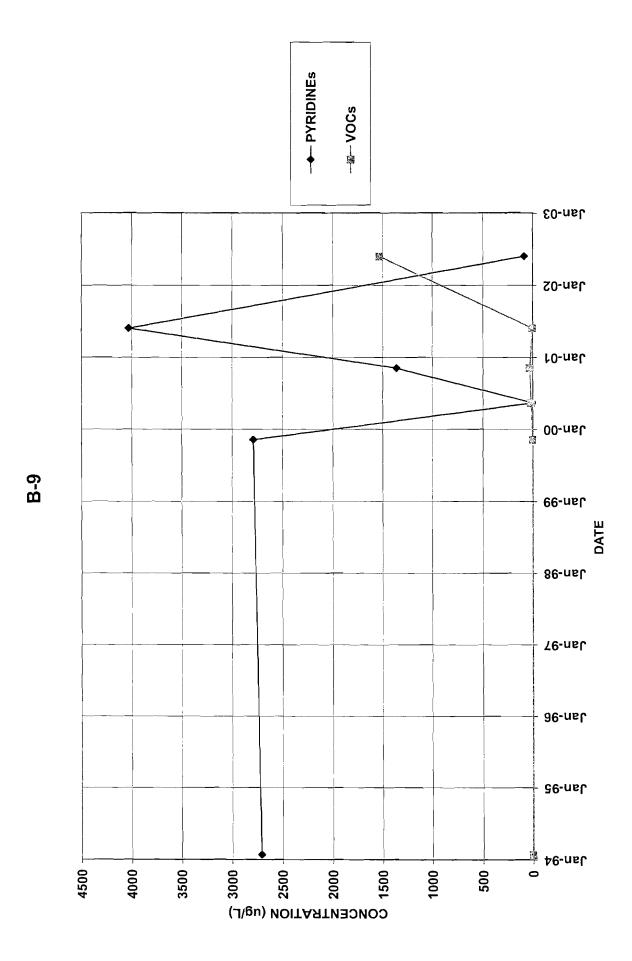
Facility: AKCH CHEMICAL	Sample Point ID: 5-64
Fleid Personnel: R. Senf, P. 1144, TB. OC	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5/39/63 / //00	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL: 1
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'/
PURGE INFORMATION:	
Date / Time Initiated: 5/30/13 / //65	Date / Time Completed: 3/30/03/1/25
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2,0
Initial Water Level, Feet: Flooded -76	Elevation. G/W MSL:
Well Total Depth, Feet: 13.05	Method of Well Purge:
One (1) Riser Volume, Gal:	Dedicated: (Y) N
Total Volume Purged, Gal: ~ 2.00	Purged To Dryness Y / N
Purge Observations:	Start & Tusbid Finish clear

PURGE DATA: (if applicable)

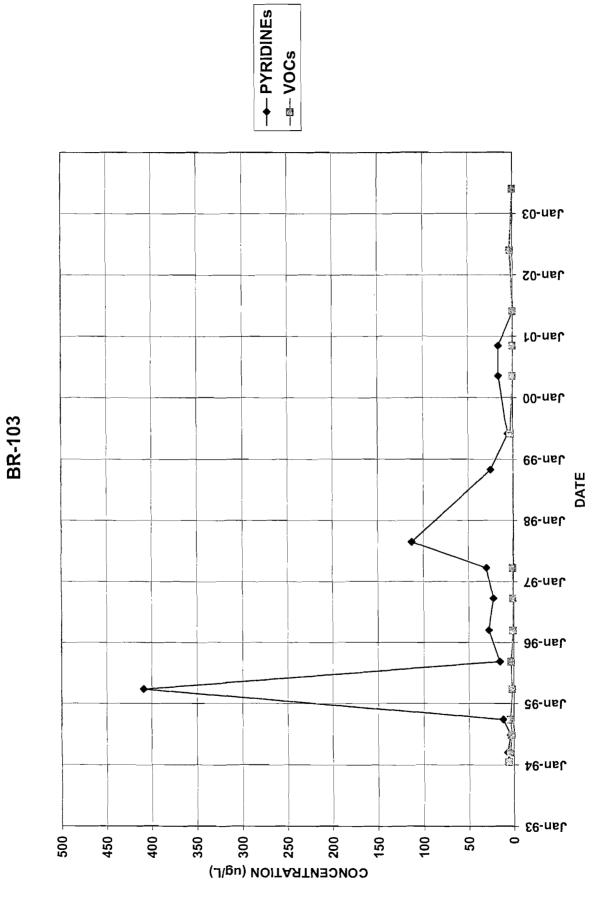
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other (orp)
(//0	.76	6-5	13.9	8.10	661	80.5	1.79	-152
1115		(660	13,6	8,38	662	65.3	1.36	-150
1120		1.50	13,0	8.68	659	41.3	1.03	-153
1125		2,00	13-5	8:69	649	19.28	0.9/	-15/

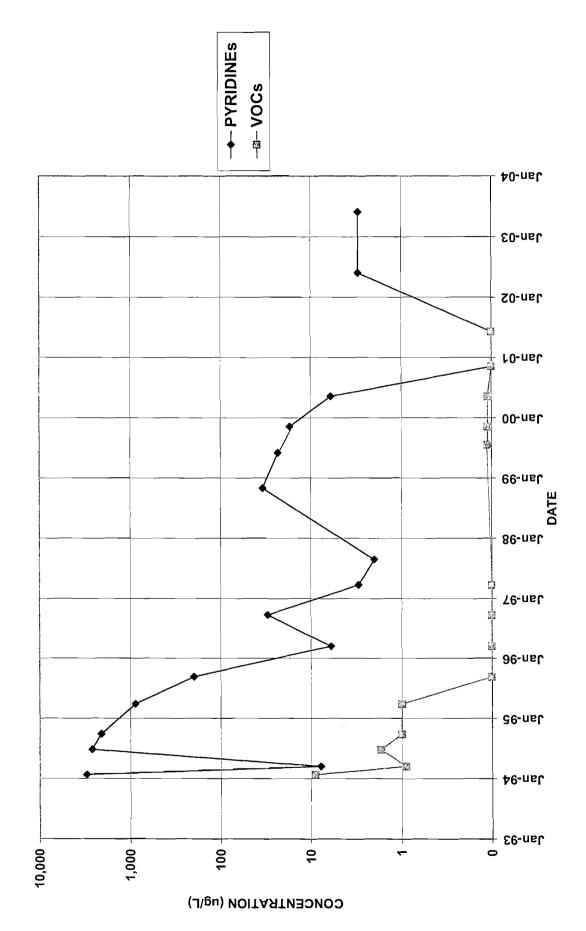

SAMPLE AT 1135/5-20-03
PAGE 1 OF 2

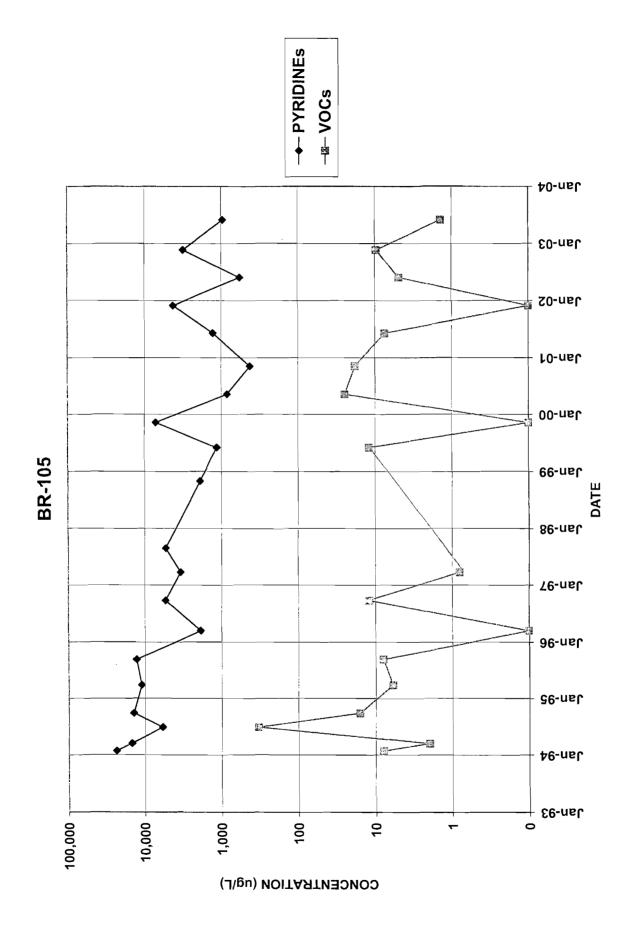

SAMPLING	INFORMATIO	N:		POINT ID		
Date/Time // Water Level @ Sampling, Feet:						Feet:
Method of Sa	ampling:	·			Dedicated:	Y/N
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy
SAMPLING	DATA:	_				
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
L			 			· .
INSTRUME	NT CHECK DA	NTA:				
	rial #: <u>3⁰⁴³</u> 			<u> 500 N</u>	TU std. = <u> 520</u> -	UTM
	4-2108,					0.0 std. = 10.00
Conductivity Solutions:	/ Serial #: 	60050	<u>///८-१</u> u	mhos/cm=	146,9	umhos/cm=
	INFORMATION					
Weather cor	nditions @ time	of sampling:		-		
Sample Cha	racteristics:			• 12 .		
COMMENT	S AND OBSER	RVATIONS:			· · · · · · · · · · · · · · · · · · ·	
I certify that protocals.	sampling proc	edures were ir	accordance w	ith all appl	icable EPA, Stat	te and Site-Specific
Date:		By:			_ Company:	

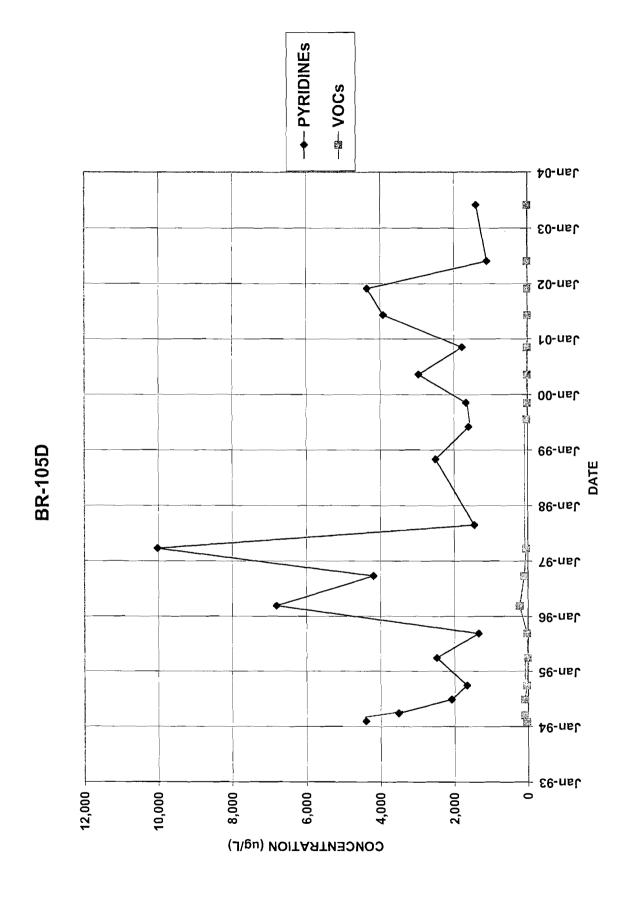

PAGE 2 OF 2

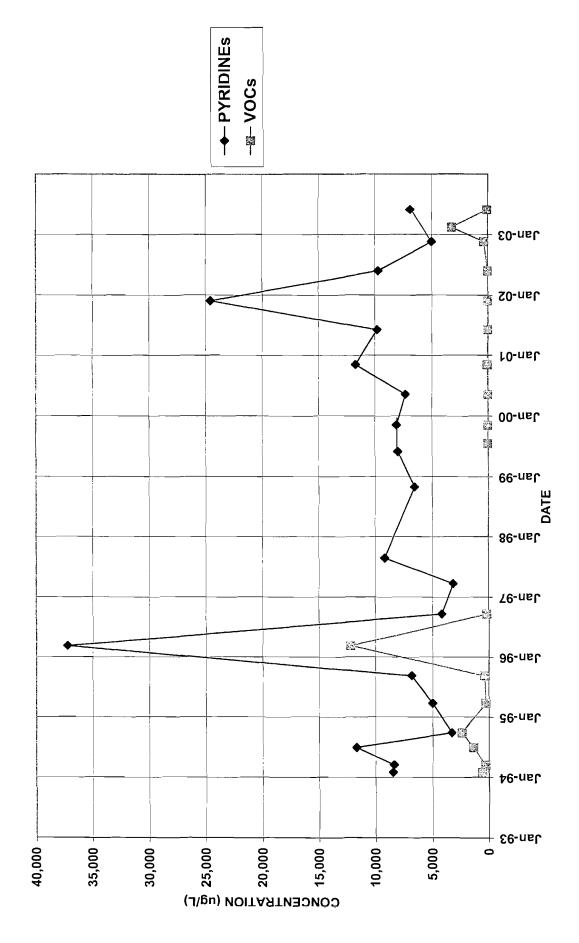
Appendix B

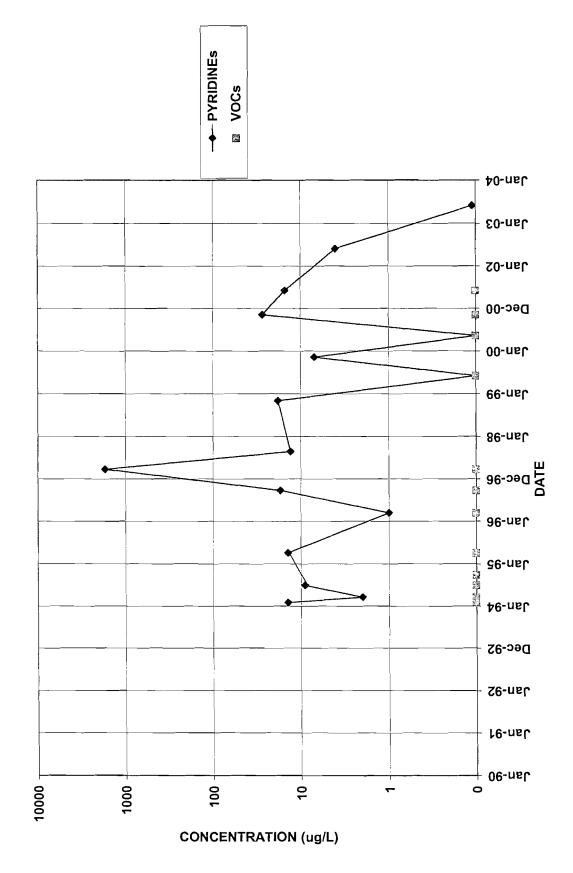

Well Trend Data

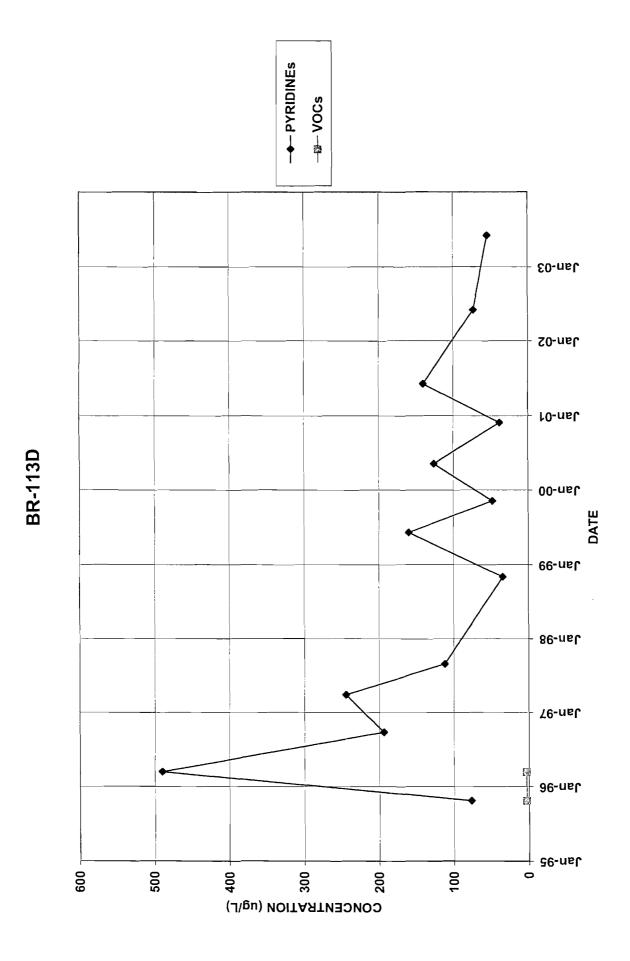


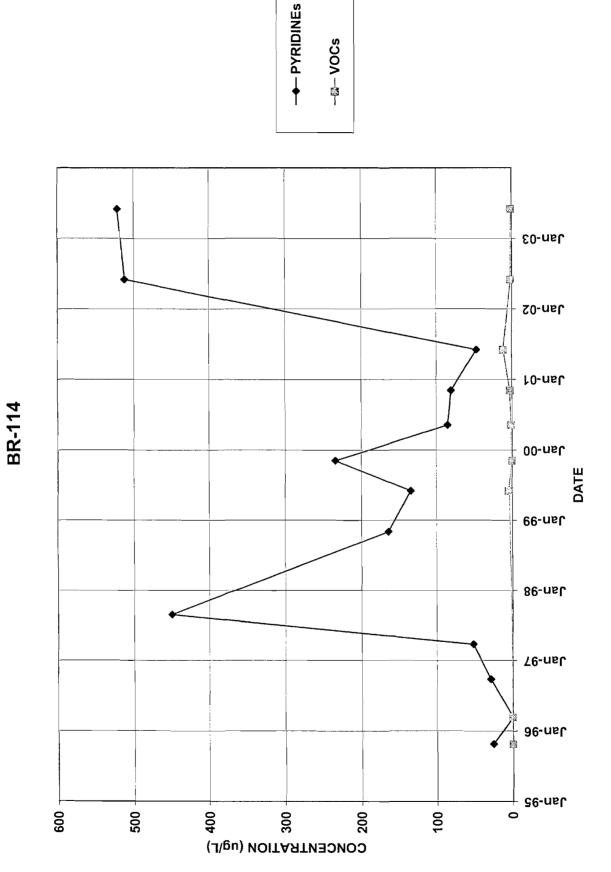


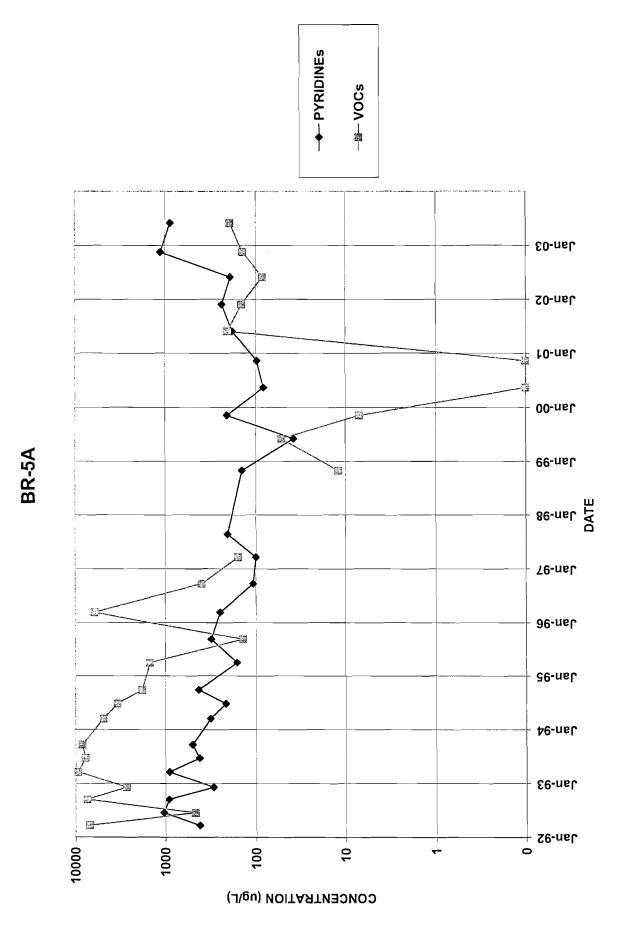


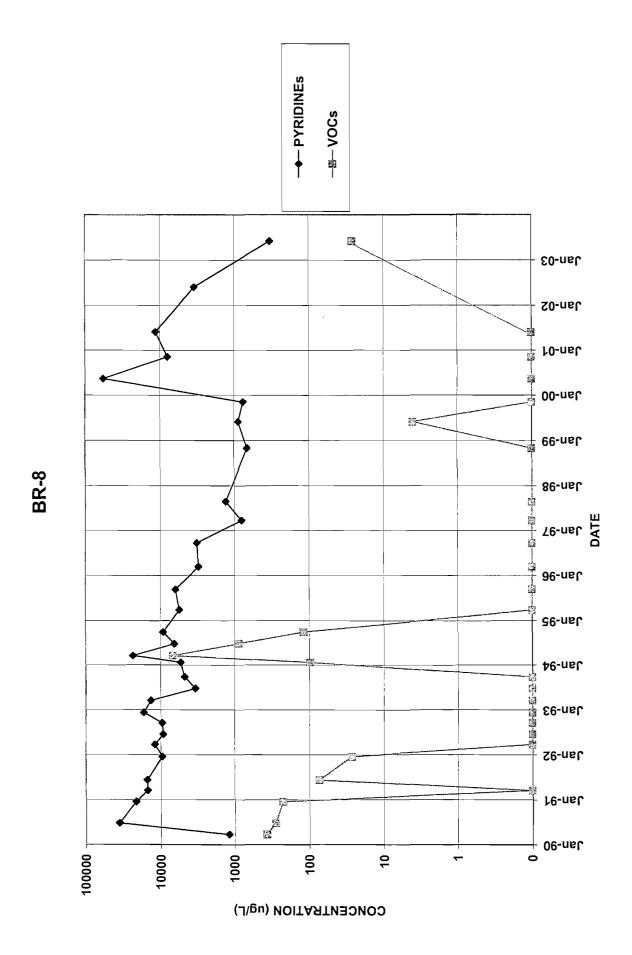

BR-102

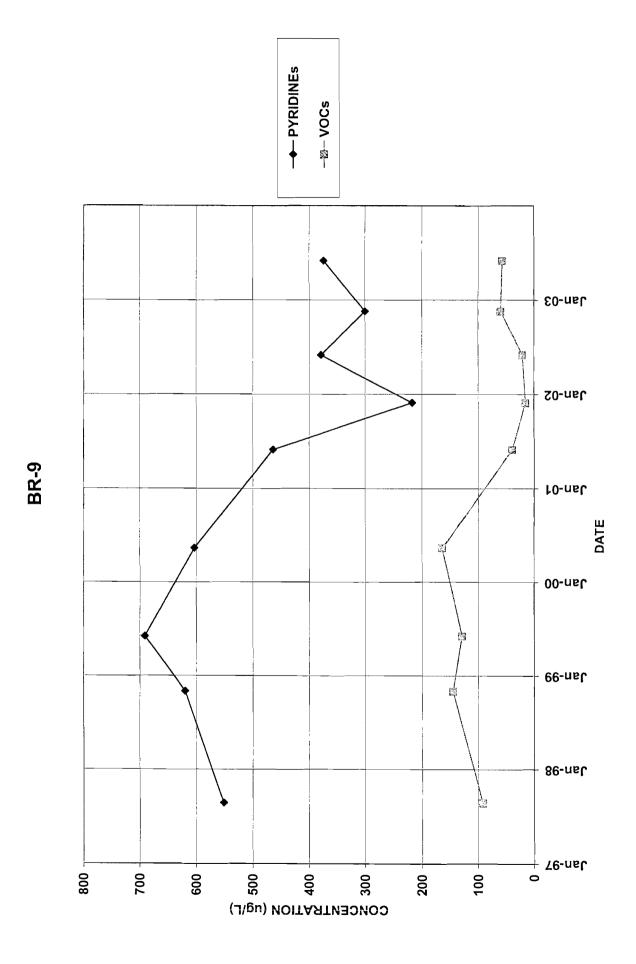


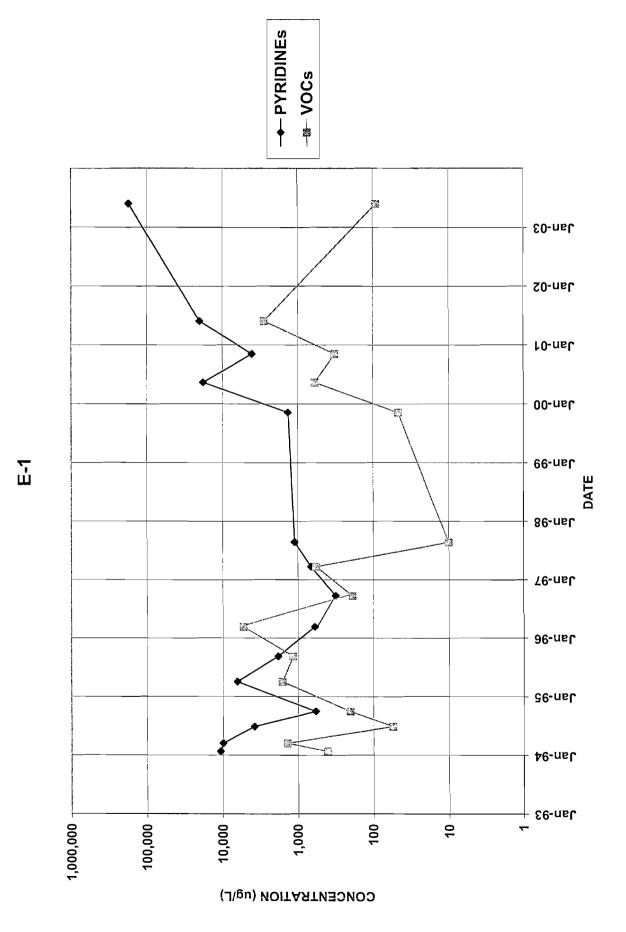


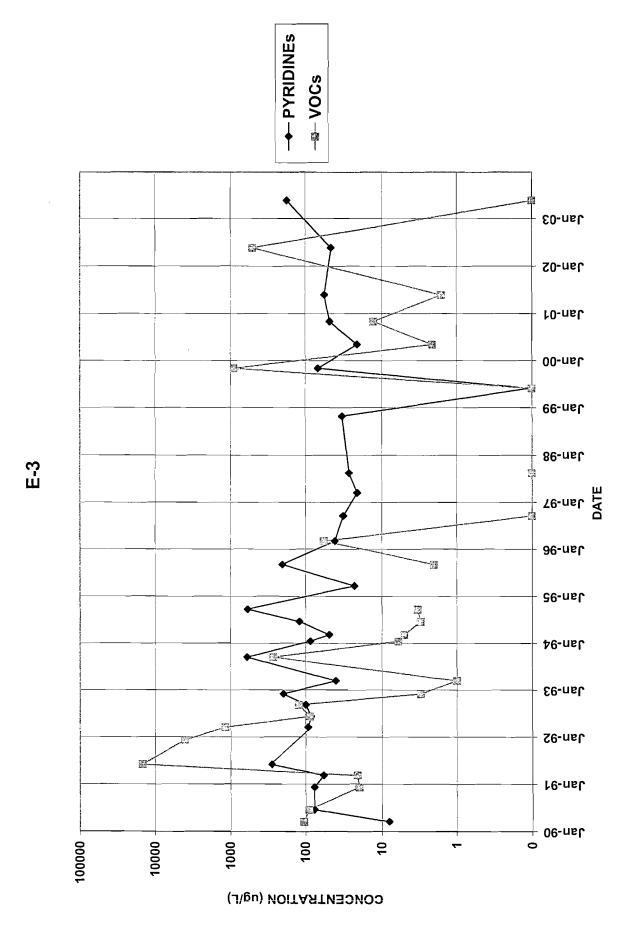


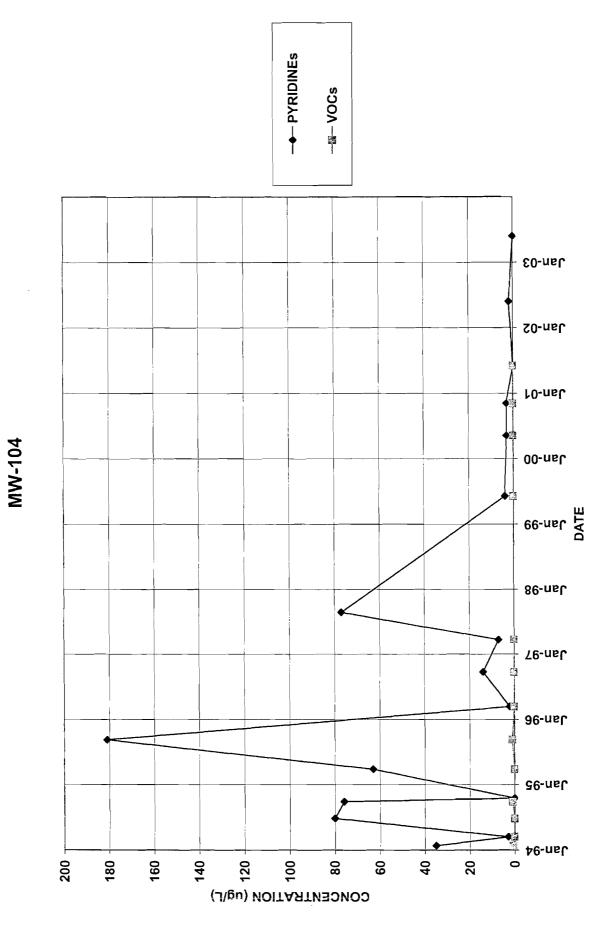


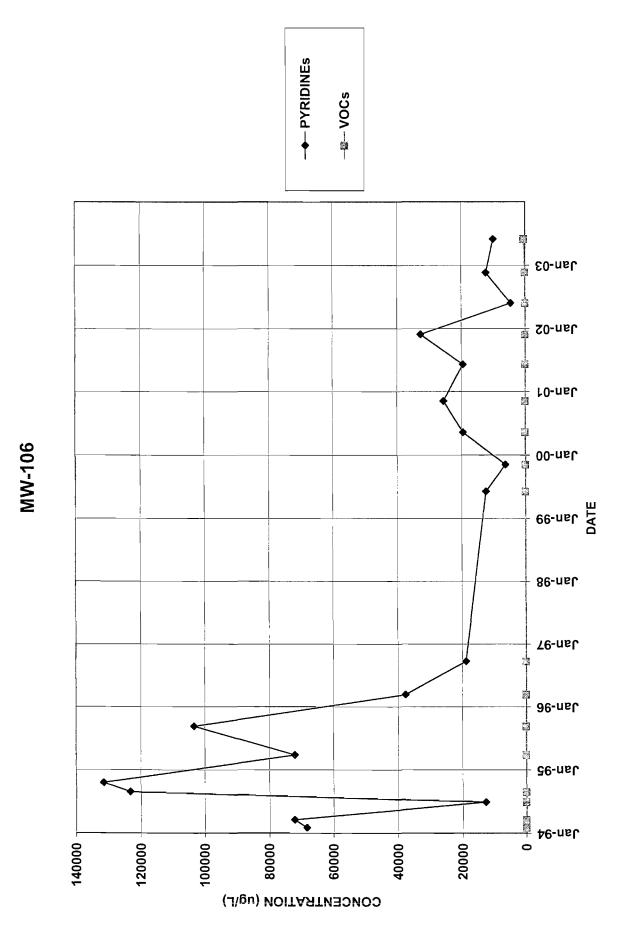


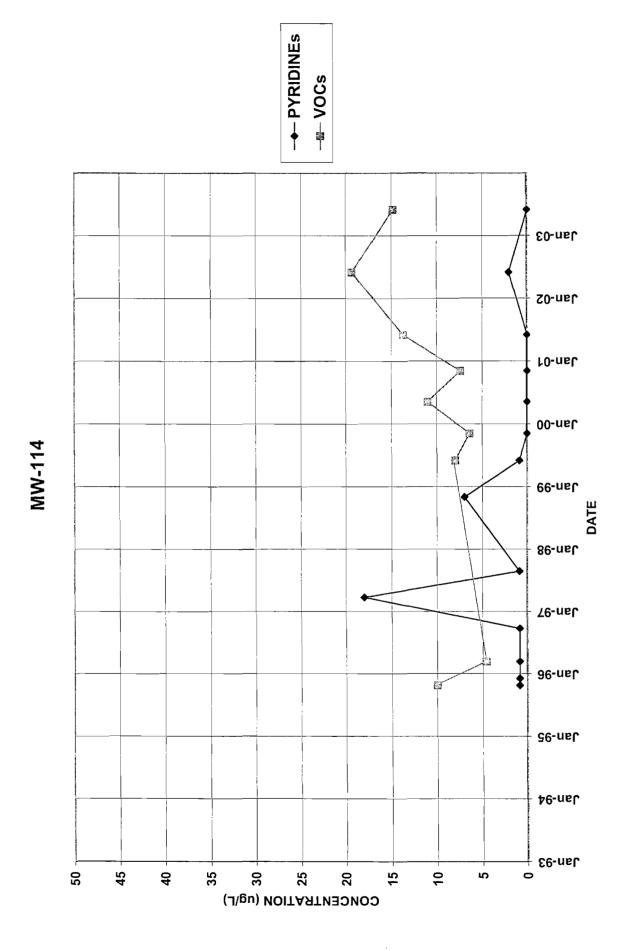

Prepared by: nmb Reviewed by: jrb

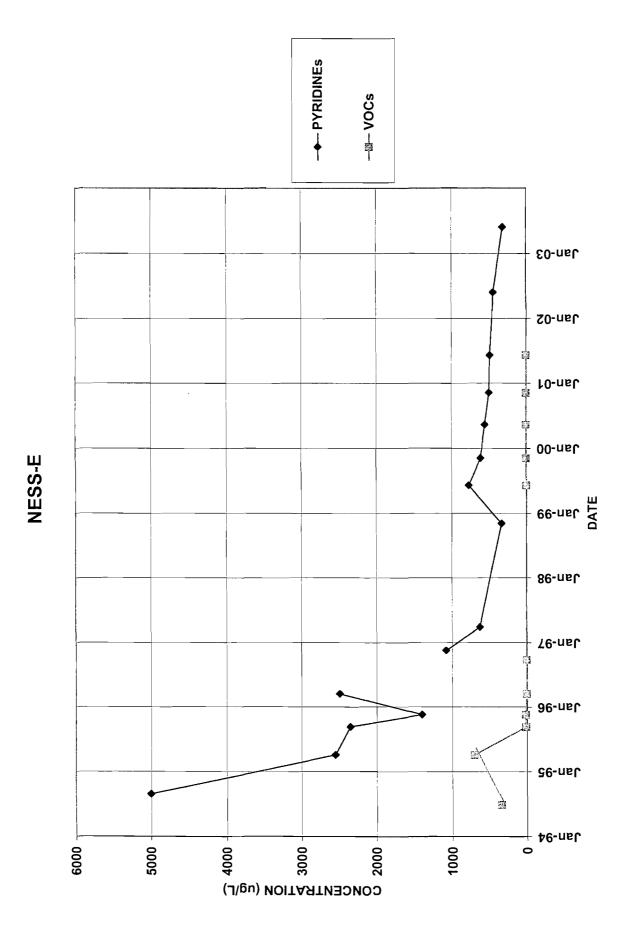


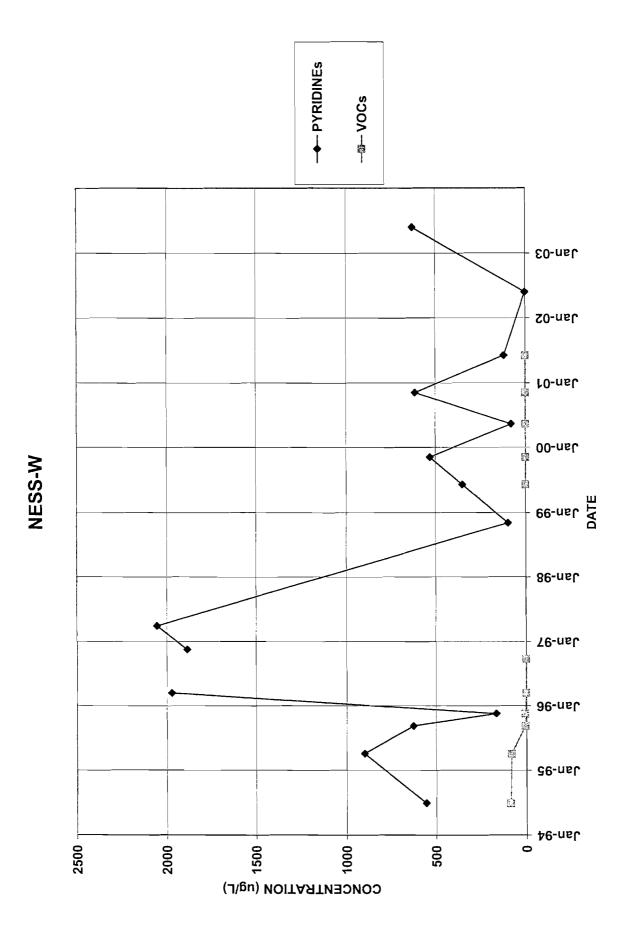

Prepared by: nmb Reviewed by: jrb

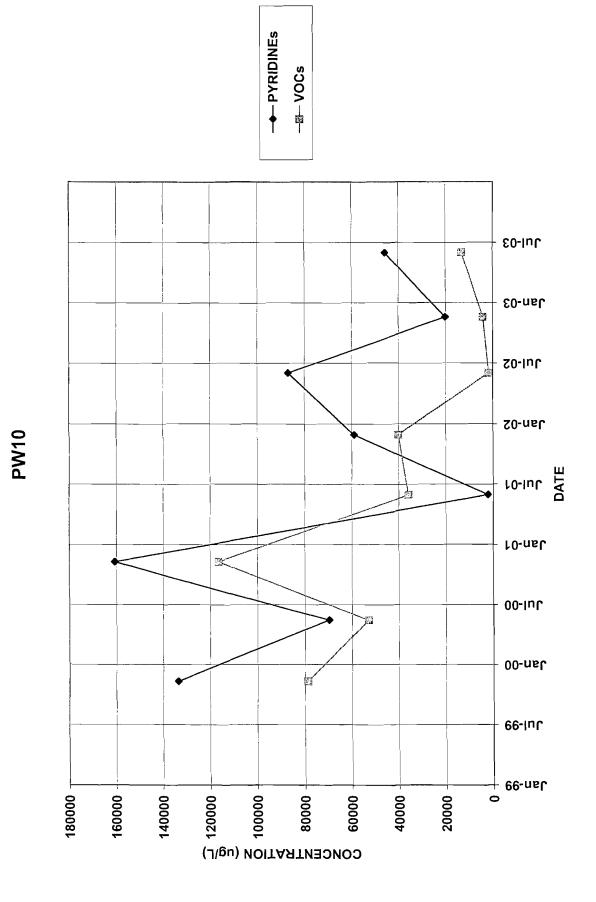

Prepared by: nmb Reviewed by: jrb

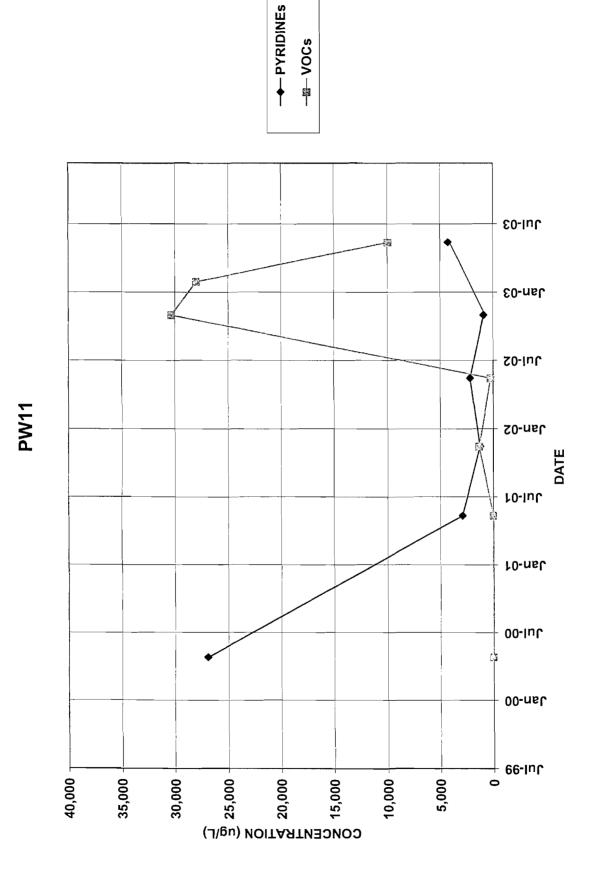


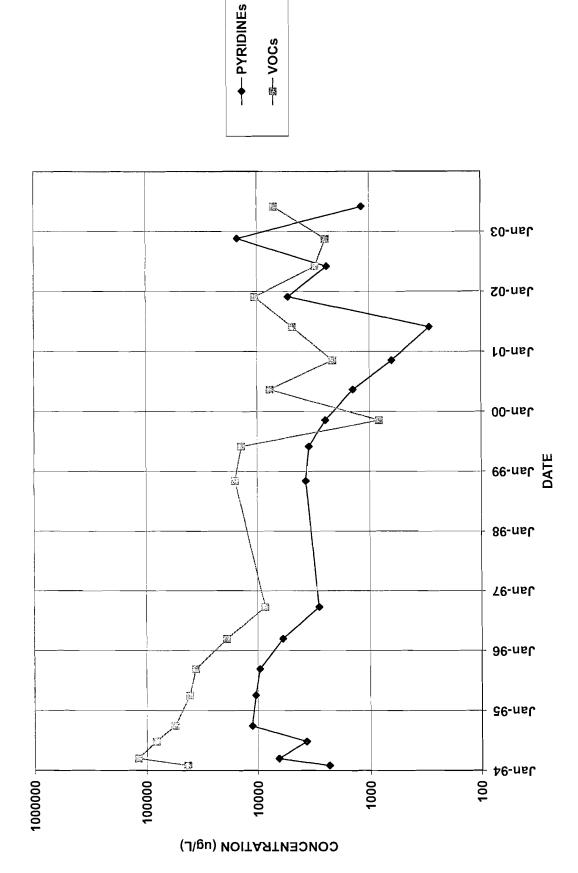


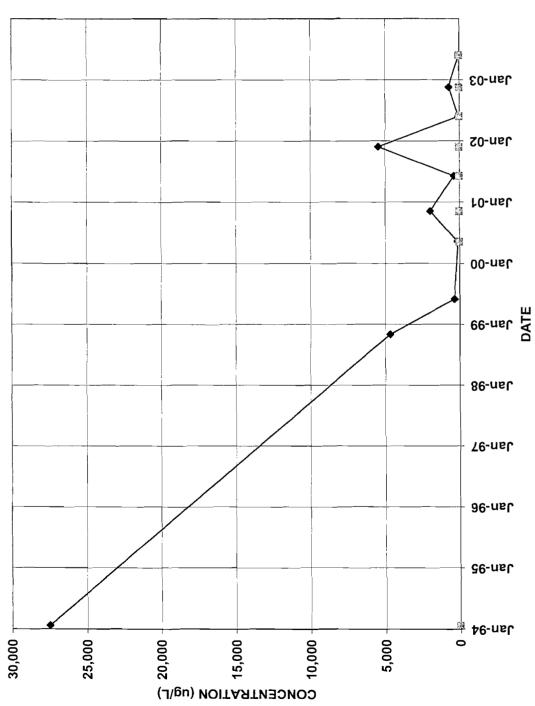


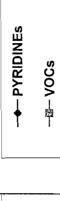


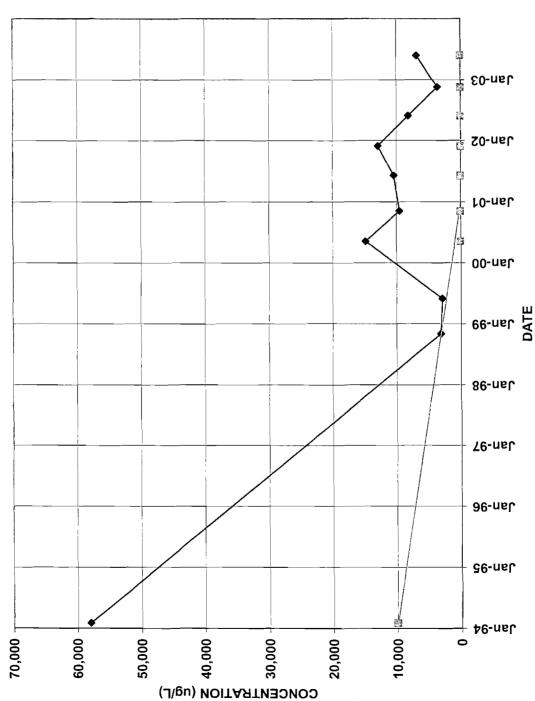


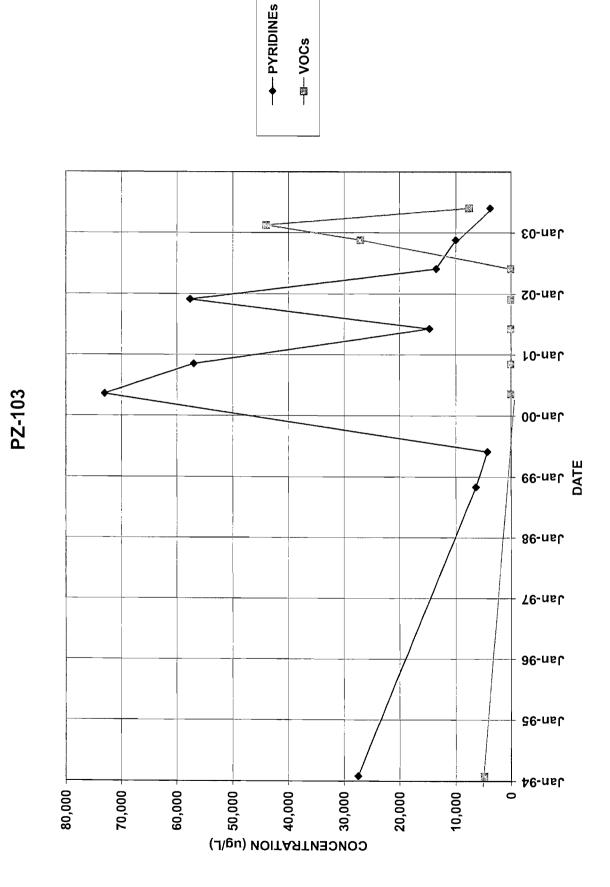




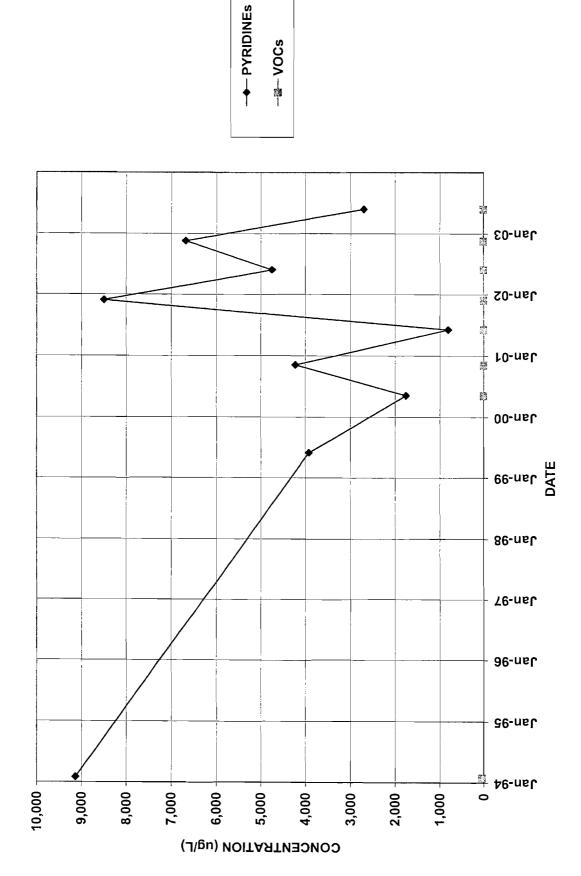


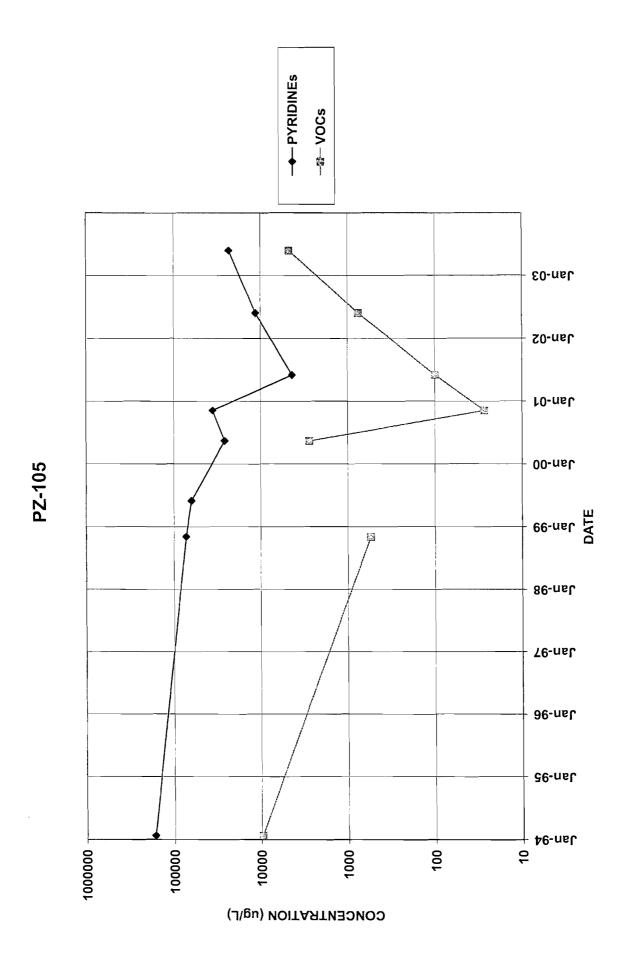



PW12 (Formerly BR-101)

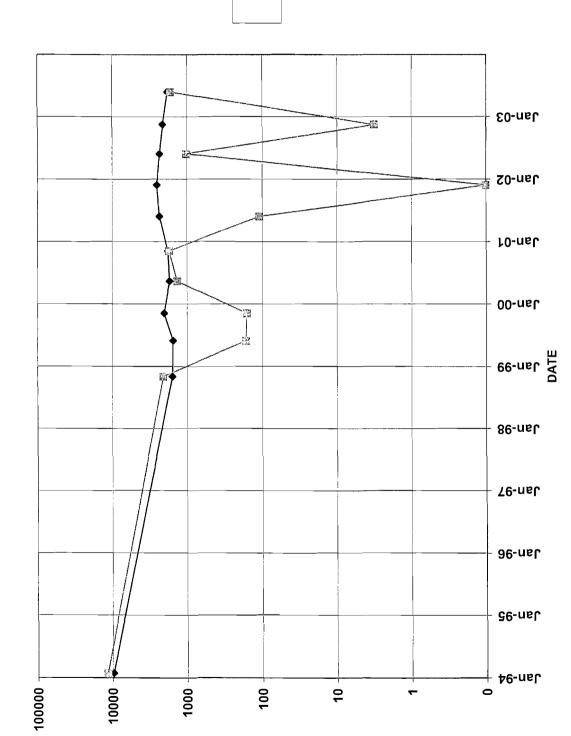


PZ-101

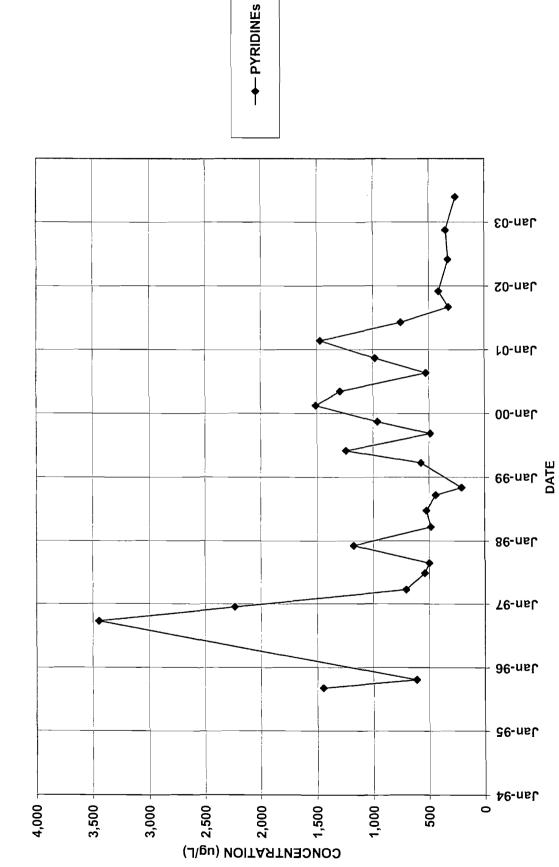




PZ-102



Prepared by: nmb Reviewed by: jrb



CONCENTRATION (ug/L)

--- PYRIDINES

-M-VOCs

QS-4 (QUARRY SEEP)

Appendix C

Re-sampling of Wells PW-11, PZ-103, and BR-106 2/17/03

APPENDIX C

RE-SAMPLING OF WELLS PW-11, PZ-103, AND BR-106 FEBRUARY 17, 2003

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-106		PW11		PZ-103	
SAMPLE DATE:	02/17/03		02/17/03		02/17/03	
QC TYPE:	N		N		N	
VOLATILE ORGANIC COMPOUNDS						
BY SW-846 Method 8260/5ML (µg/L)			_			
1,1,1-Trichloroethane	50	U	10	U	1000	U
1,1,2,2-Tetrachloroethane	50	Ū	10	U	1000	U
1,1,2-Trichloroethane	50	U	10	U	1000	U
1,1-Dichloroethane	50	U	4	j	1000	Ū
1,1-Dichloroethene	50	U	10	U	1000	U
1,2-Dichloroethane	50	U	10	U	_1000	U
1,2-Dichloroethene (total)	50	U	59		1000	U
1,2-Dichloropropane	50	U	10	U	1000	
2-Butanone	100	U	20	U	2000	U
2-Hexanone	100	U	20	U	2000	U
4-Methyl-2-pentanone	100	U	20	U	2000	Ū
Acetone	250	U	50	U	5000	Ū_
Benzene	53		28		1000	U
Bromodichloromethane	50	U	8.3	J	1000	Ū
Bromoform	50	U	10	U	1000	U
Bromomethane	100	Ü	20	U	2000	U
Carbon disulfide	50	U	15		1000	U
Carbon tetrachloride	50	U	10	U	1000	U
Chlorobenzene	350		200		1600	
Chloroethane	100	U	20	U	2000	J
Chloroform	2400		28000		35000	
Chloromethane	100	U	20	U	2000	J
cis-1,3-Dichloropropene	50	J	10	U	1000	٥
Dibromochloromethane	50	U	10	U	1000	٦
Ethylbenzene	50	U	10	U	1000	J
Methylene chloride	750		280		9300	
Styrene	50	U	10	U	1000	C
Tetrachloroethene	50	U	10	Ü	1000	U
Toluene	20	J	11		1000	U
Total Xylenes	150		30	U	3000	U
trans-1,3-Dichloropropene	50	U	10	U	1000	U
Trichloroethene	50	U	2.8	J	1000	U
Vinyl acetate	100		20	U	2000	
Vinyl chloride	50	U	50		1000	U

Notes:

U ≈ Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample; D = Field duplicate.