Arch Chemicals, Inc. P. O. Box 800 1200 Lower River Road Charleston, TN 37310 Tel (423) 780-2724

August 5, 2005

Mr. James H. Craft New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, NY 14414

Re: Arch Rochester Spring 2005 Monitoring Report

Arch Chemicals (Site #628018a) 100 McKee Rd., Rochester, NY

Dear Mr. Craft:

The enclosed report presents the Spring 2005 results for the on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility.

If you have any questions regarding this submittal, please call me at (423) 780-2175.

Sincerely,

Gayle M. Taylor / jeb Gayle M. Taylor

Manager, Environmental Issues

Arch Chemicals, Inc.

encl.

cc (w/encl): Bart Putzig, NYSDEC

Renee Gelblat, USEPA Region II Ron Skipp, Arch Chemicals, Inc.

Jeffrey Brandow, MACTEC Engineering & Consulting, P.C.

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM SPRING 2005 MONITORING REPORT

ARCH CHEMICALS
ROCHESTER PLANT SITE
ROCHESTER, NEW YORK

ARCH CHEMICALS, INC. CHARLESTON, TENNESSEE

AUGUST 2005

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM **SPRING 2005 MONITORING REPORT**

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

Prepared by

MACTEC Engineering & Consulting, P.C. Portland, Maine

for

ARCH CHEMICALS, INC. Charleston, Tennessee

August 2005

This document was prepared for the sole use of Arch Chemicals, Inc., the only intended beneficiary(ies) of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering & Consulting, P.C.

Nelson M. Breton, C.G. Project Geologist

Principal Engineer

TABLE OF CONTENTS

			<u>Page</u>
Exec	utive Su	ummary	1
1.0	Introd	duction	3
2.0	Samp	ple Collection and Analysis	3
	2.1	Groundwater	3
	2.2	Surface Water	3
	2.3	Analytical Procedures	4
	2.4	Quality Control	4
3.0	Analy	rtical Results	5
	3.1	Groundwater	5
		3.1.1 Chloropyridines	5
		3.1.2 Selected VOCs	6
	3.2	Surface Water	6
		3.2.1 Quarry	7
		3.2.2 Quarry Discharge Ditch	7
		3.2.3 Barge Canal	7
4.0	Extra	ction System Performance and Maintenance	7
5.0	Othe	r Issues	8
6.0	Next	Monitoring Event	8

APPENDICES

Appendix A	Groundwater Field	Sampling	Data Sheets
Appellary A	Giodilawatel i leid	Sampling	Data Silects

Appendix B Well Trend Data

LIST OF FIGURES

Figure 1	Off-Site Groundwater Monitoring Well Locations
Figure 2	On-Site Monitoring Well Locations
Figure 3	Spring 2005 Overburden Groundwater Interpreted Piezometric Contours
Figure 4	Spring 2005 Bedrock Groundwater Interpreted Piezometric Contours
Figure 5	Spring 2005 Deep Bedrock Groundwater Interpreted Piezometric Contours
Figure 6	Sample Locations - Erie Barge Canal
Figure 7	Sample Locations – Dolomite Products Quarry
Figure 8	Spring 2005 Selected Chloropyridine Concentration Contours for Groundwater
Figure 9	Spring 2005 Selected Volatile Organic Compound Concentration Contours for Groundwater

LIST OF TABLES

Table 1	Spring 2005 Sampling and Analytical Program
Table 2	Spring 2005 Groundwater Monitoring Results - Chloropyridines
Table 3	Spring 2005 Groundwater Monitoring Results – Volatile Organic Compounds
Table 4	Comparison of Spring 2005 Chloropyridines and Volatile Organic Concentrations in Groundwater to Previous Results
Table 5	Spring 2005 Canal/Quarry Monitoring Results
Table 6	Extraction Well Weekly Flow Measurements – December 2004 through May 2005
Table 7	Mass Removal Summary, Period: December 2004 - May 2005
Table 8	2005 / 2006 Sampling Schedule

EXECUTIVE SUMMARY

This monitoring report presents the results of an on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility. Results in this report include surface and groundwater samples collected from June 7 through June 16, 2005.

During this monitoring event, samples from a total of 49 groundwater monitoring or pumping wells and four locations associated with the Dolomite Products Quarry seep and outfall were collected and analyzed by Severn Trent Laboratories in Amherst, New York.

As in prior reports, monitoring results were compared with previous average concentrations at each sampling location. Out of the 53 regular monitoring locations sampled for chloropyridines, seven had contaminant concentrations exceeding their respective 5-year prior averages. For the 37 routine monitoring locations sampled for volatile organic compounds, four had concentrations exceeding the 5-year prior average. Contaminant contour plots are generally consistent with past observations.

Regular sampling locations associated with the quarry included the main quarry seep (QS-4), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1). Along with these routine quarry sampling locations, a sample was taken from the quarry ditch (QD-1) at the point where the quarry dewatering system discharges into the ditch at the rim of the quarry.

The sample from quarry seep QS-4 remained below its historical average. The remaining samples associated with the quarry discharge and the canal all had no detectable chloropyridines.

During the period November 29, 2004 through May 30, 2005, the on-site groundwater extraction system pumped approximately 6.2 million gallons of groundwater to the on-site treatment system, containing an estimated 506 pounds of chloropyridines and 78 pounds of target volatile organic compounds. During the period, two new pumping wells were activated: PW-13, a perimeter containment well located along the western property boundary between BR-7A and PW-11; and PW-14, located near PZ-106 in the southeastern portion of the plant site in an area with historically high VOC concentrations.

Pump and/or meter repairs were required in wells BR-5A, BR-7A, BR-9, PW-10, PW-11 and PW-13. Pumping well PW-12 is currently inoperable. This well is a former monitoring well that was converted to a pumping well in 1999 in an effort to address elevated VOC concentrations observed in groundwater in that portion of the site during the RI/FS. Since the time the RI was conducted, VOCs in this well (formerly known as BR-101) have declined by around 99 percent. There are also pumping wells located directly east (BR-5A) and west (BR-9) of PW-12 which continue to control groundwater flow in this part of the site. Based on the current conditions at this location and the amount of effort that is likely to be required to restore the well, Arch has recommended that its use as a pumping well be terminated. Arch will attempt to continue to use the well for monitoring purposes.

All accessible on-site monitoring wells were checked for the presence of dense non-aqueous phase liquids (DNAPL), using an interface probe. No DNAPL was observed in any of these wells. Separately, Arch has been tracking the accumulation of LNAPL in pumping well PW-13, which currently measures approximately 4 inches. Arch continues to believe this is fuel oil from an off-site source.

Additional issues related to the remedial action program at the Arch Rochester Plant Site are now discussed in the monthly progress reports, which commenced in February 2005.

Finally, Arch is proposing to revise the site monitoring program based on a review of groundwater data and long-term trends. Given the extensive data base that has been developed for most of the wells, Arch believes that annual monitoring is now adequate for the majority of the sampling locations in the current program. In addition, several wells that have consistently shown contaminant levels to be very low or non-detectable will be dropped from the regular sampling schedule. Pumping wells will continue to be sampled semi-annually to track mass removal rates, and newly-installed monitoring wells will be sampled semi-annually for their first two years to develop a baseline.

1.0 INTRODUCTION

In accordance with the Order on Consent executed between Arch Chemicals, Inc., and the New York State Department of Environmental Conservation (NYSDEC), effective August 21, 2003, Arch is conducting a Remedial Action program at its facility on McKee Road in Rochester, New York. As part of this program, Arch conducts twice-yearly monitoring events consisting of sampling and chemical analysis of groundwater and surface water in the vicinity of the Rochester facility.

The Spring 2005 sampling event included the collection and analysis of a total of 33 groundwater, surface water, and seep samples from off-site and on-site locations. Samples were collected from June 7 through June 16, 2005, for analysis of selected chloropyridines and volatile organic compounds (VOCs).

This report presents the results of the Spring 2005 monitoring event.

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 GROUNDWATER

Groundwater samples were collected from off-site wells, on-site wells and piezometers for analysis of selected chloropyridines (2-chloropyridine, 2,6-dichloropyridine, 3-chloropyridine, 4-chloropyridine, pyridine, and p-fluoroaniline) and target compound list (TCL) VOCs. Samples were collected by Severn Trent Laboratories and transported to their laboratory in Amherst, New York for analysis. Table 1 lists the wells that were sampled and the requested analyses. The off-site and on-site locations of these sampling points are shown in Figures 1 and 2, respectively. Groundwater sampling data sheets are provided in Appendix A.

Groundwater was collected with the low flow/low stress purging technique from most of the wells using bladder or peristaltic pumps. Samples from pumping wells (BR-5A, BR-7A, BR-9, PW-10, PW-11, PW-13, and PW-14) were collected from the discharge lines.

Groundwater piezometric elevations were measured on June 6, 2005. Piezometric contour maps were constructed for each water-bearing zone (overburden, bedrock, and deep bedrock) and are presented in Figures 3, 4, and 5.

All accessible on-site monitoring wells were again checked for the presence of dense non-aqueous phase liquids (DNAPL), using an interface probe. No DNAPL was observed in any of these wells. Separately, Arch has been tracking the accumulation of LNAPL in pumping well PW-13, which currently measures approximately 4 inches. As discussed in the Fall 2004 monitoring report, this fuel oil is believed to be from an off-site source.

2.2 SURFACE WATER

Surface water and quarry seep samples were collected as part of the on-going monitoring program for the Arch Rochester site. The location of the quarry and its outfall in relation to the site is shown on Figure 6. Samples of the quarry seep, the surface ditch that receives

the quarry discharge, and the Barge Canal were collected by Severn Trent Laboratories on June 16, 2005. Samples were analyzed for the Arch suite of selected chloropyridines. In addition, the seep sample was analyzed for TCL VOCs. The quarry locations sampled during this event are shown on Figure 7.

2.3 ANALYTICAL PROCEDURES

The analytical procedures, data review findings, and validated data for this groundwater and surface water monitoring event are discussed in the following paragraphs.

Samples were analyzed for the Arch suite of selected chloropyridines and TCL VOCs by USEPA SW-846 Methods 8270C and 8260B, respectively. The reporting limits for the chloropyridines and VOCs are approximately 10 micrograms per liter (μ g/L) and 5 to 25 μ g/L, respectively, for undiluted samples.

2.4 QUALITY CONTROL

All laboratory analytical results were reviewed and qualified following U.S. Environmental Protection Agency Contract Laboratory Program (USEPA CLP), "National Functional Guidelines For Organic Data Review", October, 1999, as modified by USEPA Region II, "SOP No. HW-6 Revision XII", March 2001. Analytical results were evaluated for the following parameters:

Collection and Preservation

- * Holding Times
- * Surrogate Recoveries
 Blank Contamination
- Duplicates
- * Laboratory Control Samples
 Matrix Spike/Matrix Spike Duplicates
 Miscellaneous

With the exception of the items discussed below, results are determined to be usable as reported by the laboratory.

Collection and Preservation. Some of the sample coolers associated with samples in SDG 5846 and SDG 5969 were received at the laboratory at temperatures greater than the acceptable range of 2° C to 6° C. As noted by the laboratory, ice was present in the coolers. Since the samples were collected on the same day that the coolers were received by the laboratory, it was not possible for the samples to cool to the acceptable range. Based on professional judgment, no qualifications were necessary.

The VOC sample from PW-10 exhibited a pH greater than 2, indicating inadequate preservation. However, PW-10 was analyzed within 7 days of collection, therefore no qualifications were necessary.

^{* -} all criteria were met for this parameter

Blank Contamination. Blank contamination was observed in method blanks associated with samples in SDG 5846 for methylene chloride and bromomethane. Results for methylene chloride and bromomethane were not reported from samples associated with these blanks, therefore no qualifications were necessary. Blank contamination was observed in method blanks associated with samples in SDG 5969 for methylene chloride and bromomethane. Bromomethane was reported as non-detect (U) in associated samples, therefore no qualifications were necessary. An action level for methylene chloride was established at ten times the concentration reported in the blank. The methylene chloride detection in associated sample PW-13 was greater than the action level, therefore no qualifications were necessary. The methylene chloride detection in associated sample PZ-103 was less than the reporting limit and less than the action level. The methylene chloride result in sample PZ-103 was qualified as non-detect (U) at the reporting limit.

Matrix Spike/Matrix Spike Duplicate. The percent recoveries for the matrix spike/matrix spike duplicate (MS/MSD) sample associated with sample PZ-103 were below the QC limits for trichloroethene, benzene and toluene, which may indicate a low bias. Results for trichloroethene, benzene and toluene in sample PZ-103 were qualified as estimated (J/UJ). The relative percent difference (RPD) between the MS/MSD associated with sample BR-17 was outside the QC limits for p-fluoroaniline. p-Fluoroaniline was reported as non-detect (U) in sample BR-17 and was qualified as estimated (J). The RPD between the MS/MSD associated with sample MW-127 was outside the QC limits for 2-chloropyridine. The detection of 2-chloropyridine in sample BR-7A was outside the QC limits for 2-chloropyridine. The detection of 2-chloropyridine in sample BR-7A was outside the QC limits for 2-chloropyridine. The detection of 2-chloropyridine in sample BR-7A was outside the QC limits for 2-chloropyridine. The detection of 2-chloropyridine in sample BR-7A was qualified as estimated (J).

<u>Miscellaneous</u>. The detections of dibromochloromethane and toluene in sample PW-14 exceeded the calibration range and were qualified as estimated (J). The detection of 3-chloropyridine in sample BR-127 exceeded the calibration range and was qualified as estimated (J).

3.0 ANALYTICAL RESULTS

3.1 GROUNDWATER

The validated results from the Spring 2005 groundwater monitoring event are provided in Tables 2 and 3. Table 4 provides a comparison of the Spring 2005 analytical results for selected chloropyridines and VOCs in representative wells to mean concentrations of the prior five years (Spring 2000 through Fall 2004). Long term trends for both selected chloropyridines and VOCs are also presented as time-series plots for representative wells in Appendix B. A summary of the analytical findings is presented below by parameter class.

3.1.1 Chloropyridines

On-Site. Chloropyridines were detected above sample quantitation limits in all 22 on-site wells sampled in the Spring 2005 event. Concentrations of chloropyridines ranged from 122 micrograms per liter (μg/L) (sum of all chloropyridine and pyridine isomer

concentrations) in pumping well BR-9 to 190,000 μ g/L in monitoring well B-17. Five onsite wells had selected chloropyridines concentrations above their respective means from monitoring events over the previous five years (see Table 4).

<u>Off-Site.</u> Chloropyridines were detected above sample quantitation limits in 21 of 27 off-site wells that were sampled. Concentrations of total selected chloropyridines ranged from non-detect to $9,000~\mu g/L$ in newly-installed bedrock monitoring well BR-126. Two of the off-site wells contained total chloropyridines concentrations above their respective 5-year prior means.

<u>Concentration Contours</u>. Chloropyridine distribution in groundwater is shown as a set of concentration contours on Figure 8. The contours were developed using data from both overburden and bedrock monitoring wells. Contours are approximated (shown as dashed lines) where they are based on data from previous sampling rounds.

3.1.2 Selected VOCs.

<u>On-Site.</u> Selected VOCs were detected in 17 of the 22 on-site wells sampled in the Spring 2005 event. Concentrations of VOCs ranged from non-detect to 390,000 μg/L for the sum of the principal site-related contaminants (carbon tetrachloride, chloroform, methylene chloride, tetrachloroethene, and trichloroethene). Two of the fourteen on-site wells had VOC concentrations slightly greater than their 5-year prior means. In addition to the selected VOCs, other notable constituents detected in on-site wells include chlorobenzene (in 18 out of 22 wells), toluene (17 of 22), carbon disulfide (16 of 22), benzene (15 of 22), 1,2-dichloroethene (12 of 22), vinyl chloride (8 of 22), ethylbenzene (7 of 22), 1,1-dichloroethane (6 of 22), bromoform (6 of 22), and dibromochloromethane (4 of 22).

<u>Off-Site.</u> Selected VOCs were detected in six of the fourteen off-site wells sampled for VOCs in the Fall 2004 event. Total concentrations of selected VOCs ranged from non-detect to 220 ug/L. Two off-site wells had selected VOC concentrations above their prior 5-year mean. In addition to the selected VOCs, other notable constituents detected in off-site wells include benzene (in 11 out of 14 wells), chlorobenzene (9 of 14), 1,2-dichloroethene (5 of 14), toluene (4 of 14), carbon disulfide (3 of 14), and vinyl chloride (3 of 14).

<u>Concentration Contours</u>. The distribution of selected VOCs in groundwater is shown as a set of concentration contours on Figure 9. These contours were developed using both overburden and bedrock groundwater data, and are dashed where approximated using data from previous sampling rounds.

3.2 SURFACE WATER

Results from the Spring 2005 canal and quarry monitoring event are presented in Table 5, and summarized below.

3.2.1 Quarry

One quarry seep was sampled in the Spring 2005 monitoring event. Quarry seep QS-4 contained 165 µg/L total chloropyridines, and had no detectable VOCs. These results remain below historical averages.

3.2.2 Quarry Discharge Ditch

Two samples were collected from the quarry discharge ditch and analyzed for chloropyridines. Sample QD-1 was collected from the ditch at the location of the discharge pipe from the quarry, near the quarry rim. Sample QO-2 was collected at the point where the ditch discharges to the canal. No chloropyridines were detected in either of the ditch samples.

3.2.3 Barge Canal

No chloropyridines were detected in the surface water sample collected from the Erie Barge Canal (QO-2S1, located approximately 100 feet downstream of QO-2).

4.0 EXTRACTION SYSTEM PERFORMANCE AND MAINTENANCE

Table 6 is a summary of the system flow measurements for the on-site extraction wells from December 2004 through May 2005. The total volume pumped during the six-month period is approximately 6.2 million gallons.

During the period, two new pumping wells were activated: PW-13, a perimeter containment well located along the western property boundary between BR-7A and PW-11; and PW-14, located near PZ-106 in the southeastern portion of the plant site in an area with historically high VOC concentrations.

Pump and/or meter repairs were required in wells BR-5A, BR-7A, BR-9, PW-10, PW-11, and PW-13.

On-site pumping well PW-12 is currently inoperable. While attempting to perform preventative maintenance, Arch found that the pump was firmly lodged within this opencore well, and could not be extracted. It is unknown whether the formation has collapsed around the pump, or whether a build-up of sediment and scale has cemented the pump in place. This well is a former monitoring well that was converted to a pumping well in 1999 in an effort to address elevated VOC concentrations observed in groundwater in that portion of the site during the RI/FS. Since the time the RI was conducted, VOCs in this well (formerly known as BR-101) have declined by around 99 percent. There are also pumping wells located directly east (BR-5A) and west (BR-9) of PW-12 which continue to control groundwater flow in this part of the site. Based on the current conditions at this location and the amount of effort that is likely to be required to restore the well, Arch has recommended that its use as a pumping well be terminated. Arch will attempt to continue to use the well for monitoring purposes.

Table 7 provides a calculation of mass removal rates since the previous groundwater monitoring event (i.e., from December 2004 through May 2005). Arch estimates that

approximately 192 pounds of target VOCs and 534 pounds of chloropyridine compounds were removed by the groundwater extraction system and treated by the plant's activated carbon adsorption units over that time period.

5.0 OTHER ISSUES

For other issues related to the remedial action program at the Arch Rochester Plant Site, please see the monthly progress reports, which commenced in February 2005.

6.0 NEXT MONITORING EVENT

Arch is proposing to revise the site monitoring program based on a review of groundwater data and long-term trends. Given the extensive data base that has been developed for most of the wells, Arch believes that annual monitoring is now adequate for the majority of the sampling locations in the current program. In addition, several sampling locations that have consistently shown contaminant levels to be very low or non-detectable will be dropped from the regular sampling schedule. Pumping wells will continue to be sampled semi-annually to track mass removal rates, and newly-installed monitoring wells will be sampled semi-annually for their first two years. The proposed revised sampling schedule is shown in Table 8.

In accordance with the proposed sampling schedule, the next monitoring event will occur in November 2005 and will consist of sampling of the active pumping wells and new monitoring wells BR/MW-125 (if installed by then), BR/MW-126, and BR/MW-127.

TABLE 1 SPRING 2005 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM

ARCH CHEMICALS, INC ROCHESTER, NEW YORK

			ANALYSIS	PYRIDINES	VOCs
	WELL /		QC TYPE		
SITE / AREA	POINT	DATE			
AID TO HOSPITALS	BR-106	6/8/2005	Sample	X	Χ
	BR-108	6/14/2005	Sample	X	
	MW-106	6/8/2005	Sample	Х	X
	PZ-101	6/13/2005	Sample	Х	Х
	PZ-102	6/13/2005	Sample	X	Х
	PZ-103	6/13/2005	Sample	Х	Х
AMERICAN RECYCLE MANUF. (58 MCKEE ROAD)	PZ-104	6/13/2005	Duplicate	Х	Х
	PZ-104	6/13/2005	Sample	X	Х
ARCH ROCHESTER	B-17	6/8/2005	Sample	X	X
	B-7	6/9/2005	Sample	X	Х
	BR-126	6/15/2005	Sample	Х	Х
	BR-127	6/7/2005	Sample	Х	Х
	BR-3	6/7/2005	Sample	X	Х
	BR-5A	6/9/2005	Sample	Х	Х
	BR-6A	6/7/2005	Sample	Х	Χ
	BR-7A	6/9/2005	Sample	X	Х
	BR-8	6/9/2005	Sample	Х	Х
	BR-9	6/9/2005	Sample	Х	Х
	E-1	6/8/2005	Sample	X	Х
	E-3	6/8/2005	Sample	Х	Х
	MW-126	6/15/2005	Sample	Х	Х
	MW-127	6/7/2005	Sample	X	Х
	PW10	6/9/2005	Sample	X	X
	PW11	6/9/2005	Sample	X	X
	PW12	6/9/2005	Sample	X	X
	PW13	6/9/2005	Sample	X	X
	PW14	6/9/2005	Sample	X	X
•	PZ-105	6/7/2005	Sample	X	X
	PZ-106	6/8/2005	Sample	X	X
	PZ-107	6/7/2005	Sample	$\frac{\hat{x}}{x}$	X
	S-3	6/8/2005	Sample	x	X
	S-4	6/8/2005	Sample	x	X
DOLOMITE PRODUCTS, INC.	BR-117D	6/8/2005	Sample	 	
BOLOWITE TROBUCTO, INC.	BR-118D	6/8/2005	Sample	l x l	
	QD-1	6/16/2005	Sample	x	
	QS-4	6/16/2005	Sample	x	X
EASTMAN KODAK (FORMERLY GERBER PROPERTY)	BR-103	6/7/2005	Sample	×	X
ENGLISH ROBERT (LONGLINE)	MW-103	6/7/2005	Sample	x	X
ERIE BARGE CANAL	BR-112D	6/14/2005	Sample	x	^
	BR-113D	6/13/2005	Sample	Î x	
	BR-122D	6/7/2005		x	
	BR-123D	6/7/2005	Sample	x	
	QO-2	6/16/2005	Sample	X	
	QO-2S1	6/16/2005	Sample	X	
JACKSON WELDING	BR-114	6/13/2005	Sample	X	Х
ONO NOTICE DITO	MW-114	6/13/2005	Sample	x	<u>^</u>
LEXINGTON MACHINING	NESS-E	6/15/2005		Î	^
	NESS-W	6/15/2005	Sample	$\frac{\hat{x}}{x}$	
PFAUDLER, INC.	BR-116	6/13/2005	Sample	x	
TAODELIN, 1140.	BR-116D	6/13/2005	Sample	x	
RG & E RIGHT OF WAY	BR-104	6/7/2005	Sample	X	
NO G ENIOTH OF WAT	BR-104 BR-105	6/8/2005		X	X
	BR-105D	6/8/2005	Sample Sample	X	X
	MW-104	6/7/2005	Sample	X	^

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-17	B-7	BR-103	BR-104	BR-105	BR-105D	BR-106	BR-108	BR-112D	BR-113D
SAMPLE DATE:	06/08/05	06/09/05	06/07/05	06/07/05	06/08/05	06/08/05	06/08/05	06/14/05	06/14/05	06/13/05
QC TYPE:	N	N	N	N	N	N	N	N	N	N
BY SW-846 Method 8270C (µg/L)										
2,6-Dichloropyridine	12000	390	9 U	9 U	140	73 J	340 J	4 J	4 J	9 U
2-Chloropyridine	150000	630	_ 9 U	9 U	1100	1100	1300	55	18	27
3-Chloropyridine	10000 U	50 U	9 U	9 U	100 U	100 U	500 U	9 U	9 U	9 U
4-Chloropyridine	10000 U	50 U	9 U	9 U	100 U	100 U	500 U	9 U	9 U	9 U
p-Fluoroaniline	10000 UJ	50 U	9 U	_ 9 U	100 U	100 U	500 U	9 U	9 U	9 U
Pyridine	28000	120 U	24 U	24 U	250 U	250 U	1200 U	24 U	24 U	24 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-114	BR-116	BR-116D	BR-117D	BR-118D	BR-122D	BR-123D	BR-126	BR-127	BR-3
SAMPLE DATE:	06/13/05	06/13/05	06/13/05	06/08/05	06/08/05	06/07/05	06/07/05	06/15/05	06/07/05	06/07/05
QC TYPE:	N	N	N	N	N	N	N	N	N	N
BY SW-846 Method 8270C (µg/L)								_		
2,6-Dichloropyridine	21	9 U	10 U	10 U	9 U	21	19	690 J	690	5000 U
2-Chloropyridine	68	9 U	10 U	6 J	70	130	120	8200	3000	3900 J
3-Chloropyridine	9 U	9 U	10 U	10 U	9 U	9 U	9 U	57	210 J	5000 U
4-Chloropyridine	9 U	9 U	10 U	10 U	9 U	9 U	9 U	9 U	9 U	5000 U
p-Fluoroaniline	9 U	9 U	10 U	10 U	9 U	9 U	9 U	20	17	5000 U
Pyridine	24 U	12000 U								

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-5A	BR-6A	BR-7A	BR-8	BR-9	E-1	E-3	MW-103	MW-104	MW-106
SAMPLE DATE:	06/09/05	06/07/05	06/09/05	06/09/05	06/09/05	06/08/05	06/08/05	06/07/05	06/07/05	06/08/05
QC TYPE:	N	N	N	N	Ň	N	N	N	N	N
BY SW-846 Method 8270C (μg/L)			·		-					
2,6-Dichloropyridine	41 J	1000 U	900 J	75	26	4200	49	9 U	4 J	1000
2-Chloropyridine	140	2400	2500 J	110	92	12000	140	9 U	9 U	2600
3-Chloropyridine	50 U	1000 U	1000 U	9 U	9 U	1000 U	9 U	9 U	9 U	500 U
4-Chloropyridine	50 U	1000 U	1000 U	9 U	9 U	1000 U	9 U	9 U	9 U	500 U
p-Fluoroaniline	24 J	1000 U	1000 U	3 J	4 J	1000 U	9 U	9 U	9 U	500 U
Pyridine	120 U	2500 U	2500 U	24 U	24 U	2500 U	24 U	24 U	24 U	1200 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	MW-114	MW-126	MW-127	NESS-E	NESS-W	PW10	PW11	PW12	PW13	PW14
SAMPLE DATE:	06/13/05	06/15/05	06/07/05	06/15/05	06/15/05	06/09/05	06/09/05	06/09/05	06/09/05	06/09/05
QC TYPE:	N	N	N	N	N	N	N	N	N	N
BY SW-846 Method 8270C (μg/L)										
2,6-Dichloropyridine	9 U	44	260	32	10 U	6000	170	950	300	3100
2-Chloropyridine	9 U	19	770 J	210	5 J	52000	710	2000	1400	17000
3-Chloropyridine	9 U	9 U	250 U	4 J	10 U	1700 J	50 U	110	100 U	360
4-Chloropyridine	9 U	9 U	250 U	9 U	10 U	1000 J	50 U	100 U	100 U	90 J
p-Fluoroaniline	9 U	9 U	250 U	9 U	10 U	2000 U	15 J	590	100 U	100 U
Pyridine	24 U	24 U	620 U	24 U	24 U	5400	120 U	450	250 U	860

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-101		PZ-102		PZ-103		PZ-104		PZ-104		PZ-105		PZ-106	PZ-10	7	QD-1	QO-2	
SAMPLE DATE:	06/13/05		06/13/05	,	06/13/05	5	06/13/0	5	06/13/0	5	06/07/05	5	06/08/05	06/07/0	5	06/16/05	06/16/0)5
QC TYPE:	N		N		N		D		N		N		N	N		N	N	
BY SW-846 Method 8270C (μg/L)													_					
2,6-Dichloropyridine	52		470		870		240		290		500	J	3500	820		10 U	10	טוס
2-Chloropyridine	280		940		2000		1500		1800		2000		9800	4200		10 U	10	טוכ
3-Chloropyridine	9	U	200	U	500	υ	100	U	100	U	1000	υ	1000 U	110		10 U	10	טו
4-Chloropyridine	9	G	200	Ū	500	U_	100	U	100	U	1000	U	1000 U	100	U	10 U	10	υ
p-Fluoroaniline	8	J	200	U	500	כ	100	ح	100	U	1000	U	1000 U	100	U	10 U	10	U
Pyridine	24	U	500	Ú	1200	U	250	U	250	U	2500	U	930 J	250	U	24 U	24	↓ ∪

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	QO-2S1		QS-4		S-3		S-4	
SAMPLE DATE:	06/16/0	5	06/16/05	5	06/08/0	5	06/08/0	5
QC TYPE:	N		_ N		N		N	
BY SW-846 Method 8270C (μg/L)								
2,6-Dichloropyridine	10	U	35		2000		58	
2-Chloropyridine	10	J	130		4700		650	
3-Chloropyridine	10	U	10	U	100	U	9	
4-Chloropyridine	10	J	10	J	100	Ū	8	J
p-Fluoroaniline	10	U	10	U	100	U	9	U
Pyridine	24	U	24	U	250	U	24	U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

QC TYPE: N = Field sample;

SPRING 2005 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCAT	ON: B-17	B-7	BR-103	BR-105	BR-105D	BR-106	BR-114	BR-126	BR-127	BR-3
SAMPLE D	TE: 06/08/05	06/09/05	06/07/05	06/08/05	06/08/05	06/08/05	06/13/05	06/15/05	06/07/05	06/07/05
QC T	PE: N	N	N	N	N	N	N	N	N	N
VOLATILE ORGANIC COMPOUNDS										
BY SW-846 Method 8260/5ML (µg/L)										<u> </u>
1,1,1-Trichtoroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
1,1,2,2-Tetrachloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
1,1,2-Trichloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
1,1-Dichloroethane	500 U	5 U	5 U	0.77 J	5.8	5 U	5 U	5 U	5 U	5000 U
1,1-Dichloroethene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
1,2-Dichloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
1,2-Dichloroethene (total)	1000 U	10 U	9.9 J	53	8.2 J	10 U	10 U	3.9 J	4.4 J	1000 <u>0</u> U
1,2-Dichloropropane	500 U	5 U	5 U_	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
2-Butanone	2500 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25000 U
2-Hexanone	2500 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 ປ	25000 U
4-Methyl-2-pentanone	2500 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25000 U
Acetone	2500 U	25 U	25 U	25 U	25 U	10 J	25 U	25 U	25 U	25000 U
Benzene	500 U	1.1 J	5 U	2.4 J	8.4	20	5.2	6	4.5 J	5000 ป
Bromodichloromethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
Bromoform	500 U	5 U	5 U	5 U	5 U	5 U	5 U	1.5 J	5 U	7500
Bromomethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U_	5000 U
Carbon disulfide	160 J	5 U	5 U	5 U	_ 5 U	5 U	5 U	7.8	0.89 J	42000
Carbon tetrachloride	160 J	5 U	5 U	2.2 J	5 U	5 U	5 U	200	5 U	100000
Chlorobenzene	61 J	14	5 U	4.2 J	5 U	160	5 U	0.75 J	1 J	5000 U
Chloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
Chloroform	8400	5 U	5 U	1.8 J	5.2	5 U	5 U	15	5 U	230000
Chloromethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U_	1400 J
cis-1,3-Dichloropropene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U_	5000 U
Dibromochloromethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	580 J
Ethylbenzene	500 U	5 U	. 5 U	5 U .	1.3 J	5 U	5 U	5 U	0.64 J	5000 U
Methylene chloride	400 J	5 U	5 U	5 U	5 U	_ 5 U	5 U	0.76 J	5 U	57000
Styrene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
Tetrachloroethene	790	5 U	5 U	2.7 J	5 U	5 U	0.66 J	2.1 J	5 U	4400 J
Toluene	110 J	5 U	5 U	5 U	5 U	1.3 J	5 U	0.87 J	0.82 J	9700
Total Xylenes	1500 U	15 U	15 U	15 U	2.2 J	15 U	15 U	15 U	15 U	15000 U
trans-1,3-Dichloropropene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U
Trichloroethene	170 J	5 U	5 U	1.3 J	5 U	5 U	5 U	5 U	2.7 J	5000 U
Vinyl acetate	2500 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25000 U
Vinyl chloride	500 U	5 U	14	15	5 U	5 U	5 U	5.4	5 U	5000 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

SPRING 2005 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION	: BR-5A	BR-6A	BR-7A	BR-8	BR-9	E-1	E-3	MW-103	MW-106	MW-114
SAMPLE DATE	: 06/09/05	06/07/05	06/09/05	06/09/05	06/09/05	06/08/05	06/08/05	06/07/05	06/08/05	06/13/05
QC TYPE	: N	N	N	N	N	N	N	N _	N	N
VOLATILE ORGANIC COMPOUNDS										
BY SW-846 Method 8260/5ML (µg/L)							į			
1,1,1-Trichloroethane	5 U	25 U	10 U	5 U_	3.1 J	25 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5 U	25 U	10 U	5 U_	20 U	25 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U_	5 U	5 U
1,1-Dichloroethane	5 U	25 U	2 J	5 Ú	12 J	25 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5 U	25 U	10 U	5 U	2.9 J	25 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
1,2-Dichloroethene (total)	12	22 J	3.8 J	10 U	330	15 J	10 U	10 U	1.6 J	10 U
1,2-Dichloropropane	5 U	25 U	10 U	5 U	20 U	25 U	5 U	. 5 U	5 U	5 U
2-Butanone	25 U	120 U	50 U	25 U	100 U	120 U	25 U	25 U	25 U	25 U
2-Hexanone	25 U	120 U	50 U	25 U	100 U	120 U	25 U	25 U	25 U	25 U
4-Methyi-2-pentanone	25 U	120 U	50 U	25 U	100 U	120 U	25 U	25 U	25 U	25 U
Acetone	4.1 J	120 U	50 U	25 U	24 J	130	25 U	25 U	25 U	25 U
Benzene	9.1	5.9 J	21	0.58 J	80	5.4 J	5 U	5 U	29	_ 5 U
Bromodichloromethane	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Bromoform	5 U	22 J	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Bromomethane	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Carbon disulfide	1 J	140	3.9 J	0.67 J	20 U	8.1 J	5 U	5 U	5 U	5 U
Carbon tetrachloride	5 U	320	4.4 J	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Chlorobenzene	10	41	280	16	17 J	34	5 U	5 U	260	5 U
Chloroethane	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Chloroform	26	500	76	5 U	5 J	21 J	5 U	5 U	5 U	6.9
Chloromethane	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Dibromochloromethane	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Ethylbenzene	5 U	25 U	10 U	5 U	12 J	3.9 J	5 U	5 U	0.7 J	5 U
Methylene chloride	54	45	18	5 U	6 J	4.3 J	5 U	5 U	5 U	5 U
Styrene	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5 <u>U</u>	39	2 J	5 U	20 U	8.2 J	5 U	5 U	5 U	3.3 J
Toluene	4.4 J	53	7 J	5 U	3.9 J	4.7 J	5 U	5 U	2 J	5 U
Total Xylenes	15 U	75 U	30 U	15 U	60 U	75 U	15 U	15 U	2.1 J	15 U
trans-1,3-Dichloropropene	5 U	25 U	10 U	5 U	20 U	25 U	5 U	5 U	5 U	5 U
Trichloroethene	21	12 J	1.7 J	5 U	2.8 J	25 U	5 U	5 U	0.98 J	5.6
Vinyl acetate	25 U	120 U	50 U	25 U	100 U	120 U	25 U	25 U	25 U	25 U
Vinyl chloride	4.1 J	7.1 J	5 J	5 U	170	9.9 J	5 U	5 U	5 U	5 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

. F 3

SPRING 2005 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	MW-126	MW-127	PW10	PW11	PW12	PW13	PW14	PZ-101	PZ-102	PZ-103
SAMPLE DATE:	06/15/05	06/07/05	06/09/05	06/09/05	06/09/05	06/09/05	06/09/05	06/13/05	06/13/05	06/13/05
QC TYPE:	N	N	N	N	N	_N	N	N _	N	N
VOLATILE ORGANIC COMPOUNDS				·						
BY SW-846 Method 8260/5ML (μg/L)										
1,1,1-Trichloroethane	5 U	5 U	500 U	1.7 J	100 U	5 U	5 U	5 U	10 U	25 U
1,1,2,2-Tetrachloroethane	5 U	5 U	500 U	10 U	100 U	5 U	5 U	5 U	10 U	25 U
1,1,2-Trichloroethane	5 U	5 U	500 U	10 U	89 J	5 U	5 U	5 U	10 U	25 U
1,1-Dichloroethane	5 U	5 U	500 U	10	100 U	3.8 J	1.5 J	5 U	10 U	25 U
1,1-Dichtoroethene	5 U	5 U	500 U	1.2 J	100 U	5 U	0.72 J	5 U	10 U	25 U
1,2-Dichloroethane	5 U	5 U	500 U	10 U	100 U	5 U	5 U	5 U	10 U	25 U
1,2-Dichloroethene (total)	10 U	10 U	1000 U	200	200 U	10	38	10 U	20 U	50 U
1,2-Dichloropropane	5 U	5 U	500 U	10 U	100 U	5 U	5 U	5 U	10 U	25 U
2-Butanone	25 U	25 U	2500 U	50 U	500 U	25 U	25 U	25 U	50 U	120 U
2-Hexanone	25 U	25 U	2500 U	50 U	500 Ù	25 U	25 U	25 U	50 U	120 U
4-Methyl-2-pentanone	25 U	25 U	2500 U	50 U	500 U	25 U	3.5 J	25 U	50 U	120 U
Acetone	25 U	25 U	580 J	50 U	500 U	25 U	82	25 U	50 U	120 U
Benzene	5 U	5 U	500 U	38	72 j	13	21	1.8 J	17	30 J
Bromodichloromethane	5 U	5 U	500 U	10 U	100 U	5 U	24	5 U	10 U	25 U
Bromoform	5 U	5 U	2700	10 U	100 U	5 U	2600	5 U	10 U	25 U
Bromomethane	5 U	5 U	500 U	10 U	100 U	5 U	5 U	5 U	10 U	25 U
Carbon disulfide	5 U	5 U	1100	10 U	170	0.9 J	18000	5 U	1.9 J	9.3 J
Carbon tetrachloride	5 U	5 U	16000	10 U	100 U	12	87000	5 U	10 U	25 U
Chlorobenzene	5 U	5 U	230 J	65	1200	67	21	11	330	610
Chloroethane	5 U	5 U	500 U	10 U	100 U	_ 5 U	5 U	5 U	10 U	25 U
Chloroform	5 U	5 U	11000	120	12 J	720	71000	5 U	10 U	25 U
Chloromethane	5 U	5 U	500 U	10 U	100 U	5 U	70	5 U	10 U	25 U
cis-1,3-Dichloropropene	5 U	5 U	500 U	10 U	100 U	5 U	5 U	5 U	10 U	25 U
Dibromochloromethane	5 U	5 U	220 J	10 U	100 U	5 U	220 J	5 U	10 U	25 U
Ethylbenzene	5 U	5 U	500 U	4.1 J	140	0.71 J	0.56 J	5 U	10 U	25 U
Methylene chloride	5 U	5 U	1900	12	16 J	180	5 U	5 U	10 U	25 U
Styrene	5 U	5 U	500 U	10 U	100 U	5 U	2.6 J	5 U	10 U	25 U
Tetrachloroethene	5 U	5 U	1600	10 U	100 U	8.3	1500 J	5 U	10 U	25 U
Toluene	5 U	0.71 J	350 J	4 J	990	3.8 J	180 J	5 U	10 U	5.6 J
Total Xylenes	15 U	15 U	1500 U	3.4 J	1000	15 U	3.2 J	15 U	30 U	75 U
trans-1,3-Dichloropropene	5 U	5 U	500 U	10 U	100 U	5 U	5 U	5 U	10 U	25 U
Trichloroethene	5 U	5 U	91 J	2.4 J	100 U	1.9 J	21	5 U	10 U	25 UJ
Vinyl acetate	25 U	25 U	2500 U	50 U	500 U	25 U	25 U	25 U	50 U	120 U
Vinyl chloride	5 U	5 U	500 U	140	100 U	14	5 U	5 U	10 U	25 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

_E 3

SPRING 2005 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-104	PZ-104	PZ-105	PZ-106	PZ-107	QS-4	S-3	S-4
SAMPLE DATE:	06/13/05	06/13/05	06/07/05	06/08/05	06/07/05	06/16/05	06/08/05	06/08/05
QC TYPE:	D	N	N	N	N	N	N	N
VOLATILE ORGANIC COMPOUNDS								
BY SW-846 Method 8260/5ML (μg/L)								
1,1,1-Trichloroethane	5 U	5 U	5 U	10000 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	10000 U	5 U	5 U	5 Ü	5 U
1,1,2-Trichloroethane	5 υ	5 U	_ 5 U	10000 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5 U	5 U	5 U	10000 U	5 U	_ 5 U	2.1 J	5 U
1,1-Dichloroethene	5 U	5 U	5 U	10000 U	5 U	5 U	5 U	_ 5 U
1,2-Dichloroethane	5 U	5 U	5 U	10000 U	5 U	5 U	5 U	5 U
1,2-Dichloroethene (total)	10 Ü	10 U	1.2 J	20000 U	4.9 J	10 U	23	10 U
1,2-Dichloropropane	5 U	5 U	5 U	_10000 U	5 υ	5 U	5 U	5 U
2-Butanone	25 U	25 U	25 U	50000 U	25 U	_ 25 U	25 U	25 U
2-Hexanone	25 U	25 U	25 U	50000 U	25 U	25 U	25 U	25 U
4-Methyl-2-pentanone	25 U	25 U	25 U	50000 U	25 U	25 U	25 U	25 U
Acetone	25 U	25 U	25 U	50000 U	25 U	25 U	25 U	25 U
Benzene	2.1 J	2 J	7.8	10000 U	3.9 J	5 U	4.3 J	5 U
Bromodichloromethane	5 U	5 U	5 U	10000 U	5 U	5 U	5 U	5 U
Bromoform	5 U	5 U	23	2700 J	5 U	5 U	5 U	5 U
Bromomethane	5 U	5 U	5 U	10000 U	5 U	5 U	5 U	5 U
Carbon disulfide	5 U	5 υ	88	46000	3 J	5 U	0.99 J	5 U
Carbon tetrachloride	5 U	5 U	330	55000	2.9 J	5 U	0.55 J	5 U
Chlorobenzene	3.4 J	3.4 J	64	10000 U	2.2 J	5 U	34	0.77 J
Chloroethane	5 U	5 U	5 U	10000 U	5 U	5 U	5 U	5 U
Chloroform	5 U	5 U	490	170000	1.2 J	5 U	15	5 U
Chloromethane	5 U	5 U	5 U	10000 U	5 U	5 U	5 U_	5 U
cis-1,3-Dichloropropene	5 ป	5 U	5 U	10000 U	5 U	5 U	_ 5 U	5 U
Dibromochloromethane	5 U	5 U	1.6 J	10000 U	5 U	5 U	5 U	5 U
Ethylbenzene	5 U	5 U	5 บ	10000 U	5 U	5 U	5 U	5 U
Methylene chloride	5 U	5 U	29	5200 J	5 U	5 U	0.78 J	5 U
Styrene	5 U	5 U	5 U	10000 U	5 U_	5 U	5 U	5 U
Tetrachloroethene	5 U	5 U	16	1800 J	0.99 J	5 U	2.4 J	5 U
Toluene	5 U	5 U	38	10000 U	0.66 J	_ 5 U	0.66 J	5 U
Total Xylenes	15 U	15 U	15 U	30000 U	15 U	15 U	15 U	15 U
trans-1,3-Dichloropropene	5 U	5 U	5 U	10000 U	5 U	5 U	5 U	5 U
Trichloroethene	5 U	5 U	0.64 J	10000 U	2.4 J	5 U	0.86 J	5 U
Vinyl acetate	25 U	25 U	25 U	50000 U	25 U	25 U	25 U	25 U
Vinyl chloride	5 U	5 U	5 U	10000 U	5 U	5 U	26	5 U

Notes:

 U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 4 COMPARISON OF SPRING 2005 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - AUGUST 2005

WELL		SELEC	TED CHLOR	OPYRIDINES						
	# EVENTS IN	# EVENTS IN HISTORIC		JUNE-2005	# EVENTS	HISTORIC	5-YEAR	JUNE-2005		
	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT	IN PRIOR 5	MAXIMUM	MEAN	RESULT		
					YRS					
ON-SITE V	WELLS/LOCATIO	NS					I			
B-17	6	28,000,000	170,000	190,000	6	345,000	58,000	9920		
B-7	6	9,100	2,700	1,020	6	91	58	ND		
BR-127	1	1,500	1,500	3,920	1	2	2	2.7		
BR-3	6	6,500,000	150,000	3,900	6	920,000	550,000	391000		
BR-5A	10	1,700	510	205	10	9,400	95	1.01		
BR-6A	10	144,500	33,000	2,400	10	26,000	7,100	916		
BR-7A	10	510,000	21,000	3,400		3,000	280	102		
BR-8	6	57,000	13,000	188	- 6	6,900	4.3	ND		
BR-9	9	720	320	122	9	160	41	13.8		
E-1	9	171,680	50,000	16,200	9	5,300	470	33.5		
E-3	6	600	62	189	6	12,000	87	ND		
MW-127	1	15,000	15,000	1,030	1	180	180	ND		
PW10	10	171,400	79,000	66,100	10	120,000	33,000	30600		
PW11	9	27,000	5,000	895	10	30,000	7,100	134		
PW12	10	15,000	3,100	4,100	10	120,000	4,100	28		
PW13	1	NA	7,500	1,700	1	NA	ND	922		
PW14*	0	NA	NA	21,410	0	NA	NA	159500		
PZ-105	6	190,000	17,000	2,500	6	9,700	1,400	866		
PZ-106	6	120,000	45,000	14,230	6	1,359,000	880,000	232000		
PZ-107	10	11,000	2,600	5,130	10	12,000	590	7.49		
S-3	9	18,240	8,200	6,700	9	2,500	520	19.6		
S-4	9	3,200	820	725	9	870	100	ND		
OFF-SITE	WELLS/LOCATI	ONS	•			<u> </u>				
BR-103	6	400	9.8	ND	6	1	0.45	ND		
BR-104	6	3,100	2	ND	3	9	ND			
BR-105	10	24,000	1,300	1,240	10	310	6	8		
BR-105D	10	10,000	2,300	1,170	10	230	5.9	5.2		
BR-106	10	21,000	9,100	1,640	11	6,300	330	ND		
BR-108	6	1,700	7.7	.59	3	ND	0.0			
BR-112D	6	310	53	22	3	4.3	0.43			
BR-113D	6	490	76	27		2.8				
BR-114	6	521	230	89	6	5	3.2	0.66		
BR-116	5	12	0.0	ND		84				
BR-116D	5	710	94	ND		120				
BR-117D	5	80	23	6		1.9				
BR-118D	5	330	91	70		6.6				
BR-122D	5	650	210	151		ND				
BR-123D	5	860	410	139		4				
BR-126*	0	NA	NA	8,970	0	NA	NA	218		
MW-103	6	82	4.3	ND	6	ND	120	NE		
MW-104	6	180	1.6	4	3	1	ND			
MW-106	10	130,000	14,000	3,600	10	453	46	0.98		
MW-114	6	18	0.33	ND	6	19	14	15.8		
MW-126*	0	NA	NA	63	0	NA	NA	ND		
MW-16	4	360	230		NÃ	NA				

Prepared by: NMB Checked by: JEB

TABLE 4 COMPARISON OF SPRING 2005 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - AUGUST 2005

WELL		SELEC	TED CHLOR	ES SELECTED VO				
	# EVENTS IN	HISTORIC	5-YEAR	JUNE-2005	# EVENTS	HISTORIC	5-YEAR	JUNE-2005
	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT	IN PRIOR 5	MAXIMUM	MEAN	RESULT
					YRS			
NESS-E	6	5,000	430	246	3	700	ND	
NESS-W	6	2,100	240	5	3	89	0.37	
PZ-101	10	27,000	1,300	340	10	6.1	0.77	ND
PZ-102	10	58,000	7,000	1,410	10	10,000	2.2	ND
PZ-103	10	73,000	25,000	2,870	11	44,300	7,200	ND
PZ-104	10	9,100	3,900	2,090	10	40	1.1	ND
QD-1	1	ND	ND	ND			_	
QO-2	13	380	36	ND	10	ND	ND	
QO-2S1	13	27	0.038	ND	7	ND	ND	
QS-4	15	3,400	510	165	11	ND	ND	ND

Note:

- 1) Number of samples and mean reflect 5-year sampling period from June 2000 through November 2004. Historic maximum based on all available results from March 1990 through November 2004
- 2) Chloropyridines represented by: 2-Chloropyridine, 2,6-Dichloropyridine, and 3-Chloropyridine, 4-Chloropyridine, p-Fluoroaniline, and Pyridine.
- 3) Selected VOCs represented by Carbon Tetrachloride, Chloroform, Methylene Chloride, Tetrachloroethene, and Trichloroethene.
- 4) Bold and shade June 2005 exceeds 5-year mean.
- 5) NA = Not analyzed or not applicable

ND = Not detected

BLANK = Not sampled

* - First sampling event for newly installed wells BR-126, MW-126, and PW14.

TABLE 5 SPRING 2005 QUARRY SEEP AND OUTFALL WATER SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION	QD-1	QO-2	QO-2S1	QS-4
DATE	6/16/2005	6/16/2005	6/16/2005	6/16/2005
SAMPLE ID	QD-1	QO-2	QO-2S1	QS-4
VOLATILE ORGANIC COMPOUNDS				 -
BY SW-846 Method 8260/5ML (µg/L)				
1,1,1-Trichloroethane				5 U
1,1,2,2-Tetrachloroethane				5 U
1,1,2-Trichloroethane				5 U
1,1-Dichloroethane				5 U
1,1-Dichloroethene				5 U
1,2-Dichloroethane	_			5 U
1,2-Dichloroethene (total)			_	10 U
1,2-Dichloropropane				5 U
2-Butanone				25 U
2-Hexanone				_25 U
4-Methyl-2-pentanone				25 U
Acetone				25 U
Benzene				5 U
Bromodichloromethane				5 U
Bromoform				5 U
Bromomethane				5 U
Carbon disulfide				5 U
Carbon tetrachloride				5 U
Chlorobenzene				5 U
Chloroethane				5 U
Chloroform				5 U
Chloromethane				5 U
cis-1,3-Dichloropropene				5 U
Dibromochloromethane				5 U
Ethylbenzene				5 U
Methylene chloride				5 U
Styrene				5 U
Tetrachloroethene				5 U
Toluene				5 U
Total Xylenes				15 U
trans-1,3-Dichloropropene		_ '		5 U
Trichloroethene				5 U
Vinyl acetate				25 U
Vinyl chloride		<u>L_</u>		5 U
SELECTED CHLOROPYRIDINES				
BY SW-846 Method 8270C (μg/L)				
2,6-Dichloropyridine	10 U	10 U	10 Ü	35
2-Chloropyridine	10 U	10 U	10 U	130
3-Chloropyridine	10 U	10 U	10 U	10 U
4-Chloropyridine	10 U	10 U	10 U	10 U
p-Fluoroaniline	10 U	10 U	10 U	10 U
Pyridine	24 U	24 U	24 U	24 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 6 EXTRACTION WELL WEEKLY FLOW MEASUREMENTS - DECEMBER 2004 THROUGH MAY 2005

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

	s BR-5A -[Gal:/Week]				PW-11		PW-13 [Gal:/Week]	PW-14 [Gal./Week]	
Dec. '04	an Court of the Co			[Cum/ricon]		Yes Carried to the second	COLINATION		
12/06/04	60,365	52,766	66,800	39,004	21,855	28,875			269,665
12/13/04	60,370	52,863	62,733	33,890	26,996	27,560			264,412
12/20/04	52,026	60,329	58,210	27,070	10,201	24,503			232,339
12/27/04	58,748	76,059	54,347	28,190	13,208	25,272 *	•		255,824
			, ,	.,	-,	,		Total [Gal.]	1,022,240
Jan. '05							 -		
01/03/05	24,549	26,131	14,025	9,705	13,822	12,877			101,109
01/10/05	59,996	36,771	53,068	23,920	29,536	24,381			227,672
01/17/05	64,029	43,966	54,233	23,550	28,652	25,319			239,749
01/24/05	53,658	51,231	49,996	15,112	26,607	23,086			219,690
01/31/05	53,733	34,654	54,168	17,388	30,693	20,817			211,453
								Total [Gal.]	788,220
Feb. '05									
02/07/05	53,127	28,377	55,430	16,050	32,705	22,197			207,886
02/14/05	56,040	32,825	57,269	21,790	33,278	20,559			221,761
02/21/05	63,651	63,384	58,543	18,720	30,409	20,175			254,882
02/28/05	60,723	58,293	57,102	16,930	29,831	19,850			242,729
								Total [Gal.]	927,258
Mar. '05									
03/07/05	59,061	51,004	56,548	15,140 *	30,468	19,639			231,860
03/14/05	56,582	39,802	56,579	12,570	29,747	19,200			214,480
03/21/05	63,571	28,465	55,857	12,230	32,919	18,861			211,903
03/28/05	65,249	43,980	55,402	11,360	32,685	18,551			227,227
_								Total [Gal.]	885,470
Apr. '05					 -				
04/04/05	65,396	64,142	55,025	11,100	31,600	17,931			245,194
04/11/05	69,186	49,258	47,275	11,200	35,689	17,777			230,385
04/18/05	63,345	42,123	48,666	10,080	36,307	17,592			218,113
04/25/05	66,612	51,656	51,656	8,980	36,915 *	20,992			236,811
								Total [Gal.]	930,503
May '05									
05/02/05	67,831	44,990	62,568	9,270	37,800 *	23,341			245,800
05/09/05	61,781	39,937	53,832	2,060	37,800 *	15,415	33,242 *		244,067
05/16/05	54,038	38,527	66,690	8,170	48,954	9,618	67,612 *	19,113	312,722
05/23/05	40,365 *	45,498	71,851	6,150	49,178	6,853	69,299	34,982	324,176
05/30/05	36,648 *	54,970	71,915	4,600	47,196	5,633	65,693	28,382	315,037
								Total [Gal.]	1,441,801
Total C !!									
Total 6 Mo. Removal	1,490,680	1,212,001	1,449,788	414,229	815,051	506,874	235,846	82,477	6,206,945

(Gal.)

Notes:
1) * - Flow rate is estimated due to a meter failure

TABLE 7

MASS REMOVAL SUMMARY PERIOD: DECEMBER 2004 - MAY 2005

ARCH ROCHESTER SPRING 2005 GROUNDWATER MONITORING REPORT

Well	Total Vol. Pumped	Avg. VOC	Avg. PYR.	VOCs Removed	PYR. Removed
	(gallons)	Conc. (ppm)	Conc. (ppm)	(pounds)	(pounds)
BR-5A	1,491,000	0.058	0.22	0.71	2.8
BR-7A	1,212,000	0.073	8	0.73	84
BR-9	1,450,000	0.007	0.15	0.085	1.8
PW-10	414,000	23	119	78	410
PW-11	815,000	0.073	0.8	0.50	5.4
PW-12	507,000	0.321	3.0	1.4	13
PW-13	236,000	0.922	1.7	1.8	3.3
PW-14	82,000	159.5	21.4	109	15
Totals:	6,207,000			192	534

Note: VOC and pyridine concentrations used in this table are an average of the analytical results from the Fall 2004 and Spring 2005 sampling events for each well (except for new wells PW13 & PW14)

Prepared by: NMB Checked by: JEB

TABLE 8 2005/2006 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

RCH ROC	HESTER						2	005 T		20	006
MONITORIN	IG PROGR	AM				SPF	RING	F.A	ALL	SPF	RING
			-			Pyridines	vocs	Pyridines	vocs	Pyridines	- 20/1
	Well	zone _	area .	Frequency/Parameters	Purpose	18		2	<u>\</u>	γď	
OFF-SITE	MW-103	ОВ		annual monitoring, VOCs & PYR	trend monitoring		1				
VELLS	BR-103	BR		annual monitoring, VOCs & PYR	trend monitoring	1	1	١. ا			١.
	MW-125 BR-125	OB		semi-annual monitoring, VOCs & PYR	trend monitoring		l	1 1	1	1	
	MW-104	BR OB		semi-annual monitoring, VOCs & PYR annual monitoring, PYR	trend monitoring trend monitoring	1		l '	'	<u>'</u>	J
	BR-104	BR		annual monitoring, PYR	trend monitoring	Ι'n					ĺ
	BR-105	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	Ιi	1			1	l
	BR-105D	BR deep	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	Ιi	;				İ
	MW-106	OB	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1 1	1 1			1	İ
	BR-106	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	11	1	i !		1	1
	BR-108	BR	AID-HOSP	annual monitoring, PYR	trend monitoring	1	ł				l
	BR-112D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1					
	BR-113D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1		1			İ
	MW-114	ОВ	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	BR-114	BR	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	ļ
	BR-116	BR	PFAUDLER	annual monitoring, PYR	trend monitoring	1		l '			l
	BR-116D	BR deep	PFAUDLER	annual monitoring, PYR	trend monitoring	1					l
	BR-117D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1 1]			1	l
	BR-118D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1 !				1	l
	BR-122D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	11				1	ĺ
	BR-123D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring					1	
	NESS-E NESS-W	BR deep	NESS NESS	annual monitoring, PYR	trend monitoring	1 1				1	
	PZ-101	BR deep BR	McKee Rd	annual monitoring, PYR semi-annual monitoring, VOCs & PYR	trend monitoring perimeter sentinel/trend monitoring		1	1		1	
	PZ-101	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1				İ
	PZ-103	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1 1	1			1	
	PZ-104	BR	ALH	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1			1	
	MW-126	OB	ALH	semi-annual monitoring, VOCs & PYR	trend monitoring	1 1	1	· '		1	.
	BR-126	BR	ALH	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	1	
	MW-16	BR	Gen'l Circuits	annual monitoring, PYR	trend monitoring					1	
ON-SITE	PZ-107	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1			1	
WELLS	PZ-106	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	ļ		1	1
	PZ-105	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	BR-127	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	1	
	BR-3	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	BR-8	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1 1	١	. '	1	l
	BR-9	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	1	
	BR-5A BR-6A	pumping well	ON-SITE ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1 1	1 1	1	1	1	
	BR-7A	pumping well pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring mass removal/trend monitoring		1 1] 1	1	1	
	B-17	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1 1	1	[']	'	ľ	
	B-7	ОВ	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1	1		1	
	S-3	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	11	1 1	•		1	
	S-4	ОВ	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1			1	
	E-1	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1			1	
	E-3	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1	Ι.		1	
	MW-127	ОВ	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	1	
	PW10	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	1	
	PW11	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	1	
	PW12	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1			1	1
	PW13	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	1	ĺ
	PW14	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	1	
UARRY &	QS-4	quarry seep	QUARRY	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1			1	Г
ANAL	QD-1	quarry outfall	DITCH	temporary monitoring	risk evaluation/SPDES Permit	1				1	
	QO-2	quarry outfall	DITCH	semi-annual monitoring, VOCs & PYR	trend monitoring	1					
	QO-2S1	canal at outfall	CANAL	semi-annual monitoring, VOCs & PYR	surface water monitoring	1					L
OTAL S	AMPLES					53	37	12	12	44	

Appendix A Groundwater Field Sampling Data Sheets

FIELD REPORT

REMEDIAL INVESTIGATION SAMPLING ARCH CHEMICAL ROCHESTER, NEW YORK

SPRING 2005 Event

Prepared For:

Harding Lawson Associates 511 Congress Street Portland, Maine 04112-7050

Attention: Mr. Nelson Breton

Prepared By:

SEVERN TRENT LABORATORIES, INC.

Audubon Business Center 10 Hazelwood Drive Amherst, New York 14228-2298

NY5A5762

Written By:

Reviewed By:

Date:

Roger Senf

1.0 INTRODUCTION

This report describes the sampling of the following points:

- Fourty-nine (49) groundwater samples
- One (1) barge canal sample
- Two (2) quarry outfall samples
- One (1) quarry seep/pond sample

These activities were in support of the Phase II Remediation Investigation being conducted at the Arch Chemical facility in Rochester, New York. The samples were collected from June 6 – June 16, 2005 by Severn Trent Laboratories, Inc. (STL) personnel.

2.0 METHODOLOGIES

2.1 Water Level Measurements

Static water levels in all groundwater wells were measured from the top of the well casing/riser with an electronic water level indicator. All well bottoms were sounded with the weighted steel measuring tape. All measurements were recorded to the nearest hundredth of a foot (0.01 feet). The length of the measuring device which contacted the water was cleaned between wells with a deionized water rinse and paper towel wipe. These data are presented on Sampling Summary Table and Field Observation forms.

2.2 Well Purging

Monitoring wells were evacuated prior to sampling employing one of the following methods:

- Purging three (3) times the standing water volume using precleaned or dedicated 1.25" X
 stainless steel bailers, 2" X 5' polyvinyl chloride bailers, peristaltic pump or QED Low-Flow Bladder pumps.
- 2) Evacuated with the low flow/low stress puring technique using either QED Low-Flow Bladder pumps or a variable rate peristaltic pump.

Wells that were purged of three (3) standing volumes were mainly wells located on or very near the Erie Canal and historically purged with this method prior to sampling. The remaining wells were evacuated with a low flow/low stress purging technique. This technique involves the use of a variable flow rate bladder or peristaltic pump. The pumps were employed to purge the monitoring wells at a flow rate such that drawdown of the water column from static conditions is minimal. Field measurements of pH, specific

conductance, temperature, ORP, dissolved oxygen and turbidity are monitored every 3-5 minutes until stabilization of parameters is realized. Once stabilization has occurred, sampling can be conducted. All purged water was collected into 55-gallon drums for disposal at the on-site wastewater treatment facility. Data pertaining to each evacuation are presented on the Sampling Summary Table and field Observation Forms.

2.3 Surface Water Samples

Surface water samples were collected from one (1) location on the Erie Barge Canal, three (3) outfall samples and one (1) Pond Sample. Sample locations were noted on the Field Forms.

3.0 SAMPLING

3.1 Monitoring Wells

All groundwater wells were sampled using precleaned or dedicated 1.25" X 1.25" X 5' stainless steel bailers, perisaltic pumps or bladder (SamplePro) pumps when low flow purging techniques were used. Each bailer was constructed with teflon, bottom-filling check valve and was assembled without glues or welds. New ¼" poly rope was attached to each bailer. The bailer was slowly lowered into the water column, minimizing agitation and devolatilization. Low density polyethylene (LDPE) tubing was used with both the bladder (QED) and the peristaltic pumps. The bladder pumps were decontaminated between sample locations in accordance with the work plan. Personnel exercised care in all aspects of the sampling to ensure the collection of a representative sample An additional sample container was collected from each well in order to facilitate the measurement of field analytical parameters. Data pertaining to sampling are presented on the Sampling Summary Table and the Field Observation Forms.

3.2 Canal Sampling

When possible, samples were collected directly from the canal into appropriate sample containers. Otherwise, samples were collected with the use of a unique, laboratory-cleaned stainless steel bailer. The bailers were immersed just below the surface and removed. Sample was poured directly into the appropriate container. An additional container was collected to facilitate the measurement of field parameters. Additional data pertaining to these samples is presented in the Sampling Summary Table and Field Observation Forms.

3.3 Seep Sampling

Groundwater samples were collected from seeps at the quarry (QS4) located on Buffalo Road. The samples were collected with the use of a laboratory cleaned stainless steel bucket and was then poured directly into the appropriate containers. An additional container was collected to facilitate the measurement of field parameters. Data pertaining to this sampling is presented in the Sampling Summary Table and Field Observation Forms.

4.0 SAMPLE CONTAINERS

Monitoring wells and surface water samples requiring analysis for volatile organics were collected into 40 ml glass vials with teflon septa. Samples for semi-volatile and Pyridine analysis were collected into one (1) liter amber glass bottles with teflon-lined caps. All bottles were purchased new and cleaned (Protocol A, 300 series) from Environmental Supply Services. Each container was labeled with the following information:

- Sample Identification (Well/Point I.D.)
- Date
- Project Number
- Sampler's Initials

5.0 FIELD MEASUREMENTS

On-site field measurements were made of each sample's pH, specific conductance and temperature. All measurements were made in accordance with protocols outlined in Methods for Chemical Analysis of Water and Wastes (EPA – 600/4-79-9020). These data were presented on the Sampling Summary Table and Field Observation Forms.

6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

6.1 Trip Blanks

Trip blanks were collected with each sample shipment requiring volatile organic analysis. Each trip blank consisted of two 40 ml glass vials with teflon septa which were filled with deionized water at the STL laboratory. These blanks were transported to the site, stored with field collected samples and submitted to the STL facility for analysis.

6.2 Equipment Rinse Blank

Equipment rinse blanks were collected as required by the work plan.

7.0 CHAIN OF CUSTODY

Chain of custody was initiated at the time of sample collection and maintained through delivery to the STL facility in Amherst, New York. Copies of these documents are included in the analytical report package.

Sampling S ~y Table SSOCIATES HARDING LAWS JUNE 2005

RI SAMPLING/ROCHESTER NY FACILITY

	(ft)*	(ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond. (umhos)	Temp (°C)	Turb. (NTU)	Other Field Measurer	nents
06/08/2005 1305	6.78	N/A	N/A	06/08/2005	1330	8.50	7610	17.8	8.21	EH(mv)= -181	DO(ppm)= 0.90
Comments: CLEAR A	AMBER										
06/09/2005 1122	13.12	N/A	20.90	06/09/2005	1150	6.95	1484	19.4	12.20	EH(mv)= -45	DO(ppm) = 0.96
Comments: CLEAR											
06/07/2005 1325	6.51	N/A	N/A	06/07/2005	13 50	8.32	13 50	14.6	8.03	EH(mv)= -272	DO(ppm) = 0.10
Comments: CLEAR											
		N/A	N/A	06/07/2005	1515	8.28	657	16.0	107.00	EH(mv)= -266	DO(ppm) = 0.73
										_	
• •	23.04	N/A	N/A	06/08/2005	1505	6.51	2010	13.4	9.39	EH(mv)= -283	DO(ppm) = 0.33
	24 44			04 (00 (2005	4445		117/0	47.0	2.47	504 X 774	DO() 0.1/
• •	24.41	N/A	N/A	06/08/2005	1445	6.58	11740	17.8	2.16	EH(mv)= -3/1	DO(ppm)= 0.16
	27 /0	N / A	NI / A	04 (08 (2005	1720	4 77	2010	15.0	47 10	FU(m) - / 0	DO(===)= 0 4/
• •		N/A	N/A	06/06/2003	1320	0.37	2910	13.9	67.10	En(IIIV)= 48	DO(ppm) = 0.64
		N/A	20 75	04/1//2005	17/5	7 72	1712	17.2	200 00	EU(m/)116	
			27.13	00/14/2003	1343	1.52	1712	17.2	200.00	EII(IIIV)- 110	
			N/A	06/14/2005	1225	7.05	1582	14 6	5.47	FH(my)= -173	DO(ppm)= 0.20
	30.03	11,71	11/11	00, 14, 2003	ILL	7.03	1302	17.0	3.,,	EII(III•7- 175	00(ppii)* 0:20
	31.65	N/A	N/A	06/13/2005	1250	6.87	2460	13.2	2.87	EH(mv)= -314	DO(ppm) = 0.13
Comments: CLEAR				,,							
06/13/2005 1400	13.53	N/A	N/A	06/13/2005	1430	6.69	1780	15.1	7.15	EH(m∨)= -278	DO(ppm)= 0.08
Comments: CLEAR											.,
06/13/2005 1135	27.07	N/A	N/A	06/13/2005	1205	6.58	2870	19.3	10.35	EH(mv)= -16	DO(ppm) = 0.17
Comments: CLEAR											
06/13/2005 1040	36.14	N/A	N/A	06/13/2005	1115	9.36	853	18.3	43.10	EH(mv)= -70	DO(ppm) = 0.18
Comments: SL.TURE	BID										
06/08/2005 1130	49.91	N/A	N/A	06/08/2005	1210	8.13	539	11.6	15.90	EH(mv)= 155	DO(ppm) = 0.99
Comments: CLEAR				•							
06/08/2005 1012	48.98	N/A	N/A	06/08/2005	1105	9.18	1720	13.3	17.80	EH(mv)= -76	DO(ppm) = 2.81
Comments: CLEAR											
06/07/2005 1040	45.10	N/A	N/A	06/07/2005	1125	6.89	2400	13.4	5.28	EH(mv) = -270	DO(ppm) = 0.35
Comments: CLEAR											
	06/09/2005 1122 Comments: CLEAR 06/07/2005 1325 Comments: CLEAR 06/07/2005 1440 Comments: SL.TURI 06/08/2005 1435 Comments: CLEAR 06/08/2005 1420 Comments: CLEAR 06/08/2005 1250 Comments: SL.TURI 06/13/2005 1359 Comments: SL.TURI 06/13/2005 1150 Comments: CLEAR 06/13/2005 1215 Comments: CLEAR 06/13/2005 1215 Comments: CLEAR 06/13/2005 1400 Comments: CLEAR 06/13/2005 1135 Comments: CLEAR 06/13/2005 1130 Comments: CLEAR 06/08/2005 1130 Comments: CLEAR 06/08/2005 1012 Comments: CLEAR	Comments: CLEAR 06/07/2005 1325 6.51 Comments: CLEAR 06/07/2005 1440 9.95 Comments: SL.TURBID 06/08/2005 1435 23.04 Comments: CLEAR 06/08/2005 1420 24.41 Comments: CLEAR 06/08/2005 1250 23.40 Comments: SL.TURBID 06/13/2005 1359 24.50 Comments: SL.TURBID 06/13/2005 1359 24.50 Comments: CLEAR 06/13/2005 1215 31.65 Comments: CLEAR 06/13/2005 1400 13.53 Comments: CLEAR 06/13/2005 1400 13.53 Comments: CLEAR 06/13/2005 1400 36.14 Comments: CLEAR 06/13/2005 1040 36.14 Comments: CLEAR 06/13/2005 1040 36.14 Comments: CLEAR 06/08/2005 1130 49.91 Comments: CLEAR 06/08/2005 1012 48.98 Comments: CLEAR	O6/09/2005 1122 13.12 N/A Comments: CLEAR O6/07/2005 1325 6.51 N/A Comments: CLEAR O6/07/2005 1440 9.95 N/A Comments: SL.TURBID O6/08/2005 1435 23.04 N/A Comments: CLEAR O6/08/2005 1420 24.41 N/A Comments: CLEAR O6/08/2005 1250 23.40 N/A Comments: SL.TURBID O6/13/2005 1359 24.50 N/A Comments: SL.TURBID/ORANGE O6/14/2005 1150 36.63 N/A Comments: CLEAR O6/13/2005 1215 31.65 N/A Comments: CLEAR O6/13/2005 1400 13.53 N/A Comments: CLEAR O6/13/2005 1135 27.07 N/A Comments: CLEAR O6/13/2005 1040 36.14 N/A Comments: SL.TURBID O6/08/2005 1130 49.91 N/A Comments: CLEAR O6/08/2005 1012 48.98 N/A Comments: CLEAR O6/08/2005 1012 48.98 N/A Comments: CLEAR	O6/09/2005 1122 13.12 N/A 20.90 Comments: CLEAR O6/07/2005 1325 6.51 N/A N/A Comments: CLEAR O6/07/2005 1440 9.95 N/A N/A Comments: SL.TURBID O6/08/2005 1435 23.04 N/A N/A Comments: CLEAR O6/08/2005 1420 24.41 N/A N/A Comments: CLEAR O6/08/2005 1250 23.40 N/A N/A Comments: SL.TURBID O6/13/2005 1359 24.50 N/A 29.75 Comments: SL.TURBID/ORANGE O6/14/2005 1150 36.63 N/A N/A Comments: CLEAR O6/13/2005 1215 31.65 N/A N/A Comments: CLEAR O6/13/2005 1400 13.53 N/A N/A Comments: CLEAR O6/13/2005 1135 27.07 N/A N/A Comments: CLEAR O6/13/2005 1040 36.14 N/A N/A Comments: SL.TURBID O6/08/2005 1130 49.91 N/A N/A Comments: CLEAR O6/08/2005 1012 48.98 N/A N/A Comments: CLEAR O6/08/2005 1012 48.98 N/A N/A Comments: CLEAR O6/08/2005 1040 45.10 N/A N/A	06/09/2005 1122 13.12 N/A 20.90 06/09/2005 Comments: CLEAR 06/07/2005 1325 6.51 N/A N/A 06/07/2005 Comments: CLEAR 06/07/2005 1440 9.95 N/A N/A 06/07/2005 Comments: SL.TURBID 06/08/2005 1435 23.04 N/A N/A 06/08/2005 Comments: CLEAR 06/08/2005 1420 24.41 N/A N/A 06/08/2005 Comments: CLEAR 06/08/2005 1250 23.40 N/A N/A 06/08/2005 Comments: SL.TURBID 06/13/2005 1359 24.50 N/A 29.75 06/14/2005 Comments: SL.TURBID/ORANGE 06/14/2005 06/14/2005 06/14/2005 06/14/2005 Comments: CLEAR 06/13/2005 13.53 N/A N/A 06/13/2005 Comments: CLEAR 06/13/2005 13.53 N/A N/A N/A 06/13/2005 <tr< td=""><td>06/09/2005 1122 13.12 N/A 20.90 06/09/2005 1150 Comments: CLEAR 06/07/2005 1325 6.51 N/A N/A 06/07/2005 1350 Comments: CLEAR 06/07/2005 1440 9.95 N/A N/A 06/07/2005 1515 Comments: SL.TURBID 06/08/2005 1435 23.04 N/A N/A 06/08/2005 1505 Comments: CLEAR 06/08/2005 1420 24.41 N/A N/A 06/08/2005 1445 Comments: CLEAR 06/08/2005 1250 23.40 N/A N/A 06/08/2005 1320 Comments: SL.TURBID 06/13/2005 1359 24.50 N/A 29.75 06/14/2005 1345 Comments: SL.TURBID/ORANGE 06/14/2005 1215 31.65 N/A N/A 06/13/2005 1225 Comments: CLEAR 06/13/2005 1215 31.65 N/A N/A 06/13/2005 1250 Comments: CLEAR 06/13/2005 1400 13.53 N/A N/A 06/13/2005 1205 Comments: CLEAR 06</td><td>06/09/2005 1122 13.12 N/A 20.90 06/09/2005 1150 6.95 Comments: CLEAR 06/07/2005 1325 6.51 N/A N/A 06/07/2005 1350 8.32 Comments: CLEAR 06/07/2005 1440 9.95 N/A N/A 06/07/2005 1515 8.28 Comments: SL.TURBID 06/08/2005 1435 23.04 N/A N/A 06/08/2005 1505 6.51 Comments: CLEAR 06/08/2005 1420 24.41 N/A N/A 06/08/2005 1445 6.58 Comments: CLEAR 06/08/2005 1250 23.40 N/A N/A 06/08/2005 1320 6.37 Comments: SL.TURBID 06/13/2005 1359 24.50 N/A 29.75 06/14/2005 1345 7.32 Comments: CLEAR 06/13/2005 1150 36.63 N/A N/A 06/13/2005 1225 7.05 Comments: CLEAR 06/13/2005 1400 13.53 N/A N/A 06/13/2005 1250 6.58 Comments: CLEAR 06/13/2005 1400 36.14 N/A N/A 06/13/2005 1205 6.58 <</td><td>06/09/2005 1122</td><td>06/09/2005 1122</td><td> O6/09/2005 1122 13.12</td><td> O6/09/2005 1122 33.12 N/A 20.90 O6/09/2005 1150 6.95 1484 19.4 12.20 EH(mv)= -45 </td></tr<>	06/09/2005 1122 13.12 N/A 20.90 06/09/2005 1150 Comments: CLEAR 06/07/2005 1325 6.51 N/A N/A 06/07/2005 1350 Comments: CLEAR 06/07/2005 1440 9.95 N/A N/A 06/07/2005 1515 Comments: SL.TURBID 06/08/2005 1435 23.04 N/A N/A 06/08/2005 1505 Comments: CLEAR 06/08/2005 1420 24.41 N/A N/A 06/08/2005 1445 Comments: CLEAR 06/08/2005 1250 23.40 N/A N/A 06/08/2005 1320 Comments: SL.TURBID 06/13/2005 1359 24.50 N/A 29.75 06/14/2005 1345 Comments: SL.TURBID/ORANGE 06/14/2005 1215 31.65 N/A N/A 06/13/2005 1225 Comments: CLEAR 06/13/2005 1215 31.65 N/A N/A 06/13/2005 1250 Comments: CLEAR 06/13/2005 1400 13.53 N/A N/A 06/13/2005 1205 Comments: CLEAR 06	06/09/2005 1122 13.12 N/A 20.90 06/09/2005 1150 6.95 Comments: CLEAR 06/07/2005 1325 6.51 N/A N/A 06/07/2005 1350 8.32 Comments: CLEAR 06/07/2005 1440 9.95 N/A N/A 06/07/2005 1515 8.28 Comments: SL.TURBID 06/08/2005 1435 23.04 N/A N/A 06/08/2005 1505 6.51 Comments: CLEAR 06/08/2005 1420 24.41 N/A N/A 06/08/2005 1445 6.58 Comments: CLEAR 06/08/2005 1250 23.40 N/A N/A 06/08/2005 1320 6.37 Comments: SL.TURBID 06/13/2005 1359 24.50 N/A 29.75 06/14/2005 1345 7.32 Comments: CLEAR 06/13/2005 1150 36.63 N/A N/A 06/13/2005 1225 7.05 Comments: CLEAR 06/13/2005 1400 13.53 N/A N/A 06/13/2005 1250 6.58 Comments: CLEAR 06/13/2005 1400 36.14 N/A N/A 06/13/2005 1205 6.58 <	06/09/2005 1122	06/09/2005 1122	O6/09/2005 1122 13.12	O6/09/2005 1122 33.12 N/A 20.90 O6/09/2005 1150 6.95 1484 19.4 12.20 EH(mv)= -45

SG - Specific Gravity

Page:

Rept: ANO821

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Sampling Sir ary Table HARDING LAW SSOCIATES JUNE 2005 RI SAMPLING/ROCHESTER NY FACILITY Page:

Rept: AN0821

Sample Point	Water Level Date Time	Water Level (ft)*	Water Elevation (ft)**	Bottom Of Well (ft)*	Field Measur Date	ements Time	pH (STD) (Units)	Spec. Cond. (umhos)	Temp (°C)	Turb. (NTU)	Other Field Measure	nents
 BR - 123D		45.70		 N/A	06/07/2005		7.03	 1690	12.2	17.30	EH(mv)= -323	DO(ppm)= 0.33
SK- 1230	Comments: CLEAR	43.70	N/A	N/A	06/07/2003	1230	7.03	1090	12.2	17.30	En(IIIV)323	00(ppii)= 0.33
R-126	06/15/2005 1025	7.88	N/A	45.45	06/15/2005	1100	7.12	1930	14.1	49.90	EH(mv)= -90	DO(ppm)= 0.23
	Comments: CLEAR		,,,,		00, 10, 2			.,,	,		,	
BR - 127	06/07/2005 1140	4.29	N/A	50.63	06/07/2005	1210	7.96	3182	16.1	5.19	EH(mv)= -161	DO(ppm) = 0.95
	Comments: CLEAR	BLACK SPE	CKS								· ·	
3R-3	06/07/2005 1220	9.03	N/A	23.25	06/07/2005	1245	7.16	15410	14.5	10.10	EH(m∨)= -87	DO(ppm) = 0.93
	Comments: CLEAR	YELLOW TI	NT									
BR-5A	06/09/2005 1250	29.41	N/A	N/A	06/09/2005	1253	7.87	1434	19.8	8.60	EH(mv)= -71	
	Comments: CLEAR	3.84 G.P	.м.									
BR-6A	06/07/2005 1302	10.32	N/A	N/A	06/07/2005	1325	8.13	3100	19.0	3.19	EH(mv)= -133	DO(ppm) = 1.40
	Comments: CLEAR	BLACK TIN	Т									
R-7A	06/09/2005 1205	20.33	N/A	N/A	06/09/2005	1209	7.13	2763	18.2	33.20	EH(mv)= -148	
	Comments: SL.TUR	BID GREY										
BR-8	06/09/2005 1037	8.97	N/A	31.74	06/09/2005	1100	7.43	3110	17.3	17.70	EH(mv)= -143	DO(ppm) = 0.95
	Comments: CLEAR											
R-9	06/09/2005 1230	31.87	N/A	N/A	06/09/2005	1233	7.42	2645	20.8	271.00	EH(m∨)= -104	
	Comments: TURBID	ORANGE/	6.57 G.P.M									
-1	06/08/2005 1148	1.87	N/A	N/A	06/08/2005	1210	8.17	10040	20.4	11.30	EH(mv)= -63	DO(ppm) = 0.90
	Comments: CLEAR	BLACK TIN	Т									
-3	06/07/2005 1040	8.98	N/A	12.05	06/08/2005	1022	7.11	2638	15.6	5.75	EH(mv)= 17	DO(ppm)= 00000
	Comments: CLEAR											
IW-103	06/07/2005 1245	1.49	N/A	N/A	06/07/2005	1320	7.22	603	19.0	5.97	EH(mv)= -286	DO(ppm) = 0.30
	Comments: CLEAR											
IW-104	06/07/2005 1420	7.95	N/A	N/A	06/07/2005	1530	6.82	1220	12.8	147.00	EH(mv)= -243	DO(ppm) = 0.36
	Comments: SL.TUR	BID										
IW-106	06/08/2005 1330	9.81	N/A	N/A	06/08/2005	1400	6.51	2610	11.5	54.00	EH(mv)= 31	DO(ppm) = 0.43
	Comments: SL.TUR											
IW-114	06/13/2005 1320	10.72	N/A	N/A	06/13/2005	13 50	7.01	1890	16.7	8.32	EH(mv)= -237	DO(ppm)= 1.74
	Comments: CLEAR											
IW-126	06/15/2005 1115	5.58	N/A	13.40	06/15/2005	1145	7.07	1720	15.8	34.30	EH(mv)= 4	DO(ppm)= 2.37
	Comments: CLEAR											

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Sampling Summary Table
HARDING LAW SSOCIATES
JUNE 2005

Page: 3 Rept: AN0821

RI SAMPLING/ROCHESTER NY FACILITY

Sample	—₩ater Level—	Water	Water	Bottom	Field Measur	ements	рН	Spec.				
Point	Date Time	Level	Elevation	Of Well	Date	Time	(STD)	Cond.	Temp	Turb.	Other Field Wassers	
		(ft)*	(ft)** 	(ft)* 			(Units) 	(umhos) ————	(°C)	(NTU)	Other Field Measurer	ments
MW-127	06/07/2005 1100	4.85	N/A	11.25	06/07/2005	1130	7.69	1935	16.2	1.13	EH(mv)= 20	DO(ppm) = 0.92
NESS-E	Comments: CLEAR 06/15/2005 1305	18.80	N/A	N/A	06/15/2005	1335	6.47	3700	16.8	33.60	EH(mv)= -2	DO(ppm)= 0.32
NE33-E	Comments: CLEAR	10.00	N/A	N/A	00/13/2003	לכנו	0.47	3700	10.0	33.00	En(IIIV)Z	υσ(ppii)- 0.32
NESS-W	06/15/2005 1210	32.20	N/A	N/A	06/15/2005	1240	6.86	2670	18.6	20.60	EH(mv)= -72	DO(ppm)= 0.28
	Comments: CLEAR											• • •
PW-10	06/09/2005 1305	0.00	N/A	N/A	06/09/2005	1308	8.22	7725	22.4	19.50	EH(m∨)= -140	
	Comments: CLEAR	AMBER/COU	LD NOT ACCE	SS MATERIA	L HOPPER ON WE	LL						
PW-11	06/09/2005 1030	28.13	N/A	N/A	06/09/2005	1032	8.40	5045	19.2	12.30	EH(mv)= -112	
	Comments: CLEAR											
PW-12(BR-101)	06/09/2005 1240	7.32	N/A	N/A	06/09/2005	1242	7.48	4612	33.5	15.72	EH(m∨)= -200	
	Comments: YELLOW	TINT CLE	AR									
PW-13	06/09/2005 1215	27.66	N/A	N/A	06/09/2005	1218	7.62	2043	19.1	7.84	EH(mv)= -175	
	Comments: CLEAR											
PW-14	06/09/2005 1315	34.03	N/A	N/A	06/09/2005	1318	8.54	4398	17.4	25.50	EH(m∨)= -157	
	Comments: YELLOW	TINT										
PZ-101	06/13/2005 1122	12.88	N/A	21.69	06/13/2005	1145	7.01	3882	20.2	2.69	EH(m∨)= -36	DO(ppm) = 0.96
	Comments: CLEAR											
PZ-102	06/13/2005 1216	12.25	N/A	32.60	06/13/2005	1240	7.33	3910	16.3	0.89	EH(mv)= -44	DO(ppm) = 0.87
	Comments: CLEAR											
PZ-103	06/13/2005 1302	12.44	N/A	32.52	06/13/2005	1325	7.29	3360	16.6	1.65	EH(mv)= -166	DO(ppm)= 1.42
	Comments: CLEAR											
PZ-104	06/13/2005 1028	12.83	N/A	23.13	06/13/2005	1050	6.99	1920	15.2	1.97	EH(mv)= -93	DO(ppm) = 0.95
	Comments: CLEAR											
PZ-104	06/13/2005 1028	12.83	N/A	23.13	06/13/2005	1052	7.01	1920	15.2	1.94	EH(mv)= -94	DO(ppm) = 0.93
	Comments: CLEAR/											
PZ-105	06/07/2005 1338	8.87	N/A	32.86	06/07/2005	1400	7.90	1247	18.4	90.20	EH(mv)= -170	DO(ppm) = 0.90
40/	Comments: SL.TURI					4055			47.4	45.46		
PZ-106	06/08/2005 1227	14.91	N/A	27.90	06/08/2005	1250	6.75	4110	17.1	12.10	EH(mv)= -173	DO(ppm)= 0.90
D7 407	Comments: CLEAR '			27.00	0/ 107 12005	4//0	7.7/	7/75	47 /	0.07	FW4	
PZ-107	06/07/2005 1419	6.73	N/A	27.90	06/07/2005	1440	7.36	3675	13.4	0.97	EH(mv)= -122	DO(ppm)= 0.90
	Comments: CLEAR											

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Sampling SI ary Table
HARDING LAW SSOCIATES
JUNE 2005

Page:

Rept: AN0821

RI SAMPLING/ROCHESTER NY FACILITY

Sample	—Water Level—	Water	Water	Bottom	Field Measu	rements	рН	Spec.			
Point	Date Time	Level (ft)*	Elevation (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond. (umhos)	Temp (°C)	Turb. (NTU)	Other Field Measurements
QD - 1	06/16/2005 1230	0.00	N/A	N/A	06/16/2005	1235	7.44	1838	17.5	N/A	EH(mv)= 86
QO-2	Comments: CLEAR 06/16/2005 1300	0.00	N/A	N/A	06/16/2005	1305	7.98	1713	18.4	N/A	EH(mv)= 86
QO-2S1	Comments: CLEAR 06/16/2005 1315	0.00	N/A	N/A	06/16/2005	1320	7.92	492	23.2	N/A	EH(my)= 81
	Comments: CLEAR		·	•	, .					ŕ	• /
QS-4	06/16/2005 1205 Comments: CLEAR	0.00	N/A	N/A	06/16/2005	1210	7.40	1656	14.3	N/A	EH(mv)= 102
S-3	06/08/2005 1037 Comments: CLEAR	2.56	N/A	N/A	06/08/2005	1100	7.53	3062	16.5	3.32	EH(mv)= -39 DO(ppm)= 0.93
S-4	06/08/2005 1110	0.72	N/A	N/A	06/08/2005	1135	8.07	4222	16.7	7.57	EH(mv)= -45 $DO(ppm)= 0.90$
	Comments: CLEAR										

SG - Specific Gravity

EH - Redox

DO - Dissolved Oxygen

^{*} From Top of Riser

^{**} Elevation Above Sea Level

Groundwater Flevation Report HARDING ON ASSOC. JUN. 2005

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
B-1	06/06/2005	1248	0.00	9.44	N/A	NO NAPL
B-10	06/06/2005	1210	0.00	6.92	N/A	NO NAPL
B-11	06/06/2005	1154	0.00	3.93	N/A	
B-13	06/06/2005	1334	0.00	N/A	N/A	DRY AT 12.80
B-14	06/06/2005	1338	0.00	7.39	N/A	
B-15	06/06/2005	1339	0.00	3.67	N/A	
B-16	06/06/2005	1341	0.00	4.18	N/A	
B-17	06/06/2005	1146	0.00	6.73	N/A	NO NAPL
B-2	06/06/2005	1246	0.00	10.32	N/A	NO NAPL
B-3	06/06/2005	1251	0.00	10.28	N/A	NO NAPL
B-4	06/06/2005	1305	0.00	11.90	N/A	NO NAPL
B-5	06/06/2005	1310	0.00	8.97	N/A	NO NAPL
B-7	06/06/2005	1316	0.00	13.14	N/A	NO NAPL
B-8	06/06/2005	1219	0.00	7.54	N/A	NO NAPL
B-9	06/06/2005	0	0.00	N/A	N/A	BROKEN AT SURFACE AND BURIED UNDER ROCKS
BR-1	06/06/2005	1120	0.00	8.53	N/A	
BR-102	06/06/2005	1254	0.00	21.92	N/A	NO NAPL
BR-103	06/06/2005	1420	0.00	6.27	N/A	
BR-104	06/06/2005	1215	0.00	9.95	N/A	OBSTRUCTION AT 20FT
BR-105	06/06/2005	1155	0.00	22.99	N/A	
BR-105D	06/06/2005	1150	0.00	25.18	N/A	
BR-106	06/06/2005	1125	0.00	23.44	N/A	
BR-107	06/06/2005	0	0.00	N/A	N/A	DESTROYED
BR-108	06/06/2005	1140	0.00	24.62	N/A	
BR-111	06/06/2005	1235	0.00	28.98	N/A	
BR-111D	06/06/2005	1240	0.00	29.11	N/A	
BR-112A	06/06/2005	1235	0.00	27.66	N/A	
BR-112D	06/06/2005	1230	0.00	36.61	N/A	
BR-113	06/06/2005	1220	0.00	31.75	N/A	
BR-113D	06/06/2005	1225	0.00	31.65	N/A	
BR-114	06/06/2005	1440	0.00	13.70	N/A	
BR-116	06/06/2005	1400	0.00	26.94	N/A	
BR-116D	06/06/2005	1404	0.00	36.11	N/A	
BR-117	06/06/2005	1320	0.00	31.15	N/A	
					_	

Groundwater Flevation Report HARDING ON ASSOC. JUNE 2005

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
BR-117D	06/06/2005	1325	0.00	50.06	N/A	
BR-118	06/06/2005	1335	0.00	37.22	N/A	
BR-118D	06/06/2005	1330	0.00	49.01	N/A	
BR-119D	06/06/2005	1340	0.00	67.95	N/A	
BR-120D	06/06/2005	1305	0.00	56.23	N/A	
BR-121D	06/06/2005	1315	0.00	54.89	N/A	
BR-122D	06/06/2005	1350	0.00	44.80	N/A	
BR-123D	06/06/2005	1345	0.00	45.63	N/A	
BR-124D	06/06/2005	1343	0.00	31.78	N/A	
BR-126	06/06/2005	1025	0.00	7.88	N/A	
BR-127	06/06/2005	1235	0.00	4.29	N/A	NO NAPL
BR-2	06/06/2005		0.00	7.60	•	NO NAPL
BR-2A	06/06/2005		0.00	8.61		NO NAPL
BR-2D	06/06/2005		0.00	0.06		NO NAPL
BR-3	06/06/2005		0.00	10.36	N/A	
BR-3D	06/06/2005		0.00	64.79	-	NO NAPL
BR-4	06/06/2005		0.00	7.74	•	NO NAPL
BR-5	06/06/2005		0.00	16.31		NO NAPL
BR-5A	06/06/2005		0.00	32.22	-	6.20=GPM FLOW RATE
BR-6	06/06/2005		0.00	13.43		NO NAPL
BR-6A	06/06/2005	1215	0.00	10.19	N/A	
BR-7	06/06/2005	1323	0.00	29.56	N/A	
BR-7A	06/06/2005	1322	0.00	20.30	N/A	NO NAPL
BR-8	06/06/2005	1313	0.00	8.83		NO NAPL
BR-9	06/06/2005	1255	0.00	33.08	N/A	6.51 GPM=FLOW RATE
C-1	06/06/2005	0	0.00	N/A	N/A	DESTROYED
C-2A	06/06/2005	1141	0.00	7.64		NO NAPL
C-3	06/06/2005		0.00	N/A		BROKE AT GROUND SURFACE OBSTRUCTION AT 4.49FT
C-4	06/06/2005	0	0.00	N/A	N/A	BUILDING IN THIS AREA/WELL NO LONGER EXISTS
C-5	06/06/2005	1203	0.00	8.22	N/A	NO NAPL
E-1	06/06/2005	1152	0.00	2.05	N/A	
E-2	06/06/2005	1148	0.00	5.82	N/A	NO NAPL
E-3	06/06/2005		0.00	8.36		NO NAPL
E-4	06/06/2005	1125	0.00	N/A	N/A	OBSTRUCTION AT 2.83FT

Groundwater F¹evation Report HARDING (ON ASSOC. JUNE 2005

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
E-5	06/06/2005	1122	0.00	6.90	N/A	NO NAPL
EC-1	06/06/2005		0.00	18.26	N/A	
EC-2	06/06/2005	1227	0.00	N/A	N/A	DRY AT 12.69
ERIE CANAL	06/06/2005	1255	0.00	33.30	N/A	
MW-103	06/06/2005	1425	0.00	1.75	N/A	
MW-104	06/06/2005	1210	0.00	8.58	N/A	
MW-105	06/06/2005	1157	0.00	N/A	N/A	DRY AT 18.90
MW-106	06/06/2005	1130	0.00	9.70	N/A	
MW-107	06/06/2005	0	0.00	N/A	N/A	DESTROYED
MW-108	06/06/2005	1135	0.00	13.43	N/A	
MW-114	06/06/2005	1435	0.00	10.93	N/A	
MW-126	06/06/2005		0.00	5.58	N/A	
MW-127	06/06/2005	1234	0.00	4.87	N/A	NO NAPL
MW-16	06/06/2005	1415	0.00	10.96	N/A	
MW-2	06/06/2005		0.00	N/A		NOT FOUND
MW-3	06/06/2005		0.00	6.21	N/A	
MW-G6	06/06/2005	1055	0.00	4.91	N/A	
MW-G7	06/06/2005	1100	0.00	4.95	N/A	
MW-G8	06/06/2005	1105	0.00	7.57	N/A	
MW-G9	06/06/2005	1110	0.00	9.59	N/A	
N-1	06/06/2005		0.00	N/A	N/A	DAMAGED CASING/BAILER STUCK IN WELL AT 3.04FT
N-2	06/06/2005		0.00	6.49	N/A	
N-3	06/06/2005	1115	0.00	8.07	N/A	NO NAPL
NESS-E	06/06/2005		0.00	19.10	N/A	
NESS-W	06/06/2005		0.00	31.99	N/A	
PW-10	06/06/2005		0.00	N/A	N/A	INACCESSIBLE
PW-11	06/06/2005	1314	0.00	20.02	N/A	
PW-12 (BR-101)	06/06/2005	1134	0.00	7.25	N/A	0.00 G.P.M.
PW-13	06/06/2005	1327	0.00	27.06	N/A	NO NAPL
PW-14	06/06/2005	1157	0.00	17.64	N/A	
PZ-101	06/06/2005	1115	0.00	12.57	N/A	
PZ-102	06/06/2005		0.00	12.15	N/A	
PZ-103	06/06/2005		0.00	11.16	N/A	
PZ-104	06/06/2005	1336	0.00	12.71	N/A	

Groundwater Flevation Report
HARDING ON ASSOC.
JUNE 2005

Sample Point	Date	Time	Casing Elevation	Depth to Water	GW Elv.	Comments
PZ-105	06/06/2005	1222	0.00	8.71	N/A	NO NAPL
PZ-106	06/06/2005	1156	0.00	13.49	N/A	NO NAPL
PZ-107	06/06/2005	1208	0.00	6.71	N/A	NO NAPL
S-1	06/06/2005	1221	0.00	4.22	N/A	NO NAPL
S-2	06/06/2005	1217	0.00	3.36	N/A	
S-3	06/06/2005	1206	0.00	2.67	N/A	
S-4	06/06/2005	1216	0.00	0.77	N/A	
W-1	06/06/2005	1247	0.00	N/A	N/A	. UNABLE TO OBTAIN MEASUREMENT/OBSTRUCTION
W-2	06/06/2005	1243	0.00	11.49	N/A	NO NAPL
W-3	06/06/2005	1303	0.00	4.22	N/A	NO NAPL
W-4	06/06/2005	1307	0.00	4.66	N/A	NO NAPL
W-5	06/06/2005	1324	0.00	6.46	N/A	NO NAPL
W-6	06/06/2005	1320	0.00	9.19	N/A	

Facility: ARCH CHEMICAL	Sample Point ID: B-17
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-8-05 / /3c5	Cond of seal: (*) Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/% LEL/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm _ O / O
PURGE INFORMATION:	
Date / Time Initiated: 6-8-05 / 1310	Date / Time Completed: 6-8-6-1/1330
Surf. Meas. Pt: () Prot. Casing (大Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Total Depth, Feet:	Method of Well Purge: PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: (Ý) / N
Total Volume Purged, Gal:	Purged To Dryness Y IN Anti-
Purge Observations:	Start Clus Finish clear
PURGE DATA: (if applicable)	

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1315	ML/AN 100	6.80	_	17.1	7.81	7241	23.7	-165	1.09
1320		1		18.2	8.09	7531	17.2	-174	1.00
1325				17.9	8.32	7600	10.2	-179	.95
1330	V	V		17.8	8,50	7610	8.21	-181	.90

SAMPLED AT 1335/6-8-05 M Low

PAGE 1 OF 2

Field Form Revision 0 03/14/02

SAMPLING INFORMATION:				POINT ID) 		
Date/Time				Water Level @ Sampling, Feet:			
Method of S	ampling:	PERISTALTIC	PUMP	Dedicated: Y / N			
Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
				 -	· ·		
		-		 			
INSTRUME	NT CHECK D	ATA:		<u> </u>	<u> </u>		
			= NTU	N	NTU std. =	NTU	
Solutions:	0114 40 5						
-		4.0 std.=				0.0 std. =	
						umhos/cm=	_
		2					
GENERAL	INFORMATIO	ON:					
Weather cor	nditions @ tim	e of sampling:					
Sample Cha	racteristics:						
COMMENT	S AND OBSE	ERVATIONS:					
						·	
							
_	sampling pro	cedures were ir	n accordance w	rith all appli	icable EPA, Sta	te and Site-Specific	
Date:	protocals. Date: / / By:				Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: B-7
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-9-05 1122	Cond of seal: (**Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (✗) Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm 6 / 0
PURGE INFORMATION:	
Date / Time Initiated: 6-9-05 / 1125	Date / Time Completed: 6-9-05 / 1150
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: / 3.12	Elevation. G/W MSL:
Total Depth, Feet: 20.90	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: YN
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations:	Start Blaw Finish Clea-
DUDGE DATA: (if applicable)	

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
[130	100 1450		187	7.55	1559	147.0	-78	1.32
ادفر) ا			19.0	7.09	1499	31.4	_40	1.15
1140	14.61		19.3	7.00	1484	257	-42	1.00
11435			19.4	697	1483	16.9	= 44	0.98
1150	14169		124	6.95	1484	12.2	- 45	0.95

SAMPLED AT 1185/6-9.00 PAGE 1 OF 2

Field Form Revision 0 03/14/02

SAMPLING INFO			POINT ID	·			
Date/Time		1 .		Water Level @ Sampling, Feet:			
Method of Sampling: PERISTALTIC PUMP			PUMP	Dedicated: Y / N			
Multi-phased/ layer	red: ()	Yes	() No	If YES:	() light	() heavy	
SAMPLING DATA	λ:						
II I	emp. °C) (s	pH std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUMENT CH	IECK DATA		 _		 _		
Turbidity Serial #:NTU std. =NTUNTU std. =NTU Solutions: CHA-48-E							
pH Serial #: Solutions: 4-504					-	10.0 std. =	
Conductivity Seria						umhos/cm=	
Solutions:	3312						
GENERAL INFOR	RMATION:						
Weather conditions	s @ time of s	ampling:					
Sample Characteri	stics:						
COMMENTS AND	OBSERVA	TIONS:					
							
							
I certify that sampl	ing procedur	es were in	accordance wi	th all applic	cable EPA, Sta	ate and Site-Speci	fic
Date: /					Company:	STL _	_

Facility:	Facility: ARCH CHEMICAL			Sample Point ID: BR-103						
Pers	d Personnel: R.SENF/P.LITTLE			Sampl	e Matrix:	GW				
моиіто	RTING WELL I	NSPECTION:								
Date/Time/6-07-05 1 /325				Cond	of seal: ∭Good ()Non	l () Cracked e () Buried		%		
Prot. Cas	ing/riser height <u>:</u>			_ Cond	Cond of prot. Casing/riser: () Unlocked () Good () Loose					
If prot.cas	sing; depth to ri	ser below:				() Damagec	1			
Gas Mete	r (Calibration/ R	teading):	% Gas:		% LEL					
Vol. Orga	nic Meter (Calib	ration/Reading):		Volatil	les (ppm) <i>O</i>	10	-			
PURGE	NFORMATION	1:								
Date / Tin	ne Initiated: 🥥	07-05/	1335	Date /	Date / Time Completed: 6-07-05/1350					
		asing		Riser Diameter, Inches: 4.6						
Initial Wa	ter Level, Feet:	6.51		Elevation. G/W MSL:				DUMD		
Tota	l Depth, Feet:			BLADDER P Method of Well Purge: PERISTALTI						
One (1) R	iser Volume, Ga	al:		_ Dedica	ated:	YN				
Total Vol	ume Purged, Ga	ıl:		Purge	d To Dryness	YN				
Purge Ob	servations:	Low Fo	10W	Start	CLEGE	Finish	CCEAR			
PURGE	DATA: (if appl	icable)								
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO		
1340	FLOW WC 200 665	Volume	, ,	8,23	1340	8.97	-266	0,12		
1345	4,65			8,33	1350	8,11	-269			
1350	4,65			8.32	1350	8,03	-272			

	(gpm/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
1340	FLOW WC 200 665		14.9	8,23	1340	8.97	-266	0,12
1345	1 , \		14.8	8,33	1350	8,11	-269	0,13
1350	6.65		14.6	8.32	1350	8.03	-272	0,10
_								
						_		

SAMPLED AT 1350 /6-07-05 PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID	BR-	103	
Date/Time (6-07-05	5 1 %	350	Water Level @ Sampling, Feet:			6.65
Method of S	ampling:	PERISTALTIC	DEN PUMP PUMP		_Dedicated:	(T)N	
Multi-phased	d/ layered:	()Yes	₩ No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUME	NT CHECK D	ATA:					
Turbidity Se Solutions:		NTU std.	=NTU	N	ITU std. =	_NTU	
	4-5045 7-501		7.	0 std.=	1 -	0.0 std. =	
					_ _	umhos/cm=	=
GENERAL	INFORMATIO	N:					
Weather cor	nditions @ time	e of sampling:	SUNNY,	854			
Sample Cha	racteristics:	CLEAR					
COMMENT	S AND OBSE	RVATIONS:					
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.							
Date:	610705	Ву:	21		_ Company:	STL	

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: BR-104
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6 - 0 7 - 05 1 1440	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	() Dumagea
Gas Meter (Calibration/ Reading): % Gas:	% LEL /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O / O
PURGE INFORMATION:	
Date / Time Initiated: 6-07-05 / 1445 Surf. Meas. Pt: () Prot. Casing Riser	Date / Time Completed: 6-07-05/15/5
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 9,95	Elevation. G/W MSL:
Total Depth, Feet:	BLADDER PUMP Method of Well Purge: PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y
Purge Observations: <u>Low Fcow</u>	Start <u>Tuesio</u> Finish <u>Tuesis</u>
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

_	 	

SAMPLED AT

(gpm/htz)

wl

10.00

10,00

FLOW

1500

1505

1510

1515

Volume

(std units)

8.16

8.24

(C)

16.2

16.0

(Umhos/cm)

640

657

ORP

-252

-258

-26/

-266

DO

0,79

0,72

0.75

0,73

(NTU)

137

114

111

107

SAMPLING	INFORMATIO	DN:		POINT ID	BR-	104	
Date/Time	6-07-0	DJ 1.	1520	Water Lev	rel @ Sampling,	Feet:	10,00
Method of S	ampling:	PERISTALTIC	PUMP /	044P	_Dedicated:	(Y)N	
Multi-phased	d/ layered:	()Yes	No	If YES:	() light	() heavy	
SAMPLING	DATA:						,
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
			<u> </u>				
INSTRUME	NT CHECK D	ATA:					
Turbidity Se	rial #:	NTU std.	=NTU	N	ITU std. =	NTU	
Solutions:							
pH Serial #:		4.0 std.=	7.	0 std.=	10).0 std. =	_
Solutions:	4-5045 7-501	5			-		
Conductivity	y Serial #:		u	ımhos/cm=		umhos/cm	=
Solutions:	3312	<u> </u>			_		
GENERAL	INFORMATIO	N:					
Weather cor	nditions @ time	of sampling:	Suary,	95°F			
		SL. TUR					
COMMENT	S AND OBSE	RVATIONS:					
			<u> </u>				
I certify that protocals.	sampling proc	edures were in	accordance w	ith all appli	cable EPA, State	e and Site-Spec	ific
Date:	6 107105	_ Ву:	Q/	<u> </u>	Company:	STL	
			PAGE 2 OF 2	2			

Facility: ARCH CHEMICAL	Sample Point ID: BY-105					
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW					
MONITORTING WELL INSPECTION: Date/Time (2 - 8 - 05 1435						
Date/Time(0 - 8 - 05	Cond of seal: (Good () Cracked % () None () Buried					
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked († Good () Loose () Flush Mount () Damaged					
If prot.casing; depth to riser below:						
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/					
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm / /					
PURGE INFORMATION:						
Date / Time Initiated: 6.8.05 / 1440	Date / Time Completed: 6.8.05 / 1.505					
Surf. Meas. Pt: () Prot. Casing (Riser	Riser Diameter, Inches:					
Initial Water Level, Feet: 23,04	Elevation. G/W MSL: BLADDER PUMP					
Total Depth, Feet:						
One (1) Riser Volume, Gal:	_ Dedicated: Y / N					
Total Volume Purged, Gal:	Purged To Dryness Y / (N)					
Purge Observations: Low How Sampling	Start STURBID Finish CLEAR					
PURGE DATA: (if applicable)	, 					
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)	pH Conduct Turb. Other Other (std units) (Umhos/cm) (NTU) ORP DO					
1450 380m (2305)4.05	6.50 2000 23.7 -331 2.07					
1455 380mL 13.13	6,58 2000 16,4 -297 0.28					

Time	(gpm/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP _	DO
1450	380ml 2305		14.05	6.50	2000	23,7	-331	2,07
1455	380mL		13.13	6,58	2000	16,4	-297	0.28
120C) 300ml		13.42	6.58	2000	118	-287	0.32
1505	350ml		13.41	651	2010	9.39	-283	0.33
					,			

SAMPLED AT

Damples of 1510 or 6.8.05

PAGE 1 OF 2

Field Form

Revision 0 03/14/02

SAMPLING	INFORMATIO	:NC		POINT ID		
Date/Time				Water Leve	el @ Sampling,	Feet:
Method of S	ampling:	PERISTALTIC PUMP		Dedicated:		Y / N
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy
SAMPLING	DATA:					
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
				<u> </u>		
INSTRUME	NT CHECK D	ATA:				
Turbidity Se	rial #:	NTU std.	=NTU	N	TU std. =	_NTU
Solutions:	CHA-48-E					
		_ 4.0 std.≍				0.0 std. =
		5				
		2				umhos/cm=
	INFORMATIC				-	
						,
		e of sampling:				
Sample Cha	racteristics:					
COMMENT	S AND OBSE	RVATIONS:				
	_					
				-		
I certify that protocals.	sampling pro	cedures were ir	n accordance w	ith all applic	cable EPA, Stat	e and Site-Specific
Date:	· 1 1	By:			Company:	STL

Facility:	acility: ARCH CHEMICAL				Sample Point ID: BR - 1050					
F Pers	sonnel:	R.SENF/P.LITTL	E	Sampl	e Matrix:	GW				
моніто	RTING WELL I	NSPECTION:								
Date/Time	Date/Time 6 8 05 1 14 20				of seal: () Good () Non	l () Cracked e () Buried		<u> </u>		
Prot. Casing/riser height:				Cond	of prot. Casing/i	() Loose	()Flush	Mount		
If prot.cas	sing; depth to ri	ser below:				() Damaged		-		
Gas Mete	r (Calibration/ R	teading):	% Gas:		% LEL			-		
Vol. Orga	nic Meter (Calib	ration/Reading):		Volatil	es (ppm)	1	_			
PURGE INFORMATION:										
Date / Tin	ne Initiated:	-8-05/14	122	Date / Time Completed: 6.8.05 //						
Surf. Mea	s. Pt: () Prot. C	asing	(/) Riser	Riser Diameter, Inches:						
Initial Wa	ter Level, Feet:	24.4	1	Elevat	ion. G/W MSL:		BLADDE	D DI IMP		
\Tota	l Depth, Feet:									
One (1) R	iser Volume, Ga	al:		Dedica	ated:	YIN				
Total Vol	ume Purged, Ga	al:	^	Purged To Dryness Y N						
Purge Ob	servations:	(on How	Compley	Start 、	SLTUERID	Finish	CLEAR	-		
	DATA: (if appl									
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO		
1430	340ml 24,60	<u>_</u>	14.59	6.62	11490	2.70	-354	0.33		
1435	340mL		14.56	6.59	11640	2.61	-350	0.15		
1440	340ml		17.62	6.61	11740	2.51	-368	0.27		
1445	340m1		17.81	6,58	11740	2.16	-37/	0.16		
	:				_					

SAMPLED AT

PAGE 1 OF 2

Sampled of 1450 on 6.8.05 Field Form (Q)

Revision 0 03/14/02

SAMPLING	INFORMATI	ON:		POINT ID			
Date/Time				Water Lev	Feet:		
Method of Sa	ampling:	PERISTALTIC	PUMP	Dedicated:		Y / N	
Multi-phased	/ layered:	() Yes () No		If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
		-		 			
INSTRUME	NT CHECK D	DATA:	<u> </u>				
			=NTU		NTU std. =	_NTU	
Solutions:	CHA-48-E				-		
		4.0 std.=				0.0 std. =	
Conductivity	Serial #:			umhos/cm=	<u> </u>	umhos/cm=	
Solutions:	331	2			_		
GENERAL I	NFORMATIO	ON:					
Weather con	ditions @ tim	e of sampling:					
Sample Char	acteristics:						
COMMENTS	S AND OBSE	RVATIONS:					
	-		_ _				
I certify that protocals.	sampling pro	cedures were ir	n accordance w	ith all appli	icable EPA, Stat	te and Site-Specific	
Date:	1 1	Ву:			_ Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: BK-100									
R.SENF/P.LITTLE	Sample Matrix: GW									
MONITORTING WELL INSPECTION:										
Date/Time() 8-05 1 250	Cond of seal: () Good () Cracked % () None () Buried									
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged									
If prot.casing; depth to riser below:										
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/									
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm]/									
PURGE INFORMATION:										
Date / Time Initiated: 6-8-05 / 1255	Date / Time Completed: 6-8-05/1320									
Surf. Meas. Pt: () Prot. Casing (/) Riser	Riser Diameter, Inches:									
Initial Water Level, Feet: 23.40	Elevation. G/W MSL:									
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP									
One (1) Riser Volume, Gal:	_ Dedicated: Y N									
Total Volume Purged, Gal:	Purged To Dryness Y (N)									
Purge Observations: Con Flow Sampling	Start TURBID Finish SL TURBID									
PURGE DATA: (if applicable)										
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)	pH Conduct Turb. Other Other (std units) (Umhos/cm) (NTU) ORP DO									
1305 340, 23.49 18.02	6.68 2900 70.1 89 2.63									
1310 342ml 23.49 15.43										
	(20 20 0									

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO	
1305	340,	23.49		18.02	6.68	2900	70.1	89	2.63	
1310	342ml	23.49		15.43	6.43	2910	69.9	56	1.1\	
1315				15.53	6.39	2910	66.6	47	0,77	
1320				15,94	6.37	2910	67.1	48	0.64	
								,		
_	■ SAMPLED AT				Sampled at 1325 on 6-8-05					
				PAGE 1 OF 2 Field Form				ZS .		

Revision 0 03/14/02

SAMPLING INFORMA	TION:		POINT ID	· · · · · · · · · · · · · · · · · · ·		
Date/Time			Water Lev	Feet:		
Method of Sampling:	PERISTALTIC	PERISTALTIC PUMP		_Dedicated:	Y / N	
Multi-phased/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING DATA:						
Time Temp.		Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
N. F						
		_				
INSTRUMENT CHECK	CDATA:					
Turbidity Serial #:		- NITLI		ITII etd -	NTU	
Solutions: CHA-48-E		NIU		110 Std	MIO	
pH Serial #:	_			- 1(0.0 std. =	
Solutions: 4-5045 7-						
Conductivity Serial #:					umhos/cm=	
Solutions:						
GENERAL INFORMA	TION:				·	
Weather conditions @ 1	ime of sampling:				- 	
Sample Characteristics	:					
COMMENTS AND OB	SERVATIONS:					
						
				 -		
						
						
		_				
I certify that sampling protocals.	orocedures were i	n accordance v	vith all appli	icable EPA, Stat	e and Site-Specific	
Date: / /	Ву:			_ Company:	STL	

Facility: Al	acility: ARCH CHEMICAL				e Point ID:	BR-1	08			
Person	nnel:	R.SENF/P.LITTL	E	Sampl	e Matrix:	GW				
MONITOR	TING WELL I	NSPECTION:								
Date/Time	6-13-0	OF 1 /3	359	Cond of seal: () Cracked () Buried						
Prot. Casing/riser height:				Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount						
If prot.casin	g; depth to ris	ser below:				() Damage	u			
Gas Meter (Calibration/ R	eading):	% Gas:		% LEL					
Vol. Organic	c Meter (Calib	ration/Reading):		Volatil	es (ppm 💍	10	_			
PURGE IN	FORMATION									
Date / Time	Initiated:	6-13-05/	1405	Date /	Time Completed	d:	6-13	-05/		
Surf. Meas.	Pt: (Ø) Prot. Ca	asing	∕ Riser	Riser I	Diameter, Inches	5:	6-13	0		
Initial Water	r Level, Feet:	24.50	, 2	_ Elevat	ion. G/W MSL:					
\ Total E	Depth, Feet:	29.75						TIC PUMP		
One (1) Rise	er Volume, Ga	al: 3.42		Dedicated: (Ŷ)/ N			55 B	11111		
Total Volum	ne Purged, Ga	1: 4cc		Purge	d To Dryness (パン	Ŷ N	Red			
Purge Obse	ervations:			Start	TUARIP	Finish	TURAN	,		
PURGE DA	ATA: (if appli	icable)								
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO		
	(gpiii/itz)	Volune	((Std units)	(Omnos/Gin)	(1110)	Olu			
										
	_									
								_		

SAMPLED AT /335/6-14-05 PAGE 1 OF 2

Field Form Revision 0 03/14/02

SAMPLING INFOR	MATION:	POINT ID			
	x-05 1 1335		24.87		
Method of Sampling:	PERISTALTIC PUMP 5	S BAICE? Dedicated: YN			
Multi-phased/ layered	d: () Yes No	If YES: () light () h	eavy		
SAMPLING DATA:					
Time Tem	-	Turb. Other Other (NTU) (OCP) (_)		
1345 17.	2 7.32 1712	>200 -116			
INSTRUMENT CHE	CK DATA:				
Turbidity Serial #:	NTU std. =NTU	NTU std. =NTU			
Solutions: CHA-48	-E				
pH Serial #:	4.0 std.=	7.0 std.= 10.0 std. =			
Solutions: 4-5045	7-5015				
Conductivity Serial #		_umhos/cm=umho	s/cm=		
Solutions:	3312				
GENERAL INFORM	IATION:				
Weather conditions (@ time of sampling:	04, 80°1-	 _		
	ics: ORANCK				
COMMENTS AND	OBSERVATIONS:				
					
I certify that samplin protocals.	g procedures were in accordance	with all applicable EPA, State and Site-	Specific		
Date: 6 1/41	05 By: 03 _	Company: STL			
<u> </u>	PAGE 2 QI				

Facility: ARCH CHEMICAL	Sample Point ID: BR - 1/2 D				
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW				
MONITORTING WELL INSPECTION:					
Date/Time 6-14-05 1 1/50	Cond of seal: X Good () Cracked () None () Buried				
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Loose () Flus () Damaged				
If prot.casing; depth to riser below:					
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/				
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O / O				
PURGE INFORMATION:					
Date / Time Initiated: $6 - 14 - 05 / 1200$ Surf. Meas. Pt: () Prot. Casing	Date / Time Completed: 6-14-05	/ 1225			
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:	2.0			
Initial Water Level, Feet: 36.63	Elevation. G/W MSL:	DER PUMP			
Total Depth, Feet:		TALTIC PUMP			
One (1) Riser Volume, Gal:	Dedicated: Y / N				
Total Volume Purged, Gal:	Purged To Dryness Y				
Purge Observations: COW FCOW	Start CLEAR Finish CCE	<u>'41</u>			

PURGE DATA: (if applicable)

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1210	Flow 200	3625		19.1	6.97	1643	14.70	-181	0.32
1215		34.80		14.5	7.03	1592	6.26	-180	0.22
1220		34.BO		14.5	7.05	1585	5,30	-/77	0,19
1225		36, ⁹⁰		14.6	7.05	1582	5.47	-173	0.20

SAMPLED AT /2 30/6-14-05 PAGE 1 OF 2

Field Form Revision 0 03/14/02

SAMPLING	INFORMATIO	N:		POINT ID			
Date/Time	6-14-05	1/2			g, Feet:	36.80	
Method of S	Sampling:	PERISTALTIC	PUMP BLA	Pump	_Dedicated:	YN	
Multi-phase	d/ layered:	()Yes	Νο	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()	
		-					
							l
INSTRUME	NT CHECK DA	TA:					
Turbidity Se	erial #:	NTU std. :	=NTU	N	ITU std. =	NTU	
Solutions:	CHA-48-E				_		
						10.0 std. =	
	4-5045 7-5015				_		
	y Serial #: 3312		u	imhos/cm=		umhos/cm	=_
	INFORMATION				_		
Weather co	nditions @ time	of sampling:	SUNN-1	85°K			
	aracteristics:						
	S AND OBSEF						
-							
							
I certify that protocals.	t sampling proce	edures were in	accordance w	ith all appli	cable EPA, St	ate and Site-Spec	ific
Date:	6 114,05	Ву:	03/	2	_ Company:	STL	

PAGE 2'0F 2

Facility: ARCH CHEMICAL	Sample Point ID: Ba-113 D				
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW				
MONITORTING WELL INSPECTION:					
Date/Time 6 - 13 - 05 1215	Cond of seal: () Good () Cracked % () None () Buried				
Prot. Casing/riser height: 2,63	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged				
If prot.casing; depth to riser below:	() Damaged				
Gas Meter (Calibration/ Reading): % Gas:					
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O I O				
PURGE INFORMATION:					
Date / Time Initiated: 6-13-05 /225 Surf. Meas. Pt: () Prot. Casing Riser	Date / Time Completed: 6-13-05 / 1250				
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:				
Initial Water Level, Feet: 31.65	Elevation. G/W MSL:				
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP				
One (1) Riser Volume, Gal:	_ Dedicated: Y N				
Total Volume Purged, Gal:	Purged To Dryness Y N				
Purge Observations: LOW F-LOW	Start CCRAR Finish CCEAR				
PURGE DATA: (if applicable)					
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)	pH Conduct Turb. Other Other (std units) (Umhos/cm) (NTU) ORP DO				
FION WE	7.19 2480 5.87 -302 0.15				
1240 1 216	3.4				

	(gpm/htz)		Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
1235	F-LOW 200	31.75		13,1	7.19	2480	5.87	-302	0.15
1240		31.80		13,1	7.01	2470	2.99	-3//	0.14
1245		31.80		13,2	6.92	2460	2.85	-312	0.13
1250		31.80		13,2	6.87	2460	2.87	-314	0.13

SAMPLED AT /255/6-/3-05 PAGE 1 OF 2

SAMPLING INFORMATION: POINT ID BR-113 D							
Date/Time	6-13-	OS 1/	255		el @ Sampling	, Feet:	31.80
Method of S	ampling:	PERISTALTIC	PUMP A		_Dedicated:	(Y)N	
Multi-phased	d/ layered:	() Yes	≯ No	If YES:	() light	() heavy	
SAMPLING	DATA:						_
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
INSTRUME	NT CHECK D	ATA:					
Turbidity Se	rial #:	NTU std. :	=NTU	N	ITU std. =	_NTU	
Solutions:	CHA-48-E				-		
		_ 4.0 std.=				10.0 std. =	
Solutions:	4-5045 7-501	5			_		
	y Serial #: 3312		u	mhos/cm=		umhos/cm	=
					_		
	INFORMATIO						
		of sampling:	5 UNN.	, 850	<u>F</u>		
Sample Cha	racteristics:	CLEAR					
COMMENT	S AND OBSE	RVATIONS:					_ _
					- 		
I certify that protocals.	sampling proc	edures were in	accordance w	ith all appli	cable EPA, Sta	te and Site-Spec	ific
Date:	6 1/31 05	_ Ву:	3	<i>!</i> }	_ Company:	STL	

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: BR -114
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-13-05 1400	Cond of seal: (Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O / O
PURGE INFORMATION: /	,
Date / Time Initiated: 6 - 13 - 05 / 1410	Date / Time Completed: 6-13-05 / 1430 Riser Diameter, Inches: 4,0
PURGE INFORMATION: Date / Time Initiated: 6-13-05 / 1410 Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y / N
Total Volume Purged, Gal:	Purged To Dryness Y
Purge Observations: LOW FLOW	Start CCRAL Finish CCRAL
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1415	F002	13.85		15,3	6.67	1790	11.35	-27/	0.10
1420		13.85		15.1	6,68	1780	8.11	-275	0.09
1425		13,85		15.1	6.69	1780	7.39	-277	0.08
1430		13.85		15,1	6,69	1780	2.15	-278	0.08
								_	

SAMPLED AT 1435/6-13-05

PAGE 1 OF 2

SAMPLING	INFORMATIC	N:		POINT ID			
Date/Time	6-13-05	5 1 /	435	Water Lev	el @ Sampling,	Feet:	13.85
Method of S	ampling:	PERISTALTIC	PUMP /	Olling.	_Dedicated:	(Y) N	
Multi-phased	d/ layered:	() Yes	ΧNο	If YES:	() light	() heavy	
SAMPLING	DATA:	_	_				
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
INSTRUME	NT CHECK DA	<u></u> А ТА:	 		<u> </u>		
Turbidity Se	rial #:	NTU std.	=NTU	_N	ITU std. =	NTU	
Solutions:							
pH Serial #:		4.0 std.=	7.	0 std.=	10	.0 std. =	
Solutions:	4-5045 7-5015	5			_		
Conductivity	y Serial #:		L	ımhos/cm=		umhos/cm	=
Solutions:	3312				-		
GENERAL	INFORMATIO	N:					
Weather cor	nditions @ time	of sampling:	SUNNY	90°F			
Sample Cha	racteristics:	CLEAR					
COMMENT	S AND OBSE	RVATIONS:					
_						_	
I certify that	sampling proc	edures were in	accordance w	ith all appli	cable EPA, State	e and Site-Spec	ific
Date:	6 13105	By:	31	f 	_ Company:	STL	

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: BR - 116
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6 - 13 - 05 / //35	Cond of seal: Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O I O
PURGE INFORMATION:	
Date / Time Initiated: $6 - 13 - 05 / 1140$ Surf. Meas. Pt: () Prot. Casing	Date / Time Completed: 6-13-05/1205 Riser Diameter, Inches:
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 27.07	Elevation. G/W MSL: BLADDER PUMP
Total Depth, Feet:	Method of Well Purge: PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: LO FLOW	Start CLAM Finish CLAM
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp. p	H Conduct Turb. Other Other

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1150	F1 0	wu 27.20	Volume		6.88	2070	20.9		0,31
1/55	200	27.20		19,3	6,70	2855	13.50	-/2	0.21
1200)	27.20		19,3	6,65	2863	11.10	-15	0.19
1205		27,20		19.3	6.58	2870	16,35	-16	0.17

SAMPLED AT

SAMPLING	INFORMATION	ON:		POINT I	BR-11	16	
Date/Time	6-13-0	25 12	210		vel @ Sampling	Feet:	27.20
Method of S	ampling:	PERISTALTIC	PUMP /	DORR DUMP	_Dedicated:	VIN	
Multi-phased	d/ layered:	()Yes				() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUME	NT CHECK D	ATA:			 _	1	
Turbidity Se	rial #:	NTU std.	=NTU	!	NTU std. =	_NTU	
Solutions:	CHA-48-E				_		
pH Serial #:		4.0 std.=	7.	0 std.=	1	0.0 std. =	
Solutions:	4-5045 7-501	5			_		
Conductivity Solutions:	y Serial #: 331.	2	u	ımhos/cm=	<u> </u>	umhos/cm	=
GENERAL	INFORMATIC			_			
		e of sampling:	SUNAY	85°) <u>-</u>		
	racteristics:	CLEAR					
COMMENT	S AND OBSE	RVATIONS:					
							
							
I certify that protocals.		cedures were in	accordance w	ith all appl	icable EPA, Sta	te and Site-Spec	sific
Date:	6 1/3/05	By:	PAGE 2 OF 2) 2	_ Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: BR-116 D
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6 - 13 - 05 1040	Cond of seal: X Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good
If prot.casing; depth to riser below:	(
Gas Meter (Calibration/ Reading): % Gas:	_/ % LEL/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O 1 O
PURGE INFORMATION:	
Date / Time Initiated: 6-13-05/1050	Date / Time Completed: 6 - 13-05/ 1115
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 36.14	Elevation. G/W MSL:
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: LOW F-LOW	Start Sl. TURBIO Finish SC, TURBIO
DUDGE DATA: (if applicable)	

PURGE DATA: (if applicable)

Time		e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1100	FUV 200	36.32		18,7	9.47	839	48.1	-82	0,29
1105		36,30		18,5	9.40	855	45.2	-77	0.23
1110		36,30		18,3	9,38	854	43,2	-75	0.19
1115		36.30		18.3	9,36	853	43.1	-70	0.18
l									
									_

SAMPLED AT //20/6-13-05
PAGE 1 OF 2

Water Level @ Sampling, Feet: 36,30
Dedicated: N
If YES: () light () heavy
Turb. Other Other (NTU) () ()
NTU std. =NTU
0 std.= 10.0 std. =
umhos/cm=umhos/cm=
0.006
1, 83 /-
ith all applicable EPA, State and Site-Specific
Company: STL
umhos/cm=umhos/cm=

Facility: ARCH CHEMICAL	Sample Point ID: BR-117D	Sample Point ID: BR-117D					
R.SENF/P.LITTLE	Sample Matrix: GW						
MONITORTING WELL INSPECTION:							
Date/Time () - 8-05 1//30	Cond of seal: (/ Good () Cracked () None () Buried	%					
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (() Loose () Flus () Damaged	h Mount					
If prot.casing; depth to riser below:							
Gas Meter (Calibration/ Reading): % Gas	/ % LEL/						
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm/						
PURGE INFORMATION:		1					
Date / Time Initiated: 6-8-05/11/90	Date / Time Completed: 6-8-0	0/1210					
Surf. Meas. Pt: () Prot. Casing (+) Ris	Riser Diameter, Inches:	<u> </u>					
Initial Water Level, Feet: 49,9		OFF DUMP					
Total Depth, Feet:		DER PUMP TALTIG PUMP					
One (1) Riser Volume, Gal:	Dedicated: Y / N						
Total Volume Purged, Gal:	Purged To Dryness Y /(N)						
Purge Observations: Low flow Jam	ling Start St. TUPBIO Finish CIFAC	2_					
PURGE DATA: (if applicable)	<u></u>						
Time Purge Rate Cumulative Tem (gpm/htz) Volume (C	pH Conduct Turb. Other (std units) (Umhos/cm) (NTU) ORP	r Other DO					
1145 340m 49.95 13.0	8.18 539 44.1 185	3.80					
1150 340ml 49.95 11.7	1 8.12 538 35.7 173						
1155 340ml / 11.7		1.80					

SAMPLED AT

Sampled at 1215 m 6-8-05

PAGE 1 OF 2

18,13

11.60

SAMPLING INFORMATION:				POINT ID			
Date/Time		1		Water Lev	rel @ Sampling,	Feet:	
Method of Sa	ampling:	PERISTALTIC	PUMP		_Dedicated:	Y / N	
Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
				+			
INCTOLING	NT CHECK D	ATA:					
	NT CHECK D						
_	0114 40 5				ITU std. =	NTU	
Solutions:	CHA-48-E				_		
•		4.0 std.= 5				0.0 std. =	_
Conductivity	y Serial #:		1	umhos/cm=		umhos/cm=	
Solutions:	3312	2			_		
GENERAL	INFORMATIC	N:					·
Weather cor	nditions @ time	e of sampling:					
Sample Cha	racteristics:						
COMMENT	S AND OBSE	RVATIONS:					
							
I certify that protocals.	sampling prod	cedures were ir	accordance w	vith all appli	cable EPA, State	and Site-Specif	ïc
Date:	1 1	By:			Company:	STI	

Facility: ARCH CHEMICAL	Sample Point ID: BR 180					
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW					
MONITORTING WELL INSPECTION:						
Date/Time 6-8-05 1 1012	Cond of seal: () Good () Cracked % () None () Buried					
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged					
If prot.casing; depth to riser below:	() Damagea					
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/					
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm/					
PURGE INFORMATION:						
Date / Time Initiated: 6-8-05 / 1030	Date / Time Completed: 6-8-05/1110					
Surf. Meas. Pt: () Prot. Casing (YRiser	Riser Diameter, Inches: 4.0					
Initial Water Level, Feet: 48.98	Elevation. G/W MSL:					
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP					
One (1) Riser Volume, Gal:	Dedicated: Y / N					
Total Volume Purged, Gal:	Purged To Dryness Y / N					
Purge Observations: () Sampling	Start SCTURBID Finish Clan					
PURGE DATA: (if applicable)	Conduct Turk Other Other					

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1040	320ml 49.71	10101111	13.02	9.22	1900	18.A	-128	3.47
1045	320ml (49.21		12.8/	9.22	1720	182/8/	-91	2.81
1055	320ml /9.21		13.09	9.18	1720	18,0	-74	2.80
1100	320ml 49.21	_	13.10	9.19	1721	17.7	-75	2.81
1105	520ml 49.21		3,30	9.18	1720	17.8	-76	2.81
						,		

SAMPLED AT

Sampled at 1110 on 6-8-05
Field Form CRS

PAGE 1 OF 2

Revision 0

03/14/02

SAMPLING	INFORMATIO	ON:		POINT ID		
Date/Time				Water Lev	vel @ Samplin	g, Feet:
Method of S	ampling:	PERISTALTIC	PUMP		_Dedicated:	Y / N
Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy
SAMPLING	DATA:					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()
·						
		 	 	<u> </u>		
INSTRUME	NT CHECK D	ATA:				
Turbidity Se	rial #:	NTU std.	=NTU	^	NTU std. =	NTU
Solutions:	CHA-48-E				_	
pH Serial #:		4.0 std.=	7	.0 std.=	_ 	10.0 std. =
Solutions:	4-5045 7-501	5			_	
Conductivity	y Serial #:			umhos/cm=	:	umhos/cm=
Solutions:	3312				_	
GENERAL	INFORMATIO	N:				
Weather cor	nditions @ time	e of sampling:				
Sample Cha	racteristics:					
COMMENT	S AND OBSE	RVATIONS:				
					-	
I certify that protocals.	sampling prod	cedures were in	n accordance v	vith all appl	icable EPA, St	ate and Site-Specific
Date:	1 1	Ву:			Company:	STL

Facility: ARCH CHEMICAL	Sample Point ID: BR - 122 D
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-07-05 1 1040	Cond of seal: **Good () Cracked
Prot. Casing/riser height: 2.72	Cond of prot. Casing/riser: () Unlocked ★ Good () Loose () Flush Mount
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	- /- % LEL /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm Olo
PURGE INFORMATION:	
Date / Time Initiated: $6-07-05$ / 10 SO	Date / Time Completed: 6-07-05/1125
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: LOW FLOW	Start Finish CCRAR
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	oH Conduct Turb. Other Other

Time	Purge (Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1110		w L 45.05		13,0	7.06	2450	13,2	-257	0,79
11/5	4	-5.05		13,3	6.98	2450	11.1	-261	0,40
1120	4	15.05		13,4	6.93	2430	6,75	-264	0,38
1125	4	5.05		13.4	6.89	2400	5,28	-270	0,35

SAMPLED AT /125/6-07-05

PAGE 1 OF 2

SAMPLING	INFORMATIC	DN:		POINT ID	BR-122	D	
Date/Time _	6-07-0	5 1 /			vel @ Sampling,	Feet:	45.05
Method of Sa	mpling:	PERISTALTIC	PUMP Pu	0K.2 4,0	_Dedicated:	(Y) N	
Multi-phased	layered:	()Yes	MNO	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OCA)	Other	
1125	13,4	6.89	2400	5,28	-270	0,35	
			ļ				
INSTRUMEN	NT CHECK D	 ATA:		<u> </u>		<u></u> _	
			_ 51711		ITU -4-1	LITTI	
Solutions:	•	NTO Std.	=NIU	r	NTU std. = _	_N10	
pH Serial #: _		4.0 std.=	7.	0 std.=	1	0.0 std. =	
Solutions:	4-5045 7-501	5			_		
-	Serial #: 3312				:	umhos/cm	=
_	NFORMATIO				_		
Weather con	ditions @ time	of sampling:	SUNNY	80°F			
Sample Char	acteristics:	CLEAR					
COMMENTS	S AND OBSE	RVATIONS:					
							
I certify that s protocals.	sampling proc	edures were in	accordance w	ith all appli	icable EPA, Sta	te and Site-Spec	ific
Date:	6 107105	_ By:	PAGE 2 OF 2	.	_ Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: BR - 123D
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-07-05 1150	Cond of seal: (Cood () Cracked % () None () Buried
Prot. Casing/riser height: 2,55	Cond of prot. Casing/riser: () Unlocked 🂢 Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	(
Gas Meter (Calibration/ Reading): % Gas:	% LEL
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O / O
PURGE INFORMATION:	
Date / Time Initiated: 6-07-05 / 1155	Date / Time Completed: 6-07-05/ 1236
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4_0
Initial Water Level, Feet: 45.70	Elevation. G/W MSL:
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: LOW FLOW	Start Clasa Finish Class
PURGE DATA: (if applicable)	

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1200	FLOW 300	45.75		12.3	7.02	1700	21.4	-319	0,47
1210		45.75		12.3	6,97	1690	20,1	-322	0,41
1220	V	45,75		12.3	6.99	1690	17.9	-324	0.35
1230		45,75		12.2	7.03	1690	17,3	-323	0,33

SAMPLING	INFORMATIO	ON:		POINT IE			
Date/Time	6-07-05	1/-	230	Water Lev	vel @ Sampling	, Feet:	45.75
Method of S	ampling:	PERISTALTIC	PUMP 80	PUMP	_Dedicated:	YPN	
Multi-phase	d/ layered:	() Yes	⋈ No	If YES:	() light	() heavy	
SAMPLING	DATA:						_
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
INSTRUME	NT CHECK D	ATA:					_
Turbidity Se	erial #:	NTU std.	=NTU	1	NTU std. =	_NTU	
Solutions:					_	-	
pH Serial #:		4.0 std.=	7.	.0 std.=	<u>.</u>	10.0 std. =	
Solutions:	4-5045 7-501	5					
				ımhos/cm=	:	umhos/cm]= <u> </u>
Solutions:	3312	2		-	_		
GENERAL	INFORMATIO	N:					
Weather co	nditions @ time	e of sampling:	SUNNY	1, 80°F	<u></u>		
	racteristics:						
COMMENT	S AND OBSE	RVATIONS:					
						-	
	 _						
,							
							
I certify that	sampling prod	cedures were ir	n accordance w	ith all appl	icable EPA, Sta	te and Site-Spec	-ific
Date:	6 107105	By:	03/	1	_ Company:	STL	

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: BR - 126
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6 - 15 - 05 1 1025	Cond of seal: () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm // /
PURGE INFORMATION:	
Date / Time Initiated: 6-15-05 / 1030 Surf. Meas. Pt: () Prot. Casing Riser	Date / Time Completed: 6-15-05 / 1108
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Total Depth, Feet: 45.45	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y /N
Total Volume Purged, Gal:	Purged To Dryness Y
Purge Observations: LOW FLOW	Start CCAA Finish CCAA

PURGE DATA: (if applicable)

Time	(api	je Rate m/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1040	200	7.92		13.9	8.06	1930	63.7	-62	0,30
1045		7.92		14.0	7.10	1930	56,9	-85	0,26
1050	200	7.92		14,0	7.09	1940	52.3	-87	0,25
1100	200	7.92		14,1	7.12	1930	49.9	- 90	0,23

SAMPLED AT //05/6-/5-05

PAGE 1 OF 2

SAMPLING INFORMATION: POINT ID BR-126							
Date/Time	6-15-0	5 111	05		vel @ Sampling,	Feet:	7.92
Method of Sa	ampling:	PERISTALTIC	PUMP	PUNC	_Dedicated:	Y N	
Multi-phased	l/ layered:	() Yes	KNO	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
		<u> </u>					
INSTRUME	NT CHECK D	ATA:					٠
Turbidity Sei		NTU std.	=NTU	^	ITU std. =	_NTU	
	4-5045 7-501	_ 4.0 std.= 5	7.	.0 std.=	1 _	0.0 std. =	_
Conductivity Solutions:		2	ા	umhos/cm=		umhos/cm=	<u> </u>
GENERAL I	NFORMATIO	N:					
Weather con	ditions @ time	e of sampling:	Survey	, 70°F			
Sample Char	racteristics:	CCHAR					
COMMENTS	S AND OBSE	RVATIONS:					
							
I certify that protocals.	sampling proc	edures were ir	accordance w	rith all appli	cable EPA, Stat	te and Site-Speci	fic
Date:	6 115 105	_ Ву:	PAGE 2 OF		_ Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: BR - 12	フ
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW	
MONITORTING WELL INSPECTION:		
Date/Time 6-7-03 / // 40	Cond of seal: 🕍 Good () Cracke () None () Burie	
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Ur () Loose () Damag	() Flush Mount
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL /	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm 🔑 / 🖯	<u> </u>
PURGE INFORMATION:		
Date / Time Initiated: (FTT 05 / 1150	Date / Time Completed:	6-7-05 1210
Surf. Meas. Pt: Prot. Casing Riser	Riser Diameter, Inches:	6.0
Initial Water Level, Feet: 4,29	Elevation. G/W MSL:	BLADDER PUMP
Total Depth, Feet: 50.63	Method of Well Purge:	PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: 🕥 N	
Total Volume Purged, Gal: 2.0	Purged To Dryness Y (N)	
Purge Observations:	Start Cler Finish	Cler. Black South
PURGE DATA: (if applicable)		
Time Purge Rate Cumulative Temp	pH Conduct Turb	Other Other

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
[135]	100	4.24		16.2	7.65	3/58	7.45	-101	1.08
1200	i			15.8	7.89	3/77	7.22	- 158	1.00
1205				16.1	7.94	3/79	5.55	-160	0.97
1210				16.1	7.96	3182	5.19	-161	0.85

SAMPLED AT 1215/6-7-05

PAGE 1 OF 2

SAMPLING INFORMATION: POIN							
Date/Time				Water Lev	/el @ Sampling,	Feet:	
Method of Sa	ampling:	PERISTALTIC	PUMP		_Dedicated:	Y / N	
Multi-phased	l/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
	· · · · · · · · · · · · · · · · · · ·						
				ļ ————————————————————————————————————			
INSTRUME	NT CHECK [DATA:					
Turbidity Se	rial #:	NTU std.	=NTU	1	NTU std. =	_NTU	
Solutions:	CHA-48-E				_		
		4.0 std.= 15				0.0 std. =	
Conductivity	Serial #:			ımhos/cm=	:	umhos/cm=	
Solutions:	331	2			_		
GENERAL I	NFORMATIO	ON:					
Weather con	ditions @ tim	e of sampling:			·		
Sample Char	racteristics:						
COMMENT	S AND OBSE	ERVATIONS:					
					_		
I certify that protocals.	sampling pro	cedures were ir	accordance w	ith all appli	icable EPA, Stat	e and Site-Specific	
Date:	1 1	Ву:			Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: B1-3
Personnel: R.SENF/P.LiTTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-7-65 1220	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: 🙀 Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm 6 /
PURGE INFORMATION:	
Date / Time Initiated: 6-7-65 / 1225	Date / Time Completed: 6-2-65 / 1245 Riser Diameter, Inches: 4-6
Surf. Meas. Pt: 10 Prot. Casing () Riser	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 9.63	Elevation. G/W MSL:
Total Depth, Feet: 23.25	Method of Well Purge: PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y/N
Total Volume Purged, Gal:	Purged To Dryness Y IN Yellow 7-ml
Purge Observations:	Start che Finish Yellar 7.ml

PURGE DATA: (if applicable)

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1230	100	9.31		15.4	7.22	15,540	35.9	-56	1.11
1235		10.34		14.9	6.93	15,490	17.0	-80	1.01
1240		10.37		14.7	7.20	15,450	16.5	-85	a. 95
1245	V	10.40		14.5	7.16	15,410	10.1	-87	0.93

SAMPLED AT 1250/6-7-07

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID)		
Date/Time				Water Lev	vel @ Sampling	g, Feet:	
Method of S	ampling:	PERISTALTIC	PUMP		Y / N		
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()	
			-				
	_						
INSTRUME	NT CHECK D	ATA:	'	<u></u>	<u></u>		
Turbidity Se		NTU std.	=NTU		NTU std. =	_NTU	
	4-5045 7-501	4.0 std.≐ 5	7			10.0 std. =	
	y Serial #:					umhos/cm=	
Solutions:	331	2			_		
GENERAL	INFORMATIO	DN:					
Weather cor	nditions @ tim	e of sampling:		<u> </u>			
Sample Cha	racteristics:						
COMMENT	S AND OBSE	RVATIONS:					
			·				
I certify that protocals.	sampling pro	cedures were ir	n accordance w	vith all appl	icable EPA, Sta	ate and Site-Specific	
Date:		By:			_ Company:	STL	

LeachField Form Revision 0 March 15,2002

cility:	ARCH	CHEM ICAL		Sample Po	oint ID:	BR-54	<u> </u>
Field Person	ield Personnel: P. Little, T. Pacmer		PALMI	Sample Ma	atrix:	(K) Grab () Co	mposito
SAMPLING	INFORMATIO	N:			•	Maian () Co	mposite
Date/Time	6-9-05	1 / 4	<u> </u>	Water Leve	el @ Sampling,	Feet:	29.41
Method of S	ampling:	SAMA.	PORT		Dedicated:	(V) N	
Multi-phased	d/ layered:	() Yes	₩ No	If YES:	() light	() heavy	
SAMPLING	DATA:				· <u> </u>		
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OA/)	Other (
1253	19.8	7.87	1434	8 60	-71		
INSTRUME	NT CHECK DA	ATA:					
Turbidity Se Solutions:	rial #:	NTU std. =		N	TU std. =	NTU_	
Serial #:		4.0 std.=	7.0) std.=	1	0.0 std. =	
Conductivity Solutions:	y Serial #:		u	mhos/cm=_	_ 	umhos/cm=	<u></u>
GENERAL	INFORMATIO	N:					
Weather cor	nditions @ time	of sampling:	Son	900			
Sample Cha	racteristics:	. (C/0,0				
COMMENT	S AND OBSER	RVATIONS:		.84 61	~		
	-						
I certify that	sampling proce	edures were in	accordance wi	th all applic	able EPA, Stat	e and Site-Speci	fic
Date:	619105	ву:	for red	liti	Company:	57	

Facility: ARCH CHEMICAL	Sample Point ID: BL-64
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-7-05 / 1302	Cond of seal: (**Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: (\mathcal{X}Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm/
PURGE INFORMATION:	
Date / Time Initiated: 6-7-05/1305	Date / Time Completed: 6-7-0-/ 1325- Riser Diameter, Inches: 6.0
Surf. Meas. Pt: Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: (Y)/ N
Total Volume Purged, Gal: /_ C	Purged To Dryness Y / N Ch
Purge Observations:	Start Stack tong Finish Brack 7 mg

PURGE DATA: (if applicable)

Time	_	e Rate	Cumulative	Temp.	pH	Conduct	Turb.	Other	Other
	, , , ,	n/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
1310	Mefore 160	10.35		189	7-80	3103	14.4	-423	2.11
1315				18.8	8-00	3089	4.72	-130	1.57
1320				14.0	8-10	3090	3.42	-132	1.45
1325	$ \downarrow\rangle$			19.0	8-13	3100	3.19	-133	1-40
							-		

SAMPLED AT 1330/6-700 M

PAGE 1 OF 2

SAMPLING INFOR	RMATION:		POINT ID			
Date/Time		·	Water Lev	vel @ Sampling	Feet:	
Method of Sampling	: PERISTA	ALTIC PUMP		_Dedicated:	Y/N	
Multi-phased/ layere	ed: () Yes	() No	If YES:	() light	() heavy	
SAMPLING DATA	:					
)	mp. pH (Std ur		Turb. (NTU)	Other ()	Other (
INSTRUMENT CH	ECK DATA:					
Turbidity Serial #: _	NTU	std. =NTU		NTU std. =	_NTU	
Solutions: CHA-4	B-E			_		
pH Serial #:		=	7.0 std.=	1	0.0 std. =	
Solutions: 4-5045				_		
Conductivity Serial Solutions:					umhos/cm=	_
	*			_		
GENERAL INFOR	MATION:					
Weather conditions	@ time of sampl	ing:				
Sample Characteris	tics:					
COMMENTS AND	OBSERVATION	IS:				
						
						
I certify that sampli	ng procedures w	ere in accordance	with all appli	cable EPA, Sta	te and Site-Specific	
•	_				0.77	
Date: /	/ By:	• •		Company:	SIL	

LeachField Form Revision 0 March 15,2002

	- , ,				00-7	4
Cility: ARCH	_				BR-71	·
Field Personnel:	P. Little, T.	PALMI	Sample M	atrix:	<i>€ ⇔</i> () C	Composito
SAMPLING INFORMATION						omposite
Date/Time $6 - 8 - 6 $		205	Water Lev	el @ Sampling	, Feet:	20.33
Method of Sampling:	SAMA.	PORT		_Dedicated:	(V) N	
Multi-phased/ layered:	() Yes	₩ No	If YES:	() light	() heavy	
SAMPLING DATA:				•		
Time Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ON)	Other ()	
1209 18.2	713	27.63	37.2	-148		
INSTRUMENT CHECK D	ATA:					-
Turbidity Serial #:	NTU std. :		N	ITU std. =	_טדע	
Solutions:	4.0 std.=	7.	0 std.=	1 -	0.0 std. =	
Conductivity Serial #: Solutions:			ımhos/cm=	- 	umhos/cm)=·
GENERAL INFORMATIO	DN:					
Weather conditions @ time	e of sampling:	88°	ىدد ك			
Sample Characteristics:	<u> </u>	· Sc 101	+ B.D 6.	/4)		
COMMENTS AND OBSE	RVATIONS:			, – – –		
						
I certify that sampling produceds.	cedures were in	accordance w	ith all appli	cable EPA, Stat	e and Site-Spec	cific
Date: 6 19105	By:	MLio	=	Company:	5/7	

Facility: ARCH CHEMICAL	Sample Point ID: BR-8
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-9-05 10 77	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked 🔌 Good
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm 6 1 C
PURGE INFORMATION:	
Date / Time Initiated: 6-9-05/1040	Date / Time Completed: 6-9-6 5/1100
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 8. 97	Elevation. G/W MSL:
Total Depth, Feet: 31.74	Method of Well Purge: <u>PERISTALTIC PUMP</u>
One (1) Riser Volume, Gal:	Dedicated: (Y) N
Total Volume Purged, Gal: (. 5	Purged To Dryness Y
Purge Observations:	Start Clear Finish Clear

PURGE DATA: (if applicable)

Time	(gpn	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1045	150	4.05		17.4	7.42	3006	244	-134	1.26
1050				17.2	7.45	30 93	18.1	-139	1.09
1055				17.1	7.44	3/11	18.6	1142	0.98
1100	6	V		17.3	7.43	3110	17.7	- 143	0.45
				_					

SAMPLED AT 1105/6-9-05

PAGE 1 OF 2

Date/Time	SAMPLING	INFORMATION	ON:		POINT ID			
Multi-phased/ layered: () Yes () No If YES: () light () heavy SAMPLING DATA: Time Temp. pH Conduct Turb. Other Other (°C) (std units) (Umhos/cm) (NTU) () () INSTRUMENT CHECK DATA: Turbidity Serial #: 3921 NTU std. = 2e_NTU 2e_NTU std. = 2e_NTU Solutions: CHA-48-E (797-2) pH Serial #: 0740 4.0 std.= 4/500 7.0 std.= 7/50 10.0 std. = 3312 Solutions: 3312 GENERAL INFORMATION: Weather conditions @ time of sampling: Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	Date/Time				Water Lev	, Feet:		
SAMPLING DATA: Time Temp. pH Conduct Turb. Other Other (°C) (std units) (Umhos/cm) (NTU) () () () () () () () () () (Method of S	ampling:	PERISTALTIC	PUMP	Dedicated:		Y / N	
Time Temp. pH Conduct Turb. Other (*C) (std units) (Umhos/cm) (NTU) () ()) INSTRUMENT CHECK DATA: Turbidity Serial #: 39.2 NTU std. = 2c NTU 2c NTU std. = 2c NTU Solutions: CHA-48-E 2/2/2/2 pH Serial #: 01/2/4 4.0 std. = 4/20 7.0 std. = 7.0 std. = 7.0 std. = 3.0 std. =	Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
INSTRUMENT CHECK DATA: Turbidity Serial #: 392 NTU std. = 20 NTU 20 NTU std. = 20 NTU Solutions: CHA-48-E OUTHA OUTHA 4.0 std. = 400 T.0 std. = 7.0 s	SAMPLING	DATA:						
Turbidity Serial #: 3621 NTU std. = 2c NTU 2c NTU std. = 2c NTU Solutions: CHA-48-E 2 (19/12) pH Serial #: 0 10.0 std. = 4 50.0 To. std. = 7.0 std. = 7	Time		•		I	Other ()	Other (
Turbidity Serial #: 3621 NTU std. = 2c NTU 2c NTU std. = 2c NTU Solutions: CHA-48-E 2 (19/12) pH Serial #: 0 10.0 std. = 4 50.0 To. std. = 7.0 std. = 7								
Turbidity Serial #: 3621 NTU std. = 2c NTU 2c NTU std. = 2c NTU Solutions: CHA-48-E 2 (14/12) PH Serial #: 0 1 1 4 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
Turbidity Serial #: 3621 NTU std. = 2c NTU 2c NTU std. = 2c NTU Solutions: CHA-48-E 2 (14/12) PH Serial #: 0 1 1 4 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
Solutions: CHA-48-E \[\frac{\frac}	INSTRUME	NT CHECK D	ATA:					
pH Serial #:	Turbidity Se	rial #: <u>_ 392</u> ر	NTU std.	= <u>೭ಲ</u> _NTU	<u>2c</u> N	lTU std. = <u>∠</u> c_	_NTU	
pH Serial #:	Solutions:					_		
Conductivity Serial #:	pH Serial #:		_ 4.0 std.=_ <i>4</i>	<u>.co</u> 7.	.0 std.= フ-	<u>00 </u>	0.0 std. =	
Solutions: 3312 GENERAL INFORMATION: Weather conditions @ time of sampling: Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	Solutions:	4-5045 7-501	5			_		
GENERAL INFORMATION: Weather conditions @ time of sampling: Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.				_			umhos/cm=	
Weather conditions @ time of sampling: Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	Solutions:	331	2			_		
Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	GENERAL	INFORMATIC	N:					
COMMENTS AND OBSERVATIONS: Control Contro	Weather cor	nditions @ time	e of sampling:					
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	Sample Cha	racteristics:						
protocals.	COMMENT	S AND OBSE	RVATIONS:					
protocals.						_ 		
protocals.								
protocals.								
protocals.	-				_			
protocals.								
	-	sampling prod	cedures were in	accordance w	ith all appli	cable EPA, Stat	te and Site-Specific	
	Date:	1 1	Ву:			Company:	STL	

LeachField Form Revision 0 March 15,2002

cility:	ARCH	CHEM ICAL		Sample Po	oint ID:	BR-9	
Field Person	inel:	P. L. He, T.	PACM -	Sample M	atrix:	60	
SAMPLING	INFORMATIO	N:				(K) Grab () C	omposite
Date/Time	C-9-03	1 1	1230	Water Lev	el @ Sampling,	, F_eet:	31-87
Method of S	ampling:	SAMA.	PORT		Dedicated:	W IN	
Multi-phased	d/ layered:	() Yes	₩ No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OA/)	Other (
1233	20.8	7.42	2645	271	-104		
INSTRUME	NT CHECK DA	ATA:					
Turbidity Se	rial #:	NTU std. =	=NTU	·N	TU std. =	_טדא	
Serial #:		4.0 std.=	7.	0 std.=	1	0.0 std. =	<u> </u>
Conductivity Solutions:	y Serial #:		u	mhos/cm=		umhos/cm	=
GENERAL	INFORMATIO	N:					
Weather cor	nditions @ time	of sampling:	Sun	900			
Sample Cha			TUNDIA	OAANCE			
COMMENT	S AND OBSE	RVATIONS:	6.	57 68	'AT		
			_				
l certify that ocals.	sampling proc	edures were in	accordance w	th all applic	cable EPA, Stat	e and Site-Spec	ific
Date:	6 19 105	_ Ву:	M Lut	<u> </u>	Company:	SA	

Facility: ARCH CHEMICAL	Sample Point ID: F-/						
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW						
MONITORTING WELL INSPECTION:	VAUIT						
Date/Time 6-8-05	Cond of seal: () Good () Cracked () None () Buried						
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unloc () Loose (() Damaged) Flush Mount					
If prot.casing; depth to riser below:							
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/						
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm /						
PURGE INFORMATION:							
Date / Time Initiated: 6-8-05/ 1150	Date / Time Completed:	6-8.05/1210					
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches:	VAULT					
Initial Water Level, Feet:	Elevation. G/W MSL:	SLADDER PUMP					
Total Depth, Feet:		PERISTALTIC PUMP					
One (1) Riser Volume, Gal:	Dedicated: N						
Total Volume Purged, Gal: 2.0	Purged To Dryness Y	Clare					
Purge Observations:	Start But roof Finish	BEALK TIES					
PURGE DATA: (if applicable)							
Time Purge Rate Cumulative Temp.	pH Conduct Turb.	Other Other					

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1155	1.87		20.8	7.69	10,020	19.6	-52	1.17
1200	j		20.9	7-84	10,020	12.3	7د۔	1-09
1205			19.7	8.12	10,030	11.6	- 60	. 93
1210	V		20 4	8.17	10,040	11.3	-63	. 90
								·

SAMPLED AT 1715/6-8-05 M Ltim

PAGE 1 OF 2

Field Form Revision 0

03/14/02

SAMPLING	INFORMATIO	ON:		POINT ID			
Date/Time				Water Lev	el @ Sampling	g, Feet:	
Method of Sa	ampling:	PERISTALTIC	PUMP		_Dedicated:	Y / N	
Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()	
					ļ		
		<u></u>		<u></u>			
INSTRUME	NT CHECK D	ATA:					
Turbidity Se	rial #:	NTU std.	=NTU		ITU std. =	NTU	
Solutions:	CHA-48-E				_		
						10.0 std. =	
	4-5045 7-501						
	/ Serial #: 3312					umhos/cm=	
	INFORMATIO				_		
	nditions @ time						
Sample Cha							
Sample Cha	racteristics.						
COMMENT	S AND OBSE	RVATIONS:					
	<u> </u>						
							
·							
			_			-	· ———
I certify that protocals.	sampling proc	edures were ir	accordance v	vith all appli	cable EPA, St	ate and Site-Specif	ic
Date:		Ву:			Company:	STL	_

Facility:	ARCH (HEMIC	AL		Sampl	e Point I <u>D:</u>	<u>F</u> -3			
l ⇔ d Pers	sonnel:		R.SENF/P.LITTLI	Ε	Sampl	e Matrix:	GW			
MONITO	RTING	WELL	NSPECTION:							
Date/Time	e <i>6-</i>	7-05	1 10	940	Cond	of seal: 🍎 Good ()Non	∤X Cracked e () Buried		<u>%</u>	
Prot. Cas	ing/riser	height			Cond	of prot. Casing/r	iser: () Unlo () Loose (¿) Damageo	() Flush I	Mount	
If prot.cas	sing; de	pth to ri	ser below:							
Gas Mete	er (Calibr	ation/ R	teading):	% Gas:		% LEL				
Vol. Orga	ınic Mete	er (Calib	ration/Reading):		Volatil	es (ppm = -	, 0	_		
PURGE	PURGE INFORMATION:									
Date / Tin	ne Initiat	ed:	6-7-05/1	042	Date /	Time Completed	d:	6-7-0	1/052	
Surf. Mea	ıs.Pt:🙌	Prot. C	asing	() Riser	Riser	Diameter, Inches	s :		<u>) </u>	
Initial Wa	ter Leve	l, Feet:	8.96		Elevat	ion. G/W MSL:				
			12.05		Metho	d of Well Purge:		BLADDEI PERISTA	TPUMP LTIC PUMP	
One (1) R	Riser Vol	ume, Ga	al: .50		Dedica	ated:	3) N			
Total Vol	ume Pur	ged, Ga	ıl: ,50		_ Purge	d To Dryness (Ŷ/ N			
Purge Ob	servatio	ns:		_	Start	Cleur	Finish	Clerr		
PURGE	DATA:	(if appl	icable)							
Time	1	Rate	Cumulative	Temp.	рН	Conduct	Turb.	Other	Other	
	(gpm မ်ာ္	/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO	
1047	10.57			14.9	7.10	2520	9.22	35	1,40	
1052	11.40			15.3	7.20	2475	3.45	30	1.06	

Purge F	Rate	Cumulative	Temp.	РН	Conduct	Turb.	Other	Other
(gpm/h	ntz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
い ² 10.57			14.9	7.10	2520	9.22	35	1,10
11.40			15.3	7.20	2475	3.45	30	1.06
		-						
	(gpm/t い ² 10.57	10.57	(gpm/htz) Volume いこ 10.57	(gpm/htz) Volume (C) いっ 10.57 /4.9	(gpm/htz) Volume (C) (std units)	(gpm/htz) Volume (C) (std units) (Umhos/cm) 10.57 14.9 7.10 2520	(gpm/htz) Volume (C) (std units) (Umhos/cm) (NTU) 10.57 14.9 7.10 2520 9.72	(gpm/htz) Volume (C) (std units) (Umhos/cm) (NTU) ORP 10.57 14.9 7.10 2520 9.22 35

SAMPLED AT

PAGE 1 OF 2

SAMPLING	INFORMATIO	DN:		POINT ID	E	- 3	
Date/Time	6-8-05		1020	Water Lev	el @ Sampling	ı, Feet:	9.07
Method of S	ampling:	PERISTALTIC	PUMP		_Dedicated:	(A) N	
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (onl)	Other (
1022	15.0	7.11	2638	5.75	17		
			<u></u>				
INSTRUME	NT CHECK D	ATA:					
Turbidity Se Solutions:		NTU std.	=NTU		ITU std. =	_NTU	
		4.0 std.=			-	10.0 std. =	
	4-5045 7-501		·				,
						umhos/cm=	<u> </u>
		<u> </u>			_		
	INFORMATIO				_		
Weather cor	nditions @ time	e of sampling:	5	.,N &5			
Sample Cha	racteristics:		le				
COMMENT	S AND OBSE	RVATIONS:					
							
							
_			_				
I certify that protocals.	sampling proc	edures were ir	accordance w	ith all appli	cable EPA, Sta	ite and Site-Speci	fic
Date:	618105	_ By:	M Lu	ta-	Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: MW-10	3
Personnel: R.SENF/P.LITTLE	Sample Matrix:GW	
MONITORTING WELL INSPECTION:		
Date/Time 6-07-05 1 1245	Cond of seal: () Good () Cracked () None () Buried	<u></u>
Prot. Casing/riser height:		Flush Mount
If prot.casing; depth to riser below:	() Damaged 	<u> </u>
Gas Meter (Calibration/ Reading): % Gas:		<u> </u>
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) O I O	
PURGE INFORMATION:		
Date / Time Initiated: $6-07-05$ / 1255	Date / Time Completed: & ~	07-05/1320
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:	2.0
Initial Water Level, Feet:	Elevation. G/W MSL:	
Total Depth, Feet:	Method of Well Purge:	BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N	
Total Volume Purged, Gal:	Purged To Dryness Y N	
Purge Observations: LOW FLOW	Start CCAA Finish	CCRAZ
PURGE DATA: (if applicable)		
Time Purge Rate Cumulative Temp.	pH Conduct Turb.	Other Other
Elow he	(std units) (Umhos/cm) (NTU)	ORP DO
13/0 150 2.57 19.0	7.23 597 8.04	-281 0.25
		1 1

Time		je Rate m/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1310	Flow 150	2.57		19.0	7.23	597	8.04	-281	0.25
1315		2.77		19,0	7,20	602	6.07	- 284	0.27
1320		2.80		19.0	7.22	603	5.97	-284	0,30
		\$ \$							

SAMPLED AT 1320/6-07-05

PAGE 1 OF 2

SAMPLING	INFORMATIO	N:		POINT ID			
Date/Time	6-07-0	5 1 !	326	Water Lev	rel @ Sampling,	Feet:	2.80
Method of Sa	ampling:	PERISTALTIC	BLADDER PUMP PUM	0	_Dedicated:	Y) N	
Multi-phased	d/ layered:	() Yes	X No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUME	NT CHECK DA	ATA:					1
Turbidity Sei	rial #:	NTU std. :	=NTU	N	ITU std. =	NTU	
Solutions:	CHA-48-E				_		
pH Serial #:		4.0 std.=	7.	0 std.=	10	0.0 std. =	
Solutions:	4-5045 7-5015				_		
	/ Serial #: 3312					umhos/cm	=
	INFORMATIO				_		
Weather con	iditions @ time	of sampling:	SUNN-	85°F			
	racteristics:	Clean					
COMMENT	S AND OBSER	RVATIONS:					
							·
I certify that protocals.	sampling proce	edures were in	accordance w	ith all appli	cable EPA, Stat	e and Site-Spec	ific
Date:	6 P7105	Ву:	21		_ Company:	STL	
			PAGE 2 OF 2	2			

Facility: ARCH CHEMICAL	Sample Point ID: MW-104	<u></u>
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW	
MONITORTING WELL INSPECTION:		
Date/Time 6-07-05 1 /420	Cond of seal: () Good () Cracked () None > Buried	<u>°/o</u>
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlock () Loose () Damaged	Flush Mount
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas: _		
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O / O	
PURGE INFORMATION:		
Date / Time Initiated: $6 - 07 - 05$ / 1425	Date / Time Completed: 6-0-	7-05/1530
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:	2.0
Initial Water Level, Feet: 7,95	Elevation. G/W MSL:	
Total Depth, Feet:		LADDER PUMP ERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N	
Total Volume Purged, Gal:	Purged To Dryness Y N	
Purge Observations:	Start <u>Brown</u> Finish	SL. Tarsig
PURGE DATA: (if applicable)		
Time Purge Rate Cumulative Temp.	•	Other Other

Time		Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1440	FLON 150	WL 8,20		13.1	6.72	1170	169	-234	0.45
1510		8,50		13,0	6,73	1190	157	-239	0,36
1520		8.90		12.9	0,79	1210	143	-240	0,38
15 30		9.10		12,8	6.82	1220	147	-243	0,36

SAMPLING	INFORMATION	ON:		POINT ID			
Date/Time 6-07-05 1/530 Water Level @ Sampling, Feet:						9,10	
Method of S	ampling:	PERISTALTIC PUMP		Puun Dedicated: Y IN			
Multi-phased/ layered:		() Yes	(X) No	If YES:	() light	() heavy	
SAMPLING	DATA:					_	
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUME	NT CHECK D	ATA:			<u></u>		
	rial #: CHA-48-E		=NTU		NTU std. =	_NTU	
				_	_ 1	0.0 std. =	
Solutions:	4-5045 7-501	5			_		
					<u> </u>	umhos/cm=	
GENERAL	INFORMATIC	N:					
Weather cor	nditions @ time	e of sampling:	SUNNY	, 80°A	<u> </u>		
Sample Cha	racteristics:	SC, Tur	812				
COMMENT	S AND OBSE	RVATIONS:					
I certify that protocals.	sampling prod	cedures were ir	accordance w	ith all appl	icable EPA, Stat	e and Site-Specif	īc
Date:	<u>C 1071 05</u>	Ву:	PAGE 2 OF	<u></u>	_ Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: MW - 100
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-8-05 1 (33)	Cond of seal: (/) Good () Cracked% () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (*) Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm /
PURGE INFORMATION:	
Date / Time Initiated: 6-8-05/i335	Date / Time Completed: 6-8-05 / 1400
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 9,81	Elevation. G/W MSL: BLADDER PUMP
Total Depth, Feet:	Method of Well Purge: PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: (30) Fample	Start TURBIO Finish SL TURBIO
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp. ph	Conduct Turb. Other Other

Time		<u> </u>		T		Čanali, ist	Turb.	O415 a.m	<u> </u>
1 ime		Rate	Cumulative	Temp.	pH	Conduct		Other	Other
		n/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
1340	340ml	12.31		12.34	6.58	1950	64.5	30	1.62
1345	3402C	/2.31		11.90	6.51	2520	56.9	33_	0.59
350	Ì	12.31		11.66	6.59	2600	54.8	31	0.42
1355				11.55	6.49	2610	54,1	32	0,41
1400				11,55	6.51	2610	54.0	31	0,43

SAMPLED AT

Sampled on 1403 at 6.8.05

Field Form
Revision 0

PAGE 1 OF 2

Revision 0

03/14/02

SAMPLING	INFORMATIO	ON:		POINT ID				
Date/Time				Water Lev	vel @ Samplin	og, Feet:		
Method of Sa	ampling:	PERISTALTIC PUMP			_Dedicated:	Y / N		
Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
					<u> </u>			
INSTRUME	NT CHECK D	ATA:						
Turbidity Se	rial #:	NTU std.	=NTU	N	ITU std. =	NTU		
Solutions:	CHA-48-E				_			
		4.0 std.=				10.0 std. =		
		5			_			
	/ Serial #: 3312	2				umhos/cm=		
	INFORMATIC							
Weather con	nditions @ time	e of sampling:						
Sample Cha	racteristics:					_		
COMMENT	S AND OBSE	RVATIONS:						
I certify that protocals.	sampling prod	cedures were in	n accordance w	rith all appli	icable EPA, S	tate and Site-Specific		
Date:	1 1	By:			Company	: STL		

Facility: ARCH	CHEMICAL		Sampl	114						
Field Personnel:	R.SENF/P.LITTL	.E	Sampl	e Matrix:	GW					
MONITORTING	WELL INSPECTION:									
Date/Time	13-05 13	320	Cond	Cond of seal: Good () Cracked () None () Buried						
Prot. Casing/rise	r height:		Cond of prot. Casing/riser: () Unlocked () Good () Loose							
If prot.casing; de	epth to riser below:				() Damaged	u				
Gas Meter (Calib	ration/ Reading):	% Gas:		- % LEL		 -				
Vol. Organic Met	er (Calibration/Reading)	:	Volatil	es (ppm <u>;</u>	10	_				
PURGE INFOR		,								
Date / Time Initia	ited: 6-13-05	/1330	Date /	Time Complete	d: 6-13	2-05/	1350			
) Prot. Casing			Diameter, Inche	s:		0,0			
Initial Water Leve	el, Feet: <u>/0-</u> 7	72	Elevat	ion. G/W MSL:		<u> </u>	-			
V Total Depth	, Feet:		Metho	d of Well Purge	:	BLADDEI PERISTA	R PUMP LTIC PUMP			
One (1) Riser Vo	lume, Gal:		Dedica	ated:	YN					
Total Volume Pu	rged, Ga <u>l:</u>		Purge	d To Dryness	YN					
Purge Observati	ons: Low 6	con_	Start	Clear	Finish	CLRA	<u> </u>			
PURGE DATA:	(if applicable)									
	e Rate Cumulative	Temp.	рН	Conduct	Turb.	Other	Other			
	n/htz) Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO			
1335 100	11.75	17.3	6.97	1970	32.2	-251	1.55			

		m/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
1335	100	11.75		17.3	6.97	1970	32.2	-251	1.55
1340	75	11.80		16.9	6.99	1900	13,50	-240	1.69
1345	75	11.75		16.7	7,00	1890	9,73	-237	1.75
1350	75	11.75		16.7	7.01	1890	8.32	-237	1,74

SAMPLED AT /355/6-13-05 PAGE 1 OF 2

SAMPLING	INFORMATIO	ON:		POINT ID			
Date/Time	6-13-0	5 1	1355	Water Lev	vel @ Sampling	ı, Feet:	11.75
Method of S	Sampling:	PERISTALTIC	PUMP BCA	PUNG	_Dedicated:	(Y)N	
						() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
	-						
INSTRUME	ENT CHECK D	ATA:			<u> </u>		
Turbidity Se	erial #: CHA-48-E	NTU std.	=NTU		NTU std. =	_NTU	
pH Serial #:		4.0 std.=	7.	.0 std.=		10.0 std. =	
Solutions:	4-5045 7-501	5			_		_
	y Serial #: 3312			ımhos/cm=	:	umhos/cm	=
					_		
	INFORMATIO						
Weather co	nditions @ time	e of sampling:	SUNNY	90°F			
Sample Cha	aracteristics:	CLEAR					
COMMENT	rs and obse	RVATIONS:					
							
						-	
							
I certify tha protocals.	t sampling prod	cedures were ir	accordance w	rith all appli	icable EPA, Sta	ite and Site-Spec	ific
Date:	613105	Ву:	37	<u> </u>	_ Company:	STL	
			PAGE 2 OF	2		·	

Facility: ARCH CHEMICAL	Sample Point ID: MW -126
Pred Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-15-05 1115	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm /
PURGE INFORMATION:	
Date / Time Initiated: 6-15-05/ 1/20	Date / Time Completed: 6-15-05/114-5
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 5.58	Elevation. G/W MSL:
Total Depth, Feet: 13.40	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: LOW FLOW	Start CCEAN Finish CCEAN

PURGE DATA: (if applicable)

FORGE DATA. (II applicable)											
Time	Purg	je Rate	Cumulative	Temp.	рН	Conduct	Turb.	Other	Other		
	(gpi	m/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO		
1130	Flow 150	5,70		15.9	7.04	1710	36,4	1	2.47		
1/35		5.70		15.9	7.02	1710	37./	-3	2.50		
1140		5.10		15.8	7.09	1720	35,5	2	2.40		
1145		5.70		15.8	7.07	1720	34.3	4	237		

SAMPLED AT //50/6-15-05

PAGE 1 OF 2

SAMPLING	INFORMATIO	N:		POINT ID					
Date/Time	6-15-05	1_/	1150	Water Lev	vel @ Sampling,	Feet:	5.70		
Method of S	ampling:	PERISTALTIC	PUMP- BC	900CA PUMO	_Dedicated:	YN			
	d/ layered:								
SAMPLING	DATA:			<u></u>					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
INSTRUME	NT CHECK DA	.TA:							
	erial #:	NTU std.	=NTU	N	NTU std. =	ַעדע			
Solutions:	CHA-48-E				_				
	4-5045 7-5015		7.	0 std.=	1	0.0 std. =			
	y Serial #:			ımhos/cm=	- :	umhos/cm	=		
	3312				_				
GENERAL	INFORMATION	1:							
Weather cor	nditions @ time	of sampling:	Clous	1, 70°	/- 				
Sample Cha	racteristics:	CLEAG	2						
COMMENT	S AND OBSER	RVATIONS:							
			·						
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.									
Date:	6 115105	Ву:	9/	/	_ Company:	STL			

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: MW-127
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-7-65 / //oc	Cond of seal: 💋 Good () Cracked% () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm O / O
PURGE INFORMATION:	
Date / Time Initiated: 6-7-cs / 1105	Date / Time Completed: 6-7-65 / 1/30
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 4.85	Elevation. G/W MSL:
Total Depth, Feet: 11.25	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: (Y) N
Total Volume Purged, Gal: / O	Purged To Dryness Y /N
Purge Observations:	Start Clar Finish Clar

PURGE DATA: (if applicable)

PORGE DATA. (II applicable)										
Time	Purge Rate		Cumulative	Temp.	рH	Conduct	Turb.	Other	Other	
	(gpn	n/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO	
1110	MUM	5.24		183	7.44	1957	1.38	14	1./7	
1115		5.30		17.8	7.58	1946	1.20	21	1.01	
1120	,	5.39		16.9	7.60	1935	1.16	20	0.98	
1125		5.42		16.5	7.65	1936	1.15	19	0.95	
1130		5.47		16,2	7.69	1935	1.13	20	0.82	

SAMPLED AT 11 35 /6-7-0-

PAGE 1 OF 2

SAMPLING	INFORMATIO	:NC		POINT ID			
Date/Time		<u> </u>		Water Lev	, Feet:		
Method of S	ampling:	PERISTALTIC PUMP			_Dedicated:	Y / N	
Multi-phase	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
				<u></u>			
INSTRUME	NT CHECK D	ATA:					
Turbidity Se	erial #:	NTU std.	=ทาบ	N	NTU std. =	_NTU	
Solutions:	CHA-48-E				_		
-		4.0 std.=		-		10.0 std. =	_
Solutions:	4-5045 7-501	5			_		
					<u> </u>	umhos/cm=_	
Solutions:	331	2			_		
GENERAL	INFORMATIO	DN:					
Weather co	nditions @ tim	e of sampling:					
Sample Cha	racteristics:						
COMMENT	S AND OBSE	RVATIONS:					
							
					·		
				-			
I certify that protocals.	sampling pro	cedures were ir	n accordance w	vith all appli	icable EPA, Sta	ite and Site-Specific	;
·	, ,	-			0.000	071	
Date:	1 1	By:			Company:	SIL	

Facility: ARCH CHEMICAL	Sample Point ID: NRSS - E
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 6-15-05 1 /305	Cond of seal: (Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	-1 - % LEL
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm/
PURGE INFORMATION:	
Date / Time Initiated: 6-15-05/ 1310	Date / Time Completed: 6-15-05/1335
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4_0
Initial Water Level, Feet: 18.80	Elevation. G/W MSL:
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y (N)
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: Flow	Start CLAM Finish CCAM
PURGE DATA: (if applicable)	

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1320	F1.0W 200	19.05		18.5	6.45	3670	22.6	6	0.34
1325		19.20		17,9	6,46	3700	31.7	2	0,26
1330		19.20		16.9	6.46	3690	31.7	0	0.29
1335	V	19.20		16.8	6,47	3700	33,6	-2	0,32
							1		

SAMPLED AT /340/6-/5-05 PAGE 1 OF 2

SAMPLING	INFORMATIO	ON:		POINT ID	NRSS	- E
Date/Time $6 - 15 - 05 + 1340$				vel @ Sampling	, Feet:	
Method of S	ampling:	-PERISTALTIC	PUMP	PUMP	_Dedicated:	Y ⊅N
Multi-phased	d/ layered:	() Yes	X No	If YES:	() light	() heavy
SAMPLING	DATA:					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()
	,					
		-				
INSTRUME	NT CHECK D	ATA:	-			
Turbidity Se Solutions:		NTU std. :	=NTU	1	NTU std. =	_NTU
-	pH Serial #: 4.0 std.= 7.0 std.= 10.0 std. = Solutions: 4-5045 7-5015					
_	/ Serial #: 3312		. <u> </u> -u	ımhos/cm=	<u> </u>	umhos/cm=
	 INFORMATIO				_	
Weather cor	nditions @ time	e of sampling:	CLOUDY,	70%		
Sample Cha	racteristics:	CLEAR				
COMMENT	S AND OBSE	RVATIONS:				
						
 		.				
				-		
I certify that protocals.	sampling proc	edures were in	accordance w	ith all appli	icable EPA, Sta	te and Site-Specific
Date:	6 115,05	_ By:	21		_ Company:	STL

PAGE 2 OF 2

Facility: ARCH CHEMICAL	Sample Point ID: NESS - W				
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW				
MONITORTING WELL INSPECTION:					
Date/Time 6 - 15 - 05 1210	Cond of seal: X Good () Cracked				
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose				
If prot.casing; depth to riser below:					
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL				
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm / /				
PURGE INFORMATION:					
Date / Time Initiated: $6 - 15 - 05 / 1215$	Date / Time Completed: 6-15-05/124c				
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:				
Initial Water Level, Feet: 32.20	Elevation. G/W MSL:				
Total Depth, Feet:	Method of Well Purge: BLADDER PUMP PERISTALTIC PUMP				
One (1) Riser Volume, Gal:	Dedicated: Y (N)				
Total Volume Purged, Gal:	Purged To Dryness Y N				
Purge Observations:	Start CCEAR Finish CCEAR				

PURGE DATA: (if applicable)

	<u> </u>	(ii appii	<u>Cabic)</u>						
Time	Purg	e Rate	Cumulative	Temp.	рH	Conduct	Turb.	Other	Other
	_(gpi	m/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
	Flow	wL		10 6	1 62	0,70	27.0	_ 1 =	
1225	200	32,25		10,0	6.93	2610	37.8	- 73	0.47
(0.2 *		20.0		18.5	100	2670	160	-69	0.32
1230	200	32.30		18,5	6,88	2670	16,2	-6/	0.52
1235	0.00	32.30		18.5	1 94	2670	7	-70	0.29
		\longmapsto		10,1	0,00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25.2	70	0.77
1240	0 BO	2230		10/	6,86	2670	20.6	- 72	0.28
7270		32,0		10.0	6,0	2010	20.0	/2	0,20
	ĺ]		
	ļ								

SAMPLED AT /240/6-15-03

PAGE 1 OF 2

SAMPLING	INFORMATIC	DN:		POINT ID	NRSS-1	<i>ω</i>
Date/Time	6-15-05	<u> </u>	1240	Water Lev	vel @ Sampling,	Feet:
Method of S	ampling:	PERISTALTIC	PUMP	PUMA	_Dedicated:	(Y) N
Multi-phase	d/ layered:	()Yes	XNo	If YES:	() light	() heavy
SAMPLING	DATA:					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()
INSTRUME	NT CHECK D	ATA:				
Turbidity Se	rial #:	NTU std.	=NTU	N	NTU std. =	UTU
Solutions:	CHA-48-E				_	
pH Serial #:		4.0 std.=	7.	0 std.≕	10	.0 std. =
Solutions:	4-5045 7-501	5			_	
	y Serial #: _3312				<u> </u>	umhos/cm=
					_	
GENERAL	INFORMATIO	N:				
Weather co	nditions @ time	of sampling:	CLOUD.	70°F		
Sample Cha	racteristics:	CLARA	·			
COMMENT	S AND OBSE	RVATIONS:				
					<u> </u>	
				_		
			_			
I certify that protocals.	sampling proc	edures were in	accordance w	ith all appli	icable EPA, State	and Site-Specific
Date:	6 V5105	_ By:	34	1	_ Company:	STL

PAGE 2 OF 2

Cacility:	ARCH	CHEM ICAL		Sample Point ID:		Pw-10	
Field Person	nnel:	P. L. He, T	DACM -	Sample Matrix:		60	
SAMPLING	INFORMATI	ON:				(K) Grab () C	a med
Date/Time	6-9-05	1 /	305	Water Lev	el @ Sampling	, Feet:	MALINE
		SAMA.				(V) N	Hollo
Multi-phase	d/ layered:	() Yes	₩ No	If YES:	() light	() heavy	
SAMPLING	B DATA:				·		_
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OAA)	Other (
1300	22.4	8-22	1	195			
INSTRUME	NT CHECK D	ATA:					•
Turbidity Se	Turbidity Serial #:NTU std. =NTUNTU std. =NTU						
Serial #:		4.0 std.=	7.	0 std.=	1	0.0 std. =	
Conductivit	_				 _	umhos/cm) =
GENERAL	INFORMATIO	DN:					
Weather co	nditions @ tim	e of sampling:	SUR	900	- <u></u> -		
Sample Cha	aracteristics:	·	AME:	Clear			
COMMENT	S AND OBSE	RVATIONS:	<u> </u>	Pio	VIAC		
			·				
•	I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific						
focals. Date:	6,9,00	By:	MI	lar:	Company:	.572	

cility:	ARCH	CHEM ICAL		Sample Point ID: $P\omega - U$ Sample Matrix: ω		<i>'</i>	
Field Person	nel:	P. Little, T.	PACM-	Sample M	atrix:		
SAMPLING	SAMPLING INFORMATION:					(K) Grab () C	omposite
Date/Time	6-9-0	1 10.	70	Water Lev	el @ Sampling	, Feet:	28.13
Method of Sa	ampling:	SAMA.	POST		_Dedicated:	WIN	
Multi-phased	d/ layered:	() Yes	₩ No	If YES:	() light	() heavy	
SAMPLING	DATA:						_
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (oN)	Other ()	
1032	19.2	8.40	5045	12,7	-1/2		
		<u> </u>					
INSTRUME	NT CHECK DA	ATA:					•
Turbidity Se	rial #: <u>312;</u>	NTU std. =	= <u>20 NTU</u>	_20_N	ITU std. = <u>2∘</u>	_мти	
Solutions:	CHA-	43-E			- .		
	614162 4-5045,				<u></u> 1	10.0 std. =	
					1352	umhos/cm	=
Solutions:	3312				-	•	
GENERAL	INFORMATIO	N:					
Weather con	nditions @ time	of sampling:	SUN	80°			
Sample Cha	racteristics:	Clev					
COMMENT	S AND OBSE	RVATIONS:					
		-	· · · · · · · · · · · · · · · · · · ·				
certify that	sampling proc	edures were in	accordance w	ith all annli	cable FPA Sta	te and Site-Spec	ific
ocals.	,					•	
Date:	19165	Byr	m 1.		Company:	\overline{C}	

cility:	ARCH	CHEM ICAL		Sample Point ID:		PW-12	
Field Person	inel:	P. Little, T.	PACM	Sample Ma	atrix:	(K) Grab () Composite	
SAMPLING	INFORMATIO	N:				K) Grab () C	omposite
Date/Time	6-9-0	5 1 10	240	Water Lev	el @ Sampling,	Feet:	7.32
Method of S	ampling:	SAMA	PORT		Dedicated:	(V) N	
Multi-phased/ layered: () Yes ∠ No			₩ No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (av)	Other ()	
1242	33.5	7.48	4612	15.72	s 200		
INSTRUME	NT CHECK DA	ATA:	·				
Turbidity Serial #:NTU std. =NTUNTU std. =NTU Solutions:							
		=		0 std.=	1	0.0 std. =	
Conductivity Solutions:	y Serial #:		u	ımhos/cm=_	_ _	umhos/cm	=
GENERAL	INFORMATIO	N:					
Weather cor	nditions @ time	of sampling:	Su,	v 90°			
Sample Cha	racteristics:	Yella	TINT C	10-			
COMMENT	S AND OBSER	RVATIONS:					
· · · · · · · · · · · · · · · · · · ·							
I certify that ocals.	I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific						
Date:	619105	Ву:	All Er	<u>a</u>	Company:	577	

LeachField Form Revision 0 March 15,2002

		•		_		_	
sility:	ARCH	CHEM ICAL		Sample P	oint ID:	fw-	13
Field Person	nel:	P. Little, T.	PACMI	Sample M	latrix:	Fw-13 Ca (C) Grab () Composite	
SAMPLING	INFORMATIO	ON:				(K) Grab () C	omposite
Date/Time	6-9-6	1 /	215	Water Lev	vel @ Sampling	, Feet:	27.66
Method of Sa	ampling:	SAMA.	PORT		_Dedicated:	(V)N	
Multi-phased	i/ layered:	() Yes	₩ No	If YES:	() light	() heavy	
SAMPLING	DATA:				•		
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OA)	Other	
1218	19-1		2013	7.84	-175		
1210							
INSTRUME	NT CHECK D	 ATA:		 -			
			L Pierre I				
Solutions:	rial #:	NTU std. :	=NIU		NI U sta. =	_N 1 U	
Solutions.					-		
Solutions:		_ 4.0 std.=	7.	0 std.=	1 _	0.0 std. =	_
Conductivity	Serial #:			mhos/cm=	·	umhos/cm	=
GENERAL I	NFORMATIO	N:					
Weather con	ditions @ time	e of sampling:	SUN	88			
Sample Char					<u></u>		
COMMENTS	S AND OBSE	RVATIONS:					
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
				-			
	_						
rtify that ocals.	rtify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific cocals.						
Date:	619105	Ву:	M Lie	す_	Company:	57	

PAGE 1 OF 1

LeachField Form Revision 0 March 15,2002

cility:	ARCH	CHEMICAL		Sample Point ID:		Pw-14	
Field Person	inel:	P. L. He, T.	PACMIT	Sample Matrix:		(K) Grab () Composite	
	INFORMATIO					K) Grab () Co	omposite
Date/Time	6-9-05		15	Water Level @ Sampling,		Feet:	34.63
Method of Sa	ampling:	SAMA.	POST		Dedicated:	(V) N	
Multi-phased	d/ layered:	()Yes	₩ No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (6 All)	Other ()	
[318)	17.4	8.54.	4398	25.5	-157		
				<u></u>			
INSTRUME	NT CHECK DA	TA:					
Turbidity Se	Turbidity Serial #:NTU std. =NTUNTU std. =NTU Solutions:						
					1	0.0 std. =	
Conductivity			u			umhos/cm	=
GENERAL	INFORMATIO	N:					
Weather con	nditions @ time	of sampling:	Cloo	ds 90	٥		
	S AND OBSEF						
			-				
							
rtify that sampling procedures were in accordance with all applicable EPA, State and Site-Specificocals.							
	619105	By:	_ pi	Liv	Company:	5-7	

PAGE 1 OF 1

Facility: ARCH CHEMICAL	Sample Point ID: PZ-101						
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW						
MONITORTING WELL INSPECTION: //2Z							
Date/Time 6-13-05 1 1128 PL	Cond of seal: () Good () Cracked % () None () Buried						
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged						
If prot.casing; depth to riser below:							
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL /						
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm /						
PURGE INFORMATION:							
Date / Time Initiated: 6-13-65 /1125	Date / Time Completed: 6-13-65/1140						
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:						
Initial Water Level, Feet: 12.88	Elevation. G/W MSL:						
Total Depth, Feet:	Method of Well Purge: PERISTALTIC PUMP						
One (1) Riser Volume, Gal:	Dedicated: Y N						
Total Volume Purged, Gal:	Purged To Dryness Y / 🕟						
Purge Observations:	Start Clara Finish Clara						
PURGE DATA: (if applicable)							
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)	pH Conduct Turb. Other Other (std units) (Umhos/cm) (NTU) ORP DO						

Time		e Rate	Cumulative	Temp.	рН	Conduct	Turb.	Other	Other
	(gpi	m/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
1130	150	13.10		19.1	6.82	5254	4.61	-30	1.17
((3)				19.0	7-02	3917	3.11	- 33	1.01
(140				26.1	7.00	3891	2.90	- 35	-97
1145				20.2	7.01	3882	2.69	- 36	0 96

SAMPLED AT 1150 [6-13-05]

PAGE 1 OF 2

SAMPLING I	NFORMATIC	DN:		POINT ID		
Date/Time _	± <u>. </u>			Water Lev	vel @ Sampling	g, Feet:
Method of Sai	mpling:	PERISTALTIC PUMP			_Dedicated:	Y/N
Multi-phased/	layered:	()Yes	() No	If YES:	() light	() heavy
SAMPLING I	DATA:					
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()
INSTRUMEN	IT CHECK D	ATA:				
Turbidity Seri		NTU std.			NTU std. =	NTU
_	-				_	40.0 //
pH Serial #: _ Solutions: _4		_ 4.0 std.= 5	/			10.0 std. =
Conductivity					:	umhos/cm=
Solutions: _	3312	2			_	
GENERAL II	NFORMATIO	N:				
Weather cond	ditions @ time	of sampling:				
Sample Chara	acteristics:					
COMMENTS	AND OBSE	RVATIONS:				
					_	
	_					
		_				
				_		
I certify that s	sampling proc	edures were ir	n accordance w	ith all appl	icable EPA, St	ate and Site-Specific
Date:	1 1	Ву:			Company:	STL

Facility: ARCH CHEMICAL	Sample Point ID: P2-102
R.SENF/P.LITTLE	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-13-05 1 12,6	Cond of seal: (AGood () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (4) Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm 6 / 6
PURGE INFORMATION:	
Date / Time Initiated: 6-13-05 / 1220	Date / Time Completed: 6-13-05 / 12 40
Surf. Meas. Pt: () Prot. Casing 💢 Riser	Riser Diameter, Inches: 2. 0
Initial Water Level, Feet: 12.25	Elevation. G/W MSL:
Total Depth, Feet:32.6°	Method of Well Purge: PERISTALTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: (Ŷ) N
Total Volume Purged, Gal:	Purged To Dryness Y / 🕡
Purge Observations:	Start Char Finish Clar
PLIPCE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)		Cumulative	Temp.	рН	Conduct	Turb.	Other	Other
			Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	DO
1225	200	au C 12.33		16.3	7-17	3156	2.00	-27	.98
(230				15.9	7.20	7827	1.83	- 39	.94
1235				16,6	7.25	3901	1.77	-43	. 90
1240				16.3	7.11	3910	.69	-44	-87

SAMPLED AT 1245 /6-13-65

PAGE 1 OF 2

SAMPLING	INFORMATI	ON:		POINT ID			
Date/Time				Water Lev	g, Feet:		
Method of S	ampling:	PERISTALTIC PUMP			Y / N		
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
			-			<u> </u>	
							
INSTRUME	NT CHECK I	 D A TA:					
		NTU std.	=NTU	1	NTU std. =	_NTU	
Solutions:	CHA-48-E				_		
	·	4.0 std.= 15				10.0 std. =	
	y Serial #:					umhos/cm=	
Solutions:	331						
GENERAL	INFORMATIO	ON:					
Weather co	nditions @ tim	e of sampling:					
Sample Cha	ıracteristics:						
COMMENT	S AND OBSI	ERVATIONS:					
	<u> </u>						
		-					
I certify that	t sampling pro	ocedures were in	n accordance w	rith all appli	icable EPA. Sta	ate and Site-Specific	
protocals.	, 5,,,,				,	·	1
Date:	1 1	By:			Company:		1

Facility: ARCH CHEMICAL	Sample Point ID: P2-10	3								
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW									
MONITORTING WELL INSPECTION:										
Date/Time 6-/3-05 1302	Cond of seal: (*) Good () Cracked () None () Buried									
Prot. Casing/riser height:		locked (太Good () Flush Mount d								
If prot.casing; depth to riser below:	() Damage	-u								
Gas Meter (Calibration/ Reading): % Gas: / % LEL /										
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm <u>O I O</u>	_								
PURGE INFORMATION:										
Date / Time Initiated: 6/13/15/1305	Date / Time Completed:	6/13/0s/1325								
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:	2.0								
Initial Water Level, Feet: 12.44	Elevation. G/W MSL:	DI ARTER DAME								
Total Depth, Feet: 32.57	Method of Well Purge: PERISTALTIC PUMF									
One (1) Riser Volume, Gal:	Dedicated: Ø/ N									
Total Volume Purged, Gal: 1.6	Purged To Dryness Y									
Purge Observations:	Start Clerc Finish	01000								
PURGE DATA: (if applicable)										
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)	pH Conduct Turb. (std units) (Umhos/cm) (NTU)	Other Other ORP DO								
1310 200 12.72 17.4	7.50 3644 1.32	-159 1.65								
1315 16.6	7.48 3371 1.79	-162 1.55								
1320 /6.2	7.38 3367 1.70	-164 1.49								
1325 16.6	7.29 3360 1.65	-166 1.42								

SAMPLED AT 1330/6-13-05

PAGE 1 OF 2

SAMPLING	INFORMATIO	ON:		POINT ID			
Date/Time	_			Water Lev	g, Feet:		
Method of Sa	ampling:	PERISTALTIC	PUMP		_Dedicated:	Y/N	
Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:		_				
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
				1			
				<u> </u>			
INSTRUME	NT CHECK D	ATA:					
_		NTU std.	=NTU		NTU std. =	NTU	
Solutions:	CHA-48-E				_		
		4.0 std.=				10.0 std. =	
Solutions:	<u>4-5045 7-501</u>	5	<u> </u>		_		
					<u> </u>	umhos/cm=	
		2			_		
GENERAL	INFORMATIC	N:					
Weather cor	nditions @ time	e of sampling:					
Sample Cha	racteristics:						
COMMENT	S AND OBSE	RVATIONS:					
							_
			_				
-					·		
				·			
I certify that protocals.	sampling prod	cedures were ir	accordance w	rith all appli	icable EPA, St	ate and Site-Specific	
Date:		Ву:			_ Company:	STL	

Facility:	ARCH	CHEMIC	AL		Sample Point ID: P2-109						
led Pers	sonnel:		R.SENF/P.LITTL	Ε	Sampl	e Matrix:	GW				
MONITO	RTING	WELL	INSPECTION:								
Date/Time	e 6	-13-0	5 1/020	9	Cond of seal: () Good () Cracked % () None () Buried						
Prot. Cas	ing/rise	r height	<u> </u>		Cond	of prot. Casing/i	() Loose	(₹Flush I			
If prot.ca	sing; de	pth to ri	ser below:				() Damage	u			
Gas Meter (Calibration/ Reading): % Gas: / % LEL /											
Vol. Orga	ınic Met	er (Calib	oration/Reading):	:	Volatil	es (ppm 🖰	10	_			
PURGE	INFORI	MATION	l :								
Date / Time Initiated: 6-13-05/ 1030					_ Date /	Time Complete	d:	6-13-6	5/10,0		
Surf. Mea	Surf. Meas. Pt: () Prot. Casing					Diameter, Inche	s:	<u> 2. c</u>	<u>, </u>		
Initial Wa	iter Leve	el, Feet:	12.83		Elevat	ion. G/W MSL:	•				
\ Tota	ıl Depth	, Feet:	23.61		Method of Well Purge: <u>PERISTALTIC PU</u>						
One (1) R	Riser Vo	lume, Ga	al:	*-	Dedicated:						
Total Vol	ume Pu	rged, Ga	al:/.o		Purged To Dryness Y / (N)						
Purge Ob	servati	ons:			Start	der	Finish	ckn			
PURGE	DATA:	(if appl	icable)		-		-				
Time	Purg	e Rate	Cumulative	Temp.	рН	Conduct	Turb.	Other	Other		
 	(gpn	n/htz) ールレ	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP_	DO		
1035	Mc/.nu	12.90		15.2	7 33	1924	11.3	- 78	1.15		
1040				14.9	7.00	1924	3,55	-87	1.01		
1045				15.1	688	1921	7.04	- 90	0.97		
1050				15.2	6.99	1920	1.97	-93	0.95		

SAMPLED AT 1055 /6-13.05

PAGE 1 OF 2

PLANT F. OLD PLANT

Field Form Revision 0 03/14/02

1.97

0.95

SAMPLING	INFORMATI	ON:		POINT ID			
Date/Time				Water Lev	vel @ Sampling,	Feet:	
Method of S	ampling:	PERISTALTIC PUMP			_Dedicated:	Y / N	
Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (A)	Other (\nearrow 0	
1052	15-2	7.01	1920	1.94	-94	6.93	
INSTRUME	NT CHECK D	DATA:					
Turbidity Se Solutions:			=NTU		NTU std. =	NTU	
-		4.0 std.=			_	0.0 std. =	
_	/ Serial #: 331	2				umhos/cm=	
	INFORMATIO				_		
Weather cor	nditions @ tim	e of sampling:					
Sample Cha	racteristics:						
COMMENT	S AND OBSE	ERVATIONS:					
			-				
I certify that protocals.	sampling pro	cedures were ii	n accordance w	rith all appl	icable EPA, Stat	e and Site-Specific	
Date:		Ву:			_ Company:	STL	

Facility: ARCH CHEMICAL	Sample Point ID: \$2-105				
Personnel: R.SENF/P.LITTLE	Sample Matrix: GW				
MONITORTING WELL INSPECTION:					
Date/Time 6-7-05 / /338	Cond of seal: Good () Cracked% () None () Buried				
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose				
If prot.casing; depth to riser below:					
Gas Meter (Calibration/ Reading): % Gas:					
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm/				
PURGE INFORMATION:					
Date / Time Initiated: 6-7-05/1346	Date / Time Completed: 6-7-05/1400				
Surf. Meas. Pt: () Prot. Casing (Riser	Riser Diameter, Inches:				
Initial Water Level, Feet:	Elevation. G/W MSL:				
Total Depth, Feet: 32.86	Method of Well Purge: PERISTALTIC PUMP				
One (1) Riser Volume, Gal:	Dedicated: Ø/N				
Total Volume Purged, Gal:	Purged To Dryness Y / (N)				
Purge Observations:	Start 6100 Finish 610				
PURGE DATA: (if applicable)					

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1345	mila 75	9.81		187	8,52	1205	91.5	-135	1.10
1350		10.73		185	8.11	1220	90.9	, 156	.97
1355		11.11		18.6	7.99	1241	84.7	-165	-93
Thoc		12.12	<u>-</u>	18.4	7.90	1247	90.2	- 170	-40

SAMPLED AT 1405/6-705
PAGE 1 OF 2

SAMPLING INFOR	RMATION:		POINT ID			
Date/Time		1 .	Water Lev	rel @ Sampling,	Feet:	
Method of Sampling	g: <u>PERIST</u>	PERISTALTIC PUMP () Yes () No		_Dedicated:	Y / N	
Multi-phased/ layer	ed: () Yes			() light	() heavy	
SAMPLING DATA	:					
	•	H Conduct units) (Umhos/cm	Turb.) (NTU)	Other ()	Other ()	
		_				
INSTRUMENT CH	ECK DATA:					
Turbidity Serial #: _ Solutions: CHA-4	o E	U std. =NTU		ITU std. =	NTU	
pH Serial #:				1	0.0 std. =	
Solutions: 4-5045	7-5015			_		
					umhos/cm=	
Solutions:	3312			-		
GENERAL INFOR	MATION:					
Weather conditions	@ time of sam	pling:				
Sample Characteris	tics:			_		
COMMENTS AND	OBSERVATIO	NS:				
					•	
-						
I certify that sampli protocals.	ng procedures	were in accordance	with all appli	cable EPA, Stat	e and Site-Specific	
Date:/	/ B	y:		_ Company:	STL	

Facility: ARCH CHEMICAL		Sample Point ID: P2-106							
Personnel: R.SENF/P.LITT	LE	Sampl	e Matrix:	GW					
MONITORTING WELL INSPECTION:									
Date/Time 6-8-05 1 12	27	Cond of seal: (x) Good () Cracked % () None () Buried							
Prot. Casing/riser height:		Cond		()Loose	() Flush M				
If prot.casing; depth to riser below:				() Damage	u				
Gas Meter (Calibration/ Reading):	% Gas:		% LEL						
Vol. Organic Meter (Calibration/Reading):	Volatil	es (ppm 🗡	10	_				
PURGE INFORMATION:									
Date / Time Initiated: 6-8-07/	1230	Date /	Time Completed	d:	6-800	/1250			
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2.0								
Initial Water Level, Feet: 14. 91		_ Elevat	ion. G/W MSL:		 -				
Total Depth, Feet: 27. %		Metho	d of Well Purge:	:	BLADDE! PERISTAI	TIC PUMP			
One (1) Riser Volume, Gal:		Dedica	ated: (9/ N					
Total Volume Purged, Gal:		Purged To Dryness Y / D Yellow 71nt							
Purge Observations:		Start	Clear		Cler	, ,			
PURGE DATA: (if applicable)									
Time Purge Rate Cumulative (gpm/htz) Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO			
1235 15.30	17.9	8.51	4617	15.0	-186	1.71			
1240 15.75	16.5	7.06	4203	15.4	-168	1,02			
1245 16.01	16.6	6.91	4190	12.3	-172	. 95			
1250 16.30	17.1	6.75	4110	12.1	-173	,90			

SAMPLED AT 1255/6-8-05PAGE 1 OF 2

SAMPLING	INFORMATI	ON:		POINT ID			
Date/Time				Water Lev	, Feet:		
Method of S	ampling:	PERISTALTIC	PUMP		_Dedicated:	Y / N	
Multi-phase	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUME	NT CHECK D	 PATA:					
	erial #:	NTU std.	=NTU		NTU std. =	_NTU	
pH Serial #:			7	.0 std.=		0.0 std. =	
Conductivity	y Serial #:			umhos/cm=	·	umhos/cm=	
Solutions:	331	2	_		_		
GENERAL	INFORMATIO	ON:					
Weather co	nditions @ tim	e of sampling:					
Sample Cha	racteristics:			_			
COMMENT	S AND OBSE	ERVATIONS:					
							
·							
I certify that	sampling pro	cedures were ir	n accordance v	vith all appl	icable EPA, Sta	te and Site-Specific	
Date:	1 1	By:			Company:	STL	

Facility: ARCH CHEMICAL			Sample Point ID: P2-167							
sonnel:	<u> 1</u>	R.SENF/P.LITTL	E	Sampl	e Matrix:	GW				
RTING	WELL I	NSPECTION:								
6)-05	1 /	419	Cond of seal: (Good () Cracked % () None () Buried						
ing/rise	r height <u>:</u>			Cond	of prot. Casing/	() Loose	() Flush N			
sing; de	pth to ris	ser below:				() Damage	u			
r (Calibi	ration/ R	eading):	% Gas:		% LEL					
nic Met	er (Calibi	ration/Reading):		Volatil	es (ppm	1	_			
NFORI	MATION	:								
Date / Time Initiated: $(-)$ - 65 / 1420			1420	Date /	Time Complete	d:	6-7-0	-/ 1440		
Surf. Meas. Pt: () Prot. Casing Riser			Riser	Diameter, Inche	s:		<u></u> _			
ter Leve	el, Feet: _	6,73		Elevat	ion. G/W MSL:					
I Depth	Feet:	27.90	<i>o</i>	Method of Well Purge: PERISTALTIC PUMP						
iser Vol	ume, Ga	l:		Dedicated: Y/N						
ume Pu	rged, Ga	l: <u>1</u> -5		Purged To Dryness Y / N						
servatio	ons:			Start	Char	Finish	Close			
		Cumulative Volume		pH (std units)	Conduct (Umhos/cm)	ſ	Other ORP	Other DO		
Alfau Zoù	wc 6.83		14.5	7.42	3223	2.18	-111	1.10		
			14.0	7.37	3609	1.11	-119	- 79		
			13.8	7.36	3661	1.10	-120	- 95		
		1.5	134	7.36	3675	0-97	-/22	. 90		
	ing/riser sing; de r (Calibration Metro NFORM ne Initiation s. Pt: () ter Leve I Depth, iser Vol ume Pur eservation DATA: Purge (gpm	RTING WELL I RTING WELL I Proving June 1 1 1 1 1 In Control of the Initiated: In C	RTING WELL INSPECTION: (a) (b) (c) (c) (d) (d) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	RTING WELL INSPECTION: (a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	RTING WELL INSPECTION: A C) - O I / 4/19 Cond of ing/riser height: Cond	RTING WELL INSPECTION: (a) (b) (c) (c) (std units) RTING WELL INSPECTION: (b) (c) (c) (std units) (d) (c) (std units) (d) (c) (std units) (d) (c) (std units) (d) (d) (std units) (d) (d) (d) (std units) (d) (d) (d) (std units) (d) (d) (d) (std units) (d) (d) (d) (std units) (d) (d) (d) (d) (std units) (d) (d) (d) (d) (std units) (d) (d) (d) (d) (d) (d) (std units) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	RTING WELL INSPECTION: Cond of seal: A Good () Cracked () None () Buried () None () Buried () Loose () Damage () Da	RESENTING WELL INSPECTION: G		

SAMPLED AT 1445 /6-7-05

PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID			
Date/Time				Water Lev	el @ Sampling	, Feet:	
Method of S	ampling:	PERISTALTIC	PUMP		_Dedicated:	Y / N	
Multi-phased	d/ layered:	()Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUME	NT CHECK D	ATA:					
Turbidity Se	erial #:	NTU std.	=NTU		ITU std. =	_NTU	
Solutions:	CHA-48-E				_		
-		4.0 std.=				0.0 std. =	
Solutions:	4-5045 7-501	5			_		
				umhos/cm=	<u> </u>	umhos/cm=	
Solutions:	331	2			_		
GENERAL	INFORMATIC	DN:					
Weather cor	nditions @ time	e of sampling:	_		_		
Sample Cha	racteristics:						
COMMENT	S AND OBSE	RVATIONS:					
					-		
	- -						_
-				_			
I certify that protocals.	sampling pro	cedures were ir	n accordance v	vith all appli	icable EPA, Sta	te and Site-Specific	
Date:	1 1	By:			Company:	STL	

cility:	DRCH		<u></u>	Sample Point ID: 9D-/			
Field Perso	nnel:	R. SR.	v k	Sample Ma	atrix:	(X) Grab () Composite	
SAMPLING	INFORMATIC	N:				(X) Grab () Coi	nposite
Date/Time	6-16-05	1/0	230	Water Lev	el @ Sampling,	Feet:	N/4
	Sampling:					(Y)IN	
Multi-phase	ed/ layered:	() Yes	(XNo	If YES:	() light	() heavy	
SAMPLING	B DATA:						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other	
1235	Ţ 	7.44	1838	1	86		
INSTRUME	ENT CHECK DA	ATA:	- 				
Turbidity So Solutions:	erial #:	NTU std. :	=NTU	N	TU std. =	ַטדע	
pH Serial #: Solutions:	·	4.0 std.=	7.	0 std.=	16	0.0 std. =	_
	ty Serial #:					umhos/cm=	_
GENERAL	INFORMATIO	N:					
Weather co	nditions @ time	of sampling:	RAIN, 6	5500			
	aracteristics:	_					
COMMENT	TS AND OBSE	RVATIONS:					-
			·				
·						·	
	t sampling proc	edures were in	accordance w	ith all applic	cable EPA, State	e and Site-Specif	ic
tocals.	616105	Byr	Q /) 	Company:	570	
valt.	$\frac{\upsilon}{}$ $\frac{1}{}$ $\frac{\upsilon}{}$. ₽y.	1 1 -	/	. Company:		

cility:	y: 17RCH			Sample Po	oint ID:	<u> 90 - 2</u>		
Field Person	inel:	R. SKI	1.6	Sample M	atrix:	5/w		
SAMPLING	INFORMATIO	N:				(X) Grab () Co	mposite	
Date/Time	6-16-0-	5 1/	300	Water Lev	el @ Sampling	, Feet:	NA	
Method of Sa	ampling:	MANU	AC GRA	18	Dedicated:	(Y) /N		
Multi-phased	d/ layered:	()Yes	(XNo	If YES:	() light	() heavy		
SAMPLING	DATA:				·			
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (
1305		7.98			86			
INSTRUME	NT CHECK DA	TA:						
Turbidity Se	rial #:	NTU std. :	=NTU	N	ITU std. =	_טדא		
pri Serial #: Solutions:		4.0 std.=	7.	0 std.=	1 -	0.0 std. =	_	
_	/ Serial #:		u		 _	umhos/cm=	:	
GENERAL	INFORMATION	٧:						
Weather cor	nditions @ time	of sampling:	RAIN	65°F				
			•					
COMMENT	S AND OBSEF							
					_		_	
-								
' rertify that	sampling proce	edures were in	accordance w	ith all applic	cable EPA, Stat	e and Site-Speci	fic	
Date:	6 1161 05	Ву:	2 -	3	Company:	STC		

LeachField Form Revision 0 March 15,2002

cility:	<u> ARCH</u>			Sample P	oint ID:	<u> 30 - 251</u>	
Field Persor	nnel:	R. SAA	V F	Sample M	atrix:	<u> </u>	
SAMPLING	INFORMATIO	N:				(A) Grab () Co	mposite
Date/Time	6-16-0:	5 1/	315	Water Lev	vel @ Sampling	, Feet:	W/A
Method of S	ampling:	D106	PER .		_Dedicated:	(Y)N	
Multi-phase	d/ layered:	() Yes	ΜNο	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp.	pH (etd.unite)	Conduct	Turb.	Other	Other	
(306	(°C)	(std units)	(Umhos/cm) 492	(NTU)	(ORA)	 	
1320	23,2	7.72	7/2	 -		 -	
<u></u>		<u> </u>		<u></u>	<u> </u>	<u> </u>	
INSTRUME	NT CHECK DA	NTA:					
Turbidity Se	rial #:	NTU std.	=NTU	N	ITU std. =	_พาบ	
Solutions:					_		
pH Serial #:		4.0 std.=	7.	0 std.=		10.0 std. =	
Solutions:		 _			-		
Conductivity	y Serial #:			ımhos/cm=		umhos/cm=	
Solutions:					-		
GENERAL	INFORMATIO	٧:					
Weather cor	nditions @ time	of sampling:	RAIN	65°F			
Sample Cha	racteristics:	CEAC	<u>. </u>				
COMMENT	S AND OBSER	RVATIONS:					
	072 0202.						
							
							
	sampling proce	edures were in	accordance w	ith all appli	cable EPA, Sta	te and Site-Specit	īc
tocals.	/ K/		\bigcirc	1		<i>(</i>)	
Date:	6 1605	By:	01/		Company:	5F	

PAGE 1 OF 1

cility:	cility: <u>PRCH</u>				oint ID:	95-4		
Field Perso	nnel:	C. SENA	<i></i>	Sample M	latrix:	SEE.P		
SAMPLING	SINFORMATIO	N:				Grab () Co	mposite	
Date/Time	6-16-03	1/3	205	Water Lev	vel @ Sampling	, Feet:	W/A	
Method of S	Sampling:	MANU.	ac GRAC	3	Dedicated:	YN		
Multi-phase	ed/ layered:	() Yes	(X) No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OCC)	Other		
1210	14.3	7,40	1656	(1410)	102			
77				 	/ /			
INSTRUME	ENT CHECK DA	ATA:		 _				
Turbidity Solutions:	erial #:	NTU std. :	=NTU	^	ITU std. =	_NTU		
ਸਮੇਂ Serial #:	:	4.0 std.=	7.	0 std.=	1	0.0 std. =		
Solutions:			_		_			
Conductivit	ty Serial #:		u	ımhos/cm=		umhos/cm=		
GENERAL	INFORMATIO	N:						
Weather co	nditions @ time	of sampling:	RAIN	65°F				
	aracteristics:							
COMMENT	TS AND OBSEF							
COMMENT	I S AND OBSE	WATIONS.						
								
								
						-		
' `ertify tha	t sampling proce	edures were in	accordance w	ith all appli	cable EPA, Stat	e and Site-Specif	ic	
Date:	6 16105	By:	03 /	1	Company:	STC		

Facility:	ARCH CHEMIC	AL		Sampl							
Heid Pers	sonnel:	R.SENF/P.LITTL	E	Sampl	Sample Matrix: GW						
MONITO	RTING WELL	INSPECTION:									
Date/Time	6-8-05	1 10:	Cond	Cond of seal: () Good () Cracked () None () Buried							
Prot. Casi	ng/riser height	<u> </u>	Cond	Cond of prot. Casing/riser: () Unlocked () Good							
If prot.cas	sing; depth to r	iser below:				(/ = aago					
Gas Meter	r (Calibration/ F	Reading):	% Gas:		% LEL						
Vol. Orga	nic Meter (Calib	oration/Reading):		Volatil	es (ppm -	1-0					
PURGE	NFORMATIO	٧:									
Date / Tim	ne Initiated:	6-8.05/	1040	Date /	Time Complete	d:	6-8-05	/ 1100			
Surf. Mea	s. Pt: () Prot. C	asing	() Riser	Riser I	Diameter, Inche	es:					
Initial Wa	ter Level, Feet:	2,56		Elevat	ion. G/W MSL:						
\ Tota	l Depth, Feet:			Metho	d of Well Purge):	BLADDEF PERISTAL	TIC PUMP			
One (1) R	iser Volume, G	al:		Dedica	ated: (9/ N					
Total Volu	ume Purged, G	al: 2.0		Purge	d To Dryness	Y					
Purge Ob	servations:			Start	Cler	_Finish	clos				
PURGE I	DATA: (if appl	ica <u>bl</u> e)	_								
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO			

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO
1045	256		17.3	7.59	3034	4.85	-40	1.36
1050			16.8	7.52	3048	5.05	-37	1,10
1055			16.1	7.53	3055	4,28	- 38	e 95
1100	V		16.5	7.53	3062	3-32	- 59	-93

SAMPLED AT 1105/c-8-08

PAGE 1 OF 2

FIELD OBSERVATIONS (continued)

SAMPLING INFOR	MPLING INFORMATION:			POINT ID				
Date/Time		<u></u>	Water	Water Level @ Sampling, Feet:				
Method of Sampling	j: <u>PERIS</u>	TALTIC PUMP		Dedicated	l: Y / N			
Multi-phased/ layere	ed: () Ye	s () No	If YES	: () light	() heavy			
SAMPLING DATA	:							
	mp. p PC) (std	H Cond units) (Umbo	uct Tur os/cm) (NT		ll II			
	-							
INSTRUMENT CH	ECK DATA:							
Turbidity Serial #: _		'U std. =	_NTU	NTU std. =	NTU			
Solutions: CHA-4								
pH Serial #:		d.=	7.0 std.=		10.0 std. =	_		
Solutions: <u>4-5045</u>	7-5015		 _					
					umhos/cm=_			
Solutions:								
GENERAL INFOR		mline.						
	P							
Sample Characteris	tics:							
COMMENTS AND	OBSERVATION	ONS:						
•	ng procedures	were in accord	dance with all a	pplicable EPA	, State and Site-Specifi	ic		
protocals.				_				
Date: /	/ F	Bv:		Compa	nv: STI			

FIELD OBSERVATIONS

Facility: ARCH CHEMICAL				Sample Point ID: 5-4						
Field Personnel: R.SENF/P.LITTLE				Sample Matrix: GW						
MONITORTIN	G WELL	INSPECTION:				1.15				
Date/Time 6-9-05 1110			Cond of seal: () Good () Cracked % () None () Buried							
Prot. Casing/riser height:				Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged						
If prot.casing;	depth to ri	iser below:				(,, =9-	~ 			
Gas Meter (Cal	ibration/ F	Reading):	% Gas:		% LEL					
Vol. Organic M	eter (Calib	oration/Reading)	:	Volatil	es (ppm	<u>/</u>	_			
PURGE INFO										
Date / Time Ini	tiated:	C-8 or / 11	15	_ Date /	Time Completed	d:	6-8-00	/ 1135		
Surf. Meas. Pt: () Prot. Casing () Riser			Riser	Date / Time Completed: 6-8-0 / 113 Riser Diameter, Inches: V4017						
Initial Water Le	evel, Feet:	, 72		_ Elevat	ion. G/W MSL:					
Total Depth, Feet:			BLADDER PUT Method of Well Purge: PERISTALTIC I							
One (1) Riser Volume, Gal:			Dedicated:							
Total Volume Purged, Gal: 2.5			Purged To Dryness Y / (N)							
Purge Observations:			_ Start	Chin	Finish	Cle-				
PURGE DATA	A: (if appl	icable)								
11	rge Rate pm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other DO		
	, 72		16.3	7.67	4263	8.64	- 9	1.56		
1125	1		15.8	7.92	4216	8.09	-39	1.21		
/13¢			16-2	8.07	4220	7.92	-42	1.06		

SAMPLED AT 1140 /6-8.05

Al Lite

1135

PAGE 1 OF 2

8.07

4222

16.7

Field Form Revision 0 03/14/02

757

.90

- 45

FIELD OBSERVATIONS (continued)

SAMPLING INFORMATION:				POINT ID			
Date/Time /				Water Lev	, Feet:		
Method of Sampling:		PERISTALTIC PUMP			_Dedicated:	Y / N	
Multi-phased/ lay	ered:	() Y es	() No	If YES:	() light	() heavy	
SAMPLING DAT	TA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUMENT C	HECK	PATA:					
Turbidity Serial # Solutions: CHA			=NTU		NTU std. =	_NTU	
pH Serial #: Solutions: 4-50			7	.0 std.=	1 _	0.0 std. =	
Conductivity Ser						umhos/cm=	
Solutions:	331	2			_		
GENERAL INFO	RMATIC	ON:					
Weather conditio	ns @ tim	e of sampling:					
Sample Characte	ristics:						
COMMENTS AN	ID OBSE	RVATIONS:					
							-
I certify that sam protocals.	pling pro	cedures were ir	accordance w	rith all appli	cable EPA, Sta	te and Site-Specific	
Date: /	1	Ву:			Company:	STL	

Appendix B

Well Trend Data

Prepared by: nmb Reviewed by: jrb

BR-106

Prepared by: nmb Reviewed by: jrb

BR-127

Prepared by: nmb Reviewed by: jrb

Prepared by: nmb Reviewed by: jrb

Prepared by: nmb Reviewed by: jrb

Prepared by: nmb Reviewed by: jrb

Prepared by: nmb Reviewed by: jrb

Prepared by: nmb Reviewed by: jrb

MW-127

Prepared by: nmb Reviewed by: jrb

PZ-102

CONCENTRATION (ug/L)

CONCENTRATION (ug/L)

QO-2 (QUARRY OUTFALL)