VAPOR INTRUSION SAMPLING AT FIRTH RIXSON AND ARM

ARCH CHEMICALS, INC. ROCHESTER PLANT SITE ROCHESTER, NEW YORK

NYS Registry No. 828018A

June 2006

VAPOR INTRUSION SAMPLING AT FIRTH RIXSON AND ARM

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

Prepared by

MACTEC Engineering & Consulting, Inc. Portland, Maine

for

ARCH CHEMICALS, INC. Charleston, Tennessee

June 2006

This document was prepared for the sole use of Arch Chemicals, Inc., the only intended beneficiary(ies) of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering & Consulting, Inc.

Jay Peters Senior Scientist

Jeffrey E. Brandow, P.E. Principal Engineer

VAPOR INTRUSION SAMPLING AT FIRTH RIXSON AND ARM

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NY

TABLE OF CONTENTS

Section	Title	Page No.
1.0 INTRODUCTIO	N	1
	Y	
	ION OF REPORT	
	OCEDURES	
	USION SAMPLING	
	Locationsor Samples	
	ir Samples	
-	Collection Procedures	
	ПТҮ	
	UATION	
	racterization Methods	
	racterization Findings	
	5	
5.0 REFERENCES.		
APPENDIX A	Field Data Records	
APPENDIX B	Meteorological Data	
APPENDIX C	Laboratory Analytical Reports	

APPENDIX C	Laboratory Analytical Reports
APPENDIX D	Risk Calculations

1.0 INTRODUCTION

MACTEC Engineering and Consulting, Inc. (MACTEC) has been contracted by Arch Chemicals, Inc., (Arch) to perform environmental investigation activities at their facility in Rochester, NY. MACTEC has prepared this report on behalf of Arch to describe the results of a portion of the 2006 vapor intrusion sampling program at their Rochester facility. This report discusses the results of offsite sampling conducted at adjacent properties owned by Firth Rixson and American Recycling & Manufacturing (ARM).

1.1 SITE HISTORY

Arch is the current owner of the Rochester Plant located at 100 McKee Road, a private industrial road in the southwestern section of Rochester, New York (Figure 1). The plant property is approximately 15.3 acres.

Manufacturing operations have consisted of organic and inorganic chemical production. The primary products are specialty organic chemicals, many of which are produced in small quantities. Due to the nature of the manufacturing operations at Rochester, a large number of organic raw materials, intermediates, and products have been handled at the plant. In 1948, Genesee Research (a fully-owned subsidiary of the Puritan Company) first established a facility at the site for manufacturing automotive specialty products (e.g., brake fluids, polishes, anti-freeze, and specialty organic chemicals). In 1954, Mathieson Chemical Corporation acquired Puritan and merged with Olin Industries to become Olin Mathieson Chemical Corporation. Production of brake fluid and anti-freeze continued for a time, but in the early 1960s production of specialty organic chemicals including Zinc Omadine[™] and chloropyridines began. In 1969, Olin Mathieson changed its name to Olin Corporation (Olin), and in 1999 Olin spun off its specialty chemicals business to form an independent company known as Arch Chemicals, Inc. The Arch Rochester plant is the sole manufacturer of chloropyridines in the United States.

The Rochester Plant has been the subject of various environmental investigations since the early 1980s, including a two-phased RI conducted in 1994-1996. These investigations have documented the presence of site-related chemicals, primarily chloropyridines and volatile organic compounds, in soil and groundwater at the site.

A Feasibility Study (FS) was completed in January 2000, in which a range of possible site remedial actions were evaluated. The FS was performed to fulfill part of the requirements of the previous Order on Consent between the NYSDEC and Olin, dated August 23, 1993.

On March 29, 2002, the NYSDEC issued a Record of Decision that selected a remedial action for addressing impacted groundwater beneath and downgradient of the site. This portion of the overall site remedy, contaminated groundwater, is referred to as Operable Unit No. 2 (OU-2). Contaminated soil and bedrock onsite (i.e., source areas) may be addressed separately in the future as Operable Unit No. 1 (OU-1).

In January 2005, the NYSDEC conditionally approved a work plan prepared by Arch for vapor intrusion investigations at both onsite and offsite locations at the Rochester facility. In April 2005, Arch undertook the first phase of those investigations by conducting vapor intrusion sampling (consisting of sub-slab and indoor air samples) at six locations within the facility buildings, plus one ambient (outdoor) air sample. The results of that sampling were discussed in the Onsite Vapor Intrusion Investigation Report (MACTEC, 2005). The sampling of buildings on adjacent properties was delayed while access agreements were negotiated with the offsite facility owners. During the late winter of 2005/2006, access

agreements for two of the offsite properties were finally put in place, and vapor intrusion sampling was completed in March 2006 at Firth Rixson and ARM, as well as at the onsite locations sampled previously at the Arch Chemicals facility.

This report presents the results of just the offsite sampling. The 2006 onsite sampling results were described separately in a report to the NYSDEC dated May 19, 2006 (MACTEC, 2006).

1.2 ORGANIZATION OF REPORT

This Investigation Report consists of five sections, and four appendices:

- Section 1 Introduction and basis for the project
- Section 2 Sampling Procedures
- Section 3 Results
- Section 4 Conclusions and Recommendations
- Section 5 References

Appendix A includes the Field Data Records. Appendix B contains meteorological data, while Appendix C provides the laboratory analytical data. Calculations supporting the risk evaluation are included in Appendix D.

2.0 SAMPLING PROCEDURES

The sampling described in this report is part of a multi-phase evaluation of the potential for adverse exposure risks that may result from the soil vapor to indoor air pathway at buildings in and adjacent to the Arch Chemicals site. This phase of sampling was limited to the following offsite locations: the American Recycling & Manufacturing (ARM) facility located just south of the Arch Chemicals property; and the Firth Rixson facility located northwest of Arch Chemicals on the west side of McKee Road. The locations of these facilities in relation to the Arch Chemicals site are shown on Figure 2.

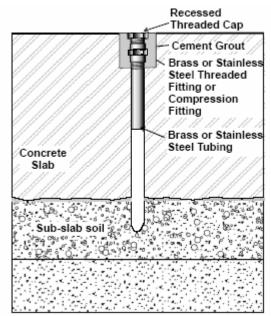
The ARM building includes an office area and several connected warehouse areas used for product and raw material storage, product fabrication, and loading and shipping operations, as shown on Figure 3. There is an upper level over the office area. The building construction is slab on grade, and was built in several phases. ARM produces packaging systems primarily from recycled materials such as pallets, corrugated cardboard, plastics and wood. The operation also uses some virgin materials, principally particle board, in its product manufacturing. Primary operations include sawing and product assembly, including gluing and a minor amount of painting. Prior to being occupied by ARM, the facility was owned by the Eastman Kodak Company. Among other activities, Kodak reportedly filmed commercials on site in two large "studios". No information on underground utilities was available from ARM at the time of the pre-sampling meeting between Arch and ARM.

The Firth Rixson Monroe facility is a metal fabrication plant, producing seamless rings from various alloys for special applications in the aerospace industry other commercial industrial sectors. The facility consists of 60,000 square feet of single-story industrial buildings on approximately 16 acres of land on the western side of McKee Road. The buildings sit on concrete slabs, with no basements or sub-structures. Operations include several forges, furnaces, rolling mills, hydraulic presses and band saws used in producing the ring products. Manufacturing operations take place primarily in the western portions of the facility, while the eastern portion (closest to McKee Road and Arch Chemicals), shown in detail on Figure 4, consists of shipping, inspection, and office space. No further information on building construction or layout was provided by Firth Rixson during the pre-sampling interview.

2.1 VAPOR INTRUSION SAMPLING

The following subsections detail the field procedures and analyses for the offsite vapor intrusion sampling.

2.1.1 Sampling Locations. Soil vapor monitoring probes were installed at various locations at the offsite facilities. Locations were reviewed with the NYSDEC prior to installation. The soil vapor monitoring probes were installed at five locations at ARM (see Figure 3), and at two locations at Firth Rixson (see Figure 4). Each location was designated for both an indoor air and a sub-slab soil vapor sample. In addition, one upwind outdoor air sample was collected concurrently with the indoor and sub-slab sampling at each facility.


2.1.2 Soil Vapor Samples. Soil vapor probes were installed through the concrete floor at each sampling location. Vapor probes consist of 0.5-inch outside-diameter (O.D.) stainless steel tubing implanted into the concrete floor slab. A rotary hammer drill was used to initially drill a 1.5-inch diameter socket approximately 2-inches into the concrete floor at each sampling location. A 0.5-inch diameter hole was then advanced through the slab, fully penetrating the concrete and extending slightly

(one to two inches) into the sub-slab soil. A 6-inch length of 0.5-inch O.D. tubing with a threaded fitting was inserted into the drilled hole such that, when capped with a threaded plug, the probe was flush with

the floor surface. The probe was then grouted in place using a non-shrinking cement grout (anchoring cement). The figure at right shows a typical probe installation (source: USEPA Office of Research and Development).

One round of soil vapor monitoring was performed after completion of the installation of the soil vapor probes. For sample collection, the threaded cap was removed from the probe, a sampling line was attached with a threaded connector, and the procedures described in Section 2.1.4 were followed for sample collection. Once the canister was filled, the sampling tube was removed and the plug replaced in the sampling probe.

2.1.3 Indoor Air Samples. Indoor air sampling locations were co-located with each of the sub-slab soil vapor sampling points.

Sampling was conducted over an 8-hour period between

approximately 8 A.M. and 4 P.M. This period was chosen to correspond with the daily exposure period of interest in characterization of risks for commercial/industrial workers.

2.1.4 Sample Collection Procedures. The following equipment and supplies were used during completion of air sampling:

- 6-L SUMMA[®] canisters
- Vacuum gauge (0-30 inches of mercury [in. Hg] range)
- Stainless steel inlet filter
- Teflon tubing
- Fixed-orifice flow controller
- ¹/₄-inch Swagelock nuts

The analytical laboratory provided batch-certified SUMMA[®] canisters that had been evacuated to a pressure of -30 in. Hg prior to sampling. During sampling, canisters collected time-weighted samples by regulating the flow rate into the canister through a stainless steel pre-cleaned flow controller. The controller's orifice was sized appropriately to obtain an 8-hr. time-weighted average sample with a final vacuum pressure less than 5 in. Hg.

The following steps were followed when setting up the canister for sampling:

- 1. Check the initial vacuum of the labeled canister by removing the brass cap from the canister and connecting the vacuum gauge to the canister, then opening the valve. The pressure should read 30 in. Hg, ± 2 in. Hg. Record the canister starting pressure. Make sure the vacuum gauge is capped off on the outlet or the canister will fill immediately and cannot be used.
- 2. Close the canister valve (hand tight) and remove the vacuum gauge. Do not overtighten the valve, but ensure the valve is closed. Make sure the valve is closed before removing the gauge or the canister will fill immediately and cannot be used.

- 3. Remove the brass cap and plastic plug from the flow controller. Fixed-orifice flow controllers are used, so there is no setting of the flowrate in the field.
- 4. Connect the flow controller outlet to the canister. Tighten the nut (on the flow controller) 1/4 turn beyond finger tight. Verify the tightness of the connection by attempting to rotate the flow controller. It should <u>not</u> be possible to rotate the controller.
- 5. Connect the filter to the flow controller inlet. Tighten the filter to the flow controller using a wrench. The filter prevents dust or particulates from entering the flow controller.
- 6. Once the sampling system is placed at the sampling location, open the canister valve fully to initiate sampling. Record the sample start time.

After sampling was complete, the following procedures were performed:

- 1. Close the valve on the canister and remove the canister from the sample location.
- 2. Check the final pressure of the labeled canister by removing the flow controller and filter, connecting the vacuum gauge to the canister, and opening the valve. The pressure should be less than 5 in. Hg. Record the final vacuum on the canister label.
- 3. Close the canister valve and then remove the vacuum gauge.
- 4. Send the labeled canister accompanied with a chain-of-custody form to the laboratory for analysis.

A Sampling Data Sheet was used to record sampling times and canister readings (see Appendix A, Field Data Records). To identify actual monitoring locations selected in the field, distances from fixed points (walls, beams, etc.) were recorded in the field log book.

Meteorological data during the sampling event was obtained for the Monroe County airport station, which is within a few miles of the site. Meteorological data obtained included: wind speed, wind direction, temperature, dewpoint, and atmospheric pressure. Data is provided in Appendix B.

3.0 RESULTS

Samples were analyzed for VOCs by Severn Trent Laboratories (STL) in Burlington, Vermont, using USEPA Method TO-15 with standard reporting limits. The list of analytes reflects the laboratory's standard TO-15 reporting list. In addition, the laboratory was directed to re-analyze any indoor air or outdoor air samples that were non-detect for either carbon tetrachloride or trichloroethene, using the lab's low-level analytical procedure for those two compounds.

The laboratory analytical reports for the VOCs are included in Appendix C. The following sections provide an evaluation of the reported data for the purpose of identifying target compounds that may have a complete migration pathway from sub-slab soil gas to indoor air in the Arch Chemicals on-site buildings, and to assess the potential health risks associated with exposure to those target compounds in indoor air.

3.1 DATA QUALITY

Laboratory TO-15 analytical results were reviewed for the following parameters:

- Holding Times
- Quality Control Blanks

- Initial Calibration
- Continuing Calibration
- Laboratory Control Samples
- Laboratory Duplicate Precision
- Reporting

All criteria were met with the following exceptions.

In the initial calibration the average relative response factor for 1,4-dioxane (0.044) is less than the QC limit of 0.050. The results for 1,4-dioxane are all non-detect and were rejected (R).

In the continuing calibration associated with a subset of samples: the percent difference for allyl chloride (3-chloropropene) (55) and hexachlorobutadiene (40) exceed the QC limit of 25. The associated samples are IA-06-ARM-009 and SG-06-ARM-194REP. The results for allyl chloride (3-chloropropane) and hexachlorobutadiene in the associated samples are non-detect and were qualified estimated (UJ). The response factors for 1,4-dioxane (0.045, 0.045, and 0.046) are less than the QC limit of 0.050. Results for 1,4-dioxane were qualified previously under the initial calibration criteria.

In the laboratory control sample (LCS) associated with a subset of samples: the percent recoveries for hexachlorobutadiene (140 and 140) in the LCS/LCSD set BEKGLCS exceed the upper QC limit of 130. The associated samples are IA-06-ARM-009 and SG-06-ARM-194REP. The results for hexachlorobutadiene were qualified previously under the continuing calibration criteria.

The laboratory performed a duplicate analysis on sample SG-06-ARM-194. All criteria were met.

With these qualifications, the data is judged to be usable for its intended purpose.

3.2 DATA EVALUATION

The objective of this analysis is to identify contaminants that may occur in indoor air at concentrations that pose a potential risk of regulatory concern and are present in indoor air as a result of sub-slab soil gas intrusion into the indoor air. This analysis involved characterizing cancer and non-cancer risks to workers who may be exposed to contaminants detected in the indoor air, and evaluation of indoor air data using the soil gas data, background data, and published air guideline values. The background data used in this analysis include the outdoor air samples collected during the air sampling event in 2006, as well as ranges of indoor air VOC concentrations developed through a NYSDOH study of homes (1997 – 2003) presented in NYSDOH guidance (NYSDOH, 2005). Air Guideline Values derived by NYSDOH are published for methylene chloride, tetrachloroethene, and trichloroethene (NYSDOH, 2005).

Table 1 presents the analytical indoor air and soil gas data and comparison to risk-based screening levels published by USEPA. The shaded values in Table 1 indicate that detected concentrations in each of the areas sampled exceed risk-based screening levels, indicating that a more thorough evaluation of potential risks is required. The remainder of this subsection presents the risk characterization.

3.2.1 Risk Characterization Methods.

At the ARM building, indoor air samples were collected from an office area and each of four warehouse areas. At the Firth Rixson (FR) building, indoor air samples were collected from an office area and a shipping area. Each of these areas may be occupied daily by workers at each of the facilities. However, the duration of daily exposure at each of these areas for a single worker could range from as little as an

hour or less, to as much as a full work-day shift (8 hours). Daily occupancy would generally not exceed the duration of a work-day shift.

For this evaluation, it was conservatively assumed that workers occupy either the office area or the warehouse (ARM) or shipping area (FR) for a full work-day, each work-day, over their duration of employment. Consequently, it was assumed that exposure to indoor air at each area (i.e., office, warehouse, shipping) occurs 8 hours per day, 5 days per week, over a 25 year period. These exposure assumptions correspond to USEPA-recommended reasonable maximum exposure (RME) parameters for full-time indoor workers (USEPA, 2002b).

The exposure point concentrations (EPCs) are the concentrations reported in the samples collected at each area (e.g., office, shipping). However, to evaluate risks associated with occupancy of the warehouse areas, the arithmetic mean concentrations among all four warehouses (four samples) was used. This approach was taken because it is likely that employees would move among the warehouses and because the detected concentrations of constituents were similar among the indoor air samples collected at the four warehouses.

The background concentrations were represented by the average concentrations reported in samples from the outdoor locations.

Risks were calculated using the following algorithms, which are consistent with USEPA guidance (e.g., USEPA 2002a and USEPA 2002b) and generally accepted risk assessment practices.

Cancer ELCR		(EPC x EF x ED x ET x URF) / (ATc x CF)
Hazard HI	Index: =	(EPC x EF x ED x ET) / (ATn x CF x RfC)
Where:		
EPC	=	Exposure Point Concentration for indoor air (ug/m ³)
ELCR	=	Excess lifetime cancer risk (unitless)
HI	=	Hazard Index (unitless)
ATc	=	Averaging time, cancer (70 years or 25550 days)
ATn	=	Averaging time, non-cancer (equal to ED, in days)
CF	=	Conversion factor (24 hours/day)
EF	=	Exposure frequency (250 days/year)
ED	=	Exposure duration (25 years)
ET	=	Exposure time (8 hours/day)
URF	=	Unit risk factor (risk per ug/m ³)
RfC	=	Reference concentration (ug/m ³)

The sources of values for the URF and RfC are the Integrated Risk Information System (IRIS; USEPA on-line data base), USEPA National Center for Environmental Assessment (NCEA), Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), and USEPA Health Effects Assessment Summary Tables (HEAST). The risk calculations referred to in this analysis are presented in Appendix D.

3.2.2 Risk Characterization Findings.

The results of the risk characterization are summarized below for each of the two off-site properties.

American Recycling and Manufacturing. Table 2 presents an evaluation and risk analysis for the indoor air quality at the Office and Warehouse locations. The total cancer risk among all chemicals detected in indoor air is 7E-06 for the Office and 2E-05 for the Warehouse, and the hazard index (HI) is 0.1 for the Office and 0.4 for the Warehouse. The principal contributors to cancer risk at the Office area are TCE and chloroform, each with a cancer risk of 2E-06. The principal contributors to cancer risk at the Warehouse area are 1,3-butadiene (5E-06), PCE (4E-06), TCE (3E-06), and benzene (2E-06), and the largest contributor to non-cancer risk is 1,3-butadiene (HI=0.2).

A comparison of indoor air sampling results to soil gas sampling results for the soil gas sample collected from beneath the ARM building (Table 2) indicates that the majority of VOCs were detected in both indoor air and sub-slab soil gas¹. The presence of these compounds in both soil gas and indoor air suggests that a migration pathway between soil gas and indoor air may be complete. Among the VOCs that were the principal contributors to risk in indoor air, only TCE was not detected in sub-slab soil gas, suggesting that risks associated with TCE cannot be attributed to migration from sub-slab soil gas. The cancer risk associated with compounds that could have a potentially complete migration pathway is 1E-05 and the HI is 0.5.

However, several of the VOCs for which a potentially complete migration pathway may exist were detected in indoor air at concentrations that are lower than NYDOH published health-based screening values and/or are consistent with the range of concentrations typically found in residential homes that have not been impacted by hazardous waste sites. The cancer risk and HI associated with VOCs that were detected in excess of background (or for which no background data were published) or NYDOH screening values are 5E-06 and 0.2, respectively and these risks are due to 1,3-butadiene. 1,3-butadiene was not reported in the published background study.

1,3-butadiene was detected in all four indoor air samples collected at the Warehouse area, but in only one soil gas sample. However, the concentrations detected in indoor air (arithmetic mean of 1.9 ug/m3) are essentially equal to the concentration detected in soil gas (1.8 ug/m3). When the presence of a substance in indoor air is due solely to migration from subsurface soil, the indoor air concentration would not be expected to exceed the soil gas concentration; the concentrations should, at most, be equal. However, equality between soil gas and indoor air concentrations would only occur under ideal steady-state conditions. The fact that the Warehouse area is mechanically ventilated and actively used (e.g., doors opening and closing, movement within the building) indicates that such ideal conditions do not exist. Therefore, the presence of 1,3-butadiene in indoor air in the ARM building cannot be attributed solely to potential migration from sub-slab soil gas, and in fact is likely due to indoor sources. At the time this report has been written, ARM has been unable to confirm whether it uses any products that contain 1,3-butadiene in the facility; however, it should be noted that the levels of 1,3-butadiene detected in indoor air samples were several orders of magnitude below the permissible exposure level (PEL) established by the Occupational Safety and Health Administration (OSHA).

This analysis indicates that none of the VOCs detected in indoor air at the ARM building except 1,3butadiene:

- have a potentially complete migration pathway, and
- are present at concentrations in excess of typical background concentrations or NYDOH

¹ This evaluation was performed using the indoor air and soil gas data from all areas of the building, to account for the possibility that VOCs detected in indoor air were due to movement of air throughout the building.

screening values (or do not have published background or NYDOH screening values), and

• are associated with cancer risks greater than 1E-06.

Firth Rixson. Table 3 presents an evaluation and risk analysis for the indoor air quality at the Office and Shipping locations. The total cancer risk among all chemicals detected in indoor air is 1E-05 for the Office and 2E-05 for the Shipping area, and the hazard index (HI) is 0.09 for the Office and 1 for the Shipping area. The principal contributor to cancer risk at the Office area is 1,4-dichlorobenzene with a cancer risk of 1E-05. The principal contributors to cancer risk at the Shipping area are benzene (7E-06) and 1,3-butadiene (1E-05), and the largest contributors to non-cancer risk are 1,3-butadiene (HQ=0.7) and 1,2,4-trimethylbenzene (HQ=0.2).

A comparison of indoor air sampling results to soil gas sampling results for the soil gas sample collected from beneath the FR building (Table 3) indicates that the majority of VOCs were detected in both indoor air and sub-slab soil gas². The presence of these compounds in both soil gas and indoor air suggests that a migration pathway between soil gas and indoor air may be complete. Among the VOCs that were the principal contributors to risk in indoor air, 1,3-butadiene was not detected in sub-slab soil gas, suggesting that risks associated with 1,3-butadiene cannot be attributed to migration from sub-slab soil gas. The cancer risk associated with compounds that could have a potentially complete migration pathway is 2E-05 (due to 1,4-dichlorobenzene and benzene) and the HI is 0.5.

Several of the VOCs for which a potentially complete migration pathway may exist were detected in indoor air at concentrations that are lower than NYDOH published health-based screening values and/or or consistent with the range of concentrations typically found in residential homes that have not been impacted by hazardous waste sites. However, 1,4-dichlorobenzene and benzene, representing the principal contributors to risk, were detected in excess of published background (no background data were published for 1,4-dichlorobenzene; therefore, it was conservatively assumed that 1,4-dichlorobenzene concentrations exceed typical background concentrations) and NYDOH screening values are not published for these two VOCs.

1,4-dichlorobenzene and benzene were detected in the indoor air and soil gas samples collected at the Shipping Area. However, the concentrations detected in indoor air are two-times greater than the concentrations detected in soil gas. When the presence of a substance in indoor air is due solely to migration from subsurface soil, the indoor air concentration would not be expected to exceed the soil gas concentration; the concentrations should, at most, be equal. However, equality between soil gas and indoor air concentrations would only occur under ideal steady-state conditions. The fact that the Shipping area is mechanically ventilated and actively used (e.g., doors opening and closing, movement within the building) indicates that such ideal conditions do not exist. Therefore, the presence 1,4-dichlorobenzene and benzene in indoor air in the FR building cannot be attributed solely to potential migration from sub-slab soil gas, and in fact are likely due to indoor sources. Firth Rixson has not provided information to Arch Chemicals on its usage of chemical materials at their facility, but the levels of both benzene and 1,4-dichlorobenzene in indoor air samples were substantially below their respective OSHA PELs.

This analysis indicates that none of the VOCs detected in indoor air at the FR building except 1,4-dichlorobenzene and benzene:

- Have a potentially complete migration pathway, and
- are present at concentrations in excess of typical background concentrations or NYDOH screening values (or do not have published background or NYDOH screening values), and
- are associated with cancer risks greater than 1E-06.

 $^{^{2}}$ This evaluation was performed using the indoor air and soil gas data from all areas of the building, to account for the possibility that VOCs detected in indoor air were due to movement of air throughout the building.

4.0 CONCLUSIONS

The results of the off-site vapor intrusion sampling event conducted by Arch Chemicals indicate that a complete vapor migration pathway may exist at the ARM and Firth Rixson facilities for some chemicals. Three of these chemicals were found to both exceed background and/or guideline values and pose risks in excess of the NYSDOH point of departure of 1E-06 for cancer risk or HI of 1 for non-cancer risk:

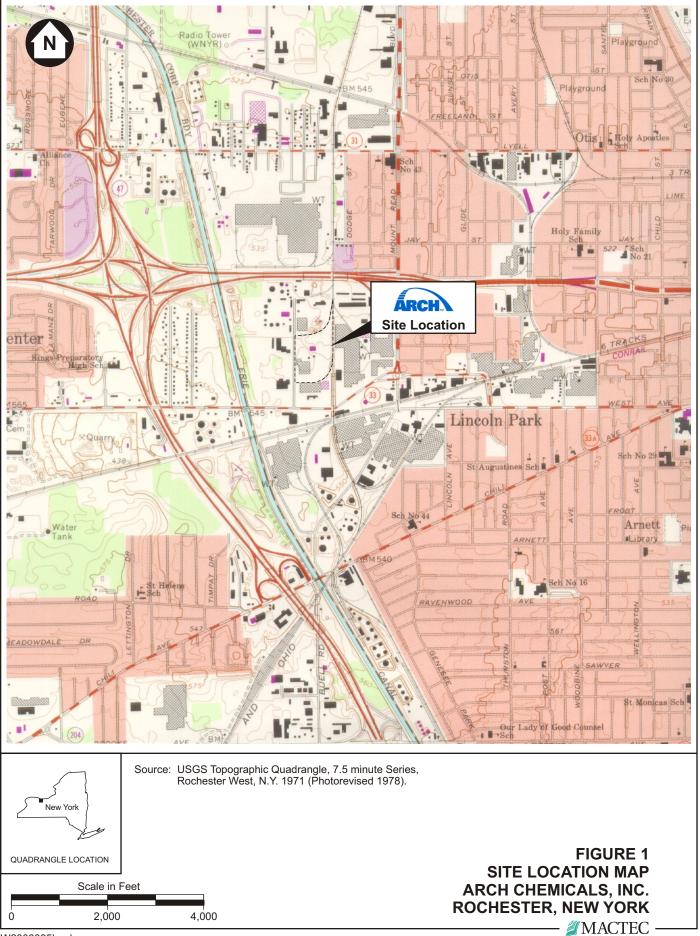
American Recycling and Manufacturing – 1,3-butadiene Firth Rixson – benzene and 1,4-dichlorobenzene

Comparison of soil gas and indoor air data for these compounds suggests that soil gas is not the sole, or even the primary source of these compounds in indoor air. Additional information from the facility owners would be necessary to determine whether the compounds identified in this evaluation are present in indoor air as a result of current occupational uses. Detected levels of indoor air of each of these chemicals are well below OSHA PELs.

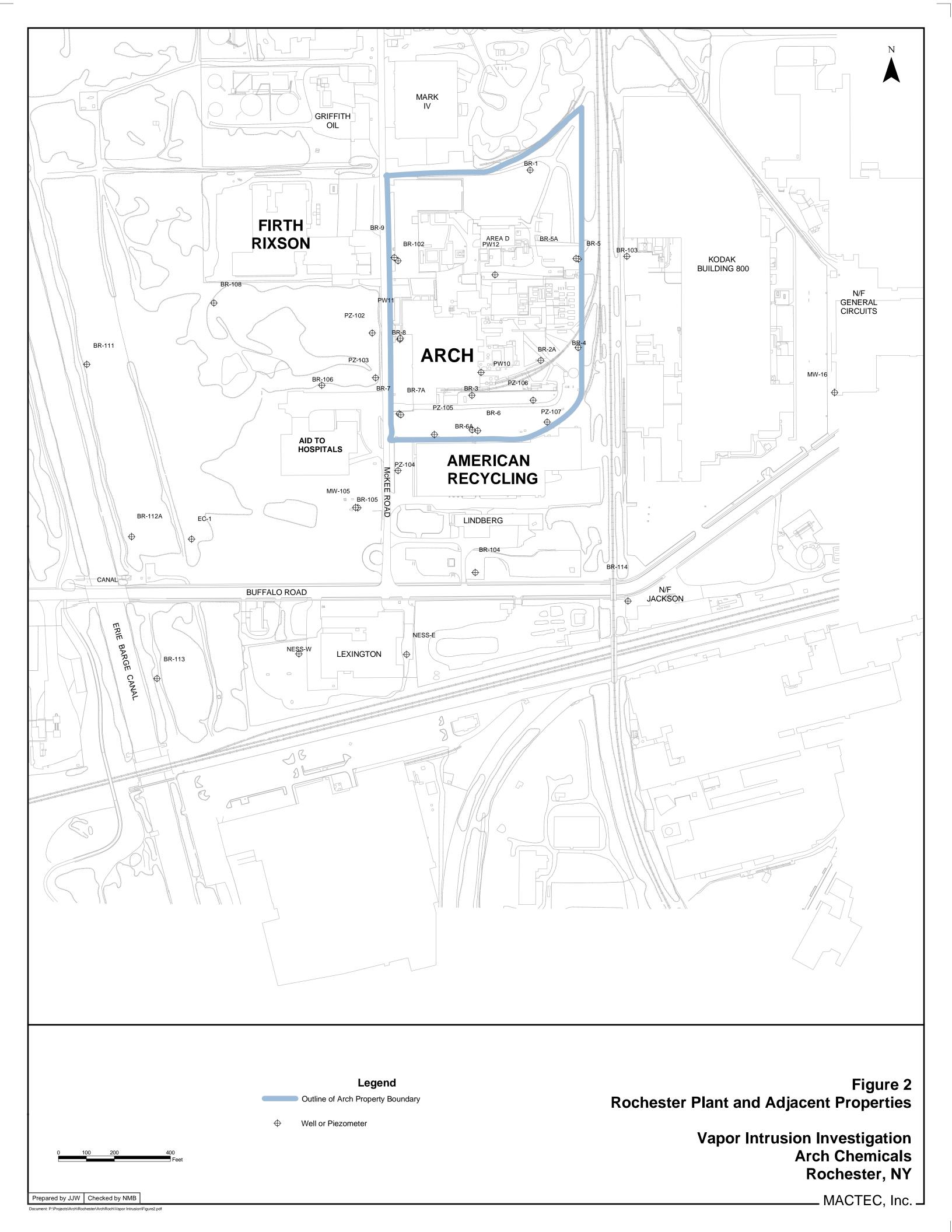
5.0 **REFERENCES**

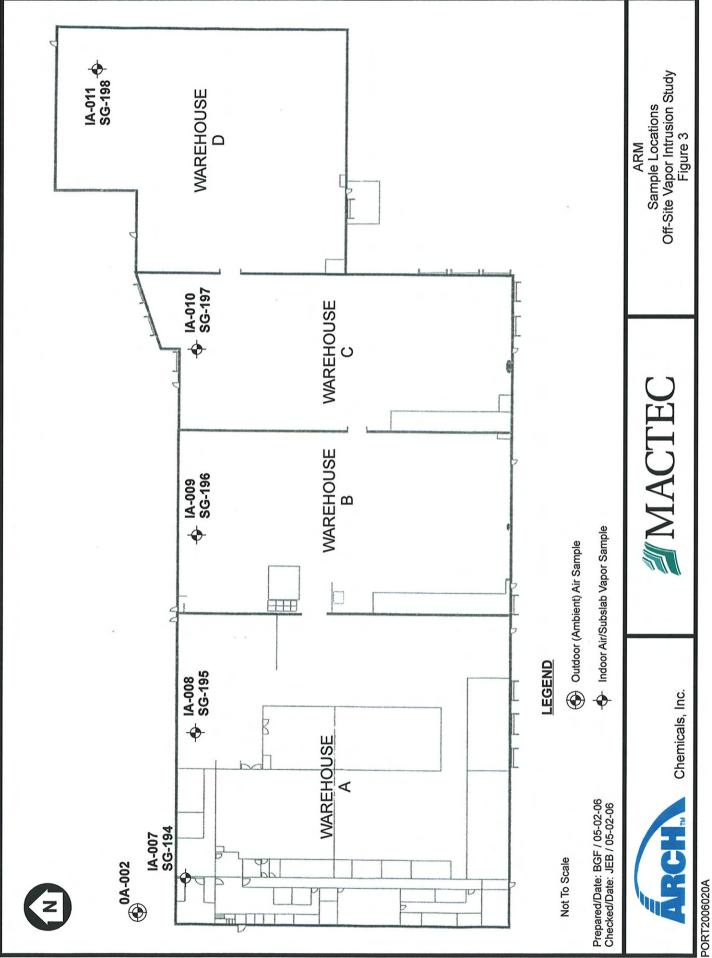
MACTEC, 2004. "Vapor Intrusion Pathway Investigation Work Plan", MACTEC Engineering & Consulting, Inc., Portland, Maine, December 2004.

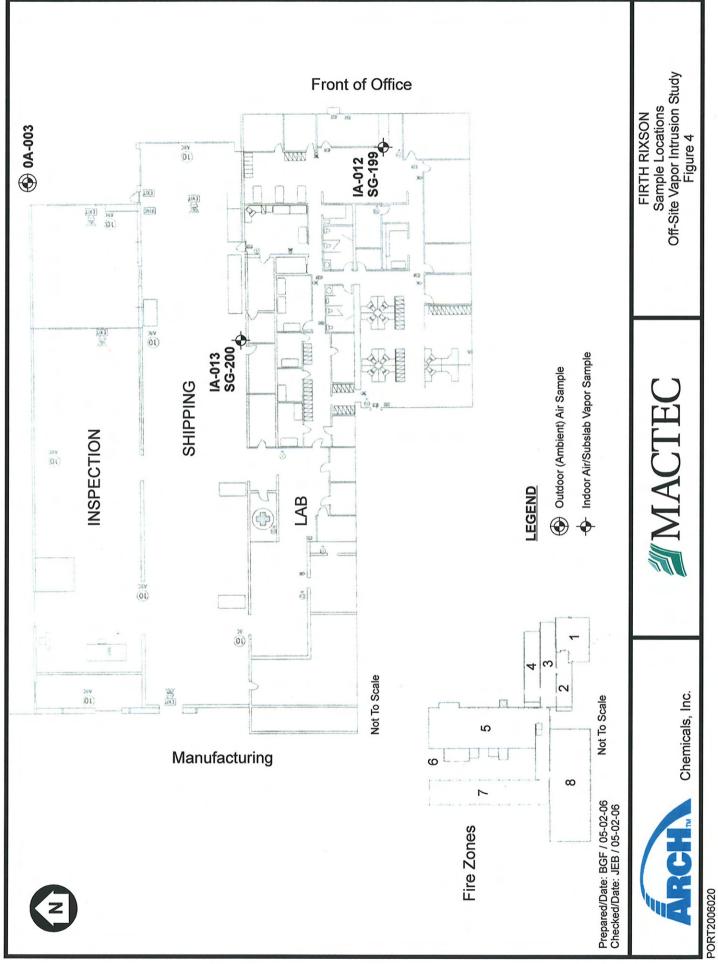
MACTEC, 2005. "Onsite Vapor Intrusion Investigation Report", MACTEC Engineering & Consulting, Inc., Portland, Maine, June 2005.


MACTEC, 2006. "2006 Onsite Vapor Intrusion Sampling Report", MACTEC Engineering & Consulting, Inc., Portland, Maine, May 2006.

NYSDOH, 2005. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York – Public Comment Draft", New York State Department of Health, Troy, New York, February 2005.


USEPA, 2002a. "Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soil", U.S. Environmental Protection Agency, Washington, D.C., November 2002.


USEPA, 2002b. "Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites", OSWER 9355.4-24, U.S. Environmental Protection Agency, Washington, D.C., December 2002.


FIGURES

W2003035b.cdr

TABLES

Table 1 Comparison of Indoor Air and Soil Gas Data (µg/m³) to Risk-Based Screening Levels

				Air Samples									
		Risk-	Based			Am Recyc		iii Sumptos	F Ri	xson	Am Recyc	F Rixson	
		Screenin	ng Values	IA-007	IA-008	IA-009	IA-010	IA-011	IA-012	IA-013	OA-002	OA-003	
		Indoor Air	Indoor Air	IA-06-ARM-007	IA-06-ARM-008	IA-06-ARM-009	IA-06-ARM-010	IA-06-ARM-011	IA-06-FRX-012	IA-06-FRX-013	OA-06-ARM-002	OA-06-FRX-003	
		Generic	Commercial /	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	
Parameter	Units	(Residential)	Industrial	Sample									
1,1,1-Trichloroethane	ug/m3	2200	9636	0.87 U	0.87 U	2.6 U	0.87 U	0.87 U	0.87 U	0.87 U	0.87 U	0.87 U	
1,1,2,2-Tetrachloroethane	ug/m3	0.042	0.22	1.1 U	1.1 U	3.3 U	1.1 U						
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	30000	131400	1.2 U	1.2 U	3.7 U	1.2 U						
1,1,2-Trichloroethane	ug/m3	0.15	0.79	0.87 U	0.87 U	2.6 U	0.87 U	0.87 U	0.87 U	0.87 U	0.87 U	0.87 U	
1,1-Dichloroethane	ug/m3	500	2190	0.65 U	0.65 U	1.9 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	
1,1-Dichloroethene	ug/m3	200	876	0.63 U	0.63 U	1.9 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	
1,2,4-Trichlorobenzene	ug/m3	200	876	3 U	3 U	8.9 U	3 U	3 U	3 U	3 U	3 U	3 U	
1,2,4-Trimethylbenzene	ug/m3	6.0	26.3	1.2	2.6	2.4 U	4	3.4	1.3	7.4	0.79 U	1	
1,2-Dibromoethane	ug/m3	0.011	0.058	1.2 U	1.2 U	3.7 U	1.2 U						
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3			1.1 U	1.1 U	3.4 U	1.1 U						
1,2-Dichlorobenzene	ug/m3	200	876	0.96 U	0.96 U	2.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	
1,2-Dichloroethane	ug/m3	0.094	0.49	0.65 U	0.65 U	1.9 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	
1,2-Dichloroethene (total)	ug/m3			0.63 U	0.63 U	1.9 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	
1,2-Dichloropropane	ug/m3	4.0	17.5	0.74 U	0.74 U	2.2 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	
1,3,5-Trimethylbenzene	ug/m3	6.0	26.3	0.79 U	0.79 U	2.4 U	1.2	1	0.79 U	2	0.79 U	0.79 U	
1,3-Dichlorobenzene	ug/m3	110	482	0.96 U	0.96 U	2.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	
1,4-Dichlorobenzene	ug/m3	800	3504	0.96 U	0.96 U	2.9 U	0.96 U	0.96 U	26	0.96 U	0.96 U	0.96 U	
1,4-Dioxane	ug/m3			R	R	R	R	R	R	R	R	R	
2-Butanone	ug/m3	1000	4380	1.5	4.1	4.4	3.8	3.8	1.2 U	1.2 U	1.2 U	1.2 U	
2-Chlorotoluene	ug/m3			0.83 U	0.83 U	2.5 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	
2-Hexanone	ug/m3			1.6 U	1.6 U	4.9 U	12	1.6 U					
2-Propanol	ug/m3			27	9.8 U	29 U	9.8 U	9.8 U	9.8 U	9.8 U	9.8 U	1.4 J	
4-Ethyltoluene	ug/m3			0.79 U	1.7	2.4 U	3.5	2.7	0.79 U	6.4	0.79 U	0.79 U	
4-Methyl-2-pentanone	ug/m3	80	350	3.4	1.6 U	4.9 U	1.6 U						
Acetone	ug/m3	350	1533	31	110	100	33	31	23	310	9.5 U	9.5 U	
Allyl chloride	ug/m3			1.3 U	1.3 U	3.8 UJ	1.3 U						
Benzene	ug/m3	0.31	1.6	1.2	2.1	2.7	2.9	1.6	1.3	11	1.1	1.6	
Bromodichloromethane	ug/m3	0.14	0.74	1.1 U	1.1 U	3.2 U	1.1 U						
Bromoform	ug/m3	2.2	11.6	1.7 U	1.7 U	5 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	
Bromomethane	ug/m3	5.0	21.9	0.62 U	0.62 U	1.9 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	
Butadiene, 1,3-	ug/m3	0.0087	0.046	0.88 U	1.3	3.3	1.8	1.4	0.88 U	6.4	0.88 U	0.88 U	
Carbon disulfide	ug/m3	700	3066	1.2 U	2.1	3.7 U	1.2 U						
Carbon tetrachloride	ug/m3	0.16	0.84	0.69	1 U	0.63	0.69	0.69	0.69	1 U	0.69	0.69	
Chlorobenzene	ug/m3	60	263	0.74 U	0.74 U	2.2 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	
Chlorodibromomethane	ug/m3	0.1	0.53	1.4 U	1.4 U	4.1 U	1.4 U						
Chloroethane	ug/m3	10000	43800	1.1 U	1.1 U	3.2 U	1.1 U						
Chloroform	ug/m3	0.11	0.58	0.98	0.78 U	2.3 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U	
Chloromethane	ug/m3	2.4	12.6	0.83 U	0.83 U	2.5 U	1.9	1.6	1.6	1.2	1.7	1.7	
Cis-1,2-Dichloroethene	ug/m3	35	153	0.63 U	0.63 U	1.9 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	
cis-1,3-Dichloropropene	ug/m3	0.61	3.2	0.73 U	0.73 U	2.2 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	
Cyclohexane	ug/m3			1.8	7.9	3.8	1.1	0.65	0.55 U	1	0.55 U	0.55 U	
Dichlorodifluoromethane	ug/m3	200	876	4.5	2.9	5.9 U	3.6	3.3	6.9	3.2	3.7	3.2	
Ethyl benzene	ug/m3	2.2	11.6	0.87	1.5	2.1 U	1.4	0.74	0.78	6.1	0.69 U	0.83	
Heptane	ug/m3			1.1	2.1	3.9	1.4	0.74	0.98	2.3	0.66 U	0.98	
Hexachlorobutadiene	ug/m3	0.11	0.58	1.7 U	1.7 U	5.1 UJ	1.7 U						
Hexane	ug/m3	200	876	1.4	2.3	4.2 U	2.3	1.4 U	1.4 U	6.3	1.4 U	2.3	
Isooctane	ug/m3			0.79	1	2.2 U	1.8	0.75 U	0.93	5.1	0.75 U	2	
Methyl Tertbutyl Ether	ug/m3	3000	13140.0	1.4 U	1.4 U	4.3 U	1.4 U						

6/21/2006 Prepared by: KJC Checked by: JHP

Table 1 Comparison of Indoor Air and Soil Gas Data (µg/m³) to Risk-Based Screening Levels

								Air Samples				
		Risk-	Based			Am Recyc			F Ri	xson	Am Recyc	F Rixson
		Screenir	ig Values	IA-007	IA-008	IA-009	IA-010	IA-011	IA-012	IA-013	OA-002	OA-003
		Indoor Air	Indoor Air	IA-06-ARM-007	IA-06-ARM-008	IA-06-ARM-009	IA-06-ARM-010	IA-06-ARM-011	IA-06-FRX-012	IA-06-FRX-013	OA-06-ARM-002	OA-06-FRX-003
		Generic	Commercial /	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06
Parameter	Units	(Residential)	Industrial	Sample								
Methylene chloride	ug/m3	5.2	27	5.2	22	11	2.7	2	1.4 U	1.4 U	1.4 U	1.4 U
o-Xylene	ug/m3	7000 30660 1000 4380		0.83	1.7	2.1 U	1.7	0.96	0.96	6.9	0.69 U	1
Styrene	ug/m3	1000	4380	0.68 U	1.5	2 U	2.6	0.85	0.68 U	1.7	0.68 U	0.68 U
t-Butyl alcohol	ug/m3			12 U	12 U	36 U	12 U					
Tetrachloroethene	ug/m3	0.81	4.3	2.2	6.7	7.5	11	12	1.1 U	1.1 U	1.1 U	1.1 U
Tetrahydrofuran	ug/m3			12 U	12 U	35 U	12 U					
Toluene	ug/m3	400	1752	11	14	13	9.4	4.9	5.7	140	3.8	6
trans-1,2-Dichloroethene	ug/m3	70	307	0.63 U	0.63 U	1.9 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U
trans-1,3-Dichloropropene	ug/m3	0.61	3.2	0.73 U	0.73 U	2.2 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U
Trichloroethene	ug/m3	0.022	0.12	0.25	0.86 U	0.33	0.32	0.22	0.21 U	0.86 U	0.21 U	0.21 U
Trichlorofluoromethane	ug/m3	700	3066	130	140	56	2.2	2.5	1.8	1.6	1.9	1.6
Vinyl bromide	ug/m3			0.7 U	0.7 U	2.1 U	0.7 U					
Vinyl chloride	ug/m3	0.28	1.5	0.41 U	0.41 U	1.2 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U	0.41 U
Xylene, m/p	ug/m3 7000 30660		30660	2.3	4.8	5.2 U	4	2	2.6	20	1.7 U	2.3
Xylenes, Total	ug/m3	7000	30660	3.2	6.9	2.1 U	6.1	3.1	3.6	28	0.69 U	3.4

Generic Indoor Air Screening Values are taken from Table 2c of the EPA Vapor Intrusion Guidance (EPA, 2002) and are based on a target cancer risk of 1E-06 and a target hazard index of 1 for residential exposures to indoor air.

Generic Soil Gas Screening Values are taken from Table 2c of the EPA Vapor Intrusion Guidance, and are based on an attenuation factor of 0.1 and a target cancer risk of 1E-06 and a target hazard index of 1 for migration of soil gas to residences with basements and subsequent residential exposures to indoor air.

The Commercial/Industrial indoor air and soil gas screening values were derived by adjusting the generic (residential-based) values for exposure time, exposure frequency, and exposure duration applicable to full-time occupational exposures, as follows:

For risk-based values based on cancer risk, the adjustment to an exposure of 8-hours per day, 250 days per year, for 25 years is: (24/8) x (365/250) x (30/25) = 5.25

For risk-based values based on non-cancer risk, the adjustemtn to an exposure of 8-hours per day, 250 days per year is: (24/8) x (365/250) = 4.38

Shading indicates that a detected concentration exceeds the Commercial/Industrial risk-based value

-- - Not applicable: constituent not detected at a concentration greater than screening value.

EPA, 2002. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. OSWER. November 29, 2002.

Table 1 Comparison of Indoor Air and Soil Gas Data (µg/m³) to Risk-Based Screening Levels

		Soil Gas Samples										
		Risk-	Based			Am Recyc	2011 0 100 2 100 p 100		F Ri	xson		
		Screenin	g Values	SG-194	SG-195	SG-196	SG-197	SG-198	SG-199	SG-200		
		Soil Gas	Soil Gas	SG-06-ARM-194	SG-06-ARM-195	SG-06-ARM-196	SG-06-ARM-197	SG-06-ARM-198	SG-06-FRX-199	SG-06-FRX-200		
		Generic	Commercial /	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06		
Parameter	Units	(Residential)	Industrial	Sample	Sample	Sample	Sample	Sample	Sample	Sample		
1,1,1-Trichloroethane	ug/m3	22000	96360	0.87 U	1.1 U	1.3	0.87 U	0.87 U	3.7 U	2200		
1,1,2,2-Tetrachloroethane	ug/m3	0.42	2.21	1.1 U	1.4 U	1.1 U	1.1 U	1.1 U	4.6 U	1.1 U		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	300000	1314000	38	1.5 U	8.4	8.4	1.2 U	5.1 U	1.2 U		
1,1,2-Trichloroethane	ug/m3	1.5	7.88	0.87 U	1.1 U	0.87 U	0.87 U	0.87 U	3.7 U	0.87 U		
1,1-Dichloroethane	ug/m3	5000	21900	0.65 U	0.81 U	0.65 U	0.65 U	0.65 U	2.7 U	11		
1,1-Dichloroethene	ug/m3	2000	8760	0.63 U	0.79 U	0.63 U	0.63 U	0.63 U	2.7 U	0.63 U		
1,2,4-Trichlorobenzene	ug/m3	2000	8760	3 U	3.7 U	3 U	3 U	3 U	13 U	3 U		
1,2,4-Trimethylbenzene	ug/m3	60.0	262.8	3.7	4.3	3.7	2.5	2.6	4.4	4.3		
1,2-Dibromoethane	ug/m3	0.11	0.578	1.2 U	1.5 U	1.2 U	1.2 U	1.2 U	5.1 U	1.2 U		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3			1.1 U	1.4 U	1.1 U	1.1 U	1.1 U	4.7 U	1.1 U		
1,2-Dichlorobenzene	ug/m3	2000	8760	0.96 U	1.2 U	0.96 U	0.96 U	0.96 U	4 U	0.96 U		
1,2-Dichloroethane	ug/m3	0.94	4.94	0.65 U	0.81 U	0.65 U	0.65 U	0.65 U	2.7 U	0.65 U		
1,2-Dichloroethene (total)	ug/m3			0.63 U	0.79 U	0.63 U	0.63 U	0.63 U	2.7 U	0.63 U		
1,2-Dichloropropane	ug/m3	40.0	175.2	0.74 U	0.92 U	0.74 U	0.74 U	0.74 U	3.1 U	0.74 U		
1,3,5-Trimethylbenzene	ug/m3	60.0	262.8	1.3	1.5	0.84	0.79 U	0.79 U	3.3 U	1.3		
1,3-Dichlorobenzene	ug/m3	1100	4818	0.96 U	1.2 U	0.96 U	0.96 U	0.96 U	4 U	0.96 U		
1.4-Dichlorobenzene	ug/m3	8000	35040	0.96 U	1.2 U	0.96 U	0.96 U	0.96 U	10	0.96 U		
1,4-Dioxane	ug/m3			R	R	R	R	R	R	R		
2-Butanone	ug/m3	10000	43800	1.2 U	1.5 U	3.2	3.2	5.6	10	3.8		
2-Chlorotoluene	ug/m3			0.83 U	1 U	0.83 U	0.83 U	0.83 U	3.5 U	0.83 U		
2-Hexanone	ug/m3			1.6 U	2 U	1.6 U	1.6 U	1.6 U	7 U	1.6 U		
2-Propanol	ug/m3			9.8 U	12 U	9.8 U	9.8 U	18	42 U	10		
4-Ethyltoluene	ug/m3			2.6	2.9	2.9	1.8	1.7	3.3 U	3.3		
4-Methyl-2-pentanone	ug/m3	800	3504	1.6 U	2	1.6 U	1.6 U	1.6 U	7 U	1.8		
Acetone	ug/m3	3500	15330	9.5 U	12 U	23	21	43	97	55		
Allyl chloride	ug/m3			1.3 U	1.6 U	1.3 U	1.3 U	1.3 U	5.3 U	1.3 U		
Benzene	ug/m3	3.1	16.3	0.51 U	0.64 U	4.8	1.6	1.6	3.5	5.4		
Bromodichloromethane	ug/m3	1.4	7.35	1.1 U	1.3 U	1.1 U	1.1 U	1.1 U	4.5 U	1.1 U		
Bromoform	ug/m3	22	115.5	1.7 U	2.1 U	1.7 U	1.7 U	1.7 U	6.9 U	1.7 U		
Bromomethane	ug/m3	50.0	219.0	0.62 U	0.78 U	0.62 U	0.62 U	0.62 U	2.6 U	0.62 U		
Butadiene, 1,3-	ug/m3	0.087	0.457	0.88 U	1.1 U	1.8	0.88 U	0.88 U	3.8 U	0.88 U		
Carbon disulfide	ug/m3	7000	30660	3.1	1.6 U	5.6	4	7.5	9.3	3.4		
Carbon tetrachloride	ug/m3	1.6	8.4	1 U	1.3 U	1 U	3.9	1 U	4.2 U	1 U		
Chlorobenzene	ug/m3	600	2628	0.74 U	0.92 U	0.74 U	0.74 U	0.74 U	3.1 U	0.74 U		
Chlorodibromomethane	ug/m3	1	5.25	1.4 U	1.7 U	1.4 U	1.4 U	1.4 U	5.7 U	1.4 U		
Chloroethane	ug/m3	100000	438000	1.1 U	1.3 U	1.1 U	1.1 U	1.1 U	4.5 U	1.1 U		
Chloroform	ug/m3	1.1	5.78	0.78 U	0.98 U	1.2	0.78 U	0.78 U	3.3 U	4.2		
Chloromethane	ug/m3	24	126.0	0.83 U	1 U	0.83 U	0.83 U	0.83 U	3.5 U	0.83 U		
Cis-1,2-Dichloroethene	ug/m3	350	1533	0.63 U	0.79 U	0.63 U	0.63 U	0.63 U	2.7 U	0.63 U		
cis-1,3-Dichloropropene	ug/m3	6.1	32.0	0.73 U	0.91 U	0.73 U	0.73 U	0.73 U	3 U	0.73 U		
Cyclohexane	ug/m3			0.69	0.69 U	8.9	2.8	5.2	6.9	210 J		
Dichlorodifluoromethane	ug/m3	2000	8760	3.2	2.5 U	4	3.2	2 U	8.4 U	2.3		
Ethyl benzene	ug/m3	22	115.5	1.2	1.8	2.7	2	1.7	3.8	4		
Heptane	ug/m3			0.66 U	0.82 U	11	1.7	1.6	7	5.3		
Hexachlorobutadiene	ug/m3	1.1	5.78	1.7 U	2.1 U	1.7 U	1.7 U	1.7 U	7.1 U	1.7 U		
Hexane	ug/m3	2000	8760	1.4 U	1.8 U	16	2.4	3.9	6 U	11		
Isooctane	ug/m3			0.75 U	0.93 U	0.75 U	0.75 U	0.75 U	3.1 U	1.1		
Methyl Tertbutyl Ether	ug/m3	30000	131400.0	1.4 U	1.8 U	1.4 U	1.4 U	1.4 U	6.1 U	1.4 U		

Table 1 Comparison of Indoor Air and Soil Gas Data (µg/m³) to Risk-Based Screening Levels

							Soil Gas Samples			
		Risk-	Based			Am Recyc			F Ri	xson
		Screenin	g Values	SG-194	SG-195	SG-196	SG-197	SG-198	SG-199	SG-200
		Soil Gas	Soil Gas	SG-06-ARM-194	SG-06-ARM-195	SG-06-ARM-196	SG-06-ARM-197	SG-06-ARM-198	SG-06-FRX-199	SG-06-FRX-200
		Generic	Commercial /	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06
Parameter	Units	(Residential)	Industrial	Sample	Sample	Sample	Sample	Sample	Sample	Sample
Methylene chloride	ug/m3	52	273	1.4 U	1.7 U	2.8	1.4 U	1.5	5.9 U	1.4 U
o-Xylene	ug/m3	70000	306600	2.1	3.1	3.4	2	1.8	3.8	4.1
Styrene	ug/m3	10000	43800	1	1.8	2.6	2.2	0.98	2.8 J	1.8
t-Butyl alcohol	ug/m3			12 U	15 U	12 U	12 U	12 U	52 U	12 U
Tetrachloroethene	ug/m3	8.1	42.5	1.9	3.7	6.8	4.7	7.5	4.9	28
Tetrahydrofuran	ug/m3			12 U	15 U	12 U	12 U	12 U	50 U	12 U
Toluene	ug/m3	4000	17520	9	15	31	26	30	57	75
trans-1,2-Dichloroethene	ug/m3	700	3066	0.63 U	0.79 U	0.63 U	0.63 U	0.63 U	2.7 U	0.63 U
trans-1,3-Dichloropropene	ug/m3	6.1	32.0	0.73 U	0.91 U	0.73 U	0.73 U	0.73 U	3 U	0.73 U
Trichloroethene	ug/m3	0.22	1.16	0.86 U	1.1 U	0.86 U	0.86 U	0.86 U	3.6 U	2.8
Trichlorofluoromethane	ug/m3	7000	30660	44	1.1 U	26	2.6	2.5	3.8 U	2.2
Vinyl bromide	ug/m3			0.7 U	0.87 U	0.7 U	0.7 U	0.7 U	2.9 U	0.7 U
Vinyl chloride	ug/m3	2.8	14.7	0.41 U	0.51 U	0.41 U	0.41 U	0.41 U	1.7 U	0.41 U
Xylene, m/p	ug/m3	70000	306600	3.9	6.5	8.3	4.8	4.2	8.7	11
Xylenes, Total	ug/m3	70000	306600	6.1	10	12	6.9	6.1	13	16

Generic Indoor Air Screening Values are taken from Table 2c of the EPA Vapor Intrusion Guidance (EPA, 2002) and are based on a target cancer risk of 1E-06 and a target hazard index of 1 for residential exposures to indoor air.

Generic Soil Gas Screening Values are taken from Table 2c of the EPA Vapor Intrusion Guidance, and are based on an attenuation factor of 0.1 and a target cancer risk of 1E-06 and a target hazard index of 1 for migration of soil gas to residences with basements and subsequent residential exposures to indoor air.

The Commercial/Industrial indoor air and soil gas screening values were derived by adjusting the generic (residential-based) values for exposure time, exposure frequency, and exposure duration applicable to full-time occupational exposures, as follows:

For risk-based values based on cancer risk, the adjustment to an exposure of 8-hours per day, 250 days per year, for 25 years is: (24/8) x (365/250) x (30/25) = 5.25

For risk-based values based on non-cancer risk, the adjustemtn to an exposure of 8-hours per day, 250 days per year is: (24/8) x (365/250) = 4.38

Shading indicates that a detected concentration exceeds the Commercial/Industrial risk-based value

-- - Not applicable: constituent not detected at a concentration greater than screening value.

EPA, 2002. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. OSWER. November 29, 2002.

				Air Sa	amples					Soil Gas Samples		
				Am Recyc			Outdoor Air			Am Recyc		
		IA-007	IA-008	IA-009	IA-010	IA-011	OA-002	SG-194	SG-195	SG-196	SG-197	SG-198
		IA-06-ARM-007	IA-06-ARM-008	IA-06-ARM-009	IA-06-ARM-010	IA-06-ARM-011	OA-06-ARM-002	SG-06-ARM-194	SG-06-ARM-195	SG-06-ARM-196	SG-06-ARM-197	SG-06-ARM-198
		03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06
Parameter	Units	Sample	Sample	Sample								
1,1,1-Trichloroethane	ug/m3	0.87 U	0.87 U	2.6 U	0.87 U	0.87 U	0.87 U	0.87 U	1.1 U	1.3	0.87 U	0.87 U
1,1,2,2-Tetrachloroethane	ug/m3	1.1 U	1.1 U	3.3 U	1.1 U	1.1 U	1.1 U	1.1 U	1.4 U	1.1 U	1.1 U	1.1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1.2 U	1.2 U	3.7 U	1.2 U	1.2 U	1.2 U	38	1.5 U	8.4	8.4	1.2 U
1,1,2-Trichloroethane	ug/m3	0.87 U	0.87 U	2.6 U	0.87 U	0.87 U	0.87 U	0.87 U	1.1 U	0.87 U	0.87 U	0.87 U
1,1-Dichloroethane	ug/m3	0.65 U	0.65 U	1.9 U	0.65 U	0.65 U	0.65 U	0.65 U	0.81 U	0.65 U	0.65 U	0.65 U
1,1-Dichloroethene	ug/m3	0.63 U	0.63 U	1.9 U	0.63 U	0.63 U	0.63 U	0.63 U	0.79 U	0.63 U	0.63 U	0.63 U
1,2,4-Trichlorobenzene	ug/m3	3 U	3 U	8.9 U	3 U	3 U	3 U	3 U	3.7 U	3 U	3 U	3 U
1,2,4-Trimethylbenzene	ug/m3	1.2	2.6	2.4 U	4	3.4	0.79 U	3.7	4.3	3.7	2.5	2.6
1,2-Dibromoethane	ug/m3	1.2 U	1.2 U	3.7 U	1.2 U	1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	1.2 U	1.2 U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1.1 U	1.1 U	3.4 U	1.1 U	1.1 U	1.1 U	1.1 U	1.4 U	1.1 U	1.1 U	1.1 U
1,2-Dichlorobenzene	ug/m3	0.96 U	0.96 U	2.9 U	0.96 U	0.96 U	0.96 U	0.96 U	1.2 U	0.96 U	0.96 U	0.96 U
1,2-Dichloroethane	ug/m3	0.65 U	0.65 U	1.9 U	0.65 U	0.65 U	0.65 U	0.65 U	0.81 U	0.65 U	0.65 U	0.65 U
1,2-Dichloroethene (total)	ug/m3	0.63 U	0.63 U	1.9 U	0.63 U	0.63 U	0.63 U	0.63 U	0.79 U	0.63 U	0.63 U	0.63 U
1,2-Dichloropropane	ug/m3	0.74 U	0.74 U	2.2 U	0.74 U	0.74 U	0.74 U	0.74 U	0.92 U	0.74 U	0.74 U	0.74 U
1,3,5-Trimethylbenzene	ug/m3	0.79 U	0.79 U	2.4 U	1.2	1	0.79 U	1.3	1.5	0.84	0.79 U	0.79 U
1,3-Dichlorobenzene	ug/m3	0.96 U	0.96 U	2.9 U	0.96 U	0.96 U	0.96 U	0.96 U	1.2 U	0.96 U	0.96 U	0.96 U
1,4-Dichlorobenzene	ug/m3	0.96 U	0.96 U	2.9 U	0.96 U	0.96 U	0.96 U	0.96 U	1.2 U	0.96 U	0.96 U	0.96 U
1,4-Dioxane	ug/m3	R	R	R	R	R	R	R	R	R	R	R
2-Butanone	ug/m3	1.5	4.1	4.4	3.8	3.8	1.2 U	1.2 U	1.5 U	3.2	3.2	5.6
2-Chlorotoluene	ug/m3	0.83 U	0.83 U	2.5 U	0.83 U	0.83 U	0.83 U	0.83 U	1 U	0.83 U	0.83 U	0.83 U
2-Hexanone	ug/m3	1.6 U	1.6 U	4.9 U	12	1.6 U	1.6 U	1.6 U	2 U	1.6 U	1.6 U	1.6 U
2-Propanol	ug/m3	27	9.8 U	29 U	9.8 U	9.8 U	9.8 U	9.8 U	12 U	9.8 U	9.8 U	18
4-Ethyltoluene	ug/m3	0.79 U	1.7	2.4 U	3.5	2.7	0.79 U	2.6	2.9	2.9	1.8	1.7
4-Methyl-2-pentanone	ug/m3	3.4	1.6 U	4.9 U	1.6 U	1.6 U	1.6 U	1.6 U	2	1.6 U	1.6 U	1.6 U
Acetone	ug/m3	31	110	100	33	31	9.5 U	9.5 U	12 U	23	21	43
Allyl chloride	ug/m3	1.3 U	1.3 U	3.8 UJ	1.3 U	1.3 U	1.3 U	1.3 U	1.6 U	1.3 U	1.3 U	1.3 U
Benzene	ug/m3	1.2	2.1	2.7	2.9	1.6	1.1	0.51 U	0.64 U	4.8	1.6	1.6
Bromodichloromethane	ug/m3	1.1 U	1.1 U	3.2 U	1.1 U	1.1 U	1.1 U	1.1 U	1.3 U	1.1 U	1.1 U	1.1 U
Bromoform	ug/m3	1.7 U	1.7 U	5 U	1.7 U	1.7 U	1.7 U	1.7 U	2.1 U	1.7 U	1.7 U	1.7 U
Bromomethane	ug/m3	0.62 U	0.62 U	1.9 U	0.62 U	0.62 U	0.62 U	0.62 U	0.78 U	0.62 U	0.62 U	0.62 U
Butadiene, 1,3-	ug/m3	0.88 U	1.3	3.3	1.8	1.4	0.88 U	0.88 U	1.1 U	1.8	0.88 U	0.88 U
Carbon disulfide	ug/m3	1.2 U	2.1	3.7 U	1.2 U	1.2 U	1.2 U	3.1	1.6 U	5.6	4	7.5
Carbon tetrachloride	ug/m3	0.69	1 U	0.63	0.69	0.69	0.69	1 U	1.3 U	1 U	3.9	1 U
Chlorobenzene	ug/m3	0.74 U	0.74 U	2.2 U	0.74 U	0.74 U	0.74 U	0.74 U	0.92 U	0.74 U	0.74 U	0.74 U
Chlorodibromomethane	ug/m3	1.4 U	1.4 U	4.1 U	1.4 U	1.4 U	1.4 U	1.4 U	1.7 U	1.4 U	1.4 U	1.4 U
Chloroethane	ug/m3	1.1 U	1.1 U	3.2 U	1.1 U	1.1 U	1.1 U	1.1 U	1.3 U	1.1 U	1.1 U	1.1 U
Chloroform	ug/m3	0.98	0.78 U	2.3 U	0.78 U	0.78 U	0.78 U	0.78 U	0.98 U	1.2	0.78 U	0.78 U
Chloromethane	ug/m3	0.83 U	0.83 U	2.5 U	1.9	1.6	1.7	0.83 U	1 U	0.83 U	0.83 U	0.83 U
Cis-1,2-Dichloroethene	ug/m3	0.63 U	0.63 U	1.9 U	0.63 U	0.63 U	0.63 U	0.63 U	0.79 U	0.63 U	0.63 U	0.63 U
cis-1,3-Dichloropropene	ug/m3	0.73 U	0.73 U	2.2 U	0.73 U	0.73 U	0.73 U	0.73 U	0.91 U	0.73 U	0.73 U	0.73 U
Cyclohexane	ug/m3	1.8	7.9	3.8	1.1	0.65	0.55 U	0.69	0.69 U	8.9	2.8	5.2
Dichlorodifluoromethane	ug/m3	4.5	2.9	5.9 U	3.6	3.3	3.7	3.2	2.5 U	4	3.2	2 U
Ethyl benzene	ug/m3	0.87	1.5	2.1 U	1.4	0.74	0.69 U	1.2	1.8	2.7	2	1.7
Heptane	ug/m3	1.1	2.1	3.9	1.4	0.74	0.66 U	0.66 U	0.82 U	11	1.7	1.6
Hexachlorobutadiene	ug/m3	1.7 U	1.7 U	5.1 UJ	1.7 U	1.7 U	1.7 U	1.7 U	2.1 U	1.7 U	1.7 U	1.0 1.7 U
Hexane	ug/m3	1.4	2.3	4.2 U	2.3	1.4 U	1.7 U	1.4 U	1.8 U	16	2.4	3.9
Isooctane	ug/m3	0.79	1	2.2 U	1.8	0.75 U	0.75 U	0.75 U	0.93 U	0.75 U	0.75 U	0.75 U
	46/115	0.17	1	2.2 0	1.0	0.75 0	0.75 0	0.75 0	0.75 0	0.75 0	0.15 0	0.75 0

				Air Sa	amples		Soil Gas Samples							
				Am Recyc			Outdoor Air			Am Recyc				
		IA-007	IA-008	IA-009	IA-010	IA-011	OA-002	SG-194	SG-195	SG-196	SG-197	SG-198		
		IA-06-ARM-007	IA-06-ARM-008	IA-06-ARM-009	IA-06-ARM-010	IA-06-ARM-011	OA-06-ARM-002	SG-06-ARM-194	SG-06-ARM-195	SG-06-ARM-196	SG-06-ARM-197	SG-06-ARM-198		
		03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	03/29/06		
Parameter	Units	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample		
Methyl Tertbutyl Ether	ug/m3	1.4 U	1.4 U	4.3 U	1.4 U	1.4 U	1.4 U	1.4 U	1.8 U	1.4 U	1.4 U	1.4 U		
Methylene chloride	ug/m3	5.2	22	11	2.7	2	1.4 U	1.4 U	1.7 U	2.8	1.4 U	1.5		
o-Xylene	ug/m3	0.83	1.7	2.1 U	1.7	0.96	0.69 U	2.1	3.1	3.4	2	1.8		
Styrene	ug/m3	0.68 U	1.5	2 U	2.6	0.85	0.68 U	1	1.8	2.6	2.2	0.98		
t-Butyl alcohol	ug/m3	12 U	12 U	36 U	12 U	12 U	12 U	12 U	15 U	12 U	12 U	12 U		
Tetrachloroethene	ug/m3	2.2	6.7	7.5	11	12	1.1 U	1.9	3.7	6.8	4.7	7.5		
Tetrahydrofuran	ug/m3	12 U	12 U	35 U	12 U	12 U	12 U	12 U	15 U	12 U	12 U	12 U		
Toluene	ug/m3	11	14	13	9.4	4.9	3.8	9	15	31	26	30		
trans-1,2-Dichloroethene	ug/m3	0.63 U	0.63 U	1.9 U	0.63 U	0.63 U	0.63 U	0.63 U	0.79 U	0.63 U	0.63 U	0.63 U		
trans-1,3-Dichloropropene	ug/m3	0.73 U	0.73 U	2.2 U	0.73 U	0.73 U	0.73 U	0.73 U	0.91 U	0.73 U	0.73 U	0.73 U		
Trichloroethene	ug/m3	0.25	0.86 U	0.33	0.32	0.22	0.21 U	0.86 U	1.1 U	0.86 U	0.86 U	0.86 U		
Trichlorofluoromethane	ug/m3	130	140	56	2.2	2.5	1.9	44	1.1 U	26	2.6	2.5		
Vinyl bromide	ug/m3	0.7 U	0.7 U	2.1 U	0.7 U	0.7 U	0.7 U	0.7 U	0.87 U	0.7 U	0.7 U	0.7 U		
Vinyl chloride	ug/m3	0.41 U	0.41 U	1.2 U	0.41 U	0.41 U	0.41 U	0.41 U	0.51 U	0.41 U	0.41 U	0.41 U		
Xylene, m/p	ug/m3	2.3	4.8	5.2 U	4	2	1.7 U	3.9	6.5	8.3	4.8	4.2		
Xylenes, Total	ug/m3	3.2	6.9	2.1 U	6.1	3.1	0.69 U	6.1	10	12	6.9	6.1		
												Excess		

Notes:

Shaded values in Indoor air, Soil gas, or Outdoor Air indicate that the detected concentration exceeded the commercial/industrial risk-based value presented in Table 1.

Published Background is the NYSDOH background data base for homes in NYS (1997 - 2003) (NYSDOH, 2005)

The NYSDOH Guideline value is the Air Guideline Value (NYSDOH, 2005)

NYSDOH, 2005: Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Public Comment Draft. February, 2005

[a] Risks are calculated in Attachment A and are based on full-time commercial/industrial worker exposures. Risks are prsented for Office / Warehouse

[b] Risks for constituents detected in indoor air are calculated for each constituent denoted with a "Y" and summed to yield total cancer risk and hazard index values.

[c] Risks for constituents detected in indoor air > Outdoor air represent the incremental risk (risk for constituents detected in indoor air minus risk for constituents detected in outdoor air). Risks are presented for

[d] Risks for constituents with a potentially complete pathway are calculated for each constituent denoted with a "Y" and summed to yield total cancer risk and hazard index values. Risks are based on the high-

[e] Risks for constituents with a potentially complete pathway and detected at average concentrations in excess of published background or maximum concentrations in excess of NYDOH screening values are c Y - Yes

N - No

-- Not applicable

					<u> </u>				<u> </u>
					Average Indoor	-		Pathway	Pathway Potentially
D	.	Published	NYSDOH Air	Detected in	Air > Outdoor	Published Background on			Complete & Indoor Air
Parameter	Units	Background	Guideline	Indoor Air?	Air?	NYSDOH Guideline?	Gas?	Complete?	 > Background or
1,1,1-Trichloroethane	ug/m3	<0.25 - 1.4		N			Y	N	 N
1,1,2,2-Tetrachloroethane	ug/m3	< 0.25		N			N	N	 N
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3			N			Y	N	 N
1,1,2-Trichloroethane	ug/m3	<0.25		N			N	N	 N
1,1-Dichloroethane	ug/m3	< 0.25		N			N	N	 N
1,1-Dichloroethene	ug/m3	< 0.25		N			N	N	 N
1,2,4-Trichlorobenzene	ug/m3			N			N	N	 N
1,2,4-Trimethylbenzene	ug/m3	0.78 - 4.4		Y	Y	N	Y	Y	N
1,2-Dibromoethane	ug/m3	< 0.25		N			N	N	N
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3			N			N	N	N
1,2-Dichlorobenzene	ug/m3	< 0.25		N			N	N	N
1,2-Dichloroethane	ug/m3	< 0.25		N			N	N	N
1,2-Dichloroethene (total)	ug/m3			N			N	N	N
1,2-Dichloropropane	ug/m3	< 0.25		N			N	N	N
1,3,5-Trimethylbenzene	ug/m3	<0.25 - 1.7		Y	Y	N	Y	Y	N
1,3-Dichlorobenzene	ug/m3	< 0.25		N			N	N	N
1,4-Dichlorobenzene	ug/m3			N			N	N	N
1.4-Dioxane	ug/m3			N			N	N	N
2-Butanone	ug/m3			Y	Y		Y	Y	 Y
2-Chlorotoluene	ug/m3			N			N	N	 N
2-Hexanone	ug/m3			Y	Y		N	N	 N
2-Propanol	ug/m3			Y	Y		Y	Y	 Y
4-Ethyltoluene	ug/m3			Y	Y		Y	Y	 Y
4-Methyl-2-pentanone	ug/m3			Y	Y		Y	Y	 Y
Acetone	ug/m3	10 - 46		Y	Y	Y	Y	Y	 Y
Allyl chloride	ug/m3	10 40		N	-	1	N	N	 N
Benzene	ug/m3	1.2 - 5.7		Y	Y	N	Y	Y	 N
Bromodichloromethane	ug/m3	1.2 - 5.7		N	-	1	N	N	 N
Bromoform	ug/m3			N			N	N	 N
Bromomethane	ug/m3	< 0.25		N			N	N	 N
Butadiene, 1,3-	ug/m3	<0.25		Y	Y		Y	Y	 Y
Carbon disulfide				Y	Y		Y	Y	 Y
Carbon tetrachloride	ug/m3	<0.25 - 0.68		Y	N	 N	Y	Y	 N
Chlorobenzene	ug/m3	<0.25 - 0.68		I N	IN	IN	N I	N	 N
Chlorodibromomethane	ug/m3	<0.25		N			N N	N	 N
	ug/m3								 N
Chloroethane	ug/m3	0.05 0.54		N	••		N	N	
Chloroform	ug/m3	<0.25 - 0.54		Y	Y	Y	Y	Y	 Y
Chloromethane	ug/m3	<0.25 - 2.0		Y	N	N	N	N	 N
Cis-1,2-Dichloroethene	ug/m3	< 0.25		N			N	N	 N
cis-1,3-Dichloropropene	ug/m3			N			N	N	 N
Cyclohexane	ug/m3			Y	Y		Y	Y	 Y
Dichlorodifluoromethane	ug/m3			Y	N		Y	Y	 Y
Ethyl benzene	ug/m3	0.43 - 2.8		Y	Y	N	Y	Y	 N
Heptane	ug/m3			Y	Y		Y	Y	Y
Hexachlorobutadiene	ug/m3			N			N	N	N
Hexane	ug/m3	0.63 - 6.5		Y	Y	N	Y	Y	N
Isooctane	ug/m3			Y	Y		N	N	N

						Average Indoor	Average Indoor Air >		Pathway		Pathway Potentially
		Published	NYSDOH Air	Detected in		Air > Outdoor	Published Background or	Detected in Soil	Potentially		Complete & Indoor Ai
Parameter	Units	Background	Guideline	Indoor Air?		Air?	NYSDOH Guideline?	Gas?	Complete?		> Background or
Methyl Tertbutyl Ether	ug/m3	<0.25 - 6.7		N				N	Ν		N
Methylene chloride	ug/m3	0.38 - 6.3	60	Y		Y	N	Y	Y		N
o-Xylene	ug/m3	0.39 - 3.1		Y		Y	N	Y	Y		N
Styrene	ug/m3	<0.25 - 0.68		Y		Y Y		Y	Y		Y
t-Butyl alcohol	ug/m3			N				N	Ν		N
Tetrachloroethene	ug/m3	<0.25 - 1.2	100	Y		Y	N	Y	Y		N
Tetrahydrofuran	ug/m3			N				N	Ν		N
Toluene	ug/m3	4.2 - 25		Y		Y	N	Y	Y		N
trans-1,2-Dichloroethene	ug/m3			N				N	Ν		N
trans-1,3-Dichloropropene	ug/m3			N				N	Ν		N
Trichloroethene	ug/m3	< 0.25	5	Y		Y	N	N	Ν		N
Trichlorofluoromethane	ug/m3			Y		Y		Y	Y		N
Vinyl bromide	ug/m3			N				N	Ν		N
Vinyl chloride	ug/m3	< 0.25		N				N	Ν		N
Xylene, m/p	ug/m3			Y		Y		Y	Y		Y
Xylenes, Total	ug/m3			Y		Y		Y	Y		Y
		ifetime Car	ncer Risk [a]	7E-06 / 2E-05	[b]	5E-06 / 1E-05	[c]		1E-05	[d]	5E-06
		Haza	ard Index [a]	0.1 / 0.4	[b]	0.1 / 0.4	[c]		0.5	[d]	0.2

for Office / Warehou: her of the EPCs for Office or Warehou calculated for each constituent denoted with a "Y" and summed to yield total cancer risk and hazard index val-

Table 3 Pathway Completeness and Risk Analysis Firth Rixson

			Air Samples		Soil Gas	Samples	ſ								
		FR	ixson	Outdoor Air		xson									
		IA-012 IA-06-FRX-012	IA-013 IA-06-FRX-013	OA-003 OA-06-FRX-003	SG-199 SG-06-FRX-199	SG-200 SG-06-FRX-200									
		03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	Published	NYSDOH Air	Detected in	Average Indoor Air > Outdoor	Average Indoor Air > Published Background	Detected in Soil	Pathway Potentially	(Complete & Indoor Ai > Background or
Parameter	Units	Sample	Sample	Sample	Sample	Sample	Background	Guideline	Indoor Air?	Air?	or NYSDOH Guideline?	Gas?	Complete?		Guideline Value?
1,1,1-Trichloroethane	ug/m3	0.87 U	0.87 U	0.87 U	3.7 U	2200	<0.25 - 1.4	Guidenne	N	7111.	or it is both durachine.	Y Y	N N	-	N
1.1.2.2-Tetrachloroethane	ug/m3	1.1 U	1.1 U	1.1 U	4.6 U	1.1 U	<0.25		N			N	N		N
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1.2 U	1.2 U	1.2 U	5.1 U	1.2 U	-0.20		N			N	N		N
1,1,2-Trichloroethane	ug/m3	0.87 U	0.87 U	0.87 U	3.7 U	0.87 U	<0.25		N			N	N		N
1.1-Dichloroethane	ug/m3	0.65 U	0.65 U	0.65 U	2.7 U	11	<0.25		N			Y	N		N
1,1-Dichloroethene	ug/m3	0.63 U	0.63 U	0.63 U	2.7 U	0.63 U	< 0.25		N			N	N		N
1,2,4-Trichlorobenzene	ug/m3	3 U	3 U	3 U	13 U	3 U			N			N	N		N
1,2,4-Trimethylbenzene	ug/m3	1.3	7.4	1	4.4	4.3	0.78 - 4.4		Y	Y	N	Y	Y		N
1,2-Dibromoethane	ug/m3	1.2 U	1.2 U	1.2 U	5.1 U	1.2 U	< 0.25		N			N	N		N
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1.1 U	1.1 U	1.1 U	4.7 U	1.1 U			N			N	N		N
1,2-Dichlorobenzene	ug/m3	0.96 U	0.96 U	0.96 U	4 U	0.96 U	<0.25		N			N	N		N
1,2-Dichloroethane	ug/m3	0.65 U	0.65 U	0.65 U	2.7 U	0.65 U	<0.25		N			N	N		N
1,2-Dichloroethene (total)	ug/m3	0.63 U	0.63 U	0.63 U	2.7 U	0.63 U			N			N	N		N
1,2-Dichloropropane	ug/m3	0.74 U	0.74 U	0.74 U	3.1 U	0.74 U	<0.25		N			N	N		N
1,3,5-Trimethylbenzene	ug/m3	0.79 U	2	0.79 U	3.3 U	1.3	<0.25 - 1.7		Y	Y	N	Y	Y		N
1,3-Dichlorobenzene	ug/m3	0.96 U	0.96 U	0.96 U	4 U	0.96 U	<0.25		N			N	N		N
1,4-Dichlorobenzene	ug/m3	26	0.96 U	0.96 U	10	0.96 U			Y	Y		Y	Y		Y
1,4-Dioxane	ug/m3	R	R	R	R	R			N			N	N		N
2-Butanone	ug/m3	1.2 U	1.2 U	1.2 U	10	3.8			N			Y	N		N
2-Chlorotoluene	ug/m3	0.83 U	0.83 U	0.83 U	3.5 U	0.83 U			N			N	N		N
2-Hexanone	ug/m3	1.6 U	1.6 U	1.6 U	7 U	1.6 U			N			N	N		N
2-Propanol	ug/m3	9.8 U	9.8 U	1.4 J	42 U	10			N			Y	N		N
4-Ethyltoluene	ug/m3	0.79 U	6.4	0.79 U	3.3 U	3.3			Y	Y		Y	Y		Y
4-Methyl-2-pentanone	ug/m3	1.6 U	1.6 U	1.6 U	7 U	1.8			N			Y	N		N
Acetone	ug/m3	23	310	9.5 U	97	55	10 - 46		Y	Y	Y	Y	Y		Y
Allyl chloride	ug/m3	1.3 U	1.3 U	1.3 U	5.3 U	1.3 U			N			N	N		N
Benzene	ug/m3	1.3	11	1.6	3.5	5.4	1.2 - 5.7		Y	Y	Y	Y	Y		Y
Bromodichloromethane	ug/m3	1.1 U	1.1 U	1.1 U	4.5 U	1.1 U			N			N	N		N
Bromoform Bromomethane	ug/m3	1.7 U 0.62 U	1.7 U 0.62 U	1.7 U	6.9 U 2.6 U	1.7 U 0.62 U	<0.25		N N			N N	N N		N N
Bromometnane Butadiene, 1,3-	ug/m3	0.82 U 0.88 U	6.4	0.62 U 0.88 U	2.6 U 3.8 U	0.82 U	<0.25		Y	Y		N	N		N
Carbon disulfide	ug/m3	1.2 U	1.2 U	1.2 U	9.3	3.4			Y N	ĭ		Y	N		N
Carbon disunde Carbon tetrachloride	ug/m3 ug/m3	0.69	1.2 U 1 U	0.69	9.5 4.2 U	3.4 1 U	<0.25 - 0.68		Y	N	N	N I	N		N
Chlorobenzene	ug/m3	0.89 0.74 U	0.74 U	0.89 0.74 U	4.2 U 3.1 U	0.74 U	<0.25 - 0.08		N I	IN	IN	N	N		N
Chlorodibromomethane	ug/m3	1.4 U	1.4 U	1.4 U	5.7 U	1.4 U	<0.25		N			N	N		N
Chloroethane	ug/m3	1.4 U	1.4 U	1.4 U	4.5 U	1.4 U			N			N	N		N
Chloroform	ug/m3	0.78 U	0.78 U	0.78 U	4.3 U	4.2	<0.25 - 0.54		N	1		Y	N		N
Chloromethane	ug/m3	1.6	1.2	1.7	3.5 U	0.83 U	<0.25 - 0.54		Y	N	N	N	N		N
Cis-1,2-Dichloroethene	ug/m3	0.63 U	0.63 U	0.63 U	2.7 U	0.63 U	<0.25		N		-''	N	N		N
cis-1,3-Dichloropropene	ug/m3	0.73 U	0.73 U	0.73 U	3 U	0.73 U			N			N	N	\rightarrow	N
Cyclohexane	ug/m3	0.55 U	1	0.55 U	6.9	210 J			Y	Y		Y	Y	. T	Y
Dichlorodifluoromethane	ug/m3	6.9	3.2	3.2	8.4 U	2.3			Y	Y		Y	Y		Y
Ethyl benzene	ug/m3	0.78	6.1	0.83	3.8	4	0.43 - 2.8		Y	Y	Y	Y	Y		Y
Heptane	ug/m3	0.98	2.3	0.98	7	5.3			Y	Y		Y	Y		Y
Hexachlorobutadiene	ug/m3	1.7 U	1.7 U	1.7 U	7.1 U	1.7 U			N	1		N	N		N
Hexane	ug/m3	1.4 U	6.3	2.3	6 U	11	0.63 - 6.5		Y	Y	N	Y	Y		N
Isooctane	ug/m3	0.93	5.1	2	3.1 U	1.1			Y	Y		Y	Y		N
Methyl Tertbutyl Ether	ug/m3	1.4 U	1.4 U	1.4 U	6.1 U	1.4 U	<0.25 - 6.7		N			N	N		N
Methylene chloride	ug/m3	1.4 U	1.4 U	1.4 U	5.9 U	1.4 U	0.38 - 6.3	60	N			N	N		N
o-Xylene	ug/m3	0.96	6.9	1	3.8	4.1	0.39 - 3.1		Y	Y	Y	Y	Y		Y
Styrene	ug/m3	0.68 U	1.7	0.68 U	2.8 J	1.8	<0.25 - 0.68		Y	Y	Y	Y	Y	/	Y
t-Butyl alcohol	ug/m3	12 U	12 U	12 U	52 U	12 U			N			N	N		N
Tetrachloroethene	ug/m3	1.1 U	1.1 U	1.1 U	4.9	28	<0.25 - 1.2	100	N			Y	N		N
Tetrahydrofuran	ug/m3	12 U	12 U	12 U	50 U	12 U			N			N	N		N
Toluene	ug/m3	5.7	140	6	57	75	4.2 - 25		Y	Y	Y	Y	Y		Y
														0	21/2006

Table 3 Pathway Completeness and Risk Analysis Firth Rixson

			Air Samples		Soil Gas	Samples									
		F Ri	ixson	Outdoor Air	F Ri	xson									
		IA-012	IA-013	OA-003	SG-199	SG-200									
		IA-06-FRX-012	IA-06-FRX-013	OA-06-FRX-003	SG-06-FRX-199	SG-06-FRX-200									
		03/29/06	03/29/06	03/29/06	03/29/06	03/29/06	Published	NYSDOH Air	Detected in	Average Indoor Air > Outdoor	Average Indoor Air > Published Background	Detected in Soil	Pathway Potentially		Complete & Indoor Air > Background or
Parameter	Units	Sample	Sample	Sample	Sample	Sample	Background	Guideline	Indoor Air?	Air?	or NYSDOH Guideline?	Gas?	Complete?		Guideline Value?
trans-1,2-Dichloroethene	ug/m3	0.63 U	0.63 U	0.63 U	2.7 U	0.63 U			N			N	N		N
trans-1,3-Dichloropropene	ug/m3	0.73 U	0.73 U	0.73 U	3 U	0.73 U			N			N	N		N
Trichloroethene	ug/m3	0.21 U	0.86 U	0.21 U	3.6 U	2.8	< 0.25	5	Ν			Y	Ν		N
Trichlorofluoromethane	ug/m3	1.8	1.6	1.6	3.8 U	2.2			Y	Y		Y	Y		Y
Vinyl bromide	ug/m3	0.7 U	0.7 U	0.7 U	2.9 U	0.7 U			N			N	Ν		N
Vinyl chloride	ug/m3	0.41 U	0.41 U	0.41 U	1.7 U	0.41 U	< 0.25		N			N	N		N
Xylene, m/p	ug/m3	2.6	20	2.3	8.7	11			Y	Y		Y	Y		Y
Xylenes, Total	ug/m3	3.6	28	3.4	13	16			Y	Y		Y	Y		Y
						Excess L	ifetime Can	cer Risk [a]	1E-05 / 2E-05	8E-06 / 2E-05	[c]		2E-05	[d]	2E-05
Notes:							Haza	rd Index [a]	0.09 / 1	0.02 / 0.9	[c]		0.5	[d]	0.2

Shaded values in Indoor air, Soil gas, or Outdoor Air indicate that the detected concentration exceeded the commercial/industrial risk-based value presented in Table 1.

Published Background is the NYSDOH background data base for homes in NYS (1997 - 2003) (NYSDOH, 2005)

The NYSDOH Guideline value is the Air Guideline Value (NYSDOH, 2005)

NYSDOH, 2005: Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Public Comment Draft. February, 2005

[a] Risks are calculated in Attachment A and are based on full-time commercial/industrial worker exposures. Risks are prsented for Office / Shipping

[b] Risks for constituents detected in indoor air are calculated for each constituent denoted with a "Y" and summed to yield total cancer risk and hazard index values.

[c] Risks for constituents detected in indoor air > Outdoor air represent the incremental risk (risk for constituents detected in indoor air minus risk for constituents detected in outdoor air). Risks are presented for Office / Shipping

[d] Risks for constituents with a potentially complete pathway are calculated for each constituent denoted with a "Y" and summed to yield total cancer risk and hazard index values. Risks are based on the higher of the EPCs for Office or Warehouse.

[e] Risks for constituents with a potentially complete pathway and detected at average concentrations in excess of published background or maximum concentrations in excess of NYDOH screening values are calculated for each constituent denoted with a "Y" and summed to yield total cancer risk and hazard Y - Yes

N - No

-- Not applicable

APPENDIX A

FIELD DATA RECORDS

	Site Location: ARCH Chemical, Rochester,	CH Chemical, Rocl	aester, N.Y.		Sampled B	Sampled By: Wolfgang Calicchio	g Calice	hio	
	Project Number: 3616036009.01	616036009.01			Sampling Date:		3/29/00	9	
	Sample ID	Sampling Location	cation	Start	End	Total Sample	nple	Canister Start	Canister End
Three carl				Time	Time	Time		Pressure	Pressure (in. Ho)
4405	IA-06-ARM-007 ×	Location 1 can	2903	0110	1554	Hrs.	mins.	- 31.1	1.2.
1362	SG-06-ARM-194 ≺	Location 1 can	3159	0520	1551		mins.	- 31.2	- 3,5
3103	IA-06-ARM-008 ×	Location 2 can	2552	7270	1551	Hrs.	mins.	- 31.2	, 2, 2 2, 2
sttr	SG-06-ARM-195 ×	Location 2 can	4006	5220	1610	Hrs.	mins.	-31.3	- 5.4
2933	IA-06-ARM-009 🗸	Location 3 can	4157	0730	1630		mins.	- 30.9	-19.5
2589	SG-06-ARM-196 \times	Location 3 can	2958	0520	1630	Hrs.	mins.	- 30.9	- 2.0
3716	IA-06-ARM-010 🗸	Location 4 can	18t r	0739	1335	Hrs.	mins.	- 30.9	0.0
3613	SG-06-ARM-197		2661	0738	1603	Hrs.	mins.	- 31,0	- 4,2.
3132	IA-06-ARM-011	Location 5 can	4002	べったの	icad		mins.	- 31, 0	5.5-
3744	SG-06-ARM-198 🔩 Location 5 can	Location 5 can	4125	2420	1624	Hrs.	mins.	- 31.0	12.4
3003	3 & A OA-06-ARM-002 * Background can	Background can	2657	bhto	1702	Hrs.	mins.	- 31.0	-2.1
			`			Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		-
							mins.		
	Comments:								

U:\FLDCHEM\ARCH-Rochester\canister sampling sheet_2006_ARM.doc

	Site Location: AR	Site Location: ARCH Chemical, Rochester,	nester, N.Y.		Sampled B	Sampled By: Wolfgang Calicchio	g Calic	chio	
	Project Number: 3616036009.01	3616036009.01			Sampling Date:		2/2	3/29/06	
	Sample ID	Sampling Location	cation	Start	End	Total Sample	mple	Canister Start	Canister End
				Time	Time	Time	0	Pressure (in. Hg)	Pressure (in. Hg)
2185	IA-06-FRX-012	📡 Location 1 can	17CP	0809	1/00	Hrs.	mins.	- 30.9	- 0,4
3239	SG-06-FRX-199 ×	Location 1 can	3927	3020	1645	Hrs.	mins.	- 31. 0	-25.9
3354	3 334 IA-06-FRX-013 *	Location 2 can	3236	てょうつ	1640	Hrs.	mins.	-30.9	- 3, 4
2837	2837 SG-06-FRX-200 ,	/ Location 2 can	2672	CIDO	1640	Hrs.	mins.	-30.3	-2.5
2836	2 826 OA-06-FRX-003 x	Background can	(025	0816	1700	Hrs.	mins.	- 30.6	- 4,2
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
						Hrs.	mins.		
	Comments:								

U:\FLDCHEM\ARCH-Rochester\canister sampling sheet_2006_FRX.doc

N.,

STL Burlington 208 South Park Dri	CUICIESEEI, VI UJ-
ERN STL®	
S E V E R N T R E N T Severn trent	

)8 South Park Drive, Suite 1	ter, VT 05446 Tel 802 655 1203	
)8 South P	olchester, V	

CHAIN OF CUSTODY RECORD

Lab Use Only Due Date:		Temp. of coolers when received (C*):	1 2 3 4 5	/ Seal N / Y			For Radioactivity				Lab/Sample ID (Lab Use Only)					3								Client's delivery of samples constitutes acceptance of Severn Trent Laboratories terms and conditions contained in the Price Schedule.	STL cannot accept verbal changes. Please Fax written changes to (802) 655-1248
ANALYSIS / / / /	Requested / / / / /																×		×			Time Remarks	Time	Time Client's delivery of samples terms and conditions contained terms and conditions conditions contained terms and conditi	rcoal Tube SL - Sludge 0 - Oil - Plastic or other ها کېسمېسيم
Invoice to:	EL ALOUNT PAYANGE		hurethe GA					200 Sur	No/Type of Containers ²	10/7/0	voA A/G 250 P/0						, et e la constante de la constant					: (Signature Date	Réceived by: (Signature Date	Received by: (Signature Date	A - Air bag C - Cha - Glass wide mouth P/O
	Company: MACIEC	Address:	4112	Contact:	Phone:	Fax:	1001	Sampler's Signature		SOJU VAPOR	Identifying Marks of Sample(s)	06- ARM-007	06 - ALM - 194	06-421-008	06-4RM-95	06- ARM - 009	06-ARM-196	4-06-4RM-010	-06- ANN-197	06-ARM-011	06- A RM- 192	Date Time Received by: (Sign	Time	Date Time Received by	W - Water S - Soil L - Liquid A/G - Amber / Or Glass 1 Liter 250 ml
Report to:	Company: M. A.C.T.E.C.	N NON	PORTLAND, NE	Contact: JEFE BRANDOW	Phone: (207) 775-5401	Fax: (207) 272-4762	Contract/ $P_{ge} = \sum_{i=1}^{n} F_{ge} = \sum_{i=1}^{$	Sampler's Name Og LICC HID	ect	09.01 ARCH	Matrix ¹ Date Time C G G T Identifyin	<u> </u>	A 264 KG V SG-	A 364 KG V IA-	A 2/4 1610 V SG-	120 V IZ4-	V 56,	A 3/24 1335 V IA-C	NON V SG	124 V IA-	how I SG-	Relinquished by: (Signature)	Relinquished by: (Signature)	Relinquished by: (Signature)	*Matrix WW - Wastewater W 2Container VOA - 40 ml vial A/C

50 (1)	S
	NC.
N N N N N	ABORATORIES,
SEVERN TRENT	SEVERN TRENT L

STL Burlington 208 South Park Drive, Suite 1 Colchester, VT 05446 Tel 802 655 1203

CHAIN OF CUSTODY RECORD

Due Date:	Temp. of coolers when received (C*):		Custody Seal N / Y Intact N / Y	Screened For Radioactivity		ł		(Wind et il dia il dia il dia internationali di anternationali di					-						Client's delivery of samples constitutes acceptance of Severn Trent Laboratories terms and conditions contained in the Price Schedule.	STL cannot accept verbal changes. Please Fax written changes to (802) 655-1248
Analysis / / / / / / / / / / / / / / / / / /																	Time Remarks .	Time	Time Client's delivery of samples constitutes acceptance of terms and conditions contained in the Price Schedule.	SL - Sludge 0 - Oil other 61 - Stumma
oice to: Accourant Paratus		ana ceta (514				alt.	No/Type of Containers ²			~	×	X	×				Date	Date	Date	A - Air bag C - Charcoal Tube S - Glass wide mouth P/O - Plastic or other.
Inv Company: M 44 mer	Address:	2 Contact:	Phone:	Fax:		Sampler's Signature	Son. Value	ele (6-4KM-000	FRY- 01	- FRX - 199		- FRX-200			У.	Date Time Received by: (Signature	· ·	Date Time Received by: (Signature	W - Water S - Soil L - Liquid A/G - Amber / Or Glass 1 Liter 250 ml
Report to: Company: MACTEC	2M9 1251	Contact. JEFF OLANDON	Phone: (202) 775-5401	Fax: (207) チオシーイチ62. Contract/ Pacyret #	Quote: 3616036009101	Sampler's Name Cellichio	Proj. No. Project Name	e UoE e		- 3/24 1100 V II I.4 -	A 3/54 Nors V SG-06-	A 24 140 VI 129-06-	NHO V	A 7/24 1700 V 04-06-			Relinquished by Signature 1	Relinquished by (Signature)	Relinquished by: (Signature)	Matrix WW - Wastewater W ·

20/

APPENDIX B

METEROLOGICAL DATA

www.crh.noaa.gov

Weather observations for the past three days

Greater Rochester International Airport

Enter Your "City, ST"

Go

D						T	empera	iture (°F	=)	Pres	sure	Pr	ecipital	ion
a t	Time (est)	Wind (mph)	Vis. (mi.)	Weather	Sky Cond.		. .	6 h	our	altimeter	sea		- · ·	
e	(000)	(mpn)	(111.)			Air	Dwpt	Max.	Min.	(in)	level (mb)	1 hr	3 hr	6 hr
30	06:54	SW 7	8.00	Mostly Cloudy	FEW095 BKN250	35	29	38	32	30.31	1026.7			
30	05:54	SW 5	9.00	Mostly Cloudy	SCT090 BKN250	33	27			30.29	1026.1			
30	04:54	S 6	9.00	Fair	CLR	34	27			30.29	1026.1			
30	03:54	SW 6	8.00	Fair	CLR	32	26			30.28	1025.8			
30	02:54	SW 6	8.00	Fair	CLR	33	28			30.28	1025.9			
30	01:54	SW 3	10.00	Fair	CLR	36	27			30.29	1026.1			
30	00:54	Calm	10.00	Fair	CLR	38	27	51	37	30.30	1026.3			
29	23:54	SW 6	10.00	Fair	CLR	38	28			30.30	1026.2			
29	22:54	SW 5	10.00	Fair	CLR	39	28			30.29	1026.0			
29	21:54	SW 6	10.00	Fair	CLR	39	28			30.29	1026.1			
29	20:54	Calm	10.00	Fair	CLR	42	27			30.28	1025.7			
29	19:54	Calm	10.00	Fair	CLR	45	26			30.27	1025.4			
29	18:54	Calm	10.00	A Few Clouds	FEW200	51	24	57	51	30.25	1025.0			
29	17:54	NW 8	10.00	A Few Clouds	FEW200	52	25			30.26	1025.0			
29	16:54	N 10	10.00	A Few Clouds	FEW200	54	25			30.25	1024.8			
29	15:54	N 12	10.00	A Few Clouds	FEW250	57	26			30.25	1024.8			
29	14:54	N 10	10.00	A Few Clouds	FEW250	57	25			30.26	1025.0			
29	13:54	N 12	10.00	A Few Clouds	FEW250	56	24			30.27	1025.4			
29	12:54	N 12	10.00	A Few Clouds	FEW250	56	25	57	32	30.28	1025.7			
29	11:54	Vrbl 7	10.00	A Few Clouds	FEW250	56	24			30.28	1025.8			
29	10:54	Vrbl 3	10.00	A Few Clouds	FEW250	54	24			30.29	1026.0			
29	09:54	E 3	10.00	A Few Clouds	FEW250	50	22			30.30	1026.3			
29	08:54	S 3	10.00	A Few Clouds	FEW250	44	28			30.29	1026.2			
29	07:54	SW 5	10.00	Partly Cloudy	FEW020 SCT100 SCT250	37	29			30.30	1026.4			
29	06:54	Calm	9.00	Partly Cloudy	FEW015 SCT095	32	26	32	27	30.27	1025.5			
29	05:54	Calm	9.00	Partly Cloudy	FEW180 SCT250	28	25			30.24	1024.7			
29	04:54	S 3	10.00	A Few Clouds	FEW200	30	23			30.23	1024.1			
29	03:54	S 3	10.00	Partly Cloudy	FEW170 SCT250	30	23			30.22	1023.7			
29	02:54	SW 3	10.00	A Few Clouds	FEW250	30	25			30.22	1023.8			

	5										
29	01:54	S 3	10.00	Fair	CLR	31	27			30.21	1023.3
29	00:54	SW 3	10.00	Fair	CLR	31	26	44	31	30.21	1023.5
28	23:54	S 3	10.00	Fair	CLR	33	25			30.20	1023.0
28	22:54	SW 3	10.00	Fair	CLR	34	23			30.19	1022.9
28	21:54	Calm	9.00	Fair	CLR	37	23			30.19	1022.8
28	20:54	Calm	10.00	Fair	CLR	41	22			30.19	1022.7
28	19:54	NE 5	10.00	Fair	CLR	44	22			30.18	1022.5
28	17:54	N 12	10.00	Partly Cloudy	SCT200	48	22			30.16	1021.6
28	16:54	NE 12	10.00	Mostly Cloudy	BKN200	50	23			30.15	1021.3
28	15:54	N 15	10.00	Mostly Cloudy	FEW060 BKN250	52	23			30.15	1021.4
28	14:54	N 16	10.00	Mostly Cloudy	FEW060 BKN250	53	23			30.15	1021.6
28	13:54	N 14	10.00	Mostly Cloudy	FEW055 BKN250	55	25			30.16	1021.7
28	12:54	E 9	10.00	Mostly Cloudy	FEW055 BKN250	53	21	54	33	30.18	1022.2
28	11:54	S 5	10.00	Mostly Cloudy	FEW025 BKN220	52	21			30.19	1022.8
28	10:54	Vrbl 5	10.00	Mostly Cloudy	FEW020 BKN220	50	23			30.21	1023.4
28	09:54	S 6	10.00	Mostly Cloudy	BKN220	46	25			30.22	1024.0
28	08:54	S 6	10.00	Mostly Cloudy	BKN220	41	24			30.23	1024.1
28	07:54	S 5	10.00	Mostly Cloudy	BKN220	35	24			30.23	1024.1
28	06:54	Calm	10.00	Mostly Cloudy	BKN220	33	22	33	30	30.23	1024.1
28	05:54	SW 6	10.00	Mostly Cloudy	BKN250	32	21			30.21	1023.6
28	04:54	SW 8	10.00	Mostly Cloudy	BKN250	31	22			30.21	1023.5
28	03:54	SW 6	10.00	Mostly Cloudy	BKN250	32	22			30.20	1023.3
28	02:54	SW 6	10.00	Mostly Cloudy	BKN200	31	22			30.21	1023.3
28	01:54	SW 6	10.00	Mostly Cloudy	BKN220	30	20			30.22	1023.8
28	00:54	SW 6	10.00	A Few Clouds	FEW250	32	19	45	32	30.22	1023.7
27	23:54	SW 6	10.00	Fair	CLR	33	19			30.22	1023.8
27	22:54	SW 6	10.00	Fair	CLR	36	18			30.22	1023.7
27	21:54	W 7	10.00	Fair	CLR	38	19			30.22	1023.9
27	20:54	W 6	10.00	Fair	CLR	40	20			30.22	1023.9
27	19:54	W 7	10.00	Fair	CLR	43	21			30.22	1023.7
27	18:54	W 7	10.00	Mostly Cloudy	BKN180	46	19	53	46	30.20	1023.2
27	17:54	N 7	10.00	Mostly Cloudy	BKN200	48	16			30.20	1023.1
27	16:54	NW 15 G 22	10.00	Mostly Cloudy	FEW055 BKN200	51	15			30.21	1023.3
27	15:54	NW 13 G 21	10.00	Overcast	FEW055 OVC250	51	19			30.21	1023.6
27	14:54	NW 14 G 22	10.00	Mostly Cloudy	FEW050 BKN250	52	22			30.22	1023.8
27	13:54	NW 9	10.00	Mostly Cloudy	FEW050 BKN250	52	23			30.23	1024.0
27	12:54	NW 9	10.00	Partly Cloudy	FEW045 SCT250	51	22	51	32	30.25	1024.6

11:54	W 10	10.00	A Few Clouds	FEW250	48	21			30.26	1025.1			
10:54	N 5	10.00	A Few Clouds	FEW250	46	22			30.28	1025.8			
09:54	NW 10	10.00	A Few Clouds	FEW250	43	23			30.29	1026.1			
08:54	W 10	10.00	A Few Clouds	FEW250	40	24			30.28	1025.7			
07:54	W 12	10.00	A Few Clouds	FEW250	36	24			30.27	1025.6			
06:54	W 8	10.00	A Few Clouds	FEW250	32	23	34	27	30.25	1024.8			
					A !	Durat	Max.	Min.	altimeter	sea		<u>.</u>	. /
Time (est)			Weather	Sky Cond.	Air	Dwpt	6 h	our	(in)	ievei (mb)	1 nr	3 hr	6 hr
. ,	. , ,	. ,			Т	empera	iture (°F	=)	Pres	sure	Pr	ecipita	tion
	09:54 08:54 07:54 06:54 Time	10:54 N 5 09:54 NW 10 08:54 W 10 07:54 W 12 06:54 W 8 Time Wind	10:54 N 5 10.00 09:54 NW 10 10.00 08:54 W 10 10.00 07:54 W 12 10.00 06:54 W 8 10.00 Time Wind Vis.	10:54 N 5 10.00 A Few Clouds 09:54 NW 10 10.00 A Few Clouds 08:54 W 10 10.00 A Few Clouds 07:54 W 12 10.00 A Few Clouds 06:54 W 8 10.00 A Few Clouds Time Wind Vis. Weather	10:54 N 5 10.00 A Few Clouds FEW250 09:54 NW 10 10.00 A Few Clouds FEW250 08:54 W 10 10.00 A Few Clouds FEW250 07:54 W 12 10.00 A Few Clouds FEW250 06:54 W 8 10.00 A Few Clouds FEW250 Time Wind Vis. Weather Sky Cond	10:54 N 5 10.00 A Few Clouds FEW250 46 09:54 NW 10 10.00 A Few Clouds FEW250 43 08:54 W 10 10.00 A Few Clouds FEW250 40 07:54 W 12 10.00 A Few Clouds FEW250 36 06:54 W 8 10.00 A Few Clouds FEW250 32 Time (est) Wind (mph) Vis. (mi.) Weather Sky Cond. Air	10:54 N 5 10.00 A Few Clouds FEW250 46 22 09:54 NW 10 10.00 A Few Clouds FEW250 43 23 08:54 W 10 10.00 A Few Clouds FEW250 40 24 07:54 W 12 10.00 A Few Clouds FEW250 36 24 06:54 W 8 10.00 A Few Clouds FEW250 32 23 Time (est) Wind (mph) Vis. (mi.) Weather Sky Cond. Air Dwpt	10:54 N 5 10.00 A Few Clouds FEW250 46 22 09:54 NW 10 10.00 A Few Clouds FEW250 43 23 08:54 W 10 10.00 A Few Clouds FEW250 40 24 07:54 W 12 10.00 A Few Clouds FEW250 36 24 06:54 W 8 10.00 A Few Clouds FEW250 32 23 34 Time (est) Wind (mph) Vis. (mi.) Weather Sky Cond. Air Dwpt Max.	10:54 N 5 10.00 A Few Clouds FEW250 46 22 09:54 NW 10 10.00 A Few Clouds FEW250 43 23 08:54 W 10 10.00 A Few Clouds FEW250 40 24 07:54 W 12 10.00 A Few Clouds FEW250 36 24 06:54 W 8 10.00 A Few Clouds FEW250 32 23 34 27 Max. Min. Time Wind Vis. Weather Sky Cond Air Dwpt 6 hour	10:54 N 5 10.00 A Few Clouds FEW250 46 22 30.28 09:54 NW 10 10.00 A Few Clouds FEW250 43 23 30.29 08:54 W 10 10.00 A Few Clouds FEW250 40 24 30.28 07:54 W 12 10.00 A Few Clouds FEW250 36 24 30.27 06:54 W 8 10.00 A Few Clouds FEW250 32 23 34 27 30.25 06:54 W 8 10.00 A Few Clouds FEW250 32 23 34 27 30.25 Time (est) Wind (mph) Vis. (mi.) Weather Sky Cond. Air Dwpt Max. Min. 6 hour altimeter (in)	10:54 N 5 10.00 A Few Clouds FEW250 46 22 30.28 1025.8 09:54 NW 10 10.00 A Few Clouds FEW250 43 23 30.29 1026.1 08:54 W 10 10.00 A Few Clouds FEW250 40 24 30.28 1025.7 07:54 W 12 10.00 A Few Clouds FEW250 36 24 30.27 1025.6 06:54 W 8 10.00 A Few Clouds FEW250 32 23 34 27 30.25 1025.8 06:54 W 8 10.00 A Few Clouds FEW250 36 24 30.27 1025.6 06:54 W 8 10.00 A Few Clouds FEW250 32 23 34 27 30.25 1024.8 Time (est) Wind (mph) Vis. (mi.) Weather Sky Cond. Air Dwpt Max. Min. 6 hour altimeter (in) altimeter (in) altivel (mb)	10:54 N 5 10.00 A Few Clouds FEW250 46 22 30.28 1025.8 09:54 NW 10 10.00 A Few Clouds FEW250 43 23 30.29 1026.1 08:54 W 10 10.00 A Few Clouds FEW250 40 24 30.28 1025.7 07:54 W 12 10.00 A Few Clouds FEW250 36 24 30.27 1025.6 06:54 W 8 10.00 A Few Clouds FEW250 32 23 34 27 30.25 1024.8 Time (est) Wind (mph) Vis. (mi.) Weather Sky Cond. Air Dwpt Max. Min. (hop) altimeter (in) altimeter (in) altivel (hop) 1 hr	10:54N 510.00A Few CloudsFEW250462230.281025.809:54NW 1010.00A Few CloudsFEW250432330.291026.108:54W 1010.00A Few CloudsFEW250402430.281025.707:54W 1210.00A Few CloudsFEW250362430.271025.606:54W 810.00A Few CloudsFEW2503223342730.251024.8Time (est)Wind (mph)Vis. (mi.)WeatherSky Cond.AirDwptMax. Min. 6 houraltimeter (in)altimeter (in)altimeter (in)1 hr 3 hr

National Weather Service Central Region Headquarters Kansas City, Missouri Disclaimer

Back to previous page

Last Modified: March 29, 2004 Privacy Policy Credits

APPENDIX C

LABORATORY ANALYTICAL REPORT

STL Burlington 208 South Park Drive, Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

April 13, 2006

Mr. Jeff Brandow MACTEC Engineering & Consulting 511 Congress Street Portland, ME 04101

Re: Laboratory Project No. 26000 Case: 26000; SDG: 113466

Dear Mr. Brandow:

Enclosed are the analytical results for the samples that were received by STL Burlington on March 30th, 2006. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 03/30/06 ETR No:	113466	
663531 663532	✓ IA-06-ARM-007 ✓ SG-06-ARM-194	03/29/06 03/29/06	AIR AIR
663532DP	∠SG-06-ARM-194REP	03/29/06	AIR
663533	∕IA-06-ARM-008	03/29/06	AIR
663534	∠ SG-06-ARM-195	03/29/06	AIR
663535	/IA-06-ARM-009	03/29/06	AIR
663536	∽,SG-06-ARM-196	03/29/06	AIR
663537	'IA-06-ARM-010	03/29/06	AIR
663538	∕/SG-06-ARM-197	03/29/06	AIR
663539	/IA-06-ARM-011	03/29/06	AIR
663540	_V SG-06-ARM-198	03/29/06	AIR
663541	[√] OA-06-ARM-002	03/29/06	AIR
663542	/ IA-06-FRX-012	03/29/06	AIR
663543	✓ SG-06-FRX-199	03/29/06	AIR
663544	IA-06-FRX-013	03/29/06	AIR
663545	✓ SG-06-FRX-200	03/29/06	AIR
663546	√OA-06-FRX-003	03/29/06	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The samples in this delivery group were analyzed using the laboratory's standard TO-15 method. Per the client's instructions, all indoor and outdoor air samples were re-analyzed for Trichloroethene and Carbon Tetrachloride where possible, using the low level TO-15 method, in order to achieve lower reporting limits.

The original analyses for samples IA-06-ARM-008, IA-06-FRX-013, and SG-06-FRX-200 yielded concentrations of target analytes that exceeded the calibrated range. These samples were diluted and re-analyzed yielding acceptable results. The results from both analyses have been formally presented.

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 655-1203.

Sincerely,

Don Dawicki Project Manager

Enclosure

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

٣

Sample Matrix: AIR

CLIENT SAMPLE NO.

IA-06-ARM-007

Lab Sample No.: 663531

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	۵	RL in ppbv	Results in ug/m3	Q	RL in ug/m3	
Dichlorodifluoromethane	75-71-8	0.92		0.40	4.5		2.0	
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	υ	0.16	1.1	υ	1.1	1
Chloromethane	74-87-3	0,40	U	0.40	0.83	U	0.83	
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41	-10
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88	w.
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62	
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1	
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70	····]
Trichlorofluoromethane	75-69-4	23		0.16	130	1	0.90	-1
Freon TF	76-13-1	0.16	υ	0.16	1.2	U	1.2	
1,1-Dichloroethene	75-35-4	0.16	υ	0.16	0.63	U	0.63	1
Acetone	67-64-1	13		4.0	31	1	9.5	1
Isopropyl Alcohol	67-63-0	11		4.0	27		9.8	-
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	υ	1.2	**
3-Chloropropene	107-05-1	0.40	υ	0.40	1.3	υ	1.3	
Methylene Chloride	75-09-2	1.5		0.40	5.2		1.4	
tert-Butyl Alcohol	75-65-0	4.0	υ	4.0	12	U	12	4
Methyl tert-Butyl Ether	1634-04-4	0.40	Ú	0.40	1.4	U	1.4	1
trans-1,2-Dichloroethene	156-60-5	0,16	U	0.16	0.63	U	0.63	*
n-Hexane	110-54-3	0.40		0.40	1.4		1.4	1
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65	1
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63	1
Methyl Ethyl Ketone	78-93-3	0.52		0.40	1.5		1.2	1
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	υ	0.63	1
Tetrahydrofuran	109-99-9	4.0	υ	4.0	12	U	12	1
Chloroform	67-66-3	0.20		0.16	0.98		0.78	1
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87	Ĩ
Cyclohexane	110-82-7	0.52		0.16	1.8		0.55	1
Carbon Tetrachloride	56-23-5	.0,46		<u> </u>				
2,2,4-Trimethylpentane	540-84-1	0.17		0.16	0.79		0.75]
Benzene	71-43-2	0.39		0.16	1.2		0.51]
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65	
n-Heptane	142-82-5	0.26		0.16	1.1		0.66	[

* combine with low level analysis.

Printed: 04/13/06 8:45:41 AM

Page 1 of 2

CLIENT SAMPLE NO.

TO-14/15 **Result Summary**

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

IA-06-ARM-007

Lab Sample No.: 663531

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	a	RL in ug/m3
Trichloroethene	79-01-6	0::1·6	·····	0:16	0,86		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4:0	UR	. 4.0	. <u>14</u>		R 14
Bromodichloromethane	75-27-4	0.16	U	0.16	1,1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0,73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.83		0.40	3.4		1.6
Toluene	108-88-3	2.8		0.16	11		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	υ	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0,87
Tetrachloroethene	127-18-4	0.33		0.16	2.2		1.1
Methyl Butyl Ketone	591-78-6	0.40	υ	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1,4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	υ	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.20		0.16	0.87		0.69
Xylene (m,p)	1330-20-7	0.52		0.40	2.3		1.7
Xylene (o)	95-47-6	0.19		0.16	0.83		0.69
Xylene (total)	1330-20-7	0.74		0.16	3.2		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	υ	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	υ	0.16	1.1	U	1.1
4-Ethyitoluene	622-96-8	0.16	υ	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chiorotoluene	95-49-8	0.16	U	0.16	0.83	Ų	0.83
1,2,4-Trimethylbenzene	95-63-6	0.24		0.16	1.2		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	υ	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	υ	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	υ	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

-Maria

CLIENT SAMPLE NO.

IA-06-ARM-007RE

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

Lab Sample No.: 663531R1

Date Analyzed: 04/10/06

Target Compo	and	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Carbon Tetrachloride	×.	56-23-5	0,11		0.040	0.69		0.25
Trichloroethene	׳	79-01-6	0.047		0.040	0.25		0.21

* combine with original analysis.

Т

CLIENT SAMPLE NO.

IA-06-ARM-009

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Ţ

Sample Matrix: AIR

Lab Sample No.: 663535 Date Analyzed: 04/11/06

Date Received: 03/30/06

11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1.2	υ	1.2	5.9	U	5.9
1,2-Dichlorotetrafluoroethane	76-14-2	0.48	U	0.48	3.4	U	3.4
Chloromethane	74-87-3	1.2	U	1.2	2.5	U	2.5
Vinyl Chloride	75-01-4	0.48	U	0.48	1.2	U	1.2
1,3-Butadiene	106-99-0	1.5		1.2	3.3		2.7
Bromomethane	74-83-9	0.48	U	0.48	1.9	U	1.9
Chloroethane	75-00-3	1.2	υ	1.2	3.2	U	3.2
Bromoethene	593-60-2	0.48	U	0,48	2.1	U	2.1
Trichlorofluoromethane	75-69-4	10		0.48	56		2.7
Freon TF	76-13-1	0.48	U	0.48	3.7	U	3.7
1,1-Dichloroethene	75-35-4	0.48	U	0.48	1.9	U	1.9
Acetone	67-64-1	44		12	100		29
isopropyl Alcohol	67-63-0	12	υ	12	29	U	29
Carbon Disulfide	75-15-0	1.2	U	1.2	3.7	U	3.7
3-Chloropropene	107-05-1	1.2	UJ	1.2	3.8	υĽ	3.8
Methylene Chloride	75-09-2	3.1		1.2	11		4.2
tert-Butyl Alcohol	75-65-0	12	U	12	36	U	36
Methyl tert-Butyl Ether	1634-04-4	1.2	U	1.2	4,3	U	4.3
trans-1,2-Dichloroethene	156-60-5	0.48	U	0.48	1.9	U	1.9
n-Hexane	110-54-3	1.2	U	1.2	4.2	υ	4.2
1,1-Dichloroethane	75-34-3	0.48	U	0.48	1.9	U	1.9
1,2-Dichloroethene (total)	540-59-0	0.48	υ	0.48	1.9	U	1.9
Methyl Ethyl Ketone	78-93-3	1.5		1.2	4.4		3.5
cis-1,2-Dichloroethene	156-59-2	0.48	U	0.48	1.9	U	1.9
Tetrahydrofuran	109-99-9	12	υ	12	35	U	35
Chloroform	67-66-3	0.48	U	0.48	2.3	U	2.3
1,1,1-Trichloroethane	71-55-6	0.48	U	0.48	2.6	U	2.6
Cyclohexane	110-82-7	1.1		0.48	3.8		1.7
Carbon Tetrachioride	56-23-5	Q.48					3.0
2,2,4-Trimethylpentane	540-84-1	0.48	Ų	0.48	2.2	U	2.2
Benzene	71-43-2	0.85		0.48	2.7		1.5
1,2-Dichloroethane	107-06-2	0.48	U	0.48	1.9	U	1.9
n-Heptane	142-82-5	0.95	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.48	3.9		2.0

* combine with two tend analysis.

Ń

CLIENT SAMPLE NO.

IA-06-ARM-009

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Г

Sample Matrix: AIR

Lab Sample No.: 663535 Date Analyzed: 04/11/06

Date Received: 03/30/06

×.

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	-0:48		0.48	2.6	U	2.6
1,2-Dichloropropane	78-87-5	0.48	υ	0.48	2.2	U	2.2
1,4-Dioxane	123-91-1	<u>†2</u>	ty R	12	.43		- 43
Bromodichloromethane	75-27-4	0.48	U	0,48	3.2	U	3.2
cis-1,3-Dichloropropene	10061-01-5	0.48	U	0.48	2.2	U	2.2
Methyl Isobutyl Ketone	108-10-1	1.2	υ	1.2	4.9	U	4.9
Toluene	108-88-3	3.4		0.48	13		1.8
trans-1,3-Dichloropropene	10061-02-6	0.48	υ	0.48	2.2	U	2.2
1,1,2-Trichloroethane	79-00-5	0.48	U	0.48	2.6	U	2.6
Tetrachloroethene	127-18-4	1.1		0.48	7.5		3.3
Methyl Butyl Ketone	591-78-6	1.2	U	1.2	4.9	U	4.9
Dibromochloromethane	124-48-1	0.48	υ	0.48	4.1	U	4.1
1,2-Dibromoethane	106-93-4	0.48	U	0.48	3.7	υ	3.7
Chlorobenzene	108-90-7	0.48	U	0.48	2.2	U	2.2
Ethylbenzene	100-41-4	0.48	U	0.48	2.1	U	2,1
Xylene (m,p)	1330-20-7	1.2	U	1.2	5.2	U	5.2
Xylene (o)	95-47-6	0.48	U	0.48	2.1	U	2.1
Xylene (total)	1330-20-7	0.48	U	0.48	2.1	U	2.1
Styrene	100-42-5	0.48	U	0.48	2.0	U	2.0
Bromoform	75-25-2	0.48	U	0.48	5.0	U	5.0
1,1,2,2-Tetrachloroethane	79-34-5	0.48	υ	0.48	3.3	υ	3.3
4-Ethyltoluene	622-96-8	0.48	U	0.48	2.4	U	2.4
1,3,5-Trimethylbenzene	108-67-8	0.48	U	0.48	2.4	υ	2.4
2-Chlorotoluene	95-49-8	0.48	υ	0.48	2.5	U	2.5
1,2,4-Trimethylbenzene	95-63-6	0.48	υ	0.48	2.4	υ	2.4
1,3-Dichlorobenzene	541-73-1	0.48	U	0.48	2.9	U	2.9
1,4-Dichlorobenzene	106-46-7	0.48	U	0.48	2.9	U	2.9
1,2-Dichlorobenzene	95-50-1	0.48	υ	0.48	2.9	U	2.9
1,2,4-Trichlorobenzene	120-82-1	1.2	U	1.2	8.9	υ	8.9
Hexachlorobutadiene	87-68-3	0.48	υJ	0,48	5,1	US	5.1

TO-14/15

Result Summary

It combine with low land anafysil.

CLIENT SAMPLE NO.

IA-06-ARM-009RE

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

Lab Sample No.: 663535R1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compou	nd	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	a	RL in ug/m3
Carbon Tetrachloride	×	56-23-5	0.10		0.040	0.63		0.25
Trichloroethene	N	79-01-6	0.062		0.040	0.33		0.21

* combine with original analysis.

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-ARM-196

Lab Sample No.: 663536

Date Analyzed: 04/08/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.80		0.40	4.0		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	υ	0.40	0.83	Ų	0.83
Vinyl Chloride	75-01-4	0.16	U	0,16	0.41	υ	0.41
1,3-Butadiene	106-99-0	0.82		0.40	1.8		0.88
Bromomethane	74-83-9	0.16	υ	0.16	0.62	υ	0.62
Chloroethane	75-00-3	0.40	Ų	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	υ	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	4.6		0.16	26		0.90
Freon TF	76-13-1	1.1		0.16	8.4		1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	9.5		4.0	23		9.5
Isopropyi Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	1.8		0.40	5.6		1.2
3-Chloropropene	107-05-1	0.40	υ	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.80		0.40	2.8		1,4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1,4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0,63	U	0.63
n-Hexane	110-54-3	4.6		0.40	16		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0,16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	1.1		0.40	3.2		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	υ	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	υ	4.0	12	υ	12
Chloroform	67-66-3	0.24		0.16	1.2		0.78
1,1,1-Trichloroethane	71-55-6	0.23		0.16	1.3		0.87
Cyclohexane	110-82-7	2.6		0.16	8.9		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	1.5		0.16	4.8		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	2.6		0.16	11		0.66

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-ARM-196

Lab Sample No.: 663536

Date Analyzed: 04/08/06

Date Received: 03/30/06

				<u></u>			
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1			4.0	1.4	- UR	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	8.3		0.16	31		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	υ	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	1.0		0.16	6.8		1.1
Methyl Butyl Ketone	591-78-6	0.40	υ	0.40	1.6	υ	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	υ	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.62	1	0.16	2.7		0.69
Xylene (m,p)	1330-20-7	1.9		0.40	8.3		1.7
Xylene (o)	95-47-6	0.79		0.16	3.4		0.69
Xylene (total)	1330-20-7	2.8		0.16	12		0.69
Styrene	100-42-5	0.62		0.16	2.6		0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.58		0.16	2.9		0.79
1,3,5-Trimethylbenzene	108-67-8	0.17		0.16	0.84		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.75		0.16	3.7		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	υ	0.16	0.96	Ų	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	υ	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	υ	0.16	1.7	U	1.7

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

IA-06-ARM-010

Lab Sample No.: 663537

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3	
Dichlorodifluoromethane	75-71-8	0.72		0.40	3.6		2.0	-
1,2-Dichlorotetrafiuoroethane	76-14-2	0.16	U	0.16	1.1	U	1,1	
Chloromethane	74-87-3	0.94		0.40	1.9		0.83	///1
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41	
1,3-Butadiene	106-99-0	0.80		0,40	1.8		0.88	~
Bromomethane	74-83-9	0.16	U	0.16	0.62	υ	0.62	
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1	1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70	1
Trichlorofluoromethane	75-69-4	0.39		0.16	2.2	1	0.90	
Freon TF	76-13-1	0.16	U	0,16	1.2	U	1.2	1
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	υ	0.63	-
Acetone	67-64-1	14		4.0	33		9.5	-
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8	÷
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2	1
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3	
Methylene Chloride	75-09-2	0.77		0.40	2.7		1.4	1
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12	1
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4	1
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63	
n-Hexane	110-54-3	0,64		0.40	2.3		1.4	-
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65	Ĩ
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	υ	0.63	1
Methyl Ethyl Ketone	78-93-3	1.3		0.40	3.8		1.2	1
cls-1,2-Dichloroethene	156-59-2	0.16	υ	0.16	0.63	U	0.63	1
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12	1
Chloroform	67-66-3	0,16	υ	0,16	0.78	U	0.78	1
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87	1
Cyclohexane	110-82-7	0.33		0.16	1.1	[0.55	Ï
Carbon Tetrachloride	56-23-5	0.16					1.0	- Â
2,2,4-Trimethylpentane	540-84-1	0.39		0.16	1.8		0.75	1
Вепzene	71-43-2	0.91		0.16	2.9		0.51	Ĭ
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65	Ì
n-Heptane	142-82-5	0.35		0.16	1.4		0.66]

* Combrine with low bend analysis.

Printed: 04/13/06 8:45:52 AM

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

t

Sample Matrix: AIR

IA-06-ARM-010

Lab Sample No.: 663537

Date Analyzed: 04/08/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3	
Trichloroethene	79-01-6	0.16		0.16	0.86		0.86	-×
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74	Î
1,4-Dioxane	123-91-1	•17=4;@n======	- U-R	4.0	1·4	U 7	٤. 14	
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1	
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0,16	0.73	U	0.73	1
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6	
Toluene	108-88-3	2.5		0.16	9.4		0.60	
trans-1,3-Dichloropropene	10061-02-6	0.16	υ	0.16	0.73	U	0.73	
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87	
Tetrachloroethene	127-18-4	1.6		0.16	11		1.1	
Methyl Butyl Ketone	591-78-6	2.9		0.40	12		1.6	
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4	
1,2-Dibromoethane	106-93-4	0,16	U	0.16	1.2	U	1.2	
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74	
Ethylbenzene	100-41-4	0.33		0.16	1.4		0.69	
Xylene (m,p)	1330-20-7	0.92		0.40	4.0		1.7	
Xylene (o)	95-47-6	0.39		0.16	1.7		0.69	
Xylene (total)	1330-20-7	1.4		0.16	6.1		0.69	
Styrene	100-42-5	0.60		0.16	2.6		0.68	
Bromoform	75-25-2	0.16	U	0,16	1.7	U	1.7	
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1	
4-Ethyltoluene	622-96-8	0.72		0.16	3.5		0.79	
1,3,5-Trimethylbenzene	108-67-8	0.25		0.16	1.2		0.79	
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83	
1,2,4-Trimethylbenzene	95-63-6	0.82		0.16	4.0		0.79	
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96	
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96	
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96	
1,2,4-Trichlorobenzene	120-82-1	0.40	U .	0.40	3.0	U	3.0	
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7	

A combine with low level analysis.

CLIENT SAMPLE NO.

IA-06-ARM-010RE

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

·····

Lab Sample No.: 663537R1 Date Analyzed: 04/10/06

Target Compou	ind	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Carbon Tetrachloride	÷.	56-23-5	0.11		0.040	0.69		0.25
Trichloroethene	X	79-01-6	0.060		0.040	0.32		0.21

* combine with original and your.

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

۲

Sample Matrix: AIR

Lab Sample No.: 663532

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Dichlorodifluoromethane	75-71-8	0.64	**	0.40	3.2	· [···	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0,16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	υ	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	υ	0,16	0,62	υ	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	7.8		0.16	44		0.90
Freon TF	76-13-1	5.0		0.16	38		1.2
1,1-Dichloroethene	75-35-4	0.16	U	0,16	0.63	U	0.63
Acetone	67-64-1	4.0	U	4.0	9.5	U	9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	1.0		0.40	3.1		1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	υ	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.40	U	0.40	1.4	U	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.40	U	0.40	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	υ	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.20		0,16	0.69		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane *	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.16	U	0.16	0.51	U	0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.16	U	0.16	0.66	U	0.66

CLIENT SAMPLE NO.

SG-06-ARM-194

CLIENT SAMPLE NO.

SG-06-ARM-194

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Г

Sample Matrix: AIR

Lab Sample No.: 663532

Date Analyzed: 04/08/06

Target Compound	CAS Number	Results in ppbv	۵	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0,16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0,74
1,4-Dioxane	123-91-1			4.0	-14		14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	2.4		0.16	9.0		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	υ	0.87
Tetrachloroethene	127-18-4	0.28		0.16	1.9		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.27		0.16	1.2		0.69
Xylene (m,p)	1330-20-7	0.90		0.40	3.9		1.7
Xylene (o)	95-47-6	0.49		0.16	2.1		0.69
Xylene (totai)	1330-20-7	1.4		0.16	6.1		0.69
Styrene	100-42-5	0.24		0.16	1.0		0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.53		0.16	2.6		0.79
1,3,5-Trimethylbenzene	108-67-8	0.27		0.16	1.3		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.76		0.16	3.7		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	υ	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	υ	0.16	1.7	υ	1.7

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-ARM-194REP

Lab Sample No.: 663532DP

Date Analyzed: 04/11/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.72		0.40	3.6		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0,16	υ	0.16	1.1	U	1,1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0,83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	υ	0.16	0.62	υ	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	9.3		0.16	52		0.90
Freon TF	76-13-1	6.0		0.16	46		1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	4.0	U	4.0	9.5	U	9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	1.1		0.40	3.4		1.2
3-Chloropropene	107-05-1	0.40	UJ	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	υ	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.40	U	0.40	1.4	U	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	υ	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.49		0.40	1.4		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	υ	0.63
Tetrahydrofuran	109-99-9	4,0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	υ	0.87
Cyclohexane	110-82-7	0.18	ľ	0.16	0.62		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.16	υ	0.16	0.51	U	0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0,65	U	0.65
n-Heptane	142-82-5	0.16	U	0.16	0.66	U	0.66

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

r

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-06-ARM-194REP

Lab Sample No.: 663532DP

Date Analyzed: 04/11/06

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	٩	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	~,4"Q	mul K	4.0		UR	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	υ	0.40	1.6	U	1.6
Toluene	108-88-3	3.0		0.16	11		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	Q.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.31		0.16	2.1		1,1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0,16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.31		0.16	1.3		0.69
Xylene (m,p)	1330-20-7	0.99		0.40	4.3		1.7
Xylene (o)	95-47-6	0.49		0.16	2.1		0.69
Xylene (total)	1330-20-7	1.5		0.16	6.5		0.69
Styrene	100-42-5	0.22		0.16	0.94		0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.58		0.16	2.9		0.79
1,3,5-Trimethylbenzene	108-67-8	0.29		0.16	1.4		0.79
2-Chlorotoluene	95-49-8	0,16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.84		0.16	4.1		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	Ų	0.96
1,2-Dichloroberizene	95-50-1	0.16	U	Q.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	υJ	0.16	1.7	UĴ	1.7

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

IA-06-ARM-008

CLIENT SAMPLE NO.

Lab Sample No.: 663533

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	۵	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.58		0.40	2.9		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1,1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	υ	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	υ	0.41
1,3-Butadiene	106-99-0	0.58		0.40	1.3		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0,40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	Ų	0.70
Trichlorofluoromethane	75-69-4	25		0.16	140		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	-39		4. 0	99	E	9,5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.69		0.40	2.1	1	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	6.2		0.40	22	·	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.64		0.40	2.3		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	υ	0.63
Methyl Ethyl Ketone	78-93-3	1.4		0.40	4.1		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	υ	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	2.3		0.16	7.9		0.55
Carbon Tetrachloride	56-23-5	0.16	υ	0.16	1.0	υ	1.0
2,2,4-Trimethylpentane	540-84-1	0.22		0.16	1.0		0.75
Benzene	71-43-2	0.67		0.16	2.1		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.52		0.16	2.1		0.66

* combine with dilution analysis result.

Printed: 04/13/06 8:45:45 AM

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

IA-06-ARM-008

Lab Sample No.: 663533

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	۵	RL in ug/m3
		ppu			-3		o grino
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4 <u>.</u> Q		、 4.0	1_4	U_#<	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	υ	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	3,8	··· ····	0.16	14		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.99		0.16	6.7		1.1
Methyl Butyl Ketone	591-78-6	0,40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.34		0.16	1.5		0.69
Xylene (m,p)	1330-20-7	1.1		0.40	4.8		1.7
Xylene (o)	95-47-6	0.38		0.16	1.7		0.69
Xylene (total)	1330-20-7	1.6		0.16	6.9		0.69
Styrene	100-42-5	0.36		0.16	1.5		0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.35		0.16	1.7		0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.52		0.16	2.6		0.79
1,3-Dichlorobenzene	541-73-1	0.16	υ	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

ب ب

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

٢

Sample Matrix: AIR

IA-06-ARM-008DL

Lab Sample No.: 663533D1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	۵	RL in ppbv	Results in ug/m3	Q	RL in ug/m3	and the second second
Dichlorodifluoromethane	75-71-8	0.80	U	0.80	4.0	U	4.0	
1,2-Dichlorotetrafluoroethane	76-14-2	0.32	U	0.32	2.2	Same U and	2.2	-
Chloromethane	74-87-3	0.80	U	0.80	1:7	U	1.7	~ ,
Vinyl Chloride	75-01-4	0.32	U N	0.32	0.82	U	0.82	
1,3-Butadiene	106-99-0	0.80	U	0.80	1.8	U	1.8	
Bromomethane	74-83-9	0.32	U	0.32	1.2	U	1.2	†
Chloroethane	75-00-3	0.80	U	0.80	2.1	U	2.1	
Bromoethene	593-60-2	0.32	U	0.32	1.4	υ	1.4	
Trichlorofluoromethane	75-69-4	27	a	0.32	150	D	1.8	
Freon TF	76-13-1	0.32	U	0.32	2.5	U	2.5	
1,1-Dichloroethene	75-35-4	0.32	U	0.32	1.3	U	1.3	
Acetone	67-64-1	45		8.0	110	Ð	19	·
Isopropyl Alcohol	67-63-0	8.0	U	8.0	20	U	20	
Carbon Disulfide	75-15-0	0.85	D	0.80	2.6	D	2.5	
3-Chloropropene	107-05-1	0.80	U	0.80	2.5	U	2.5	
Methylene Chloride	75-09-2	7.2	D	0.80	25	D	2.8	
tert-Butyl Alcohol	75-65-0	8.0	U	8.0	24	υ	24	
Methyl tert-Butyl Ether	1634-04-4	0.80	U	0.80	2.9	υ	2.9	ļ
trans-1,2-Dichloroethene	156-60-5	0.32	υ	0.32	1.3	υ	1.3	
n-Hexane	110-54-3	0.80	D	0.80	2.8	D	2.8	
1,1-Dichloroethane	75-34-3	0.32	υ	0.32	1.3	U	1.3	
1,2-Dichloroethene (total)	540-59-0	0.32	U	0.32	1.3	U	1.3	
Methyl Ethyl Ketone	78-93-3	1.4	D	0.80	4.1	D	2.4	
cis-1,2-Dichloroethene	156-59-2	0.32	U	0.32	1.3	U	1.3	
Tetrahydrofuran	109-99-9	8.0	U	¹	24	U	24	
Chloroform	67-66-3	0.32	U	0.32	1.6	U	1.6	
1,1,1-Trichloroethane	71-55-6	0.32	U	Ø.32	1.7	U	1.7	
Cyclohexane	110-82-7	2.7	D	0.32	9.3	D	1.1	
Carbon Tetrachloride	56-23-5	0.32	U	0.32	2.0	υ	2.0	
2,2,4-Trimethylpentane	540-84-1	0.32	U	[\] 0.32	1.5	U	1.5	
Benzene	71-43-2	0.82	D	0.32	2.6	D	1.0	
1,2-Dichloroethane	107-06-2	0.32	U	0.32	× 1.3	U	1.3	
n-Heptane	142-82-5	0.74	D	0.32	3.0	D	1.3	

* Combine with original analysis

Printed: 04/13/06 8:45:47 AM

Page 1 of 2

CLIENT SAMPLE NO.

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

IA-06-ARM-008DL

Lab Sample No.: 663533D1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	BL' in ug/m3
Trichloroethene	79-01-6	0.32	U	0.32	1.7	/ U	1,7
1,2-Dichloropropane	78-87-5	0.32	U	0.32	1.5 /	່ ບ	1.5
1,4-Dioxane	123-91-1	p. 8.0		8.0	29	UR	29
Bromodichloromethane	75-27-4	0.32	U	0.32	2.†	U	2.1
cis-1,3-Dichloropropene	10061-01-5	0.32	U	0.32	<u>,</u> 1.5	U	1.5
Methyl Isobutyl Ketone	108-10-1	0.80	U	0.80	/ 3.3	U	3.3
Toluene	108-88-3	4.0	D	0.32	15	D	1.2
trans-1,3-Dichloropropene	10061-02-6	0.32	U	0.32 🦯	1.5	U	1.5
1,1,2-Trichloroethane	79-00-5	0.32	υ	0.32	1.7	υ	1.7
Tetrachloroethene	127-18-4	1.1	D	0,32	7.5	D	2.2
Methyl Butyl Ketone	591-78-6	0.80	U	/0.80	3.3	υ	3.3
Dibromochloromethane	124-48-1	0.32	<u>,</u> 0	0.32	2.7	Ų	2.7
1,2-Dibromoethane	106-93-4	0.32		0.32	2.5	U	2.5
Chlorobenzene	108-90-7	0.32	U	0.32	1.5	U	1.5
Ethylbenzene	100-41-4	0.36	D	0.32	1.6	D	1.4
Xylene (m,p)	1330-20-7	1.3	D	0.80	5.6	D	3.5
Xylene (o)	95-47-6	0.45	D	0.32	2.0	D	1.4
Xylene (total)	1330-20-7	1.8	D	0.32	7.8	D	1.4
Styrene	100-42-5	0.46	a	0.32	2.0	D	1.4
Bromoform	75-25-2	0.32	υ	0.32	3.3	U	3.3
1,1,2,2-Tetrachloroethane	79-34-5	0.32	U	0.32	2.2	U	2.2
4-Ethyltoluene	622-96-8	0.43	D	0.32	2.1	D	1.6
1,3,5-Trimethylbenzene	108-67-8	0.32	U	0.32	1.6	U	1.6
2-Chlorotoluene	95-49-8	0.32	U	0.32	1.7	υ	1.7
1,2,4-Trimethylbenzene	95-63-6	0.56	D	0.32	2.8	D	1.6
1,3-Dichlorobenzene	541-73-1	0.32	U	0.32	1.9	U	1.9
1,4-Dichlorobenzene	106-46-7	0.32	U	0.32	1.9	U	1.9
1,2-Dichlorobenzene	95-50-1	0.32	U	0.32	1.9	Ų	1.9
1,2,4-Trichlorobenzene	120-82-1	0.80	U	0.80	5.9	U	5.9
Hexachlorobutadiene	87-68-3	0.32	U	0.32	3.4	U	3.4

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-ARM-195

Lab Sample No.: 663534

Date Analyzed: 04/10/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0,50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.50	U	0.50	1.1	U	1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0,87
Trichlorofluoromethane	75-69-4	0.20	υ	0.20	1.1	U	1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	5.0	U	5.0	12	U	12
Isopropyl Alcohol	67-63-0	5.0	υ	5,0	12	U	12
Carbon Disulfide	75-15-0	0.50	U	0.50	1.6	U	1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	υ	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.50	U	0.50	1.8	υ	1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	0.50	U	0.50	1.5	U	1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U.	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	. 15
Chloroform	67-66-3	0.20	U	0.20	0.98	U	0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1,1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.20	U	0.20	0.93	U	0.93
Benzene	71-43-2	0.20	U	0.20	0.64	U	0.64
1,2-Dichloroethane	107-06-2	0.20	υ	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.20	U	0.20	0.82	U	0. 82

Lab Name: STL Burlington

SDG Number: 113466

Case Number;

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-06-ARM-195

Lab Sample No.: 663534

Date Analyzed: 04/10/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5-,0		5.0	1.8		18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	υ	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50		0.50	2.0		2.0
Toluene	108-88-3	4.0		0.20	15		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	υ	0.20	1.1	υ	1.1
Tetrachloroethene	127-18-4	0.55		0.20	3.7		1.4
Methyl Butyl Ketone	591-78-6	0.50	U	0.50	2.0	U	2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.42		0.20	1.8		0.87
Xylene (m,p)	1330-20-7	1.5		0.50	6.5		2.2
Xylene (o)	95-47-6	0.71		0.20	3.1		0.87
Xylene (total)	1330-20-7	2.3		0.20	10		0.87
Styrene	100-42-5	0.42		0.20	1.8		0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	υ	1.4
4-Ethyltoluene	622-96-8	0.58		0.20	2.9		0.98
1,3,5-Trimethylbenzene	108-67-8	0.30		0.20	1.5		0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.88		0.20	4.3		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	υ	3.7
Hexachlorobutadiene	87-68-3	0.20	υ	0.20	2.1	U	2.1

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-06-ARM-197

Lab Sample No.: 663538

Date Analyzed: 04/08/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.65		0.40	3.2		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	υ	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	υ	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	υ	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.47		0.16	2.6		0.90
Freon TF	76-13-1	1.1		0.16	8.4		1.2
1,1-Dichloroethene	75-35-4	0.16	υ	0.16	0.63	υ	0.63
Acetone	67-64-1	8.7	***	4.0	21		9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	υ	9.8
Carbon Disulfide	75-15-0	1.3		0.40	4.0		1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	υ	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.67		0.40	2.4		1.4
1,1-Dichloroethane	75-34-3	0.16	υ	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	1.1	-	0.40	3.2		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	υ	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.82		0.16	2.8		0.55
Carbon Tetrachloride	56-23-5	0.62		0.16	3.9		1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.49		0.16	1.6		0.51
1,2-Dichloroethane	107-06-2	0.16	υ	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.42	1 / /// With damp	0.16	1.7		0.66

CLIENT SAMPLE NO.

SG-06-ARM-197

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

Lab Sample No.: 663538

Date Analyzed: 04/08/06

Date Received: 03/30/06

		P					
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	υ	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.Queen	tK	4.0	1.4	hand the K	14
Bromodichioromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0,73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	7.0		0.16	26		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	υ	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.70		0.16	4.7		1.1
Methyi Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.45		0.16	2.0		0.69
Xylene (m,p)	1330-20-7	1.1		0.40	4.8		1.7
Xylene (o)	95-47-6	0.47		0.16	2.0		0.69
Xylene (total)	1330-20-7	1.6		0.16	6.9	11	0.69
Styrene	100-42-5	0.52		0.16	2.2		0.68
Bromoform	75-25-2	0.16	υ	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	7 9 -34-5	0.16	υ	0.16	1.1	U	1,1
4-Ethyltoluene	622-96-8	0.37		0.16	1.8		0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	υ	0.16	0.79	υ	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.51		0.16	2.5		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	υ	0.96
1,4-Dichlorobenzene	106-46-7	0.16	υ	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

IA-06-ARM-011

Lab Sample No.: 663539

Date Analyzed: 04/08/06

Date Received: 03/30/06

		1	-		1	.	1
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.66		0.40	3.3		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1,1	U	1.1
Chloromethane	74-87-3	0.79		0.40	1.6		0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.65		0.40	1.4		0.88
Bromomethane	74-83-9	0.16	υ	0.16	0.62	υ	0.62
Chioroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.45]	0.16	2.5		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	13		4.0	31		9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	υ	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.59	·	0.40	2.0	-	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.40	U	0.40	1.4	υ	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	1.3		0.40	3.8		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	υ	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	υ	0.87
Cyclohexane	110-82-7	0.19		0.16	0.65		0.55
Carbon Tetrachloride	56-23-5	Q16		······································	T.O		1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.49		0.16	1.6		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
1-Heptane	142-82-5	0.18		0.16	0,74		0.66

* combine with low level re analysis.

T

1

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Γ

Sample Matrix: AIR

IA-06-ARM-011

Lab Sample No.: 663539

Date Analyzed: 04/08/06

Т

Date Received: 03/30/06

Т

Т

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	·0 : 16	U	0.16	0.86		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	************	-U.R	4.0	. J. Armonio	UR.	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0,16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	1.3		0.16	4.9		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	υ	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	1.7		0.16	12		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	υ	1.6
Dibromochloromethane	124-48-1	0.16	υ	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.17		0.16	0.74		0.69
Xylene (m,p)	1330-20-7	0.46		0.40	2.0		1,7
Xylene (o)	95-47-6	0.22		0.16	0.96		0.69
Xylene (total)	1330-20-7	0.71		0.16	3.1		0.69
Styrene	100-42-5	0.20		0.16	0.85		0.68
Bromoform	75-25-2	0.16	υ	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	υ	1.1
4-Ethyltoluene	622-96-8	0.55		0.16	2.7		0.79
1,3,5-Trimethylbenzene	108-67-8	0.21		0.16	1.0		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.70		0.16	3.4		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	υ	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

combine with low level reanalysis. ×

CLIENT SAMPLE NO.

IA-06-ARM-011RE

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

..

Sample Matrix: AIR

Lab Sample No.: 663539R1

Date Analyzed: 04/10/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Carbon Tetrachloride	56-23-5	0.11		0.040	0.69		0,25
Trichloroethene 🕺	79-01-6	0.041		0.040	0.22		0.21

A combine with only and and you.

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-ARM-198

Lab Sample No.: 663540

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Resuits in ppbv	Q	RL in ppbv	Results in ug/m3	٥	RL in ⊔g/m3
Dichlorodifluoromethane	75-71-8	0.40		0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0,40	υ	0,40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0,16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.45		0.16	2.5		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	18		4.0	43		9.5
isopropyl Alcohol	67-63-0	7.5	~	4.0	18		9.8
Carbon Disulfide	75-15-0	2.4		0.40	7.5		1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.43		0.40	1.5		1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	υ	0.63
n-Hexane	110-54-3	1.1		0.40	3.9		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	1.9		0.40	5.6		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	υ	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0,16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	1.5		0.16	5.2	-	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	υ	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.51		0.16	1.6		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	Ų	0.65
n-Heptane	142-82-5	0.38		0.16	1.6	1	0.66

CLIENT SAMPLE NO.

TO-14/15 **Result Summary**

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-ARM-198

Lab Sample No.: 663540

Date Analyzed: 04/08/06

	T	-		1		1	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0,74
1,4-Dioxane	123-91-1	.4.0	- to p	4.0	14		14
Bromodichtoromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	7.9	-	0.16	30		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	1.1		0.16	7.5		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	υ	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.39		0.16	1.7		0.69
Xylene (m,p)	1330-20-7	0.96		0.40	4.2		1.7
Xylene (o)	95-47-6	0.42	~	0.16	1.8		0.69
Xylene (total)	1330-20-7	1.4		0.16	6.1		0.69
Styrene	100-42-5	0.23		0.16	0.98		0.68
Bromotorm	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	υ	0.16	1.1	υ	1.1
4-Ethyltoluene	622-96-8	0.34		0.16	1.7		0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.53		0.16	2.6		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	υ	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
	· · · · · · · · · · · · · · · · · · ·				······································	· · · · · · · · · · · · · · · · · · ·	······································

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

OA-06-ARM-002

Lab Sample No.: 663541

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.74		0.40	3.7		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1,1
Chloromethane	74-87-3	0,81		0.40	1.7	*** ** ; ** *** han han han 1 ha 10 g ** ; ; ; ; ** ; ; ;	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.34		0.16	1.9		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	4.0	U	4.0	9.5	U	9.5
isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chlarapropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	υ	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.40	U	0.40	1.4	U	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.40	U	0.40	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	υ	0.63
Fetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Dyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride 🛛 🔏	56-23-5	<u>0.16</u>			**************************************		
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.35		0.16	1.1		0.51
,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
h-Heptane	142-82-5	0.16	U	0.16	0.66	υ	0.66

* combine with low level recomplis.

Т

Т

T

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

ľ

Sample Matrix: AIR

OA-06-ARM-002

Lab Sample No.: 663541

Date Analyzed: 04/08/06

Date Received: 03/30/06

Т

٦

T

Target Compound	1	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	۵	RL in ug/m3
Trichloroethene	- AC	79-01-6	0.46	aluna anti alun anti				0:86
1,2-Dichloropropane		78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane		123-91-1			P_ 4.0	A-24	······································	لله 14
Bromodichloromethane		75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene		10061-01-5	0,16	U	0,16	0.73	U	0.73
Methyl Isobutyl Ketone		108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene		108-88-3	1.0		0.16	3.8		0.60
trans-1,3-Dichloropropene		10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane		79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene		127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone		591-78-6	0.40	U	0.40	1.6	υ	1.6
Dibromochloromethane		124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane		106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene		108-90-7	0.16	U	0.16	0.74	U	0,74
Ethylbenzene		100-41-4	0.16	U	0.16	0.69	U	0.69
Xylene (m,p)		1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)		95-47-6	0.16	U	0.16	0.69	U	0.69
Xylene (total)		1330-20-7	0.16	U	0.16	0.69	U	0.69
Styrene		100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform		75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane		79-34-5	0.16	U	0.16	1.1	Ų	1,1
4-Ethyitoluene		622-96-8	0.16	U	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene		108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chlorotoluene		95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene		95-63-6	0.16	U	0.16	0.79	U	0.79
1,3-Dichlorobenzene		541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene		106-46-7	0.16	U	0.16	0.96	υ	0.96
1,2-Dichlorobenzene		95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene		120-82-1	0.40	U	0.40	3.0	υ	3.0
Hexachlorobutadiene		87-68-3	0.16	U	0.16	1.7	U	1.7

* combine with low level recoulysis.

CLIENT SAMPLE NO.

OA-06-ARM-002RE

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

......

Lab Sample No.: 663541R1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Carbon Tetrachloride	56-23-5	0.11		0.040	0.69		0.25
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.21

& combine with original andysis.

Į

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Γ

Sample Matrix: AIR

IA-06-FRX-012

Lab Sample No.: 663542

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1.4		0.40	6.9		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.78		0.40	1.6		0.83
Vinyl Chloride	75-01-4	0,16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60 - 2	0.16	U	0.16	0.70	υ	0.70
Trichlorofluoromethane	75-69-4	0.32		0.16	1.8		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	9.5		4.0	23		9.5
isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	υ	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1,4	U	1,4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.40	U	0.40	1.4	U	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0,16	υ	0.16	0.63	υ	0.63
Methyl Ethyl Ketone	78-93-3	0.40	U	0.40	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chioroform	67-66-3	0.16	Ų	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0.1.6			<u></u>	<u> </u>	1.0.
2,2,4-Trimethylpentane	540-84-1	0.20	[0.16	0.93		0.75
Benzene	71-43-2	0.41		0.16	1.3		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.24	1	0.16	0.98		0.66

* combine with pow level reanalysis

Т

Ť

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

IA-06-FRX-012

Lab Sample No.: 663542

Date Analyzed: 04/08/06

Date Received: 03/30/06

Т

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	<i>,</i> 0 ,1 6		0:16	0.86		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	e 44-10	- UR	4.0	-1-4-4	-U C	14
Bromodichloromethane	75-27-4	0.16	υ	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	υ	0.40	1.6	U	1.6
Toluene	108-88-3	1.5	**************************************	0.16	5.7		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	υ	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	υ	1.4
1,2-Dibromoethane	106-93-4	0.16	υ	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	υ	0.74
Ethylbenzene	100-41-4	0.18		0.16	0.78		0.69
Xylene (m,p)	1330-20-7	0.59		0.40	2.6		1.7
Xylene (o)	95-47-6	0.22		0.16	0.96		0.69
Xylene (total)	1330-20-7	0.84		0.16	3.6		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0,68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachioroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.16	U	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	υ	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.26		0.16	1.3		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	4.3		0.16	26		0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	υ	0.40	3.0	υ	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

TO-14/15

Result Summary

Т

It combine with low level reany lois.

CLIENT SAMPLE NO.

CLIENT SAMPLE NO.

IA-06-FRX-012RE

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

Lab Sample No.: 663542R1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compo	bund	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Carbon Tetrachloride	ġ.	56-23-5	0.11		0.040	0.69		0.25
Trichloroethene	لامر	79-01-6	0.040	υ	0.040	0.21	U	0.21

at combine with original analysis.

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-FRX-199

Lab Sample No.: 663543

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppb∨	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1.7	U	1.7	8.4	U	8.4
1,2-Dichlorotetrafluoroethane	76-14-2	0.67	υ	0.67	4.7	U	4.7
Chloromethane	74-87-3	1.7	U	1.7	3,5	U	3.5
Vinyl Chloride	75-01-4	0.67	. U	0.67	1.7	U	1.7
1,3-Butadiene	106-99-0	1.7	U	1.7	3.8	U	3.8
Bromomethane	74-83-9	0.67	U	0.67	2.6	U	2.6
Chloroethane	75-00-3	1.7	U	1.7	4.5	U	4.5
Bromoethene	593-60-2	0.67	U	0.67	2.9	U	2.9
Trichlorofluoromethane	75-69-4	0.67	U	0.67	3.8	U	3.8
Freon TF	76-13-1	0.67	U	0.67	5.1	U	5.1
1,1-Dichloroethene	75-35-4	0.67	U	0.67	2.7	U	2.7
Acetone	67-64-1	41		17	97	*	40
Isopropyl Alcohol	67-63-0	17	U	17	42	U	42
Carbon Disulfide	75-15-0	3.0		1.7	9.3		5.3
3-Chloropropene	107-05-1	1.7	U	1.7	5.3	U	5.3
Methylene Chloride	75-09-2	1.7	U	1.7	5.9	U	5.9
tert-Butyl Alcohol	75-65-0	17	U	17	52	U	52
Methyl tert-Butyl Ether	1634-04-4	1.7	U	1.7	6.1	U	6.1
trans-1,2-Dichloroethene	156-60-5	0.67	U	0.67	2.7	U	2.7
n-Hexane	110-54-3	1.7	υ	1.7	6.0	U	6.0
1,1-Dichloroethane	75-34-3	0.67	U	0.67	2.7	υ	2.7
1,2-Dichloroethene (total)	540-59-0	0.67	U	0.67	2.7	U	2.7
Methyl Ethyl Ketone	78-93-3	3.5		1.7	10		5.0
cis-1,2-Dichloroethene	156-59-2	0.67	U	0.67	2.7	υ	2.7
Tetrahydrofuran	109-99-9	17	U	17	50	U	50
Chloroform	67-66-3	0.67	U	0.67	3.3	U	3.3
1,1,1-Trichloroethane	71-55-6	0.67	U	0.67	3.7	U	3.7
Cyclohexane	110-82-7	2.0		0.67	6.9		2.3
Carbon Tetrachloride	56-23-5	0.67	U	0.67	4.2	U	4.2
2,2,4-Trimethylpentane	540-84-1	0.67	U	0.67	3,1	U	3.1
Benzene	71-43-2	1.1		0.67	3.5		2.1
1,2-Dichloroethane	107-06-2	0.67	U	0.67	2.7	Ų	2.7
n-Heptane	142-82-5	1.7		0.67	7.0		2.7

Т

Т

Ŧ

Т

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

ſ

Sample Matrix: AIR

SG-06-FRX-199

Lab Sample No.: 663543

Date Analyzed: 04/10/06

Date Received: 03/30/06

Т

1

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.67	U	0.67	3.6	U	3.6
1,2-Dichloropropane	78-87-5	0.67	U	0.67	3.1	U	3.1
1,4-Dioxane	123-91-1			. 17	6-1		61
Bromodichloromethane	75-27-4	0.67	U	0.67	4.5	U	4.5
cis-1,3-Dichloropropene	10061-01-5	0.67	U	0.67	3.0	U	3.0
Methyl Isobutyl Ketone	108-10-1	1.7	U	1.7	7.0	U	7.0
Toluene	108-88-3	15		0.67	57		2.5
trans-1,3-Dichloropropene	10061-02-6	0.67	U	0.67	3.0	U	3.0
1,1,2-Trichloroethane	79-00-5	0.67	U	0.67	3.7	U	3.7
Tetrachloroethene	127-18-4	0.72		0.67	4.9		4.5
Methyl Butyl Ketone	591-78-6	1.7	U	1.7	7.0	U	7.0
Dibromochloromethane	124-48-1	0.67	U	0.67	5.7	U	5.7
1,2-Dibromoethane	106-93-4	0.67	U	0.67	5.1	U	5.1
Chlorobenzene	108-90-7	0.67	U	0.67	3.1	U	3.1
Ethylbenzene	100-41-4	0.88	•••••••	0.67	3.8	······································	2.9
Xylene (m,p)	1330-20-7	2.0		1.7	8.7		7.4
Xylene (o)	95-47-6	0.88		0.67	3.8		2.9
Xylene (total)	1330-20-7	3.0		0.67	13		2.9
Styrene	100-42-5	0.66	J	0.67	2.8	J	2.9
Bromoform	75-25-2	0.67	U	0.67	6.9	U	6.9
1,1,2,2-Tetrachloroethane	79-34-5	0.67	U	0.67	4.6	υ	4.6
4-Ethyltoluene	622-96-8	0.67	U	0.67	3.3	U	3.3
1,3,5-Trimethylbenzene	108-67-8	0.67	U	0.67	3.3	U	3.3
2-Chlorotoluene	95 - 49-8	0.67	U	0.67	3.5	U	3.5
1,2,4-Trimethylbenzene	95-63-6	0.90		0.67	4.4		3.3
1,3-Dichlorobenzene	541-73-1	0.67	U	0.67	4.0	υ	4.0
1,4-Dichlorobenzene	106-46-7	1.7		0.67	10		4.0
1,2-Dichlorobenzene	95-50-1	0.67	U	0.67	4.0	U	4.0
1,2,4-Trichlorobenzene	120-82-1	1.7	U	1.7	13	U	13
Hexachlorobutadiene	87-68-3	0.67	U	0.67	7.1	U	7.1

1

- í

Т

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

IA-06-FRX-013

Lab Sample No.: 663544

Date Analyzed: 04/08/06

Date Received: 03/30/06

Τ

Т

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	a	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.64		0.40	3.2		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	υ	1,1
Chloromethane	74-87-3	0.59		0.40	1.2		0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	2.9		0.40	6.4		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1,1
Bromoethene	593-60-2	0.16	υ	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.29		0.16	1.6		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone 🔆	67-64-1	.120	E				9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	υ	0.40	1,4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	υ	0.16	0.63	U	0.63
n-Hexane	110-54-3	1.8		0.40	6.3		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.40	U	0.40	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	υ	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	υ	12
Chioroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.29		0.16	1.0		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	1.1		0.16	5.1	1	0.75
Benzene	71-43-2	3.3		0.16	11		0.51
1,2-Dichloroethane	107-06-2	0.16	υ	0.16	0.65	υ	0.65
n-Heptane	142-82-5	0.55		0.16	2.3		0.66

combine with diletion reanalysis. ×

CLIENT SAMPLE NO.

IA-06-FRX-013

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

Lab Sample No.: 663544

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	m to R	4.0	-1-4	UR	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	υ	1,1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene 💥	108-88-3	-35	E	0.16	130	E	0.60
trans-1,3-Dichloropropene	10061-02-6	0,16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1,1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	υ	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	υ	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	1.4		0.16	6.1		0.69
Xylene (m,p)	1330-20-7	4,5		0.40	20		1.7
Xylene (o)	95-47-6	1.6		0.16	6.9		0.69
Xylene (total)	1330-20-7	6,4		0.16	28		0.69
Styrene	100-42-5	0.41		0.16	1.7		0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	1.3		0.16	6.4		0.79
1,3,5-Trimethylbenzene	108-67-8	0.40		0.16	2.0		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	1.5		0.16	7.4		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	υ	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7

A combine with dilation reandysis.

Т

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

IA-06-FRX-013DL

Lab Sample No.: 663544D1

Date Analyzed: 04/10/06

Т

Date Received: 03/30/06

Т

Target Compound	CAS Number	Results in ppbv	٩	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	2.5	U	2.5	12	U	12
1,2-Dichlorotetrafluoroethane	76-14-2	1.0	U	1.0	7.0	U	
Chloromethane	74-87-3	2.5	U	2.5	5,2	U	5.2
Vinyl Chloride	75-01-4	1.0	U	1.0	2.6	U	2.6
1,3-Butadiene	106-99-0	3.9	D	2.5	8.6	D	5.5
Bromomethane	74-83-9	1.0	eren with the second	1.0	3.9	υ	3.9
Chloroethane	75-00-3	2.5	U	2.5	6.6	U	6.6
Bromoethene	593-60-2	1.0	U	1.0	4.4	U	4.4
Trichlorofluoromethane	75-69-4	1.0	U	1.0	5.6	U	5.6
Freon TF	76-13-1	1.0	U	1.0	7.7	υ	7.7
1,1-Dichloroethene	75-35-4	1.0	U	1.0	4.0	U	4.0
Acetone 😽	67-64-1	130	Đ	25	310	. Dumana	59
Isopropyl Alcohol	67-63-0	25	U	25	61	U	61
Carbon Disùlfide	75-15-0	2.5	υ	2.5	7.8	U	7.8
3-Chloropropene	107-05-1	2.5	U	2.5	7.8	U	7.8
Methylene Chloride	75-09-2	2.5	U	2,5	8.7	U	8,7
tert-Butyl Alcohol	75-65-0	25	υ	25	76	U	76
Methyl tert-Butyl Ether	1634-04-4	2.5	U	2.5	9.0	U	9.0
trans-1,2-Dichloroethene	156-60-5	1.0	U	1.0	4.0	U	4.0
n-Hexane	110-54-3	2.5	U	2.5	8.8	U	8.8
1,1-Dichloroethane	~ <u>7</u> 5- 34- 3	1.0	U	1.0	4.0	U	4.0
1,2-Dichloroethene (total)	540-59-0	1.0	U	1.0	4.0	U	4.0
Methyl Ethyl Ketone	78-93-3	2.5	U	2.5	7.4	υ	7.4
cis-1,2-Dichloroethene	156-59-2	1.0	U	1.0	4.0	U	4.0
Tetrahydrofuran	109-99-9	25	υ /	25	74	U	74
Chloroform	67-66-3	1.0	υV	1.0	4.9	U	4.9
1,1,1-Trichloroethane	71-55-6	1.0	U	1.0	5.5	U	5.5
Cyclohexane	110-82-7	1.0	U	4.0	3.4	U	3.4
Carbon Tetrachloride	56-23-5	1.0	U	1.0	6.3	U	6.3
2,2,4-Trimethylpentane	540-84-1	1.5	D	1.0	7.0	D	4.7
Benzene	71-43-2	4.4	D	1.0	14	Balance B	3.2
1,2-Dichloroethane	107-06-2	1.0	U	1.0	4.0	U	4.0
n-Heptane	142-82-5	1.0	D	1.0	4.1	D	4,1

combine with orisinal analysis. M.

CLIENT SAMPLE NO.

IA-06-FRX-013DL

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

Lab Sample No.: 663544D1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	1.0	U	1.0	5.4	υ	5.4
1,2-Dichloropropane	78-87-5	1.0	- CU	1.0	4.6	U	4.6
1,4-Dioxane	123-91-1		- W.C	25	90 ⁻¹¹⁻¹¹⁻¹¹⁻¹¹	R	90
Bromodichloromethane	75-27-4	1.0	U	1.0	6.7	U	6.7
cis-1,3-Dichloropropene	10061-01-5	1.0	U	1.0	4.5	U	4.5
Methyl tsobutyl Ketone	108-10-1	2.5	υ	2.5	10	υ	10
Toluene 📈	108-88-3	36	D	1.0	140	-Ð‴	3.8
tranș-1,3-Dichloropropene	10061-02-6	1.0	υ	1.0	4.5	U	4.5
1,1,2-Trichloroethane	79-00-5	1.0	U	1.0	5.5	U	5.5
Tetrachloroethene	127-18-4	1.0	U	1.0	6.8	υ	6.8
Methyl Butyl Retone	591-78-6	2.5	U	2.5	10	U	10
Dibromochloromethane	124-48-1	1.0	U	1.0	8.5	U	8.5
1,2-Dibromoethane	106-93-4	1.0	υ	1.0	7.7	υ	7,7
Chlorobenzene	108-90-7	1.0	U	1.0	4.6	U	4.6
Ethylbenzene	100-41-4	1.8	D	1.0	7.8	D	4.3
Xylene (m,p)	1330-20-7	4.8	D	2.5	21	D	11
Xylene (o)	95-47-6	2.1	D	1.0	9.1	D	4.3
Xylene (total)	1330-20-7	7.2	D	1.0	31	D	4.3
Styrene	100-42-5	1.0	Ŭ	1.0	4.3	U	4.3
Bromoform	75-25-2	1.0	U	1.0	10	υ	10
1,1,2,2-Tetrachloroethane	79-34-5	1.0	υ	1.0	6.9	U	6.9
4-Ethyltoluene	622-96-8	1.0	U	1.0	4.9	U	4.9
1,3,5-Trimethylbenzene	108-67-8	1.0	U	1.0	4.9	U	4,9
2-Chlorotoluene	95-49-8	1.0	υ	1.0	5.2	υ	5.2
,2,4-Trimethylbenzene	95-63-6	1.8	D	1.0	8.8	a	4.9
,3-Dichlorobenzene	541-73-1	1.0	U	1.0	6.0	U	6.0
,4-Dichlorobenzene	106-46-7	1.0	υ	1.0	6.0	υ	6.0
,2-Dichlorobenzene	95-50-1	1.0	υ	1.0	6.0	U	6,0
1,2,4-Trichlorobenzene	120-82-1	2.5	U	2.5	19	U	19
-lexachlorobutadiene	87-68-3	1.0	Ų	1.0	11	U	11

* combine with original analysis.

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-FRX-200

Lab Sample No.: 663545

Date Analyzed: 04/08/06

Date Received: 03/30/06

		1		1			
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.46		0.40	2.3		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0,40	0.83	U	0.83
Vinyl Chlaride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0,16	0.62	U	0.62
Chloroethane	75-00-3	0,40	U	0.40	1.1	υ	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.40		0.16	2.2		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
t,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	23		4.0	55		9.5
sopropyl Alcohol	67-63-0	4.1		4.0	10		9.8
Carbon Disulfide	75-15-0	1.1		0.40	3.4		1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Aethylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1,4
ert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Aethyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
rans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
1-Hexane	110-54-3	3.0		0.40	11		1.4
,1-Dichloroethane	75-34-3	2.8		0.16	11		0.65
,2-Dichloroethene (total)	540-59-0	0.16	U	0,16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	1.3		0.40	3.8		1.2
sis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
fetrahydrofuran	109-99-9	4.0	U	4.0	12	υ	12
Chloroform	67-66-3	0.85		0.16	4.2		0.78
,1,1-Trichloroethane	71-55-6				2600	E	0.87
Syclohexane	110-82-7	62	S.E	0.16	210	EJ	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
,2,4-Trimethylpentane	540-84-1	0.24		0.16	1.1		0.75
3enzene	71-43-2	1.7		0.16	5.4		0.51
I,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	1.3		0.16	5.3	1	0.66

* acombine with delation recordly site

Т

Т

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

r

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-06-FRX-200

Lab Sample No.: 663545

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.52		0.16	2.8		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0,16	0.74	U	0.74
1,4-Dioxane	123-91-1	4-0	-u-R	. 4.0	1.4	anna an the R	14
Bromodichloromethane	75-27-4	0,16	U	0.16	1,1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0,16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.45		0.40	1.8		1.6
Toluene	108-88-3	20		0.16	75		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	4.1		0.16	28		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	υ	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.91		0.16	4.0		0.69
Xylene (m,p)	1330-20-7	2.6		0.40	11		1.7
Xylene (o)	95-47-6	0.95		0.16	4.1		0.69
Xylene (total)	1330-20-7	3.7		0.16	16		0.69
Styrene	100-42-5	0.42		0.16	1.8	1	0.68
Bromoform	75-25-2	0.16	U	0,16	1.7	υ	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	υ	0.16	1.1	υ	1.1
4-Ethyltoluene	622-96-8	0.67		0.16	3.3		0.79
1,3,5-Trimethylbenzene	108-67-8	0.27		0.16	1.3		0.79
2-Chlorotoluene	95-49-8	0.16	υ	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.88		0.16	4.3		0.79
1,3-Dichlorobenzene	541-73-1	0.16	υ	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	υ	0.16	1.7	U	1.7

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

SG-06-FRX-200DL

Lab Sample No.: 663545D1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10	U U	10	49	U	49
1,2-Dichlorotetrafluoroethane	76-14-2	4.0	U	4.0	28	U ,	28
Chloromethane	74-87-3	10	U	10	21	U	21
Vinyl Chloride	75-01-4	4.0	U	4.0	10 _/	U U	10
1,3-Butadiene	106-99-0	10	U	10	22	U	22
Bromomethane	74-83-9	4.0	υ	4.0	1 6	U	16
Chloroethane	75-00-3	10	υ.,	10	26	U	26
Bromoethene	593-60-2	4.0	U	4.0	17	U	17
Trichlorofluoromethane	75-69-4	4.0		4.0	22	υ	22
Freon TF	76-13-1	4.0	U	4.0	31	U	31
1,1-Dichloroethene	75-35-4	/4.0	υ	4.0	16	U	16
Acetone	67-64-1	100	υ	100	240	U	240
Isopropyl Alcohol	67-63-0	100	U	100	250	U	250
Carbon Disulfide	75-15-0	10	U	10	. 31	U	31
3-Chloropropene	107-05-1	10	U	10	31	U	31
Methylene Chloride	75-09-2	10	U	10	35	υ	35
tert-Butyl Alcohol	75-65-0	100	U	100	300	υ	300
Methyl tert-Butyl Ether	1634-04-4	10	U	10	36	U	36
trans-1,2-Dichloroethene	156-60-5	4.0	υ	4.0	16	U	16
n-Hexane	110-54-3	10	U	10	35	U	35
1,1-Dichloroethane	75-34-3	4.4	D	4.0	18	D	16
1,2-Dichloroethene (total)	540-59-0	4.0	U	4.0	16	U	16
Methyl Ethyl Ketone	78-93-3	10	U	10	29	U	29
cis-1,2-Dichloroethene	156-59-2	4.0	U	4.0	16	U	16
Tetrahydrofuran	109-99-9	100	U	100	290	U	290
Chloroform	67-66-3	4.0	U	4.0	20	U	20
1,1,1-Trichloroethane	71-55-6	410	•-D	4.0	2200		22
Cyclohexane	110-82-7	4.0	U	4.0	14	U	14
Carbon Tetrachloride	56-23-5	4.0	υ	4.0	25	U	25
2,2,4-Trimethylpentane			U	4.0	19	U	19
Benzene	71-43-2	4.0	U	4.0	13	υ	13
1,2-Dichloroethane	107-06-2	4.0	U	4:0 ·····	16	U	16
n-Heptane	142-82-5	4.0	υ	4.0	16	U	16

六

compine with original analysis.

Printed: 04/13/06 8:46:04 AM

CLIENT SAMPLE NO.

SG-06-FRX-200DL

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

F

Sample Matrix: AIR

Lab Sample No.: 663545D1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	4.0	U	4.0	21	U	21
1,2-Dichloropropane	78-87-5	4.0	U	4.0	18	,Ú	18
1,4-Dioxane	123-91-1	.100		100	.360	alana yak	360
Bromodichloromethane	75-27-4	4.0	U	4.0	27	U	27
cis-1,3-Dichloropropene	10061-01-5	4.0	U	4.0	18⁄	U	18
Methyl Isobutyl Ketone	108-10-1	10	U	10	/41	U	41
Toluene	108-88-3	27	D	4.0	100	D	15
trans-1,3-Dichloropropene	10061-02-6	4.0	U	4.0	18	U	18
1,1,2-Trichloroethane	79-00-5	4.0	U	4.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22	U	22
Tetrachloroethene	127-18-4	6.9	D	<i>.</i> 4.0	47	D	27
Methyl Butyl Ketone	591-78-6	10	U	10	41	U	41
Dibromochloromethane	124-48-1	4.0	U	4.0	34	U	34
1,2-Dibromoethane	106-93-4	4.0	ل ک	4.0	31	υ	31
Chlorobenzene	108-90-7	4.0	U	4.0	18	U	18
Ethylbenzene	100-41-4	4.0,	υ	4.0	17	U	17
Xylene (m,p)	1330-20-7	10	υ	10	43	U	43
Xylene (o)	95-47-6	4.0	U	4.0	17	U	17
Xylene (total)	1330-20-7	4.0	U	4.0	17	U	17
Styrene	100-42-5	4.0	υ	4.0	17	U	17
Bromoform	75-25-2	4.0	U	4.0	41	U	41
1,1,2,2-Tetrachloroethane	79-34-5	4.0	U	4.0	27	U	27
4-Ethyltoluene	622-96-8	4.0	U	4.0	20	U	20
1,3,5-Trimethylbenzene	108-67-8	4.0	U	4.0	20	U	20
2-Chlorotoluene	95-49-8	4.0	U	4.0	21	U	21
1,2,4-Trimethylbenzene	95-63-6	4.0	U	4.0	20	U	20
1,3-Dichlorobenzene	541-73-1	4.0	U	4.0	24	U	24
1,4-Dichlorobenzene	106-46-7	4.0	U	4.0	24	υ	24
1,2-Dichlorobenzene	95-50-1	4.0	U	4.0	24	U	24
1,2,4-Trichiorobenzene	120-82-1	10	U	10	74	U	74
Hexachlorobutadiene	87-68-3	4.0	U	4.0	43	U	43

Т

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

OA-06-FRX-003

Lab Sample No.: 663546

Date Analyzed: 04/08/06

Т

Date Received: 03/30/06

Т

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.65		0.40	3.2		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.82		0.40	1.7		0,83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0,16	U	0.16	0.62	υ	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.29		0.16	1.6	1	0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	υ	0.16	0.63	υ	0.63
Acetone	67-64-1	4.0	U	4.0	9.5	U	9.5
Isopropyl Alcohol	67-63-0	0.58	J	4.0	1.4	J	9.8
Carbon Disulfide	75-15-0	0.40	υ	0.40	1.2	υ	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0,40	U	0.40	1.4	υ	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	υ	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	υ	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.66		0.40	2.3		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.40	U	0.40	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	υ	12
Chloroform	67-66-3	0.16	υ	0.16	0.78	U	0.78
1,1,1-Trichioroethane	71-55-6	0.16	υ	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0,16		0::1:6	1.0	U	
2,2,4-Trimethylpentane	540-84-1	0.42		0.16	2.0		0.75
Benzene	71-43-2	0.51		0.16	1.6		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.24		0.16	0.98		0.66

* combine with \$2. low level reanlysis.

CLIENT SAMPLE NO.

OA-06-FRX-003

Lab Name: STL Burlington

SDG Number: 113466

Case Number:

Sample Matrix: AIR

Lab Sample No.: 663546

Date Analyzed: 04/08/06

Date Received: 03/30/06

Target Compound	CAS Number	Results in ppbv	۵	RL In ppbv	Results In ug/m3	۵	RL in ug/m3
Trichloroethene	79-01-6	0;46					0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	·.4;0		4.0	1:4	Marian H. A.	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	1.6		0.16	6.0		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	υ	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.19		0.16	0.83		0.69
Xylene (m,p)	1330-20-7	0.53	1	0.40	2.3		1.7
Xylene (o)	95-47-6	0.23		0.16	1.0		0.69
Xylene (total)	1330-20-7	0.79		0.16	3.4		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	υ	0.16	1,7	U	1,7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.16	U	0.16	0.79	υ	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	υ	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.21	· · · · · · · · · · · · · · · · · · ·	0,16	1.0		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	υ	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	υ	0.16	1.7	U	1.7

* combine with low buil reamly is.

CLIENT SAMPLE NO.

OA-06-FRX-003RE

Lab Name: STL Burlington

.

SDG Number: 113466

Case Number:

Sample Matrix: AIR

Lab Sample No.: 663546R1

Date Analyzed: 04/10/06

Date Received: 03/30/06

Target Compo	und	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Carbon Tetrachloride	*	56-23-5	0.11		0.040	0.69		0.25
Trichloroethene	X	79-01-6	0.040	U	0.040	0.21	U	0.21

* combine with original analyses.

APPENDIX D

RISK CALCULATIONS

TABLE D-1 INHALATION EXPOSURE OUTDOOR AIR (BACKGROUND - AMERICAN RECYCLE & MANUFACTURING)

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE			
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³) ⁻¹		
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AVG.0	CONC.(ug/m ³)/REF. CONC. (ug/m ³)	
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002			
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002		[CA]air * EF * ET * ED	
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. =	AT * CF1 * CF2	
CONVERSION FACTOR 2	CF2	365	days/year				
AVERAGING TIME CANCER	AT	70	years	EPA, 2002			
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002			
EPA, 2002: Supplemental Guidance for Developing Soil Sc	reening Levels for Sup	erfund Sites. OSWER 9355.4-24	I. Values for ind	loor commercial/industrial worker.			
Prepared by: KJC Checked by: JHP					*For noncarcinogenic effects: AT = ED		

TABLE D-1 INHALATION EXPOSURE OUTDOOR AIR (BACKGROUND - AMERICAN RECYCLE & MANUFACTURING)

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

COMPOUND	AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION LIFETIME (ug/m³)	INHALATION CANCER UNIT RISK (ug/m ³) ⁻¹	CANCER RISK
Benzene	1.10E+00	9.0E-02	8.30E-06	7.4E-07
Carbon tetrachloride	6.90E-01	5.6E-02	1.50E-05	8.4E-07
Chloromethane	1.70E+00	1.4E-01		
Dichlorodifluoromethane	3.70E+00	3.0E-01		
Toluene	3.80E+00	3.1E-01		
Trichlorofluoromethane	1.90E+00	1.5E-01		
		SUMMARY CANCER R	ISK	2E-06

NC - not potentially carcinogenic or no unit risk factor available.

TABLE D-1 INHALATION EXPOSURE OUTDOOR AIR (BACKGROUND - AMERICAN RECYCLE & MANUFACTURING)

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

COMPOUND	AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION FOR TIME PERIOD (ug/m ³)	CHRONIC INHALATION RfC [1] (ug/m³)	HAZARD QUOTIENT
Benzene	1.10E+00	2.5E-01	3.00E+01	8.4E-03
Carbon tetrachloride	6.90E-01	1.6E-01	1.80E+02	8.8E-04
Chloromethane	1.70E+00	3.9E-01	9.00E+01	4.3E-03
Dichlorodifluoromethane	3.70E+00	8.4E-01	2.00E+02	4.2E-03
Toluene	3.80E+00	8.7E-01	5.00E+03	1.7E-04
Trichlorofluoromethane	1.90E+00	4.3E-01	7.00E+02	6.2E-04
		SUMMARY HAZARD IN	IDEX	2E-02

NA - not available

TABLE D-2 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - ALL CONSTITUENTS DETECTED IN INDOOR AIR - OFFICE

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³) ⁻¹
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AVG.CONC.(ug/m ³)/REF. CONC. (ug/m ³)
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002	
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002	[CA]air * EF * ET * ED
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. = AT * CF1 * CF2
CONVERSION FACTOR 2	CF2	365	days/year		
AVERAGING TIME CANCER	AT	70	years	EPA, 2002	
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002	
EPA, 2002: Supplemental Guidance for Developing Soil Sc	reening Levels for Sup	perfund Sites. OSWER 9355.4-24	. Values for inc	loor commercial/industrial worker.	
Prepared by: KJC Checked by: JHP					*For noncarcinogenic effects: AT = ED

TABLE D-2 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - ALL CONSTITUENTS DETECTED IN INDOOR AIR - OFFICE

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION	AVERAGE AIR CONCENTRATION LIFETIME	INHALATION CANCER UNIT RISK	CANCER RISK
	(ug/m³)	(ug/m³)	(ug/m ³) ⁻¹	
1,2,4-Trimethylbenzene	1.20E+00	9.8E-02		
1,3,5-Trimethylbenzene				
2-Butanone	1.50E+00	1.2E-01		
2-Hexanone				
2-Propanol	2.70E+01	2.2E+00		
4-Ethyltoluene				
4-Methyl-2-pentanone	3.40E+00	2.8E-01		
Acetone	3.10E+01	2.5E+00		
Benzene	1.20E+00	9.8E-02	8.30E-06	8.1E-07
Butadiene, 1,3-			3.00E-05	
Carbon disulfide				
Carbon tetrachloride	6.90E-01	5.6E-02	1.50E-05	8.4E-07
Chloroform	9.80E-01	8.0E-02	2.30E-05	1.8E-06
Chloromethane				
Cyclohexane	1.80E+00	1.5E-01		
Dichlorodifluoromethane	4.50E+00	3.7E-01		
Ethyl benzene	8.70E-01	7.1E-02		
Heptane	1.10E+00	9.0E-02		
Hexane	1.40E+00	1.1E-01		
Isooctane	7.90E-01	6.4E-02		
Methylene chloride	5.20E+00	4.2E-01	4.70E-07	2.0E-07
o-Xylene	8.30E-01	6.8E-02		
Styrene				
Tetrachloroethene	2.20E+00	1.8E-01	5.90E-06	1.1E-06
Toluene	1.10E+01	9.0E-01		
Trichloroethene	2.50E-01	2.0E-02	1.10E-04	2.2E-06
Trichlorofluoromethane	1.30E+02	1.1E+01		
Xylene, m/p	2.30E+00	1.9E-01		
		SUMMARY CANCER R	ISK	7E-06

NC - not potentially carcinogenic or no unit risk factor available.

TABLE D-2 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - ALL CONSTITUENTS DETECTED IN INDOOR AIR - OFFICE

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION FOR TIME PERIOD (ug/m ³)	CHRONIC INHALATION RfC [1] (ug/m ³)	HAZARD QUOTIENT
1,2,4-Trimethylbenzene	1.20E+00	2.7E-01	6.00E+00	4.6E-02
1,3,5-Trimethylbenzene	1.202100	2.7 2 01	6.00E+00	4.02 02
2-Butanone	1.50E+00	3.4E-01	5.00E+03	6.8E-05
2-Hexanone	1.502+00	3.42-01	J.00L+03	0.02-03
2-Propanol	2.70E+01	6.2E+00		
4-Ethyltoluene	2.702101	0.221000		
4-Methyl-2-pentanone	3.40E+00	7.8E-01	3.00E+03	2.6E-04
Acetone	3.10E+01	7.1E+00	0.002100	2.02 04
Benzene	1.20E+00	2.7E-01	3.00E+01	9.1E-03
Butadiene, 1,3-	1.202100	2.7 2 01	2.00E+00	5.1E 00
Carbon disulfide			7.00E+02	
Carbon tetrachloride	6.90E-01	1.6E-01	1.80E+02	8.8E-04
Chloroform	9.80E-01	2.2E-01	4.80E+01	4.7E-03
Chloromethane	0.002 01	2.22 01	9.00E+01	111 2 00
Cyclohexane	1.80E+00	4.1E-01	6.00E+03	6.8E-05
Dichlorodifluoromethane	4.50E+00	1.0E+00	2.00E+02	5.1E-03
Ethyl benzene	8.70E-01	2.0E-01	1.00E+03	2.0E-04
Heptane	1.10E+00	2.5E-01		2.02 0 1
Hexane	1.40E+00	3.2E-01	7.00E+02	4.6E-04
Isooctane	7.90E-01	1.8E-01		
Methylene chloride	5.20E+00	1.2E+00	1.00E+03	1.2E-03
o-Xylene	8.30E-01	1.9E-01	1.00E+02	1.9E-03
Styrene			1.00E+03	
Tetrachloroethene	2.20E+00	5.0E-01	2.80E+02	1.8E-03
Toluene	1.10E+01	2.5E+00	5.00E+03	5.0E-04
Trichloroethene	2.50E-01	5.7E-02	4.00E+01	1.4E-03
Trichlorofluoromethane	1.30E+02	3.0E+01	7.00E+02	4.2E-02
Xylene, m/p	2.30E+00	5.3E-01	1.00E+02	5.3E-03
		SUMMARY HAZARD IN	IDEX	1E-01

NA - not available

TABLE D-3 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - ALL CONSTITUENTS DETECTED IN INDOOR AIR - WAREHOUSE ARE/

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE			
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³) ⁻¹		
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AVG.CON	C.(ug/m³)/REF. CONC. (ug/m³)	
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002			
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002		[CA]air * EF * ET * ED	
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. =	AT * CF1 * CF2	
CONVERSION FACTOR 2	CF2	365	days/year				
AVERAGING TIME CANCER	AT	70	years	EPA, 2002			
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002			
EPA, 2002: Supplemental Guidance for Developing Soil Sc	reening Levels for Sup	erfund Sites. OSWER 9355.4-24	I. Values for ind	oor commercial/industrial worker.			
Prepared by: KJC Checked by: JHP					*For noncarcinogenic effects: AT = ED		

TABLE D-3 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - ALL CONSTITUENTS DETECTED IN INDOOR AIR - WAREHOUSE ARE/

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION	AVERAGE AIR CONCENTRATION LIFETIME	INHALATION CANCER UNIT RISK	CANCER RISK
	(ug/m³)	(ug/m³)	(ug/m ³) ⁻¹	
1,2,4-Trimethylbenzene	2.80E+00	2.3E-01		
1,3,5-Trimethylbenzene	9.50E-01	7.7E-02		
2-Butanone	4.00E+00	3.3E-01		
2-Hexanone	4.00E+00	3.3E-01		
2-Propanol				
4-Ethyltoluene	2.30E+00	1.9E-01		
4-Methyl-2-pentanone				
Acetone	6.80E+01	5.5E+00		
Benzene	2.30E+00	1.9E-01	8.30E-06	1.6E-06
Butadiene, 1,3-	1.90E+00	1.5E-01	3.00E-05	4.6E-06
Carbon disulfide	1.30E+00	1.1E-01		
Carbon tetrachloride	6.30E-01	5.1E-02	1.50E-05	7.7E-07
Chloroform	6.00E-01	4.9E-02	2.30E-05	1.1E-06
Chloromethane	1.30E+00	1.1E-01		
Cyclohexane	3.40E+00	2.8E-01		
Dichlorodifluoromethane	3.20E+00	2.6E-01		
Ethyl benzene	1.20E+00	9.8E-02		
Heptane	2.00E+00	1.6E-01		
Hexane	1.90E+00	1.5E-01		
Isooctane	1.10E+00	9.0E-02		
Methylene chloride	9.40E+00	7.7E-01	4.70E-07	3.6E-07
o-Xylene	1.40E+00	1.1E-01		
Styrene	1.50E+00	1.2E-01		
Tetrachloroethene	9.30E+00	7.6E-01	5.90E-06	4.5E-06
Toluene	1.00E+01	8.2E-01		
Trichloroethene	3.30E-01	2.7E-02	1.10E-04	3.0E-06
Trichlorofluoromethane	5.00E+01	4.1E+00		
Xylene, m/p	3.40E+00	2.8E-01		
NC - not potentially carcinogeni		SUMMARY CANCER R	ISK	2E-05

NC - not potentially carcinogenic or no unit risk factor available.

TABLE D-3 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - ALL CONSTITUENTS DETECTED IN INDOOR AIR - WAREHOUSE ARE/

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION FOR TIME PERIOD (ug/m³)	CHRONIC INHALATION RfC [1] (ug/m³)	HAZARD QUOTIENT
1,2,4-Trimethylbenzene	2.80E+00	6.4E-01	6.00E+00	1.1E-01
1,3,5-Trimethylbenzene	9.50E-01	2.2E-01	6.00E+00	3.6E-02
2-Butanone	4.00E+00	9.1E-01	5.00E+03	1.8E-04
2-Hexanone	4.00E+00	9.1E-01		
2-Propanol				
4-Ethyltoluene	2.30E+00	5.3E-01		
4-Methyl-2-pentanone			3.00E+03	
Acetone	6.80E+01	1.6E+01		
Benzene	2.30E+00	5.3E-01	3.00E+01	1.8E-02
Butadiene, 1,3-	1.90E+00	4.3E-01	2.00E+00	2.2E-01
Carbon disulfide	1.30E+00	3.0E-01	7.00E+02	4.2E-04
Carbon tetrachloride	6.30E-01	1.4E-01	1.80E+02	8.0E-04
Chloroform	6.00E-01	1.4E-01	4.80E+01	2.9E-03
Chloromethane	1.30E+00	3.0E-01	9.00E+01	3.3E-03
Cyclohexane	3.40E+00	7.8E-01	6.00E+03	1.3E-04
Dichlorodifluoromethane	3.20E+00	7.3E-01	2.00E+02	3.7E-03
Ethyl benzene	1.20E+00	2.7E-01	1.00E+03	2.7E-04
Heptane	2.00E+00	4.6E-01		
Hexane	1.90E+00	4.3E-01	7.00E+02	6.2E-04
Isooctane	1.10E+00	2.5E-01		
Methylene chloride	9.40E+00	2.1E+00	1.00E+03	2.1E-03
o-Xylene	1.40E+00	3.2E-01	1.00E+02	3.2E-03
Styrene	1.50E+00	3.4E-01	1.00E+03	3.4E-04
Tetrachloroethene	9.30E+00	2.1E+00	2.80E+02	7.6E-03
Toluene	1.00E+01	2.3E+00	5.00E+03	4.6E-04
Trichloroethene	3.30E-01	7.5E-02	4.00E+01	1.9E-03
Trichlorofluoromethane	5.00E+01	1.1E+01	7.00E+02	1.6E-02
Xylene, m/p	3.40E+00	7.8E-01	1.00E+02	7.8E-03
		SUMMARY HAZARD IN		4E-01

NA - not available

TABLE D-4 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - CONSTITUENTS WITH COMPLETE PATHWAYS ONL)

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE		
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³) ⁻¹	
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AVG.0	CONC.(ug/m ³)/REF. CONC. (ug/m ³)
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002		
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002		[CA]air * EF * ET * ED
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. =	AT * CF1 * CF2
CONVERSION FACTOR 2	CF2	365	days/year			
AVERAGING TIME CANCER	AT	70	years	EPA, 2002		
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002		
EPA, 2002: Supplemental Guidance for Developing Soil Sc	reening Levels for Sup	erfund Sites. OSWER 9355.4-24	I. Values for ind	loor commercial/industrial worker.		
Prepared by: KJC Checked by: JHP					*For noncarcinogenic effects: AT = ED	

TABLE D-4 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - CONSTITUENTS WITH COMPLETE PATHWAYS ONL)

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION	AVERAGE AIR CONCENTRATION LIFETIME	INHALATION CANCER UNIT RISK	CANCER RISK
	(ug/m³)	(ug/m³)	(ug/m ³) ⁻¹	
1,2,4-Trimethylbenzene	2.80E+00	2.3E-01		
1,3,5-Trimethylbenzene	9.50E-01	7.7E-02		
2-Butanone	4.00E+00	3.3E-01		
2-Hexanone				
2-Propanol	2.70E+01	2.2E+00		
4-Ethyltoluene	2.30E+00	1.9E-01		
4-Methyl-2-pentanone	3.40E+00	2.8E-01		
Acetone	6.80E+01	5.5E+00		
Benzene	2.30E+00	1.9E-01	8.30E-06	1.6E-06
Butadiene, 1,3-	1.90E+00	1.5E-01	3.00E-05	4.6E-06
Carbon disulfide	1.30E+00	1.1E-01		
Carbon tetrachloride	6.30E-01	5.1E-02	1.50E-05	7.7E-07
Chloroform	6.00E-01	4.9E-02	2.30E-05	1.1E-06
Chloromethane				
Cyclohexane	3.40E+00	2.8E-01		
Dichlorodifluoromethane	3.90E+00	3.2E-01		
Ethyl benzene	1.20E+00	9.8E-02		
Heptane	2.00E+00	1.6E-01		
Hexane	1.90E+00	1.5E-01		
Isooctane				
Methylene chloride	9.40E+00	7.7E-01	4.70E-07	3.6E-07
o-Xylene	1.40E+00	1.1E-01		
Styrene	1.50E+00	1.2E-01		
Tetrachloroethene	9.30E+00	7.6E-01	5.90E-06	4.5E-06
Toluene	1.00E+01	8.2E-01		
Trichloroethene			1.10E-04	
Trichlorofluoromethane	1.30E+02	1.1E+01		
Xylene, m/p	3.40E+00	2.8E-01		
		SUMMARY CANCER R	ISK	1E-05

NC - not potentially carcinogenic or no unit risk factor available.

TABLE D-4 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - CONSTITUENTS WITH COMPLETE PATHWAYS ONL)

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION FOR TIME PERIOD (ug/m ³)	CHRONIC INHALATION RfC [1] (ug/m ³)	HAZARD QUOTIENT
1,2,4-Trimethylbenzene	2.80E+00	6.4E-01	6.00E+00	1.1E-01
1,3,5-Trimethylbenzene	9.50E-01	2.2E-01	6.00E+00	3.6E-02
2-Butanone	4.00E+00	9.1E-01	5.00E+03	1.8E-04
2-Hexanone				
2-Propanol	2.70E+01	6.2E+00		
4-Ethyltoluene	2.30E+00	5.3E-01		
4-Methyl-2-pentanone	3.40E+00	7.8E-01	3.00E+03	2.6E-04
Acetone	6.80E+01	1.6E+01		
Benzene	2.30E+00	5.3E-01	3.00E+01	1.8E-02
Butadiene, 1,3-	1.90E+00	4.3E-01	2.00E+00	2.2E-01
Carbon disulfide	1.30E+00	3.0E-01	7.00E+02	4.2E-04
Carbon tetrachloride	6.30E-01	1.4E-01	1.80E+02	8.0E-04
Chloroform	6.00E-01	1.4E-01	4.80E+01	2.9E-03
Chloromethane			9.00E+01	
Cyclohexane	3.40E+00	7.8E-01	6.00E+03	1.3E-04
Dichlorodifluoromethane	3.90E+00	8.9E-01	2.00E+02	4.5E-03
Ethyl benzene	1.20E+00	2.7E-01	1.00E+03	2.7E-04
Heptane	2.00E+00	4.6E-01		
Hexane	1.90E+00	4.3E-01	7.00E+02	6.2E-04
Isooctane				
Methylene chloride	9.40E+00	2.1E+00	1.00E+03	2.1E-03
o-Xylene	1.40E+00	3.2E-01	1.00E+02	3.2E-03
Styrene	1.50E+00	3.4E-01	1.00E+03	3.4E-04
Tetrachloroethene	9.30E+00	2.1E+00	2.80E+02	7.6E-03
Toluene	1.00E+01	2.3E+00	5.00E+03	4.6E-04
Trichloroethene			4.00E+01	
Trichlorofluoromethane	1.30E+02	3.0E+01	7.00E+02	4.2E-02
Xylene, m/p	3.40E+00	7.8E-01	1.00E+02	7.8E-03
		SUMMARY HAZARD IN		5E-01

NA - not available

TABLE D-5 INHALATION EXPOSURE TO INDOOR AIR

AMERICAN RECYCLE & MANUFACTURING (ARM) - CONSTITUENTS WITH COMPLETE PATHWAYS AND IN EXCESS OF PUBLISHED BACKGROUND/SCREENING VALUES ONLY

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE		
AIR CONCENTRATION	[CA]air	Calculated	ug/m³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/n	
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AV	G.CONC.(ug/m ³)/REF. CONC. (ug/m ³)
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002		
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002		[CA]air * EF * ET * ED
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. =	AT * CF1 * CF2
CONVERSION FACTOR 2	CF2	365	days/year			
AVERAGING TIME CANCER	AT	70	years	EPA, 2002		
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002		
EPA, 2002: Supplemental Guidance for Developing	Soil Screening Levels for Super	fund Sites. OSWER 9355.4-24	. Values for ind	oor commercial/industrial worker.		
Prepared by: KJC Checked by: JHP					*For noncarcinogenic effects: AT = ED	

TABLE D-5 INHALATION EXPOSURE TO INDOOR AIR AMERICAN RECYCLE & MANUFACTURING (ARM) - CONSTITUENTS WITH COMPLETE PATHWAYS AND IN EXCESS OF PUBLISHED BACKGROUND/SCREENING VALUES ONLY

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

	INDOOR AIR	AVERAGE AIR CONCENTRATION	INHALATION CANCER	CANCER RISK
COMPOUND	CONCENTRATION	LIFETIME	UNIT RISK	
	(ug/m³)	(ug/m³)	(ug/m ³) ⁻¹	
1,2,4-Trimethylbenzene				
1,3,5-Trimethylbenzene				
2-Butanone	4.00E+00	3.3E-01		
2-Hexanone				
2-Propanol	2.70E+01	2.2E+00		
4-Ethyltoluene	2.30E+00	1.9E-01		
4-Methyl-2-pentanone	3.40E+00	2.8E-01		
Acetone	6.80E+01	5.5E+00		
Benzene			8.30E-06	
Butadiene, 1,3-	1.90E+00	1.5E-01	3.00E-05	4.6E-06
Carbon disulfide	1.30E+00	1.1E-01		
Carbon tetrachloride			1.50E-05	
Chloroform			2.30E-05	
Chloromethane	9.80E-01	8.0E-02		
Cyclohexane	3.40E+00	2.8E-01		
Dichlorodifluoromethane	3.90E+00	3.2E-01		
Ethyl benzene				
Heptane	2.00E+00	1.6E-01		
Hexane				
Isooctane				
Methylene chloride			4.70E-07	
o-Xylene				
Styrene	1.50E+00	1.2E-01		
Tetrachloroethene		-	5.90E-06	
Toluene				
Trichloroethene			1.10E-04	
Trichlorofluoromethane				
Xylene, m/p	3.40E+00	2.8E-01		
	·	SUMMARY CANCER R	ISK	5E-06

NC - not potentially carcinogenic or no unit risk factor available.

TABLE D-5 INHALATION EXPOSURE TO INDOOR AIR

AMERICAN RECYCLE & MANUFACTURING (ARM) - CONSTITUENTS WITH COMPLETE PATHWAYS AND IN EXCESS OF PUBLISHED BACKGROUND/SCREENING VALUES ONLY

ARCH CHEMICALS ROCHESTER, NY

---,

NONCARCINOGENIC EFFECTS

	INDOOR AIR	AVERAGE AIR CONCENTRATION	CHRONIC INHALATION	HAZARD QUOTIENT
COMPOUND	CONCENTRATION	FOR TIME PERIOD	RfC [1]	
	(ug/m³)	(ug/m³)	(ug/m³)	
1,2,4-Trimethylbenzene			6.00E+00	
1,3,5-Trimethylbenzene			6.00E+00	
2-Butanone	4.00E+00	9.1E-01	5.00E+03	1.8E-04
2-Hexanone				
2-Propanol	2.70E+01	6.2E+00		
4-Ethyltoluene	2.30E+00	5.3E-01		
4-Methyl-2-pentanone	3.40E+00	7.8E-01	3.00E+03	2.6E-04
Acetone	6.80E+01	1.6E+01		
Benzene			3.00E+01	
Butadiene, 1,3-	1.90E+00	4.3E-01	2.00E+00	2.2E-01
Carbon disulfide	1.30E+00	3.0E-01	7.00E+02	4.2E-04
Carbon tetrachloride			1.80E+02	
Chloroform	9.80E-01	2.2E-01	4.80E+01	4.7E-03
Chloromethane			9.00E+01	
Cyclohexane	3.40E+00	7.8E-01	6.00E+03	1.3E-04
Dichlorodifluoromethane	3.90E+00	8.9E-01	2.00E+02	4.5E-03
Ethyl benzene			1.00E+03	
Heptane	2.00E+00	4.6E-01		
Hexane			7.00E+02	
Isooctane				
Methylene chloride			1.00E+03	
o-Xylene			1.00E+02	
Styrene	1.50E+00	3.4E-01	1.00E+03	3.4E-04
Tetrachloroethene			2.80E+02	
Toluene			5.00E+03	
Trichloroethene			4.00E+01	
Trichlorofluoromethane			7.00E+02	
Xylene, m/p	3.40E+00	7.8E-01	1.00E+02	7.8E-03
·····-, ·····P	002.00			
	-	SUMMARY HAZARD IN	IDEX	2E-01

NA - not available

TABLE D-6 INHALATION EXPOSURE OUTDOOR AIR (BACKGROUND - FIRTH RIXSON)

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³) ⁻¹
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AVG.CONC.(ug/m ³)/REF. CONC. (ug/m ³)
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002	
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002	[CA]air * EF * ET * ED
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. = AT * CF1 * CF2
CONVERSION FACTOR 2	CF2	365	days/year		
AVERAGING TIME CANCER	AT	70	years	EPA, 2002	
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002	
EPA, 2002: Supplemental Guidance for Developing Soil Sc	reening Levels for Sup	perfund Sites. OSWER 9355.4-24	4. Values for inc	loor commercial/industrial worker.	
Prepared by: KJC Checked by: JHP				*For noncarcinogenic effects: AT = ED	

TABLE D-6 INHALATION EXPOSURE OUTDOOR AIR (BACKGROUND - FIRTH RIXSON)

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

COMPOUND	AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION LIFETIME (ug/m³)	INHALATION CANCER UNIT RISK (ug/m ³⁾⁻¹	CANCER RISK
1,2,4-Trimethylbenzene	1.00E+00	8.2E-02	х	
2-Propanol	1.40E+00	1.1E-01		
Benzene	1.60E+00	1.3E-01	8.30E-06	1.1E-06
Carbon tetrachloride	6.90E-01	5.6E-02	1.50E-05	8.4E-07
Chloromethane	1.70E+00	1.4E-01		
Dichlorodifluoromethane	3.20E+00	2.6E-01		
Ethyl benzene	8.30E-01	6.8E-02		
Heptane	9.80E-01	8.0E-02		
Hexane	2.30E+00	1.9E-01		
Isooctane	2.00E+00	1.6E-01		
o-Xylene	1.00E+00	8.2E-02		
Toluene	6.00E+00	4.9E-01		
Trichlorofluoromethane	1.60E+00	1.3E-01		
Xylene, m/p	2.30E+00	1.9E-01		
		SUMMARY CANCER R	ISK	2E-06

NC - not potentially carcinogenic or no unit risk factor available.

TABLE D-6 INHALATION EXPOSURE OUTDOOR AIR (BACKGROUND - FIRTH RIXSON)

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

COMPOUND	AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION FOR TIME PERIOD (ug/m³)	CHRONIC INHALATION RfC [1] (ug/m ³)	HAZARD QUOTIENT
1,2,4-Trimethylbenzene	1.00E+00	2.3E-01	6.00E+00	3.8E-02
2-Propanol	1.40E+00	3.2E-01		
Benzene	1.60E+00	3.7E-01	3.00E+01	1.2E-02
Carbon tetrachloride	6.90E-01	1.6E-01	1.80E+02	8.8E-04
Chloromethane	1.70E+00	3.9E-01	9.00E+01	4.3E-03
Dichlorodifluoromethane	3.20E+00	7.3E-01	2.00E+02	3.7E-03
Ethyl benzene	8.30E-01	1.9E-01	1.00E+03	1.9E-04
Heptane	9.80E-01	2.2E-01		
Hexane	2.30E+00	5.3E-01	7.00E+02	7.5E-04
Isooctane	2.00E+00	4.6E-01		
o-Xylene	1.00E+00	2.3E-01	1.00E+02	2.3E-03
Toluene	6.00E+00	1.4E+00	5.00E+03	2.7E-04
Trichlorofluoromethane	1.60E+00	3.7E-01	7.00E+02	5.2E-04
Xylene, m/p	2.30E+00	5.3E-01	1.00E+02	5.3E-03
	•	SUMMARY HAZARD IN	DEX	7E-02

NA - not available

TABLE D-7 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - ALL CONSTITUENTS DETECTED IN INDOOR AIR - OFFICE

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³) ⁻¹
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AVG.CONC.(ug/m ³)/REF. CONC. (ug/m ³)
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002	
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002	[CA]air * EF * ET * ED
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. = AT * CF1 * CF2
CONVERSION FACTOR 2	CF2	365	days/year		
AVERAGING TIME CANCER	AT	70	years	EPA, 2002	
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002	
EPA, 2002: Supplemental Guidance for Developing Soil Sc Prepared by: KJC	reening Levels for Sup	loor commercial/industrial worker.	*For noncarcinogenic effects: AT = ED		
Checked by: JHP					

TABLE D-7 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - ALL CONSTITUENTS DETECTED IN INDOOR AIR - OFFICE

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

	INDOOR AIR	AVERAGE AIR CONCENTRATION	INHALATION CANCER	CANCER RISK
COMPOUND	CONCENTRATION	LIFETIME	UNIT RISK	
	(ug/m³)	(ug/m³)	(ug/m ³) ⁻¹	
1,2,4-Trimethylbenzene	1.30E+00	1.1E-01		
1,3,5-Trimethylbenzene				
1,4-Dichlorobenzene	2.60E+01	2.1E+00	6.20E-06	1.3E-05
4-Ethyltoluene				
Acetone	2.30E+01	1.9E+00		
Benzene	1.30E+00	1.1E-01	8.30E-06	8.8E-07
Butadiene, 1,3-			3.00E-05	
Carbon tetrachloride	6.90E-01	5.6E-02	1.50E-05	8.4E-07
Chloromethane	1.60E+00	1.3E-01		
Cyclohexane				
Dichlorodifluoromethane	6.90E+00	5.6E-01		
Ethyl benzene	7.80E-01	6.4E-02		
Heptane	9.80E-01	8.0E-02		
Hexane				
Isooctane	9.30E-01	7.6E-02		
o-Xylene	9.60E-01	7.8E-02		
Styrene				
Toluene	5.70E+00	4.6E-01		
Trichlorofluoromethane	1.80E+00	1.5E-01		
Xylene, m/p	2.60E+00	2.1E-01		
		SUMMARY CANCER R	ISK	1E-05

TABLE D-7 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - ALL CONSTITUENTS DETECTED IN INDOOR AIR - OFFICE

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

	INDOOR AIR	AVERAGE AIR CONCENTRATION	CHRONIC INHALATION	HAZARD QUOTIENT
COMPOUND	CONCENTRATION	FOR TIME PERIOD	RfC [1]	
	(ug/m³)	(ug/m³)	(ug/m³)	
1,2,4-Trimethylbenzene	1.30E+00	3.0E-01	6.00E+00	4.9E-02
1,3,5-Trimethylbenzene			6.00E+00	
1,4-Dichlorobenzene	2.60E+01	5.9E+00	8.00E+02	7.4E-03
4-Ethyltoluene				
Acetone	2.30E+01	5.3E+00		
Benzene	1.30E+00	3.0E-01	3.00E+01	9.9E-03
Butadiene, 1,3-			2.00E+00	
Carbon tetrachloride	6.90E-01	1.6E-01	1.80E+02	8.8E-04
Chloromethane	1.60E+00	3.7E-01	9.00E+01	4.1E-03
Cyclohexane			6.00E+03	
Dichlorodifluoromethane	6.90E+00	1.6E+00	2.00E+02	7.9E-03
Ethyl benzene	7.80E-01	1.8E-01	1.00E+03	1.8E-04
Heptane	9.80E-01	2.2E-01		
Hexane			7.00E+02	
Isooctane	9.30E-01	2.1E-01		
o-Xylene	9.60E-01	2.2E-01	1.00E+02	2.2E-03
Styrene			1.00E+03	
Toluene	5.70E+00	1.3E+00	5.00E+03	2.6E-04
Trichlorofluoromethane	1.80E+00	4.1E-01	7.00E+02	5.9E-04
Xylene, m/p	2.60E+00	5.9E-01	1.00E+02	5.9E-03
•				
	•	SUMMARY HAZARD IN	IDEX	9E-02

TABLE D-8 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - ALL CONSTITUENTS DETECTED IN INDOOR AIR - SHIPPING AREA

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³) ⁻¹
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AVG.CONC.(ug/m ³)/REF. CONC. (ug/m ³)
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002	
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002	[CA]air * EF * ET * ED
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. = AT * CF1 * CF2
CONVERSION FACTOR 2	CF2	365	days/year		
AVERAGING TIME CANCER	AT	70	years	EPA, 2002	
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002	
EPA, 2002: Supplemental Guidance for Developing Soil Sc Prepared by: KJC	reening Levels for Sup	loor commercial/industrial worker.	*For noncarcinogenic effects: AT = ED		
Checked by: JHP					

TABLE D-8 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - ALL CONSTITUENTS DETECTED IN INDOOR AIR - SHIPPING AREA

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION	AVERAGE AIR CONCENTRATION LIFETIME	INHALATION CANCER UNIT RISK	CANCER RISK
	(ug/m³)	(ug/m³)	(ug/m ³) ⁻¹	
1,2,4-Trimethylbenzene	7.40E+00	6.0E-01		
1,3,5-Trimethylbenzene	2.00E+00	1.6E-01		
1,4-Dichlorobenzene			6.20E-06	
4-Ethyltoluene	6.40E+00	5.2E-01		
Acetone	3.10E+02	2.5E+01		
Benzene	1.10E+01	9.0E-01	8.30E-06	7.4E-06
Butadiene, 1,3-	6.40E+00	5.2E-01	3.00E-05	1.6E-05
Carbon tetrachloride			1.50E-05	
Chloromethane	1.20E+00	9.8E-02		
Cyclohexane	1.00E+00	8.2E-02		
Dichlorodifluoromethane	3.20E+00	2.6E-01		
Ethyl benzene	6.10E+00	5.0E-01		
Heptane	2.30E+00	1.9E-01		
Hexane	6.30E+00	5.1E-01		
Isooctane	5.10E+00	4.2E-01		
o-Xylene	6.90E+00	5.6E-01		
Styrene	1.70E+00	1.4E-01		
Toluene	1.40E+02	1.1E+01		
Trichlorofluoromethane	1.60E+00	1.3E-01		
Xylene, m/p	2.00E+01	1.6E+00		
		SUMMARY CANCER R	ISK	2E-05

TABLE D-8 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - ALL CONSTITUENTS DETECTED IN INDOOR AIR - SHIPPING AREA

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION FOR TIME PERIOD (ug/m ³)	CHRONIC INHALATION RfC [1] (ug/m ³)	HAZARD QUOTIENT
1,2,4-Trimethylbenzene	7.40E+00	1.7E+00	6.00E+00	2.8E-01
1,3,5-Trimethylbenzene	2.00E+00	4.6E-01	6.00E+00	7.6E-02
1,4-Dichlorobenzene	2.002+00	4.02-01	8.00E+00	1.02-02
4-Ethyltoluene	6.40E+00	1.5E+00	0.00E+02	
Acetone	3.10E+02	7.1E+01		
			0.005.04	8.4E-02
Benzene	1.10E+01	2.5E+00	3.00E+01	••••
Butadiene, 1,3-	6.40E+00	1.5E+00	2.00E+00	7.3E-01
Carbon tetrachloride	4 005 00		1.80E+02	
Chloromethane	1.20E+00	2.7E-01	9.00E+01	3.0E-03
Cyclohexane	1.00E+00	2.3E-01	6.00E+03	3.8E-05
Dichlorodifluoromethane	3.20E+00	7.3E-01	2.00E+02	3.7E-03
Ethyl benzene	6.10E+00	1.4E+00	1.00E+03	1.4E-03
Heptane	2.30E+00	5.3E-01		
Hexane	6.30E+00	1.4E+00	7.00E+02	2.1E-03
Isooctane	5.10E+00	1.2E+00		
o-Xylene	6.90E+00	1.6E+00	1.00E+02	1.6E-02
Styrene	1.70E+00	3.9E-01	1.00E+03	3.9E-04
Toluene	1.40E+02	3.2E+01	5.00E+03	6.4E-03
Trichlorofluoromethane	1.60E+00	3.7E-01	7.00E+02	5.2E-04
Xylene, m/p	2.00E+01	4.6E+00	1.00E+02	4.6E-02
	•	SUMMARY HAZARD IN	IDEX	1E+00

TABLE D-9 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - CONSTITUENTS WITH COMPLETE PATHWAYS ONLY

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

		VALUE	UNITS	SOURCE	
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³) ⁻¹
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AVG.CONC.(ug/m ³)/REF. CONC. (ug/m ³)
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002	
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002	[CA]air * EF * ET * ED
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. = AT * CF1 * CF2
CONVERSION FACTOR 2	CF2	365	days/year		
AVERAGING TIME CANCER	AT	70	years	EPA, 2002	
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002	
EPA, 2002: Supplemental Guidance for Developing Soil Si Prepared by: KJC Checked by: JHP	creening Levels for Sup	*For noncarcinogenic effects: AT = ED			

TABLE D-9 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - CONSTITUENTS WITH COMPLETE PATHWAYS ONLY

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION	AVERAGE AIR CONCENTRATION LIFETIME (ug/m ³)	INHALATION CANCER UNIT RISK (ug/m ³) ⁻¹	CANCER RISK
1,2,4-Trimethylbenzene	(ug/m³) 7.40E+00	(ug/m²) 6.0E-01	(ug/iii)	
	2.00E+00	0.0E-01 1.6E-01		
1,3,5-Trimethylbenzene	2.60E+00 2.60E+01	2.1E+00	6.20E-06	
1,4-Dichlorobenzene			6.20E-06	1.3E-05
4-Ethyltoluene	6.40E+00	5.2E-01		
Acetone	3.10E+02	2.5E+01	0.005.00	7 45 00
Benzene	1.10E+01	9.0E-01	8.30E-06	7.4E-06
Butadiene, 1,3-			3.00E-05	
Carbon tetrachloride			1.50E-05	
Chloromethane				
Cyclohexane	1.00E+00	8.2E-02		
Dichlorodifluoromethane	6.90E+00	5.6E-01		
Ethyl benzene	6.10E+00	5.0E-01		
Heptane	2.30E+00	1.9E-01		
Hexane	6.30E+00	5.1E-01		
Isooctane	5.10E+00	4.2E-01		
o-Xylene	6.90E+00	5.6E-01		
Styrene	1.70E+00	1.4E-01		
Toluene	1.40E+02	1.1E+01		
Trichlorofluoromethane	1.80E+00	1.5E-01		
Xylene, m/p	2.00E+01	1.6E+00		
		SUMMARY CANCER R	ISK	2E-05

TABLE D-9 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - CONSTITUENTS WITH COMPLETE PATHWAYS ONLY

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION FOR TIME PERIOD (ug/m ³)	CHRONIC INHALATION RfC [1] (ug/m ³)	HAZARD QUOTIENT
1,2,4-Trimethylbenzene	7.40E+00	1.7E+00	6.00E+00	2.8E-01
1,3,5-Trimethylbenzene	2.00E+00	4.6E-01	6.00E+00	7.6E-02
1,4-Dichlorobenzene	2.60E+00	4.8E-01 5.9E+00	8.00E+00 8.00E+02	7.6E-02 7.4E-03
	2.60E+01 6.40E+00	5.9E+00 1.5E+00	0.00E+02	7.4E-03
4-Ethyltoluene Acetone	3.10E+02			
	•••••	7.1E+01	0.005.04	0.45.00
Benzene	1.10E+01	2.5E+00	3.00E+01	8.4E-02
Butadiene, 1,3-			2.00E+00	
Carbon tetrachloride			1.80E+02	
Chloromethane			9.00E+01	
Cyclohexane	1.00E+00	2.3E-01	6.00E+03	3.8E-05
Dichlorodifluoromethane	6.90E+00	1.6E+00	2.00E+02	7.9E-03
Ethyl benzene	6.10E+00	1.4E+00	1.00E+03	1.4E-03
Heptane	2.30E+00	5.3E-01		
Hexane	6.30E+00	1.4E+00	7.00E+02	2.1E-03
Isooctane	5.10E+00	1.2E+00		
o-Xylene	6.90E+00	1.6E+00	1.00E+02	1.6E-02
Styrene	1.70E+00	3.9E-01	1.00E+03	3.9E-04
Toluene	1.40E+02	3.2E+01	5.00E+03	6.4E-03
Trichlorofluoromethane	1.80E+00	4.1E-01	7.00E+02	5.9E-04
Xylene, m/p	2.00E+01	4.6E+00	1.00E+02	4.6E-02
NA not sveilable	•	SUMMARY HAZARD IN	IDEX	5E-01

TABLE D-10 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - CONSTITUENTS WITH COMPLETE PATHWAYS AND IN EXCESS OF PUBLISHED BACKGROUND/SCREENING VALUES ONL)

ARCH CHEMICALS ROCHESTER, NY

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE		
AIR CONCENTRATION	[CA]air	Calculated	ug/m ³	Measured	CANCER RISK = AVG. CONC. (ug/m ³) * CANCER UNIT RISK (ug/m ³)	
CONVERSION FACTOR 1	CF1	24	hours/day		HAZARD QUOTIENT = AV	G.CONC.(ug/m ³)/REF. CONC. (ug/m ³)
EXPOSURE TIME DAILY	ET	8	hours/day	EPA, 2002		
EXPOSURE FREQUENCY	EF	250	days/year	EPA, 2002		[CA]air * EF * ET * ED
EXPOSURE DURATION	ED	25	years	EPA, 2002	AVG. EXPOSURE CONC. =	AT * CF1 * CF2
CONVERSION FACTOR 2	CF2	365	days/year			
AVERAGING TIME CANCER	AT	70	years	EPA, 2002		
AVERAGING TIME NONCANCER	AT	25	years	EPA, 2002		
EPA, 2002: Supplemental Guidance for Developir	g Soil Screening Levels for Super	fund Sites. OSWER 9355.4-24	. Values for ind	loor commercial/industrial worker.		
Prepared by: KJC					*For noncarcinogenic effects: AT = ED	
Checked by: JHP					-	

TABLE D-10 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - CONSTITUENTS WITH COMPLETE PATHWAYS AND IN EXCESS OF PUBLISHED BACKGROUND/SCREENING VALUES ONLY

ARCH CHEMICALS ROCHESTER, NY

CARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION (ug/m³)	AVERAGE AIR CONCENTRATION LIFETIME (ug/m³)	INHALATION CANCER UNIT RISK (ug/m ³) ⁻¹	CANCER RISK
1,2,4-Trimethylbenzene	(ug/iii)	(ug/iii)	(*9,)	
1,3,5-Trimethylbenzene				
1,4-Dichlorobenzene	2.60E+01	2.1E+00	6.20E-06	1.3E-05
4-Ethyltoluene	6.40E+00	5.2E-01	0.202 00	1.02 00
Acetone	3.10E+02	2.5E+01		
Benzene	1.10E+01	9.0E-01	8.30E-06	7.4E-06
Butadiene, 1,3-			3.00E-05	
Carbon tetrachloride			1.50E-05	
Chloromethane				
Cyclohexane	1.00E+00	8.2E-02		
Dichlorodifluoromethane	6.90E+00	5.6E-01		
Ethyl benzene	6.10E+00	5.0E-01		
Heptane	2.30E+00	1.9E-01		
Hexane				
Isooctane	5.10E+00	4.2E-01		
o-Xylene	6.90E+00	5.6E-01		
Styrene	1.70E+00	1.4E-01		
Toluene	1.40E+02	1.1E+01		
Trichlorofluoromethane	1.80E+00	1.5E-01		
Xylene, m/p	2.00E+01	1.6E+00		
		SUMMARY CANCER R	ISK	2E-05

TABLE D-10 INHALATION EXPOSURE TO INDOOR AIR FIRTH RIXSON - CONSTITUENTS WITH COMPLETE PATHWAYS AND IN EXCESS OF PUBLISHED BACKGROUND/SCREENING VALUES ONLY

ARCH CHEMICALS ROCHESTER, NY

NONCARCINOGENIC EFFECTS

COMPOUND	INDOOR AIR CONCENTRATION	AVERAGE AIR CONCENTRATION FOR TIME PERIOD	CHRONIC INHALATION RfC [1]	HAZARD QUOTIENT
	(ug/m³)	(ug/m ³)	(ug/m ³)	
1,2,4-Trimethylbenzene			6.00E+00	
1,3,5-Trimethylbenzene			6.00E+00	
1,4-Dichlorobenzene	2.60E+01	5.9E+00	8.00E+02	7.4E-03
4-Ethyltoluene	6.40E+00	1.5E+00		
Acetone	3.10E+02	7.1E+01		
Benzene	1.10E+01	2.5E+00	3.00E+01	8.4E-02
Butadiene, 1,3-			2.00E+00	
Carbon tetrachloride			1.80E+02	
Chloromethane			9.00E+01	
Cyclohexane	1.00E+00	2.3E-01	6.00E+03	3.8E-05
Dichlorodifluoromethane	6.90E+00	1.6E+00	2.00E+02	7.9E-03
Ethyl benzene	6.10E+00	1.4E+00	1.00E+03	1.4E-03
Heptane	2.30E+00	5.3E-01		
Hexane			7.00E+02	
Isooctane	5.10E+00	1.2E+00		
o-Xylene	6.90E+00	1.6E+00	1.00E+02	1.6E-02
Styrene	1.70E+00	3.9E-01	1.00E+03	3.9E-04
Toluene	1.40E+02	3.2E+01	5.00E+03	6.4E-03
Trichlorofluoromethane	1.80E+00	4.1E-01	7.00E+02	5.9E-04
Xylene, m/p	2.00E+01	4.6E+00	1.00E+02	4.6E-02
		SUMMARY HAZARD IN	IDEX	2E-01

Sources of Dose-Response Data

Chemical	Inhalation Unit Risk (ug/m ^{3)⁻¹}	Ref.	Inhalation RfC - Chronic (mg/m ³)	Ref.
1,4-Dichlorobenzene	6.2E-06	NCEA	8.0E-01	IRIS
1,2,4-Trimethylbenzene			6.0E-03	EPA [a]
1,3,5-Trimethylbenzene			6.0E-03	EPA [a]
2-Butanone			5.0E+00	IRIS
2-Hexanone				
2-Propanol				
4-Ethyltoluene				
4-Methyl-2-pentanone			3.0E+00	IRIS
Acetone				
Benzene	8.3E-06	IRIS	3.0E-02	IRIS
1,3-Butadiene	3.0E-05	IRIS	2.0E-03	IRIS
Carbon Disulfide			7.0E-01	IRIS
Carbon Tetrachloride	1.5E-05	IRIS	1.8E-01	MRL [b]
Chlorobenzene			4.9E-02	EPA [b]
Chloroform	2.3E-05	IRIS	4.8E-02	NCEA [b]
Chloromethane			9.0E-02	IRIS
Cyclohexane			6.0E+00	IRIS
Dichlorodifluoromethane			2.0E-01	HEAST
Ethylbenzene			1.0E+00	IRIS
Heptane, N-				
Hexane, N-			7.0E-01	IRIS
Isooctane				
Methylene Chloride	4.7E-07	IRIS	1.0E+00	MRL [b]
Styrene			1.0E+00	IRIS
Tetrachloroethylene	5.9E-06	CALEPA	2.8E-01	MRL [b]
Toluene			5.0E+00	IRIS
Trichloroethylene	1.1E-04	NCEA	4.0E-02	NCEA [b]
Trichlorofluoromethane			7.0E-01	HEAST
Xylene			1.0E-01	IRIS

IRIS – Integrated Risk Information System (April, 2006) [www.epa.gov/iris/] HEAST – Health Effects Assessment Summary Tables [EPA Region IX PRG Table] EPA – EPA Provisional Value

NCEA – Derived by National Center for Environmental Assessment CALEPA – Derived by California EPA [EPA Region IX PRG Table] [a] – Value obtained from EPA Region IX PRG Table (October, 2004) [b] – Value obtained from EPA Region III RBC Table (April, 2006)