Arch Chemicals, Inc.

Rochester, New York (Site #828018a)

Groundwater Monitoring Report 38 Spring 2007

September 2007

Arch Chemicals, Inc. P. O. Box 800 1200 Lower River Road Charleston, TN 37310 Tel (423) 780-2724

September 10, 2007

Mr. James H. Craft New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, NY 14414

Re: Arch Rochester Spring 2007 Monitoring Report

Arch Chemicals (Site #628018a) 100 McKee Rd., Rochester, NY

Dear Mr. Craft:

The enclosed report presents the Spring 2007 results for the on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility.

If you have any questions regarding this submittal, please call me at (423) 780-2175.

Sincerely,

Gayle M. Taylor / jeb Gayle M. Taylor

Manager, Environmental Issues

Arch Chemicals, Inc.

encl.

cc (w/encl): Bart Putzig, NYSDEC

James Reidy, USEPA Region II Karin Klock, Arch Chemicals, Inc.

Jeffrey Brandow, MACTEC Engineering & Consulting, P.C.

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM SPRING 2007 MONITORING REPORT

ARCH CHEMICALS
ROCHESTER PLANT SITE
ROCHESTER, NEW YORK

RECEIVED

ARCH CHEMICALS, INC. CHARLESTON, TENNESSEE

SEPTEMBER 2007

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM SPRING 2007 MONITORING REPORT

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

Prepared by

MACTEC Engineering & Consulting, P.C. Portland, Maine

for

ARCH CHEMICALS, INC. Charleston, Tennessee

September 2007

This document was prepared for the sole use of Arch Chemicals, Inc., the only intended beneficiary(ies) of our work. No other party shall rely on the information contained herein without prior written consent of MACTEC Engineering & Consulting, P.C.

Nelson M. Breton, C.G. Principal Hydrogeologist

Mey E. Brandow, P.E. Principal Engineer

TABLE OF CONTENTS

			Page
Exec	utive Su	ummary	1
1.0	Introd	duction	2
2.0	Samp	ple Collection and Analysis	2
	2.1	Groundwater	2
	2.2	Surface Water	3
	2.3	Analytical Procedures	3
	2.4	Quality Control	3
3.0	Analy	ytical Results	4
	3.1	Groundwater	4
		3.1.1 Chloropyridines	4
		3.1.2 Selected VOCs	5
	3.2	Surface Water	5
		3.2.1 Quarry	5
		3.2.2 Quarry Discharge Ditch	. 5
		3.2.3 Barge Canal	6
4.0	Extra	action System Performance and Maintenance	6
5.0	Othe	r Issues	6
6.0	Next	Monitoring Event	6

APPENDICES

Appendix A Groundwater Field Sampling Data Sheets

Appendix B Well Trend Data

LIST OF FIGURES

Prendred By

Checked By:

Figure 1	Off-Site Groundwater Monitoring Well Locations	Jan By.	Mus .
Figure 2	On-Site Monitoring Well Locations	MM	pus
Figure 3	Spring 2007 Overburden Groundwater Interpreted Piezometric Contours	DBW	purs
Figure 4	Spring 2007 Bedrock Groundwater Interpreted Piezome Contours	etric DBW	am
Figure 5	Spring 2007 Deep Bedrock Groundwater Interpreted Piezometric Contours	DBW,	aus
Figure 6	Sample Locations - Erie Barge Canal	AM	1003
Figure 7	Sample Locations - Dolomite Products Quarry	JEA!	yes-
Figure 8	Spring 2007 Selected Chloropyridine Concentration Contours for Groundwater	DBW	LIMS
Figure 9	Spring 2007 Selected Volatile Organic Compound Concentration Contours for Groundwater	DBW	ans

LIST OF TABLES

		Prepared By:	Checked By:
Table 1	Spring 2007 Sampling and Analytical Program	MB	183
Table 2	Spring 2007 Groundwater Monitoring Results - Chloropyridines	ms	100
Table 3	Spring 2007 Groundwater Monitoring Results – Volatile Organic Compounds	kurs	JEB .
Table 4	Comparison of Spring 2007 Chloropyridines and Volatile Organic Concentrations in Groundwate to Previous Results	er	JEBS
Table 5	Spring 2007 Canal/Quarry Monitoring Results	ins	K OS
Table 6	Extraction Well Weekly Flow Measurements - December 2006 through May 2007	Muss	18
Table 7	Mass Removal Summary, Period: December 2006 – May 2007	tors	JEB
Table 8	2007 Sampling Schedule	Muss	pes -

EXECUTIVE SUMMARY

This monitoring report presents the results of an on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility. Results in this report include surface and groundwater samples collected in June 2007.

During this monitoring event, samples from a total of 47 groundwater monitoring or pumping wells and three locations associated with the Dolomite Products Quarry seep and outfall were collected and analyzed by Severn Trent Laboratories in Amherst, New York.

As in prior reports, monitoring results were compared with previous average concentrations at each sampling location. Thirty-two of the 50 monitoring locations sampled for chloropyridines had contaminant concentrations that were at or below their respective 5-year prior averages. Twenty-eight of the 34 monitoring locations sampled for volatile organic compounds had concentrations at or below their 5-year prior average. Contaminant contour plots are generally consistent with past observations.

Regular sampling locations associated with the quarry included the main quarry seep (QS-4), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1). The sample from quarry seep QS-4 remained below its historical average. Sample QO-2 contained chloropyridines at an estimated 6 µg/L, which is slightly above the 5-year prior average for this location. The sample from the canal had no detectable chloropyridines.

During the period December 2006 through May 2007, the on-site groundwater extraction system pumped approximately 5.6 million gallons of groundwater to the on-site treatment system, containing an estimated 306 pounds of chloropyridines and 6 pounds of target volatile organic compounds.

Pump and/or meter repairs were required on wells BR-5A, BR-7A, BR-9, PW-11, PW-13, and PW-14.

In November 2006, pumping well PW-10 partially collapsed while Arch was attempting to remove the pump for service. This well is no longer operational, and Arch is in the process of replacing it with a new pumping well at a location slightly south of PW-10.

All accessible on-site monitoring wells were checked for the presence of dense non-aqueous phase liquids (DNAPL) and floating (or light) NAPL (LNAPL), using an interface probe. No DNAPL or LNAPL was observed in any of these wells, with the exception of pumping well PW-13. Arch has been tracking the accumulation of LNAPL in PW-13 since the well was installed in 2004. During this monitoring event, the measured thickness of LNAPL in PW-13 increased to 0.91 feet.

The next regular monitoring event will occur in November 2007 and will include groundwater, surface water, and seep sampling.

1.0 INTRODUCTION

In accordance with the Order on Consent executed between Arch Chemicals, Inc., and the New York State Department of Environmental Conservation (NYSDEC), effective August 21, 2003, Arch is conducting a Remedial Action program at its facility on McKee Road in Rochester, New York. As part of this program, Arch conducts twice-yearly monitoring events consisting of sampling and chemical analysis of groundwater and surface water in the vicinity of the Rochester facility.

The Spring 2007 sampling event included the collection and analysis of a total of 50 groundwater, surface water, and seep samples from off-site and on-site locations. Samples were collected June 6 - 14, 2007, for analysis of selected chloropyridines and volatile organic compounds (VOCs).

This report presents the results of the Spring 2007 monitoring event.

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 GROUNDWATER

Groundwater samples were collected from off-site wells, on-site wells and piezometers for analysis of selected chloropyridines (2-chloropyridine, 2,6-dichloropyridine, 3-chloropyridine, 4-chloropyridine, pyridine, and p-fluoroaniline) and target compound list (TCL) VOCs. Samples were collected by Severn Trent Laboratories and transported to their laboratory in Amherst, New York for analysis. Table 1 lists the wells that were sampled and the requested analyses. The off-site and on-site locations of these sampling points are shown in Figures 1 and 2, respectively. Groundwater sampling data sheets are provided in Appendix A.

Groundwater was collected with the low flow/low stress purging technique from most of the wells using bladder or peristaltic pumps. Samples from active pumping wells (BR-5A, BR-7A, BR-9, PW-11, PW-13, and PW-14) were collected from the discharge lines.

One off-site bedrock monitoring well, BR-126, could not be located during the Spring 2007 event. It is assumed that this well has been damaged beyond repair by the off-site property owner.

Groundwater piezometric elevations were measured on June 5, 2007. Piezometric contour maps were constructed for each water-bearing zone (overburden, bedrock, and deep bedrock) and are presented in Figures 3, 4, and 5.

All accessible on-site monitoring wells were again checked for the presence of non-aqueous phase liquid (NAPL), using an interface probe. No dense NAPL (DNAPL) was observed in any of these wells. 0.91 feet of floating NAPL (LNAPL) was observed in pumping well PW-13, where it has been observed since the well's installation in 2004. The LNAPL has been previously analyzed as No. 2 fuel oil and there is no indication that it originates from the Arch facility. LNAPL was not observed in any of the other on-site wells.

2.2 SURFACE WATER

Surface water and quarry seep samples were collected as part of the on-going monitoring program for the Arch Rochester site. The location of the quarry and its outfall in relation to the site is shown on Figure 6. Samples of the quarry seep (QS-4), the surface ditch that receives the quarry discharge (QO-2), and the Barge Canal (QO-2S1) were collected by Severn Trent Laboratories on June 12, 2007. Samples were analyzed for the Arch suite of selected chloropyridines. The quarry locations sampled during this event are shown on Figure 7.

2.3 ANALYTICAL PROCEDURES

The analytical procedures, data review findings, and validated data for this groundwater and surface water monitoring event are discussed in the following paragraphs.

Samples were analyzed for the Arch suite of selected chloropyridines and TCL VOCs by USEPA SW-846 Methods 8270C and 8260B, respectively. The reporting limits for the chloropyridines and VOCs are approximately 10 micrograms per liter (μ g/L) and 5 to 25 μ g/L, respectively, for undiluted samples.

2.4 QUALITY CONTROL

All laboratory analytical results were reviewed and qualified following U.S. Environmental Protection Agency Contract Laboratory Program (USEPA CLP), "National Functional Guidelines For Organic Data Review", October, 1999, as modified by USEPA Region II, "SOP No. HW-6 Revision XII", March 2001. Analytical results were evaluated for the following parameters:

- Collection and Preservation
- Holding Times
 Surrogate Recoveries
 Blank Contamination
- Duplicates
- Laboratory Control Samples
- Matrix Spike/Matrix Spike Duplicates Miscellaneous

With the qualifications discussed below, results are determined to be usable as reported by the laboratory.

<u>Surrogate Recoveries</u>. Several SVOC samples in SDG 6241 had surrogate recoveries that were less than laboratory control limits due to large dilutions that were required for target analytes. In order to minimize these low surrogate recoveries, serial dilutions are generally carried out based on a dilution schedule that is supplied to the laboratory. However, during this event the schedule was not originally followed which resulted in the low surrogates recoveries. Since these dilutions were necessary no qualifications were added to the samples based on surrogate recoveries alone.

^{* -} all criteria were met for this parameter

Blank Contamination. Methylene chloride (0.59 μ g/L) and acetone (2.2 μ g/L) were reported in the trip and method blanks. Action levels were calculated at ten times the detections reported in the blanks and compared to raw data results. The results for methylene chloride in samples BR-127, BR-5A, BR-9, E-1, PW-11, PZ-107, S-3, BR-6A, PW-10, PW-13, PW-14, and PZ-106 were less than the action level and were qualified as non-detect (U). The results for acetone in samples BR-8, E-1, PW-11, S-3, S-4, and BR-6A were also less than the action level and were qualified as non-detect (U).

<u>Miscellaneous</u>. Several samples required dilutions due to concentrations of the target analytes 2,6-dichloropyridine, 2-chloropyridine, chloroform, and chlorobenzene that were greater than the instrument calibration range. These dilutions ranged from two to twenty thousand times. Results were reported from the lowest diluted analytical run that met validation criteria.

The predilution table was not originally followed for SVOC samples in SDG 6241. The samples were re-extracted outside of holding times in order to follow the dilution schedule. Results were reported from the original analytical runs which were analyzed within holding times, so no qualifications were necessary.

3.0 ANALYTICAL RESULTS

3.1 GROUNDWATER

The validated results from the Spring 2007 groundwater monitoring event are provided in Tables 2 and 3. Table 4 provides a comparison of the Spring 2007 analytical results for selected chloropyridines and VOCs in representative wells to mean concentrations of the prior five years (Spring 2002 through Fall 2006). Long term trends for both selected chloropyridines and VOCs are also presented as time-series plots for representative wells in Appendix B. A summary of the analytical findings is presented below by parameter class.

3.1.1 Chloropyridines

On-Site. Chloropyridines were detected above sample quantitation limits in all 22 on-site wells sampled in the Spring 2007 event. Concentrations of chloropyridines ranged from 29 micrograms per liter (μg/L) (sum of all chloropyridine and pyridine isomer concentrations) in monitoring well E-3 to 1,120,000 μg/L in monitoring well B-17. Thirteen of the on-site wells exhibited total chloropyridine concentrations that were below their respective means from monitoring events over the previous five years (see Table 4). Wells B-17, BR-3, BR-7A, BR-9, E-1, MW-127, PW-14, PZ-105 and PZ-107 contained chloropyridines at levels exceeding their prior 5-year means.

Off-Site. Chloropyridines were detected above sample quantitation limits in 22 of 25 off-site wells that were sampled. Concentrations of total selected chloropyridines ranged from non-detect (in BR-116, MW-114, and NESS-W) to 4,400 μg/L in monitoring well MW-106. Seventeen of the off-site wells contained total chloropyridine concentrations that were below their respective 5-year prior means, while wells BR-103, BR-104, BR-112D, BR-113D, BR-116D, BR-122D, MW-103, and MW-104 exceeded their prior 5-year means.

<u>Concentration Contours</u>. Chloropyridine distribution in groundwater is shown as a set of concentration contours on Figure 8. The contours were developed using data from both overburden and bedrock monitoring wells. Contours are approximated (shown as dashed lines) where they are based on data from previous sampling rounds.

3.1.2 Selected VOCs.

<u>On-Site.</u> Selected VOCs were detected in 6 of the 22 on-site wells sampled in the Spring 2007 event. Total concentrations of selected VOCs ranged from non-detect (in wells BR-8, E-1, E-3, MW-127, PW-13, PZ-105, and S-4) to 260,000 μg/L in PZ-106 for the sum of the principal site-related contaminants (carbon tetrachloride, chloroform, methylene chloride, tetrachloroethene, and trichloroethene). Only three of the 22 on-site wells (B-17, B-7, and BR-127) contained concentrations of total VOCs above their 5-year prior means. In addition to the selected VOCs, other notable constituents detected in on-site wells include chlorobenzene (in 18 out of 22 wells), benzene (15 of 22), toluene (15 of 22), vinyl chloride (12 of 22), carbon disulfide (10 of 22), 1,2-dichloroethene (10 of 22), acetone (8 of 22), ethylbenzene (7 of 22), xylenes (6 of 22), bromoform (5 of 22), and 1,1-dichloroethane (4 of 22).

Off-Site. Selected VOCs were detected in 6 of the 12 off-site wells sampled for VOCs in the Spring 2007 event. Total concentrations of selected VOCs ranged from non-detect (in MW-106, BR-106, BR-114, PZ-101, PZ-103, and PZ-104) to 87 μg/L (in MW-103). Only three of the 12 off-site wells (BR-103, BR-105, and MW-114) had selected VOC concentrations above their prior 5-year means. In addition to the selected VOCs, other notable constituents detected in off-site wells include benzene (in 9 out of 12 wells), chlorobenzene (9 of 12), 1,2-dichloroethene (7 of 12), carbon disulfide (5 of 12), toluene (5 of 12), vinyl chloride (4 of 12), acetone (4 of 12), and ethyl benzene (3 of 12).

<u>Concentration Contours</u>. The distribution of selected VOCs in groundwater is shown as a set of concentration contours on Figure 9. These contours were developed using both overburden and bedrock groundwater data, and are dashed where approximated using data from previous sampling rounds.

3.2 SURFACE WATER

Results from the Spring 2007 canal and quarry monitoring event are presented in Table 5, and summarized below.

3.2.1 Quarry

One quarry seep was sampled in the Spring 2007 monitoring event. Quarry seep QS-4 contained 240 μ g/L total chloropyridines. Concentrations remain at or below historical averages.

3.2.2 Quarry Discharge Ditch

One sample was collected from the quarry discharge ditch and analyzed for chloropyridines. Sample QO-2 was collected at the point where the ditch discharges to the canal. Total chloropyridines were detected in the ditch sample at an estimated concentration of 6 μ g/L, which is slightly above the 5-year prior mean for this location.

3.2.3 Barge Canal

No chloropyridines were detected in the surface water sample collected from the Erie Barge Canal (QO-2S1, located approximately 100 feet downstream of QO-2).

4.0 EXTRACTION SYSTEM PERFORMANCE AND MAINTENANCE

Table 6 is a summary of the system flow measurements for the on-site extraction wells from December 2006 through May 2007. The total volume pumped during the six-month period is approximately 5.6 million gallons.

Pump and/or meter repairs were required on wells BR-5A, BR-7A, BR-9, PW-11, PW-13, and PW-14.

In November 2006, pumping well PW-10 partially collapsed while Arch was attempting to remove the pump for service. This well is no longer operational, and Arch is in the process of replacing it with a new pumping well at a location slightly south of PW-10.

Table 7 provides a calculation of mass removal rates since the previous groundwater monitoring event (i.e., from December 2006 through May 2007). Arch estimates that approximately 6 pounds of target VOCs and 306 pounds of chloropyridine compounds were removed by the groundwater extraction system and treated by the plant's activated carbon adsorption units over that time period.

5.0 OTHER ISSUES

For other issues related to the remedial action program at the Arch Rochester Plant Site, please see the monthly progress reports, which commenced in February 2005.

6.0 NEXT MONITORING EVENT

The next regular monitoring event will occur in November 2007 and will include groundwater, surface water, and seep sampling.

Table 8 shows the current monitoring program for the Arch Rochester site.

Tables

TABLE 1 SPRING 2007 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM

ARCH CHEMICALS, INC ROCHESTER, NEW YORK

			ANALYSIS	PYRIDINES	VOCs
SITE / AREA	WELL / POINT	DATE	QC TYPE		
AID TO HOSPITALS	BR-106	6/13/2007	Sample	X	X
	BR-108	6/12/2007	Sample	X	
	MW-106	6/13/2007	Sample	X	X
	PZ-101	6/13/2007	Sample	X	X
	PZ-102	6/13/2007	Sample	X	Х
	PZ-103	6/13/2007	Sample	X	X
AMERICAN RECYCLING & MANUFACTURING (58 MCKEE ROAD)	PZ-104	6/13/2007	Sample	x	x
ARCH ROCHESTER	B-17	6/11/2007		X	X
	B-7	6/11/2007		X	X
	BR-127	6/7/2007		X	X
	BR-3	6/11/2007		X	X
	BR-5A	6/8/2007		X	X
	BR-6A	6/6/2007		X	X
	BR-7A	6/8/2007		X	X
	BR-8	6/6/2007		X	X
	BR-9	6/8/2007		X	X
	E-1	6/6/2007		X	X
	E-3	6/7/2007		X	X
	MW-127	6/7/2007		X	X
	PW10	6/8/2007		X	X
	PW11	6/6/2007		X	X
	PW12	6/11/2007		X	X
	PW13	6/8/2007		X	X
	PW14	6/8/2007		X	X
	PZ-105	6/7/2007		X	X
	PZ-106	6/7/2007		X	X
	PZ-107	6/7/2007		X	X
	S-3	6/6/2007		X	X
	S-4		Duplicate	X	X
	S-4	6/6/2007		X	X
DOLOMITE PRODUCTS, INC.	BR-117D	6/12/2007		X	
	BR-118D	6/12/2007		X	
	QS-4	6/12/2007		X	
EASTMAN KODAK (FORMERLY GERBER	BR-103	6/11/2007		X	X
PROPERTY)	MW-103	6/11/2007		X	X
ERIE BARGE CANAL(Samples in canal or	BR-112D	6/14/2007		Х	
property along canal)	BR-113D	6/14/2007		Х	
	BR-122D	6/12/2007		X	
	BR-123D	6/12/2007		Х	
	QO-2	6/12/2007	Sample	X	
	QO-2S1	6/12/2007	Sample	X	
JACKSON WELDING	BR-114	6/14/2007		X	Х
	MW-114	6/14/2007		X	Х
LEXINGTON MACHINING	NESS-E	6/13/2007		Х	
	NESS-W	6/13/2007		X	
PFAUDLER, INC.	BR-116	6/12/2007		X	
	BR-116D	6/12/2007		X	
RG & E RIGHT OF WAY	BR-104	6/12/2007		X	
	BR-105	6/13/2007		X	X
	BR-105D	6/13/2007		X	X
	MW-104	6/12/2007		X	

Prepared/Date: NMB 07/31/07

Checked/Date: JEB 08/22/07

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-17		B-7		BR-103	BR-104	BR-105	BR-105D	BR-106	BR-108	BR-112D	BR-113D
SAMPLE DATE:	06/11/0	7	06/1.1/07		06/11/07	06/12/07	06/13/07	06/13/07	06/13/07	06/12/07	06/14/07	06/14/07
QC TYPE:	Sample		Sample		Sample	Sample	Sample	Sample	Sample	Sample	. Sample	Sample
BY SW-846 Method 8270C (µg/L)												
2,6-Dichloropyridine	61000		220		13	4 J	100	54 J	680 J	2 J	5 J	6 J
2-Chloropyridine	990000		600		41	20	850	760	2300	14	27	46
3-Chloropyridine	7600	J	50	U	9 U	9 U	100 U	100 U	1000 U	10 U	9 U	9 U
4-Chloropyridine	9700	J	50	U	9 U	9 U	100 U	100 U	1000 U	10 U	9 U	9 U
p-Fluoroaniline	10000	U	50	U	2 J	9 U	100 U	10 J	1000 U	10 U	9 U	9 U
Pyridine	150000		120	U	24 U	24 U	250 U	250 U	2500 U	24 U	24 U	24 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

Prepared/Date: NMB 07/31/07

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-114		BR-116	BR-116D	BR-117D	BR-118D	BR-122D	BR-123D	BR-127	BR-3	BR-5A
SAMPLE DATE:	06/14/0	7	06/12/07	06/12/07	06/12/07	06/12/07	06/12/07	06/12/07	06/07/07	06/11/07	06/08/07
QC TYPE:	Sample		Sample								
BY SW-846 Method 8270C (μg/L)											
2,6-Dichloropyridine	15	J	9 U	4 J	9 U	3 J	18	7 J	220	12000	37
2-Chloropyridine	36	J	9 U	28	4 J	56	130	46	1500	88000	170
3-Chloropyridine	47	U	9 U	10 U	9 U	9 U	9 U	9 U	95 U	10000 U	9 U
4-Chloropyridine	47	U	9 U	10 U	9 U	6 J	9 U	9 U	95 U	10000 U	9 U
p-Fluoroaniline	47	U	9 U	10 U	9 U	9 U	1 J	9 U	·12 J	10000 U	17
Pyridine	120	U	24 U	24 U	24 U	24 U	24 U	24 U	73 J	11000 J	61

Notes:

U = Compound not detected; value represents sample quantitation limit.

Prepared/Date: NMB 07/31/07 Checked/Date: JEB 07/31/07

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-6A		BR-7A	BR-8	BR-9		E-1	E-3	MW-103	MW-104	MW-106	MW-114
SAMPLE DATE:	06/06/07	7	06/08/07	06/06/07	06/08/07	'	06/06/07	06/07/07	06/11/07	06/12/07	06/13/07	06/14/07
QC TYPE:	Sample		Sample	Sample	Sample		Sample	Sample	Sample	Sample	Sample	Sample
BY SW-846 Method 8270C (µg/L)			7-1-1	•								
2,6-Dichloropyridine	540		4000	71	52		4000 J	12	23	4 J	1400	10 U
2-Chloropyridine	4100		15000	280	260		72000	17	73	10	3000	10 U
3-Chloropyridine	500	U	1900 U	47 U	38	U	10000 U	10 U	9 U	9 U	50 U	10 U
4-Chloropyridine	500	U	1900 U	47 U	38	U	10000 U	10 U	. 9 U	9 U	50 U	10 U
p-Fluoroaniline	500	U	1900 U	14 J	3	J	10000 U	10 U	0.9 J	9 U	32 J	10 U
Pyridine	1200	U	4800 U	120 U	95	U	25000 U	24 Ü	24 U	24 U	120 U	24 U

Notes

U = Compound not detected; value represents sample quantitation limit.

Prepared/Date: NMB 07/31/07

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	MW-127	NESS-E	NESS-W	PW10	PW11	PW12	PW13	PW14	PZ-101	PZ-102
SAMPLE DATE:	06/07/07	06/13/07	06/13/07	06/08/07	06/06/07	06/11/07	06/08/07	06/08/07	06/13/07	06/13/07
QC TYPE:	Sample									
BY SW-846 Method 8270C (µg/L)										
2,6-Dichloropyridine	1400 J	26	9 U	5800	330 J	1200	360	2000	25 J	510
2-Chloropyridine	7500	200	9 U	87000	1200	2100	1400	34000	65	1600
3-Chloropyridine	1900 U	. 9 U	9 U	530 J	500 U	400 U	190 U	470 U	47 U	100 U
4-Chloropyridine	1900 U	9 U	9 U	1400 J	500 U	400 U	190 U	370 J	47 U	100 U
p-Fluoroaniline	1900 U	1 J	9 U	1900 U	500 U	88 J	190 U	470 U	47 U	14 J
Pyridine	4800 U	24 U	24 U	2600 J	1200 U	1000 U	470 U	2200	120 U	250 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

Prepared/Date: NMB 07/31/07

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-103		PZ-104		PZ-105		PZ-106		PZ-107		S-3		S-4		S-4	
SAMPLE DATE:	06/13/0	7	06/13/07	7	06/07/0	7	06/07/07	1	06/07/0	7	06/06/0	7	06/06/0	7	06/06/0	7
QC.TYPE:	Sample		Sample		Sample		Sample		Sample		Sample		Duplicat	е	Sample	е
BY SW-846 Method 8270C (μg/L)																
2,6-Dichloropyridine	940		250	J	2500		4500	J	1500		1600	-	16		16	3
2-Chloropyridine	2200		1800		16000		22000		27000		5800		56		57	
3-Chloropyridine	200	U	400	U	270		210		480	U	1000	U	10	U	10	U
4-Chloropyridine	200	U	400	U	- 44	J	71	J	340	J	1000	U	10	U	10	U
p-Fluoroaniline	55	J	400	U	40	J	33	J	480	U	1000	U	10	U		U
Pyridine	500	U	1000	U	120	U	1400		2000		2500	U	24	U	. 24	U

Notes:

U = Compound not detected; value represents sample quantitation limit.

Prepared/Date: NMB 07/31/07

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-17	B-7	BR-103	BR-105	BR-105D	BR-106	BR-114	BR-127	BR-3	BR-5A
SAMPLE DATE:	06/11/07	06/11/07	06/11/07	06/13/07	06/13/07	06/13/07	06/14/07	06/07/07	06/11/07	06/08/07
QC TYPE:	Sample									
VOLATILE ORGANIC COMPOUNDS	B-17									
BY SW-846 Method 8260/5ML (µg/L)										
1,1,1-Trichloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
1,1,2,2-Tetrachloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
1,1,2-Trichloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
1,1-Dichloroethane	500 U	5 U	5 U	0.84 J	4 J	5 U	5 U	5 U	5000 U	5 U
1,1-Dichloroethene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
1,2,4-Trimethylbenzene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
1,2-Dichloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
1,2-Dichloroethene (total)	1000 U	10 U	4.3 J	42	8.6 J	0.87 J	1.1 J	5.9 J	10000 U	13
1,2-Dichloropropane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
1,3,5-Trimethylbenzene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
2-Butanone	2500 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25000 U	25 U
2-Hexanone	2500 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25000 U	25 U
4-Methyl-2-pentanone	2500 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25000 U	25 U
Acetone	460 J	1.7 J	2.6 J	25 U	25 U	25 U	25 U	2.4 J	25000 U	3.2 J
Benzene .	59 J	0.93 J	5 U	2 J	6	18	3.5 J	0.81 J	5000 U	9.1
Bromodichloromethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
Bromoform	500 U	2.2 J	0.6 J	5 U	5 U	5 U	5 U	5 U	880 J	5 U
Bromomethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
Carbon disulfide	220 J	16	3.1 J	5 U	0.91 J	0.99 J	5 U	1.4 J	17000	5 U
Carbon tetrachloride	620	29	12	2.5 J	5 U	5 U	5 U	5 U	12000	5 U
Chlorobenzene	150 J	37	8	4.9 J	5 U	140	5 U	0.8 J	5000 U	12
Chlorodibromomethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
Chloroethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
Chloroform	28000	100	22	1.2 J	4.4 J	5 U	5 U	2.3 J	81000	2 J
Chloromethane	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
cis-1,3-Dichloropropene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
Ethyl benzene	500 U	2.6 J	0.78 J	5 U	0.46 J	5 U	5 U	5 U	5000 U	5 U
Methylene chloride	1200	2.7 J	5 U	5 U	5 U	5 U	5 U	5 U	15000	5 U
Styrene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
Tetrachloroethene	1400	8.6	3.9 J	1.2 J	5 U	5 U	5 U	5 U	2200 J	5 U
Toluene	160 J	54	15	5 U	5 U	2 J	5 U	0.59 J	4300 J	5.2
trans-1,3-Dichloropropene	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5000 U	5 U
Trichloroethene	. 80 J	5 U	5 U	0.7 J	5 U	5 U	5 U	0.98 J	5000 U	2.9 J
Vinyl acetate	2500 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25000 U	25 U
Vinyl chloride	500 U	0.73 J	15	20	2.3 J	5 U	5 U	4.1 J	5000 U	2.7 J
Xylenes, Total	1500 U	14 J	4.2 J	15 U	15 U	15 U	15 U	. 15 U	15000 U	1.6 J

Notes:

- U = Compound not detected; value represents sample quantitation limit.
- J = Estimated value.

Prepared/Date: NMB 07/31/07 Checked/Date: JEB 07/31/07

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-6A	BR-7A	BR-8	BR-9	E-1	E-3	MW-103	MW-106	MW-114	MW-127
SAMPLE DATE:	06/06/07	06/08/07	06/06/07	06/08/07	06/06/07	06/07/07	06/11/07	06/13/07	06/14/07	06/07/07
QC TYPE:	Sample									
VOLATILE ORGANIC COMPOUNDS										
BY SW-846 Method 8260/5ML (µg/L)										
1,1,1-Trichloroethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
1,1,2,2-Tetrachloroethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
1.1.2-Trichloroethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
1.1-Dichloroethane	10 U	1.9 J	5 U	6.3 J	50 U	5 U	5 U	25 U	5 U	5 U
1.1-Dichloroethene	10 U	10 U	5 U	3.3 J	50 U	5 U	5 U	25 U	5 U	5 U
1,2,4-Trimethylbenzene	10 U	10 U	5 U	25 U '	50 U	5 U	5 U	25 U	5 U	5 U
1,2-Dichloroethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
1,2-Dichloroethene (total)	68	3.4 J	0.81 J	370	10 J	10 U	10 U	50 U	10 U	10 U
1,2-Dichloropropane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
1,3,5-Trimethylbenzene	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
2-Butanone	50 U	50 U	25 U	120 U	250 U	25 U	25 U	120 U	25 U	25 U
2-Hexanone	50 U	50 U	25 U	120 U	250 U	25 U	25 U	120 U	25 U	25 U
4-Methyl-2-pentanone	50 U	50 U	25 U	120 U	250 U	25 U	25 U	120 U	25 U	25 U
Acetone	50 U	50 U	25 U	120 U	250 U	25 U	25 U	120 U	25 U	1.5 J
Benzene	0.97 J	17	3.2 J	64	50 U	5 U	5 U	25	5 U	0.68 J
Bromodichloromethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
Bromoform	10 U	10 U	5 U	25 U	50 U	5 U	1.4 J	25 U	5 U	5 U
Bromomethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
Carbon disulfide	10 U	6.3 J	5 U	25 U	16 J	5 U	7.8	25 U	5 U	5 U
Carbon tetrachloride	- 10 U	7.2 J	5 U	25 U	50 U	5 U	21	25 U	0.5 J	5 U
Chlorobenzene	13	170	62	17 J	19 J	5 U	16	250	5 U	0.88 J
Chlorodibromomethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
Chloroethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	· 5 U	5 U
Chloroform	11	50	5 U	15 J	50 U	5 U	59	25 U	12	5 U
Chloromethane	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
cis-1,3-Dichloropropene	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
Ethyl benzene	10 U	10 U	5 U	10 J	5.7 J	5 U	1.4 J	25 U	5 U	5 U
Methylene chloride	10 U	28	5 U	25 U	50 U	5 U	0.86 J	25 U	5 U	5 U
Styrene	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
Tetrachloroethene	5.4 J	2.2 J	5 U	25 U	50 U	5 U	6.4	25 U	3.8 J	5 U
Toluene	10 U	6.6 J	0.54 J	4.5 J	50 U	5 U	30	25 U	5 U	5 U
trans-1,3-Dichloropropene	10 U	10 U	5 U	25 U	50 U	5 U	5 U	25 U	5 U	5 U
Trichloroethene	2.9 J	1.8 J	5 U	3.6 J	50 U	5 U	5 U	25 U	7.5	5 U
Vinyl acetate	50 U	50 U	25 U	120 U	250 U	25 U	25 U	120 U	25 U	25 U
Vinyl chloride	1.2 J	2.2 J	5 U	140	5.8 J	5 U	5 U	25 U	5 U	5 U
Xylenes, Total	30 U	2.8 J	15 U	75 U	150 U	15 U	8 J	75 U	15 U	15 U

Notes:

- U = Compound not detected; value represents sample quantitation limit.
- J = Estimated value.

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PW10	PW11	PW12	PW13	PW14	PZ-101	PZ-102	PZ-103	PZ-104	PZ-105
SAMPLE DATE:	06/08/07	06/06/07	06/11/07	06/08/07	06/08/07	06/13/07	06/13/07	06/13/07	06/13/07	06/07/07
QC TYPE:	Sample									
VOLATILE ORGANIC COMPOUNDS										
BY SW-846 Method 8260/5ML (µg/L)	-									
1,1,1-Trichloroethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
1,1,2,2-Tetrachloroethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
1.1.2-Trichloroethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
1,1-Dichloroethane	50 U	12 J	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
1,1-Dichloroethene	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
1,2,4-Trimethylbenzene	50 U	50 U	1000 U	. 10 U	250 U	5 U	5 U	50 U	5 U	20 U
1,2-Dichloroethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
1,2-Dichloroethene (total)	100 U	63 J	2000 U	20 U	500 U	10 U	1 J	100 U	1.2 J	40 U
1,2-Dichloropropane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
1,3,5-Trimethylbenzene	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
2-Butanone	250 U	250 U	5000 U	50 U	1200 U	25 U	25 U	250 U	25 U	100 U
2-Hexanone	250 U	250 U	5000 U	50 U	1200 U	25 U	25 U	250 U	25 U	100 U
4-Methyl-2-pentanone	250 U	250 U	5000 U	50 U	1200 U	25 U	25 U	250 U	25 U	100 U
Acetone	42 J	250 U	5000 U	50 U	1200 U	2.2 J	2.1 J	250 U	2.1 J	7.4 J
Benzene	5.8 J	27 J	1000 U	11	250 U	0.66 J	20	29 J	1.9 J	10 J
Bromodichloromethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Bromoform	5.3 J	50 U	330 J	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Bromomethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Carbon disulfide	50 U	50 U	1000 U	10 U	96 J	5 U	0.42 J	50 U	5 U	20 U
Carbon tetrachioride	140	50 U	1000 U	10 U	390	5 U	5 U	50 U	5 U	20 U
Chlorobenzene	19 J	140	7500	100	250 U	2.9 J	310	510	4.1 J	140
Chlorodibromomethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Chloroethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Chloroform	630	9.9 J	350 J	10 U	3400	5 U	0.61 J	50 U	5 U	20 U
Chloromethane	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
cis-1,3-Dichloropropene	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Ethyl benzene	26 J	5.1 J	850 J	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Methylene chloride	50 U	50 U	510 J	10 U	· 250 U	5 U	5 U	50 U	5 U	20 U
Styrene	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Tetrachloroethene	260	50 U	99 J	10 U	260	5 U	5 U	50 U	5 U	20 U
Toluene	35 J	50 U	12000	1.2 J	92 J	5 U	4.6 J	9.6 J	5 U	2.4 J
trans-1,3-Dichloropropene	50 U	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	5 U	20 U
Trichloroethene	210	50 U	1000 U	10 U	250 U	5 U	5 U	50 U	. 5 U	20 U
Vinyl acetate	250 U	250 U	5000 U	50 U	1200 U	25 U	25 U	250 U	25 U	100 U
Vinyl chloride	9.8 J	47 J	1000 U	1.3 J	250 U	5 U	0.48 J	50 U	5 U	20 U
Xylenes, Total	180	150 U	4600	30 U	750 U	15 U	15 U	150 U	15 U	60 U

Notes

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-106		PZ-107	S-3		S-4
SAMPLE DATE:	06/07/07		06/07/07	06/06/07		06/06/07
QC TYPE:	Sample		Sample	Sample		Duplicate
VOLATILE ORGANIC COMPOUNDS						
BY SW-846 Method 8260/5ML (µg/L)						
1,1,1-Trichloroethane	12000	U	20 U	1.2	J	5 t
1,1,2,2-Tetrachloroethane	12000	U	20 U	5	U	5 (
1,1,2-Trichloroethane	12000	U	20 U	5	U	5 1
1,1-Dichloroethane	12000	U	20 U	7.1		5 t
1,1-Dichloroethene	12000	U	20 U	1.1	J	5 (
1,2,4-Trimethylbenzene	12000	U	20 U	0.61	J	5 (
1,2-Dichloroethane	12000	U	20 U	5	U	5 L
1,2-Dichloroethene (total)	25000	U	28 J	120		10 U
1,2-Dichloropropane	12000	U	20 U		U	5 L
1,3,5-Trimethylbenzene	12000	U	20 U	5	U	5 L
2-Butanone	62000	U	100 U	25	U	25 L
2-Hexanone	62000	U	100 U	25	U	25 L
4-Methyl-2-pentanone	62000	U	100 U	25	U	25 L
Acetone	62000	U	22 J	25	U	25 L
Benzene	12000	U	3.9 J	35		5 L
Bromodichloromethane	12000	U	20 U	5	U	5 L
Bromoform	5000	J	20 U	5		5 (
Bromomethane	12000	U	20 U	5	U	5 (
Carbon disulfide	46000		12 J	2	J	5 L
Carbon tetrachloride	55000		20 U	5	U	5 (
Chlorobenzene	12000	U	5.9 J	110		0.93 J
Chlorodibromomethane	12000	U	20 U	5		5 L
Chloroethane	12000	U	20 U	5	U	5 (
Chloroform	200000		6.4 J	8.1		5 (
Chloromethane	12000	_	20 U	- 5	U	5 L
cis-1,3-Dichloropropene	12000	U	20 U	5	U	5 L
Ethyl benzene	12000	U	20 U	4.6	J	5 L
Methylene chloride	12000	U	20 U		U	5 L
Styrene	12000	U	20 U	5	U	5 L
Tetrachloroethene	1400		20 U	1.2	J	. 5 L
Toluene	12000	U	9.1 J	4.5	\rightarrow	5 (
rans-1,3-Dichloropropene	12000	U	20 U	5	U	5 (
Trichloroethene	12000	U	13 J	2	J	5 L
Vinyl acetate	62000	U	100 U	25	U	25 L
Vinyl chloride	12000	U	8.3 J	70		5 L
Kylenes, Total	38000	U	60 U	3.1	J	15 U

Notes:

- U = Compound not detected; value represents sample quantitation limit.
- J = Estimated value.

TABLE 4 COMPARISON OF FALL 2006 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - FEBRUARY 2007

WELL	SEL	SELECTED CHLOROPYRIDINES				SELECTED VOCs				
	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	NOV-2006 RESULT	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	NOV-2006 RESULT		
ON-SITE V	VELLS/LOCATION	NS								
B-17	. 5	28,000,000	150,000		5	345,000	25,000			
B-7	5	9,100	2,700		5	256	51			
BR-127	4	4,700	3,100	1,478	4	3	2	ND		
BR-3	5	6,500,000	75,000		5	920,000	520,000			
BR-5A	10	1,700	580	227	10	9,400	91	5.31		
BR-6A	10	144,500	30,000	450	10	26,000	5,600	55		
BR-7A	10	510,000	15,000	35,052	10	3,000	290	73.7		
BR-8	5	57,000	900		5	6,900	5.2			
BR-9	10	720	210	119	10	160	19	27.8		
E-1	9	171,680	50,000	16,500	9	5,300	66	28		
E-3	5	600	100		5	12,000	100			
MW-127	4	15,000	4,700	10,210	4	180	45	ND		
PW10	10	244,000	90,000	323,900	10	120,000	22,000	4139		
PW11	10	27,000	1,800	2,741	11	30,000	6,500	735.4		
PW12	10	15,000	3,600	2,938	10	120,000	2,700	1580		
PW13	4	7,500	2,500	786	4	920	270	295.8		
PW14	3	29,000	19,000	26,500	3	160,000	71000	10500		
PZ-105	6	190,000	7,900	3,570	6	9,700	1,000	3.5		
PZ-106	6	124,000	51,000	11,080	6	1,359,000	850,000	383500		
PZ-107	10	11,000	2,900	4,250	10	12,000	270	1.2		
S-3	9	21,000	8,000	6,246	9	2,500	370	37.44		
S-4	9	3,200	210	21	9	870	99	ND		
	WELLS/LOCATIO				•	0.01	- 55	- 112		
BR-103	5	400	0.6		5	3	0.54			
BR-104	5	3,100	1.2		0	9	NA			
BR-105	10	24,000	1,300	731	10	310	3.8	1.21		
BR-105D	10	10,000	1,900	414	10	230	5.4	5.7		
BR-106	10	24,600	6,900	5,544	11	6,300	330	0.62		
BR-108	5	1,700	26	-,	0	ND	NA			
BR-112D	5	310	26		0	4.3	NA			
BR-113D	5	490	40			2.8				
BR-114	5	521	330		5	12	0.73			
BR-116	5	12	0.0			84	0110			
BR-116D	5	710	13			120				
BR-117D	5	80	17			1.9				
BR-118D	5	330	100			6.6				
BR-122D	5	650	140			ND				
BR-123D	5	860	130			4				
BR-126	2	NA	5700	3,390	3	NA	110	225.2		
MW-103	5	82	5.2	0,000	5	ND	150	227.2		
MW-104	5	180	1.6		0	1	NA			

Prepared/Date: NMB 02/23/07 Checked/Date: IEB 02/23/07

 $\label{lem:lem:p:projects} $$ P:\Pr(2006) \otimes \Pr(Tables) $$ Page 1 of 2$$

TABLE 4 COMPARISON OF FALL 2006 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT - FEBRUARY 2007

WELL	SELI	ECTED CHLOR	OPYRIDINE	S		SELECTE	VOCs	
	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	NOV-2006 RESULT	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	NOV-2006 RESULT
MW-106	10	130,000	9,500	8,240	10	453	46	ND
MW-114	5	18	0.4		5	19	16	
MW-126	1	NA	63		1	NA	ND	
MW-16	5	360	180	3	1	NA	8.0	
NESS-E	5	5,000	310		0	700	NA	
NESS-W	5	2,100	130		0	89	NA	
PZ-101	10	27,000	1,100	361	10	6.1	0.77	2.47
PZ-102	10	58,000	3,800	1,116	10	10,000	2.2	4.9
PZ-103	10	73,000	12,000	5,950	11	44,300	7,200	13
PZ-104	10	9,100	4,000	2,280	10	40	1.1	1.4
QD-1	5	ND	2		2	ND	ND	
QO-2	11	380	2.2	4	7	ND	ND	
QO-2S1	11	27	0.05	0	7	ND	ND	
QS-4	14	3,400	250	240	9	ND	ND	

Note:

- Number of samples and mean reflect 5-year sampling period from November 2001 through June 2006.
 Historic maximum based on all available results from March 1990 through May 2006.
- 2) Chloropyridines represented by: 2-Chloropyridine, 2,6-Dichloropyridine, and 3-Chloropyridine, 4-Chloropyridine, p-Fluoroaniline, and Pyridine.
- Selected VOCs represented by Carbon Tetrachloride, Chloroform, Methylene Chloride, Tetrachloroethene, and Trichloroethene.
- 4) Bold and shade November 2006 exceeds 5-year mean.
- 5) NA = Not analyzed or not applicableND = Not detected

BLANK = Not sampled

Prepared/Date: NMB 02/23/07 Checked/Date: IFB 02/23/07

TABLE 5 SPRING 2007 QUARRY SEEP AND OUTFALL WATER SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION	QS-4		QO-2		QO-25	31
DATE	6/12/20	07	6/12/20	07	6/12/20	07
SAMPLE ID	Samp	le	Sampl	е	Samp	le
SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (µg/L)			- 1			
2,6-Dichloropyridine	41	J	4	J	9	U
2-Chloropyridine	200		2	J	9	U
3-Chloropyridine	48	U	10	U	9	U
4-Chloropyridine	48	U	10	U	9	U
p-Fluoroaniline	48	U	10	U	9	U
Pyridine	120	U	24	U	24	U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

Prepared/Date: NMB 07/31/07

TABLE 6 EXTRACTION WELL WEEKLY FLOW MEASUREMENTS - DECEMBER 2006 THROUGH MAY 2007

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

Dec '06 12/06/06	BR-9 [Gal./Wk.]	PW-14 [Gal./Wk.]	PW-13 [Gal./Wk.]
12/13/06			
12/20/06 42,642 24,412 12/27/06 33,888 21,183	0	1,706 11	0 **
Jan '07 01/03/07	11,273	3,326 14	39,508
Jan '07 01/03/07	42,845	2,106 * 16	32,679
01/03/07	46,847	1,798 <u>16</u>	36,187
01/03/07		Total [Gal.] 59	
01/10/07 35,189 47,562 01/17/07 56,136 71,289 01/24/07 58,462 60,736 01/31/07 50,400 * 39,642 Feb '07 02/07/07 50,400 * 34,047 02/14/07 50,400 * 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551			. W.'
01/17/07 56,136 71,289 01/24/07 58,462 60,736 01/31/07 50,400 * 39,642 Feb '07 02/07/07 50,400 * 34,047 02/14/07 50,400 * 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	59,565	3,347 19	50,111
01/24/07 58,462 60,736 01/31/07 50,400 39,642 Feb '07 02/07/07 50,400 48,430 02/21/07 50,400 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 44,792 04/11/07 12,684 44,792 04/11/07 12,684 53,844 04/25/07 6,871 50,592 May '07 05/02/07 4,226 53,844 04/25/07 6,871 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	60,703	1,563 20	44,871
Feb '07 02/07/07 50,400 * 34,047 02/14/07 50,400 * 34,047 02/14/07 50,400 * 48,430 02/21/07 50,400 * 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 42,679 * Apr '07 04/04/07 12,684 ** 42,906 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	81,097	1,615 26	38,902 *
Feb '07 02/07/07 50,400 * 34,047 02/14/07 50,400 * 48,430 02/21/07 50,400 * 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	86,303	1,599 27	55,964
02/07/07 50,400 * 34,047 02/14/07 50,400 * 48,430 02/21/07 50,400 * 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	76,906	888 23	53,430
02/07/07 50,400 * 34,047 02/14/07 50,400 * 48,430 02/21/07 50,400 * 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 42,679 * Apr '07 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 53,844 04/25/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551		Total [Gal.] 1,17	
02/14/07 50,400 * 48,430 02/21/07 50,400 * 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 42,679 * Apr '07 04/11/07 12,684 ** 42,906 * 53,844 04/25/07 6,871 ** 53,844 04/25/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551			
02/21/07 50,400 * 52,459 02/28/07 57,748 50,422 Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 42,679 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	67,467	642 21	51,853
Mar '07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	60,016	562 21	45,394
Mar '07 03/07/07 03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 Apr '07 04/04/07 27,407 39,618 * 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	60,480	1,246 20	33,303
03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	64,269	934 21	40,234 *
03/07/07 39,869 28,917 03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551		Total [Gal.] 85	
03/14/07 45,436 31,698 03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551			
03/14/07	68,868	786 19	40,320 *
03/21/07 28,237 44,792 03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	74,148	1,124 20	40,320 *
03/28/07 51,445 42,679 * Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	88,840	570 21	40,320 *
Apr '07 04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551		411 24	40,320 *
04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551		Total [Gal.] 85	.0,020
04/04/07 27,407 39,618 * 04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551			
04/11/07 12,684 ** 42,906 * 04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	82,214	1,473 21	40,320 *
04/18/07 7,495 ** 53,844 04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551		861 19	40,320 *
04/25/07 6,871 ** 50,592 May '07 05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	77,915	1,151 20	40,320 *
05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	94,242	2,424 21	40,320 *
05/02/07 4,226 ** 58,839 * 05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551		Total [Gal.] 1,06	
05/09/07 4,537 ** 42,611 05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551			
05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	93,267	374 21	40,320 *
05/16/07 32,429 86,079 05/23/07 55,224 66,547 05/30/07 28,706 65,551	90,242	2,327 20	40,320 *
05/23/07 55,224 66,547 05/30/07 28,706 65,551	91,105	34 27	40,320 *
05/30/07 28,706 65,551	138,576	44 32	40,320 *
	146,500	52 31	40,320 *
Total 6 Mo	,,	Total [Gal.] 1,11	.0,020
Removal (Gal.) 941,681 1,205,857	1,919,511	32,964 5,63	1,046,596

Notes:

Prepared/Date: NMB 08/20/07 Checked/Date: JEB 08/20/07

 ⁻ Flow rate is estimated due to a meter failure
 - Not operating (or operating at reduced rate) due to pump failure or clogged line

TABLE 8 2007 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

ARCH ROCHESTI	EK							20	07		-
MONITORING PR	OGRAM					SPF	RING	FA	LL.	TOT	TAL
						Pyridines	VOCs	Pyridines	vocs	Pyridines	VOCs
	Well	zone	area	Frequency/Parameters	Purpose	10		9	Š	0	
OFF-SITE	MW-103 BR-103 MW-104 BR-104 BR-105 BR-105 BR-106 BR-106 BR-112D BR-113D MW-114 BR-116 BR-116D BR-117D BR-118D BR-117D BR-118D BR-122D BR-123D NESS-E NESS-W PZ-101 PZ-102	OB BR OB BR BR BR Geep OB BR BR Geep	KODAK EAST KODAK EAST BUFFALO RD BUFFALO RD AID-HOSP NYSDOT JACKSON JACKSON PFAUDLER PFAUDLER QUARRY QUARRY QUARRY QUARRY NESS NESS NESS MCKee Rd McKee Rd	annual monitoring, VOCs & PYR annual monitoring, PYR annual monitoring, PYR annual monitoring, PYR semi-annual monitoring, PYR semi-annual monitoring, VOCs & PYR annual monitoring, PYR semi-annual monitoring, VOCs & PYR semi-annual monitoring, VOCs & PYR semi-annual monitoring, VOCs & PYR	trend monitoring trend monitoring trend monitoring trend monitoring perimeter sentinel/trend monitoring perimeter sentinel/trend monitoring perimeter sentinel/trend monitoring perimeter sentinel/trend monitoring trend monitoring	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	
	PZ-103	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	1
	PZ-104	BR	ARM	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	
	MW-16	BR	Gen'l Circuits	annual monitoring, PYR	trend monitoring			1		1	
ON-SITE	PZ-107	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	
MONITORING	PZ-106	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	
	PZ-105	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	1
	BR-127	BR BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	1	
	BR-3		ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1 1	1				
	BR-8	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1 1	1			1	
	BR-9	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1 1	1	1	1	2	
	BR-5A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1 1	1	1	1	2	
	BR-6A	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1 1	1	1	1	2	
	BR-7A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1 1	1	1	1	2	
	B-17	ОВ	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1 1	1			1	
	B-7	ОВ	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1 1	1		4	1	
	S-3	ОВ	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1	1 1	1	2	
	S-4	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1	1	1	2	
	E-1	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1.1	1	1	1	2	
	E-3	QB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1 1	1			1	
	MW-127	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	ı
	PW10	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	L
	PW11	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	
	PW12	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	
	PW13	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	
	PW14	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	-1	1	2	
QUARRY/CANAL	QS-4	quarry seep	QUARRY	semi-annual monitoring, VOCs & PYR	trend monitoring	1		1		2	
MONITORING	QO-2	quarry outfall	DITCH	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1		2	
	QO-2S1	canal at outfall	CANAL	semi-annual monitoring, VOCs & PYR	surface water monitoring	1		1		2	
TOTAL SAMP	LEC					50	34	29	25	79	į

Appendix A Groundwater Field Sampling Data Sheets

STL

STL Buffalo
10 Hazelwood Drive, Suite 106
Amherst, NY 14228

FIELD REPORT

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

REMEDIAL INVESTIGATION SAMPLING ARCH CHEMICAL ROCHESTER, NEW YORK

SPRING 2007 Event

Prepared For:

MacTec, Inc. 511 Congress Street Portland, Maine 04101

Attention: Mr. Nelson Breton

Prepared By:

SEVERN TRENT LABORATORIES, INC.

Audubon Business Center 10 Hazelwood Drive Amherst, New York 14228-2298

NY5A5762

Written By:

Reviewed By:

Date:

Roger Senf

1.0 INTRODUCTION

This report describes the sampling of the following points:

- Fourty-eight (48) groundwater samples (BR-126 & MW-126 not located)
- One (1) barge canal sample
- One (1) quarry outfall samples
- One (1) quarry seep/pond sample

These activities were in support of the Phase II Remediation Investigation being conducted at the Arch Chemical facility in Rochester, New York. The samples were collected from June 6- July 6, 2007 by Severn Trent Laboratories, Inc. (STL) personnel.

2.0 METHODOLOGIES

2.1 Water Level Measurements

Static water levels in all groundwater wells were measured from the top of the well-casing/riser with an electronic water level indicator. All well bottoms were sounded with the weighted steel measuring tape. All measurements were recorded to the nearest hundredth of a foot (0.01 feet). The length of the measuring device which contacted the water was cleaned between wells with a deionized water rinse and paper towel wipe. These data are presented on Sampling Summary Table and Field Observation forms.

2.2 Well Purging

Monitoring wells were evacuated prior to sampling employing one of the following methods:

- Purging three (3) times the standing water volume using precleaned or dedicated 1.25" X
 stainless steel bailers, 2" X 5' polyvinyl chloride bailers, peristaltic pump or QED Low-Flow Bladder pumps.
- Evacuated with the low flow/low stress puring technique using either QED Low-Flow Bladder pumps or a variable rate peristaltic pump.

Wells that were purged of three (3) standing volumes were mainly wells located on or very near the Eric Canal and historically purged with this method prior to sampling. The remaining wells were evacuated with a low flow/low stress purging technique. This technique involves the use of a variable flow rate bladder or peristaltic pump. The pumps were employed to purge the monitoring wells at a flow rate such that drawdown of the water column from static conditions is minimal. Field measurements of pH, specific

conductance, temperature, ORP, dissolved oxygen and turbidity are monitored every 3-5 minutes until stabilization of parameters is realized. Once stabilization has occurred, sampling can be conducted. All purged water was collected into 55-gallon drums for disposal at the on-site wastewater treatment facility. Data pertaining to each evacuation are presented on the Sampling Summary Table and field Observation Forms.

2.3 Surface Water Samples

Surface water samples were collected from one (1) location on the Erie Barge Canal, one (1) outfall sample and one (1) seep location. Sample locations were noted on the Field Forms.

3.0 SAMPLING

3.1 Monitoring Wells

All groundwater wells were sampled using precleaned or dedicated 1.25" X 1.25" X 5' stainless steel bailers, perisaltic pumps or bladder (SamplePro) pumps when low flow purging techniques were used. Each bailer was constructed with teflon, bottom-filling check valve and was assembled without glues or welds. New ¼" poly rope was attached to each bailer. The bailer was slowly lowered into the water column, minimizing agitation and devolatilization. Low density polyethylene (LDPE) tubing was used with both the bladder (QED) and the peristaltic pumps. The bladder pumps were decontaminated between sample locations in accordance with the work plan. Personnel exercised care in all aspects of the sampling to ensure the collection of a representative sample An additional sample container was collected from each well in order to facilitate the measurement of field analytical parameters. Data pertaining to sampling are presented on the Sampling Summary Table and the Field Observation Forms.

3.2 Canal Sampling

When possible, samples were collected directly from the canal into appropriate sample containers. Otherwise, samples were collected with the use of a unique, laboratory-cleaned stainless steel bailer. The bailers were immersed just below the surface and removed. Sample was poured directly into the appropriate container. An additional container was collected to facilitate the measurement of field parameters. Additional data pertaining to these samples is presented in the Sampling Summary Table and Field Observation Forms.

3.3 Seep Sampling

Groundwater samples were collected from seeps at the quarry (QS4) located on Buffalo Road. The samples were collected with the use of a laboratory cleaned stainless steel bucket

and was then poured directly into the appropriate containers. An additional container was collected to facilitate the measurement of field parameters. Data pertaining to this sampling is presented in the Sampling Summary Table and Field Observation Forms.

4.0 SAMPLE CONTAINERS

Monitoring wells and surface water samples requiring analysis for volatile organics were collected into 40 ml glass vials with teflon septa. Samples for semi-volatile and Pyridine analysis were collected into one (1) liter amber glass bottles with teflon-lined caps. All bottles were purchased new and cleaned (Protocol A, 300 series) from Environmental Supply Services. Each container was labeled with the following information:

- Sample Identification (Well/Point I.D.)
- Date
- Project Number
- Sampler's Initials

5.0 FIELD MEASUREMENTS

On-site field measurements were made of each sample's pH, specific conductance and temperature. All measurements were made in accordance with protocols outlined in Methods for Chemical Analysis of Water and Wastes (EPA – 600/4-79-9020). These data were presented on the Sampling Summary Table and Field Observation Forms.

6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

6.1 Trip Blanks

Trip blanks were collected with each sample shipment requiring volatile organic analysis. Each trip blank consisted of two 40 ml glass vials with teflon septa which were filled with deionized water at the STL laboratory. These blanks were transported to the site, stored with field collected samples and submitted to the STL facility for analysis.

6.2 Equipment Rinse Blank

Equipment rinse blanks were collected as required by the work plan.

7.0 CHAIN OF CUSTODY

Chain of custody was initiated at the time of sample collection and maintained through delivery to the STL facility in Amherst, New York. Copies of these documents are included in the analytical report package.

Date: 08/21/200 Time: 17:10:56 Sampling Sum Table

ARCH CHEMICAL

JUNE 2007

RI SAMPLING/ROCHESTER NY FACILITY

age:

Rept: ANO821

Date 1	ime	Level	Elevation									
		(ft)*	(ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond.	Temp (°C)	Turb. (NTU)	Other Field Measure	ments
		5.72	N/A	N/A	06/11/2007	1130	8.22	13200	15.6	31.60	EH(mv)= -151	DO(ppm)= 0.90
06/11/2007	1211	12.77	N/A	N/A	06/11/2007	1240	7.25	1686	17.5	19.70	EH(mv)= -84	DO(ppm)= 0.92
		5.27	N/A	N/A	06/11/2007	1345	7.00	783	18.7	1.47	EH(mv)= -11	DO(ppm)= 0.70
		9.14	N/A	N/A	06/12/2007	1220	7.28	766	15.7	30.20	EH(mv)= -4	00(ppm)= 0.63
		23.14	N/A	N/A	06/13/2007	1403	7.31	1774	13.1	3.23	EH(mv)= -183	DO(ppm)= 0.46
		25.10	N/A	N/A	06/13/2007	1350	7.47	11760	15.7	0.84	EH(mv)= -293	DO(ppm)= 0.33
		23.37 D	N/A	N/A	06/13/2007	1232	7.00	2887	12.2	45.60	EH(mv)= -96	00(ppm)= 1.04
		28.40 RANGE	N/A	29.75	06/12/2007	1305	7.10	1075	17.1	217.00	EH(mv)= 16	
		36.46 D	N/A	72.26	06/14/2007	1203	7.32	2054	13.4	26.90	EH(mv)= -77	
		31.47 D GREY	N/A	79.25	06/14/2007	1227	7.10	3065	13.1	40.50	EH(mv)= -185	
		13.72	N/A	N/A	06/14/2007	1030	7.24	1778	14.8	0.19	EH(mv)= -155	DO(ppm)= 0.23
		27.85	N/A	N/A	06/12/2007	1455	7.14	2559	18.5	7.66	EH(mv)= -143	00(ppm)= 0.56
		35.89	N/A	N/A	06/12/2007	1430	9.60	1963	18.4	20.40	EH(mv)= -282	DO(ppm)= 0.33
		50.44 D	N/A	N/A	06/12/2007	1157	7.82	511	11.3	49.60	EH(mv)= -39	DO(ppm)= 0.34
		49.30 D	N/A	N/A	06/12/2007	1053	7.31	1307	12.4	38.20	EH(mv)= -266	DO(ppm)= 0.16
		45.18	N/A	N/A	06/12/2007	1255	7.07	2213	13.4	N/A	EH(mv)= -291	DO(ppm)= 0.33
	Comments: SI 06/11/2007 Comments: CI 06/11/2007 Comments: CI 06/13/2007 Comments: CI 06/13/2007 Comments: CI 06/13/2007 Comments: CI 06/13/2007 Comments: SI 06/12/2007 Comments: SI 06/14/2007 Comments: SI 06/14/2007 Comments: CI 06/12/2007 Comments: CI	26/11/2007 1211 Comments: CLEAR 26/11/2007 1310 Comments: CLEAR 26/12/2007 1143 Comments: CLEAR 26/13/2007 1324 Comments: CLEAR 26/13/2007 1322 Comments: CLEAR 26/13/2007 1322 Comments: CLEAR 26/13/2007 1320 Comments: SL.TURBI 26/12/2007 1037 Comments: TURBID COMMENTS: SL.TURBI 26/14/2007 1035 Comments: SL.TURBI 26/14/2007 1113 Comments: SL.TURBI 26/14/2007 1422 Comments: CLEAR 26/12/2007 1422 Comments: CLEAR 26/12/2007 1404 COMMENTS: CLEAR 26/12/2007 1128 COMMENTS: SL.TURBI 26/12/2007 1128 COMMENTS: SL.TURBI 26/12/2007 1128 COMMENTS: SL.TURBI 26/12/2007 1128 COMMENTS: SL.TURBI 26/12/2007 1017	Comments: SL.TURBID AMBER 26/11/2007 1211 12.77 Comments: CLEAR 26/11/2007 1310 5.27 Comments: CLEAR 26/12/2007 1143 9.14 Comments: CLEAR 26/13/2007 1324 23.14 Comments: CLEAR 26/13/2007 1322 25.10 Comments: CLEAR 26/13/2007 1322 25.10 Comments: CLEAR 26/13/2007 1322 25.10 Comments: SL.TURBID 26/12/2007 1037 28.40 Comments: TURBID ORANGE 26/14/2007 1035 36.46 Comments: SL.TURBID 26/14/2007 1113 31.47 Comments: SL.TURBID GREY 26/14/2007 1422 27.85 Comments: CLEAR 26/12/2007 1404 35.89 Comments: CLEAR 26/12/2007 1128 50.44 Comments: SL.TURBID 26/12/2007 1017 49.30 Comments: SL.TURBID 26/12/2007 1229 45.18	Comments: SL.TURBID AMBER 26/11/2007 1211 12.77 N/A Comments: CLEAR 26/11/2007 1310 5.27 N/A Comments: CLEAR 26/12/2007 1143 9.14 N/A Comments: CLEAR 26/13/2007 1324 23.14 N/A Comments: CLEAR 26/13/2007 1322 25.10 N/A Comments: CLEAR 26/13/2007 1320 23.37 N/A Comments: CLEAR 26/13/2007 1200 23.37 N/A Comments: SL.TURBID 26/12/2007 1037 28.40 N/A Comments: TURBID ORANGE 26/14/2007 1035 36.46 N/A Comments: SL.TURBID 26/14/2007 1113 31.47 N/A Comments: SL.TURBID GREY 26/14/2007 1422 27.85 N/A Comments: CLEAR 26/12/2007 1404 35.89 N/A Comments: CLEAR 26/12/2007 1128 50.44 N/A Comments: SL.TURBID 26/12/2007 1017 49.30 N/A Comments: SL.TURBID 26/12/2007 1229 45.18 N/A	Comments: SL.TURBID AMBER 26/11/2007 1211 12.77 N/A N/A Comments: CLEAR 26/11/2007 1310 5.27 N/A N/A Comments: CLEAR 26/12/2007 1143 9.14 N/A N/A Comments: CLEAR 26/13/2007 1324 23.14 N/A N/A Comments: CLEAR 26/13/2007 1322 25.10 N/A N/A Comments: CLEAR 26/13/2007 1320 23.37 N/A N/A Comments: SL.TURBID 26/12/2007 1037 28.40 N/A 29.75 Comments: TURBID ORANGE 26/14/2007 1035 36.46 N/A 72.26 Comments: SL.TURBID 26/14/2007 1113 31.47 N/A 79.25 Comments: SL.TURBID GREY 26/14/2007 1422 27.85 N/A N/A Comments: CLEAR 26/12/2007 1404 35.89 N/A N/A Comments: CLEAR 26/12/2007 128 50.44 N/A N/A Comments: SL.TURBID 26/12/2007 1017 49.30 N/A N/A Comments: SL.TURBID 26/12/2007 1229 45.18 N/A N/A	Comments: SL.TURBID AMBER 06/11/2007 1211 12.77 N/A N/A 06/11/2007 Comments: CLEAR 06/11/2007 1310 5.27 N/A N/A 06/11/2007 Comments: CLEAR 06/12/2007 1143 9.14 N/A N/A 06/12/2007 Comments: CLEAR 06/13/2007 1324 23.14 N/A N/A 06/13/2007 Comments: CLEAR 06/13/2007 1322 25.10 N/A N/A 06/13/2007 Comments: CLEAR 06/13/2007 1200 23.37 N/A N/A 06/13/2007 Comments: SL.TURBID 06/12/2007 1037 28.40 N/A 29.75 06/12/2007 Comments: TURBID ORANGE 06/14/2007 1035 36.46 N/A 72.26 06/14/2007 Comments: SL.TURBID 06/14/2007 1113 31.47 N/A 79.25 06/14/2007 Comments: SL.TURBID GREY 06/14/2007 1422 27.85 N/A N/A 06/12/2007 Comments: CLEAR 06/12/2007 1404 35.89 N/A N/A 06/12/2007 Comments: SL.TURBID 06/12/2007 1017 49.30 N/A N/A 06/12/2007 Comments: SL.TURBID 06/12/2007 1017 49.30 N/A N/A 06/12/2007 Comments: SL.TURBID 06/12/2007 1229 45.18 N/A N/A 06/12/2007	Comments: SL.TURBID AMBER 06/11/2007 1211 12.77 N/A N/A 06/11/2007 1240 Comments: CLEAR 06/11/2007 1310 5.27 N/A N/A 06/11/2007 1345 Comments: CLEAR 06/12/2007 1143 9.14 N/A N/A 06/12/2007 1220 Comments: CLEAR 06/13/2007 1324 23.14 N/A N/A 06/13/2007 1403 Comments: CLEAR 06/13/2007 1322 25.10 N/A N/A 06/13/2007 1350 Comments: CLEAR 06/13/2007 1200 23.37 N/A N/A 06/13/2007 1232 Comments: SL.TURBID 06/12/2007 1037 28.40 N/A 29.75 06/12/2007 1305 Comments: TURBID ORANGE 16/14/2007 1035 36.46 N/A 72.26 06/14/2007 1203 Comments: SL.TURBID 06/14/2007 1113 31.47 N/A 79.25 06/14/2007 1227 Comments: CLEAR 6/12/2007 1422 27.85 N/A N/A 06/12/2007 1455 Comments: CLEAR 6/12/2007 1404 35.89 N/A N/A 06/12/2007 1430 Comments: SL.TURBID 6/12/2007 1128 50.44 N/A N/A 06/12/2007 157 Comments: SL.TURBID 6/12/2007 1128 50.44 N/A N/A 06/12/2007 1530 Comments: SL.TURBID 6/12/2007 1017 49.30 N/A N/A 06/12/2007 1053 Comments: SL.TURBID 6/12/2007 1229 45.18 N/A N/A 06/12/2007 1255	Comments: SL.TURBID AMBER 06/11/2007 1211 12.77 N/A N/A 06/11/2007 1240 7.25 Comments: CLEAR 06/11/2007 1310 5.27 N/A N/A 06/11/2007 1345 7.00 Comments: CLEAR 06/12/2007 1143 9.14 N/A N/A 06/12/2007 1220 7.28 Comments: CLEAR 06/13/2007 1324 23.14 N/A N/A 06/13/2007 1403 7.31 Comments: CLEAR 06/13/2007 1322 25.10 N/A N/A 06/13/2007 1350 7.47 Comments: CLEAR 06/13/2007 1200 23.37 N/A N/A 06/13/2007 1232 7.00 Comments: SL.TURBID 06/12/2007 1037 28.40 N/A 29.75 06/12/2007 1305 7.10 Comments: TURBID ORANGE 06/14/2007 1035 36.46 N/A 72.26 06/14/2007 1203 7.32 Comments: SL.TURBID 06/14/2007 1113 31.47 N/A 79.25 06/14/2007 1203 7.32 Comments: SL.TURBID GREY 06/14/2007 1404 35.89 N/A N/A 06/12/2007 1455 7.14 Comments: CLEAR 06/12/2007 1404 35.89 N/A N/A 06/12/2007 1430 9.60 Comments: CLEAR 06/12/2007 1404 35.89 N/A N/A 06/12/2007 1455 7.14 Comments: CLEAR 06/12/2007 1404 35.89 N/A N/A 06/12/2007 1503 7.31 Comments: CLEAR 06/12/2007 1404 35.89 N/A N/A 06/12/2007 1503 7.31 Comments: CLEAR 06/12/2007 1404 35.89 N/A N/A 06/12/2007 1503 7.31 Comments: CLEAR 06/12/2007 1404 35.89 N/A N/A 06/12/2007 1503 7.31 Comments: CLEAR 06/12/2007 1017 49.30 N/A N/A 06/12/2007 1053 7.31 Comments: SL.TURBID 06/12/2007 1229 45.18 N/A N/A 06/12/2007 1255 7.07	Comments: SL.TURBID AMBER 106/11/2007 1211 12.77 N/A N/A 06/11/2007 1240 7.25 1686 106/11/2007 1310 5.27 N/A N/A 06/11/2007 1345 7.00 783 106/11/2007 1310 5.27 N/A N/A 06/11/2007 1345 7.00 783 106/12/2007 1143 9.14 N/A N/A 06/12/2007 1220 7.28 766 106/13/2007 1324 23.14 N/A N/A 06/13/2007 1403 7.31 1774 106/13/2007 1322 25.10 N/A N/A 06/13/2007 1350 7.47 11760 106/13/2007 1302 25.10 N/A N/A 06/13/2007 1350 7.47 11760 106/13/2007 1200 23.37 N/A N/A 06/13/2007 1232 7.00 2887 106/13/2007 1037 28.40 N/A 29.75 06/12/2007 1305 7.10 1075 106/14/2007 1035 36.46 N/A 72.26 06/14/2007 1203 7.32 2054 106/14/2007 1313 31.47 N/A 79.25 06/14/2007 1203 7.32 2054 106/14/2007 1313 31.47 N/A 79.25 06/14/2007 1203 7.32 2054 106/14/2007 1203 7.32 N/A N/A 06/12/2007 1305 7.10 3065 106/14/2007 1203 7.32 N/A N/A 06/12/2007 1403 7.24 1778 1078 1079 1079 1079 1070	Comments: SL.TURBID AMBER 106/11/2007 1211 12.77 N/A N/A 06/11/2007 1240 7.25 1686 17.5 Comments: CLEAR 106/11/2007 1310 5.27 N/A N/A 06/11/2007 1345 7.00 783 18.7 Comments: CLEAR 106/12/2007 1143 9.14 N/A N/A 06/12/2007 1220 7.28 766 15.7 Comments: CLEAR 106/13/2007 1324 23.14 N/A N/A 06/13/2007 1403 7.31 1774 13.1 Comments: CLEAR 106/13/2007 1322 25.10 N/A N/A 06/13/2007 1350 7.47 11760 15.7 Comments: CLEAR 106/13/2007 1200 23.37 N/A N/A 06/13/2007 1232 7.00 2887 12.2 Comments: SL.TURBID 106/12/2007 1037 28.40 N/A 29.75 06/12/2007 1305 7.10 1075 17.1 Comments: SL.TURBID ORANGE 106/14/2007 1035 36.46 N/A 72.26 06/14/2007 1203 7.32 2054 13.4 Comments: SL.TURBID GREY 106/14/2007 1113 31.47 N/A 79.25 06/14/2007 1207 7.10 3065 13.1 Comments: SL.TURBID GREY 106/14/2007 122 27.85 N/A N/A 06/12/2007 1455 7.14 2559 18.5 Comments: CLEAR 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 9.60 1963 18.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 COMMENTS: SL.TURBID 106/12/2007 1404 35.89 N/A N/A 06/12/2007 1550 7.07 2213 13.4	Comments: SL.TURBID AMBER 16/11/2007 1211 12.77 N/A N/A 06/11/2007 1240 7.25 1686 17.5 19.70 Comments: CLEAR 16/11/2007 1310 5.27 N/A N/A 06/11/2007 1345 7.00 783 18.7 1.47 Comments: CLEAR 16/12/2007 1143 9.14 N/A N/A 06/12/2007 1220 7.28 766 15.7 30.20 Comments: CLEAR 16/12/2007 1324 23.14 N/A N/A 06/13/2007 1403 7.31 1774 13.1 3.23 Comments: CLEAR 16/13/2007 1322 25.10 N/A N/A 06/13/2007 1350 7.47 11760 15.7 0.84 Comments: CLEAR 16/13/2007 1200 23.37 N/A N/A 06/13/2007 1232 7.00 2887 12.2 45.60 Comments: SL.TURBID 16/12/2007 1037 28.40 N/A 29.75 06/12/2007 1305 7.10 1075 17.1 217.00 Comments: TURBID ORANGE 16/14/2007 1305 36.46 N/A 72.26 06/14/2007 1203 7.32 2054 13.4 26.90 Comments: SL.TURBID GRAVE 16/14/2007 1133 31.47 N/A 79.25 06/14/2007 1207 7.10 3065 13.1 40.50 Comments: SL.TURBID GREY 16/14/2007 1402 27.85 N/A N/A 06/12/2007 1455 7.14 2559 18.5 7.66 Comments: CLEAR 16/12/2007 1404 35.89 N/A N/A 06/12/2007 1450 7.31 1307 12.4 38.20 Comments: SL.TURBID 16/12/2007 1404 35.89 N/A N/A 06/12/2007 1503 7.31 1307 12.4 38.20 Comments: SL.TURBID 16/12/2007 1428 50.44 N/A N/A 06/12/2007 1503 7.31 1307 12.4 38.20 Comments: SL.TURBID 16/12/2007 1404 35.89 N/A N/A 06/12/2007 1503 7.31 1307 12.4 38.20 Comments: SL.TURBID 16/12/2007 1208 50.44 N/A N/A 06/12/2007 1503 7.31 1307 12.4 38.20 Comments: SL.TURBID 16/12/2007 1209 45.18 N/A N/A 06/12/2007 1255 7.07 2213 13.4 N/A	Comments: SL.TURBID AMBER Comments: SL.TURBID AMBER Comments: SLEAR Comments: CLEAR Comments

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Date: 08/21/2007 Time: 17:10:56

Sampling Summary Table ARCH CHEMICAL JUNE 2007 RI SAMPLING/ROCHESTER NY FACILITY

Page:

Rept: ANO821

Sample	-Water Level-	Water	Water	Bottom	Field Measur	ements	pH	Spec.				
Point	Date Time	Level (ft)*	Elevation (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond. (umhos)	(°C)	Turb. (NTU)	Other Field Measure	ments
BR-123D	06/12/2007 1317	45.58	N/A	N/A	06/12/2007	1347	7.96	2023	12.5	19.16	EH(mv)= -276	DO(ppm)= 0.17
	Comments: BLACK	TINT										
BR-127	06/07/2007 1202	2.97	N/A	N/A	06/07/2007	1225	7.46	1634	17.3	5.99	EH(mv) = -237	DO(ppm) = 1.00
	Comments: CLEAR	BLACK SPE	CKS									
BR-3	06/11/2007 1017	6.75	N/A	N/A	06/11/2007	1045	7.55	13590	14.5	10.61	EH(mv) = -207	DO(ppm) = 0.90
	Comments: CLEAR	YELLOW TI	NT									
BR-5A	06/08/2007 1050	10.17	N/A	N/A	06/08/2007	1053	7.58	1684	14.7	14.60	EH(mv)= -105	
	Comments: CLEAR	YELLOW TI	NT				AT .					
BR-6A	06/06/2007 1136	8.81	N/A	N/A	06/06/2007	1200	7.74	1063	14.7	4.48	EH(mv)= 7	DO(ppm)= 1.22
	Comments: CLEAR											
BR-7A	06/08/2007 1110	24.69	N/A	N/A	06/08/2007	1113	7.61	2581	14.2	14.80	EH(mv)= -167	
	Comments: CLEAR	8.68 G.P.	M.									
BR-8	06/06/2007 1002	8.30	N/A	N/A	06/06/2007	1025	7.23	4259	13.6	70.10	EH(mv)= -97	DO(ppm) = 0.99
	Comments: YELLOW	BLACK SP	ECKS									
BR-9	06/08/2007 1100	24.88	N/A	N/A	06/08/2007	1103	7.99	2179	15.6	1.87	EH(mv)= -111	
	Comments: CLEAR	13.24 G.P	.M.									
E-1	06/06/2007 1330	0.66	N/A	N/A	06/06/2007	1415	9.91	15640	16.4	54.00	EH(mv)= -280	DO(ppm) = 0.88
	Comments: SL.TUR	BID									The second second	
E-3	06/06/2007 1117	5.53	N/A	N/A.	06/07/2007	1015	7.23	1474	13.6	21.20	EH(mv)= 18	DO(ppm) = 1.36
	Comments: CLEAR						*					
MW-103	06/11/2007 1247	1.38	N/A	N/A	06/11/2007	1315	7.15	680	21.4	0.90	EH(mv)= -99	DO(ppm) = 0.93
	Comments: CLEAR									A 947		
MW-104	06/12/2007 1100	7.43	N/A	N/A	06/12/2007	1135	7.33	875	16.4	283.00	EH(mv) = -85	DO(ppm) = 0.87
	Comments: TURBID											
MW-106	06/13/2007 1158	10.06	N/A	N/A	06/13/2007	1230	7.11	2503	13.1	18.35	EH(mv)= -108	DO(ppm) = 0.57
	Comments: CLEAR											•
MW-114	06/14/2007 928	10.72	N/A	N/A	06/14/2007	953	7.04	2058	15.3	5.94	EH(mv)= 20	DO(ppm)= 1.00
	Comments: CLEAR							*				
MW-127	06/07/2007 1228	3.71	N/A	N/A	06/07/2007	1258	7.39	4365	17.6	3.17	EH(mv)= -190	DO(ppm)= 1.02
	Comments: CLEAR											
NESS-E	06/13/2007 1104	9.18	N/A	N/A	06/13/2007	1130	6.53	3119	17.2	22.70	EH(mv)= -2	DO(ppm) = 0.34
	Comments: CLEAR											

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Date: 08/21/200 Time: 17:10:56 Sampling Sure Table

ARCH CHEMICAL

JUNE 2007

RI SAMPLING/ROCHESTER NY FACILITY

Page:

Rept: ANO821

	Sample	—Water Level—	Water	Water	Bot'tom	Field Measur	rements	рН	Spec.				
•	Point	Date Time	Level	Elevation	Of Well	Date	Time	(STD)	Cond.	Тетр	Turb.		
			(ft)*	(ft)**	(ft)*			(Units)	(umhos)	(°C)	(NTU)	Other Field Measurer	ments
NESS-	W	06/13/2007 1020	31.17	N/A	N/A	06/13/2007	1045	6.99	2266	14.5	36.20	EH(mv)= -172	DO(ppm)= 0.27
		Comments: SL.TUR	BID										
PW-10		06/08/2007 1012	6.77	N/A	N/A	06/08/2007	1030	7.15	10030	15.6	26.70	EH(mv)= -116	DO(ppm) = 0.95
		Comments: YELLOW	TINT										
PW-11		06/06/2007 1040	22.16	N/A	N/A	06/06/2007	1048	6.97	3691	16.4	108.90	EH(mv)= -68	
		Comments: SL.TURI	BID GREY										
PW-12	(BR-101)	06/11/2007 1142	5.31	N/A	N/A	06/11/2007	1210	7.20	2227	15.4	0.98	EH(mv)= -132	DO(ppm) = 0.90
		Comments: CLEAR											
PW-13		06/08/2007 1120	24.20	N/A	N/A	06/08/2007	1125	7.17	2891	14.1	4.12	EH(mv) = -113	
		Comments: CLEAR											
PW-14		06/08/2007 1020	4.82	N/A	N/A	06/08/2007	1023	8.08	6667	19.2	2.58	EH(mv)= -267	
		Comments: CLEAR	YELLOW TI	NT									
PW-15		07/06/2007 1320	6.33	N/A	N/A	07/06/2007	1355	10.27	12760	16.9	4.15	EH(mv)= -280	
		Comments: CLEAR /	AMBER TIN	T									
PZ-10	1	06/13/2007 1231	12.98	N/A	N/A	06/13/2007	1300	7.00	3717	16.5	2.25	EH(mv)= 17	DO(ppm) = 1.05
		Comments: CLEAR											•
PZ-10	2	06/13/2007 1313	20.26	N/A	N/A	06/13/2007	1340	6.77	4342	15.1	1.09	EH(mv)= 8	DO(ppm) = 0.93
		Comments: CLEAR											
PZ-10	3	06/13/2007 1358	12.08	N/A	N/A	06/13/2007	1425	6.88	5175	14.5	0.83	EH(mv)= 90	DO(ppm) = 0.97
		Comments: CLEAR											
PZ-104	4	06/13/2007 1151	12.82	N/A	N/A	06/13/2007	1220	7.27	1534	16.3	1.18	EH(mv)= -115	DO(ppm) = 0.90.
		Comments: CLEAR											
PZ-105	5	06/07/2007 1040	6.79	N/A	N/A	06/07/2007	1103	7.05	3723	15.2	502.00	EH(mv)= -124	DO(ppm) = 0.99
		Comments: TURBID											
PZ-106	6	06/07/2007 1315	9.50	N/A	N/A	06/07/2007	1338	6.65	5187	14.3	14.60	EH(mv) = -167	DO(ppm) = 0.98
		Comments: CLEAR E	BLACK SPE	CKS									
PZ-107	7	06/07/2007 1122	5.47	N/A	N/A	06/07/2007	1150	7.89	4582	12.8	1.84	EH(mv)= -187	DO(ppm)= 0.98
		Comments: CLEAR A	MBER										
90-2		06/12/2007 1350	0.00	N/A	N/A	06/12/2007	1356	7.61	2027	24.3	7.28	EH(mv)= 110	
		Comments: CLEAR			-1								
Q0-25°	1	06/12/2007 1405	0.00	N/A	N/A	06/12/2007	1411	7.87	577	25.6	19.70	EH(mv)= 201	
		Comments: CLEAR											

SG - Specific Gravity

^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Date: 08/21/2007 Time: 17:10:56

Sampling Summary Table ARCH CHEMICAL JUNE 2007

Page: 4 Rept: ANO821

RI SAMPLING/ROCHESTER NY FACILITY

Sample	-Water Level-	Water	Water	Bottom	Field Measur	ements	рН	Spec.				
Point	Date Time	Level (ft)*	Elevation (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond. (umhos)	Temp	Turb. (NTU)	Other Field Measuremen	nts
QS-4	06/12/2007 950	0.00	N/A	N/A	06/12/2007	957	7.56	1602	13.9	2.73	EH(mv)= 20	
S-3	Comments: CLEAR 06/06/2007 1212	0.87	N/A	N/A	06/06/2007	1235	7.12	2510	14.1	7.55	EH(mv)= -91	DO(ppm)= 0.97
S-4	06/06/2007 1247	0.72	N/A	N/A	06/06/2007	1310	7.23	3572	13.2	11.50	EH(mv)= -122	DO(ppm)= 1.06

SG - Specific Gravity

EH - Redox

** Elevation Above Sea Level

* From Top of Riser

DO - Dissolved Oxygen

Facility:	AR	CH	CHEMICAL		Sample	Point ID:	5-17		
Field Person			PL, TP. 55		Sample	Matrix:	5W		
	RTING \		NSPECTION:	12	Cond o	f seal: [] Good (() Cracked () Buried		%
Prot. Casi	ng/riser	height:			Cond o		ser: () Unic () Loose () Damaged	Flush M	od ount
If prot.cas	ing; de	oth to ris	ser below:						
Gas Meter	(Calibr	ation/ R	eading):	% Gas:		% LEL:			
Vol. Organ	nic Mete	r (Calib	ration/Reading):	Volatile	es (ppm)/			
Surf. Mea	ne Initia s. Pt: ()	rot. C	-11-01 11	(Riser	Riser I	Time Completed Diameter, Inches		6-11-071 2.0	
Well Tota					Metho	d of Well Purge:	. 1	Per 574(1)	· Pros
One (1) R	iser Vo	ume, G	al:		Dedica	ated: (DIN		
Total Vol	ume Pu	rged, Ga	d:		Purge	d To Dryness	YIN	SC TWAI	7
Purge Ob	servati	ons:	Low Flor	,		Ander	Finish	AMBIR	
PURGE	DATA.	(if appl	icable)						
	Purg		Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1110	100	5.75		15.7	7.50	13,370	201	-130	1.16
1115		1		15,9	7,97	13,220	118	-139	1.02
1120		H		15.6	8.13	13,200	70.9	-142	6.97
1125	1	1		15.6	6.20	13,250	46.5	-145	0.93
								,	
III	1								

MPLIN e/Time	G INFORMAT		(30		B-1		
hod of	Sampling:	Perist	Here I	2	vel @ Sampling		5.75
MPLING	ed/ layered:	()Yes	KNo	If YES:	_ Dedicated:		
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other	
130	15.6	8.22	13,200	31.6	151	0.90	
RUME	NT CHECK DA	ATA:					
idity Ser	rial #: 392 394/-	NTU std. =	ити	20.0 N	Πυ std. = <u>20∞υ</u> Ι	VTU	
	-114	4.0 std.= 4.00	KR1 - 7			0 std. =	
uctivity	Serial #: 37.5	614162	1000 um	hos/cm=_		umhos/cm=	
	NFORMATION						
	litions @ time o	Trans.	Sun	74-0			
	cteristics:	•	St Turn	Anse-			Big and a second
MENTS	AND OBSERV	VATIONS:				•	
				The second second			
		•					
that sai	mpling procedu	Ires were in acc	cordance with a	all applicab	le EPA, State ar	nd Site-Specific	
	111 107		Lixe		Company:		
		PA	GE 2 OF 2			2, (

Facility:	AI	RCH.	CHEMICA		Sampl	e Point ID:	B-7		
Field Per	sonnel:		PL, TP. J.	T .	Sampl	e Matrix:	6w		
MONITO	RTING	WELL	NSPECTION						
Date/Tim	6-	11-07	1 1	2/1	Cond	of seal: (¶ Good () Non	i () Cracked e () Buried		%
Prot Cas	sing/rise	er height			Cond	of prot. Casing/	() Loose	() Flush I	
If prot.ca	sing; de	epth to ri	ser below:				() Damage	u	
Gas Mete	er (Calib	ration/ R	leading):	% Gas:		% LEL	1		0.0
Vol. Orga	anic Mel	ter (Calib	ration/Reading	g):	Volati	les (ppm;	1		
PURGE	INFOR	MATION	ł:					,	
Date / Ti	me Initia	ated:	6-11-07 12	15	Date /	Time Complete	d: <	-11-07	1235
Surf. Me	as. Pt: () Prot C	asing	(Q Riser	Riser	Diameter, Inche	s:	20	
nitial Wa	ater Lev	el, Feet:	12.77)	Eleva	tion. G/W MSL:			:
Well Tot	al Depth	, Feet:			Metho	d of Well Purge		Perist	use for
One (1) I	Riser Vo	lume, G	al;		Dedic	ated:	91 N		
Total Vo	lume Pu	ırged, Ga	ıl:		Purge	d To Dryness	Y		
Purge O	bservati	ions:	Law Flow		Start	cler	Finish	cles	
PURGE						8			
Time		e Rate m/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	· Turb. (NTU)	Other	Other 00
1220	100	14.10		. 18.1	7.39	1721	25.8	-98	1.62
1225		14.16		17.6	7.31	16 98	24.3	-90	0.98
1230		14-21		17.5	7.27	1680	21.0	-89	0.96
1235		14.29		17.6	7:25	1688	20.2	e-85	0.94

MPLING	INFORMAT	TION:		POINT I	B-7		
₃∏ime	6-11-0		1240	Water Le	vel @ Sampling	, Feet:	14.32
hod of Sa	ampling:	- fer.	SIALTH font		Dedicated:	ØIN -	17.52
	l/ layered:	()Yes	60) No	1	() light	() heavy	
APLING							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)	
1240	17.5	7,25	1686	19.70	-84	097	
	•						
DIINE	T CUTOK D						
dity Seri	394/	NTU std. =			TU std. =	ити	
erial #: _	KQ1-	4.0 std.=	KR1 - 7.0	std.=	10	.0 std. =	_
uctivity S		No.	tr			umhos/cm=_	
ERAL IN	FORMATIO	N:					
er condi	tions @ time	of sampling:	Su	77			
e Charac	cteristics:		Cle				•
MENTS /	AND OBSER	RVATIONS:					4.
		•					
that san	npling proced	dures were in a	cordance with	àll applica	ble EPA, State a	and Site-Specific	
	11107	Ву:	ME	-	Company:		
		D	AGE 2 OF 2	-		2/	

Facility:	A	RCH	CHEMICA	1	Sampl		3R-103		
Field Pe	rsonnel		PL, TP 5	3	Sampl	e Matrix:	600		
MONITO	ORTING	WELL	INSPECTION	:					
Date/Tin	ne 6	-11-07	1/3	3/6	Cond	of seal: (/) Good () Non	() Cracked e () Buried		%
Prot Ca	sing/ris	er height			Cond	of prot. Casing/i	riser: () Unl () Loose () Damage	(KFlush	
If prot.c	asing; d	epth to r	iser below:				() Damage		
Gas Met	er (Calil	oration/ i	Reading):	% Gas:		% LEL:	1		
Vol. Org	anic Me	ter (Calil	oration/Readin	g):	Volatil	es (ppm)	7	-	
PURGE	INFOR	MATIO	N:				,		
Date / Ti	ime Initi	ated: 6	5-11-07 1 13.	20	_ Date /	Time Complete	d:	6-11-07	1 1340
Surf. Me	as. Pt: () Prot C	Casing	(Riser	Riser	Diameter, Inches	s:	4.	0
hitial W	ater Lev	rel, Feet:	5.7	7	Elevat	ion. G/W MSL:		dense de la constanta de la co	
Well To	tai Depti	h, Feet:			Metho	d of Well Purge		fer. sta	itu food
One (1)	Riser Vo	olume, G	al:		Dedica	ated: (91N		
Total Vo	lume Pi	urged, G	al:		Purge	d To Dryness	YID		
Purge O	bservat	ions:	Low Flow	-	Start	Cler	Finish	Clan	_
PURGE	DATA	: (if app	licable)						
Time	(gp	ge Rate m/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1 325	200	5.31		21.1	7.02	766	3.03	-10	.88
1330	1			18.9	7.00	772	3.44	-11	.80
1335				18.8	7.60	780	1.61	-11	1.76
1340	1	1		18.7	7:01	782	1.53	-10	.75

MPLING	INFORMATI	ION:		POINT I	BA-10	3	
e/Time			1345	Water			
hod of S	Sampling:	Pen	state for	-ey-	vel @ Sampling _Dedicated:		5.31
ti-phase	d/ layered:		MNO			Y () heavy	
	DATA:					()	
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (QQ)	
1345	187	7,00	783	1.47	-//	• 70	
-							
RUME	NT CHECK DA	ATA:					
idity Ser	rial#:	NTU std. =	UTU	и	TU std. =	ити	
erial #:	KQ1-	4.0 std =	T.0	std.=	10.	.0 std. =	
uctivity	Serial #:		un		_	umhos/cm=_	
ERAL IN	NFORMATION	l:			1		
er cond	litions @ time o	of sampling:	Sem	930	,		
le Chara	cteristics:		Clea-				•
MENTS	AND OBSER	VATIONS:					,
		•					
ils.	mpling proced	ures were in ac	cordance with	all applica	ble EPA, State a	and Site-Specific	
6	11 107	Ву:	Ma	-	Company:	577	
		• D	ACEROES				

PAGE 2 OF 2

Facility:	AI	RCH	CHEMICA	(Sampl	e Point ID:	1-104		
Field Per	sonnel:		PL, TP J.	3	Sampl	e Matrix:	6W		
MONITO	RTING	WELL I	NSPECTION:						
Date/Tim	e 6-	1207	1 11	43	Cond	of seal: M Good () None	() Cracked e () Buried		<u> </u>
Prot Cas	ing/rise	r height:			Cond		iser: () Unlo () Loose () Damageo	A Flush	
If prot.ca	sing; de	epth to ri	ser below:				() Damaget	•	
Gas Mete	er (Calib	ration/ R	leading):	% Gas:		% LEL:		-	
Vol. Orga	inic Met	er (Calib	ration/Reading	g):	Volatil	es (ppm)] .		
PURGE	INFOR	MATION	ł:						
Date / Tir	ne Initia	ited: 6	G-12-01 113	50	_ Date /	Time Completed	i: 6	(= 12-07 1	1215-
Surf. Mea	as. Pt: () Prot. C	asing	(A) Riser	Riser	Diameter, Inches	5:	4,	0
nitial Wa	iter Lev	el, Feet:	9.14	1	Elevat	ion. G/W MSL:	>		, ,
Well Tota	al Depth	, Feet:			Metho	d of Well Purge:		PERITA	the
One (1) F	Riser Vo	lume, G	al:		Dedica	ated:	YIN		
Total Vo	lume Pu	rged, Ga	ıl:		Purge	d To Dryness	YIN		
Purge Ol	bservati	ons:	Low Flow		Start	SC 76/10	Finish	Clean	
PURGE					Contract of the Contract of th	•			
Time	(gpr	n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1200	150	9.17		16,9	241	778	5516	-8	.77
1205	1			15.9	7.39	777	50.1	-7	.75
1210				16.0	7.35	770	43.4	-6	.70
1215	V	V		15.8	7:30	768	39.8	-5	-67

MPLING	INFORMATI	ON:		POINT I	BK-104	,	
:/Time	6-12-0	,	1220	Water Le		9.17	
nod of S	ampling:	Perisr	un	,	_Dedicated:	Y (N)	777
i-phase	d/ layered:	() Yes	K) No	If YES:	() light	() heavy	
IPLING	DATA:						
īme	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb.	Other	Other	
'20	15.7	7,28	766	30,2	(ORP)	.63	
			700		/	.65	
RUME	NT CHECK DA	ATA:					
dity Ser	ial#: <u> </u>	NTU std. =	=NTU	200 N	TU std. = 20.01	ити	
rial #:_ons:	614162 KO1-	4.0 std.= 4.0	KR1 - 7.0	std.=_7-	10.	.0 std, =	
uctivity	Serial #:		/000 ur			umhos/cm=_	Market I
	NFORMATION						
	litions @ time o		6	in 83		A	
	ecteristics:	-	k.r				
MENTS	AND OBSER			-			
							. 3
4							
	1						
that sa	mpling proced	ures were in a	ccordance with	all applica	able EPA, State a	and Site-Specific	
6	112107	Ву: _	gy Lu		Company:	517	
		. Р	AGE 2 OF 2				

Facility: ARCH CHEMICA	16	Sampl	le Point ID:	R-105	· · · · · · · · · · · · · · · · · · ·			
Field Personnel: PL, TP, 3	rs .	_ Sampl	e Matrix:	6w				
MONITORTING WELL INSPECTION Date/Time 6-13-07 / 13	324	Cond	of seal: 🍇 Good	i () Cracked e () Buried		%		
Prot. Casing/riser height:		Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged						
If prot.casing; depth to riser below:								
Gas Meter (Calibration/ Reading):	% Gas:		% LEL					
Vol. Organic Meter (Calibration/Readin	g):	Volatil	les (ppm)	1				
PURGE INFORMATION:								
Date / Time Initiated: 6-13-07 , 13	38							
Surf. Meas. Pt: () Prot. Casing	Riser	Riser Diameter, Inches:						
nitial Water Level, Feet: 23.	14	Elevation. G/W MSL:						
Well Total Depth, Feet:		Method of Well Purge: Bladder Purg						
One (1) Riser Volume, Gal:		Dedicated: Y/O						
Total Volume Purged, Gal:		Purged To Dryness Y						
Purge Observations: Low Flor	~	Start St. Turbol Finish Clan						
PURGE DATA: (if applicable)			· orange	fe	er overge	spedes		
Time Purge Rate Cumulative	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00		
(gpm/htz) Volume 1343 360 2324	+3.1	7.49	1784	9.09	-219	1.37		
1348	13.0	7.40	1780	4.54	-202	0.63		
1353	13.1	7.35	1772	4.86	-193	0.59		
1358	13.1	7.36	1781	3.94	- 189	0.53		
1403 1	13.1	7.31	1774	3.23	-183	0.46		
			•	-				

Sampled @ 1403 on 6-13-07

PAGE 1 OF 2

Field Form Revision 0 03/14/02

MPLING	INFORMAT	TION:		POINT I	D	
e/Time		. 1		Water Le	evel @ Sampling,	Feet:
nod of Sa	ampling:				Dedicated:	Y /N
	/ layered:	() Yes	() No	If YES:	() light	() heavy
MPLING						To be
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (Oo)
RUMEN	T CHECK D	ATA:				
idity Seria	al#:	NTU std. =	NTU	N	TU std. =	πυ
erial #: _	F0/-	4.0 std.=	7.0	std.=	10.	0 std. =
		4	KRI-7	7.		
	Serial #: 3715		ur	nhos/cm=_		umhos/cm=_
ERAL IN	FORMATIO	N:	•			
		of sampling:				
	teristics:					
MENTS A	AND OBSER	EVATIONS:				
3						
					Q.	
					4-	
that sam	pling proced	lures were in ac	cordance with	all applica	ble EPA, State a	nd Site-Specific
	111	Ву:		7		
		C. J. W.			Company:	

FIELD OF	BSERVATIONS
Facility: ARCH CHEMICAL	Sample Point ID: BR-105D
Field Personnel: PL, TP, JS	Sample Matrix: 64
MONITORTING WELL INSPECTION:	
Date/Time 6-18-07 / 1322	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose ()-Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	-1 % LEL: 1
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 6-13-07, 1330	Date / Time Completed: 6-13-07, 1350
Surf. Meas. Pt: () Prot. Casing & Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 25.10	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Bhulder Pump
One (1) Riser Volume, Gal:	Dedicated: Y / Ø
Total Volume Purged, Gal:	Purged To Dryness Y I
Purge Observations: Low Flow	Start Gray Tout Finish Clem
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other other (Umhos/cm) (NTU)

Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1335	ml/mm 320	26.13		16.1	7.34	9870	4.84	-294	0.40
1340	1	26.20		15.8	4-7,42	11,470	2.13	-291	0.36
1345		26.22		15.7	7.46	11,600	1.12	-290	0.32
1350	上	I		15.7	7:47	11,760	0.84	-293	0-33
						•			

Sample @ 1850 on 6-03-07

PAGE 1 OF 2

Field Form Revision 0 03/14/02

≟/Time				Water Le	evel @ Sampling	. Feet:
hod of S	ampling:				_ Dedicated:	
j-phased	V layered:	()Yes	() No	If YES:	() light	Y / N () heavy
IPLING	DATA:				. ,	() Heavy
ime	Temp.	рН	Conduct	T.	7	
	(°C)	(std units)	(Umhos/cm)	Turb. (NTU)	Other (ORP)	Other
					1000	(00)
				1		
RUMEN	T CHECK D	ATA:		4		
any Seri	al #:	NTU std. =	NTU	N	TU std. =	NTU
_						
:rial #: _		4.0 std.=	7.0	std =	1000	100
ions:	KQ1-	4	KR1	7	10	.0 std. =
uctivity S	erial #:					
ons:	3715		ur	nhos/cm=_		umhos/cm=
	FORMATION					
			-1 10			
er condi	tions @ time	of sampling:	100			
	teristics:					
TENTS	ND OBSER	VATIONS:				
				pe-		
						2.1
		•	•			
				_		
41-1	**					
that sam	pling proced	lures were in ac	cordance with	all applica	ble EPA. State a	nd Site Sant
that sam	pling proced	lures were in ac	cordance with	all applica	ble EPA, State a	nd Site-Specific
that sam	pling proced	lures were in ac	cordance with	all applica		nd Site-Specific
that sam	pling proced	Ву:	GF 2 OF 2	all applica	ble EPA, State a	nd Site-Specific

Facility:	ARCH	CHEMICA	(Sampl	le Point ID:	3R-106			
Field Per	sonnel:	PL, TP, J.	3	Sampl	e Matrix:	6w		,	
	RTING WELL								
Date/Tim	e 6-13-01	1	200	Cond	of seal: () Good () Non	() Cracked e () Buried		%	
Prot. Cas	sing/riser height			Cond	of prot. Casing/r	riser: () Unio () Loose () Damaged	X Flush I		
If protca	sing; depth to ri	ser below:					-		
Gas Mete	er (Calibration/ R	Reading):	% Gas:		% LEL:				
Vol. Orga	anic Meter (Calib	ration/Reading	3):	Volati	les (ppm)				
	INFORMATION								
Date / Tir	me Initiated: 6	13.07, 17	212	Date /	Date / Time Completed: 6-13-07				
Surf. Mea	as. Pt: () Prot. C	asing	Riser	Riser Diameter, Inches:					
Initial Wa	ater Level, Feet	23.37		Elevation. G/W MSL: Method of Well Purge: Bladur Purg					
Well Tota	al Depth, Feet:								
One (1) F	liser Volume, G	al:		Dedicated: Y/G					
Total Vol	ume Purged, Ga	ıl:		Purged To Dryness Y					
Purge Ol	oservations:	Low Flor		Start Turbol Finish Stante Species Black Species					
	DATA: (if appl								
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00	
1217	360 234Z		. 12.5	6.83	2931	51.4	-77	187	
1222	1./1		12.3	6.91	2906	55.1	-88	1-17	
1227			12.3	6-98	2883	49.3	-91	1.08	
1232	111		122	7.00	2887	45.6	-96	1.04	
		.001		012-07			1		

Wolsampled Q 1232 on G-13-07
PAGE 1 OF 2

Field Form Revision 0 03/14/02

	INFORMAT	пом:		POINT ID				
e/Time		1		Water Level @ Sampling, Feet:				
hod of Sa	ampling:				Dedicated:			
	/ layered:	() Yes	() No	If YES:	() light	Y / N () heavy		
MPLING								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)		
PHINEN	TOUTOUS							
	T CHECK D							
idity Seria	d#:	NTU std. =	NTU	, M	Tileta -	AFFEL		
						טוא		
erial #:		4.0 std.=	7.0	rid -				
ions:	KQ1-	4	KR1 - 7	7	10	.0 std. =		
uctivity S	erial #: 37/5		un			umhos/cm=		
	1 2 Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
ERAL INF	ORMATION	V :						
er condit	ions @ time	of sampling:		•				
e Charact								
	ND OBSER	VATIONS.						
	TO OBOLK	VATIONS:						
	- An							
	A 5-100							
					7 7			
			•	4	,			
	*	*						
that sam	pling proced	ures were in ac	cordance with	all applical	ble EPA, State a	and Site-Specific		
ls.					-	- one opecine		
ls.	1	Ву:				one opecine		

Facility: ARCH	CHEMICAL		Sample	e Point ID:	3R-108	3					
Field Personnel:	PL, TP, JS		Sampl	e Matrix:	5W						
MONITORTING WELL	INSPECTION:										
Date/Time 6-12-0	1 10	37	Cond	Cond of seal: () Good () Cracked () None () Buried							
Prot. Casing/riser height			Cond		ser: () Unic () Loose () Damaged	() Flush M					
If prot.casing; depth to r	iser below:				Damaged						
Gas Meter (Calibration/ F	Reading): %	Gas:		% LEL:	1 -	* * * *					
Vol. Organic Meter (Calib	oration/Reading):	:	Volatil	es (ppm)	1	1					
PURGE INFORMATION	٧:					·					
Date / Time Initiated: 6	1-12-07 1 1040		Date /	Time Completed	:	6-12-071	1650				
Surf. Meas. Pt: () Prot. 0	casing y	Riser	Riser I	Diameter, Inches	:	4.	o				
Initial Water Level, Feet:	28.40		Elevat	ion. G/W MSL:							
Well Total Depth, Feet:	29.75		Metho	d of Well Purge:		S/S BAI	LEA				
One (1) Riser Volume, G	al: , 88		Dedica	ated:	ชิ <i>เ</i> ท		•				
Total Volume Purged, G. Purge Observations:				TURBID	Y) (N Finish	TUT O. 1) ON ANGE	,				
PURGE DATA: (if app		•									
Time Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00				
	1	-	·		_/		•				
					-						

VIPLING INFORMATION:	POINT ID B1-108					
¥Time 6-12-07 1 1300	Water Land Con					
nod of Sampling: SIS BAILEN	Dedicated: 28.77					
	TYES: () light () heavy					
IPLING DATA:	() ileavy					
Temp. pH Conduct (std units) (Umhos/cm)	Turb. Other Other (NTU) (ORP) (OO)					
1305 17,1 7.10 1075	217 16 —					
RUMENT CHECK DATA:						
dity Serial #:NTU std. =NTU ions:396/2	NTU std. =NTU					
erial #: 4.0 std = 7.0						
ions: <u>kQ1-4</u> <u>kR1-7.</u>	10.0 std. =					
uctivity Serial #:umh	os/cm=umhos/cm=					
ERAL INFORMATION:						
er conditions @ time of sampling:	83°					
e Characteristics: TUTBIO	Orane					
MENTS AND OBSERVATIONS:						
that sampling procedures						
that sampling procedures were in accordance with alls.	applicable EPA, State and Site-Specific					
6112107 By: Mdw	Company:					
PAGE 2 OF 2						

Facility: ARCH	CHEMICA		Sample	e Point ID:	BA-1120		
Field Personnel:	PL, TP, J	<u> </u>	Sample	e Matrix:	64		
MONITORTING WELL	INSPECTION:						
Date/Time 6-14-01	1 10.	35	_ Cond o		od () Cracked one () Buried		%
Prot Casing/riser height		_	Cond	of prot. Casin	ng/riser: () Unl () Loose () Damage	() Flush N	
If prot.casing; depth to ri	ser below:				() Damage	<u> </u>	
Gas Meter (Calibration/ R	Reading):	% Gas:		% L!	EL: /		
Vol. Organic Meter (Calib	oration/Reading):	Volatil	es (ppm)	1		
PURGE INFORMATION	1 :		٠				
Date / Time Initiated: 6	-14-07 1041	/	Date /	Time Comple	6-14-07 1 1110		
Surf. Meas. Pt: () Prot. C	asing	PRiser	Riser I	2.0	2.0		
Initial Water Level, Feet:	36.46		Elevat	ion. G/W MSI		-	
Well Total Depth, Feet:	7226		Metho	d of Well Pur	ge:	THON &	BAILER
One (1) Riser Volume, Ga	al: 5.8	4	Dedica	ated:	Y-11		
Total Volume Purged, Ga	al: 18.	0	Purge	d To Dryness	YIN		
Purge Observations:	Low Flow	,	Start	Clar	Finish	Cle-	
PURGE DATA: (if appl			- 1	•			
Time Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cn	Turb.	Other	Other 00
					1		•
	_	/	-				
	-/-		-				

	G INFORMAT			POINT I			
e/Time	6-14-0) , ,	1200	Water Le	36.51		
hod of S	Sampling:	Teflow	BAILL-		Dedicated:	CAY	36.07
ti-phase	d/ layered:	() Yes	₩ No	If YES:	() light	() heavy	
MPLING	DATA:						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other	
203	13.4	7.32	2054	26.9	-77	(00)	
	NT CHECK D						
idity Ser	rial #:	NTU std. :	=NTU	N	TU std. =	ити	
		4.0 std.=					
ions:	KQ1-	4	KA1) std.= 7	10.	.0 std. =	_
uctivity	Serial #:		u			umhos/cm=	
	3715						Avarous.
ERAL II	NFORMATIO	N:					
ier cond	ditions @ time	of sampling:	Son	171°			
le Chara	acteristics:	. SL	Turno				
MENTS	AND OBSER	RVATIONS:					
			,				
-							- •
		4	•				
that sa	mpling proced	dures were in a	ccordance with	all applica	ble EPA, State a	and Site-Specific	
6	114107	Ву:	N Za		Company:	577	
		D	ACERCE				

PAGE 2 OF 2

Facility: ARCI	4 CHEMICA	1	Samp	le Point ID: B	1-1130				
Field Personnel:	PL, TP 5	3	Samp	le Matrix:	6W				
MONITORTING WE	LL INSPECTION	:							
Date/Time 6-14-	07 111	13	Cond of seal: (★) Good () Cracked () None () Buried						
Prot. Casing/riser hei	ght:		Cond	of prot. Casing/r	() Loose	() Flush			
If prot.casing; depth t	to riser below:			_	() Damage	ed			
Gas Meter (Calibratio	n/ Reading):	% Gas:		% LEL:	1				
Vol. Organic Meter (C	alibration/Reading	g):	Volati	les (ppm'	!	langin			
PURGE INFORMAT	ION:	•							
Date / Time Initiated:	6-140 1 1115		Date /	Time Completed	i:	C14-07 .1	1145		
Surf. Meas. Pt: () Pro	t. Casing	Riser	Riser	Diameter, Inches	s:	2.0			
Initial Water Level, Fe	et 31.47)	Eleva	tion. G/W MSL:	,				
Well Total Depth, Fee	t 79.2	5	Metho	od of Well Purge:		Tellow	BAILEN		
One (1) Riser Volume	, Gal: 7.80		Dedic	ated:	YIN				
Total Volume Purged,	Gal: 24		Purge	d To Dryness	YIN	4			
Purge Observations:	Low Flow		Start	Clar	Finish	St pue	n		
PURGE DATA: (if a									
Time Purge Rat (gpm/htz)		(C)	pH (std units)	Conduct (Umhos/cm)	(NTU)	Other	Other 00		
	-								
		v							
						1			
			-						

APLING	INFORMAT	ION:		POINT I				
/Time	6-14-00	1	1225	Water Le	vel @ Sampling	, Feet:	31.45	
nod of S	ampling:	Tetlon BAICON		Dedicated; Y				
	d/ layered:	() Yes	₩ No		() light	() heavy		
	DATA:							
īme	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (DD)		
227.	13.1	7.10	3065	40.5	-185	100		
RUMEI	NT CHECK D	ATA:	L					
dity Ser	ial#:	NTU std. :			TU std. =	ИΤИ		
erial #: _ ons: _	KQ1-	4.0 std.=	KR1 - 7.0) std.=	10	.0 std. =		
ıctivity	Serial #: 3715		u			umhos/cm=_		
	NFORMATION		•					
er cond	litions @ time	of sampling:	Sen	750				
e Chara	ecteristics:	SL	sur TUAD	bery 7	ins .			
MENTS	AND OBSER	VATIONS:						
is.	mpling proced	lures were in a	ccordance with	all applica	able EPA, State	and Site-Specific		
6	1141 07	Ву:	Re Li		Company:	577		
		P	AGE 2 OF 2	+				

Facility:	AR	CH	CHEMICAL		Sample Point ID: BR-114						
Field Pers	onnel:	.1	PL, TP JS		Sample	Matrix:	54				
MONITORTING WELL INSPECTION: Date/Time 6-14-07 , 950 Prot Casing/riser height:					Cond of seal: (Good () Cracked						
					() None () Buried Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged						
If prot.cas	ing; de	pth to ris	er below:	-							
Gas Meter	r (Calibi	ration/ Re	eading):	% Gas:		% LEL:					
Vol. Orga	nic Mete	er (Calibr	ation/Reading):	Volatile	es (ppm)					
PURGE I	NFOR	NOITAN	:						. 7×		
Date / Tim	ne Initia	ted: 6-	14.07,	1010	Date /	Time Completed	6-14-07, 1030				
Surf. Mea				Riser	Riser Diameter, Inches:			4.0			
Initial Wa	ter Leve	el, Feet:	13.78	1	Elevat	ion. G/W MSL:	0				
Well Tota	l Depth	, Feet:			Metho	d of Well Purge:	Penstaltic				
One (1) R	iser Vo	lume, Ga	1:		Dedica	*					
Total Vol	ume Pu	rged, Ga	l:		Purged To Dryness Y / (N)			1.00			
Purge Ob	servatio	ons:	Low Flow	/	Start	Cleus	Finish	Clean			
PURGE	DATA:	(if appli	cable)				,				
Time	Purg (apr	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00		
1015	m/mm 200	13.76		. 14.7	7.30	1781	0.41	-125	036		
1020	1	1		14.8	7.23	1790	0.00	-148	0.29		
1025				148	7.21	1783	0.15	- 153	0.26		
1030	上			148	7.24	1778	0.19	-155	0.23		
			,								
								1			

Sampled @ 1030 on 6-14-07 PAGE 1 OF 2

Field Form Revision 0 03/14/02

MPLING	INFORMA	TION:		POINT	D	
e/Time		1		Water Le	evel @ Sampling,	Feet:
hod of Sa	ampling:				_ Dedicated:	
ti-phased	V layered:	()Yes	() No	If YES:		Y/N
APLING	DATA-		()	11 TES:	() light	() heavy
Time	Temp.	рН	Conduct			
	(°C)	(std units)	(Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)
						100
DIME	TOURS					
	T CHECK D					
dity Seria	al #:	NTU std. =	=NTU	M	TU std. =	
ions:	391/	2	-6		10 std. =	(TU
uctivity S	erial #:		KR1 - 7			0 std. =umhos/cm=
	FORMATIO					
		of sampling:				
e Charac	teristics:				•	
MENTS A	ND OBSER	EVATIONS:			,	
,						
		AL .				
that sam	pling proced	lures were in ac	cordance with	all applica	ble EPA, State ar	nd Site-Specific
	1					7.5000
		Ву:			Company:	577
		PA	GE 2 OF 2			

FIELD OBSERVATIONS BR-116 Facility: ARCH CHEMICAL Sample Point ID: Sample Matrix: Field Personnel: MONITORTING WELL INSPECTION: Cond of seal: Ox Good () Cracked Date/Time % () None () Buried Cond of prot. Casing/riser: () Unlocked () Good Prot Casing/riser height WFlush Mount () Loose () Damaged If prot.casing; depth to riser below: Gas Meter (Calibration/ Reading): % Gas: Vol. Organic Meter (Calibration/Reading): Volatiles (ppm) PURGE INFORMATION: 6-1207, Date / Time Initiated: Date / Time Completed: Riser Surf. Meas. Pt: () Prot. Casing Riser Diameter, Inches: Initial Water Level, Feet: Elevation. G/W MSL: Well Total Depth, Feet: Method of Well Purge: Dedicated: One (1) Riser Volume, Gal: Purged To Dryness Total Volume Purged, Gal: Finish Purge Observations: PURGE DATA: (if applicable)

Time	Purge (gpm		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1440	200	2799		18-3	7.37	2590	25.5	-164	0.97
1445		1		18.4	7.09	2965.	8.82	-149	0.61
1450				18.4	7.12	2362	907	-144	0.58
1455	4	1		18-5	7.14	2559	766	-143	0.56

Sampled @ MSS on 6-12-07
PAGE 1 OF 2

Field Form Revision 0 03/14/02

WIPLING	INFORMAT	IION:	POINT ID			
Time _				Water Le	vel @ Sampling,	Feet:
hod of Sa	mpling:				Dedicated:	Y / N
i-phased/	layered:	() Yes	() No	If YES:	() light	() heavy
APLING I	DATA:					
ime	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)
RUMEN	CHECK E	DATA:				
dity Seria	d #:	NTIL et a .	. APPEAL		TU std. =	
ions:	396/	/2	NIU	N	TU std. =	UTN
		4.0 std.=			· Then	
ions:	KQ1-	4.0 sta.=	to 1) std.=	10	.0 std. =
uctivity S	erial #·					
ons:	3715	,	u	nhos/cm=		umhos/cm=
	ORMATIO					
		,				
er condit	ions @ time	of sampling:				
e Charac	teristics:					
MENTS A	ND OBSER	RVATIONS:				
		_			•	
		,				
		4	•	3.		
that sam	pling proce	dures were in a	ccordance with	all applica	able EPA, State a	and Site-Specific
	1, 6					
		Ву:			Company:	577
			1052050			

Facility: ARC	H CHEMICA	ac.	Sample	Point ID: B	R-116D.					
Field Personnel:	PL, TP, 3	ı	Sample	Matrix:	6W					
MONITORTING W Date/Time		1404	Cond of seal: (Good () Cracked () None () Buried							
Prot. Casing/riser h	eight:		Cond		iser: () Unlo () Loose () Damageo	K Flush				
If prot.casing; depti	h to riser below:									
Gas Meter (Calibrat	ion/ Reading):	% Gas:		% LEL:	T					
Vol. Organic Meter	(Calibration/Readin	g):	Volatil	es (ppm	1					
PURGE INFORMA	ATION:									
Date / Time Initiated	1: 6-12.57 , 1	410	Date /	Time Completed	d: 6-	17-07	1430			
Surf. Meas. Pt: () P	rot Casing	N.Riser	Riser Diameter, Inches:			4.0				
Initial Water Level,	Feet: 35.9	7	Elevat	ion. G/W MSL:						
Well Total Depth, F			. Metho	Bladder Pung						
One (1) Riser Volum	ne, Gal:		Dedica	ated:	YID					
Total Volume Purge	ed, Gal:	4	Purge	d To Dryness	VID ,					
Purge Observation	s: Low Flo	·	Start	Cleur	Finish	Clen				
PURGE DATA: (if				•		-				
Time Purge F	Rate Cumulative	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00			
ALLIC MI/mm	35.93	18.3	899	1942	205	-281	0.52			
1420		18.4	9.51	1956	213	-28C	0.39			
1425		18:4	9.85	1959	20.8	-283	0.35			
1430		18.4	960	1963	20.4	-282	0-33			
Sampled	@ 1450 C	en 6-		·						

Sampled @ 1450 on 6-12-07 PAGE 1 OF 2

Field Form Revision 0 03/14/02

Time		. ,		POINT ID					
and of Cameria		,		Water Level @ Sampling, Feet:					
nod of Sampling					_ Dedicated:	Y/N			
i-phased/ layer		() Yes	() No	If YES:	() light	() heavy			
PLING DATA	:								
	mp.	рН	Conduct	Turb.	Other				
	c)	(std units)	(Umhos/cm)	(NTU)	(ORP)	Other (QQ)			
						100			
RUMENT CHE	CKD	NT4-							
*									
dity Serial #:		NTU std. =	HTH		TU std. =				
ions:3	196/	2		N	TU std. =	UTN			
rial #:	,	4.0 std.=	7.0	std.=_	10	.0 std. =			
ons: KQ	1-	4	KR1 - 7	7.		July Sid			
Ictivity Sprint 4									
iousity Serial #	•								
ons: 3	715		ur	nhos/cm=_		umhos/cm=			
	713		ur	nhos/cm=_		umhos/cm=			
ons: 3	713		ur	nhos/cm=		umhos/cm=			
RAL INFORM	ATION	:	ur	nhos/cm=_		umhos/cm=			
RAL INFORM.	ATION time o	:	ur	nhos/cm=_		_umhos/cm=			
	ATION time o	:	ur	nhos/cm=		umhos/cm=			
RAL INFORM. er conditions @	ATION time o	of sampling:		nhos/cm=		umhos/cm=			
RAL INFORM. er conditions @	ATION time o	of sampling:		3		_umhos/cm=			
RAL INFORM. er conditions @ Characteristic	ATION time o	of sampling:		3		umhos/cm=			
RAL INFORM. er conditions @ Characteristic	ATION time o	of sampling:		3		_umhos/cm=			
RAL INFORM. er conditions @ Characteristic	ATION time o	of sampling:		3		umhos/cm=			
RAL INFORM. er conditions @	ATION time o	of sampling:		3		umhos/cm=			
RAL INFORM. er conditions @	ATION time o	of sampling:		3		umhos/cm=			
RAL INFORM.	ATION time o	of sampling:		3		umhos/cm=			
RAL INFORM. er conditions @ e Characteristic	ATION time o	of sampling:				PA SP			
RAL INFORM. er conditions @ e Characteristic	ATION time o	of sampling:				PA SP			
RAL INFORM. er conditions @ e Characteristic	ATION time o	of sampling:			ble EPA, State a	PA SP			
RAL INFORM. er conditions @ e Characteristic	ATION time o	of sampling:				PA SP			

Facility: ARCH CHEMICAL	Sample Po	oint ID: B	K-11 (D		
Field Personnel: PL, TP, JS	Sample Ma	atrix: (5w		
MONITORTING WELL INSPECTION:			·		
Date/Time 6:13-07 , 1128	Cond of se	eal: 🌂 Good () None	() Cracked e() Buried		%
Prot. Casing/riser height: If prot.casing; depth to riser below:	Cond of p			() Flush M	
Gas Meter (Calibration/ Reading): % Gas:	_, _	% LEL:		-	
Vol. Organic Meter (Calibration/Reading):	Volatiles (, -		
	*Oladies ((pp.11)			
PURGE INFORMATION: Date / Time Initiated: 6-12-07 / 1132			- 1	6-17-07,	1157
		e Completed	,	4	
Surf. Meas. Pt: () Prot. Casing Notice So. YU		meter, Inches	::		
Initial Water Level, Feet:		. G/W MSL:	<i>)</i>	Bladden	D. A
Well Total Depth, Feet:	Method of	f Well Purge:		DIAMOUN	rum/)
One (1) Riser Volume, Gal:	Dedicated	1:	Y I W		
Total Volume Purged, Gal:	-	Dryness	YIG	017	1/
Purge Observations: Low Flow	Start	SLTubri	Finish	816	ww
PURGE DATA: (if applicable)					
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)		Conduct Umhos/cm)	Turb. (NTU)	Other	Other 00
1137 notimen we 11.7	740	515	841	-28	0.62
1142 1 1 11.4	7.69	518	743	-37	0.54
1147 11.3		517	55.0	-42	0.39
1152 11.4		513	51.4	-40	0.36
1157 1 113	7.82	5/1	49.6	- 39	0.34
					,

Sampled @ 1157 on 6-12-07
PAGE 1 OF 2

	INFORMAT	ION;		POINT I	D	
≟/Time _		1		Water Le	vel @ Sampling	, Feet:
hod of Sa	mpling:		- 1		Dedicated:	Y/N
i-phased/	layered:	() Yes	() No	If YES:	() light	() heavy
APLING I						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (Oo)
	•					
RUMEN	CHECK D	PATA:				
idity Seria	1#: <u> </u>	NTU std. =	NTU	N	TU std. =	ити
		4.0 std.=				
ions:	KQ1-	4	KR1 - 7.0	o std.= 7	10	.0 std. =
uctivity S	erial #:		u	nhos/cm=		umhos/cm=
	ORMATIO					
		of sampling:				
e Charac				•		·
MENTS A	ND OBSER	RVATIONS:		-		
	•					
	**					
that samuls.	pling proce	dures were in a	cordance with	all applica	ble EPA, State	and Site-Specific
	1	By:				
					Company:	

Facility:	AI	RCH	CHEMICA	۷	Sample	Point ID:	R-118D		
Field Pers	onnel:		PL, TP J	S	Sample	e Matrix:	6w		
MONITO	RTING	WELL	NSPECTION:						
Date/Time	6-17	1-07	, 1	017	Cond	of seal: (A Good () None	() Cracked e () Buried		%
Prot. Cas	ing/rise	r height:			Cond	of prot. Casing/r	iser: () Unle () Loose () Damagee	() Flush I	
If prot.cas	sing; de	pth to ri	ser below:				() Damager		
Gas Mete	r (Calib	ration/ R	eading):	% Gas:		% LEL:			
Vol. Orga	nic Met	er (Calib	ration/Reading	ı):	Volatil	es (ppm;	1		
PURGE	NFOR	MATION	l:						
Date / Tin	ne Initia	ted: 6	12-01, 10:	23	Date /	Time Completed	d:	6-12-071	1053
Surf. Mea				Riser	Riser I	Diameter, Inches	s:	4,	0
Initial Wa	ter Leve	el, Feet:	49.30		Elevat	ion. G/W MSL:			_
Well Tota					Metho	d of Well Purge:		Bladde	· Kunf
One (1) R	iser Vo	lume, Ga	al:		Dedica	ated:	Y 10		•
Total Vol	ume Pu	rged, Ga	ıl:		Purge	d To Dryness	Y 160		A
Purge Ob	servati	ons:	Low Flor		Start	SI-Tubir	Finish	SI. Turb.	
PURGE						•			
Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1078	200	49.79		13.0	7.63	1155	23.7	-297	0.23
1033	1			12.1	7.47	1232	30.1	-284	0.21
1038				12.3	7.45	1284	31.7	-273	0,20
1043				12.3	7.36	1293	37.5	-268	0.19
1048				123	7.33	1302	39.1	-271	0.17
1053				124	7.31	1307	38:2	-266	0.16

Sampled @ 1053 on 6-12-07

PAGE 1 OF 2

MPLING	INFORMAT	TION:		POINT I	D	
Time		1		Water Le	vel @ Sampling	, Feet:
od of S	ampling:				_Dedicated:	Y/N
-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy
	DATA:					
ime	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)
						200
						De la
RUMEN	NT CHECK D	PATA:	1	1	1	
dity Seri	ial #:	NTU std. =	NTU	N	TU std. =	ити
	3911					
rial #: _		4.0 std.=	7.0	std.=	10	0.0 std. =
ons:	KQ1-	4	KRI-	7.		,o sta, =
activity :	Serial #: 37/5	111	ur	nhos/cm=		umhos/cm=
	FORMATIO		•			
					•	
er cond	itions @ time	of sampling:				
e Chara	cteristics:					
IENTS .	AND OBSER	RVATIONS:	÷			
-			· · · · · · · · · · · · · · · · · · ·			
The state of the s						
that sar	mpling proce	dures were in a	cordance with	all applica	able EPA, State :	and Site-Specific
		Ву:				

PAGE 2 OF 2

Facility:	Al	RCH	CHEMICA	(Sampl	e Point ID: B	K-1551)	,	
Field Per	sonnel:		PL, TP. J.	5	Sampl	e Matrix:	6w		
MONITO	-	WELL 1	NSPECTION:	229	Cond	of seal: Sood	() Cracked e () Buried		%
Prot Cas	ing/rise	r height			Cond		iser: () Unlo () Loose () Damageo	() Flush !	
If prot.ca	sing; de	pth to ri	ser below:				(,		
Gas Mete	er (Calibi	ration/ R	leading):	% Gas:		% LEL:	-1-		
Vol. Orga	nic Met	er (Calib	ration/Reading	g):	Volatil	les (ppm	1		
PURGE									220
Date / Tin	ne Initia	ted: 6	1201, 12	35	Date /	Time Completed	1:	नाठा,	1755
Surf. Mea				XRiser	Riser	Diameter, Inches	52	4	10
			45.18		Elevat	ion. G/W MSL:			
Well Tota					Metho	d of Well Purge:	,	Bladd	er Pump
One (1) R	iser Vol	ume, Ga	al:		Dedic	ated:	Y 11		. 7
Total Vol	ume Pu	rged, Ga	d:		Purge	d To Dryness	YIN		
Purge Ob	servatio	ons:	Low Flow	,	Start	Black Tint	Finish	Clean	
PURGE	DATA:	(if appli	icable)						
	Purge		Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1240	200	45.24		13.3	7.28	2205	0.37	-292	0.37
1245	1	1		13.4	7.14	2206	0.00	-294	0.34
1250				13.4	7.09	2216	0.00	-289	0.35
1255	1			13.4	7:07	2213	0.00	-291	0.33
		·			L	L		1	

Sampled @ 1785 on 6-12-07 PAGE 1 OF 2

MPLING	INFORMAT	TION:		POINT ID				
≱/Time		1		Water Le	vel @ Sampling	. Feet:		
	l layered:	() Yes	() No		Dedicated:			
APLING								
lime	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)		
RUMEN	Т СНЕСК Б	PATA:						
idity Seri	al#:	NTU std. :	=NTU	N	TU std. =	ити		
erial #: _ ions: _	KQ1-	4.0 std.=	KR1 - 7.0) std.= 7.	10	.0 std. =		
uctivity S	Serial #: 37/5		u	mhos/cm=		umhos/cm=		
er condi	FORMATIO	N: of sampling:						
JENTS /	AND OBSE	RVATIONS:				·		
		1						
		•						
r that san	npling proce	dures were in a	ccordance with	all applica	able EPA, State :	and Site-Specific		
	1 1	. Ву:		•	Company:	577		
		n.	1000000					

FIELD OI	BSERVATIONS
Facility: ARCH CHEMICAL	Sample Point ID: BR-123D
Field Personnel: PL, TP JS	Sample Matrix: 60
MONITORTING WELL INSPECTION:	
Date/Time 6-12-07 / 1317	Cond of seal: (a) Good () Cracked % () None () Buried
Prot Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() builded
Gas Meter (Calibration/ Reading): % Gas:	% LEL: 1
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 6-12-07, 13-2	Date / Time Completed: 6-17-07, 1347
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
nitial Water Level, Feet: 45.58	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Bladder Purp
One (1) Riser Volume, Gal:	Dedicated: Y / D
Total Volume Purged, Gal: Purge Observations: Low Flow	Purged To Dryness Y 100 Start Black Trutinish Black Trut
PURGE DATA: (if applicable) Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

Time		e Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1327	200	45.67		13.0	7.66	2019	18.14	-269	0.19
1332	1			12.7	7.77	2003	18.75	-270	0.18
1337				126	7.90	2000	1932	-268	0-18
1342				126	7.93	2018	19.27	-273	0.17
1347			b	12.5	7.96	2023	19.16	-274	0.17
						·			

Sampled @ 1347 on 6-12-07
PAGE 1 OF 2

MPLING INF	ORMA	ION;		POINT I	D		
Time		1		Water Level @ Sampling, Feet:			
hod of Samp	ling:				Dedicated:	Y / N	
i-phased/ lay		()Yes	() No	If YES:	() light	() heavy	
IPLING DAT							
ime	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)	
erial #:	Q1-	4.0 std.=	. 70	std.=		0.0 std. =	
ons:			ur	nnos/cm=		umhos/cm=	
ERAL INFOR	s @ time	N: of sampling:					
MENTS AND	OBSER	RVATIONS:					
	-						
						0	
that samplin	ng proced	dures were in ac	cordance with	all applica	ble EPA, State	and Site-Specific	
	-	Ву:	3 -		Company:	577	
		D	AGE 2 OF 2		1		

FIELD OBSERVATIONS BR-127 Arch Chemital Sample Point ID: Field Personnel: Sample Matrix: MONITORTING WELL INSPECTION: 1202 Cond of seal: (Good () Cracked Date/Time () None () Buried Prot. Casing/riser height: Cond of prot. Casing/riser: () Unlocked WGood () Loose () Flush Mount () Damaged If prot.casing; depth to riser below: Gas Meter (Calibration/ Reading): % Gas: Vol. Organic Meter (Calibration/Reading): Volatiles (ppm) / **PURGE INFORMATION:** Date / Time Initiated: 6-7-07 / 1205 Date / Time Completed: Surf. Meas. Pt: Prot. Casing () Riser Riser Diameter, Inches: mitial Water Level, Feet: 2.97 Elevation, G/W MSL: Well Total Depth, Feet: Method of Well Purge: Dedicated: One (1) Riser Volume, Gal: Purged To Dryness Total Volume Purged, Gal: Start Clean Fi Purge Observations: PURGE DATA: (if applicable) Time | Purge Rate | Cumulative | Temp. | Conduct Turb.

	(gpm/	htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ORP	200
1210	160	297		17.3	7-40	ПІЧ	8.86	- 228	1.04
1215	١			17.3	7.43	1697	10.13	-289	1.02
1220			-	17.2	7.45	1643	7.76	-234	1.00
1225	1	1		17.3	7.46	1634	5.99	-237	1.00
							-		
								,	

Sampled @ 1225 en 6.707
PAGE 1 OF 2

	NFORMAT			POINT ID			
≱/Time _				Water Le	vel @ Sampling	, Feet:	
hod of Sar	npling:				_ Dedicated:	Y/N	
	layered:	()Yes	() No	If YES:	() light	() heavy	
IPLING D							
īme	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
RUMENT	CHECK	DATA:					
idity Serial	#:	NTU std. =	NTU	N	TU std. =	UTN	
erial #: ions:		4.0 std.=	7.0) std.=	10	0.0 std. =	
uctivity Se	erial #:		u	mhos/cm=		umhos/cm=	
	ORMATIO		•				
		of sampling:					
e Charact		o. Jampinig.					
MENTS A	ND OBSE	RVATIONS:			-		
	_						
						*	
that samp	pling proce	dures were in a	cordance with	all applica	able EPA, State	and Site-Specific	
	1	Ву:					
			,		Company: _		

PAGE 2 OF 2

Facility:	AI	RCH	CHEMICA	(Sample	e Point ID:	1n-3		
Field Pers	sonnel:	_	PL, TP 5	S	Sample	e Matrix:	6W		
MONITO	RTING	WELL I	NSPECTION:						
Date/Time	6-	11-07	1 /0	17	Cond	of seal: (/ Good () None	() Cracked Buried		%
Prot. Cas	ing/rise	r height <u>:</u>			Cond		() Loose	() Flush h	ood Mount
If prot.ca	sing; de	pth to ris	ser below:				() Damage	4	
Gas Mete	r (Calib	ration/ R	eading):	% Gas:		% LEL:			
Vol. Orga	nic Met	er (Calib	ration/Reading	ı):	Volatil	es (ppm)	1		
PURGE	INFOR	MATION	1:						
Date / Tir	ne Initia	ted: 6	11-0 1 162	0	Date /	Time Completed	d:	6-11-67 1	1040
Surf. Mea	as. Pt: 6	Prot. C	asing	() Riser	Riser	Diameter, Inches	s:	4.	0
Initial Wa	ater Lev	el, Feet:	6.75		Elevat	ion. G/W MSL:	s '=		
Well Tota	al Depth	, Feet:			Metho	d of Well Purge:		Per 541	The food
One (1) F	Riser Vo	lume, Ga	ıl:		Dedic	ated: (W) N		-
Total Vo	lume Pu	rged, Ga	l :			d To Dryness			
Purge Ol	bservati	ons:	Low Flow	,	Start	Yellow 7 and	Finish	Yellow 1	INT
PURGE									
Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1625	m/m-	6.97		14.4	7.80	14,200	65.9	-222	1.17
1030		7.13		14.7	7.77	13,900	29.6	-219	1.08
1035		7.20		14.6	7.60	13,790	20.8	-215	0.96
1040		7.27		14.4	7.58	13,620	15.2	-210	0.93

MPLING	INFORMATI	ON:		POINT ID	BR.	-3	
⊭Time	6-11-07	1 1	1045	Water Lev	el @ Sampling	Feet*	7.36
hod of Sa	ampling:	Parist	neve Per		Dedicated:	DIN	
					() light		vy
APLING							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other	
045	14.5	7.55	13,590	10.61		0.90	
RUMEN	NT CHECK D	ATA:					
idity Ser	ial #: 3925 396/	NTU std. :	=тити	20 N	TU std. = <u>26</u>	UTM	
erial #: _ ions:	61680C	4.0 std.= 4	KR1 - 7.0	std.= <u>7.</u>	10).0 std. =	
uctivity	Serial #:	616806		mhos/cm=	1000	umhos/c	#n=
ERAL IN	NFORMATION	N:					
ner cond	litions @ time	of sampling:	Clou	ינד על			
le Chara	ecteristics:	Cher	Yellow Ti	nt.			•
MENTS	AND OBSER	EVATIONS:	-	-			
-							
							,
	•						,
-		•					
/ that sa	ampling proce	dures were in a	eccordance with	n all applica	able EPA, State	and Site-Spe	ecific
6	111107	Ву:	MILE	-	Company:	51	7

PAGE 2 OF 2

		FIELD OF	SERVATIO	ONS		Revision 0 March 15,2002	
Facility:	ARC	H		Sample P	oint ID:	BR-5	A
Field Person	nel:	P.little	57	Sample N	Matrix:	6w	- " (
	INFORMATIO					(XGrab ()C	omposite
Date/Time	6-8-07	1/0	50	Water Le	vel @ Sampling	, Feet:	10.1
Method of Sa					_Dedicated:		
						() heavy	*
SAMPLING	DATA:						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other (
1057	14.7	7.58	1684	14.6	-105		
Solutions:					-		
Conductivity	Serial #:			mhos/cm=		umhos/cm	-
Solutions:				ımhos/cm=		umhos/cm	
Solutions:	NFORMATIO	N:		و		umhos/cm	=
Solutions: GENERAL I	NFORMATIO	N:		و		umhos/cm	
Solutions: GENERAL I Weather cond	NFORMATIO	N: of sampling:		و		umhos/cm	
Solutions: GENERAL I Weather cond	NFORMATIO	N: of sampling:		و		umhos/cm	=
Solutions: GENERAL I Weather cond	NFORMATIO	N: of sampling:		و		umhos/cm	
Solutions: GENERAL I Weather cond	NFORMATIO	N: of sampling:		و		umhos/cm	
Solutions: GENERAL I Weather cond	NFORMATIO	N: of sampling:		و		umhos/cm	
Solutions: GENERAL I Weather cond Sample Char COMMENTS	NFORMATIO ditions @ time acteristics: S AND OBSE	N: of sampling: RVATIONS:	Sun Cle- y	83.0	n-5		
Solutions: GENERAL I Weather cond Sample Char COMMENTS	NFORMATIO ditions @ time acteristics: S AND OBSE	N: of sampling: RVATIONS:	Sun Cle- y	83.0	n-5	e and Site-Speci	

LeachField Form

			- 1	FIELD C	BSERVA		00 00		
Facility: _	A	rch.	Chemital	_	Sample	Point ID:	BR-CA		
Field Pers	onnel:	_	TP. JS)	Sample	Matrix:	GW		
MONITOR	RTING W	ELL IN	ISPECTION:			* Form	er Pump	m We	ell
Date/Time	6-6	-07	1	1134	Cond o	of seal: () Good			%
Prot. Casi	ng/riser h	eight:			Cond o	of prot. Casing/r		() Flush M	
If prot.cas	ing; depth	n to ris	er below:						
Gas Meter	r (Calibrat	ion/ Re	eading):	% Gas:	1	% LEL	1		
Vol. Organ	nic Meter	(Calibr	ation/Reading):	Volatile	es (ppm)	I		
PURGE	NFORMA	TION							
Date / Tim	ne Initiated	1: 6	607, 1	140	Date /	Time Complete	d: (0-6-071	1200
Surf. Mea	s. Pt: () P	rot. Ca	sing	() Riser	Riser I	Diameter, Inche	s:		
Initial Wa	ter Level,	Feet:	8.8	81	Elevat	ion. G/W MSL:	3		
Well Tota	l Depth, F	eet: _			Metho	d of Well Purge	:	Perista	Hir Plung
One (1) R	iser Volum	ne, Ga	l:		Dedica	ated: (DI N		
Total Vol	ume Purg	ed, Ga	l :		Purge	d To Dryness	YIO	oi.	
Purge Ob	servation	s:			Start	Clean	Finish	Clem	
PURGE	DATA: (if	appli	cable)						
Time	Purge F (gpm/h		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	OKIP*	Other D.D.
1145	m/mm	8.97		14.8	7.40	1058	808	28	1.62
1150		8,99		14.7	7.68	1061	4.71	8	1.24
1155				147	771	1062	4.50	9	1.21
1200		1		14.7	7,74	1063	4.48	7	1.22
				,					

Sampled a 1200 on 6-6-07

Alm PAGE 1 OF 2

Field Form Revision 0

LING INFORMA			POINT I	D	
⊮Time	1		Water Le	evel @ Sampling	, Feet:
nod of Sampling:				_ Dedicated:	Y/N
i-phased/ layered:	()Yes	() No	If YES:	() light	() heavy
IPLING DATA:					()
Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
DUNCATE OF ESTA					
RUMENT CHECK D					
dity Serial #:	NTU std. :	ити	N	TTU std. =	NTU
	4.0 std.=) std.=	10	.0 std. =
ictivity Serial #:		ur	nhos/cm=_		umhos/cm=
RAL INFORMATIO	N:				
∍r conditions @ time	of sampling:				
Characteristics:					
ENTS AND OBSER	RVATIONS:				
	_			•	
					, ,
		•			
					7
that sampling proced	dures were in ac	cordance with	all applica	ble EPA State -	nd Site Service
				with otate a	nu site-specific
	Ву:		-	Company:	
	P/	AGE 2 OF 2			

LeachField Form Revision 0 March 15,2002

Facility:	ARC	H		Sample P	Point ID:	BR-	PA
Field Person	nel:	P.LIHL	51	Sample N	Matrix:		
	INFORMATIO					(X) Grab ()	Composite
Date/Time	6-8-07	1	1110	Water Le	vel @ Sampling	ı, Feet:	24.69
Method of Sa	mpling:	SAMPI	PONT		_Dedicated:		
Multi-phased	/ layered:	() Yes	₩ No	If YES:	() light	() heav	у
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (0,47)	Other ()	
1113	14.2	7.61	2531	14.8	-167		
Turbidity Ser Solutions:	ial #:	NTU std.	=		NTU std. =	_ити_	
pH Serial #:		4.0 std.=		0 std.=		10.0 std. =	
Conductivity Solutions:				mhos/cm=	- - -	umhos/c	m=
GENERAL I	NFORMATIO	N:				,	
Weather cond	ditions @ time	of sampling:	Sun	310	****		
Sample Char	acteristics:		ch-r				
COMMENTS	AND OBSE	RVATIONS:		·	8.68	6 pm	
					e le		
	,						
		-					
I certify that s	sampling proc	edures were in	accordance wi	th all appli	icable EPA, Sta	te and Site-Spe	ecific
	618107	Ву:	pu 1=		Company:	57	-

Facility: Arch Chemian		OBSERVA	ATIONS le Point ID:	BR-8		
Field Personnel:	JS	-	le Matrix:	GW		
MONITORTING WELL INSPECTI	on: 1002	Cond	of seal: (X Good	() Cracked e () Buried		%
Prot. Casing/riser height:		Cond	of prot. Casing/i		() Flush	
If prot.casing; depth to riser below: Gas Meter (Calibration/ Reading):	% Gas:	1	% LEL:	. 1		
Vol. Organic Meter (Calibration/Rea	ding):	Volati	les (ppm)	1		
PURGE INFORMATION:						
Date / Time Initiated: 6.6.07 /	1010	Date /	Time Completed	d: (6.6.07	, 103
Surf. Meas. Pt: () Prot. Casing	K) Riser		Diameter, Inches	5:		
Thitial Water Level, Feet: 0 ' Well Total Depth, Feet:			ion. G/W MSL:	· ·	Penstaltr	C Rung
One (1) Riser Volume, Gal:		Dedic		RIN		,
Total Volume Purged, Gal:		Purge	d To Dryness	YIN	-1	1
Purge Observations:		Start	Clean	Finish	Tubo	- WBlack
PURGE DATA: (if applicable)			. Yelly w/ Black Spa	riks		Speik
Time Purge Rate Cumulati (gpm/htz) Volume		pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other D.O
1010 150 9.37	13.5	7.70	4178	71.0	-19	1.09
1015 \ 9.39	13.5	7:29	4208	72.7	-93	1.02
1020 9.40	13.5	7.26	4242	69.8	-94	0.99
1025 1 9.40	13.6	7:23	4259	70.1	-97	0.99
6 110 1006						

PAGE 1 OF 2

MPLING	INFORMAT	ON:		POINT I	D	
⊮Time		1		Water Le	vel @ Sampling	I Fast:
nod of S	ampling:				_ Dedicated:	Y / N
	d/ layered:	()Yes	() No	If YES:	() light	() heavy
ime	DATA:	pH	10		•	
	(°C)	(std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
DUNE	TOUTOUS					
	T CHECK D					
dity Seri	ial #: 3925-5	NTU std. =	NTU	20 N	TU std. = 20	NTII
ions,	00	31012	·			MIO
:rial #: _		4.0 std.= 4.4 4-KQI	02 7.0	std.= 6-	19	0.0 std. ≃
ons:		4-KaI	7-KRI			.u sta. =
activity :	Serial #:		1006	nhos/cm=	1000	and a second
ons:	11	000 -3715			· .	umhos/cm=
ERAL IN	IFORMATIO	N:				
er cond	itions @ time	of sampling.				
	cteristics:					
				•		
IENTS .	AND OBSER	EVATIONS:				
					141	
				,	A.:	
that are						
inat sar	npling proced	lures were in ac	cordance with	all applica	ble EPA, State	and Site-Specific
	1.1					
		By:			Company:	
		P	AGE 2 OF 2			

		FIELD OF	SERVATIO	ONS		LeachField Form Revision 0 March 15,2002	
Facility:	ARC.	H	-	Sample P	oint ID:	BA-14	L
Field Personr	nel:	P.L. HK	51	Sample M	latrix:	BA-14	
SAMPLING	INFORMATIO				,	(X) Grab () Co	mposite
Date/Time	6-8-07		1100	Water Lev	vel @ Sampling	, Feet:	24.88
Method of Sa	mpling:		PORT		_Dedicated:		
Multi-phased	/ layered:	()Yes	No No	If YES:	() light	() heavy	
SAMPLING I	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other ()	^
1103	15.4	7.99	2171	1.87	-111		
INSTRUMEN	IT CHECK DA	TA:		•			
	ial #:		=NTU	N	ITU std. =	_υτν_	
pH Serial #: _ Solutions:		4.0 std.=	7.	0 std.=	1	0.0 std. =	
Conductivity Solutions:	Serial #:		u	mhos/cm=		umhos/cm=	
GENERAL IN	FORMATION	l:					
Weather cond	itions @ time o	of sampling:	Su.	93	ළු	the transfer	
Sample Chara	cteristics:		chi				
COMMENTS	AND OBSER	VATIONS:			13.24	ear	
certify that sa rotocals.	ampling proced	lures were in a	accordance wit	h all applic	able EPA, State	and Site-Specific	

Facility: Arch Chemical	Sample Point ID: E-1
Field Personnel: TP, JS	Sample Matrix:
MONITORTING WELL INSPECTION: Date/Time 6-6-0 / 1330	Cond of seal: () Good () Cracked () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below: Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION: Date / Time Initiated: 6-6-01 1350	Date / Time Completed: 6-6-7, 1415
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 0.64	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Peristaltic Pury
One (1) Riser Volume, Gal:	Dedicated: Q / N
Total Volume Purged, Gal:	Purged To Dryness Y
Purge Observations:	Start Turbo Finish SI. Turbout Brown
PURGE DATA: (if applicable)	. Black fellowing
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C)	pH Conduct Turb. Other Other (std units) (Umhos/cm) (NTU)

Time		Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	· Turb. (NTU)	Other	Other
1355	200			. 17.0	9.16	15360	177	-165	0.98
1400	1			164	9.74	15520	85.9	- 196	0.92
1405				16.4	9.83	15530	77.4	-260	0.89
1410				16.3	9.89	15590	56.0	-273	0.90
1415	1			16.4	9.91	15640	54.0	-280	0-88

Sampled & 1415 on G-G-07
MARIAN PAGE 1 OF 2

				D	
Time	1		Water Le	evel @ Sampling	, Feet:
od of Sampling:				Dedicated:	Y/N
phased/ layered:	() Yes	() No	If YES:	() light	() heavy
PLING DATA:					
Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()
MENT CHECK D	DATA				
#: 614662 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	614/62				0.0 std. =
L INFORMATIO	on:	<u> </u>	mhos/cm=	1000	umhos/cm
INFORMATIOn dimensions of times	N: of sampling:	78e u	mnos/cm=	1000	umhos/cm
L INFORMATIOn dimensional time that the conditions are times.	N: of sampling:	75e- U	mnos/cm=	1000	umhos/cm
AL INFORMATIO conditions @ time characteristics:	N: of sampling:		innos/cm=	1000	_umhos/cm
AL INFORMATIO conditions @ time Characteristics:	N: of sampling:		mnos/cm=	1000	umhos/cm
AL INFORMATIO conditions @ time Characteristics:	N: of sampling:		mnos/cm=	1000	umhos/cm
AL INFORMATIO conditions @ time characteristics:	N: of sampling:		mnos/cm=	1000	umhos/cm
RAL INFORMATION of conditions @ times Characteristics: ENTS AND OBSER that sampling proce	ON: of sampling: RVATIONS:				

Field Personnel: P.Litter T. Danne	Sample Point ID: Pw-15 Sample Matrix: Gw
Field Personnel: P.Litter T. PALMI-	Sample Matrix: Gw
MONITORTING WELL INSPECTION:	
Date/Time 7-6-07 1 /320	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: (4 Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'/
PURGE INFORMATION:	
Date / Time Initiated: 7.60 1 /325	Date / Time Completed: 7-6-07 1 /355
Surf. Meas. Pt: (4) Prot. Casing () Riser	Riser Diameter, Inches: 6.0
Initial Water Level, Feet: 6.33	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Personal Personal
One (1) Riser Volume, Gal:	Dedicated: Ø/ N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations:	Start AMS - Finish AMO -
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
335	200	6.38		. 16.6	8.88	12,570	8.36	-248	
340				17.0	9.98	12,720	3.84	-261	
3 45				16.8	10.16	12,730	4.32	-270	
350				16.7.	10.22	12,750	4.19	-275	
355				16.9	10.27	12,760	4.15	- 280	
3 93						100,100			

SAM 01-1 AT 1355 7-6.07

fel de

PAGE 1 OF 2

Facility: ARCH				Sample P	oint ID:	Ph-14		
Field Personr	nel:	P. Little	51	Sample M	latrix:	6w		
SAMPLING	INFORMATIO	ON:				(X) Grab ()	Composite	
Date/Time	6-8-07	1/	020	Water Lev	vel @ Sampling	, Feet:	4.82	
Method of Sa			PONT		_Dedicated:	Ø N		
Multi-phased	/ layered:	()Yes	K) No	If YES:	() light	() heavy	,	
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other (ON)	Other ()		
1023	19,2	8.08	6667	2.58	-267			
INSTRUMEN	T CHECK D	ATA:						
Solutions: Conductivity Solutions: GENERAL IN	Serial #: NFORMATIO	616806	<u>/660</u> U	ımhos/cm=	<u>00</u> 1	0.0 std. = umhos/cn	1=	
					7			
COMMENTS	AND OBSE	RVATIONS:						
certify that serotocals.	ampling proce	edures were in	accordance wi	th all applic	able EPA, State	and Site-Spec	ific	
Pate:	518107	Ву:	gre Le		Company:	57	۷.	
						-		

LeachField Form Revision 0

March 15,2002

LeachField Form Revision 0 March 15.2002

		FIELD OB	SLIVATIO	143		William 15,2002		
Facility:	ARCI	4		Sample Po	oint ID:	PW-13		
Field Personn	nel:	P.Little	51	Sample Ma	atrix:	6w		
SAMPLING I	NFORMATIO					(X) Grab () C	Composite	
			170	Water Lev	el @ Sampling	, Feet:	24.20	
					Dedicated:			
Multi-phased/	layered:	() Yes	MNO	If YES:	() light	() heavy		
SAMPLING		рН	Conduct	Turb.	Other	Other	7	
Time	Temp. (°C)	(std units)	(Umhos/cm)	(NTU)	1000)	()		
1125	14.1	7.17	2991	4.12	-113			
Solutions: Conductivity Solutions:				umhos/cm=		0.0 std. = umhos/cr		
Weather con	ditions @ time	of sampling:		(UN 8	72 °	·		
Sample Char	acteristics:		Cher				,	
COMMENTS	S AND OBSE	RVATIONS:						
I certify that protocals.	sampling proc	edures were in	accordance w	rith all appli	icable EPA, Sta	te and Site-Spe	ecific	

	INFORMAT		4	POINT ID PW-12			
/Time	6-11-07) . ,	1210	Water Le	vel @ Sampling	Feet:	5-49
od of Sa	ampling:	- Peress	tern Pu	8	Dedicated:	(TIN	
-phasec	i/ layered:	() Yes	KINO	If YES:	() light	() heavy	
	DATA:						
me	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (QQ)	
210	15.4	7.20	2227	0.98	-/32	8.80	
PIIMEN	T CHECK D	ATA					
lity Seri		NTU std.	=ити	N	TTU std. =	ити	
			7.0 KRI -) std.= 7.	10	.0 std. =	
ctivity						umhos/cm=	
	FORMATIO	•					
er cond	itions @ time	of sampling:	Son	75			
Chara	cteristics:		cle				
ENTS	AND OBSER	RVATIONS:					
		7		•			
							.,,
			•	•			
that sa	mpling proce	dures were in a	ccordance with	all annlies	NI TO A OLI	and Site-Specific	
•	111107		The state	an applici	able EPA, State	and Site-Specific	
9	11.101	Ву: _	ple for		Company:	577	
		F	AGE 2 OF 2				

Facility: ARCH CHEMICAL	Sample Point ID: Pw - 12
Field Personnel: PL, TP, 55	Sample Matrix: 6w
MONITORTING WELL INSPECTION:	
Date/Time 6-11-07 1142	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: 6-11-01 1145	Date / Time Completed: 6-11-07 1265
Surf. Meas. Pt: Prot. Casing () Riser	Riser Diameter, Inches: 6.0
Initial Water Level, Feet: 5.31	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Personater but
One (1) Riser Volume, Gal:	Dedicated: (VI N
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations: Low Flow	Start Clear Finish Clear
PURGE DATA: (if applicable)	Other I Other

Time	Purg	e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1150	200	5-49		15.6	7.37	2244	5,07	-117	1.13
1122				15.5	7.30	2280	2.60	-121	1.06
1200				15.3	7.28	2237	1.05	-128	0.97
1205	1	V		15.5	7:25	2230	101	- 171	8-95

	Λ ι	-	BSERVATION	ONS		Revision 0 March 15,2002		
Facility:	Arch	Chamical		Sample F	Point ID:	PW-11		
Field Person	nel:	TP.	JS	Sample N	Matrix:	GW		
SAMPLING	INFORMATION	ON:				() Grab () C	omposite	
Date/Time	6-6-0	/	040	Water Le	vel @ Sampling	g, Feet:	22.16	
Method of Sa	ampling:	Peris	MI	Dedicated: Y / N				
		() Yes	() No	If YES:	() light	() heavy		
SAMPLING Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other		
1048	16.4	6.97	3691	108.9	-68			
Solutions: pH Serial #:		4.0 std.=	=NTU	0 std.=_	VTU std. =			
pH Serial #: Solutions: Conductivity		4.0 std.=	7.	0 std.=	-	0.0 std. =		
pH Serial #: _ Solutions: _ Conductivity Solutions: _ GENERAL II	Serial #:	N:	7.	0 std.=	1	0.0 std. =	-	
pH Serial #: _ Solutions: _ Conductivity Solutions: _ GENERAL II	Serial #: NFORMATIO ditions @ time		7.	0 std.=	1	0.0 std. =		
pH Serial #: _ Solutions: _ Conductivity Solutions: _ GENERAL II Weather cond	Serial #: NFORMATIO ditions @ time acteristics;	N: of sampling: Cloudy	7.	0 std.= mhos/cm=	1	0.0 std. =		
pH Serial #: _ Solutions: _ Conductivity Solutions: _ GENERAL II Weather cond	Serial #: NFORMATIO ditions @ time	N: of sampling: Cloudy	7.	0 std.= mhos/cm=	1	0.0 std. =		
pH Serial #: _ Solutions: _ Conductivity Solutions: _ GENERAL II Weather cond	Serial #: NFORMATIO ditions @ time acteristics;	N: of sampling: Cloudy	7.	0 std.= mhos/cm=	1	0.0 std. =		
pH Serial #: Solutions: Conductivity Solutions: GENERAL II Weather cond Sample Chara COMMENTS	Serial #: NFORMATION ditions @ time acteristics: AND OBSER	N: of sampling: Clouds RVATIONS:	Clouds,	ostd.=mhos/cm=	slight	0.0 std. =		

AF 4

MPLING	INFORMAT	ION:		POINT II			
		1 1		Water Le	vel @ Sampling,	Feet:	6.77
nod of S	ampling:	Perisan	TIL		_Dedicated;	ØN.	
i-phase	d/ layered:	() Yes	6 No	If YES:	() light	() heavy	
	DATA:		7.18			Fig.	
ime	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other (QQ)	
035	15.4	7.17	10,000	244		. 93	
	NT CHECK D						
erial #:	311/	~	7.		TU std. =		
uctivity	Serial #: 37.5		u			umhos/cm=	
	NFORMATIO	1					
ner cond	litions @ time	of sampling:	Sun	U 83°			
le Chara	acteristics:					•	
MENTS	AND OBSER	RVATIONS:					
							,
		•					-
/ that sa	ampling proce	dures were in a	ccordance with	n all applica	able EPA, State	and Site-Specific	
6	18167	Ву:	MZA		Company: _	577	

PAGE 2 OF 2

Facility:	AR	C 14	CHEMICA	۷.	Sample	Point ID:	Pw-10 Sw			
			PL, TP, 5.		Sample	e Matrix:	5W			
MONITO	RTING V	VELL I	NSPECTION:							
Date/Time	6-	8-07	1 10	12	Cond	of seal: () Good () None	() Cracked e () Buried		%	
Prot. Casi	ng/riser	height <u>:</u>	· · · · · · · · · · · · · · · · · · ·		Cond o		() Loose	#Flush W		
If protcas	ing; dep	th to ris	ser below:				() Damage	<u> </u>		
Gas Meter	r (Calibra	ation/ R	eading):	% Gas:		% LEL:	1			
Vol. Organ	nic Meter	r (Calib	ration/Reading):	Volatil	es (ppm)	I			
PURGE	NFORM	ATION	1:							
Date / Time Initiated: 6-8-07 1 /015					Date /	Time Completed	i:	6-8-0 1 1630		
Surf. Mea	s. Pt: ()	Prot Ca	asing	Riser	Riser I	Diameter, Inches	6.0			
Initial Wa	ter Level	, Feet:	6.77		Elevat	ion. G/W MSL:	,	-	*	
Well Tota	l Depth,	Feet:			Method of Well Purge: Person The P					
One (1) R	iser Volu	ıme, Ga	ıl:		Dedicated:					
Total Vol	ume Purg	ged, Ga	1;		Purge	d To Dryness	YN			
Purge Ob	servatio	ns:	Low Flow		Start	Yellow Tour	Finish	Yellow 7	int	
PURGE					-	•				
Time	Purge (gpm/		Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00	
1020	200	6.79		16.1	7.09	10,000	31.6	-109	1.06	
1625				15.5	7.13	10,010	29.1	-111	.99	
1030	V	1		15.6	7.15	10,030	26.7	-116	.95	
					•					
				4						

MPLING	INFORMAT	ION:	10	POINT II	D		
⊭∕Time		1		Water Le	vel @ Sampling,	Feet:	
nod of S	ampling:			Dedicated:		Y / N	
i-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
	DATA:						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (Oc)	
RUME	NT CHECK D	ATA:		A	02		
erial #:	614162	4.0 std.= \(\frac{4}{3}\)	101 7.1 KRI -	20 N 0 std.= 7.7.7.	TTU std. = $\frac{20}{10}$	NTU .0 std. =	
	3715		u	mios/cm=		umhos/cm=	
ERAL II	NFORMATIO	N:			100		
er cond	litions @ time	of sampling:					
e Chara	cteristics:						
MENTS	AND OBSER	RVATIONS:					
	•						-
-	x						
-				· · · · · · · · · · · · · · · · · · ·			-
that sa	ampling proce	dures were in a	ccordance with	all applica	able EPA, State	and Site-Specific	
_	1 1	Ву:			Company:	577	_

Facility: ARCH CHEMICAL	۷	Sample	Point ID:	ess -W			
Field Personnel: PL, TP, 53	r	Sample	e Matrix:	SW			
MONITORTING WELL INSPECTION:	20	0	of seal: N Good	// Cenekad		%	
Date/Time 6 1 10	20	Cond		() Buried	•	/6	
Prot. Casing/riser height:		Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged					
If prot.casing; depth to riser below:							
Gas Meter (Calibration/ Reading):	% Gas:		% LEL:	- 1			
Vol. Organic Meter (Calibration/Reading):	Volatil	es (ppm'				
PURGE INFORMATION:						INIC	
Date / Time Initiated: 6-13-07	025	Date /	Time Completed	i: 6	-13.07 , 1045		
Gurf. Meas. Pt: () Prot. Casing	Riser	Riser I	4,0				
Initial Water Level, Feet: 31.1	}	Elevat	01.14 []				
Well Total Depth, Feet:		Metho	d of Well Purge:		Bladde	tung	
One (1) Riser Volume, Gal:		Dedica	ated:	Y. AN			
Total Volume Purged, Gal:		Purge					
Purge Observations: Low Flow		Start SI. Tunhal Finish			St. Tundor		
PURGE DATA: (if applicable)			spedy		of was	c stears	
Time Purge Rate Cumulative (gpm/htz) Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00	
1030 M/mm W 3123	14.4	7.17	2232	35.7	-160	0.37	
1035 31.24	143	7.03	2260	40.8	-167	0.31	
10001	14.4	7.00	2264	38.7	-170	0.29	
1045 1	14.5	6:99	2266	36.2	-172	0.27	
CILO 1045 on	6-13-07						

Sampled @ 1045 on 6-13-07

A PAGE 1 OF 2

∀Time				POINT ID			
				Water Le	vel @ Sampling,	Feet:	
i-phased/ layered: (() Yes	() No	If YES:	_ Dedicated;	Y / N () heavy	
APLING !	DATA:				()	() neavy	
ime	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)	
RUMEN	T CHECK E	DATA:					
dity Seria	al #:	NTU std. :	=NTU	N	TTU std. =I	VTI I	
ions:	3961	12					
ions:	KQ1-	4.0 std.=	KR1 - 7.0) std.= 7.	10,	0 std. =	
	Serial #: 37/5		u	nhos/cm=		umhos/cm=	
ERAL IN	FORMATIO						
MENTS A	AND OBSE	RVATIONS:					
			•			<u> </u>	
that san	npling proce	dures were in a	ccordance with	all applica	able EPA, State a	and Site-Specific	
	1 1	By:			Company:		
		b	ACESOES			3/(

Facility: ARCH CHEMICAL	Sample Point ID: Ness-E						
Field Personnel: PL, TP, JS	Sample Matrix: 600						
MONITORTING WELL INSPECTION: Date/Time (0-13-07) / 110 4	Cond of seal: A Good () Cracked % () None () Buried Cond of prot. Casing/riser: () Unlocked () Good () Loose A Flush Mount () Damaged						
Prot. Casing/riser height							
If prot.casing; depth to riser below:							
Gas Meter (Calibration/ Reading): % Gas:	% LEL:						
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) 1						
PURGE INFORMATION:							
Date / Time Initiated: (-1307 / 1110	Date / Time Completed: 6-13-07 , 1130						
Surf. Meas. Pt: () Prot. Casing XRiser	Riser Diameter, Inches: 4-0						
Initial Water Level, Feet: 9.18	Method of Well Purge: Blade Purge						
Well Total Depth, Feet:							
One (1) Riser Volume, Gal:	Dedicated: Y/W						
Total Volume Purged, Gal:	Purged To Dryness Y / (5)						
Purge Observations: Law Flow	start S1- Tubo Finish Clean						
PURGE DATA: (if applicable)							
Time Purge Rate Cumulative Temp	(std units) (Umhos/cm) (NTU) Off DO						
1115 MIMM WE 17.1	6.75 3098 18.29 17 0.42						
1120 9.85 17.1	6.58 3137 225 -1 0.34						
1125 9.87 17.2	2:00 02:						
1130 1 172	1 00 7 1						
0 1123 810 6-15	2.07						

Sampled @ 1130 on 6-13-07
PAGE 1 OF 2

/Time /				POINT ID			
				Water Level @ Sampling, Feet:			
od of Sa	•				_Dedicated:	y / N	
		() Yes	() No	If YES:	() light	() heavy	
IPLING I							
ime	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
	•						
RUMEN	T CHECK D	ATA:					
		NTU std. =	"ИТU	N	TU std. =	_NTU	
rial #:		4.0 std.=	7.0	std.=	1	0.0 std. =	
ons:	erial #:		un	nhos/cm=_		umhos/cm=	
RAL INF	ORMATIO	N:					
er condit	ions @ time	of sampling:					
3 Charact	teristics:						
IENTS A	ND OBSER	RVATIONS:					
	·						
	1						
			•				
that sam	pling proced	dures were in ac	cordance with	all applical	, ole EPA, State	and Site-Specific	
	1	Ву:			Company:		
		P	AGE 2 DE 2				

Facility: Arch Chemical					Sample Point ID: MW-127						
Field Personnel: TP, JS				Sample Matrix:							
	RTING I	WELL II	NSPECTION:	228	Cond o	f seal: A Good			%		
Prot. Casing/riser height:				() None () Buried Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged							
If proteas	ing; de	oth to ris	ser below:				() ==				
Gas Meter	(Calibr	ation/ R	eading):	% Gas:	1	% LEL:					
Vol. Organ	nic Mete	r (Calib	ration/Reading):	Volatile	es (ppm)	1				
PURGEI	NFORM	MATION	:						.2001		
Date / Time Initiated: 6-7-07, 1238					Date / Time Completed: 67-07 , 1258						
urf. Mea	urf. Meas. Pt: () Prot. Casing & Riser				Riser Diameter, Inches:						
Initial Water Level, Feet: 3.7					Elevation. G/W MSL:						
Well Tota	Well Total Depth, Feet: 11.25				Method of Well Purge: Peristaltic Pump						
One (1) R	iser Vol	ume, Ga	ıl:		Dedica	ited:	NIE		•		
Total Volume Purged, Gal:				Purged To Dryness Y							
Purge Ob	servatio	ons:			Start	Clean	Finish	Clen			
PURGE	DATA:	(if appli	icable)	1		•					
Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other ().O.		
1243	M/mn 50	4.57		. 175	7.47	4571	4,77	-203	1.13		
1248	-	4.60		17.6	7.42	4486	291	-192	1.07		
1253		4.62		17.5	7.43	4399	2.87	-189	1.04		
1258	L	4.63		17.6	7:39	4365	3.17	-190	1.02		
				•							
T											

Sampled & 1258 on 6-7-07
PAGE 1 OF 2

Field Form Revision 0

/IPLING I	INFORMAT	TION:		POINT I	D	
√Time _		1		Water Le	vel @ Sampling	, Feet:
nod of Sai	mpling:			4	Dedicated:	Y /N .
i-phased/	layered:	()Yes	() No	If YES:	() light	() heavy
IPLING D	DATA:					
ime	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)
	T CHECK E	71				
dity Seria	394		=ити	20,	TU std. = 20	ити
∍rial #: ions:	_	4.0 std.= 4.0	N 7.	0 std.=_7	01 10	0.0 std. =
uctivity S	erial #:	614162		mhos/cm=	1000	umhos/cm=
	FORMATIO	ON: e of sampling:				
le Charac	teristics:					
MENTS A	AND OBSE	RVATIONS:				
	_					
			· · · · · · · · · · · · · · · · · · ·			
						Property of the second
		•	•	V		
		-				
that sam	npling proce	edures were in a	ccordance wit	h all applic	able EPA, State	and Site-Specific
	1 1	Ву: _			Company:	577
		F	PAGE 2 OF 2		7	

Facility:	A	RCH	CHEMICA	L	Sample	e Point ID: N	W-114				
Field Pers	onnel:		PL, TP 5.	3	Sample	e Matrix:	6W				
MONITO	-		INSPECTION:	gas,							
Date/Time	9 6	-14-07	1	108	Cond	of seal: (*) Good (*) None	() Cracked e () Buried		%		
Prot. Cas	ing/rise	er height			Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged						
If prot.cas	sing; d	epth to ri	ser below:	-			(, ====================================		4		
Gas Mete	r (Calib	oration/ F	Reading):	% Gas:		% LEL:	- , -				
Vol. Orga	nic Me	ter (Calib	oration/Reading	g):	Volatil	es (ppm) —	1				
PURGE	NFOR	MATION	1 :								
Date / Tin	ne Initi	ated: 6	14.07, 9	33	Date /	Time Completed	i: 6	-14-07,	253		
Surf. Mea				K Riser	Riser I	Diameter, Inches	5:	2	.0		
Initial Wa	ter Lev	vel, Feet:	10.72	-	Elevat	ion. G/W MSL:	,				
Well Tota	l Depti	h, Feet:			Metho	d of Well Purge:		Peristaliz	Pump		
One (1) R	iser Vo	olume, G	al:		Dedica	ated: (3.1 N				
Total Vol	ume Pı	urged, Ga	al:	4	Purge	d To Dryness	Y 10				
Purge Ob	servat	ions:	Low Flor		Start	Cleur	Finish	Cle-			
PURGE						•		·			
Time	(gp	m/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00		
938	75 75	11.12		15.8	711	2407	17.77	16	1.08		
943	1	11.31		15.4	7.09	2134	12.09	18	1.03		
948		11.39		15.3	7.03	2097	8.43	18	1.04		
953	I	1		15.3	7:04	2058	5.94	90	1.00		

Sampled @ 953 on 6-14-07
PAGE 1 OF 2

Field Form Revision 0 03/14/02

WPLING INFORM	MATION:		POINT I	D	
∌Time	1		Water Le	evel @ Sampling	Fact.
nod of Sampling:					
i-phased/ layered	: () Yes	() No	If YES:		
Water Level @ Sampling, Feet: Dedicated: Y / N PLING DATA: Temp. pH (*C) (std units) (Umhos/cm) (NTU) (OR/) (OO) RUMENT CHECK DATA: Ity Serial #: NTU std. = NTU NTU std. = NTU Desired #: 4.0 std. = 7.0 std. = 10.0 st					
		Conduct	Turb	T OH	
(°C)	(std units)	(Umhos/cm)			
	27/25/10				100
•					
RIMENT CHEC	V DATA.				
dity Serial #:	NTU std.	= NTH	6-6	TTI - 4 4	
ions:39	1/2		N	I U std. =	NTU
			,		
ions: Fo	4.0 std.=	7.0	std.=	10.	.0 std. =
AQ1	- 7	KRI-	7.	19/	
uctivity Serial #:			nhas/s		
ons: 37/	5		moscm=_		umhos/cm=
	Bs.	•	=		
TO TE IN OKNIA	ION:				
er conditions @ ti	me of sampling:				
ondidottisuts.				-	
MENTS AND OBS	SERVATIONS:				
	6 5 5 111				<u> </u>
		*			
that compli-					1-1
uidi Sambiina pre	cedures were in a	ccordance with	all applica	ble EPA. State a	nd Site-Specific
.ls.					
.ls.					ina one-opecine
.ls.	Ву:			Company:	one specific

Facility: ARCH CHEMICAL		Sample	Point ID: M	W-10G			
Field Personnel: PL, TP, JS		Sample	Matrix:	SW			
MONITORTING WELL INSPECTION: Date/Time 6-13-07 / 113	58	Cond of seal: A Good () Cracked () None () Buried					
Prot. Casing/riser height:	-	Cond o	of prot. Casing/ri		Flush N		
If prot.casing; depth to riser below:				() Damagou			
Gas Meter (Calibration/ Reading):	6 Gas:		% LEL:				
Vol. Organic Meter (Calibration/Reading)	:	Volatile	es (ppm)				
PURGE INFORMATION:					•		
Date / Time Initiated: 6-13-07, 12	05	Date /	Time Completed	1: 6	-13-07,	1250	
	*∤Riser	Riser I	Diameter, Inches		- 2	.0	
Initial Water Level, Feet: 10.04		Elevati	on. G/W MSL:				
Well Total Depth, Feet:			d of Well Purge:		Bladde	in Pump	
One (1) Riser Volume, Gal:		Dedica		PIY		٠	
Total Volume Purged, Gal:		Purge	i To Dryness	YIQ			
Purge Observations: Low Flow	,	Start	Turbor	Finish	Clean		
		_	. Orange		w/ orange s	perke	
PURGE DATA: (if applicable) Time Purge Rate Cumulative	Temp.	рН	Conduct	Turb.	Other	Other	
(gpm/htz) Volume	(c) 13.2	(std units)	(Umhos/cm)	(NTU) 82.3	one -97	1.27	
1210 280 1070		7.27		67.2			
1215 1088	13. 1	7.13	2387		-100	0.64	
1220 200 1091	13.1	7.10	2403	54.8	-107	0.60	
1225	13.0	7.07	2468	32.7	-102	0.58	
1230]	13.1	7.1)	2503	18.35	-108	0.57	

Sampled @ 1230 on 6-13-07

PAGE 1 OF 2

Field Form Revision 0 03/14/02

	INFORMAT			POINT I	D_MW-10	4	
		7			vel @ Sampling		7,57
nod of S	ampling:	Paristi	arth		Dedicated:	YD	
i-phased	d/ layered:	() Yes	₩ No	If YES:	() light	() heavy	
1PLING							
îme	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)	
1135	16.4	7.33	875	283	-85	0.87	
RUMEN	T CHECK D	ATA:					
dity Seri	ial #: <u>392s</u> 390/.	NTU std. :	=ити	20 N	TU std. = 20	ити	
rial #: _ ions: _	616806 KQ1-	4.0 std.= 4/	00 7.0 KRI - 7) std.=	200 10	.0 std. =	- 400
uctivity :	Serial #:	616806	100 au	nhos/cm=	1000	umhos/cm=	
	FORMATION	V:					
	itions @ time		Sun	87°			
e Chara	cteristics:		TUIBIO				
MENTS	AND OBSER	VATIONS:					
							-
			· · · · · · · · · · · · · · · · · · ·				
		. •	•				
that sauls.	mpling proced	fures were in a	ccordance with	all applica	able EPA, State	and Site-Specific	
6	1121 07	Ву:	pe de		Company:	517	
		P	AGE 2 OF 2				

Facility: ARCH	CHEMICAL		Sample	Point ID:	46-104		
Field Personnel:	PL, TP, JS		Sample	Matrix:	6W		
MONITORTING WELL IN	SPECTION:						
Date/Time 6-12-07	1 110	00	Condio	of seal: () Good () None	() Cracked Buried		%
Prot. Casing/riser height:	:		Cond	f prot. Casing/r	iser: () Unic () Loose () Damaged	K Flush N	ood Kount
If prot.casing; depth to rise	er below:				()		
Gas Meter (Calibration/ Re	ading):	& Gas:		% LEL:	1		
Vol. Organic Meter (Calibra	ation/Reading)):	Volatile	es (ppm)	1		
PURGE INFORMATION:							
Date / Time Initiated: 6-1	12-01 110	5	Date /	Time Completed	d:	6-12-07 1	1130
Surf. Meas. Pt: () Prot. Cas	sing)	Riser	Riser I	Diameter, Inches	5:	2.0	
Initial Water Level, Feet:	7.43		Elevati	on. G/W MSL:			
Well Total Depth, Feet:			Metho	d of Well Purge		Perso	erec
One (1) Riser Volume, Gal	•		Dedica	ited:	YIN		
Total Volume Purged, Gal:	•		Purge	d To Dryness	YIN		
Purge Observations:	Low Flow	/	Start	TUNBID	Finish	TUABI	0
PURGE DATA: (if applic	cable)						1
Time Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	·Turb. (NTU)	Other	Other 00
1115 Myn 7.57		17.1	7.49	892	400	- 76	1.07
1120		16,9	7.40	887	357	-80	.98
1125		16,4	7.37	880	300	-85	.94
1130		16,2	7:35	877	289	-85	.90
				-			

MPLING	INFORMATI			POINT I	D_mw-1	03	
∌/Time	6-11-0	1/	315	Water Le	vel @ Sampling,	Feet:	2.06
hod of Sa	ampling:	Perist	HERE PUMP	=-	_Dedicated:	De	
	V layered:				() light	() heavy	
IPLING	DATA:						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)	
13/5	21.4	7.15	680	0.8	-99	0.83	
RUMEN	IT CHECK D	ATA:					
idity Seri	al#:	NTU std. :			TU std. =	NTU	
ions:	KQ1-	4.0 \$10.=	KR1 - 7.0) std.= 7.	10.	.0 std. =	<i>a</i>
uctivity s						umhos/cm=	
	FORMATION		•				
er cond	itions @ time	of sampling:	SON	800			. *
le Chara	cteristics:		lea			. •	
MENTS .	AND OBSER	EVATIONS:					77
		•					•
r that sai	mpling proced	dures were in a	ccordance with	all applie	able EPA, State i	and Site C	
	11107			трупо	-DIG EI A, GIALE I	anu site-specifi	C
			ACERDEA		Company:	517	

Facility:	Ar	2011	CHEMICA	۲	Sample	Point ID:	W 103	-	
Field Pers			PL, TP, J.		Sample	Matrix:	5W		
MONITO	RTING	WELL II	NSPECTION:						
Date/Time	6-	11-67	1 12	747	Cond o	f seal: 🙀 Good () None	() Cracked e () Buried		%
Prot. Casi	ng/rise	r height:			Cond		iser: () Unic () Loose () Damaged	() Flush k	ood fount
If prot.cas	ing; de	pth to ris	ser below:					-	
Gas Mete	r (Calib	ration/ R	eading):	% Gas:	1	% LEL:	I		
Vol. Orga	nic Met	er (Calib	ration/Reading	3):	Volatile	es (ppm)	1		
PURGE	NFOR	MATION	i:						
Date / Tin	ne Initia	ited: 6	11.07 12.	50	Date /	Time Completed	f:	6-11-07 1	1310
			asing		Riser I	2.0			
			1.38		Elevati	on. G/W MSL:			
Well Tota					Metho	d of Well Purge:		Per. STAL	TH /ON
One (1) R					Dedica	ited: (T) N		,
Total Vol					Purge	d To Dryness	YIN		
Purge Ob			Low Flor	J	Start	che-	Finish	cle	
PURGE				- 4					
Time	Purg		Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1255	150	ML 1.79	Volume	23.0	7.44	707	2,24	-/13	1.06
1300	100	1.82		21.5	7.29	687	1.56	-110	0.99
1305		1.87		21.4	7.19	690	0.98	-107	0.96
1310	1	1.92		21,5	7:18	688	0.94	-100	0.95
						(a)		- '-	
									-

WPLING INFORM	MATION:		POINT I	F-3		
*/Time 6	7-07 , Pens	1008 Pm		evel @ Sampling Dedicated:	, Feet:	5.97
i-phased/ layered IPLING DATA:	l: () Yes	() No	If YES:	() light	() heavy	
ime Tem (°C)) (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OK)	Other (DO)	
13.6			7	18	1.34	
dity Serial #: 39 ions: rial #: 616806 ons:	25-5207 NTU std. 20-3	9612	<u>20</u> N	TU std. = <u>70</u>	NTU).0 std. =	
activity Serial #:	C16806 1000-37	1000	mhos/cm=	1000	umhos/cm=_	
er conditions @ 6	time of sampling:	Clouds,	60°	5 Ne vles		
MENTS AND OB			<i>a</i> -			
that sampling priss.	ocedures were in a	ccordance with	all applica		and Site-Specific	
		AGEROFA		Company:		

	. A .		FIELD (DBSERVA						
Facility:	Arch	Chemica)		Sample	Point ID:	E-3				
Field Perso	onnel:	TP, JS		Sample	Matrix:	GW				
MONITOR	RTING WELL I	NSPECTION:								
Date/Time_	66-07	11	1117	Cond of seal: () Good (X Cracked () None () Buried						
Prot. Casi	ng/riser height			Cond o		ser: () Unio () Loose () Damaged	() Flysh N			
If prot.cas	ing; depth to ri	ser below:								
Gas Meter	(Calibration/ R	leading):	% Gas:		% LEL:					
Vol. Organ	nic Meter (Calib	ration/Reading	1):	Volatile	es (ppm)					
PURGE	NFORMATION	i:			•					
Date / Tim	e Initiated: (607, 11	20	Date /	Time Completed	l:	6-6-07,	1130		
Gurf. Mea	s. Pt: () Prot. C	asing	X Riser	Riser D	Diameter, Inches	:				
Initial Wat	ter Level, Feet:	5.53		Elevati	on. G/W MSL:	- ,		-0		
Well Total	Depth, Feet:		,	Method of Well Purge: Peristaltic Pung						
One (1) R	iser Volume, G	al:		Dedicated:						
Total Volu	ıme Purged, G	al:		Purge	To Dryness (DIN				
Purge Ob	servations:			Start	SI. Tunsol.	Finish	Class u	1 Oans		
PURGE I	DATA: (if appl	icable)			. Draye specky		5	rentes		
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00		
1125	(уриних)	Volume	13.9	7.37	1236	35.7	-0	1.42		
1130			14.1	7.22	1216	22.3	521	1.29		
1133	No				1719					
1137	- 55									
7										

APLING INFOR	MATION:		POINT I	D		
/Time	1		Water Le	vel @ Sampling,	Feet:	
od of Sampling:				Dedicated:	Y / N	
i-phased/ layered	l: () Yes	() No	If YES:	() light	() heavy	
PLING DATA:						
ime Tem		Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
					•	
RUMENT CHEC	K DATA:					
dity Serial #: ons:	NTU std. :		N	TU std. =!	VTU	
rial #: ons:	4.0 std.=	7.0) std.=	10.	0 std. =	
			mhos/cm=		umhos/cm=_	
RAL INFORMA		• • • •				
		7 1				
	time of sampling:					
Characteristics:	•					
IENTS AND OB	SERVATIONS:					
•	-,					
		at			,	
	•	•				
					•	
that sampling pr	ocedures were in a	ccordance with	all applica	ble EPA, State a	nd Site-Specific	
1 1	Ву:					
	Jy			Company:		
	P	AGE 2 OF 2				

Facility:	A	RC11	CHEMICA	2L	Sampl	le Point ID: /	62-101			
Field Per	sonnel		PL, TP, 3	3	Sampl	le Matrix:	6W			
MONITO	ORTING	WELL	INSPECTION	:						
Date/Tim	e 6.	13-0	7 1/2	131	Cond	of seal: (4) Good () Non	i () Cracked le () Buried		%	
Prot. Cas	sing/rise	er height	•		Cond	of prot. Casing/	riser: () Unl () Loose () Damage	() Flush		
If prot.ca	sing; d	epth to r	iser below:				() Damage	-		
Gas Met	er (Calit	oration/ F	Reading):	% Gas:		% LEL	: 1			
Vol. Org	anic Me	ter (Calib	oration/Readin	g):	Volati	les (ppm)	1	_		
PURGE	INFOR	MATIO	٧:							
Date / Ti	me Initia	ated: 6	-12-0 1 12	35	Date /	Time Complete	d:	6-13-07	IRST	
Surf. Me	as. Pt: () Prot. C	asing	K Riser	Riser	Diameter, Inche	s:	2.0		
Initial Wa	ater Lev	el, Feet:	12.98		Elevation. G/W MSL:					
Well Tot	al Depth	, Feet:			Metho	d of Well Purge	:	ferist.	fet / L	
One (1) I	Riser Vo	lume, G	al:		Dedicated: (F) N					
Total Vo	lume Pu	ırged, G	al:	•	Purge	d To Dryness	YIN			
Purge O	bservati	ons:	Low Flow	_	Start	Cla.	Finish	der		
PURGE										
Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00	
1240	150	13.13		16.9	7.01	364/	3.78	23	1.17	
1245			,	16.7	7.03	3704	3.76	23	1.15	
1250				16.5	7.00	3710	2.88	20	1.11	
1255	1	V		16.7	7,00	3715	2.84	18	1.07	
								,		
					1					

	INFORMAT			POINT I	1		
/Time	6-13-07	1/	1300	Water Le	vel @ Sampling	, Feet:	13.13
od of S	ampling:	- fens	STACTIC		Dedicated:	ØIN -	13.17
		()Yes		If YES:	() light	() heavy	
	DATA:						
ime	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (OO)	
306	16.5	7.00	37/7	2.25	17	1.05	
						200 7	
dity Ser	NT CHECK D. ial #:		=NTU		ITU std. =	ити	
rial #: _ ons: _	KQ1-	4.0 std.=	KR1 -	7.).0 std. =	
ons:	Serial #:		u	mhos/cm=		umhos/cm=	
RAL IN	NFORMATION	V :					
er cond	litions @ time	of sampling:	5	w 83°			
e Chara	cteristics:		char				**
IENTS	AND OBSER	VATIONS:	rd -	*			
		•	•				
that sa	impling proces	furne ware to					
ls.		ures were in a	ccordance with	all applica	able EPA, State	and Site-Specific	F-10-4
6	1/3/07	By:	pr do		Company:	577	
		P	AGE 2 OF 2				

Facility:	A	RCH	CHEMICA		Sampl	e Point ID:	2-102		
Field Pers	sonnel:		PL, TP. J.	3	Sampl	e Matrix:	6W		
MONITO	RTING	WELL	INSPECTION						
Date/Time	6-	13-0	1 /	3/3	Cond	of seal: (x) Good () Non	() Cracked e () Buried		%
Prot. Cas	ing/rise	er height			Cond	of prot. Casing/r	riser: () Unl () Loose () Damage	() Flush	
If prot.ca	sing; d	epth to ri	ser below:		D1 241 - 144		() Damage		
Gas Mete	r (Calib	oration/ F	Reading):	% Gas:		% LEL:	1		
Vol. Orga	nic Me	ter (Calib	oration/Reading	3):	Volatil	es (ppm)	1		
PURGE	INFOR	MATIO	٧:						
Date / Tin	ne Initi:	ated: (-13.01 13	17	Date /	Time Completed	d:	6-13-07	1335
Surf. Mea	s. Pt: () Prot. C	asing	Riser	Riser	Diameter, Inches	5:	2.0	
Initial Wa	ter Lev	el, Feet:	20.2	6	Elevat	ion. G/W MSL:			
Well Tota	l Depth	, Feet:			Metho	ra			
One (1) R	iser Vo	lume, G	al:		_ Dedicated:				
Total Vol	ume Pu	irged, Ga	al:		Purge	d To Dryness	Y 1.60		
Purge Ob	servati	ions:	Low Flow	_	Start	Clea	Finish	Cle.	
PURGE									
Time	(gpi	m/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1320	150	20.41		15.4	6.59	4309	1.73	7	1.07
1325				15,6	6.70	4320	1:37	8	1-01
1330				15.2	6.77	4338	1,21	8	0.97
1335	V	6		15.0	6:75	4339	1.17	7	0-95

IPLING	INFORMAT	ION:		POINT I	40		
/Time		-07 1		Water Le	vel @ Sampling	, Feet:	20.41
od of Sa	ampling:	Perist.	ACTIC		_Dedicated:	A) N	
-phased	/ layered:	() Yes	PNO	If YES:	() light	() heavy	
PLING	DATA:						
ime	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (00)	
340	12:1	6.77	4342	1.09	8	0.93	
RUMEN	T CHECK D	ATA:					
dity Seri	al#:	NTU std.	=ити		TU std. =	ити	
rial #:			7.0		1		
	KQ1-	4	KR1 -	0 std.= 7	10	.0 std. =	
activity S	Serial #:			mhos/cm=		umhos/cm=	
	FORMATIO		•				
		of sampling:		Surv E	75		
e Charac	cteristics:		cle-	• •		•	
MENTS	AND OBSER	RVATIONS:					
1-17		•			· · · · · · · · · · · · · · · · · · ·		
							•
that sar	mpling proce	dures were in a	ccordance with	all applic	able EPA, State	and Site-Specifi	c
						C' MI	
9	1/3107	By:	The Zi		Company:	(7)	

PAGE 2 OF 2

Facility:	AI	RCH	CHEMICA	د	Sample	e Point ID:	12-103		
Field Pers	sonnel:		PL, TP J.	5	Sample	e Matrix:	6W		
MONITO	RTING	WELL I	NSPECTION:						•
Date/Time	6-	13.0	1 /3	58	Cond	of seal: () Good () None	() Cracked e () Buried		%
Prot. Cas	ing/rise	r height			Cond	of prot. Casing/r	iser: () Unio () Loose () Damaged	() Flush M	Mount
If protcas	sing; de	pth to ri	ser below:				Damage.	CN P	
Gas Mete	r (Calib	ration/ R	eading):	% Gas:		% LEL:	1		
Vol. Orga	nic Met	er (Calib	ration/Reading	3):	Volatil	es (ppm'	1		
PURGE	INFOR	MATION	l:					*	
Date / Tir	ne Initia	ited: 6-	13-01/1/4	00	Date /	Time Completed	i:	6-13-071	1420
Surf. Mea	Surf. Meas. Pt: () Prot. Casing (Riser				Riser I	5:	2.0)	
Initial Wa	ter Lev	el, Feet:	12.08		Elevat				
Well Tota	l Depth	, Feet:			Metho	actic			
One (1) F	liser Vo	lume, G	al:		Dedica	ated: (TIN N		
Total Vol	ume Pu	rged, Ga	d:		Purge	d To Dryness	YIM		
Purge Ol	servati	ons:	Low Floi	_	Start	cler	Finish	Clei-	
PURGE	DATA:	(if appl	icable)	•	-				
Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	·Turb. (NTU)	Other	Other 00
1405	150	12,15		14.7	6.77	5250	1.67	106	1.22
1410	1	12113		14.9	6.80	5199	1.01	96	1.17
1415				14.9	6.83	5186	0.90	94	1.09
1420				14.7	6:86	5178	0.85	92	1.00
1/2	A	A		1 1/ /					-
		-							

IPLING	INFORMAT	ION:		POINT I	3		
/Time	6-13-	07 1	1425	Water Le	vel @ Sampling,	Feet:	12.15
od of S	ampling:	Pens	PACTIC		_Dedicated:	(Y) N	7.3
		() Yes	#No	If YES:	() light	() heavy	
IPLING	DATA:						
īme	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (Oc)	
425	14.5	6.88	5175	0.83	90	0.97	
-							
RUME	NT CHECK D	ATA:					
	ial #:	NTU std.	=ити		TU std. =	טדט	
rial #: _ ions:	KQ1-	4.0 std.=	KR1 -	0 std.=	10	.0 std. =	
uctivity	Serial #:		u			umhos/cm=	-
	NFORMATIO	1	•				
ier cond	litions @ time	of sampling:	Sun	86°			
e Chara	acteristics:		Clear				
MENTS	AND OBSER	RVATIONS:					
		•					
		٠	•				
/ that sa	ampling proce	edures were in a	accordance wit	h all applic	able EPA, State	and Site-Specif	īc
	61010	By:	Me Ko		Company:	577	4
			PAGE 2 OF 2				

Facility:	A	RCH	CHEMICA	ac.	Samp	le Point ID:	62-109	1			
Field Per	rsonnel:		PL, TP 3	LZ .	Samp	le Matrix:	6W				
MONITO	ORTING	WELL	INSPECTION	:							
Date/Tim	ie 6-	13-07	1 /	151	Cond of seal: (XGood () Cracked () None () Buried						
Prot. Cas	sing/rise	er height			Cond	of prot. Casing/	riser: () Un () Loose () Damage	de Flush			
If protea	asing; d	epth to r	iser below:				() Damage	·u			
Gas Met	er (Calib	oration/ F	Reading):	% Gas:		% LEL	: 1		_		
Vol. Org	anic Me	ter (Calib	oration/Readin	g):	Volati	les (ppm)	1				
PURGE	INFOR	MATIO	٧:					;			
Date / Ti	me Initia	ated: 6	(-13-01 115	3-	Date /	Time Complete	d:	6-13.07	1 /215		
Surf. Me	Surf. Meas. Pt: () Prot. Casing Riser				Riser	2.0					
Initial W	ater Lev	el, Feet:	12.82		Elevation. G/W MSL:						
Well Tot	al Depth	, Feet:		,	Method of Well Purge: Periside the						
One (1) I	Riser Vo	lume, G	al:		Dedicated: Y N						
Total Vo	lume Pu	irged, Ga	ıl;	•	Purge	d To Dryness	YID				
Purge O	bservati	ons:	Low Flow		Start	Clar-	Finish	cle-			
PURGE											
Time	(gpr	e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00		
1200	200	12.80		16.2	7.44	1576	3.10	-111	1.07		
1205				16.6	7.39	1540	1.37	-112	0.99		
1210		- X		16.3	7.30	1538	1.21	-114	0.95		
1215	1	1		16.4	7:28	1536	1,20	-115	0.91		
	14										

IPLING	INFORMAT			POINT			
:/Time	6-13-	07.1	220		evel @ Sampling		12.88
nod of Sa	ampling:	Perist	Kre		Dedicated:	(D) N	
i-phased	V layered:	() Yes	(4 No	If YES:	() light	() heavy	
IPLING	DATA:						
īme	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb.	Other (ORP)	Other (QQ)	
1220	16.3	7.27	1534	1.10	-115	0.90	
	IT CHECK D						
dity Seri	al #:39	NTU std.	=NTU	20	NTU std. = <u>10</u>	ַעדע	
ions;	576/	~					
erial #:	616800	4.0 std.= 4.	7.0	0 std.= 7.0	10	0.0 std. =	
		4					
ons:	Serial #: 37/5	(163.8	<u>1000 u</u>	mhos/cm=	1600	umhos/cm=	
	IFORMATIO	N:			14.4		
er cond	itions @ time	of sampling:	5	UN 8			
	cteristics:		Ck-	-	,		
MENTS.	AND OBSE	RVATIONS:		*			
							:
that sa	mpling proce	edures were in a	ccordance with	h all applic	able EPA, State	and Site-Specific	
6	112/61	By:	ye de		Company:	577	
		F	AGE 2 OF 2				

				FIELD (OBSERVA	TIONS					
Facility:	+	trch	Chemica		Sample	Point ID:	7-105				
Field Pers	onnel:	_	TP,	55	Sample	e Matrix:	GW				
MONITO	RTING W	ELL II	NSPECTION:								
Date/Time	6-7	-07	, 10	40	Cond	of seal: () Good () None	() Cracked		%		
Prot. Casi	ng/riser h	eight <u>:</u>		,	Cond			WFlush M			
If proteas	ing; dept	h to ris	ser below:					-			
Gas Meter	r (Calibrat	ion/R	eading):	% Gas:		% LEL:	1				
Vol. Orga	nic Meter	(Calibi	ration/Reading	1):	Volatil	es (ppm;	1				
PURGE	NFORMA	NOITA	:								
Date / Tim	ne Initiated	i: 6-7	07 , 104	3	Date / Time Completed: 6-7-07 , 1103						
urf. Mea	s. Pt: () P	rot Ca	sing	Riser	Riser I	Diameter, Inches	:	2			
Initial Wa	ter Level,	Feet:	6.79		Elevation. G/W MSL:						
Well Tota	l Depth, F	eet: _	39.86		Method of Well Purge: Paristaltic Pump						
One (1) R	iser Volur	ne, Ga	l:		Dedicated: Q / N						
Total Volu	ume Purge	ed, Gal	l:		Purge	d To Dryness	YN				
Purge Ob	servation	s:			Start	81 Turbiv	Finish	Turbi	N		
PURGE	DATA: (if	appli	cable)			•					
Time	Purge F	Rate	Cumulative	Temp.	pH	Conduct	· Turb.	Other ORP	Other		
1048	(gpm/h	755	Volume	(c) 15.3	(std units)	(Umhos/cm) 3714	(UTU) 486	-102	1.17		
1053		8,22		15.2	7.04	3736	525	-119	1.01		
				- 1			532	-123			
1058		889		15.1	7.05	37 18			0.98		
1103	1	935		15.2	7.05	37 23	502	-124	0.99		

Samples @ 1103 on 6-7.07
PAGE 1 OF 2

Field Form Revision 0

20	INFORMA	IION:		POINT I	D	
/Time				Water Le	vel @ Samplir	η Feet
i-phased	ampling: V layered:	() Yes	() No	If YES:	_Dedicated:	
IPLING						
ime	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()
dity Seria		NTU std. =		N	TU std. =	_NTU
ons:		4.0 std.=		std.=		10.0 std. =
ons:	erial #:		ur	nhos/cm=_		umhos/cm=
RAL INI	FORMATION					
	teristics:	VATIONS:				
	, , , , , , , , , , , , , , , , , , ,					
that sam	pling proced	lures were in ac	cordance with	all applica	ble EPA, State	and Site-Specific
	1 1	Ву:			Company:	
		P	AGE 2 OF 2			

Facility: Arch Chem 1711		Sampl	e Point ID:	7-106				
Field Personnel: TP, J	5	Sampl	e Matrix:	GW				
MONITORTING WELL INSPECTION Date/Time (7-07)	1315	Cond	of seal: () Good	• •		%		
Prot. Casing/riser height:		() None (\Buried Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged						
If prot.casing; depth to riser below:				()				
Gas Meter (Calibration/ Reading):	% Gas:		% LEL:	1				
Vol. Organic Meter (Calibration/Readin	g):	Volati	es (ppm'	1				
PURGE INFORMATION:								
Date / Time Initiated: 6707 , 13	318	Date /	Time Completed	1:	6-7-07,	1338		
Surf. Meas. Pt: () Prot. Casing	Riser	Riser Diameter, Inches:						
Initial Water Level, Feet: 9.50		Elevation. G/W MSL:						
Well Total Depth, Feet:		Method of Well Purge: Per 13taltic Pung						
One (1) Riser Volume, Gal:		Dedicated: QIN						
Total Volume Purged, Gal:		Purged To Dryness Y						
Purge Observations:		Start	SI-TubN	Finish	Clear			
PURGE DATA: (if applicable)			Black Specks	1	Black	Species with		
Time Purge Rate Cumulative (gpm/htz) Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ORP	Other D. D.		
1323 milmon 60	15.2	708	5296	189	-145	1.15		
1328 1052	14-6	6.70	5272	19.2	-162	1.06		
1333 1066	14.5	6.68	5219	17.3	-159	1.01		
1338 1 10.72	14.3	6:65	5187	146	-167	0.98		

Sampled @ 1338 on 6-7-07

PAGE 1 OF 2

Field Form Revision 0

	INFORMA	IION.		POINT I	D	
/Time		1		Water Le	vel @ Sampling,	Faat:
od of Sa					_ Dedicated:	Y/N
	layered:	() Yes	() No	If YES:	() light	() heavy
PLING I			The transfer of			
ime	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
RUMEN	T CHECK D	DATA:				
		NTU std. :		N	TU std. =I	VTU
				0 std.=	10.	.0 std. =
ictivity S	erial #:		u	mhos/cm=_		umhos/cm=
RAL IN	ORMATIO	N:				
er condit	ions @ time	of sampling:				
∍ Charac	teristics:					
IENTS A	ND OBSER	RVATIONS:				
		3				
			•			
4					,	
that sam	pling proce	dures were in a	ccordance with	all applica	ble EPA, State a	and Site-Specific

		A n		FIELD C	BSERVA	TIONS	2		
Facility: _		Arch	Chemota		Sample	Point ID:	72-107		
Field Perso	onnel:	_	TP, JS		Sample	Matrix:	GW		
MONITOR	TING V	VELL II	SPECTION:						
Date/Time_	67-	07	1	122	Cond o	f seal: (+) Good (() None) Cracked () Buried	-	%
Prot Casir	ng/riser	height <u>.</u>	-		Cond o		ser: () Unio) Loose) Damaged	cked () Go () Flush M	od ount
If protcas	ing; dep	th to ris	er below:) Damageu		
Gas Meter	(Calibra	ation/ Re	eading):	% Gas:		% LEL:_	1		
Vol. Organ	nic Mete	r (Calibi	ration/Reading):	Volatile	es (ppm) /			
PURGE II	NFORM	ATION	:		*				
Date / Tim	e Initiat	ed: 6-	7.07, 11	15	Date /	Time Completed	: 6	-7-07 1	1150
urf. Meas	s. Pt: ()	Prot Ca	sing	X Riser	Riser I	Diameter, Inches	:	2	
Initial Wat	er Leve	l, Feet:	5.47		Elevati	on. G/W MSL:	*	<u> </u>	
Well Total	Depth,	Feet:	27.90	>	Metho	d of Well Purge:		Peristal tic	tunp
One (1) Ri	iser Vol	ume, Ga	l:		Dedica	ited:	NIE		
Total Volu	ıme Pur	ged, Ga	1:		Purge	d To Dryness	YIN	20	
Purge Ob	servatio	ns:			Start	Clear	Finish	(len	-, Amter
PURGE I	DATA:	(if appli	cable)					Color, S	iisht alm
Time	Purge	Rate /htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
1130	m/mn 200	5.71		13.1	7.33	3821	295	-149	1.30
1135	,	5.73		129	7.54	4237	176	-155	1.11
1140		i		129	7.81	4486	2.26	-189	1.03
1145				12.9	7.87	4819	2.10	-188	1.00
1150		1		128	7-89	4582	1.84	-187	098
		7. I					/		-

Sampled @ USO on 6.7-07 PAGE 1 OF 2

Field Form Revision 0

-				POINT	·	
Time _				Water Le	vel @ Sampling	g, Feet:
od of Sar	npling:				Dedicated:	
	layered:	()Yes	() No	If YES:	() light	() heavy
PLING D						
me	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other
RUMENT	CHECK D	PATA:				
ity Serial	#:	NTU std. =	NTU	N	TU std. =	_NTU
ial #:		4.0 std.=	7.0) std.=	10	0.0 std. =
ctivity Se	erial #:		u	mhos/cm=		umhos/cm=
	ORMATIO					
		of sampling:				
Charact		or sampling: _		:		
		RVATIONS:				
		WAIIONS,			•	
			7			
		•		174		
•						
-						
hat samp	oling proces	dures were in ac	cordance with	all applica	ble EPA, State	and Site-Specific
1	1	By:				

Facility: Arch Chemral Field Personnel: TP, PL, JS Sample Point ID: G0.7 Field Personnel: Sample Matrix: SW SAMPLING INFORMATION: Date/Time G-12-07 , 13-50 Method of Sampling: Manual Grab Dedicated: T/N Multi-phased/ layered: () Yes () No If YES: () light () heavy SAMPLING DATA: Time Temp. (°C) (std units) (Umhos/cm) (NTU) (ORP) (OTH) 1356 24.3 7.61 2027 7.28 110 INSTRUMENT CHECK DATA: urbidity Serial #:NTUNTU std. =NTU
Sample Matrix: Sw () Composition ()
Date/Time 6-12-0 1350 Water Level @ Sampling, Feet: Method of Sampling: Manual Grab Dedicated: Y N Multi-phased/ layered: () Yes XNo If YES: () light () heavy SAMPLING DATA: Time Temp. (°C) (std units) (Umhos/cm) (NTU) (ORP) (ORP) 1356 24.3 7.61 2027 7.28 110 INSTRUMENT CHECK DATA: urbidity Serial #:NTUNTUNTUNTU
Method of Sampling: Method of Sampling: Multi-phased/ layered: () Yes () No If YES: () light () heavy SAMPLING DATA: Time Temp. pH Conduct Turb. Other (ORP) (Std units) (Umhos/cm) (NTU) (ORP) (ORP) 1356 24.3 7.61 2027 7.28 110 INSTRUMENT CHECK DATA: urbidity Serial #:NTUNTU std. =NTU
Method of Sampling: Murual Grab Dedicated: Multi-phased/ layered: () Yes XNo If YES: () light () heavy SAMPLING DATA: Time Temp. (°C) (std units) (Umhos/cm) (NTU) (ORP) (ORP) (10 INSTRUMENT CHECK DATA: Urbidity Serial #: NTU std. =NTU NTU std. =NTU
SAMPLING DATA: Time Temp. (°C) (std units) (Umhos/cm) (NTU) (ORP) (ORP
Time Temp. (°C) (std units) (Umhos/cm) (NTU) (ORP) (OR
(°C) (std units) (Umhos/cm) (NTU) (ORP) (1356 24.3 7.61 2027 7.28 110 INSTRUMENT CHECK DATA: urbidity Serial #:NTUNTU std. =NTU
1356 24.3 7.61 2027 7.28 110 INSTRUMENT CHECK DATA: urbidity Serial #:NTUNTU std. =NTU
urbidity Serial #:NTU std. =NTUNTU std. =NTU
urbidity Serial #:NTU std. =NTUNTU std. =NTU
Solutions:
Conductivity Serial #:umhos/cm=umhos/cm=umhos/cm=umhos/cm=
GENERAL INFORMATION:
Cl.
Weather conditions @ time of sampling: Sum, 86 Sample Characteristics: Clan

			SERVATIO	ONS		LeachField Form Revision 0 March 15,2002
Facility:	Arch	Chemical	*	Sample Po	oint ID:	Q0-251
Field Personr	nel:	TP. PL.	JS	Sample M	atrix:	SW
SAMPLING I		ONI				Ø Grab () Composi
Date/Time	6-12-0		1405	Water Lev	vel @ Sampling	, Feet:
Method of Sa	mpling:	Dippe	2/		_Dedicated:	Y 6
Multi-phased		() Yes	HNO	If YES:	() light	() heavy
SAMPLING Time	DATA: Temp.	pH	Conduct	Turb.	Other	Other
	(°C)	(std units)	(Umhos/cm)	(NTU)	(ORP)	
1411	25.6	7.87	577	19.7	201	
Solutions:		NTU std.		N	/TU std. = _'	_NTU
Solutions: pH Serial #: Solutions: Conductivity		NTU std.	7		1	
Solutions: pH Serial #: Solutions: Conductivity Solutions: GENERAL II	Serial #:	4.0 std.=	7	.0 std.=umhos/cm=	1	0.0 std. =
Solutions: pH Serial #: Solutions: Conductivity Solutions: GENERAL II	Serial #: NFORMATIO	4.0 std.=	7	.0 std.=umhos/cm=	1	0.0 std. =
Solutions: pH Serial #: Solutions: Conductivity Solutions: GENERAL II	Serial #: NFORMATION ditions @ times acteristics:	4.0 std.= ON: e of sampling: Clean	7	.0 std.=umhos/cm=	1	0.0 std. =

Facility: Sample Point ID: QS-4 Field Personnel: Sample Matrix: GW SAMPLING INFORMATION: Date/Time 6-12-07 1 950 Water Level @ Sampling, Feet:	posite
SAMPLING INFORMATION: Date/Time 6-(2-07 , 950 Water Level @ Sampling, Feet:	posite
Date/Time 6-(2-07 / 950 Water Level @ Sampling, Feet:	posite
Water Level @ Sampling, Feet:	
	_
Method of Sampling: Stainless Built Dedicated: YN	
Multi-phased/layered: () Yes Who If YES: () light () heavy	
SAMPLING DATA:	
Time Temp. pH Conduct Turb. Other (°C) (std units) (Umhos/cm) (NTU) (OK)) (OK)) (OK))	
101 100 160 2 0-1) 20	
INSTRUMENT CHECK DATA: Arbidity Serial #: 364075 NTU std. =NTU NTU std. =NTU	
Solutions: 20 - 396/2	
pH Serial #: 614162 4.0 std.= 4.00 Solutions: 4-161 7-161 7.0 std.= 7.02 Conductivity Serial #: 614162 1000 umbos/cm= 1000	
Conductivity Serial #: 614162 1000 umhos/cm= 1000 umhos/cm= umhos/cm=	
GENERAL INFORMATION:	
Weather conditions @ time of sampling: Sim 80°	
Sample Characteristics: Clau	
COMMENTS AND OBSERVATIONS:	
·	
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific	
protocals. Date: 6,1201 By: Company:	

	BSERVATIONS
Facility: Arch Chemical	Sample Point ID: 5-3
Field Personnel: TP, JS	Sample Matrix: GW
MONITORTING WELL INSPECTION: Date/Time 6-6-07 1212	Cond of seal: () Good () Cracked% () None () Buried
Prot Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 66-07 / 1215	Date / Time Completed: 6-6-07 , 1235
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 0.87	Elevation, G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Perstaltic Pump
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y (
Purge Observations:	Start Clean Finish Clan
PURGE DATA: (if applicable)	W/ Black Specks

Time	Purge (gpm		Cumulative Volume	Temp.	pH (std units)	(Umhos/cm)	(NTU)	other	Do
1220	200	0.87		14.0	7.41	2530	10.04	-7	1.08
1225	1	1		14.0	7.18	2524	8.50	-100	1.03
1230				14.1	7.17	2509	8.50	-94	0.99
1235	1	1		14.1	7.12	2510	7.55	-91	0.97
			-		b		,		
									1

Sampled @ 1235 on 6607
PAGE 1 OF 2

Field Form Revision 0

LING INFORMA	TION:		POINT I	D	
/Time	1	-	Water Le	evel @ Sampling,	Feet:
od of Sampling:				_ Dedicated:	Y/N
-phased/ layered:	() Yes	() No	If YES:	() light	() heavy
PLING DATA:					
Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
RUMENT CHECK D	PATA:				
lity Serial #:ons:	NTU std. =	ити	N	TU std. =	πυ
	4.0 std.=) std.=	10.	0 std. =
ctivity Serial #:		ur	nhos/cm=_		umhos/cm=
RAL INFORMATIO	N:				
r conditions @ time	of sampling:				
Characteristics:	4.				
ENTS AND OBSER	VATIONS:	-			
		·			
hat sampling proces	e e				
hat sampling proceed	rures were in ac	cordance with	all applical	ole EPA, State ar	nd Site-Specific
	Ву:			Company:	
	PA	GE 2 OF 2			

				FIELD C	BSERVA				
Facility:	F	trh	Chemital		Sample	Point ID: 5	-4		
Field Pers	onnel:	_	TP, JS		Sample	Matrix:	GW		
MONITOR	RTING	WELL I	NSPECTION:				Vault		
Date/Time	6	6-07	1	247	Cond o	f seal: () Good () None	•	_	%
Prot. Casi	ng/rise	r height <u>:</u>			Cond		iser: () Unio () Loose () Damaged	() Flush M	
f prot.cas	ing; de	pth to ris	ser below:			ē.			
Gas Meter	(Calibi	ration/R	eading):	% Gas:		% LEL:	1		
Vol. Organ	nic Met	er (Calib	ration/Reading):	Volatil	es (ppm)	1		
PURGE I									
Date / Tim	e Initia	ted: 6	607, 13	150	Date /	Time Completed	l: . 6	-6-01,	1310
Surf. Mea	s. Pt: ()	Prot. C		() Riser	Riser I	Diameter, Inches	:		
Initial Wa	ter Leve	el, Feet:	0.77		Elevat	on. G/W MSL:		0 1	7)
Well Tota	l Depth	, Feet:			Metho	d of Well Purge:	•	Peristal	tre Pung
One (1) R	iser Vo	lume, Ga	al:		Dedica	ited:	NIK		
Total Vol	ume Pu	rged, Ga	ıl:				YW		
Purge Ob	servati	ons:			Start	Clean who ormse specify	Finish	Clean	
PURGE	DATA:	(if appl	icable)		* Fre	d Dup T	aken		
Time	Purg	e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
1255	200	072	_	13-0	7.02	3587	18.7	-120	1.49
1300	1	1		13-0	7.14	3566	14.0	-119	1.13
1305				13.1	7.10	3553	10.77	-124	1.08
1310				13.2	7.23	3572	11.5	-122	1.06
Sample	16	1310	Than I	h.	PAGE 1 OF	2	Field Form Revision 0	Dup	Take

√Time	. 1		101.		
			Water Le	evel @ Sampling,	Feet:
nod of Sampling:				_ Dedicated:	Y/N
i-phased/ layered:	() Yes	() No	If YES:	() light	() heavy
IPLING DATA:					
Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
			1 (110)		
1 1					
DUNENT OUT OF					
RUMENT CHECK D					
dity Serial #:	NTU std. =	NTU	N	ITU std. =I	UTII
ons:		•			110
rial #:	4.0 std.=	7.0	0 std.=	10.	.0 std. =
				•	
ictivity Serial #:		u	mhos/cm=		umhos/cm=
one.					
Jis.					
Jits.					
RAL INFORMATION	N:				
RAL INFORMATION er conditions @ time Characteristics:	N:				
RAL INFORMATION er conditions @ time Characteristics:	N: of sampling:				
RAL INFORMATION or conditions @ time Characteristics:	N: of sampling:				
RAL INFORMATION er conditions @ time Characteristics:	N: of sampling:				
RAL INFORMATION er conditions @ time Characteristics:	N: of sampling:				
RAL INFORMATION or conditions @ time Characteristics:	N: of sampling:				
RAL INFORMATION er conditions @ time Characteristics:	N: of sampling:				
RAL INFORMATION or conditions @ time	N: of sampling:				
RAL INFORMATION er conditions @ time Characteristics: IENTS AND OBSER	N: of sampling:				
RAL INFORMATION or conditions @ time Characteristics:	N: of sampling:		all applica		

Appendix B

Well Trend Data

B-17

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

BR-106

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

BR-114

Prepared by: nmb Reviewed by: jeb

BR-116

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

2000

CONCENTRATION (ug/L)

0009

3000

4000

2000

1000

BR-126

10000

0006

8000

2000

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

CONCENTRATION (ug/L)

Prepared by: nmb Reviewed by: jeb

MW-104

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

-- PYRIDINES

-- Vocs

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

Prepared by: nmb Reviewed by: jeb

-- PYRIDINES

