Arch Chemicals, Inc.

Rochester, New York (Site #828018a)

Groundwater Monitoring Report 44
Spring 2010

September 2010

Arch Chemicals, Inc. P. O. Box 800 1200 Lower River Road Charleston, TN 37310 Tel (423) 780-2724

September 9, 2010

Mr. James H. Craft
New York State
Department of Environmental Conservation
6274 East Avon-Lima Road
Avon, NY 14414

Re: Arch Rochester Spring 2010 Monitoring Report

Arch Chemicals (Site #628018a) 100 McKee Rd., Rochester, NY

Dear Mr. Craft:

The enclosed report presents the Spring 2010 results for the on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility.

If you have any questions regarding this submittal, please call me at (423) 780-2175.

Sincerely,

Gayle M. Taylor / jels Gayle M. Taylor

Manager, Environmental Issues

Arch Chemicals, Inc.

encl.

cc (w/encl): Bart Putzig, NYSDEC

Katherine Comerford, NYSDOH - Rochester Field Office

James Reidy, USEPA Region II Francien Trubia, Arch Chemicals, Inc.

Jeffrey Brandow, MACTEC Engineering & Consulting, P.C.

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM
SPRING 2010 MONITORING PERCENT

SPRING 2010 MONITORING REPORT

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

ARCH CHEMICALS, INC. CHARLESTON, TENNESSEE

SEPTEMBER 2010

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM **SPRING 2010 MONITORING REPORT**

ARCH CHEMICALS **ROCHESTER PLANT SITE** ROCHESTER, NEW YORK

Prepared by

MACTEC Engineering & Consulting, P.C. Portland, Maine

for

ARCH CHEMICALS, INC. Charleston, Tennessee

September 2010

3616086023.03

Nelson M. Breton, C.G. Principal Hydrogeologist rey E. Brandow, P.E.

Principal Engineer

TABLE OF CONTENTS

			Page							
Exec	utive S	ummary	1							
1.0	Introd	duction	2							
2.0	Sam	Sample Collection and Analysis								
	2.1	Groundwater	2							
	2.2	Surface Water	2							
	2.3	Analytical Procedures	3							
	2.4	Quality Control	3							
3.0	Analy	tical Results	4							
	3.1	Groundwater	4							
		3.1.1 Chloropyridines	4							
		3.1.2 Selected VOCs	5							
	3.2	Surface Water	5							
		3.2.1 Quarry	6							
		3.2.2 Quarry Discharge Ditch	6							
		3.2.3 Barge Canal	6							
4.0	Extra	ction System Performance and Maintenance	6							
5.0	Next	Monitoring Event	7							

APPENDICES

Appendix A	Groundwater Field Sampling Data Sheets

Appendix B Well Trend Data

LIST OF FIGURES

		Prepared By:	Checked By:
Figure 1	Off-Site Groundwater Monitoring Well Locations	MORE	100
Figure 2	On-Site Monitoring Well Locations	OBN	1008
Figure 3	Spring 2010 Overburden Groundwater Interpreted Piezometric Contours	ing w	NWS
Figure 4	Spring 2010 Bedrock Groundwater Interpreted Piezometric Contours	DOL	My
Figure 5	Spring 2010 Deep Bedrock Groundwater Interpreted Piezometric Contours	DBW	Nus
Figure 6	Sample Locations - Erie Barge Canal	153	My
Figure 7	Sample Locations - Dolomite Products Quarry	NESS.	Mys
Figure 8	Spring 2010 Selected Chloropyridine Concentration Contours for Groundwater	B75	NMB
Figure 9	Spring 2010 Selected Volatile Organic Compound Concentration Contours for Groundwater	BJS	NWS

LIST OF TABLES

		Prepared By:	Checked By:
Table 1	Spring 2010 Sampling and Analytical Program	BJ5	JE8
Table 2	Spring 2010 Groundwater Monitoring Results Chloropyridines	1555	JE33
Table 3	Spring 2010 Groundwater Monitoring Results - Volatile Organic Compounds	BJ5	108
Table 4	Comparison of Spring 2010 Chloropyridines and Volatile Organic Concentrations in Groundwater to Previous Results	BJS	1003
Table 5	Spring 2010 Canal/Quarry Monitoring Results	BJS	150S
Table 6	Extraction Well Weekly Flow Measurements - December 2009 through May 2010	JEB .	1 mg
Table 7	Mass Removal Summary, Period: December 2009 - May 2010	158	NMB
Table 8	2010 Sampling Schedule	JEB	NWS

EXECUTIVE SUMMARY

This monitoring report presents the results of an on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility. Results in this report include surface and groundwater samples collected in May 2010.

During this monitoring event, samples from a total of 47 groundwater monitoring or pumping wells and four locations associated with the Dolomite Products Quarry seep and outfall were collected and analyzed by TestAmerica in Amherst, New York.

As in prior reports, monitoring results were compared with previous average concentrations at each sampling location. Forty-two of the 47 monitoring wells sampled for chloropyridines had contaminant concentrations that were at or below their respective 5-year prior averages. Twenty-seven of the 34 monitoring wells sampled for volatile organic compounds had concentrations at or below their 5-year prior average. Contaminant contour plots are generally consistent with past observations.

Sampling locations associated with the quarry included the main quarry seep (QS-4), the quarry ditch where the quarry dewatering discharge enters the ditch (QD-1), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1). Chloropyridine concentrations in quarry seep QS-4 have declined since the Fall 2009 sampling, and are below the prior 5-year average for this location. Samples from the quarry ditch and the canal were at trace levels or were non-detect for their respective locations.

All accessible on-site monitoring wells were checked for the presence of dense non-aqueous phase liquids (DNAPL) and floating (or light) NAPL (LNAPL), using an interface probe. No DNAPL or LNAPL was observed in any of these wells.

During the period December 2009 through May 2010, the on-site groundwater extraction system pumped approximately 6.3 million gallons of groundwater to the on-site treatment system, containing an estimated 388 pounds of chloropyridines and 46 pounds of target volatile organic compounds.

In January 2010, Arch discovered that extraction well PW11 had partially collapsed and needed to be replaced. New pumping well PW16 was installed in July 2010 and will be activated by the end of August 2010.

Declines have been observed in pumping rates at wells PW14, PW15, and BR127. Arch is currently evaluating options for improving flows from these wells.

Well PW13 is demonstrating a seasonal fluctuation in pumping rates that Arch has linked to the changes in water levels in the Erie Canal. Arch plans to operate PW13 on a seasonal basis as long as sampling results indicate the well continues to recover significant amounts of site-related contaminants.

The next regular monitoring event will occur in November 2010 and will include groundwater, surface water, and seep sampling.

1.0 INTRODUCTION

In accordance with the Order on Consent executed between Arch Chemicals, Inc., and the New York State Department of Environmental Conservation (NYSDEC), effective August 21, 2003, Arch is conducting a Remedial Action program at its facility on McKee Road in Rochester, New York. As part of this program, Arch conducts twice-yearly monitoring events consisting of sampling and chemical analysis of groundwater and surface water in the vicinity of the Rochester facility.

The Spring 2010 sampling event included the collection and analysis of a total of 51 groundwater, surface water, and seep samples from off-site and on-site locations. Samples were collected May 13 through 19, 2009, for analysis of selected chloropyridines and volatile organic compounds (VOCs).

This report presents the results of the Spring 2010 monitoring event.

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 GROUNDWATER

Groundwater samples were collected from off-site wells, on-site wells and piezometers for analysis of selected chloropyridines (2-chloropyridine, 2,6-dichloropyridine, 3-chloropyridine, 4-chloropyridine, pyridine, and p-fluoroaniline) and target compound list (TCL) VOCs. Samples were collected by personnel from Test America Laboratories, Inc., (TestAmerica) and transported to their lab in Amherst, New York for analysis. Table 1 lists the wells that were sampled and the requested analyses. The off-site and on-site locations of these sampling points are shown in Figures 1 and 2, respectively. Groundwater sampling data sheets are provided in Appendix A.

Groundwater was collected with the low flow/low stress purging technique from most of the wells using bladder or peristaltic pumps. Samples from active pumping wells were collected from the discharge lines. Pumping well PW-11 is partially blocked due to well collapse, and was therefore not sampled. This well is scheduled for replacement during the Summer of 2010.

Groundwater piezometric elevations were measured on May 12, 2010. Piezometric contour maps were constructed for each water-bearing zone (overburden, bedrock, and deep bedrock) and are presented in Figures 3, 4, and 5.

All accessible on-site monitoring wells were again checked for the presence of non-aqueous phase liquid (NAPL), using an interface probe. No dense NAPL (DNAPL) or floating (light) NAPL (LNAPL) was observed in any of these wells.

2.2 SURFACE WATER

Surface water and quarry seep samples were collected as part of the on-going monitoring program for the Arch Rochester site. The location of the quarry and its outfall in relation to

the site is shown on Figure 6. Samples of the main quarry seep (QS-4), the quarry ditch where the quarry dewatering discharge enters the ditch (QD-1), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1) were collected by TestAmerica on May 14, 2010. All quarry-related samples were analyzed for the Arch suite of selected chloropyridines. The quarry locations sampled during the Spring 2010 event are shown on Figure 7.

2.3 ANALYTICAL PROCEDURES

The analytical procedures, data review findings, and validated data for this groundwater and surface water monitoring event are discussed in the following paragraphs.

Samples were analyzed for the Arch suite of selected chloropyridines and TCL VOCs by USEPA SW-846 Methods 8270C and 8260B, respectively. The reporting limits for the chloropyridines and VOCs are approximately 10 micrograms per liter (μ g/L) and 5 to 25 μ g/L, respectively, for undiluted samples.

2.4 QUALITY CONTROL

All laboratory analytical results were reviewed and qualified following U.S. Environmental Protection Agency Contract Laboratory Program (USEPA CLP), "National Functional Guidelines for Organic Data Review", June, 2008, as modified by USEPA Region II, "SOP No. HW-6 Revision 14", September 2006. Analytical results were evaluated for the following parameters:

- Collection and Preservation Holding Times
- * Surrogate Recoveries Blank Contamination
- * Duplicates
 Laboratory Control Samples
 Matrix Spike/Matrix Spike Duplicates
 Miscellaneous

With the qualifications discussed below, results are determined to be usable as reported by the laboratory.

Holding Times. A subset of samples was extracted for pyridines (Method 8270C) outside the seven day holding time. The samples were initially extracted within the holding time; however, laboratory internal review indicated that the samples were initially prepared at dilutions that were unnecessarily high. The following samples required re-extraction at lower dilutions after expiration of the holding times: BR-3, PZ-105, and PZ-106. Positive and non-detected results for all semivolatile organic target compounds in these samples were qualified as estimated (J/UJ).

<u>Blank Contamination.</u> Methylene chloride (0.58 ug/L) was reported in the method blank associated with a subset of samples analyzed for volatile organic compounds, and carbon disulfide (0.73 ug/L) was reported in the trip blank associated with a subset of samples

^{* -} all criteria were met for this parameter

collected on May 18, 2010. The low level detections of methylene chloride in samples BR-105 and BR-105D were below the blank action level and were qualified as non-detected (U). The low level detection of carbon disulfide in sample PZ-103 was below the blank action level and was qualified as non-detected (U).

Laboratory Control Samples. Three of the volatile organic laboratory control samples were inadvertently spiked with a subset (16 compounds) of target compounds rather than the full target compound list (36 compounds). The matrix spike/matrix spike duplicate set associated with one of the laboratory control samples was also incorrectly spiked. Recoveries for all target analytes that were included in the three laboratory control samples and matrix spike/matrix spike duplicate were within control limits, and all target compound recoveries in the remaining laboratory control samples that were correctly prepared were also within control limits. Therefore, based on professional judgment the associated sample results were reported unqualified.

Matrix Spike/Matrix Spike Duplicate. Percent recovery for 2-chloropyridine (134) in the matrix spike/matrix spike duplicate (MS/MSD) associated with sample PZ-103 was above the laboratory control limits of 11-123, indicating a potential high bias. The relative percent difference (RPD) between MS and MSD recoveries was 35 and above the control limit of 30. The positive detection of 2-chloropyridine in sample PZ-103 was qualified as estimated (J) and may represent a potential high bias.

<u>Miscellaneous</u>. Samples from 26 of the wells were analyzed at dilutions due to high concentrations of volatile organic or semivolatile organic target analytes. Non-detects are reported at elevated reporting limits.

3.0 ANALYTICAL RESULTS

3.1 GROUNDWATER

The validated results from the Spring 2010 groundwater monitoring event are provided in Tables 2 and 3. Table 4 provides a comparison of the Spring 2010 analytical results for selected chloropyridines and VOCs in representative wells to mean concentrations of the prior five years (Spring 2005 through Fall 2009). Long term trends for both selected chloropyridines and VOCs are also presented as time-series plots for representative wells in Appendix B. A summary of the analytical findings is presented below by parameter class.

3.1.1 Chloropyridines

<u>On-Site.</u> Chloropyridines were detected above sample quantitation limits in all 20 on-site wells sampled in the Spring 2010 event. Concentrations of chloropyridines ranged from 58 micrograms per liter (μ g/L) (sum of all chloropyridine and pyridine isomer concentrations) in pumping well BR-9 to 63,000 μ g/L in monitoring well B-17. Three of the 20 on-site wells exhibited total chloropyridine concentrations that were slightly above their respective means from monitoring events over the previous five years (BR-6A, PZ-105, and PZ-107).

Off-Site. Chloropyridines were detected above sample quantitation limits in 23 of the 27 off-site wells that were sampled. Concentrations of total selected chloropyridines ranged from not detected (in wells BR-103, BR-116, MW-114, and NESS-W) to approximately 2,900 μg/L in well BR-106 west of McKee Road. Two of the 27 off-site wells contained total chloropyridine concentrations slightly above their respective 5-year prior means (BR-113D and BR-116D).

<u>Concentration Contours</u>. Chloropyridine distribution in groundwater is shown as a set of concentration contours on Figure 8. The contours were developed using data from both overburden and bedrock monitoring wells. Contours are approximated (shown as dashed lines) where they are based on data from previous sampling rounds.

3.1.2 Selected VOCs.

<u>On-Site.</u> Selected VOCs were detected in 18 of the 20 on-site wells sampled in the Spring 2010 event. Total concentrations of selected VOCs ranged from not detected (in wells BR-8 and PZ-105) to 820,000 μg/L in PZ-106 for the sum of the principal site-related contaminants (carbon tetrachloride, chloroform, methylene chloride, tetrachloroethene, and trichloroethene). Five of the 20 on-site wells (BR-127, MW-127, PW-12, PZ-106, and PZ-107) contained concentrations of total VOCs above their 5-year prior means.

In addition to the selected VOCs, other notable constituents detected in on-site wells include toluene (in 16 out of 20 wells), carbon disulfide (14 of 20), chlorobenzene (13 of 20), benzene (12 of 20), bromoform (8 of 20), vinyl chloride (6 of 20), 1,2-dichloroethene (6 of 20), total xylenes (4 of 20), ethylbenzene (3 of 20), 1,1-dichloroethane (3 of 20), acetone (2 of 20), and 1,2-dichloroethane (2 of 20).

<u>Off-Site.</u> Selected VOCs were detected in five of the 14 off-site wells sampled for VOCs in the Spring 2010 event. Total concentrations of selected VOCs ranged from not detected (in BR-103, BR-106, BR-114, BR-126, MW-103, PZ-101, PZ-102, PZ-103, and PZ-104) to 23 μ g/L (in MW-114). Two of the off-site wells (MW-106 and MW-114) had selected VOC concentrations slightly above their prior 5-year means. In addition to the selected VOCs, other notable constituents detected in off-site wells include benzene (in 10 out of 14 wells), chlorobenzene (10 of 14), 1,2-dichloroethene (7 of 14), toluene (4 of 14), 1,1-dichloroethane (3 of 14), vinyl chloride (3 of 14), carbon disulfide (2 of 14), and total xylenes (2 of 14).

<u>Concentration Contours</u>. The distribution of selected VOCs in groundwater is shown as a set of concentration contours on Figure 9. These contours were developed using both overburden and bedrock groundwater data, and are dashed where approximated using data from previous sampling rounds.

3.2 SURFACE WATER

Results from the Spring 2010 canal and quarry monitoring event are presented in Table 5, and summarized below. In general, chloropyridine concentrations in the quarry and canal samples remain low, and have declined slightly from the Fall 2009 sampling event.

3.2.1 Quarry

One quarry seep (QS-4) was sampled in the Spring 2010 monitoring event, and contained 136 μ g/L total chloropyridines.

3.2.2 Quarry Discharge Ditch

Two locations within the quarry discharge ditch were sampled and analyzed for chloropyridines: QD-1, at the point where the quarry's dewatering discharge enters the ditch; and QO-2, at the location where the ditch discharges to the canal. Total chloropyridines were detected in the sample from QD-1 at an estimated concentration of 2.2 µg/L. Chloropyridines were not detected in the sample at QO-2.

3.2.3 Barge Canal

One sample was collected from the Erie Barge Canal location (QO-2S1, approximately 100 feet downstream of QO-2). Chloropyridines were not detected in this sample.

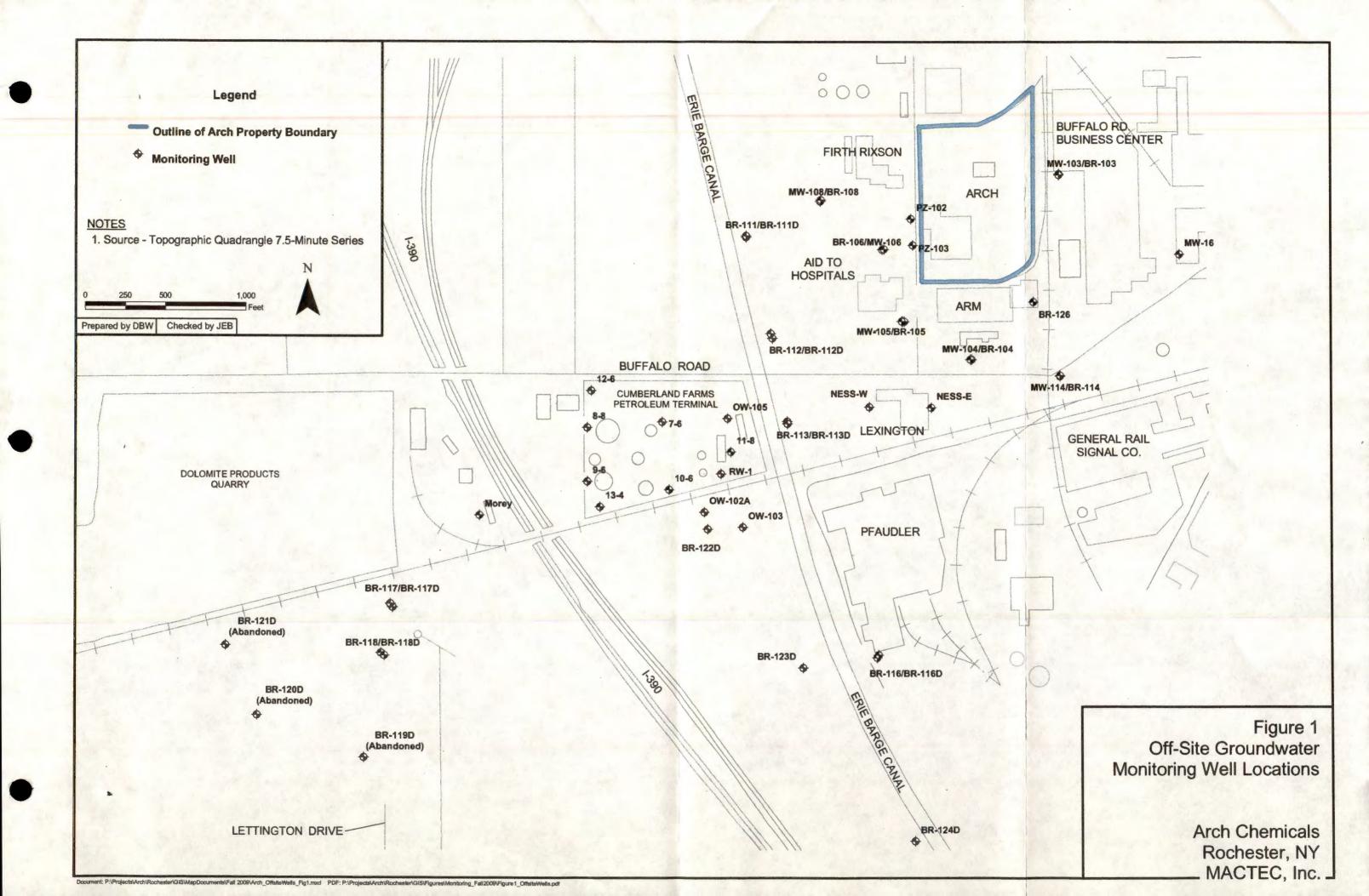
4.0 EXTRACTION SYSTEM PERFORMANCE AND MAINTENANCE

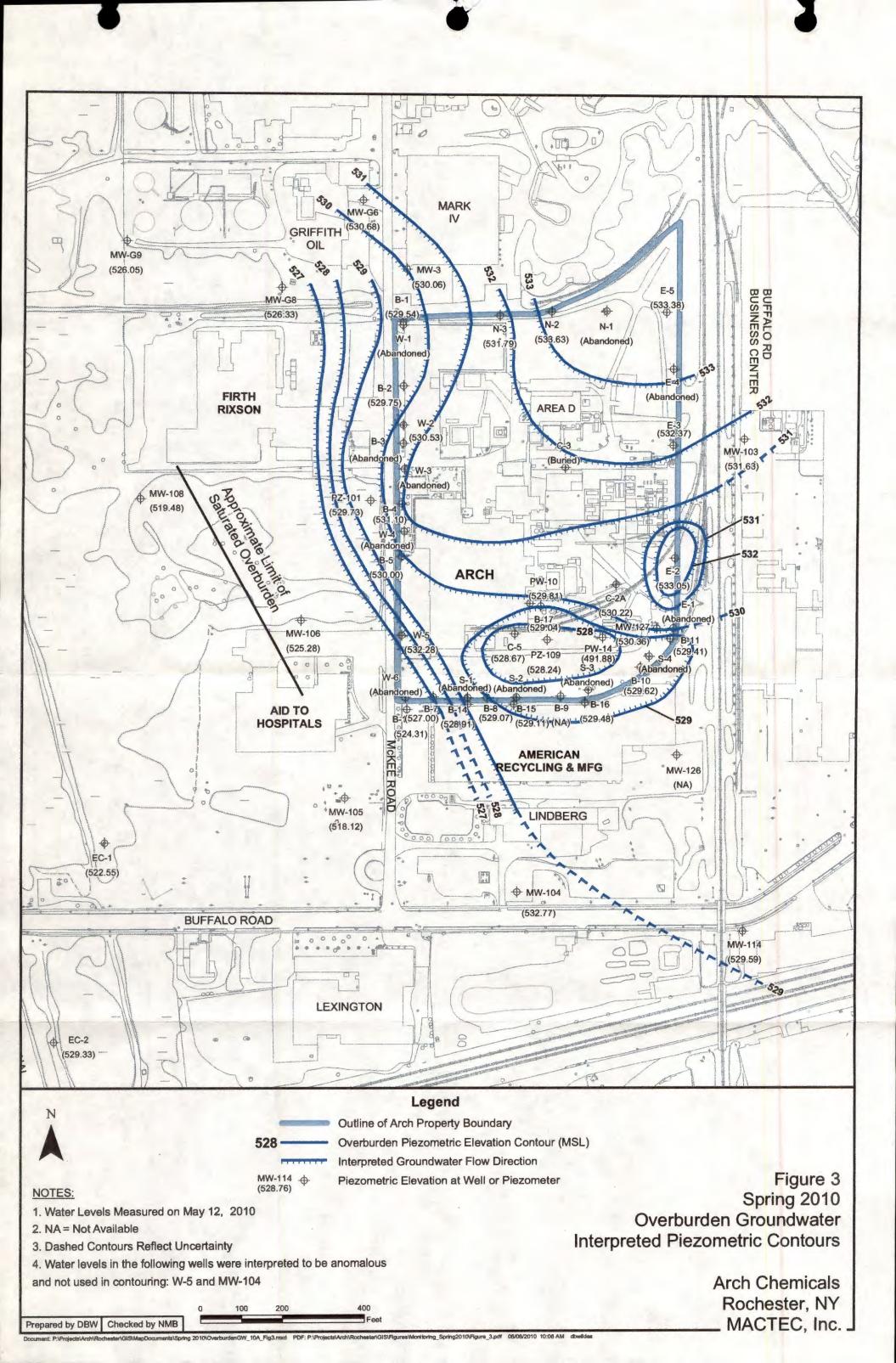
Table 6 is a summary of the system flow measurements for the on-site extraction wells from December 2009 through May 2010. The total volume pumped during the six-month period was approximately 6.3 million gallons.

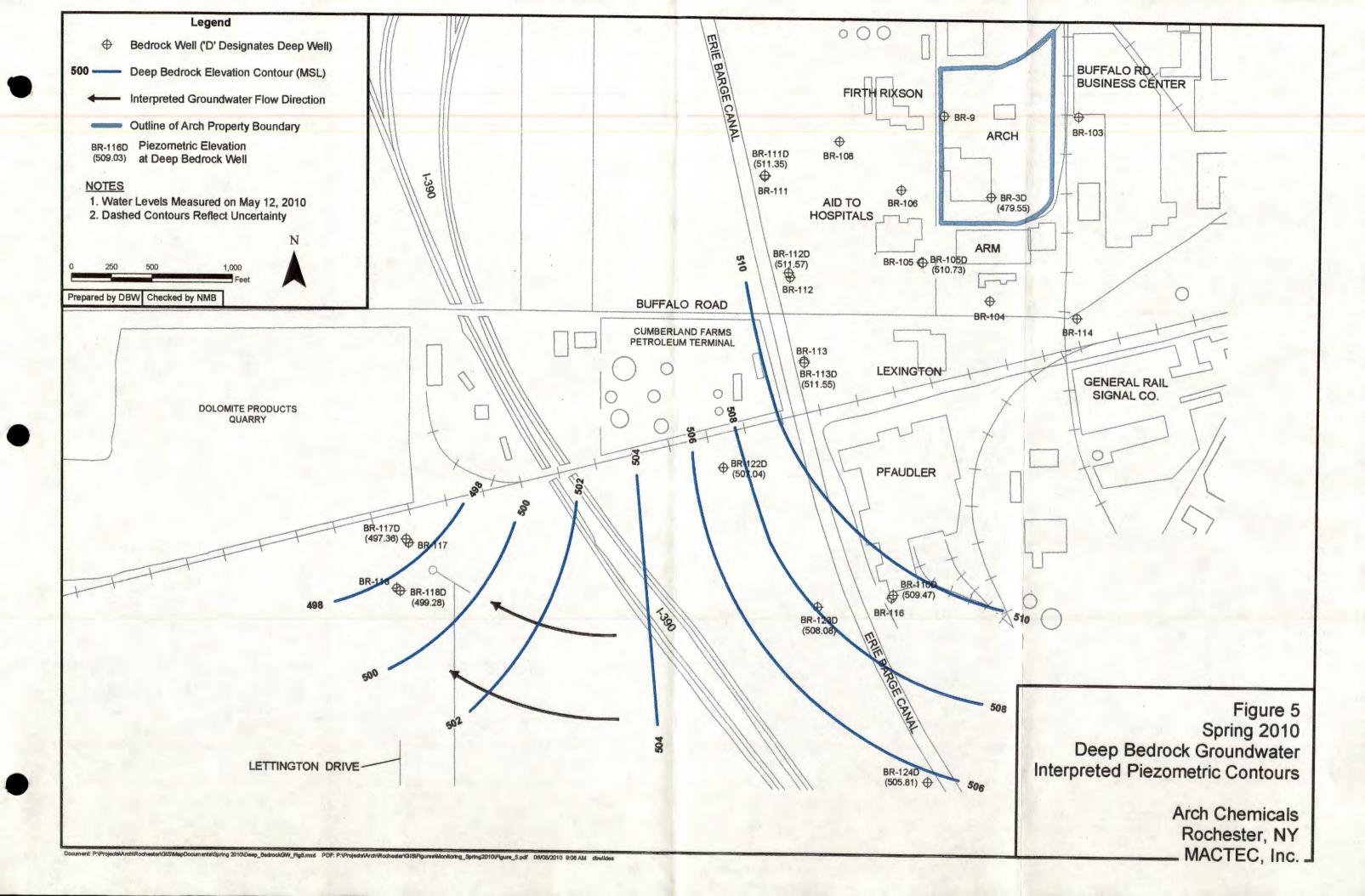
Table 7 provides a calculation of mass removal rates since the previous groundwater monitoring event (i.e., from December 2009 through May 2010). Arch estimates that approximately 46 pounds of target VOCs and 388 pounds of chloropyridine compounds were removed by the groundwater extraction system and treated by the plant's activated carbon adsorption units over that time period.

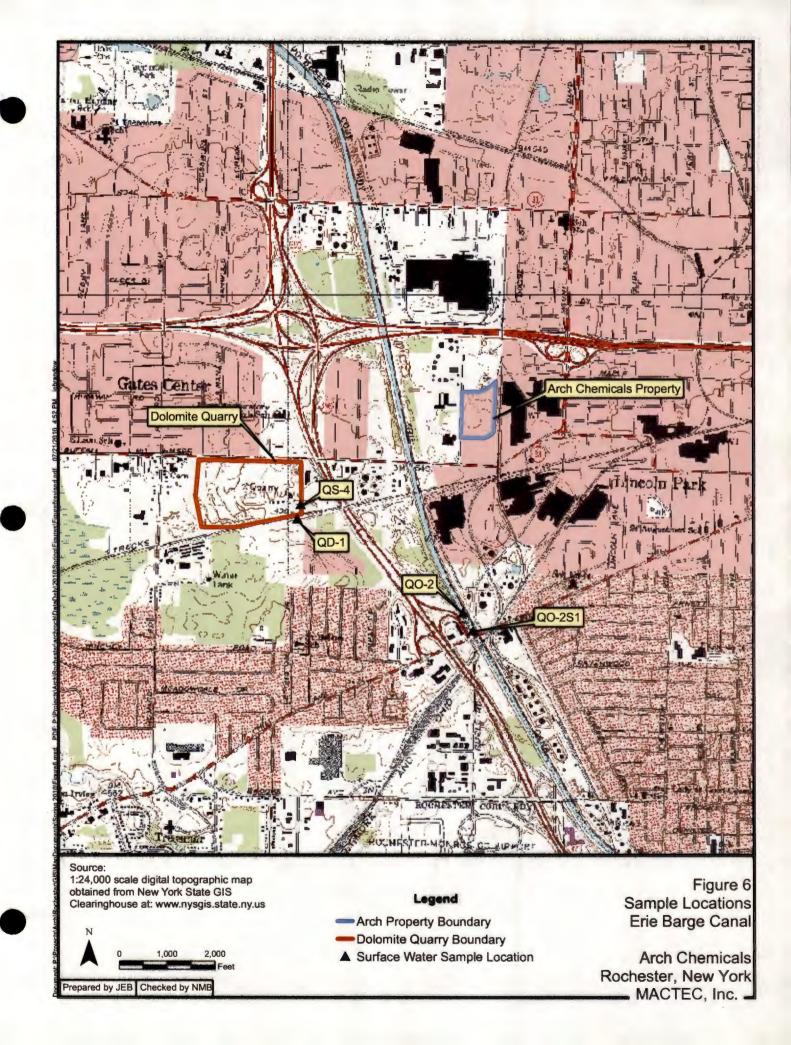
In January 2010, while attempting to remove the pump from extraction well PW11, Arch discovered the well had partially collapsed. The pump could not be removed, and was damaged in the attempt. In response, Arch has drilled a new well to replace PW11. The new well, designated PW16, was relocated approximately 60 feet north of PW11 due primarily to access issues. PW16 was drilled in July 2010, and will be activated by the end of August 2010. Preliminary indications are that the new well will be able to pump at around 5 gallons per minute, which is slightly higher than the previous pumping rates at PW11.

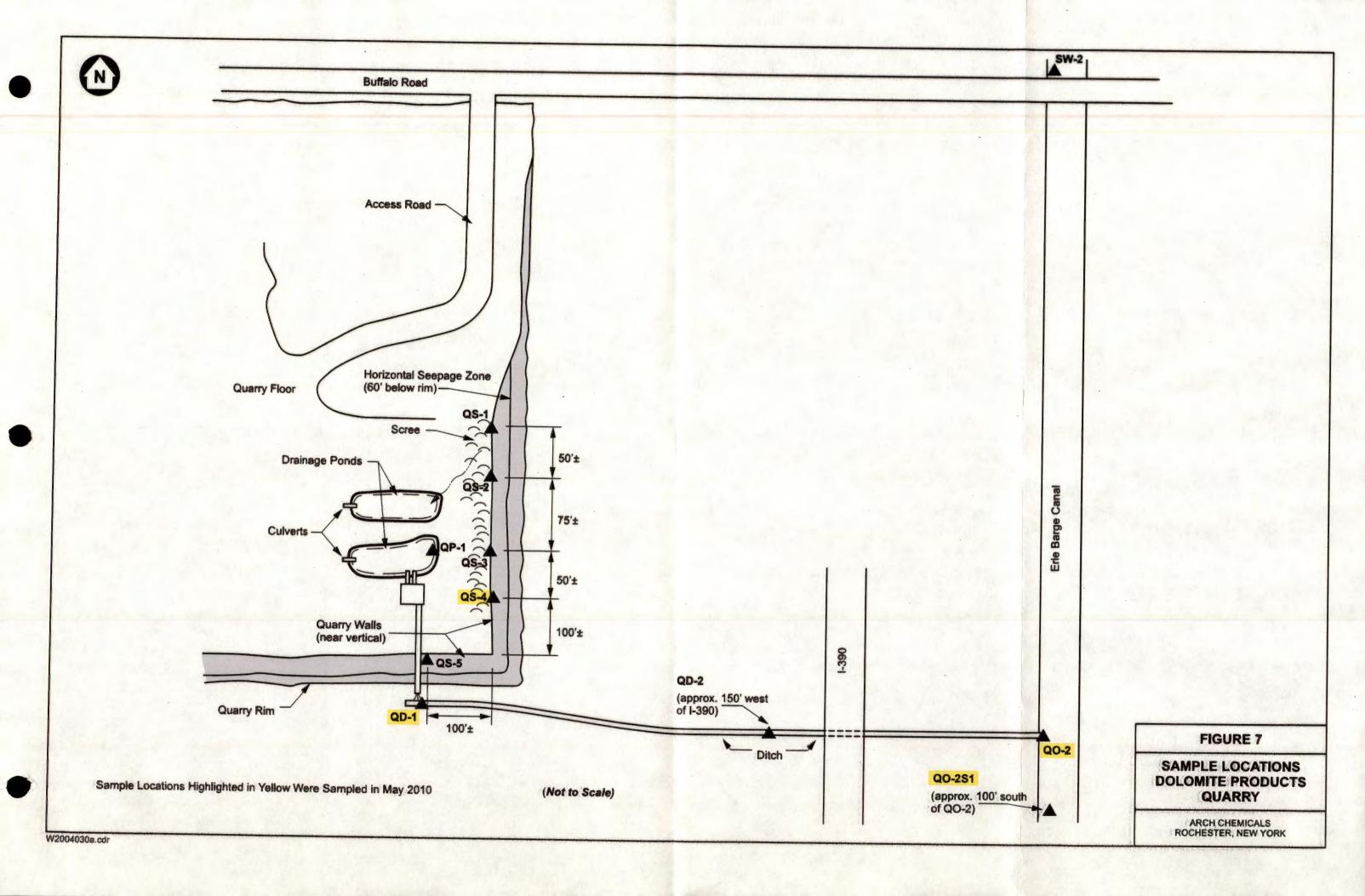
Declines in pumping rates are evident in wells PW14, PW15, and BR127. Arch is currently evaluating options to attempt to improve flows from these wells.

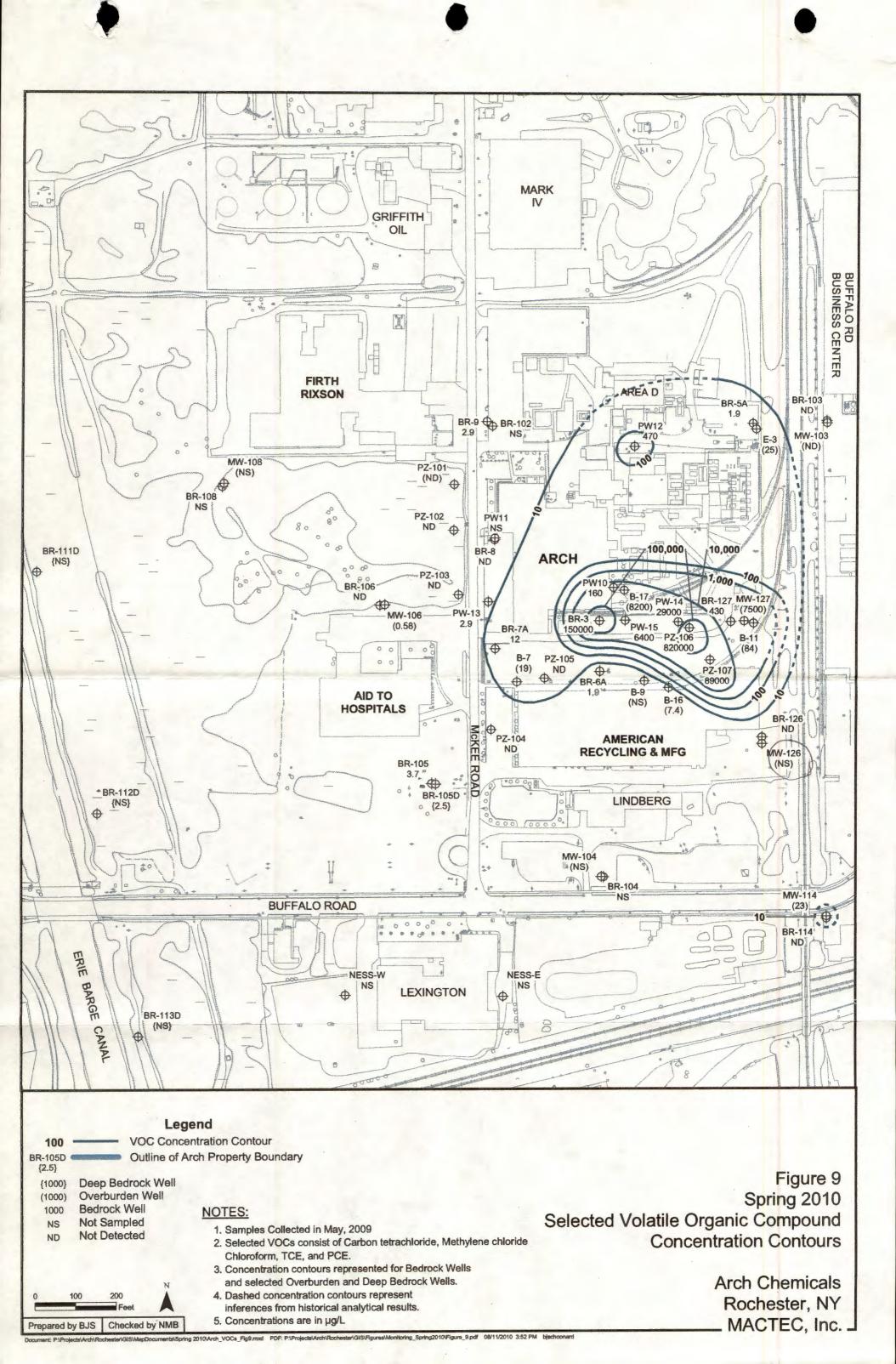

Well PW13 is demonstrating a seasonal fluctuation in pumping rates that Arch has been able to link to the systematic drawdown of water levels in the Erie Canal. Arch anticipates that we will continue to see limited flow from this well during the winter months, but intends to operate PW13 as long as sampling results indicate the well is recovering significant amounts of site-related contaminants (primarily during the summer months).


5.0 NEXT MONITORING EVENT


The next regular monitoring event will occur in November 2010 and will include groundwater, surface water, and seep sampling.


Table 8 shows the current monitoring program for the Arch Rochester site.


Figures



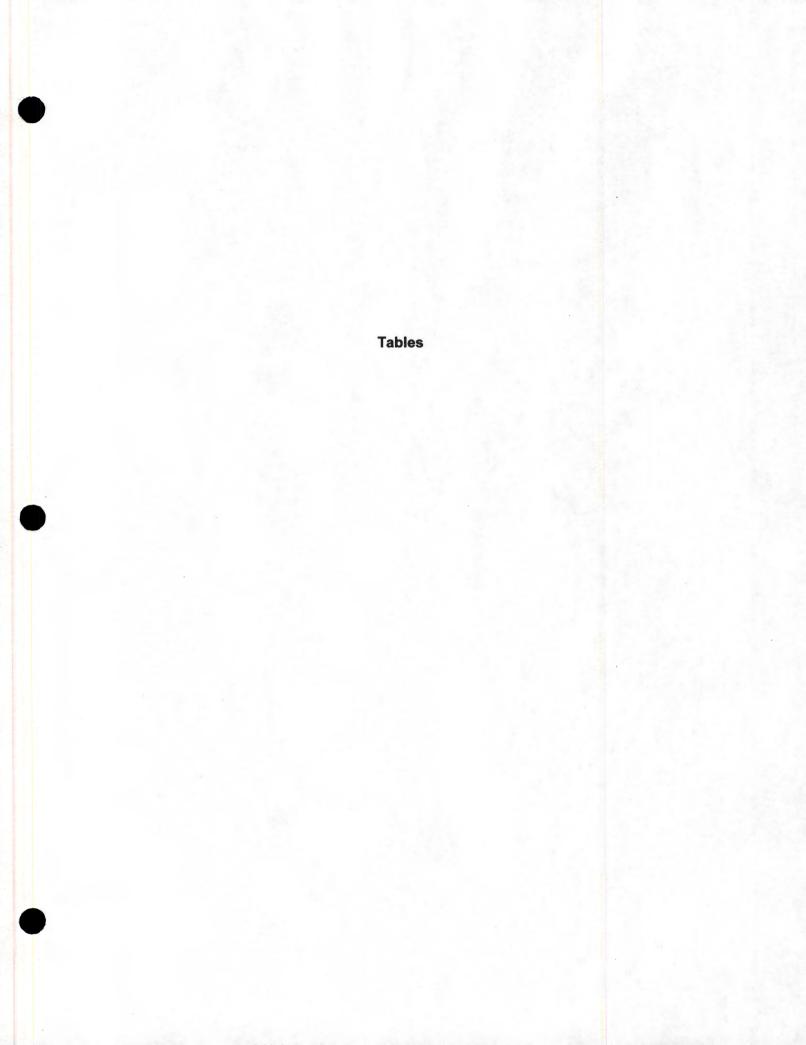


TABLE 1 SPRING 2010 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM

ARCH CHEMICALS, INC ROCHESTER, NEW YORK

			ANALYSIS	PYRIDINES	VOCs
SITE / AREA	WELL / POINT	DATE	QC TYPE		
SITE / AREA	BR-106	5/19/2010	Sample	X	X
AID TO HOSPITALS	BR-108	5/18/2010	Sample	X	
	MW-106	5/19/2010	Sample	X	X
	PZ-101	5/18/2010	Sample	X	X
	PZ-102	5/18/2010	Sample	X	X
	PZ-103	5/18/2010	Sample	X	X
AMERICAN RECYCLE MANUF. (58	B-16	5/14/2010	Sample	X	X
MCKEE ROAD)	BR-126	5/18/2010	Sample	Х	X
	PZ-104	5/18/2010	Duplicate	X	X
	PZ-104	5/18/2010	Sample	X	Х
ARCH ROCHESTER	B-11	5/14/2010	Sample		X
	B-11	5/17/2010	Sample	X	
	B-17	5/14/2010	Sample	X	X
	B-7	5/14/2010	Sample	X	Х
	BR-127	5/13/2010	Sample	X	X
	BR-3	5/13/2010	Sample	X	X
	BR-5A	5/17/2010	Sample	X	X
	BR-6A	5/17/2010	Sample	X	X
	BR-7A	5/17/2010	Sample	X	Х
·	BR-8	5/13/2010	Sample	X	X
	BR-9	5/17/2010	Sample	X	X
	E-3	5/14/2010	Sample	X	X
	MW-127	5/13/2010	Sample	X	X
	PW10	5/14/2010	Sample	X	X
	PW12	5/13/2010	Sample	X	X
	PW13	5/17/2010	Sample	X	X
	PW14	5/17/2010	Sample	X	X
	PW15	5/17/2010	Sample	X	X
	PZ-105	5/13/2010	Sample	X	X
	PZ-106	5/13/2010	Sample	x	X
	PZ-107	5/13/2010	Sample	X	X
DOLOMITE PRODUCTS, INC.	BR-117D	5/14/2010	Sample	X	
502011172 1 11005010, 1110.	BR-118D	5/14/2010	Sample	X	
	QD-1	5/14/2010	Sample	X	
	QS-4	5/14/2010	Sample	X	
BUFFALO RD BUSINESS CTR (formerly	BR-103	5/18/2010	Sample	X	X
Gerber property, formerly Kodak property)		5/18/2010	Sample	X	X
ERIE BARGE CANAL(Samples in canal	BR-112D	5/19/2010	Sample	x	
or property along canal)	BR-113D	5/17/2010	Sample	X	
or property along darial)	BR-122D	5/14/2010	Sample	x	
	BR-123D	5/14/2010	Sample	X	
	QO-2	5/14/2010	Sample	X	
	QO-2S1	5/14/2010	Sample	×	
JACKSON WELDING	BR-114	5/18/2010	Sample	X	X
A CONTINUED NO	MW-114	5/18/2010	Sample	x	X
EXINGTON MACHINING	NESS-E	5/18/2010	Sample	×	^
	NESS-W	5/18/2010	Sample	X	
PFAUDLER, INC.	BR-116	5/17/2010	Sample	×	
	BR-116D	5/17/2010	Sample	×	
RG & E RIGHT OF WAY	BR-104	5/17/2010	Sample	X	
	BR-105	5/19/2010	Sample	×	X
	BR-105D	5/19/2010	Sample	x	X
	MW-104	5/17/2010	Sample	X	

Prepared/Date: BJS 08/10/10

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-11	B-16	B-17	B-7	BR-103	BR-104	BR-105	BR-105D	BR-106	BR-108	BR-112D
SAMPLE DATE:	5/17/2010	5/14/2010	5/14/2010	5/14/2010	5/18/2010	5/17/2010	5/19/2010	5/19/2010	5/19/2010	5/18/2010	5/19/2010
QC TYPE:	Sample										
SELECTED CHLOROPYRIDINES				-							
BY SW-846 Method 8270C (µg/L)											
2,6-Dichloropyridine	920	380	2200 J	310	9.4 U	9.4 U	100	36 J	620	3.3 J	1.9 J
2-Chloropyridine	3,800	570	57,000	330	9 U	4 J	640	260	2,200	33	19
3-Chloropyridine	62 J	250 U	10000 U	50 U	9.4 U	9.4 U	100 U	14 J	16 J	9.7 U	9.4 U
4-Chloropyridine	200 U	250 U	10000 U	50 U	9.4 U	9.4 U	100 U	50 U	100 U	9.7 U	9.4 U
p-Fluoroaniline	200 U	250 U	10000 U	50 U	9.4 U	9.4 U	100 U	12 J	80 J	9.7 U	9.4 U
Pyridine	500 U	620 U	3600 J	120 U	24 U	24 U	250 U	120 U	250 U	24 U	24 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

Prepared/Date: BJS 08/10/10

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-113D	BR-114	BR-116	BR-116D	BR-117D	BR-118D	BR-122D	BR-123D	BR-126	BR-127	BR-3
SAMPLE DATE:	5/17/2010	5/18/2010	5/17/2010	5/17/2010	5/14/2010	5/14/2010	5/14/2010	5/14/2010	5/18/2010	5/13/2010	5/13/2010
QC TYPE:	Sample										
SELECTED CHLOROPYRIDINES											
BY SW-846 Method 8270C (µg/L)											
2,6-Dichloropyridine	2.4 J	9.9	9.4 U	6.9 J	9.6 U	3.6 J	16	5.7 J	330	390	3000 J
2-Chloropyridine	28	33	9 U	55	6 J	48	130	62	1,100	3,000	24,000 J
3-Chloropyridine	9.4 U	9.4 U	9.4 U	9.4 U	9.6 U	9.4 U	9.4 U	9.4 U	100 U	62 J	1200 J
4-Chloropyridine	9.4 U	9.4 U	9.4 U	9.4 U	9.6 U	9.4 U	9.4 U	9.4 U	100 U	250 U	1000 U.
p-Fluoroaniline	9.4 U	9.4 U	9.4 U	9.4 U	9.6 U	9.4 U	1.3 J	9.4 U	100 U	250 U	1000 U.
Pyridine	24 U	24 U	24 U	1.1 J	24 U	24 U	24 U	24 U	250 U	56 J	2000 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

Prepared/Date: BJS 08/10/10

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-5A	BR-6A	BR-7A	BR-8	BR-9	E-3	MW-103	MW-104	MW-106	MW-114	MW-127
SAMPLE DATE:	5/17/2010	5/17/2010	5/17/2010	5/13/2010	5/17/2010	5/14/2010	5/18/2010	5/17/2010	5/19/2010	5/18/2010	5/13/2010
QC TYPE:	Sample										
SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (µg/L)											
2,6-Dichloropyridine	28	920	1100	34	11	41	9.4 U	9.5 U	410 J	9.4 U	90 J
2-Chloropyridine	170	5,100	7,800	37	45	31	9 U	3 J	1,100	9 U	140 J
3-Chloropyridine	19 U	140 J	1000 U	9.4 U	9.6 U	9.4 U	9.4 U	9.5 U	500 U	9.4 U	250 Ü
4-Chloropyridine	19 U	500 U	1000 U	9.4 U	9.6 U	9.4 U	9.4 U	9.5 U	500 U	9.4 U	250 U
p-Fluoroaniline	26	500 U	1000 U	6.1 J	1.6 J	9.4 U	1.9 J	9.5 U	500 U	9.4 U	250 U
Pyridine	4.4 J	1200 U	2500 U	24 U	24 U	24 U	24 U	24 U	1200 U	24 U	620 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

Prepared/Date: BJS 08/10/10

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

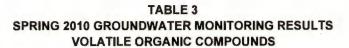
LOCATION:	NESS-E	NESS-W	PW10	PW12	PW13	PW14	PW15	PZ-101	PZ-102	PZ-103	PZ-104
SAMPLE DATE:	5/18/2010	5/18/2010	5/14/2010	5/13/2010	5/17/2010	5/17/2010	5/17/2010	5/18/2010	5/18/2010	5/18/2010	5/18/2010
QC TYPE:	Sample	Duplicate									
SELECTED CHLOROPYRIDINES											
BY SW-846 Method 8270C (µg/L)		•					*				
2,6-Dichloropyridine	9.4 U	9.4 U	11000	520	150	210 J	2300 J	11	210	290	250
2-Chloropyridine	2 J	9 U	5,200	1,000	790	1,700	33,000	2 J	530	730 J	1,300
3-Chloropyridine	9.4 U	9.4 U	160 J	100 U	100 U	49 J	5000 U	9.4 U	50 U	250 U	100 U
4-Chloropyridine	9.4 U	9.4 U	1000 U	100 U	100 U	250 U	5000 U	9.4 U	50 U	250 U	100 U
p-Fluoroaniline	9.4 U	9.4 U	1000 U	130	100 U	250 U	5000 U	9.4 U	25 J	32 J	100 U
Pyridine	24 U	24 U	2500 U	250 U	250 U	89 J	3400 J	24 U	120 U	620 U	250 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK


LOCATION:	PZ-104	PZ-105	PZ-106	PZ-107
SAMPLE DATE:	5/18/2010	5/13/2010	5/13/2010	5/13/2010
QC TYPE:	Sample	Sample	Sample	Sample
SELECTED CHLOROPYRIDINES BY SW-846 Method 8270C (µg/L)				
2,6-Dichloropyridine	240	1500 J	3600 J	1300
2-Chloropyridine	1,300	16,000 J	12,000 J	6,800
3-Chloropyridine	100 U	87 J	1000 UJ	120 J
4-Chloropyridine	100 U	500 UJ	1000 UJ	500 U
p-Fluoroaniline	100 U	500 UJ	1000 UJ	500 U
Pyridine	250 U	1200 UJ	320 J	360 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

Prepared/Date: BJS 08/10/10

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

			TOOTILE	TILLY, INC.					
LOCATION:	B-11	B-16	B-17	B-7	BR-103	BR-105	BR-105D	BR-106	BR-114
SAMPLE DATE:	5/14/2010	5/14/2010	5/14/2010	5/14/2010	5/18/2010	5/19/2010	5/19/2010	5/19/2010	5/18/2010
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
VOCs BY SW-846 Method 8260/5ML (µg/L)									
1,1,1-Trichloroethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	10 U	0.87 J	80 U	5 U	5 U	0.73 J	2 J	5 U	5 U
1,1-Dichloroethene	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2,4-Trimethylbenzene	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	0.52 J	5 U
1,2-Dichloroethene (total)	20 U	0.72 J	160 U	10 U	1.1 J	14	8.4 J	0.84 J	0.88 J
1,2-Dichloropropane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
1,3,5-Trimethylbenzene	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	50 U	25 U	400 U	25 U	25 U	25 U	25 U	25 U	25 U
2-Hexanone	50 U	25 U	400 U	25 U	25 U	25 U	25 U	25 U	25 U
4-Methyl-2-pentanone	50 U	25 U	400 U	25 U	25 U	25 U	25 U	25 U	25 U
Acetone	50 U	25 U	400 U	25 U	25 U	25 U	25 U	25 U	25 U
Benzene	10 U	1.4 J	91	0.63 J	5 U	1.6 J	5.2	16	3.4 J
Bromodichloromethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Bromoform	10 U	5 U	230	0.43 J	5 U	5 U	5 U	5 U	5 U
Bromomethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	17	3.4 J	80 U	8.9	5 U	5 U	1.2 J	5 U	5 U
Carbon tetrachloride	13	2.1 J	120	6	5 U	1.7 J	5 U	5 U	5 U
Chlorobenzene	10 U	3.9 J	340	9.1	5 U	5.2	4 J	160	5 U
Chlorodibromomethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroform	48	2.6 J	2100	6.4	5 U	1.1 J.	2.5 J	5 U	5 U
Chloromethane	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethyl benzene	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Methylene chloride	8.8 J	5 U	4300	5 U	5 U	5 U	5 U	5 U	5 U
Styrene	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	14	2.7 J	1700	6.2	5 U	0.91 J	5 U	5 U	5 U
Toluene	5.6 J	0.89 J	320	2.2 J	5 U	5 U	5 U	0.9 J	5 U
trans-1,3-Dichloropropene	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	10 U	5 U	80 U	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl acetate	50 U	25 U	400 U	25 U	25 U	25 U	25 U	25 U	25 U
Vinyl chloride	10 U	5 U	80 U	5 U	8.5	9.8	1.9 J	5 U	5 U
Xylenes, Total	30 U	15 U	240 U	0.74 J	15 U	15 U	15 U	0.69 J	15 U

Notes: U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

 $\label{local_projects} $$P.\Pr(C)_{arch\coch}\DataDelv\2010\Spring\Tables\Table_3_10_GW_vocs.xls$$$

TABLE 3 SPRING 2010 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION	I: BR-126	BR-127	BR-3	BR-5A	BR-6A	BR-7A	BR-8	BR-9	E-3
SAMPLE DATE		5/13/2010	5/13/2010	5/17/2010	5/17/2010	5/17/2010	5/13/2010	5/17/2010	5/14/2010
QC TYPE		Sample							
VOCs BY SW-846 Method 8260/5ML (μg/L)	. Oumple	Campio	Cumpic	Campic	Gumpio	Campio	Campio	Gampio	Campio
1.1.1-Trichloroethane	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5 U	5 U	800 U	5 U	5 U	3 J	5 U	7.5	5 U
1,1-Dichloroethene	5 U	5 U	800 U	5 U	5 U	5 U	5 U	1.5 J	5 U
1,2,4-Trimethylbenzene	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	5 U	5 U	800 U	5 U	5 U	5 U	6.4	5 U	5 U
1,2-Dichloroethene (total)	10 U	13	1600 U	11	10 U	3 J	10 U	170	10 U
1,2-Dichloropropane	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
1,3,5-Trimethylbenzene	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	25 U	25 U	4000 U	25 U	25 U	25 U	25 U	25 U	25 U
2-Hexanone	25 U	25 U	4000 U	25 U	25 U	25 U	25 U	25 U	25 U
4-Methyl-2-pentanone	25 U	25 U	4000 U	25 U	25 U	25 U	25 U	25 U	25 U
Acetone	25 U	25 U	4000 U	25 U	25 U	25 U	25 U	13 J	25 U
Benzene	1.8 J	2.8 J	800 U	10	0.62 J	16	1.1 J	58	5 U
Bromodichloromethane	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
Bromoform	5 U	5 U	480	5 U	5 U	5 U	5 U	5 U	0.52 J
Bromomethane	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	5 U	48	6600	5 U	1.9 J	5.2	5 U	5 U	7.8
Carbon tetrachloride	5 U	38	58000	5 U	5 U	2.3 J	5 U	5 U	4.8 J
Chlorobenzene	1.4 J	3.8 J	800 U	21	2.5 J	400	32	7.2	1.9 J
Chlorodibromomethane	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroform	5 U	360	85000	0.98 J	0.58 J	5.2	5 U	5 U	13
Chloromethane	5 U	5 U	760	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethyl benzene	5 U	5 U	800 U	5 U	5 U	5 U	5 U	3.4 J	5 U
Methylene chloride	5 U	16	9300	5 U	5 U	4.7 J	5 U	1.5 J	0.98 J
Styrene	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5 U	13	2400	5 U	5 U	5 U	5 U	5 U	6
Toluene	5 U	24	3000	3.5 J	8	4.8 J	5 U	2 J	2 J
trans-1,3-Dichloropropene	5 U	5 U	800 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5 U	6.8	800 U	0.93 J	1.3 J	5 U	5 U	1.4 J	5 U
Vinyl acetate	25 U	25 U	4000 U	25 U	25 U	25 U	25 U	25 U	25 U
Vinyl chloride	5 U	6.2	800 U	4.8 J	8.4	6.9	5 U	110	5 U
Xylenes, Total	15 U	15 U	2400 U	1.9 J	15 U				

Notes: U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

 $\label{local-projects} P:\Projects\Arch\Rochester\archroch\DataDelv\2010\Spring\Tables\Table_3_10_GW_vocs.xls$

TABLE 3 SPRING 2010 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	MW-103	MW-106	MW-114	MW-127	PW10	PW12	PW13	PW14	PW15
SAMPLE DATE:	5/18/2010	5/19/2010	5/18/2010	5/13/2010	5/14/2010	5/13/2010	5/17/2010	5/17/2010	5/17/2010
QC TYPE:	Sample								
VOCs BY SW-846 Method 8260/5ML (µg/L)									
1,1,1-Trichloroethane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
1,1,2-Trichloroethane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
1,1-Dichloroethane	5 U	5 U	5 U	100 U	10 U	100 U	7	400 U	80 U
1,1-Dichloroethene	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
1,2,4-Trimethylbenzene	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
1,2-Dichloroethane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
1,2-Dichloroethene (total)	10 U	10 U	10 U	200 U	20 U	200 U	31	800 U	160 U
1,2-Dichloropropane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
1,3,5-Trimethylbenzene	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
2-Butanone	25 U	25 U	25 U	500 U	50 U	500 U	25 U	2000 U	400 U
2-Hexanone	25 U	25 U	25 U	500 U	50 U	500 U	25 U	2000 U	400 U
4-Methyl-2-pentanone	25 U	25 U	25 U	500 U	50 U	500 U	25 U	2000 U	400 U
Acetone	25 U	25 U	25 U	500 U	50 U	500 U	25 U	2000 U	400 U
Benzene	5 U	18	5 U	100 U	10 U	100 U	17	400 U	85
Bromodichloromethane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
Bromoform	5 U	5 U	5 U	49 J	19	100 U	5 U	400 U	80 U
Bromomethane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
Carbon disulfide	5 U	5 U	5 U	2000	10 U	58 J	5 U	280 J	240
Carbon tetrachloride	5 U	5 U	5 U	940	39	100 U	5 U	1800	310
Chlorobenzene	5 U	180	5 U	100 U	10 U	4500	42	400 U	150
Chlorodibromomethane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
Chloroethane	5 U	5 Ü	5 U	100 U	10 U	100 U	5 U	400 U	80 U
Chloroform	5 U	5 U	14	6400	42	160	0.98 J	25000	4500
Chloromethane	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
Ethyl benzene	5 U	5 U	5 U	100 U	10 U	360	0.75 J	400 U	80 U
Methylene chloride	5 U	5 U	5 U	85 J	11	260	5 U	2500	830
Styrene	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
Tetrachloroethene	5 U	5 U	3.1 J	42 J	63	54 J	0.75 J	400 U	690
Toluene	5 U	0.74 J	5 U	100 U	6.6	7300	0.96 J	400 U	250
trans-1,3-Dichloropropene	5 U	5 U	5 U	100 U	10 U	100 U	5 U	400 U	80 U
Trichloroethene	5 U	0.58 J	6.2	100 U	10 U	100 U	1.2 J	400 U	100
Vinyl acetate	25 U	25 U	25 U	500 U	50 U	500 U	25 U	2000 U	400 U
Vinyl chloride	5 U	5 U	5 U	100 U	10 U	100 U	60	400 U	80 U
Xylenes, Total	15 U	15 U	15 U	300 U	27	2200	15 U	1200 U	240 U

Notes: U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

 $\label{local_projects} $$P.\Pr(C) = P.\Pr(C) = P.$

TABLE 3 SPRING 2010 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

			IVOOIILO	I FLY MERA	Oitit			
LOCATION:	PZ-101	PZ-102	PZ-103	PZ-104	PZ-104	PZ-105	PZ-106	PZ-107
SAMPLE DATE:	5/18/2010	5/18/2010	5/18/2010	5/18/2010	5/18/2010	5/13/2010	5/13/2010	5/13/2010
QC TYPE:	Sample	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample
VOCs BY SW-846 Method 8260/5ML (µg/L)								
1,1,1-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
1,1-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 l
1,2,4-Trimethylbenzene	5 U	5 U	0.82 J	5 U	5 U	5 U	10000 U	10 L
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	7.4 J
1,2-Dichloroethene (total)	10 U	10 U	1.8 J	10 U	10 U	10 U	20000 U	8.2 J
1,2-Dichloropropane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
1,3,5-Trimethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
2-Butanone	25 U	25 U	25 U	25 U	25 U	25 U	50000 U	50 L
2-Hexanone	25 U	25 U	25 U	25 U	25 U	25 U	50000 U	50 L
4-Methyl-2-pentanone	25 U	25 U	25 U	25 U	25 U	25 U	50000 U	50 L
Acetone	25 U	25 U	25 U	25 U	25 U	25 U	50000 U	84
Benzene	5 U	13	47	1.6 J	1.6 J	18	10000 U	13
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	8.1 .
Bromoform	5 U	5 U	5 U	5 U	5 U	5 U	4200	650
Bromomethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
Carbon disulfide	5 U	5 U	5 U	5 U	5 U	6.4	120000	7800
Carbon tetrachloride	5 U	5 U	5 U	5 U	5 U	5 U	52000	24000
Chlorobenzene	3.6 J	220	1300	6.5	6.8	140	10000 U	10 L
Chlorodibromomethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	37
Chloroethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	750000	56000
Chloromethane	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
Ethyl benzene	5 U	5 U	1.9 J	5 U	5 U	5 U	10000 U	10 L
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	19000	7800
Styrene	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
Tetrachloroethene	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	1000
Toluene	5 U	5 U	3.2 J	5 U	5 U	2.2 J	10000 U	23
rans-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
Trichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	7.9 J
Vinyl acetate	25 U	25 U	25 U	25 U	25 U	25 U	50000 U	50 L
Vinyl chloride	5 U	5 U	5 U	5 U	5 U	5 U	10000 U	10 L
Xylenes, Total	15 U	15 U	4.6 J	15 U	15 U	15 U	30000 U	30 L

Notes: U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

 $\label{local_projects} $$P:\Pr\end{Table_3_10_GW_vocs.xls} $$P:\Pr\end{Table_3_10_GW_vocs.xls} $$$

TABLE 4 COMPARISON OF SPRING 2010 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT

WELL	SEL	ECTED CHLOR	OPYRIDINES	SELECTED VOCs				
	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	MAY-2010 RESULT	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	MAY-2010 RESULT
ON-SITE V	VELLS/LOCATION	IS						
B-11	0	1,700		4,800	0	570		84
B-17	5	28,000,000	470,000	63,000	5	350,000	15,000	8,200
B-7	5	9,100	1,000	640	5	260	32	19
BR-127	10	29,000	7,100	3,500	10	1,300	170	430
BR-3	5	6,500,000	70,000	30,000	5	920,000	180,000	160,000
BR-5A	10	1,700	290	230	10	9,400	24	1.9
BR-6A	10	140,000	5,900	6,200	10	26,000	150	1.9
BR-7A	10	510,000	27,000	8,900	10	3,000	140	12
BR-8	5	57,000	230	77	5	6,900	11	ND
BR-9	10	720	110	58	10	160	5.7	2.9
E-3	5	600	150	72	5	12,000	36	25
MW-127	10	15,000	6,300	230	10	180	570	7,500
PW10	10	240,000	91,000	16,000	10	120,000	11,000	160
PW11	10	27,000	1,100	10,000	10	30,000	100	100
PW12	10	15,000	2,500	1,700	10	120,000	460	470
PW13	10	7,500	1,700	940	10	920	210	2.9
PW14	10	29,000	22,000	2,100	10	160,000	33,000	29,000
PW15	6	730,000	250,000	39,000	6	8,200	6,400	6,400
PZ-105	10	190,000	10,000	18,000	10	9,700	130	ND
PZ-106	10	120,000	64,000	16,000	10	1,400,000	330,000	820,000
PZ-107	10	11,000	7,600	8,600	10	12,000	2,000	89,000
	WELLS/LOCATIO		7,000	0,000	10	12,000	2,000	03,000
B-16	0	33,000		950	0	4,500		7.4
BR-103	5	400	11	ND	5	38	7.6	ND
BR-104	5	3,100	4.8	4.4		9	7.0	.,,,
BR-105	10	24,000	920	740	10	310	3.7	3.7
BR-105D	10	10,000	770	320	10	230	4.2	2.5
BR-106	10	25,000	3,900	2,900	10	6,300	0.062	ND
BR-108	5	1,700	37	36		ND	-	
BR-112D	5	310	49	21		4.3		
BR-113D	5	490	28	30		2.8		
BR-114	5	520	190	43	5	12	0.24	ND
BR-116	5	12	ND	ND		84		
BR-116D	5	710	22	63		120		
BR-117D	5	80	7.8	5.5		1.9		
BR-118D	5	330	63	52		6.6		
BR-122D	1	650	ND	150		ND		
BR-123D	5	860	87	68		4		
BR-126	9	9,000	3,700	1,400	9	230	64	ND
MW-103	5	97	19	1.9	5	750	18	ND
MW-104	5	180	3.6	2.5		1		.,,,

Prepared/Date: BJS 08/11/10

TABLE 4 COMPARISON OF SPRING 2010 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT

WELL	SEL	ECTED CHLOR	OPYRIDINES	SELECTED VOCs					
	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	MAY-2010 RESULT	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	MAY-2010 RESULT	
MW-106	10	130,000	6,700	1,500	10	450	0.29	0.58	
MW-114	5	18	ND	ND	5	24	19	23	
MW-16	5	360	7		1	8	8		
NESS-E	5	5,000	150	2.4		700			
NESS-W	5	2,100	1.0	ND		89			
PZ-101	10	27,000	220	13	10	6.1	0.25	ND	
PZ-102	10	58,000	1,300	760	10	10,000	2.4	ND	
PZ-103	10	73,000	8,200	1,100	10	44,000	4.8	ND	
PZ-104	10	9,100	2,400	1,500	10	40	0.14	ND	
QD-1	6	11	5.8	2.2		ND			
QO-2	11	380	5.4	ND		ND			
QO-2S1	11	27	0.86	ND		ND			
QS-4	11	3,400	200	140	1	ND	ND		

Note:

- Number of samples and mean reflect 5-year sampling period from May 2005 through November 2009.
 Historic maximum based on all available results from March 1990 through November 2009.
- 2) Chloropyridines represented by: 2-Chloropyridine, 2,6-Dichloropyridine, 3-Chloropyridine, 4-Chloropyridine, p-Fluoroaniline, and Pyridine.
- 3) Selected VOCs represented by Carbon Tetrachloride, Chloroform, Methylene Chloride, Tetrachloroethene, and Trichloroethene.
- 4) Bold and shade May 2010 exceeds 5-year mean.
- 5) ND = Not detected BLANK = Not sampled

TABLE 5 SPRING 2010 QUARRY SEEP AND OUTFALL WATER SAMPLE RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	QS-4	QO-2	QO-2S1	QD-1
SAMPLE DATE:	5/14/2010	5/14/2010	5/14/2010	5/14/2010
QC TYPE:	Sample	Sample	Sample	Sample
SELECTED CHLOROPYRIDINES BY SW- 846 Method 8270C (µg/L)				
2,6-Dichloropyridine	26	9.4 U	9.4 U	9.4 U
2-Chloropyridine	110	9.4 U	9.4 U	2.2 J
3-Chloropyridine	9.4 U	9.4 U	9.4 U	9.4 U
4-Chloropyridine	9.4 U	9.4 U	9.4 U	9.4 U
p-Fluoroaniline	9.4 U	9.4 U	9.4 U	9.4 U
Pyridine	24 U	24 U	24 U	24 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

Prepared/Date: BJS 08/11/10

TABLE 6
EXTRACTION WELL WEEKLY FLOW MEASUREMENTS - DECEMBER 2009 THROUGH MAY 2010

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

Week Ending	BR-5A [Gal./Wk.]	BR-7A [Gal./Wk.]	BR-9 [Gal./Wk.]	PW-11 [Gal./Wk.]	PW-13 [Gal./Wk.]	PW-14 [Gal./Wk.]	PW-15 [Gal./Wk.]	BR-127 [Gal./Wk.]	Tota [Gal
Dec '09	The street de la finite de la f	Territoris destinatas destinatas de la composición del composición de la composición	The strain and the st		Tapatherin tredit in the first of the second	Technological States	Traditional address of the second	Contractive Salishana Section 1	
12/06/09	34,749	57,244	18,787	2,415	1,074	1,769	25,343	88,061	229,44
12/13/09	35,666	76,669	19,667	2,436	10	1,420	28,389	75,319	239,57
12/20/09	38,480	75,973	18,108	2,830	6,822	1,582	27,427	63,862	235,08
12/27/09	39,232	69,694	16,521	2,664	10,957	1,435	25,323	35,544	201,37
								Total [Gal.]	905.47
Jan '10							J 201 - 101		P. P. Markando, describer and a contract of the contract of th
01/03/10	38,901	76,066	27,452	1,103	987	1,119	24,634	74,729	244,99
01/10/10	36,839	76,752	27,677	1,401	0	1,075	22,367	63,804 *	229,91
01/17/10	35,759	81,398	24,164	1,367	5	1,305	20,502	67,752 *	232,25
01/24/10	36,835	70,805	30,237	363	. 1	1,424	33,955	67,752 *	241,37
01/31/10	35,943	70,707	34,223	0	0	1,416	29,162	67,752 * Total [Gal.]	239,20 1,187,73
Feb '10		- 11-11 1 Warmen of State - 11-11	11						
02/07/10	34,999	73,355	37,579	0	0	1,306	22,064	67.752 *	237,05
02/14/10	32,592	78,670	29,062	0	0	1,038	31,142	67,752 *	240,25
02/21/10	32,458	100,494	31,498	0	6	1,048	33.810	11,726 **	
02/28/10	20,159	84,649	30,654	ő	Ö	192	31,905	14,796 **	182,35
		-,,-,-				,,,	2.,000	Total [Gal.]	870.70
Mar '10		,							-
03/07/10	36,299	82,905	25,597	0	1	407	19,339	21,661 **	186,20
03/14/10	29,232	83.647	42,224	0	15	713	23,367	37,163	216,36
03/21/10	29,177	89,094	48,958	0	21	898	15,086 **		220,57
03/28/10	27,801	89,927	48,850	0	12	911	17,031 **		221,2
							,	Total [Gal.]	844.35
Apr '10									
04/04/10	27,304	91,346	48,742	0	32	909	26,989	36,473	231,79
04/11/10	26,114	88,068	47,861	0	38	915	24,315	35,579	222,89
04/18/10	24,382	87,317	45,603	0	42	885	17,458 **		210,01
04/25/10	22,314	74,241	72,854	0	30,301	1,000	10,519 **	32,436	243,66
								Total [Gal.]	908.36
May '10									
05/02/10	21,743	61,186	84,587	0	82,947	1,140	8,509 **		289,97
05/09/10	21,041	64,081	78,412	0	87,275	1,168	32,921	27,912	312,81
05/16/10	22,620	59,906	80,527	0	95,484	1,203	43,786	27,987	331,51
05/23/10	21,190	52,981	76,606	0	91,329	1,181	40,482	26,173	309,94
05/30/10	19,671	51,552	79,194	0	90,829	1,178	38,833	24,854	306,11
								Total [Gal.]	1.550.35
Total 6 Mo.									
Removal (Gal.)	781,500	1,968,727	1,125,644	14,579	498,188	28,638	674,658	1,175,051	6,266,98

Flow rate is estimated due to a meter failure or reading error
 Flow rate adversely affected by pump failure or pluggage in discharge line

TABLE 7

MASS REMOVAL SUMMARY PERIOD: DECEMBER 2009 - MAY 2010

ARCH ROCHESTER SPRING 2010 GROUNDWATER MONITORING REPORT

Well	Total Vol. Pumped (gallons)	Avg. VOC Conc. (ppm)	Avg. PYR. Conc. (ppm)	VOCs Removed (pounds)	PYR. Removed (pounds)
BR-5A	782,000	0.002	0.20	0.01	1.3
BR-7A	1,969,000	0.006	11	0.10	173
BR-9	1,126,000	0.002	0.047	0.02	0.4
PW-11	15,000	0.000	0.30	0.0	0.0
PW-13	498,000	0.004	1.0	0.02	4
PW-14	29,000	35	3.2	8.6	1
PW-15	675,000	5.9	32	33	177
BR-127	1,175,000	0.43	3.2	4.2	31
Totals:	6,269,000			46	388

Note: VOC and pyridine concentrations used in this table are an average of the analytical results from the Fall 2009 and Spring 2010 sampling events for each well

TABLE 8 2010 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

ARCH ROCHEST									010		
MONITORING PR	OGRAM	•				SPE	RING		ALL	то	TA
	Well	zone	area	Frequency/Parameters	Purpose	Pyridines	VOCs	Pyridines	VOCs	Pyridines	NOC.
OFF-SITE	MW-103	OB	BRBC	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
MONITORING	BR-103	BR	BRBC	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	MW-104	OB	BUFFALO RD	annual monitoring, PYR	trend monitoring	1				1	
	BR-104	BR	BUFFALO RD	annual monitoring, PYR	trend monitoring	1				1	
	BR-105	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	
	BR-105D	BR deep	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	
	MW-106	ОВ	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	
	BR-106	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1 1	1	1	1	2	
	BR-108	BR	AID-HOSP	annual monitoring, PYR	trend monitoring	1 1				1	1
	BR-112D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1 1				1	
	BR-113D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1				1	
	MW-114	OB	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1 1	1			1	
	BR-114	BR	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	BR-116	BR '	PFAUDLER	annual monitoring, PYR	trend monitoring					1	
	BR-116D	BR deep	PFAUDLER	annual monitoring, PYR	trend monitoring						
	BR-117D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring					1	
	BR-118D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1 1					1
	BR-122D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	Li				1	
	BR-123D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	Li	1 8			1	
	NESS-E	BR deep	NESS NESS	annual monitoring, PYR	trend monitoring					1	
	NESS-W PZ-101	BR deep	McKee Rd	annual monitoring, PYR		1		1	1	2	
	PZ-101 PZ-102	BR BR	McKee Rd	semi-annual monitoring, VOCs & PYR semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring perimeter sentinel/trend monitoring		1	1	1	2	
	PZ-102 PZ-103	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentine/trend monitoring	Li	1	1	1	2	П
	PZ-103	BR	ARM	semi-annual monitoring, VOCs & PYR	perimeter sentine/trend monitoring	Li	1	1	1	2	
	BR-126	BR	ARM	semi-annual monitoring, VOCs & PYR	trend monitoring	Li	1	1	1	2	
	B-16	OB	ARM	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	Li	1	1	1	2	L
	MW-16	BR	Gen'l Circuits	annual monitoring, PYR	trend monitoring	1.	Ι.	1		1	
ON-SITE	PZ-107	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	
MONITORING	PZ-106	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	11	1	1	1	2	
WOW TO WING	PZ-105	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	
	BR-127	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	
	BR-3	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	Li	1			1	
	BR-8	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	BR-9	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	11	1	1	1	2	
	BR-5A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	11	1	1	1	2	
	BR-6A	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	
	BR-7A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	ı
	B-17	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	П
	B-7	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	B-11	ОВ	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1	1	1	2	ı
	E-3	ОВ	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	
	MW-127	ОВ	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	1
	PW10	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	1
	PW12	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	
	PW13	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	1
	PW14	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	ı
	PW15	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	
	PW16	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	NA	NA	1	1	1	
QUARRY/CANAL	QS-4	quarry seep	QUARRY	semi-annual monitoring, PYR	trend monitoring	1		1		2	
MONITORING	QD-1	quarry ditch	DITCH	semi-annual monitoring, PYR	trend monitoring	1		1		2	1
	QO-2	quarry outfall	DITCH	semi-annual monitoring, PYR	trend monitoring	1		1		2	
	QO-2S1	canal at outfall	CANAL	semi-annual monitoring, PYR	surface water monitoring	1		1		2	
TOTAL SAMP	I ES					51	34	31	26	82	1

Appendix A Groundwater Field Sampling Data Sheets

FIELD REPORT

TestAmerica Laboratories, Inc.

REMEDIAL INVESTIGATION SAMPLING ARCH CHEMICAL ROCHESTER, NEW YORK

SPRING 2010 Event

Prepared For:

MacTec, Inc. 511 Congress Street Portland, Maine 04101

Attention: Mr. Nelson Breton

Prepared By:

TestAmerica Inc Audubon Business Center 10 Hazelwood Drive Amherst, New York 14228-2298

NY5A5762

Written By:

Roger Senf

Reviewed By:

Date:

6-18-10

1.0 INTRODUCTION

This report describes the sampling of the following points:

- Fourty-seven (47) groundwater samples (PW-11 not sampled)
- One (1) barge canal sample
- Two (2) quarry outfall samples
- One (1) quarry seep sample

These activities were in support of the Phase II Remediation Investigation being conducted at the Arch Chemical facility in Rochester, New York. The samples were collected from May 13 – 19, 2010 by TestAmerica Inc (TAL) Field personnel.

2.0 METHODOLOGIES

2.1 Water Level Measurements

Static water levels in all groundwater wells were measured from the top of the well casing/riser with an electronic water level indicator. All well bottoms were sounded with the weighted steel measuring tape. All measurements were recorded to the nearest hundredth of a foot (0.01 feet). The length of the measuring device which contacted the water was cleaned between wells with a deionized water rinse and paper towel wipe. These data are presented on Sampling Summary Table and Field Observation forms.

2.2 Well Purging

Monitoring wells were evacuated prior to sampling employing one of the following methods:

- Purging three (3) times the standing water volume using precleaned or dedicated 1.25" X
 stainless steel bailers, 2" X 5' polyvinyl chloride bailers, peristaltic pump or QED Low-Flow Bladder pumps.
- 2) Evacuated with the low flow/low stress puring technique using either QED Low-Flow Bladder pumps or a variable rate peristaltic pump.

Wells that were purged of three (3) standing volumes were mainly wells located on or very near the Erie Canal and historically purged with this method prior to sampling. The remaining wells were evacuated with a low flow/low stress purging technique. This technique involves the use of a variable flow rate bladder or peristaltic pump. The pumps were employed to purge the monitoring wells at a flow rate such that drawdown of the water column from static conditions is minimal. Field measurements of pH, specific conductance, temperature, ORP, dissolved oxygen and turbidity are monitored every 3-5

minutes until stabilization of parameters is realized. Once stabilization has occurred, sampling can be conducted. All purged water was collected into 55-gallon drums for disposal at the on-site wastewater treatment facility. Data pertaining to each evacuation are presented on the Sampling Summary Table and field Observation Forms.

2.3 Surface Water Samples

Surface water samples were collected from one (1) location on the Erie Barge Canal, two (2) outfall samples and one (1) seep location. Sample locations were noted on the Field Forms.

3.0 SAMPLING

3.1 Monitoring Wells

All groundwater wells were sampled using precleaned or dedicated 1.25" X 1.25" X 5' stainless steel bailers, perisaltic pumps or bladder (SamplePro) pumps when low flow purging techniques were used. Each bailer was constructed with teflon, bottom-filling check valve and was assembled without glues or welds. New ¼" poly rope was attached to each bailer. The bailer was slowly lowered into the water column, minimizing agitation and devolatilization. Low density polyethylene (LDPE) tubing was used with both the bladder (QED) and the peristaltic pumps. The bladder pumps were decontaminated between sample locations in accordance with the work plan. Personnel exercised care in all aspects of the sampling to ensure the collection of a representative sample An additional sample container was collected from each well in order to facilitate the measurement of field analytical parameters. Data pertaining to sampling are presented on the Sampling Summary Table and the Field Observation Forms.

3.2 Canal Sampling

When possible, samples were collected directly from the canal into appropriate sample containers. Otherwise, samples were collected with the use of a unique, laboratory-cleaned stainless steel bailer. The bailers were immersed just below the surface and removed. Sample was poured directly into the appropriate container. An additional container was collected to facilitate the measurement of field parameters. Additional data pertaining to these samples is presented in the Sampling Summary Table and Field Observation Forms.

3.3 Seep Sampling

Groundwater samples were collected from seeps at the quarry (QS4) located on Buffalo Road. The samples were collected with the use of a laboratory cleaned stainless steel bucket and was then poured directly into the appropriate containers. An additional container was

collected to facilitate the measurement of field parameters. Data pertaining to this sampling is presented in the Sampling Summary Table and Field Observation Forms.

4.0 SAMPLE CONTAINERS

Monitoring wells and surface water samples requiring analysis for volatile organics were collected into 40 ml glass vials with teflon septa. Samples for semi-volatile and Pyridine analysis were collected into one (1) liter amber glass bottles with teflon-lined caps. All bottles were purchased new and cleaned (Protocol A, 300 series) from Environmental Supply Services. Each container was labeled with the following information:

- Sample Identification (Well/Point I.D.)
- Date
- Project Number
- Sampler's Initials

5.0 FIELD MEASUREMENTS

On-site field measurements were made of each sample's pH, specific conductance and temperature. All measurements were made in accordance with protocols outlined in Methods for Chemical Analysis of Water and Wastes (EPA – 600/4-79-9020). These data were presented on the Sampling Summary Table and Field Observation Forms.

6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

6.1 Trip Blanks

Trip blanks were collected with each sample shipment requiring volatile organic analysis. Each trip blank consisted of two 40 ml glass vials with teflon septa which were filled with deionized water at the TAL laboratory. These blanks were transported to the site, stored with field collected samples and submitted to the TAL facility for analysis.

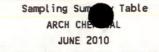
6.2 Equipment Rinse Blank

Equipment rinse blanks were collected as required by the work plan.

7.0 CHAIN OF CUSTODY

Chain of custody was initiated at the time of sample collection and maintained through delivery to the TAL facility in Amherst, New York. Copies of these documents are included in the analytical report package.

SEMI-ANNUAL GROUNDWATER ELEVATION REPORT ARCH CHEMICAL ROCHESTER, N.Y.


SAMPLE	DATE	DEPTH TO WATER	CASING ELEVATION	GW ELEVATION	TIME	Comments
B-1	05/12/10	8.21		-8.21	1203	NO L-NAPL ; NO D-NAPL
B-10		9.18		-9.18	1100	NO L-NAPL ; NO D-NAPL
B-11		6.59		-6.59	1122	NO L-NAPL ;NO D-NAPL 11.55 BOT.
B-13		12.76		-12.76	1304	
B-14		9.04		-9.04	1252	
B-15		6.18		-6.18	1255	
B-16		6.73		-6.73	1259	NO L-NAPL ;NO D-NAPL 13.20 BOT.
B-17		9.70		-9.70	1149	NO L-NAPL ; NO D-NAPL
B-2		9.27		-9.27	1205	NO L-NAPL ; NO D-NAPL
B-4		11.77		-11.77	1033	NO L-NAPL ; NO D-NAPL
B-5		10.21		-10.21	1028	NO L-NAPL ; NO D-NAPL
B-7		14.11		-14.11	1239	NO L-NAPL ; NO D-NAPL
B-8		9,81		-9.81	1107	NO L-NAPL ; NO D-NAPL
BR-1		7.55		-7.55	1039	NO L-NAPL ; NO D-NAPL
BR-102		22.70		-22.70	1210	
BR-103		6.71		-6.71	1155	
MW-103		1.62		-1.62	1156	
BR-104		9.96		-9.96	1200	
MW-104		4.77		-4.77	1201	
BR-105		23.08		-23.08	1256	
BR-105D		25.76		-25.76	1257	
MW-105		18.79		-18.79	1254	
BR-106		22.46		-22.46	1305	
MW-106		10.16		-10.16	1307	
BR-108		28.51		-28.51	1335	
MW-108		21.21	AND THE RESERVE OF THE PARTY OF	-21.21	1336	
BR-111		28.47		-28.47	1246	
BR-111D		28.99		-28.99	1245	
BR-112A		27.11		-27.11	1238	
BR-112D		36.34		-36.34	1240	
BR-113		31.26	-	-31.26	1215	
BR-113D		31.38		-31.38	1216	

SEMI-ANNUAL GROUNDWATER ELEVATION REPORT ARCH CHEMICAL ROCHESTER, N.Y.

SAMPLE POINT	DATE	DEPTH TO WATER	CASING ELEVATION	GW ELEVATION	TIME	Comments
BR-114	05/12/10	13.75		-13.75	1205	
MW-114		10.10		-10.10	1206	
BR-116	•	28.52		-28.52	1140	
BR-116D		35.75		-35.75	1142	
BR-117		24.00		-24.00	1052	CASCADING WELL
BR-117D		49.80		-49.80	1050	
BR-118		33.39		-33.39	1042	
BR-118D		48.65		-48.65	1040	
BR-122D		45.30		-45.30	1130	
BR-123D		45.54		-45.54	1125	
BR-124D		31.64		-31.64	1120	
BR-126		8.51		-8.51	1245	
BR-127		8.83			1126	NO L-NAPL
MW-127		6.51			1127	NO L-NAPL ; NO D-NAPL
BR-2		9.61		-9.61	1131	NO L-NAPL ; NO D-NAPL
BR-2A		10.87		-10.87	1130	NO L-NAPL ; NO D-NAPL
BR-2D		0.05		-0.05	1134	NO L-NAPL ; NO D-NAPL
BR-3		9.60		-9.60	1114	NO L-NAPL
BR-3D		58.12		-58.12	1113	NO L-NAPL ; NO D-NAPL
BR-4		7.12		-7.12	1140	NO L-NAPL
BR-5		13.82		-13.82	1050	NO L-NAPL ; NO D-NAPL
BR-5A		19.33		-19.33	1051	
BR-6A		13.99		-13.99	- 1111	
BR-7		31.26		-31.26	1236	
BR-7A		20.02		-20.02	1235	NO L-NAPL ; NO D-NAPL
BR-8		10.16		-10.16	1031	NO L-NAPL ; NO D-NAPL
BR-9		35.18		-35.18	1209	NO L-NAPL
C-2A		9.44		-9.44	1132	NO L-NAPL ; NO D-NAPL
C-3						BURIED
C-5		10.96		-10.96	1115	NO L-NAPL ; NO D-NAPL
E-2		5.27		-5.27	1141	NO L-NAPL ; NO D-NAPL
E-3		4.22		-4.22	1052	NO L-NAPL ; NO D-NAPL

SEMI-ANNUAL GROUNDWATER ELEVATION REPORT ARCH CHEMICAL ROCHESTER, N.Y.

SAMPLE POINT	DATE	DEPTH TO WATER	CASING ELEVATION	GW ELEVATION	TIME	Comments
E-5	05/12/10	5.93		-5.93	1045	NO L-NAPL ; NO D-NAPL
EC-1		17.44		-17.44	1230	
EC-2		12.67		-12.67	1217	
ERIE CANAL		32.97		-32.97	1225	
MW-16		11.64		-11.64	1147	
MW-3		5.83		-5.83	1355	
MW-G6		3.97		-3.97	1402	
MW-G7						NOT LOCATED
MW-G8		7.92		-7.92	1407	
MW-G9		10.55		-10.55	1412	
N-2		3.70	***	-3.70	1041	NO L-NAPL ; NO D-NAPL
N-3		5.59		-5.59	1200	NO L-NAPL
NESS-E		15.74		-15.74	1208	
NESS-W		31.48		-31.48	1212	
PW-10		8,95		-8.95	1151	·
PW-11		26.01		-26.01	1027	NO L-NAPL
PW-12		6.21		-6.21	1055	
PW-13		33.51		-33.51	1232	NO L-NAPL; NO D NAPL
PW-14		45.15		-45.15	1120	NO L-NAPL
PW-15		29.76		-29.76	1117	NO L-NAPL
PZ-101		13.22		-13.22	1223	
PZ-102		15.68		-15.68	1225	
PZ-103		12.19		-12.19	1227	
PZ-104		14.02		-14.02	1306	
PZ-105		9.62		-9.62	1109	NO L-NAPL ; NO D-NAPL
PZ-106		11.75		-11.75	1119	NO L-NAPL ; NO D-NAPL
PZ-107		10.77		-10.77	1102	NO L-NAPL ; NO D-NAPL
PZ-109	-1.	10.35		-10.35	1109	NO L-NAPL; NO D-NAPL
W-2		9.79		-9.79	1208	NO L-NAPL ; NO D-NAPL
W-5		6.25		-6.25	1230	NO L-NAPL ; NO D-NAPL

Page: 1 Rept: ANO821

RI SAMPLING/ROCHESTER NY FACILITY

Sample	-Water Level-	Water	Water	Bottom	Field Measur	ements	рН	Spec.				
Point	Date Time	Level (ft)*	Elevation (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond.	Temp (°C)	Turb. (NTU)	Other Field Measure	ments
3-11	05/14/2010 1153	5.11	N/A	N/A	05/17/2010	1136	7.52	1786	14.0	99.80	EH(mv)= -10	DO(ppm)= 0.68
	Comments: SL.TURI	BID GREY/	PURGED TO DI	RY								
B-16	05/14/2010 1345 Comments: CLEAR	7.02	N/A	N/A	05/14/2010	1410	7.20	2326	15.4	3.99	EH(mv)= -20	DO(ppm)= 0.85
3-17	05/14/2010 1020	9.81	N/A	N/A	05/14/2010	1050	8.90	10300	13.0	5.82	EH(mv) = -89	DO(ppm) = 0.73
5 11	Comments: CLEAR		.,,.,	9								
B-7	05/14/2010 1259	13.98	N/A	N/A	05/14/2010	1325	6.98	1824	14.4	19.70	EH(mv)= -26	DO(ppm) = 0.84
g-r	Comments: CLEAR	13.70	14/14	10,71	03, 14, 2010							
BR-103	05/18/2010 1310	6.62	N/A	N/A	05/18/2010	1335	7.45	870	13.2	5.52	EH(mv)= -87	DO(ppm) = 0.70
DK-103	Comments: CLEAR	0.02	17.0	N/A	037 107 2010	1333	1042	0.0		-		
3R-104	05/17/2010 1017	10.92	N/A	N/A	05/17/2010	1140	7.85	395	12.1	23.20	EH(my)= -2	DO(ppm) = 0.85
	Comments: CLEAR											
BR-105	05/19/2010 1146	22.86	N/A	N/A	05/19/2010	1329	7.38	2177	14.1	0.32	EH(mv)= -124	DO(ppm) = 0.64
OK 105	Comments: CLEAR											
BR-105D	05/19/2010 1146	25.55	N/A	N/A	05/19/2010	1204	6.87	34300	16.2	0.62	EH(mv) = -315	DO(ppm) = 0.70
DK 1030	Comments: CLEAR			-14.15								
BR-106	05/19/2010 1018	23.88	N/A	N/A	05/19/2010	1050	6.90	4387	12.3	6.13	EH(mv)= -64	DO(ppm) = 0.75
BK 100	Comments: CLEAR	23.00	,	,								
BR-108	05/18/2010 1010	28.51	N/A	29.75	05/18/2010	1442	7.29	1521	11.0	77.90	EH(mv)= 23	
PK-100	Comments: SL.TUR			_,,,,			,					
BR-112D	05/19/2010 1349	36.27		72.26	05/19/2010	1424	7.29	2787	10.8	6.07	EH(mv) = -221	DO(ppm) = 0.98
BK-1120	Comments: CLEAR	30.21	N/ A	16.20	05, 17, 2010							
BR-113D	05/17/2010 1355	31.28	N/A	N/A	05/17/2010	1430	7.19	2569	12.7	1.53	EH(mv)= -277	DO(ppm) = 0.24
BK-1130	Comments: CLEAR	31.20	N/A	11/11	037 117 2010							
BR-114	05/18/2010 1010	13.64	N/A	N/A	05/18/2010	1045	6.70	2063	14.3	1.28	EH(mv)= -79	00(ppm) = 0.28
DK-114	Comments: CLEAR		107.11		05, 10, 2010							
BR-116	05/17/2010 1250	28.25	N/A	N/A	05/17/2010	1325	6.93	3471	16.0	4.50	EH(mv)= -65	DO(ppm) = 0.89
DK-110	Comments: CLEAR	20.23	1077	11/11	03, 11, 2010	.025	4					
DD 114D	05/17/2010 1155	35.6D	N/A	N/A	05/17/2010	1230	10.00	1429	14.3	33.10	EH(mv)= -122	DO(ppm) = 0.56
BR-1160	Comments: CLEAR			n/A	-5/11/2010	.250		.,_,				1
DD 4470	05/14/2010 1035	49.79		N/A	05/14/2010	1110	6.69	3644	10.9	57.80	EH(mv)= -311	.DO(ppm)= 0.26
BR-117D			N/A	N/N	03/ 14/2010	1110	0.07					
	Comments: BLACK	1161										

SG - Specific Gravity

^{*} From Top of Riser

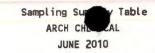
EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Rept: ANO821

Sample	-Water Level-	Water	Water	Bottom	Field Measur	rements	рН	Spec.				
Point	Date Time	Level (ft)*	Elevation (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond. (umhos)	Temp (°C)	Turb. (NTU)	Other Field Measure	ments
BR-1180	05/14/2010 1120	48.63	N/A	N/A	05/14/2010	1155	7.51	1811	10.7	29.80	EH(mv)= -306	DO(ppm)= 0.16
	Comments: SL. TIM						-			-		
BR-122D	05/14/2010 1405 Comments: BLACK 1	44.96 TINT	N/A	N/A	05/14/2010	1440	7.20	2353	10.6	17.70	EH(mv)= -278	DO(ppm)= 0.18
BR-123D	05/14/2010 1315	45.53	N/A	N/A	05/14/2010	1350	7.58	2224	11.5	22.10	EH(mv)= -165	DO(ppm) = 0.37
	Comments: BLACK 1	INT			,							
BR-126	05/18/2010 1344	8.65	N/A	N/A	05/18/2010	1416	7.21	1101	12.5	29.90	EH(mv)= -37	DO(ppm) = 0.63
	Comments: SL.TURE	BID										
BR-127	05/13/2010 1430 Comments: CLEAR	8.91	N/A	N/A	05/13/2010	1431	8.29	2956	14.2	4.24	EH(mv)= -141	
BR-3	05/13/2010 1217	9.61	N/A	N/A	05/13/2010	1245	7.04	12300	13.4	65.80	EH(mv)= -143	DO(ppm) = 0.77
	Comments: SL.TURE	ID YELLO	W									
BR-5A	05/17/2010 1220 Comments: CLEAR	14.29	N/A	N/A	05/17/2010	1223	7.77	1765	14.3	18.85	EH(mv)= -117	
BR-6A	05/17/2010 1040	13.86	N/A	N/A	05/17/2010	1110	7.17	4409	15.0	45.90	EH(mv)= -114	DO(ppm)= 0.95
	Comments: SL.TURE	ID TAN										
BR-7A	05/17/2010 1300	30.19	N/A	N/A	05/17/2010	1304	7.37	3007	15.1	61.90	EH(mv) = -109	
	Comments: SL.TURE	ID GREY										
BR-8	05/13/2010 1003	10.13	N/A	N/A	05/13/2010	1030	7.10	5862	13.1	29.20	EH(mv)= -91	DO(ppm) = 0.73
	Comments: CLEAR Y	ELLOW TI	NT									
BR-9	05/17/2010 1230	35.56	N/A	N/A	05/17/2010	1233	7.18	2586	15.2	370.00	EH(mv) = -75	
	Comments: TURBID	RED										
E-3	05/13/2010 1442	4.30	N/A	N/A	05/14/2010	1231	7.60	876	12.9	48.90	EH(mv)= -52	DO(ppm)= 1.11
	Comments: SL.TURE	IID										
MW-103	05/18/2010 1330 Comments: CLEAR	1.79	N/A	N/A	05/18/2010	1405	7.39	805	14.8	4.76	EH(mv)= 11	DO(ppm)= 0.88
MW-104	05/17/2010 1015	7.98	N/A	N/A	05/17/2010	1100	7.41	963	13.0	303.00	EH(mv)= 17	DO(ppm) = 0.76
107	Comments: TURBID		,									
MW-106	05/19/2010 1018	10.66	N/A	N/A	05/19/2010	1122	6.86	2502	11.4	10.11	EH(mv)= -52	DO(ppm) = 0.95
	Comments: CLEAR											
MW-114	05/18/2010 1056	9.95	N/A	N/A	05/18/2010	1120	7.04	2288	15.0	4.50	EH(mv)= 11	DO(ppm)= 0.97
	Comments: CLEAR											


SG - Specific Gravity

EH - Redox

^{*} From Top of Riser

^{**} Elevation Above Sea Level

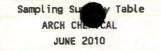
DO - Dissolved Oxygen

Page: 3 Rept: ANO821

RI SAMPLING/ROCHESTER NY FACILITY

Sample	-Water Level-	Water	Water	Bottom	Field Measur		рН	Spec.				
Point	Date Time	Level (ft)*	Elevation (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	(umhos)	Temp (°C)	Turb.	Other Field Measure	ments
MW-127	05/13/2010 1350 Comments: CLEAR	6.68	N/A	N/A	05/13/2010	1410	7.61	2099	13.7	4.23	EH(mv)= -70	DO(ppm)= 0.93
NESS-E	05/18/2010 1230	15.58	N/A	N/A	05/18/2010	1300	7.35	1241	15.7	22.70	EH(mv)= -91	DO(ppm) = 0.69
11200 2	Comments: SL.TURE											
NESS-W	05/18/2010 1148 Comments: CLEAR	31.28	N/A	N/A	05/18/2010	1215	7.11	2226	12.9	3.86	EH(mv)= -129	DO(ppm) = 0.57
PW-10	05/14/2010 1039	8.90	N/A	N/A	05/14/2010	1130	8.09	4680	15.3	67.60	EH(mv)= -88	DO(ppm) = 0.71
rw IO	Comments: SL.TURE			,	05,, 20.0	.,						
PW-12(BR-101)	05/13/2010 1536 Comments: CLEAR	6.21	N/A	N/A	05/13/2010	1600	7.02	2948	12.7	39.70	EH(mv)= -114	DO(ppm) = 0.74
PW-13	05/17/2010 1245 Comments: CLEAR	21.17	N/A	N/A	05/17/2010	1248	7.12	2601	13.6	6.20	EH(mv)= -105	
PW-14	05/17/2010 1150 Comments: SL.TURE	21.07	N/A	N/A	05/17/2010	1153	6.90	3513	15.6	100.00	EH(mv)= -17	
PW-15	05/17/2010 1205 Comments: SL.TURE	24.02	N/A	N/A	05/17/2010	1209	8.90	7155	15.2	63.60	EH(mv)= -155	
PZ-101	05/18/2010 1200 Comments: CLEAR	13.53	N/A	N/A	05/18/2010	1222	6.91	4590	12.6	4.91	EH(mv)= 45	DO(ppm)= 0.87
PZ-102	05/18/2010 1110 Comments: SL.TURE	15.83	N/A	N/A	05/18/2010	1136	7.19	6378	12.0	31.90	EH(mv)= -91	DO(ppm)= 0.87
PZ-103	05/18/2010 1027 Comments: CLEAR	12.44	N/A	N/A	05/18/2010	1052	6.96	5648	12.1	3.56	EH(mv)= -144	DO(ppm) = 0.94
PZ-104	05/18/2010 1244 Comments: CLEAR	14.11	N/A	N/A	05/18/2010	1306	7.33	1648	13.4	5.34	EH(mv)= -117	DO(ppm)= 0.82
PZ-104	05/18/2010 1244 Comments: CLEAR/0	14.11	N/A	N/A	05/18/2010	1307	7.31	1650	13.5	5.29	EH(mv)= -117	DO(ppm) = 0.81
PZ-105	05/13/2010 1048 Comments: SL.TURE	10.65	N/A	N/A	05/13/2010	1115	7.55	3772	14.6	82.50	EH(mv)= -195	DO(ppm)= 0.83
PZ-106	05/13/2010 1303	11.94	N/A	N/A	05/13/2010	1330	6.20	14210	13.5	7.12	EH(mv)= -26	DO(ppm)= 0.79
PZ-107	Comments: CLEAR \\ 05/13/2010 1136 Comments: CLEAR	10.80	N/A	N/A	05/13/2010	1205	6.60	6588	13.4	3.37	EH(mv)= -151	DO(ppm)= 0.92

SG - Specific Gravity


^{*} From Top of Riser

EH - Redox

^{**} Elevation Above Sea Level

DO - Dissolved Oxygen

Date: 06/08/2010 Time: 15:22:50

Page: 4
Rept: ANO821

RI SAMPLING/ROCHESTER NY FACILITY

Sample	-Water Level-	Water	Water	Bottom	Field Measur	ements	рН	Spec.			
Point	Date Time	Level (ft)*	Elevation (ft)**	Of Well (ft)*	Date	Time	(STD) (Units)	Cond.	Temp (°C)	Turb.	Other Field Measurements
QD-1	05/14/2010 1055	0.00	N/A	N/A	05/14/2010	1100	8.11	1590	14.8	N/A	EH(mv)= -165
QO-2	Comments: CLEAR 05/14/2010 1500 Comments: CLEAR	0.00	N/A	N/A	05/14/2010	1505	8.22	1581	15.3	N/A	EH(mv)= -179
QO-2S1	05/14/2010 1515 Comments: CLEAR	0.00	N/A	N/A	05/14/2010	1525	8.14	675	14.9	N/A	EH(mv)= -162
QS-4	05/14/2010 1550 Comments: CLEAR	0.00	N/A	N/A	05/14/2010	1600	8.17	815	11.7	N/A	EH(mv)= -137

SG - Specific Gravity

EH - Redox

DO - Dissolved Oxygen

* From Top of Riser

** Elevation Above Sea Level

Eacility:	ARCH			Sample	Point ID:	3-11		
Field Pers	onnel:	PL, JJ, RS		Sample	Matrix:	GW		
MONITO	RTING WELL I	NSPECTION:						
Date/Time	8.14-10	1 11.	53	Cond o	f seal: () Good (() None) Cracked Buried	-	%
Prot. Casi	ing/riser height <u>:</u>			Cond o	•	ser: PKUnlo) Loose) Damaged	() Flush M	
If prot.cas	sing; depth to ri	ser below:						
Gas Mete	r (Calibration/ R	eading):	% Gas:	-1-	% LEL:	-1-		
Vol. Orga	nic Meter (Calib	ration/Reading):	Volatile	es (ppm)/	_		RIJE- FT DOWN
PURGE !	INFORMATION	l:					_	77 2000
Date / Tin	ne Initiated:	5-14-101 11	55	Date /	Time Completed	: 3	5-14-10 1	1215
Surf. Mea	s. Pt: () Prot. C	asing	() Riser	Riser I	Diameter, Inches		2.0	
Initial Wa	ter Level, Feet:	5.11		Elevati	ion. G/W MSL:	%		
Vell Tota	al Depth, Feet:	11.5	5	Metho	d of Well Purge:		Perisi	KTIL
One (1) R	Riser Volume, G	al:		Dedica	ited:	P) N		
Total Vol	ume Purged, Ga	al:		Purge	d To Dryness	DIE	TURA	,
Purge Ob	oservations:	LO FC	ow	Start	616	Finish	10	
	DATA: (if appl					7	045	Other
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
	MUM NL		156	765	1070	177	-23	0.82

Time		e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Oo
1200	mun 60	NL	1	15.6	7.65	1830	177	-23	0.82
1205				14.9	7.50	1793	116	-20	0.80
1210				14:4	7.47	1790	136	-13	0.77
1215				148	7:45	1788	129	-16	0-70

SAMPLER @ 1215 /5-14-20 Before
PAGE 1 OF 2 Going

MPLING	INFORMATI	ION:		POINT ID	B-11		
ite/Time	5-17-	-10 1	1135	Water Lev	vel @ Sampling,	Feet:	5.09
ethod of Sa	ampling:				Dedicated:	Y/N	
ulti-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy	
MPLING			-45				
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other (ON)	Other	+
1136	14.0	7.52	17.86	99.8	-10.	0.63	
STRUMEN	NT CHECK D	ATA:					
rbidity Seri		NTU std.		N	TU std. =	NTU	
		4.0 std.=		0 std.=	10).0 std. =	_
nductivity	Serial #:		u			umhos/cm=	
NERAL II	NFORMATIC	-4	0				
ather cond	ditions @ time	of sampling:					
nple Char	acteristics:		SL Turk	0 6	4- 10		
		DVATIONO.					
MINIENIS	AND UBSE	RVATIONS:	SAMO	You	ilpm) 4	VIR WINT	Dry
W.L.	SAMOL	5-14-	16 (VO	As on	14)		
				-			
		-					
ertify that s	ampling proc	edures were in	accordance wi	th all applie	cable FPA State	and Site Speci	Fic
tocais.					Company:	and Site-Speci	fic

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: B-16						
Field Personnel: Pt, JJ, KS	Sample Matrix: Gw						
MONITORTING WELL INSPECTION:							
Date/Time 5-14-10 +4/345	Cond of seal: () Good () Cracked % () None () Buried						
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose						
If prot.casing; depth to riser below:	() Damageu						
Gas Meter (Calibration/ Reading): % Gas:							
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/						
PURGE INFORMATION:							
Date / Time Initiated: 5-14-10 1 /350	Date / Time Completed: 5-17.10 1410						
Surf. Meas. Pt: () Prot. Casing (1) Riser	Riser Diameter, Inches: 2.0						
Initial Water Level, Feet: 7.62	Elevation. G/W MSL:						
Vell Total Depth, Feet: 13.20	Method of Well Purge: Parisince						
One (1) Riser Volume, Gal:	Dedicated: N						
Total Volume Purged, Gal:	Purged To Dryness Y / (N)						
Purge Observations: 10-600	Start Clea- Finish Clea-						
PURGE DATA: (if applicable)							
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C) (pH Conduct Turb. Other Other (std units) (Umhos/cm) (NTU) ON OO						
1355 200 7.12 15.1	7.18 2306 8.09 -29 0.91						

Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1355	mun 200	7.12	•	15.1	7.19	2306	8.09	-29	0.91
1400)		15.3	7.19	2326	5.06	-20	0.88
1405				15.7	7.20	2326	4.42	-20	0.86
1410	V	1		15.4	7.20	2326	3.99	-20	0.85

SAMPLE 1410 /5114.10
PAGE 1 OF 2

AMPLING	INFORMAT	ION:	POINT ID				
ate/Time			Water Level @ Sampling, Feet:				
lethod of Sampling:					Dedicated:	Y/N	
ulti-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy	
AMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
						•	
ISTRUMEN	NT CHECK I	DATA:					
urbidity Ser		NTU std.		!	NTU std. =	ַטדא	
l Serial #:		4.0 std.=		0 std.=	- 10	0.0 std. =	
olutions:							
onductivity	Serial #:		(ımhos/cm=		umhos/cm=	
olutions:							
ENERAL II	NFORMATIC	ON:					
eather cond	ditions @ tim	e of sampling:					
	acteristics:						
		ERVATIONS:					
JIMIMEN 13	AND OBSE	ERVATIONS:					
ertify that s otocals.	ampling pro	cedures were in	accordance w	ith all appli	cable EPA, State	e and Site-Specific	
	1 1	By:			0		
_		_ by:			Company:		

Facility:	ARCH	!		Sample	Point ID:	37			
	onnel:	PL, D. K.	s	Sample	Matrix:	GW			
MONITO	RTING WELL	INSPECTION:							
Date/Time	5.14-10	1 10	20	. Cond c	of seal: A Good () None	() Cracked () Buried		%	
Prot. Casi	ng/riser heigh	:		Cond		iser: () Uni () Loose () Damage	# Flush		
If prot.cas	sing; depth to I	iser below:				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Gas Mete	r (Calibration/	Reading):	% Gas:		% LEL:	- 1 -	·		
Vol. Orga	nic Meter (Cali	bration/Reading	ı):	Volatil	es (ppm;		_		
PURGE	NFORMATIO	N:							
Date / Tin	ne Initiated:	2140 1 103	10	Date /	Time Completed	l:	5140 1 1050		
Surf. Mea	s. Pt: () Prot. (Casing	(/) Riser	Riser I	2.0				
Initial Wa	ter Level, Feet	9.81		Elevat	ion. G/W MSL:				
eli Tota	l Depth, Feet:			Metho	d of Well Purge:		PerisiATIC		
One (1) R	iser Volume, G	al:		_ Dedicated: (v)/ N					
Total Volume Purged, Gal:			Purge	d To Dryness	Y 100	clin			
Purge Ob	servations:	10-F	10	Start	Cker	Finish	Ante-		
	DATA: (if app								
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Oo	
1635	120 9.83		13.1	8.90	10 230	8.33	-87	0.80	
1040	11		12.9	8.90	10 300	7.04	-88	0.77	
(0 45			13.5	8.91	10,310	6-00	-89	0.75	

same @ DS0/5-14-W

pr 2

1050

PAGE 1 OF 2

8:90

10,300

130

Field Form Revision 0 03/14/02

5.82

0.73

-89

SAMPLING INFORMATION:				POINT ID				
Pate/Time /				Water Level @ Sampling, Feet:				
lethod of Sa	mpling:	•			_Dedicated:	Y/N		
lulti-phased	layered:	() Yes	() No	If YES:	() light	() heavy		
AMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
ISTRUMEN	IT CHECK D	DATA:						
urbidity Seri	al #: 3/67	33 NTU std.	=NTU	/o 1	NTU std. = 10	NTU		
olutions:	RTOO	928						
H Serial #:	6215171	4.0 std.= 4	δυ 7 .	0 std = 7	1.00	0.0 std. =		
olutions:	4-Rra	918 7.	- RT00 92)			0.0 Std		
onductivity	Serial #:	6215171	1000,	mbos/cm=	· (0)6	umhos/cm=		
olutions: _	RTO	926		annoscin-		umios/cm		
ENERAL IN	FORMATIC	N:						
eather cond	itions @ time	e of sampling:						
imple Chara	cteristics:	7		٠				
OMMENTS	AND OBSE	RVATIONS:						
						•		
ertify that santocals.	ampling proc	edures were in	accordance wi	th all appli	cable EPA, State	e and Site-Specific		
	, ,							
_	1 1	By:			Company:			

Facility: ARCH	Sample Point ID: B7	
ield Personnel: Pi, JJ, RS	Sample Matrix: Gw	,
MONITORTING WELL INSPECTION:		
Date/Time 5-14-10 1 1259	Cond of seal: (x) Good () Cracke () None () Burie	
Prot. Casing/riser height:	Cond of prot. Casing/riser: () U () Loose () Damag	() Flush Mount
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas:		
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'//	
PURGE INFORMATION:		,
Date / Time Initiated: 5.1400 / 1302	Date / Time Completed:	5.17.10 1325
Surf. Meas. Pt: () Prot. Casing (**) Riser	Riser Diameter, Inches:	2.0
Initial Water Level, Feet: 13 48	Elevation. G/W MSL:	
Vell Total Depth, Feet:	Method of Well Purge:	PerisiALTIC
One (1) Riser Volume, Gal:	Dedicated:	
Total Volume Purged, Gal:	Purged To Dryness Y / 🔊	
Purge Observations: LO-RON	Start Or Marc. Finish	Clar
DUDGE DATA: (if applicable)		

_		Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
100	14.29	•	14.2	7.09	1835	86.4	-15	0.93
	14.37		14.3	7.00	1824	41.9	-20	0.90
	14.40		14-1	7.00	1825	29.2	-23	6.87
			14.2	7.00	1825	22.5	- 25	0.85
V	1		144	6.98	1824	19.7	-26	0.84
	(gpi	14.29	(gpm/htz) Volume MUN WC 100 14.29	(gpm/htz) Volume (C) MUN WC 100 14.29 14.2 14.3 14.3 14.40 14.1	(gpm/htz) Volume (C) (std units) MUN WC 14.29 14.2 7.09 14.37 14.3 7.00 14.40 14.1 7.00 14.2 7.00	(gpm/htz) Volume (C) (std units) (Umhos/cm) ML/V WC 14.29 14.2 7.09 1835 14.37 14.3 7.00 1824 14.40 14.1 7.00 1825 14.2 7.00 1825	(gpm/htz) Volume (C) (std units) (Umhos/cm) (NTU) MU/V WC 100 14.29 14.2 7.09 1835 86.4 14.37 14.3 7.00 1824 41.9 14.40 14.1 7.00 1825 29.2 14.2 7.00 1825 22.5	(gpm/htz) Volume (C) (std units) (Umhos/cm) (NTU) oN ML/V WC 100 14.29 14.2 7.09 1835 86.4 -15 14.37 14.3 7.00 1824 41.9 -20 14.40 14.1 7.00 1825 29.2 -23 14.2 7.00 1825 22.5 -25

SAMMER C 1325 / 5-14-10

PAGE 1 OF 2

AMPLING	INFORMAT	ION:	POINT ID				
ate/Time		1.	Water Le	vel @ Sampling,	Feet:		
lethod of Sa	ampling:				_Dedicated:	Y/N	
lulti-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy	
AMPLING							
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
ISTRUMEN	NT CHECK I	DATA:					
		NTU std.			NTU std. =	ַטדמ	
H Serial #:		4.0 std.=		.0 std.=	11	0.0 std. =	
onductivity olutions:				umhos/cm=		umhos/cm=	
	NFORMATIO				_		
eather cond	ditions @ tim	e of sampling:					
ample Chara	acteristics:			•			
OMMENTS	AND OBSE	ERVATIONS:					
		*					
ertify that s	ampling pro	cedures were in	accordance w	ith all appli	icable EPA, Stat	e and Site-Specific	
	1 1	By:			Company:		
_					_ oompany.		

Facility: ARCH	Sample Point ID: BR-163
Field Personnel: PL, JJ, KS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 3-18-10 1310	Cond of seal: (7Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 5-18-10 / 3/2	Date / Time Completed: 5-1/335
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 6,62	Elevation. G/W MSL:
Nell Total Depth, Feet:	Method of Well Purge: Perisitatic
One (1) Riser Volume, Gal:	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y
Purge Observations: LO-FCOW	Start CLEAR Finish CLEAR
DUDGE DATA: (if applicable)	

PURGE DATA: (if applicable)

Time	_	e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Oo
1320	180	6,68		13,0	7.54	874	8.64	-91	0,72
1325		6.68		13.1	7.51	871	8,34	-93	0,72
1330		6,70		13.1	7.47	870	5.93	-89	0,71
1335	V	6.70		13,2	7:45	870	5.52	-87	0,70

SAMPLES AT 1335/5-18-10 = PAGE 1 OF 2

Field Form Revision 0 03/14/02

37

Multi-phased/ layered: () Yes () No If YES: () light (SAMPLING DATA: Time Temp. pH Conduct Turb. Other () ((oc) (std units) (Umhos/cm) (NTU) () () () NSTRUMENT CHECK DATA: urbidity Serial #:NTUNTU std. =NTUNTU std. =NTU olutions: H Serial #:4.0 std.=7.0 std.=10.0 std. =umhos/cm=um olutions: enductivity Serial #:umhos/cm=um olutions: ENERAL INFORMATION: //eather conditions @ time of sampling:ample Characteristics:	POINT ID				
AMPLING DATA: Time Temp. pH Conduct Turb. Other (Std units) (Umhos/cm) (NTU) () (()) ((Water Level @ Sampling, Feet:				
Time Temp. (*C) (std units) (Umhos/cm) (NTU) () (NSTRUMENT CHECK DATA: urbidity Serial #:NTU std. =NTUNTU std. =NTU olutions: H Serial #:4.0 std.=7.0 std.=10.0 std. =umhos/cm=um olutions: enductivity Serial #:umhos/cm=um olutions: ENERAL INFORMATION: /eather conditions @ time of sampling:ample Characteristics:	/N				
Time Temp. (*C) (std units) (Umhos/cm) (NTU) () (NSTRUMENT CHECK DATA: urbidity Serial #:NTU std. =NTUNTU std. =NTU olutions: H Serial #:4.0 std.=7.0 std.=10.0 std. =umhos/cm=umhos/) heavy				
VSTRUMENT CHECK DATA: urbidity Serial #:NTU std. =NTUNTU std. =NTU olutions: H Serial #:4.0 std.=7.0 std.=10.0 std. =umoductivity Serial #:umhos/cm=um olutions: ENERAL INFORMATION: 'eather conditions @ time of sampling:ample Characteristics:					
olutions: H Serial #:	ther .)				
urbidity Serial #:NTU std. =NTUNTU std. =NTU olutions:					
urbidity Serial #:NTUNTU std. =NTUNTU std. =NTU	•				
olutions: H Serial #: 4.0 std.= 7.0 std.= 10.0 std.= onductivity Serial #: umhos/cm= um olutions: ENERAL INFORMATION: feather conditions @ time of sampling: ample Characteristics:					
onductivity Serial #:umhos/cm=umolutions: ENERAL INFORMATION: 'eather conditions @ time of sampling:ample Characteristics:					
onductivity Serial #:umhos/cm=um olutions: ENERAL INFORMATION: feather conditions @ time of sampling: ample Characteristics:					
ENERAL INFORMATION: /eather conditions @ time of sampling: ample Characteristics:					
ENERAL INFORMATION: /eather conditions @ time of sampling: ample Characteristics:	nhos/cm=				
reather conditions @ time of sampling:ample Characteristics:					
ample Characteristics:					
OMMENTS AND OBSERVATIONS:					
	A				

Facility: ARCH	Sample Point ID: BR-104
ield Personnel: R. SRNF	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5-17-10 1017	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	and the second s
Date / Time Initiated: 5-17-10 / 1115	Date / Time Completed: 5-17-10 1 1/40
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 10.92	Elevation. G/W MSL:
Nell Total Depth, Feet:	Method of Well Purge: Pump
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations: LO-FLO	Start CLEAR Finish CLEAR
PURGE DATA: (if applicable)	

Time		e Rate	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other
1125	96	11.25	-	11.7	7.76	394	31,3	3	0,95
1130	80	11.30		11.9	7.83	395	29.1	1	0.86
1135	80	11,24		12.0	7.85	395	25,9	0	0.85
1140	80	11.20		12.1	-7.85	395	23.2	-2	0.85

SAMALKO AT 1145/5-17-10 PA

PAGE 1 OF 2

		SAMPLING INFORMATION:					
			Water Level @ Sampling, Feet:				
Method of Sampling:				_Dedicated:	Y/N		
Multi-phased/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING DATA:							
Time Temp		(Umhos/cm)	Turb. (NTU)	Other ()	Other (
Conductivity Serial #: Colutions: CENERAL INFORMATIVE Veather conditions @ to	4.0 std.=	7.	0 std.= mhos/cm=	-	0.0 std. = umhos/cm=_		
ample Characteristics:	-		¥:				
OMMENTS AND OB	SERVATIONS:						
			h all applic				

Facility:	A	RCH			Sample	Point ID: 3	R-105			
Field Pers	onnel:	-	PL, J. K.	5	Sample	Matrix:	GW			
MONITOR	RTING V	WELL I	NSPECTION:							
Date/Time	5-	- 19 -	10 1 11	46	Cond of seal: 🌠 Good () Cracked () None () Buried					
Prot. Casi	ng/riser	height:			Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount					
If prot.cas	ing; dep	oth to ri	ser below:	•		'	() Damaged			
Gas Meter	r (Calibra	ation/ R	eading):	% Gas:	- 1	% LEL:	- 1			
Vol. Organic Meter (Calibration/Reading):					Volatile	es (ppm'				
PURGE I	NFORM	ATION	1:			-				
Date / Time Initiated: 5-19-101 1309					Date /	Time Completed	ı: 5-1	19-10 1	1329	
Surf. Mea	Surf. Meas. Pt: () Prot. Casing () Riser					Diameter, Inches	:	4.0		
Initial Wa	ter Leve	l, Feet:	22.8	6	Elevati	ion. G/W MSL:				
ell Tota					Method	d of Well Purge:		Perisia	KTIL	
One (1) R	iser Vol	ume, Ga	al:		Dedicated: (y) / N					
Total Vol	ume Pur	ged, Ga	ıl:		Purged To Dryness Y / N					
Purge Ob	servatio	ns:	Lo-FL	0	Start	Clear	Finish	Clear		
PURGE	DATA:	(if appl	icable)			6				
Time	Purge (gpm		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do	
1314	stalina 150		P	14.4	7.69	2209	1.08	-145	0.68	
1319	1	1		14.2	7.44	2184	0.73	-130	0.70	
1324				14.2	7.42	2162	0.43	-129	0.65	
1329	1	1		14.1	7.38	2177	0.32	-124	0.64	
				-				-		

Sampled at 1329/5-19-10
PAGE 1 OF 2

AMPLING	INFORMAT	TION:		POINT ID				
ate/Time	,			Water Level @ Sampling, Feet:				
ethod of S	ampling:				_Dedicated:	Y/N		
ulti-phased/ layered:				If YES:	() light	() heavy		
AMPLING	DATA:							
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
						•		
STRUME	NT CHECK I	DATA:				ą		
Serial #: mons: nductivity lutions:	Serial #:	4.0 std.=	7.	.0 std.=	-	0.0 std. = umhos/cm=		
ather con	ditions @ tim	e of sampling:						
mple Char	acteristics:		•	*				
MMENTS	AND OBSE	RVATIONS:			-			
				4				
ertify that s tocals.	sampling proc	cedures were in	accordance w	ith all appli	cable EPA, State	e and Site-Specific		
	1 1	Ву:			C			
_					Company:			

Facility:	A	RCH			Sampl	e Point ID: BR	- 105 D			
Field Pers	•		PL, D. K.	s	Sampl	e Matrix:	GW			
MONITO	11111111		NSPECTION:	46	Cond	of seal: 🎮 Good () None	() Cracked	_	%	
Prot. Cas	ing/rise	r height:			Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount					
If prot.ca	sing; de	pth to ris	ser below:				() Damage			
Gas Mete	r (Calib	ration/R	eading):	% Gas:		% LEL:				
Vol. Orga	nic Met	er (Calib	ration/Reading	ı):	Volatil	les (ppm)		-		
PURGE	INFORI	MATION	l :							
Date / Tin	ne Initia	ted: 5	-19-101 11	49	Date / Time Completed: 5-19-10 / (204					
Surf. Mea	Surf. Meas. Pt: () Prot. Casing Riser					Diameter, Inches	s:	2.0		
Initial Wa	ter Lev	el, Feet:	25.5	55	Elevat	tion. G/W MSL:	3			
fell Total	l Depth	, Feet:			Method of Well Purge: Perisimire					
One (1) R	liser Vo	lume, Ga	ıl:		_ Dedicated: N					
Total Vol	ume Pu	rged, Ga			Purge	d To Dryness	YID			
Purge Ob	servati	ons:	LO-FL	6	Start	Clear	Finish	Clear		
PURGE						•				
Time	(gpr	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do	
1154	100	25.85		16.2	6.73	33,670	0.80	-296	0.74	
1159				16.2	6.93	34,040	1.18	-311	1.71	
1204	7	<u> </u>		16.2	6.87	34,300	0.62	-315	0.70	

SampleS at 1204/5-19-10
PAGE 1 OF 2

te/Time		\ _ I	POINT ID				
		, J .		water Le	vel @ Sampling,		
thod of Sa	impling:				_Dedicated:	Y/N	
ılti-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy	
MPLING							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
STRUMEN	NT CHECK I	DATA:	1				
					NTU std. =	NTU	
		40.41				t.	
		4.0 std.=			10	0.0 std. =	
nductivity	Serial #:					umhos/cm=_	
			*		-		
	NFORMATIC			,			
ather cond	litions @ tim	e of sampling:					
nple Chara	acteristics:	*		P			
MMENTS	AND OBSE	RVATIONS:					
						4	
				•			
1							
-							
rtify that s	ampling prod	cedures were in	accordance w	ith all appli	cable EPA, State	e and Site-Specific	
	, ,						
_	1 1	By:			Company:		

Facility: ARCH	Sample Point ID: BR - 106 Sample Matrix: GW
rield Personnel: Pi, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-19-10 10 18	Cond of seal: (**Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose (X) Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	~ / % LEL: ~ /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm / /
PURGE INFORMATION:	
Date / Time Initiated: 5-19-/01 1025	Date / Time Completed: 5-19-10 1050
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4, 0
Initial Water Level, Feet: 23.88	Elevation. G/W MSL:
ell Total Depth, Feet:	Method of Well Purge: Perisiacric
One (1) Riser Volume, Gal:	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: L0 - FL0	Start Slightly Turbid Finish Clear
PURGE DATA: (if applicable)	•

PURGE DATA: (if applicable)

Time		Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1030	Mymin 150	23.88	,	12.5	6.77	4570	49.2	18	0.81
1035		23.82		12.5	6.82	4497	26.0	-38	0.78
1040				12.3	6.85	4367	9.80	-64	0.78
1045				12.4	6:86	4422	8.70	-61	0.77
1050	I	T	3.1	12.3	6.90	4387	6.13	-64	0.75

Samples at 1050/5-17-10 PAGE 1 OF 2

AMPLING	INFORMAT	TION:	POINT I	D			
ate/Time		1		Water Le	vel @ Sampling	, Feet:	
lethod of Sa	impling:				_ Dedicated:	Y/N	
ulti-phased/ layered:		() Yes	() No	If YES:	() light	() heavy	
AMPLING							
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
Serial #: _olutions: _onductivity ! olutions: _	Serial #:	4.0 std.= 4. RT00918 (6.203713 RT00926	<u>/600</u> u	mhos/cm=		0,0 std. = umhos/cm=_	
mple Chara	cteristics:			6			
MMENTS	AND OBSE	RVATIONS:					
	*						
ertify that sa	ampling proc	edures were in	accordance wit	h all applic	cable EPA, State	and Site-Specific	
ertify that sa stocals.	ampling prod	edures <mark>we</mark> re in a	accordance wit	h all applic	cable EPA, State	and Site-Specifi	

Facility:	ARCH			Sample	Point ID: BR	2-108			
Field Perso	nnel:	PL, JJ, KS		Sample	Matrix:	GW			
MONITOR	TING WELL I	NSPECTION:							
Date/Time_	5-18-1	0 1 10	16	Cond o	f seal: () Good (() None)		-	%	
Prot. Casin	g/riser height:		_	Cond o	•	er: () Unlo) Loose) Damaged	() Flush M		
If prot.casi	ng; depth to ri	ser below:							
Gas Meter	(Calibration/R	leading):	% Gas:	-1	% LEL:_	-1			
Vol. Organ	ic Meter (Calib	ration/Reading):	Volatile	es (ppm' /				
PURGE IN	FORMATION	ł:					4		
Date / Time	e Initiated: S-	8-101 101	2	Date /	Time Completed:	5-	-18-10 1	1015	
Surf. Meas	s. Pt: () Prot. C	asing	Riser	Riser I	Diameter, Inches:	:	4.0		
Initial Wate	er Level, Feet:	28.5	/	Elevation. G/W MSL:					
ell Total	Depth, Feet:	29.79	5	Metho	d of Well Purge:	4	Per se	TTC	
One (1) Ris	ser Volume, G	al: 0,8	l	Dedica	nted:).I N			
Total Volu	me Purged, Ga	al: 1.0 to	Dry	Purged To Dryness () / N					
	servations:		,	Start	Blown 1	Finish	Brown		
PURGE D	OATA: (if appl	licable)							
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do	
	To the state of th	b					•		

PAGE 1 OF 2

Field Form Revision 0 03/14/02

MW-108 - 21.21

	S-18-	ION:	1442	POINT ID <u>CR-108</u> Water Level @ Sampling, Feet: <u>28.44</u>				
ethod of Sai	mpling:	3/5	Bniler		Dedicated:	MIN		
ulti-phased/ layered:		() Yes	Pruo	If YES:	()light	() heavy		
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ARP)	Other	*	
1442	11.0	7.29	1521	77.9	23			
onductivity Solutions: ENERAL INItiather conditions mple Character	FORMATION tions @ time	(0203713 RT03941 N: of sampling: Slight	7-R1	mhos/cm=_	/000	.0 std. =umhos/cm=_		
						•		

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: BR-1/2 D
Held Personnel: PL, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5 - 19 - 10 1 1349	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good
If prot.casing; depth to riser below:	(/ Juninged
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm' _ / _
PURGE INFORMATION:	
Date / Time Initiated: 5-19-101 1355	Date / Time Completed: 5-19-10 1 1424
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 36.27	Elevation. G/W MSL:
ell Total Depth, Feet: 72.15	Method of Well Purge:
One (1) Riser Volume, Gal: 5.86	Dedicated: Y / N
Total Volume Purged, Gal: 18.0	Purged To Dryness Y /N
Purge Observations:	Start Clear Finish Clear
PURGE DATA: (if applicable)	•
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1405		6.0	10.8	7.30	2629	48.3	-189	1.01
14 14		12.0	11.4	7.32	2802	(1.33	-221	0.98
1424		(8,0	10.8	7.29	2787	6.07	-221	0.98
		Gulms						
		-						

Samples at 1424 /5-19-10
PAGE 1 OF 2

AMPLING	INFORMAT	ION:		POINT I	-		
ite/Time	5-19	1-101	1424	Water Le	36.22		
thod of Sa	ampling:	B0	ciler		_Dedicated:	YN	
ılti-phased	l/ layered:	() Yes	() No	If YES:	() light	() heavy	,
MPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other	
424	10.8	7.29	2787	6.07	-221	8 . 0	
rbidity Ser					NTU std. =	NTU	
-		4.0 std.=		.0 std.=	- 1	0.0 std. =	
					•	7.0 Std	
				ımhos/cm=	_	umhos/cn	1=
NERAL I	NFORMATIC	N:	4				
ather con	ditions @ tim	e of sampling:	Sun	4 70	0 0		
mple Char	acteristics:	Clea	r .)			
	AND OBSE						
				-			
rtify that s	sampling prod	edures were in	accordance w	ith all appli	cable EPA, Stat	e and Site-Spe	cific
tocals.			7/				
	5119110	_ Ву: С	fle.	574	Company:	TAL	
			PAGE 2 OF 2				

Facility: ARCH	Sample Point ID: BR-113 D
leid Personnel: R. SENF	Sample Matrix: G/W
MONITORTING WELL INSPECTION:	
Date/Time 5-17-10 1355	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Daniageu
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm;/
PURGE INFORMATION:	
Date / Time Initiated: 5-17-10 1405	Date / Time Completed: 5-17-10 1 1430
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 31.28	Elevation. G/W MSL:
/ell Total Depth, Feet:	Method of Well Purge: SANDER PLAN
One (1) Riser Volume, Gal:	Dedicated: Y IN
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: 40-FCO	Start CLEAR Finish CLEAR
PURGE DATA: (if applicable)	

Time		e Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other OND	Other
1415 130	130	31,30		12.7	7.19	25 30	1.46	-238	0.31
1420	130	31,30		12.6	7,17	2550		-273	6.25
1425		31.30		12.7	7.18	2561	1,50	-277	0.24
1430	1	1		12.7	7:19	2569	1.53	-277	0.24
		31.30							

SAMPLED AT 1435/5-17-10 PAGE 1 OF 2

SAMPLING	INFORMAT	ION:	POINT ID					
Date/Time				Water Level @ Sampling, Feet:				
Method of Sa	mpling:	•			Dedicated:	Y/N		
Multi-phased/ layered:		() Yes	() No	If YES:	() light	() heavy		
SAMPLING I								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
						•		
NSTRUMEN	T CHECK E	DATA:						
		NTU std.		'	NTU std. =	NTU		
H Serial #: _		4.0 std.=	7.	0 std.=	10	0.0 std. =		
Selections:								
Conductivity S			u	mhos/cm=		umhos/cm=		
SENERAL IN		6			-			
		e of sampling:						
		e or sampling:						
ample Chara	cteristics:							
OMMENTS	AND OBSE	RVATIONS:						
		-						
certify that sa rotocals.	ampling proc	edures were in	accordance wi	th all appli	cable EPA, State	and Site-Specific		
	, ,	D						
_	1 1	Ву:			Company:			

Facility: ARCH	Sample Point ID: BL-114 Sample Matrix: GW
Field Personnel: PL, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-18.10 1010	Cond of seal: (a) Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm' -
PURGE INFORMATION:	
Date / Time Initiated: 5-1840 / 1015	Date / Time Completed: 5-18-10 1 1045
Surf. Meas. Pt: () Prot. Casing (*) Riser	Riser Diameter, Inches: 40
Initial Water Level, Feet: 13.69	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Perisiacic
One (1) Riser Volume, Gal:	Dedicated: (V) N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: <u>LO - FLOW</u>	Start Clev Finish Clev
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

Time		e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1030	200	13.66		14.6	6.54	2076	1.58	-82	6,32
1035	1			14.0	6.62	2065	1.32	-81	0.30
1040				14.2	6.65	2065	1.30	-80	0.29
1045	A	4		14.3	6:70	2063	1,78	-79	0.28
-									

SAMPIU 0 1045 / 5-18-10

PAGE 1 OF 2

	INFORMATI	ION:	POINT ID				
are/Time/				Water Le	vel @ Sampling,	Feet:	
lethod of S	ampling:				_Dedicated:	Y/N	
lulti-phased/ layered:		() Yes	() No	If YES:	() light	() heavy	
AMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other (
						4	
ISTRUME	NT CHECK D	ATA:					
onductivity olutions: ENERAL I	Serial #:	6215111				0.0 std. = umhos/cm=	
	acteristics:		•	•			
ample Char	acteristics:	RVATIONS:		•			
ample Char		RVATIONS:		•			
imple Char		RVATIONS:					
imple Char		RVATIONS:					
imple Char		RVATIONS:					
ample Char	S AND OBSE		accordance wi	th all appli	cable EPA, State	and Site-Specific	

0.00	BR-116
Facility: ARCH	Sample Point ID: 1910 - 1 Pes
Field Personnel: R5/RK	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5-17-10 1250	Cond of seal: () Cracked // () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	(/ Damagea
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5-17-10 / 1255	Date / Time Completed: 5-17-10 1/325
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 28.25	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: BLADDER Purp
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gai:	Purged To Dryness Y (N)
Purge Observations: 20-FCO	Start CLEAR Finish CCEAC
	6:

PURGE DATA: (if applicable)

Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1310 50	28.30	•	15.9	6.97	3459	8,44	-63	0.92	
1315		1		15.7	6.95	3472	5.76	-58	0.89
1320	150			15.9	6.94	3477	4.64	-62	0.88
1325	150	V		16.0	6.93	3471	4.50	-65	0.89
	200	28.38							

5AMPURD AT 1325/5-17-10
PAGE 1 OF 2

SAMPLING I	NFORMAT	ION:		POINT ID Water Level @ Sampling, Feet:					
Time _		1							
Method of San	npling:	-			Dedicated:	Y/N			
Multi-phased/ layered:		() Yes	() No	If YES:	() light	() heavy			
SAMPLING D	ATA:								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
STRUMENT	CHECK D	ATA:							
urbidity Seria olutions:	l #:	NTU std.	=NTU	^	ITU std. =	NTU			
H Serial #:		4.0 std.=	7.	0 std.=	10	0.0 std. =			
uctivity S	erial #:		u			umhos/cm=			
ENERAL INF		4			•				
eather condit	ions @ time	of sampling:							
mple Charac	teristics:	-		•					
OMMENTS A	ND OBSE	RVATIONS:							
ertify that san	npling proce	edures were in	accordance wi	th all applic	cable EPA, State	and Site-Specific			
J.OGAIS.									
	1 1	By:			Company:				

Facility: ARCH	Sample Point ID: BR - 116 D
Field Personnel: R5/RK	Sample Point ID: BR - 116 D Sample Matrix: G/W
MONITORTING WELL INSPECTION:	
Date/Time 5-17-10 1155	Cond of seal: XGood () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
if prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5-17-10 /200	Date / Time Completed: 5-17-10 1/230
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 35,60	Elevation. G/W MSL:
Vell Total Depth, Feet:	Method of Well Purge: SAMOUN PUND
One (1) Riser Volume, Gal:	Dedicated: Y/N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: LO - FLO	Start CCRAR Finish CCRAR - BLACK
PURGE DATA: (if applicable)	

Time		ge Rate	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1215	150	35.65		13.5	10.06	1412	26.0	- 72	0.57
1220	150	35.65		14.1	10.09	1422	30.1	-118	0.57
1225		35.65		14.3	10.02	1429	32.5	-120	0,56
1230	1	1		14.3	10.00	1429	33.1	1/22	0.56

SAMPLED AT 1235/5-17-10 PAGE 1 OF 2

3/

SAMPLING I	NFORMAT	ION:		POINT ID				
Date/Time _		1		Water Le	vel @ Sampling	, Feet:		
Method of Sa	mpling:				_Dedicated:	Y/N		
/lulti-phased/ layered:		() Yes	() No	If YES:	() light	() heavy		
SAMPLING I	DATA:							
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
		NTU std.			NTU std. =	_NTU		
H Serial #: _		4.0 std.=		.0 std.=	1	0.0 std. =		
conductivity solutions:	Serial #:			ımhos/cm=		umhos/cm=		
ENERAL IN	FORMATIO	ON:			•			
		e of sampling:						
ample Chara		, or our pung.		P				
		ERVATIONS:						
OMMENIS	AND OBSE	RVATIONS:						
certify that sa	ampling prod	cedures were in	accordance w	ith all appli	cable EPA, Stat	e and Site-Specific		
	1 1	Ву:			Company			
_					Company:			

Facility: ARCH	Sample Point ID: BR-117D
ield Personnel: Pi, JJ, KS	Sample Matrix: Giw
MONITORTING WELL INSPECTION:	
Date/Time 5-/4-10 1 1035	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	% LEL: - / -
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5-14-10 / 1040	Date / Time Completed: 5-14-10 1110
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 49.79	Elevation, G/W MSL:
Vell Total Depth, Feet:	Method of Well Purge: Perisince
One (1) Riser Volume, Gal:	Dedicated: Y / N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: LO -FCO	Start BLACK Finish BLACK
PURGE DATA: (if applicable)	•

Time	- (9p i	e Rate	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1050	150	Mr		11.1	6.82	3983	69.3	-290	0,37
1100	150			11.0	6.77	3707	60,5	-307	0,28
1105	150			16.9	6.75	3660	59.1	-309	0.27
1110	150			10.9	6:69	36,440	57.8	-311	0.26
						3644			
								-	

SAMPLED AT 1110/5-14-10
PAGE 1 OF 2

MPLING I	NFORMAT	ION:	POINT ID					
ate/Time		1		Water Level @ Sampling, Feet:				
ethod of San	npling:				_Dedicated:	Y/N		
ulti-phased/ layered:		() Yes	() No	If YES:	() light	() heavy		
AMPLING D	ATA:			11				
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
Serial #: plutions: pnductivity Solutions: ENERAL IN	Serial #: FORMATIO	4.0 std.= ON:	7.	0 std.= umhos/cm=	-	0.0 std. = umhos/cm=		
mple Charac	cteristics:	4						
		ERVATIONS:						
		1			***	The second second		
					1			
ertify that sa otocals.	mpling pro	cedures were in	accordance w	ith all appli	icable EPA, State	e and Site-Specific		

Facility: ARCH	Sample Point ID: BR-118 D
eld Personnel: PL, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-14-10 1/20	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 5-14-10, 1125	Date / Time Completed: 5-14-10 / 1155
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 48.63	Elevation. G/W MSL:
fell Total Depth, Feet:	Method of Well Purge: Perisitive
One (1) Riser Volume, Gal:	Dedicated: Y (N)
Total Volume Purged, Gal:	Purged To Dryness Y IN
Purge Observations: LO - FLO	Start St. TINT Finish SC. TINT
PURGE DATA: (if applicable)	

Time		e Rate	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other Do
1135	150	NL	•	10.9	7,42	1847	39.8	-289	0.29
1145	150			10,7	7.49	1819	29.3	-297	0.17
1150	150			10.7	7,50	1814	28.9	-301	0.17
1155	150			10.7	7.51	1811	29.8	-30c	0.16

SAMPLAD AT 1155/5-14-10
PAGE 1 OF 2

SAMPLING	INFORMAT	ION:		POINT ID				
Date/Time		1		Water Level @ Sampling, Feet: Dedicated: Y / N				
Method of Sa	ampling:							
Multi-phased		() Yes	() No	If YES:	() light	() heavy		
AMPLING								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
ISTRUMEN	IT CHECK D	ATA:						
		NTU std. :		N	TU std. =	ити		
		4.0 std.=		0 std.=	10).0 std. =		
olutions:						,		
onductivity			u			umhos/cm=		
	IFORMATIO							
eamer cond	itions @ time	of sampling:						
mple Chara	cteristics:			3				
OMMENTS	AND OBSE	RVATIONS:						
				n .				
The state of the s					:			
ertify that sa tocals.	mpling proce	edures were in a	eccordance wit	h all applica	able EPA, State	and Site-Specific		
	1 1	D						
	1 1	By:			Company:			

Facility: ARCH	Sample Point ID: BR -122 D
Field Personnel: PL, JJ, KS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-14-10 1 14-05	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height: If prot.casing; depth to riser below:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'
PURGE INFORMATION: Date / Time Initiated: 5-14-10 / 1410	Date / Time Completed: 5-14-10 1 / 440 Riser Diameter, Inches: 4.0
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 44.96	Elevation. G/W MSL:
ell Total Depth, Feet:	Method of Well Purge: Perisibilit
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: LOW FLOW	Start BLACK Finish BLACK TIN.
PURGE DATA: (if applicable)	

14-20 may/r 150 14-30 130		11.0	6,99	2405	to e	- 250	
1430 130	11000			03	70,5	259	0.17
	75,25	10.8	7.13	2382	18.2	-269	0.19
1435 13	45.25	10.6	7,19	2359	17.5	-275	0.18
1440 13	1 2525	10.6	7,20	2353	17.7	-278	0.18

SAMPLED AT 1440/5-14-10
PAGE 1 OF 2

AMPLING	INFORMAT	ION:		POINT ID				
ate/Time _		1		Water Level @ Sampling, Feet:				
ethod of Sampling: Dedicated:					Y/N			
lulti-phased	layered:	() Yes	() No	If YES:	() light	() heavy		
AMPLING I	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
	S-411-							
olutions:		NTU std.	•	h 0 std.=	NTU std. =	NTU 0.0 std. =		
omions:						D.0 Std		
	Serial #:					umhos/cm=		
	FORMATIO	•			5.11			
		e of sampling:						
	1	e or sampling:		•				
ample Chara	cteristics:		,					
OMMENTS	AND OBSE	RVATIONS:				1		
		*						
			-					
ertify that sa	ampling proc	edures were in	accordance wi	th all appli	cable EPA, State	e and Site-Specific		
	1 1	Ву:			Company			
_	4 - 8	- Dy.			Company:			

Facility: ARCH	Sample Point ID: BR -123 D
Field Personnel: PL, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time #35-14-10 , 1315	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	- % LEL: _ _
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /
PURGE INFORMATION: Date / Time Initiated: 5-14-10 / 3/20	Date / Time Completed: 5-14-10 1/350
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 45,53	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Perisiacic
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations:	Start BLACK TINTFINISH BLACK TINT
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1330	150		-	11.4	7.62	2286	20.5	-175	0,49
1340	150			11.5	7.59	2233	23.5	-167	0.38
1345	150			11.6	7.58	2231	22.9	-165	0,37
1350	L			11.5	7.58	2224	22.1	-165	0.37

SAMPled AT 1350/5-14-10 PAGE 1 OF 2

AMPLING	INFORMAT	ION:		POINT ID				
ate/Time				Water Level @ Sampling, Feet:				
lethod of Sa	mpling:				_Dedicated:	Y/N		
lulti-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy		
AMPLING					-			
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
ISTRUMEN	IT CHECK I	DATA:						
		NTU std.			NTU std. =	_עדע		
•					-			
		4.0 std.=			1	0.0 std. =		
onductivity	Serial #:			ımhos/cm=		umhos/cm=		
	NFORMATIO	1	1		-			
		e of sampling:						
ample Chara	cteristics:							
OMMENTS	AND OBSE	ERVATIONS:	-					
		A						
				· · · · · · · · · · · · · · · · · · ·				
ertify that so tocals.	ampling pro	cedures were in	accordance wi	ith all appli	cable EPA, Stat	te and Site-Specific		
	, ,	Description						
_	1 1	By:			Company:			

Eacility: ARCH	Sample Point ID: BR-126
Field Personnel: PL, JJ, KS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5 - 18 - 10 1 1344	Cond of seal: () Good () Cracked % () None & Burled
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	- / - % LEL: _ /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm' /
PURGE INFORMATION:	
Date / Time Initiated: 5-18-101 (346	Date / Time Completed: 5-18-101 1416
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 8.45	Elevation. G/W MSL:
ell Total Depth, Feet:	Method of Well Purge: Perisitive
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y / (N)
Purge Observations: Lo - FLO	Start Turked Finish Slightly Turked
PURGE DATA: (if applicable)	

Time		e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1351	my min Zoo	80.8	•	12.6	7.43	906	179	-28	0.81
1354				12.6	7.28	1034	102	-41	0.73
1401				12.5	7.25	1071	69	-37	0.68
1406				12.6	7.22	1089	29.7	-38	0.64
1411				12.5	7.21	1091	33.4	-41	0.61
1416	I	T		12.5	7,21	1101	3129.9	-37	0,63

Sampled of 1416 /5-18-10
PAGE 1 OF 2

te/Time				POINT ID				
			4	Water Level @ Sampling, Feet:				
thod of Sa	mpling:				_ Dedicated:	Y/N		
lti-phased/	/ layered:	() Yes	() No	If YES:	() light	() heavy		
MPLING I	DATA:							
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
TRUMEN	IT CHECK I	DATA:						
bidity Seria	al #:	NTU std.	=NTU	1	NTU std. =	_NTU		
Serial #: _		4.0 std.=	7.		10	0.0 std. =		
ductivity S	Serial #:		(umhos/cm=		
	FORMATIC	*	÷		-			
ather cond	litions @ tim	e of sampling:						
ple Chara	cteristics:			4		·		
		RVATIONS:	1.10611	1000	-1 - 1.	rw. 7 Feet		
		from &	CO	drivens		rw. T tert		
		Thom 2	nd ot	MITTURE	3	. •		
426 - 41 - 4								
ocals.	amping proc	-curies were in	accordance w	ith all appli	cable EPA, State	e and Site- <mark>Specific</mark>		
	1 1	By:			Company:			

LeachField Form Revision 0 March, 15 2002

	1 1.11			Sample Poir	nt ID:	DIC	121
ity:	ARCH	1				BR-	10
Personne		PG JS		Sample Mat	rix:	Grab () Composit
PLING I	NFORMATION	٧:					061
Пime	5-13-11	0 1 1	-130	Water Leve	@ Sampling	, Feet:	8.91
	npling:	SAMPL	e Port		Dedicated:	Y/N	
	layered:				() light		avy
		()					
MPLING I	Temp.	рН	Conduct	Turb. (NTU)	Other (Of)	Other ()
	(°C)	(std units)	(Umhos/cm)	424	-141		
1431	14.2	8.29	2556	1			
utions: Serial #:	rial #:	4.0 std.=	7	'.0 std.=	_	10.0 std. =_	1
lutions: Serial #: Serial	y Serial #: INFORMATIO	4.0 std.=	7	umhos/cm		10.0 std. =_	1
lutions: Serial #: Jutions: onductivit blutions: ENERAL	y Serial #: INFORMATION	4.0 std.=	· 50	'.0 std.=		10.0 std. =_	1
lutions: Serial #: Jutions: onductivit blutions: ENERAL leather co	y Serial #: INFORMATION Inditions @ tine aracteristics:	4.0 std.=ON:	:	umhos/cm		10.0 std. =_	1
lutions: Serial #: Serial	y Serial #: INFORMATION	4.0 std.=ON:	:	umhos/cm		10.0 std. =_	1
lutions: I Serial #: blutions: blutions: blutions: ENERAL leather co	y Serial #: INFORMATION Inditions @ tine aracteristics:	4.0 std.=ON:	:	umhos/cm		10.0 std. =_	1
lutions: I Serial #: conductivit colutions: ENERAL Veather co	y Serial #: INFORMATION Inditions @ tine aracteristics:	4.0 std.=ON:	:	umhos/cm		10.0 std. =_	1
Serial #: lutions: lutions: onductivit blutions: ENERAL eather co	y Serial #: INFORMATION Inditions @ tine aracteristics:	4.0 std.=ON:	:	umhos/cm		10.0 std. =_	1
H Serial #: blutions: blut	y Serial #: INFORMATION Inditions @ time aracteristics: TS AND OBS	4.0 std.=ON: ne of sampling	clee-	umhos/cm		10.0 std. =umh	ios/cm=
H Serial #: blutions: blut	y Serial #: INFORMATION Inditions @ time aracteristics: TS AND OBS	4.0 std.=ON: ne of sampling	:	umhos/cm		10.0 std. =umh	ios/cm=

Facility: ARCH	Sample Point ID: BR-3
rield Personnel: Pi, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-13-10 1 1217	Cond of seal: () Good () Cracked () None Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: 🌂 Unlocked () Good
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	-1 - % LEL: -1 -
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm;/
PURGE INFORMATION:	
Date / Time Initiated: 5-13-00 1 12-20	Date / Time Completed: 5-13-10 1 1245
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 40
Initial Water Level, Feet: 9.61	Elevation. G/W MSL:
fell Total Depth, Feet:	Method of Well Purge: Perisincie
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N SC 7040
Purge Observations: LO-FLOW	Start yellow Finish yellow
PURGE DATA: (if applicable)	1

Time		Rate htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1225	180	hc 10.01		13.7	7.02	11,900	109	-134	0.87
1230		10.28		13.6	7.07	12,100	94.7	-139	0.85
1235		10.39		13.6	7.05	12,200	86.1	-141	0-83
1240		10.45		13,5	7:04	12,220	73.9	-/43	0-80
125	1	10.49		13.4	7.07	12,300	65.8	-143	0.77

SAMPU @ 1245 /5-13-10

PAGE 1 OF 2

AMPLING	INFORMATI	ON:		POINT II	D	
ate/Time				Water Le	vel @ Sampli	ng, Feet:
ethod of Sa	mpling:				_Dedicated:	Y/N
ulti-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy
AMPLING						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
						•
ISTRUMEN	IT CHECK D	ATA:				
		NTU std.			VTU std. =	NTU
					-	
		4.0 std.=				10.0 std. =
olutions:					_	
onductivity				mhos/cm=		umhos/cm
olutions:					_	
ENERAL IN	FORMATIO	N:				
eather cond	itions @ time	of sampling:				
		or sampling:		•		
mple Chara	cteristics:			•		
OMMENTS	AND OBSE	RVATIONS:				
		ь.				
ertify that santocals.	ampling proce	eaures were in	accordance wi	th all applic	cable EPA, Si	tate and Site-Speci
1	1 1	Ву:			Company	

LeachField Form Revision 0 March, 15 2002 FIELD OBSERVATIONS Sample Point ID: ARCH acility: PL, 55 Sample Matrix: (Grab () Composite ield Personnel: SAMPLING INFORMATION: 1429 Water Level @ Sampling, Feet: Date/Time 5-17-10 1 1220 SAMPLE POST Dedicated: Method of Sampling: () heavy () light If YES: Multi-phased/ layered: () Yes DANO SAMPLING DATA: Other Other Turb. Conduct рН 5hr) Temp. (NTU) Time (Umhos/cm) (std units) (°C) -117 18.85 1765 7.77 14.3 1223 INSTRUMENT CHECK DATA: NTU std. = urbidity Serial #: _____NTU std. = ____NTU Solutions: pH Serial #: _____ 4.0 std.=____ 7.0 std.=____ 10.0 std. =_ Solutions: umhos/cm= umhos/cm=___ Conductivity Serial #: Solutions: GENERAL INFORMATION: Weather conditions @ time of sampling: eler Sample Characteristics: COMMENTS AND OBSERVATIONS:

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific L12 Company: TAL protocals.

Date:

Eacility: ARCH	Sample Point ID: 12-6/A	
Field Personnel: Pt. J. AS	Sample Matrix: GW	
MONITORTING WELL INSPECTION:		
Date/Time 5-17-10 1 1040	Cond of seal: () Good () Cracket () None () Buried	
Prot. Casing/riser height:	Cond of prot. Casing/riser: (*)-Un () Loose () Damage	() Flush Mount
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas:		
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /	_
PURGE INFORMATION:		
Date / Time Initiated: 5100 1 1045	Date / Time Completed:	5-17-10 / //10
Surf. Meas. Pt: () Prot. Casing (X) Riser	Riser Diameter, Inches:	4.0
Initial Water Level, Feet:	Elevation. G/W MSL:	
Vell Total Depth, Feet: 27.0	Method of Well Purge:	PerisiATIL
One (1) Riser Volume, Gal:	Dedicated:	
Total Volume Purged, Gal:	Purged To Dryness Y IN	Si Turan
Purge Observations: LO-FLOW	Start 74~ Finish	742
PURGE DATA: (if applicable)		Other Other

Time		e Rate n/htz)	Cumulative Volume	Temp. pH Conduct (Umhos/cm)		Turb. (NTU)	Other	Other Oo	
1050	200	13.90	٠	14.7	6.86	4429	61.9	107	1.11
1055	1			14.9	7.09	\$400 yyz	47.4	410	0.98
1100				14.7	7.09	4415	47.2	-113	0.97
1105				15.0	7:13	4409	47.3	-114	
1110	1	1		15.0	7.17	4409	45.9	-/14	0.95

SAMM @ 1110 15.17.10

PAGE 1 OF 2

4		1				
Wethod of Sam Wulti-phased/ I				Water Le	vel @ Sampling	, Feet:
Vulti-phased/ I	pling:				Dedicated:	Y / N
	ayered:	() Yes	() No	If YES:	() light	() heavy
SAMPLING D						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()
NSTRUMENT	CHECK D	ATA:				,
olutions: H Serial #: Olutions: Onductivity Serial in Serial in Serial #: Onductivity Serial in Serial in Serial #: ENERAL INFO	62/5/7/ 4/. 00 rial #:	4.0 std.= 4. RF00918 6215171 0926	9 7.	0 std.= <u>7-0</u> . <i>R 100 9</i> :	रा	0.0 std. = umhos/cm=
OMMENTS AI	ND OBSER	EVATIONS:				
		q				
			4			
i						

Revision 0 March, 15 2002 FIELD OBSERVATIONS BR-7A Sample Point ID: ARCH Facility: PL, 55 Sample Matrix: Composite Field Personnel: SAMPLING INFORMATION: 30.19 Water Level @ Sampling, Feet: Date/Time CAMPIC POST Dedicated: Method of Sampling: () heavy () light If YES: M No Multi-phased/ layered: () Yes SAMPLING DATA: Other Turb. Conduct pH (ONP) Temp. (NTU) (Umhos/cm) (std units) (°C) -101 61.9 3007 1304 INSTRUMENT CHECK DATA: arbidity Serial #: _____NTU std. = ___NTU ___NTU std. = ___NTU Solutions: pH Serial #: _____ 4.0 std.=____ 7.0 std.=____ 10.0 std. = Solutions: umhos/cm= ____umhos/cm=___ Conductivity Serial #: Solutions: GENERAL INFORMATION: Weather conditions @ time of sampling: Sc tors buy Sample Characteristics: COMMENTS AND OBSERVATIONS:

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific SINI CO By: 12 Company: TAL protocals.

Date:

LeachField Form

Facility: ARCH	Sample Point ID: BR -d	8
Field Personnel: Pi, JJ, KS	Sample Matrix: Gw	
MONITORTING WELL INSPECTION:		
Date/Time 5-13-10 10a3	Cond of seal: (Good () Cracke () None () Burie	ed %
Prot. Casing/riser height: If prot.casing; depth to riser below:	Cond of prot. Casing/riser: () U () Loose () Damag	() Flush Mount
Gas Meter (Calibration/ Reading): % Gas:	-,- %LEL: -,	_
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /	
PURGE INFORMATION:		
Date / Time Initiated: 5-13-10 / /00)	Date / Time Completed:	5-17-10 1 1036
Surf. Meas. Pt: () Prot. Casing (Riser	Riser Diameter, Inches:	4.0
Initial Water Level, Feet: 10.13	Elevation. G/W MSL:	
Hell Total Depth, Feet:	Method of Well Purge:	PerisiALTIC
One (1) Riser Volume, Gal:	Dedicated:	
Total Volume Purged, Gal:	Purged To Dryness Y (N)	Chi-
Purge Observations: 20 - FLOW	Start yellow row Finish	Yell-w good
PURGE DATA: (if applicable)	•	-

Time		Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
1010	mulin 24	10.17		134	6.74	5837	46.1	-85	.82
1015		j		13.1	7.00	5850	38.9	-88	.80
1020				13.1	7.04	5855	35.7	-89	.77
1025				13.1	7:07	5860	30.6	-90	. 75
1030				13.1	7.10	5862	28,2	-91	,73

JAMANUS @ 1030 /5.1310

PAGE 1 OF 2

AMPLING INFORMATION:				POINT ID				
ate/Time		1		Water Level @ Sampling, Feet:				
ethod of Sa	ampling:				_Dedicated:	YIN		
ulti-phased/ layered:		() Yes	() No	If YES:	() light	() heavy		
AMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
STRUME	NT CHECK I	DATA:						
	ial#: 3/6		=NTU	10	NTU std. = 10	_NTU		
l Serial #:	6215171	4.0 std.= 4	.00 7	.0 std.=	-)-00 1	0.0 std. =		
olutions:	4-1500	918,	7- RT009 2	5				
onductivity	Serial #:	6215171	1600 I	umhos/cm=	1000	umhos/cm=		
olutions:	RI	00 926			-			
ENERAL I	NFORMATIC	ON:						
eather con	ditions @ tim	e of sampling:						
mple Char	acteristics:			. •				
		RVATIONS:				'		
JIMINE IN TO	AND OBSE	.RVATIONS.						
ertify that s	sampling proc	cedures were in	accordance w	ith all appli	icable EPA, Stat	te and Site-Specific		
Olovais.								
_	1 1	By:			Company:			

Revision 0 March, 15 2002 FIELD OBSERVATIONS BR-91 Sample Point ID: ARCH Facility: PL, 55 Sample Matrix: C) Grab () Composite Field Personnel: SAMPLING INFORMATION: 35.56 1 1230 Water Level @ Sampling, Feet: Date/Time SAMPLE POST Dedicated: Method of Sampling: () heavy () light If YES: Multi-phased/ layered: () Yes () No SAMPLING DATA: Other Other Turb. Conduct Hq 5/1) Temp. Time (NTU) (Umhos/cm) (std units) (°C) -75 2586 370.0 7.18 15.2 1223 INSTRUMENT CHECK DATA: urbidity Serial #: _____NTU std. = ____NTU ___NTU std. = ___NTU Solutions: pH Serial #: ______ 4.0 std.=_____ 7.0 std.=____ 10.0 std. = Solutions: umhos/cm= Conductivity Serial #: ____umhos/cm=___ Solutions: GENERAL INFORMATION: Weather conditions @ time of sampling: Sow 67° Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific

LeachField Form

protocals.

SINI 10 By: PJ 2 Company: TAL

Facility: _	ARCH			Sample	e Point I <u>D:</u>	E-3		
eld Pers	onnel:	PL, J. K.	s	Sample	e Matrix:	GW		
	RTING WELL			Cond	of seal: () Good			%
Prot. Casi	ng/riser height	-	-	Cond	of prot. Casing/ri	() Buried ser: () Unio) Loose) Damaged	() Flush N	
If prot.cas	sing; depth to r	iser below:		-		/ Darnage		
Gas Meter	r (Calibration/ F	Reading):	% Gas:		% LEL:	-1-		
Vol. Organ	nic Meter (Calib	oration/Reading	ı):	Volatil	es (ppm)/			
PURGE I	NFORMATION	V :						
Date / Tim	ne Initiated:	5-13-10 1 144	15	Date /	Time Completed	:	5-13-61	
Surf. Mea	s. Pt: () Prot. C	asing	(1) Riser	Riser	Diameter, Inches		2.0	
Initial Wa	ter Level, Feet:	4.30		Elevat	ion. G/W MSL:	5		
eli Tota	i Depth, Feet:			Metho	d of Well Purge:		Perisi	MIL
One (1) R	iser Volume, G	al;		Dedica	ated:	DIN		
Total Volu	ume Purged, G			Purge	d To Dryness	ทิ้เ N		
Purge Ob	servations:	PURGGO TO	DRY	Start	SL. TURB	Finish	SL. Tu.	rs
PURGE	DATA: (if appl	licable)						
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb.	Other	Other Do
	150							
								1
			X					
				-				
-/								

PAGE 1 OF 2

ethod of Sampling: Constitut			£-'	POINT ID	220		INFORMATI	
AMPLING DATA: Time Temp. pH Conduct Turb. Other (std units) (Umhos/cm) (NTU) (t: <u>4</u>	pling, Fee	el @ Sampl	Water Lev			9-17:10	ate/Time
AMPLING DATA: Time	DIN	ed: (Dedicated		fen stald		ampling:	ethod of S
Time Temp. (°C) (std units) (Umhos/cm) (NTU) (Other (NT	() heavy		() light	If YES:	K) No	() Yes	d/ layered:	ulti-phase
(°C) (std units) (Umhos/cm) (NTU) (°A) (NTU) (°A) (NTU) (°A) (NTU)							DATA:	AMPLING
ISTRUMENT CHECK DATA: Inbidity Serial #:NTU std. =NTUNTU std. =NTU std. =	Other (C)) (Other					Time
Intribidity Serial #:NTUNTU std. =NTUNTU std. =NTU std.	1.11		-52	48.9	876	7.60	129	1231
arbidity Serial #:NTUNTU std. =NTUNTU std. =NTU std. =								
urbidity Serial #:NTUNTU std. =NTUNTU std. =NTU std. =	•			-				
Serial #: 4.0 std.= 7.0 std.= 10.0 std. =						ATA:	NT CHECK D	STRUME
onductivity Serial #:umhos/cm=_umhos/cm=_		NTU	TU std. =	и	=NTU	NTU std.	rial #:	
eather conditions @ time of sampling: Sov (closs) Sov (closs) Sov (closs) Sov (closs)	rd. =	10.0 s		0 std.=				
eather conditions @ time of sampling: Sow (closs) 63° Imple Characteristics: SC Tooks			6					olutions:
eather conditions @ time of sampling: Sow (clook) 63° Imple Characteristics: SC Torks	umhos/cm=			mhos/cm=_	u			
eather conditions @ time of sampling: Sow/closs) 63° Imple Characteristics: SC Tooks						-4		
							NFORMATIO	ENERAL I
		-	63	10(00)	Son	of sampling:	ditions @ time	eather con
DMMENTS AND OBSERVATIONS:				wike	. SC 1		racteristics:	mple Char
						RVATIONS:	S AND OBSE	OMMENTS
·								
				,				

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: MW-/6 3
Held Personnel: Pt. JJ. RS	Sample Matrix: Gw
MONITORTING WELL INSPECTION:	
Date/Time 5-18-10 1 /330	Cond of seal: XGood () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm; /
PURGE INFORMATION:	
Date / Time Initiated: 5-16-10 / 345	Date / Time Completed: 5-16-10 1 /405
Surf. Meas. Pt: () Prot. Casing (*) Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 1,79	Elevation. G/W MSL:
ell Total Depth, Feet:	Method of Well Purge: Perisiacric
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations: LO-FLOW	Start CCRAR Finish CCROR
PURGE DATA: (if applicable)	

Time		Rate //htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1350	new	2.17		14.9	7.40	752	9,66	-7	1.32
1355	100	2.28		15.0	7.37	797	5.13	7	0,91
1400	1	2,3/		14.9	7.42	803	4.82	10	0.89
1405	1	230		14.8	7:39	805	4.76	11	0.88

SAMPLES AT 1410/5-18-10
PAGE 1 01

PAGE 1 OF 2

AMPLING	INFORMAT	TON:		POINT II	D			
ate/Time		1		Water Level @ Sampling, Feet:				
ethod of S	ampling:				_Dedicated:	Y/N		
ulti-phased	l/ layered:	() Yes	() No	If YES:	() light	() heavy		
AMPLING								
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
nductivity	Serial #:	4.0 std.=	7.			0.0 std. = umhos/cm=_		
ather cond	NFORMATION ditions @ time	ON: e of sampling:						
MMENTS	AND OBSE	ERVATIONS:						
		-						
ertify that s	ampling proc	cedures were in	accordance wi	th all appli	cable EPA, Stat	e and Site-Specific		
te	11	Ву:			Company			
-					Company:			

Facility: ARCH	Sample Point ID: MW-104 Sample Matrix: G/W
reld Personnel: R. SRNE R. KLIN.	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time 5-17-10 1 1015	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose ** Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	"/ "
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm'/
PURGE INFORMATION:	
Date / Time Initiated: 5-17-10, 1025	Date / Time Completed: 5-17-16 1100
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 7.98	Elevation. G/W MSL:
Vell Total Depth, Feet:	Method of Well Purge: PRAISTACTIC
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: (O-FCO	Start BROWN Finish TAN
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

Time	Pur	ge Rate m/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1045	80	WL 9:95	٠	12.9	7.37	960	450	93	0.79
1050	50	10.04		13.0	7.39	969	_	21	0,77
1055	50	10.05		13.1	7.40	972		19	0.76
1100	50	10.05		13.0	7.41	963	303	17	0.76

SAMPLEO AT 1105/5-17-10
PAGE 1 OF 2

OF 2

SAMPLING	INFORMAT	ION:		POINT II	D			
Date/Time				Water Level @ Sampling, Feet:				
Method of Sa	impling:				_Dedicated:	Y/N		
Multi-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
NSTRUMEN	IT CHECK D	ΔΤΛ.						
olutions: _		NTU std. =	7.	0 std.=	ITU std. = - 10	NTU 0.0 std. =		
conductivity s	Serial #:	-	u	mhos/cm=		umhos/cm=		
	IFORMATIO	N.	•		•			
· ·		of sampling:						
ample Chara	cteristics:			*				
OMMENTS	AND OBSE	RVATIONS:						
ertify that sa otocals.	mpling proce	edures were in a	accordance wil	h all applic	able EPA, State	and Site-Specific		
	1 1	By:			0			
	- 1				Company:			

Eacility: ARCH	Sample Point ID: MW-106 Sample Matrix: Gw
Field Personnel: Pt, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-19-10 / 1018	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot Casing/riser: () Unlocked () Good () Loose (X Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	- / - % LEL: _ /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 5-[9-10 / 1/02	Date / Time Completed: 5-19-10/1122
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 10 . 66	Elevation. G/W MSL:
ell Total Depth, Feet:	Method of Well Purge: Perisitatic
One (1) Riser Volume, Gal:	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: LO-FLO	Start Slightly Tudaid Finish Clear
DUDGE DATA: (if applicable)	,

Time	(gpm	Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1107	100	11,23		11.6	7.00	2435	31.8	-40	1.02
1112	(11,38		11.6	6.86	2440	14.7	-44	1.01
1117		11.39		11.4	6.82	2465	12.00	-48	0.97
1122	T	T		11.4	6:86	2502	10.11	-52	0.95

Sampled at 1122/5-19-10
PAGE 1 OF 2

AMPLING	INFORMAT	ION:		POINT I	D			
ate/Time				Water Level @ Sampling, Feet:				
ethod of Sa	ampling:				_Dedicated:	Y/N		
ulti-phased	// layered:	() Yes	() No	If YES:	() light	() heavy		
AMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
						•		
STRUMEN	NT CHECK D	ATA:						
rbidity Seri	ial #:	NTU std.	=NTU		NTU std. =	_טדע		
		40-44-			-			
		4.0 std.=			1	0.0 std. =		
nductivity	Serial #:	4	u	mhos/cm=		umhos/cm=		
	NFORMATIO	*	٠		-			
ather cond	litions @ time	of sampling:						
mple Chara	cteristics:	(+						
MMENTS	AND OBSE	RVATIONS:						
		-						
rtify that s	ampling proce	edures were in	accordance wi	th all appli	cable EPA, Stat	e and Site-Specific		
tocals.		,						

Facility: ARCH	Sample Point ID: MW-114
Field Personnel: PL, JJ, KS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-18.10 1056	Cond of seal: (*) Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Elush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: 5-18-10 1 1100	Date / Time Completed: 5-18-10 1 //20
Surf. Meas. Pt: () Prot. Casing (4) Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 9. 55	Elevation. G/W MSL:
fell Total Depth, Feet:	Method of Well Purge: Perisiacic
One (1) Riser Volume, Gal:	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y 🛱
Purge Observations:	Start Clean Finish elec-
PURGE DATA: (if applicable)	1
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other 00
	mi/m	10.17		14.8	7.06	2304	4.88	6	1.01
1110	1	1		15.0	7.05	2295	5.01	10	0.98
1115				15.1	7.05	2290	4.59	12	0.98
1/20	7	1		15.0	7:04	2288	4.50	11	0.97

Sporpal C 1120/5-18-10

PAGE 1 OF 2

AMPLING INFORMATION:			POINT ID				
ate/Time		1		Water Le	vel @ Sampling,	Feet:	
lethod of Sa	ampling:				_Dedicated:	Y / N	
lulti-phased	l/ layered:	() Yes	() No	If YES:	() light	() heavy	
AMPLING							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
			*				
						4	
ISTRUMEN	T CHECK D	ATA:			1		
urbidity Seri		NTU std.		^	ITU std. =	NTU	
1 Serial #: _		4.0 std.=	7.	0 std.=_	10	.0 std. =	
olutions: _							
onductivity			u	mhos/cm=		umhos/cm=	
	FORMATIO	,					
eather cond	litions @ time	of sampling:					
mple Chara	cteristics:	-					
MMENTS	AND OBSE	RVATIONS:					
						•	
					,		
,							
white that a							
tocals.	unpung proce	caures were in a	accordance wit	h all applic	able EPA, State	and Site-Specific	
ic	1 1	Ву:			Company:		
		-			Company:		

Facility:	A	RCH			Sample	e Point ID: M	W-127						
ield Pers	sonnel:	-	PL, J. R.	S	Sample	e Matrix:	GW		*				
отіиом	RTING V	VELL I	NSPECTION:										
Date/Time	e 5-1.	3-10	1 /3	50	Cond of seal: () Good () Cracked () None () Buried								
Prot. Cas	ing/riser	height <u>:</u>	·		Cond		iser: XUnid () Loose () Damaged	() Flush N					
If prot.ca	sing; dep	th to ris	ser below:				() Damagec						
Gas Mete	er (Calibra	ation/R	eading):	% Gas:		% LEL:							
Vol. Orga	inic Mete	r (Calib	ration/Reading	ı):	Volatil	es (ppm	1 —						
PURGE	INFORM	IATION	:										
Date / Tir	ne Initiato	ed: ک	7-13-10 1 13	root	_ Date /	Time Completed	1:	5. 13-10 1	1410				
Surf. Mea	as. Pt: ()	Prot. C	asing	(Riser	Riser	Diameter, Inches	5:	2.0					
Initial Wa	iter Level	, Feet:	6.68		Elevat	tion. G/W MSL:	b						
Vell Tota	al Depth,	Feet:			Metho	d of Well Purge		Perisiarie					
One (1) F	Riser Volu	ıme, Ga	ıl:		Dedic	ated: (P/N						
Total Vol	lume Pur	ged, Ga	l:		Purge	d To Dryness	YIN						
Purge Ol	bservatio	ns:	(0-F	LOW	Start	Cher-	Finish	Clear					
PURGE	DATA: (if appl	icable)			9							
Time	Purge (gpm		Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do				
1400	60	677		143	7.51	2181	6.75	-75	0.97				
1405		6.86		13.7	7.59	2100	5.65	-7/	0.95				
1410	V	6.94		13.7	7.61	2099	4.23	-70	0.93				

SAMPUR C 1410 /5-13-10 P

PAGE 1 OF 2

AMPLING	PLING INFORMATION:			POINT ID				
ate/Time		1		Water Le	vel @ Sampling,	Feet:		
ethod of Sa	mpling:				_ Dedicated:	Y/N		
lulti-phased	layered:	() Yes	() No	If YES:	() light	() heavy		
AMPLING	DATA:				•			
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
						•		
ISTRUMEN	T CHECK I	DATA:						
		NTU std.			NTU std. =	UTU		
		4.0 std.=		0 std =	-).0 std. =		
olutions:						7.0 Std		
onductivity				mhos/cm=		umhos/cm=		
ENERAL IN					-			
		e of sampling:						
mple Chara				16				
OMMENTS	AND OBSE	RVATIONS:						
		*				*		
ertify that sa	ampling prod	cedures were in	accordance wi	th all appli	cable EPA, State	and Site-Specific		
	, ,	P				4		
_	1 1	By:			Company:			

Facility: ARCH	Sample Point ID: NESS - EAST
Field Personnel: Pt. JJ. RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	Man
Date/Time 5-18-10 1 12 30	Cond of seal: () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: 5-18-10, 1235	Date / Time Completed: 5-18-10 , 1255
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4,0
Initial Water Level, Feet: 15.58	Elevation. G/W MSL:
fell Total Depth, Feet:	Method of Well Purge: Perisimin Puns
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N SC. Tuas
Purge Observations: 20-F10	Start TINT Finish ORGANS TINT
PURGE DATA: (if applicable)	
Time Duran Date Cumulative Town	Turk Other Other

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp.			Turb. (NTU)	Other	Other 00
1240	100	16.30	•	15.9	7.41	1257	19.2	-86	0,67
1245	90	14.77		15.8	7,40	1245	18.7	-95	0,69
1250	90	16.98		158	7.37	1243	19.1	-93	0,68
1255	90	17.01		15.7	7:36	1242	21.3	-92	0.69
1300	90	17,01		15.7	7.35	1241	22.7	-21	0.69

5AMPLED AT 1300 /5-18-10
PAGE 1 OF 2

INFORMAT	ION:		POINT II	D	
			Water Le	vel @ Sampling,	Feet:
ampling:				_Dedicated:	Y / N () heavy
l/ layered:	() Yes	() No	If YES:	() light	
DATA:					
Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()
X		,			
					9
NT CHECK D	DATA:				
			٠	NTU std. =	UTM.
	4.0 std.=	7.		10).0 std. =
				-	
			mhos/cm≃		umhos/cm
				_	
ditions @ time	e of sampling:				
acteristics:			9 4		
AND OBSE	RVATIONS:				
	-				
1					
				•	
ampline area	aduras man !-		40 00		and the second second
ampling proc	cedures were in	accordance wi	th all appli	cable EPA, State	and Site-Speci
	ampling: // layered: DATA: Temp. (°C) NT CHECK I ial #: Serial #: NFORMATIO ditions @ time acteristics:	Ampling: layered:	Ampling:	Water Leampling:	Water Level @ Sampling, mmpling:

Facility: ARCH	Sample Point ID: Nell-W	
rield Personnel: PL, JJ, RS	Sample Matrix: GW	
MONITORTING WELL INSPECTION:		
Date/Time 5-18-10 1143	Cond of seal: [4] Good () Cracked () None () Buried	
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unloc () Loose () Damaged	Flush Mount
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas:	% LEL: _ /	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm; /	
PURGE INFORMATION:		
Date / Time Initiated: 5-19-0-1 1155	Date / Time Completed:	118-10/12/5
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:	4.0
Initial Water Level, Feet: 3/ 25	Elevation. G/W MSL:	
Vell Total Depth, Feet:	Method of Well Purge:	PorisiATIC
One (1) Riser Volume, Gal:	Dedicated: Y 🕟	
Total Volume Purged, Gal:	Purged To Dryness Y / 🕡	
Purge Observations: LO-Flow	Start CCEAN Finish	CLADA
PURGE DATA: (if applicable)	•	
Time Dunga Data Cumulativa Toma	nH Conduct Turb	Other Other

Time	_	e Rate		Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1200	150	31,35	•	13.1	7.13	2225	5,45	-117	0.59
1205		31.35		12.9	7.09	2225	4.92	-130	0.57
1210		31,35		12.9	7.08	2229	4.10	-129	0,56
1215	V	31.35		12.9	7:11	2224	3.86	-129	0.57

SAMPLED AT 1220/5-18-10 PAGE 1 OF 2

AMPLING	INFORMAT	ORMATION:			POINT ID				
tertime		1		Water Le	vel @ Sampling	, Feet:			
ethod of Sa	ampling:				_ Dedicated:	Y / N () heavy			
ulti-phased		() Yes	() No	If YES:	() light				
AMPLING									
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()			
	-					•			
STRUMEN	NT CHECK I	DATA:							
rbidity Ser		NTU std.			NTU std. =	UTN			
1.	M	4.0 std.=	7.	0 std.=	10	0.0 std. =			
lutions:									
nductivity lutions:			u	mhos/cm=		umhos/cm			
	NFORMATIC	•	\$ (1) (-				
		e of sampling:							
	ecteristics:	e or sampling.		•					
MMENIS	AND OBSE	RVATIONS:							
rtify that satocals.	ampling proc	edures were in	accordance wi	th all applic	cable EPA, State	and Site-Speci			
	1. 1	Ву:			Commence				
					Company:				

PAGE 2 OF 2

Facility:	Al	2cH			Sample	Point ID:	fu-10 Gw	4				
rield Pers	onnel:	_	PL. D. AS	5	Sample	Matrix:	GW		1			
MONITO	RTING W	/ELL I	NSPECTION:				parme	- Pun Cu-li	1,00			
Date/Time	5	.14	-10 1 1	039	Cond of seal: () Good () Cracked () None () Buried							
Prot. Casi	ing/riser l	neight <u>:</u>			Cond o) Loose	Flush N				
If prot.cas	sing; dep	th to ris	ser below:			•) Damaged					
Gas Mete	r (Calibra	tion/R	eading):	% Gas:		% LEL:	-1-					
Vol. Orga	nic Meter	(Calib	ration/Reading):	Volatile	es (ppm)/						
PURGE	INFORM	ATION	l:					100.5				
Date / Tin	Date / Time Initiated: 5-14-60 1110					Date / Time Completed: 5.14-10 1 1130						
Surf. Mea	ns. Pt: (a) I	Prot. C	asing	() Riser	Riser I	Diameter, Inches	:					
Initial Wa	iter Level,	Feet:	8.90		Elevat	ion. G/W MSL:						
Vell Tota	al Depth, f	Feet:			Method of Well Purge: Perisiatic							
One (1) R	Riser Volu	me, Ga	al:		Dedica	ated:	PIN					
Total Vol	ume Purg	jed, Ga	ıl:		Purge	d To Dryness	MIN					
Purge Ob	servation	ns:	10 F	COW	Start	SCILIAN	Finish	St TU	Ro			
	DATA: (i		icable)			,						
Time	Purge	Rate	Cumulative	Temp.	рН	Conduct	Turb.	Other	Other			
	(gpm/	htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	ON	00			
1115	200	9.03	•	15.2	8-01	4722	73-1	-95	0.77			
1120				15.3	8.16	4709	72.6	-90	0.75			
1125				15.3	8-09	4699	69.8	-30	0.73			
1130	1	V		15.3	8:09	4680	67.6	-88	0.71			

SAMPL C 1130 /5-1410

PAGE 1 OF 2

		ION:		POINT II	D	
)ate/Time				Water Le	vel @ Sampling,	Feet:
lethod of S	ampling:				_Dedicated:	Y/N
fulti-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy
AMPLING						
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other (
						<u>.</u>
ISTRUME	NT CHECK D	DATA:				
urbidity Sei		NTU std.			ITU std. =	NTU
		4.0 std.=		0 etd =	-	0 -44
olutions:		110 5ta.	7.1	o sta.=	10	.0 std. =
onductivity	Serial #:		u	mhos/cm=		umhos/cm=
	NFORMATIO		•			
EITEIOTE II						
		of sampling.				
eather cond	litions @ time	or oumping.				
eather cond	ditions @ time acteristics:	- Jampinig.		•		
ımple Char				٠		
ımple Char	acteristics:			•		
ımple Char	acteristics:					
mple Char	acteristics:					
ımple Char	acteristics:					

Eacility: _	A	RCH			Sample	Point ID: Po	w-12		
Field Perso	nnel:	_	Pi, JJ, KS		Sample	Matrix: Form	GW Punt	146	
***************************************				~71			u		ine
Date/Time_	5-1	3.10	1 1	534	Cond of	seal: () Good (() None) Cracked (A) Buried	-	%
Prot. Casin	g/riser	height:			Cond of	· ·	ser: () Unloo) Loose () Damaged	Flush Mo	
If prot.casi	ng; dep	oth to ris	er below:						
Gas Meter	(Calibra	ation/ R	eading):	% Gas:		% LEL:_	-1-		
Vol. Organ	ic Mete	er (Calibi	ration/Reading)):	Volatile	es (ppm)/			
PURGE IN	NFORM	MATION	:						40
Date / Time	e initiat	ted: 5	1300. 1 15	40	Date / 7	Time Completed	: 4	5-12-10 1	((w)
Surf. Meas	s. Pt: ()	Prot. Ca	asing	⋈ Riser	Riser D	iameter, inches	:		
Initial Wat	er Leve	l, Feet:	6.21		Elevati	on. G/W MSL:	>		
Veil Total					Method	d of Well Purge:		Perisia	erec
One (1) Ri	iser Vol	ume, Ga	ıl:	ſ	Dedica	ated:	Ø N		
Total Volu	ıme Pu	rged, Ga	ıl:		Purge	d To Dryness	Y 1 🕅		
Purge Ob	servatio	ons:	10-F	low	Start	Clear	Finish	_cle_	
PURGE	DATA:	(if appl	icable)			•			60 1
Time		e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1545	21/10	6.31	•	12.8	7.19	2951	67.9	-127	0.80
1550	1			12.8	7.05	2944	44.3	-115	0.77
1555				12.8	7.05	2944	42.0	-119	0.74

state 1600 15-12-10

1600

PAGE 1 OF 2

7:02

12.7

Field Form Revision 0 03/14/02

39.7

-114

0.74

2948

SAMPLING	INFORMAT	ION:		POINT I	D	
Date/Time				Water Le	evel @ Sampling	, Feet:
ethod of S	ampling:				Dedicated:	Y/N
lulti-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy
AMPLING				4		
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()
ICTDUMEN	T CUECK D					·
	NT CHECK D	NTU std.	= NTU		VTU std. =	MTO
olutions:					110 std	ŢN TO
- Serial #:			7.	0 std =	- 4/	0.0 std. =
olutions:						7.v Stu
onductivity	Serial #:			mhos/cm=	-	umhos/cm=
	NFORMATIO		-		-	
eather cond	litions @ time	of sampling:				
mple Chara	cteristics:					
DMMENTS	AND OBSE	RVATIONS:				
			· ·			
•						
,						
ertify that sa tocals.	ampling proce	edures were in a	accordance wit	h all applic	able EPA, State	and Site-Specific
t.	1 1	Ву:			Co	
_		-J.			Company: _	

PAGE 2 OF 2

Revision 0 FIELD OBSERVATIONS March, 15 2002 Sample Point ID: ARCH Facility: PL, 55 Sample Matrix: Grab () Composite Field Personnel: SAMPLING INFORMATION: 21.17 5-7-10 1 1245 Water Level @ Sampling, Feet: Date/Time SAMPLE POST Dedicated: Method of Sampling: () heavy () light 60 No If YES: Multi-phased/ layered: () Yes SAMPLING DATA: Other Other Turb. Conduct pH (ONP) Temp. Time (NTU) (Umhos/cm) (std units) (°C) 6.20 2601 13.6 7.12 1248 INSTRUMENT CHECK DATA: ____NTU std. = ____NTU Turbidity Serial #: _____NTU std. = ____NTU Solutions: pH Serial #: _____ 4.0 std.=____ 7.0 std.=____ 10.0 std. = Solutions: Conductivity Serial #: ____umhos/cm=___ umhos/cm= Solutions: GENERAL INFORMATION: Weather conditions @ time of sampling: Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific

By: Re 2 Company: TA

protocals.

Date:

LeachField Form

PLING INFORMATION: Time			IELD OBS		Sample Poir	nt ID:	fw-14
Sample Matrix Sample Matri	y:	AIRC 1					6w
			PL, 5)		Sample Mat	nx.	(X) Grab () Composite
Time STAMER FORT Dedicated: -phased/ layered: () Yes SNo If YES: () light () heavy IPLING DATA: Temp. (°C) (std units) (Umhos/cm) (NTU) (SNC) (Std units) (Umhos/cm) (NTU) (SNC) (STRUMENT CHECK DATA:	PLING IN	FORMATION	۷:			. A Sampling	Feet: 21.0
SAPICATION SAP	Time	5-17.10	1 11:				
PLING DATA:			SAMP	le Post			
Fine Temp. (°C) (std units) (Umhos/cm) (NTU) (MI) (MI) (MI) (MI) (MI) (MI) (MI) (MI			() Yes	19 No	If YES:	() light	() heavy
Temp. (°C)	APLING D		T pH	Conduct		Other	Other
### 17/3 15/6 6-90 35/3 1000	Time					-17	
STRUMENT CHECK DATA: bidity Serial #:NTUNTU std. =NTU lutions: Serial #:4.0 std.=7.0 std.=10.0 std. = lutions:umhos/cm=umhos/cm=umhos/cm= blutions:umhos/cm=umhos/cm= ENERAL INFORMATION: Veather conditions @ time of sampling:66	1/3		6.50	3513	1000	-11	
bidity Serial #:NTU std. =NTUNTU std. =NTU std. =	1133						
rample Characteristics: 5c 7 w 8m 7 dw	onductivit olutions:	y Serial #:				_	umhos/cm=
ample Characteristics:	Veather co	onditions @ ti	me of samplin	g:	96	7dN	
COMMENTS AND OBSERVATIONS:		aracteristics:		36 1	DNA		
	Sample Ch	TS AND OB	SERVATIONS	S:			
		13 AILD OF				1	
		113 AND 01					
		13 AND GO					
	COMMEN	7		•			
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific	COMMEN	7	procedures we	ere in accorda	nce with all	applicable EP	A, State and Site-Specifi

:	ARCH		ERVATION	Sample Poir	nt ID:	par	()
lity:		PL, 55		Sample Mat	rix:	PW- 60 Grab ()	Composite
ADLING IN	FORMATIO	N:					24.02
e/Time	5-17-16	- 1	1205 Ne POST	Water Leve	Dedicated:	@N	
thod of San lti-phased/				If YES:	() light	() hea	vy
MPLING D		pH	Conduct	Turb.	Other	Other	
Time	Temp. (°C)	(std units)	(Umhos/cm)	(NTU)	(011)		
1209	15.2	8.90	7155	63.6	+155		
arbidity Ser	1	NTU std		7.0 std.=	NTU std. =	NTU 10.0 std. =	
urbidity Serolutions: H Serial #: Solutions: Conductivity Solutions:	rial #:	NTU std		7.0 std.= _umhos/cm	1=		÷
arbidity Serolutions: H Serial #: Solutions: Conductivity Solutions: GENERAL	y Serial #: INFORMAT	NTU std4.0 std.= ION:	g:	7.0 std.=	1=	10.0 std. =_	÷
urbidity Serolutions: H Serial #: Solutions: Conductivity Solutions: GENERAL Weather co	y Serial #: INFORMATinditions @ tinaracteristics:	NTU std 4.0 std.=	g:	7.0 std.= _umhos/cm	1=	10.0 std. =_	÷

-- - -- *

Facility: ARCH	Sample Point ID: PZ-101					
reld Personnel: Pi, JJ, &S	Sample Matrix: GW					
MONITORTING WELL INSPECTION:	•					
Date/Time 5-18-10 / 1200	Cond of seal: () Good () Cracked % () None M Buried					
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged					
If prot.casing; depth to riser below:	() Daniaged					
Gas Meter (Calibration/ Reading): % Gas:	% LEL: _ / _					
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)					
PURGE INFORMATION:	*					
Date / Time Initiated: 5-18-101 1202	Date / Time Completed: 5-18-10 / 1222					
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches: 2.0					
Initial Water Level, Feet: 13.53	Elevation. G/W MSL:					
ell Total Depth, Feet:	Method of Well Purge: PerisiMTIC					
One (1) Riser Volume, Gal:	Dedicated: Ø / N					
Total Volume Purged, Gal:	Purged To Dryness Y / (N)					
Purge Observations: Lo - Flo	Start Clear Finish Clear					
PURGE DATA: (if applicable)						
Time Purge Rate Cumulative Temp (gpm/htz) Volume (C)	pH Conduct Turb. Other Other (std units) (Umhos/cm) (NTU) ON Do					
1207 150 13.85 12.4						
1212 13.95 12.5						
1217 12.6	111 - 111 - 110					
1222 1 12.0						

Sampled at 1222/5-18-10 PAGE 1 OF 2

AMPLING	INFORMAT	ION:		POINT I	D	
ater Time _				Water Le	vel @ Sampling	g, Feet:
ethod of Sa	mpling:				_Dedicated:	Y/N
ulti-phased		() Yes	() No	If YES:	() light	() heavy
AMPLING I						
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()
						4
nductivity solutions: ENERAL IN	Serial #: FORMATIO	9	u		- 0	I0.0 std. =umhos/cm=_
MMENIS	AND OBSE	RVATIONS:				
rtify that sa tocals.	mpling proce	edures were in	accordance wi	th all applic	cable EPA, Staf	te and Site-Specific
• _	1 1	By:			Company:	-

Eacility:	ARCH			Sample Point ID: PZ - 10Z							
Field Pers	onnel:	PL, D, K	5	Sample	Matrix:	GW					
MONITOR	RTING WELL II	NSPECTION:									
Date/Time	5-18-10	1 11	10	Cond o	of seal: () Good (() Cracked () Buried	-	%			
Prot. Casi	ng/riser height <u>:</u>	<u>-</u>		Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount							
If prot.cas	ing; depth to ris	ser below:				() Damaged					
Gas Meter	(Calibration/ R	eading):	% Gas:	-1-	% LEL:	-1					
Vol. Orgai	nic Meter (Calib	ration/Reading):	Volatile	es (ppm;						
PURGE I	NFORMATION	:					D				
Date / Tim	e Initiated: 5	18-101 11	11	Date / Time Completed: 5-18-10 / 1136							
Surf. Mea	s. Pt: () Prot. Ca	asing	() Riser	Riser Diameter, Inches: 2.0							
Initial Wat	ter Level, Feet:	15.83		Elevation. G/W MSL:							
Well Total	Depth, Feet:			Metho	d of Well Purge:		Perisi	KTIL			
One (1) R	iser Volume, Ga	ıl:		Dedicated: O'./ N							
Total Volu	ume Purged, Ga	l:		Purged To Dryness Y / (N)							
Purge Ob	servations:	LO-FLO		Start Slightly Turbid Finish Sheltly Tobid Orange Florities Orange Florities							
	DATA: (if appli						Orange	tlantone			
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do			
1116	100 mylin 15.96	•	12.4	7.30	6366	19.82	-93	0.97			
1(2)	16.02		12,0	7.19	6400	47.5	-90	0.92			
1126	16.09		12.0	7.19	6398	34.7	-92	0.89			
1131	16,15		12.1	7:21	6369	33.6	-90	0.88			
1136	16.20		12.0	7,19	6378	31.9	-91	0.87			

Sampled et 1136 /5-18-10

PAGE 1 OF 2

AMPLING	INFORMATI	ION:		POINT I	D	
ate/Time				Water Le	vel @ Sampling	g, Feet:
ethod of Sa	ampling:				Dedicated:	Y/N
ulti-phased	i/ layered:	() Yes	() No	If YES:	() light	() heavy
AMPLING						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
STRUME	NT CHECK D	ATA:				
		NTU std.	=NTU		NTU std. =	_ити
Serial #: _		4.0 std.=	7.		1	10.0 std. =
is ns:					_	
nductivity lutions:						umhos/cm=
	NFORMATIO		Ø.		-	
ather cond	ditions @ time	of sampling:				
mple Chara	acteristics:			b		
)MMENTS	AND OBSE	RVATIONS:				
ertify that s	ampling proce	edures were in	accordance wi	th all appli	cable EPA, Stat	te and Site-Specifi
te.	1 1	By:			Company	
-		,.			Company:	

Facility:	A	RCH			Sample	Point ID:	2-103						
Field Per	sonnel:	_	PL, J. A.	5	Sample	Matrix:	GW						
MONITO	RTING	WELL I	NSPECTION:										
Date/Tim	e 5	-18-1	0 1 10	27	Cond of seal: () Good () Cracked () None ﴿ Buried								
Prot. Cas			ser below:		Cond		ser: (XUnid () Loose () Damaged	() Flush M	lount				
Gas Mete	er (Calib	ration/ R	eading):	% Gas:		% LEL:	-1-						
Vol. Orga	anic Met	er (Calib	ration/Reading	g):	Volatil	es (ppm)							
PURGE	INFOR	MATION	l:					-					
Date / Ti	me Initia	ted: 5-	18-101 10	32	Date /	Time Completed	1: 5	-18-10 1	1052				
Surf. Me	as. Pt: ()	Prot. C	asing	Riser	Riser I	Diameter, Inches	:	2.	ی				
Initial Wa	ater Levo	el, Feet:	12.44		Elevat	ion. G/W MSL:	3						
eli Tota	al Depth	, Feet:			Metho	d of Well Purge:		Perisi	KTIC				
One (1) I	Riser Vo	lume, G	al:		Dedica	ated:	6.1 N						
Total Vo	lume Pu	rged, Ga	d:		Purge	d To Dryness	Y 1(N)						
Purge O	bservati	ons:	LO-F10		Start	Cler	Finish	Clar					
PURGE	DATA:	(if appl	icable)			•							
Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do				
1037	150	12.61	*	12,5	6.82	5658	3.58	-126	1.12				
1042		12.62		12.2	6.88	5642	3.58	-137	0.98				

6.94

6.96

5675

5648

12.2

12.1

Sampled + 1052/5-18-10 PAGE 1 OF 2

1047

1052

Field Form Revision 0 03/14/02

3.52

3.56

-142 0.96

0.94

-144

AMPLING DATA: Time Temp. (°C) (std units) (Umhos/cm) (NTU) () STRUMENT CHECK DATA: Irbidity Serial #:NTUNTU std. =NTUNTU std. =NTUNU std. =NU std. =	LING INFORMATION	ON:		POINT II		
AMPLING DATA: Time Temp. (*C) (std units) (Umhos/cm) (NTU) () () () () () () () () () (me	1		Water Le	vel @ Sampling,	Feet:
AMPLING DATA: Time Temp. (°C) (std units) (Umhos/cm) Turb. Other (NTU) () (STRUMENT CHECK DATA: Irbidity Serial #:NTUNTU std. =NTUNTU std. =NT	of Sampling:				_Dedicated:	Y/N
Time Temp. (°C) (std units) (Umhos/cm) (NTU) () (() () () () () () () ()	hased/ layered:	() Yes	() No	If YES:	() light	() heavy
(°C)						
NTU std. =NTUNTU std. =NTU					Other ()	Other ()
rbidity Serial #:NTUNTU std. =NTUNTU std. =NTU std.						
rbidity Serial #:NTUNTU std. =NTUNTU std. =NTU std.						•
	ns: tivity Serial #: ns: RAL INFORMATION	· V:			-	0.0 std. = _umhos/cm=_
	Characteristics:			٠		
		VATIONS:				
,						v
			,			
ertify that sampling procedures were in accordance with all applicable EPA, State and Site-Stocals.	that sampling proce s.	dures were in	accordance wi	th all appli	cable EPA, State	and Site-Spec
By:Company:		Ву:			Company:	

Eacility:	ARCH			Sample	Point ID: P	2-100	1				
Field Pers	1	Pi, J. A.	5	Sample	Matrix:	GW					
MONITO	RTING WELL I	NSPECTION:									
Date/Time	5-18-1	10 , 1	244	Cond of seal: () Good () Cracked % () None () Buried							
Prot. Casi	ng/riser height:			Cond o) Loose	>Flush N				
If prot.cas	sing; depth to ri	ser below:				() Damaged					
Gas Mete	r (Calibration/ R	Reading):	% Gas:	_1 -	- % LEL:	-1-					
Vol. Orga	nic Meter (Calib	ration/Reading	a):	Volatil	es (ppm)						
PURGE I	NFORMATION	l :					*				
Date / Tin	ne Initiated: 5-	18-101 12	46	Date /	Time Completed	: 5-18	3-10 1	1306			
Surf. Mea	s. Pt: () Prot. C	asing	(XRiser	Riser	Diameter, Inches	:	2.0)			
Initial Wa	ter Level, Feet:	14.1	11	Elevat	ion. G/W MSL:	5-					
Vell Tota	I Depth, Feet:			Metho	d of Well Purge:	6	Perisi	MIC			
One (1) R	iser Volume, G	al:		Dedica	ated:	15.1 N					
Total Vol	ume Purged, Ga			Purge	d To Dryness	YN					
Purge Ob	servations:	LO-FL	0	Start	Clear	Finish	Clerr				
PURGE	DATA: (if appl				6			,			
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do			
1251	150 14.19	٠	13.6	7.49	1666	6.60	-104	0.90			
1256	14.21		13.4	7.37	1655	6.76	-116	0.82			
1301	14.22		13.4	7.37	1647	5.42	-118	0.84			
1306	1 1		13.4	7:33	1648	5.34	-117	0.82			

Sampled at 1306/5-18-10

PAGE 1 OF 2

Field Form

Revision 0
03/14/02

FIELD OBSERVATIONS (continued) 2-104 AMPLING INFORMATION: POINT ID ite/Time Water Level @ Sampling, Feet: ethod of Sampling: Dedicated: Y/N Ilti-phased/ lavered: () Yes ()No If YES: () light () heavy AMPLING DATA: Time Temp. pH Conduct Turb. Other Other (°C) (std units) (Umhos/cm) (NTU) 1 000) 00) 1307 7.31 1650 - 116 5.29 0.81 STRUMENT CHECK DATA: rbidity Serial #: _____NTU std. = NTU NTU std. = NTU lutions: Serial #: ______ 4.0 std.= _____ 7.0 std.= ____ 10.0 std. = ___ ns: nductivity Serial #: ____umhos/cm= ___umhos/cm= lutions: **:NERAL INFORMATION:** ather conditions @ time of sampling: mple Characteristics: MMENTS AND OBSERVATIONS:

tocals.

By:

Company:

Eacility: ARCH	Sample Point ID: P2-/05
Field Personnel: PL, JJ, KS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 5-13-10 1 10 48	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	- 12.1 A
Date / Time Initiated: 5-12-0 1050	Date / Time Completed: 5-17-10
Surf. Meas. Pt: () Prot. Casing PRiser	Riser Diameter, Inches:
Initial Water Level, Feet: 10.65	Elevation. G/W MSL:
Vell Total Depth, Feet:	Method of Well Purge: Perisieric
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y / (B) Sc remo
Purge Observations: LO-FCOW	Start 6my Finish 6my
PURGE DATA: (if applicable)	•

Time		e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1055	MUW 150	11.61		14.1	7.32	3796	92.2	-188	.90
1100		11.55		14.9	7.40	3790	87.6	-190	. 98
110>-		11-67		14.5	7.49	3784	85.2	-193	.87
1116		11.74		14.4	7:51	3780	80.7	- 193	.85
1115	V	11.80		14.6	7.55	3772	82.5	-195	.83

SAMUS 0 1115 /5/2-10

PAGE 1 OF 2

AMPLING	INFORMAT	ION:	POINT ID				
ate/Time				Water Le	vel @ Sampling	, Feet:	
ethod of Sa	impling:				_Dedicated:	Y/N	
ulti-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy	
AMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
	9						
					·		
STRUMEN	NT CHECK D	DATA:					
-		NTU std.			NTU std. =	_NTU	
		4.0 std.=		0 std =	- 1	0.0 std. =	
						J.J 3tu. –	
onductivity	Serial #:			ımhos/cm=		umhos/cm=	
	NFORMATIC				•		
eather cond	litions @ time	e of sampling:					
mple Chara	cteristics:						
OMMENTS	AND OBSE	RVATIONS:					
						,	
			,				
ertify that so	ampling proc	edures were in	accordance wi	th all appli	cable EPA, Stat	e and Site-Specif	
ite.	1 1	Ву:			Company:		
_					Company:		

cility: ARCH	Sample Point ID: PZ-10 6	
Field Personnel: Pi, JJ, KS	Sample Matrix: GW	19
MONITORTING WELL INSPECTION:		
Date/Time 5-13.10 1 13.03	Cond of seal: () Good () Cracked () None () Buried	%
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocks () Loose () () Damaged	ed () Good Flush Mount
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas:		
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /	
PURGE INFORMATION:		
Date / Time Initiated: 5-13-10 / 1305	Date / Time Completed:	1-10 / 1330
Surf. Meas. Pt: () Prot. Casing (*) Riser	Riser Diameter, Inches:	2.0
Initial Water Level, Feet:	Elevation. G/W MSL:	
Well Total Depth, Feet:	Method of Well Purge:	PerisiACTIC
One (1) Riser Volume, Gal:	Dedicated: N	
Total Volume Purged, Gal:	Purged To Dryness Y (N)	Cler
Purge Observations:	Start Yellow Finish	Yellow
PURGE DATA: (if applicable)	Turb	Other Other

Time	Purg	(if appli e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1310	nehr	1815	•	13.6	6.24	14,130	19.32	-18	0.90
1315	1	13.20		13.7	6.20	14,160	11-18	-20	0.83
1320		11:25		13,9	6.20	14,200	8.30	-22	0.85
1325		11.29		137	6-20	14,200	7.26	-24	0.80
330	1	11.34		13.5	6.20	14.210	7.12	-26	0.79
		SAM	NO 133	0 /5.1.	PAGE 1 O	F 2	Field Form Revision 0 03/14/02		

AMPLING	MPLING INFORMATION:				POINT ID					
ate/Time		1		Water Le	vel @ Sampling	, Feet:				
ethod of Sa	impling:				_Dedicated:	Y/N				
ulti-phased	/ layered:	() Yes	() No	If YES:	() light	() heavy				
AMPLING	DATA:									
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other ()	Other ()				
						-				
STRUMEN	IT CHECK	DATA:				,				
		NTU std.			NTU std. =	_NTU				
		4.0 std.=		.0 std.=		0.0 std. =				
		l le								
nductivity		-		ımhos/cm=		umhos/cm				
	NFORMATIC	*			-					
ather cond	litions @ tim	e of sampling:								
mple Chara	acteristics:	-		٠						
)MMENTS	AND OBSE	RVATIONS:								
		•								
			٠,,							
	6									
ertify that s	ampling prod	cedures were in	accordance wi	ith all appli	cable EPA, Sta	te and Site-Speci				
		Dage								
_	1 1	By:			Company:					

Facility:	ARCH		·	Sample	Point ID:	2-107		
Field Pers	sonnel:	PL, D. K.	s	Sample	Matrix:	GW	,	
MONITO	RTING WELL	INSPECTION:						
Date/Time	5-13-10) 1 (1	36	Cond	of seal: () Good () None	() Cracked () Buried		%
Prot. Cas	sing/riser height			Cond		iser: (>) Unio () Loose () Damaged	() Flush M	
If prot.ca	sing; depth to ri	ser below:				() Damagec		
Gas Mete	er (Calibration/ R	Reading):	% Gas:		% LEL:	- 1 -	-	
Vol. Orga	anic Meter (Calib	oration/Reading	ı):	Volatil	es (ppm			
PURGE	INFORMATION	N:						
Date / Tir	me Initiated: ೨	5-13-10 1	46	_ Date /	Time Completed	i:	5-13-10 1	1205
Surf. Mea	as. Pt: () Prot. C	asing	 Riser	Riser I	Diameter, Inches	:	2.0	
Initial Wa	ater Level, Feet:	10,80		Elevat	ion. G/W MSL:	3		
	al Depth, Feet:			Metho	d of Well Purge:	:	Perisi	KTIL
One (1) F	Riser Volume, G	al:		Dedica	ated:	TI N		
Total Vol	lume Purged, G	al:		Purge	d To Dryness	Y /(N)	·	
Purge Ol	bservations:	10-p	Flow	Start	Cler	Finlsh	Clair	
	DATA: (if appl				•			
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other Do
1111-	milm we		137	15	6780	7.78	-141	A 97

Time	_	e Rate n/htz)	Cumulative Volume	Temp.	pH (std units)	(Umhos/cm)	Turb. (NTU)	Other	Other Do
1145	mc/m 200	11.01		137	6.52	6780	3.78	-141	0.97
1150				13.7	6-54	6658	3.51	-147	0.85
115)				13.9	6.55	6600	3.42	-149	0.84
1200				13.5	6:58	6590	3.40	-151	0.92
1205	1	1		13.4	6.60	6588	3.37	-151	0,92

SANGUE 1205 5-13-60
Re Z

PAGE 1 OF 2

AMPLING	INFORMAT	ION:		POINT ID				
ate/Time				Water Le	vel @ Sampling	, Feet:		
lethod of Sa	mpling:				_Dedicated:	Y/N		
lulti-phased	layered:	() Yes	() No	If YES:	() light	() heavy		
AMPLING								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
ISTRUMEN	T CHECK E	DATA:						
urbidity Seri		NTU std.			NTU std. =	_NTU		
H Serial #:		4.0 std.=		n etd =	- 4	0.0 std. =		
						U.U Stu. =		
onductivity S	Serial #:			mhos/cm=		umhos/cm=		
	FORMATIC	N-	*		-			
		e of sampling:						
imple Chara	cteristics:							
OMMENTS	AND OBSE	RVATIONS:						
		4						
-								
ertify that sa	mpling proc	edures were in	accordance wi	th all appli	cable EPA, Stat	e and Site-Specific		
Olocais,								
ite.	1 1	By:			Company:			

LeachField Form Revision 0 March, 15 2002

	F	IELD ORS	ERVAIIO	143		85	1
_ :8:4, , .	ARCH			Sample Po	int ID:	QD-	
acility:			v.F		atrix:	5/W () Grab ()	Composite
AMPLING I	NFORMATIO	N:				F4.	N/4
)ate/Time	5-14-10	, Il	255	Water Lev	rel @ Sampling	Y N	
Method of Sa	mpling:	MANU	AL GA	AB	_Dedicated:		n.
Multi-phased	layered:	() Yes	No.	If YES:	() light	() heav	vy
SAMPLING			Conduct	Turb.	l Other	Other	
Time	Temp. (°C)	pH (std units)	(Umhos/cm)	(NTU)	(ORD)	1	
1100	14.8	8.11	1590		-165		
Solutions: pH Serial #: Solutions: Conductivi Solutions: GENERAL Weather co	ty Serial #: - INFORMATI onditions @ tin	ON: CLEA	: Clou	7.0 std.=_ _umhos/c	m=	10.0 std. =umho	s/cm=
	hat sampling p	orocedures wer		ce with all	applicable EPA		

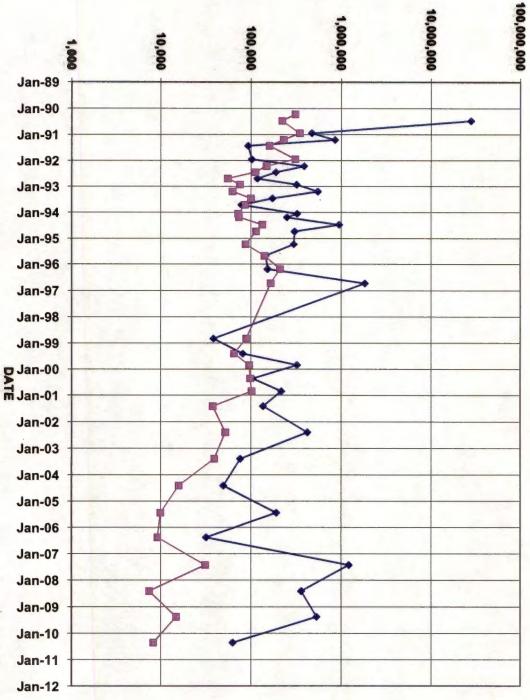
LeachField Form Revision 0 March, 15 2002

e/Time _	S- 14-1	N: 1 1.	500	Sample Point Sample Matri Water Level	© Sampling,	(DIN	N/4
ılti-phased/	layered:	()Yes	ΜNο	If YES: () light		y
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (DRA)	Other ()	
1505	(°C) 15,3	8.22	1581		-179		
Conductivit	ty Serial #:			_umhos/cm=	-	umhos	s/cm=
Sample Ch	aracteristics:	CCR4 SERVATIONS	12				
COMMEN							

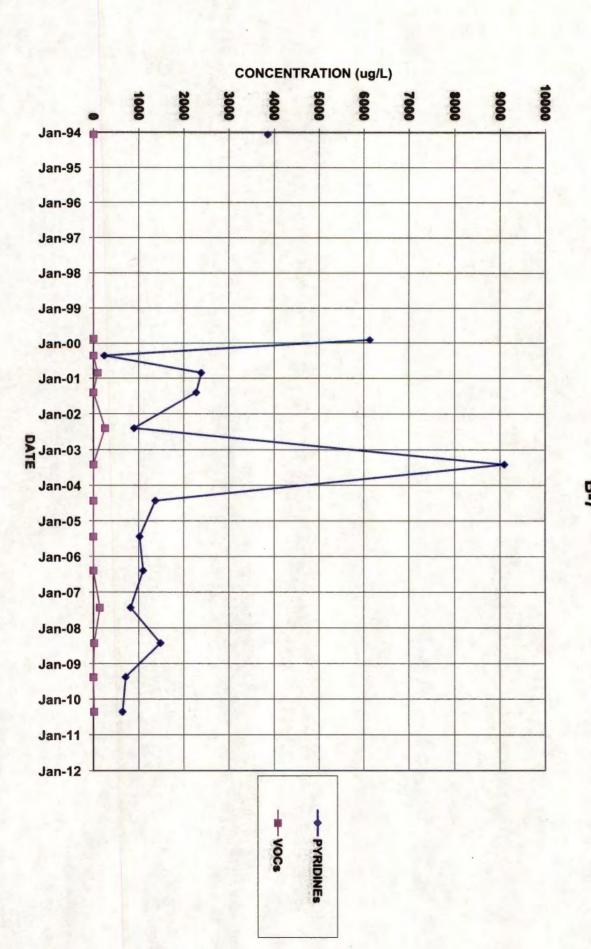
PAGE 1 OF 1

LeachField Form Revision 0 March, 15 2002

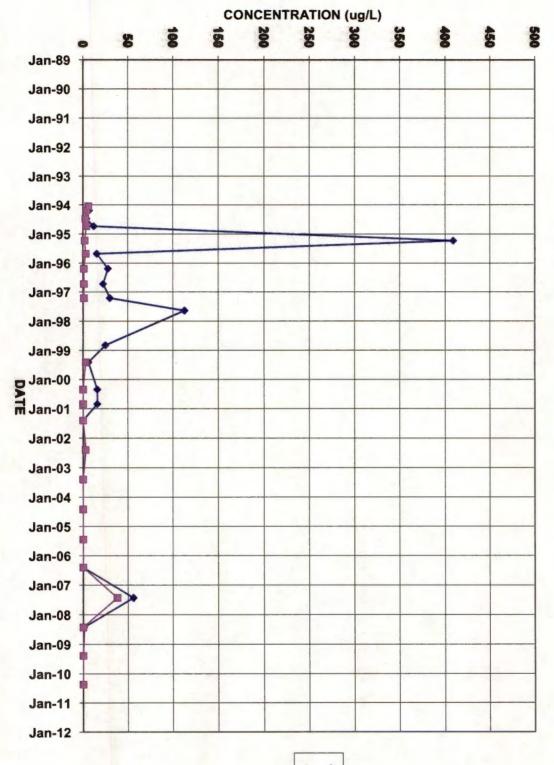
	1	IELD ODS	LIZAMIIO				C1
	ARCH			Sample Po	int ID:	90-2	
ility:		R. SEN	<i>F</i>	Sample Ma	trix:	90-2 S/W X Grab () Co	mposite
MPLING IN	VFORMATION	· .	15	Water Lev	el @ Sampling	g, Feet:	NA
te/Time	5-14-10	1 /S	PAR		Dedicated:		
thod of Sar	mpling: .	Di	\	If YES:	•	() heavy	
ılti-phased/	layered:	()Yes	(X)No	11 1 1 2 3 .	() "9"		
AMPLING I			Conduct	Turb.	Other	Other	
Time	Temp. (°C)	pH (std units)	(Umhos/cm)		(ORA)		
1525	14.9	8.14	675		-162		
1323							
oH Serial #:		4.0 std.=		7.0 std.=		10.0 std. =umhos/o	
Conductivit				_umhos/cn	n=	Ullinosi	
GENERAL Weather co	. INFORMATI	ON: ne of sampling	: <u>Su</u> n	N-), 6	5°6		
Sample Ch	aracteristics:	CLAC	16				
		ERVATIONS					
in the second			-				
			•				
	-						
						A Ctata and Sita-	Specific
I certify th	nat sampling p	rocedures wer	e in accordar	nce with all a	applicable EP	A, State and Site-	
protocals	·.		0	,		pany: TA	
Date:	5,14,10	By:	4)				•


PAGE 1 OF 1

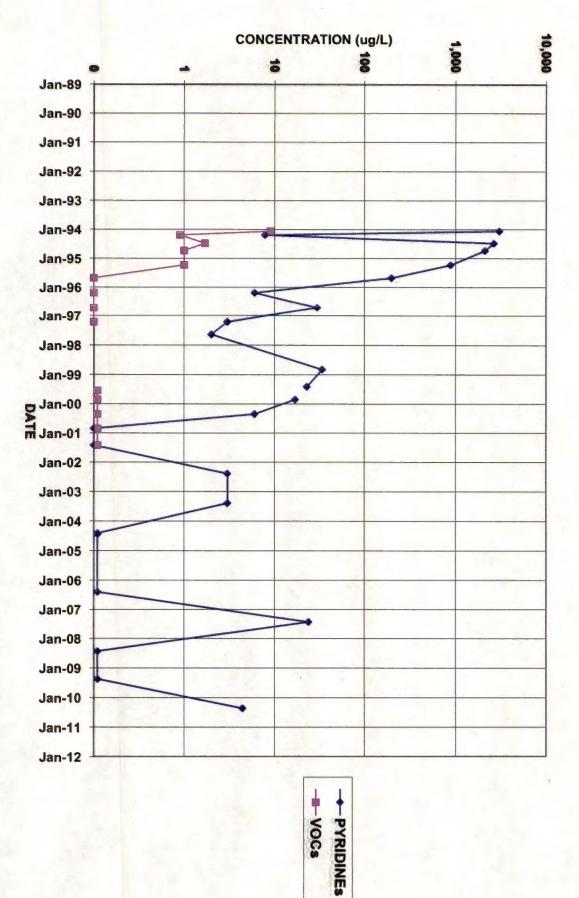
LeachField Form Revision 0 March, 15 2002

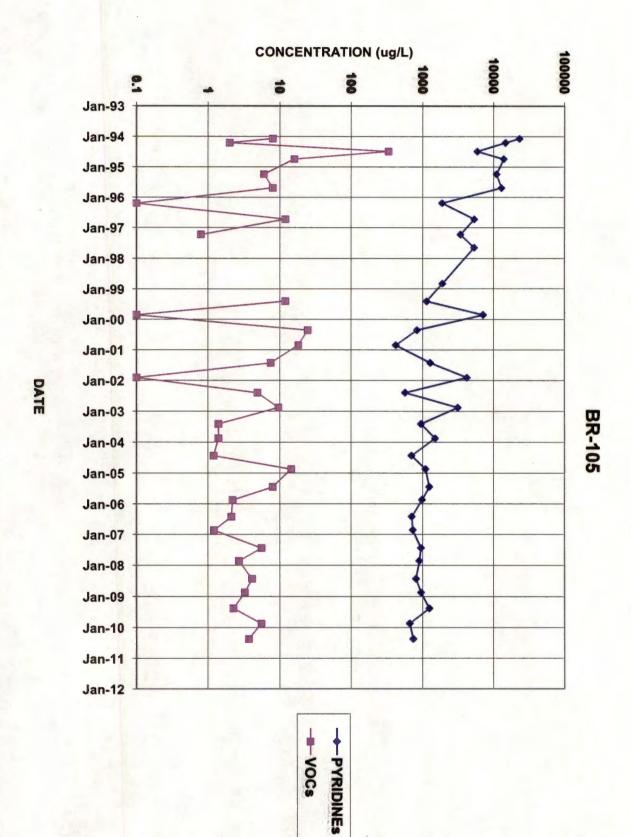

	EIETD ORSEKAND	10110	00 1
<u> </u>	,	Sample Point ID:	95-4
ility: ARCH	R. ShNF	Sample Matrix:	SERA () Composite
MADE INC INFORMAT	ION:		20/0
te/Time <u>5-14-1</u>	O 1 1550 MANUAL GRA	Water Level @ Sampling	g, reet.
	MANUAL GILL	If YES: () light	() heavy
	() Yes (XNo		
AMPLING DATA:	pH Conduct	Turb. Other	Other
Time Temp.	(std units) (Umhos/c		
1600 11.7	8,17 8.75	-1.37	
1000 1111		PSZ	
	815		
NSTRUMENT CHECK	(DATA:		
	NTU std. =NT	TUNTU std. =	NTU
rbidity Serial #:			
		7.0 std.=	10.0 std. =
oH Serial #:	4.0 std.=		
		umhos/cm=	umhos/cm=
Conductivity Serial #: Solutions:		ulliliosioni-	
GENERAL INFORMA	ATION:		
Weather conditions @	time of sampling: 500	NNY, 70%	
Sample Characteristic	s: CELIFIC		
COMMENTS AND O			
COmments			
	ı		
	g procedures were in accord	dance with all applicable EP	A, State and Site-Specific
protocals.			1000000
< 14	(O By:	Comp	pany: TAC
Date:			-

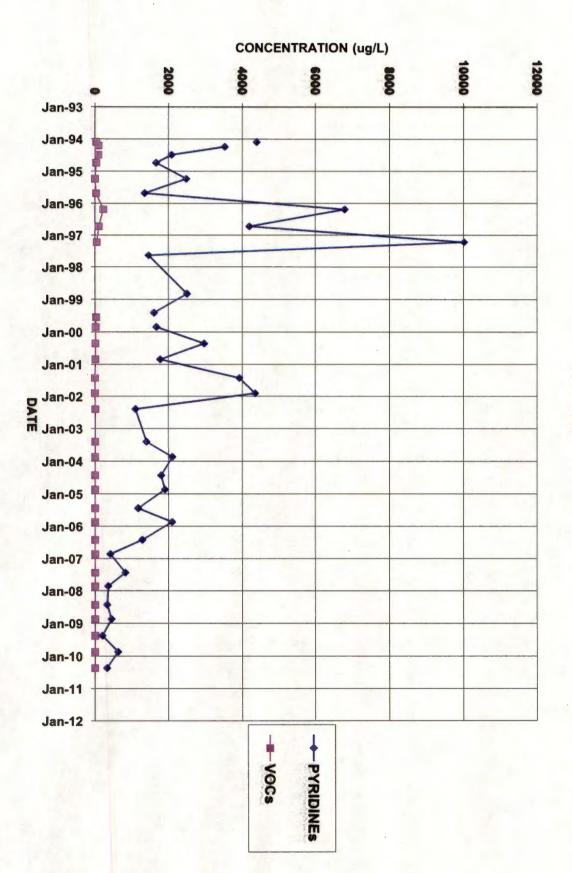
PAGE 1 OF 1


Appendix B
Well Trend Data

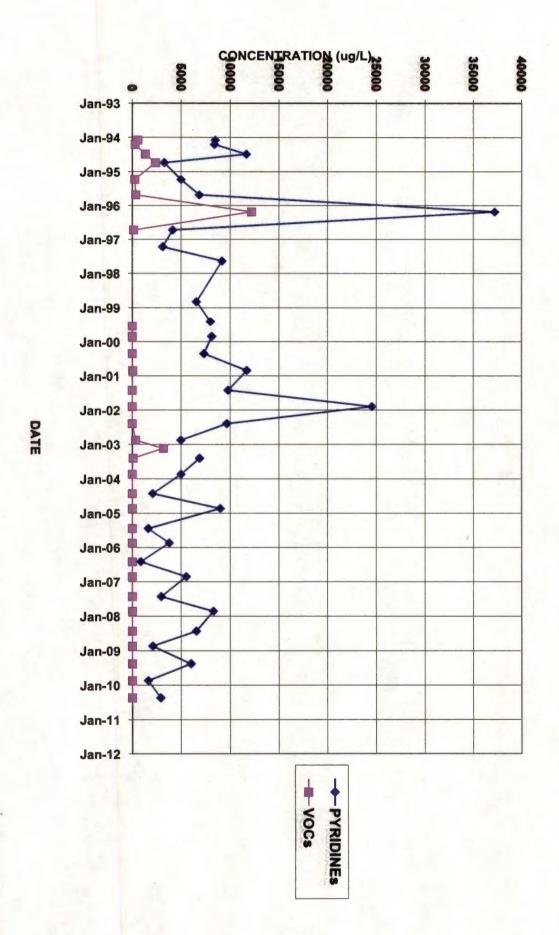
 B-17

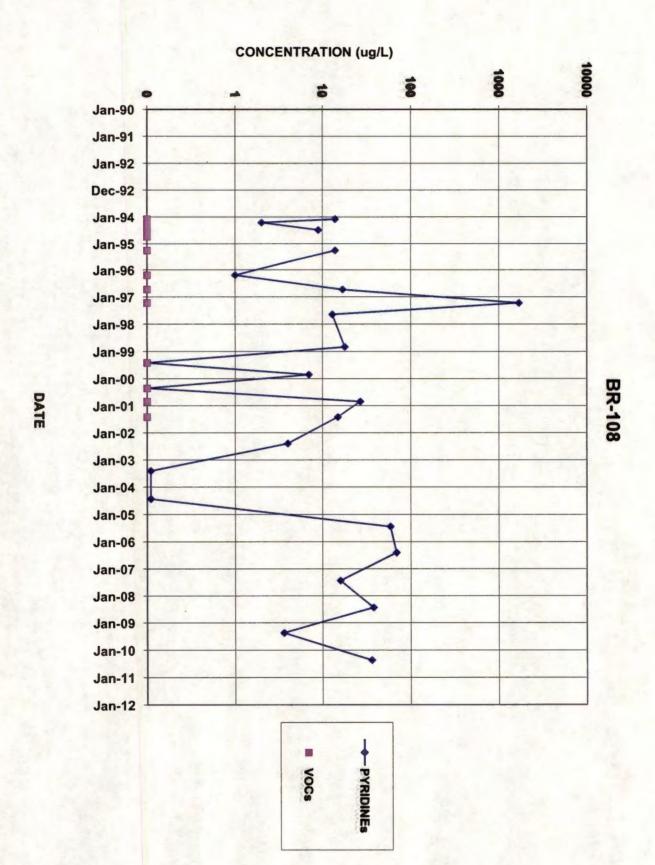


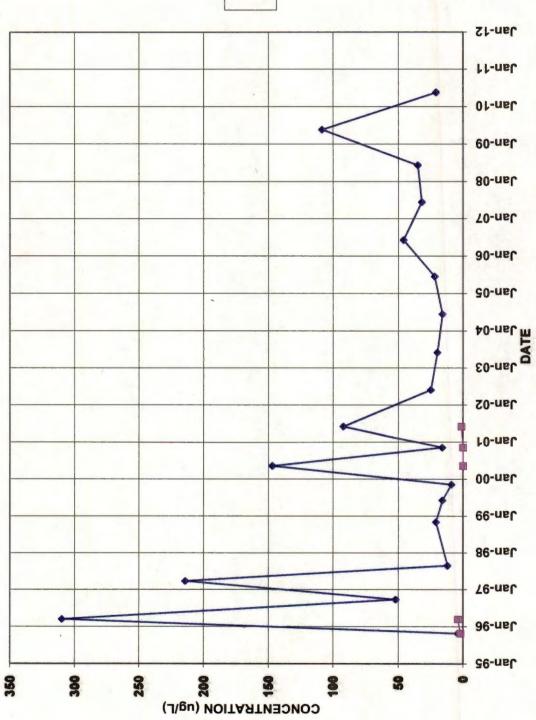


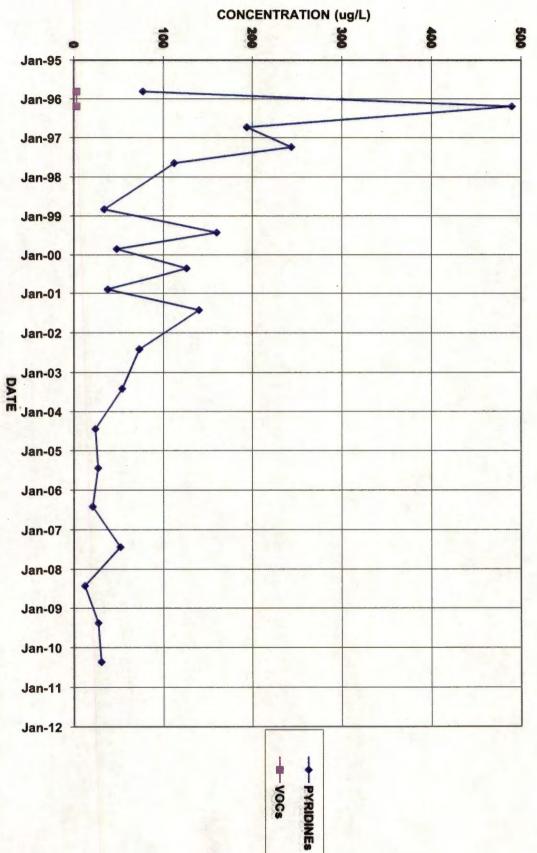

PYRIDINES

VOCs









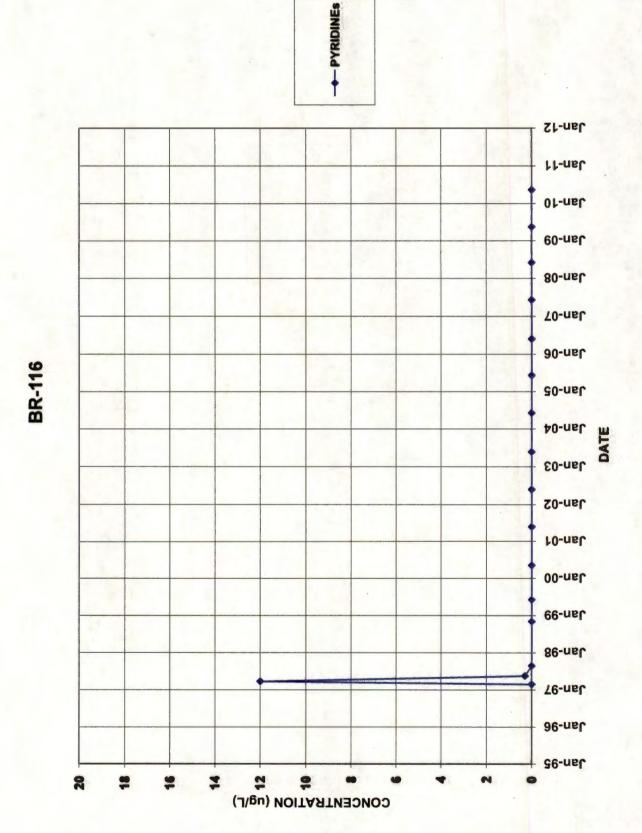
BR-112D

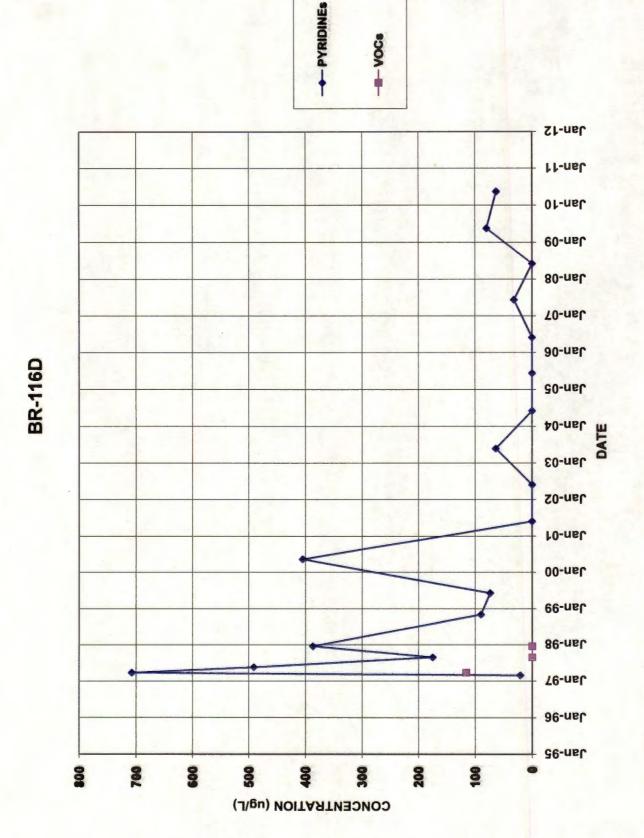
-- PYRIDINES

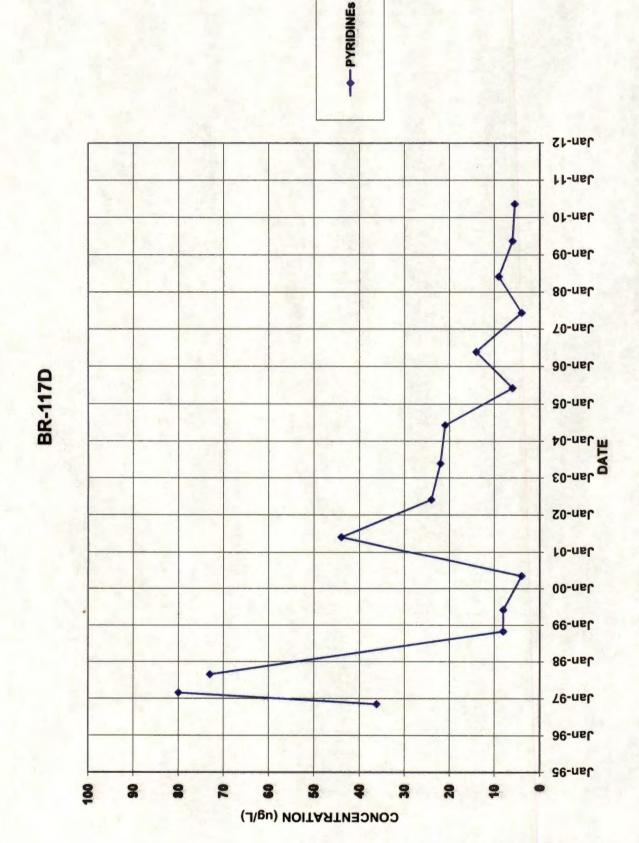
SOOA-

2

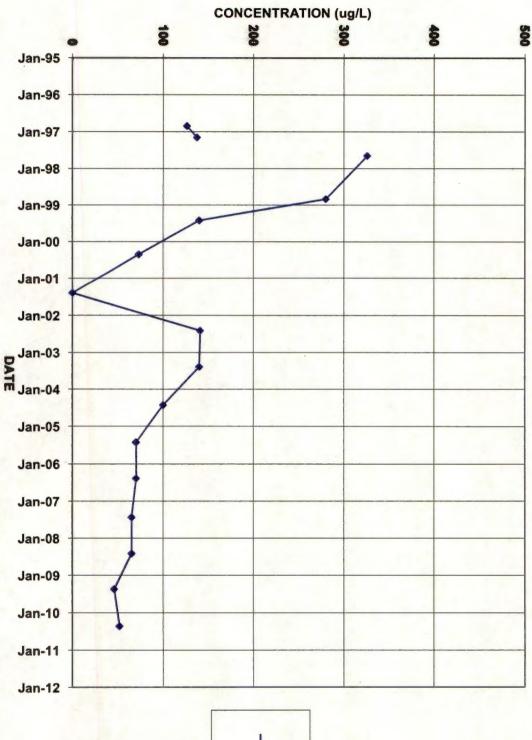
CONCENTRATION (ug/L)

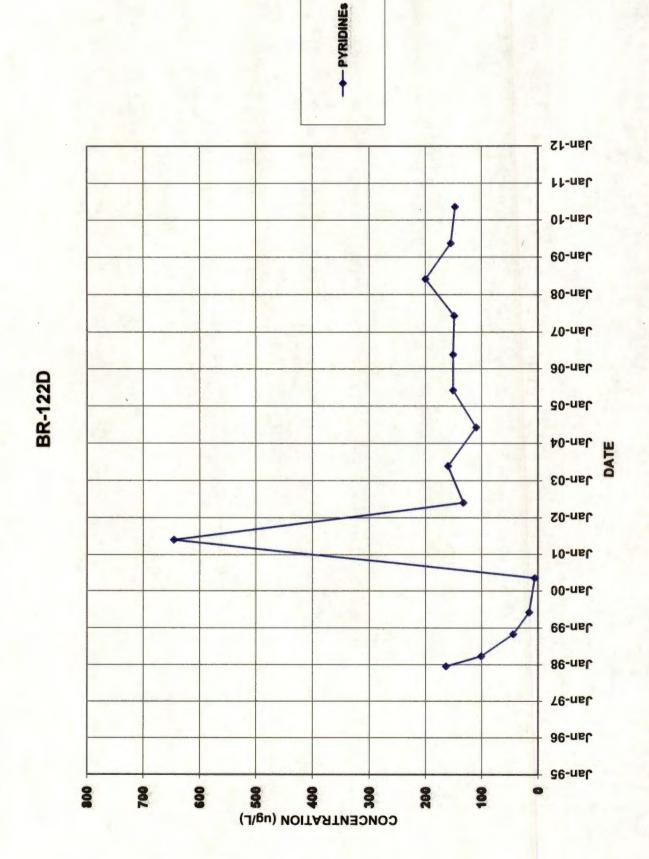

76-nsl

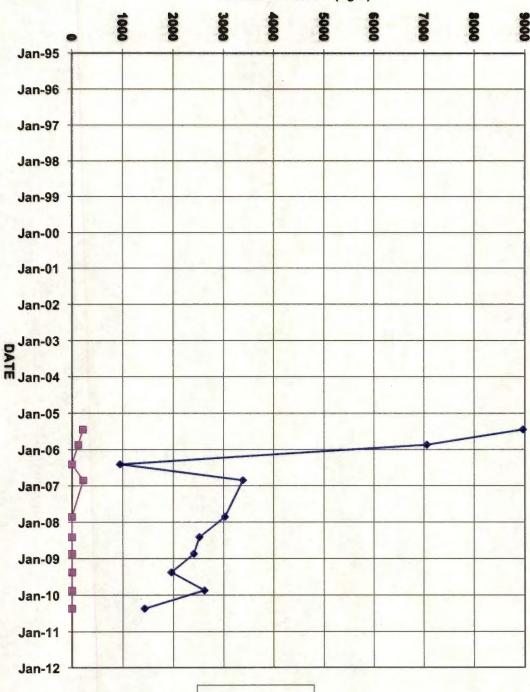

Jan-96


ge-uer

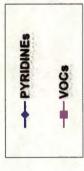
8

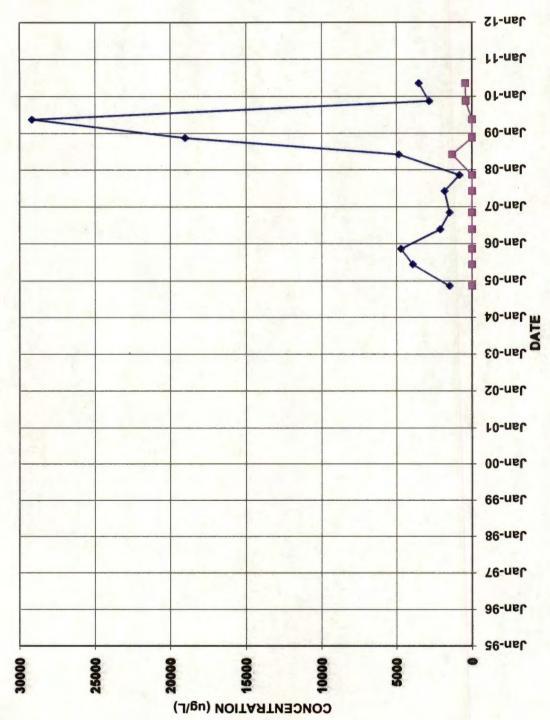

200

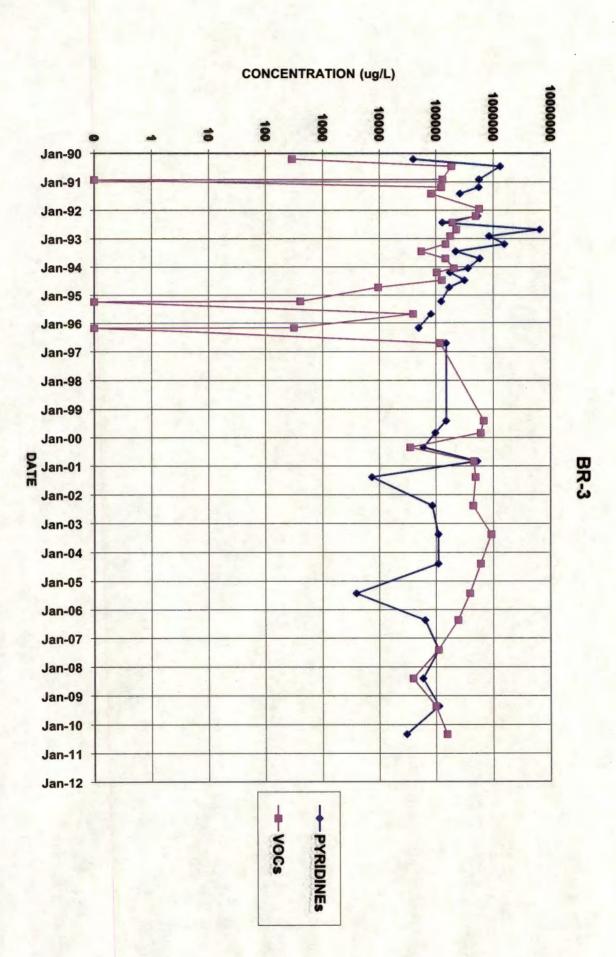




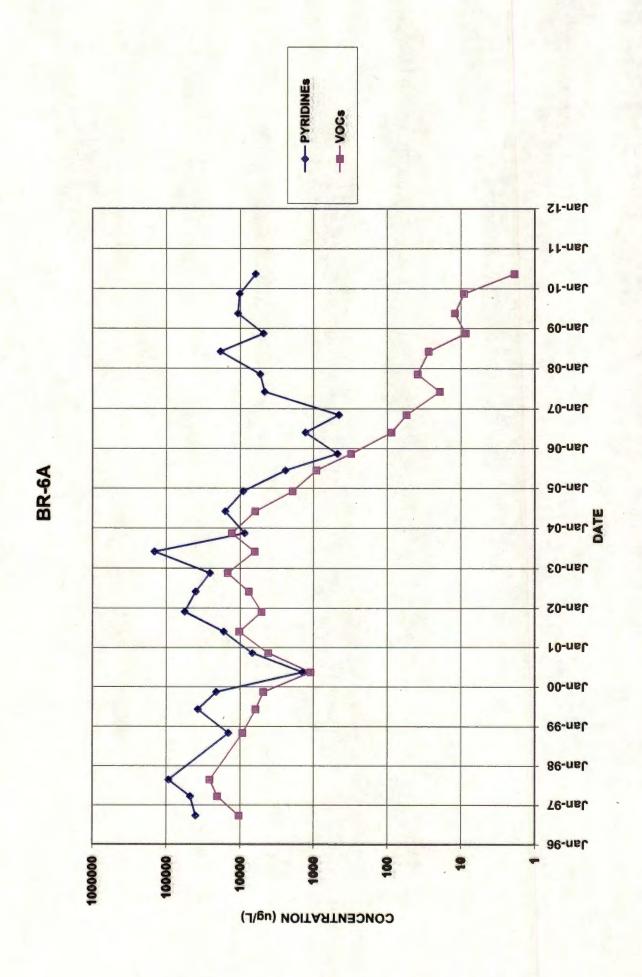
--- PYRIDINES


Prepared by: nmb Reviewed by: jeb

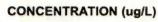


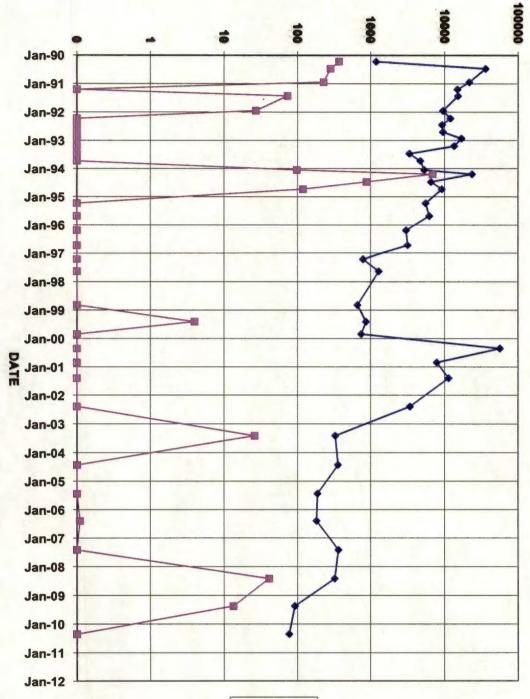

BR-126

--- PYRIDINES

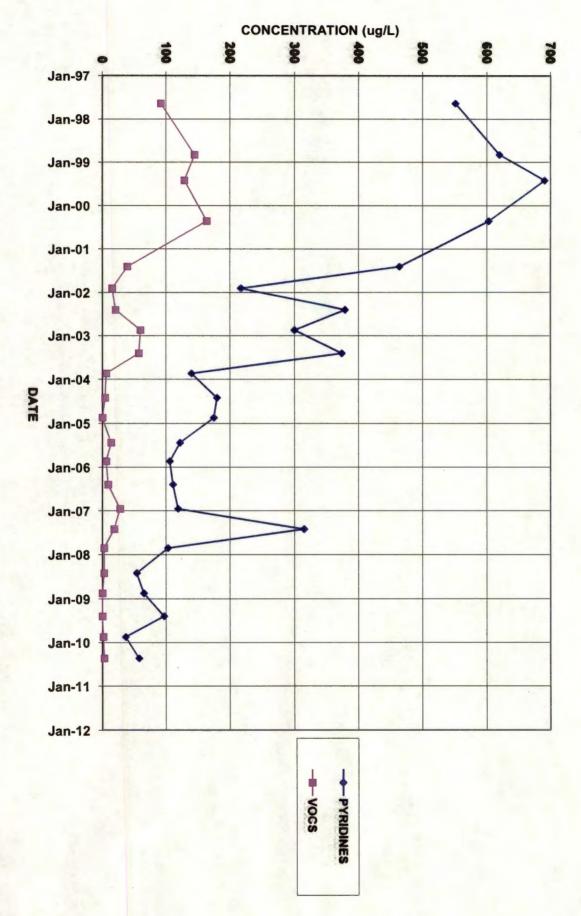


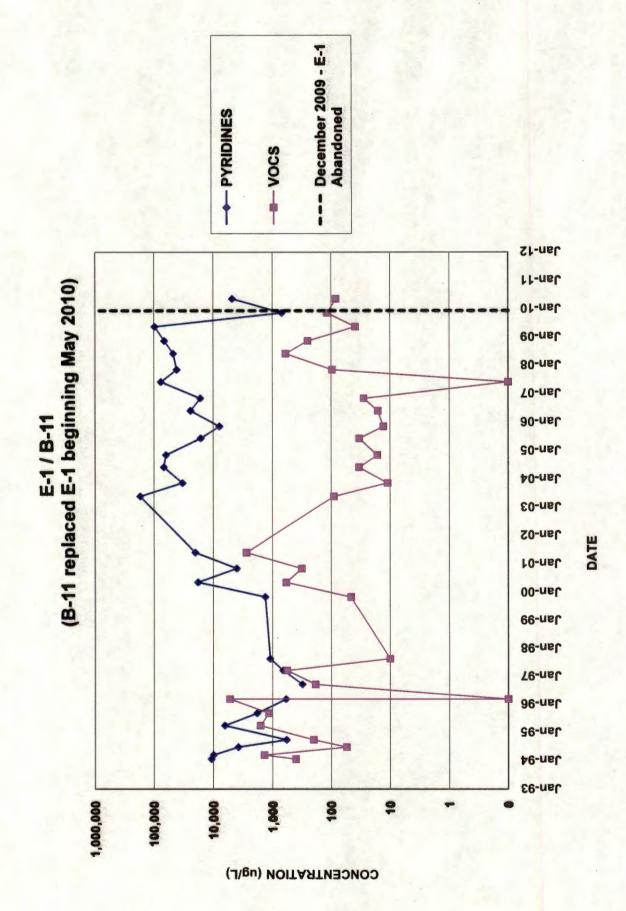
BR-127


3R-5A

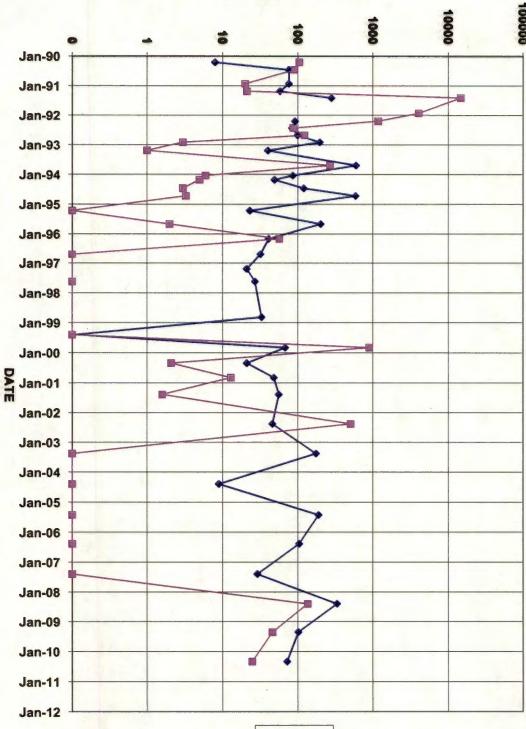

Reviewed by: jeb

Prepared by: nmb Reviewed by: job

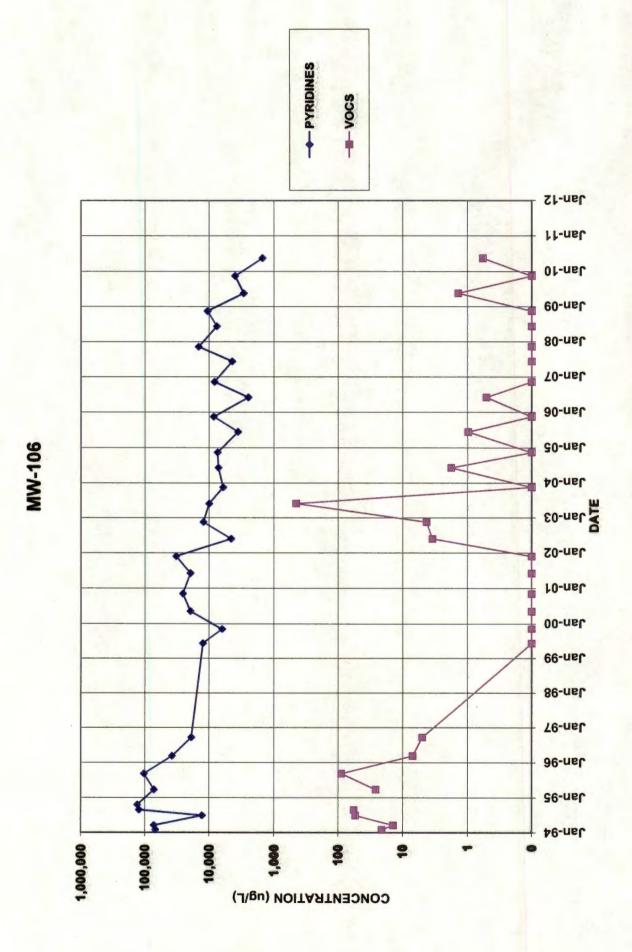

Prepared by: nanb Reviewed by: job



PYRIDINES

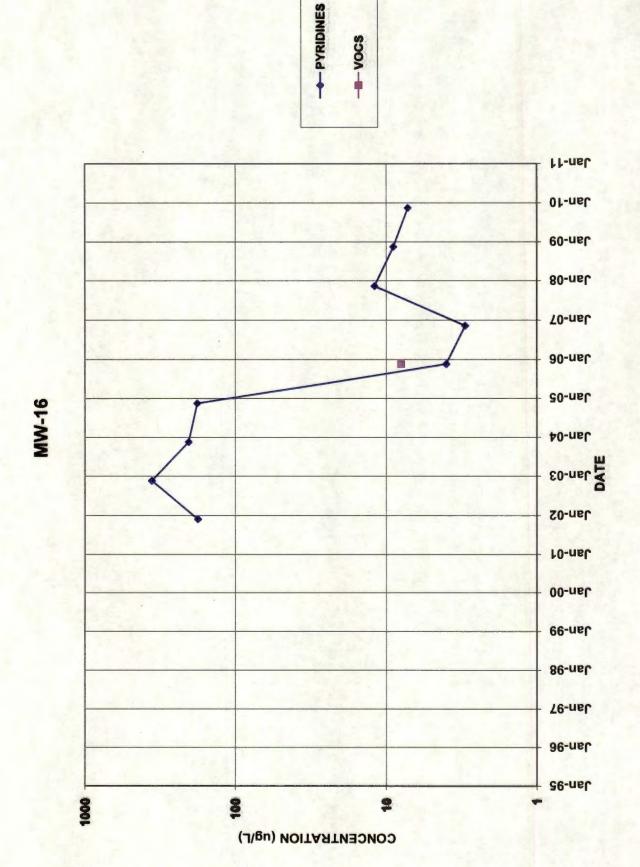

BR-8

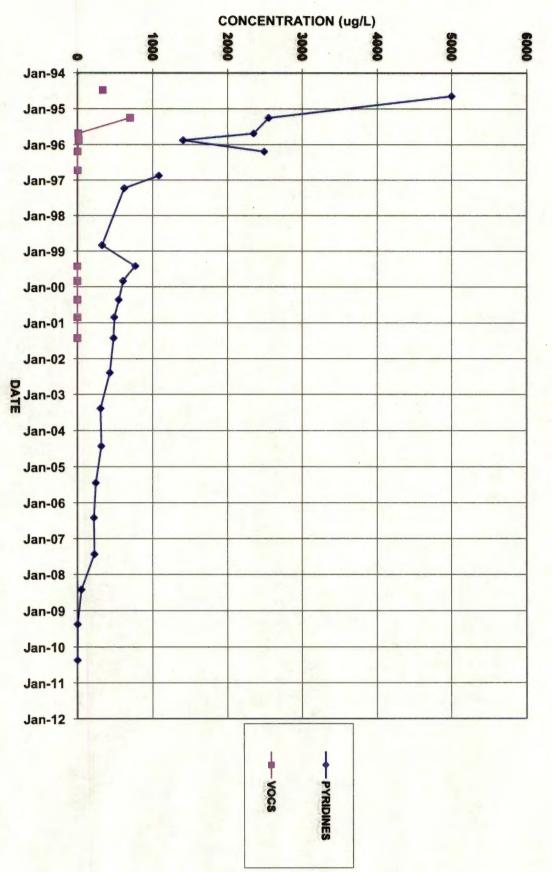
BR-9

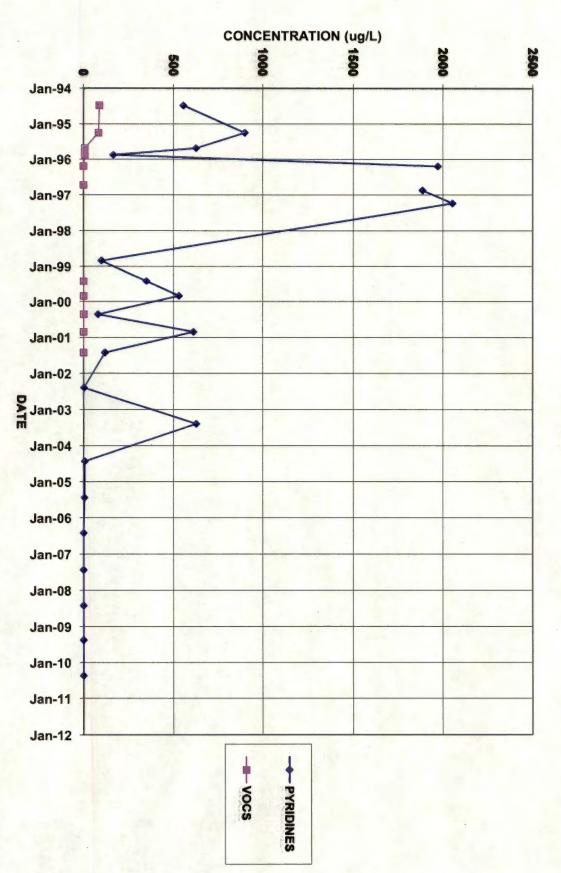


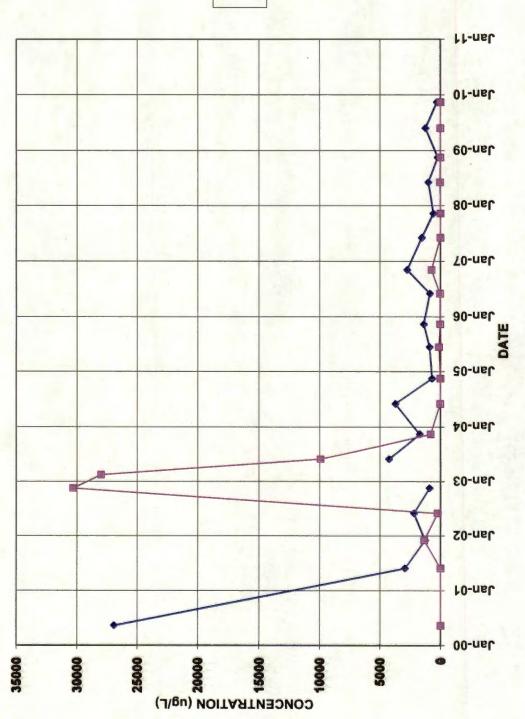
--- PYRIDINES

ü

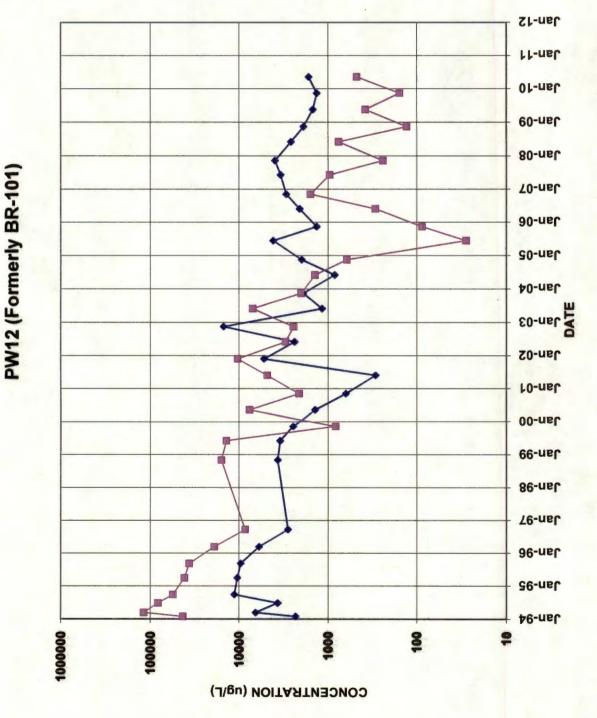

CONCENTRATION (ug/L)

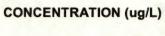


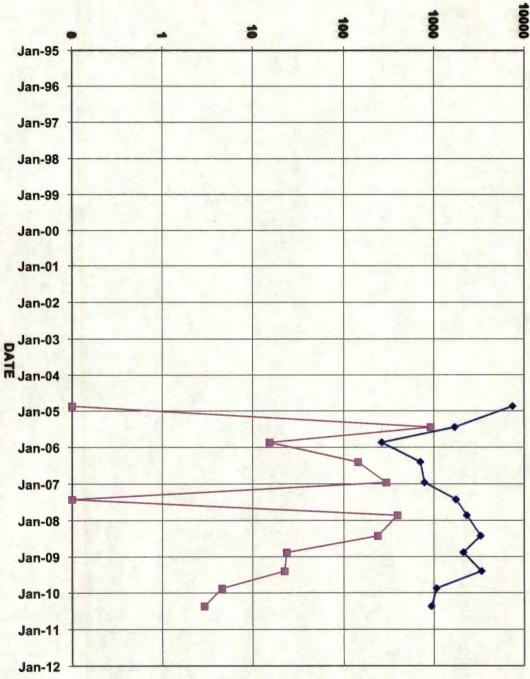



Reviewed by: jeb

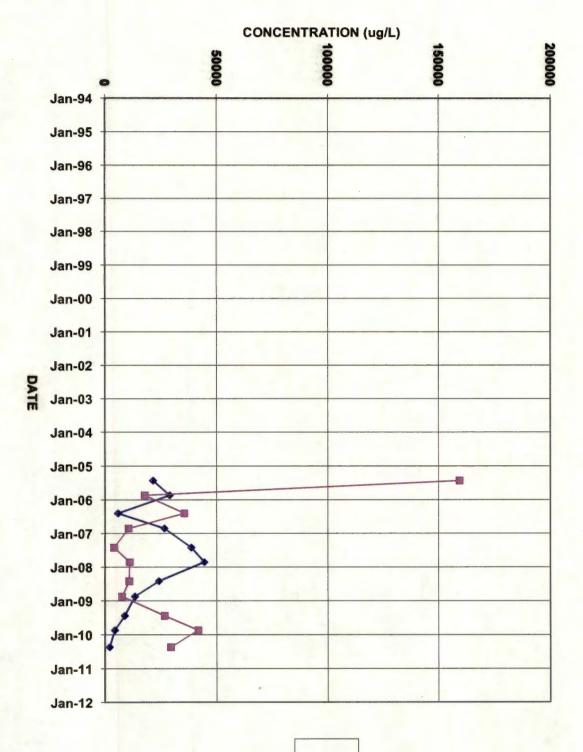
Reviewed by: jeb

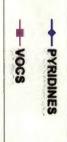

-- PYRIDINES

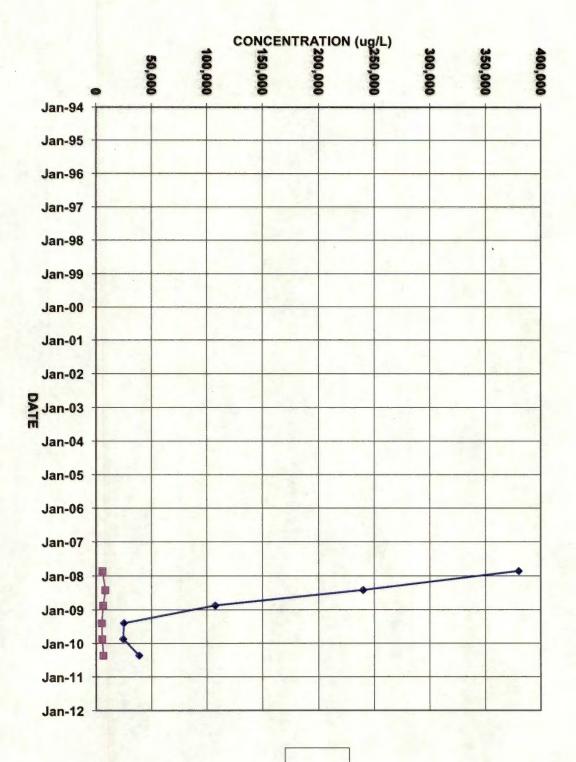

---VOCS

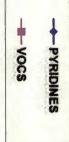


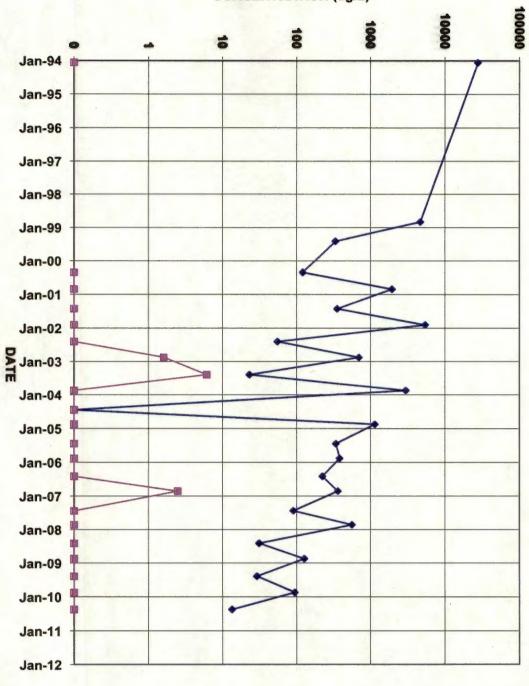
-- PYRIDINES

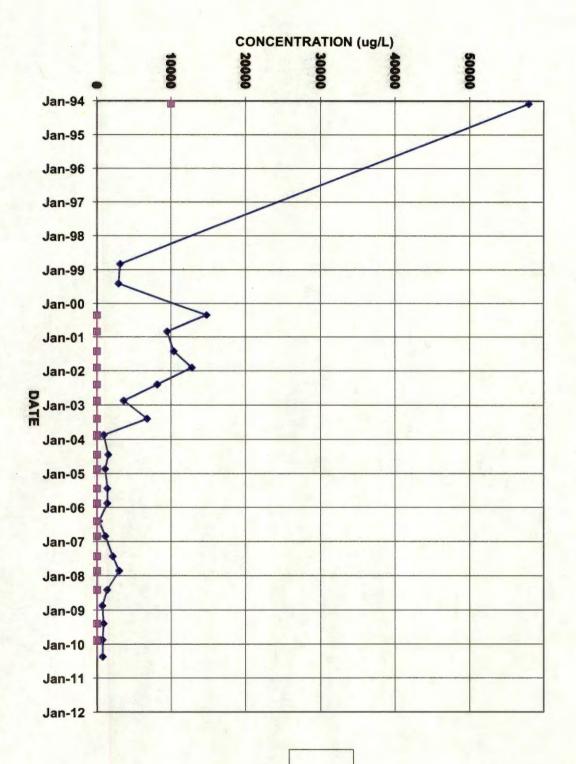


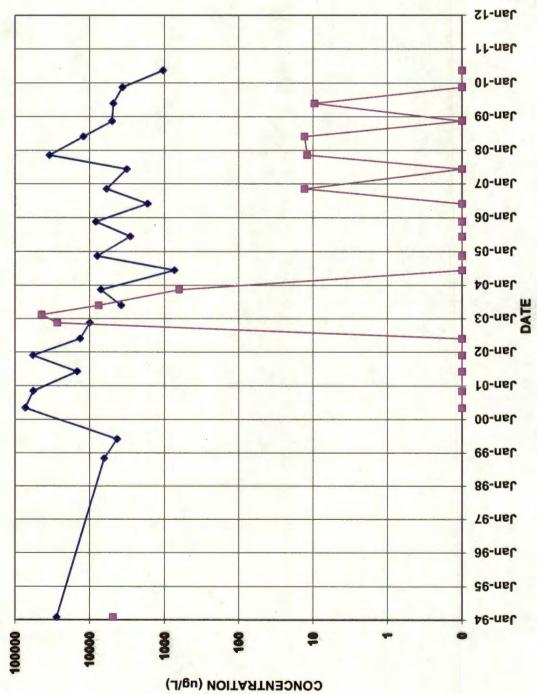


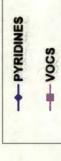

--- PYRIDINES

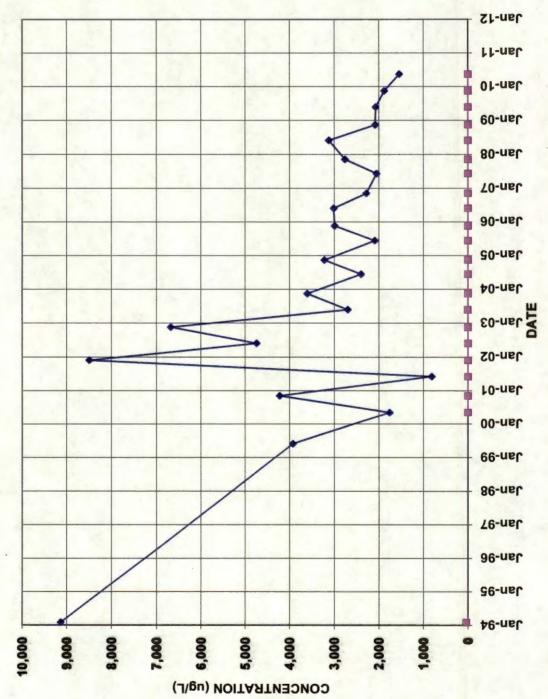


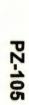


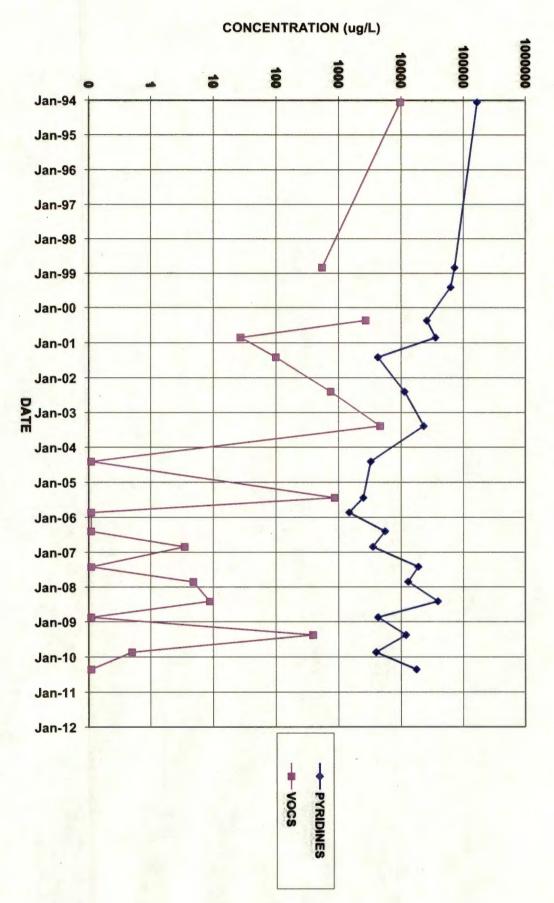




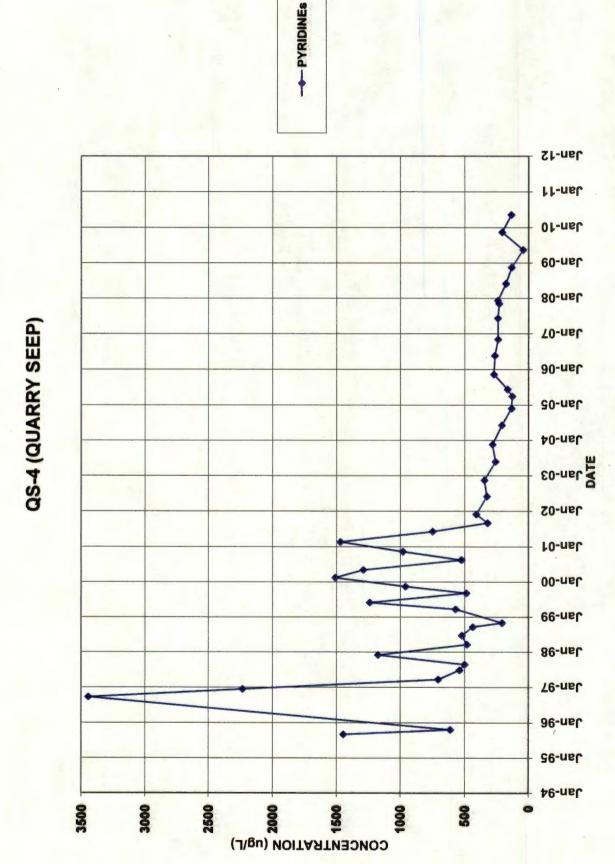




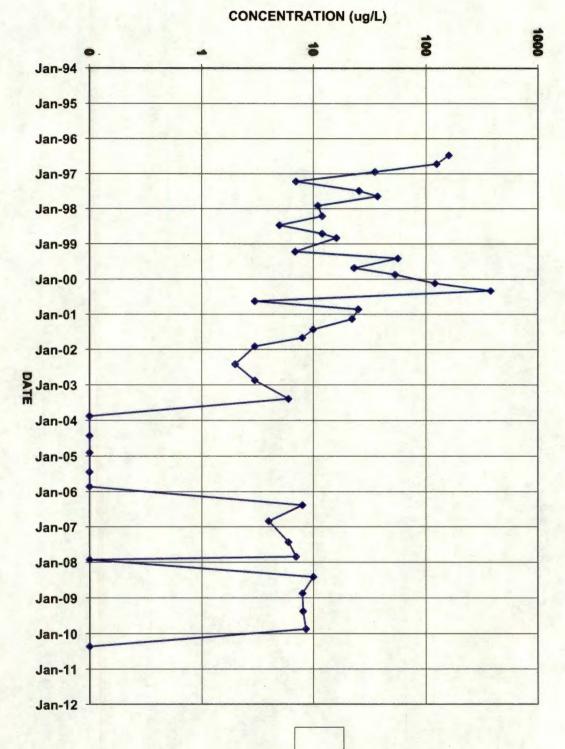



PZ-103

PZ-104



CONCENTRATION (ug/L)


--- PYRIDINES

---- December 2009 - S-3 Abandoned -- PYRIDINES - Vocs Jan-12 Jan-11 Jan-10 S-3 / B-16 (B-16 replaced S-3 beginning May 2010) 90-usc Jan-08 Jan-07 30-nsL Jan-05 Jan-04 Jan-03 Jan-02 10-nsL Jan-00 66-nsL Se-nst 76-nst 96-nsL 26-nst 46-nsl 100000 10000 900 \$ 2 CONCENTRATION (ug/L)

Prepared by: nmb Reviewed by: jeb

QO-2 (QUARRY OUTFALL)

PYRIDINES