SURFACE WATER AND GROUNDWATER MONITORING PROGRAM FALL 2010 MONITORING REPORT

ARCH CHEMICALS
ROCHESTER PLANT SITE
ROCHESTER, NEW YORK

ARCH CHEMICALS, INC. CHARLESTON, TENNESSEE

FEBRUARY 2011

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM FALL 2010 MONITORING REPORT

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

Prepared by

MACTEC Engineering & Consulting, P.C. Portland, Maine

for

ARCH CHEMICALS, INC. Charleston, Tennessee

February 2011

3616086023.03

Nelson M. Breton, C.G. Principal Hydrogeologist

ey E. Brandow, P.E.

Principal Engineer

TABLE OF CONTENTS

			<u>Page</u>
Exec	utive Sเ	ummary	1
1.0	Introd	duction	2
2.0	Samp	ole Collection and Analysis	2
	2.1	Groundwater	2
	2.2	Surface Water	2
	2.3	Analytical Procedures	3
	2.4	Quality Control	3
3.0	Analy	tical Results	4
	3.1	Groundwater	4
		3.1.1 Chloropyridines	4
		3.1.2 Selected VOCs	4
	3.2	Surface Water	5
		3.2.1 Quarry	5
		3.2.2 Quarry Discharge Ditch	5
		3.2.3 Barge Canal	5
4.0	Extra	action System Performance and Maintenance	5
5.0	Next	Monitoring Event	6

APPENDICES

Appendix A Groundwater Field Sampling Data Sheets

Appendix B Well Trend Data

LIST OF FIGURES

		Prepared By:	Checked By:
Figure 1	Off-Site Groundwater Monitoring Well Locations	12W_	
Figure 2	On-Site Monitoring Well Locations	JEB	NWS
Figure 3	Fall 2010 Overburden Groundwater Interpreted Piezometric Contours	BTS	NW
Figure 4	Fall 2010 Bedrock Groundwater Interpreted Piezometric Contours	P35	NMS
Figure 5	Fall 2010 Deep Bedrock Groundwater Interpreted Piezometric Contours	<u>B</u> 55	Mus
Figure 6	Sample Locations - Erie Barge Canal	<u> 158</u>	NWB
Figure 7	Sample Locations – Dolomite Products Quarry	1500	NMB
Figure 8	Fall 2010 Selected Chloropyridine Concentration Contours for Groundwater	675	#28
Figure 9	Fall 2010 Selected Volatile Organic Compound Concentration Contours for Groundwater	<u>B55</u>	#8

LIST OF TABLES

		Prepared By:	Checked By:
Table 1	Fall 2010 Sampling and Analytical Program	<u>Bos</u>	<u>#38</u>
Table 2	Fall 2010 Groundwater Monitoring Results – Chloropyridines	<u>BJS</u>	JEB_
Table 3	Fall 2010 Groundwater Monitoring Results – Volatile Organic Compounds	<u>BOS</u>	18 <u>1</u> 8
Table 4	Comparison of Fall 2010 Chloropyridines and Volatile Organic Concentrations in Groundwater to Previous Results	BIS	_K
Table 5	Fall 2010 Canal/Quarry Monitoring Results	BJS	1 28
Table 6	Extraction Well Weekly Flow Measurements – June 2010 through November 2010	JE8	MB
Table 7	Mass Removal Summary, Period: June 2010 – November 2010	1983.	My
Table 8	2011 Sampling Schedule	15B	NM3

EXECUTIVE SUMMARY

This monitoring report presents the results of an on-going groundwater and surface water monitoring program being conducted by Arch Chemicals, Inc., at its Rochester, New York, manufacturing facility. Results in this report include surface and groundwater samples collected in November 2010.

During this monitoring event, samples from a total of 27 groundwater monitoring or pumping wells and four locations associated with the Dolomite Products Quarry seep and outfall were collected and analyzed by TestAmerica in Amherst, New York.

As in prior reports, monitoring results were compared with previous average concentrations at each sampling location. Twenty of the 27 monitoring wells sampled for chloropyridines had contaminant concentrations that were at or below their respective 5-year prior averages. Twenty-two of the 26 monitoring wells sampled for volatile organic compounds had concentrations at or below their 5-year prior average. Contaminant contour plots are generally consistent with past observations.

Sampling locations associated with the quarry included the main quarry seep (QS-4), the quarry ditch where the quarry dewatering discharge enters the ditch (QD-1), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1). Chloropyridine concentrations in quarry seep QS-4 are below the prior 5-year average for this location. Samples from the quarry ditch and the canal were at trace levels or were non-detect for their respective locations.

All accessible on-site monitoring wells were checked for the presence of dense non-aqueous phase liquids (DNAPL) and floating (or light) NAPL (LNAPL), using an interface probe. No DNAPL or LNAPL was observed in any of these wells.

During the period June 2010 through November 2010, the on-site groundwater extraction system pumped approximately 8 million gallons of groundwater to the on-site treatment system, containing an estimated 571 pounds of chloropyridines and 46 pounds of target volatile organic compounds.

In January 2010, Arch discovered that extraction well PW11 had partially collapsed and needed to be replaced. New pumping well PW16 was installed in July 2010 to replace PW11, and was activated in September 2010.

Overall, the extraction system operating condition is now very good, with improved consistency and flow rates. However, PW-14 continues to exhibit a poor well yield of less than 0.5 gallons per minute. An attempt to clean the well by physical and chemical means in November 2010 did not result in any observed improvement in this well. At the present time, Arch intends to continue to operate PW-14, but will likely reassess the value of this well as part of the design process for the planned groundwater collection trench in the southeastern part of the site.

The next regular monitoring event will occur in May 2011 and will include groundwater, surface water, and seep sampling.

1.0 INTRODUCTION

In accordance with the Order on Consent executed between Arch Chemicals, Inc., and the New York State Department of Environmental Conservation (NYSDEC), effective August 21, 2003, Arch is conducting a Remedial Action program at its facility on McKee Road in Rochester, New York. As part of this program, Arch conducts twice-yearly monitoring events consisting of sampling and chemical analysis of groundwater and surface water in the vicinity of the Rochester facility.

The Fall 2010 sampling event included the collection and analysis of a total of 31 groundwater, surface water, and seep samples from off-site and on-site locations. Samples were collected November 16 through 19, 2010, for analysis of selected chloropyridines and volatile organic compounds (VOCs).

This report presents the results of the Fall 2010 monitoring event.

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 **G**ROUNDWATER

Groundwater samples were collected from off-site wells, on-site wells and piezometers for analysis of selected chloropyridines (2-chloropyridine, 2,6-dichloropyridine, 3-chloropyridine, 4-chloropyridine, pyridine, and p-fluoroaniline) and target compound list (TCL) VOCs. Samples were collected by personnel from Test America Laboratories, Inc., (TestAmerica) and transported to their lab in Amherst, New York for analysis. Table 1 lists the wells that were sampled and the requested analyses. The off-site and on-site locations of these sampling points are shown in Figures 1 and 2, respectively. Groundwater sampling data sheets are provided in Appendix A.

Groundwater was collected with the low flow/low stress purging technique from most of the wells using bladder or peristaltic pumps. Samples from active pumping wells were collected from the discharge lines. Pumping well PW-11 is partially blocked due to well collapse, and was therefore not sampled. This well has now been replaced with new pumping well PW-16, located approximately 60 feet north of PW-11.

Groundwater piezometric elevations were measured on November 16, 2010. Piezometric contour maps were constructed for each water-bearing zone (overburden, bedrock, and deep bedrock) and are presented in Figures 3, 4, and 5.

All accessible on-site monitoring wells were again checked for the presence of non-aqueous phase liquid (NAPL), using an interface probe. No dense NAPL (DNAPL) or floating (light) NAPL (LNAPL) was observed in any of these wells.

2.2 SURFACE WATER

Surface water and quarry seep samples were collected as part of the on-going monitoring program for the Arch Rochester site. The location of the quarry and its outfall in relation to the site is shown on Figure 6. Samples of the main quarry seep (QS-4), the quarry ditch

where the quarry dewatering discharge enters the ditch (QD-1), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1) were collected by TestAmerica on May 14, 2010. All quarry-related samples were analyzed for the Arch suite of selected chloropyridines. The quarry locations sampled during the Fall 2010 event are shown on Figure 7.

2.3 ANALYTICAL PROCEDURES

The analytical procedures, data review findings, and validated data for this groundwater and surface water monitoring event are discussed in the following paragraphs.

Samples were analyzed for the Arch suite of selected chloropyridines and TCL VOCs by USEPA SW-846 Methods 8270C and 8260B, respectively. The reporting limits for the chloropyridines and VOCs are approximately 10 micrograms per liter (μ g/L) and 5 to 25 μ g/L, respectively, for undiluted samples.

2.4 QUALITY CONTROL

All laboratory analytical results were reviewed and qualified following U.S. Environmental Protection Agency Contract Laboratory Program (USEPA CLP), "National Functional Guidelines for Organic Data Review", June, 2008, as modified by USEPA Region II, "SOP No. HW-6 Revision 14", September 2006. Analytical results were evaluated for the following parameters:

- * Collection and Preservation
- * Holding Times
- * Surrogate Recoveries
- * Blank Contamination
- * Duplicates
- * Laboratory Control Samples
 Matrix Spike/Matrix Spike Duplicates
 Miscellaneous

With the qualifications discussed below, results are determined to be usable as reported by the laboratory.

Matrix Spike/Matrix Spike Duplicate. Percent recoveries for 2-chloropyridine (131, 162) and 2,6-dichloropyridine (124, 151) in the matrix spike/matrix spike duplicate (MS/MSD) associated with sample B-11 were above the laboratory control limits of 11-123 and 18-115, respectively, indicating a potential high bias for these target analytes. The positive detections of 2-chloropyridine and 2,6-dichloropyridine in sample B-11 were qualified as estimated (J) and may represent potential high biases.

<u>Miscellaneous</u>. Samples from 24 of the wells were analyzed at dilutions due to high concentrations of volatile organic or semivolatile organic target analytes. Non-detects are reported at elevated reporting limits.

^{* -} all criteria were met for this parameter

3.0 ANALYTICAL RESULTS

3.1 GROUNDWATER

The validated results from the Fall 2010 groundwater monitoring event are provided in Tables 2 and 3. Table 4 provides a comparison of the Fall 2010 analytical results for selected chloropyridines and VOCs in representative wells to mean concentrations of the prior five years (Fall 2005 through Spring 2010). Long term trends for both selected chloropyridines and VOCs are also presented as time-series plots for representative wells in Appendix B. A summary of the analytical findings is presented below by parameter class.

3.1.1 Chloropyridines

<u>On-Site.</u> Chloropyridines were detected above sample quantitation limits in all 16 on-site wells sampled in the Fall 2010 event. Concentrations of chloropyridines ranged from 170 micrograms per liter (μg/L) (sum of all chloropyridine and pyridine isomer concentrations) in pumping well BR-5A to 90,000 μg/L in pumping well PW-15. Four of the 16 on-site wells exhibited total chloropyridine concentrations that were slightly above their respective means from monitoring events over the previous five years (BR-6A, BR-9, BR-127, and PZ-107).

<u>Off-Site.</u> Chloropyridines were detected above sample quantitation limits in all 11 off-site wells that were sampled. Concentrations of total selected chloropyridines ranged from an estimated 7 μ g/L (in well MW-16 on the former General Signals property) to approximately 6,200 μ g/L in well MW-106 west of McKee Road. Three of the 11 off-site wells contained total chloropyridine concentrations above their respective 5-year prior means (B-16, BR-105, and PZ-102).

<u>Concentration Contours</u>. Chloropyridine distribution in groundwater is shown as a set of concentration contours on Figure 8. The contours were developed using data from both overburden and bedrock monitoring wells. Contours are approximated (shown as dashed lines) where they are based on data from previous sampling rounds.

3.1.2 Selected VOCs.

<u>On-Site.</u> Selected VOCs were detected in 11 of the 16 on-site wells sampled in the Fall 2010 event. Total concentrations of selected VOCs ranged from not detected (in wells BR-7A, MW-127, PW-13, PW-16, and PZ-105) to 270,000 μg/L in PZ-106 for the sum of the principal site-related contaminants (carbon tetrachloride, chloroform, methylene chloride, tetrachloroethene, and trichloroethene). Three of the 16 on-site wells (B-11, PW-14, and PZ-107) contained concentrations of total VOCs above their 5-year prior means.

In addition to the selected VOCs, other notable constituents detected in on-site wells include chlorobenzene (in 10 out of 16 wells), toluene (8 of 16), benzene (8 of 16), carbon disulfide (7 of 16), 1,2-dichloroethene (6 of 16), vinyl chloride (5 of 16), total xylenes (4 of 16), ethylbenzene (3 of 16), bromoform (2 of 16), 1,1-dichloroethane (2 of 16), and acetone (2 of 16).

<u>Off-Site.</u> Selected VOCs were detected in three of the 10 off-site wells sampled for VOCs in the Fall 2010 event. Total concentrations of selected VOCs ranged from not detected (in

BR-105, BR-106, BR-126, MW-106, PZ-102, PZ-103, and PZ-104) to $2.5 \mu g/L$ (in BR-105D). Only one of the off-site wells (PZ-101) had selected VOC concentrations slightly above its prior 5-year mean. In addition to the selected VOCs, other notable constituents detected in off-site wells include benzene (in 9 out of 10 wells), chlorobenzene (9 of 10), 1,2-dichloroethene (4 of 10), toluene (2 of 10), 1,1-dichloroethane (3 of 10), vinyl chloride (2 of 10), ethyl benzene (2 of 10), and total xylenes (2 of 10).

<u>Concentration Contours</u>. The distribution of selected VOCs in groundwater is shown as a set of concentration contours on Figure 9. These contours were developed using both overburden and bedrock groundwater data, and are dashed where approximated using data from previous sampling rounds.

3.2 SURFACE WATER

Results from the Fall 2010 canal and quarry monitoring event are presented in Table 5, and summarized below. In general, chloropyridines in the quarry and canal samples remain at low levels, below their 5-year mean concentrations.

3.2.1 Quarry

One quarry seep (QS-4) was sampled in the Fall 2010 monitoring event, and contained 139 μ g/L total chloropyridines.

3.2.2 Quarry Discharge Ditch

Two locations within the quarry discharge ditch were sampled and analyzed for chloropyridines: QD-1, at the point where the quarry's dewatering discharge enters the ditch; and QO-2, at the location where the ditch discharges to the canal. A trace of pyridine (estimated concentration of 0.43 μ g/L) was detected in the sample from QD-1. Chloropyridine-related compounds were not detected in the sample at QO-2.

3.2.3 Barge Canal

One sample was collected from the Erie Barge Canal location (QO-2S1, approximately 100 feet downstream of QO-2). Chloropyridines were not detected in this sample.

4.0 EXTRACTION SYSTEM PERFORMANCE AND MAINTENANCE

Table 6 is a summary of the system flow measurements for the on-site extraction wells from June 2010 through November 2010. The total volume pumped during the six-month period was approximately 8 million gallons.

Table 7 provides a calculation of mass removal rates since the previous groundwater monitoring event (i.e., from June 2010 through November 2010). Arch estimates that approximately 46 pounds of target VOCs and 571 pounds of chloropyridine compounds were removed by the groundwater extraction system and treated by the plant's activated carbon adsorption units over that time period.

New pumping well PW-16 was installed during the summer of 2010, and was activated in September 2010. This well replaces failed pumping well PW-11. Since being activated, the pumping rate in the new well has stabilized at between 4 and 5 gallons per minute.

Pumping well PW-14 continues to exhibit a poor well yield of less than 0.5 gallons per minute. An attempt to clean the well by physical and chemical means in November 2010 did not result in any observed improvement in this well. At the present time, Arch intends to continue to operate PW-14, but will likely reassess the value of this well as part of the design process for the planned groundwater collection trench in this part of the site.

Maintenance activity during this reporting period included pump and/or meter repairs at wells BR-7A, BR-9, PW-14, and BR-127. New wellhead enclosures were installed at wells BR-5A, BR-7A, and BR-9. The groundwater sewer line near BR-7A was cleaned and repaired, with new cleanouts installed to facilitate future maintenance activities.

Overall, the system operating condition is now very good, with improved consistency and flow rates.

5.0 NEXT MONITORING EVENT

The next regular monitoring event will occur in May 2011 and will include groundwater, surface water, and seep sampling.

Table 8 shows the current monitoring program for the Arch Rochester site.

ts\Fall_2010\Arch_VOCs_Fig9.mxd PDF: P:\Projects\Arch\Rochester\GIS\Figures\Monitoring_Fall2010\Figure_9_10.pdf 01/18/2011 9:01 AM bjschoonard

TABLE 1 FALL 2010 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM

ARCH CHEMICALS, INC ROCHESTER, NEW YORK

			ANALYSIS	PYRIDINES	VOCs
SITE / AREA	WELL / POINT	DATE	QC TYPE		
AID TO HOSPITALS	BR-106	11/17/2010	Sample	Х	Χ
	MW-106	11/17/2010	Sample	Х	Χ
	PZ-101	11/18/2010	Sample	X	Х
	PZ-102	11/18/2010	Sample	X	Χ
	PZ-103	11/18/2010	Sample	Х	Χ
AMERICAN RECYCLING & MANUF.	B-16	11/19/2010	Sample	X	Х
(58 MCKEE ROAD)	BR-126	11/18/2010	Sample	X	Х
	PZ-104	11/18/2010	Sample	X	Χ
ARCH ROCHESTER	B-11	11/18/2010	Sample	Х	Χ
	BR-127	11/17/2010	Sample	Х	Χ
	BR-5A	11/17/2010	Sample	Х	Χ
	BR-6A	11/18/2010	Sample	X	Х
	BR-7A	11/17/2010	Sample	Х	Χ
	BR-9	11/17/2010	Sample	Х	Χ
	MW-127	11/19/2010	Sample	X	Х
	PW10	11/18/2010	Sample	X	Х
	PW12	11/19/2010	Sample	Х	Χ
	PW13	11/17/2010	Sample	Х	Χ
	PW14	11/17/2010	Sample	Х	Χ
	PW15	11/17/2010	Sample	X	Х
	PW16	11/18/2010	Sample	X	Χ
	PZ-105	11/18/2010	Sample	Х	Χ
	PZ-106	11/18/2010	Sample	Х	Χ
	PZ-107	11/18/2010	Duplicate	Х	Χ
	PZ-107	11/18/2010	Sample	Χ	Χ
FORMER GENERAL CIRCUITS(Corner of Buffalo and Mt Read Blvd.)	MW-16	11/16/2010	Sample	Х	
DOLOMITE PRODUCTS, INC.	QD-1	11/16/2010	Sample	Х	
•	QS-4	11/16/2010	Sample	Х	
ERIE BARGE CANAL(Samples in canal	QO-2	11/16/2010	Sample	Х	
or property along canal)	QO-2S1	11/16/2010	Sample	Х	
RG & E RIGHT OF WAY	BR-105	11/17/2010	Sample	Х	Х
	BR-105D	11/17/2010	Sample	Х	Х

Prepared/Date: BJS 01/11/11

Checked/Date: JEB 01/20/11

TABLE 2 FALL 2010 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-11	B-16	BR-105	BR-105D	BR-106	BR-126	BR-127	BR-5A	BR-6A	BR-7A	BR-9
SAMPLE DATE:	11/18/2010	11/19/2010	11/17/2010	11/17/2010	11/17/2010	11/18/2010	11/17/2010	11/17/2010	11/18/2010	11/17/2010	11/17/2010
QC TYPE:	Sample										
SELECTED											
CHLOROPYRIDINES BY SW-846											
Method 8270C (µg/L)											
2,6-Dichloropyridine	290 J	500	140	26 J	170	370	890 J	27	1000	1000	23
2-Chloropyridine	170 J	710	820	170	610	1300	7400	130	5800	7900	190
3-Chloropyridine	2.8 J	9.6 U	100 U	14 J	100 U	100 U	1200 U	19 U	160 J	1000 U	3.2 J
4-Chloropyridine	19 U	9.6 U	100 U	50 U	100 U	100 U	1200 U	19 U	500 U	1000 U	9.5 U
p-Fluoroaniline	19 U	6.4 J	100 U	10 J	12 J	100 U	1200 U	15 J	500 U	1000 U	5.4 J
Pyridine	48 U	24 U	250 U	120 U	250 U	250 U	3100 U	49 U	1200 U	2500 U	24 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

TABLE 2 FALL 2010 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	MW-106	MW-127	MW-16	PW10	PW12	PW13	PW14	PW15	PW16	PZ-101	PZ-102
SAMPLE DATE:	11/17/2010	11/19/2010	11/16/2010	11/18/2010	11/19/2010	11/17/2010	11/17/2010	11/17/2010	11/18/2010	11/18/2010	11/18/2010
QC TYPE:	Sample										
SELECTED											
CHLOROPYRIDINES BY SW-846											
Method 8270C (µg/L)											
2,6-Dichloropyridine	1600	360	3.3 J	9700	370	190 J	500	4500 J	200	45	460
2-Chloropyridine	4500	3500	3.4 J	3000	700	1500	3100	79000	2700	71	2200
3-Chloropyridine	500 U	67 J	9.7 U	140 J	100 U	200 U	120 J	10000 U	42 J	9.4 U	250 U
4-Chloropyridine	500 U	250 U	9.7 U	1000 U	100 U	200 U	250 U	10000 U	96 U	9.4 U	250 U
p-Fluoroaniline	130 J	250 U	9.7 U	1000 U	120	19 J	250 U	10000 U	52 J	0.92 J	41 J
Pyridine	1200 U	620 U	24 U	2500 U	250 U	500 U	82 J	6500 J	240 U	24 U	620 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

TABLE 2 FALL 2010 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-103	PZ-104	PZ-105	PZ-106	PZ-107	PZ-107
SAMPLE DATE:	11/18/2010	11/18/2010	11/18/2010	11/18/2010	11/18/2010	11/18/2010
QC TYPE:	Sample	Sample	Sample	Sample	Duplicate	Sample
SELECTED						
CHLOROPYRIDINES BY SW-846						
Method 8270C (µg/L)						
2,6-Dichloropyridine	860	250	500 U	5700	820	1200
2-Chloropyridine	2800	1100	200 J	23000	4500	6900
3-Chloropyridine	33 J	100 U	500 U	280 J	80 J	150 J
4-Chloropyridine	200 U	100 U	500 U	2000 U	500 U	500 U
p-Fluoroaniline	87 J	100 U	500 U	2000 U	500 U	500 U
Pyridine	500 U	250 U	1200 U	580 J	150 J	340 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

TABLE 3 FALL 2010 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-11	B-16	BR-105	BR-105D	BR-106	BR-126	BR-127	BR-5A	BR-6A
SAMPLE DATE:	11/18/2010	11/19/2010	11/17/2010	11/17/2010	11/17/2010	11/18/2010	11/17/2010	11/17/2010	11/18/2010
QC TYPE:	Sample								
VOCs BY SW-846 Method 8260/5ML (μg/L)		-	-						
1,1,1-Trichloroethane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	10 U	0.96 J	5 U	1.4 J	0.72 J	5 U	5 U	5 U	5 U
1,1-Dichloroethene	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2,4-Trimethylbenzene	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethene (total)	20 U	1.2 J	16	6.6 J	10 U	10 U	11	9.4 J	2.7 J
1,2-Dichloropropane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,3,5-Trimethylbenzene	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	50 U	25 U							
2-Hexanone	50 U	25 U							
4-Methyl-2-pentanone	50 U	25 U							
Acetone	50 U	25 U	25 U	3.8 J	25 U	25 U	25 U	25 U	8 J
Benzene	10 U	2.7 J	1.8 J	3.4 J	3.6 J	1.8 J	2.7 J	7.1	0.95 J
Bromodichloromethane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Bromoform	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Bromomethane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	66	5 U	5 U	5 U	5 U	5 U	7	0.75 J	5 U
Carbon tetrachloride	82	5 U	5 U	5 U	5 U	5 U	8.6	5 U	5 U
Chlorobenzene	10 U	36	4.9 J	5 U	32	3 J	3.9 J	21	2.4 J
Chlorodibromomethane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroform	410	0.61 J	5 U	1.2 J	5 U	5 U	31	0.59 J	29
Chloromethane	10 U	5 U	5 U	2.3 J	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethyl benzene	10 U	2 J	5 U	5 U	5 U	5 U	2 J	5 U	5 U
Methylene chloride	25	5 U	5 U	1.3 J	5 U	5 U	0.89 J	0.6 J	1.6 J
Styrene	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	11	5 U	5 U	5 U	5 U	5 U	6.9	5 U	0.8 J
Toluene	10 U	50	5 U	5 U	5 U	5 U	7.8	2.7 J	8.3
trans-1,3-Dichloropropene	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	10 U	5 U	5 U	5 U	5 U	5 U	5	0.51 J	1.8 J
Vinyl acetate	50 U	25 U							
Vinyl chloride	10 U	5 U	13	1 J	5 U	5 U	5.9	2 J	21
Xylenes, Total	30 U	12 J	15 U	15 U	15 U	15 U	2.1 J	1 J	15 U

Notes: U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 3 FALL 2010 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-7A	BR-9	MW-106	MW-127	PW10	PW12	PW13	PW14	PW15
SAMPLE DATE:	11/17/2010	11/17/2010	11/17/2010	11/19/2010	11/18/2010	11/19/2010	11/17/2010	11/17/2010	11/17/2010
QC TYPE:	Sample								
VOCs BY SW-846 Method 8260/5ML (μg/L)	-			-	-		-		
1,1,1-Trichloroethane	5 U	2 J	5 U	5 U	10 U	100 U	5 U	400 U	40 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
1,1-Dichloroethane	5 U	11	5 U	5 U	10 U	100 U	1.9 J	400 U	40 U
1,1-Dichloroethene	5 U	2.2 J	5 U	5 U	10 U	100 U	5 U	400 U	40 U
1,2,4-Trimethylbenzene	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
1,2-Dichloroethene (total)	10 U	250	10 U	10 U	20 U	200 U	2.3 J	800 U	80 U
1,2-Dichloropropane	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
1,3,5-Trimethylbenzene	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
2-Butanone	25 U	25 U	25 U	25 U	50 U	500 U	25 U	2000 U	200 U
2-Hexanone	25 U	25 U	25 U	25 U	50 U	500 U	25 U	2000 U	200 U
4-Methyl-2-pentanone	25 U	25 U	25 U	25 U	50 U	500 U	25 U	2000 U	200 U
Acetone	25 U	3.3 J	25 U	25 U	50 U	500 U	25 U	2000 U	200 U
Benzene	7	54	29	5 U	10 U	100 U	9.7	400 U	100
Bromodichloromethane	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
Bromoform	5 U	5 U	5 U	5 U	60	100 U	5 U	400 U	36
Bromomethane	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
Carbon disulfide	5 U	5 U	5 U	5 U	10 U	100 U	5 U	480	160
Carbon tetrachloride	5 U	5 U	5 U	5 U	16	100 U	5 U	1300	450
Chlorobenzene	230	22	280	5 U	10 U	5300	100	400 U	150
Chlorodibromomethane	5 U	5 U	5 U	5 U	10	100 U	5 U	400 U	40 U
Chloroethane	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
Chloroform	5 U	5 U	5 U	5 U	8.6 J	130	5 U	16000	3500
Chloromethane	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
Ethyl benzene	5 U	2.3 J	5 U	5 U	10 U	410	5 U	400 U	40 U
Methylene chloride	5 U	5 U	5 U	5 U	10 U	100 U	5 U	2600	420
Styrene	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
Tetrachloroethene	5 U	5 U	5 U	5 U	32	65 J	5 U	400 U	770
Toluene	5 U	2.6 J	5 U	5 U	10 U	9300	2.4 J	400 U	320
trans-1,3-Dichloropropene	5 U	5 U	5 U	5 U	10 U	100 U	5 U	400 U	40 U
Trichloroethene	5 U	2.4 J	5 U	5 U	10 U	100 U	5 U	400 U	68
Vinyl acetate	25 U	25 U	25 U	25 U	50 U	500 U	25 U	2000 U	200 U
Vinyl chloride	5 U	190	5 U	5 U	10 U	100 U	3.1 J	400 U	40 U
Xylenes, Total	15 U	2.5 J	15 U	15 U	30 U	2500	15 U	1200 U	120 U

Notes: U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 3 FALL 2010 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PW16	PZ-101	PZ-102	PZ-103	PZ-104	PZ-105	PZ-106	PZ-107	PZ-107
SAMPLE DATE:	11/18/2010	11/18/2010	11/18/2010	11/18/2010	11/18/2010	11/18/2010	11/18/2010	11/18/2010	11/18/2010
QC TYPE:	Sample	Duplicate	Sample						
VOCs BY SW-846 Method 8260/5ML (µg/L)		-	-		-		-		
1,1,1-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
1,1-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
1,2,4-Trimethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
1,2-Dichloroethane	3.6 J	5 U	5 U	2.2 J	5 U	5 U	4000 U	500 U	500 U
1,2-Dichloroethene (total)	4.5 J	10 U	10 U	1.5 J	10 U	10 U	8000 U	1000 U	1000 U
1,2-Dichloropropane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
1,3,5-Trimethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
2-Butanone	25 U	20000 U	2500 U	2500 U					
2-Hexanone	25 U	20000 U	2500 U	2500 U					
4-Methyl-2-pentanone	25 U	20000 U	2500 U	2500 U					
Acetone	25 U	20000 U	2500 U	2500 U					
Benzene	11	5 U	21	32	1.5 J	5 U	4000 U	500 U	500 U
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Bromoform	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Bromomethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Carbon disulfide	5 U	5 U	5 U	2.2 J	5 U	5 U	48000	320 J	310 J
Carbon tetrachloride	5 U	5 U	5 U	5 U	5 U	5 U	27000	14000	11000
Chlorobenzene	390	4.2 J	330	1000	9.8	1.8 J	4000 U	500 U	500 U
Chlorodibromomethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Chloroethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	230000	48000	39000
Chloromethane	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Ethyl benzene	5 U	5 U	5 U	1.5 J	5 U	5 U	4000 U	500 U	500 U
Methylene chloride	5 U	0.68 J	5 U	5 U	5 U	5 U	11000	9600	7800
Styrene	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Tetrachloroethene	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	1900	1500
Toluene	9.4	5 U	5 U	1.8 J	5 U	5 U	4000 U	500 U	500 U
trans-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Trichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Vinyl acetate	25 U	20000 U	2500 U	2500 U					
Vinyl chloride	5 U	5 U	5 U	5 U	5 U	5 U	4000 U	500 U	500 U
Xylenes, Total	15 U	15 U	15 U	4.3 J	15 U	15 U	12000 U	1500 U	1500 U

Notes: U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

TABLE 4 COMPARISON OF FALL 2010 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT

WELL	SEL	SELECTED CHLOROPYRIDINES SELECTED VOCs						
	# EVENTS IN	HISTORIC	5-YEAR	NOV-2010	# EVENTS IN	HISTORIC	5-YEAR	NOV-2010
	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT
	WELLS/LOCATION	-	4 000	400		E-70	0.4	500
B-11	1	4,800	4,800	460	1	570	84	530
B-17	5	28,000,000	440,000		5	350,000	14,000	
B-7	5	9,100	950		5	260	36	
BR-127	10	29,000	7,000	8,300	10	1,300	220	52
BR-3	5	6,500,000	75,000		5	920,000	130,000	
BR-5A	10	1,700	290	170	10	9,400	14	1.7
BR-6A	10	140,000	6,300	7,000	10	26,000	57	33
BR-7A	10	510,000	27,000	8,900	10	3,000	130	ND
BR-8	5	57,000	210		5	6,900	11	
BR-9	10	720	110	220	10	160	4.6	2.4
E-3	5	600	130		5	12,000	41	
MW-127	10	15,000	6,200	3,900	10	7,500	1,300	ND
PW10	10	240,000	86,000	13,000	10	120,000	7,700	57
PW11	9	27,000	1,100		9	30,000	99	
PW12	10	15,000	2,300	1,200	10	120,000	510	200
PW13	10	7,500	1,700	1,700	10	920	110	ND
PW14	10	29,000	20,000	3,800	10	160,000	19,000	20,000
PW15	7	730,000	220,000	90,000	7	8,200	6,400	5,200
PW16	0	3,000	ŕ	3,000	0	ND	ŕ	ND
PZ-105	10	190,000	12,000	200	10	9,700	41	ND
PZ-106	10	120,000	64,000	30,000	10	1,400,000	390,000	270,000
PZ-107	10	11,000	8,000	8,600	10	89,000	11,000	59,000
OFF-SITE	WELLS/LOCATI		, ,	,		, ,	,	,
B-16	1	33,000	950	1200	1	4,500	7.4	0.61
BR-103	5	400	11		5	38	7.6	
BR-104	5	3,100	5.7			9		
BR-105	10	24,000	870	960	10	310	3.3	ND
BR-105D	10	10,000	690	220	10	230	3.9	2.5
BR-106	10	25,000	4,100	790	10	6,300	0.062	ND
BR-108	5	1,700	33			ND		
BR-112D	5	310	48			4.3		
BR-113D	5	490	28			2.8		
BR-114	5	520	180		5	12	0.1	
BR-116	5	12	ND			84		
BR-116D	5	710	35			120		
BR-117D	5	80	7.7			1.9		
BR-118D	5	330	59			6.6		
BR-122D	5	650	160			ND		
BR-123D	5	860	73			4		
BR-126	9	9,000	2,800	1,700	9	230	39	ND
MW-103	5	97	20	.,. 30	5	750	17	. 10
MW-104	5	180	3.3		 	1	• • • • • • • • • • • • • • • • • • • •	

TABLE 4 COMPARISON OF FALL 2010 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT

WELL	SELECTED CHLOROPYRIDINES SELECTED VOCs							
	# EVENTS IN	HISTORIC	5-YEAR	NOV-2010	# EVENTS IN	HISTORIC	5-YEAR	NOV-2010
	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT
MW-106	10	130,000	6,500	6,200	10	450	0.25	ND
MW-114	5	18	ND		5	24	20	
MW-16	5	360	7	6.7	1	8	8	
NESS-E	5	5,000	100			700		
NESS-W	5	2,100	ND			89		
PZ-101	10	27,000	190	120	10	6.1	0.25	0.68
PZ-102	10	58,000	1,200	2,700	10	10,000	2.4	ND
PZ-103	10	73,000	8,000	3,800	10	44,000	4.8	ND
PZ-104	10	9,100	2,400	1,400	10	40	0.14	ND
QD-1	6	11	6.2	0.43		ND		
QO-2	11	380	5.4	ND		ND		
QO-2S1	11	27	0.85	ND		ND		
QS-4	11	3,400	200	140		ND		

Note:

- 1) Number of samples and mean reflect 5-year sampling period from November 2005 through May 2009. Historic maximum based on all available results from March 1990 through November 2009.
- 2) Chloropyridines represented by: 2-Chloropyridine, 2,6-Dichloropyridine, 3-Chloropyridine, 4-Chloropyridine, p-Fluoroaniline, and Pyridine.
- 3) Selected VOCs represented by Carbon Tetrachloride, Chloroform, Methylene Chloride, Tetrachloroethene, and Trichloroethene.
- 4) Bold and shade Nov 2010 exceeds 5-year mean.
- 5) ND = Not detected BLANK = Not sampled

TABLE 5 FALL 2010 QUARRY SEEP AND OUTFALL WATER SAMPLE RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	QS-4	QO-2	QO-2S1	QD-1
SAMPLE DATE:	11/16/2010	11/16/2010	11/16/2010	11/16/2010
QC TYPE:	Sample	Sample	Sample	Sample
SELECTED CHLOROPYRIDINES BY SW-				
846 Method 8270C (µg/L)				
2,6-Dichloropyridine	29	9.6 U	9.8 U	9.8 U
2-Chloropyridine	110	9.6 U	9.8 U	9.8 U
3-Chloropyridine	9.9 U	9.6 U	9.8 U	9.8 U
4-Chloropyridine	9.9 U	9.6 U	9.8 U	9.8 U
p-Fluoroaniline	9.9 U	9.6 U	9.8 U	9.8 U
Pyridine	25 U	24 U	25 U	0.43 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

Page 1 of 1

Prepared/Date: BJS 01/11/11

Checked/Date: JEB 01/20/11

TABLE 6 EXTRACTION WELL WEEKLY FLOW MEASUREMENTS - JUNE 2010 THROUGH NOVEMBER 2010

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

Week Ending	BR-5A [Gal./Wk.]	BR-7A [Gal./Wk.]	BR-9 [Gal./Wk.]	PW-13 [Gal./Wk.]	PW-14 [Gal./Wk.]	PW-15 [Gal./Wk.]	PW-16 [Gal./Wk.]	BR-127 [Gal./Wk.]	Total [Gal.]
Jun '10		-	•	-	-	-	•		
06/06/10	18,651	47.743	77,221	75,126	1,279	33,153		29.173	282,346
06/13/10	21,924	41,015 **	74,511	104,612	1,219	39,278		31,754	314,313
06/20/10	24,337	46,559	77,170	102,528	1,250	39,207		32,123	323,174
06/27/10	24,037	45,157	77,456	101,555	1,013	38,450		31,693	319,361
								Total [Gal.]	1,239,194
Jul '10									
07/04/10	23,964	44,729	84,381 *	104,350	1,351	37,288		31,002	327,065
07/11/10	21,395	52,579	54,795 **	104,534	1,175	34,762		28,658	297,898
07/11/10	23,233	44,219	69.054	91,886	1,445	35.142		27,472	292.451
07/15/10	23,302	48,375	75,413	101,143	1,477	34,798		25,981	310,489
07/20/10	20,002	10,070	70,110	101,110	.,	01,100		Total [Gal.]	1,227,903
A 110									
Aug '10 08/01/10	23,650	37,825 **	73,671	106,802	1,580	34,275		28,068	305,871
08/01/10	•	•	74,837	,	,	32,644		29,602	
	22,576 21,761	43,505 40,186	74,037 74,024	108,601 107,777	1,540 1,527	32,644 31,618			313,305 305,328
08/15/10	•	•	•	107,777	,	•		28,435	
08/22/10 08/29/10	20,734 21,392	36,389 35,137	78,046 75,847 *	107,797	1,540 1,590	29,181 34,096		29,627 29,685	303,314 303,785
00/29/10	21,392	55,157	73,047	100,030	1,590	34,090		•	
								Total [Gal.]	<u>1,531,603</u>
Sep '10									
09/05/10	19,561	25,493 **	63,935	92,347	1,562	28,814		25,427	257,139
09/12/10	18,485	32,194	69,177	97,199	1,569	29,667		27,785	276,076
09/19/10	18,517	29,031	74,390	102,908	1,602	28,746		29,846	285,040
09/26/10	17,847	19,521 **	83,152	99,288	1,372	27,108	20,687	28,780	297,755
								Total [Gal.]	<u>1,116,010</u>
Oct '10									
10/03/10	17,402	47,456 **	75,130 **	41,996 **	1,571	26,809	17,618	27,459	255,441
10/10/10	19,564	73,263	106,191	63,726	1,611	27,755	31,544	26,670	350,324
10/17/10	22,955	65,993	105,919	66,347	1,261	27,990	48,071	27,686	366,222
10/24/10	23,157	56,793	102,516	66,494	596 *	11,926 **	48,225	27,272	336,979
10/31/10	11,455 **	34,346 **	50,329 **	30,680 **	419 **	7,679 **	22,699 **	12,831 **	170,438
								Total [Gal.]	1,479,404
Nov '10									
11/07/10	23,124	70,310	94,109	65,309	1,340	11,804 **	47,577	27,664	341,237
11/14/10	22,639	73,993	109,431	66,017	1,388	21,547	47,189	27,145	369,349
11/21/10	22,231	69,879	100,221	63,445	1,314	27,970	47,588	26,563	359,211
11/28/10	21,340	63,613	84,767	43,928	1,198	26,553	48,743	26,008	316,150
1	•	,	•	•	•	•	,	Total [Gal.]	1,385,947
Total 6 Mo.									
Removal									
(Gal.)	549,233	1,225,303	2,085,693	2,222,433	34,789	758,260	379,941	724,409	7,980,061

Notes:

^{1) *} 2) **

⁻ Flow rate is estimated due to a meter failure or reading error - Flow rate adversely affected by pump failure, pluggage in discharge line, or other maintenance activity

TABLE 7

MASS REMOVAL SUMMARY PERIOD: JUNE 2010 - NOVEMBER 2010

ARCH ROCHESTER FALL 2010 GROUNDWATER MONITORING REPORT

Well	Total Vol. Pumped (gallons)	Avg. VOC Conc. (ppm)	Avg. PYR. Conc. (ppm)	VOCs Removed (pounds)	PYR. Removed (pounds)
BR-5A	549,000	0.002	0.20	0.01	0.9
BR-7A	1,225,000	0.006	8.9	0.06	91
BR-9	2,086,000	0.003	0.14	0.05	2.4
PW-13	2,223,000	0.001	1.3	0.03	25
PW-14	35,000	25	2.9	7.2	1
PW-15	758,000	5.8	64	37	406
PW-16	380,000	0.0	3.0	0	9
BR-127	724,000	0.24	5.9	1.5	36
Totals:	7,980,000			46	571

Note: VOC and pyridine concentrations used in this table are an average of the analytical results from the Spring 2010 and Fall 2010 sampling events for each well (except PW-16 which was activated in Sept. 2010 and has only been sampled once)

Prepared/Date: JEB 01/20/11 Checked/Date: NMB 01/20/11

TABLE 8 2011 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

ARCH ROCHESTER								2	011		
MONITORING PROGRAM					SPRING		FALL		TOTAL		
						1					
	14/-11			5	D	Pyridines	VOCs	Pyridines	VOCs	Pyridines	VOCs
OFF-SITE	Well	zone	area	Frequency/Parameters	Purpose trend monitoring			٩.	Š	_	1
MONITORING	MW-103 BR-103	OB BR	BRBC BRBC	annual monitoring, VOCs & PYR annual monitoring, VOCs & PYR	trend monitoring	1	1			1 1	1
MONTORING	MW-103	OB		annual monitoring, PYR	trend monitoring	1	'			1	o
	BR-104	BR		annual monitoring, PYR	trend monitoring	1				1	0
	BR-105	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	li	1	1	1	2	2
	BR-105D	BR deep	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	MW-106	OB	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	BR-106	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	BR-108	BR	AID-HOSP	annual monitoring, PYR	trend monitoring	1			-	1	0
	BR-112D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1				1	0
	BR-113D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1				1	0
	MW-114	ОВ	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	BR-114	BR	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	BR-116	BR	PFAUDLER	annual monitoring, PYR	trend monitoring	1				1	0
	BR-116D	BR deep	PFAUDLER	annual monitoring, PYR	trend monitoring	1				1	0
	BR-117D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0
	BR-118D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0
	BR-122D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0
	BR-123D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0
	NESS-E	BR deep	NESS	annual monitoring, PYR	trend monitoring	1				1	0
	NESS-W	BR deep	NESS	annual monitoring, PYR	trend monitoring	1				1	0
	PZ-101	BR .	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	PZ-102	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	PZ-103	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	PZ-104	BR	ARM	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	BR-126	BR	ARM	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	B-16	OB	ARM	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1	1	1	2	2
	MW-16	BR	Gen'l Circuits	annual monitoring, PYR	trend monitoring			1		1	0
ON-SITE	PZ-107	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
MONITORING	PZ-106	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	PZ-105	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	BR-127	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	BR-3	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	BR-8	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	BR-9	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	BR-5A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	BR-6A	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	BR-7A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	B-17	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	B-7	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1	١.		1	1
	B-11	ОВ	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1	1	1	2	2
	E-3	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	MW-127	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	PW10	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	PW12	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	PW13	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	PW14	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	PW15	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	PW16	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
QUARRY/CANAL	QS-4	quarry seep	QUARRY	semi-annual monitoring, PYR	trend monitoring	1	l	1		2	0
MONITORING	QD-1	quarry ditch	DITCH	semi-annual monitoring, PYR	trend monitoring	1		1		2	0
	QO-2	quarry outfall	DITCH	semi-annual monitoring, PYR	trend monitoring	1	l	1		2	0
	QO-2S1	canal at outfall	CANAL	semi-annual monitoring, PYR	surface water monitoring	1		1		2	0
TOTAL SAMP	LES				1	52	35	31	26	83	61

Revised: 01/10/11

Appendix A Groundwater Field Sampling Data Sheets

FIELD REPORT

TestAmerica Laboratories, Inc.

REMEDIAL INVESTIGATION SAMPLING **ARCH CHEMICAL** ROCHESTER, NEW YORK

FALL 2010 Event

Prepared For:

MacTec, Inc. 511 Congress Street Portland, Maine 04101

Attention: Mr. Nelson Breton

Prepared By:

TEST AMERICA LABORATORIES, INC.

Audubon Business Center 10 Hazelwood Drive Amherst, New York 14228-2298

NY5A5762

Written By:

Roger Senf

Reviewed By:

Date:

1.0 INTRODUCTION

This report describes the sampling of the following points:

- Twenty-seven (27) groundwater samples
- One (1) barge canal sample
- One (2) quarry outfall samples
- One (1) quarry seep/pond sample

These activities were in support of the Phase II Remediation Investigation being conducted at the Arch Chemical facility in Rochester, New York. The samples were collected from November 16-19, 2010 by Test America Laboratories, Inc. (TAL) personnel.

2.0 METHODOLOGIES

2.1 Water Level Measurements

Static water levels in all groundwater wells were measured from the top of the well casing/riser with an electronic water level indicator. All well bottoms were sounded with the weighted steel measuring tape. All measurements were recorded to the nearest hundredth of a foot (0.01 feet). The length of the measuring device which contacted the water was cleaned between wells with a deionized water rinse and paper towel wipe. These data are presented on Sampling Summary Table and Field Observation forms.

2.2 Well Purging

Monitoring wells were evacuated prior to sampling employing one of the following methods:

- 1) Purging three (3) times the standing water volume using precleaned or dedicated 1.25" X 5' stainless steel bailers, 2" X 5' polyvinyl chloride bailers, peristaltic pump or QED Low-Flow Bladder pumps.
- 2) Evacuated with the low flow/low stress puring technique using either QED Low-Flow Bladder pumps or a variable rate peristaltic pump.

Wells that were purged of three (3) standing volumes were mainly wells located on or very near the Erie Canal and historically purged with this method prior to sampling. The remaining wells were evacuated with a low flow/low stress purging technique. This technique involves the use of a variable flow rate bladder or peristaltic pump. The pumps were employed to purge the monitoring wells at a flow rate such that drawdown of the water column from static conditions is minimal. Field measurements of pH, specific

conductance, temperature, ORP, dissolved oxygen and turbidity are monitored every 3-5 minutes until stabilization of parameters is realized. Once stabilization has occurred, sampling can be conducted. All purged water was collected into 55-gallon drums for disposal at the on-site wastewater treatment facility. Data pertaining to each evacuation are presented on the Sampling Summary Table and field Observation Forms.

2.3 Surface Water Samples

Surface water samples were collected from one (1) location on the Erie Barge Canal, two (2) outfall sample and one (1) seep location. Sample locations were noted on the Field Forms.

3.0 SAMPLING

3.1 Monitoring Wells

All groundwater wells were sampled using precleaned or dedicated 1.25" X 1.25" X 5' stainless steel bailers, perisaltic pumps or bladder (SamplePro) pumps when low flow purging techniques were used. Each bailer was constructed with teflon, bottom-filling check valve and was assembled without glues or welds. New ¼" poly rope was attached to each bailer. The bailer was slowly lowered into the water column, minimizing agitation and devolatilization. Low density polyethylene (LDPE) tubing was used with both the bladder (QED) and the peristaltic pumps. The bladder pumps were decontaminated between sample locations in accordance with the work plan. Personnel exercised care in all aspects of the sampling to ensure the collection of a representative sample An additional sample container was collected from each well in order to facilitate the measurement of field analytical parameters. Data pertaining to sampling are presented on the Sampling Summary Table and the Field Observation Forms.

3.2 Canal Sampling

When possible, samples were collected directly from the canal into appropriate sample containers. Otherwise, samples were collected with the use of a unique, laboratory-cleaned stainless steel bailer. The bailers were immersed just below the surface and removed. Sample was poured directly into the appropriate container. An additional container was collected to facilitate the measurement of field parameters. Additional data pertaining to these samples is presented in the Sampling Summary Table and Field Observation Forms.

3.3 <u>Seep Sampling</u>

Groundwater samples were collected from a seep at the quarry (QS4) located on Buffalo Road. The samples were collected with the use of a laboratory cleaned stainless steel bucket

and was then poured directly into the appropriate containers. An additional container was collected to facilitate the measurement of field parameters. Data pertaining to this sampling is presented in the Sampling Summary Table and Field Observation Forms.

4.0 SAMPLE CONTAINERS

Monitoring wells and surface water samples requiring analysis for volatile organics were collected into 40 ml glass vials with teflon septa. Samples for semi-volatile and Pyridine analysis were collected into one (1) liter amber glass bottles with teflon-lined caps. All bottles were purchased new and cleaned (Protocol A, 300 series) from Environmental Supply Services. Each container was labeled with the following information:

- Sample Identification (Well/Point I.D.)
- Date
- Project Number
- Sampler's Initials

5.0 FIELD MEASUREMENTS

On-site field measurements were made of each sample's pH, specific conductance and temperature. All measurements were made in accordance with protocols outlined in Methods for Chemical Analysis of Water and Wastes (EPA – 600/4-79-9020). These data were presented on the Sampling Summary Table and Field Observation Forms.

6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

6.1 Trip Blanks

Trip blanks were collected with each sample shipment requiring volatile organic analysis. Each trip blank consisted of two 40 ml glass vials with teflon septa which were filled with deionized water at the TAL laboratory. These blanks were transported to the site, stored with field collected samples and submitted to the TAL facility for analysis.

6.2 Equipment Rinse Blank

Equipment rinse blanks were collected as required by the work plan.

7.0 CHAIN OF CUSTODY

Chain of custody was initiated at the time of sample collection and maintained through delivery to the TAL facility in Amherst, New York. Copies of these documents are included in the analytical report package.

Date: 11/30/2010 Time: 11:16:17

Sampling Summary Table ARCH CHEMICAL

RI SAMPLING/ROCHESTER NY FACILITY NOVEMBER 2010

Page: 1 Rept: ANO821

nts		DO(ppm)= 0.91	DO(ppm)= 0.74	DO(ppm)= 0.66	DO(ppm)= 0.28	00(ppm)= 0.79					00(ppm) = 0.78						00(ppm) = 0.95		00(ppm)= 0.68	-	00(ppm) = 0.79		00(ppm) = 0.70		00(ppm) = 0.90	
Other Field Measurements	EH(mv)= -53	EH(mv)= -45	EH(mv)= -26	EH(mv)= -303	EH(mv)= -133	EH(mv)= -89	EH(mv)= -212		EH(mv)= -122		EH(mv)= -221		EH(mv)= -184		EH(mv)= -162		EH(mv)= -216		EH(mv)= 33		EH(πν)= 0		EH(mv)= -29		EH(mv)= -128	
Turb. (NTU)	36.10	4.09	2.54	2.67	3.18	8.88	2.48	;	68.6		17.10		5.83		126.00		3.20		4.34		39.30		11.69		5.24	
Temp (°C)	13.4	13.2	12.4	10.3	11.0	13.2	15.8	;	13.9		14.5		14.7		14.5		11.9		11.6		12.7		13.8		13.1	
Spec. Cond.	1714	2086	2177	29030	2805	926	2990	!	1613		4215		2377		2372		4750		1447		3513		1282		2492	
рН (STD) (Units)	7.34	7.26	6.87	6.78	7.25	7.42	7.86		7.72		7.45		7.51		7.16		7.27		7.35		6.89		8.18		7.27	
	1407	1225	1035	1120	1305	1420	1127		1152		1240		1221		1054		1220		1103		1115		1115		1145	
Field Measurements Date Time	11/18/2010	11/19/2010	11/17/2010	11/17/2010	11/17/2010	11/18/2010	11/17/2010		11/17/2010		11/18/2010		11/17/2010		11/17/2010		11/17/2010		11/19/2010		11/16/2010		11/18/2010		11/19/2010	
Bottom Of Well (ft)*	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A	
Water Elevation (ft)**	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NT/2.61 GP	N/A		N/A	TINT	N/A	, Md	N/A	GPM	N/A		N/A		N/A		N/A		N/A	
Water Level E (ft)*	7.15	7.31	23.13	25.69	23.88	60.6	8.37	T.AMBER TI	16.97	13.11 GPM	13.30	L. YELLOW	29.91	REY/7.14 0	30.19	RBID/7.60	12.36		6.58		12.01	MBER TINT	10.43	MBER	7.18	
—Water Level— Date Time	11/17/2010 1130	Comments: SL.1UKB1D 11/19/2010 1205	Comments: CLEAR 11/17/2010 1000	Comments: CLEAR 11/17/2010 1006	Comments: CLEAR 11/17/2010 1155	Comments: CLEAR 11/18/2010 1356	Comments: CLEAR 11/17/2010 1125	Comments: CLEAR LT.AMBER TINT/2.61 GPM	11/17/2010 1150	Comments: CLEAR/ 13.11 GPM	11/18/2010 1215	Comments: CLEAR SL. YELLOW TINT	11/17/2010 1220	Comments: CLEAR GREY/7.14 GPM	11/17/2010 1050	Comments: GREY TURBID/7.60 GPM	11/17/2010 1155	Comments: CLEAR	11/19/2010 1038	Comments: CLEAR	11/16/2010 1048	Comments: CLEAR/AMBER TINT	11/18/2010 1031	Comments: CLEAR AMBER	11/19/2010 1130	Comments: CLEAR
Sample Point	B-11	B-16	BR-105	BR-105D	BR-106	BR-126	BR-127		BR-5A		BR-6A		BR-7A		BR-9		MW-106		MW-127		MW-16		PW-10		PW-12(BR-101)	

SG - Specific Gravity EH - Redox DO - Dissolved Oxygen

* From Top of Riser ** Elevation Above Sea Level

TestAmerica

Date: 11/30/2010 Time: 11:16:17

Sampling Summary Table ARCH CHEMICAL NOVEMBER 2010

RI SAMPLING/ROCHESTER NY FACILITY

Page: 2 Rept: ANO821

ıts						DO(ppm)= 0.88		DO(ppm)= 0.92		DO(ppm)= 0.57	:	00(bbm) = 0.79		DO(ppm) = 0.95		00(ppm) = 0.77		DO(ppm) = 0.70	;	00(ppm)= 0.69									
Other Field Measurements	EH(mv)= -187	EH(mv)= -245	FH(mV)= -213		EH(mv)= 3	EH(mv)= -32		EH(mv) = -136		EH(mv)= -161		EH(mv)= -143		EH(mv)= 19		EH(mv)= -95		EH(mv)= -131		EH(mv)= -131									
Turb. (NTU)	3.81	411.00	8.37		13.04	9.48		4.70		4.17		23.70		150.00		3.21		1.79		1.70		N/A		N/A		N/A		N/A	
Temp (°C)	15.8	16.1	7.5		16.5	9.1		10.7		11.4		15.8		13.0		13.5		13.6		13.6		12.0		12.1		12.1		10.9	
Spec. Cond. (umhos)	3200	3620	0509		4772	6887		2665		5764		1623		950		0569		2000		4665		1779		1781		830		1728	
pH (STD) (Units)	7.32	79.7	7 07		6.61	7.07		7.25		7.30		7.47		7.76		6.37		6.50		6.50		7.81		7.61		7.90		7.78	
	1207	1117	1105		1033	1155		1105		1255		1340		1150		1305		1335		1336		1245		1310		1325		1350	
Field Measurements Date Time	11/17/2010	11/17/2010	11/17/2010		11/18/2010	11/18/2010		11/18/2010		11/18/2010		11/18/2010		11/18/2010		11/18/2010		11/18/2010		11/18/2010		11/16/2010		11/16/2010		11/16/2010		11/16/2010	
Bottom Of Well (ft)*	N/A	N/A	Ø/ N	<u>;</u>	N/A	A/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A	
Water Elevation (ft)**	N/A	N/A	PPM N / A	GPM	N/A	N/A		N/A		N/A		N/A		N/A		N/A	_	N/A		N/A		N/A		N/A		N/A		N/A	
Water Level f (ft)*	30.26	21.90	REY/.33 (EAR/2.47	17.91	18.31		20.63		15.86		14.81	۵	11.93	REY	11.54	TLOW TIN	10.67		10.67	₽.	0.00		00.00		00.00		00.00	
Mater Level Date Time	11/17/2010 1205 Comments: CLEAR	11/17/2010 1115	Comments: TURBID GREY/.33 GPM	Comments: AMBER CLEAR/2.47 GPM	11/18/2010 1030	Comments: CLEAR 11/18/2010 1130	Comments: CLEAR	11/18/2010 1015	Comments: CLEAR	11/18/2010 1228	Comments: CLEAR	11/18/2010 1318	Comments: SL.TURBID	11/18/2010 1127	Comments: TURBID GREY	11/18/2010 1243	Comments: CLEAR YELLOW TINT	11/18/2010 1311	Comments: CLEAR	11/18/2010 1311	Comments: CLEAR/DUP	11/16/2010 1240	Comments: CLEAR	11/16/2010 1305	Comments: CLEAR	11/16/2010 1320	Comments: CLEAR	11/16/2010 1340	Comments: CLEAR
Sample Point	PW-13	PW-14		<u> </u>	PW-16	P7-101	- - - -	P2-102		PZ-103		PZ-104		PZ-105		PZ-106		PZ-107		PZ-107		aD-1		2-00		Q0-2S1		7-S0	

SG - Specific Gravity EH - Redox DO - Dissolved Oxygen

^{*} From Top of Riser

SEMI-ANNUAL GROUNDWATER ELEVATION REPORT ARCH CHEMICAL ROCHESTER, N.Y.

SAMPLE	DATE	DEPTH TO	CASING ELEVATION	GW	TIME	Comments
PUINI		WATER	PLEVAIION	EEEVAIIUN		
B-1	11/16/10	9.26		-9.26	1019	NO L-NAPL ; NO D-NAPL
B-10		9.82		-9.82	1007	NO L-NAPL ; NO D-NAPL
B-11		7.18		-7.18	1008	NO L-NAPL ;NO D-NAPL 11.55 BOT.
B-13		12.76		-12.76	1030	DRY AT 12.76
B-14		10.50		-10.50	1015	
B-15		7.14		7.14	1020	
B-16		7.55		7.55	1025	NO L-NAPL ;NO D-NAPL 13.20 BOT.
B-17		10.42		-10.42	951	NO L-NAPL ; NO D-NAPL
B-2		10.33		-10.33	915	NO L-NAPL ; NO D-NAPL
B-4		18.37		-18.37	1040	NO L-NAPL ; NO D-NAPL
B-5		15.75		-15.75	1045	NO L-NAPL ; NO D-NAPL
B-7		15.57		-15.57	1021	NO L-NAPL ; NO D-NAPL
B-8		10.78		-10.78	1003	NO L-NAPL ; NO D-NAPL
BR-1		8.13		-8.13	929	NO L-NAPL ; NO D-NAPL
BR-102		22.39		-22.39	1019	
BR-103		6.53		-6.53	1122	
MW-103		1.73		-1.73	1123	
BR-104		10.34		-10.34	1135	
MW-104		7.82		-7.82	1136	
BR-105		23.13		-23.13	1001	
BR-105D		25.68		-25.68	1000	
MW-105		18.79		-18.79	1002	DRY AT 18.79
BR-106		23.90		-23.90	957	
MW-106		12.34		-12.34	955	
BR-108		28.69		-28.69	942	
MW-108		13.42		-13.42	943	
BR-111		28.46		-28.46	1112	
BR-111D		28.85		-28.85		
BR-112A		26.98		-26.98		
BR-112D		36.05		-36.05		
BR-113		29.01		-29.01		
BR-113D		31.03		-31.03	İ	

SEMI-ANNUAL GROUNDWATER ELEVATION REPORT ARCH CHEMICAL ROCHESTER, N.Y.

SAMPLE POINT	DATE	DEPTH TO WATER	CASING ELEVATION	GW ELEVATION	TIME	(Comments.
BR-114	11/16/10	14.01		-14.01	1131	
MW-114		10.28		-10.28	1130	
BR-116		29.63	<u> </u>	-29.63	1045	
BR-116D		35.52		-35.52	1043	
BR-117		24.00		-24.00	845	CASCADING WELL
BR-117D		48.59		-48.59	847	
BR-118		30.73		-30.73	855	CASING/SEAL DAMAGED
BR-118D		47.74		-47.74	857	
BR-122D		44.97	i	-44.97	1021	
BR-123D		45.22		-45.22	1015	
BR-124D		31.51	*	-31.51	1007	
BR-126		9.31		-9.31	1008	
BR-127		9.28			1010	NO L-NAPL
MW-127		7.82			1011	NO L-NAPL ; NO D-NAPL
BR-2		10.28		-10.28	945	NO L-NAPL ; NO D-NAPL
BR-2A		11.37		-11.37	944	NO L-NAPL ; NO D-NAPL
BR-2D		0.05		-0.05	946	NO L-NAPL ; NO D-NAPL
BR-3		10.51		-10.51	954	NO L-NAPL
BR-3D		57.64		-57.64	955	NO L-NAPL ; NO D-NAPL
BR-4		7.53		-7.53	942	NO L-NAPL
BR-5		14.53		-13.82	933	NO L-NAPL ; NO D-NAPL
BR-5A		17.08		-17.08	934	
BR-6A		13.41		-13.41	1004	
BR-7		28.91		-28.91	1024	·
BR-7A		20.05		-20.05	1025	NO L-NAPL ; NO D-NAPL
BR-8		15.40		-15.40	1042	NO L-NAPL ; NO D-NAPL
BR-9		34.91		-34.91	1020	NO L-NAPL
C-2A		10.19		-10.19	946	NO L-NAPL ; NO D-NAPL
C-3						BURIED
C-5		10.94		-10.94	956	NO L-NAPL ; NO D-NAPL
E-2		5.68	3	-5.68	943	NO L-NAPL ; NO D-NAPL
E-3		4.71		-4.71	935	NO L-NAPL ; NO D-NAPL

SEMI-ANNUAL GROUNDWATER ELEVATION REPORT ARCH CHEMICAL ROCHESTER, N.Y.

SAMPLE POINT	(DATE	DEPTH TO WATIER	CASING ELEVATION	GW ELEVATION	TIME	Comments
E-5	11/16/10	5.86		-5.86	930	NO L-NAPL ; NO D-NAPL
EC-1		17.38		-17.38	1127	
EC-2		12.67		-12.67	1136	
ERIE CANAL		32.87		-32.87	1139	
MW-16		12.01		-12.01	1138	
MW-3		6.18		-6.18	1150	
MW-G6		4.62		-4.62	1157	
MW-G7						NOT LOCATED
MW-G8		8.01		-8.01	1159	
MW-G9		10.37		-10.37	1205	
N-2		4.96		-4.96	927	NO L-NAPL ; NO D-NAPL
N-3		7.27		-7.27	905	NO L-NAPL
NESS-E		21.15		-21.15	1149	
NESS-W		31.39		-31.39	1145	
PW-10		10.43		-10.43	947	NO L-NAPL
PW-16		17.90		-17.90	1045	NO L-NAPL
PW-12		7.75		-7.75	938	NO L-NAPL
PW-13		27.32		-27.32	1032	NO L-NAPL; NO D NAPL
PW-14	·	25.17		-25.17	957	NO L-NAPL
PW-15		28.60		-28.60	953	NO L-NAPL
PZ-101		18.31		-18.31	930	
PZ-102		21.39		-21.39	932	
PZ-103		15.72		-15.72	934	
PZ-104		15.82		-15.82	1012	
PZ-105		11.59		-11.59	1001	NO L-NAPL ; NO D-NAPL
PZ-106		11.84		-11.84	958	NO L-NAPL ; NO D-NAPL
PZ-107		11.14		-11.14	1006	NO L-NAPL ; NO D-NAPL
PZ-109		11.03		-11.03	954	NO L-NAPL; NO D-NAPL
W-2		12.64		-12.64	917	NO L-NAPL ; NO D-NAPL
W-5		6.57		-6.57	1031	NO L-NAPL ; NO D-NAPL

Facility:	ARCH			Sample	Point ID:	211		
Field Perso	•	PL, JI, RS	•	Sample	Matrix:	GW		
	RTING WELL II	NSPECTION:						
Date/Time_	11-17-10	/	30	Cond o	f seal: () Good (() None	() Cracked	· . —	%
	ng/riser height <u>:</u>		·	Cond o		ser: 餐 Unic) Loose) Damaged	() Flush M	
If prot.cas	ing; depth to ris	ser below:						
Gas Meter	(Calibration/R	eading):	% Gas:	1	% LEL:			
Vol. Orgar	nic Meter (Calib	ration/Reading)):	Volatile	es (ppm)/		-	
PURGE II	NFORMATION	l:			+ + · · · · · · · · · · · · · · · · · ·		j. 1 W VP	
Date / Tim	e Initiated:	1132	-	Date / 1	Fime Completed	:	11-17-101	1137
Surf. Meas	s. Pt: () Prot. Ca	asing]	X Riser	Riser D	iameter, Inches	:	2.0	
Initial Wat	er Level, Feet:	7.15		Elevati	on. G/W MSL:	3		
	Depth, Feet:			Method	d of Well Purge:	, ,	PerisiA	7716
	iser Volume, Ga			Dedica	ited:	DIN)		
	ıme Purged, Ga			Purgeo	i To Dryness (Ŷ) N		
	servations:				SLTUIAN	Finish	Clei-	
PURGE I	DATA: (if appl	icable)	•					
Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other 00
1137	(gpinniz)	TO Day	15.1	7.71	1694	15.70	-33	
1,5					,			

SAMPLING	INFORMATIO	DN:		POINT II	B-11		
Date/Time	//-/8-10 ampling:	1	1405	Water Lev	vel @ Sampling,	Feet:	7.97
Method of S	ampling:	Peris	TALL		Dedicated:	(Y)/ N	
Multi-phased	d/ layered:	() Yes	() No	If YES:	()light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other	
1407	13 4	7,34	1714	36.1	-53		
						1	
INSTRUMEN	NT CHECK DA	TA:					
Turbidity Ser Solutions:		NTU std. =		N	TU std. =	NTU	
pH Serial #: _ Solutions: _		4.0 std.=	7.0) std.=	10 	.0 std. =	·
Conductivity Solutions:	Serial #:	N. S. C.	u	mhos/cm=_		umhos/cm=	.
GENERAL IN	NFORMATION	:		ŗ	•	£	j.
Weather cond	litions @ time o	of sampling:		1000	40°		
Sample Chara	octeristics:		SC TURA				
COMMENTS	AND OBSER	VATIONS:					
		• •					
				· · · · · · · · · · · · · · · · · · ·			
		**************************************		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
certify that sa	ampling proced	lures were in a	accordance wif	n all applic	able EPA, State	and Site-Specifi	c
Date: <u>1</u>	1/18/10	Ву:	R2		Company: _	TAC	

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: B-16
Field Personnel: PL, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 11-19-10 / 1205	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	— / % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: (1-19-10) 1206	Date / Time Completed: (1-19-10 / 1725
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 7.31	Elevation. G/W MSL:
Well Total Depth, Feet: 13.20	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: Lo - Flow	Start Clear Finish Clear
PURGE DATA: (if applicable)	

Time	Purge		Cumulative	Temp.	pН	Conduct	Turb.	Other	Other
	(gpm	/htz)	Volume	(C)	(std units)	(Umhos/cm)	(NTU)	oN	00
1210	200	7.63		13.2	7.37	2073	5.45	-29	0.95
1215				13.1	7.29	2078	4.21	-35	0.91
(220				13.1	7.28	Z080	4.07	-40	0,91
1775	1	1		13.2	7.26	2086	4.09	-45	0.91

Sampled at 1225/11-19-10
PAGE 1 OF 2

SAMPLING	INFORMATI	ON:		POINT II			
Date/Time	•			Water Le	vel @ Sampling,	Feet:	
Method of S	ampling:		· · · · · · · · · · · · · · · · · · ·		_Dedicated:	Y / N	
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:					•	
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
INSTRUME	NT CHECK D	ATA:					
Turbidity Ser		NTU std.			ITU std. =	UTU	
Confirm			7.		10 	0.0 std. =	•
Conductivity Solutions:			u	mhos/cm=		umhos/cm=	and the same of th
GENERAL II	NFORMATION	-			•		* . 3
Weather cond	ditions @ time	of sampling:					
Sample Chara	acteristics:	·	4	•			······································
COMMENTS	AND OBSER						÷
			·				
							7-4-
						and Site-Specific	
Date:	1 1	Ву:	:		Company: _		

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: BR-105
Field Personnel: Pt, JJ, RS	Sample Matrix:
MONITORTING WELL INSPECTION:	
Date/Time 11-17-10 1 1000	Cond of seal: (*) Good (*) Cracked % (*) None (*) Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: (1 - 17-16 1 1008	Date / Time Completed: ((-[7-(0 /635
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 23.13	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated: Ø / N
Total Volume Purged, Gal:	Purged To Dryness Y / (N)
Purge Observations: Lo-Flo	Start Clear Finish Clear
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp. p	H Conduct Turb. Other Other

Time		Rate /htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other <i>ON</i>	Other <i>00</i>
1615	in 4min 150	WL 23.14	·	13.0	6.72	2183	4.54	0	0.85
1020		1		12.9	6.82	2180	4.10	-19	0,78
1025				12.6	6.92	2182	2.77	-20	0.77
1030				12.5	6:88	2178	2.85	-25	0.76
1035		L		12.4	6.87	2177	2.54	-26	0.74

Sampled of 1035/11-17-6

The Stiller

SAMPLING	INFORMATIO	ON:		POINT ID				
Date/Time				Water Level @ Sampling, Feet:				
Method of S	ampling:				_Dedicated:	Y / N		
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
			-					
INSTRUME	NT CHECK DA	ATA:					**	
Turbidity Se	rial #: <u>36467</u> RTO 091	NTU std. : 28	=NTU	10 N	ITU std. = <u>/</u>	NTU		
pH Serial #: Solutions:	6215171 4-R50	4.0 std.= <u>4</u>	7- KT10	0 std.= <u>7</u> らつか	- <u>-00</u> 10	.0 std. =		
	Serial #:			mhos/cm=		umhos/cm=		
GENERAL I	NFORMATION	l :			-			
Weather con	ditions @ time	of sampling:						
Sample Char	acteristics:			-	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
COMMENTS	S AND OBSER	VATIONS:						
							····	
						· · · · · · · · · · · · · · · · · · ·		
				·			<u> </u>	
		~		 			ſ	
I certify that sprotocals.	sampling proce	dures were in	accordance wi	th all applic	cable EPA, State	and Site-Specific		
Date:	1 1	Ву:			. Company: _			

Facility: ARCH	Sample Point ID: BR-105-D				
Field Personnel: Pi, JJ, RS	Sample Matrix:				
MONITORTING WELL INSPECTION:					
Date/Time 11-17-10 1 1006	Cond of seal: () Good () Cracked % () None () Buried				
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose ★ Flush Mount () Damaged				
If prot.casing; depth to riser below:					
Gas Meter (Calibration/ Reading): % Gas:	% LEL: / _				
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm; /				
PURGE INFORMATION:					
Date / Time Initiated: 11 - 17-10 1 1055	Date / Time Completed:				
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: Z. 0				
Initial Water Level, Feet: 25.69	Elevation. G/W MSL:				
Well Total Depth, Feet:	Method of Well Purge: Paristactic				
One (1) Riser Volume, Gal:	Dedicated:				
Total Volume Purged, Gal:	Purged To Dryness Y / (N)				
Purge Observations: Lo-Flou	Start Clear Finish Clear				
PURGE DATA: (if applicable)	Strong Odor				
	OH Conduct Turb. Other Other dunits) (Umhos/cm) (NTU) ON 00				
un yand	0.63 21,360 3.40 -278 0.68				
	o.71 Z5,880 3.38 - \$290 0.65				

Time	_	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Do</i>
11 05	un Hand	25.75	•	10,3	6.63	21,360	3.40	-278	0.68
1110	<u> </u>	2582		10.3	G.71	Z5,880	3.38	- \$ 290	0.65
1115				10.4	6-73	27,070	2,80	-302	0.66
IIZO				10.3	6:78	29,030	2.67	-303	0.66
		1							

Sampled at 1120/11-17-10
PAGE 1 OF 2

SAMPLING	INFORMAT	ION:		POINT I	D		_	
Date/Time			····	Water Level @ Sampling, Feet:				
Method of S	ampling:	-			_Dedicated:	Y/N		
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other		
							ration in	
				1	,			
INSTRUME	NT CHECK D	PATA:						
Turbidity Se		NTU std.	_		VTU std. =	_NTU		
pH Serial #: Solutions:		4.0 std.=	7.	0 std.=	- 1 -	0.0 std. =	- : :	
Conductivity Solutions:	Serial #:		u	ımhos/cm=		umhos/cm	=	
	NFORMATIO	•			_		4	
Weather con	ditions @ time	e of sampling:				1	: ##	
Sample Char					3.1	.3	ž.	
COMMENTS	S AND OBSE	RVATIONS:			· · · · · · · · · · · · · · · · · · ·			
	•					:		
\$			The second secon					
	Asy (:			· · · · · · · · · · · · · · · · · · ·	
I certify that sprotocals.	sampling proc	edures were in	accordance wi	th all appli	cable EPA, Sta	te and Site-Spec	ific	
Date:	1 1	Ву:		.3	_ Company:			

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: BR - 106
Field Personnel: PL, JJ, RS	Sample Matrix: G W
MONITORTING WELL INSPECTION:	
Date/Time ((-17-10 /155	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	() Daniageu
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: [[-17-10	Date / Time Completed: (1-17-10 1 / 305
Surf. Meas. Pt: () Prot. Casing (Riser	Riser Diameter, Inches: 4, 6
Initial Water Level, Feet: 23.88	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Parisince
One (1) Riser Volume, Gal:	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y / 🕟
Purge Observations: LO-FLO	Start St. Turbil Finish Cleer
DUDGE DATA. (if annicelle)	

PURGE DATA: (if applicable)

Time	Purge (gpm/		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other 00
1250	23.92	WL 23.92		11.0	7.60	2800	ス.88	-150	0.62
1255	T 200			11.0	7.26	2798	3.25	-136	0.31
1300	1			11.0	7.18	2802	3.08	-133	0.30
1305	1	-\		11.0	7.25	2805	3.18	-133	0.28
			_						

Sampled of 1305/11-17-10
PAGE 1 OF 2

SAMPLING	INFORMATIO	DN:		POINT IE)			
Date/Time	9			Water Level @ Sampling, Feet:				
Method of Sa	ampling:			······································	_Dedicated:	Y/N		
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()		
INSTRUME	NT CHECK DA	TA:	!					
	ial #:				ITU std. =	_NTU		
	·	4.0 std.=		0 std.=	10 	0.0 std. =	-	
Conductivity Solutions:	Serial #:		u	_		umhos/cm=_	<u> </u>	
	NFORMATION		·.		-	¥ .		
Weather cond	ditions @ time	of sampling:						
Sample Char	acteristics:				······································			
COMMENTS	AND OBSER	VATIONS:						
		-	:				-	
	31.9.00	N .		;				
				:				
			-					
I certify that s	ampling proce	dures were in	accordance wi	th all applic	cable EPA, State	e and Site-Specific		
Date:	. <u> </u>	Ву:			Company:			

Facility: ARCH	Sample Point ID: BR-126
Field Personnel:	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time (1-18-10 1 1356	Cond of seal: () Good () Cracked % () None Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /
PURGE INFORMATION:	
Date / Time Initiated: ((-18-(0) 1400	Date / Time Completed: (1-18-10 1) 420
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 45.45	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations:	Start St. Turbid Finish Clear
PURGE DATA: (if applicable)	•

Time		e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other 00
1405	mymin 150	134		12.9	7.75	964	10.41	-/03	0,82
1410		ſ		13.0	7.45	967	8.85	-94	08,0
1415				13.1	7.44	948	9.05	-93	0.81
1420				13.2	7.42	956	8.88	-89	0.79
					·	20			

Sampled at 1420/11-18-10
PAGE 1 OF 2

SAMPLING	INFORMATIO	DN:		POINT IE)		
Date/Time		/ Water Level @ Sampling, Feet:					
Method of S	ampling:	-			_Dedicated:	Y/N	
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()	
			·				
			· •				
INSTRUME	NT CHECK DA	NTA:					
Turbidity Ser	rial #:		=NTU		ITU std. =	NTU	
Calutiana				0 std.=		10.0 std. =	
Conductivity Solutions:	Serial #:		u	mhos/cm=		umhos/cm=	
	NFORMATION	•	E EN		-		
Weather con	ditions @ time	of sampling:					
Sample Char			· · · · · · · · · · · · · · · · · · ·				
COMMENTS	S AND OBSER	VATIONS:		· · · · · · · · · · · · · · · · · · ·			
							
<u></u>			i.			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	eniga um en	·			<u> </u>		
							
3					· · · · · · · · · · · · · · · · · · ·		 :
I certify that sprotocals.	sampling proce	dures were in	accordance wi	th all applic	cable EPA, Sta	ite and Site-Specific	
Date:	<u> </u>	Ву:		÷	Company:		

LeachField Form

Revision 0 FIELD OBSERVATIONS March, 15 2002 ARCH BRIZT Sample Point ID: Facility: PL, RS Sample Matrix: Field Personnel: (*) Grab () Composite SAMPLING INFORMATION: R-37 Water Level @ Sampling, Feet: Date/Time SAMILE POS Dedicated: 16/ N Method of Sampling: Multi-phased/layered: () Yes (ANO If YES: () light () heavy SAMPLING DATA: Other На Conduct Turb. Other Temp. Time (ORP) (NTU) (°C) (std units) (Umhos/cm) 1127 15.0 -212 7.86 2990 2.43 INSTRUMENT CHECK DATA: Turbidity Serial #: _____NTU std. = ___NTU NTU std. = NTU Solutions: pH Serial #: 4.0 std.= 7.0 std.= 10.0 std.= Solutions: ___umhos/cm= ___umhos/cm= Conductivity Serial #: Solutions:

GENERAL INFORMATION:

Weather conditions @ time of sampling:

Clear LT Ambor Text Sample Characteristics:

COMMENTS AND OBSERVATIONS: 2.61 G/M

I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.

Date:

11 17 10

Ву:

Re Zit Company: TAL

LeachField Form Revision 0 March, 15 2002

Facility:	ARC H			Sample Po	oint ID:	BR-SA Gw	
Field Person		PL, RS		Sample Matrix:			
SAMPLING INFORMATION:						Grab () Con	mposite
Date/Time	11-17-	10 1	150	Water Lev	el @ Sampling	, Feet:	16.97
Method of Sa	ampling:	SAMI	Pk fors		Dedicated:	Ø/ N	
Multi-phased	d/ layered:	() Yes	₹ Nó	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (•
1152	13.9	7.72	1613	9.89	-122		
INSTRUME	NT CHECK DA	ATA:	^ :				
Turbidity Se	rial #:					_NTU	
Solutions:						7	
				.0 std.=	·	10.0 std. =	
Solutions:	y Serial #:			ımhos/cm=	_	umhos/cm=	:
Solutions:							
GENERAL	INFORMATIO	N:					
Weather co	nditions @ time	of sampling:		RAIN	WIND	45	
Sample Cha	racteristics:		Clev				
COMMENT	S AND OBSE	RVATIONS:		13.11	61M		
				<u> </u>			
			<u> </u>				
I certify that	t sampling prod	cedures were in	n accordance v	vith all appl	icable EPA, Sta	ate and Site-Spec	ific
Date:	11/17/10	Ву:	NZ	<u>-</u>	_ Company:	TAL	

Facility: ARCH	Sample Point ID: BR-6A Sample Matrix: Gw
Field Personnel: PL, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 11-18-10 1215	Cond of seal: () Good () Cracked % () None (₹ Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: ﴿ Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 11-16-10 / 1217	Date / Time Completed:
Surf. Meas. Pt: () Prot. Casing (Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 13.30	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Paristact
One (1) Riser Volume, Gal:	Dedicated: $\widehat{\mathscr{D}}$ / N
Total Volume Purged, Gal:	Purged To Dryness Y / N Yalow For
Purge Observations:	Start Julou Tus Finish Clear
DUDGE DATA: (if applicable)	

Time		ge Rate om/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Do</i>
1225	13.37	200 200		144	7.31	4174	17.9	-220	0-82
1230	1			145	7.40	4211	16.2	-220	0.80
1235				145	7.41	4215	16.5	s 221	0.79
1240		11		14.5	7.45	42 15	17.1	-221	0.78
								·	

PAGE 1 OF 2

Field Form Revision 0 03/14/02

SAARNE E 1245 /11-18-10

SAMPLING INFORMATIO	N:		POINT ID				
Date/Time	1		Water Le	vel @ Sampling	, Feet:		
Method of Sampling:				_Dedicated:	Y/N		
Multi-phased/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING DATA:							
Time Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()		
					·		
INSTRUMENT CHECK DA	NTA:				<u> </u>		
Turbidity Serial #:	NTU std. :			ITU std. =	_NTU		
pH Serial #:					0.0 std. =		
		u			umhos/cm=		
GENERAL INFORMATION	•			-			
Weather conditions @ time	of sampling						
Sample Characteristics:					1		
COMMENTS AND OBSER	÷				· · · · · · · · · · · · · · · · · · ·		
OSMINERTO AND OBOLIN	TATIONS.	<u> </u>					
							
			-		· · · · · · · · · · · · · · · · · · ·		
	**************************************			, , , , , , , , , , , , , , , , , , , 			
		· · · · · · · · · · · · · · · · · · ·	······································	v			
I certify that sampling proce protocals.	dures were in	accordance wi	th all applic	cable EPA, Stat	e and Site-Specific		
Date:	Ву:			Company:			

LeachField Form Revision 0

			SERVAIL	NO	•	March, 15 2002		
Facility:	ARCH			Sample Po	oint ID:	BR 7A		
Field Person	nel:	PL, RS		Sample Ma	atrix:			
SAMPLING	INFORMATIC					(C) Grab () Co	mposite	
Date/Time	11-17	-16 1 1	220 Water Level @ Samplir			Feet:	2991	
Method of Sa	ımpling:	SAMP	The Port	_	Dedicated:	ØI N		
Multi-phased	/ layered:	()Yes	₩ No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other ()	,	
1221	14.7	7.51	2377	5783	-184			
					·			
INSTRUME	NT CHECK DA	ATA:						
Turbidity Ser		NTU std. :		N	TU std. =	_NTU		
pH Serial #: Solutions:		4.0 std.=			1	0.0 std. =		
Conductivity Solutions:						umhos/cm=	=	
GENERAL I	INFORMATIO	N:						
Weather con	iditions @ time	of sampling:		RAW	und	45		
Sample Cha	racteristics:		Cle	- 6.	my Tint	<u>.</u>		
COMMENT	S AND OBSE	RVATIONS:		14 6	In			
			<u></u>					
I certify that protocals.	sampling prod	edures were ir	accordance w	vith all appli	icable EPA, Sta	te and Site-Spec	ific	
Date:	11/17/10	_ Ву:	M	7	_ Company:	TAL		

LeachField Form Revision 0 March, 15 2002

Facility: ARC H	Sample Point ID:	BR-9		
Field Personnel: PL, RJ	Sample Matrix:	60 (Grab () Co	ito	
SAMPLING INFORMATION:	16	Figrab () Co	imposite	
Date/Time //- 10 /650 Method of Sampling: SAML Part	Water Level @ Sampling	g, Feet:	30.19	
Method of Sampling: SAML Part	Dedicated:	Ø N		
Multi-phased/ layered: () Yes (No	If YES: () light	() heavy		
SAMPLING DATA:		·		
Time Temp. pH Conduct (°C) (std units) (Umhos/cm)	Turb. Other (NTU)	Other ()		
1654 145 7.16 2372	126 -162			
INSTRUMENT CHECK DATA:				
	7.0 std.= 7.00 Y 2 umhos/cm= 1000 War 450	10.0 std. =		
COMMENTS AND OBSERVATIONS:	7.60 GM			
	· · · · · · · · · · · · · · · · · · ·			
I certify that sampling procedures were in accordance protocals.	with all applicable EPA, S	tate and Site-Spe	cific	
Date: $1/n/10$ By:	Z Company	: TAL		

Facility: ARCH	Sample Point ID: MW - (00)
Field Personnel: Pi, JJ, RS	Sample Point ID: MW - 10(e
MONITORTING WELL INSPECTION:	
Date/Time (1-17-10 1 /155	Cond of seal: M Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() - 12501
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: ((- 17-10 / /20 /	Date / Time Completed: ((-1 <u>7-10 / 1220</u>
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 12.36	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: PerisiACTIC
One (1) Riser Volume, Gal:	Dedicated: / N
Total Volume Purged, Gal:	Purged To Dryness Y / (N)
Purge Observations: Lo - F(ow	Start Black Tint Finish Clear
DUDGE DATA: (if applicable)	•

PURGE DATA: (if applicable)

Time	(gpi	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other 00
1205	150	1242		11.8	7.60	4859	4.18	-216	1.08
1210	1	12.50		12.0	7.34	4770	3.58	-215	0.94
1215		12.58		12.0	7.31	4762	3.40	-215	0.97
1220	<u> </u>	12.64		11.9	7.27	4750	3,20	-216	0.95

Sampled at 1720 /11-17-10 PAGE 1 OF 2

SAMPLING	INFORMATI	ON:		POINT IE)		
Date/Time				Water Lev	vel @ Sampling		
Method of S	ampling:				_Dedicated:	Y/N	
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()	
							•
INSTRUME	NT CHECK D	ATA:					
Turbidity Sei		NTU std. :			ITU std. =	_NTU	
pH Serial #: Solutions:		4.0 std.=			1	0.0 std. =	
Conductivity Solutions:	Serial #:			mhos/cm=		umhos/cm=_	
	NFORMATIO	1			-	*	
Weather con	ditions @ time	of sampling:					
Sample Char	acteristics:						
COMMENTS	S AND OBSE	RVATIONS:					
				· · · · · · · · · · · · · · · · · · ·			
:	**************************************		· · · · · · · · · · · · · · · · · · ·				

							<u>, , , , , , , , , , , , , , , , , , , </u>
I certify that sprotocals.	sampling proce	edures were in	accordance wi	th all applic	cable EPA, Stat	e and Site-Specifi	c
Date:	1 1	Ву:		:	Company:		

Facility: ARCH	Sample Point ID: MW-127
Field Personnel: Pt, JJ, &S	Sample Matrix: G iv
MONITORTING WELL INSPECTION:	
Date/Time 11-19-10 1 1038	Cond of seal: (*) Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked (X) Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: //- 19-10 / 1043	Date / Time Completed: 11-19-10 / 1103
Surf. Meas. Pt: () Prot. Casing (XRiser	Riser Diameter, Inches: 2 0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 11.25	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y / (N)
Purge Observations:	Start Clear Finish Clear
PURGE DATA: (if applicable)	

Time	(gr	ge Rate om/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Do</i>
1048	100	7.15		11,7	7.04	1418	4.45	99	0.83
1053		7.31	Ŀ	11.6	7.32	1423	4.51	46	0,65
1058		7.37		11.6	7.33	1431	4.34	38	0.68
1103		7.40		11.6	7.35	1447	4.34	33	0.68

Sampled of 1103/11-19-10
PAGE 1 OF 2

SAMPLING	INFORMATIC	ON:		POINT ID				
Date/Time				Water Lev	/el @ Sampling,	, Feet:	V	
Method of S	ampling:	-	·····		_Dedicated:	Y/N		
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other		
			(Cimios/Ciri)	(470)				
INCTOLINE	NT CHECK DA	L	1				7	
Turbidity Sei	rial #: <u>3/6733</u> RTO09	NTU std. : `Z&	=NTU	10 N	ITU std. = <u>/</u> 0	NTU	1	
•	6215171	· · · · · · · · · · · · · · · · · · ·	7	0 064 - 7:	- OU 4,	20.41	ď	
Solutions:	4-150	94550	7- Rr1057	7 %	1	0.0 std. =	-	
Conductivity	Serial #:	6215171	1600 u	mhos/cm=	1000	umhos/cm=_		
Solutions:	RT048.	50			-	,		
GENERAL I	NFORMATION	l :						
Weather con	ditions @ time	of sampling:						
Sample Char	acteristics:			•			,	
COMMENTS	S AND OBSER	VATIONS:					1.5	
	3						<u></u>	
		-			1			
	en lange releve en la com		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
				 				
	<u></u>							
I certify that sprotocals.	sampling proce	dures were in	accordance wi	th all applic	cable EPA, State	e and Site-Specific		
Date:	1 1	Ву:			Company			
		٠, د			Company:			

Facility: ARCH	Sample Point ID: MW-16
Field Personnel: Pi, JJ, AS	Sample Matrix: Giw
MONITORTING WELL INSPECTION:	
Date/Time //- /6-/0 / /048	Cond of seal: (**Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	(/ = amaged
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 1-14-10 1050	Date / Time Completed: 11-16-10 / 7/15
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches:
Initial Water Level, Feet: 12,61	Elevation. G/W MSL:
Well Total Depth, Feet: 34.40	Method of Well Purge: Perisianic
One (1) Riser Volume, Gal:	Dedicated: Y/N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: 10-F10	Start CLA92 Finish BABAR
PLIPGE DATA: (if applicable)	

Time	(apn	e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other <i>Do</i>
1100	150 me	12.72		13.0	7.01	3492	19,2	-13	0.80
1110	150	12.70		12.7	7.00	3510	38,/	-2	0.82
1115	150	12.70		12.7	6.89	3513	39,3	0	0.79
	. 1								

SAMOLRO @ 1/15/11-16-10 PAGE 1 OF 2

SAMPLING INFORMATION:				POINT ID			
Date/Time / Water Level @ Sampling, Feet:							
Method of S	ampling:				_Dedicated:	Y/N	
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (.)	
INSTRUME	NT CHECK DA	ATA:					e e
	rial #: <u>31673</u>				ITU std. = <u>//</u>	_טדע	W
pH Serial #: Solutions:	6225177	4.0 std.=	<u>4.0</u> 7.0	0 std.= <u>7</u> <i>RT 109</i>	1,0 178	10.0 std. =	d
Conductivity Solutions:	Serial #:	6225177 RT04550	<u>/600</u> u	mhos/cm=	<u> 100</u> 8	umhos/cm=	
	NFORMATION	·	•.				
Weather con	ditions @ time	of sampling:	SUNKY	, 50°1	_		
	acteristics:						
COMMENTS	S AND OBSER	VATIONS:					
					:		
	·		·				
I certify that sprotocals.	sampling proce	dures were in	accordance wi	th all appli	cable EPA, Sta	te and Site-Specif	ic
Date:	11 16110	Ву:	PAGE 2 OF 2	1	Company:	TAC	

Facility: ARCH	Sample Point ID: Piu-10 Sample Matrix: Gw
Field Personnel: PL, JJ, AS	Sample Matrix:
MONITORTING WELL INSPECTION: 1 - 1 & 10 3 Date/Time	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose ⟨→⟩ Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: [-18-10 1035	Date / Time Completed: 1/-18-20 / ///5
Surf. Meas. Pt: 1 Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated: Y L
Total Volume Purged, Gal:	Purged To Dryness Y IN Clar
Purge Observations:	Start Yellow Finish Yellow
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

PURGE	DATA.	(III appi	icable)						
Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Oo</i>
1045	10.61	700		14.2	7,93	1409	15.56	-36	,79
1050		1		13.9	8.10	1398	15.21	-35	0.77
1055				14.0	8.13	1355	12.20	- 33	0.75
1100				14.1	8,14	1300	12.01	= 31	0.74
1105				14.0	8.17	1298	11.86	-30	0.73
1116				13.9	8.13	1291	11.80	- 30	0.71
1115	1	11		13.8	6.18	1282	11.69	-29	0-70
					PAGE 1 Q		Field Form		

SAM Q 1115 / 11-18-10 Re 2 11

Field Form Revision 0

03/14/02

SAMPLING	INFORMATI	ON:		POINT I				
Date/Time				Water Level @ Sampling, Feet:				
Method of S	Sampling:		·····		_Dedicated:	Ϋ́/N		
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy		
SAMPLING	DATA:							
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()		
INSTRUME	NT CHECK D	ATA:					y	
Turbidity Se		NTU std. :		/	ITU std. =	<u>.</u> NTU		
pH Serial #: Solutions:		_ 4.0 std.=	7.		1(0.0 std. =	-	
Conductivity Solutions:	Serial #:					umhos/cm=		
	NFORMATIO				-		•	
Weather con	ditions @ time	of sampling:						
Sample Char								
	S AND OBSE	RVATIONS	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
							· · · · · · · · · · · · · · · · · · ·	
	na nagara na nagara na na aka an gam a				· · · · · · · · · · · · · · · · · · ·			
	·	:			······································		· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·			<u> </u>	
l certify that s protocals.	sampling proce	edures were in	accordance wit	th all applic	able EPA, State	and Site-Specific		
Date:	1 1	Ву:			Company:	v	e	
		-		····			·	

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: PW-(2
Field Personnel: Pi, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 11-19-10 / 1130	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: (1-19-10 / 1132	Date / Time Completed: ((-19-10) (145
Surf. Meas. Pt: () Prot. Casing (XRiser	Riser Diameter, Inches: 6.0
Initial Water Level, Feet: 7.18	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated: / N
Total Volume Purged, Gal:	Purged To Dryness Y / (N)
Purge Observations: Strong Odor	Start Clear Finish Clear
PURGE DATA: (if applicable)	

Time	Purge (gpm		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other 00
1135	200	WL 7,23	·	13.0	7.15	2503	5.60	-125	0.95
1140				13.2	7.20	2498	4.99	-126	0.92
1145	-	1		13.1	7.27	2492	5.24	-128	0.90
							·		

Sampled at 1145/11-19-10
PAGE 1 OF 2

SAMPLING INFO	RMATIO	N:		POINT IE)		
Date/Time			***************************************	Water Lev	vel @ Sampling		W .
Method of Samplin	g: _				_Dedicated:	Y/N	
Multi-phased/ layer	ed:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING DATA	\:						
1)	emp. °C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other	
				1			5.7
							,
					6		
INSTRUMENT CH	ECK DA	TA:					
Turbidity Serial #: _ Solutions:			=NTU		TU std. =	_אדע	
pH Serial #:			7.		-	0.0 std. =	
Conductivity Serial Solutions:	-	· · · · · · · · · · · · · · · · · · ·		mhos/cm=		umhos/cm=	
GENERAL INFOR			14 July 198		-		
Weather conditions	@ time o	of sampling:					
Sample Characteris	tics:			-			
COMMENTS AND	OBSER	VATIONS:					
· .					-		
							- 2-
		8					
I certify that sampli protocals.	ng proced	lures were in	accordance wi	th all applic	cable EPA, Stat	e and Site-Specif	ic
Date: /	1	Ву:			Company:		

PAGE 2 OF 2

Facility:	ARCH	1		Sample Po	oint ID:	Pw-13	
Field Personne		PL, RS		Sample M	atrix:	60	
SAMPLING IN	NFORMATIO	N:				(A) Grab () C	omposite
Date/Time	11-17-	16 1	1205	Water Lev	el @ Sampling	, Feet:	30.26
Method of San	apling:	SAM	Ac Port		Dedicated:	Ø/N	
Multi-phased/	layered:	()Yes	Ø No	If YES:	() light	() heavy	
SAMPLING D	ATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other ()	•
1207	158	7.32	3200	3,81	-187		
INSTRUMEN'	T CHECK DA	ATA:					1
Turbidity Seria	al #:	NTU std.	=NTU	N	TU std. =	_NTU	
Solutions:					-		
		4.0 std.=		0 std.=	1	0.0 std. =	
Conductivity S	Serial #:					umhos/cm]= <u> </u>
GENERAL IN					- .		
Weather cond	itions @ time	of sampling:	1.7	RAIN	450		
Sample Chara	•						
COMMENTS		RVATIONS:					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
I certify that s	ampling proc	edures were in	n accordance v	vith all appl	icable EPA, Sta	te and Site-Spec	cific
·	11 117/10	By:	N 2	'at	Company:	TAL	

Facility:	ARCH			Sample Po	oint ID:	fw-14	<i>'</i>
Field Personn		PL, RS		Sample Ma	atrix:		
SAMPLING I	NFORMATIO	N:				⊘ Grab ()C	omposite
Date/Time	11-17-10		1115	Water Lev	el @ Sampling	, Feet:	21,80
Method of Sa	mpling:	Those 1	le F		_Dedicated:	(N	
				If YES:	() light	() heavy	
SAMPLING			•				
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (ORP)	Other (,
1117	16-1	7,67	3620		-295		
		,					
INSTRUMEN	NT CHECK DA	ATA:					_
Turbidity Ser	ial #:			·N	NTU std. =	_NTU	
		4.0 std.=	<u>· </u>	.0 std.=		10.0 std. =	
Conductivity Solutions:				umhos/cm=		umhos/cn	n=
GENERAL I	INFORMATIO	N:					
Weather con	iditions @ time	e of sampling:	KA	100 4	-		
Sample Cha		*	TON A.	bory			
COMMENT	S AND OBSE	RVATIONS:		. 33	8 GIM		
				٠.			
I certify that protocals.	sampling pro	cedures were	in accordance	with all app	licable EPA, S	tate and Site-Spe	ecific
Date:	11 /17/ 10	Ву:	A:	2 _	Company	TAL	

Facility: ARC	4	Sample Point ID	o: Pw.	/)
Field Personnel:	PL, RS	Sample Matrix:	o: Pw.	
SAMPLING INFORMATI	ON:		() Grab	Composite
Date/Time //- /7-/	0 1100	Water Level @ \$	Sampling, Feet:	20.23
Method of Sampling:	SAMPL PO	<i>T</i> Dedi	cated:	
Multi-phased/ layered:	() Yes (No	If YES: () lig	ght () heav	vy
SAMPLING DATA:				
Time Temp.	pH Condi (std units) (Umho		Other Other	,
165 15.5	7.97 603		213	
INSTRUMENT CHECK D	ATA:			
Turbidity Serial #:			d. = <u> </u>	
pH Serial #: Solutions:	4.0 std.=		10.0 std. =	
Conductivity Serial #: Solutions:		umhos/cm=	umhos/c	cm=
GENERAL INFORMATION	DN:			
Weather conditions @ tim	e of sampling:	wind 45°		
Sample Characteristics:				
COMMENTS AND OBSE	RVATIONS:	2.47 6pm		
l certify that sampling pro protocals.	cedures were in accord	lance with all applicable	EPA, State and Site-Sp	ecific
Date: // / / 10 / 10	Ву:	2 Cc	ompany: TAL	·

Facility: ARCH	Sample Point ID:	Pw-16
Field Personnel: PL, RS	Sample Matrix:	6h
SAMPLING INFORMATION:		
Date/Time 1-19-10 1020 Method of Sampling: SAMPLE PE	Water Level @ Sampling	, Feet: 17, 9/
Method of Sampling: SAMPLE PE	Dedicated:	(S) N
:Multi-phased/ layered: () Yes 🙀 No	If YES: () light	() heavy
SAMPLING DATA:		,
Time Temp. pH Conduct (°C) (std units) (Umhos/cm)	Turb. Other (NTU)	Other ()
1033 16.5 6.61 477	213.04 3	
INSTRUMENT CHECK DATA:		
Turbidity Serial #: 36707 NTU std. = NTU Solutions: 8700928	•	
pH Serial #: $\frac{6203713}{8607}$ 4.0 std.= $\frac{4.0}{7}$ 7-RT605	7.0 std.= 7.0 1	0.0 std. =
Conductivity Serial #: 6203713 1000		umhos/cm=
Solutions: AFE 0428 RTO 4056		
GENERAL INFORMATION:		
Weather conditions @ time of sampling:	TRAM 45	
COMMENTS AND OBSERVATIONS:		
I certify that sampling procedures were in accordance protocals.	with all applicable EPA, Sta	ate and Site-Specific
Date: /1 7 /0 By:	Company:	TAL

Facility: ARCH	Sample Point ID: アマー10 I
Field Personnel: PL, JJ, RS	Sample Matrix: G w
MONITORTING WELL INSPECTION:	
Date/Time (1-18-10 / 1(30	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked ≰ Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	(/ Dainagea
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: \(\(-\left\) - \(\cdot \) \(\left\) \(\left\) \(\left\) \(\left\)	Date / Time Completed: ([-18-10 1 [55]
Surf. Meas. Pt: () Prot. Casing (/)-Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 2(.69	Method of Well Purge: Paristrace
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations:	Start St. Turbid Finish Clear
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Oo</i>
(140	100	18.71	4	9.8	7.33	6743	12.37	-83	0,89
((45	\	18.82		9.2	7.19	6710	11.00	-42	0.91
((50		8,89		9.2	7.13	6706	10.00	-38	0.89
1155		(8.98		9.1	7.07	6887	9.48	-32	88.6

SAMPLING IN	IFORMAT	ION:		POINT ID					
Date/Time				Water Le					
Method of Sam	pling:				Dedicated:	Y/N			
Multi-phased/ la	ayered:	() Yes	() No	If YES:	() light	() heavy			
SAMPLING DA	ATA:								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()			
INSTRUMENT	CHECK	DATA:							
Turbidity Serial Solutions:	#:	NTU std. :	=NTU	}	NTU std. =	_NTU	Marine Bridge		
pH Serial #:						10.0 std. =	ئى سىدىن <u>سىد</u>		
Conductivity Se				mhos/cm=	<u>-</u>	umhos/cm=	4		
GENERAL INFO		•			-	Ÿ.			
Weather condition	ons @ time	e of sampling:							
Sample Characte									
COMMENTS AI	ND OBSE	RVATIONS:	7						
·.									
. ,				Ę.			· · · · · · · · · · · · · · · · · · ·		
			,				<u> </u>		
		·							
certify that sam protocals.	pling proc	edures were in a	accordance wit	h all applic	cable EPA, Sta	te and Site-Specif	ïc		
Date: /	1	_ By:	·		Company:				

PAGE 2 OF 2

Facility:	ARCH			Sample	Point ID: P	2-102	-			
Field Persor		PL, J, RS	<u> </u>	Sample	Matrix:	GW				
MONITORT	ING WELL I	NSPECTION:								
Date/Time	11-18-10	1 10	15	Cond of seal: () Good () Cracked () None () Buried						
Prot. Casing	g/riser height <u>:</u>			Cond o	· · · · · · · · · · · · · · · · · · ·	ser: () Unlo () Loose () Damaged	() Flush M			
If prot.casin	g; depth to ris	ser below:	· · · · · · · · · · · · · · · · · · ·			_		1		
Gas Meter (Calibration/R	eading):	% Gas:		% LEL:_					
Vol. Organic	Meter (Calib	ration/Reading):	Volatiles (ppm) / /						
PURGE IN	FORMATION	:		e e		• = -	·			
Date / Time	Initiated: ((-18-101 104	12	Date / 7	Time Completed	: ((-1 &	-10 1	1105		
Surf. Meas.	Pt: () Prot. Ca	asing	()\Riser	Riser D	iameter, Inches	: .	2.2			
Initial Water	r Level, Feet:	20.	63	Elevati	on. G/W MSL:					
		32.6		Method	d of Well Purge:		Perisin	MICC		
One (1) Rise	er Volume, Ga	ıl:		Dedica	ited:	Ŷ/ N		ŧ		
Total Volum	ne Purged, Ga	1;		Purgeo	d To Dryness	Y / 🗗				
Purge Obse	ervations:			Start 3	St. Turbid Black Spec	Finish	Clear Black Spe	÷ .€.≲		
PURGE DA	ATA: (if appl						, , , , , , , , , , , , , , , , , , ,			
Time	Purge Rate	Cumulative	Temp.	pH	Conduct	Turb.	Other	Other Oc		

Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Do</i>
1050	mt/min WL (50) 20.82		10.7	7.40	6043	5.73	-113	1.00
1055	1 20.83		10.7	7.30	6010	4.93	-129	0,98
((00			10.8	7.26	6001	4.76	-132	0.96
1105			10.7	7:25	5997	4.70	-136	SP,C

Samples at 1105/11-18-10
PAGE 1 OF 2

GENERAL INFORMATION: Weather conditions @ time of sampling: Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	SAMPLING	INFORMATI	ON:		POINT II	D		
Multi-phased/ layered: () Yes () No If YES: () light () heavy SAMPLING DATA: Time Temp. pH Conduct Turb. Other (Std units) ((Umhos/cm) (NTU) (Turb. Other) (Std units) ((Umhos/cm) (NTU) (Std units) (Std units) ((Umhos/cm) (NTU) (Std units) (Std unit	Date/Time	· · · · · · · · · · · · · · · · · · ·			Water Le	vel @ Sampling	, Feet:	
SAMPLING DATA: Time Temp. pH Conduct Turb. Other Other (*C) (std units) (Umhos/cm) (NTU) (Method of S	Sampling:	Principles of the state of the			_Dedicated:	Y / N	
Time Temp. (*C) (std units) (Umhos/cm) (NTU) () () () () () () () () () (Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
(*C) (std units) (Umhos/cm) (NTU) (Umhos/cm) (U	SAMPLING	DATA:					•	
Turbidity Serial #: 3 16 737 NTU std. =NTU	Time	1		1	ŀ	Other ()	Other (
Turbidity Serial #: 3/6 733 NTU std. =NTU								
Turbidity Serial #: 3 16 737 NTU std. =NTU								
Solutions: RT00 928 pH Serial #: 2/5/7 (4.0 std.= 4-00 7.0 std.= 7-00 10.0 std. =	INSTRUME	NT CHECK DA	ATA:					
Solutions: PTO 9330 RTIONY Conductivity Serial #: 62/5/17/ 600 umhos/cm= 600 umhos/cm	Solutions:	RTOO	928			_	NTU	
GENERAL INFORMATION: Weather conditions @ time of sampling: Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	pH Serial #: Solutions:	6215171 RT004	4.0 std.= <u>4</u> .	<u>00</u> 7. RT10574	0 std.= <u>7</u>	100	0.0 std. =	
GENERAL INFORMATION: Weather conditions @ time of sampling: Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	Conductivity Solutions:	Serial #:	6215171	/000 u	mhos/cm=	1800	umhos/cm=	· ·
Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.			•		······································	-		
Sample Characteristics: COMMENTS AND OBSERVATIONS: I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	Weather con	ditions @ time	of sampling:					
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	Sample Char	acteristics:						
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.	COMMENTS	S AND OBSER	VATIONS:					-
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.			,					
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.								
Dato:								
Dato:								
Date: / / By: Company:	certify that s	ampling proce	dures were in :	accordance wif	th all applic	able EPA, State	and Site-Specific	
	Date:	<u> </u>	Ву:			Company:		

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: P2 - 103
Field Personnel: Pt, JJ, RS	Sample Matrix:
MONITORTING WELL INSPECTION:	
Date/Time 11-18-10 1 12 28	Cond of seal: () Good () Cracked % () None (X Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: 《Unlocked 《Good () Loose () Flush Mount 《Damaged <u>Broken</u> ()
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /
PURGE INFORMATION:	
Date / Time Initiated: (1-18-10 / 1234	Date / Time Completed: 11-18-10 / 1255
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 32.57	Method of Well Purge: ParisiACTIC
One (1) Riser Volume, Gal:	Dedicated: Ø/N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations:	Start Clear w/ Finish Clear w/ Black Specs Black Specs
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp. (gpm/htz) Volume (C) (s	pH Conduct Turb. Other Other of Umhos/cm) (NTU)

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Do</i>
1240	nt/nii	1636		11.4	7.55	5666	4.16	-139	0,89
1245		16.62		[1,5	7.38	5699	4,25	-152	0,63
1250		16.89		11.4	7.33	5736	4.16	-157	0.58
1255	1	17.02		11.4	7.30	5764	4.17	-161	0.57

Sampled et 1255/11-18-10
PAGE 1 OF 2

SAMPLING INFORMATION	ON:		POINT ID					
Date/Time			Water Le	vel @ Sampling				
Method of Sampling:			· · · · · · · · · · · · · · · · · · ·	_Dedicated:	Y / N			
Multi-phased/ layered:	() Yes	() No	If YES:	() light	() heavy			
SAMPLING DATA:								
Time Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other ()			
					7 7 .	w e		
INSTRUMENT CHECK DA	ATA:							
Turbidity Serial #:	NTU std. :	=NTU	N	TU std. =	_NTU			
pH Serial #:	4.0 std.=		0 std.=	10	0.0 std. =			
		u	mhos/cm=		umhos/cm=			
GENERAL INFORMATION	•	:	1	•	r. ·	* 4		
Weather conditions @ time	of sampling:				•	of the second second		
Sample Characteristics:						. 34		
COMMENTS AND OBSER	VATIONS:	:		~ .				
						· · · · · · · · · · · · · · · · · · ·		
			- Art web think		71 - 200 - 22 - 22 - 22 - 22 - 22 - 22 - 	<u></u>		
certify that sampling proce protocals.	dures were in a	accordance wit	h all applic	able EPA, State	and Site-Specific	c		
Date: / /	Ву:	:		Company:				

PAGE 2 OF 2

Facility: ARCH	Sample Point ID: P2-104
Field Personnel: Pi, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 11 - 18 - 10 / 13 18	Cond of seal: (X Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	() = a.magoa
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: (1-(8-10) 1320	Date / Time Completed: (1-18-10 11340
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2, 0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Port STACTIC
One (1) Riser Volume, Gal:	Dedicated: (ŷ / N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations:	Start St. Turbio(Finish St. Turbid
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp. pl	Conduct Turb. Other Other

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Do</i>
1325	200	WL +8,41	·	15.5	7.69	1642	28.1	-144	0.93
1330				15.8	7.49	1634	26.0	-144	0,82
1335				15,8	7,44	1633	24.3	-145	0.80
1340				15.8	7:47	1623	23.7	-143	0.79

Sample of 1340/11-18-10
PAGE 1 OF 2

The Section 1340/11-18-10

SAMPLING	INFORMAT	ION:		POINT ID					
Date/Time			2	Water Le	vel @ Sampling,	Feet:			
Method of Sa	ampling:	-			_Dedicated:	Y/N			
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy			
SAMPLING	DATA:								
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other			
			,			4 ,			
							ruf t		
INSTRUMEN	NT CHECK D	ATA:			i i i i i i i i i i i i i i i i i i i		. The account of		
Turbidity Ser		NTU std. =			ITU std. =1	ITU * -	ara Mari		
pH Serial #: _ Solutions:		4.0 std.=			10.	0 std. =	a vicini		
Conductivity Solutions:	Serial #:		u	mhos/cm=		umhos/cm=			
GENERAL II	NFORMATIO				-				
Weather cond	litions @ time	of sampling:	× ,						
Sample Chara			···				p Code		
COMMENTS	AND OBSE	RVATIONS:							
	e e e e e e e e e e e e e e e e e e e	•		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
				- 1					
	.)			·	:)			
:	!					· · · · · · · · · · · · · · · · · · ·	;		
certify that s	ampling proc	edurës wëre in a	accordance wit	ih all applic	cable EPA, State	and Site-Specifi	С		
Date:	1 1	By:			Company: _		-		

Facility: ARCH	Sample Point ID: P2-10) Sample Matrix: GW
Field Personnel: PL, JJ, &S	Sample Matrix: G W
MONITORTING WELL INSPECTION:	
Date/Time 11-18-16 / 1127	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: /١-١૭٠٠ / //30	Date / Time Completed: 11-18-00 1/5"
Surf. Meas. Pt: () Prot. Casing (A) Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 32 86	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y IN SL TURM
Purge Observations:	Start Gray Finish Grey
PURGE DATA: (if applicable)	

Time	Purge Rate (gpm/htz)		(gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Do</i>
1135	75	12:11	·	14.3	7.90	963	151	117	0.99		
1140		12.19		13.9	7.81	959	152	77	0.97		
1145		12.24		135	7.77	951	149	18	0.96		
1150	7	12,29		13.0	7.76	950	150	19	0.95		
						·					

SAMON @ 1150 /11-18-10 De 2

PAGE 1 OF 2

SAMPLING	INFORMATIO	ON:		POINT IE			
Date/Time				Water Lev	vel @ Sampling	, Feet:	
Method of Sa	ampling:	-			_Dedicated:	Y/N	
Multi-phased	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other (
	,				· ·		
INSTRUME	NT CHECK D	ATA:		7		· · · · · · · · · · · · · · · · · · ·	,
		NTU std.		N	ITU std. =	_NTU	3 A
pH Serial #: _ Solutions:			7.	0 std.=	1	0.0 std. =	
Conductivity Solutions:	Serial #:			ımhos/cm=		umhos/cm=	·
GENERAL I	NFORMATIO	N:			_		
Weather con	ditions @ time	of sampling:					
Sample Char	acteristics:					·	
COMMENTS	S AND OBSE	RVATIONS:	· .	·	·	-	· · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
I certify that s	sampling proc	edures were in	accordance w	ith all appli	cable EPA, Stat	te and Site-Specific	
Date:	1 1	By:			_ Company:		

Facility: ARCH	Sample Point ID: P2-10 6 Sample Matrix: GW
Field Personnel: PL, JJ, RS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time //-18-10 1243	Cond of seal: () Good () Cracked% () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 11-19-10 / 1245	Date / Time Completed: //-/8-/6 // 305
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 27.90	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated: 🕥 / N
Total Volume Purged, Gal:	Purged To Dryness Y IN
Purge Observations:	Start Yellow Finish Yellow Tino
PURGE DATA: (if applicable)	
Time Purge Pate Cumulative Temp	pH Conduct Turb. Other Other

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ON	Other <i>Do</i>
1250	WL 11.77	mil		14.1	6.52	7063	8.26	-92	6.82
1255	11.79			13.9	6.49	6990	6.41	-94	0.80
1300				137	6.40	6950	4-84	-94	0.78
1305		V		13.5	6.37	6950	3.2/	-95	0.77

SAMMA @ 1305 /11-10-10

PAGE 1 OF 2

SAMPLING	INFORMAT	ION:		POINT I)		
Date/Time				Water Le	vel @ Sampling	, Feet:	
Method of Sa	ampling:				_Dedicated:	Y / N	
Multi-phased	l/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other ()	Other ()	
							ě .
			in a second				1
INSTRUMEN	NT CHECK D	ATA:					
		NTU std. :			ITU std. =	_NTU	
	· · · · · · · · · · · · · · · · · · ·	4.0 std.=			1	0.0 std. =	<u>84.</u>
Conductivity Solutions:			u	mhos/cm=	·	umhos/cm=	
GENERAL IN	NFORMATIO	N:	•		-		
Weather cond	litions @ time	of sampling:				-	· .
Sample Chara	icteristics:						
COMMENTS	AND OBSE	RVATIONS:	:				\ \
	-/	·					
		and the second second					
	:				,		
			-				
certify that sa	ampling proce	edures were in a	accordance wif	h all applic	able EPA, State	e and Site-Specif	ic
Date:	1 1	Ву:	-		Company:		

Facility: ARCH	Sample Point ID: P2-107 Sample Matrix: GW
Field Personnel: Pi, JJ, AS	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 11-18-10 1 1311	Cond of seal: () Good () Cracked % () None 🗱 Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Daniageu
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: /1-19-10 / 13 16	Date / Time Completed: 1/-18-10 1 /333
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet: 9 10.67	Elevation. G/W MSL:
Well Total Depth, Feet: 27.90	Method of Well Purge: Paristactic
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y /(N)
Purge Observations:	Start Clor Finish Cler
PURGE DATA: (if applicable)	

Time		Rate n/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other <i>ON</i>	Other <i>Oo</i>
1320	WL 10:70	ML/N 200		138	6.56	5053	2.17	-125	0.75
1325		1		13.7	6-54	5021	1.97	_ 130	0.73
1330				13.7	6.50	5011	1.82	-130	0.72
1335	1	J		13,6	6.50	5000	1.79	- 13/	6.70

SAWRE 1335 /11-18-W
PAGE 1 OF 2

(FIED DUP)

SAMPLING INFORMATION:			POINT I				
Date/Time /			Water Level @ Sampling, Feet:				
Method of S	Sampling:				_Dedicated:	Y/N	
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other (00)	
1336	13.6	6:50	4997	1.70	-131	0.69	
						·	
INSTRUME	NT CHECK D	ATA:					
Turbidity Se Solutions:		NTU std. :			VTU std. =	NTU .	
pH Serial #: Solutions:			<u> </u>	0 std.=	1	0.0 std. =	-
Conductivity Solutions:	Serial #:		<u> </u>	mhos/cm=		umhos/cm=_	· ,
GENERAL I	NFORMATIO	N:	·		_		
Weather con	ditions @ time	of sampling:					•
Sample Char	acteristics:						
COMMENT	S AND OBSE	RVATIONS:					
4 .							
							
I certify that sprotocals.	sampling proc	edures were in	accordance wi	th all applic	cable EPA, State	e and Site-Specific	
Date:	1 1	Ву:	· .		Company:		

PAGE 2 OF 2

Facility: ARCH	Sample Point ID:	9D-1
Field Personnel: PL RS	Sample Matrix:	$\frac{\cancel{SD} - \cancel{S}}{\cancel{S} \text{ Grab () Composite}}$
SAMPLING INFORMATION:		Grab () Composite
Date/Time 11-16-10 1 1240	Water Level @ Sampling	, Feet: N/A
Method of Sampling: Manual GR	95 Dedicated:	(Y) N
Multi-phased/ layered: () Yes No	If YES: () light	() heavy
SAMPLING DATA:		
Time Temp. pH Conduct (°C) (std units) (Umhos/cm)	Turb. Other (NTU)	Other ()
1245 12.0 7.81 1779		
INSTRUMENT CHECK DATA:		
Turbidity Serial #:NTU std. =NTU Solutions:		_NTU
pH Serial #: 4.0 std.= 7.	0 std.=	0.0 std. =
Solutions:		
Conductivity Serial #:u Solutions:		umhos/cm=
GENERAL INFORMATION:		
Weather conditions @ time of sampling:	y , 50°A	
Sample Characteristics: CCRAR		
COMMENTS AND OBSERVATIONS:		
I certify that sampling procedures were in accordance w	vith all applicable EPA, Sta	ate and Site-Specific
protocals. Date: // //// By:	Company:	TAL
Date: // /// By:	/ Company.	
PAGE 1 OF	1	

1 ILLE OBOLIKANI		Wild (611, 10 2002	
Facility: ARCH		90-2	
Field Personnel: PL, RS	Sample Matrix:	S/W Grab () Com	
SAMPLING INFORMATION:		K Grab () Com	posite
Date/Time 11-16-10 1 1305	Water Level @ Sampling	, Feet:	NA
Method of Sampling: MANGE G	245 Dedicated:	(V) N	
Multi-phased/ layered: () Yes No	If YES: () light	() heavy	
SAMPLING DATA:			
Time Temp. pH Conduct (°C) (std units) (Umhos/cm)	Turb. Other (NTU) (ORP)	Other (
13/0 12.1 7.90 830			
7.61 1781			
INSTRUMENT CHECK DATA:			
Turbidity Serial #:NTU std. =NTU Solutions:	NTU std. =	_NTU	
pH Serial #: 4.0 std.= Solutions:		0.0 std. =	_
Conductivity Serial #:	_umhos/cm=	umhos/cm=_	
GENERAL INFORMATION:			
Weather conditions @ time of sampling:CLou	07 50°P		
Sample Characteristics: CLEA1			·
COMMENTS AND OBSERVATIONS:			
I certify that sampling procedures were in accordance	with all applicable EPA, Sta	ate and Site-Specifi	С
protocals. Date: // //// //O By:	Company:	TAL	
Date: // //// By: /2 /	Company:		

LeachField Form Revision 0 March, 15 2002

Facility: ARC H	· · · · · · · · · · · · · · · · · · ·	Sample Point ID:	90-25	ĺ
Field Personnel:	PL, RS	Sample Matrix:	<u>GO-25</u> <u>S/w</u> () Grab () Co	
SAMPLING INFORMATIO	N:		Grab () Co	mposite
Date/Time <u>//-/6-/</u>	1/320	Water Level @ Samplin	g, Feet:	NA
Method of Sampling:	DIPPAR			
Multi-phased/ layered:	() Yes No	If YES: () light	() heavy	
SAMPLING DATA:				
Time Temp.	pH Conduct (std units) (Umhos/cm)	Turb. Other (NTU) (ORP)	Other ()	,
1325 12.1	7.61 1781			
, 3, 3	7.90 830			
INSTRUMENT CHECK DA	ATA:			·
·	NTU std. =NTU	NTU std =	NTU	
Solutions:			<u></u> .	
pH Serial #:	4.0 std.= 7 04050 ——————————————————————————————————	.0 std.=	10.0 std. =	
Solutions: 4- RTO	04550 7-RT10	0574		
Conductivity Serial #:		umhos/cm=	umhos/cm=	
Solutions: RTO4	1556			
GENERAL INFORMATIO	N:			
Weather conditions @ time	of sampling: Closeo	1,50°F		
Sample Characteristics:	Claga			
COMMENTS AND OBSE	RVATIONS:			·····
I certify that sampling proc protocals.	cedures were in accordance	with all applicable EPA, S	itate and Site-Spec	ific
Date: // //6/10	_ ву:	Company	" TAL	

PAGE 1 OF 1

FIELD OBSERVATION	DIN S	March, 15 2002
Facility: ARCH	Sample Point ID:	95-4
Field Personnel: PL, RS	Sample Matrix:	$\frac{GS-4}{\sqrt{Grab} \ (\) \ Composite}$
SAMPLING INFORMATION:		,
Date/Time 11-16-10 1 1340	Water Level @ Sampling	, Feet:
Method of Sampling: Multi-phased/layered: () Yes No	Bedicated:	YN
Multi-phased/ layered: () Yes No	If YES: () light	() heavy
SAMPLING DATA:		
Time Temp. pH Conduct (°C) (std units) (Umhos/cm)	Turb. Other (NTU) (ORP)	Other ()
1350 10.9 7.78 1728		
INSTRUMENT CHECK DATA:		
Turbidity Serial #:NTU std. =NTU	NTU std. =	_NTU
Solutions:		
pH Serial #: 4.0 std.= 7 Solutions:		0.0 std. =
Conductivity Serial #:	umhos/cm=	umhos/cm=
GENERAL INFORMATION:		
	7,50°F	
COMMENTO AND OBCENTATIONS.		
I certify that sampling procedures were in accordance	with all applicable EPA, Sta	ate and Site-Specific
protocals. Date: // //4/ 10 By: 0	Company:	TAL
Date. 11 11 20 By.	Jonnpany.	
PAGE 1 OF	- 1	

Appendix B

Well Trend Data

BR-103

BR-104

BR-105D

BR-106

BR-113D

BR-116D

BR-117D

BR-118D

BR-122D

BR-123D

BR-127

BR-6A

E-1 / B-11 (B-11 replaced E-1 beginning May 2010)

NESS-E

NESS-W

PW10

PW12 (Formerly BR-101)

PW13

S-3 / B-16 (B-16 replaced S-3 beginning May 2010)

QS-4 (QUARRY SEEP)

QO-2 (QUARRY OUTFALL)

