SURFACE WATER AND GROUNDWATER MONITORING PROGRAM FALL 2011 MONITORING REPORT

ARCH CHEMICALS
ROCHESTER PLANT SITE
ROCHESTER, NEW YORK

ARCH CHEMICALS, INC. (A WHOLLY-OWNED SUBSIDIARY OF LONZA)

FEBRUARY 2012

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM **FALL 2011 MONITORING REPORT**

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

Prepared by

AMEC Environment & Infrastructure, Inc. Portland, Maine

for

ARCH CHEMICALS, INC. (A Wholly-Owned Subsidiary of Lonza)

February 2012

3616086023.04

Nelson M. Breton Principal Hydrogeologist

TABLE OF CONTENTS

			<u>Page</u>
Exec	utive Sเ	ummary	1
1.0	Introd	duction	2
2.0	Sam	ole Collection and Analysis	2
	2.1	Groundwater	2
	2.2	Surface Water	2
	2.3	Analytical Procedures	3
	2.4	Quality Control	3
3.0	Analy	rtical Results	4
	3.1	Groundwater	4
		3.1.1 Chloropyridines	4
		3.1.2 Selected VOCs	4
	3.2	Surface Water	5
		3.2.1 Quarry	5
		3.2.2 Quarry Discharge Ditch	5
		3.2.3 Barge Canal	5
4.0	Extra	ction System Performance and Maintena	ance 6
5.0	Next	Monitoring Event	6

APPENDICES

Appendix A Groundwater Field Sampling Data Sheets

Appendix B Well Trend Data

LIST OF FIGURES

		Prepared By:	Checked By:
Figure 1	Off-Site Groundwater Monitoring Well Locations	103	NMB
Figure 2	On-Site Monitoring Well Locations	163	~ws
Figure 3	Fall 2011 Overburden Groundwater Interpreted Piezometric Contours	MW	M
Figure 4	Fall 2011 Bedrock Groundwater Interpreted Piezometric Contours	MW	NWB
Figure 5	Fall 2011 Deep Bedrock Groundwater Interpreted Piezometric Contours	m)w	NMB
Figure 6	Sample Locations - Erie Barge Canal	<u> </u>	NWB
Figure 7	Sample Locations – Dolomite Products Quarry	<u> 108</u>	_AND
Figure 8	Fall 2011 Selected Chloropyridine Concentration Contours for Groundwater	DAW	NWB
Figure 9	Fall 2011 Selected Volatile Organic Compound Concentration Contours for Groundwater	OBW	MMB

LIST OF TABLES

		Prepared By:	Checked By:
Table 1	Fall 2011 Sampling and Analytical Program	BUS	103
Table 2	Fall 2011 Groundwater Monitoring Results – Chloropyridines	BIS	153
Table 3	Fall 2011 Groundwater Monitoring Results – Volatile Organic Compounds	BJS	153
Table 4	Comparison of Fall 2011 Chloropyridines and Volatile Organic Concentrations in Groundwater to Previous Results	BJS	
Table 5	Fall 2011 Canal/Quarry Monitoring Results	BJS	103
Table 6	Extraction Well Weekly Flow Measurements – June 2011 through November 2011	1503	NWB
Table 7	Mass Removal Summary, Period: June 2011 – November 2011	KB	NMB
Table 8	2012 Sampling Schedule	158	Muß

EXECUTIVE SUMMARY

This monitoring report presents the results of an on-going groundwater and surface water monitoring program being conducted by Arch Chemicals at its Rochester, New York, manufacturing facility. Arch Chemicals is now a wholly-owned subsidiary of Lonza, a leading supplier to the global life sciences, healthcare and pharmaceutical industries headquartered in Basel, Switzerland.

During this monitoring event conducted in November 2011, samples from a total of 27 groundwater monitoring or pumping wells and four locations associated with the Dolomite Products Quarry seep and outfall were collected and analyzed by TestAmerica in Amherst, New York.

As in prior reports, monitoring results were compared with previous average concentrations at each sampling location. Nineteen of the 27 monitoring wells sampled for chloropyridines had contaminant concentrations that were at or below their respective 5-year prior averages. Twenty-two of the 25 monitoring wells sampled for volatile organic compounds had concentrations at or below their 5-year prior average. Contaminant contour plots are generally consistent with past observations.

Sampling locations associated with the quarry included the main quarry seep (QS-4), the quarry ditch where the quarry dewatering discharge enters the ditch (QD-1), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1). Chloropyridine concentrations in quarry seep QS-4 were below the prior 5-year average for this location. Chloropyridines were detected in the two ditch samples at concentrations slightly above the prior 5-year averages for those locations, but were not detected in the canal water at sample location QO2-S1.

All accessible on-site monitoring wells were checked for the presence of dense non-aqueous phase liquids (DNAPL) and floating (or light) NAPL (LNAPL), using an interface probe. No DNAPL or LNAPL was observed in any of these wells.

During the period June 2011 through November 2011, the on-site groundwater extraction system pumped approximately 7.8 million gallons of groundwater to the on-site treatment system, containing an estimated 712 pounds of chloropyridines and 24 pounds of target volatile organic compounds. In general, system operation was quite stable throughout the monitoring period.

The next regular monitoring event will occur in May 2012 and will include groundwater, surface water, and seep sampling.

1.0 INTRODUCTION

In accordance with the Order on Consent executed between Arch Chemicals, Inc., and the New York State Department of Environmental Conservation (NYSDEC), effective August 21, 2003, Arch is conducting a Remedial Action program at its facility on McKee Road in Rochester, New York. As part of this program, Arch conducts twice-yearly monitoring events consisting of sampling and chemical analysis of groundwater and surface water in the vicinity of the Rochester facility.

The Fall 2011 sampling event included the collection and analysis of a total of 31 groundwater, surface water, and seep samples from off-site and on-site locations. Samples were collected November 17 through 22, 2011, for analysis of selected chloropyridines and volatile organic compounds (VOCs).

This report presents the results of the Fall 2011 monitoring event.

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 GROUNDWATER

Groundwater samples were collected from off-site wells, on-site wells and piezometers for analysis of selected chloropyridines (2-chloropyridine, 2,6-dichloropyridine, 3-chloropyridine, 4-chloropyridine, pyridine, and p-fluoroaniline) and target compound list (TCL) VOCs. Samples were collected by personnel from Test America Laboratories, Inc., (TestAmerica) and transported to their lab in Amherst, New York for analysis. Table 1 lists the wells that were sampled and the requested analyses. The off-site and on-site locations of these sampling points are shown in Figures 1 and 2, respectively. Groundwater sampling data sheets are provided in Appendix A.

Groundwater was collected with the low flow/low stress purging technique from most of the wells using bladder or peristaltic pumps. Samples from active pumping wells were collected from the discharge lines.

Groundwater piezometric elevations were measured on November 17, 2011. Piezometric contour maps were constructed for each water-bearing zone (overburden, bedrock, and deep bedrock) and are presented in Figures 3, 4, and 5.

All accessible on-site monitoring wells were again checked for the presence of non-aqueous phase liquid (NAPL), using an interface probe. No dense NAPL (DNAPL) or floating (light) NAPL (LNAPL) was observed in any of these wells.

2.2 SURFACE WATER

Surface water and quarry seep samples were collected as part of the on-going monitoring program for the Arch Rochester site. The location of the quarry and its outfall in relation to the site is shown on Figure 6. Samples of the main quarry seep (QS-4), the quarry ditch where the quarry dewatering discharge enters the ditch (QD-1), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet

downstream of the quarry ditch (QO-2S1) were collected by TestAmerica on November 17, 2011. All quarry-related samples were analyzed for the Arch suite of selected chloropyridines. The quarry locations sampled during the Fall 2011 event are shown on Figure 7.

2.3 ANALYTICAL PROCEDURES

The analytical procedures, data review findings, and validated data for this groundwater and surface water monitoring event are discussed in the following paragraphs.

Samples were analyzed for the Arch suite of selected chloropyridines and TCL VOCs by USEPA SW-846 Methods 8270C and 8260B, respectively. The reporting limits for the chloropyridines and VOCs are approximately 10 micrograms per liter (μ g/L) and 5 to 25 μ g/L, respectively, for undiluted samples.

2.4 QUALITY CONTROL

All laboratory analytical results were reviewed and qualified following U.S. Environmental Protection Agency Contract Laboratory Program (USEPA CLP), "National Functional Guidelines for Organic Data Review", June, 2008, as modified by USEPA Region II, "SOP No. HW-6 Revision 14", September 2006. Analytical results were evaluated for the following parameters:

- Collection and Preservation
 - Holding Times
- * Surrogate Recoveries
- * Blank Contamination
- * Duplicates
- * Laboratory Control Samples
- Matrix Spike/Matrix Spike Duplicates
 Miscellaneous

With the qualifications discussed below, results are determined to be usable as reported by the laboratory.

<u>Holding Times</u>. Samples BR-6A and PZ-106 were initially analyzed for volatile organics within the holding times; however, the samples were analyzed at unnecessarily high dilutions that effectively diluted out reportable compounds. The samples were reanalyzed at lower dilutions 11 days after collection. Since all containers of both samples were found to be unpreserved upon receipt by the laboratory, a 7 day holding time was required. The reanalyses at proper dilutions occurred 4 days after expiration of the 7 day holding time for unpreserved samples. Positive and non-detected results for BR-6A and PZ-106 were qualified as estimated (J/UJ).

<u>Miscellaneous</u>. Samples from 24 of the wells were analyzed at dilutions due to high concentrations of volatile organic and/or semivolatile organic target analytes. Non-detects are reported at elevated reporting limits.

^{* -} all criteria were met for this parameter

3.0 ANALYTICAL RESULTS

3.1 GROUNDWATER

The validated results from the Fall 2011 groundwater monitoring event are provided in Tables 2 and 3. Table 4 provides a comparison of the Fall 2011 analytical results for selected chloropyridines and VOCs in representative wells to mean concentrations of the prior five years (Fall 2006 through Spring 2011). Long term trends for both selected chloropyridines and VOCs are also presented as time-series plots for representative wells in Appendix B. A summary of the analytical findings is presented below by parameter class.

3.1.1 Chloropyridines

<u>On-Site.</u> Chloropyridines were detected above sample quantitation limits in all 16 on-site wells sampled in the Fall 2011 event. Concentrations of chloropyridines ranged from 44 micrograms per liter (μg/L) (sum of all chloropyridine and pyridine isomer concentrations) in pumping well BR-9, to 140,000 μg/L in well PW-10. Five of the 16 on-site wells exhibited total chloropyridine concentrations that were above their respective means from monitoring events over the previous five years (BR-6A, PW-10, PW-13, PW-16, and PZ-105).

<u>Off-Site.</u> Chloropyridines were detected above sample quantitation limits in all 11 off-site wells that were sampled. Concentrations of total selected chloropyridines ranged from 10 μg/L in well MW-16 on the former General Circuits property, to 15,000 μg/L in well PZ-103 located on the west side of McKee Road opposite pumping well PW-13. Three of the 11 off-site wells contained total chloropyridine concentrations above their respective 5-year prior means (MW-16, PZ-102, and PZ-103).

<u>Concentration Contours</u>. Chloropyridine distribution in groundwater is shown as a set of concentration contours on Figure 8. The contours were developed using data from both overburden and bedrock monitoring wells. Contours are approximated (shown as dashed lines) where they are based on data from previous sampling rounds.

3.1.2 Selected VOCs.

On-Site. Selected VOCs were detected in 13 of the 16 on-site wells sampled in the Fall 2011 event. Total concentrations of selected VOCs ranged from not detected (in wells MW-127, PW-13, and PW-16) to 170,000 µg/L in PZ-106 for the sum of the principal siterelated contaminants (carbon tetrachloride. chloroform. methylene tetrachloroethene, and trichloroethene). Two of the 16 on-site wells (PW-10 and PW-12) contained concentrations of total VOCs above their 5-year prior means. At well PZ-107, the pronounced spike in VOC concentrations observed in late 2009 and early 2010 appears to be resolving, as concentrations have now declined significantly in the past three sampling events. A similar spike is now being observed in VOC concentrations at PW-12, and is believed to be caused by shifts in groundwater flow patterns as a result of the activation of new pumping well PW-16 in September 2010. Continued monitoring of PW-12 will confirm whether this increase is also transient in nature.

In addition to the selected VOCs, other notable constituents detected in on-site wells include toluene (in 12 out of 16 wells), chlorobenzene (11 of 16), benzene (11 of 16), carbon disulfide (11 of 16), 1,2-dichloroethene (9 of 16), vinyl chloride (6 of 16), total xylenes (4 of 16), ethylbenzene (3 of 16), bromoform (3 of 16), 1,1-dichloroethane (3 of 16), and acetone (2 of 16).

<u>Off-Site.</u> Selected VOCs were detected in three of the 10 off-site wells sampled for VOCs in the Fall 2011 event. Total concentrations of selected VOCs ranged from not detected (in BR-105, BR-106, BR-126, MW-106, PZ-102, PZ-103, and PZ-104) to 3 μ g/L (in PZ-101). Only one of the 10 off-site wells (PZ-101) had selected VOC concentrations above its prior 5-year mean. In addition to the selected VOCs, other notable constituents detected in off-site wells include chlorobenzene (in all 10 wells), benzene (9 of 10), 1,1-dichloroethane (3 of 10), 1,2-dichloroethene (2 of 10), vinyl chloride (2 of 10), and carbon disulfide (2 of 10).

<u>Concentration Contours</u>. The distribution of selected VOCs in groundwater is shown as a set of concentration contours on Figure 9. These contours were developed using both overburden and bedrock groundwater data, and are dashed where approximated using data from previous sampling rounds.

3.2 SURFACE WATER

Results from the Fall 2011 canal and quarry monitoring event are presented in Table 5, and summarized below.

3.2.1 Quarry

One quarry seep (QS-4) was sampled in the Fall 2011 monitoring event. The sample contained 120 µg/L total chloropyridines, which is below its prior 5-year mean.

3.2.2 Quarry Discharge Ditch

Two locations within the quarry discharge ditch were sampled and analyzed for chloropyridines: QD-1, at the point where the quarry's dewatering discharge enters the ditch; and QO-2, at the location where the ditch discharges to the canal. Chloropyridine-related compounds were detected in the two samples at 7.7 μ g/L and 7.2 μ g/L, respectively. These results are slightly above the prior 5-year means for those two locations.

3.2.3 Barge Canal

One sample was collected from the Erie Barge Canal location (QO-2S1, approximately 100 feet downstream of QO-2). Chloropyridines were not detected in this sample.

4.0 EXTRACTION SYSTEM PERFORMANCE AND MAINTENANCE

Table 6 is a summary of the system flow measurements for the on-site extraction wells from June 2011 through November 2011. The total volume pumped during the six-month period was approximately 7.8 million gallons. In general, system operation was quite stable throughout the monitoring period.

Table 7 provides a calculation of mass removal rates since the previous groundwater monitoring event (i.e., from June 2011 through November 2011). Arch estimates that approximately 24 pounds of target VOCs and 712 pounds of chloropyridine compounds were removed by the groundwater extraction system and treated by the plant's activated carbon adsorption units over that time period.

Maintenance activity during this reporting period included pump and/or meter repairs at wells BR-7A, BR-9, PW-16 and BR-127.

5.0 NEXT MONITORING EVENT

The next regular monitoring event will occur in May 2012 and will include groundwater, surface water, and seep sampling.

Table 8 shows the current monitoring program for the Arch Rochester site.

ocument:\\pld2-fs1\Projects\Arch\Rochester\GIS\MapDocuments\Fall 2011\Arch_VOCs_Fig9.mxd PDF: P:\Projects\Arch\Rochester\GIS\Figures\Monitoring_Fall2011\Figure 9.pdf 2/3/2012 10:39 AM don.wildes

TABLE 1 FALL 2011 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM

ARCH CHEMICALS, INC ROCHESTER, NEW YORK

			ANALYSIS	Chloropyridines	Selected VOCs
SITE / AREA	WELL / POINT	Sample Date	QC TYPE	Sampled	Sampled
AID TO HOSPITALS	BR-106	11/18/2011	Sample	X	X
	MW-106	11/18/2011	Sample	Χ	Х
	PZ-101	11/22/2011	Sample	Χ	Х
	PZ-102	11/22/2011	Sample	Χ	Х
	PZ-103	11/22/2011	Sample	Χ	Х
AMERICAN RECYCLING & MANUF.	B-16	11/22/2011	Sample	Х	Х
58 MCKEE ROAD)	BR-126	11/22/2011	Duplicate	Х	Х
	BR-126	11/22/2011	Sample	Х	Х
	PZ-104	11/18/2011	Sample	Х	Х
ARCH ROCHESTER	B-11	11/18/2011	Sample	Х	Х
	BR-127	11/21/2011	Sample	Х	Х
	BR-5A	11/21/2011	Sample	Х	Х
	BR-6A	11/18/2011	Sample	Χ	Χ
	BR-7A	11/21/2011	Sample	Χ	Χ
	BR-9	11/21/2011	Sample	Х	Х
	MW-127	11/21/2011	Sample	Х	Х
	MW-16	11/17/2011	Sample	Χ	
	PW10	11/18/2011	Sample	Χ	Χ
	PW12	11/21/2011	Sample	Χ	Χ
	PW13	11/21/2011	Sample	Χ	Х
	PW14	11/21/2011	Sample	Χ	Х
	PW15	11/21/2011	Sample	Χ	X
	PW16	11/21/2011	Sample	Χ	X
	PZ-105	11/18/2011	Sample	Χ	Х
	PZ-106	11/18/2011	Sample	Х	Χ
	PZ-107	11/18/2011	Sample	Χ	Χ
OOLOMITE PRODUCTS, INC.	QD-1	11/17/2011	Sample	Χ	
	QS-4	11/17/2011	Sample	Χ	
RIE BARGE CANAL (Samples in canal	QO-2	11/17/2011	Sample	Χ	
or property along canal)	QO-2S1	11/17/2011	Sample	Χ	
RG & E RIGHT OF WAY	BR-105	11/18/2011	Sample	Х	Χ
	BR-105D	11/18/2011	Sample	Χ	Х

Prepared/Date: BJS 01/25/12

Checked/Date: JEB 02/01/12

TABLE 2 FALL 2011 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-11	B-16	BR-105	BR-105D	BR-106	BR-126	BR-126	BR-127	BR-5A	BR-6A
SAMPLE DATE:	11/18/2011	11/22/2011	11/18/2011	11/18/2011	11/18/2011	11/22/2011	11/22/2011	11/21/2011	11/21/2011	11/18/2011
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample	Sample
SELECTED CHLOROPYRIDINES BY										
SW-846 Method 8270C (ua/L)										
2,6-Dichloropyridine	450	390	96	34 J	240	440	410	390	22	1400
2-Chloropyridine	800	360	470	240	990	1400	1400	2600	53	8200
3-Chloropyridine	60 U	47 U	50 U	17 J	100 U	200 U	100 U	120 J	9.4 U	280
4-Chloropyridine	60 U	47 U	50 U	50 U	100 U	200 U	100 U	250 U	9.4 U	100 U
p-Fluoroaniline	60 U	47 U	50 U	13 J	15 J	200 U	100 U	250 U	9.4 U	14 J
Pyridine	150 U	120 U	130 U	130 U	250 U	500 U	250 U	630 U	24 U	10 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

μg/L = micrograms per liter

Page 1 of 3

TABLE 2 FALL 2011 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-7A	BR-9	MW-106	MW-127	MW-16	PW10	PW12	PW13	PW14	PW15
SAMPLE DATE:	11/21/2011	11/21/2011	11/18/2011	11/21/2011	11/17/2011	11/18/2011	11/21/2011	11/21/2011	11/21/2011	11/21/2011
QC TYPE:	Sample									
SELECTED CHLOROPYRIDINES BY										
SW-846 Method 8270C (ua/L)										
2,6-Dichloropyridine	1000 U	11 J	1100	300	2.2 J	14000	110	610 J	330	1500 J
2-Chloropyridine	1700	33 J	2200	42 J	8.1 J	120000	130	5000	1300	24000
3-Chloropyridine	1000 U	47 U	24 J	100 U	9.4 U	5900 J	100 U	1000 U	38 J	5000 U
4-Chloropyridine	1000 U	47 U	100 U	100 U	9.4 U	10000 U	100 U	1000 U	100 U	5000 U
p-Fluoroaniline	1000 U	47 U	88 J	100 U	9.4 U	10000 U	100 U	1000 U	14 J	5000 U
Pyridine	2500 U	120 U	250 U	250 U	24 U	1400 J	250 U	2500 U	31 J	1600 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

μg/L = micrograms per liter

TABLE 2 FALL 2011 GROUNDWATER MONITORING RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PW16	PZ-101	PZ-102	PZ-103	PZ-104	PZ-105	PZ-106	PZ-107
SAMPLE DATE:	11/21/2011	11/22/2011	11/22/2011	11/22/2011	11/18/2011	11/18/2011	11/18/2011	11/18/2011
QC TYPE:	Sample							
SELECTED CHLOROPYRIDINES BY								
SW-846 Method 8270C (ua/L)								
2,6-Dichloropyridine	1700 J	32	450	1500 J	210	1900	1900	740
2-Chloropyridine	13000	54	3200	13000	810	11000	6600	3600
3-Chloropyridine	2500 U	9.5 U	250 U	2500 U	100 U	500 U	1000 U	59 J
4-Chloropyridine	2500 U	9.5 U	250 U	2500 U	100 U	500 U	1000 U	100 U
p-Fluoroaniline	2500 U	1.2 J	250 U	2500 U	100 U	86 J	1000 U	12 J
Pyridine	6300 U	24 U	630 U	6300 U	250 U	1300 U	110 J	20 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

μg/L = micrograms per liter

TABLE 3 FALL 2011 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-11	B-16	BR-105	BR-105D	BR-106	BR-126	BR-126	BR-127	BR-5A	BR-6A
SAMPLE DATE:	11/18/2011	11/22/2011	11/18/2011	11/18/2011	11/18/2011	11/22/2011	11/22/2011	11/21/2011	11/21/2011	11/18/2011
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample
VOCs BY SW-846 Method 8260/5ML										
(μg/L)	ļ									
1,1,1-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
1,1-Dichloroethane	5 U	5 U	0.49 J	2.1 J	0.83 J	5 U	5 U	5 U	5 U	2 UJ
1,1-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
1,2,4-Trimethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
1,2-Dichloroethene (total)	10 U	10 U	33	8 J	10 U	10 U	10 U	7.3 J	4.4 J	8.4 J
1,2-Dichloropropane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
1,3,5-Trimethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
2-Butanone	25 U	20 UJ								
2-Hexanone	25 U	10 UJ								
4-Methyl-2-pentanone	25 U	10 UJ								
Acetone	25 U	20 UJ								
Benzene	5 U	0.47 J	1.4 J	4.8 J	4 J	2.7 J	2.4 J	2.4 J	4 J	2.5 J
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
Bromoform	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
Bromomethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
Carbon disulfide	5 U	5 U	5 U	0.54 J	5 U	5 U	5 U	1.6 J	1.2 J	2 UJ
Carbon tetrachloride	7	0.45 J	5 U	5 U	5 U	0.43 J	5 U	3.4 J	5 U	2 UJ
Chlorobenzene	5 U	5.6	4.2 J	1.5 J	43	6.8	6.4	3.7 J	14	6.4 J
Chlorodibromomethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
Chloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
Chloroform	66	5 U	5 U	1.8 J	5 U	5 U	5 U	3.1 J	5 U	140 J
Chloromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	7.5 J
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
Ethyl benzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.1 J	5 U	2 UJ
Methylene chloride	9.1	5 U	5 U	1.1 J	5 U	5 U	5 U	5 U	5 U	13 J
Styrene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
Tetrachloroethene	4.4 J	0.45 J	5 U	5 U	5 U	5 U	5 U	1.7 J	5 U	7.5 J
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.5 J	1.6 J	14 J
trans-1,3-Dichloropropene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 UJ
Trichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	3.3 J	0.53 J	14 J
Vinyl acetate	25 U	10 UJ								
Vinyl chloride	5 U	5 U	17	5 U	2.2 J	5 U	5 U	5.7	5 U	13 J
Xylenes, Total	15 U	1.2 J	15 U	4 UJ						

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

 μ g/L = micrograms per liter

TABLE 3 FALL 2011 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-7A	BR-9	MW-106	MW-127	PW10	PW12	PW13	PW14	PW15	PW16
SAMPLE DATE:	11/21/2011	11/21/2011	11/18/2011	11/21/2011	11/18/2011	11/21/2011	11/21/2011	11/21/2011	11/21/2011	11/21/2011
QC TYPE:	Sample									
VOCs BY SW-846 Method 8260/5ML	•					•				
(μg/L)										l
1,1,1-Trichloroethane	5 U	2.2 J	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
1,1-Dichloroethane	2.4 J	12	5 U	5 U	20 U	500 U	2.1	8 U	50 U	5 U
1,1-Dichloroethene	5 U	2.7 J	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
1,2,4-Trimethylbenzene	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	0.86 J
1,2-Dichloroethane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	4 J
1,2-Dichloroethene (total)	1.6 J	270	10 U	10 U	40 U	1000 U	4.1	20	100 U	0.92 J
1,2-Dichloropropane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
1,3,5-Trimethylbenzene	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
2-Butanone	25 U	25 U	25 U	25 U	200 U	2500 U	20 U	80 U	500 U	25 U
2-Hexanone	25 U	25 U	25 U	25 U	100 U	2500 U	10 U	40 U	250 U	25 U
4-Methyl-2-pentanone	25 U	25 U	25 U	25 U	100 U	2500 U	10 U	40 U	250 U	25 U
Acetone	25 U	4.5 J	25 U	25 U	160 J	2500 U	20 U	80 U	500 U	25 U
Benzene	5	59	9.2	5 U	26	500 U	8.4	6.2 J	47 J	16
Bromodichloromethane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
Bromoform	5 U	5 U	5 U	5 U	43	500 U	2 U	7.5 J	50 U	5 U
Bromomethane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
Carbon disulfide	7.9	0.98 J	5 U	5 U	32	1900	2 U	1500	230	0.98 J
Carbon tetrachloride	3.2 J	5 U	5 U	5 U	20 U	14000	2 U	2600	140	5 U
Chlorobenzene	96	5.5	120	5 U	120	1400	170	8 U	77	890
Chlorodibromomethane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
Chloroethane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
Chloroform	5	5 U	5 U	5 U	1700	19000	2 U	13000	2900	5 U
Chloromethane	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
cis-1,3-Dichloropropene	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
Ethyl benzene	5 U	2.3 J	5 U	5 U	20 U	180 J	2 U	8 U	50 U	5 U
Methylene chloride	5.2	5 U	5 U	5 U	880	320 J	2 U	1600	140	5 U
Styrene	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
Tetrachloroethene	0.69 J	5 U	5 U	5 U	390	490 J	2 U	97	490	5 U
Toluene	0.69 J	2 J	5 U	5 U	170	1700	1.5 J	9.9	210	8.4
trans-1,3-Dichloropropene	5 U	5 U	5 U	5 U	20 U	500 U	2 U	8 U	50 U	5 U
Trichloroethene	0.74 J	2.6 J	5 U	5 U	24	500 U	2 U	31	47 J	5 U
Vinyl acetate	25 U	25 U	25 U	25 U	100 U	2500 U	10 U	40 U	250 U	25 U
Vinyl chloride	5.4	190	5 U	5 U	20 U	500 U	11	28	50 U	5 U
Xylenes, Total	15 U	2.3 J	15 U	15 U	40 U	1100 J	4 U	16 U	100 U	3.2 J

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

μg/L = micrograms per liter

TABLE 3 FALL 2011 GROUNDWATER MONITORING RESULTS VOLATILE ORGANIC COMPOUNDS

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-101	PZ-102	PZ-103	PZ-104	PZ-105	PZ-106	PZ-107
SAMPLE DATE:	11/22/2011	11/22/2011	11/22/2011	11/18/2011	11/18/2011	11/18/2011	11/18/2011
QC TYPE:	Sample						
VOCs BY SW-846 Method 8260/5ML		·	•	·		•	·
(μg/L)							
1,1,1-Trichloroethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
1,1,2,2-Tetrachloroethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
1,1,2-Trichloroethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
1,1-Dichloroethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
1,1-Dichloroethene	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
1,2,4-Trimethylbenzene	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
1,2-Dichloroethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
1,2-Dichloroethene (total)	10 U	50 U	100 U	10 U	1.1 J	4000 UJ	1000 U
1,2-Dichloropropane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
1,3,5-Trimethylbenzene	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
2-Butanone	25 U	130 U	250 U	25 U	25 U	20000 UJ	2500 U
2-Hexanone	25 U	130 U	250 U	25 U	25 U	10000 UJ	2500 U
4-Methyl-2-pentanone	25 U	130 U	250 U	25 U	25 U	10000 UJ	2500 U
Acetone	4.2 J	130 U	250 U	25 U	25 U	20000 UJ	2500 U
Benzene	5 U	18 J	35 J	1.1 J	15	2000 UJ	500 U
Bromodichloromethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Bromoform	5 U	25 U	50 U	5 U	5 U	970 J	500 U
Bromomethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Carbon disulfide	5 U	25 U	5.2 J	5 U	2.2 J	39000 J	500 U
Carbon tetrachloride	1.6 J	25 U	50 U	5 U	5 U	21000 J	780
Chlorobenzene	2.1 J	310	1500	3.4 J	57	2000 UJ	500 U
Chlorodibromomethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Chloroethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Chloroform	0.88 J	25 U	50 U	5 U	0.65 J	140000 J	6400
Chloromethane	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
cis-1,3-Dichloropropene	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Ethyl benzene	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Methylene chloride	5 U	25 U	50 U	5 U	5 U	5900 J	1200
Styrene	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Tetrachloroethene	5 U	25 U	50 U	5 U	5 U	1500 J	280 J
Toluene	0.75 J	25 U	50 U	5 U	1.8 J	2000 UJ	500 U
trans-1,3-Dichloropropene	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Trichloroethene	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Vinyl acetate	25 U	130 U	250 U	25 U	25 U	10000 UJ	2500 U
Vinyl chloride	5 U	25 U	50 U	5 U	5 U	2000 UJ	500 U
Xylenes, Total	15 U	75 U	150 U	15 U	15 U	4000 UJ	1500 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

μg/L = micrograms per liter

TABLE 4 COMPARISON OF FALL 2011 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT

WELL	SELECTE	CHLOROPYR	IDINES		SEI	ECTED VOC	<u> </u>	
	# EVENTS IN	HISTORIC	5-YEAR	NOV-2011	# EVENTS IN	HISTORIC	5-YEAR	NOV-2011
	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT
ON-SITE V	<u> </u>	NS						
B-11	3	4,800	2,000	1,300	3	570	200	87
B-17	5	28,000,000	560,000	•	5	350,000	15,000	
B-7	5	9,100	820		5	260	36	
BR-127	10	29,000	8,400	3,100	10	1,300	230	12
BR-3	5	6,500,000	78,000		5	920,000	100,000	
BR-5A	10	1,700	230	75	10	9,400	8.3	0.5
BR-6A	10	140,000	8,000	9,900	10	26,000	240	170
BR-7A	10	510,000	29,000	1,700	10	3,000	81	15
BR-8	5	120,000	25,000		5	6,900	11	
BR-9	10	720	120	44	10	160	3.7	3
E-3	5	600	160		5	12,000	42	
MW-127	10	15,000	6,300	340	10	7,500	1,300	ND
PW10	10	240,000	67,000	140,000	10	120,000	1,800	3,000
PW12	10	15,000	2,200	240	10	120,000	500	34,000
PW13	10	7,500	2,500	5,600	10	920	98	ND
PW14	10	29,000	17,000	1,700	10	160,000	19,000	17,000
PW15	9	730,000	190,000	27,000	9	8,200	6,000	3,700
PW16	2	24,000	13,000	15,000	2	ND	ND	ND
PZ-105	10	190,000	12,000	13,000	10	9,700	67	1
PZ-106	10	120,000	66,000	8,600	10	1,400,000	370,000	170,000
PZ-107	10	11,000	9,100	4,400	10	89,000	19,000	8,700
OFF-SITE	WELLS/LOCATI	ONS						
B-16	3	33,000	820	750	3	4,500	3	0.9
BR-103	5	400	11		5	38	7.6	
BR-104	5	3,100	6.4			9		
BR-105	10	24,000	830	570	10	310	2.9	ND
BR-105D	10	10,000	400	300	10	230	3.7	2.9
BR-106	10	25,000	4,000	1,200	10	6,300	0.062	ND
BR-108	5	1,700	19			ND		
BR-112D	5	310	47			4.3		
BR-113D	5	490	28			2.8		
BR-114	5	520	100		5	12	0.10	
BR-116	5	12	ND			84		
BR-116D	5	710	41			120		
BR-117D	5	80	5.3			1.9		
BR-118D	5	330	54	•		6.6		
BR-122D	5	650	150	•		ND		
BR-123D	5	860	58			4		
BR-126	9	12,000	3,400	1,800	9	230	25	ND
MW-103	5	97	20		5	750	17	
MW-104	5	180	4			1		

TABLE 4 COMPARISON OF FALL 2011 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT

WELL	SELECTE	LECTED VOC	S					
	# EVENTS IN	HISTORIC	5-YEAR	NOV-2011	# EVENTS IN	HISTORIC	5-YEAR	NOV-2011
	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT	PRIOR 5 YRS	MAXIMUM	MEAN	RESULT
MW-106	10	130,000	6,200	3,400	10	450	0.32	ND
MW-114	5	18	ND		5	27	23	
MW-16	5	360	7.6	10		8		
NESS-E	5	5,000	61			700		
NESS-W	5	2,100	ND			89		
PZ-101	10	27,000	140	87	10	6.1	0.32	3
PZ-102	10	58,000	1,600	3,700	10	10,000	2.4	ND
PZ-103	10	73,000	7,500	15,000	10	44,000	4.8	ND
PZ-104	10	9,100	2,000	1,000	10	40	0.14	ND
QD-1	8	11	4.7	7.7		ND		
QO-2	11	380	6.9	7.2		ND		·
QO-2S1	11	27	2.4	ND		ND		
QS-4	11	3,400	170	120		ND		

Note:

- 1) Number of samples and mean reflect 5-year sampling period from November 2006 through June 2011. Historic maximum based on all available results from March 1990 through June 2011.
- 2) Chloropyridines represented by: 2-Chloropyridine, 2,6-Dichloropyridine, 3-Chloropyridine, 4-Chloropyridine, p-Fluoroaniline, and Pyridine.
- 3) Selected VOCs represented by Carbon Tetrachloride, Chloroform, Methylene Chloride, Tetrachloroethene, and Trichloroethene.
- 4) Bold and shade November 2011 exceeds 5-year mean.
- 5) ND = Not detected
- 6) BLANK = Not sampled

TABLE 5 FALL 2011 QUARRY SEEP AND OUTFALL WATER SAMPLE RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	QS-4	QO-2	QO-2S1	QD-1
SAMPLE DATE:	11/17/2011	11/17/2011	11/17/2011	11/17/2011
QC TYPE:	Sample	Sample	Sample	Sample
SELECTED CHLOROPYRIDINES BY SW-846 Method				
8270C (μg/L)				
2,6-Dichloropyridine	31	3.2 J	9.4 U	3.4 J
2-Chloropyridine	86	4 J	9.4 U	4.3 J
3-Chloropyridine	9.6 U	9.4 U	9.4 U	9.4 U
4-Chloropyridine	9.6 U	9.4 U	9.4 U	9.4 U
p-Fluoroaniline	9.6 U	9.4 U	9.4 U	9.4 U
Pyridine	24 U	24 U	24 U	24 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value.

μg/L = micrograms per liter

Prepared/Date: BJS 01/26/12

Checked/Date: JEB 02/01/12

TABLE 6 EXTRACTION WELL WEEKLY FLOW MEASUREMENTS - JUNE 2011 THROUGH NOVEMBER 2011

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

Week Ending	BR-5A [Gal./Wk.]	BR-7A [Gal./Wk.]	BR-9 [Gal./Wk.]	PW-13 [Gal./Wk.]	PW-14 *** [Gal./Wk.]	PW-15 [Gal./Wk.]	PW-16 [Gal./Wk.]	BR-127 [Gal./Wk.]	Total [Gal.]
Jun '11	-	-	-	-	-		-	-	
06/05/11	20,516	54,982	97,934	60,547	1,099	26,195	45,085	25,020	331,378
06/12/11	18,590	62,719	70,045	61,867	1,083	24,689	46,276	23,422	308,691
06/19/11	17,534	68,570	48,701 **	65,376	1,122	23,730	37,466	16,695 **	279,194
06/26/11	17,451	61,710	64,842	62,966	1,127	22,644	44,409	22,472	297,621
								Total [Gal.]	<u>1,216,884</u>
Jul '11									
07/03/11	17,699	63,927	61,035	59,981	1,159	21,059	41,785	24,099	290,744
07/10/11	15,843	67,909	62,967	65,247	1,144	22,381	44,602	25,301	305,394
07/17/11	15,365	68,255	62,431	66,312	1,162	21,711	45,673	24,850	305,759
07/24/11	15,105	67,806	60,151	64,203	1,136	20,333	44,100	23,197	296,031
07/31/11	15,364	62,497	62,855	60,954	1,012	18,194	41,370	23,048	285,294
								Total [Gal.]	<u>1,483,222</u>
Aug '11									
08/07/11	18,195	69,257	67,397	65,427	1,051	19,241	44,113	24,295	308,976
08/14/11	19,065	70,448	68,046	65,781	1,022	19,442	45,278	24,179	313,261
08/21/11	18,670	61,792	57,246	51,994	1,256	18,689	38,293	18,977	266,917
08/28/11	22,409	70,115	64,715	62,171	1,307	21,094	44,326	20,609	306,746
								Total [Gal.]	<u>1,195,900</u>
Sep '11									
09/04/11	19,133	69,668	65,217	63,704	1,296	20,936	44,960	20,936	305,850
09/11/11	26,611	67,835	65,042	64,325	1,261	21,443	45,176	21,095	312,788
09/18/11	22,850	68,435	64,680	65,033	1,248	21,339	45,130	20,663	309,378
09/25/11	23,081	67,683	64,618	65,409	1,225	20,491	44,885	20,021	307,413
								Total [Gal.]	<u>1,235,429</u>
Oct '11									
10/02/11	23,103	66,391	68,314	65,210	1,219	20,053	44,263	19,195	307,748
10/09/11	24,884	66,765	63,349	66,409	1,294	20,704	43,952	18,359	305,716
10/16/11	23,928	65,939	63,028	66,256	1,264	20,050	43,570	17,424	301,459
10/23/11	24,462	68,155	64,441	69,219	1,354	20,315	44,679	17,090	309,715
10/30/11	23,779	66,751	62,560	68,312	1,350	19,997	43,048	16,423 Total [Gal.]	302,220 1,526,858
Nov '11									_
11/06/11	22,279	63,729	61,378	67,270	1,297	19,931	43,432	17,847	297,163
11/13/11	19,831	65,116	62,609	68,808	1,289	20,271	43,752	17,900	299,576
11/20/11	15,844	58,184 **	,	66,650	1,474	17,673	42,366	21,875	286,464
11/27/11	13,846	66,912	63,321	67,999	1,212	16,641	45,004	22,433	297,368
								Total [Gal.]	<u>1,180,571</u>
Total 6 Mo.									
Removal		I . =		I	1	1	1	T = 4= :	
(Gal.)	515,437	1,711,550	1,679,320	1,677,430	31,463	539,246	1,136,993	547,425	7,838,864

Notes:

- Flow rate is estimated due to a meter failure or reading error
 Flow rate adversely affected by pump failure, pluggage in discharge line, or other maintenance activity
 Well yield at PW-14 has been minimal through 2010 2011. An attempt to rehab the well by physical and chemical cleaning in October 2010 failed to increase yield.

TABLE 7

MASS REMOVAL SUMMARY PERIOD: JUNE 2011 - NOVEMBER 2011

ARCH ROCHESTER FALL 2011 GROUNDWATER MONITORING REPORT

Well	Total Vol. Pumped (gallons)	Avg. VOC Conc. (ppm)	Avg. PYR. Conc. (ppm)	VOCs Removed (pounds)	PYR. Removed (pounds)
BR-5A	515,400	0.001	0.11	0.00	0.5
BR-7A	1,711,600	0.010	6.0	0.15	86
BR-9	1,679,300	0.003	0.10	0.04	1.3
PW-13	1,677,400	0	6.4	0	89
PW-14	31,500	22	3.3	5.8	0.9
PW-15	539,200	3.9	71	18	318
PW-16	1,137,000	0	19.2	0	182
BR-127	547,400	0.033	7.7	0.2	35
Totals:	7,838,800			24	712

Note: VOC and pyridine concentrations used in this table are an average of the analytical results from the Spring 2011 and Fall 2011 sampling events for each well

Prepared/Date: JEB 02/01/12 Checked/Date: NMB 02/01/12

TABLE 8 2012 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

MONITORING PROC			ARCH ROCHESTER						012			
T	MONITORING PROGRAM					SPRING		FALL		TOTAL		
	<u> </u>				I	+						
	Well	zone	area	Frequency/Parameters	Purpose	Pyridines	VOCs	Pyridines	VOCs	Pyridines	VOCs	
OFF-SITE M	/W-103	OB	BRBC	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1	
MONITORING B	3R-103	BR	BRBC	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1	
	ЛW-104	ОВ		annual monitoring, PYR	trend monitoring	1				1	0	
	3R-104	BR		annual monitoring, PYR	trend monitoring	1				1	0	
	3R-105	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	3R-105D	BR deep	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	/W-106	OB	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	3R-106 3R-108	BR BR	AID-HOSP AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	3R-112D	BR deep	NYSDOT	annual monitoring, PYR annual monitoring, PYR	trend monitoring trend monitoring	1				1	0	
	3R-113D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1				1	0	
	лV-113D ЛW-114	OB	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	Ιί	1			1	1	
	3R-114	BR	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1	
	3R-116	BR	PFAUDLER	annual monitoring, PYR	trend monitoring	1				1	0	
	3R-116D	BR deep	PFAUDLER	annual monitoring, PYR	trend monitoring	1				1	0	
В	3R-117D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0	
В	3R-118D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0	
B	3R-122D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0	
В	3R-123D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0	
	NESS-E	BR deep	NESS	annual monitoring, PYR	trend monitoring	1				1	0	
	NESS-W	BR deep	NESS	annual monitoring, PYR	trend monitoring	1				1	0	
	PZ-101	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	PZ-102	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	PZ-103	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	PZ-104	BR BR	ARM ARM	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	3R-126 3-16	OB	ARM	semi-annual monitoring, VOCs & PYR semi-annual monitoring, VOCs & PYR	trend monitoring continue until replaced by trench	1	1	1	1	2	2	
	/W-16	BR		annual monitoring, PYR	trend monitoring		'	1		1	0	
	PZ-107	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
	PZ-106	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2	
	PZ-105	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2	
	3R-127	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2	
В	3R-3	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1	
В	3R-8	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1	
В	3R-9	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2	
	BR-5A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2	
	BR-6A	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2	
	BR-7A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2	
	3-17	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1	
	3-7	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1	١, ١		1	1	
	3-11	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1	1	1	2	2	
	E-3	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	1 2	1 2	
	MW-127	OB			perimeter sentinel/trend monitoring			-		_	. –	
	PW10 PW12	pumping well BR	ON-SITE ON-SITE	semi-annual monitoring, VOCs & PYR semi-annual monitoring, VOCs & PYR	trend monitoring trend monitoring	1	1	1	1 1	2	2	
	PW13	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2	
	PW14	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2	
	PW15	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2	
	PW16	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2	
	QS-4	quarry seep	QUARRY	semi-annual monitoring, PYR	trend monitoring	1		1		2	0	
	QD-1	quarry ditch	DITCH	semi-annual monitoring, PYR	trend monitoring	1		1		2	0	
	QO-2	quarry outfall	DITCH	semi-annual monitoring, PYR	trend monitoring	1		1		2	0	
		canal at outfall	CANAL	semi-annual monitoring, PYR	surface water monitoring	1		1		2	0	
TOTAL SAMPLE	ES			-		52	35	31	26	83	61	

Revised: 02/01/12

Appendix A Groundwater Field Sampling Data Sheets

FIELD REPORT

TestAmerica Laboratories, Inc.

REMEDIAL INVESTIGATION SAMPLING ARCH CHEMICAL ROCHESTER, NEW YORK

FALL 2011 Event

Prepared For:

MacTec, Inc. 511 Congress Street Portland, Maine 04101

Attention: Mr. Nelson Breton

Prepared By:

TEST AMERICA LABORATORIES, INC.

Audubon Business Center 10 Hazelwood Drive Amherst, New York 14228-2298

NY5A5762

Written By:

Reviewed By:

Date:

Roger Senf

1.0 INTRODUCTION

This report describes the sampling of the following points:

- Twenty-seven (27) groundwater samples
- One (1) barge canal sample
- One (2) quarry outfall samples
- One (1) quarry seep/pond sample

These activities were in support of the Phase II Remediation Investigation being conducted at the Arch Chemical facility in Rochester, New York. The samples were collected from November 17-22, 2011 by Test America Laboratories, Inc. (TAL) personnel.

2.0 METHODOLOGIES

2.1 Water Level Measurements

Static water levels in all groundwater wells were measured from the top of the well casing/riser with an electronic water level indicator. All well bottoms were sounded with the weighted steel measuring tape. All measurements were recorded to the nearest hundredth of a foot (0.01 feet). The length of the measuring device which contacted the water was cleaned between wells with a deionized water rinse and paper towel wipe. These data are presented on Sampling Summary Table and Field Observation forms.

2.2 Well Purging

Monitoring wells were evacuated prior to sampling employing one of the following methods:

- Purging three (3) times the standing water volume using precleaned or dedicated 1.25" X
 stainless steel bailers, 2" X 5' polyvinyl chloride bailers, peristaltic pump or QED Low-Flow Bladder pumps.
- 2) Evacuated with the low flow/low stress puring technique using either QED Low-Flow Bladder pumps or a variable rate peristaltic pump.

Wells that were purged of three (3) standing volumes were mainly wells located on or very near the Erie Canal and historically purged with this method prior to sampling. The remaining wells were evacuated with a low flow/low stress purging technique. This technique involves the use of a variable flow rate bladder or peristaltic pump. The pumps were employed to purge the monitoring wells at a flow rate such that drawdown of the water column from static conditions is minimal. Field measurements of pH, specific

conductance, temperature, ORP, dissolved oxygen and turbidity are monitored every 3-5 minutes until stabilization of parameters is realized. Once stabilization has occurred, sampling can be conducted. All purged water was collected into 55-gallon drums for disposal at the on-site wastewater treatment facility. Data pertaining to each evacuation are presented on the Sampling Summary Table and field Observation Forms.

2.3 Surface Water Samples

Surface water samples were collected from one (1) location on the Erie Barge Canal, two (2) outfall sample and one (1) seep location. Sample locations were noted on the Field Forms.

3.0 SAMPLING

3.1 Monitoring Wells

All groundwater wells were sampled using precleaned or dedicated 1.25" X 1.25" X 5' stainless steel bailers, perisaltic pumps or bladder (SamplePro) pumps when low flow purging techniques were used. Each bailer was constructed with teflon, bottom-filling check valve and was assembled without glues or welds. New ¼" poly rope was attached to each bailer. The bailer was slowly lowered into the water column, minimizing agitation and devolatilization. Low density polyethylene (LDPE) tubing was used with both the bladder (QED) and the peristaltic pumps. The bladder pumps were decontaminated between sample locations in accordance with the work plan. Personnel exercised care in all aspects of the sampling to ensure the collection of a representative sample An additional sample container was collected from each well in order to facilitate the measurement of field analytical parameters. Data pertaining to sampling are presented on the Sampling Summary Table and the Field Observation Forms.

3.2 Canal Sampling

When possible, samples were collected directly from the canal into appropriate sample containers. Otherwise, samples were collected with the use of a unique, laboratory-cleaned stainless steel bailer. The bailers were immersed just below the surface and removed. Sample was poured directly into the appropriate container. An additional container was collected to facilitate the measurement of field parameters. Additional data pertaining to these samples is presented in the Sampling Summary Table and Field Observation Forms.

3.3 Seep Sampling

Groundwater samples were collected from a seep at the quarry (QS4) located on Buffalo Road. The samples were collected with the use of a laboratory cleaned stainless steel bucket

and was then poured directly into the appropriate containers. An additional container was collected to facilitate the measurement of field parameters. Data pertaining to this sampling is presented in the Sampling Summary Table and Field Observation Forms.

4.0 SAMPLE CONTAINERS

Monitoring wells and surface water samples requiring analysis for volatile organics were collected into 40 ml glass vials with teflon septa. Samples for semi-volatile and Pyridine analysis were collected into one (1) liter amber glass bottles with teflon-lined caps. All bottles were purchased new and cleaned (Protocol A, 300 series) from Environmental Supply Services. Each container was labeled with the following information:

- Sample Identification (Well/Point I.D.)
- Date
- Project Number
- Sampler's Initials

5.0 FIELD MEASUREMENTS

On-site field measurements were made of each sample's pH, specific conductance and temperature. All measurements were made in accordance with protocols outlined in Methods for Chemical Analysis of Water and Wastes (EPA – 600/4-79-9020). These data were presented on the Sampling Summary Table and Field Observation Forms.

6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

6.1 Trip Blanks

Trip blanks were collected with each sample shipment requiring volatile organic analysis. Each trip blank consisted of two 40 ml glass vials with teflon septa which were filled with deionized water at the TAL laboratory. These blanks were transported to the site, stored with field collected samples and submitted to the TAL facility for analysis.

6.2 Equipment Rinse Blank

Equipment rinse blanks were collected as required by the work plan.

7.0 CHAIN OF CUSTODY

Chain of custody was initiated at the time of sample collection and maintained through delivery to the TAL facility in Amherst, New York. Copies of these documents are included in the analytical report package.

Sampling Summary Table ARCH CHEMICAL

					ARC	ARCH CHEMICAL					
Sample	Sample	Sample	Water	of Well	STD	Spec.	Temp	Turb	ORP	DO	
Point	Date	Time	(f t)	(ft)	Units	ت	(c)	(NTU)	(mv)	(ppm)	Comments
PZ-101	11/22/2011	1025	18.77		6.77	5544	9.3	7.07	-68	0.29	
PZ-102	11/22/2011	1105	17.95		7.07	6450	10.9	2.54	-82	0.73	
PZ-103	11/22/2011	1150	15.99		7.19	5080	11.1	2.48	-149	0.67	
PZ-104	11/18/2011	1210	14.48		7.21	2459	15.1	8.79	-98	0.74	
PZ-105	11/18/2011	1255	11.67		7.33	2048	12.6	10.92	-191	0.80	
PZ-106	11/18/2011	1135	10.81		6.20	5780	12.5	3.98	-112	0.73	
PZ-107	11/18/2011	1340	10.18		7.01	2150	12.1	2.81	-158	0.57	
BR-5A	11/21/2011	1207	17.91		7.54	1788	15.8	8.56	-56		
BR-6A	11/18/2011	1220	12.85		7.75	4760	13.5	13.96	-222	0.45	
BR-7A	11/21/2011	1222	18.97		7.20	2127	13.0	6.39	-111		
BR-9	11/21/2011	1217	24.14		7.09	2134	12.9	195	-65	,	
BR-105	11/18/2011	1320	22.67		7.14	2332	12.2	4.95	-218	0.72	
BR-105D	11/18/2011	1240	26.64		6.92	31150	12.1	3.69	-259	0.53	
BR-106	11/18/2011	1100	21.75		6.99	3270	11.4	3.63	-55	0.36	
BR-126	11/22/2011	1250	9.08		7.33	1027	12.1	9.82	-87	0.34	
BR-127	11/21/2011	1042	8.17		7.26	3681	16.2	2.5	-136		
MW-16	11/17/2011	1400	11.86		7.09	2615	12.2	17.3	-48	0.79	
MW-106	11/18/2011	1140	12.71		6.89	3622	12.5	4.95	-138	0.81	
MW-127	11/21/2011	1030	7.21		7.15	1381	11.5	5.17	42	0.46	
PW-10	11/18/2011	1055	10.28		10.01	15170	12.9	9.93	-228	0.53	
PW-12	11/21/2011	1140	6.83		6.84	6500	12.8	2.06	-118	0.58	
PW-13	11/21/2011	1232	22.30		6.95	3330	14.0	4.88	-126		
PW-14	11/21/2011	1102	22.68		6.97	3125	17.7	30.8	-208		
PW-15	11/21/2011	1113	16.69		7.97	5602	14.4	2.15	-192		
PW-16	11/21/2011	1247	16.68		7.06	4785	14.3	5.43	-90		
B-11	11/18/2011	1403	5.71		7.04	2110	11.2	14.61	-90		
B-16	11/22/2011	1335	6.78		7.30	1215	12.8	5.14	-50	0.78	
QD-1	11/17/2011	1050	NA		8.05	1829	8.8				
QO-2	11/17/2011	1435	NA		8.22	1822	8.3				
QO-2S1	11/17/2011	1450	NA		8.16	651	8.1				
QS-4	11/17/2011	1412	NA		8.07	2124	7.9				

SAMPLE POINT	DATE	DEPTH TO WATER	CASING ELEVATION	GW ELEVATION	TIME	Comments
B-1	11/17/11	8.67		-8.67	1034	NO L-NAPL ; NO D-NAPL
B-10		8.94		-8.94	1003	NO L-NAPL ; NO D-NAPL
B-11		6.02		-6.02	1005	NO L-NAPL ;NO D-NAPL 11.55 BOT.
B-13		12.87		-12.87	1105	
B-14		10.21		-10.21	1110	
B-15		6.73		-6.73	1113	
B-16		6.54		-6.54	1116	NO L-NAPL ;NO D-NAPL 13.20 BOT.
B-17		10.10		-10.10	931	NO L-NAPL ; NO D-NAPL
B-2		9.78		-9.78	1033	NO L-NAPL ; NO D-NAPL
B-4		18.82		-18.82	910	NO L-NAPL ; NO D-NAPL
B-5		16.03		-16.03	907	NO L-NAPL ; NO D-NAPL
B-7		15.43		-15.43	1036	NO L-NAPL ; NO D-NAPL
B-8		10.41		-10.41	958	NO L-NAPL ; NO D-NAPL
BR-1		7.42		-7.42	915	NO L-NAPL ; NO D-NAPL
BR-102		22.79		-22.79	1030	
BR-103		5.20		-5.20	1150	
MW-103		1.82		-1.82	1152	
BR-104		11.09		-11.09	1206	
MW-104		7.52		-7.52	1207	
BR-105		22.34		-22.34	1200	
BR-105D		25.23		-25.23	1201	
MW-105		18.76		-18.76	1202	
BR-106		21.35		-21.35	1156	
MW-106		7.85		-7.85	1155	
BR-108		28.11		-28.11	1213	
MW-108		12.44		-12.44	1214	
BR-111		29.03		-29.03	1251	
BR-111D		28.65		-28.65	1252	
BR-112A		27.71		-27.71	1242	
BR-112D		36.04		-36.04	1244	
BR-113		31.08	3	-31.08	1236	

SAMPLE POINT	DATE	DEPTH TO WATER	CASING ELEVATION	GW ELEVATION	TIME	Comments
BR-113D		31.04		-31.04	1237	
BR-114	11/17/11	14.11		-14.11	1202	
MW-114		10.13		-10.13	1200	
BR-116		29.14		-29.14	1120	
BR-116D		35.23		-35.23	1122	
BR-117		24.00		-24.00	1040	CASCADING WELL
BR-117D		49.42		-49.42	1042	
BR-118		23.68		-23.68	1030	
BR-118D		48.34		-48.34	1032	
BR-122D		44.94		-44.94	1057	
BR-123D		45.15		-45.15	1054	
BR-124D		31.33		-31.33	1050	
BR-126		8.63		-8.63	1102	=
BR-127		8.12			943	NO L-NAPL
MW-127		7.14			944	NO L-NAPL ; NO D-NAPL
BR-2		9.82		-9.82	937	NO L-NAPL ; NO D-NAPL
BR-2A		10.78		-10.78	938	NO L-NAPL ; NO D-NAPL
BR-2D		0.05		-0.05	936	NO L-NAPL ; NO D-NAPL
BR-3		10.06		-10.06	954	NO L-NAPL
BR-3D		56.65		-56.65	952	NO L-NAPL ; NO D-NAPL
BR-4		7.03		-7.03	941	NO L-NAPL
BR-5		11.80		-13.82	920	NO L-NAPL ; NO D-NAPL
BR-5A		17.91		-17.91	922	
BR-6A	1	12.96		-12.96	957	
BR-7		22.96		-22.96	1038	
BR-7A		18.97		-18.97	1039	NO L-NAPL ; NO D-NAPL
BR-8		15.36		-15.36	908	NO L-NAPL ; NO D-NAPL
BR-9		24.14		-24.14	933	NO L-NAPL
C-2A		11.01		-11.01	932	NO L-NAPL ; NO D-NAPL
C-3						BURIED
C-5		11.82	2	-11.82	953	NO L-NAPL ; NO D-NAPL

SAMPLE POINT	DATE	DEPTH TO WATER	CASING ELEVATION	GW ELEVATION	TIME	Comments
E-2		5.98		-5.98	940	NO L-NAPL ; NO D-NAPL
E-3		5.08		-5.08	921	NO L-NAPL ; NO D-NAPL
E-5	11/17/11	6.08		-6.08	925	NO L-NAPL ; NO D-NAPL
EC-1		17.82		-17.82	1258	
EC-2		DRY		#VALUE!	1238	DRY
ERIE CANAL		32.65		-32.65	1300	
MW-16		11.86		-11.86	1135	
MW-3		5.96		-5.96	1222	
MW-G6		4.49		-4.49	1225	
MW-G7						NOT LOCATED
MW-G8		7.28		-7.28	1227	
MW-G9		10.69		-10.69	1230	
N-2		4.89		-4.89	917	NO L-NAPL ; NO D-NAPL
N-3		7.09	ijt.:	-7.09	1035	NO L-NAPL
NESS-E		23.98		-23.98	1212	
NESS-W		31.25		-31.25	1217	
PW-10		10.28		-10.28	932	
PW-11		16.65		-16.65	909	NO L-NAPL
PW-12		6.45		-6.45	925	
PW-13		22.30		-22.30	1046	NO L-NAPL; NO D NAPL
PW-14		17.91		-17.91	947	NO L-NAPL
PW-15		18.51		-18.51	950	NO L-NAPL
PZ-101		18.64		-18.64	1055	
PZ-102		17.67		-17.67	1053	
PZ-103		15.89		-15.89	1050	
PZ-104		14.44		-14.44	1106	
PZ-105		11.21		-11.21	1000	NO L-NAPL ; NO D-NAPL
PZ-106		10.89		-10.89	946	NO L-NAPL ; NO D-NAPL
PZ-107		10.19		-10.19	1002	NO L-NAPL ; NO D-NAPL
PZ-109		10.40		-10.40	951	NO L-NAPL; NO D-NAPL
W-2		11.90		-11.90	1032	NO L-NAPL ; NO D-NAPL

SAMPLE POINT	DATE	DEPTH TO WATER	CASING ELEVATION	GW ELEVATION	TIME	Comments
W-5		6.04		-6.04	1045	NO L-NAPL ; NO D-NAPL
					×	
					<u> </u>	
			=			
				-		
			7			

acility: ARCH	Sample Point ID: P2-10/
Field Personnel: PL, RS, CK	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 11-22-1/ 1 959	Cond of seal: (x) Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	(/ = = = = = = = = = = = = = = = = = = =
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /
PURGE INFORMATION:	
Date / Time Initiated: //-72// / /005	Date / Time Completed: 11.72.1/ 1/02.5
Surf. Meas. Pt: () Prot. Casing (Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 2/69	Method of Well Purge: Perismit!
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: Low Flow	Start Clar Finish Clar
PURGE DATA: (if applicable)	

Time	Purge (gpm		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1010	m/n 1	n (18.91	iv.	9,9	6.61	55-62	8.54	-72	0.33
1015		\$8.85		9.5	6.69	5550	8.64	-70	0,31
1020		18,50		9.4	6.75	5547	7,97	-63	0,30
1025		18,95	7	9.3	6.77	5544	7007	-63	0,29

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: P2-102
Field Personnel: PL, RS, CK	Sample Matrix:
MONITORTING WELL INSPECTION:	
Date/Time 11-22-1/ 1 1043	Cond of seal: () Good () Cracked % () None (>) Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damaged
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 1 1-22-1/ 1 /645	Date / Time Completed: //- 22-// / //6)
Surf. Meas. Pt: () Prot. Casing () Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 3260	Method of Well Purge: Perismul
One (1) Riser Volume, Gal:	Dedicated: (Y) N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: Low Flav	Start Clear Finish Clear
PURGE DATA: (if applicable)	
T: Burne Bete Cumulative Tomp	U Conduct Turb Other Other

Time		Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1050	MYM2 150	WL 18.03		113	6.97	6443	2.82	-75	0,76
1055	11/	1		10,9	7.09	6445	1.97	-80	0.75
1100				11.0	7.07	6447	2.79	-82	0,74
1105	1	1		10.9	7.07	6450	2.54	-82	2,73

(Austral @ 1105/11-21-11

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: PZ_103
Field Personnel: PL, RJ, CK	Sample Matrix: 6W
MONITORTING WELL INSPECTION:	
Date/Time 11-22-11 /107	Cond of seal: () Good () Cracked % () None ⋈ Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged Brown CW
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/ - % LEL: _ / _
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: 11-21/1 /130	Date / Time Completed: //-22-// / //5 0
Surf. Meas. Pt: () Prot. Casing (A) Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 32.52	Method of Well Purge: froisi 4174
One (1) Riser Volume, Gal:	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y / N
Purge Observations: Low Flow	Start BLAM SPULLY Finish BUT SPULLY
PURGE DATA: (if applicable)	9

		(appr							
Time		Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1135	100	16.01	100	11.0	7.10	5079	2.46	-149	0.72
1140		16.13		10.9	7.15	5080	2,50	-149	0.70
1145		16.18		11.0	7.18	5081	2.51	-149	0.68
1150		16.23		111	7:19	5090	2.48	-149	0.67
		5							

SAMU @ 1150 / 11-22.11

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: P2-104
Field Personnel: PL, RS, CK	Sample Matrix:
MONITORTING WELL INSPECTION:	
Date/Time 11-12-11 1 1145	Cond of seal: Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: -18-11 /147	Date / Time Completed: 11-18-11 1/210
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2,0
Initial Water Level, Feet:/ 4 , 4 &	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: PRRISTACTIC
One (1) Riser Volume, Gal:	Dedicated: Y/N
Total Volume Purged, Gal:	Purged To Dryness Y (N
Purge Observations:	Start SC. TINT Finish SC. TINT
DUDGE DATA: (if applicable)	

Time		e Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1155	180	14.56		15,4	7,44	2430	17,2	-119	0.79
1200	130	14,56		15,2	7,27	2452	9,32	-102	0.75
1205	180	14.55		15.1	7,22	24 59	8.87	-100	0.75
1210	180	14.55		15,1	7.21	24 59	8,79	- 58	0.74
		9							

SAMPLES @ 1210/11-18-11
PAGE 1 OF 2

Facility: ARCH	Sample Point ID: PZ-105
Field Personnel: PL, RS, CK	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 11-18-11 1 /234	Cond of seal: () Good () Cracked () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	1 - % LEL: - 1 -
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 11-18// 1 /235	Date / Time Completed: 11-16-1/ 1 1255
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 32.86	Method of Well Purge: Periothi TII
One (1) Riser Volume, Gal:	Dedicated: (1) N
Total Volume Purged, Gal:	Purged To Dryness Y IN Gray
Purge Observations:	Start Clear Finish Cher
PURCE DATA: (if applicable)	4

Time	Purge (gpm	1	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1240	WC 10.74	ML/m	•	13.3	7.1/5	2051	13.0	-182	0.85
1245		1		12.9	7,39	2049	12.7	-190	0.34
1250				12.7	7.35	2040	11.64		0.93
1255	1			12.6	7:33	2048	10.92	-191	0.80

SAMUR 1255 / 11-18-11

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: P2-106
Field Personnel: Pl, Rs, CK	Sample Matrix: 6 W
MONITORTING WELL INSPECTION:	
Date/Time /1-18-11 / 11/3	Cond of seal: () Good () Cracked % () None (x) Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked ⋈ Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /
PURGE INFORMATION:	
Date / Time Initiated: 11-18-11 1115	Date / Time Completed: 11-18-11 1/35
Surf. Meas. Pt: () Prot. Casing (X) Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet: 10.81	Elevation. G/W MSL:
Well Total Depth, Feet: 27.90	Method of Well Purge: Peristant Tic
One (1) Riser Volume, Gal:	Dedicated: (8) / N
Total Volume Purged, Gal:	Purged To Dryness Y IN Clear
Purge Observations: Low Flow	Start yellow Finish Yellow
PURGE DATA: (if applicable)	

Time	Purge (gpm	Rate /htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1120	10.94	100	(20)	13.1	6.15	5881	7,23	- 166	0.77
1125	10.96	1		13.1	6-21	5797	5.79	-110	0.75
1130				127	6.20	5783	4.32	-112	0.74
1135		1		12.5	6.20	5780	3-98	-112	0.73

SAMM @ 1135/11-18-11

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: P2-107
Field Personnel: Pl, Rs, CR	Sample Matrix: 6W
MONITORTING WELL INSPECTION:	
Date/Time //-19-// / /3/7)	Cond of seal: () Good () Cracked % () None ⋈ Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked ⋈ Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	() Dumagou
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 11-18-11 1320	Date / Time Completed:
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet: 27, 90	Method of Well Purge: Personal
One (1) Riser Volume, Gal:	Dedicated: (Y) / N
Total Volume Purged, Gal:	Purged To Dryness Y / (N)
Purge Observations:	Start Clar Finish Cler
PURGE DATA: (if applicable)	

Time	Purge (gpm		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1325	10.21	nc/w 200	N.	11.8	6.94	2287	5.25	-160	0.62
1330				11.9	6.97	2130	4.91	-159	0.60
1335				12.0	7.01	2155	3.67	-158	0.58
1340		V		12.1	7.01	2150	2.81	-158	0.57
									i,

SAME @ 1340 /11-18-11

PAGE 1 OF 2

Facility: ARCH	Pl, Ct	Sample Point ID:	BR-SA
Field Personnel:	fl, ch	Sample Matrix:	(X) Grab () Composite
SAMPLING INFORMATION	ON:		M Grab () Composite
Date/Time	1/205	Water Level @ Sampling	j, Feet: 17.91
Method of Sampling:	SAMPLE POT	Dedicated:	Ø N
Multi-phased/layered:	() Yes () No	If YES: () light	() heavy
SAMPLING DATA:			
Time Temp.	pH Conduct (std units) (Umhos/cm)	Turb. Other (NTU)	Other ()
1207 15.8	754 1788	8,56 -56	
12			
INSTRUMENT CHECK D	ATA:		
Turbidity Serial #:	NTU std. =NTU	NTU std. =	NTU
	4.0 std.=	7.0 std.=	10.0 std. =
Conductivity Serial #:		_umhos/cm=	umhos/cm=
Solutions:			
GENERAL INFORMATION	ON:		
Weather conditions @ tim	ne of sampling:	21001 37	
Sample Characteristics:	Cler		
COMMENTS AND OBS	ERVATIONS:		
		14	
I certify that sampling pro	ocedures were in accordance	with all applicable EPA, S	tate and Site-Specific
Date: 2(11	By: A	Company	TAL

Facility: ARCH	Sample Point ID: BN-6A
Field Personnel: PL, RS, CRC	Sample Matrix: 6W
MONITORTING WELL INSPECTION:	
Date/Time /1-19-1/ / //59	Cond of seal: () Good () Cracked % () None (x) Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /
PURGE INFORMATION:	
Date / Time Initiated: 11-18-1/ 1 / 200	Date / Time Completed: 11-18-11 1220
Surf. Meas. Pt: () Prot. Casing (XRiser	Riser Diameter, Inches:
Initial Water Level, Feet: 12.85	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Prosint III
One (1) Riser Volume, Gal:	Dedicated: (F) N
Total Volume Purged, Gal:	Purged To Dryness Y / (N)
Purge Observations: LOC Flou	Start Clar Finish Clar
PURGE DATA: (if applicable)	
	pH Conduct Turb. Other Other tid units) (Umhos/cm) (NTU)
wi min	

Time		Rate /htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1205	WL 12.41	200	3	12.7	7,60	4783	15.1	-126	0.51
1210				1368	7-70	4776	16.7	-224	0,50
#2 121)				136	7.75	4767	142	-224	0.47
1220		1		13.5	7:75	4760	H 13.96	- 222	0.45
		-							

SAMU @ 1220 /11-18-11

PAGE 1 OF 2

LeachField Form Revision 0

March, 15 2002

Facility: _	ersonnel: Pl, CH			Sample Point ID:		BR-7A $Gas()$ Composite	
Field Personr	nel:	Pl, CK		Sample Ma	atrix:	60	
	INFORMATIO	N:				Grab () Col	mposite
Date/Time _	11-21-11	, /c	220	Water Lev	el @ Sampling	, Feet: _	18.97
Method of Sa	ımpling:	SAMI	Ole POT		Dedicated:	(Y) N	
Multi-phased	l layered:	() Yes	(x) No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OND)	Other ()	
1222	13.0		2/27	6.39	-111		
INSTRUME	NT CHECK DA	ATA:					
Turbidity Se	rial #:	NTU std. :	= NTU	1	NTU std. =	_NTU	
					_		
						10.0 std. =	
Conductivity				umhos/cm=	- - -	umhos/cm	=
GENERAL	INFORMATIC	N:					
Weather co	nditions @ time	e of sampling:	Elos	77	7 '		
Sample Cha	aracteristics:		cle-				
COMMENT	S AND OBSE	RVATIONS:					

		S					
	t sampling pro	cedures were i	n accordance	with all app	olicable EPA, St	ate and Site-Spe	cific
protocals. Date:	11 120 11	By:	R1Z	and the second	Company	TAL	

Facility:	PL, CK	Sample Po	oint ID:	BM-9 EW (M) Grab () Co	
Field Personnel:	Pl, CK	Sample M	atrix:	(M Grab () Co	mposite
SAMPLING INFOR	MATION:				
Date/Time 11-2	1-11 1 1215	Water Lev	vel @ Sampling,	Feet:	24.14
Method of Sampling:	SAMPle	AT	_Dedicated:	(Y) N	
Multi-phased/ layere	d: ()Yes ()	No If YES:	() light	() heavy	
SAMPLING DATA:					
Time Ten	-F-	nduct Turb. nhos/cm) (NTU)	Other (OAP)	Other ()	
1217 12.			-65		
1211					
INSTRUMENT CHE	ECK DATA:				
Turbidity Serial #:	NTU std. =	NTU	NTU std. =	_NTU	
	4.0 std.=			10.0 std. =	
	#:			umhos/cm	1=
GENERAL INFOR			 -		
Weather conditions	@ time of sampling:	clours 37	7 °		
Sample Characteris	etics:	CTUMO Red			
	OBSERVATIONS:				
V					
I certify that sampl	ing procedures were in ac	ccordance with all ap	plicable EPA, St	ate and Site-Spe	ecific
Section 1	(/ ((By:	A2	Company:	TAL	

Facility: ARCH	Sample Point ID: BR -105
Field Personnel: Pl, Rs, CK	Sample Matrix: 6 W
MONITORTING WELL INSPECTION:	
Date/Time//-/8-11 1 1250	Cond of seal: A Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damagoa
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: //-18-11 / 1253	Date / Time Completed: 11-18-11 1315
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 22.67	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: PRRISTRETIC Pur D
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations:	Start CCRAR Finish CCRA
	t.

PURGE DATA: (if applicable)

1 DIVOL 1	RGE DATA. (It applicable)								
Time		Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other <i>DO</i>
1300	150	22.70) .	13,1	7,27	2325	6.76	-202	0,80
1305	150	22,75		13.2	7.15	2323	5.19	-225	0.72
13/0	150	22.75		13,2	7.15	2329	4.97	-220	0.71
1315	150	22.75		13,2	7:14	2332	4.95	-218	0.72

5AMPLAD @ 1320 /11-19-11
PAGE 1 OF 2

Facility: ARCH	Sample Point ID: BR -105 D
Field Personnel: PL, RS, CK	Sample Matrix: 6 W
MONITORTING WELL INSPECTION:	
Date/Time //-18-1/ 1 1215	Cond of seal: (Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	/ % LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: //-18-11) /2/8	Date / Time Completed: //-18-11 1240
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2,0
Initial Water Level, Feet: 25,64	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Phristactic pamp
One (1) Riser Volume, Gal:	Dedicated: YIN
Total Volume Purged, Gal:	Purged To Dryness Y (N)
Purge Observations:	Start CLEAR Finish CLEAR
PURGE DATA: (if applicable)	*
Time Purge Rate Cumulative Temp. p	OH Conduct Turb. Other Other

Time	(gpr	e Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
	ml/nn 80	25.75	•	12,2	6.83	30,020	CCROZ	-239	0.59
1230	80	25.75		12.1	6,89	31,220		-248	0.56
	-	25.75		12.1	6.91	31,200		-257	0.55
1240	80	25,75		12.1	6.92	31,150	3.69	-259	0.53

SAMPIRO @ 1240/11-18-11

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: BR = 106
Field Personnel: PL, RS, CK	Sample Matrix: 6W
MONITORTING WELL INSPECTION:	
Date/Time 11-18-11 1 1030	Cond of seal: () Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	· · · · · · · · · · · · · · · · · · ·
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 11-18-11 1035	Date / Time Completed: 11-18-11 1100
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 2/,75	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: PRISTACTIC PUMP
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y IN
Purge Observations:	Start Clasa Finish Clasa
TUDOT DATA (II II LI.)	8

PURGE DATA: (if applicable)

Time		e Rate	Cumulative Volume	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1045	200	21,82	84	11.2	6.96	3279	4,77	-/3	0.49
1050	200	21.80		11.4	6.98	3276	3,92	-47	0.33
1055	200	21.80		11.4	6.94	3274	3,85	-53	0,35
1100	200	21,90		11.4	6:99	3270	3,63	-55	0.36

SAMPLEO @ 1100/.11-18-11

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: BR-126
Field Personnel: PL, RS, CK	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 11-22-1 / 12/7	Cond of seal: () Good () Cracked % () None Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL: /
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: /1-27-1/1 /22°	Date / Time Completed: 11-22-11 /250
Surf. Meas. Pt: () Prot. Casing (A) Riser	Riser Diameter, Inches: 40
Initial Water Level, Feet: 908	Elevation. G/W MSL:
Well Total Depth, Feet: 45.45	Method of Well Purge: fresinit (
One (1) Riser Volume, Gal:	Dedicated: (9) / N
Total Volume Purged, Gal:	Purged To Dryness Y I(N)
Purge Observations: Low Flow	StartFinishFinish
DUDGE DATA: (if applicable)	7

PURGE DATA: (if applicable)									
Time		Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1230	mun 200	WL 9.15	١.	12.1	7.43	1013	19.60	-85	8,40
1235				12.2	7.39	1020	12.48	-87	0.38
1240				12.2	7:37	1022	13,54	-86	0.37
1245				12.0	7.35	1024	10.97	-87	0.35
1250		1		12.1	7.33	1027	9.82	-87	0.34
CAMAL @ 1250 /11-22-11									
PAGE 1 OF 2 Field Form									
	SAMUE 1250 /11-22-11 PAGE 1 OF 2 Revision 0 03/14/02								

Facility:	ARCH inel:	Chemi	CAL	Sample Po	oint ID:	BR-12-)
Field Person	nnel:	Pl, ck		Sample Ma	atrix:	665 (X) Grab () Co	omnosito
SAMPLING	INFORMATIO	N:				M Grap () Co	omposite
Date/Time	11-21-11	1 /ć	940	Water Lev	el @ Sampling	, Feet:	8.17
Method of S	ampling:	SAMA	ne port		Dedicated:	(Y) N	
Multi-phase	d/ layered:	() Yes	T) No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OPP)	Other (
1042	16.7	7.26	3681	2,50	-136		
INSTRUME	ENT CHECK DA	ATA:					
Turbidity S	erial #:	NTU std. :	=NTU	N	NTU std. =	_NTU	
pH Serial #	4			.0 std.=		10.0 std. =	
				umhos/cm=	- :	umhos/cn	n=
Solutions:					_		
GENERAL	INFORMATIO	N:					
Weather co	onditions @ time	e of sampling:	Cloud	37°			
Sample Ch	aracteristics:		Cler				
COMMEN	TS AND OBSE	RVATIONS:	***************************************	2.21	6PM		
				same process and the first			
I certify the protocals.		cedures were i	n accordance	with all app	licable EPA, S	tate and Site-Spe	ecific
0.50	1) 120 11	Rv	\mathcal{M}	2	Company	TAL	

Facility: ARCH	Sample Point ID: MW -16
Field Personnel: R. SRNF	Sample Matrix: 6/w
MONITORTING WELL INSPECTION:	
Date/Time //-/7-// 1/335	Cond of seal: (Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	()
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /
PURGE INFORMATION:	
Date / Time Initiated: //-/7-//1 /340	Date / Time Completed: 1/-17-11 1 1 359
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: 4.0
Initial Water Level, Feet: 11.86	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: PREISTACTIC Pur
One (1) Riser Volume, Gal:	Dedicated: N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: LO-FCO	Start / hus TINT Finish YALLOW TINT
	*

PURGE DATA: (if applicable)

Time		e Rate n/h tz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other On O	Other 0 0
1345	120 mil/mi	12,02	/4	12,4	7,32	2590	26,2	-57	0.85
1350	120	12,07		12.2	7.13	2610	17,0	-50	0.78
1355	120	12.07		12.2	7,09	2615	17.3	-48	0.79
							1		

SAMPLED @ 1400/11-17-11
PAGE 1 OF 2

Facility: ARCH	Sample Point ID: MW-106
Field Personnel: PL, RS, CK	Sample Matrix:
MONITORTING WELL INSPECTION:	
Date/Time 11-18-11 1 1035	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	% LEL:
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGE INFORMATION:	
Date / Time Initiated: 1) - 18 - 11 / 11/0	Date / Time Completed: //-/8-//
Surf. Meas. Pt: () Prot. Casing Riser	Riser Diameter, Inches: 2.0
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: PRRISTALTIC PUND
One (1) Riser Volume, Gal:	Dedicated: Y N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: 20-FCO	Start CLAGE Finish CLABE
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1120	e	12,89		12.2	6.95	3276	7,92	-129	0,91
1125	150	12,88		12,4	6.96	3592	5,13	-145	0.83
1130	150	13,01		12.4	6.92	3589	4.95	-139	0,79
1135	150	13.00		12.5	6:89	3622	4.95	-/38	0,81

59 mp(RO @ 1140/11-18-11 PAGE 1 OF 2

Facility: ARCH	Sample Point ID: MW-127
Field Personnel: RI, RS, CK	Sample Matrix: 6 W
MONITORTING WELL INSPECTION:	
Date/Time 11-21-11 1 1064	Cond of seal: (a) Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked & Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /
PURGE INFORMATION:	
Date / Time Initiated: /1-21-// / /6/0	Date / Time Completed: //- 2/-// / / 0 30
Surf. Meas. Pt: () Prot. Casing (PRiser	Riser Diameter, Inches:
Initial Water Level, Feet: 7.2/	Elevation. G/W MSL:
Well Total Depth, Feet: //.2)	Method of Well Purge: Resultation
One (1) Riser Volume, Gal:	Dedicated: (Y) N
Total Volume Purged, Gal:	Purged To Dryness Y N
Purge Observations: Low Flow	Start Clar Finish Clar
PURGE DATA: (if applicable)	
Time Purge Rate Cumulative Temp.	pH Conduct Turb. Other Other

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1015	727	100		12.7	7,02	1394	7,59	37	0.51
1020	7.33			11.9	7,10	1390	7.64	40	0.49
1025	7.36			11:7	7.12	13 85	6.72	42	0.48
1030	7.40	1		11.5	7.15	1381	5.17	42	0:46
		1				251			

SAMIL @ 1030/11-21-11

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: PW-/0
Field Personnel: Pl, RJ, CK	Sample Matrix: 6W
MONITORTING WELL INSPECTION:	
Date/Time 11-13-11 1 1624	Cond of seal: Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) / /
PURGE INFORMATION:	
Date / Time Initiated: 11-19-1/1 1025	Date / Time Completed: 11-18-1/1 1635
Surf. Meas. Pt: Prot. Casing () Riser	Riser Diameter, Inches:
Initial Water Level, Feet:	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge: Prosimite
One (1) Riser Volume, Gal:	Dedicated: Y / (N)
Total Volume Purged, Gal:	Purged To Dryness Y I (N)
Purge Observations:	Start Yellow Finish 441100
PURGE DATA: (if applicable)	

PURGE DATA: (if applicable)									
Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1035	10,29	Mu/m 200	at a	13.0	9,92	15,090	14.99	-238	0.65
1040				13.1	9,97	15,150	13.20	-235	0.60
1045				13.0	9.99	15,160	12.63	-230	0.57
1050				12.9	10.01	15,160	10.13	-228	0.55
1055	1	1		12.9	10.01	15,170	9.93	-228	0.53

SAMM @ 1055 /11-19-11

PAGE 1 OF 2

Field Form Revision 0

03/14/02

Facility: ARCH	Sample Point ID: PW-12 Sample Matrix: GW
Field Personnel: PL, RS, CK	Sample Matrix: 6W
MONITORTING WELL INSPECTION:	
Date/Time 11-21-11 / 1118	Cond of seal: (Good () Cracked
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked () Good () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)
PURGE INFORMATION:	
Date / Time Initiated: 1 121-11 / 120	Date / Time Completed: /1-21-1/ 1 /1/0
Surf. Meas. Pt: () Prot. Casing KRiser	Riser Diameter, Inches: 60
Initial Water Level, Feet: 6.83	Elevation. G/W MSL:
Well Total Depth, Feet:	Method of Well Purge:
One (1) Riser Volume, Gal:	Dedicated: (Ý) N
Total Volume Purged, Gal:	Purged To Dryness Y
Purge Observations: Low Flow	Start Clean Finish Clean
PURGE DATA: (if applicable)	

PURGE	DAIA.	(11 appl	icable)						
Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other DO
1125	6,57	milm 200		12.5	6.76	6445	2.10	-127	0.63
1130				12.7	6.80	6470	2.37	-120	0.61
1/35				12.7	6.81	6475	2,19	-110	0.60
1140	1	1		12.8	6.84	6500	2.06	-118	0,50
		12							

SAMME 1140 /11-21.11

PAGE 1 OF 2

Facility: ARCH	Chemical		Sample Point ID:		Pru-	13	
Facility: ARCH Field Personnel:	Pl, ck	essentia suo servissi materia.	Sample Matrix: 6W			.,	
SAMPLING INFORMATION	ON:				Grab ()Co	omposite	
Date/Time	1 /2	230	Water Lev	el @ Sampling	, Feet:	22.30	
Method of Sampling:	SAMI	OL POT		_Dedicated:	(V) N		
Multi-phased/ layered:	() Yes	(A) No	If YES:	() light	() heavy		
SAMPLING DATA:							
Time Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OAP)	Other (
1232 14.0	6-95	3330	4.88	-126			
INSTRUMENT CHECK D	ATA:						
Turbidity Serial #:	NTU std. =	=NTU	1	NTU std. =	_NTU		
Solutions:				_			
pH Serial #:					10.0 std. =		
				-	umhos/cm	1=	
Conductivity Serial #: Solutions:					umnos/un		
GENERAL INFORMATION	ON:						
Weather conditions @ tim	e of sampling:	SUN	/ close	37 °			
Sample Characteristics:							
COMMENTS AND OBS							
		A COLOR TO SERVICE STREET					
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific							
protocals.		111		C =	T01		

Facility:	ARCH inel:	Chem,	CAL	Sample Po	int ID:	PN-14 GW Grab () Composite	
Field Person	inel:	Pl, CK		Sample Ma	atrix:	6W	
	INFORMATIO					Grab () C	omposite
Date/Time	Date/Time 11-21-11 1 1/00			Water Leve	el @ Sampling	Feet:	22.69
Method of S	ampling:	SAMPLE POT			Dedicated:	(Y) N	
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:						_
Time	Temp. (°C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other (
1102	17.7		3/25	30.8	-209		
INSTRUME	NT CHECK DA	ATA:					u
Turbidity Se	erial #:	NTU std. :			TU std. =	_NTU	
0 1 "					1	0.0 std. =	
Conductivity Solutions:						umhos/cm	ງ=
GENERAL	INFORMATIO	N:					
Weather co	nditions @ time	of sampling:		un 3°	7 6		
	aracteristics:	1	SC TUI	BIN JL	eller Ting		
COMMENT	S AND OBSE	RVATIONS:					
							-
AMPACALISM STATES	and the fire was en in the section of the section o						
		and any order of the contract) i
	10300000000000000000000000000000000000						11
I certify tha protocals.	t sampling prod	cedures were ir	accordance w	ith all appli	cable EPA, Sta	ate and Site-Spe	cific
Date:	11 1211 11	Bv:	M	2_	Company:	TAL	96

Facility:	eld Personnel: PL, CK		CAL	Sample Point ID:		GW Grab () Composite	
Field Person	nel:	Pl, ch	-	Sample Ma	itrix:	60	
SAMPLING	INFORMATIO	N:				() Grab () Co	mposite
Date/Time	11-21-11	1	///0	Water Leve	el @ Sampling	, Feet:	16.69
Method of S	ampling:	SAMI	Ole POT		Dedicated:	(V) N	
Multi-phase	d/ layered:	() Yes	() No	If YES:	() light	() heavy	
SAMPLING	DATA:					1	
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (OAP)	Other ()	
11/3	14.4	7.97	5602	2.15	-192		
INSTRUME	ENT CHECK DA	ATA:					
	erial #:	NTU std.	=NTU	N	ITU std. =	_NTU	
pH Serial #: Solutions:		4.0 std.=	7	.0 std.=		10.0 std. =	
Conductivit						umhos/cm	=
GENERAL	INFORMATIO	N:					
Weather co	onditions @ time	e of sampling:		10ml 3	7'		
	aracteristics:		Cla	Ami.			
COMMEN	TS AND OBSE	RVATIONS:		1170	6PM		timbolio per este este este este este este este es
						(- t d S:t - S	_ if: _
I certify th protocals.		cedures were i	in accordance	with all app	licable EPA, S	tate and Site-Spe	CITIC
Date:	11 120 11	Bv	Al 2		Company	TAL	

Facility: ARCH	eld Personnel: Pl, CK		$\frac{\rho w - 16}{6}$ (X) Grab () Composite	
Field Personnel:	Pl, Ct	Sample Matrix:	(M. Grah. I.) Composite	
SAMPLING INFORMATION	ON:			
Date/Time	1 1245	Water Level @ Sampling	, Feet: 16.66	
Method of Sampling:	SAMPLE POT	Dedicated:	(V) N	
Multi-phased/ layered:	() Yes () No	If YES: () light	() heavy	
SAMPLING DATA:				
Time Temp.	pH Conduct (std units) (Umhos/cm)	Turb. Other (NTU)	Other ()	
1247 14.3	7.06 4785	5.43 -90		
,				
INSTRUMENT CHECK D	ATA:			
Turbidity Serial #:	NTU std. =NTU	NTU std. =	NTU	
Solutions:				
	4.0 std.=	7.0 std.=	10.0 std. =	
Conductivity Serial #:		_umhos/cm=	umhos/cm=	
GENERAL INFORMATI	ON:			
Weather conditions @ tin	ne of sampling:	~ 36°		
Sample Characteristics:	Clear			
COMMENTS AND OBS	ERVATIONS:			
	ocedures were in accordance	with all applicable EPA, S	tate and Site-Specific	
protocals.	Bu A	Company	TAL	

		8	•		DOL. (0 .				
Fa	cility:	ARCH			Sample l	Point ID:	3-11				
	eld Person		U, RS, C	4	Sample l	Matrix:	SW				
M	ONITORT	ING WELL IN	SPECTION:								
Da	ite/Time	11-17-11	1 100	75	Cond of	seal: () Good ()		-	%		
Pi	ot. Casing	g/riser height:_			Cond of	() None (A) Buried Cond of prot. Casing/riser: (A) Unlocked () Good () Loose () Flush Mount () Damaged					
lf	prot.casin	g; depth to ris	er below:								
G	Gas Meter (Calibration/ Reading): % Gas:/ % LEL:/										
٧	Vol. Organic Meter (Calibration/Reading): Volatiles (ppm; /										
P	PURGE INFORMATION:										
	ate / Time	Initiated: [1-17-11 100	7	Date / Time Completed:						
S	iurf. Meas.	. Pt: () Prot. Ca	sing	x Riser	Riser D	iameter, Inches:		2.0			
ì	nitial Wate	er Level, Feet: _	6.62		Elevation	on. G/W MSL:					
١	Vell Total	Depth, Feet: _	11.55		Method	Method of Well Purge: Peristing Til					
(One (1) Ris	ser Volume, Ga	ı: , 90	· · · · · · · · · · · · · · · · · · ·	Dedica	ted:	Y . 1 (N)				
-	Total Volu	me Purged, Ga	i: 1.60	TO DI	Purgeo	To Dryness	YN				
	Purge Obs	servations:			Start	Cher	Finish	Clear			
	PURGE D	ATA: (if appl	icable)			r .			Si .		
	Time	Purge Rate (gpm/htz)	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other OO		
	1011	To	,	11,0	6-48	1974	10.62	-57	88		
	1	DRY									
	11-18	WC=5,71		11.2	7.04	2116	14.61	-90			
	1703										
			-	-							

SAMPLED @ 1400/11-18=11

PAGE 1 OF 2

Facility: ARCH	Sample Point ID: B-16	
Field Personnel: Pl, RS, CK	Sample Matrix: 6W	
MONITORTING WELL INSPECTION:		
Date/Time /1- 22-1/ / /3/13	Cond of seal: () Good () Cracked () None Buried	<u></u> %
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unloc () Loose of () Damaged_	Flush Mount
If prot.casing; depth to riser below:		
Gas Meter (Calibration/ Reading): % Gas: _		
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm) /	,
PURGE INFORMATION:		
Date / Time Initiated: 11-22-11 / 1315	Date / Time Completed:	11-22-11/1 1335
Surf. Meas. Pt: () Prot. Casing (X) Riser	Riser Diameter, Inches:	2.0
Initial Water Level, Feet: 6.7 8	Elevation. G/W MSL:	
Well Total Depth, Feet: 13.70	Method of Well Purge:	fensiquile
One (1) Riser Volume, Gal:	Dedicated: (D) N	
Total Volume Purged, Gal:	Purged To Dryness Y	
Purge Observations: Low Flav	Start ClarFinish	Cher
PURGE DATA: (if applicable)		

PURGE DATA: (if applicable)									
Time	22	e Rate	Cumulative Volume	Temp. (C)	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other	Other <i>DO</i>
1320	My	6.84	*	12.6	7.30	1202	12.43	-52	0.83
1325				12.8	7.27	1210	6,72	-51	2.32
1330				12.7	7.28	1213	5.61	-50	6.00
1335	1	1		12.8	7.30	1215	5.14	-50	0.78
		1							
		1						. 0	

SAMU @ 133> /11-22-4 PAGE 1 OF 2

Field Form Revision 0 03/14/02

LeachField Form Revision 0 March, 15 2002

Facility:	ARCH	4		Sample Po	oint ID:	QD-1	
Field Person	nnel:	R,5R	NF	Sample Ma	atrix:	S/W (Grab () Co	
SAMPLING	INFORMATIO	N:				(X) Grab () Co	mposite
Date/Time	11-17-11	1 1	045	Water Lev	el @ Sampling	, Feet:	N/A
Method of S	ampling:	MA	NUAL C	RAB	Dedicated:	Y N	
Multi-phase	d/ layered:	()Yes	₩ No	If YES:	() light	() heavy	
SAMPLING	DATA:						
Time	Temp.	pH (std units)	Conduct (Umhos/cm)	Turb. (NTU)	Other (Other (
1050	8.8	8,05					
7000		0,10	70007				
INSTRUME	NT CHECK DA	ATA:	L		A		
	erial #:		= NTH	N	ITII etd =	NTH	
Solutions:					-		
pH Serial #: Solutions:		4.0 std.=				10.0 std. =	
Conductivit						_umhos/cm	=
Solutions:					_		
GENERAL	GENERAL INFORMATION:						
Weather conditions @ time of sampling:							
Sample Cha	aracteristics:	CLEAR	,			9	
COMMENTS AND OBSERVATIONS:							
		and the second seco				ANNAMENTS TO PARTY WELL THE PARTY AND	***************************************
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.							
Date:	11 17/11	Ву:	03/	1	Company:	TAC	÷

PAGE 1 OF 1

LeachField Form Revision 0 March, 15 2002

Facility: ARCH	Sample Point ID:	90-2			
Field Personnel: R. Shur	Sample Matrix:	S/W (X) Grab () Composite			
SAMPLING INFORMATION:		() Composite			
Date/Time 11-17-11 1 1430	Water Level @ Sampling	Feet: NA			
Method of Sampling: Mavege GRA Multi-phased/ layered: () Yes No	Dedicated:	(Y) N			
Multi-phased/ layered: () Yes No	If YES: () light	() heavy			
SAMPLING DATA:					
Time Temp. pH Conduct (°C) (std units) (Umhos/cm)	Turb. Other (NTU)	Other ()			
1435 8.3 8.22 1822					
INSTRUMENT CHECK DATA:					
Turbidity Serial #:NTU std. =NTU	NTU std. =	_NTU			
Solutions:					
pH Serial #: 4.0 std.= 7. Solutions:		10.0 std. =			
Conductivity Serial #:		umhos/cm=			
Solutions:					
GENERAL INFORMATION:					
Weather conditions @ time of sampling: Cloudy 35%					
Sample Characteristics: CLA9A					
COMMENTS AND OBSERVATIONS:					
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.					
Date: // ////// By:	Company:	TAC			

LeachField Form Revision 0 March, 15 2002

Facility:	ARCA	4		Sample Po	pint ID:	90-25	/
Field Perso	nnel:	R. SEA	F	Sample Ma	atrix:	90-25 CANAL (X)Grab ()Co	mposito
SAMPLING	SINFORMATIO	N:				ľ	,
Date/Time	11-17-11	1 /	440	Water Lev	el @ Sampling,	Feet:	NA
Method of S	Sampling: ed/ layered:	DIPP	61		Dedicated:	YN	
Multi-phase	ed/ layered:	() Yes	No	If YES:	() light	() heavy	
SAMPLING	G DATA:	/-					
Time	Temp.	рН	Conduct	Turb.	Other	Other	
	(°C)	(std units)	(Umhos/cm)	(NTU)	()		
1450	8.1	8.16	651				
INSTRUM	ENT CHECK DA	ATA:					
Turbidity S	erial #:	NTU std. =	= NTU	Ν	ITU std. =	NTU	
Solutions:						 -	
pH Serial #	:	4.0 std.=	7.	0 std.=	1	0.0 std. =	
Solutions:					_		
Conductivi	ity Serial #:			ımhos/cm=		umhos/cm	=
Solutions:					_		
GENERAL INFORMATION:							
Weather conditions @ time of sampling:							
Sample Characteristics: CLEAR							
COMMENTS AND OBSERVATIONS:							
				and the second second			
S-100				STUDIO STATE S			
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific protocals.							
Date:	11 17,11	By:	95-	1	Company:	TAC	

PAGE 1 OF 1

LeachField Form Revision 0 March, 15 2002

Facility: ARCH	Sample Matrix: 05-4 Sample Matrix: 5ELP			
Field Personnel: R. SBNF	outific matrix:			
SAMPLING INFORMATION:	() Grab () Composite			
Date/Time 11-17-11 1 1407	Water Level @ Sampling, Feet:			
Method of Sampling: MANUAL CARB	Dedicated: Y/N			
Multi-phased/ layered: () Yes No	If YES: () light () heavy			
SAMPLING DATA:				
Time Temp. pH Conduct	Turb. Other Other			
(°C) (std units) (Umhos/cm)	(NTU) () ()			
1412 7.9 8.07 2024				
1412 7.9 8.07 2024				
INSTRUMENT CHECK DATA:				
Turbidity Serial #:NTU std. =NTU	NTILetd = NTIL			
Solutions:				
pH Serial #: 4.0 std.= 7	.0 std.=10.0 std. =			
Solutions:				

Conductivity Serial #:	umhos/cm=umhos/cm=			
Solutions:	Mind belonger and transfer.			
GENERAL INFORMATION:				
Weather conditions @ time of sampling: CLOUDY 35°F				
Sample Characteristics: Clark				
COMMENTS AND OBSERVATIONS:				
Marie and Control of the Control of				
I certify that sampling procedures were in accordance with all applicable EPA, State and Site-Specific				
protocals.	1			
Date: // ////// By:	Company: JAC			

Appendix B

Well Trend Data

BR-103

BR-104

DATE

Reviewed by: jeb

BR-105D

BR-113D

BR-116D

BR-117D

BR-118D

BR-122D

BR-123D

BR-127

E-1 / B-11 (B-11 replaced E-1 beginning May 2010)

MW-104

MW-106

MW-127

NESS-E

NESS-W

PW10

PW12 (Formerly BR-101)

PW13

PW15

S-3 / B-16 (B-16 replaced S-3 beginning May 2010)

QS-4 (QUARRY SEEP)

QO-2 (QUARRY OUTFALL)

