

P. O. Box 30205 Rochester, New York 14603-3205

12 September 2019

Mr. Todd Caffoe, P.E.
Project Manager
New York State Department of Environmental Conservation
6274 East Avon-Lima Road
Avon, NY 14414

Re: Spring 2019 Monitoring Report

Arch Chemicals (Site #828018a) 100 McKee Rd., Rochester, NY

Dear Mr. Caffoe:

Enclosed is an electronic copy of the Spring 2019 Monitoring Report for the Arch Chemicals Site in Rochester, New York. The report describes the results of the semi-annual groundwater and surface water monitoring completed in May 2019 as part of Lonza's on-going monitoring program at the site. Please note that this report also includes results of groundwater sampling and analysis for PFAS and 1,4-Dioxane that was requested by the NYSDEC. An electronic data deliverable (EDD) of the analytical results will be provided to the New York State Department of Environmental Conservation in a separate online submittal.

If you have any questions regarding this report, please call me at (585) 613-3752.

Sincerely,

Francien Trubia

Environmental Specialist

Lonza

encl.

cc: Melissa Doroski, NYSDOH – Albany Jean Robert Jean, USEPA Region II

Richard Hampson, Lonza

Nelson Breton, AMEC E & E PC

Arch Chemicals, Inc.

Rochester, New York (Site #828018a)

Groundwater Monitoring Report 62 Spring 2019

September 2019

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM SPRING 2019 MONITORING REPORT

ARCH CHEMICALS
ROCHESTER PLANT SITE
ROCHESTER, NEW YORK

ARCH CHEMICALS, INC.
(A WHOLLY-OWNED SUBSIDIARY OF LONZA)

SEPTEMBER 2019

SURFACE WATER AND GROUNDWATER MONITORING PROGRAM **SPRING 2019 MONITORING REPORT**

ARCH CHEMICALS ROCHESTER PLANT SITE ROCHESTER, NEW YORK

Prepared by

Wood Environment & Infrastructure Solutions, Inc. Portland, Maine

for

ARCH CHEMICALS, INC. (A Wholly-Owned Subsidiary of Lonza)

September 2019

3616196076.001

Charles Staples, P.G.

Geologist

Nelson M. Breton Associate Hydrogeologist

Senior Scientist

TABLE OF CONTENTS

<u>Page</u>

EXECUTIVE S	SUMMARY	1
1.0 INTRO	DUCTION	2
2.0 SAMPL	E COLLECTION AND ANALYSIS	2
2.2 Surface 2.3 Analy	ndwatertical Proceduresty y Control	3
3.0 ANALY	TICAL RESULTS	5
3.1.1 Chl 3.1.2 Sele 3.1.3 PFA 3.1.4 1,4 3.2 Surface 3.2.1 Qua 3.2.2 Qua	ndwater	5 6 7 7 7
4.0 EXTRA	CTION SYSTEM PERFORMANCE	7
5.0 OPTIMI	ZATION OF MONITORING NETWORK	8
6.0 NEXT N	IONITORING EVENT	8
APPENDICES	3	
Appendix A	Groundwater Field Sampling Data Sheets	
Appendix B	Well Trend Data	
LIST OF FIGU	JRES	
Figure 1	Off-Site Groundwater Monitoring Well Locations	
Figure 2	On-Site Monitoring Well Locations	
Figure 3	Spring 2019 Overburden Groundwater Interpreted Piezometric Contours	
Figure 4	Spring 2019 Bedrock Groundwater Interpreted Piezometric Contours	

Figure 5	Spring 2019 Deep Bedrock Groundwater Interpreted Piezometric Contours
Figure 6	Sample Locations – Erie Barge Canal
Figure 7	Sample Locations – Dolomite Products Quarry
Figure 8	Spring 2019 Selected Chloropyridine Concentration Contours for Groundwater
Figure 9	Spring 2019 Selected Volatile Organic Compound Concentration Contours for Groundwater

LIST OF TABLES

Table 1	Spring 2019 Sampling and Analytical Program
Table 2	Spring 2019 Groundwater Monitoring Results – Chloropyridines
Table 3	Spring 2019 Groundwater Monitoring Results – Volatile Organic Compounds
Table 4	Comparison of Spring 2019 Chloropyridines and Volatile Organic Concentrations in Groundwater to Previous Results
Table 5	Spring 2019 Groundwater Monitoring Results - 1,4-Dioxane and Per-/Polyfluoroalkyl Substances (PFAS)
Table 6	Spring 2019 Canal/Quarry Monitoring Results
Table 7	Extraction Well Weekly Flow Measurements - December 2018 Through May 2019
Table 8	Mass Removal Summary, Period: December 2018 Through May 2019
Table 9	2019 Sampling Schedule

EXECUTIVE SUMMARY

This monitoring report presents the results of an on-going groundwater and surface water monitoring program being conducted by Arch Chemicals at its Rochester, New York, manufacturing facility. Arch Chemicals is a wholly-owned subsidiary of Lonza, a leading supplier to the global life sciences, healthcare and pharmaceutical industries headquartered in Basel, Switzerland.

During this monitoring event conducted in May 2019, samples from a total of 40 groundwater monitoring or pumping wells, four locations associated with the Dolomite Products Quarry seep and outfall, and one groundwater effluent sample at the carbon treatment beds were collected by Matrix Environmental Technologies Inc., of Orchard Park, New York, and analyzed by Paradigm Environmental Services, Inc., of Rochester, New York. Samples from a subset of locations including an upgradient well, BR-1, were also analyzed by Alpha Analytical Laboratory located in Mansfield, Massachusetts, for emerging contaminants per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane. The added PFAS and 1,4-dioxane analysis and effluent sample collection were done at the request of the NYSDEC and are not part of the routine monitoring program.

As in prior reports, monitoring results were compared with previous average concentrations at each sampling location. Thirteen of the 40 wells sampled for chloropyridines had contaminant concentrations that were above their respective 5-year prior averages. Eleven of the 34 wells sampled for volatile organic compounds had concentrations above their 5-year prior averages.

Sampling locations associated with the quarry included the main quarry seep (QS-4), the quarry ditch where the quarry dewatering discharge enters the ditch (QD-1), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1). The total concentration of chloropyridines in quarry seep QS-4 was 31 micrograms per liter (μ g/L), which is below its prior 5-year average of 87 μ g/L. Chloropyridines were not detected in the ditch sample from location QD-1, the ditch outfall sample at location QO-2, or the canal water at sample location QO2-S1.

On-site monitoring wells were checked for the presence of floating (or light) non-aqueous phase liquids (LNAPL) using an interface probe. No LNAPL was observed in any of these wells.

During the period December 2018 through May 2019, the on-site groundwater extraction system pumped approximately 7.1 million gallons of groundwater to the on-site treatment system, containing an estimated 3,300 pounds of chloropyridines and 91 pounds of target volatile organic compounds.

The next regular monitoring event will occur in November 2019 and will include groundwater, surface water, and seep sampling.

1.0 INTRODUCTION

In accordance with the Order on Consent executed between Arch Chemicals, Inc., and the New York State Department of Environmental Conservation (NYSDEC), effective August 21, 2003, Arch is conducting a Remedial Action program at its facility on McKee Road in Rochester, New York. As part of this program, Arch conducts twice-yearly monitoring events consisting of sampling and chemical analysis of groundwater and surface water in the vicinity of the Rochester facility.

The Spring 2019 sampling event included the collection and analysis of groundwater, surface water, and seep samples from a total of 44 off-site and on-site locations, as well as one effluent sample from the carbon treatment beds. The Spring 2019 event also included collection and analysis of treated groundwater effluent at the carbon treatment beds. Samples were collected from May 8 through 15, 2019, for analysis of selected chloropyridines and volatile organic compounds (VOCs). Samples from a subset of locations, including an upgradient well, BR-1, were also collected and analyzed for perand polyfluoroalkyl substances (PFAS) and 1,4-dioxane. The samples collected for PFAS and 1,4-dioxane analysis and effluent sample were collected at the request of NYSDEC (NYSDEC letter to Lonza, dated January 25, 2019) and are not part of the routine monitoring program.

This report presents the results of the Spring 2019 monitoring event.

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 **G**ROUNDWATER

Groundwater samples were collected from off-site wells, on-site wells and piezometers for analysis of selected chloropyridines (2-chloropyridine, 2,6-dichloropyridine, 3-chloropyridine, 4-chloropyridine, pyridine, and p-fluoroaniline) and target compound list (TCL) VOCs. Samples from a subset of locations were also collected for analysis of PFAS and 1,4dioxane. Samples were collected by personnel from Matrix Environmental Technologies Inc., (Matrix) and transported to the analytical laboratories of Paradigm Environmental Services, Inc. (Paradigm) in Rochester, New York for analysis; analysis of PFAS and 1,4-dioxane were sub-contracted to Alpha Analytical of Mansfield Massachusetts. Samples for PFAS and 1,4dioxane were collected and analyzed in accordance with the work plan, "2019 Emerging Contaminant Sampling and Analytical Plan for Per- and Polyfluoroalkyl Substances and 1,4-Dioxane Sampling Arch Rochester Site (Site ID# 828018a)". Table 1 lists the wells that were sampled and the requested analyses and the sampling locations are shown on Figures 1 and 2, respectively. Sample location BR-3 was intended for sample collection for the Spring 2019 event but the well was inaccessible due to debris in the well and no sample was collected. The location of the groundwater effluent sample collected at the carbon treatment beds is shown in Figure 2.

Groundwater sampling data sheets are provided in Appendix A.

Groundwater was collected from most of the wells following the low flow/low stress purging technique using bladder or peristaltic pumps. Samples from active pumping wells were collected from the discharge lines.

Groundwater piezometric elevations were measured on May 7, 2019. Piezometric contours were constructed for each water-bearing zone (overburden, bedrock, and deep bedrock) and are presented on Figures 3, 4, and 5.

On-site monitoring wells were checked for the presence of LNAPL using an interface probe. LNAPL was not observed in any of these wells.

2.2 SURFACE WATER

Surface water and quarry seep samples were collected as part of the on-going monitoring program for the Arch Rochester site. The location of the quarry and its outfall in relation to the site is shown on Figure 6. Samples of the main quarry seep (QS-4), the quarry ditch where the quarry dewatering discharge enters the ditch (QD-1), the quarry ditch as it enters the Erie Barge Canal (QO-2), and the surface water in the canal approximately 100-feet downstream of the quarry ditch (QO-2S1) were collected by Matrix on May 15, 2019. All quarry-related samples were analyzed for the Arch suite of selected chloropyridines. The quarry locations sampled during the Spring 2019 event are shown on Figure 7.

2.3 ANALYTICAL PROCEDURES

Samples were analyzed for the Arch suite of selected chloropyridines and TCL volatile organic compounds (VOCs) by USEPA SW-846 Methods 8270D and 8260C, respectively. The reporting limits for the chloropyridines and VOCs are approximately 10 micrograms per liter (μ g/L) and 2 to 20 μ g/L, respectively, for undiluted samples.

Samples from a subset of locations were analyzed for PFAS and 1,4-dioxane using USEPA Method 537 Modified and Method 8270D-Selected Ion Monitoring, respectively. The reporting limits for PFAS and 1,4-dioxane are approximately 2 nanograms per liter (ng/L) and 150 ng/L, respectively.

2.4 QUALITY CONTROL

Laboratory analytical results were reviewed and qualified following U.S. Environmental Protection Agency Contract Laboratory Program (USEPA CLP), "National Functional Guidelines for Superfund Organic Methods Data Review", June 2008, using professional judgment and guidance from USEPA Region II SOPs No. HW-24 Revision 4, October 2014, and No. HW-35 Revision 2, March 2013. Analytical results were evaluated for the following parameters:

- Collection and Preservation
- Holding Times
 Surrogate Recoveries
- * Blank Contamination
- * Duplicates
 Laboratory Control Samples
 Matrix Spike/Matrix Spike Duplicates
 Miscellaneous

* - all criteria were met for this parameter

With the qualifications discussed below, results are determined to be usable as reported by the laboratory.

<u>Surrogate Recoveries</u>. Percent recoveries of one or more VOC surrogates in a subset of samples were less than the laboratory statistically derived control limits, indicating potential low biases. Positive and non-detected results in affected samples were qualified estimated (J/UJ): PZ105, BR-8, BR-106, MW-106, and PW-13.

<u>Duplicates</u>. Field duplicates for chloropyridines and VOCs were collected at locations BR-127 and BR-5A. A field duplicate for PFAS and 1,4-dioxane was collected at location PZ104, and a field duplicate for chloropyridines only was collected at location QS4. Relative percent differences (RPDs) between sample and field duplicate results for all target analytes in all field duplicate pairs were within the control limit.

<u>Laboratory Control Samples (LCS)</u>. Percent recoveries of pyridine (44 to 49) in all LCS associated with the sampling event were below nominal control limits of 50-140, indicating potential low biases for pyridine in all samples. Nominal control limits were used in the absence of statistically derived laboratory control limits. Positive and non-detect results for pyridine in all samples were qualified estimated (J/UJ).

Matrix Spike/Matrix Spike Duplicates (MS/MSD). MS/MSD analyses were specified on the chain of custody forms for samples PW15 and PW13 for chloropyridines and VOCs, and for sample B15 for PFAS and 1,4-dioxane. The MS/MSD for SVOC sample PW15 was not evaluated due to dilutions of the sample and MS/MSD that were required because of high concentrations of target analytes. In the MS/MSD associated with SVOC sample PW13, percent recoveries of pyridine (47, 41) were less than the 50-140 nominal control limits, indicating potential low bias. Pyridine was not detected in sample PW13 and the reporting limit was qualified estimated (UJ).

In the MS/MSD associated with VOC sample PW15, percent recoveries for carbon tetrachloride (58) and chloroform (34, 6) were less than the laboratory control limits, indicating potential low bias. In addition, the RPD between MS and MSD recoveries for chloroform (139) was greater than the laboratory control limit. Results for carbon tetrachloride and chloroform in PW15 were qualified estimated (J).

In the MS/MSD associated with VOC sample PW13, percent recoveries for 1,2-dichlorobenzene (126) and 1,3-dichlorobenzene (123) were greater than the laboratory control limits, indicating potential high bias. In addition, the RPD between MS and MSD recoveries for 1,2-dichlorobenzene (38) was greater than the laboratory control limit. Results for 1,2-dichlorobenzene and 1,3-dichlorobenzene in PW13 were qualified estimated (J). The percent recovery of bromomethane (63) in the MSD associated with sample PW13 was less than the control limits, indicating potential low bias. Bromomethane was not detected in sample PW13 and the reporting limit was qualified estimated (UJ). Inconsistent spike recoveries were observed for chlorobenzene (135, 76) in the MS/MSD associated with PW13, with one recovery greater than the control limits and one recovery less than the control limits. In addition, the RPD between MS and MSD recoveries for chlorobenzene (56) was greater than the laboratory control limit. The detection of chlorobenzene in PW13 was qualified estimated (J).

In the MS/MSDs associated with PFAS and 1,4-dioxane sample from B15, all percent recoveries and RPDs were within laboratory control limits (PFAS) or nominal control limits (1,4-dioxane). PFAS and 1,4-dioxane results for sample B15 were reported unqualified for MS/MSD results.

<u>Miscellaneous</u>. Samples from a subset of wells were analyzed at dilutions due to high concentrations of volatile organic and/or semi-volatile organic target analytes. As a result, non-detections are reported at elevated reporting limits.

3.0 ANALYTICAL RESULTS

3.1 GROUNDWATER

The validated results from the Spring 2019 groundwater monitoring event are provided in Tables 2 and 3. Table 4 provides a comparison of the Spring 2019 analytical results for selected chloropyridines and VOCs in representative wells to mean concentrations of the prior five years (Fall 2013 through Fall 2018). Concentration trends for both selected chloropyridines and VOCs are also presented as time-series plots for representative wells in Appendix B. A summary of the analytical findings is presented below by parameter class.

3.1.1 CHLOROPYRIDINES

<u>On-Site.</u> Chloropyridines were detected above sample quantitation limits in 24 of the 25 on-site wells sampled in the Spring 2019 event. Concentrations of chloropyridines (sum of all chloropyridine and pyridine isomer concentrations) ranged from not detected (in well PW12) to 690,000 μ g/L in well B-17. Ten of the on-site wells exhibited total chloropyridine concentrations that were above their respective means from monitoring events over the previous five years (see Table 4).

Off-Site. Chloropyridines were detected above sample quantitation limits in ten of the 15 off-site wells that were sampled. Concentrations of total chloropyridines ranged from not detected (in wells BR-114, BR-117D, BR-122D, MW114, and PZ-101) to 36,000 μg/L in well PZ-102. Three of the off-site wells contained total chloropyridine concentrations above their respective five-year prior means (see Table 4).

<u>Post Groundwater Carbon Treatment Beds.</u> For the groundwater effluent sample collected at the Carbon Treatment Beds, pyridine was detected at a concentration of 115 J ug/L. Chloropyridines were not detected (See Table 2).

Concentration Contours. Chloropyridine distribution in groundwater is shown as a set of concentration contours on Figure 8. The contours were developed using data from both overburden and bedrock monitoring wells. The chloropyridine plume distribution is generally similar to the prior monitoring event in November 2018, with some notable decreases in wells around the perimeter of the plume (i.e., MW-106, BR-126, and PZ-101). Chloropyridine levels remain high in on-site wells B-17 (690,000 μg/L) and BR-8 (550,000 μg/L) as compared to other on-site monitoring wells. Concentrations of chloropyridines are greater than the respective five year means for each. The concentrations of chloropyridines in PZ-105 and PZ-106 to the south and southeast are greater than their respective five-year means. A relatively high concentration of chloropyridines was measured at pumping well PW-15 (250,000 μg/L, slightly less than the five year mean of 260,000 μg/L). To the northwest,

relatively high concentrations of chloropyridines were detected in wells BR-9 and PW-16, which are both active pumping wells. This indicates the pumping wells are effectively pulling in water from multiple areas with elevated concentrations of chloropyridines.

3.1.2 SELECTED VOCS

<u>On-Site.</u> Selected VOCs were detected in 20 of the 25 on-site wells sampled for VOCs in the Spring 2019 event. Total concentrations of selected VOCs (sum of carbon tetrachloride, chlorobenzene, chloroform, methylene chloride, tetrachloroethene, and trichloroethene) ranged from not detected (in wells B-15, BR-126, BR-5A, E-3, and MW-127) to 25,000 μg/L in well PW15. Nine of the on-site wells contained total concentrations of selected VOCs above their respective five-year prior means (see Table 4).

In addition to the selected VOCs, other notable constituents detected in multiple on-site wells include toluene (in 8 out of 25 wells), benzene (14 of 25), 1,2-dichlorobenzene (7 of 25), 1,4-dichlorobenzene (10 of 25), carbon disulfide (11 of 25), 1,3-dichlorobenzene (6 of 25), vinyl chloride (5 of 25), cis-1,2-dichloroethene (5 of 25), 1,2,3-trichlorobenzene (2 of 25), 1,2,4-trichlorobenzene (2 of 25), and 1,1-dichloroethane (3 of 25).

<u>Off-Site.</u> Selected VOCs were detected in six of the nine off-site wells sampled for VOCs during the Spring 2019 event. Total concentrations of selected VOCs ranged from not detected (in wells PZ-101, BR-114, and BR-105D) to 340 μ g/L (in well PZ-103). One well (BR-106) contained a total concentration of selected VOCs above its 5-year prior mean for VOCs (see Table 4).

In addition to the selected VOCs, other notable constituents detected in multiple off-site wells include benzene (in 7 out of 9 wells), 1,2-dichlorobenzene (5 of 9), 1,3-dichlorobenzene (3 of 9), 1,4-dichlorobenzene (3 of 9), carbon disulfide (2 of 9), and cis-1,2-dichloroethene (2 of 9).

<u>Post Groundwater Carbon Treatment Beds.</u> VOCs detected in the treated groundwater effluent sample were methylene chloride (252 ug/L), vinyl chloride (63.5 ug/L), and methyl tertbutyl ether (2.91 ug/L) (See Tables 3).

Concentration Contours. The distribution of selected VOCs in groundwater is shown as a set of concentration contours on Figure 9. These contours were developed using both overburden and bedrock groundwater data, and are dashed where approximated using historical data. The VOC plume extent is generally consistent with previous monitoring events. Notable decreases in VOCs from the Fall 2018 event were observed in wells BR-127, MW-106, and PZ-107. VOC concentrations in PZ-107 were well below the previous five year mean and an order of magnitude less than the Fall 2018 concentration. Increases were observed in wells B-11, B-16, BR-8, PW-15, PW-17, and PZ-106, although the May 2019 concentrations of target VOCs in PZ-106, BR-8, and PW-15 are only slightly greater than the previous five year means. The target VOCs concentration for PW-17 increased from the Fall 2018 event but is still well below the previous five year mean. VOCs observed in off-site wells primarily consist of chlorobenzenes, which appear to be closely associated with chloropyridines at this site.

3.1.3 PFAS

Samples for analysis of PFAS were collected at on-site wells BR-1, B-15, BR-8, PZ-104, and PZ-107. Two PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic

acid (PFOS), are under consideration for New York drinking water Maximum Contaminant Levels (MCLs) of 10 ng/L each as proposed by the New York Drinking Water Quality Council in December 2018. PFOA concentrations exceeded the New York recommended MCLs in wells B-15 (20 ng/L), PZ-107 (23 ng/L), and BR-8 (36 ng/L). With the exception of BR-8 (19 ng/L), PFOS concentrations were less than the New York recommended MCL. PFOS and PFOA, along with other PFAS compounds were also detected in upgradient well BR-1 (See Table 5).

3.1.4 1,4-DIOXANE

Samples for analysis of 1,4-dioxane were collected at on-site wells BR-1, B-15, BR-8, PZ-104, and PZ-107. 1,4-Dioxane was detected in three of the five wells sampled for 1,4-dioxane in the Spring 2019 event. 1,4-Dioxane concentrations ranged from not detected (in wells BR-1 and B-15) to 6.0 μ g/L in well BR-8 (See Table 5). With the exception of BR-8 (6.02 μ g/L), 1,4-dioxane concentrations were less than 1 μ g/L, the proposed drinking water MCL recommended by the New York Drinking Water Quality Council in December 2018.

3.2 SURFACE WATER

Results from the Spring 2019 canal and quarry monitoring event are presented in Table 6 and are discussed below.

3.2.1 QUARRY

One quarry seep sample (QS-4) was collected in the Spring 2019 monitoring event. The sample contained 31 μ g/L total chloropyridines, which is below its prior five-year mean of 87 μ g/L.

3.2.2 QUARRY DISCHARGE DITCH

Two locations within the quarry discharge ditch were sampled and analyzed for chloropyridines: QD-1, at the point where the quarry's dewatering discharge enters the ditch; and QO-2, at the location where the ditch discharges to the canal. Chloropyridine compounds were not detected in either sample.

3.2.3 BARGE CANAL

One sample was collected from the Erie Barge Canal location (QO-2S1, approximately 100 feet downstream of QO-2). Chloropyridines were not detected in this sample.

4.0 EXTRACTION SYSTEM PERFORMANCE

Table 7 presents a summary of the system flow measurements for the on-site extraction wells from December 2018 through May 2019. The total volume pumped during the six-month period was approximately 7.1 million gallons. Overall, the system pumped reliably throughout the period with system flow rates averaging between 21 and 36 gpm on a monthly basis. PW-17 continues to be a poorly performing well due to very low yield. Well PW-13 displayed its usual pattern of low flow during the winter months (when the canal is drawn down), and increased flow beginning in May. Well PW-16, was off-line for maintenance

during different periods between January and March. The remaining wells (BR-7A, BR-9, and PW-13) pumped at relatively consistent rates through the six-month period.

Table 8 provides a calculation of mass removal rates since the previous groundwater monitoring event (i.e., from December 2018 through May 2019). Arch estimates that approximately 91 pounds of target VOCs and 3,300 pounds of chloropyridine compounds were removed by the groundwater extraction system and treated by the plant's activated carbon adsorption units over that time period.

5.0 OPTIMIZATION OF MONITORING NETWORK

Monitoring well B-11 is reportedly damaged; however, well MW-127 is located nearby and tracks closely with B-11. Arch recommends that well B-11 be dropped from the groundwater quality monitoring program and abandoned at this time. Debris was noted in well BR-3 that prevented sample collection. The debris should be cleared to allow for sample collection prior to May 2020 which is the next scheduled sampling event for this well.

6.0 NEXT MONITORING EVENT

The next regular monitoring event will occur in November 2019 and will include groundwater, surface water, and seep sampling.

Table 9 shows the 2019 monitoring program for the Arch Rochester site.

TABLE 1 SPRING 2019 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM

ARCH CHEMICALS, INC ROCHESTER, NEW YORK

			ANALYSIS	PYRIDINES	VOCs	PFAS	1,4-DIOXANE
SITE / AREA	WELL / POINT	DATE	QC TYPE	TINDINES	¥003	1170	1,4-DIOXAILE
AID TO HOSPITALS	BR-106	5/10/2019	Sample	Х	Х		
AID TO TIOGITIALS	MW-106	5/10/2019	Sample	X	X		
	PZ-101	5/9/2019	Sample	X	X		
	PZ-101	5/13/2019	Sample	X	X		
	PZ-102 PZ-103	5/13/2019	· ·	X			
ARCH ROCHESTER	B-11	+	Sample	X	X		
ARCH ROCHESTER		5/15/2019	Sample		X	V	x
	B-15	5/8/2019	Sample	X		X	^
	B-16	5/10/2019	Sample	X	X		
	B-17	5/9/2019	Sample	X	X		
	B-7	5/10/2019	Sample	Х	Х	.,	
	BR-1	5/8/2019	Sample			Х	Х
	BR-126	5/13/2019	Sample	Х	Х		
	BR-127	5/10/2019	Duplicate	X	Х		
	BR-127	5/10/2019	Sample	X	Х		
	BR-5A	5/9/2019	Duplicate	X	Х		
	BR-5A	5/9/2019	Sample	X	X		
	BR-6A	5/8/2019	Sample	X	X		
	BR-7A	5/15/2019	Sample	X	Х		
	BR-8	5/8/2019	Sample	X	Х	Х	X
	BR-9	5/8/2019	Sample	X	Х		
	CARBON TREAT	5/14/2019	Sample	X	X		
	E-3	5/9/2019	Sample	X	X		
	MW-127	5/9/2019	Sample	X	X		
	PW10	5/9/2019	Sample	X	Х		
	PW12	5/9/2019	Sample	X	Х		
	PW13	5/14/2019	Sample	X	Х		
	PW14	5/10/2019	Sample	X	Х		
	PW15	5/10/2019	Sample	X	X		
	PW16	5/13/2019	Sample	X	X		
	PW17	5/10/2019	Sample	X	Х		
	PZ-104	5/8/2019	Duplicate			Х	×
	PZ-104	5/8/2019	Sample	×	Х	Х	×
	PZ-105	5/15/2019	Sample	×	Х		
	PZ-106	5/9/2019	Sample	X	Х		
	PZ-107	5/8/2019	Sample	×	Х	Х	×
ERIE BARGE CANAL	BR-112D	5/14/2019	Sample	X			
(Samples in canal or property along canal)	BR-113D	5/14/2019	Sample	X			
(complete in contact of property and grandly	QO-2	5/15/2019	Sample	X			
	QO-2S1	5/15/2019	Sample	X			
DOLOMITE PRODUCTS, INC.	BR-117D	5/14/2019	Sample	X			
(Samples at or near Dolomite Quarry)	BR-118D	5/14/2019	Sample	X			
(2	QD-1	5/15/2019	Sample	X			
	QS-4	5/15/2019	Duplicate	X			
	QS-4 QS-4	5/15/2019	Sample	X			
N/F Jackson Welding and Gas Products	BR-114	5/13/2019	Sample	X	Х		
TWI GAGNSOIT WEIGHING AND GAS FIDUUCIS	MW-114	5/13/2019	Sample	X	X		
RG & E RIGHT OF WAY				X	X		
ING & L RIGHT OF WAT	BR-105 BR-105D	5/13/2019 5/13/2019	Sample				
OLI 1			Sample	X	Х		+
OU-1	BR-122D	5/14/2019	Sample	X			
Ī	BR-123D	5/14/2019	Sample	X			

N/F = now or formerly

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-11	B-15	B-16	B-17	B-7	BR-105	BR-105D	BR-106	BR-112D	BR-113D
SAMPLE DATE:	5/15/2019	5/8/2019	5/10/2019	5/9/2019	5/10/2019	5/13/2019	5/13/2019	5/10/2019	5/14/2019	5/14/2019
QC TYPE:	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
SELECTED CHLOROPYRIDINES BY										
SW-846 Method 8270D (µg/L)										
2,6-Dichloropyridine	376	9.51 U	471 U	50000 U	30.9	51.8	14.1	1800 J	9.52 U	9.48 U
2-Chloropyridine	3130	5.09 J	3570	608000	41.3	244	16.6	19500	11.4	6.29 J
3-Chloropyridine	200 U	9.51 U	471 U	50000 U	9.46 U	19 U	13.6	2000 U	9.52 U	9.48 U
4-Chloropyridine	200 U	9.51 U	471 U	50000 U	9.46 U	19 U	9.27 U	2000 U	9.52 U	9.48 U
p-Fluoroaniline	200 U	9.51 U	471 U	50000 U	9.46 U	19 U	9.27 U	2000 U	9.52 U	9.48 U
Pyridine	200 UJ	9.51 UJ	471 UJ	80600 J	9.46 UJ	19 UJ	9.27 UJ	2000 UJ	9.52 UJ	9.48 UJ

Prepared/Date: WPC 07/23/2019

Checked/Date: JAR 07/24/2019

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-114	BR-117D	BR-118D	BR-122D	BR-123D	BR-126	BR-127	BR-127	BR-5A	BR-5A
SAMPLE DATE:	5/13/2019	5/14/2019	5/14/2019	5/14/2019	5/14/2019	5/13/2019	5/10/2019	5/10/2019	5/9/2019	5/9/2019
QC TYPE:	FS	FS	FS	FS	FS	FS	FD	FS	FD	FS
SELECTED CHLOROPYRIDINES BY										
SW-846 Method 8270D (µg/L)										
2,6-Dichloropyridine	9.53 U	9.7 U	9.6 U	9.5 U	9.5 U	138	2000 U	2000 U	17.5	18.3
2-Chloropyridine	9.53 U	9.7 U	7.01 J	9.5 U	51	427	11400	11600	5.89 J	6.25 J
3-Chloropyridine	9.53 U	9.7 U	9.6 U	9.5 U	9.5 U	80 U	2000 U	2000 U	9.51 U	9.51 U
4-Chloropyridine	9.53 U	9.7 U	9.6 U	9.5 U	9.5 U	80 U	2000 U	2000 U	9.51 U	9.51 U
p-Fluoroaniline	9.53 U	9.7 U	9.6 U	9.5 U	9.5 U	80 U	2000 U	2000 U	9.51 U	9.51 U
Pyridine	9.53 UJ	9.7 UJ	9.6 UJ	9.5 UJ	9.5 UJ	80 UJ	2000 UJ	2000 UJ	9.51 UJ	9.51 UJ

Prepared/Date: WPC 07/23/2019

Checked/Date: JAR 07/24/2019

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-6A	BR-7A	BR-8	BR-9	CARBON TREAT	E-3	MW-106	MW-114	MW-127	PW10
SAMPLE DATE:	5/8/2019	5/15/2019	5/8/2019	5/8/2019	5/14/2019	5/9/2019	5/10/2019	5/13/2019	5/9/2019	5/9/2019
QC TYPE:	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
SELECTED CHLOROPYRIDINES BY										
SW-846 Method 8270D (µg/L)										
2,6-Dichloropyridine	1540 J	254	40000 U	200 U	9.61 U	9.43 U	342	9.49 U	400 U	400 U
2-Chloropyridine	8020	3510	491000	2400	9.61 U	13.8	2280	9.49 U	4410	722
3-Chloropyridine	2000 U	250 U	21700 J	200 U	9.61 U	9.43 U	200 U	9.49 U	400 U	400 U
4-Chloropyridine	2000 U	250 U	40000 U	200 U	9.61 U	9.43 U	200 U	9.49 U	400 U	400 U
p-Fluoroaniline	2000 U	250 U	40000 U	200 U	9.61 U	9.43 U	200 U	9.49 U	400 U	400 U
Pyridine	2000 UJ	250 UJ	35400 J	200 UJ	115 J	9.43 UJ	200 UJ	9.49 UJ	400 UJ	400 UJ

Prepared/Date: WPC 07/23/2019

Checked/Date: JAR 07/24/2019

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PW12	PW13	PW14	PW15	PW16	PW17	PZ-101	PZ-102	PZ-103	PZ-104
SAMPLE DATE:	5/9/2019	5/14/2019	5/10/2019	5/10/2019	5/13/2019	5/10/2019	5/9/2019	5/13/2019	5/13/2019	5/8/2019
QC TYPE:	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
SELECTED CHLOROPYRIDINES BY										
SW-846 Method 8270D (µg/L)										
2,6-Dichloropyridine	9.62 U	2000 U	2000 U	20000 U	8000 U	4000 U	10.4 U	4000 U	2140	190 U
2-Chloropyridine	9.62 U	14000	23400	237000	132000	12400	10.4 U	35600	28400	325
3-Chloropyridine	9.62 U	2000 U	2000 U	20000 U	8000 U	4000 U	10.4 U	4000 U	1360 J	190 U
4-Chloropyridine	9.62 U	2000 U	2000 U	20000 U	8000 U	4000 U	10.4 U	4000 U	2000 U	190 U
p-Fluoroaniline	9.62 U	2000 U	2000 U	20000 U	8000 U	4000 U	10.4 U	4000 U	2000 U	190 U
Pyridine	9.62 UJ	2000 UJ	2000 UJ	13100 J	8000 UJ	4000 UJ	10.4 UJ	4000 UJ	2000 UJ	190 UJ

Prepared/Date: WPC 07/23/2019

Checked/Date: JAR 07/24/2019

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

Prepared/Date: WPC 07/23/2019

Checked/Date: JAR 07/24/2019

LOCATION:	PZ-105	PZ-106	PZ-107
SAMPLE DATE:	5/15/2019	5/9/2019	5/8/2019
QC TYPE:	FS	FS	FS
SELECTED CHLOROPYRIDINES BY			
SW-846 Method 8270D (µg/L)			
2,6-Dichloropyridine	1620	2000 U	950 U
2-Chloropyridine	9160	28400	6960
3-Chloropyridine	800 U	2000 U	950 U
4-Chloropyridine	800 U	2000 U	950 U
p-Fluoroaniline	800 U	2000 U	950 U
Pyridine	800 UJ	1270 J	950 UJ

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-11	B-15	B-16	B-17	B-7	BR-105	BR-105D	BR-106	BR-114
SAMPLE DATE:	5/15/2019	5/8/2019	5/10/2019	5/9/2019	5/10/2019	5/13/2019	5/13/2019	5/10/2019	5/13/2019
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
VOCs By SW-846 Method 8260C (µg/L)									
1,1,1-Trichloroethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,1,2,2-Tetrachloroethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,1,2-Trichloroethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,1-Dichloroethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,1-Dichloroethene	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,2,3-Trichlorobenzene	5 U	5 U	5 U	500 U	5 U	5 U	5 U	12.5 UJ	5 U
1,2,4-Trichlorobenzene	5 U	5 U	5 U	500 U	5 U	5 U	5 U	12.5 UJ	5 U
1,2-Dibromo-3-chloropropane	10 U	10 U	10 U	1000 U	10 U	10 U	10 U	25 UJ	10 U
1,2-Dibromoethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,2-Dichlorobenzene	2 U	2 U	2 U	200 U	2 U	2.46	2 U	112 J	2 U
1,2-Dichloroethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,2-Dichloropropane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
1,3-Dichlorobenzene	2 U	2 U	2 U	200 U	2 U	2 U	2 U	10.1 J	2 U
1,4-Dichlorobenzene	2 U	2 U	1.05 J	200 U	2 U	2 U	2 U	11 J	2 U
1,4-Dioxane	20 U	20 U	20 U	2000 U	20 U	20 U	20 U	50 UJ	20 U
2-Butanone	11.5	10 U	10 U	1000 U	10 U	10 U	10 U	25 UJ	10 U
2-Hexanone	5 U	5 U	5 U	500 U	5 U	5 U	5 U	12.5 UJ	5 U
4-Methyl-2-pentanone	5 U	5 U	5 U	500 U	5 U	5 U	5 U	12.5 UJ	5 U
Acetic acid, methyl ester	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Acetone	95.5	10 U	10 U	1000 U	10 U	10 U	10 U	25 UJ	10 U
Benzene	0.731 J	1 U	1.19	100 U	1 U	0.822 J	4.84	12.8 J	0.586 J
Bromochloromethane	5 U	5 U	5 U	500 U	5 U	5 U	5 U	12.5 UJ	5 U
Bromodichloromethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Bromoform	5 U	5 U	5 U	500 U	5 U	5 U	5 U	12.5 UJ	5 U
Bromomethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Carbon disulfide	2 U	2 U	2 U	114 J	2 U	2 U	6.8	5 UJ	2 U
Carbon tetrachloride	5.03	2 U	2 U	9890	2 U	2 U	2 U	5 UJ	2 U
Chlorobenzene	3.05	2 U	1.76 J	390	1.01 J	5.38	2 U	285 J	2 U

P:\Projects\Arch\Arch-Lonza-2019 GW Monitoring-3616196076\4.0_Deliverables\4.1_Reports\Spring_2019\Tables\ Table_3_VOCs_S_2019.xlsx Page 1 of 10

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	B-11	B-15	B-16	B-17	B-7	BR-105	BR-105D	BR-106	BR-114
SAMPLE DATE:	5/15/2019	5/8/2019	5/10/2019	5/9/2019	5/10/2019	5/13/2019	5/13/2019	5/10/2019	5/13/2019
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
VOCs By SW-846 Method 8260C (µg/L)									
Chloroethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Chloroform	39	2 U	15.2	2730	1.52 J	2 U	2 U	5 UJ	2 U
Chloromethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Cis-1,2-Dichloroethene	2.33	2 U	2.78	200 U	2 U	5.74	4.92	5 UJ	2 U
Cis-1,3-Dichloropropene	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Cyclohexane	10 U	10 U	10 U	1000 U	10 U	10 U	8.17 J	25 UJ	10 U
Dibromochloromethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Dichlorodifluoromethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Ethylbenzene	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Isopropylbenzene	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Methyl cyclohexane	2 U	2 U	2 U	200 U	2 U	2 U	4.53	5 UJ	2 U
Methyl Tertbutyl Ether	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Methylene chloride	5 U	5 U	5 U	500 U	5 U	5 U	5 U	12.5 UJ	5 U
Styrene	5 U	5 U	5 U	500 U	5 U	5 U	5 U	12.5 UJ	5 U
Tetrachloroethene	2 U	2 U	1.17 J	2430	2 U	2 U	2 U	5 UJ	2 U
Toluene	2 U	2 U	2 U	180 J	2 U	2 U	2 U	5 UJ	2 U
trans-1,2-Dichloroethene	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
trans-1,3-Dichloropropene	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Trichloroethene	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Trichlorofluoromethane	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Vinyl chloride	2 U	2 U	3.15	200 U	2 U	6.17	2 U	5 UJ	2 U
Xylene, o	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U
Xylenes (m&p)	2 U	2 U	2 U	200 U	2 U	2 U	2 U	5 UJ	2 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

μg/L = micrograms per Liter

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-126	BR-127	BR-127	BR-5A	BR-5A	BR-6A	BR-7A	BR-8	BR-9
SAMPLE DATE:	5/13/2019	5/10/2019	5/10/2019	5/9/2019	5/9/2019	5/8/2019	5/15/2019	5/8/2019	5/8/2019
QC TYPE:	Sample	Duplicate	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample
VOCs By SW-846 Method 8260C (µg/L)									
1,1,1-Trichloroethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	1.54 J
1,1,2,2-Tetrachloroethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	51
1,1,2-Trichloroethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
1,1-Dichloroethane	2 U	10 U	10 U	2 U	2 U	4 U	1.93 J	20 UJ	6.47
1,1-Dichloroethene	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	1.13 J
1,2,3-Trichlorobenzene	5 U	25 U	25 U	5 U	5 U	10 U	5 U	50 UJ	5 U
1,2,4-Trichlorobenzene	5 U	25 U	25 U	5 U	5 U	10 U	5 U	50 UJ	5 U
1,2-Dibromo-3-chloropropane	10 U	50 U	50 U	10 U	10 U	20 U	10 U	100 UJ	10 U
1,2-Dibromoethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
1,2-Dichlorobenzene	2 U	10 U	10 U	2 U	2 U	4 U	10.3	223 J	8
1,2-Dichloroethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
1,2-Dichloropropane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
1,3-Dichlorobenzene	2 U	10 U	10 U	2 U	2 U	4 U	2.83	118 J	2 J
1,4-Dichlorobenzene	2 U	5.81 J	6.19 J	2 U	2 U	4 U	2.58	44.3 J	1.58 J
1,4-Dioxane	20 U	100 U	100 U	20 U	20 U	40 U	20 U	200 UJ	20 U
2-Butanone	10 U	50 U	50 U	10 U	10 U	20 U	10 U	100 UJ	10 U
2-Hexanone	5 U	25 U	25 U	5 U	5 U	10 U	5 U	50 UJ	5 U
4-Methyl-2-pentanone	5 U	25 U	25 U	5 U	5 U	10 U	5 U	50 UJ	5 U
Acetic acid, methyl ester	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Acetone	10 U	50 U	50 U	10 U	10 U	20 U	10 U	100 UJ	10 U
Benzene	1.34	3.66 J	3.78 J	1 U	1 U	2.03	3.21	24.3 J	27.7
Bromochloromethane	5 U	25 U	25 U	5 U	5 U	10 U	5 U	50 UJ	5 U
Bromodichloromethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Bromoform	5 U	25 U	25 U	5 U	5 U	10 U	5 U	50 UJ	5 U
Bromomethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Carbon disulfide	2 U	23.2	30.1	2 U	2 U	4 U	2 U	18.7 J	2 U
Carbon tetrachloride	2 U	11.9	14.5	2 U	2 U	4 U	2 U	20 UJ	2 U
Chlorobenzene	2 U	5.08 J	5.93 J	2 U	2 U	11.7	18.5	895 J	13.7

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	BR-126	BR-127	BR-127	BR-5A	BR-5A	BR-6A	BR-7A	BR-8	BR-9
SAMPLE DATE:	5/13/2019	5/10/2019	5/10/2019	5/9/2019	5/9/2019	5/8/2019	5/15/2019	5/8/2019	5/8/2019
QC TYPE:	Sample	Duplicate	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample
VOCs By SW-846 Method 8260C (µg/L)									
Chloroethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Chloroform	2 U	182	199	2 U	2 U	13.4	3.99	20 UJ	2 U
Chloromethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Cis-1,2-Dichloroethene	2 U	10 U	10 U	2 U	2 U	11.9	2 U	20 UJ	97.7
Cis-1,3-Dichloropropene	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Cyclohexane	10 U	50 U	50 U	10 U	10 U	20 U	10 U	100 UJ	18
Dibromochloromethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Dichlorodifluoromethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Ethylbenzene	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	1.22 J
Isopropylbenzene	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2.15
Methyl cyclohexane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	5.32
Methyl Tertbutyl Ether	2 U	10 U	10 U	2 U	2 U	4 U	1.45 J	20 UJ	2 U
Methylene chloride	5 U	25 U	25 U	5 U	5 U	10 U	5 U	50 UJ	5 U
Styrene	5 U	25 U	25 U	5 U	5 U	10 U	5 U	50 UJ	5 U
Tetrachloroethene	2 U	10	15.5	2 U	2 U	4 U	2 U	20 UJ	2 U
Toluene	2 U	10 U	10 U	2 U	2 U	44.2	2 U	80.1 J	2 U
trans-1,2-Dichloroethene	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
trans-1,3-Dichloropropene	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Trichloroethene	2 U	9.72 J	11	2 U	2 U	44.9	2 U	20 UJ	1.41 J
Trichlorofluoromethane	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Vinyl chloride	2 U	10 U	10 U	2 U	2 U	17.2	2 U	20 UJ	90
Xylene, o	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U
Xylenes (m&p)	2 U	10 U	10 U	2 U	2 U	4 U	2 U	20 UJ	2 U

Prepared/Date: WPC 07/23/2019 Checked/Date: JAR 07/24/2019

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	CARBON TREAT	E-3	MW-106	MW-114	MW-127	PW10	PW12	PW13	PW14
SAMPLE DATE:	5/14/2019	5/9/2019	5/10/2019	5/13/2019	5/9/2019	5/9/2019	5/9/2019	5/14/2019	5/10/2019
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
VOCs By SW-846 Method 8260C (μg/L)			-			-			
1,1,1-Trichloroethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
1,1,2,2-Tetrachloroethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
1,1,2-Trichloroethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
1,1-Dichloroethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	1.65 J	20 U
1,1-Dichloroethene	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
1,2,3-Trichlorobenzene	10 U	5 U	5 UJ	5 U	5 U	13.7	5.46 J	5 UJ	50 U
1,2,4-Trichlorobenzene	10 U	5 U	5 UJ	5 U	5 U	34.4	47.8	5 UJ	50 U
1,2-Dibromo-3-chloropropane	20 U	10 U	10 UJ	10 U	10 U	10 U	20 U	10 UJ	100 U
1,2-Dibromoethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
1,2-Dichlorobenzene	4 U	2 U	6.09 J	2 U	2 U	2 U	2.65 J	44.9 J	20 U
1,2-Dichloroethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
1,2-Dichloropropane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
1,3-Dichlorobenzene	4 U	2 U	2 UJ	2 U	2 U	2 U	8.57	9.89 J	20 U
1,4-Dichlorobenzene	4 U	2 U	2 UJ	2 U	2 U	2 U	5.22	9.07 J	20 U
1,4-Dioxane	40 U	20 U	20 UJ	20 U	20 U	20 U	40 U	20 UJ	200 U
2-Butanone	20 U	10 U	10 UJ	10 U	10 U	10 U	20 U	10 UJ	100 U
2-Hexanone	10 U	5 U	5 UJ	5 U	5 U	5 U	10 U	5 UJ	50 U
4-Methyl-2-pentanone	10 U	5 U	5 UJ	5 U	5 U	5 U	10 U	5 UJ	50 U
Acetic acid, methyl ester	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Acetone	20 U	10 U	10 UJ	10 U	10 U	10 U	20 U	10 UJ	100 U
Benzene	2 U	1 U	1.72 J	1 U	1 U	1 U	2 U	4.94 J	7.81 J
Bromochloromethane	10 U	5 U	5 UJ	5 U	5 U	5 U	10 U	5 UJ	50 U
Bromodichloromethane	4 U	2 U	2 UJ	2 U	2 U	2 U	3.83 J	2 UJ	20 U
Bromoform	10 U	5 U	5 UJ	5 U	5 U	5 U	10 U	5 UJ	50 U
Bromomethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Carbon disulfide	4 U	2 U	2 UJ	2 U	2 U	1.05 J	4 U	2.43 J	14.5 J
Carbon tetrachloride	4 U	2 U	2 UJ	2 U	2 U	2.48	4 U	2 UJ	10.5 J
Chlorobenzene	4 U	2 U	30.9 J	2 U	2 U	2 U	7.71	77.7 J	20 U

P:\Projects\Arch\Arch-Lonza-2019 GW Monitoring-3616196076\4.0_Deliverables\4.1_Reports\Spring_2019\Tables\ Table_3_VOCs_S_2019.xlsx Page 5 of 10

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	CARBON TREAT	E-3	MW-106	MW-114	MW-127	PW10	PW12	PW13	PW14
SAMPLE DATE:	5/14/2019	5/9/2019	5/10/2019	5/13/2019	5/9/2019	5/9/2019	5/9/2019	5/14/2019	5/10/2019
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
VOCs By SW-846 Method 8260C (µg/L)									
Chloroethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Chloroform	4 U	2 U	2 UJ	6.78	2 U	2.03	20.7	1.06 J	832
Chloromethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Cis-1,2-Dichloroethene	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Cis-1,3-Dichloropropene	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Cyclohexane	20 U	10 U	10 UJ	10 U	10 U	10 U	20 U	10 UJ	100 U
Dibromochloromethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Dichlorodifluoromethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Ethylbenzene	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Isopropylbenzene	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Methyl cyclohexane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Methyl Tertbutyl Ether	2.91 J	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Methylene chloride	252	5 U	5 UJ	5 U	5 U	5 U	10 U	5 UJ	50 U
Styrene	10 U	5 U	5 UJ	5 U	5 U	5 U	10 U	5 UJ	50 U
Tetrachloroethene	4 U	2 U	1.52 J	2 U	2 U	6.48	4 U	2 UJ	14.5 J
Toluene	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	1.93 J	12.7 J
trans-1,2-Dichloroethene	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
trans-1,3-Dichloropropene	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Trichloroethene	4 U	2 U	2 UJ	2.18	2 U	1.96 J	4 U	2 UJ	53.5
Trichlorofluoromethane	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Vinyl chloride	63.5	2 U	2 UJ	2 U	2 U	2 U	4 U	1.87 J	20 U
Xylene, o	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U
Xylenes (m&p)	4 U	2 U	2 UJ	2 U	2 U	2 U	4 U	2 UJ	20 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

μg/L = micrograms per Liter

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

						ı			
LOCATION:	PW15	PW16	PW17	PZ-101	PZ-102	PZ-103	PZ-104	PZ-105	PZ-106
SAMPLE DATE:	5/10/2019	5/13/2019	5/10/2019	5/9/2019	5/13/2019	5/13/2019	5/8/2019	5/15/2019	5/9/2019
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
VOCs By SW-846 Method 8260C (µg/L)									
1,1,1-Trichloroethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,1,2,2-Tetrachloroethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,1,2-Trichloroethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,1-Dichloroethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,1-Dichloroethene	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,2,3-Trichlorobenzene	500 U	25 U	250 U	5 U	10 U	25 U	5 U	5 UJ	250 U
1,2,4-Trichlorobenzene	500 U	25 U	250 U	5 U	10 U	25 U	5 U	5 UJ	250 U
1,2-Dibromo-3-chloropropane	1000 U	50 U	500 U	10 U	20 U	50 U	10 U	10 UJ	500 U
1,2-Dibromoethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,2-Dichlorobenzene	200 U	409	100 U	2 U	111	212	2 U	3.53 J	100 U
1,2-Dichloroethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,2-Dichloropropane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
1,3-Dichlorobenzene	200 U	86.7	100 U	2 U	23	64.5	2 U	2 UJ	100 U
1,4-Dichlorobenzene	127 J	108	100 U	2 U	12.3	54.8	2 U	2 UJ	100 U
1,4-Dioxane	2000 U	100 U	1000 U	20 U	40 U	100 U	20 U	20 UJ	1000 U
2-Butanone	1000 U	50 U	500 U	10 U	20 U	50 U	10 U	10 UJ	500 U
2-Hexanone	500 U	25 U	250 U	5 U	10 U	25 U	5 U	5 UJ	250 U
4-Methyl-2-pentanone	500 U	25 U	250 U	5 U	10 U	25 U	5 U	5 UJ	250 U
Acetic acid, methyl ester	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Acetone	1000 U	50 U	500 U	10 U	20 U	50 U	10 U	10 UJ	500 U
Benzene	59.9 J	9.81	50 U	1 U	15.1	8.08	1 U	6.31 J	50 U
Bromochloromethane	500 U	25 U	250 U	5 U	10 U	25 U	5 U	5 UJ	250 U
Bromodichloromethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Bromoform	770	25 U	250 U	5 U	10 U	25 U	5 U	5 UJ	250 U
Bromomethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Carbon disulfide	2440	9.33 J	1260	2 U	2.72 J	10 U	2 U	2 UJ	160
Carbon tetrachloride	7130 J	10 U	427	2 U	4 U	10 U	2 U	2 UJ	1640
Chlorobenzene	156 J	377	100 U	2 U	257	335	2.71	66.7 J	100 U

 $P:\Projects\Arch\Arch-Lonza-2019\ GW\ Monitoring-3616196076\\ \A.0_Deliverables\\ \A.1_Reports\Spring_2019\\ \Table_3_VOCs_S_2019.xlsx$ Page 7 of 10

Prepared/Date: WPC 07/23/2019 Checked/Date: JAR 07/24/2019

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PW15	PW16	PW17	PZ-101	PZ-102	PZ-103	PZ-104	PZ-105	PZ-106
SAMPLE DATE:	5/10/2019	5/13/2019	5/10/2019	5/9/2019	5/13/2019	5/13/2019	5/8/2019	5/15/2019	5/9/2019
QC TYPE:	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
VOCs By SW-846 Method 8260C (µg/L)									
Chloroethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Chloroform	15400 J	10 U	3380	2 U	4 U	10 U	2 U	2 UJ	7890
Chloromethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Cis-1,2-Dichloroethene	200 U	10 U	107	2 U	4 U	10 U	2 U	2 UJ	100 U
Cis-1,3-Dichloropropene	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Cyclohexane	1000 U	50 U	500 U	10 U	20 U	50 U	10 U	10 UJ	500 U
Dibromochloromethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Dichlorodifluoromethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Ethylbenzene	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Isopropylbenzene	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Methyl cyclohexane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Methyl Tertbutyl Ether	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Methylene chloride	1770	25 U	940	5 U	10 U	25 U	5 U	5 UJ	608
Styrene	500 U	25 U	250 U	5 U	10 U	25 U	5 U	5 UJ	250 U
Tetrachloroethene	720	10 U	554	2 U	4 U	10 U	2 U	2 UJ	345
Toluene	138 J	87	100 U	2 U	2.88 J	10 U	2 U	2 UJ	60 J
trans-1,2-Dichloroethene	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
trans-1,3-Dichloropropene	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Trichloroethene	200 U	10 U	51.2 J	2 U	4 U	10 U	2 U	2 UJ	100 U
Trichlorofluoromethane	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Vinyl chloride	200 U	10 U	231	2 U	4 U	10 U	2 U	2 UJ	100 U
Xylene, o	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U
Xylenes (m&p)	200 U	10 U	100 U	2 U	4 U	10 U	2 U	2 UJ	100 U

Prepared/Date: WPC 07/23/2019 Checked/Date: JAR 07/24/2019

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

μg/L = micrograms per Liter

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

Prepared/Date: WPC 07/23/2019 Checked/Date: JAR 07/24/2019

LOCATION:	PZ-107
SAMPLE DATE:	5/8/2019
QC TYPE:	Sample
VOCs By SW-846 Method 8260C (µg/L)	
1,1,1-Trichloroethane	100 U
1,1,2,2-Tetrachloroethane	100 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	100 U
1,1,2-Trichloroethane	100 U
1,1-Dichloroethane	100 U
1,1-Dichloroethene	100 U
1,2,3-Trichlorobenzene	250 U
1,2,4-Trichlorobenzene	250 U
1,2-Dibromo-3-chloropropane	500 U
1,2-Dibromoethane	100 U
1,2-Dichlorobenzene	100 U
1,2-Dichloroethane	100 U
1,2-Dichloropropane	100 U
1,3-Dichlorobenzene	100 U
1,4-Dichlorobenzene	100 U
1,4-Dioxane	1000 U
2-Butanone	500 U
2-Hexanone	250 U
4-Methyl-2-pentanone	250 U
Acetic acid, methyl ester	100 U
Acetone	500 U
Benzene	50 U
Bromochloromethane	250 U
Bromodichloromethane	100 U
Bromoform	250 U
Bromomethane	100 U
Carbon disulfide	100 U
Carbon tetrachloride	817
Chlorobenzene	100 U

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	PZ-107
SAMPLE DATE:	5/8/2019
QC TYPE:	Sample
VOCs By SW-846 Method 8260C (µg/L)	
Chloroethane	100 U
Chloroform	4720
Chloromethane	100 U
Cis-1,2-Dichloroethene	100 U
Cis-1,3-Dichloropropene	100 U
Cyclohexane	500 U
Dibromochloromethane	100 U
Dichlorodifluoromethane	100 U
Ethylbenzene	100 U
Isopropylbenzene	100 U
Methyl cyclohexane	100 U
Methyl Tertbutyl Ether	100 U
Methylene chloride	1140
Styrene	250 U
Tetrachloroethene	129
Toluene	100 U
trans-1,2-Dichloroethene	100 U
trans-1,3-Dichloropropene	100 U
Trichloroethene	100 U
Trichlorofluoromethane	100 U
Vinyl chloride	100 U
Xylene, o	100 U
Xylenes (m&p)	100 U

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

μg/L = micrograms per Liter

Prepared/Date: WPC 07/23/2019 Checked/Date: JAR 07/24/2019

TABLE 4 COMPARISON OF SPRING 2019 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT

WELL	SI	ELECTED CHL	OROPYRIDIN	IES		SELECT	ED VOCs	
	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	MAY 2019 RESULT	# EVENTS IN PRIOR 5 YRS	HISTORIC MAXIMUM	5-YEAR MEAN	MAY 2019 RESULT
ON-SITE V	/ELLS/LOCAT	TIONS					•	
B-11	7	4,800	1700	3,500	7	570	22	47
B-15	10	13,000	67	5	10	1,600	ND	ND
B-16	10	33,000	540	3,600	10	4,500	4.2	18
B-17	6	28,000,000	580,000	690,000	6	350,000	4,400	15,000
B-4	1	740	13		1	42	ND	
B-5	4	360,000	180,000		6	670	160	
B-7	5	9,100	140	72	5	270	4.4	2.5
BR-126	9	12,000	970	570	9	240	ND	ND
BR-127	10	44,000	16,000	12,000	10	1,300	270	250
BR-3	5	6,500,000	1,000		5	930,000	1,100	
BR-5A	10	1,700	42	25	10	9,400	1	ND
BR-6A	10	140,000	16,000	9,600	10	69,000	4,200	70
BR-7A	10	510,000	8,400	3,800	10	5,600	82	22
BR-8	10	550,000	300,000	550,000	10	7,800	810	900
BR-9	10	1,300	240	2,400	10	210	11	15
E-3	5	600	15	14	5	15,000	ND	ND
MW-127	10	15,000	1,100	4,400	10	7,500	0	ND
PW10	11	500,000	160,000	720	11	120,000	820	13
PW12	10	15,000	70	ND	10	120,000	190	28
PW13	10	94,000	23,000	14,000	10	1,800	140	79
PW14	10	99,000	22,000	23,000	10	160,000	1,700	910
PW15	10	440,000	260,000	250,000	10	57,000	20,000	25,000
PW16	10	120,000	73,000	130,000	10	1,200	470	380
PW17	10	75,000	28,000	12,000	10	66,000	29,000	5,400
PZ-104	10	9,100	570	330	10	52	2.1	2.7
PZ-105	10	190,000	4,800	11,000	10	9,900	29	67
PZ-106	10	290,000	11,000	30,000	10	1,400,000	8,200	10,000
PZ-107	10	31,000	7,800	7,000	10	160,000	36,000	6,800
W-5	1	450,000	ND		1	2,500	ND	
OFF-SITE	WELLS/LOCA	TIONS						
BR-103	2	400	ND		2	46	ND	
BR-104	1	3,100	5.8			11		
BR-105	10	24,000	910	300	10	350	9.0	5.4
BR-105D	10	17,000	200	44	10	230	0.19	ND
BR-106	11	46,000	20,000	21,000	11	12,000	220	290
BR-108	2	1,700	ND			2		
BR-112D	5	310	12	11		4.3		
BR-113D	5	490	ND	6		2.8		
BR-114	5	520	2.5	ND	5	12	ND	ND
BR-116	1	12	ND			86		
BR-116D	1	710	6.6			130		
BR-117D	5	80	1.1	ND		1.9		
BR-118D	5	330	14	7		6.6		
BR-122D	5	650	2.7	ND		ND		

Prepared/Date: NMB 07/08/19 Checked/Date: JAR 07/23/19

TABLE 4

COMPARISON OF SPRING 2019 CHLOROPYRIDINES AND VOLATILE ORGANICS CONCENTRATIONS IN GROUNDWATER TO PREVIOUS RESULTS (ug/L)

ARCH ROCHESTER SEMI-ANNUAL GROUNDWATER MONITORING REPORT

WELL	SE	LECTED CHL	OROPYRIDIN	IES		SELECT	ED VOCs	
	# EVENTS IN PRIOR 5	HISTORIC MAXIMUM	5-YEAR MEAN	MAY 2019 RESULT	# EVENTS IN PRIOR 5	HISTORIC MAXIMUM	5-YEAR MEAN	MAY 2019 RESULT
	YRS				YRS			
BR-123D	5	860	40	51		7		
MW-103	2	97	ND		2	750	ND	
MW-104	1	180	6			5.8		
MW-106	11	130,000	34,000	2,600	11	4,000	380	32
MW-114	5	18	ND	ND	5	27	20	9
MW-16	1	360	22			10		
NESS-E	1	5,000	46			710		
NESS-W	1	6,300	ND			94		
PZ-101	10	27,000	130	ND	10	620	1.3	ND
PZ-102	11	210,000	56,000	36,000	11	11,000	440	260
PZ-103	10	230,000	66,000	32,000	10	46,000	610	340
QD-1	10	11	1	ND		ND		
QO-2	9	380	ND	ND		ND		
QO-2S1	10	27	ND	ND		ND		
QS-4	10	13,000	87	31		ND		

Note:

- 1) Number of samples and mean reflect 5-year sampling period from May 2014 through November 2018. Historic maximum based on all available results from March 1990 through November 2018.
- 2) Chloropyridines represented by: 2-Chloropyridine, 2,6-Dichloropyridine, 3-Chloropyridine, 4-Chloropyridine, p-Fluoroaniline, and Pyridine.
- 3) Selected VOCs represented by Carbon Tetrachloride, Chlorobenzene, Chloroform, Methylene Chloride, Tetrachloroethene, and Trichloroethene.
- 4) Bold and shade May 2019 exceeds 5-year mean.
- 5) ND = Not detected BLANK = Not sampled

Prepared/Date: NMB 07/08/19 Checked/Date: JAR 07/23/19

TABLE 5 SPRING 2019 GROUNDWATER MONITORING RESULTS 1,4-DIOXANE AND PER-/POLYFLUOROALKYL SUBSTANCES (PFAS)

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

	Well	San	nple ID	B-15	BR-1	BR-8	PZ-104	PZ-104 DUP	PZ-107
	S	ampl	e Date	5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
	Sa	ampl	е Туре	FS	FS	FS	FS	FD	FS
	Analytical								
Parameter Name	Method	(1)	Units						
1,4-Dioxane	8270D-SIM	1	UG/L	0.139 U	0.139 U	6.02	0.326	0.312	0.943
6:2 Fluorotelomer sulfonate (6:2 FTS)	537 (mod)		NG/L	1.76 U	1.93 U	10 U	U 1.83 U 1.83 U		1.93 U
8:2 Fluorotelomer sulfonate (8:2 FTS)	537 (mod)		NG/L	1.76 U	1.93 U	10 U	10 U 1.83 U 1.83 U		1.93 U
N-EtFOSAA	537 (mod)		NG/L	1.76 U	1.93 U	10 U	1.83 U	1.83 U	1.93 U
N-MeFOSAA	537 (mod)	` ′		1.76 U	1.93 U	10 U	1.83 U	1.83 U	1.93 U
Perfluorobutanesulfonic acid (PFBS)	537 (mod)	` '		0.961 J	1.93 U	10 U	0.725 J	0.879 J	1.31 J
Perfluorobutanoic acid (PFBA)	537 (mod)			9.76	17.4	5.38 J	11.8	12.1	24.4
Perfluorodecanesulfonic acid (PFDS)	537 (mod)	NG/L		1.76 U	1.93 U	10 U	1.83 U	1.83 U	1.93 U
Perfluorodecanoic acid (PFDA)	537 (mod)	` '		0.827 J	0.629 J	1.86 J	1.83 U	1.83 U	1.93 U
Perfluorododecanoic acid (PFDoA)	537 (mod)		NG/L	1.76 U	1.93 U	10 U	1.83 U	1.83 U	1.93 U
Perfluoroheptanesulfonic acid (PFHpS)	537 (mod)		NG/L	1.76 U	1.93 U	10 U	1.83 U	1.83 U	1.93 U
Perfluoroheptanoic acid (PFHpA)	537 (mod)		NG/L	7.77	1.17 J	9.18 J	2.01	2	10
Perfluorohexanesulfonic acid (PFHxS)	537 (mod)		NG/L	0.444 J	1.93 U	10 U	0.352 J	0.396 J	0.49 J
Perfluorohexanoic acid (PFHxA)	537 (mod)		NG/L	12.5	2.22	13.9	5.59	5.52	12.1
Perfluorononanoic acid (PFNA)	537 (mod)		NG/L	2.21	0.448 J	1.74 J	1.83 U	1.83 U	1.05 J
Perfluorooctanessulfonic acid (PFOS)	537 (mod)	10	NG/L	6.84	1.45 J	19	1.83 U	1.83 U	5.1
Perfluorooctanoic acid (PFOA)	537 (mod)	10	NG/L	19.9	7.48	35.5	4.42	4.54	22.8
Perfluoropentanoic acid (PFPeA)	537 (mod)		NG/L	18.6	2.32	10 U	6.07	5.82	7.05
Perfluorotetradecanoic acid (PFTeDA)	537 (mod)		NG/L	1.76 U	1.93 U	10 U	1.83 U	1.83 U	1.93 U
Perfluorotridecanoic acid (PFTrDA)	537 (mod)		NG/L	1.76 U	1.93 U	10 U	1.83 U	1.83 U	1.93 U
Perfluoroundecanoic acid (PFUnDA)	537 (mod)		NG/L	1.76 U	1.93 U	10 U	1.83 U	1.83 U	1.93 U
Perfluroroctanesulfonamide (FOSA)	537 (mod)		NG/L	1.76 U	1.93 U	46.6	1.83 U	1.83 U	3.08

(1) New York Drinking Water Quality Council (DWQC) Maximum Contaminant Level (MCL) recommendations December 2018

N-EtFOSAA = N-ethyl perfluorooctanesulfonamidoacetic acid

N-MeFOSAA = N-methyl perfluorooctanesulfonamidoacetic acid

FS = field sample FD = field duplicate

UG/L = microgram per liter

NG/L = nanogram per liter

Prepared by: BCG 8/9/19 Checked by: JAR 8/13/19

TABLE 6 SPRING 2019 QUARRY SEEP AND OUTFALL WATER SAMPLE RESULTS CHLOROPYRIDINES

ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

LOCATION:	QD-1	QO-2	QO-2S1	QS-4	QS-4
SAMPLE DATE:	5/15/2019	5/15/2019	5/15/2019	5/15/2019	5/15/2019
QC TYPE:	FS	FS	FS	FD	FS
SELECTED CHLOROPYRIDINES BY SW-846 Method 8270D (µg/L)					
2,6-Dichloropyridine	10.1 U	10.1 U	9.99 U	8.32 J	7.72 J
2-Chloropyridine	10.1 U	10.1 U	9.99 U	24.9	23.1
3-Chloropyridine	10.1 U	10.1 U	9.99 U	10 U	10.1 U
4-Chloropyridine	10.1 U	10.1 U	9.99 U	10 U	10.1 U
p-Fluoroaniline	10.1 U	10.1 U	9.99 U	10 U	10.1 U
Pyridine	10.1 UJ	10.1 UJ	9.99 UJ	10 UJ	10.1 UJ

Notes:

U = Compound not detected; value represents sample quantitation limit.

J = Estimated value

μg/L = micrograms per Liter

TABLE 7 **EXTRACTION WELL WEEKLY FLOW MEASUREMENTS - DECEMBER 2018 THROUGH MAY 2019**

ARCH CHEMICALS, INC. **ROCHESTER, NEW YORK**

Week Ending	BR-7A [Gal./Wk.]	BR-9 [Gal./Wk.]	PW-13 [Gal./Wk.]	PW-15 [Gal./Wk.]	PW-16 [Gal./Wk.]	PW-17 [Gal./Wk.]	BR-127 [Gal./Wk.]	Total [Gal.]
	[Gai./VVK.]	[Gai./VVK.]	[Gai./VVK.]	[Gai./VVK.]	[Gai./WK.]	[Gai./WK.]	[Gai./VVK.]	[Gai.]
Dec '18	04.040	45.000	10 111	0	EO E 44	0	74 700	046 704
12/02/18	64,010	45,969	12,444	0	52,541	0	71,760	246,724
12/09/18	83,127	38,032	10,543	5 000	58,920	2	69,216	259,848
12/16/18	82,355	34,453	11,100	5,038	59,886	10,098	65,099	268,029
12/23/18	76,180	33,541	11,332	3,782	55,414	694	64,328	245,271
12/30/18	88,803	36,544	10,747	12,664	54,295	575	42,314	245,942
								<u>1,265,814</u>
Jan '19								
01/06/19	94,981	35,932	11,134	12,814	55,413	614	47,364	258,252
01/13/19	98,003	38,344	9,489	12,097	43,577	708	29,186	231,404
01/20/19	92,313	38,582	11,153	11,489	38,124	697	52,918	245,276
01/27/19	78,487	43,774	9,315	11,185	38,937	328	55,719	237,745
							Total [Gal.]	<u>972,677</u>
Feb '19								
02/03/19	0	59,749	13,430	33,700	44,681	684	5,880	158,124
02/10/19	66,819	41,726	9,607	29,493	41,495	11	533	189,684
02/17/19	115,141	44,405	10,465	30,294	48,421	19	2,600	251,345
02/24/19	112,953	41,430	9,925	34,927	55,914	16	650	255,815
							Total [Gal.]	<u>854,968</u>
Mar '19								
03/03/19	111,379	43,552	10,349	36,598	54,105	177	29,834	285,994
03/10/19	127,884	57,476	16,551	36,309	5	1	43,315	281,541
03/17/19	120,939	59,338	17,106	38,827	6	552	40,589	277,357
03/24/19	103,883	61,945	18,390	43,589	1	1,200	9,571	238,579
03/24/19	54,920	62,836	18,257	43,309	52,340	949	57,016	288,121
03/31/19	54,920	02,030	10,237	41,003	32,340	949		
							Total [Gal.]	<u>1.371.592</u>
Apr '19	70.544	40.046	0.446	07.075	00.046	200		004.005
04/07/19	79,541	46,010	9,149	37,275	66,042	696	55,385	294,098
04/14/19	105,948	35,545	10,808	37,746	44,968	884	54,896	290,795
04/21/19	107,296	44,113	9,032	39,060	61,265	703	56,610	318,079
04/28/19	116,328	50,593	10,350	42,708	57,872	947	60,543	339,341
							Total [Gal.]	1,242,313
May '19								
05/05/19	92,300	65,923	35,269	38,828	57,347	1,061	58,621	349,349
05/12/19	80,770	75,965	57,395	42,452	61,482	1,294	38,714	358,072
05/19/19	73,436	75,693	60,043	32,687	67,865	1,247	66,970	377,941
05/26/19	69,659	71,344	54,951	26,896	68,568	1,185	57,768	350,371
							Total [Gal.]	1,435,733
Total 6 Mo								
Removal								
(Gal.)	2,297,455	1,282,814	468,334	692,269	1,239,484	25,342	1,137,399	7,143,097

(Gal.) 2,297,455 | 1,282,814 | 468,334 | 692,269 | 1,239,484 | 25,342 | 1,137,399 | 7,143,097

TABLE 8

MASS REMOVAL SUMMARY PERIOD: DECEMBER 2018 THROUGH MAY 2019

ARCH ROCHESTER SPRING 2019 GROUNDWATER MONITORING REPORT

Well	Total Vol. Pumped	Avg. VOC	Avg. PYR.	VOCs Removed	PYR. Removed
	(gallons)	Conc. (ppm)	Conc. (ppm)	(pounds)	(pounds)
BR-7A	2,297,000	0.019	2.5	0.36	48
BR-9	1,283,000	0.011	1.3	0.12	14
PW-13	468,300	0.061	8.6	0.24	34
PW-15	692,300	14	340	82	2000
PW-16	1,239,000	0.34	97	3.5	1000
PW-17	25,340	2.7	6.6	0.57	1.4
BR-127	1,137,000	0.40	22	3.8	200
Totals:	7,143,000			91	3,300

Notes: VOC and pyridine concentrations used in this table are an average of the analytical results from the Fall 2018 and Spring 2019 sampling events for each well;

Total select VOCs include chlorobenzene, PCE, TCE, methylene chloride, carbon tetrachloride, and chloroform

TABLE 9 2019 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

ARCH ROCHEST	ER							20	019		
MONITORING PR	OGRAM			1	•	+	ING	_	LL		TAL
						Pyridines	VOCs	Pyridines	VOCs	Pyridines	VOCs
	Well	zone	area	Frequency/Parameters	Purpose	_					
OFF-SITE	BR-105	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
MONITORING	BR-105D	BR deep	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	MW-106	ОВ	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	BR-106	BR	AID-HOSP	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	BR-112D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1				1	0
	BR-113D	BR deep	NYSDOT	annual monitoring, PYR	trend monitoring	1				1	0
	MW-114	ОВ	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	BR-114	BR	JACKSON	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	BR-117D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0
	BR-118D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0
	BR-122D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0
	BR-123D	BR deep	QUARRY	annual monitoring, PYR	trend monitoring	1				1	0
	PZ-101	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	PZ-102	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	PZ-103	BR	McKee Rd	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
ON-SITE	PZ-104	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
MONITORING	PZ-105	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	PZ-106	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	PZ-107	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	BR-126	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	BR-127	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	BR-3	BR	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	BR-8	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	BR-9	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	BR-5A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	BR-6A	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	BR-7A	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	B-16	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1	1	1	2	2
	B-17	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	B-7	OB	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	B-11	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	continue until replaced by trench	1	1	1	1	2	2
	B-15	OB	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	E-3	ОВ	ON-SITE	annual monitoring, VOCs & PYR	trend monitoring	1	1			1	1
	MW-127	ОВ	ON-SITE	semi-annual monitoring, VOCs & PYR	perimeter sentinel/trend monitoring	1	1	1	1	2	2
	PW10	OB/BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	PW12	BR	ON-SITE	semi-annual monitoring, VOCs & PYR	trend monitoring	1	1	1	1	2	2
	PW13	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	PW14	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring		1	1	1	2	2
	PW15	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	PW16	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
	PW17	pumping well	ON-SITE	semi-annual monitoring, VOCs & PYR	mass removal/trend monitoring	1	1	1	1	2	2
QUARRY/CANAL	QS-4	quarry seep	QUARRY	semi-annual monitoring, PYR	trend monitoring	1	-	1	-	2	0
MONITORING	QD-1	quarry ditch	DITCH	semi-annual monitoring, PTR	trend monitoring	1		1		2	0
	QO-2	quarry outfall	DITCH	semi-annual monitoring, PYR	trend monitoring	1		1		2	0
	QO-2S1	canal at outfall	CANAL	semi-annual monitoring, PTR	surface water monitoring	1		1		2	0
	QU 201	Janai at Juliali	O/ II VAL	oom amaa momoniy, i iix	ourrand water mornitoring			-			

Appendix A Groundwater Field Sampling Data Sheets

FIELD REPORT

REMEDIAL INVESTIGATION SAMPLING LONZA CHEMICAL ROCHESTER, NEW YORK

Spring 2019 Event

Matrix Environmental Project #04-029

PREPARED FOR:

Lonza

100 McKee Road Rochester, NY 14611

Written by: David Kreinheder

Reviewed by: Steven L. Marchetti

Date: June 19, 2019

TABLE OF CONTENTS

			Page
1.0	INTRODU	UCTION	1
2.0	METHOD	OOLOGIES	1
2.1	Water L	evel Measurements	1
2.2	Well Pu	rging	
2.3	Property	Utilities	2
3.0		NG	
3.1		ing Wells	
3.2		ampling	
3.3		mpling	
4.0		CONTAINERS	
5.0		EASUREMENTS	
6.0		Y ASSURANCE/QUALITY CONTROL (QA/QC	
6.1	-	inks	
6.2	Fauinme	ent Rinse Blank	3
7.0		F CUSTODY	
7.0	CHAIN	T CUSTOD1	4
TABI	LES		
TABL		Sampling Summary Table	
TABL		Groundwater Elevation Table	
APPE	CNDIX		
APPE	NDIX A	Field Observation Forms	

1.0 INTRODUCTION

This report describes the sampling of the following points:

- 41 groundwater samples
- 5 PFAS samples
- Two quarry outfall samples
- One quarry seep sample
- One canal at outfall sample

These activities were in support of the Phase II Remediation Investigation being conducted at the Lonza Chemical facility in Rochester, New York. Static water levels in the groundwater wells were recorded on May 7, 2019 by Matrix Environmental Technologies Inc. (METI) field personnel. The samples were collected from May 8 through May 15, 2019.

2.0 METHODOLOGIES

2.1 Water Level Measurements

Static water levels in all groundwater wells were measured from the top of the well casing/riser with an electronic water level indicator. Well bottoms were sounded with the weighted steel measuring tape. Measurements were recorded to the nearest hundredth of a foot (0.01 feet). The length of the measuring device which contacted the water was cleaned between the wells with a deionized water rinse and paper towel wipe. These data are presented on Sampling Summary Table and Field Observation forms attached.

2.2 Well Purging

Monitoring wells were evacuated prior to sampling employing one of the following methods:

- 1. Purging three times the standing water volume using precleaned or dedicated 1.25" x 5' stainless steel bailers, 2" x 5' polyvinyl chloride bailers, peristaltic pump or QED low-flow bladder pumps.
- 2. Evacuated with the low flow/low stress purging technique using either QED low-flow bladder pumps or a variable rate peristaltic pump.

Wells that were purged of three standing volumes were mainly wells located on or very near the Erie Canal and historically purged with this method prior to sampling. The remaining wells were evacuated with a low flow/low stress purging technique. This technique involves the use of a variable flow rate bladder or peristaltic pump. The pumps were employed to purge the monitoring wells at a flow rate such that drawdown of the water column from static conditions is minimal. Field measurements of pH,

specific conductance, temperature, ORP, dissolved oxygen and turbidity are monitored every 3-5 minutes until stabilization of parameters is realized. Once stabilized has occurred, sampling can be conducted. All purges water was collected into 55-gallon drums for disposal at the on-site wastewater treatment facility. Data pertaining to each evacuation are presented on the Sampling Summary Table and Field Observations forms attached.

2.3 Property Utilities

Surface water samples were collected from one location on the Erie Barge Canal, two outfall samples and one seep location. Sample locations were noted on the Field Forms.

3.0 SAMPLING

3.1 Monitoring Wells

All groundwater wells were sampled using precleaned or dedicated 1.25" x 1.25" x 5' stainless steel bailers, peristaltic pumps or bladder (Sample Pro) pumps when low flow purging techniques were used. Each bailer was constructed with Teflon, bottom-filling check valve and was assembled without glues or welds. New ¼" poly rope was attached to each bailer. The bailer was slowly lowered into the water column, minimizing agitation and devolatilization. Low density polyethylene (LDPE) tubing was used with both the bladder (QED) and the peristaltic pumps. The bladder pumps were decontaminated between sample locations in accordance with the work plan. Personnel exercised care in all aspects of the sampling to ensure the collection of a representative sample. An additional sample container was collected from each well in order to facilitate the measurement of field analytical parameters. Data pertaining to sampling are presented on the Sampling Summary Table and the Field Observations Forms.

3.2 Canal Sampling

When possible, samples were collected directly from the canal into appropriate sample containers. Otherwise, samples were collected with the use of a unique, laboratory cleaned stainless steel bailer. The bailers were immersed just below the surface and removed. Sample was poured directly into the appropriate container. An additional container was collected to facilitate the measurement of field parameters. Additional data pertaining to these samples is presented in the Sampling Summary Table and Field Observation Forms.

3.3 Seep Sampling

Groundwater samples were collected from seeps at the quarry (QS4) located on Buffalo Road. The samples were collected with the use of a laboratory cleaned stainless steel bucket and was then poured directly into the appropriate containers. An additional container was collected to facilitate the measurement of field parameters. Data pertaining to this sampling is present in the Sampling Summary Table and Field Observation Forms.

4.0 SAMPLE CONTAINERS

Monitoring wells and surface water samples requiring analysis for volatile organic compounds were collected into 40 ml glass vials with Teflon septa. Samples for semi-volatile and pyridine analysis were collected into one liter amber glass bottles with teflolined caps. All bottles were purchased new and cleaned (Protocol A, 300 series) from Paradigm Environmental Services. Each container was labeled with the following information:

- Sample Identification (Well/Point I.D.)
- Date
- Project Number
- Sampler's Initials

5.0 FIELD MEASUREMENTS

On-site field measurements were made of each sample's pH, specific conductance and temperature. Measurements were made in accordance with protocols outlined in <u>Methods for Chemical Analysis of Water and Wastes</u> (EPA -600/4-79-9020). These data were presented on the Sampling Summary Table and Field Observation Forms.

6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC

6.1 Trip Blanks

Trip blanks were collected with each sample shipment requiring volatile organic compound analysis. Each trip blank consisted of two40 ml glass vials with Teflon septa which were filled with deionized water provided by Paradigm Environmental Services. These blanks were transported to the site, stored with field collected samples and submitted to the Paradigm Environmental Services for analysis.

6.2 Equipment Rinse Blank

Equipment rinse blanks were collected.

7.0 CHAIN OF CUSTODY

Chain of custody was initiated at the time of sample collection and maintained through delivery to Paradigm Environmental Services in Rochester, New York. Copies of these documents are included in the analytical report package.

TABLES

Table 1 Sampling Summary Table Lonza, Rochester, NY

Sample 1	Location	Zone	Sample Date	Sample Time	Water Level (ft)	Bottom of Well (ft)	pH (STD Units)	Spec. Cond. (mS/cm)	Temp ©	Turb (NTU)	ORP (mv)	DO (ppm)
B-11	On-Site	OB	5/15/2019	10:50	10.35	NM	10.55	3.78	15.50	214.0	-205	3.71
B-15	On-Site	OB	5/8/2019	10:31	4.73	NM	7.55	0.56	9.56	0.0	91	10.36
B-16	Off-Site	OB	5/10/2019	12:13	5.82	NM	7.79	1.07	14.72	0.0	61	2.73
B-17	On-Site	OB	5/9/2019	14:00	6.59	NM	9.74	10.30	17.43	0.0	-193	0.67
B-7	On-Site	OB	5/10/2019	8:58	16.64	NM	7.32	1.93	15.14	4.3	33	0.98
BR-105	Off-Site	BR	5/13/2019	11:42	21.75	NM	7.63	2.76	11.06	0.0	-133	0.97
BR-105D	Off-Site	BR deep	5/13/2019	12:12	27.07	NM	7.36	79.50	11.70	0.0	-386	0.56
BR-106	Off-Site	BR	5/10/2019	14:26	22.14	NM	7.41	5.39	13.29	24.3	-175	0.88
BR-112D	Off-Site	BR deep	5/14/2019	14:45	36.04	NM	8.63	3.36	10.05	7.0	-331	5.27
BR-113D	Off-Site	BR deep	5/14/2019	13:55	31.07	NM	7.97	4.05	9.74	0.0	-366	0.86
BR-114	Off-Site	BR	5/13/2019	13:40	12.76	NM	8.07	1.91	11.01	52.4	-264	0.95
BR-117D	Off-Site	BR deep	5/14/2019	12:35	46.86	NM	9.07	0.53	10.46	57.0	-184	5.49
BR-118D	Off-Site	BR deep	5/14/2019	13:20	46.14	NM	10.72	0.65	11.07	51.2	-170	4.14
BR-122D	Off-Site	BR deep	5/14/2019	10:33	44.63	NM	7.67	1.80	8.38	0.0	-245	1.37
BR-123D	Off-Site	BR deep	5/14/2019	11:32	44.88	NM	8.25	2.57	9.28	4.9	-149	7.61
BR-126	Off-Site	BR	5/13/2019	9:03	0.45	NM	7.73	1.01	10.06	8.7	-184	1.08
BR-127	On-Site	BR	5/10/2019	11:30	9.43	NM	8.45	5.32	13.89	0.0	-180	3.40
BR-1	On-Site	BR	5/8/2019	12:08	6.20	NM	8.55	0.86	10.75	21.2	-150	1.03
BR-5A	On-Site	pumping well	5/9/2019	10:10	4.37	NM	7.32	4.47	14.77	23.4	84	1.67
BR-6A	On-Site	BR	5/8/2019	14:35	14.68	NM	8.44	6.23	14.53	28.0	-239	1.05
BR-7A	On-Site	pumping well	5/15/2019	8:25	23.10	NM	10.81	2.79	12.88	17.6	-319	8.14
BR-8	On-Site	BR	5/8/2019	15:26	12.88	NM	8.10	11.90	13.89	51.6	-186	2.52
BR-9	On-Site	pumping well	5/8/2019	16:00	32.83	NM	7.52	3.47	14.49	0.0	-115	4.51
E-3	On-Site	OB	5/9/2019	11:00	4.22	NM	7.99	1.70	17.02	25.4	-190	0.84
MW-106	Off-Site	OB	5/10/2019	13:48	10.85	NM	7.47	1.21	13.39	223.0	-100	1.18
MW-114	Off-Site	OB	5/13/2019	14:10	10.93	NM	8.55	0.93	10.60	9.4	-244	1.89
MW-127	On-Site	OB	5/9/2019	11:40	5.48	NM	7.77	7.69	17.92	12.6	-155	0.80
PW-10	On-Site	pumping well	5/9/2019	13:23	6.79	NM	8.63	4.18	22.01	0.0	-115	0.96
PW-12	On-Site	BR	5/9/2019	9:35	4.83	NM	8.17	0.30	12.53	0.0	-32	9.31
PW-13	On-Site	pumping well	5/14/2019	8:40	27.75	NM	7.95	4.34	13.22	12.3	-278	3.95
PW-14	On-Site	pumping well	5/10/2019	10:20	8.61	NM	9.76	7.19	16.18	0.0	-234	0.86
PW-15	On-Site	pumping well	5/10/2019	11:10	27.95	NM	10.26	11.60	14.28	0.0	-204	7.14
PW-16	On-Site	pumping well	5/13/2019	10:05	NM	NM	8.29	8.65	11.32	336.0	-291	3.72
PW-17	On-Site	pumping well	5/10/2019	10:45	29.47	NM	7.75	5.52	15.57	37.6	-109	3.00
PZ-101	Off-Site	BR	5/9/2019	8:50	17.13	NM	7.55	4.28	11.52	0.0	22	7.86
PZ-102	Off-Site	BR	5/13/2019	8:57	15.56	NM	7.79	5.26	8.12	0.0	-291	1.17
PZ-103	Off-Site	BR	5/13/2019	9:35	13.55	NM	7.73	4.11	8.28	0.0	-278	1.34
PZ-104	Off-Site	BR	5/8/2019	9:20	13.31	NM	7.42	3.08	10.46	0.0	-52	8.09

Table 1 Sampling Summary Table Lonza, Rochester, NY

Sample	Location	Zone	Sample Date	Sample Time	Water Level (ft)	Bottom of Well (ft)	pH (STD Units)	Spec. Cond. (mS/cm)	Temp ©	Turb (NTU)	ORP (mv)	DO (ppm)
PZ-105	On-Site	BR	5/15/2019	9:45	12.23	NM	7.63	4.37	12.38	4.1	-291	1.06
PZ-106	On-Site	BR	5/9/2019	14:51	12.61	NM	9.37	5.44	16.02	0.0	-166	0.78
PZ-107	On-Site	BR	5/8/2019	13:38	13.06	NM	7.24	2.94	13.06	0.0	-85	0.96
Post-Carbon	On-Site	=	5/14/2019	9:40	NA	NA	8.35	5.32	12.25	4.6	-179	5.73
QD-1	Quarry/Canal	quarry ditch	5/15/2019	11:55	NM	NA	12.01	1.86	12.97	0.0	-96	9.60
QO-2	Quarry/Canal	quarry outfall	5/15/2019	13:06	NM	NA	12.71	1.95	14.31	0.0	-118	11.40
QO-2S1	Quarry/Canal	canal at outfall	5/15/2019	13:15	NM	NA	10.04	0.52	14.57	0.0	28	10.01
QS-4	Quarry/Canal	quarry seep	5/15/2019	11:30	NM	NA	11.63	2.07	12.67	0.0	-171	9.90

^{**} Water level at time of sampling

Table 2 Groundwater Elevation Report Lonza, Rochester, NY

Sample	e Location	Zone	Date	Depth to water	Casing Elevation	GW Elevation	Time	Comments
B-1	On-Site	OB	5/7/2019	7.82	537.75	529.93	9:38	
B-10	On-Site	OB	5/7/2019	7.42	538.80	531.38	11:11	
B-11	On-Site	OB	5/7/2019	4.40	536.00	531.60	11:17	
B-15	On-Site	OB	5/7/2019	3.98	535.29	531.31	11:44	
B-16	Off-Site	OB	5/7/2019	4.51	536.21	531.70	11:46	
B-17 B-2	On-Site On-Site	OB OB	5/7/2019 5/7/2019	6.94 8.69	538.74 539.02	531.80 530.33	10:05 9:35	
B-2 B-4	On-Site	OB	5/7/2019	19.88	542.87	522.99	15:16	
B-5	On-Site	OB	5/7/2019	12.57	540.21	527.64	15:23	
B-7	On-Site	OB	5/7/2019	12.95	541.11	528.16	10:41	
B-8	On-Site	OB	5/7/2019	Dry	538.88	Dry	-	
BR-1	On-Site	BR	5/7/2019	5.82	537.28	531.46	9:55	
BR-102	On-Site	BR	5/7/2019	21.70	539.43	517.73	9:33	
BR-103	Off-Site	BR	5/7/2019	1.68	533.19	531.51	14:07	
BR-104	Off-Site	BR	5/7/2019	8.99	537.56	528.57	13:57	
BR-105 BR-105D	Off-Site Off-Site	BR BR deep	5/7/2019 5/7/2019	21.82 26.17	536.90 536.49	515.08 510.32	12:00 11:58	
BR-103D BR-106	Off-Site	BR BR	5/7/2019	22.25	535.74	513.49	11:39	
BR-108	Off-Site	BR	5/7/2019	28.42	540.58	512.16	15:00	
BR-111	Off-Site	BR	5/7/2019	28.54	540.42	511.88	12:10	
BR-111D	Off-Site	BR	5/7/2019	28.80	540.34	511.54	12:09	
BR-112D	Off-Site	BR deep	5/7/2019	36.12	547.91	511.79	12:06	
BR-113	Off-Site	BR	5/7/2019	25.58	543.02	517.44	12:21	
BR-113D	Off-Site	BR deep	5/7/2019	31.11	542.93	511.82	12:20	
BR-114	Off-Site	BR	5/7/2019	12.89	539.77	526.88	14:03	
BR-116 BR-116D	Off-Site Off-Site	BR BR deep	5/7/2019 5/7/2019	27.88 34.92	545.38 545.22	517.50 510.30	14:22 14:23	
BR-110D	Off-Site	BR BR	5/7/2019	32.48	547.61	515.13	13:11	
BR-117D	Off-Site	BR deep	5/7/2019	47.20	547.16	499.96	13:09	
BR-118	Off-Site	BR	5/7/2019	22.51	547.79	525.28	13:14	
BR-118D	Off-Site	BR deep	5/7/2019	46.10	547.93	501.83	13:15	
BR-122D	Off-Site	BR deep	5/7/2019	44.57	552.34	507.77	13:24	
BR-123D	Off-Site	BR deep	5/7/2019	44.83	553.62	508.79	13:30	
BR-124D	Off-Site	BR deep	5/7/2019	32.15	537.45	505.30	14:53	
BR-126	Off-Site	BR	5/7/2019	7.98	537.90	529.92	11:49	
BR-127 BR-2	On-Site On-Site	BR BR	5/7/2019 5/7/2019	4.42 8.72	536.05 538.97	531.63 530.25	11:15 10:02	
BR-2A	On-Site	BR	5/7/2019	8.07	540.36	532.29	10:02	
BR-2D	On-Site	BR deep	5/7/2019	8.04	537.26	529.22	10:00	
BR-3	On-Site	BR	5/7/2019	NM	538.20	NM	-	Inaccessible
BR-3D	On-Site	BR deep	5/7/2019	50.43	537.67	487.24	11:04	
BR-4	On-Site	BR	5/7/2019	10.14	539.03	528.89	10:15	
BR-5	On-Site	BR	5/7/2019	4.57	536.30	531.73	9:49	
BR-5A	On-Site	pumping well	5/7/2019	4.30	536.35	532.05	9:44	
BR-6A	On-Site	BR BR	5/7/2019	13.65	540.90 539.10	527.25	10:55	
BR-7 BR-7A	On-Site On-Site	pumping well	5/7/2019 5/7/2019	14.87 22.45	539.10	524.23 516.67	11:26 11:25	
BR-/A BR-8	On-Site	BR	5/7/2019	12.75	539.12	526.97	15:21	
BR-9	On-Site	pumping well	5/7/2019	32.74	542.17	509.43	9:30	
C-2A	On-Site	OB	5/7/2019	Dry	539.66	Dry	-	
C-5	On-Site	OB	5/7/2019	8.40	539.63	531.23	11:00	
CANAL	Off-Site	SW	5/7/2019	36.62	544.79	508.17	13:46	
E-2	On-Site	OB	5/7/2019	NM	538.32	NM	-	Inaccessible
E-3	On-Site	OB	5/7/2019	3.63	536.59	532.96	9:50	
E-5 EC-2	On-Site	OB	5/7/2019	5.57	539.31	533.74	9:52	
MW-103	Off-Site Off-Site	BR OB	5/7/2019 5/7/2019	Dry 1.32	542.00 533.25	Dry 531.93	12:18 14:08	
MW-103 MW-104	Off-Site	OB	5/7/2019	6.67	537.54	530.87	13:55	
MW-105	Off-Site	OB	5/7/2019	18.82	536.91	518.09	12:02	
MW-106	Off-Site	OB	5/7/2019	9.48	535.44	525.96	11:38	
MW-114	Off-Site	OB	5/7/2019	9.07	539.69	530.62	14:01	
MW-127	On-Site	OB	5/7/2019	4.99	536.87	531.88	11:14	
MW-16	Off-Site	BR	5/7/2019	10.04	536.79	526.75	14:11	
MW-3	Off-Site	OB	5/7/2019	NM	535.89	NM	-	Inaccessible
MW-G6	Off-Site	OB	5/7/2019	NM	534.65	NM	-	Inaccessible
MW-G8 MW-G9	Off-Site Off-Site	OB OB	5/7/2019 5/7/2019	NM NM	534.25 536.60	NM NM	-	Inaccessible Inaccessible
N-2	On-Site	OB	5/7/2019	3.68	537.33	533.65	9:57	maccessible
11-2	JII-DILL	L OB	5/1/2017	5.00	221.33	222.02	7.51	I

Table 2 Groundwater Elevation Report Lonza, Rochester, NY

Sampl	e Location	Zone	Date	Depth to water	Casing Elevation	GW Elevation	Time	Comments
N-3	On-Site	OB	5/7/2019	4.75	537.38	532.63	10:40	
NESS-E	Off-Site	BR deep	5/7/2019	24.31	540.31	516.00	15:10	
NESS-W	Off-Site	BR deep	5/7/2019	30.70	543.04	512.34	15:11	
PW-10	On-Site	pumping well	5/7/2019	6.12	538.76	532.64	10:07	
PW-12	On-Site	BR	5/7/2019	4.49	537.49	533.00	8:48	
PW-13	On-Site	pumping well	5/7/2019	27.90	536.13	508.23	11:22	
PW-14	On-Site	pumping well	5/7/2019	8.46	537.03	528.57	11:16	
PW-15	On-Site	pumping well	5/7/2019	27.90	538.32	510.42	11:07	
PW-16	On-Site	pumping well	5/7/2019	20.67	539.32	518.65	15:18	
PW-17	On-Site	pumping well	5/7/2019	29.34	NA	NA	10:58	
PZ-101	Off-Site	BR	5/7/2019	16.34	542.95	526.61	11:33	
PZ-102	Off-Site	BR	5/7/2019	15.35	540.89	525.54	11:31	
PZ-103	Off-Site	BR	5/7/2019	12.19	540.20	528.01	11:29	
PZ-104	Off-Site	BR	5/7/2019	13.14	536.85	523.71	11:42	
PZ-105	On-Site	BR	5/7/2019	NM	536.93	NM	1	Well underwater.
PZ-106	On-Site	BR	5/7/2019	9.49	537.24	527.75	11:09	
PZ-107	On-Site	BR	5/7/2019	6.78	538.39	531.61	11:12	
PZ-109	On-Site	BR	5/7/2019	7.09	538.59	531.50	11:05	
PZ-110	On-Site	BR	5/7/2019	12.26	NA	NA	10:57	
PZ-111	On-Site	BR	5/7/2019	NM	NA	NM		Could Not Locate Well
W-5	On-Site	OB	5/7/2019	NM	538.53	NM		Inaccessible

APPENDIX A FIELD OBSERVATION FORMS

5-7-19

Table 2 Groundwater Elevation Report Lonza, Rochester, NY

Sample !	Location	Zone	Date	Depth to water	Casing Elevation	GW Elevation	Time	Comments
B-1	On-Site	OB		7.82	938			
B-10	On-Site	OB		7.43	11:11			
B-11	On-Site	OB		4.40	11817			Dry (at 14 17')
B-15	On-Site	OB		3198	11:49			
B-16	Off-Site	OB		4151	11:4	-		
B-17	On-Site	OB		6.94	10:05			
B-2	On-Site	OB		8,69	4832			
B-4	On-Site	OB		9.8	8 150	16		
B-5	On-Site	OB	/。	21.59	15173	,		
B-7	On-Site	OB		12195	10:41			
B-8	On-Site	OB		DRX	-			
BR-I	On-Site	BR		5.00	9:55			
BR-102	On-Site	BR		21,70	9:33			
BR-103	Off-Site	BR		1,68	180	7		
BR-104	Off-Site	BR		8.99	13:37	7		
BR-105	Off-Site	BR		21.8-	12:00			
3R-105D	Off-Site	BR deep		36,17	11:58			
BR-106	Off-Site	BR		22,25	11:39	L	-	
BR-108	Off-Site	BR		28.4	2 1	5:00	,	
BR-111	Off-Site	BR	7.	2854	12:10			
BR-111D	Off-Site	BR		38.80	12:09			
3R-112D	Off-Site	BR deep		36/12	12:06			
BR-113	Off-Site	BR		25.58	12:2/			
3R-113D	Off-Site	BR deep	3/4/	25.50	12,20	1		
BR-114	Off-Site	BR	2011	12.89	1410	3		
BR-116	Off-Site	BR		27,88	14:22			<u> </u>
BR-116D	Off-Site	BR deep		34,92	14:23			
BR-117	Off-Site	BR		32.48	13:11			
BR-!17D	Off-Site	BR deep		47.20	13:09			
BR-118	Off-Site	BR		72.51	13:14			
BR-118D	Off-Site	BR deep		46.10	15.15			
BR-122D	Off-Site	BR deep	,	44.5	7 13:24			
BR-123D	Off-Site	BR deep		44,83	13:30	1		
BR-124D	Off-Site	BR deep		322/5	14:53			
BR-126	Off-Site	BR		5598	11.41			well under debris
BR-127	On-Site	BR		4, 42	16.15			
BR-2	On-Site	BR		2.72	10:02			
BR-2A	On-Site	BR		8.07	10:01			
BR-2D	On-Site	BR deep		8,04	10100			
BR-3	On-Site	BR		11	25 Y			debris in we.!
BR-3D	On-Site	BR deep		50.45	11:09			
BR-4	On-Site	BR		100	4 10:15			1
BR-5	On-Site	BR		4:57	7:49			
BR-5A	On-Site	pumping well		430	7:49			
BR-6A	On-Site	BR		13.65	7 /			
BR-7	On-Site	BR		14.87	11:26	2	-	
BR-7A	On-Site	pumping well		22.4	11:25			
BR-8	On-Site	BR		12.75	15121	1		
BR-9	On-Site	pumping well		33.75	9 9 30			
C-2A	On-Site	OB		URS				1
C-5	On-Site	OB		8.40	11:00			
CANAL	Off-Site	SW		36.63	13:46			
E-2	On-Site	OB		Desti				
E-3	On-Site	OB		3,63	9:50			
E-5	On-Site	OB		5.57	9152	, , , ,		
EC-2	Off-Site	BR		12.73	10RY	12:18		
MW-103	Off-Site	OB		1.3	1/1	4:08		
MW-104	Off-Site	OB		6.67		13:55		
MW-105	Off-Site	OB		18.82	12107	4		
MW-106	Off-Site	OB		9.48	111)8			
MW-114	Off-Site	OB		9.07 00	- I well	4:01		
MW-127	On-Site	OB		4.79	11:14	-		And A
MW-16	Off-Site	BR			04	14:71		weed & new 13
MW-3	Off-Site	OB		N5-1	1 .			N/SV

28.54 26-17 34.92

Table 2 Groundwater Elevation Report Lonza, Rochester, NY

F	-	_	10
>-	1	/	/

Sample	Location	Zone	Date	Depth to water	Casing Elevation	GW Elevation	Time	Comments
MW-G6	Off-Site	OB		NSI				
MW-G8	Off-Site	OB		NST				
MW-G9	Off-Site	OB		NG				
N-2	On-Site	OB		3,60	-957			
N-3	On-Site	OB		4.14	10:40			
NESS-E	Off-Site	BR deep		24,3/	15 10			
NESS-W	Off-Site	BR deep		30.79	15:11			
PW-10	On-Site	pumping well		61/2	10.07			
PW-12	On-Site	BR		4,49	9+0.745			
PW-13	On-Site	pumping well		2790	11:2	5		
PW-14	On-Site	pumping well		8.46	11:16			
PW-15	On-Site	pumping well		27.90	11:07			
PW-16	On-Site	pumping well		20,6	2	15:18		
PW-17	On-Site	pumping well			29,39	10:50		
PZ-101	Off-Site	BR		16.34	(11:33		
PZ-102	Off-Site	BR		75,3	\$	11.3/		Andrew Control
PZ-103	Off-Site	BR		12.19	7	1/129	-	
PZ-104	Off-Site	BR		13:19		11:42	9	
PZ-105	On-Site	BR	N5-1	7.80	_	10:54	BO 42	nuate
PZ-106	On-Site	BR		9:49	11:00			
PZ-107	On-Site	BR		6178		11/12		
PZ-109	On-Site	BR		7:09		11:05		
PZ-110	On-Site	BR		12.2	6	0 10,5	7	
PZ-111	On-Site	BR			NS-	1		
W-5	On-Site	OB		NSI	1			

1

FIELD OBSERVATIONS		Dalad
Facility: Lon29	Sample Point ID:	P 2 10 9
Field Personnel: DK+CZ	Sample Matrix:	6 h
MONITORING WELL INSPECTION		
P'45		
Date/Time:	Condition of seal: ()	
	() No	ne () Buried
Dead Control Disease	Condition of Prot. () unl	ocked ()Good
Prot. Casing/Riser Height:	Casing/Riser: () loo	se () flush mount
	() Dai	maged
if prot casing; depth to riser below:		•
Gas Meter Calibration/Reading: % Gas	% LEL	41
Voi. Organic Matter (Calibration/Reading):	Volatiles (ppm):	
PURGE INFORMATION		
F Pin Gar		proje former
Date/Time Initiated:	Date/Time Completed:	430
Surf. Meas. Point: () Pro Casing (DRiser	Riser Diameter (inches)	ZUPUC
Initial Water Level (ft):	Elevation G/W MSL:	<u>/3, /3</u>
Well Total Depth (ft):	Method of Well Purge	9N1549/42
Oné (1) Risér Vol (gal):	Dedicated: Y/N	New PFAOK
Total Volume Purged (gal): >1/L	Purged to Dryness: Y /	> tibyo
Purge Observations: Clear, no oder	Start Fi	nish
PURGE DATA (if applicable)		
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity Turk (SU) (mS/cm) (NT)	1 1 1
9:05 13.30 250ml/mi 8.90	755 3,25 0,0	7 60 12.4
9:10 13.70 =67.525 10.04	7.45 3,14 0,	0-20 9.53
9:15 13:30 467.5 10.28	7.44 3.10 0.	7 5 109
9:20 13:31 10:46	7.42 3.08 0.	9-53 8.09

45; Sunny

FIELD (DBSERV	ATIONS			· D15							
Facility	Lo	779			Sample I	Paint ID:	15	<u> </u>				
Field Perso	innel:	<u>DK</u>	402	×	Sample I	Matrix:		61				
MONITO	RING WEI	L INSPECTI	ON									
Date/Time:	5-8	2-19	10	02	Conditio		() Libod (%		
Prot. C	asing/Riser Height:				Coi	ndition of Prot. Casing/Riser:	() unlocke	ed (¿) Goo () flush mo				
if prot casi	ng; depth to	riser below:										
Gas Meter	Calibration/	Reading:	% Gas		······································		% LEL:					
Vol. Organ	iic Matter (C	alibration/Read	ling):		v	olatiles (ppm):	· · · · · · · · · · · · · · · · · · ·		٠.			
PURGE II	NFORMAT	ION										
Date/Time	e Initiated:	5-8-1	9	10:08	Date/Tin	ne Completed:	_//	109				
Surf. Mea	s. Point:	() Pro Casing	(L) Riser		Riser Di	ameter (inches)	<u> </u>	"pice	·			
Initial Wa	ter Level (f	t):	9,08		Elevation	Elevation G/W MSL:						
Well Tota	l Depth (ft)):			Method	of Well Purge	HEA.	15/4/	100			
Orie (1) R	iser Vol (g	al):			Dedicate	ed:	601N/	veh	tobi.	ر س ار س		
Total Vol	ume Purgeo	l (gal):	2,/2	·	Purged t							
Purge Obse	ervations:	a Clea	\wedge		Start		Finish					
PURGE E	DATA (if a _l	oplicable)						egy e i ez				
Time	Water Level	Purge Rate (gpm/htz)	Cumulatîve Volume	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO	Other		
10:11	4.48	250ml/m	-	9.88	フィファ	0574	010	35	10,50	·		
10:16	44.4	125		9.78	7.60	0,573	0.0	50	8.59			
10:21	\$4.5	67.5		9.63	7.56	0.565	00	75	11.54			
10:26	4.61			9.61	7.57	0.561	0,0	84	10.99	er.		
10:31	473			9.56	7.55	0.55	0.0	9/	10.7	,cr		
4	SAMP	LF										
MS	MSI)			4	7ºF.	SUM	x W	ad			

FIELD OBSERVATIONS			
Facility: LONZA	Sample Point ID:	1365-1	
Field Personnel: DK+ CZ	Sample Matrix:	- ch	. <u></u>
MONITORING WELL INSPECTION			
Date/Time: 5-8-/9 11:40	Condition of seal:	(j) Good () Cracked	%
·	•	() None () Buried	
Prot. Casing/Riser	Condition of Pro	() unlocked () Good	
Height:		r: () loose () flush mount	
		() Damaged	
if prot casing; depth to riser below:			
Gas Meter Calibration/Reading: % Gas		% LEL:	
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm)).	
PURGE INFORMATION		in the same of the	
Date/Time Initiated: 59-19 11:46	Date/Time Completed	12:18	
Surf. Meas. Point: () Pro Casing () Riser	Riser Diameter (inche	s) 411 Step/	
Initial Water Level (ft):	Elevation G/W MSL:		
Well Total Depth (ft):	Method of Well Purge	Peristaltic	
One (1) Riser Vol (gal):	Dedicated:	ON Well	obing .
Total Volume Purged (gal): 24	Purged to Dryness:	YFN	
Purge Observations: Light fan cologian	Start	Finish	
PURGE DATA (if applicable) hoodo			
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	/ Türb. ORP I (NTÜ)	OO Other
11:48 6,27 25m4min 9.56	8110850	26,0-47 8,	5//
11:53 6:20 125 10:10	8,50 0.856	25.8 -116 hd	rp g
11:5p 6:20 <675 10:32	10 - 10 0 - 1	237-1201.	47
1208 630 1051	8,58 0.860	21.0-191 10	10

48°F Sunny

6.20

10.75 8.55

0,858 21,2

150

103

FIELD OBSERVATIONS							
Facility: Lonza	Sample Point ID:	P_{2}	210				
Field Personnel: DKYCZ	Sample Matrix:	_6	<u> </u>				
MONITORING WELL INSPECTION							
Date/Time: 5-8-19 13:07	Condition of seal:	Condition of seal: () Good () Cracked					
		() None ().Buried				
Prot. Casing/Riser	Condition of Prot.	() unlocke	d (0/600	d			
Height:	Casing/Riser:	•		ount			
		() Damage	ed				
if prot easing; depth to riser below:		0/ 1 FI .					
Gas Meter Calibration/Reading: % Gas Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):	% LEL:					
	volatiles (ppm).	12754-65454		· The second section	atá v		
PURGE INFORMATION				s Art, in Alex The Common States			
Date/Time Initiated: 58 6.6~13	Bate/Time Completed:	/	3:5	6			
Surf. Meas. Point: () Pro Casing (Miser	Riser Diameter (inches)		upl				
Initial Water Level (ft): 6.62	Elevation G/W MSL:	ζ.					
Well Total Depth (ft):	Method of Well Purge						
One (1) Riser Vol (gal):	Dedicated:	telling					
Total Volume Purged (gal):	Purged to Dryness:	-4					
Purge Observations: Clean, no odon	Start	Finish	····				
PURGE DATA (if applicable)							
Time Water Purge Rate Cumulative Temp Level (spm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTU)	ORP	DO	Other		
13:18 7.45 250ML/min 12.60	7.32 2.82	4.7	62	6.49			
13:23 7.56 125 12:54	725 2,90	0.2	-74	2,03			
13:28 7.60 67.5 12:75	7.24 2.92	0,0	8/	1.15			
13:33 7.53 (67.5 13.05	7.24 2.99	0.0	-24	1,03			
13.06	7,24 2,94	0.0	75	0,96			
4-SAMPLE	1			1	·		

47 F Sonny
Page 1 of 2

FIELD OBSERVATIONS		1)
Facility: LUNTA	Sample Point ID:	<u> BR619</u>
Field Personnel: Okt CZ	Sample Matrix:	64
MONITORING WELL INSPECTION		
Date/Time: $5 - 8 - 19$ 1470}	Condition of seal:	(Defood () Cracked %
·		() None () Buried
Prof. Casing/Riser	Condition of Prot.	
Height:	Casing/Riser:	() loose () flush mount
		() Damaged
if prot casing; depth to riser below:		
Gas Meter Calibration/Reading: % Gas		% LEL:
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):	
PURGE INFORMATION		
Date/Time Initiated: 58 /4!//	Date/Time Completed:	14:45
Surf. Meas. Point: () Pro Casing () Riser	Riser Diameter (inches	y"sted
Initial Water Level (ff): 13,63	Elevation G/W MSL:	
Well Total Depth (ft):	Method of Well Purge	Peristaltir
One (1) Riser Vol (gal):	Dedicated:	CAN N
Total Volume Purged (gal): 19C	Purged to Dryness:	Y 165
Purge Observations: Cloudy Brown color	Start	Finish
PURGE DATA (if applicable) Chemical Edon		

Time	Water	Purge Rate	Cumulative	Temp	рН	Conductivity	Turb.	ORP	DO	Other
	Level	(gp m/ht z)	Volume	(C)	(SU)	(mS/cm)	(NTU)			
14:15	13.92	250m4	ı,	146.7	8.34	6.08	2,562	205	4.18	
14:20	0 14.15	125		14.52	8.41	6.19	27.9	-284	1.56	
いいべく	. 14,33	67.5		1456	8.42	620	782	-238	1.34	
14:30	14,49	467.5		14,57	8.45	6,22	J\$ 2	-230	1,76	
14:75	14.68	y		14.53	8,44	6,23	280	-234	1.05	
رجا	SAME	LE								

48F, Sunny

FIELD C Facility: Field Perso		ATIONS -ON ZA DK-tC	7		Sample I	Point ID: Matrix:	BR	S Gh		
MONITO	RING WEI	LINSPECTI	МО							
Date/Time:	5-	8-99	14	:58	Condition	on of seal;	(b) Good () Cracked		%
							() None () Burled		
Prot. C	'asing/Riser Height:			·····	Cei	ndition of Prot. Casing/Riser:		d (UG00		
							() Damage	≥d		•
if prot easi	ng; depth to	riser below:			•					
Gas Meter	Calibration	Reading:	% Gas				% LEL:	·····		-
Vol. Organ	iic Matter (C	Calibration/Read	ding):		·v	olatiles (ppm):				
PURGET	NEORMA	TION								gudky.
Date/Time	e Initiated:	5-8-1	9 15	:08	Date/Tir	ne Completed:	15	:46		
Surf. Mea	s. Point:	() Pro Casing	()Riser		Riser Di	ameter (inches)	ϵ	5"Ste	e/	_
Initial Wa	ter Level (ft):	12.67	7	Elevatio	n G/W MSL:				-
Well Tota	í Depth (ft)):			Method	of Well Purge	feris	taltic		•
One (1) R	iser Vol (g	al):			Dedicate	ed:	ON NA	reut	be	
	uine Purgeo		1,756		Purged t	o Dryness:	Y 100			
Purge Obse	ervations: C	locky o	lark brow	a lik	Start		Finish			-
Frox PURGE D	ATA (if a	oplicable) C	hemile	1 ode						
Time	Water Level	Purge Rate (gpm/htz)	Cumulative Volume	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO	Other
	!		1		1	1		:	1	i

Time	Water	Purge Rate	Cumulative	Temp	рН	Conductivity	Turb.	ORP	DO	Other
	Level	(gpm.litz)	Volume	(C)	(SU)	(mS/cm)	(NTU)			
15111	12.78	25041/4	, T	14.13	806	11.6	5/17	168	933	
15:16	1282	125		13/10	8.11	11,9	54.4	-188	3.30	
15/2/	12.86	67.5		13,89	8/1	11.9	51.0	187	2,07	
15:21	(1288			13,89	2,10	11,9	51,6	-186	2,55	
پ	SAN	PLE			*,#		*			

50°F, Sunny Page 1 of 2

	8	ATIONS		Sample E	Sample Point ID:			RAG				
Facility:		- 1 22		Sample r	omi uz.				 			
SAMPLIN	(G INFOF	RMATION)									
Date/Time		5-8	79	15:58 Water Le	vel at Samplin	g (ft) }	20	3				
Method of	Sampling	<i>p</i>	curping	, well		Dedicated:	E	2 N				
Multi-phas	ed/layered	Y / N	1/	if yes:	(*) Light (() Heavy						
SAMPLIN	IG DATA											
Ті	me	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	-ORP	DO		Other			
16	(00)	14,49	7.53	3.47	0,0	-1/5	4.51					
INSTRUN	MENT CA	LIFBRATION	VCHECK DA	TA				A Page 1				
	Cal Std	Cal Std	Cal Std.	Check Std	Cal.Std.	Check Std 1413 umhos/em		Cal Std.	Check Std			
Meter ID#	7:0 SU	4.0 SU	10.0 SU	7.0 SU (+/- 10%)	1413 umhos/cm		10%)	10 NTU	(+/- 10%)			
Solution 10#			,]									
GENERA	L INFOR	MATION										
Weather co	onditions a	t time of sampl	ing:	501	-, Sc	MAL	, 					
Sample ch	aracteristic	;s;	C/	ear, Some	article	<u> </u>						
Comments	and Obset	rvations:		,								
		·				<u>.</u>		····				
		······································										
I certify th	at samolin	g procedures w	ere in accordanc	ce with all applicable EP	'A, State and S	ite-Specific	protocols;					
,	[R	19 by	0/	HOZ		Company:	AA	atest	**************************************			
Date:	/	다 (P.				" viviveni),		<u> </u>				

FIELD OBSERVATIONS	Samuela Raine VDs	D7/01	
Field Personnel: DK +CZ	Sample Point ID: Sample Matrix:	BU	-
MONITORING WELL INSPECTION			
Date/Time: 5-9-18 8-15	Condition of seal;	(() Good () Cracked () None () Buried	<u>%</u>
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser:	() unlocked () Good () loose () flush mount () Damaged	
if prot casing; depth to riser below:		() Damaged	-
Gas Meter Calibration/Reading: % Gas.		% LEL:	-
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):		
PURGE INFORMATION			
Date/Time Initiated: 5-9 B:27	Date/Time Completed:	9:02	_
Surf. Meas. Point: () Pro Casing (ORiser	Riser Diameter (inches	2"PVC	-
Initial Water Level (ft):	Elevation G/W MSL:		
Weil Total Depth (ft):	Method of Well Purge	PPNIStaltic	_
One (1) Riser Vol (gal):	Dedicated:	Ø/N	
Total Volume Purged (gal): 174	Purged to Dryness:	Y 168	
Purge Observations: Clear, no adan	Start	Finish	_
PURGE DATA (if applicable)			
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. ORP DO. (NTU)	Other
8:30 16.74 250mchi 11.45	9,08 4,38	0.0-14 16.5	-
8:35 16.87 67.5 11132	7.87 9,31	0,0 8 9,71	
8:40 16.96 11.47	7.6/4,27	0.0 17 8.62	
8:45 17:03 67.5 11:57	7.58 4.27	000 20 8,30	
P. CO 1/5	410	10.0 21 70	

52°F OVENCYST

FIELD OBSERVATIONS		Phylo
Facility: LONZU	Sample Point ID:	1012
Field Personnel:	Sample Matrix:	
MONITORING WELL INSPECTION		
Date/Time: 5-949 9110	Condition of seal:	() Cracked%
		() None () Buried
Prot, Casing/Riser Height:	Condition of Prot. Casing/Riser:	() unlocked () Good : () loose () flush mount
		() Damaged
if prot casing; depth to riser below:		
Gas Meter Calibration/Reading: % Gas		% LEL:
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm);	· ·
PURGE INFORMATION		
Date/Time Initiated: 5-9 9:17	Date/Time Completed:	
Surf. Meas. Point: (y) Pro Casing () Riser	Riser Diameter (inches	6" Steel
Initial Water Level (ft): 4,76	Elevation G/W MSL:	
Well Total Depth (ff):	Method of Well Purge	<u>Penistaltic</u>
One (1) Riser Vol (gal):	Dedicated:	ON N
Total Volume Purged (gal): 2,2L	Purged to Dryness:	Y
Purge Observations: Clean, no odon	Start	Finish
PURGE DATA (if applicable)		
Time Water Purge Rate Cumulative Temp	pH Conductivity	Turb. ORP DO Other

Time	Water	Purge Rate	Cumulative	Temp	pН	Conductivity	Turb.	ORP	DO	Other
	Level	(gpm/htz)	Volume	(C).	(SU)	(mS/cm)	(NTU)			
9130	4,85	250 ml	the same	12144	8:10	0348	1308	-52	17.4	
9:25	483	125	•	1276	8,24	0.305	000	-35	9.93	
9:30	483			12,51	8,20	0,297	01/2	30	9.55	
9:35	4.83			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8117	On 298	00	37	9,31	
	4	SAM	PLE	-						

5 Yel Overcast Page 1 of 2

FIELD OBSERVATIONS:	Sample Point ID:	BR5A			
Field Personnel: $OK + CZ$	Sample Matrix:	6	W		
MONITORING WELL INSPECTION					
Date/Time: 5-9-19 9:45	Condition of seal:	(VGood () Cracked	_	%
		() None ()) Buried		
Prot. Casing/Riser	Condition of Prot.	() unlocké	d (26000	i	
Height:	Casing/Riser:	unt			
		() Damage	d		
if prot casing: depth to riser below:					
<u> </u>					
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):	ingerier (n. 1941) Oppgelijk (n. 1941)		Walio wakata	
PURGE INFORMATION	일은 경찰 이 왕이 있다면 그래요함 -				
Date/Time Initiated: 5-9-19 9:48	Date/Time Completed:		10	130	
Surf. Meas. Point: () Pro Casing (1) Riser	Riser Diameter (inches	<u> 6</u>	1. 24.	<u>ee/</u>	
Initial Water Level (ft): 4,27	Elevation G/W MSL:		\ 5	1./ 1	
Well Total Depth (ft):	Method of Well Purge Penistaltic				
One (1) Riser Vol (gal):	Dedicated: (Ø/N			
Total Volume Purged (gal):	Purged to Dryness:	Y			
Purge Observations: tan, cloudy, no odon	Start	_ Finish			
PURGE DATA (if applicable)					
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTU)	ORP	DO	Other
9:50 4:34 250 mlng 13:5	7.44 4.23	564	PI	6073	
955437125 13.83	734 4,41	43.6	74	2,23	
10:00 436 67.5 1423	7.33 4.44	32./	79	1.88	
10:05 4.36 14.45	7.32 4.44	24.4	82	1.74	
10:10 4:37 14:77	7.32 4.47	23.4	84	1.67	
G SAMPLE					

Did Dupes

54°F, cloudy

Facility:	FIELD OBSERVATIONS		I	C >		
MONITORING WELL INSPECTION Date/Time: 5-9-19	Facility: Lonza	Sample Point ID:				
Date/Time: 5-9-49 (0.32 Condition of seal: () Good () Cracked % () None () Buried Prot. Casing/Riser	Field Personnel: NG+CZ	Sample Matrix:	6	Lu		
Prot. Casing/Riser Height: Casing/Riser Height: Casing/Riser: () unlocked () Good Casing/Riser: () loose () flush mount () Damaged Beat if prot casing; depth to riser below: Gas Meter Calibration/Reading: Vol. Organic Matter (Calibration/Reading): Vol. Organic Matter (Calib	MONITORING WELL INSPECTION					
Prot. Casing/Riser Height: Condition of Prot. Casing/Riser: () loose () flush mount () Damaged Bent if prot casing; depth to riser below: Gas Meter Calibration/Reading: % Gas % LEL: Vol. Organic Matter (Calibration/Reading): Volatiles (ppm): PURGE INFORMATION Date/Time Initiated: 5 9 Date/Time Completed: Surf. Meas. Point: () Pro Casing (Deliser Riser Diameter (inches) 2 1 Moya / Initial Water Level (ft): Bevation G/W MSL: Well Total Depth (ft): Method of Well Purge One (1) Riser Vol (gal): Dedicated: Win New Purged to Dryness: Y / D Purge Observations: Cloudy brown no add T Purge DATA (if applicable) Time Water Purge Rate Cumulative Temp pH Conductivity Turb. ORP DO Other Level (gpm/ftrz) Volume (C) (SU) (mS/cm) (NTU)	Date/Time: $5-9-19$ (0.32)	Condition of seal:	() Good () Cracked	-	9/9
Prot. Casing/Riser Height: Casing/Riser: () loose () flush mount () Damaged Beat () Dama			() None () Buried		
if prot casing: depth to riser below: Gas Meter Calibration/Reading: % Gas % LEL: Vol. Organic Matter (Calibration/Reading): Volatiles (ppm): PURGE INFORMATION Date/Time Initiated: 5 9	v - v - t					
if prot casing; depth to riser below: Gas Meter Calibration/Reading: % Gas % LEL: Vol. Organic Matter (Calibration/Reading): Volatiles (ppm): PURGE INFORMATION Date/Time Initiated: 5 9	Height;	Casing Riser.		h	Dat	
Gas Meter Calibration/Reading: % Gas % LEL: Vol. Organic Matter (Calibration/Reading): Volatiles (ppm): PURGE INFORMATION Date/Time Initiated: 5-9 (0.77 Date/Time Completed: 10.78 Date/Time Completed: 10.79	if neat angling, don't to right holow.		() Dunise	<u> </u>	4+	
Vol. Organic Matter (Calibration/Reading): PURGE INFORMATION Date/Time Initiated: Surf. Meas. Point: () Pro Casing (Driser Riser Diameter (inches) Initial Water Level (ft): Well Total Depth (ft): Method of Well Purge One (1) Riser Vol (gal): Total Volume Purged (gal): Purge Observations: Cloudy brown no don PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp pH Conductivity Turb. ORP DO Other Level (genrintz): Volatiles (ppm): Volatiles (ppm): Pate/Time Completed: Riser Diameter (inches) Plevation G/W MSL: Method of Well Purge Dedicated: Dedicated: Purged to Dryness: Y/D Start Finish PURGE DATA (if applicable)			% LEL:			
PURGE INFORMATION Date/Time Initiated: 59		Volatiles (ppm):	•			
Date/Time Initiated: 5-9					r The state of the	
Surf. Meas. Point: () Pro Casing (Driser Riser Diameter (inches) 2 1 Moya / Initial Water Level (ft): Elevation G/W MSL: Well Total Depth (ft): Method of Well Purge One (1) Riser Vol (gal): Dedicated: DN NOW Purged to Dryness: Y / N Purge Observations: Could brown no don PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp pH Conductivity Turb. ORP DO Other Level (gpm/intz) Volume (C) (SU) (mS/cm) (NTU)	f - Q	ku ki na kini tengan ki kini ki kini na melebah sami	er ette er og til og e	1/5	02	
Elevation G/W MSL: Well Total Depth (ft): Method of Well Purge	Date/Time Initiated: 10.97	Date/Time Completed:		[14]	0	
Well Total Depth (ft): One (1) Riser Vol (gal): Dedicated: Purged to Dryness: Purge Observations: Cloudy brown no don PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp pH Conductivity Turb. ORP DO Other Level (gpm/itz) Volume (C) (SU) (mS/cm) (NTU)	Surf. Meas. Point: () Pro Casing (D-Kiser	Riser Diameter (inches)		2 "ME	Ha [
One (1) Riser Vol (gal): Total Volume Purged (gal): Purge Observations: County brown no don PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp pH Conductivity Turb. ORP DO Other Level (gpnvinz) Volume (C) (SU) (mS/cm) (NTU)	Initial Water Level (ft): 3-62	Elevation G/W MSL:				
Total Volume Purged (gal):	Well Total Depth (ft):	Method of Well Purge			·····	
Purge Observations: Couch brown no don Start Finish PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp pH Conductivity Turb. ORP DO Other Level (gpm/ltz) Volume (C) (SU) (mS/cm) (NTU)	One (1) Riser Vol (gal):	Dedicated:	W/N /	Ven		
PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp pH Conductivity Turb. ORP DO Other Level (gpm/fitz) Volume (C) (SU) (mS/cm) (NTU)	Total Volume Purged (gal): >, 2 4	Purged to Dryness:	Y /69			
PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp pH Conductivity Turb. ORP DO Other Level (gpm/fitz) Volume (C) (SU) (mS/cm) (NTU)	Purge Observations: Cloudy brown no all	Start	Finish			
Level (gpm/fitz) Volume (C) (SU) (mS/cm) (NTU)	PURGE DATA (if applicable)					en e
10:40 455 2500 15.77 7.95 1.60 13/ 190 6.03		. 1		ORP	DO	Other
	10:40 400 250ml 15:77	7.95 1.60	13/	190	60	•
10:45 4.14 875 25 1650 8:01 1:56 105 -190 1:44	10:45 4.14 675 25 16.50	8,01 1,56	105	-190	1.44	<i>,</i>
10:50 4.14 67.5 17:15 8.02 1:58 29.4 -193 1.37	10:50 4:14 67.5 17:15	P.02 1.58	21.9	-193	1.37	
10.55417 17.277.99 1.61 28.3-190 0.97	10.55417 17.27	7,99 1.61	<i>⊃8,</i> 3	-140	0.97	
11:00 (175) 170 5 Ex -10-10 Per	11:00 4:22 7102	7,9 1.70	25,4	-190	0.84	p.
11/00 196 42 1 1 11/22 1 471 7 701 7 524 770 20 4		(1)		160	7	

SAMPLE Soudy

FIELD OBSERVATIONS		1 1 1				
Facility: LONZE	Sample Point ID:	MW/27	7			
Field Personnel: 0K4CZ	Sample Matrix:	<u>3h</u>				
MONITORING WELL INSPECTION						
Date/Time: 5-9-19 /11/14	Condition of seal:	(() Good () Cracked	%			
		() None () Buried				
Prof. Casing/Riser	Condition of Prot.					
Height:	Casing Riser:	() loose () flush mount				
if prot.casing; depth to riser below:		() Damaged				
Gas Meter Calibration/Reading: % Gas		% LEL:				
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):					
PURGE INFORMATION						
Date/Time Initiated: 5-9-19 11:17	Date/Time Completed:	11:49				
Surf. Meas. Point: () Pro Casing (ORISer	Riser Diameter (inches)	2"PUC				
Initial Water Level (fi): 7 /5 2	Elevation G/W MSL:					
Well Total Depth (ft):	Method of Well Purge	Peristotic				
One (1) Riser Vol (gal):	Dedicated: N					
Total Volume Purged (gal):	Purged to Dryness:	Y /,80				
Purge Observations: Light Brown, cloudy	Start	Finish				
PURGE DATA (if applicable) No Calor						
Time Water Purge Rate Cümulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. ORP DO (NTU)	Other			
1100 5.31 25 on Unin 16.68	7.81 7.36	422 136 7.21				
11:25 5.37 25 Mos	7.8/ 7.58:	17.58-146 1.41				
11:30 5.41 17.49	7.80 7.64	20.7-153 1003				
11735 5.47 67.5 17.79	7.78 7.69	15.5-1540.87	>			
11405,48 17,92	7.77 7.69	126 155 0.80				

57ºF, Son+ clocks

FIELD OF	SERV <i>A</i>	ATIONS						PI	11/2	
Facility:	Lonz	za			Sample I	Point ID:		1 0	10	
Field Personn	iel:	pktc	7-7		Sample !	Matrix:	···	6	<u>L</u> _	
MONITORI	NG WEI	L INSPECTI	NC							
Date/Time:	5.	-9-19	12	153	Conditio	n of seal:	(9 Good () Cracked) Buried		%
Prot. Cas	ing/Riser Height:		* *		Cor	idition of Prot. Casing/Riser:	() unlocke	ed (4Good () flush mo		
if prot casing	depth to	riser below:								
Gas Meter Ca	dibration/	Reading:	% Gas				% LEL:	, 		
Vol. Organic	Matter (C	alibration/Read	ling):		v	olatiles (ppm):				
PURGE INF	ORMAT	ION						Migra a		
Date/Time In	****	S-9 () Pro Casing	(U.Riser	10	•	ne Completed: nmeter (inches))	13:3 6" 2	(Tee(/
Initial Water	Level (f	t):	6	6	•	i G/W MSL:	Da .	4a 1418		
Well Total D	Depth (ft)	:	10		Method					
One (1) Rise	er Vol (ga	il):	1,7	<u> </u>	Dedicate					
Total Volum	•	l (gal):			=	Dryness:	Y / & 2			
Purge Observ	ations;	clear,	Slight	,chen	Start I	······································	Finish	*****	,	
PURGE DA				low						
Time	Water Level	Purge Rate (gpm/htz)	Cumulative Volume	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO	Other
13:03	6.31	250		20.24	1861	931	22.8	87	7.60	<i>(</i> *)
13'08	6.56	175		2035	0.66	414		-104	1.40	
13:13	6.68	67.5		21.05	1.15	4.15	0,0	-110	109	
17:10	6.73			7/15	2 869	4.13	0,0	-113	0,92	
13.73/	79			2200	8.63	4.18	0.0	-/15	0.96	
7770	MAA DI	6			- 10	<u> </u>			/	

72°, overcast

FIELD OBSERVATIONS									\sim	
Facility:		Lon2	9	<u>-</u>	Sample	Point ID:			5/7	7 :
Field Perso	onnel:	: DK+CZ			Sample	Matrix:		<u>6</u>	4	
MONITO	RING WEI	LLINSPECTI	ON							
Date/Time	: 5-	9-19	[3.	35	Conditio	on of seal:	() Good (() Cracked		9%
							(1) None () Buried		
.	· (67.	177 OR 11	() unlocke	ed ()Goo	đ	
Prot. C	asing/Riser Height:				- Coi	ndition of Prot. Casing/Riser:		() flush mo	ount	
							() Damag	ed		
if prot casi	ng; depth to	riser below:			-					
Gas Meter	Calibration/	Reading:	% Gas				% LEL:			
Vol. Organ	ic Matter (C	alibration/Read	ding):		v	olatiles (ppm):			-	
PURGET	NFORMAT	rion								
Date/Time	e Initiated:	5-9	130	138	Date/Tir	ne Completed:		10	1:08	
Surf. Mea	s. Point:	() Pro Casing	(UnRiser	~~	Riser Di	ameter (inches)2	11 Ste	01	
lnitial Wa	der Level (f	t):	61	<u>55</u>	Elevatio	n G/W MSL:				
Well Tota	l Depth (ft)	:			Method	of Well Purge	for	1540/7	40	
One (1) R	iser Vol (g	al):			Dedicate	ed: «	AV N			
	ume Purgeo		212		Purged t	o Dryness:	Y 68			
Purge Obs	ervations: /	rown to	n+Chi	PM/Ca	Start		Finish			
PURGE D	DATA (if at	Courter to the courter of	$C\rho\gamma$	Milling	o don					
Time	Water Level	Purge Rate (gpn://tz)	Cumulative Volume	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO	Other
13.40	6.60	250mb/	his	12,99	9119	7.82	13.8	107	5.06	·
13:45	6.58	125	(16.95	9.19	8,31	8.9	-106	10/2	
13:50	6.5P	125		17077	9.18	8.42	6.6	-105	0,86	m,
1355	659	64.5		17.79	9,23	8.45	8.1-	-146	0073)
14100	6.59			17.43	9.74	10.3	0.0	-193	0.67	•
جا	SAM	PLE								

72°, overcast

FIELD OBSERVATIONS			A				
Facility: LONZQ	Sample Point ID:	<u> </u>	TZ/Q	96			
Field Personnel: DK/CZ	Sample Matrix:		6 L				
MONITORING WELL INSPECTION							
Date/Time: 5-9-19 14',26	Condition of seal:	Good () Cracked		%		
		() None () Buried				
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser:	() loose					
ne i radio di Arti		() Damage	ed				
if prot casing; depth to riser below: Gas Meter Calibration/Reading: % Gas		47 1 D1 .					
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):						
PURGE INFORMATION		umikataka		• Haitensen	rja e denet		
Date/Time Initiated: 5-9 19:29 Surf. Meas. Point: () Pro Casing (Disser	Date/Time Completed:		14!	5P			
Initial Water Level (ff):	Elevation G/W MSL:						
Well Total Depth (ft):	Method of Well Purge Penistaltic						
One (1) Riser Vol (gal):	Dedicated: N						
Total Volume Purged (gal): 2194	Purged to Dryness: Y						
Purge Observations: 5/1/3h + brown tint	Start	Finish					
PURGE DATA (if applicable) Slight odon				R R.			
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTU)	ORP	DO:	Other		
147 9.95 =50 mch 17.91	914/ 5.4/	6.3	-154	6.05			
14:36 9.94 125 19.39	9.39 5.44	2.9	-160	1,25			
14:41 11.67 675 16.37	9.37 5.45	0.6	-163	0,97			
14:46 1235 16:15	9, 37 5.44	0,0	-165	6,82			
14151 1261 16.02	9,37 5,44	0.0	-166	6.78	7		

72°F, Cloudy
Page 1 of 2

14:51 12:61 -> SAMPLE

FIELD OBSERVATIONS				* -	
Facility: 5-10-19	Sample Point ID:				
Field Personnel: DC +CZ	Sample Matrix:			hr.	
MONITORING WELL INSPECTION					
Date/Time: 5-10-19 8 () 8	Condition of seal:	() Good (1	%
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser:		() flush m		
if prot casing; depth to riser below:					
Gas Meter Calibration/Reading: % Gas	· · · · · · · · · · · · · · · · · · ·	% LEL:			
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):				
PURGE INFORMATION				di di	
Date/Time Initiated: Surf. Meas. Point: () Pro Casing () Baser Initial Water Level (ft): 2,76 Well Total Depth (ft): One (1) Riser Vol (gal): Total Volume Purged (gal): Purge Observations: (ght brown child of PURGE DATA (if applicable) No odon Time Water Purge Rate Cumulative Temp	Purged to Dryness: Start pH Conductivity	Y/GV Finish	······	9 1/2 1/4/1	Other
Level (gpm/htz) Volume (C)	(SU) (mS/cm)	(NTU)		<i>2</i>	
8:38 15:03 250 milnin 5.20	7.48 1.96	16	30	8.48	
8:43 15,60 125 15:18	7/30 200	14,2	40	1170	
2:48 16:04 15:14	7,30 1,97	7.6	47	1,25	
8153 16.39 67.5 15.16	7.31 1.95	4,9	3 P	1.07	
8:581664 15.14	1732 193	4.3	33	0.98	

Rain, 609/

FIELD OBSERVATIONS Facility: 2012A	Sample Point ID: PW/4					
Field Personnel: DK4CZ	Sample Matrix:					
MONITORING WELL INSPECTION						
Date/Time: 5-10-19 9:45	Condition of seal: () Good () Cracked %					
Prot. Casing/Riser Height:	Condition of Prot. () None () Buried () unlocked f) Good Casing/Riser: () loose () flush mount () Damaged					
if prot casing; depth to riser below:						
Gas Meter Calibration/Reading: % Gas	% LEL:					
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):					
PURGE INFORMATION						
Date/Time Initiated: 540 9:58	Date/Time Completed: 10 128					
Surf. Meas. Point: () Pro Casing (DRiser	Riser Diameter (inches) 6" Steel					
Initial Water Level (ft):	Elevation G/W MSL:					
Well Total Depth (ft):	Method of Well Purge					
One (1) Riser Vol (gal):	Dedicated: N					
Total Volume Purged (gal): 2.21	_ Purged to Dryness: Y /					
Purge Observations: Clear, Brown Hat,	Start Finish					
PURGE DATA (if applicable) PYNOINE OF						
Time Water Purge Rate Cumulative Temp Level (spm/htz) Volume (C)	pH Conductivity Turb. QRP DO Other (SU) (mS/cm) (NTU)					
10:00 8.31 250 15.99	964 6.96 016 189 6.61					
10:05 8.37 125 16:00	9.74 7.11 6.0 213 1.79					
10:10 8.45 15.99	9.75 7.23 0.0-227 1.10					
10:158.54 67.5 16.10	9.76 7.19 0.0 -233 0.90					
10:20 8:61	9.76 7.19 0.0 234 0.88					
5 AMPLE						

Rain 60°F

FIELD (Facility:	JBSER\	VATIONS Lonz	-la	Sample I	Sample Point ID:			PW17		
SAMPLIN	NG INFO	RMATION								
Date/Time Method of Multi-phas	Sampling	5-10	-19 10 Po	Water Lo	evel at Samplin	g (ft). Dedicated:	9,4°	ア グn		
SAMPLIN	Section Constitution	seet restur i te un eletti.		·		·		HATTA		
Ti	me	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb, (NTU)	ORP	DO	0	Diher	
10:	45	15.57	7.75	5.52	37.6	409	3,00	7		
							-			
INSTRUN	MENT CA	LIFBRATION	J J/CHECK DA	lA						
Meter lD#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std. 10.0 SU	Check Std 7.0 SU (+/- 10%)	Cal.Std. [413] umhos/cm	Chec. 1413 un (+7-1	nhos/em	Cal Std. 10 NTU	Check Std 10 NTU (+/- 10%)	
Solution ID#										
GENERA Weather co		MATION t time of sampli	ng:		6) ¶	<u> </u>	160	de		
Sample cha	aracteristic	s:		te	et, c	low	de, 5	One	0	
Comments	and Obser	rvations:		jan;	tides.					
					······································			<u>. </u>		
I certify the		g procedures we	re in accordanc	e with all applicable EP	A, State and Si	te-Specific	protocols:	110	toly	

FIELD (Facility:		ATIONS		Sample	Point ID:	PW/	5		
SAMPLIN	NG INFOI	RMATION							
Date/Time Method of Multi-phas	Sampling ed/layered	5-10- : Y/N	19 po	Mater L Mping Well if yes:	evel at Samplio	ig (ft) Dedicated:	7.9	35 /N	٧
SAMPLIN	NG DATA								
Ti	me	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO	C	other
110	10	14,20	0/0,26	1166	0.0	-204	7.//	7	
,									
INSTRUM	MENT C∤	UFBRATIO	N/CHECK DA	ŢΑ				e e grijned	HAZALI E.
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std. 10.0 SU	Check Std 7.0 SU (+/- 10%)	Cal.Std, 1413 umhos@m	Check 1413 umh (+/- 10	ios/cm	Cal Std. 10 NTU	Check Std 10 NTU (+/- 10%)
					*:				
Solution (D#							p./ · · · ·		
Normal discovered	LINFOR	MATION							
	100 - 100 - 100 - 100	t time of sampl	ine:	6.	3°F C	lack			
Sample ch			\mathcal{B}_{\sim}	elun tint	Dunid	lock ine od] A 1-		<u></u>
Comments					# [, , , , , , , , , , , , , , , , , ,			
Comments	and obse	racions.				·- /			
				M_S	1115	/)		,	
				\$					
I certify th	at samplin	g procedures w	ere in accordan	ce with all applicable E	PA, State and S	ite-Specific pr	rotocols:		
Date: [10	19 b	y: <i>D</i>	K+CZ		Company:	M	atm	

	OBSERV Lon	ATIONS					A	2/~ S		
Facility:	-011	<u> 24 </u>			Sample P	Point ID:	DK	7/2 >		
SAMPLIN	NG INFOR	MATION								
Date/Time		5-10-1	9 11:	20	Water Le	ivel at Samplir	ıg (ft)	1,43		
Method of	•		gong	ngu				CY	'/ N	
Multi-phas	ed/layered:	Y / N			if yes:	() Light	() Heavy			
SAMPLIN	NG DATA				15.14等)				. * *	
Ti	me	Temp (C)	pĦ (SÜ)	Conductivit	y (mS/cm)	Turb. <u>(</u> NTU)	ORP	DO		Other
11:	30	13.89	8,45	5.	<u>}2</u>	0.0	HO	3,40		
INSTRUM Meter 1D#	ŒNT CA) Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std. 10.0 SU	Check 7.0 5 (+/- 1	: Std SU	Cal.Std, 1413 umhos/cm	Chec 1413 un	k Std nhos/cm 10%)	Cal Std. 10 NTU	Check Std 10 NTU (+/- 10%)
Solution ID#										
	nditions at		ng:	Tight +	339 inti	= c slight	loca odo,	<u></u>		
				D	Upe .				-	
	nt sampling	procedures wer	re in accordance	ce with all app	olicable EP/	A, State and Si	te-Specific		e tal	<i>;</i>

FIELD OBSERVATIONS		DI		
Facility: La1Z9	Sample Point ID:	516		
Field Personnel: DK+CZ	Sample Matrix:	-6W		
MONITORING WELL INSPECTION				
Date/Time: 5-10-19 1/14	Condition of seal:	(O'Good () Cracked	,	%
		() None () Buried		
Prot. Casing/Riser Height:	Condition of Pro Casing/Rise	ot. () unlocked () Good er: () loose () Hush mo () Damaged		
if prot easing; depth to riser below:		() Damaged		
Gas Meter Calibration/Reading: % Gas	·.	% LEL:		
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppn	i):		
PURGE INFORMATION				
Date/Time Initiated: 5-10 11:50	Date/Time Complete	125	≥ /_	
Surf. Meas. Point: () Pro Casing (Dikiser	Riser Diameter (inche	es) 2"PL	1e_	
Initial Water Level (ft): 4.38	Elevation G/W MSL			
Well Total Depth (ft):	Method of Well Purg	e Penistel	tic	
One (1) Riser Vol (gal):	Dedicated:	60 N		
Total Volume Purged (gal): Let 2L	Purged to Dryness:	v 142		
Purge Observations: clear, no odor	Start	Finish		
PURGE DATA (if applicable)			eren i Gran	
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivit (SU) (mS/cm)	y Turb. ORP (NTU)	DO	Other
11'5 110 2011 14.45	036 10.73	100 -1	10	

Time	Water	Purge Rate	Cumulative	Temp	рΗ	Conductivity	Turb.	ORP	DO	Other
	Level	-(gpm/btz)	Volume	(C)	(SU)	(m\$/cm)	(NTU)			
11:53	5,10	25 mch	ila	14.45	8.36	0.731	0.0	-6	10	
11:58	5,65	25		19.18	7.93	0.699	0.0	41	7.77	•
12'03	5.76	67.5		14,46	787	0.182	Oct	54	5.40	
12:08	5.80			14.58	7.80	0,880	00	60	3,59	
12//3	580	2_		H,72	27.7	Q-61,01	0:0	61	273	
(ح)	SA.	MPLE		•						

00

63% Windy cloudy

FIELD ()BSERV	/	_				N	141	06	
Facility:		Lo	nZa	· · · · · · · · · · · · · · · · · · ·	Sample F	•		141	,	
Field Perso	nnel:		PHC C		Sample N	Aatrix;	(o W		
MONITO	RING WEI	L INSPECTI	ON					···.		To Dank a
Date/Time:	54	0-19	13:00	7	Condition	n of seal:	()Good () Cracked		<u>%</u>
							() None () Buried		
Prot. C	asing/Riser				Con	idition of Prot.	() unlocked			
	Height:					Casing/Riser:	() loose () flush mo	ount	
							() Damage	d		
if prot casi	ng; depth to	riser below:								
Gas Meter	Calibration/	Reading:	% Gas				% LEL:			-
Vol. Organ	ic Matter (C	Calibration/Read	ling):		V	olatiles (ppm):			_	
PURGE	NFORMAT	ION					ansk i j	• .		No.
	e Initiated:	510		:28	Date/Tin	ne Completed:		132	9	
Surf. Mea	s. Point:	() Pro Casing	(DRiser		Riser Di	ameter (inches)		"PVC	, -	
Initial Wa	ter Level (f	t):	93	5	Elevation	G/W MSL:				-
Well Tota	Depth (ft)):			Method	of Well Purge	Pp.	1154	eltic	£
One (1) R	iser Vol (ga	al):			Dedicate	d: ∠	P/N			
Total Vol	ume Pürged	d (gal):	124		Purged to	Dryness:	Y 168			
Purge Obse	ervations: 7	Oranye	Cloud	<u> </u>	Start		Finish			
	DATA (if a _l		slightse,	Aros	len					
Time	Water Level	Purge Rate (gpm/btz)	Cumulative Volume	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO.	Other
j > 1 2 `	٠,٠٠٠	~		11150		/>>	705	07	5 ,00	

Time	Water Level	Purge Rate (gpm/btz)	Cumulative Volume	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO.	Other
(3:33	10.54	250 ml/ni	4	14,29	7.51	1,23	25 2	-97	3.06	
13:38	10.71	125		13.52	7.48	1,72	246	-101	1.36	
13:43	10.80			13.49	7,46	1,24	マチフ	-101	/a3	
13:48	10.85	125		13,39	7.47	1,21	233	-100	1.18	
L>	SAM	PLE								

63°F, Cloudy

FIELD OBSERVATIONS LON Za	Sample Point ID:	BR106	
Field Personnel: DK+CZ+PB	Sample Matrix:	GW	
MONITORING WELL INSPECTION			, Angalaga (Angalaga) Angalaga (Angalaga)
Date/Time: 5-10-19 14:00	Condition of seal:	() Good () Cracked () None () Buried	9%
Prot. Casing/Riser Height:		() unlocked (Lood () loose () flush mount	
if prot casing; depth to riser below:		() Damäged	
Gas Meter Calibration/Reading: % Gas		% LEL:	
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm);		
PURGE INFORMATION			
Date/Time Initiated: 540 14:01	Date/Time Completed:	14:30	
Surf. Meas. Point: () Pro Casing (O'Riser	Riser Diameter (inches)	b"Steel	
Initial Water Level (ft): 21.55	Elevation G/W MSL:	Paret. H.	
Well-Total Depth (ft):	Method of Well Purge	Penistalfic	
One (1) Riser Vol (gal): Total Volume Purged (gal): → → → →	Dedicated: (OX / N	
		Finish	
Purge Observations: JNAY, Cloudy, SULFU PURGE DATA (if applicable)	Start Sodop	T total	
Time Water Purge Rate Cumulative Temp Level (spm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. ORP DO (NTU)	Other
14:06 2014 25mlly 13.16	7.43 5.24	33.8-149 3.94	`
14:11 22.14 125 12.96	738 535	37.5 -168 1.16	
14:16 /3.23	7.40 5.35	31.9 -175 0.95	
14/21 67.5 13.37	7.40 5.38	28.4 -179 0.90	
14:26 13.29	7.41 5.39	243 475 0.80	7

62°F, Clody

> SAMPLE

FIELD OBSERVATIONS			Y - 2	100	
Facility: Lonza	Sample Point ID:	<u> </u>	- 21	00	
Field Personnel:	Sample Matrix:				
MONITORING WELL INSPECTION					
Date/Time: 5-13-19 8.25	Condition of seal:	() Good () Cracked	-	<u>6</u> /9
		() None () Buried		
Prot. Casing/Riser	Condition of Prot.	() unlocke	d () Good	i	
Height:	Casing/Riser:	() loose () flush mo	unt	
		() Damage	d		
if prot casing; depth to riser below:					
Gas Meter Calibration/Reading: % Gas		% LEL:			
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
PURGE INFORMATION					
Date/Time Initiated: 513 8133	Date/Time Completed:			9',08	•
Surf. Meas. Point: () Pro Casing (ARiser	Riser Diameter (inches)	*****	1100	U	
Initial Water Level (ft): \\\ \square\ \square\ \ \square\ \qquare\ \ \square\ \qquare\ \qquare\ \qquare\ \qquare\ \qquare\ \qquare\ \qquare\ \qquare\ \qquare\ \qqqq\ \qqqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqq\ \qqqqqq	Elevation G/W MSL:				
Well Total Depth (ff);	Method of Well Purge				
One (1) Riser Vol (gal):	Dedicated:	90/ N			
Total Volume Purged (gal): 175 L	Purged to Dryness:	Y / (1)			
P. 1	Start	Finish			
Purge Observations: (PUN (Uffun odor PURGE DATA (if applicable)			grevet a		
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTU)	ORP	DO	Other
8:37/6.58 250mUn 7.77	P27 5.33	0.0	-205	8.21	
8:42 15.50 67.5 7.92	7.83 5.35	0,0	-J25	3.44	
8.4715.52 8.05	7.79 5.26	0,0	-25}	1.61	
P.52 15.55 P.22	7.79 5.20	0,0	-277	1.29	
8.57 15.56 8.12	7.79 5,26	0,0	≥9/	1.17	

SAMPLE 45°F/Ight rain
Page 1 of 2

FIELD OBSERVATIONS			A	/ >~	1 = >
Facility: Lonza	Sample Point ID:			<u> </u>	03
Field Personnel:	Sample Matrix:		6 L	<u> </u>	
MONITORING WELL INSPECTION					
Date/Time: 5-/3-/9 9:11	Condition of seal:	Cood () Cracked		°/ ₀
		()None() Buried		
	Condition of Prot.	() unlocke	d ()-600.		
Prot. Casing/Riser Height:	Condition of Prof. Casing/Riser:	() loose () flush mo	unt	
		() Damage	ed		
if prot casing; depth to riser below:					
Gas Meter Calibration/Reading: % Gas		% LEL:	***************************************		
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):				
PURGE INFORMATION					
Date/Time Initiated: 5-/3 9:/6	Date/Time Completed:		9	146	
Surf. Meas. Point: () Pro Casing () Riser	Riser Diameter (inches))	2 11 P	<u>// C_</u>	
Initial Water Level (ft): />,/>	Elevation G/W MSL:		- 1//	,,	
Well Total Depth (ft):	Method of Well Purge	PEN	111 /4	1XC	
One (1) Riser Vol (gal):	Dedicated:	32/ N			
Total Volume Purged (gal): / 6 Z	Purged to Dryness:	YOU			
Purge Observations: Clear, slight chemit	. Start	Finish			
PURGE DATA (if applicable) Odon					
Time Water Purge Rate Cumulative Temp Level (spm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTU)	ORP	DO	Other
9'20 1289 250 nc/n; 8,29	7.85 4,26	0.0	269	570	
9:25/3/17 67.5 8:17	7.75 4.12	0.0	275	1.56	
9:3013.38 8:28	7.74 4.11	0.0	-277	1.41	
9:35 13:55	7.73 4.11	010	77/	1.34	

45 Flightrain

010 -27/ 1.34

FIELD C Facility:	OBSERV (ATIONS	Ä	Sample F	Sample Point ID:			PW16		
SAMPLIN	IG INFOI	RMATION								
Date/Time Method of Multi-phas	·	5-13-1 	6 - fu	9:50 Water Le water Le Water Le Water Le Water Le	vel at Sampling /	g (ft) And Dedicated:	one	gusk Grap is Ida	cd up	
SAMPLIN	NG DATA							1001-	rger	
Ti	me	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	ĎŌ	O	ther	
10:	05	1132	8,29	8,65	336	-29/	3.7.	2		
INSTRUN Meter ID#	MENT CA Cal Std 7.0 SU	LIFBRATION Cal Std 4.0 SU	Cal Std.	TA Check Std 7.0 SU (+/- 10%)	Cal.Std. 1413 umhos/cm	Check 1413 um (+/- 1	hos/em	Cal Std. 10 NTU	Check Std 10 NTU (+/- 10%)	
Solution ID≑										
GENERA Weather co Sample cha Comments	onditions a	t time of sampli	ng:	luck, dan een	45°F Kgi	lig nal,	htro.	Al'n Hy		
Loantification				e with all applicable EP		4				

FIELD OBSERVATIONS			~ ^		
Facility: Lonza	Sample Point ID:		BR	<u> 12 l</u>	A F
Field Personnel:	Sample Matrix:		GL	<u> </u>	
MONITORING WELL INSPECTION					a topici
Date/Time: 10:20 5/13/19	Condition of seal:	(%
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser:) flush mo		
if prot easing; depth to riser below:					
Gas Meter Calibration/Reading: % Gas		% LEL:		·	
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):		······································		
PURGEINFORMATION					
Date/Time Initiated: Surf. Meas, Point: () Pro Casing () Riser Initial Water Level (ft): Well Total Depth (ft): One (1) Riser Vol (gal): Total Volume Purged (gal): Purge Observations: Class Small partice PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp	Date/Time Completed: Riser Diameter (inches Elevation G/W MSL: Method of Well Purge Dedicated: Purged to Dryriess: Start PH Conductivity		11:00 11 St 14 Sta	ee/	Peny
Level (spm/htz) Volume (C)	(SU) (mS/cm)	(NTU)	UKF		
10:30 8:09 250 milhin 9.8	3 8.01 1.01	13.6	84	11.5	
10:35 8:08 125 9:97	7.75/10/	11.8	-1PP	1,82	-
10:40 8.16 675 10.01	7.74 1.00	9.7	-186	1,31	
10:45 8.06 10.07	7.74 1.01	9.5	195	1,24	
10:50 \ 10:00	7- /	07	184	1.08	
1 CAMADIE	76.7	816	19 /	10	

45 F, Light Rain

FIELD OBSERVATIONS		Α
Facility: Lonza +111	Sample Point 1D:	BR105
Field Personnel:	Sample Matrix:	
MONITORING WELL INSPECTION		
Date/Time: 5-13-19 11:13	Condition of seal:	(6600d () Cracked %
- -		() None () Buried
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser:	() inflocked (2000d () loose () flush mount
		() Damaged
if prot casing; depth to riser below:		
Gas Meter Calibration/Reading: % Gas		% LEL:
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):	
PURGE INFORMATION		and the second s
Date/Time Initiated: 5-13 //1/9	Date/Time Completed;	11148
Surf. Meas. Point: () Pro Casing () Riser	Riser Diameter (inches)	6" Steaf
Initial Water Level (ft): 2/173	Elevation G/W MSL:	
Well Total Depth (ft):	Method of Well Purge	Penistaltz
One (1) Riser Vol (gal):	Dedicated:	Ø/ N
Total Volume Purged (gal): 2.54	Purged to Dryness:	Y / N
Purge Observations:	Start	Finish
PURGE DATA (if applicable)		
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. ORP DO Other (NTU)
11:2 22/175 250 W/min 10:34	7.97 2.65	0,0-111880
11:272174 125 \$0.47	7.64 2.74	0.0-12/473
11:35 2174 108	7.64 2.75	0-6 -128 1,28
11:3721.75	7.63 2.76	0.0-130/103
11:45 21.75 11.06	7632.76	0.0 133 0.97

15 SAMPLE

45°F, Cloudy

Page 1 of 2

FIELD OBSERVATIONS		$\hat{\mathcal{O}}$	1 1 m	λ λ	
Facility: Lonzo	Sample Point ID:	5 K	(/0	52	
Field Personnel:	Sample Matrix:		<u>6</u> 4		
MONITORING WELL INSPECTION					
Date/Time: 5-1349 11.4	Condition of seal:	(1) Good () Cracked		%
Dines Time.		() None (
		() unlocke	d (/)26 06	i	
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser:				
		() Damage	ď		
if prot casing; depth to riser below:					
Gas Meter Calibration/Reading: % Gas	<u></u>	% LEL:			
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):	*- 			
PURGE INFORMATION					
Date/Time Initiated: 543 //35	Date/Time Completed:		1	212	5
Surf. Meas. Point: () Pro Casing (1) Riser	Riser Diameter (inches)		> "pi	<u> </u>	
Initial Water Level (ft): 25.7>	Elevation G/W MSL:	<u>x</u>			
Well Total Depth (ft):	Method of Well Purge	PlI	vista,	Hic	
One (1) Riser Vol (gal):	Dedicated:	\mathfrak{D}_{N}			
Total Volume Purged (gal): 752	Purged to Dryness:	Y			
Purge Observations: Clear, Sulfun oder	Start	Finish			
PURGE DATA (if applicable)				Çelêke,	
Time Water Purge Rate Cumulative Temp Level (genulative Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTÚ)	ORP	DO	Other
11:57 26.46 Domelan 1/104	7.48 69,2	0.0	-340	386	
12:02 2683 675 11.48	7.37 78	0.0	-374	0.75	
12:07 26:98 1/162	7,36 79	000	380	0.61	
12:12 27.07 18:70	7.36 79.5	000	->86	0.56	
L> SAMPLE					
	ļ.	1	ı	1	i

459 Light Rain

FIELD OBSERVATIONS		
Facility: Lon Za	Sample Point ID: BR 1/0	
Field Personnel: DC4 CZ	Sample Matrix:	
MONITORING WELL INSPECTION		
Date/Time: 5-13-19 13:08	Condition of seal: (Defood () Cracked	%
	() None () Buried	
	Condition of Breat () unlocked () Good	
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser: () loose () flush mount	
— WILLIAM AND	() Damaged	
if prot casing; depth to riser below:	•	
Gas Meter Calibration/Reading: % Gas	% LEL:	
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):	
PURGE INFORMATION		٠.
Date/Time Initiated: 5-13 13:14	Date/Time Completed: 13:46	
Surf. Meas. Point: () Pro Casing (Oxiser	Riser Diameter (inches) 6" Stool	
Initial Water Level (ft): 12,80	Elevation G/W MSL:	
Well Total Depth (ft):	Method of Well Purge Penis Yaltic	
One (1) Riser Vol (gal):	Dedicated: N	
Total Volume Purged (gal):	Purged to Dryness: Y	
Purge Observations: tan, cloudy	Start Finish	
PURGE DATA (if applicable)		
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity Turb. ORP DO Oth (SU) (mS/cm) (NTU) ORP ORP ORP Oth	ıer
13:20/2.76 250 MANY 11.05	9.05 1.63 90 -25-79.10	
13:25/2,74/25 10,95	8.68 1.60 86 263 1.92	
13.3412.76 67.5 10.48	8.27/83 75.3 -262 1,20	
13435 12.76 11.01	812 1.40 60 262 1,08	
13:40 11.01	801 191 5211-264 0.95	,
	10.7	

45°F, Rain

FIELD OBSERVATIONS Facility: Lon 74	Sample Point ID:	ņ	14/	114	
Field Personnel: 01+CZ	Sample Matrix:			4 /	-
MONITORING WELL INSPECTION					
Date/Time: 5-13-14 13:46	Condition of seal:	(Defood (Ç
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser:		id () Good () flush mo		
if prot casing; depth to riser below:	-	-			
Gas Meter Calibration/Reading: % Gas Vol. Organic Matter (Calibration/Reading):	Volatilės (ppm):	% LEL:			-
PURGE INFORMATION				i gazgi Sh	
Date/Time Initiated: 5-13-19 13:4:	7 Date/Time Completed:		14	16	•
Surf. Meas, Point: () Pro Casing (PRiser	Riser Diameter (inches))	2"	PUC	-
Initial Water Level (ft): 9.06	Elevation G/W MSL:		1		-
Well Total Depth (ft):	Method of Well Purge	10	115ta	1/2	<u>-</u>
One (1) Riser Vol (gal):	Dedicated:	N N			
Total Volume Purged (gal): Z,/ L	Purged to Dryness:	Y			
Purge Observations: Cleur, no a dur	Start	Finish			
PURGE DATA (if applicable)				e No pr	
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTU)	ORP	DO	Other
150 10.04 = 50ml/min 10.70	8.46 1.33	17.3	24	40	•
13:55 10:57 67.5 10.67	8:49 0.966	13.9	-244	27	
14:00 12,84 10.65	8540,95	15.1	-243	عرکي	/
14:05 11.72 10.61	8.54 0 93	2 10.7	-243	2105	
	1 0 1		ر د د او د	1 813	
14'10 10.93 10.60	855 0,926	914	-244	189	

45 FRain

OM

Facility:	Long	24	· · · · · · · · · · · · · · · · · · ·	Sample	Point ID:		PL	v1-	?
SAMPLIN	G INFO	RMATION							
Date/Time		5-1	4-19	P'30 Water L of ng bel if ves:	evel at Sampli	ng (ft)	>7	7<	-
Method of S	Sampling		Pan	sing Wel		Dedicated:	(Z	2/ N	
Multi-phase	d/layered	E Y/N	**	if yes:	() Light	() Heavy			
SAMPLIN	G DATA	V							
Tin	ie	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO		Other
8'4	0	13,72	7.95	4,34	1213	-278	3.95	>	
				Grand Control of the					
DARATON ISSUE	Cal Std .0 SU	Cal Std 4.0 SU	Cal Std. 10.0 SU	Check Std 7.0 SU (÷/- 10%)	Cal.Std. 1413 umhos/cm	Check 1413 un (+/- 1	nhos/em	Cal Std. 10 NTU	Check Std 10 NTU (+/- 10%)
Solution 1D#	,								
GENERAL Weather cond Sample chara Comments ar	ditions at	time of samplin	g: Cle	YOF, Par, Slight	Ra/ sc/fi	p nodo	? <u>n</u>		
							 		
				u 5/MS	P				
certify that s	sampling	procedures were	in accordance	with all applicable EPA		te-Specific p	rotocols:		
Date: 5	14	19 bv:	0	クト・ナビ	7_	C'arran and a	11/1	this	·

FIELD	OBSER	VATIONS				0		_	
Facility:		Lonza		Sample	Point ID:	PO.	<u> </u>	Caro	204
SAMPLI	NG INFO	RMATION							
Ďate/Time	e	5-14	49	935Water L E for +	evel at Sampli	ing (ft)			
Method o	f Sampling	; <i>S</i>	AMI OLI	Flort	,	Dedicated:	R	· ~ 7) N	
Multi-pha	sed/Iayere	d: Y/N		if yes:	(*) Light	() Heavy	\mathcal{C}		
SAMPLI	NG DAT	A							
T	ime	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO		Other
9:	40	12125	8.35	532	46	-179	5,7	>	
·									
Meter ID#	(CT 1D#)		Cal Std.	Check Std 7.0 SU (+/- 10%)	Cal.Std. 1413 umhos/cm	Checl 1413 um (+/-)	k Std hhos/em	Cal Std.	Check Std 10 NTU (+/- 10%)
Solution ID#	<u> </u>								<u> </u>
	onditions al		ıg:	3995 11410 c	- R	au no	odo,	7	
····									
	·								
	t sampling	procedures were	in accordance	with all applicable EPA				ı Ç	(-
Date:	77	77 by:	1//	<u>-1 0 </u>		Company:	11/10	atri	+

FIELD		VATIONS								
Facility:		-012	Q.	•	Sampl	e Point ID:	À	RPI	/>>	\triangle
Field Pers	sonnel:	_0/<	402		Sampl	e Matrix:			~~~	مسيك
MONITO	ORING WI	ELL INSPECT	ION							
Date/Tim	e: <u>5</u>	14-19		157	Z Condit	ion of seal:	(L) Good	() Cracke	ed	<u></u>
							() None	() Buried		
Prot.	Casing/Rise Height				C	ondition of Prot	•	ced WG		
	Height	·•				Casing/Riser			nount	
if prot one	ing donth to	o riser below:					() Dama	36 <u>q</u>		-
	r Calibration		% Ga	3		_	%LEL:			
Vol. Orga	nic Matter (Calibration/Rea	nding):	<u> </u>		Volatiles (ppm):	.			_
PURGE I	NFORMA	TION								
Date/Tim	e Initiated:	519	1 1	0:08	Date/Ti	me Completed;		10:	,38	
Surf. Mea	as. Point:	(V) Pro Casing	g (DKiser		Riser D	iameter (inches)		11159	1 y y /	
Initial Wa	iter Level (ft): 4	4.61		Elevatio	m G/W MSL:				
Well Tota	ıl Depth (ft):			Method	of Well Purge	Blad	Uev.	150000	-
One (1) R	iser Vol (g	al):			Dedicat	ed:	80/N		ar if	f.
Total Vol	ume Purge		USL		Purged	to Dryness:	Y 160			
Purge Obse	ervations:	\mathcal{C}	Ball, 54	114	Start	,	Finish			
PURGE D	PATA (if a _l	oplicable)		gni-ref	fin od)V				
Time	Water Level	Purge Rate (gpm/htz)	Cumulative Volume	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb, (NTU)	ORP	DO	Other
	اثر وينز								 	

Time	Water	Purge Rate	Cumulative	Temp	pН	Conductivity	Turb,	ORP:	DO	Other
	Level	(gpm/htz)	Volume	(C)	(SU)	(mS/cm)	(NTU)			
10:13	446	3 250 ml		7.96	7.00	1,90	1210	-204	4,63	
10:18	94.6		, , , d	P22	77/	1,25	0.0	-248	1000	
<i>[0</i> [33]	44.63			<i>9</i> 06	7168	1.50/	010	-239	1,47	
10:28	_ i			8.37	7.68	4	00	-345	180	
10:33	V			9,38	7.67	180	010	-295	1,37	
ار خا	MAL	S.								

GOOF, RAIN
Page 1 of 2

FIELD OBSERVATIONS Facility: LONZA					Sample	e Point ID:	BR/23D				
Field Pers	sonnel:	544	19 10	Ţ+.	-	Matrix:		G			
MONITO	DRING WI	ELL INSPECT	ION							- 484681	
Date/Time	e: <u>5</u> 7	14-19	10	58	Conditi	ion of seal:	()Good	() Cracked	i	0,	
							() None	() Buried			
Prot. (Casing/Rise Height				C,	ondition of Pret Casing/Riser		ked God () flush m			
16 mile ====	ء الساد ساد						() Dama	ged		_	
	ng; depth to Calibration	o riser below:	% Gas	:			67 1 th				
		Calibration/Rea		·	1	– Volatiles (ppm).	% LEL:			- .	
PURGE I	NFORMA	TION				4.					
Date/Time	e Initiated:	5-14-1	19 11	1:09	Date/Ti	me Completed:	reservativa (ve. 1).	11:3	>	i nel tatable tale ette	
Surf. Mea	ıs. Point:	(UPro Casing	(Miser	Beel	Riser D	iameter (inches)	411	4001	.	
	iter Level (4 7	14,91	Elevation	on G/W MSL:			<u></u>	-	
	l Depth (ft		·		Method	of Well Purge	Blad	lder fu	mp	-	
	iser Vol (g	7.	ر شمر ا	······	Dedicat		V/N	New f	White		
Total Volu	ume Purge	d (gal):	15 L	. (Purged	to Dryness;	Y /6/	,	ong	•	
Purge Obse	ervations:	no oder	SME	1 pary	Start		Finish	ì			
PURGE D	OATA (if a	oplicable)			1111			Markana			
Time	Water Level	Purge Rate (gpm/ht z)	Cumulative Volume	Temp (C)	pH (SU)	Conductivity (m5/cm)	Turb. (NTU)	ORP	DO	Other	
1/:/2	4/4	9 4329		8.55	Pilh	2.66	0,0	-/77	5,70		

Time	Water	Purge Rate	Cumulative	Temp	pН	Conductivity	Turb.	ORP	DO	Other
	Level	(gpm/ht z)	Volume	(C)	(SU)	(m8/cm)	(NTU)	ļ		
11:12	4/48	9 432		8.55	816	2,66	010	-/77	5.20	
11:17	44,9	1	1	4,85	817	2,64	0.0	-15A	6125	
11:22	44.9			9107	8,22	2160	\mathcal{O}, \mathcal{C}	-151	7.42	
11:27	44.8	<u>q</u>		9.16	8.21	2,59	1,4	_155	7,36	
132	44,P	>		9,28	1,25	2157	4,9	-149	7.61	
17	SAN	NPLR								

South UltiRain
Page 1 of 2

FIELD OBSERVATIONS					
Facility: Long	Sample Point ID:			SA [[\mathbb{Z}/\mathbb{Z}
Field Personnel:	Sample Matrix:		61	4	
MONITORING WELL INSPECTION					
Date/Time: 5/4/9 12:20	Condition of seal:	() Good	() Gracked	ŀ	· 0,
		() None () Buried		
Prot. Casing/Riser	,		ed (<i>)</i> S60		
Height:	Casing/Riser:		·	ount	
if prot casing; depth to riser below:		() Damag	ed		*
Gas Meter Calibration/Reading: % Gas		% LEL:			
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):				-
DED OF DECOMA LEGICA		y waley keep		- 14 (122:10)	
Date/Time Initiated: 5/4/12/2 Surf. Meas. Point: () Pro Casing WRiser Initial Water Level (ft): 6/85 Well Total Depth (ft): One (1) Riser Vol (gal): Total Volume Purged (gal): 254 Purge Observations: fan, cloudy, no odda PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp	Riser Diameter (inches) Elevation G/W MSL: Method of Well Purge Dedicated: Purged to Dryness:		12 YUSK WAR	2 190 rpon	O Share
Level (gpm/htz) Volume (C)	(SU) (mS/cm)	(NTU)	OKF	DO	Other
12:25 46:87 250 mlmi 10:31	9.11 0.523	74	-176	6.5	
12:30 46.86 10.47	9.08 0.526	61	-181	5.73	
12:35 46.86 10.46	9.07 0.56	57	184	5.49	
LY CAMPLE	11		 {-		
	Battery Maning	slow			
	/ / /	'			

43°F, light rain

FIELD OBSERVATIONS		,	>01/	0					
Facility: LONZA	Sample Point ID:		50K/10	11					
Field Personnel: DK+CZ	Sample Matrix:								
MONITORING WELL INSPECTION									
Date/Time: 5-/4/9 12:46	Condition of seal:	() None.() Buried	j	%					
Prot. Casing/Riser Height:		Condition of Prot. () unlocked () Good Casing/Riser: () loose () flush mount							
if prot casing; depth to riser below:		() Damaged		,					
Gas Meter Calibration/Reading: % Gas		% LEL:							
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm			·					
PURGE INFORMATION									
Date/Time Initiated: 5/4 12:56 Surf. Meas. Point: () Pro Casing (URIser Initial Water Level (ft): 46.13 Well Total Depth (ft): 46.13 One (1) Riser Vol (gal): 4.5 L Purge Observations: Cloudy, orange Initial Water Level (ft) applicable)	Riser Diameter (inche Elevation G/W MSL: Method of Well Purge Dedicated: Purged to Dryness:	DO W	,25 <i>feel</i> fomp						
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	y Turb. ORP (NTU)	DÖ	Other					
13:00 14/6:14 250mg/hr 10:49	9 10.69 0.646	66.6 -143	3.7/						
13ies 4613 10.57	10.61 0.699	64,7 468	309/						
13:10 46:14 10:59	10.63 0.650	623 -169	402						
17:15 46.14 11:03	10.7/ 0.650	584 461	4.0						
13:20 46.14 11.07	7 10.72 0.650	51,2 /70	4.14						

170 40.19 17 SAMPLE 43°F, Rain

FIELD OBSERVATIONS		\triangleright			
Facility: LONTO	Sample Point ID:		K [13	\mathcal{D}	
Field Personnel: DK+CZ	Sample Matrix:	6	tu	ν	-
MONITORING WELL INSPECTION					
Date/Time: 5-14-19 13:30	Condition of seal:	(Valoid ((-) Cracked		%
		() None () Buried		
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser:	1.	ed (2000 () flush m		
		() Damage	ed		
If prot casing; depth to riser below:					
Gas Meter Calibration/Reading: % Gas		% LEL:	v		
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm);			_	
PURGE INFORMATION					
Date/Time Initiated: 5-14 [133	Date/Time Completed:		14:	0/	
Surf. Meas. Point: () Pro Casing (D) Riser	Riser Diameter (inches))	Supl	<u>C</u>	-
Initial Water Level (ft): 30,97	Elevation G/W MSL;				-
Well Total Depth (ft):	Method of Well Purge				-
One (1) Riser Vol (gal):	Dedicated:				-
Total Volume Purged (gal): 4,5 4	Purged to Dryness:	Y 16			
Purge Observations: Clean, Sulfan odo,	Start	Finish			
PURGE DATA (if applicable)					
Time Water Purge Rate Cumulative Temp Level (span/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTÚ)	ORP	DO	Other
125 2100 25 1 910	0 > P >		·	11 .	

Time	Water Level	Purge Rate (gpm/htz)	Cumulative Volume	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTÚ)	ORP	DO	Other
13:35	31,00	250 yL	min	9.90	8.30	3,83	00	263	4.91	
13:40	31.06			9.74	8.07	3.84	01	-323	(,25	1. de
13445	31,04		,	976	7.95	7,84	0.0	-349	1.00	
1350	31.09			9.73	799	3.89	0.0	-362	0.90	
13459	,31.07			9.74	7,97	4105	0.0	366	0.86	
1>	SAW	AE							:	

UTF, Rain

FIELD OBSERVATIONS		٨	. 1.				
Facility: Lon 24	Sample Point ID:	B	5/131	<u>'</u>			
Field Personnel: DK+CZ	Sample Matrix:	Gh					
MONITORING WELL INSPECTION							
Date/Time: 5 - 14-19 14:3	Condition of seal: () Good () Cracked						
Prot. Casing/Riser Height:	Condition of Prot. Casing/Riser: () loose () flush mount () Damaged						
if prot casing; depth to riser below:							
Gas Meter Calibration/Reading: % Gas		% LEL:		,			
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):		·······				
PURGE INFORMATION Date/Time Initiated: 5 /t/ 36,04 Surf. Meas. Point: () Pro Casing (D.Riser Initial Water Level (ft): Well Total Depth (ft): One (1) Riser Vol (gal): Total Volume Purged (gal): Purge Observations: C/ear, Scoffer and PURGE DATA (if applicable)	Date/Time Completed: Riser Diameter (inches) Elevation G/W MSL: Method of Well Purge Dedicated: Purged to Dryness: Start	~ 1/	15 ve bailer				
Time Water Purge Rate Cumulative Temp	pH Conductivity	Turb. ORP	DO	Other			
Level (gpm/htz) Volume (C)	(SU) (mS/cm)	(NTU).					
14,45 2" RISE	· Beat can	7-901					
pun p da	un, used b	ailen					
1444 10,05	9,63 3,36	7,0 -331	5.2	b			
[1			

46°F, Rain

FIELD (DBSERV	ATIONS				\wedge	. ~		
Facility:		-02079		Sample P	oint [D:		KZ2	<u> </u>	
SAMPLIN	ig infor	MATION							
Date/Time	سدن	5-15-19	9 Pompi	PIP Water Le	vel at Samplin	ig (ff)	23.10	2	
Method of	Sampling		Pompi	ng Nal		Dédicated:	Œ.	7 N	
Multi-phas	ed/fayered:	AP 7 AP.	• ,	,	() Light (() Heavy			
SAMPLIN	NG DATA								海洋等 人
Ti	me	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb, (NTU)	ORP	DO	С	Other
8	125	12.88	10.81	2.79	17.6	-3/9	8,14	;	
INSTRUM	MENT CA	LIFBRATION	CHECK DA	ΛΓ A					
Meter ID#	Cal Std 7.0 SU	Gal Std 4,0 SU	Cal Std. 10.0 SU	Check Std 7.0 SU (+/- 10%)	Cal.Std. 1413 umhos/cm	1413 to	k Std nhos/em 10%)	Cal Std. 10 NTU	Check Std 10 NTU (+/- 10%)
Solution ID#									
GENERA Weather co		MATION time of sampli	ıg:	464	- Go	red y	· · ·		
Sample cha	racteristics	s •	<u></u>	ear sligh	1tsch	Repo	don	······································	
Comments	and Observ	vations:							
								,	
						i, en ester			
I certify the	it sampling	procedures wei	re in accord an	ce with all applicable EPA	A, State and Si	Company		atm	()

FIELD OBSERVATIONS		D7 /	105				
Facility: Lon Za	Sample Point ID:	F ~ /	<u></u>				
Field Personnel: DK+CZ	Sample Matrix:						
MONITORING WELL INSPECTION							
Date/Time: 5-15-19 9:00	Condition of seal:	(1) Good () Cracked	96				
Prot. Casing/Riser Height:	() None () Buried Condition of Prot. Casing/Riser: () loose () Buried () Damaged Box burie						
if prot casing; depth to riser below: Gas Meter Calibration/Reading: % Gas		% LEL:					
Vol. Organic Matter (Calibration/Reading);	Volatiles (ppin)	1, 					
PURGE INFORMATION							
Date/Time Initiated: $545-199$	Date/Time Completed:	10.0	? ≥				
Surf. Meas. Point: () Pro Casing () Kiser	Riser Diameter (inches)						
Initial Water Level (ft):	Elevation G/W MSL:	7					
Well Total Depth (ft):	Method of Well Purge	- 7	12_				
One (1) Riser Vol (gal):	Dedicated:	6/1 N					
Total Volume Purged (gal); /c/5	Purged to Dryness:	Y 160					
Purge Observations: Aft mostly dea	Start	Finish					
PURGE DATA (if applicable) Time Water Purge Rate Cumulative Temp	iall black par	Holes					
Time Water Purge Rate Cumulative Temp Level (spm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. ORP (NTU)	DO Other				
9:25 9,98 250mlhis 11.18	10,43 9,40	0.0 325	6,20				
9:30 10:74 125 11.82	8,54 433	010 21	1,96				
9,75 10.99 67.5 12.01	8,24 4,34	2,7-292	1,54				
9:40 1/174 12.20	7.84 4.38	6.5 -215	1026				
9:45 12.23	7.63 4.37	4.1-291	1.06				
4 SAMPLE		•					

47°F, Son + clouds

FIELD OBSERVATIONS		\triangle	11		
Facility: 29	Sample Point ID:		11		
Field Personnel: 0K4CZ	Sample Matrix:	_6_	4		•
MONITORING WELL INSPECTION					
Date/Time: 5/5/9 10:09	Condition of seal:	(5-Good () Cracked		%
		() None () Buried		
Prot. Casing/Riser Height:	Condition of Prot.	() unlocke			
ricigni.	Casing/Riser:	() Damage		June	
if prot casing; depth to riser below:		() Damagi			•
Gas Meter Calibration/Reading: % Gas		% LEL:			
Vol. Organic Matter (Calibration/Reading):	Volatiles (ppm):			_	
PURGE INFORMATION					
Date/Time Initiated: 5-15 10:16	Date/Time Completed:		(11209	<u>/</u>
Surf. Meas. Point: () Pro Casing (O Riser	Riser Diameter (inches)	2	" pro	2	
Initial Water Level (ft): 4.28	Elevation G/W MSL:				
Well Total Depth (ft): //.65	Method of Well Purge	Pen	15/9/	146	
One (1) Riser Vol (gal):	Dedicated:	D/N			
Total Volume Purged (gal): 2,25	Purged to Dryness:	9 / N			
Purge Observations: Claudy gray/Brown	Start	Finish			
PURGE DATA (if applicable)					• •
Time Water Purge Rate Cumulative Temp Level (gpm/htz) Volume (C)	pH Conductivity (SU) (mS/cm)	Turb. (NTU)	ORP	DO-	Other
10:30-58,94 250 myly 17.801	0.96 3.66	678	725	353	
10:35-7.57 /25 17.191	0,61 3,63	684	-234	2,14	,
10:40 8.98 67.5 16.731	0.73 3,69	700	-2/7	≥./3)
10:45 9.96 15.921	10.67 3,74	408	2/6	217	2
10'50 10.35 15,50 (W.55 3.78	≥14	205	3,71	r

50°F, sonny

FIELD (DBSERV	VATIONS					100	~[[
Facility: Lonzq			Sample F	Sample Point ID:			<u> </u>		
SAMPLIN		RMATION							
Date/Time		5-15	19 1	Water Le	vel at Samplin	g (ft) —			VIII.
Method of	Sampling	Water	Pourin	y octofrace,	intgan	Dedicated:	Ŵ) _{/N}	
Multi-phas	ed/layered	: Y/N	* 777	if yes:	() Light () Heavy			
SAMPLIN									
Ţi	me	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO	Other	
// 3	30	12.67	11.63	2107	0.0	-17/	9,9	70	
INSTRUM	MENT CA	LIFBRATION	/CHECK DA	TA					
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std. 10.0 SU	Check Std 7.0 SU (+/- 10%)	Cal.Std. 1413 umbos/cm	Check 1413 um (+/1	hos/¢m	Cal Std.	Check Std 10 NTU (+/- 10%)
Solution ID#				<u>i </u>					
GENERA	L INFOR	MATION							ing the state of t
Weather co	onditions a	time of sampli	ığ:				2011	11/	<u> </u>
Sample oh	aracteristic	Š:	_9	WI Stight	50/Hig	ode,			
Comments	and Obser	vations:			······································	······································			
		.,	/r	7					· · · · · · · · · · · · · · · · · · ·
				upe.—					
					· · · · · · · · · · · · · · · · · · ·	:			
I certify th	at sampling	g procedures we	re in accordance	ce with all applicable EP	A, State and Si	te-Specific p	orotocols:	1.6.1	
Date:	5-13	<u>1</u> 9 by:		XXCZ		Company:	Me	THE	

FIELD OBSERVATIONS					67 N-1					
Facility: CONJU			Sample I	Sample Point ID:			<u></u>			
SAMPLIN		MATION								
Date/Time Method of Multi-phase	<i>-</i>		19 Cet into	11:50 Water Lo WATER Flo if yes:	evel at Samplin		Y	160		
SAMPLIN	IG DATA						# 1344.E			
Tir	ne			Conductivity (mS/cm)	Turb. (NTU)	ORP	DO	Other		
1/2	55	12,97	12.01	1,86	0,0	96	9,60			
INSTRUM	ÆNT CA	LIFBRATION	/CHECK DA	ŤΑ						
Meter ID# Cal Std 7.0 SU		Cal Std 4.0 SU	Cal Std. 10.0 SU	Check Std 7.0 SU (+/- 10%)	Cal.Std. 1413 umhos/em	Check Std 1413 umhos/cm (+/- 10%)		Cal Std. 10 NTI	Check Std 10 NTU (+/- 10%)	
Solution ID#										
GENERA Weather co	onditions at	time of sampli	ng:	64 ((ear, 1	10 F 70 Od	Goo	dy			
Comments	and Obser	vations:								
				1						
I certify the	at sampling	g procedures we	re in accordan	ce with all applicable El	PA, State and S	Site-Specific	p. A.	19ti	2	

FIELD OBSERVATIONS Facility:			Sample I	Point ID:	20-2				
SAMPLIN	IG INFOF	EMATION $\zeta = /5$	-19	12150					
Date/Time Method of Multi-phas	_		et from	12:150 Water Le	evel at Samplin		: Y	160	
SAMPLIN	IG DATA								
Ti	me	Temp (C)	pH (SU)	Conductivity (mS/cm)	Turb. (NTU)	ORP	DO	0	ther
/3:	06	1431	12.7/	1.95	0,0	-118	11.4		
			1,000						
INSTRUN	ÆNT CA	LIFBRATION	CHECK DA	TA					4. (01 _{1.18}
Meter ID# Cal Std 7.0 SU		Cal Std 4.0 SU	Cal Std. 10.0 SU	Check Std 7.0 SU (+/- 10%)	Cal.Std. 1413 umhos/cm	Check Std 1413-umhos/cm (+/10%)		Cal Std. 10 NTU	Check Std 10 NTU (+/- 10%)
Solution ID#									,
GENERA Weather co		MATION time of sampling	ıø:	64	F, Cl	och			
Sample cha		•		(120)	1, no c	SU1			
Comments	and Obser	vations:	<u></u>						
Loostify the	st compline	nrocediiree we	e in accessions	e with all applicable EP	A State and Si	te-Specific	r protoéuls:		
Date:	5-154	g procedures were by:	11	KtCZ		Company	14/	19tr,	it_

FIELD (OBSERV	VATIONS						_			
Facility: Lon 2A					Sample Point ID:			Q	00-251		
SAMPLIN	NG INFOI	RMATION									
			19 1; tfnom i	3:08 Canal				Y	10		
Multi-phas	ied/layered	: Y/N		e necessaries enterences	if yes:	() Light	() Heavy				
SAMPLIN	NG DATA	(
Time		Temp pH (C) (SU)		Conductivity	(mS/cm)	Turb. (NTU)	ORP	DO	Other		
13	15	1457	10.00	0.51	7	0.0	28	10:01		×.	
INSTRUM	ИENT СА	LIFBRATION	/CHECK DA	TA							
Meter ID# Cal Std 7.0 SU		Cal Std 4.0 SU	Cal Std. 10.0 SU	Check (7.0 St (+/- 10	U	Cal.Std, 1413 umhos/em	Check Std .1413 umhos/cm (+/- 10%)		Cal Std. 10 NTU	Check Std 10 NTU (±/- 10%)	
Solution ID#	<u> </u>					<u> </u>					
GENERA Weather co	onditions a	t time of samplin	ng: Cl	 (am n	_6. ondi	[] 4 <u>[</u>	Cla	dy			
Comments			- :								
		1									
I certify the	at sampling	procedures wer		e with all app	- ·	A, State and S	ite-Specific	protocols:	atry	<u>Č</u>	

Appendix B

Well Trend Data

BR-105D

BR-106

BR-113D

BR-117D

BR-118D

BR-122D

BR-123D

BR-126

BR-5A

E-1 / B-11 (B-11 replaced E-1 beginning May 2010)

MW-106

MW-114

MW-127

PW12 (Formerly BR-101)

S-3 / B-16 (B-16 replaced S-3 beginning May 2010)

QS-4 (QUARRY SEEP)

QO-2 (QUARRY OUTFALL)

