

Arch Chemicals, Inc. c/o Arxada 100 Mckee Road Rochester, NY 14611-2013 USA

December 19, 2023

Mr. Joshuah Klier Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

Subject: Interim Site Management Plan (ISMP), Arch Chemicals (Site #828018a) 100 McKee Rd., Rochester, NY

Dear Mr. Klier:

Enclosed is an electronic copy of the subject plan. The plan is submitted with modifications based on final comments received from the NYSDEC on December 13, 2023.

Should you have any questions regarding this ISMP please don't hesitate to contact us.

Sincerely,

Warner Golden Associate Director EHS Arxada

Mattl

Matt Dillon Director of Operations Arxada

CC:

Jean Robert Jean, US EPA Region 2 David Pratt, NYSDEC-DER Christopher Budd, NYSDOH-BEEI Julia Kenney, NYSDOH-BEEI Justin Deming, NYSDOH-BEEI Sean Keenan, MCDES Ken Smith, MCDES Luke Ferruzza, Arxada David Harris, Arxada Mark Stelmack, MACTEC Nelson Breton, MACTEC Eric Thompson, MACTEC Sean Carter, Matrix Environmental Technologies, Inc. Steven Marchetti, Matrix Environmental Technologies, Inc. Pat Bliek, Matrix Environmental Technologies, Inc.

## NYSDEC SITE – OLIN CORPORATION – CHEMICALS GROUP (NOW KNOWN AS ARCH CHEMICALS, INC and as ARXADA) MONROE COUNTY

#### **ROCHESTER, NEW YORK**

# **INTERIM SITE MANAGEMENT PLAN**

NYSDEC Site Number: 828018A

#### **Prepared for:**

Arch Chemicals, Inc

#### **Prepared by:**

MACTEC E&G (PC)

511 Congress Street, Portland, Maine

#### **Revisions to Final Approved Site Management Plan:**

| Revision<br>No. | Date<br>Submitted | Summary of Revision | NYSDEC<br>Approval Date |  |  |
|-----------------|-------------------|---------------------|-------------------------|--|--|
|                 |                   |                     |                         |  |  |
|                 |                   |                     |                         |  |  |
|                 |                   |                     |                         |  |  |
|                 |                   |                     |                         |  |  |

#### DECEMBER 2023

#### CERTIFICATION STATEMENT

I <u>Nelson Breton</u> certify that I am currently a Qualified Environmental Professional as in defined in 6 NYCRR Part 375 and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

ala QEP

\_\_\_\_\_12/18/2023\_\_\_\_\_\_DATE

#### TABLE OF CONTENTS

# OLIN CORPORATION – CHEMICALS GROUP (NOW KNOWN AS ARCH CHEMICALS, INC/ARXADA) MONROE COUNTY ROCHESTER, NEW YORK

#### SITE MANAGEMENT PLAN

#### **Table of Contents**

Description

Page

#### LIST OF ACRONYMS

Section

| ES  | EXE  | CUTIVE SUMMARYES-1                           |  |  |  |  |  |
|-----|------|----------------------------------------------|--|--|--|--|--|
| 1.0 | INTI | INTRODUCTION1-1                              |  |  |  |  |  |
|     | 1.1  | General1-1                                   |  |  |  |  |  |
|     | 1.2  | Revisions1-2                                 |  |  |  |  |  |
|     | 1.3  | Notifications                                |  |  |  |  |  |
| 2.0 | SUM  | MARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL |  |  |  |  |  |
|     | ACT  | IONS                                         |  |  |  |  |  |
|     | 2.1  | Site Location and Description                |  |  |  |  |  |
|     | 2.2  | Physical Setting                             |  |  |  |  |  |
|     |      | 2.2.1 Land Use                               |  |  |  |  |  |
|     |      | 2.2.2 Geology                                |  |  |  |  |  |
|     |      | 2.2.3 Hydrogeology                           |  |  |  |  |  |
|     | 2.3  | Investigation and Remedial History           |  |  |  |  |  |
|     | 2.4  | Remedial Action Objectives                   |  |  |  |  |  |
|     | 2.5  | Remaining Contamination                      |  |  |  |  |  |
|     |      | 2.5.1 Soil                                   |  |  |  |  |  |
|     |      | 2.5.2 Groundwater                            |  |  |  |  |  |
|     |      | 2.5.3 Surface Water                          |  |  |  |  |  |

#### 

| 8.0 | REFERENCES | 8-1 |
|-----|------------|-----|

#### TABLE OF CONTENTS (Continued)

#### **List of Tables**

Table 1: Notification List

 Table 2: Monitoring and Extraction Well Construction Details

Table 3: Groundwater Elevation Measurements - November 2022

Table 4: Groundwater Sampling Analytical – Chloropyridines – Fall 2022

Table 5: Groundwater Sampling Analytical – VOCs – Fall 2022

Table 6: Surface Water Sampling Analytical - Chloropyridines - Fall 2022

 Table 7: Current Monitoring Schedule 2023

#### **List of Figures**

Figure 1.1: Site Location Map
Figure 2.1: Site Plan and Onsite Monitoring Network
Figure 2.2: Off-Site Groundwater Monitoring Well Locations
Figure 2.3: Off-Site Surface Water Sampling Locations
Figure 2.4: Conceptualized Geologic Cross Section with HGEW
Figure 2.5: Fall 2022 Overburden Groundwater Potentiometric Contours
Figure 2.6: Fall 2022 Bedrock Groundwater Potentiometric Contours
Figure 2.7: Fall 2022 Deep Bedrock Potentiometric Contours
Figure 2.8: Historic Surface Soil Sample Results Exceeding SCOs
Figure 2.10: Groundwater Chloropyridine Iso-Concentration Map – Fall 2022
Figure 2.11: Groundwater VOC Iso-Concentration Map – Fall 2022

#### **List of Appendices**

A: List of Site Contacts

B: Soil Boring and Well Construction Logs

- C: Excavation Work Plan (EWP)
- D: Soil Vapor Intrusion Investigation Report Summaries

### **List of Acronyms**

| AS         | Air Sparging                                                         |
|------------|----------------------------------------------------------------------|
| ASP        | Analytical Services Protocol                                         |
| BCA        | Brownfield Cleanup Agreement                                         |
| BCP        | Brownfield Cleanup Program                                           |
| CERCLA     | Comprehensive Environmental Response, Compensation and Liability Act |
| CAMP       | Community Air Monitoring Plan                                        |
| C/D        | Construction and Demolition                                          |
| CFR        | Code of Federal Regulation                                           |
| CLP        | Contract Laboratory Program                                          |
| COC        | Certificate of Completion                                            |
| CO2        | Carbon Dioxide                                                       |
| СР         | Commissioner Policy                                                  |
| DER        | Division of Environmental Remediation                                |
| DUSR       | Data Usability Summary Report                                        |
| EC         | Engineering Control                                                  |
| ECL        | Environmental Conservation Law                                       |
| ELAP       | Environmental Laboratory Approval Program                            |
| ERP        | Environmental Restoration Program                                    |
| EWP        | Excavation Work Plan                                                 |
| GHG        | Greenhouse Gas                                                       |
| GWE&T      | Groundwater Extraction and Treatment                                 |
| HASP       | Health and Safety Plan                                               |
| IC         | Institutional Control                                                |
| NYSDEC     | New York State Department of Environmental Conservation              |
| NYSDOH     | New York State Department of Health                                  |
| NYCRR      | New York Codes, Rules and Regulations                                |
| O&M        | Operation and Maintenance                                            |
| OM&M       | Operation, Maintenance and Monitoring                                |
| OSHA       | Occupational Safety and Health Administration                        |
| OU         | Operable Unit                                                        |
| P.E. or PE | Professional Engineer                                                |
| PFAS       | Per- and Polyfluoroalkyl Substances                                  |
| PID        | Photoionization Detector                                             |
| POTW       | Publicly Owned Treatment Works                                       |
| PRP        | Potentially Responsible Party                                        |
| PRR        | Periodic Review Report                                               |
| QA/QC      | Quality Assurance/Quality Control                                    |
| QAPP       | Quality Assurance Project Plan                                       |
| QEP        | Qualified Environmental Professional                                 |
| RAO        | Remedial Action Objective                                            |
| RAWP       | Remedial Action Work Plan                                            |

| Resource Conservation and Recovery Act        |
|-----------------------------------------------|
| Remedial Investigation/Feasibility Study      |
| Record of Decision                            |
| Remedial Party                                |
| Remedial System Optimization                  |
| State Assistance Contract                     |
| Standards, Criteria and Guidelines            |
| Soil Cleanup Objective                        |
| Site Management Plan                          |
| Standard Operating Procedures                 |
| Statement of Work                             |
| State Pollutant Discharge Elimination System  |
| Sub-slab Depressurization                     |
| Soil Vapor Extraction                         |
| Soil Vapor Intrusion                          |
| Target Analyte List                           |
| Target Compound List                          |
| Toxicity Characteristic Leachate Procedure    |
| United States Environmental Protection Agency |
| Underground Storage Tank                      |
| Voluntary Cleanup Agreement                   |
| Voluntary Cleanup Program                     |
|                                               |

#### **ES EXECUTIVE SUMMARY**

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by this Interim Site Management Plan (ISMP):

| Site Identification:             | Identification:Site No.828018A Arch Rochester Facility (also known as<br>Arxada), 100 McKee Road Rochester, New York                                     |                      |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
| Institutional Controls:          | itutional Controls: 1. The property may be used for industrial use;                                                                                      |                      |  |  |  |
|                                  | 2. No current environmental easement has been completed for the site.                                                                                    |                      |  |  |  |
|                                  | 3. All ECs must be inspected at manner defined in the ISMP.                                                                                              | a frequency and in a |  |  |  |
| Engineering Controls:            | 1. Groundwater Extraction and Tr                                                                                                                         | reatment System      |  |  |  |
|                                  | 2. Cover system composed of asphalt or at least one f<br>of clean fill overlying potentially impacted so<br>consistent with the Record of Decision (ROD) |                      |  |  |  |
| Inspections:                     |                                                                                                                                                          | Frequency            |  |  |  |
| 1. Extraction Well N             | letwork and Treatment System                                                                                                                             | Quarterly            |  |  |  |
| Monitoring:                      |                                                                                                                                                          |                      |  |  |  |
| 1. Extraction Well Netw          | Semi Annual                                                                                                                                              |                      |  |  |  |
| 2. Groundwater and Sur           | face Water Sampling and reporting                                                                                                                        | Semi Annual          |  |  |  |
| Maintenance:                     |                                                                                                                                                          |                      |  |  |  |
| 1. Extraction System             | To be determined                                                                                                                                         |                      |  |  |  |
| Reporting:                       |                                                                                                                                                          |                      |  |  |  |
| 1. Groundwater extrac<br>updates | 1. Groundwater extraction system data and maintenance updates                                                                                            |                      |  |  |  |
| 2. Surface Water and             | Semi-Annual                                                                                                                                              |                      |  |  |  |

Further descriptions of the above requirements are provided in detail in the latter sections of this Interim Site Management Plan.

#### **1.0 INTRODUCTION**

#### 1.1 General

This Interim Site Management Plan (ISMP) is a required element of the remedial program for the former Olin Corporation – Chemicals Group (currently known as Arch Chemicals, Inc., which is owned and operated by Arxada) located at 100 McKee Road in the City of Rochester, Monroe County, New York (hereinafter referred to as the "Site"). See Figure 1.1. The Site is currently in the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program, Site No. 828018A, which is administered by New York State Department of Environmental Conservation (NYSDEC or Department).

The Olin Corporation entered into an Order on Consent for the Site listed on August 11, 2003, with the NYSDEC to remediate the site. A figure showing the site location and boundaries of this site is provided in Figure 1.1. At the time of submission of this ISMP, the Environmental Easement has not been finalized. The NYSDEC issued Records of Decision (ROD) in 2002 and 2019 respectively.

Remedial action with respect to the NYSDEC issued RODs is ongoing and is not yet complete. As a result, contamination remains at the site and is hereafter referred to as "remaining contamination". Engineering Controls (ECs) have been incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. At this time, an Institutional Control (IC) in the form of an Environmental Easement has not been granted to the NYSDEC, but when complete, will be in compliance with this ISMP and all ECs and ICs placed on the site. Consistent with the consent order, the IC will require the submission of periodic certifications of the ICs and ECs to the NYSDEC, allow usage of the site for industrial purposes, restrict the use of groundwater for either potable or process water without adequate water quality treatment as approved by the NYSDEC, and will be in compliance with the final NYSEDC approved Site Management Plan (SMP).

This ISMP was prepared to manage contamination at the site and off-site in accordance with ECL Article 71, Title 36. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the future Environmental Easement and the grantor's successors and assigns. This ISMP may only be revised with the approval of the NYSDEC.

It is important to note that:

- This ISMP details the site-specific implementation procedures that are required by the consent order, record of decision, and the future environmental easement. Failure to properly implement the ISMP is a violation of the Consent Order, which is grounds for revocation of the Certificate of Completion (COC).
- Failure to comply with this ISMP is also a violation of Environmental Conservation Law, 6 NYCRR Part 375 and the Order on Consent Site #828018A for the site, and thereby subject to applicable penalties.

All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the site is provided in Appendix A of this ISMP.

This ISMP was prepared by MACTEC Engineering & Geology, PC (MACTEC) on behalf of Arch, in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 3, 2010, with the most recent revision of April 9, 2019, and the guidelines provided by the NYSDEC. This ISMP addresses the means for implementing the ICs and/or ECs that will be required by the Environmental Easement for the site.

#### 1.2 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. The NYSDEC can also make changes to the ISMP or request revisions from the

remedial party. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shutdown of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the site conditions. In accordance with the Environmental Easement for the site, the NYSDEC project manager will provide a notice of any approved changes to the ISMP and append these notices to the ISMP that is retained in its files.

#### 1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER -10 for the following reasons:

- 1. 60-day advance notice of any proposed changes in site use that are required under the terms of the Order on Consent, 6 NYCRR Part 375 and/or Environmental Conservation Law.
- 2. 7-day advance notice of any field activity associated with the remedial program.
- 3. 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan. If the ground-intrusive activity qualifies as a change of use as defined in 6 NYCRR Part 375, the above mentioned 60-day advance notice is also required.
- 4. Notice within 48 hours of any damage or defect to the foundation, structures or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- 5. Notice within 48 hours of any non-routine maintenance activities.
- 6. Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- 7. Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this ISMP will include the following notifications:

- 8. At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the Order of Consent, and all approved work plans and reports, including this ISMP.
- 9. Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1 on the following page includes contact information for the above notifications. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix A.

#### **Table 1: Notifications\***

| Name                                 | <b><u>Contact Information</u></b> | <u>Required</u><br><u>Notification**</u> |  |
|--------------------------------------|-----------------------------------|------------------------------------------|--|
| NYSDEC Project Manager – Joshuah     | (585) 226-5357                    | All Notifications                        |  |
| Klier                                | Joshuah.Klier@dec.ny.gov          |                                          |  |
| NYSDEC Project Manager's             | (585) 226-5449                    | All Notifications                        |  |
| Supervisor – David Pratt             | David.Pratt@dec.ny.gov            |                                          |  |
| NYSDOH Project Manager –             | (518) 402-1769                    | Notifications 4, 6, and                  |  |
| Christopher Budd                     | Christopher.Budd@health.ny.gov    | 7                                        |  |
| Site Environmental Specialist –      | (585) 434-6008                    | All Notifications                        |  |
| Luke Ferruzza                        | luke.ferruzza@arxada.com          |                                          |  |
| Qualified Environmental Professional | (207) 712-8020                    | All Notifications                        |  |
| - Nelson Breton (CT LEP, ME LG)      | Nelson.Breton@wsp.com             |                                          |  |

\* Note: Notifications are subject to change and will be updated as necessary.

\*\* Note: Numbers in this column reference the numbered bullets in the notification list in this section

# 2.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

#### 2.1 Site Location and Description

The site is located in Rochester, Monroe County, New York and consists of several parcels, including section-block-lot numbers 120.37-1-1, 120.29-1-5, and 120.37-1-2.001 on the Monroe County Tax Map. The combined area of those parcels is approximately 15-acres and is bounded by Sun Environmental Corp. to the north, the former American Recycling and Manufacturing facility, now owned by Arch, to the south, a rail line owned and operated by Rochester Southern Railroad to the east, and McKee Road to the west (see Figure 2.1 – Site Plan and Onsite Monitoring Network). The adjoining parcel to the south known as 58 McKee Road, while currently owned by Arch, is not included in the consent order or record of decision. Additional off-site surface water and groundwater monitoring locations are detailed in Figures 2.2 and 2.3. The owner and operator of the site parcel(s) at the time of issuance of this ISMP is/are:

Arch Chemicals, Inc.

#### 2.2 Physical Setting

#### 2.2.1 Land Use

The Site consists of the following: an active chemical manufacturing facility along with associated warehousing and shipping facilities. The Site is zoned industrial and is currently utilized for industrial purposes. Site occupants include Arch.

The properties adjoining the Site and, in the neighborhood, surrounding the Site primarily include industrial or vacant properties.

#### 2.2.2 Geology

Glacial and postglacial deposits comprise the undisturbed surficial material overlying bedrock present at the Site. Fine to coarse sand with silt and trace gravel, with varying degrees of sorting is the primary material described at the Site. Local fill, interpreted as recompacted soil or sediment from a local source, overlies the undisturbed material. This report refers to the undisturbed sediment and fill as overburden. Overburden thickness ranges from approximately 10 to 20 feet across the Site.

Lockport Dolomite bedrock underlies the overburden. The bedrock surface elevation ranges from approximately 520 to 525 feet above mean sea level (ft amsl). A fractured upper bedrock zone ranges in thickness from 10 to 40 feet (or 10 to 60 feet below ground surface [bgs]). Fractures within the upper zone appear to be primarily near horizontal. Below the upper zone, the bedrock becomes less fractured and more competent. A geologic cross section is shown in Figure 2.4. Site specific boring logs are provided in Appendix B.

#### 2.2.3 Hydrogeology

Groundwater flow occurs primarily in the saturated portions of the overburden and the uppermost 10 feet of bedrock. No significant barrier to flow between the overburden and the upper bedrock has been identified. However, the degree of hydraulic communication between the overburden and bedrock units may vary locally due to heterogeneities in the shallow bedrock.

The ambient groundwater table in the overburden is generally less than 10 feet bgs throughout the property. Overburden groundwater is present at the Site but is absent in areas west and southwest towards the Erie Barge Canal (the canal). The presence of a nonengineered stormwater infiltration basin along the railroad right-of-way east of the Arch Site likely serves as a recharge area that raises the water table at the eastern side of the property. Other factors that influence flow include bedrock surface topography, the location of the canal, the nature and distribution of water-bearing fractures, and flow direction in bedrock.

Historical groundwater contours indicate that overburden groundwater flows primarily west and south from the facility toward the canal and Buffalo Road. An easterly and southeasterly flow component is also present along the east and the southeast corner of the Site. Groundwater in shallow and deeper bedrock flows primarily toward the west and south.

Overburden groundwater contours suggest a southerly horizontal component of flow near the southern boundary of the facility. However, when compared to shallow bedrock groundwater elevations, a larger magnitude downward vertical gradient is apparent, indicating the dominant flow path for overburden groundwater is to the underlying bedrock. Groundwater levels are monitored and reported semi-annually as a part of the monitoring program for the Site.

Hydraulic conductivity estimates calculated from the Phase I RI (ABB-ES, 1995) for the water bearing zones range as follows:

- Overburden:  $1.9 \times 10^{-5}$  to  $7.7 \times 10^{-3}$  centimeters per second (cm/sec)
- Shallow bedrock:  $4.0 \ge 10^{-5}$  to  $1.17 \ge 10^{-2}$  cm/sec
- Deeper bedrock:  $1 \ge 10^{-6}$  to  $2.4 \ge 10^{-4}$  cm/sec.

While the overburden and shallow bedrock ranges are similar, experience with pumping well operations at this Site over the past 40 years indicates that the transmissivity of the shallow bedrock is noticeably greater than the saturated overburden zone.

Groundwater contour maps for overburden, bedrock, and deep bedrock are shown in Figure 2.5, 2.6, and 2.7 respectively. Monitoring well and extraction well construction details are provided in Table 2. Groundwater elevation data from November 2022 is provided in Table 3. Groundwater monitoring well construction logs are provided in Appendix B.

#### 2.3 Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 8.0 -References.

The Olin Corporation (known as Arch and owned by Arxada) Industrial use of the site began in 1948, when Genesee Research, a fully owned subsidiary of the Puritan Company, established a manufacturing facility for automotive specialty products (e.g., brake fluids, polishes, anti-freeze, and specialty organic chemicals). In 1954, Mathieson Chemical Corporation acquired Puritan and merged with Olin Industries to become Olin Mathieson Chemical Corporation. Production of brake fluid and anti-freeze continued until the early 1960s, when production of specialty organic chemicals, such as Zinc Omadine® and chlorinated pyridines (chloropyridines) began. In 1969, Olin Mathieson changed its name to Olin Corporation (Olin) and in 1999, Olin spun off its specialty chemicals business to form an independent company known as Arch Chemicals, Inc. (Arch) (NYSDEC, 2019a).

The Arch Rochester Facility is a manufacturer of chloropyridines. The primary product line is Omadine® biocides, used in anti-dandruff shampoos and by the metalworking industry. Other products include more than 60 specialty organic chemicals used in personal care products, crop protection, rubber and plastic additives, and the textile industry (NYSDEC, 2019a).

The Site has been the subject of various environmental investigations since site contaminants were identified in wells operated by neighboring facilities in 1981. Initial efforts to address these impacts involved the conversion of perimeter overburden monitoring wells on the south/southeast corner of the property to extraction wells. Additional investigations through the 1980s resulted in the conversion of five bedrock

monitoring wells to extraction wells, including BR-2, BR-3, BR-5A, BR-6, and BR-7A. Following those initial evaluation and remedial efforts, additional evaluation was completed including, but not limited to, a groundwater investigation conducted in 1990, a two-phase remedial investigation (RI) conducted in 1994-96 (ABB 1995a 1995b, 1997a a 1997b), and an FS conducted in 2000 (Harding Lawson 2000).

The first Consent Order was executed in August 1993, between the former Olin Corporation for the implementation of aa Remedial Investigation (RI) and Feasibility Study (FS) (NYSDEC, 1993). Between 1993 and 1997 a multi-phase remedial investigation was completed. The investigation identified the transport of chloropyridines offsite to the Dolomite Products Quarry in the Town of Gates and the Erie Canal. In 1999 three bedrock extraction wells were added to the existing groundwater extraction system (EPA 2005). The results of the remedial investigation are detailed in the January 2000 Feasibility Study (2000 Harding Lawson Associates). By 2002 the overburden extraction wells were found to be ineffective and were no longer in use as extraction wells. At this point the bedrock extraction well network consisted of BR-5A, BR-6A, BR-7A, BR-9, PW-10, PW-11, and PW-12. Several of these wells were taken out of service over the years due to failure or poor performance. (At the beginning of 2023, six extraction wells were in service and consisted of BR-127, BR-7A, BR-9, PW-13, PW-15, and PW-16). Arch entered into a new Consent Order with the NYSDEC to implement the requirements of the NYSDEC's Record of Decision (ROD) in August 2003 (NYSDEC 2003).

The 2002 ROD identified two separate operable units that require separate remedies, these include the onsite contaminated soil and bedrock, referred to as OU-1 and the contaminated groundwater, underlying the site and extending offsite, as OU-2. The elements of the required remedial action in the 2002 ROD included the continued operation vertical groundwater extraction wells, the installation an overburden groundwater interceptor trench along the southeast/south perimeter of the plant property and the installation and operation of an offsite bedrock pumping well adjacent to the southeast comer of the Gates Dolomite quarry (located about 4000 feet southwest of the site).

Groundwater extraction system operations, maintenance, and upgrades have occurred as needed and are based on performance metrics that have been communicated with the NYSDEC through quarterly performance reports and annual monitoring reports. Extracted groundwater is conveyed by pipeline to a treatment system prior to discharge to the Monroe County Pure Waters Publicly Owned Treatment Works (POTW). Additionally, an updated risk evaluation demonstrated that potential exposure risks at the quarry are below levels of concern and the NYSDEC indicated that installation of the downgradient extraction well near the Dolomite Products Quarry on Buffalo Road was no longer required (NYSDEC, 2003).

In 2019 the NYSDEC issued the second ROD for the Site detailing updated elements to the selected remedy. The 2019 ROD combined the two operable units detailed in the 2002 ROD into a single operable unit. These elements include the following:

- Implementation of a remedial design program to facilitate the construction, operation, optimization, maintenance of the remedial program.
- The installation of up to two horizontal groundwater extraction wells beneath the Site to enhance the existing groundwater extraction and treatment system.
- Maintenance of the existing remedial site cover system in areas not occupied by buildings to allow for industrial usage of the site.
- The elimination of the requirements for an off-site extraction well adjacent to the Quarry and the overburden interceptor trench.
- Provision of a financial assurance using one or more of the financial instruments in 6 NYCRR 373-2.8 in the value anticipated for the selected remedy.
- Institutional controls in the form of an environmental easement which requires the completion of periodic certifications of the institutional and engineering controls in place, the use and development of the property for industrial usage, restriction of groundwater extraction for potable or process

water usage without prior water quality treatment, and compliance with the site management plan.

- The completion of a Site Management Plan including an institutional and engineering control plan.
- The completion of a monitoring plan to assess the performance and effectiveness of the site remedy.
- An operation and Maintenance plan to ensure continued operation and maintenance, optimization, monitoring, inspection, and reporting of the components of the remedy (NYSDEC, 2019b).

The remedy called for the installation of up to two HW's to improve groundwater capture at the western property boundary and to increase contaminant mass removal rates. The installation of a single HW through the primary source area underneath the facility was completed in 2021.Variable rate and constant rate pumping tests were completed to evaluate HW performance, zone of influence, and treatment options, as reported in the March 2023 Well Installation and Completion Report (MACTEC, 2023a). Further evaluation of the HW was proposed in the April 4, 2023, Pilot Test Work Plan for Groundwater Extraction and Treatment at HW-1 (MACTEC, 2023b). With the addition of HW-1, a groundwater extraction and treatment system will be designed to reduce contaminant concentrations in groundwater and limit migration of these contaminants. Results of these performance evaluations of the existing HW will help to determine whether a second HW is technically feasible to meet remedial goals.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site as listed in the Record of Decision dated March 2019, which supersedes the 2002 ROD, are as follows:

#### Groundwater

#### **RAOs for Public Health Protection**

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

#### **RAOs for Environmental Protection**

- Prevent the discharge of contaminants to surface water.
- Remove the source of ground or surface water contamination.

#### Soil

#### RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

#### **RAOs for Environmental Protection**

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

#### Soil Vapor

#### **RAOs for Public Health Protection**

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

#### 2.5 Remaining Contamination

#### <u>2.5.1 Soil</u>

Figures 2.8 and 2.9 summarize the results of soil samples collected that exceed the restricted industrial use SCOs at the site. Exposure to remaining soil contamination will

continue to be managed through engineering controls. Institutional controls will be put in place to ensure compliance with the RAOs detailed in section 2.4.

#### 2.5.2 Groundwater and Surface Water

Tables 4, 5, and 6 and Figures 2.10 and 2.11 summarize the results of the latest groundwater and surface water sampling event, completed in November 2022 (MACTEC, 2023c).

#### 2.5.3 Soil Vapor

A series of soil vapor intrusion investigations have been completed both on and offsite with results reported to the NYSDEC between 2006 and 2009. The findings for these investigations indicate that VOCs and chloropyridines related to past releases at the Arch facility do not pose a significant exposure risk and are summarized in Appendix D.

#### 3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

Institutional controls will be developed with the submission of an environmental easement as required in the 2019 ROD. As described in the ROD the environmental easement will:

- require the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3).
- allow the use and development of the controlled property for industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws.
- restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH.
- require compliance with the Department approved Site Management Plan.

An engineering control plan will also be prepared after the new HW and groundwater treatment system are fully operational.

#### 4.0 MONITORING AND SAMPLING PLAN

The current monitoring program consists of semi-annual sampling events for groundwater and surface water as described in the semi-annual monitoring reports (MACEC, 2023c). The program was initiated in the 1990's and has been modified since that time. The current sampling and analysis schedule is provided in Table 7. Following the completion of the ECs, Arch will prepare and submit a sampling and monitoring plan to the NYSDEC for approval.

#### 5.0 OPERATION AND MAINTENANCE PLAN

Currently, the operation and maintenance of engineering controls at the site are detailed in quarterly progress reports submitted to the NYSDEC. These reports include details of maintenance and performance of the current extraction well network. Report of extraction system performance is also included in the semi-annual monitoring reports that are submitted to the NYSDEC.

An operations and maintenance plan will be submitted to the NYSDEC for approval after the new HW and groundwater treatment system are fully operational.

#### 6.0 PERIODIC ASSESSMENTS/EVALUATIONS

#### 6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

This section provides a summary of vulnerability assessments that will be conducted for the site during periodic assessments, and briefly summarizes the vulnerability of the site and/or engineering controls to severe storms/weather events and associated flooding.

Because the Site and surrounding area is fairly flat and the surrounding properties urbanized, the Site is considered fairly resilient to climate change. The site is also not located in an area mapped by the Federal Emergency Management Administration as prone to flooding during either 100 or 500-year events. However, a vulnerability assessment will be conducted annually as part of the annual inspection after the new HW and groundwater treatment system is fully operational. This assessment will include an evaluation of the of remediation systems for the following vulnerabilities:

- Site Drainage and Storm Water Management
- Energy usage
- Emissions

#### 6.2 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section of the ISMP provides a summary of any green remediation evaluations to be completed for the site during site management, and as reported in the Periodic Review Report (PRR, including:

- Land and/or ecosystems
- Water Usage
- Waste Generation
- Energy usage
- Emissions

#### 6.2.1 Timing of Green Remediation Evaluations

For major remedial system components, green remediation evaluations and corresponding modifications will be undertaken as part of a formal Remedial System Optimization (RSO), or at any time that the NYSDEC project manager feels appropriate, e.g. during significant maintenance events or in conjunction with storm recovery activities.

Modifications resulting from green remediation evaluations will be routinely implemented and scheduled to occur during planned/routine operation and maintenance activities. Reporting of these modifications will be presented in the PRR.

#### 6.2.2 Frequency of System Checks, Sampling and Other Periodic Activities

Transportation to and from the Site, use of consumables in relation to visiting the

Site in order to conduct system checks and/or collect samples, and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

#### 6.2.3 Metrics and Reporting

Information on energy usage, solid waste generation, transportation and shipping, water usage and land use and ecosystems will be recorded to facilitate and document consistent implementation of green remediation during site management and to identify corresponding benefit. Green remediation evaluation and reporting will be initiated after the after the new HGEW and groundwater treatment system are fully operational.

#### 7.0. **REPORTING REQUIREMENTS**

The current reporting of Site activities includes quarterly progress reports submitted to the NYSDEC detailing current and planned remediation activities. Additionally, semiannual reports detailing the surface water and groundwater monitoring program, as well as the extraction system performance and optimization efforts are submitted to NYSDEC.

A schedule of monitoring and inspection reports, Periodic Review Reports and certification of institutional and engineering controls will be developed for approval after the new HW and groundwater treatment system are fully operational.

#### 8.0 **REFERENCES**

EPA, 2005. Document of Environmental Indicator Determination, RCRA Corrective Action Environmental Indicator (EI) RCIS Code (CA750) Migration of Contaminated Groundwater Under Control, Signed September 26, 2005.

NYSDEC, 1987. Order on Consent, Index No. C8-0003-85-06, between the Department and Olin Corporation, executed on April 1987.

NYSDEC, 1993. Order on Consent, Index No. B8-0343-90-08, between the Department and Olin Corporation, executed on August 23, 1993.

NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).

NYSDEC, 2002. Record of Decision for the Olin Corporation-Chemicals Group Site, dated March 2002, prepared by the Department.

NYSDEC, 2003. Order on Consent, Index No. B8-0343-90-08, between the Department and Arch Chemicals, Inc., executed on August 11, 2003.

NYSDEC, 2006, NYCRR Part 375, Environmental Remediation Programs. December 14, 2006

NYSDEC, 2010, DER-10 – "Technical Guidance for Site Investigation and Remediation", May 2010.

NYSDEC, 2019a. Proposed Remedial Action Plan for the Olin Corporation-Chemicals Group Site, dated February 2019, prepared by the Department.

NYSDEC, 2019b. Record of Decision for the Olin Corporation-Chemicals Group Site, dated March 2019, prepared by the Department.

ABB-ES, 1995. "Final Phase I Remedial Investigation," August 1995, prepared by ABB Environmental Services, Inc.

ABB-ES, 1997. "Final Phase II Remedial Investigation," October 1997, prepared by ABB Environmental Services, Inc.

Harding Lawson Associates, 2000. "Feasibility Study Report,", January 2000, prepared by Harding Lawson Associates.

MACTEC, 2005. "Onsite Vapor Intrusion Sampling, Arch Chemicals, Rochester Plant Site," June 2005, prepared by MACTEC Engineering & Consulting, Inc.

MACTEC, 2006A. "Onsite Vapor Intrusion Sampling, Arch Chemicals, Rochester Plant Site, prepared by MACTEC Engineering & Consulting, Inc. May 2006,

MACTEC, 2006B. "Vapor Intrusion Sampling at Firth Rixon and ARM, Arch Chemicals, Rochester Plant Site, "prepared by MACTEC Engineering & Consulting, Inc. June 2006.

MACTEC, 2008. "Onsite Vapor Intrusion Sampling, Arch Chemicals, Rochester Plant Site", May 2008, prepared by MACTEC Engineering & Consulting, Inc.

Amec Foster Wheeler, 2015. Feasibility Study Addendum Report, Arch Chemicals, Inc.," April 2015, prepared by Amec Foster Wheeler Environment and Infrastructure, Inc.

MACTEC, 2019. Feasibility Study Report. Prepared by Mactec Engineering and Geology PC for Arch Chemicals, Inc., September 2019.

MACTEC, 2023a. Well Installation and Completion Report Horizontal Extraction Well HW-1. Prepared by Mactec Engineering and Geology PC for Arch Chemicals, Inc., March 2023.

MACTEC, 2023b. Revised – Pilot Test Work Plan for Groundwater Extraction and Treatment – HW-1 Well. Prepared by Mactec Engineering and Geology PC for Arch Chemicals, Inc., April 4, 2023.

MACTEC, 2023c. Fall 2022b Monitoring Report. Prepared by Mactec Engineering and Geology PC for Arch Chemicals, Inc. 26, April 2023.

#### TABLES

# Table 2: Monitoring and Extraction Well Construction Details

#### Arch Chemicals Rochester, New York

| WELL    | Borehole or   | Top of       | Bottom of         | Screen | Depth     | Measuring     | Screen    | Monitored Zone |
|---------|---------------|--------------|-------------------|--------|-----------|---------------|-----------|----------------|
|         | Screen        | Monitored    | Monitored         | Lenath | into Rock | Point         | Material  |                |
|         | Diameter (ft) | Interval (ft | Interval (ft bgs) | (ft)   | (ft)      | Elevation (ft |           |                |
| B-1     | 1.5           | 5.5          | 15.5              | 10     | 0.00      | 537.75        | PVC       | Overburden     |
| B-10    | 1.5           | 3            | 13                | 10     | 0.00      | 538.8         | PVC       | Overburden     |
| B-12    | 2             | 4.3          | 14.3              | 10     | -2.00     | 537.12        | PVC       | Overburden     |
| B-13    | 2             | 4.7          | 14.7              | 10     | -2.00     | 537.07        | PVC       | Overburden     |
| B-14    | 2             | 7            | 17                | 10     | -2.00     | 537.95        | PVC       | Overburden     |
| B-15    | 2             | 4            | 14                | 10     | -3.00     | 535.29        | PVC       | Overburden     |
| B-16    | 2             | 3.5          | 13.5              | 10     | -2.00     | 536.21        | PVC       | Overburden     |
| B-17    | 2             | 11.6         | 16                | 4.4    | -0.50     | 538.74        | Stainless | Overburden     |
| B-2     | 1.5           | 6            | 16                | 10     | 0.00      | 539.02        | PVC       | Overburden     |
| B-3     | 1.5           | 5            | 15                | 10     | 0.00      | 541.81        | PVC       | Overburden     |
| B-4     | 1.5           | 11           | 21                | 10     | 0.00      | 542.87        | PVC       | Overburden     |
| B-5     | 1.5           | 7            | 17                | 10     | 0.00      | 540.21        | PVC       | Overburden     |
| B-6     | 1.5           | 6            | 16                | 10     | 0.00      | 537.31        | PVC       | Overburden     |
| B-7     | 1.5           | 9            | 19                | 10     | 0.00      | 541.11        | PVC       | Overburden     |
| B-8     | 1.5           | 4.5          | 14.5              | 10     | 0.00      | 538.88        | PVC       | Overburden     |
| B-9     | 1.5           | 2            | 12                | 10     | 0.00      | 535.55        | PVC       | Overburden     |
| BR-1    | 3             | 16.3         | 22.8              | 6.5    | 8.50      | 537.28        | None      | Bedrock        |
| BR-102  | 3.8           | 22           | 54                | 32     | 34.10     | 539.43        | None      | Bedrock        |
| BR-103  | 3.8           | 13           | 45.2              | 32.2   | 34.40     | 533.19        | None      | Bedrock        |
| BR-104  | 3.8           | 21           | 40                | 19     | 21.20     | 537.56        | None      | Bedrock        |
| BR-105  | 3.8           | 19           | 45.5              | 26.5   | 30.50     | 536.9         | None      | Bedrock        |
| BR-105D | 2             | 70           | 79.6              | 9.6    | 64.20     | 536.49        | PVC       | Deep Bedrock   |
| BR-106  | 3.8           | 18           | 44.9              | 26.9   | 31.70     | 535.74        | None      | Bedrock        |
| BR-107  | 3.8           | 19           | 40.2              | 21.2   | 23.40     | 536.32        | None      | Bedrock        |
| BR-108  | 3.8           | 18           | 41.5              | 23.5   | 29.00     | 540.58        | None      | Bedrock        |
| BR-111  | 3.8           | 14.5         | 45                | 30.5   | 33.00     | 540.42        | None      | Bedrock        |
| BR-111D | 2             | 55           | 64.6              | 9.6    | 52.10     | 540.34        | PVC       | Deep Bedrock   |
| BR-112A | 3.8           | 12.5         | 40                | 27.5   | 29.50     | 547.72        | None      | Bedrock        |
| BR-112D | 2             | 50           | 59.6              | 9.6    | 48.60     | 547.91        | PVC       | Deep Bedrock   |
| BR-113  | 3.8           | 11           | 45                | 34     | 36.00     | 543.02        | None      | Bedrock        |
| BR-113D | 2             | 57           | 66.6              | 9.6    | 57.60     | 542.93        | PVC       | Deep Bedrock   |
| BR-114  | 3.8           | 19.5         | 39.6              | 20.1   | 23.10     | 539.77        | None      | Bedrock        |
| BR-116  | 3.8           | 30.4         | 62.6              | 32.2   | 33.10     | 545.38        | None      | Bedrock        |
| BR-117  | 3.8           | 4.5          | 50                | 45.5   | 48.10     | 547.61        | None      | Bedrock        |
| BR-118  | 3.8           | 9.1          | 50                | 40.9   | 45.50     | 547.79        | None      | Bedrock        |
| BR-119D | 3.8           | 74           | 110               | 36     | 91.50     | 567.06        | None      | Deep Bedrock   |

# Table 2: Monitoring and Extraction Well Construction Details

#### Arch Chemicals Rochester, New York

| WELL    | Borehole or   | Top of       | Bottom of         | Screen | Depth     | Measuring     | Screen    | Monitored Zone |
|---------|---------------|--------------|-------------------|--------|-----------|---------------|-----------|----------------|
|         | Screen        | Monitored    | Monitored         | Lenath | into Rock | Point         | Material  |                |
|         | Diameter (ft) | Interval (ft | Interval (ft bgs) | (ft)   | (ft)      | Elevation (ft |           |                |
| BR-120D | 3.8           | 65.4         | 90.4              | 25     | 84.40     | 557.43        | None      | Deep Bedrock   |
| BR-121D | 3.8           | 62           | 92                | 30     | 88.00     | 554.79        | None      | Deep Bedrock   |
| BR-122D | 3.8           | 50.2         | 80                | 29.8   | 56.50     | 552.34        | None      | Deep Bedrock   |
| BR-123D | 3.8           | 60           | 94.5              | 34.5   | 71.50     | 553.62        | None      | Deep Bedrock   |
| BR-124D | 3.8           | 82           | 115               | 33     | 92.00     | 537.45        | None      | Deep Bedrock   |
| BR-2D   | 3             | 67.5         | 82.6              | 15.1   | 67.90     | 537.26        | None      | Deep Bedrock   |
| BR-3    | 3.8           | 17           | 27                | 10     | 14.70     | 538.27        | None      | Bedrock        |
| BR-3D   | 3             | 71.5         | 86.5              | 15     | 74.20     | 537.67        | None      | Deep Bedrock   |
| BR-4    | 5.8           | 17.5         | 50                | 32.5   | 37.50     | 539.03        | None      | Bedrock        |
| BR-5    | 3.8           | 13           | 43                | 30     | 32.50     | 536.3         | None      | Bedrock        |
| BR-5A   | 3.8           | 12.5         | 32                | 19.5   | 21.50     | 536.35        | Core      | Bedrock        |
| BR-6    | 3.8           | 16           | 56                | 40     | 43.00     | 537.75        | None      | Bedrock        |
| BR-6A   | 5.8           | 18           | 57                | 39     | 44.00     | 540.9         | None      | Bedrock        |
| BR-7    | 3.8           | 17           | 65.7              | 48.7   | 51.70     | 539.1         | None      | Bedrock        |
| BR-7A   | 3.8           | 19           | 62.5              | 43.5   | 48.50     | 539.12        | Core      | Bedrock        |
| BR-8    | 3.8           | 18           | 38                | 20     | 23.00     | 539.72        | None      | Bedrock        |
| BR-9    | 6             | 21           | 54.1              | 33.1   | 34.20     | 542.17        | None      | Bedrock        |
| C-1     | 2             | 5.8          | 10.8              | 5      | 0.00      | 539.05        | Stainless | Overburden     |
| C-3     | 2             | 6.5          | 11.5              | 5      | 0.00      | 541.63        | Stainless | Overburden     |
| C-4     | 2             | 7            | 12                | 5      | 0.00      | 540.82        | Stainless | Overburden     |
| C-5     | 2             | 6.3          | 11.3              | 5      | 0.00      | 539.63        | Stainless | Overburden     |
| E-1     | NR            | 3.3          | 8.3               | 5      | -0.20     | 535.01        | Stainless | Overburden     |
| E-2     | 2             | 7.7          | 11.7              | 4      | 0.00      | 538.32        | Stainless | Overburden     |
| E-3     | 2             | 5            | 10                | 5      | 0.00      | 536.59        | Stainless | Overburden     |
| E-4     | 2             | 7            | 12                | 5      | 0.00      | 538.69        | Stainless | Overburden     |
| E-5     | 2             | 4.2          | 9.2               | 5      | 0.00      | 539.31        | Stainless | Overburden     |
| EC-1    | 2             | 14           | 19                | 5      | 3.00      | 539.99        | Stainless | Ovb/ Bedrock   |
| EC-2    | 2             | 6.2          | 11.2              | 5      | 2.20      | 542           | Stainless | Overburden     |
| MW-103  | 2             | 6            | 9                 | 3      | -1.30     | 533.25        | PVC       | Overburden     |
| MW-104  | 2             | 9            | 18.6              | 9.6    | -0.20     | 537.54        | PVC       | Overburden     |
| MW-105  | 2             | 9            | 18.6              | 9.6    | 4.20      | 536.91        | PVC       | Ovb/Bedrock    |
| MW-106  | 2             | 10           | 19.6              | 9.6    | 6.40      | 535.44        | PVC       | Ovb/Bedrock    |
| MW-107  | 2             | 6            | 15.7              | 9.7    | -1.10     | 536.29        | PVC       | Overburden     |
| MW-108  | 2             | 8            | 17.6              | 9.6    | 5.10      | 540.69        | PVC       | Ovb/Bedrock    |
| MW-114  | 2             | 5.8          | 15.5              | 9.7    | -1.00     | 539.69        | PVC       | Overburden     |
| N-1     | 2             | 5.5          | 10.5              | 5      | 0.00      | 537.17        | Stainless | Overburden     |
# Table 2: Monitoring and Extraction Well Construction Details

#### Arch Chemicals Rochester, New York

| WELL   | Borehole or   | Top of       | Bottom of         | Screen         | Depth | Measuring              | Screen    | Monitored Zone |
|--------|---------------|--------------|-------------------|----------------|-------|------------------------|-----------|----------------|
|        | Diameter (ft) | Interval (ft | Interval (ft bos) | Lengin<br>(ft) | /ft)  | Foint<br>Flevation (ft | Material  |                |
|        | Biameter (ity | intervar (it | interval (it bgo) | (19            | (19   | Elevation (it          |           |                |
| N-2    | 2             | 5.1          | 10.1              | 5              | 0.00  | 537.33                 | Stainless | Overburden     |
| N-3    | 2             | 6            | 11                | 5              | -0.30 | 537.38                 | Stainless | Overburden     |
| PW11   | 4             | 18.5         | 48.5              | 30             | 31.50 | 538.17                 | Stainless | Bedrock        |
| PW12   | 3.8           | 18           | 44.5              | 26.5           | 29.00 | 537.49                 | None      | Bedrock        |
| PZ-101 | 2             | 9            | 18.6              | 9.6            | -0.70 | 542.95                 | PVC       | Overburden     |
| PZ-102 | 2             | 23           | 31                | 8              | 13.80 | 540.89                 | PVC       | Bedrock        |
| PZ-103 | 2             | 20           | 29.3              | 9.3            | 15.90 | 540.22                 | PVC       | Bedrock        |
| PZ-104 | 2             | 17           | 25                | 8              | 11.70 | 537.21                 | PVC       | Bedrock        |
| PZ-105 | 2             | 23           | 32.4              | 9.4            | 16.50 | 536.93                 | PVC       | Bedrock        |
| PZ-106 | 2             | 20           | 29.4              | 9.4            | 16.30 | 537.21                 | PVC       | Bedrock        |
| PZ-107 | 2             | 16           | 25.6              | 9.6            | 15.40 | 538.39                 | PVC       | Bedrock        |
| PZ-108 | 2             | 6            | 11.6              | 5.6            | -0.60 | 536.56                 | PVC       | Overburden     |
| S-1    | 0             | 2.9          | 12.9              | 10             | -1.60 | 537.49                 | Stainless | Overburden     |
| S-2    | 4             | 2.5          | 11.7              | 9.2            | -2.60 | 537.15                 | PVC       | Overburden     |
| S-3    | NR            | 1            | 11                | 10             | -2.00 | 537.19                 | Stainless | Overburden     |
| W-1    | NR            | 6.1          | 16.1              | 10             | -0.50 | 537.78                 | Stainless | Overburden     |
| W-2    | NR            | 8.5          | 18.5              | 10             | 0.10  | 540.32                 | Stainless | Overburden     |
| W-3    | 4             | 9.4          | 18.5              | 9.1            | 0.00  | 542.64                 | PVC       | Overburden     |
| W-4    | 4             | 7.8          | 17                | 9.2            | -1.30 | 541.1                  | PVC       | Overburden     |
| W-5    | NR            | 4.9          | 14.9              | 10             | -0.10 | 538.53                 | Steel     | Overburden     |
| W-6    | NR            | 7.3          | 12.3              | 5              | -0.40 | 538.99                 | Stainless | Overburden     |

Notes:

BGS = Below ground Surface

ft = feet

ft amsl = Feet above mean sea level

Stainless = Stainless Steel

NR = Not Reported

# Table 3 Groundwater Elevation Measurements - Fall 2022 Arch Chemicals Rochester, NY

| Samula  | Location | Zama    | Data       | Depth to | Casing    | GW        |
|---------|----------|---------|------------|----------|-----------|-----------|
| Sample  | Location | Zone    | Date       | water    | Elevation | Elevation |
| B-1     | On-Site  | OB      | 11/10/2022 | 9.65     | 537.75    | 528.10    |
| B-10    | On-Site  | OB      | 11/10/2022 | 8.87     | 538.80    | 529.93    |
| B-15    | On-Site  | OB      | 11/10/2022 | 5.59     | 535.29    | 529.70    |
| B-16    | Off-Site | OB      | 11/10/2022 | 5.74     | 536.21    | 530.47    |
| B-17    | On-Site  | OB      | 11/10/2022 | 8.41     | 538.74    | 530.33    |
| B-2     | On-Site  | OB      | 11/10/2022 | 10.71    | 539.02    | 528.31    |
| B-4     | On-Site  | OB      | 11/10/2022 | 20.02    | 542.87    | 522.85    |
| B-5     | On-Site  | OB      | 11/10/2022 | 13.51    | 540.21    | 526.70    |
| B-7     | On-Site  | OB      | 11/10/2022 | 15.11    | 541.11    | 526.00    |
| B-8     | On-Site  | OB      | 11/10/2022 | 9.67     | 538.88    | 529.21    |
| BR-1    | On-Site  | BR      | 11/10/2022 | 7.74     | 537.28    | 529.54    |
| BR-102  | On-Site  | BR      | 11/10/2022 | DRY      | 539.43    | DRY       |
| BR-103  | Off-Site | BR      | 11/10/2022 | 2.39     | 533.19    | 530.80    |
| BR-104  | Off-Site | BR      | 11/10/2022 | 11.83    | 537.56    | 525.73    |
| BR-105  | Off-Site | BR      | 11/10/2022 | 23.67    | 536.90    | 513.23    |
| BR-105D | Off-Site | BR deep | 11/10/2022 | 25.38    | 536.49    | 511.11    |
| BR-106  | Off-Site | BR      | 11/10/2022 | 23.65    | 535.74    | 512.09    |
| BR-108  | Off-Site | BR      | 11/10/2022 | 28.97    | 540.58    | 511.61    |
| BR-111  | Off-Site | BR      | 11/10/2022 | 29.38    | 540.42    | 511.04    |
| BR-111D | Off-Site | BR      | 11/10/2022 | 29.40    | 540.34    | 510.94    |
| BR-112D | Off-Site | BR deep | 11/10/2022 | 36.90    | 547.91    | 511.01    |
| BR-113  | Off-Site | BR      | 11/10/2022 | 31.90    | 543.02    | 511.12    |
| BR-113D | Off-Site | BR deep | 11/10/2022 | 31.91    | 542.93    | 511.02    |
| BR-114  | Off-Site | BR      | 11/10/2022 | 14.42    | 539.77    | 525.35    |
| BR-116  | Off-Site | BR      | 11/10/2022 | 29.55    | 545.38    | 515.83    |
| BR-116D | Off-Site | BR deep | 11/10/2022 | 39.95    | 545.22    | 505.27    |
| BR-117  | Off-Site | BR      | 11/10/2022 | 37.60    | 547.61    | 510.01    |
| BR-117D | Off-Site | BR deep | 11/10/2022 | 48.25    | 547.16    | 498.91    |
| BR-118  | Off-Site | BR      | 11/10/2022 | 24.70    | 547.79    | 523.09    |
| BR-118D | Off-Site | BR deep | 11/10/2022 | 47.60    | 547.93    | 500.33    |
| BR-122D | Off-Site | BR deep | 11/10/2022 | 45.72    | 552.34    | 506.62    |
| BR-123D | Off-Site | BR deep | 11/10/2022 | 46.00    | 553.62    | 507.62    |
| BR-124D | Off-Site | BR deep | 11/10/2022 | 33.50    | 537.45    | 503.95    |
| BR-126  | Off-Site | BR      | 11/10/2022 | 10.37    | 537.90    | 527.53    |
| BR-127  | On-Site  | BR      | 11/10/2022 | 5.57     | 536.05    | 530.48    |
| BR-3    | On-Site  | BR      | 11/10/2022 | NM       | 538.20    | NM        |
| BR-3D   | On-Site  | BR deep | 11/10/2022 | 0.65     | 537.67    | 537.02    |
| BR-4    | On-Site  | BR      | 11/10/2022 | 11.91    | 539.03    | 527.12    |

# Table 3 Groundwater Elevation Measurements - Fall 2022 Arch Chemicals Rochester, NY

| Sample | Location | Zono         | Data       | Depth to | Casing    | GW        |
|--------|----------|--------------|------------|----------|-----------|-----------|
| Sample | Location | Zone         | Date       | water    | Elevation | Elevation |
| BR-5   | On-Site  | BR           | 11/10/2022 | 5.84     | 536.30    | 530.46    |
| BR-5A  | On-Site  | pumping well | 11/10/2022 | 5.60     | 536.35    | 530.75    |
| BR-6A  | On-Site  | BR           | 11/10/2022 | 12.67    | 540.90    | 528.23    |
| BR-7   | On-Site  | BR           | 11/10/2022 | 18.40    | 539.10    | 520.70    |
| BR-7A  | On-Site  | pumping well | 11/10/2022 | 26.85    | 539.12    | 512.27    |
| BR-8   | On-Site  | BR           | 11/10/2022 | 12.89    | 539.72    | 526.83    |
| BR-9   | On-Site  | pumping well | 11/10/2022 | 44.52    | 542.17    | 497.65    |
| C-5    | On-Site  | OB           | 11/10/2022 | 9.87     | 539.63    | 529.76    |
| CANAL  | Off-Site | SW           | 11/10/2022 | 37.47    | 544.79    | 507.32    |
| E-2    | On-Site  | OB           | 11/10/2022 | NM       | 538.32    | NM        |
| E-3    | On-Site  | OB           | 11/10/2022 | 4.74     | 536.59    | 531.85    |
| E-5    | On-Site  | OB           | 11/10/2022 | 6.50     | 539.31    | 532.81    |
| EC-2   | Off-Site | BR           | 11/10/2022 | DRY      | 542.00    | Dry       |
| MW-103 | Off-Site | OB           | 11/10/2022 | 3.00     | 533.25    | 530.25    |
| MW-104 | Off-Site | OB           | 11/10/2022 | 9.94     | 537.54    | 527.60    |
| MW-105 | Off-Site | OB           | 11/10/2022 | DRY      | 536.91    | Dry       |
| MW-106 | Off-Site | OB           | 11/10/2022 | 13.55    | 535.44    | 521.89    |
| MW-114 | Off-Site | OB           | 11/10/2022 | 11.45    | 539.69    | 528.24    |
| MW-127 | On-Site  | OB           | 11/10/2022 | 5.95     | 536.87    | 530.92    |
| MW-16  | Off-Site | BR           | 11/10/2022 | NM       | 536.79    | NM        |
| MW-3   | Off-Site | OB           | 11/10/2022 | NM       | 535.89    | NM        |
| MW-G6  | Off-Site | OB           | 11/10/2022 | NM       | 534.65    | NM        |
| MW-G8  | Off-Site | OB           | 11/10/2022 | 8.29     | 534.25    | 525.96    |
| MW-G9  | Off-Site | OB           | 11/10/2022 | 11.04    | 536.60    | 525.56    |
| N-2    | On-Site  | OB           | 11/10/2022 | NG       | 537.33    | NM        |
| N-3    | On-Site  | OB           | 11/10/2022 | 8.02     | 537.38    | 529.36    |
| NESS-E | Off-Site | BR deep      | 11/10/2022 | NM       | 540.31    | NM        |
| NESS-W | Off-Site | BR deep      | 11/10/2022 | NM       | 543.04    | NM        |
| PW-12  | On-Site  | BR           | 11/10/2022 | 6.91     | 537.49    | 530.58    |
| PW-13  | On-Site  | pumping well | 11/10/2022 | 24.52    | 536.13    | NM        |
| PW-14  | On-Site  | pumping well | 11/10/2022 | 9.90     | 537.03    | 527.13    |
| PW-15  | On-Site  | pumping well | 11/10/2022 | 25.57    | 538.32    | 512.75    |
| PW-16  | On-Site  | pumping well | 11/10/2022 | 20.70    | 539.32    | 518.62    |
| PW-17  | On-Site  | pumping well | 11/10/2022 | 19.48    | NS        | NA        |
| PZ-101 | Off-Site | BR           | 11/10/2022 | 18.29    | 542.95    | 524.66    |
| PZ-102 | Off-Site | BR           | 11/10/2022 | 19.71    | 540.89    | 521.18    |
| PZ-103 | Off-Site | BR           | 11/10/2022 | 14.81    | 540.20    | 525.39    |
| PZ-104 | Off-Site | BR           | 11/10/2022 | 15.24    | 536.85    | 521.61    |
| PZ-105 | On-Site  | BR           | 11/10/2022 | 10.87    | 536.93    | 526.06    |
| PZ-106 | On-Site  | BR           | 11/10/2022 | 9.52     | 537.24    | 527.72    |

# Table 3 Groundwater Elevation Measurements - Fall 2022 Arch Chemicals Rochester, NY

| Samula | [ agation | 7.000 | Data       | Depth to | Casing    | GW        |
|--------|-----------|-------|------------|----------|-----------|-----------|
| Sample | Location  | Zone  | Date       | water    | Elevation | Elevation |
| PZ-107 | On-Site   | BR    | 11/10/2022 | 8.00     | 538.39    | 530.39    |
| PZ-109 | On-Site   | BR    | 11/10/2022 | 8.26     | 538.59    | 530.33    |
| PZ-110 | On-Site   | BR    | 11/10/2022 | 13.99    | NS        | NA        |
| PZ-111 | On-Site   | BR    | 11/10/2022 | NM       | NS        | NM        |
| W-5    | On-Site   | OB    | 11/10/2022 | NM       | 538.53    | NM        |

NM = Not Measured NA = Not Applicable NS = No Survey

# TABLE 4 Groundwater Sampling Analytical Chloropyridines - Fall 2022

# ARCH ROCHESTER ROCHESTER, NEW YORK

| LOCATION:                                                 | B-15      |    | B-16      |    | BR-105   | 5  | BR-105   | D  | BR-106   | 6  | BR-126    |    | BR-127   | 7  | BR-5A    | L. | BR-6A    | L. | BR-7A      |
|-----------------------------------------------------------|-----------|----|-----------|----|----------|----|----------|----|----------|----|-----------|----|----------|----|----------|----|----------|----|------------|
| SAMPLE DATE:                                              | 11/15/202 | 22 | 11/15/202 | 22 | 11/14/20 | 22 | 11/14/20 | 22 | 11/15/20 | 22 | 11/15/202 | 22 | 11/14/20 | 22 | 11/16/20 | 22 | 11/14/20 | 22 | 11/18/2022 |
| QC TYPE:                                                  | FS        |    | FS        |    | FS       |    | FS       |    | FS       |    | FS        |    | FS       |    | FS       |    | FS       |    | FS         |
| SELECTED CHLOROPYRIDINES BY<br>SW-846 Method 8270D (µg/L) |           |    |           |    |          |    |          |    |          |    |           |    |          |    |          |    |          |    |            |
| 2,6-Dichloropyridine                                      | 9.13      | J  | 325       |    | 167      | J  | 11.2     |    | 10,000   | U  | 228       |    | 966      | U  | 26.1     |    | 1,480    |    | 4,850 U    |
| 2-Chloropyridine                                          | 6.28      | J  | 848       |    | 1,680    |    | 41.4     |    | 48,800   |    | 953       |    | 11,700   |    | 12.9     |    | 5,650    |    | 42,300     |
| 3-Chloropyridine                                          | 9.66      | U  | 100       | U  | 196      | U  | 6.8      | J  | 10,000   | U  | 80        | U  | 966      | U  | 9.62     | U  | 400      | U  | 4,850 U    |
| 4-Chloropyridine                                          | 9.66      | U  | 100       | U  | 196      | U  | 9.72     | U  | 10,000   | U  | 80        | U  | 966      | U  | 9.62     | U  | 400      | U  | 4,850 U    |
| p-Fluoroaniline                                           | 9.66      | U  | 100       | U  | 196      | UJ | 9.72     | UJ | 10,000   | U  | 80        | U  | 966      | UJ | 9.62     | U  | 400      | UJ | 4,850 U    |
| Pyridine                                                  | 9.66      | UJ | 100       | UJ | 196      | U  | 9.72     | U  | 10,000   | UJ | 80        | UJ | 966      | U  | 9.62     | UJ | 653      |    | 4,850 UJ   |

Notes:

U = Compound not detected; value

represents sample quantitation

limit.

J = Estimated value

J- = Estimated with a potential low bias

J+ = Estimated with a potential high bias

µg/L = micrograms per Liter

# TABLE 4 Groundwater Sampling Analytical Chloropyridines - Fall 2022

# ARCH ROCHESTER ROCHESTER, NEW YORK

| LOCATION:                                                 | BR-8       | BR-9       | MW-106      | MW-127     | PW12       | PW13       | PW14       | PW15       | PW16       | PW17       |
|-----------------------------------------------------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|
| SAMPLE DATE:                                              | 11/17/2022 | 11/17/2022 | 11/15/2022  | 11/14/2022 | 11/16/2022 | 11/16/2022 | 11/15/2022 | 11/16/2022 | 11/17/2022 | 11/16/2022 |
| QC TYPE:                                                  | FS         | FS         | FS          | FS         | FS         | FS         | FS         | FS         | FS         | FS         |
| SELECTED CHLOROPYRIDINES BY<br>SW-846 Method 8270D (µg/L) |            |            |             |            |            |            |            |            |            |            |
| 2,6-Dichloropyridine                                      | 45,500 U   | 2,020 U    | 10,000 U    | 47.6 J     | 9.62 U     | 4,550 U    | 536 J+     | 10,000 U   | 20,000 U   | 4,190      |
| 2-Chloropyridine                                          | 529,000    | 12,400     | 58,100      | 10 UJ      | 25.1       | 30,900     | 6,590      | 73,600     | 146,000    | 27,300     |
| 3-Chloropyridine                                          | 45,500 U   | 2,020 U    | 10,000 U    | 10 UJ      | 9.62 U     | 4,550 U    | 800 U      | 10,000 U   | 20,000 U   | 2,300      |
| 4-Chloropyridine                                          | 45,500 U   | 2,020 U    | 10,000 U    | 10 UJ      | 9.62 U     | 4,550 U    | 800 U      | 10,000 U   | 20,000 U   | 4,550 U    |
| p-Fluoroaniline                                           | 45,500 U   | 2,020 U    | 10,000 U    | 10 UJ      | 6.68       | 4,550 U    | 800 UJ     | 10,000 U   | 20,000 U   | 4,550 U    |
| Pyridine                                                  | 49,500 J-  | 2,020 U.   | I 10,000 UJ | 10 UJ      | 9.62 UJ    | 4,550 UJ   | 800 UJ     | 10,000 UJ  | 20,000 UJ  | 4,660 J-   |

Notes:

U = Compound not detected; value

represents sample quantitation

limit.

J = Estimated value

J- = Estimated with a potential low bias

J+ = Estimated with a potential high bias

µg/L = micrograms per Liter

# TABLE 4 Groundwater Sampling Analytical Chloropyridines - Fall 2022

# ARCH ROCHESTER ROCHESTER, NEW YORK

| LOCATION:                                                 | PZ-101   |    | PZ-102   | 2  | PZ-103   | }  | PZ-104   | ļ  | PZ-105   | 5  | PZ-106   | 5  | PZ-107   | 7  |
|-----------------------------------------------------------|----------|----|----------|----|----------|----|----------|----|----------|----|----------|----|----------|----|
| SAMPLE DATE:                                              | 11/17/20 | 22 | 11/17/20 | 22 | 11/17/20 | 22 | 11/15/20 | 22 | 11/14/20 | 22 | 11/15/20 | 22 | 11/16/20 | 22 |
| QC TYPE:                                                  | FS       |    | FS       |    | FS       | FS |          |    | FS       |    | FS       |    | FS       |    |
| SELECTED CHLOROPYRIDINES BY<br>SW-846 Method 8270D (µg/L) |          |    |          |    |          |    |          |    |          |    |          |    |          |    |
| 2,6-Dichloropyridine                                      | 12.8     | J+ | 20,000   | U  | 13,500   | J+ | 193      | J  | 1,540    |    | 1,120    |    | 302      |    |
| 2-Chloropyridine                                          | 14.5     |    | 188,000  |    | 352,000  |    | 1,460    |    | 10,700   |    | 17,400   |    | 2,270    |    |
| 3-Chloropyridine                                          | 9.5      | U  | 20,000   | U  | 20,000   | U  | 200      | U  | 800      | U  | 1,000    | U  | 172      | U  |
| 4-Chloropyridine                                          | 9.5      | U  | 20,000   | U  | 20,000   | U  | 200      | U  | 800      | U  | 1,000    | U  | 172      | U  |
| p-Fluoroaniline                                           | 9.5      | U  | 20,000   | U  | 20,000   | U  | 200      | U  | 800      | UJ | 1,000    | U  | 172      | U  |
| Pyridine                                                  | 9.5      | UJ | 20,000   | UJ | 20,000   | UJ | 200      | UJ | 800      | U  | 648      | J- | 172      | UJ |

Notes:

U = Compound not detected; value

represents sample quantitation

limit.

#### J = Estimated value

J- = Estimated with a potential low bias

J+ = Estimated with a potential high bias

µg/L = micrograms per Liter

# TABLE 5 Groundwater Analytical - VOCs - Fall 2022

### ARCH ROCHESTER ROCHESTER, NEW YORK

| LOCATION:                                         | B-15       | B-16       | BR-105     | BR-105D    | BR-106     | BR-126     | BR-127     | BR-5A      | BR-6A      | BR-7A      | BR-8       |
|---------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| SAMPLE DATE:                                      | 11/15/2022 | 11/15/2022 | 11/14/2022 | 11/14/2022 | 11/15/2022 | 11/15/2022 | 11/14/2022 | 11/16/2022 | 11/14/2022 | 11/18/2022 | 11/17/2022 |
| QC TYPE:                                          | FS         |
| VOCs By SW-846 Method 8260C (µg/L)                |            |            |            |            |            |            |            |            |            |            |            |
| 1,1,1-Trichloroethane                             | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| 1,1,2,2-Tetrachloroethane                         | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2.24       | 20 UJ      |
| 1,1,2-Trichloroethane                             | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| 1,1-Dichloroethane                                | 2 U        | 2 U        | 2 U        | 2 U        | 2.62 J-    | 2 U        | 2 U        | 2 U        | 4 UJ       | 1.78 J     | 20 UJ      |
| 1,1-Dichloroethene                                | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| 1,2,3-Trichlorobenzene                            | 5 U        | 5 U        | 5 U        | 5 U        | 5 UJ       | 5 U        | 5 U        | 5 U        | 10 UJ      | 5 U        | 50 UJ      |
| 1,2,4-Trichlorobenzene                            | 5 U        | 5 U        | 5 U        | 5 U        | 5 UJ       | 5 U        | 5 U        | 5 U        | 6.36 J-    | 5 U        | 50 UJ      |
| 1,2-Dibromo-3-chloropropane                       | 10 U       | 10 U       | 10 U       | 10 U       | 10 UJ      | 10 U       | 10 U       | 10 U       | 20 UJ      | 10 U       | 100 UJ     |
| 1,2-Dibromoethane                                 | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| 1,2-Dichlorobenzene                               | 2 U        | 1.71 J     | 3.82       | 2 U        | 63.2 J-    | 2 U        | 4.06       | 2 U        | 4.77 J-    | 58.4       | 336 J-     |
| 1,2-Dichloroethane                                | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| 1,2-Dichloropropane                               | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| 1,3-Dichlorobenzene                               | 2 U        | 2 U        | 2 U        | 2 U        | 4.19 J-    | 2 U        | 1.91 J     | 2 U        | 4 UJ       | 19.7       | 102 J-     |
| 1,4-Dichlorobenzene                               | 2 U        | 2.12       | 2 U        | 2 U        | 5.39 J-    | 2 U        | 3.07       | 2 U        | 4 UJ       | 12.7       | 59.9 J-    |
| 1,4-Dioxane                                       | 10 U       | 10 U       | 10 U       | 10 U       | 10 UJ      | 10 U       | 10 U       | 10 U       | 20 UJ      | 10 U       | 100 UJ     |
| 2-Butanone                                        | 10 U       | 10 U       | 10 U       | 10 U       | 10 UJ      | 10 U       | 10 U       | 10 U       | 20 UJ      | 10 U       | 100 UJ     |
| 2-Hexanone                                        | 5 U        | 5 U        | 5 U        | 5 U        | 5 UJ       | 5 U        | 5 U        | 5 U        | 10 UJ      | 5 U        | 50 UJ      |
| 4-Methyl-2-pentanone                              | 5 U        | 5 U        | 5 U        | 5 U        | 5 UJ       | 5 U        | 5 U        | 5 U        | 10 UJ      | 5 U        | 50 UJ      |
| Acetic acid, methyl ester                         | 2 UJ       | 4 UJ       | 2 UJ       | 20 UJ      |
| Acetone                                           | 10 UJ      | 10 U       | 20 UJ      | 10 U       | 100 UJ     |
| Benzene                                           | 1 U        | 1.23       | 1.09       | 3.59       | 16.4 J-    | 2.02       | 1.08       | 0.577 J    | 7.82 J-    | 3.76       | 24.8 J-    |
| Bromochloromethane                                | 5 U        | 5 U        | 5 U        | 5 U        | 5 UJ       | 5 U        | 5 U        | 5 U        | 10 UJ      | 5 U        | 50 UJ      |
| Bromodichloromethane                              | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Bromoform                                         | 5 U        | 5 U        | 5 U        | 5 U        | 5 UJ       | 5 U        | 5 U        | 5 U        | 10 UJ      | 5 U        | 50 UJ      |
| Bromomethane                                      | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Carbon disulfide                                  | 2 U        | 2 U        | 1.45 J     | 7.5        | 5.59 J-    | 2 U        | 1.61 J     | 2 U        | 4 UJ       | 9.24       | 43 J-      |
| Carbon tetrachloride                              | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 3.29       | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Chlorobenzene                                     | 2 U        | 4.08       | 8.64       | 2 U        | 190 J-     | 2 U        | 4.18       | 2 U        | 54.6 J-    | 100        | 700 J-     |
| Chloroethane                                      | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Chloroform                                        | 2 U        | 2 U        | 2 U        | 2 U        | 2 UJ       | 2 U        | 46.8       | 1.55 J     | 6.53 J-    | 2 U        | 20 UJ      |

### ARCH ROCHESTER

ROCHESTER, NEW YORK

|                                    | R 15       | R 16       | <b>BD 105</b> | BD 105D    | BD 106     | BD 126     | BD 127     |            | BD 6A      |            | BD 9       |
|------------------------------------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                    | B-13       | B-10       | BIX-105       | BIX-105D   | BIX-100    | BIX-120    | BIX-127    | BIX-JA     | BIX-0A     | BIX-7A     | DIX-0      |
| SAMPLE DATE:                       | 11/15/2022 | 11/15/2022 | 11/14/2022    | 11/14/2022 | 11/15/2022 | 11/15/2022 | 11/14/2022 | 11/16/2022 | 11/14/2022 | 11/18/2022 | 11/17/2022 |
| QC TYPE:                           | FS         | FS         | FS            | FS         | FS         | FS         | FS         | FS         | FS         | FS         | FS         |
| VOCs By SW-846 Method 8260C (μg/L) |            |            |               |            |            |            |            |            |            |            |            |
| Chloromethane                      | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 2.26 J-    | 2 U        | 20 UJ      |
| cis-1,2-Dichloroethene             | 2 U        | 2 U        | 3.22          | 5.04       | 2 UJ       | 2 U        | 1.1 J      | 2 U        | 7.63 J-    | 20.8       | 20 UJ      |
| cis-1,3-Dichloropropene            | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Cyclohexane                        | 10 UJ      | 10 UJ      | 10 UJ         | 6.43 J     | 10 UJ      | 10 UJ      | 10 UJ      | 10 UJ      | 20 UJ      | 10 UJ      | 100 UJ     |
| Dibromochloromethane               | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Dichlorodifluoromethane            | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 UJ       | 20 UJ      |
| Ethylbenzene                       | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Isopropylbenzene                   | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Methyl cyclohexane                 | 2 UJ       | 2 UJ       | 2 UJ          | 4.74 J     | 2 UJ       | 2 UJ       | 2 UJ       | 2 UJ       | 4 UJ       | 2 UJ       | 20 UJ      |
| Methyl Tertbutyl Ether             | 2 U        | 2 U        | 2 U           | 2 U        | 1.23 J-    | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Methylene chloride                 | 5 U        | 5 U        | 5 U           | 5 U        | 5 UJ       | 5 U        | 9.14       | 5 U        | 45.2 J-    | 5 U        | 50 UJ      |
| Styrene                            | 5 U        | 5 U        | 5 U           | 5 U        | 5 UJ       | 5 U        | 5 U        | 5 U        | 10 UJ      | 5 U        | 50 UJ      |
| Tetrachloroethene                  | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2.31       | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Toluene                            | 2 U        | 2 U        | 2 U           | 2 U        | 2.77 J-    | 2 U        | 1.05 J     | 2 U        | 157 J-     | 6.38       | 144 J-     |
| trans-1,2-Dichloroethene           | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 6.94 J-    | 2 U        | 20 UJ      |
| trans-1,3-Dichloropropene          | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Trichloroethene                    | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2.93       | 2 U        | 18 J-      | 2 U        | 20 UJ      |
| Trichlorofluoromethane             | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Vinyl chloride                     | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 1.53 J     | 2 U        | 321 J-     | 19.8       | 20 UJ      |
| Xylene, o                          | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4 UJ       | 2 U        | 20 UJ      |
| Xylenes (m&p)                      | 2 U        | 2 U        | 2 U           | 2 U        | 2 UJ       | 2 U        | 2 U        | 2 U        | 4.06 J-    | 2 U        | 20 UJ      |

Notes:

U = Compound not detected; value

represents sample quantitation

limit.

J = Estimated value

J- = Estimated with a potential low bias

µg/L = micrograms per Liter

### ARCH ROCHESTER

ROCHESTER, NEW YORK

| LOCATION:                                         | BR-9       | MW-106     | MW-127     | PW12       | PW13       | PW14       | PW15       | PW16       | PW17       | PZ-101     | PZ-102     |
|---------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| SAMPLE DATE:                                      | 11/17/2022 | 11/15/2022 | 11/14/2022 | 11/16/2022 | 11/16/2022 | 11/15/2022 | 11/16/2022 | 11/17/2022 | 11/16/2022 | 11/17/2022 | 11/17/2022 |
| QC TYPE:                                          | FS         |
| VOCs By SW-846 Method 8260C (µg/L)                |            |            |            |            |            |            |            |            |            |            |            |
| 1,1,1-Trichloroethane                             | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,1,2,2-Tetrachloroethane                         | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) | 16.8       | 5 U        | 2 U        | 2 U        | 1.64 J     | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,1,2-Trichloroethane                             | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,1-Dichloroethane                                | 5.94       | 5 U        | 2 U        | 2 U        | 2.71       | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,1-Dichloroethene                                | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,2,3-Trichlorobenzene                            | 5 U        | 12.5 U     | 5 U        | 8.37       | 5 U        | 50 U       | 14.4 J     | 25 U       | 5 U        | 5 U        | 25 U       |
| 1,2,4-Trichlorobenzene                            | 5 U        | 12.5 U     | 5 U        | 39.3       | 5 U        | 50 U       | 63.7       | 25 U       | 5 U        | 5 U        | 25 U       |
| 1,2-Dibromo-3-chloropropane                       | 10 U       | 25 U       | 10 U       | 10 U       | 10 U       | 100 U      | 50 U       | 50 U       | 10 U       | 10 U       | 50 U       |
| 1,2-Dibromoethane                                 | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,2-Dichlorobenzene                               | 38         | 32.1       | 2 U        | 3.67       | 68.6       | 20 U       | 10.8       | 220        | 1.39 J     | 2 U        | 193        |
| 1,2-Dichloroethane                                | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,2-Dichloropropane                               | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| 1,3-Dichlorobenzene                               | 9.06       | 5 U        | 2 U        | 18.8       | 17.2       | 20 U       | 15.2       | 66.9       | 2 U        | 2 U        | 34         |
| 1,4-Dichlorobenzene                               | 4.67       | 5 U        | 2 U        | 8.74       | 10.7       | 20 U       | 38.5       | 11.5       | 2 U        | 2 U        | 15         |
| 1,4-Dioxane                                       | 10 U       | 25 U       | 10 U       | 10 U       | 10 U       | 100 U      | 50 U       | 50 U       | 10 U       | 10 U       | 50 U       |
| 2-Butanone                                        | 10 UJ      | 25 U       | 10 U       | 10 U       | 10 U       | 100 UJ     | 50 U       | 50 U       | 10 U       | 7.07 J     | 50 U       |
| 2-Hexanone                                        | 5 UJ       | 12.5 U     | 5 U        | 5 U        | 5 U        | 50 UJ      | 25 U       | 25 U       | 5 U        | 5 U        | 25 U       |
| 4-Methyl-2-pentanone                              | 5 U        | 12.5 U     | 5 U        | 5 U        | 5 U        | 50 U       | 25 U       | 25 U       | 5 U        | 5 U        | 25 U       |
| Acetic acid, methyl ester                         | 2 UJ       | 5 UJ       | 2 UJ       | 2 UJ       | 2 UJ       | 20 UJ      | 10 UJ      | 10 UJ      | 2 UJ       | 2 UJ       | 10 UJ      |
| Acetone                                           | 10 UJ      | 25 UJ      | 10 UJ      | 10 U       | 10 U       | 100 UJ     | 50 U       | 50 U       | 10 U       | 34.2       | 50 U       |
| Benzene                                           | 4.61       | 8.92       | 1 U        | 0.726 J    | 5.63       | 10 U       | 18.4       | 13.3       | 1.12       | 1 U        | 19.7       |
| Bromochloromethane                                | 5 U        | 12.5 U     | 5 U        | 5 U        | 5 U        | 50 U       | 25 U       | 25 U       | 5 U        | 5 U        | 25 U       |
| Bromodichloromethane                              | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Bromoform                                         | 5 U        | 12.5 U     | 5 U        | 5 U        | 5 U        | 50 U       | 25 U       | 25 U       | 5 U        | 5 U        | 25 U       |
| Bromomethane                                      | 2 UJ       | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Carbon disulfide                                  | 1.14 J     | 3.28 J     | 2 U        | 2 U        | 4.71       | 20 U       | 88.7       | 5.12 J     | 2 U        | 2 U        | 25.2       |
| Carbon tetrachloride                              | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 42.9       | 10 U       | 2 U        | 2 U        | 10 U       |
| Chlorobenzene                                     | 48.3       | 184        | 2 U        | 30.6       | 101        | 20 U       | 31.2       | 512        | 2.4        | 2 U        | 429        |
| Chloroethane                                      | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Chloroform                                        | 2 U        | 5 U        | 1.58 J     | 1.01 J     | 1.34 J     | 225        | 568        | 10 U       | 1.58 J     | 2 U        | 22.8       |

#### ARCH ROCHESTER

ROCHESTER, NEW YORK

| LOCATION:                          | BR-9       | MW-106     | MW-127     | PW12       | PW13       | PW14       | PW15       | PW16       | PW17       | PZ-101     | PZ-102     |
|------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| SAMPLE DATE:                       | 11/17/2022 | 11/15/2022 | 11/14/2022 | 11/16/2022 | 11/16/2022 | 11/15/2022 | 11/16/2022 | 11/17/2022 | 11/16/2022 | 11/17/2022 | 11/17/2022 |
| QC TYPE:                           | FS         |
| VOCs By SW-846 Method 8260C (µg/L) |            |            |            |            |            |            |            |            |            |            |            |
| Chloromethane                      | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| cis-1,2-Dichloroethene             | 91.9 J-    | 5 U        | 2 U        | 2 U        | 26.3       | 20 U       | 5.1 J      | 10 U       | 2 U        | 2 U        | 10 U       |
| cis-1,3-Dichloropropene            | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Cyclohexane                        | 10 UJ      | 25 UJ      | 10 UJ      | 10 UJ      | 10 UJ      | 100 UJ     | 50 UJ      | 50 UJ      | 10 UJ      | 10 UJ      | 50 UJ      |
| Dibromochloromethane               | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Dichlorodifluoromethane            | 2 UJ       | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 UJ      | 2 U        | 2 UJ       | 10 UJ      |
| Ethylbenzene                       | 2 U        | 5 U        | 2 U        | 2.07       | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Isopropylbenzene                   | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Methyl cyclohexane                 | 1.22 J     | 5 UJ       | 2 UJ       | 2 UJ       | 2 UJ       | 20 UJ      | 10 UJ      | 10 UJ      | 2 UJ       | 2 UJ       | 10 UJ      |
| Methyl Tertbutyl Ether             | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Methylene chloride                 | 5 U        | 12.5 U     | 5 U        | 5 U        | 5 U        | 50 U       | 18.1 J     | 25 U       | 6.29       | 5 U        | 25 U       |
| Styrene                            | 5 U        | 12.5 U     | 5 U        | 5 U        | 5 U        | 50 U       | 25 U       | 25 U       | 5 U        | 5 U        | 25 U       |
| Tetrachloroethene                  | 2 U        | 5 U        | 2 U        | 1.67 J     | 2 U        | 21.4       | 82.3       | 10 U       | 2.99       | 2 U        | 10 U       |
| Toluene                            | 1.93 J     | 2.51 J     | 2 U        | 10.6       | 3.71       | 20 U       | 22.5       | 19         | 2 U        | 2 U        | 32.4       |
| trans-1,2-Dichloroethene           | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| trans-1,3-Dichloropropene          | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Trichloroethene                    | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 14.1 J     | 63.5       | 10 U       | 2 U        | 2 U        | 10 U       |
| Trichlorofluoromethane             | 2 U        | 5 U        | 2 U        | 2 U        | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Vinyl chloride                     | 79.8 J-    | 5 U        | 2 U        | 2 U        | 23.4       | 20 U       | 8.79 J     | 10 U       | 1.03 J     | 2 U        | 10 U       |
| Xylene, o                          | 2 U        | 5 U        | 2 U        | 3.76       | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |
| Xylenes (m&p)                      | 2 U        | 5 U        | 2 U        | 3.79       | 2 U        | 20 U       | 10 U       | 10 U       | 2 U        | 2 U        | 10 U       |

Notes:

U = Compound not detected; value

represents sample quantitation

limit.

J = Estimated value

J- = Estimated with a potential low bias

µg/L = micrograms per Liter

### ARCH ROCHESTER

### ROCHESTER, NEW YORK

| LOCATION:                                         | PZ-103     | PZ-104     | PZ-105     | PZ-106     | PZ-107     |
|---------------------------------------------------|------------|------------|------------|------------|------------|
| SAMPLE DATE:                                      | 11/17/2022 | 11/15/2022 | 11/14/2022 | 11/15/2022 | 11/16/2022 |
| QC TYPE:                                          | FS         | FS         | FS         | FS         | FS         |
| VOCs By SW-846 Method 8260C (µg/L)                |            |            |            |            |            |
| 1,1,1-Trichloroethane                             | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,1,2,2-Tetrachloroethane                         | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,1,2-Trichloroethane                             | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,1-Dichloroethane                                | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,1-Dichloroethene                                | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,2,3-Trichlorobenzene                            | 25 U       | 5 U        | 5 UJ       | 500 U      | 1,000 U    |
| 1,2,4-Trichlorobenzene                            | 25 U       | 5 U        | 5 UJ       | 500 U      | 1,000 U    |
| 1,2-Dibromo-3-chloropropane                       | 50 U       | 10 U       | 10 UJ      | 1,000 U    | 2,000 U    |
| 1,2-Dibromoethane                                 | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,2-Dichlorobenzene                               | 441        | 2 U        | 4.18 J-    | 200 U      | 400 U      |
| 1,2-Dichloroethane                                | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,2-Dichloropropane                               | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,3-Dichlorobenzene                               | 112        | 2 U        | 2 UJ       | 200 U      | 400 U      |
| 1,4-Dichlorobenzene                               | 73.4       | 2 U        | 1.28 J-    | 200 U      | 400 U      |
| 1,4-Dioxane                                       | 50 U       | 10 U       | 10 UJ      | 1,000 U    | 2,000 U    |
| 2-Butanone                                        | 50 U       | 10 U       | 10 UJ      | 1,000 U    | 2,000 U    |
| 2-Hexanone                                        | 25 U       | 5 U        | 5 UJ       | 500 U      | 1,000 U    |
| 4-Methyl-2-pentanone                              | 25 U       | 5 U        | 5 UJ       | 500 U      | 1,000 U    |
| Acetic acid, methyl ester                         | 10 UJ      | 2 UJ       | 2 UJ       | 200 UJ     | 400 UJ     |
| Acetone                                           | 50 U       | 10 UJ      | 10 UJ      | 1,000 UJ   | 2,000 U    |
| Benzene                                           | 15.3       | 0.901 J    | 6.08 J-    | 100 U      | 200 U      |
| Bromochloromethane                                | 25 U       | 5 U        | 5 UJ       | 500 U      | 1,000 U    |
| Bromodichloromethane                              | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Bromoform                                         | 25 U       | 5 U        | 5 UJ       | 500 U      | 1,000 U    |
| Bromomethane                                      | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Carbon disulfide                                  | 29.7       | 2 U        | 1.64 J-    | 263        | 1,400      |
| Carbon tetrachloride                              | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Chlorobenzene                                     | 547        | 3.78       | 59.1 J-    | 200 U      | 400 U      |
| Chloroethane                                      | 10 U       | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Chloroform                                        | 10 U       | 2.18       | 2 UJ       | 6,280      | 25,600     |

### ARCH ROCHESTER

### ROCHESTER, NEW YORK

| LOCATION                           | : PZ-103     | PZ-104     | PZ-105     | PZ-106     | PZ-107     |
|------------------------------------|--------------|------------|------------|------------|------------|
| SAMPLE DATE                        | : 11/17/2022 | 11/15/2022 | 11/14/2022 | 11/15/2022 | 11/16/2022 |
| QC TYPE                            | FS           | FS         | FS         | FS         | FS         |
| VOCs By SW-846 Method 8260C (µg/L) |              |            |            |            |            |
| Chloromethane                      | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| cis-1,2-Dichloroethene             | 10 U         | 2 U        | 2 UJ       | 181 J      | 959        |
| cis-1,3-Dichloropropene            | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Cyclohexane                        | 50 UJ        | 10 UJ      | 10 UJ      | 1,000 UJ   | 2,000 UJ   |
| Dibromochloromethane               | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Dichlorodifluoromethane            | 10 UJ        | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Ethylbenzene                       | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Isopropylbenzene                   | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Methyl cyclohexane                 | 10 UJ        | 2 UJ       | 2 UJ       | 200 UJ     | 400 UJ     |
| Methyl Tertbutyl Ether             | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Methylene chloride                 | 25 U         | 5 U        | 5 UJ       | 500 U      | 3,890      |
| Styrene                            | 25 U         | 5 U        | 5 UJ       | 500 U      | 1,000 U    |
| Tetrachloroethene                  | 10 U         | 2 U        | 2 UJ       | 214        | 1,200      |
| Toluene                            | 38.2         | 2 U        | 2 UJ       | 200 U      | 332 J      |
| trans-1,2-Dichloroethene           | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| trans-1,3-Dichloropropene          | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Trichloroethene                    | 10 U         | 1.05 J     | 2 UJ       | 394        | 318 J      |
| Trichlorofluoromethane             | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Vinyl chloride                     | 10 U         | 2 U        | 2 UJ       | 572        | 635        |
| Xylene, o                          | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |
| Xylenes (m&p)                      | 10 U         | 2 U        | 2 UJ       | 200 U      | 400 U      |

Notes:

U = Compound not detected; value

limit.

J = Estimated value

J- = Estimated with a potential low bias

µg/L = micrograms per Liter

represents sample quantitation

### TABLE 6 Surface Water Sampling Analytical

# CHLOROPYRIDINES - Fall 2022

### ARCH ROCHESTER

# ROCHESTER, NEW YORK

| LOCATION:                                                 | QD-1     |    | QO-2     |    | QO-25    | 1  | QS-4     |    |
|-----------------------------------------------------------|----------|----|----------|----|----------|----|----------|----|
| SAMPLE DATE:                                              | 11/18/20 | 22 | 11/18/20 | 22 | 11/18/20 | 22 | 11/18/20 | 22 |
| QC TYPE:                                                  | FS       |    | FS       |    | FS       |    | FS       |    |
| SELECTED CHLOROPYRIDINES BY<br>SW-846 Method 8270D (µg/L) |          |    |          |    |          |    |          |    |
| 2,6-Dichloropyridine                                      | 9.52     | U  | 9.5      | U  | 9.62     | U  | 6.91     | J  |
| 2-Chloropyridine                                          | 9.52     | U  | 9.5      | U  | 9.62     | U  | 11.9     |    |
| 3-Chloropyridine                                          | 9.52     | U  | 9.5      | U  | 9.62     | U  | 9.58     | U  |
| 4-Chloropyridine                                          | 9.52     | U  | 9.5      | U  | 9.62     | U  | 9.58     | U  |
| p-Fluoroaniline                                           | 9.52     | U  | 9.5      | U  | 9.62     | U  | 9.58     | U  |
| Pyridine                                                  | 9.52     | UJ | 9.5      | UJ | 9.62     | UJ | 9.58     | UJ |

Notes:

U = Compound not detected; value

represents sample quantitation

limit.

J = Estimated value

µg/L = micrograms per Liter

# TABLE 7 2023 SAMPLING SCHEDULE ARCH CHEMICALS, INC. ROCHESTER, NEW YORK

Table 7 : Monitoring Schedule 2023

| ARCH CHEMICAI | LS, INC.         |                  |                |                                    |                                     |          |      | 2        | 023 |          |     |
|---------------|------------------|------------------|----------------|------------------------------------|-------------------------------------|----------|------|----------|-----|----------|-----|
|               |                  |                  |                |                                    |                                     |          |      |          |     |          |     |
| MONITORING PR | OGRAM            |                  |                |                                    |                                     | SPF      | RING | F        |     | то       | TAL |
|               |                  |                  |                |                                    | 2                                   | vridines | ocs  | vridines | ocs | yridines | ocs |
|               | Well             | zone             | area           | Frequency/Parameters               | Purpose                             | ٩.       | Š    | ٩.       | Ň   | ď.       | Š   |
| OFF-SITE      | BR-105           | BR<br>BB doop    |                | semi-annual monitoring, VOCs & PYR | perimeter sentinel/trend monitoring | 1        | 1    | 1        | 1   | 2        | 2   |
| MONTORING     | MW 106           | OB<br>OB         |                | semi-annual monitoring, VOCs & PTR | perimeter sentinel/trend monitoring | 1        | 1    | 1        | 1   | 2        | 2   |
|               | RD 106           | BD               |                | semi-annual monitoring, VOCs & PTR | perimeter sentinel/trend monitoring | 1        | 1    | 1        | 1   | 2        | 2   |
|               | BD 112D          | BR doop          |                | annual monitoring DVP              | trend monitoring                    | 1        | '    |          | 1   | 1        | 2   |
|               | BD 112D          | BR deep          | NYSDOT         | annual monitoring DVP              | trend monitoring                    | 1        |      |          |     | 1        | 0   |
|               | MW 114           | OB<br>OB         | Irish Propano  | annual monitoring, VOCs & DVP      | trend monitoring                    | 1        | 1    |          |     | 1        | 1   |
|               | DD 114           |                  | Instit Propane | annual monitoring, VOCs & FTR      | trend monitoring                    | 1        | 1    |          |     | 1        | 1   |
|               | DR-114           | DR<br>PB doop    |                | annual monitoring, VOCS & FTR      | trend monitoring                    | 1        |      |          |     | 1        | 0   |
|               |                  | BR deep          |                |                                    | trend monitoring                    | 1        |      |          |     | 1        | 0   |
|               | DR-110D          | BR deep          |                | annual monitoring, PTR             | trend monitoring                    | 1        |      |          |     | 1        | 0   |
|               | DR-122D          | BR deep          |                | annual monitoring, PTR             | trend monitoring                    | 1        |      |          |     | 1        | 0   |
|               | DT 101           | BR deep          |                | annual monitoring, FTR             | nerimeter centinel/trend menitering | 1        | 4    | 4        | 4   | 2        | 0   |
|               | PZ-101           |                  |                | semi-annual monitoring, VOCs & PTR | perimeter sentinel/trend monitoring | 1        | 1    | 1        | 1   | 2        | 2   |
|               | PZ-102           | BD               |                | semi-annual monitoring, VOCs & PTR | perimeter sentinel/trend monitoring | 1        | 1    | 1        | 1   | 2        | 2   |
|               | FZ-103           |                  |                | semi-annual monitoring, VOCs & PTR | perimeter sentinel/trend monitoring |          | 1    | 1        | 1   | 2        | 2   |
|               | PZ-104           | BD               | ON SITE        | semi-annual monitoring, VOCs & PTR | trend monitoring                    | 1        | 1    | 1        | 1   | 2        | 2   |
| WONTORING     | PZ-100           |                  | ON SITE        | semi-annual monitoring, VOCs & FTR | trend monitoring                    | 1        | 1    | 1        | 1   | 2        | 2   |
|               | PZ-100           |                  | ON SITE        | semi-annual monitoring, VOCs & PTR | nerimeter continel/trend menitoring | 1        | 1    | 4        | 1   | 2        | 2   |
|               | PZ-107<br>BD 126 | BD               | ON SITE        | semi-annual monitoring, VOCs & PTR | trend monitoring                    | 1        | 1    | 1        | 1   | 2        | 2   |
|               | DR-120           |                  | ON SITE        | semi-annual monitoring, VOCs & FTR | mana romoval/trand manitaring       | 1        | 1    | 4        | 1   | 2        | 2   |
|               | BD 2             |                  | ON SITE        | annual monitoring VOCs & PYR       | trend monitoring                    | 1        | 1    |          | 1   | 2        | 1   |
|               |                  |                  | ON SITE        | annual monitoring, VOCs & FTR      | trend monitoring                    | 1        | 1    | 4        | 1   | 2        | 2   |
|               |                  |                  | ON SITE        | semi-annual monitoring, VOCs & FTR | mana romoval/trand manitaring       | 1        | 1    | 4        | 1   | 2        | 2   |
|               | DR-9<br>BD 5A    |                  | ON SITE        | semi-annual monitoring, VOCs & PTR | trend monitoring                    | 1        | 1    | 1        | 1   | 2        | 2   |
|               |                  |                  | ON SITE        | semi-annual monitoring, VOCs & FTR | trend monitoring                    | 1        | 1    | 1        | 1   | 2        | 2   |
|               |                  |                  | ON SITE        | semi appual manitoring, VOCs & PTR | mana romoval/trand manitaring       | 1        | 1    | 4        | 1   | 2        | 2   |
|               | DR-7A            |                  | ON SITE        | semi appual maniforing VOCs & PTR  | niass removal/liend monitoring      | 1        | 1    | 4        | 1   | 2        | 2   |
|               | D-10             | OB               | ON SITE        | annual manitaring, VOCs & PTR      | trond monitoring                    | 1        | 1    |          | 1   | 4        | 1   |
|               | D-17<br>B 7      | OB               | ON SITE        | annual monitoring, VOCs & PTR      | trend monitoring                    | 1        | 1    |          |     | 1        | 1   |
|               | D-7<br>B-15      | OB               |                | semi-annual monitoring, VOCs & FTR | perimeter sentinel/trend monitoring | 1        | 1    | 1        | 1   | 2        | 2   |
|               | E 3              | OB               | ON SITE        | annual monitoring, VOCs & DVP      | trend monitoring                    | 1        | 1    | l '      |     | 1        | 1   |
|               |                  | OB               |                | annual monitoring, VOCs & FTR      | nerimeter centinel/trend menitering | 1        | 4    | 4        | 4   | 2        | 2   |
|               |                  |                  | ON-SITE        | semi-annual monitoring, VOCs & PTR | perimeter sentiner/trend monitoring |          | 1    |          | I   | 2        | 2   |
|               |                  |                  | ON-SITE        | semi-annual monitoring, VOCs & PTR | trand manitaring                    | se       | 4    | 4        | 4   | 2        | 2   |
|               | PW12             | BR               | ON-SITE        | semi-annual monitoring, VOCs & PYR | trend monitoring                    | 1        | 1    | 1        | 1   | 2        | 2   |
|               | PVV IS           |                  | ON-SITE        | semi-annual monitoring, VOCs & PTR | mass removal/trend monitoring       | 1        | 1    |          | 1   | 2        | 2   |
|               | PVV 14           |                  | ON-SITE        | semi-annual monitoring, VOCs & PYR | trend monitoring                    |          | 1    |          |     | 2        | 2   |
|               | PW15             | pumping well     | ON-SITE        | semi-annual monitoring, VOCs & PYR | mass removal/trend monitoring       |          | 1    |          |     | 2        | 2   |
|               |                  | pumping well     | ON-SITE        | semi-annual monitoring, VOCs & PTR | mass removal/trend monitoring       | 1        | 1    |          | 1   | 2        | 2   |
|               | r w 1/           |                  |                | semi-annual monitoring, VOUS & PTR |                                     |          |      | 1        |     | 2        | 2   |
|               | QS-4             | quarry seep      | QUARRY         | semi-annual monitoring, PYR        | trend monitoring                    |          |      |          |     | 2        | U   |
| WONTORING     |                  | quarry ditch     | DITCH          | semi-annual monitoring, PYR        |                                     |          |      |          |     |          | 0   |
|               | 00.281           | quarry outrall   | CANAL          | semi-annual monitoring, PYR        | u enu monitoring                    |          |      |          |     | 2        | 0   |
| TOTAL OANS    | QU-231           | canar at outfall | CANAL          | semi-annual monitoring, PTR        | surface water monitoring            |          | 00   |          | 07  | 2        | 0   |
| IUIAL SAMPI   | LES              |                  |                |                                    |                                     | 43       | 33   | 31       | 27  | 74       | 60  |

Notes:

RG&E ROW = Rochester Gas and Electric Right of Way

AID-HOSP = Aid to Hospitals NYSDOT = New York State Department of Transportation

On-site Well PW17 was taken out of service as a pumping well October 2022

# **FIGURES**

















Document: P:\Projects\Arch\Rochester\GIS\MapDocuments\Fall 2022\Figures\Fall 2022.mxd PDF: P:\Projects\Arch\Arxada Rochester 2022 GW Monitoring-361622619714.0\_Deliverables\4.1\_Reports\4.1\_2 Supporting Docs\Fall 2022\Figures\Figures\Figures\_5\_Deep\_Bdrk\_GW\_contours.pdf 04/10/2023 12:19 PM nathan.soule







# Legend

- MW-106 (58,000) Monitoring Location with Concentration  $\oplus$ Property Owned by Arch Chemicals, Inc. **Chloropyridine Concentration Contour** 100 Deep Bedrock Well {1000} Overburden Well (1000) Bedrock Well 1000 Not Sampled NS Not Detected ND
- 200 100

MACTEC

- NOTES:
  - 1. Samples Collected November 2022
  - 2. Selected chloropyridines consist of 2,6-dichloropyridine, 2-chloropyridine, 3-chloropyridine, 4-chloropyridine, and P-fluoroaniline.
  - 3. Concentration contours represented for Bedrock Wells and selected Overburden and Deep Bedrock Wells.
  - 4. Dashed concentration contours represent inferences from historical analytical results.
  - 5. Concentrations are in µg/L.

Prepared/Date: NES 04-10-23 Checked/Date: NMB 04-10-23

Figure 2.10 Fall 2022 Selected Chloropyridine **Concentration Contours** 

> Arch Chemicals, Inc. Rochester, NY





# Legend



Fall 2022 Selected Volatile Organic Compound Concentration Contours

> Arch Chemicals, Inc. Rochester, NY

Figure 2.11

Document: P:\Projects\Arch\Rochester(GIS\MapDocuments\Fall 2022\VOC\_Contours\_Fig9\_Fall2022.mxd PDF: P:\Projects\Arch\Arxada Rochester 2022 GW Monitoring-3616226197\4.0\_Deliverables\4.1\_Reports\4.1.2 Supporting Docs\Fall 2022\VOC\_ports\4.1.2 Supports\4.1.2 Su

# **APPENDIX A – LIST OF SITE CONTACTS**

| Name<br>Site Owner: Matt Dillon - (Site<br>Manager/Arch)) | Phone/Email Address<br>Brendan.Dillon@Arxada.com |
|-----------------------------------------------------------|--------------------------------------------------|
| Qualified Environmental Professional:<br>Nelson Breton    | 207 712-8020 Nelson.Breton@wsp.com               |
| NYSDEC DER Project Manager:<br>Joshuah Klier              | (585) 226-5357 Joshuah.Klier@dec.ny.gov          |
| NYSDEC DER Project Manager's<br>Supervisor: David Pratt   | (585) 226-5449 David.Pratt@dec.ny.gov            |
| NYSDOH Project Manager: Christopher<br>Budd               | (518) 402-1769<br>Christopher.Budd@health.ny.gov |

# **APPENDIX B – Soil and Bedrock Boring Logs and Well Construction Details**

| SUIL BORI    | NG LOG     | BOR          | ING NO.:          | DK-1    | PROJECT NO.: 7311-02 PAGE 1 OF 3                                                                                        |         |
|--------------|------------|--------------|-------------------|---------|-------------------------------------------------------------------------------------------------------------------------|---------|
| PROJECT N    | AME: OLIN  | ROCHESTER RI |                   |         | DRILLING CONTRACTOR: MARCOR OF NEW YORK                                                                                 |         |
| DRILL RIG    | TYPE: CANT | TERRA CT 350 |                   |         | DRILLER: R. SCHEFFER DATE STARTED: 10/14/93 COMPLETED:                                                                  | 0/14/93 |
| METHOD:      | HSA        | AUGER SIZE:  | 4.25"             | 1.D.    | PID METER: 10.6 ev FID METER: OVA-108 PROTECTION LEVEL: MOD D                                                           |         |
| GROUND EL    | EV.: 538.2 | SOIL DRILLED | D: 15.5           | FT.     | ROCK DRILLED: CORE: 26.5' ROLLER BIT: 2.0' TOTAL DEP                                                                    | H: 44.0 |
| LOGGED BY    | : B. JOHN  | NSON         |                   |         | CHECKED BY: NB- DATE: 9                                                                                                 | 6/94    |
| DEPTH        | SAMPLE     | BLOWS PER    | PEN.              | GRAPHIC | SAMPLE USCS MONITORIN                                                                                                   | IG (PPM |
| (F1.)        | NUMBER     | 6-INCHES     | REC.              | LOG     | DESCRIPTION CLASSIF. PID FIL                                                                                            | OTHE    |
| - 1          | S-1        | 18-14-5-6    | 2.0<br>0.5        | Ī       | 0'-2.0' Brown and Gray Gravelly SAND, GP 0<br>fine to medium, little Silt,<br>trace coarse Sand, dry.                   | 1       |
| - 2<br>- 3   | s-2        | 3-2-3-3      | 2.0<br>2.0        |         | 2.0'-4.0' Dark Brown SILT, little fine Sand, ML 0.6 3<br>trace Organics (rootlets and<br>flakes), very soft, moist.     | 00      |
| - 4          | s-3        | 1-4-5-7      | $\frac{2.0}{2.0}$ |         | 4.0'-6.0' Dark Brown SILT, trace Organics, ML<br>wet, some Gray spots and Red 1.0 3<br>Silty fine Sand at 5.5'to 5.7'.  | 00      |
| - 7          | s-4        | 2-4-7-7      | 2.0<br>1.2        |         | 6.0'-8.0' Brown Silty SAND, fine, little SM<br>medium to coarse Sand, trace 1.0 5<br>fine subrounded Gravel, saturated. | 0       |
| - 8<br>- 9   | s-5        | 3-6-9-10     | $\frac{2.0}{1.3}$ |         | 8.0'-10.0' Similar to above, no Red horizon SM<br>present. 0 1                                                          | 0       |
| - 10<br>- 11 | S-6        | 9-10-19-23   | 2.0<br>1.5        |         | 10.0-12.0'Similar to above, with little fine SM<br>Gravel and coarse Sand. 25 80                                        | 0       |
| - 12         |            |              | 2.0               |         | 12 01-14 018 man ciltur CAND first Listely ou                                                                           |         |
| — 13         | s-7        | 8-32-15-21   | 0.8               |         | coarse to medium Sand, fractured 5 2<br>rock, saturated.                                                                | 50      |
| — 14<br>— 15 | S-8        | 5-8-50       | 2.0               |         | 14.0'-15.5'Brown SILT, little fine Sand, ML/GM<br>Some fractured Rock, saturated. 300 >10                               | 0000    |
|              |            |              | 0.5               |         | Refusal with augers at 15 51                                                                                            |         |

| OCK CORE  | LOG       |                  | BORING | S NO.: | BR       | -101       |          | PROJECT N        | 0.: 731  | 1-03                       | PAGE 2        | OF        | 3        |       |
|-----------|-----------|------------------|--------|--------|----------|------------|----------|------------------|----------|----------------------------|---------------|-----------|----------|-------|
| ROJECT N  | AME: OLI  | N ROCHESTER      | RI     |        |          | DRILL      | ING CO   | ONTRACTOR:       | MARCOR C | OF NEW YORK                | ()            |           |          |       |
| RILL RIG  | TYPE: CA  | NTERRA CT-       | 350    | -      | 2        | DRILL      | ER:      | R. SCHEFFE       | R        | DATE STAR                  | TED: 11/01/9  | 3 COMPLET | TED: 11/ | 02/93 |
| METHOD: C | ORE       | BIT SIZ          | E: HQ  | (3.)   | B" O.D.) | PID        | METER:   | 10.6 ev FI       | D METER: | OVA-108                    | PROTECTION    | LEVEL:    | D        |       |
| GROUND EL | EV.: 538. | 2 SOIL DR        | ILLED: | 15.    | 5 FT.    | ROCK       | DRILL    | ED: (CORED:      | 26.51    | ROLLER BI                  | T: 2.0')      | TOTAL     | DEPTH:   | 44.0' |
| OGGED BY  | : E. SH   | EPARD / N.       | BRETON |        |          | CHECK      | KED BY   | : KIB            |          |                            |               | DATE:     | 96       | 94    |
| DEPTH     | RUN       | DRILLING         | PEN.   | RQD    | GRAPHIC  | CORE I     | BREAKS   | WEATHERED        |          | ROCK DESCR                 | IPTION AND    |           | MONITO   | DRING |
| (FT.)     | NO.       | RATE<br>(FT/MIN) | REC.   | (%)    | LOG      | TYPE       | DIP      | CONDITION        |          | COMMENTS C                 | N DRILLING    |           | PID      | FID   |
|           |           |                  |        |        |          |            |          |                  | See so   | oil boring                 | log for BR-1  | 01 for    | 1-241    | 1     |
| 17        |           |                  |        |        |          |            |          |                  | soil d   | description                | ns from O'-15 | .5'       |          |       |
| 17.5 -    |           |                  |        |        |          |            |          |                  | Roller   | r cone dril                | l from 15.5   | to 17.5'  |          | ×     |
| 18        |           |                  | 1.5'   |        | E        | nat<br>nat | 0°<br>0° | slight<br>slight | Light    | gray finel                 | y crystallir  | ne,       | 652      | 200   |
|           | R-1       | NA               | 1.5    | 100    |          |            |          |                  | medium   | n bedded, D<br>bedded shal | OLOMITE with  | 1         |          |       |
| 10        |           | na               | 1.5    |        |          | -          |          |                  |          |                            | Lockport      | FM        |          |       |
| .,        |           | 3                |        |        | H        | nat        | 0°<br>0° | slight           |          |                            |               |           | 18       | 20    |
| 20        |           |                  |        |        |          | nat        | 0.0      | slight           |          |                            |               |           |          |       |
| 20        |           | ,                |        |        |          | liac       | 0        | Stright          |          |                            |               |           | 1.4      | 20    |
| 24        |           | 4                |        |        |          | nat        | 70.0     | moderate         |          |                            |               |           |          |       |
| 21        |           |                  | 5.0'   | -      |          | nat        | 30       | moderate         | 7        | estemosing                 | chalo string  | anc       | 21       | 50    |
|           | R-2       | 4                | 4.5    | 16     | H        | nat        | 30°      | slight           | at       | 21.5' and                  | 22.0'         | Jers      | 21       | 50    |
| 22        |           |                  |        |        |          |            |          |                  | -        |                            |               |           | 52       | 20    |
|           |           | 4                |        |        |          | nat        | 35°      | moderate         |          |                            |               |           | 52       | 20    |
| 23        |           |                  |        |        |          | nat        | 0°       | slight           |          |                            |               |           |          |       |
|           |           | 6                |        |        |          |            |          |                  |          |                            |               |           | 13       | 20    |
| 24 —      |           |                  | -      |        |          |            |          |                  | 7        |                            |               |           |          |       |
|           |           | 5                |        |        |          |            |          |                  | - s      | hale string                | gers and par  | tings     | 0.7      | 15    |
| 25        |           |                  |        |        |          | nat        | 0°       | slight           |          |                            |               |           |          |       |
|           |           | 5                |        |        |          |            | P        |                  | 1        |                            |               |           | 0.3      | 15    |
| 26        |           |                  | 5 21   |        |          | nat        | 40°      | slight           |          |                            |               |           |          |       |
|           | R-3       | 4                | 5.2    | 94     | F-       | nat        | 0°       | slight           |          |                            |               |           | 0.7      | 20    |
| 27        |           |                  | 5.5.   |        |          |            |          |                  | ٦        |                            |               |           | 1.1      |       |
|           |           | 4                |        |        |          |            | 100      | . Cabb           | - s      | hale parti                 | ngs - 27.3'-  | 27.9'     | 0        | 10    |
| 28        |           |                  |        |        | F        | nat        | 0°       | moderate         | -        |                            |               |           |          |       |
|           |           | 5                |        |        | 11       | nat        | 30°      | slight           |          |                            |               |           | 0        | 10    |
| 29        | H seed    |                  | -      | -      |          | 1          | -        |                  |          |                            |               |           |          |       |
|           |           | 5                |        |        | H        | nat        | 0°       | slight           |          |                            |               |           | 0        | 20    |
| 30        |           | 1.00             |        |        |          | nat        | 0°       | slight           |          |                            |               |           |          |       |
|           | R-4       | 4                | 5.0    | 69     |          |            |          |                  | 7        |                            |               |           | 0        | 20    |
| 31        |           |                  | 4.5    | 32     |          | mech       | 0°       | slight           | - s      | hale strin                 | gers and par  | tings -   |          |       |
| 31        |           |                  |        |        | H        | nat        | 0°       | slight           | 3        | 0.2' - 32.                 | 3' (occasio   | nally     |          | 10    |

| ROCK CORE | LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | BORIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G NO.: | BR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -101           | -      | PROJECT     | NO.: 73        | 11-03                        | PAGE 3                           | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-------------|----------------|------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT N | AME: OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IN ROCHESTE | RRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DRIL           | LING C | DNTRACTOR:  | MARCOR         | OF NEW YORK                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DRILL RIG | TYPE: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANTERRA CT  | -350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DRIL           | LER:   | R. SCHEFFER |                | DATE STAR                    | TED: 11/01/93                    | COMPLET                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED: 11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /02/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| METHOD: C | ORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BIT SI      | ZE: HQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.    | 8" O.D.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PID            | METER: | 10.6 ev F   | ID METER       | : OVA-108                    | PROTECTION L                     | EVEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GROUND EL | EV.: 538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .2 SOIL D   | RILLED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.    | 5 FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROCK           | DRILL  | ED: (CORED  | : 26.5'        | ROLLER BIT                   | 2.0')                            | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEPTH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LOGGED BY | : E. SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HEPARD / N. | BRETON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHEC           | KED BY | : N'B.      |                |                              |                                  | DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9/6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DEPTH     | RUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DRILLING    | PEN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RQD    | GRAPHIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CORE           | BREAKS | WEATHERED   |                | ROCK DESCR                   | IPTION AND                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MONITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (F1.)     | NU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (FT/MIN)    | REC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (%)    | LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TYPE           | DIP    | CONDITION   |                | COMMENTS ON                  | N DRILLING                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 52        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nat            | 0°     | slight      | Light          | gray finely                  | v crystalline,                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33        | R-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nat            | 0°     | slight      | mediu<br>inter | m bedded, D(<br>bedded shale | DLOMITE with                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nat            | 0°     | slight      | 7              |                              | Lockport FM                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 34        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111            |        |             | - Sh           | ale stringer<br>33.5'- 34.0  | rs<br>)' (anastamosin            | ng)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 35        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | _      |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nat<br>mech    | 10°    | slight      |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 36        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | R-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 37        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 38        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mech           |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 39 —      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mech           |        |             | _              |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |        |             |                | Slightly por                 | cous w/ nite                     | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                | < 0.5 mm in                  | size.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3         ED: 11/02/5         D         DEPTH: 44.0         Q [6/94]         MONITORING         PID         FID         1.7         20         7.6         20         10         20         10         20         0.6         21         0.6         1.7         1.7         10         50         1.7         20         0.6         21         0.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.1         1.7         1.1         1.1         1.1         1.1         1.1         1.1 <tr< td=""></tr<> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nat            | 0°     | slight      |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 41        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | R-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 42        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nat            | 0.0    | slight      |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3         D: 11/02/9         PEPTH: 44.0         Q[6/94]         MONITORING         PID         1.7         0         20         10         7.6         20         10         50         1.7         20         0.6         20         0.7         1.7         20         0.6         20         0.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7 <tr< td=""></tr<> |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nat            | 0°     | slight      |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>ETED: 11/02,<br>D<br>L DEPTH: 44,<br>: q 6/44<br>MONITORIN<br>PID F<br>1.7<br>0<br>10<br>7.6<br>10<br>1.7<br>0.6<br>10<br>1.7<br>1.7<br>0.6<br>10<br>1.7<br>1.7<br>0.6<br>10<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 43        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hat            | 0      | strynt      |                |                              |                                  | 3     OF     3       01/93     COMPLETED:     11/       TION LEVEL:     D       TOTAL DEPTH:     DATE:     Q       DATE:     Q     GO       ND     MONITO       NG     PID       Lline,     1.7       with     0       rt FM     0       tamosing)     10       7.6     10       1.7     0.6       pits     0.7       1.0     0.6       water     0.7       1.0     0.6       water     0.6       water     0.6       water     0.6       water     0.6 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OF       3         IPLETED:       11/02         L:       D         ITAL       DEPTH:       44         ITE:       Q       G         MONITORI       PIO       F         1.7       0       10         10       7.6       10         10       1.7       0.6         0.7       1.7       0.6         0.7       1.7       0.6         0.7       1.7       0.6         0.7       1.7       0.6         0.7       1.0       0.6         und       0.6       0.7                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 44        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | EORING MO.:         BR-101         PROJECT NO.:         7311-03         PAGE         3         0F           DORESTER RI         DRILLING CONTRACTOR:         MARCOR OF NEW YORK           RRA CT-SSO.         DRILLER: R. SCHEFFER         DATE STARTED:         11/01/03 COMPLETED:         11/02/03           BIT SIZE:         HQ (3.6" O.D.)         PID METER:         0.6 eV         FID METER:         ON-108         PROTECTION LEVEL:         D           SOLD DRILLED:         SOLD DRILLED:         CORDED:         2.6.5'         ROLLER ST:         2.0''         DATE STARTED:         11/02/03           SOLD DRILLED:         CORDED:         2.6.5'         ROLLER ST:         2.0''         DATE:         Q           TVHIND         REC.         (30)         DO         TYPE         DIF         D         FID           TVHND         REC.         (30)         O''         SIIght         COMPUTER WITHER:         NOT TO ALL DEPTH:         A.0''           4         nat         0''         SIIght         Light gravital mediade, DOLONTER WITHER:         NOT TO ALL DEPTH:         NOT TO ALL DEPTH:         NOT TO ALL DEPTH:         A.0''           5         5.0         60         nat         0'' slight         Light gravital mediade, DOLONTER         NOT T |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 45        | RE LOG         BORING NO.:         BR-101         PROJECT NO.:         TATI-03         PAGE 3         OF           IMME:         OLIN ROCHESTER RI         DRILLING CONTRACTOR:         MARCON OF NEW YORK         OATE STARTED:         11/01/93 COMPLETED:         11/02/93 COMPLETED: |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | NO.:     BR-101     PROJECT NO.:     7311-03     PAGE     3       DRILLING CONTRACTOR:     MARCOR OF NEW YORK       DRILLER:     R. SCHEFFER     DATE STARTED:     11/01/9       (3.8" O.D.)     PID METER:     10.6 ev     FID METER:     0/A-108     PROTECTION       15.5     FT.     ROCK DRILLED:     (CORE)     26.5'     ROLLER BIT:     2.0')       CHECKED BY:     U'D'     COMMENTS ON DRILLING     COMMENTS ON DRILLING       (3)     DG     TYPE     DIP     CONDITION     COMMENTS ON DRILLING       (3)     DG     TYPE     DIP     CONDITION     COMMENTS ON DRILLING       (4)     nat     0°     slight     Light gray finely crystalling medium bedded, pDLOMITE with interbedded shale.       nat     0°     slight     Light stringers     at 33.5'- 34.0' (anastamo       98     mech     -     Slight     -       98     nat     0°     slight     -       64     nat     0°     slight     -   < | f drilling wat | er     |             |                |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                | to format                    | ion during cor                   | ing.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                | nat - Inte<br>brea           | erpreted natur<br>ak or fracture | al                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                | mech - Inte                  | erpreted mecha                   | nical                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 47        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |        |             |                | brea                         | ak                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| POLECT N  | NAME OLIN     | ROCHESTER RI | nu no.     |         | DRILLING CON                         | ITRACTOR: MARCOR OF NEW YORK                                                                                                    |           |         |        |       |
|-----------|---------------|--------------|------------|---------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------|-------|
| PILL PIL  | S TYPE · CANT | FRRA CT 350  |            |         | DRILLER: R.                          | SCHEFFER DATE STARTED: 10                                                                                                       | /13/93 C  | OMPLETE | D: 10/ | 13/93 |
| METHOD:   | HSA           | AUGER SIZE:  | 4.25       | " I.D.  | PID METER:                           | 0.6 ev FID METER: OVA-108 PROTE                                                                                                 | CTION LEV | EL: MC  | D D    |       |
| GROUND EL | EV.: 540.2    | SOIL DRILLED | : 20.2     | FT.     | ROCK DRILLED                         | : CORE: 32.0' ROLLER BIT: 1.8                                                                                                   | 31        | TOTAL   | DEPTH: | 54.0  |
| LOGGED B  | Y: B. JOHN    | SON          | 2.8.1.4    |         | CHECKED BY:                          | NB                                                                                                                              |           | DATE:   | 9/61   | 94    |
| DEPTH     | SAMPLE        | BLOWS PER    | PEN.       | GRAPHIC |                                      | SAMPLE                                                                                                                          | USCS      | MONIT   | FORING | (PPM) |
| (FT.)     | NUMBER        | 6-INCHES     | REC.       | LOG     | DE                                   | SCRIPTION                                                                                                                       | CLASSIF.  | PID     | FID    | OTHER |
| 0         |               |              | 2.0        |         | Auger with<br>from 0.0'<br>1.0'-2.0' | nout sampling to 1.0'; Asphalt<br>to 0.3'.<br>Red/brown, sandy SILT; fine,<br>trace coarse and medium Sand,<br>maist danse      | ML        | 0       | 3      |       |
| 2         | s-1           | 7-9-10-24    | 1.3        |         |                                      | moist, dense.                                                                                                                   |           |         |        |       |
| 4         | s-2           | 17-22-23-45  | 2.0<br>2.0 |         | 3.0'-5.0'                            | Red/brown, SILT, some fine Sand,<br>little to trace fine Gravel<br>(subrounded), trace medium Sand,<br>trace clay, dry to moist | ML        | 0       | 2      |       |
| 6         | s-3           | 11-17-27-33  | 2.0<br>1.2 |         | 5.0'-7.5'                            | Similar to above with thin<br>(< 0.1") silty fine Sand layers,<br>moist                                                         | ML        | 0       | 0      |       |
| 7         | 5.4           | 0-20-50      | 1.3        |         | 7.5'-8.3'                            | Red/brown, silty fine SAND,<br>trace medium to coarse Sand,<br>saturated at tip of spoon,                                       | SM        | 0       | 0      |       |
| 0         | 3-4           | (for 0.3')   | 0.8        |         | 8.3'-9.0'                            | No sampling; Auger through<br>cobble size material to 9.0'                                                                      | GM        |         |        |       |
| 9         | s-5           | 17-50-61-43  | 2.0<br>1.0 |         | 9.0'-11.0'                           | Red/brown SAND, fine, some<br>coarse to fine gravel, little to<br>trace Silt, saturated voids in<br>fine sandy material.        | GP        | 0       | 0      |       |
| 11        | S-6           | 12-21-30-50  | 1.8        |         | 11.0'-12.8'                          | Light brown, fine SAND, little<br>to trace Silt, trace coarse<br>Gravel and medium to coarse<br>Sand, Saturated                 | SP        | 0       | 0      |       |
| 17        |               | (for 0.3')   | 1.0        |         | 12.8'-13.0'                          | No sampling; Auger through<br>cobble size material                                                                              | GP        |         |        |       |
| - 14      | s-7           | 8-21-28-28   | 2.0<br>1.0 |         | 13.0'-15.0'                          | Light brown SAND, fine, some<br>fine to coarse Gravel, little<br>silt, trace medium to coarse<br>Sand, Saturated                | SW        | 0       | 1.0    |       |
| - 15      | S-8           |              |            |         |                                      |                                                                                                                                 |           |         |        |       |

| SOIL BORI | NG LOG     | В           | ORING NO. | : BR-1  | .02         | PROJECT NO.:                   | 7311-02                            | PAGE 2        | OF     | 5       |       |
|-----------|------------|-------------|-----------|---------|-------------|--------------------------------|------------------------------------|---------------|--------|---------|-------|
| ROJECT N  | AME: OLIN  | ROCHESTER R | I         |         | DRILLING CO | NTRACTOR: MAR                  | COR OF NEW YORK                    |               |        |         |       |
| RILL RIG  | TYPE: CANT | ERRA CT 35  | 0         |         | DRILLER: R  | . SCHEFFER                     | DATE STARTED                       | : 10/13/93 0  | OMPLET | ED: 10/ | 13/93 |
| METHOD:   | HSA        | AUGER SIZ   | E: 4.25   | 5" I.D. | PID METER:  | 10.6 ev FID M                  | ETER: OVA-108 P                    | ROTECTION LEV | EL: M  | OD D    |       |
| ROUND EL  | EV.: 540.2 | SOIL DRIL   | LED: 20.2 | 2 FT.   | ROCK DRILLE | D: CORE: 32.0'                 | ROLLER BIT:                        | 1.8'          | TOTAL  | DEPTH:  | 54.0  |
| OGGED BY  | : B. JOHN  | SON         |           |         | CHECKED BY: | NB.                            |                                    |               | DATE:  | 96      | 94    |
| DEPTH     | SAMPLE     | BLOWS PER   | PEN.      | GRAPHIC | 0           | SAMPLE                         |                                    | USCS          | MONI   | TORING  | (PPM  |
| 16        | Honbeit    | U INCILU    | REC.      | 200     |             | LJCKIFTION                     |                                    | CLASSIF.      | PID    | FID     | OTHE  |
| 10        | S-8        | 8-18-21-2   | 7 2.0     | -       | 15.0'-17.0' | Light brown g                  | ravelly SAND, fi                   | ne GP         | 0      | 0       |       |
| 17        |            |             | 1.2       | 8       | 17 01 10 01 | to medium, sa                  | turated                            |               |        |         |       |
|           |            |             | 2.0       |         | 17.019.0.   | little to som                  | e fine to coarse,                  | SW            | 0      | 0       |       |
| 18        | S-9        | 15-27-32-5  | 0 2.0     |         |             | Gravel, trace<br>(Note: primar | Silt, saturated<br>y water bearing |               |        |         |       |
|           |            |             | 1.7       |         | X           | to medium Sa                   | ears to be fine<br>nd at 18.5')    |               |        |         |       |
| 19        |            | _           | -         |         | 23.2.3      |                                |                                    |               |        |         |       |
|           | 1.1        |             | 0.9       |         | 19.01-19.91 | Brown gravell<br>coarse, trace | y SAND, fine to to little Silt,    | GW            | 0      | 0       |       |
| 20        | S-10       | (for 0.4    | •) 0.7    |         |             | saturated                      |                                    |               |        |         |       |
|           |            |             |           |         | 19.9'-20.2' | No sampling;<br>refusal depth  | Auger past spoon<br>into bedrock   |               |        |         |       |
| 21        |            |             |           |         | Refusal w   | ith augers at                  | 20.2' below                        |               | _      |         |       |
|           |            |             |           |         | ground su   | rface                          |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    | <i>a</i> .    |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           |            |             |           |         |             |                                |                                    |               |        |         |       |
|           | 1          |             |           |         |             |                                |                                    |               |        |         | 1     |

| OCK CORE | LOG       |                  | BORING | NO.: | В      | R-102       | 2       | PROJECT    | NO.: 7311-02 PAGE 3 OF                                             | 5       |         |
|----------|-----------|------------------|--------|------|--------|-------------|---------|------------|--------------------------------------------------------------------|---------|---------|
| ROJECT N | AME: OLI  | N ROCHESTER      | RI     |      |        | DRI         | LLING C | ONTRACTOR: | MARCOR OF NEW YORK                                                 |         |         |
| RILL RIG | TYPE: CA  | NTERRA CT-       | 350    |      |        | DRI         | LLER:   | R. SCHEFF  | ER DATE STARTED: 11/03/93 COMPLET                                  | ED: 11, | /03/93  |
| ETHOD: C | ORE       | BIT SIZ          | E: HQ  | (3.  | 8" O.D | ) PID       | METER:  | 10.6 ev F  | ID METER: OVA-108 PROTECTION LEVEL:                                | D       |         |
| ROUND EL | EV.: 540. | 2 SOIL DR        | ILLED: | 20.  | O FT   | ROC         | K DRILL | ED: (COREC | : 32.0' ROLLER BIT: 2.0') TOTAL                                    | DEPTH:  | 54.0'   |
| OGGED BY | : E. SH   | EPARD / N.       | BRETON |      |        | CHE         | CKED BY | : NG       | DATE:                                                              | 96      | 194     |
| DEPTH    | RUN       | DRILLING         | PEN.   | RQD  | GRAPH  | C CORE      | BREAKS  | WEATHERED  | ROCK DESCRIPTION AND                                               | MONIT   | ORING   |
| (FT.)    | NO.       | RATE<br>(FT/MIN) | REC.   | (%)  | LOG    | TYPE        | DIP     | CONDITION  | COMMENTS ON DRILLING                                               | PID     | FID     |
|          |           |                  |        |      |        |             |         |            | See soil boring log for BR-102 for                                 |         |         |
| 21       |           |                  |        |      |        |             |         | 11 1       | soil descriptions from 0'-20'.                                     |         |         |
| 21       |           |                  |        |      |        |             |         |            | Roller cone drill from 20.0'to 22.0'                               |         | ( ) ( ) |
| 22       |           |                  |        |      |        |             |         |            | Grout                                                              |         |         |
| 22       |           | F                |        |      |        | nat         | 0       | moderate   | Light gray finely crystalline,                                     | 0       | 10      |
|          |           | 2                | 2.0    |      |        | nat         | 1       | moderate   | interbedded shale.                                                 |         |         |
| 23       | R-1       | 1.5              | 1.91   | 88   |        |             |         |            |                                                                    | 0       | 18      |
|          |           | 5                |        |      |        | nat         | 0°      | slight     | 22.5' - 23.0' - Shale stringers                                    | 0       | 10      |
| 24       |           |                  |        |      |        | nat         | 0°      | slight     | (anastamosing)                                                     |         | 10      |
|          |           | 5                |        |      | E      | - mech      | 0*      | moderate   | Mostly uneven bedding throughout<br>Run # R-2. Occasional partings | U       | 18      |
| 25       |           |                  |        |      |        |             |         |            |                                                                    | 1.7     | 1       |
|          |           | 5                |        |      |        | nat         | 0.      | moderate   |                                                                    | 0       | 10      |
| 26       |           |                  | 5.01   |      |        |             |         |            |                                                                    |         |         |
|          | R-2       | 4                | 1.31   | 66   |        | nat         | 0.0     | slight     |                                                                    | 0       | 20      |
| 27       |           |                  | 4.5    |      |        | hat         | 0.      | alight     |                                                                    |         |         |
|          |           | 5                |        |      |        | nat         | 0       | stight     | 27.71 chain marting                                                | 0       | 20      |
| 28       |           |                  |        |      |        |             |         | 1.14.25    | 27.7° - Shate parting                                              |         |         |
|          |           | 5                |        |      |        | nat         | 0°      | slight     |                                                                    | 0       | 30      |
| 29       | 1         | -                |        | -    |        |             |         |            | 7                                                                  |         |         |
| 27       |           | 5                |        |      | IF     | nat         | 10°     | none       |                                                                    | 0       | 15      |
| 70       |           | -                |        |      |        |             |         |            | Subhorizontal; more evenly bedded<br>(29,01 - 30,31)               |         |         |
| 30       |           | -                |        |      |        | nat         | 0°      | none       |                                                                    | 0       | 20      |
|          |           | 5                |        |      |        |             |         | 1.1.       |                                                                    |         |         |
| 31       | 1         |                  | 5.0'   |      | F      | nat         | 0,      | slight     | 36.2'. Anastamosing shale                                          |         | 10      |
|          | R-3       | 5                | 4.8    | 80   |        |             |         |            | stringers common.                                                  | 0       | 10      |
| 32       |           |                  |        |      |        | nat<br>mech | n 0°    | slight     |                                                                    |         |         |
|          |           | 4                |        |      |        | nat         | 0°      | slight     |                                                                    | 0       | 15      |
| 33       |           |                  |        |      |        |             |         |            |                                                                    |         |         |
|          |           | 4                |        |      | T      | nat         | 0°/     | slight     |                                                                    | 0       | 8       |
| 34 —     | -         |                  | -      |      |        | meet        | 90      |            |                                                                    |         |         |
|          |           | 4                |        |      |        | nat         | 0°      | slight     |                                                                    | 0       | 8       |
| 35       | R-4       |                  | 5.0    | 64   | -      | nat         | 0°      | slight     |                                                                    |         |         |
|          |           |                  | 4.5    |      |        | nat         | 0°      | slight     |                                                                    | 0       | 10      |
| ROCK CORE   | LOG      |             | BORING | NO.: | BR               | -102                     | 1              | PROJECT                                | NO.: 73           | 11-02                                           | PAGE 4                             | OF            | 5       | -    |
|-------------|----------|-------------|--------|------|------------------|--------------------------|----------------|----------------------------------------|-------------------|-------------------------------------------------|------------------------------------|---------------|---------|------|
| PROJECT NA  | ME: OLI  | N ROCHESTER | RI     |      |                  | DRIL                     | LING CO        | ONTRACTOR:                             | MARCOR (          | OF NEW YORK                                     |                                    |               |         |      |
| DRILL RIG   | TYPE: CA | NTERRA CT-  | 350    |      |                  | DRIL                     | LER:           | R. SCHEFF                              | ER                | DATE STARTE                                     | D: 11/03/93                        | COMPLET       | ED: 11/ | 03/9 |
| METHOD: CO  | DRE      | BIT SIZ     | E: HQ  | (3.  | 8" O.D.)         | PID I                    | METER:         | 10.6 ev F                              | ID METER          | : OVA-108                                       | PROTECTION I                       | LEVEL:        | D       |      |
| GROUND ELE  | V.: 540. | 2 SOIL DR   | ILLED: | 20.  | 0 FT.            | ROCK                     | DRILL          | ED: (COREC                             | : 32.0'           | ROLLER BIT:                                     | 2.0')                              | TOTAL         | DEPTH:  | 54.0 |
| LOGGED BY:  | E. SH    | IEPARD / N. | BRETON |      |                  | CHEC                     | KED BY         | : NB                                   |                   |                                                 | 1. 2014                            | DATE:         | 9/6/    | 94   |
| DEPTH       | RUN      | DRILLING    | PEN.   | RQD  | GRAPHIC          | CORE                     | BREAKS         | WEATHERED                              |                   | ROCK DESCRIP                                    | TION AND                           |               | MONITO  | DRIN |
| (11.)       | NU.      | (FT/MIN)    | REC.   | (%)  | LOG              | TYPE                     | DIP            | CONDITION                              |                   | COMMENTS ON                                     | DRILLING                           |               | PID     | FI   |
| 37          |          | 5           | 5.0'   |      | H                | mech<br>nat              | 0°             | none<br>slight                         | Lig<br>med<br>int | ht gray finel<br>ium bedded, D<br>erbedded shal | y crystallin<br>OLOMITE with<br>e. | ne,<br>h      | 0       | 1    |
| 38          | R-4      | 4           | 4.5'   | 64   |                  | nat<br>nat<br>nat        | 0°<br>0°<br>0° | slight<br>moderate<br>slight<br>slight |                   | ostly even be<br>36.21 - 38.21                  | edded Lamina                       | tions         | 0       |      |
| 39 ——<br>40 |          | 5           |        |      |                  | nat                      | 0°             | slight                                 |                   | ubhorizontal<br>hale partings                   | fractures a                        | long          | 0       |      |
| 41          |          | 5           | 5.0'   |      |                  | nat                      | 0°             | slight<br>slight                       | н                 | ighly fractur<br>Occasional sha                 | red (40.1' -<br>ale stringer       | 41.0')<br>s   | 0       |      |
| 42          | R-5      | 5           | 4.91   | 78   |                  | nat                      | 0°             | slight                                 | (                 | 41.1' - 42.5'                                   | )                                  |               | 0       |      |
| 43          |          | 5           |        |      | E                | nat<br>nat               | 5°<br>5°       | none<br>none<br>slight                 |                   |                                                 |                                    |               | 0       |      |
| 45          |          | 3           |        |      |                  | nat                      | 0°<br>45°      | slight                                 | M<br>4<br>F       | ostly even be<br>9.0') in Run<br>Weer shale st  | edding (44.0<br># R-6.<br>tringers | 0 -           | 0       |      |
| 46          | R-6      | 4           | 5.0'   | 84   |                  | nat<br>nat               | 5°<br>0°       | slight<br>none                         | 」<br>丁 4          | Shale parting<br>6.3')                          | zone (46.2'                        | -             | 0       |      |
| 47          |          | 5           | 4.9'   |      |                  | -nat                     | 0°             | slight                                 |                   |                                                 |                                    |               | 0       |      |
| 48          |          | 3           |        |      |                  | nat<br>nat<br>nat<br>nat | 0°<br>0°<br>0° | slight<br>slight<br>slight<br>slight   |                   |                                                 |                                    |               | 0       |      |
|             |          | 3           |        |      |                  |                          |                |                                        |                   |                                                 |                                    |               | 0       |      |
| 50          |          | 4           | 5.0'   |      | 0 <sub>0</sub> * | nat<br>nat               | 0°             | none<br>slight                         | F                 | Vugs ( < 5 mm<br>possible gyps<br>(50.7' - 50.8 | in size) wi<br>um minerali;<br>')  | ith<br>zation | 0       |      |
| - 51        | R-7      | 4           | 4.8    | 86   |                  | nat<br>nat               | 0°<br>45°      | slight<br>slight                       |                   | Fracture alon<br>vug (51.7')                    | g 5 to 10 mm                       | n size        | 0       |      |

| OCK CORE | LOG      |              | BORING | NO.: | BR       | -102       |          | PROJECT          | NO.: 73             | 11-02                                          | PAGE 5                          | OF         | 5       |        |
|----------|----------|--------------|--------|------|----------|------------|----------|------------------|---------------------|------------------------------------------------|---------------------------------|------------|---------|--------|
| ROJECT N | AME: OL  | IN ROCHESTER | RI     |      |          | DRIL       | LING C   | ONTRACTOR:       | MARCOR              | OF NEW YORK                                    |                                 |            |         |        |
| RILL RIG | TYPE: C  | ANTERRA CT-  | 350    |      | R I      | DRIL       | LER:     | R. SCHEF         | FER                 | DATE STAR                                      | TED: 11/03/93                   | 3 COMPLE   | TED: 11 | /03/93 |
| ETHOD: C | ORE      | BIT SIZ      | E: HQ  | (3.  | 8" O.D.) | PID        | METER:   | 10.6 ev          | FID METER           | : OVA-108                                      | PROTECTION                      | LEVEL:     | D       |        |
| ROUND EL | EV.: 540 | .2 SOIL DR   | ILLED: | 20.  | 0 FT.    | ROCK       | DRILL    | ED: (CORE        | ): 32.0'            | ROLLER BI                                      | T: 2.0')                        | TOTAL      | DEPTH:  | 54.0'  |
| OGGED BY | : E. SI  | HEPARD / N.  | BRETON |      |          | CHEC       | KED BY   | : N.B.           |                     |                                                |                                 | DATE:      | 96      | 94     |
| DEPTH    | RUN      | DRILLING     | PEN.   | RQD  | GRAPHIC  | CORE       | BREAKS   | WEATHERED        |                     | ROCK DESCR                                     | IPTION AND                      |            | MONIT   | ORING  |
| (FI.)    | NU.      | (FT/MIN)     | REC.   | (%)  | LOG      | TYPE       | DIP      | CONDITION        |                     | COMMENTS C                                     | N DRILLING                      |            | PID     | FID    |
| 52       | R-7      | 4            | 5.0'   | 86   | Ħ        | nat<br>nat | 0°<br>0° | slight<br>slight | Lig<br>med<br>int   | ht gray fir<br>ium bedded,<br>erbedded sh      | DOLOMITE with                   | ine,<br>th | 0       | 8      |
| F/       |          | 3            | 4.0    |      |          | mech       | 0        | stight           |                     |                                                | Lockbol                         |            | 0       | 8      |
| 54       |          |              | Ť      |      |          |            |          |                  | End<br>gro          | End of boring at 54.0' below ground surface.   |                                 |            |         |        |
|          |          |              |        |      |          |            |          |                  | Note:<br>App<br>wat | roximately<br>er used dur                      | 1400 gallons<br>ing coring.     | of         |         | -      |
|          |          |              |        |      |          |            |          |                  | nat                 | nat - Interpreted natural<br>fracture or break |                                 |            |         |        |
|          |          |              |        |      |          |            |          |                  | mech                | <ul> <li>Interpr<br/>break</li> </ul>          | Interpreted mechanical<br>break |            |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 | ~          |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         | -      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         | _      |
|          |          |              |        |      |          |            |          |                  |                     |                                                |                                 |            |         |        |

| PROJECT NAME:DRILLING CONTRACTOR:MARCOR OF NEW YORKDRILL RIG TYPE:CANTERRA CT-350DRILLER:R. SCHEFFERDATE STARTED:11/15/95 COMPLETEDMETMOD:COREBIT SIZE:NG(5.8° 0.0.2)PID METER:10.6 eVFID METER:0.4 E STARTED:11/15/95 COMPLETEDRETMOD:CORESOIL DRILLED:10.8 FT.ROCK DELED:CORED:32.2'ROLLER BIT:2.0'TOTAL DELOGGED BY:E. SHEPARD / N. BATTERPEN.RODCRAPHICCORE BEAKSVEATHEREDROCK DESCRIPTION AND<br>COMPLETEDROCK DESCRIPTION AND<br>COMPLETEDROCK DESCRIPTION AND<br>COMPLETEDROCK DESCRIPTION AND<br>COMPLETEDMOLMILLINGMILLING-12IIRODCRAPHIC<br>CORECORE BEAKSSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>ortSlight<br>meth<br>ortSlight<br>ortSlight<br>meth<br>ortSlight<br>meth<br>ortSlight<br>ortSlight<br>meth<br>ortSlight<br>ortSlight<br>meth<br>ortSlight<br>ortSlight<br>meth<br>ortSlight<br>ortSlight<br>meth<br>ortSlight<br>ortSlight<br>slight<br>ortSlight<br>ortSlight<br>ortSlight<br>or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CK CORE  | LOG      |                  | BORING     | S NO.: | BR-      | 103                        |                | PROJECT                    | NO.: 7311-03                                                         | PAGE 1                                              | OF            | 3      |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------|------------|--------|----------|----------------------------|----------------|----------------------------|----------------------------------------------------------------------|-----------------------------------------------------|---------------|--------|-------|
| DRILLER:       R. SCHEFFER       DATE STARTED: 11/15/73 COMPLETED         METMOD: CORE       BIT STZE:       NG       CLEW:       SSL. DRILLED:       DATE:       NG       PROTECTION LEVE:       D         GROUND ELEV.:       SSL. DRILLED:       10.8       FT.       ROCK DRILLED:       COMPLETED:       COMPLETED       MAG       PROTECTION LEVEL:       D         OGGED BY:       E. SHEPAND / N. BEFTON       PEN.       ROC       GROUND ELEV.:       SSL. DRILLED:       COMPLETED       COMPLETED       COMPLETED       COMPLETED       DATE:       Q         OFFIN       NO.       OFFIN       PEN.       ROC       GROUND ELEV.:       COMPLETED       COMPLETED       COMPLETED       COMPLETED       COMPLETED       COMPLETED       DATE:       Q         OFFIN       NO.       OFFIN       PEN.       ROC       CASH       PEN.       COMPLETED       COMPLETED<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OJECT NA | ME: OLI  | N ROCHESTER      | RI         |        |          | DRILL                      | ING CO         | ONTRACTOR:                 | MARCOR OF NEW YORK                                                   |                                                     |               |        |       |
| METHOD: COREBIT SIZE:NO(3.8" 0.0.)PID METER:10.6 evFID METER:OVA-108PROTECTION LEVEL:DCROUND ELEV::533.19SOIL DRILLED:10.8FT.ROCK DRILLED:(CORED: 32.2'ROLLER BIT: 2.0')TOTAL DEILOGGED BY:E. SHEPARD / N. BRETONCHECKED BY: $M_D^2$ DATE: QDATE: QDEPTMRNNRRILINGPR.RODGRAPHICCORE BRACKS WEATHREEDCORE DIFTONCORECTION LEVEL: D-12RNNRRIC.(7.3)RCC.(7.3)CORESEAKS WEATHREEDCONDITIONCONDITION-12RATE2.269nat30°slightSee boring log for MW-103 for soilMM-14R-12.269nat30°slightLight gray finely crystalline,<br>mechNOLMETER:-14R-12.269natnat30°slightLight gray finely crystalline,<br>mech-1542.269natnat0°slight-165nat0°slight-17R-255.060natnat0°slight-184nat0°slight-194nat0°slight-204nat0°slight-215nat0°slight-224 <t< td=""><td>ILL RIG</td><td>TYPE: CA</td><td>NTERRA CT-</td><td>350</td><td></td><td></td><td>DRILL</td><td>ER:</td><td>R. SCHEFF</td><td>ER DATE START</td><td>ED: 11/15/93 C</td><td>OMPLETE</td><td>D: 11/</td><td>16/9:</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ILL RIG  | TYPE: CA | NTERRA CT-       | 350        |        |          | DRILL                      | ER:            | R. SCHEFF                  | ER DATE START                                                        | ED: 11/15/93 C                                      | OMPLETE       | D: 11/ | 16/9: |
| GROUND ELEV.:533.19SOIL DRILLED:10.8FT.ROOK DRILLED:(CORED: \$2.2'ROLLER BIT: 2.0')TOTAL DEELOGGED BY:E. SKEPARD / N. BRETONCHECKED BY: $M_{2}$ DATE: QDATE: QDEFTNRNNBAIL INGPEN.ROOK GRAPHICCORE BREAXS VEALTREEDROCK DESCRIPTION AND<br>CONTITONNO12R.1REC.(X)CORE BREAXS VEALTREEDROCK DESCRIPTION AND<br>CONTITONNO-12R.1PEN.REC.(X)CORE BREAXS VEALTREED<br>CONTITONROCK DESCRIPTION AND<br>CONTITONNO-134PNORelationSee boring log for MM-103 for soil<br>descriptions from 0'- 10.8'to 12.8'<br>Roller cone drill from 10.8'to 12.8'to 12.8'to 13.8'to 12.8'to 13.8'to 12.8'to 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THOD: CO | RE       | BIT SIZ          | E: HQ      | (3.    | 8" 0.D.) | PID                        | ETER:          | 10.6 ev F                  | ID METER: OVA-108                                                    | PROTECTION LE                                       | VEL: D        |        | -     |
| LOGGED BY:E. SHEPAD / N. BRETONCHECKED BY: $MB_{2}$ DATE: $A$ DEFT: $(FT.)$ RUM<br>NO.BATE<br>PATE<br>(FT.)RED.ROD<br>RED.COMENTONROC DESCRIPTION AND<br>COMENTON ON DRILLINGM-12PATE<br>(FT.MIN)RED.(CO)COME BREAKS<br>LOGMATHREED<br>COMENTONROC DESCRIPTION AND<br>COMENTON ON DRILLINGM-12PATE<br>(FT.MIN)RED.(CO)COMENTONROC DESCRIPTION AND<br>COMENTON ON DRILLINGM-134C.H.COMENTONRoc DESCRIPTION AND<br>COMENTON ON DRILLINGM-14R-1C.Z.69Inst 30°<br>meth<br>nat 0°slight<br>meth<br>roc slight<br>meth<br>roc slightIght gray finely crystalline,<br>Interbedded shale14R-1Z.Z.69Inst 30°<br>meth<br>roc slight<br>meth<br>roc slight<br>meth<br>roc slightIght gray finely crystalline,<br>Interbedded shale165Roc Descriptions from 0' - 10.8'.<br>slight<br>roc slight<br>roc slight-17R-255.06018420418421422R-34234244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OUND ELE | V.: 533. | .19 SOIL DR      | ILLED:     | 10.    | 8 FT.    | ROCK                       | DRILLE         | D: (CORED                  | : 32.2' ROLLER BIT                                                   | : 2.0')                                             | TOTAL D       | EPTH:  | 45.0  |
| DEFTH<br>(T1.)       RUN<br>(T1.)       DRILLING<br>RETE<br>(TTYMIN)       PEN.<br>REE.<br>(%)       ROD<br>(GRAPHIC<br>(COM)       CORE BREAKS<br>(COM)       MATHERED<br>(COM)       ROCK DESCRIPTION AND<br>COMMENTS ON DRILLING       NO         -12       -12       -12       -14       R-1       -12       -12       -14       R-1       -12       -12       -14       R-1       -12       -12       -14       R-1       -12       -14       -14       R-1       -12       -14       -14       R-1       -12       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -14       -15       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16       -16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GGED BY: | E. SH    | EPARD / N.       | BRETON     |        |          | CHECK                      | ED BY          | NB                         |                                                                      |                                                     | DATE: 0       | 16/9   | 4     |
| CP1.3NO.RATE<br>(FT/MIN)REC.<br>(X)USLOGTYPE<br>TYPEDIPCOMMENTONCOMMENTS ON DRILLINGP-12Image: Common stress of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPTH     | RUN      | DRILLING         | PEN.       | RQD    | GRAPHIC  | CORE E                     | REAKS          | WEATHERED                  | ROCK DESCRI                                                          | PTION AND                                           |               | MONITO | RING  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT.)     | NO.      | RATE<br>(FT/MIN) | REC.       | (%)    | LOG      | TYPE                       | DIP            | CONDITION                  | COMMENTS ON                                                          | DRILLING                                            |               | PID    | FID   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12       |          |                  |            |        |          |                            |                |                            | See boring log fo<br>descriptions from<br>Roller cone drill<br>Grout | or MW-103 for s<br>n O' - 10.8'.<br>l from 10.8'to  | 30il<br>12.8' |        |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13       | 1000     | 4                |            | -      |          | 100                        | 700            |                            |                                                                      | 1.5.2.4.1                                           |               | 0      | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14       | R-1      | 4                | 2.2        | 69     |          | nat<br>nat<br>mech         | 0°             | slight                     | Light gray finely<br>medium bedded, DO<br>interbedded shale          | y crystalline,<br>DLOMITE with<br>e.<br>Lockport FM |               | 0      | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          | 1                | 1.1        |        | E        | nat<br>mech                | 0°             | slight                     | 1.1                                                                  |                                                     |               | 0      | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15       |          |                  | -          |        | a g      | mech                       |                |                            | - 14.8' - 15.2'                                                      | - Vugs up to 1                                      | 1 cm -        |        | -     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16       |          | 4                |            |        | Ħ        | nat<br>mech<br>nat         | 20°<br>10°     | slight<br>slight           | ⊣ size.                                                              |                                                     |               | 0      | 0     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17       |          | 5                |            |        | E        | nat<br>nat<br>nat          | 0°<br>0°<br>0° | slight<br>slight<br>slight | ]                                                                    | at the second                                       |               | 0      | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | R-2      | 5                | 5.0<br>4.9 | 60     | E        | mech<br>nat<br>mech        | 0°             | slight                     | and partings;                                                        | uneven bedding                                      | gers<br>g     | 0      | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18       |          | 4                |            |        |          | nat<br>nat                 | 0°<br>0°       | slight<br>slight           | □ 18.2' 18.6' -<br>□ □                                               | Shale stringe                                       | ers           | 0      | 0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19       |          | 4                |            |        |          | mech                       | 20.0           | slight                     | Т                                                                    |                                                     |               | 0      | 0     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 —     | -        |                  | -          | -      |          | That                       | 20             | atigut                     |                                                                      |                                                     | ł             |        | -     |
| - 22     - 22     - 23     - 23     - 24     - 24     - 24     - 25     - 25     - 25     - 25     - 25     - 25     - 25     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100     - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21       |          | 4                |            |        |          | nat                        | 40°            | slight                     | - 19.5' - 22.5'                                                      | - Numerous sha                                      | ale           | 0      | 0     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          | 5                |            |        |          | nat                        | 0°             | slight                     | stringers; un                                                        | even bedding                                        |               | 0      | 0     |
| - 23<br>- 23<br>- 24<br>- 24<br>- 25<br>- 25<br>- 25<br>- 25<br>- 5.0<br>- 5.0<br>- 10<br>- 5.0<br>- 10<br>- 10<br>- 5.0<br>- 10<br>- 1 | 22       | R-3      | 4                | 5.1        | 70     | H        | mech<br>nat                | 0°             | slight                     |                                                                      |                                                     |               | 0      | 0     |
| - 24<br>- 24<br>- 25<br>- 25<br>- 25<br>- 25<br>- 24<br>- 24<br>- 25<br>- 25    | 23       |          |                  | 5.0        |        | F        | nat<br>mech                | 0°             | slight                     |                                                                      |                                                     |               |        |       |
| - 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24       |          | 4                |            |        |          | nat<br>nat                 | 0°<br>0°       | slight<br>slight           | — 22.5' - 25.0'<br>some shale st                                     | More even be<br>ringers                             | dding;        | 0      | 0     |
| nat 0° slight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25       |          |                  |            |        | 4        | nat                        | 0°             | slight                     |                                                                      |                                                     |               | U      | 0     |
| - 26 R-4<br>- 26 R-4<br>- 26 R-4<br>- 26 R-4<br>- 4<br>- 7 nat 0° slight<br>mech mech mech mech mech mech mech mech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26       | R-4      | 4                | 5.0        | 62     |          | nat<br>nat<br>mech<br>mech | 0°<br>0°       | slight<br>slight           |                                                                      |                                                     |               | 6.0    | 40    |

| ROCK CORE    | E LOG     |                 | BORIN      | G NO.: | BR       | -103                             |                 | PROJECT                                | NO.: 7311-03 PAGE 2                                                                                                                                   | OF           | 3       |        |
|--------------|-----------|-----------------|------------|--------|----------|----------------------------------|-----------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|--------|
| PROJECT N    | NAME: OL  | IN ROCHES       | TER RI     |        |          | DRIL                             | LING C          | ONTRACTOR:                             | MARCOR OF NEW YORK                                                                                                                                    |              |         |        |
| DRILL RIC    | G TYPE: C | ANTERRA         | ст-350     |        |          | DRIL                             | LER:            | R. SCHEF                               | FER DATE STARTED: 11/15/93                                                                                                                            | COMPLE       | TED: 11 | /16/93 |
| METHOD: 0    | CORE      | BIT             | SIZE: HQ   | (3.    | 8" O.D.) | PID                              | METER:          | 10.6 ev                                | FID METER: OVA-108 PROTECTION                                                                                                                         | LEVEL:       | D       |        |
| GROUND EL    | EV.: 533  | .19 SOIL        | DRILLED:   | 10.    | 8 FT.    | ROCK                             | DRILL           | ED: (CORE                              | D: 32.2' ROLLER BIT: 2.0')                                                                                                                            | TOTAL        | DEPTH:  | 45.0'  |
| LOGGED BY    | 1: E. S   | HEPARD /        | N. BRETON  |        |          | CHEC                             | KED BY          | : NB.                                  |                                                                                                                                                       | DATE:        | all     | 94     |
| DEPTH        | RUN       | DRILLIN         | G PEN.     | RQD    | GRAPHIC  | CORE                             | BREAKS          | WEATHERED                              | ROCK DESCRIPTION AND                                                                                                                                  | -            | MONIT   | ORING  |
| (FT.)        | NO.       | RATE<br>(FT/MIN | ) REC.     | (%)    | LOG      | TYPE                             | DIP             | CONDITION                              | COMMENTS ON DRILLING                                                                                                                                  |              | PID     | FID    |
| - 28<br>- 29 | R-4       | 4               | 5.0<br>4.7 | 62     |          | nat<br>mech<br>nat<br>nat<br>nat | 10°<br>0°<br>0° | slight<br>slight<br>slight<br>moderate | Light gray finely crystalline<br>medium bedded, DOLOMITE with<br>interbedded shale.<br>Lockport FM<br>2.28.7' Weathered fracture alc<br>shale parting | ,<br>n<br>ng |         |        |
| - 30         |           | 4               |            |        | H        | mech                             |                 |                                        |                                                                                                                                                       |              |         |        |
| - 31         |           | 5               |            |        |          | nat                              | 0°              | slight                                 |                                                                                                                                                       |              |         |        |
|              |           | 4               |            |        |          | mech                             |                 |                                        |                                                                                                                                                       | 2            |         |        |
| - 32         | R-5       | 4               | 4.0<br>3.9 | 60     |          | nat                              | 0°              | moderate                               |                                                                                                                                                       |              |         | -      |
| - 33         |           | 4               |            |        |          | mech<br>mech<br>mech             |                 |                                        | 1                                                                                                                                                     |              |         | -      |
| - 34         |           | 10              |            |        | Ħ        | meen                             |                 |                                        | – 33.0' - 35.5' Mostly mecha                                                                                                                          | nical        |         | -      |
| - 35         |           | 10              |            |        |          | mech<br>mech                     |                 | _                                      | Mostly even bedding to end<br>of boring.                                                                                                              | i.           |         | -      |
| 36           |           |                 |            |        |          | meen                             |                 |                                        |                                                                                                                                                       |              | -       |        |
|              |           | 10              | 6.0        |        |          |                                  |                 |                                        |                                                                                                                                                       |              |         |        |
| 37           | R-6       | 15              | 5.6        | 80     |          |                                  |                 |                                        |                                                                                                                                                       |              |         | -      |
| 38           |           | 10              |            |        |          | nat<br>mech                      | 0°              | slight                                 |                                                                                                                                                       |              |         | -      |
| - 39         |           | 10              |            |        |          | nat                              | 0-              | stight                                 |                                                                                                                                                       |              |         | -      |
| 40           |           | 10              |            |        |          | mech                             |                 |                                        |                                                                                                                                                       |              |         | -      |
| - 41         |           |                 | 5.4        | - 1    |          | mech                             |                 |                                        |                                                                                                                                                       |              | -       | -      |
| - 42         | R-7       | 0               | 5.0        | 94     | H        | nat                              | 0°              | slight                                 |                                                                                                                                                       |              |         | -      |
|              |           | 10              |            |        |          |                                  | Ŭ               | Stight                                 |                                                                                                                                                       |              |         |        |

| ROCK CORE LOG         | BORING                                                                                              | NO.: BR     | -103                        | PROJECT N                  | 10.: 7311-03                                                                                               | PAGE 3                                                                                    | OF                | 3        |
|-----------------------|-----------------------------------------------------------------------------------------------------|-------------|-----------------------------|----------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------|----------|
| PROJECT NAME: OLIN R  | OCHESTER RI                                                                                         |             | DRILLING C                  | CONTRACTOR:                | MARCOR OF NEW YORK                                                                                         |                                                                                           |                   |          |
| DRILL RIG TYPE: CANTE | RRA CT-350                                                                                          |             | DRILLER:                    | R. SCHEFFE                 | R DATE STAR                                                                                                | TED: 11/15/93 (                                                                           | COMPLETED:        | 11/16/9  |
| METHOD: CORE          | BIT SIZE: HQ                                                                                        | (3.8" O.D.) | PID METER:                  | 10.6 ev FI                 | ID METER: OVA-108                                                                                          | PROTECTION LE                                                                             | EVEL: D           |          |
| GROUND ELEV.: 533.19  | SOIL DRILLED:                                                                                       | 10.8 FT.    | ROCK DRILL                  | ED: (CORED:                | 32.2' ROLLER BI                                                                                            | T: 2.0')                                                                                  |                   | (H· 45 0 |
| LOGGED BY: E. SHEPA   | RD / N. BRETON                                                                                      |             | CHECKED BY                  | : NB                       |                                                                                                            |                                                                                           | DATE: A           | Ir lau   |
| DEPTH RUN DR          | ILLING PEN.                                                                                         | RQD GRAPHIC | CORE BREAKS                 | WEATHERED                  | ROCK DESCR                                                                                                 | IPTION AND                                                                                | MON               | 10/11    |
| (FT.) NO. RA          | TE<br>T/MIN) REC.                                                                                   | (%) LOG     |                             | CONDITION                  | COMMENTS O                                                                                                 | N DRILLING                                                                                | DI                |          |
| - 43                  |                                                                                                     | H           | nat 0º                      | aliaht                     | 12-64 621                                                                                                  |                                                                                           |                   | FID      |
| - 44 R-7              | $\begin{array}{c} 10 \\ 0 \end{array} \qquad \begin{array}{c} 5.4 \\ \overline{5.0} \\ \end{array}$ | 94          | nat 0°<br>nat 0°<br>nat 40° | slight<br>slight<br>slight | Light gray finel<br>medium bedded, D<br>interbedded shal                                                   | y crystalline,<br>OLOMITE with<br>e.<br>Lockport FM                                       | a                 |          |
|                       |                                                                                                     |             |                             |                            | End of boring a<br>ground surface<br>Note:<br>Lost 450<br>during ro<br>nat - Int<br>cor<br>mech Int<br>cor | gallons of wate<br>ck coring.<br>erpreted natura<br>e break<br>erpreted mechar<br>e break | er<br>al<br>nical |          |

| CT N     | NAME: OLIN   | ROCHESTER RI | ING NU.           | ; 1/1//-1 | DRILLING CONTRACTOR: MARCOR OF NEW YORK                                                                                                                                                          | 01 4       |         |
|----------|--------------|--------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|
| RIC      | TYPE - CAN   | TERRA CT 350 |                   |           | DRILLER: R. SCHEFFER DATE STARTED: 12/21/93 COMP                                                                                                                                                 | PLETED: 1/ | 4/94    |
| D : HS   | SA/DR.& WASH | AUGER SIZE:  | 4.25              | " I.D.    | PID METER: 10.6 ev FID METER: OVA-108 PROTECTION LEVEL:                                                                                                                                          | : MOD D    |         |
| DEL      | EV.: 537.5   | SOIL DRILLED | : 18.6'           | FT.       | ROCK DRILLED: CORE: 19.2' ROLLER BIT: 2.0' TO                                                                                                                                                    | OTAL DEPTH | : 39.8' |
| D B)     | (* E SHEE    | PHARD        |                   |           | CHECKED BY: NG                                                                                                                                                                                   | ATE: 9/6   | 194     |
| <u>н</u> | SAMPLE       | BLOUS PEP    | PEN               | GRAPHIC   |                                                                                                                                                                                                  | MONITORING | (PPM)   |
| )        | NUMBER       | 6-INCHES     | REC               | LOG       | DESCRIPTION CLASSIF.                                                                                                                                                                             | PID FID    | OTHER   |
|          |              |              |                   |           | NOTE: Soil data from 2'-8.5' from MW-104<br>Soil data from 8.5'-18.6' from BR-104.<br>0.0'-2.0' Auger through gravel drive, no<br>sample taken.                                                  |            |         |
|          | s-1          | 4-4-8-22     | 2.0<br>1.0        |           | 2.0'-2.3' Black to Dark Brown SAND, coarse, GW<br>some Gravel, moist. 2.3'-3.0' Light Brown SAND, fine, some SM<br>Silt, moist.                                                                  | 0 0        |         |
|          | s-2          | 4-4-29-32    | 2.0<br>1.5        |           | 4.0'-4.4' Similar to above SM<br>4.4'-5.5' Reddish Brown to orange brown SM<br>SAND, medium to coarse, little to<br>some Silt, trace Gravel.                                                     | 0 0        |         |
|          | s-3          | 12-24-32-44  | 2.0<br>1.3        |           | 6.0'-6.7' Similar to above. SM<br>6.7'-7.3' Reddish Brown SAND, fine, SM<br>little to some Silt.                                                                                                 | 0 0        |         |
|          | s-4          | 50/0.51      | 0.5'              |           | 8.0'-8.5' Similar to above.<br>Hit refusal at 8.5' on boulder;Continued<br>soil sampling at BR-104 (see below)<br>Augered w/o sampling from 0' to 10'<br>in BR-104. Sampling continued from 10'. | 0 0        |         |
|          | s-5          | 11-20-26-27  | $\frac{2.0}{1.7}$ |           | 10.0'-12.0' Light Brown SAND, fine to<br>medium, little to some Silt. SM                                                                                                                         | 0 0        |         |
|          | S-6          | 6-7-15-26    | 2.0<br>1.7        |           | 12.0'-14.0' Light Brown SAND, fine, some<br>Silt, wet. SM                                                                                                                                        | 0 0        |         |
|          | s-7          | 14-24-38-25  | 2.0<br>1.2        |           | 14.0'-14.4' Similar to above. SM<br>14.0'-14.9' Brown SAND, coarse, little Silt, SP<br>trace Gravel.<br>14.9'-15.2' Brown SAND, medium to coarse. SW                                             | 0 0        |         |

| SOIL   | ORING LOG   | ВО             | RING NO.   | : BR-1  | 04/MW-104 PROJECT NO.: 7311-03 PA          | GE 2       | OF      | 4       |      |
|--------|-------------|----------------|------------|---------|--------------------------------------------|------------|---------|---------|------|
| PROJE  | T NAME: OL  | N ROCHESTER RI |            |         | DRILLING CONTRACTOR: MARCOR OF NEW YORK    |            |         |         | -    |
| DRILL  | RIG TYPE: C | NTERRA CT 350  |            |         | DRILLER: R. SCHEFFER DATE STARTED: 1       | 0/26/93 CO | MPLETED | ): 1/4/ | 194  |
| METHO  | : HSA       | AUGER SIZE     | : 4.25     | 5" I.D. | PID METER: 10.6 ev FID METER: OVA-108 PROT | ECTION LEV | EL: N   | 10D D   |      |
| GROUN  | ELEV.: 537  | 5 SOIL DRILL   | ED: 18.6   | 51      | ROCK DRILLED:CORE: 19.2' ROLLER BIT: 2.0   | )'         | TOTAL   | DEPTH   | 39.8 |
| LOGGE  | BY: E. SHE  | HARD           |            |         | CHECKED BY: N.B.                           |            | DATE:   | 9/61    | 194  |
| DEPT   | SAMPLE      | BLOWS PER      | PEN.       | GRAPHIC | SAMPLE                                     | USCS       | MC      | DNITORI | ING  |
| - 16 - | NUMBER      | 0-INCHES       | REC.       | LOG     | DESCRIPTION                                | CLASSIF.   | PID     | FID     | OTHE |
| - 17   | s-8         | 25-17-38-32    | 2.0<br>1.5 |         | 16.0'-18.0' Similar to above.              | SW         | NA .    | NA      |      |
| 18 -   |             |                |            |         |                                            |            |         |         |      |
| 18.8   |             |                | -          |         |                                            |            |         |         |      |
|        |             |                |            |         | Refusal with augers at 18.8'               |            |         |         |      |
|        |             |                |            |         | Remainder of bosing cored (acc peck        |            |         |         |      |
|        |             |                |            |         | core log for BR-104)                       |            |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            |            |         | -       |      |
| -      |             |                |            |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |
| -      |             |                |            |         |                                            |            |         | 50      |      |
|        |             |                |            |         |                                            |            |         |         |      |
|        | -           |                | -          |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            | 1          |         |         |      |
| -      |             |                |            |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |
|        |             |                | -          |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |
| -      |             |                |            |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |
| -      |             |                |            |         |                                            |            |         |         |      |
|        |             |                | -          |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |
|        |             |                |            |         |                                            | 1.1        |         |         |      |
|        |             |                |            |         |                                            |            |         |         |      |

| ROCK CORE    | DCK CORE LOG BORING NO.: B |             |              |     |          |            |           | PROJECT              | NO.: 7311-03 PAGE 3                                                                                                  | OF 4      |         |
|--------------|----------------------------|-------------|--------------|-----|----------|------------|-----------|----------------------|----------------------------------------------------------------------------------------------------------------------|-----------|---------|
| PROJECT NA   | ME: OLI                    | N ROCHESTE  | RRI          |     |          | DRIL       | LING CO   | ONTRACTOR:           | MARCOR OF NEW YORK                                                                                                   |           |         |
| DRILL RIG    | TYPE: CA                   | NTERRA CT   | -350         |     |          | DRIL       | LER:      | R. SCHEFF            | ER DATE STARTED: 01/12/94 COM                                                                                        | PLETED: 0 | 1/12/94 |
| METHOD: CO   | DRE                        | BIT SI      | ZE: HQ       | (3. | 8" O.D.) | PID        | METER:    | 10.6 ev F            | ID METER: OVA-108 PROTECTION LEVE                                                                                    | L: D      |         |
| GROUND ELE   | V.: 537.                   | 56 SOIL D   | RILLED:      | 18. | 6 FT.    | ROCK       | DRILL     | ED: (CORED           | : 19.2' ROLLER BIT: 2.0') TO                                                                                         | TAL DEPTH | : 39.8' |
| LOGGED BY:   | E. SH                      | IEPARD / N. | BRETON       | 1.1 |          | CHEC       | KED BY    | : 105                | DA                                                                                                                   | TE: 9/61  | 44      |
| DEPTH        | RUN                        | DRILLING    | PEN.         | RQD | GRAPHIC  | CORE       | BREAKS    | WEATHERED            | ROCK DESCRIPTION AND                                                                                                 | MON I     | TORING  |
| ((1.)        | NU.                        | (FT/MIN)    | REC.         | (%) | Log      | TYPE       | DIP       | construct            |                                                                                                                      | PID       | FID     |
| - 19<br>- 20 |                            |             | Ī            |     |          |            |           |                      | See soil boring log for MW/BR-104<br>for soil descriptions from 0'-18.<br>Roller cone drill from 18.6'- 20.<br>Grout | 61        |         |
| - 21         |                            | 4           |              |     |          | nat<br>nat | 90°<br>0° | slight<br>slight     | Light gray finely crystalline,<br>medium bedded, DOLOMITE with<br>interbedded shale.                                 | 0         | 20      |
| - 22         |                            | 1.4         |              |     | F        | nat        | 0°        | slight               |                                                                                                                      | 4 67      | 100     |
|              |                            | 5           |              |     |          |            | 45.0      | altabe               | surface                                                                                                              | ting 0./  | 100     |
| - 23         |                            |             |              |     | IT       | nat        | 15        | stight               | - 22.0' - Fracture along shale part                                                                                  | -ing      | 1       |
| 3.11         |                            | 3           |              |     | H        | nat<br>nat | 0°        | slight<br>slight     |                                                                                                                      | 5.0       | 60      |
| - 24         |                            | 4           | 9.0          |     | 0.       | Pi         |           |                      | - 24.6' - 1" size vug showing possi<br>] gypsum mineralizaton                                                        | ible 0    | 20      |
| - 25         | R-1                        | 1.00        | 8.3          | 88  | H        | nat        | 0.        | moderate             | 24.8' - 0.5" size vug                                                                                                |           |         |
| - 26         |                            | 3           |              |     |          | mech       |           |                      | Note: Little to no fractures from<br>25' to 28'; anastamosing<br>shale stringers present                             | n 0       | 20      |
| - 27         |                            |             |              |     |          |            |           |                      |                                                                                                                      |           |         |
| 20           |                            | 3           |              |     | 0        |            |           |                      | - 27.5' - 0.7" size vug                                                                                              | 13        | 100     |
| - 20         |                            | 3           |              |     | H        | nat        | 0°        | slight               | - 28.2' - Fracture along shale par                                                                                   | ting<br>0 | 100     |
| - 29         |                            | 3           |              |     |          | nat        | 0.        | slight               |                                                                                                                      | 0         | 50      |
| - 30<br>- 31 |                            | 3           |              |     |          | nat<br>nat | 0°<br>0°  | moderate<br>moderate | - 30.5'-30.8' - Fractures along sha<br>partings                                                                      | ale O     | 50      |
| - 32         | R-2                        | 3           | 10.1<br>10.0 | 90  |          | nat<br>nat | 0°        | slight<br>slight     | Note: Mostly uneven bedding from<br>29.8' to 36.8'                                                                   | 0         | 50      |
|              |                            | 3           |              |     |          | nat        | 0°        | slight               |                                                                                                                      | 0         | 0       |
| - 33         |                            | 3           |              |     |          | nat        | 0°        | slight               |                                                                                                                      | 0         | 0       |

| ROCK CORE LOG                  | BORIN             | G NO.: | BR       | -104               |             | PROJECT          | NO.: 73                   | 11-03                                                                                   | PAGE 4                                                                                               | OF                   | 4       |       |
|--------------------------------|-------------------|--------|----------|--------------------|-------------|------------------|---------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|---------|-------|
| PROJECT NAME: OLIN RO          | OCHESTER RI       |        |          | DRILL              | ING C       | ONTRACTOR:       | MARCOR (                  | OF NEW YORK                                                                             |                                                                                                      |                      |         |       |
| DRILL RIG TYPE: CANTER         | RRA CT-350        |        | -        | DRILL              | ER:         | R. SCHEFF        | FER                       | DATE STAR                                                                               | TED: 01/12/93                                                                                        | COMPLE               | TED: 01 | /12/5 |
| METHOD: CORE                   | BIT SIZE: HQ      | (3.8   | 9" O.D.) | PID N              | HETER:      | 10.6 ev F        | FID METER                 | OVA-108                                                                                 | PROTECTION                                                                                           | LEVEL:               | D       |       |
| GROUND ELEV.: 537.56           | SOIL DRILLED:     | 18.6   | FT.      | ROCK               | DRILL       | ED: (CORED       | ): 19.2'                  | ROLLER BI                                                                               | T: 2.0')                                                                                             | TOTAL                | DEPTH:  | 39.8  |
| LOGGED BY: E. SHEPAR           | RD / N. BRETON    |        |          | CHECK              | CED BY      | : N.B.           |                           |                                                                                         |                                                                                                      | DATE:                | a 11.   | 194   |
| DEPTH RUN DRJ<br>(FT.) NO. RAT | ILLING PEN.       | RQD    | GRAPHIC  | CORE E             | BREAKS      | WEATHERED        |                           | ROCK DESCR                                                                              | IPTION AND                                                                                           | 1                    | MONIT   | ORING |
| 34 (F1                         | T/MIN) REC.       | (%)    | LUG      | TYPE               | DIP         | CONDITION        | _                         | COMMENTS C                                                                              | N DRILLING                                                                                           |                      | PID     | FID   |
| - 35                           | 3                 |        | -        | nat                | 0°          | slight           | Light<br>medium<br>interb | gray finel<br>bedded, D<br>bedded shal                                                  | y crystalline<br>OLOMITE with<br>e.<br>Lockport FM                                                   |                      | 0       | 0     |
| - 36                           | 3                 |        | -        | nat                | 0° <u>.</u> | slight           |                           |                                                                                         |                                                                                                      |                      |         |       |
| — 37 R-2                       | 3<br>10.1<br>10.0 | 90     |          | pat                | ٥°          | slight           | - 36.8'                   | - 39.8' -<br>wi<br>st                                                                   | More even bed<br>th fewer shal<br>ringers than                                                       | ding<br>e<br>above.  | 0       | 0     |
| - 38                           | 3                 |        |          | mech               | U           | stight           | - 37.7'<br>- 38.3'        | - Shale pa<br>- Shale pa                                                                | rting                                                                                                |                      | 0       | 0     |
| - 39                           | 2                 |        | 111      | mech<br>nat<br>nat | 10°<br>10°  | slight<br>slight | ~                         |                                                                                         |                                                                                                      |                      | 0       | 0     |
| - 40                           | 5                 |        | H        | mech               | _           |                  |                           |                                                                                         |                                                                                                      |                      | 0       | 0     |
|                                |                   |        |          |                    |             |                  | End o<br>grour<br>Note:   | f boring a<br>d surface<br>Lost 800<br>during ro<br>nat - Int<br>cor<br>mech Int<br>cor | t 39.8' below<br>gallons of wa<br>ck coring.<br>erpreted natu<br>e break<br>erpreted mech<br>e break | ter<br>ral<br>anical |         |       |

| ROCK CORE | LOG      |             | BORIN             | G NO.: | BR       | -105       |           | PROJECT              | NO.: 7311-03                                                         | PAGE 1 OF                                          | 2        | _        |
|-----------|----------|-------------|-------------------|--------|----------|------------|-----------|----------------------|----------------------------------------------------------------------|----------------------------------------------------|----------|----------|
| PROJECT N | AME: OL  | IN ROCHESTE | RRI               |        |          | DRIL       | LING C    | ONTRACTOR:           | MARCOR OF NEW YORK                                                   |                                                    |          | 14.47.55 |
| RILL RIG  | TYPE: C  | ANTERRA CT  | -350              |        |          | DRIL       | LER:      | R. SCHEFF            | ER DATE START                                                        | ED: 12/06/93 COMPLE                                | TED: 12, | /06/93   |
| ETHOD: C  | ORE      | BIT SI      | ZE: HQ            | (3.    | 8" O.D.) | PID        | METER:    | 10.6 ev F            | ID METER: OVA-108                                                    | PROTECTION LEVEL:                                  | D        |          |
| ROUND EL  | EV.: 536 | .9 SOIL D   | RILLED:           | 15.    | 0 FT.    | ROCK       | DRILL     | ED: (CORED           | : 25.5' ROLLER BIT                                                   | : 5.0') TOTAL                                      | DEPTH:   | 45.5'    |
| OGGED BY  | : E.S    | HEPARD / N. | BRETON            | 1      |          | CHEC       | KED BY    | : N.B.               |                                                                      | DATE:                                              | 9/6/     | 94       |
| DEPTH     | RUN      | DRILLING    | PEN.              | RQD    | GRAPHIC  | CORE       | BREAKS    | WEATHERED            | ROCK DESCRI                                                          | DRILLING                                           | MONIT    | ORING    |
|           | ino.     | (FT/MIN)    | REC.              | (%)    | Log      | TYPE       | DIP       | CONDITION            | Some To on                                                           | DATEETING                                          | PID      | FID      |
| 19        |          |             |                   |        |          |            |           |                      | See boring log fo<br>descriptions from<br>Roller cone drill<br>Grout | r MW-105 for soil<br>0'-15'.<br>from 15.0'to 20.0' |          |          |
| 20        | R-1      | 3           | $\frac{1.0}{0.6}$ | 50     |          | nat<br>nat | 0°<br>0°  | slight'<br>slight    | Light gray finely<br>medium bedded, DO<br>interbedded shale          | crystalline,<br>LOMITE with<br>Lockport FM         | 0        | 15       |
|           |          | 3           |                   |        | F        | nat<br>nat | 10°<br>0° | slight<br>slight     |                                                                      |                                                    | 0        | 15       |
| 22        |          |             |                   |        | H        | nat<br>nat | 20°<br>0° | slight<br>slight     |                                                                      |                                                    |          |          |
|           |          | 4           |                   |        |          | nat        | 0°        | slight               |                                                                      |                                                    | 0        | 80       |
| 23        |          |             | 5.0               |        | H        | nat<br>nat | 0°<br>5°  | moderate<br>moderate |                                                                      |                                                    |          |          |
|           | R-2      | 3           | 4.3               | 58     |          |            |           |                      |                                                                      |                                                    | 0        | 80       |
| 24        |          | -1          | 11                |        |          | nat        | 5°        | moderate             |                                                                      | 2.2                                                |          |          |
| 25        |          | 4           |                   |        |          | nat        | 10°       | slight               |                                                                      |                                                    | 0        | 115      |
| 25        |          | 4           |                   |        | F        | nat        | 0°        | slight               |                                                                      |                                                    | 0        | 115      |
| 26 —      |          | 4           |                   |        |          | nat        | 0°        | slight               | 26.2' - Highly fra                                                   | ctured along shale                                 | 0.8      | 20       |
| 27        |          |             |                   |        | H        | nat        | 0°        | slight               |                                                                      |                                                    |          |          |
| 7.        |          | 4           |                   |        | H        | nat        | 0°        | slight               |                                                                      |                                                    | 0        | 20       |
| 28        | 5.01     |             | 5.0               |        |          | nat        | 0°        | slight               | 28.01 - Highly fra<br>partings                                       | ctured along shale                                 |          |          |
|           | R-3      | 4           | 4.1               | 64     |          |            |           |                      | 28.7' - 28.9' - Sa                                                   | me as above (highly                                | 0        | 20       |
| 29        |          |             |                   |        |          | nat        | 0ª        | slight               | fr                                                                   | actured)                                           |          | 15       |
| 70        |          | 4           |                   |        |          |            | 0.0       | alishe               | 29.0' - 50.0' - Hi<br>al                                             | ong shale parting                                  | 0.8      | 15       |
| 50        |          | 4           |                   |        |          | nat        | 0°        | slight               |                                                                      |                                                    | 1.8      | 15       |
| 31 —      |          |             | -                 | -      |          | nat        | 0°        | slight               |                                                                      |                                                    |          | -        |
|           |          | 3           |                   |        |          | nat        | 0°        | slight               | 31.9' - 33.3'- Fra                                                   | ctured along shale                                 | 0        | 15       |
| 32        | R-4      |             | 3 5.0 4.8         | 80     | H        | nat        | 0°        | slight               | par                                                                  | tings                                              |          |          |
|           |          | 3           |                   |        |          | nat        | 0°        | slight               |                                                                      |                                                    | 0        | 10       |
| 33        |          | 4           | 4                 |        |          | nat        | 0°        | slight               |                                                                      |                                                    | 0.8      | 10       |

| ROCK CORE    | LOG      |              | BORING     | G NO.: | BR       | -105                            |                        | PROJECT                                          | NO.: 7311-03                                            | PAGE 2                                                                                                                                                    | OF                                         | 2       |       |
|--------------|----------|--------------|------------|--------|----------|---------------------------------|------------------------|--------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|-------|
| PROJECT N    | AME: OL  | IN ROCHESTER | RI         |        |          | DRIL                            | LING CO                | ONTRACTOR:                                       | MARCOR OF NE                                            | W YORK                                                                                                                                                    |                                            |         |       |
| DRILL RIG    | TYPE: C  | ANTERRA CT   | -350       |        |          | DRIL                            | LER:                   | R. SCHEFF                                        | ER DAT                                                  | E STARTED: 12/06/93                                                                                                                                       | 3 COMPLET                                  | ED: 12/ | 06/9  |
| METHOD: C    | ORE      | BIT SIZ      | ZE: HQ     | (3,    | 8" 0.D.) | PID                             | METER:                 | 10.6 ev F                                        | ID METER: OVA                                           | -108 PROTECTION                                                                                                                                           | LEVEL:                                     | D       |       |
| GROUND EL    | EV.: 536 | .9 SOIL DE   | RILLED:    | 15.    | 0 FT.    | ROCK                            | DRILL                  | ED: (CORED                                       | : 25.5' ROL                                             | LER BIT: 5.0')                                                                                                                                            | TOTAL                                      | DEPTH:  | 45.5  |
| LOGGED BY    | : E.S    | HEPARD / N.  | BRETON     |        |          | CHEC                            | KED BY                 | NB.                                              |                                                         |                                                                                                                                                           | DATE:                                      | 9/6/    | '94   |
| DEPTH        | RUN      | DRILLING     | PEN.       | RQD    | GRAPHIC  | CORE                            | BREAKS                 | WEATHERED                                        | ROCK                                                    | DESCRIPTION AND                                                                                                                                           |                                            | MONITO  | DRING |
| 7/           | NO.      | (FT/MIN)     | REC.       | (%)    | LUG      | TYPE                            | DIP                    | CONDITION                                        | COMM                                                    | ENTS ON DRILLING                                                                                                                                          |                                            | PID     | FID   |
| - 35<br>- 36 | R-4      | 3            | 5.0<br>4.8 | 80     |          | nat<br>nat<br>nat<br>nat<br>nat | 0°<br>30°<br>30°<br>0° | slight<br>slight<br>moderate<br>slight<br>slight | Light gray<br>medium bed<br>interbedde<br>34.01-34.     | finely crystallin<br>ded, DOLOMITE with<br>d shale.<br>Lockport Fi<br>05' - Wedge shaped<br>/3 way into core.                                             | e,<br>M<br>Vug                             | 0       | 10    |
| 37           |          | 3            |            |        |          |                                 |                        | aliata                                           |                                                         | 9' - 30° fractures<br>h zone.                                                                                                                             | along                                      | 0.8     | 10    |
| 30           |          | 3            |            |        | 0        | nat                             | 0°                     | slight                                           | — 37.1'-37.<br>apparent                                 | 2' - 0.5" size vu<br>gypsum mineralizat                                                                                                                   | g with<br>ion.                             | 0       | 10    |
| - 38         | R-5      | 3            | 5.0<br>5.0 | 91     |          | nat                             | 0°                     | slight                                           | ∟ 37.5' 0.2                                             | " size vug                                                                                                                                                |                                            | 0.8     | 10    |
| - 39         |          | 3            |            |        |          | nat                             | 0°                     | slight                                           |                                                         |                                                                                                                                                           |                                            | 0       | 10    |
| - 40         |          | 3            |            |        | -        | nat                             | 0°                     | moderate                                         |                                                         |                                                                                                                                                           |                                            | 0.8     | 15    |
| - 41         |          | 3            |            |        |          |                                 |                        |                                                  | 41.0'-45.<br>with occa                                  | 5' - More even bed<br>asional shale strin                                                                                                                 | ding<br>gers                               |         |       |
| - 42         |          | 3            |            |        |          | nat                             | 0°                     | slight                                           |                                                         |                                                                                                                                                           |                                            |         |       |
| - 43         | R-6      | 3            | 4.5        | 93     |          | nat<br>nat                      | 0°                     | moderate<br>slight                               | 42,8'-43.<br>along sha                                  | .0' - Weathered fra<br>ale laminae.                                                                                                                       | cture                                      |         |       |
| - 44         |          | 4            |            |        | F        | nat                             | 0°                     | slight                                           |                                                         |                                                                                                                                                           |                                            |         |       |
| - 45         |          | 3            |            |        |          | nat                             | 0°                     | slight<br>slight                                 | 44.5'-45.<br>small 0.1                                  | .5' - slightly porc<br>I" size vugs.                                                                                                                      | ous with                                   |         |       |
|              |          |              |            |        |          |                                 |                        |                                                  | End of bo<br>ground su<br>Note: Ap<br>lo<br>nat<br>mech | oring at 45.5' belo<br>urface.<br>oproximately 1950 g<br>ost during coring.<br>- interpreted natu<br>fracture or core<br>- interprteted med<br>core break | w<br>mallons<br>ural<br>e break<br>chnical |         |       |

)

į

| ROCK CORE           | LOG      |             | BORIN      | G NO.: | BR       | -105E       | )          | PROJECT          | NO.: 7311-03 PAGE 1 OF                                                                                             | 6        |          |
|---------------------|----------|-------------|------------|--------|----------|-------------|------------|------------------|--------------------------------------------------------------------------------------------------------------------|----------|----------|
| PROJECT N           | AME: OL  | IN ROCHESTE | R RI       |        |          | DRIL        | LING C     | ONTRACTOR:       | MARCOR OF NEW YORK                                                                                                 |          |          |
| DRILL RIG           | TYPE: C  | ANTERRA CT  | -350       |        | -        | DRIL        | LER:       | R. SCHEFF        | FER DATE STARTED: 12/09/93 COMPL                                                                                   | ETED: 12 | 2/21/93  |
| METHOD: C           | ORE      | BIT SI      | ZE: HQ     | (3.    | 8" O.D.) | PID         | METER:     | 10.6 ev 1        | FID METER: OVA-108 PROTECTION LEVEL:                                                                               | D        | _        |
| GROUND EL           | EV.: 536 | .7 SOIL D   | RILLED:    | 15.    | 4 FT.    | ROCK        | DRILL      | ED: (COREC       | D: 92.6'* ROLLER BIT: 2.0') TOTA                                                                                   | DEPTH    | 110.0    |
| LOGGED BY           | : E.S    | HEPARD / N. | BRETON     |        |          | CHEC        | KED BY     | : N-B            | DATE                                                                                                               | : 916    | 194      |
| DEPTH               | RUN      | DRILLING    | PEN.       | RQD    | GRAPHIC  | CORE        | BREAKS     | WEATHERED        | ROCK DESCRIPTION AND                                                                                               | MONIT    | ORING    |
| (FT.)               | NO.      | (FT/MIN)    | REC.       | (%)    | LOG      | TYPE        | DIP        | CONDITION        | COMMENTS ON DRILLING                                                                                               | PID      | FID      |
| 16                  |          |             |            |        |          |             |            |                  | See Boring log for MW-105 for soil<br>descriptions from O' to 15'.<br>Roller cone drill from 15.4'to 17.4<br>Grout |          |          |
| 17.4° —<br>18<br>19 | R-1      | 2           | 2.0<br>1.7 | 0      |          | nat         | 0°<br>10°  | slight           | Light gray finely crystalline,<br>medium bedded, DOLOMITE with<br>interbedded shale.<br>Lockport FM                | 0        | 50<br>50 |
| 20                  |          | 5           |            |        | T        | nat         | 50°        | slight           | 17.4'-19.1' - Vertical fracture                                                                                    | 0        | 50       |
| 21                  |          | 6           |            |        | Ш        | nat         | 0°         | slight           | Fractures are subhorizontal and<br>along shale partings which dip fro                                              | O        | 50       |
| 22                  | R-2      | 5           | 5.0<br>5.0 | 64     |          | nat<br>mech | 10°        | moderate         | 0° to 30° in run R-2.                                                                                              | 0        | 60       |
| 23                  |          | 5           |            |        | -        | nat         | 15°        | slight           |                                                                                                                    | 0        | 20       |
| 24                  |          | 6           |            |        |          | nat         | 0.         | moderate         | the second second                                                                                                  | 0        | 50       |
| 25                  |          | 5           |            |        |          | nat<br>mech | 0°         | slight           | Uneven bedding and shale stringers<br>is present in Run R-3.<br>Fractures along shale stringers                    | 0        | 50       |
| 26                  |          | 3           |            |        |          | mech<br>nat | 0°         | slight           | dip from O° to 10° in Run R-3.                                                                                     | 0        | 15       |
| 27                  | R-3      | 3           | 4.7        | 64     |          | nat<br>nat  | 30°<br>0°  | slight<br>slight |                                                                                                                    | 0        | 10       |
| 28                  |          | 3           |            |        |          | nat<br>nat  | 0°         | slight           |                                                                                                                    | 0        | 10       |
| 29                  |          | 3           |            |        |          | nat         | 0°         | slight           |                                                                                                                    | 0        | 10       |
| 30                  | R-4      | NA          | 1.0<br>0.4 | 0      | 5        | nat<br>nat  | 10°<br>10° | slight<br>slight | Drill bit hung up in Run R-4. Dis-<br>continued rock coring at 30.4'.<br>Air hammer drilled from 30.4' to 45.8     | NA       | NA       |

|   | ROCK CORE                                                                                                                                          | LOG       | 1                                                                | BORING | G NO.: | BR       | -105I | )       | PROJECT    | NO.: 731                  | 11-03                                                                  | PAGE 2                                                              | OF          | 6        | _     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------|--------|--------|----------|-------|---------|------------|---------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|-------------|----------|-------|
| 1 | PROJECT N                                                                                                                                          | AME: OLI  | N ROCHESTER                                                      | RI     |        |          | DRIL  | LING CO | ONTRACTOR: | MARCOR C                  | OF NEW YORK                                                            |                                                                     |             |          |       |
|   | DRILL RIG                                                                                                                                          | TYPE: CA  | NTERRA CT-                                                       | 350    |        |          | DRIL  | LER:    | R. SCHEFF  | ER                        | DATE STAR                                                              | TED: 12/09/93                                                       | COMPLE      | TED: 12, | /21/9 |
|   | METHOD: A                                                                                                                                          | IR HAMMER | BIT SIZ                                                          | E: HQ  | (3.    | 8" O.D.) | PID   | METER:  | 10.6 ev F  | ID METER:                 | OVA-108                                                                | PROTECTION                                                          | LEVEL:      | D        |       |
|   | GROUND EL                                                                                                                                          | EV.: 536. | 7 SOIL DR                                                        | ILLED: | 15.    | 4 FT.    | ROCK  | DRILL   | D: (CORED  | : 92.6**                  | ROLLER BI                                                              | T: 2.0')                                                            | TOTAL       | DEPTH:   | 110.  |
|   | LOGGED BY                                                                                                                                          | : E. SH   | IEPARD / N. I                                                    | BRETON |        |          | CHEC  | KED BY  | N.B        |                           |                                                                        |                                                                     | DATE:       | 9/61     | 144   |
|   | DEPTH                                                                                                                                              | RUN       | DRILLING                                                         | PEN.   | RQD    | GRAPHIC  | CORĘ  | BREAKS  | WEATHERED  |                           | ROCK DESCR                                                             | IPTION AND                                                          | -           | MONIT    | ORING |
|   | (11.)                                                                                                                                              | NU.       | (FT/MIN)                                                         | REC.   | (%)    | LOG      | TYPE  | DIP     | CONDITION  |                           | COMMENTS O                                                             | N DRILLING                                                          |             | PID      | FID   |
|   | $\begin{array}{c} -31 \\ -32 \\ -33 \\ -34 \\ -35 \\ -36 \\ -37 \\ -38 \\ -39 \\ -40 \\ -41 \\ -42 \\ -41 \\ -42 \\ -43 \\ -44 \\ -45 \end{array}$ |           | 15' per<br>hour or<br>4 min.<br>per foot<br>without<br>sampling. |        |        |          |       |         |            | Light<br>medium<br>interf | gray finel<br>n bedded, D<br>bedded shal<br>nammer dril<br>' to 45.8'. | y crystalline<br>OLOMITE with<br>e.<br>Lockport FM<br>ling performe | ,<br>d from |          |       |
| 1 | - 45                                                                                                                                               |           |                                                                  |        |        |          |       |         |            | Rock                      | coring co                                                              | ntinued from a                                                      | 45.81       |          |       |
| 2 | - 46                                                                                                                                               | R-5       | NA                                                               | 0.7    | 100    |          |       |         |            |                           |                                                                        |                                                                     | 56.         | 0        | 0     |
|   | 47                                                                                                                                                 |           |                                                                  | 0.7    |        | 1        |       | -       |            | Core                      | bit hung                                                               | up at 46.5'-                                                        | • • • •     | -        | -     |

| ROCK CORE                    | LOG      |                                                                  | BORING | G NO.: | BR       | -105D       | )         | PROJECT    | NO.: 7311-03                                                                                       | PAGE 3 O                                                                 | F 6       | - 1    |
|------------------------------|----------|------------------------------------------------------------------|--------|--------|----------|-------------|-----------|------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------|--------|
| PROJECT N                    | AME: OL  | IN ROCHESTER                                                     | RI     |        |          | DRILI       | LING C    | ONTRACTOR: | MARCOR OF NEW YORK                                                                                 |                                                                          |           | _      |
| DRILL RIG                    | TYPE: C  | ANTERRA CT-                                                      | 350    |        |          | DRILI       | LER:      | R. SCHEFF  | ER DATE START                                                                                      | ED: 12/09/93 COMP                                                        | LETED: 12 | /21/93 |
| METHOD: C                    | ORE      | BIT SIZ                                                          | E: HQ  | (3.    | 8" O.D.) | PID         | METER:    | 10.6 ev F  | ID METER: OVA-108                                                                                  | PROTECTION LEVEL                                                         | : D       |        |
| GROUND EL                    | EV.: 536 | .7 SOIL DR                                                       | ILLED: | 15.    | 4 FT.    | ROCK        | DRILL     | ED: (CORED | : 92.6'* ROLLER BIT                                                                                | : 2.0') TOT                                                              | AL DEPTH: | 110.0' |
| LOGGED BY                    | : E.S    | HEPARD / N.                                                      | BRETON |        |          | CHECK       | KED BY    | : N.B      |                                                                                                    | DAT                                                                      | E: 9/6    | 194    |
| DEPTH                        | RUN      | DRILLING                                                         | PEN.   | RQD    | GRAPHIC  | CORE I      | BREAKS    | WEATHERED  | ROCK DESCRI                                                                                        | PTION AND                                                                | MONIT     | ORING  |
| (11.)                        | NU.      | (FT/MIN)                                                         | REC.   | (%)    | LOG      | TYPE        | DIP       | CONDITION  | COMMENTS OF                                                                                        | DATEEING                                                                 | PID       | FID    |
| - 47<br>- 48<br>- 49<br>- 50 |          | 15' per<br>hour or<br>4 min.<br>per foot<br>without<br>sampling. |        |        |          |             |           |            | Light gray finely<br>medium bedded, D(<br>interbedded shale<br>Continued air ha<br>46.5' to 50.5'. | / crystalline,<br>DLOMITE with<br>-<br>Lockport FM<br>ammer drilling fro | m         |        |
| 51                           |          | 4                                                                |        |        | 4        | mech        |           |            | More evenly bear ranges from 0°                                                                    | dded; bedding dip<br>to 5°.                                              | 0         | 10     |
|                              |          | 4                                                                | 2.5    |        |          |             |           |            | No water lost                                                                                      | in Run R-6.                                                              | 0         | 10     |
| 52                           | R-6      |                                                                  | 2.5    | 74     |          |             |           | 0.110      |                                                                                                    |                                                                          |           | -      |
|                              |          | 4                                                                |        |        |          | nat<br>nat  | 0°<br>30° | slight     |                                                                                                    |                                                                          | 0         | 10     |
| 53                           |          | -                                                                |        | 1      |          | 1           |           | 1          |                                                                                                    |                                                                          | -         | -      |
|                              |          | 4                                                                |        |        | 1        | nat         | 0°        | slight     | 50 gallons of 1<br>Run R-7.                                                                        | water lost in cori                                                       | ng 0      | 10     |
| 54                           |          |                                                                  |        |        |          | 1.1         |           |            |                                                                                                    |                                                                          |           | -      |
|                              |          | 4                                                                |        |        | H        | nat         | 0°        | slight     |                                                                                                    |                                                                          | 0         | 10     |
| 55                           |          |                                                                  |        |        | ЦЦ       | mech        |           |            |                                                                                                    |                                                                          |           | 11 3   |
|                              |          | 4                                                                |        |        |          | nat         | 0°        | slight     |                                                                                                    |                                                                          | 0         | 10     |
| 56                           |          |                                                                  |        |        |          |             |           |            |                                                                                                    |                                                                          |           |        |
|                              | R-7      | 3                                                                | 7.0    | 87     |          | nat         | 0°        | slight     |                                                                                                    |                                                                          | 0         | 15     |
| 57                           |          |                                                                  | 6.5    |        |          | 1           |           |            |                                                                                                    |                                                                          |           |        |
| 51                           |          | 4                                                                |        |        |          |             |           | 1          |                                                                                                    |                                                                          | 0         | 15     |
| 58                           |          |                                                                  |        |        | +        | nat         | 0°        | slight     |                                                                                                    |                                                                          |           |        |
| 50                           |          | 3                                                                |        |        | P        | nat         | 30°       | slight     |                                                                                                    |                                                                          | 0         | 10     |
| 50                           |          | 5                                                                |        |        |          | nat         | 30°       | slight     |                                                                                                    |                                                                          |           | 10     |
| 59                           |          |                                                                  |        |        | T        |             |           |            |                                                                                                    |                                                                          |           | 10     |
|                              |          | 4                                                                | -      |        | IT       | nat         | 10-       | slight     |                                                                                                    |                                                                          | 0         | 10     |
| 60                           |          |                                                                  |        |        |          |             |           |            | and an est                                                                                         |                                                                          | 115       | 1      |
|                              |          | 4                                                                |        |        | T        | mech        |           | 2.4        | Fractures in R<br>shale partings                                                                   | un R-8 are along<br>. Bedrock becomin                                    | ng        | 15     |
| 61                           | 1.00     |                                                                  | 10.0   |        | H        | nat         | 0°        | slight     | more shale ric                                                                                     | h with depth.                                                            |           |        |
|                              | R-8      | 4                                                                | 10.2   | 88     | 1-       | nat         | 0°        | slight     |                                                                                                    |                                                                          | 0         | 15     |
| - 62                         |          |                                                                  |        | -      | 1        | nat<br>mech | 0°        | slight     |                                                                                                    |                                                                          | 0         | 15     |
| -                            |          | 4                                                                |        |        |          |             |           |            |                                                                                                    |                                                                          |           |        |

| PROJECT MAME:     DILLING CONTRACTOR:     MARCGR OF NEW YOK       DRILL RIG TYPE:     CANTERRA CT-350     ORILLER:     R. SCHEFFER     DATE STARTED:     12/09/93 COMPLETE:       METHOD:     CORE     BIT SIZE:     NG (3.0" O.D.)     PID METER:     10.4 ev     FID METER:     0.4 TOS     PROTECTION LEVEL:     D       GROUND LEV.:     SGL     SGL     DATE STARTED:     12/09/93 COMPLETE:     DATE STARTED:     12/09/93 COMPLETE:     DATE STARTED:     12/09/93 COMPLETE:     DATE STARTED:     12/09/93 COMPLETE:     D       GROUND LEV.:     SGL     SGL     SGL     SGL     FIT MERCO:     CORE BEEAKS     VEATHEERD:     NANCOR ROLLEN:     D     DATE STARTED:     12/09/93 COMPLETE:     D       GROUND LEV.:     SGL     SGL     FIT MERCO:     CORE BEEAKS     VEATHEERD:     CORECED BY:     N/D;     DATE STARTED:     CONDITION     DATE STARTED:     DATE STARTED:     CONDITION     DATE STARTED:     CONDITION     DATE STARTED:     CONDITION     DATE STARTED:     CONDITION     CONCENTION     DATE STARTED:     CONDITION     CONCENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6     | 6      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|
| DRILLERI TYPE: CANTERNA CT-350DRILLER: R. SCREFFERDATE STATED: 12/09/93 COMPLETERMETHOD: COREBIT SIZE: MQ (3.8" 0.0.)PID METER: 10.6 evFID METER: 0.4 evMETE STATED: 12/09/93 COMPLETERGROUND ELEV: 536.7SOL DRILLINGV.6CREWEND (M.GROUND EVEL: DCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTIONCOMENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -     |        |      |
| NETHOD: COREBIT SIZE:NOC3.0" O.D.PID METER:10.6 evFID METER:OVA-108PROTECTION LEVEL:DGROUND ELEV.:536.7SOIL DRILLED:15.4FT.ROCK DRILLED:(CORE):92.6**ROLLER BIT:2.0*'TOTAL DLOGGED BY:E.SMEPARD / N. BRETONCHECKED BY: $N \cdot \frac{1}{D}$ DATE:CDATE:CCFT.1RNNRATLINGPEN.RCC.(X)GRAPHICCORE BREASWATHREEDROCK DESCRIPTION AND<br>COMMENTS ON DRILLINGI643nat0*slight<br>natLight gray findly crystalling.<br>Interbedded shale.I-644nat0*slight<br>natLight gray findly crystalling.<br>Interbedded shale.I-653nat0*slight<br>natCommerceGS.0'- 65.2'-Trace small (< 0.1")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0: 12 | 0: 12/ | 2/21 |
| GROUND ELEV.:SSOL DRILLED:15.4FT.ROCK DRILLED:(CORED: 92.6*ROLLER BIT: 2.0*)TOTAL DLOGGED BY:E. SNEPARD / N. BRETONCHECKED BY: $N \cdot f_{2}^{-}$ DATE: CDATE: CDEPTMRUNREILINGPEN.RCC.CORE BREAKSCARMENCERCCK DESCRIPTION AND<br>CONDITIONRCCK DESCRIPTION AND<br>COMMENTS ON DRILLINGr-633-64-4-77-77-77-77-77-77-77-77-773-74-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77-77 </td <td></td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |        | -    |
| LOGGED BY:E. SHEPAD / N. BRETONCHECKED BY: $N \cdot f_2^{-}$ DATE: CDEFTH<br>(FT.)RUN<br>NO.DATE: IC<br>OFTINPEN.<br>(FT.)RCD<br>(FT.)GRAPHIC<br>(CGECORE BREAKS<br>(CORE BREAKS<br>(CME)DITIONROCK DESCRIPTION AND<br>COMMENTS ON DELLINGI-633AIOF<br>(FT/NIN)REC.<br>(X)III-644IIII-653nat0°slight<br>natLight gray finely crystalline,<br>medium boded, DUDNITE with<br>interbedded shale.Lockport Fm66nat0°slight<br>natILockport Fm66676870717273747576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPTH: | EPTH:  | 11   |
| DEPTH<br>(FT.)       RUN<br>NO.       DRILLING<br>(FT/JMN)       PEN.<br>(EC       ROD<br>(CON       CONCERENCES<br>(CONTITION)       CONCECCIPTION AND<br>COMMENTS ON DRILLING       I         63       3       3       1       1       1       1       1       1         64       4       4       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/1   | 1/1    | 19   |
| (FT.)       NO.       RATE<br>(FT/MIN)       REC.       (%)       LOC       TYPE       DIP       CONDITION       COMMENTS ON DRILLING       I         -63       3       -64       4       -65       -67       -67       -68       -67       -68       -67       -68       -67       -68       -67       -68       -67       -68       -67       -68       -67       -68       -67       -68       -67       -67       -67       -67       -67       -68       -67       -67       -67       -68       -67       -67       -68       -67       -68       -67       -68       -67       -68       -67       -68       -67       -67       -67       -67       -67       -67       -67       -67       -67       -67       -68       -78       -68       -78       -67       -78       -78       -78       -78       -78       -78       -78       -78       -78       -78       -78       -79       -79       -72       -74       -72       -74       -74       -74       -74       -77       -77       -77       -77       -77       -77       -77       -77       -77       -77       -77       -77       -77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MONIT | MONITO | TORI |
| 63       3       10.0       nat       0°       slight       Light gray finely crystalline, medium bedded, DLOMITE with interbedded shale. Lockport fm.         65       3       0°       slight       Light gray finely crystalline, medium bedded, bLOMITE with interbedded shale. Lockport fm.         66       3       0°       mat       0°       moderate       65.01-65.21- Trace small (< 0.1") vugs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PID   | PID    | F    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0     | 0      | +    |
| 4774710.0<br>98810.0<br>10.28810.0<br>10.28810.0<br>10.28810.0<br>98810.0<br>98810.0<br>98810.0<br>98810.0<br>98810.0<br>98810.0<br>98810.0<br>98810.0<br>98810.0<br>910.0<br>910.0<br>910.0<br>910.0<br>910.0<br>910.0<br>910.0<br>910.0<br>910.0<br>910.0<br>910.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ű     |        |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0     | 0      | L    |
| $-66$ $\mathbf{R} \cdot 8$ $3$ $10.0$<br>$10.2$ $88$ $\mathbf{nat}$ $0^\circ$ $\mathbf{moderate}$ $65.0^\circ \cdot 65.2^\circ \cdot Trace small (< 0.1")vugs.-67310.010.288\mathbf{nat}0^\circ\mathbf{slight}\mathbf{nat}\mathbf{b}\mathbf{b}\mathbf{b}\mathbf{b}-67410.28888\mathbf{nat}0^\circ\mathbf{slight}\mathbf{nat}\mathbf{b}\mathbf{b}\mathbf{b}-68310.073\mathbf{nat}0^\circ\mathbf{slight}\mathbf{nat}0^\circ\mathbf{slight}1010-7033\mathbf{nat}0^\circ\mathbf{slight}\mathbf{nat}0^\circ\mathbf{slight}1010-71310.0990\mathbf{nat}0^\circ\mathbf{slight}\mathbf{nat}0^\circ\mathbf{slight}1010-72410109101010101010101010101010-7410310901010101010101010-74101010101010101010-74101010101010101010-741010101010$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U     | 0      |      |
| $66$ R-83 $10.0$<br>$10.2$ 88nat $0^{\circ}$ slight<br>slightLast 50 gallons of water coring<br>Run R-8 $67$ 4 $10.0$<br>$10.2$ $88$ nat $0^{\circ}$ slight<br>nat $0^{\circ}$ slight<br>slight $68$ 3 $0$ $10.0$<br>$10.2$ $10.0$<br>$10.2$ $10.0$<br>$9.8$ $0^{\circ}$ slight<br>$10.0$ $10.0$<br>$10.2$ $70$ $3$ $10.0$<br>$9.8$ $0^{\circ}$ $10.0$<br>$9.8$ $0^{\circ}$ slight<br>$10.0$ $10.0$<br>$9.8$ $71$ $3$ $10.0$<br>$9.8$ $90$ $10.0$<br>$9.8$ $0^{\circ}$ slight<br>$100$ $10.0$<br>$10.0$ $72$ $4$<br>$10.0$ $10.0$<br>$9.8$ $90$ $10.0$<br>$9.8$ $90$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $75$ $3$ $10.0$<br>$9.8$ $90$ $10.0$<br>$10.0$ $90$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $75$ $76$ $3$ $10.0$<br>$9.8$ $90$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $75$ $76$ $3$ $10.0$<br>$10.0$ $90$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $76$ $3$ $10.0$<br>$10.0$ $90$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $77$ $10.0$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $76$ $3$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $10.0$<br>$10.0$ $77$ $10.0$ $10.0$<br>$10.0$ $10.0$<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     | 0      |      |
| R-8     3     10.0     88     nat     0°     slight     Run R-8       -67     4     nat     0°     slight     Run R-8       -68     3     nat     0°     slight       -69     .     nat     0°     slight       -70     -     -     nat     0°     slight       -70     -     -     -     -       -71     -     -     -     -       -71     -     -     -     -       -71     -     -     -     -       -71     -     -     -     -       -72     -     -     -     -       -73     -     -     -     -       -74     -     -     -     -       -75     -     -     -     -       -76     -     -     -     -       -76     -     -     -     -       -77     -     -     -     -       -77     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U     |        |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0     | 0      |      |
| 4     nat     0°     slight       -68     3     nat     0°     slight       -69     .     nat     0°     slight       -70     3     nat     0°     slight       -71     3     nat     0°     slight       -71     3     nat     0°     slight       -71     3     nat     0°     slight       -72     4     nat     0°     slight       -72     4     nat     0°     slight       -73     3     nat     0°     slight       -74     8-9     3     10.0       -75     3     -     0°       -76     3     -     nat       -76     3     -     0°       -77     3     -     0°       -77     3     -     0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | U      |      |
| 68       3         69       nat       0°       slight         70       3         71       3         71       3         72       4         73       nat       0°         74       73         75       3         76       3         77       3         76       3         77       3         76       3         76       3         76       3         76       3         76       3         76       3         76       3         77       3         76       3         77       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     |        |      |
| -69       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U     | 0      |      |
| -69       .       .       nat       0°       slight         -70       3       .       nat       0°       slight         -71       3       .       nat       0°       slight       Graditional contact - Gates member Lockport Fm., Cincrease in shale content and shale bedding thickness)         -71       3       .       nat       0°       slight       Lost 50 gallons of water coring Run R-9         -72       4       .       .       nat       0°       slight       .         -73       .       .       .       .       nat       0°       slight       .         -74       .       .       .       .       .       .       .       .         -74       .       .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     |        |      |
| 70       3       nat       0°       slight       Graditional contact - Gates member fin, (increase in shale content and shale bedding thickness)         71       3       nat       0°       slight       Graditional contact - Gates member fin, (increase in shale content and shale bedding thickness)         72       4       nat       0°       slight       Lost 50 gallons of water coring Run R-9         73       3       nat       0°       slight       cost 50 gallons of water coring Run R-9         74       74       74       nat       0°       slight       74.21- fracture along appararent calcite or gypsum lens. Lens is 0.02" thick.         75       3       10.0       9.8       90       nat       0°       moderate       75.01-75.31- yugs (< 0.1") and weathered fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U     | 0      |      |
| 70       3       10.0       90       nat       0°       slight       Graditional contact - Gates member Lockport Fm. (increase in shale content and shale bedding thickness)         71       3       nat       0°       slight       Lost 50 gallons of water coring Run R-9         72       4       nat       0°       slight       Lost 50 gallons of water coring Run R-9         73       3       nat       0°       slight       calcite or gypsum lens. Lens is 0.02" thick.         75       3       10.0       90       nat       0°       slight       74.21- fracture along appararent calcite or gypsum lens. Lens is 0.02" thick.         75       3       10.0       9.8       90       nat       0°       moderate       75.01-75.31- vugs (< 0.1") and weathered fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |        |      |
| 3       3       nat       0°       slight       Graditional contact - Gates member<br>Lockport Fm.<br>(increase in shale content and shale<br>bedding thickness)         -71       3       nat       0°       slight       Lost 50 gallons of water coring<br>Run R-9         -72       4       nat       0°       slight       Lost 50 gallons of water coring<br>Run R-9         -73       3       nat       0°       slight       r4.2'- fracture along appararent<br>calcite or gypsum lens. Lens<br>is 0.02" thick.         -74       -75       3       -76       nat       0°       moderate       75.0'-75.3'- vugs (< 0.1") and<br>weathered fractures.         -76       3       -76       -77       nat       0°       slight       76.0'- fracture along 0.02" thick<br>calcite or gypsum lens.         -77       3       -77       0°       slight       76.0'- fracture along 0.02" thick<br>calcite or gypsum lens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |        |      |
| -71       3       -71       -71       -71       -72       -72       -72       -73       -74       -73       -74       -73       -74       -73       -74       -73       -74       -73       -74       -73       -74       -73       -74       -74       -74       -74       -75       -75       -75       -75       -75       -75       -76       -76       -76       -76       -77       -76       -76       -76       -77       -76       -76       -76       -76       -76       -76       -76       -77       -76       -76       -76       -77       -76       -76       -76       -76       -76       -77       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |        |      |
| -72       3       -74       -73       -4       -73       -74       -73       -74       -73       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -74       -75       -75       -75       -75       -75       -75       -75       -75       -76       -76       -76       -76       -77       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -77       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76       -76<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0     | 0      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0     | 0      |      |
| -73       4       nat       0°       slight         -74       3       10.0       90       nat       0°       slight         -74       8-9       3       10.0       90       nat       0°       slight         -74       8-9       3       10.0       90       nat       0°       slight       74.2'- fracture along appararent calcite or gypsum lens. Lens is 0.02" thick.         -75       3       10.0       9.8       90       nat       0°       moderate       75.0'-75.3'- vugs (< 0.1") and weathered fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |        |      |
| -73       3       -74       -74       -74       -74       -75       -75       -75       -75       -75       -75       -76       -76       -76       -76       -76       -77       -77       -77       -76       -77       -77       -76       -77       -76       -77       -77       -76       -76       -77       -77       -76       -76       -77       -77       -76       -76       -77       -77       -77       -76       -76       -77       -77       -77       -76       -76       -77       -77       -77       -76       -76       -77       -77       -77       -77       -76       -76       -77       -77       -77       -76       -76       -77       -76       -76       -77       -77       -76       -76       -77       -77       -77       -77       -76       -77       -77       -77       -77       -76       -76       -76       -76       -76       -76       -76       -76       -77       -76       -77       -76       -77       -76       -77       -76       -76       -76       -76       -76       -76       -76       -77       -76       -77       -77       -77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0     | 0      | 1    |
| -74       R-9       3       10.0       90       nat       0°       slight       74.2'- fracture along appararent calcite or gypsum lens. Lens is 0.02" thick.         -75       3       90       nat       0°       mat       0°       slight       74.2'- fracture along appararent calcite or gypsum lens. Lens is 0.02" thick.         -75       3       nat       0°       mat       0°       moderate       75.0'-75.3'- vugs (< 0.1") and weathered fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |      |
| -74       R-9       3 $\frac{10.0}{9.8}$ 90 $\frac{nat}{nat}$ $0^{\circ}$ slight       74.2'- fracture along appararent calcite or gypsum lens. Lens is 0.02" thick.         -75       3 $\frac{90}{9.8}$ 90 $\frac{nat}{nat}$ $0^{\circ}$ slight slight       74.2'- fracture along appararent calcite or gypsum lens. Lens is 0.02" thick.         -75       3 $\frac{90}{9.8}$ $\frac{10.0}{9.8}$ 90 $\frac{10}{100}$ $\frac{10}{900}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0     | 0      |      |
| R-9     3     90     nat     0°     stight     state of stight       -75     -75     -76     -76     -76     -76     -76     -77       -77     -77     -77     -77     -77     -76     -76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |      |
| - 75       3       nat       0°       moderate       75.0'-75.3'- vugs (< 0.1") and weathered fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0     | 0      |      |
| - 76<br>3<br>- 77<br>3<br>- 77<br>3<br>- 77<br>- 7 | 0     |        |      |
| - 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0     | 0      |      |
| - 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |      |
| 76.9'- 0.2" size vug with apparent gypsum mineralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     | 0      |      |
| The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     | 0      |      |
| nat 0° slight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |      |

| ROCK CORE | LOG         |              | BORIN   | G NO.: | BR        | -1051 | )      | PROJECT    | NO.: 731          | 1-03                         | PAGE 5                       | OF     | 6      | -      |
|-----------|-------------|--------------|---------|--------|-----------|-------|--------|------------|-------------------|------------------------------|------------------------------|--------|--------|--------|
| PROJECT N | AME: OL     | IN ROCHESTER | RRI     |        |           | DRIL  | LING C | ONTRACTOR: | MARCOR O          | OF NEW YORK                  |                              |        |        | _      |
| DRILL RIG | G TYPE: C   | ANTERRA CT   | -350    |        | -         | DRIL  | LER:   | R. SCHEF   | FER               | DATE START                   | ED: 12/09/93 C               | OMPLET | ED: 12 | /21/93 |
| METHOD: C | ORE         | BIT SI       | ZE: HQ  | (3.    | .8" O.D.) | PID   | METER: | 10.6 ev 1  | FID METER:        | OVA-108                      | PROTECTION LE                | VEL:   | D      |        |
| GROUND EL | EV.: 536    | .7 SOIL DE   | RILLED: | 15.    | .4 FT.    | ROCK  | DRILL  | ED: (COREL | D: 92.6'*         | ROLLER BIT                   | : 2.0')                      | TOTAL  | DEPTH: | 110.0  |
| LOGGED BY | : E.S       | HEPARD / N.  | BRETON  |        |           | CHEC  | KED BY | : W.       | 13                |                              |                              | DATE:  | 9161   | 94     |
| DEPTH     | RUN         | DRILLING     | PEN.    | RQD    | GRAPHIC   | CORE  | BREAKS | WEATHERED  |                   | ROCK DESCRI                  | PTION AND                    |        | MONIT  | ORING  |
| (FT.)     | NO.         | (FT/MIN)     | REC.    | (%)    | LOG       | TYPE  | DIP    | CONDITION  | () —              | COMMENTS ON                  | DRILLING                     |        | PID    | FID    |
| - 79      | R-9         | 3            |         |        | H         | nat   | 0°     | moderate   | Gray f            | inely cryst                  | alline,                      |        | 0      | 20     |
| 80        |             |              | -       | _      |           | nat   | 0°     | slight     | medium<br>interb  | n bedded, DO<br>bedded shale | DLOMITE with                 | 1      |        | -      |
|           |             | 3            |         |        |           | 1     |        |            |                   |                              | Lockport Fm.<br>(Gates membe | r)     | 0      | 15     |
| - 81      |             |              |         |        |           | nat   | 15°    | slight     | L 79.41-          | Fracture a                   | long 0.02" thi               | ck     |        |        |
|           |             | 3            |         |        | M         | 1.000 |        | arrane,    | calcit            | e or gypsum                  | lens.                        | J.C.   | 0      | 20     |
| 92        |             | 5            |         |        |           |       |        |            |                   |                              |                              |        | U      | 20     |
| 02        |             |              |         |        |           |       |        |            |                   |                              |                              |        | 12     |        |
|           |             | 5            |         |        |           | nat   | 0°     | slight     |                   |                              |                              |        | 0      | 10     |
| 83        |             |              |         |        |           |       |        |            |                   |                              |                              |        |        | 1      |
|           |             | 4            |         |        |           |       |        |            |                   |                              |                              |        | 0      | 25     |
| 84        |             |              |         |        |           | nat   | 0°     | slight     |                   |                              |                              | 3      |        |        |
|           |             | 3            | 10.0    |        |           | 3.445 |        |            |                   |                              |                              |        | 0      | 10     |
| 85        | R-10        |              | 10.0    | 93     |           |       | 0.0    |            |                   |                              |                              |        |        |        |
|           |             | 3            | 10.2    |        |           | nat   | 0      | Stight     | ]                 |                              |                              |        | 0      | 20     |
| 86        |             | 1111         |         |        |           |       |        |            |                   |                              |                              |        |        |        |
|           |             | 3            |         |        |           |       |        |            | - Even b          | reaks; litt                  | le to no weath               | ering  | 0      | 10     |
| 87        | 1.1         |              |         |        |           | - nat | 0°     | slight     | appare            | ent.                         |                              | 13     |        |        |
|           |             | 3            |         |        | H         | nat   | 0°     | slight     |                   |                              |                              |        | 0      | 15     |
| 88        |             |              |         |        |           | nat   | 0.0    | slight     |                   |                              |                              | 3      |        | 1-     |
| 00        |             | 7            |         |        |           | nat   |        | stight     |                   |                              |                              |        |        | 10     |
|           |             | 3            |         |        |           |       |        |            |                   |                              |                              |        | 0      | 10     |
| 89        |             | 8 mg         |         |        |           |       |        | States     |                   |                              |                              |        |        |        |
|           |             | 3            |         |        |           | nat   | 0°     | slight     |                   |                              |                              |        | 0      | 10     |
| 90        |             |              |         |        |           |       |        |            | Beddin            | g dip angle                  | between 0° an                | d 5°   |        |        |
|           |             | 3            |         |        |           |       |        |            | in Run            | R-11.                        |                              |        | 0      | 25     |
| 91        |             |              |         |        |           |       |        | 100        |                   |                              |                              |        |        |        |
|           |             | 3            |         |        |           |       |        |            |                   |                              |                              |        | 0      | 40     |
| 92        |             |              | 10.0    |        |           | nat   | 0°     | slight     |                   |                              |                              |        |        | -      |
|           | R-11        | 3            | 10.0    | 96     |           |       |        | 0.01       |                   |                              |                              |        | 0      | 10     |
| 93        |             |              | 9.8     |        |           | nat   | 0°     | slight     |                   |                              |                              |        |        |        |
|           |             | 3            |         |        | 1         | nat   | 0°     | slight     | 93.2'-<br>calcite | Fracture al                  | ong 0.02" thic<br>lens.      | k      | 0      | 20     |
| 94        |             |              |         |        |           |       |        |            |                   | a provin                     |                              |        |        |        |
| 14        |             | 7            |         |        |           |       | 0.0    | alishe     |                   |                              |                              |        |        |        |
| OF        | 1.1.1.1.1.1 | 3            |         |        | 1         | nat   | 0.     | slight     |                   |                              |                              |        | 0      | 15     |

| ROCK CORE | LOG      |             | BORIN   | G NO.: | BR       | -1051 | D      | PROJECT     | NO.: 73                   | 11-03                                     | PAGE                        | 6                | OF    | 6       |        |
|-----------|----------|-------------|---------|--------|----------|-------|--------|-------------|---------------------------|-------------------------------------------|-----------------------------|------------------|-------|---------|--------|
| PROJECT N | AME: OL  | IN ROCHESTE | RRI     |        |          | DRIL  | LING C | ONTRACTOR : | MARCOR (                  | DF NEW YORK                               |                             |                  | -     |         | -      |
| DRILL RIG | TYPE: C  | ANTERRA CT  | -350    |        |          | DRIL  | LER:   | R. SCHEFF   | ER                        | DATE STAR                                 | TED: 12/0                   | 9/93 (           | OMPLE | TED: 12 | 2/21/9 |
| METHOD: C | ORE      | BIT SI      | ZE: HQ  | (3.    | 8" O.D.) | PID   | METER: | 10.6 ev F   | ID METER                  | OVA-108                                   | PROTECT                     | ION LE           | VEL:  | D       |        |
| GROUND EL | EV.: 536 | .7 SOIL D   | RILLED: | 15.    | 4 FT.    | ROCK  | DRILL  | ED: (CORED  | : 92.61*                  | ROLLER BI                                 | T: 2.0')                    |                  | TOTAL | DEPTH:  | 110.   |
| LOGGED BY | : E.S    | HEPARD / N. | BRETON  |        | -        | CHEC  | KED BY | · NB        |                           |                                           |                             |                  | DATE: | 96      | 194    |
| DEPTH     | RUN      | DRILLING    | PEN.    | RQD    | GRAPHIC  | CORE  | BREAKS | WEATHERED   |                           | ROCK DESCR                                | IPTION AN                   | D                |       | MONIT   | ORING  |
| 05        | NU.      | (FT/MIN)    | REC.    | (%)    | LOG      | TYPE  | DIP    | CONDITION   |                           | COMMENTS C                                | N DRILLIN                   | G                |       | PID     | FID    |
| - 96      |          | 3           |         |        |          | nat   | 0°     | slight      | Dark g<br>medium<br>inter | gray finely<br>n bedded, D<br>bedded shal | crystall<br>OLOMITE w<br>e. | ine,<br>ith      |       | 0       | 25     |
|           |          | 3           |         |        | H        | nat   | 0°     | slight      |                           |                                           | Lockpo<br>(Gates            | rt Fm.           | er)   | 0       | 40     |
| - 97      |          |             | -       |        | 10       | nat   | 0°     | slight      | Trace                     | of small n                                | its or vu                   |                  | 222   |         |        |
| 4         | R-11     | 3           | 10.0    | 96     |          | nat   | 0°     | slight      | than (<br>Run R           | 0.05" in si<br>11 (90'-10                 | ze) throu<br>0')            | ghout            |       | 0       | 10     |
| - 98      |          | 1.0         |         |        |          | nat   | 0°     | slight      | 50 gal                    | lons of wa                                | ter lost (                  | during           | 1     |         |        |
|           |          | 3           |         |        | 1.       | nat   | 10°    | slight      |                           |                                           |                             |                  |       | 0       | 20     |
| - 99      |          |             |         |        | -        | nat   | 0°     | slight      | 99.01                     | - Fracture                                | along ca                    | lcite            | ог    |         | 1      |
|           |          | 3           |         |        |          | nat   | 0°     | slight      |                           | 577                                       |                             |                  |       | 0       | 15     |
| - 100     |          |             |         | -      |          | nat   | 0°     | slight      | Even b                    | edding dom                                | inant in l                  | Run R-           | 12.   |         | -      |
|           |          | 3           |         |        | -        | nat   | 0°     | slight      | Beddir                    | ng dips fro                               | m 0° to 5                   | °.               | 12,   | 0       | 50     |
| - 101     |          | 3           |         |        |          | nat   | 0°     | slight      |                           |                                           |                             |                  |       | 0       | 150    |
| - 102     |          |             |         |        |          |       | 1.2    | 1.000       |                           |                                           |                             |                  |       |         |        |
|           |          | 3           |         |        |          | nat   | 0.     | slight      |                           |                                           |                             |                  |       | 0       | 50     |
| - 103     |          |             |         |        | F        | nat   | 10°    | slight      | 103.0                     | - Fractur                                 | e along c                   | alcite           | e or  |         |        |
|           |          | 3           |         |        |          | nat   | 0°     | slight      |                           | gypsum                                    | lens.                       |                  |       | 0       | 25     |
| - 104     |          |             |         |        |          | nat   | 0°     | slight      |                           |                                           |                             |                  |       |         |        |
|           |          | 3           |         |        |          | nat   | 0°     | slight      |                           |                                           |                             |                  |       | 0       | 50     |
| - 105     | R-12     |             | 10.0    | 92     |          |       |        |             |                           |                                           |                             |                  |       |         |        |
|           |          | 3           | 9.8     |        |          |       |        |             |                           |                                           |                             |                  |       | 0       | 25     |
| - 106     |          |             |         |        | H        | nat   | 0°     | slight      |                           |                                           |                             |                  |       |         |        |
|           |          | 3           |         |        |          |       |        |             | Note:                     | Approximat<br>of water l                  | ely 220 ga                  | allons<br>g cori | ing   | 0       | 50     |
| - 107     |          |             |         |        |          |       |        |             |                           | BR-105D.                                  |                             |                  |       |         |        |
|           |          | 3           |         |        |          | nat   | 0°     | slight      |                           | nat - inte<br>frac                        | rpreted national ture or co | atural<br>ore br | eak   | 0       | 100    |
| - 108     |          |             |         |        |          |       |        |             | r                         | nech - intr                               | epreted m                   | echani           | cal   |         |        |
|           |          | 3           |         |        | -        | nat   | 0°     | slight      |                           | 2012                                      | ar sur                      |                  |       | 0       | 150    |
| - 109     |          |             |         |        |          |       |        |             |                           |                                           |                             |                  |       |         |        |
|           |          | 3           |         |        |          | nat   | 0°     | slight      |                           |                                           |                             |                  |       | 0       | 50     |
| - 110     |          |             | -       | -      | 11       | -     |        |             | End of                    | Boring at                                 | 110.01 5                    | elou             | -     | 1-2     | -      |
|           |          |             |         |        |          |       |        |             | ground                    | surface.                                  | 110.0. 0                    | CLOW             |       |         |        |

| ROCK CORE    | LOG      |             | BORIN   | G NO.: | BR       | -106       |           | PROJECT          | NO.: 7311-03 PAGE 1 OF                                                                                                | 2       |        |
|--------------|----------|-------------|---------|--------|----------|------------|-----------|------------------|-----------------------------------------------------------------------------------------------------------------------|---------|--------|
| PROJECT N    | AME: OL  | IN ROCHESTE | RRI     |        |          | DRIL       | LING C    | ONTRACTOR:       | MARCOR OF NEW YORK                                                                                                    |         |        |
| DRILL RIG    | TYPE: C  | ANTERRA CT  | -350    |        | ŧ        | DRIL       | LER:      | R. SCHEF         | FER DATE STARTED: 01/11/94 COMPLE                                                                                     | TED: 01 | /11/94 |
| METHOD: C    | ORE      | BIT SI      | ZE: HQ  | (3.    | 8" O.D.) | PID        | METER:    | 10.6 ev          | FID METER: OVA-108 PROTECTION LEVEL:                                                                                  | D       |        |
| GROUND EL    | EV.: 535 | .7 SOIL DE  | RILLED: | 13.    | 2 FT.    | ROCK       | DRILL     | ED: (COREI       | D: 26.9' ROLLER BIT: 5.2') TOTAL                                                                                      | DEPTH:  | 45.31  |
| LOGGED BY    | : E.S    | HEPARD / N. | BRETON  |        |          | CHEC       | KED BY    | = N.A            | DATE                                                                                                                  | 9/6/    | 94     |
| DEPTH        | RUN      | DRILLING    | PEN.    | RQD    | GRAPHIC  | CORE       | BREAKS    | WEATHERED        | ROCK DESCRIPTION AND                                                                                                  | MONIT   | ORING  |
| (F1.)        | NO.      | (FT/MIN)    | REC.    | (%)    | LOG      | TYPE       | DIP       | CONDITION        | COMMENTS ON DRILLING                                                                                                  | PID     | FID    |
| - 17<br>- 18 |          |             |         |        |          |            |           |                  | See soil boring log for MW-106 for<br>soil descriptions from 0'-13.2'<br>Roller cone drill from 13.2'to 18.4<br>Grout |         |        |
| 18.4 —       |          |             | -       | -      | T        | nat        | 0°        | slight           | Light gray, finely crystalline,                                                                                       |         |        |
| 19           | 8 0      | 4           |         |        | H        | mech       |           |                  | medium bedded, DOLOMITE with interbedded shale.                                                                       | 0       | 0      |
|              |          |             |         |        | IH.      | nat        | 0°        | slight           | Lockport FM                                                                                                           |         |        |
| 20           |          | 4           |         |        |          | nat        | 0°        | slight           | 19.4'-19.5'- Shale stringers<br>dominant.                                                                             | 0       | 0      |
|              |          |             |         | ł      |          | nat        | 0°        | slight           |                                                                                                                       |         |        |
| 21           |          | 3           |         |        |          |            |           | ornant           |                                                                                                                       | 0       | 0      |
|              |          |             | 6.9     |        | H-       | mech       |           |                  |                                                                                                                       |         |        |
| 22           | R-1      | 4           | 6.5     | 83     |          |            |           |                  |                                                                                                                       | 0       | 0      |
| 22           | 1.1      |             | 0.5     |        |          |            |           |                  |                                                                                                                       |         |        |
| 27           |          | 3           |         |        |          |            | 0.0       |                  | 27 OL Harthand Granting Law                                                                                           | 0       | 0      |
| 23           |          |             |         |        |          | nat        | 0         | moderate         | shale laminae.                                                                                                        |         |        |
| 2/           |          | 3           |         |        |          | nat        | 0         | stight           |                                                                                                                       | 0       | 0      |
| 24           |          |             |         |        |          |            | 0.0       |                  |                                                                                                                       |         |        |
|              |          | 3           |         |        | E        | nat        | 0°        | slight           |                                                                                                                       | 0       | 0      |
| 25           |          |             |         | _      |          | nat        | 0.        | slight           |                                                                                                                       |         | -      |
| 24           |          | 3           |         |        |          |            |           |                  |                                                                                                                       | 0       | 0      |
| 26           |          |             |         |        |          | mech       |           |                  |                                                                                                                       |         |        |
|              |          | 3           |         |        |          | nat        | 0.        | slight           |                                                                                                                       | 0       | 0      |
| 21           |          |             |         |        |          | nat        | 0°        | slight           |                                                                                                                       |         |        |
| 20           |          | 3           |         |        |          | nat        | 0°        | slight           |                                                                                                                       | 0       | 0      |
| 28           |          |             |         |        | F        | nat<br>nat | 0°        | slight<br>slight |                                                                                                                       |         |        |
|              | R-2      | 4           | 10.0    | 80     | - 0      |            |           |                  | 1                                                                                                                     | 0       | 0      |
| 29           |          |             | 10.0    |        | H        | nat<br>nat | 0°        | slight<br>slight | 28.7' and 28.9' - Two 0.2" size vugs<br>with gypsum mineralization.                                                   | *       |        |
|              |          | 3           |         |        |          |            |           |                  |                                                                                                                       | 0       | 0      |
| 30           |          |             |         |        | H        | nat        | 0°        | slight           |                                                                                                                       |         |        |
|              |          | 3           |         |        | Н        | nat        | 0°        | slight           |                                                                                                                       | 0       | 0      |
| 31           |          |             |         |        | H        | nat<br>nat | 0°<br>90° | slight<br>slight |                                                                                                                       |         |        |
| -            |          | 3           |         | 11.1   | M        | nat        | 20°       | slight           |                                                                                                                       | 0       | 0      |

| ROCK CORE      | LOG        | N. DOOUSOTS | BORIN  | G NO.: | BR        | -106              |                | PROJECT                    | NO.: 7311-03                                              | PAGE 2                                               | OF          | 2       |       |
|----------------|------------|-------------|--------|--------|-----------|-------------------|----------------|----------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------|---------|-------|
| DRILL BIC      | TYPE. CA   | NTERRA OT   | 750    |        |           | DRIL              | LING CO        | UNTRACTOR:                 | MARCOR OF NEW YORK                                        |                                                      |             |         |       |
| NETHODA CO     | TIPE: LA   | NIERRA CI-  | 220    |        |           | DRIL              | LER:           | R. SCHEFF                  | ER DATE STAR                                              | TED: 01/11/94 (                                      | COMPLET     | TED: 01 | /11/5 |
| METHOD: CO     |            | BIT SIZ     | E: HQ  | (3.    | .8" O.D.) | PID               | METER:         | 10.6 ev F                  | ID METER: OVA-108                                         | PROTECTION LE                                        | EVEL:       | D       |       |
| GROUND ELE     | V.: 535.   | / SOIL DR   | ILLED: | 13.    | 2 FT.     | ROCK              | DRILL          | ED: (CORED                 | : 26.9' ROLLER BI                                         | T: 5.2')                                             | TOTAL       | DEPTH:  | 45.3  |
| LOGGED BY:     | E. SH      | EPARD / N.  | BRETON | _      | -         | CHEC              | KED BY         | N.B                        | +                                                         |                                                      | DATE:       | 9/61    | 194   |
| DEPTH<br>(FT.) | RUN<br>NO. | DRILLING    | PEN.   | RQD    | GRAPHIC   | CORE              | BREAKS         | WEATHERED                  | ROCK DESCR                                                | IPTION AND                                           | 11          | MONIT   | ORING |
| - 32           |            | (FT/MIN)    | REC.   | (%)    |           | TYPE              | DIP            | -                          |                                                           | . ONTEEING                                           | - 4         | PID     | FID   |
| - 33           |            | 3           |        | Ĩ      |           | nat               | 0°             | slight                     | Light gray, fine<br>medium bedded, Du<br>interbedded shal | ly crystalline,<br>OLOMITE with<br>e.<br>Lockport FM |             | 0       | c     |
| - 34           | R-2        | 3           | 10.0   | 80     |           | nat               | 0°             | moderate                   |                                                           |                                                      |             | 0       | c     |
| - 35           |            | 3           |        |        | 気気        | nat<br>nat        | 0°<br>0°       | moderate<br>slight         | — 33.3'-35.5'- Irro<br>shale rich lenses<br>appearance)   | egularly shapec<br>s (spotty                         | 4           | 0       | 0     |
| - 36           | -          | 3           |        |        | V         | nat               | 60°            | slight                     | 34.3'-34.8'- Hig<br>vertical and sub<br>tation.           | hly fractured;<br>horizontal orie                    | Sub-<br>en- | 0       | C     |
| - 37           |            | 3           |        |        |           | nat<br>nat<br>nat | 0°<br>0°<br>0° | slight<br>slight<br>slight | 35.3'-35.7'- Neal<br>with calcite or g<br>mineralization. | r vertical part<br>gypsum                            | ting        | 0       |       |
| - 38           |            | 3           |        |        |           |                   |                |                            | 35.7'-40.7' - Fer<br>bedded.                              | W fractures; Ev                                      | venly       | 0       |       |
| - 39           |            | 3           |        |        |           | nat               | 0°             | slight                     |                                                           |                                                      |             | 0       | c     |
| - 40           | R-3        | 3           | 10.0   | 91     |           | nat               | 0°             | slight                     | 41 31-61 51- cliv                                         | htly papers of                                       |             | 0       | c     |
| - 41           |            | 3           | 9.4    |        | 125       | nat               | 0°             | slight                     | 0.1" size vugs.                                           | gnity porous wi                                      | i un        | 0       | c     |
| - 42           |            | 3           |        |        |           | nat<br>nat        | 0°             | slight<br>slight           |                                                           |                                                      |             | 0       | c     |
| - 43           |            | 3           |        |        |           | nat<br>nat        | 0°<br>0°       | slight<br>slight           | 43.0'- Fracture a<br>zone.                                | along shale par                                      | ting        | 0       | c     |
| - 44           |            | 3           |        |        |           | mech              |                |                            |                                                           |                                                      |             | 0       | 0     |
| - 45           |            | 3           |        |        | H         | mech              |                |                            | End of boring at ground surface.                          | 45.3' below                                          |             | 0       |       |
| -              |            |             |        |        |           |                   |                |                            | Note: Approxima<br>of water                               | tely 700 gallor<br>lost during cor                   | ns<br>ning. |         |       |
| -              |            |             |        |        |           |                   |                |                            | nat - interp<br>fracto                                    | preted natural<br>ure or core bre                    | eak.        |         |       |

.

| ROCK CORE  | LOG       |             | BORING     | G NO.: | BR       | -107       | -         | PROJECT            | NO   | .: 7311-03 PAG                                                                   | E 1 0                                   | F 2       |                                           |
|------------|-----------|-------------|------------|--------|----------|------------|-----------|--------------------|------|----------------------------------------------------------------------------------|-----------------------------------------|-----------|-------------------------------------------|
| PROJECT N  | AME: OLI  | N ROCHESTE  | RRI        |        |          | DRILI      | ING C     | ONTRACTOR:         | M    | ARCOR OF NEW YORK                                                                | E 1 335,050, 23 m                       | NUCCO.    | - And |
| DRILL RIG  | TYPE: CA  | NTERRA CT   | -350       | 4      |          | DRILL      | ER:       | R. SCHEFF          | ER   | DATE STARTED:                                                                    | 01/15/94 COMP                           | LETED: 01 | /15/94                                    |
| METHOD: CO | ORE       | BIT SI      | ZE: HQ     | (3.8   | 8" O.D.) | PID        | HETER:    | 10.6 ev F          | ID   | METER: OVA-108 PRO                                                               | TECTION LEVEL                           | : D       |                                           |
| GROUND EL  | EV.: 536. | 3 SOIL D    | RILLED:    | 16.8   | B FT.    | ROCK       | DRILL     | ED: (CORED         | 1: 3 | 21.2' ROLLER BIT: 2.                                                             | (יO) TOT                                | AL DEPTH: | 40.01                                     |
| LOGGED BY  | : E. SH   | HEPARD / N. | BRETON     | P      |          | CHEC       | CED BY    | · NB               |      |                                                                                  | DAT                                     | E: 9/61   | 94                                        |
| DEPTH      | RUN       | DRILLING    | PEN.       | RQD    | GRAPHIC  | CORE E     | BREAKS    | WEATHERED          |      | ROCK DESCRIPTIO                                                                  | N AND                                   | MONIT     | ORING                                     |
| (F1.)      | NO.       | (FT/MIN)    | REC.       | (%)    | LUG      | TYPE       | DIP       | CONDITION          |      | COMMENTS ON DRI                                                                  | LLING                                   | PID       | FID                                       |
| 17         |           |             |            |        |          |            |           |                    |      | See boring log for MW<br>descriptions from O'-<br>Roller cone drill fro<br>Grout | -107 for soil<br>16.8'<br>m 13.2'to 18. | 4'        |                                           |
| 18.8       |           |             |            | -      | TT       |            | 0.0       | aliaht             | -    |                                                                                  |                                         | -         |                                           |
| 19         | R-1       | 4           | 1.2<br>1.2 | 75     | E        | nat<br>nat | 0°<br>0°  | slight<br>slight   |      | Light gray, finely cr<br>medium bedded, DOLOMI<br>interbedded shale.             | ystalline,<br>TE with                   | 0         | 0 -                                       |
| 20         |           | 4           | 1          |        | F        | nat<br>nat | 0°<br>0°  | slight<br>slight   |      | 18.8'-25.0'- Mostly u                                                            | neven bedding                           | 0         | 0                                         |
| 21         |           | 4           |            | 7.     | उस्त     | nat<br>nat | 0°        | slight<br>moderate | 1    | 21.2'-21.4'- Weathere                                                            | d fractured                             | 0         | 0                                         |
| 22         | R-2       | 4           | 5.0        | 58     |          | nat<br>nat | 0°        | moderate<br>slight | 1    | 22.0'- Weathered frac<br>shale parting.                                          | ture along                              | 0         | 0                                         |
| 23         |           |             | 4.7        |        | 日日       | nat<br>nat | 0.0       | slight             | 1    | 22.8'-23.0'- Vertical                                                            | fracture                                |           | -                                         |
|            |           | 5           |            |        | a        | nat<br>nat | 20°<br>0° | high<br>slight     | 1    | 23.1'-23.2'- Highly w<br>Fractured along shale                                   | eathered zone<br>stringers.             | ; 0       | 0                                         |
| 24         |           | 4           |            |        | H        | nat<br>nat | 0°<br>20° | slight<br>slight   | L    | 23.6'- 1" long / 0.5"<br>gypsum mineralization                                   | wide vug wit                            | h 0       | 0                                         |
| 25 —       |           |             | -          | -      |          | mech       |           |                    |      | Run R-3 - Mostly ever                                                            | bedding; les                            | s         |                                           |
|            |           | 4           |            |        | H        | mech       |           |                    |      | fractured and weather                                                            | ed.                                     | 0         | 0                                         |
| 26         |           | 5           |            |        | H        | nat        | 0°        | slight             |      |                                                                                  |                                         | 0         | 0                                         |
| 27         |           |             | 1          |        |          |            |           |                    |      |                                                                                  |                                         |           |                                           |
| 28         | R-3       | 4           | 5.0<br>4.6 | 80     |          | nat        | 0°        | moderate           |      |                                                                                  |                                         | 0         | 0                                         |
|            |           | 4           |            |        | H        | mech       |           |                    |      |                                                                                  |                                         | 0         | 0                                         |
| 29         |           | 4           |            |        |          | nat<br>nat | 0°<br>0°  | slight<br>slight   |      |                                                                                  |                                         | 0         | 0                                         |
| 30         |           | -           |            |        |          | nat        | 0°        | slight             |      |                                                                                  |                                         |           |                                           |
|            | R-4       | 4           | 5.0        | 100    |          | nat        | 0°        | slight             |      |                                                                                  |                                         | 0         | 0                                         |
| 31         |           | 4           | 5.2        |        |          | nat        | 0°        | slight             |      |                                                                                  |                                         | 0         | 0                                         |

| DRILL PIC TYP        | E. CANT        |             | 350        |     |          | DOT         |           | D COURT          | PIARCO            | I A LEW TORK                                                                                                 |                                                                                                           | -                                 |         | 2.6.7 |
|----------------------|----------------|-------------|------------|-----|----------|-------------|-----------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|---------|-------|
| METHOD - CODE        | E: CANIC       | DIT CIT     | 520        |     |          | DRILL       | .ER:      | R. SCHEFT        | FER               | DATE STAR                                                                                                    | TED: 01/15/94                                                                                             | COMPLET                           | TED: 01 | /15/9 |
| METHOD: CORE         |                | BIT SIZE    | E: HQ      | (3. | 8" O.D.) | PIDN        | METER:    | 10.6 ev F        | FID MET           | ER: OVA-108                                                                                                  | PROTECTION                                                                                                | LEVEL:                            | D       |       |
| GROUND ELEV .:       | 220.2          | SOIL DR     | ILLED:     | 16. | 8 FT.    | ROCK        | DRILLI    | ED: (COREC       | 0: 21.2           | ROLLER BI                                                                                                    | T: 2.0')                                                                                                  | TOTAL                             | DEPTH:  | 40.0  |
| LOGGED BY:           | E. SHEP/       | ARD / N. E  | BRETON     |     | -        | CHECK       | CED BY    | : N-F            | 2.                |                                                                                                              |                                                                                                           | DATE:                             | 911     | 6/9   |
| (FT.) N              | UN DF<br>O. RA | RILLING     | PEN.       | RQD | GRAPHIC  | CORE E      | BREAKS    | WEATHERED        |                   | ROCK DESCR                                                                                                   | IPTION AND                                                                                                |                                   | MONIT   | ORING |
| - 32                 | (1             | FT/MIN)     | REC.       | (%) |          | TYPE        | DIP       |                  |                   |                                                                                                              |                                                                                                           | _                                 | PID     | FIL   |
| - 33<br>- 34         | -4             | 4<br>4<br>4 | 5.0<br>5.2 | 100 |          | nat         | 0°.<br>0° | slight<br>slight | Lig<br>mec<br>int | ht gray, fine<br>lium bedded, D<br>erbedded shal                                                             | ly crystallin<br>OLOMITE with<br>e.<br>Lockport FM                                                        | e,                                | 0       |       |
| - 35                 |                | 3           |            |     |          | nat         | 0°        | slight           | 35<br>sha         | 3' - Fracture<br>ale stringer.                                                                               | along 0.1" ti                                                                                             | hîck                              | 0       |       |
| - 36<br>- 37<br>- 38 | -5             | 3<br>4      | 5.0<br>4.9 | 80  |          | mech<br>nat | 0°        | slight           | ]- 36.<br>Vug     | 3'-36.9'- Sli<br>s less than O                                                                               | ghtly porous<br>.1" in size.                                                                              | with                              | 0       | 1     |
| - 39                 |                | 3           |            |     |          | nat<br>mech | 0°        | slight           |                   | .7'-40.0'- Mos<br>İs                                                                                         | tly shale in                                                                                              | thicker                           | 0       | 1     |
| -                    |                |             |            |     |          |             |           |                  | Enc<br>gro<br>Not | d of boring at<br>bund surface<br>:e: Approxima<br>water los<br>nat - inter<br>fract<br>mech - inter<br>core | 40.0' below<br>tely 575 gall<br>t during cori<br>preted natura<br>ure or core b<br>preted mechan<br>break | ons of<br>ng<br>l<br>reak<br>ical |         |       |

| DRO LECT A     |            | IN DOCUSETS  | BURIN   | G NU.: | DI        | -100               | 1110.0   | PROJECT                | NU.: 7311-03                                                                             | PAGE I C                                               | IF. 2     |        |
|----------------|------------|--------------|---------|--------|-----------|--------------------|----------|------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|--------|
|                | TYDE . OL  | ANTERRA CT   | -350    |        | -         | DRIL               | ED.      | D SCHEET               | MARLOR OF NEW FORK                                                                       | TED. 01/07/94 CON                                      | ETED. 01  | /07/0/ |
| METHOD . C     | 005        | DIT CI       | 75. 00  | 12     | 811.0.0.1 | DID                | LEK:     | 10.6 ov                | TER DATE STAR                                                                            |                                                        |           | 101194 |
|                | UKE        | BIT SI       | 20: 14  | ().    | 6. 0.0.)  | PID                | DRILL    | 10.0 ev 1              | TO METER: OVA-TOS                                                                        | PROTECTION LEVEL                                       | .: 0      | 14.01  |
| GROUND EL      | EV.: 550   | S.4 SUIL D   | RILLED: | 12.    | 5 FI.     | RUCK               | DRILL    | ED: (LOREL             | C: 23.5' ROLLER BI                                                                       | 1: 5.0') 101                                           | AL DEPTH: | 41.0   |
| LOGGED BY      | ': E.S     | SHEPARD / N. | BRETON  |        | 1         | CHECI              | KED BY   | : N.B                  | r                                                                                        | DAT                                                    | E: 916    | ,199   |
| DEPTH<br>(FT.) | RUN<br>NO. | DRILLING     | PEN.    | RQD    | GRAPHIC   | CORE               | BREAKS   | WEATHERED<br>CONDITION | ROCK DESCR<br>COMMENTS O                                                                 | IPTION AND<br>N DRILLING                               | MONIT     | ORING  |
|                |            | (FT/MIN)     | REC.    | (%)    |           | TYPE               | DIP      |                        |                                                                                          |                                                        | PID       | FID    |
| 16<br>17       |            |              |         |        |           |                    |          |                        | See boring log f<br>descriptions fro<br>Roller cone dril<br>Grout                        | or MW-108 for soil<br>m 0'-12.5'<br>l from 12.5'to 17. | 5*        |        |
| 18             |            | 4            |         |        | E         | nat<br>nat<br>mech | 0°<br>0° | slight<br>slight       | <ul> <li>Light gray, fine</li> <li>medium bedded, D</li> <li>interbedded shal</li> </ul> | ly crystalline,<br>OLOMITE with<br>e.                  |           |        |
| 19             | R-1        |              | 2.3     | 76     |           | nat                | 0°       | slight                 | 17.9'-18.1'- Fra                                                                         | Lockport FM<br>ctures along shale                      |           | 0      |
| 20 ——          |            | 4            |         |        |           | nat<br>nat         | 0°<br>0° | slight<br>slight       | our inger of                                                                             |                                                        | 0         | 0      |
|                | 1000       | 4            |         |        |           |                    | 1.       |                        |                                                                                          |                                                        | 0         | 0      |
| 21             |            |              |         |        | ЦЦ        | nat                | 0°       | slight                 |                                                                                          |                                                        |           |        |
|                |            | 3            |         |        |           | nat                | 0°       | slight                 |                                                                                          |                                                        | 0         | o      |
| 22             |            |              |         |        |           | nat                | 0°       | slight                 |                                                                                          |                                                        |           |        |
|                |            | 3            |         |        |           |                    |          | 1.00                   |                                                                                          |                                                        | 0         | 0      |
| 23             |            |              |         |        |           | nat                | 0°       | slight                 | 22.8' - Fracture                                                                         | along shale parti                                      | ng        |        |
|                |            | 3            |         |        | 0         | nat                | 0°       | slight                 | 23.4' - 0.3" siz                                                                         | e vug with gypsum                                      | 0         | 0      |
| 24             |            |              |         |        |           | nat                | 0°       | slight                 |                                                                                          |                                                        |           |        |
|                |            | z            |         |        |           | nat                | 0°       | moderate               | 24 51 - Enseture                                                                         | along shale parts                                      | ng 0      | 0      |
| 25             | R-2        | 2            | 10.0    | 82     |           | nat                | 0°       | slight                 | (weathered)                                                                              | atony snate parts                                      | 19 0      |        |
| 26             |            | 3            | 7.0     |        |           | nat<br>nat         | 0°<br>0° | slight<br>slight       |                                                                                          |                                                        | 0         | 0      |
| 1              |            | 3            |         |        |           | mech               |          |                        |                                                                                          |                                                        | 0         | 0      |
| 27             |            |              |         |        |           | nat                | 0°       | slight                 | 27 01-27 21- High                                                                        | hly fractured.                                         |           |        |
| -1             |            | 7            |         |        | -         | nat                | 0°       | moderate               | Some mechanical                                                                          | breaks possible.                                       |           |        |
| 28             |            | 3            |         |        | H         | nat                | 0°<br>0° | moderate<br>slight     | 27.81-28.01- Fra                                                                         | ctured irregular<br>breaks: Weathered                  | U U       | 0      |
|                |            | 7            |         |        | П         | nat                | 0°       | slight                 | 28 51- Fractured                                                                         | along shale                                            | 0         | 0      |
| 29             |            |              |         |        |           | nat                | 0°       | slight                 | stringers and/or                                                                         | partings.                                              |           |        |
|                |            | 3            |         |        |           | nat                | 0°       | slight                 |                                                                                          |                                                        | 0         | 0      |
| 30 —           |            | 1            |         | 1      |           |                    |          |                        |                                                                                          |                                                        |           |        |
|                |            | 3            |         | -      |           | _                  |          | 1                      |                                                                                          |                                                        | 0         | 0      |

| ROCK CORE  | LOG      |                  | BORIN   | G NO.: | BR       | 108        |          | PROJECT            | NO.: 7       | 311-03                       | PAGE               | 2      | OF          | 2       | -     |
|------------|----------|------------------|---------|--------|----------|------------|----------|--------------------|--------------|------------------------------|--------------------|--------|-------------|---------|-------|
| PROJECT NA | AME: OL  | IN ROCHESTER     | RI      |        | -        | DRIL       | LING CO  | ONTRACTOR:         | MARCOR       | OF NEW YORK                  | 1                  | -      |             | -       |       |
| DRILL RIG  | TYPE: C  | ANTERRA CT-      | -350    |        |          | DRIL       | LER:     | R. SCHEFT          | FER          | DATE STAR                    | TED: 01/           | 07/94  | COMPLE      | TED: 01 | /07/9 |
| METHOD: CO | DRE      | BIT SIZ          | ZE: HQ  | (3.    | 8" 0.D.) | PID        | METER:   | 10.6 ev 1          | ID METE      | R: OVA-108                   | PROTEC             | TION L | EVEL:       | D       |       |
| GROUND ELE | EV.: 538 | .4 SOIL DR       | RILLED: | 12.    | 5 FT.    | ROCK       | DRILL    | ED: (COREL         | : 23.5       | ROLLER BI                    | T: 5.0')           |        | TOTAL       | DEPTH:  | 41.0  |
| LOGGED BY  | : E. S   | HEPARD / N.      | BRETON  |        |          | CHEC       | KED BY   | : N.B              | *            |                              |                    |        | DATE:       | all     | 194   |
| DEPTH      | RUN      | DRILLING         | PEN.    | RQD    | GRAPHIC  | CORE       | BREAKS   | WEATHERED          | 1            | ROCK DESCR                   | IPTION A           | ND     |             | MONIT   | ORING |
| (FT.)      | NO.      | RATE<br>(FT/MIN) | REC.    | (%)    | LOG      | TYPE       | DIP      | CONDITION          |              | COMMENTS C                   | ON DRILLI          | NG     |             | PID     | FID   |
| - 31       | 1        | 4                |         |        | H        | nat        | 0°       | slight             | Ligh         | t gray, fine                 | ely cryst          | alline | ,           |         |       |
| - 32       |          |                  |         |        |          |            |          |                    | medi<br>inte | um bedded, D<br>rbedded shal | OLOMITE .          | with   |             | 0       | 0     |
| 1.1        |          | 3                |         |        | П        | nat        | 30°      | slight             |              |                              | Lockpo             | rt FM  |             | 0       | 0     |
| - 33       |          |                  |         |        |          |            | 1.19     |                    | Most         | ly even bedo<br>R-3 (30'-37' | ling thro          | ughout | t           |         |       |
|            |          | 3                | -       |        |          | nat<br>nat | 0°<br>0° | slight<br>moderate | 33.6         | 1-33.91- fra                 | actured a          |        | shale       | 0       | 0     |
| - 34       | R-3      |                  | 7.0     | 74     | H        | nat<br>nat | 0°<br>0° | slight             | part         | ings; slight                 | ly to mo           | derate | ely         |         |       |
|            |          | 3                | 6.3     | -      |          |            |          |                    |              |                              |                    |        |             | 0       |       |
| - 35       |          |                  |         |        |          | nat        | 10°      | slight             | 35.2         | - Fracture                   | along sh           | ale la | minae       | 0       |       |
|            |          | 3                |         |        |          | nat        | 0°       | slight             |              |                              |                    | une n  | annac       | 0       |       |
| - 36       |          |                  |         |        |          |            |          |                    |              |                              |                    | -      |             |         | 1     |
| 601        |          | 3                |         |        |          | nat        | 0°       | slight             |              |                              |                    |        |             | 0       |       |
| - 37       | _        |                  |         |        |          |            |          |                    |              |                              |                    |        |             |         |       |
|            |          | 3                |         |        |          |            |          |                    | Most         | ly even bedo                 | ling thro          | ughout | t           | 0       |       |
| - 38       |          |                  |         |        |          | nat        | 0°       | slight             | 1 37 0       | l. Eracture                  | along ch           |        | ating       |         |       |
|            |          | 3                |         |        |          |            |          | Stright            | 51.7         | i i de cui e                 | atong sn           | are pa | arting      | 0       |       |
| - 39       | R-4      | -                | 4.0     | 100    |          |            |          |                    |              |                              |                    |        |             |         |       |
|            |          | 3                | 4.0     |        |          | nat        | 0°       | slight             |              |                              |                    |        |             |         |       |
| - 40       |          |                  |         |        |          |            |          |                    |              |                              |                    |        |             | 0       |       |
| 10         |          | 3                |         |        | -        | nat        | 0°       | slight             | 40.4         | - Shale lami                 | nae stri           | ngers  | in          |         |       |
| - 61       |          | 5                |         |        |          |            | 1        |                    | disti        | net 1" thick                 | zone.              |        |             | 0       |       |
|            |          | . *              |         |        |          |            |          |                    | End o        | of boring at                 | 41.0' be           | low    | -           |         |       |
| 2          |          |                  |         |        |          |            |          |                    | groun        | Annauimate.                  | -1.4 (00           |        |             |         |       |
|            |          |                  |         |        |          |            |          |                    | Note:        | water lost                   | during             | gallor | ns of<br>g. |         |       |
|            |          |                  |         |        |          |            |          |                    | -            | nat - interp                 | preted na          | tural  |             |         |       |
|            |          |                  |         |        |          |            |          |                    |              | fractu                       | are or co          | re bre | eak         |         |       |
|            |          |                  |         |        |          |            |          |                    | п            | core b                       | preted me<br>preak | chanid | cal         |         |       |
|            |          |                  |         |        |          |            |          |                    |              |                              |                    |        |             |         |       |
|            |          |                  |         |        |          |            |          |                    |              |                              |                    |        |             |         |       |
|            |          |                  |         |        |          |            |          |                    |              |                              |                    |        |             |         |       |
|            |          |                  |         |        |          |            |          |                    |              |                              |                    |        |             |         |       |
| -          |          |                  |         |        |          |            |          |                    |              |                              |                    |        |             |         |       |

| SOIL BOR | ING LOG      | BOR          | RING NO.          | .: MW-  | 103 PROJE                                                | ECT NO.: 7                                       | 311-02 PA                           | GE 1       | OF      | 1      |        |
|----------|--------------|--------------|-------------------|---------|----------------------------------------------------------|--------------------------------------------------|-------------------------------------|------------|---------|--------|--------|
| ROJECT   | NAME: OLIN   | ROCHESTER RI | -                 |         | DRILLING CONTRACTO                                       | DR: MARCOR                                       | OF NEW YORK                         |            |         |        |        |
| RILL RI  | G TYPE: CANT | TERRA CT 350 | 1                 |         | DRILLER: R. SCHEF                                        | FER                                              | DATE STARTED: 1                     | 1/10/93 C  | OMPLETE | D: 11, | /10/93 |
| IETHOD:  | HSA          | AUGER SIZE:  | 4.25              | 5" I.D. | PID METER: 10.6 ev                                       | / FID METE                                       | R: OVA-108 PROT                     | ECTION LEV | EL: M   | IOD D  |        |
| ROUND EI | LEV.: 533.3  | SOIL DRILLE  | ED: 10.8          | β' FT.  | ROCK DRILLED: (COR                                       | ED \ ROLLE                                       | R BIT) N                            | ONE FT.    | TOTAL   | DEPTH: | 10.8'  |
| OGGED B  | Y: J. ROSENE | BLUM         |                   |         | CHECKED BY:                                              | IB,                                              |                                     | 1          | DATE:   | 91     | 6/94   |
| DEPTH    | SAMPLE       | BLOWS PER    | PEN.              | GRAPHIC | SAMPLE                                                   | E LON                                            |                                     | USCS       | MONIT   | ORING  | (PPM)  |
| (11.)    | NUMBER       | 0-INCHES     | REC.              | LOG     | DESCRIPT                                                 | ION                                              |                                     | CLASSIF.   | PID     | FID    | OTHER  |
| 1        | s-1          | 17-16        | 1.0<br>1.0        |         | Auger through 1.0'<br>1.0'-2.0' Brown S<br>Gravel,       | of concre<br>Silty SAND,<br>Dry.                 | te and pavement<br>fine, coarse     | SM         | 0       | 0      |        |
| 3        | s-2          | 4-4-5-6      | $\frac{2.0}{0.5}$ |         | 2.0'-4.0' Gray to<br>fine, s                             | D Light Bro<br>Some Gravel                       | wn Silty SAND,<br>, moist.          | SM         | 0       | 0      |        |
| i.       | s-3          | 4-12-16-17   | 2.0<br>1.6        |         | 4.0'-6.0' Light E<br>medium                              | }rown Silty<br>dense, moi                        | SAND, fine,<br>st.                  | SM         | 0       | 0      |        |
|          | S-4          | 21-50/0.5'   | 1.5<br>1.0        |         | 6.0'-8.0' Light E<br>dense t<br>fragmer                  | Brown Silty<br>to very den<br>nts at 8.0'        | SAND, fine,<br>se, some Rock        | SM         | 0       | 0      |        |
|          | s-5          | 20-50/0.5'   | 1.5<br>1.5        |         | 8.0'-10.0' Similar<br>very de                            | ⁺ to above,<br>anse.                             | dense to                            | SM         | 0       | 0      |        |
| 10       |              |              |                   |         |                                                          |                                                  |                                     |            |         |        |        |
| 12       |              |              |                   |         | NOTES:<br>Rufusal wit<br>Groundwater<br>During dril      | :h augers a<br>• measured<br>.ling.              | t 10.8'<br>at 7.3'                  |            |         |        |        |
| 13       |              |              |                   |         | Initial aug<br>Exploratior<br>where final<br>was achieve | ger refusal<br>) moved 6.0<br>. installat<br>≥d. | at 5.6'<br>' north<br>ion of MW-103 |            |         |        |        |
| 14       |              |              |                   |         |                                                          |                                                  |                                     |            |         |        | 1      |
| 15       |              |              |                   |         |                                                          |                                                  |                                     |            |         |        | 1.     |

| SOIL BOR          | ING LOG                                   | BOR           | ING NO.           | : MW-105 PROJECT NO.: 7311-02 PAGE 1 OF 1 |                                                                |                                                                                         |                                                    |                   |                 |          |  |  |  |  |
|-------------------|-------------------------------------------|---------------|-------------------|-------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-----------------|----------|--|--|--|--|
| PROJECT           | NAME: OLIN                                | ROCHESTER RI  |                   |                                           | DRILLING CONTRACTOR: MARCOR OF NEW YORK                        |                                                                                         |                                                    |                   |                 |          |  |  |  |  |
| DRILL RI          | G TYPE: CANT                              | ERRA CT 350   | h.,               |                                           | DRILLER: R. SCHEFFER DATE STARTED: 11/16/93 COMPLETED: 11/17/9 |                                                                                         |                                                    |                   |                 |          |  |  |  |  |
| METHOD:           | HSA                                       | AUGER SIZE:   | 4.25              | " I.D.                                    | PID METER: 10.6 ev FID METER: OVA-108 PROTECTION LEVEL: MOD D  |                                                                                         |                                                    |                   |                 |          |  |  |  |  |
| GROUND EI         | GROUND ELEV.: 536.9 SOIL DRILLED: 14.4 FT |               |                   |                                           |                                                                | ROCK DRILLED: ROLLER BIT: 5.0'                                                          |                                                    |                   |                 |          |  |  |  |  |
| LOGGED B          | Y: E. SHEPHA                              | RD            |                   |                                           | CHECKED BY                                                     | : N.B.                                                                                  |                                                    |                   | DATE: 9/6/94    |          |  |  |  |  |
| DEPTH<br>(FT.)    | SAMPLE                                    | BLOWS PER     | PEN.              | GRAPHIC                                   |                                                                | SAMPLE                                                                                  | USCS                                               | MONI              | MONITORING (PPM |          |  |  |  |  |
| - 0               | NO.JOEN                                   | o moneo       | REC.              | 200                                       |                                                                | DESCRIPTION                                                                             |                                                    |                   |                 | FID OTHE |  |  |  |  |
| - 1               | s-1                                       | 3-4-20-24     | $\frac{2.0}{1.5}$ |                                           | 0.0'-0.8'<br>0.8'-2.0'                                         | Dark Brown to Bl<br>fine, some Organ<br>Light Brown SAND<br>coarse, some Gra            | ack SAND,<br>ics, Moist.<br>, fine to<br>vel, dry. | SW                | 0               | 0        |  |  |  |  |
| - 3               | s-2                                       | 3-5-10-10     | $\frac{2.0}{1.6}$ |                                           | 2.0'-2.2'<br>2.2'-3.6'                                         | Similar to above<br>Brown to Reddish<br>fine, some Silt,<br>dry.                        | Brown SAND,<br>poorly graded                       | sw<br>sm          | 0               | 0        |  |  |  |  |
| - 4               | s-3                                       | 4-10-20-15    | $\frac{2.0}{1.8}$ |                                           | 4.0'-4.4'<br>4.4'-5.6'<br>5.6'-5.8'                            | Similar to above<br>Tan to Light Bro<br>dry.<br>Gray SAND, fine,                        | wn SAND, fine<br>some Silt, dr                     | SM<br>SM<br>Y. SM | 0               | 0        |  |  |  |  |
| - 6<br>- 7<br>- 8 | s-4                                       | 4-10-26-52    | 2.0<br>2.0        |                                           | 6.0'-6.6'<br>6.6'-7.9'<br>7.9'-8.0'                            | Similar to above<br>Tan to Light Bro<br>some Silt, moist<br>Similar to above<br>Gravel. | wn SAND, fine,<br>with trace                       | SM<br>SM<br>SM    | 0               | 0        |  |  |  |  |
| - 9               | s-5                                       | 17-35-50/0.5' | $\frac{1.5}{1.5}$ |                                           | 8.0'-10.0'                                                     | Similar to above                                                                        |                                                    | SM                | Q               | 0        |  |  |  |  |
| - 10<br>- 11      | S-6                                       | 15-50/ 0.4'   | 0.9<br>0.9        |                                           | 10.0'-10.9'                                                    | Brown SAND, fine<br>trace Gravel, po<br>moist.                                          | , some silt,<br>orly graded                        | SM                | 0               | 0        |  |  |  |  |
| - 12<br>- 13      | s-7                                       | 4-9-13-30     | 2.0<br>1.6        |                                           | 12.0'-14.0'                                                    | Gray SAND, fine,<br>poorly graded, w                                                    | some Silt,<br>et.                                  | SM                | 0               | 0        |  |  |  |  |
| - 14              |                                           |               |                   |                                           | 14.0'-14.3'                                                    | Gray SAND, fine<br>silt, rock fragm                                                     | to coarse, som<br>ents, wet                        | ie GM             | 0               | 0        |  |  |  |  |
| - 15              | 1<br>S-8                                  | T<br>50/ 0.3' | $\frac{1}{2.0}$   |                                           | Refu:<br>Rollo                                                 | sal with augers a<br>er cone drill to                                                   | t 14.4'<br>19.4'                                   |                   | 0               | 0        |  |  |  |  |

| DJECT                                       | NAME: OLIN  | ROCHESTER RI                   |            |         | DRILLING CONTRACTOR: MARCOR OF NEW YORK                                                                      |       |                   |       |  |  |  |  |  |  |
|---------------------------------------------|-------------|--------------------------------|------------|---------|--------------------------------------------------------------------------------------------------------------|-------|-------------------|-------|--|--|--|--|--|--|
| ILL RI                                      | G TYPE: CAN | TERRA CT 350                   |            |         | DRILLER: D. BOOKER DATE STARTED: 12/7/93 COMPLETED: 12/7/93                                                  |       |                   |       |  |  |  |  |  |  |
| ETHOD:                                      | HSA         | AUGER SIZE:                    | 4.25       | " I.D.  | PID METER: 10.6 ev FID METER: OVA-108 PROTECTION LEVEL: MOD D                                                |       |                   |       |  |  |  |  |  |  |
| GROUND ELEV.: 535.4 SOIL DRILLED: 14.4' FT. |             |                                |            |         | ROCK DRILLED: ROLLER BIT: 5.41                                                                               | TOT   | TOTAL DEPTH: 19.8 |       |  |  |  |  |  |  |
| LOGGED BY: E. Shepard                       |             |                                |            |         | CHECKED BY: NB.                                                                                              | DAT   | DATE: 9/1/94      |       |  |  |  |  |  |  |
| DEPTH                                       | SAMPLE      | BLOWS PER                      | PEN.       | GRAPHIC | SAMPLE USCS                                                                                                  | MO    | MONITORING (PPM   |       |  |  |  |  |  |  |
| (FT.)                                       | NUMBER      | 6-INCHES                       | REC.       | LOG     | DESCRIPTION CLASS                                                                                            | F. P1 | D FID             | OTHER |  |  |  |  |  |  |
|                                             | s-1         | 3-4-6-7                        | 2.0<br>0.5 |         | 0.0'-2.0' Dark Brown SAND, fine, some Silt, SM<br>trace Organics, moist.                                     |       | 0 8               |       |  |  |  |  |  |  |
|                                             | s-2         | 7-15-18-17                     | 2.0<br>2.0 |         | 2.0'-4.0' Light Brown to Reddish Brown, SM<br>SAND, fine, some Silt, trace<br>Organics, trace Gravel, moist. |       | 0 3               |       |  |  |  |  |  |  |
|                                             | s-3         | 11-39-50<br><u></u><br>5"      | 2.0        |         | 4.0'-6.0' Similar to above. SM                                                                               |       | 0 2               |       |  |  |  |  |  |  |
|                                             | s-4         | 11-33-50<br>(for 0.4')         | 2.0<br>1.3 |         | 6.0'-8.0' Light Brown SAND, fine, little SM<br>to some Silt, dry.                                            |       | 0 2               |       |  |  |  |  |  |  |
| 0                                           | s-5         | 12-31-45-50<br> <br>(for 0.4') | 2.0<br>1.3 |         | 8.0'-10.0' Similar to above, moist. SM                                                                       |       | 0 3               |       |  |  |  |  |  |  |
| 1                                           | s-6         | 13-25-50<br> <br>(for 0.5')    | 1.5<br>1.2 |         | 10.0'-12.0' Brown to Grayish Brown SAND, fine SM<br>to medium, some Silt, trace rock<br>fragments, moist.    |       | 0 5               |       |  |  |  |  |  |  |
| 3                                           | s-7         | 15-20-25-50<br>(for 0.4')      | 2.0<br>1.5 |         | 12.0'-14.0' Grayish Brown SAND, fine, some SM<br>Silt, trace rock fragments, wet.                            |       | 0 100             |       |  |  |  |  |  |  |
| 4                                           | S-8         | 50                             | 0.4        |         | 14.0'-14.4' Similar to above. GM                                                                             |       | 0 30              |       |  |  |  |  |  |  |
| 5                                           |             | 5"                             | 0.4        |         | Auger refusal at 14.4'<br>Roller cone drill from 14.4'-19.8'                                                 |       |                   |       |  |  |  |  |  |  |

| SOIL BOR                                  | ING LOG                            | BOR                    | ING NO.           | : MW-   | -107                                                     | PROJECT NO .:                                          | 7311-02 PAG                                   | GE 1       | OF         | 2     |  |  |  |  |
|-------------------------------------------|------------------------------------|------------------------|-------------------|---------|----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|------------|------------|-------|--|--|--|--|
| PROJECT I                                 | NAME: OLIN                         | ROCHESTER RI           |                   |         | DRILLING CONTRACTOR: MARCOR OF NEW YORK                  |                                                        |                                               |            |            |       |  |  |  |  |
| DRILL RI                                  | G TYPE: CANT                       | TERRA CT 350           |                   | _       | DRILLER: R. SCHEFFER DATE STARTED: 11/8/93 COMPLETED: 11 |                                                        |                                               |            |            |       |  |  |  |  |
| METHOD:                                   | METHOD: HSA AUGER SIZE: 4.25" 1.D. |                        |                   |         |                                                          | 10.6 ev FID MET                                        | TER: OVA-108 PROTE                            | ECTION LEV | EL: MO     | D D   |  |  |  |  |
| GROUND E                                  | LEV.: 536.3                        | SOIL DRILLE            | 0: 16.8           | FT.     | ROCK DRILL                                               | ED: (CORE \ ROLLE                                      | R BIT): NO                                    | DNE FT.    | TOTAL      | DEPTH |  |  |  |  |
| LOGGED BY: E. SHEPHARD                    |                                    |                        |                   |         | CHECKED BY                                               | : NB,                                                  |                                               |            | DATE:      | gli   |  |  |  |  |
| DEPTH SAMPLE BLOWS<br>(FT.) NUMBER 6-INCH |                                    |                        | PEN.              | GRAPHIC |                                                          | SAMPLE                                                 |                                               | USCS       | MONITORING |       |  |  |  |  |
| - 0                                       | NUMBER                             | 0-INCHES               | REC.              | LOG     |                                                          | DESCRIPTION                                            |                                               | CLASSIF.   | PID        | FID   |  |  |  |  |
| - 1                                       | s-1                                | 24-14-11-12            | 2.0<br>1.5        |         | 0.0'-2.0'                                                | Brown Silty SAND<br>Organics, dry.                     | ), fine, trace                                | SM         | 0.         | 0     |  |  |  |  |
| - 2                                       |                                    |                        |                   |         |                                                          |                                                        |                                               |            |            |       |  |  |  |  |
| - 3                                       | S-2                                | 6-11-50-<br>(for 0.4') | 2.0<br>1.1        |         | 2.0'-4.0'                                                | Brown Sand, find<br>Silt, dry.<br>(Concrete fragme     | e to coarse, some<br>ents in spoon)           | SM         | 0          | 0     |  |  |  |  |
| - 4                                       |                                    |                        | 2.0               |         | 4.01-4.61                                                | Gray SILT, trace                                       | e Sand.                                       | ML         |            |       |  |  |  |  |
| - 5                                       | 5-3                                | (for 0.4')             | 1.1               |         | 4.6'-6.1'                                                | Light Brown SAND<br>Organics, dry.                     | ), fine, trace                                | SM         | 0          | 0     |  |  |  |  |
| - 7                                       | s-4                                | 5-13-17-10             | 2.0<br>1.5        |         | 6.0'-8.0'                                                | Light Brown SAND<br>Silt, moist.                       | ), fine, trace                                | SP         | 0          | 0     |  |  |  |  |
| - 8                                       |                                    |                        | 2.0               |         | 8.0'-9.0'                                                | Similar to above                                       | 2.                                            | SP         |            |       |  |  |  |  |
| - 9                                       | S-5                                | 8-20-35-50             | 1.5               |         | 9.0'-9.2'                                                | Rock fragments                                         | (shale)                                       | GW         | 0          | 0     |  |  |  |  |
| - 10                                      |                                    |                        |                   |         | 9.2'-9.5'                                                | Light Brown SAN<br>coarse, trace S                     | D, fine to<br>ilt, dry.                       | GW         |            |       |  |  |  |  |
| - 11                                      | S-6                                | 35-50<br>(for 0.4')    | $\frac{2.0}{1.0}$ |         | 10.0'-11.0'                                              | Red to Brown SA<br>coarse, trace re<br>dry.            | ND, medium to<br>ock fragments,               | GW         | 0          | 0     |  |  |  |  |
| - 12                                      | -                                  |                        |                   |         |                                                          |                                                        |                                               |            |            |       |  |  |  |  |
| - 13                                      | s-7                                | 3-9-13-34              | $\frac{2.0}{1.5}$ |         | 12.0'-12.8'<br>12.8'-13.5'                               | Similar to above<br>Gray Silty SAND<br>medium to coars | e, wet.<br>, fine, trace<br>e Sand, wet.      | GW<br>SM   | 0          | 0     |  |  |  |  |
| — 14                                      |                                    |                        |                   |         |                                                          |                                                        |                                               |            |            |       |  |  |  |  |
| — 15                                      | S-8                                | 21-30-23-50            | $\frac{2.0}{1.2}$ |         | 14.0'-16.0'                                              | Gray Silty SAND<br>medium to coars<br>fragments, satu  | , fine, little<br>e Sand trace Rock<br>rated. | SM         | 0          | 0     |  |  |  |  |

| SOIL BORING LOG BORING NO.: MW- |                                             |                |      |         | -107 PROJECT NO.: 7311-03 PAGE 2 OF 2                         |          |       |     |       |  |  |  |  |
|---------------------------------|---------------------------------------------|----------------|------|---------|---------------------------------------------------------------|----------|-------|-----|-------|--|--|--|--|
| PROJECT N                       | AME: OLIN                                   | ROCHESTER RI   |      | _       | DRILLING CONTRACTOR: MARCOR OF NEW YORK                       | 1 /0 /07 |       |     | 9.07  |  |  |  |  |
| DRILL RIG                       | TYPE: CANT                                  | ERRA CT 350    |      |         | DID METER: 10.6 ev EID METER: 0/4-108 DODTECTION LEVEL: MOD D |          |       |     |       |  |  |  |  |
| METHOD:                         | HSA                                         | AUGER SIZE:    | 4.2  | 5" I.D. | PID METER: 10.0 EV FID METER: 0VA-108 PROTECTION LEVEL: MOD D |          |       |     |       |  |  |  |  |
| GROUND EL                       | GROUND ELEV.: 556.5 SUIL DRILLED: 10.8" FT. |                |      | 5' FI.  | RUCK DRILLED: (CORE ( ROLLER BIT )                            | NONE FI. | DATE. | d/  | 194   |  |  |  |  |
| LOGGED BY                       | E. SHE                                      | PHAKD          | DEN  | CRADULG |                                                               | LISCS    | DATE. | 4/6 | 11    |  |  |  |  |
| (FT.)                           | NUMBER                                      | 6-INCHES       | REC. | LOG     | DESCRIPTION                                                   | CLASSIF. | PID   | FID | OTHER |  |  |  |  |
| - 16                            | S-9                                         | 50/ –          | 0.5  |         | 16.0'-16.5' Similar to above, Rock fragments                  | SM       | 0     | 0   |       |  |  |  |  |
| - 17                            |                                             | <br>(for 0.4') | 0.2  |         | REFUSAL WITH SPOON AT 16.8                                    |          |       |     | ÷     |  |  |  |  |
| - 18                            |                                             |                |      |         | *                                                             |          |       |     | ÷     |  |  |  |  |
| - 19                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 20                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 21                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 22                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 22                            |                                             | 4              | • 6  |         |                                                               |          |       |     |       |  |  |  |  |
| - 23                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 24                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 25                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 26                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 27                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 28                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| - 29                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |
| — 30                            |                                             |                |      |         |                                                               |          |       |     |       |  |  |  |  |

|   | SOIL BORING LOG BORING NO.: MW              |            |                                         |            |              | -108 PROJECT NO.: 7311-02 PAGE 1 OF 1                           |                                                                                               |                          |                         |                                                                       |          |       |                   |       |  |
|---|---------------------------------------------|------------|-----------------------------------------|------------|--------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------|-------------------------|-----------------------------------------------------------------------|----------|-------|-------------------|-------|--|
| 0 | PROJECT N                                   | AME: OLIN  | DRILLING CONTRACTOR: MARCOR OF NEW YORK |            |              |                                                                 |                                                                                               |                          |                         |                                                                       |          |       |                   |       |  |
|   | DRILL RIG                                   | TYPE: CANT | ERRA CT 350                             |            |              | DRILLER: R. SCHEFFER DATE STARTED: 12/15/93 COMPLETED: 12/15/93 |                                                                                               |                          |                         |                                                                       |          |       |                   |       |  |
|   | METHOD:                                     | HSA        | AUGER SIZE:                             | 4.25"      | I.D.         | PID METER: 10.6 ev FID METER: OVA-108 PROTECTION LEVEL: MOD D   |                                                                                               |                          |                         |                                                                       |          |       |                   |       |  |
|   | GROUND ELEV.: 538.1 SOIL DRILLED: 12.5' FT. |            |                                         |            |              | ROCK DRILLED: ROLLER BIT: 12.5'-17.5'                           |                                                                                               |                          |                         |                                                                       |          |       | TOTAL DEPTH: 17.5 |       |  |
|   | LOGGED BY                                   | : E. SHEP  | CHECKED BY: NB.                         |            |              |                                                                 |                                                                                               |                          |                         | DATE: 916/94                                                          |          |       |                   |       |  |
|   | DEPTH                                       | SAMPLE     | BLOWS PER                               | PEN.       | PEN. GRAPHIC | SAMPLE                                                          |                                                                                               |                          |                         |                                                                       |          | MONIT | ORING             | (PPM) |  |
|   | 0                                           |            | e monee                                 | REC.       | 200          | DESCRIPTION                                                     |                                                                                               |                          |                         |                                                                       | CLASSIF. | PID   | FID               | OTHEF |  |
|   | - 1                                         | S-1        | 13-25-9-7                               | 2.0<br>1.4 |              | 0'-0.3'<br>0.3'-1.0'                                            | -0.3' Dark Brown to Bla<br>trace Organics (T<br>3'-1.0' Black SAND, mediu<br>some Silt, trace |                          |                         | ack SAND, fine,<br>Topsoil). Si<br>um to coarse,<br>ash like material |          | 0     | 0                 |       |  |
|   | - 3                                         | s-2        | 5-5-5-10                                | 2.0<br>1.8 |              | 2.0'-2.6'<br>2.6'-3.8'                                          | Dark Brown SAND, fine to medium,<br>dry.<br>Light Brown SAND, fine, dry.                      |                          |                         |                                                                       | — SP     | 0     | 0                 |       |  |
| 0 | — 4<br>— 5                                  | S-3        | 5-10-40-22                              | 2.0<br>1.7 |              | 4.0'-6.0'                                                       | Brown SAND<br>trace medi                                                                      | ), fîne,<br>ium Sand     | some Silt,<br>, dry.    | c I                                                                   | SM       | 0     | 0                 |       |  |
|   | - 6<br>- 7<br>- 8                           | s-4        | 12-22-34-52                             | 2.0<br>2.0 |              | 6.0'-8.0'                                                       | Similar to<br>dry.                                                                            | o above,                 | trace Grav              | vel,                                                                  | SM       | 0     | 0                 |       |  |
|   | - 9                                         | s-5        | 15-50/0.3'                              | 0.9<br>0.9 |              | 8.0'-8.9'                                                       | Similar to                                                                                    | o above                  |                         |                                                                       | SM       | 0     | 0                 |       |  |
|   | — 10<br>— 11                                | s-6        | 26-38-37-41                             | 2.0<br>1.6 |              | 10.0'-11.6                                                      | ' Similar<br>fragment:                                                                        | to above<br>s, moist     | , trace roo             | c k                                                                   | SM       | 0     | 0                 |       |  |
|   | - 12                                        |            | 5010.11                                 |            |              | 12.0'-12.2' Brown SAND, fine, some Silt,                        |                                                                                               |                          |                         | t,                                                                    | SM       | 0     | 0                 |       |  |
|   |                                             | 5-7        | 50/0.4'                                 | 0.5        | _            |                                                                 | moist.                                                                                        | _                        |                         | -                                                                     |          | -     |                   | -     |  |
|   | 13<br>14<br>15                              |            |                                         | 0.2        |              | Sp<br>Ro<br>12                                                  | lit Spoon<br>ller cone<br>.5' to 17.                                                          | refusal<br>drilled<br>5' | at 12.5'<br>in rock fro | om                                                                    |          |       |                   |       |  |


















|                                      | Soil B           | orin               | g Lo           | og        | 1          |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                       |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Boring/Well No.:                                                             |            |
|--------------------------------------|------------------|--------------------|----------------|-----------|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------|------------|
| Proje                                | ct No.:          |                    |                |           | F          | Project I                                     | Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arch R                                                                                      | ochester                                                                                              |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | BR-12-6                                                                      |            |
| Client                               | t Name:          | Arch               | Chei           | mica      | s l        | ogged                                         | By: ស្ថា                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | yB Pro                                                                                      | otection Lev                                                                                          | vel: D                                                                     | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Eleva          | ition:                                                                       |            |
| Drillin                              | g Conti          | actor:             | Ne             | Hh        | naal       | للا                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drilling                                                                                    | Method:                                                                                               | 4.25"                                                                      | HSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·····          | <u></u>                                                                      |            |
| Drille                               | r's Nam          | e:                 | N.             | Sh        | ort        |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                       |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | <u> </u>                                                                     |            |
| Bit Ty                               | pe/Size          | :425               | 1 15           | 12        | Soil D     | rilled:                                       | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                           | Chkd By:                                                                                              |                                                                            | Start Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ə:3 <i>lə1</i> | 0≶ Finish Date:3 <i>ໄ</i>                                                    | 5/5        |
| Scree                                | en (ft):         | Care of the second | •              |           | Riser      | (ft.):                                        | W745-0000-00-00-00-00-00-00-00-00-00-00-00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | Diam. (ID)                                                                                            | :                                                                          | Material:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None           | PI Meter:: TE-s                                                              | goß        |
| Core                                 | Interval         | (to/fro            | om)(ft.        | .):       | -          |                                               | Total D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth:                                                                                      |                                                                                                       | Water L                                                                    | .evel (BG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S):            | Ground Elevatio                                                              | n:         |
| Depth (feet)<br>Below Ground Surface | Sampling Number: | Sample Depth:      | CLP/Screening: | Recovery: | PiD (ppm): |                                               | Soil/Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ock Wate                                                                                    | er Discharg                                                                                           | e Descri                                                                   | ption:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Soil Class:    | Blow<br>COUNTS/6"                                                            | Well Data: |
| 2 4 5 6 7 8                          | 8-1              | 5-7'               | NA             | 1.0'      | 0.0        | 0-1<br>1-5<br>5<br>1-5<br>5<br>5<br>7<br>-1-6 | Dar<br>Dar<br>Loose<br>- Red<br>and,<br>ish bi<br>ish bi<br>bi<br>bi<br>bi<br>bi<br>bi<br>bi<br>bi<br>bi<br>bi<br>bi<br>bi<br>bi<br>b | ilish bi<br>little<br>little<br>vun<br>rse getta<br>some<br>atrated                         | e gravel<br>frevel M<br>frevel M<br>fine to man<br>sult, w<br>es above                                | except                                                                     | med.m<br>Suse<br>Fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sM             | 1123                                                                         |            |
| 10                                   |                  |                    |                |           |            | Gre<br>silt<br>Loc<br>Dist-                   | Bedro<br>Bedro<br>cont<br>cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ine to d<br>ormly a<br>satura<br>city aug<br>d Rocci<br>inve b<br>g a-fil<br>n Rocci<br>sgs | redim S<br>graded (194<br>Fl,<br>force infe<br>ers . Advan<br>to 140<br>og on B<br>er Seat<br>et Sock | and,<br>wil sorted<br>mae -three<br>o'<br>sock (OT<br>stry (21,<br>ef a.f. | 1. Hle<br>),<br>(62-1147<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-155<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-154<br>1-1554<br>1-15 | 42             | <ul> <li>3</li> <li>6</li> <li>9</li> <li>3</li> <li>6</li> <li>9</li> </ul> |            |
|                                      |                  |                    |                |           |            | Se                                            | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rock                                                                                        | 1 (ore                                                                                                | Log.                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Sheet   of 3                                                                 |            |
| W20040                               | 39e.cdr          |                    |                |           |            |                                               | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pag                                                                                         | 25 Z                                                                                                  | and                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | МАСТЕ                                                                        | ≝C —       |

.

|                                                                                                               |                                                              |                               | ROC                  | K CO             | DRING LOG                             | 1<br>7,<br>                               | · · · · · ·                          |                                          |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|----------------------|------------------|---------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| Project: Arch Rochester                                                                                       |                                                              |                               |                      |                  |                                       | Boring/Well No.:<br>BR-(                  | 96                                   | Project No. :<br>36/603600               |
| Client: Arch Chemicals                                                                                        |                                                              | Drill                         | er's Nar             | ne:<br>Sho       | rt                                    | Logged by:                                | Checked by:                          | Ground Elev.:                            |
| Drilling Contractor:                                                                                          |                                                              | Prot                          | ection L             | evel:            |                                       | Rig Type:                                 | Start Date:                          | Finish Date:                             |
| Drilling Method:                                                                                              | Bit Type/                                                    | Size:                         | /Z                   | <u> </u>         | · · · · · · · · · · · · · · · · · · · | P.I.D. (eV):                              | Casing Size:                         | Auger Size:                              |
| Ground Elev.:                                                                                                 | Soil Drille                                                  | ed:                           |                      |                  | Core Interval (to/fr                  | <u>  [[.8</u><br>rom)(ft):                | 7                                    |                                          |
|                                                                                                               | Core                                                         | (Rocit :                      |                      |                  | 16.0                                  | - 31.0                                    | este anne anni a Bran ann an Aona    |                                          |
| Depth (feet)<br>Below GRD Sort.<br>Sample No. &<br>Penetration/<br>Recovery (feet)<br>RQD (%):<br>Graphic Log | Dip:<br>Dip:<br>Dip:<br>Dip:<br>Dip:<br>Dip:<br>Dip:<br>Dip: | Weathered<br>Condition:       | Pid Reading (ppm     | FID Reading (ppm |                                       | Rock Desc<br>Comments                     | ription and<br>on Drilling           |                                          |
|                                                                                                               |                                                              |                               |                      |                  | Light                                 | - Gray -                                  | fine grain                           | red                                      |
| 16<br>17 - Rum<br>18 - 1<br>$19 - 57''/_{60}$<br>$19 - 57''/_{60}$                                            | ال <sup>م</sup><br>ح<br>م<br>م<br>م<br>م<br>ح<br>ح<br>م<br>م |                               | 0,0                  |                  | Cry:<br>Inter<br>s                    | stalline Do<br>bedded sha<br>tylolites an | plomite w<br>de (occasi<br>d shale s | ith<br>ionad<br>stringers)<br>Lockport A |
| 20-                                                                                                           | 0°<br>0°                                                     | en antaria antaria antaria.   | <b>9 1 1 1 1 1 1</b> |                  | - 50.3'- 20.7 `-                      | Hishly freet                              | re d                                 |                                          |
| 23 - 2 = 90 = 24 - 66''                                                                                       | 0 <sup>4</sup> .15°<br>0 <sup>0</sup> -10°                   |                               | 0.0                  |                  | 23·3 <sup>`</sup> 1/a '               | diameter Vug                              |                                      |                                          |
| 25_ <i>160</i><br>26                                                                                          | 20°                                                          | NI Asymptotic States of       |                      |                  |                                       |                                           |                                      |                                          |
| 27 - R - w<br>28 - 473<br>29 - 60''<br>30 - 60''<br>30 - 60''                                                 |                                                              | weathed<br>weathed<br>weathed | 0.0                  |                  | <del>یہ</del> اور کر ہے ج             | diamet- Vuy                               | •                                    | •<br>•                                   |
|                                                                                                               | • • • • •                                                    |                               |                      |                  | F                                     |                                           | Sheet                                | 2_of 3_                                  |

2004039a.mac

MACTEC-

| Project                     | Arch                                         | Roch                         | ester                   |           |                       |                         |                                             |                         |                      | Boring/Well No.:            | 16                                    | Project No. :          |
|-----------------------------|----------------------------------------------|------------------------------|-------------------------|-----------|-----------------------|-------------------------|---------------------------------------------|-------------------------|----------------------|-----------------------------|---------------------------------------|------------------------|
| Client:                     | Arch                                         | Chen                         | nicals                  |           |                       | Drille                  | er's Nar                                    | ne:<br>Sho              | rt                   | Logged by:                  | Checked by:                           | Ground Elev.:          |
| Drilling                    | Contract<br>N d H                            | or:<br>NMac                  | ile                     |           |                       | Prote                   | ection L                                    | evel:                   | ·                    | Rig Type:                   | Start Date:<br>3/3/05                 | Finish Date:<br>3/3/05 |
| rilling)<br>לנואל           | Method:                                      | . (or                        | e                       | Bit       | Type/S                | size:<br>Q -            | 3.9'                                        | OĽ                      | )                    | P.I.D. (eV):                | Casing Size:                          | Auger Size:            |
| iround                      | l Elev.:                                     | 1                            |                         | 50<br>14  | il Drilled<br>/.o` (1 | 1:<br>60 to             | Roch                                        | sould                   | Core Interval (to/fi | rom)(ft):<br>31.0'-46.0     | 3 <sup>1</sup>                        |                        |
| ort.                        | ¢                                            |                              |                         | Co<br>Bre | ore<br>eaks           | -                       | :(wdd                                       | ppm):                   |                      |                             |                                       |                        |
| Depth (feet)<br>Selow GRD S | sample No. &<br>enetration/<br>Recovery (fee | ROD (%):                     | araphic Log             | ype:      | lip:                  | Veathered<br>Condition: | id Reading (                                | ID Reading (            |                      | Rock Desc<br>Comments       | pription and so on Drilling           |                        |
|                             |                                              |                              | ~                       |           | 100                   | >0                      |                                             | LL<br>                  | Light                | gray fine                   | grained                               |                        |
| 19-                         | #<br>4                                       |                              | - Without Mark Sciences |           | ۵۵۱ (۵°               |                         |                                             |                         | cryst                | alline Dolo<br>e (occastoni | al stylolite:                         | interbodded<br>s and   |
| 33 -<br>24 -                | 58'/60"                                      | 90                           | -                       |           | 100                   | slign L                 | 0-0                                         |                         |                      | shale st                    | mgers') Lo                            | ckpurt Fug-            |
| \$5-                        |                                              |                              |                         |           | 10°                   | s light                 |                                             |                         |                      |                             |                                       | •                      |
| 56_                         | HY ANGLE IS SHEETS AND A SHEETS              | ) (D 11) (migani ageni ageni |                         |           | 100                   | slight                  | 0073-0003-0024-0024-0024-0024-0024-0024-002 | 127107.07.17.1%(-9/A-m) |                      |                             |                                       |                        |
| 27 -                        | RUN                                          |                              | 0                       |           | 100                   | Mudera                  | te                                          |                         | -361 - 1/2"          | diameko VV                  | 2                                     |                        |
| 38 -                        | #<br>5                                       | רר"                          |                         |           | 100                   |                         |                                             |                         |                      |                             |                                       |                        |
| ,9_                         | 59/ <sub>60</sub> "                          |                              |                         |           | 100                   |                         |                                             |                         | - small verte        | a brake                     | 39.9                                  |                        |
| 10-                         |                                              |                              |                         |           | 10°<br>-0°            |                         |                                             |                         |                      |                             |                                       |                        |
| +1 +                        |                                              |                              |                         |           | 150                   | modenit                 | ·                                           |                         |                      |                             |                                       |                        |
| 12 -                        | RUN<br>#                                     |                              |                         |           | 2.<br>10,             | slight<br>Slight        |                                             |                         |                      |                             |                                       | · .                    |
| · ·                         | 6° / , ,                                     | 83                           |                         |           | 10°                   | sligh t-                |                                             |                         | 44-44.3' 5m          | nall verticed b             | ireal(                                |                        |
| 45_                         | Ŭ                                            |                              |                         |           | <i>ا</i> ه <i>'</i>   |                         |                                             |                         |                      |                             |                                       |                        |
| 16                          |                                              |                              |                         |           | 10"                   | slight-                 |                                             |                         |                      | 1 2 10 1                    |                                       | 1 A 1 A C              |
|                             |                                              |                              |                         |           |                       |                         |                                             |                         | End                  | of soici                    | nove er 4                             | 6.0 Kgs                |
|                             |                                              |                              |                         |           |                       |                         |                                             |                         |                      |                             | Sheet                                 | <u>3_of 3_</u>         |
| 04039                       | a mac                                        |                              |                         |           |                       |                         |                                             |                         |                      |                             | · · · · · · · · · · · · · · · · · · · | МАСТЕС                 |

• .



| :                              |                                                                                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ROC                                | ксс             | DRING LOG                                                                                                   |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------|
| Projec                         | <sup>t:</sup> Arch                                                                                               | Roch     | ester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 | Boring/Well No.: Project No. :                                                                              |
| Client:                        | Anak                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      | Drille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r's Nan                            | ne:             | Logged by: Checked by: Ground Elev.:                                                                        |
|                                | Arcn                                                                                                             | Cnen     | licais                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                      | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL :                               | Shor            | T M. SCHAEFFER NUB                                                                                          |
| Drilling                       | Contracto                                                                                                        | or:      | Qx1.1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                              |                      | Prote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ction L                            | evel:           | Rig Type: Start Date: Finish Date:                                                                          |
| Drilling                       | Method:                                                                                                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bi                                                                                                              | t Type/S             | ize:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                 | P.I.D. (eV): Casing Size: Auger Size:                                                                       |
| WIR                            | LEUNE                                                                                                            | cor      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | He                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.8"                               | corei           | 5140(5) 11.77                                                                                               |
| Groun                          | a Elev.:                                                                                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                              |                      | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | »'                                 |                 | 9.0' - 50'                                                                                                  |
|                                |                                                                                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Br                                                                                                              | Core<br>eaks         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :(u                                | ::<br>m         |                                                                                                             |
| Depth (feet)<br>Below GRD Sort | Sample No. &<br>Penetration/<br>Recovery (feet)                                                                  | RQD (%): | Graphic Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type:                                                                                                           | Dip:                 | Weathered<br>Condition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pid Reading (pp                    | FID Reading (pp | Rock Description and<br>Comments on Drilling                                                                |
|                                |                                                                                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 | Seat + groot 6" steel casing 11 bqs                                                                         |
|                                |                                                                                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 |                                                                                                             |
| 9_                             | and the second |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 |                                                                                                             |
| 1D -                           | R-1<br>9.0'-<br>10.5'                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a sta anni i data anni i data anni |                 | grout                                                                                                       |
| :)( —                          | R-2                                                                                                              |          | and the second s | **************************************                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 | grout to 10.91                                                                                              |
| 12                             | 10.5'-<br>15.5`<br>5.0                                                                                           | 76       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 10-<br>150           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | вкуб                               |                 | gray bedded dolomite finely crystalline<br>where horizontal Fractures along shale<br>bedding planes (warry) |
| 15_                            |                                                                                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second secon |                      | and the other designment of th | And the second second              | STATES STATES   | Small voids at ~ 12' and 13.3'<br>losing some drill water                                                   |
| 16 -<br>17 -<br>18 -           | R-3<br>15,5'-                                                                                                    | 83       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 0.50                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 | wavy breaks along shaly lomina                                                                              |
| 19-<br>20-                     | 5.0                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 10 <sup>0</sup> -15° |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₿Kyd                               |                 | æ                                                                                                           |
| 21-                            |                                                                                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 |                                                                                                             |
|                                |                                                                                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 | <u> </u>                                                                                                    |
|                                |                                                                                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 | Sheet of                                                                                                    |
| 200403                         | a.mac                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 | MACTEC                                                                                                      |

.

|                                                                                                                    |                      |                                       |          |                 | . 1                              | ROC                         | K CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RING LOG                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|----------|-----------------|----------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project: Arc                                                                                                       | h Roch               | ester                                 |          |                 |                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring/Well No.: Project No. :                                                                                                                                   |
| Olient:                                                                                                            |                      |                                       |          |                 | Drille                           | r's Narr                    | ie:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logged by: Checked by: Ground Elev.:                                                                                                                             |
| Arc                                                                                                                | h Chen               | nicals                                |          |                 |                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M. SCHAEFFER_                                                                                                                                                    |
| Initian Contra                                                                                                     | ctor:                | (1))/m                                |          |                 | Prote                            | ction Le                    | evel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rig Type: Start Date: Finish Date:                                                                                                                               |
| Drilling Metho                                                                                                     | d:                   |                                       | Bit      | Type/Si         | ze:                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P.I.D. (eV): Casing Size: Auger Size:                                                                                                                            |
| WIRGUN                                                                                                             | e coa                | ٤                                     |          | HQ              | (3,                              | 8 60                        | reitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\mathcal{E}}{\mathcal{E}} \qquad $ |
| iround Elev.:                                                                                                      | •                    | <b></b>                               | 50       |                 | 9.0                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |
|                                                                                                                    |                      |                                       | C<br>Bre | ore<br>eaks     |                                  | m):                         | :(m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |
| Depth (feet)<br>Below GRD Sort<br>Sample No. &<br>Penetration/                                                     | RQD (%):             | Graphic Log                           | Type:    | Dip:            | Weathered<br>Condition:          | Pid Reading (pp             | FID Reading (pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rock Description and<br>Comments on Drilling                                                                                                                     |
| $\frac{21}{-2} - \frac{20.5}{20.5}$ $\frac{23}{-3} - \frac{25.5}{5.0}$                                             | -<br>96              |                                       |          | 0-50<br>10°-15° |                                  | BKjå                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fractures along shaley lamina                                                                                                                                    |
| .6 -<br>R-5<br>.7 -<br>255'-<br>58 - 30.5                                                                          | ક્રય                 | · · · · · · · · · · · · · · · · · · · | mut      | 6-5°            |                                  | BKyd                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fractures along shaly lamina                                                                                                                                     |
| 29 - 5,0'                                                                                                          | ANITAR INVESTIGATION |                                       | mel      |                 | a la constanta da se             |                             | Carry Life Contraction Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | м».                                                                                                                                                              |
| 1 -<br>12-<br>13-<br>130.5'-<br>135.5'<br>14-<br>15-<br>15-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10 | 82                   |                                       |          | 00-100          |                                  | бқад                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.2' - 2" gay day in toutre<br>31.5'- 34.5' Shaley lamina / 3trilyers<br>port increase                                                                          |
|                                                                                                                    |                      |                                       | med      | a Sayanda ana a | Northern College College College | A REAL PROPERTY AND IN CASE | Street of the local division of the local di | · · ·                                                                                                                                                            |
|                                                                                                                    |                      | l                                     | I        | I               |                                  |                             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sheet of                                                                                                                                                         |
|                                                                                                                    |                      |                                       |          |                 |                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |

| Projec        | t:<br>Arroh                              | Deele |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      | Boring/Well No.:      |               | Project No. :                         |
|---------------|------------------------------------------|-------|-----------------------------|------|------------------------------|----------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------|---------------------------------------|
|               | Arch                                     | Roch  | ester                       |      |                              |                                                                                                                |          |                                                                                                                 | ·                    | BR-1'                 | 27            |                                       |
| Client:       | Arch                                     | Chem  | licals                      | i    |                              | Drille                                                                                                         | er's Nam | e:                                                                                                              |                      | Logged by:            | Checked by:   | Ground Elev.                          |
| Drilling      | Contract                                 | or:   |                             |      |                              | Protection Level:                                                                                              |          |                                                                                                                 |                      | Rig Type:             | Start Date:   | Finish Date:                          |
| Drilling      | Method:                                  |       |                             | Bit  | Type/S                       | ze:                                                                                                            |          |                                                                                                                 |                      | P.I.D. (eV):          | Casing Size:  | Auger Size:                           |
| Groun         | d Elev.:                                 |       |                             | So   | il Drilled                   | :                                                                                                              |          |                                                                                                                 | Core Interval (to/fr | l<br>om)(ft):         | 1             |                                       |
|               |                                          |       |                             | C    | ore                          |                                                                                                                | ä        | ::                                                                                                              |                      |                       |               |                                       |
| Sort.         | &<br>et)                                 |       |                             | BIE  |                              |                                                                                                                | mqq)     | nqq)                                                                                                            |                      |                       |               |                                       |
| eet)          | No. a<br>tion/                           | :(0   | Log                         |      |                              | n:                                                                                                             | ding     | ading                                                                                                           |                      | Rock Desc<br>Comments | s on Drilling |                                       |
| ott<br>ov G   | nple<br>netrat                           | D (%  | tphic                       | ë    |                              | athe                                                                                                           | Rea      | Bea                                                                                                             |                      |                       |               |                                       |
| Del<br>Bel    | Sar<br>Per<br>Re(                        | RQ    | Gra                         | Typ  | Dip                          | So Ke                                                                                                          | Pid      |                                                                                                                 |                      |                       |               |                                       |
|               | 8-2-0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 |       | ###1:107514-1-974-1-974-1-9 |      |                              | and the support                                                                                                |          |                                                                                                                 | ~                    |                       | •             |                                       |
| 36-           | 0-7                                      |       |                             |      |                              |                                                                                                                |          |                                                                                                                 | shalv 1              | amina (stri           | ngers dec     | read                                  |
| 37-           | 500                                      |       |                             |      |                              |                                                                                                                |          |                                                                                                                 | Juny                 | •                     | J             |                                       |
| 0.            | 50.0-                                    | a     |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       |               |                                       |
| <u> 3</u> 8 – | 40.5                                     | 82    |                             |      | 0-5                          |                                                                                                                | BKja     |                                                                                                                 |                      |                       |               |                                       |
| 39 -          | 6.0                                      |       |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       |               |                                       |
|               | 3*                                       |       |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       |               |                                       |
| 90_           |                                          |       |                             | mech | Charlot and the state of the | - Theorem and the second                                                                                       |          | 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - | ~ *                  |                       |               |                                       |
| <u>ЧI _</u>   | 2-8                                      |       |                             |      |                              |                                                                                                                |          |                                                                                                                 | Yugs / 51            | yolites 4             | 0.5'-40.91    |                                       |
| 42 -          | NA 51-                                   |       |                             |      |                              |                                                                                                                |          |                                                                                                                 | wany                 | breaks al             | ong Stypt.    | te 1                                  |
| 42            | 4013                                     | 82    |                             |      |                              |                                                                                                                |          |                                                                                                                 | <                    | note tomin            | har .         | ·                                     |
| 1.5           | 93.3                                     | 06    |                             |      | 0-50                         |                                                                                                                | Bled     |                                                                                                                 |                      | Lang to the           |               | · · · · · · · · · · · · · · · · · · · |
| 14 -          |                                          |       |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       |               |                                       |
| Ur            | 5.0                                      |       |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       |               |                                       |
|               | •                                        |       | and the supervised of the   | mich | A TRANSPORT OF TAXABLE       | ACCOMPANY OF CONTRACTORS                                                                                       |          | الالالفافا والم                                                                                                 | • .                  | , <u> </u>            | ert en        | + 41 2'                               |
| 46_           | 2-9                                      |       |                             |      |                              |                                                                                                                |          |                                                                                                                 | gray e               | lay in hi             | 5 Jean a      | 5 J P O                               |
| ч <b>า</b> _  | 45,5'-                                   |       |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       |               | · · · /                               |
|               | 50.5'                                    |       |                             |      | A                            |                                                                                                                | BKA      |                                                                                                                 | wary                 | breaks al             | ong shaly     | Iamino/                               |
| 48 _          |                                          | 82    |                             |      | 10:20                        |                                                                                                                |          |                                                                                                                 | · .                  | Strol                 | tes           |                                       |
| ца –          |                                          |       |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       | ·             |                                       |
| 11            | 5.0                                      |       |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       |               |                                       |
| 50-           | ·                                        |       | Nanime Statements           | mich | 5-10°                        | yan Watan da Katangan Manangan Salahan da Katangan Salahan da Katangan Salahan da Katangan Salahan da Katangan | -        | Contrast Contrast                                                                                               | tend                 | 56.51                 |               |                                       |
|               | · · · · · · · · · · · · · · · · · · ·    |       |                             |      |                              |                                                                                                                |          |                                                                                                                 | 1 2 2 3 3            | 2~12                  | <u> </u>      |                                       |
|               |                                          |       |                             |      |                              |                                                                                                                |          |                                                                                                                 |                      |                       | Sheet         | 3 of 3                                |

٠

//

•

| WELL INSTALLA                 | TION DI   | AGRAM    |   |                  |                  | WELL NO .:           | MW-103       |
|-------------------------------|-----------|----------|---|------------------|------------------|----------------------|--------------|
| PROJECT NAME: OLI             | N ROCHEST | ER RI    |   | DATE INSTALLED:  | 11 / 10 / 93     | INITIAL WATE         | 2            |
| PROJECT NO.:                  | 7311-03   |          | 4 | DRILLING METHOD: | HSA              | LEVEL DEPTH:         | 3.98'(RF)    |
| GROUND ELEVATION:             | 533.25    |          |   | AUGER ID:        | 4.25 - INCH      | DATE: 01 /           | 19 / 94      |
| REFERENCE POINT EL            | EVATION:  | 533.25   |   | RIG GEOLOGIST:   | J. ROSENBLUM     |                      |              |
|                               |           |          | _ |                  |                  |                      |              |
| REFERENCE POINT -             | _         | -        |   | FLUSH MOUNTE     | D PROTECTIVE     |                      |              |
| (TOP OF PROTECTIVE<br>CASING) |           |          |   | CASING - STI     | CKUP = 0.0       |                      |              |
|                               |           |          |   | TOP OF PVC F     | ISER DEPTH:      | 0.3'                 |              |
| GROUND SURFACE                |           |          |   |                  |                  |                      |              |
|                               |           | -        |   | OUTSIDE DIAM     | TETER OF STEEL P | ROTECTIVE CASING: 8  | - INCH       |
|                               |           |          |   |                  |                  |                      |              |
|                               |           |          |   | BOREHOLE DIA     | AMETER: 8.25 -   | INCH                 |              |
|                               | ·         |          |   | UELL DISED       | 0. 2 0-INCH      |                      |              |
|                               | •         | •        |   | TYPE OF USER     |                  | 10 000               |              |
|                               | :         |          |   | TTPE OF WELL     | RISER: SCH       | 40 PVC               |              |
|                               | :         | :        |   | TYPE OF BACK     | CFILL: PEN       | N SILICA # 1 SAND (F | OR DRAINAGE) |
|                               | :         | <u> </u> |   | DEPTH TO TOP     | OF BENTONITE P   | ELLET SEAL: 1.6'     |              |
|                               |           |          |   |                  |                  |                      |              |
|                               | •         | ·        |   | DEPTH TO TOP     | OF SAND PACK:    | 3.6'                 |              |
|                               |           |          |   |                  | -                | e                    |              |
|                               |           |          |   | DEPTH TO TOP     | OF WELL SCREEN   | : 5.6'               | -            |
|                               | :::=      |          |   | BOREHOLE DI      | IAMETER: 8.25    | - INCH               |              |
|                               | :::=      |          |   | TYPE OF WELL     | SCREEN: SCH      | 40 PVC               |              |
|                               |           |          |   | UELL SCREEN      | 10. 2.0-         | INCH                 |              |
|                               |           |          |   | WELL SCREEN      | 10. 2.0-         | 2. tueu              |              |
|                               | E         |          |   | WELL SLOT S      | 12E: 0.01        | U-INCH               |              |
|                               |           |          |   | LENGTH OF WE     | ELL SCREEN: 3.0' |                      |              |
|                               |           |          |   | TYPE OF SAND     | PACK: PENN       | SILICA # 1           |              |
|                               |           |          |   |                  |                  |                      |              |
|                               |           |          |   | DEPTH TO BOT     | TTOM OF WELL SCR | EEN: 8.6'            |              |
|                               |           | J        |   | DEPTH TO BO      | TTOM OF SEDIMENT | TRAP: 8.6'           |              |
|                               |           |          |   | DEPTH OF BOR     | REHOLE:          | 10.8'                |              |

| WELL INSTALLATION DIAGRAM                                         | WELL NO.: MW-104                                                                                  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                   | INITIAL WATER                                                                                     |
| PROJECT NO.: 7311-03                                              | DRILLING METHOD: HSA LEVEL DEPTH: 13.00'(RF)                                                      |
| GROUND ELEVATION: 537.54                                          | AUGER ID: 4.25 - INCH DATE: 01 / 26 / 94                                                          |
| REFERENCE POINT ELEVATION: 537.54                                 | RIG GEOLOGIST: E. SHEPARD                                                                         |
| REFERENCE POINT<br>(TOP OF PROTECTIVE<br>CASING)<br>ROUND SURFACE | FLUSH MOUNTED PROTECTIVE<br>CASING - STICKUP = 0.0'<br>TOP OF PVC RISER DEPTH: 0.6'               |
|                                                                   | OUTSIDE DIAMETER OF STEEL PROTECTIVE CASING: 8 - INCH<br>BOREHOLE DIAMETER: 8.25 - INCH           |
|                                                                   | TYPE OF WELL RISER: SCH 40 PVC                                                                    |
|                                                                   | TYPE OF BACKFILL: PENN SILICA # 1 SAND (FOR DRAINAGE) DEPTH TO TOP OF BENTONITE PELLET SEAL: 4.6' |
| ·                                                                 | DEPTH TO TOP OF SAND PACK: 6.6'                                                                   |
|                                                                   | DEPTH TO TOP OF WELL SCREEN: 8.6'                                                                 |
|                                                                   | BOREHOLE DIAMETER: 8.25 - INCH                                                                    |
| E                                                                 | TYPE OF WELL SCREEN: SCH 40 PVC                                                                   |
|                                                                   | WELL SCREEN ID: 2.0-INCH                                                                          |
|                                                                   | WELL SLOT SIZE: 0.010-INCH                                                                        |
| …」二二                                                              | LENGTH OF WELL SCREEN: 9.6'                                                                       |
| _                                                                 | TYPE OF SAND PACK: PENN SILICA # 1                                                                |
|                                                                   | DEPTH TO BOTTOM OF WELL SCREEN: 18.2'                                                             |
|                                                                   | DEPTH TO BOTTOM OF SEDIMENT TRAP: 18.6'                                                           |
|                                                                   | DEPTH OF BOREHOLE: 19.0'                                                                          |
|                                                                   | DEPTH TO BOTTOM OF WELL SCREEN: 18.2'                                                             |

| WELL INSTALLA                          | ATION DI  | AGRAM  |                              |                     | WELL NO.:         | MW-105       |
|----------------------------------------|-----------|--------|------------------------------|---------------------|-------------------|--------------|
| PROJECT NAME: OLI                      | N ROCHEST | ER RI  | DATE INSTALLED:              | 11 / 17 / 93        |                   |              |
| PROJECT NO.:                           | 7311-03   |        | DRILLING METHOD:             | HSA                 | LEVEL DEPTH:      | DRY          |
| GROUND ELEVATION:                      | 536.91    |        | AUGER ID:                    | 4.25 - INCH         | DATE: 01 /        | 17 / 94      |
| REFERENCE POINT EL                     | EVATION:  | 536.91 | RIG GEOLOGIST:               | E. SHEPARD          |                   |              |
| REFERENCE POINT                        |           |        | FLUSH MOUNTE<br>CASING - STI | D PROTECTIVE        |                   |              |
| CASING)                                |           |        | TOP OF PVC R                 | ISER DEPTH: 0.4     |                   |              |
| ROUND SURFACE                          |           |        |                              | -                   |                   |              |
|                                        |           |        | J<br>OUTSIDE DIAM            | ETER OF STEEL PROTE | CTIVE CASING: 8   | - INCH       |
|                                        | :         |        | BOREHOLE DIA                 | METER: 8.25 - INCH  | I                 |              |
|                                        | :         | ·      | WELL RISER I                 | D: 2.0-INCH         |                   |              |
|                                        |           | ÷      | TYPE OF WELL                 | RISER: SCH 40       | PVC               |              |
|                                        | :         | ·      | TYPE OF BACK                 | FILL: PENN SI       | LICA # 1 SAND (FO | DR DRAINAGE) |
|                                        | •         | •      | DEPTH TO TOP                 | OF BENTONITE PELLE  | T SEAL: 5.2'      |              |
|                                        |           |        |                              |                     |                   |              |
|                                        | •         |        | DEPTH TO TOP                 | OF SAND PACK: 7     | .4'               |              |
|                                        |           |        | DEPTH TO TOP                 | OF WELL SCREEN: 9   | .4'               | -            |
|                                        | :::E      |        | BOREHOLE DI                  | AMETER: 8.25 - I    | NCH               |              |
| TOP OF BEDROCK                         | E         |        | TYPE OF WELL                 | SCREEN: SCH 40      | PVC               |              |
|                                        |           |        | WELL SCREEN                  | ID: 2.0-INCH        |                   |              |
| 10000000000000000000000000000000000000 | [ [       |        | WELL SLOT SI                 | ZE: 0.010-IN        | СН                |              |
| יררחי                                  | · –       |        | LENGTH OF WE                 | LL SCREEN: 9.6'     |                   |              |
|                                        |           |        | TYPE OF SAND                 | PACK: PENN SIL      | ICA # 1           |              |
|                                        |           |        | DEPTH TO POT                 | TOM OF UELL SODEFIL | 10.01             |              |
|                                        |           |        |                              | TOW OF WELL SUREEN: | 19.07             |              |
|                                        |           |        | DEPTH TO BOT                 | TUM OF SEDIMENT TRA | P: 19.4'          |              |
|                                        |           |        | DEPTH OF BOR                 | EHOLE:              | 19.4'             |              |

| DRO IECT NAME . OI | IN POCHES     | TED DI |                                                        | WELL NO.: IVIVY-IUO                          |
|--------------------|---------------|--------|--------------------------------------------------------|----------------------------------------------|
| PROJECT NAME: OL   | 7711-07       | EK KI  | DATE INSTALLED: 12 / 07 / 93                           | - INITIAL WATER                              |
| CROUND FLEWATION   | 7311-03       |        | DRILLING METHOD: HSA                                   | LEVEL DEPTH: 12.10'(RF)                      |
| GROUND ELEVATION:  | 555.44        |        | AUGER ID: 4.25 - INCH                                  | DATE: 01 / 17 / 94                           |
| REFERENCE POINT E  | EVATION:      | 535.44 | RIG GEOLOGIST: E. SHEPARD                              |                                              |
| REFERENCE POINT -  |               |        | FLUSH MOUNTED PROTECTIVE                               |                                              |
| CASING)            |               |        | CASING - STICKUP = 0.0                                 |                                              |
|                    |               |        | TOP OF PVC RISER DEPTH:                                | 0.5'                                         |
| ROUND SURFACE      |               |        |                                                        |                                              |
|                    |               |        | OUTSIDE DIAMETER OF STEEL F                            | PROTECTIVE CASING: 8 - INCH                  |
|                    | :             |        | BOREHOLE DIAMETER: 8.25 -                              | INCH                                         |
|                    |               |        |                                                        |                                              |
|                    |               |        | TYPE OF VELL RISER                                     |                                              |
|                    |               | 1.5    | TTPE OF WELL RISER: SCF                                | H 40 PVC                                     |
|                    | •             |        | TYPE OF BACKFILL: PEN                                  | NN SILICA # 1 SAND (FOR DRAINAGE)            |
|                    | -             |        | DEPTH TO TOP OF BENTONITE P                            | PELLET SEAL: 5.8'                            |
|                    |               |        | DEPTH TO TOP OF SAND PACK.                             | 7.81                                         |
|                    |               |        | Servin to for of SAND PACK.                            | 1.0                                          |
|                    |               | +      | DEPTH TO TOP OF WELL SCREEN                            | N: 9.8' -                                    |
|                    | ::: <u></u> _ |        | BOREHOLE DIAMETER: 8.25                                | 5 - INCH                                     |
| TOP OF BEDROCK     | :::=          |        | TYPE OF WELL SCREEN: SCH                               | 40 PVC                                       |
| DEPTH: 14.4'<br>-1 | _:::는         |        | WELL SCREEN ID: 2.0                                    | - INCH                                       |
|                    | ₩E            | •••    | WELL SLOT SIZE: 0.0                                    | 10-INCH                                      |
| FOR CONCERNENCE    | ₩…⊢           |        | LENGTH OF WELL SCREEN: 9.6                             | 1                                            |
|                    | ***           |        |                                                        |                                              |
|                    | :::E          |        | TYPE OF SAND PACK: PEN                                 | N SILICA # 1                                 |
|                    |               |        | TYPE OF SAND PACK: PENI                                | N SILICA # 1                                 |
|                    |               |        | TYPE OF SAND PACK: PENI                                | N SILICA # 1<br>REEN: 19.4'                  |
|                    |               |        | TYPE OF SAND PACK: PENI<br>DEPTH TO BOTTOM OF WELL SCF | N SILICA # 1<br>REEN: 19.4'<br>T TRAP: 19.8' |

| WELL INSTALLATION DIAGRAM         | WELL NO.: MW-107                                                                        |
|-----------------------------------|-----------------------------------------------------------------------------------------|
| PROJECT NAME: OLIN ROCHESTER RI   | DATE INSTALLED: 11 / 08 / 93 INITIAL WATER                                              |
| PROJECT NO.: 7311-03              | DRILLING METHOD: HSA LEVEL DEPTH: 11.18'(RF)                                            |
| GROUND ELEVATION: 536.29          | AUGER ID: 4.25 - INCH DATE: 01 / 18 / 94                                                |
| REFERENCE POINT ELEVATION: 536.29 | RIG GEOLOGIST: E. SHEPARD                                                               |
| REFERENCE POINT                   |                                                                                         |
|                                   | TOP OF PVC RISER DEPTH: 0.5'                                                            |
| SROUND SURFACE                    | OUTSIDE DIAMETER OF STEEL PROTECTIVE CASING: 8 - INCH                                   |
| : i i                             | WELL RISER ID: 2.0-INCH                                                                 |
| :   :                             | TYPE OF WELL RISER: SCH 40 PVC<br>TYPE OF BACKFILL: PENN SILICA # 1 SAND (FOR DRAINAGE) |
|                                   | DEPTH TO TOP OF BENTONITE PELLET SEAL: 2.3'                                             |
| ·                                 | DEPTH TO TOP OF SAND PACK: 4.3'                                                         |
|                                   | DEPTH TO TOP OF WELL SCREEN: 6.3'                                                       |
|                                   | TYPE OF WELL SCREEN: SCH 40 PVC                                                         |
|                                   | WELL SLOT SIZE: 0.010-INCH                                                              |
|                                   | LENGTH OF WELL SCREEN: 9.6'         TYPE OF SAND PACK:       PENN SILICA # 1            |
|                                   | DEPTH TO BOTTOM OF WELL SCREEN: 16.0                                                    |
|                                   | DEPTH OF BOREHOLE: 16.8'                                                                |

| WELL INSTALLA                          | TION DI    | AGRAM       |                                             |                      | WELL NO.:        | MW-108     |
|----------------------------------------|------------|-------------|---------------------------------------------|----------------------|------------------|------------|
| PROJECT NAME: OLI                      | TN ROCHEST | ER RI       | DATE INSTALLED:                             | 12 / 15 / 93         | INITIAL WATER    | 2          |
| PROJECT NO.:                           | 7311-03    | ÷           | DRILLING METHOD                             | HSA                  | LEVEL DEPTH:     | 19.99'(RF) |
| GROUND ELEVATION:                      | 538,10     | <del></del> | AUGER ID:                                   | 4.25 - INCH          | DATE: 01 /       | 18 / 94    |
| REFERENCE POINT EL                     | EVATION:   | 540.80      | RIG GEOLOGIST:                              | E. SHEPARD           |                  |            |
| REFERENCE POINT                        |            | ]           | PROTECTIVE                                  | CASING STICKUP: 2    |                  |            |
| ROUND SURFACE                          | _          |             |                                             |                      |                  |            |
|                                        |            |             | OUTSIDE DI                                  | AMETER OF STEEL PROT | ECTIVE CASING: 4 | - INCH     |
|                                        | :          | :           | BOREHOLE D                                  | IAMETER: 8.25 - INC  | H                |            |
|                                        | ÷.         |             | WELL RISER                                  | ID: 2.0-INCH         |                  |            |
|                                        | :          |             | TYPE OF WE                                  | LL RISER: SCH 40 P   | VC               |            |
|                                        |            | :           | TYPE OF BA                                  | CKFILL: VOLCLAY      | GROUT            |            |
|                                        |            |             | DEPTH TO T                                  | OP OF BENTONITE PELL | ET SEAL: 3.3'    |            |
|                                        |            |             | DEPTH TO T                                  | OP OF SAND PACK:     | 5.5'             |            |
|                                        |            |             |                                             | OF WELL SCREEN.      | 7.51             |            |
|                                        | ΞE         |             | BOREHOLE                                    | DIAMETER: 8.25 - IN  | сн               |            |
| TOP OF REDROCK                         | =          |             | TYPE OF WE                                  | LL SCREEN: SCH 40    | PVC              |            |
| DEPTH: 12.5'                           |            |             | WELL SCREE                                  | N ID: 2.0-INC        | н                |            |
|                                        |            |             | WELL SLOT                                   | SIZE: 0.010-1        | NCH              |            |
| 19999999999999999999999999999999999999 | g=         |             | LENGTH OF                                   | WELL SCREEN: 9.6'    |                  |            |
|                                        | :::E       |             | TYPE OF SA                                  | ND PACK: PENN SILI   | CA # 1           |            |
|                                        | :::E       |             |                                             |                      | 17 11            |            |
|                                        |            |             |                                             | OTTOM OF WELL SUREEN | 17.12            |            |
|                                        |            |             | DEPTH TO B                                  | UTION OF SEDIMENT TR | AP: 1(.)'        |            |
|                                        |            |             | A R A P I I I I I I I I I I I I I I I I I I | ADDING I P           |                  |            |



W2004039b.cdr















| WELL INSTALLATION DIAGRAM             | WELL NO .: PZ-101                                     |
|---------------------------------------|-------------------------------------------------------|
| PROJECT NAME: OLIN ROCHESTER RI       | DATE INSTALLED: 10 / 26 / 93                          |
| PROJECT NO.: 7311-03                  | DRILLING METHOD: HSA LEVEL DEPTH: 15.36'(RF)          |
| GROUND ELEVATION: 540.50              | AUGER ID: 4.25 - INCH DATE: 01 / 17 / 94              |
| REFERENCE POINT ELEVATION: 543.15     | RIG GEOLOGIST: B. JOHNSON                             |
| REFERENCE POINT -                     | PROTECTIVE CASING STICKUP: 2.7'                       |
| CASING)                               | PVC STICKUP: 2.5'                                     |
|                                       |                                                       |
| GROUND SURFACE                        |                                                       |
|                                       | OUTSIDE DIAMETER OF STEEL PROTECTIVE CASING: 4 - INCH |
| ! ! !                                 | BOREHOLE DIAMETER: 8.25 - INCH                        |
|                                       | WELL RISER ID: 2.0-INCH                               |
|                                       | TYPE OF WELL RISER: SCH 40 PVC                        |
| :   :—                                | TYPE OF BACKFILL: PENN SILICA # 1 SAND (FOR DRAINAGE) |
| · · · · · · · · · · · · · · · · · · · | DEPTH TO TOP OF BENTONITE PELLET SEAL: 5.0'           |
|                                       | DEPTH TO TOP OF SAND PACK: 7.3'                       |
|                                       | DEPTH TO TOP OF WELL SCREEN: 9.4'                     |
| =                                     | BOREHOLE DIAMETER: 8.25 - INCH                        |
|                                       | TYPE OF WELL SCREEN: SCH 40 PVC                       |
|                                       | WELL SCREEN ID: 2.0-INCH                              |
|                                       | WELL SLOT SIZE: 0.010-INCH                            |
|                                       | LENGTH OF WELL SCREEN: 9.6'                           |
|                                       | TYPE OF SAND PACK: PENN SILICA # 1                    |
|                                       |                                                       |
|                                       | DEPTH TO BOTTOM OF WELL SCREEN: 19.0'                 |
|                                       |                                                       |
|                                       | DEPTH TO BOTTOM OF SEDIMENT TRAP: 19.4'               |
|                                       | DEPTH OF BOREHOLE: 20.4'                              |

| SOIL BOR     | ING LOG      | BOR                 | ING NO.           | .: PZ-1 | 01 PROJECT NO.: 7311-02 PA                                                                                                                                            | GE 1       | OF      | 2      |       |
|--------------|--------------|---------------------|-------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|--------|-------|
| PROJECT I    | NAME: OLIN   | ROCHESTER RI        | -                 |         | DRILLING CONTRACTOR: MARCOR OF NEW YORK                                                                                                                               |            |         |        |       |
| DRILL RI     | G TYPE: CANT | ERRA CT 350         |                   |         | DRILLER: R. SCHEFFER DATE STARTED: 1                                                                                                                                  | 0/26/93 C  | OMPLETE | D: 10/ | 26/93 |
| METHOD:      | HSA          | AUGER SIZE:         | 4.25              | 5" I.D. | PID METER: 10.6 ev FID METER: OVA-108 PROT                                                                                                                            | ECTION LEV | EL:     | D      |       |
| GROUND EI    | LEV.: 540.5  | SOIL DRILLED        | : 20.4            | 41 FT.  | ROCK DRILLED: (CORED \ ROLLER BIT) N                                                                                                                                  | ONE FT.    | TOTAL   | DEPTH: | 20.4  |
| LOGGED B     | Y: B. JOHN   | ISON                | _                 |         | CHECKED BY: NB                                                                                                                                                        |            | DATE:   | 916    | 194   |
| DEPTH        | SAMPLE       | BLOWS PER           | PEN.              | GRAPHIC | SAMPLE                                                                                                                                                                | USCS       | MONIT   | ORING  | (PPM) |
| (FT.)        | NUMBER       | 6-INCHES            | REC.              | LOG     | DESCRIPTION                                                                                                                                                           | CLASSIF.   | PID     | FID    | OTHER |
| - 1          | s-1          | 5-10-10-21          | 2.0<br>1.3        |         | 0.0'-2.0' - Brown, Silty SAND, fine to<br>coarse, trace to little fine<br>Gravel, trace organics,<br>(concrete in tip of spoon)<br>moist.                             | SM         | 0       | 2      |       |
| - 2          |              |                     |                   |         | 2.0' - 3.0' - Similar to above, some                                                                                                                                  | SM         |         |        |       |
| - 3          | s-2          | 17-32-20-25         | $\frac{2.0}{1.5}$ |         | 3.0' - 4.0' - Reddish-brown SAND, fine,<br>little to some silt, trace<br>to little medium and coarse<br>Sand, dry.                                                    | SM         | 0       | 30     |       |
| 5            | s-3          | 11-18-19-17         | 2.0<br>1.6        |         | 4.0' - 6.0' - Reddish brown Silty SAND,<br>fine, trace to little medium<br>Sand, trace coarse Sand and<br>fine Gravel, dry to moist<br>at 6.0'.                       | SM         | 0       | 4      |       |
| 6            | s-4          | 6-12-23-24          | 2.0               |         | 6.0' - 6.4' - Brown SAND, fine, some Silt,<br>little medium to coarse Sand,<br>trace Organics (roots).                                                                | SM         | 0       | 4      |       |
| 8            |              |                     | 1.8               |         | 6.4' - 8.0' - Brown to gray Silty Sand,<br>fine, little coarse Sand,<br>trace medium Sand and fine<br>Gravel, moist.                                                  | SM         |         |        |       |
| 9            | s-5          | 10-16-21-21         | 2.0<br>2.0        |         | 8.0' - 10.0'- Reddish-brown Silty SAND,<br>fine, little coarse and<br>medium Sand, trace fine<br>Gravel, moist.                                                       | SM         | Q       | 2      |       |
| 10           |              |                     |                   |         | 10.0'-10.9' - Similar to above, wet and                                                                                                                               | SM         |         |        |       |
| 11           | S-6          | 10-50 (FOR<br>0.4') | 0.9<br>0.9        |         | saturated at 10.5'.                                                                                                                                                   |            | NA      | NA     |       |
| 12<br>13     | s-7          | 28-25-20-29         | 2.0<br>1.1        |         | 12.0'-14.0' - Brown SAND, fine some coarse<br>Sand, little to some fine<br>fine Gravel, trace to little<br>Silt, trace medium Sand,<br>poorly graded, saturated       | SP         | 0       | 2      |       |
| - 14<br>- 15 | s-8          | 6-16-19-28          | 2.0<br>1.4        |         | 14.0'-16.0' - Brown SAND, fine to coarse,<br>little Silt, grading to: fine<br>SAND and little medium to<br>coarse Sand, little Silt,<br>trace fine Gravel, saturated. | SM         | 0       | O      |       |

)

| DRILL RI       | G TYPE: CANT     | ERRA CT 350               |            |                | DRILLER: R. SCHEFFER DATE STARTED: 10                                                                                                                                                                                                                                | 0/26/93 C  | OMPLET | ED: 10, | /26/93 |
|----------------|------------------|---------------------------|------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|---------|--------|
| METHOD:        | HSA              | AUGER SIZE:               | 4.25       | " I.D.         | PID METER: 10.6 ev FID METER: OVA-108 PROTE                                                                                                                                                                                                                          | ECTION LEV | EL:    | D       |        |
| GROUND EI      | EV.: 540.5       | SOIL DRILLED              | 0: 20.4    | FT.            | ROCK DRILLED: (CORED \ ROLLER BIT) NO                                                                                                                                                                                                                                | ONE FT.    | TOTAL  | DEPTH   | 20.4   |
| LOGGED B       | : B. JOHN        | SON                       |            |                | CHECKED BY: N-D                                                                                                                                                                                                                                                      |            | DATE:  | 91      | 6194   |
| DEPTH<br>(FT.) | SAMPLE<br>NUMBER | BLOWS PER<br>6-INCHES     | PEN.       | GRAPHIC<br>LOG | SAMPLE<br>DESCRIPTION                                                                                                                                                                                                                                                |            | MONI   | TORING  | (PPM)  |
| 16             | 1                |                           | REC.       |                |                                                                                                                                                                                                                                                                      | CLASSIT.   | PID    | FID     | OTHER  |
| 17             | s-9              | 43-40-40-43               | 2.0<br>1.6 |                | 16.0'-18.0'- Gray Silty SAND, fine, trace<br>medium and coarse Sand, trace<br>Gravel (fine), grading to more<br>silt with depth, little fine<br>Sand trace fine Gravel,<br>saturated.                                                                                | SM         | 1.2    | 300     |        |
| 9              | S-10             | 25-43-50<br>(for<br>0.3') | 1.3<br>1.0 |                | <pre>18.0'-20.0'- Gray SILT, trace fine Gravel         (subrounded) trace medium         and coarse Sand, thin silty         fine Sand lenses near bottom         of sample. Note:         At tip of spoon FID readings jumped         from 10 ppm to 150 ppm.</pre> | ML         | 1.9    | 250     |        |
| 1              |                  |                           |            |                | Spoon refusal at 19.3'. Auger W/o<br>sampling to refusal at 20.4'. Bedrock<br>fragments observed.<br>Note:<br>1) Refusal with spoon first<br>encountered at 10.9'. Boring<br>moved 3' northwest and sampling<br>continued from 12.0'.                                |            |        |         |        |

| WELL INSTAL                    | LATION D    | IAGRAM  | WELL NO .: PZ-102                                                                |
|--------------------------------|-------------|---------|----------------------------------------------------------------------------------|
| PROJECT NAME:                  | DLIN ROCHES | STER RI | DATE INSTALLED: 01 / 14 / 94                                                     |
| PROJECT NO.:                   | 7311-03     | -       | DRILLING METHOD: HSA \ ROCK CORE LEVEL DEPTH: 26.00'(RF)                         |
| GROUND ELEVATION               | N: 539.10   |         | CORE HOLE DIA .: 3.8 - INCH DATE: 01 / 17 / 94                                   |
| REFERENCE POINT                | ELEVATION:  | 541.11  | RIG GEOLOGIST: E. SHEPARD                                                        |
| REFERENCE POINT                | -           | _       | PROTECTIVE CASING STICKUP: 2.0'                                                  |
| CASING)                        |             | ]+      | PVC STICKUP: 1.8'                                                                |
|                                |             |         |                                                                                  |
| GROUND SURFACE                 |             | ** **   |                                                                                  |
|                                |             |         | OUTSIDE DIAMETER OF STEEL CASING: 6-INCH                                         |
|                                |             |         | BOREHOLE DIAMETER: 10-INCH                                                       |
|                                |             | ** **   | WELL RISER ID: 2.0-INCH                                                          |
|                                |             |         | TYPE OF WELL RISER: SCH 40 PVC                                                   |
|                                | ** **       |         |                                                                                  |
| TOP OF BEDROCK<br>DEPTH: 17.2' |             |         | TYPE OF BACKFILL: CEMENT\BENTONITE GROUT                                         |
| -1                             |             |         | DEPTH TO BOTTOM OF 6" CASING: 19.2'                                              |
|                                |             |         | DODUCTION DEPTH TO BOTTOM OF ROCK SOCKET<br>AND CEMENT\BENTONITE BACKFILL: 19.2' |
|                                |             |         | DEPTH TO TOP OF BENTONITE PELLET SEAL: 18.0'                                     |
|                                |             |         | DEPTH TO TOP OF SAND PACK: 21.8'                                                 |
|                                |             |         | DEPTH TO TOP OF WELL SCREEN: 22.7'                                               |
|                                |             |         | ROCK CORE HOLE DIAMETER: 3.8-INCH                                                |
|                                |             |         |                                                                                  |
|                                |             |         | TYPE OF WELL SCREEN: SCH 40 PVC                                                  |
|                                |             | •••     | WELL SCREEN ID: 2.0-INCH                                                         |
|                                |             |         | WELL SLOT SIZE: 0.010-INCH                                                       |
|                                |             |         | LENGTH OF VELL SOPEEN. 8 OL                                                      |
|                                |             |         | ELIGIN OF WELL SUREEN. B.D.                                                      |
|                                |             |         | TYPE OF SAND PACK: PENN SILICA # 1                                               |
|                                |             |         | DEPTH TO BOTTOM OF VELL SCREEN. 30 71                                            |
|                                | •••         |         |                                                                                  |
|                                |             |         | DEPTH TO BOTTOM OF SEDIMENT TRAP: 30.7'                                          |
|                                |             |         | DEPTH OF BOREHOLE: 34.31                                                         |

| L BOK | ING LOG      | BOR          | ING NO.           | : TZ-1  |              | PRUJECT NU.: 7511-02 PA                                                                                                                                                                  | NUE I       | UF     | 4       | -     |
|-------|--------------|--------------|-------------------|---------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---------|-------|
| DJECT | NAME: OLIN   | ROCHESTER RI |                   |         | DRILLING CON | NTRACTOR: MARCOR OF NEW YORK                                                                                                                                                             |             |        |         | -     |
| LL RI | G TYPE: CANT | TERRA CT 350 |                   |         | DRILLER: R   | SCHEFFER DATE STARTED:                                                                                                                                                                   | 10/25/93 0  | OMPLET | ED: 10/ | 25/93 |
| HOD:  | HSA          | AUGER SIZE:  | 4.25              | " 1.D.  | PID METER:   | 10.0 ev FID METER: OVA-108 PRO                                                                                                                                                           | TECTION LEV | EL: M  | D. D    |       |
| UND E | LEV.: 539.1  | SOIL DRILLE  | D: 17.            | 2' FT.  | ROCK DRILLED | CORED: 15.1' ROLLER BIT:                                                                                                                                                                 | 2.0' '      | TOTAL  | DEPTH:  | 34.31 |
| GED B | Y: B. JOHN   | NSON         |                   |         | CHECKED BY:  | N.B                                                                                                                                                                                      |             | DATE:  | 9/6     | 194   |
| PTH   | SAMPLE       | BLOWS PER    | PEN.              | GRAPHIC |              | SAMPLE                                                                                                                                                                                   | USCS        | MONI   | TORING  | (PPM) |
| 1.)   | NUMBER       | 6-INCHES     | REC.              | LOG     | Di           | ESCRIPTION                                                                                                                                                                               | CLASSIF.    | PID    | FID     | OTHER |
|       | S-1          | 4-8-6-8      | 2.0<br>1.2        |         | 0.0'-1.0' [  | Dark Brown Silty SAND, fine<br>trace organics, moist.<br>Brown to Rust SAND, medium to<br>coarse, some fine Sand, trace<br>to little fine gravel, moist.<br>(dry coal fragments present) | SM<br>SW    | 0      | 0       |       |
|       | s-2          | 5-14-17-16   | $\frac{2.0}{1.0}$ |         | 2.01-4.0     | Tan to rust SILT, little to some<br>fine Sand, trace fine Gravel,<br>dry.                                                                                                                | ML          | 0      | 2       | -     |
|       | s-3          | 6-17-22-20   | 2.0<br>1.5        |         | 4.0'-6.0'    | Brown to rust Silty SAND, fine,<br>trace to little fine to coarse<br>Gravel, trace medium to coarse<br>Sand, dry to moist (Organics<br>in the form of roots are present                  | SM          | 0      | 4       |       |
|       | s-4          | 7-13-16-21   | 2.0<br>1.6        |         | 6.01-6.21    | Topsoil Silty SAND, fine, trace<br>Organics, moist.                                                                                                                                      | SM          | 0      | 15      |       |
|       |              |              | 2.0               |         | 8.01-8.31    | little coarse Sand, fine Gravel,<br>trace medium Sand, moist to wet.<br>(Organics and mottles present)<br>Similar to above.                                                              | SM          |        | -       |       |
|       | s-5          | 8-20-19-17   | 1.8               |         | 8.3'-10.0'   | Light Brown Silty SAND, fine,<br>little fine Sand, fine Gravel,<br>trace medium Sand, wet to<br>saturated.                                                                               | SM          | 0      | 7       |       |
|       | s-6          | 10-18-20-27  | 2.0<br>1.4        |         | 10.0'-12.0   | <ul> <li>Light Brown SAND, fine, trace<br/>to little coarse Gravel, trace<br/>medium to coarse Sand, poorly<br/>graded, saturated.</li> </ul>                                            | SP          | 0      | 4       |       |
|       |              |              | 2.0               |         | 12.0'-13.3   | ' Similar to above.                                                                                                                                                                      | SP          |        | 125     |       |
|       | s-7          | 17-23-31-31  | 1.7               |         | 13.3'-14.0   | ' Gray SAND, fine, some Silt,<br>fractured rock, trace medium<br>to coarse Sand, saturated.                                                                                              | SM          |        | 123     |       |
|       | s-8          | 14-12-17-21  | $\frac{2.0}{1.2}$ |         | 14.0'-16.0   | ' Similar to above, trace to<br>little medium to coarse Sand.                                                                                                                            | SM          | 0      | 4       |       |

| SOIL BOR       | ING LOG          | BOR                   | ING NO            | .: PZ-1 | 02 PROJ                                      | CT NO.:                                   | 7311-03                               | PAC   | GE 2           | OF     | 4      |        |
|----------------|------------------|-----------------------|-------------------|---------|----------------------------------------------|-------------------------------------------|---------------------------------------|-------|----------------|--------|--------|--------|
| ROJECT         | NAME: OLIN       | ROCHESTER RI          |                   |         | DRILLING CONTRACT                            | DR: MARCO                                 | OR OF NEW YORK                        |       |                |        |        |        |
| RILL RI        | G TYPE: CANT     | ERRA CT 350           |                   | *       | DRILLER: R. SCHEF                            | ER                                        | DATE STARTED                          | ): 10 | 0/25/93 CO     | MPLETE | D: 10/ | 25/93  |
| METHOD:        | HSA              | AUGER SIZE:           | 4.2               | 5" I.D. | PID METER: 10.6 e                            | FID MET                                   | TER: OVA-108 F                        | ROTE  | CTION LEV      | EL:    | MOD D  | 0      |
| GROUND EI      | EV.: 539.1       | SOIL DRILLED          | 0: 17.2           | 2' FT.  | ROCK DRILLED: CO                             | E: 15.1                                   | ROLLER BI                             | T: 2  | 2.0'           | TOTAL  | DEPTH  | :34.4' |
| OGGED BY       | 1: B. JOH        | INSON                 |                   |         | CHECKED BY: N                                | β,                                        |                                       |       | 100-11         | DATE:  | 91     | 6/9    |
| DEPTH<br>(FT.) | SAMPLE<br>NUMBER | BLOWS PER<br>6-INCHES | PEN.              | GRAPHIC | SAMPL                                        | TON                                       |                                       |       | USCS           | M      | ONITOR | ING    |
| 16             |                  | A CONTRACT            | REC.              |         | DESCRIP                                      | TON                                       |                                       |       | CLASSIF.       | PID    | FID    | OTHE   |
| 17             | s-9              | 1-13-50/0.2'          | $\frac{1.2}{1.0}$ |         | 16.0'-16.2' Simi<br>16.2'-16.5' Gray<br>some | ar to abo<br>SAND, coa<br>fine Sand       | ove<br>arse to medium,<br>d and Silt, |       | SM<br>SM<br>SM | 0      | 125    |        |
| 18             |                  |                       | - 1.0             |         | satu<br>16.5'-17.2' Gray<br>medi<br>satu     | ated.<br>Silty SAM<br>In to coar<br>ated. | ND, fine, trace<br>rse Sand,          |       |                |        |        |        |
|                | -                |                       |                   |         | Notes:                                       |                                           |                                       |       |                |        |        |        |
| 19             |                  |                       |                   |         | Refusal w                                    | ith augers                                | s at 17.2'                            |       |                |        |        |        |
|                | 1                | 1 1                   |                   |         | Water lev                                    | el measure                                | ed at 8.5'                            |       |                |        |        |        |
| 20             |                  |                       |                   |         | during dr                                    | illing.                                   |                                       |       |                |        |        |        |
|                |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 21             |                  |                       |                   |         |                                              |                                           |                                       |       |                | 1.5    |        |        |
|                |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 22             |                  | 1                     |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 22             |                  |                       |                   |         |                                              |                                           |                                       |       |                | _      |        |        |
| 22             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 23             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
|                |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 24             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
|                |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 25             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
|                |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 26             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
|                |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 27             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
|                |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 28             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
|                |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 29             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |
|                |                  | -3 611                |                   |         |                                              |                                           |                                       |       |                |        |        |        |
| 50             |                  |                       |                   |         |                                              |                                           |                                       |       |                |        |        |        |

| ROCK CORE    | E LOG     |             | BORIN   | G NO.: | PZ-      | 102          |           | PROJECT N        | 10.: 7311-02                                                     | PAGE 3                                                   | OF         | 4        |
|--------------|-----------|-------------|---------|--------|----------|--------------|-----------|------------------|------------------------------------------------------------------|----------------------------------------------------------|------------|----------|
| PROJECT N    | NAME: OL  | IN ROCHESTE | RRI     |        |          | DRIL         | LING C    | ONTRACTOR:       | MARCOR OF NEW YORK                                               | S                                                        |            |          |
| DRILL RIC    | G TYPE: C | ANTERRA CT  | -350    | 1      | •        | DRIL         | LER:      | R. SCHEFFE       | R DATE STAR                                                      | TED: 11/04/93 CO                                         | MPLETED:   | 11/04/93 |
| METHOD: 0    | CORE      | BIT SI      | ZE: HQ  | (3.    | 8" O.D.) | PID          | METER:    | 10.6 ev F        | ID METER: OVA-108                                                | PROTECTION LEV                                           | EL: D      |          |
| GROUND EL    | EV.: 539  | .10 SOIL D  | RILLED: | 17.    | 2 FT.    | ROCK         | DRILL     | ED: (CORED:      | : 15.1' ROLLER BI                                                | T: 2.0') T                                               | OTAL DEPT  | H: 34.3' |
| LOGGED BY    | (: E. S   | HEPARD / N. | BRETON  |        |          | CHEC         | KED BY    | : NOB            |                                                                  | D                                                        | ATE: 9/6   | 194      |
| DEPTH        | RUN       | DRILLING    | PEN.    | RQD    | GRAPHIC  | CORE         | BREAKS    | WEATHERED        | ROCK DESCR                                                       | IPTION AND                                               | MON        | ITORING  |
| (11.)        | NU.       | (FT/MIN)    | REC.    | (%)    | LUG      | TYPE         | DIP       | CONDITION        | COMMENTS                                                         | IN DRILLING                                              | PID        | FID      |
| - 18<br>- 19 |           |             |         |        |          |              |           |                  | See soil boring<br>soil description<br>Roller cone dril<br>Grout | log for PZ-102 f<br>is from 0'-17.2'<br>l from 17.2'to 1 | or<br>9.2' | -        |
| - 19.2 —     |           |             | 0.7     |        | 11       |              | 1         |                  | 2005 Ten 10                                                      |                                                          |            |          |
| - 20         | R-1       | 2           | 0.7     |        |          | _            |           |                  | Light gray, fine<br>medium bedded, D                             | ely crystalline,<br>OLOMITE with                         | 0          | 40       |
|              |           | 5           |         |        |          |              |           |                  | interbedded shal                                                 | e.<br>Lockport FM                                        | 1.         | 6 30     |
| - 21         |           |             |         |        |          |              |           |                  | Run R-2 - Shale                                                  | stringers common                                         |            | 1 1      |
|              |           | 5           |         |        |          | nat          | 20°       | slight           | throughout.                                                      |                                                          | 0          | 50       |
| 22           |           |             | 5.1     |        |          | nat          | 0.        | slight           |                                                                  |                                                          | -          |          |
|              | R-2       | 5           | 4.8     | 84     | H        | nat          | 0°        | slight           |                                                                  |                                                          | 0          | 30       |
| - 23         |           |             |         |        | H        | nat          | 10°       | slight           |                                                                  |                                                          |            | -        |
|              |           | 4           |         |        |          |              |           |                  |                                                                  |                                                          | 0          | 20       |
| - 24         |           |             |         |        | H        | mech         | 0         | none             |                                                                  |                                                          |            | -        |
|              |           | 5           |         |        |          | mech         |           | stight           |                                                                  |                                                          | 6.         | 2 70     |
| - 25         |           |             |         | -      |          | meen         |           |                  | Run R-3 - Shale                                                  | stringers common                                         | -          |          |
|              |           | 5           |         |        |          |              |           |                  | throughout.                                                      | oer miger of pointion                                    | 0          | 10       |
| - 26         |           |             |         |        |          | nat          | 0°        | slight           | 9                                                                |                                                          |            | -        |
|              |           | 3           |         |        |          |              |           |                  |                                                                  |                                                          | 0          | 10       |
| - 27         |           |             | 5.0     |        |          | nat          | 20°       | slight           |                                                                  |                                                          |            | -        |
|              | R-3       | 4           | 4.8     | 88     |          | nat          | 20°       | slight           |                                                                  |                                                          | 0          | 15       |
| - 28         |           |             |         |        |          | nat          | 30°       | slight           |                                                                  |                                                          |            | -        |
|              |           | 3           |         |        |          | nat          | 0°        | slight           |                                                                  |                                                          | 0          | 10       |
| - 29         |           |             |         |        |          | mech<br>mech |           |                  |                                                                  |                                                          |            | -        |
|              |           | 4           |         |        |          | nat<br>mech  | 20°       | slight           |                                                                  |                                                          | 0          | 10       |
| - 30         |           |             |         |        | TH       | nat          | 0°        | moderate         |                                                                  |                                                          |            |          |
| 5            |           | 4           | 24.54   |        | E        | mech<br>mech |           |                  |                                                                  |                                                          | 0          | 10       |
| - 31         | R-4       |             | 4.3     | 40     |          | mech         |           |                  |                                                                  |                                                          |            |          |
|              |           | 4           | 4.2     |        |          | nat<br>mech  | 0°        | slight           |                                                                  |                                                          | 0          | 18       |
| - 32         |           |             | -       |        | I        | nat          | 10°<br>0° | slight<br>slight |                                                                  |                                                          |            | -        |
|              |           | 4           |         |        |          | nat          | 0.        | slight           |                                                                  |                                                          | 0          | 8        |

| ROCK CORE  | LOG       |           | BORING     | NO.: | PZ-      | 102        | Se. 1    | PROJECT N        | NO.: 731        | 11-02                      | PAGE 4                        | OF              | 4        |         |
|------------|-----------|-----------|------------|------|----------|------------|----------|------------------|-----------------|----------------------------|-------------------------------|-----------------|----------|---------|
| PROJECT NA | ME: OLIN  | ROCHESTER | RI         |      |          | DRILL      | ING CO   | ONTRACTOR:       | MARCOR C        | OF NEW YORK                | P                             |                 |          |         |
| DRILL RIG  | TYPE: CAN | TERRA CT- | 350        |      | ÷        | DRILL      | LER:     | R. SCHEFFE       | ER              | DATE STAR                  | red: 11/04/93                 | COMPLET         | TED: 11, | /04/93  |
| METHOD: CO | RE        | BIT SIZ   | E: HQ      | (3.  | 8" O.D.) | PID        | METER:   | 10.6 ev F        | ID METER        | OVA-108                    | PROTECTION                    | LEVEL:          | D        |         |
| GROUND ELE | V.: 539.1 | 0 SOIL DR | ILLED:     | 17.  | 2 FT.    | ROCK       | DRILLE   | D: (CORED        | : 15.1'         | ROLLER BI                  | r: 2.0')                      | TOTAL           | DEPTH:   | 34.3'   |
| LOGGED BY: | E. SHE    | PARD / N. | BRETON     | 1    |          | CHECK      | KED BY:  | N-1              | 3.              |                            |                               | DATE:           | 9/61     | 194     |
| DEPTH      | RUN       | DRILLING  | PEN.       | RQD  | GRAPHIC  | CORE E     | BREAKS   | WEATHERED        |                 | ROCK DESCR                 | IPTION AND                    |                 | MONITO   | ORING   |
| 33         | NU.       | (FT/MIN)  | REC.       | (%)  | LUG      | TYPE       | DIP      | CONDITION        |                 | COMMENTS OF                | N DRILLING                    |                 | PID      | FID     |
| 34         | R-4       | 4<br>3    | 4.3<br>4.2 | 40   | H        | nat<br>nat | 0°<br>0° | slight<br>slight | Light<br>medium | gray, fine<br>n bedded, Do | ly crystallir<br>DLOMITE with | ne,             | 0        | 8<br>10 |
| 35         |           |           |            |      |          |            |          |                  | Interi          | bedded shat                | Lockport FM                   | 1               |          |         |
|            |           |           |            |      |          |            |          |                  | End o<br>ground | f boring at<br>d surface.  | 34.3' below                   |                 | ÷        |         |
|            |           |           |            |      |          |            |          |                  | Note:           | Approxima<br>water los     | tely 300 gal<br>t during cor  | lons of<br>ing. |          |         |
|            |           |           |            |      |          |            |          |                  | 1               | nat - inter<br>fract       | preted natur<br>ure or core l | al<br>break     |          |         |
|            |           |           |            |      |          |            |          |                  | m               | ech - inter<br>core        | preted mecha<br>break         | nical           |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 | X        |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |
|            |           |           |            |      |          |            |          |                  |                 |                            |                               |                 |          |         |



| RI    | G TYPE: CANT | ERRA CT 350   |                   |         | DRILLER: R. SCHEFFER DATE STARTED: 10                                                                                                                                                                                                                                                   | 0/18/93 C  | OMPLETE | D: 10/ | 19/93 |
|-------|--------------|---------------|-------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|--------|-------|
| DD:   | HSA          | AUGER SIZE:   | 4.25              | " I.D.  | PID METER: 10.6 ev FID METER: OVA-108 PROTE                                                                                                                                                                                                                                             | ECTION LEV | EL: M   | OD D   |       |
| IND E | LEV.: 537.8  | SOIL DRILLED  | : 13.3            | 5 FT.   | ROCK DRILLED: CORE: 15.0' ROLLER BIT: 2.0                                                                                                                                                                                                                                               |            | TOTAL I | DEPTH: | 30.0  |
| ED B  | Y: B. JOHN   | ISON          |                   |         | CHECKED BY: N.S.                                                                                                                                                                                                                                                                        |            | DATE:   | 916    | 194   |
| PTH   | SAMPLE       | BLOWS PER     | PEN.              | GRAPHIC | SAMPLE                                                                                                                                                                                                                                                                                  | USCS       | MONIT   | ORING  | (PPM) |
| .)    | NUMBER       | 6-INCHES      | REC.              | LUG     | DESCRIPTION                                                                                                                                                                                                                                                                             | CLASSIF.   | PID     | FID    | OTHER |
|       | s-1          | 13-15-30-20   | $\frac{2.0}{1.2}$ |         | 0.0'-2.0' Brown Silty SAND, fine to coarse,<br>some fine gravel, dry.                                                                                                                                                                                                                   | GM         | 0       | 30     |       |
|       | s-2          | 6-6-7-6       | 2.0<br>1.5        |         | 2.0'-4.0' Dark Brown to Black Silty SAND,<br>trace Organics and ash, moist.                                                                                                                                                                                                             | SM         | 0       | 30     |       |
|       | s-3          | 5-10-10-14    | 2.0               |         | <ul> <li>4.0'-6.0' Brown SAND, fine, some silt,<br/>trace fine Gravel, medium and<br/>coarse Sand, moist.</li> <li>5.3'-5.5' Light Brown SAND, fine, trace<br/>to little Silt.</li> </ul>                                                                                               | SM         | 0       | 15     |       |
|       | s-4          | 5-10-10-10    | 2.0<br>1.3        |         | 6.0'-8.0' Brown to Reddish Brown with light<br>gray Silty SAND, fine, trace to<br>little medium Sand, trace coarse<br>Sand, fine Gravel and Clay, moist.<br>to wet.                                                                                                                     | SM         | NR      | NR     |       |
|       | s-5          | 2-2-12-17     | 2.0<br>1.3        |         | <ul> <li>8.0'-9.0' Similar to above, (less coarse)<br/>wet to saturated.</li> <li>9.0'-9.2' Light Gray commented SAND, fine,<br/>some to little Silt, dry.</li> <li>9.2'-10.0'Light Gray SAND, fine, some to<br/>little Silt, trace medium to<br/>coarse Sand, moist to wet.</li> </ul> | SM         | 0       | 125    |       |
|       | s-6          | 7-19-49-40    | 2.0<br>1.2        |         | 10.0'-12.0'Light Gray Silty SAND, fine,<br>trace medium Sand, some Rock<br>fragments, saturated.                                                                                                                                                                                        | GM         | 0       | 250    |       |
|       | s-7          | 10-34-50/0.4' | 1.4<br>1.0        |         | 12.0'-13.35' Gray fractured Rock and Silty<br>Sand, fine.                                                                                                                                                                                                                               | GM         | 1.3     | 125    |       |
|       |              |               |                   |         | Notes:<br>Refusal with augers at 13.35'<br>Water level observed at 8.0'<br>during drilling                                                                                                                                                                                              |            |         |        |       |

| ROCK CORE | LOG      |             | BORIN      | G NO.: | PZ-      | 103                       |                 | PROJECT N                        | NO.: 7311-02                                                     | PAGE 2                                        | OF                        | 3       |        |
|-----------|----------|-------------|------------|--------|----------|---------------------------|-----------------|----------------------------------|------------------------------------------------------------------|-----------------------------------------------|---------------------------|---------|--------|
| PROJECT N | AME: OL  | IN ROCHESTE | R RI       |        |          | DRIL                      | LING CO         | ONTRACTOR:                       | MARCOR OF NEW YORK                                               |                                               |                           |         |        |
| DRILL RIG | TYPE: C  | ANTERRA CT  | -350       |        |          | DRIL                      | LER:            | R. SCHEFFE                       | ER DATE STAR                                                     | TED: 11/03/93                                 | 3 COMPLE                  | TED: 11 | /04/93 |
| METHOD: C | ORE      | BIT SI      | ZE: HQ     | (3.    | 8" O.D.) | PID                       | METER:          | 10.6 ev F                        | ID METER: OVA-108                                                | PROTECTION                                    | LEVEL:                    | D       |        |
| GROUND EL | EV.: 537 | .8 SOIL D   | RILLED:    | 13.    | 4 FT.    | ROCK                      | DRILL           | ED: (CORED                       | : 15.0' ROLLER BI                                                | T: 2.0')                                      | TOTAL                     | DEPTH:  | 34,3'  |
| LOGGED BY | : E. SI  | HEPARD / N. | BRETON     |        |          | CHECK                     | KED BY          | N.6-                             |                                                                  |                                               | DATE:                     | 916     | 194    |
| DEPTH     | RUN      | DRILLING    | PEN.       | RQD    | GRAPHIC  | CORE I                    | BREAKS          | WEATHERED                        | ROCK DESCR                                                       | IPTION AND                                    | -                         | MONIT   | ORING  |
| (F1.)     | NO.      | (FT/MIN)    | REC.       | (%)    | LOG      | TYPE                      | DIP             | CONDITION                        | COMMENTS C                                                       | ON DRILLING                                   |                           | PID     | FID    |
| - 14      |          |             |            |        |          |                           |                 |                                  | See soil boring<br>soil descriptior<br>Roller cone dril<br>Grout | log for PZ-1<br>ns from 0'-13<br>l from 13.4' | 03 for<br>.4'<br>to 15.4' |         |        |
| 15 /      |          |             |            |        |          |                           | •               |                                  |                                                                  |                                               |                           |         |        |
| - 16      | R-1      | 4           | 1.6        | 81     | 339      | grave<br>nat              | 20°             | moderate                         | Light gray, fine<br>medium bedded, D<br>interbedded shal         | ely crystalli<br>OLOMITE with<br>le.          | ne,                       | 0       | 10     |
|           |          | 3           | 1.6        |        | IH.      | nat                       | 0°              | moderate                         |                                                                  | Lockport F                                    | м                         | 0       | 15     |
| - 17      |          | 5           |            |        |          | nat                       | 0°              | moderate                         | Run R-2 - Shale<br>throughout.                                   | partings com                                  | mon                       | 0       | 9      |
| - 18      |          | 4           |            |        |          |                           |                 |                                  |                                                                  |                                               |                           | 0       | 20     |
| - 19      | R-2      | 5           | 5.0<br>4.4 | 84     | F        | nat<br>nat<br>nat         | 0°<br>0°<br>50° | moderate<br>moderate<br>moderate |                                                                  |                                               |                           | 0       | 6      |
| - 20      |          | 4           |            |        |          | nat                       | 0°              | slight                           |                                                                  |                                               |                           | 0       | 8      |
| - 21      |          | 4           |            |        | ÷        | mech                      |                 | -                                |                                                                  |                                               |                           | 0       | 5      |
| - 22      |          | 4           |            |        |          | nat                       | 0°              | slight                           |                                                                  |                                               |                           | 0       | 10     |
| - 23      |          | 5           |            |        |          | nat                       | 0°              | slight                           |                                                                  |                                               |                           | 0       | 5      |
| - 24      | R-3      | 5           | 5.0        | 96     | H        | nat                       | 0°              | slight                           |                                                                  |                                               |                           | 0       | 5      |
| - 25      |          | 5           | 5.1        |        | H        | nat<br>mech               | 0°              | slight                           | 25.2'- Mechanica                                                 | l break along<br>ting.                        | 1                         | 0       | R      |
| - 26      |          | 4           |            |        |          | nat                       | 0°              | slight                           |                                                                  |                                               |                           | 0       | 5      |
| - 27      |          |             | -          |        |          |                           | 1               |                                  |                                                                  |                                               |                           |         |        |
| - 28      | R-4      | 5           | 3.4        | 72     |          | nat<br>nat<br>mech<br>nat | 30°<br>0°       | slight<br>slight<br>moderate     |                                                                  |                                               |                           | 0       | 10     |
|           |          |             |            |        |          | 1000                      |                 | 11                               | 1                                                                |                                               |                           | 0       | 10     |

| ROCK CORE  | LOG      |             | BORIN             | G NO.: | PZ-      | 103                |          | PROJECT        | NO.: 7311-02 PAGE 3                                                                                                                  | OF                | 3       | 1      |
|------------|----------|-------------|-------------------|--------|----------|--------------------|----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|--------|
| PROJECT NA | AME: OL  | IN ROCHESTE | R RI              |        |          | DRIL               | LING C   | ONTRACTOR:     | MARCOR OF NEW YORK                                                                                                                   |                   |         | )      |
| DRILL RIG  | TYPE: C  | ANTERRA CT  | -350              |        |          | DRIL               | LER:     | R. SCHEFT      | FER DATE STARTED: 11/03/93                                                                                                           | COMPLE            | TED: 11 | /04/93 |
| METHOD: CO | DRE      | BIT SI      | ZE: HQ            | (3.    | 8" O.D.) | PID                | METER:   | 10.6 ev 1      | FID METER: OVA-108 PROTECTION                                                                                                        | LEVEL:            | D       |        |
| GROUND ELE | EV.: 537 | .8 SOIL D   | RILLED:           | 13.    | 4 FT.    | ROCK               | DRILL    | ED: (COREC     | : 15.0' ROLLER BIT: 2.0')                                                                                                            | TOTAL             | DEPTH:  | 34.3'  |
| LOGGED BY: | E. SI    | HEPARD / N. | BRETON            |        |          | CHEC               | KED BY   | · NE           | 3                                                                                                                                    | DATE:             | 916     | ,194   |
| DEPTH      | RUN      | DRILLING    | PEN.              | RQD    | GRAPHIC  | CORE               | BREAKS   | WEATHERED      | ROCK DESCRIPTION AND                                                                                                                 |                   | MONIT   | ORING  |
| (F1.)      | NU.      | (FT/MIN)    | REC.              | (%)    | LOG      | TYPE               | DIP      | CONDITION      | COMMENTS ON DRILLING                                                                                                                 |                   | PID     | FID    |
| - 30       | R-4      | 4           | $\frac{3.4}{3.3}$ | 72     |          | nat<br>nat<br>mech | 0°<br>0° | none<br>slight | Light gray, finely crystallin<br>medium bedded, DOLOMITE with<br>interbedded shale.                                                  | e,                | 0       | 8      |
| 31.4       | -        | 1           |                   |        | H        | nat                | 0°       | slight         | Lockport FM                                                                                                                          |                   | 0       | 8      |
| 31         |          |             |                   |        |          |                    |          |                | End of boring at 30.4' below<br>ground surface<br>Note: Approximately 700 gall<br>of water lost during c<br>nat - interpreted natura | ons<br>oring<br>l |         |        |
|            |          |             |                   |        |          |                    |          |                | fracture or core b<br>mech - interpreted mechan<br>core break                                                                        | reak<br>ical      |         | -      |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         | -      |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         | -      |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         | -      |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         |        |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         |        |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         | -      |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         | _      |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         | -      |
|            |          |             |                   |        |          |                    |          |                |                                                                                                                                      |                   |         | _      |
|            |          | D.          |                   |        |          |                    |          |                |                                                                                                                                      |                   |         | -      |

| WELL INSTAL                                    |       | 10   | N DIA  | GF  | RAM<br>, | WELL NO.: PZ-104                                         |
|------------------------------------------------|-------|------|--------|-----|----------|----------------------------------------------------------|
|                                                |       | RUI  | OZ     | KK  | 1        | DATE INSTALLED: 01 / 14 / 94 INITIAL WATER               |
| PROJECT NO.:                                   | 1     | 511  | -05    | _   |          | DRILLING METHOD: HSA \ ROCK CORE LEVEL DEPTH: 15.70'(RF) |
| GROUND ELEVATION                               | N: 5  | 37.7 | 21     | _   |          | CORE HOLE DIA.: 3.8 - INCH DATE: 01 / 17 / 94            |
| REFERENCE POINT                                | ELE   | VAT  | ION: 5 | 37. | 21       | RIG GEOLOGIST: E. SHEPARD                                |
| REFERENCE POINT<br>(TOP OF PROTECT:<br>CASING) | IVE   | ]    |        |     |          | FLUSH MOUNTED PROTECTIVE<br>CASING - STICKUP = 0.0'      |
| GROUND SURFACE                                 |       |      |        |     | **       | TOP OF PVC DEPTH: 0.3'                                   |
|                                                | A A A |      |        | -   | **       |                                                          |
|                                                | **    |      |        |     | **       | OUTSIDE DIAMETER OF STEEL CASING: 6-INCH                 |
|                                                | **    | **   |        | **  | **       |                                                          |
|                                                |       | **   |        | **  | **       | BOREHOLE DIAMETER; 10'INCA                               |
|                                                | **    | **   |        | **  | **       | WELL RISER ID: 2.0-INCH                                  |
|                                                | **    | **   |        | **  | **       | TYPE OF WELL RISER: SCH 40 PVC                           |
|                                                | 44    | **   |        | **  | **       |                                                          |
| TOP OF BEDROCK<br>DEPTH: 13.3'                 | **    | **   |        |     | **       | TYPE OF BACKFILL: CEMENT\BENTONITE GROUT                 |
|                                                | -     | **   |        | **  |          | DEPTH TO BOTTOM OF 6" CASING: 15.3'                      |
|                                                |       |      |        |     |          | DEPTH TO BOTTOM OF ROCK SOCKET                           |
|                                                |       |      |        |     | 1111     |                                                          |
|                                                |       |      |        |     |          | DEPTH TO TOP OF BENTONITE PELLET SEAL: 13.3'             |
|                                                |       |      |        |     |          | DEPTH TO TOP OF SAND PACK: 15.3'                         |
|                                                |       |      |        |     |          |                                                          |
|                                                |       |      |        |     |          | DEPTH TO TOP OF WELL SCREEN: 17.3'                       |
|                                                |       |      | -      | ::: |          | ROCK CORE HOLE DIAMETER: 3.8-INCH                        |
|                                                |       | •••  | -      |     |          |                                                          |
|                                                |       | •••  |        |     |          | TIPE OF WELL SCREEN: SCH 40 PVC                          |
|                                                |       |      | _      |     |          | WELL SCREEN ID: 2.0-INCH                                 |
|                                                |       |      |        |     |          | WELL SLOT SIZE: 0.010-INCH                               |
|                                                |       | •••  |        |     |          | LENGTH OF WELL SCREEN: 8.0'                              |
|                                                |       | •••  | - 1    |     |          | TYPE OF SAND PACK: PENN SILICA # 1                       |
|                                                |       | •••  |        |     |          |                                                          |
|                                                |       |      | -      |     |          | DEPTH TO BOTTOM OF WELL SCREEN: 25.3'                    |
|                                                |       |      |        |     | -        | DEPTH TO BOTTOM OF SEDIMENT TRAP: 25.3'                  |
|                                                |       |      |        |     |          |                                                          |
| PROJECT N      | NAME: OLIN       | ROCHESTER RI          |                   |                | DRILLING CONTRACTOR: MARCOR OF NEW YORK                                                                                                                                                                        | 10.0.120711      |         |        |       |
|----------------|------------------|-----------------------|-------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|--------|-------|
| DRILL RIG      | G TYPE: CANT     | ERRA CT 350           |                   |                | DRILLER: R. SCHEFFER DATE STARTED: 10                                                                                                                                                                          | 0/22/93 0        | OMPLETE | D: 10/ | 22/93 |
| METHOD:        | HSA              | AUGER SIZE:           | 4.25              | " I.D.         | PID METER: 10.6 ev FID METER: OVA-108 PROTE                                                                                                                                                                    | CTION LEV        | EL:     | MOD D  | _     |
| GROUND EI      | LEV.: 537.2      | SOIL DRILLED          | 0: 13.4           | FT.            | ROCK DRILLED: CORE: 15.1' ROLLER BIT: 1.                                                                                                                                                                       | .91              | TOTAL   | DEPTH: | 30.4  |
| LOGGED B       | Y: B. JOHN       | SON                   |                   |                | CHECKED BY: N.D -                                                                                                                                                                                              |                  | DATE:   | 9/6    | 194   |
| DEPTH<br>(FT.) | SAMPLE<br>NUMBER | BLOWS PER<br>6-INCHES | PEN.<br>REC.      | GRAPHIC<br>LOG | SAMPLE<br>DESCRIPTION                                                                                                                                                                                          | USCS<br>CLASSIF. | MON I T | FID    | (PPM) |
| - 1<br>- 2     | S-1              | 13-10-14              | 1.5<br>1.0        |                | AUGER THROUGH 0.5' OF GRAVEL AND ASPHALT<br>0.5'-1.5' Light Gray to Brown Silty SAND,<br>little fine to coarse Gravel, dry,<br>poorly graded.<br>1.5'-2.0' Brown and Red SAND, fine to medium,<br>little Silt. | SM<br>SP         | 0       | 50     | -     |
| - 3            | s-2              | 7-7-5-5               | 2.0<br>1.5        |                | 2.0'-2.5' Similar to above.<br>2.5'-4.3' Brown SILT, some fine Sand, little<br>to some coarse Sand, trace medium<br>Sand, fine Gravel, moist.<br>(Ash or Slag observed)                                        | SP<br>ML         | 0       | 30     |       |
| - 4            |                  |                       | 2.0               |                | 4.3'-4.5' Topsoil, Silty SAND, fine,<br>trace Organics.                                                                                                                                                        | SM               |         |        |       |
| - 5            | s-3              | 1-4-4-8               | 1.6               |                | 4.5'-6.7' Reddish Brown with light tan SAND,<br>fine, little to some Silt, trace<br>medium to coarse Sand, moist.                                                                                              | SM               | 0       | 4      | Ì     |
| - 6<br>- 7     | S-4              | 3-4-10-12             | 2.0<br>1.8        |                | 6.7'-8.0' Brown Gravelly SAND, fine to coarse, little Silt, dry.                                                                                                                                               | GM               | O       | 25     |       |
| - 8<br>- 9     | s-5              | 7-14-20-18            | 2.0<br>1.3        |                | 8.0'-10.0' Similar to above.                                                                                                                                                                                   | GM               | 0       | 125    |       |
| - 10           |                  |                       |                   |                | 10.0'-10.5' Similar to above.                                                                                                                                                                                  | GM               |         |        |       |
| - 11           | S-6              | 8-8-13-16             | $\frac{2.0}{1.0}$ |                | 10.5'-11.5' Gray Silty SAND, fine, some fine<br>to coarse Gravel, trace medium to<br>coarse Sand, Moist.<br>11.5'-12.0' Similar to above, saturated.                                                           | GM<br>GM         | 0       | 25     |       |
| - 12           |                  |                       |                   |                |                                                                                                                                                                                                                |                  |         |        |       |
| - 13           | s-7              | 2-11-50/0.4           | $\frac{1.4}{1.0}$ |                | 12.0'-13.4' Similar to above with Rock<br>fragments in tip of spoon.                                                                                                                                           | GM               | 0       | 80     |       |
| - 14           |                  |                       |                   |                | Notes:<br>Refusal with augers at 13.4'                                                                                                                                                                         |                  |         |        |       |
| - 15           |                  |                       |                   |                | Water level measured at 11.5'<br>during drilling                                                                                                                                                               |                  |         |        |       |

| ROCK CORE        | LOG       |             | BORIN   | G NO.: | PZ-      | 104                |                 | PROJECT N                      | 10.: 731                            | 11-02                                      | PAGE 2                                             | OF                     | 3       |        |
|------------------|-----------|-------------|---------|--------|----------|--------------------|-----------------|--------------------------------|-------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------|---------|--------|
| PROJECT N        | AME: OL   |             |         | DRIL   | ING C    | ONTRACTOR:         | MARCOR C        | OF NEW YORK                    |                                     |                                            |                                                    |                        |         |        |
| DRILL RIG        | G TYPE: C | ANTERRA CT- | 350     | -      |          | DRIL               | ER:             | R. SCHEFFE                     | R                                   | DATE START                                 | TED: 11/05/93                                      | COMPLE                 | TED: 11 | /05/93 |
| METHOD: C        | CORE      | BIT SIZ     | ZE: HQ  | (3.    | 8" O.D.) | PID                | METER:          | 10.6 ev FI                     | D METER:                            | OVA-108                                    | PROTECTION L                                       | EVEL:                  | D       |        |
| GROUND EL        | EV.: 537  | .2 SOIL DE  | RILLED: | 13.    | 4 FT.    | ROCK               | DRILL           | ED: (CORED:                    | 15.0'                               | ROLLER BIT                                 | r: 2.0')                                           | TOTAL                  | DEPTH:  | 30.4'  |
| LOGGED BY        | : E. S    | HEPARD / N. | BRETON  |        |          | CHECK              | KED BY          | NP                             | » <sup>.</sup>                      |                                            |                                                    | DATE:                  | 9/61    | 194    |
| DEPTH            | RUN       | DRILLING    | PEN.    | RQD    | GRAPHIC  | CORE E             | BREAKS          | WEATHERED                      |                                     | ROCK DESCRI                                | IPTION AND                                         | -                      | MONIT   | ORING  |
| (11.)            | NO.       | (FT/MIN)    | REC.    | (%)    | LOG      | TYPE               | DIP             | CONDITION                      |                                     | COMMENTS OF                                | ORILLING                                           |                        | PID     | FID    |
| - 14<br>- 15     |           |             |         |        |          |                    |                 |                                | See so<br>soil c<br>Roller<br>Grout | bil boring descriptions                    | log for PZ-104<br>s from 0'-13.4<br>l from 13.4'to | 4 for<br>4'<br>5 15.4' |         |        |
| - 15.4 —<br>- 16 |           | 5           |         |        | F        | nat<br>nat         | 10°<br>10°      | moderate<br>moderate           | Light<br>medium<br>intert           | gray, fine<br>n bedded, D0<br>bedded shale | ly crystalline<br>DLOMITE with                     | ₽,                     | 0       | 30 -   |
| - 17             |           | 4           | 4.0     |        | E        | nat<br>nat         | 10°<br>10°      | moderate<br>moderate           |                                     |                                            | Lockport FM                                        |                        | 0       | 20     |
|                  | R-1       |             | 3.5     | 55     | H        | nat                | 10°             | slight                         | Run R-                              | 1 - Shale p                                | partings commo                                     | on                     | 0       | 15     |
| - 18             |           | 5           |         |        | H        | nat<br>nat         | 10°<br>30°      | moderate<br>moderate           |                                     |                                            | 1.1.1                                              |                        |         | -      |
| - 19             |           | 5           |         |        | E        | nat<br>nat         | 0°<br>0°        | moderate<br>moderate<br>high   |                                     |                                            |                                                    |                        | 0       | 15 _   |
| - 20             |           | 4           |         |        | 322      | mech               |                 |                                | Run R-<br>throug                    | -2 - Shale p<br>ghout. Mode                | oartings commo<br>erately weathe                   | on<br>ered             | 0       | 0      |
| - 21             |           | 5           |         |        |          | neen               |                 |                                | r                                   |                                            |                                                    |                        | 0       | 0      |
| - 22             |           | 5           | 5.0     |        |          | nat<br>mech<br>nat | 10°<br>0°       | moderate<br>slight             |                                     |                                            |                                                    |                        | 0       | 0      |
| - 23             | R-2       | 4           | 4.7     | 62     | 1        | nat<br>mech        | 10°             | moderate                       | 4                                   |                                            |                                                    |                        | 0       | 0      |
| - 24             |           | 4           |         |        | 114      | nat<br>nat<br>nat  | 10°<br>0°<br>5° | moderate<br>moderate<br>slight | 4                                   |                                            |                                                    |                        | 0       | 0      |
| - 25             |           | 6           |         |        | 14       | nat<br>mech        | 30°             | slight                         | Run R<br>throug                     | -3 - Shale j<br>ghout. Mode                | partings commo<br>erately weathe                   | on<br>ered             | 0       | 10     |
| - 26             | R-3       | 6           | 6.0     | 85     | -        | nat<br>nat         | 0°<br>0°        | moderate<br>moderate           |                                     |                                            |                                                    |                        | 0       | 8      |
| - 27             |           | 5           | 5.9     |        | -        | nat<br>nat         | 0°<br>0°        | moderate<br>moderate           |                                     |                                            |                                                    |                        | 0       | 10     |
| - 28             |           | 4           |         |        | -        | nat<br>nat         | 0°<br>10°       | moderate<br>slight             |                                     |                                            |                                                    |                        | 0       | 10     |

| ROCK CORE      | LOG        | -         | BORIN      | G NO.: | PZ       | -104       | 12.1     | PROJECT          | NO.: 7311-02                               | PAGE 3                                          | OF               | 3       |      |
|----------------|------------|-----------|------------|--------|----------|------------|----------|------------------|--------------------------------------------|-------------------------------------------------|------------------|---------|------|
| PROJECT N      | AME: OLIN  | ROCHESTER | RRI        |        |          | DRIL       | LING C   | ONTRACTOR:       | MARCOR OF NEW                              | YORK                                            |                  |         |      |
| DRILL RIG      | TYPE: CAN  | TERRA CT  | 350        |        |          | DRIL       | LER:     | R. SCHEFT        | ER DATE                                    | STARTED: 11/05/9                                | 3 COMPLE         | TED: 11 | /05/ |
| METHOD: C      | ORE        | BIT SIZ   | E: HQ      | (3.    | 8" O.D.) | PID        | METER:   | 10.6 ev H        | ID METER: OVA-1                            | 08 PROTECTION                                   | LEVEL:           | D       |      |
| GROUND EL      | EV.: 537.2 | SOIL DE   | RILLED:    | 13.    | 4 FT.    | ROCK       | DRILL    | ED: (COREC       | : 15.0' ROLLE                              | R BIT: 2.0')                                    | TOTAL            | DEPTH:  | 30.  |
| LOGGED BY      | E. SHE     | PARD / N. | BRETON     |        |          | CHEC       | KED BY   | : N.1            | 3.                                         |                                                 | DATE:            | 9/6     | 191  |
| DEPTH<br>(FT.) | RUN<br>NO. | DRILLING  | PEN.       | RQD    | GRAPHIC  | CORE       | BREAKS   | WEATHERED        | ROCK D                                     | ESCRIPTION AND                                  |                  | MONIT   | ORIN |
| 29             |            | (FT/MIN)  | REC.       | (%)    | Lou      | TYPE       | DIP      | CONDITION        | COMMEN                                     | TS ON DRILLING                                  |                  | PID     | FI   |
| 30             | R-3        | 4         | 6.0<br>5.9 | 85     |          | nat<br>nat | 0°<br>0° | slight<br>slight | Light gray,<br>medium bedde<br>interbedded | finely crystallin<br>d, DOLOMITE with<br>shale. | ne,              | 0       |      |
| 30.4 —         |            |           |            |        |          |            |          |                  | End of borin                               | g at 30.4' below                                | n                | 0       |      |
|                |            |           |            |        |          |            | 4        |                  | ground surfa                               | ce.                                             |                  | 6       |      |
|                |            |           |            |        |          |            |          |                  | Note: Appro<br>of wa                       | ximately 1100 ga<br>ter lost during o           | llons<br>coring. |         |      |
|                |            |           |            |        |          |            |          |                  | nat - i<br>f                               | nterpreted natura<br>racture or core l          | al<br>oreak      |         |      |
|                |            |           |            |        |          |            |          |                  | mech – i<br>c                              | nterpreted mechai<br>ore break                  | nical            |         |      |
| ( I            |            |           |            |        |          |            |          |                  |                                            |                                                 | ÷                |         |      |
|                |            | ÷         |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 | 1                |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 | 1. 80            |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |
|                |            |           |            |        |          |            |          |                  |                                            |                                                 |                  |         |      |



| L BORI  | NG LOG     | BOR          | ING NO. | : PZ-1  | PROJECT NO.: 7311-02 PAGE                                                      | 1 OF    | 3       |       |
|---------|------------|--------------|---------|---------|--------------------------------------------------------------------------------|---------|---------|-------|
| DJECT N | AME: OLIN  | ROCHESTER RI |         |         | DRILLING CONTRACTOR: MARCOR OF NEW YORK                                        |         |         |       |
| ILL RIG | TYPE: CAN  | TERRA CT 350 |         |         | DRILLER: R. SCHEFFER DATE STARTED: 10/11/93                                    | COMPLET | ED: 10/ | 12/93 |
| THOD:   | HSA        | AUGER SIZE:  | 4.25    | i" I.D. | PID METER: 10.6 ev FID METER: OVA-108 PROTECTION 1                             | EVEL:   | MOD D   |       |
| OUND EL | EV.: 537.0 | SOIL DRILLE  | D: 15.9 | FT.     | ROCK DRILLED: CORE: 14.9' ROLLER BIT: 2.1'                                     | TOTAL   | DEPTH:  | 32.9  |
| GGED BY | : B. JOH   | NSON         |         |         | CHECKED BY: N.B.                                                               | DATE:   | alr.    | 194   |
| EPTH    | SAMPLE     | BLOWS PER    | PEN.    | GRAPHIC | SAMPLE USCS                                                                    | MONI    | TORING  | (PPM) |
| FT.)    | NUMBER     | 6-INCHES     | REC.    | LOG     | DESCRIPTION CLASS                                                              | F. PID  | FID     | OTHER |
|         |            |              |         |         | 01-0.3 Topsoil Brown Silty SAND fine SM                                        | 0       | 0       |       |
|         | 5-1        | 12-10-15-32  | 2.0     |         | Organics, dry.                                                                 | 0       | 7       |       |
|         | 3.1        | 12 10 15 52  | 1.2     |         | coarse, angular, little to some                                                | Ū       | 5       |       |
|         |            |              |         |         | little Silt, dry.                                                              |         |         |       |
|         | ·          | -            |         |         | 1.5'-2.0' Brown SAND, fine to medium, trace SW to little Silt, dry.            | 0       | 0       |       |
|         |            |              | 2.0     |         | 2.0'-3.9' Brown SAND, fine to medium, GW                                       |         |         |       |
|         | S-2        | 18-21-16-20  | 1.0     |         | little fine Sand and Silt.                                                     | NA      | NA      |       |
|         | 1.         |              |         |         | moist.                                                                         |         |         |       |
|         |            |              |         |         |                                                                                |         |         |       |
|         |            |              |         |         |                                                                                |         |         |       |
|         | S-3        | 6-8-8-18     | 2.0     |         | 4.0'-6.0' Light Brown and Red Silty SAND, SM<br>fine, moist.                   | NA      | NA      |       |
|         |            |              | 0.5     |         |                                                                                |         |         |       |
|         | 1.1.1.1    |              |         |         |                                                                                |         |         |       |
|         |            |              |         |         |                                                                                |         |         |       |
|         | 6.1        | 0 75 25 27   | 2.0     |         |                                                                                |         |         |       |
|         | 5-4        | 9-33-23-23   | 0.0     |         | (cobble(s) at tip of spoon)                                                    |         |         |       |
|         | 1.0.00     | 1.000.007    |         |         |                                                                                | 1       |         |       |
|         |            |              |         |         | 8.0'-10.0' Brownish Red and Dark Brown - SM<br>Silty SAND, fine, little coarse |         |         |       |
|         |            | 1000         | 2.0     |         | Sand, fine Gravel, trace to                                                    |         |         |       |
|         | S-5        | 20-44-21-16  | 1 2     |         | saturated, poorly graded.                                                      | 1.0     | 0       |       |
|         | 1.1.1      | 14-04-1      | 1.2     |         | to coarse, little fine Sand,                                                   |         | 1.5     |       |
|         |            |              |         |         | trace, Silt.<br>(water bearing soils)                                          |         |         |       |
|         |            |              |         |         |                                                                                |         |         |       |
|         | S-6        | 6-9-14-19    | 2.0     |         | 10.0'-12.0'Brown Silty SAND, fine, trace to SM little medium to coarse Sand.   | 2.5     | 110     |       |
|         |            |              | 1.5     |         | little fine Sand, trace Silt,                                                  | 5.2     | 110     |       |
|         |            |              |         |         |                                                                                |         |         |       |
|         |            |              |         |         |                                                                                |         |         |       |
|         |            |              | 2.0     |         | 12.01-14.01Dark Brown Silty SAND, fine, SM                                     | 1 .     | 1.1     |       |
|         | S-7        | 12-6-9-14    | 1.2     |         | saturated, Dilatent.                                                           | 0       | 8       |       |
|         |            |              |         |         |                                                                                |         |         |       |
|         |            |              |         |         |                                                                                |         |         |       |
|         |            | 10000        | 1.      |         | 4.0'-15.9'Brown Silty SAND, fine, trace SM                                     |         |         |       |
|         | S-8        | 5-19-20-50/  |         |         | Tine angular Gravel, saturated,<br>Dilatent.                                   | 0       | 110     |       |
|         |            | (0.41)       | 1.9     |         | 15.9'-16.0'Auger to top of rock<br>Refusal with augers at 15 01                |         |         |       |

| ROCK CORE    | E LOG     |          |              | BORIN             | G NO.: | PZ-                | -105              |                 | PROJECT                      | NO.: 7311-02 PAGE                                                                                  | 2 OF                 | 3        |       |
|--------------|-----------|----------|--------------|-------------------|--------|--------------------|-------------------|-----------------|------------------------------|----------------------------------------------------------------------------------------------------|----------------------|----------|-------|
| PROJECT N    | NAME: OL  | IN F     | ROCHESTER    | RRI               |        |                    | DRIL              | LING C          | ONTRACTOR :                  | MARCOR OF NEW YORK                                                                                 |                      |          |       |
| DRILL RIC    | G TYPE: C | CANTE    | ERRA CT      | -350              |        |                    | DRIL              | LER:            | R. SCHEFF                    | ER DATE STARTED: 11/01/                                                                            | 93 COMPL             | ETED: 11 | /01/9 |
| METHOD: 0    | CORE      |          | BIT SIZ      | ZE: HQ            | (3.    | 8" 0.D.)           | PID               | METER:          | 10.6 ev F                    | ID METER: OVA-108 PROTECTIO                                                                        | DN LEVEL:            | D        |       |
| GROUND EL    | EV.: 537  | .0       | SOIL DE      | ILLED:            | 15.    | 9 FT.              | ROCK              | DRILL           | ED: (CORED                   | : 15.1' ROLLER BIT: 2.0')                                                                          | TOTA                 | L DEPTH: | 33.0  |
| LOGGED BY    | 1: E. S   | SHEPA    | ARD / N.     | BRETON            |        |                    | CHEC              | KED BY          | : N-B                        | r                                                                                                  | DATE                 | : 9/6    | 194   |
| DEPTH        | RUN       | DF       | ILLING       | PEN.              | RQD    | GRAPHIC            | CORE              | BREAKS          | WEATHERED                    | ROCK DESCRIPTION AND                                                                               |                      | MONIT    | ORING |
| (F1.)        | NO.       | RA<br>(F | TE<br>T/MIN) | REC.              | (%)    | LOG                | TYPE              | DIP             | CONDITION                    | COMMENTS ON DRILLING                                                                               |                      | PID      | FID   |
| — 15<br>— 16 |           |          |              |                   |        |                    |                   | 76.             |                              | See soil boring log for PZ-<br>soil descriptions from 0'-1<br>Roller cone drill from 15.5<br>Grout | 105 for<br>5.9'      | i        |       |
| - 17.9       |           |          | _            |                   |        |                    |                   |                 | L                            |                                                                                                    |                      |          | 1.5   |
| - 19         | R-1       |          |              | $\frac{1.1}{1.1}$ | 100    | $\left  + \right $ | nat               | 0°              | slight                       | Light gray, finely crystall<br>medium bedded, DOLOMITE wit<br>interbedded shale.                   | ine,<br>:h           | 0        | 10    |
| - 20         |           |          | 3            |                   |        | •                  | nat               | 0°              | slight                       | Lockport<br>Run R-2 - Vugs common throu<br>measuring up to 0.4" in siz                             | FM-<br>Ighout<br>Ie. | 0.6      | 180   |
| - 21         |           |          | 4            |                   |        | F                  | nat<br>nat        | 0°<br>0°        | slight<br>slight             |                                                                                                    |                      | 0        | 40    |
| - 22         | R-2       |          | 5            | 5.0<br>4.9        | 80     | P.                 | nat<br>nat<br>nat | 0°<br>0°<br>40° | slight<br>slight<br>moderate | 21.9'-22.1' - Vertical frac<br>(2" long)                                                           | ture                 | 0        | 20    |
| - 23         |           |          | 5            |                   |        |                    | nat               | 0°              | slight                       | ·                                                                                                  |                      | 0        | 50    |
| - 24         | -         | 1        | ,            |                   |        | -                  | nat               | 10°             | slight                       | 23.8'-24.0' - Shale parting<br>present along stringers.                                            | S                    | 0.6      | 20    |
| - 25         |           |          | 5            |                   |        |                    | nat               | 0°              | slight                       | Run R-3 - Shale stringers c<br>vugs observed.                                                      | ommon; n             | 0        | 20    |
| 24           |           |          | 3            |                   |        | $\square$          | nat               | 0°              | slight                       |                                                                                                    |                      | 0        | 50    |
| - 20         |           |          |              | 5.0               |        |                    | nat               | 0°              | moderate                     |                                                                                                    |                      |          |       |
| - 27         | R-3       |          | 4            | 5.1               | 80     |                    | nat<br>nat        | 0°              | slight<br>slight             |                                                                                                    |                      | 0.7      | 20    |
| - 28         |           |          | 5            |                   |        | -                  | nat               | 0°              | slight                       |                                                                                                    |                      | 0        | 50    |
| - 29         |           |          | 3            | -                 |        | -                  | nat               | 20°             | slight                       |                                                                                                    |                      | 0        | 50    |
| 70           |           |          | 4            | 4.0               |        |                    | nat<br>nat        | 0°<br>20°       | slight<br>slight             |                                                                                                    |                      | 0        | 20    |
| - 30         | R-4       |          | 4            | 4.0               | 73     | -                  | nat               | 0°              | slight                       |                                                                                                    |                      | 0        | 50    |

| ROCK CORE  | LOG       |             | BORING            | G NO.: | PZ-      | -105       |         | PROJECT            | NO.: 7311-02                                             | PAGE 3                                             | OF           | 3       |               |
|------------|-----------|-------------|-------------------|--------|----------|------------|---------|--------------------|----------------------------------------------------------|----------------------------------------------------|--------------|---------|---------------|
| PROJECT NA | ME: OLI   | N ROCHESTER | RI                |        |          | DRIL       | LING CO | DNTRACTOR:         | MARCOR OF NEW YORK                                       |                                                    |              |         |               |
| DRILL RIG  | TYPE: CA  | NTERRA CT-  | 350               |        |          | DRIL       | LER:    | R. SCHEFF          | ER DATE STAR                                             | TED: 11/01/93                                      | COMPLE       | TED: 11 | /01/93        |
| METHOD: CO | DRE       | BIT SIZ     | E: HQ             | (3.    | 8" O.D.) | PID        | METER:  | 10.6 ev F          | ID METER: OVA-108                                        | PROTECTION                                         | LEVEL:       | D       |               |
| GROUND ELE | EV.: 537. | 0 SOIL DR   | ILLED:            | 15.    | 9 FT.    | ROCK       | DRILL   | ED: (CORED         | : 15.1' ROLLER BI                                        | T: 2.0')                                           | TOTAL        | DEPTH:  | 33.0'         |
| LOGGED BY: | E. SH     | IEPARD / N. | BRETON            |        |          | CHEC       | KED BY  | : N-1              | 3.                                                       |                                                    | DATE:        | 9/6/    | 94            |
| DEPTH      | RUN       | DRILLING    | PEN.              | RQD    | GRAPHIC  | CORE       | BREAKS  | WEATHERED          | ROCK DESCR                                               | IPTION AND                                         |              | MONIT   | ORING         |
| (11.)      | NO.       | (FT/MIN)    | REC.              | (%)    | Log      | TYPE       | DIP     | CONDITION          | COMMENTS                                                 | N DRILLING                                         |              | PID     | FID           |
| - 32       | R-4       | 3           | $\frac{4.0}{4.0}$ | 73     |          | nat<br>nat | 0°      | slight<br>moderate | Light gray, fine<br>medium bedded, D<br>interbedded shal | ly crystallin<br>OLOMITE with<br>e.<br>Lockport FM | e,           | 0       | 20<br>-<br>20 |
| - 33       |           |             |                   |        |          |            |         |                    | End of boring at                                         | 33.0' below                                        |              |         | -             |
| -          |           |             |                   |        |          |            |         |                    | Note: Approxima<br>water los                             | tely 400 gall<br>t during cori                     | ons of<br>ng |         | -             |
| -          |           |             |                   |        |          |            |         |                    | nat - inter<br>fract                                     | preted natura<br>ure or core b                     | l<br>reak    |         | -             |
|            |           |             |                   |        | ł.       |            |         |                    | mech - inter<br>core                                     | preted mechan<br>break                             | ical         |         |               |
|            |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         |               |
| -          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         |               |
| _          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         | -             |
|            |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         |               |
| -          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         | 1             |
|            |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         | -             |
|            |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         |               |
| -          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         | -             |
| -          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         |               |
| ÷          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         | -             |
| -          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         | -             |
| -          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         | -             |
| -          |           |             |                   |        |          |            |         |                    |                                                          |                                                    |              |         | -             |

| WELL INSTALL     | ATION D    | IAGRAM  | WELL NO .: PZ-106                                                      |
|------------------|------------|---------|------------------------------------------------------------------------|
| PROJECT NAME: 0  | LIN ROCHES | STER RI | DATE INSTALLED: 12 / 21 / 93 INITIAL WATER                             |
| PROJECT NO.:     | 7311-03    |         | DRILLING METHOD: HSA \ ROCK CORE LEVEL DEPTH: 12.50'(RF)               |
| GROUND ELEVATION | : 535.00   |         | CORE HOLE DIA.: 3.8 - INCH DATE: 01 / 17 / 94                          |
| REFERENCE POINT  | ELEVATION  | 537.45  | RIG GEOLOGIST: N. BRETON                                               |
| REFERENCE POINT  | VE         |         | PROTECTIVE CASING STICKUP: 2.5'                                        |
| CASING)          |            | -       | PVC STICKUP: 2.2'                                                      |
|                  |            |         |                                                                        |
| OUND SURFACE     |            |         | OUTSIDE DIAMETER OF STEEL CASING: 6-INCH                               |
|                  |            |         |                                                                        |
|                  | AA AA      |         | BOREHOLE DIAMETER: 10-INCH                                             |
|                  | ** **      | ** **   |                                                                        |
|                  |            | ** **   | WELL RISER ID: 2.0-INCH                                                |
|                  | ** **      |         | TYPE OF WELL RISER: SCH 40 PVC                                         |
|                  | ** **      |         |                                                                        |
| DEPTH: 13.1      |            |         | TYPE OF BACKFILL: CEMENT\BENTONITE GROUT                               |
| -1               | ** **      | AA AA   | DEPTH TO BOTTOM OF 6" CASING: 14.5'                                    |
|                  | ++         |         | DEPTH TO BOTTOM OF ROCK SOCKET<br>AND CEMENT\BENTONITE BACKFILL: 15.1' |
|                  |            |         | DEPTH TO TOP OF BENTONITE PELLET SEAL: 15.7'                           |
|                  |            |         | DEPTH TO TOP OF SAND PACK: 18.2'                                       |
|                  |            |         |                                                                        |
|                  |            |         | DEPTH TO TOP OF WELL SCREEN: 20.3'                                     |
|                  |            |         | ROCK CORE HOLE DIAMETER: 3.8-INCH                                      |
|                  |            |         |                                                                        |
|                  | E          |         | TYPE OF WELL SCREEN: SCH 40 PVC                                        |
|                  |            |         | UELL SCREEN ID. 2 D-INCH                                               |
|                  |            |         |                                                                        |
|                  | E          |         | WELL SLOT SIZE: 0.010-INCH                                             |
|                  |            |         | LENGTH OF WELL SCREEN: 9.4"                                            |
|                  |            |         | TYPE OF SAND PACK: PENN SILICA # 1                                     |
|                  |            |         |                                                                        |
|                  |            |         | DEPTH TO BOTTOM OF WELL SCREEN: 29.7'                                  |
|                  |            |         |                                                                        |
|                  |            |         | DEPTH TO BUILOM OF SEDIMENT TRAP: 30.2'                                |
|                  |            |         | DEPTH OF BOREHOLE: 30.2'                                               |

| PROJECT N                | NAME: OLIN   | ROCHESTER RI              |            |         | DRILLING CO                                            | DNTRACTOR: MARCO                                                                                       | R OF NEW YORK                                                          |           |        |         |       |
|--------------------------|--------------|---------------------------|------------|---------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|--------|---------|-------|
| DRILL RIG                | G TYPE: CANT | ERRA CT 350               |            |         | DRILLER: I                                             | R. SCHEFFER                                                                                            | DATE STARTED: 10                                                       | 0/08/93 C | OMPLET | ED: 10/ | 08/93 |
| MET HOD :                | HSA          | AUGER SIZE:               | 4.25       | 5" I.D. | PID METER:                                             | 10.6 ev FID MET                                                                                        | ER: OVA-108 PROTE                                                      | CTION LEV | EL: I  | MOD D   |       |
| GROUND EL                | LEV.: 535.0  | SOIL DRILLED              | ): 13.2    | 2' FT.  | ROCK DRILL                                             | ED: CORE: 15.1                                                                                         | ROLLER BIT: 1.                                                         | .91       | TOTAL  | DEPTH:  | 30.2  |
| LOGGED BY                | Y: B. JOHN   | SON                       |            |         | CHECKED BY                                             | : NB-                                                                                                  |                                                                        |           | DATE:  | 9/4     | 5/94  |
| DEPTH                    | SAMPLE       | BLOWS PER                 | PEN.       | GRAPHIÇ |                                                        | SAMPLE                                                                                                 |                                                                        | USCS      | MONI   | TORING  | (PPM  |
| 0                        | NUMBER       | 0-INCHES                  | REC.       | LUG     |                                                        | DESCRIPTION                                                                                            |                                                                        | CLASSIF.  | PID    | FID     | OTHE  |
| 1                        | s-1          | 9-9-7-6                   | 2.0<br>1.5 |         | 0.0'-0.7'<br>0.7'-2.0'                                 | Brown to Black S<br>trace Organics.<br>Dark Gray Silty<br>medium, little t<br>Sand, trace fine<br>wet. | ilty SAND, fine,<br>SAND, fine to<br>o some coarse<br>Gravel, moist to | SM<br>SM  | 0      | 115     |       |
| 3                        | s-2          | 3-5-4-4                   | 2.0<br>0.8 |         | 2.0'-4.0'                                              | Similar to above                                                                                       |                                                                        | SM        | 0      | 80      |       |
| 4                        | s-3          | 4-11-29-29                | 2.0        |         | 4.0'-4.3'<br>4.3'-4.8'                                 | Similar to above<br>Red to Brown Sil<br>trace to little<br>SAND, trace fine                            | ty SAND, fine,<br>medium to coarse<br>Gravel. moist.                   | SM<br>SM  | 0      | 85      |       |
| 6                        |              |                           | 1.2        |         | 4.8'-6.0'                                              | Dark Gray and Re<br>fine to medium,<br>saturated.                                                      | ed Brown SAND,<br>some Silt,                                           | SM        |        |         |       |
| 7                        | S-4          | 10-19-13-14               | 2.0<br>1.4 |         | 6.0'-8.0'                                              | Red to Brown SAM<br>medium Sand and<br>Gravel and coars<br>poorly graded.                              | ND, fine, little<br>Silt, trace fine<br>se Sand, saturated             | SP        | o      | 35      |       |
| 8                        | s-5          | 14-11-24-18               | 2.0<br>1.6 |         | 8.0'-8.3'<br>8.3'-10.0'                                | Similar to above<br>Dark Gray SAND,<br>, little fine Sa<br>little Silt, tra<br>saturated.              | e<br>medium to coarse<br>and, trace to<br>ace fine Gravel,             | SP<br>SW  | 0      | 15      |       |
| 10                       | s-6          | 14-18-18-23               | 2.0<br>1.5 |         | 10.0'-12.0'                                            | Dark Gray SAND,<br>little fine Sanc<br>trace fine to co<br>saturated.                                  | medium to coarse,<br>d and Silt,<br>barse Gravel,                      | SW        | Q      | 10      |       |
| - 12<br>- 13<br>- 13.1 — | s-7          | 40-27-50<br>(for<br>0.1') | 1.1<br>1.0 |         | 12.0'-13.1'                                            | Dark Gray to lig<br>medium to coarse<br>Sand and Silt, f                                               | ght Brown SAND<br>e, little fine<br>trace fine to                      | SW        | 15     | 30      |       |
| - 14                     |              |                           |            |         | Notes:<br>Refusa<br>Water<br>Cobble<br>Water<br>inside | coarse Gravel, s<br>l with augers at<br>measured at 4.8'<br>and at 6.0'<br>added to prevent<br>augers. | saturated.<br>13.2'<br>during drilling<br>heaving sand                 |           |        |         |       |

| ROCK CORE    | LOG      |             | BORIN      | G NO.: | PZ-       | 106        |          | PROJECT              | NO.: 7311-02 PAGE 2 OF                                                                                                                      | 3      |        |
|--------------|----------|-------------|------------|--------|-----------|------------|----------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| PROJECT N    | IAME: OL | IN ROCHESTE | RRI        |        |           | DRIL       | LING C   | ONTRACTOR:           | MARCOR OF NEW YORK                                                                                                                          |        |        |
| DRILL RIG    | TYPE: C  | ANTERRA CT  | -350       |        |           | DRIL       | LER:     | R. SCHEFF            | ER DATE STARTED: 10/28/93 COMPLETE                                                                                                          | D: 10, | /28/93 |
| METHOD: C    | ORE      | BIT SI      | ZE: HQ     | (3.    | .8" O.D.) | PID        | METER:   | 10.6 ev F            | ID METER: OVA-108 PROTECTION LEVEL: D                                                                                                       | r      |        |
| GROUND EL    | EV.: 535 | .0 SOIL D   | RILLED:    | 13.    | 2 FT.     | ROCK       | DRILL    | ED: (CORED           | : 15.0' ROLLER BIT: 2.0') TOTAL D                                                                                                           | EPTH:  | 30.2'  |
| LOGGED BY    | : E. S   | HEPARD / N. | BRETON     |        |           | CHEC       | KED BY   | : NB                 | DATE: 9                                                                                                                                     | 161    | 941    |
| DEPTH        | RUN      | DRILLING    | PEN.       | RQD    | GRAPHIC   | CORE       | BREAKS   | WEATHERED            | ROCK DESCRIPTION AND                                                                                                                        | MONITO | DRING  |
| (F1.)        | NO.      | (FT/MIN)    | REC.       | (%)    | LOG       | TYPE       | DIP      | CONDITION            | COMMENTS ON DRILLING                                                                                                                        | PID    | FID    |
| - 14<br>- 15 |          |             |            |        |           |            |          |                      | See soil boring log for PZ-106 for<br>soil descriptions from 0'-13.2'<br>Roller cone drill from 13.2'to 15.2'<br>Grout                      |        |        |
| - 16         | R-1      | 5           | 1.0<br>1.0 | 79     |           | nat        | 0°       | slight               | Light gray, finely crystalline,<br>medium bedded, DOLOMITE with<br>interbedded shale.<br>Lockport FM                                        | 0      | 40     |
| - 17         |          | 3           |            |        |           | nat        | 0°       | slight               | Run R-2 - Occasional vugs                                                                                                                   | 14     | 20     |
| - 18         |          | 2           |            |        | XX        | nat        | 0°       | moderate             | 17.5'-17.7' - Noticeably weathered and fractured.                                                                                           | 18     | 150    |
| 19           | R-2      | 3           | 5.0        | 75     | $-$       | nat        | 0°       | slight               |                                                                                                                                             | 8      | 70     |
| 20           |          | 3           |            |        | 0         | nat        | 0°       | moderate             | 19.2'- Vug                                                                                                                                  | 6      | 100    |
| 21           |          | 4           |            |        | 0         | nat<br>nat | 0°<br>0° | moderate<br>moderate | 20.5'- Highly fractured along shale<br>partings<br>20.6' - Vug                                                                              | 70     | 50     |
| 22           |          | 4           |            |        |           | nat        | 0°       | slight               |                                                                                                                                             | 10     | 50     |
| 23           |          | 3           |            |        |           | nat        | 0.0      | moderate             | 23 11-23 21- Unsthered and fractured                                                                                                        | 5      | 90     |
| 24           | R-3      | 3           | 5.0<br>5.0 | 95     |           | nat        | 0°       | moderate<br>slight   | <pre>23.1*25.2** weathered and fractured<br/>along shale partings.<br/>23.9'-24.0'- Weathered and fractured<br/>along shale partings.</pre> | 0      | 15     |
| 25           |          | 3           |            |        |           | nat        | 0°       | slight               |                                                                                                                                             | 5      | 20     |
| 26           |          | 2           |            |        |           | nat        | 0°       | slight               |                                                                                                                                             | 23     | 175    |
| 27           |          | 2           | 4.0        |        |           | nat        | 0°       | slight               |                                                                                                                                             | 30     | 70     |
| 28           | R-4      | 2           | 3.8        | 83     |           | nat        | 0°       | slight               |                                                                                                                                             | 40     | 80     |
|              |          | 2           |            |        |           |            |          |                      |                                                                                                                                             | 10     | 30     |

| ROCK CORE  | LOG        |           | BORING     | NO.: | PZ-      | 106        |        | PROJECT N        | NO.: 7311                 | 1-02                                           | PAGE 3                                              | OF             | 3       |       |
|------------|------------|-----------|------------|------|----------|------------|--------|------------------|---------------------------|------------------------------------------------|-----------------------------------------------------|----------------|---------|-------|
| PROJECT NA | ME: OLIN   | ROCHESTER | RI         |      |          | DRILL      | ING CO | ONTRACTOR:       | MARCOR OF                 | NEW YORK                                       |                                                     |                | -       |       |
| DRILL RIG  | TYPE: CANT | TERRA CT- | 350        |      |          | DRILL      | ER:    | R. SCHEFFE       | R                         | DATE STAR                                      | TED: 10/28/93                                       | COMPLE         | TED: 10 | /28/9 |
| METHOD: CC | RE         | BIT SIZ   | E: HQ      | (3:  | 8" O.D.) | PID N      | HETER: | 10.6 ev F1       | ID METER:                 | OVA-108                                        | PROTECTION                                          | LEVEL:         | D       |       |
| GROUND ELE | V.: 535.0  | SOIL DR   | ILLED:     | 13.  | 2 FT.    | ROCK       | DRILL  | ED: (CORED:      | : 15.0'                   | ROLLER BI                                      | T: 2.0')                                            | TOTAL          | DEPTH:  | 30.2  |
| LOGGED BY: | E. SHEP    | PARD / N. | BRETON     |      |          | CHECH      | KED BY | : N.B.           |                           |                                                |                                                     | DATE:          | 916     | 191   |
| DEPTH      | RUN I      | RILLING   | PEN.       | RQD  | GRAPHIC  | CORE I     | BREAKS | WEATHERED        |                           | ROCK DESCR                                     | IPTION AND                                          |                | MONIT   | ORIN  |
| (F1.)      | NO.        | (FT/MIN)  | REC.       | (%)  | LUG      | TYPE       | DIP    | CONDITION        |                           | LOMMENTS O                                     | DRILLING                                            |                | PID     | F1    |
| 30         | R-4        | 2         | 4.0<br>3.8 | 83   |          | nat<br>nat | 0°     | slight<br>slight | Light<br>medium<br>interb | gray, fine<br>bedded, D<br>edded shal          | ely crystallin<br>OLOMITE with<br>e.<br>Lockport FM | ne,<br>M       | 7       | 3     |
| 31         |            |           |            |      |          |            |        |                  | End of<br>ground<br>Note: | boring at<br>surface<br>Approxima<br>water los | 30.2' below<br>ately 80 gallo<br>st during cor      | ons of<br>ing. |         |       |
|            |            |           |            |      |          |            |        |                  | n                         | at - inter<br>fract                            | preted naturation                                   | al<br>break    |         |       |
|            |            |           |            |      |          |            |        |                  | me                        | ch - inter<br>core                             | rpreted mecha<br>break                              | nical          |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        | 1                |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
|            |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |
| -          |            |           |            |      |          |            |        |                  |                           |                                                |                                                     |                |         |       |

| WELL INSTAL                                    | LATION   | I DIA | GRA        | M WELL NO .: PZ-107                                                    |
|------------------------------------------------|----------|-------|------------|------------------------------------------------------------------------|
| PROJECT NAME: C                                | DLIN ROC | HESTE | RRI        | DATE INSTALLED: 10 / 28 / 93 INITIAL WATER                             |
| PROJECT NO.:                                   | 7311-    | 03    |            | DRILLING METHOD: HSA \ ROCK CORE LEVEL DEPTH: 7.10'(RF)                |
| GROUND ELEVATION                               | 1: 536.4 | 0     |            | CORE HOLE DIA.: 3.8 - INCH DATE: 01 / 17 / 94                          |
| REFERENCE POINT                                | ELEVATI  | ON: 5 | 38.64      | RIG GEOLOGIST: E. SHEPARD                                              |
| REFERENCE POINT<br>(TOP OF PROTECTI<br>CASING) | VE       |       | 1          | PROTECTIVE CASING STICKUP: 2.2'                                        |
| GROUND SURFACE                                 | ** **    |       | **         |                                                                        |
|                                                | AA AA    |       | ** **      |                                                                        |
|                                                |          |       |            | BOREHOLE DIAMETER: 10-INCH                                             |
|                                                |          |       | **         |                                                                        |
|                                                | ** **    |       |            | WELL RISER ID: 2.0-INCH                                                |
|                                                |          |       |            | TYPE OF WELL RISER: SCH 40 PVC                                         |
|                                                | ** **    |       | ** **      |                                                                        |
| TOP OF BEDROCK                                 | ** **    |       |            | TYPE OF BACKFILL: CEMENT\BENTONITE GROUT                               |
| DEPTH: 10.2'                                   |          |       |            | DEPTH TO BOTTOM OF 6" CASING: 11.7                                     |
|                                                |          |       | ** **<br>[ | DEPTH TO BOTTOM OF ROCK SOCKET<br>AND CEMENT\BENTONITE BACKFILL: 12.2' |
|                                                |          |       |            | DEPTH TO TOP OF BENTONITE PELLET SEAL: 12.5'                           |
|                                                |          |       |            | DEPTH TO TOP OF SAND PACK: 14.5                                        |
|                                                | •••      |       | • • •      |                                                                        |
|                                                |          |       |            | DEPTH TO TOP OF WELL SCREEN: 15.5'                                     |
|                                                |          | -     |            | POCK CORE HOLE DIAMETER 3 8-INCH                                       |
|                                                |          |       |            |                                                                        |
|                                                |          |       |            | TYPE OF WELL SCREEN: SCH 40 PVC                                        |
|                                                |          |       |            |                                                                        |
|                                                |          |       |            | WELL SCREEN ID: 2.0-INCH                                               |
|                                                |          | -     | •••        | WELL SLOT SIZE: 0.010-INCH                                             |
|                                                |          | _     |            | LENGTH OF WELL SCREEN: 9.6'                                            |
|                                                |          |       | •••        | TYDE OF CAND DACK. DENN CTUTCA # 4                                     |
|                                                |          |       |            | TTPE OF SAND PACK: PENN SILICA # 1                                     |
|                                                | •••      |       | •••        |                                                                        |
|                                                |          |       |            | DEPTH TO BUITOM OF WELL SUREEN: 23.1"                                  |
|                                                |          |       |            | DEPTH TO BOTTOM OF SEDIMENT TRAP: 25.5'                                |
|                                                |          |       |            | 70.01                                                                  |

| BORI   | NG LOG     |            | BORING NO.          | : PZ-1  | .07                                 | PROJECT NO.:                                                                                                                             | 7311-02                                                                                       | PAGE 1       | OF     | 3       |       |
|--------|------------|------------|---------------------|---------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|--------|---------|-------|
| ECT N  | AME: OLIN  | ROCHESTER  | RI                  |         | DRILLING                            | CONTRACTOR: MARCO                                                                                                                        | R OF NEW YORK                                                                                 |              |        |         |       |
| L RIG  | TYPE: CANT | TERRA CT 3 | 50                  |         | DRILLER:                            | D. Bucher                                                                                                                                | DATE STARTED:                                                                                 | 10/27/93 C   | OMPLET | ED: 10/ | 27/93 |
| IOD:   | HSA        | AUGER SI   | ZE: 4.25            | 5" 1.D. | PID METER                           | : 10.6 ev FID MET                                                                                                                        | ER: OVA-108 PR                                                                                | DTECTION LEV | EL: I  | MOD D   |       |
| IND EL | EV.: 536.4 | SOIL DRI   | LLED: 10.2          | 2' FT.  | ROCK DRIL                           | LED: CORE: 15.0'                                                                                                                         | ROLLER BIT:                                                                                   | 2.0'         | TOTAL  | DEPTH:  | 27.2  |
| ED BY  | : B. JOHN  | ISON       |                     |         | CHECKED B                           | Y: N-B'                                                                                                                                  |                                                                                               |              | DATE:  | 9/61    | 194   |
| тн     | SAMPLE     | BLOWS PE   | R PEN.              | GRAPHIC |                                     | SAMPLE                                                                                                                                   |                                                                                               | USCS         | MONI   | TORING  | (PPM) |
| .)     | NUMBER     | 6-INCHES   | REC.                | LOG     |                                     | DESCRIPTION                                                                                                                              |                                                                                               | CLASSIF.     | PID    | FID     | OTHER |
| 1      | s-1        | 5-7-9-10   | $\frac{2.0}{1.7}$   |         | 0.0'-0.8'                           | Brown Topsoil, Si<br>medium Sand, mois<br>and Peat present.<br>Red to Brown, Sil<br>trace to little a<br>Gravel, trace med<br>Sand moist | lty Sand, fine,<br>t, Rootlets<br>ty SAND, fine,<br>ngular coarse<br>lium to coarse           | SM/PT<br>SM  | 0      | 0       |       |
|        | s-2        | 3-4-4-5    | $\frac{2.0}{1.5}$   |         | 2.0'-4.0'                           | Light brown to re<br>fine, trace Clay,<br>Gravel, moist, sl                                                                              | d, Silty SAND,<br>trace fine<br>ightly plastic.                                               | SM           | 0      | 1.0     |       |
|        | S-3        | 1-5-7-7    | 2.0<br>1.6          |         | 4.0'-5.3'<br>5.3'-6.0'              | Brown, Silty SAND<br>little medium to<br>fine to coarse ar<br>moist.<br>Brown Silty SAND<br>medium Sand, trac<br>and Gravel, satur       | , fine, trace to<br>coarse Sand,<br>gular Gravel,<br>, fine, little<br>e coarse Sand<br>ated. | SP SM        | 1.5    | 100     |       |
|        | S-4        | 4-15-9-1(  | $0 \frac{2.0}{1.5}$ |         | 6.0'-6.5'<br>6.5'-7.0'<br>7.0'-8.0' | Similar to above,<br>with yellow spots<br>Light Brown Grave<br>to medium Sand, s<br>saturated.<br>Brown SAND, fine<br>little Silt, satu  | Light Brown<br>Ily SAND, fine<br>ome Silt,<br>to medium,<br>rated.                            | SP<br>GM     | NA     | NA      |       |
|        | s-5        | 7-14-22-5  | $\frac{2.0}{0.5}$   |         | 8.0'-10.0'<br>10.0'-10.2            | Silty SAND and Sa<br>medium, in altern<br>layers, saturated<br>'Yellow Brown SAND<br>some Silt, trace                                    | nd, fine to<br>ating thin<br>, fine to medium<br>to some coarse                               | SM<br>n, SM  | 1.0    | 700     |       |
| 2' —   | T          |            | t                   |         | Spor                                | on refuent at 10.2                                                                                                                       | 1                                                                                             | -            | 2.0    | 230     | -     |
|        | S-6        | 50 for 0.2 | 2' 0.2              |         | Wate<br>ADD                         | er level (initial)<br>ITIONAL NOTES:<br>FID hits at 4'to 6<br>soil only.                                                                 | at 5.3'<br>' in saturated                                                                     |              |        |         |       |
|        |            |            |                     |         |                                     |                                                                                                                                          |                                                                                               |              |        |         |       |
|        |            |            |                     |         |                                     |                                                                                                                                          |                                                                                               |              |        | :       |       |

| ROCK CORE                              | LOG      |                           | BORIN      | G NO.: | PZ-        | -107                             |                        | PROJECT                                              | NO.: 731                                                     | 1-02                                                                              | PAGE 2                                                                                               | OF                     | 3                         | _     |
|----------------------------------------|----------|---------------------------|------------|--------|------------|----------------------------------|------------------------|------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------|---------------------------|-------|
| PROJECT NAME: OLIN ROCHESTER RI        |          |                           |            |        |            | DRIL                             | LING C                 | ONTRACTOR:                                           | MARCOR O                                                     | F NEW YORK                                                                        |                                                                                                      |                        |                           | ~~~~  |
| DRILL RIG                              | TYPE: C  | ANTERRA CT                | -350       |        |            | DRIL                             | LER:                   | R. SCHEFF                                            | FER                                                          | DATE STAR                                                                         | TED: 10/27/93                                                                                        | COMPLE                 | TED: 10                   | /27/9 |
| METHOD: C                              | ORE      | BIT SI                    | ZE: HQ     | (3.    | 8" 0.D.)   | PID                              | METER:                 | 10.6 ev F                                            | FID METER:                                                   | OVA-108                                                                           | PROTECTION I                                                                                         | LEVEL:                 | D                         | 56,05 |
| GROUND EL                              | EV.: 536 | .4 SOIL D                 | RILLED:    | 10.    | 2 FT.      | ROCK                             | DRILL                  | ED: (CORED                                           | o: 15.2'                                                     | ROLLER BI                                                                         | T: 1.8')                                                                                             | TOTAL                  | DEPTH:                    | 27.2  |
| LOGGED BY                              | : E.S    | HEPARD / N.               | BRETON     | 1      |            | CHEC                             | KED BY                 |                                                      | N.B                                                          |                                                                                   |                                                                                                      | DATE:                  | 9/6/                      | 194   |
| DEPTH                                  | RUN      | DRILLING                  | PEN.       | RQD    | GRAPHIC    | CORE                             | BREAKS                 | WEATHERED                                            | 1                                                            | ROCK DESCR                                                                        | IPTION AND                                                                                           | -                      | MONIT                     | ORIN  |
| (11.7                                  | NO.      | (FT/MIN)                  | REC.       | (%)    | LOG        | TYPE                             | DIP                    | CONDITION                                            |                                                              | COMMENTS O                                                                        | N DRILLING                                                                                           |                        | PID                       | FIC   |
| - 11                                   |          |                           |            |        |            |                                  |                        |                                                      | See so<br>soil de<br>Roller<br>Grout                         | il boring<br>escription<br>cone dril                                              | log for PZ-10<br>s from 0'-10.<br>l from 10.2'te                                                     | 7 for<br>2'<br>0 12.0' |                           |       |
| - 13<br>- 14<br>- 15<br>- 16<br>- 16.4 | R-1      | 3.5<br>9<br>8<br>4.3<br>2 | 4.4<br>2.7 | 35     |            | mech<br>nat<br>nat<br>nat<br>nat | 30°<br>0°<br>0°<br>45° | slight<br>slight<br>slight<br>slight<br>slight       | Light g<br>medium<br>interbe<br>12.0'-<br>interpe<br>13.7' H | gray, fine<br>bedded, Du<br>edded shalo<br>13.7'- Co<br>ret top of<br>below groun | ly crystalling<br>DLOMITE with<br>e.<br>Lockport FM<br>re not recover<br>recovered co<br>nd surface. | e,<br>red;<br>re as    | 0<br>0<br>3.5<br>5        | 81    |
| - 17<br>- 18<br>- 19<br>- 20<br>- 21   | R-2      | 3<br>3<br>2<br>3<br>2     | 5.6        | 96     |            | nat<br>nat<br>nat<br>nat<br>mech | 0°<br>0°<br>0°         | slight<br>moderate<br>moderate<br>moderate<br>slight | weather<br>bedding                                           | g and along                                                                       | ty to moderat<br>res parallel a<br>g shale partin                                                    | e ( y<br>to<br>ngs     | NA<br>NA<br>NA<br>Q<br>NA | 4     |
| - 22                                   | R-3      | NA                        | 0.7        | NA     | <b>资</b> 资 | mech                             |                        |                                                      | Run R-3<br>Difficu                                           | 3 - Mostly<br>ulty with                                                           | mechanical b<br>core jamming.                                                                        | reaks;<br>Had          | 3.5                       |       |
| - 23                                   | R-4      | 2                         |            | 4.5    |            | nat<br>nat                       | 0°                     | slight<br>slight                                     | abandor                                                      | n run at 2                                                                        | 2.1'                                                                                                 |                        | 20<br>9                   | 1     |
| - 25                                   |          | 3                         |            |        |            | nat                              | 0°                     | high                                                 | 25.21-2                                                      | 25.4' - So                                                                        | ft weathered                                                                                         | zone                   |                           |       |
|                                        |          |                           |            |        |            | nat                              | 0°                     | slight                                               |                                                              |                                                                                   |                                                                                                      |                        | 5                         | 1     |

| ROCK CORE LOG BORING NO.: PZ-   |          |              |            |     |          | 107        | LO7 PROJECT NO.: 7311-02 PA |                  |                                                                                                                                                                 |                                          |                                                    | OF                   | 3         |        |  |
|---------------------------------|----------|--------------|------------|-----|----------|------------|-----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|----------------------|-----------|--------|--|
| PROJECT NA                      | ME: OLI  | IN ROCHESTER | RRI        |     |          | DRIL       | LING CC                     | ONTRACTOR:       | MARCOR C                                                                                                                                                        | F NEW YORK                               | 17-12-14                                           |                      |           |        |  |
| DRILL RIG TYPE: CANTERRA CT-350 |          |              |            |     |          |            | LER:                        | R. SCHEFFE       | R                                                                                                                                                               | DATE START                               | ED: 10/27/93                                       | COMPLET              | TED: 10   | /27/93 |  |
| METHOD: CO                      | RE       | BIT SIZ      | ZE: HQ     | (3. | 8" O.D.) | PID        | METER:                      | 10.6 ev FI       | D METER:                                                                                                                                                        | OVA-108                                  | PROTECTION                                         | LEVEL:               | D         |        |  |
| GROUND ELE                      | V.: 536. | .4 SOIL DE   | RILLED:    | 10. | 2 FT.    | ROCK       | DRILLE                      | D: (CORED:       | 15.2'                                                                                                                                                           | ROLLER BIT                               | (: 1.8')                                           | TOTAL                | DEPTH:    | 27.2'  |  |
| LOGGED BY:                      | E. SH    | HEPARD / N.  | BRETON     |     |          | CHEC       | KED BY:                     | N 1              | 3.                                                                                                                                                              |                                          |                                                    | DATE:                | 9/6       | 194    |  |
| DEPTH                           | RUN      | DRILLING     | PEN.       | RQD | GRAPHIC  | CORE       | BREAKS                      | WEATHERED        |                                                                                                                                                                 | ROCK DESCRI                              | IPTION AND                                         |                      | MONITORIN |        |  |
| (F1.)                           | NO.      | (FT/MIN)     | REC.       | (%) | LOG      | TYPE       | DIP                         | CONDITION        |                                                                                                                                                                 | COMMENTS OF                              | ORILLING                                           |                      | PID       | FID    |  |
| 26<br>27<br>27.2                | R-4      | 3            | 4.5<br>4.4 | 85  | F        | nat<br>nat | 0°<br>0°                    | slight<br>slight | Light<br>medium<br>interb                                                                                                                                       | gray, fine<br>bedded, DO<br>bedded shale | ly crystallin<br>DLOMITE with<br>e.<br>Lockport FM | e,                   | 2         | 50     |  |
| 28                              |          |              |            |     |          |            |                             |                  | End of boring at 27.2' below<br>ground surface<br>Notes: Approximately 750 gallon<br>water lost during coring<br>nat - interpreted natura<br>fracture or core b |                                          | ons of                                             |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          | rpreted natur<br>ture or core                      | al<br>break<br>nical |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 | core                                     | break                                              | in out               |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  | In Run R-4 a 1.5" size piece<br>of core was discolored<br>brown. FID and PID readings<br>over this piece measured<br>400 and 27 ppm respectively.               |                                          | piece<br>adings<br>ed<br>ively.                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          |            |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           |        |  |
|                                 |          |              |            |     |          | _          |                             |                  |                                                                                                                                                                 |                                          |                                                    |                      |           | 1      |  |

| PROJECT NAME: OLIN ROCH       | ESTER RI  | DATE INSTALLED: 10 / 21 / 93                          |
|-------------------------------|-----------|-------------------------------------------------------|
| PROJECT NO.: 7311-0           | 3         | DRILLING METHOD: HSA LEVEL DEPTH: 4.30'(RF)           |
| GROUND ELEVATION: 536.56      |           | AUGER ID: 4.25 - INCH DATE: 01 / 17 / 94              |
| REFERENCE POINT ELEVATIO      | N: 536.56 | RIG GEOLOGIST: B. JOHNSON                             |
|                               |           |                                                       |
|                               |           |                                                       |
| REFERENCE POINT               |           | FLUSH MOUNTED PROTECTIVE                              |
| (TOP OF PROTECTIVE<br>CASING) |           | CASING - STICKUP = 0.0'                               |
| 20020                         |           |                                                       |
|                               |           |                                                       |
| ROUND SURFACE                 |           |                                                       |
|                               |           | OUTSIDE DIAMETER OF STEEL PROTECTIVE CASING: 8 - INCH |
|                               |           | BOREHOLE DIAMETER: 8.25 - INCH                        |
| :                             | :         |                                                       |
| •                             |           | WELL RISER ID: 2.0-INCH                               |
|                               |           | TYPE OF WELL RISER: SCH 40 PVC                        |
|                               |           |                                                       |
| :                             |           | TYPE OF BACKFILL: PENN SILICA # 1 SAND (FOR DRAINAGE) |
| •                             |           | DEPTH TO TOP OF BENTONITE PELLET SEAL: 1.5'           |
| •                             |           |                                                       |
|                               |           | DEPTH TO TOP OF SAND PACK: 5.5'                       |
|                               |           | DEPTH TO TOP OF WELL SCREEN: 5.5'                     |
|                               | _         | BOREHOLE DIAMETER: 8.25 - INCH                        |
|                               |           |                                                       |
|                               |           | TYPE OF WELL SCREEN: SCH 40 PVC                       |
|                               |           | WELL SCREEN ID: 2.0-INCH                              |
|                               |           | WELL SLOT SIZE: 0.010-INCH                            |
|                               |           | LENGTH OF WELL SCREEN. 5 61                           |
|                               |           |                                                       |
|                               |           | TIPE OF SAND PACK: PENN SILICA # 1                    |
|                               |           | DEPTH TO BOTTOM OF WELL SCREEN: 11.1                  |
|                               |           | DEPTH TO BOTTOM OF SEDIMENT TRAP: 11.5                |
|                               |           |                                                       |
|                               |           |                                                       |

| SOIL BOR       | ING LOG          | BOR                   | ING NO.           | .: FL-1 | UO PROJECT NO.: 7311-02 PAGE 1 OF 1         |                                                                                       |                                                                          |                                                                                      |                  |         |             |       |
|----------------|------------------|-----------------------|-------------------|---------|---------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------|---------|-------------|-------|
| PROJECT I      | NAME: OLIN       | ROCHESTER RI          | -                 |         | DRILLING CONTRACTOR: MARCOR OF NEW YORK     |                                                                                       |                                                                          |                                                                                      |                  |         |             |       |
| DRILL RI       | G TYPE: CANT     | ERRA CT 350           | -                 | _       | DRILLER: R. SCHEFFER DATE STARTED: 10/22/93 |                                                                                       |                                                                          |                                                                                      |                  |         | TED: 10/    | 22/93 |
| METHOD:        | HSA              | AUGER SIZE:           | 4.2               | 5" I.D. | PID METER:                                  | 10.6 ev Fi                                                                            | ID METER                                                                 | : OVA-108 PI                                                                         | ROTECTION LE     | VEL: MC | D D         |       |
| GROUND E       | LEV.: 536.6      | SOIL DRILLE           | D: 12.2           | 2' FT.  | ROCK DRILL                                  | ED: NONE                                                                              |                                                                          |                                                                                      |                  | TOTAL   | DEPTH:      | 12.2  |
| LOGGED B       | Y: B. JOHNS      | SON                   | 1                 |         | CHECKED BY                                  | : NY                                                                                  | B.                                                                       |                                                                                      |                  | DATE    | 9/6         | 194   |
| DEPTH<br>(FT.) | SAMPLE<br>NUMBER | BLOWS PER<br>6-INCHES | PEN.              | GRAPHIC |                                             | SAMPLE                                                                                |                                                                          |                                                                                      | USCS             | MONI    | TORING (PPM |       |
| - 0            |                  |                       | REC.              |         |                                             |                                                                                       |                                                                          |                                                                                      | CLASSIT          | PID     | FID         | OTHER |
| - 1            | s-1              | 3-6-11-11             | $\frac{2.0}{2.0}$ |         | 0.0'-0.3'                                   | Topsoil, Br<br>trace mediu<br>moist, Orga<br>Brown to Re<br>trace to li<br>Sand, fine | rown Silf<br>um to com<br>anics pro-<br>ed Silty<br>ittle med<br>Gravel, | ty SAND, find<br>arse Sand,<br>esent.<br>SAND, fine,<br>dium to coars<br>dry to mois | e SM<br>SM<br>se | 0       | 0           |       |
| - 2            |                  |                       |                   |         |                                             |                                                                                       |                                                                          |                                                                                      |                  |         |             |       |
| - 3            | S-2              | 5-5-6-8               | $\frac{2.0}{1.8}$ |         | 2.0'-4.0'                                   | Brown to Re<br>medium Sand<br>(piece of d                                             | ed Silty<br>d, moist<br>coal at i                                        | SAND, trace                                                                          | SM               | 0       | 2           |       |
| - 4            |                  |                       |                   |         |                                             |                                                                                       |                                                                          |                                                                                      |                  |         |             |       |
| - 5            | s-3              | 3-8-11-13             | $\frac{2.0}{1.7}$ |         | 4.01-4.41<br>4.41-4.71                      | Similar to<br>Brown Silty<br>Clay, litt                                               | above.<br>/ SAND, 1<br>le fine (                                         | fine, trace<br>Grave, moist                                                          | SP               | NA      | NA          |       |
| - 6            |                  |                       |                   |         | 4.7'-6.0'                                   | Red to Brow<br>to little S                                                            | wn SAND,<br>Silt, wei                                                    | fine, trace<br>t to saturate                                                         | ed.              |         |             |       |
| - 7            | s-4              | 5-7-10-14             | 2.0<br>1.0        |         | 6.0'-8.0'                                   | Reddish Bro<br>Silt, satu                                                             | own SAND<br>urated.                                                      | , fine, some                                                                         | SM               | NA      | NA          |       |
| - 8            |                  | -                     | -                 |         |                                             |                                                                                       |                                                                          |                                                                                      |                  |         |             |       |
| - 9            | s-5              | 4-8-6-13              | 2.0<br>1.0        |         | 8.0'-9.0'<br>9.0'-10.0'                     | Similar to<br>Dark Gray f<br>little to s<br>to coarse (                               | above.<br>to Black<br>some Sili<br>Gravel, s                             | SAND, fine,<br>t, trace fine<br>saturated.                                           | SM<br>SM         | 0       | 50          |       |
| - 10           |                  |                       |                   |         |                                             |                                                                                       |                                                                          |                                                                                      |                  |         |             |       |
| - 11           | S-6              | 6-9-15-35             | 0.9<br>0.4        |         | 10.0'-12.0'                                 | Brown and (<br>little medi<br>trace fine                                              | Gray Sili<br>ium to co<br>Gravel,                                        | ty SAND, fin<br>barse SAND,<br>saturated,                                            | e,               |         | 10,000      |       |
| - 12           |                  |                       |                   |         |                                             |                                                                                       | ip of spi                                                                |                                                                                      | 35               | 0       | 10,000      |       |
| - 13           |                  |                       |                   |         | R                                           | EFUSAL WITH                                                                           | AUGERS /                                                                 | AT 12.2'<br>RED AT 5.0'                                                              | -0               |         |             |       |
| - 14           |                  |                       |                   | o.      |                                             |                                                                                       |                                                                          |                                                                                      |                  |         |             |       |
| - 15           |                  |                       |                   |         |                                             |                                                                                       |                                                                          |                                                                                      |                  |         |             |       |





S-5167 S. Park Avenue, Hamburg, NY 14075



S-5167 S. Park Avenue, Hamburg, NY 14075







| 6 FT.<br>6 FT.<br>1 H<br>1 H<br>1 H<br>1 H<br>1 H<br>1 H<br>1 H<br>1 H<br>1 H<br>1 H | SOIL & ROCK DESCRIPTIONS                                                 | REMARKS |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------|
| PER O.<br>SAMF<br>SAMF<br>SAMF<br>SAMF<br>SAMF<br>SAMF<br>SAMF<br>SAMF               |                                                                          |         |
|                                                                                      | Zone of Highly fractured rock, thin Shale<br>bed, weathered              |         |
| Run #5                                                                               | Possible drilling break<br>Fracture at Shale parting, slightly weathered |         |
| 31.0' 82% 100%                                                                       | Possible drilling related fractures                                      |         |
|                                                                                      | Fracture at Styolitic parting                                            |         |
|                                                                                      |                                                                          |         |
|                                                                                      | Fracture at Styolitic partings, slightly weathered                       |         |
|                                                                                      | weathering                                                               |         |
|                                                                                      |                                                                          |         |
| 31.0'-<br>33.0' 100% 100%                                                            | weathering                                                               |         |
| Bun #7                                                                               |                                                                          |         |
| 33.0'-                                                                               |                                                                          |         |
| 43.0 948 996                                                                         | _                                                                        |         |
|                                                                                      | Fracture slight-no weathering, possible                                  |         |
|                                                                                      |                                                                          |         |
|                                                                                      |                                                                          |         |
| $\square$       $\square$                                                            |                                                                          |         |
|                                                                                      |                                                                          |         |
|                                                                                      |                                                                          |         |
|                                                                                      |                                                                          |         |
|                                                                                      | Fracture along Styolitic partings, slight weathering                     |         |
|                                                                                      | Possible drilling related fracture                                       |         |
|                                                                                      |                                                                          |         |
|                                                                                      | Boring Complete at 43.0'                                                 |         |
|                                                                                      |                                                                          |         |
| $\square$       ]                                                                    | -                                                                        |         |
|                                                                                      |                                                                          |         |
|                                                                                      |                                                                          |         |
|                                                                                      |                                                                          |         |
| + $ $ $ $ $ $ $ $                                                                    |                                                                          |         |
|                                                                                      |                                                                          |         |
| ┼━┥ │ │ │ ┨                                                                          |                                                                          |         |
|                                                                                      |                                                                          |         |
| + -         -                                                                        | C                                                                        |         |
|                                                                                      | 4                                                                        | 1       |
| MARKS                                                                                |                                                                          |         |





| SOILS INVESTIGATIONS INC                                                                                                                                                    | -BORING LOG-<br>PROJECT <u>Olin Chemical</u><br><u>McKee Road</u><br>Rochester, New York                        | BORING No. <u>BR-6</u><br>SHEET <u>3</u> OF <u>3</u><br>FILE No. <u>BD-89-074</u> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| G (FT)<br>BLOWS<br>BLOWS<br>BLOWS<br>SAMPLE<br>SAMPLE<br>SAMPLE<br>FTT<br>(FT)<br>N-VALUE<br>(FT)<br>N-VALUE<br>RAD (%)<br>N-VALUE<br>(FT)<br>DEPTH<br>CFTH<br>CFTH<br>CFTH | SOIL & ROCK DESCRIPTIONS                                                                                        | REMARKS                                                                           |
|                                                                                                                                                                             | Drilling related breaks<br>Calcite fill vug, possible drilling related<br>fracture<br>Fracture at Shale parting |                                                                                   |
|                                                                                                                                                                             | Boring Complete at 56.0'                                                                                        |                                                                                   |
|                                                                                                                                                                             |                                                                                                                 | •                                                                                 |

a e

1 1 2

î





|         | SOIL                 | SINVE            | SHGAT                    | ONSIN                    |               |                |        | PROJECT Olin Chemical<br>McKee Road<br>Rochester, New York         | SHEET 3 0<br>FILE No. BD-8 |
|---------|----------------------|------------------|--------------------------|--------------------------|---------------|----------------|--------|--------------------------------------------------------------------|----------------------------|
| N (FT.) | BLOWS<br>PER 0.5 FT. | SAMPLE<br>NUMBER | SAMPLE<br>DEPTH<br>(FT.) | N-VALUE<br>OR<br>ROD (%) | %<br>RECOVERY | DEPTH<br>(FT.) | LEGEND | SOIL & ROCK DESCRIPTIONS                                           | REMARK                     |
| 53      |                      |                  |                          |                          |               | munh           |        | -Possible drilling related fracture                                |                            |
| 54-     |                      |                  |                          |                          |               | minih          |        | Fracture along Shale parting                                       |                            |
| 55-     |                      |                  |                          | -                        |               | mulu           |        | Possible drilling related fracture                                 |                            |
| 56      | _                    |                  |                          |                          |               | huhu           |        |                                                                    |                            |
| 57      |                      |                  |                          |                          |               | مليسليسلي      |        | Possilbe drilling related fracture, few at partings, no weathering |                            |
| 58      |                      |                  |                          |                          |               | واستهرسان      |        |                                                                    |                            |
| 50-     |                      |                  |                          |                          |               | ملسولي         |        | Fraacture along Shale partings                                     |                            |
| 51-     |                      |                  |                          |                          |               | alunhu         |        | Trace vugs Calcite filled                                          | Calcite Zone 60            |
| 52      |                      |                  |                          |                          |               |                |        | -                                                                  |                            |
| ;3-     | _                    |                  |                          |                          |               | hunhun         |        | Possible drilling related fractures                                |                            |
| 4-      |                      |                  |                          |                          |               | hundan         |        |                                                                    |                            |
| 55-     |                      |                  |                          |                          |               | hudun          |        |                                                                    |                            |
| i6-     | -                    |                  |                          | 1                        |               | hulun          |        | Boring Complete at 65.6'                                           | -                          |
| 57      |                      |                  |                          |                          |               | mhund          |        |                                                                    |                            |
| 18-     |                      |                  |                          |                          |               | mhunh          |        |                                                                    |                            |
| 9-      |                      |                  |                          |                          |               | mhuntu         |        |                                                                    |                            |
| 0-+     |                      | 3                |                          |                          |               | mhunta         |        |                                                                    |                            |
| 7       |                      |                  |                          |                          |               | alanta         |        |                                                                    |                            |
| 7       |                      |                  |                          |                          |               | Juntum         |        |                                                                    |                            |
| 7       |                      |                  |                          |                          |               | huntur         |        |                                                                    |                            |
| 7       |                      |                  |                          |                          |               | hundreit       |        |                                                                    |                            |
| +       |                      |                  |                          |                          |               | hulun          |        |                                                                    |                            |
| +       |                      |                  |                          |                          |               | miliun         |        |                                                                    |                            |
| +       |                      |                  |                          |                          |               | milium         |        |                                                                    |                            |
| REM     | AR                   | (SI              |                          |                          |               |                |        |                                                                    |                            |

Ţ.

|                                                                                                                                                                                | -BORING LOG-<br>PROJECT <u>Olin Chemical</u><br>McKee Road<br>Rochester, New York                                                                                                                 | BORING No. <u>BR-8</u><br>SHEET <u>1</u> OF <u>2</u><br>FILE No. <u>BD-89-074</u> |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| BLOWS<br>BLOWS<br>SAMPLE<br>SAMPLE<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER<br>NUMBER | SOIL & ROCK DESCRIPTIONS                                                                                                                                                                          | REMARKS                                                                           |  |  |
| Run #1<br>2.8'-<br>10.7'                                                                                                                                                       | SOIL                                                                                                                                                                                              |                                                                                   |  |  |
| Run. #2<br>10.7'-<br>20.2'                                                                                                                                                     | TOP OF ROCK 15.0'<br>Rock Socket 15.0' to 18.0'                                                                                                                                                   |                                                                                   |  |  |
|                                                                                                                                                                                | Casing set at 17.5'<br>BOTTOM OF ROCK SOCKET 18.0'<br>- Zone of highly Fractured Rock<br>Light Gray DOLOMITE, hard, weathered,<br>thin-thick bedded, fractured at Shale<br>and Studitic partiting |                                                                                   |  |  |
| Run #3<br>20.2 <sup>1</sup> -<br>26.0 <sup>1</sup> 81% 97%                                                                                                                     | Fracture at Styolitic parting<br>Slight weather to weathered                                                                                                                                      | •                                                                                 |  |  |
|                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                   |  |  |

• •

. . .

÷



# APPENDIX C – EXCAVATION WORK PLAN (EWP) ARCH ROCHESTER PLANT SITE ROCHESTER NEW YORK

## C-1 NOTIFICATION

All groundbreaking work or other activities will require notification to document activities and the restoration of the engineering control. At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the NYSDEC contacts listed in the table below.

Table C1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information.

| NYSDEC Project Manager: Joshuah Klier                                       | (585) 226-5357 Joshuah.Klier@dec.ny.gov    |  |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| NYSDEC NYSDEC Regional Hazardous<br>Waste Remediation Engineer: David Pratt | (585) 226-5449 David.Pratt@dec.ny.gov      |  |  |  |
| NYSDOH Project Manager: Christopher                                         | (518) 402-1769                             |  |  |  |
| Budd                                                                        | Christopher.Budd@health.ny.gov             |  |  |  |
| NYSDOH Regional Chief Public Health<br>Specialist: Justin Deming            | (518) 402-7896 Justin.Deming@health.ny.gov |  |  |  |
| Site Environmental Specialist:<br>Luke Ferruzza                             | (585) 434-6008 luke.ferruzza@arxada.com    |  |  |  |
| QualifiedEnvironmentalProfessional:Nelson Breton                            | (207) 712-8020 Nelson.Breton@wsp.com       |  |  |  |

### **Table C1: Notifications\***

\* Note: Notifications are subject to change and will be updated as necessary.

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated, any modifications of truck routes, and any work that may impact an engineering control;
- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work, and submittals (e.g., reports) to the NYSDEC documenting the completed intrusive work;
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP, 29 CFR 1910.120 and 29 CFR 1926 Subpart P;
- A copy of the contractor's health and safety plan (HASP), in electronic format, if it differs from the HASP provided in Appendix [x] of this ISMP
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with the required request to import form and all supporting documentation including, but not limited to, chemical testing results.

The NYSDEC project manager will review the notification and may impose additional requirements for the excavation that are not listed in this EWP. The alteration, restoration and modification of engineering controls must conform with Article 145 Section 7209 of the Education Law regarding the application professional seals and alterations.

#### C-2 SOIL SCREENING METHODS

Visual, olfactory, and instrument-based (e.g. photoionization detector) soil screening will be performed during all excavations into known or potentially contaminated

material (remaining contamination) or a breach of the cover system. A qualified environmental professional (QEP) as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State will perform the screening. Soil screening will be performed when invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the Certificate of Completion.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal and material that requires testing to determine if the material can be reused on-site as soil beneath a cover or if the material can be used as cover soil. Further discussion of off-site disposal of materials and on-site reuse is provided in Section [6] of this EWP.

## C-3 SOIL STAGING METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales or compost filter socks will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected, and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC.

## C-4 MATERIALS EXCAVATION AND LOAD-OUT

A qualified environmental professional (QEP) as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly

reports to a PE who is licensed and registered in New York State will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and remedial party (if applicable) and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this iSMP is posed by utilities or easements on the site. A site utility stakeout will be completed for all utilities prior to any ground intrusive activities at the site.

Consistent with section C-9, the top one foot of material will be segregated from the material so cover may be preserved. Any media observed to be grossly contaminated must be segregated and characterized for disposal. Grossly contaminated is defined in DER-10 as "soil, sediment, surface water or groundwater which contains sources or substantial quantities of mobile contamination in the form of NAPL that is identifiable either visually, through strong odor, by elevated contaminant vapor levels or is otherwise readily detectable without laboratory analysis". Regarding odors, and media exhibiting strong factory odors OR exceeding a PID reading of 25 ppm will be considered grossly contaminated.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements). Trucks transporting contaminated soil must have either tight-fitting opaque covers that are secured on the sides and/or back, or opaque covers that are locked on all sides. If staging of excavated soil is required those materials will be staged on polyethylene sheeting or other approved material.

A truck wash will be operated on-site, when appropriate as determined by the QEP. The qualified environmental professional will be responsible for ensuring that all outbound
trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete. Truck wash waters will be collected and disposed of offsite in an appropriate manner. Alternatively, truck was waters may be discharged to the on-site pretreatment facility as described in Section C-8, Fluids Management.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials. Material accumulated from the street cleaning and egress cleaning activities will be disposed off-site at a permitted landfill facility in accordance with all applicable local, State, and Federal regulations.

#### C-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with either tightfitting opaque covers that are secured on the sides and/or back, or opaque covers that are locked on all sides. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

When transport of excavated materials offsite is required, descriptions and mapped routes for truck transport of excavated material will be provided in the notification to the NYSDEC for approval prior to the start of excavation activities. All trucks loaded with site materials will exit the vicinity of the site using only approved truck routes. The approved routes will be the most appropriate route and take into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

#### C-6 MATERIALS DISPOSAL OFF-SITE

All material excavated and removed from the site will be treated as contaminated and regulated material, unless approved otherwise, and will be transported and disposed off-site in a permitted facility in accordance with all local, State and Federal regulations. If disposal of material from this site is proposed for unregulated off-site disposal (e.g. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC project manager. Unregulated off-site management of materials from this site will not occur without formal NYSDEC project manager approval.

Off-site disposal locations for excavated soils will be identified in the preexcavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, (e.g. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C&D debris recovery facility) Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report (until such time that a PRR is provided, this information will be reported as part of ongoing quarterly remediation update reports to the NYSDEC). This documentation will include, but will not be limited to: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled consistent with 6 NYCRR Parts 360, 361, 362, 363, 364 and 365.Material that does not meet Unrestricted SCOs is prohibited from being taken to a New York State C&D debris recovery facility (6 NYCRR Subpart 360-15 registered or permitted facility).

## C-7 MATERIALS REUSE ON-SITE

'Reuse on-site' means reuse on-site of material that originates at the site and which does not leave the site during the excavation. Material reuse on-site will comply with the requirements of NYSDEC DER-10 Section 5.4(e)4.

Prior to the reuse of materials on-site, a reuse plan will be submitted for approval to the NYSDEC. The following topics should be covered in the materials re-use plan:

- Procedure for determining if reuse is appropriate
- Sampling (methods and analytical)
- Stockpile segregation scheme for on-site reuse including containment methods for excavated material
- Size of stockpiles, location (figure)

The qualified environmental professional as defined in 6 NYCRR part 375 will ensure that procedures defined for materials reuse in this EWP are followed and that unacceptable material (i.e. contaminated) does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for reuse on-site will be placed below the demarcation layer or impervious surface, and will not be reused within the cover system or within landscaping berms. Contaminated on-site material may only be used beneath the site cover as backfill for subsurface utility lines with prior approval from the DEC project manager. Grossly contaminated media may never be returned to the ground surface.

Proposed materials for reuse on-site must be sampled for full suite analytical parameters including per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane. The sampling frequency will be in accordance with DER-10 Table 5.4(e)10 unless prior approval is obtained from the NYSDEC project manager for modification of the sampling frequency. The analytical results of soil/fill material testing must meet the site use criteria presented in NYSDEC DER-10 Appendix 5 – Allowable Constituent Levels for Imported Fill or Soil for all constituents listed, and the NYSDEC Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances [April 2023 or latest version] guidance values. Approvals for modifications to the analytical parameters must be obtained from the NYSDEC project manager prior to the sampling event.

Soil/fill material for reuse on-site will be segregated and staged as described in Sections 2 and 3 of this EWP. The anticipated size and location of stockpiles will be provided in the 15-day notification to the NYSDEC project manager. Stockpile locations will be based on the location of site excavation activities and proximity to nearby site features. Material reuse on-site will comply with requirements of NYSDEC DER-10 Section 5.4(e)4. Any modifications to the requirements of DER-10 Section 5.4(e)4 must be approved by the NYSDEC project manager.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

#### C-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including but not limited to, excavation dewatering, decontamination waters and groundwater monitoring well purge and development waters, will be handled, transported and disposed off-site at a permitted facility in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, and will be managed off-site, unless prior approval is obtained from NYSDEC.

Liquid waste may also be treated at the on-site water treatment facility. Approval to treat and discharge these waters is subject to specific discharge permit conditions and approvals from the Monroe County publicly owned treatment works (POTW).

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

#### C-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the Record of Decision. The existing cover system is comprised of either a paved surface or layer of clean fill at least one foot thick. Although not currently present in unpaved areas, a demarcation layer, consisting of orange snow fencing material will be placed under the new cover to provide a visual reference to the top of the remaining contamination zone, the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this ISMP. See Figure C-1 for a map of current cover types.

Soil cover systems will be restored with a minimum of 1 foot of soil meeting restricted industrial SCOs placed over a demarcation layer. Where landscaping is present, with the upper 6 inches of soil should be of sufficient quality to maintain a vegetative layer.

Paved surfaces or hard cover systems will be restored with asphalt or concrete and will have a minimum of 6 inches of asphalt or concrete including subbase material. Existing soil cover systems established by the removal of hard cover, must demonstrate with data, a minimum of 1 foot of soil meeting restricted industrial SCOs., placed over the demarcation layer. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the remaining contamination.

Existing soil cover systems established by the removal of hard cover, must demonstrate with data, a minimum of 1 foot of soil meeting restricted industrial SCOs and the upper 6 inches of soil of sufficient quality to maintain a vegetative layer. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in an updated ISMP.

#### C-10 BACKFILL FROM OFF-SITE SOURCES

The requirements for backfill used at the site shall be consistent with the backfill requirements provided in DER-10. All materials proposed for import onto the site will be approved by the QEP, as defined in 6 NYCRR Part 375, and will be in compliance with provisions in this EWP prior to receipt at the site. A Request to Import/Reuse Fill or Soil form, which can be found at <a href="http://www.dec.ny.gov/regulations/67386.htmlhttp://www.dec.ny.gov/regulations/67386.htmlhttp://www.dec.ny.gov/regulations/67386.htmlhttp://www.dec.ny.gov/regulations/67386.htmlhttp://www.dec.ny.gov/regulations/67386.html be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review. A copy of the form is presented in Appendix C1 of this EWP.

Material from industrial sites, spill sites, other environmental remediation sites, or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6 NYCRR 375-6.7(d) and DER-10 Appendix 5 for industrial use. Soils that meet 'general' fill requirements under 6 NYCRR Part 360.13, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC project manager. Soil material will be sampled for the full suite of analytical parameters, including PFAS and 1, 4-dioxane. Solid waste will not be imported onto the site. Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

#### C-11 STORMWATER POLLUTION PREVENTION

For excavations less than one acre, procedures for stormwater pollution prevention should be specified in the excavation notification to NYSDEC. For construction projects exceeding one acre, the notification will reference applicable sections of the Stormwater Pollution Prevention Plan (SWPP) that conforms to the requirements of the NYSDEC Division of Water guidelines and NYS regulations.

Sediment control barriers, including straw barriers and hay bale dikes, silt fences, or compost filter socks will be installed and inspected once a week and after every storm event. The installation of these sediment control devices will be implemented consistent with the SWPP. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the sediment control devices and hay bale check functional.

All undercutting or erosion of the sediment control devices shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged sediment control devices due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Erosion control measures consistent with NY State Standards and Specification for Erosion and Sediment Control. Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

#### C-12 EXCAVATION CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be immediately suspended until sufficient equipment is mobilized to address the condition. The NYSDEC project manager will be promptly notified of the discovery.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes [TAL metals, TCL volatiles and semi-volatiles (including 1,4-dioxane), TCL pesticides and PCBs, and PFAS], unless the site history and previous sampling results provide sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC project manager for approval prior to sampling. Any tanks will be closed as per NYSDEC regulations and guidance.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone within two hours to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will also be included in the Periodic Review Report.

### C-13 COMMUNITY AIR MONITORING PLAN

Prior to the start of excavation activities, a Community Air Monitoring Plan (CAMP) that is in conformance with DER-10 will be required, specifically Appendix 1A and 1B, included in this EWP as Appendix C2. The CAMP at a minimum will include:

- Details of the perimeter air monitoring program
- Action levels to be used
- Air monitoring methods
- Analytes measured and instrumentation to be used
- A figure of the location(s) of all air monitoring instrumentation. A figure showing specific locations must be presented for monitoring stations based on generally prevailing wind conditions, with a note that the exact locations to be monitored on a given day will be established based on the daily wind direction

Air sampling stations will be adjusted on a daily or more frequent basis based on actual wind directions to provide an upwind and at least two downwind monitoring stations. No sensitive receptors, including schools, day care centers, or residential areas are located adjacent to the site.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers the same or next business day along with the reason for the exceedance, corrective actions, and effectiveness of the corrective action.

Attached in Appendix B is the CAMP guidance document. An alternate CAMP may be proposed with the excavation notification.

# C-13A: Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures

When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates must reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative-pressure enclosures, or special ventilation devices should be considered to prevent exposures related to the work activities and to control dust and odors. Consideration should be given to implementing the planned activities when

potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings.

- If total VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 part-per-million, monitoring should occur within the occupied structure(s). Depending upon the nature of contamination, chemical-specific colorimetric tubes of sufficient sensitivity may be necessary for comparing the exposure point concentrations with appropriate pre-determined response levels (response actions should also be pre-determined). Background readings in the occupied spaces must be taken prior to commencement of the planned work. Any unusual background readings should be discussed with NYSDOH prior to commencement of the work.
- If total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 micrograms per cubic meter, work activities should be suspended until controls are implemented and are successful in reducing the total particulate concentration to 150 micrograms per cubic meter or less at the monitoring point.
- Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored. Response levels and actions should be pre-determined, as necessary, for each site.

#### C-13B: Special Requirements for Indoor Work with Co-Located Facilities

Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements shall be as stated above under "Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby/occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential vapor pathways (openings, conduits, etc.) relative to adjoining rooms, should be understood and the monitoring locations established accordingly. In these situations, it is strongly recommended that exhaust fans or other engineering controls be used to create negative air pressure within the work area during remedial activities. Additionally, it is strongly recommended that the planned work be implemented during hours (e.g. weekends or evenings) when building occupancy is at a minimum.

#### C-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors offsite. Specific odor control methods to be used on a routine basis will be included in the excavation notification. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the remedial party's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. Any other odor control measures deemed necessary will be proposed in the excavation notification. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

#### C-15 DUST CONTROL PLAN

Particulate monitoring must be conducted according to the Community Air Monitoring Plan (CAMP) provided in Section 13. If particulate levels at the site exceed the thresholds listed in the CAMP or if airborne dust is observed on the site or leaving the site, the dust suppression techniques listed below will be employed. The remedial party will also take measures listed below to prevent dust production on the site.

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved using a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

### C-16 OTHER NUISANCES

A plan for rodent control will be developed and utilized by the contractor prior to and during site clearing and site grubbing, and during all remedial work.

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

# Figures



0

100

200

Note: Shaded area indicates existing cover types subject to Excavation Work Plan requirements. Cover type extents are approximate and cover type should be verified prior to any subsurface excavation to ensure compliance with engineering control requirements of the 2019 ROD.

## Legend:

- Arch\_Property\_Boundary
- Crushed Stone or Gravel
- Landscaping
- Pavement or Buildings

Figure C1 Engineering Control Cover Types

Arch Chemicals Rochester, NY



# **APPENDIX C1**

NYSDEC Request to Import-Reuse Fill Form



## <u>NEW YORK STATE</u> DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# Request to Import/Reuse Fill or Soil



\*This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.\*

# **SECTION 1 – SITE BACKGROUND**

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

# SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 10 sieve?

Does it contain less than 10%, by weight, material that would pass a size 100 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

# **SECTION 3 - SAMPLING**

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.4(e)5 (other material), no chemical testing needed.

## **SECTION 3 CONT'D - SAMPLING**

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

*Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.* 

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

# **SECTION 4 – SOURCE OF FILL**

Name of person providing fill and relationship to the source:

Location where fill was obtained:

Identification of any state or local approvals as a fill source:

If no approvals are available, provide a brief history of the use of the property that is the fill source:

Provide a list of supporting documentation included with this request:

The information provided on this form is accurate and complete.

Signature

Date

Print Name

Firm

# **APPENDIX C2**

## Community Air Monitoring Plan (CAMP) Guidance Document

## Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

## Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

## Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

**Continuous monitoring** will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

**Periodic monitoring** for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

## VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

# Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter  $(mcg/m^3)$  greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m<sup>3</sup> above the upwind level and provided that no visible dust is migrating from the work area.

2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m<sup>3</sup> above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m<sup>3</sup> of the upwind level and in preventing visible dust migration.

3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

## Appendix 1B Fugitive Dust and Particulate Monitoring

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

1. Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.

2. Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.

3. Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:

- (a) Objects to be measured: Dust, mists or aerosols;
- (b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);

(c) Precision (2-sigma) at constant temperature: +/- 10 :g/m3 for one second averaging; and +/- 1.5 g/m3 for sixty second averaging;

(d) Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3 :m, g= 2.5, as aerosolized);

- (e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;
- (f) Particle Size Range of Maximum Response: 0.1-10;
- (g) Total Number of Data Points in Memory: 10,000;

(h) Logged Data: Each data point with average concentration, time/date and data point number

(i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;

(j) Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;

(k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;

(1) Operating Temperature: -10 to  $50^{\circ}$  C (14 to  $122^{\circ}$  F);

(m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.

4. In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.

5. The action level will be established at 150 ug/m3 (15 minutes average). While conservative,

this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.

6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potential-such as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.

7. The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:

- (a) Applying water on haul roads;
- (b) Wetting equipment and excavation faces;
- (c) Spraying water on buckets during excavation and dumping;
- (d) Hauling materials in properly tarped or watertight containers;
- (e) Restricting vehicle speeds to 10 mph;
- (f) Covering excavated areas and material after excavation activity ceases; and
- (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

8. The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

# **APPENDIX D**

**Summary of Soil Vapor Intrusion Investigations** 

## Appendix D Summary of Soil Vapor Instrusion Investigations

## Arch Chemicals Inc. Rochester, New York

| Year(s)       | Facility                                                                                                                                                    | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2006          | HOWMET (formerly<br>Firth Rixson) and Arch<br>warehouse (formerly<br>American Recycling &<br>Manufacturing[ARM])<br>(Indoor Air and Sub-slab<br>Soil Vapor) | The majority of VOCs were detected in both indoor air and<br>sub-slab soil vapor. Three chemicals were found to both<br>exceed background and/or guideline values and pose risks in<br>excess of the NYSDOH point of departure of 1E-06 for<br>cancer risk or HI of 1 for non-cancer risk: * American<br>Recycling and Manufacturing (now Arch) – 1,3-butadiene *<br>Firth Rixson (now HOWMET) – benzene and 1,4-<br>dichlorobenzene                                                                                                                                                  | Comparison of soil gas and indoor air data for these compounds suggests that soil<br>gas is not the sole, or even the primary source of these compounds in indoor air.<br>Detected levels of indoor air of each of these chemicals are well below OSHA PELs.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2006 -2008    | Arch - 3 annual events<br>(Indoor Air and Sub-slab<br>Soil Vapor)                                                                                           | The following chemicals may be present in indoor air as a<br>result of soil gas intrusion, exceed background and/or<br>guideline values, and pose risks in excess of the NYSDOH<br>point of departure of 1E-06 for cancer risk or HI of 1 for non-<br>cancer risk: <b>Office Area:</b> 2-chloropyridine, /<br><b>Warehouse Area:</b> 2-chloropyridine, 2,6-dichloropyridine,<br>chloroform, methylene chloride, 1,2,4-trimethylbenzene,<br>and 1,3,5-trimethylbenzene, / <b>Production Area:</b> 2-<br>chloropyridine, 2,6-dichloropyridine, carbon tetrachloride,<br>and chloroform. | Comparison of soil gas and indoor air data for these compounds suggests that the primary source of these compounds in indoor air at the Office Area and Warehouse Area is not soil gas. Identification of the source of chemicals in indoor air at the Production Area, particularly for chloropyridine compounds, is confounded by the fact that chloropyridine compounds are produced in this facility. For chemicals that are associated with current activities, all are well below their applicable worker protection thresholds. Indoor air quality is monitored annually by Arch as part of its industrial health and safety program. <sup>2,3,4</sup> |
| 2008 and 2009 | Arch- Perimeter of<br>Property (soil vapor<br>only)                                                                                                         | Chloropyridines and VOCs were detected in four samples<br>collected in 2007 and eight samples collected in 2009 along<br>the western and southern property boundaries                                                                                                                                                                                                                                                                                                                                                                                                                 | Analytical results from soil vapor sampling conducted in August 2009 are generally consistent with the results obtained from the November 2007 sampling event, and confirm the conclusions from the 2007 study that VOCs and chloropyridines related to past releases at the Arch facility do not pose a significant exposure risk to neighboring properties via the vapor intrusion pathway. <sup>5</sup>                                                                                                                                                                                                                                                    |

1-"Vapor Intrusion Sampling at Firth Rixson and ARM", Arch Chemicals, Inc. Rochester Plant Site Rochester, New York, Prepared by MACTEC Engineering & Consulting, Inc. June 2006.
2-"2006 Onsite Vapor Intrusion Sampling", Arch Chemicals, Inc. Rochester Plant Site Rochester, New York, Prepared by MACTEC Engineering & Consulting, Inc. May 2006.
3-"2007 Onsite Vapor Intrusion Sampling", Arch Chemicals, Inc. Rochester Plant Site Rochester, New York, Prepared by MACTEC Engineering & Consulting, Inc. June 2007
4-"2008 Onsite Vapor Intrusion Sampling", Arch Chemicals, Inc. Rochester Plant Site Rochester, New York, Prepared by MACTEC Engineering & Consulting, Inc. June 2007
5-Technical Memoranda dated January 8, 2008 and October 26, 2009 prepared by MACTEC Engineering & Consulting, Inc.