Property-Specific Soil Vapor Intrusion Investigation Report: 1640 Emerson Street

Former Emerson Street Landfill NYSDEC Site #828023

Location:

Former Emerson Street Landfill 1640 Emerson Street Rochester, New York

Prepared for:

City of Rochester Division of Environmental Quality Room 300-B Rochester, New York 14614

LaBella Project No. 210173

July 2017

Table of Contents

I.	Executive Summary	i
1.0	Introduction	1
2.0	Former Emerson Street Landfill Description and History	1
3.0		
4.0		
5.0		
6.0		
7.0	Conclusions	
5.0 6.0	Sampling Procedures	

Tables

Table 1 – Soil Vapor Intrusion Testing Results

Figures

Figure 1 – Former Emerson Street Landfill Project Map Figure 2 – Soil Vapor Intrusion Testing Results

Figure 3 – Sub-Slab Soil Vapor Point Details

Appendices

Appendix 1 – Laboratory Reports

Appendix 2 – Data Usability Summary Reports

Appendix 3– Field Logs

Appendix 4- Preliminary Building Assessment and Site Reconnaissance

I. Executive Summary

1640 Emerson Street ("the Site") is located on the Former Emerson Street Landfill (FESL) which operated as a municipal landfill by the City of Rochester ("the City") from sometime between the 1940s and 1951 until 1971. Based on an initial assessment of all buildings across the FESL conducted from 2009-2011 by LaBella Associates D.P.C. ("LaBella") on behalf of the City, the building at the Site was recommended for soil vapor intrusion (SVI) testing. Subsequently, LaBella conducted SVI testing at the Site on behalf of the City to evaluate the presence of SVI due to the FESL. This report documents the SVI testing completed and presents the findings and conclusions of the testing.

Summary of Testing

The SVI testing was completed on March 30, 2017 and consisted of the collection of two (2) sub-slab samples with collocated indoor air samples in the manufacturing area, one (1) standalone indoor air sample in the office area, and one (1) outdoor air sample to evaluate background conditions. The samples were collected over an approximate 6-hour timeframe and analyzed for a select list of volatile organic compounds (VOCs) known to be associated with the FESL.

The testing was completed in accordance with a New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) approved *Soil Vapor Intrusion Investigation Work Plan: Phase II: Parcel Specific Investigation* dated January 2016 and the *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006 and subsequent updates dated September 2013 and August 2015 ("NYSDOH Guidance"). It should be noted the NYSDOH Guidance Decision Matrices were updated in May 2017. The action for one (1) compound, trichloroethene (TCE) changed from "Take reasonable and practical actions to identify source(s) and reduce exposure" to "No further action".

Conclusions and Recommendations

The SVI testing results were compared to the NYSDOH Guidance decision matrices. The results indicated no further action is warranted. Based on the assessments completed to date, no further action related to SVI is warranted at the Site.

1.0 Introduction

This Property-Specific Soil Vapor Intrusion Investigation report is for the property located at 1640 Emerson Street, City of Rochester, Monroe County, New York ("the Site"). The Site is located within the Former Emerson Street Landfill (FESL) which operated as a municipal landfill by the City of Rochester ("the City") from the sometime between the 1930s and 1951 until 1971. The City entered into an Order-on-Consent with the New York State Department of Environmental Conservation (NYSDEC) in August 2009 which requires an evaluation of soil vapor intrusion (SVI) due to FESL-related releases. The Order-on-Consent also requires additional remedial investigations, remedial measures, and other mitigation and corrective actions associated with the FESL.

An initial SVI assessment consisting of building inventory and field screening of indoor air was conducted at buildings across the FESL by LaBella Associates, D.P.C. ("LaBella") on behalf of the City from 2009-2011. The results of the initial SVI assessment were summarized in a report titled *Soil Vapor Intrusion Assessment Report: Data Review, Site Screening and Site Prioritization* dated June 2011 (hereinafter referred to as the "SVI Assessment Report"). The initial SVI assessment ranked buildings on the FESL for likelihood for SVI-related issues due to the FESL. The Preliminary Building Assessment and Site Reconnaissance conducted for the Site is included as Appendix 4. The NYSDEC and New York State Department of Health (NYSDOH) provided comments to this report on May 24, 2013.

Based on the initial SVI assessment, a Work Plan titled *Soil Vapor Intrusion Investigation Work Plan: Phase II: Parcel Specific Investigation* (hereinafter referred to as the "SVI Work Plan") was submitted to the NYSDEC and NYSDOH in April 2013. The SVI Work Plan proposed SVI investigations at properties that were ranked at greatest risk for SVI during the initial assessment. The NYSDEC and NYSDOH provided comments to the SVI Work Plan on April 23, 2015 and the SVI Work Plan was resubmitted in January 2016 to address NYSDEC and NYSDOH comments. SVI investigations were completed beginning in March 2016.

This property-specific SVI report summarizes the investigation completed at the Site. The Site has an approximate 25,000 square feet (sq. ft.) building occupied by Laird Plastics and is used for plastic warehousing and distribution, with an area on the north-central side for fabrication and at the northeast corner for plastic cutting. Office space is located at the southeast corner. The second floor, located at the southeast corner, is designed as office space but is currently vacant. The fabrication operations use several chemicals, including VOCs in the form of glues, solvents, and oils. The SVI testing was completed in the office areas as well as the warehouse and distribution portion of the Site Building. This report details the testing completed and the results.

2.0 Former Emerson Street Landfill Description and History

The FESL consists of approximately 250-acres of land comprised of 45 individual parcels, seven (7) of which are owned by the City. The remaining 38 parcels are owned by 25 private owners. The FESL is predominantly occupied by industrial and commercial properties (15 and 20, respectively based on use codes). In addition, City use codes indicate 5 parcels as vacant land, one (1) parcel as unknown (McCrackenville Street) and four (4) parcels are listed as community/public service (one of which is a

school, Edison Tech). The surrounding area also contains industrial and commercial properties; however, residential properties are also located to the northeast. Figure 1 provides a project locus map that indicates the area of the FESL.

Prior to FESL operation, the area was primarily vacant and relatively flat lying, with a wetland located in the north-central portion of the site. As a result of landfilling activities, the FESL has been elevated approximately 15+ feet above the surrounding area. An industrial park with existing buildings constructed as early as 1971, presently occupies most of the FESL, including larger facilities and various smaller industrial/commercial facilities, as well as several undeveloped parcels and undeveloped land on otherwise developed parcels.

The FESL was operated by the City beginning between sometime in the 1940's and 1951 to 1971 as a landfill. The landfill was used to dispose of ash derived from the incineration of municipal waste at the City's incinerators. Ash fill and construction and demolition debris were the primary waste materials placed in the landfill. Information pertaining to the incinerator operational status and efficiency indicates that the incinerated materials were completely combusted until approximately 1964 when the incinerator efficiency decreased. Landfilling began south of Emerson Street and gradually expanded northward and eastward to include areas between Emerson Street and Lexington Avenue and east of Colfax Street and south of Emerson Street. Open burning of refuse reportedly occurred in the late 1960s and early 1970s due to operational problems with the incinerators. Fill during this time frame was reportedly being placed north of Emerson Street. In May of 1971 the City's incinerators were shut down; however un-incinerated municipal refuse continued to be placed north of Emerson Street until August of 1971. In August 1971, refuse disposal was ceased at FESL and disposal shifted to a different county landfill. In 1971 the landfill was officially closed and a contract for the closure of the eastern half of the landfill specified 2 feet of cover material (preferred to be a sandy loam) to be placed and compacted to 30% in 1 foot lifts. In September 1971 a contract was awarded for the closure of the western portion of the landfill. Since closure, the majority of the Site has been developed for commercial and industrial uses in addition to one high school.

The general types of wastes encountered in investigations at the FESL site include the following:

- Municipal Incinerator Ash generally consisting of ash, cinders, charred refuse, glass and metal slag. Most ash observed in site investigations appears to be fly ash and bottom ash (clinker) from the municipal solid waste incinerators. This generally consists of soil and rock fill with traces of plastic, metal, wood, concrete, bricks, tiles, and asphalt. Construction and demolition debris observed in past investigations generally fits the definition of construction demolition debris contained in NYSDEC's Part 360. Construction demolition debris fill is common in areas adjacent to current and former roadways on site, and particularly in the lobe of fill south of Emerson Street and east of Colfax Street.
- Soil and Municipal Refuse This material generally consists of silty sand cover material and disposed, un-incinerated municipal refuse.
- Low-activity Radioactive Waste This material generally consisted of a sludge-like waste material associated with glass lenses. The sludge was found to contain low levels of radioactive thorium. This material was primarily encountered in the southwest portion of the FESL and was believed to be associated with incinerator ash and refuse fills. This material was removed by Sevenson Environmental Services on behalf of the City of Rochester (refer to Section 3.0 Previous Investigations).

• The majority of the existing landfill has a soil cover. Cover ranges in thickness from 0 ft. up to approximately 6 ft. Cover materials generally consist of topsoil with grass, gravel, asphalt, or glacial till-derived sandy silt.

A majority of the Site has been delisted; however, three (3) parcels (1660,1740, and 1700 Emerson Street (formerly 1655 Lexington Avenue) comprising approximately sixteen (16) acres are currently listed as a Class "3" site (No. 828023) on the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites (IHWDS). A "3" classification indicates a site "at which contamination does not presently constitute significant threat to public health or the environment." The most recent delisting occurred when LaBella submitted a Delisting Petition on December 9th, 2014, for the parcel currently addressed as 1655 Lexington Avenue (formerly 1635 Lexington Avenue and a portion of former 1655 Lexington Avenue) to delist approximately 13.3 acres of land from the NYSDEC Registry of IHWDS. NYSDEC approved this delisting on March 19th, 2015, and the newly delisted land was combined into one parcel with address 1655 Lexington Avenue. The remaining portion of former 1655 Lexington Avenue was renamed 1700 Emerson Street.

3.0 Previous Investigations Related to Soil Vapor Intrusion

A significant number of investigations have been previously conducted at the Site. This section presents pertinent and significant findings in relation to SVI from select previous investigations; a more detailed review can be obtained from each individual report.

<u>Former Emerson Street Landfill Sub-Slab Ventilation Guidance (SSVG) Document Update</u> 2013 dated October 2013:

This document was an update of the 2007 version which evaluated and mapped historical information regarding the variable composition of the landfill and analytical data at specific locations. The 2013 document provided an update on SSVG based on additional SVI investigations at the FESL. In 2010, the City of Rochester began a SVI investigation to systematically assess potential vapor intrusion issues at the FESL. This work included detailed assessments of each existing building on the FESL, installation of additional monitoring wells, and sampling of these new wells and several existing wells, catalogue and review of existing historical data regarding the FESL, and review of stereoscopic historic aerial photographs. The results were documented in a report dated June 2010 titled "Soil Vapor Intrusion Assessment Report: Data Review, Site Screening & Site Prioritization, Former Emerson Street Landfill, NYSDEC Site #828023". The 2013 SSVG details methodology for selecting an appropriate ventilation system dependent on landfill gas and VOC measurements. In addition, previous reports are summarized providing pertinent information on types and concentrations of contaminants detected.

Available analytical data types relevant to soil vapor migration include the following:

- ground surface landfill gas flux measurements throughout the landfill;
- soil gas measurements for methane, vinyl chloride (a Chlorinated-VOC), and the VOCs: benzene, toluene, ethylbenzene, and xylenes (BTEX) across a limited area (portions of the state-listed IHWDS portion of the landfill);
- photo-ionization detector (PID) measurements taken in utility vaults and sewers along

roadways surrounding the landfill;

- soil samples for select Chlorinated-VOCs from borings across the landfill; and
- groundwater samples for select Chlorinated-VOCs from wells installed across the landfill.

The FESL SSVG 2013 also summarized the existing soil gas contamination information included in "Former Emerson Street Landfill, Modified Remedial Investigation", H&A of New York, January 1994. During this investigation, landfill gas measurements were obtained across the landfill area with specially-designed gas flux chambers. As summarized in the report, landfill gas is typically composed of 58% methane, 42% carbon dioxide, and trace amounts of hydrogen sulfide and other organic compounds. Methane emission rates varied in the FESL samples from a minimum of 7.8 to a maximum of 1200 μ g/m²-minute. The H&A report also contains analytical information for Chlorinated-VOCs in soil, groundwater, and utility vault water samples, and PID readings for utility vaults and manholes. Analytical results indicated the presence of Chlorinated-VOCs at various locations throughout the landfill, but concentrated in the IHWDS portion.

The report "Former Emerson Street Landfill Remedial Investigation Report for Parcels 4, 10, and 11", LaBella Associates P.C., and Geomatrix Consultants, Inc., March 2001, describes sampling completed in the IHWDS portion of the landfill. Sampling was completed in soil, groundwater, sewers, and extensive soil gas points. Analytical results confirmed and further delineated the presence of CVOCs in the IHWDS portion of the landfill. These parcels are located in Quadrant A, an area likely to contain direct burial municipal waste without significant incineration. The soil gas results for the specific constituents detected in this summary are briefly summarized below:

- Vinyl chloride concentrations ranged from 0.02 milligrams per cubic meter (mg/m3) to 9 mg/m3
- Benzene concentrations ranged from 0.02 mg/m³ to 0.6 mg/m³
- Total BTEX concentrations ranged from 0.48 mg/m³ to 499 mg/m³
- Chlorobenzene concentrations ranged from 0.02 mg/m³ to 1.6 mg/m³
- Methane concentrations ranged from 380 parts per million (ppm) (or 0.038%) to 790,000 ppm (or 79%)

The FESL can be separated into four general geographic regions (FESL Quadrants) based on the landfill waste composition and historic analytical data. The Site is located in Quadrant A (refer to Figure 1).

Portions of Quadrant A was filled during the 1970's, the last years of the landfill's operational life. At this time the incinerator was no longer operating properly, resulting in un-incinerated putrescible waste being deposited in the landfill during that period. These portions of the landfill are characterized by thicker fill, higher percentage of potentially putrescible solid waste and less incinerated ash, and higher landfill gas flux at the surface relative to other FESL areas sampled. These areas are characterized by landfill gas flux measurements between 100 and 1200 $\mu g/m^2$ -minute, and/or soil gas methane concentrations above 5,000 ppm. In addition, this quadrant has also been characterized with Chlorinated-VOC contamination in soil gas, soil, and groundwater. Quadrant A has a large area of documented Chlorinated-VOC contamination. The listed IHWDS portions of the landfill are located within Quadrant A.

Soil Vapor Intrusion Assessment Report (SVI Assessment Report) dated June 2011:

LaBella was retained by the City of Rochester in January 2010 to complete a Soil Vapor Intrusion Assessment Report: Data Review, Site Screening and Site Prioritization and submitted a SVI Assessment report (June 2011) to NYSDEC. This SVI Assessment by LaBella included a detailed review of historic information available for the Site. The historic information included not only previous subsurface environmental investigations but also a detailed review of aerial photography, subsurface data from redevelopment projects (i.e., geotechnical borings and test pits), available newspaper articles from the time the landfill was operating, and reports/papers relating to City of Rochester and Monroe County waste handling and disposal practices both historically and in particular in the 1960s/1970s. In addition, groundwater sampling of existing wells was completed, additional groundwater monitoring wells were installed, developed and sampled and a site reconnaissance was conducted at every parcel where access was granted by the property owner.

The results of the cumulative work were utilized in a ranking system that use weighted numerous criteria for each building. The criteria can be separated in to two major categories, Non-FESL related factors (e.g., how many people occupy the building, building use/ potential receptor population, building construction and condition, type of heating, ventilation system, etc.) and FESL related factors (e.g., building location in relation to the P-1 plume, location in relation to filling, readings detected during Site walkthrough, etc.). The overall scores were separated into three "Tiers" of sites. Tier 1 sites were determined to be of the highest concern for SVI due to the FESL, Tier 2 sites were determined to be of moderate to low concern for SVI due to the FESL and Tier 3 sites were determined to be of low to no concern for SVI due to FESL.

The Site is located in Quadrant A of the FESL and is approximately 800 feet southeast of the P-1 Plume. The Site building was ranked Tier 1 during the SVI Assessment and was recommended for SVI testing.

4.0 Objectives

The objective of this assessment was to evaluate the potential for SVI at the Site via sub-slab and indoor air testing. Work was completed in accordance with the NYSDEC and NYSDOH-approved 2016 SVI Work Plan and the *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006 and subsequent updates dated September 2013 and August 2015 (NYSDOH Guidance).

5.0 Standards, Criteria and Guidelines

This section identifies the applicable Standards, Criteria and Guidelines (SCGs) for the Site related to SVI.

Sub-Slab Soil Vapor and Indoor Air SCGs: The NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006 and subsequent updates for PCE and TCE in 2013 and 2015, respectively (including the USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile), in Appendix C of the NYSDOH document) is utilized for the

SCG for soil vapor and indoor air. It should be noted the NYSDOH Guidance decision matrices were updated in May 2017 after the testing was completed. The results were also compared to the May 2017 updates.

6.0 Sampling Procedures

Sub-Slab Vapor Point Installations

Two (2) sub-slab soil vapor points were installed on March 30, 2016 in the warehouse and distribution portion of the Site (refer to Figure 2 for locations). The sub-slab vapor sampling points consisted of the Vapor Pin ® sampling system. Points were installed by coring a 1.5-inch diameter hole approximately 2-inches into the floor slab. Subsequently, a 5/8-inch diameter hole was drilled through the center of the 1.5-inch diameter hole using a guide through the floor slab. A 5/8-inch diameter polyethylene sleeve fitted over a metal barbed fitting was installed within the 5/8-inch diameter core hole. Sub-slab soil vapor points were fitted with a threaded cap flush to the finished floor. Figure 3 illustrates the typical construction of a sub-slab vapor sampling point.

Purging Procedures

Sub-slab monitoring points were first evaluated for pressure using a Test Products International Digital Manometer 621. Sub-slab pressures at the SVI monitoring points ranged from 0.000 to 0.001 inches of water column ("wc).

After installation of the probes, one (1) to three (3) volumes (i.e., the volume of the sample probe and tube) was purged prior to collecting the samples to ensure samples collected are representative. Flow rates for purging did not exceed 0.2 liters per minute to minimize the ambient air infiltration during sampling.

A tracer gas evaluation was conducted to verify the integrity of the sub-slab soil vapor probe seal using helium. Tubing was connected to the metal barbed fitting and an enclosure was placed over the sampling point. Subsequently, the enclosure was enriched with the tracer gas. The sub-slab and the enclosure were then tested for the tracer gas using a MDG-2002 Helium Gas Leak Detector. The tracer gas was measured at concentrations between 0% and 2.4% of the enclosure.

Sampling and Handling Procedures

On March 30, 2016, sub-slab soil vapor, indoor air, and outdoor air samples were collected using 1-liter Summa Canisters® equipped with pre-calibrated laboratory supplied flow regulators set for a sampling time of six (6) hours. Sub-slab samples were designated "1640-SVI-2" and "1640-SVI-3". At each sub-slab vapor sample location an indoor air sample was also collected. A sub-slab sampling point was unable to be installed in the office area; however, an indoor air sample was collected from the office area. The indoor air samples were collected from approximately 3 to 5 feet above the floor slab and were collected in the same manner and general time period as the sub-slab sample. Indoor air samples were designated "1640-IAQ-1", "1640-IAQ-2" and "1640-IAQ-3". In addition, an outdoor air sample was collected to evaluate the ambient air conditions. The outdoor ambient air sample was designated "Outdoor-1640". Sampling logs are included in Appendix 3.

All samples were submitted under standard chain of custody procedures to Centek Laboratory in Syracuse, New York for analysis of a select list of VOCs using USEPA Method TO-15. Based on the historic data, the detailed evaluation completed as part of the SVI Report and the current heavy manufacturing setting of the FESL, the analytical testing work was limited to compounds suspected to be due to FESL, including the following:

Compound
Tetrachloroethene
Trichloroethene
cis-1,2-Dichloroethene
trans-1,2-Dichloroethene
Vinyl Chloride
1,1,1-Trichloroethane
1,1-Dichloroethane
1,1-Dichloroethene
Chloroethane
Chloromethane

Quality Assurance/Quality Control

The Summa® Canisters were certified clean by the laboratory. Blind duplicates were collected at a rate of one (1) per ten (10) samples, or one (1) per shipment to the laboratory. Matrix spike/matrix spike duplicate (MS/MSD) samples were collected using a 1.4-liter Summa® canister at a rate of one (1) per twenty (20) samples or one per shipment to the laboratory. The laboratory provided ASP Category B-like reports and NYSDEC EQUIS Electronic Data Deliverables (EDDs). A data usability summary report (DUSR) was prepared by Dataval, Inc.

7.0 Results

SVI sampling and analysis consisted of the collection of two (2) collocated sub-slab and indoor air samples, one (1) standalone indoor air sample within the office area, and one (1) outdoor air sample on March 30, 2016 over an approximate 6-hour timeframe.

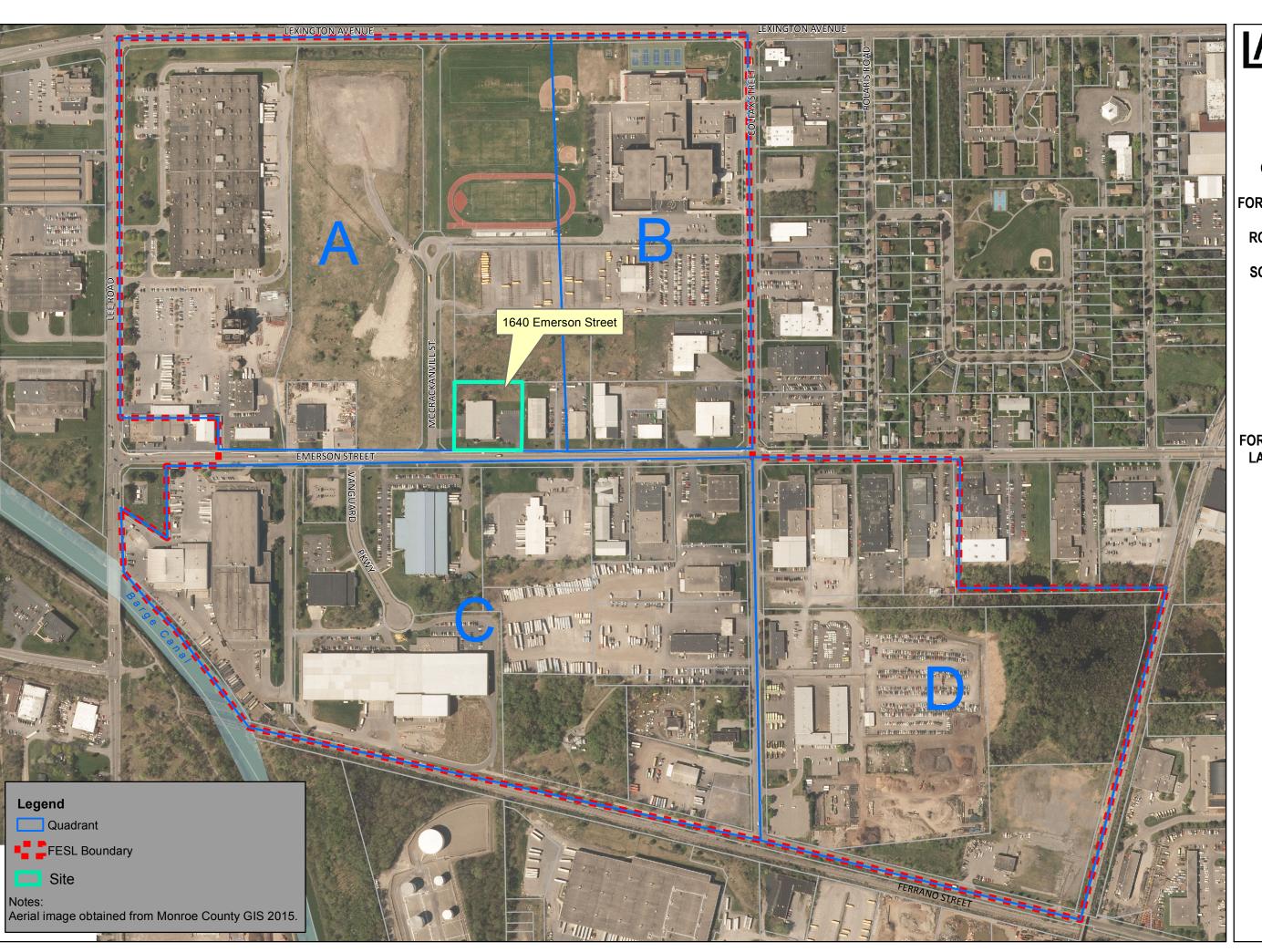
Sub-Slab/ Indoor/ Outdoor Air Sampling

SVI sampling results were compared to the decision matrices in *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* Guidance Document dated October 2006 and subsequent updates for PCE and TCE in 2013 and 2015, respectively (NYSDOH Guidance Document).

As summarized in the attached tables, trichloroethene (TCE) was detected in indoor air samples at 0.64 micrograms per cubic meter (ug/m³), 0.43 ug/m³, and 0.48 ug/m³ which do not exceed the air guideline of 2 ug/m³ for TCE derived by the NYSDOH in Table 3.1 of the NYSDOH Guidance Document. A comparison of detected compounds in sub-slab and indoor air to the NYSDOH Guidance Document Decision Matrices indicates the following:

"Take reasonable and practical actions to identify source(s) and reduce exposures: The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures".

It should be noted the NYSDOH Guidance Decision Matrices were updated in May 2017. The action for TCE changed from "Take reasonable and practical actions to identify source(s) and reduce exposure" to "No further action". Refer to Figure 2 for sample locations.


8.0 Conclusions

The Site is located southeast of the P-1 Plume in Quadrant A of the FESL. The Site is currently utilized as a plastics warehousing and distribution facility with approximately 3,750 of the 25,000 square feet utilized as office space.

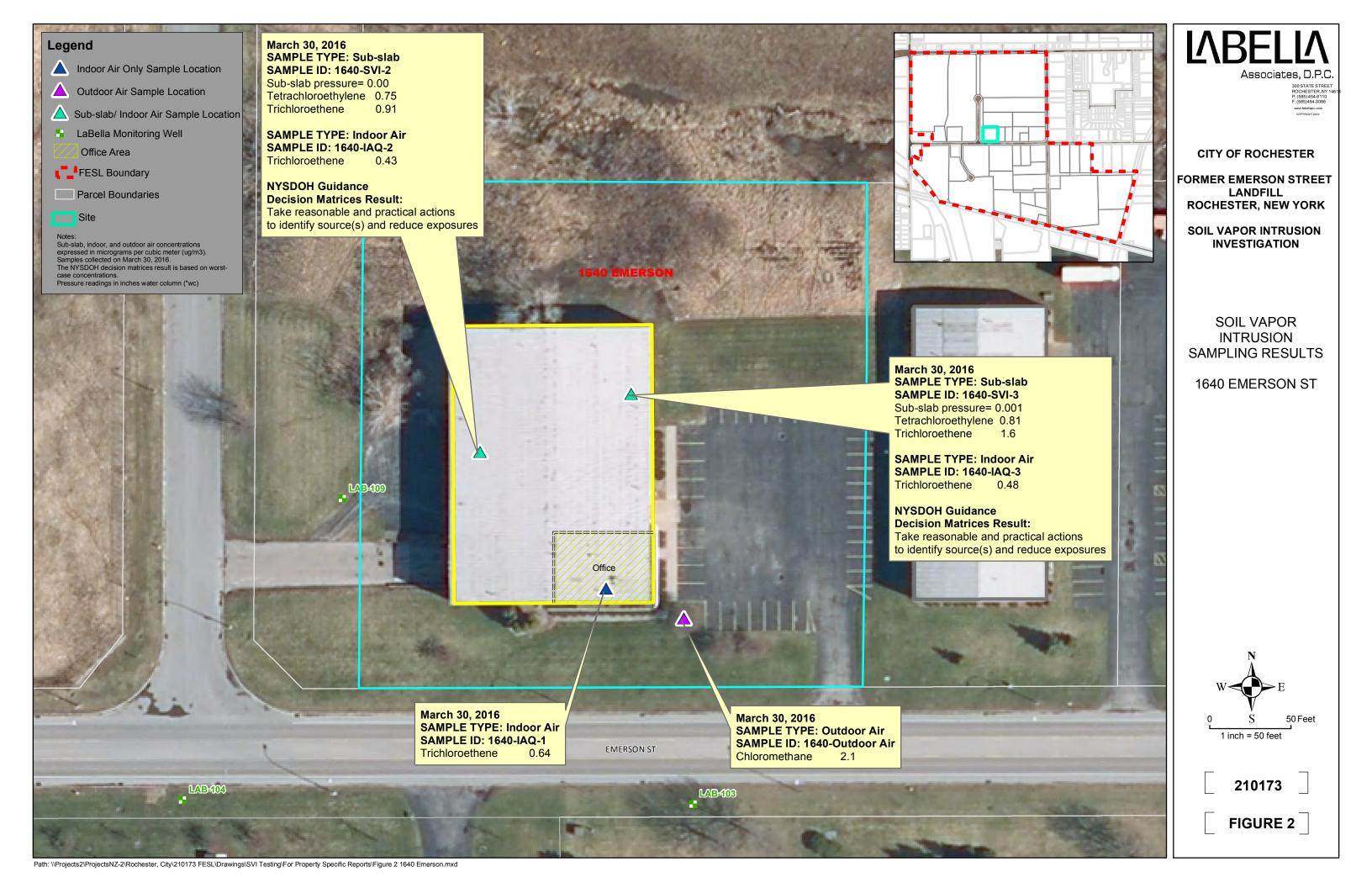
Two (2) collocated sub-slab and indoor air samples, one (1) standalone indoor air sample, and one (1) outdoor air sample, were collected on March 30, 2016 to evaluate SVI in the Site building. The work was conducted in accordance with the NYSDEC and NYSDOH-approved work plan dated January 2016. Based on the lack of detection of compounds in the indoor air with the exception of TCE which was not detected at levels above the minimum action level, there is no SVI concern due to the FESL. Based on the assessments completed to date, no further action related to SVI is warranted at the Site.

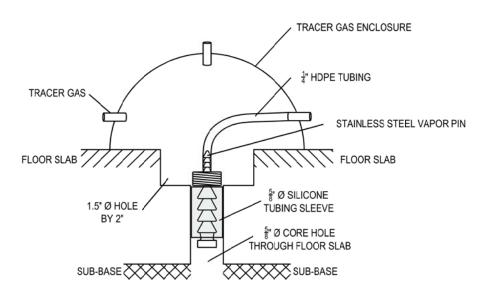
 $\label{thm:linear_constraint} $$ \PROJECTSNZ-2\ROCHESTER, CITY\210173 FESL\REPORTS\SVI ASSESSMENT REPORT 2017\1640 EMERSON STREET\1640 EMERSON STREET.DOCX$

LΛ
2.
1614
7

CITY OF ROCHESTER

FORMER EMERSON STREET
LANDFILL
ROCHESTER, NEW YORK


SOIL VAPOR INTRUSION INVESTIGATION


FORMER EMERSON STREET LANDFILL PROJECT MAP

240472

FIGURE 1

<u>DETAIL 1</u> SUB-SLAB SOIL VAPOR SAMPLING POINT DETAIL

It is a volation of New York Education Law Article 145 Ser. 7209, for any person, unless stirring under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in my way. If an item borning the seal of an architect, engineer, or land seal of an architect engineer, or land the little three professions of the comception, or land surveyor shall affet to the item their seal and notation "altered by" followed by their signature and date of such litteration, and a specific description of the alteration.

SUB-SLAB SOIL VAPOR
POINT DETAILS

SUBGEORY

FORMER EMERSON
STREET LANDFILL

SUBGEORY

FIRST

SUBGEORY

SUBGEORY

FIRST

SUBGEORY

SUBGE

210173 FIGURE 3

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Tables

Former Emerson Street Landfill 1640 Emerson Street Table 1 Soil Vapor Intrusion Testing Results March 2016

Sample ID	1640-SVI-2 Sub-Slab	1640-SVI-3 Sub-Slab	1640-IAQ-1 Indoor Air	1640-IAQ-2 Indoor Air	1640- Blind Duplicate (1640-IAQ-2) Indoor Air	1640-IAQ-3 Indoor Air	1640-Outdoor Air Outdoor Air	NYSDOH Sub-Slab Vapor Concentration Decision Matrix (minimum action	NYSDOH Indoor Air Concentration (minimum action level) (1)	USEPA (2001) (BASE) Database - 90th Percentile (2)
Sample Location Sample Date	3/30/2016	3/30/2016	3/30/2016	3/30/2016	3/30/2016	3/30/2016	3/30/2016	level) (1)	action iever)	rerentite
1,1,1-Trichloroethane	<0.82	<0.82	<0.82	<0.82	<0.82	<0.82	<0.82	<100***	<3***	20.6
									-	
1,1-Dichloroethane	< 0.61			< 0.61	< 0.61	< 0.61	< 0.61	NL	NL	< 0.7
1,1-Dichloroethene	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	<100***	<3***	<1.4
Chloroethane	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	NL	NL	<1.1
Chloromethane	< 0.31	< 0.31	< 0.31	< 0.31	< 0.31	< 0.31	2.1	NL	NL	3.7
cis-1,2-Dichloroethene	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	<100***	<3***	<1.9
Tetrachloroethylene	0.75 J	0.81 J	<1.0	<1.0	<1.0	<1.0	<1.0	<100***	<3*** / 30*	15.9
trans-1,2-Dichloroethene	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	NL	NL	NL
Trichloroethene	0.91	1.6	<u>0.64 J</u>	0.43 J	< 0.21	0.48	< 0.21	<5 **	<0.25** / 2*	4.2
Vinyl Chloride	< 0.38	< 0.38	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<5**	<0.25**	<1.9

Notes:

Concentrations in micrograms per cubic meter (ug/m³)

Samples analyzed by USEPA Method TO-15

- < indicates the concentration was not detected above the reporting limit
- (1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database (see 2. below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]
- (2) USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance (Refer to Footnote "1") this database is referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.
- * = Air Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York as updated by a September 2013 Fact Sheet for PCE and an August 2015 Fact Sheet for TCE.
- ** = Guideline Value obtained from Soil Vapor/Indoor Air Matrix 1 (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York.
- *** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix 2 (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

Bold type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Sub-Slab Vapor Concentration Decision Matrix (minimum action level).

Underlined type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Indoor Air Concentration (minimum action level).

Red values are above Air Guideline Derived by NYSDOH in Table 3.1 of NYSDOH Guidance titled "Evaluating Soil Vapor Intrusion in the State of New York", October 2006 (and subsequent updates).

J indicates an estimated value

Blue font represents changes made in the Data Usability Summary Report (DUSR)

U indicates the DUSR deemed the concentration undetected

Former Emerson Street Landfill 1640 Emerson Street Table 1 Soil Vapor Intrusion Testing March 2016

NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 Decision Matrices

			MATRIX 1- TRICE INDOOR AIR CON		ug/m³)	
	Sample IDs			IAQ-2 (0.43) IAQ-3 (0.48)		
			< 0.25	0.25 to <1	1 to <5.0	5.0 and above
SUB-SLAB VAPOR CONCENTRATION	SVI-2 (0.91)			2. Take reasonable and practical actions to identify source(s) and	3. Take reasonable and practical actions to identify source(s) and	4. Take reasonable and practical actions to identify source(s) and
(ug/m³)	SVI-3 (1.6)	<5	1. No further action	reduce exposure	reduce exposure	reduce exposure
		5 to <50	No further action	6. MONITOR	7. MONITOR	8. MITIGATE
				10. MONITOR/		
L		50 to <250	9. MONITOR	MITIGATE	11. MITIGATE	12. MITIGATE
		250 and above	13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE

			MATRIX 2- TETRA INDOOR AIR CON IAQ-2 (<1.0)			
	Sample IDs		IAQ-3 (<1.0)			
			<3	3 to <30	30 to <100	100 and above
SUB-SLAB VAPOR CONCENTRATION (ug/m³)	SVI-2 (0.75) SVI-3 (0.81)		1. No further action	source(s) and reduce exposure	3. Take reasonable and practical actions to identify source(s) and reduce exposure	4. Take reasonable and practical actions to identify source(s) and reduce exposure
		100 to <1.000	5. MONITOR	6. MONITOR/ MITIGATE	7. MITIGATE	8. MITIGATE
		1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE

No further action: Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

Take steps to identify source(s) and reduce exposures: The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed).

Monitor: Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concentrations in the indoor air or sub-slab vapor have changed. Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is an interim measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 1

Laboratory Report

TO-15 Package Review Checklist

Client: LAGELLA	Project: 1640 EMEASON	SDG:	<u> </u>	03071
		<u>YES</u>	<u>NO</u>	<u>NA</u>
Analytical Pacults	Present and Complete		,	
Analytical Results IIC's present	Present and Complete			
	Holding Times Met	``		
Comments:			****	
Chain-of-Custody	Present and Complete	**************************************	ı .,	
Surrogate Recovery	Present and Complete	**	44677	
Surrogato Rosovary	Recoveries within limits			
	Sample(s) reanalyzed			
Internal Standards Recovery	Present and Complete			_DLOAM 1
internal Standards 11995 (11)	Recoveries within limits			
	Sample(s) reanalyzed			
Comments:			u	
Lab Control Sample (LCS)	Present and Complete Recoveries within limits	<u> </u>		
and the state of t		`		
Lab Control Sample Dupe (LCSD)	Present and Complete Recoveries within limits		ALMAN	
MS/MSD	Present and Complete Recoveries within limits			uan t m.
Comments:				
O. J. David Date	Present and Complete	<u>~</u>	. —	
Sample Raw Data	Spectra present for all samples			
Comments:				1000
Arry Mills TV (mg Mills Cory Mills May Try M	Private and Confidential	N 4847111	11-1111	Page I of 2

TO-15 Package Review Checklist

Client: LABELLA	Project: 1640 EMERSON	SDG: <u>-</u>	<u> </u>	1805
		Vec	NO	NI A
Standards Data		YES	<u>NO</u>	<u>NA</u>
Initial Calibration Summary	Present and Complete	•		
,	Calibration(s) met criteria			
Continuing Calibration Summary	Present and Complete			
	Calibration(s) met criteria	<u> </u>		
Standards Raw Data	Present and Complete	· Na.		***************************************
Comments:				
Raw Quality Control Data				
Tune Criteria Report	Present and Complete	~		
Method Blank Data	MB Results <pql< td=""><td></td><td></td><td></td></pql<>			
	Associated results flagged "B"	×		
LCS sample data	Present and Complete	malumum	'MCCTIANDON'T	SUPERIOR AND ADDRESS OF THE SUPERIOR AND ADDRESS OF THE SUPERIOR AND ADDRESS OF THE SUPERIOR ADDRESS O
LCSD sample data	Present and Complete		DATE OF THE PARTY	VERNING AND A
MS/MSD sample data	Present and Complete		una constant	ANALYSI VA
W V	, , , , , , , , , , , , , , , , , , ,	MANAGAMINATURE TOTAL TRANSPORTER AND	ANTERIOR ECONOMISMONIA	A COMPTINGUE OF COLUMN 1
Logbooks	Process and Consults			
Injection Log Standards Log	Present and Complete			
Can Cleaning Log	Present and Complete Present and Complete	<u> </u>		
Can Cleaning Log	Raw Data Present	`		
Calculation sheet	Present and Complete			
IDL's	Present and Complete			
Bottle Order Form	Present and Complete	7		
Sample Tracking Form	Present and Complete	WOOD STATE OF THE	menter	**************************************
Additional Comments:				
· · ·		· · · /	**************************************	***************************************
Section Supervisor: UM U	Date:	1/27/10 4/27//	/	
QC Supervisor:	Date:	4/27//	<u></u>	THE STEEL PROPERTY AND ADDRESS OF THE ST
Centek Laboratories, LLC	Private and Confidential			Page 2 of 2

43 Midler Park Drive * Syracuse, NY 13206
Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752
NYSDOH ELAP Certificate No. 11830

Analytical Report

Daniel Noll LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614

TEL: (585) 454-6110 FAX (585) 454-3066 RE: Emerson Landfill

Dear Daniel Noll:

Monday, April 04, 2016 Order No.: C1603091

Centek Laboratories, LLC received 7 sample(s) on 3/31/2016 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Centek Laboratories

Page 3 of 171

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

well Doll.

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory,

direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

- 1. Package Review Check List
- 2. Case Narrative
- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a. Form 1 (if requested) TIC's
 - b. Quantitation Report with Spectra
- 9. Standards Data
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD
- 12. Log Books
 - a. Injection Log Book
 - b. Standards Log Book
 - c. QC Canister Log Book

Date: 27-Apr-16

CLIENT:

LaBella Associates, P.C.

Project:

Emerson Landfill

Lab Order:

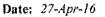
C1603091

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999


All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

Page 1 of 1

	Centek Chain of Custody		Site Name: EMERGON Land Fill	તુરા(Detection Limit	Report Level
Contak Laboratonas	143 Midler Park Drive		Project 1640 Émergo		Leveli
J	Syracuse, NY 13206	,	2101	1ug/M3	\Box
	າ ≩ ໄ	ision & IAQ	Other: 0-Sp /1/5	5 X 1ug/kis +TCE.25	Cat "B" Like
<u>.</u>	Check Rush TAT Due One Surcharge % Date:	LaBella		Company: Check Here If Same:	
5 Business Days 4 Business Days	%8% 78%	Report to: C.P. K. Address:	Im.	Invoice to; SAME	
3 Business Days	%08	City, State, Zip 300 Start	<u>†</u>	e, Zip	
A Business Days Next Day by Snm	100%	できる。 できます。 できまます。 できまます。 できまます。 できまます。 できまます。 できまます。 できまます。 できままままま。 できままままま。 できまままま。 できまままま。 できまままま。 できまままま。 できままま。 できまままま。 できままま。 できままま。 できままま。 できまままま。 できままま。 できままま。 できままま。 できままま。 できまままま。 できままま。 できまま。 できまま。 できままま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できままま。 できまままま。 できままま。 できままま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できままま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できままま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できまま。 できま。 でき)-t		
*Next Day by Noon	150%	UNIDII &		Email: MC/QUSERA) lapellage, com	abellagicon
"Same Day	200%	30-512-66		Phone;	
For Same and Next Day 1A1 Please Notify Lab	Pease Notify Lab	_	Analysis Request	Comments	II HE Vacuum
40 Cachelon All	3/30/76	$\frac{1}{1}$	- \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		StartiStop
1640-140-1	- ·	242	1 50 Pr. F		3/ 1/2
1640-JAD-2	3/30/10	2	1.5.1		3//0%
5 - ENS OF 91	4/35/16	366 1169			9. /+%
-371-3	3/12/16				7
PO-	3 1/30/16	1,1207 299		CISMINA	2/5
140-Ohis Diplicate	2/30/16	336 405		1	
1040 Cutology Hir	3/30 lb	340 US	>		3/2/6
					1
Chain of Custody Sampled by: Ann Ann	Print Name	Signature	Da /	me Counter	CIRCLE ONE UPS (Perco/Dropoff
	7		1	X mail max	
Received at Lab by:	an (10/c		Lec 3	3.3/-/6 Work Order # //	® 16080°)

CLIENT:

LaBella Associates, P.C.

Project:

Emerson Landfill

Lab Order:

C1603091

Work	Order	Sample	Summary
77 1/1 2%	VI UCI	L744 114 1JIV	1_7 48 348 548 44 6 7

Lab Order:	C1603091			
Lab Sample ID C1603091-001A	Client Sample ID 1640-1AQ-1	Tag Number 85,272	Collection Date 3/30/2016	Date Received 3/31/2016
C1603091-002A	1640-1AQ-2	496,403	3/30/2016	3/31/2016
C1603091-003A	1640-SVI-2	366,1169	3/30/2016	3/31/2016
C1603091-004A	1640-SVI-3	1318,304	3/30/2016	3/31/2016
C1603091-005A	1640-IAQ-3	1207,299	3/30/2016	3/31/2016
C1603091-006A	1640-Blind Duplicate	336,403	3/30/2016	3/31/2016
C1603091-007A	1640-Outdoor Air	290,48	3/30/2016	3/31/2016

CENTEK LABORATORIES, LL	.c		C	
The state of the s			Sample Re	ceipt Checklist
Client Name LABELLA - ROCHESTER	1 2	Date and Tin	ne Receive	3/31/2016
Work Order Numbe C1603091	///	Received by	JDS	
Checkilst completed by	Oate Oate	Reviewed by	<u>Ca</u>	3/37/16
Matrix: Carrier r				,
Shipping container/cooler in good condition?	Yes 🔀	No 🔲	Not Presen	
Custody seals intact on shippping container/cooler?	Yes 🗔	No 🗔	Not Presen	✓
Custody seals intact on sample bottles?	Yes 🗔	No 🗀	Not Presen	$ \mathbf{Z} $
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗀		
Chain of custody agrees with sample labels?	Yes 🔀	No 🗔		
Samples in proper container/bottle?	Yes 🔀	No 🗔		
Sample containers intact?	Yes 🗹	No []		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗀		•
All samples received within holding time?	Yes 🗹	No 🗀		
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗆		
Water - VOA vials have zero headspace? No VOA vials	s submitted 🗹	Yes [_]	No 🗀	
Water - pH acceptable upon receipt?	Yes 🗀	No 🗹		
Adjusted?	Che	cked b		_
Any No and/or NA (not applicable) response must be detailed in		be		
Client contacted Date contacted	l:	Perso	on contacted	
Contacted by: Regarding:				Part ("Miles and Membrill Resident F" - 11
Comments:				
				= = = = = = = = = = = = = = = = = = =
				10-24594
				44/17/7
Corrective Action				
		000 NOT OF THE PARTY OF THE PAR	en er	The second of th
				The shall be the second and the second

Centek Laboratories, LLC	

C1603091

Lab Order: Client:

27-Apr-16

Client:	LaBella Associates, P.C.	ü			DATES REPORT	RT
Project:	Emerson Landfill					
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C1603091-001A	1640-IAQ-1	3/30/2016	Air	lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/4/2016
C1603091-002A	1640-JAQ-2			lug/m3 w/ 0.25ug/M3 CF-TCE-VC		4/4/2016
C1603091-003A	1640-SVI-2			lug/M3 by Method TO15		4/4/2016
C1603091-004A	1640-SVI-3			lug/M3 by Method TO15		4/4/2016
C1603091-005A	1640-IAQ-3			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/3/2016
C1603091-006A	1640-Blind Duplicate			lug/m3 w/0.25ug/M3 CT-TCE-VC		4/4/2016
C1603091-007A	1640-Outdoor Air			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/4/2016

CANISTER ORDER

Air Quality Testing...It's a Clas-

143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

5706

27-Apr-16

SHIPPED TO:

Company: LaBella Associates, P.C.

Contact:

Kyle

Address: 300 State Street, Suite 201 Rochester, NY 14614

Phone: (585) 454-6110

Quote ID:

Can / Reg ID

Project:

Submitted By:

MadeBy:

rjp

Ship Date: 3/24/2016

VIA: FedEx Ground

Due Date: 3/25/2016

PO: Emerson Landfill

Bottle Code	Bottle Type	TEST(s)	QTY
MC1400CC	1.4L Mini-Can	1ug/m3 w/ 0.25ug/M3 CT-TCE-VC	1
MC1000CC	1L Mini-Can	1ug/M3 by Method TO15	9

48	Time-Set Reg - 545 VI
85	1L Mini-Can - 1098 VI
88	1L Mini-Can - 1107 VI
207	1L Mini-Can - 1162 VI
234	1L Mini-Can - 1165 VI
272	Time-Set Reg - 710 VI
290	1L Mini-Can - 1266 VI
299	Time-Set Reg - 722 VI
304	Time-Set Reg - 727 VI
336	1L Mini-Can - 1299 VI
403	Time-Set Reg - 782 VI
405	Time-Set Reg - 784 VI
496	1L Mini-Can - 1388 VI
1156	Time-Set Reg-0682 VI
1169	Time-Set Reg-0794 VI
1207	1,4L Mini-Can - 1367 VI
1318	1 L Mini-Can -0108 VI

Description

Comments: 8 1L @ 6hr + dupe + 1.4 L @ 6hr + 10 tubing was 021916 j-k, 030416 d-1

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 ANALYTICAL RESULTS

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-001A

Date: 26-Apr-16

Client Sample ID: 1640-IAQ-1

Tag Number: 85,272

Collection Date: 3/30/2016

Matrix: AIR

Analyses	Resuit	**Limit Qua	d Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-8		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vđqq	1	4/4/2016 1:28:00 AM
1,1-Dichloroethane	< 0.15	0.15	₽₽₽V	1	4/4/2016 1:28:00 AM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	4/4/2016 1:28:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/4/2016 1:28:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	4/4/2016 1:28:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 1:28:00 AM
Tetrachioroethylene	< 0.15	0.15	ppbV	1	4/4/2016 1:28:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 1:28:00 AM
Trichloroethene	0.12	0.040	ppbV	1	4/4/2016 1:28:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/4/2016 1:28:00 AM
Surr: Bromofluorobenzene	122	70-130	%REC	1	4/4/2016 1:28:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 7

Centek Laboratories, LLC

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1640-IAQ-1

C1603091 Tag Number: 85,272 Lab Order: Collection Date: 3/30/2016 Project: Emerson Landfill

Lab ID: C1603091-001A Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
Water Handa and Advision and determine the second state of		<u>-</u>			
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 1:28:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 1:28:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 1:28:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 1:28:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 1:28:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 1:28:00 AM
Tetrachioroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 1:28:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 1:28:00 AM
Trichloroethene	0.64	0.21	ug/m3	1	4/4/2016 1:28:00 AM
Vinyl chloride	< 0.10	0.10	սց/m3	1	4/4/2016 1:28:00 AM

Qualifiers:

- Reporting Limit
- 8 Analyte detected in the associated Method Blank
- ŀΙ Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit

Page 1 of 7

Centek Laboratories, LLC

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-002A

Client Sample ID: 1640-IAQ-2

Tag Number: 496,403

Collection Date: 3/30/2016

Matrix: AlR

Analyses	Result	**Limit Qua	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppb∨	1	4/4/2016 2:08:00 AM
1,1-Dichforoethane	< 0.15	0.15	ppbV	1	4/4/2016 2:08:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 2:08:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/4/2016 2:08:00 AM
Chloromethane	< 0.15	0.15	Vdqq	1	4/4/2016 2:08:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 2:08:00 AM
Tetrachloroethylene	< 0.15	0.15	ppb∨	1	4/4/2016 2:08:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	t	4/4/2016 2:08:00 AM
Trichloroethene	0.080	0.040	ppbV	1	4/4/2016 2:08:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/4/2016 2:08:00 AM
Surr: Bromofluorobenzene	125	70-130	%REC	1	4/4/2016 2:08:00 AM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- B Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 7

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1640-IAQ-2

C1603091 Tag Number: 496,403 Lab Order: Collection Date: 3/30/2016 Project: Emerson Landfill

Lab ID: C1603091-002A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 2:08:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 2:08:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:08:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 2:08:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 2:08:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:08:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 2:08:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	սց/m3	1	4/4/2016 2:08:00 AM
Trichloroethene	0.43	0.21	ug/m3	1	4/4/2016 2:08:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/4/2016 2:08:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- И Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 15 Value above quantitation range
- į Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C160

C1603091

Project:

Emerson Landfill

Lab ID:

C1603091-003A

Date: 26-Apr-16

Client Sample ID: 1640-SVI-2

Tag Number: 366,1169

Collection Date: 3/30/2016

Matrix: AIR.

Analyses	Result	**Limit (Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLI	D			Analyst:
Lab Vacuum In	-6			"Hg		3/31/2016
Łab Vacuum Out	-30			"Hg		3/31/201 6
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1.1.1-Trichloroethane	< 0.15	0.15		ppb∨	1	4/4/2016 2:47:00 AM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	4/4/2016 2:47:00 AM
1,1-Dichloroethene	< 0.15	0.15		ppbV	1	4/4/2016 2:47:00 AM
Chloroethane	< 0.15	0.15		ppbV	1	4/4/2016 2:47:00 AM
Chloromethane	< 0.15	0.15		Vdqq	i	4/4/2016 2:47:00 AM
c/s-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/4/2016 2:47:00 AM
Tetrachioroethylene	0.11	0.15	J	Vdqq	1	4/4/2016 2:47:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/4/2016 2:47:00 AM
Trichloroethene	0.17	0.15		Vdqq	1	4/4/2016 2:47:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	4/4/2016 2:47:00 AM
Surr: Bromofluorobenzene	119	70-130		%REC	1	4/4/2016 2:47:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-003A

Date: 26-Apr-16

Client Sample ID: 1640-SVI-2

Tag Number: 366,1169

Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	ÐF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-18	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 2:47:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 2:47:00 AM
1,1~Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:47:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 2:47:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 2:47:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:47:00 AM
Tetrachioroethylene	0.75	1.0	J ug/m3	1	4/4/2016 2:47:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:47:00 AM
Trichloroethene	0.91	0.81	ug/m3	1	4/4/2016 2:47:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	4/4/2016 2:47:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-004A

Date: 26-Apr-16

Client Sample ID: 1640-SVI-3

Tag Number: 1318,304 Collection Date: 3/30/2016

Matrix: AIR.

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	_" 5		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
IUG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppb∨	1	4/4/2016 3:26:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppb∨	1	4/4/2016 3:26:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	4/4/2016 3:26:00 AM
Chloroethane	< 0.15	0.15	PpbV	1	4/4/2016 3:26:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	4/4/2016 3:26:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 3:26:00 AM
Tetrachioroethylene	0.12	0.15	Vdqq t	1	4/4/2016 3:26:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 3:26:00 AM
Trichtoroethene	0.29	0.15	Vđạq	1	4/4/2016 3:26:00 AM
Vinyl chloride	< 0.15	0.15	ppb∨	1	4/4/2016 3:26:00 AM
Surr: Bromofluorobenzene	11 6	70-130	%REC	1	4/4/2016 3:26:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 7

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1640-SVI-3 C1603091

Lab Order: Tag Number: 1318,304 Collection Date: 3/30/2016 Project: Emerson Landfill

Lab ID: C1603091-004A Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15		Analyst: RJP
1,1,1-Trichtoroethane	< 0.82	0.82	ug/m3	1	4/4/2016 3:26:00 AM
1,1-Dichtoroethane	< 0.61	0.61	ug/m3	1	4/4/2016 3:26:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 3:26:00 AM
Chioroethane	< 0.40	0.40	ug/m3	1	4/4/2016 3:26:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 3:26:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 3:26:00 AM
Tetrachloroethylene	0.81	1.0	J ug/m3	1	4/4/2016 3:26:00 AM
trans-1,2-Dichtoroethene	< 0.59	0.59	цg/m3	1	4/4/2016 3:26:00 AM
Trichloroethene	1,6	0.81	ug/m3	1	4/4/2016 3:26:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	4/4/2016 3:26:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfili

Lab ID:

C1603091-005A

Date: 26-Apr-16

Client Sample ID: 1640-1AQ-3

Tag Number: 1207,299

Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	4/3/2016 11:24:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
cis-1,2-Dichioroethene	< 0.15	0.15	Vdqq	1	4/3/2016 11:24:00 PM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
Trichtoroethene	0.090	0.040	ppbV	1	4/3/2016 11:24:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/3/2016 11:24:00 PM
Surr: Bromofluorobenzene	119	70-130	%REC	1	4/3/2016 11:24:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 7

Date: 26-Apr-16 e terretario de la composición de la c El mandrido de la composición del composición de la composición de la composición del composición del composición de la composición de la composición del composición del composición del composición del composición del composi

CLIENT: LaBella Associates, P.C. Client Sample ID: 1640-IAQ-3

Lab Order: C1603091 Tag Number: 1207,299 Collection Date: 3/30/2016 Project: Emerson Landfill

Lab ID: C1603091-005A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	•	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/3/2016 11:24:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/3/2016 11:24:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/3/2016 11:24:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/3/2016 11:24:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/3/2016 11:24:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/3/2016 11:24:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/3/2016 11:24:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	սց/m3	1	4/3/2016 11:24:00 PM
Trichloroethene	0.48	0.21	ug/m3	1	4/3/2016 11:24:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/3/2016 11:24:00 PM

Qualifiers:

Reporting Limit

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit

Page 5 of 7

CLIENT: LaBella Associates, P.C. Client Sample ID: 1640-Blind Duplicate

Lab Order: C1603091 Tag Number: 336,403 Collection Date: 3/30/2016 Project: Emerson Landfill

Lab ID: C1603091-006A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-8		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
IUG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Váqq	1	4/4/2016 4:06:00 AM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	4/4/2016 4:06:00 AM
1,1-Dichloroethene	< 0.15	0.15	∨dqq	1	4/4/2016 4:06:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/4/2016 4:06:00 AM
Chloromethane	< 0.15	0.15	ppb∨	1	4/4/2016 4:06:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/4/2016 4:06:00 AM
Tetrachloroethylene	< 0.15	0.15	ppb∨	1	4/4/2016 4:06:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/4/2016 4:06:00 AM
Trichloroethene	< 0.040	0.040	ppb∨	1	4/4/2016 4:06:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/4/2016 4:06:00 AM
Surr: Bromofluorobenzene	118	70-130	%REC	1	4/4/2016 4:06:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-16

- Е Value above quantitation range
- Analyte detected at or below quantitation limits Ţ
- ND Not Detected at the Reporting Limit

Page 6 of 7

CLIENT: LaBella Associates, P.C. Client Sample ID: 1640-Blind Duplicate

Lab Order: C1603091 Tag Number: 336,403
Project: Emerson Landfill Collection Date: 3/30/2016

Lab ID: C1603091-006A Matrix: AIR

Analyses	Result	**Limit (ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	***************************************	TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 4:06:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 4:06:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:06:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 4:06:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 4:06:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:06:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 4:06:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:06:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/4/2016 4:06:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/4/2016 4:06:00 AM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-16

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 6 of 7

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-007A Client Sample ID: 1640-Outdoor Air

Tag Number: 290,48 Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qı	ial Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/4/2016 4:45:00 AM
1,1-Dichloroethane	< 0.15	0.15	Vđạq	1	4/4/2016 4:45:00 AM
1,1-Dichlorcethene	< 0.15	0.15	ppb∨	1	4/4/2016 4:45:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/4/2016 4:45:00 AM
Chloromethane	1.0	0.15	ppb∨	1	4/4/2016 4:45:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/4/2016 4:45:00 AM
Tetrachloroethylene	< 0.15	0.15	ppb∨	1	4/4/2016 4:45:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 4:45:00 AM
Trichforoethene	< 0.040	0.040	∨dqq	1	4/4/2016 4:45:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	4/4/2016 4:45:00 AM
Surr: Bromofluorobenzene	114	70-130	%REC	1	4/4/2016 4:45:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Value above quantitation range
- J Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit

Page 7 of 7

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1640-Outdoor Air

Lab Order:C1603091Tag Number: 290,48Project:Emerson LandfillCollection Date: 3/30/2016

Lab ID: C1603091-007A Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ა g/m 3	1	4/4/2016 4:45:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 4:45:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:45:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 4:45:00 AM
Chloromethane	2.1	0.31	ug/m3	1	4/4/2016 4:45:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:45:00 AM
Tetrachioroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 4:45:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:45:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/4/2016 4:45:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/4/2016 4:45:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E. Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 7

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 QUALITY CONTROL SUMMARY

Date: 27-Apr-16

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: LaBella Associates, P.C.

Work Order: C1603091

Project: Emerson Landfill

Test No: TO-15 Matrix: A

Sample ID	BR4FBZ	
ALCS1UG-040316	112	
AMB1UG-040316	88.0	
C1603091-001A	122	
C1603091-002A	125	
C1603091-003A	119	
C1603091-004A	116	
C1603091-005A	119	
C1603091-005A MS	123	
C1603091-005A MSD	119	
C1603091-006A	118	
C1603091-007A	114	
C1603092-013A MS	126	
C1603092-013A MSD	124	

Acronym	Surrogate	QC Limits
BR4FBZ	 Bromofluorobenzene 	70-130

* Surrogate recovery outside acceptance limits

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AN040302.D Tune Time : 3 Apr 2016 11:40 am

Daily Calibration File : C:\HPCHEM\1\DATA\AN040302.D

(BFB)	(IS1)	(IS2)	(IS3)
	16244	37337	27087

File Sample	DL Surrogate	e Recovery %	Internal	Standard Res	ponses	
AN040303.D ALCS1UG-04031	6 112	20 MAY 1000 1000 1000 1000 1000 1000 1000 10	15355	33728	24096	
AN040304.D AMB1UG-040316	88		14032	33917	30527	
AN040319.D C1603091-005A	119		14883	37891	28556	
AN040320.D C1603091-005A	MS 123		16262	40411	24211	
AN040321.D C1603091-005A	MSD 119		17352	46934	25902	
AN040322.D C1603091-001A	122		15199	40864	26354	
AN040323.D C1603091-002A	125		14903	39943	26736	
AN040324.D C1603091-003A	119		15528	43280	26603	
AN040325.D C1603091-004A	116		16444	42195	29354	
AN040326.D C1603091-006A	118		16917	45571	30473	
AN040327.D C1603091-007A	114		13714	33839	30298	, w ee w

t - fails 24hr time check * - fails criteria

Created: Tue Apr 26 16:30:39 2016 MSD #1/

ANALYTICAL QC SUMMARY REPORT

Date: 26-Apr-16

LaBella Associates, P.C. CLIENT:

C1603091 Work Order: Project:

Emerson Landfill

TestCode: 0.25CT-TCE-VC

Sample ID ALCS1UG-040316	SampType: LCS	TestCo	de: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	di	RunNo: 10821	321	
Client ID: ZZZZZ	Batch ID: R10821	Test	estNo: TO-15		•	Analysis Dat	Analysis Date: 4/3/2016	SeqNo: 127147	7147	
Analyte	Result	덩	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
1,1,1-Trichloroethane	1.370	0.15	-	0	137	70	130			S
1,1-Dichloroethane	1.170	0.15	-	0	117	02	130			
1,1-Dichloroethene	1.070	0.15	-	0	407	70	130			
Chloroethane	1.170	0.15	-	0	en Fr	22	130			
Chloromethane	1.280	0.15	-	0	128	70	130			
cis-1,2-Dichloroethene	1.070	0.15	-	0	107	70	130			
Tetrachloroethylene	0.9000	0.15	-	0	90.0	70	130			
trans-1,2-Dichloroethene	1.130	0.15	-	0	113	22	130			
Trichloroethene	1.270	0.040	-	0	127	70	130			
Vinyl chloride	1.220	0.040	-	0	122	70	130			

Results reported are not blank corrected Qualifiers:

Analyte detected at or below quantitation limits

Spike Recovery outside accepted recovery limits

Not Detected at the Reporting Limit Value above quantitation range **3** ₽

Holding times for preparation or analysis exceeded **= &**

RPD outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

Date: 26-Apr-16

LaBella Associates, P.C. CLIENT:

C1603091 Work Order:

Work Order: C1603091										
Project: Emerson Landfill	andfill						TestCode:	TestCode: 0,25CT-TCE-VC	E-VC	
Sample ID AMB1UG-040316	SampType: MBLK	TestCod	e: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	. <u> </u>	RunNo: 10821	821	
Olient ID: ZZZZ	Batch ID: R10821	TestN	TestNo: TO-15		**	inalysis Dat	Analysis Date: 4/3/2016	SeqNo: 127146	7146	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	Lowlimit	%REC Low-init HighLimit RPD Ref Val		%RPD RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0,15								
1,1-Dichloroethane	< 0.15	0.15								
1, t-Dichloroetherse	< 0.15	0.15								
Chloroethane	< 0.15	0.15								
Chloromethane	< 0.15	0.15								
cis-1,2-Dichloroethene	< 0.15	0.15								
Tetrachioroethylene	< 0.15	0.15								
trans-1,2-Dichloroethene	< 0.15	0.15								
Trichtoroethene	< 0.040	0.040								
Vinyi chloride	< 0.040	0.040								

I ~ Not Detected at the Reporting Limit Value above quantitation range <u>ш</u> ₽ Spike Recovery outside accepted recovery limits Analyte detected at or below quantitation limits Results reported are not blank corrected

Qualifiers:

ANALYTICAL QC SUMMARY REPORT

Date: 27-Apr-16

LaBella Associates, P.C. CLIENT:

C1603091 Work Order:

Emerson Landfill Project:

TestCode: 0.25CT-TCE-VC

Client ID: 1640-IAQ-3 Analyte	Samplype: MS	TestCod	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:			RunNo: 10821	24	
Analyte	Batch ID: R10821	TestA	TestNo: TO-15			Analysis Date:	4/4/2016	ဖ	SeqNo: 127156	156	
•	Result	PQ	SPK value Si	SPK Ref Val	%REC	LowLimit	HigħLimi≹	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1,220	0.15	-	0	122	70	130				
1,1-Dichioroethane	1.140	0.15	-	0	114	70	\$30				
1,1-Dichloroethene	1.140	0.15	-	0	114	70	130				
Chloroethane	1,280	0.15	-	0	128	70	130				
Chloromethane	1.380	0.15	-	0	138	70	130				S
cis-1,2-Dichloroethene	1.130	0.15		0	113	70	130				
Tetrachloroethylene	0.8800	0.15		Φ	88.0	7.0	130				
frans-1,2-Dichloroethene	1.280	0.15		Φ	128	70	130				
Trichloroethene	1.180	0.040		60.0	109	70	130				
Surt. Bramofluorobenzene	1.230	Đ	***	0	123	70	130				
Sample ID C1603091-005A MS	SampType: MSD	TestCod	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date	1.00		RunNo: 10821	21	
Client ID: 1640-IAQ-3	Batch ID: R10821	Testh	TestNo: TO-15			Analysis Date:	4/4/2016	9	SeqNo: 127158	58	
Analyte	Resuft	Po	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Cuai
f,1,1-Trichloroethane	1.160	0.15	-	0	116	22	130	1.22	5.04	30	
1,1-Dichloroethane	1.170	0.15	-	0	117	20	130	1.14	2.60	30	
1,1-Dichloroethene	1.100	0.15	_	O	110	70	130	1.14	3.57	33	
Chioroethane	1.170	0.15	**	O	117	20	130	1.28	8.98	8	
Chloromethane	1.590	0.15	+	O	159	20	130	1.38	14.1	39	S
cis-1,2-Dichloroethene	1.140	0.15	***	¢.	114	22	130	1.13	0.881	30	
Tefrachloroethylene	0.8800	0.15	ψw	0	88.0	22	130	0.88	•	30	
trans-1,2-Dichloroethene	1,210	0.15	₩-	0	123	5	130	1.28	5.62	30	
Trichloroethene	1,180	0.040	•	0.09	109	70	130	1.18	٥	30	
Qualifiers: Results reported	Results reported are not blank corrected		E Value ab	Value above quantitation runge	əâi		æ	Holding times for preparation or analysis execeded	preparation or an	nalysis excee	3
J Analyte detected	Analyte detected at or below quantitation limits	sits	ND Not Dete	Not Detected at the Reporting Linkit	g Lindi		×	RPD outside accepted recovery limits	oted recovery lim	iits	
S Spike Recovery	Spike Recovery outside accepted recovery limits	mits								****	Page 1 of 2

LaBella Associates, P.C. CLIENT:

endomination of the control of the c

TestCode: 0.25CT-TCE-VC

Emerson Landfill C1603091 Work Order: Project:

%RPD RPDLimit Qual 8 SeqNo: 127158 RunNo: 10821 o 0 %REC LowLinit HighLimit RPD Ref Val Analysis Date: 4/4/2016 130 Prep Date: R 119 TestCode: 0.25CT-TCE. Units: ppbV SPK value SPK Ref Val 0 TestNo: TO-15 PQ. 0 Result Batch ID: R10821 1.190 Sample ID C1603091-005A MS SampType: MSD Surr. Bromofluorobenzene Client ID: 1640-IAQ-3 Analyte

Qualifiers:	Results reported are not blank corrected	E Value	s above quantitation range	H Holding times for preparation or analysis exceeded
	 Analyte detected at or below quantitation limits 	ND Not I	betected at the Reporting Limit	R RPD outside accepted recovery limits
	S Spike Recovery outside accepted recovery limits			Page

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

$$RRF = Ax * Cis$$

Ais * Cx

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the

compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

$$ppbv = \underbrace{Ax * Is * Df}_{Ais * RRF}$$

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

Detection Limit	tuary 2016
1ug/M3 De	Janua

1ug/M3 Detection	January 20

Centek Laboratories IDL Study

Name	Amount	DL#1	IDL#2	DL#3	DL#	IDL#S	IDL#6	IDL#7	Average	StdDev	%Rec	D
Propylene	0.15	0.16	0.15	0.16	0.14	0.16	0.14	0.16	0.153	0.010	98.1	0.030
Freon 12	0.15	0.18	0.17	0.17	0.17	0.18	0.17	0.17	0.173	0.005	86.8	0.015
Chloromethane	0.15	0.19	0.18	0.16	0.18	0.18	0.2	0.17	0.180	0.013	83.3	0.041
Freon 114	0.15	0.18	0.17	0.17	0.17	0.18	0.17	0.18	0,174	0.005	86.1	0.017
Vinyl Chloride	0.15	0.17	0.16	0.16	0.15	0.16	0.15	0.15	0.157	0.008	95.5	0.024
Butane	0.15	0.18	0.16	0.17	0.18	0.18	0.19	0.19	0.179	0.011	84.0	0.034
1,3-butadiene	0.15	0.21	0.2	0.2	0.22	0.17	0.18	0.23	0.201	0.021	74.5	0.066
Bromomethane	0.15	0.18	0.2	0.21	0.18	0.22	0.16	0.21	0.194	0.021	77.2	0.068
Chloroethane	0.15	0.19	0.19	0.16	0.19	0.19	0.18	0.19	0.184	0.011	81.4	0.036
Ethanol	0.15	0.16	0.16	0.18	0.17	0.19	0.18	0.19	0.176	0.013	85.4	0.040
Acrolein	0.15	0.22	0.17	0.19	0.16	0.18	0.21	0.17	0.186	0.022	80.8	0.070
Vinyl Bromide	0,15	0.17	0.15	0.16	0.16	0.17	0.17	0.17	0.164	0.008	91.3	0.025
Freon 11	0.15	0.18	0.17	0.17	0.18	0.19	0.17	0.18	0.177	0.008	84.7	0.024
Acetone	0.15	0.2	0.17	0.18	0.15	0.15	0.18	0.14	0.167	0.021	89.7	0.067
Pentane	0.15	0.18	0.17	0.18	0.16	0.17	0.2	0.16	0.174	0.014	86.1	0.044
Isopropyl alcohol	0.15	0.22	0.2	0.19	0.2	0.19	0.21	0.19	0.200	0.012	75.0	0.036
1,1-dichloroethene	0.15	0.2	0.17	0.19	0.19	0.19	0.18	0.18	0.186	0.010	80.8	0.031
Freon 113	0,15	0.17	0.16	0.18	0.18	0.18	0.17	0.17	0.173	0.008	86.8	0.024
t-Butyl alcohol	0,15	0.21	0.2	0.2	0.21	0.2	0.2	0.18	0.200	0.010	75.0	0.031
Methylene chloride	0.15	0.2	0.18	0.19	0.18	0.2	0.19	0.17	0.187	0.011	80.2	0.035
Allyl chloride	0.15	0.18	0.17	0.16	0.18	0.18	0.2	0.18	0.179	0.012	84.0	0.038
Carbon disulfide	0.15	0.2	0.17	0.19	0.19	0.2	0.18	0.19	0.189	0.011	79.5	0.034
trans-1,2-dichloroethene	0.15	0.15	0.14	0.14	0.14	0.16	0.14	0.15	0.146	0.008	102.9	0.025
methyl tert-butyl ether	0.15	0.14	0.14	0.14	0.13	0.15	0.14	0.13	0.139	0.007	108.2	0.022
1,1-dichloroethane	0.15	0.17	0.15	0.16	0.15	0.17	0.16	0.16	0.160	0.008	93.8	0.026
Vinyl acetate	0.15	0.14	0.13	0.14	0.13	0.13	0.13	0.12	0.131	0.007	114.1	0.022
Methyl Ethyl Ketone	0.15	0.17	0.17	0.16	0.16	0.15	0.13	0.12	0.151	0.020	99.1	0.061
cis-1,2-dichloroethene	0.15	0.15	0.14	0.16	0.15	0.16	0.15	0.14	0.150	0.008	100.0	0.026
Hexane	0.15	0.12	0.14	0.13	0.13	0.13	0.12	0.12	0.127	0.008	118.0	0.024
Ethyl acetate	0,15	0.16	0.17	0.14	0.15	0.14	0.16	0.13	0.150	0.014	100.0	0.044
Chloroform	0.15	0.16	0.16	0.16	0.16	0.17	0.16	0.17	0.163	0.005	92.1	0.015
Tetrahydrofuran	0.15	0.15	0.13	0.15	0.15	0.15	0.15	0.14	0.146	0.008	102.9	0.025
1,2-dichloroethane	0.15	0.16	0.15	0.16	0.16	0.17	0.16	0.17	0.161	0.007	92.9	0.022
1,1,1-trichloroethane	0.15	0.17	0.16	0.17	0.17	0.16	0.17	0.17	0.167	0.005	89.7	0.015
Cyclohexane	0.15	0.14	0.14	0.14	0.15	0.15	0.14	0,14	0.143	0.005	105.0	0.015
Carbon tetrachloride	0.15	0.13	0.15	0.15	0.15	0.15	0.15	0.16	0.149	0.009	101.0	0.028
Benzene	0.15	0.15	0.16	0.16	0.15	0.16	0.16	0.16	0.157	0.005	95.5	0.015
Methyl methacrylate	0.15	0.15	0.15	0.14	0.14	0.14	0.15	0.11	0.140	0.014	107.1	0.044
1,4-dioxane	0.15	0.18	0.18	0.19	0.18	0.15	0,17	0.12	0.167	0.024	89.7	0.076
Confidential											118	1/8/2016

Centek Laboratories IDL Study				100	1ug/M3 Detection Limit January 2016	ion Limit 016					Method TO-15A)-15A
Name	Amount	IDI #1	IDL#2	IDI #3	1DL#4	IDL#5	IDL#6	IDL#7	Average	StdDev	%Rec	5 D.
2,2,4-trimethylpentane	0.15	0.15	0.15	0.15	0.16	0.14	0.16	0.15	0.151	0.007	99.1	0.022
Heptane	0.15	0.12	0.13	0,13	0.12	0.13	0.13	0.13	0.127	0.005	118.0	0.015
Frichloroethene	0.15	0.14	0.15	0.14	0.15	0.15	0.14	0,15	0.146	0.005	102.9	0.017
1,2-dichloropropane	0.15	0.16	0.17	0.17	0.16	0.17	0.16	0.16	0.164	0.005	91.3	0.017
Bromodichloromethane	0.15	0.16	0.16	0.16	0.15	0.16	0.17	0.16	0.160	0.006	93.8	0.018
cis-1,3-dichloropropene	0.15	0.13	0.13	0.14	0.14	0.13	0.13	0.13	0.133	0.005	112.9	0.015
trans-1,3-dichloropropene	0.15	0.16	0.13	0.13	0.14	0.14	0.14	0.16	0.143	0.013	105.0	0.039
1,1,2-trichloroethane	0.15	0.16	0.15	0.16	0,15	0.16	0.18	0.17	0.161	0.011	92.9	0.034
Foluene	0.15	0.14	0.14	0.14	0.13	0.16	0.14	0.15	0.143	0.010	105.0	0:030
Methyl Isobutyl Ketone	0.15	0.18	0.18	0.18	0.18	0.16	0.18	0.15	0.173	0.013	86.8	0.039
Dibromochloromethane	0.15	0.16	0.16	0.17	0.18	0.16	0.17	0.18	0.169	0.003	89.0	0,028
Methyl Butyl Ketone	0.15	0.17	0.16	0.18	0.17	0.16	0.17	0.14	0.164	0.013	91.3	0.040
1,2-dibromoethane	0.15	0.16	0.17	0.16	0.16	0.16	0.16	0.17	0.163	0.005	92.1	0.015
Fetrachloroethylene	0.15	0.16	0.17	0.16	0.16	0.16	0.17	0.17	0.164	0.005	91.3	0.017
Chlorobenzene	0.15	0.16	0.16	0.16	0.17	0.15	0.17	0.17	0.163	800.0	92.1	0.024
1,1,1,2-tetrachloroethane	0.15	0.17	0.17	0.17	0.18	0.16	0.18	0.17	0.171	0.007	87.5	0.022
Ethylbenzene	0.15	0.13	0.14	0.14	0.14	0.12	0.14	0.13	0.134	0.008	111.7	0.025
m&p-xylene	0.3	0.25	0.25	0.25	0.23	0.25	0.25	0.25	0.247	0.008	121,4	0.024
Nonane	0.15	0.11	0.11	0.11	0.11	0.1	0.1	0.11	0.107	0.005	140.0	0.015
Styrene	0.15	0.12	0.13	0.13	0.11	0.12	0.13	0.12	0.123	800.0	122.1	0.024
Bromoform	0.15	0.15	0.15	0.16	0.15	0.15	0.17	0.16	0.156	0.008	96.3	0.025
o-xylene	0.15	0.11	0.12	0.12	0.14	0.14	0.12	0.11	0.123	0.013	122.1	0.039
Cumene	0.15	0.12	0.13	0.13	0.12	0.13	0.13	0.13	0.127	0.005	118.0	0.015
Bromofluorobenzene	₹	0.88	6.0	6.0	0.87	0.89	0.89	6.0	0.890	0.012	112.4	0.036
1,1,2,2-tetrachioroethane	0.15	0.16	0.16	0.17	0.16	0.17	0.17	0.16	0.164	0.005	9	0.017
Propylbenzene	0.15	0.13	0.12	0.13	0.13	0.11	0.13	0.11	0.123	0.010	122.1	0.030
2-Chlorotoluene	0.15	0.13	0.13	0.13	0.14	0.13	0.12	0.13	0.130	900'0	115.4	0.018
4-ethyltoluene	0.15	0.11	0.12	0.12	0.12	0.13	0.13	0.11	0.120	0.008	125.0	0.026
1,3,5-trimethylbenzene	0.15	0.12	0.13	0.14	0.12	0.13	0.13	0.13	0.129	0.007	116.7	0.022
1,2,4-trimethylbenzene	0.15	0.12	0.13	0.12	0.12	0.13	0.12	0.12	0.123	0.005	122.1	0.015
1,3-dichlorobenzene	0.15	0.14	0.14	0.14	0.13	0.14	0.13	0.14	0.137	0.005	109.4	0,015
benzyl chloride	0.15	0.13	0.16	0.13	0.15	0.13	0.15	0.16	0.144	0.014	104.0	0.044
1,4-dichlorobenzene	0.15	0.13	0.11	0.12	0.12	0.12	0.12	0.13	0.121	0.007	123.5	0.022
1,2,3-trimethylbenzene	0.15	0.12	0.11	0.12	0,12	0.12	0.11	0.11	0.116	0.005	129.6	0.017
1,2-dichlorobenzene	0.15	0.13	0.14	0.14	0.14	0.14	0.14	0.13	0.137	0.005	109.4	0.015
1,2,4-trichlorobenzene	0.15	0.1	0.11	0.1	0.11	0.11	0.12	0.1	0.107	0.008	140.0	0.024
Naphthalene	0.15	0.13	0.13	0.14	0.11	0.12	0.14	0.12	0.127	0.011	118.0	0.035
Hexachloro-1,3-butadiene	0,15	0.16	0.17	0.17	0.17	0.16	0.16	0.16	0.164	0.005	9	0.017

Confidential

Centex Laboratories IDL Study				0.25	ug/M3 Detection January 2016	ction Limit :016					Method TO-15A Units=ppb	l TO-15A Inits=ppb
Мате	Amount	E M	IDL#2	IDL#3	IDL#4	(DL#5	9#10!	IDL#7	Average	StdDev	%Rec	걸
/inyl Chloride	0.1	0.11	0.11	0.09	60.0	0.1	0.09	0.1	0.099	0.009	101.4	0.028
arbon tetrachloride	0.1	0	0.11	0.08	0.09	0.09	0.09	φU O	0.093	0.010	107.7	0000
richlomethene	*	Č	ç	0					0000	200	- ·	20.0
	- j	- -	- - -	0.07	0.00	0.U8	0.08	0.08	0.084	0.01	118.6	0.036
etrachioroethylene	0.1	0.11	0.12	0.09	0.09	0.1	0.09	0.09	0.099	0.012	1014	0.038
daphthalene	0.1	0.09	0.08	0.07	0.06	0.06	0.07	0.06	0.070	0.012	142 9	0.036

Confidenti

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-001A

Date: 26-Apr-16

Client Sample ID: 1640-IAQ-1

Tag Number: 85,272

Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-8		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/4/2016 1:28:00 AM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	4/4/2016 1:28:00 AM
1,1-Dichloroethene	< 0.15	0.15	ρρbV	1	4/4/2016 1:28:00 AM
Chloroethane	< 0.15	0.15	PpbV	1	4/4/2016 1:28:00 AM
Chloromethane	< 0.15	0.15	∨dqq	1	4/4/2016 1:28:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 1:28:00 AM
Tetrachloroethylene	< 0.15	0.15	Vdqq	1	4/4/2016 1:28:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/4/2016 1:28:00 AM
Trichloroethene	0.12	0.040	₽pb∨	1	4/4/2016 1:28:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/4/2016 1:28:00 AM
Surr: Bromofluorobenzene	122	70-130	%REC	1	4/4/2016 1:28:00 AM

Qualiflers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E. Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-001A

Date: 26-Apr-16

Client Sample ID: 1640-IAQ-1

Tag Number: 85,272

Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Q:	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15		——————————————————————————————————————	Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 1:28:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 1:28:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 1:28:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 1:28:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 1:28:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 1:28:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 1:28:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	սց/m3	1	4/4/2016 1:28:00 AM
Trichloroethene	0.64	0.21	ug/m3	1	4/4/2016 1:28:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/4/2016 1:28:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

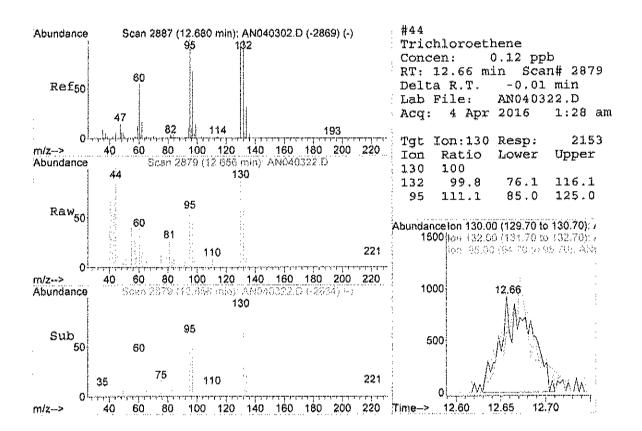
Page 1 of 7

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 04 04:41:55 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.05 16.56		15199 40864 26354	1.00 1.00 1.00	ppb -0.01
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70		20737m // Recovery	1.22	ppb 0.00 122.00%
Target Compounds 44) Trichloroethene	12,66	130	2153	0.12	Qvalue ppb 95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed ANO40322.D A316_1UG.M Tue Apr 26 16:27:51 2016 MSD1

Centek Laboratories

LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1

CLIENT:

C1603091-002A

Date: 26-Apr-16

Client Sample ID: 1640-IAQ-2

Tag Number: 496,403

Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD	•		Analyst:
Lab Vacuum In	-6		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0,25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vđqq	1	4/4/2016 2:08:00 AM
1,1-Dichloroethane	< 0.15	0.15	Vđqq	1	4/4/2016 2:08:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 2:08:00 AM
Chloroethane	< 0.15	0.15	Vđạq	1	4/4/2016 2:08:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	4/4/2016 2:08:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	Vđạq	1	4/4/2016 2:08:00 AM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	4/4/2016 2:08:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	₽₽b∨	1	4/4/2016 2:08:00 AM
Trichloroethene	0.080	0.040	Vdqq	1	4/4/2016 2:08:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	4/4/2016 2:08:00 AM
Surr: Bromofluorobenzene	125	70-130	%REC	1	4/4/2016 2:08:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-002A

Date: 26-Apr-16

Client Sample ID: 1640-1AQ-2

Tag Number: 496,403 Collection Date: 3/30/2016

Matrix: AlR

Analyses	Result	**Limit Qu	al Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 2:08:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 2:08:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:08:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 2:08:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 2:08:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:08:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 2:08:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:08:00 AM
Trichloroethene	0.43	0.21	ug/m3	1	4/4/2016 2:08:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/4/2016 2:08:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

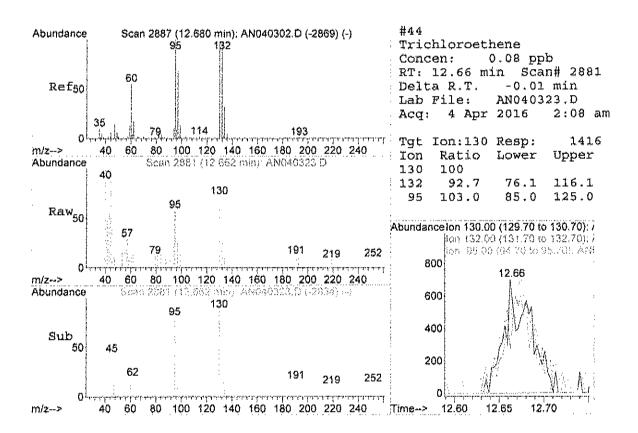
Page 2 of 7

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 04 04:41:56 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.05 16.57	128 114 117	14903 39943 26736	1.00 1.00 1.00	00.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	21451m / Recovery	1.25	ppb 0.00 125.00%
Target Compounds 44) Trichloroethene	12.66	130	1416	0.08	Qvalue ppb 97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed ANO40323.D A316_1UG.M Tue Apr 26 16:27:56 2016 MSD1

Centek Laboratories

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-003A

Date: 26-Apr-16

Client Sample ID: 1640-SVI-2

Tag Number: 366,1169 **Collection Date:** 3/30/2016

Matrix: AIR

Analyses	Result	**Limit (Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLI	D			Analyst:
Lab Vacuum In	-6			"Нд		3/31/2016
Lab Vacuum Out	-30		•	"Hg		3/31/2016
1UG/M3 BY METHOD TO15		TO-1	15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	1	ρρb∨	1	4/4/2016 2:47:00 AM
1.1-Dichloroethane	< 0.15	0.15	,	ppbV	1	4/4/2016 2:47:00 AM
1,1-Dichloroethene	< 0.15	0.15	,	ppb∨	1	4/4/2016 2:47:00 AM
Chloroethane	< 0.15	0.15		ppb∨	1	4/4/2016 2:47:00 AM
Chloromethane	< 0.15	0.15	1	ppbV	1	4/4/2016 2:47:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	,	opb∨	1	4/4/2016 2:47:00 AM
Tetrachloroethylene	0.11	0.15	ا ل	ppbV	1	4/4/2016 2:47:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	1	Vdqq	1	4/4/2016 2:47:00 AM
Trichloroethene	0.17	0.15	,	ppbV	1	4/4/2016 2:47:00 AM
Vinyl chloride	< 0.15	0.15	Į	opbV	1	4/4/2016 2:47:00 AM
Surr: Bromofluorobenzene	119	70-130		%REC	1	4/4/2016 2:47:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-003A

Date: 26-Apr-16

Client Sample ID: 1640-SV1-2

Tag Number: 366,1169 Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit	Quai	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/4/2016 2:47:00 AM
1,1-Dichtoroethane	< 0.61	0.61		ug/m3	1	4/4/2016 2:47:00 AM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/4/2016 2:47:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/4/2016 2:47:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	4/4/2016 2:47:00 AM
cis-1,2-Dichtoroethene	< 0.59	0.59		ug/m3	1	4/4/2016 2:47:00 AM
Tetrachioroethylene	0.75	1.0	J	ug/m3	1	4/4/2016 2:47:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/4/2016 2:47:00 AM
Trichioroethene	0.91	0.81		ug/m3	1	4/4/2016 2:47:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	4/4/2016 2:47:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

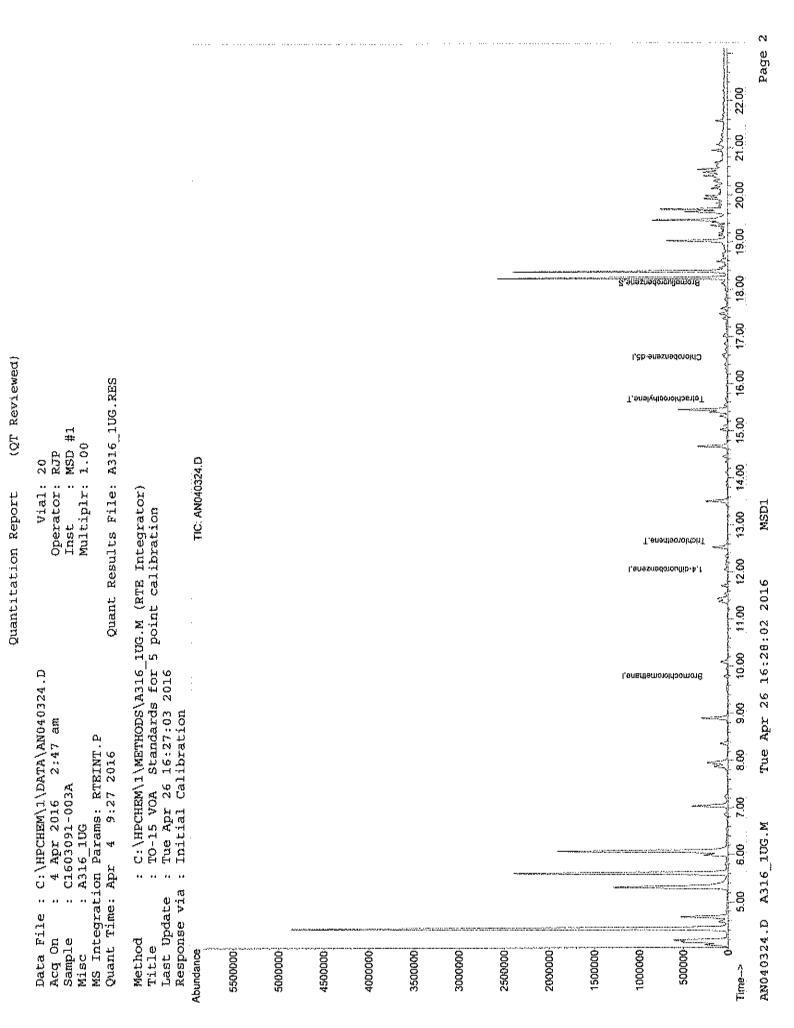
Page 3 of 7

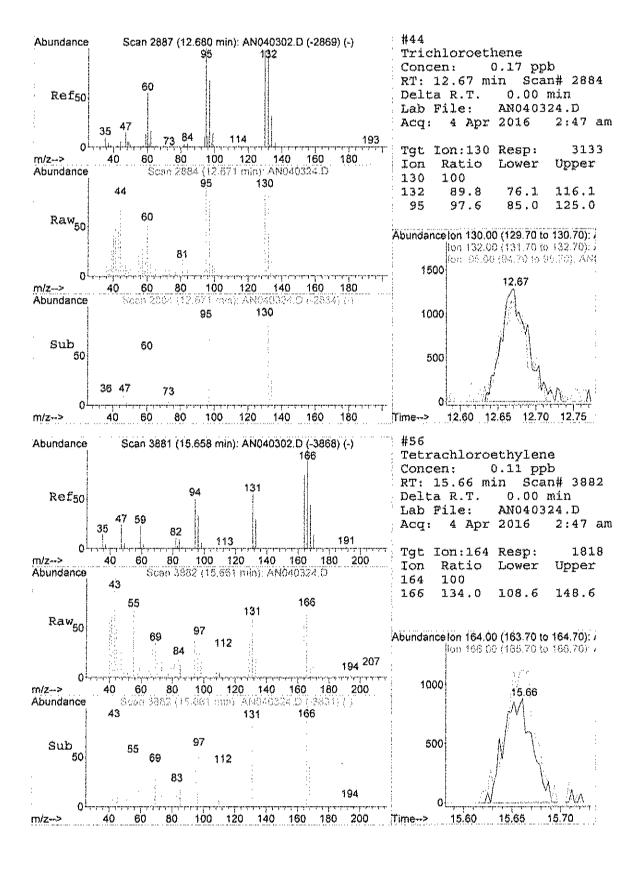
(QT Reviewed) Quantitation Report

Vial: 20 Data File : C:\HPCHEM\1\DATA\AN040324.D Acq On : 4 Apr 2016 2:47 am Sample : C1603091-003A Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 04 04:41:57 2016 Quant Results File: A316_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response Co	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.06 16.56		15528 43280 26603	1.00 1.00 1.00	ppb	10.0- 00.0 00.0
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	20441m/ Recovery		ppb 119	0.00
Target Compounds 44) Trichloroethene 56) Tetrachloroethylene	12.67 15.66	130 164	3133 1818		dqq dqq	Qvalue 93 95

^{(#) =} qualifier out of range (m) ≈ manual integration (+) = signals summed AN040324.D A316_1UG.M Tue Apr 26 16:28:01 2016 MSD1

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-004A

Date: 26-Apr-16

Client Sample ID: 1640-SVI-3

Tag Number: 1318,304

Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FL	Ð			Analyst:
Lab Vacuum In	-5			"Hg		3/31/2016
Leb Vacuum Out	-30			"Hg		3/31/2016
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15		ppbV	1	4/4/2016 3:26:00 AM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	4/4/2016 3:26:00 AM
1,1-Dichloroethene	< 0.15	0.15		ppb∨	1	4/4/2016 3:26:00 AM
Chloroethane	< 0.15	0.15		ppbV	1	4/4/2016 3:26:00 AM
Chloromethane	< 0.15	0.15		ppbV	1	4/4/2016 3:26:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15		₽₽bV	1	4/4/2016 3:26:00 AM
Tetrachioroethylene	0.12	0.15	J	ppb∨	1	4/4/2016 3:26:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/4/2016 3:26:00 AM
Trichloroethene	0.29	0.15		ppbV	1	4/4/2016 3:26:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	4/4/2016 3:26:00 AM
Surr: Bromofluorobenzene	116	70-130		%REC	1	4/4/2016 3:26:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 7

CLIENT: LaBella Associates, P.C. Client Sample 1D: 1640-SVI-3 Lab Order: C1603091 Tag Number: 1318,304

Project: Emerson Landfill Collection Date: 3/30/2016

Lab ID: C1603091-004A Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		ТО	15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/4/2016 3:26:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/4/2016 3:26:00 AM
1,1-Dichloroethene	< 0.59	0.59		սց/m3	1	4/4/2016 3:26:00 AM
Chloroethane	< 0.40	0.40	1	ug/m3	1	4/4/2016 3:26:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	4/4/2016 3:26:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/4/2016 3:26:00 AM
Tetrachloroethylene	0.81	1.0	J	ug/m3	1	4/4/2016 3:26:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		սց/m3	1	4/4/2016 3:26:00 AM
Trichloroethene	1.6	0.81		ug/m3	1	4/4/2016 3:26:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	4/4/2016 3:26:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-16

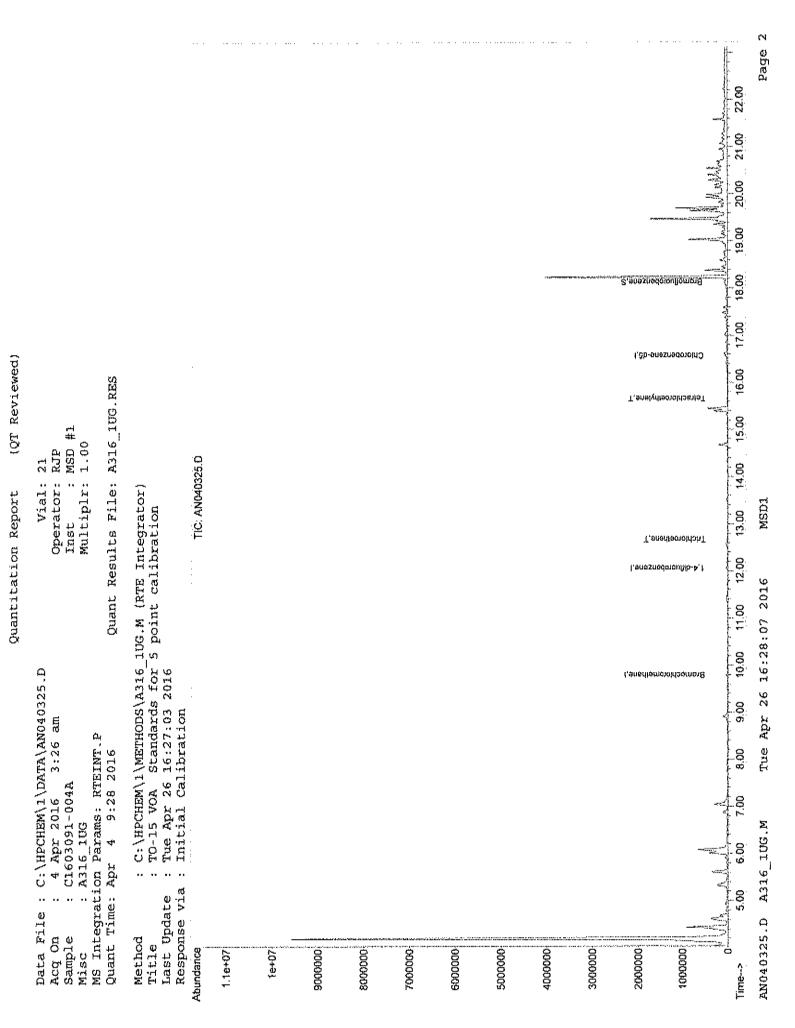
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

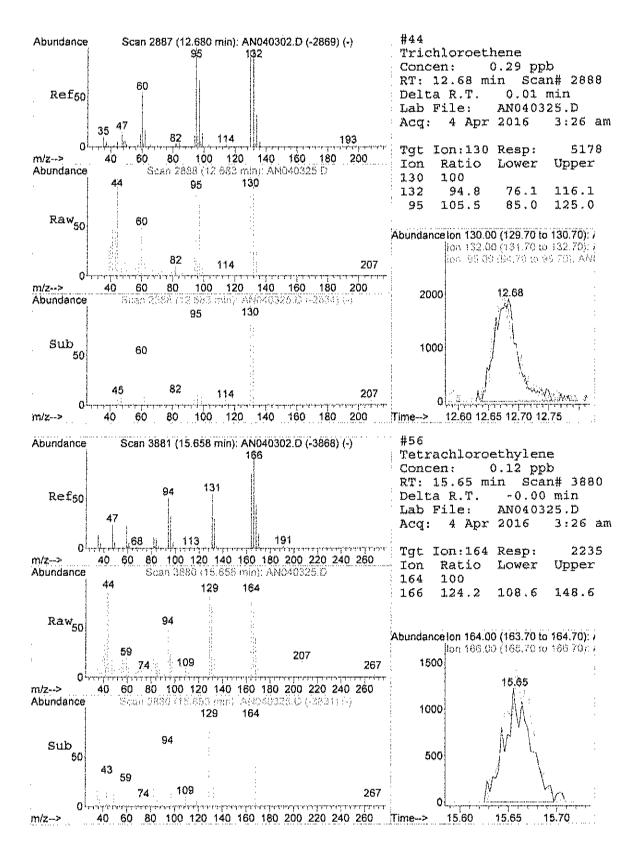
Page 4 of 7

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN040325.D Vial: 21 Operator: RJP Acq On : 4 Apr 2016 3:26 am Sample : C1603091-004A Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Results File: A316_1UG.RES Quant Time: Apr 04 04:41:58 2016


Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.80 12.06 16.56		16444 42195 29354	1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	21979m# Recovery		ppb 116	
Target Compounds 44) Trichloroethene 56) Tetrachloroethylene	12.68 15.65	130 164	5178 2235	0.29 0.12	ppb dqq	Qvalue 99 96

^{(#) =} qualifier out of range (m) = manual integration (+) ≈ signals summed AN040325.D A316_1UG.M Tue Apr 26 16:28:06 2016 MSD1

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-005A

Date: 26-Apr-16

Client Sample ID: 1640-IAQ-3

Tag Number: 1207,299 Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0,25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppb∨	1	4/3/2016 11:24:00 PM
1.1-Dichloroethene	< 0.15	0.15	ppb∨	1	4/3/2016 11:24:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
Chloromethane	< 0.15	0.15	∨dqq	1	4/3/2016 11:24:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
Tetrachloroethylene	< 0.15	0.15	Vdqq	1	4/3/2016 11:24:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/3/2016 11:24:00 PM
Trichloroethene	0.090	0.040	ppbV	1	4/3/2016 11:24:00 PM
Vinyi chloride	< 0.040	0.040	ppbV	1	4/3/2016 11:24:00 PM
Surr: Bromofluorobenzene	119	70-130	%REC	1	4/3/2016 11:24:00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-005A

Date: 26-Apr-16

Client Sample ID: 1640-IAQ-3

Tag Number: 1207,299

Collection Date: 3/30/2016

Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ид/т3	1	4/3/2016 11:24:00 PM
1,1-Dichtoroethane	< 0.61	0.61	ug/m3	1	4/3/2016 11:24:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/3/2016 11:24:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/3/2016 11:24:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/3/2016 11:24:00 PM
cls-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/3/2016 11:24:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/3/2016 11:24:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/3/2016 11:24:00 PM
Trichloroethene	0.48	0.21	ug/m3	1	4/3/2016 11:24:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/3/2016 11:24:00 PM

Qualifiers:

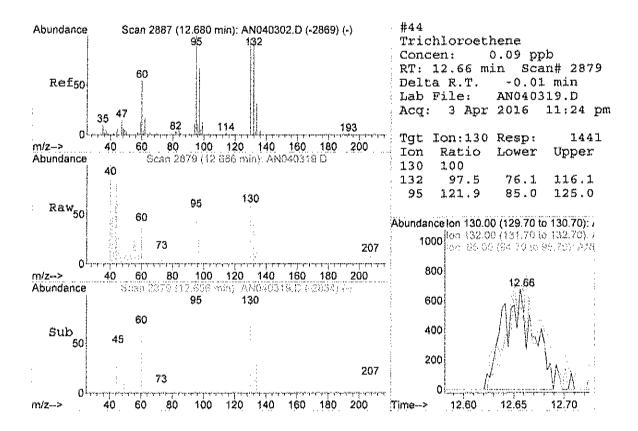
- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 7

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN040319.D Vial: 15 Acq On : 3 Apr 2016 11:24 pm Operator: RJP Sample : C1603091-005A Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Results File: A316_1UG.RES Quant Time: Apr 04 04:41:52 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one U	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.77 12.04 16.55	128 114 117	14883 37891 28556	1.00	ppb -0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.12 Range 70	95 - 130	21851m // Recovery		ppb -0.01 119.00%
Target Compounds 44) Trichloroethene	12.66	130	1441	0.09	Qvalue ppb 91

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN040319.D A316_1UG.M Tue Apr 26 16:27:46 2016 MSD1

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-006A

Date: 26-Apr-16

Client Sample ID: 1640-Blind Duplicate

Tag Number: 336,403 Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-8-		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	₽₽₽V	1	4/4/2016 4:06:00 AM
1,1-Dichtoroethane	< 0.15	0.15	Vďqq	1	4/4/2016 4:05:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 4:06:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	4/4/2016 4:06:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	4/4/2016 4:06:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/4/2016 4:06:00 AM
Tetrachloroethylene	< 0.15	0.15	ppb∨	1	4/4/2016 4:06:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	₽₽bV	1	4/4/2016 4:08:00 AM
Trichloroethene	< 0.040	0.040	Vdqq	1	4/4/2016 4:06:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	4/4/2016 4:06:00 AM
Surr: Bromofluorobenzene	118	70-130	%REC	1	4/4/2016 4:06:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 6 of 7

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-006A

Client Sample ID: 1640-Blind Duplicate

Tag Number: 336,403 Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	· ·		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 4:06:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 4:06:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:06:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 4:06:00 AM
Chloromethane	< 0.31	0.31	սց/m3	1	4/4/2016 4:06:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:06:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 4:06:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	មg/m3	1	4/4/2016 4:06:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/4/2016 4:06:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/4/2016 4:06:00 AM

Qualifters:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 6 of 7

Quantitation Report (QT Reviewed)

 Data File : C:\HPCHEM\1\DATA\AN040326.D
 Vial: 22

 Acq On : 4 Apr 2016 4:06 am
 Operator: RJP

 Sample : C1603091-006A
 Inst : MSD #1

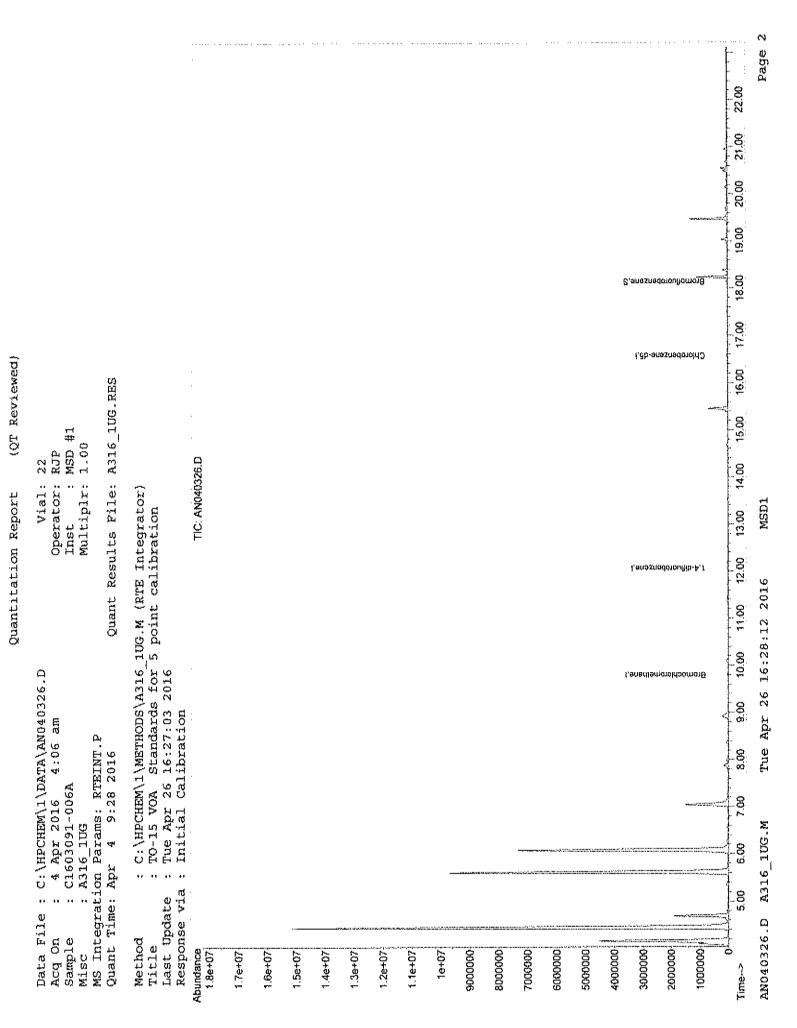
 Misc : A316_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 04 04:41:59 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Mar 17 10:24:27 2016


Response via : Initial Calibration

DataAcg Meth : 1UG RUN

Internal Standards	R.T. QIOT	Response	Conc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 128 12.06 114 16.57 117	45571	1.00 ppb -0.01 1.00 ppb 0.00 1.00 ppb 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 95 Range 70 - 13		1.18 ppb 0.00 y = 118.00%

Target Compounds Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed ANO40326.D A316_1UG.M Tue Apr 26 16:28:11 2016 MSD1

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1640-Outdoor Air

Lab Order: C1603091 Tag Number: 290,48

Project: Emerson Landfill Collection Date: 3/30/2016

Project: Emerson Landfill Collection Date: 3/30/201
Lab ID: C1603091-007A Matrix: AIR

Analyses	Result	**Limit Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/31/2016
Lab Vacuum Out	-30		"Hg		3/31/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	4/4/2016 4:45:00 AM
1,1-Dichloroethane	< 0.15	0,15	ppb∨	1	4/4/2016 4:45:00 AM
1,1-Dichloroethene	< 0.15	0.15	Vágg	1	4/4/2016 4:45:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/4/2016 4:45:00 AM
Chloromethane	1.0	0.15	Váqq	1	4/4/2016 4:45:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/4/2016 4:45:00 AM
Tetrachloroethylene	< 0.15	0.15	Vdqq	1	4/4/2016 4:45:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	₽₽₽V	1	4/4/2016 4:45:00 AM
Trichloroethene	< 0.040	0.040	ppbV	1	4/4/2016 4:45:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/4/2016 4:45:00 AM
Surr: Bromofluorobenzene	114	70-130	%REC	1	4/4/2016 4:45:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 7

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Laudfill

Lab ID: C1603091-007A

Date: 26-Apr-16

Client Sample ID: 1640-Outdoor Air

Tag Number: 290,48 Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 4:45:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 4:45:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:45:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/4/2016 4:45:00 AM
Chloromethane	2.1	0.31	ug/m3	1	4/4/2016 4:45:00 AM
cls-1,2-Dichloroethene	< 0.59	0.59	սց/m3	1	4/4/2016 4:45:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 4:45:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 4:45:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/4/2016 4:45:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/4/2016 4:45:00 AM

Qualifiers:

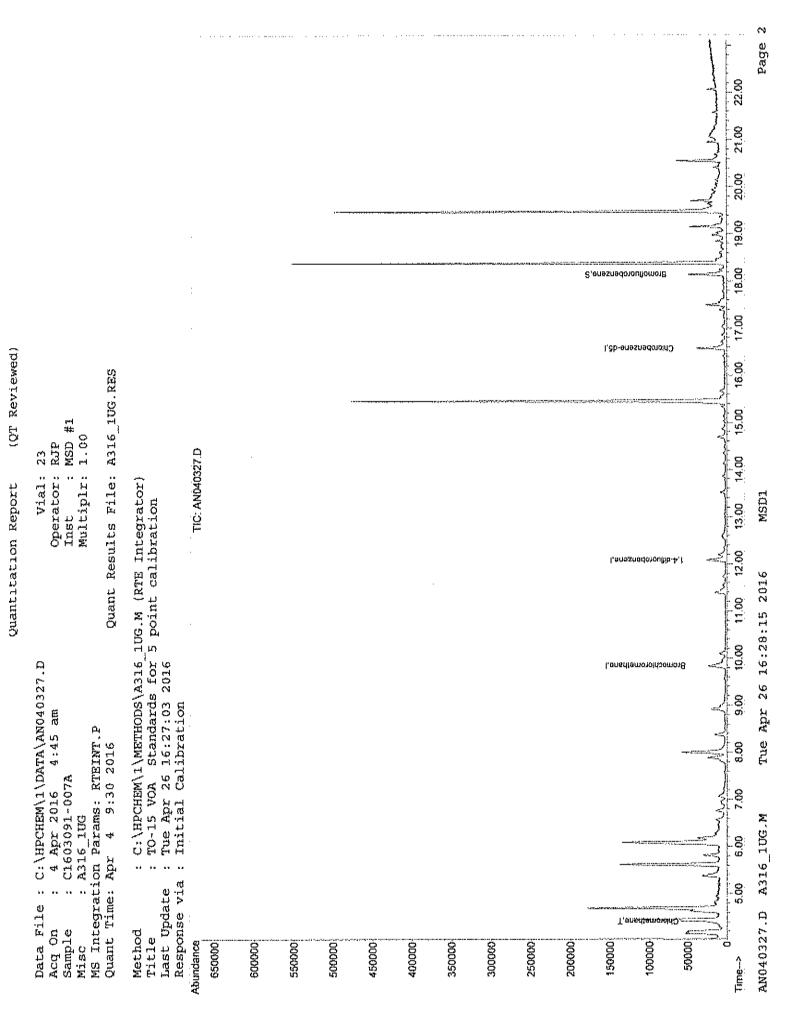
- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 2 Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

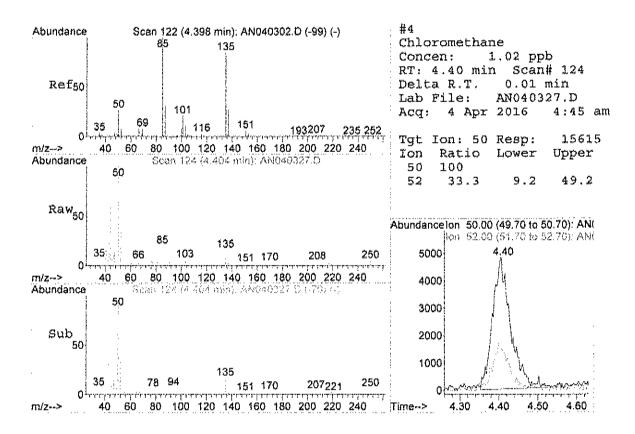
Page 7 of 7

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 04 08:42:11 2016 Quant Results File: A316_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one Ur	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.08 16.57	128 114 117	13714 33839 30298	1.00 1.00 1.00	E0.0 dqq
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	22267 Recovery	1.14	ppb 0.00
Target Compounds 4) Chloromethane	4,40	50	15615	1.02	Qvalue ppb 92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed ANO40327.D A316_1UG.M Tue Apr 26 16:28:14 2016 MSD1

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 STANDARDS DATA

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INITIAL CALIBRATION

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VON Standards for 5 point calibration Title : TO-15 VOA Standards for S point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration

Calibration Files

0.04 =AN031612.D 0.10 =AN031611.D 0.15 =AN031610.D 0.30 =AN031609.D 0.50 =AN031608.D 0.75 =AN031607.D

		Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avg	%RSD
Compound 0.04 0.10 0.15 0.30 0.50 0.75 Avg %RSD 1) I Bromochloromethane										
_	I	Bromochloxomethan	e -			IST	D.~ ~ ~ ~ ~			
2)	T	Propylene			1.131	0.916	0.800	0.787	0.810	18.47
3)	\mathbf{T}	Freon 12			5.132	4.678	4.218	4.223	4.271	10.16
4)	\mathbf{T}	Chloromethane			1.503	1,264	1.102	1.101	1,118	16.44
5)	${f T}$	Freon 114			4.240	3.932	3.598	3.582	3.598	9.49
6)		Vinvl Chloride	1.719	1.251	1.297	1.175	1.025	1.010	1.125	22.21
7)	,L	Fropylene Freon 12 Chloromethane Freon 114 Vinyl Chloride Butane 1,3-butadiene Bromomethane Chloroethane Ethanol Acrolein Vinyl Bromide Freon 11 Acetone Pentane Tsopropyl alcoh 1,1-dichloroeth Freon 113			1.907	1.462	1.217	1.136	1.285	21.70
8)		1.3-butadiene			0.944	1.260	0.745	0.776	0.847	21.16
	Ť	Bromomethane			1 732	1.419	1.456	1.223	1.320	15.58
10)	Ť	Chloroethane			0.548	0.498	0.458	0.443	0.459	9.89
11)		Prhanol			0.466	0 454	0.339	0.336	0,459 0.341	22.51
-		Nexoloin			0.306	0.346	0.776	0.773	0.290	16.78
12)		ACTOTETH			1 554	7 410	1 240	1 246	0.290 1.298 4.393	12.66
13)	T	Vinyi Bromide			T-004	1.410	4 560	1.240	4 202	10.46
14)		Freon 11			5.350	4.760	4.358	4.491	4.333	70.40
15)		Acetone			0.580	0.446	0.467	0.385	0.432	15.55
16)		Pentane			1.399	1.121	0.953	0,938	0.432 0.986 1.409	19.28
17)		Isopropyl alcoh			1.936	1.738	1.419	1,309	1.409	19.82
78)	T	1,1-dichloroeth			1.544	1 494	1 277	1 777	1 283	10.49
19)	T	Freon 113			3.697	3.334	3.051	3.060	3.094	9.58
20)	t	t-Butyl alcohol			2,795	2.640	2.350	2.175	2.248	14.34
21)		Methylene chlor			1.287	1.198	1.152	1.112	1.124	7.74
22)		Allyl chloride			1.371	1.068	0.996	0.948	0.998	16.47
23)		Carbon disulfid			4.365	3.573	3.215	3.276	3.316	14.26
24)		trans-1,2-dichl			1.785	1.581	1.489	1.479	1,522	8.00
25)		methyl tert-but			3.237	3.087	2.752	2.784	2.881	9.58 14.34 7.74 16.47 14.26 8.00 6.44
26)		1,1-dichloroeth			2 507	2 235	2.143	2.145	2.155	7.74
27)		Vinyl acetate			2.30%	1 077	1 623	1 860	1.869	8.00 6.44 7.74 11.34 3.55 3.87 10.28 8.58
		Markel Makes Ma			0.536	7.27	0.440	0.428	0 461	7.54
28)		Methyl Ethyl Ke			0.000	1 710	1 252	1 224	1 250	3 55
29)		cis-1,2-dichlor			1.213	T-3TO	4 242	1 266	7 700	3 97
30)		Hexane			1.3//	1 060	1,24/	1.200	1 704	10.28
31)		Ethyl acetate			X . 104	1.307	1.002	1.00%	7.704	0.20
32)		Chloroform			3.430	3,077	2.91/	2.074	2,910	0.05
33)		recreativentares			0.985	0.870	0.782	0.911	0.828	0.00
34)	T	1,2-dichloroeth			1.826	1.794	1.645	1.604	1.641	3.55 3.87 10.28 8.58 8.85 7.17
35)	I	1,4-difluorobenzer 1,1,1-trichloro Cyclohexane Carbon tetrachl Benzene Methyl methacry 1,4-dioxane 2,2,4-trimethyl	te			ISTI)			
36)	T	1.1.1-trichloro			1,073	1.013	0.947	0.901	0.939	7.43
37)	T	Cyclohexane			0.412	0.377	0.375	0.379	0.387	3.38
38)	T	Carbon tetrachl	1.514	1.229	1.098	1.027	0.964	0.926	1.048	18.29
39)	Ť	Renzene	_,	_,,	0.968	0.850	0.818	0.806	0.832	6.91
40)	717	Mathad mathagas			0.347	0.000	0 242	0 278	0 271	12.09
41)	Ť	1 4 diamona			V 210	0.243	0.234	0.270	0.213	9.01
	<i>t</i>	2,2,4-trimethyl			1 500	7 855	1.390	7 406	1 453	4 74
42)		Z,Z, * - CZ zmecnyz			7.330	A 216	0.312	7.400	4.400	5.49
43)	T	Heptane	0 500	0 476						15.21
44)	T	Trichloroethene	0.593	U.4/6	0.419					6.07
45)	Ţ	1,2-dichloropro					0.307			
46)	T	Bromodichlorome					0.731			7.46
47)	Т	cis-1,3-dichlor			0.445	0.416	0.389	0.378	0.400	5.47
48)	Ţ	trans-1,3-dichl					0.357			8.05
49)	T	1,1,2-trichloro			0.395	0.345	0.323	0.317	0.329	8.71
50)	I	Chlorobenzene-d5	 -		# 141 MA AT AT TO B	ISTI)			
51)		Toluene							0.679	5.43
/	•	No. of the place of the second				,				

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### Thu Apr 07 13:04:59 2016 A316 1UG.M

Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration

Calibration Files

∞AN031610.D 0.04 =AN031612.D 0.10 =AN031611.D 0.15 **mAN031607.D** 0.30

	Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avg	%RSD
52) T 53) T 54) T 55) T	Methyl Isobutyl Dibromochlorome Methyl Butyl Ke 1,2-dibromoetha			0.954 1.113	0.844	0.859	1.227 0.850 1.026 0.798	0.857 1.068	5.80 4.94 7.36 9.38
56) T 57) T 58) T	Tetrachlorosthy Chlorobenzene 1,1,1,2-tetrach	0.981	0.712	0.625 0.989	0.622 0.894	0.586 0.875	0.599 0.855 0.649	0.648 0.891	19.03 4.61 3.94
59) T 60) T 61) T	Ethylbenzene m&p-xylene Nonane			1.179 0.862	1.069 0.818	1.076 0.830	1,097	1.165 0.925	6.41 11.55 16.56
62) T 63) T 64) T	Styrene Bromoform o-xylene			0.616 0.471	0.546 0.450	0.553	0.568 0.442 1.016	0.644 0.463	13.48 4.51 9.78
65) T 66) S 67) T	Cumene Bromofluorobenz 1,1,2,2-tetrach	0.602	0.608	1.528 0.592 1.606	1.180 0.601 1.289	1.102 0.592 1.081	1.083 0.614 1.068	1.299 0.643 1.140	13.89 9.58 18.58
68) T 69) T 70) T	Propylbenzene 2-Chlorotoluene 4-ethyltoluene			1.115	0.938 1.277	0.930	1.157 0.834 1.000	1.004 1.183	13.20 10.36 12.64
71) T 72) T 73) T	1,3,5-trimethyl 1,2,4-trimethyl 1,3-dichloroben			1.647 0.958	1.374 0.839	1.172	1.240 1.119 0.663	1.224 0.778	11.59 15.92 11.85
74) T 75) T 76) T	benzyl chloride 1,4-dichloroben 1,2,3-trimethyl			0.854 1.944	0.804	0.638 1.429	1.101 0.633 1.376 0.846	0.733 1.510	8.22 11.05 14.35 21.55
77) T 78) T 79) T 80) T	1,2-dichloroben 1,2,4-trichloro Naphthalene Hexachloro-1,3-			0.693 1.699	0.719 1.607	0.677	0.622 1.407 1.765	0.720 1.494	10.92 11.86 7.91

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### MSDl A316_1UG.M Thu Apr 07 13:05:00 2016

(QT Reviewed) Quantitation Report

Data File : C:\MPCHEM\1\DATA\AN031603.D Vial: 2 Acq On : 16 Mar 2016 6:50 pm Operator: RJP Sample : AlUG_2.0 Misc : A316_lUG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:19:00 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Units	Þev	(Min)
+ \ #\		****	20505		w =	-0 01
1) Sromochtoromethane	9.79	128	71020	1.00 ppi		0.04
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	12.00	117	445544 445544	1.00 ppb		0.00
30) CHICLODEHNEHE-GD	10.50	Ji. de 7	0.7204	1.00 222		0.00
System Monitoring Compounds						
66) Bromofluorobenzene	18.13	95	48331	1.15 ppt		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	ry = 115	.00%	
7						
Target Compounds						alue
2) Propylene	4.14	41	52720 300982	1.77 ppb	#	
3) Freon 12	4.19			1.82 ppb		1.00
4) Chloromethane	4.39	50	75653	1.85 pph		90
5) Freon 114	4.39	85 62	252561 71454	1.79 ppb		99
6) Vinyl Chloride	4.58	62	71454	1.80 ppb		89
7) Butane	4.68	43	84007	1.71 ppb		95
8) 1,3-butadiene	4.69 5.03	39	60171 88794	1.98 ppb 1.75 ppb		86
Bromomethane	5.03	54	86794	1.75 ppt		93
10) Chloroethane	5.20		31848	1.90 ppb		
11) Ethanol	5.34 5.93	45	22162 19963m/	1.89 ppb	#	66
12) Acrolein	5.93	56	19963m/	1.92 pph		
13) Vinyl Bromide	5.54	106	90315	1.77 ppb		96
14) Freon 11	5.80	101	311834	1.84 pph		99
15) Acetone	6.02	58	90315 311834 31506	2.05 ppb		
16) Pentane	6.06	42	64025 95378 90887	1.75 ppb		33
17) Isopropyl alcohol	6,13	45	95378	1.89 ppb		45
18) 1 1-dichloroethene	6.56	96	90887	1.81 ppb		89
19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride	6.75	101	218149	1.79 ppb		96
20) t-Butyl alcohol	6.87	59	153022	1.79 pph	#	
21) Methylene chloride	7.04	84	81781	1.83 ppb		92
22) Allyl chloride	/.00	41	75821 229469	2.00 ppb		88
		76	229469	1.81 ppb		97
24) trans-1,2-dichloroethene	7.97	61	109677	1.86 ppb		90
25) methyl tert-butyl ether	8.01	73	217092 155890 139082	1.92 ppb		96
26) 1,1-dichloroethane	8.39	63	155890	1.83 ppb		99
Z/I VIIIVI ACGUALE	0 - 4 -	43	139082	1.80 ppb		99
28) Methyl Ethyl Ketone	8,92	72	35109	1.95 ppb		100
29) cis-1,2-dichloroethene	9.33	61	35109 95640	1.86 ppb		93
30) Hexane	8.90	57	103745	1.97 ppb		96
31) Ethvl acetate	9.51	43	132681	1.93 ppb		96
31) Ethyl acetate 32) Chloroform 33) Tetrabydrofuran 34) 1,2-dichloroethane	9.94	83	209422	1.93 ppb 1.84 ppb		98
33) Tetrahydrofuran	10.15	42	59093	1.80 ppb		65
34) 1.2-dichloroethane	11.07	62	118759	1.86 ppb		87
36) 1,1,1-trichloroethane	10.75	97	211952	1.92 ppb		100
37) Cyclohexane	11.44	56	95560	2.08 ppb		90
38) Carbon tetrachloride	11.39	117	221613	1.95 ppb		97
39) Benzene	11.36	78	193181	1.98 ppb		98
40) Methyl methacrylate	12.91	41	62212	1.99 ppb		80
41) 1,4-dioxane	12.99	88	48143	1.87 ppb		97
42) 2,2,4-trimethylpentane	12.18	57	351761	2.00 ppb		98
43) Heptane	12.53		86114	2.04 ppb		88
44) Trichloroethene	12.67	130	95479	2.05 ppb		99
45) 1,2-dichloropropane	12.79	63	95479 67226	1.91 ppb		98

(#) = qualifier out of range (m) = manual integration AN031603.D A316_1UG.M Thu Apr 07 13:05:28 2016

Page 1

MSD1

(QT Reviewed) Quantitation Report

Vial: 2 Data File : C:\HPCHEM\1\DATA\AN031603.D Acq On : 16 Mar 2016 6:50 pm Sample : AlUG 2.0 Misc : A316 lUG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:19:00 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.11	83	168164	1.95 ppb	99
47)	cis-1,3-dichloropropene	13.89	75	96193	2.09 ppb	100
48)	trans-1,3-dichloropropene	14.62	75	81400	1.94 ppb	92
49)	1,1,2-trichloroethane	14.93	97	73046	1.93 ppb	98
51)	Toluene	14,67	92	95859	2.10 ppb	98
52)	Methyl Isobutyl Ketone	13.82	43	161205	1.95 ppb	98
53)	Dibromochloromethane	15.60	129	111719m 🏲	1.98 ppb	
54)	Methyl Butyl Ketone	15.11	43	145361	1.95 ppb	97
55)		15.85	107	103573	1.91 ppb	97
56)	Tetrachloroethylene	15.66	164	77730	1.98 ppb	98
57)		16.61	112	114609	2.01 ppb	89
58)	1,1,1,2-tetrachloroethane	16.71	1.31	83929	1.85 ppb	98
59}	Ethylbenzene	16.85	91	163580	2.13 ppb	98
60)	m&p-xylene	17.04	91	279419	4.64 ppb	97
61)	Nonane	17.38	43	90950	2.59 დდხ	98
62)	Styrene	17.46	104	100790	2.36 ppb	89
63)	Bromoform	17.58		63866	2.18 ppb	97
64)	o-xylene	17.48	91	162873	2.39 ppb	95
65)		18.01	105	197775	2.53 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	129149	/ 1.85 ppb	99
68)	Propylbenzene	18.53	91	209599m 🍍	2.74 ppb	
69)	2-Chlorotoluene	18.58	91	145425m	2.28 ppb	
70)	4-ethyltoluene	18.70	105	165888m /	2.44 ppb	
71)		18.75	105	184877m 🖫		
72)		19.19	105	147804	2.03 ppb	98
73)		19.49	146	99804	2.01 ppb	96
74)	benzyl chloride	19.56	91	137885	2.04 დდებ	97
75)		19.61	146	97347	2.06 დდა	98
76)	1,2,3-trimethylbenzene	19.65	105	180121	dgg 88.1	98
77)	1,2-dichlorobenzene	19.93	146	104274	1.75 ppb	97
78)	1,2,4-trichlorobenzene	21.78	180	115972	2.52 ppb	96
79)	Naphthalene	21.98	128	221487m /	2.55 ppb	* -
80)	Hexachloro-1,3-butadiene	22.06	225	218825 Y	1.78 ppb	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031603.D A316 1UG.M Thu Apr 07 13:05:29 2016 MSD1

(A) Keyteweut

אמשוורונשרותו עבהתור

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031604.D Vial: 3 Acq On : 16 Mar 2016 7:30 pm Operator: RJP Sample : A1UG_1.50 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:18:42 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

Internal Standards			Response		Uni	its	Dev	(Min)
		128	37388		00 1	dac		0.01
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	12.06	114	37388 125097	ĩ.	00 1	dac		
50) Chlorobenzene-d5	16.56	117	71425	2.	00 %	dac		0.00
20) CHICLOIDERC GO	20.00							
System Monitoring Compounds								
66) Bromofluorobenzene	18.13	95			06 X			0.00
Spiked Amount 1.000	Range 70	- 130	Recove	тy	= 7	1.06	.00%	
_								
Target Compounds		4.5	44000	-	15 -	In		lue 100
2) Propylene	4.13		41028 229102	1.	46 I			200
3) Freon 12	4,19	85			47	age		93
4) Chloromethane	4.39		56920		48 3			100
5) Freon 114	4.39 4.58	85	192137 53313	<u>.</u>	45 1			92
6) Vinyl Chloride	4.58	62	53313	- L.	42 I			97
7) Butane	4-65	43	62790 42193 66997	±.	36 1			82
8) 1,3-butadiene	4.69	39	42193	1.	48 g			
9) Bromomethane	5.03	94	66997	1.	40 Y			93
10) Chloroethane	5.20	64 45 56	24605	_	56 Y			88
ll) Ethanol	5.35	45	15188 14959m	D I	37 I		#	66
12) Acrolein	5.94	56	14959m	1/ 1.	53 g			
13) Vinyl Bromide	5.54	105 101	68982		43 Y			98
14) Freon 11		101	235962	3.	48 I			99
15) Acetone	6.03	58		1 1.	54 I			
16) Pentane	6.07	42	50174 68376 68884	1.	45 J			88
17) Isopropyl alcohol	6.14	45	68376	1.	44			46
18) 1,1-dichloroethene	6.56	96	68884	1.	45 Y			89
19) Freon 113	6.75	101	165966 113330] 1.	44 Y			97
20) t-Butyl alcohol	6.88	59	113330 58969m 49125m 165861	1 1.	41 <u>I</u>	gqq	#	75
21) Methylene chloride	7.04	84	58969m	1 1.	40	gag		
22) Allyl chloride	7.01	41	49125m	<i>J</i> / 1.	38 1	age		
23) Carbon disulfide	7.01 7.19	76	165861	1.	39 I	dqq		99
24) trans-1,2-dichloroethene		61	85565	1.	54 I	dq¢		91
25) methyl tert-butyl ether	8.02	73	162235 120712	1.	52 <u>I</u>			95
26) 1,1-dichloroethane	8.39				50 X			98
27) Vinyi acetate	8.41	43	105982	1.	46 g	dqc		97
28) Methyl Ethyl Ketone	8.92	72 61	26847 72635	1.	58 r	qqq	#	100
29) cis-1,2-dichloroethene	9.34	61	72635	1.	50 I			92
30) Hexane	8.90	57	フフフュフ	l.	57 <u>k</u>	dac		97
31) Ethyl acetate	9.52 9.94	43	77717 98475 161422	1.	52 g			
32) Chloroform	9.94	83	161422	1.	50 g			99
33) Tetrahydrofuran	10.15 11.08	42	46658		51 E			91
34) 1,2-dichloroethane				1.	54 g	qqq		89
36) 1,1,1-trichloroethane	10.75	97	164249	1.	42 p	dqo		98
37) Cyclohexane	11.44	56	70836	1.	47 K	dag		87
38) Carbon tetrachloride	11.38	117	171139	1.	44 1	dqq		97
39) Benzene	11.37	78	149554	1.	46 g	dge		99
40) Methyl methacrylate	12.91	41	47301 34749	1.	45 g	dqc	Ħ	83
41) 1,4-dioxane	12.99	88 57	34749	1.	29 g	dac		97
42) 2,2,4-trimethylpentane	12.18	57	259886	1.	41 g	dqq		98
43) Heptane	12.53	43	66410	1.	50 g	dac		89
44) Trichloroethene	12.68	130	66410 73890 53981	1.	51 g			98
45) 1.2-dichloropropane	12.79	63	53981	1.	46 g			99

^{(#) =} qualifier out of range (m) = manual integration AN031604.D A316_1UG.M Thu Apr 07 13:05:32 2016 MSD1

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031604.D Vial: 3 Acq On : 16 Mar 2016 7:30 pm Operator: RJP Sample : AlUG_1.50 Misc : A316_lUG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:18:42 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.11	83	131443		98
47)	cis-1,3-dichloropropene	13.89	75	73577	1.45 ppb 1.52 ppb	98
48)		14.63	75	63904	1.46 ppb	93
49)		14.93	97	60215	1.52 ppb	99
,	1,1,2-trichloroethane Toluene	14.67	92	76620	1.53 ppb	96
51) 52)	Methyl Isobutyl Ketone	13.83	43	112630	1.24 ppb	97
53)	Dibromochloromethane	15.60	129	89145m /		
54)	Methyl Butyl Ketone	15.11	43	100523	1.23 ppb	96
55)	1.2-dibromoethane	15.85	107	84426	1.42 ppb	98
56)		15.65		62278	1.45 ppb	98
57)		16.61	112	93584	1.50 ppb	91
58)		16.70	131	67746	1.37 ppb	98
59)		16.85	91	131064	1.56 ppb	97
60}		17.04	91	219605	3.33 ppb	97
61)	Nonane	17.38	43	67119	1.74 ppb	99
62)	Styrene	17.46	104	75304	1.61 ppb	91
63)	Bromoform	17.59	173	49198	1.53 ppb	100
64)	o-xylene	17.48	91	129975	1.74 ppb	95
65)	· · · · · · · · · · · · · · · · · · ·	18.02	105	143847	1.68 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	102893	ງ 1.35 ppb	99
,	Propylbenzene	18.54	91	146044m	1.74 ppb	
69)		18.58	91	109401m	1.57 ppb	
70)		18.70	105	121465m	1.63 ppb	
71)	1,3,5-trimethylbenzene	18.75	105	142483m	1.53 ppb	
72)		19.19	105	113063	1.42 ppb	95
73)	1,3-dichlorobenzene	19.48	146	75726	1.39 ppb	98
74)	benzyl chloride	19.56	91	105994	1.43 ppb	97
75)		19.62	146	71922	1.39 ppb	99
	1,2,3-trimethylbenzene	19.65		141118	1.34 ppb	97
	1,2-dichlorobenzene	19.93		81574	1.25 ppb	98
	1,2,4-trichlorobenzene	21.79		77042	1.53 ppb	96
79)	Naphthalene	21.98	128	162805	1.71 ppb	98
80)	Hexachloro-1,3-butadiene	22.06	225	164815	1.22 ppb	95
~ ~ /	And the same and the same state of the same stat				* *	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031604.D A316_1UG.M Thu Apr 07 13:05:33 2016 MSDI

Wr Kevlewed

Vuduillation Report

Quantitation Report (QT Reviewed)

Data File : C:\RPCHEM\1\DATA\AN031605.D Vial: 4 Acq On : 16 Mar 2016 8:10 pm Sample : A1UG 1.25 Misc : A316 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:18:24 2016

Quant Method: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016
Response via: Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
7\ Danash2	0 00	100	20425	1.00 ddq 00.1
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	3.00	114	30433	1,00 ppb 0.00 1,00 ppb 0.00
55) I,4-GILLUOIODENZENE	12.00	***	110000	1.00 ppb 0.00
50) Chlorobenzene-d5	10.50	117	00009	r.00 pps 0.00
System Monitoring Compounds				
66) Bromofluorobenzene		95	50183	1.17 ppb 0.00
Spiked Amount 1.000	Range 70	- 130	Recove	ery = 117.00%
Howart Compounds				Qvalue
Target Compounds 2) Propylene	4.14	41	34125	
3) Freon 12	4.19		34125 188632	1.18 ppb " 99
4) Chloromethane	4.39	50	46990	1.19 ppb 94
5) Freon 114		90	150100	1.17 ppb 99
6) Vinyl Chloride	4.33	65	159182 44524	1.16 ppb 93
	4.68	49	55448	1.16 ppb 94
7) Butane	4.00	30	25440	1.24 ppb 84
8) 1,3-butadiene	4.69 5.04	39 94	36591 55311	1.13 ppb 91
9) Bromomethane	5.04	54	22377	1.13 ppb # 85
10) Chloroethane	5.20	54	4 5 5 5 5	2 DA wash 44 74
11) Ethanol	5.36	45 56	13696 12410m	£ 1.20 ppb # 74
12) Acrolein		50	12410m	7 1.24 ppb
13) Vinyl Bromide	5.54	106	56822	
14) Freon 11	5.80	101 58	194667 18687m	1.19 ppb 99
15) Acetone	6.03	58	18687m	
16) Pentane	6.07	42	41343m	1.16 ppb
17) Isopropyl alcohol	6.15 6.56	45	57073	1.17 ppb # 46
1B) 1,1-dichloroethene		96	56328	1.16 ppb 89
19) Freon 113	6.75	101	137846	1.17 ppb 96
20) t-Butyl alcohol	6.88	59	93562 50280m	1.13 ppb 93
21) Methylene chloride	7.04	84	50280m	1.16 ppb
ES, MILY WINGER	, . 		41687m	1.14 ppb
23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl tert-butyl ether	7.20	76	148023	
24) trans-1,2-dichloroethene	7.97	61	68887	
25) methyl tert-butyl ether	8.03	73	131518	1.20 ppb 94
26) 1,1-dichloroethane	8.39	63	05000	1 1 16 55 5
27) Vinyi acetate	₽ • 4 T	43	89018m,	, 1.19 ppb
28) Methyl Ethyl Ketone	8.94	72	21142	1.21 ppb # 100
29) cis-1,2-dichloroethene	9.34	61	57658	1.16 ppb 90
30) Hexane	8.89	57	89018m 21142 57658 62689	1.23 ppb 97
31) Ethyl acetate	9.52	43	78814	1.18 ppb 95
32) Chloroform	9.94	83	78814 128907	1.17 ppb 98
33) Tetrahydrofuran	10.15	4.2	37821	1.19 ppb 89
34) 1,2-dichloroethane	11.07	62	73032	1.18 ppb 89
36) 1,1,1-trichloroethane				1.20 ppb 99
37) Cyclohexane	11.44	56	57547	1,27 ppb 90
38) Carbon tetrachloride	11.39	117	137163	1.22 ppb 99
39) Benzene	11.37	78	116970	1.21 ppb 99
40) Methyl methacrylate	12.92	41	37863	1.23 ppb # 83
41) 1,4-dioxane	13.00	88	28574	1.12 ppb 100
42) 2,2,4-trimethylpentane	12.19	57	211404	1.21 ppb 98
43) Heptane	12.53		50947	1,22 ppb 92
44) Trichloroethene	12.67	130	57922	
45) 1,2-dichloropropane		63	57922 41974	1.20 ppb 100
43) T'Y AGTONTOF OBT OF ORMS				

^{(#) =} qualifier out of range (m) = manual integration ANO31605.D A316_LUG.M Thu Apr 07 13:05:36 2016 MSD1

Page 1

Quantitation Report (QT Reviewed)

Vial: 4 Data File : C:\HPCHEM\1\DATA\AN031605.D Acq On : 16 Mar 2016 8:10 pm Sample : AlUG 1.25 Misc : A316 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT,P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:18:24 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.11	83	102348	1.20 ppb	99
47)	cis-1,3-dichloropropene	13.90	75	57578	1.26 ppb	99
48)	trans-1,3-dichloropropene	14.63	75	51108	1.23 ppb	92
49)	1,1,2-trichloroethane	14.93	97	46126	1.24 ppb	9.5
51)	Toluene	14.68	92	56126	1.20 ppb	96
52)	Methyl Isobutyl Ketone	13.83	43	97491m /		
53)	Dibromochloromethane	15.60	3.29	67490m	1.17 ppb	
54)	Methyl Butyl Ketone	15.11	4.3	90049m		
55)	1,2-dibromoethane	15.85	107	66367	1.20 ppb	97
56)		15.66	164	47939	1.19 ppb	700
57)	_	16.61	112	73949	1,27 ppb	85
58)		16.71	131	54587	1.18 ppb	95
59)	Sthylbenzene	16.85	91	103191	1.32 ppb	98
60)	m&p-xylene	17.04	91	173419	2.81 ppb	97
61)	Nonane	17.38	43	52439	1.46 ppb	98
62)	Styrene	17,46	104	61068	1.40 ppb	92
63)	Bromoform	17.58	173	41297 ,	1.38 ppb	99
64)	o-xylene	17.48	91	99047m	/ 1.42 ppb	
65)	Cumene	18.01	105	119471	1.49 ppb	98
67)	1,1,2,2-tetrachloroethane	17.92	83	87757	1.23 ppb	98
68)	Propylbenzene	18.54	91	112193m	1.43 ppb	
69)	2-Chlorotoluene	18.58	91	92322m	1,42 ppb	
70)	4-ethyltoluene	18.70	105	103814m	1.50 ppb	
71)	1,3,5-trimethylbenzene	18,75	105	120410m	1.39 ppb	_
72)	1,2,4-trimethylbenzene	19.19	105	96928	1.30 ppb	96
73)	1,3-dichlorobenzene	19.49	146	67647	1.33 ppb	99
74)	benzyl chloride	19.56	91	93016	1.34 ppb	94
75)	1,4-dichlorobenzene	19.62	146	65798	1.36 ppb	95
76)		19.65	105	117860	1.20 ppb	95
	1,2-dichlorobenzene	19.93	146	72700	1.20 ppb	96
78)	1,2,4-trichlorobenzene	21.78	180	62909	1.34 ppb	96
79)	Naphthalene	21.98	128	100472m	1.13 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	141195	1.12 ppb	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031605.D A316_1UG.M Thu Apr 07 13:05:37 2016 MSD1

(VI Kevlewed)

VudilLication Report

Quantitation Report (QT Reviewed)

Vial: 5 Data File : C:\HPCHEM\1\DATA\AN031606.D Acq On : 16 Mar 2016 8:49 pm Sample : AlUG 1.0 Misc : A316 lUG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:18:03 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : lUG_RUN

romochloromethane ,4-difluorobenzene chlorobenzene chlorobenzene chloromethane romofluorobenzene ced Amount 1.000 Compounds ropylene reon 12 chloromethane reon 114 cinyl Chloride utane	9.81 12.06	128 114 117	61333 39738 Recover	1. 1. 1. cy	or E oo E oo E	pb pb pb pb	00% Qv≅	0.00 0.00 0.00 0.00
Monitoring Compounds cromofluorobenzene ed Amount 1.000 Compounds cropylene creon 12 hloromethane creon 114 cinyl Chloride	18.14 Range 70 4.14 4.19 4.39 4.39	95 - 130 41 85	61333 39738 Recover	1. Ty 0.	= 1 01 E	pb pb 01.0	00% Qv≅	0.00 0.00
Monitoring Compounds cromofluorobenzene ed Amount 1.000 Compounds cropylene creon 12 hloromethane creon 114 cinyl Chloride	18.14 Range 70 4.14 4.19 4.39 4.39	95 - 130 41 85	61333 39738 Recover	ı. cy	= 1 01 p	pb 01.0	₽00 Qva	0.00
romofluorobenzene ed Amount 1.000 Compounds ropylene reon 12 hloromethane reon 114 rinyl Chloride	Range 70 4.14 4.19 4.39 4.39	- 130 41 85	Recover	÷у О.	= 1	01.0	₽00 Qva	
ed Amount 1.000 Compounds ropylene reon 12 hloromethane reon 114 inyl Chloride	Range 70 4.14 4.19 4.39 4.39	- 130 41 85	Recover	÷у О.	= 1	01.0	₽00 Qva	ılue
Compounds ropylene reon 12 hloromethane reon 114 inyl Chloride	4.14 4.19 4.39 4.39	41 85	27277	0.			Qva	
ropylene reon 12 hloromethane reon 114 inyl Chloride	4.19 4.39 4.39	85			99 r			
reon 12 hloromethane reon 114 inyl Chloride	4.19 4.39 4.39	85			99 t			
hloromethane reon 114 inyl Chloride	4.39 4.39						#	100
reon 114 inyl Chloride	4.39	E 0	151027		99 g			99
inyl Chloride		50	37602		00 E			94
	4 5 6	85			99 ह			100
utane		62 43	36447 44989	0.	99 Ç			86
	4.68	43			99 p			96
,3-butadiene	4,69	27	40433		03 E			81
romomethane	5.03	94	46282	٥.	99 E	рb		95
hloroethane								100
thanol			11746	, ^{1.}			#	74
		56	9571m /	1.				
inyl Bromide		106	46664	0.				96
reon 11			154925	0.				98
cetone			14328m	1 1.				
entane			22022	٠.				94
								46
			1				#	88
			111420					96
			78078				#	77
ethylene chloride	7.04		40970	0.				97
	7.02			0.				
								96
rans-1,2-dichloroethene	7.99		54958	1.				94
ethyl tert-butyl ether	8.03		103598	ο.				93
,l-dichloroethane	8.40		77856	0.				99
inyl acetate	8.43	4.3	61972	ο.				96
ethyl Ethyl Ketone	8.94		16500				#	100
is-1,2-dichloroethene	9.35		46977	٥.				92
			48164	0.				94
thyl acetate								94
		83	104226	Ο.				98
etrahydrofuran	10.15			٥.				89
	11.09	62						89
,1,1-trichloroethane	10.75	97						97
yclohexane	11.45	56	43452					89
	11.39	117	107492					98
	11.36	78	9196 9					98
	12.91	41	29340	Ο,	99 Ľ	pb	#	83
	13.00	88	24261					1.00
,2,4-trimethylpentane	12.18	57	166364					99
	12.53	43	39883	1.	00 E	dq		93
	12.67	1.30	44026					97
	12.79	63	33334	1.	00 Ē	dq		99
	hloroethane thanol crolein inyl Bromide reon 11 cetone entane sopropyl alcohol ,1-dichloroethene reon 113 -Butyl alcohol ethylene chloride llyl chloride arbon disulfide rans-1,2-dichloroethene ethyl tert-butyl ether ,1-dichloroethane inyl acetate ethyl Ethyl Ketone is-1,2-dichloroethene exane thyl acetate hloroform etrahydrofuran ,2-dichloroethane ,1,1-trichloroethane yclohexane arbon tetrachloride enzene ethyl methacrylate ,4-dioxane ,2,4-trimethylpentane eptane richloroethene ,2-dichloropropane	## ## ## ## ## ## ## ## ## ## ## ## ##	hloroethane thanol thanol crolein inyl Bromide reon 11 cetone entane sopropyl alcohol -Butyl alcohol -Butyl alcohol ethylene chloride arbon disulfide rans-1,2-dichloroethene ethyl tert-butyl ether sinyl acetate exane thyl Ethyl Ketone is-1,2-dichloroethene exane thyl acetate exane thyl acetate exane thyl acetate hloroform etrahydrofuran -2,2-dichloroethane exane trahydrofuran etrahydrofuran etrahydrofuran -1,1-trichloroethane arbon tetrachloride ethyl methacrylate -2,4-trimethylpentane eptane -2,4-trimethylpentane -2,2-dichloroethene -2,2-dichloroethene -2,2-dichloroethene -2,1-trimethylpentane -2,4-trimethylpentane -2,4-trimethylpentane -2,2-dichloroethene -2,2-dichloroethene -2,1-trichloroethene -2,1-trimethylpentane -2,1-trimethylpentane -2,1-trimethylpentane -2,2-dichloroethene -2,2-dichloroethene -2,3-dichloroethene -2,4-trimethylpentane -2,5-3 -3	hloroethane	Some content	This properties	thanol 5.21 64 16583 1.07 ppb thanol 5.36 45 11746 1.08 ppb crolein 5.95 56 9571m	Thioroethane

^{(#) =} qualifier out of range (m) = manual integration AN031606.D A316_1UG.M Thu Apr 07 13:05:40 2016

Page 1

MSDl

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN031606.D Vial: 5 Acq On : 16 Mar 2016 8:49 pm Operator: RJP Sample : A1U0_1.0 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:18:03 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	81385	1.00 ppb	99
47)	cis-1,3-dichloropropene	13.90	75	43288	0.99 ppb	98
48)	trans-1,3-dichloropropene	14.63	75	39100	0.99 ppb	92
49)	1,1,2-trichloroethane	14.93	97	35639	1.00 ppb	97
51)	Toluene	14.68	92	43216	1.01 ppb	99
52)	Methyl Isobutyl Ketone	13.83	43	77557	, 1.00 ppb	97
53)	Dibromochloromethane	15.60	129	52061m A	dqq 80.0	
54)	Methyl Butyl Ketone	15.11	43	70973	1.01 ppb	97
55)	1,2-dibromoethane	15.86	1.07	51366	1.01 ppb	95
56)	Tetrachloroethylene	15.66	164	37193	1.01 ppb	98
57)	Chlorobenzene	16.61	112	53911	1.01 ppb	89
58)	1,1,1,2-tetrachloroethane	16.70	131	42883	1.01 ppb	95
59)	Ethylbenzene	16.85	91	72637	1.01 ppb	98
60)	m&p-xylene	17.04	91	114219	2.05 bbp	94
61)	Nonane	17.38	43	33317	1.01 ppb	98
62)	Styrene	17.46	104	40542	1.01 ppb	90
63)	Bromoform	17.58	173	27823	1.01 ppb	99
64)	o-xylene	17.48	91	66836	1.04 ppb	91
65)	Cumene	18.02	105	74125	1.01 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	65967 //	1.01 ppb	99
68)	Propylbenzene	18.53	91	72561m /	1.01 ppb	
69)	2-Chlorotoluene	18.58	91	59363m	0.99 ppb	
70)	4-ethyltoluene	18.70	105	64669m	1.01 ppb	
71)	1,3,5-trimethylbenzene	10.75	105	81111m 🕠	1.01 ppb	
72)		19.19	105	68998	1.01 ppb	98
73)	1,3-dichlorobenzene	19.48	146	46992	1.01 ppb	99
74)	benzyl chloride	19.56	91	75652	1.19 ppb	97
75)	1,4-dichlorobenzene	19.61	146	44723	1.01 ppb	98
76)	1,2,3-trimethylbenzene	19.65	105	90793	1.01 ppb	96
77)	1,2-dichlorobenzene	19.93	146	56239	1.01 ppb	97
78)	1,2,4-trichlorobenzene	21.78	180	42066	0.97 ppb	95
79)	Naphthalene	21.98	128	80682	0.99 ppb	97
80)	Hexachloro-1,3-butadiene	22.06	225	116697	1.01 ppb	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031606.D A316_1UG.M Thu Apr 07 13:05:41 2016 MSDI

IVI KEVIEWEGJ

Vuantitation keport

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031607.D Vial: 6 Acq On : 16 Mar 2016 9:27 pm Operator: RJP Sample : Alug_0.75 Misc : A316_lug Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:19:18 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

- -							
Internal Standards	R.T.	QIon	Response	Conc !	Units	Dev	(Min)
1) Bromochloromethane			26400				0.00
35) 1,4-difluorobenzene	9.81			3.00	dqq C		0.00
50) Chlorobenzene-d5							
50) Chiorobenzene-as	10.50	777	64493	1,00	dqq 0		0.00
System Monitoring Compounds							
66) Bromofluorobenzene	18.13		39593		dqq a		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	у =	95	.00%	
Target Compounds						Otta	alue
2) Fropylene	4.13	41	21494	0.78	dqg 8		100
3) Freon 12	4.19	85	115393	0.74	ppb	11	100
4) Chloromethane	4.39	50		0.00) bbp		92
5) Freon 114	4.39	85	30086 97880	0.00	dqq a		98
6) Vinyl Chloride	4.58	60	27592	0.70	dqq 5		91
7) Butane		62 43 39	27052				96
•	4.68	4.0	31050 21193	0.03	dqq e		81
8) 1,3-butadiene	4.69	39	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		dqq		
9) Bromomethane	5.04	514	33415 12103 8634 ₄)		ppb		90
10) Chloroethane	5.21	64	12103	0.75	dqq (41.	1.00
11) Ethanol	5.36	45	8634		dqq (72
12) Acrolein	5.97	56	7453m 34036 116153		bbp		
13) Vinyl Bromide	5.55	106	34036 /	0.73	ppb		96
14) Freon 11	5.81	101	116153 10532m	0.78	dqq		98
15) Acetone	6.05	58	10532m 🗸	0.75	gqqq		
16) Pentane	6.07	58 42 45	25618	0.76	dqq 7		95
17) Isopropyl alcohol	6.16	45	35764	0.77	dqq 1		46
18) 1,1-dichloroethene	6.57	96	33426 83596	0.72	dad (89
19) Freon 113	6.74	101	83596	0.75	dag		97
20) t-Butyl alcohol	6.90	59	59423		ppb		75
Methylene chloride	7.04 7.02	84	30390 25889	0.74	ppb		89
22) Allyl chloride	7.02	41	25889		dqq		86
23) Carbon disulfide	7.20	76	89515	0.77	daa		99
24) trans-1,2-dichloroethene	8.00	61	40410	0.75	dqq		91
25) methyl tert-butyl ether	8.03	73	76069	0.73	ppb		93
26) 1,1-dichloroethane	6.39	63	58606	A 72.0	ppb		100
27) Vinyl acetate	8.43	43	50830m /	0.72	ppb		
27) Vinyl acetate 28) Methyl Ethyl Ketone	8.95	72	11701	0.71	dgg .		100
29) cis-1,2-dichloroethene	9.34	61	33727	0.72	dqq		91
30) Hexane	8.90	57	34580		ppb		97
31) Ethyl acetate	9.53	61 57 43	45954	0,73	ppb	#	81
32) Chloroform	9.95	83 42 62	78527		dgg		98
33) Tetrahydrofuran	10.17	42	22163		dqq		92
34) 1,2-dichloroethane	11.09	62	43826	0.75	dag		90
36) 1,1,1-trichloroethane	10.75	97	77993		ppb		98
37) Cyclohexane	11.44	56	32831	0.74	ppb		90
38) Carbon tetrachloride	11.39	117	80127		dqq		97
39) Benzene	11.37	78	60000		dqq		98
40) Methyl methacrylate	12.92	41	24037m //	0.80	dqq		
41) 1,4-dioxane	13.00	88	18280	0.74	ppb		99
42) 2,2,4-trimethylpentane	12.18	57	121655		ppb		99
43) Heptane	12.53	43	28219	0 69	dqq		91
44) Trichloroethene	12.68	130	34027	0.03	dqq		99
	12.79	63	25201	0.75	dqq		98
45) 1,2-dichloropropane	##+1 <u>P</u>						

(#) = qualifier out of range (m) = manual integration AN031607.D A316_1UG.M Thu Apr 07 13:05:44 2016

Page 1

MSDl

Quantitation Report (QT Reviewed)

Vial: 6 Data File : C:\HPCHEM\1\DATA\AN031607.D Acq On : 16 Mar 2016 9:27 pm Sample : Alug 0.75 Misc : A316 lug Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:19:18 2016

Quant Method: C:\HPCHEM\I\METHODS\A316_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016
Response via: Continuing Cal File: C:\HPCHEM\I\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	60775	0.73 ppb	100
47)	cis-1,3-dichloropropene	13.90	75	32684	0.73 ppb	96
48)		14.63	75	29863	0.74 ppb	90
49)		14.93	97	27436	0.75 ppb	96
51)		14.68	92	32126	0.71 ppb	98
52)	Methyl Isobutyl Ketone	13.83	43	59370	0.73 ppb	99
53)	Dibromochloromethane	15.60	129	41112m	0.74 ppb	
54)	Methyl Butyl Ketone	15.11	43	49642	0.67 ppb	96
55)	1.2-dibromoethane	15.85	107	38588	0.72 ppb	96
56)		15.65	164	28969	0.75 ppb	97
57)		16.61	112	41332	0.73 ppb	90
58)		16.71	131	31396	0.70 ppb	95
59)		16.85	91	53041	0.70 ppb	99
60)		17.04	91	79500	1.33 ppb	92
61)	Nonane	17.38	43	22932	0.66 ppb	95
62)	Styrene	17.46	104	27462	0.65 ppb	91
63)	Bromoform	17.58	173	23.394	0.74 ppb	99
64)	o-xylene	17.49	91	49158	0.73 ppb	95
65)	Cumene	18.02	105	52361	0.68 ppb	100
67)	1,1,2,2-tetrachloroethane	17.92	83	51665 /	0.75 ppb	98
68)		18.54	91	55960m 🎢	0.74 ppb	
69)		18.58	91.	40331m	0.64 ppb	
70)		18.70	105	48368m	0.72 ppb	
71)	1,3,5-trimethylbenzene	18.75	105	59988m 🍁	0.71 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	54115	0.75 დდხ	96
73)	1,3-dichlorobenzene	19.48	146	32066	0.65 დაბ	97
74)	benzyl chloride	19.56	91	53237	dqq 08.0	96
75)	1,4-dichlorobenzene	19.62	146	30624	0.66 ppb	97
76)	1,2,3-trimethylbenzene	19.65	105	66564	0.70 ppb	96
77)		19.93	146	40900	7 0.70 ppb	97
78)		21,78	180	30081m	ರ್. 66 ರಾದಿ	
79)	Naphthalene	21.98	128	68066m V		
80)	Hexachloro-1,3-butadiene	22.06	225	85443	0.70 ppb	95

^{(#) =} qualifier out of range (m) = manual integration (+) ≈ signals summed AN031607.D A316_1UG.M Thu Apr 07 13:05:45 2016 MSD1

PENTENCH!

777

コモクロコマ

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN031608.D Vial: 7 Acq On : 16 Mar 2016 10:05 pm Operator: RJP Sample : AlUG_0.50 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:19:39 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Inter	mal Standards	R.T.	QIon	Response	Con	; U :	nits	Dev	(Min)
1)	Bromochloromethane	9.82					dqq		0.01
	1,4-difluorobenzene	12.06	114		1	. 00	ppb		0.00
50)	Chlorobenzene-d5	16.56	117	67747	1		ppb		0.00
	CILCULOUS COLONIA COLO								
Syste	m Monitoring Compounds								
	Bromofluorobenzene	18.14	95	40075	0	. 92	$_{\mathrm{ppb}}$		0.00
Spi	ked Amount 1.000	Range 70	- 130	Recove	хy	=	92	.00∜	
Taros	t Compounds							Ova	alue
	Propylene	4.14	41.	14424	0	. 53	dqq	#	
	Freon 12	4.19	85	76085			ppb		1.00
	Chloromethane	4.39	50	19879			ppb		98
- /	Freon 114	4.39	85	64906			dqq		98
	Vinyl Chloride	4.59	62	18499			ppb		92
7)	Butane	4.68	43	18499 21962	0		ďgg		94
	1,3-butadiene	4.69	39	13445			dqq		69
	Bromomethane	5.04	94	26274			dqq		97
	Chloroethane	5.20	64	8256			dqq		86
	Ethanol	5.37	A 155	6117	Α.	.57	ppb		98
	Acrolein	5.97	56	4983m	Po		ppb		
	Vinyl Bromide	5.55	106	4983m 22539	0		dqq		93
	Freon 11	5.81	101	78802	0		dqq		98
	Acetone	6.06	58				daa		75
	Pentane	6.08	42	8424 17198	O		ppb		97
	Isopropyl alcohol	6.16	45				dqq		46
	1,1-dichloroethene	6.56	96	22928	0		ppb		89
	Freon 113	6.75	101	22928 55038	0		dqq		95
	t-Butyl alcohol	6.90	59	42395			dqq		73
	Methylene chloride	7.05	84	20786			ppb		96
	Allyl chloride	7.05 7.02	41	17969m	0 0	. 52	dqq		
	Carbon disulfide	7 21	76	57993			dqq		97
	trans-1,2-dichloroethene		6 J.	26856	0	.50	ppb		89
	methyl tert-butyl ether	8.03	73	49652	0	.48	dqq		91
	1,1-dichloroethane	8.41	63	38652	O.		ppb		100
27)	Vinyl acetate	8.44	43	29273	0	. 42	dqq		94
28)	Metĥyl Ethyl Ketone	9.96	72	7938	0	. 48	dqq	#	100
29)	cis-1,2-dichloroethene	9.36	61	22605	0		ppb		95
	Hexane	8.91	57	22491	0		ppp		97
	Ethyl acetate	9.54	43	30351	0	48	ppb		86
	Chloroform	9.95	83	52618	Q.		ppb		100
	Tetrahydrofuran	10.18	83 42 62	14113	Ο.	. 47	dqq		93
	1,2-dichloroethane	11.10		29673			ppp		89
36)	1,1,1-trichloroethane	10.75	97	53522	0	.51	$_{\mathbf{ppb}}$		99
37)	Cyclohexane	11.44	56	21201			dqq		90
38)	Carbon tetrachloride	11.39	117	54492			dqq		98
	Benzene	11.37	78	46262			ppp		100
40)	Methyl methacrylate	12.92	41	13663			ppb		73
41)	1,4-dioxane	13.01	88	13214			ppb		98
	2,2,4-trimethylpentane	12.18	57	78609			ppp		98
43)	Heptane	12.53	43	17641			dqq		89
	Trichloroethene	12.67					ppb		99
45)	1,2-dichloropropane	12.79	63				ppp		96

^{(#) =} qualifier out of range (m) = manual integration AN031608.D A316_1UG.M Thu Apr 07 13:05:48 2016

MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN031608.D Vial: 7 Acq On : 16 Mar 2016 10:05 pm Sample : AlUG_0.50 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RYEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:19:39 2016

Quant Method: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016
Response via: Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG RUN

A6 Bromodichloromethane		Compound	R.T.	Q I O D	Response	Conc Unit	Qvalue
47) cis-1,3-dichloropropene 13.90 75 22010 0.50 ppb 96 48) trans-1,3-dichloropropene 14.64 75 20160 0.51 ppb 93 49) 1,1,2-trichloroethane 14.94 97 18287 0.51 ppb 93 51) Toluene 14.68 92 21106 0.45 ppb 97 52) Methyl Isobutyl Ketone 13.84 43 39767 0.46 ppb 98 53) Dibromochloromethane 15.60 129 29081m 0.50 ppb 54) Methyl Butyl Ketone 15.12 43 33116m 0.50 ppb 97 54) Methyl Butyl Ketone 15.12 43 33116m 0.50 ppb 97 55) 1,2-dibromoethane 15.85 107 28353 0.50 ppb 97 56) Tetrachloroethylene 15.66 164 19835 0.49 ppb 99 57) Chlorobenzene 16.61 112 29636 0.50 ppb 92 58) 1,1,2-tetrachloroethane 16.71 131 22498 0.48 ppb 92 59) Ethylbenzene 16.85 91 36463 0.46 ppb 98 60) m&p-xylene 17.05 91 56232 0.90 ppb 95 61) Nonane 17.38 43 15420 0.42 ppb 94 62) Styrene 17.47 104 18736 0.42 ppb 94 62) Styrene 17.47 104 18736 0.42 ppb 90 63) Bromoform 17.59 173 14908 0.49 ppb 99 64) 0-xylene 17.49 91 37022 0.52 ppb 96 65) Cumene 18.52 105 37321 0.46 ppb 99 67) 1,1,2,2-tetrachloroethane 18.53 91 31517m 0.54 ppb 97 68) Propylbenzene 18.53 91 31517m 0.54 ppb 97 68) Propylbenzene 18.59 91 31517m 0.54 ppb 97 68) Propylbenzene 18.59 91 31517m 0.54 ppb 97 69) 2-Chlorotoluene 18.58 91 31517m 0.54 ppb 97 70) 4-ethyltoluene 18.70 105 35420m 0.50 ppb 97 71) 1,3,5-trimethylbenzene 19.49 146 24308 0.47 ppb 97 72) 1,2,4-trimethylbenzene 19.49 146 24308 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.52 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 97 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 97 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.64 168 21600 0.44 ppb 97 78) 1,2-dichlorobenzene 19.94 146 21600 0.44 ppb 97 78) 1,2-dichlorobenzene 19.94 146 21600 0.44 ppb 97 78) 1,2-dichlorobenzene 19.94 146 21600 0.48 ppb 97 78) 1,2-dichlorobenzene 19.94 146 21600 0.48 ppb 97 78) 1,2-dichlorobenzene 19.94 146 21600 0.48 ppb 97 78) 1,2-dichlorobenzene 21.78 180 22916m 0.48 ppb	451				41700	0 Cl mmh	
## ## ## ## ## ## ## ## ## ## ## ## ##							
49) 1,1,2-trichloroethane							
Toluene							
Section Sect							
Dibromochloromethane							
Methyl Butyl Ketone							20
1,2-dibromoethane							
56) Tetrachloroethylene							9.7
57) Chlorobenzene 16.61 112 29636 0.50 ppb 92 58) 1,1,1,2-tetrachloroethane 16.71 131 22498 0.48 ppb 92 59) Ethylbenzene 16.85 91 36463 0.46 ppb 98 60) m&p-xylene 17.05 91 56232 0.90 ppb 95 61) Nonane 17.38 43 15420 0.42 ppb 94 62) Styrene 17.47 104 18736 0.42 ppb 90 63) Bromoform 17.59 173 14908 0.49 ppb 99 64) o-xylene 17.49 91 37022 0.52 ppb 96 65) Cumene 18.02 105 37321 0.46 ppb 99 67) 1,1,2,2-tetrachloroethane 17.92 83 36610 0.51 ppb 97 68) Propylbenzene 18.53 91 31517m 0.48 ppb 97 69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 97 69) 2-chlorotoluene 18.70 105 35420m 0.50 ppb 97 70) 4-ethyltoluene 18.70 105 35420m 0.50 ppb 96 71) 1,3,5-trimethylbenzene 18.75 105 44058m 0.50 ppb 96 72) 1,2,4-trimethylbenzene 19.19 105 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 24308 0.49 ppb 97 77) 1,2-dichlorobenzene 19.64 31844 0.52 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 97 78) 1,2,4-trichlorobenzene 19.94 146 31844 0.52 ppb 97 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79 Naphthalene 21.98 128 50904m 0.56 ppb							
58) 1,1,1,2-tetrachloroethane 16.71 131 22498 0.48 ppb 92 59) Ethylbenzene 16.85 91 36463 0.46 ppb 98 60) m&p-xylene 17.05 91 56232 0.90 ppb 95 61) Nonane 17.38 43 15420 0.42 ppb 94 62) Styrene 17.47 104 18736 0.42 ppb 90 63) Bromoform 17.59 173 14908 0.49 ppb 99 64) c-xylene 17.49 91 37022 0.52 ppb 96 65) Cumene 18.02 105 37321 0.46 ppb 99 67) 1,1,2,2-tetrachloroethane 17.92 83 36610 0.51 ppb 97 68) Propylbenzene 18.53 91 43158m 0.54 ppb 90 69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 0.50 ppb 70) 4-ethyltoluene 18.75 105 35420m 0.50 ppb 0.50 ppb 71) 1,3,5-trimethylbenzene 19.19 105 39698 0.52 ppb 96						* *	
59) Ethylbenzene 16.85 91 36463 0.46 ppb 98 60) m&p-xylene 17.05 91 56232 0.90 ppb 95 61) Nonane 17.38 43 15420 0.42 ppb 94 62) Styrene 17.47 104 18736 0.42 ppb 90 63) Bromoform 17.59 173 14908 0.49 ppb 99 64) O-xylene 17.49 91 37022 0.52 ppb 96 65) Cumene 18.02 105 37321 0.46 ppb 99 67) 1,1,2,2-tetrachloroethane 17.92 83 36610 0.51 ppb 97 68) Propylbenzene 18.53 91 31517m 0.48 ppb 97 69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 98 70) 4-ethyltoluene 18.70 105 35420m 0.50 ppb 99 71) 1,3,5-trimethylbenzene 19.19 105 39698 0.52 ppb 96 72) 1,2,4-trimethylbenzene 19.49 146 24308 0.47 ppb 97 74)					'		
60) m&p-xylene 17.05 91 56232 0.90 ppb 95 61) Nonane 17.38 43 15420 0.42 ppb 94 62) Styrene 17.47 104 18736 0.42 ppb 90 63) Bromoform 17.59 173 14908 0.49 ppb 99 64) o-xylene 17.49 91 37022 0.52 ppb 96 65) Cumene 18.02 105 37321 0.46 ppb 99 67) 1,1,2,2-tetrachloroethane 17.92 83 36610 0.51 ppb 97 68) Propylbenzene 18.53 91 43158m 0.54 ppb 69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 0.54 ppb 70) 4-ethyltoluene 18.70 105 35420m 0.50 ppb 71) 1,3,5-trimethylbenzene 18.75 105 44058m 0.50 ppb 72) 1,2,4-trimethylbenzene 19.19 105 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 97 78) 1,2,4-trichlorobenzene 19.94 146 31844 0.52 ppb 97 78) 1,2,4-trichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 19.94 146 31844 0.52 ppb 97 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 97 98 Naphthalene 21.98 128 50904m 0.56 ppb							
61) Nonane 62) Styrene 63) Bromoform 64) O-xylene 65) Cumene 66) Cumene 66) Cumene 67) 1,1,2,2-tetrachloroethane 69) 2-Chlorotoluene 69) 2-Chlorotoluene 69) 2-Chlorotoluene 69) 2-trimethylbenzene 69) 1,2,4-trimethylbenzene 69) 1,2,4-trimethylbenzene 69) 1,2,4-trimethylbenzene 69) 1,2,4-trimethylbenzene 69) 1,2,4-trimethylbenzene 69) 1,3-dichlorobenzene 69) 1,4-dichlorobenzene 69) 1,4-dichlorobenzene 69) 1,4-dichlorobenzene 69) 1,4-dichlorobenzene 69) 1,4-dichlorobenzene 69) 1,4-dichlorobenzene 69) 1,2,3-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,4-trichlorobenzene							
62) Styrene 17.47 104 18736 0.42 ppb 90 63) Bromoform 17.59 173 14908 0.49 ppb 99 64) o-xylene 17.49 91 37022 0.52 ppb 96 65) Cumene 18.02 105 37321 0.46 ppb 99 67) 1,1,2,2-tetrachloroethane 17.92 83 36610 0.51 ppb 97 68) Propylbenzene 18.53 91 43158m 0.54 ppb 97 69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 97 70) 4-ethyltoluene 18.70 105 35420m 0.50 ppb 97 71) 1,3,5-trimethylbenzene 19.19 105 39698 0.52 ppb 96 72) 1,2,4-trimethylbenzene 19.19 105 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 95 79) Naphthalene 21.98 128 50904m 0.56 ppb	-						_
63) Bromoform 64) c-xylene 65) Cumene 65) Cumene 66) Propylbenzene 67) 1,1,2,2-tetrachloroethane 68) Propylbenzene 69) 2-Chlorotoluene 69) 2-Chlorotoluene 69) 2-Chlorotoluene 69) 2-trimethylbenzene 69) 1,3,5-trimethylbenzene 69) 1,2,4-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,3-trimethylbenzene 69) 1,2,4-trichlorobenzene 69) 1,2,4-trichlorobenzene 69) 1,2,4-trichlorobenzene 69) 1,2,4-trichlorobenzene 69) 1,2,4-trichlorobenzene 60) 1,2,3-trimethylbenzene 61) 1,2,4-trichlorobenzene 61) 1,2,4-trichlorobenzene 62) 1,2,8 128 50904m 63) 1,2,4-trichlorobenzene 64) 1,2,8 128 50904m 65) 1,4908 60,49 ppb 67) 1,2,4-trichlorobenzene 64) 1,2,8 128 50904m 65) 1,2,4-trichlorobenzene 65) 1,2,4-trichlorobenzene 67) 1,2,6 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2							
64) 0-xylene 17.49 91 37022 0.52 ppb 96 65) Cumene 18.02 105 37321 0.46 ppb 99 67) 1,1,2,2-tetrachloroethane 17.92 83 36610 0.51 ppb 97 68) Propylbenzene 18.53 91 43158m 0.54 ppb 97 69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 0.50 ppb 0							
65) Cumene	-						
67) 1,1,2,2-tetrachloroethane 17.92 83 36610 / 0.51 ppb 97 68) Propylbenzene 18.53 91 43158m 0.54 ppb 69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 70) 4-ethyltoluene 18.70 1.05 35420m 0.50 ppb 71) 1,3,5-trimethylbenzene 18.75 1.05 44058m 0.50 ppb 72) 1,2,4-trimethylbenzene 19.19 1.05 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb		<u>-</u>					
68) Propylbenzene 18.53 91 43158m 0.54 ppb 69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 70) 4-ethyltoluene 18.70 1.05 35420m 0.50 ppb 71) 1,3,5-trimethylbenzene 19.75 1.05 44058m 0.50 ppb 72) 1,2,4-trimethylbenzene 19.19 1.05 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb		•					
69) 2-Chlorotoluene 18.58 91 31517m 0.48 ppb 70) 4-ethyltoluene 18.70 105 35420m 0.50 ppb 71) 1,3,5-trimethylbenzene 18.75 105 44058m 0.50 ppb 72) 1,2,4-trimethylbenzene 19.19 105 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb	,				1.		- ,
70) 4-ethyltoluene 18.70 105 35420m 0.50 ppb 71) 1,3,5-trimethylbenzene 19.75 105 44058m 0.50 ppb 72) 1,2,4-trimethylbenzene 19.19 105 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb	-						
71) 1,3,5-trimethylbenzene 18.75 105 44058m 0.50 ppb 72) 1,2,4-trimethylbenzene 19.19 105 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb						· · · · · · · · · · · · · · · · · · ·	
72) 1,2,4-trimethylbenzene 19.19 105 39698 0.52 ppb 96 73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb					- V		
73) 1,3-dichlorobenzene 19.49 146 24308 0.47 ppb 97 74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb							96
74) benzyl chloride 19.56 91 36368 0.52 ppb 95 75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb							97
75) 1,4-dichlorobenzene 19.63 146 21600 0.44 ppb 92 76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb							95
76) 1,2,3-trimethylbenzene 19.65 105 48394 0.49 ppb 97 77) 1,2-dichlorobenzene 19.94 146 31844 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb							92
77) 1,2-dichlorobenzene 19.94 146 31844 / 0.52 ppb 95 78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb							97
78) 1,2,4-trichlorobenzene 21.78 180 22916m 0.48 ppb 79) Naphthalene 21.98 128 50904m 0.56 ppb							95
79) Naphthalene 21.98 128 50904m (0.56 ppb					,		
	,	* * * · · · · · · · · · · · · · · · · ·				* **	
80) Hexacurorori, producaciene 22.00 220 pozer 0.11 Pp	80)	Hexachloro-1,3-butadiene	22.06	225	56244	0.44 ppb	96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031608.D A316_1UG.M Thu Apr 07 13:05:49 2016 MSD1

ina kentemeni

длойам воггаттипъ

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN031609.D Vial: 8 Acq On : 16 Mar 2016 10:42 pm Sample : AlUG 0.30 Misc : A316_lUG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:19:57 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response Via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG RUN

Internal Standards		QIon	Response	Conc	Units	Dev	(Min)
1) Bromochloromethane	9 . 83	128	34240	1.	dqq 00		0.02
35) 1,4-difluorobenzene	12.07	114	107427		00 ppb		0.01
50) Chlorobenzene-d5	16.57	117	63070		ववृद्धे ७०		0,00
System Monitoring Compounds							
66) Bromofluorobenzene	18.14	95	37922	٥.	93 ppb		0.00
	Range 70		Recove				
Bpiked Mnodit 1.000	verrae , o	- 130	Ver	X	_ ,,		
Target Compounds						Qva	alue
2) Propylene	4.14	41	9410	0.	37 ppb	#	100
3) Freon 12	4.19	85	48050		34 ppb		99
4) Chloromethane	4.40	50	12982	٥.	37 ppb		94
5) Freon 114	4.39	85	40390	O.	dqq EE		98
6) Vinyl Chloride	4.59	6.2	12065	0.	35 ppb		64
7) Butane	4.69	43	15019 12946	Ö.	35 ppb		90
8) 1,3-butadiene	4.69	39	12946	٥.	49 ppb		87
9) Bromomethane	5.04		14575		33 ppb		90
10) Chloroethane	5.21	~ 4	# T T *		35 ppb		96
11) Ethanol	5.39	4.5	4660	. 0.	46 ppb		96
12) Acrolein	5.98	56	3558m	# O.	40 ppb		
13) Vinyl Bromide	5.55	106	14483	0.	33 ppb		94
14) Freon 11	5.80	106 101	48893		đợg EE		98
15) Acetone	6.05	58	4586m		35 ppb		
16) Pentane	6.08	42	11517	0.	36 ppb		97
17) Isopropyl alcohol	6.16	42 45	17857		41 ppb		46
18) 1,1-dichloroethene	6.56	96			34 ppb		86
19) Freon 113	6.76	101	34250		dag EE		99
20) t-Butyl alcohol	6.91	59	27113		37 ppb		72
21) Methylene chloride	7 07	84	12304		32 ppb		86
22) Allyl chloride	7.03	41	10973m		34 ppb		
23) Carbon disulfide	7.21	76	36706		34 ppb		97
24) trans-1,2-dichloroethene		61	16238		32 ppb		89
25) methyl tert-butyl ether		73		0.	32 ppb		93
25) Mediyi Cerc-Ducyi echer	8.03 8.40	63	22970		31 ppb		94
26) 1,1-dichloroethane	0.44	43	202037	1 %	31 ppb		
27) Vinyl acetate 28) Methyl Ethyl Ketone	0,44	72	20303m 4817	A	31 ppb	#	100
28) Methyl Benyl Retone	8.97	61.	13539		3r bbp		91
29) cis-1,2-dichloroethene	9.38 8.90	57	73030 73333	٥.	29 ppb		96
30) Hexane			13020 20202	۸.	34 ppb		89
31) Ethyl acetate	9,54 9,95	43 83	31612		32 ppb dgg 28		98
32) Chloroform		0 J	37077	٥.			93
33) Tetrahydrofuran	10.18	44	8932 18425	۷.	32 ppb		87
34) 1,2-dichloroethane	11.10				33 ppb		98
36) 1,1,1-trichloroethane	10.75		32638	٠,	33 ppb		89
37) Cyclohexane	11.44	56	12156		39 bbp		
38) Carbon tetrachloride	11.39	117	33109	o.	32 ppb		98
39) Benzene	11.37	78	27379	Ų.	dag IE	ш	96
40) Methyl methacrylate	12.93	41	8689	Ö.	31 ppb	#	84
41) 1,4-dioxane	13.03	88	7797		34 ppb		95
42) 2,2,4-trimethylpentane	12.19	57	47254	0.	30 ppb		99
43) Heptane	12.54	43	10173	o.	27 ppb		92
44) Trichloroethene	12.69	130	12806		31 ppb		97
45) 1,2-dichloropropane	12.79	63	10394	0.	33 ppb		95
							~ _

(#) = qualifier out of range (m) = manual integration AN031609.D A316_IUG.M Thu Apr 07 13:05:52 2016

MSD1

(QT Reviewed) Quantitation Report

Vial: 8 Data File : C:\HPCHEM\1\DATA\AN031609.D Acq On : 16 Max 2016 10:42 pm Sample : AlUG 0.30 Misc : A316 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:19:57 2016

Quant Method: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.13	83	24639	0.32 ppb	1.00
47)		13.91	75	13399	0.32 ppb	98
48)		14.64	75	11780	0.31 ppb	93
49)		14.93	97	11103	તવુવ દદ.૦	99
51)	Toluene	14.68	92	12431	0.28 ppb	95
52)	Methyl Isobutyl Ketone	13.84	43	23225 A	0.29 ppb	96
53)	Dibromochloromethane	15.61	129	15960m h	0.29 ppb	
54)	Methyl Butyl Ketone	15.12	43	21434m b	dqq 08.0	
55)	1,2-dibromoethane	15,86	107	16758	0.32 ppb	94
56)	Tetrachloroethylene	15.66	164	11766	0.31 ppb	100
57)	Chlorobenzene	16.61	112	16920	0.31 ppb	83
58)	1,1,1,2-tetrachloroethane	16.70	131	13253	dqq 0£.0	# 85
59)	Ethylbenzene	16.86	91	20219	0.27 ppb	97
60)		17.02	91	30952	0.53 ppb	97
61)	Nonane	17.38	43	8544	0.25 ppb	99
62)	· -	17.47	1.04	10322	0.25 ppb	97
63)	Bromoform	17.58	173	8523	0.30 ppb	95
64)	o-xylene	17,49	91	17375	0.26 ppb	95
65)	Cumene	18.02	105	22320	0.29 ppb	96
67)	1,1,2,2-tetrachloroethane	17.92	83	24384 0	0.36 ppb	98
6B)	Propylbenzene	18.54	91	27429m 🎉	0.37 ppb	
69)	2-Chlorotoluene	18.58	91	17751m /	0.29 ppb	
70)	4-ethyltoluene	18,70	105	24157m ∫	0.37 ppb	
71)	1,3,5-trimethylbenzene	18.76	105	28602m 🍼	0.35 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	25992	0.37 ppb	94
73)	1,3-dichlorobenzene	19.49	146	15874	dqq 88.0	99
74)	benzyl chloride	19.56	91	19958	0.31 ppb	92
75)	1,4-dichlorobenzene	19.62	146	15212	0.33 ppb	96
76)	1,2,3-trimethylbenzene	19.65	1.05	32866	0.35 ppb	98
77)		19.94	146	20801	9 0.36 ppb	96
78)		21.79	180	13610m /	0.31 ppb	
79)		22.14	128	30401m ,		
80)	Hexachloro-1,3-butadiene	22.06	225	34640 V	0.29 ppb	93

^(#) = qualifier out of range (m) = manual integration (+) = signals summed AN031609.D A316_1UG.M Thu Apr 07 13:05:53 2016 MSD1

ил кемтемест

Vusilliation Report

(OT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031610.D Vial: 9 Acq On : 16 Mar 2016 11:18 pm Operator: RJP Sample : A1UG_0.15 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:20:22 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Inte	rnal Standards		QIon	Response				
1)	Bromochloromethane	9.83	128	33400	1.0	dgg 01		0.02
35)	1,4-difluorobenzene	12.07 16.57	114	103197	1.0	dqq 0(0.01
50)	Chlorobenzene-d5	16.57	117	62434	1.0	वव्य ११		0.00
	em Monitoring Compounds							
56)	Bromofluorobenzene	18.14				3 bbp		0.00
Sp	iked Amount 1.000	Range 70	- 130	Recove	ry =	= 92	.00%	•
Targ	et Compounds							alue
2)	Propylene	4.15	41	5667		dad E	#	100
3)	Freon 12	4.19	85	25710	0.3	dąą 8.		100
4)	Chloromethane	4.40	50	7532		22 ppb		94
	Freon 114	4.39	85	21243		add 8		98
6)	Vinyl Chloride	4.59	62	6499		.9 ppb		85
	Butane	4.68	43	9555	D 0.2	dag Es		84
	1,3-butadiene	4.70	39	4728m √		dgg e.		
	Bromomethane	5.04	94	8678		ddd og		99
10)	Chloroethane	5.22	64	2747		dqq e.	Ħ	73
33.)	Ethanol	5.40	45	2336m		24 ppb		
12)	Acrolein	5.97	56	1928m		22 ppb		
13)	Vinyl Bromide	5.55	106	8288		dqq e.		97
14)	Freon 11	5.81	101	26836	0.1	ra bbp		100
15)	Acetone	6.06	58	2908m		22 ppb		
16)	Pentane	6.08	42	7007		dqq ES		74
17)	Isopropyl alcohol	6.18	45	9697m		dag Es		
	1,1-dichloroethene	6.56	96	7737		dqq 8.		87
19)	Freon 113	6.75	3.01	18520	0.0	dqq 8.		96
	t-Butyl alcohol	6.91	59	14003	0.3	dqq e.	#	72
21)	Methylene chloride	7.06	84	6447		7 ppb		B4
	Allyl chloride	7.06	41	6867m		3 bbp		
23)	Carbon disulfide	7.21	76	21871		dqq 08		100
24)	trans-1,2-dichloroethene	8.02	61	8942		dqq 8.		92
25)	methyl tert-butyl ether	8.04	73	16217	0.3	.7 ppb		90
26)	1,1-dichloroethane	8,40	63	12529 11579m 2686	0.3	7 ppb		97
	Vinyl acetate	8.46	43	11579m 🕈	9 0.3	dqq 8.		
28)	Methyl Ethyl Ketone	8.98	72			rg bbp		100
	cis-1,2-dichloroethene	9.38	61	6078	0.3	4 ppb		76
30)	Hexane	8.91	57	6897	0.3	6 ppb		97
31)	Ethyl acetate	9,55	43	10831		dqq e.		92
	Chloroform	9.95	83	17226	0.3	dqq 8.		96
	Tetrahydrofuran	10.20	42	4934	0.3	re bbp		98
34)	1,2-dichloroethane	11.10	62	9147		.7 ppb		87
36)	1,1,1-trichloroethane	10.75	97	16611		.7 ppb		99
	Cyclohexane	11.45	56	6376	0.1	.6 ppb		98
38)	Carbon tetrachloride	11.39	117	16991		.7 ppb		97
	Benzene	11.37	78	14982		dqq 8.		98
40)	Methyl methacrylate	12.94	41	5374		dag 09		97
	1,4-dioxane	13.03	88	3369	0.3	.5 ppb		91
	2,2,4-trimethylpentane	12.19	57	24737	0.1	.6 ppb		98
	Heptane	12.54	43	5155		4 ppb		94
	Trichloroethene	12.70	130	6486	0.3	dqq 3.		94
	1,2-dichloropropane	12.80	63	5119	0.3	.7 ppb		95

(#) = qualifier out of range (m) = manual integration AN031610.D A316_1UG.M Thu Apr 07 13:05:56 2016

MSD1

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031610.D Vial: 9 Acq On : 16 Mar 2016 11:18 pm Operator: RJP Inst : MSD #1 Sample : A1UG_0.15 Misc : A316_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316 1UG.RES Quant Time: Mar 17 08:20:22 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
461	Bromodichloromethane	13.12	83	13275	0.18 ppb	97
46) 47)		13.12		6893	0.17 ppb	96
48)		14.64		6609	0.18 ppb	94
49)	1,1,2-trichloroethane	14.94		6109	dag 91.0	96
51)	Toluene	14.68	92	6141	0.14 ppb	89
52)	Methyl Isobutyl Ketone	13.85	43	11770	, 0.15 ppb	98
53)	Dibromochloromethane	15.60		8932m		
54)	Methyl Butyl Ketone	15.14		10426m h	~ .	
- •	1.2-dibromosthane	15.86		9583	0.18 ppb	95
55) 56)	Tetrachloroethylene	15.66		5857	0.16 ppb	94
57)		16.61		9263	0.17 ppb	95
58)	1,1,1,2-tetrachloroethane	16.71		6442	0.15 ppb	# 68
59)	Ethylbenzene	16.85	91	11039	0.15 ppb	97
60)	•	17.04	91	16137	0.28 ppb	94
61)		17.38		5031	0.15 ppb	88
62)		17.46		5ププユ	0.14 ppb	87
	Bromoform	17.58		4415	0.16 ppb	96
64)		17.48	91	10324	0.16 ppb	100
65)		18.01	105	14312	0.19 ppb	98
67)	1,1,2,2-tetrachloroethane	17.92	63	15040	. 0.23 mpb	1.00
68)		18.54	91	15476m	0.21 ppb	
69)	2-Chlorotoluene	18.58	91.	10441m	0.17 ppb	
70)		18.70		13458m	, 0.21 ppb	
71)		18.75		16481m	0.20 ppb	
72)		19.19	105	15427	0.22 ppb	97
73)	• •	19.49	146	8974	0.19 ppb	98
74)		19.56	91	11759	0,18 ppb	94
75}		19.62	146	7999	, 0.18 ppb	92
	1,2,3-trimethylbenzene	19.65		18207m 🕖	0,20 ppb	
77)		19.94		13054	0.23 ppb	92
78)		22.06		6492m	0.15 ppb	
79)	Naphthalene	22.21		15909m	0.19 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	18343	0.16 ppb	95
•	** * * * * * * * * * * * * * * * * * *				-: -:	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031610.D A316_1UG,M Thu Apr 07 13:05:57 2016 MSD1

келтемеп

ď.

тлопанттаттоп керотт

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN031611.D Vial: 10 Acq On : 16 Mar 2016 11:55 pm Sample : A1UG_0.10 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P

Quant Time: Mar 17 08:20:37 2016 Quant Results File: A316 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response Co	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.84 12.08 16.57	128 114 117	36456m l ³ 101173 65714	1.00	dqq	0.03 0.02 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	39949 Recovery	0.95		0.00 00%
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene 56) Tetrachloroethylene	4.59 11.38 12.70 15.66	62 117 130 164	4562 12433 4819 4679m/}	0.12 0.13 0.12 0.12	ppb	Qvalue 86 99 97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031611.D A316_1UG.M Thu Apr 07 13:06:00 2016

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN031612.D Vial: 11 Acq On : 17 Mar 2016 12:31 am Sample : A1UG 0.04 Misc : A316 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:20:59 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : lUG_RUN

Internal Standards	R.T.	QIon	Response Co	onc Un	its Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5		128 114 117	35586m / 7 102709 61413	1.00	ppb 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70		36946 Recovery	0.94	ppb 0.00 94.00%
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene	4,59 11.38 12.69	62 117 130	2447 6221 2436	0.07 0.06 0.06	8e dqq

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031612.D A316_1UG.M Thu Apr 07 13:06:03 2016 MSD1

inamataav täl

אממיוידנטראמי שכלימדר

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CALIBRATION VERIFICATION

Data File : C:\HPCHEM\1\DATA\AN040302.D Operator: RJP Acq On : 3 Apr 2016 11:40 am Inst : MSD #1 Sample : Alug_1.0 : A316_1UG Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Method Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Apr 26 16:27:03 2016 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev: 30% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev A	reat	Dev(min)
1 I	Bromochloromethane	1.000	1.000	0.0	44#	0.00
żŤ	Propylene	0.810	0.968	-19.5	58	0.00
3 T	Freon 12	4.271	5.170	-21.0	56	0.00
4 T	Chloromethane	1.118	1.427		62	0.00
5 T	Freon 114	3.598	4.599		58	0.00
6 T	Vinyl Chloride	1.125	1.330	-18.2	59	0.00
7 7	Butane	1.285	1.573		57	0.00
s T	1,3-butadiene	0.847	1.004	-18.5	57	0.00
9 T	Bromomethane	1.320	1.584	-20.0	56	0.00
10 T	Chloroethane	0.459	0.566	-23.3	55	0.00
11 T	Ethanol	0.341	0.437		60	0.00
12 T	Acrolein	0.290	0.337	-16.2	57	0.00
13 T	Vinyl Bromide	1.298	1.596	-23.0	56	0.00
14 T	Freon 11	4.393	5.633	-28.2	59	0.00
15 T	Acetone	0.432	0.471	-9.0	53	0.00
16 T	Pentane	0.986	1.109	-12.5	54	0.00
17 T	Isopropyl alcohol	1.409	1.481	-5.1	52	0.00
1.8 T	1,1-dichloroethene	1.283	1.543	-20.3	54	0.00
19 T	Freon 113	3.094	3.990	-29.0	58	0.00
20 t	t-Butyl alcohol			4.8	45#	0.00
21 T	Methylene chloride	2.248 1.124 0.998	1.369	-21.8	54	0.00
22 T	Allyl chloride	0.998	1.139		56	0.00
23 T	Carbon disulfide	3.316	3.647	~10.0	51	0.00
24 T	trans-1 2-dichloroethere	1.522	1.695	-11.4	50	0.00
25 T	methyl tert-butyl ether 1,1-dichloroethane	2.881	2.972	-3.2	47#	0.00
26 T	1.1-dichloroethane	2.155			50	0.00
27 T	Vinyl acetate	1.869	1.795	4.0	47#	0.00
28 T	Methyl Ethyl Ketone	0.461		0.2	45#	0.00
29 T	cis-1,2-dichloroethene	1.250	1.355	-8.4		0.00
30 T	Hexane	1.308		0.8	44#	0.00
31 T	Ethyl acetate	1,784	1.918	-7.5	50#	0.00
32 T	Chloroform	2.918	3.115	-6.8		0.00
33 T	Tetrahydrofuran	0.828	0.844	-1.9	46#	0.00
34 T	1,2-dichloroethane	1.641	1.689	-2.9	47#	0.00
					"	
35 I	1,4-difluorobenzene	1.000	1.000	0.0	33#	0.00
36 T	1,1,1-trichloroethane	0.939	1.154	-22.9	41#	0.00
37 T	Cyclohexane	0.387		-22.7	41#	0.00
38 T	Carbon tetrachloride	1.048	1.341	-28.0		0.00
39 T	Benzene	0.832	1.067	-28.2	43#	0.00
40 T	Methyl methacrylate	0.271	0.338		43#	0.00
41 T	1,4-dioxane	0.213	0.188	11.7	29#	0.00
42 T	2,2,4-trimethylpentane	1.453	1.992	-37.1#	45#	0.00
43 T	Meptane	0.338	0.400	-18.3	37#	0.00
44 T	Trichloroethene	0.425	0.508	~19.5	43#	0.00
45 T	1,2-dichloropropane	0.300	0.388	-29.3	43#	0.00
46 T	Bromodichloromethane	0.734	0.917	~24.9	42#	0.00
47 T	cis-1,3-dichloropropene	0.400	0.493	-23.2	42#	0.00
48 T	trans-1,3-dichloropropene	0.359	0.426	-18.7	41#	0.00
49 T	1,1,2-trichloroethane	0.329	0.415	-26.1	43#	0.00
	• •					

^{(#) =} Out of Range AN040302.D A316_1UG.M Tue Apr 26 16:29:54 2016

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AN040302.D Vial: 2 Acq On : 3 Apr 2016 11:40 am Operator: RJP Sample : AlUG_1.0 Misc : A316_lUG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
: TO-15 VOA STATEMENT TO THE STATEMENT OF Method

Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Apr 26 16:27:03 2016 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	*Dev A	rea% :	Dev(min)
51	T'	Toluene	0.679	0.573	15.6	36#	0.00
52		Methyl Isobutyl Ketone	1.201	0.930	22.6	32#	0.00
53		Dibromochloromethane	0.857	0.926	-8.1	48#	0.00
54		Methyl Butyl Ketone	1.068	0.843	21.1	32#	0.00
55	\mathbf{T}	1,2-dibromoethane	0.845	1.040	-23.1	55	0.00
56	T	Tetrachloroethylene	0.648	0.546	15.7	40#	0.00
		Chlorobenzene	0.891	0.981	-10.1	49#	0.00
58	\mathbf{T}	1,1,1,2-tetrachloroethane	0.666	0.780	-17.1	49#	0.00
59	${f T}$	Ethylbenzene	1.165	1.117	4.1	42#	0.00
60	Ţ	m&p-xylene	0.925	0.895	3.2	42#	0.00
61	T	Nonane	0.552	0.588	-6.5	48#	0.00
62	\mathbf{T}	Styrene	0.644	0.697	-8.2	47#	0.00
63	\mathbf{T}	Bromoform	0.463	0.955	-106.3#	93	0.00
64	T	o-xylene	1.109	1.101	0.7	45#	0.00
65	\mathbf{r}	Cumene	1.299	1.321	-1.7	48#	0.00
66	S	Bromofluorobenzene	0.643	0.698	-8.6	48#	0.00
67	Ϋ́	1,1,2,2-tetrachloroethane	1.140	1.349	-18.3	55	0.00
68	\mathbf{T}	Propylbenzene	1.379	1.430	-3.7	53	0.00
69	T	2-Chlorotoluene	1.004	1.049	-4.5	48#	0.00
70		4-ethyltoluene	1.183	1.061	10.3	44#	0.00
71		1,3,5-trimethylbenzene	1.416	1.437	-1.5	48#	0.00
72		1,2,4-trimethylbenzene	1.224	1.082	11.6	42#	0.00
73		1,3-dichlorobenzene	0.778	0.874	-12.3	50	0.00
74		benzyl chloride	1.110	0.994	10.5	36#	0.00
75	T	1,4-dichlorobenzene	0.733	0.768	-4,8	47#	0.00
76	\mathbf{T}	1,2,3-trimethylbenzene	1.510	1.368	9.4	41#	0.00
77		1,2-dichlorobenzene	0.954	0.972	-1.9	47#	0.00
78	${f T}$	1,2,4-trichlorobenzene	0.720	0.521	27.6	34#	0.00
79	T	Naphthalene	1.494	0.978	34.5#	33#	0.00
80	T	Hexachloro-1,3-butadiene	1.754	1.463	16.6	34#	0.00

Data File : C:\HPCHEM\1\DATA\AN040302.D Vial: 2 Acq On : 3 Apr 2016 11:40 am Operator: RJP Sample : A1UG_1.0 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 03 12:09:43 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

				_	_		_	
Inte	ernal Standards Bromochloromethane	R.T.	QIon	Response	Conc	Units	Dev	(Min)
7 \	Bromochloromethane	9.81	128	16244m	7 7 0	dqq 0		0.00
35)	Bromochioromethane 1,4-difluorobenzene Chlorobenzene-d5	12.07	114	37337	1.0	0 ppb		0.00
50)	Chlorobenzene-d5	16.56	117	27087		dqq 0		0.00
		10.50	,	27007	1.0	o pps		
	em Monitoring Compounds							
	Bromofluorobenzene	18.14				9 ppb		0.00
Sp	iked Amount 1.000	Range 70	- 130	Recover	ry =	109	.00¥	
Tara	et Compounds						Osta	alue
	Propylene	4.15	41	15725	1 1	dqq e		
	Freon 12	4.19	85	63980		1 ppb		99
	Chloromethane	4.40			- 4 0	dqq 8		94
_	Freon 114	4.39		74713m		8 ppb		
	Vinyl Chloride	4.59	62	21611		dqq 8		89
	Butane	4.69			1.2	2 ppb		98
-	1,3-butadiene	4.69	39	16302	7.7	g ppb		78
	Bromomethane	5.04		25723		dag 0		87
	Chloroethane		64	9200m		4 ppb		# .
	Ethanol	5.37		7093		g dag 8		76
	Acrolein	5.97	56	5473m		6 ppb		, ,
	Vinyl Bromide	5.55	106	25926		3 ppb		94
	Freon 11	5.81	101	91509		dqq 8		98
	Acetone	6.05			1.0	9 ppb		
	Pentane	6.08	58 42	18009	1 1	5 bbp		96
	Isopropyl alcohol	6.16	45	24060		5 ppb		46
	1,1-dichloroethene	6.57				o ppb		89
	Freon 113	6.75	96 101 59	64910m		dqq e		03
	t-Butyl alcohol	6.90	207	64810m 34760		5 ppb		71
	Methylene chloride	7.05	84	22240	1 2	2 ppb	#	86
	Allyl chloride	7.03	41	18501		4 ppb		89
	Carbon disulfide	7.21				qqq 0		99
	trans-1,2-dichloroethene		76 61	59239 27535	7 7	1 ppb		96
	methyl tert-butyl ether		73			3 ppb		84
	1,1-dichloroethane	8.40		38941		dqq 1		98
	Vinyl acetate	8.43	63 43	29153		e bbp		100
	Methyl Ethyl Ketone		77 2	7475		dqq 0		100
	cis-1,2-dichloroethene		61			dqq 8		95
	Hexane	8.90	57	21064	0.9	9 ppb		96
	Ethyl acetate	8.90 9.54	57 43	21064 31157	1 0	dad L		96
32)	Chloroform	9.95	83	50608	1 0	7 ppb		100
	Tetrahydrofuran	10.17	4.2	13704		2 ppb		95
	1,2-dichloroethane	11.09	62	27444	Λ 3 D	dag E		88
	1,1,1-trichloroethane	10.75	97	43093m	7 7 7	3 ppb		00
	Cyclohexane	11.45	56	17743m		3 ppb		
38)	Carbon tetrachloride	11.39	117	50076m /		dqq 8		
-	Benzene	11.37	78	39826	1 2	dqq 8		97
	Methyl methacrylate	12.93	41	12625		5 ppb		91
41)	····	13.02	88	7033		dqq e		92
	2,2,4-trimethylpentane	12.19	57	74377m		7 ppb		72
		12.54	43	14924		g bbp		95
	Heptane Trichloroethene	12.54	130	18963		dqq 0		97
45)	1,2-dichloropropane	12.79	63	14497		ddd 6		98
45)					· · · · · · · · · · · · · · · · · · ·	~ ~ ~ ~ ~		

^{(#) =} qualifier out of range (m) = manual integration

AN040302.D A316_1UG.M Tue Apr 26 16:29:59 2016

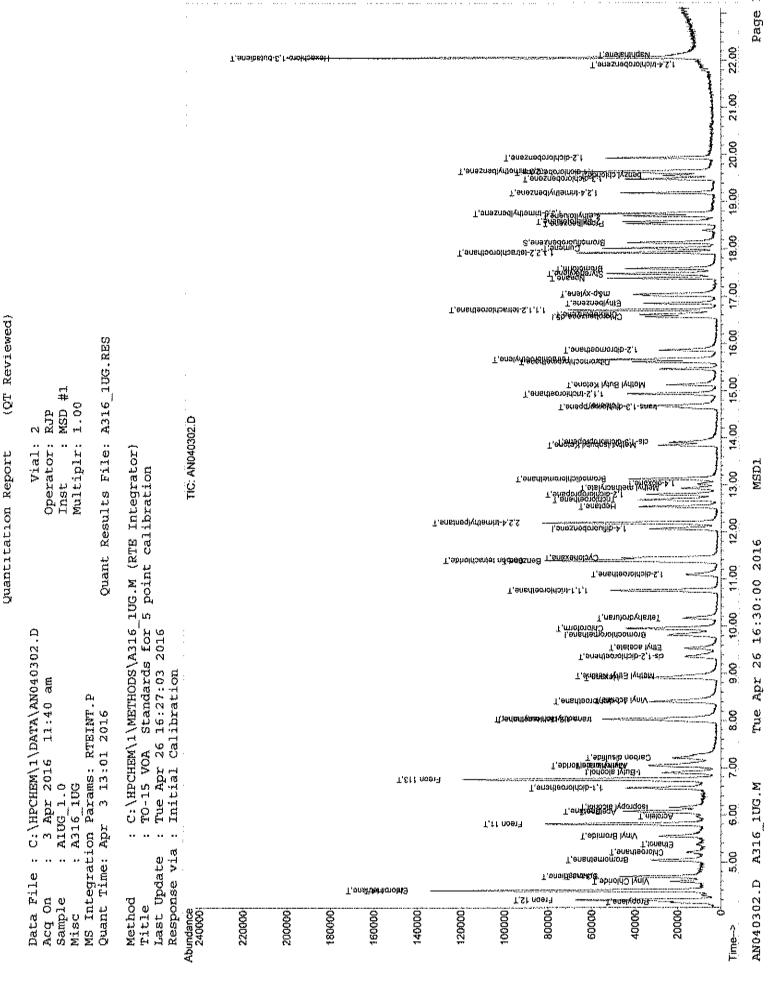
MSD1

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 03 12:09:43 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

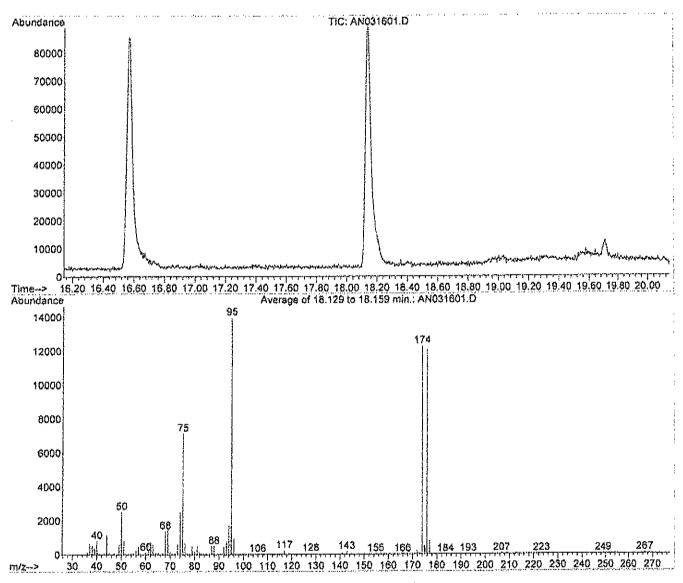

Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	34255m	1.25 ppb	
47)	cis-1,3-dichloropropene	13.90	75	18389m \	1.23 ppb	
48)		14.64	75	15918m	1.19 ppb	
49)		14.93	97	15480m	1.26 ppb	
51.)	Toluene	14.68	92	15526	0.84 ppb	94
52)	Methyl Isobutyl Ketone	13.84	43	25200	0.77 ppb	93
53)	Dibromochloromethane	15.61	129	25078m 🎉	1.08 ppb	
54)	Methyl Butyl Ketone	15.12	43	22837	0.79 ppb	90
55)	1,2-dibromoethane	15.86	1.07	28176	1.23 ppb	96
56)	Tetrachloroethylene	15.66	164	14799	0.84 ppb	99
57)	Chlorobenzene	16.61	112	26561	1.10 ppb	87
58)	1,1,1,2-tetrachloroethane	16.71	131	21137	1.17 ppb	95
59)		16.85	91	30262	0.96 ppb	97
60)	m&p-xylene	17.04	91	48503	1.94 ppb	94
61)	Nonane	17.38	43	15931	1.07 ppb	93
62)	Styrene	17.46	104	18879	1.08 ppb	93
63)	Bromoform	17.58	173	25866 n	2.06 ppb	99
64)	o-xylene	17.49	91	29832m (dqq ee.o	
65)	Cumene	18.02	105	35780	1.02 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	36537	1.18 ppb	99
	Propylbenzene	18.54	91	38747m 🕻	1.04 ppb	
69)	2-Chlorotoluene	18.58	91	28425m	1.05 ppb	
	4-ethyltoluene	18.70	105	28733m	0.90 ppb	
71)		18.76	105	38929m	1.02 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	29304	dqq 88.0	96
73)	1,3-dichlorobenzene	19.49	146	23663	1.12 ppb	98
74)		19.56	91	26917	0.90 ppb	97
75)		19.62		20800	1.05 ppb	94
	1,2,3-trimethylbenzene	19.65		37066	0.91 ppb	93
	1,2-dichlorobenzene	19.94		26332 ₂₀	1.02 ppb	97
	1,2,4-trichlorobenzene	21.91		14125m /	0.72 ppb	
79)		22.12		20489M 9	ပ. ဗော ဥာပ္မာ	
80)	Hexachloro-1,3-butadiene	22.07	225	39625	dqq 88.0	96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed ANO40302.D A316_1UG.M Tue Apr 26 16:29:59 2016 MSD1


GC/MS VOLATILES-WHOLE AIR

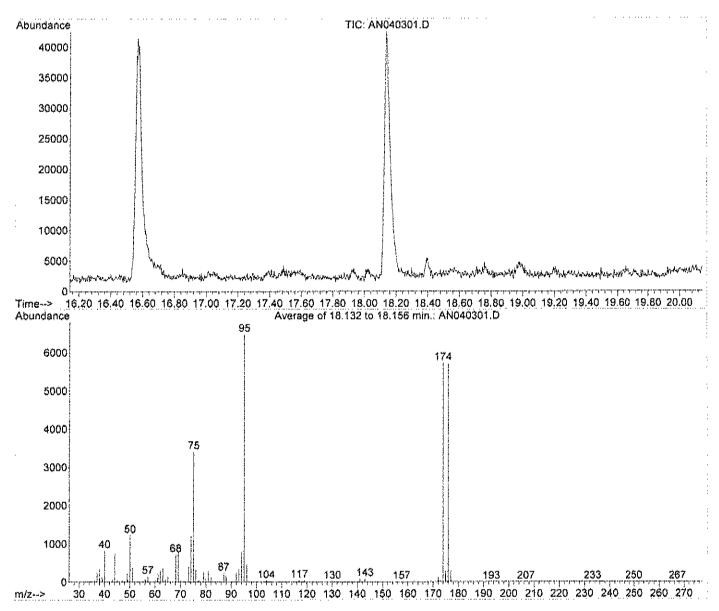
METHOD TO-15

RAW DATA

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.129 to 18.159 min.


Target Mass	Rel. to Mass	Lower Limit%	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Fail
1 50	95	8	40	18.0	2513	PASS
75	95	30	66	51.1	7135	PASS
95	95	1.00	100	100.0	13975	Pass
96	95	5	9	6.7	936	PASS
173	174	0.00	2	0.6	79	PASS
174	95	50	120	87.9	12278	Pass
175	174	4	9	4.1	498	Pass
176	174	95	101	98.5	12090	PASS
177	176	5	9	6.9	829	PASS

AN031601.D A316_1UG.M

Thu Apr 07 13:04:45 2016 MSD1

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.132 to 18.156 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
-	50	95	8 1	40	19.0	1230	PASS
ı	75	95	30	66	52.6	3415	PASS
- 1	95	95	100	100	100.0	6489	PASS
- 1	96	95	5	9	7.3	473	PASS
İ	173	174	0.00	2	0.4	24	PASS
-	174	95	50	120	88.3	5732	PASS
- 1	175	174	4	9	4.9	279	PASS
	176	174	95	101	99.6	5711	PASS
İ	177	176	5	9	5.3	305	PASS

AN040301.D A316_1UG.M

Tue Apr 26 16:29:49 2016 MSD1

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW QC DATA

ANALYTICAL QC SUMMARY REPORT

Date: 26-Apr-16

LaBella Associates, P.C. CLIENT:

C1603091 Work Order: Emerson Landfill Project:

TestCode: 0.25CT-TCE-VC

Sample ID AMB1UG-040316 Client ID: ZZZZZ	SampType: MBLK Batch ID: R10821	TeslCo	siCode: 0.25CT-TC TestNo: TO-15	TestCode: 0.25CT-TCE- Units: ppbV TestNo: TO-15		Prep Date: Analysis Date: 4/3/2016	* 4/3/201	9	RunNo: 10821 SeqNo: 127146	321 7146	
Analyte	Result	Pol	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Que
1.1,1-Trichloroethane	< 0.15	0.15									
f,1-Dichloroethane	< 0.15	0.15									
1,1-Dichloroethene	< 0.15	0.15									
Chloroethane	< 0.15	0.15									
Chloromethane	< 0.15	0.15									
cis-1,2-Dichloroethene	< 0.15	0.15									
Tetrachloroethylene	< 0.15	0.15									
trans-1,2-Dichloroethene	< 0.15	0.15									
Trichloroethene	< 0.040	0.040									
Vinyl chloride	< 0.040	0.040									

Analyte detected at or below quantitation limits Results reported are not blank corrected Qualifiers:

Spike Recovery outside accepted recovery limits

Not Detected at the Reporting Limit Value above quantitation range 9 Q

1f Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

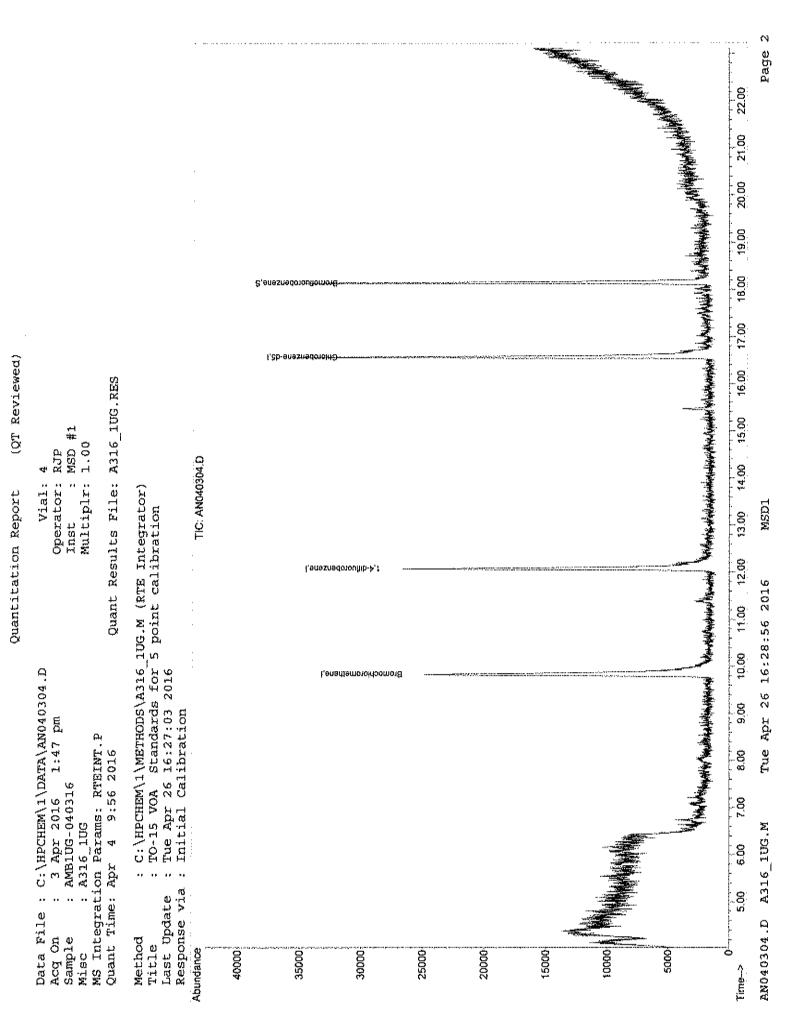
RPD outside accepted recovery limits

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN040304.D Vial: 4 Acq On : 3 Apr 2016 1:47 pm Operator: RJP Sample : AMB1UG-040316 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 03 14:27:29 2016 Quant Results File: A316 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc Ur	nits D	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.08 16.57	128 114 117	14032 33917 30527	1.00 1.00 1.00	dqq	0.02 0.02 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	17340 Recovery		ppb 88.00	
					,	~ 7

Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040304.D A316_1UG.M Tue Apr 26 16:28:55 2016 MSD1

Page 1

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

Date: 26-4pr-16

LaBella Associates, P.C. CLIENT:

C1603091 Work Order;

Project:

Emerson Landfill

Sample ID ALCS1UG-040316	SampType: LCS	TestCox	le: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	ė.		RuniNo: 10821	821	
Client ID: ZZZZZ	Batch ID: R10821	Test	TestNo: TO-15		*****	Analysis Dat	Analysis Date: 4/3/2016		SeqNo: 127147	7447	
Analyte	Result	POE	SPK value	SPK value SPK Ref Val	%REC	LowLimit	Hightimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Quaf
1,1,1-Trichloroethane	1.370	0.15	-	0	137	70	130				s
1,1-Dichloroethane	1,170	0.15	-	0	117	70	130				
1,1-Dichloroethene	1,070	0.15	-	0	107	70	130				
Chloroethane	1,170	0.15	-	0	117	70	130				
Chloromethane	1.280	0.15	-	0	128	70	130				
cis-1,2-Dichloroethene	1.070	0.15	-	0	107	70	130				
Tetrachloroethylene	0.9000	0.15	-	0	90.0	70	130				
trans-1,2-Dichloroethene	1.130	0.15	-	0	113	70	130				
Trichloroethene	1,270	0,040	-	0	127	70	130				
Vinyl chloride	1.220	0.040	-	0	122	70	130				

E Value above quantitation range ND Not Detected at the Reporting Limit Analyte detected at or below quantitation limits Results reported are not blank corrected Qualifiers:

Spike Recovery outside accepted recovery limits

H Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN040303.D Vial: 3 Acq On : 3 Apr 2016 12:29 pm Operator: RJP Sample : ALCS1UG-040316 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Apr 03 13:01:31 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

1) Bromochloromethane	Inte	rnal Standards	R.T.	QIon	Response C	Conc Units	Dev	(Min)
35 1,4-difluorobenzene		Dromoch'i cromothano		100	152557			0.00
System Monitoring Compounds 18.14 95 17298 1.12 ppb 0.00								
### System Monitoring Compounds 18.14 95 17298 1.12 ppb 0.00				117	22740			
Spiked Amount	507	Curoropensend-do	1.0.57	# # 1	24096	1.00 ppb		0.00
Target Compounds								
Target Compounds 2) Propylene								0.00
20	Sp	iked Amount 1.000	Range 70	- 130	Recovery	r = 112	.00%	
20	平当 光度	et Compounds					Ova	alue
3 Freon 12	_	=	4 3 4	43	15020	1 21 mmh		
Chloromethane								
Simple	-							100
6) Vinyl Chloride 4								
Note								90
8) 1,3-butadiene)			
9) Bromomethane				3 9	16601m			
10				94	26561m			
11) Ethanol								
1.2 Acrolein					1			
13) Vinyl Bromide 5.54 106 25715 1.29 ppb 1.27 ppb 15.80 101 85805m 1.27 ppb 16.80 101 85805m 1.24 ppb 16.9 Pentane 6.04 58 8213m 1.24 ppb 16.9 Pentane 6.06 42 18988 1.25 ppb 99 17.1 Isopropyl alcohol 6.14 45 25478 1.18 ppb 46 46 1.18	_				,			
14 Freon 11				106	25715			95
15 Acetone								
16 Pentane								
17 Isopropyl alcohol					,			99
18					T T			
19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride 22) Allyl chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl tert-butyl ether 26) 1,1-dichloroethane 27) Vinyl acetate 28) Kethyl Ethyl Ketone 29) cis-1,2-dichloroethene 29) cis-1,2-dichloroethene 29) cis-1,2-dichloroethene 29) cis-1,2-dichloroethene 29) cis-1,2-dichloroethene 29) cis-1,2-dichloroethene 29,36 61 20453 1.07 ppb 95 30) Hexane 30) Chloroform 30) Freon 113 20) Ppb 100 21) Vinyl acetate 21) Ppb 100 22) Cis-1,2-dichloroethene 22) Chloroform 32) Chloroform 33) Tetrahydrofuran 34) 1,2-dichloroethane 35) Carbon tetrachloride 36) 1,1,1-trichloroethane 37) Cyclohexane 38) Carbon tetrachloride 39) Benzene 31) Renzene 31) Renzene 32) Chloroform 33) Carbon tetrachloride 31,4,4-dioxane 32) Chlorokane 33) Carbon tetrachloride 31,4,4-dioxane 34) 1,4-dioxane 35) Renzene 36) 1,4,4-dioxane 37) Cyclohexane 38) Carbon tetrachloride 31,37 78 32721m 32721m 339) Benzene 340) Methyl methacrylate 341) 1,4-dioxane 342) 2,2,4-trimethylpentane 343) Heptane 344) Trichloroethene 344) Trichloroethene 345) Heptane 346) Trichloroethene 347) Trichloroethene 348) Trichloroethene 349 Trichloroethene 340 Trichloroethene 341 Trichloroethene 341 Trichloroethene 342 Trichloroethene 343 Trichloroethene 344 Trichloroethene 345 Trichloroethene 346 Trichloroethene 347 Trichloroethene 348 Trichloroethene 349 Trichloroethene 340 Trichloroethene 341 Trichloroethene 341 Trichloroethene 342 Trichloroethene 343 Trichloroethene 344 Trichloroethene 345 Trichloroethene 346 Trichloroethene 347 Trichloroethene							7,	
21) Methylene chloride					57141m			31
21) Methylene chloride					39976			81
22) Allyl chloride 7.01 41 16380 1.07 ppb 88 23) Carbon disulfide 7.20 76 58730 1.15 ppb 99 24) trans-1,2-dichloroethene 8.00 61 26321 1.13 ppb 96 25) methyl tert-butyl ether 8.02 73 47402 1.07 ppb 85 26) 1,1-dichloroethane 8.40 63 38609 1.17 ppb 100 27) Vinyl acetate 8.44 43 28300 0.99 ppb 100 28) Methyl Ethyl Ketone 8.94 72 7117 1.01 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 20453 1.07 ppb 95 30) Hexane 8.90 57 19120 0.95 ppb 95 31) Ethyl acetate 9.52 43 31307 1.14 ppb 89 32) Chloroform 9.95 83 48694 1.09 ppb 95 33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 137) Cyclohexane 11.44 56 17457m 1.34 ppb 139) Benzene 11.37 78 32721m 1.35 ppb 139) Benzene 11.37 78 32721m 1.35 ppb 1.470 Methyl methacrylate 12.91 41 1265 1.23 ppb # 77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100								
23) Carbon disulfide 7.20 76 58730 1.15 ppb 99 24) trans-1,2-dichloroethene 8.00 61 26321 1.13 ppb 96 25) methyl tert-butyl ether 8.02 73 47402 1.07 ppb 85 26) 1,1-dichloroethane 8.40 63 38609 1.17 ppb 100 27) Vinyl acetate 8.44 43 28300 0.99 ppb 100 28) Methyl Ethyl Ketone 8.94 72 7117 1.01 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 20453 1.07 ppb 95 30) Hexane 8.90 57 19120 0.95 ppb 95 31) Ethyl acetate 9.52 43 31307 1.14 ppb 89 32) Chloroform 9.95 83 48694 1.09 ppb 99 33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 1.37 ppb 37) Cyclohexane 11.44 56 17457m 1.34 ppb 1.35 ppb 39) Benzene 11.37 78 32721m 1.17 ppb 40) Methyl methacrylate 12.91 41 11265 1.23 ppb # 77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 95 43) Heptane 12.19 57 79364 1.62 ppb 95 44) Trichloroethene 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.53 43 13144 1.15 ppb 92							71	
24) trans-1,2-dichloroethene 8.00 61 26321 1.13 ppb 96 25) methyl tert-butyl ether 8.02 73 47402 1.07 ppb 85 26) 1,1-dichloroethane 8.40 63 38609 1.17 ppb 100 27) Vinyl acetate 8.44 43 28300 0.99 ppb 100 28) Methyl Ethyl Ketone 8.94 72 7117 1.01 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 20453 1.07 ppb 95 30) Hexane 8.90 57 19120 0.95 ppb 95 31) Ethyl acetate 9.52 43 31307 1.14 ppb 89 32) Chloroform 9.95 83 48694 1.09 ppb 99 33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 37) Cyclohexane 11.34 56 17457m 1.34 ppb 38) Carb								
25) methyl tert-butyl ether								
26) 1,1-dichloroethane 8.40 63 38609 1.17 ppb 100 27) Vinyl acetate 8.44 43 28300 0.99 ppb 100 28) Methyl Ethyl Ketone 8.94 72 7117 1.01 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 20453 1.07 ppb 95 30) Hexane 8.90 57 19120 0.95 ppb 95 31) Ethyl acetate 9.52 43 31307 1.14 ppb 89 32) Chloroform 9.95 83 48694 1.09 ppb 99 33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.07 ppb 95 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 136) 1,1,1-trichloroethane 11.39 117 47731m 1.35 ppb 139) Benzene 11.34 56 17457m 1.34 ppb 139) Benzene 11.37 78 32721m 1.17 ppb 139) Benzene 11.37 78 32721m 1.17 ppb 140) Methyl methacrylate 12.91 41 11265 1.23 ppb # 77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100								
27) Vinyl acetate 8.44 43 28300 0.99 ppb 100 28) Methyl Ethyl Ketone 8.94 72 7117 1.01 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 20453 1.07 ppb 95 30) Hexane 8.90 57 19120 0.95 ppb 95 31) Ethyl acetate 9.52 43 31307 1.14 ppb 89 32) Chloroform 9.95 83 48694 1.09 ppb 99 33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 137) Cyclohexane 11.44 56 17457m 1.34 ppb 138) Carbon tetrachloride 11.39 117 47731m 1.35 ppb 139) Benzene 11.37 78 32721m 1.17 ppb 1.35 ppb 10 Methyl methacrylate 12.91 41 11265 1.23 ppb # 77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100								
28) Methyl Ethyl Ketone								
29) cis-1,2-dichloroethene 9.36 61 20453 1.07 ppb 95 30) Hexane 8.90 57 19120 0.95 ppb 95 31) Ethyl acetate 9.52 43 31307 1.14 ppb 89 32) Chloroform 9.95 83 48694 1.09 ppb 99 33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 37) Cyclohexane 11.44 56 17457m 1.34 ppb 1.37 ppb 1.39 Benzene 11.37 78 32721m 1.17 ppb 1.35 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.18 ppb 1.18 ppb 1.19 ppb 1.19 ppb 1.19 ppb 1.19 ppb 1.19 ppb 1.20 ppb 95 40) Methyl methacrylate 12.91 41 11265 1.23 ppb 1.77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb								
30) Hexane 30) Hexane 31) Ethyl acetate 31) Ethyl acetate 31) Ethyl acetate 31) Ethyl acetate 32) Chloroform 32) Chloroform 33) Tetrahydrofuran 30) Hexane 31) Tetrahydrofuran 31) Line Line Line 32) Chloroform 33) Tetrahydrofuran 34) Line Line 35) Line Line 36) Line Line 37) Cyclohexane 38) Carbon tetrachloride 31) Line Line 38) Carbon tetrachloride 31) Line Line 38) Carbon tetrachloride 31) Line Line 32) Line 33) Denzene 34) Heytane 35) Line Line 36) Line Line 37) Line 38) Carbon tetrachloride 31) Line 32) Line 32) Line 33) Line 34) Line 35) Line 36) Line 36) Line 37) Line 38) Line 38) Line 39) Line 39) Line 39) Line 30) Line 30) Line 30) Line 31) Line 32) Line 32) Line 33) Line 34) Line 35) Line 36) Line 36) Line 37) Line 38) Line 38) Line 39) Line 39) Line 30) Line 30) Line 31) Line 32) Line 32) Line 33) Line 34) Line 35) Line 36) Line 37) Line 38) Line 39) Line 38) Li								
31) Ethyl acetate 9.52 43 31307 1.14 ppb 89 32) Chloroform 9.95 83 48694 1.09 ppb 99 33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 37) Cyclohexane 11.44 56 17457m 1.34 ppb 1.35 ppb 1.39 Benzene 11.37 78 32721m 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.18 ppb 1.18 ppb 1.19 ppb 1.19 ppb 1.19 ppb 1.19 ppb 1.19 ppb 1.20 ppb 95 41) 1,4-dioxane 12.91 41 11265 1.23 ppb 1.77 ppb 1.39 ppb								
32) Chloroform 9.95 83 48694 1.09 ppb 99 33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 1.37 ppb 1.37 ppb 1.35 ppb 1.35 ppb 1.35 ppb 1.35 ppb 1.35 ppb 1.35 ppb 1.35 ppb 1.17 ppb 1.35 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.18 ppb 1.23 ppb 1.17 ppb 1.23 ppb 1.23 ppb 1.23 ppb 1.25 ppb 1.25 ppb 1.25 ppb 1.25 ppb 1.27 ppb 1.26 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100								
33) Tetrahydrofuran 10.16 42 13587 1.07 ppb 95 34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 37) Cyclohexane 11.44 56 17457m 1.34 ppb 38) Carbon tetrachloride 11.39 117 47731m 1.35 ppb 39) Benzene 11.37 78 32721m 1.17 ppb 40) Methyl methacrylate 12.91 41 11265 1.23 ppb # 77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100								
34) 1,2-dichloroethane 11.09 62 25662 1.02 ppb 91 36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 1.37 ppb 37) Cyclohexane 11.44 56 17457m 1.34 ppb 1.35 ppb 1.35 ppb 1.35 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.17 ppb 1.07 ppb <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 07 ppb</td> <td></td> <td></td>						1 07 ppb		
36) 1,1,1-trichloroethane 10.75 97 43392m 1.37 ppb 37) Cyclohexane 11.44 56 17457m 1.34 ppb 38) Carbon tetrachloride 11.39 117 47731m 1.35 ppb 39) Benzene 11.37 78 32721m 1.17 ppb 40) Methyl methacrylate 12.91 41 11265 1.23 ppb # 77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100								
37) Cyclohexane	,				.9.1			J. 10.
38) Carbon tetrachloride 11.39 117 47731m 1.35 ppb 39) Benzene 11.37 78 32721m 1.17 ppb 40) Methyl methacrylate 12.91 41 11265 1.23 ppb # 77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100		· ·			4			
39) Benzene 11.37 78 32721m 1.17 ppb 1.07 ppb 1.		•			j j			
40) Methyl methacrylate 12.91 41 11265 1.23 ppb # 77 41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 1.07 ppb 1.62 ppb 95 42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100								
41) 1,4-dioxane 13.00 88 7702m 1.07 ppb 42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100					,		#	*7 *7
42) 2,2,4-trimethylpentane 12.19 57 79364 1.62 ppb 95 43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100	:						11	, ,
43) Heptane 12.53 43 13144 1.15 ppb 92 44) Trichloroethene 12.68 130 18139 1.27 ppb 100					,			9.6
44) Trichloroethene 12.68 130 18139 1.27 ppb 100					,			
					J.			
45) I'S dicurorobrobane IS'A 62 ISOAMA I'IS 660	:				M .			+00
	45)	T'%-Groutorobrobaue	12.79				w w m m	

(#) = qualifier out of range (m) = manual integration

AN040303.D A316_1UG.M Tue Apr 26 16:28:51 2016

MSDl

 Data File : C:\HPCHEM\1\DATA\AN040303.D
 Vial: 3

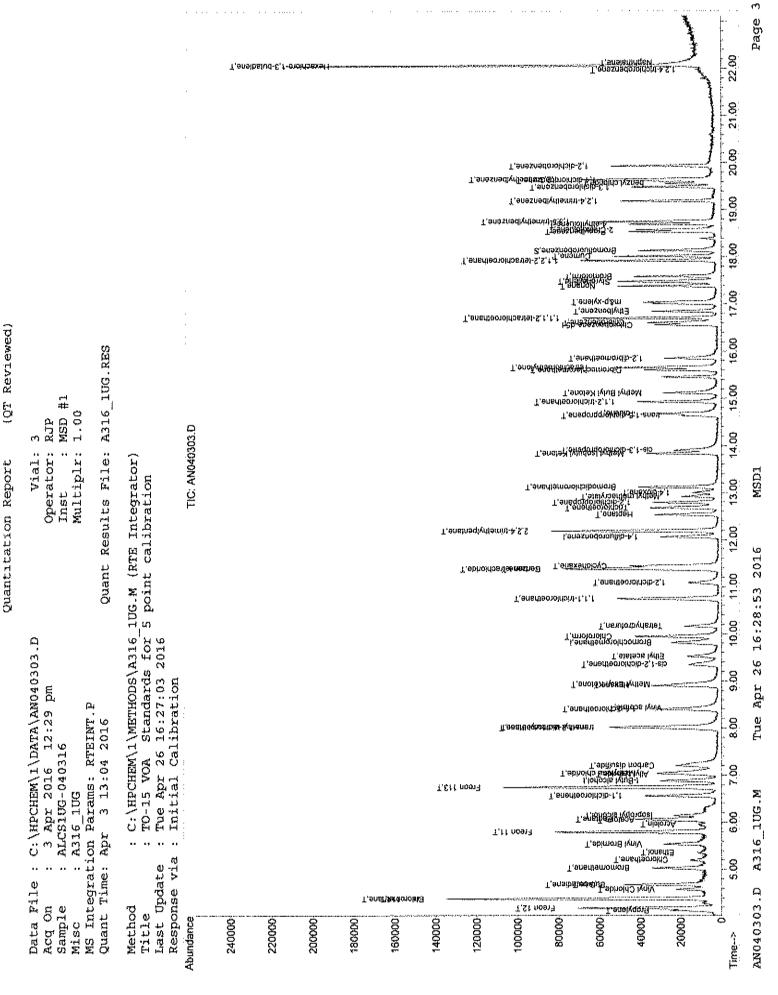
 Acq On : 3 Apr 2016 12:29 pm
 Operator: RJP

 Sample : ALCS1UG-040316
 Inst : MSD #1

 Misc : A316_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Apr 03 13:01:31 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	31239m /	1.26 ppb	
47)	cis-1,3-dichloropropene	13.89	75	18106m /	1.34 ppb	
48)	trans-1,3-dichloropropene	14.63	75	15292m	1.26 ppb	
49)	1,1,2-trichloroethane	14.93	97	16730	1.51 ppb	99
51)	Toluene	14.67	92	13950	0.85 ppb	96
52)	Methyl Isobutyl Ketone	13.83	43	32065	1.11 ppb	94
53)	Dibromochloromethane	15.60	129	23789m	1.15 ppb	
54)	Methyl Butyl Ketone	15.11	43	26829	1.04 ppb	92
55)	1,2-dibromoethane	15.86	107	25038m √	1.23 ppb	
56)	Tetrachloroethylene	15.66	164	14004	0.90 ppb	96
57)	Chlorobenzene	16.61	112	25439	1.18 ppb	88
58)	1,1,1,2-tetrachloroethane	16.71	131	20451	1.27 ppb	95
59)	Ethylbenzene	16.85	91	28749	1.02 ppb	99
60)	m&p-xylene	17.04	91	44494	2.00 ppb	96
61)	Nonane	17.38	43	14645	1.10 ppb	97
62)	Styrene	17.46	104	17707	1,14 ppb	92
63)	Bromoform	17.58	173	24204	2.17 ppb	100
64)	o-xylene	17.48	91	26945	1,01 ppb	85
65)		18.02	105	35015 🔏	1.12 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	34939m 🖊	1.27 ppb	
68)	Propylbenzene	18.54	91.	34825m	1.05 ppb	
69)	2-Chlorotoluene	18.58	91	22801m	0.94 ppb	
70)	4-ethyltoluene	18.69	105	29417m {	1.03 ppb	
71)	1,3,5-trimethylbenzene	18.76	105	37863m 💙	1.11 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	31153	1.06 ppb	96
73)	1,3-dichlorobenzene	19.49	146	22749	1.21 ppb	99
74)	benzyl chloride	19.56	91	30177	1.13 ppb	98
75)	1,4-dichlorobenzene	19.62	146	21615	1.22 ppb	96
76)	1,2,3-trimethylbenzene	19.65	105	39020	1.07 ppb	94
77)	1,2-dichlorobenzene	19.94	146	27510	1.20 ppb	99
78)	1,2,4-trichlorobenzene	21.97	180	14791m 🗥	0.85 ppb	
79)	Naphthalene	22.13	128	32562m 🏑	dqq 00.0	
80)	Hexachloro-1,3-butadiene	22.07	225	42410	1.00 ppb	93

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN040303.D A316_UG.M Tue Apr 26 16:28:52 2016 MSDI

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1603091 Work Order: Emerson Landfill Project:

TestCode: 0.25CT-TCE-VC

Client ID: 1640-IAQ-3	SampType: MS	TestCod	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date			RunNo: 10821	23	
	Batch ID: R10821	TestN	TestNo: TO-15		7	Analysis Date:	4/4/2016	9	SeqNo: 127156	156	
Analyte	Result	G.	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimiť	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.220	0.15	-	0	122	02	130				
1,1-Dichloroethane	1.140	0.15	Ψ-	٥	114	22	130				
1,1-Dichloroethene	1,140	0.15	Ψ u	0	114	22	130				
Chloroethane	1.280	0.15	4	0	128	202	130				
Chloromethane	1.380	0.15	•	٥	‡38	70	130				Ø
cis-1,2-Dichloroethene	1.130	0.15	-	0	113	20	130				
Tetrachloroethytene	0.8800	0.15	-	0	88.0	70	130				
trans-1,2-Dichloroethene	1.280	0.15	*-	Ö	128	22	130				
Trichtoroethene	1.130	0.040	/	60.0	109	70	130				
Surr. Bromofluorobenzene	1.230	0		o	123	02	130				
Sample ID C1603091-005A MS	SampType: MSD	TestCod	TestCode: 0.25CT-TCE.	Units: pobV		Prep Date	45		RunNo: 10821	121	
Client ID: 1640-IAQ-3	Batch ID: R10821	TestN	TestNo: TO-15			Analysis Date:	4/4/2016	g	SeqNo: 127158	7158	
Analyte	Result	PQE	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
1, 1.1-Trichloroeitrane	1,160	0.15	wur	0	116	70	130	1.22	5.04	30	
1.1-Dichlorgethane	1.170	0.15	il-m	0	117	70	130	1,14	2.60	30	
f. 1-Dichloroethene	1.100	0.15	•	0	110	70	130	1.14	3.57	æ	
Chloroethane	1.170	0.15	-	0	₽ ~	70	130	1.28	8.98	30	
Chloromethave	1.590	0.15	τ-	0	159	70	130	1.38	14, 1	30	S
cis-1,2-Dichloroethene	1.140	0.15		0	114	70	130	1.13	0.881	SS 33	
Tetrachloroethylene	0.8800	0.15	4	Đ	88.0	70	130	0.88	0	30	
trans-1,2-Dichioroethene	1.210	0.15	ν	0	123	75	130	1.28	5.62	30	
Trichioroethene	1.180	0.040	₹m	60'0	109	70	130	1.18	Ф	30	
Onalifiers: Results report	Results reported are not blank corrected		E Value ab	Value above quantitation range	ລີເ		Ħ	Holding times for preparation or analysis exceeded	preparation or a	malysis excee	ed
_	Analyte detected at or below quantitation limits	nits	ND Not Dete	Not Detected at the Reporting Limit	g Limit		ಜ	RPD outside accepted recovery limits	pted recovery fit	nits	
S Spike Recover	Spike Recovery outside accepted recovery limits	mits								7	Page 1 of 2

Work Order: C1603091 Project: Emerson Landfill Sample ID C1603091-005A MS SampType: MSD Client ID: 1640-IAQ-3 Batch ID: R108									
Emerson Land D C1603091-005A MS S 1640-IAQ-3									
Sample ID C1603091-005A MS Sa Client ID: 1640-JAQ-3						TestCode;	TestCode: 0.25CT-TCE-VC	E-VC	
	mpType: MSD	TestCode: 0.250	TestCode: 0.25CT-TCE- Units: ppbV	λ9	Prep Date:		RunNo: 10821	821	
	Batch ID; R10821	TestNo: TO-15	¥r.		Analysis Date: 4/4/2016	4/4/2016	SeqNo: 127158	7158	
Analyte	Result	PQL SPK v	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLinit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
Surr: Bromofluorobenzene	1,196	0	1	119	02	130	0	30	

Qualifiers:	Results reported are not blank corrected	E Value above quantitation range	H Holding times for preparation or analysis exceeded
	J. Analyte detected at or below quantitation limits.	ND Not Detected at the Reporting Limit	R RPD outside accepted recovery limits
	S spike Recovery outside accepted recovery limits		pase

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN040320.D Vial: 16 Operator: RJP Acq On : 4 Apr 2016 12:06 am Sample : C1603091-005A MS Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Apr 04 04:41:53 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc Un	its	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene	9,77	128	16262m / 40411	1.00		
50) Chlorobenzene-d5	16.55		24211	1.00		
System Monitoring Compounds						
66) Bromofluorobenzene	18.11	95	19125m	1.23	dqq	-0.02
Spiked Amount 1.000	Range 70	- 130	Recovery	763	123.	800
Target Compounds						Qvalue
4) Chloromethane	4.38	50	25099m 🗗	1.38	$_{\rm ppp}$	
10) Chloroethane	5.19	64	9541	1.28	dqq	95
18) 1,1-dichloroethene	6.55	96	23851	1.14	dqq	93
24) trans-1,2-dichloroethene	7.95	61	31598m //	1.28	ppb	
26) 1,1-dichloroethane	8.37	63	39815	1.14	dqq	97
29) cis-1,2-dichloroethene	9.31	61	22969	1.13	dqq	96
36) 1,1,1-trichloroethane	10.73	97	46349	1.22	dqq	98
44) Trichloroethene	12.65	130	20297	1.18	ppb	94
56) Tetrachloroethylene	15.65	164	13781	0.88	dqq	98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN040320.D A316_1UG.M Tue Apr 26 16:28:58 2016 MSD1

Data File : C:\HPCHEM\1\DATA\AN040321.D Vial: 17 Operator: RJP Acq On : 4 Apr 2016 12:49 am Sample : C1603091-005A MSD Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Apr 04 04:41:54 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc (Jnits	Dev(Min)
1) Bromochloromethane	9.77	128	17352		ppb	
35) 1,4-difluorobenzene	12.05	114	46934	1.00	dqq 0	0.00
50) Chlorobenzene-d5	16.55	1.1.7	25902	1.00	dqq 0	0.00
System Monitoring Compounds						
66) Bromofluorobenzene	18.12	95	19796m ∧	1.19	daa e	-0.01
	Range 70	- 130	Recover		119	
Target Compounds			٥			Qvalue
4) Chloromethane	4.39	50	30761m /	1.59	dqq e	
Vinyl Chloride	4.57	62	21926	1.13	dqq s	88
10) Chloroethane	5.19	64	9338		7 ppb	
18) 1,1-dichloroethene	6.55	96	24576		dag C	90
24) trans-1,2-dichloroethene	7.95	61	32072m 🗗	1.2	agg 1	
26) 1,1-dichloroethane	8.38	63	43783	1.1	7 ppb	97
29) cis-1,2-dichloroethene	9.32	61	24633	1.14	4 ppb	95
36) 1,1,1-trichloroethane	10.74	97	51211		dqq 7	99
44) Trichloroethene	12.66	130	23533	1.18	dqq 8	99
56) Tetrachloroethylene	15.65	164	14824	0.88	dgg £	99

^{(#) =} qualifier out of range (m) = manual integration (+) ≈ signals summed AN040321.D A316_1UG.M Tue Apr 26 16:29:01 2016 MSD1

				Injection	on Log _{trument #i}	
		irectory: (D:\HPChem\	1\DATA	Internal Standard Stock # A13	
					Standard Stock #/3' LCS_Stock #/3'	7873 <u>6</u>
ine	Vial	FileName	Multiplier	SampleName	Miscrinfo PA TO-15	Y S 3) / Jan. 19Injected
	16	An040101.d	1.	BFB1UG	A316_1UG	1 Apr 2016 10:05
	18	An040102.d	1.	A1UG_1.0	A316_1UG	1 Apr 2016 12:06
	19	An040103.d	1.	ALCS1UG-040116	A316_1UG	1 Apr 2016 12:45
	20	An040104.d	1.	AMB1UG-040116	A316 <u></u> 1UG	1 Apr 2016 13:21
	21	An040105.d	1.	C1603075-001A 2X	A316_1UG	1 Apr 2016 13:59
	22	An040106.d	1.	C1603074-002A	A316_1UG	1 Apr 2016 14:58
		An040107.d	1.	C1603074-004A	A316_1UG	1 Apr 2016 15:39
		An040108.d	1.	C1603076-003A	A316_1UG	1 Apr 2016 16:18
_		An040109.d	1.	C1603076-005A	A316_1UG	1 Apr 2016 16:57
0		An040110.d	1.	C1603076-002A	A316_1UG	1 Apr 2016 17:36
1		An040111.d	1.	C1603076-007A	A316_1UG	1 Apr 2016 18:15
2		An040112.d	1.	C1603076-009A	A316_1UG	1 Apr 2016 18:54
3		An040113.d	1.	C1603089-001A	A316_1UG	1 Apr 2016 19:33
4 5		An040114.d An040115.d	1. 1.	C1603089-002A	A316_1UG	1 Apr 2016 20:12
6		An040115.d	1.	C1603089-003A C1603089-004A	A316_1UG	1 Apr 2016 20:51 1 Apr 2016 21:30
7		An040117.d	1.	C1603089-005A	A316_1UG A316_1UG	1 Apr 2016 21:30
8		An040118.d	1.	C1603089-006A	A316_1UG	1 Apr 2016 22:48
9		An040119.d	1.	C1603089-007A	A316_1UG	1 Apr 2016 23:27
Õ		An040120.d	1.	C1603089-008A	A316_1UG	2 Apr 2016 00:06
1		An040121.d	1.	C1603089-009A	A316_1UG	2 Apr 2016 00:45
		An040122.d	1,	C1603089-010A	A316_1UG	2 Apr 2016 01:24
2 3		An040123.d	1.	C1603089-011A	A316_1UG	2 Apr 2016 02:03
4		An040124.d	1.	C1603089-012A	A316_1UG	2 Apr 2016 02:42
5		An040125.d	1.	ALCS1UGD-040116	A316_1UG	2 Apr 2016 03:21
5 5 7		An040126.d	1.	C1603079-001A	A316_1UG	2 Apr 2016 04:00
7 :		An040127.d	1.	C1603079-002A	A316_1UG	2 Apr 2016 04:39
3	6	An040128.d	1.	C1603079-003A	A316_1UG	2 Apr 2016 05:18
9		An040129.d	1.	C1603079-004A	A316 <u></u> 1UG	2 Apr 2016 05:57
Ċ	8	An040130.d	1.	C1603079-005A	A316_1UG	2 Apr 2016 06:36
1		An040131.d	1.	C1603079-006A	A316_1UG	2 Apr 2016 07:15
2		An040132.d	1.	C1603078-001A	A316_1UG	2 Apr 2016 07:54
3		An040133.d	1.	C1603078-002A	A316_1UG	2 Apr 2016 08:33
4		An040134.d	1.	C1603078-003A	A316_1UG	2 Apr 2016 09:12
5 3		An040135.d An040136.d	1. 1.	C1603078-003A DUP	A316_1UG	2 Apr 2016 09:50
7		An040201.d	1.	No MS or GC data present BFB1UG	A316_1UG	2 Apr 2016 10:48
		An040202.d	1.	A1UG	A316_1UG	2 Apr 2016 11:29
ž		An040203.d	1.	A1UG_1.0	A316_1UG	2 Apr 2016 12:08
)		An040204.d	1.	ALCS1UG-040216	A316_1UG	2 Apr 2016 12:58
		An040205.d	1.	AMB1UG-040216	A316_1UG	2 Apr 2016 13:34
ž		An040206.d	1.	C1603078-004A	A316_1UG	2 Apr 2016 14:13
		An040207.d	1.	C1603074-002A 10X	A316_1UG	2 Apr 2016 14:50
		A⊓040208.d	1.	C1603074-004A 90X	A316_1UG	2 Apr 2016 15:27
		An040209.d	1.	C1603076-009A 5X	A316_1UG	2 Apr 2016 16:03
3		An040210.d		C1603079-001A 10X	A316_1UG	2 Apr 2016 16:40
		An040211.d	1.	C1603079-002A 10X	A316_1UG	2 Apr 2016 17:17
		An040212.d	1.	C1603079-003A 10X	A316_1UG	2 Apr 2016 17:53
		An040213.d		C1603079-004A 10X	A316_1UG	2 Apr 2016 18:30
		An040214.d	1.	C1603079-005A 10X	A316_1UG	2 Apr 2016 19:06
		An040215.d		C1603079-006A 10X	A316_1UG	2 Apr 2016 19:43
		An040216.d		C1603078-001A 10X	A316_1UG	2 Apr 2016 20:19
		An040217.d	1.	C1603078-001A 40X	A316_1UG A316_1UG	2 Apr 2016 20:56
		An040218.d An040219.d		C1603078-002A 10X C1603078	A316_1UG -002A 40>	2 Apr 2016 21:32 C 2 Apr 2016 22:08
,	10 /	フログイクを じるいい	La	φ (ψυσυ / φ	MO 10 100 1002M 407	\

	C	Directory:	C:\HPChem'		njection Log anatoment # internal Standard Stack #	
_ine	Vial	FileName	Multiplier	SampleName	Standard Stock # L 'MiśöInfo# * "thod Ref; EPA To	134536 /3457Injected
56 57 58 59 50 51 52 53 54 55	17 18 19 20 21 22 23 24 25 26	An040220.d An040221.d An040222.d An040223.d An040224.d An040225.d An040226.d An040227.d An040228.d An040229.d	1. 1. 1. 1. 1. 1.	C1603078-003A 10X C1603078-003A 40X C1603078-004A 10X C1603078-004A 40X ALCS1UGD-040216 C1603092-001A C1603092-002A C1603092-003A C1603092-004A C1603092-005A	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	2 Apr 2016 22:45 2 Apr 2016 23:21 2 Apr 2016 23:58 3 Apr 2016 00:34 3 Apr 2016 01:13 3 Apr 2016 01:52 3 Apr 2016 02:31 3 Apr 2016 03:10 3 Apr 2016 03:49 3 Apr 2016 04:28
56 57 58 59 70 71 72 73 74 75	27 28 29 30 31 32 33	An040230.d An040231.d An040233.d An040234.d An040235.d An040236.d An040237.d An040301.d An040302.d		C1603092-006A C1603092-007A C1603092-008A C1603092-009A C1603092-010A C1603092-012A C1603092-015A No MS or GC data present BFB1UG A1UG_1.0	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	3 Apr 2016 05:07 3 Apr 2016 05:46 3 Apr 2016 06:25 3 Apr 2016 07:03 3 Apr 2016 07:42 3 Apr 2016 08:21 3 Apr 2016 09:00 3 Apr 2016 09:42 3 Apr 2016 11:40
6789012345	4 5 6 7	An040303.d An040304.d An040305.d An040307.d An040308.d An040309.d An040310.d An040311.d An040312.d	1. 1. 1. 1. 1.	ALCS1UG-040316 AMB1UG-040316 WAC040316A WAC040316B WAC040316C WAC040316D WAC040316E C1603078-002A 90X C1603092-013A C1603092-013A MS	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	3 Apr 2016 12:29 3 Apr 2016 13:47 3 Apr 2016 14:24 3 Apr 2016 15:01 3 Apr 2016 15:38 3 Apr 2016 16:15 3 Apr 2016 16:52 3 Apr 2016 17:28 3 Apr 2016 18:07 3 Apr 2016 18:49
6789012345	10 11 12 13 14 15 16	An040313.d An040314.d An040315.d An040316.d An040317.d An040318.d An040319.d An040320.d An040321.d An040322.d	1. 1. 1. 1. 1. 1.	C1603092-013A MSD C1603092-016A C1603092-017A C1603092-018A C1603092-019A C1603092-012A 10X C1603091-005A C1603091-005A MS C1603091-005A MSD C1603091-001A	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	3 Apr 2016 19:32 3 Apr 2016 20:11 3 Apr 2016 20:50 3 Apr 2016 21:29 3 Apr 2016 22:09 3 Apr 2016 22:45 3 Apr 2016 23:24 4 Apr 2016 00:06 4 Apr 2016 00:49 4 Apr 2016 01:28
00 01 02	20 21 22 23 28	An040323.d An040324.d An040325.d An040326.d An040327.d An040328.d An040401.d	1. 1. 1. 1. 1.	C1603091-002A C1603091-003A C1603091-004A C1603091-006A C1603091-007A No MS or GC data preser BFB1UG	A316_1UG	4 Apr 2016 02:08 4 Apr 2016 02:47 4 Apr 2016 03:26 4 Apr 2016 04:06 4 Apr 2016 04:45
04	30	An040402.d An040403.d An040404.d	1, 1. 1.	A1UG_1.0 ALCS1UG-040416 AMB1UG-040416	A316_1UG A316_1UG A316_1UG	4 Apr 2016 09:37 4 Apr 2016 10:16 4 Apr 2016 10:52
07 08 09	33 . 34 . 35 .	An040405.d An040406.d An040407.d An040408.d An040409.d	1. 1.	C1603092-017A 40X C1603076-003A RE C1603076-005A RE C1603076-002A RE C1603076-007A RE	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	4 Apr 2016 11:46 4 Apr 2016 12:25 4 Apr 2016 14:00 4 Apr 2016 14:39 4 Apr 2016 15:18

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS LOG

Chkd by																					
Prep by	33	<u>ب</u>	R	4	OK -											1	43				
Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb)	60	,	i gon	(S" Loom	50000					-	500,000	50 000	5000	1 908		*	dad 05			>	3
Finial Vol (psia)	30	45	15 MIX	TS NOW L	30		,	45	30			30		45		→	30			>	8
Initial Vol (psig	1,5	5.0	LINDE T	4 STD	1.5		_/	0.30	3.0	٠٠/	 2	3:	3.0	5.0	-	٧	75,-	-		\rightarrow	3,0
Stock Conc	ippm	K0008	W 001	A6534	1 000	-	+	11.5 Apm	1075 64 Alons / 500400	000	1000W	(pom	50,028	=		>	I ppm	-		>	1503
Stock #	A1188	Acabl	Ĵ.	7	AII74	A1204	AILOB	A097#	MISTA	Ao276	A0265	9515	AILIA	Arsos	Auson	ALJOS	Anny	A1203	A1204	4519	A1220
Description	##V	K APH		LCS 1015	7015 IS	757	J 57.D	TOIS FORM		SULF	1 12S	Por HPCH		70151UG #5	57.0	537	TOIS IS	\$10.7	527	#5dh	4Pars
Date Exp	1/22/16 /7015		IIIX/In	I	1/25/16												21116				
Date Prep Date Exp	I SIL		1/15/11		1/18/16											 	11125/11				
# pts	A- 1201	4.19.00	A. 1103	A- 17 OH	A-1205	A-120C	A-/207	4.1704	A / 28	A	1217	A-12.12	4.12/3	A-12.14	A-1215	7121-4	A. 12.17	A-1218	A. 1219	1725	A-122/

FORM 153

nkd by																									
Prep by Chkd by	<u>(3</u>			>	73	1	2 -													>	(3)				>
	ડ્યે	4		>	400	6	3) -			->	7.	G	2 (20	C)	500	•	,		7	ડુડ				>
Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb)	30	4		->	21000516	()	20			<i>→</i>	30	1/1	7	30	30	30		CF.		>	30				⇒ -
nitial Vol (psig	1,5	6.0			7	<u> ا،</u>	\.	4		⇒	3.0	200	3,0	3.0	15	1		1.0		7	12				>
Stock Conc	10 ppm	5000h	-	>	N. O		l pam			1	1000	2 2 1	11.5 pm	de005		<u> </u>	7.7	Gac 05	-	7	Mag	-			>
Stock #	59704	A12.77	45.78	F. C.F.	0/6H-71	,	¥221±	A1203	क्रिक				1705 (1	S/Lux #1089/	175270	ď	9705	A 1290	भारत	A1252		+	H1205	H1204	9519
Description	This HES	1.00			アインインド		ToIS IS	- SE	765	LOT	7	A CO	Form	Xm/S	1417	505	7	7015 146 IS	57	27) V	507	575	527	that 1
Date Exp	_			\ \ \ ?	7 2	 	3/14/16														2/2,///	2/4/10			
Date Prep Date Exp	2/18/12				2	9) 	3/7/16 3/14/16													>	1111111	3/17/16			3
# 640		28.7	250	1100/	A. 1608	A- 1683	A-1290	1,621	1,942	100	A- (6-1)	A- 1274	A-1295	1296	2 2	A-101	A-1278	A-1299	A. 1300	123	A- 150(A-150C	A. 1365	A. 1304	A-1305

FORM 153

Pren by Chkd by									2												\(\alpha\)	
									(3												(3/	
Final Conc (no	7	B	S	So	5,00	~		7	CS	_		>	12	ટુડ	So	જ	5250	7		~	50	(3
Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppp)	30	451	\$0	30	30	45		⇒	30			→	ક્ષ	45	3	30	30	45		->	30	9 , bade #
Initial Vol (psig)	3,0	(K)	3,0	1.5	\s. \	0.0		_>	15			->	3,0	w.°	3.0	\ <.	75.)	6.0		→	1.5	
Stock Conc	50 sep			uidd	mad of	طيف		>	l p.sm			>	got os	11,57pm	900005	1,2,m	Mac 01	પુત્ત તૃક		->	1 pom	•
Stock #	ત્રાજી	hL504	5/40X A1069	किटन	bજિલ્મ	A13.02	A1303	A-1304	મુજાર	A1203	HOZIH	blSp	<u> </u>	ηισοθ	Prosts	OLI OH		this!#	SIEIH	41316	A 1289	
lion	4PcHS	Form	\$/w)X	Solf	H25	7.5	57	223	75	€£\$	527	4141	松杉	Falm	SILUX	SOLF	Hzs	Z.S	57	227	7.5	
Description	7015				→	705 146		- >	7015								→	TO15 146		<u>-</u> >	Tois	
Date Exp	3/21/16							Ş	3/187/8											\ \ !	7//4/17	
Date Prep	3/14/26	_						⇒	3/4/16											^	3/181/8	
Std #	¥	4. (307	4- 1308	QA-1369	Q/ S/ -W	4 (3()	A-1312	A-13/3	A- 1314	A. 1315	A-1316	A- 1317	A- 1318	A-1319	A-1320	A-132/	A-1322	A-1323	A. 1324	A-1325	B 4- 1326	e 135 e 135

Chkd by																						
Prep by (7/3										≽	3									>	
Final Conc (ppb)	52		→	رى	5.0	50	9	225	7		->	ક્ર			⇒	15	50	59	53	299	Ţ	
Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb)	30		>	35	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.0	30	30	T N		\rightarrow	30			>	3.0	74	30	50	30	45	<u>/</u> # eßed
nitial Vol (psig	- - 35		₹	3.0	6.20	3.0	\ <u>\</u>).s.(6.0		7	١٧.			->	3.0	07.0	3.0	1,5	1,5	6.0	
Stock Conc	mec. 1		→	450 Ge	11.5 Jam	Stop 4	- W.C.C.	mcc'o/	Soph	*	>	المردح	_		->	SO 226		1	<u> </u>	Mega Ol	ડિશ્યું	9 **
Stock #	191203	tuzit.	9519	A1329	40974	A 1085	PoCJost	可	A1326	A1327	#1328	41289	13203	ነነ ሪካ	4519	4134	4CPOA	H-1555	क्टरक		H 1338	
lion	6	 	 	1.	1			#254	7.5	7	E		$\overline{}$	527		47545434	row	x,007,2	Sout		146 15	
Description	7015							>	1015 MG		>	1015								>	7015 1L	
Date Exp	-										>	91111111	_								7	<u>,</u>
Date Pren											>	2 1 1									>	
# 050	7521.0						4-1333	A. 1334	A. 1335	A-1336	A. 1337	A. 1338	A- 1339	A-1340	4-134)	A-1342	4.1343	1344	4.1345	4.1346	A- 1347	FORM 153

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CANISTER CLEANING LOG

QC Canister Cleaning Logbook

Centek Laboratories, LLC

Instrument: Entech 3100

+30 + 30	-																					
=	+ +	+	+	+	+	4	+	+	+	4	+	+	+		+	+	*	+	+	+		
% [8]		-						*****														
2000	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	
Wetendon Limits 15. 11. 21. 21. 21. 21. 21. 21. 21. 21. 21																						``
															-							•
4-1-				-										_		_						****
				ULMIN S										0 915 COX					le il			
DE OTHER A			2 5		,			>	112161L		\dashv		>					حز				
		_	Ê	·/1					置				4	실			ŀ		짘			
5 C'1															1							
																		-			_	
<u>8</u>				-		-		+		-	_	-	-	-		-	_		_	_		7
							-															
																						1
5		7	500	2	+		=>	700	4 -		-	 	5	-	<u> </u>	-	\Rightarrow		- اد	_		1
						-		<u> </u>	4	-	ļ				-			5				1
33		(6)) ijc	8	63	500	305	55		25.0	5	233		7.17	5	179	35	77		3	739	,

Dotatolica	Entech 3100
Centek Lai	Instrument:

Sansserinantee accan tumber access to the MRC021916 345 345 346 362 362 363 362 374 168 326 274 168 281 281 362 281 362 281 362 281 362 363 363 364 168 281 365 168 281 362 363 364 168 281 365 367 368 368 368 368 368 368 368	M2021916 F Jug/m3+0-25 + 30	OM + + + + + + + + + + + + + + + + + + +
363 363 363 4 4 54 6 54 10 10 10 10 10 10 10 10 10 10		+ + + + + + + + +
35.3 4 4 5 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7		+ + + + + + + +
35.3		+ + + + + + +
35.3 3.63 3.63 4.7 6.5 7.7 8.7 9.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1		+ + + + + +
363		+ + + + + +
363		+ + + + +
326	+ + +	+ + + +
326	+ +	+ + +
326	+	+ +
326		·h-
326	+ + + + + + + + + + + + + + + + + + + +	
341	+	4
\$4 \$4	+	4
24	+	+
541	+	+
54	+ + + + + + + + + + + + + + + + + + + +	+
190 90 57 54	+	+
57	+	44-
57	+	+
241	+	1 + 5
	+	+
	4	+
	4	4
	4	+
	42	+
	129	
Form C151	bage #	

Instrument: Entech 3100

6												·								Ī		····		T		
Detection Limits Leak Test 24hr (psig str/stp)	30																	_					.,,	_	\geqslant	
4hr (ps	+	+	+	+	+	+	+	+	+	4	+	+	+	+	+	+	-+	+	+	+	+	+	+	+	_+	
Test?	30	_																					-		ᄀ	
Leak	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>a-</u>
ı Limits	125																									749
etectio	10-to																						****		-9	# 0500
						m					, \					0										ć
QC Batch Number	WAC DROPFIED	,				Θ										7					ΣÝ					
Batch I	030					-			,																	
<u> </u>	MAG								:								v									
te	91/																									2
Date	3/8/16	-			:															· · · · · · · · · · · · · · · · · · ·					\Rightarrow	7
Cycles							•																			
er of C	Ja	-									·			<u> </u>											<u>_</u>	
Numi	רס																									
Canister Number QC Can Number Number of																										
Can N	501	_		<u>-</u> -		366		<u> </u>		و	1153				7	138				<u>ب</u>	225		-			O L
) D J										<u></u>			<u> </u>) () ()
Numbe	5	٠,		<u>_</u>	ر	ત	ئ	ميل	L	ه ا	<u></u>	 صن					٠	0	3	\ <u>\</u>	p(5	60	_	,	<u>.</u>
anister	1179	79 H	1	१९५	135	न्न	517	178	51	366	1183	32	13,4	7.87	719	205	3	370	1187	138	47	1177	6	13	779	

Centek Laboratories, LLC

Instrument: Entech 3100

Canistat Number Of Can Number Number of Cv	Number of Gycles	· Date	@ QC Batch Number	Detection Limits	Leak Test 241	Leak Test 24hr (psig str/stp)
DO CO	0.0	r	1 JON CO 7 MEN CO	2	+ 30	30
10	3 -	4,70,70		1 2/	l	İ
					+	+
					+	+
					4	+
(()			-5		+	+
					+	4
					+	*
					4	+
				***************************************	+	
1 2 2			<u>.</u>		4	4
7 -	A7 • • • • • • • • • • • • • • • • • • •				+	+
					+	4
					+	+
	-9			− 9	+	+
,		4			- +	L
					+	+
					+	+
					+	+
					+	+
					+	+
					+	+
					+	+
					+	+
					+	_+
Q.KD		Form C484		S) # bade	150	
トゥノ		2 2 2 3 1 1				

Vial: 5 Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021910.D

Operator: RJP Acq On : 19 Feb 2016 2:58 pm Inst : MSD #1 Sample : WAC021916E Misc : A204_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 22 07:55:01 2016 Quant Results File: A204_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Feb 11 11:13:02 2016
Response Via : Initial Calibration
DataAcq Meth : UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.87 12.12 16.60	128 114 117	32071m 87046 81502	1.00 1.00 1.00	ppb	0.00 0.03 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.17 Range 70	95 - 130	39860m Recovery	0.72		0.00
Target Compounds					QV	alue

N

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021911.D Vial: 6 Operator: RJP

Acq On : 19 Feb 2016 3:36 pm Sample : WAC021916F Misc : A204_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A204_1UG.RES Quant Time: Feb 22 07:55:02 2016

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. QIon	Response C	onc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.87 128 12.10 114 16.59 117	30090 93261 83480	1.00 ppb 0.01 1.00 ppb 0.01 1.00 ppb 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 95 Range 70 - 13	40440m O Recovery	0.71 ppb 0.00 = 71.00%

Qvalue Target Compounds

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN021911.D A316_1UG.M Wed Apr 27 09:43:44 2016

Quantitation Report (QT Reviewed)

Vial: 1 Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021912.D Acq On : 19 Feb 2016 5:28 pm Sample : WAC021916G Misc : A204_1UG Operator: RJP Inst : MSD #1

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A204_1UG.RES Quant Time: Feb 22 07:55:03 2016

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc Ur	nits D	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.84 12.09 16.59	128 114 117	30565 86165 81355	1.00 1.00 1.00	dqq	-0.02 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 Range 70	95 - 130	38855m Recovery	0.70	ppb 70.0	0.00 0%

Qvalue Target Compounds

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021913.D

Vial: 2 Acq On : 19 Feb 2016 6:05 pm Sample : WAC021916H Misc : A204_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A204_1UG.RES Quant Time: Feb 22 07:55:04 2016

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Feb 11 11:13:02 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (one U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.85 12.09 16.58	128 114 117	30719 88980 82754	1.00 1.00 1.00	ppb	0.00 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 Range 70	95 - 130	42155m Recovery	0.75 / =		0.00
Target Compounds					Q٦	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN021913.D A316_1UG.M Wed Apr 27 09:43:50 2016

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021914.D Vial: 3 Acq On : 19 Feb 2016 6:43 pm Operator: RJP Sample : WAC021916I Misc : A204_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A204_1UG.RES Ouant Time: Feb 22 07:55:05 2016

Quant Method : C:\hPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Feb 11 11:13:02 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits De	v(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.85 12.09 16.58	128 114 117	30896 90545 83125	1.00	bbp bbp bbp	-0.01 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 Range 70	95 - 130	41130m Recovery		ррb 73.00	0.00
Target Compounds					Q.	value

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN021914.D A316_1UG.M Wed Apr 27 09:43:54 2016 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021915.D Vial: 4 Acq On : 19 Feb 2016 7:20 pm Operator: RJP Inst : MSD #1 Sample : WAC021916J Misc : A204_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A204_1UG.RES Quant Time: Feb 22 07:55:06 2016

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Feb 11 11:13:02 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits I	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.85 12.09 16.58	128 114 117	29544 84494 79265	1.00	dqq (dqq (0.00 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 Range 70	95 - 130	39870m Recovery		ppb 74.(0.00 0.00
Target Compounds						Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN021915.D A316_1UG.M Wed Apr 27 09:43:58 2016

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021916.D Vial: 5
Acq On : 19 Feb 2016 7:57 pm Operator: RJP
Sample : WAC021916K Inst : MSD #1
Misc : A204_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 22 07:55:07 2016 Quant Results File: A204_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration

Last Update : Thu Feb 11 11:13:02 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.84 12.10 16.59	128 114 117	29343 88390 80484	1.00 1.00 1.00	ppb	-0.02 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.15 Range 70	95 - 130	40271m Recovery		ррb 73.	0.00
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed ANO21916.D A316_1UG.M Wed Apr 27 09:44:01 2016 MSD1

Data File : C:\HPCHEM\1\DATA2\AN030805.D
Acq On : 8 Mar 2016 2:56 pm
Sample : WAC030816A
Misc : A307_1UG Vial: 5 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A307_1UG.RES Quant Time: Mar 09 10:51:24 2016

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	к.т.	QIon	Response (Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.07 16.56	128 114 117	25136 116173 102380	1.00 pp 1.00 pp 1.00 pp	b 0.03
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	63120 Recover	0.83 pp	

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN030805.D A316_1UG.M Wed Apr 27 09:44:51 2016

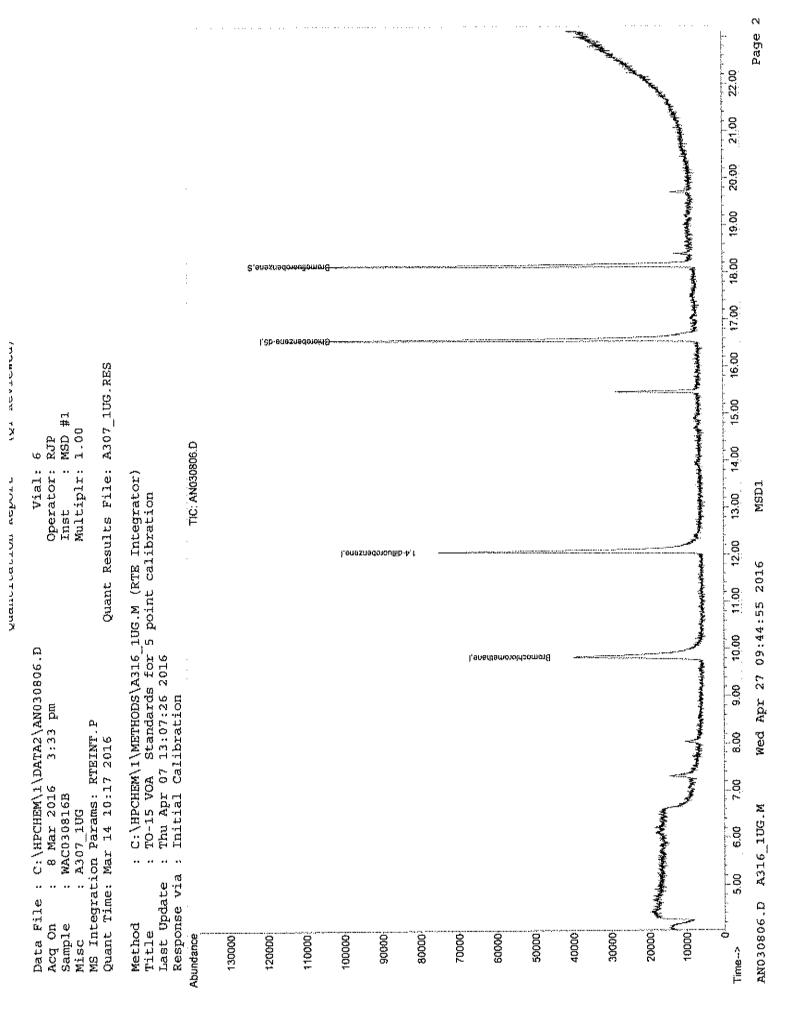
NONTENDE

ţ

אחמזורזימרזיחוו צבליחיר

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AN030806.D Vial: 6 Operator: RJP Acq On : 8 Mar 2016 3:33 pm Sample : WAC030816B Misc : A307_lUG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Results File: A307_1UG.RES Quant Time: Mar 09 10:51:30 2016

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Mar 08 11:08:59 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.06 16.56	128 114 117	30593m 115546 98368	1.00 1.00 1.00	dqq	0.05 0.02 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	60091 Recovery	0.82 / =	ppb 82.00%	0.02
Target Compounds					Qν	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030806.D A316_1UG.M Wed Apr 27 09:44:54 2016

Quantitation Report (QT Reviewed)

 Data File : C:\HPCHEM\1\DATA2\AN030807.D
 Vial: 7

 Acq On : 8 Mar 2016 4:10 pm
 Operator: RJP

 Sample : WAC030816C
 Inst : MSD #1

 Misc : A307_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:51:37 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Mar 08 11:08:59 2016

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response (Conc Un	its Dev	(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	9.82 12.06 16.56	128 114 117	31202m 118323 102460	1.00 1.00 1.00	ppb	0.04 0.02 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	63649 Recover	0.83 Y =	ppb 83.00%	0.01

Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030807.D A316_1UG.M Wed Apr 27 09:44:57 2016 MSD1

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\AN030808.D
Acq On : 8 Mar 2016 4:48 pm
Sample : WAC030816D
Misc : A307_1UG Vial: 8 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A307_1UG.RES Quant Time: Mar 09 10:51:47 2016

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc Un	its Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.06 16.56	128 114 117	30436m 114980 98955	1.00 1.00 1.00	ppb	0.05 0.02 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	61350 Recover	0.83 y =	ppb 83.00%	0.01

Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030808.D A316_1UG.M Wed Apr 27 09:45:00 2016 MSDl

Page 1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AN030809.D Vial: 9 Operator: RJP Acq On : 8 Mar 2016 5:25 pm Inst : MSD #1 Sample : WAC030816E Misc : A307_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A307_1UG.RES Quant Time: Mar 09 10:51:55 2016

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Mar 08 11:08:59 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc Ur	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.07 16.56	128 114 117	29860m 113615 100480	1.00 1.00 1.00	ppb	0.05 0.03 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	60863 Recovery	0.81	800.18	0.02
Target Compounds					QV	alue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed Wed Apr 27 09:45:04 2016 AN030809.D A316_1UG.M

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:52:04 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Mar 08 11:08:59 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.07 16.56	128 114 117	24540 110396 94956	1.00 pp 1.00 pp 1.00 pp	оь 0.03
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	58532 Recover	19 E8.0 19 = 19	ob 0.01 33.00%

Target Compounds Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN030810.D A316_1UG.M Wed Apr 27 09:45:07 2016 MSD1

INCHATAGE TAL

(QT Reviewed) Quantitation Report

Multiplr: 1.00

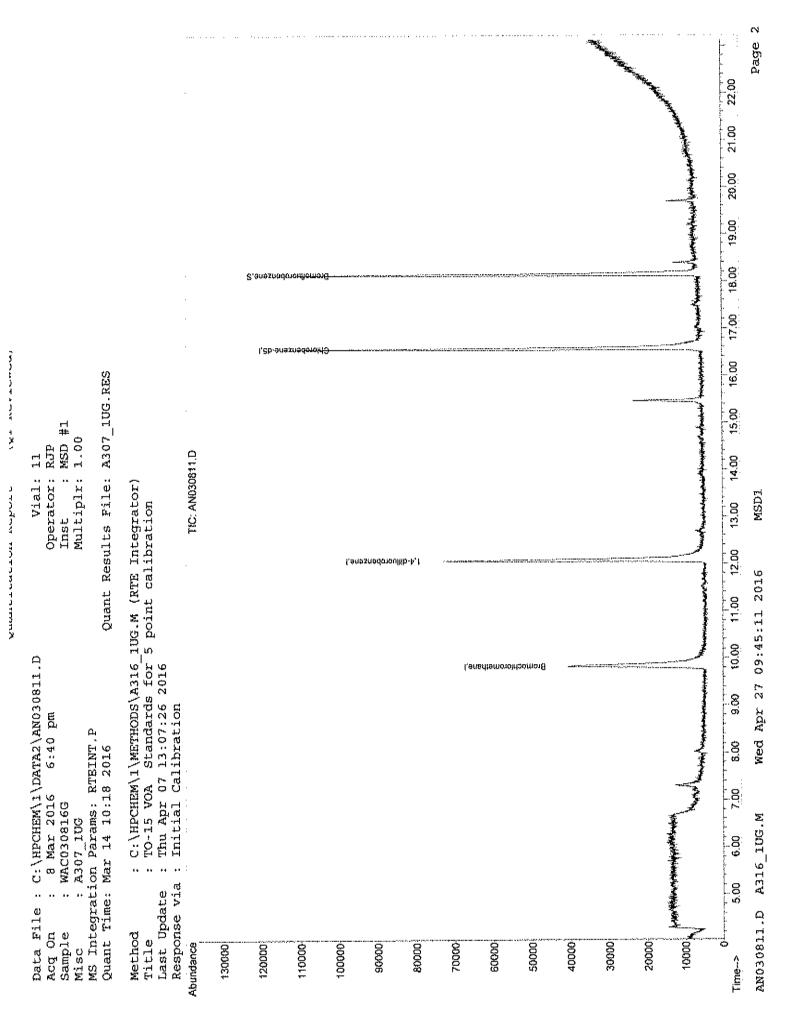
Data File : C:\HPCHEM\1\DATA2\AN030811.D Vial: 11 Acq On : 8 Mar 2016 6:40 pm Sample : WAC030816G Misc : A307 1UG Operator: RJP Inst : MSD #1

MS Integration Params: RTEINT.P Quant Time: Mar 09 10:52:16 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Mar 08 11:08:59 2016

Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	Qïon	Response	Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.07 16.56	128 114 117	23554 106376 94041	1.00 pp 1.00 pp 1.00 pp	ob 0.03
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	57324 Recover	0.82 py y = 8	ob 0.02 32.00%

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN030811.D A316_1UG.M Wed Apr 27 09:45:10 2016 MSDl

Quantitation Report (QT Reviewed)

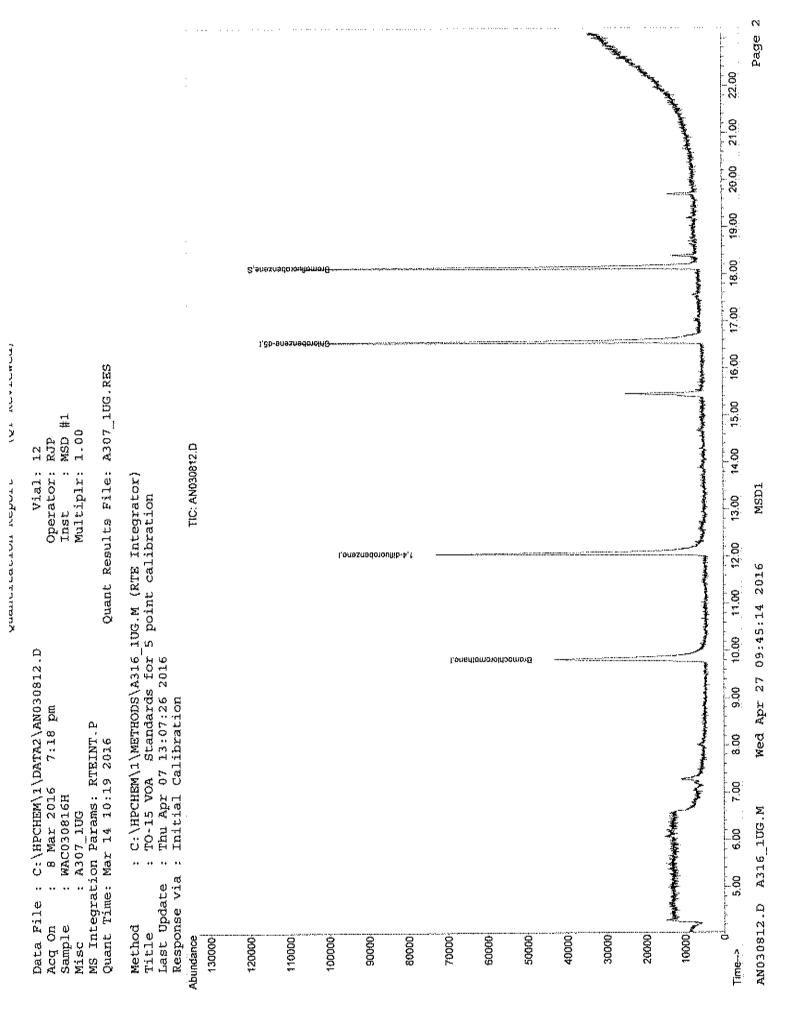
Vial: 12 Data File : C:\HPCHEM\1\DATA2\AN030812.D Acq On : 8 Mar 2016 7:18 pm Sample : WAC030816H Misc : A307_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:52:25 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Mar 08 11:08:59 2016


Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Target Compounds

Internal Standards	R.T.	QIon	Response (Conc Ur	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.06 16.56	128 114 117	23978 103270 93006	1.00 1.00 1.00	dqq	0.05 0.02 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	55535 Recovery	0.80 F =	ppb 80.00%	0.02
Target Compounds					Qva	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030812.D A316_1UG.M Wed Apr 27 09:45:13 2016 MSD1

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 2

Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

FORMER EMERSON LANDFILL
Project 210173
SDG: C1603091
Sampled 3/30/2016

TO-15 AIR SAMPLES

1640-IAQ-1	(C1603091-01)
1640-IAQ-2	(C1603091-02)
1640-SVI-2	(C1603091-03)
1640-SVI-3	(C1603091-04)
1640-IAQ-3	(C1603091-05)
1640-BLIND	DUP(C1603091-06)
1640-OUTDOO	OR (C1603091-07)

DATA ASSESSMENT

One data package containing analytical results for seven TO-15 samples was received from LaBella Associates, P.C. on 3Apr16. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Emerson Landfill Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of ten volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The trichloroethene concentrations found in 1640-IAO-1 and 1640-IAQ-2 have been qualified as estimations due to high surrogate standard recoveries.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions at the time of sampling have been flagged "J". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. DATAVAL, Inc. guarantees the quality of this data Secondly. assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

Dames B. Baldwin DATAVAL, Inc.

_ Date: 12 May 16

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained seven TO-15 samples that were collected in 1-liter SUMMA canisters. Sampling was completed, and the canisters were shipped back to the laboratory, via FedEx, on 30Mar16. They were received on 31Mar16. Although the sample canisters were received intact and properly labeled, custody seals were not present on the packaging.

Canister vacuum readings were recorded in the laboratory prior to shipment, in the field prior to and following sampling, and in the laboratory at the time of receipt.

SAMPLE	PRIOR TO SHIPMENT ("Hg)	PRIOR TO SAMPLING ("Hg)	POST SAMPLING ("Hg)	LAB RECEIPT ("Hg)
1640-IAQ-1	-30	-30	-8	-8
1640-IAQ-2	-30	-30	-6	-6
1640-SVI-2	-30	-30	-6	-6
1640-SVI-3	-30	-30	-5	-5
1640-IAQ-3	-30	-30	-5	-6
1640-BLIND DUP	-30	-30	-8	-8
1640-OUTDOOR	-30	-30	-6	-6

The final vacuum readings recorded for 1640-IAQ-1 and 1640-BLIND DUP were slightly outside of the ASP limits of $-5\pm1^{\prime\prime}Hg$. These slight deviations do not necessitate data qualifications because vacuum was maintained in each of the canisters and sample volumes were sufficient to complete the necessary analyses.

The analysis of this group of samples was completed between 31Mar16 and 03Apr16, satisfying the ASP holding time limitation.

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters were cleaned in five batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination above the reporting limit.

BI.ANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

One method blank was analyzed with this group of samples. This blank demonstrated acceptable chromatography and was free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples. Each of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed on 04Feb16. Standards of 0.04, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

A continuing calibration check standard was analyzed on 31Apr16, prior to the 24-hour period of instrument operation that included samples from this program. When compared to the initial calibration, an acceptable level of instrument stability was demonstrated by each targeted analyte.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, elevated recoveries were reported for the BFB additions to 1640-IAQ-1 (122%) and 1640-IAQ-2 (125%). The positive trichloroethene results reported from this pair of samples have been qualified as estimations based on these indications of positive bias. The remaining surrogate additions to this group of samples were recovered successfully.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard.

Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, acceptable performance was reported for the internal standard additions to this group of samples.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

1640-IAQ-3 was selected for matrix spiking. The entire list of targeted analytes was added to two volumes of this sample. recoveries reported for these additions included high results for chloromethane (138%, 159%). These indications of positive bias, however, warrant no concern. Chloromethane was not detected in this group of samples. The remaining targeted analytes demonstrated acceptable levels of measurement precision and accuracy.

A spiked blank (LCS) was also analyzed with this group of samples. The recoveries reported for this spiked blank included a high result for 1,1,1-trichloroethane (137%). This indication of positive bias, however, warrants no concern because 1,1,1trichloroethane was not detected in this group of samples. The remaining targeted analytes were recovered successfully.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The field split duplicate sample that was included in this delivery group was not identified.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

SUMMARY OF QUALIFIED DATA

SAMPLED MARCH 2016

_		1
L		i
'n		1
F	_	4
L	-	1
2	Z	
K	1	4
ř		i
r		1
d		
×	\leq	4
()
C	ſ)
		5
Γ		
5	ľ	
CL	ľ	1
2	1	7
CHANCE	I	
2	I	THE
2	Y	
2	Y Y	
ALT CI	I I N I	
ALT CI	Y I Y I	
ALT CI	Y Y Y Y	
ALT CI	TYNE TYNE	

SURROGATE

1640-IAQ-1 (C1603091-01) 0.64J 1640-IAQ-2 (C1603091-02) 0.43J 1640-SVI-2 (C1603091-03) 1640-SVI-3 (C1603091-04) 1640-IAQ-3 (C1603091-05) 1640-BLIND DUP(C1603091-06) 1640-OUTDOOR (C1603091-07)

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-001A

Client Sample ID: 1640-IAQ-I

Tag Number: 85,272

Collection Date: 3/30/2016

Matrix: AIR.

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
f.1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/4/2016 1:28:00 AM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 1:28:00 AM
1.1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 1:28:00 AM
Chlorpethane	< 0.40	0.40	ug/m3	1	4/4/2016 1:28:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 1:28:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 1:28:00 AM
Tetrachtoroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 1:28:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 1:28:00 AM
Trichtoroethene	0.64	0.21	ug/m3	1	4/4/2016 1:28:00 AM
Vinyl chloride	< C.10	0.10	ug/m3	- 1	4/4/2016 1:28:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank.
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at he helow quantitution limits
- ND Not Detected at the Reporting Limit

The control of the co LaBella Associates, P.C.

C1603091

Project: Emerson Landfill

Lab ID: C1603091-002A

CLIENT:

Lah Order:

Date; 26-Apr-16

Client Sample 1D: 1640-IAQ-2

Tag Number: 496,403

Collection Date: 3/30/2016

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1.1-Trichlorcethane	< 0.82	0.82	ug/m3	1	4/4/2018 2:08:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 2:08:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:08:00 AM
Chloroethane	< 0.40	0.40	ug/m3	3	4/4/2016 2:08:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 2:08:00 AM
cis-1,2-Dichloroetnene	< 0.59	0.59	ug/m3	t	4/4/2016 2:08:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/4/2016 2:08:00 AM
trans-1,2-Dichlorcethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:08:00 AM
Trichloroethene	0.43	0.21	ug/m3	1	4/4/2016 2:08:00 AM
Vinyl chlaride	< 0.10	0.10	ug/m3	1	4/4/2016 2:08:00 AM

- A Analyte detected in the associated Method Blank
- II Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

C1603091-003A Lab ID:

Client Sample ID: 1640-SVI-2

Tag Number: 366,1169

Collection Date: 3/30/2016

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.82	0.82	ug/m3	1	4/4/2016 2:47:00 AM
1,1-Dichioroethane	< 0.81	0.61	ug/m3	1	4/4/2016 2:47:00 AM
1, t-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:47:00 AM
Chloroethane	< 0.40	6.40	ug/m3	1	4/4/2016 2:47:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/4/2016 2:47:00 AM
cis-1,2-Dichloraethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:47:00 AM
Tetrachioroethylene	0.76	1.0 J	ug/m3	1	4/4/2016 2:47:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 2:47:00 AM
Trichtoraethene	0.91	0.81	ug/m3	1	4/4/2016 2:47:00 AM
Vinyl chloride	< 0.38	0.38	Em/gu	1	4/4/2016 2:47:00 AM

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Fl
- Non-routine analyte. Quantitation estimated.
- Spike Recovery mutside necepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
 - 3 Analyte detected at or below quantitation limits
- NO Not Detected at the Reporting Limit

- HART IN TAIN THE SAME TO THE SAME OF THE

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-004A

Client Sample ID: 1640-SVI-3

Tag Number: 1318,304

Collection Date: 3/30/2016

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1.1-Trichloroethane	< 0.82	0.82	Emigis	*	4/4/2018 3:26:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/4/2016 3:26:00 AM
t,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/4/2016 3:26:00 AM
Chioroethane	< 0.40	0.40	ug/m3	1	4/4/2016 3:26:00 AM
Chloromethana	< 0.31	0.31	ug/m3	1	4/4/2016 3:26:00 AM
cis-1,2-Dichlorosthene	< 0.59	0.59	ug/m3	1	4/4/2016 3:26:00 AM
Tetrachloroethylene	0.81	1.0 J	ug/m3	1	4/4/2016 3:26:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	-1	4/4/2016 3:26:00 AM
Trichtoroethene	1.6	0.81	ug/m3	1	4/4/2016 3:26:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	4/4/2016 3:26:00 AM

- ** Reporting Limit
 - 3 Analyse detected in the associated Method Blank
- if Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantilation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- P. Value above quantitation range
- J Analyte detected at or below quantitation limits
- NO Not Detected at the Reporting Limit

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order; C1603091

Project: Emerson Landfill

Lab ID: C1603091-005A

Client Sample 1D: 1640-IAQ-3

Tag Number: 1207,299

Collection Date: 3/30/2016

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1.1-Trichlorosthane	< 0.82	0.82	ug/m3	1	4/3/2018 11:24:00 PM
1,1-Dichtoroethane	< 0.61	0.61	ug/m3	1	4/3/2016 11:24:00 PM
1,1-Dichioroethene	< 0.59	0.59	ng/m3	3	4/3/2016 11:24:00 PM
Chloroethane	< 0.40	0.49	ug/m3	1	4/3/2016 11:24:00 PM
Chloromethane	< 0.31	0.31	Em/gu	1	4/3/2016 11:24:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/3/2016 11:24:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/3/2016 11:24:00 PM
trans-1,2-Dichforcethene	< 0.59	0.59	ug/m3	1	4/3/2016 11:24:00 PM
Trichloroethene	0.48	0.21	ug/m3	1	4/3/2016 11:24:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/3/2016 11:24:00 PM

- ** Reporting Limit
 - B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-rostine analyte. Quantitation estimated
- S Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Value above quantilation range
 - J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603091

Project: Emerson Landfill

Lab ID: C1603091-006A

Client Sample ID: 1640-Blind Duplicate

Tag Number: 336,403

Collection Date: 3/30/2016

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.62		ug/m3	1	4/4/2016 4:06:00 AM
f.1-Dichloroathane	< 0.61	0.69		ug/m3	1	4/4/2016 4:06:00 AM
t,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/4/2016 4:06:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/4/2016 4:06:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	4/4/2016 4:06:00 AM
cis-1,2-Dichloroethene	< 0.59	0,59		ug/m3	1	4/4/2016 4:06:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/4/2016 4:06:00 AM
trans-1,2-Dichleroethene	< 0.59	0.59		ug/m3	1	4/4/2016 4:06:00 AM
Trichloroethene	< 0.21	0.21		ug/m3	1	4/4/2016 4:06:00 AM
Vînyi chloride	< 0.10	5.10		ug/m3	1	4/4/2016 4:06:00 AM

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or sunlysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery autside accepted recovery limits

- Results reported are not blank corrected
- E. Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 26-Apr-16

CLIENT:

LaBella Associates, P.C.

Lab Order;

C1603091

Project:

Emerson Landfill

Lab ID:

C1603091-007A

Client Sample ID: 1640-Outdoor Air

Tag Number: 290,48

Collection Date: 3/30/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	£mlgu	1	4/4/2016 4:45:00 AM
1.1-Dichloroethane	< 0.61	0.61	Erri/gu	t	4/4/2016 4:45:00 AM
1.1-Dichloroethene	< 0.59	0.59	Em/gu	3	4/4/2016 4:45:00 AM
Chloroethane	< 0.40	0.40	ьд/m3	\$	4/4/2016 4:45:00 AM
Chloromethane	2.1	0.31	ug/m3	2	4/4/2016 4:45:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	3	4/4/2016 4:45:00 AM
Tetrachloroethy/ene	< 1.0	1.0	மழ/ரா3	5	4/4/2015 4:45:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	4	4/4/2016 4:45:00 AM
Trichtoroethene	< 0.21	0.21	ug/m3	t	4/4/2016 4:45:00 AM
Vinyl chloride	< 0.10	0.10	ຍອາກວ	1	4/4/2016 4:45:00 AM

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recuvery outside necepted recovery limits

Results reported are not blank corrected

- F. Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:

LaBella Associates, P.C.

Work Order:

C1603091

Project:

Emerson Landfill

Test No:

10-15

Matrix: A

Sample ID	BR4FB2,	
ALC\$1UG-040316	112	
AMB1UG-040316	88.0	
C1603091-001A	122	
C1603091-002A	125	
C1603091-003A	119	
C1603091-004A	116	
C1603091-005A	119	
C1603091-005A MS	(123)	
C1603091-005A MSD	119	
C1603091-006A	J18 !	
C1603091-007A	114	
C1603092-013A MS	126	
C1603092-013A MSD	124	

Acronym	Surrogate	QC Limits
BR4F8Z	= Bromoflyarobenzene	70-130
*		
* Su	rrogate recovery ontside acceptal	nce limits

GC/MS QA-QC Check Report

!une File : C:\HPCHEM\1\DATA\AN040302.D
!une Time : 3 Apr 2016 11:40 am

haily Calibration File : C:\HPCHEM\1\DATA\AN040302.D

(BFB) (IS2) (IS3)(IS1) 16244 37337 27087

			10277	31331	2,00,
'ile	Sample DL	Surrogate Recovery %	Internal st	andard Resp	onses
N040303.I	D ALCSIUG-040316	112	15355	33728	24096
N040304.I	D AMB1UG-040316	88	14032	33917	30527
N040319.I	C1603091-005A	119	14883	37891	28556
N040320.1	0 C1603091-005A MS	123	16262	40411	24211
N040321.I	C1603091-0U5A MSI	119	17352	46934	25902
N040322.E	C1603091-001A	122	15199	40864	26354
N040323,I	C1603091-002A	125	14903	39943	26736
	C1603091-003A	119	15528	43280	26603
	C1603091-004A	116	1,6444	42195	29354
NO40326.1	C1603091-006A	118	16917	45571	30473
N040327.	C1603091-007A	114	13714	33839	30298

t - fails 24hr time check * - fails criteria

Created: Tue Apr 26 16:30:39 2016 MSD #2/

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1603091 Work Order: Project:

Emerson Landfill

TestCode: 0.25CT-TCE-VC

Sample ID ALCS1UG-040316	SampType: LCS	TestCo	ide: 0.25CT-TC	TestCode: 0.25CT-TCE- Units. ppbV		Prep Date:		RunNo: 10821		
Glient ID: ZZZZZ	Batch ID: R10821		TestNo: TO-15			Analysis Dat	Analysis Date: 4/3/2018	SeqNo: 127147		
Analyte	Result		SPK value	SPK value SPK Ref Val	%REC	LowLimit	WREC LowLimit HighLimit RPD Ref Vat	%RPD RPDLimit Qual	DLimit	Qual
1,1,1-Trichloroethane	1.370	0.15	-	a	137	70	130			8
1.1-Dichloroethans	1.170	0.15	+	0	117	70	130			
1,1-Dichloroelhene	1,070	0.15	+	D	107	202	130			
Chloroethane	1.170	0.15	7	a	117	20	130			
Chloromethane	1,280	0.15	+	0	128	20	130			
cis-1,2-Dichloroethene	1.070	0.15	+	a	101	70	130			
Tetrachioroethylene	0.9000	0.15	-	0	0.06	70	130			
frans-1,2-Dichloroethene	1,130	0.15	-	0	113	92	130			
Trichforcethene	1.270	0.040	-	O	127	70	130			
Vinyl chloride	1,220	0.040	-	0	122	02	130			

Spike Recovery outside accepted recovery lishits

S

Qualifiers:

Results reported are not blank corrected

Analyte detected at or below quantitation limits

E. Value above quantification range ND. Not Detected at the Reporting Little

Holding times for preparation or analysis exceeded × ~

RPD oatside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1603091 Work Order:

Enerson Landfill Project:

TestCode: 0.25CT-TCE-VC

Sample ID AMB1UG-040316	SampType: MBLK	BLK	TestCo	ode: 0.25CT-TCE	YestCode: 0,25CT-TCE- Units: ppbV		Prep Date:	ai		RunNo: 10821	821	
Client ID: ZZZZZ	Batch ID: R10821	10821	Tes	estNo: TO-15			Analysis Date: 43/2016	e: 4/3/201	9	SeqNo: 127146	7145	
Analyte	Œ	Result	POL	SPK value SPK Ref Val	SPK Ref Val	%REC	LowLinit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	WRPD	*RPD RPDLIMIR Qual	Ouz
1,1,1-Trichloroethane		< 0.15 V	0,15									
1,1-Dichloroethane	٧	< 0.15	0.15									
1,1-Dichloroethene	٧	< 0.15	0.15									
Chloroethare	V	< 0.15	0.15									
Chloromethane	V	< 0.15	0.15									
cis-1,2-Dichloroethene	٧	< 0.15	0.15									
Tetrachloroethylene		< 0.15	0.15									
trans-1.2-Dichloroethene	V	< 0.35	0.15									
Trichtoroethene	V	< 0.040	0.040									
Vinyi chloride	V	< 0.040	0.040									

Spike Recuvery outside accepted recovery lients

N

Apalyze detected at or below quaptitotion limits Results repurred are not blank corrected Qualifiers:

E. Value above quantitation range ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1603091 Work Order:

Qual RPDLimit TestCode: 0.25CT-TCE-VC SeqNo: 127156 RunNo: 10821 %RPD LowLimit HighLimit RPD Raf Val Analysis Date: 4/4/2016 130 Prep Dale: %REC 114 Units: ppbV 00000 SPK value SPK Ref Val TestCode: 0.25CT-TCE-TesfNo: TO-15 Betch ID: R10821 Result 1.140 1.220 SampType: MS Emerson Landfill Sample ID C1603091-005A MS Client ID: 1840-1AQ-3 1,1,1-Trichloroethane Project: Analyle

S

130

114

0.15 0.15 0.15 0.15 5,45

1.140 1,280 1.380 1,130 0.8800 1.280

f. 1-Dichloroethene 1,1-Dichloroethane

138

88.0 128 109

trans-1,2-Dichloroethene

*richloreethene

cis-1,2-Dichloroethere

Chloromethane

Chloroethane

Tetrachloroethylene

130 130 130 130 130

130

Sample ID C1803091-005A MS SampType: MSD	SanipType: MSD	TestCo	TestCode 0.25CT-TCE.	E. Units, poby		Prep Date:	G.		RunNo: 10821	821	
Client ID: 1640-IAQ-3	Batch ID: R10821	Test	TestNo: 70-15			Analysis Date: 4/4/2016	E: 4/4/201	1D	SeqNo: 127158	7158	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Vat	%RPD	RPDLimit	Qual
1,1,1-Trichlomethane	1.160	0.15	-	0	116	02	130	1.22	5.04	30	
1,1-Dichloroethane	1.170	0.15	1	0	117	26	130	1.14	2.60	30	
1,1-Dichloroethene	1.100	0.15	P	O	110	70	130	1,14	3.57	30	
Chiproethane	1.170	0.15	1	0	117	70	130	1,28	8.98	30	
Chloromethane	1.590	0.15	*	0	159	70	130	1.38	14.1	30	S
cis-1,2-Dichloroethene	1.140	0.15	*	0	E	70	130	1.33	0.881	30	
Telrachloroethylene	0.8800	0.15	**	0	88.0	70	130	0.88	O	30	
Irans-1,2-Dichloroethene	3,210	0.15	**	0	121	70	130	1.28	5.62	30	
Trichforcethene	1.180	0.040	***	0.09	\$00	70	130	1.18	D	30	

Analyte detected at nr below quuntiuliun fimils Results reported are not blank corrected Qualifiers:

Spike Recurery outside accepted recovery limits

Not Elected at the Reporting Links Value above quantitation mure m g

Hoteling tisses for proparation of analys RPD outside accepted recovery limits E #

The second secon LaBella Associates, P.C. CLEENT:

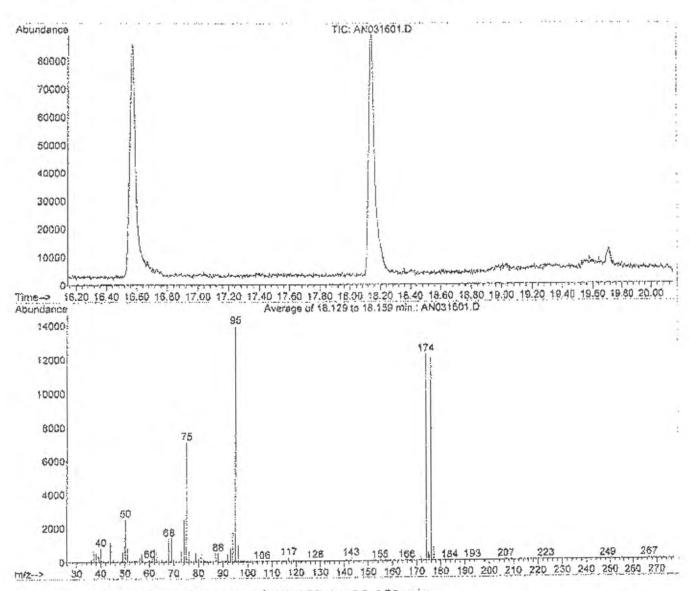
C1603091 Work Order:

Emerson Landfill Project Sample to C1603091-005A MS SampType: MSD

ļ	7
-	0
-	757
	restCode:

RunNo: 10821

Prep Date:


TestCode: 0.25CT-TCE- Units: ppbV

The same of the same and the same in the expectation of the same and the same of the same

			25
	Oual		ested Perge 2 of 2
	alit	30	e e e e e e e e e e e e e e e e e e e
23	RPDLimit		Holding times for preparation or analysis exerceded RPD ontside accepted recovery limits
SeqNo. 127158		٥	or and
No.	%RPD		notec
S			locopted rec
	Val	0	Holding times for preparation or analy. RPD quiside weedpred recovery Havirs
	Ref		tiv grant
9	RP		Holdi
47201	imit	133	= =
4	High		1
Analysis Date: 4/4/2016	LowLimit HighLimit RPD Ref Val	02	
alysis	OWL		į.
An			
	%REC	£ 5	, <u>i</u>
	5		ange.
	-	0	Astion
	Ref Va		in dec
	SPK Ref Val		
		-	Value above quantitation range Not Detected at the Roporting Limit
0-15	SPK value		P S S
F :07	ß		- 2
TasiNo; TO-15	POL	0	
	T.		nnits
			ed trion li
Batch ID: R10821	Result	061.4	dank convected on quantitation
S.	ŭ		dunk c
Ech II			sunoi b
B			red are
			ा विवास स्योज्ञ
		xene	Rusults reported are not blank corrected Analyte detasted at or helow quantitation limits Spike Recovery simits
Client ID: 1640-1AQ-3		Sur. Bromolluorobenzene	
640-		лую.	57:
Ö		BB Fa	Fer. S.
ient II	Analyte	Sanc	Qualifiers:
Ö	A		1

MS Integration Params: RTEINT.P

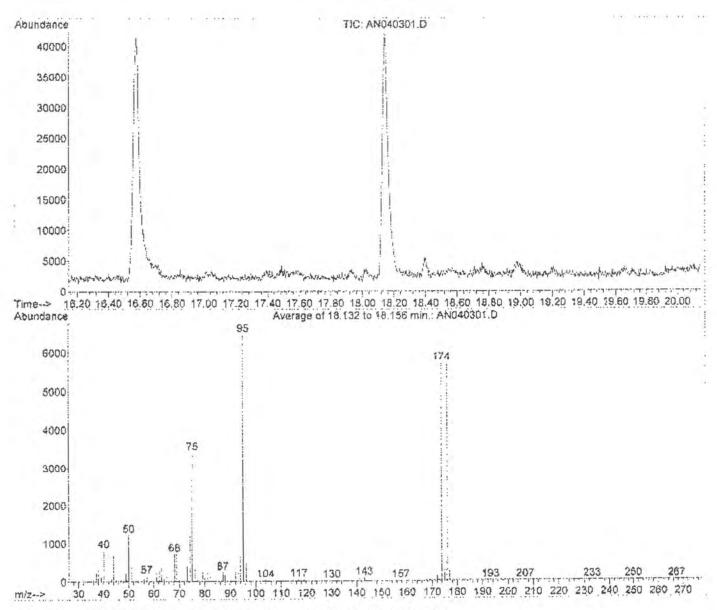
Method : C:\MPCHEM\1\METHODS\A316_LUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18,129 to 18,159 min.

Target Mass	Rel. to Mass	Lower Limit*	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Pail
1 50	95	8	40	18.0 V	2513	PASS
75	95	30	66	51.1	7135	PASS
95	95	1.00	100	100.0	13975	PASS
96	95	5	9	5.7	936	PASS
173	374	0.00	2	0.6	79	PASS
174	95	50	1.30	87.9	12278	PASS
175	174	4	9	4.1	498	PASS
176	174	95	101	98.5	12090	PASS
177	176	5	9	6.9	829	PASS

Vial: 1

Data Pile : C:\HPCHEM\1\DATA\AN040301.D


 Acq On : 3 Apr 2016 9:42 am
 Operator: RJP

 Sample : BF91UG
 Inst : MSD #1

 Misc : A316_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for S point calibration

Spectrum Information: Average of 18.132 to 18.156 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Pail
50	95	8	40	19.0 V	1230	PASS
75	95	30	66	52.6	3415	PASS
95	95	100	100	100.0	6489	PASS
96	95	5	9	7.3	473	PASS
173	174	0.00	2	0.4	24	PASS
174	95	50	120	88.3	5732	PASS
175	174	4	9	4.9	279	PASS
176	174	95	101	99.6	5711	PASS
177	176	5	9	5.3	305	PASS

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 3

Field Logs

Soil Gas Testing Log

Project Name: Former Emerson Street Landfill- 1640 Emerson St

Project No: 210173 Sampled By: AA

Date: 30-Mar-16

Weather: ~55 degress clear skies

Former Emerson Street Landfill 1640 Emerson Street

Wind Speed/Direction: from SE ~10 mph gusts

	40-SVI-2		40-SVI-3	ID: 1640-Outdoor Air		
Sub-Slab Pressure	e: 0.00 "wc	Sub-Slab Pressure	e: 0.001 "wc	Sub-Slab Pressure: NA		
Canister: 366		Canister: 1318		Canister: 290		
Regulator: 1169		Regulator: 304			Regulator: 48	
Helium Tracer in	shroud:	Helium Tracer in	shroud: 50%	Helium Tracer in shroud: 50%		
Helium Tracer at	•	Helium Tracer at	•	Helium Tracer at point: 1%		
Sub-	Slab	Sub-	Slab	Outdoor Air		
Time	Vacuum Reading ("Hg)	Time	Vacuum Reading ("Hg)	Time	Vacuum Reading ("Hg)	
Start 800	30+	Start 813	30	Start 750	30+	
900	25	900	26	900	28	
1000	20	1000	23	1000	23	
1100	16	1100	19	1100	20	
1200	11	1200	14	1200	15	
1245	7	1245	11	1245	12	
End 1300	6	1300	10.0	1300	10	
		1330	8.0	1330	9	
		End 1405	5.0	End 1400	6	

Notes/Activities:				
				·

Soil Gas Testing Log

Former Emerson Street

Landfill 1640 Emerson Street **Project Name:** Former Emerson Street Landfill- 1640 Emerson St 210173 Project No:

Sampled By: AA Date:

> Weather: ~55 degress clear skies

Wind Speed/Direction: from SE ~10 mph gusts

30-Mar-16

ID:	1640-IAQ-1		
Sub-Slab Pressure: NA "wc			
Canister: 85			
Regulator: 272			
Helium Tracer in shroud: NA			
Helium Tracer	at point: NA		
Indoor Air			
Time	Vacuum Reading ("Hg)		
Start 748	30+		

25 21

18

13

8

900

1000

1100 1200

1245

End 1300

Sub-Slab Pressui	re: NA "wc		
Canister: 496			
Regulator: 403 Helium Tracer ir	shroud: NA		
Helium Tracer a			
Indoor Air			
Time	Vacuum Reading ("Hg)		
Start 805	30		
900	27		
1000	23		
1100	20		
1200	16		
1240	13		
1300	12		
1330	10		
End 1410	8		

ID: 1640-IAQ-3			
Sub-Slab Pressure: NA "wc			
Canister: 1207 Regulator: 299			
Helium Tracer in shroud: NA			
Helium Tracer a	t point: NA		
Indo	or Air		
Time	Vacuum Reading ("Hg)		
Start 815	30		
900	25		
1000	20		
1100	16		
1200	10		
1245	7		
End 1405	5		

Notes/Activities:	Duplicate sample from IAQ-2 (canister 336 regulator 403)

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 4

Preliminary Building Assessment and Site Reconnaissance

Site: 1640 Emerson Street Site Recon Date: October 19, 2010 Consultant: Stantec/Day Team

Summary of Available Historic Records:

- The structure (approximately 25,000 sq. ft.) was built in 1983.
- The building was originally occupied by Almac Plastics, which changed its name to Laird Plastics in 1992.

Current Site Use:

- Currently owned by Emerson Street LLC and occupied by Laird Plastics, a plastics distribution company.
- Laird Plastics uses the space for plastic warehousing and distribution, with an area on the north-central side for fabrication and at the northeast corner for plastic cutting. Office space is located at the southeast corner. The second floor, located at the southeast corner, is designed as office space but is currently vacant. The fabrication operations use several chemicals, including VOCs in the form of glues, solvents, and oils.
- Approximately 9 people occupy the area during weekdays (1 shift).
- Approximately 17,500 sq. ft. is used as plastics warehousing and fabrication and approximately 3,750 sq. ft. is used as office space. The remaining 3,750 sq. ft. consists of the vacant second floor.

Site Recon Observations:

- Chemical storage observed on-site included:
 - o Location 11 Work table lubricants, semi-synthetic nonflammable nonreactive oil
 - o Location 12 Six 5-gallon pails of oil
 - o Location 41 Chemical storage shelf lubricant, adhesive remover, paint, insecticide
 - Location 68 Chemical storage cabinet acrylic, denatured alcohol, hypo needles, permabond, rez-n-bond, citrus degreaser
- The foundation system for the building consists of caissons with grade beams (potentially suspended, per the tenant), concrete floor, and metal walls.
- Floor slab condition was generally fair to poor (numerous floor cracks throughout the warehouse area (generally <1/8" to 1/2" wide), no heaving observed). Cracks generally appear to be filled with dust and debris.
- Ceiling fans were noted in the warehouse area.
- The building uses natural gas forced air heat and an air conditioning unit in the office space. Ceiling mounted natural gas heaters are used in the warehouse.
- Pressure and air exchange rates within building were not known by owner or tenant.

List of Observed Floor Penetrations (Potential SVI Locations):

- Electrical conduit (2") (Location 36).
- Fire protection (6") (Location 35).
- Toilets (Locations 71, 73).
- Floor drain (3") (Location 34).
- Floor cracks (<1/8"-1/2") (Locations 1, 2, 4-7, 10, 14-25, 29, 31-33, 39, 40, 43-48, 50, 51, 53-59).
- Expansion joints (1/2") (Locations 9, 10, 23, 37, 49, 56).
- Dock lifts (4'x5'). (Locations 27, 30).

Site Recon Meter Readings (Total Readings Collected – 91):

- Total Background Readings Collected = 22
 - o Background VOCs due to operations ranged from 61 to 304 ppb
 - o Background Methane due to operations were 0%

Site: 1640 Emerson Street Site Recon Date: October 19, 2010 Consultant: Stantec/Day Team

- Total Floor Penetration Readings Collected = 50 (Note: At locations 10, 23, and 56, there were intersections of expansion joints and floor cracks. One reading was taken at the intersection, which includes both floor penetrations).
 - O VOC readings above background were recorded at:
 - Locations where readings are minor (<10% or 50 ppb above background) and presumed to be due to instrument or background variability:
 - Location 2 Floor crack = 227 ppb (Background = 222 ppb)
 - Location 6 Floor crack = 247 ppb (Background = 222 ppb)
 - Location 7 Floor crack = 234 ppb (Background = 222 ppb)
 - Location 16 Floor crack = 309 ppb (Background = 304 ppb)
 - Location 17 Floor crack = 306 ppb (Background = 304 ppb)
 - Location 22 Floor crack = 260 ppb (Background = 207 ppb)
 - Location 23 Floor crack = 236 ppb (Background = 207 ppb)
 - Location 24 Floor crack = 236 ppb (Background = 207 ppb)
 - Location 25 Floor crack = 240 ppb (Background = 207 ppb)
 - Location 32 Floor crack = 211 ppb (Background = 207 ppb)
 - Location 43 Floor crack = 235 ppb (Background = 207 ppb)
 - Location 44 Floor crack = 242 ppb (Background = 217 ppb)
 - Location 45 Floor crack = 255 ppb (Background = 207 ppb)
 - Location 48 Floor crack = 253 ppb (Background = 217 ppb)
 - Location 50 Floor crack = 247 ppb (Background = 222 ppb)
 - Location 51 Floor crack = 219 ppb (Background = 217 ppb)
 - Location 56 Floor crack = 228 ppb (Background = 217 ppb)
 - Location 57 Floor crack = 229 ppb (Background = 217 ppb)
 - Location 58 Floor crack = 228 ppb (Background = 222 ppb)
 - Location 59 Floor crack = 225 ppb (Background = 222 ppb)
 - Location 71 Floor crack = 262 ppb (Background = 258 ppb)
 - Location 73 Floor crack = 290 ppb (Background = 275 ppb)
 - Note: It is likely that the VOC readings above background at the floor penetration locations listed above are due to equipment sensitivity or site operations; however, potential soil vapor intrusion as a source cannot be ruled out.
 - o No Methane readings above background were recorded

U:\190500643\report\1640 Emerson St\1640.Emerson.St_observations.docx

FORMER EMERSON STREET LANDFILL SOIL VAPOR INTRUSION PRELIMINARY BUILDING ASSESSMENT AND SITE RECONAISSANCE

Parcel Information:		
Address:		
Owner:		
Number of Buildings:		
	one for each building):	
Interviewer Information:		
Name:	Date/Time Prepared:	
Consultant Firm:	Phone No.:	
Owner/Interviewee Information:		
Last Name:	First Name:	
Address:		
Tenant Information (if any):		
Tenant Contact Person:		
Address:		
Company:		
Office Phone:		

SECTION I - Building Construction Information

A.	. Site plans available? (e.g., foundation construction, utility locations/chases, etc.): If yes, can copies be obtained?								
В.	Does owner have k	nowledge that ash or solid v	vaste was removed at	t time of building	construction:				
	If yes, are any docu	ments available?							
C.	Building Constructi	on							
		Construction Type	Finish Type	Sealed	Square Feet				
	Basement								
	Crawl Space								
	First Floor								
]	Foundation Walls								
	2 nd Floor								
E.	If yes, note variatio Utility/Floor Penetr								
		Locati	ion(s)	Size/De	scription				
	ectric								
Ga									
	ater								
	wer/Wastewater								
	Sumps Floor/Trench Drain	9							
	Dry Well	5							
	Oil/Water Separato	re							
	acks in Floor								
	pansion Joints								
	oating Slab								
	onitoring Points								
	ales								
	ility Vaults								
Ele	evators								
	her								

If yes, where and size: G. Does facility provide pretreatment of wastewater prior to discharge to sanitary sewer? If yes, What type of pretreatment is conducted: H. Is there a vapor barrier associated with the foundation system? If yes, indicate type/material, location, thickness, etc.: I. Is there a radon/sub slab soil vapor mitigation system on any portion of the building? If yes, describe system and date installed: If yes, Is the system active or passive? If yes, Is system currently operational? J. Standing water or wet areas in lower levels? If yes, list location and describe: If yes, how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1 st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)	F.	Does facility have an on Site septic system?
If yes, What type of pretreatment is conducted: H. Is there a vapor barrier associated with the foundation system? If yes, indicate type/material, location, thickness, etc.: I. Is there a radon/sub slab soil vapor mitigation system on any portion of the building? If yes, describe system and date installed: If yes, Is the system active or passive? If yes, Is system currently operational? J. Standing water or wet areas in lower levels? If yes, list location and describe: If yes how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		If yes, where and size:
If yes, indicate type/material, location, thickness, etc.: I. Is there a radon/sub slab soil vapor mitigation system on any portion of the building? If yes, describe system and date installed: If yes, Is the system active or passive? If yes, Is system currently operational? J. Standing water or wet areas in lower levels? If yes, list location and describe: If yes how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)	G.	
I. Is there a radon/sub slab soil vapor mitigation system on any portion of the building? If yes, describe system and date installed: If yes, Is the system active or passive? If yes, Is system currently operational? J. Standing water or wet areas in lower levels? If yes, list location and describe: If yes how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1 st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)	H.	Is there a vapor barrier associated with the foundation system?
I. Is there a radon/sub slab soil vapor mitigation system on any portion of the building? If yes, describe system and date installed: If yes, Is the system active or passive? If yes, Is system currently operational? J. Standing water or wet areas in lower levels? If yes, list location and describe: If yes how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		
If yes, Is the system active or passive? If yes, Is system currently operational? J. Standing water or wet areas in lower levels? If yes, list location and describe: If yes how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)	I.	Is there a radon/sub slab soil vapor mitigation system on any portion of the building?
If yes, Is system currently operational? J. Standing water or wet areas in lower levels? If yes, list location and describe: If yes how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		
If yes, list location and describe: If yes how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		
If yes how frequent: K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)	J.	Standing water or wet areas in lower levels?
K. Is the building insulated? If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1 st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		If yes, list location and describe:
If yes, location(s) and type? L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1 st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		If yes how frequent:
L. Are there any settlement issues with the building? If yes, describe: M. Are there any cracks in floor slabs (1 st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)	K.	Is the building insulated?
If yes, describe: M. Are there any cracks in floor slabs (1 st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		If yes, location(s) and type?
M. Are there any cracks in floor slabs (1 st floor or basement)? If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)	L.	Are there any settlement issues with the building?
If yes, location(s), width, etc.? N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		If yes, describe:
N. Are there any elevators in the building? If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)	M.	Are there any cracks in floor slabs (1 st floor or basement)?
If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)		If yes, location(s), width, etc.?
	N.	Are there any elevators in the building?
Comments:		If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)
	Co	mments:

SECTION II – Heating, Ventilation and Air Conditioning Information

A. Type of heating system(s) used in this building: For each heat system/unit, provide the following:									
Unit Type	Unit Location	Areas Heated	Unit Size	Pressurization (neg. vs. positive)	Air Communication with other areas (duct work, doors, etc.)				
B. Type of fue	el used:								
If more tha	n one list locat	ions:							
C. Domestic	hot water tank								
D. Air conditioning:									
Comments:									

SECTION III – Indoor Air Quality Influence Factors

A. Is there a garage, service area or manufacturing area in building?
If yes, list all that apply:
 Does the garage, service or manufacturing areas have separate heating unit/system? Are petroleum-powered machines or vehicles used or stored within the garage, service area or manufacturing area of building? (e.g., forklifts, vehicle fleet, lawnmower, etc.)
If yes, specify:
B. Are there any current or former USTs, ASTs or Fueling Facilities on the property?
If yes, specify location:
C. Are there any current or former hydraulic lifts at the property?
If yes, locations and note if underground or above ground:
D. Are there any current or former petroleum or chemical spills at the Site?
If yes, specify location, quantity, material and date:
E. Are there any current or former groundwater monitoring wells at the Site?
If yes, specify location and accessibility:
F. Has the building ever had a fire?
If yes, When:
G. Is there a maintenance area?
If yes, Where:

H. Are there any parts cleaners used at the site?						
If yes, list location(s) and solvent types:						
I. Are there any drum and/or chemical storage areas?						
If yes, list location(s) and materials:						
J. Are cleaning products used routinely?						
If yes, When & Where:						
K. Has painting/staining been done in the last 6 months?						
If yes, When & Where:						
L. Is there new carpet, drapes or other textiles within installed within the last year?						
If yes, Where & When:						
M. Are there air fresheners in office spaces or bathrooms?						
If yes, Where & Type:						
N. Are there exhaust fans (e.g., break rooms, bathrooms, or other locations)?						
If yes, where vented and how often do they run:						
O. Has there been a pesticide application on the grounds?						
If yes, When & Type:						
P. Is smoking allowed on the property?						
If yes, is it allowed within buildings and where?						
Q. Are there odors in the building?						
If yes, please describe:						
R. Are solvents used within the building? (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, etc.)						
If yes, what types of solvents are used:						

S. Is groundwater extracted for any purpose (e.g. cooling water, geothermal, etc.)?
If yes, how many extraction wells, what depths and what is the rate of extraction:
T. Are there any air handling units in the building?
If yes, locations, sizes, intakes & exhaust:
U. Are there any doors (overhead/bay or others) that are routinely open? If yes, note locations, sizes, and approximate times open:
1 yes, note recurrons, sizes, and approximate times open.
V. Do any of the building occupants regularly use a dry cleaning service?
Based on Information obtained list all potential soil gas entry points and there sizes (e.g., cracks in floor, void space, piping, utility ports, sumps, elevator pits, lifts, drains, etc.).
[Note: See page 12 & 13 for additional information to be collected on each potential soil gas entry point (i.e., photographs, PID and landfill gas measurements, etc.] Comments:

Section IV – Occupancy/General Use

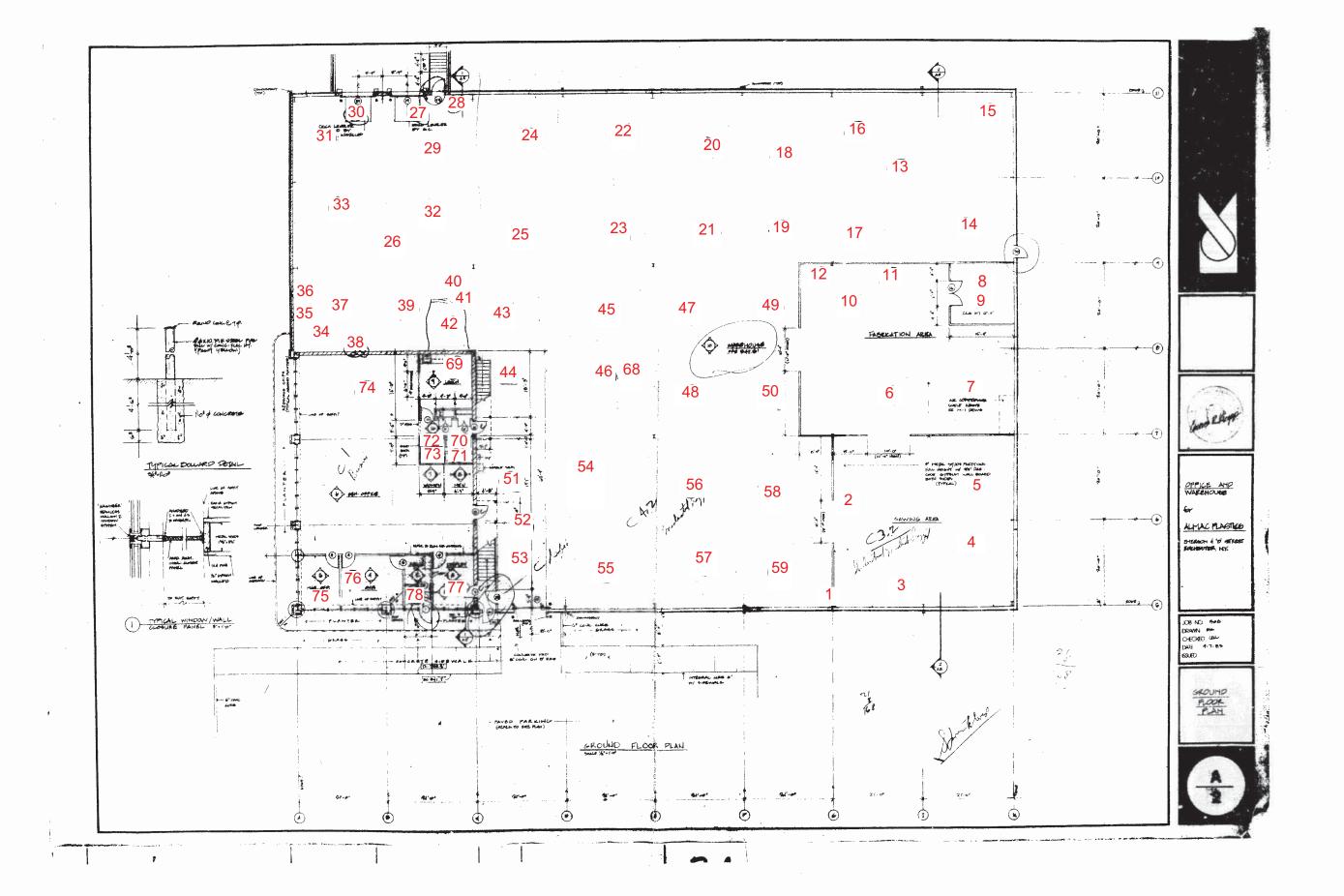
Location Use	Occupied (list hours/shifts)	Number of Employees (Full/Part-time)	Approx. Sq. Ft.	Level (basement, 1st Floor, 2nd Floor, etc.)	Brief Summary of Business/ Operations in Area (include additional sheets as necessary)
Office					
Manufacturing/ Production					
Warehouse/ Storage					
Garage					
Maintenance					
Conference/ Break Rooms					

Comments:		

Instrument Readings:

Location	VOCs	CH4	CO2	H2S	CO	O2	Description & Comments
Units	ppb	%	%	ppm	ppm	%	Description & Comments
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

Location	VOCs	CH4	CO2	H2S	CO	O2	Description & Comments
Units	ppb	%	%	ppm	ppm	%	Description & Comments
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							


Location	VOCs	CH4	CO2	H2S	CO	O2	Description & Comments
Units	ppb	%	%	ppm	ppm	%	Description & Comments
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							
51							
52							
53							
54							
55							
56							
57							
58							
59							
60							

Location	VOCs	CH4	CO2	H2S	CO	O2	Description & Comments
Units	ppb	%	%	ppm	ppm	%	Description & Comments
61							
62							
63							
64							
65							
66							
67							
68							
69							
70							
71							
72							
73							
74							
75							
76							
77							
78							
79							
80							

Mark each location on site sketch where reading was collected and provide a photograph. At a minimum, readings must be collected from all potential soil gas entry points within buildings (e.g., utility vaults, sumps, floor drains, oil/water separators, floor cracks, etc.) and any subsurface features on the exterior (e.g., catch basins, manholes, utility vaults, etc.). In addition, at least one breathing zone location will be measured for each discrete area within buildings.

Location	VOCs	CH4	CO2	H2S	CO	O2	Description & Comments
Units	ppb	%	%	ppm	ppm	%	Description & Comments
81							
82							
83							
84							
85							
86							
87							
88							
89							
90							
91							
92							
93							
94							
95							
96							
97							
98							
99							
100							

Y:\ROCHESTER, CITY\210173 FESL\FORMS\FESL PRELIMINARY ASSESSMENT FORM.DOCX

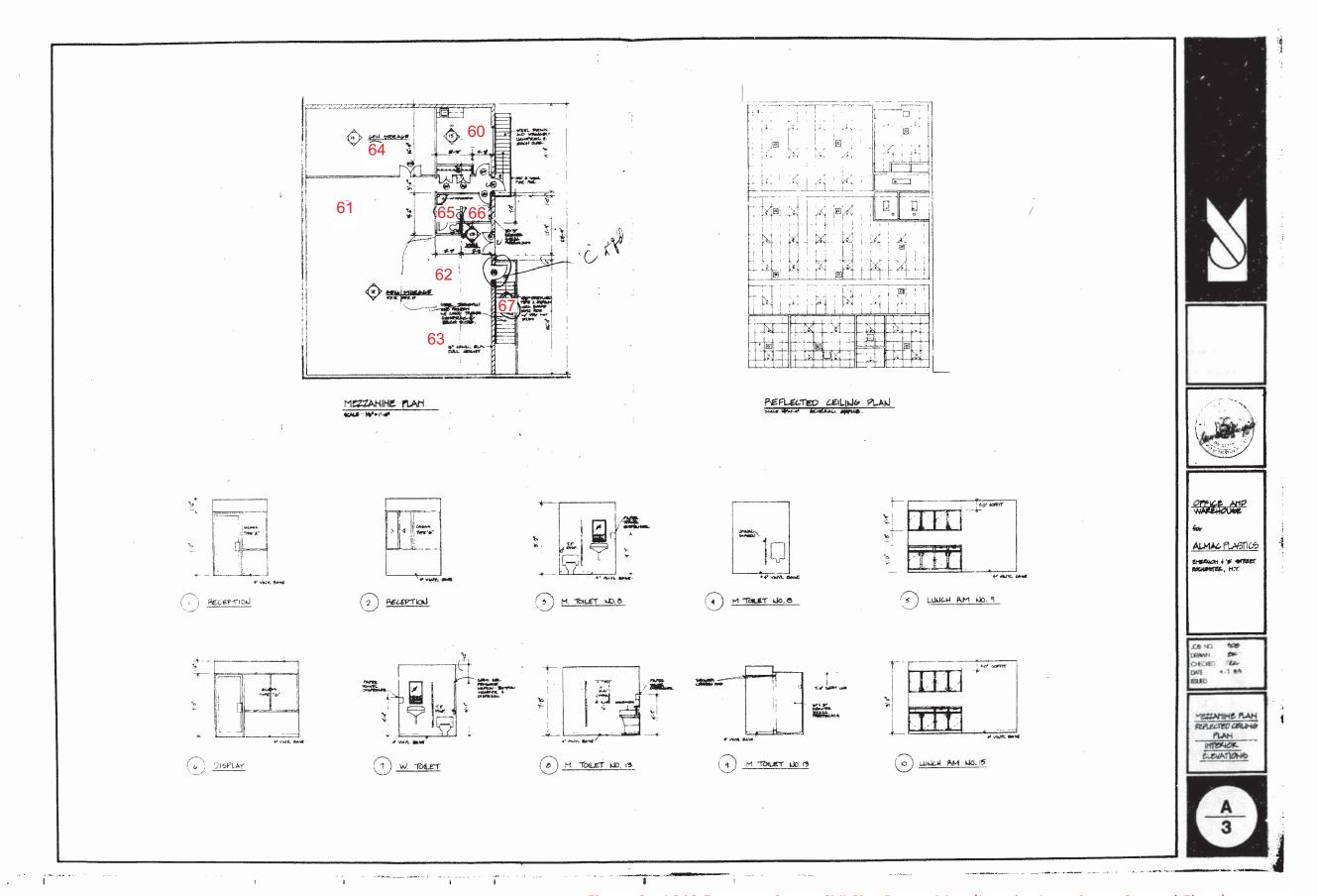
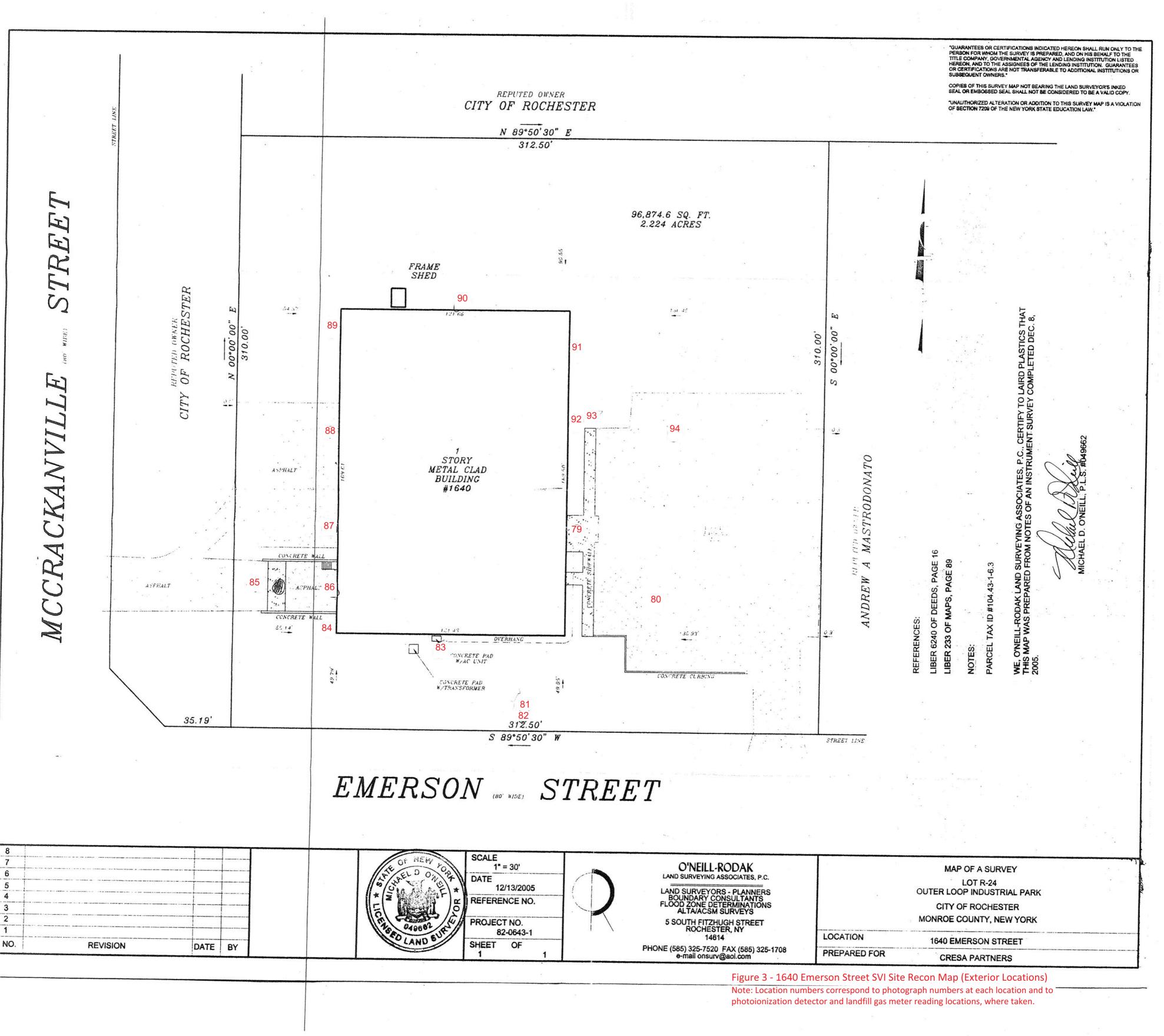



Figure 2 - 1640 Emerson Street SVI Site Recon Map (Interior Locations, Second Floor)

Note: Location numbers correspond to photograph numbers at each location and to photoionization detector and landfill gas meter reading locations, where taken.

General interior view

General interior view

