Property-Specific Soil Vapor Intrusion Investigation Report: 1645-1685 Emerson Street

Former Emerson Street Landfill NYSDEC Site #828023

Location:

Former Emerson Street Landfill 1645-1685 Emerson Street Rochester, New York

Prepared for:

City of Rochester Division of Environmental Quality Room 300-B Rochester, New York 14614

LaBella Project No. 210173

July 2017

Table of Contents

I.	Executive Summary	i
	Introduction	
2.0	Former Emerson Street Landfill Description and History	1
3.0	Previous Investigations Related to Soil Vapor Intrusion	
4.0	Objectives	
5.0	Sampling Procedures	
6.0	Results	
	Conclusions	

Tables

Table 1 – Soil Vapor Intrusion Testing Results

Figures

Figure 1 – Former Emerson Street Landfill Project Map

Figure 2 – Soil Vapor Intrusion Testing Results

Figure 3 – Sub-Slab Soil Vapor Point Details

Appendices

Appendix 1 – Laboratory Reports

Appendix 2 – Data Usability Summary Reports

Appendix 3– Field Logs

Appendix 4- Preliminary Building Assessment and Site Reconnaissance

I. Executive Summary

1645-1685 Emerson Street ("the Site") is located on the Former Emerson Street Landfill (FESL) which operated as a municipal landfill by the City of Rochester ("the City") from sometime between the 1940s and 1951 until 1971. Based on an initial assessment of all buildings across the FESL conducted from 2009-2011 by LaBella Associates D.P.C. ("LaBella") on behalf of the City, the Site was recommended for soil vapor intrusion (SVI) testing. Subsequently, LaBella conducted SVI testing at the Site on behalf of the City to evaluate the presence of SVI due to the FESL. A passive sub-slab depressurization system (SSDS) is installed in the Site building. This report documents the SVI testing completed and presents the findings and conclusions of the testing.

Summary of Testing

The SVI testing was completed on March 26, 2016 and consisted of the collection of two (2) sub-slab samples with collocated indoor air samples within the office area, and one (1) outdoor air sample to evaluate background conditions. The samples were collected over an approximate 6-hour timeframe and analyzed for a select list of volatile organic compounds (VOCs) known to be associated with the FESL. In addition, sub-slab pressure monitoring was conducted on three (3) occasions to evaluate the efficacy of the passive SSDS.

The testing was completed in accordance with a New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) approved *Soil Vapor Intrusion Investigation Work Plan: Phase II: Parcel Specific Investigation* dated January 2016 and the *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006 and subsequent updates dated September 2013 and August 2015 ("NYSDOH Guidance"). It should be noted the NYSDOH Guidance Decision Matrices were updated in May 2017 and the updated values do not change the conclusions and recommendations of this assessment.

Conclusions and Recommendations

The SVI testing results were compared to the NYSDOH Guidance decision matrices. The results indicated no further action is warranted. Based on the assessments completed to date, no further action related to SVI is warranted at the Site.

1.0 Introduction

This Property-Specific Sol Vapor Intrusion Investigation report is for the property located at 1645-1685 Emerson Street, City of Rochester, Monroe County, New York ("the Site"). The Site is located within the Former Emerson Street Landfill (FESL) which operated as a municipal landfill by the City of Rochester ("the City") from the sometime between the 1930s and 1951 until 1971. The City entered into an Order-on-Consent with the New York State Department of Environmental Conservation (NYSDEC) in August 2009 which requires an evaluation of soil vapor intrusion (SVI) due to FESL-related releases. The Order-on-Consent also requires additional remedial investigations, remedial measures, and other mitigation and corrective actions associated with the FESL.

An initial SVI assessment consisting of building inventory and field screening of indoor air was conducted at buildings across the FESL by LaBella Associates, D.P.C. ("LaBella") on behalf of the City from 2009-2011. The results of the initial SVI assessment were summarized in a report titled *Soil Vapor Intrusion Assessment Report: Data Review, Site Screening and Site Prioritization* dated June 2011 (hereinafter referred to as the "SVI Assessment Report"). The initial SVI assessment ranked buildings on the FESL for likelihood for SVI-related issues due to the FESL. The Preliminary Building Assessment and Site Reconnaissance conducted for the Site is included as Appendix 4. The NYSDEC and New York State Department of Health (NYSDOH) provided comments to this report on May 24, 2013.

Based on the initial SVI assessment, a Work Plan titled *Soil Vapor Intrusion Investigation Work Plan: Phase II: Parcel Specific Investigation* (hereinafter referred to as the "SVI Work Plan") was submitted to the NYSDEC and NYSDOH in April 2013. The SVI Work Plan proposed SVI investigations at properties that were ranked at greatest risk for SVI during the initial assessment. The NYSDEC and NYSDOH provided comments to the SVI Work Plan on April 23, 2015 and the SVI Work Plan was resubmitted in January 2016 to address NYSDEC and NYSDOH comments. SVI investigations were completed beginning in March 2016.

This property-specific SVI report summarizes the investigation completed at the Site. The Site has an approximate 70,000 square feet (sq. ft.) building occupied by EG Industries and used for plastic injection molding. A passive sub-slab depressurization system (SSDS) was installed in the Site building during building construction. The SSDS consists of six (6) vertical risers connected to sub-slab piping (refer to Figure 2 for approximate locations of vertical risers). The exact location of sub-slab piping is unknown. The Site was recommended for SVI testing (sub-slab/indoor air testing). The SVI testing was completed in the office areas only. In addition, sub-slab pressure testing was completed in the office and manufacturing areas to evaluate the efficacy of the existing passive SSDS. This report details the testing completed and the results.

2.0 Former Emerson Street Landfill Description and History

The FESL consists of approximately 250-acres of land comprised of 45 individual parcels, seven (7) of which are owned by the City. The remaining 38 parcels are owned by 25 private owners. The FESL is predominantly occupied by industrial and commercial properties (15 and 20, respectively based on use codes). In addition, City use codes indicate 5 parcels as vacant land, one (1) parcel as unknown

(McCrackenville Street) and four (4) parcels are listed as community/public service (one of which is a school, Edison Tech). The surrounding area also contains industrial and commercial properties; however, residential properties are also located to the northeast. Figure 1 provides a project locus map that indicates the area of the FESL.

Prior to FESL operation, the area was primarily vacant and relatively flat lying, with a wetland located in the north-central portion of the site. As a result of landfilling activities, the FESL has been elevated approximately 15+ feet above the surrounding area. An industrial park with existing buildings constructed as early as 1971, presently occupies most of the FESL, including larger facilities and various smaller industrial/commercial facilities, as well as several undeveloped parcels and undeveloped land on otherwise developed parcels.

The FESL was operated by the City beginning between sometime in the 1940's and 1951 to 1971 as a landfill. The landfill was used to dispose of ash derived from the incineration of municipal waste at the City's incinerators. Ash fill and construction and demolition debris were the primary waste materials placed in the landfill. Information pertaining to the incinerator operational status and efficiency indicates that the incinerated materials were completely combusted until approximately 1964 when the incinerator efficiency decreased. Landfilling began south of Emerson Street and gradually expanded northward and eastward to include areas between Emerson Street and Lexington Avenue and east of Colfax Street and south of Emerson Street. Open burning of refuse reportedly occurred in the late 1960s and early 1970s due to operational problems with the incinerators. Fill during this time frame was reportedly being placed north of Emerson Street. In May of 1971 the City's incinerators were shut down; however un-incinerated municipal refuse continued to be placed north of Emerson Street until August of 1971. In August 1971, refuse disposal was ceased at FESL and disposal shifted to a different county landfill. In 1971 the landfill was officially closed and a contract for the closure of the eastern half of the landfill specified 2 feet of cover material (preferred to be a sandy loam) to be placed and compacted to 30% in 1 foot lifts. In September 1971 a contract was awarded for the closure of the western portion of the landfill. Since closure, the majority of the Site has been developed for commercial and industrial uses in addition to one high school.

The general types of wastes encountered in investigations at the FESL site include the following:

- Municipal Incinerator Ash generally consisting of ash, cinders, charred refuse, glass and metal slag. Most ash observed in site investigations appears to be fly ash and bottom ash (clinker) from the municipal solid waste incinerators. This generally consists of soil and rock fill with traces of plastic, metal, wood, concrete, bricks, tiles, and asphalt. Construction and demolition debris observed in past investigations generally fits the definition of construction demolition debris contained in NYSDEC's Part 360. Construction demolition debris fill is common in areas adjacent to current and former roadways on site, and particularly in the lobe of fill south of Emerson Street and east of Colfax Street.
- Soil and Municipal Refuse This material generally consists of silty sand cover material and disposed, un-incinerated municipal refuse.
- Low-activity Radioactive Waste This material generally consisted of a sludge-like waste material associated with glass lenses. The sludge was found to contain low levels of radioactive thorium. This material was primarily encountered in the southwest portion of the FESL and was believed to be associated with incinerator ash and refuse fills. This material was removed by

- Sevenson Environmental Services on behalf of the City of Rochester (refer to Section 3.0 Previous Investigations).
- The majority of the existing landfill has a soil cover. Cover ranges in thickness from 0 ft. up to approximately 6 ft. Cover materials generally consist of topsoil with grass, gravel, asphalt, or glacial till-derived sandy silt.

A majority of the Site has been delisted; however, three (3) parcels (1660,1740, and 1700 Emerson Street (formerly 1655 Lexington Avenue) comprising approximately sixteen (16) acres are currently listed as a Class "3" site (No. 828023) on the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites (IHWDS). A "3" classification indicates a site "at which contamination does not presently constitute significant threat to public health or the environment." The most recent delisting occurred when LaBella submitted a Delisting Petition on December 9th, 2014, for the parcel currently addressed as 1655 Lexington Avenue (formerly 1635 Lexington Avenue and a portion of former 1655 Lexington Avenue) to delist approximately 13.3 acres of land from the NYSDEC Registry of IHWDS. NYSDEC approved this delisting on March 19th, 2015, and the newly delisted land was combined into one parcel with address 1655 Lexington Avenue. The remaining portion of former 1655 Lexington Avenue was renamed 1700 Emerson Street.

3.0 Previous Investigations Related to Soil Vapor Intrusion

A significant number of investigations have been previously conducted at the Site. This section presents pertinent and significant findings in relation to SVI from select previous investigations; a more detailed review can be obtained from each individual report.

<u>Former Emerson Street Landfill Sub-Slab Ventilation Guidance (SSVG) Document Update</u> 2013 dated October 2013:

This document was an update of the 2007 version which evaluated and mapped historical information regarding the variable composition of the landfill and analytical data at specific locations. The 2013 document provided an update on SSVG based on additional SVI investigations at the FESL. In 2010, the City of Rochester began a SVI investigation to systematically assess potential vapor intrusion issues at the FESL. This work included detailed assessments of each existing building on the FESL, installation of additional monitoring wells, and sampling of these new wells and several existing wells, catalogue and review of existing historical data regarding the FESL, and review of stereoscopic historic aerial photographs. The results were documented in a report dated June 2010 titled "Soil Vapor Intrusion Assessment Report: Data Review, Site Screening & Site Prioritization, Former Emerson Street Landfill, NYSDEC Site #828023". The 2013 SSVG details methodology for selecting an appropriate ventilation system dependent on landfill gas and VOC measurements. In addition, previous reports are summarized providing pertinent information on types and concentrations of contaminants detected.

Available analytical data types relevant to soil vapor migration include the following:

- ground surface landfill gas flux measurements throughout the landfill;
- soil gas measurements for methane, vinyl chloride (a Chlorinated-VOC), and the VOCs: benzene, toluene, ethylbenzene, and xylenes (BTEX) across a limited area (portions of the state-listed IHWDS portion of the landfill);

- photo-ionization detector (PID) measurements taken in utility vaults and sewers along roadways surrounding the landfill;
- soil samples for select Chlorinated-VOCs from borings across the landfill; and
- groundwater samples for select Chlorinated-VOCs from wells installed across the landfill.

The FESL SSVG 2013 also summarized the existing soil gas contamination information included in "Former Emerson Street Landfill, Modified Remedial Investigation", H&A of New York, January 1994. During this investigation, landfill gas measurements were obtained across the landfill area with specially-designed gas flux chambers. As summarized in the report, landfill gas is typically composed of 58% methane, 42% carbon dioxide, and trace amounts of hydrogen sulfide and other organic compounds. Methane emission rates varied in the FESL samples from a minimum of 7.8 to a maximum of 1200 μ g/m²-minute. The H&A report also contains analytical information for Chlorinated-VOCs in soil, groundwater, and utility vault water samples, and PID readings for utility vaults and manholes. Analytical results indicated the presence of Chlorinated-VOCs at various locations throughout the landfill, but concentrated in the IHWDS portion.

The report "Former Emerson Street Landfill Remedial Investigation Report for Parcels 4, 10, and 11", LaBella Associates P.C., and Geomatrix Consultants, Inc., March 2001, describes sampling completed in the IHWDS portion of the landfill. Sampling was completed in soil, groundwater, sewers, and extensive soil gas points. Analytical results confirmed and further delineated the presence of CVOCs in the IHWDS portion of the landfill. These parcels are located in Quadrant A, an area likely to contain direct burial municipal waste without significant incineration. The soil gas results for the specific constituents detected in this summary are briefly summarized below:

- Vinyl chloride concentrations ranged from 0.02 milligrams per cubic meter (mg/m3) to 9 mg/m3
- Benzene concentrations ranged from 0.02 mg/m³ to 0.6 mg/m³
- Total BTEX concentrations ranged from 0.48 mg/m³ to 499 mg/m³
- Chlorobenzene concentrations ranged from 0.02 mg/m³ to 1.6 mg/m³
- Methane concentrations ranged from 380 parts per million (ppm) (or 0.038%) to 790,000 ppm (or 79%)

The FESL can be separated into four general geographic regions (FESL Quadrants) based on the landfill waste composition and historic analytical data. The Site is located in Quadrant C (refer to Figure 1).

Quadrant C is characterized by thinner fill, lower percentage of potentially putrescible solid waste and more incinerated ash, and intermediate landfill gas flux at the surface relative to other FESL areas sampled. This area is characterized by landfill gas flux measurements below $50 \,\mu\text{g/m}^2$ -minute. It has been hypothesized that this may be related to the presence of organic rich marsh-derived soils at depth in this area, as opposed to landfill related gas. There is also an area of Chlorinated-VOC contamination in this quadrant.

Soil Vapor Intrusion Assessment Report (SVI Assessment Report) dated June 2011:

LaBella was retained by the City of Rochester in January 2010 to complete a Soil Vapor Intrusion Assessment Report: Data Review, Site Screening and Site Prioritization and submitted a SVI

Assessment report (June 2011) to NYSDEC. This SVI Assessment by LaBella included a detailed review of historic information available for the Site. The historic information included not only previous subsurface environmental investigations but also a detailed review of aerial photography, subsurface data from redevelopment projects (i.e., geotechnical borings and test pits), available newspaper articles from the time the landfill was operating, and reports/papers relating to City of Rochester and Monroe County waste handling and disposal practices both historically and in particular in the 1960s/1970s. In addition, groundwater sampling of existing wells was completed, additional groundwater monitoring wells were installed, developed and sampled and a site reconnaissance was conducted at every parcel where access was granted by the property owner.

The results of the cumulative work were utilized in a ranking system that use weighted numerous criteria for each building. The criteria can be separated in to two major categories, Non-FESL related factors (e.g., how many people occupy the building, building use/ potential receptor population, building construction and condition, type of heating, ventilation system, etc.) and FESL related factors (e.g., building location in relation to the P-1 plume, location in relation to filling, readings detected during Site walkthrough, etc.). The overall scores were separated into three "Tiers" of sites. Tier 1 sites were determined to be of the highest concern for SVI due to the FESL, Tier 2 sites were determined to be of moderate to low concern for SVI due to the FESL and Tier 3 sites were determined to be of low to no concern for SVI due to FESL.

The Site is located in Quadrant C of the FESL and is approximately 1,000 feet south of the P-1 Plume. The Site building was ranked Tier 1 during the SVI Assessment.

4.0 Objectives

The objective of this assessment was to evaluate the potential for SVI at the Site via sub-slab and indoor air testing and to assess the efficacy of the existing passive SSDS. Work was completed in accordance with the NYSDEC and NYSDOH-approved 2016 SVI Work Plan and the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006 and subsequent updates dated September 2013 and August 2015 (NYSDOH Guidance).

5.0 Standards, Criteria and Guidelines

This section identifies the applicable Standards, Criteria and Guidelines (SCGs) for the Site related to SVI.

Sub-Slab Soil Vapor and Indoor Air SCGs: The NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006 and subsequent updates for PCE and TCE in 2013 and 2015, respectively (including the USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile), in Appendix C of the NYSDOH document) is utilized for the SCG for soil vapor and indoor air. It should be noted the NYSDOH Guidance decision matrices were updated in May 2017 after the testing was completed. The results were also compared to the May 2017 updates.

6.0 Sampling Procedures

Sub-Slab Vapor Point Installations

Two (2) sub-slab soil vapor points were installed on March 20, 2016 in the office area (refer to Figure 2 for locations). The sub-slab vapor sampling points consisted of the Vapor Pin ® sampling system. Points were installed by coring a 1.5-inch diameter hole approximately 2-inches into the floor slab. Subsequently, a 5/8-inch diameter hole was drilled through the center of the 1.5-inch diameter hole using a guide through the floor slab. A 5/8-inch diameter polyethylene sleeve fitted over a metal barbed fitting was installed within the 5/8-inch diameter core hole. Sub-slab soil vapor points were fitted with a threaded cap flush to the finished floor. Figure 3 illustrates the typical construction of a sub-slab vapor sampling point.

Purging Procedures

Sub-slab vapor sampling points were first evaluated for pressure using a Test Products International Digital Manometer 621. Sub-slab pressures at the SVI monitoring points ranged from -0.0029 to -0.0025 inches of water column ("wc).

After installation of the probes, one (1) to three (3) volumes (i.e., the volume of the sample probe and tube) was purged prior to collecting the samples to ensure samples collected are representative. Flow rates for purging did not exceed 0.2 liters per minute to minimize the ambient air infiltration during sampling.

A tracer gas evaluation was conducted to verify the integrity of the sub-slab soil vapor probe seal using helium. Tubing was connected to the metal barbed fitting and an enclosure was placed over the sampling point. Subsequently, the enclosure was enriched with the tracer gas. The sub-slab and the enclosure were then tested for the tracer gas using a MDG-2002 Helium Gas Leak Detector. The tracer gas was measured at concentrations between 0% and 1% of the enclosure.

Sampling and Handling Procedures

On March 26, 2016, sub-slab soil vapor, indoor air, and outdoor air samples were collected using 1-liter Summa Canisters® equipped with pre-calibrated laboratory supplied flow regulators set for a sampling time of six (6) hours. Sub-slab samples were designated "1645-SVI-1" and "1645-SVI-2". At each sub-slab vapor sample location an indoor air sample was also collected. The collocated indoor air samples were collected from approximately 3 to 5 feet above the floor slab and were collected in the same manner and general time period as the sub-slab sample. Indoor air samples were designated "1645-IAQ-1" and "1645-IAQ-2". In addition, an outdoor air sample was collected to evaluate the ambient air conditions. The outdoor ambient air sample was collected from the general upwind direction based on prevailing wind directions. The outdoor air sample was designated "Outdoor-1645". Sampling logs are included in Appendix 3.

All samples were submitted under standard chain of custody procedures to Centek Laboratory in Syracuse, New York for analysis of a select list of VOCs using USEPA Method TO-15. Based on the historic data, the detailed evaluation completed as part of the SVI Report and the current heavy manufacturing setting of the FESL, the analytical testing work was limited to compounds suspected to be

due to FESL, including the following:

Compound
Tetrachloroethene
Trichloroethene
cis-1,2-Dichloroethene
trans-1,2-Dichloroethene
Vinyl Chloride
1,1,1-Trichloroethane
1,1-Dichloroethane
1,1-Dichloroethene
Chloroethane
Chloromethane

Quality Assurance/Quality Control

The Summa® Canisters were certified clean by the laboratory. Blind duplicates were collected at a rate of one (1) per ten (10) samples, or one (1) per shipment to the laboratory. Matrix spike/matrix spike duplicate (MS/MSD) samples were collected using a 1.4-liter Summa® canister at a rate of one (1) per twenty (20) samples or one per shipment to the laboratory. The laboratory provided ASP Category B-like reports and NYSDEC EQUIS Electronic Data Deliverables (EDDs). A data usability summary report (DUSR) was prepared by Dataval, Inc.

Pressure Testing

Following the SVI sampling event, on November 26, 2016, sub-slab pressure was measured and recorded from all accessible monitoring points in the office and manufacturing area using a Test Products International EBT720 Micromanometer to evaluate the efficacy of the existing passive SSDS. The monitoring points in the manufacturing area were installed as part of the initial SVI assessment in 2010.

7.0 Results

SVI sampling and analysis consisted of the collection of two (2) collocated sub-slab and indoor air samples in addition to one (1) outdoor air sample on March 26, 2016 over an approximate 6-hour timeframe. Follow-up pressure monitoring was conducted on November 26, 2016.

Sub-Slab/ Indoor/ Outdoor Air Sampling

SVI sampling results were compared to the decision matrices in *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* Guidance Document dated October 2006 and subsequent updates for PCE and TCE in 2013 and 2015, respectively (NYSDOH Guidance Document). Targeted compounds were not-detected in the indoor air above laboratory reporting limits. The NYSDOH matrices indicated no further action is warranted regarding SVI at this Site. It should be noted the NYSDOH Guidance Decision Matrices were updated in May 2017 and the updated values do not change the conclusions and recommendations of this assessment. Refer to Figure 2 for sample locations.

Pressure Monitoring

To confirm the effectiveness of the existing passive venting system, pressure monitoring was completed at the pressure monitoring points installed during the initial SVI assessment in 2010 within the manufacturing area, and in 2016 within the office area which served the dual purpose of SVI sampling and pressure monitoring. Refer to Figure 2 for monitoring point locations.

Sub-slab pressure has been monitored on three (3) occasions since 2010 as listed in the below table. Sub-slab pressure has been negative during the monitoring events, with readings ranging from -0.002 "wc to -0.048" wc.

Monitoring	Location	Sub-	Slab Pressure Read	ing ("wc)
Point		March 28, 2010	March 26, 2016	November 26, 2016
C-1	Manufacturing	-0.002 to -0.003	Not Collected	Inaccessible ⁽¹⁾
C-2	Area	-0.032 to -0.042		-0.006 to -0.009
C-3		-0.015 to -0.024		Inaccessible ⁽¹⁾
C-4		-0.048		-0.004
1645-SVI/IAQ-1	Office Area	Not Collected	-0.029	-0.002 to -0.006
1645-SVI/IAQ-2			-0.025	-0.008 to -0.010

Pressure readings in inches of water column ("wc)

Based on the SVI testing and the pressure monitoring performed, the passive SSDS appears to be adequate in creating negative sub-slab pressure (i.e., positive building pressure). It should be noted that building operations also create positive building pressure (i.e., clean rooms and HVAC units).

8.0 Conclusions

The Site is located south of the P-1 Plume in Quadrant C of the FESL. The Site is currently utilized industrially for plastic injection molding with approximately 7,000 of the 70,000 square feet utilized as office space.

Two (2) collocated sub-slab and indoor air samples, in addition to one (1) outdoor air sample, were collected on March 26, 2017 to evaluate SVI in the Site building. The work was conducted in accordance with the NYSDEC and NYSDOH-approved work plan dated January 2016. Targeted compounds were not detected in indoor air. Based on the lack of detected compounds in the indoor air sampled in the office area and observed negative pressure beneath the floor slab throughout the Site building, there is no SVI concern due to the FESL. Based on the assessments completed to date, no further action related to SVI is warranted at the Site.

 $\label{thm:linear_construction} $$ \PROJECTS2\PROJECTSNZ-2\ROCHESTER, CITY\210173 FESL\REPORTS\SVI ASSESSMENT REPORT 2017\1645-1685 EMERSON STREET\1645-1685 EMERSON STRE$

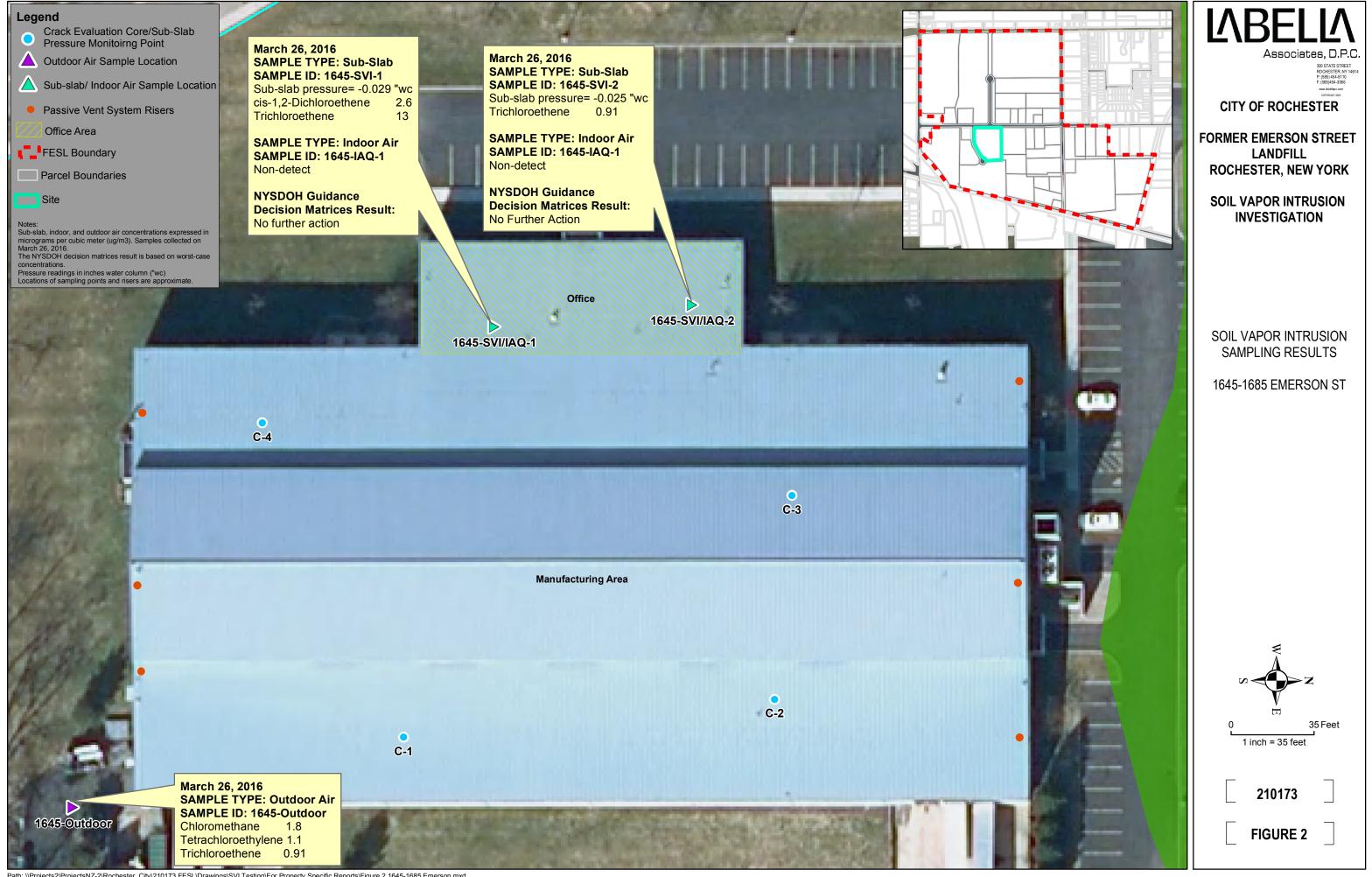
⁽¹⁾ During the most recent round of pressure monitoring in November 2016, two (2) of the monitoring points (C-1 and C-3) within the manufacturing area were covered with equipment; as such, these two (2) monitoring locations were not accessible for testing.

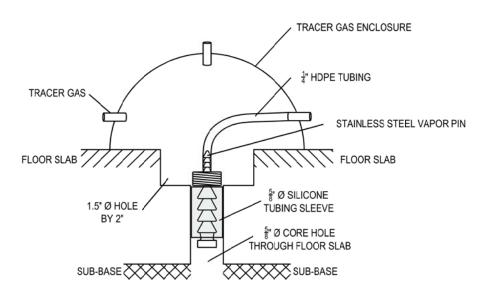
LΛ
2.
1614
7

ROCHESTER, NY 1461-P: (685) 454-3066 www.labellapc.com

CITY OF ROCHESTER

FORMER EMERSON STREET
LANDFILL
ROCHESTER, NEW YORK


SOIL VAPOR INTRUSION INVESTIGATION


FORMER EMERSON STREET LANDFILL PROJECT MAP

210173

FIGURE 1

<u>DETAIL 1</u> SUB-SLAB SOIL VAPOR SAMPLING POINT DETAIL

It is a volation of New York Education Law Article 145 Ser. 7209, for any person, unless stirring under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in my way. If an item borning the seal of an architect, engineer, or land seal of an architect engineer, or land the little three professions of the comception, or land surveyor shall affet to the item their seal and notation "altered by" followed by their signature and date of such litteration, and a specific description of the alteration.

SUB-SLAB SOIL VAPOR
POINT DETAILS

SUBGEORY

FINAL

SUBSTITUTE

SU

210173 FIGURE 3

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Tables

Former Emerson Street Landfill 1645-1685 Emerson Street Table 1 Soil Vapor Intrusion Testing Results March 2016

Sample ID Sample Location Sample Date	1645-SVI-1 Sub-Slab 3/26/2016	1645-SVI-2 Sub-Slab 3/26/2016	1645-IAQ-1 Indoor Air 3/26/2016	1645-IAQ-2 Indoor Air 3/26/2016	Outdoor-1645 Outdoor Air 3/26/2016	NYSDOH Sub-Slab Vapor Concentration Decision Matrix (minimum action level) ⁽¹⁾	NYSDOH Indoor Air Concentration (minimum action level)	USEPA (2001) (BASE) Database - 90th Percentile (2)
1,1,1-Trichloroethane	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	<100***	<3***	20.6
1,1-Dichloroethane	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	NL	NL	< 0.7
1,1-Dichloroethene	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	<100***	<3***	<1.4
Chloroethane	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	NL	NL	<1.1
Chloromethane	< 0.31	< 0.31	< 0.31	< 0.31	1.8	NL	NL	3.7
cis-1,2-Dichloroethene	2.6	< 0.59	< 0.59	< 0.59	< 0.59	<100***	<3***	<1.9
Tetrachloroethylene	<1.0	<1.0	<1.0	<1.0	1.1	<100***	<3*** / 30*	15.9
trans-1,2-Dichloroethene	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	NL	NL	NL
Trichloroethene	13	0.91 J	0.21 U	< 0.21	0.91	<5 **	<0.25** / 2*	4.2
Vinyl Chloride	< 0.38	< 0.38	< 0.10	< 0.38	< 0.10	<5**	<0.25**	<1.9

Notes:

Concentrations in micrograms per cubic meter (ug/m³)

Samples analyzed by USEPA Method TO-15

- < indicates the concentration was not detected above the reporting limit
- (1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database (see 2. below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]
- (2) USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance (Refer to Footnote "1") this database is referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.
- * = Air Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York as updated by a September 2013 Fact Sheet for PCE and an August 2015 Fact Sheet for TCE.
- ** = Guideline Value obtained from Soil Vapor/Indoor Air Matrix 1 (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York.
- *** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix 2 (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

Bold type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Sub-Slab Vapor Concentration Decision Matrix (minimum action level).

Underlined type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Indoor Air Concentration (minimum action level).

Red values are above Air Guideline Derived by NYSDOH in Table 3.1 of NYSDOH Guidance titled "Evaluating Soil Vapor Intrusion in the State of New York", October 2006 (and subsequent updates).

Blue font represents changes made in the Data Usability Summary Report (DUSR)

U indicates the DUSR deemed the concentration undetected

Former Emerson Street Landfill 1645-1685 Emerson Street Table 1 Soil Vapor Intrusion Testing March 2016

NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 Decision Matrices

			MATRIX 1- TRICH INDOOR AIR CON	ILOROETHENE CENTRATION (ug/r	n ³)	
	Sample IDs		IAQ-1 (0.21U) IAQ-2 (<0.21)			
			< 0.25	0.25 to <1	1 to <5.0	5.0 and above
SUB-SLAB VAPOR CONCENTRATION	SVI-2 (0.91)	<5	1. No further action	to identify source(s)	to identify source(s)	Take reasonable and practical actions to identify source(s) and reduce exposure
(ug/m³)	SVI-1 (13)	5 to <50	5. No further action	6. MONITOR	7. MONITOR	8. MITIGATE
		50 to <250	9. MONITOR	10. MONITOR/ MITIGATE	11. MITIGATE	12. MITIGATE
		250 and above	13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE

				-DICHLOROETHEN CENTRATION (ug/r		
	Sample IDs		IAQ-1 (<0.59)		ĺ	
			<3	3 to <30	30 to <100	100 and above
SUB-SLAB VAPOR CONCENTRATION	SVI-1 (2.6)	<100	No further action	and practical actions to identify source(s)	and practical actions to identify source(s)	Take reasonable and practical actions to identify source(s) and reduce exposure
(ug/m³)				6. MONITOR/		
		,,,,,		MITIGATE		8. MITIGATE
		1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE

No further action: Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

Take steps to identify source(s) and reduce exposures: The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed).

Monitor: Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concentrations in the indoor air or sub-slab vapor have changed. Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is an interim measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 1

Laboratory Report

TO-15 Package Review Checklist

Client: LARELLA	Project: EMERSON LANDFILL	SDG:	C160	3075
		<u>YES</u>	<u>NO</u>	<u>NA</u>
Analytical Results	Present and Complete			
TIC's present	Present and Complete			
•	Holding Times Met	-		
Comments:	· · · · · · · · · · · · · · · · · · ·	LULELIN III		
Married Annual A		LULANTO-TH		
Chain-of-Custody	Present and Complete			
Surrogate Recovery	Present and Complete	×		wer
Sillingate Recovery	Recoveries within limits			anala report
	Sample(s) reanalyzed		VIII VIII VIII VIII VIII VIII VIII VII	
Internal Standards Recovery	Present and Complete			
	Recoveries within limits			
	Sample(s) reanalyzed	-	ALL WINDOW	
Comments:				
ALLEGATION TO THE RESIDENCE TO THE RESID	ALL STATE OF THE S	Water II		1 1111 DAVIG TALLED
Lab Control Sample (LCS)	Present and Complete	<u> </u>		
	Recoveries within limits			
Lab Control Sample Dupe (LCSD)	Present and Complete			
	Recoveries within limits			~~~~
MS/MSD	Present and Complete		44000	
	Recoveries within limits		ALL ALATON W	
Comments:	NO MS/MOD			100-41100-4110-4110-4110-4110-4110-4110
	AND THE PARTY OF T			
Sample Raw Data	Present and Complete			
Danipio Mari Dani	Spectra present for all samples			
Comments:	· · · · · · · · · · · · · · · · · · ·		- IIII JULIU ITTI T	
	WOMEN AND WASHINGTON AND WASHING WASHINGTON AND WASHINGTON AND WASHINGTON AND WASHINGTON AND WAS	LULIV. PROST		A PARTY LAND A STATE OF THE STA
Centek Laboratories, LLC	Private and Confidential			Page 1 of 2

TO-15 Package Review Checklist

Client: LARELLA	Project: EMERSON LAWOFILL	SDG: <u><√6</u> 0	3075
Standards Data		YES NO	<u>NA</u>
Initial Calibration Summary	Present and Complete	_	
Ť	Calibration(s) met criteria		
Continuing Calibration Summary	Present and Complete		
	Calibration(s) met criteria		
Standards Raw Data	Present and Complete		
Comments:		WILLIAM TO THE THE WAY A REAL PROPERTY OF THE PARTY OF TH	
		THE THE PARTY AND A STATE OF THE STATE OF TH	
Raw Quality Control Data Tune Criteria Report	December of Co. 14	_	
Method Blank Data	Present and Complete	<u> </u>	
LIVERIOR DIGIN DALA	MB Results < PQL		
LCS sample data	Associated results flagged "B"	7/12/11/11/11	
LCSD sample data	Present and Complete	———	MONING PLANT
MS/MSD sample data	Present and Complete		WENTHULLE
Monthold Sumpro Gata	Present and Complete		
	79100 L. C.		WAAREN III
			TO THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPERTY OF THE REAL PROPERTY OF THE PROPERT
Logbooks		·	
Injection Log	Present and Complete		
Standards Log	Present and Complete		
Can Cleaning Log	Present and Complete		
<u> </u>	Raw Data Present	***	
Calculation sheet	Present and Complete		
DL's	Present and Complete		- m
Bottle Order Form	Present and Complete		
Sample Tracking Form	Present and Complete	No. of the last of	
Additional Comments:	•		
	· · · · · · · · · · · · · · · · · · ·	NATIONAL ATTENDED	**************************************
**************************************		LOUIS TO THE TOTAL PROPERTY OF THE TOTAL PRO	
Section Supervisor:	/wo Date: 4/	20/16	
QC Supervisor:	7 June Date: 4	/27/16	., .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Centek Laboratories, LLC	Private and Confidential		Page 2 of 2

143 Midler Park Drive * Syracuse, NY 13206 Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752 NYSDOH ELAP Certificate No. 11830

Analytical Report

Daniel Noll LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614

TEL: (585) 454-6110 FAX (585) 454-3066

RE: FESL Emerson Landfill

Dear Daniel Noll:

Monday, April 04, 2016 Order No.: C1603075

Centek Laboratories, LLC received 5 sample(s) on 3/29/2016 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Centek Laboratories

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

Age /wo

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory,

direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

- 1. Package Review Check List
- 2. Case Narrative
- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a. Form 1 (if requested) TIC's
 - b. Quantitation Report with Spectra
- 9. Standards Data
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD
- 12. Log Books
 - a. Injection Log Book
 - b. Standards Log Book
 - c. QC Canister Log Book

Date: 27-Apr-16

CLIENT:

LaBella Associates, P.C.

Project:

FESL Emerson Landfill

Lab Order:

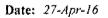
C1603075

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999


All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

Page I of 1

	Centek Chain of Custody	ustody		Site Name: FFC		Dataction (last		
				7,7		חבובכתסוו רועווו	меро	Keport Level
Contak Laboratones	143 Inder Park Drive				i-ANDFILL,	Sppbv	97	Level
/	Syracuse, NY 13206			10173	7	Ly 1ugums	_	Level
*	315-431-9730 www.CentekLabs.com	Vapor Intrusion & IAQ		Quote # 0- 50/	7	Ung/M3 +TCE .25		Cat "9" Like
TAT Check Turnaround Time: One	k Rush TAT Due	Company: 1 8, 11		20/2	Company:			
	%0 %0	Renort to:	711	- []	Check Here If Same:	f Same: X		
4 Business Days		Address: 300	o state	Street	Involce fo: Address:	SAMO	רח	
3 Business Days		City State, Zip	HOCKE	Ster NY	City, State, Zip			
* Dosilless Days	100%			41911				
*Next Day by Noon	150%	CITIZAL CATALLES IN DEM NOV. COM	O A DOM	7. CBR	Епаії			
"Same Day 200%	200%	Phone: (5%	585) 454	0110	Phone:			
*For Same and Next Day TAT Plea	ise Notify Lab	iter	Regulator	Analysis Request		Comments	Var	Vacilities 117 A
Sample ID	ate						Star	Start/Ston (H4)
5-5VI - 3	2/26/2016	207	106	52/ect 1/37			792	12.4
1645-1400-1	,	-	1165	VOCS by			3011	12 12
ケータレギージ		332	387	70-15			111	211
1645-140-2		183	43%		11511	75W	2811	December 1.
041 DOOR - 1645	>	17.0	174	>	L.		30"+1	25.55
							3	1900
							<u> </u>	1.10
		TO THE STATE OF TH						
Chain of Custody	Print Name	S	Signature	11.6.11.11	Date/Time Coprier:	CIRCLE	Ш	
Sampled by:	Syle K Mill	*	4	SALIM KINGLE	3/18/16/8-4	S	Pickup/Dropoff	
Relinquished by:		1		1	ti.	ONLY		\
Received at Lab by:	an cali		X A	77	3 -2916 Work Order #	Corder#	1605015	\$600 T
*** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.	ifn of Custody, you are acce	apting Centek La	dos Termis an	d Conditions listed on	the reverse si	de.	اس	

CLIENT:

LaBella Associates, P.C.

Project:

FESL Emerson Landfill

W	⁷ ork	Order	Sample	Summary
---	------------------	-------	--------	---------

Lab Order:	C1603075			
Lab Sample ID C1603075-001A	Client Sample ID 1645-SVI-1	Tag Number 567,301	Collection Date 3/26/2016	Date Received 3/29/2016
C1603075-002A	1645-1AQ-1	93,1165	3/26/2016	3/29/2016
C1603075-003A	1645-SVI-2	332,387	3/26/2016	3/29/2016
C1603075-004A	1645-IAQ-2	483,438	3/26/2016	3/29/2016
C1603075-005A	Outdoor-1645	1178,174	3/26/2016	3/29/2016

	CENTEK LABORATORIES,	
M.	CENTEK LABORATORIES,	LLC
Ser.	r _v	

Sample Receipt Checklist

· · · · · · · · · · · · · · · · · · ·					
Client Name LABELLA - ROCHESTER			Date and Tim	e Receive	3/29/2016
Work Order Numbe C1603075	/ /	1	Received by	JDS	
Checklist completed by Signature	Coate	/_ 3~	29-/6 Reviewed by	Initials	-372a116
Matrix:	Carrier name	FedEx Ground			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Presen	
Custody seals intact on shippping container/co	oler?	Yes 🗀	No 🗌	Not Presen	\mathbf{Z}
Custody seals intact on sample bottles?		Yes 🗀	No 🗆	Not Presen	\square
Chain of custody present?		Yes 🐼	No 🗌		
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗔		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗀		
Sample containers intact?		Yes 🗹	No 🗀		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗀		
All samples received within holding time?		Yes 🔽	No 🗔		
Container/Temp Blank temperature in complian	ce?	Yes 😾	No 🗔		
Water - VOA vials have zero headspace?	No VOA vials subm	nitted 🗹	Yes 🗀	No 🗀	
Water - pH acceptable upon receipt?		Yes 🗌	No 🖾		
	Adjusted?	Che	ecked b		_
Any No and/or NA (not applicable) response mu	ust be detailed in the co	omments section	1 be		
Client contacted	Date contacted:		Perso	on contacted	1811/1811/1811
Contacted by:	Regarding:				
Comments:	ALLA VILLA				
Corrective Action	A STATE OF THE PROPERTY OF THE	11 / P / P / P / P / P / P / P / P / P /	/ 		
7PANS AB PARSAGO (2014 - 17 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4 44 44 44 44 44 44 44 44 44 44 44 44 4			and the state of t	- 100/2010/2010

C	
┪	
_	
Centek Laboratories, L	
-	1 {

C1603075

Lab Order:

27-Apr-16

Client:	LaBella Associates, P.C.	ri			DATES REPORT	ORT
Project:	FESL Emerson Landfill					
Sample ID	Client Sample (D	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C1603075-001A 1645-SVI-1	1645-SVI-I	3/26/2016	Air	lug/M3 by Method TO15		4/1/2016
				lug/M3 by Method TO15		4/1/2016
C1603075-002A	1645-IAQ-1			1ug/m3 w/ 0,25ug/M3 CT-17CE-VC		4/1/2016
C1603075-003A	1645-SVI-2			lug/M3 by Method TO15		4/1/2016
C1603075-004A	1645-1AQ-2			lug/m3 w/0.25ug/M3 CT-TCE-VC		3/31/2016
C1603075-005A	Outdoor-1645			lug/m3 w/ 0.25ag/M3 CT-TCE-VC		4/1/2016

CANISTER ORDER

Air Quality Testing. At s a Clas-

143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

5692

27-Apr-16

SHIPPED TO:

Company: LaBella Associates, P.C.

Contact: Ann Aquilina

Address: 300 State Street, Suite 201

Rochester, NY 14614

Phone: (585) 454-6110

Quote ID:

Project:

366 387

388

419 447

465

PQ: Emerson Landfill Submitted By:

MadeBy: rjp

Ship Date: 3/16/2016

VIA: FedEx Ground

Due Date: 3/17/2016

Bottle Code	Bottle Type	TEST(s)	QTY
MC1400CC	1.4L Mini-Can 1L Mini-Can Encloser Dome	1ug/M3 by Method TO15	1
MC1000CC		1ug/M3 by Method TO15	22
DOME		Helium Leak Test	2

Can / Reg ID	Description	
89	1L Mini-Can - 1090 VI	
93	1L Mini-Can - 1109 VI	
128	1L Mini-Can - 1076 VI	
131	1L Mint-Can - 1079 VI	
136	1L Mini-Can - 1110 VI	
139	1L Mini-Cen - 1113 VI	
141	1L Mini-Can - 1115 VI	
174	Time-Set Reg - 659 VI	
187	Time-Set Reg - 625 VI	
188	1L Mini-Can - 1143 VI	
192	1L Mini-Can - 1147 VI	
223	1L Mini-Can - 1185 VI	
249	Time-Set Reg - 687 VI	
258	Time-Set Reg - 696 VI	
266	Time-Set Reg - 704 VI	
286	1L Mini-Can - 1262 VI	
292	Time-Set Reg - 715 VI	
296	Time-Set Reg - 719 VI	
2 9 7	Time-Set Reg - 720 Vt	
301	Time-Set Reg - 724 VI	
308	Time-Set Reg - 809R VI	
332	1L Mini-Can - 1295 VI	
339	Time-Set Reg - 736 VI	
342	Time-Set Reg - 739 VI	
343	Time-Set Reg - 740 VI	

1L Mini-Can - 1315 VI

Time-Set Reg - 761 Vi

Time-Set Reg - 762 VI 1L Mini-Can - 1343 VI

Time-Set Reg - 826 VI 1L Mini-Can - 1369 VI

SHIPPED TO:

Company: Contact: Address:	LaBella Associates, P.C. Ann Aquilina 300 State Street, Suite 201	Submitted By: MadeBy: rjp
Phone: Quote ID: Project:	Rochester, NY 14614 (585) 454-6110 0	Ship Date: 3/16/2016 VIA: FedEx Ground Due Date: 3/17/2016

PO: Emerson Landfill

Bottle Code	Bottle Type	TEST(s)	QTY
564	1L Mini-Can - 135 VI		
567	1L Mini-Can - 136 VI		
1157	Time-Set Reg-VI		
1160	Time-Set Reg-0673 VI		
1165	Time-Set Reg-0678 VI		
1166	Time-Set Reg-0791 VI		
1178	1L Mini-Can - 1236 VI		
1179	1L Mini-Can - 1249 VI		
1183	1L Mini-Can - 1250 Vi		
1193	1L Mini-Can - 1246 VI		
1195	1L Mini-Can - 1254 VI		
1320	1.4L Mini-Can - 1197 VI		

Comments: 20 Hz @ 6hr + 2 dupe + 1.4L @ 6hr + 10 tubing + 2 dome (updated) was 021916 j-k, 030816 a-f

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

$$RRF = Ax * Cis$$
 $Ais * Cx$

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 ANALYTICAL RESULTS

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Lab Order: C1603075

Project: FESL Emerson Landfill

Lab ID:

C1603075-001A

Date: 26-Apr-16

Client Sample ID: 1645-SVI-1

Tag Number: 567,301

Collection Date: 3/26/2016

Matrix: AlR

Lab Vacuum Out -30 "Hg 3/29 1UG/M3 BY METHOD TO15 TO-15 1,1,1-Trichloroethane < 0.15 0.15 ppbV 1 4/1/2 1,1-Dichloroethane < 0.15 0.15 ppbV 1 4/1/2 1,1-Dichloroethane < 0.15 0.15 ppbV 1 4/1/2 Chloroethane < 0.15 0.15 ppbV 1 4/1/2	te Analyzed
Lab Vacuum Out -30 "Hg 3/29 1UG/M3 BY METHOD T015 TO-15 1,1,1-Trichloroethane < 0.15	Analyst:
1UG/M3 BY METHOD TO15 1,1,1-Trichloroethane < 0.15	/2016
1,1,1-Trichloroethane < 0.15	/2016
1,1-Dichloroethane < 0.15 0.15 ppbV † 4/1/2 1,1-Dichloroethane < 0.15 0.15 ppbV 1 4/1/2 Chloroethane	Analyst: RJP
1.1-Dichloroethene < 0.15 0.15 ppbV 1 4/1/2	2016 8:10:00 AM
1.1-Dichloroethene < 0.15	2016 8:10:00 AM
Chloroethana	2016 8:10:00 AM
	2016 8:10:00 AM
Chloromethane < 0.15 0.15 ppbV 1 4/1/2	2016 8:10:00 AM
gig. 1 2 Dichloreothers	016 8:10:00 AM
Tetrochloropthylono	2016 8:10:00 AM
trans 1.2 Dichlaracthons	016 B:10:00 AM
Tripharaothana	016 1:59:00 PM
Vinyl chlorida	2016 8:10:00 AM
Curri Bromofluorehearen	016 8:10:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 5

LC Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1645-SVI-1

Lab Order: C1603075 Tag Number: 567,301
Project: FESL Emerson Landfill Collection Date: 3/26/2016

Lab ID: C1603075-001A Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	սց/m3	1	4/1/2016 8:10:00 AM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 8:10:00 AM
1,1-Dichtoroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:10:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 8:10:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 8:10:00 AM
cis-1,2-Dichloroethene	2.6	0.59	սց/m3	1	4/1/2016 8:10:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 8:10:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:10:00 AM
Trichioroethene	13	1,6	ug/m3	2	4/1/2016 1:59:00 PM
Vinyl chloride	< 0.38	0.38	ug/m3	1	4/1/2016 8:10:00 AM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page I of 5

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample 1D: 1645-IAQ-1

Lab Order:C1603075Tag Number:93,1165Project:FESL Emerson LandfillCollection Date:3/26/2016

Lab ID: C1603075-002A Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-2		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	i		Analyst: RJP
1,1,1-Trichtoroethane	< 0.15	0.15	Vdqq	1	4/1/2016 1:04:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	4/1/2016 1:04:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
Chloromethane	< 0.15	0.15	Vdqq	1	4/1/2016 1:04:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/1/2016 1:04:00 AM
Trichloroethene	0.070	0.040	ppbV	1	4/1/2016 1:04:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	4/1/2016 1:04:00 AM
Surr: Bromofluorobenzene	122	70-130	%REC	1	4/1/2016 1:04:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- € Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 5

CLIENT: LaBella Associates, P.C.

Lab Order: C1603075

Project: FESL Emerson Landfill

Lab ID: C1603075-002A Date: 26-Apr-16

Client Sample ID: 1645-IAQ-1

Tag Number: 93,1165

Collection Date: 3/26/2016 Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 1:04:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 1:04:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:04:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 1:04:00 AM
Chloromethane	< 0.31	0.31	ug/m3	7	4/1/2016 1:04:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:04:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 1:04:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	սց/m3	1	4/1/2016 1:04:00 AM
Trichloroethene	0.38	0.21	ug/m3	1	4/1/2016 1:04:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2016 1:04:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 5

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603075

Project: FESL Emerson Landfill

Lab ID: C1603075-003A

Client Sample ID: 1645-SVI-2

Tag Number: 332,387

Collection Date: 3/26/2016

Matrix: AlR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-2		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	∨dqq	1	4/1/2016 8:49:00 AM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	4/1/2016 8:49:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 8:49:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/1/2016 8:49:00 AM
Chloromethane	< 0.15	0.15	Vdqq	1	4/1/2016 8:49:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 8:49:00 AM
Tetrachloroethylene	< 0.15	0.15	Vđạq	1	4/1/2016 8:49:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 8:49:00 AM
Trichloroethene	0.17	0.15	ppbV	1	4/1/2016 8:49:00 AM
Vinyl chloride	< 0.15	0.15	ppbV	1	4/1/2016 8:49:00 AM
Surr: Bromofluorobenzene	128	70-130	%REC	1	4/1/2016 8:49:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- @ Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 5

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1645-SVI-2

Lab Order: C1603075 Tag Number: 332,387

Project: FESL Emerson Landfill Collection Date: 3/26/2016

Lab ID: C1603075-003A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 8:49:00 AM
1,1-Dichioroethane	< 0.61	0.61	ug/m3	1	4/1/2016 8:49:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:49:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 8:49:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 8:49:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:49:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 8:49:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	սց/m3	1	4/1/2016 8:49:00 AM
Trichloroethene	0.91	0.81	ug/m3	1	4/1/2016 8:49:00 AM
Vinyt chloride	< 0.38	0.38	ug/m3	1	4/1/2016 8:49:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 5

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Client Sample ID: 1645-IAQ-2

Lab Order: C1603075 Tag Number: 483,438 Collection Date: 3/26/2016 Project: FESL Emerson Landfill

Matrix: AlR Lab ID: C1603075-004A

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-2		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppb∨	1	3/31/2016 11:01:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
1,1-Dichloroethene	< 0.15	0.15	pobV	1	3/31/2016 11:01:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
Tetrachioroethylene	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
trans-1,2-Dichloroethene	< 0.15	0,15	ppbV	1	3/31/2016 11:01:00 PM
Trichloroethene	< 0.040	0.040	ppbV	1	3/31/2016 11:01:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/31/2016 11:01:00 PM
Surr: Bromofluorobenzene	125	70-130	%REC	1	3/31/2016 11:01:00 PM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- **]**-[Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Ε Value above quantitation range
- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 5

Date: 26-Apr-16

CLIENT:

LaBella Associates, P.C.

C1603075

Lab Order: Project:

FESL Emerson Landfill

Lab ID: C1603075-004A Client Sample ID: 1645-1AQ-2

Tag Number: 483,438 Collection Date: 3/26/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichforoethane	< 0.82	0.82	ug/m3	1	3/31/2016 11:01:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	3/31/2016 11:01:00 PM
1,1-Dichtoroethene	< 0.59	0.59	ug/m3	1	3/31/2016 11:01:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/31/2016 11:01:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	3/31/2016 11:01:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/31/2016 11:01:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	3/31/2016 11:01:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/31/2016 11:01:00 PM
Trichloroethene	< 0.21	0.21	ug/m3	1	3/31/2016 11:01:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/31/2016 11:01:00 PM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Ε Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 5

FESL Emerson Landfill

Project:

Date: 26-Apr-16

CLIENT: Client Sample ID: Outdoor-1645 LaBella Associates, P.C.

Tag Number: 1178,174 Lab Order: C1603075 Collection Date: 3/26/2016

Matrix: AIR Lab ID: C1603075-005A

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	4/1/2016 1:43:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
Chloromethane	0.87	0.15	ppbV	1	4/1/2016 1:43:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
Tetrachloroethylene	0.16	0.15	ppbV	1	4/1/2016 1:43:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
Trichloroethene	0.17	0.040	ppb∨	1	4/1/2016 1:43:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/1/2016 1:43:00 AM
Surr: Bromofluorobenzene	108	70-130	%REC	1	4/1/2016 1:43:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- Analyte detected at or below quantitation limits J
- ND Not Detected at the Reporting Limit

Page 5 of 5

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: Outdoor-1645

Lab Order: C1603075 Tag Number: 1178,174

Project: FESL Emerson Landfill Collection Date: 3/26/2016

Lab ID: C1603075-005A Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 1:43:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 1:43:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:43:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 1:43:00 AM
Chloromethane	1.8	0.31	ug/m3	1	4/1/2016 1:43:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:43:00 AM
Tetrachioroethylene	1.1	1.0	ug/m3	1	4/1/2016 1:43:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:43:00 AM
Trichloroethene	0.91	0.21	ug/m3	1	4/1/2016 1:43:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2016 1:43:00 AM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 5 of 5

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 QUALITY CONTROL SUMMARY

Date: 26-Apr-16

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:

LaBella Associates, P.C.

Work Order:

C1603075

Project:

FESL Emerson Landfill

Test No:

TO-15

Matrix: A

Sample ID	BR4FBZ	
ALC\$1UG-033116	115	
ALCS1UG-040116	116	
ALCSTUGD-033116	118	
ALCS1UGD-040116	108	
AMB1UG-033116	0.88	
AMB1UG-040116	91.0	
C1603075-001A	83.0	
C1603075-002A	122	
C1603075-003A	128	
C1603075-004A	125	
C1603075-004A MS	116	
C1603075-004A MSD	107	
C1603075-005A	108	

Acronym	Surrogate	QC Limits
BR4FBZ	= Bromofluorobenzene	70-130
1		

^{*} Surrogate recovery outside acceptance limits

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA2\AN033104.D

Tune Time : 31 Mar 2016 12:19 pm

Daily Calibration File : C:\HPCHEM\1\DATA2\AN033104.D

			(BFB)			(IS1) 21478	(IS2) 4888	* * * * * *	
File	Sample	DL	Surrogate	Recovery	%	Internal	Standard	Responses	
AN033105.D	ALCS1UG-033116	5 5	115		NE SO ENE E	20235		32893	2 12 m nt 25 1
AN033106.D	AMB1UG-033116		88			20032	47930	44161	
	C1603075-004A		125			18446	48996	28479	
	C1603075-004A						56616	32647	*******
AN033123.D	C1603075-004A	MSD	107			23633	65314	36439	
AN033124.D	C1603075-002A		122			19820	53432	33425	
AN033125.D	C1603075-005A		108			16834	44868	47627	
AN033133.D	ALCS1UGD-03311	.6	118			22710		34225	
AN033134.D	C1603075-001A		83			17132		40047	
NATO DE D	C1602025 0027					****			

23254 62475 44101

Created: Tue Apr 26 15:33:02 2016 MSD #1/

AN033135.D C1603075-003A 128

t - fails 24hr time check * - fails criteria

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AN040102.D Tune Time : 1 Apr 2016 12:06 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AN040102.D

(BFB)	(IS1)	(IS2)	(IS3)
	20214	45908	32719

	Sample ============		Surrogate	 -		Standard		
	ALCS1UG-040116		116	 	20858	46019		
AN040104.D	AMB1UG-040116		91		18252	46023	41257	
AN040105.D	C1603075-001A	2X	103		16216	51303	38793	
	ALCS1UGD-04011		108		20437	45874	33404	

t - fails 24hr time check * - fails criteria

Created: Tue Apr 26 15:34:25 2016 MSD #1/

ANALYTICAL QC SUMMARY REPORT

Date: 26-Apr-16

LaBella Associates, P.C. CLIENT:

Work Order: C1603075								
Project: FESL Eme	FESL Emerson Landfill						TestCode:	0.25CT-TCE-VC
Sample ID ALCS1UG-033116	SampType: LCS	TestCod	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:	ie	RunNo: 10817
Client ID: ZZZZZ	Batch ID: R10817	TestN	TestNo: TO-15			Analysis Date:	e: 3/31/2016	SeqNo: 127096
Analyte	Result	PQL	SPK value SF	SPK Ref Vai	%REC	LowLimit	HighLimit RPD Ref Val	at %RPD RPDLimit Qual
1,1,1-Trichloroethane	1.250	0.15	-	0	125	2	130	
1,1-Dichloroethane	1.120	0.15	•	٥	112	02	£ 65	
1,1-Dichloroethene	1.120	0.15		Ф	 	22	£ (£	
Chioroethane	1,220	0.15	•	0	122	70	130	
Chloromethane	1.230	0.15	T	o	123	2	130	
cis-1,2-Dichloroethene	1.060	0.15	₹"	0	106	7.0	130	
Tetrachloroethylene	0.9200	0.15	4	0	92.0	52	130	
trans-1,2-Dichloroethene	1.050	0.15	₹***	0	105	70	130	
Trichloroethene	1.110	0.040	₩m	0	7	70	130	
Vinyl chloride	1.090	0.040	·	Φ	109	22	130	
Sample ID ALCS1UG-040116	SampType: LCS	TestCod	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:	Ü	RunNo: 10818
Client ID: ZZZZZ	Batch ID: R10818	TestM	TestNo: TO-15			Analysis Date:	e: 4/1/2016	SeqNo: 127113
Analyte	Result	PQ	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	al %RPD RPDLimit Qual
t,1,1-Trichloroethane	1.290	0.15	*	ð	129	70	130	
t,1-Dichloroethane	1.040	0.15	4 m	Ö	\$	70	130	
1,1-Dichloroethene	1.100	0.15		Đ	110	70	130	
Chloroethane	1,130	0.15		Ö	113	7.0	130	
Chloromethane	1,230	0.15		Ö	123	22	130	
cis-1,2-Dichloroethene	0.9800	0.15	+	Ö	98.0	22	130	
Tetrachloroethylene	0.8800	0.15	,	O	88.0	7.0	130	
trans-1,2-Dichloroethene	0.9900	0.15		O	99.0	7.0	130	
Trichloroethene	1.230	0.040		ð	123	70	130	
Qualifiers: Results report	Results reported are not blank corrected		E Value abo	Value above quantitation range	Sc		H Bolding times	Holding times for preparation or analysis exceeded
	Analyte detected at or below quantitation limits	mits	ND Not Detect	Not Extected at the Reporting Limit	g Limit			RPD outside accepted recovery limits
S Spike Recove	Spike Recovery outside accepted recovery limits	imits						Page 1 of 7

Page 31 of 206

RPD outside accepted recovery limits

CLIENT: LaBella As Work Order: C1603075 Project: FFSI Eme	LaBella Associates, P.C. C1603075 FFSI. Emerson Landfill							,	Those Codes to techn more 110		
							•	tsicode:	7.4-3-11-17-87		
Sample ID ALCS1UG-040116 Client ID: ZZZZZ	SampType: LCS Batch ID: R10818	TestCoc	TestCode: 0.25CT-TCE- TestNo: TO-15	- Units: ppbV		Prep Date: Analysis Date:	Prep Date: Analysis Date: 4/1/2016	9	RunNo: 10818 SeqNo: 127113		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	ii Qual	
Vinyl chloride	1,100	0.040	-	0	130	70	130				7

Qualifiers: . Results reported are not blank corrected E. Value above quantitation range H. Holding times for preparation or analysis exceeded J. Analyte detected at or below quantitation limits ND. Not Detected at the Reporting Limit R. RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits Prop. 7	******	1			
Analyte detected at or below quantitation fimits ND Not Detected at the Reporting Limit R Spike Recovery outside accepted recovery limits	Qualifiers:			Value above quantitution range	Holding times for preparation or analysis excueded
S		ш,	imits	Not Detected at the Reporting Limit	RPD outside accepted recovery fimits
		υ'n	Spike Recovery outside accepted recovery limits		Page 7

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

Date: 26-4pr-16

LaBella Associates, P.C. CLIENT:

C1603075 Work Order:

Project:

FESL Emerson Landfill

Sample ID ALCS1UGD-033116 SampType: LCSD	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	- Units: ppbV		Prep Date:	jų.		RunNo: 10817	117	
Clent ID: 22222	Batch ID: R10817	Test	TestNo: TO-15		~	Analysis Date:	ie: 4/1/2016	9	SeqNo: 127097	1097	
Analyte	Result	ď	SPK value SPK Ref Val	SPK Ref Val	%REC	**REC LowLimit HighLimit	Hight.imiŧ	RPD Ref Val	%RPD	RPDLimit	Qual
1, f., 1-Trichforoethane	1.280	0.15	+-	o	128	8	130	1.25	2.37	8	
1,1-Dichloroethane	1.040	0.15	₩	0	104	70	130	1.12	7.41	30	
1,1-Dichloroethene	1.120	0.15	***	0	112	70	130	1.12	O	8	
Chloroethane	1.250	0.15	-	0	125	70	130	1.22	2.43	30	
Chloromethane	1.210	0.15	-	0	121	70	130	1.23	1.64	33	
cis-1,2-Dichloroethene	1.010	0.15	+-	0	101	70	130	1.06	4.83	æ	
Tetrachloroethylene	0.9000	0.15	~	0	0.06	70	130	0.92	2.20	æ	
trans-1,2-Dichloroethene	1.000	0.15	-	0	100	70	130	1.05	4.88	30	
Trichloroefhene	1.150	0.040	-	0	115	70	130	11.	3.54	8	
Vinyl chloride	1.050	0.040	-	0	105	20	130	1.09	3.74	30	
Sample ID ALCS1UGD-040116 SampType: LCSD	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	- Units: ppbV		Prep Date:	نة		RunNo: 10818	318	

Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimif	HighLimil	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qua
1,1,1-Trichloroethane	1.280	0.15	_	0	128	7.0	130	1.29	0.778	30	
1, f-Dichloroethane	1.040	0.15	***	0	\$	22	130	1.04	⇔	33	
1,1-Dichloroethene	1,100	0.15	-	0	110	20	130	* -	O	30	
Chloroethane	1.240	0.15	-	0	124	70	130	1.13	9.28	30	
Chloromethane	1.230	0.15	τ	o	123	70	130	1.23	¢	30	
cis-1,2-Dichlaroethene	ene 0.9400	0.75		0	94.0	70	130	96:0	4.17	30	
Теtrachloroethylene	e 0.8300	0.15	***	0	83.0	70	130	0.88	5.85	30	
trans-1,2-Dichloroethene	there 0.9600	0.15	-	٥	96.0	70	130	6.99	3.08	30	
Trichloroethene	1.210	0.040	-	0	121	70	130	1.23	1.64	99	
Qualifiers:	Results reported are not blank corrected Analyte detected at or below quantitation limits	limis	E Value	Value above quantitation range Not Detected at the Reporting Limit	ange ing Limit		# ~	Holding times for preparation or analysis exceeded RPD outside accepted recovery limits	герагатіон ог а ed гесомегу lü	natysis exceed nits	eđ
S	Spike Recovery outside accepted recovery fimits	s firstits								G.	Poses I of?

SeqNo: 127114

Analysis Date: 4/2/2016

TestNo: TO-15

Batch ID: R10818

Client ID: 22222

	LaBella Associates, P.C.
TO THE PROPERTY OF THE PARTY OF	5(1)112

FESL Emerson Landfill C1603075 Work Order: Project:

Sample ID 4	Sample ID ALCS1UGD-040116 SampType: LCSD	SampType: LCSD	TestCod	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:	51		RunNo: 10818	138	
Client ID: 2	22222	Batch ID: R10818	Testh	TestNo: TO-15		**	Analysis Date.	4/2/2016	10	SeqNo: 127114	114	
Analyte		Result	POL	SPK value SF	SPK Ref Val	%REC	%REC LowLimit HighLimit	HighLimit	RPD Ref Vai	%RPD	RPDLimit	Qual
Vinyl chtoride		1.070	0.040	-	0	107	70	130	<u></u>	2.76	30	

TestCode: 0.25CT-TCE-VC

nadifiers:	Results reported are not blank corrected	E Value above quantitation range	H Holding times for preparation or analysis exceeded
_	Analyte detected at or below quantitation limits	M. Not Detected at the Reporting 1 mit	P. P.D. outcide accounted recognism firmity

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1603075 Work Order;

Project:	FESL Eme	FESL Emerson Landfill						ŗ	TestCode: 0.25CT-TCE-VC).25CT-TCI	E-VC		
Sample ID AN	Sample ID AMB1UG-033116	SampType: MBLK	TestCo	Je: 0,25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	E:		RunNo: 10817	117		
Client ID: ZZZZZ	727	Batch ID: R10817	Test	TestNo: TO-15			4तalysis Da	Analysis Date: 3/31/2016	7 .	SeqNo: 127095	.095		
Analyte		Resut	PQL	SPK value	SPK value SPK Ref Val	%REC	Lowlimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual	
1,1,1-Trichloroethane	sthane	< 0.15	0.15										-

0.15

< 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15

1,1-Dichloroethene

1,1-Dichlomethane

Chloroethane	< 0.15	0.15					
Chloromethane	< 0.15	0.15					
cis-1,2-Dichloroethene	< 0.15	0.15					
Tetrachtoroethylene	< 0.15	0.15					
frans-1,2-Dichforoethene	< 0.15	0.15					
Trichloroethene	< 0.040	0.040					
Vinyl chloride	< 0.040	0.040					
Sample ID AMB1UG-040116 Client ID: ZZZZ	SampType: MBLK Batch ID: R10818	TestCode: 0.25CT-TCE- Units: ppbV TestNo: TO-15	Units: ppbV	Prep Date: Analysis Date: 4/1/2016	4/1/2016	RunNo: 10818 SeqNo: 127112	

Qual

Client ID: ZZZZZ	Balch ID: R10818	Testh	TestNo: TO-15			Analysis Date:	te: 4/1/2016	9	SeqNo: 127112	7112
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLinit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit
1,1,1-Trichloroethane	< 0.15	0.15								
1,1-Dichloroethane	< 0.15	0.15								
1,1-Dichloroethere	< 0.15	0.15								
Chloroethane	< 0.15	0.15								
Chloromethane	< 0.15	0.15								
cis-1,2-Dichloroethene	< 0.15	0.15								
Tefrachloroethylene	< 0.15	0.15								
frans-1,2-Dichloroethene	< 0.15	0.15								
Trichforoethene	< 0.040	0.040								

Value above quantitation range	Not Detected at the Reporting Limit
ш	S
Resuits reported are not blank corrected	Analyte detected at or below quantitation limits
	 ,
Qualifiers:	

Spike Recovery ostiside accepted recovery limits

S)

RPD outside accepted recovery limits

Page 1 of 2

Holding times for preparation or analysis exceeded **X 2**4

CLIENT: LaBella Associates, P.C.	LaBella As	LaBella Associates, P.C.										
Work Order:	C1603075											
Project:	FESL Ene	FESL Emerson Landfill						Ī	esfCode:	TestCode: 0.25CT-TCE-VC	E-VC	
Sample ID AMB1UG-040116 Client ID: ZZZZZ	1UG-040116 Z	SampType: MBLK Batch ID: R10818	TestCo	ssiCode: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV TestNo: T0-15		Prep Date: 4/1/2016	4/1/2016		RunNo: 10818 SeeNo: 127112	818	{ }
Analyte		Result	Pol		SPK value SPK Ref Val	%REC	LowLimit	HighLimid	%REC LowLimit HighLimit RPD Ref Val	}	%RPD RPDLimit	-
Vinyl chloride		< 0.040	0.040									

Qual

Qualifiers:	Results reported are not blank corrected	Ш	Value above quantitation range	14 Holding times for preparation or analysis exceeded
	3 Analyte detected at or below quantitation limits	R	Not Detected at the Reporting Limit	R RPD autside accented recovery limits

ANALYTICAL QC SUMMARY REPORT

Date: 26-4pr-16

LaBella Associates, P.C. CLIENT:

C1603075 Work Order:

Project: FESL Eme	FESL Emerson Landfill						TestCod	e: 0.2	TestCode: 0.25CT-TCE-VC	:VC	
Sample ID C1603075-004A MS	MS SampType: MS	TesfCoc	TesiCode: 0.25CT-TCE-	Units: ppbV		Prep Date			RunNa: 10817	17	
Client ID: 1645-IAQ-2	Batch ID: R10817	Testh	TestNo: TO-15			Analysis Date:	3/3/1/2016		SeqNo: 127108	108	
Analyte	Result	Pol	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1,140	0.15	1	0	114	70	130				
1,1-Dichloroethane	1.060	0.15	-	o	106	70	130				
1,1-Dichlaraethene	1.10	0.15	-	O.	₹ ₹	70	130				
Chloroethane	1.140	0.15		0	4	70	130				
Chloromethane	1.760	0.15		0	176	70	130				S
cis-1,2-Dichioroethene	1.080	0.15	-	O	±08	70	130				
Tetrachloroethylene	0.9300	0.15		0	93.0	70	130				
trans-1,2-Dichloroethene	1.110	0.15	-	Q	# *	70	130				
Trichloroethene	1.130	0.040	-	0	<u></u>	70	130				
Vinyl chloride	1.020	0.040	~	0	102	70	130				
Sample ID C1603075-004A NS	MS SampType: MSD	TestCoc	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date			RunNo: 10817	17	
Client ID: 1645-IAQ-2	Batch ID: R10817	Testh	TestNo: TO-15			Analysis Date:	4/1/2016		SeqNo: 127109	109	
Analyte	Result	Pal	SPK value SF	SPK Ref Vai	%REC	Lowlimit	HighLimit RPD Ref Val	Val	%RPD	RPDLimit	Qua
1,1,1-Trichloroethane	1.020	0.15	-	0	102	5	130	1,14	11.1	30	
1,1-Dichloroethane	1.080	0.15	-	o	108	70	130	£.06	1.87	30	
1,1-Dichloraethene	1,150	0.15	-	O.	*	70	130	111	3.54	30	
Chloroethane	1.130	0.15	-	0	113	70	130	1.14	0.881	33	
Chloromethane	1.810	0.15	-	0	181	70	130	1.76	2.80	8	တ
cis-1,2-Dichloroethene	1,160	0.15	-	0	116	70	130	\$0.\$	7.14	8	
Tetrachioroethylene	0.9700	0.15	-	0	97.0	70	130 (0.93	4.21	30	
trans-1,2-Dichloroethene	1,100	0.15	-	0	110	70	130	111	0.905	30	
Trichloroethene	1.100	0.040	-	Q	110	70	130	€.	2.69	30	
Qualifiers: Results n	Results reported are not blank corrected		E Value abov	Value above quantitation range	33		H Holding lim	nes for pr	Holding times for preparation or analysis exceeded	alysis exceede	79
J Analyte	Analyte detected at or below quantitation limits	nits	ND Not Detect	Not Detected at the Reporting Limit	g Limit		R RPD outsid	e accepte	RPD outside accepted recovery limits	its	
S Spike Re	Spike Recovery outside accepted recovery limits	mits								Ġ	6.7

LaBella Associates, P.C. CLIENT:

C1603075 Work Order:

FESL Emerson Landfill Project:

!														
Sample ID (Sample ID C1603075-004A MS SampType: MSD	SampType: N	SD	TestCod	TestCode: 0,25CT-TCE-	XF. Unit	Units: ppbV		Prep Date:	تدة		RunNo: 10817	117	
Client ID: 1645-1AQ-2	1645-IAQ-2	Batch ID: R10817	10817	TestA	TesfNo; TO-15			4	knalysis Dal	Analysis Date: 4/1/2016	y	SegNo: 127109	1109	
Analyte		<i>u.</i>	Result	POL	SPK value SPK Ref Vai	SPK Re	íVaí	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Š
Vinyl chloride	ď.	O	0.9900	0.040	*		0	0.99	7.0	130	1.02	2.99	30	

TestCode: 0.25CT-TCE-VC

	-			
				4 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Quantiters:		Results reported are not blank corrected E	Value above quantitation range	H Holding times for gregatation or analysis exceeded
				The same of the sa
	-,	Arterine deserted at of perow quantitation timits (ND)	Not Detected at the Reporting Limit	R PD outside appearing recovered basele
	U	Construction Descendence and address of the construction of the co		
	•	CONTRACT CONTRACTOR OF THE PROPERTY OF THE PRO		

Method TO-15A	Units≂ppb

1ug/M3 Detection Limit January 2016

Centek Laboratories IDL Study

Name	Amount	IDL#1	ID! #2	101#3	IDL#4	IDL#5	IDL#6	IDL#7	Average	StdDev	%Rec	걸
	0.15	0.16	0.15	0.16	0.14	0.16	0.14	0.16	0.153	0.010	98.1	0.030
	0.15	0.18	0.17	0.17	0.17	0.18	0.17	0.17	0.173	0.005	86.8	0.015
	0.15	0.19	0.18	0.16	0.18	0.18	0.2	0.17	0.180	0.013	83.3	0.041
	0.15	0.18	0.17	0.17	0.17	0.18	0.17	0.18	0.174	0.005	86.1	0.017
	0.15	0.17	0.16	0.16	0,15	0.16	0.15	0.15	0.157	0.008	95.5	0.024
	0.15	0.18	0.16	0,17	0.18	0.18	0.19	0.19	0.179	0.011	84.0	0.034
	0.15	0.21	0.2	0.2	0.22	0.17	0.18	0.23	0.201	0.021	74.5	0.066
	0.15	0.18	0.2	0.21	0.18	0.22	0.16	0.21	0.194	0.021	77.2	0.068
	0.15	0.19	0.19	0.16	0.19	0.19	0.18	0.19	0.184	0.011	81.4	0.036
	0.15	0.16	0.16	0.18	0.17	0.19	0.18	0.19	0.176	0.013	85.4	0.040
	0.15	0.22	0.17	0.19	0.16	0.18	0.21	0.17	0.186	0.022	80.8	0.070
	0.15	0.17	0.15	0.16	0.16	0.17	0.17	0.17	0.164	0,008	913	0.025
	0.15	0.18	0.17	0.17	0.18	0.19	0.17	0.18	0.177	0.008	84.7	0.024
	0.15	0.2	0.17	0.18	0.15	0.15	0.18	0.14	0.167	0.021	89.7	0.067
	0.15	0.18	0.17	0.18	0.16	0.17	0.2	0.16	0.174	0.014	86.1	0.044
	0.15	0.22	0.2	0.19	0.2	0.19	0.21	0.19	0.200	0.012	75.0	0.036
	0.15	0.2	0.17	0.19	0.19	0.19	0.18	0.18	0.186	0.010	80.8	0.031
	0.15	0.17	0.16	0.18	0.18	0.18	0.17	0.17	0.173	0.008	86.8	0.024
	0.15	0.21	0.2	0.2	0.21	0.2	0.2	0.18	0.200	0.010	75.0	0.031
	0.15	0.2	0.18	0.19	0.18	0.2	0.19	0.17	0.187	0.011	80.2	0.035
	0.15	0.18	0.17	0.16	0.18	0.18	0.2	0.18	0.179	0.012	84,0	0.038
	0.15	0.2	0.17	0.19	0.19	0.2	0.18	0.19	0.189	0.011	79.5	0.034
trans-1,2-dichloroethene	0.15	0.15	0.14	0.14	0.14	0.16	0.14	0.15	0.146	0.008	102.9	0.025
methyl tert-butyl ether	0.15	0.14	0.14	0.14	0.13	0.15	0.14	0.13	0.139	0.007	108.2	0.022
	0.15	0.17	0.15	0.16	0.15	0.17	0.16	0,16	0.160	0.008	93.8	0.026
	0.15	0.14	0.13	0.14	0.13	0.13	0.13	0.12	0.131	700.0	114.1	0.022
Methyl Ethyl Ketone	0.15	0.17	0.17	0.16	0.16	0.15	0.13	0.12	0.151	0.020	99.1	0.061
cis-1,2-dichlomethene	0.15	0.15	0.14	0.16	0.15	0.16	0.15	0.14	0.150	0.008	100.0	0.026
	0,15	0.12	0.14	0.13	0.13	0.13	0.12	0.12	0.127	0.008	118.0	0.024
	0.15	0.16	0.17	0.14	0.15	0.14	0.16	0.13	0.150	0.014	100.0	0.044
	0.15	0.16	0.16	0.16	0.16	0.17	0.16	0.17	0.163	0.005	92.1	0.015
	0.15	0.15	0.13	0.15	0.15	0.15	0.15	0.14	0.146	0.008	102.9	0.025
	0.15	0.16	0.15	0.16	0.16	0.17	0.16	0.17	0.161	200.0	92.9	0.022
I,1,1-trichloroethane	0.15	0.17	0.16	0.17	0.17	0.16	0.17	0.17	0.167	0.005	89.7	0.015
	0.15	0.14	0.14	0.14	0.15	0.15	0.14	0.14	0.143	0,005	105.0	0.015
	0.15	0.13	0.15	0.15	0.15	0.15	0.15	0.16	0.149	600.0	101.0	0.028
	0.15	0.15	0.16	0.16	0.15	0.16	0.16	0.16	0.157	0.005	95.5	0.015
Methyl methacrylate	0.15	0.15	0.15	0.14	0.14	0.14	0.15	0.11	0.140	0.014	107.1	0.044
	0.15	0.18	0.18	0.19	0.18	0,15	0.17	0.12	0.167	0.024	89.7	0.076
											1/8	1/8/2016

1

Centek Laboratories				100	1ug/M3 Detection Limit	ion Limit					Method TO-15A	-15A
Name	Amount	IDL#1	IDI.#2	IDL#3	January 2016 IDL#4 IC	016 10 L#5	10L#6	101.#7	Average	StdDev	Units %Rec	Units=ppb
2,2,4-trimethy/pentane	0.15	0.15	0.15	0.15	0.16	0.14	0.16	0.15	0.151	0.007	99.1	0.000
Heptane	0.15	0.12	0.13	0.13	0.12	0.13	0.13	0.13	0.127	0.005	118.0	0.015
Trichloroethene	0.13 81	0.14	0.15	0.14	0.15	0.15	0.14	0.15	0.146	0.005	102.9	0.017
1,2-dichloropropane	0.15	0.16	0.17	0.17	0.16	0.17	0.16	0.16	0.164	0.005	91.3	0.017
Bromodichloromethane	0.15	0.16	0.16	0.16	0.15	0.16	0.17	0.16	0.160	0.006	93.8	0.018
cis-1,3-dichloropropene	0.15	0.13	0,13	0.14	0.14	0.13	0.13	0.13	0.133	0.005	112.9	0,015
frans-1,3-dichloropropene	0.15	0.16	0.13	0.13	0.14	0.14	0.14	0.16	0.143	0.013	105.0	0,039
1, 1, 2-trichloroethane	0.15	0.16	0.15	0.16	0.15	0.16	0.18	0.17	0.161	0.011	92.9	0.034
loluene	0.15	0.14	0.14	0.14	0.13	0.16	0.14	0.15	0.143	0.010	105.0	0.030
Methyl Isobutyl Ketone	0.15	0.18	0.18	0.18	0.18	0.16	0.18	0.15	0.173	0.013	86.8	0.039
Dibromochloromethane	0.15	0.16	0.16	0.17	0.18	0.16	0.17	0.18	0.169	0.009	89.0	0.028
Methyl Butyl Ketone	0.15	0.17	0.16	0.18	0.17	0.16	0.17	0.14	0.164	0.013	91.3	0,040
1,2-dibromoethane	0.15	0.16	0.17	0.16	0.16	0.16	0.16	0.17	0.163	0.005	92.1	0.015
l etrachloroethylene	0.15	0.16	0.17	0.16	0.16	0.16	0.17	0.17	0.164	0.005	91.3	0,017
Chlorobenzene	0.15	0.16	0.16	0.16	0.17	0.15	0.17	0,17	0.163	0.008	92.1	0,024
1,1,1,2-tefrachloroethane	0.15	0.17	0.17	0.17	0.18	0.16	0.18	0.17	0.171	0.007	87.5	0.022
Ethylbenzene	0.15	0.13	0.14	0.14	0.14	0.12	0.14	0.13	0.134	0.008	111.7	0.025
m&p-xylene	0.3	0.25	0.25	0.25	0.23	0.25	0.25	0.25	0.247	0.008	121.4	0.024
Nonane	0.15	0.11	0.11	0.11	0.11	0.1	0.1	0.11	0.107	0.005	140.0	0.015
Styrene	0.15	0.12	0.13	0.13	0.11	0.12	0.13	0.12	0.123	0.008	122.1	0.024
Bromoform	0.15	0.15	0.15	0.16	0.15	0.15	0.17	0.16	0.156	0.008	96,3	0.025
o-xylene	0.15	0.11	0.12	0.12	0.14	0.14	0.12	0.11	0.123	0.013	122.1	0.039
Cumene	0.15	0.12	0.13	0.13	0.12	0.13	0.13	0.13	0.127	0.005	118.0	0.015
Bromofluorobenzene	₹	0.88	6.0	6.0	0.87	0.89	0.89	6.0	0.890	0.012	112.4	0.036
1,1,2,2-tetrachloroethane	0,15	0.16	0.16	0.17	0.16	0.17	0.17	0.16	0.164	0.005	91.3	0.017
Propylbenzene	0.15	0.13	0.12	0.13	0.13	0.11	0.13	0.11	0.123	0.010	122.1	0.030
2-Chlorotoluene	0.15	0.13	0.13	0.13	0.14	0.13	0.12	0.13	0.130	900.0	115.4	0.018
4-ethyltoluene	0.15	<u>0</u>	0.12	0.12	0.12	0.13	0.13	0.11	0.120	0.008	125.0	0.026
1,3,5-trimethylbenzene	0.15	0.12	0.13	0.14	0.12	0.13	0.13	0.13	0.129	200.0	116.7	0.022
1,2,4-trimethylbenzene	0,15	0.12	0.13	0.12	0.12	0.13	0.12	0.12	0.123	0.005	122.1	0.015
1,3-dichlorobenzene	0,15	7.0	0.14	0.14	0.13	0.14	0.13	0,14	0.137	0.005	109.4	0.015
benzył chloride	0.15	0.13	0.16	0.13	0.15	0.13	0.15	0.16	0.144	0.014	104.0	0.044
1,4-dichlorobenzene	0.15	0.13	0.11	0.12	0.12	0.12	0.12	0.13	0.121	0.007	123.5	0.022
1,2,3-trimethylbenzene	0.15	0.12	0.11	0.12	0.12	0.12	0.11	0.11	0.116	0.005	129.6	0.017
1,2-dichlorobenzene	0.15	0.13	0.14	0.14	0.14	0.14	0,14	0.13	0,137	0.005	109.4	0.015
1,2,4-trichlorobenzene	0.15	0.1	0.11	0.	0.11	0.11	0.12	0.1	0.107	0.008	140.0	0.024
Naphthalene	0.15	0.13	0.13	0.14	0.11	0.12	0.14	0.12	0.127	0.011	118.0	0.035
Hexachloro-1,3-butadiene	0.15	0.16	0.17	0.17	0.17	0.16	0.16	0.16	0.164	0.005	<u>ب</u> ن	0.017

Confidential

d TO-15A Units=ppb	1DL 0.028 0.036 0.038 0.038
Method TO-15/ Units=ppl	%Rec 101.4 107.7 118.6 101.4
	StdDev 0.009 0.010 0.011 0.012
	Average 0.099 0.083 0.084 0.099
	0.11 0.09 0.09 0.09 0.06
	0.09 0.09 0.08 0.09 0.09
Detection Limit ary 2016	0.1 0.09 0.08 0.08 0.06
iug/M3 Dete January 2	0.09 0.09 0.09 0.09 0.09
0.25	0.09 0.08 0.07 0.09 0.09
	0.11 0.11 0.11 0.12 0.08
	0.11 0.11 0.11 0.09
	Amount 0.1 0.1 0.1 0.1
Centek Laboratories IDL Study	Name Vinyl Chloride Carbon tetrachloride Trichloroethene Tetrachloroethylene

Confidential

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

Date: 26-Apr-16

CLIENT: Lab Order: LaBella Associates, P.C.

C1603075

Project:

FESL Emerson Landfill

Lab ID:

C1603075-001A

Client Sample ID: 1645-SVI-1

Tag Number: 567,301

Collection Date: 3/26/2016

Matrix: AlR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD	·		Analyst:
Lab Vacuum In	-2		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	4/1/2016 8:10:00 AM
1,1-Dichloroethane	< 0.15	0.15	₽₽bV	1	4/1/2016 8:10:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 8:10:00 AM
Chloroethane	< 0.15	0.15	∨dqq	1	4/1/2016 8:10:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	4/1/2016 8:10:00 AM
cis-1,2-Dichloroethene	0.66	0.15	ppb∨	1	4/1/2016 8:10:00 AM
Tetrachloroethylene	< 0.15	0.15	₽pbV	1	4/1/2016 8:10:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/1/2016 8:10:00 AM
Trichloroethene	2.3	0.30	ppb∨	2	4/1/2016 1:59:00 PM
Viny! chtoride	< 0.15	0.15	ppb∨	1	4/1/2016 8:10:00 AM
Surr: Bromofluorobenzene	83.0	70-130	%REC	1	4/1/2016 8:10:00 AM

Qualifiers:

- Reporting Limit
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

Non-routine analyte. Quantitation estimated.

- Results reported are not blank corrected
- E Value above quantitation range
- ,} Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 5

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603075

Project: FESL Emerson Landfill

Lab ID: C1603075-001A Client Sample ID: 1645-SVI-1

Tag Number: 567,301

Collection Date: 3/26/2016

Matrix: AIR.

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed	
1UG/M3 BY METHOD TO15	TO-15				Analyst: RJP	
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 8:10:00 AM	
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 8:10:00 AM	
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 B:10:00 AM	
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 8:10:00 AM	
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 8:10:00 AM	
cis-1,2-Dichloroethene	2.6	0.59	ug/m3	1	4/1/2016 8:10:00 AM	
Tetrachloroethylene	< 1.0	1.0	ug/m3	t	4/1/2016 8:10:00 AM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:10:00 AM	
Trichloroethene	13	1.6	บg/m3	2	4/1/2016 1:59:00 PM	
Vinyl chloride	< 0.38	0.38	ug/m3	1	4/1/2016 8:10:00 AM	

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Value above quantitation range
- ,1 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

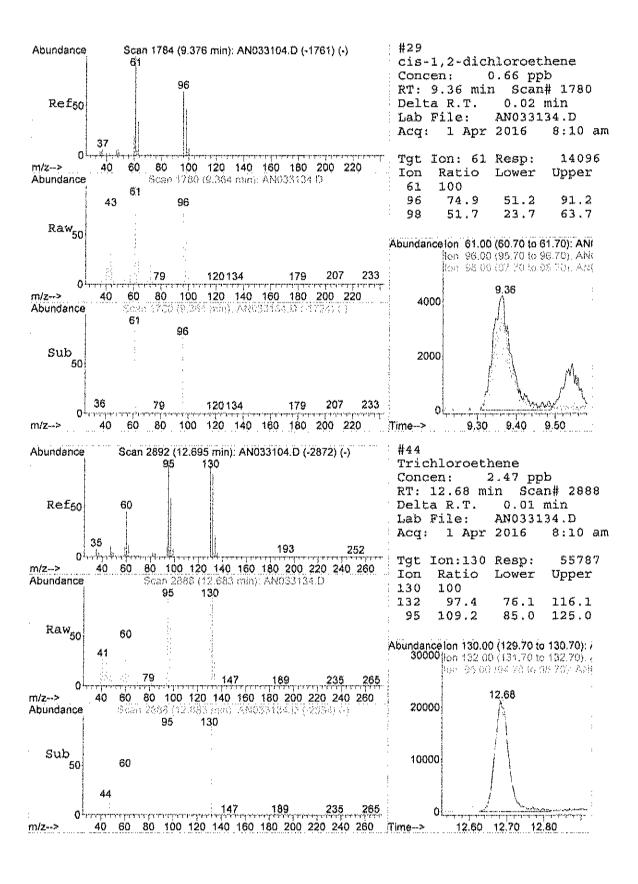
Page 1 of 5

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 01 11:43:21 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.07 16.57	128 114 117	17132 53087 40047	1.00	ppb	0.00 0.01 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70		21506m N Recovery	0.83	ppb 83.	0.00
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.36 12.68	61 130	1409 6 55787	0.66	dqq	Qvalue 92 97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN033134.D A316_1UG.M Tue Apr 26 15:39:21 2016 MSD1

Quantitation Report (QT Reviewed)

 Data File: C:\HPCHEM\1\DATA\AN040105.D
 Vial: 21

 Acq On: 1 Apr 2016: 1:59 pm
 Operator: RJP

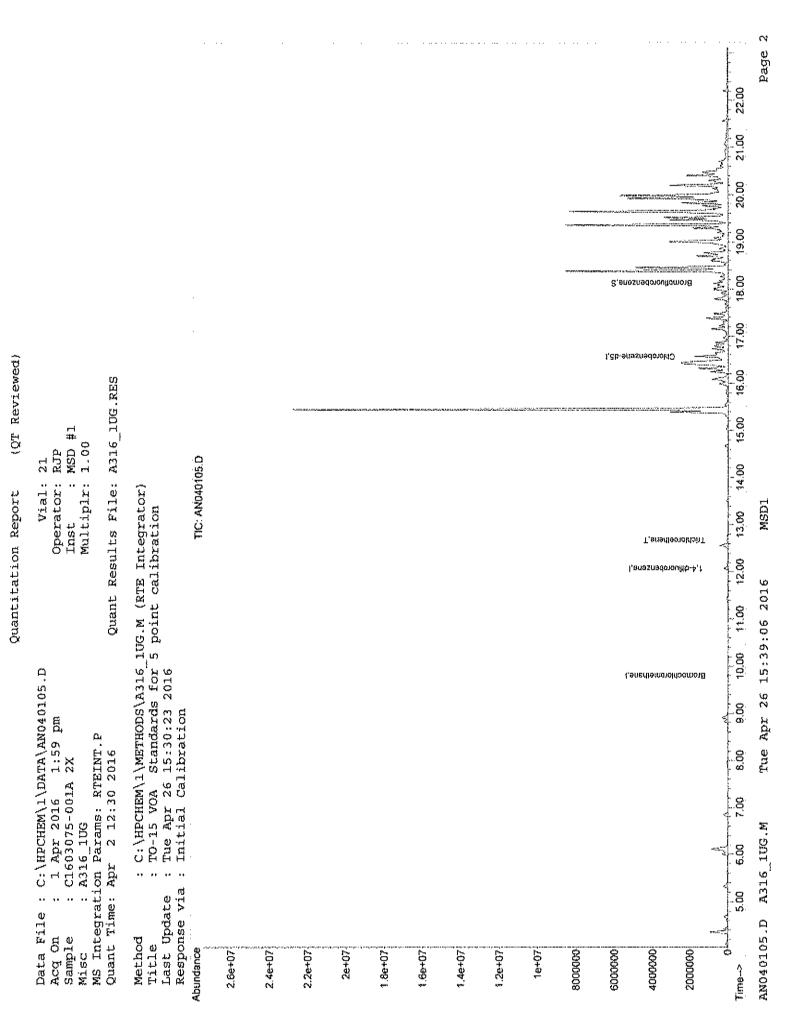
 Sample: C1603075-001A 2X
 Inst: MSD #1

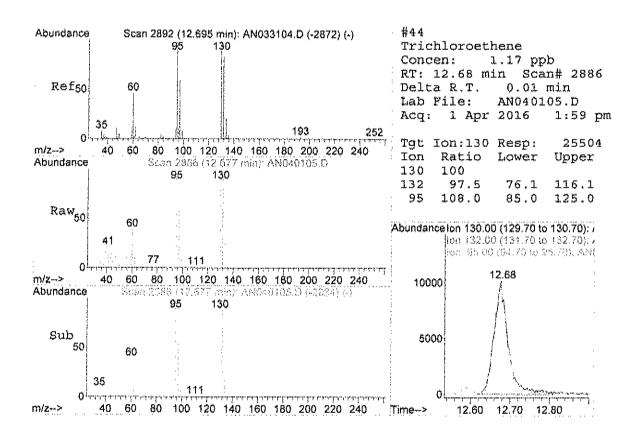
 Misc: A316_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 01 14:27:15 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016


Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits I	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.80 12.06 16.56	128 114 117	16216 51303 38793	1.00 1.00 1.00	ppb	0.00 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	25705m Recovery		ppb 103.0	0.00
Target Compounds 44) Trichloroethene	12.68	130	25504	1.17	dqq	Qvalue 98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN040105.D A316_1UG.M Tue Apr 26 15:39:05 2016 MSD1

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1645-IAQ-1

Lab Order:C1603075Tag Number:93,1165Project:FESL Emerson LandfillCollection Date:3/26/2016

Lab ID: C1603075-002A Matrix: AIR

Analyses	Result	**Limit Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLO			Analyst:
Lab Vacuum In	-2		"Hg		3/29/2016
Lab Vacuum Out	-30	"Hg 3/29/			3/29/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
1,1-Dichtoroethene	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	4/1/2016 1:04:00 AM
Chloromethane	< 0.15	0.15	ppb∨	1	4/1/2016 1:04:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/1/2016 1:04:00 AM
Tetrachioroethylene	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 1:04:00 AM
Trichtoroethene	0.070	0.040	ppbV	1	4/1/2016 1:04:00 AM
Viny! chloride	< 0.040	0.040	ppb∨	1	4/1/2016 1:04:00 AM
Surr: Bromofluorobenzene	122	70-130	%REC	1	4/1/2016 1:04:00 AM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 2 of 5

Center Datoratories, Life

CLIENT: LaBella Associates, P.C. Client Sample ID: 1645-IAQ-1

Lab Order:C1603075Tag Number:93,1165Project:FESL Emerson LandfillCollection Date:3/26/2016

Lab ID: C1603075-002A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15			Analyst: RJP	
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 1:04:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 1:04:00 AM
1,1-Dichloroethene	< 0.59	0,59	ug/m3	1	4/1/2016 1:04:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 1:04:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 1:04:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:04:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 1:04:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:04:00 AM
Trichloroethene	0.38	0.21	ug/m3	1	4/1/2016 1:04:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2016 1:04:00 AM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Date: 26-Apr-16

E Value above quantitation range

3 Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 2 of 5

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AN033124.D Vial: 3
Acq On : 1 Apr 2016 1:04 am Operator: RJP
Sample : C1603075-002A Inst : MSD #1
Misc : A316_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 01 03:32:49 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.80 12.05 16.56		19820 53432 33425m	1.00	ppb	-0.01 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 130	26277m Recovery	1.22	- 10	0.00
Target Compounds					Q۲	ralue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN033124.D A316_1UG.M Tue Apr 26 15:39:12 2016 MSD1

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C.

Lab Order: C1603075

Project: FESL Emerson Landfill

Lab ID: C1603075-003A

Client Sample ID: 1645-SVI-2

Tag Number: 332,387 Collection Date: 3/26/2016

Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-2		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
IUG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	∨dqq	1	4/1/2016 8:49:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppb∨	1	4/1/2016 8:49:00 AM
1,1-Dichloroethene	< 0.15	0.15	₽₽₽V	1	4/1/2016 8:49:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	4/1/2016 8:49:00 AM
Chloromethane	< 0.15	0.15	₽₽₽V	1	4/1/2016 8:49:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/1/2016 8:49;00 AM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	4/1/2016 8:49:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	∨dqq	1	4/1/2016 8:49:00 AM
Trichtoroethene	0.17	0.15	ppb∨	1	4/1/2016 8:49:00 AM
Vinyl chloride	< 0.15	0.15	Vdqq	1	4/1/2016 8:49:00 AM
Surr: Bromofluorobenzene	128	70-130	%REC	1	4/1/2016 8:49:00 AM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

JN Non-routine analyte. Quantitation estimated.

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 3 of 5

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1645-SVI-2

Lab Order: C1603075 Tag Number: 332,387

Project: FESL Emerson Landfill Collection Date: 3/26/2016
Lab ID: C1603075-003A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 8:49:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 8:49:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:49:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 8:49:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 8:49:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:49:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 8:49:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:49:00 AM
Trichloroethene	0.91	0.81	ug/m3	1	4/1/2016 8:49:00 AM
Vinyt chloride	< 0.38	0.38	ug/m3	1	4/1/2016 8:49:00 AM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

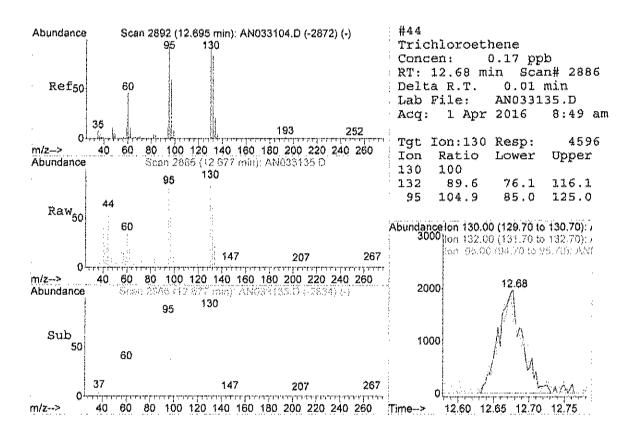
ND Not Detected at the Reporting Limit

Page 3 of 5

MS Integration Params: RTEINT.P

Quant Time: Apr 01 11:43:22 2016 Quant Results File: A316_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. (TOL	Response C	onc U	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.06 16.56	128 114 117	23254 62475 44101	1.00 1.00 1.00	00.00 dqq
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70 -	95 - 130	36292 Recovery	1.28	ppb 0.00 128.00%
Target Compounds 44) Trichloroethene	12.68	130	4596	0.17	Qvalue ppb 97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN033135.D A316_1UG.M Tue Apr 26 15:39:26 2016 MSD1

Date: 26-Apr-16

CLIENT: La

LaBella Associates, P.C.

C1603075

Lab Order: Project: Lab ID:

FESL Emerson Landfill

C1603075-004A

Client Sample ID: 1645-IAQ-2

Tag Number: 483,438

Collection Date: 3/26/2016

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD		Analyst:	
Lab Vacuum In	-2		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/201 6
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	₽₽bV	1	3/31/2016 11:01:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	3/31/2016 11:01:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	3/31/2016 11:01:00 PM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	3/31/2016 11:01:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	3/31/2016 11:01:00 PM
Trichloroethene	< 0.040	0.040	ppbV	1	3/31/2016 11:01:00 PM
Vinyl chloride	< 0.040	0.040	Vdqq	1	3/31/2016 11:01:00 PM
Surr: Bromofluorobenzene	125	70-130	%REC	1	3/31/2016 11:01:00 PM

0		ú	ŀ	E	tī	r	rs.
.,	u	75	4	ı	5 1		La

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 5

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1645-1AQ-2

Lab Order: C1603075 Tag Number: 483,438

Project: FESL Emerson Landfill Collection Date: 3/26/2016

Lab ID: C1603075-004A Matrix: AIR

Analyses	Result	**Limit Qua	d Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	սց/m3	1	3/31/2016 11:01:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	3/31/2016 11:01:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/31/2016 11:01:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/31/2016 11:01:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	3/31/2016 11:01:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/31/2016 11:01:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	3/31/2016 11:01:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/31/2016 11:01:00 PM
Trichloroethene	< 0.21	0.21	ug/m3	1	3/31/2016 11:01:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/31/2016 11:01:00 PM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 5

Data File : C:\HPCHEM\1\DATA2\AN033121.D Vial: 2 Acq On : 31 Mar 2016 11:01 pm Operator: RJP Sample : C1603075-004A Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 01 03:32:46 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	ong U	nits De	v(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.06 16.55	128 114 117	18446 48996 28479	1.00	dđđ	-0.02 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14	95 - 130	22817m Recovery	1.25	ppb 125.00	0.00 %
Target Compounds					Q	value

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN033121.D A316_1UG.M Tue Apr 26 15:39:09 2016

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: Outdoor-1645

Lab Order: C1603075 Tag Number: 1178,174

Project: FESL Emerson Landfill Collection Date: 3/26/2016

Lab ID: C1603075-005A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	γρbV	1	4/1/2016 1:43:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
Chloromethane	0.87	0.15	ppbV	1	4/1/2016 1:43:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
Tetrachloroethylene	0.16	0,15	Vdqq	1	4/1/2016 1:43:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 1:43:00 AM
Trichloroethene	0.17	0.040	ppbV	1	4/1/2016 1:43:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	4/1/2016 1:43:00 AM
Surr; Bromofluorobenzene	108	70-130	%REC	1	4/1/2016 1:43:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
 S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 5

Centex Daooratories, DDC

CLIENT: LaBella Associates, P.C. Client Sample ID: Outdoor-1645

Lab Order: C1603075 Tag Number: 1178,174

Project: FESL Emerson Landfill Collection Date: 3/26/2016

Lab ID: C1603075-005A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 1:43:00 AM
1,1-Dichloroethane	< 0.61	0,61	ug/m3	1	4/1/2016 1:43:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:43:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 1:43:00 AM
Chloromethane	1.8	0.31	ug/m3	1	4/1/2016 1:43:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:43:00 AM
Tetrachloroethylene	1,1	1.0	ug/m3	1	4/1/2016 1:43:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:43:00 AM
Trichloroethene	0.91	0.21	ug/m3	1	4/1/2016 1:43:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2016 1:43:00 AM

Qualifiers:

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 ${\tt JN} = {\tt Non-routine} \ {\tt analyte}. \ {\tt Quantitation} \ {\tt estimated}.$

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: 26-Apr-16

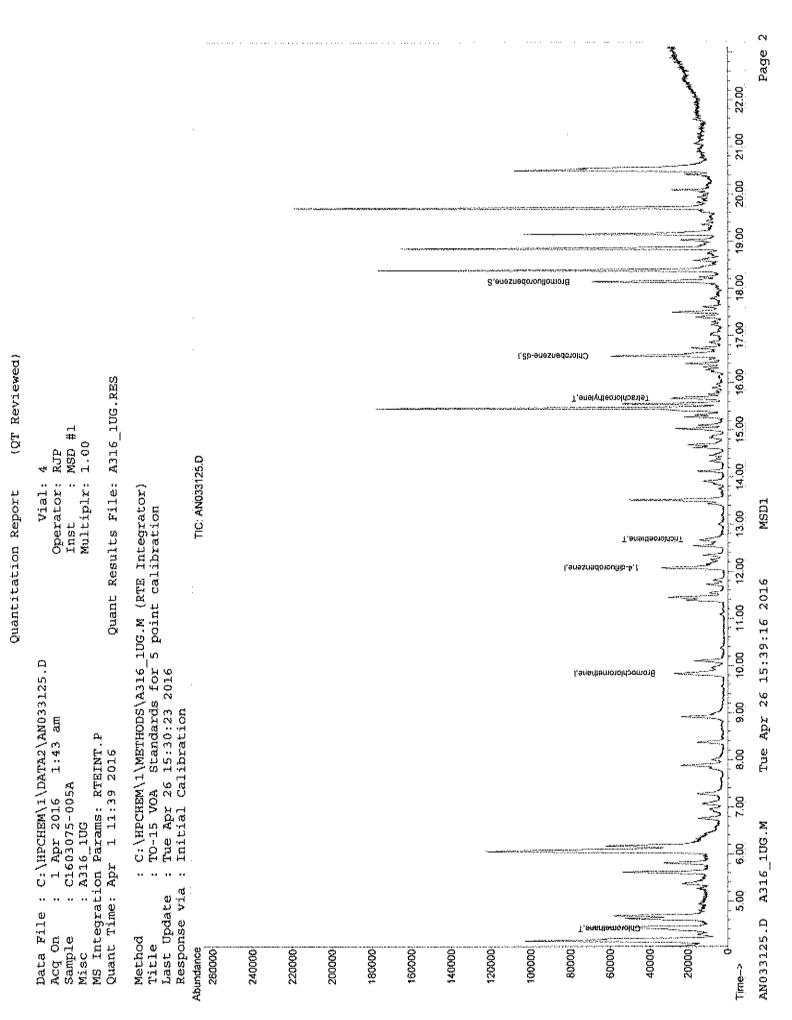
ND Not Detected at the Reporting Limit

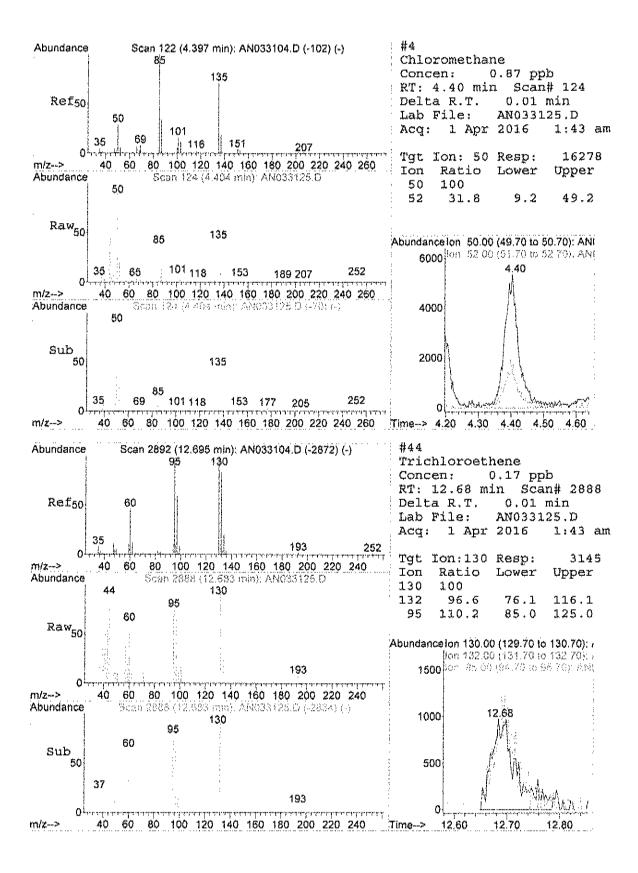
Page 5 of 5

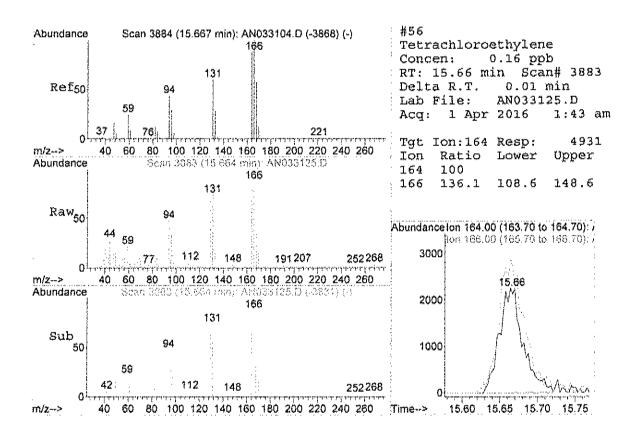
MS Integration Params: RTEINT.P

Quant Time: Apr 01 03:32:50 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016


Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits D	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.84 12.06 16.57	128 114 117	16834 44868 47627	1,00	ppb ppb ppb	0.03 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18,1 4 Range 70	95 130	33083 Recovery		ppb 108.0	0.00 0%
Target Compounds 4) Chloromethane 44) Trichloroethene 56) Tetrachloroethylene	4.40 12.68 15.66	50 130 164	16278 3145 4931	0.17	ppb ppb	Qvalue 95 97 94

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN033125.D A316 1UG.M Tue Apr 26 15:39:15 2016 MSD1

MSD1

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 STANDARDS DATA

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INITIAL CALIBRATION

Method : C:\HPCREM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration

Calibration Files 0.04 =AN031612.D 0.10 =AN031611.D 0.15 =AN031610.D 0.30 *AN031609.D 0.50 *AN031608.D 0.75 *AN031607.D

		Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avg	%RSD
3.)		Bromochloromethan	ė			- ~ - IST1	<u> </u>			
2)	\mathbf{T}	Propylene			1.131	0.916	0.800	0.787	0.810	18.47
3)	\mathbf{T}	Freon 12			5.132	4.678	4.218	4.223	4.271	10.16
4)		Chloromethane			1.503	1.264	1,102	1.101	1.118	16.44
	T	Freon 114			4.240	3.932	3.598	3.582	3,598	9.49
	$\tilde{\mathbf{T}}$	Vinyl Chloride	1.719	1.251	1.297	1.175	1.025	1.010	1.125	22.21
7)	Ť	Butane	D2 1 2 2m 2r		3 907	1.462	1.217	1.136	1.285	21.70
s)	Ť	Promochloromethan Propylene Freon 12 Chloromethane Freon 114 Vinyl Chloride Butane 1,3-butadiene			0 944	1 260	0 745	0 775	0.847	21.16
	T	Promomorhane			1 777	1 410	1 456	1 223	1.320	15.58
	T.	Chlomethane			U EV6	V 400	U VEO	0 443	0.450	9 99
10)	T	Curoroscuane			0.540	0.450	0.430	0.777	0,341	22 61
11)	.T.	schanoi			0.400	0.434	0.225	0.310	0.34*	16 70
12)	T	Acrotein			U.305	0.346	0.270	0.2/3	1 200	10.76
13)	T	Aruhr Browres			1.654	1.410	1.243	1.240	1.470	10.00
14)	T	Freon 11			5,356	4.760	4.368	4.251	4.333	10.40
15)	,T,	Acetone			0.580	0.446	0.467	0.365	0.432	10.00
16)	Τ,	Pentane			1.399	1.121	0.953	0.938	0.986	19.28
17)	T	Isopropyl alcoh			1.936	1.738	1.419	1.309	1.409	19.82
18)	T	1,1-dichloroeth			1.544	1.424	1.271	1.223	1.283	10.49
19)	T	Freon 113			3.697	3.334	3.051	3,060	3.094	9.58
30)	ţ	t-Butyl alcohol			2.795	2.640	2,350	2.175	2.248	14.34
21)	\mathbf{T}	Methylene chlor			1.287	1,198	1.152	1.112	1,124	7.74
22)	Ţ	Allyl chloride			1.371	1.068	0.996	0.948	0.998	16.47
23)	\mathbf{T}	Carbon disulfid			4.365	3.573	3.215	3,276	3.316	14.26
24)	\mathbf{T}	trans-1,2-dichl			1.785	1.581	1.489	1.479	1.522	8.00
25)	${f T}$	methyl tert-but			3.237	3.087	2.752	2.784	2.881	6.44
26)	T	Vinyl Chloride Butane 1,3-butadiene Bromomethane Chloroethane Ethanol Acrolein Vinyl Bromide Freon 11 Acetone Pentane Isopropyl alcoh 1,1-dichloroeth Freon 113 t-Butyl alcohol Methylene chlor Allyl chloride Carbon disulfid trans-1,2-dichl methyl tert-but 1,1-dichloroeth Vinyl acetate Methyl Ethyl Ke cis-1,2-dichlor Hexane Ethyl acetate			2.501	2.236	2.143	2.145	2,155	7.74
27)	${f T}$	Vinyl acetate			2.311	1.977	1.623	1.860	1.869	11.34
28)	T	Methyl Ethyl Ke			0.536	0.469	0.440	0,428	0.461	7.54
29)	T	cis-1,2-dichlor			1.213	1.318	1.253	1.234	1.250	3.55
30)	T	Hexane			1.377	1.268	1.247	1.266	1.308	3.87 10.28
32)	Ť	Ethyl acetate			2.162	1.967	1.682	1.682	1.784	10.28
32)	T	Chloroform			3.438	3.077	2.917	2.874	2.918	8.58
33)	Ţ	Tetrahvdrofuran			0.985	0.870	0.782	0.811	0.828	8.85
34)	T	Hexane Sthyl acetate Chloroform Tetrahydrofuran 1,2-dichloroeth			1.826	1.794	1.645	1.604	1.641	7.17
	·									
35)	Ï	1,4-difluorobenzer	10			ISTI)			
36)	T	1,1,1-trichloro			1.073	1.013	0.947	0.901	0.939	7.43
37)		Cyclohexane			0.412	0.377	0.375	0.379	0.387	3.38
38)	T'	Carbon tetrachl	1.514	1.229	1.098	1.027	0.964	0.926	1.048	18.29
39)	T	Benzene			0.968	0.850	0.818	0.806	0.832	6.91
40)		1,1,1-trichloro Cyclohexane Carbon tetrachl Benzene Methyl methacry			0.347	0.270	0.242	0.278	0.271	12.09
41)		1,4-dioxane			0.218	0.242	0.234	0.211	0.213	9.01
42)	Ť	2,2,4-trimethyl				1.466				4.74
43)	Ť	Heptane				0.316				5.49
44)	Ť	Trichloroethene	0.593	0.476						15.21
45)	Î	1,2-dichloropro	0.232			0.323				6.07
46)	$\dot{\mathbf{T}}$	Bromodichlorome				0.765				7.46
47)	Ť	cis-1,3-dichlor				0.436				5.47
48)	T	trans-1,3-dichl			0.427	0.366	0.357	0.345	0.359	8.05
49)	T	1,1,2-trichloro				0.345				8.71
43)		1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,				~ - ~	3.320	J. J. W. 1	* . * * * *	· · · ·
50)	I	Chlorobenzene-d5	<u> </u>			ISTI)			
51)		Toluene				0.657				5.43
w ~ /	•									

^{(#) ™} Out of Range ### Number of calibration levels exceeded format ### A316_10G.M Thu Apr 07 13:04:59 2016 MSD1

Response Factor Report MSD #1

Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

Calibration Files

0.04 =AN031612.D 0.10 =AN031611.D 0.15 =AN031610.D 0.30 =AN031609.D 0.50 =AN031608.D 0.75 =AN031607.D

	Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avg	¥RSD
	Methyl Isobutyl Dibromochlorome Methyl Butyl Ke 1,2-dibromoetha Tetrachloroethy Chlorobenzene 1,1,1,2-tetrach Ethylbenzene m&p-xylene Nonane Styrene Bromoform o-xylene Cumene Bromofluorobenz 1,1,2,2-tetrach Propylbenzene 2-Chlorotoluene	0.983	0.712	1.257 0.954 1.113 1.023 0.625 0.625 0.625 0.5616 1.1528 0.5988 1.1728 0.5611 1.5296 1.653 1.115	1.227 0.844 1.133 0.886 0.622 0.700 1.069 0.452 0.454 0.454 0.918 0.601 1.289 1.450 0.938	1.174 0.859 0.978 0.875 0.664 1.070 0.455 0.455 0.455 0.455 0.592 0.592 1.270 0.930	1.227 0.850 1.026 0.798 0.599 0.855 0.649 1.097 0.474 0.568 0.442 1.083 0.614 1.083	1.201 0.857 1.068 0.845 0.648 0.891 0.666 1.165 0.925 0.644 0.463 1.299 0.643 1.299 0.643 1.379	*RSD
67) T 68) T 69) T 70) T 71) T 72) T 73) T 74) T 75) T	1,1,2,2-tetrach Propylbenzene 2-Chlorotoluene 4-ethyltoluene 1,3,5-trimethyl 1,2,4-trimethyl 1,3-dichloroben benzyl chloride 1,4-dichloroben 1,2,3-trimethyl	0.602	0.608	1.606 1.653 1.115 1.437 1.760 1.647 0.958 1.256 0.854	1.289 1.450 0.938 1.277 1.512 1.374 0.839 1.055 0.804 1.737	1.081 1.274 0.930 1.046 1.301 1.172 0.718 1.074 0.638 1.429	1.068 1.157 0.834 1.000 1.240 1.119 0.663 1,101 0.633 1.376	1.140 1.379 1.004 1.183 1.416 1.224 0.778 1.110	18.58 13.20 10.36
77) T 78) T 79) T 80) T	1,2-dichloroben 1,2,4-trichloro Naphthalene Hexachloro-1,3-			0.693 1.699	0.719 1.607	0.677 1.503	0.622 1.407 1.766	0.720 1.494	10.92 11.86 7.91

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### A316_1UG,M Thu Apr 07 13:05:00 2016 MSD1

(QT Reviewed) Quantitation Report

Vial: 2 Data File : C:\HPCHEM\1\DATA\AN031603.D Acq On : 16 Mar 2016 6:50 pm Sample : Alug_2.0 Misc : A316_1UC Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:19:00 2016 Quant Results File: A316_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Un	iits	Dev	(Min)
1\ D		770	30505	1.00	nnh		-0.01
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	ም./ም ተጋ በፎ	114	17070	1.00	PDP.		0.00
50) Chlorobenzene-da	16 55	177	65204	1.00	dan		0.00
20) Cicor Coentrative do	10.30	11,	032,04		L P L		••••
System Monitoring Compounds							
66) Bromofluorobenzene	18.13	95	48331	1.15	ppb		0.00
Spiked Amount 1.000	Range 70	- 130	Recove	ту =	115	.00₺	
•	-						
Target Compounds							alue
Propylene	4.14	4 1.	52720 300982 75653	1.77	ggg	#	
3) Freon 12	4.19	85	300982	1.82	ppb		100
4) Chloromethane	4.39	50	75653	1.85	ಧಿವಿಧ		90
5) Freon 114	4.39	85	252561 71454	1.79	ದರೆದ		99
Vinyl Chloride	4.58	62	71454	1.80	agg		89
7) Butane	4.68	43	84007	1.71	aqq		95
8) 1,3-butadiene	4.69	39	60171 88794	1.98	ppb		88
Bromomethane	5.03	39 94 64	88794	1.98 1.75 1.90	qqq		93
10) Chloroethane	5.20	64	31848				
11) Ethanol	5.34	45	22162 19963m/	1.89	dad	#	66
12) Acrolein	5.93	56	19963m/	1.92			
13) Vinyl Bromide	5.54	106	90315	1,77	ppp		96
14) Freon 11	5.80	101	311834 31506	1.84	dqq		99
15) Acetone	6.02	58	31506	2.05			82
16) Pentane	ಕ.೦೯	42	64025	1.75	рÞр		99
17) Isopropyl alcohol	6.13	45	95378 90887	1.89			46
18) 1,1-dichloroethene	6.56	96	90887	1.81			89
19) Freon 113	6.75	101	218149 153022 81781	1.79			96
20) t-Butyl alcohol 21) Methylene chloride 22) Allyl chloride	6.87	59	153022	1.79			
21) Methylene chloride	7.04	84	81781	1.83			92
SEL WWWALL CHANGE FOR	,	41	75821	2.00	dqq		88
*** ** ** ****** ** ** ** ** ** ** ** *	7.19	76	229469	1.81			97
24) trans-1,2-dichloroethene	7.97	61	109677	1.86			90
25) methyl tert-butyl ether	8.01	73	217092 155890 139082	1.92			96
26) 1,1-dichloroethane	8.39 8.41	63	155890	1.83			99
27) VinVi acetate	8.41	43	139082	1.80			99
28) Methyl Ethyl Ketone	8.92	72	35109	1.95			
29) cis-1,2-dichloroethene	9.33	61	95640	1.86			93
30) Hexane	8.90	57	35109 95640 103745	1.97			96
31) Ethyl acetate	9.51	43	132681 209422 59093	1.93			96
32) Chloroform	9.94	83	209422	1.84			98
33) Tetrahydrofuran	10.15	42	59093	1.80			95
34) 1,2-dichloroethane	11.07	62	118759	1.86	dqq		87
36) 1,1,1-trichloroethane	10.75	97	211952	1.92	dqq		100
37) Cyclohexane	13.44	56	95560	2.08	qqqq		90
38) Carbon tetrachloride	11.39	117	221613	1.95	ppb		97
39) Benzene	11.36	78	193181	1.98	dąą		98
40) Methyl methacrylate	12.91	41	62212	1.99	$_{\rm dqq}$	#	80
41) 1,4-dioxane	12.99	88	62212 48143 351781	1.87			97
42) 2,2,4-trimethylpentane	12.18	57	351781	2.00	ppb		98
43) Heptane	12.53	4.5	80174	2.04	ppb		88
44) Trichloroethene	12.67	130	95479	2.05	ppb		99
45) 1.2-dichloropropane	12.79	63	95479 67226	1.91	dqq		98

(#) = qualifier out of range (m) = manual integration AN031603.D A316_1UG.M Thu Apr 07 13:05:28 2016

Page 1

MSD1

Vial: 2 Data File : C:\HPCHEM\1\DATA\AN031603.D Acq On : 16 Mar 2016 6:50 pm Sample : Alug_2.0 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:19:00 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\ANO31606.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.11	83	168164	1.95 ppb	99
47)	cis-1,3-dichloropropene	13.89	75	96193	2.09 ppb	100
48)	trans-1,3-dichloropropene	14.62	75	81400	1.94 ppb	92
49)	1,1,2-trichloroethane	14.93	97	73046	1.93 ppb	98
51)	Toluene	14.67	92	95859	2,10 ppb	98
52)	Methyl Isobutyl Ketone	13.82	43	161205	1.95 ppb	98
53)	Dibromochloromethane	15.60	1.29	111719m 🖍		
54)	Methyl Butyl Ketone	15.11	43	145361 '	1.95 ppb	97
55)	1,2-dibromoethane	1.5 . 85	107	103573	1.91 ppb	97
56)	Tetrachloroethylene	15.66	164	77730	1.98 ppb	98
57)	Chlorobenzene	16.61	112	114609	2.01 ppb	89
58)	1,1,1,2-tetrachloroethane	16.71	1.31	83929	1.85 ppb	98
59)		16.85	91	163580	2.13 ppb	98
60)		17.04	91	279419	4.64 ppb	97
61)	Nonane	17.38	43	90950	2.59 ppb	98
62)	Styrene	17.46	104	100790	2.36 ppb	89
63)	Bromoform	17.58	173	63866	2.18 ppb	97
64)	o-xylene	17.48	91	162873	2.39 ppb	95
65)	Cumene	18.01	105	197775	2.53 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	129149	// 1.85 ppb	99
68)	Propylbenzene	18.53	91	209599m 🕯) 2.74 ppb	
69)	2-Chlorotoluene	18.58	91	145425m	2.28 ppb	
70)	4-ethyltoluene	18.70	105	165888m	2.44 ppb	
7ユ)	1,3,5-trimethylbenzene	18.75	105	3.84877m 🎝	2.18 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	147804	2.03 ppb	98
73)	1,3-dichlorobenzene	19.49	146	99804	2.01 ppb	98
74)	benzyl chloride	19.56	91	137885	2.04 დდბ	97
75)	1,4-dichlorobenzene	19.61	146	97347	2.06 დებ	98
76)	1,2,3-trimethylbenzene	19.65	105	180121	1.88 ppb	98
77)	1,2-dichlorobenzene	19.93	146	104274	1.75 ppb	97
78)	1,2,4-trichlorobenzene	21.78	180	115972	2.52 ppb	96
79)	Naphthalene	21.98	128	221487m	2.55 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	218825	1.78 ppb	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031603.D A316_1UG.M Thu Apr 07 13:05:29 2016 MSD1

SEV LEWEL!

121

אמשוורזייםרזותה שבהתדי

Data File : C:\HPCHEM\1\DATA\AN031604.D Vial: 3 Acq On : 16 Mar 2016 7:30 pm Operator: RJP Sample : A1UG_1.50 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT P

Quant Time: Mar 17 08:18:42 2016 Quant Results File: A316 1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc (Units	Dev	(Min)
1) Bromochloromethane	9.80	128	37388	3 00	dqq (-0.01
35) 1,4-difluorobenzene	12.05	114	125097	1.00	dqq (0.00
50) Chlorobenzene-d5		117	71425	1.00) ppb		0.00
							+
System Monitoring Compounds							
66) Bromofluorobenzene	18,13		48889	1.06	dqq :		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	У ж.	106	.00%	
Target Compounds						Ova	alue
2) Propylene	4.13	4.1	41028	1.46	dqq	#	100
3) Freon 12	4.19		229102		ďąą		99
4) Chloromethane	4.39	50	56920		dqq		93
5) Freon 114	4.39		192137	1.45	dqq		100
6) Vinyl Chloride	4.58	62			dqq :		92
7) Butane	4.68	43	62790		dqq		97
8) 1,3-butadiene	4.69	43 39	42193	1.48	ggg		82
9) Bromomethane	5.03	94	66997		qqq (93
10) Chloroethane	5.20	64	24605	1.56	dqq		88
11) Ethanol	5.35	64 45	15188 /		ďąg		66
12) Acrolein	5.94	56	15188 14959m	1.53	ppb	,,	
13) Vinyl Bromide	5.54	106	68982		dqq		98
14) Freon 11	5.80	106 101	235962		dag		99
15) Acetone	6.03		22358m	1.54	ppb		
16) Pentane	6.07				ppb		88
17) Isopropyl alcohol	6.14	42 45	68376		ppb		46
18) 1,1-dichloroethene	6.56	96	68884		dqq		89
19) Freon 113	6.75	101	165966	1.44	dqq	.,	97
20) t-Butyl alcohol	6.88	59	113330		ppb		75
21) Methylene chloride	7,04			1.40	ppb	.,	•
22) Allyl chloride	7.01	41	58969m 49125m	1.38	ppb		
23) Carbon disulfide	7.19	76	165861	1.39	ppb		99
24) trans-1,2-dichloroethene	7.97	6 I	85565		dqq		91
25) methyl tert-butyl ether	8.02	73	162235	1.52	ppb		95
26) 1,1-dichloroethane	8.39	63	120712		dqq		98
27) Winyl acetata	0 45	43	105982		ppb		97
28) Methyl Ethyl Ketone	8.92	72	26847		dqq		100
29) cis-1,2-dichloroethene	9.34	61	72635	1.50	ppb		92
30) Hexane	8.90	57 43	77717	1.57	dąą		97
31) Ethyl acetate	9.52	43	77717 98475 161422	1.52	તવવ	#	82
32) Chloroform	9.94	83	161422	1.50	dqq	•	99
33) Tetrahydrofuran	10.15	42	46658 92764	1.51	ppb		91
34) 1,2-dichloroethane	11.08	62	92764	1.54	dqq		89
36) 1,1,1-trichloroethane	10.75	97	164249	1.42	dqq		98
37) Cyclohexane	11.44	56	70836	1.47	dag		87
38) Carbon tetrachloride	11.38	117	171139	1.44	ppb		97
39) Benzene	11.37	78	149554	1.46	ppb		99
40) Methyl methacrylate	12.91	41	47301	1.45	dqq	#	83
41) 1,4-dioxane	12.99	88	34749	1.29	dqq		97
42) 2,2,4-trimethylpentane	12.18		259886	1.41	ppb		98
43) Heptane			66410	1.50	dqq		89
44) Trichloroethene	12.68	130	66410 73890	1.51	$\mathbf{p}\mathbf{p}\mathbf{b}$		98
45) 1,2-dichloropropane	12.79	63	53981	1,46	dqq		99

(#) = qualifier out of range (m) = manual integration AN031604.D A316_1UG.M Thu Apr 07 13:05:32 2016

Page 1

MSDL

Vial: 3 Data File : C:\HPCHEM\1\DATA\AN031604.D Acq On : 16 Mar 2016 7:30 pm Sample : A1UG 1.50 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:18:42 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response (Conc Unit	Qvalue
46)		13.11	83	131443	1.45 დებ	98
	cis-1,3-dichloropropene	13.89	75	73577	1.52 ppb	98
48)		14.53		63904	1.46 ppb	93
49)	1,1,2-trichloroethane	14.93	97	60215	1.52 ppb	99
51)	Toluene	14.67	92	76620	1.53 ppb	96
52)	Methyl Isobutyl Ketone	13.83	43	112630	1.24 ppb	97
53)	Dibromochloromethane	15.60		89145m 💋		
54)	Methyl Butyl Ketone	15.11	43	100523 '	1.23 ppb	96
	1,2-dibromoethane	15.85	107	84426	1.42 ppb	98
56)	Tetrachloroethylene	15.65	164	62278	1.45 ppb	98
57)	Chlorobenzene	16.61	112	93584	1.50 ppb	91
58)	1,1,1,2-tetrachloroethane	16.70	131	67746	1.37 ppb	98
59)		16.85	91	131064	1.56 ppb	97
60)	m&p-xylene	17.04	91.	219605	3.33 ppb	97
61)	Nonane	17.38	4.3	67119	1.74 ppb	99
62)	Styrene	17.46	104	75304	1.61 ppb	91
63)	Bromoform	17.59	173	49198	1.53 ppb	100
64)	o-xylene	17.48	91	129975	1.74 ppb	95
65)	Cumene	18.02	1.05	143847	1.68 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	102893 /	1.35 ppb	99
68)		18.54	91	146044m j	1.74 ppb	
69)		18.58	91	109401m /	1.57 ppb	
70)	4-ethyltoluene	18.70	105	121465m (1.63 ppb	
71)	1,3,5-trimethylbenzene	18.75	1.05	1.42483m (1.53 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	113063	1.42 ppb	95
73)	1,3-dichlorobenzene	19.48	146	75726	1,39 ppb	98
74)	benzyl chloride	19.56	91	105994	1.43 ppb	97
75)		19.62	146	71922	1.39 ppb	99
	1,2,3-trimethylbenzene	19.65	105	141118	1.34 ppb	97
	1,2-dichlorobenzene	19.93	146	81574	1.25 ppb	98
	1,2,4-trichlorobenzene	21.79	180	77042	1.53 ppb	96
79)	Naphthalene	21,98	128	162805	1.71 ppb	98
80)	Hexachloro-1,3-butadiene	22,06	225	164815	1.22 ppb	95

^{(#) =} qualifier out of range (m) ≈ manual integration (+) = signals summed AN031604.D A316_lUG.M Thu Apr 07 13:05:33 2016 MSD1

lyï keviewed)

Vuantitation Report

 Data File: C:\HPCHEM\1\DATA\AN031605.D
 Vial: 4

 Acq On: 16 Mar 2016: 8:10 pm
 Operator: RJP

 Sample: AlUG_1.25
 Inst: MSD #1

 Misc: A316_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:18:24 2016 Quant Results File: A316_1UG.RBS

Quant Method: C:\HPCHEM\1\METHODS\A316_1UG,M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
				1.00	ppb		0.00
35) 1,4-difluorobenzene	12.06	114	118006	1.00	ppb		0.00
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	16.56	117	66689	1.00	ppb		0.00
System Monitoring Compounds							
66) Bromofluorobenzene	18.13	95			ppb		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	-y =	117	.00¥	
Target Compounds							alue
2) Propylene	4.14	41	34125		dqq	#	100
3) Freon 12	4.19	85	188632	1.18	qqq		99
4) Chloromethane	4.39	50	46990 159182		ppb		94
5) Freon 114	4.39	85	159182 44524	1,17	qqq		99
6) Vinyl Chloride	4.58	62	44524 55448 36591 55311 20643 13696 12410m	1.16	daa		93
7) Butane	4.68	43	55448		dqq		94
8) 1,3-butadiene	4,69	39	36591	124	ppp		84
9) Bromomethane	5.04	94	55311		ppb		91
10) Chloroethane	5.20	64	20643		dqq		
11) Ethanol	5.36	4.5	13696	$_{0}$ 1.20	ppb	¥	74
12) Acrolein	5.94	56	12410m /	1.24	ББр		
13) Vinyl Bromide	5.54	106 101		1.15	qqq		95
14) Freon 11	5.80			1.19	dqq		99
15) Acetone	6.03	58	18687m	1.25	dqq		
16) Pentane	6.07	42	41343m 57073	1.16	ppp		
17) Isopropyl alcohol	6.15	45	2/0/2	****	gqqq		46
18) 1,1-dichloroethene	6.56	96	56328		ppp		89
19) Freon 113	6.75 6.88	101	137846 93562	1.17	daa		96
20) t-Butyl alcohol					ppp		9.3
21) Methylene chloride		84	50280m	1,16	bbp		
22) Allyl chloride	7.01	41.	41687m	1.14	ppb		
23) Carbon disulfide	7.20	76	148023		ppp		97
24) trans-1,2-dichloroethene		61	68887		qqq		94
25) methyl tert-butyl ether 26) 1,1-dichloroethane	8.03	73	131518		bbp		94
		63	95089	1.15	ppb		97
27) Vinyl acetate	8.41	43 72 61	89018m	, 1.19	gqq		* * *
28) Methyl Ethyl Ketone	8.94	72	21142		dqq		100
29) cis-1,2-dichloroethene	9.34	97	57658		dqq		90
30) Hexane	8.89	57 43	62689		ppb		97
31) Ethyl acetate	9.52	43	78814 128907	7.78	dqq		95
32) Chloroform				1.17	ppb		98
33) Tetrahydrofuran	10.15	42	37821		dqq		89
34) 1,2-dichloroethane	11.07	62	73032		dqq		89
36) 1,1,1-trichloroethane	10.75	97	131367	1.20			99
37) Cyclohexane	11.44	56	57547	1.27	ppb		90
38) Carbon tetrachloride	11.39	117	137163		ppb		99
39) Benzene	11.37	78	116970		dqq	21	99
40) Methyl methacrylate	12.92	41	37863		ppb	#	83
43) 1,4-dioxane	13.00	88	28574		bbp		100
42) 2.2,4-trimethylpentane	12.19	57	211404	1.31	ppb		98
43) Heptane	12.53	43	50947		ppb		92
44) Trichloroethene 45) 1,2-dichloropropane	12.67	130 63	57922 41974		dqq		99 100
	12.78						3 63 61

Page 1

^{(#) =} qualifier out of range (m) = manual integration AN031605.D A316_LUG.M Thu Apr 07 13:05:36 2016 MSD1

Data File : C:\HPCHEM\1\DATA\AN031605.D Vial: 4 Acq On : 16 Mar 2016 8:10 pm Sample : AlUG_1.25 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Mar 17 08:18:24 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth ; lUG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13,11	83	102348	1.20 ppb	99
47)	cis-1,3-dichloropropene	13.90	75	57578	1.26 ppb	99
48)		14.63	75	51108	1.23 ppb	92
49)	trans-1,3-dichloropropene 1,1,2-trichloroethane	14.03	97	46126	1.24 ppb	95
51)	Toluene	14.68	92	56126	1.20 ppb	96
52)	Methyl Isobutyl Ketone	13.83	43	97491m /j	1.15 ppb	20
53)	Dibromochloromethane	15.60	129	67490m /	1.17 ppb	
54)	Methyl Butyl Ketone	15,11	43	90049m b		
	1,2-dibromoethane	15.85	107	66367	1.20 ppb	97
55) 56)	•	15.66	164	47939	1.19 ppb	100
57)		16.61	112	73949	1,27 ppb	85
58)		16.51	131	54587	1.18 ppb	95
		16.85	91	103191	1.32 ppb	98
59)		17.04	91	173419	2.81 ppb	97
60)	m&p-xylene			52439		98
61)	Nonane	17.38 17.46	43 104	61068	1.46 ppb 1.40 ppb	92
62)	Styrene Bromoform	17.58	173	41207	. 1 38 mmh	99
63) 64)		17.48	91	99047m	1.42 ppb	99
64)	o-xylene Cumene	18.01	105	119471	1.49 ppb	98
65) 67)	1,1,2,2-tetrachloroethane	17.92	83	87757	1.23 ppb	98
68)		18.54	91	112193m	1.43 ppb	50
69)		18.58	91	92322m	1.42 ppb	
70}		18.70	1.05	103814m	1.50 ppb	
71)		18.75	105	120410m	1.39 ppb	
72)		19.19	105	96928	1.30 ppb	96
	1,3-dichlorobenzene	19.49	146	67647	1.33 ppb	99
	benzyl chloride	19.56	57	93016	1.34 ppb	94
75)	1.4-dichlorobenzene	19.50	146	65798	1.36 ppb	95
76)	_ •	19.65	105	117860	1.20 ppb	95
77)		19.93	146	72700	1.20 ppb	96
78)	1,2,4-trichlorobenzene	21.78	180	62909	1.34 ppb	96
		21.78	128	100472m 1	1.13 ppb	30
79)	Naphthalene		225	141195	1.12 ppb	95
80)	Hexachloro-1,3-butadiene	22.06	440	ヤチエナココ	T.IZ NOD	∌5

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031605.D A316_1UG.M Thu Apr 07 13:05:37 2016

(Ur kevrewed)

Vudilliation Report

Data File : C:\HPCHEM\1\DATA\AN031606.D Vial: 5 Acq On : 16 Mar 2016 8:49 pm Sample : A1UG 1.0 Misc : A316 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:18:03 2016 Quant Results File: A316_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A316_IUG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcg Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response		Units	Dev	(Min)
		128			dqq 00		0.00
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	12.06	3.3.4	112843	ī.	dqq 00		0.00
50) Chlorobenzene-d5	16.56	117	61333	1.	dqq 00		0.00
to, directoralisation as	20100	III	·		£-£		
System Monitoring Compounds							
66) Bromofluorobenzene	18.14				oi ppb		0.00
Spiked Amount 1.000	Range 70	- 130	Recove	ry :	= 101	. ዕርዩ	
_	-						_
Target Compounds							alue
2) Propylene	4.14	41	27277	0 - 3	99 ppb	#	100
3) Freon 12	4.19	85	151027	0.	daa ee		99
4) Chloromethane	4.39	50	37602		dqq 00		94
5) Freon 114	4 - 39	85	128823 36447	0.	gg ee		100
6) Vinyl Chloride	4.58	62	36447	0.:	dqq ee		88
7) Butane	4,68	43 39 94	44989	0.:	ddd 66		96
8) 1,3-butadiene	4.69	39	28499 46282	1.1	os bbp		81
Bromomethane	5.03	94	46282	Q.	dqq ee		95
10) Chloroethane	5.21	64	16583 11746 9571m	7.0	07 ppb	**	100
11) Ethanol	5.36	4.5	11746	A 1.1	dqq 80	#	74
12) Acrolein	5.95	56	9571m	2.	dag 00		
13) Vinyl Bromide	5.54				99 ppb		96
14) Freon 11	5.80	101	154925		ggg ee		98
15) Acetone	6.04	58			dqq 10		
16) Pentana	6.07		33653		dqq ee		94
17) Isopropyl alcohol	6.15	45	46253		gad 66		46
18) 1,1-dichloroethene	6.56	96	46032	0.	gg ppb		88
19) Freon 113	€.74	101	111420	0.1	agg ee		96
20) t-Butyl alcohol	6.88	59	78078	U . :	dqq 99		77
21) Methylene chloride	7.04	84	40970		dqq ee		97
22) Allyl chloride	7.02	41	33103m ¥		95 ppb		
23) Carbon disulfide	7.20	76	116250		agg ee		96
24) trans-1,2-dichloroethene		61	54958		ol ppb		94
25) methyl tert-butyl ether	8.03	73	103598 77856	0.9	daa ee		93
26) 1,1-dichloroethane	8.40	63	77856	0.5	ರಭ್ವ ೯೯		99
27) vinyi acetate	8.43	43	61972	0.1	37 ppb		96
28) Methyl Ethyl Ketone	8.94	72	16500 46977	0.5	dqq ee		100
29) cis-1,2-dichloroethene	9.35	61			dqq e		92
30) Hexane	8.90	57	48164	0.5	dqq ee		94
31) Ethyl acetate	9.52	43	62899 104226	0.9	dag ee		94
32) Chloroform	9.94	83	104226		dqq ee		98
33) Tetrahydrofuran		42	29839		dqq es		89
34) 1,2-dichloroethane	11.09	62	58404		aqq e		89
36) 1,1,1-trichloroethane	10.75	97	104507	1.0	dqq 00		97
37) Cyclohexane	11.45	56	43452	1,0	dqq 00		89
38) Carbon tetrachloride	11.39	117	107492	1.0	dag oc		98
39) Benzene	11.36	78	91969	1.0	dqq oc		98
40) Methyl methacrylate	12.91	41	29340	0 - 5	dqq es	林	83
41) 1,4-dioxane	13.00	8.0	24261	1.0	daa oc		100
42) 2,2,4-trimethylpentane	12.18	57	166364	1.0	daa oo		99
43) Heptane	12.53	43	39883	1.0	aqq ot		93
44) Trichloroethene	12.67	3.30	44026	1.0	dqq oc		97
45) 1,2-dichloropropane	12.79	63	39883 44026 33334	1.0	dqq ot		99
				w			

^{(#) =} qualifier out of range (m) = manual integration

AN031606.D A316_1UG.M Thu Apr 07 13:05:40 2016 MSDl Page 1

 Data File: C:\HPCHEM\1\DATA\AN031606.D
 Vial: 5

 Acq On: 16 Mar 2016: 8:49 pm
 Operator: RJP

 Sample: AlUG_1.0
 Inst: MSD #1

 Misc: A316_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:18:03 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	81385	1.00 ppb	99
47)	cis-1,3-dichloropropene	13.90	75	43288	0.99 ppb	98
48)		14.63	75	39100	0.99 ppb	92
49)	1,1,2-trichloroethane	14.93	97	35639	1.00 ppb	97
51)	* , *	14.68	92	43216	1.01 ppb	99
52)		13.83	43	77557	. 1.00 ppb	97
53)		15.60	129	52061m A	^၂ 0.98 စို့စုံ	
54)	Methyl Butyl Ketone	15.11	43	70973	1.01 ppb	97
55)	1,2-dibromoethane	15.86	107	51366	1.01 ppb	95
56)	Tetrachloroethylene	15.66	164	37193	1.01 ppb	98
57)	Chlorobenzene	16.61	112	53911	1.01 ppb	89
58)	1,1,1,2-tetrachloroethane	16.70	131	42883	1.01 ppb	95
59)	Ethylbenzene	16.85	91	72637	1.01 ppb	98
60)	m&p-xylene	17.04	91	114219	2.02 ppb	94
61)	Nonane	17.38	43	33317	1.01 ppb	98
62)	Styrene	17.46	104	40542	1.01 ppb	90
63)	Bromoform	17.58	173	27823	1.01 ppb	99
64)	o-xylene	17,48	91	56836	1.04 ppb	91
65)	Cumene	18.02	105	74125	1.01 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	65967 <i>[]</i>	' 1.01 ppb	99
68)	Propylbenzene	18.53	91	7256lm ′ /	1.01 ppb	
69)		18,58	91	59363m	0.99 ppb	
70)	4-ethyltoluene	18.70	105	64669m	1.01 ppb	
71)	1,3,5-trimethylbenzene	18.75	105	81111m 🕠	1.01 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	68998	1.01 ppb	98
73)	1,3-dichlorobenzene	19.48	146	46992	1.01 ppb	99
74)	benzyl chloride	19.56	91	75652	1.19 ppb	97
75)		19.61	146	44723	1.01 ppb	98
76)	1,2,3-trimethylbenzene	19.65	105	90793	1.01 ppb	96
	1,2-dichlorobenzene	19.93	146	56239	1.01 ppb	97
78)	1,2,4-trichlorobenzene	21.78	180	42066	0.97 ppb	95
79)	Naphthalene	21.98	128	80682	ರವು ୧୧.೦	97
80)	Hexachloro-1,3-butadiene	22.06	225	116697	1.01 ppb	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031606.D A316_1UG.M Thu Apr 07 13:05:41 2016 MSD1

ini keviewed)

Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031607.D Vial: 6 Acq On : 16 Mar 2016 9:27 pm Sample : A1UG 0.75 Misc : A316 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:19:18 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\MSTHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	_		Dev(Min)
1) Bromochloromethane			35430		
35) 1.4-difluorobenzene	9.81	114	115405	1.00 ppb 1.00 ppb	
35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.00	***** 7 7 7	XX3403	1.00 ppb	0.00
	±0.50		04420	T.OO PPD	0.00
System Monitoring Compounds					
66) Bromofluorobenzene	18.13	95	39593	0.95 ppb	0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	r = 195	.00%
			"		
Target Compounds				_	Qvalue
2) Propylene	4.13	41	21494	0.78 ppb	# 100
3) Freon 12	4.19	85	115393	0.76 ppb	100
4) Chloromethane	4.39		30086	dqq 08.0	92
5) Freon 114	4.39		97880		
6) Vinyl Chloride	4.58	62 43	27592 31050	0.76 ppb	91
7) Butane	4.68				
8) 1,3-butadiene	4.69	39	21193		
Eromomethane	5.04	94 64	33415 12103	0.72 ppb	
10) Chloroethane	5.21			0.79 ppb	
11) Ethanol	5.36	45	8634 _{(i})	dqq 08.0	
12) Acrolein	5.97	56	7453m)	0.78 ზხბ	
13) Vinyl Bromide	5.55	106	34036 /	0.73 ppb	96
14) Freon 11	5.81	101 58	116153 10532m	0.75 ppb	98
15) Acetone	6.05	58	10532m J	0.75 ppb	
16) Pentane	6.07	42	25618	0.76 ppb	95
17) Isopropyl alcohol	6.16	45 96	35764	0.77 ppb	# 46
18) 1,1-dichloroethene	6.57	96	33426	0.72 ppb	
19) Freon 113	6.74	1.61	33426 83596	0.75 ppb	97
20) t-Butyl alcohol	6.90 7.04	59	59423		# 75
21) Methylene chloride	7.04	84	30390	0.74 1000	
22) Allyl chloride	7.02	41	25889	0.75 ppb	
23) Carbon disulfide	7.20	76	89515	0.77 ppb	99
24) trans-1,2-dichloroethene	8.00	61	40410	0.75 ppb	91
25) methyl tert-butyl ether	8.03	73	76069	0.73 ppb	93
26) 1,1-dichloroethane	8.39	63	14 to 20 to 20	A MC same	100
27) Vinyl acetate	8.43	43	50830m /	0.72 ppb	
28) Methyl Ethyl Ketone	8.95	72	11701	0.71 ppb	
29) cis-1,2-dichloroethene	9.34	61	33727	0.72 ppb	
30) Hexane	8.90	57	34580	0.72 စို့စိုဗ	97
31) Ethyl acetate	9.53	4.3	45964	0.73 ppb	
32) Chloroform	9.95	83	78527	0.75 ppb	
33) Tetrahydrofuran	10.17	83 42	22163	0.74 ppb	
34) 1,2-dichloroethane	31.09	62	43826	0.75 ppb	90
36) 1,1,1-trichloroethane	10.75	97	77993	0.73 ppb	98
37) Cyclohexane	11.44	56	32831	0.74 ppb	90
38) Carbon tetrachloride	11.39	117	80127	0.73 ppb	97
39) Benzene	11.37	78	69790	0.74 ppb	98
40) Methyl methacrylate	12.92	41	24037m	dqq 08.0	
41) 1,4-dioxane	13.00	88	18280	0.74 ppb	99
42) 2,2,4-trimethylpentane	12.18	57	121655	0.71 ppb	99
43) Heptane	12.53	43	28219	0.69 ppb	91
44) Trichloroethene	12.68	130	34027	0.75 ppb	99
45) 1,2-dichloropropane	12.79	63	25201	0.74 ppb	98
, -,					

(#) = qualifier out of range (m) = manual integration AN031607.D A316_1UG.M Thu Apr 07 13:05:44 2016 MSD1

Data File : C:\HPCHEM\1\DATA\AN031607.D Vial: 6 Acq On : 16 Mar 2016 9:27 pm Sample : AlUG_0.75 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:19:18 2016 Quant Results File: A316_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcg Meth : 1UG RUN

	Compound	R.T.	QIon	Response (Conc Unit	Qvalue
451						
46)		13.12	83	60775	0,73 ppb	100
47)		13,90	75	32684	0.73 ppb	96
48)	· · · · · · · · · · · · · · · · · · ·	14.63	75	29863	0.74 ppb	90
49)		14.93	97	27436	0.75 დენ	96
51)	Toluene	14.68	92	32126	0.71 ppb	98
52)	Methyl Isobutyl Ketone	13.83	4.3	59370	0.73 ppb	99
53)	Dibromochloromethane	15.60	129	41112m /	0.74 ppb	
54)	Methyl Butyl Ketone	15.11	43	49642	0.67 დლი	96
55)	1,2-dibromoethane	15.85	107	38588	0.72 ppb	96
56)	Tetrachloroethylene	15.65	164	28969	0.75 ppb	97
57)	Chlorobenzene	16.51	112	41332	0.73 ppb	90
58)	1,1,1,2-tetrachloroethane	16.71	131	31396	0.70 ppb	95
59)	Ethylbenzene	16.85	91	53041	0.70 ppb	99
60)	m&p-xylene	17.04	91	79500	1.33 ppb	92
61)	Nonane	17.38	43	22932	0.66 ppb	95
62)	Styrene	17.46	104	27462	0.65 ppb	91
63)	Bromoform	17.58	173	21394	0.74 ppb	99
54)	o-xylene	17,49	91	49158	0.73 ppb	95
65)	Cumene	18.02	105	52361	0.68 ppb	100
67)	1,1,2,2-tetrachloroethane	17.92	83	51665 @	0.75 ppb	98
68)	Propylbenzene	18.54	91	55960m 🎢	0.74 ppb	
69)	2-Chlorotoluene	18.58		40331m	0.64 ppb	
70)	4-ethyltoluene	18.70	105	48368m	0.72 ppb	
71)	1,3,5-trimethylbenzene	18.75	105	59988m	0.71 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	54115	0.75 ppb	96
73)	1,3-dichlorobenzene	19.48	146	32066	0.65 ppb	97
74)	benzyl chloride	19.56	91	53237	dqq 08.0	96
75)	1,4-dichlorobenzene	19.62	146	30624	0.66 ppb	97
	1,2,3-trimethylbenzene	19.65	105	66564	0.70 ppb	96
77)	1,2-dichlorobenzene	1.9.93	146	40900 /	0.70 ppb	97
78)	1,2,4-trichlorobenzene	21.78	180	30081m 7	0.66 ppb	٠,
79)	Naphthalene	21.98	128	68066m L	0.79 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	85443	0.70 ppb	95
- · ·		22,00	223	00440	O. (O PPD	33

^(#) \approx qualifier out of range (m) = manual integration (+) = signals summed AN031607.D A316_1UG.M Thu Apr 07 13:05:45 2016 MSD1

ACV LOWELL

7.7.

המשוניונטריוטיו מכליטני

Data File : C:\HPCHEM\1\DATA\AN031608.D Vial: 7 Acq On : 16 Mar 2016 10:05 pm Sample : AlUG_0.50 Misc : A316_1UG MS Integration Params: RTEINT.P Operator: RJP Inst : MSD #1 Multiplr: 1.00

Quant Time: Mar 17 08:19:39 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response Via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Neternal Standards	- "-							
1) Bromochloromethane 9,82 128 3608 1.00 ppb 0.01 35 1.4-difluorobenzene-ds 12.06 114 113070 1.00 ppb 0.00 50 Chlorobenzene-ds 16.56 117 67747 1.00 ppb 0.00 50 Chlorobenzene-ds 18.14 95 67747 1.00 ppb 0.00 50 61 55 61 7 67747 1.00 ppb 0.00 50 50 50 50 50 50	Internal Standards	R.T.	QIOn	Response C	conc t	Inits	Dev (Mi)	n)
35								
System Monitoring Compounds 66 Bromofluorobenzene 18.14 95 40075 0.92 ppb 0.00		9.82	128	36080	1.00	dqq (Q.	01
System Monitoring Compounds Spiked Amount 1.000 Range 70 - 130 Racovery 20 20 20 20 20 20 20	35) 1,4-difluorobenzene	12.06	114	113070	1.00			
Spiked Amount 1.000 Range 70 - 130 Recovery Recovery	50) Chlorobenzene-d5	16.56	117	67747	1.00	dqq (0.	00
Spiked Amount 1.000 Range 70 - 130 Recovery Recovery								
Target Compounds	System Monitoring Compounds							
Propylene	66) Bromofluorobenzene	18.14	95					00
21 Propylene	Spiked Amount 1.000	Range 70	- 130	Recovery	7 17.5	92	.00%	
21 Propylene								
31 Freon 12	Target Compounds							e
31 Freon 12	2) Propylene	4,14	41	14424	0.53	dqq 8	井 ユ	00
6) Vinyl Chloride 7) Butane 4.68 43 21962 0.49 ppb 94 8) 1,3-butadiene 4.69 39 13445 0.49 ppb 69 9) Bromomethane 5.04 94 26274 0.57 ppb 97 10) Chloroethane 5.20 64 8256 0.57 ppb 98 12) Acrolein 5.37 45 6117 0.57 ppb 98 12) Acrolein 5.97 56 49837 0.53 ppb 98 13) Vinyl Bromide 5.55 106 22539 0.53 ppb 98 14) Freon 11 5.81 101 78802 0.51 ppb 98 15) Acetone 6.06 58 8424 0.60 ppb 75 16) Pentane 6.08 42 17198 0.52 ppb 97 17) Isopropyl alcohol 6.16 45 25607 0.56 ppb 46 18) 1,1-dichloroethene 6.56 96 22928 0.50 ppb 95 19) Freon 113 6.75 101 55038 0.50 ppb 95 20) t-Butyl alcohol 6.90 59 42395 0.55 ppb 73 21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m 0.52 ppb 97 23) Carbon disulfide 7.02 41 17969m 0.52 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethene 8.02 61 26856 0.50 ppb 94 28) Methyl Bthyl Ketone 8.96 72 7938 0.48 ppb 91 30) Hexane 8.91 57 22491 0.47 ppb 93 31) Ethyl acetate 8.94 43 30351 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.36 61 22605 0.51 ppb 96 32) Carbon-thene 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.36 61 22605 0.51 ppb 97 32) Cyclohexane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 35) Cyclohexane 11.40 56 21201 0.49 ppb 93 36) 1,1,1-trichloroethane 11.10 62 29673 0.51 ppb 98 38) Benzene 11.37 78 46262 0.50 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 98 40) Methyl methacxylate 12.18 57 78609 0.47 ppb 98 41) Heytane 12.18 57 78609 0.47 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.16 10.16 12.67 130 22183 0.50 ppb 98	3) Freon 12	4.19	85		0.53			ΟO
6) Vinyl Chloride 7) Butane 4.68 43 21962 0.49 ppb 94 8) 1,3-butadiene 4.69 39 13445 0.49 ppb 69 9) Bromomethane 5.04 94 26274 0.57 ppb 97 10) Chloroethane 5.20 64 8256 0.57 ppb 98 12) Acrolein 5.37 45 6117 0.57 ppb 98 12) Acrolein 5.97 56 49837 0.53 ppb 98 13) Vinyl Bromide 5.55 106 22539 0.53 ppb 98 14) Freon 11 5.81 101 78802 0.51 ppb 98 15) Acetone 6.06 58 8424 0.60 ppb 75 16) Pentane 6.08 42 17198 0.52 ppb 97 17) Isopropyl alcohol 6.16 45 25607 0.56 ppb 46 18) 1,1-dichloroethene 6.56 96 22928 0.50 ppb 95 19) Freon 113 6.75 101 55038 0.50 ppb 95 20) t-Butyl alcohol 6.90 59 42395 0.55 ppb 73 21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m 0.52 ppb 97 23) Carbon disulfide 7.02 41 17969m 0.52 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethene 8.02 61 26856 0.50 ppb 94 28) Methyl Bthyl Ketone 8.96 72 7938 0.48 ppb 91 30) Hexane 8.91 57 22491 0.47 ppb 93 31) Ethyl acetate 8.94 43 30351 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.36 61 22605 0.51 ppb 96 32) Carbon-thene 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.36 61 22605 0.51 ppb 97 32) Cyclohexane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 35) Cyclohexane 11.40 56 21201 0.49 ppb 93 36) 1,1,1-trichloroethane 11.10 62 29673 0.51 ppb 98 38) Benzene 11.37 78 46262 0.50 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 98 40) Methyl methacxylate 12.18 57 78609 0.47 ppb 98 41) Heytane 12.18 57 78609 0.47 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.16 10.16 12.67 130 22183 0.50 ppb 98	4) Chloromethane	4.39	50	19879	0.53	dqq 8	:	98
6) Vinyl Chloride 7) Butane 4.68 43 21962 0.49 ppb 94 8) 1,3-butadiene 4.69 39 13445 0.49 ppb 69 9) Bromomethane 5.04 94 26274 0.57 ppb 97 10) Chloroethane 5.20 64 8256 0.57 ppb 98 12) Acrolein 5.37 45 6117 0.57 ppb 98 12) Acrolein 5.97 56 49837 0.53 ppb 98 13) Vinyl Bromide 5.55 106 22539 0.53 ppb 98 14) Freon 11 5.81 101 78802 0.51 ppb 98 15) Acetone 6.06 58 8424 0.60 ppb 75 16) Pentane 6.08 42 17198 0.52 ppb 97 17) Isopropyl alcohol 6.16 45 25607 0.56 ppb 46 18) 1,1-dichloroethene 6.56 96 22928 0.50 ppb 95 19) Freon 113 6.75 101 55038 0.50 ppb 95 20) t-Butyl alcohol 6.90 59 42395 0.55 ppb 73 21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m 0.52 ppb 97 23) Carbon disulfide 7.02 41 17969m 0.52 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethene 8.02 61 26856 0.50 ppb 94 28) Methyl Bthyl Ketone 8.96 72 7938 0.48 ppb 91 30) Hexane 8.91 57 22491 0.47 ppb 93 31) Ethyl acetate 8.94 43 30351 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.36 61 22605 0.51 ppb 96 32) Carbon-thene 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.36 61 22605 0.51 ppb 97 32) Cyclohexane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 35) Cyclohexane 11.40 56 21201 0.49 ppb 93 36) 1,1,1-trichloroethane 11.10 62 29673 0.51 ppb 98 38) Benzene 11.37 78 46262 0.50 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 98 40) Methyl methacxylate 12.18 57 78609 0.47 ppb 98 41) Heytane 12.18 57 78609 0.47 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.16 10.16 12.67 130 22183 0.50 ppb 98	5) Freon 114	4.39	85	64906	0.53			98
9) Bromomethane	6) Vinyl Chloride	4.59	62	18499				92
9) Bromomethane		4.68	43	21962				94
9) Bromomethane	8) 1.3-butadiene		39	13445	0.49			69
100 Chloroethane	·		94	26274	0.57			
Stand	•		54	8256				
12 Acrolein			45	6317	ሲ ፍግ	daa t		
14 Freon 1	· · · · · · · · · · · · · · · · · · ·		56	4983m	0.51	Dop.		
14 Freon 1			106	22530	7 49	, ppb	,	93
15) Acetone 6.06 58 8424 0.60 ppb # 75 16) Pentane 6.08 42 17198 0.52 ppb 97 17) Isopropyl alcohol 6.16 45 25607 0.56 ppb # 46 18) 1,1-dichloroethene 6.56 96 22928 0.50 ppb 89 19) Freon 113 6.75 101 55038 0.50 ppb 95 20) t-Butyl alcohol 6.90 59 42395 0.55 ppb # 73 21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m / 0.52 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethane 8.41 63 38652 0.50 ppb 91 26) 1,1-dichloroethane 8.44 63 38652 0.50 ppb 91 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 95 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 80 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 93 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 93 36) 1,1,1-trichloroethane 11.39 117 54492 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 99 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.56 130 22183 0.50 ppb			101	78802	0 51			
17) Isopropyl alcohol 6.16 45 25607 0.56 ppb # 46 18) 1,1-dichloroethene 6.56 96 22928 0.50 ppb 89 19) Freon 113 6.75 101 55038 0.50 ppb 95 20) t-Butyl alcohol 6.90 59 42395 0.55 ppb # 73 21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m / 0.52 ppb 96 23) Carbon disulfide 7.21 76 57993 0.50 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethane 8.41 63 38652 0.50 ppb 100 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 98 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 90 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.53 43 17641 0.44 ppb 98 44) Trichloroethene 12.53 43 17641 0.44 ppb 98 44) Trichloroethene 12.57 460 0.50 ppb	•		107	70002	0.33			
17) Isopropyl alcohol 6.16 45 25607 0.56 ppb # 46 18) 1,1-dichloroethene 6.56 96 22928 0.50 ppb 89 19) Freon 113 6.75 101 55038 0.50 ppb 95 20) t-Butyl alcohol 6.90 59 42395 0.55 ppb # 73 21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m / 0.52 ppb 96 23) Carbon disulfide 7.21 76 57993 0.50 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethane 8.41 63 38652 0.50 ppb 100 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 98 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 90 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.53 43 17641 0.44 ppb 98 44) Trichloroethene 12.53 43 17641 0.44 ppb 98 44) Trichloroethene 12.57 460 0.50 ppb			20	0727	0.00			
18) 1,1-dichloroethene 6.56 96 22928 0.50 ppb 89 19) Freon 113 6.75 101 55038 0.50 ppb 95 20) t-Butyl alcohol 6.90 59 42395 0.55 ppb 73 21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m 0.52 ppb 96 23) Carbon disulfide 7.21 76 57993 0.50 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 97 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) l,1-dichloroethane 8.41 63 38652 0.50 ppb 90 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb <t< td=""><td></td><td></td><td>9-4</td><td>11129</td><td>0.52</td><td></td><td></td><td></td></t<>			9-4	11129	0.52			
19) Freon 113			4.5	25607				
20) t-Butyl alcohol 6.90 59 42395 0.55 ppb # 73 21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m / 0.52 ppb 97 23) Carbon disulfide 7.21 76 57993 0.50 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethane 8.41 63 38652 0.50 ppb 90 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 9.96 72 7938 0.48 ppb 91 29) cis-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 80 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 98 44) Trichloroethene 12.67 130 22183 0.50 ppb 99		6.56	96	22928	0.50	वयुद्ध ।		
21) Methylene chloride 7.05 84 20786 0.51 ppb 96 22) Allyl chloride 7.02 41 17969m / 0.52 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethane 8.41 63 38652 0.50 ppb 97 28) Methyl Ethyl Ketone 8.96 72 7938 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 93 34) 1,1-trichloroethane 11.10 62 29673 0.51 ppb 99 36) 1,1,1-trichloroethane 11.39 117 54492 0.51 ppb 98 37) Cyclohexane 11.44 56 21201 0.49 ppb 98 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 44) Trichloroethene 12.67 130 22183 0.50 ppb 99								
22) Allyl chloride 7.02 41 17969m								
23) Carbon disulfide 7.21 76 57993 0.50 ppb 97 24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethane 8.41 63 38652 0.50 ppb 100 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 22605 0.48 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 86 32) Chloroform 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 10.18 42 14113 0.47 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.53 43 17641 0.44 ppb 89	21) Methylene chloride	7.05		20786	0.53		:	96
24) trans-1,2-dichloroethene 8.02 61 26856 0.50 ppb 89 25) methyl tert-butyl ether 8.03 73 49652 0.48 ppb 91 26) 1,1-dichloroethane 8.41 63 38652 0.50 ppb 100 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Bthyl Ketone 8.96 72 7938 0.48 ppb 95 29) cis-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 96 32) Chloroform 9.95 83 52618 0.51 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 99 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb					0.52			
26) 1,1-dichloroethane 8.41 63 39652 0.50 ppb 100 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 99 44) Trichloroethene 12.67 130 22183 0.50 ppb					0.50			
26) 1,1-dichloroethane 8.41 63 39652 0.50 ppb 100 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 99 44) Trichloroethene 12.67 130 22183 0.50 ppb	24) trans-1,2-dichloroethene	8.02	61	26856	0.50			
26) 1,1-dichloroethane 8.41 63 38652 0.50 ppb 100 27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.48 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 99 44) Trichloroethene 12.67 130 22183 0.50 ppb	25) methyl tert-butyl ether	8.03	73	49652	0.48			
27) Vinyl acetate 8.44 43 29273 0.42 ppb 94 28) Methyl Ethyl Ketone 8.96 72 7938 0.46 ppb # 100 29) cis-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99	26) 1,1-dichloroethane	8.41	63	38652	0.50			0 O
29) C1s-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb	27) Vinyl acetate	8.44	43	29273	0.42	dqq:	5	94
29) C1s-1,2-dichloroethene 9.36 61 22605 0.48 ppb 95 30) Hexane 8.91 57 22491 0.47 ppb 97 31) Ethyl acetate 9.54 43 30351 0.48 ppb 86 32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb	28) Methyl Ethyl Ketone	8.96	72	7938	0.46			00
32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99	29) cis-1,2-dichloroethene	9.36	61	22605	0.46			95
32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99			57	22491				97
32) Chloroform 9.95 83 52618 0.51 ppb 100 33) Tetrahydrofuran 10.18 42 14113 0.47 ppb 93 34) 1,2-dichloroethane 11.10 62 29673 0.51 ppb 89 36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99		9.54	43	30351				86
36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99		9.95	83	52618				
36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99			42	14113				
36) 1,1,1-trichloroethane 10.75 97 53522 0.51 ppb 99 37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99			62	29673	0.53	daa		
37) Cyclohexane 11.44 56 21201 0.49 ppb 90 38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99								
38) Carbon tetrachloride 11.39 117 54492 0.51 ppb 98 39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99					0.49	daa l		
39) Benzene 11.37 78 46262 0.50 ppb 100 40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99	· •							
40) Methyl methacrylate 12.92 41 13663 0.46 ppb # 73 41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99								
41) 1,4-dioxane 13.01 88 13214 0.54 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99	AD Markharl washing and a				Q 4 4	. www		
42) 2,2,4-trimethylpentane 12.18 57 78609 0.47 ppb 98 43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99								
43) Heptane 12.53 43 17641 0.44 ppb 89 44) Trichloroethene 12.67 130 22183 0.50 ppb 99								
44) Trichloroethene 12,67 130 22183 0.50 ppb 99								
45) 1.2-dichloropropane 12.79 63 17338 0.52 ppb 96								
	45) 1,2-dichloropropane	12.79	63	17338	0.52	ppp	;	70

Page 1

MSD1

^{(#) =} qualifier out of range (m) = manual integration AN031608.D A316_1UG.M Thu Apr 07 13:05:48 2016

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031608.D Vial: 7 Acq On : 16 Mar 2016 10:05 pm Sample : AlUG_0.50 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P Quant Time: Mar 17 08:19:39 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\ANO31606.D

DataAcq Meth : LUG_RUN

	Compound	R.T.	Qlon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	41322	0.51 ppb	98
47)	cis-1,3-dichloropropene	13.90	75	22010	0.50 ppb	96
48)		14.64	75	20160	0.51 ppb	93
49)	1,1,2-trichloroethane	14.94	97	18287	0.51 ppb	93
51)	Toluene	14.68	92	21106	0.45 ppb	97
52)	Methyl Isobutyl Ketone	13.84	43	39767 /	0.46 ppb	98
53)	Dibromochloromethane	15.60	129	29081m	0,50 ppb	2.0
54)	Methyl Butyl Ketone	15.12	43	33116m h	0.43 ppb	
55)	1,2-dibromoethane	15.85	107	28353	0.50 ppb	97
56)	Tetrachloroethylene	15.66		19835	0.49 ppb	99
	Chlorobenzene	16.61	112	29636	0.50 ppb	92
- +	1,1,1,2-tetrachloroethane	16.71	131	22498	0.48 ppb	92
	Ethylbenzene	16.85	91	36463	0.46 ppb	98
	m&p-xylene	17.05	91	56232	0.90 ppb	95
61)	Nonane	17.38	43	15420	0.42 ppb	94
62)	Styrene	17.47		18736	0.42 ppb	90
63)	Bromoform	17.59	173	14908	0.49 ppb	99
64)	o-xylene	17.49	91	37022	0.52 ppb	96
65)	Cumene	18.02	105	37321	0.46 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	36610 /	0.51 ppb	97
68)	Propylbenzene	18.53	91	43158m	0.54 ppb	
69)	2-Chlorotoluene	18.58	91	31517m /	0.48 ppb	
70)	4-ethyltoluene	18.70	105	35420m	0.50 ppb	
71)	1,3,5-trimethylbenzene	18.75	105	44058m	daa 02.0	
72)	1,2,4-trimethylbenzene	19.19	105	39690	0.52 ppb	96
73)	1,3-dichlorobenzene	19.49	146	24308	0.47 ppb	97
74)	benzyl chloride	19.56	91	36368	0.52 ppb	95
75)	1,4-dichlorobenzene	19.63	146	21600	0.44 ppb	92
76)		19.65	105	48394	0.49 ppb	97
77)	1,2-dichlorobenzene	19.94	146	31844 /	0.52 ppb	95
78)	1,2,4-trichlorobenzene	21.78	180	22916m ")	0.48 ppb	
	Naphthalene	21.98	128	50904m /	0.56 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	56244	0.44 ppb	96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031608.D A316 1UG.M Thu Apr 07 13:05:49 2016

келлемеп)

3

Angiriracion report

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031609.D Vial: 8 Acq On : 16 Mar 2016 10:42 pm Sample : Alug 0.30 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:19:57 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane	9.83	128	34240	1.00	daa		0.02
35) 1,4-difluorobenzene	12.07	114	107427	1.00	ppb		0.01
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	16.57	117	63070	1.00	bbp		0.00
System Monitoring Compounds							
66) Bromofluorobenzene	18.14	95	37922		dag		0.00
Spiked Amount 1.000	Range 70	- 130	Recove	xA =	93	.00¥	
Target Compounds						Qva	lue
Propylene	4.14		9410		dqq	#	1.00
3) Freon 12	4.19	85	48050	0.34	dqq		99
4) Chloromethane	4.40 4.39 4.59	50	12982 40390 12065	0.37			94
5) Freon 114	4.39	85	40390	0.33	$_{\mathbf{qqq}}$		98
6) Vinyl Chloride	4.59	62	12065	0.35			84
7) Butane	4.69	43	15019 12946	0.35			90
8) 1,3-butadiene	4.69	39	12946	0.49			87
Bromomethane	4.69 4.69 5.04	94	14575	0.33	ppb		90
10) Chloroethane	5.21	64	5112 4 <i>6</i> 60	0.35	$_{\mathrm{ddd}}$		96
11) Ethanol	5,39	45	4660	v 0.46	ರವ್ವ		96
12) Acrolein		56	3558m /		dag		
13) Vinyl Bromide	5.55	106 101	14483	0.33	ppb		94
14) Freon 11	5.80	101	48893	0.33			38
15) Acetone	6.05	58	4586m	0.35			
16) Pentane	6.08	42	4586m 11517 17857	0.36			97
17) Isopropyl alcohol	6.16	45	17857	0.41			46
18) 1,1-dichloroethene	6.56	96	14624	0.34			86
19) Freon 113	6.76 6.91	101 59	34250 27113	0.33			99
20) t-Butyl alcohol	6.91	59	27113	0.37		#	72
 Methylene chloride 	7.07	84 41 76	12304	0.32			86
22) Allyl chloride	7.03 7.21	41	10973m	0.34	pp		
23) Carbon disulfide		76	36706	0.34	$_{\rm ppp}$		97
24) trans-1,2-dichloroethene	8.01	61 73 63	16238 31713 22970	0.32	ppb		89
<pre>25) methyl tert-butyl ether 26) 1,1-dichloroethane</pre>	8.03	73	31713	0.32	ppb		93
	8.40	63	22970	0.31			94
27) Vinyl acetate	8.44	4.3	20303m \	0.31	ppb		
28) Methyl Ethyl Ketone	8.97	72	4 24 1 7	. O.3T	aqq	#	
29) cis-1,2-dichloroethene	9.38	61	13539	0.31	aga		91
30) Hexane	8.90	57	13020	0.29	ppp		96
31) Ethyl acetate	9.54	43	13020 20202 31612 8932 18425	0.34	bbp		89
32) Chloroform	9.95	83	31612	0.32	ББр		98
33) Tetrahydrofuran	10.18	42	8932	0.32	agg		93
34) 1,2-dichloroethane				0.33	agg		87
36) 1,1,1-trichloroethane	10.75	97	32638	0.33	qqq		98
37) Cyclohexane	11.44	56	12156	0.29			8.9
38) Carbon tetrachloride	11.39	117	33109	0.32			98
39) Benzene	11.37	78	27379	0.31	ppp	.,	96
40) Methyl methacrylate	12.93	41.	8689	0.31		#	84
41) 1,4-dioxane	13.03	88	7797	0.34			95
42) 2,2,4-trimethylpentane	12.19	57		0.30			99
43) Heptane	12.54	43 130	10173	0.27			92
44) Trichloroethene	12.69	130	12806	0.31			97
45) 1,2-dichloropropane	12,79	63	10394	0.33	aqq		95
(#)							

(#) = qualifier out of range (m) = manual integration

Thu Apr 07 13:05:52 2016 MSD1 AN031609.D A316_1UG.M Thu Apr 07 13:05:52 2016

Data File : C:\HPCHEM\1\DATA\AN031609.D Vial: 8 Acq On : 16 Mar 2016 10:42 pm Sample : AlUG_0.30 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:19:57 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response Via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
451		· · · · · · · · · · · · · · · · · · ·		74570		100
46)		13.13	83 7.5	24639	0.32 ppb	98
47)	cis-1,3-dichloropropene	13.91	75	1.3399	0.32 ppb	93
48)	trans-1,3-dichloropropene	14.54	75	11780	0,31 ppb	99
49)	1,1,2-trichloroethane	14.93	97	11103	dqq 88.0	95
51)	Toluene	14.68	92	12431	0.28 ppb	96
52)	Methyl Isobutyl Ketone	13.84	43	23225 B	0.29 ppb	96
53)	Dibromochloromethane	15.61	129	15960m /	0.29 ppb	
54)	Methyl Butyl Ketone	15.12	43	21434m b	dqq 08.0	
55)	1,2-dibromoethane	15.86	107	16758	0.32 ppb	94
56)	Tetrachloroethylene	15.66	164	11766	daa re.o	100
57)	Chlorobenzene	16.61	112	16920	0.31 ppb	83
	1,1,1,2-tetrachloroethane	16.70	131	13253	0.30 ppb	# 85
	Ethylbenzene	16.86	91	20219	0.27 ppb	97
60)	m&p-xylene	17.02	91	30952	dag E2.0	97
61)	Nonane	17.38	43	8544	dqq 25.0	99
62)	Styrene	17.47	104	10322	0.25 ppb	97
63)	Bromoform	17.58	173	8523	0.30 ppb	95
64)	o-xylene	1.7,49	91	17375	0.26 ppb	95
65)	Cumene	18.02	105	22320	0.29 ppb	96
67)	1,1,2,2-tetrachloroethane	17.92	83	24384 😙	0.36 ppb	98
68)	Propylbenzene	18.54	91	27429m P	0.37 ppb	
69)	2-Chlorotoluene	18.58	91	17751m /	0.29 ppb	
70)	4-ethyltoluene	18.70	105	24157m	0.37 ppb	
71)	1,3,5-trimethylbenzene	18.76	105	28602m 🗸	0.35 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	25992	0.37 ppb	94
73)	1,3-dichlorobenzene	19,49	146	15874	dqq EE.0	99
74)	benzyl chloride	19.56	91	19958	0.31 ppb	92
75)	1.4-dichlorobenzene	19.62	146	15212	0.33 ppb	96
76)	1,2,3-trimethylbenzene	19.65	105	32866	0.35 ppb	98
	1,2-dichlorobenzene	19.94	146	20801 /	0.36 ppb	96
78)	1,2,4-trichlorobenzene	21.79	180	13610m /	0.31 ppb	
79)	Naphthalene	22.14	128	30401m /	0.36 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	34640 V	0.29 ppb	93

^(#) = qualifier out of range (m) = manual integration (+) = signals summed AN031609.D A316_1UG.M Thu Apr 07 13:05:53 2016 MSD1

(Ur kevlewed)

Vuallitation Report

 Data File: C:\HPCHEM\1\DATA\AN031610.D
 Vial: 9

 Acq On: 16 Mar 2016 11:18 pm
 Operator: RJP

 Sample: AlUG_0.15
 Inst: MSD #1

 Misc: A316_lUG
 Multiplr: 1.00

MS Integration Params: RTEINT, P Quant Time: Mar 17 08:20:22 2016

Quant Time: Mar 17 08:20:22 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : LUG_RUN

- -						
Internal Standards	R.T.	QIon	Response (Cone Un:	its .	Dev(Min)
 Bromochloromethane 1,4-difluorobenzene 	9.83	120	33%00	1.00		
50) Chlorobenzene-d5	16 67	117	62434	1.00 [
20) Citroroponanaeum.co	70.51	7.1	02434	1.00	Ju	0.00
System Monitoring Compounds						
66) Bromofluorobenzene	18.14	95	36945	0.92	dqc	0.00
	Range 70	- 130	Recovery	⁄ = -	92.	00%
-	_		-			
Target Compounds						Qvalue
2) Propylene	4.15	41	5667	O.23 g	dac	# 100
3) Freon 12	4.19	85	25710	0.18 g		100
4) Chloromethane	4.40	50 85	7532 21243	0.22 p		
5) Freon 114	4,39	85	21243	0.18		
6) Vinyl Chloride	4.59	62	6499	0.19 g		
7) Butane	4.68	43 39	9555 4728m	0.23 p		# 84
8) 1,3-butadiene	4.70	33	4728m y	0.19		99
9) Bromomethane 10) Chloroethane	5.04 5.22	94	8678	0.20 [_
11) Ethanol	5.40	64 45	2747 2336m 1928m	0.19 <u>r</u> 0.24 p	עמיקי	tt /->
12) Acrolein	5.97	56	1928m	0.22		
13) Vinyl Bromide	5.55	106	8288	0.19		97
14) Freon 11	5.81	106 101	26836	0.19	ממנ	100
15) Acetone	6.06	58	2908m	0.22		
16) Pentane	6.08	42	7007	0.23 E		# 74
17) Isopropyl alcohol		45	9697m	0.23		
18) 1,1-dichloroethene	6.56	96	7737	0.18	dac	# 87
19) Freon 113	6.75	101		0.18		96
20) t-Butvl alcohol	6.91	59	14003	0.19 g		并 72
21) Methylene chloride	7.06	84	6447	0.17 g	dqo	84
22) Allyl chloride	7.06	41	6867m	0.22 g		
23) Carbon disulfide	7,21	76	21871	0.20 g	dqo	100
24) trans-1,2-dichloroethene 25) methyl tert-butyl ether	8,02	61	8942	0.18 g	dqc	92
25) methyl tert-butyl ether	8.04 8.40	61 73	16217 !	0.17 p		90
26) 1,1-dichloroethane	8.40	63	12529	0.17 F		97
27) Vinvi acerara	9 4 h	63 43 72	12529 11579m 2686	0.18 p		
28) Methyl Ethyl Ketone	8.98		2686	o.is g		
29) cis-1,2-dichloroethene		61	607B			76
30) Hexane	8.91	57 43	6897	0.16 F	oqq	97
31) Ethyl acetate	9.55	43	10831	0.19 p		
	9.95	83	17226	0.18 p		96 98
33) Tetrahydrofuran 34) 1,2-dichloroethane	10.20	42	4934 9147	0.18 p	opp day	98 87
		97	16611			99
36) 1,1,1-trichloroethane	10.75 11.45	5 6	6376	0.17 p	ACT.	88
37) Cyclohexane 38) Carbon tetrachloride	11.39	117	16991	0.17		97
39) Benzene	11.37	78	14982	2 81.0		98
40) Methyl methacrylate	12.94	41	5374	0.20 p		97
41) 1,4-dioxane	13.03	88	3369	0.15 p		91
42) 2,2,4-trimethylpentane	12.19	57	24737	0.16 p		98
43) Heptane	12.54	43	5155	0.14 p		94
44) Trichloroethene	12.70	130	6486	0.16		94
45) 1,2-dichloropropane	12.80	63	5119	0.17 p		95
			-			

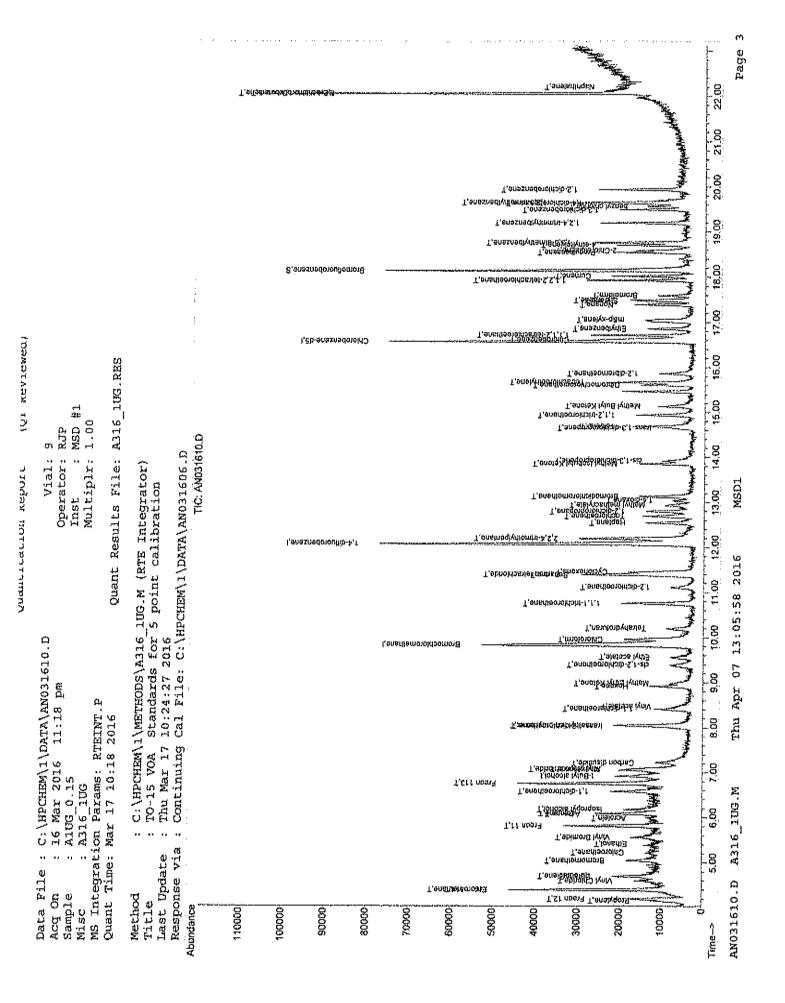
Page 1

^{(#) =} qualifier out of range (m) = manual integration AN031610.D A316_1UG.M Thu Apr 07 13:05:56 2016 MSD1

Data File : C:\HPCHEM\1\DATA\AN031610.D Vial: 9 Acq On : 16 Mar 2016 11:18 pm Sample : A1UG 0.15 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 17 08:20:22 2016 Quant Results File: A316_1UG.RES


Quant Method : C:\HPCHEM\l\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	13275	0.18 ppb	97
	cis-1,3-dichloropropene	13.91	75	6893	0.17 ppb	96
48)		14.64	75	6609	0.18 ppb	94
49)		14.04	97	6109	0.19 ppb	96
51)	Toluene	14.68	92	6141	0.14 ppb	89
52)	Methyl Isobutyl Ketone	13.85	43	11770	0.15 ppb	98
53)	Dibromochloromethane	15.60	129	8932m h	0.17 ppb	20
54)		15.14	43	10426m	0.15 ppb	
-	Methyl Butyl Ketone 1,2-dibromoethane	15.86	107	9583	0.18 ppb	95
55) 56)	* *	15.66	164	5857	0.16 ppb	94
	Chlorobenzene	15.61	112	9263	0.17 ppb	95
58)		16.71	1.31	6442	0.15 ppb	# 68
		16.85	91	11039	0.15 ppb	97
59) 60)	Ethylbenzene m&p-xylene	17.04	91	16137	0.28 ppb	94
61)	Monane	17.38	43	5031	0.15 ppb	88
		17.46	104	5771	0.14 ppb	87
62)	Styrene Bromoform	17.58	173	4415	0.16 ppb	96
63)		17.48	91	10324	0.16 ppb	100
64)	o-xylene	18.01	105	14312	0.10 ppb	98
65)	Cumene 1,1,2,2-tetrachloroethane	17.92	83	15040	0.23 ppb	100
67)				15476m	0.21 ppb	***
	Propylbenzene 2-Chlorotoluene	18.54 18.58	91 91	10441m	0.17 ppb	
69) 70)		18.70	105	12450m	0.21 ppb	
	4-ethyltoluene			13458m &	0.20 ppb	
71)	1,3,5-trimethylbenzene	18.75	105 105	15427	0.20 ppb 0.22 ppb	97
72)	1,2,4-trimethylbenzene	19.19	146	8974	0.19 ppb	98
73)	1,3-dichlorobenzene	19,49			0.13 ppb	94
74)	benzyl chloride	19.56	91 146	11759 7999 a	dqq 81.0	92
75)	1,4-dichlorobenzene	19.62		18207m		
	1,2,3-trimethylbenzene	19.65	105	13054	0.20 ppb 0.23 ppb	92
	1,2-dichlorobenzene	19.94	146			,,
	1,2,4-trichlorobenzene	22.06	180	6492m	0.15 ppb	
	Naphthalene	22.21	128	15909m ~	0.19 ppb	95
80)	Hexachloro-1,3-butadiene	22.06	225	18343	0.16 ppb	3,0

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031610.D A316_1UG.M Thu Apr 07 13:05:57 2016 MSD1

Data File : C:\HPCHEM\1\DATA\AN031611.D Vial: 10 Acq On : 16 Mar 2016 11:55 pm Operator: RJP Sample : A1UG_0,10 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Mar 17 08:20:37 2016

Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	Qïon	Response Co	one V	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.84 12.08 16.57	128 114 117	36456m / ⁰ 101173 65714	1.00 1.00 1.00	dqq	0.03 0.02 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	- 130	39949 Recovery	0.95		0.00
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene 56) Tetrachloroethylene	4.59 11.38 12.70 15.66	62 117 130 164	4562 12433 4819 4679m/}	0.12 0.13 0.12 0.12	dqq	Ovalue 86 99 97

Page 98 of 206

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031611.D A316_1UG.M Thu Apr 07 13:06:00 2016 MSD1

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN031612.D Vial: 11 Acq On : 17 Mar 2016 12:31 am Operator: RJP Sample : AlUG_0.04 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTHINT P Quant Time: Mar 17 08:20:59 2016

Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one Ur	its Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.07 16.57		35586m /\$ 102709 61413	1.00 1.00 1.00	ppb	0.02 0.02 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	36946 Recovery		ppb 94.00\$	0.00
Target Compounds						alue
6) Vinyl Chloride	4.59	62	2447	0.07	ppb	93
38) Carbon tetrachloride	11.38	117	6221	0.06		98
44) Trichloroethene	12.69	130	2436	0.06		96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN031612.D A316_1UG.M Thu Apr 07 13:06:03 2016 MSD1

TOMOTADY

12

Anamereneum nehore

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CALIBRATION VERIFICATION

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA2\AN033104.D Vial: 4 Acq On : 31 Mar 2016 12:19 pm Sample : A1UG_1.0 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Apr 26 14:41:32 2016

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev A	Area%	Dev(min)
1 I	Bromochloromethane	1.000	1.000	0.0	59	0.00
2 T	Propylene	0.810	0.846		67	0.00
3 T	Freon 12	4.271	4.834	~13.2		0.00
4 T	Chloromethane	1.118	1.376		79	0.00
5 T	Freon 114	3.598	4.353	-21.0	73	0.00
6 T	Vinyl Chloride	1.125	1.304	-15.9	77	0.00
77 T.	Butane	1.285	1.598		76	0.00
8 T	1,3-butadiene	0.847	1.012	-19.5	76	0.00
9 T	Bromomethane	1.320	1.512	-14.5	70	0.00
10 T	Chloroethane	0.459	0.517	-12.6	67	0.00
31 T	Ethanol	0.341	0.320	6.2	58	0.00
12 T	Acroleín	0.290	0.341	-17.6	77	0.00
13 T	Vinyl Bromide	1.298	1.349	~3.9	62	0.00
14 T	Freon 11	4.393	4.944	-12.5	69	0.00
15 T	Acetone	0.432	0.490	13.4	73	0.00
16 T	Pentane	0.986	0.811	17.7	52	0.00
17 T	Isopropyl alcohol	1.409	1.401	0.6	65	0.00
18 T	1,1-dichloroethene	1.283	1.320	-2.9	62	0.00
19 T	Freon 113	3.094	3.490	-12.8	67	0.00
20 t	t-Butyl alcohol	2.248	2.530	-12.5	70	0.00
21 T	Methylene chloride	1.124	1.049	6.7	55	0.00
22 T	Allyl chloride	0.998	1.190	-19.2	77	0.00
23 T	Carbon disulfide	3.316	3.226	2.7	60	0.00
24 T	trans-1,2-dichloroethene	1.522	1.486	2.4	58	0.00
25 T	methyl tert-butyl ether 1,1-dichloroethane	2.881	2.890	~0.3	60	0.00
26 T	l,l-dichloroethane	2.155	2.173	-0.8	60	0.00
27 T	Vinyl acetate Methyl Ethyl Ketone	1.869	1.540	17.6	53	0.00
28 T	Metnyi stnyi Ketone	0.461	0.408	11.5	53	0.00
29 T	cis-1,2-dichloroethene	1.250	0.936	25.1	43#	0.00
30 T 31 T	Hexane	1.308	1.129	13.7	50	0.00
31 T	Ethyl acetate	1.784	1.395	21.8	48#	0.00
32 T	Chloroform	2,918	2.785	4.6	57	0.00
34 T	Tetrahydrofuran 1,2-dichloroethane	0.828	0.735	11.2	53	0.00
3 · 1	i, z-dichioroechane	1.641	1.281	21.9	4 7 #	0.00
35 X	1,4-difluorobenzene	1.000	1.000	0.0	43#	0.00
36 T	1,1,1-trichloroethane	0.939	1.159	-23.4	54	0.00
37 T	Cyclohexane	0.387	0.496	-28.2	56	0.00
38 T	Carbon tetrachloride	1.048	1.256	-19.8	57	0.00
39 T	Benzene	0.832	1.005	-20.8	53	0.00
40 T	Methyl methacrylate	0.271	0.298	-10.0	5 O #	0.00
41 T	1,4-dioxane	0.213	0.252	-18.3	51	0.00
42 T	2,2,4-trimethylpentane	1.453	1.749	-20.4	51	0 - 00
43 T	Heptane	0.338	0.361	-6.8	44#	0.00
44 T	Trichloroethene	0.425	0.452	-6.4	50	0.00
45 T	1,2-dichloropropane	0.300	0.369	-23.0	54	0.00
46 T	Bromodichloromethane	0.734	0.852	-16.1	51	0.00
47 T	cis-1,3-dichloropropene	0.400	0.494	-23.5	56	0.00
48 T	trans-1,3-dichloropropene	0.359	0.458	-27.6	57	0.00
49 T	1,1,2-trichloroethane	0.329	0.355	-7.9	49#	0.00

Page 103 of 206

⁽⁴⁾ = Out of Range

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA2\AN033104.D Vial: 4 Acq On : 31 Mar 2016 12:19 pm Sample : AlUG_1.0 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Apr 26 14:41:32 2016
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
51	T	Toluene	0.679	0.529	22.1	45#	0.00
52		Methyl Isobutyl Ketone	1.201	1.101	8.3	52	0.00
53		Dibromochloromethane	0.857	0.866	-1.1	61	0.00
54	\mathbf{T}	Methyl Butyl Ketone	1.068	0.893	16.4	46#	0.00
55	\mathbf{T}	1,2-dibromoethane	0.845	0.958	-13.4	68	0.00
56	\mathbf{T}	Tetrachloroethylene	0.648	0.561	13.4	55	0.00
57	${f T}$	Chlorobenzene	0.891	0.947	-6.3	64	0.00
58	\mathbf{r}	1,1,1,2-tetrachloroethane	0.666	0.767	-15.2	65	0.00
59	\mathbf{T}	Ethylbenzene	1.165	1.208	-3.7	61.	0.00
60	$oldsymbol{x}$	m&p-xylene	0.925	0.902	2.5	58	0.00
61	${f T}$	Nonane	0.552	0.600	-8.7	66	0.00
62	\mathbf{T}	Styrene	0.644	0.732	-13.7	66	0.00
63	T	Bromoform	0.463	1.053	-127.4#	138	0.00
64	${f T}$	o-xylene	1.109	1.288	-16.1	70	0.00
65	\mathbf{r}	Cumene	1.299	1.511	-16.3	74	0.00
66	S	Bromofluorobenzene	0.643	0.775	-20.5	71	0.00
67		1,1,2,2-tetrachloroethane	1,140	1.326	-16.3	73	0.00
68	\mathbf{r}	Propylbenzene	1.379	1.519	-10.2	76	0.00
69		2-Chlorotoluene	1.004	1.144	-13.9	70	0.00
70		4-ethyltoluene	1.183	1.374	-16.1	78	0.00
71		1,3,5-trimethylbenzene	1.416	1.790	-26.4	81	0.00
72		1,2,4-trimethylbenzene	1.224	1.518	-24.0	80	0.00
73		1,3-dichlorobenzene	0.778	0.989	-27.1	77	0.00
74		benzyl chloride	1.110	1.294	-16.6	62	0.00
75		1,4-dichlorobenzene	0.733	0.868	-18.4	71	0.00
76		1,2,3-trimethylbenzene	1.510	1.910	-26.5	77	0.00
77		1,2-dichlorobenzene	0.954	1.182	-23.9	77	0.00
78		1,2,4-trichlorobenzene	0.720	0.662	8.1	57	0.00
79	T	Naphthalene	1.494	1.537	-2.9	70	0.00
80	T	Hexachloro-1,3-butadiene	1.754	1.723	1.8	54	0.00

Data File : C:\HPCHEM\1\DATA2\AN033104.D Vial: 4 Acq On : 31 Mar 2016 12:19 pm Sample : AlUG_1.0 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Mar 31 12:43:55 2016

Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Ui			
1) Bromochloromethane	9.83	128	21478m /	1 00	rayah		0.02
35) 1,4-difluorobenzene	12.02	774	48888	1.00	ppp		0.02
50) Chlorobenzene-d5	16 57	117	36495				0.01
50) C114 O1 ODG112 G116 - G2	10.57	* **	30433	1.00	ppo		
System Monitoring Compounds							
66) Bromofluorobenzene	18.14	95	28268	1.20	dqq		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	ry =	120	.00%	
						_	-
Target Compounds					1-		alue
2) Propylene	4.14	سو پاتو	18168	1.04			
3) Freon 12	4.20		103821	7 1.13			100
4) Chloromethane	4.40			1.23			91
5) Freon 114	4.40		93501	1.21			87
6) Vinyl Chloride	4,60	62	28017	1.16			96
7) Butane	4.69		34332 21729m	1.24 1.19			70
8) 1.3-butadiene	4.70		21.723111				99
9) Bromomethane	5.05			1.15			97
10) Chloroethane	5.22		11107 6863m				27 4
11) Ethanol	5.53		22325	0.34			
12) Acrolein	6.10	106	7332m				96
13) Vinyl Bromide	5.57 5.82			1.04			98
14) Freon 11			106189	1.13 1.14			20
15) Acetone	6.16		10527m				86
16) Pentane	6.10 6.30			0.82			60
17) Isopropyl alcohol			30088m 28353				90
18) 1,1-dichloroethene	6.59		74948	1.03			94
19) Freon 113	6.76 7.06		54341m	1.13			24
20) t-Butyl alcohol	7.07	94	22522	0.93			89
21) Methylene chloride	7.06		i				0,5
22) Allyl chloride 23) Carbon disulfide	7.23		69279	0.97			98
24) trans-1,2-dichloroethe			31915m	1			
25) methyl tert-butyl ethe			62077	1.00			95
26) 1,1-dichloroethane	8.42	63	46664	1.01			99
27) Vinyl acetate	8.52	43	33086m	0.82			
28) Methyl Ethyl Ketone				0.89			
29) cis-1,2-dichloroethene	9.38			0.75	daa		96
30) Hexane	8.93	57	24255	0.86			92
31) Ethyl acetate	9.60		29969	0.78			99
32) Chloroform	9.97	83	59806	0.95			99
33) Tetrahydrofuran	10.26	42	15794	0.89	daa		89
34) 1,2-dichloroethane	11.13	62	27519	0.78	daa		90
36) 1,1,1-trichloroethane	10.77	97	56681m	1.23			
37) Cyclohexane	11.45	56	24249	1.28		#	85
38) Carbon tetrachloride	11.40	117	61417m	1.20			
39) Benzene	11.38	78	49155	1.21			97
40) Methyl methacrylate	12.95	41	14556	1.10		#	76
41) 1,4-dioxane	13.08	88	12319	1.19			99
42) 2,2,4-trimethylpentane	12.20	57	85481m U				
43) Heptane	12.55	43	17670	1.07			95
44) Trichloroethene	12.70	130	22115	1.06			97
45) 1,2-dichloropropane	12.81	63	18046	1.23			100
						** **	~

^{(#) =} qualifier out of range (m) = manual integration AN033104.D A316_1UG.M Tue Apr 26 14:47:16 2016 MSD1

Data File: C:\HPCHEM\1\DATA2\AN033104.D
Acq On: 31 Mar 2016 12:19 pm
Sample: A1UG_1.0
Misc: A316_1UG
MS_Integration Parame: PTEINT P Vial: 4 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 12:43:55 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.13	 83	41651m	1.16 ppb	100 MA MA REF WITH REF TO
47)		13.92	75	24149	1.24 ppb	97
48)		14.71	75	22400m	1.28 ppb	•
49)		14.94	97	17373m	1.08 ppb	
51)	Toluene	14.69	92	19295	0.78 ppb	99
52)	Methyl Isobutyl Ketone	13.88	43	40189	0.92 ppb	97
53)	Dibromochloromethane	15.61	129	31600m	1.01 ppb	
54)	Methyl Butyl Ketone	15.17	43	32594	0.84 ppb	91
55)	1,2-dibromoethane	15.87	107	34960	1.13 ppb	96
56)	Tetrachloroethylene	15.67	164	20482	0.87 ppb	97
57)	Chlorobenzene	16.62	112	34556	1.06 ppb	90
58)	1,1,1,2-tetrachloroethane	16.72	131	27987	1,15 ppb	95
59)	Ethylbenzene	16.86	91	44081	1.04 ppb	100
60)	m&p-xylene	17.05	91	65852	1.95 ppb	96
61)	Nonane	17.39	43	21909	1.09 ppb	94
62)	Styrene	17.47	104	26727	1.14 ppb	89
63)	Bromoform	17.59	173	39427	2.28 ppb	99
64)	o-xylene	17.49	91	46990	1.16 ppb	96
65)	Cumene	18.02	105	55145) 1.16 ppb	98
67)	1,1,2,2-tetrachloroethane	17.93	83	55145 48409m	i.16 ppb	
	Propylbenzene	18.54	91	22443111	I.IU ppo	
69)		18.58	91	41764m	1.14 ppb	
70)	<u> </u>	18.70	105	50153m	1.16 ppb	
71)	1,3,5-trimethylbenzene	18.76	105	65318m	1.26 ppb	
72)	,	19.19	105	55409	1.24 ppb	93
73)	1,3-dichlorobenzene	19.49	146	36108	1.27 ppb	98
74)	•	19.57	91	47227	1.17 ppb	99
75)		19.62	146	31681	1.18 ppb	96
	1,2,3-trimethylbenzene	19.65	105	69701	1.26 ppb	96
	1,2-dichlorobenzene	19.94	146	43140	1.24 ppb	97
78)		21.78	180	24145m ∫	0.92 ppb	
79)	Naphthalene	22.12	128	56077mi		,
80)	Hexachloro-1,3-butadiene	22.06	225	62867	dqq 80.0	95

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AN040102.D Vial: 18 Acq On : 1 Apr 2016 12:06 pm Operator: RJP Sample : Alug_1.0 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Title : TO-15 VOA BEARCETT TO-15 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	Area* Dev(min)
1	I	Bromochloromethane	1.000	1.000	0.0	55 0.00
	${f T}$	Propylene		0.860	-6.2	64 0.01
	${f T}$	Freon 12	4.271	5.108		
	\mathbf{r}	Chloromethane	1.118	1.325		
	T	Freon 114	3.598	4.429	~23.1	69 0.00
6		Vinyl Chloride	1.125	1.238	-10.0	69 0.00
	Т	Butane	1.285	1.396	-8.6	63 0.00
	T	1,3-butadiene	0.847	1.054	-24.4	75 0.00
9		Bromomethane	1.320	1.586	-20.2	69 0.00
10		Chloroethane	0.459	0.543	-18.3	
11		Ethanol	0.341	0.349	-2.3	
	\mathbf{r}	Acrolein	0.290	0.363	-25.2	
13		Vinyl Bromide	1.298	1.449	-11.6	
1.4		Freon 11	4.393	5.147	-17.2	
15		Acetone	0.432	0.484	-12.0	
16		Pentane	0.986	0.987	-0.1	59 ~0.01
1.7		Isopropyl alcohol	1.409	1.659	- 17.7	
2.8		1,1-dichloroethene	1.283	1.351	-5.3	59 -0.01
19		Freon 113	3.094	3.971	-28.3	72 0.00
20			2 248	2.923	-30.0#	76 -0.14
21		Methylene chloride	2.248 1.124	1.260	-12.1	62 -0.01
22		Allyl chloride	0.998	0.900	9.8	55 -0.03
23		Carbon disulfide			-7.9	62 0.00
24		trans-1,2-dichloroethene	3.316 1.522	1.525	-0.2	
25		methyl tert-butyl ether	2.881	3.223	-11.9	
36		1,1-dichloroethane	2.155		-11.9 -4.6	
27		Vinyl acetate	1.869		16.3	
28		Vinyl acetate Methyl Ethyl Ketone	0.461		-6.3	
29		cis-1,2-dichloroethene	1.250			60 ~0.07
30		Hexane	1.308		~0.7	54 0.00
31		Ethyl acetate	1.784		8.6	50 -0.02
32		Chloroform	2.918	2.995	~7.0	61 -0.05
33			0.828		-2.6	58 -0.02
34		1,2-dichloroethane	1.641	1.586	~3.3	58 -0.07
			1.041	7.000	3,4	55 -0.03
35		1,4-difluorobenzene	1.000	1.000	0.0	41# -0.02
36		1,1,1-trichloroethane	0.939	1.190	-26.7	52 0.00
37		Cyclohexane	0.387	0.481	-24.3	51 0.00
38		Carbon tetrachloride	1.048	1.339	-27.8	57 0.00
39	\mathbf{T}	Benzene	0.832	1.008	-21.2	50 0.00
40	${f T}$	Methyl methacrylate	0.271	0.361	-33.2#	
41	\mathbf{T}	1,4-dioxane	0.213	0.274	-28.6	52 -0.06
42	T	2,2,4-trimethylpentane	1.453	1.814	-24.8	50 0.00
	T	Heptane	0.338	0.359	-6,2	41# -0.01
	${f T}$	Trichloroethene	0.425	0.509	-19.8	53 -0.01
	T	1,2-dichloropropane	0.300	0.356	-18.7	49# -0.02
46	$\mathbf{T}^{\mathbf{r}}$	Bromodichloromethane	0.734	0.874	-19.1	49# ~0.01
47	T	cis-1,3-dichloropropene	0.400	0.494	-23.5	52 -0.01
48	T	trans-1,3-dichloropropene	0.359	0.474	-32.0#	56 -0.07
49	${f T}$	1,1,2-trichloroethane	0.329	0.373	-13.4	48# 0.00
		.u. m				

Page 108 of 206

^{(#) =} Out of Range

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AN040102.D Vial: 18 Acq On : 1 Apr 2016 12:06 pm Sample : A1UG 1.0 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Apr 26 14:41:32 2016

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	4rea%	Dev(min)
51	T	Toluene	0.679	0.557	1.8.0	42#	0.00
52	\mathbf{T}	Methyl Isobutyl Ketone	1.201	1.409	-17.3	59	-0.04
53	\mathbf{T}	Dibromochloromethane	0.857	0.927	-8.2	58	0.00
54	\mathbf{T}	Methyl Butyl Ketone	1.068	1.207	~13.0	56	~0.04
55	Д,	1,2-dibromoethane	0.845	0.973	-15.1	62	-0.01
56	T	Tetrachloroethylene	0.648	0.571	11.9	50	0.00
57	T	Chlorobenzene	0.891	0.974	-9.3	59	0.00
58	${f T}$	1,1,1,2-tetrachloroethane	0.666	0.781	-17.3	60	0.00
59	T	Ethylbenzene	1.165	1.154	0.9	52	0.00
60	${f T}$	m&p-xylene	0.925	0.859	7.1	49#	0.00
61	${f T}$	Nonane	0.552	0.573	~3.8	56	0.00
62	\mathfrak{A}	Styrene	0.644	0.694	-7.8	56	0.00
63	${f T}$	Bromoform	0.463	0.980	-111.71	115	0.00
64	\mathbf{T}	o-xylene	1.109	1.256	-13.3	62	0.00
65	${f T}$	Cumene	1.299	1.506	-15.9	66	0.00
66	s	Bromofluorobenzene	0.643	0.691	-7.5	57	0.00
67	T	1,1,2,2-tetrachloroethane	1.140	1.420	-24,6	70	0.00
68	\mathbf{T}	Propylbenzene	1.379	1.604	-16.3	72	0.00
69	T	2-Chlorotoluene	1.004	1.104	-10.0	61	0.00
70	\mathbf{T}	4-ethyltoluene	1.183	1.394	-17.8	71.	0.00
71	\mathbf{T}	1,3,5-trimethylbenzene	1.416	1.788	-26.3	72	0.00
72	T	1,2,4-trimethylbenzene	1.224	1.474	-20.4	70	0.00
73	\mathbf{T}	1,3-dichlorobenzene	0.778	0.938	-20.6	65	0.00
74	\mathbf{T}	benzyl chloride	1.110	1.073	3.3	46#	0.00
75	${f T}$	1,4-dichlorobenzene	0.733	0.918	-25.2	67	0.00
76	T	1,2,3-trimethylbenzene	1.510	1.939	-28.4	70	0.00
77	${f T}$	1,2-dichlorobenzene	0.954	1.228	-28.7	71	0.00
78	\mathbf{T}	1,2,4-trichlorobenzene	0.720	0.627	12.9	49#	0.00
79	T	Naphthalene	1,494	1.654	-10.7	67	0.00
80	T	Hexachloro-1,3-butadiene	1.754	2.142	~22.1	60	0.00

Page 109 of 206

Multiplr: 1.00

Data File : C:\HPCHEM\1\DATA\AN040102.D Vial: 18 Operator: RJP Acq On : 1 Apr 2016 12:06 pm Sample : A1UG_1.0 Misc : A316_1UG Inst : MSD #1

MS Integration Params: RTEINT.P Quant Time: Apr 01 12:45:47 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : UG_RUN

Internal Standards R.T. QIon Response Conc Units Dev(Mir 1) Bromochloromethane 9.82 128 20214m 1.00 ppb 0.0 35) 1,4-difluorobenzene 12.06 114 45908 1.00 ppb 0.0 50) Chlorobenzene-d5 16.57 117 32719m 1.00 ppb 0.0 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 22624 1.07 ppb 0.0 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00%
35) 1,4-difluorobenzene 12.06 114 45908 1.00 ppb 0.05 16.57 117 32719m 1.00 ppb 0.05 16.57 11
50) Chlorobenzene-d5 16.57 117 32719m / 1.00 ppb 0.0 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 22624 1.07 ppb 0.0 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00%
System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 22624 1.07 ppb 0.0 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00%
66) Bromofluorobenzene 18.14 95 22624 1.07 ppb 0.0 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00%
Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00%
Target Compounds Qvalue
2) Propylene 4.15 41 17376 1.06 ppb # 10
3) Freon 12 4.20 85 103246 1.20 ppb S
4) Chloromethane 4.40 50 26785m / 1.19 ppb
5) Freon 114 4.40 85 89518 1.23 ppb 10
7) Butane 4.69 43 28227 1.09 ppb 5 8) 1,3-butadiene 4.70 39 21303 1.24 ppb 5
9) Bromomethane 5.04 94 32059 1.20 ppb
10) Chloroethane 5.22 64 10984 1.19 ppb
11) Ethanol 5.39 45 7055 1.02 ppb # 8
12) Acrolein 5.98 56 7347 1.25 ppb #
13) Vinyl Bromide 5.56 106 29294 1.12 ppb 9
14) Freon 11 5.81 101 104032 1.17 ppb 15) Acetone 6.07 58 9780 1.12 ppb # 7
16) Pentane 6.08 42 19954 1.00 ppb 9
17) Isopropyl alcohol 6.19 45 33525 1.18 ppb # 4
17) Isopropyl alcohol 6.19 45 33525 1.18 ppb 4 18) 1,1-dichloroethene 6.57 96 27316 1.05 ppb 5 19) Freon 113 6.76 101 80263 1.28 ppb 9
19) Freon 113 6.76 101 80263 1.28 ppb
20) t-Butyl alcohol 6.92 59 59090 1.30 ppb # 7
21) Methylene chloride 7.06 84 25478 1.12 ppb
22) Allyl chloride 7.03 41 18186 0.90 ppb 8
23) Carbon disulfide 7.22 76 72346 1.08 ppb
24) trans-1,2-dichloroethene 8.03 61 30818 1.00 ppb
25) methyl tert-butyl ether 8.04 73 65147 1.12 ppb
26) 1,1-dichloroethane 8.41 63 45588 1.05 ppb
27) Vinyl acetate 8.45 43 31630 0.84 ppb 9
28) Methyl Ethyl Ketone 8.96 72 9904 1.06 ppb # 10
29) cis-1,2-dichloroethene 9.37 61 25440 1.01 ppb 30) Hexane 8.91 57 24173 0.91 ppb
31) Ethyl acetate 9.55 43 38569 1.07 ppb
32) Chloroform 9.95 83 60541 1.03 ppb 9
33) Tetrahydrofuran 10.18 42 17273 1.03 ppb 8
34) 1,2-dichloroethane 11.10 62 32062 2 0.97 ppb
36) 1,1,1-trichloroethane 10.76 97 54630m 1.27 ppb
37) Cyclohexane 11.45 56 22079m 1.24 ppb
38) Carbon tetrachloride 11.39 117 61482m 1.28 ppb
39) Benzene 11.38 78 46254 1.21 ppb
40) Methyl methacrylate 12.93 41 16559 1.33 ppb # 8
41) 1,4-dioxane 13.02 88 12565m 1.29 ppb
42) 2,2,4-trimethylpentane 12.20 57 83264m 1.25 ppb
43) Heptane 12.54 43 16478 1.06 ppb 9
44) Trichloroethene 12.68 130 23365 1.20 ppb
45) 1,2-dichloropropane 12.79 63 16364 1.19 ppb

^{(#) =} qualifier out of range (m) = manual integration AN040102.D A316 1UG.M Tue Apr 26 14:48:42 2016

Data File : C:\HPCHEM\1\DATA\AN040102.D Vial: 18 Acq On : 1 Apr 2016 12:06 pm Sample : AlUG 1.0 Misc : A316 lUG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Apr 01 12:45:47 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316 1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	Ř.Т.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	40101m () 1.19 ppb	
47)	cis-1,3-dichloropropene	13.91	7.5	22657m ¹	1.23 ppb	
48)	trans-1,3-dichloropropene	14.64	75	21777m	1.32 ppb	
49)	1,1,2-trichloroethane	14.94	97	17117m	1.13 ppb	
51)	Toluene	14.68	92	18210	0.82 ppb	91
52)	Methyl Isobutyl Ketone	13.85	43	46116m	1.17 ppb	
53)	Dibromochloromethane	15.60	129	30338m	1.08 ppb	
54)	Methyl Butyl Ketone	15.12	43	39487	1.13 ppb	93
55)	1,2-dibromoethane	15.86	107	31830m	0 1.15 ppb	
56)	Tetrachloroethylene	15.66	164	18677	dqq 88.0	96
57)	Chlorobenzene	16.62	112	32861	1.09 ppb	87
	1,1,1,2-tetrachloroethane	16.71	131	25554	1.17 ppb	96
59)	Ethylbenzene	16.85	91	37742	0.99 ppb	1.00
60)	m&p-xylene	17.04	91	56187	1.86 ppb	96
61)	Nonane	17.38	43	18742	1.04 ppb	94
62)	Styrene	17.46	104	22713	1.08 ppb	89
63)	Bromoform	17.59	173	32049	2.12 ppb	100
64)	o-xylene	17.49	91	41105	1.13 ppb	100
65)	Cumene	18.02	105	49282	1.16 ppb	99
67)	1,1,2,2-tetrachloroethane	17.92	83	46449m	f^3 1.24 ppb	
	Propylbenzene	18.54	91	52486m °) 1.16 ppb	
	2-Chlorotoluene	18.58	91	36127m	1.10 ppb	
	4-ethyltoluene	18.70	105	45616m	1.18 ppb	
71)	1,3,5-trimethylbenzene	18.76	105	58514m	1.26 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	48219m	1.20 ppb	
73)	1,3-dichlorobenzene	19.49	146	30703m	1.21 ppb	
74)	benzyl chloride	19.56	91	35105m	0.97 ppb	
75)	1,4-dichlorobenzene	19.62	146	30034	1.25 ppb	98
	1,2,3-trimethylbenzene	19.65	105	63436m	1.28 ppb	
77)	1,2-dichlorobenzene	19.94	146	40179m	1.29 ppb	
	1,2,4-trichlorobenzene	21.79	180	20515m	0.87 ppb	
79)	Naphthalene	22.12	128	54113m	1.11 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	70093	1.22 ppb	96

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AN040203.D Vial: 3 Acq On : 2 Apr 2016 12:08 pm Operator: RJP Sample : AlUG_1.0 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Apr 26 14:41:32 2016

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	ÄvgRF	CCRF	*Dev	Area%	Dev(min)
1	. I	Bromochloromethane	1.000	1.000	0.0		-0.02
	T	Propylene	0.810		-21.6		
	Т	Freon 12	4.271	5.043	-18 1	72	0.00
	T	Chloromethane	1.118	5.043 1.345		78 83	0.00
	Т	Freon 114	3.598	4.247	-18.0	77	
	T	Vinyl Chloride	1.125	1.234	~9.7		
7		Butane	1.285	1 409	-9.6	73	
8	T	1,3-butadiene	0.847	0.933	-10.2	76	0.00
9	r	Bromomethane		1.496	-13.3		0.00
10	T	Chloroethane	0.459		-12.0		
	T	Ethanol	0.341	0.374	~9.7		
12	${f T}$	Acrolein	0.290		-13.1		
	${f T}$	Vinyl Bromide	1.298	1.457	-12.2		
1.4	${f T}$	Freon 11	4.393	4.716	-7.4	71	
	${f T}$	Acetone	0.432	0.490	-13.4	80	
	T,	Pentane	0.986		-4.1	71	
3.7	T	Isopropyl alcohol	1.409	1.424	-1.1		-0.14
	${f T}$	1,1-dichloroethene	1.283	1.515			-0.02
19	T	Freon 113	3.094	3.880	-18.1 -25.4	éi.	
	t		2.248	2.364	-5.2	71	-0.16
	${f T}$	Methylene chloride	7.124	1.335			-0.02
	'I'	Allyl chloride	1.124 0.998	1.164	-16.6	82	-0.04
	\mathbf{T}	Carbon disulfide	3 336	3.791	-14.3	76	-0.01
	ייבי	trans-1,2-dichloroethene	3 522	1 709			~0.03
25		methyl tert-butyl ether	2.881 2.155	3 445	-19.6		-0.08
26		methyl tert-butyl ether 1,1-dichloroethane	2.155	3.446 2.421	-12.3		-0.02
27		VIIIVI ACCELLATE	1.869	2.086			~0.08
28		Methyl Prhyl Retone		0.554	-20.2		-0.09
29		cis-1,2-dichloroethene	1.250	1 436	-74 9		~0.03
30		Hexane	1.308	1.436 1.479	-14.9 -13.1	72	-0.01
31		Ethyl acetate	1.784		-18.7	79	-0.07
32		Chloroform			-2.2		-0.02
33		Tetrahydrofuran	2.918 0.828	1.007	-21.6		-0.02
34		1,2-dichloroethane	1.641	1.643	-0.1		-0.04
		,		1.015	har water	00	-0.04
35	I	1,4-difluorobenzene	1.000	1.000	0.0	54	-0.02
36	T	1,1,1-trichloroethane	0.939	1.138	-21.2		-0.02
37	\mathbf{T}	Cyclohexane	0.387	0.487	-25.8		-0.01
38	\mathbf{T}	Carbon tetrachloride	1.048		-13.3		0.00
39	\mathbf{T}	Benzene	0.832	0.997	~19.8	66	0.00
40	T.	Methyl methacrylate		0.307	-13.3		
41	Ţ	1,4-dioxane	0.213	0.234	-9.9		-0.07
42	T	2,2,4-trimethylpentane	1.453	2.014	-38.6#		-0.01
43	${f T}$	Heptane	0.338	0.399	-18.0		-0.02
44	Ţ	Trichloroethene	0.425	0.504	-18.6		-0.01
45		1,2-dichloropropane	0.300	0.367	-22.3		-0.02
46	\mathbf{T}	Bromodichloromethane	0.734	0.877	-19.5		-0.01
47	Т	cis-1,3-dichloropropene	0.400	0.506	-26.5		~0.02
48	T	trans-1,3-dichloropropene	0.359	0.421	-17.3		-0.07
49	${f T}$	1,1,2-trichloroethane	0.329	0.379	-15.2		-0.01
		P M V			· **	10° 10	

Page 113 of 206

^{(#) =} Out of Range

Evaluate Continuing Calibration Report

Data File: C:\HPCHEM\1\DATA\AN040203.D
Acq On: 2 Apr 2016 12:08 pm
Sample: AlUG_1.0
Misc: A316_1UG Vial: 3 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Apr 26 14:41:32 2016
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Areas	Dev(min)
51.		Toluene	0.679	0.582	1.4.3	63	0.00
52	${f T}$	Methyl Isobutyl Ketone	1.201	0.907	24.5	54	-0.04
53	T	Dibromochloromethane	0.857	0.954	-11.3	85	0.00
54	\mathbf{T}	Methyl Butyl Ketone	1.068	0.764	28.5	50	-0.05
55	\mathbf{T}	1,2-dibromoethane	0.845	1.005	-18.9	91	-0.02
56	T '	Tetrachloroethylene	0.648	0.517	20.2	65	0.00
57	${f T}$	Chlorobenzene	0.891	1.037	-16.4	90	0.00
58	${f T}$	1,1,1,2-tetrachloroethane	0.666	0.752	-12.9	82	-0.01
59	${f T}$	Ethylbenzene	1.165	1.295	-11.2	83	0.00
60	${f T}$	m&p-xylene	0.925	0.999	-8.0	81	-0.01
61	${f T}$	Nonane	0.552	0.667	-20.8	93	0.00
62	${f T}$	Styrene	0.644	0.778	-20.8	89	0.00
63		Bromoform	0.463	0.896	-93.5#	150#	0.00
64	T'	o-xylene	1.109	1,288	-16.1	90	0.00
65	${f T}$	Cumene	1.299	1.563	~20.3	98	0.00
66	S	Bromofluorobenzene	0.643	0.711	-10.6	83	0.00
67	\mathbf{T}	1,1,2,2-tetrachloroethane	1.140	1.377	-20.8	97	0.00
68	${f T}$	Propylbenzene	1.379	1.719	-24.7	110	0.00
69		2-Chlorotoluene	1.004	1.253	-24.8	98	0.00
70	${f T}$	4-ethyltoluene	1.183	1.500	-26.8	108	0.00
71	7.	1,3,5-trimethylbenzene	1.416	1.777	-25.5	102	0.00
72		1,2,4-trimethylbenzene	1.224	1.376	-12.4	93	0.00
73	\mathbf{T}	1,3-dichlorobenzene	0.778	0.961	-23.5	95	0.00
74	T	benzyl chloride	1.110	1.170	-5.4	72	0.00
75		1,4-dichlorobenzene	0.733	0.867	-18.3	90	0.00
76	T	1,2,3-trimethylbenzene	1.510	1.781	-17.9	91	0.00
77		1,2-dichlorobenzene	0.954	1.145	-20.0	95	0.00
78	T	1,2,4-trichlorobenzene	0.720	0.532	26.1	59	0.00
79	${f T}$	Naphthalene	1.494	1.148	23.2	66	0.00
80	Ţ	Hexachloro-1,3-butadiene	1.754	1.408	19.7	56	0.00

Data File : C:\HPCHEM\1\DATA\AN040203.D Vial: 3 Acq On : 2 Apr 2016 12:08 pm Sample : AlUG_1.0 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

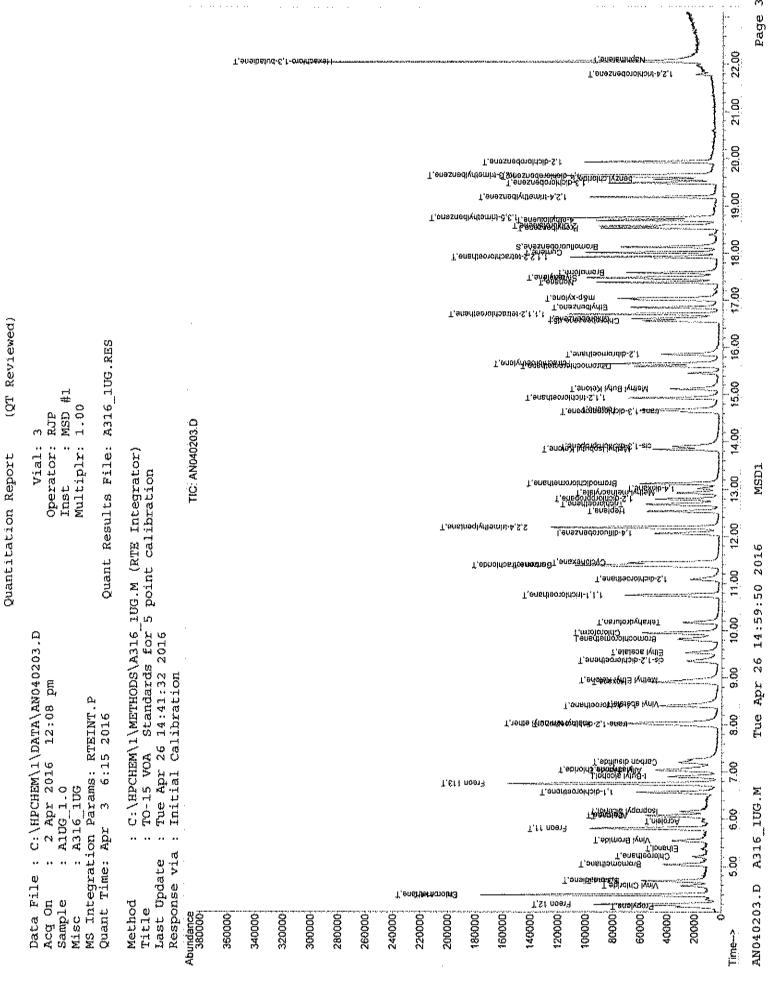
Quant Time: Apr 03 06:13:09 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : lUG_RUN

Inte	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1)	Bromoch) oromethane	0.01	120	23340m 🖍	1.00	dqq		0.00
35)	1,4-difluorobenzene	12.06	$\frac{114}{117}$	60425	1.00	ppb		0.00
50)	Chlorobenzene-d5	16.56	117	46554	1.00	dqq		0.00
Syst	em Monitoring Compounds							
66)	Bromofluorobenzene	18.13	95	33085	1.10	dqq		0.00
sp.	iked Amount 1.000	Range 70	- 130	Recover	Y =	110	.00%	
Targ	et Compounds						Qva	alue
	Propylene	4.15	41	23001	1.22	dqq	#	100
	Freon 12	4.19	85	117694	1.18	dgg		100
4)	Chloromethane	4.39	50	31394	1.20			91
5)	Freon 114	4.39	85	99129	1.18			98
	Vinyl Chloride	4.59	62	28806	1.10			91
	Butane	4.68	43		1.10			93
	1,3-butadiene	4.69	39	21775	1.10			79
	Bromomethane	5.04	94	34909	1.13			93
	Chloroethane	5.21	64	11994	1.12			90
	Ethanol	5.37	45					72
	Acrolein	5.95	56	8735 7667m /	1.13			
	Vinyl Bromide	5.54	106	34003	1.12			97
	Freon 11	5.80	101	110074	1.07			99
	Acetone	6.06	58	11425	1.13			72
	Pentane	6.07	42	23948	1.04			91
	Isopropyl alcohol	6.16	45	33227	1.01			46
18)	1,1-dichloroethene	6.57	96	35358	1.18			100
	Freon 113	6.75	101	90548	1.25			92
	t-Butyl alcohol	6.90	59	55178	1.05			77
	Methylene chloride	7.05	84	31160	1.19		"	91
	Allyl chloride	7.02	41	27173	1.17			86
	Carbon disulfide	7.21	76	88486	1.14			98
	trans-1,2-dichloroethene		61	39889	1.12			91
	methyl tert-butyl ether		73	80441	1.20			92
26)	1,1-dichloroethane	8.40	63	56508	1.12			98
	Vinyl acetate	8.44	43	48681	1.12			98
28)	Methyl Ethyl Ketone	8.95	72	12927	1.20			100
29)	cis-1,2-dichloroethene		61		1.15			92
30)	Hexane	8.91	67	34528	1.13			95
31)	Ethyl acetate	9.53	57 43	49400	1.19	かわか		96
	Chloroform	9.95	83	69579	1.02	P P P		99
33)	Tetrahydrofuran	10.16	42	23510	1.22			92
34)	1,2-dichloroethane	11.08	62	38354	1.00			88
36)	1,1,1-trichloroethane	10.75	97	68741	1.21			98
				16.1				20
37)	Cyclohexane	11.44	56	29399m ()	1.26			97
38)	Carbon tetrachloride	11.39	117	71711	1.13			
39)	Benzene	11.37	78	60241	1.20			99
40)	Methyl methacrylate	12.92	41	18539m /	1.13			100
41)	1,4-dioxane	13.01	88	14154	1.10			100
42)	2,2,4-trimethylpentane	12.19	57	121680m	1.39			
	Heptane	12.53	43	24121	1.18			92
44)	Trichloroethene	12.68	130	30434	1.19			98
45)	1,2-dichloropropane	12.79	63	22191	1.22	$\dot{\sigma}$		97

^{(#) =} qualifier out of range (m) = manual integration AN040203.D A316 1UG.M Tue Apr 26 14:59:49 2016

MSD1


Vial: 3 Data File : C:\HPCHEM\1\DATA\AN040203.D Acq On : 2 Apr 2016 12:08 pm Sample : A1UG_1.0 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 03 06:13:09 2016 Quant Results File: A316_1UG.RES

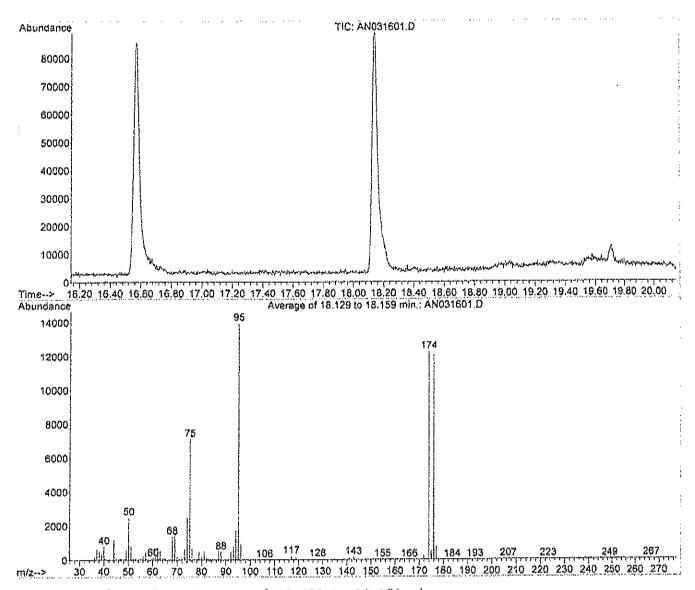
Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
uu 107 310 100						***
46)	Bromodichloromethane	13.12	83	52994	1.19 ppb	100
47)	cis-1,3-dichloropropene	13.90	75	30596m	7, 1.27 ppb	
48)	trans-1,3-dichloropropene	14.64	75	25414m	1.17 ppb	
49)	1,1,2-trichloroethane	14.93	97	22894m	1.15 ppb	
51)	Toluene	14.68	92	27083	0.86 ppb	96
52)	Methyl Isobutyl Ketone	13.84	43	42214	0.76 ppb	98
53)	Dibromochloromethane	15.60	129	44419m	, 1.11 ppb	
54)	Methyl Butyl Ketone	15.12	43	35579	0.72 ppb	96
55)	1,2-dibromoethane	15.85	107	46773	1.19 ppb	96
56)	Tetrachloroethylene	15.66	164	24068	dqq 08.0	100
57)	Chlorobenzene	16.61	112	48270	1.16 ppb	91
58)	1,1,1,2-tetrachloroethane	16.70	131	34997	1.13 ppb	96
59)	4	16.85	91	60302	1.11 ppb	98
60)	m&p-xylene	17.04	91	93017	2.16 ppb	93
61)	Nonane	17,38	43	31062	1.21 ppb	97
62)	Styrene	17.46	104	36214	1.21 ppb	89
63)	Bromoform	17.59	173	41735	1.94 ppb	99
64)	o-xylene	17.49	91	59958	1.16 ppb	89
65)	Cumene	18.01	105	72750	1.20 ppb	98
67)	1,1,2,2-tetrachloroethane	17.92	83	64100	1.21 ppb	97
68)	Propylbenzene	18.54	91	80019m (/) 1.25 ppb	
69)	2-Chlorotoluene	18.58	91	58353m) 1.25 ppb	
70)		18.70	105	6981.9m	1.27 ppb	
71)	1,3,5-trimethylbenzene	18.75	105	82710m J	/ 1.25 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	64048	1.12 ppb	92
73)	1,3-dichlorobenzene	19.49	146	44739	1.23 ppb	98
74)	benzyl chloride	19.56	91	54469	1.05 ppb	100
75)	1,4-dichlorobenzene	19.62	146	40353	1.18 ppb	95
76)	1,2,3-trimethylbenzene	19.65	105	82929	1.18 ppb	97
77)	1,2-dichlorobenzene	19.94	146	53322	1.20 ppb	94
78)	1,2,4-trichlorobenzene	21.79	180	24786m	0.74 ppb	
79)	Naphthalene	22.11	128	53453m	(0.77 ppb	
80)	Hexachloro-1,3-butadiene	22.07	225	65564	તવુવ 08.0	97

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW DATA


Data File : C:\HPCHEM\1\DATA\AN031601.D

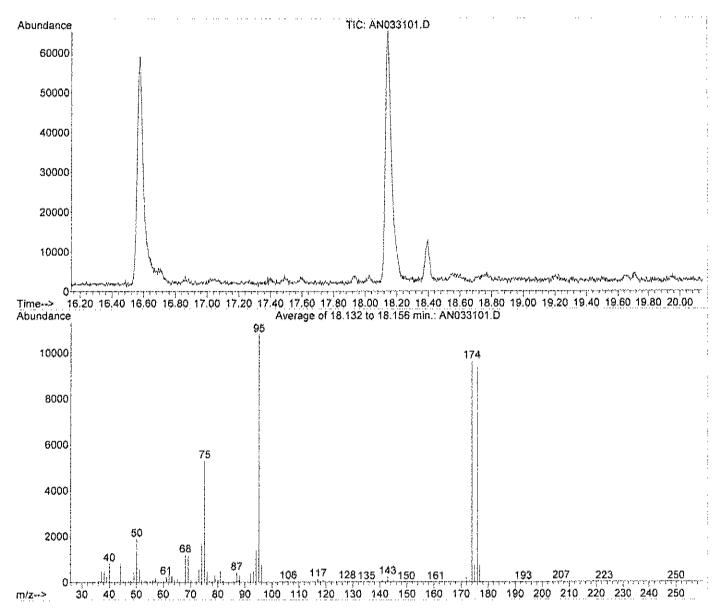
Acq On : 16 Mar 2016 5:26 pm

Sample : BFBIUG Misc : A316_1UG Vial: 1 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.129 to 18.159 min.


9	ower Upper	Rel.	Raw	Result
	imit% Limit%	Abn%	Abn	Pass/Fail
50 95	8 40	18.0	2513	PASS PASS PASS PASS PASS PASS PASS PASS
75 95	30 66	51.1	7135	
95 95	100 100	100.0	13975	
96 95	5 9	6.7	936	
173 174	0.00 2	0.6	79	
174 95	50 120	87.9	12278	
175 174	4 9	4.1	498	
176 174	95 101	98.5	12090	
177 176	5 9	6.9	829	

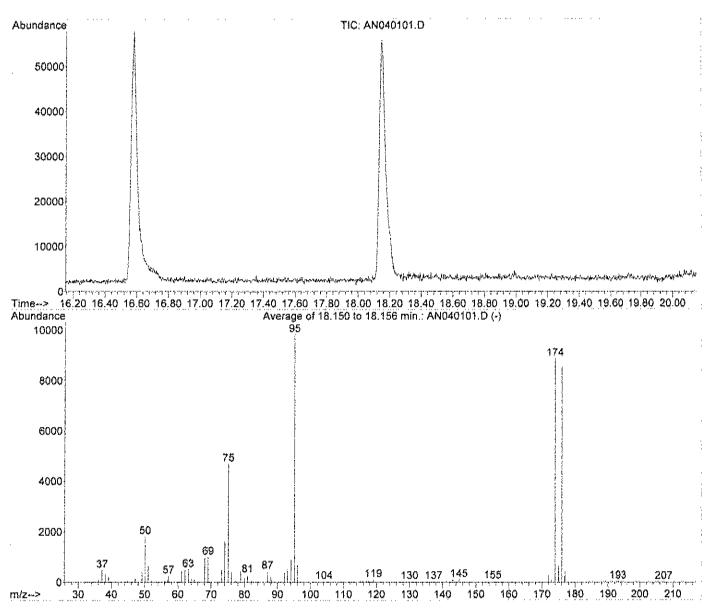
ANOBLEOI.D AB16_1UG.M

Thu Apr 07 13:04:45 2016 MSD1

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\l\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.132 to 18.156 min.


Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
1 50	95	8	40	17.5	1890	PASS
75	95	30	66	49.0	5299	PASS
95	95	100	100	100.0	10811	PASS
96	95	5	9	7.0	757	PASS
173	174	0.00	2	0.7	65	PASS
174	95	50	120	89.2	9645	PASS
175	174	4	9	7.8	750	PASS
176	174	95	101	97.0	9355	PASS
177	176	5	9	7.5	704	PASS

AN033101.D A316 1UG.M

Tue Apr 26 14:47:04 2016 MSD1

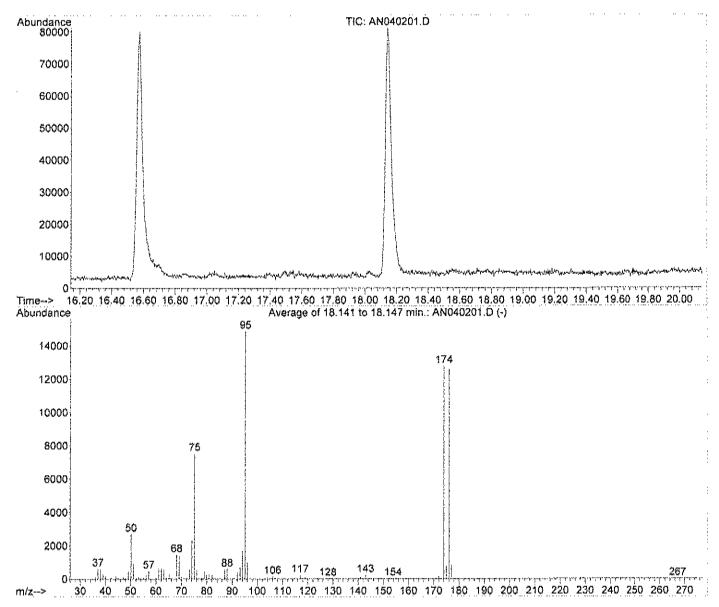
MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.150 to 18.156 min.

	Target Mass	Rel. to Mass	Lower Limit*	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Fail
Ī	50	J 95	8	40	18.6	1827	PASS
	75	95	30 [66	47.8	j 4708	PASS
	95	95	100	100	100.0	9841	PASS
	96	95	5	9	7.0	692	PASS
i	173	174	0.00	2	0.8	70	PASS
ĺ	174	95	50	120	90.2	8875	PASS
i	175	174	4	9	7.4	658	PASS
i	176	1.74	95	101	96.4	8557	PASS
	177	176	5	9	5.2	443	PASS
		!	(!!

AN040101.D A316_1UG.M


Tue Apr 26 14:48:24 2016 MSD1

Data File : C:\HPCHEM\1\DATA\AN040201.D

Vial: 1 : 2 Apr 2016 10:48 am Operator: RJP nO poA Inst : MSD #1 Sample : BFB1UG Misc : A316_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.141 to 18.147 min.

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	l 95	8	40	18.2	2718	PASS
75	95	30	66	50.7	7557	PASS
95	95	100	100	100.0	14902	PASS
96	95	5	9	6.7	1000	PASS
173	174	0.00	2	0.2	31	PASS
174	95	50	120	85.9	12799	PASS
175	1.74	4	9	6.0	772	PASS
176	174	95	101	98.7	12634	PASS
177	176	5	9	6.7	841	PASS
·						~ ~

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW QC DATA

ANALYTICAL OC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

Date: 26-Apr-16

LaBella Associates, P.C. CLIENT:

C1603074 Work Order: 575 Colfax FESL SVI Project:

Qua %RPD RPDLimit SeqNo: 127095 RunNo: 10817 LowLimit HighLimit RPD Ref Val Analysis Date: 3/31/2016 Prep Date: %REC TestCode: 0.25CT-TCE- Units: ppbV SPK value SPK Ref Val TestMo: TO-15 점 Batch ID: R10817 Result < 0.15 < 0.15 SampType: MBLK Sample ID AMB1UG-033116 1,1,1-Trichloroethane Client ID: ZZZZZ 1,1-Dichloroethane Analyte

Viny! chloride		< 0.040	0.040	0								
Sample ID AN	4B1UG-040116	Sample ID AMB1UG-040116 SampType: MBLK	TestCoc	de: 0.25CT-TCE	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	ii.	N W	RunNo: 10818	18	
Client ID: ZZZZZ	777.	Batch ID: R10818	Testh	FestNo: TO-15		-1 C	nalysis Dat	Analysis Date: 4/1/2016	Š	SeqNo: 127112	112	
Analyte		Result	PQ	SPK value SPK Ref Val	SPK Ref Val	%REC	LowLimit	WREC LowLimit HighLimit RPD Ref Val	af Vai	%RPD	%RPD RPDLimit Qual	Qual

0.15 0.15 0.15 0.15 0.15 0.040

< 0.15

< 0.15 < 0.15

Irans-1,2-Dichloroethene

Trichloroethene

cis-1,2-Dichloroethene

Chloromethane

Chloroethane

Fetrachioroethylene

: 0.040

< 0.15

0.15

< 0.15 < 0.15

1,1-Dichloroethene

Sample ID AMB10G-040116	SampType: MBLK	TestCode: 0.25CT-TCE- Units: ppbV	Prep Date:	RunNo: 10
Client ID: ZZZZZ	Batch ID: R10818	TestNo: TO-15	Analysis Date: 4/1/2016	SeqNo: 12
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD
1,1,1-Trichloroethane	< 0.15	0.15		
f,1-Dichlorcethane	< 0.15	0.15		
1,1-Dichloroethene	< 0.15	0.15		
Chloroethane	< 0.15	0.15		
Chloromethane	< 0.15	0.15		
cis-1,2-Dichloroethene	< 0.15	0.15		
Tetrachloroethylene	< 0.15	0.15		
trans-1,2-Dichloroethene	< 0.15	0.15		
Frichloroethene	< 0.040	0.040		

	Ì				
Qualifiers:	,	Results reported are not blank corrected	Value above quar	nitation range	-
	<u></u> ,	Analyte detected at or below quantitation limits	Not Detected at tl	he Reporting Limit	i.i.
	S	Spike Recovery outside accepted recovery limits			

Sample ID AMB1UG-040116	SampType: MBLK	TestCor	le: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:		RunNo: 10818	818	
Client ID: ZZZZZ	Batch ID: R10818	Testř	Testido: TO-15		•	Ånatysis Date:	4/1/2016	SeqNo: 127112	7112	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit H	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qua
Vinyl chloride	< 0.040	0.040								

Quadifiers:	•	Results reported are not blank corrected	E Value above quantitation range	Holding times for preparation or analysis exceeded
	 ,	Analyte detected at or below quantitation limits	ND Not Detected at the Reporting Limit	RPD outside accepted recovery limits
	47	Spike Recovery outside accepted recovery limits		Page 2 of 3

CLIENT: LaBella Associates, P.C.

Work Order: C1603074

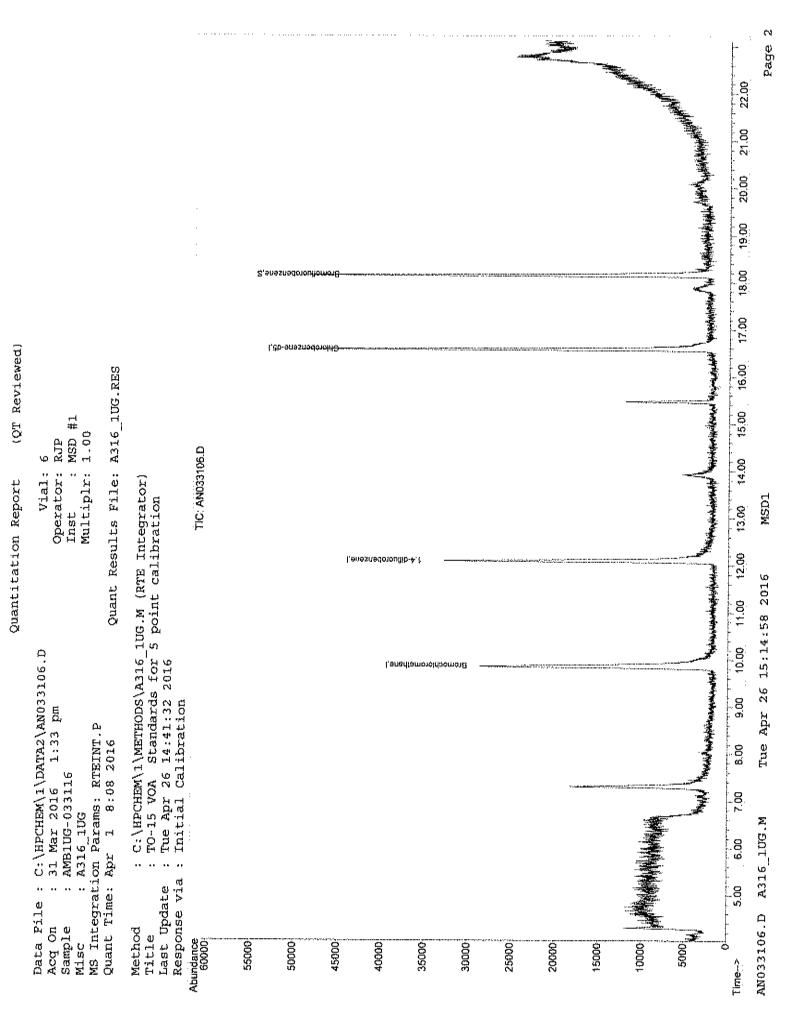
Project: 575 Colfax FESL SVI

TestCode: lugM3_TO15

Sample ID AMB1UG-040216	SampType: MBLK	TestC	xde: 1ugM3_T	TestCode: 1ugM3_T015 Units: ppbv		Prep Date:	زهٔ	RunNo: 10819	
Client ID: ZZZZZ	Batch ID: R10819	Les	TestNo: TO-15			Analysis Dat	Analysis Date: 4/2/2016	SeqNo: 127124	
Analyte	Result	Pol	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15							
1,1-Dichloroethane	< 0.15	0.15							
1,1-Dichloroethene	< 0.15	0.15							
Chioroethane	< 0.15	0.15							
Chloromethane	< 0.15	0.15							
cis-1,2-Dichloroethere	< 0.15	0.15							
Tetrachloroethylene	< 0.15	0.15							
trans-1,2-Dichloroethere	< 0.15	0.15							
Trichloroethene	< 0.15	0.15							
Vinyl chloride	< 0.15	0.15							

Qualifiers:		Results reported are not blank corrected	Value above quantitation range	Holding times for preparation or analysis exceeded
	-	Analyte detected at or below quantitation fimits NE	ND Not Detected at the Reporting Limit R	RPD outside accepted recovery limits
	υ'n	Spike Recovery outside accepted recovery limits		Barre 3

Data File : C:\HPCHEM\1\DATA2\AN033106.D Vial: 6 Acq On : 31 Mar 2016 1:33 pm Operator: RJP Sample : AMB1UG-033116 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 01 03:34:38 2016 Quant Results File: A316_1UG.RES

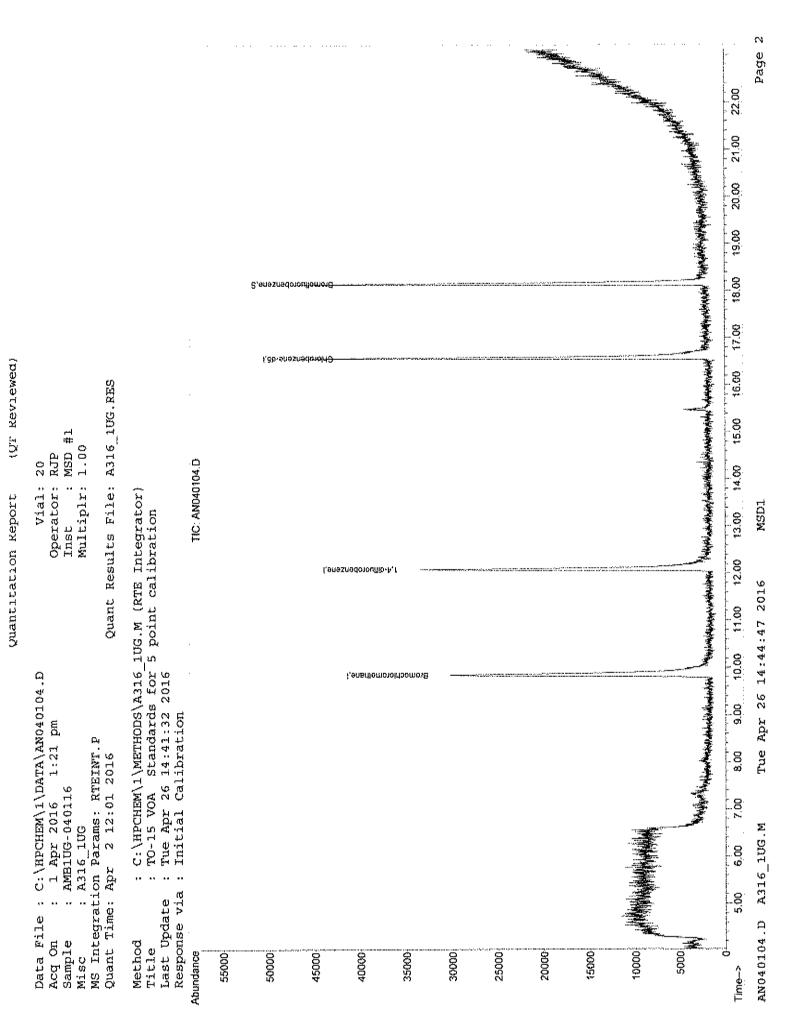
Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc Un	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9,86 12.09 16.57	128 114 117	20032m /³ 47930 44161	1.00 1.00 1.00	ppb	0.05 0.04 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.15 Range 70	95 - 130	25131 Recovery	0.88	ppb 88.00%	0.02

Qvalue Target Compounds

Data File : C:\HPCHEM\1\DATA\AN040104.D Vial: 20 Acq On : 1 Apr 2016 1:21 pm Operator: RJP Sample : AMB1UG-040116 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Results File: A316_1UG.RES Quant Time: Apr 02 12:01:20 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T. QIC	on Response (Conc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.86 12 12.09 13 16.57 13		1.00 ppb 0.05 1.00 ppb 0.03 1.00 ppb 0.01
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 9 Range 70 - 3	95 24184 130 Recovery	0.00 dqq 10.00 y = 91.00%

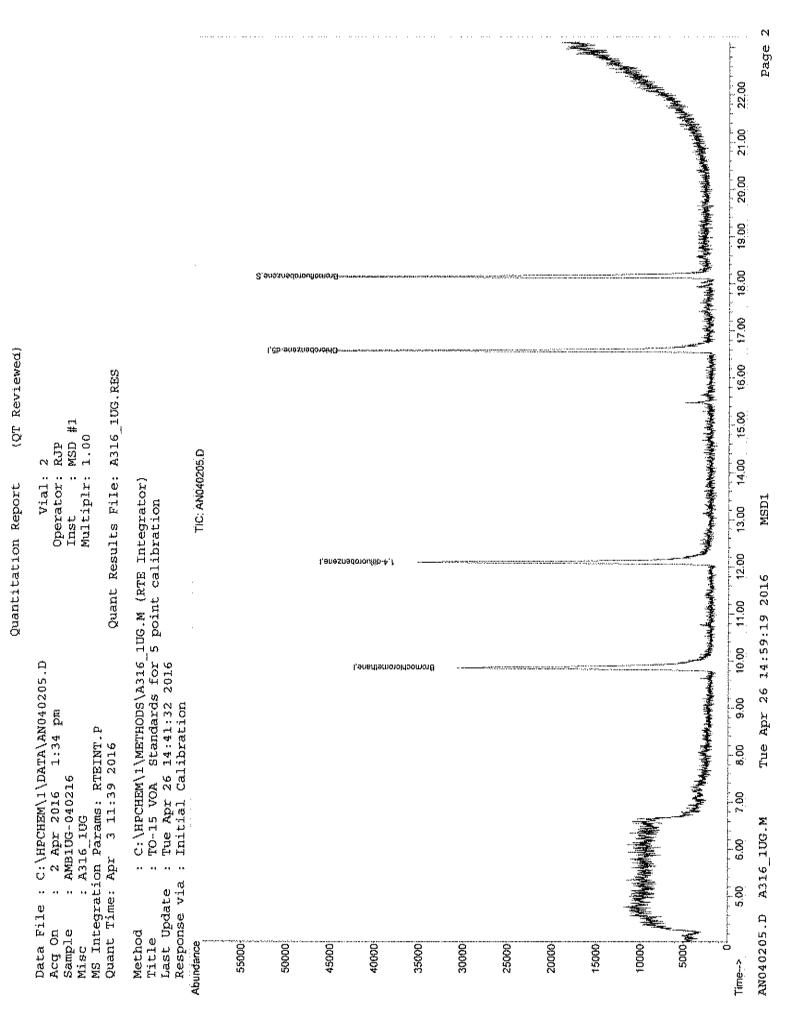
Qvalue Target Compounds

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN040104.D A316 1UG.M Tue Apr 26 14:44:46 2016 MSD1

MS Integration Params: RTEINT.P

Quant Time: Apr 02 14:36:31 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.85 12.08 16.58	128 114 117	17717 49878 41390	1.00 1.00 1.00	dqq	0.04 0.03 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	24022 Recovery	0.90 Y =	dqq 90.00%	0.00
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040205.D A316_1UG.M Tue Apr 26 14:59:18 2016 MSD1

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

LaBella Associates, P.C. CLIENT:

C1603074 Work Order: 575 Colfax FESL SVI Project:

Sample ID ALCS1UG-033116	SampType: LCS	TestCoc	TestCode: 0.25CT-TCE- Units: ppbV	Units: ppbV		Prep Date:	-i-		RunNo: 10817		
Olient ID: ZZZZZ	Batch ID: R10817	Testh	TestNo: TO-15		-	Analysis Dal	Analysis Date: 3/31/2016	Œ	SeqNo: 127096		
Analyte	Resuff	9	SPK value SPK Ref Val	K Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Quai	OLimit	Quai
1,1,1-Trichloroethane	1.250	0.15	yea	0	125	2	130				
1,1-Dichloroethane	1,120	0.15	*	0	112	70	130				
f.1-Dichloroethene	1.120	0.15	чит	O	112	22	130				
Chloroethane	1.220	0.15		0	122	5	130				
Chioromethane	1.230	0.15	₹"	0	123	70	130				
cis-1,2-Dichlorgethene	1.060	0.15	•	0	106	70	130				
Tetrachforoethylene	0.9200	0.15	-	Q	92.0	70	8				
frans-1,2-Dichloroethene	1.050	0.15	-	0	305	70	130				
Trichlorcethene	1,110	0.040	-	0	## 	70	130				
Vinyl chloride	1,090	0.040	-	0	109	70	130				
Sample ID ALCS1UG-040116	SampType: LCS	TestCoc	TestCode: 0.25CT-TCE- Units: ppbV	Units: ppbV		Prep Date:	<u>io</u>		RunNo: 10818		

Sample ID ALCS1UG-040116	40116	SampType: LCS	TestCo	de: 0.25CT-Ti	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	60		RunNo: 10818	318	
Client ID: ZZZZZ		Batch ID: R10818	Fest	TestNo: TO-15			Analysis Date: 4/1/2016	ie: 4/1/201	9	SeqNo: 127113	7113	
Analyte		Result	PQ	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
1,1,1-Trichloroethane		1.290	0.15	-	0	129	£	130				
1,1-Dichloroethane		1,040	0.15	400	O	室	70	130				
1,1-Dicfiloroethene		1.100	0.15	₹"	0	110	70	130				
Chloroethane		1.130	0.15	•	Q	113	7.0	130				
Chloromethane		1.230	0.15	-	0	123	202	130				
cis-1,2-Dichloroethene		0.9800	0.15	_	0	98.0	70	130				
Tetrachloroethylene		0.8800	0.15	-	0	88.0	70	130				
trans-1,2-Dichloroethene	۸.	0.9900	0.15	_	0	0.66	70	130				
Trichloroethene		1.230	0.040	-	0	123	70	130				
Oualifiers: Resu	uells report	Results reported are not blank corrected		E Value	Value above quantifation range	อลีย		#	Holding times for preparation or analysis exceeded	ртератаціон от а	makysis exceed	- po
-	single dedec	Applied defected at or helpsy manniagion limits	imite	ON ON	Not Detected at the Reporting Limit	re Eimis		2	RPD outside accepted recovery limits	sted recovery lin	nits	

Spike Recovery outside accepted recovery limits ¬ s

Page I of 3

CLJENT: Work Order: Project:	LaBella As C1603074 575 Colfax	LaBella Associates, P.C. C1603074 575 Colfax FESL SVI						-	TestCode: 0	0.25CT-TCE-VC	E-VC	
Sample ID ALCS1UG-040116 Client ID: ZZZZ	11UG-040116 Z	SampType: LCS Batch ID: R10818	TestCod	TestCode: 0.25CT-TCE- TestNo: TO-15	CE- Units: ppbV		Prep Date: Analysis Date:	lfe: 1e: 4/1/2016	9	RunNo: 10818 SegNo: 127113	0818 27113	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride		1.100	0.040		0	£	02	8				
Qualifiers:	Results repor	Results reported are not blank corrected		i	Value above quantitation range	ange		1	Holding times for preparation or analysis exceeded	r preparation or	analysis excoe	xled
ſ		Analyte detected at or below quantitation limits	is	ND Not I	Not Detected at the Reporting Limit	ing Limit			RPD outside accepted recovery limits	epted recovery l		
S		Spike Recovery outside accepted recovery limits	nits								•	Page 2 of 3

P.C.
Associates,
LaBella /
CLIENT:

Work Order: C1603074

Project: 575 Colfax FESL SVI

TestCode: 1ugM3_TO15

Sample ID ALCS1UG-040216	SampType: LCS	TestCox	de: 1ugM3_TC	TestCode: 1ugM3_TO15 Units: ppbV		Prep Date:		RunNo: 10819		
Cilent ID: ZZZZZ	Batch ID: R10819	Test	TestNo: TO-15		7	Analysis Date: 4/2/2016	4/2/2016	SeqNo: 127125		
Analyte	Result	Pal	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Vai	%RPD RPDLimit Quai	OLimit	Quai
1,1,1-Trichloroethane	1,290	0.15	-	0	129	7.0	130			
1,1-Dichloroethane	1.170	0.15	-	0	117	02	130			
1,1-Dichloroethene	1,200	0.15	-	0	120	70	130			
Chloroethane	1.230	0.15	-	0	123	70	130			
Chloromethane	1.290	0.15	-	0	129	7.0	130			
cis-1,2-Dichloroethene	1.170	0.15	4	0	117	70	130			
Tetrachloroethylene	0.7800	0.15	~~	0	78.0	73	130			
trans-1,2-Dichloroethere	1,180	0.15	***	o	118	770	130			
Trichloroethene	1.260	0.15	***	¢.	126	70	130			
Vinyl chloride	1.140	0.15	4 m	0	114	70	130			

Qualifiers:	•	Results reported are not blank corrected	E Value above quantitation range	 Holding times for preparation or analysis exceeded
	$\overline{}$	Analyte detected at or below quantitation limits	ND Not Detected at the Reporting Limit	RPD outside accepted recovery limits
	ŝ	Spike Recovery outside aeccated recovery limits		Page 3

Data File : C:\HPCHEM\1\DATA2\AN033105.D Vial: 5 Operator: RJP Acq On : 31 Mar 2016 12:57 pm Sample : ALCS1UG-033116 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Mar 31 13:40:26 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Inte	rnal Standards			Response C				
1)	Bromochloromethane	9 81	128	20235	1.0	0 ppb		0.00
35)	1,4-difluorobenzene	12.06	114	53595	1.0	dqq 0		0.00
50)	1,4-difluorobenzene Chlorobenzene-d5	16.57	117	32893	1.0	dqq 0		0.00
Syst	em Monitoring Compounds							
	Bromofluorobenzene	18.14						0.00
\$p	iked Amount 1.000	Range 70	- 130	Recovery	<i>'</i> =	115	* 00\$	
Targ	et Compounds						Qv	alue
2)	Propylene	4,15		18444		2 ppb	#	100
	Freon 12	4.19	85	108188	1.2	5 ppb		99
4)	Chloromethane	4.39	50	27930	1.2	dqq E		94
5)	Freon 114	4.39	85 62	86158	1.1	dqq 8		92
	Vinyl Chloride	4.59	62	24/20	T * O	daa e		91
7)	Butane	4.69	43	31576 19523m / 31796	1.2	l ppb		96
8)	1,3-butadiene	4.70	39	19523m 🆊	1.1	4 ppb		
9)	Bromomethane	5.04 5.21	94	31796 11361	1.1	dqq e		91
10)	Chloroethane		39 94 64	11361		2 ppb		91
11)	Ethanol	5.37	45	7949		daa e	#	68
12)	Acrolein	5.96	56	7163 30203 113728	1.2	2 ppb	#	5
13)	Vinyl Bromide	5.55	106	30203	1.1	5 ppb		95
14)	Freon 11	5.80	301	113728	1.2	dqq 8		99
15)	Acetone	6.06	58	9844	2.1	3 bbp	#	77
16)	Pentane	6.08	42	21719	1.0	वंवृवु १		87
17)	Isopropyl alcohol	6.17	42 45 96	21719 24341 29016	0.8	5 ppb		46
18)	1,1-dichloroethene	6.57	96	29016	1.1	gdd 8	#	88
19)	Freon 113	6.75	101 59 84	76210	1.2	2 ppb		96
	t-Butyl alcohol	6.91 7.05	59	26676m /				
21)	Methylene chloride	7.05	84	28772	1.2	6 ppb		91
22)	Allyl chloride	7.03	41	20621		2 ppb		78
	Carbon disulfide	7.21	76	73250	1.0	dqq e		72
24)	trans-1,2-dichloroethene	8.01	61 73	32178 58777	1.0	dqq 2		90
25)	methyl tert-butyl ether	8.03	73	58777		r bbp		90
26)	1,1-dichloroethane	8.40	63	48777		2 ppb		99
27)	Vinyl acetate	8.43	43	31192 8975		2 ppb		95
28)	Vinyl acetate Methyl Ethyl Ketone	8.95	72	8975	0.9	б ррь		1.00
29)	cis-1,2-dichloroethene	9.36	61.		1.0	6 ppb		91
	Hexane	8.91	57	25178	0.9	dag 3		97
31)	Ethyl acetate	9.54	43 83	36816		2 ppb		92
	Chloroform	9.95	83	62657	l . O	6 ppb		97
	Tetrahydrofuran	10.18	42	15345		agg S		95
-	1,2-dichloroethane	11.10	62	34571		4 ppb		88
	1,1,1-trichloroethane	10.75	97	62789		5 ppb		99
	Cyclohexane	11.44	56	24625		9 ppb		87
38)	Carbon tetrachloride	11.39	117	71594	1.2	dag r		99
39)	Benzene	11.37	78	51637	1.1	6 ppb		94
40)	Methyl methacrylate	12.92	41.	13562	0.9	3 bbp	#	80
	1,4-dioxane	13.03	88	4419m A		dgg e		
42)	2,2,4-trimethylpentane	12.19	57	99045		7 ppb		96
	Heptane	12.53	43	18239		1 ppb		89
44)	Trichloroethene	12.68	130	25165	1.1	1 ppb		98
45)	1,2-dichloropropane	12.79	63	19076	1.1	dqq e		99
								M. W. A. V.

(#) = qualifier out of range (m) = manual integration

AN033105.D A316_1UG.M Tue Apr 26 15:14:53 2016

MSDl

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\AN033105.D Vial: 5 Acq On : 31 Mar 2016 12:57 pm Sample : ALCS1UG-033116 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 13:40:26 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
					A 1	
46)	Bromodichloromethane	13.12	83	49145m	1.25 ppb	
47)	cis-1,3-dichloropropene	13.91	75	25793	1.20 ppb	98
48)	trans-1,3-dichloropropene	14.63	75	22819m	1.19 ppb	
49)	1,1,2-trichloroethane	14.93	97	21714	1.23 ppb	98
51)	Toluene	14.68	92	21405	0.96 ppb	98
52)	Methyl Isobutyl Ketone	13.85	43	14776m	0.37 ppb	
53)	Dibromochloromethane	15.60	129	35353m	1.25 ppb	
54)	Methyl Butyl Ketone	15,12	43	10560m	0.30 ppb	
55)	1,2-dibromoethane	15.86	107	33793	V 1.22 ppb	96
56)	Tetrachloroethylene	15.65	164	19690	0.92 ppb	96
57)	Chlorobenzene	16.61	112	31204	1.06 ppb	83
58)	1,1,1,2-tetrachloroethane	16.70	131	25628	1.17 ppb	97
59)	Ethylbenzene	16.85	91	37066	0.97 ppb	100
60)	± 4	17.05	91	57446	1.89 ppb	95
61)	Nonane	17.38	43	17948	0.99 ppb	98
62)	Styrene	17.46	104	22860	1.08 ppb	91
63)	Bromoform	17.59	173	33915	2.23 ppb	99
64)	o-xylene	17.49	91	43063	1.18 ppb	97
65)	Cumerie	18.02	105	41100	0.96 ppb	96
67)	1,1,2,2-tetrachloroethane	17.92	83	41344	∧ 1.10 ppb	99
68)	Propylbenzene	18.54	91	44805m	0.99 ppb	
69)	2-Chlorotoluene	18.58	91	32571m	, 0.99 ppb	
70)		18.70	105	39533m ,	1.02 ppb	
71)		18.76	105	47412m €	7 1.02 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	35331	0.88 ppb	93
73)	1,3-dichlorobenzene	19.49	146	30675	1.20 ppb	97
74)	benzyl chloride	19.57	91	36429	1.00 ppb	97
75)	1,4-dichlorobenzene	19.62	146	28854	1.20 ppb	98
76)	1,2,3-trimethylbenzene	19.65	105	42402	0.85 ppb	90
77)	1,2-dichlorobenzene	19.93	146	33057	a 1.05 ppb	96
	1,2,4-trichlorobenzene	21.91	180	18692m 🖟	0.79 ppb	
79)	Naphthalene	22.21	128	27592m X		
80)	Hexachloro-1,3-butadiene	22.07	225	53161	0.92 ppb	96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN033105.D A316 1UG.M Tue Apr 26 15:14:54 2016

Data File : C:\MPCHEM\1\DATA\AN040103.D Vial: 19
Acq On : 1 Apr 2016 12:45 pm Operator: RJP
Sample : ALCS1UG-040116 Inst : MSD #1
Misc : A316_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 02 12:01:11 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : lUG_RUN

Inte	rnal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
1)	Bromochloromethane	9.82	128	20858m	1.00 ppb 1.00 ppb		0.00
12 O /	1,4-difluorobenzene Chlorobenzene-d5	12.07	777	21207	1.00 ppb		
50)	Curoropeuseue-do	16.36	117	21.321	1.00 ppn		0.00
Syst	em Monitoring Compounds						
	Bromofluorobenzene	18.14	95	23410	1.16 ppb		0.00
		Range 70	- 130	Recover	$y = \overline{116}$.00%	
_		-					
Targ	et Compounds						alue
	Propylene	4.15	41.	19322	1.14 ppb	#	
	Freon 12	4.20		108917	1.22 ppb		99
,	Chloromethane	4.39			1.23 ppb		92
	Freon 114	4.40	85	87334	1.16 ppb		92
	Vinyl Chloride	4.59		25792 32939 21826	1.10 ppb		91
	Butane	4.68	43	32939	1.23 ppb		95
	1,3-butadiene	4.70	39	21826	1.24 ppb		89
,	Bromomethane	5.04	94	33154	1.20 ppb		90
1.0)	Chloroethane	5.21	64 45	10827 6602	1.13 დდხ		91
	Ethanol		4.5	21826 33154 10827 6602 7177	0.93 ppb		81
	Acrolein	5.97	56	7177	1.19 ppb	#	5
13)	Vinyl Bromide	5.55	106	31182 113643 10118 21700	1.15 ppb		95
	Freon 11	5.81	101	113643	1.24 ppb		99
15)	Acetone	6.06	58	10118	1.12 ppb		80
16)	Pentane	6.08	42	21700	1.05 ppb		94
17)	Isopropyl alcohol	6.16	45 96 101	29319 29553 80807	1.00 թթե		46
18)	1,1-dichloroethene	6.57	96	29553	1.10 ppb		97
	Freon 113	6.76	101	80807	1.25 ppb		92
20)	t-Butyl alcohol	6.90	59	47591	1.01 ppb		72
21)	Methylene chloride	7.06 7.03	84 41	26448	1.13 ppb		88
22)	Allyl chloride	7.03	41	19899	0.96 ppb		80
23)	Carbon disulfide	7.21	76	71647	1.04 ppb		100
24)	trans-1,2-dichloroethene	8.01	61.	31529	0.99 ppb		96
25)	methyl tert-butyl ether	8.03	73 63	63757	1.06 ppb		90
26)	1,1-dichloroethane	8.40	63	63757 46969	1.04 ppb		99
27)	vinyi acetate	8.44	43	30196	0.77 ppb		99
28)	Methyl Ethyl Ketone	8.95	72	9005	0.94 ppb		100
29)	cis-1,2-dichloroethene	9.36	61	25551	0.98 ppb		89
30)	Hexane	8.91	57	9005 25551 24189	dqq e8.0		98
31)	Ethyl acetate	9.54	43	39008	1,05 ppb	#	83
	Chloroform	9.95	83	61015	1.00 ppb		98
33)	Tetrahydrofuran	10.18	4.2	16951	ರವ್ತ 80.0		94
34)	1,2-dichloroethane	11.10	62	32327 🔏	0.94 ppb		90
36)	1,1,1-trichloroethane	10.76	97	55660m	1.29 ppb		
	Cyclohexane	11.44	56	22700 /	1.2/ ppp	#	81.
38)	Carbon tetrachloride	11.40	117	63936m	1.33 ppb		
39)	Benzene	11.37	78	46168	1.21 ppb		97
40)	Methyl methacrylate	12.93	41	17394	1.40 ppb		92
	1,4-dioxane	13.02	88	11297	1.16 ppb		98
42)	2,2,4-trimethylpentane	12.19	57	95466m	1.43 ppb		
43)	Heptane	12.54	4.3	16115	1.04 დებ		92
	Trichloroethene	12.69	130	24104	1,23 ppb		98
45)	1,2-dichloropropane	12.80	63	16131	1.17 ppb		98
	4n w m n m w						T 70 10 01

(#) = qualifier out of range (m) = manual integration AN040103.D A316_1UG.M Tue Apr 26 14:44:42 2016

MSDl

Data File: C:\HPCHEM\1\DATA\AN040103.D
Acq On: 1 Apr 2016 12:45 pm
Sample: ALCS1UG-040116
Misc: A316_1UG Vial: 19 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Apr 02 12:01:11 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13,12	83	41457m	1.23 ppb	
47)		13.91	75	22251m	1.21 ppb	
48)		14.64	75	20489m	1.24 ppb	
49)	1,1,2-trichloroethane	14.94	97	18169m	1.20 ppb	
51)	Toluene	14.68	92	18586	0.87 ppb	96
52)	Methyl Isobutyl Ketone	13.84	43	39772	1.05 ppb	95
53)	Dibromochloromethane	15.61	129	30463m	1.13 ppb	
54)	Methyl Butyl Ketone	15.12	43	34646	1.03 ppb	94
55)	1,2-dibromoethane	15.86	107	30844m	1.16 ppb	
56)	Tetrachloroethylene	15.66	164	17940	dqq 88.0	99
57)	Chlorobenzene	16.61	112	31424m	1.12 ppb	
58)	1,1,1,2-tetrachloroethane	16.71	131	24183	1.16 ppb	97
59)	Ethylbenzene	16.85	91	36263	0.99 ppb	98
60)	m&p-xylene	17.05	91	53811	1.85 ppb	93
61)	Nonane	17.38	43	18316	1.06 ppb	97
62)	Styrene	17.46	104	22721	1.12 ppb	90
63)	Bromoform	17.58	173	33285	2.29 ppb	99
64)	o-xylene	17.48	91	42165	1.21 ppb	98
65)		18.02	105	44417	1.09 ppb	96
67)	1,1,2,2-tetrachloroethane	17.92	83	48140m	1.34 ppb	
68)	Propylbenzene	18.54	91.	56112m	1.30 ppb	
69)	2-Chlorotoluene	18,58	91	31555m	1.00 ppb	
70)	4-ethyltoluene	18.70	105	45720m	1.23 ppb	
ツエ)	1,3,5-trimethylbenzene	18.76	105	58743m	1,32 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	48419m	1.26 ppb	
73)	1,3-dichlorobenzene	19.49	1.46	34715m	1.42 ppb	
74)	benzyl chloride	19.56	91	40041m	1.15 ppb	
75)	1,4-dichlorobenzene	19.62	146	30402m	1.32 ppb	
76)	1,2,3-trimethylbenzene	19.65	105	674.85	1.42 ppb	94
77)	1,2-dichlorobenzene	19.93	146	45704	1.53 ppb	97
78)	1,2,4-trichlorobenzene	21.80	180	20891m -	0.92 ppb	
79)	Naphthalene	22.15	128	44379m '	0.95 ppb	
80)	Hexachloro-1,3-butadiene	22.07	225	64975	1.18 ppb	97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN040103.D A316_1UG.M Tue Apr 26 14:44:43 2016

(QT Reviewed)

Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN040204.D Vial: 1 Acq On : 2 Apr 2016 12:58 pm Operator: RJP Sample : ALCS1UG-040216 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 02 14:36:13 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Ur	iits	Dev	(Min)
1) Bromochloromethane	9.81	128	21348m 🛭	1.00	nnh		0.00
35) 1,4-difluorobenzene	12.06			1.00			0.00
50) Chlorobenzene-d5	16.56		44220	1.00			0.00
,		3. IV /	as in the over the		E E		0.00
System Monitoring Compounds							
66) Bromofluorobenzene	18.13	95	32006	1.12	ppb		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	y =	112.	900%	
M-44-4 0						_	,
Target Compounds	4 7 4	<i>4</i> 4	21202	1 04			lue
2) Propylene 3) Freon 12	4.14 4.19	41. 85	21383 112715	$1.24 \\ 1.24$	ppb	#	100 99
4) Chloromethane	4.39	50	30667	1.29			94
5) Freon 114	4.39	85	96961	1.26			98
6) Vinyl Chloride	4.58	62	27465	1.14			89
7) Butane	4.68	43	31094	1.13			96
8) 1,3-butadiene	4.69	39	22506	1,25			84
9) Bromomethane	5.03	94	34108	1.21			95
10) Chloroethane	5.21	64		1.23			97
ll) Ethanol	5.37	45		1.23			74
12) Acrolein	5.95	56	8936 7589m	1.23			
13) Vinyl Bromide	5.54	106	32945	1,19	ppb		94
14) Freon 11	5.80	101	108604	1.16	dqq		98
15) Acetone	6.05	58	10100m	1.10	dqq		
16) Pentane	6.07	42	24382	1.16			93
17) Isopropyl alcohol	6.15	45	32873	1.09		#	46
18) 1,1-dichloroethene	6.56	96	32833 1	1.20			94
19) Freon 113	6.75	101	85460m '	1.29			
20) t-Butyl alcohol	6.89	59	52338	1.09		Ħ	75
21) Methylene chloride	7.05	84	29910	1.25			88
22) Allyl chloride	7.02	41	25381				84
23) Carbon disulfide 24) trans-1,2-dichloroethene	7.21	76	83066	1.17			98
25) methyl tert-butyl ether		61 73	38349 74015	1.18			91
26) 1,1-dichloroethane	8.40	63	53984	1.20			90 99
27) Vinyl acetate	8.43	a 3	46737	$1.17 \\ 1.17$	PPP		98
28) Methyl Ethyl Ketone	8.94	72	11871	1.21	ppb	#	100
29) cis-1,2-dichloroethene	9.35	61	31216	1.17	daa	π	92
30) Hexane	8.89	57	31529	1.13			97
31) Ethyl acetate	9.53	57 43	46407	1.22	dag		91
32) Chloroform	9.95	83	67143	1.08	daa		100
33) Tetrahydrofuran	10.17	42	21607	1.22			93
34) 1,2-dichloroethane	11.09	62	36475 A	1.04	ppb		90
36) 1,1,1-trichloroethane	10.75	97	63335m 🏑	1.29	dąą		
37) Cyclohexane	11.44	56	27045m ∤	1.34			
38) Carbon tetrachloride	11.39	117	67542	1.23			97
39) Benzene	11.37	78	55204	1.27			97
40) Methyl methacrylate	12.91	41	16940m	1.20			
41) 1,4-dioxane	13.02	88	13230	1.19			98
42) 2,2,4-trimethylpentane	12.18	57	114159m	1.50			,,,,
43) Heptane 44) Trichloroethene	12.53	4.3	22298	1.27			94
•	12.68	130	27991	1.26			98
45) 1,2-dichloropropane	12.79	63	18752mi/	1.20	 ԻԽո		

^{(#) =} qualifier out of range (m) = manual integration AN040204.D A316_1UG.M Tue Apr 26 14:59:14 2016 MSD1

Data File : C:\HPCHEM\1\DATA\AN040204.D

Acq On : 2 Apr 2016 12:58 pm

Sample : ALCS1UG-040216

Misc : A316_1UG Vial: 1 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 02 14:36:13 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13,11	 83	44063m	1.15 ppb	
47)	cis-1,3-dichloropropene	13.90	75	25728m	1.23 ppb	
	trans-1,3-dichloropropene	14.63	75	24149m	1.29 ppb	
	1,1,2-trichloroethane	14.93	97	20773m	1.21 ppb	
51)	Toluene	14.68	92	23774	0.79 ppb	93
52)	Methyl Isobutyl Ketone	13.83	43	39350	0.74 ppb	98
53)	Dibromochloromethane	15.60	129	38789m	1.02 ppb	
54)	Methyl Butyl Ketone	15.12	43	35587	0.75 ppb	91
55)	1,2-dibromoethane	15.85	107	43150	1.15 ppb	98
56)	Tetrachloroethylene	15.66	164	22377	0.78 ppb	97
57)	Chlorobenzene	16.61	112	46561	1.18 ppb	92
58)	1,1,1,2-tetrachloroethane	16.70	131	34745	1.18 ppb	95
59)	Ethylbenzene	16.85	91	61162	1.19 ppb	98
60)	m&p-xylene	17.04	91	98093	2.40 ppb	95
61)	Nonane	17.38	4.3	28351m	1.16 ppb	
62)	Styrene	17.46	104	36491	1.28 ppb	91
63)	Bromoform	17.58	173	42375	2.07 ppb	99
64)	o-xylene	17.48	91	60218m	1.23 ppb	
65)	Cumene	18.02	105	73127	1.27 ppb	98
67)	1,1,2,2-tetrachloroethane	17.92	83	63040	1.25 ppb	99
68)	Propylbenzene	18.54	91	79403m	1.30 ppb	
69)	2-Chlorotoluene	18.58	91	61383m	1.38 ppb	
70)	4-ethyltoluene	18.70	105	58219m	1.11 ppb	
71.)	1,3,5-trimethylbenzene	18.75	105	72962m	1.17 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	57079	1.05 ppb	89
73)	1,3-dichlorobenzene	19.49	146	40130	1.17 ppb	97
	benzyl chloride	19.56	91	47079	0.96 ppb	97
75)		19.62	146	35806	1.10 ppb	95
76)	1,2,3-trimethylbenzene	19.65	105	74548	1.12 ppb	97
77)	1,2-dichlorobenzene	19.93	146	44061	1.04 ppb	95
78)	1,2,4-trichlorobenzene	21.79	180	22866m	0.72 ppb	
79)	Naphthalene	22.13	128	4.9350m 💍	0.75 ppb	
80)	Hexachloro-1,3-butadiene	22,07	225	58446	' 0.75 ppb	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN040204.D A316_1UG.M Tue Apr 26 14:59:15 2016 MSD1

Reviewed)

(Q3

Quantitation Report

ANALYTICAL QC SUMMARY REPORT

Date: 26-Apr-16

LaBella Associates, P.C. CLIENT:

C1603074 Work Order:

575 Colfax FFSL SVI Project:

Sample ID ALCS1UGD-033116	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	- Units: ppbv		Prep Date	1		RunNo: 10817	817	
Client ID: ZZZZZ	Batch ID: R10817	Test	TestNo: TO-15		-	Analysis Date:	E 4/1/2016	19	SeqNo: 127097	7097	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vai	%RPD	RPOLimit	Qual
1,1,1-Trichloroethane	1.280	0.15	1	0	128	P.	130	1.25	2.37	30	
1,1-Dichloroethane	1.040	0.15	-	0	105	70	130	12	7.41	8	
1,1-Dichloroethene	1,120	0.15	-	0	112	70	130	1.12	0	- E	
Chloroethane	1.250	0.15		Ф	125	202	130	1.22	2.43	30	
Chloromethane	1.210	0.15	•	Đ	121	70	130	1.23	1.64	30	
cis-1,2-Dichloroethene	1.010	0.15	₹***	Ç	101	70	130	1.06	4.83	30	
Tetrachloroethylene	0.9400	0.15	T	Ф	90.0	70	130	0.92	2.20	30	
trans-1,2-Dichloroethene	1.000	0.15	Ann	0	100	22	130	1.05	4.88	8	
Trichloroethene	1.150	0.040	4	0	115	70	130	+-	3.54	30	
Vinyl chloride	1.050	0.040		٥	105	7.0	130	1.09	3.74	8	
Sample ID ALCS1UGD-040116	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	- Units: ppbV		Prep Date:			RunNo: 10818	318	
Client ID: ZZZZZ	Batch ID: R10818	Test	TestNo: TO-15		7	Analysis Date:	4/2/2016	1,0	SeqNo: 127114	7114	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimiť	RPD Ref Val	%RPD	RPDLimit	Qual
1, f, 1. Trichloroethane	1.280	0.15	-	0	128	70	130	1.29	0.778	30	
1,1-Dichloroethane	1.040	0.15	-	0	104	70	130	1.04	0	30.	
1,1-Dichloroethene	1.100	0.15		0	110	70	130		0	8	
Chloroethane	1.240	0.15	•	0	\$24	70	130	±=,	9.28	33	
Chloromethane	1.230	0.15	₹'''	O	123	7.0	130	1.23	0	8	
cis-1,2-Dichloroethene	0.9400	0.15	•	0	94,0	70	8	86.0	4.17	8	
Tetrachloroethylene	0.8300	0.15	4	0	83.0	70	130	0.89	5.85	8	
Irans-1,2-Dichloroethene	0.96.0	0.15	ų.	¢	96.0	70	130	0.99	3.08	30	
Trichloroethene	1.210	0.040	444	0	123	70	130	1.23	1.54	30	

E Value above quantitation range ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits **#** &

CLIENT:	LaBella Ass	LaBella Associates, P.C.										
Work Order:	C1603074											
Project:	575 Colfax FESL SVI	FESL SVI						Tes	stCode: 0	TestCode: 0.25CT-TCE-VC	5.VC	
Sample ID ALCS	1UGD-040116	Sample ID ALCS1UGD-040116 SampType: LCSD	TestCo	de: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	ie ie		RunNo: 10818	18	
Client ID: 22222	N	Batch ID; R10818	Test	TestNo: TO-15			Analysis Dal	Analysis Date: 4/2/2016		SeqNo: 127114	114	
Analyte		Result	POL	SPK value	POL SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	PD Ref Val	%RPD	%RPD RPDLimit Qual	Qua
Vinył chloride		1.070	0.040	· 4400.	0	107	70	130	1.1	2.76	æ	

Qualifiers:		Results reported are not blank corrected	E Value above quantitation range	H Holding times for preparation or analysis exceeded
	ш,	Analyte detected at or below quantitation limits	ND Not Detected at the Reporting Limit	R RPD outside accepted recovery limits
	S	Spike Recovery outside accepted recovery limits		to Conna

LaBella Associates, P.C. CLIENT:

C1603074 Work Order: Project:

575 Colfax FESL SVI

TestCode: IngM3_T015

Sample ID ALCS1UGD-040216 SampType: LCSD	SampType: LCSD	TestCod	de: 1ugM3_TO	le: 1ugM3_TO15 Units: ppbV		Prep Date:	ia)		RunNo: 10819	119	
Client ID: ZZZZZ	Batch ID: R10819	Tes	TestNo: TO-15			Analysis Date;	e: 4/3/2015	16	SeqNo: 127130	130	
Analyte	Result	R	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimil Qual	Qual
1,1,1-Trichloroethane	1.300	0.15	-	0	130	70	130	1.29	0.772	30	
f, 1-Dichloroethane	1.170	0.15	-	¢		70	130	1,17	0	33	
f, 1-Dichloroethene	1.110	0.15	_	0	****	70	130	1.2	7.79	30	
Chtoroethane	1.090	0.15	-	0	409	70	65	1.23	12.1	30	
Chloromethane	1.190	0.15	-	0	2. 3.	70	130	1.29	8.06	30	
cis-1,2-Dichloroethene	1.110	0.15	-	o	ére Ann	70	130	1,17	5.26	8	
Tetrachloroethylene	0.8900	0.15	-	٥	89.0	20	130	0.78	13.2	30	
trans-1,2-Dichloroethene	1.150	0.15	₩	0	115	70	130	1,18	2.58	30	
Trichloraethene	1.220	0,15	•	O	122	22	130	1.26	3.23	30	
Vinyl chioride	1.220	0.15	.	0	122	70	130	1.14	6.78	30	

	-			CARACTER OF THE PARTY OF THE PA
Qualifiers:	,	Results reported are not blank corrected	3 Value above quantitation range	Holding times for preparation or analysis exceeded
	Г	Analyte detected at or below quantitation limits NI	ND Not Detected at the Reporting Limit	RPD outside accepted recovery limits
	47	Spike Recovery outside accepted recovery limits		Page ?

Data File : C:\HPCHEM\1\DATA2\AN033133.D Vial: 12 Acq On : 1 Apr 2016 6:53 am Operator: RJP Sample : ALCS1UGD-033116 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Apr 01 07:41:06 2016

Quant Method : C:\hPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards 1) Bromochloromethane	R.T.	QIon	Response	Conc U			
				1 00			
 Bromochloromethane 1,4-difluorobenzene 	12.02	114	52964	1.00	hhn		0.02 0.00
55) I,4 "dilluoropenzene	16.07	ተ ጉ ታ	34225				0.00
50) Chlorobenzene-d5	16.56	117	34223		بدبيب		0.00
System Monitoring Compounds							
66) Bromofluorobenzene	18.14	95	25901	1.18	ppb		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	-X =24	118	.00%	
						_	v4.
Target Compounds		4.4	00400	1 00			alue
2) Propylene	4.15	41	22423				
3) Freon 12	4.20	85 50	119838 30837	1.24			100
4) Chloromethane	4.40		30837 94564	1.21			96
5) Freon 114	4.39	85	94564				94
6) Vinyl Chloride	4.59		26715	1.05			88
7) Butane	4.69 4.69	43	33781 22465	1.16			98
8) 1,3-butadiene		39	22465				94
9) Bromomethane	5.04	94	36360	1.21			96
10) Chloroethane	5.21	64	12983	1.25	ppp	21	94
11) Ethanol	5.37	45	12983 10054 7538	1.30	PPD	#	
12) Acrolein		56	7538	1.15			. 5
13) Vinyl Bromide	5.55		32655	1.11			94
14) Freon 11	5.81 6.05	101	115634 10361	1.16			98
15) Acetone	6.05	58	10361 21785	1.06			86
16) Pentane	6.08		21785	0.97			98
17) Isopropyl alcohol	6.16	45	29904	0.93			4.6
18) 1,1-dichloroethene	6.57	96 101	32675 87252	1.12			91
19) Freon 113	6.75	101	87252	1.24			94
20) t-Butyl alcohol	6.90	59		1.06			
21) Methylene chloride	7.05	84	28453	1.11			89
22) Allyl chloride	7.03	84 41 76	21912 77697	0.97	aqq		78
23) Carbon disulfide	7.21	76	77697	1.03			96
24) trans-1,2-dichloroethene		61	34621	1.00	agg		89
25) methyl tert-butyl ether	8.03	73 63 43	70378	1.08			92
26) 1,1-dichloroethane	8.40	63	50964	1.04			100
27) Vinyi acetate	8.44	43	34292	0.81			95
28) Methyl Ethyl Ketone		72	10709	1.02	PPD.	#	
29) cis-1,2-dichloroethene	9.35 8.91	61	28746	1.01			89
30) Hexane	8.91	57	28746 27596 42553	0.93			97
31) Ethyl acetate		43		1.05			93
32) Chloroform	9.95	83	64410	0.97			98
33) Tetrahydrofuran			18009	0.96	ppp		91
34) 1,2-dichloroethane	11,10	62	35642	0.96			89
36) 1,1,1-trichloroethane	10.75	97	63644	1.28		112	98
37) Cyclohexane	11.45	56	26237	1.28		#	87
38) Carbon tetrachloride	11.39	117	71132	1.28			97
39) Benzene	11.37	78	51827	1.18			97
40) Methyl methacrylate	12.93	41	16708	1.17	agg	#	82
41) 1,4-dioxane	13.01	88	13693m /	1.22			
42) 2,2,4-trimethylpentane	12.19	57	105470mb				عالو يقدر
43) Heptane	12.54	43	17595	0.98			89
44) Trichloroethene	12.69	130	25767	1.15			98
45) 1,2-dichloropropane	12.79	63	18020	1.13	$_{\rm add}$		100

^{(#) =} qualifier out of range (m) = manual integration ANO33133.D A316 1UG.M Tue Apr 26 15:15:00 2016

Data File : C:\HPCHEM\1\DATA2\AN033133.D Vial: 12 Acq On : 1 Apr 2016 6:53 am Operator: RJP Sample : ALCS1UGD-033116 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 01 07:41:06 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	49599	1.28 ppb	98
47)		13.90	75	25744m /		
48)	trans-1,3-dichloropropene	14.65	75	22881m	1.20 ppb	
49)	1,1,2-trichloroethane	14.93	97	21315	1.22 ppb	99
51)	Toluene	14.68	92	21010	0.90 ppb	95
52)	Methyl Isobutyl Ketone	13.84	43	52442	1.28 ppb	98
53)	Dibromochloromethane	15.60	129	35795m	1,22 ppb	
54)	Methyl Butyl Ketone	15.12	43	34843	0.95 ppb	95
55)	1,2-dibromoethane	15.86	107	33858m	1.17 ppb	
56)	Tetrachloroethylene	15.66	1.64	20024	dqq 00.0	96
57)	Chlorobenzene	16.61	112	32547	1.07 ppb	87
58)	1,1,1,2-tetrachloroethane	16.71	131	24656	1.08 ppb	97
59)	Ethylbenzene	16.85	91	36622	0.92 ppb	99
60)	m&p-xylene	17.04	91	53360	1.69 ppb	91
61)	Nonane	17.38	4.3	19169	1.02 ppb	96
62)	Styrene	17.46	104	22328	1.01 ppb	91
63)	Bromoform	17.59	173	32571	2.06 ppb	98
64)	o-xylene	17.48	91	38663	1.02 ppb	100
65)	Cumene	18.02	105	43545	0.98 ppb	97
67)	1,1,2,2-tetrachloroethane	17.92	83	48358	1.24 ppb	100
	Propylbenzene	18.54	91	55777m	1.18 ppb	
69)		18.58	91	35032m	1.02 ppb	
	4-ethyltoluene	18.70	105	50112m	1.24 ppb	
71)		18.75	105	60516m	1.25 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	51996	1.24 ppb	97
73)	1,3-dichlorobenzene	19.49	146	33657m	1.26 ppb	
74)	benzyl chloride	19.56	91	48542	1.28 ppb	98
75)		19.62	146	32126m	1.28 ppb	
	1,2,3-trimethylbenzene	19.65	105	65042	1.26 ppb	92
	1,2-dichlorobenzene	19.93	146	41624m	1.28 ppb	
	1,2,4-trichlorobenzene	21.79	180	25407m	1.03 ppb	
79)		22.13	128	59093m 🗸	Ar m	
80)	Hexachloro-1,3-butadiene	22.06	225	73201	1.22 ppb	96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN033133.D A316_1UG.M Tue Apr 26 15:15:01 2016

(OT Reviewed)

Quantitation Report

Data File: C:\HPCHEM\1\DATA\AN040125.D

Acq On: 2 Apr 2016 3:21 am

Sample: ALCS1UGD-040116

Misc: A316_UG Vial: 3 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A316_1UG.RES Quant Time: Apr 02 07:59:55 2016

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Intella Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc U			
	9.81	129	20437m/				
35) 1,4-difluorobenzene	3.01	1140	45974	1.00	thinh thinh		0.00
50) Chlorobenzene-d5	12.07	117	33404	1 00	ppb		0.00
50) Chitorobenzene-ds	20.50	** ** *	22404	1.00	F. F.		0.00
System Monitoring Compounds							
66) Bromofluorobenzene							0.00
Spiked Amount 1.000	Range 70	- 130	Recover	У =	108	.00%	
						<i>(</i> ****	2116
Target Compounds	4 15	41	17794	1.07	nnh		alue 100
2) Propylene 3) Freon 12	4.15 4.20			1.22			99
4) Chloromethane	4.39	85 50	106757 28161	1.23	QUQ.		94
5) Freon 114	4.39	85	84475	1.15	ppb		93
6) Vinyl Chloride	4.59						88
7) Butane	4 68	62 43	30299	1.15			94
8) 1,3-butadiene	4.68 4.69	43 39	30299 20711	1.20	pph		87
9) Bromomethane	5.04	94	30593	1.13			87
10) Chloroethane	5.21			1.24			88
11) Ethanol			7438	1.07			
12) Acrolein	5.57	- 5.6 - 5.6	7438 6489	1.10			5
13) Vinyl Bromide	5.54		30312	1.14			98
14) Freon 11		100	108818	1.21			98
•	2.01	101 58	108818 9989 21958	1.13			67
15) Acetone	6.07	42	21959	1.09			82
16) Pentane	6 16	45	31569	1.10			46
17) Isopropyl alcohol	6.16 6.57 6.75	45	29746				8.9
18) 1,1-dichloroethene 19) Freon 113	6.37	101	28746 75197	1.19			94
20) t-Butyl alcohol	6.90	59	45185	0.98			
21) Methylene chloride	7.06						89
22) Allyl chloride	7.03	84 41 76	25448	0.95			83
23) Carbon disulfide	7.21	75	19430 68931	1.02	pph		98
24) trans-1,2-dichloroethene		61	29781	0.96	ppb		89
25) methyl tert-butyl ether		73	58091	0.99			89
26) 1,1-dichloroethane	8.40	73 63 43	58091 45879	1.04			98
27) Vinyl acetate	8.44	43	45819 28686 8460	0.75			98
28) Methyl Ethyl Ketone	8.94	70	8460	0.90			
29) cis-1,2-dichloroethene		61			ppb		89
30) Hexane	9.35 8.90	57	22935	0.86	nnb		97
31) Ethyl acetate	9,54	43	24101 22935 37330	1.02	daa		96
32) Chloroform	9.95	83	58628	0.98	daa		98
33) Tetrahydrofuran	10.17			0.88			
34) 1,2-dichloroethane	11.09	62	32732	, ŏ.98	ppb		89
36) 1,1,1-trichloroethane	10.75	97	55200m	1.28	ppb		
37) Cyclohexane	11.45	56	22616		dqq	#	84
38) Carbon tetrachloride	11.40	117	60536m		ppb		
39) Benzene	11.37	78	46455		ppb		97
40) Methyl methacrylate	12.93	41.	15859		ppb		85
41) 1,4-dioxane	13.01	88	11429		ppb		100
42) 2,2,4-trimethylpentane	12.19	57	95059	1.43			97
43) Heptane	12.53	43	16705	1.08			95
44) Trichloroethene	12.68	130	23579	1.21			97
45) 1,2-dichloropropane	12.79	63	16910	1.23			94
43) 1,0 Q4CH1010P10P4H0					~ ~ ~ ~ ~		

^{(#) =} qualifier out of range (m) = manual integration AN040125.D A316 1UG.M Tue Apr 26 14:44:50 2016

Data File: C:\HPCHEM\1\DATA\AN040125.D
Acq On: 2 Apr 2016 3:21 am
Sample: ALCS1UGD-040116
Misc: A316_1UG Vial: 3 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 02 07:59:55 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration

DataAcq Meth : 1UG RUN

	Compound	R.T.	QIon	Response (Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	42093m h	1.25 ppb	
47)		13.90	75	23342m	1.27 ppb	
48)		14.63	75	26114	1.59 ppb	91
49)	1,1,2-trichloroethane	14.93	97	17907m	1.19 ppb	
51)	Toluene	14.68	92	19046	0.84 ppb	97
52)	Methyl Isobutyl Ketone	13.84	43	40410	1.01 ppb	95
53)	Dibromochloromethane	15.60	129	34742m	1.21 ppb	
54)	Methyl Butyl Ketone	15.12	4.3	27202	0.76 ppb	91
55)	1,2-dibromoethane	15.85	107	35295	1.25 ppb	95
56)	Tetrachloroethylene	15.66	164	17901	0.83 ppb	97
57)	Chlorobenzene	16.61	112	32123	1.08 ppb	89
58)	1,1,1,2-tetrachloroethane	16.71	131	25427	1.14 $\hat{p}\hat{p}b$	95
59)	Ethylbenzene	16.85	91	36776	0.94 ppb	96
60)		17.04	91	58058	1.88 ppb	94
61)	Nonane	17.38	43	17884	0,97 ppb	96
62)	Styrene	17.46	104	23463	1.09 ppb	91
63)	Bromoform	17.59	173	33067	2.14 ppb	99
64)	o-xylene	17.49	91.	41443	1.12 ppb	98
65)		18.02	105	42342	0.98 ppb	99
67)		17.93	83	46433	1.22 ppb	99
	Propylbenzene	18.54	91	50147m 📝	1.09 ppb	
	2-Chlorotoluene	18.58	91	30598m	0.91 ppb	
	4-ethyltoluene	18.70	105	43131m	1.09 ppb	
71)	1,3,5-trimethylbenzene	18.76	105	53436m	1.13 ppb	
	1,2,4-trimethylbenzene	19.19	105	43324	1.06 ppb	96
	1,3-dichlorobenzene	19.48	146	32101m	1.23 ppb	
	benzyl chloride	19.56	91	40921	1.10 ppb	98
75)	1,4-dichlorobenzene	19.62	146	28290	1.16 ppb	94
76)		19.65	105	54000	1.07 ppb	91
	1,2-dichlorobenzene	19,93	146	36031	1.13 ppb	96
	1,2,4-trichlorobenzene	21.79	180	20383m /	0.85 ppb	
79)	Naphthalene	22.15	128	46143m 🗗	0.92 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	63646	1.09 ppb	96

Reviewed)

{QT

Quantitation Report

Data File : C:\HPCHEM\1\DATA\AN040224.D Vial: 21 Acq On : 3 Apr 2016 1:13 am Operator: RJP Sample : ALCSIUGD-040216 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 03 06:12:44 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (
1) Bromochloromethane				1.00 ppb		
35) 1,4-difluorobenzene						
50) Chlorobenzene-d5	16.57	117	39568m / 3 28434m	1.00 ppb		
	m. 0.0,		20151111	r.oo ppb		0.00
System Monitoring Compounds						
66) Bromofluorobenzene	18.13	95	19428	dqq 30.1		0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	$r = \overline{106}$.00%	
Target Compounds						alue
2) Propylene	4.15	41.	16606	1.23 ppb	#	100
3) Freon 12 4) Chloromethane	4.20	85	20222	1.4/ PDO		100
5) Freon 114	4.40		22283m √			
6) Vinyl Chloride	4.39	85 62 43	71787m	1,20 ppb		
7) Butane	4.58	φ∠ 4.5	25462	1.22 ppb		92
8) 1,3-butadiene	4.69 4.69	43 39	22812 25482m 15952	1.19 ppb		c a
9) Bromomethane	5.04		つりひつづか 【	1.13 ppb		64
10) Chloroethane	5.22	94 64	8362m	1.23 ppb 1.09 ppb		
11) Ethanol	5.38	45	7013	1.23 ppb	#	78
12) Acrolein	5.96		5600m	1.16 ppb	71	70
13) Vinyl Bromide	5.55	306	23708m	1.09 ppb		
14) Freon 11	5.81	101	23708m 96272m	1.31 ppb		
15) Acetone	6.06	58	7670m	1.06 ppb		
16) Pentane	6.08	42	19957	1.21 ppb		89
17) Isopropyl alcohol	6.16	45	22887		#	46
18) 1,1-dichloroethene	6.58	45 96	23753	1.11 ppb		93
19) Freon 113	6.75	101	66199m	1.28 ppb		
20) t-Butyl alcohol	6.90	59	23840	0.64 ppb		69
21) Methylene chloride					#	86
22) Allyl chloride	7.05			1.12 ppb		91
23) Carbon disulfide	1.24	/ ¢s		1.15 ppb		97
24) trans-1,2-dichloroethene	8.01	61	29171	1.15 ppb		96
<pre>25) methyl tert-butyl ether 26) 1,1-dichloroethane</pre>	8.03	73	49303	1.03 ppb		84
26) 1,1-dichloroethane		63	42150	1.17 ppb		99
27) Vinyl acetate	8.43	43	30164	0.97 ppb		98
28) Methyl Ethyl Ketone	8.95	72	7134 23080	0.93 ppb		100
29) cis-1,2-dichloroethene 30) Hexane		61	23080 21665	1.11 ppb		96
31) Ethyl acetate	8.90	57	21665		и	94
32) Chloroform	9.54 9.96	43 83	29271		Ħ	
33) Tetrahydrofuran		40	53371	1.10 ppb		98 99
34) 1,2-dichloroethane	11.09	62	14438 30054 A	1.10 ppb		88
36) 1,1,1-trichloroethane	10.75	97	48306m	1.30 ppb		00
37) Cyclohexane	11.44	5.6	19148m	1.25 ppb		
38) Carbon tetrachloride	11.39	117	51845m	1.25 ppb		
39) Benzene	11.37	78	36958m	1.12 ppb		
40) Methyl methacrylate	12.92	41	11930	1.11 ppb	#	85
41) 1,4-dioxane	13.02	88	4854m	0.58 ppb	14	
42) 2,2,4-trimethylpentane	12.19	57	79575m	1.38 ppb		
43) Heptane	12.54	4.3	16023	1.20 ppb		97
44) Trichloroethene	12.68	130	20428	1.22 ppb		99
45) 1,2-dichloropropane	12.79	63	13855m 🗸	1.17 ppb		

^{(#) =} qualifier out of range (m) = manual integration AN040224.D A316_1UG.M Tue Apr 26 14:59:21 2016

MSD1

Data File : C:\HPCHEM\1\DATA\AN040224.D

Acq On : 3 Apr 2016 1:13 am

Sample : ALCS1UGD-040216

Misc : A316_1UG Vial: 21 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 03 06:12:44 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	40630	1.40 ppb	99
47)	cis-1,3-dichloropropene	13.91	75	17575m	1.11 ppb	
48)	trans-1,3-dichloropropene	14.64	75	17502m	1.23 ppb	
49)	1,1,2-trichloroethane	14.93	97	15918m	1,22 ppb	
51)	Toluene	14.68	92	15999	dqq 88.0	93
52)	Methyl Isobutyl Ketone	13.85	4.3	16015m	0.47 ppb	
53)	Dibromochloromethane	15.60	129	29038m	1.19 ppb	
54)	Methyl Butyl Ketone	15.12	43	11884m 🗸	0.39 ppb	
55)	1,2-dibromoethane	15.86	107	30992	1.29 ppb	95
56)	Tetrachloroethylene	15.66	164	16328	dqq e8.0	99
57)	Chlorobenzene	16.61	112	28766	1.13 ppb	90
58)	1,1,1,2-tetrachloroethane	16.71	131	23282	1.23 ppb	96
59)	Ethylbenzene	16.85	91	32846	0.99 ppb	98
60)	m&p-xylene	17.04	91	50659	1.93 ppb	94
61)	Nonane	17.38	43	17387	1.11 ppb	96
62)	Styrene	17.46	104	19788	1.08 ppb	94
63)	Bromoform	17.59	173	27444	2.09 ppb	96
64)	o-xylene	17.49	91	36160	1.15 ppb	97
65)	Cumene	18.02	105	38606	1.05 ppb	98
67)	1,1,2,2-tetrachloroethane	17.93	83	42851 A	1.32 ppb	97
68)	Propylbenzene	18.54	91.	42675m 🕏	1.09 ppb	
69)	2-Chlorotoluene	18.58	91	28750m	1.01 ppb	
70)	4-ethyltoluene	18.70	105	36356m	1.08 ppb	
71)	1,3,5-trimethylbenzene	18.75	105	47475m //	1.18 ppb	
72)		19.19	1.05	33263	0.96 ppb	91
73)	1,3-dichlorobenzene	19.49	146	24776	1.12 ppb	98
74)		19.56	91	24061	0.76 ppb	91
75)	1,4-dichlorobenzene	19.62	146	22059	1.06 ppb	97
76)	1,2,3-trimethylbenzene	19.65	105	45073	1.05 ppb	95
77)	1,2-dichlorobenzene	19.93	146	26784 D	0.99 ppb	97
78)	1,2,4-trichlorobenzene	21.97	180	13922m 🏅	ပ.68 ရွာရွာစ	
79)	Naphthalene	22.12	128	22973m V	0.54 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	38512	0.77 ppb	94

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN040224.D A316_1UG.M Tue Apr 26 14:59:22 2016 MSD1

(QT Reviewed)

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

Date: 26-4pr-16

LaBella Associates, P.C. CLIENT:

C1603075 Work Order:

Project:

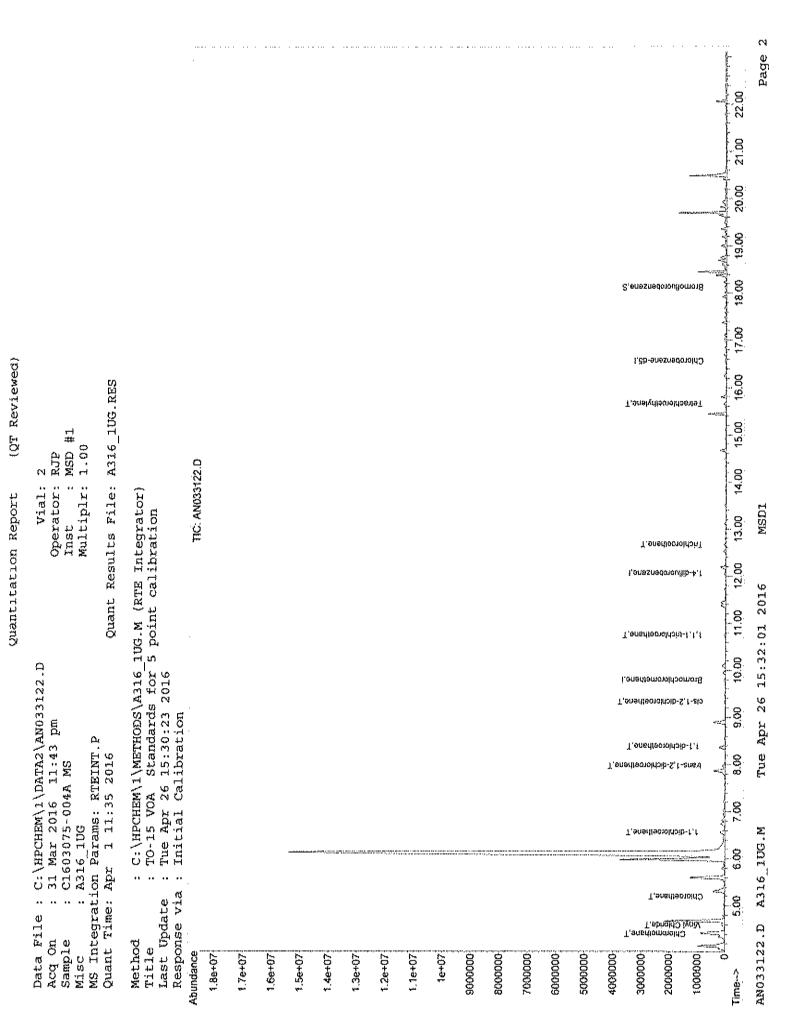
FESL Emerson Landfill

445-1AQ-2 Batch ID: Result TestNo: TO-15 Analysis Retaine 1.140 0.15 1 0 114 hene 1.060 0.15 1 0 114 hene 1.140 0.15 1 0 111 e 1.760 0.15 1 0 114 e 1.760 0.15 1 0 176 ylene 0.9300 0.15 1 0 108 ylene 0.15 1 0 108 108 ylene 0.9300 0.15 1 0 93.0 ylene 1.110 0.040 1 0 111	Sample ID C1603075-004A MS SampType: MS	SampType: MS	TestCo	Je: 0,25CT-TC	TestCode: 0,25CT-TCE- Units: ppbV		Prep Date:	ie.		RunNo: 10817	117	
Result PQL SPK value SPK Ref Value ethane 1.140 0.15 1 0 hene 1.110 0.15 1 0 e 1.760 0.15 1 0 e 1.760 0.15 1 0 ylene 0.9300 0.15 1 0 knrethene 1.110 0.15 1 0 knrethene 1.110 0.15 1 0 knrethene 1.110 0.15 1 0	Client ID: 1645-IAQ-2	Batch ID: R10817	Test	lo: TO-15			Anatysis Da	le: 3/31/2(716	SeqNo: 127108	108	
ethane 1.140 0.15 1 0 114 hane 1.060 0.15 1 0 106 hene 1.110 0.15 1 0 111 e 1.760 0.15 1 0 176 oethene 1.080 0.15 1 0 108 ylene 0.15 1 0 93.0 koraethene 1.110 0.15 1 0 111 e 1.130 0.040 1 0 113	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
hane 1.060 0.15 1 0 106 hene 1.110 0.15 1 0 111 e 1.760 0.15 1 0 114 vethene 1.080 0.15 1 0 108 ylene 0.9300 0.15 1 0 93.0 koraethene 1.110 0.15 1 0 111 e 1.130 0.040 1 0 113	1,1,1-Trichloroethane	1.140	0.15	-	0	114	22	136				
hene 1.110 0.15 1 0 111 e 1.760 0.15 1 0 114 e 1.760 0.15 1 0 176 oethene 1.080 0.15 1 0 108 ylena 0.9300 0.15 1 0 93.0 horoethene 1.110 0.15 1 0 111 e 1.130 0.040 1 0 113	1,1-Dichloroethane	1.060	0.15	•	0	106	70	130				
e 1.140 0.15 1 0 114 oethene 1.080 0.15 1 0 176 ylene 0.9300 0.15 1 0 93.0 koroethene 1.110 0.15 1 0 111 e 1.130 0.040 1 0 113	1,1-Dichloroethene	1.110	0.15	4 000	0	4	70	130				
1.760 0.15 1 0 176 1.080 0.15 1 0 108 0.9300 0.15 1 0 93.0 1.110 0.15 1 0 111 1.130 0.040 1 0 113	Chloroethane	1.140	0.15	•	0	144	22	130				
1.080 0.15 1 0 108 0.9300 0.15 1 0 93.0 1.110 0.15 1 0 111 1.130 0.040 1 0 113	Chloromethane	1.760	0.15	•	Φ	176	70	130				S
ylene 0.9300 0.15 1 0 93.0 loraethene 1.110 0.15 1 0 111 ie 1.130 0.040 1 0 113	cis-1,2-Dichloroethene	1.080	0.15	-	0	108	70	130				
Nordelhene 1.110 0.15 1 0 111	Tetrachloroethylene	0.9300	0.15	-	٥	93.0	70	130				
le 1.130 0.040 1 0 \$13	trans-1,2-Dichloroethene	1.110	0.15	-	0	4.v	70	130				
	Trichlomethene	1.130	0.040	-	0	113	70	130				
1.020 0.040 1 0 102	Vinyl chloride	1.020	0.040	-	0	102	70	130				

Sample ID C1603075-004A MS SampType: MSD	5-004A MS	SampType: MSD	TestCo	Je: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date	is i		RunNo: 10817	817	
Client ID: 1645-IAQ-2	1.2	Batch ID: R10817	Test	TestNo: TO-15		**	Analysis Date: 4/1/2016	e: 4/1/201	40	SeqNo: 127109	7109	
Anaiyie		Result	PQ	SPK value	SPK Ref Val	%REC	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD	RPOLimit	Qual
1, 1, 1. Trichloroethane		1,020	0.15	-	0	102	70	130	1.14	1.1	30	
1,1-Dichloroethane		1.080	0.15	-	0	108	70	130	1.06	1.87	30	
1,1-Dichloraethene		1.150	0.15	-	0	115	70	130	7 V	3.54	33	
Chloroethane		1.130	0.15	**	O	113	70	130	1.44	0.881	89	
Chloromethane		1.810	0.15	۴-	0	181	7.0	130	1.76	2.80	33	Ŋ
cis-1,2-Dichloroethene	ģi.	1.160	0.15	₩-	0	116	70	130	1.08	7.14	8	
Tetrachloroethylene		0.9700	0.15	4 m	٥	97.0	29	130	0.93	4.21	30	
trans-1,2-Dichloroethene	ene	1.100	0.15	dear	Ů	110	70	130	11,11	0.905	30	
Trichloroethene		4.180	0.040	***	0	110	70	33	1.13	2.69	30	
Qualifiers:	Results report	Results reported are not blank corrected		E Value	Value above quantitation range	ခိုင	1	14	Holding times for preparation or analysis exceeded	preparation or a	analysis exceed	8
<u></u>	Anslyte detect	Analyte detected at or below quantitation limits	mits	ND Not D	Not Detected at the Reporting Limit	g Limit		~	RPD outside accepted recovery limits	pled recovery bi	mits	

								£./1
					Qual		ded	Page 2 of 2
		-VC	11	601	RPDLimit	30	alysis excee ise	
		0.25CT-TCE-VC	RunNo: 10817	SeqNo: 127109	%RPD	2.99	sparation or as dinyonery lim	d texting an
		TestCode: 0.2			RPD Ref Vai	1.02	Holding times for preparation or analysis exceeded 1890 outside accounted monuton limits	Officials arraying
		Test		4/1/2016	HighLimit RP	O C	MoH H	
			Prep Date:	Analysis Date:	LowLinit H	Ø2		
				∢	%REC	Q: 65	est Selimia	2 LIII.4
			Units: ppbV		SPK Ref Val	O Company of the comp	Value above quantitation range Not Detected at the Renortino Limit	d de dec Nopotari
			TestCode: 0.25CT-TCE-	FO-15	SPK value SPk		E Value above	
			TestCode: (TestNo: TO-15	PQL SI	0.040		
			MSD	R10817	Result	0.9900	Results reported are not blank corrected Analyte delected at as below ourseteniess limits	Anaryte Recovery outside accepted recovery limits
ociates, P.C		son Landfill	SampType: MSD	Batch ID: R10817			Results reported are not blank corrected. Analyse delected at or below ourseinters	ou at us octori y outside acce
LaBella Associates, P.C.	C1603075	FESL Emerson Landfill	Sample ID C1603075-004A MS	Q-2			Results reports	Spike Recover
			C16030	1645-IAQ-2		op o		~ v>
CLIENT:	Work Order:	Project:	Sample ID	Client ID:	Analyte	Viryi chloride	Qualifiers:	

Data File : C:\HPCHEM\1\DATA2\AN033122.D Vial: 2 Acq On : 31 Mar 2016 11:43 pm Operator: RJP Inst : MSD #1 Sample : C1603075-004A MS Misc : A316_1UG Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 01 03:32:47 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.05 16.56		22331 56616 32647	1.00 ppl 1.00 ppl 1.00 ppl	0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000		95 - 130	24262 Recover		
Target Compounds 4) Chloromethane	4.40	50	44038m √Ĵ	1.76 pph	Qvalue
6) Vinyl Chloride	4.59	62	25633	1.02 ppt	
10) Chloroethane	5.20	64	11714	1.14 ppk	
18) 1,1-dichloroethene	6.56	96	31895	1.11 ppl	
24) trans-1,2-dichloroethene	7.97	61	37799m 🎢	1.11 ppk	
26) 1,1-dichloroethane	8.39	63	50858 "	1.06 pph	
29) cis-1,2-dichloroethene	9.33	61.	30153	1.08 ppt	
36) 1,1,1-trichloroethane	10.75	97	60856	1.14 ppl	
44) Trichloroethene	12.67	130	27257	1.13 ppk	
56) Tetrachloroethylene	15.66	164	19771	0.93 ppb	98

Data File : C:\HPCHEM\1\DATA2\AN033123.D
Acq On : 1 Apr 2016 12:25 am
Sample : C1603075-004A MSD
Misc : A316_1UG Vial: 2 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 01 03:32:48 2016 Quant Results File: A316_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Mar 17 10:24:27 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.05 16.56	1.1.4	23633 65314 36439	1.00 pp 1.00 pp 1.00 pp	b 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70				ъ 0.00 7.00%
Target Compounds 4) Chloromethane	4.39	50	47784m P	1.81 pp	Qvalue b
6) Vinyl Chloride	4.58	62	26335	0.99 pp	
10) Chloroethane	5.21	64	12288	1.13 pp	b 98
18) 1,1-dichloroethene	6.56	96	34729	1.15 pr	b 96
24) trans-1,2-dichloroethene	7.97	61	39623m 🕢	1.10 pp	
26) 1,1-dichloroethane	8.40	63	54995	1.08 pp	
29) cis-1,2-dichloroethene	9.33	61	34393	1,16 pp	
36) 1,1,1-trichloroethane	10.75	97	62719	1.02 pp	
44) Trichloroethene	12.67	130	30549	1.10 pr	
56) Tetrachloroethylene	15.66	1.64	22931	0.97 pr	b 97

^{(#) =} qualifier out of range (m) = manual integration (+) \approx signals summed AN033123.D A316_1UG.M Tue Apr 26 15:32:04 2016

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INJECTION LOG

Į	nj	e	C	ti	o	n	L	o	Ç

Directory: C:\HPCHEM\1\DATA2

Internal Standard Stock #_A/335 Standard Stock #__/ A/335 Standard Stock #__// A/336 LCS Stock #__// A/330

ne	Vial	FileName	Multiplier	SampleName	Misc Inforthed Ref: EPATC	- 1 Injebtêd 1999
06 07 08 09	29 30 31	An033037.d An033038.d An033039.d An033040.d	1. 1. 1. 1.	C1603071-003A 40X C1603071-004A 10X C1603062-002A 540X No MS or GC data present	A316_1UG A316_1UG A316_1UG	31 Mar 2016 07:37 31 Mar 2016 08:14 31 Mar 2016 08:50
10 11 12 13 14 15	1 2 3 4 5 6	An033101.d An033102.d An033103.d An033104.d An033105.d An033106.d	1. 1. 1. 1. 1.	BFB1UG A1UG A1UG A1UG_1.0 ALCSTUG-033116 AMB1UG-033116	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	31 Mar 2016 09:33 31 Mar 2016 10:56 31 Mar 2016 11:38 31 Mar 2016 12:19 31 Mar 2016 12:57 31 Mar 2016 13:33
16 17 18 19 21 22 23 24 25	7 8 9 10 11 12 1 2 3 4	An033107.d An033108.d An033109.d An033110.d An033111.d An033112.d An033113.d An033114.d An033115.d An033116.d	1, 1, 1, 1, 1, 1, 1, 1,	WAC033116A WAC033116B WAC033116C WAC033116D WAC033116E WAC033116F C1603064-002A 270X C1603064 C1603064-004A 810X C1603064-007A 540X	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG -004A 81X A316_1UG A316_1UG	31 Mar 2016 14:15 31 Mar 2016 14:52 31 Mar 2016 15:30 31 Mar 2016 16:07 31 Mar 2016 16:44 31 Mar 2016 17:27 31 Mar 2016 18:43 31 Mar 2016 19:19 31 Mar 2016 19:55
26 27 28 29 30 31 32 33 34 35	5678222345	An033117.d An033118.d An033119.d An033120.d An033121.d An033122.d An033123.d An033124.d An033125.d An033126.d	1. 1. 1. 1. 1. 1. 1. 1.	C1603064-009A 270X C1603064-003A 270X C1603064-006A 540X C1603064-008A 270X C1603075-004A C1603075-004A MS C1603075-004A MSD C1603075-002A C1603075-005A C1603074-001A	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	31 Mar 2016 20:32 31 Mar 2016 21:08 31 Mar 2016 21:45 31 Mar 2016 22:22 31 Mar 2016 23:01 31 Mar 2016 23:43 1 Apr 2016 00:25 1 Apr 2016 01:04 1 Apr 2016 02:22
36 37 38 39 40 41 42 43 44 45	6 7 8 9 10 11 12 13 14	An033127.d An033128.d An033129.d An033130.d An033131.d An033132.d An033133.d An033134.d An033135.d An033136.d	1. 1. 1. 1. 1. 1. 1.	C1603074-003A C1603074-005A C1603076-001A C1603076-004A C1603076-006A C1603076-008A ALCS1UGD-033116 C1603075-001A C1603075-003A C1604001-001A	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	1 Apr 2016 03:00 1 Apr 2016 03:39 1 Apr 2016 04:18 1 Apr 2016 04:57 1 Apr 2016 05:36 1 Apr 2016 06:15 1 Apr 2016 06:53 1 Apr 2016 08:10 1 Apr 2016 08:49 1 Apr 2016 09:28
16		An033137.d	1.	No MS or GC data present		

	Directory:	C:\HPChen	n\1\DATA	Injection Log _{trument} #i Internat Standard Stock #13* Standard Stock #13*	
ine	Vial FileNan	ne Multiplier	SampleName	LCS Stock # /3 45	.31
0	16 An0401 18 An0401 19 An0401 20 An0401 21 An0401 22 An0401 23 An0401 24 An0401 25 An0401 26 An0401	02.d 1. 03.d 1. 04.d 1. 05.d 1. 06.d 1. 07.d 1. 08.d 1.	BFB1UG A1UG_1.0 ALCS1UG-040116 AMB1UG-040116 C1603075-001A 2X C1603074-002A C1603076-003A C1603076-005A C1603076-002A	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	1 Apr 2016 10:05 1 Apr 2016 12:06 1 Apr 2016 12:45 1 Apr 2016 13:21 1 Apr 2016 13:59 1 Apr 2016 14:58 1 Apr 2016 15:39 1 Apr 2016 16:18 1 Apr 2016 16:57 1 Apr 2016 17:36
1 2 3 4 5 5 7 8 9 0	27 An0401 28 An0401 49 An0401 21 An0401 22 An0401 23 An0401 24 An0401 25 An0401 26 An0401	12.d 1. 13.d 1. 14.d 1. 15.d 1. 16.d 1. 17.d 1. 18.d 1.	C1603076-007A C1603076-009A C1603089-001A C1603089-002A C1603089-003A C1603089-005A C1603089-006A C1603089-007A C1603089-008A	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	1 Apr 2016 18:15 1 Apr 2016 18:54 1 Apr 2016 19:33 1 Apr 2016 20:12 1 Apr 2016 20:51 1 Apr 2016 21:30 1 Apr 2016 22:09 1 Apr 2016 22:48 1 Apr 2016 23:27 2 Apr 2016 00:06
1 2 3 4 5 7 3 9	28 An04012 29 An04012 1 An04012 2 An04013 3 An04013 4 An04012 5 An04012 7 An04013 8 An04013	22.d 1. 23.d 1. 24.d 1. 25.d 1. 26.d 1. 27.d 1. 28.d 1.	C1603089-009A C1603089-010A C1603089-011A C1603089-012A ALCS1UGD-040116 C1603079-001A C1603079-002A C1603079-003A C1603079-005A	A316_1UG	2 Apr 2016 00:45 2 Apr 2016 01:24 2 Apr 2016 02:03 2 Apr 2016 02:42 2 Apr 2016 03:21 2 Apr 2016 04:00 2 Apr 2016 04:39 2 Apr 2016 05:18 2 Apr 2016 05:57 2 Apr 2016 06:36
1 2 3 4 5 5 7 3 9	9 An04013 10 An04013 11 An04013 12 An04013 13 An04013 1 An04020 2 An04020 3 An04020 1 An04020	32.d 1. 33.d 1. 34.d 1. 35.d 1. 36.d 1. 01.d 1. 02.d 1.	C1603079-006A C1603078-001A C1603078-002A C1603078-003A C1603078-003A DUP No MS or GC data pres BFB1UG A1UG A1UG_1.0 ALCS1UG-040216	A316_1UG A316_1UG A316_1UG A316_1UG ent A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	2 Apr 2016 07:15 2 Apr 2016 07:54 2 Apr 2016 08:33 2 Apr 2016 09:12 2 Apr 2016 09:50 2 Apr 2016 10:48 2 Apr 2016 11:29 2 Apr 2016 12:08 2 Apr 2016 12:58
	2 An04020 3 An04020 4 An04020 5 An04020 6 An04021 8 An04021 9 An04021 10 An04021	06.d 1. 07.d 1. 08.d 1. 09.d 1. 0.d 1. 1.d 1. 2.d 1. 3.d 1.	AMB1UG-040216 C1603078-004A C1603074-002A 10X C1603074-004A 90X C1603076-009A 5X C1603079-001A 10X C1603079-002A 10X C1603079-003A 10X C1603079-004A 10X C1603079-005A 10X	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG	2 Apr 2016 13:34 2 Apr 2016 14:13 2 Apr 2016 14:50 2 Apr 2016 15:27 2 Apr 2016 16:03 2 Apr 2016 16:40 2 Apr 2016 17:17 2 Apr 2016 17:53 2 Apr 2016 18:30 2 Apr 2016 19:06
 	12 An04021 13 An04021 14 An04021 15 An04021 16 An04021	6.d 1. 7.d 1. 8.d 1.	C1603079-006A 10X C1603078-001A 10X C1603078-001A 40X C1603078-002A 10X C1603078	A316_1UG A316_1UG A316_1UG A316_1UG A316_1UG -002A 40X	2 Apr 2016 19:43 2 Apr 2016 20:19 2 Apr 2016 20:56 2 Apr 2016 21:32 2 Apr 2016 22:08

Injection Log lesumment # Directory: C:\HPChem\1\DATA Internal Standard Stock # A/349.35 Standard Stock #_ 134336 /3457/Injected L Misc Info# Vial FileName Multiplier SampleName * Yelhod Ref: EPA TO-15 / Jan. 1999 17 An040220.d C1603078-003A 10X 2 Apr 2016 22:45 56 1. A316_1UG 57 18 An040221.d A316_1UG 2 Apr 2016 23:21 1. C1603078-003A 40X A316_1UG 19 58 An040222.d 1. C1603078-004A 10X 2 Apr 2016 23:58 A316_1UG 59 20 An040223.d 1. C1603078-004A 40X 3 Apr 2016 00:34 3 Apr 2016 01:13 30 21 An040224.d 1. ALCS1UGD-040216 A316_1UG 22 31 An040225.d 1. C1603092-001A A316_1UG 3 Apr 2016 01:52 32 23 An040226.d 1. C1603092-002A A316_1UG 3 Apr 2016 02:31 C1603092-003A 33 24 An040227.d 1. A316_1UG 3 Apr 2016 03:10 A316_1UG 34 25 An040228.d 1. C1603092-004A 3 Apr 2016 03:49 26 An040229.d 35 1. C1603092-005A A316_1UG 3 Apr 2016 04:28 27 1. A316_1UG 3 Apr 2016 05:07 36 An040230.d C1603092-006A 3 Apr 2016 05:46 37 28 An040231.d A316_1UG 1. C1603092-007A 38 29 An040232.d 3 Apr 2016 06:25 1. C1603092-008A A316_1UG 39 30 An040233.d 1. C1603092-009A 3 Apr 2016 07:03 A316_1UG 70 31 An040234.d 1. C1603092-010A A316_1UG 3 Apr 2016 07:42 32 An040235.d A316_1UG 1. C1603092-012A 3 Apr 2016 08:21 12 33 An040236.d 1. A316_1UG C1603092-015A 3 Apr 2016 09:00 73 An040237.d 1. No MS or GC data present 1 ٧4 An040301.d 1. BFB1UG A316_1UG 3 Apr 2016 09:42 2 '5 An040302.d 1. A1UG_1.0 A316_1UG 3 Apr 2016 11:40 An040303.d 3 '6 1. ALCS1UG-040316 A316_1UG 3 Apr 2016 12:29 7 4 An040304.d 1. AMB1UG-040316 A316 1UG 3 Apr 2016 13:47 1 '8 An040305.d 1. WAC040316A A316 1UG 3 Apr 2016 14:24 '9 2 WAC040316B A316_1UG An040306.d 1. 3 Apr 2016 15:01 ;O 3 An040307.d A316_1UG ٦. WAC040316C 3 Apr 2016 15:38 11 4 An040308.d 1. WAC040316D A316_1UG 3 Apr 2016 16:15 5 12 A316_1UG An040309,d., 4... WAC040316E 3 Apr 2016 16:52 13 6 An040310.d 1. C1603078-002A 90X A316_1UG 3 Apr 2016 17:28 7 14 An040311.d 1. C1603092-013A A316 1UG 3 Apr 2016 18:07 15 8 An040312.d 1. C1603092-013A MS A316_1UG 3 Apr 2016 18:49 9 6 An040313.d 1. C1603092-013A MSD A316_1UG 3 Apr 2016 19:32 7 10 An040314.d 1. C1603092-016A A316_1UG 3 Apr 2016 20:11 8 11 An040315.d 1. C1603092-017A A316_1UG 3 Apr 2016 20:50 :9 12 An040316.d C1603092-018A 1. A316_1UG 3 Apr 2016 21:29 0 13 An040317.d 1. C1603092-019A A316_1UG 3 Apr 2016 22:09 1 14 An040318.d 1. C1603092-012A 10X 3 Apr 2016 22:45 A316_1UG 2 15 An040319.d 1. C1603091-005A A316_1UG 3 Apr 2016 23:24 3 16 An040320.d 1. C1603091-005A MS A316_1UG 4 Apr 2016 00:06 4 17 An040321.d C1603091-005A MSD A316_1UG 1. 4 Apr 2016 00:49 5 18 An040322.d C1603091-001A A316_1UG 1. 4 Apr 2016 01:28 19 An040323.d A316_1UG 1. C1603091-002A 4 Apr 2016 02:08 20 An040324.d 1. C1603091-003A A316_1UG 4 Apr 2016 02:47 An040325.d 21 1. C1603091-004A A316_1UG 4 Apr 2016 03:26 9 22 An040326.d 1. C1603091-006A A316_1UG 4 Apr 2016 04:06 23 00 An040327.d 1. C1603091-007A A316_1UG 4 Apr 2016 04:45 01 An040328.d 1. No MS or GC data present 02 28 An040401.d 1. BFB1UG A316_1UG 4 Apr 2016 09:00 03 29 An040402.d A1UG_1.0 A316_1UG 4 Apr 2016 09:37 1, 30 ALCS1UG-040416 A316_1UG 04 An040403.d 1. 4 Apr 2016 10:16 05 31 An040404.d AMB1UG-040416 A316_1UG 4 Apr 2016 10:52 1.

A316_1UG

A316__1UG

A316_1UG

A316_1UG

A316_1UG

C1603092-017A 40X

C1603076-003A RE

C1603076-005A RE

C1603076-002A RE

C1603076-007A RE

1.

1.

1.

1.

1.

6

7

8

32

33

34

35

36

An040405.d

An040406.d

An040407.d

An040408.d

An040409.d

06

07

80

09

10

4 Apr 2016 11:46

4 Apr 2016 12:25

4 Apr 2016 14:00

4 Apr 2016 14:39

4 Apr 2016 15:18

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 STANDARDS LOG

Centek Laboratories, LLC

Chkd by																								
Prep by	ST.	-)	£04	7.7	O.V	-													73				+>	>
Final Conc (ppb)	0.9	,	ingai	(Still loom	5000	20002					→	\$ 00 m	1	30,000	8000	1 000	-	-	र्क्ट ०ड			>	١,	٧
Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb)	30	44	TO IS MIX	T NOW S	2	200			45	30			٤ ;	9.0	-	45		- -}	30				> ;	8
Initial Vol (psig	1, 75	5.0	7.			c -			0.30	3.0			3	1.5	3.0	5.0		ج-	ئ۲،	_			> 	3.0
Stock Conc	100%		0 / 00 /	マイスシ		1 per	-	-	11.5 APPM	BITTE AMEN / 50048	1000		wator	(ppm	50008	•		->	7				>	502
Stock #	A1188	47367	1	را	,	AII 24	AIZOH	AIZO3	4CPOA	Things	000 J	2/420	1988 1989	3515	AILIA	A17.65	Arion	A1206	Pring	41203	3 5 5	7915	9519	02218
Description		NOV A	101 10 A B B	7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1015 (15	1,65	STD	TOIR FORM	}	7 - 7	1700	7 175	HOST SIGH	J 4.PC45	TOIS 1116 +		+ H3	マト バット		770	527	Tody.	4Pass
Oste Dren Date Evn		2/87	1 17/12	-		1/25/16 1015								•••				7	11/2					->
Date Dren	Jake 1 lep	4118/31	11/2/11	-ı -		1/18/11													1/20/1	1(2)				7
# 243	# nio	A- 1401	4-1204	4-1762	4- 120 H	A-1205	A-120C	[0[.4	\$000 V	200	5	4-12.10	A-121	4-1212	A. 17.13	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	2 - 2	7	1017	2 c	A-1218	A. (2)9	A. 1220	A-122

FORM 153

Page # 58

,-		,			1 · · · · · · · · · · · · · · · · · · ·	<u></u>	·	····			<u> </u>					Т				T	Ţ	1		7	
	Chkd by																						_		
	Prep by Chkd by	<u>رن</u>			>	. /	3 /	∆ 3 .		-								<u></u>	>	1	3 -		1	>	
<u> </u>	Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb)	SOO	7) -	ext.	50			->	7	So	52	55	८४८			 	 	200			>	[
	Finial Vol (psia)	30	£/		-		510001Z	30			->	30	ב	30	30	30	LSH LSH	_		> 6	300			>	
	Initial Vol (psig)	V-	50	_		>	Y)	1.5			→	3.0	0.30	1		12	5 <	-		7	<u> </u>			>	
	Stock Conc	10 onm	5000	-	,	€	LIN	I pum	-		>	रिट ०५					-			3	mod 1			>	
	Stock #	PASA2	C 7.00	7 5 5	11/0	1412.7J	FF-4969	A 1285	A1203	ANSIA	4519		47574	1808	17.07.CK	1 -	1000 V	231 12		41252	41289	A1203	A1204	9519	
	netion	7.7) F	7469	ST #16.1	23	112	IS	57	205	4 Prh		Frim thos	7,10	STATE OF THE PARTY	705	~i	146 IV	523	23	IS	53	223	yest	
	Description	Total Like	1 .	101		>	7815	7015									İ١	7015		>	7015			\rightarrow	
	Doto Evo	1/1/2 2/1/	9			☆	2111/8	1/16 3/14/16			_									>	3/4/16			>	
	200	Date Frep	2000			->	3] 6	3/7/16	-											>	3/14/16			>	
	# 6.00	Std #	A C	A- 1580	A. 128)	A. 1288	9 A 1289	4.129D	4. [29]	1292	1263	129.4	- V	A-103	A-1236	A-129/	A-12518	A- 1294	A.1300	A- 130 (A-1302	A. 1303			
	•	C	ente	kΙ	аb	ora	tori	es				,											P	age	16

FORM 153

Page 169 of 206

Chkd by																									
Prep by (3											~	િય				
Final Conc (ppb)	7	S	6%	50	500	~+		- - ->	CS)			>	120	<u>0</u> 5	25	0S	025	T		→	50	ť	65		
Stock Conc Initial Vol (psig) Finial Vol (psia)	રજ	5	\$0	30	30	4		⇒	30			->	જ	45	99	30	30	45		>	30		Page #		
Initial Vol (psig	3,0	(7Z)0	3,0	\z.	7.1	6.0		->	15			->	3,0	Ø.00	9,0	ارکرا	1,5	6.0	<u></u>	>	1.5				
Stock Conc	duc os	11,5 ppm			10 ppm	(La) 52		>	m()			>	र्क क्र				Nocol	المرد ن		->	1 pum				
Stock #	Araos	40974	A1085	ज्याता जिल्ला	140269	A1302	A1303	A-1304	માયકરી	A1203	PA1204	9519	A337	Acest	STUX MOSB	AolTo	A0269	A1314	AISIS	91814	A 1269				
tion	1Pcrf5	Forsm	×ω/ς	SOUF	Hzs	IS				S₹}	465	4 Pett	48 56	Facm	Shuk	SOLF		FY ST		537	7.5				
Description	7015				->	TOS 146		- >	7015	_							→	7015 144		→	Tois				
Date Exp	3 /4/11							<u>ر</u>	3/198/18											, <u>/</u> ,	71/6/17				
Date Prep Date Exp	3 ru/K							÷	3/21/16				***************************************							ؠ	3/181/8				
Std #	A. 1306	JA- 1367	74. 1308	ga- 1369	OJ S / D	a. 131/	A-1312	A. 1313	A- 1314	A-1315	4-1316	A-1317	4-1318	4-1319	4.1320	4.132/	4-1322	4.1323	A-1324	A.1325	JA-1326	ar 2-08:M 153	0 of	f 206	ŝ

Chkd by					:																
Prep by C	<i>A</i> 3										>	3									≥
Final Conc (ppb)	ट्र		→	ما	Se	50	25	23	4		→	59			⇒	15	So	59	53	299	1
Stock Conc Initial Vol (psig) Finial Vol (psia)	3.0		>	30	4.	3.0	30	30	45/		→	30			⇒	30	\Sh	30	ડે ર	30	45
Initial Vol (psig)	1,5		Ų	3.0	6.20	3.0	\\\.\!\!	Si	٥.٩		\ \	, , <u>, ,</u>			^	3.0	07.0	3.0	/s.	15	6.0
Stock Conc	Mc.c.		\rightarrow	dec 03	mac 2.11	रक्ष्यु	سرم ا	mcc.0/	Sopph	, i	1	hucici)			~	50,02	11.5 Jum			med of	South
Stock #	१५१३७३	भग्दास	9519	A1329	40974	1901 A	AOCJOH	H.S. H.S. J.	A 1326	SAY A1327	11328	41289	191203	Arzot	4519	4134)	Hony	S/JX FFESS	do ETO	99204	H 1338
Description	Tois STA	765	tota	表表		X215	₹10S	5241	7015 MG IS	€\$ -	537	7615 25	ST)	527	Aroch	thsitystayh	PORM	χων.ς	₹J0S	V Hzs	TOIS 146 IS H1398
Date Exp	71/4/15	-		_							>	4/11/16	,-								
Date Prep	3 25/16	,									>	7 1-1	-								>
# pts			A- 1325	A-1330	A. (33/	A-1332	A-1333	4-1334	A.1335	A-1336	A-1337	A- 1338	A-1339	A-1340	A-134)	A. 1342	A-1343	A-1344	A-1345	A. 1346	A. 1347

FORM 153

Centek Laboratories

Page 171 of 206

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CANISTER CLEANING LOG

QC Canister Cleaning Logbook

Centek Laboratories, LLC

Instrument: Entech 3100

Leak Test 24hr (psig stristp)	Q -																							<u> </u>
sst 24hr	+ +	+	+	+	+	→	+	+	+	+	+	+	+	+	+	+	+	-#-	+	+	+	+	+	+
	<u>+</u> +	+	+	+	4	+	+-	+	+		+	+	+	4										2
T. Lumits	st. Hempt														+		+	*	+	+	+	*	1	+
Detection Limits	""] <u>!</u>												-											,,,,,
9/22/50	4				27					ر ,								-				_		-
QC Batch Number	1 !								>	100					Cally Co					W 45				>
OC Batch N				10 1										4					- 1 -					
Date			1	1			1			1				1	1					7	-			-
€ C-'s										-										-		-	7	>
of Cycles																								
SQ.																				-		-	7	
Occan Number Number of						-	-												-					
Scan N	_		>	906) } }	-	ļ	-	100	7	_			3					1) -			 	
					1		-	-	Ē	\$			-	E	4	-	-		150	-				
Canster Number	500	-	6	<u>5</u>			1	\ <u>.</u> 50	-		200		- C	•			_	~						!
		2	9	= 2	~ ~	8	6	[2	75		8 7-4 2 7-4	E	193			2/4	153	19.9	244		문	239	130	

Centek Laboratories, LLC

Instrument: Entech 3100

Leak Test 24hr (psig-str/stp)	+ 30	+	+	+		+	+	+	uğv	4	+	+	+	+	4	44-	-ļr-	+	4		+	+	+	+	+	
nits Leak Tes	34 + 30	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	139
Detection Limits	<u> </u>	TOTALISMI														1	3			>	<u>-</u>		-			# # Bade
Or Bairch Nimber	1 119160	U4171h J				V X 8 6 8 7 19 1/ (4	2001118				H 31616 H					1,7161507051	100000	1.			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
	Ž	17.10					3										う				>					
	Cycles																				\rightarrow \right					
	2																									
	QC Can Number	106				>	363				>	326				>[54				\Rightarrow					
	Canister Number	<u>Ch5</u>	3hg	226	399	106	48	001	367	571	363	332	274	891	327	326	23	101	1190	157	541					

Instrument: Entech 3100

99998776	······i		ī	- i		T	T				I	····i	T	T		1		T	T	T	······ †				7	
Leak Test 24hr (psig str/stp)	30		····																						 -	
4hr (p	+	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*		
eak Test 2	30	_	_											% to			,							-	7	
alits		+ 1		+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	*	*	+	+				149
ION LIT	10.25																									
Detection Limits	100-10.	11																							3	Page #
mber	V91					ß					J					0					w		4			
Ifch Ni)તળ																									
QC Batch Number	WAC 03 OF 16 A					,			,																J	
			4-m-4																							51
Date	3/8/16											·····											-	<u> </u>	\Rightarrow	Form C151
Sec																										F.
roficy	Q	1-11-		-																						
Numbe	JA																								<u>`</u>	
mber																										
an Nu	501			_,		398					1193	·			,	138					333	-				d
l ac c	1					(2)				و	=									_	:-~					* 5p
Canister Number QC Cart Number Number of Cycles								,								,			2							
ister N	174	465	h	२९५	135	स्य	415	1.3	751	998	1183	2	45,	7.56	193	205	7	370	11 87	3.8	47	1177	6	131	775	Cleaned by:
Can																									~	Clea

Centek Laboratories, LLC

Instrument: Entech 3100

Canister Number | QC Can Number | Number of Cycles | Date Cleaned by: 1201 発展を ዛሄገ 716 77 9511 2511 40.11 れて 1700 101 でいわ る 90 6 3/8/16 Form C151 MACD30814 F QC Batch Number T 4 Detection Limits 1-5-t0,25 Page # 150 Leak Test 24hr (psig str/stp) + رب ص + + + + + + + + + + 30

QC Canister Cleaning Logbook

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021910.D Vial: 5 Acq On : 19 Feb 2016 2:58 pm Operator: RJP Sample : WAC021916E Misc : A204_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A204_1UG.RES Quant Time: Feb 22 07:55:01 2016

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. QI	Ion Response	Conc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.12	128 32071m 114 87046 117 81502	1.00 ppb 0.00 1.00 ppb 0.03 1.00 ppb 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.17 Range 70 -	95 39860m 130 Recover	0.72 ppb 0.00 y = 72.00%
Target Compounds			Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN021910.D A316_1UG.M Wed Apr 27 09:43:41 2016

(QT Reviewed) Quantitation Report

Vial: 6 Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021911.D Acq On : 19 Feb 2016 3:36 pm Operator: RJP Inst : MSD #1 Sample : WAC021916F

Misc : A204_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 22 07:55:02 2016 Quant Results File: A204_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Feb 11 11:13:02 2016

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T. QIO	n Response C	onc Units Dev(Mi	a)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.87 12 12.10 11 16.59 11	4 93261	1.00 ppb 0.0 1.00 ppb 0.0 1.00 ppb 0.0	LO
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 9 Range 70 - 1		0.71 ppb 0.6	00
Target Compounds			Qvalue	e

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed Wed Apr 27 09:43:44 2016 AN021911.D A316_1UG.M

MS Integration Params: RTEINT.P

Quant Time: Feb 22 07:55:03 2016 Quant Results File: A204_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Feb 11 11:13:02 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	Qion	Response C	Conc Ur	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.84 12.09 16.59	128 114 117	30565 86165 81355	1.00 1.00 1.00	ppb 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 Range 70	95 - 130	38855m Recovery	0.70	ppb 0.00 70.00%
Target Compounds					Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN021912.D A316 lUG.M Wed Apr 27 09:43:47 2016 MSD1

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021913.D

Vial: 2 Acq On : 19 Feb 2016 Operator: RJP 6:05 pm : WAC021916H Inst : MSD #1 Sample Misc : A204_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 22 07:55:04 2016 Quant Results File: A204_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

Last Update : Thu Feb 11 11:13:02 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. QI	on Response (Conc Units	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.09 1	28 30719 14 88980 17 82754	1.00 ppb 1.00 ppb 1.00 ppb	0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 Range 70 - :	95 42155m 130 Recovery	0.75 ppb 7 = 75	0.00
Target Compounds				Qvalue

sample : WACUZIGIGI INSC : MSD
MS Integration Params: RTEINT.P

Quant Time: Feb 22 07:55:05 2016 Quant Results File: A204_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Feb 11 11:13:02 2016

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits De	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.85 12.09 16.58	128 114 117	30896 90545 83125	1.00 1.00 1.00	ppb	-0.01 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 Range 70	95 - 130	41130m Recovery	0.73	ppb 73.00	0.00 %
Target Compounds					(⊋value

(#) = qualifier out of range (m) = manual integration (+) = signals summed ANO21914.D A316_1UG.M Wed Apr 27 09:43:54 2016 MSD1

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021915.D Vial: 4 Acq On : 19 Feb 2016 7:20 pm Operator: RJP Sample : WAC021916J Misc : A204_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 22 07:55:06 2016 Quant Results File: A204_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Feb 11 11:13:02 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	к.т.	Qïon	Response C	one U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.85 12.09 16.58	128 114 117	29544 84494 79265	1.00 1.00 1.00	dag	0.00 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.16 Range 70	95 - 130	39870m Recovery	0.74 =		0.00
Target Compounds					Qva	alue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN021915.D A316_1UG.M Wed Apr 27 09:43:58 2016 MSD1

Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021916.D Vial: 5 Acq On : 19 Feb 2016 7:57 pm Sample : WAC021916K Misc : A204 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 22 07:55:07 2016 Quant Results File: A204_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A204_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Feb 11 11:13:02 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. QIon	Response	Conc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.84 128 12.10 114 16.59 117	29343 88390 80484	1.00 ppb -0.02 1.00 ppb 0.00 1.00 ppb 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.15 95 Range 70 - 130	40271m Recover	0.73 ppb 0.00 ry = 73.00%

Target Compounds

Ovalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN021916.D A316_1UG.M Wed Apr 27 09:44:01 2016

Data File : C:\HPCHEM\1\DATA2\AN030805.D
Acq On : 8 Mar 2016 2:56 pm
Sample : WAC030816A
Misc : A307_1UG Vial: 5 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:51:24 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response	Conc Uni	its Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.07 16.56	128 114 117	25136 116173 102380	1.00 g 1.00 g	pb	0.06 0.03 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	63120 Recover	0.83 <u>r</u> Y =	ppb 83.00%	0.02
Target Compounds					Qva	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030805.D A316_1UG.M Wed Apr 27 09:44:51 2016 MSD1

Page 192 of 206

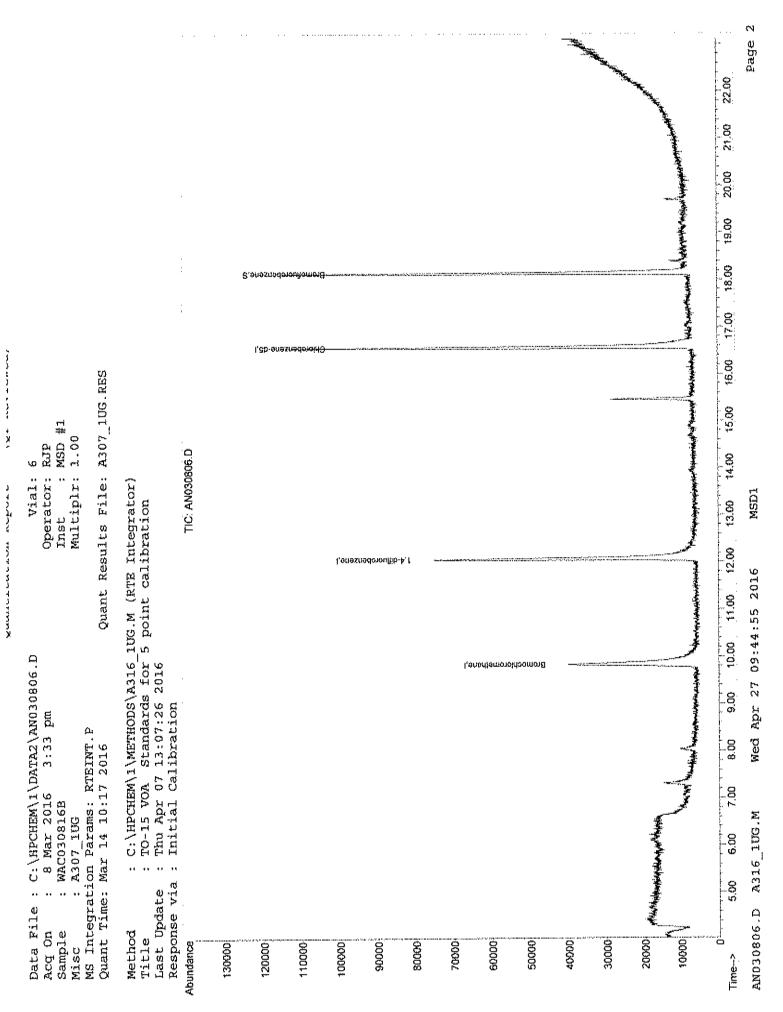
1X+ *** *X1

Centek Laboratories

Data File : C:\HPCHEM\1\DATA2\AN030806.D
Acq On : 8 Mar 2016 3:33 pm
Sample : WAC030816B
Misc : A307_1UG Vial: 6 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:51:30 2016 Quant Results File: A307_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response (Conc Un	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.06 16.56	128 114 117	30593m 115546 98368	1.00 1.00 1.00	ppb	0.05 0.02 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	60091 Recovery	0.82	ppb 82.00%	0.02
Target Compounds					Qvá	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030806.D A316_IUG.M Wed Apr 27 09:44:54 2016 MSD1

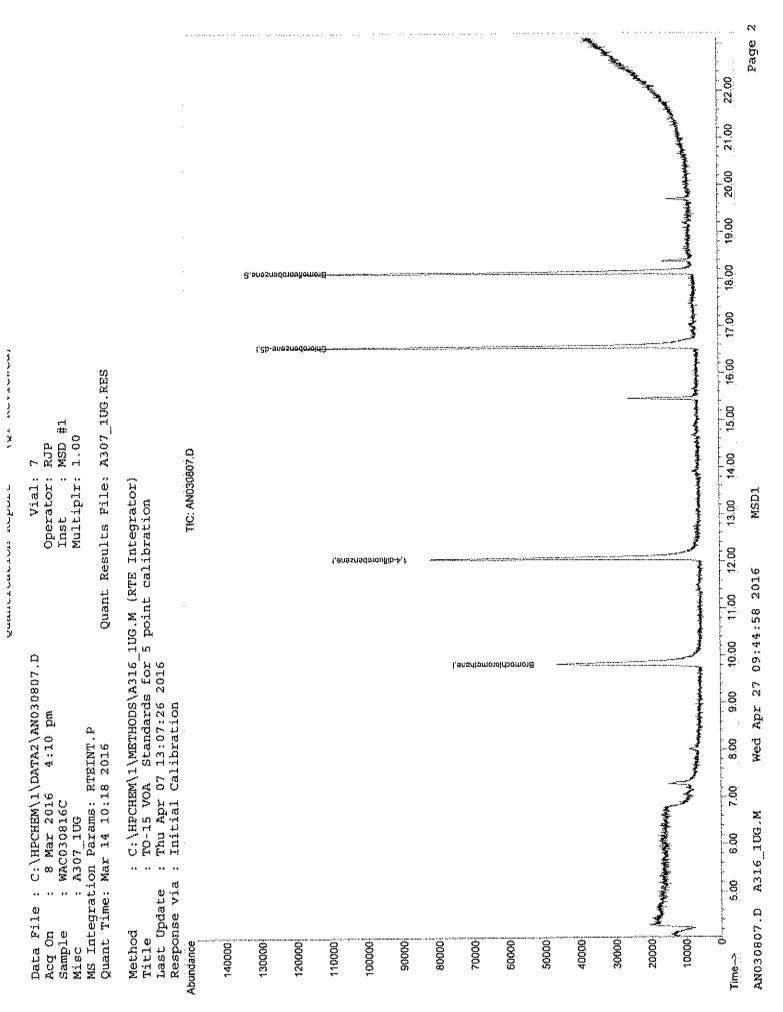
Data File: C:\HPCHEM\1\DATA2\AN030807.D
Acq On: 8 Mar 2016 4:10 pm
Sample: WAC030816C
Misc: A307_1UG Vial: 7 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:51:37 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN


Target Compounds

Internal Standards	R.T.	QIon	Response C	onc U	nits De	v(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.06 16.56	128 114 117	31202m 118323 102460	1.00 1.00 1.00	dqq	0.04 0.02 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	63649 Recovery	0.83	ppb 83.00	0.01

(#) = qualifier out of range (m) = manual integration (+) = signals summed ANO30807.D A316 lUG.M Wed Apr 27 09:44:57 2016 MSD1

Page 1

Qvalue

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\AN030808.D Vial: 8 Acq On : 8 Mar 2016 4:48 pm Operator: RJP Sample : WAC030816D Misc : A307_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:51:47 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Mar 08 11:08:59 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.06 16.56	128 114 117	30436m 114980 98955	1.00 1.00 1.00	dqq	0.05 0.02 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	61350 Recovery	0.83	ppb 83.00%	0.01
Target Compounds					Qv	alue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN030808.D A316_1UG.M Wed Apr 27 09:45:00 2016 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AN030809.D Vial: 9 Acq On : 8 Mar 2016 5:25 pm Operator: RJP Sample : WAC030816E Misc : A307_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:51:55 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9,82 12.07 16.56	128 114 117	29860m 113615 100480	1.00 1.00 1.00	ppp	0.05 0.03 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 130	60863 Recovery	0.81 V =	ppb \$00.18	0.02
Target Compounds					Qva	alue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN030809.D A316_1UG.M Wed Apr 27 09:45:04 2016

Centek Laboratories

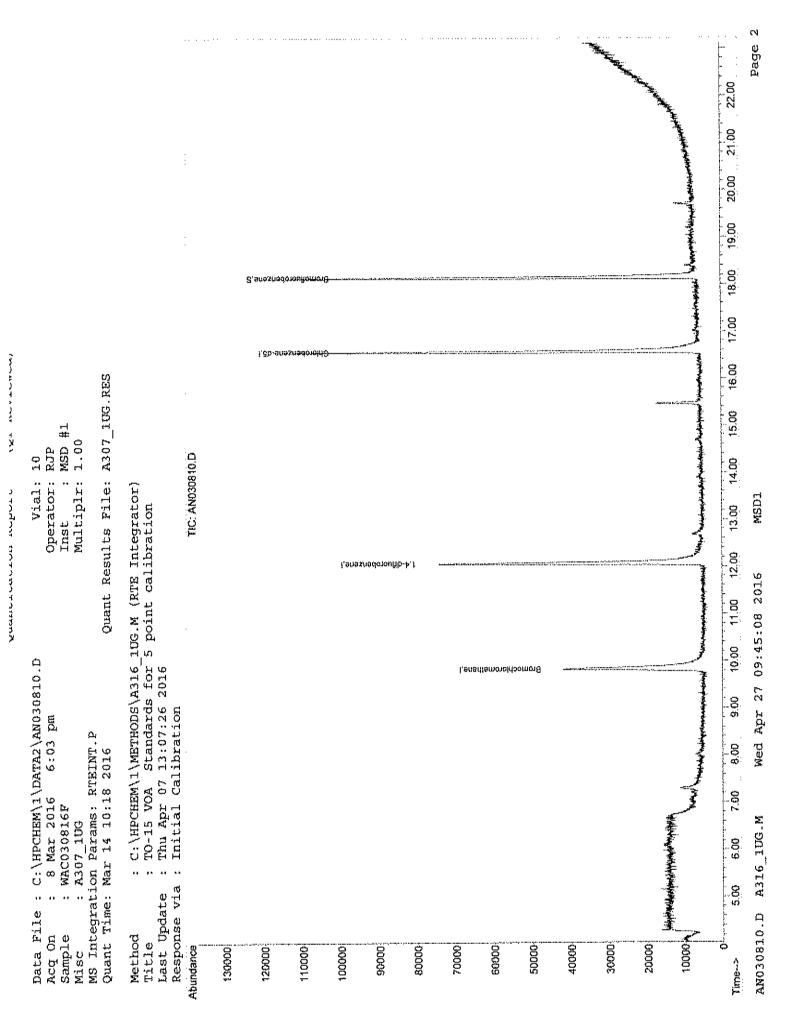
Page 200 of 206

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AN030810.D Vial: 10 Acq On : 8 Mar 2016 6:03 pm Operator: RJP Sample : WAC030816F Misc : A307_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A307_1UG.RES Quant Time: Mar 09 10:52:04 2016


Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Mar 08 11:08:59 2016
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc Units Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.83 12.07 16.56	1.28 114 117	24540 110396 94956	1.00 ppb 1.00 ppb 1.00 ppb	0.05 0.03 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	58532 Recovery	0.83 ppb Y = 83.00%	0.01

Qvalue Target Compounds

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN030810.D A316_1UG.M Wed Apr 27 09:45:07 2016

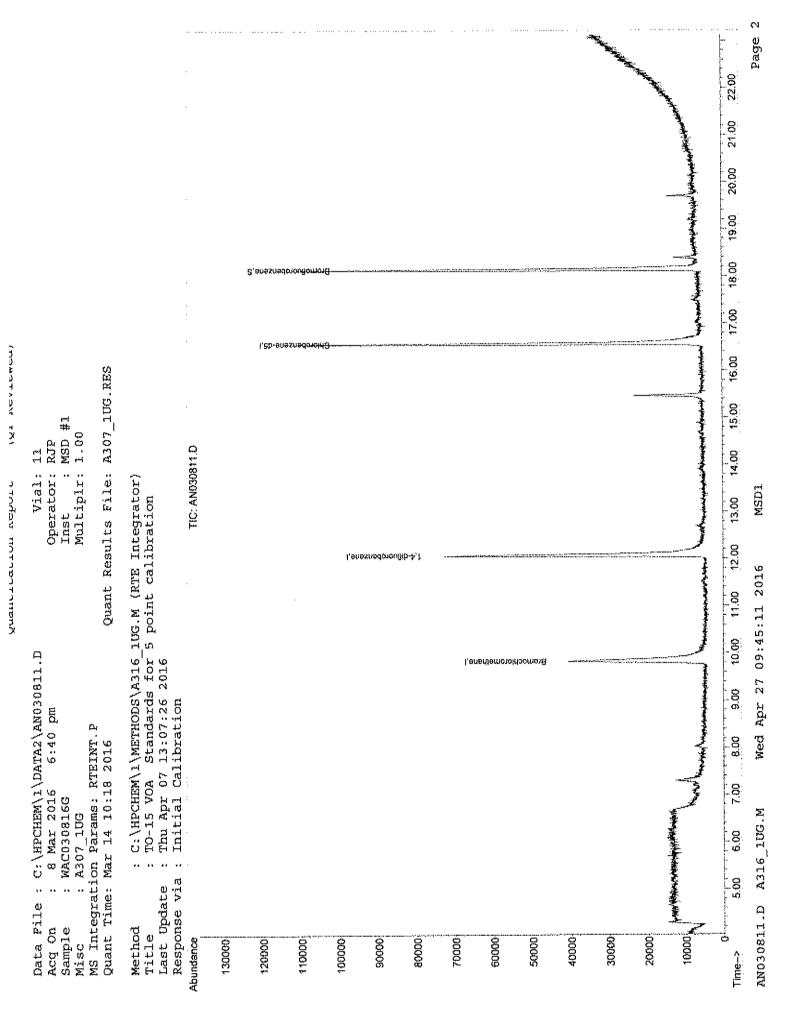
MS Integration Params: RTEINT.P

Quant Time: Mar 09 10:52:16 2016 Quant Results File: A307_1UG.RES

Quant Method : C:\HFCHEM\1\METHODS\A307_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Mar 08 11:08:59 2016

Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.07 16.56	128 114 117	23554 106376 94041	1.00	dqq	0.05 0.03 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	57324 Recovery		ppb 82.00%	0.02
Target Compounds					Qv	alue

(#) = qualifier out of range (m) ≈ manual integration (+) = signals summed

AN030811.D A316_1UG.M Wed Apr 27 09:45:10 2016

MSDl

Quantitation Report (QT Reviewed)

Vial: 12 Data File : C:\HPCHEM\1\DATA2\AN030812.D Operator: RJP Acq On : 8 Mar 2016 7:18 pm Inst : MSD #1 Sample : WAC030816H Misc : A307_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A307_1UG.RES Quant Time: Mar 09 10:52:25 2016

Quant Method : C:\HPCHEM\1\METHODS\A307_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Mar 08 11:08:59 2016
Response Via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Un	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.82 12.06 16.56	128 114 117	23978 103270 93006	1.00 1.00 1.00	ppb 0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	55535 Recover	y =	ppb 0.02 80.00%
Target Compounds					Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030812.D A316_1UG.M Wed Apr 27 09:45:13 2016

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 2

Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

FORMER EMERSON LANDFILL
Project 210173
SDG: C1603075
Sampled 3/26/2016

TO-15 AIR SAMPLES

1645-SVI-1	(C1603075-01)
1645-IAQ-1	(C1603075-02)
1645-SVI-2	(C1603075-03)
1645-IAQ-2	(C1603075-04)
OUTDOOR-1645	(C1603075-05)

DATA ASSESSMENT

One data package containing analytical results for five TO-15 samples was received from LaBella Associates, P.C. on 3Apr16. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Emerson Landfill Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of ten volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The trichloroethene concentration found in 1645-IAQ-1 has been qualified as an estimation due to a high surrogate standard recovery.

The reported concentration of trichloroethene in 1645-IAQ-1 was not supported by the raw data. Trichloroethene should be interpreted as undetected in this sample.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions at the time of sampling have been flagged "J". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin DATAVAL, Inc.

Date: 10 May 16

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained five TO-15 samples that were collected in 1-liter SUMMA canisters. Sampling was completed on 26Mar16. The canisters were shipped back to the laboratory, via FedEx, on 28Mar16 and were received on 29Mar16. Although the sample canisters were received intact and properly labeled, custody seals were not present on the packaging.

Canister vacuum readings were recorded in the laboratory prior to shipment, in the field prior to and following sampling, and in the laboratory at the time of receipt.

SAMPLE	PRIOR TO SHIPMENT ("Hg)	PRIOR TO SAMPLING ("Hg)	POST SAMPLING ("Hg)	LAB RECEIPT ("Hg)
575-OUTDOOR	-30	-30	-2	-2
575-SVI-1	-30	-30	-1	-2
575-IAQ-1	-30	-30	-2	-2
575-SVI-2	-30	-28	-1.5	-2
575-IAQ-2	-30	-30	-2.75	-3

The final vacuum readings recorded for this group of samples were slightly outside of the ASP limits of $-5\pm1^{\prime\prime}{\rm Hg}$. These slight deviations do not necessitate data qualifications because vacuum was maintained in each of the canisters and sample volumes were sufficient to complete the necessary analyses.

The analysis of this group of samples was completed between 31Mar16 and 01Apr16, satisfying the ASP holding time limitation.

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters were cleaned in four batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination above the reporting limit.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks were analyzed with this group of samples. Each

of these blanks demonstrated acceptable chromatography and was free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples. Each of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed on 04Feb16. Standards of 0.04, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration check standards were analyzed on 31Mar16, 01Apr16 and 02Apr16, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, an acceptable level of instrument stability was demonstrated by each targeted analyte.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, elevated recoveries were reported for the BFB additions to 1645-IAQ-1 (122%), 1645-SVI-2 (128%), and 1645-IAQ-2 (125%). The trichloroethene concentrations found in 1645-IAQ-1 and 1645-SVI-2 have been qualified as estimations based on these indications of positive bias. The remaining associated results were negative.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard.

Internal standard performance criteria ensure that GC/MS sensitiv-

ity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standards. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, acceptable performance was reported for each internal standard addition to this group of samples.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS
Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide
an indication of laboratory accuracy. The analysis of a duplicate
spiked aliquot provides a measurement of precision.

1645-IAQ-2 was selected for matrix spiking. Each targeted analyte was added to two portions of this sample. The recoveries reported for these additions included high results for chloromethane (176%,181%). These indications of positive bias, however, warrant no concern. Chloromethane was not detected in this group of smaples. The remaining analytes demonstrated acceptable levels of measurement precision and accuracy.

Two pairs of spiked blanks (LCS/LCSD) were also analyzed with this group of samples. Both of these spiked blank pairs demonstrated acceptable levels of measurement precision and accuracy.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Although a field split duplicate sample was not included in this delivery group, the previously reported spiked blanks demonstrated an acceptable level of measurement precision.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

Although trichloroethene was reported as present in 1645-IAQ-1, the result was not supported by the raw data. Trichloroethene should be interpreted as undetected in this sample.

SUMMARY OF QUALIFIED DATA

LANDFIL	
EMERSON	
FORMER	

SAMPLED MARCH 2016

		STIRROGATES	ORR
		TCE	TCE
645-SVI-	603075-0		
45-IAQ-	1603075-0		0.210
645-SVI-	1603075-0	0.91J	
45-	(C1603075-04)		
DOOR-1	1603075-0		

Date: 26-Apr-16

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1603075

Project:

FESL Emerson Landfill

Lab ID:

C1603075-001A

Client Sample ID: 1645-SVI-1

Tag Number: 567,301

Cullection Date: 3/26/2016

Matrix: AlR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
TUG/M3 BY METHOD TO15	11.11	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 8:10:00 AM
1,3-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 8:10:00 AM
1, t-Dichtoroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:10:00 AM
Chloroethane	< 0.40	0.40	up/m3	1	4/1/2016 8:10:00 AM
Chloromethane	< 0.31	0.31	us/m3	1	4/1/2016 8:10:00 AM
cis-1,2-Dichloroelhene	2.6	0.59	ug/m3	1	4/1/2016 8.10:00 AM
Tetrachleroethylene	< 1.0	1.0	vg/m3	1	4/3/2015 8:10:00 AM
trans-1,2-Dichiproethene	< D.59	0.69	Emlau	1	4/1/2016 8:10:00 AM
Trichloroethene	13	1.6	ug/m3	2	4/1/2016 1:59:00 PM
Vinyl chloride	< 0.38	0.38	ug/m3	ŧ	4/1/2016 8:10:00 AM

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits.
- Results reported are not blank corrected
- Value above quantitation range
 - J Analyte detected at or below (quantifation limits)
- ND Not Detected at the Reporting Limit

LaBella Associates, P.C.

Lab Order: C1603075

CLIENT:

Project: FESL Emerson Landfill

Lab ID: C1603075-002A Date: 26-Apr-16

Client Sample ID: 1645-1AQ-1

Tag Number: 93,1165

Collection Date: 3/26/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Annlyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1,1-Trichforpethane	< 0.82	0.82	ug/m3	1	4/1/2016 1:04:00 AM
1, t-Dichlorcethane	< 0.61	0,61	ug/m3	1	4/1/2016 1:04:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2018 1:04:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 1:04:00 AM
Chloromethane	< 0.35	0.31	ug/m3	1	4/1/2016 1:04.00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:04:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2036 1:04:00 AM
trans-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:04:00 AM
Trichtoroethene	2 0.38	0.21	ид/т:3	1	4/1/2016 1:04:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2016 1:04:00 AM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H. Holding times for preparation or analysis exceeded
- JN Non-routine enalyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: LaBella Associates, P.C.

Lab Order: C1603075

Project: FESL Emerson Landfill

Lab ID: C1603075-003A Date: 26-Apr-16

Client Sample ID: 1645-SVI-2

Tag Number: 332,387

Collection Date: 3/26/2016

Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,5-Trichloroethane	< 0.82	0.82	บg/m3	1.	4/1/2016 8:49:00 AM
1,1-Dichloroethane	< 0.6%	0.61	ug/m3	1	4/1/2016 8:49:00 AM
5,1-Dichloraethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:49:00 AM
Chioroethane	< 0.40	0.40	ид/т3	t	4/1/2016 8:49:00 AM
Chloromethane	< 0.31	0.31	บุตู/m/3	1	4/1/2016 8:49:00 AM
cis-1,2-Dichlorcethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:49:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 8:49:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 8:49:00 AM
Trichloroethene	6.91 [0.81	ug/m3	1	4/1/2016 8:49:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	4/1/2016 8:49:00 AM

1	١.	 22.	12	į.	

- Reporting Lamit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E. Vutue above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 5

CLIENT: LaBella Associates, P.C.

Lab Order: C1603075

Project: FESt. Emerson Landfill

Lab ID: C1603075-004A Date: 26-Apr-16

Client Sample ID: 1645-1AQ-2

Tag Number: 483,438

Collection Date: 3/26/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichforoethane	< 0.82	0.82	ug/m3	1	3/31/2016 11:01:00 PM
1,1-Dichtoroethane	< 0.61	0.61	ug/m3	1	3/31/2016 11:01:00 PM
1,1-Dichtoraethene	< 0.59	0.59	ug/m3	1	3/31/2016 11:01:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/31/2016 \$1:01:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	3/31/2016 f1:01:00 PM
cis-1,2-Dichtoroethene	< 0.59	0.59	ug/m3	1	3/31/2018 f1:01:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	3/31/2016 11:01:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/31/2016 11:01:00 PM
Trichloroethene	< 0.21	0.21	บส/พา3	1	3/31/2016 11:01:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/31/2016 11:01:00 PM

QL	ıtli	Fie	rs:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- Hulding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E. Value above quantitation range
- J Analyte detected at or below quantitation limits
- NO Not Detected at the Reporting Limit

Date: 26-Apr-16

CLIENT:

LaBella Associates, P.C.

Lab Order;

C1603075

Project:

FESL Emerson Landfill

Lab ID:

C1603075-005A

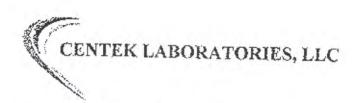
Client Sample ID: Outdoor-1645

Tag Number: 1178,174

Collection Date: 3/26/2016

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.82	0.82	ug/m3	1	4/1/2016 1.43:00 AM
1.1-Dichioroethane	< 0.51	0.61	sig/m3	1	4/1/2016 1:43:00 AM
1,1-Dichloroothene	< 0.59	0.59	ug/m3	1	4/1/2016 1:43:00 AM
Chloroethane	< 0.40	D.40	ug/m3	1	4/1/2016 1:43:69 AM
Chloromethane	1.8	0.31	ug/m3	1	4/1/2016 1:43:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 1:43:00 AM
Tetrachioroethylene	1.1	1.0	ug/m3	1	4/1/2016 1:43:00 AM
rrans-1,2-Dichlorosthene	< 0.59	0.59	ug/m3	1	4/1/2018 1:43:00 AM
Trichtoroethene	0.91	0.21	ug/m3	1	4/1/2016 1:49:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	4	4/1/2016 1:43:00 AM


- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- JN Non-routine enalyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits.

Results reported are not blank corrected

- F. Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 5

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:

LaBella Associates, P.C.

Work Order:

C1603075

Project:

FESL Emerson Landfill

Test No:

TO-15

Matrix: A

Sample ID	BR4FRZ	
ALCS1UG-033116	115	
ALCS1UG-040116	116	· · · · · · · · · · · · · · · · · · ·
ALCSTUGD-033116	118	
A1.CS1UGD-040116	108	······································
AMB1UG-033116	88.0	
AMB1UG-040116	91.0	· · · · · · · · · · · · · · · · · · ·
C1603075-001A	83.0	• • • • • • • • • • • • • • • • • • • •
C1603075-002A	122	
C1603075-003A	128	······································
C1603075-004A	125	
C1603075-004A MS	116	
C1603075-004A MSD	107	
C1603075-005A	108 :	** **

-Acronym	= Bromofluorobenzene	QC Limits :	
		Ţ	
 * Sarrog	ate recovery outside accenta		

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA2\AN033104.D

Tune Time : 31 Mar 2016 12:19 pm

Daily Calibration File : C:\HPCHEM\1\DATA2\AN033104.D

			(BFB)	(IS1) 21478	(IS2) 4888	(IS3) 36495
File	Sample	DL	Surrogate Recovery %	Internal St	andard Rest	onses
AN033105.	D ALCS1UG-033	116	115	20235	53595	32893
AN033106.	D AMBIUG-0331	16	88	20032	47930	44161
AN033121.	D C1603075-00	4A (125	18446	48996	28479
AN033122.	D C1603075-00	4A MS	116	22331	56616	32647
AN033123,	D C1603075-00	4A MSD	107	23633	65314	36439
AN033124.	D C1603075-00	2A	122	19820	53432	33425
AN033185.	D C1603075-00	5A	108	16834	44868	47627
W033133.	D ALCSIUGD-03	3116	118	22710	52964	34225
W033134.	D C1603075-00	lA	83	17132	53087	40047
*N033135.	D C1603075-003	A (120	23254	62475	44101
t - f.	ails 24hr time		+ . 5+33			

t - fails 24hr time check * - fails criteria

Created: Tue Apr 26 15:33:02 2016 MSD #1/

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AN040102.D Tune Time : 1 Apr 2016 12:06 pm

Daily Calibration File : C:\MPCHEM\1\DATA\AN040102.D

(BPB) (IS1) 20214 (182) (IS3) 45908 32719

File	Sample I	OL Surrogate Recovery	7	andard Resp	ponses
AN040103.D	ALCSIUG-040116	116	20858	46019	31397
AN040104.D	AME1UG-040116	91	18252	46023	41257
4N040105.D	C1603075-001A 2	X 103	16216	51303	38793
9N040125.D	ALCS1UGD-040116	108	20437	45874	33404

t - fails 24hr time check * - fails criteria

Created: Tue Apr 26 15:34:25 2016 MSD #1/

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT

C1603075 Work Order; FESI, Emerson Landfill

Project:

TestCode: 0.25CT-TCE-VC

Sample ID AMB411G-033446	Sampling Bay	Toet	TALL OF SEPT TO			David A				-	
3	Control of the same	1001	יביירטתב. מיבירו-ורבי	e onite ppay		Prep Date	n.		Kunno: 10817	117	
Client ID: ZZZZZ	Batch ID: R10817	T.	TestNo: TO-15			Analysis Dat	Analysis Date: 3/31/2016		SeqNo: 127095	560,	
Analyte	Result	PQL	SPK value	SPK Ref Vai	%REC	%REC Loweinit	HighLimit RPD Ref Val	PD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0,15				-		-			
1,1-Dichloroethane	< 0.15	0.15									
1,1-Dichlaraethene	< 0.15	0 15									
Chforoethane	< 0.15	0.15									
Chloromethane	< 0.15	0.15									
cis-1,2-Dichloroethane	< 0.15	0.15									
Tetrachforoethylene	< 0.15	0.15									
trans-1,2-Dichloroethene	< 0.15	0.15									
Trichloroethene	< 0.040	0.040									
Vinyl chloride	< 0.940	0.040									
Sample 1D AMB1UG-040116	SampType: MBLK	Fest	FestCode: 0,25CT.TCE.	E. Units, ppbV		Prep Date:			RunNo: 10818	118	
Client ID: ZZZZZ	Batch ID: R10818	TE	TestMo: TO-15			Analysis Date:	at 11/2018		SeoNo 127112	112	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLind	HighLimit RFD Ref Val	PD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trechloroethane	< 0.15	0 15									
1,1-Dichlorosthane	< 0.15	0.15									
1,1-Dichloroethere	< 0.15	0.15									
Chloroethane	< 0.15	0.15									
Chloromethane	< 0.15	0.15									
cis-1.2-Dichloroethene	< 0,15	0.15									
Tetrachtoroethylene	< 0.15	0.15									
frans-1,2-Dichloroethene	< 0.15	0 15									
Trichtoraethene	~ 0.040	0.040									

Qualifiers:

Results reported are not blank corrected

Spike Recovery autside accepted recovery limits Analyte detected at or below goantifuling limits

Not Detected at the Reporting Limit Value above quantitution range S <u>Lal</u>

Holding times for preparation or analysis exceeded **=** ×

RPD outside accepted recovery limits

Page 2 of 2

Holding times for preparation or analysis exceeded

RPD outside accepted negovery limits

2

H. Value above quantifation range ND Not Detected at the Reporting Unit

Results reported are not black corrected Analyte detected at or below quantitation limits. Spike Recovery outside accepted recovery limits

Ounlifiers:

CLIENT: LaBella Associates, P.C.

Work Order: C1603075

Project: FESI. Emerson Landfill

TestCode: 0.25CT-TCE-VC

				Taxable Batter	THE PERSON NAMED IN COLUMN 1 I							THE REAL PROPERTY.
Sample ID	Sample ID AMB1UG-040116	SampType: MBLX	-Le	SCode: 0.25CT	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	ii.		RunNo: 16818	18	
Cflent ID: ZZZZZ	27777	Batch ID: R10818		TestNo: TO-15			Analysis Dat	Analysis Date: 4/1/2016		SeqNo: 127112	112	
Analyte		Result	P	POL SPK value	SPK value SPK Ref Vat	%REC	LowLimit	%REC LowLimit HighLimit RPD Rof Val	Ref Val	%RPD	%RPD RPDLimit Oual	Ous
Virtyl chlorid	le le	< 0.040	0.046	940								

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

LaBella Associates, P.C. CLIENT:

Work Order:

FESt. Emerson Landfill

Project:

	RunNo: 10817
TOTAL TRANSPORT AND ADDRESS OF THE PARTY OF	Prep Date:
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL	TestCode: 0.25CT-TCE- Units: ppbV
***************************************	SampType: LCS
CALCULATION OF THE PROPERTY OF	Sample ID ALCS1UG-033116

4	SampType: LC\$	TestCo	TestCode: 0.25CT-TCE-	E- Units: ppbV		Prep Date:	14		RunNo: 10817	817	
Client ID: ZZZZZ	Batch ID: R10817	Tesi	TestNo: TO-15			Analysis Date:	3: 3/31/2018		SeqNo: 127096	9602	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLinvit RPD	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.250	0.15	-	Q	125	70	130				
1,1-Dichloroethane	1.120	0.15	r	Q	112	70	130				
1,1-Dichloroethene	1.120	0.15	-	Q	312	70	130				
Chloroethane	1.220	0,15	Tr.	0	122	70	130				
Chloromethane	1.230	0.15	***	o	:23	70	130				
cis-1,2-Dichloroethene	1.050	0.15	~	0	106	70	130				
Tetrachloroethyfene	0.9230	0.15	47	G	92.0	70	130				
trans-1,2-Dichloropthene	1.050	0.15	4.	0	105	70	130				
Trichloroethene	1.110	0.040		0	121	70	130				
Vinyl chloride	1.090	0.040	An	0	109	2	130				
Sample fD ALCS1UG-040116	SampType: LCS	TestCo	FestCode: 0.25CT-TCE.	F. Units: ppbV		Prep Date			RunNo; 10818	118	
Clent ID: ZZZZZ	Batch ID. R10318	Test	TestNo: TO-15			Analysis Date:	411/2016		SeoNo: 127113	113	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLinit 6	HighLimit RPD	RPD Ref Val	%RPD	RPDLimit	Qve
1,1,1-Trichloroethane	1.290	0.15	*-	O	129	70	136				
1,1-Dichiorcethane	1.040	0.19	1	0	102	7.0	130				
1,1-Dichtoroethene	1,100	0.15	+	0	110	70	130				
Chloroethane	1.130	0.15	**	0	113	70	130				
Chloromethane	1,230	0.15	-	Đ	123	7.0	130				
cis-1,2-Dichlotoethene	0.9900	0.15	*	0	98.0	70	130				
Tetrachloroethylene	0.8800	0.15	1	0	98.0	70	130				
trans-1,2-Dichloroethene	0.9900	9.15	***	Ò	0.66	70	130				
Trichloroethene	1.230	0.040	-	0	123	70	130				

Qualifiers:

Results reported are not blank corrected

Spike Recovery outside accepted recovery limits Analyte detected at or below quantitation limits

Not Extented at the Reporting Limit Value above quantitation range # Q

Holding times for proparation or analysis exceeded # 4

RPD outside accepted recovery limits

Page I of 2

LaBella Associates, P.C. CLIENT

.....

C1603075 Work Order: FESL Emerson Landfill Project:

TestCode: 0.25CT-TCE-VC

100

Sample ID ALCS1UG-040116 SampType: LCS	16 SampType: LCS	TestCo	Æ: 0.25СТ-ТСЕ	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:		RunNo: 10818	10818	
Client to: ZZZZZ	Batch ID: 1910818	Test	estNo: TO-15		•	Analysis Date: 4/1/2016	4/1/2016	SeqNo	SeqNo: 127113	
Analyte	Result	PQL	SPK value SPK Ref Val	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
Jinyl chloride	1,100	0.640	1	0	110	70	130			-

Spake Recovery outside accepted receivery limits Analyte detected at or below quantitation limits Results reported are not blank corrected

Qualifters:

F. Value above quantitation range ND Not Detected at the Reporting, Unit

Molding times for preparation or analysis exceeded II &

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

LaBella Associates, P.C. CLIENT:

C1603075 Work Order; FESt Emerson Landfill

Project:

Qual 3 3 3 3 3 3 RPDL:mid SeqNo: 127097 RUNNO: 19817 %RPD 2.37 1.25 HighLimit RPD Ref Val Analysis Date: 4/1/2016 Prep Date: LowLimit 2 2 2 2 2 2 2 %REC 128 TestCode: 0.25CT-TCE- Units: ppbV SPK Rei Val 000000 SPK value TestNo: TO-15 204 Batch ID: R10817 Result 1.280 Sample ID ALCS1UGD-033116 SampType: LCSD 1, 1, 1. Frichloroethane 1,1-Dichkorcethane Client ID: 22222 Analyte

7.41

1.12

2.43

1.22

\$.64

1.23

125

112

9.15 0.15

1.040 1.120 1.250 1.210 1.010

0,15 9,15

cis-1,2-Dichloroethene

Chloromethane

Chloroethana

1,1-Dichloroethene

	RunNo: 10818	EK (Prep Date:		Units: ppbV	TestCode: 0.25CT-TCE-	TestCode: 0,25C7	SampType: LCSD	Sample ID ALCS1UGD-040116 SampType: LCSD Close III. 77777
30	3.74	1.09	130	70	105	0	-	0.040	1.059	Varyi chloride
30	3.54	1.11	130	70	115	0	F	0.040	1.150	Trichloroethene
30	4.88	1.05	130	70	100	0	+	0.15	1.000	trans-1,2-Dichloroethene
30	2.20	0.92	130	70	90.0	0	1	0.45	0.9006	Tetrachloroethylene
30	4.83	1.06	130	70	101	0	-	0.15	\$.010	cis-1,2-Dichloroethene

Client ID: ZZZZZ Batch ID: R10818 TestNo: TO-15 TestNo: TO-15 Analysis Analysis	Sample ID ALCS1UGD-040116 SampType: LCSD	SampType: LCSD	TestCo	Je: 0,25CT-TCE	TestCode: 0,25CT-TCE- Units: ppbV		Prep Date:	te:		RunNo: 10818	818	
Result POL SPK Value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD ichforoethane 1.280 0.15 1 0 128 70 130 1.29 0.778 ichforoethane 1.040 0.15 1 0 164 70 130 1.14 0 thane 1.240 0.15 1 0 124 70 130 1.15 0 thane 1.230 0.15 1 0 124 70 130 1.13 0.13 Dichlaroethene 0.9400 0.15 1 0 94.0 70 130 0.98 4.17 coroethylene 0.8300 0.15 1 0 94.0 70 130 0.98 5.85 2-Dichloroethene 0.9600 0.15 1 0 96.0 70 130 0.98 5.85 2-Dichloroethene 0.9600 0.15 0.16 70	Client (D: ZZZZZ	Batch ID; R10818	Test	Vo: TO-15		-	Analysis Da	te: 4/2/20	18	SeqNo: 12	7114	
1,280 0.15 1 0 128 70 130 1.29 1,040 0.15 1 0 164 70 130 1.29 1,100 0.15 1 0 124 70 130 1.1 1,240 0,15 1 0 124 70 130 1.13 1,230 0,15 1 0 123 70 130 1.23 0,9400 0,15 1 0 94.0 70 130 0.98 0,8300 0,15 1 0 83.0 70 130 0,98 0,950c 0,15 1 0 96.0 70 130 0,98 0,9400 0,15 1 0 96.0 70 130 0,98 0,9400 0,15 1 0 127 70 130 0,99 1,210 0,040 1 0 127 70 130 0,99	Analyte	Result	POL	SPK value	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPOLIMI	Qual
1.040 0.15 1 0 104 70 130 1.54 1.100 0.15 1 0 110 70 130 1.1 1.240 0.15 1 0 124 70 130 1.13 1.230 0.15 1 0 123 70 130 1.23 0.9400 0.15 1 0 94.0 70 130 0.98 0.9800 0.15 1 0 96.0 70 130 0.98 0.9800 0.15 1 0 96.0 70 130 0.99 1.210 0.040 1 0 121 70 130 0.99	1, 1, 1-Trichforoethane	1,280	0.15	-	0	128	70	130	1.29	0.778	30	
1.240 0.15 1 0 110 70 130 1.13 1.240 0.15 1 0 124 70 130 1.13 1.230 0.15 1 0 123 70 130 1.23 0.9400 0.15 1 0 94.0 70 130 0.98 0.8300 0.15 1 0 96.0 70 130 0.98 0.9606 0.15 1 0 121 70 130 0.99 1.240 0.040 1 0 121 70 130 1.23	1,1-Dichloroethane	1.040	3.15	+	0	104	0%	130	1.04	4	30	
1,240 0,15 1 0 124 70 130 1,13 1,236 0,15 1 0 123 70 130 1,23 0,9400 0,15 1 0 94,0 70 130 0,98 0,8300 0,15 1 0 83.0 70 130 0,88 0,9606 0,15 1 0 96.0 70 130 0,99 1,240 0,040 1 0 121 70 130 1,23	1,1-Dichloraethene	1,100	0.15	+	ð	110	0.2	130	1.5	O	30	
1,236 0.15 1 0 123 70 130 1.23 0,9400 0.15 1 0 94,0 70 130 0.98 0.8300 0.15 1 0 83.0 70 130 0.88 0.9606 0.15 1 0 96.0 70 130 0.99 1.240 0.040 1 0 121 76 130 1.23	Chlordethane	1.240	0,15	1	0	124	70	130	1,73	9.28	30	
0.9400 0.15 1 0 94,0 70 130 0.98 0.8300 0.15 1 0 83.0 70 130 0.88 0.9600 0.15 1 0 96.0 70 130 0.99 1.240 0.040 1 0 121 76 130 1.23	Chloromethane	1.230	91.0	*	0	123	0.2	130	1.23	0	30	
0.8300 0.15 1 0 83.0 70 130 0.88 0.9600 0.15 1 0 96.0 70 130 0.99 1.240 0.040 1 0 121 76 130 1.23	cis-1,2-Dichlaroethene	0.9400	0.35	*	0	94.0	02	130	0.98	4.17	30	
0.960¢ 0.15 1 ¢ 96.0 70 130 6.99 1.21 1.210 0.040 1 0 121 76 130 1.23	Tetrachloroethylene	0.8300	0.15	4-	0	83.0	70	130	0,88	5.85	8	
1.246 0.040 1 0 121 76 130 1.23	trans-1,2-Dichloroethere	0.9600	0.15	+	0	96.0	70	130	6.99	3.08	30	
	Trichloroethene	1.210	0.040	۳	0	121	76	130	1.23	1.64	30	

Analyte detected at or below quantitation limits Results reported are not blank corrected Qualiffers;

Spike Recovery outside accepted recovery literits

Value alway quantitation tange ¥ Ê

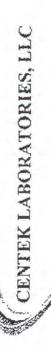
Not Detected at the Reporting Limit

Holding times for preparation or analysis excreded RPD outside accepted recovery limits 2 4

LaBella Associates, P.C. CLIENTS

C1603075 Work Order: FESL Emerson Landfill Project:

TestCode: 0.25CT-TCE-VC


The state of the s

Sample ID AL	LCS1UGD-040116	Sample ID ALCS1UGD-040116 SampType: LCSD	TestCoc	16: 0.25CT-TCE	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	45		RunNo: 10818	318	
Client ID: ZZZZZ	7777	Satch ID: R10818	Testh	TestNo: TO-15		~	Analysis Date: 4/2/2016	F. 472/201	95	SeqNo: 127114	7114	
Analyte		Result	POE	SPK value SPK Ref Val	SPK Ref Val	%REC	LowLimit	High Limit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Viayl chtoride		1.070	0.040	-	0	101	70	130	1.1	2.76	30	

E. Value above quantitation range	ND Not Detected at the Reporting Limit	
Results reported are not blank corrected	Analyte detected at or below quantitution limits	Spike Recovery autside accepted recovery limits
	\neg	u.
Onstiffers:		

H H9D ontside accepted recovery finite

RPD outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CEIENT:

C1603075 Work Order: FESL Emerson Landfill

Project:

TestCode: 0.25CT-TCE-VC

er.	SampType: MS	TesfCox	TesfCode: 0.25CT-TCE-	- Units: ppbv		Prep Date	te.		RunNo: 10817	317	
Client ID: 1645-IAQ-2	Batch ID: R10817	Test	TestNo: TO-15		-,-	Analysis Date:	te: 3/31/2015	116	SeqNo: 127108	7108	
Analyte	Result	POL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	WRPD	RPDLimit	Qual
1,1,1-Techloroethane	1,140	0.15	-	0	114	02	130				
1,1-Dichloroethane	1.060	0.15	-	0	106	70	130				
1,1-Dichlaroethene	1.710	0.15	-	Q	111	70	130				
Chloroethane	1,740	0.15	ţ.	0	\$34	20	130				
Chloromethane	1.760	0.15		0	178	70	130				V.
cis-1,2-Dichoroethene	1,080	0.15	1	O.	108	70	130				,
Tetrachloroethylene	0.9300	0.15	-	0	93.0	20	133				
trans-1,2-Dichloroethena	1,110	0.15	-	0	111	7.0	130				
Trichbroethene	1.730	0.040	+	Ð	113	70	130				
Vinyl chloride	1.020	0.049	1	٥	102	70	130				
Sample ID C1603075-084A MS	SampType: MSD	TestCor	TestCade: 0.25CT-TCE-	Unifs: pp6V		Prep Date	·	and the section of th	RunNo: 10817	317	
Client ID: 1845-JAQ-2	Batch ID: R10817	Tesik	TesiNo: TO-15		,	Analysis Dale:	e: 4/1/2016	9	SeqNo: 127109	7109	
Analyte	Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroathane	1.020	0.15	1	0	202	70	130	1.54	11.3	30	
1,1-Dichloroethane	1,080	0.15	+	Q	308	70	130	1.06	1.87	30	
1,1-Dichlordelhene	1.150	0.15	1	0	115	70	130	1.11	3,54	30	
Chloroelhane	1,330	0.15	1	O	113	70	130	1.14	0.883	30	
Chloromethane	1.810	0.15	1	0	181	70	130	1.76	2.80	30	50
cis-1,2-Dichloroethene	1.160	0.15	+	0	116	70	130	1.08	7.14	30	
Tetrachloroethylene	0.9700	0.15	-	Q	97.0	200	130	0.93	4.21	30	
Irans-1,2-Dichlaraethene	1,100	0.15	+	O	110	7.0	130	1.11	0.905	30	
Trichforoethene	1.100	0.040	-	0	110	20	130	1.13	2.69	30	

Qualifters:

Results reported are not blank corrected

Spike Recovery outside accepted recovery limits

m Z Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit Value above quantitution range

Holding times for preparation in unalysis exceeded T z

RPD outside aecepted recovery limits

LaBella Associates, P.C. CLIENT

C1603075 Work Order:

FESI, Emerson Landfill Project:

TestCode: 0.25CT-TCE-VC

Sample ID C1603075-004A MS SampType: MSD	13075-004A MS	SampType:	MSD	TestCod	le: 0.25CT-TC	TestCode; 0.25CT-TCE- Units: ppbV		Prep Date:			RunNo: 10817	817	
Chent ID: 1645-1AQ-2	-IAQ-2	Batch ID: R10817	R10817	Test	TestNo; TO-15		7	Analysis Date: 4/1/2016	471/2016		SeaNo. 127109	7109	
Analyte			Result	POL	SPK value SPK Ref Val	SPK Ref Vai	%REC	LowLimit F	LowLimit HighLimit RPD Ref Val	if Val	%RPC	%RPC RPDLImit Oval	C
Vinyl chloride			0.9900	0.040	+	0	98.0	70	+30	1.02	2.99	30	Tank.

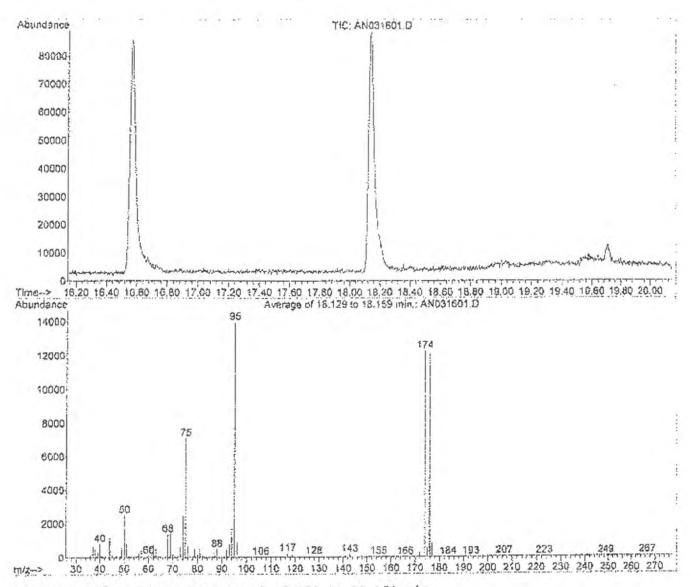
Qualifiers:

Results reported are not blank corrected

Analyte detected at or below quantitation limits

Spike Rozovery outside accepted recovery limits

E Value above quantitation range


ND Not Detected at the Reporting Limit

H Holding times for proparation or analysis exceeded R PPD outside accepted recovery limits RPD outside accepted recovery finits Data File : C:\HPCHEM\1\DATA\AN031601.D

Vial: 1 Acq On : 16 Mar 2016 5:26 pm Operator: RJP Sample : BFBJ.UG : MSD #1 Inst Misc : A316_1UG Multiplr: 1.00

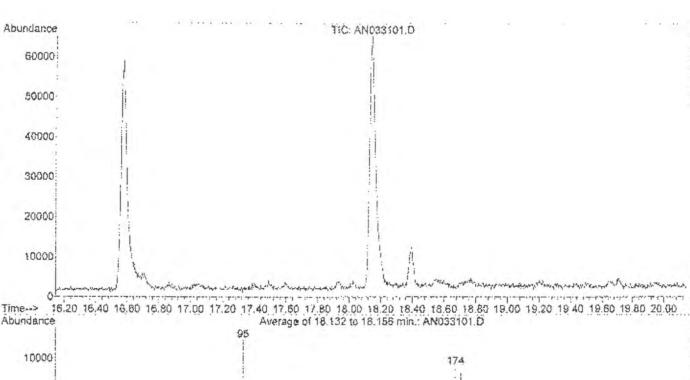
MS Integration Params: RTEINT.P

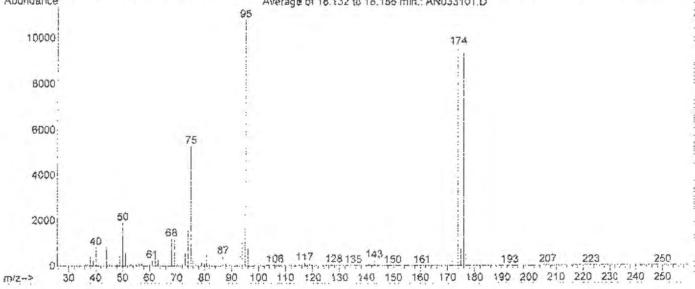
: C:\HPCHEM\1\METHODS\3316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.129 to 18.159 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rei. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	18.0 /	2513	PASS
75	95	30	66	51.1	7135	PASS
95	95	100	100	100.0	13975	PASS
96	95	5	9	6.7	936	PASS
173	174	0.00	2	0.6	79	PASS
174	95	50	120	87.9	12278	PASS
175	174	4	9	4.2	498	PASS
176	174	95	101	98.5	12090	PASS
177	176	5	9	6.9	829	PASS

Data File : C:\HFCHEM\1\DATA2\AN033101.D


Acq On : 31 Mar 2016 9:33 am Sample : BFRIUG


Operator: RJP Inst : MSD #1 Multiplr: 1.00

Vial: 1

Misc : A316_1UG MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.132 to 18.156 min.

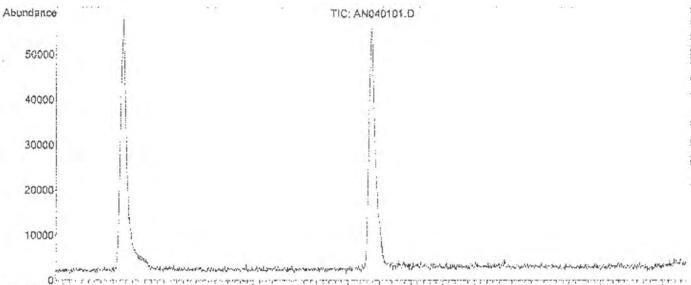
Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	17.5	1890	PASS
75	95 j	30	66	49.0	5299	PASS
95	95	200	100	300.0	10811	PASS
96	95	5	9	7.0	757	PASS
173	174	0.00	2	0.7	65	PASS
174	95	50	120	89.2	9645	PASS
175	174	4	9	7.8	750	PASS
176	174	95	101	97.0	9355	PASS
177	176	5	9	7.5	704	PASS

Vial: 16

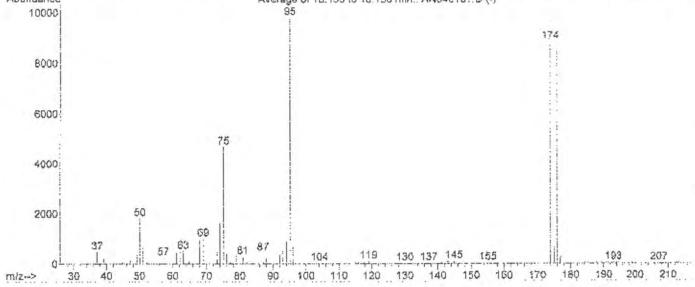
: MSD #1

Operator: RJP

Multiplr: 1.00


Inst

Data File : C:\HPCHEM\1\DATA\ANG40101.D

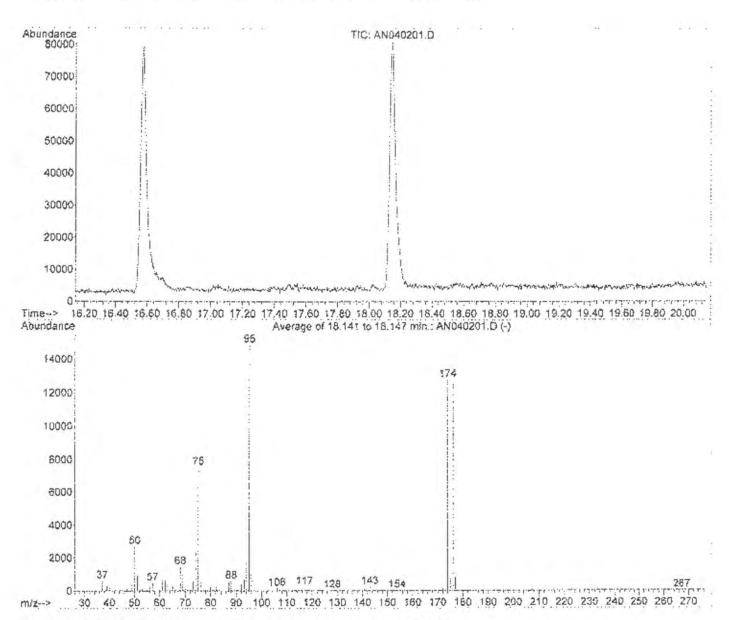

Acq On : 1 Apr 2016 10:05 am Sample : BFB1UG Misc : A316_1UG

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Time--> 16.20 16.40 16.60 16.80 17.00 17.20 17.40 17.60 17.80 18.00 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00 Abundance Average of 18.150 to 18.156 min.: AND40101.D (-)

Spectrum Information: Average of 18.150 to 18.156 min.


Parget Mass	Rel. to Mass	Lower Limit%	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	18.6	1827	PASS
75	95	30	66	47.8	4708	PASS
95	95	100	100	100.0	9841	PASS
96	95	5	9	7.0	592	PASS
273	174	0.00	2	0.8	70	PASS
174	95	50	120	90.2	8875	PASS
175	174	1	9	7.4	658	PASS
176	274	95	101	96.4	8557	PASS
177	176	5	9	5.2	443	PASS

Data File : C:\HPCHEM\1\DATA\ANG40201.D

Vial: 1 Acq On : 2 Apr 2016 10:48 am Operator: RJP Sample : BFB1UC : MSD #1 Inst Misc : A316 lUG Multiplr: 1.00

MS Integration Params: RTBINT.P

: C:\HPCHEM\1\METHOD\$\A316_1UG.M (RTR Integrator) Method Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.141 to 18.147 min.

Target Mass	Rel. to Mass	Lower Limit*	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	18.2	2718	PASS
75	95	30	66	50.7	7557	PASS
95	95	100	100	100.0	14902	PASS
96	95	5	9	6.7 5	1000	PASS
173	1.74	0.00	2	0.2	31	PASS
174	95	50	120	85.9	12799	PASS
175	174	4	9	6.0	772	PASS
176	174	95	101.	98.7	12634	PASS
177	176	5	9	6.7	841	PASS

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 3

Field Logs

Soil Gas Testing Log

Project Name: Former Emerson Street Landfill- 1645-1685 Emerson

Project No: 210173
Sampled By: AA and KM
Date: 26-Mar-16

Former Emerson Street Landfill 1645-1685 Emerson Street

Weather: ~40 degress clear skies Wind Speed/Direction: from SW ~5 mph

ID: 16	45-SVI-1	ID: 16	45-SVI-2	ID: Ou	tdoor-1645	
Sub-Slab Pressure: -0.029 "wc			Sub-Slab Pressure: -0.025 "wc		Sub-Slab Pressure: NA	
Canister: 567		Canister: 332	Canister: 332		Canister: 1178	
Regulator: 301		Regulator: 387		Regulator: 174		
	Ielium Tracer in shroud: 40%		Helium Tracer in shroud: 15%		n shroud: NA	
Helium Tracer at	Ielium Tracer at point: 2%		point: 0%	Helium Tracer a		
Sub	-Slab	Sub-	-Slab	Outde	oor Air	
Time	Vacuum Reading ("Hg)	Time	Vacuum Pandina		Vacuum Reading ("Hg)	
Start 904	30+	Start 858	30	Start 908	30+	
1011	27	1013	25	1015	26	
1210	16	1212	15	1213	15	
1323	8.5	1321	8.5	1325	9	
1358	5.0	1400	5	1404	5	
1420	3	1418	2.5	1427	3.5	
End 1436	2	End 1441	2	End 1448	2.75	
Notes/Activities:						

Notes/Activities:

Soil Gas Testing Log

Former Emerson Street

Landfill

1645-1685 Emerson Street

Project Name: Former Emerson Street Landfill- 1645-1685 Emerson

Project No: 210173
Sampled By: AA and KM

Date: 26-Mar-16

Weather: ~40 degress clear skies Wind Speed/Direction: from SW ~5 mph

	45-IAQ-1	ID: 16	45-IAQ-2	
Sub-Slab Pressure	e: NA "wc	Sub-Slab Pressur	e: NA "wc	
Canister: 93		Canister: 483		
Regulator: 1165		Regulator: 438		
Helium Tracer in		Helium Tracer in		
Helium Tracer at		Helium Tracer at		
Indo	or Air	Indo	oor Air	
Time	Vacuum Reading ("Hg)	Time	Vacuum Reading ("Hg)	
Start 906	30	Start 854	28	
1011	24	1013	22	
1210	12	1211	12	
1323	5	1320	6	
End 1355	1	1400	2	
		End 1415	1.5	
· · · · · · · · · · · · · · · · · · ·				

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 4

Preliminary Building Assessment and Site Reconnaissance

Site: 1645-1685 Emerson Street Site Recon Date: November 22, 2010 Consultant: LaBella Associates, P.C.

Summary of Available Historic Records:

- The original structure was built in 1998 (70,000 sq. ft.).
- The property was vacant land prior to construction of the current building. The current building has been utilized for manufacturing, specifically injection molding of plastic, since construction.
- A passive vent system was installed beneath the entire building during construction. The proposed system consists of three perforated PVC pipes that run the length of the building (north-south). The proposed system included intakes on one side of the pipe on the exterior of the building approximately 1-ft. above grade and the other side of the pipe included riser piping on the interior of the building which discharge to above the roofline. [Note: Refer to Site Recon discussion on actual system installation.]

Current Site Use:

- Currently owned by Val-Tech Holdings and utilized for plastic injection molding.
- Val-Tech uses VOCs in the form of thinners, thickeners and misc. equipment repair. In addition, a laboratory (QA/QC) area utilizes alcohols.
- A total of approximately 100 employees occupy the building regularly. Specifically, there are 30 office workers (approximately from 8 am 5 pm weekdays) and approximately 70 manufacturing workers occupy the building 7 days a week over 3 shifts (~30 on shift 1, ~20 on shift 2 and ~20 on shift 3).
- Approximately 40,000 sq. ft. is manufacturing space, 23,000 sq. ft. is warehouse space; 7,000 sq. ft. is maintenance and 7,000 sq. ft. is office space. It should be noted that with the exception of the office space, the other sections of the building are generally open throughout; however, there is one clean room in the manufacturing area that is under positive pressure.
- There are seven (7) overhead doors in the warehouse areas and an additional one in the garage area. These doors are generally closed in the winter time except when loading finished product or receiving raw goods. These doors are generally open in the summertime.

Site Recon Observations:

- The passive vent system was observed in the field to consist of apparent riser pipes on both end of the horizontal laterals identified on proposed construction plans. Based on the field observations it is anticipated that instead of installing intakes at ground level passive vents were installed at each of the six vertical risers and these extend to above the roofline. Only five of the passive vent pipes were observed with the 6th believed to be behind an interior drywall within the women's locker room. The southeast riser pipe was observed to be broken during the initial site reconnaissance, but a subsequent visit observed the pipe repaired.
- The foundation system for the building is caisson and grade beam construction.
- Floor slab condition was in poor condition with significant cracking observed throughout the facility. [Note: Refer to 'Floor Crack Evaluation' section for more details.]
- The owner reported that the building is positively pressurized; however, there is no documentation on this.

Floor Crack Evaluation (refer also to LaBella's March 16, 2011 letter for more details)

- Based on the significant cracking observed during the Site Recon work, four (4) cores of the concrete were removed to evaluate the vertical extent of cracking. Pictures of these cores are attached. As shown, each of the four floor crack locations exhibited cracks that penetrated the entire floor slab.
- Petrographic analyses were completed on two of the four cores to further evaluate the cause of the cracks. The petrographics testing indicated that the cracks were likely due to shrinkage of the concrete during the curing process. This would indicated that the cracks are not likely to deteriorate; however, operations with vibrations may exacerbate the cracking.

List of Observed Floor Penetrations (Potential SVI Locations):

- Electrical conduit (1-3") (i.e., Locations 44, 45, 55, 62, 68, 69, 73, 76, 78, 79).
- Floor drains (3-4") (i.e., Locations 9, 11, 16, 30, 59, 70, 71, 72, 81, 83, 85, 87, 91, 92, 95, 99)
- Trench drains (i.e., Locations 31, 36, 40, 65, 67, 104).
- Sewer Cleanouts and Vents (i.e., Locations 35, 41, 53, 57, 60, 94, 97, 98)
- There was significant floor cracking (< 1/8" to ½") observed (i.e., Locations 25, 27, 29, 37, 39, 47, 50, 54, 56, 61). It should be noted that these readings are a representative sampling of the floor cracks. Due to the number of cracks, not all cracks were sampled.
- Expansion Joint (\sim 1/2") (i.e., Location 52)
- Main water service (6") (i.e., Location 75)
- I-Beam penetrations (i.e., Locations 26, 33, 48, 63). It should be noted that not all I-Beam penetrations were sampled but rather a representative number were sampled.
- Apparent former mounting brackets for equipment (~½") (i.e., Locations 101 & 102)
- Passive Sub-Slab Vent System Pipes (i.e., Locations 34, 42, 74)

<u>Initial Site Recon Meter Readings (Total Readings Collected – 124):</u>

- Total Background Readings Collected = 26
 - O Background of VOCs due to operations ranged from 290 ppb to 950 ppb [Note: Trench Drain and floor drain readings are not included in these readings; however, these ranged from 328 ppb (on a shower floor drain) to 13,500 ppb (in the southern portion of the western trench drain).]
 - o Background of Methane due to operations were 0%
- Total Floor Penetration Readings Collected = 61
 - VOCs readings above background

Location	Description	Background (ppb)	Reading (ppb)
17	Electric Outlet	420	460
25	Floor Crack*	950	1100-1300
27	Floor Crack*	950	1150
29	Floor Crack*	550-650	750

^{*} Reading may be associated with operations in area (maintenance room where oils and other VOCs utilized).

o No methane readings above background

Evaluation of Passive Vent System: Total Readings Collected – 10 (5 Background and 5 Passive Vent Readings)

- Subsequent to the initial site visit, the property owner installed access ports into each of the 5 accessible passive vent systems. LaBella collected additional readings of these. These are identified as locations 128, 130, 132, 134, and 136 on the Instrument Reading Sheet.
- The readings collected from these locations ranged between 269 ppb and 825 ppb with background ranges of 625 ppb and 959 ppb. In general, the readings were below background with the exception of the south-middle passive vent pipe which indicated a reading of 825 ppb compared to a background of 625 ppb. However, the readings did not appear to continue to decrease and therefore could be indicative of VOC readings beneath the floor slab.

FORMER EMERSON STREET LANDFILL SOIL VAPOR INTRUSION PRELIMINARY BUILDING ASSESSMENT AND SITE RECONAISSANCE

Parcel Information:	
Address: 1645 - 1655 Emerson Street	
Owner: Val-Tech Holdings	
Number of Buildings: 1	
Building this Sheet Represents (fill out one for each	h building):
Interviewer Information:	
Name: Dan Noll	Date/Time Prepared: 11/22/2010 0800
Consultant Firm: LaBella Associates, P.C.	Phone No.: 585-295-6611
Owner/Interviewee Information:	
Last Name: Gubrelet	First Name: Jerry
Address: 1667 Emerson Street	
Company: Val-Tech Holdings	
Office Phone: 585-647-2300	
Tenant Information (if any):	
Tenant Contact Person: N/A	
Address:	
Company:	
Office Phone:	

SECTION I - Building Construction Information

A.	Site plans available? (e.g., foundation construction, utility locations/chases, etc.): No If yes, can copies be obtained?	
B.	Does owner have knowledge that ash or solid waste was removed at time of building construction:	No
	If yes, are any documents available?	

C. Building Construction

	Construction Type	Finish Type	Sealed	Square Feet
Basement No Crawl Space No		N/A	N/A	N/A
		N/A	N/A	N/A
First Floor	Caisson & Grade Beam	Epoxy - Clean Rm	Epoxy - Clean Rm	N/A
Foundation Walls	None	N/A	N/A	N/A
2 nd Floor	N/A	N/A	N/A	N/A

D.	Any additions to building: If yes, list dates and locations:	lo
	If yes, note variations in construction	: None

E. Utility/Floor Penetrations

	Location(s)	Size/Description
Electric	North End	See Summary
Gas	North End	See Summary
Water	North End	See Summary
Sewer/Wastewater	North End	See Summary
Sumps	None	See Summary
Floor/Trench Drains	2 Run Length of Building	See Summary
Dry Well	None	See Summary
Oil/Water Separators	None	See Summary
Cracks in Floor	Yes - see Summary	See Summary
Expansion Joints	Yes - One southern half of Bldg.	See Summary
Floating Slab	No	See Summary
Monitoring Points	None	See Summary
Scales	Yes, but all above ground	See Summary
Utility Vaults	Yes, power utility vault	See Summary
Elevators	No	See Summary
Other		

F.	Does facility have an on Site septic system?
	If yes, where and size:
G.	Does facility provide pretreatment of wastewater prior to discharge to sanitary sewer? No If yes, What type of pretreatment is conducted:
Н.	Is there a vapor barrier associated with the foundation system?
	If yes, indicate type/material, location, thickness, etc.:
I.	Is there a radon/sub slab soil vapor mitigation system on any portion of the building? 1998 If yes, describe system and date installed:
	If yes, Is the system active or passive?
	If yes, Is system currently operational? Yes
J.	Standing water or wet areas in lower levels?
	If yes, list location and describe:
	If yes how frequent:
K.	Is the building insulated? Yes
	If yes, location(s) and type? Unknown
L.	Are there any settlement issues with the building?
	If yes, describe: No settlment (heaving), but significant cracking
M.	Are there any cracks in floor slabs (1 st floor or basement)? Throughout Bldg.
	If yes, location(s), width, etc.?
N.	Are there any elevators in the building?
_	If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)
Co	mments:

SECTION II – Heating, Ventilation and Air Conditioning Information

Areas Heated

A. Type of heating system(s) used in this building: For each heat system/unit, provide the following:

Unit

Location

Unit Type

Forced Hot Air - Rest Electric baseboard - Office

Pressurization

(neg. vs. positive)

Air Communication

with other areas (duct

work, doors, etc.)

York	Pad Mounted	5 units for Mfg.	each 40 Ton	Positive	Separate
York	Pad Mounted	2 units for Ofc	21 Ton Total	Positive	Separate
B. Type of fue	el used: N	atural Gas			
	_				
If more tha	n one list locat	ions:			
				(0)	
C. Domestic	hot water tank	fueled by: In util	lity room - elect	(2)	
D. Air condi	tioning: Cei	ntral Air			
Comments:					
Owner reported building under positive pressure based on HVAC set up; however, no					
documentation on this (e.g., air balancing report).					
			•		

Unit Size

SECTION III – Indoor Air Quality Influence Factors

A. Is there a garage, service area or manufacturing area in building?
If yes, list all that apply: Only used as storage
 Does the garage, service or manufacturing areas have separate heating unit/system? Are petroleum-powered machines or vehicles used or stored within the garage, service area or manufacturing area of building? (e.g., forklifts, vehicle fleet, lawnmower, etc.)
If yes, specify:
3 Propane Fork Trucks, also have one Electric Scissor Lift
B. Are there any current or former USTs, ASTs or Fueling Facilities on the property? No If yes, specify location:
If yes, specify location.
C. Are there any current or former hydraulic lifts at the property? No If yes, locations and note if underground or above ground:
D. Are there any current or former petroleum or chemical spills at the Site?
If yes, specify location, quantity, material and date:
E. Are there any current or former groundwater monitoring wells at the Site? No If yes, specify location and accessibility:
F. Has the building ever had a fire? No If yes, When:
G. Is there a maintenance area? Yes
If yes, Where: East side of building

H. Are there any parts cleaners used at the site?
If yes, list location(s) and solvent types: Detergent Based in Tool Room
I. Are there any drum and/or chemical storage areas? Yes
If yes, list location(s) and materials: Hydraulic/lube & waste oil stored in Utility Room
J. Are cleaning products used routinely? Yes
If yes, When & Where: Mold cleaner, floor cleaner
K. Has painting/staining been done in the last 6 months?
If yes, When & Where:
L. Is there new carpet, drapes or other textiles within installed within the last year?
If yes, Where & When:
M. Are there air fresheners in office spaces or bathrooms?
If yes, Where & Type:
N. Are there exhaust fans (e.g., break rooms, bathrooms, or other locations)?
If yes, where vented and how often do they run:
O. Has there been a pesticide application on the grounds?
If yes, When & Type: But have contract
P. Is smoking allowed on the property?
If yes, is it allowed within buildings and where?
Q. Are there odors in the building?
If yes, please describe: But only related to operations
R. Are solvents used within the building? Yes (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, etc.)
Use alcohol in Clean Room, use Acetone If yes, what types of solvents are used:

S. Is groundwater extracted for any purpose (e.g. cooling water, geothermal, etc.)?	╛
If yes, how many extraction wells, what depths and what is the rate of extraction:	_
T. Are there any air handling units in the building? Yes	
If yes, locations, sizes, intakes & exhaust:	_
U. Are there any doors (overhead/bay or others) that are routinely open?	
If yes, note locations, sizes, and approximate times open: Open as needed. Southern door open in summer 10-15 times per day.	
V. Do any of the building occupants regularly use a dry cleaning service? Yes, week	
Based on Information obtained list all potential soil gas entry points and there sizes (e.g., cracks in floor, void space, piping, utility ports, sumps, elevator pits, lifts, drains, etc.).	
	_
	_
	_
	_
	—
[Note: See page 12 & 13 for additional information to be collected on each potential soil gas entry point (i.e., photographs, PID and landfill gas measurements, etc.]	ı
Comments:	
	—
	_

Section IV – Occupancy/General Use

Location Use	Occupied (list hours/shifts)	Number of Employees (Full/Part-time)	Approx. Sq. Ft.	Level (basement, 1 st Floor, 2 nd Floor, etc.)	Brief Summary of Business/ Operations in Area (include additional sheets as necessary)
Office	Full Time M-F	30	~7,000	1st Flr	General Office
Manufacturing/ Production	Full Time - 3 Shifts	70	~70,000	1st Flr	Injection molding
Warehouse/ Storage	n/a	n/a	23,000	1st Flr	Storage of molded parts
Garage	n/a	n/a	n/a	1st Flr	Used for Storage
Maintenance	n/a	n/a	7,000	1st Flr	Maintenance of equipment
Conference/ Break Rooms	n/a	n/a	n/a	1st Flr	n/a

Comments:
For Manufacturing Area - About 30 people on 1st shift, 20 people on 2nd shift and 20 people on 3rd shift.

Instrument Readings:

Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments
Units	ppb	%	%	%	ppm	ppm	Description & Comments
1	290	0.0	0.1	20.9	0	0	Background Conference Room
2	280	0.0	0.1	20.9	0	0	Electrical Outlet (Bckgrd = #1)
3	255	0.0	0.1	20.9	0	0	Electrical Outlet (Bckgrd = #1)
4	260	0.0	0.1	20.9	0	0	Electrical Outlet (Bckgrd = #1)
5	225	0.0	0.0	20.9	0	0	Steel Pipe Penetration Through Wall in Closet (Bckgrd = #1)
6	305	0.0	0.0	20.9	0	0	Background Storage Office
7	305	0.0	0.0	20.9	0	0	Printer Room Background
8	335	0.0	0.0	20.9	0	0	Background
9	700	0.0	0.0	20.9	0	0	Floor Drain Near Toilet (Bckgrd = #8)
10	455	0.0	0.0	20.9	0	0	Background
11	455	0.0	0.0	20.9	0	0	Floor Drain - Women's Bathroom (Bckgrd = #10)
12	1050	0.0	0.0	20.9	0	0	Bathroom Air Freshner
13	585	0.0	0.0	20.9	0	0	Background
14	425	0.0	0.0	20.9	0	0	Pipe Penetration - Under Sink (Bckgrd = #13)
15	460	0.0	0.0	20.9	0	0	Background - Exhaust Fan
16	328	0.0	0.0	20.9	0	0	Shower Drain (Bckgrd = #15)
17	460	0.0	0.0	20.9	0	0	Electrical Outlet (Bckgrd = #18)
18	420	0.0	0.0	20.9	0	0	Background
19	418	0.0	0.0	20.9	0	0	Sink in Bathroom Penetration (Bckgrd = #20)
20	430	0.0	0.0	20.9	0	0	Background

Location	VOCs	CH4	CO2	O2	СО	H2S	Description & Comments	
Units	ppb	%	%	%	ppm	ppm	Description & Comments	
21	385	0.0	0.0	20.9	0	0	Background - Office Space	
22	435	0.0	0.0	20.9	0	0	Background - QC Room	
23	254	0.0	0.0	20.9	0	0	Cable Outlet (Bckgrd = #22)	
24	950	0.0	0.0	20.9	0	0	Background - Tool Room	
25	1100 -1300	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #24)	
26	700	0.0	0.0	20.9	0	0	I-Beam (Bckgrd = #24)	
27	1150	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #24)	
28	550 - 650	0.0	0.0	20.9	0	0	Background - Manufacture Area	
29	750	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #28)	
30	970	0.0	0.0	20.9	0	0	Floor Drain (Bckgrd = #28)	
31	570	0.0	0.0	20.9	0	0	Trench Floor Drain (Bckgrd = #32)	
32	700 - 750	0.0	0.0	20.9	0	0	Background	
33	640	0.0	0.0	20.9	0	0	I-Beam at Corner (Bckgrd = #32)	
34	655	0.0	0.0	20.9	0	0	Vent Pipe Base (Bckgrd = #32)	
35	555	0.0	0.0	20.9	0	0	Floor Penetration - Sewer Cleanout (Bckgrd = #32)	
36	13,500	0.0	0.0	20.9	0	0	Trench Floor Drain (Bckgrd = #32)	
37	570	0.0	0.0	20.9	0	0	Pipe Penetration - Electric (Bckgrd = #28)	
38	550	0.0	0.0	20.9	0	0	Floor Crack - Pre Vacuum (Bckgrd = #28)	
39	600	0.0	0.0	20.9	0	0	Crack - Dust (Bckgrd = #28)	
40	1800	0.0	0.0	20.9	0	0	Trench Floor Drain (Bckgrd = #28)	

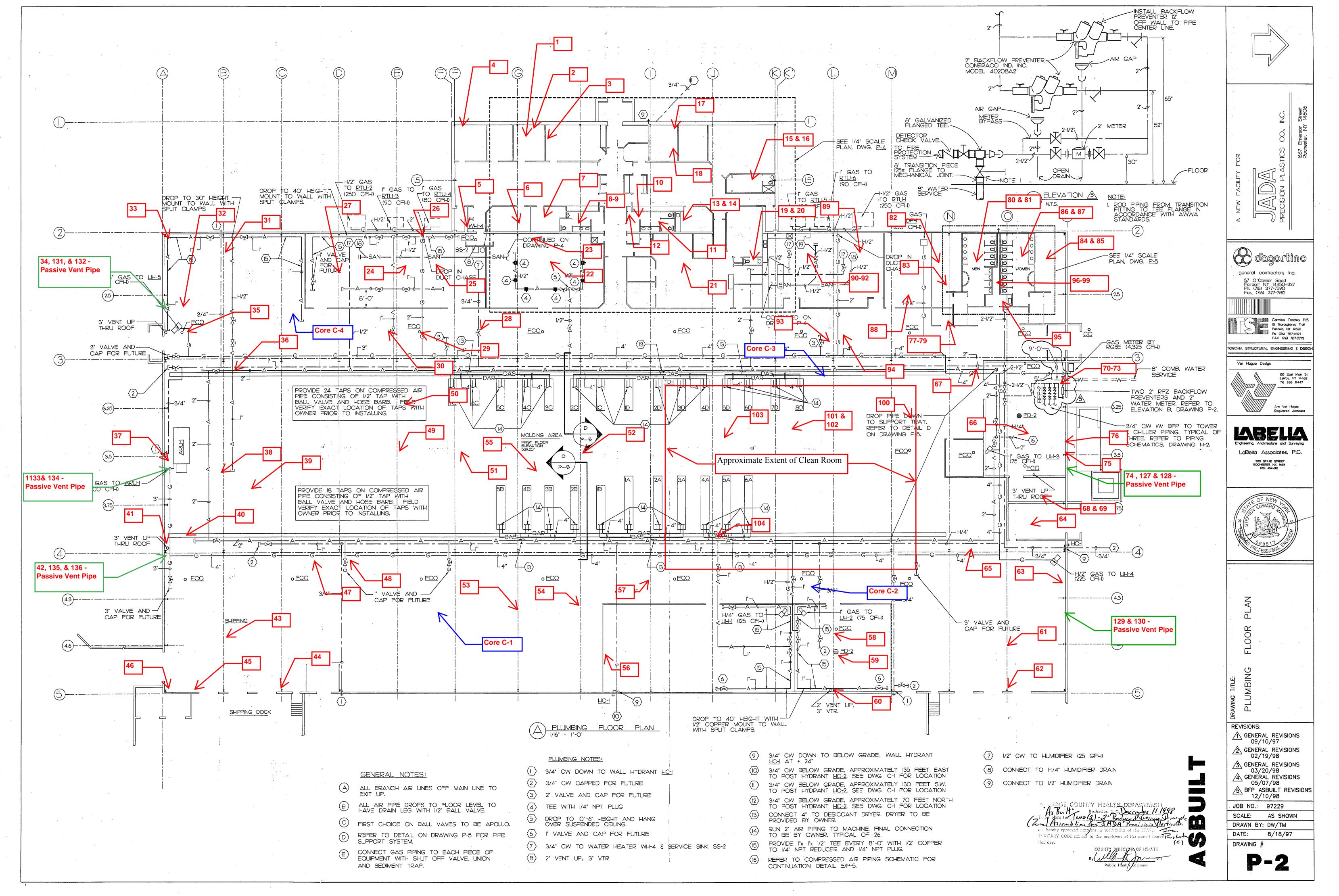
Location	VOCs	CH4	CO2	O2	СО	H2S	Description & Comments	
Units	ppb	%	%	%	ppm	ppm	Description & Comments	
41	550	0.0	0.0	20.9	0	0	Vertical Black Pipe (Bckgrd = #28)	
42	500	0.0	0.0	20.9	0	0	PVC Pipe Vent System (Bckgrd = #28)	
43	550	0.0	0.0	20.9	0	0	Loading Deck Background Area	
44	550	0.0	0.0	20.9	0	0	Electrical Pipes from Floor (Bckgrd = #43)	
45	550	0.0	0.0	20.9	0	0	Inside Electrical Pipe (Bckgrd = #43)	
46	550	0.0	0.0	20.9	0	0	Pipe from Bottom of Wall Electric (Bckgrd = #43)	
47	470	0.0	0.0	20.9	0	0	Crack in Floor (Bckgrd = #43)	
48	550	0.0	0.0	20.9	0	0	I-Beam on Caisson (Bckgrd = #43)	
49	524	0.0	0.0	20.9	0	0	Steel Plate (Bckgrd = #28)	
50	537	0.0	0.0	20.9	0	0	Floor Caulk (Bckgrd = #28)	
51	550	0.0	0.0	20.9	0	0	Steel Plate (Bckgrd = #28)	
52	550	0.0	0.0	20.9	0	0	Expansion Joint (Bckgrd = #28)	
53	550	0.0	0.0	20.9	0	0	Drain or Cleanout (Bckgrd = #43)	
54	550	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #43)	
55	550	0.0	0.0	20.9	0	0	Electrical Pipe from Floor (Bckgrd = #43)	
56	550	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #43)	
57	550	0.0	0.0	20.9	0	0	Clean Out (Bckgrd = #43)	
58	770	0.0	0.0	20.9	0	0	Background - Maintenance Area	
59	1200	0.0	0.0	20.9	0	0	Floor Drain (Bckgrd = #58)	
60	770	0.0	0.0	20.9	0	0	Black Vertical Vent Pipe (Bckgrd = #58)	

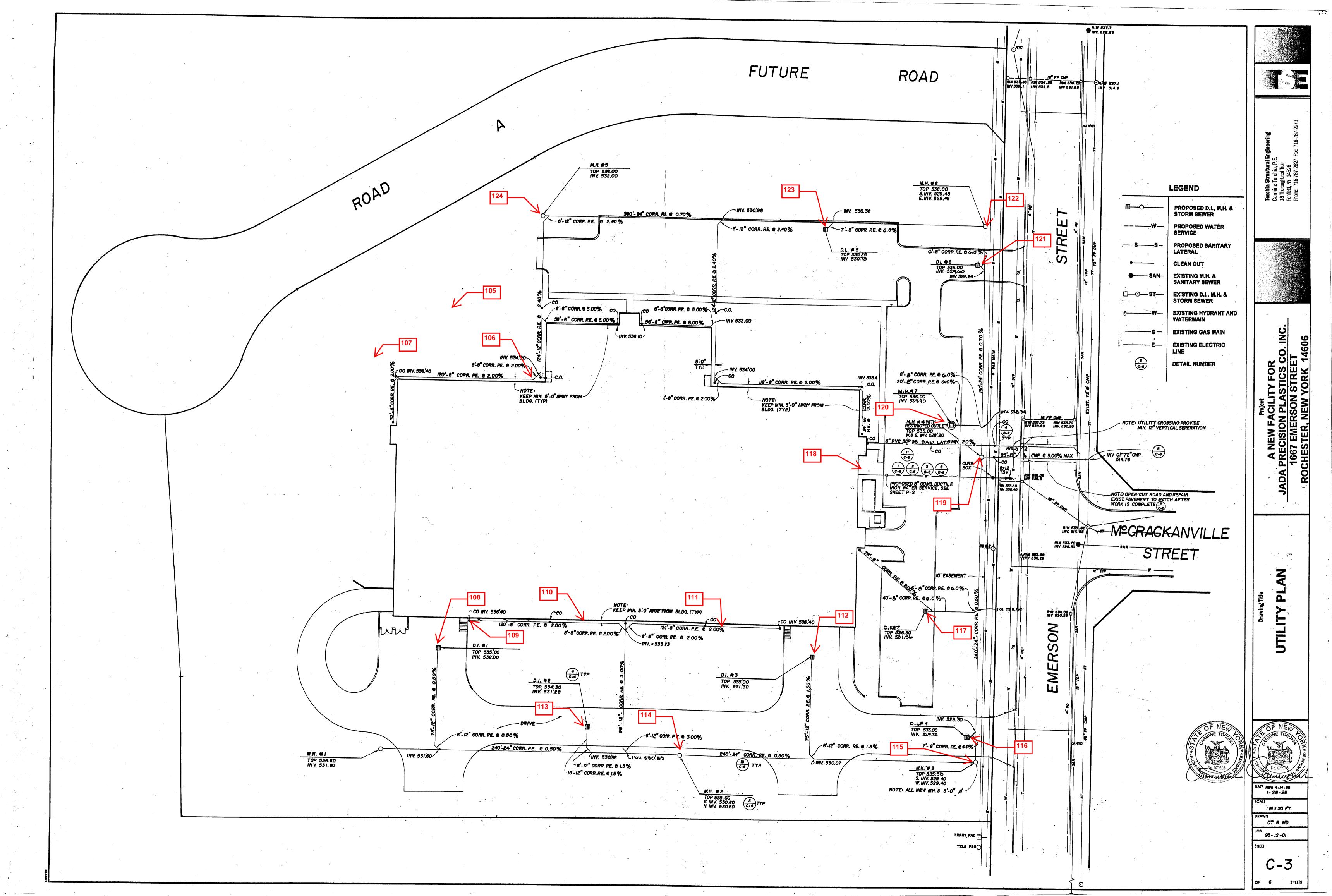
Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments	
Units	ppb	%	%	%	ppm	ppm	Description & Comments	
61	740	0.0	0.0	20.9	0	0	Floor Crack - Loading Deck (Bckgrd = #58)	
62	740	0.0	0.0	20.9	0	0	Electrical Conduit through Floor (Bckgrd = #58)	
63	740	0.0	0.0	20.9	0	0	I-Beam (Bckgrd = #58)	
64	580	0.0	0.0	20.9	0	0	Background - Garage Area	
65	660	0.0	0.0	20.9	0	0	Trench - Floor (Bckgrd = #58)	
66	670	0.0	0.0	20.9	0	0	Background - Utility Room	
67	600	0.0	0.0	20.9	0	0	Trench - Floor (Bckgrd = #66)	
68	600	0.0	0.0	20.9	0	0	Electric Pipe (Bckgrd = #66)	
69	600	0.0	0.0	20.9	0	0	Electric Pipe (Bckgrd = #66)	
70	1081	0.0	0.0	20.9	0	0	Floor Drain East (Bckgrd = #66)	
71	750	0.0	0.0	20.9	0	0	Floor Drain Center (Bckgrd = #66)	
72	675	0.0	0.0	20.9	0	0	Floor Drain West (Bckgrd = #66)	
73	630	0.0	0.0	20.9	0	0	Conduit Pipe (Bckgrd = #66)	
74	629	0.0	0.0	20.9	0	0	Vent Pipe Plastic PVC 4" (Bckgrd = #66)	
75	608	0.0	0.0	20.9	0	0	Watermain (Bckgrd = #66)	
76	667	0.0	0.0	20.9	0	0	Electrical Pipe (Bckgrd = #66)	
77	420	0.0	0.0	20.9	0	0	Background	
78	420	0.0	0.0	20.9	0	0	Plastic Pipes - Top (Bckgrd = #77)	
79	420	0.0	0.0	20.9	0	0	Plastic Pipes - Base (Bckgrd = #77)	
80	445	0.0	0.0	20.9	0	0	Background - Men's Bathroom	

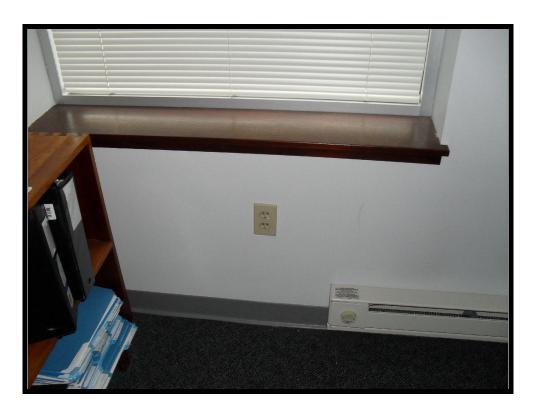
1645-1655 Emerson Street

Instrument Readings (Continued):

Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments	
Units	ppb	%	%	%	ppm	ppm	Description & Comments	
81	610	0.0	0.0	20.9	0	0	Floor Drain (Bckgrd = #80)	
82	410	0.0	0.0	20.9	0	0	Background - Locker Room	
83	517	0.0	0.0	20.9	0	0	Floor Drain - Locker Room (Bckgrd = #82)	
84	500	0.0	0.0	20.9	0	0	Background - Women's Locker Room	
85	630	0.0	0.0	20.9	0	0	Floor Drain - Women's Locker Room (Bckgrd = #84)	
86	505	0.0	0.0	20.9	0	0	Background - Women's Bathroom	
87	583	0.0	0.0	20.9	0	0	Floor Drain - Women's Bathroom (Bckgrd = #86)	
88	420	0.0	0.0	20.9	0	0	Background Lab	
89	350 - 400	0.0	0.0	20.9	0	0	Lunchroom Background	
90	400	0.0	0.0	20.9	0	0	Lunchroom Sink (Bckgrd = #89)	
91	409	0.0	0.0	20.9	0	0	Lunchroom Floor Drain South (Bckgrd = #89)	
92	409	0.0	0.0	20.9	0	0	Lunchroom Floor Drain North (Bckgrd = #89)	
93	520	0.0	0.0	20.9	0	0	Manufacturing Area - Background	
94	541	0.0	0.0	20.9	0	0	Cleanout (Bckgrd = #93)	
95	670	0.0	0.0	20.9	0	0	Janitor Closet Floor Drain (Bckgrd = #96)	
96	370	0.0	0.0	20.9	0	0	Background - Janitor Closet	
97	294	0.0	0.0	20.9	0	0	Pipe Penetration (Bckgrd = #96)	
98	377	0.0	0.0	20.9	0	0	Sewer Vent (Bckgrd = #96)	
99	348	0.0	0.0	20.9	0	0	Drain (Bckgrd = #96)	
100	470	0.0	0.0	20.9	0	0	Background - Clean Room	


1645-1655 Emerson Street

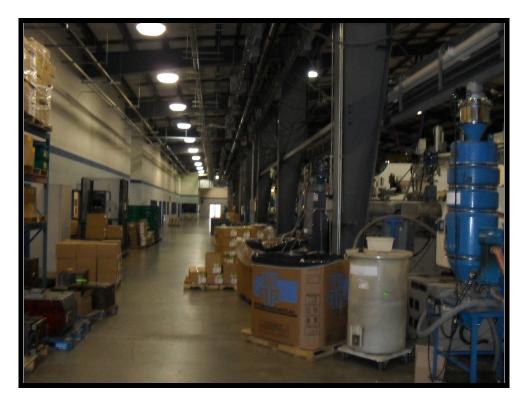

Instrument Readings (Continued):


Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments	
Units	ppb	%	%	%	ppm	ppm	Description & Comments	
101	514	0.0	0.0	21.0	0	0	Former Mounting Bolt Penetration in Floor (Bckgrd = #100)	
102	567	0.0	0.0	20.9	0	0	Former Mounting Bolt Penetration in Floor (Bckgrd = #100)	
103	693	0.0	0.0	20.9	0	0	Background in Syringe Molding Area of Clean Room	
104	830	0.0	0.0	21.1	0	0	Trench Drain Passing Through Clean Room (Bckgrd = #103)	
105	130	0.0	0.0	20.9	0	0	Outside Air (Background)	
106	120	0.0	0.0	20.9	0	0	Roof Drain	
107	108	0.0	0.0	20.9	0	0	Sewer Clean Out	
108	88	0.0	0.0	20.9	0	0	Catch Basin	
109	87	0.0	0.0	20.9	0	0	Sewer Clean Out	
110	93	0.0	0.0	20.9	0	0	Ground Hog Hole	
111	97	0.0	0.0	20.9	0	0	Ground Hog Hole	
112	84	0.0	0.1	20.9	0	0	Storm Sewer Catch Basin	
113	74	0.0	0.1	20.9	0	0	Catch Basin	
114	78	0.0	0.0	20.9	0	0	Storm Sewer Manhole	
115	65	0.0	0.0	20.9	0	0	Storm Sewer Manhole	
116	63	0.0	0.0	20.9	0	0	Catch Basin	
117	62	0.0	0.0	20.9	0	0	Catch Basin	
118	64	0.0	0.0	20.9	0	0	Gas Service	
119	63	0.0	0.0	20.9	0	0	Manhole	
120	63	0.0	0.0	20.9	0	0	Catch Basin	

Location	VOCs	CH4	CO2	O2	СО	H2S	Description & Comments
Units	ppb	%	%	%	ppm	ppm	Description & Comments
121	58	0.0	0.0	20.9	0	0	Catch Basin
122	57	0.0	0.0	20.9	0	0	Manhole
123	60	0.0	0.0	20.9	0	0	Catch Basin
124	58	0.0	0.0	20.9	0	0	Manhole
125	Reading	s Collec	ted on 11	/24/201	0 After (Owner Pı	rovided Sampling Ports in Passive Vent Pipes
126							
127	872	0.0	0.0	21.0	0	0	Background for Passive Vent Pipe - North Wall Middle
128	535	4.1	0.0	16.6	0	0	Passive Vent Pipe - North Wall Middle
129	959	0.0	0.0	21.0	0	0	Background for Passive Vent Pipe - North Wall East
130	269	1.4	0.0	19.8	0	0	Passive Vent Pipe - North Wall East
131	802	0.0	0.1	20.6	9	0	Background for Passive Vent Pipe - South Wall West
132	504	0.0	2.6	18.0	0	0	Passive Vent Pipe - South Wall West
133	625	0.0	0.0	20.8	9	0	Background for Passive Vent Pipe - South Wall Middle
134	825	0.0	6.1	14.1	0	0	Passive Vent Pipe - South Wall Middle
135	756	0.0	0.0	20.8	6	0	Background for Passive Vent Pipe - South Wall East
136	567	4.4	0.0	16.0	0	0	Passive Vent Pipe - South Wall East
137							
138							
139							
140							

Location Units	VOCs ppb	CH4 %	CO2	O2 %	CO ppm	H2S ppm	Description & Comments
141							amayad
142	Readin	gs Cone	sted on 1	2/31/20	10 After	Cores Re	emoved
143	310	0.0	0.0	20.9	6	0	Background at Core C-1
144	438	0.0	0.0	20.1	6	0	Core C-1
145	240	0.0	0.0	20.9	0	0	Background at Core C-2
146	452	0.0	0.0	20.7	0	0	Core C-2
147	185	0.0	0.0	20.8	5	0	Background at Core C-3
148	320	0.0	0.0	19.9	4	0	Core C-3
149	225	0.0	0.0	20.8	3	0	Background at Core C-4
150	308	0.0	0.0	18.6	2	0	Core C-4
151							
152							
153							
154							
155							
156							
157							
158							
159							
160							

Location #17 – Electrical outlet


Location #25 – Floor crack

Location #27 – Floor crack

Location #29 – Floor crack

General interior view

Engineering Architecture Environmental Planning

300 State Street, Suite 201, Rochester, NY 14614

March 16, 2011

Phone 585.454.6110 Fax 585.454.3066 www.labellapc.com

Mr. Joseph Biandolillo City of Rochester DES 30 Church Street Rochester, New York 14604

Re:

Val-Tech Holdings, Inc. at

1645-1685 Emerson Street, Rochester, NY 14606

LaBella Project No. 210173.04

Dear Mr. Biandolillo:

The concrete floor slab of the building located at 1645-1685 Emerson Street exhibits a significant number of large cracks. We visited the site on November 24, 2010 to observe the width, extent, and pattern of cracking to determine the source and potential for cracks to increase in number and/or size and to cause settlement or other movement of the slab.

The building was constructed in 1998 and has been used as an industrial facility ever since. The concrete slab is a one-way structural (reinforced) slab supported by a grid of concrete grade beams and drilled shafts ("caissons"). The drilled shafts are founded on rock.

LaBella Associates, P.C. contracted with Quality Inspection Services, Inc. of Rochester, NY to obtain four 4 inch nominal diameter cores through the slab at specific cracks in each quadrant of the building. The cores were obtained on December 31, 2010. Two of the cores were then sent to CTL Engineering, Inc. for petrographic laboratory testing. Findings from coring and testing of the slab are listed below.

Findings

- The cracks range from hairline to ½" wide and typically travel in a random pattern
- The top of a few of the cracks were filled with an epoxy resin
- Very few control joints were observed in the slab
- The cracks in the four cores extend the full depth of the slab
- The aperture of the cracks is large at the top surface of the slab and typically narrow as they travel toward the bottom of the slab
- Petrographic tests reveal that the overall quality of the concrete is fair due to placement with high water content. The water to cementitious material ratio is estimated to have been 0.50 to 0.56 at the time of placement. A maximum water/cement ratio of 0.45 is generally specified for interior slabs.
- The maximum size of coarse aggregate is ½ inch. This is considered small aggregate for the type of placement.
- Cracking in the cores propagated around the coarse aggregate which is consistent with drying shrinkage.
- The cement paste is soft and porous with carbonation up to 4 5/8" deep from the top surface of the core / slab.

Conclusions

Based on our observations of the slab and cracks in place, slab cores, and the petrographic analysis test results, the cracks appear to be caused by drying shrinkage due to high water content in the concrete mix used for slab placement. This type of crack typically occurs shortly after placement (after initial hardening of the concrete)

Mr. Joseph Biandolillo City of Rochester DES March 16, 2011 Page 2

and "grows" quickly as water evaporates from the slab. The cracks are considered non-moving cracks since they are not related to expansion and contraction of the concrete due to thermal changes in the building.

The existing cracks will not increase in number or size due to drying shrinkage. However, it is possible for new cracks to form due to other mechanisms, such as, overloading or overstressing of the slab, deterioration of reinforcement which could reduce the capacity of the slab, excessive vibration from slab mounted equipment, etc.

Since the slab is a reinforced structural slab versus a slab-on-grade, it is unlikely that differential settlement or shearing/thrusting of the slab will occur. However, it was noted in the petrographic analysis report that carbonation of the concrete extends 4 5/8" into the slab from the top surface. Carbonation is one of the main reasons for corrosion of reinforcement in concrete. Carbonation affects the alkalinity of the concrete reducing the passivating layer around the reinforcement which protects it from oxygen and water. Localized areas of the slab could experience horizontal or vertical movement if a group of reinforcing bars corroded through at a crack. This would most likely only happen if a crack were subject to standing water for an extended period of time. Based on the current operations in the building, the potential for this movement is low.

Epoxy injection of the existing cracks is possible and is recommended as the best method to fill the cracks to the greatest depth. Injection material must be of a proper viscosity to fill the crack but not leak through since the cracks extend full depth of the slab. Filling the cracks will also reduce the potential for continued carbonation at the cracks. However, due to the number of cracks and the fact that many of the cracks extend under existing equipment and storage racks used for the building owner's manufacturing operation, we believe this option is not feasible. We recommend implementing other measures that would have less impact on building operations.

While other measures are being explored, we recommend installing a vibration monitor near equipment with the highest impact on the slab to confirm whether the intensity of the vibrations is in a range that could cause future cracking or not.

Please contact me directly at 585-295-6617 or smatzat@labellapc.com with questions or comments

Sincerely,

LABELLA ASSOCIATES, P.C.

Susan L. Matzat, PE, SECB, LEED AP

SWAN L Mathat, P.E.

Sr. Structural Engineer

SLM/lk

Attachment:

Copy of Petrographic Report of Concrete Slab Cores

cc:

Daniel Noll, P.E.; LaBella Associates, PC

Site: 1645-1685 Emerson Street Site Recon Date: November 22, 2010 Consultant: LaBella Associates, P.C.

Summary of Available Historic Records:

- The original structure was built in 1998 (70,000 sq. ft.).
- The property was vacant land prior to construction of the current building. The current building has been utilized for manufacturing, specifically injection molding of plastic, since construction.
- A passive vent system was installed beneath the entire building during construction. The proposed system consists of three perforated PVC pipes that run the length of the building (north-south). The proposed system included intakes on one side of the pipe on the exterior of the building approximately 1-ft. above grade and the other side of the pipe included riser piping on the interior of the building which discharge to above the roofline. [Note: Refer to Site Recon discussion on actual system installation.]

Current Site Use:

- Currently owned by Val-Tech Holdings and utilized for plastic injection molding.
- Val-Tech uses VOCs in the form of thinners, thickeners and misc. equipment repair. In addition, a laboratory (QA/QC) area utilizes alcohols.
- A total of approximately 100 employees occupy the building regularly. Specifically, there are 30 office workers (approximately from 8 am 5 pm weekdays) and approximately 70 manufacturing workers occupy the building 7 days a week over 3 shifts (~30 on shift 1, ~20 on shift 2 and ~20 on shift 3).
- Approximately 40,000 sq. ft. is manufacturing space, 23,000 sq. ft. is warehouse space; 7,000 sq. ft. is maintenance and 7,000 sq. ft. is office space. It should be noted that with the exception of the office space, the other sections of the building are generally open throughout; however, there is one clean room in the manufacturing area that is under positive pressure.
- There are seven (7) overhead doors in the warehouse areas and an additional one in the garage area. These doors are generally closed in the winter time except when loading finished product or receiving raw goods. These doors are generally open in the summertime.

Site Recon Observations:

- The passive vent system was observed in the field to consist of apparent riser pipes on both end of the horizontal laterals identified on proposed construction plans. Based on the field observations it is anticipated that instead of installing intakes at ground level passive vents were installed at each of the six vertical risers and these extend to above the roofline. Only five of the passive vent pipes were observed with the 6th believed to be behind an interior drywall within the women's locker room. The southeast riser pipe was observed to be broken during the initial site reconnaissance, but a subsequent visit observed the pipe repaired.
- The foundation system for the building is caisson and grade beam construction.
- Floor slab condition was in poor condition with significant cracking observed throughout the facility. [Note: Refer to 'Floor Crack Evaluation' section for more details.]
- The owner reported that the building is positively pressurized; however, there is no documentation on this.

Floor Crack Evaluation (refer also to LaBella's March 16, 2011 letter for more details)

- Based on the significant cracking observed during the Site Recon work, four (4) cores of the concrete were removed to evaluate the vertical extent of cracking. Pictures of these cores are attached. As shown, each of the four floor crack locations exhibited cracks that penetrated the entire floor slab.
- Petrographic analyses were completed on two of the four cores to further evaluate the cause of the cracks. The petrographics testing indicated that the cracks were likely due to shrinkage of the concrete during the curing process. This would indicated that the cracks are not likely to deteriorate; however, operations with vibrations may exacerbate the cracking.

List of Observed Floor Penetrations (Potential SVI Locations):

- Electrical conduit (1-3") (i.e., Locations 44, 45, 55, 62, 68, 69, 73, 76, 78, 79).
- Floor drains (3-4") (i.e., Locations 9, 11, 16, 30, 59, 70, 71, 72, 81, 83, 85, 87, 91, 92, 95, 99)
- Trench drains (i.e., Locations 31, 36, 40, 65, 67, 104).
- Sewer Cleanouts and Vents (i.e., Locations 35, 41, 53, 57, 60, 94, 97, 98)
- There was significant floor cracking (< 1/8" to ½") observed (i.e., Locations 25, 27, 29, 37, 39, 47, 50, 54, 56, 61). It should be noted that these readings are a representative sampling of the floor cracks. Due to the number of cracks, not all cracks were sampled.
- Expansion Joint (\sim 1/2") (i.e., Location 52)
- Main water service (6") (i.e., Location 75)
- I-Beam penetrations (i.e., Locations 26, 33, 48, 63). It should be noted that not all I-Beam penetrations were sampled but rather a representative number were sampled.
- Apparent former mounting brackets for equipment (~½") (i.e., Locations 101 & 102)
- Passive Sub-Slab Vent System Pipes (i.e., Locations 34, 42, 74)

<u>Initial Site Recon Meter Readings (Total Readings Collected – 124):</u>

- Total Background Readings Collected = 26
 - O Background of VOCs due to operations ranged from 290 ppb to 950 ppb [Note: Trench Drain and floor drain readings are not included in these readings; however, these ranged from 328 ppb (on a shower floor drain) to 13,500 ppb (in the southern portion of the western trench drain).]
 - o Background of Methane due to operations were 0%
- Total Floor Penetration Readings Collected = 61
 - VOCs readings above background

Location	Description	Background (ppb)	Reading (ppb)
17	Electric Outlet	420	460
25	Floor Crack*	950	1100-1300
27	Floor Crack*	950	1150
29	Floor Crack*	550-650	750

^{*} Reading may be associated with operations in area (maintenance room where oils and other VOCs utilized).

o No methane readings above background

Evaluation of Passive Vent System: Total Readings Collected – 10 (5 Background and 5 Passive Vent Readings)

- Subsequent to the initial site visit, the property owner installed access ports into each of the 5 accessible passive vent systems. LaBella collected additional readings of these. These are identified as locations 128, 130, 132, 134, and 136 on the Instrument Reading Sheet.
- The readings collected from these locations ranged between 269 ppb and 825 ppb with background ranges of 625 ppb and 959 ppb. In general, the readings were below background with the exception of the south-middle passive vent pipe which indicated a reading of 825 ppb compared to a background of 625 ppb. However, the readings did not appear to continue to decrease and therefore could be indicative of VOC readings beneath the floor slab.

FORMER EMERSON STREET LANDFILL SOIL VAPOR INTRUSION PRELIMINARY BUILDING ASSESSMENT AND SITE RECONAISSANCE

Parcel Information:	
Address: 1645 - 1655 Emerson Street	
Owner: Val-Tech Holdings	
Number of Buildings: 1	
Building this Sheet Represents (fill out one for each	building): N/A
Interviewer Information:	
Name: Dan Noll	Date/Time Prepared: 11/22/2010 0800
Consultant Firm: LaBella Associates, P.C.	Phone No.: 585-295-6611
Owner/Interviewee Information:	
Last Name: Gubrelet	First Name: Jerry
Address: 1667 Emerson Street	
Company: Val-Tech Holdings	
Office Phone: 585-647-2300	
Tenant Information (if any):	
Tenant Contact Person: N/A	
Address:	
Company:	
Office Phone:	

SECTION I - Building Construction Information

A.	Site plans available? (e.g., foundation construction, utility locations/chases, etc.): No If yes, can copies be obtained?	
B.	B. Does owner have knowledge that ash or solid waste was removed at time of building construction:	
	If yes, are any documents available?	

C. Building Construction

	Construction Type	Finish Type	Sealed	Square Feet
Basement	No	N/A	N/A	N/A
Crawl Space	No	N/A	N/A	N/A
First Floor	Caisson & Grade Beam	Epoxy - Clean Rm	Epoxy - Clean Rm	N/A
Foundation Walls	None	N/A	N/A	N/A
2 nd Floor	N/A	N/A	N/A	N/A

D.	Any additions to building: If yes, list dates and locations:	0
	If yes, note variations in construction	: None

E. Utility/Floor Penetrations

	Location(s)	Size/Description	
Electric	North End	See Summary	
Gas	North End	See Summary	
Water	North End	See Summary	
Sewer/Wastewater	North End	See Summary	
Sumps	None	See Summary	
Floor/Trench Drains	2 Run Length of Building	See Summary	
Dry Well	None	See Summary	
Oil/Water Separators	None	See Summary	
Cracks in Floor	Yes - see Summary	See Summary	
Expansion Joints	Yes - One southern half of Bldg.	See Summary	
Floating Slab	No	See Summary	
Monitoring Points	None	See Summary	
Scales	Yes, but all above ground	See Summary	
Utility Vaults	Yes, power utility vault	See Summary	
Elevators	No	See Summary	
Other			

F.	Does facility have an on Site septic system?
	If yes, where and size:
G.	Does facility provide pretreatment of wastewater prior to discharge to sanitary sewer? No If yes, What type of pretreatment is conducted:
Н.	Is there a vapor barrier associated with the foundation system?
	If yes, indicate type/material, location, thickness, etc.:
I.	Is there a radon/sub slab soil vapor mitigation system on any portion of the building? 1998 If yes, describe system and date installed:
	If yes, Is the system active or passive?
	If yes, Is system currently operational? Yes
J.	Standing water or wet areas in lower levels?
	If yes, list location and describe:
	If yes how frequent:
K.	Is the building insulated? Yes
	If yes, location(s) and type? Unknown
L.	Are there any settlement issues with the building?
	If yes, describe: No settlment (heaving), but significant cracking
M.	Are there any cracks in floor slabs (1 st floor or basement)? Throughout Bldg.
	If yes, location(s), width, etc.?
N.	Are there any elevators in the building?
_	If yes, describe construction and condition of pit (poured concrete, cinder block, etc.)
Co	mments:

SECTION II – Heating, Ventilation and Air Conditioning Information

Areas Heated

A. Type of heating system(s) used in this building: For each heat system/unit, provide the following:

Unit

Location

Unit Type

Forced Hot Air - Rest Electric baseboard - Office

Pressurization

(neg. vs. positive)

Air Communication

with other areas (duct

work, doors, etc.)

Pad Mounted	5 units for Mfg.	each 40 Ton	Positive	Separate
Pad Mounted	2 units for Ofc	21 Ton Total	Positive	Separate
el used:	atural Gas			
				
n one list locat	ions:			
			(0)	
C. Domestic hot water tank fueled by: In utility room - elect (2)				
tioning: Cer	ntral Air			
building unde	r positive pressur	e based on HV	AC set up; however,	no
documentation on this (e.g., air balancing report).				
				
	Pad Mounted el used: Non one list locate hot water tank tioning: Cer building unde	n one list locations: hot water tank fueled by: In utitioning: Central Air building under positive pressur	Pad Mounted 2 units for Ofc 21 Ton Total el used: Natural Gas n one list locations: hot water tank fueled by: In utility room - elect tioning: Central Air building under positive pressure based on HVA	Pad Mounted 2 units for Ofc 21 Ton Total Positive el used: Vatural Gas n one list locations: hot water tank fueled by: In utility room - elect (2) tioning: Central Air building under positive pressure based on HVAC set up; however,

Unit Size

SECTION III – Indoor Air Quality Influence Factors

A. Is there a garage, service area or manufacturing area in building?
If yes, list all that apply: Only used as storage
 Does the garage, service or manufacturing areas have separate heating unit/system? Are petroleum-powered machines or vehicles used or stored within the garage, service area or manufacturing area of building? (e.g., forklifts, vehicle fleet, lawnmower, etc.)
If yes, specify:
3 Propane Fork Trucks, also have one Electric Scissor Lift
B. Are there any current or former USTs, ASTs or Fueling Facilities on the property? No If yes, specify location:
If yes, specify location.
C. Are there any current or former hydraulic lifts at the property? No If yes, locations and note if underground or above ground:
D. Are there any current or former petroleum or chemical spills at the Site?
If yes, specify location, quantity, material and date:
E. Are there any current or former groundwater monitoring wells at the Site? No If yes, specify location and accessibility:
F. Has the building ever had a fire? No If yes, When:
G. Is there a maintenance area? Yes
If yes, Where: East side of building

H. Are there any parts cleaners used at the site?
If yes, list location(s) and solvent types: Detergent Based in Tool Room
I. Are there any drum and/or chemical storage areas? Yes
If yes, list location(s) and materials: Hydraulic/lube & waste oil stored in Utility Room
J. Are cleaning products used routinely? Yes
If yes, When & Where: Mold cleaner, floor cleaner
K. Has painting/staining been done in the last 6 months?
If yes, When & Where:
L. Is there new carpet, drapes or other textiles within installed within the last year?
If yes, Where & When:
M. Are there air fresheners in office spaces or bathrooms?
If yes, Where & Type:
N. Are there exhaust fans (e.g., break rooms, bathrooms, or other locations)?
If yes, where vented and how often do they run:
O. Has there been a pesticide application on the grounds?
If yes, When & Type: But have contract
P. Is smoking allowed on the property?
If yes, is it allowed within buildings and where?
Q. Are there odors in the building?
If yes, please describe: But only related to operations
R. Are solvents used within the building? Yes (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, etc.)
Use alcohol in Clean Room, use Acetone If yes, what types of solvents are used:

S. Is groundwater extracted for any purpose (e.g. cooling water, geothermal, etc.)?	╛
If yes, how many extraction wells, what depths and what is the rate of extraction:	_
T. Are there any air handling units in the building? Yes	
If yes, locations, sizes, intakes & exhaust:	_
U. Are there any doors (overhead/bay or others) that are routinely open?	
If yes, note locations, sizes, and approximate times open: Open as needed. Southern door open in summer 10-15 times per day.	
V. Do any of the building occupants regularly use a dry cleaning service? Yes, week	
Based on Information obtained list all potential soil gas entry points and there sizes (e.g., cracks in floor, void space, piping, utility ports, sumps, elevator pits, lifts, drains, etc.).	
	_
	_
	_
	_
	—
[Note: See page 12 & 13 for additional information to be collected on each potential soil gas entry point (i.e., photographs, PID and landfill gas measurements, etc.]	ı
Comments:	
	—
	_

Section IV – Occupancy/General Use

Location Use	Occupied (list hours/shifts)	Number of Employees (Full/Part-time)	Approx. Sq. Ft.	Level (basement, 1 st Floor, 2 nd Floor, etc.)	Brief Summary of Business/ Operations in Area (include additional sheets as necessary)
Office	Full Time M-F	30	~7,000	1st Flr	General Office
Manufacturing/ Production	Full Time - 3 Shifts	70	~70,000	1st Flr	Injection molding
Warehouse/ Storage	n/a	n/a	23,000	1st Flr	Storage of molded parts
Garage	n/a	n/a	n/a	1st Flr	Used for Storage
Maintenance	n/a	n/a	7,000	1st Flr	Maintenance of equipment
Conference/ Break Rooms	n/a	n/a	n/a	1st Flr	n/a

Comments:
For Manufacturing Area - About 30 people on 1st shift, 20 people on 2nd shift and 20 people on 3rd shift.

Instrument Readings:

Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments
Units	ppb	%	%	%	ppm	ppm	Description & Comments
1	290	0.0	0.1	20.9	0	0	Background Conference Room
2	280	0.0	0.1	20.9	0	0	Electrical Outlet (Bckgrd = #1)
3	255	0.0	0.1	20.9	0	0	Electrical Outlet (Bckgrd = #1)
4	260	0.0	0.1	20.9	0	0	Electrical Outlet (Bckgrd = #1)
5	225	0.0	0.0	20.9	0	0	Steel Pipe Penetration Through Wall in Closet (Bckgrd = #1)
6	305	0.0	0.0	20.9	0	0	Background Storage Office
7	305	0.0	0.0	20.9	0	0	Printer Room Background
8	335	0.0	0.0	20.9	0	0	Background
9	700	0.0	0.0	20.9	0	0	Floor Drain Near Toilet (Bckgrd = #8)
10	455	0.0	0.0	20.9	0	0	Background
11	455	0.0	0.0	20.9	0	0	Floor Drain - Women's Bathroom (Bckgrd = #10)
12	1050	0.0	0.0	20.9	0	0	Bathroom Air Freshner
13	585	0.0	0.0	20.9	0	0	Background
14	425	0.0	0.0	20.9	0	0	Pipe Penetration - Under Sink (Bckgrd = #13)
15	460	0.0	0.0	20.9	0	0	Background - Exhaust Fan
16	328	0.0	0.0	20.9	0	0	Shower Drain (Bckgrd = #15)
17	460	0.0	0.0	20.9	0	0	Electrical Outlet (Bckgrd = #18)
18	420	0.0	0.0	20.9	0	0	Background
19	418	0.0	0.0	20.9	0	0	Sink in Bathroom Penetration (Bckgrd = #20)
20	430	0.0	0.0	20.9	0	0	Background

Location	VOCs	CH4	CO2	O2	СО	H2S	Description & Comments
Units	ppb	%	%	%	ppm	ppm	Description & Comments
21	385	0.0	0.0	20.9	0	0	Background - Office Space
22	435	0.0	0.0	20.9	0	0	Background - QC Room
23	254	0.0	0.0	20.9	0	0	Cable Outlet (Bckgrd = #22)
24	950	0.0	0.0	20.9	0	0	Background - Tool Room
25	1100 -1300	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #24)
26	700	0.0	0.0	20.9	0	0	I-Beam (Bckgrd = #24)
27	1150	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #24)
28	550 - 650	0.0	0.0	20.9	0	0	Background - Manufacture Area
29	750	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #28)
30	970	0.0	0.0	20.9	0	0	Floor Drain (Bckgrd = #28)
31	570	0.0	0.0	20.9	0	0	Trench Floor Drain (Bckgrd = #32)
32	700 - 750	0.0	0.0	20.9	0	0	Background
33	640	0.0	0.0	20.9	0	0	I-Beam at Corner (Bckgrd = #32)
34	655	0.0	0.0	20.9	0	0	Vent Pipe Base (Bckgrd = #32)
35	555	0.0	0.0	20.9	0	0	Floor Penetration - Sewer Cleanout (Bckgrd = #32)
36	13,500	0.0	0.0	20.9	0	0	Trench Floor Drain (Bckgrd = #32)
37	570	0.0	0.0	20.9	0	0	Pipe Penetration - Electric (Bckgrd = #28)
38	550	0.0	0.0	20.9	0	0	Floor Crack - Pre Vacuum (Bckgrd = #28)
39	600	0.0	0.0	20.9	0	0	Crack - Dust (Bckgrd = #28)
40	1800	0.0	0.0	20.9	0	0	Trench Floor Drain (Bckgrd = #28)

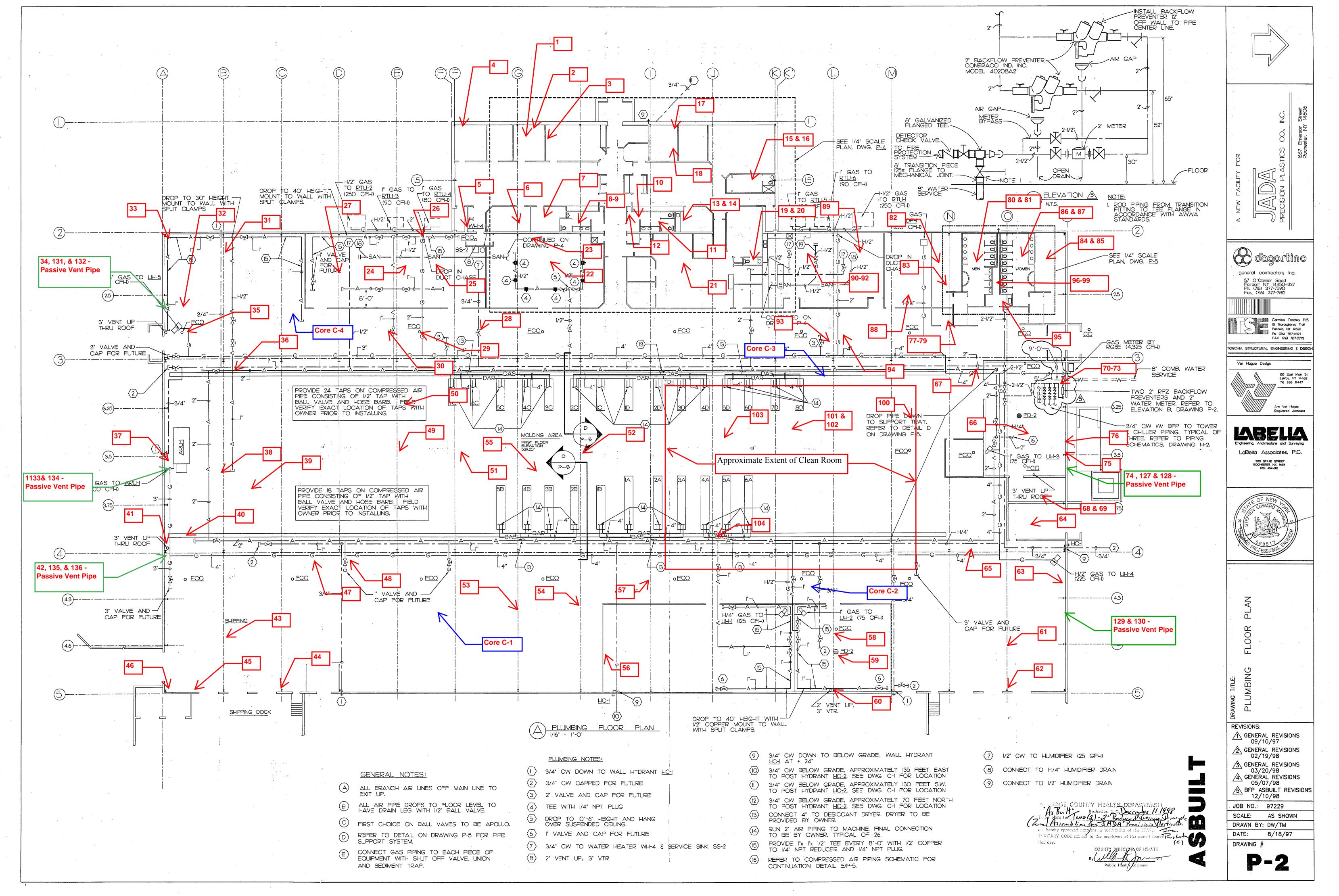
Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments
Units	ppb	%	%	%	ppm	ppm	Description & Comments
41	550	0.0	0.0	20.9	0	0	Vertical Black Pipe (Bckgrd = #28)
42	500	0.0	0.0	20.9	0	0	PVC Pipe Vent System (Bckgrd = #28)
43	550	0.0	0.0	20.9	0	0	Loading Deck Background Area
44	550	0.0	0.0	20.9	0	0	Electrical Pipes from Floor (Bckgrd = #43)
45	550	0.0	0.0	20.9	0	0	Inside Electrical Pipe (Bckgrd = #43)
46	550	0.0	0.0	20.9	0	0	Pipe from Bottom of Wall Electric (Bckgrd = #43)
47	470	0.0	0.0	20.9	0	0	Crack in Floor (Bckgrd = #43)
48	550	0.0	0.0	20.9	0	0	I-Beam on Caisson (Bckgrd = #43)
49	524	0.0	0.0	20.9	0	0	Steel Plate (Bckgrd = #28)
50	537	0.0	0.0	20.9	0	0	Floor Caulk (Bckgrd = #28)
51	550	0.0	0.0	20.9	0	0	Steel Plate (Bckgrd = #28)
52	550	0.0	0.0	20.9	0	0	Expansion Joint (Bckgrd = #28)
53	550	0.0	0.0	20.9	0	0	Drain or Cleanout (Bckgrd = #43)
54	550	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #43)
55	550	0.0	0.0	20.9	0	0	Electrical Pipe from Floor (Bckgrd = #43)
56	550	0.0	0.0	20.9	0	0	Floor Crack (Bckgrd = #43)
57	550	0.0	0.0	20.9	0	0	Clean Out (Bckgrd = #43)
58	770	0.0	0.0	20.9	0	0	Background - Maintenance Area
59	1200	0.0	0.0	20.9	0	0	Floor Drain (Bckgrd = #58)
60	770	0.0	0.0	20.9	0	0	Black Vertical Vent Pipe (Bckgrd = #58)

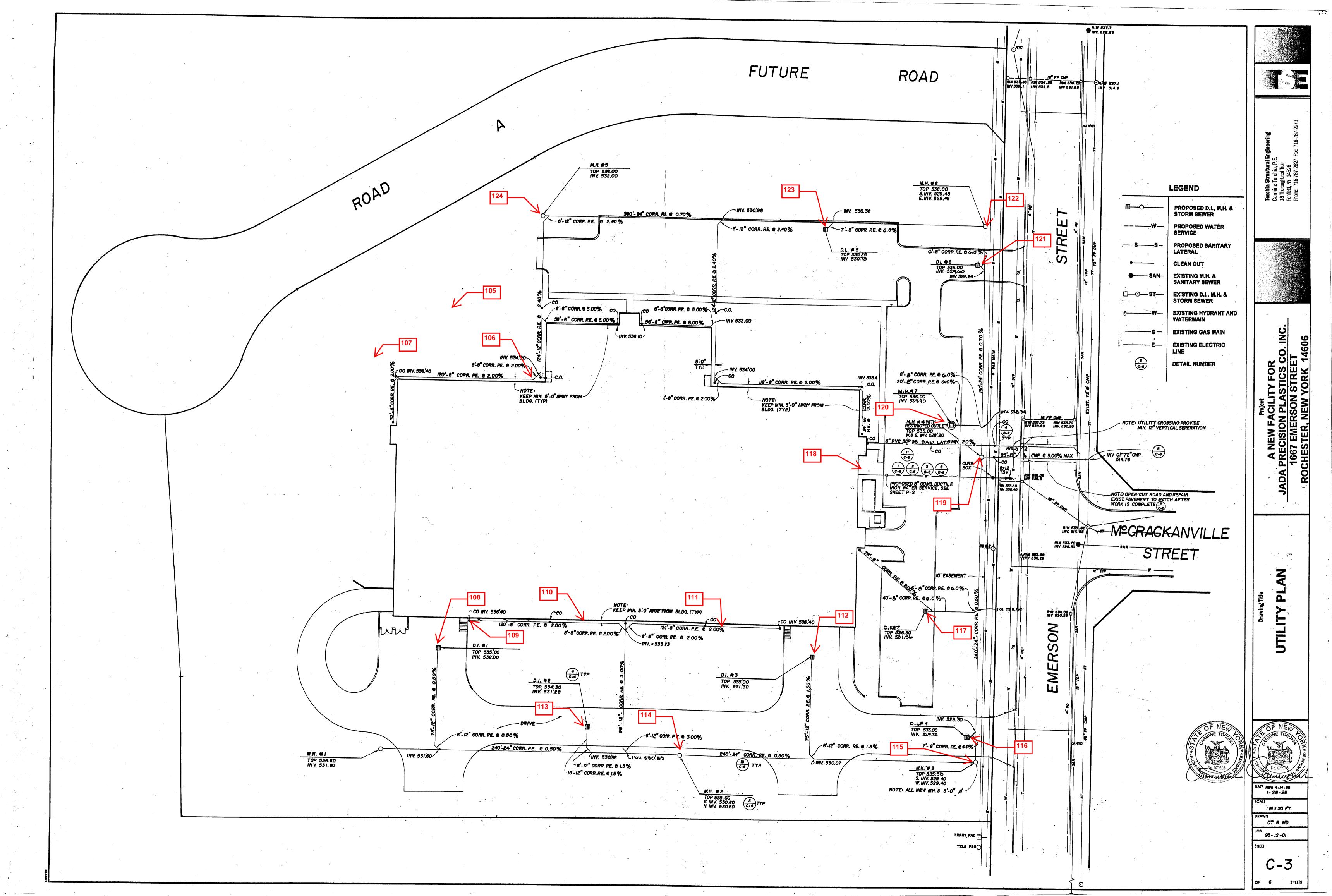
Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments
Units	ppb	%	%	%	ppm	ppm	Description & Comments
61	740	0.0	0.0	20.9	0	0	Floor Crack - Loading Deck (Bckgrd = #58)
62	740	0.0	0.0	20.9	0	0	Electrical Conduit through Floor (Bckgrd = #58)
63	740	0.0	0.0	20.9	0	0	I-Beam (Bckgrd = #58)
64	580	0.0	0.0	20.9	0	0	Background - Garage Area
65	660	0.0	0.0	20.9	0	0	Trench - Floor (Bckgrd = #58)
66	670	0.0	0.0	20.9	0	0	Background - Utility Room
67	600	0.0	0.0	20.9	0	0	Trench - Floor (Bckgrd = #66)
68	600	0.0	0.0	20.9	0	0	Electric Pipe (Bckgrd = #66)
69	600	0.0	0.0	20.9	0	0	Electric Pipe (Bckgrd = #66)
70	1081	0.0	0.0	20.9	0	0	Floor Drain East (Bckgrd = #66)
71	750	0.0	0.0	20.9	0	0	Floor Drain Center (Bckgrd = #66)
72	675	0.0	0.0	20.9	0	0	Floor Drain West (Bckgrd = #66)
73	630	0.0	0.0	20.9	0	0	Conduit Pipe (Bckgrd = #66)
74	629	0.0	0.0	20.9	0	0	Vent Pipe Plastic PVC 4" (Bckgrd = #66)
75	608	0.0	0.0	20.9	0	0	Watermain (Bckgrd = #66)
76	667	0.0	0.0	20.9	0	0	Electrical Pipe (Bckgrd = #66)
77	420	0.0	0.0	20.9	0	0	Background
78	420	0.0	0.0	20.9	0	0	Plastic Pipes - Top (Bckgrd = #77)
79	420	0.0	0.0	20.9	0	0	Plastic Pipes - Base (Bckgrd = #77)
80	445	0.0	0.0	20.9	0	0	Background - Men's Bathroom

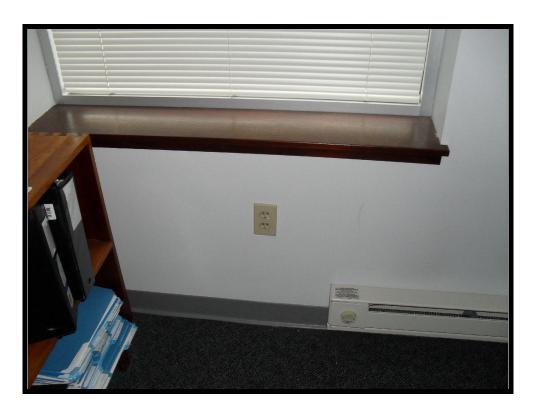
1645-1655 Emerson Street

Instrument Readings (Continued):

Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments
Units	ppb	%	%	%	ppm	ppm	Description & Comments
81	610	0.0	0.0	20.9	0	0	Floor Drain (Bckgrd = #80)
82	410	0.0	0.0	20.9	0	0	Background - Locker Room
83	517	0.0	0.0	20.9	0	0	Floor Drain - Locker Room (Bckgrd = #82)
84	500	0.0	0.0	20.9	0	0	Background - Women's Locker Room
85	630	0.0	0.0	20.9	0	0	Floor Drain - Women's Locker Room (Bckgrd = #84)
86	505	0.0	0.0	20.9	0	0	Background - Women's Bathroom
87	583	0.0	0.0	20.9	0	0	Floor Drain - Women's Bathroom (Bckgrd = #86)
88	420	0.0	0.0	20.9	0	0	Background Lab
89	350 - 400	0.0	0.0	20.9	0	0	Lunchroom Background
90	400	0.0	0.0	20.9	0	0	Lunchroom Sink (Bckgrd = #89)
91	409	0.0	0.0	20.9	0	0	Lunchroom Floor Drain South (Bckgrd = #89)
92	409	0.0	0.0	20.9	0	0	Lunchroom Floor Drain North (Bckgrd = #89)
93	520	0.0	0.0	20.9	0	0	Manufacturing Area - Background
94	541	0.0	0.0	20.9	0	0	Cleanout (Bckgrd = #93)
95	670	0.0	0.0	20.9	0	0	Janitor Closet Floor Drain (Bckgrd = #96)
96	370	0.0	0.0	20.9	0	0	Background - Janitor Closet
97	294	0.0	0.0	20.9	0	0	Pipe Penetration (Bckgrd = #96)
98	377	0.0	0.0	20.9	0	0	Sewer Vent (Bckgrd = #96)
99	348	0.0	0.0	20.9	0	0	Drain (Bckgrd = #96)
100	470	0.0	0.0	20.9	0	0	Background - Clean Room


1645-1655 Emerson Street

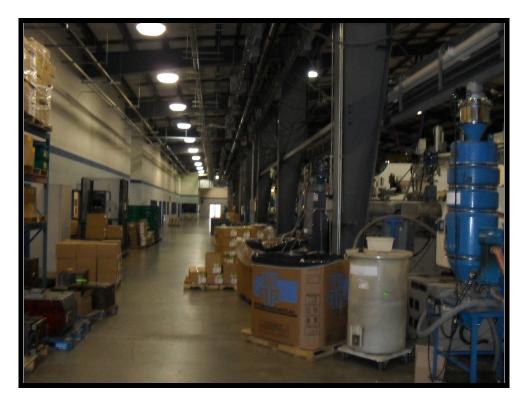

Instrument Readings (Continued):


Location	VOCs	CH4	CO2	O2	CO	H2S	Description & Comments
Units	ppb	%	%	%	ppm	ppm	Description & Comments
101	514	0.0	0.0	21.0	0	0	Former Mounting Bolt Penetration in Floor (Bckgrd = #100)
102	567	0.0	0.0	20.9	0	0	Former Mounting Bolt Penetration in Floor (Bckgrd = #100)
103	693	0.0	0.0	20.9	0	0	Background in Syringe Molding Area of Clean Room
104	830	0.0	0.0	21.1	0	0	Trench Drain Passing Through Clean Room (Bckgrd = #103)
105	130	0.0	0.0	20.9	0	0	Outside Air (Background)
106	120	0.0	0.0	20.9	0	0	Roof Drain
107	108	0.0	0.0	20.9	0	0	Sewer Clean Out
108	88	0.0	0.0	20.9	0	0	Catch Basin
109	87	0.0	0.0	20.9	0	0	Sewer Clean Out
110	93	0.0	0.0	20.9	0	0	Ground Hog Hole
111	97	0.0	0.0	20.9	0	0	Ground Hog Hole
112	84	0.0	0.1	20.9	0	0	Storm Sewer Catch Basin
113	74	0.0	0.1	20.9	0	0	Catch Basin
114	78	0.0	0.0	20.9	0	0	Storm Sewer Manhole
115	65	0.0	0.0	20.9	0	0	Storm Sewer Manhole
116	63	0.0	0.0	20.9	0	0	Catch Basin
117	62	0.0	0.0	20.9	0	0	Catch Basin
118	64	0.0	0.0	20.9	0	0	Gas Service
119	63	0.0	0.0	20.9	0	0	Manhole
120	63	0.0	0.0	20.9	0	0	Catch Basin

Location	VOCs	CH4	CO2	O2	СО	H2S	D
Units	ppb	%	%	%	ppm	ppm	Description & Comments
121	58	0.0	0.0	20.9	0	0	Catch Basin
122	57	0.0	0.0	20.9	0	0	Manhole
123	60	0.0	0.0	20.9	0	0	Catch Basin
124	58	0.0	0.0	20.9	0	0	Manhole
125	Reading	s Collec	ted on 11	/24/201	0 After (Owner Pr	ovided Sampling Ports in Passive Vent Pipes
126							1 5
127	872	0.0	0.0	21.0	0	0	Background for Passive Vent Pipe - North Wall Middle
128	535	4.1	0.0	16.6	0	0	Passive Vent Pipe - North Wall Middle
129	959	0.0	0.0	21.0	0	0	Background for Passive Vent Pipe - North Wall East
130	269	1.4	0.0	19.8	0	0	Passive Vent Pipe - North Wall East
131	802	0.0	0.1	20.6	9	0	Background for Passive Vent Pipe - South Wall West
132	504	0.0	2.6	18.0	0	0	Passive Vent Pipe - South Wall West
133	625	0.0	0.0	20.8	9	0	Background for Passive Vent Pipe - South Wall Middle
134	825	0.0	6.1	14.1	0	0	Passive Vent Pipe - South Wall Middle
135	756	0.0	0.0	20.8	6	0	Background for Passive Vent Pipe - South Wall East
136	567	4.4	0.0	16.0	0	0	Passive Vent Pipe - South Wall East
137							
138							
139							
140			_		_	_	

Location Units	VOCs ppb	CH4 %	CO2	O2 %	CO ppm	H2S ppm	Description & Comments
141			amayad				
142	Readin	gs Cone	sted on 1	2/31/20	10 After	Cores Re	emoved
143	310	0.0	0.0	20.9	6	0	Background at Core C-1
144	438	0.0	0.0	20.1	6	0	Core C-1
145	240	0.0	0.0	20.9	0	0	Background at Core C-2
146	452	0.0	0.0	20.7	0	0	Core C-2
147	185	0.0	0.0	20.8	5	0	Background at Core C-3
148	320	0.0	0.0	19.9	4	0	Core C-3
149	225	0.0	0.0	20.8	3	0	Background at Core C-4
150	308	0.0	0.0	18.6	2	0	Core C-4
151							
152							
153							
154							
155							
156							
157							
158							
159							
160							

Location #17 – Electrical outlet


Location #25 – Floor crack

Location #27 – Floor crack

Location #29 – Floor crack

General interior view

Engineering Architecture Environmental Planning

300 State Street, Suite 201, Rochester, NY 14614

March 16, 2011

Phone 585.454.6110 Fax 585.454.3066 www.labellapc.com

Mr. Joseph Biandolillo City of Rochester DES 30 Church Street Rochester, New York 14604

Re:

Val-Tech Holdings, Inc. at

1645-1685 Emerson Street, Rochester, NY 14606

LaBella Project No. 210173.04

Dear Mr. Biandolillo:

The concrete floor slab of the building located at 1645-1685 Emerson Street exhibits a significant number of large cracks. We visited the site on November 24, 2010 to observe the width, extent, and pattern of cracking to determine the source and potential for cracks to increase in number and/or size and to cause settlement or other movement of the slab.

The building was constructed in 1998 and has been used as an industrial facility ever since. The concrete slab is a one-way structural (reinforced) slab supported by a grid of concrete grade beams and drilled shafts ("caissons"). The drilled shafts are founded on rock.

LaBella Associates, P.C. contracted with Quality Inspection Services, Inc. of Rochester, NY to obtain four 4 inch nominal diameter cores through the slab at specific cracks in each quadrant of the building. The cores were obtained on December 31, 2010. Two of the cores were then sent to CTL Engineering, Inc. for petrographic laboratory testing. Findings from coring and testing of the slab are listed below.

Findings

- The cracks range from hairline to ½" wide and typically travel in a random pattern
- The top of a few of the cracks were filled with an epoxy resin
- Very few control joints were observed in the slab
- The cracks in the four cores extend the full depth of the slab
- The aperture of the cracks is large at the top surface of the slab and typically narrow as they travel toward the bottom of the slab
- Petrographic tests reveal that the overall quality of the concrete is fair due to placement with high water content. The water to cementitious material ratio is estimated to have been 0.50 to 0.56 at the time of placement. A maximum water/cement ratio of 0.45 is generally specified for interior slabs.
- The maximum size of coarse aggregate is ½ inch. This is considered small aggregate for the type of placement.
- Cracking in the cores propagated around the coarse aggregate which is consistent with drying shrinkage.
- The cement paste is soft and porous with carbonation up to 4 5/8" deep from the top surface of the core / slab.

Conclusions

Based on our observations of the slab and cracks in place, slab cores, and the petrographic analysis test results, the cracks appear to be caused by drying shrinkage due to high water content in the concrete mix used for slab placement. This type of crack typically occurs shortly after placement (after initial hardening of the concrete)

Mr. Joseph Biandolillo City of Rochester DES March 16, 2011 Page 2

and "grows" quickly as water evaporates from the slab. The cracks are considered non-moving cracks since they are not related to expansion and contraction of the concrete due to thermal changes in the building.

The existing cracks will not increase in number or size due to drying shrinkage. However, it is possible for new cracks to form due to other mechanisms, such as, overloading or overstressing of the slab, deterioration of reinforcement which could reduce the capacity of the slab, excessive vibration from slab mounted equipment, etc.

Since the slab is a reinforced structural slab versus a slab-on-grade, it is unlikely that differential settlement or shearing/thrusting of the slab will occur. However, it was noted in the petrographic analysis report that carbonation of the concrete extends 4 5/8" into the slab from the top surface. Carbonation is one of the main reasons for corrosion of reinforcement in concrete. Carbonation affects the alkalinity of the concrete reducing the passivating layer around the reinforcement which protects it from oxygen and water. Localized areas of the slab could experience horizontal or vertical movement if a group of reinforcing bars corroded through at a crack. This would most likely only happen if a crack were subject to standing water for an extended period of time. Based on the current operations in the building, the potential for this movement is low.

Epoxy injection of the existing cracks is possible and is recommended as the best method to fill the cracks to the greatest depth. Injection material must be of a proper viscosity to fill the crack but not leak through since the cracks extend full depth of the slab. Filling the cracks will also reduce the potential for continued carbonation at the cracks. However, due to the number of cracks and the fact that many of the cracks extend under existing equipment and storage racks used for the building owner's manufacturing operation, we believe this option is not feasible. We recommend implementing other measures that would have less impact on building operations.

While other measures are being explored, we recommend installing a vibration monitor near equipment with the highest impact on the slab to confirm whether the intensity of the vibrations is in a range that could cause future cracking or not.

Please contact me directly at 585-295-6617 or smatzat@labellapc.com with questions or comments

Sincerely,

LABELLA ASSOCIATES, P.C.

Susan L. Matzat, PE, SECB, LEED AP

SWAN L Mathat, P.E.

Sr. Structural Engineer

SLM/lk

Attachment:

Copy of Petrographic Report of Concrete Slab Cores

cc:

Daniel Noll, P.E.; LaBella Associates, PC