

Engineering Architecture Environmental

Planning

Property-Specific Soil Vapor Intrusion Investigation Report: 1770 Emerson Street

Former Emerson Street Landfill NYSDEC Site #828023

Location:

Former Emerson Street Landfill 1770 Emerson Street Rochester, New York

Prepared for:

City of Rochester Division of Environmental Quality Room 300-B Rochester, New York 14614

LaBella Project No. 210173

July 2017

Table of Contents

I.	Executive Summary	i
1.0	Introduction	1
2.0	Former Emerson Street Landfill Description and History	1
3.0	Previous Investigations Related to Soil Vapor Intrusion	3
4.0	Objectives	5
5.0	Standards, Criteria and Guidelines	5
6.0	Sampling Procedures	6
7.0	First Round Sampling Results	7
8.0	Second Round Sampling Results	8
9.0	Conclusions	9

Tables

Table 1 - Soil Vapor Intrusion Testing Results

Figures

Figure 1 - Former Emerson Street Landfill Project Map Figure 2 – Soil Vapor Intrusion Testing Results Figure 3 – Sub-Slab Soil Vapor Point Details

Appendices

Appendix 1 – Laboratory Reports Appendix 2 – Data Usability Summary Reports Appendix 3 – Field Logs

Appendix 4– Preliminary Building Assessment and Site Reconnaissance

Appendix 5– Photograph Log

I. Executive Summary

1770 Emerson Street ("the Site") is located on the Former Emerson Street Landfill (FESL) which operated as a municipal landfill by the City of Rochester ("the City") from sometime between the 1940s and 1951 until 1971. Based on an initial assessment of all buildings across the FESL conducted from 2009-2011 by LaBella Associates D.P.C. ("LaBella") on behalf of the City, the Site building was recommended for soil vapor intrusion (SVI) testing. Subsequently, LaBella conducted SVI testing at the Site on behalf of the City to evaluate the presence of SVI due to the FESL. This report documents the SVI testing completed and presents the findings and conclusions of the testing.

Summary of Testing

The initial SVI testing was completed on March 21, 2016 and consisted of the collection of three (3) subslab samples with collocated indoor air samples, and one (1) outdoor air sample to evaluate background conditions. The samples were collected over an approximate 6-hour timeframe and analyzed for a select list of volatile organic compounds (VOCs) known to be associated with the FESL.

The testing was completed in accordance with a New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) approved *Soil Vapor Intrusion Investigation Work Plan: Phase II: Parcel Specific Investigation* dated January 2016 and the *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006 and subsequent updates dated September 2013 and August 2015 ("NYSDOH Guidance"). A comparison of the first round of samples to the NYSDEC Guidance decision matrices required that actions be taken to identify sources and reduce exposures in the automotive repair portion of the building. Subsequently, VOC-containing products were removed from the automotive repair portion of the building and the indoor air was resampled. The compounds detected in the first round that warranted further action were not detected in indoor air during the second round of sampling indicating the compounds were associated with an indoor air source (i.e., automotive repair operations).

It should be noted the NYSDOH Guidance Decision Matrices were updated in May 2017. A comparison of detected compounds from the first round of sampling to the updated decision matrices changed the required actions for two (2) compounds (cis-1,2-dichloroethene and vinyl chloride) from "*take reasonable and practical actions to identify source(s) and reduce exposure*" to "*identify sources and resample or mitigate*". Although the updated decision matrices changed the required action for cis-1,2-dichloroethene and vinyl chloride, these two (2) compounds were not detected in indoor air after removing VOC-containing products and resampling; as such, the detection of these compounds was determined to be due to an indoor air source.

Conclusions and Recommendations

The indoor air sampling conducted after removing VOC-containing products from the automotive repair portion of the building did not identify VOCs at levels requiring further action; as such, the VOCs detected during the first round of sampling appear to be due to an indoor air source and not FESL-related. Based on the assessments completed to date, no further action related to SVI associated with the FESL is warranted at the Site.

 - i Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street
 Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173

1.0 Introduction

This Property-Specific Sol Vapor Intrusion Investigation report is for the property located at 1770 Emerson Street, City of Rochester, Monroe County, New York ("the Site"). The Site is located within the Former Emerson Street Landfill (FESL) which operated as a municipal landfill by the City of Rochester ("the City") from the sometime between the 1930s and 1951 until 1971. The City entered into an Orderon-Consent with the New York State Department of Environmental Conservation (NYSDEC) in August 2009 which requires an evaluation of soil vapor intrusion (SVI) due to FESL-related releases. The Orderon-Consent also requires additional remedial investigations, remedial measures, and other mitigation and corrective actions associated with the FESL.

An initial SVI assessment consisting of building inventory and field screening of indoor air was conducted at buildings across the FESL by LaBella Associates, D.P.C. ("LaBella") on behalf of the City from 2009-2011. The results of the initial SVI assessment were summarized in a report titled *Soil Vapor Intrusion Assessment Report: Data Review, Site Screening and Site Prioritization* dated June 2011 (hereinafter referred to as the "SVI Assessment Report"). The initial SVI assessment ranked buildings on the FESL for likelihood for SVI-related issues due to the FESL. The Preliminary Building Assessment and Site Reconnaissance conducted for the Site is included as Appendix 4. The NYSDEC and New York State Department of Health (NYSDOH) provided comments to this report on May 24, 2013.

Based on the initial SVI assessment, a Work Plan titled *Soil Vapor Intrusion Investigation Work Plan: Phase II: Parcel Specific Investigation* (hereinafter referred to as the "SVI Work Plan") was submitted to the NYSDEC and NYSDOH in April 2013. The SVI Work Plan proposed SVI investigations at properties that were ranked at greatest risk for SVI during the initial assessment. The NYSDEC and NYSDOH provided comments to the SVI Work Plan on April 23, 2015 and the SVI Work Plan was resubmitted in January 2016 to address NYSDEC and NYSDOH comments. SVI investigations were completed beginning in March 2016.

The 1770 Emerson Street property has an approximate 12,000 square foot building that serves as office and automobile repair shop ("The Little Speed Shop"), and a coffee supply and service company. This property was recommended for SVI testing (sub-slab/indoor air). This report details the testing completed and the results.

2.0 Former Emerson Street Landfill Description and History

The FESL consists of approximately 250-acres of land comprised of 45 individual parcels, seven (7) of which are owned by the City. The remaining 38 parcels are owned by 25 private owners. The FESL is predominantly occupied by industrial and commercial properties (15 and 20, respectively based on use codes). In addition, City use codes indicate 5 parcels as vacant land, one (1) parcel as unknown (McCrackenville Street) and four (4) parcels are listed as community/public service (one of which is a school, Edison Tech). The surrounding area also contains industrial and commercial properties; however, residential properties are also located to the northeast. Figure 1 provides a project locus map that indicates the area of the FESL.

- 1 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173 Prior to FESL operation, the area was primarily vacant and relatively flat lying, with a wetland located in the north-central portion of the site. As a result of landfilling activities, the FESL has been elevated approximately 15+ feet above the surrounding area. An industrial park with existing buildings constructed as early as 1971, presently occupies most of the FESL, including larger facilities and various smaller industrial/commercial facilities, as well as several undeveloped parcels and undeveloped land on otherwise developed parcels.

The FESL was operated by the City beginning between sometime in the 1940's and 1951 to 1971 as a landfill. The landfill was used to dispose of ash derived from the incineration of municipal waste at the City's incinerators. Ash fill and construction and demolition debris were the primary waste materials placed in the landfill. Information pertaining to the incinerator operational status and efficiency indicates that the incinerated materials were completely combusted until approximately 1964 when the incinerator efficiency decreased. Landfilling began south of Emerson Street and gradually expanded northward and eastward to include areas between Emerson Street and Lexington Avenue and east of Colfax Street and south of Emerson Street. Open burning of refuse reportedly occurred in the late 1960s and early 1970s due to operational problems with the incinerators. Fill during this time frame was reportedly being placed north of Emerson Street. In May of 1971 the City's incinerators were shut down; however un-incinerated municipal refuse continued to be placed north of Emerson Street until August of 1971. In August 1971, refuse disposal was ceased at FESL and disposal shifted to a different county landfill. In 1971 the landfill was officially closed and a contract for the closure of the eastern half of the landfill specified 2 feet of cover material (preferred to be a sandy loam) to be placed and compacted to 30% in 1 foot lifts. In September 1971 a contract was awarded for the closure of the western portion of the landfill. Since closure, the majority of the Site has been developed for commercial and industrial uses in addition to one high school.

The general types of wastes encountered in investigations at the FESL site include the following:

- Municipal Incinerator Ash generally consisting of ash, cinders, charred refuse, glass and metal slag. Most ash observed in site investigations appears to be fly ash and bottom ash (clinker) from the municipal solid waste incinerators. This generally consists of soil and rock fill with traces of plastic, metal, wood, concrete, bricks, tiles, and asphalt. Construction and demolition debris observed in past investigations generally fits the definition of construction demolition debris contained in NYSDEC's Part 360. Construction demolition debris fill is common in areas adjacent to current and former roadways on site, and particularly in the lobe of fill south of Emerson Street and east of Colfax Street.
- Soil and Municipal Refuse This material generally consists of silty sand cover material and disposed, un-incinerated municipal refuse.
- Low-activity Radioactive Waste This material generally consisted of a sludge-like waste material associated with glass lenses. The sludge was found to contain low levels of radioactive thorium. This material was primarily encountered in the southwest portion of the FESL and was believed to be associated with incinerator ash and refuse fills. This material was removed by Sevenson Environmental Services on behalf of the City of Rochester (refer to Section 3.0 Previous Investigations).
- The majority of the existing landfill has a soil cover. Cover ranges in thickness from 0 ft. up to approximately 6 ft. Cover materials generally consist of topsoil with grass, gravel, asphalt, or glacial till-derived sandy silt.

- 2 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173 A majority of the Site has been delisted; however, three (3) parcels (1660,1740, and 1700 Emerson Street (formerly 1655 Lexington Avenue) comprising approximately sixteen (16) acres are currently listed as a Class "3" site (No. 828023) on the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites (IHWDS). A "3" classification indicates a site "at which contamination does not presently constitute significant threat to public health or the environment." The most recent delisting occurred when LaBella submitted a Delisting Petition on December 9th, 2014, for the parcel currently addressed as1655 Lexington Avenue (formerly 1635 Lexington Avenue and a portion of former 1655 Lexington Avenue) to delist approximately 13.3 acres of land from the NYSDEC Registry of IHWDS. NYSDEC approved this delisting on March 19th, 2015, and the newly delisted land was combined into one parcel with address 1655 Lexington Avenue. The remaining portion of former 1655 Lexington Avenue was renamed 1700 Emerson Street.

3.0 Previous Investigations Related to Soil Vapor Intrusion

A significant number of investigations have been previously conducted at the Site. This section presents pertinent and significant findings in relation to SVI from select previous investigations; a more detailed review can be obtained from each individual report.

Former Emerson Street Landfill Sub-Slab Ventilation Guidance (SSVG) Document Update 2013 dated October 2013:

This document was an update of the 2007 version which evaluated and mapped historical information regarding the variable composition of the landfill and analytical data at specific locations. The 2013 document provided an update on SSVG based on additional SVI investigations at the FESL. In 2010, the City of Rochester began a SVI investigation to systematically assess potential vapor intrusion issues at the FESL. This work included detailed assessments of each existing building on the FESL, installation of additional monitoring wells, and sampling of these new wells and several existing wells, catalogue and review of existing historical data regarding the FESL, and review of stereoscopic historic aerial photographs. The results were documented in a report dated June 2010 titled "*Soil Vapor Intrusion Assessment Report: Data Review, Site Screening & Site Prioritization, Former Emerson Street Landfill, NYSDEC Site #828023*". The 2013 SSVG details methodology for selecting an appropriate ventilation system dependent on landfill gas and VOC measurements. In addition, previous reports are summarized providing pertinent information on types and concentrations of contaminants detected.

Available analytical data types relevant to soil vapor migration include the following:

- ground surface landfill gas flux measurements throughout the landfill;
- soil gas measurements for methane, vinyl chloride (a Chlorinated-VOC), and the VOCs: benzene, toluene, ethylbenzene, and xylenes (BTEX) across a limited area (portions of the state-listed IHWDS portion of the landfill);
- photo-ionization detector (PID) measurements taken in utility vaults and sewers along roadways surrounding the landfill;
- soil samples for select Chlorinated-VOCs from borings across the landfill; and
- groundwater samples for select Chlorinated-VOCs from wells installed across the landfill.

The FESL SSVG 2013 also summarized the existing soil gas contamination information included in

- 3 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173 "Former Emerson Street Landfill, Modified Remedial Investigation", H&A of New York, January 1994. During this investigation, landfill gas measurements were obtained across the landfill area with specially-designed gas flux chambers. As summarized in the report, landfill gas is typically composed of 58% methane, 42% carbon dioxide, and trace amounts of hydrogen sulfide and other organic compounds. Methane emission rates varied in the FESL samples from a minimum of 7.8 to a maximum of 1200 μ g/m²-minute. The H&A report also contains analytical information for Chlorinated-VOCs in soil, groundwater, and utility vault water samples, and PID readings for utility vaults and manholes. Analytical results indicated the presence of Chlorinated-VOCs at various locations throughout the landfill, but concentrated in the IHWDS portion.

The report "Former Emerson Street Landfill Remedial Investigation Report for Parcels 4, 10, and 11", LaBella Associates P.C., and Geomatrix Consultants, Inc., March 2001, describes sampling completed in the IHWDS portion of the landfill. Sampling was completed in soil, groundwater, sewers, and extensive soil gas points. Analytical results confirmed and further delineated the presence of CVOCs in the IHWDS portion of the landfill. These parcels are located in Quadrant A, an area likely to contain direct burial municipal waste without significant incineration. The soil gas results for the specific constituents detected in this summary are briefly summarized below:

- Vinyl chloride concentrations ranged from 0.02 milligrams per cubic meter (mg/m3) to 9 mg/m3
- Benzene concentrations ranged from 0.02 mg/m³ to 0.6 mg/m³
- Total BTEX concentrations ranged from 0.48 mg/m³ to 499 mg/m³
- Chlorobenzene concentrations ranged from 0.02 mg/m³ to 1.6 mg/m³
- Methane concentrations ranged from 380 parts per million (ppm) (or 0.038%) to 790,000 ppm (or 79%)

The FESL can be separated into four general geographic regions (FESL Quadrants) based on the landfill waste composition and historic analytical data. The Site is located in Quadrant A (refer to Figure 1).

Portions of Quadrant A were filled during the 1970's, the last years of the landfill's operational life. At this time the incinerator was no longer operating properly, resulting in un-incinerated putrescible waste being deposited in the landfill during that period. These portions of the landfill are characterized by thicker fill, higher percentage of potentially putrescible solid waste and less incinerated ash, and higher landfill gas flux at the surface relative to other FESL areas sampled. These areas are characterized by landfill gas flux measurements between 100 and 1200 μ g/m²-minute, and/or soil gas methane concentrations above 5,000 ppm. In addition, this quadrant has also been characterized with Chlorinated-VOC contamination in soil gas, soil, and groundwater. Quadrant A has a large area of documented Chlorinated-VOC contamination. The listed IHWDS portions of the landfill are located within Quadrant A.

Soil Vapor Intrusion Assessment Report (SVI Assessment Report) dated June 2011:

LaBella was retained by the City of Rochester in January 2010 to complete a Soil Vapor Intrusion Assessment Report: Data Review, Site Screening and Site Prioritization and submitted a SVI Assessment report (June 2011) to NYSDEC. This SVI Assessment by LaBella included a detailed review of historic information available for the Site. The historic information included not only previous subsurface environmental investigations but also a detailed review of aerial photography,

> - 4 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173

subsurface data from redevelopment projects (i.e., geotechnical borings and test pits), available newspaper articles from the time the landfill was operating, and reports/papers relating to City of Rochester and Monroe County waste handling and disposal practices both historically and in particular in the 1960s/1970s. In addition, groundwater sampling of existing wells was completed, additional groundwater monitoring wells were installed, developed and sampled and a site reconnaissance was conducted at every parcel where access was granted by the property owner.

The results of the cumulative work were utilized in a ranking system that use weighted numerous criteria for each building. The criteria can be separated in to two major categories, Non-FESL related factors (e.g., how many people occupy the building, building use/ potential receptor population, building construction and condition, type of heating, ventilation system, etc.) and FESL related factors (e.g., building location in relation to the P-1 plume, location in relation to filling, readings detected during Site walkthrough, etc.). The overall scores were separated into three "Tiers" of sites. Tier 1 sites were determined to be of the highest concern for SVI due to the FESL, Tier 2 sites were determined to be of low concern for SVI due to the FESL and Tier 3 sites were determined to be of low to no concern for SVI due to FESL.

The Site is located in Quadrant A of the FESL and is approximately 1,000 feet southwest of the P-1 Plume. The Site building was ranked Tier 1 during the SVI Assessment and was recommended for SVI testing.

4.0 Objectives

The objective of this assessment was to evaluate the potential for SVI at the Site via sub-slab and indoor air testing. Work was completed in accordance with the NYSDEC and NYSDOH-approved 2016 SVI Work Plan and the *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006 and subsequent updates dated September 2013 and August 2015 (NYSDOH Guidance).

5.0 Standards, Criteria and Guidelines

This section identifies the applicable Standards, Criteria and Guidelines (SCGs) for the Site related to SVI.

Sub-Slab Soil Vapor and Indoor Air SCGs: The NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006 and subsequent updates for PCE and TCE in 2013 and 2015, respectively (including the USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile), in Appendix C of the NYSDOH document) is utilized for the SCG for soil vapor and indoor air. It should be noted the NYSDOH Guidance decision matrices were updated in May 2017 after the testing was completed. The results were also compared to the May 2017 updates.

> - 5 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173

6.0 Sampling Procedures

Sub-Slab Vapor Point Installations

Three (3) sub-slab soil vapor points were installed on March 21, 2016 (refer to Figure 2 for locations).One (1) of the sampling points was installed in the coffee warehouse (southern portion of the building) designated 1770-SVI-1 and two (2) of the sampling points were installed in the automotive repair shop (northern portion of the building) designated 1770-SVI-2 and 1770-SVI-3. The sub-slab vapor sampling points consisted of the Vapor Pin ® sampling system. Points were installed by coring a 1.5-inch diameter hole approximately 2-inches into the floor slab. Subsequently, a 5/8-inch diameter hole was drilled through the center of the 1.5-inch diameter hole using a guide through the floor slab. A 5/8-inch diameter core hole. Sub-slab soil vapor points were fitted with a threaded cap flush to the finished floor. Figure 3 illustrates the typical construction of a sub-slab vapor sampling point.

Purging Procedures

Sub-slab monitoring points were first evaluated for pressure using a Test Products International Digital Manometer 621. Sub-slab pressures at the SVI monitoring points ranged from -0.006 to 0.00 inches of water column ("wc).

After installation of the probes, one (1) to three (3) volumes (i.e., the volume of the sample probe and tube) was purged prior to collecting the samples to ensure samples collected are representative. Flow rates for purging did not exceed 0.2 liters per minute to minimize the ambient air infiltration during sampling.

A tracer gas evaluation was conducted to verify the integrity of the sub-slab soil vapor probe seal using helium. Tubing was connected to the metal barbed fitting and an enclosure was placed over the sampling point. Subsequently, the enclosure was enriched with the tracer gas. The sub-slab and the enclosure were then tested for the tracer gas using a MDG-2002 Helium Gas Leak Detector. The tracer gas was measured at 0% in the sub-slab.

Sampling and Handling Procedures

On March 21, 2016, sub-slab soil vapor, indoor air, and outdoor air samples were collected using 1-liter Summa Canisters® equipped with pre-calibrated laboratory supplied flow regulators set for a sampling time of six (6) hours. Sub-slab samples were designated "1770-SVI-1" through "1770-SVI-3". At each sub-slab vapor sample location an indoor air sample was also collected. The collocated indoor air samples were collected from approximately 3 to 5 feet above the floor slab and were collected in the same manner and general time period as the sub-slab sample. Indoor air samples were designated "1770-IAQ-1" through "1770-IAQ-3". In addition, an outdoor air sample was collected to evaluate the ambient air conditions. The outdoor air sample was collected from the general upwind direction based on prevailing wind directions. The outdoor air sample was designated "1770-Outdoor Air". Sampling logs are included in Appendix 3.

All samples were submitted under standard chain of custody procedures to Centek Laboratory in Syracuse, New York for analysis of a select list of VOCs using USEPA Method TO-15. Based on the historic data, the detailed evaluation completed as part of the SVI Report and the current heavy

- 6 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173 manufacturing setting of the FESL, the analytical testing work was limited to compounds suspected to be due to FESL, including the following:

Compound						
Tetrachloroethene						
Trichloroethene						
cis-1,2-Dichloroethene						
trans-1,2-Dichloroethene						
Vinyl Chloride						
1,1,1-Trichloroethane						
1,1-Dichloroethane						
1,1-Dichloroethene						
Chloroethane						
Chloromethane						

Quality Assurance/Quality Control

The Summa® Canisters were certified clean by the laboratory. Blind duplicates were collected at a rate of one (1) per ten (10) samples, or one (1) per shipment to the laboratory. Matrix spike/ matrix spike duplicate (MS/MSD) samples were collected using a 1.4-liter Summa® canister at a rate of one (1) per twenty (20) samples or one per shipment to the laboratory. The laboratory provided ASP Category B-like reports and NYSDEC EQUIS Electronic Data Deliverables (EDDs). A data usability summary report (DUSR) was prepared by Dataval, Inc.

7.0 First Round Sampling Results

First round SVI sampling and analysis consisted of the collection of three (3) collocated sub-slab and indoor air samples in addition to one (1) outdoor air sample on March 21, 2016 over an approximate 6-hour timeframe. One (1) of the locations ("1770-SVI/IAQ-1) was collected from the coffee warehouse portion of the building and two (2) of the locations ("1770-SVI/IAQ-2" and "1770-SVI/IAQ-3") were collected from the automotive repair portion of the building.

Sub-Slab/ Indoor/ Outdoor Air Sampling

SVI sampling results were compared to the decision matrices in *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* Guidance Document dated October 2006 and subsequent updates for PCE and TCE in 2013 and 2015, respectively (NYSDOH Guidance Document). Chloromethane, cis-1,2-dichloroethene, and vinyl chloride were detected in one (1) or more indoor air samples (note that there is no air guideline for these compounds in Table 3.1 of the NYSDOH Guidance Document). Chloromethane was detected in the outdoor air at similar levels to the indoor air and is not anticipated to be a result of SVI. Cis-1,2-dichloroethene and vinyl chloride were detected in the automobile repair portion of the building and are anticipated to be a result of an indoor air source. A comparison of detected compounds in sub-slab and indoor air to the NYSDOH Guidance Document Decision Matrices indicates the following:

"Take reasonable and practical actions to identify source(s) and reduce exposures: The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources

- 7 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173 rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compoundcontaining products in places where people do not spend much time, such as a garage or outdoor shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures".

Based on the results of the first round of sampling, follow-up indoor air sampling following removal of VOC-containing materials in the automotive repair portion of the building was recommended.

8.0 Second Round Sampling Results

On March 3, 2017, LaBella removed VOC-containing chemicals, car parts, etc. that may be a source of elevated concentrations of cis-1,2-dichloroethene and vinyl chloride in the indoor air within the automotive repair portion of the building. Materials removed from the building were placed outside within a trailer. Refer to the photograph log included as Appendix 5 for materials removed and not removed from the building. It should be noted that some materials (i.e., cars, drums, etc.) were not removed from the building.

On March 5, 2017, indoor air and outdoor air samples were collected using 1-liter Summa Canisters® equipped with pre-calibrated laboratory supplied flow regulators set for a sampling time of six (6) hours. Three (3) indoor air samples were collected; two (2) from the sample locations sampled in March 2016 ("1770-IAQ-2 and "1770-IAQ-3") as well as an added location within the office area of the automotive repair shop ("1770-IAQ-4"). Refer to the photograph log included as Appendix 5 for photographs of the office area and automotive repair area.

All samples were submitted under standard chain of custody procedures to Centek Laboratory in Syracuse, New York for analysis the same select list of VOCs analyzed in the first round using USEPA Method TO-15.

Indoor/ Outdoor Air Sampling

One (1) compound (chloromethane) was detected in all three (3) indoor air samples and the outdoor air sample. The concentrations of chloromethane detected in indoor air samples were similar to the concentration detected in the outdoor air. The remaining compounds detected in indoor air during the first round of sampling (cis-1,2-dichloroethene and vinyl chloride) were not detected during the second round after removing VOC-containing products from the automotive repair portion of the building. Based on the lack of cis-1,2-dichloroethene and vinyl chloride in indoor air, the presence of these compounds detected during the first round of sampling is attributed to an indoor air source.

It should be noted the NYSDOH Guidance Decision Matrices were updated in May 2017. A comparison of detected compounds from the first round of sampling to the updated decision matrices changed the required actions for two (2) compounds (cis-1,2-dichloroethene and vinyl chloride) from "*take reasonable and practical actions to identify source(s) and reduce exposure*" to "*identify sources and resample or mitigate*". Although the updated decision matrices changed the required action for cis-1,2-dichloroethene and vinyl chloride, these two (2) compounds were not detected in indoor air after

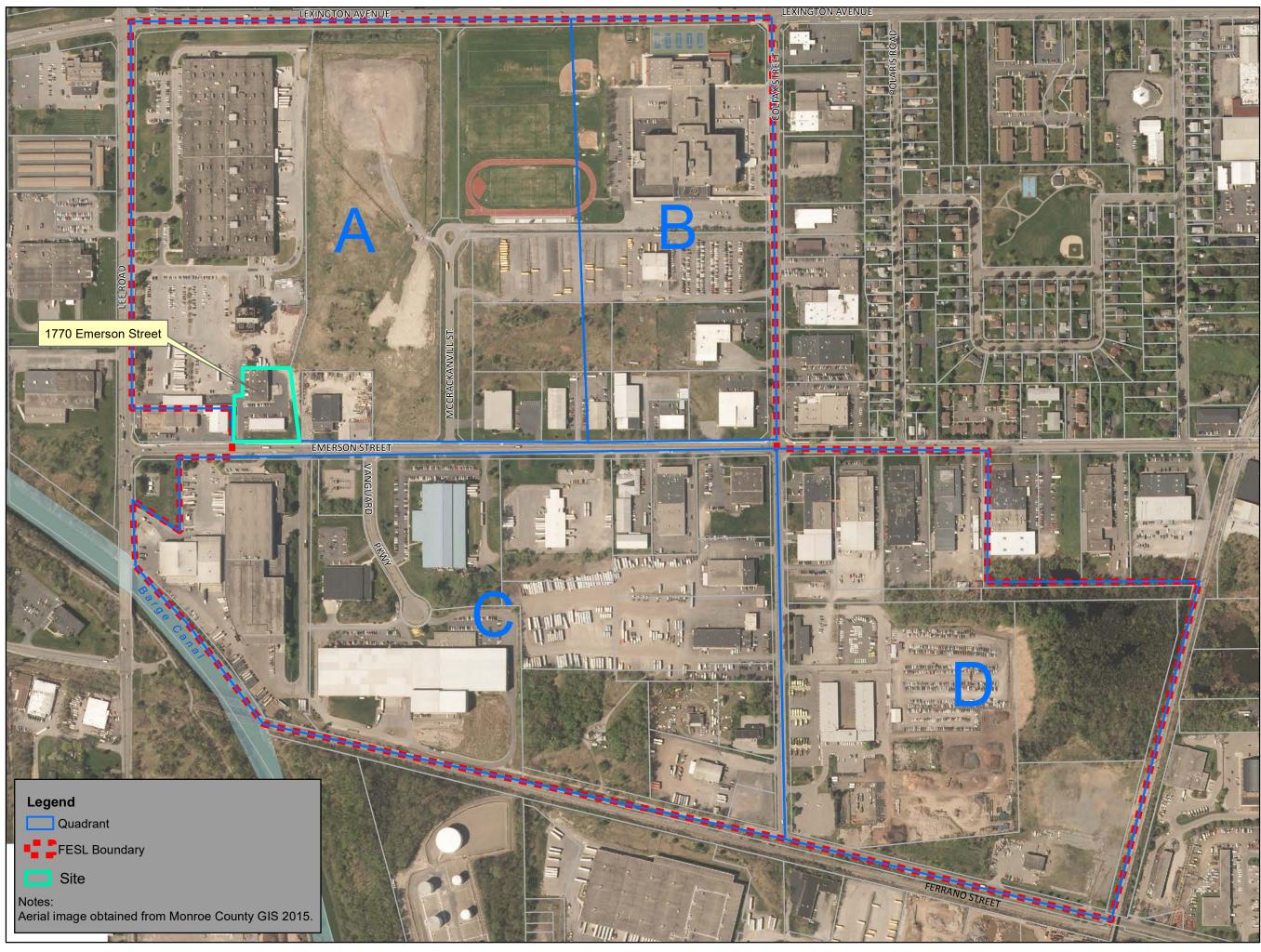
- 8 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173 removing VOC-containing products and resampling; as such, the detection of these compounds was determined to be due to an indoor air source.

9.0 Conclusions

The Site is located southwest of the P-1 Plume in Quadrant A of the FESL. The Site is currently utilized as a coffee warehouse and an automotive repair shop with approximately 1,000 of the 12,000 square feet utilized as office space.

Two (2) collocated sub-slab and indoor air samples, in addition to one (1) outdoor air sample, were initially collected to evaluate SVI in the Site building. Based on the elevated concentrations of cis-1,2-dichloroethene and vinyl chloride detected in the indoor air within the automotive repair portion of the building during the first round, additional sampling was completed to evaluate whether the compounds detected were associated with SVI or an indoor air source. Products containing VOCs were removed from the automotive repair portion of the building and the indoor air was resampled. The resampling did not identify cis-1,2-dichloroethene or vinyl chloride in indoor air. Based on the sampling completed, the compounds detected during the first round were determined to be due to an indoor air source (i.e., automotive repair operations) and not SVI. Based on the assessment completed, there is no SVI concern due to the FESL. No further action related to SVI associated with the FESL is warranted at the Site.

\\PROJECTS2\PROJECTSNZ-2\ROCHESTER, CITY\210173 FESL\REPORTS\SVI ASSESSMENT REPORT 2017\1770 EMERSON STREET\1770 EMERSON STREET.DOCX


- 9 -Soil Vapor Intrusion Investigation Report NYSDEC Site #828023 1770 Emerson Street Former Emerson Street Landfill, Rochester, New York LaBella Project No. 210173

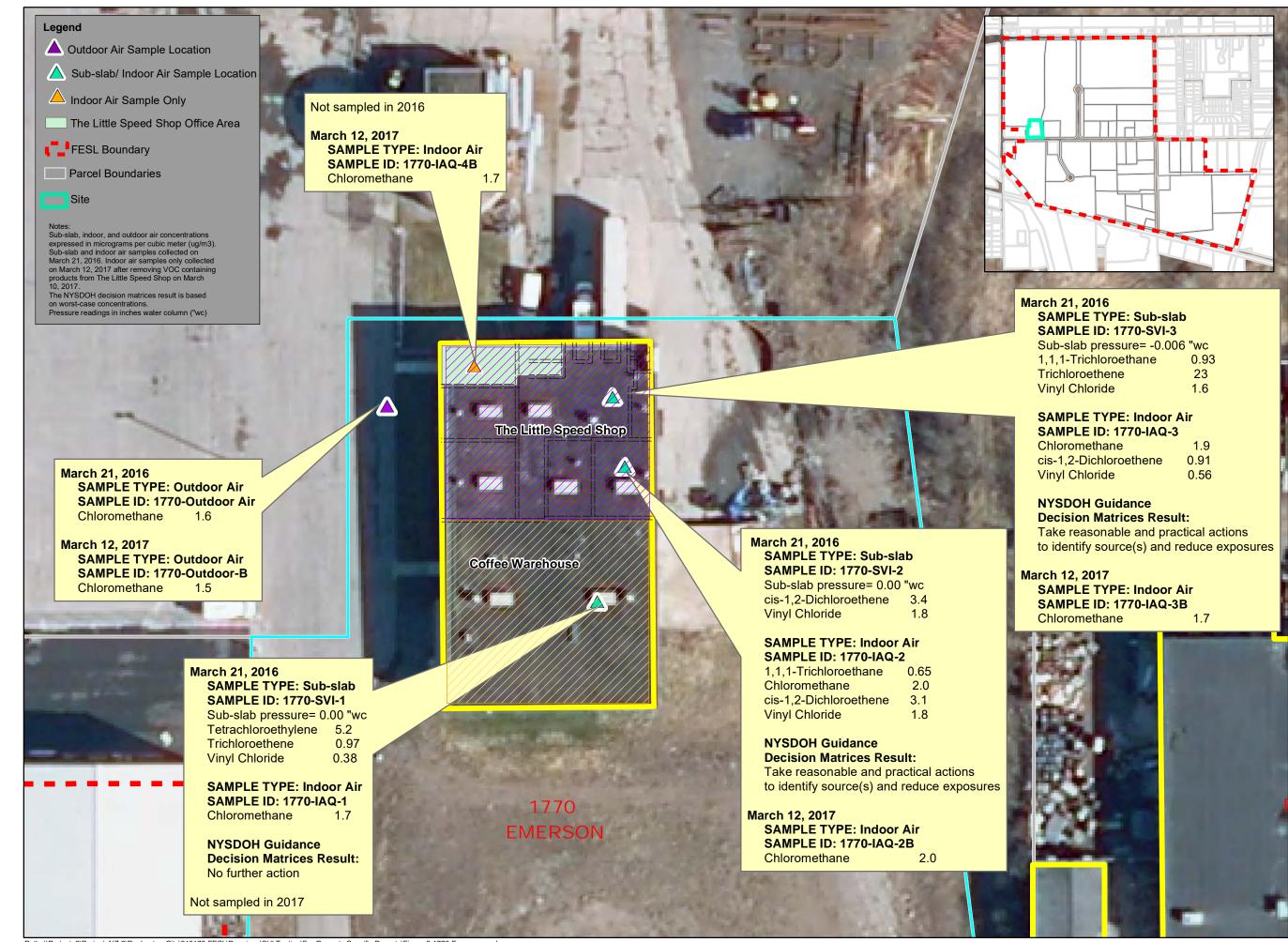
LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Figures

CITY OF ROCHESTER

FORMER EMERSON STREET LANDFILL ROCHESTER, NEW YORK


SOIL VAPOR INTRUSION INVESTIGATION

FORMER EMERSON STREET LANDFILL PROJECT MAP

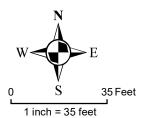
0 400 Feet L______J 1 inch = 400 feet

Path: \\Projects2\ProjectsNZ-2\Rochester, City\210173 FESL\Drawings\SVI Testing\For Property Specific Reports\Figure 2 1770 Emerson.mxd

1770-SVI-3	
sure= -0.006	"wc
oethane	0.93
ne	23
9	1.6

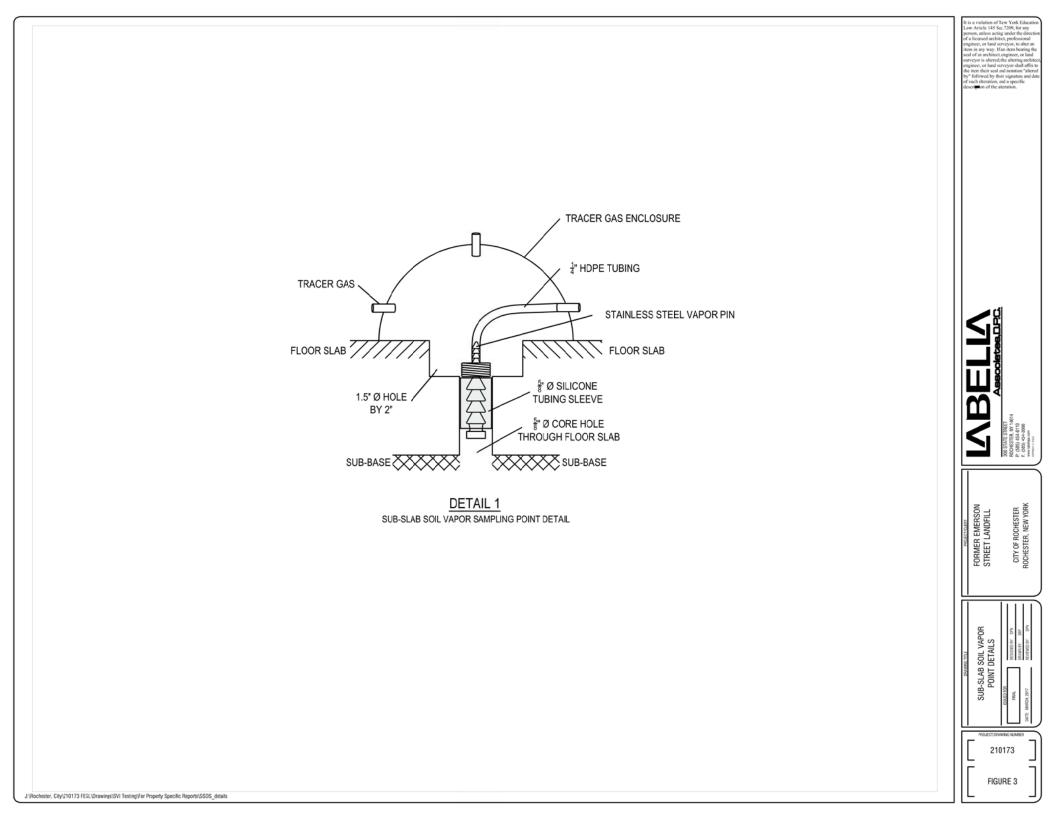
1770-IAQ-3	
ne	1.9
oroethene	0.91
9	0.56

CITY OF ROCHESTER


www.labellapc.com

FORMER EMERSON STREET LANDFILL ROCHESTER, NEW YORK

SOIL VAPOR INTRUSION INVESTIGATION


SOIL VAPOR INTRUSION SAMPLING RESULTS

1770 EMERSON ST

210173

FIGURE 1

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Tables

Former Emerson Street Landfill 1770 Emerson Street Table 1 Soil Vapor Intrusion Testing Results March 2016

Sample ID Sample Location Sample Date	1770-SVI-1 Sub-Slab 3/21/2016	Blind Dup 2 (1770-SVI-1) Sub-Slab 3/21/2016	1770-SVI-2 Sub-Slab 3/21/2016	1770-SVI-3 Sub-Slab 3/21/2016	1770-IAQ-1 Indoor Air 3/21/2016	Blind Dup 1 (1770-IAQ-1) Indoor Air 3/21/2016	1770-IAQ-2 Indoor Air 3/21/2016	1770-IAQ-3 Indoor Air 3/21/2016	1770-Outdoor Air Outdoor Air 3/21/2016	NYSDOH Sub-Slab Vapor Concentration Decision Matrix (minimum action level) ⁽¹⁾	NYSDOH Indoor Air Concentration (minimum action level) (1)	USEPA (2001) (BASE) Database - 90th Percentile ⁽²⁾
1,1,1-Trichloroethane	< 0.82	< 0.82	< 0.82	0.93 J	< 0.82	< 0.82	0.65 J	< 0.82	< 0.82	<100***	<3***	20.6
1,1-Dichloroethane	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	<0.61 J	< 0.61	< 0.61	NL	NL	<0.7
1,1-Dichloroethene	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	<0.59 J	< 0.59	< 0.59	<100***	<3***	<1.4
Chloroethane	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	<0.40 J	< 0.40	< 0.40	NL	NL	<1.1
Chloromethane	< 0.31	< 0.31	< 0.31	< 0.31	1.7	< 0.31	2.0 J	1.9 J	1.6	NL	NL	3.7
cis-1,2-Dichloroethene	< 0.59	< 0.59	3.4	< 0.59	< 0.59	< 0.59	<u>3.1 J</u>	0.91 J	< 0.59	<100***	<3***	<1.9
Tetrachloroethylene	5.2 J	6.3 J	<1.0	<1.0	<1.0	<1.0	<1.0 J	<1.0	<1.0	<100***	<3*** / 30*	15.9
trans-1,2-Dichloroethene	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	<0.59 J	< 0.59	< 0.59	NL	NL	NL
Trichloroethene	0.97 J	1.4 J	< 0.81	23	< 0.21	< 0.21	<0.21 J	< 0.21	< 0.21	<5 **	<0.25** / 2*	4.2
Vinyl chloride	0.38	< 0.38	1.8	1.6	< 0.10	< 0.10	<u>1.8 J</u>	<u>0.56 J</u>	<0.10	<5**	<0.25**	<1.9

Notes:

Concentrations in micrograms per cubic meter (ug/m³)

Samples analyzed by USEPA Method TO-15

< indicates the concentration was not detected above the reporting limit

(1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database (see 2. below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]

referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.

* = Air Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York as updated by a September 2013 Fact Sheet for PCE and an August 2015 Fact Sheet for TCE.

** = Guideline Value obtained from Soil Vapor/Indoor Air Matrix 1 (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

*** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix 2 (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

Bold type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Sub-Slab Vapor Concentration Decision Matrix (minimum action level).

Underlined type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Indoor Air Concentration (minimum action level).

Blue font represents changes made in the Data Usability Summary Report (DUSR)

Red values are above Air Guideline Derived by NYSDOH in Table 3.1 of NYSDOH Guidance titled "Evaluating Soil Vapor Intrusion in the State of New York", October 2006 (and subsequent updates). U indicates the DUSR deemed the concentration undetected

Former Emerson Street Landfill 1770 Emerson Street Soil Vapor Intrusion Testing March 2016

NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 Decision Matrices

				CHLOROETHENI ONCENTRATION		
	Sample IDs		IAQ-1 (<0.21) IAQ-3 (<0.21)			
-			<0.25	2. Take reasonable and practical	3. Take reasonable	 5.0 and above 4. Take reasonable and practical
SUB-SLAB VAPOR CONCENTRATION	SVI-1 (0.97)	<5	1. No further action	actions to identify source(s) and reduce exposure	actions to identify	actions to identify source(s) and reduce exposure
(ug/m ³)	SVI-3 (23)	5 to <50	5. No further action	6. MONITOR	7. MONITOR	8. MITIGATE
-		50 to <250 250 and above	9. MONITOR 13. MITIGATE	10. MONITOR/ MITIGATE 14. MITIGATE	11. MITIGATE 15. MITIGATE	12. MITIGATE 16. MITIGATE

				VYL CHLORIDE	(ug/m^3)	
	Sample IDs		IAQ-1 (<0.10)	IAQ-3 (0.56)	IAQ-2 (1.8)	
			<0.25	0.25 to <1	1 to <5.0	5.0 and above
SUB-SLAB VAPOR CONCENTRATION	SVI-1 (0.38) SVI-2 (1.8) SVI-3 (1.6)		1. No further action	and practical actions to identify	3. Take reasonable and practical actions to identify source(s) and reduce exposure	4. Take reasonable and practical actions to identify source(s) and reduce exposure
(ug/m ³)		5 to <50	No further action	6. MONITOR	7. MONITOR	8. MITIGATE
		50 to <250	9. MONITOR	10. MONITOR/ MITIGATE	11. MITIGATE	12. MITIGATE
		250 and above	13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE

	MATRIX 2- TETRACHLOROETHYLENE INDOOR AIR CONCENTRATION (ug/m ³)						
	Sample IDs		IAQ-1 (<1.0)				
			<3	3 to <30	30 to <100	100 and above	
SUB-SLAB VAPOR CONCENTRATION (ug/m ³)	SVI-1 (5.2)	<100	1. No further action	and practical actions to identify source(s) and	and practical actions to identify source(s) and	 Take reasonable and practical actions to identify source(s) and reduce exposure 	
		100 to <1,000	5. MONITOR	6. MONITOR/ MITIGATE	7. MITIGATE	8. MITIGATE	
		1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE	

Former Emerson Street Landfill 1770 Emerson Street Soil Vapor Intrusion Testing

March 2016 NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 Decision Matrices

				-1,2-DICHLOROE		
			INDOOR AIR C	ONCENTRATION	(ug/m')	
	Sample IDs		IAQ-3 (0.91)	IAQ-2 (3.1)		
			3	3 to <30	30 to <100	100 and above
SUB-SLAB VAPOR CONCENTRATION (ug/m ³)	SVI-2 (3.4) SVI-3 (<0.59)		1. No further action	and practical	and practical actions to identify source(s) and	 Take reasonable and practical actions to identify source(s) and reduce exposure
		100 to <1,000	5. MONITOR	6. MONITOR/ MITIGATE	7. MITIGATE	8. MITIGATE
		1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE

			-TRICHLOROET		
	Sample IDs	IAQ-3 (<0.82)			
		<3	3 to <30	30 to <100	100 and above
SUB-SLAB VAPOR CONCENTRATION (ug/m ³)	SVI-3 (0.93)	1. No further action	and practical actions to identify source(s) and reduce exposure	and practical actions to identify	4. Take reasonable and practical actions to identify source(s) and reduce exposure
		 5. MONITOR	-		8. MITIGATE
		 5. MONITOR 9. MITIGATE	MITIGATE	7. MITIGATE 11. MITIGATE	8. MITIGA 12. MITIG

No further action: Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

Take steps to identify source(s) and reduce exposures: The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed).

Monitor: Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concentrations in the indoor air or sub-slab vapor have changed. Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are scaling preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is an interim measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Former Emerson Street Landfill 1770 Emerson Street Table 2 Soil Vapor Intrusion Testing Results March 2017

Sample ID Sample Location Sample Date	1770-IAQ-2B Indoor Air 3/12/2017	1770-IAQ-3B Indoor Air 3/12/2017	1770-IAQ-4B Indoor Air 3/12/2017	1770-Dupe B (1770-IAQ-4B) Indoor Air 3/12/2017	1770-Outdoor-B Outdoor Air 3/12/2017	NYSDOH Indoor Air Concentration (minimum action level) ⁽¹⁾	USEPA (2001) (BASE) Database - 90th Percentile ⁽²⁾
1,1,1-Trichloroethane	< 0.82	< 0.82	<0.82 J	<0.82 J	< 0.82	<3***	20.6
1,1-Dichloroethane	< 0.61	< 0.61	<0.61 J	<0.61 J	< 0.61	NL	<0.7
1,1-Dichloroethene	< 0.59	< 0.59	<0.59 J	<0.59 J	< 0.59	<3***	<1.4
Chloroethane	< 0.40	< 0.40	<0.40 J	<0.40 J	< 0.40	NL	<1.1
Chloromethane	2.0 J	1.7 J	1.7 J	1.8 J	1.5 J	NL	3.7
cis-1,2-Dichloroethene	< 0.59	< 0.59	<0.59 J	<0.59 J	< 0.59	<3***	<1.9
Tetrachloroethylene	<1.0	<1.0	<1.0 J	<1.0 J	<1.0	<3*** / 30*	15.9
trans-1,2-Dichloroethene	< 0.59	< 0.59	<0.59 J	<0.59 J	< 0.59	NL	NL
Trichloroethene	< 0.21	< 0.21	<0.21 J	<0.21 J	< 0.21	<0.25** / 2*	4.2
Vinyl chloride	< 0.10	< 0.10	<0.10 J	<0.10 J	< 0.10	<0.25**	<1.9

Notes:

Concentrations in micrograms per cubic meter (ug/m^3)

Samples analyzed by USEPA Method TO-15

< indicates the concentration was not detected above the reporting limit

(1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database (see 2. below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]

(2) USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance (Refer to Footnote "1") this database is referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.

* = Air Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York as updated by a September 2013 Fact Sheet for PCE and an August 2015

** = Guideline Value obtained from Soil Vapor/Indoor Air Matrix 1 (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

*** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix 2 (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

Bold type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Sub-Slab Vapor Concentration Decision Matrix (minimum action level).

Underlined type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Indoor Air Concentration (minimum action level).

Blue font represents changes made in the Data Usability Summary Report (DUSR)

Red values are above Air Guideline Derived by NYSDOH in Table 3.1 of NYSDOH Guidance titled "Evaluating Soil Vapor Intrusion in the State of New York", October 2006 (and subsequent updates). U indicates the DUSR deemed the concentration undetected

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 1

Laboratory Report

Client: LABELLA	Project: EMERSUN	Cnecklist
Analytical Results TIC's present Comments:	Present and Complete Present and Complete	<u>VANDE/14</u> SDG: <u>C/603076</u> <u>YES NO NA</u>
Chain-of-Custody	Present and Complete	
Surrogate Recovery Internal Standards Recovery	Present and Complete Recoveries within limits Sample(s) reanalyzed Present and Canadi	
Comments:	Recoveries within limits Sample(s) reanalyzed	
Lab Control Sample (LCS)		
Lab Control Sample Dupe (LCSD)	Present and Complete Recoveries within limits Present in the	
MS/MSD	Present and Complete Recoveries within limits Present and Complete	
	$\sim \sim $	
ample Raw Data	Present and Com-I	994
omments:	opectra present for all samples	
ntek Laboratories, LLC		است
entek Laboratories, LLC	Private and Confidential	Page 1 of 2

TO-15 Package Review Checklist

Centek Laboratories

Page 1 of 245

Client: LARELA	Project: EMERSON LANDFILL	SDG: <u></u>	603076
Standards Data		<u>YES NO</u>	<u>NA</u>
Initial Calibration Summary	Present and Complete	~	
	Calibration(s) met criteria	~	
Continuing Calibration Summary	Present and Complete	······	
	Calibration(s) met criteria		·
_		w	
Standards Raw Data	Present and Complete		
Comments:	and the second		
	ана с тури на на страта на страта на страта на на страта на на страта на на страта на страта на страта на на с По страта на		1921 IN
Raw Quality Control Data			
Tune Criteria Report	Present and Complete	·	
Method Blank Data	MB Results <pql< td=""><td><u>~</u></td><td></td></pql<>	<u>~</u>	
	Associated results flagged "B"		
LCS sample data	Present and Complete	·····	<u>></u>
LCSD sample data	Present and Complete	<u> </u>	
MS/MSD sample data	Present and Complete		
Comments:		1871-1	ат в 2011 година — трана и полоколо и полокол
Logbooks	ΠΑΥΔΙΔ ¹ γ. 2018-1-1 - γ. 2018-1-1-1 - γ. 2017-1-1-1 - γ. 2017-1-1-1-1 - γ. 2017-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	**************************************	
Injection Log			
Standards Log	Present and Complete	<u> </u>	
Can Cleaning Log	Present and Complete	<u>`</u>	
San Croaning 1.0g	Present and Complete		
Calculation sheet	Raw Data Present	<u>``</u>	
DL's	Present and Complete		
Bottle Order Form	Present and Complete	<u> </u>	
ample Tracking Form	Present and Complete Present and Complete	<u> </u>	
dditional Comments:	· <u>k</u>		<u></u>
	· · · · · · · · · · · · · · · · · · ·		
			аны
ection Supervisor:	Date:	27/16	
C Supervisor.	Luna / Mate	1/27/16)
entek Laboratories, LLC	Private and Confidential		Page 2 of 2

TO-15 Package Review Checklist

Centek Laboratories

CENTEK LABORATORIES, LLC

 143 Midler Park Drive * Syracuse, NY 13206

 Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752

 NYSDOH ELAP
 Certificate No. 11830

Analytical Report

Daniel Noll LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614

Monday, April 04, 2016 Order No.: C1603076

TEL: (585) 454-6110 FAX (585) 454-3066

RE: Emerson Landfill

Dear Daniel Noll:

Centek Laboratories, LLC received 9 sample(s) on 3/29/2016 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designce, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

Ngf-f-

William Dobbin Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200% Next business day TAT by Noon = 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75% Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory,

Centek Laboratories

direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

1. Package Review Check List

- 2. Case Narrative
- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a. Form 1 (if requested) TIC's b. Quantitation Report with Spectra
- 9. Standards Data
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD

12. Log Books

- a. Injection Log Book
- b. Standards Log Book
- c. QC Canister Log Book

Date: 27-Apr-16

CLIENT: LaBella Associates, P.C. Project: Emerson Landfill

Lab Order: C1603076

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (\pm 2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (\pm 1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, \pm 1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

See Corrective Action: [3362] IS did not meet criteria.

Centek Laboratories, LLC

Corrective Action Report

Date Initiated: Initiated By:	01-Apr-16 Russell Pellegrino	Corrective Action Report Departme	ID: 3362 ent: MSVOA
	Corre	ctive Action Description	а, а р. и, а то а то антиски сман и то на
CAR Summary:	IS did not meet criter	ńa.	
Description of Nonconformant Root/Cause(s):	ce Based on the chroma	not meet criteria for samples C1603076-002,003 atographic evidence, it appears that the contamin rfering compounds that may be associated with a	nation is from a high
Description of Corrective Actio w/Proposed C.A	on C1603076-002,003,0	009 was analyzed further as a dilution with criteri 005,007 were reanalyzed with similar results. Du It to see any signs of problems. All sets of data s	e to matrix being in
Performed By:	Russell Pellegrino	Completion Date: 05-Apr-	16
		Client Notification	
Client Notificati	on Required: No	Notified By:	
Comment:			
	Qu	uality Assurance Review	ατιστική ποτοποιού το μ. τ. τ. τ. τ. τ. τ. τ. τ. τ. ποτοποιε το ποτοποιού που ποτοποιού. Η τουτοποιού που που ποτοποιού το ποτοποιού το ποτοποιού που ποτοποιού που ποτοποιού που ποτοποιού που ποτοποιού
Nonconforman	ce Type: Deficiency		
Further Action required by QA:		ntrol for sample matrix interference. At this time i of data submitted.	no further corrective
		Approval and Closure	станизанта стала, 15 маталия и пот стала мистомитика потост стала (15 маст – 15 с
Technical Dire Deputy Tech	ctor /		ate: 07-Apr-16

William Dobbin

Nick Scala

Updated:

INS.

27-Apr-2016 3:47 PM

QA Officer Approval:

Last Updated BY russ

QA Date: 07-Apr-16

Reported: 27-Apr-2016 3:48 PM

Report Level	Level I	Level II	Cat "B" Like							Vacuum	Start/Stop	30/4	30/5	50/ 4	39/3	<u> 70/5</u>	0	30/3	50/7	30/4							opoff		076 8	
Detection Limit	5ppbv U		N 1ug/M3 +TCE 25 N	e if Same:	SAME					Comments			***													Courrier: CIRCLE ONE	FedEX	FOT LAB USE DNLY		skide.
	HPMDF/LL	2	C0044512	Company: Company: Check Here If Same:	Invoice to:	City, State, Zip		Email:	Phone:																	 Date/Time	3)28/1480		3-24M	on the reverse $3/3$ 9//
Site Name;	Project: En Eacon	PO# 2015	Quote # $Q - SP/$ Other / D		Cture Ct	eacherty NT		la percon		Analysis Request		10 212	Se lect	1,51				/	_ N /	2							11	011	Sc Le	ind Conditions listed
				TAPEN	Sno Ct			19 MOLION IX MILLING CON		Regulator	Number	-339	345	339	242	543	1447	1166	t 52	398				 	-	Signatura	Carrie		$\overline{\bigcirc}$	k Labs Tames
Sustody			Vapor Intrusion & IAQ	Company:	Report to:	City, State, Z	***	Email: (A)	Phone:	Canister	Number	1183	1179	419	19.2-	193	くゆげ	89	5	188										septing Cente
Centek Chain of Custody	143 Midler Park Drive	Syracuse, NY 13206	315-431-9730 www.CentekLabs.com	K Rush TAT Due Surcharge % Date:	0%	50%	75%	100% 150%	200%	se Notify Lab	Date Sampled	3/21/10	عال أداخ	3/21/12		3/21/16	$\gamma u' / b$	3/21/16	3/11/1/2	3/21/16	-					Print Name	matter low)en (rale	in of Custody, you are acc
Į	Contak Laboratones		1	TAT Check Turnaround Time: ,Onge	5 Business Days	3 Business Days	2 Business Days	*Next Dav by Noon	*Same Day 200%	*For Same and Next Day TAT Plea.	Be	1-071-066	1-175-(461	BINN DUD 1	No reptine at a long to the lo	Blind Du 2	1270-1A01-2-	1-	1770-3	5-12-0401						 Chain of Custody	Sampied by:	Relinquished by:	Received at Lab by:	⁴⁴⁴ By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse $3/3$ 9/1

Centek Laboratories

47

•

Page 10 of 245

Date: 27-Apr-16

CLIENT: Project: Lab Order:	LaBella Associates, P.C. Emerson Landfill C1603076			er Sample Summary
Lab Sample ID C1603076-001A	Client Sample ID 1770-IAQ-1	Tag Number 1183,339	Collection Date 3/21/2016	Date Received 3/29/2016
C1603076-002A	1770-SVI-1	1179,343	3/21/2016	3/29/2016
C1603076-003A	Blind Dup 1	419,339	3/21/2016	3/29/2016
C1603076-004A	1770-Outdoor Air	192,342	3/21/2016	3/29/2016
C1603076-005A	Blind Dup 2	1193,343	3/21/2016	3/29/2016
C1603076-006A	1770-IAQ-2	564,447	3/21/2016	3/29/2016
C1603076-007A	1770-SVI-2	89,1166	3/21/2016	3/29/2016

.....

Centek Laboratories

Page 11 of 245

CLIENT: Project: Lab Order:	LaBella Associates, P.C. Emerson Landfill C1603076		Work Orde	er Sample Summary
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
C1603076-008A	1770-IAQ-3	131,297	3/21/2016	3/29/2016
C1603076-009A	1770-5V1-3	188,308	3/21/2016	3/29/2016

	S, LLC				Sample Re	ceipt C	checklist	
Client Name LABELLA - ROCHESTER				Date and 1	lime Receive		3/29/2016	
Work Order Numbe C1603076		7		Received (by JDS			
Checklist completed by	- Je Date	כ 	29-1 	C Reviewed	by <u>WD</u>	· <u> </u>	3/29/16 Date	Ph dana
Matrix:	Carrier name	FedE	Ex Ground					
Shipping container/cooler in good condition?		Yes	Y	No 🗌	Not Presen			
Custody seals intact on shippping container/cooler?		Yes		No 🗋	Not Presen	\checkmark		
Custody seals intact on sample bottles?		Yes		No 🗔	Not Presen	$\mathbf{\overline{2}}$		
Chain of custody present?		Yes	$\mathbf{\nabla}$	No 🗔				
Chain of custody signed when relinguished and receive	≥ď?	Yes	$\mathbf{\nabla}$	No 🗔				
Chain of custody agrees with sample labels?		Yes	V	No 🗀				
Samples in proper container/bottle?		Yes	\mathbf{Z}	No 🗔				
Sample containers Intact?		Yes	\odot	No 🗔				
Sufficient sample volume for indicated test?		Yes	$\mathbf{\Sigma}$. No 💭				· ·
All samples received within holding time?		Yes	$\mathbf{\overline{v}}$	No 🗔				
Container/Temp Blank temperature in compliance?		Yes	$\mathbf{\Sigma}$	No 🗔				
Water - VQA vials have zero headspace? No 1	VOA vials subm	itted	\mathbf{S}	Yes	No []			
Water - pH acceptable upon receipt?		Yes	Ο	No 🗹				
Adjus	ted?		Che	cked b				

Any No and/or NA (not applicable) response must be detailed in the comments section be

Client contacted	Date contacted:	Person contacted
Contacted by:	Regarding:	
Comments:	ald Standard Mala (1979 Ph/SB/9979 Table 9 1979	
17 EV		
Corrective Action		

Centek Laboratories, LLC

27-Apr-16

Lab Order:	C1603076					
Client:	LaBella Associates, P.C.	Ū.			DATES REPORT	Ŀ
Project:	Emerson Landfill					
Sample ID	Clicat Sample 1D	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C1603076-001A	1770-IAQ-1	3/21/2016	Aśr	lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/1/2016
C1603076-002A	1770-SVL1			ling/M3 by Method TO15		4/1/2016
C1603076-003A	Blind Dup 1			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/1/2/016
C1603076-004A	1770-Outdoor Air			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		9107/1/
C1603076-005A	Blind Dup 2			lag/M3 by Method TOIS		407016
C1603076-006A	1770-LAQ-2			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/1/2016
C1603076-007A	2-1V2-0771			is ug/M3 by Method T015		4/1/2016
C1603076-008A	1770-1AQ-3			lig/m3 w/ 0.25vg/M3 CT-TCE-VC		4/1/2016
C1603076-009A	1770-SVI-3			lug/M3 by Method TO15		4/2/2016
				lug/M3 by Method TO15		4/1/2016

CANISTER ORDER

14

Air Quality Testing. At's & Gas

143 Midler Park Drive * Syracuse, NY 13206

TEL: 315-431-9730 * FAX: 315-431-9731

5692

27-Apr-16

SHIPPEI) TO:	
Company:	LaBella Associates, P.C.	Submitted By:
Contact:	Ann Aquilina	MadeBy: rjp
Address:	300 State Street, Suite 201	
	Rochester, NY 14614	Ship Date: 3/16/2016
Phone:	(585) 454-6110	VIA: FedEx Ground
Quote ID:	0	Due Date: 3/17/2016
Project:		
PO:	Emerson Landfill	
Bottle Code	••	TEST(s) QT
MC1400CC	1 Al Mini-Can	1ug/M3 by Method TO15
MC1000CC	1L Mini-Can	
DOME	Encloser Dome	Helium Leak Test
Can / Reg ID		
89	1L Mini-Can - 1090 VI	
93	1L Mini-Can - 1109 VI	
128	1L Mini-Can - 1076 VI	
131	1L Mini-Can - 1079 VI	
136	1L Mini-Can - 1110 Vi	
139	1L Mini-Can - 1113 VI	
141	1L Mini-Can - 1115 VI	
174	Time-Set Reg - 659 VI	
187	Time-Set Reg - 625 VI	
188	1L Mini-Can - 1143 VI	
192	1L Mini-Can - 1147 VI	
223	1L Mini-Can - 1185 ∨I	
249	Time-Set Reg - 687 VI	
258	Time-Set Reg - 696 VI	
266	Time-Set Reg - 704 VI	
286	1L Mini-Can - 1262 VI	
292	Time-Set Reg - 715 VI	
296	Time-Set Reg - 719 VI	
297	Time-Set Reg - 720 Vł	
301	Time-Set Reg - 724 VI	
308	Time-Set Reg - 809R VI	
332	1L Mini-Can - 1295 VI	
339	Time-Set Reg - 736 VI	
342	Time-Set Reg - 739 VI	
343	Time-Set Reg - 740 VI	
366	1L Mini-Can - 1315 VI	
387	Time-Set Reg - 761 VI	
388	Time-Set Reg - 762 VI	
419	1L Mini-Can - 1343 VI	
447	Time-Set Reg - 826 VI	
465	1L Mini-Can - 1369 VI	

Centek Laboratories

Page 15 of 245

1 of 2

SHIPPED TO:

Company:	LaBella Associates, P.C.	Submitted By:		
Contact: Address:	Ann Aquilina 300 State Street, Suite 201	MadeBy:	rip	
	Rochester, NY 14614	Ship Date:	3/16/2016	
Phone:	(585) 454-6110	VIA:	FedEx Ground	
Quote ID: Project:	0	Due Date:	3/17/2016	
PO:	Emerson Landfill			
Bottle Code	Bottie Type	TEST(s)		QTY
564	1L Mini-Can - 135 VI			
567	1L Mini-Can - 138 VI			
1157	Time-Set Reg-VI			
1160	Time-Set Reg-0673 VI			
1165	Time-Set Reg-0676 VI			
1166	Time-Set Reg-0791 VI			
1178	tL Mini-Can - 1236 VI			
1179	1L Mini-Can - 1249 VI			
1183	11. Mini-Can - 1250 VI			
1193	1L Mini-Can - 1246 VI			
1195	1L Mini-Can - 1254 Vi			
1320	1.4L Min)-Can - 1197 Vi			

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

2.4

- s.

where: Ax = area of the characteristic ion for the compound being measured Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

% RSD = <u>Standard deviation of RRF values</u> * 100 mean RRF

Percent Difference (%D)

% D = <u>(RRFc - mean RRFi) * 100</u> mean RRFi

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

 $ppbv = \frac{Ax * Is * Df}{Ais * RRF}$

where: Ax = area of the characteristic ion for the compound being measured
 Ais = area of the characteristic ion for the specific internal standard of the compound being measured
 Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

ANALYTICAL RESULTS

Centek Laboratories

Page 18 of 245

dfill DIA		Collection Date: Matrix:	AIR	
dfill				0
		C) 11 (1) () () () () () () () ()	- <u>1</u> /11/10/11	6
ociates, P.C.	С	lient Sample ID:	1770-IA	Q-1
		ciates, P.C. C	ciates, P.C. Client Sample ID: Tag Number:	Tag Number: 1183,335

71RA13553	Hestin	K3411111			
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-4		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/1/2016 4:18:00 AM
1.1-Dichloroethane	< 0.15	0.15	ppb∨	1	4/1/2016 4:18:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	4/1/2016 4:18:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	4/1/2016 4:18:00 AM
Chloromethane	0.80	0.15	ppb∨	1	4/1/2016 4:18:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/1/2016 4:18:00 AM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	4/1/2010 4:18:00 AM
trans-1.2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/1/2016 4:18:00 AM
Trichloroethene	< 0.040	0.040	ppbV	1	4/1/2016 4:18:00 AM
Vinyt chloride	< 0.040	0.040	ppbV	1	4/1/2016 4:18:00 AM
Surr: Bromofluorobenzene	110	70-130	%REC	1	4/1/2016 4:18:00 AM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 9

Centek Laboratories

Date: 26-Apr-16

CLIENT; Lab Order: Project: Lab ID:	LaBella Associates, P.C. C1603076 Emerson Landfill C1603076-001A		Client Sample ID: Tag Number: Collection Date: Matrix:				339
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
	5UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
1.1.1-Trichloroe		< 0.82	0.82		ug/m3	1	4/1/2016 4:18:00 AM
1,1-Dichloroeth		< 0.61	0.61		ug/m3	1	4/1/2016 4:18:00 AM
1.1-Dichloroeth		< 0.59	0,59		ug/m3	1	4/1/2016 4:18:00 AM
Chloroethane	142 / Mar	< 0.40	0.40		ug/m3	1	4/1/2016 4:18:00 AM
Chloromethane		1.7	0.31		ug/m3	1	4/1/2016 4:18:00 AM
		< 0.59	0.59		ug/m3	1	4/1/2016 4:18:00 AM
cis-1,2-Dichlord		< 1.0	1.0		ug/m3	1	4/1/2016 4:18:00 AM
Tetrachioroethy		< 0.59	0.59		ug/m3	1	4/1/2016 4:18:00 AM
trans-1,2-Dichk		< 0.21	0.21		ug/m3	1	4/1/2016 4:18:00 AM
Trichloroethene Vinyl chloride	3	< 0.10	0,10		ug/m3	1	4/1/2016 4:18:00 AM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 9

Centek Laboratories

Page 20 of 245

Date: 26-Apr-16

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P.C C1603076 Emerson Landfill C1603076-002A		Client Sample ID: Tag Number: Collection Date: Matrix:			11 7 9,: 3/21/2	343
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FL	D			Analyst:
Lab Vacuum In		-5			"Hg		3/29/2016
Lab Vacuum O	ut	-30			"Hg		3/29/2016
1UG/M3 BY MI	ETHOD TO15		то	-15			Analyst: RJP
1,1,1-Trichloroe		< 0.15	0.15		ррь∨	1	4/1/2016 5:36:00 PM
1.1-Dichloroeth	ane	< 0.15	0.15		ppb∨	1	4/1/2016 5:36:00 PM
1.1-Dichloroeth	ene	< 0.15	0.15		ppb∨	1	4/1/2016 5:36:00 PM
Chloroethane		< 0.15	0.15		рръ∨	1	4/1/2016 5:36:00 PM
Chloromethane)	< 0.15	0,15		ρρογ	1	4/1/2016 5:36:00 PM
cis-1,2-Dichlord	pethene	< 0.15	0.15		ррь∨	1	4/1/2016 5:36:00 PM
Tetrachioroethy		0.77	0.15		рръ∨	1	4/1/2016 5:36:00 PM
trans-1,2-Dichle	oroethene	< 0.15	0.15		νσαα	1	4/1/2016 5:36:00 PM
Trichloroethene	9	0.18	0.15		ppbV	1	4/1/2016 5:36:00 PM
Viny! chloride		0.26	0.15		ppbV	1	4/1/2016 5:36:00 PM
	fluorobenzene	88.0	70-130		%REC	1	4/1/2016 5:36:00 PM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 9

1UG/M3 BY MI			тс)-15			Analyst: RJ
Analyses		Result	**Limit			ÐF	Date Analyzed
Lab ID:	C1603076-002A				Matrix:		
Project:	Emerson Landfill				Collection Date:		516
Lab Order:	C1603076				Tag Number:		
CLIENT:	LaBella Associates, P.C.	,		С	lient Sample ID:		

1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 5:36:00 PM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 5:36:00 PM
1.1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 5:36:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 5:36:00 PM
cis-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 PM
Tetrachloroethylene	5.2	1.0	ug/m3	1	4/1/2016 5:36:00 PM
trans-1.2-Dichloroethene	< 0.59	0,59	ug/m3	1	4/1/2016 5:36:00 PM
Trichloroethene	0,97	0.81	vg/m3	1	4/1/2016 5:36:00 PM
Vinyl chloride	0.66	0.38	ug/m3	1	4/1/2016 5:36:00 PM
y ny y chieraa			-		

Qualifiers:

** Reporting Limit

Analyte detected in the associated Method Blank 8

- Holding times for preparation or analysis exceeded H
- JN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

- , Value above quantitation range
- Ε
- Analyte detected at or below quantitation limits J ND Not Detected at the Reporting Limit

Page 2 of 9

Date: 26-Apr-16

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P.C. C1603076 Emerson Landfill C1603076-003A				lient Sample ID: Tag Number: Collection Date: Matrix:	419,33 3/21/2	39
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FI	D			Analyst:
Lab Vacuum In		-4			"Hg		3/29/2016
Lab Vacuum O	ut	-30			"Hg		3/29/2016
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
1,1,1-Trichloroe		< 0.15	0.15		ppb∨	1	4/1/2016 4:18:00 PM
1,1-Dichloroeth		< 0.15	0.15		p¢bV	1	4/1/2016 4:18:00 PM
1.1-Dichloroeth		< 0.15	0.15		ррbV	1	4/1/2016 4:18:00 PM
Chloroethane		< 0.15	0.15		ppbV	1	4/1/2016 4:18:00 PM
Chloromethane	1	< 0.15	0.15		ppbV	1	4/1/2016 4:18:00 PM
cis-1,2-Dichlord	oethene	< 0.15	0.15		ppbV	1	4/1/2016 4:18:00 PM
Tetrachloroethy		< 0.15	0.15		opb∨	1	4/1/2016 4:18:00 PM
trans-1,2-Dichl		< 0.15	0.15		ppbV	1	4/1/2016 4:18:00 PM
Trichloroethene		< 0.040	0.040		ppbV	1	4/1/2016 4:18:00 PM
Vinvi chloride		< 0.040	0.040		ppbV	1	4/1/2016 4:18:00 PM
· · · · · · · · · · · · · · · · · · ·	fluorobenzene	117	70-130		%REC	1	4/1/2016 4:18:00 PM

Qualifiers:

- ** Reporting Limit
- 8 Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

E Value above quantitation range

.

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 3 of 9

Centek Laboratories

Date: 26-Apr-16

**Limit Qual Units	DF Date Analyzed
Matrix:	
Collection Date:	
Tag Number:	
-	
	Client Sample 1D:

	< 0.82	0.82	ug/m3	1	4/1/2016 4:18:00 PM	
1,1,1-Trichloroethane		-	•	4	4/1/2016 4:18:00 PM	
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1		
1.1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:18:00 PM	
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 4:18:00 PM	
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 4:18:00 PM	
cis-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:18:00 PM	
	•			4	4/1/2016 4:18:00 PM	
Tetrachioroethylene	< 1.0	1.0	ug/m3	1		
trans-1,2-Dichloroethene	< 0,59	0.59	ug/m3	1	4/1/2016 4:18:00 PM	
Trichioroethene	< 0.21	0.21	vg/m3	1	4/1/2016 4:18:00 PM	
	< 0.10	0.10	un/m3	1	4/1/2016 4:18:00 PM	
Vinyi chloride	< 0, 10	0.10	agritto	,		
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2016 4:18:	00 PM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank

.......

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 9

Centek Laboratories

Page 24 of 245

CLIENT; Lab Order: Project: Lab ID:	LaBella Associates, P.C C1603076 Emerson Landfill C1603076-004A		Client Sample ID: Tag Number: Collection Date: 2 Matrix: 4			192,34 3/21/2	42
Апаlyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FL	D			Analyst:
Lab Vacuum In		-3			"Hg		3/29/2016
Lab Vacuum O	μt	-30			"Hg		3/29/2016
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то-	-15			Analyst: RJF
1,1,1-Trichloroe	ethane	< 0.15	0.15		ppb∨	1	4/1/2016 4:57:00 AM
1,1-Dichloroeth	ane	< 0.15	0.15		ррЬ∨	1	4/1/2016 4:57:00 AM
1,1-Dichloroeth	ene	< 0.15	0.15		ppb∨	1	4/1/2016 4:57:00 AM
Chloroethane		< 0.15	0.15		ppb∨	1	4/1/2016 4:57:00 AM
Chloromethane		0.76	0.15		ppb∨	1	4/1/2016 4:57:00 AM
cis-1,2-Dichloro	ethene	< 0,15	0.15		ррв∨	1	4/1/2016 4:57:00 AM
Tetrachloroethy	riene	< 0.15	0.15		ppbV	1	4/1/2016 4:57:00 AM
trans-1,2-Dichic	proethene	< 0.15	0.15		р¢bV	1	4/1/2016 4:57:00 AM
Trichloroethene	1	< 0.040	0.040		ррb∨	1	4/1/2016 4:57:00 AM
Vinyl chloride		< 0.040	0.040		ррЪ∨	1	4/1/2016 4:57:00 AM
Surr: Bromof	luorobenzene	104	70-130		%REC	1	4/1/2016 4:57:00 AM

Qualifiers:

- ** Reporting Limit
- Analyte detected in the associated Method Blank В

- Holding times for preparation or analysis exceeded Н
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

- Ε Value above quantitation range
- Analyte detected at or below quantitation limits Ĵ,
- ND Not Detected at the Reporting Limit Page 4 of 9

Centek Laboratories

Date: 26-Apr-16

..... Client Sample ID: 1770-Outdoor Air LaBella Associates, P.C. CLIENT: **Tag Number: 192,342** C1603076 Lab Order: Collection Date: 3/21/2016 Emerson Landfill Project: Matrix: AlR C1603076-004A Lab ID: Date Analyzed DF Result **Limit Qual Units Analyses -

1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	I		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 4:57:00 AM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 4:57:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:57:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 4:57:00 AM
Chioromethane	1.6	0.31	ug/m3	1	4/1/2016 4:57:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:57:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 4:57:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:57:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/1/2016 4:57:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2016 4:57:00 AM

Qualifiers:

- ** Reporting Limit
- Analyte detected in the associated Method Blank в
- Holding times for preparation or analysis exceeded Н
- Non-routine analyte. Quantitation estimated. JN
- \$ Spike Recovery outside accepted recovery limits

- . £ Value above quantitation range
- Analyte detected at or below quantitation limits
- J Not Detected at the Reporting Limit ND

Page 4 of 9

Centek Laboratories

Chloromethane

Trichloroethene

Vinyl chloride

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Surr: Bromofluorobenzene

Tetrachioroethylene

1

t

1

1

1

1

1

CLIENT: Lab Order:	LaBella Associates, P. C1603076	.C.	(Client Sample ID: Tag Number:		-
Project:	Emerson Landfill		Collection Date:			2016
Lab ID:	C1603076-005A			Matrix:	AIR	
Analyses		Result	**Limit Qua	Units	DF	Date Analyzed
FIELD PARAMETERS			FLD			Analyst:
Lab Vacuum In	L	-5		"Hg		3/29/2016
Lab Vacuum O	ut	-30		"Hg		3/29/2016
1UG/M3 BY ME	ETHOD TO15		TO-15			Analyst: RJI
1,1,1-Trichloroe	ethane	< 0.15	0.15	ppbV	1	4/1/2016 4:57:00 PM
1,1-Dichloroeth	ane	< 0,15	0.15	ppbV	1	4/1/2016 4:57;00 PM
1,1-Dichloroeth	ene	< 0.15	0.15	ppb∨	1	4/1/2016 4:57:00 PM
Chloroethane		< 0.15	0.15	ppbV	1	4/1/2016 4:57:00 PM

0.15

0.15

0.15

0.15

0.15

0.15 70-130 ppbV

ppb∨

ppb∨

ppb∨

ppbV

ppbV

%REC

< 0.15

< 0.15

< 0.15

< 0.15

0,93

0,26

108

Qualifiers:

- ** Reporting Limit
- Analyte detected in the associated Method Blank в

- H Holding times for preparation or analysis exceeded
- Non-routine analyte, Quantitation estimated. JN
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- . E Value above quantitation range
- Analyte detected at or below quantitation limits J
- ND Not Detected at the Reporting Limit

Centek Laboratories

Page 27 of 245

.....

Page 5 of 9

4/1/2016 4:57:00 PM

4/1/2016 4:57:00 PM

4/1/2016 4:57:00 PM

4/1/2016 4:57:00 PM

4/1/2016 4:57:00 PM 4/1/2016 4:57:00 PM

4/1/2016 4:57:00 PM

Date: 26-Apr-16

CLIENT:	LaBella Associates, P.C.	,		C	-	nt Sample ID: Blind Dup 2			
Lab Order:	C1603076				Tag Number:				
Project:	Emerson Landfill				Collection Date:	3/21/2016			
Lab ID:	C1603076-005A				Matrix:	AIR			
Analyses		Result	**Limit	Qual	Units	ÐF	Date Analyzed		
1UG/M3 BY METHOD TO15			TO-15				Analyst: RJF		
1.1.1-Trichloroe		< 0.82	0.82		ug/m3	1	4/1/2016 4:57:00 PM		
1.1-Dichloroeth		< 0.61	0.61		ug/m3	1	4/1/2016 4:57:00 PM		
1.1-Dichloroeth		< 0.59	0.59		ug/m3	1	4/1/2016 4:57:00 PM		
Chloroethane		< 0.40	0,40		ug/m3	1	4/1/2016 4:57:00 PM		
Chloromethane)	< 0.31	0.31		ug/m3	1	4/1/2016 4:57:00 PM		
cis-1,2-Dichlord		< 0.59	0.59		ug/m3	1	4/1/2016 4:57:00 PM		
Tetrachloroethy		6.3	1.0		ug/m3	1	4/1/2016 4:57:00 PM		
trans-1,2-Dichle		< 0.59	0.59		ug/m3	1	4/1/2016 4:57:00 PM		
Trichloroethene		1.4	0.81		ug/m3	1	4/1/2016 4:57:00 PM		
Vinyi chloride	-	< 0.38	0.38		ug/m3	1	4/1/2016 4:57:00 PM		

Qualifiers:

** Reporting Limit

- Analyte detected in the associated Method Blank B
- Holding times for preparation or analysis exceeded H
- Non-routine analyte, Quantitation estimated, JN
- Spike Recovery outside accepted recovery limits S

- Value above quantitation range Е
- Analyte detected at or below quantitation limits J
- ND Not Detected at the Reporting Limit

Page 5 of 9

Centek Laboratories

Page 28 of 245

CLIENT:	LaBella Associates, P.C.			lient Sample ID:	1770-1			
Lab Order:	C1603076			Tag Number:				
Project:	Emerson Landfill		Collection Date:			3/21/2016		
Lab ID:	C1603076-006A			Matrix:				
Analyses		Result	**Limit Qual		DF	Date Analyzed		
	ETERS		FLD			Analyst:		
Lab Vacuum In		-10	"Hg 3/29/2016		3/29/2016			
Lab Vacuum O	ut	-30		"Hg		3/29/2016		

			5		
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TÓ-1	15		Analyst: RJP
1,1,1-Trichloroethane	0.12	0.15	J ppbV	1	4/1/2016 5:36:00 AM
1,1-Dichioroethane	< 0.15	0.15	ppbV	1	4/1/2016 5:36:00 AM
1.1-Dichloroethene	< 0.15	0.15	ррь∨	1	4/1/2016 5:36:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/1/2016 5:36:00 AM
Chloromethane	0.95	0.15	ppbV	1	4/1/2016 5:36:00 AM
cis-1.2-Dichloroethene	0.77	0.15	ppbV	1	4/1/2016 5:36:00 AM
Tetrachloroethylene	< 0.15	0,15	ppbV	1	4/1/2016 5:36:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 5:36:00 AM
Trichloroethene	< 0.040	0.040	Vdqq	1	4/1/2016 5:35:00 AM
Vinyl chloride	0.70	0.040	ροbV	1	4/1/2016 5:36:00 AM
Surr: Bromofluorobenzene	126	70-130	%REC	1	4/1/2016 5:36:00 AM

Qualifiers:

- ** Reporting Limit
- Analyte detected in the associated Method Blank в

......

- Holding times for preparation or analysis exceeded Н
- Non-routine analyte. Quantitation estimated. JN
- s Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range

.

- Analyte detected at or below quantitation limits J
- ND Not Detected at the Reporting Limit Page 6 of 9

.....

.....

03076-006A	Matrix:		
rson Landfill	Collection Date:	3/21/2010	5
03076	e.		
ella Associates, P.C.	Client Sample ID:	1770-1AC	Q-2
(ella Associates, P.C. 03076 rrson Landfill	ella Associates, P.C. Client Sample ID: 03076 Tag Number:	03076 Tag Number: 564,447

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TQ-15			Analyst: RJP
1,1,1-Trichloroethane	0.65	0.82 J	ug/m3	1	4/1/2016 5:36:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 5:36:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 5:36:00 AM
Chloromethane	2.0	0.31	ug/m3	1	4/1/2016 5:36:00 AM
cis-1.2-Dichloroethene	3.1	0.59	ug/m3	1	4/1/2016 5:36:00 AM
Tetrachioroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 5:36:00 AM
trans-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/1/2016 5:36:00 AM
Vinyl chloride	1.8	0.10	ug/m3	1	4/1/2016 5:36:00 AM
			•		

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Results reported are not blank corre
 E Value above quantitation range
- J Analyte detected at or below quantitation limits
- 2 Autorie verweren al er entere quantitation mille

ND Not Detected at the Reporting Limit

Centek Laboratories

Page 30 of 245

.....

Page 6 of 9

CLIENT:	LaBella Associates, P.0	С.		C	lient Sample ID:	1770-SV1-2		
Lab Order:	C1603076				Tag Number:	89,11	66	
Project:	Emerson Landfill				Collection Date:	3/21/2	2016	
Lab ID:	C1603076-007A				Matrix:	AIŔ		
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed	
FIELD PARAMETERS			FI	ւս			Analyst:	
Lab Vacuum In		-3			"Hg		3/29/2016	
Lab Vacuum Out		-30			"Hg		3/29/2016	
UG/M3 BY METHOD TO15			το-15			Analyst: RJP		
1,1,1-Trichloroe	ethane	< 0.15	0,15		ppbV	1	4/1/2016 6:15:00 PM	
1,1-Dichloroeth	ane	< 0.15	0.15		ppbV	1	4/1/2015 6:15:00 PM	
1,1-Dichloroeth	ene	< 0.15	0.15		ppbV	1	4/1/2016 6:15:00 PM	
Chloroethane		< 0.15	0.15		ppbV	1	4/1/2016 6:15:00 PM	
Chloromethane	•	< 0.15	0.15		ррЬ∨	1	4/1/2016 6:15:00 PM	
cis-1,2-Dichloro	ethene	0.87	0.15		ppbV	1	4/1/2016 6:15:00 户M	
Tetrachloroethy		< 0.15	0.15		ppb∨	1	4/1/2016 6:15:00 PM	
trans-1,2-Dichic	proethene	< 0.15	0.15		ppbV	1	4/1/2016 6:15:00 PM	
Trichloroethene	9	< 0.15	0.15		ррЬ∨	1	4/1/2016 8:15:00 PM	
Vinyl chloride		0.72	0.15		ppbV	1	4/1/2016 6:15:00 PM	
Surr: Bromof	luorobenzene	102	70-130		%REC	1	4/1/2016 6:15:00 PM	

Qualifiers:

- ** Reporting Limit
- в Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- Non-routine analyte, Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits S
- Results reported are not blank corrected .
- Ε Value above quantitation range
- Analyte detected at or below quantitation limits J
- ND Not Detected at the Reporting Limit Page 7 of 9

Centek Laboratories

Date: 26-Apr-16

..... Client Sample ID: 1770-SV1-2 LaBella Associates, P.C. CLIENT: Tag Number: 89,1166 C1603076 Lab Order: Collection Date: 3/21/2016 Emerson Landfill Project: Matrix: AIR Lab ID: C1603076-007A DF Date Analyzed **Limit Qual Units Result Analyses Analyst: RJP TO 15

1UG/M3 BY METHOD TO15		10-15	•		Analysis Nor
1,1,1-Trichloroethane	< 0.62	0.62	ug/m3	1	4/1/2016 6:15:00 PM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 6:15:00 PM
1.1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 6:15:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 6:15:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 6:15:00 PM
cis-1,2-Dichloroethene	3.4	0.59	ug/m3	1	4/1/2016 6:15:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 6:15:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 6:15:00 PM
Trichloroethese	< 0.81	0.81	ug/m3	1	4/1/2016 6:15:00 PM
Vinyl chloride	1.8	0.36	ug/m3	1	4/1/2016 6:15:00 PM

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

E Value above quantitation range

.

- 3 Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 9

Centek Laboratories

Page 32 of 245

Date: 26-Apr-16

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P.C. C1603076 Emerson Landfill C1603076-008A				nt Sample ID: Tag Number: ollection Date: Matrix:	131,29 3/21/2	97
Analyses		Resuit	**Limit Q	Qual U	Inits	DF	Date Analyzed
FIELD PARAMETERS			FLD)			Analyst:
Lab Vacuum In		-7		"}	-lg		3/29/2016
Lab Vacuum O		-30		"}	Hg		3/29/2016
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC			TO-15				Analyst: RJP
1.1.1-Trichloroe		< 0.15	0.15	ą	рbV	1	4/1/2016 6:15:00 AM
1,1-Dichloroeth		< 0.15	0.15	p	ρbV	1	4/1/2016 6:15:00 AM
1.1-Dichloroeth		< 0.15	0.15	р	pbV	1	4/1/2016 6:15:00 AM
Chloroethane		< 0.15	0.15	q	ρbV	1	4/1/2016 6:15:00 AM
Chloromethane	*	0.90	0.15	р	рbV	1	4/1/2016 6:15:00 AM
cis-1,2-Dichloro		0.23	0.15	p	νσq	1	4/1/2016 6:15:00 AM
Tetrachloroethy		< 0.15	0.15	p	νdq	1	4/1/2016 6:15:00 AM
trans-1,2-Dichl		< 0.15	0.15	P	νdq	1	4/1/2016 6:15:00 AM
Trichloroethene		< 0,040	0.040	\$	ıpbV	1	4/1/2016 6:15:00 AM
Vinyl chloride	-	0.22	0.040	P	Vdq	1	4/1/2016 6:15:00 AM
-	fluorobenzene	128	70-130	9	%REC	1	4/1/2016 6:15:00 AM

Qualifiers:

- ** Reporting Limit
- Analyte detected in the associated Method Blank 8

- Holding times for preparation or analysis exceeded Н
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits S

- , Е Value above quantitation range
- Analyte detected at or below quantitation limits J

ND Not Detected at the Reporting Limit

Page 8 of 9

Centek Laboratories

Page 33 of 245

Trichloroethene

Vinyt chloride

Date: 26-Apr-16

1

1

ug/m3

ug/m3

CLIENT:	LaBella Associates, P.C.				lient Sample ID:		
Lab Order:	C1603076				Tag Number:	131,29	97
Project:	Emerson Landfill		Collection Date:				2016
Lab ID:	C1603076-008A				Matrix:		
Analyses		Result	**Limit		Units	DF	Date Analyzed
11G/M3 W/ 0.2	25UG/M3 CT-TCE-VC		тс)-15			Analyst: RJF
1.1.1-Trichloro		< 0.82	0.62		ug/m3	1	4/1/2016 6:15:00 AM
1 1-Dichloroeth		< 0,61	0.61		ug/m3	1	4/1/2016 6:15:00 AM
1.1-Dichloroeth		< 0.59	0.59		ug/m3	1	4/1/2016 6:15:00 AM
Chloroethane		< 0.40	0.40		ug/m3	1	4/1/2016 6:15:00 AM
Chloromethane	3	1.9	0.31		ug/m3	1	4/1/2016 6:15:00 AM
cis-1.2-Dichlor	•	0.91	0.59		ug/m3	1	4/1/2016 6:15:00 AM
Tetrachloroeth		< 1.0	1.0		ug/m3	1	4/1/2016 6:15:00 AM
trans-1,2-Dichi	•	< 0,59	0.59		ug/m3	1	4/1/2016 6:15:00 AM
cracio (jar deretti							4/4/2016 C.16-DO AM

0.21

0.10

< 0.21

0.56

Qualifiers:	*** B H JN	Reporting Limit Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Non-routine analyte. Quantitation estimated, Spike Recovery outside accepted recovery limits	E J	Results reported are not blank corrected Value above quantitation range Analyte detected at or below quantitation limits Not Detected at the Reporting Limit Page 8 o	f 9
-------------	---------------------	---	--------	---	-----

Centek Laboratories

4/1/2016 6:15:00 AM

4/1/2016 6:15:00 AM

Date: 26-Apr-16

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P.C C1603076 Emerson Landfill C1603076-009A			C	lient Sample 1D: Tag Number: Collection Date: Matrix:	188,30 3/21/2	08
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	FTFRS		F1	-D			Analyst:
Lab Vacuum In		-4			"Hg		3/29/2016
Lab Vacuum O	ut	-30			"Hg		3/29/2016
1UG/M3 BY MI	ETHOD TO15		тС	-15			Analyst: RJP
1.1.1-Trichloroe	_	0.17	0.15		ррв∨	1	4/1/2016 6:54:00 PM
1.1-Dichloroeth	lane	< 0.15	0.15		ppbV	1	4/1/2016 6:54:00 PM
1 1-Dichloroeth		< 0.15	0.15		ppbV	1	4/1/2016 6:54:00 PM
Chloroethane		< 0.15	0,15		ppbV	1	4/1/2016 6:54:00 PM
Chloromethane		< 0.15	0.15		ναqq	1	4/1/2016 6:54:00 PM
cis-1,2-Dichlord		< 0.15	0.15		ppbV	1	4/1/2016 6:54:00 PM
Tetrachioroethy		< 0.15	0.15		ррЬV	1	4/1/2016 6:54:00 PM
trans-1,2-Dichl		< 0.15	0.15		ppbV	1	4/1/2016 6:54:00 PM
Trichtoroethene		4.2	0.75		νdqq	5	4/2/2016 4:03:00 PM
Vinyl chloride		0.61	0.15		ppbV	1	4/1/2016 6:54:00 PM
	fluorobenzene	92.0	70-130		%REC	1	4/1/2016 6:54:00 PM

Qualifiers:

** Reporting Limit

Analyte detected in the associated Method Blank в

......

- Holding times for preparation or analysis exceeded 14
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits 8

E Value above quantitation range

- Analyte detected at or below quantitation limits 3
- ND Not Detected at the Reporting Limit

Page 9 of 9

Centek Laboratories

Page 35 of 245

4 . 1		Dessit	**[:			ňπ	Data Applyzad
Lab ID:	C1603076-009A				Matrix:		
Project:	Emerson Landfill				Collection Date:	3/21/201	6
Lab Order:	C1603076				Tag Number:	188,308	
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	1770-SV	1-3
······································				• • • • • • • • • • • • • • • • • • • •			·····

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	0.93	0.82	ug/m3	1	4/1/2016 6:54:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 6:54:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 6:54:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 6:54:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 6:54:00 PM
cis-1,2-Dichloroethene	< 0,59	0.59	ug/m3	1	4/1/2016 6:54:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 6:54:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	t	4/1/2016 6:54:00 PM
Trichloroethene	23	4.0	ug/m3	5	4/2/2016 4:03:00 PM
Vinyl chloride	1.8	0.38	ug/m3	1	4/1/2016 6:54:00 PM
•			•		

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits

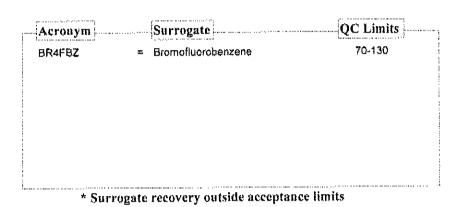
ND Not Detected at the Reporting Limit

Page 9 of 9

Centek Laboratories

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15


QUALITY CONTROL SUMMARY

Date: 26-Apr-16

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:	LaBella Associates, P.C	2.
Work Order:	C1603076	
Project:	Emerson Landfill	N. e . A. A.
Test No:	TO-15	Matrix: A
Sample ID	BR4FBZ	
ALCSIUG-033116	s 115	
ALCSIUG-040110	5 116	
ALCSIUG-04021	5 112	
ALCSIUGD-0331	16 I 18	
ALCS1UGD-0401	16 108	
ALCS1UGD-0402	16 106	
AMB1UG-033116	88.0	
AMB1UG-040116	91.0	
AMB1UG-040216	90.0	
C1603075-004A N	4S 116	
C1603075-004A N	4SD 107	
C1603076-001A	110	
C1603076-002A	88.0	
C1603076-003A	117	
C1603076-004A	104	
C1603076-005A	108	
C1603076-006A	126	
C1603076-007A	102	
C1603076-008A	128	
C1603076-009A	92.0	

I

Tune File : C:\HPCHEM\1\DATA2\AN033104.D Tune Time : 31 Mar 2016 12:19 pm

Daily Calibration File : C:\HPCHEM\1\DATA2\AN033104.D

	(EFB)	(IS1) 21478	(IS2) 46868	(IS3) 36495	
File Sample	DL Surrogate Recovery %			Responses	
AN033105.D ALCS1UG-033	116 115	20235	53595	32893	
AN033106.D AMB1UG-0331	.16 88	20032	47930	44161	
AN033129.D C1603076-00	110 IIO	17319	46632	44330	
AN033130.D C1603076-00	94A 104	16741	43872	44391	
AN033131.D C1603076-00		18826	58984	31805	
AN033132.D C1603076-00	8A 128	20410	65363	31903	
AN033133.D ALCS1UGD-03	3116 118	22710	52964	34225	
	a shack to faile oritori				

t - fails 24hr time check * - fails criteria

Created: Tue Apr 26 15:59:27 2016 MSD #1/

Tune File : C:\HPCHEM\1\DATA\AN040102.D Tune Time : 1 Apr 2016 12:06 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AN040102.D

	(BFB)	(IS1) 20214	(IS2) 45908	(IS3) 32719	
Sample	DL Surrogate Recovery %	Internal	Standard	Responses	

File Sample DL Surrogate Recovery % Internal Standard Responses	
AN040103.D ALCSIUG-040116 116 20858 46019 31397	
AN040104.D AMBIUG-040116 91 18252 46023 41257	
AN040109.D C1603076-003A 117 24896 74463* 58495	;*
AN040109,D C1603076-005A 108 26433 96981* 45080)
AN040110.D C1603076-002A 88 26432 B9168* 49313	*
AN040111.D C1603076-007A 102 27896 94901* 52262	•
AN040112.D C1603076-009A 92 28019 97134* 49886	
AN040125.D ALCS1UGD-040116 108 20437 45874 33404	

t - fails 24hr time check * - fails criteria

Created: Tue Apr 26 16:00:31 2016 MSD #1/

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AN040203.D Tune Time : 2 Apr 2016 12:08 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AN040203.D

(BFB)	(151)	(IS2)	(IS3)
C	23340	60425	46554

File	Sample		Surrogate				Standard Res	F	
	ALCS1UG-04021		112			21348	52201	44220	
AN040205.D	AMB1UG-040216		90	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1.7717	49878	41390	
AN040209.D	C1603076-009A	5x	113			18360	53965	40273	~~~~
AN040224.D	ALCS1UGD-0402	16	106			16685	39568	28434	
t - fa	ils 24hr time	che	$\mathbf{c}\mathbf{k} + \mathbf{f}$	ails crit	eria		*		

Created: Tue Apr 26 16:01:33 2016 MSD #1/

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AN040402.D Tune Time : 4 Apr 2016 9:37 am

Daily Calibration File : C:\HPCHEM\1\DATA\AN040402.D

			(BFB)	(IS1) 22087	(182) 49561	(IS3) 31552	
File	Sample	DL	Surrogate Recovery %	Internal	Standard Resp	onses	-
AN040403.I	ALCS1UG-04043		1.00	23166	49402	37389	
AN040404.1) AMB1UG-040416	5	82	21865	49252	42435	
AN040406.E	C1603076-003	A RE	105	19294	43636	39672	
AN040407.0	0 C1603076-005#	A RE	121	26358	86314*	51558*	
AN040408.1	C1603076-002	A RE	120	28253	94627*	56547*	
AN040409.E	C1603076-0077	, RE	100	28391	97706*	57357*	
t - fa	ils 24hr time	chec	k * - fails criteria				

Created: Tue Apr 26 16:02:37 2016 MSD #1/

						AN	ALYTICAL	, QC SUM	ANALYTICAL QC SUMMARY REPORT	X
CLIENT: Work Order: Project:	LaBella Associate C1603076 Emerson Landfill	LaBella Associates, P.C. C1603076 Emerson Landfill					Ĕ	TestCode: 0.	0.2SCT-TCE-VC	
110	AMB1UG-033116	Sampfype: MBLK	TestCode	TestCode: 0.25CT-TCE-	Units: ppbV	- d	11		RunNo: 10817	
Client IU: 22222 Analyte		Batch ILL: K1U81/ Result	PQi.	restruct 10-15 QL SPK vaiue SPF	SPK Ref Val	KREC Low	Analysis date: 3031/2016 Lowlimit Highlimit RI	le RPD Ref Val	sequo: 12/1995 %RPD RPDLimit	Quai
1,1,1-Frichloroethane	ne	< 0.15	0.15							
1,1-Dichloroethane	_	< 0.15	0.15							
1, 1-Dichkoroethene		< 0.15	0.15							
Chloroethane		< 0.15	0,15							
Chioromelinare		< 0.15	0.15							
cis-1,2-Dichloroethene	ene	< 0.15	0.15							
Tetrachloroethylene	Ð	< 0.15	0.15							
frans-1,2-Dichloroethene	thene	< 0.15	0.15							
Trichloroethene		< 0.040	0.040							
VIIIY! Chioride		< 0.040	0-0-0-0							
Sample ID AMB1UG-040116	UG-040116	SampType: MBLK	TestCode	TestCode: 0.25CT-TCE-	Units: ppbV	۵.	Prep Date:		RunNo: 10818	
Client ID: ZZZZ		Batch ID: R10818	TestNo	FestNo: TO-15		Analy	Analysis Date: 4/1/2016	G	SeqNo: 127112	
Analyte		Result	PQL	SPK value SPI	SPK Ref Vai 🦷 %F	%REC Low	EowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Quai
1,1,1-Trichioroethane	ne	< 0.15	0.15							
1,1-Dichloroethane		< 0.15	0.15							
1,1-Dichloroethene		< 0.15	0.15							
Chloroethane		< 0.15	0.15							
Chloromethane		< 0.15	0.15							
cis-1,2-Dictrioroethene	ene	< 0.15	0.15							
Tetrachioroethylene	Ð	< 0.15	0.15							
trans-1,2-Dichloroethene	alhene	< 0.15	0.15							
Trichloroethene		< 0.040	0.040							
Qualifiers: .	Results repor	Results reported are not blank corrected		- }	Vatue above quantilation range		H H	folding times for p	Holding times for preparation or analysis excorded	ded
5	Analyte dete	Analyte detected at or below quantitation limits	imits	ND Not Detect	Not Detected at the Reporting Limit	it	R	PD outside accept	RPD outside accepted recovery limits	
	•									

Centek Laboratories

Page 43 of 245

CLIENT: Work Order:	LaBella As C1603076	LaBella Associates, P.C. C1603076							
Project:	Emerson Landfill	andfill				Te	stCode: 0	TestCode: 0.25CT-TCE-VC	
Sample ID AMB1UG-040116	1UG-040116	SampType: MBLK	TestCode: 0,25CT-TCE- Units: ppbV	ts: ppbV	Ъщ	Prep Date:		RunNo: 10818	
Client ID: 22722	И	Batch ID: R10818	TestNo: TO-15		Analys	Analysis Date: 4/1/2016		SeqNo: 127112	
Analyte		Resul	P.C.L. S.P.K value S.P.K Ref Val		"REC LOM	%REC LowLimit HighLimit RPD Ref Val	Ref Vai	%RPD RPDLimit	Qual
Vinyt chloride		< 0.040	0.040						

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H 2 E Value above quantitation range ND Not Detected at the Reporting Limit Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits Results reported are not blank corrected - s . Qualifiers:

Centek Laboratories

Page 44 of 245

Page 2 of 3

TestCode TestCode: 1upM3 T015 Units: pobV Preo Date:	TestCode: 100M3 TO35
	RunNo: 10819
Analysis Date: 4/2/2016	SeqNo: 127124
SPK Ref Vat %REC LowLimit HighLimit RPD Ref Val	'al %RPD RPDLimit Qual
	,

Page 3 of 3 Holding times for preparation or analysis exceeded RPD outside accepted recovery limits E a E Value above quantifation range
 ND Not Detected at the Reporting Limit Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits Results reported are not blank corrected Qualifiers:

	LaBella Associates, P.C.									
Work Urger: CIOUUU0 Project: Emerson Landfill	andfill						Te	TestCode: 0	0.25CT-TCE-VC	
Sample ID ALCS1UG-033116	SampType: LCS	TestCod	de: 0.25CT-TCE-	Units: ppbV		Prep Date			RunNo: 10817	
Client ID: ZZZZZ	Batch ID: R10817	TesIN	lo: TO-15		-	Analysis Date:	: 3/31/2016		SeqNo: 127096	
Analyte	Result	POL	SPK value SP	SPK Ref Val	%REC	towimit	HighLimit R	RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichioroethane	1.250	0.15	-	0	125	70	130			
1,1-Dichloroethane	1.120	0.15	۴	0	112	70	130			
1,1-Dichlomethene	1.120	0.15	۲	0	112	70	130			
Chloroethane	1.220	0.15	۲	0	122	70	130			
Chloromethane	1.230	0.15	,	Ð	123	70	130			
cis-1,2-Dichloroethene	1.060	0.15	4	0	106	70	130			
Tetrachiloroetinylene	0.9200	0.15	+-	0	92.0	22	130			
trans-1,2-Dichloroethene	1.050	0.15	₽-	0	105	70	\$30			
Trichloroethene	1.110	0.040	4m	0	111	70	130			
Viryl chloride	1.030	0.040	\$~	0	109	70	130			
Sample ID ALCS1UG-040116	SampType: LCS	TestCo	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date;			RunNo: 10818	
Client ID: ZZZZ	Batch ID: R10818	Test	TestNo: TO-15			Analysis Dale:	×: 4/1/2016		SeqNo: 127113	
Analyte	Result	Par	SPK value SP	SPK Ref Val	%REC	LowLinit	Highl.imit R	RPD Ref Val	%RPO RPDLimit	Quaf
1,1,1-Trichioroethane	1.290	0.15	-	0	129	70	ŝ			
1,1-Dichloroethane	1.040	0.15	F	0	104	20	130			
1, t-Dichloroethene	1.100	0.15	£	0	110	02	130			
Chloroethane	1.130	0.15	4	o	113	92	130			
Chloromethane	1.230	0.15	ų	Ö	123	70	130			
cis-1,2-Dichloroethene	0.9800	0.15	44.5	Û	98.0	70	130			
Tetrachloroethylene	0.8800	0.15	y ear	0	88.0	70	130			
trans-1,2-Dichloroethene	0,99800	0,15	4	¢	99.0	70	130			
Trichloroethene	1.230	0.040		O	123	70	130			
Qualifiers: Results repo	Results reported are not blank corrected		E Value abov	Vatue above quantitation range	3		H Ho	ding times for	Holding times for preparation or analysis exceeded	ded
J Analyte dete	Analyle detected at or below quantitation limits	mits	ND Not Detect	Not Detected at the Reporting Limit	g Limit		R RP	D outside acre	RPD outside accepted recovery limits	
S Spike Recov	Spike Recovery outside accepted recovery limits	limits								() · · · ·

Centek Laboratories

Page 46 of 245

Date: 26-Apr-16

CENTEK LABORATORIES, LLC

Territ

CLIENT: Work Order:	LaBella As C1603076	LaBella Associates, P.C. C1603076												
Project:	Emerson Landfill	andfill									TestCode: 0.25CT-TCE-VC	0.25CT-TC	E-VC	
Sample ID ALCS1UG-040116 SampType: LCS Client ID: ZZZZ Batch ID: R108	11UG-040116 Z	SampType: LCS Batch ID: R10818	CS 10818	TestCod	TestCode: 0.25CT-TCE- Units: ppbV TestNo: TO-15	⊐ ⊎	lits: ppbV		Prep Date: 4/1/2016	le: 4/1/20	9	RunNo: 10818 SeqNo: 127113	0618 27113	
Analyte		Ľ.	Result	PQL	SPK value SPK Ref Val	SPK R	lef Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	" "RPD	%RPD RPDLimit Qual	Qual
Vinyl chloride			1.100	0.040	-		0	110	70	130				

Centek Laboratories

 E Value above quantitation range H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit R RPD outside accepted recovery fimits Page 2 of 3
E Value above quantitation range ND Not Detected at the Reporting Limit
Qualifiers: Results reported are not blank corrected J Analyte detected at or befow quantitation limits S Spike Recovery outside accepted recovery limits
Qualificrs: J S
245

CLIENT: LaBella Associate Work Order: C1603076 Project: Emerson Landfill	LaBella Associates, P.C. C1603076 Emerson Landfill						TestCode: lugM3_T015	1ugM3	TOI	10	
Sample ID ALCS1UG-040216 Cilent ID: 22222	SampType: LCS Batch ID: R10819	TestCo	stCode: 1ugM3_T0 TestNo: T0-15	TestCode: fugM3_T015 Units: ppbV TestNo: TO-15		Prep Date: Anatysis Date: 4/2/2016	≍ ¥. 4/22016	RunN SeqN	RunNo: 10819 SeqNo: 127125	9 25	
Analyte	Resuft	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val		RPD	%RPD RPDLimit	Qua
1, f, 1-Trichloroethane	1.290	0,15	-	0	129	02	130				
1,1-Dichloroethane	1.170	0.15	4	0	117	70	130				
1,1-Dichlorcethene	1.200	0.15		0	120	70	130				
Chloroethane	1.230	0.15		0	123	70	130				
Chloromethane	1.290	0.15	*	0	129	70	130				
cis-1,2-Dichloroethene	1.170	0.15	•	0	117	70	130				
Tetrachloroethylene	0.7800	0.15	L	0	78.0	70	130				
trans-1,2-Dichloroethene	1.180	0.15	-	0	118	70	130				
Trichloroetheng	1.260	0.15	-	٥	126	70	130				
Vinyl chloride	1.140	0.15	-	0	114	70	130				

J Analyte detected at or below quantilation finits ND Not Detected at the Reporting Limit	Qualifiers:	•	Qualifiers: Results reported are not blank corrected E Value above quantitation range	E Vatue atore quantitation range	Helding times for preparation or analysis exceeded
		•	Analyte detected at or below quantitation limits	ND Not Detected at the Reporting Limit	R RPD outside accepted recovery limits

CENTEK LABORATORIES, LLC	DRATORIES, L				~~~	ANALY	TICAI	ANALYTICAL QC SUMMARY REPORT	MMARY	REPOH	κT
	LaBella Associates, P.C.										
Project: Emerson Landfill	ndfill						Ľ	TestCode:	0.25CT-TCE-VC	E-VC	
Sample ID ALCS1UGD-033116	SampType: LCSD	TestCor	FestCode: 0.25CT-TCE-	Units: ppbV		Prep Date			RunNo: 10	10817	
Client ID: ZZZZ	Batch ID: R10817	Test	Testino: TO-15			Anatysis Date:	e: 4/1/2016	9	SegNo: 127097	7097	
Analyte	Result	POL	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	QdY%	RPOLimit	Qual
1,1,1-Trichloroethane	1.280	0.15	-	9	128	70	130	1.25	2.37	99	
1,1-Dichloroethane	1.040	0.15	F	0	104	70	130	1.12	7.41	30	
1,1-Dichloroethene	1.120	0.15	۲	0	112	70	130	1.12	0	30	
Chloroethane	1.250	0.15	-	0	125	02	130	1.22	2.43	30	
Chloromethane	1.210	0.15	*-	0	121	02	130	1.23	1 <u>7</u>	30	
cis-1,2-Dichloroethene	1.010	0.15	***	o	101	70	130	1.05	4.83	30	
Tetrachioroetinylene	0.006.0	0.15	•	Ð	90.06	20	130	0.92	2.20	30	
trans-1,2-Dichloroethene	1.000	0.15	ψu	0	6	20	130	1.05	4.88	30	
Trichloroethene	1.150	0.040	Yun	0	115	02	130	1.11	3,54	30	
Vinyl chloride	1.050	0.040	4	ð	105	70	130	1.09	3.74	39	
Sample ID ALCS1UGD-040116	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:	e:		RunNo: 10818	818	
Client ID: ZZZZ	Batch ID: R10818	Test	TestNo: TO-15			Analysis Dale:	le: 4/2/2016	16	SeqNo: 127114	7114	
Analyte	Result	PQL	SPK value St	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	СЧЯЖ	RPDLimit	Quaf
1, f.,1-Trichloroethane	1.280	0.15	-	0	128	02	130	1.29	0.778	30	
1, f-Dichkoroethane	1.040	0.15	~	0	험	70	130	1.04	0	30	
1,1-Dichloroethene	1,100	0.15	**	o	110	70	130	1.1	0	30	
Chloroethane	1.240	0.15	~ ~	0	124	70	130	1.†3	9.28	33	
Chloromethane	1.230	0.15	ψm.	0	123	70	130	1.23	0		
cis-1,2-Dichloroethene	0.9400	0.15	* ***	0	94.0	ę.	27	0.98	4.17		
Tetrachioroethylene	0.8300	0.15	•	0	83.0	70	130	0.33	5.85		
Irans-1,2-Dichloroethene	0.9600	0.15	-	0	96.0	70	130	0.99	3.08	8	
Trichloroethene	1.210	0.040	•	¢	124	70	130	1.23	1.64	30	
Qualifiers: Results report	Results reported are not blank corrected		E Value abo	Value above quantitation range	35		Н	Holding times fe	Holding times for preparation or analysis exceeded	analysis excea	<u>s</u>
 Analyte detect 	Analyte detected at or below quantitation limits	mits	ND Not Detec	Not Detected at the Reporting Limit	ig Limit		æ	RPD outside act	RPD outside accepted recovery limits	mits	
S Spike Rusove	Spike Rusovery outside accepted recovery limits	láméts								•	Page 1 of 3

Date: 26-Apr-16

Centek Laboratories

। পান্ধু

Page 49 of 245

Page 1 of 3

Work Urder: U1603 Project: Emers	C1603076 Emerson Landfill					Ц Ц	TestCode: 0.	0.25CT-TCE-VC	E-VC	
Sample IO ALCS1UGD-040116 Client ID: ZZZZZ	D116 SampType: LCSD Batch ID: R10818	TestCode: 0.25CT-TCE- TestNo: TO-15	E- Units: ppbV	1	Prep Date: Analysis Pate: 4/2/2018	Shacich		RunNo: 10818 Servic: 127114	118 114	
	Result	a	SPK Ref Val	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LowLimit HighLinit RPD Ref Val	- HighLimit F	PD Ref Val	Gda%	RPDLimit	Qual
Vinyl chłoride	1.070 1	C 040	0	107	Ŕ	8	T.	9 2	R	

Centek Laboratories

Page 50 of 245

Page 2 of 3

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

x ×

E Value above quantitation range ND Not Detected at the Reporting Limit

> Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits

Qualifiers:

Results reported are not blank corrected

Work Order: C1603076											
Project: Emerson Landfill	andfill						Ē	TestCode: 1ugM3_T015	ugM3_T01	5	
Sample ID ALCS1UGD-040216 SampType: LCSD	SampType: LCSD	TestCor	je: 1ugM3_T(TestCode: 1ugM3_TO15 Units: ppbV		Prep Date:	ŭ		RunNo: 10819	19	
Client ID; ZZZZZ	Batch ID: R10819	Test	TestNo: TO-15			Analysis Date: 4/3/2016	e: 4/3/201(60	SeqNo: 127130	130	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Vai	%REC	LowLimit	Highlimit	LowLinit HighLimit RPD Ref Val	QGA%	RPDLimit	Qual
1,1,1-Trichtoroethane	1.300	0.15	-	0	130	Q.	130	1.29	0.772	8	
f,1-Dichloroethane	1.170	0.15	-	0	117	70	130	1.17	0	30	
f,1-Dichloroethene	1.110	0.15	-	0	111	70	130	1,2	7.79	30	
Chloroethane	1.090	0.15	-	Ģ	109	70	130	1.23	12.1	30	
Chloromethane	1.190	0.15	-	o	119	70	130	1.29	8.06	30	
cis-1,2-Dichlaroethene	1.110	0.15	-	0	111	20	1 30	1.17	5.26	30	
Tetrachioroethylene	0.8900	0.15	-	0	89.0	70	130	0.78	13.2	30	
(rans-1,2-Dichiorcethene	1.150	0.15	-	0	115	70	130	1.18	2.58	30	
Trichloroethene	1.220	0.15	+	0	122	70	130	1.26	3.23	30	
Vinyi chloride	1.220	0.15	*	0	122	70	130	1.14	6.78	30	

Page 3 of 3 Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H & Value above quantitation range
 ND Not Detected at the Reporting Limit Value above quantitation range Spike Recovery outside accepted recovery limits Analyte detected at or below quantitation limits Results reported are not blank corrected - 0 Qualifiers:

LaBella Associates, P.C.

CLIENT:

- Ce	Мате	Amount	1DL#1	IDL#2	IDL#3	IDL#4		IDL#6	IDL#7	Average	StdDev	%Rec	DL
ent	Propylene	0.15	0.16	0.15	0.16	0.14	0.16	0.14	0.16	0.153	0.010	98.1	0.030
ek	Freon 12	0.15	0.18	0.17	0.17	0.17	0.18	0.17	0.17	0.173	0.005	86.8	0.015
	Chloromethane	0,15	0.19	0.18	0.16	0.18	0.18	0.2	0.17	0.180	0.013	83.3	0.041
ah	Freon 114	0.15	0.18	0.17	0.17	0.17	0.18	0.17	0.18	0,174	0.005	86.1	0.017
nor	Vinyl Chloride	0,15	0.17	0.16	0,16	0.15	0.16	0.15	0.15	0.157	0.008	95.5	0.024
at	Butane	0.15	0.18	0.16	0.17	0.18	0.18	0.19	0.19	0.179	0.011	84.0	0.034
ori	1,3-butadiene	0.15	0.21	0,2	0.2	0.22	0.17	0.18	0.23	0.201	0.021	74.5	0.066
es	Bromomethane	0.15	0.18	0,2	0.21	0.18	0.22	0.16	0.21	0.194	0.021	77.2	0.068
	Chloroethane	0.15	0.19	0.19	0.16	0.19	0.19	0.18	0.19	0.184	0.011	81.4	0.036
	Ethanol	0.15	0.16	0.16	0.18	0.17	0.19	0.18	0.19	0.176	0.013	85.4	0.040
	Acrolein	0.15	0.22	0.17	0.19	0.16	0.18	0.21	0.17	0,186	0.022	80.8	0.070
	Vinyl Bromide	0.15	0.17	0.15	0.16	0.16	0.17	0.17	0.17	0.164	0.008	91.3	0.025
	Freon 11	0.15	0.18	0.17	0.17	0.18	0.19	0.17	0.18	0.177	0.008	84.7	0.024
	Acetone	0.15	0.2	0.17	0.18	0.15	0.15	0.18	0.14	0.167	0.021	89.7	0.067
	Pentane	0.15	0.18	0.17	0.18	0.16	0.17	0.2	0.16	0.174	0.014	86.1	0.044
	isopropyl alcohol	0.15	0.22	0.2	0,19	0.2	0.19	0.21	0.19	0.200	0.012	75.0	0.036
	1,1-dichloroethene	0.15	0.2	0.17	0.19	0.19	0.19	0.18	0.18	0.186	0.010	80.8	0.031
	Freon 113	0.15	0.17	0.16	0.18	0.18	0.18	0.17	0.17	0.173	0.008	86.8	0.024
	t-Butyl alcohol	0.15	0.21	0.2	0.2	0.21	0.2	0.2	0.18	0.200	0.010	75.0	0.031
	Methylene chloride	0.15	0.2	0.18	0.19	0,18	0.2	0.19	0.17	0.187	0.011	80.2	0.035
	Allyl chloride	0.15	0.18	0.17	0.16	0.18	0.18	0.2	0.18	0.179	0.012	84.0	0.038
	Carbon disulfide	0.15	0.2	0.17	0.19	0.19	0.2	0.18	0.19	0.189	0.011	79.5	0.034
	trans-1,2-dichloroethene	0.15	0.15	0.14	0.14	0.14	0.16	0.14	0.15	0.146	0.008	102.9	0.025
	methyl tert-butyl ether	0.15	0.14	0.14	0.14	0.13	0.15	0,14	0.13	0.139	0.007	108.2	0.022
	1,1-dichloroethane	0.15	0.17	0.15	0.16	0.15	0,17	0.16	0.16	0.160	0.008	93.8	0.026
	Vinyl acetate	0.15	0,14	0.13	0.14	0.13	0.13	0.13	0.12	0.131	0.007	114.1	0.022
	Methyl Ethyl Ketone	0,15	0,17	0.17	0.16	0.16	0.15	0.13	0,12	0.151	0.020	<u> 99.1</u>	0.061
	cis-1,2-dichloroethene	0.15	0.15	0.14	0.16	0.15	0.16	0.15	0.14	0.150	0.008	100.0	0.026
	Hexane	0,15	0.12	0.14	0.13	0.13	0.13	0.12	0.12	0.127	0.008	118.0	0.024
	Ethyl acetate	0.15	0.16	0.17	0.14	0.15	0.14	0.16	0.13	0.150	0.014	100.0	0.044
	Chloroform	0.15	0.16	0.16	0.16	0.16	0.17	0.16	0.17	0.163	0.005	92.1	0.015
F	Tetrahydrofuran	0.15	0.15	0.13	0.15	0.15	0.15	0.15	0.14	0.146	0.008	102.9	0.025
ס ראכ	1,2-dichloroethane	0.15	0.16	0.15	0.16	0.16	0.17	0.16	0.17	0.161	0.007	92.9	0.022
ae	1,1,1-trichloroethane	0.15	0.17	0.16	0.17	0.17	0.16	0.17	0.17	0.167	0.005	89.7	0.015
. 5	Cyclohexane	0.15	0.14	0,14	0.14	0.15	0.15	0.14	0.14	0.143	0.005	105.0	0.015
2 (Carbon tetrachloride	0.15	0.13	0.15	0.15	0.15	0.15	0.15	0.16	0.149	0.009	101.0	0.028
of	Benzene	0.15	0.15	0.16	0.16	0.15	0.16	0.16	0.16	0.157	0.005	95.5	0.015
24	Methyl methacrylate	0.15	0.15	0.15	0.14	0.14	0.14	0.15	0.11	0.140	0.014	107.1	0.044
5	1,4-dioxane	0.15	0.18	0.18	0.19	0.18	0.15	0.17	0.12	0.167	0.024	89.7	0.076
	Confidential											1/8	1/8/2016

Centek Laboratories

Page 52 of 245

Method TO-15A Units=ppb

1ug/M3 Detection Limit January 2016

Centek Laboratories IDL Study

	_	_	3:	<u>0</u>		. <u>co</u>	2	39	34	30	39	28	1 0	15	17	24	22	25	24	<u>1</u> 5	24	25	33	15 15	36	17	30	6	20	22	15	15	\$	22	<u> </u>	15	24	35	
[0-15A	Units=ppb		770 0 772 0	CLU'N	0.017	0.018	0.015	0.039	0.034	0.030	0.039	0.028	0.040	0.015	0.017	0.024	0.022	0.025	0.024	0.0	0.024	0.0	0.039	0.015	0.036	0.017	0:030	0.018	0.026	0.022	0.015	0.015	0 0	0.022	0.017	0.015	0.024	0.035	0.017
Method TO-15A	μ Π	%Kec	99.1 11.0	10.0	91.3	93.8	112.9	105.0	92.9	105.0	86.8	89.0	91.3	92.1	91.3	92.1	87.5	111.7	121.4	140.0	122.1	96.3	122.1	118.0	112.4	91.3	122.1	115.4	125.0	116.7	122.1	109,4	104.0	123,5	129.6	109.4	140.0	118.0	91.3
		Stabev	0.007	0.005	0.005	0.006	0.005	0.013	0.011	0.010	0.013	0.009	0.013	0.005	0.005	0.008	0.007	0.008	0.008	0.005	0.008	0.008	0.013	0,005	0.012	0.005	0.010	0.006	0.008	0.007	0.005	0.005	0.014	0.007	0.005	0.005	0.008	0.011	0.005
		Average	101.0	0.146	0.164	0.160	0.133	0.143	0.161	0.143	0.173	0.169	0.164	0.163	0.164	0.163	0.171	0.134	0.247	0.107	0.123	0.156	0.123	0.127	0.890	0,164	0.123	0.130	0.120	0.129	0.123	0.137	0.144	0.121	0.116	0.137	0.107	0.127	0.164
			0.0	0.15 0.15	0.16	0.16	0.13	0.16	0.17	0.15	0.15	0.18	0.14	0.17	0.17	0.17	0.17	0.13	0.25	0.11	0.12	0.16	0.11	0.13	0.9	0.16	0.11	0.13	0.11	0.13	0.12	0.14	0.16	0.13	0,11	0.13	0,1	0.12	0.16
		04111	0.0	0.12 0.14	0.16	0.17	0.13	0.14	0.18	0.14	0.18	0.17	0.17	0.16	0.17	0.17	0.18	0.14	0.25	0.1	0.13	0.17	0,12	0.13	0.89	0.17	0.13	0.12	0.13	0.13	0.12	0.13	0.15	0.12	0.11	0.14	0.12	0.14	0,16
ion Limit	016 101 #c		5 C	5 C 2 C	0,17	0.16	0.13	0.14	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.15	0.16	0.12	0.25	0,1	0.12	0.15	0.14	0.13	0.89	0.17	0,11	0.13	0.13	0.13	0.13	0.14	0.13	0.12	0.12	0,14	0,11	0.12	0.16
1ug/M3 Detection Limit	January 2016		0 0 0 0	4 U	0.16	0.15	0.14	0.14	0.15	0.13	0.18	0.18	0.17	0.16	0.16	0.17	0.18	0.14	0.23	0,11	0.11	0.15	0.14	0.12	0.87	0.16	0.13	0.14	0.12	0.12	0.12	0.13	0.15	0,12	0.12	0.14	0.11	0.11	0.17
ţuç		24.11	2 2 2 2 2	0.14	0.17	0.16	0,14	0.13	0.16	0,14	0.18	0.17	0.18	0.16	0.16	0,16	0.17	0.14	0.25	0.11	0.13	0.16	0.12	0.13	0.9	0.17	0.13	0.13	0.12	0,14	0.12	0.14	0.13	0.12	0.12	0,14	0.1	0.14	0.17
	6# IQ		2,6	0.15	0.17	0.16	0.13	0.13	0.15	0,14	0.18	0.16	0.16	0,17	0.17	0.16	0.17	0.14	0.25	0.11	0.13	0.15	0.12	0.13	0'0	0.16	0.12	0.13	0.12	0.13	0.13	0.14	0.16	0.11	0.11	0,14	0.11	0.13	0.17
			5.0	0.14	0.16	0.16	0.13	0.16	0.16	0.14	0.18	0.16	0.17	0.16	0.16	0.16	0.17	0.13	0.25	0.11	0.12	0.15	0.11	0.12	0.88	0.16	0.13	0.13	0.11	0.12	0.12	0.14	0.13	0.13	0.12	0.13	0.1	0.13	0.16
	Å mount		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.3	0.15	0.15	0.15	0,15	0.15	٩	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Centek Laboratories	IDL Study Name	2.9.4 trimothylocotono	Liz, Tannoury persons Hentane	Trichtoroethene	1,2-dichloropropane	Bromodichloromethane	cis-1,3-dichloropropene	trans-1,3-dichloropropene	1,1,2-trichloroethane	Toluene	Methyl Isobutyl Ketone	Dibromochloromethane	Methyl Butyl Ketone	1,2-dibromoethane	Tetrachloroethylene	Chlorobenzene	1,1,1,2-tetrachloroethane	Ethylbenzene	m&p-xylene	Nonane	Styrene	Bromoform	o-xylene	Cumene	Bromofluorobenzene	1, 1, 2, 2-tetrachloroethane	Propylbenzene	2-Chlorotoluene	4-ethyltoluene	1,3,5-trimethylbenzene	1,2,4-trimethylbenzene	1,3-dichlorobenzene	benzyl chloride	1,4-dichlorobenzene	1,2,3-trimethylbenzene	1,2-dichlorobenzene	1,2,4-trichlorobenzene	Naphthalene	Hexachloro-1,3-butadiene
			C	en	teł	٢L	ab	or	ate	ori	es																								F	a	ae	5	3 (

Confidential

1/8/2016

.

Page 53 of 245

ፈል	Ъ	028	030	036	038	0.036
Method TO-15A Units=ppb						
Method U	%Rec	101.4	107.7	118.6	101.4	142.9
	StdDev	0.009	0.010	0.011	0.012	0.012
	Average	0.099	0.093	0.084	0.099	0.070
	10L#7	0.1	0.09	0.08	0.09	0.06
	1DL#6	0.09	0.09	0.08	0.09	0.07
tion Limit 16	IDL#5	0.1	0.09	0.08	0.1	0.06
0.25ug/M3 Detection Limit January 2016	IDL#4	0.09	0.09	0.08	0.09	0.06
0.25u	IDL#3	0.09	0.08	0.07	0.09	0.07
	IDL#2	0.11	0.11	0.1	0.12	0.08
	IDL#1	0.11	0.1	0.1	0.11	0.09
	Amount	0.1	0.1	0.1	0,1	0.1
Centek Laboratories IDL Study	Name	Vinyl Chloride	Carbon tetrachloride	Trichloroethene	Tetrachioroethylene	Naphthalene

Confidential

Page 54 of 245

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

Centek Laboratories

Page 55 of 245

Date: 26-Apr-16

CLIENT: Lab Order:	LaBella Associates, P C1603076	.C.			lient Sample ID: Tag Number: Collection Date:	1183,	339
Project:	Emerson Landfill				Matrix:		2010
Lab ID:	C1603076-001A		.,		Matrix.		
Analyses		Result	**Limit	Qual	Units	ÐF	Date Analyzed
FIELD PARAM	ETERS		F	LD			Analyst:
Lab Vacuum In		~4			"Hg		3/29/2016
Lab Vacuum O	ut	-30			"Hg		3/29/2016
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то	-15			Analyst: RJF
1,1,1-Trichloroe	ethane	< 0.15	0.15		ppbV	1	4/1/2016 4:18:00 AM
1,1-Dichloroeth	ane	< 0,15	0.15		ppb∨	1	4/1/2016 4:18:00 AM
1.1-Dichloroeth	ene	< 0.15	0.15		ррҌ∨	1	4/1/2016 4:18:00 AM
Chloroethane		< 0.15	0.15		ppb∨	1	4/1/2016 4:18:00 AM
Chioromethane		0.60	0.15		ppb∨	1	4/1/2016 4:18:00 AM
cis-1,2-Dichloro	ethene	< 0.15	0.15		ppb∨	1	4/1/2016 4:18:00 AM
Tetrachioroethy	lene	< 0.15	0.15		ppb∨	1	4/1/2016 4(18:00 AM
trans-1,2-Dichic	proethene	< 0.15	0.15		ррб∨	1	4/1/2016 4:18:00 AM
Trichloroethene	,	< 0.040	0.040		ppb∨	1	4/1/2016 4:18:00 AM
Vinyl chloride		< 0.040	0.040		рръ∨	1	4/1/2016 4:18:00 AM
Surr: Bromof	luorobenzene	110	70-130		%REC	1	4/1/2016 4:18:00 AM

Qualifiers: ** Reporting Limit .

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 1 of 9

Centek Laboratories

Page 56 of 245

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Tetrachioroethylene

Trichloroethene

Visyl chloride

Date: 26-Apr-16

1

1

1

1

1

4/1/2016 4:18:00 AM

CLIENT:	LaBella Associates, P.	.C.		CI	ient Sample ID:	1770-1	AQ-1
Lab Order:	C1603076				Tag Number:	1183,3	339
Project:	Emerson Landfill			C	Collection Date:	3/21/2	016
Lab ID:	C1603076-001A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то)-15			Analyst: RJF
1,1,1-Trichloroe	ethane	< 0.82	0.82		ug/m3	1	4/1/2016 4:18:00 AM
1,1-Dichloroeth	ane	< 0.61	0.61		ug/m3	1	4/1/2016 4:18:00 AM
1,1-Dichloroeth	ene	< 0.59	0.59		ug/m3	1	4/1/2016 4:16:00 AM
Chioroethane		< 0.40	0.40		ug/m3	1	4/1/2016 4:18:00 AM
Chioromethane		1.7	0.31		ug/m3	1	4/1/2016 4:18:00 AM

0.59

1.0

0.59

0.21 0.10

< 0.59

< 1.0

< 0.59

< 0.21

< 0.10

ug/m3

ug/m3

ug/m3

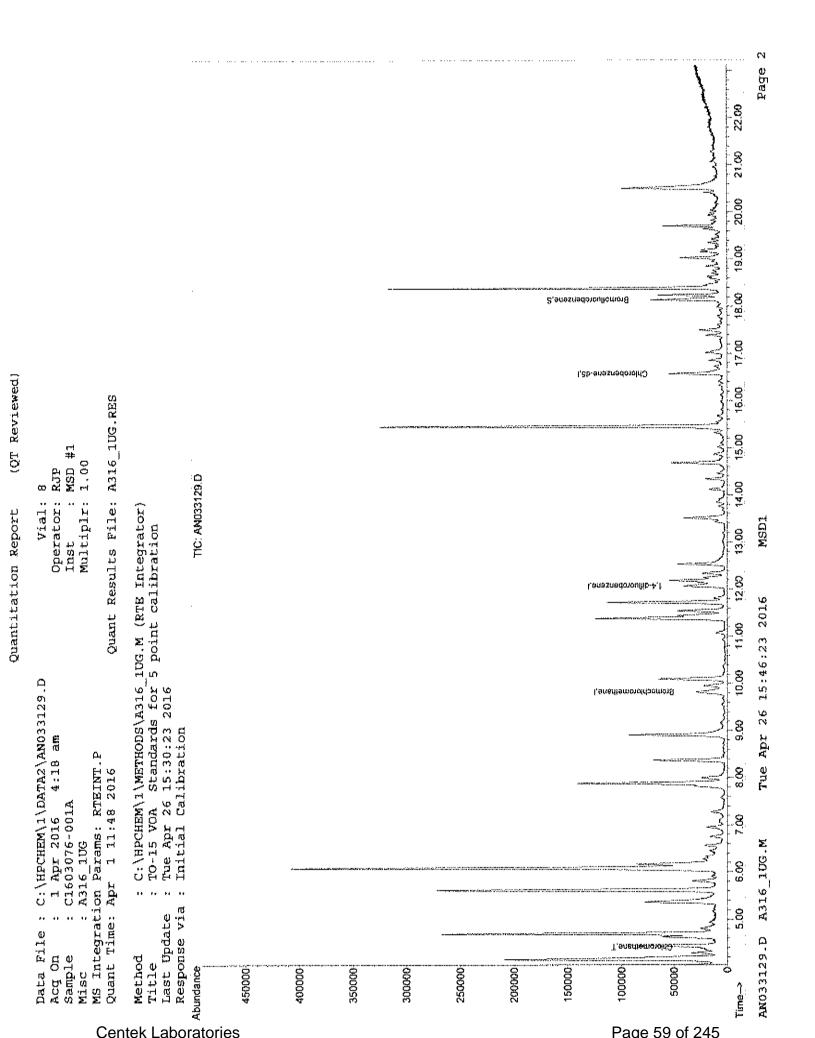
ug/m3

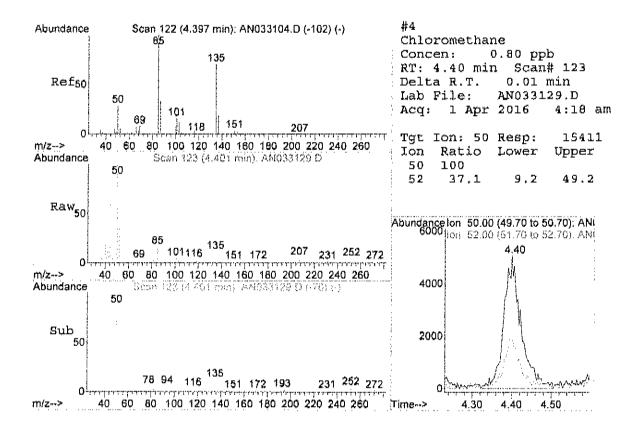
ug/m3

	•••••	
Qualifiers:	**	Reporting Limit
	в	Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range

ND


- J Analyte detected at or below quantitation limits
 - Not Detected at the Reporting Limit


Page 1 of 9

Centek Laboratories

Data File : C:\HPCHEM\1\DATA2\AN033129.D Vial: 9 Acq On : 1 Apr 2016 4:18 am Operator: RJP : C1603076-001A Sample Inst : MSD #1 Misc : A316 1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 01 11:43:13 2016 Quant Results File: A316 1UG, RES Quant Method : C:\HPCHEM\1\METHODS\A316 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) ______ 1) Bromochloromethane9.82128173191.00 ppb0.0035) 1,4-difluorobenzene12.07114466321.00 ppb0.0050) Chlorobenzene-d516.57117443301.00 ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 6) Bromofluorobenzene 18.14 95 31394 1.10 ppb Spiked Amount 1.000 Range 70 ~ 130 Recovery = 110.00% 0.00 Target Compounds Qvalue 4.40 50 15411 0.80 ppb 4) Chloromethane 85

(#) = qualifier out of range (m) = manual integration (+) \simeq signals summed AN033129.D A316_1UG.M Tue Apr 26 15:46:22 2016 MSD1

MSD1

Page 3 Page 60 of 245

Date: 26-Apr-16

CLIENT:	LaBella Associates, P.C.		(Client Sample ID:	1770-	SVI-1
Lab Order:	C1603076			Tag Number:	1179,	343
Project:	Emerson Landfill			Collection Date:	3/21/2	2016
Lab ID:	C1603076-002A			Matrix:	AIR	
Analyses		Result	**Limit Qual	Units	ÐF	Date Analyzed
	ETERS		FLD			Analyst:
Lab Vacuum In		-5		"Hg		3/29/2016
Lab Vacuum Or	ut	-30		"Hg		3/29/2016
IUG/M3 BY ME	THOD TO15		TO-15			Analyst: RJF
1,1,1-Trichloroe	thane	< 0.15	0.15	ppbV	1	4/1/2016 5:36:00 PM
1,1-Dichloroeth	ane	< 0.15	0.15	ppbV	1	4/1/2016 5:36:00 PM
1,1-Dicbloroeth	enø	< 0.15	0.15	p¢bV	1	4/1/2016 5:36:00 PM
Chloroethane		< 0.15	0.15	рръ∨	1	4/1/2016 5:36:00 PM
Chloromethane		< 0.15	0.15	ppbV	1	4/1/2016 5:36:00 PM
cis-1,2-Dichloro	ethene	< 0.15	0.15	ppbV	1	4/1/2016 5:36:00 PM
Tetrachloroethy	lene	0.77	0,15	ррЪ∨	1	4/1/2016 5:36:00 PM
trans-1,2-Dichlo	proethene	< 0.15	0.15	ppb∨	1	4/1/2016 5:36:00 PM
Trichloroethene		0.18	0.15	ppb∨	1	4/1/2016 5:36:00 PM
Vinyl chloride		0.26	0.15	рръ∨	1	4/1/2016 5:36:00 PM
Surr: Bromofi	luorobenzene	86.0	70-130	%REC	1	4/1/2016 5:36:00 PM

Qualifiers: ** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 2 of 9

Analyses		Result	**Limit			DF	Date Analyzed
Lab ID:	C1603076-002A				Matrix:		
Project:	Emerson Landfill				Collection Date:	3/21/20	16
Lab Order:	C1603076				Tag Number:	1179,34	43
CLIENT:	LaBella Associates, P.C	2.		C	lient Sample ID:	1770-S	VI-I
		······································					

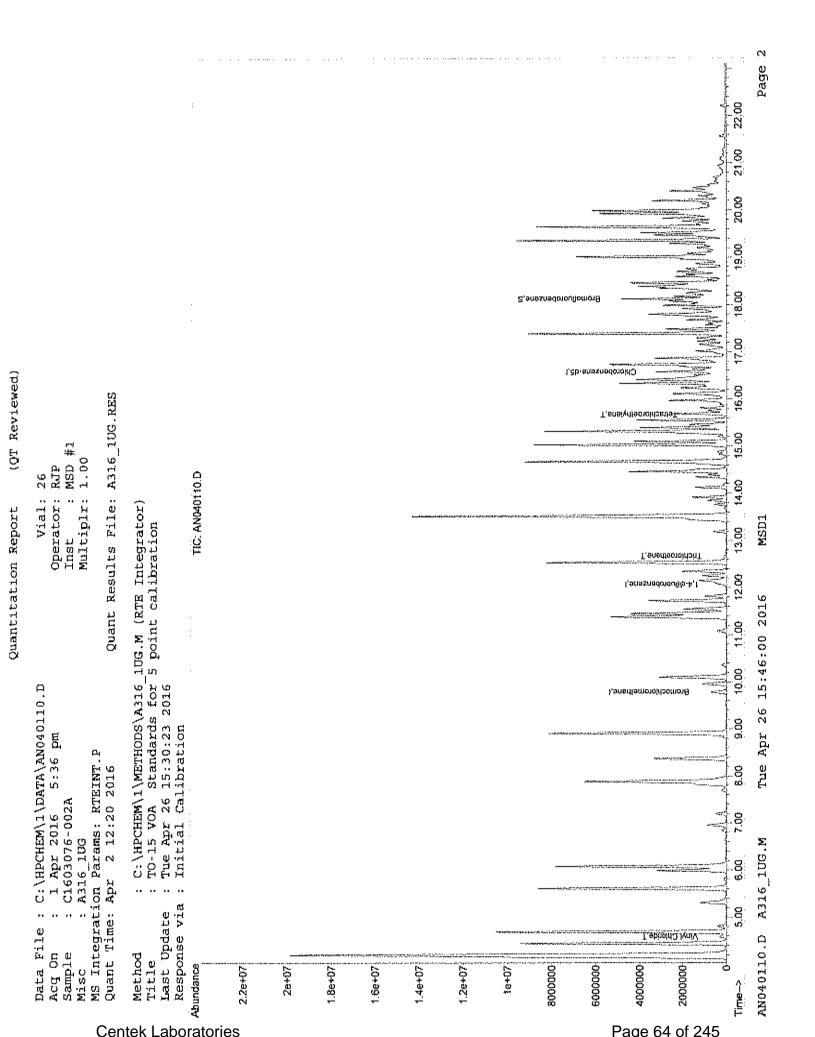
	~			
	TO-15			Analyst: RJP
< 0.82	0.82	ug/m3	1	4/1/2016 5:36:00 PM
< 0,61	0.61	ug/m3	1	4/1/2016 5:36:00 PM
< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 PM
< 0.40	0.40	ug/m3	1	4/1/2016 5:36:00 PM
< 0.31	0.31	ug/m3	1	4/1/2016 5:35:00 PM
< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 PM
5.2	1.0	ug/m3	1	4/1/2016 5:36:00 PM
< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 PM
0.97	0.81	ug/m3	1	4/1/2016 5:36:00 PM
0.66	0.38	ug/m3	1	4/1/2016 5:35:00 PM
	< 0.61 < 0.59 < 0.40 < 0.31 < 0.59 5.2 < 0.59 0.97	< 0.82 0.82 < 0.61 0.61 < 0.59 0.59 < 0.40 0.40 < 0.31 0.31 < 0.59 0.59 5.2 1.0 < 0.59 0.59 0.59 0.59 0.97 0.81	 < 0.61 < 0.61 < 0.59 < 0.59 < 0.40 < 0.40 < 0.31 < 0.59 < 0.59	< 0.62

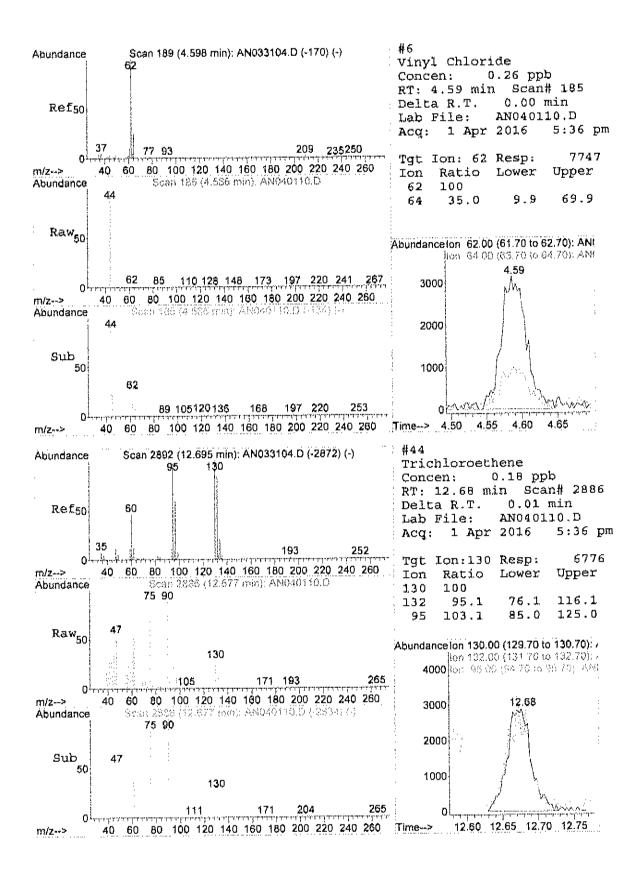
Qualifiers: ** Reporting Limit

 $\boldsymbol{\theta}$. Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

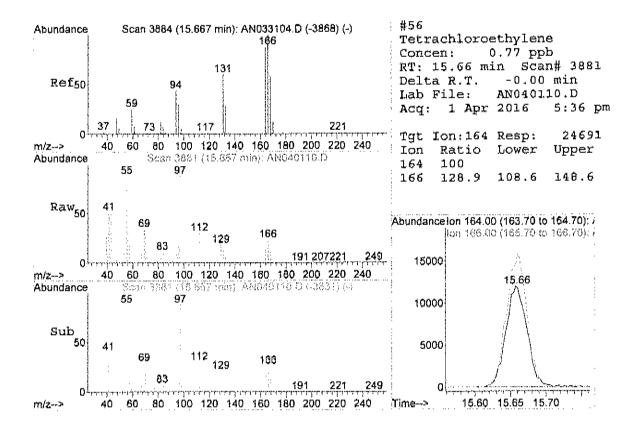

Page 2 of 9


Centek Laboratories

Page 62 of 245

.....

Data File : C:\HPCHEM\1\DATA\A Acq On : 1 Apr 2016 5:36 Sample : C1603076-002A Misc : A316_1UG MS Integration Params: RTEINT. Quant Time: Apr 01 21:18:24 20	5 pm	Qua	Oper Inst	Vial: ator: 	RJ₽ MSD 1.00	
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Star Last Update : Thu Mar 17 10:2 Response via : Initial Calibra DataAcq Meth : 1UG_RUN	ndards for 24:27 2016	1UG.M 5 poi:	(RTE Integr nt calibrati	ator) .on		
Internal Standards	R. Т.	QION	Response C	lonc Ur	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.06 16.56	128 114 117	26432 89168 49311	1.00 1.00 1.00	dqq dqq dqq	-0.02 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.13 Range 70	95 - 130	27953m /ł Recovery	0.88	ррb 88.	0.00 00%
Target Compounds 6) Vinyl Chloride 44) Trichloroethene 56) Tetrachloroethylene	12.68	130	7747 6776 24691	0.18	ppb	99


AN040110.D A316_1UG.M Centek Laboratories

Tue Apr 26 15:46:02 2016

MSD1

Page 3

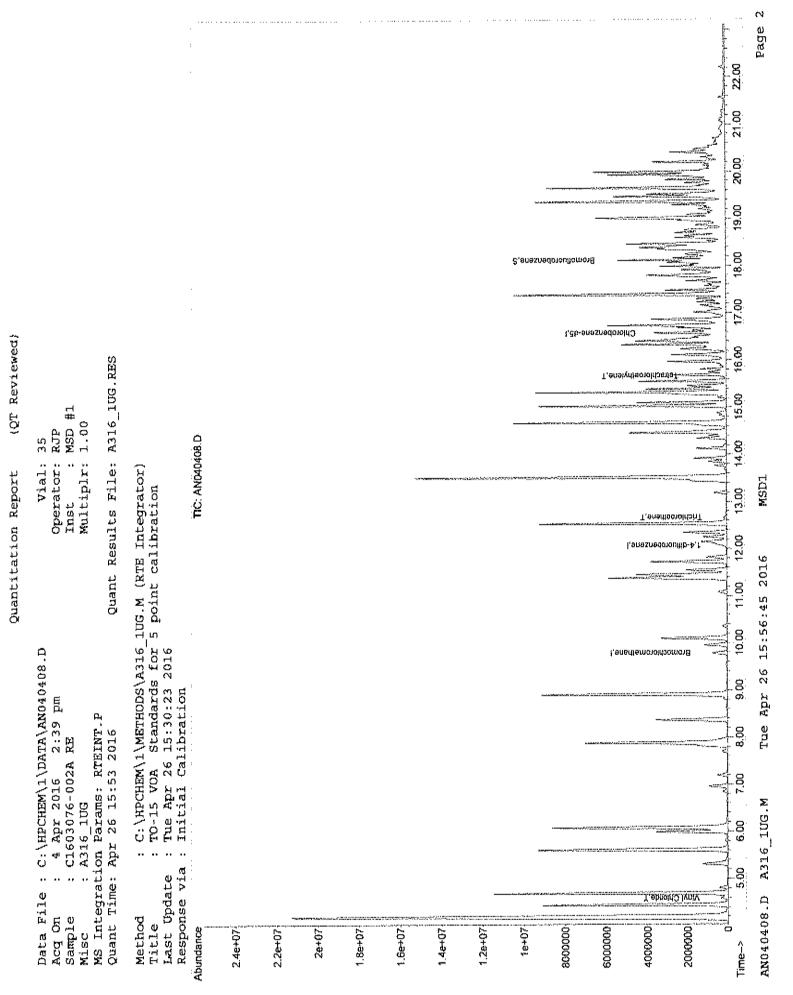
Page 65 of 245

Tue Apr 26 15:46:02 2016

MSD1

Page 4

Vial: 35 Data File : C:\HPCHEM\1\DATA\AN040408.D Operator: RJP Acq On : 4 Apr 2016 2:39 pm Inst : MSD #1 Sample : C1603076-002A RE Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Apr 04 15:38:09 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.78128282531.00ppb-0.0235) 1,4-difluorobenzene12.05114946271.00ppb0.0050) Chlorobenzene-d516.56117565471.00ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 43623m 1.20 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery ∞ 120.00% Qvalue Target Compounds


 'arget compounds
 4.58
 62
 8265
 0.26
 96

 6) Vinyl Chloride
 4.58
 62
 8265
 0.19
 96

 44) Trichloroethene
 12.67
 130
 7735
 0.19
 95

 56) Tetrachloroethylene
 15.66
 164
 27949
 0.76
 99

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040408.D A316_1UG.M Tue Apr 26 15:56:44 2016 MSD1

Date: 26-Apr-16

CLIENT: Lab Order; Project: Lab ID:	LaBella Associates, P.C C1603076 Emerson Landfill C1603076-003A	2.		Та	Sample ID: g Number: ction Date: Matrix:	419,3 3/21/2	39
Analyses		Result	**Limit	Qual Unit	5	DF	Date Analyzed
	ETERS		FL	D			Analyst:
Lab Vacuum In		-4		"Hg			3/29/2016
Lab Vacuum O	ut	-30		"Hg			3/29/2016
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то-	15			Analyst: RJP
1,1,1-Trichloroe	athane	< 0.15	0,15	ρpbV		1	4/1/2016 4:18:00 PM
1,1-Dichloroeth	ane	< 0.15	0.15	ppbV		1	4/1/2016 4:18:00 PM
1,1-Dichloroeth	ene	< 0.15	0.15	ppb∨		1	4/1/2016 4:18:00 PM
Chloroethane		< 0.15	0.15	ppbV		1	4/1/2016 4:18:00 PM
Chloromethane		< 0.15	0.15	ppbV		1	4/1/2016 4:18:00 PM
cis-1,2-Dichloro	athene	< 0.15	0.15	ppbV		1	4/1/2016 4:18:00 PM
Tetrachloroethy	lene	< 0.15	0.15	ppb∨		1	4/1/2016 4:18:00 PM
trans-1,2-Dichic	proethene	< 0.15	0,15	ppbV		1	4/1/2016 4:18:00 PM
Trichioroethene	•	< 0.040	0.040	ррҌѴ		1	4/1/2016 4:18:00 PM
Vinyl chloride		< 0.040	0.040	ppbV		1	4/1/2016 4:18:00 PM
•	luorobenzene	117	70-13 0	%RË	¢	1	4/1/2016 4:18:00 PM

Qualifiers:	**	Reporting Limit	
	13	Analyte detected in the associated Method Blank	Е
		and the second	

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 3 of 9

Centek Laboratories

Trichloroethene

Vinyl chloride

1

1

4/1/2016 4:18:00 PM

4/1/2016 4:18:00 PM

	······································								
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	Blind	Dup 1		
Lab Order:	C1603076				Tag Number:	419,3	419,339		
Project:	Emerson Landfill				Collection Date:	3/21/2	2016		
Lab ID:	C1603076-003A	Matrix:							
Analyses		Result	**Limit			DF	Date Analyzed		
1UG/M3 W/ 0.2	25UG/M3 CT-TCE-VC		ŤC	-15			Analyst: RJF		
1.1.1-Trichloroe		< 0.82	0.82		ug/m3	1	4/1/2016 4:18:00 PM		
1,1-Dichloroeth		< 0.61	0.61		ug/m3	1	4/1/2016 4:18:00 PM		
1.1-Dichloroeth		< 0.59	0.59		ug/m3	1	4/1/2016 4:18:00 PM		
Chloroethane		< 0.40	0.40		ug/m3	1	4/1/2016 4:18:00 PM		
Chloromethane	2	< 0.31	0.31		ug/m3	1	4/1/2016 4:18:00 PM		
cis-1,2-Dichlord	*	< 0.59	0.59		ug/m3	1	4/1/2016 4:18:00 PM		
Tetrachioroeth		< 1.0	1.0		ug/m3	1	4/1/2016 4:18:00 PM		
trans-1,2-Dichl	•	< 0.59	0.59		ug/m3	1	4/1/2016 4:18:00 PM		
	+·						444/0010 4.10-00 084		

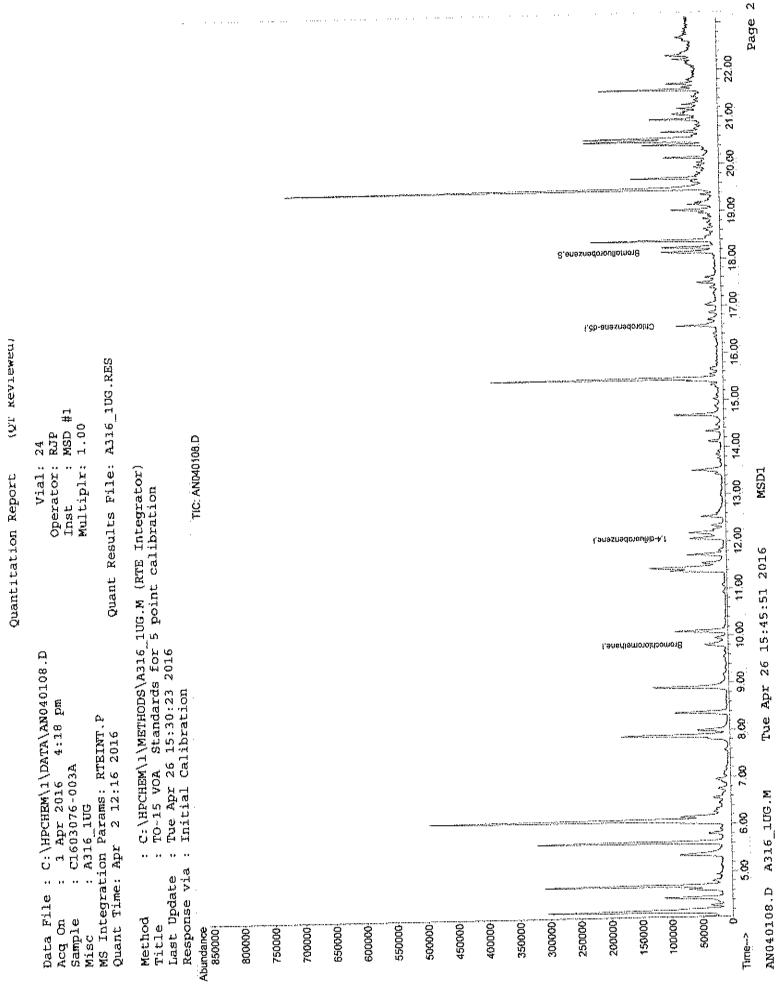
0.21

0.10

< 0.21

< 0.10

ug/m3

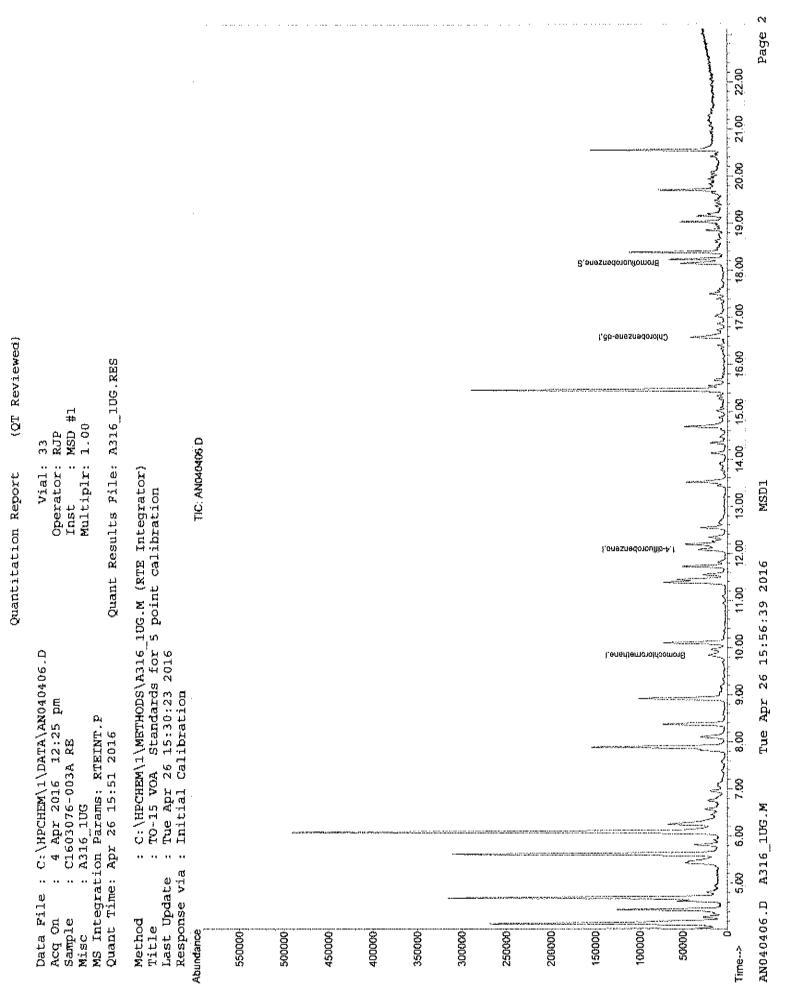

ug/m3

Quaiifiers:	 ** Reporting Limit B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded JN Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits 	. Results reported are not blank corrected E Value above quantitation range J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit Page 3 of 9
-------------	---	---

Centek Laboratories

Vial: 24 Data File : C:\HPCHEM\1\DATA\AN040108.D Acq On : 1 Apr 2016 4:19 pm Operator: RJP Sample : C1603076-003A Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 01 16:48:49 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards ****** 1) Bromochloromethane9.80128248961.00 ppb0.0035) 1,4-difluorobenzene12.06114744631.00 ppb0.0050) Chlorobenzene-d516.57117584951.00 ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 44207 1.17 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 117.00% 0.00 Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040108.D A316_1UG.M Tue Apr 26 15:45:50 2016 MSD1


Centek Laboratories

Page 72 of 245

Vial: 33 Data File : C:\HPCHEM\1\DATA\AN040406.D Acg On : 4 Apr 2016 12:25 pm Operator: RJP Sample : C1603076-003A RE Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 04 15:38:06 2016 Quant Results File: A316 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : lUG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.8412819294m1.00ppb0.0335) 1,4-difluorobenzene12.08114436361.00ppb0.0250) Chlorobenzene-d516.58117396721.00ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 26829 1.05 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 105.00% 0.00 **Ovalue** Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040406.D A316_1UG.M Tue Apr 26 15:56:38 2016 MSD1

Page 1

Centek Laboratories

Page 74 of 245

Date: 26-Apr-16

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P. C1603076 Emerson Landfill C1603076-004A	C.			lient Sample ID; Tag Number: Collection Date: Matrix:	192,3- 3/21/2	42
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FI	LD			Analyst:
Lab Vacuum In		-3			"Hg		3/29/2016
Lab Vacuum Ö	ut	-30			"Hg		3/29/2016
1UG/M3 W/ 0.2	SUG/M3 CT-TCE-VC		το	-15			Analyst: RJP
1,1,1-Trichloroe	ethane	< 0.15	0.15		ppbV	1	4/1/2016 4:57:00 AM
1,1-Dichloroeth	ane	< 0.15	0.15		ppb∨	1	4/1/2016 4:57:00 AM
1,1-Dichloroeth	ene	< 0.15	0.15		ppbV	1	4/1/2016 4:57:00 AM
Chloroethane		< 0.15	0.15		ppb∨	1	4/1/2016 4:57:00 AM
Chloromethane)	0.76	0.15		ppbV	1	4/1/2016 4:57:00 AM
cis-1,2-Dichloro	pethene	< 0.15	0.15		ppbV	1	4/1/2016 4:57:00 AM
Tetrachioroethy	lene	< 0,15	0.15		ррьV	1	4/1/2016 4:57:00 AM
trans-1,2-Dichic	proethene	< 0.15	0,15		ppbV	1	4/1/2016 4:57:00 AM
Trichloroethene	•	< 0.040	0.040		ррб∨	1	4/1/2016 4:57:00 AM
Vinyl chloride		< 0.040	0.040		ppbV	1	4/1/2018 4:57:00 AM
Surr: Bromof	Nuorobenzene	104	70-130		%REC	1	4/1/2016 4:57:00 AM

Qualifiers: ** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

......

Page 4 of 9

Centek Laboratories

CLIENT:	LaBella Associates, P.C.	Client Sample ID: 1770-Outdoor Air
Lab Order:	C1603076	Tag Number: 192,342
Project:	Emerson Landfill	Collection Date: 3/21/2016
Lab ID:	C1603076-004A	Matrix: AIR

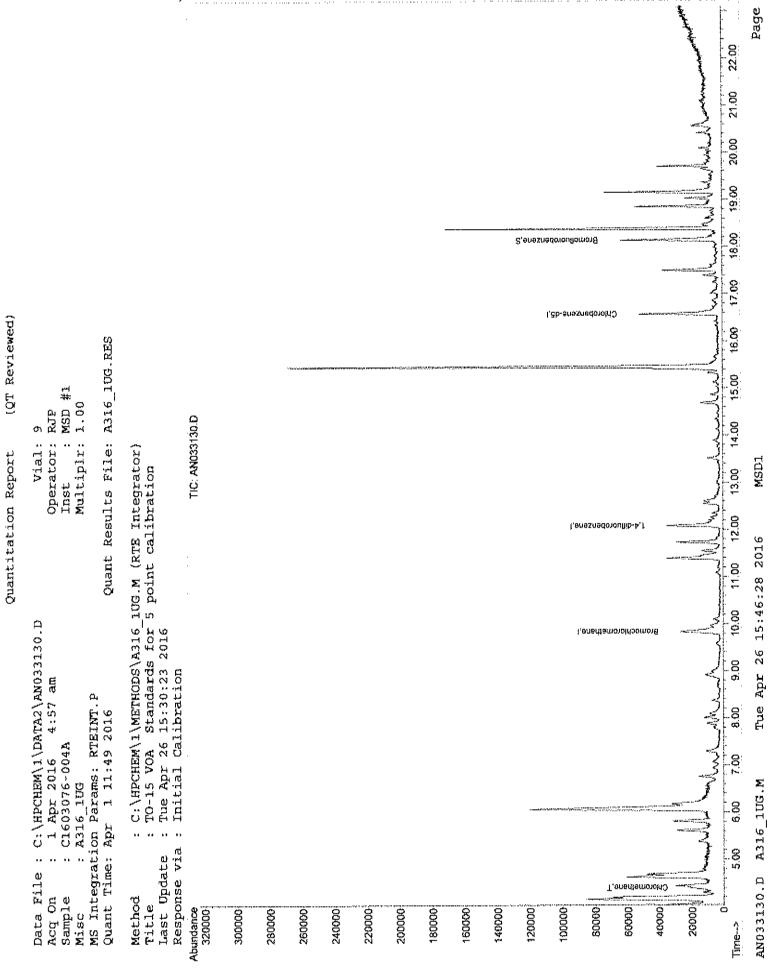
Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15				Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 4:57:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 4:57:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:57:00 AM
Chicroethane	< 0.40	0.40	ug/m3	1	4/1/2016 4:57:00 AM
Chioromethane	1.6	0.31	ug/m3	1	4/1/2016 4:57:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:57:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 4:57:00 AM
trans-1,2-Dichloroethene	< 0.59	0.69	ug/m3	1	4/1/2016 4:57:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/1/2016 4:57:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2016 4:57:00 AM

Qualifiers: ** Rep	orting Limit
--------------------	--------------

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range

.....

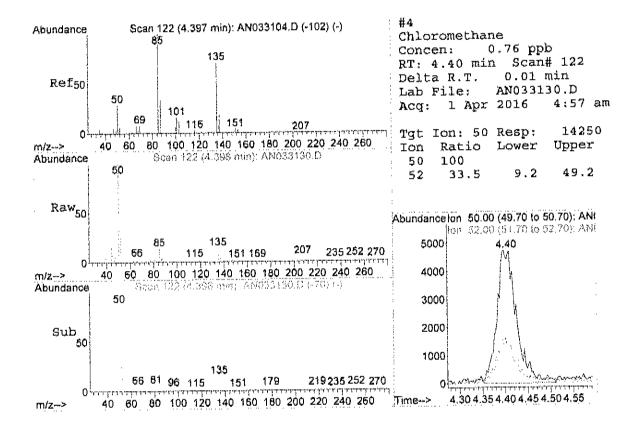
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit


Page 4 of 9

Centek Laboratories

Page 76 of 245

Data File : C:\HPCHEM\1\DATA2\AN033130.D Vial: 9 Acq On : 1 Apr 2016 4:57 am Sample : C1603076-004A Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Apr 01 11:43:15 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth ; lUG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.83128167411.00ppb0.0235) 1,4-difluorobenzene12.07114438721.00ppb0.0250) Chlorobenzene-d516.57117443911.00ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 29751 1.04 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 104.00% Qvalue Target Compounds 4.40 50 14250 0.76 ppb 92 4) Chloromethane


(#) = qualifier out of range (m) = manual integration (+) = signals summed AN033130.D A316_1UG.M Tue Apr 26 15:46:27 2016 MSD1

Centek Laboratories

Page 78 of 245

Ċ4

Tue Apr 26 15:46:29 2016

MSDL

Date: 26-Apr-16

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P.C. C1603076 Emerson Landfill C1603076-005A			С	lient Sample ID: Tag Number: Collection Date: Matrix:	1193,3 3/21/2	143
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		 F	ĻD			Analyst:
Lab Vacuum in		-5			"Hg		3/29/2016
Lab Vacuum Out		-30			"Hg		3/29/2016
1UG/M3 BY ME			тс)-15			Analyst: RJP
1.1.1-Trichloroe		< 0.15	0.15		ppbV	1	4/1/2016 4:57:00 PM
1.1-Dichioroeth		< 0.15	0.15		ppbV	1	4/1/2016 4:57:00 PM
1.1-Dichioroeth		< 0,15	0.15		рръV	1	4/1/2016 4:57:00 PM
Chloroethane		< 0.15	0,15		ppbV	1	4/1/2016 4:57:00 PM
Chioromethane		< 0.15	0.15		ppbV	1	4/1/2016 4:57:00 PM
cis-1.2-Dichloro		< 0.15	0,15		ppbV	1	4/1/2016 4:57:00 PM
Tetrachloroethy		0.93	0.15		ppbV	1	4/1/2016 4:57:00 PM
trans-1,2-Dichk		< 0.15	0.15		ppb∨	1	4/1/2016 4:57:00 PM
Trichloroethene		0.26	0.15		ppb∨	1	4/1/2016 4:57:00 PM
Vinyl chloride		< 0.15	0.15		ppbV	1	4/1/2016 4:57:00 PM
-	luorobenzene	108	70-130		%REC	1	4/1/2016 4:57:00 PM

Ouslifiers:	**	Reporting Limit	,	Results reported are not blank corrected
	в	Analyte detected in the associated Method Blank	E	Value above quantitation range
	1.1	Holding times for preparation or analysis exceeded	j	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit Page 5 of 9

S Spike Recovery outside accepted recovery limits

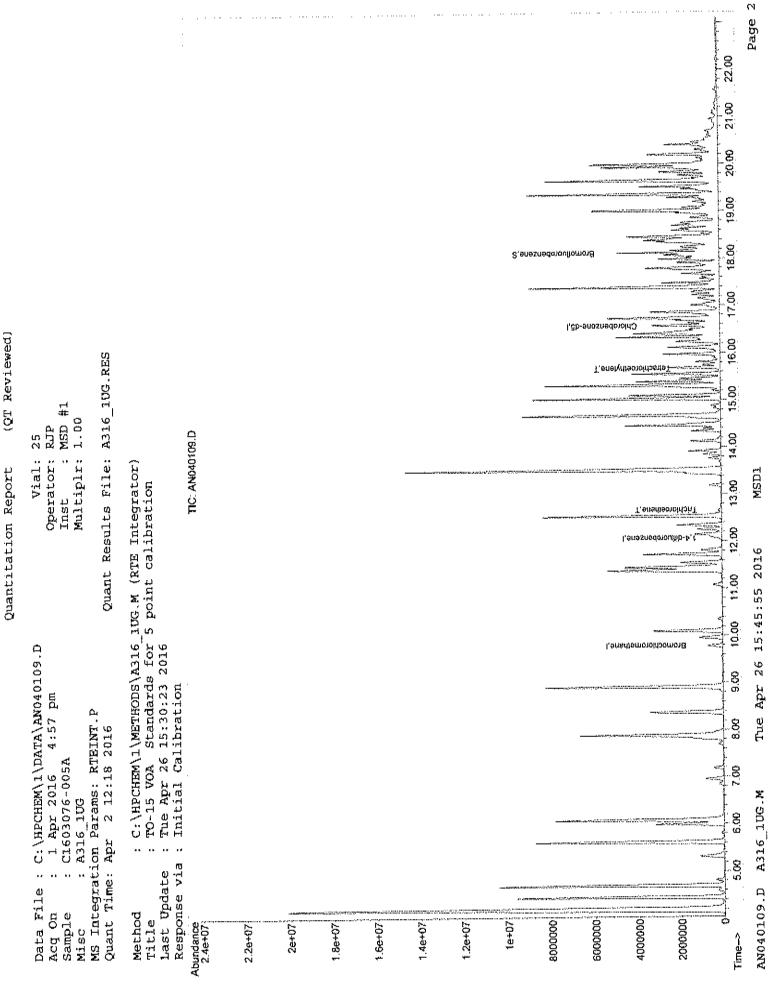
Centek Laboratories

uantitation limits

Date: 26-Apr-16

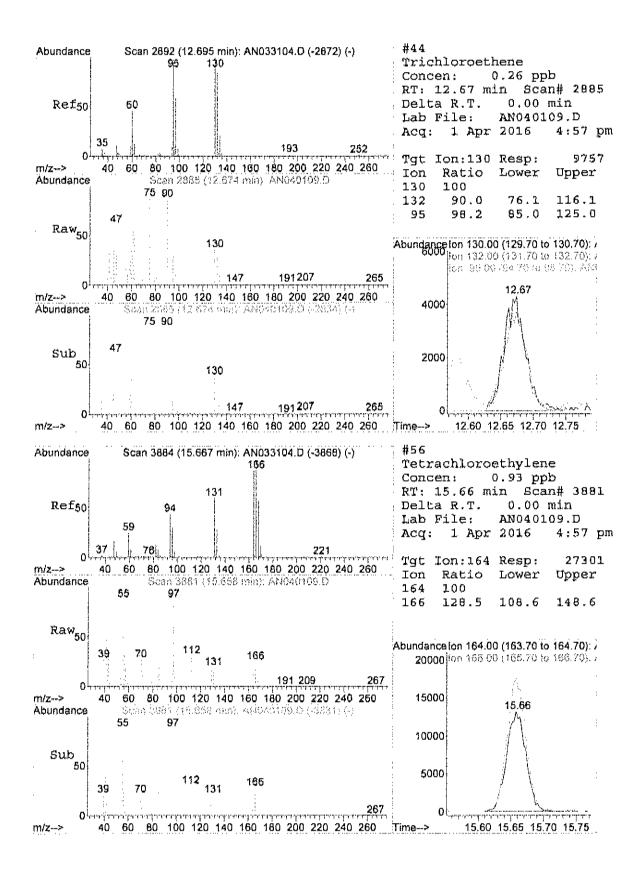
Analyses		Result	**Limit			DF	Date Analyzed
Lab ID:	C1603076-005A				Matrix:		
Project:	Emerson Landfill				Collection Date:	3/21/20	16
Lab Order:	C1603076				Tag Number:	1193,34	3
CLIENT:	LaBella Associates, P.C	2.		C	lient Sample ID:	Blind D	up 2
						·	

		•			2
1UG/M3 BY METHOD TO15	TO-15				Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 4:57:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 4:57:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:57:00 PM
Chloroethane	< 0.40	0,40	ug/m3	1	4/1/2016 4:57:00 PM
Chioromethane	< 0.31	0.31	ug/m3	1	4/1/2016 4:57:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:57:00 PM
Tetrachloroethylene	6.3	1.0	ug/m3	1	4/1/2016 4:57:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 4:57:00 PM
Trichloroethene	1.4	0,81	ug/m3	1	4/1/2016 4:57:00 PM
Vinyi chioride	< 0.38	0.38	ug/m3	1	4/1/2016 4:57:00 PM


Qualifiers:	**	Reporting Limit					
	13	A material descented in the coordinated b					

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit


Data File : C:\HPCHEM\1\DATA\A Acq On : 1 Apr 2016 4:57 Sample : C1603076-005A Misc : A316_1UG MS Integration Params: RTEINT. Quant Time: Apr 01 21:17:19 20	P.	Qua	Ope: Inst Mult	Vial: rator: t : tiplr: File:	RJP MSD 1.00	1		
Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN								
Internal Standards	R.T.	QIon	Response	Conc Ui	nits	Dev(Min)		
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-dS	9.78 12.05	128 114 117	26433 86881 45080	1.00 1.00 1.00	ರಥರ ರಧರ ರಧರ	0.03 0.00 0.00		
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1,000	18.13 Range 70	95 - 130	31362m Recover	1.08 Y =	ppb 108.	0.00		
Target Compounds 44) Trichloroethene 56) Tetrachloroethylene	12.67 15.66	130 164	9757 27301	0.26 0,93	dqq dqq	Qvalue 94 100		

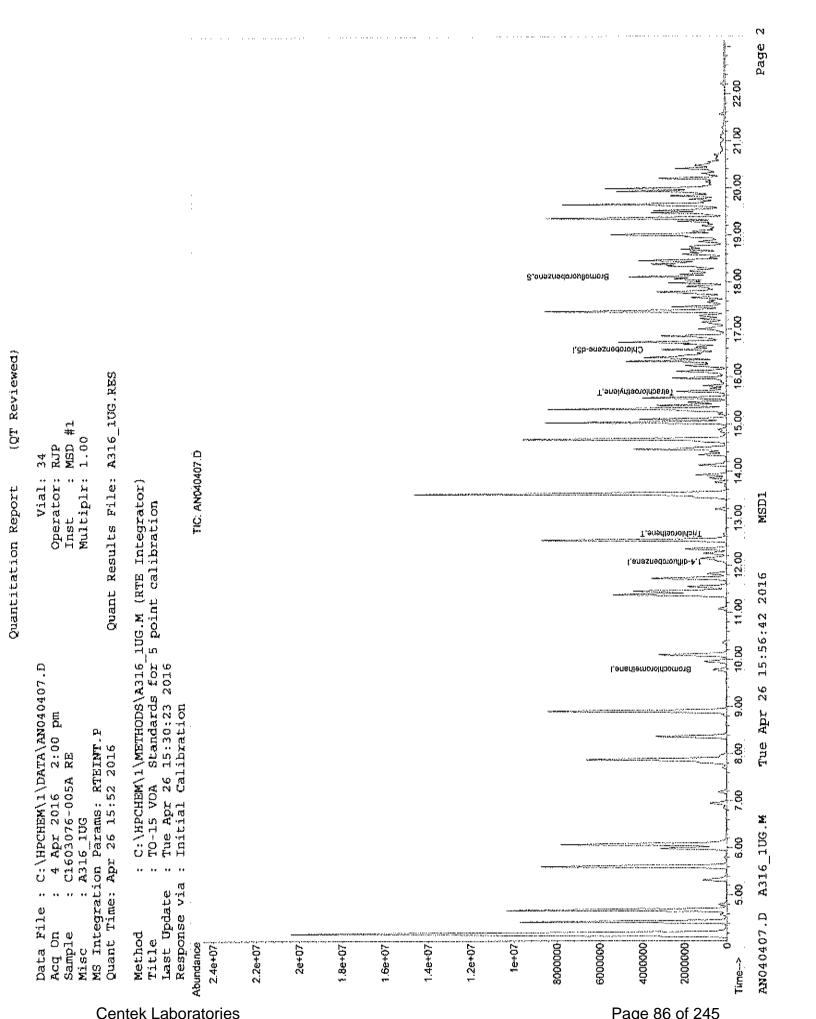
(k) (k) (k) (k) (k) (k) (k) (k) (k)

Centek Laboratories

Page 83 of 245

AN040109.D A316_1UG.M

Tue Apr 26 15:45:57 2016


MŞD1

Page 3

Centek Laboratories

Data File : C:\HPCHEM\1\DATA\AN Acq On : 4 Apr 2016 2:00 Sample : C1603076-005A RE Misc : A316_1UG MS Integration Params: RTEINT.P Quant Time: Apr 04 15:38:08 201	Ρ₩	Ĺ'n Mu	Vial: 34 erator: RJI st : MSI ltiplr: 1.(s File: A3:	9 9 #1 90				
Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN								
Internal Standards	R.T. Q	lon Response	Conc Units	s Dev(Min)				
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.06	128 26358 114 86314 117 51558	1.00 pp					
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000 R	18.13 ange 70 -	95 40195m - 130 Recove	$f_{ry} = 12$	o 0.00 L.00≹				
Target Compounds 44) Trichloroethene 56) Tetrachloroethylene	12.68 15.66	130 9882 164 28397						

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040407.D A316_1UG.M Tue Apr 26 15:56:41 2016 MSD1

Date: 26-Apr-16

CLIENT: Lab Order: Project: Lab ID;	LaBella Associates, P.C C1603076 Emerson Landfill C1603076-006A	2.		C	Client Sample ID: Tag Number: Collection Date: Matrix:	564,44 3/21/2	47
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		F	LD			Analyst:
Lab Vacuum In		-10			"Hg		3/29/2016
Lab Vacuum O	ut	-30			"Hg		3/29/2016
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
1.1.1-Trichloroe		0.12	0.15	J	ppb∨	1	4/1/2016 5:36:00 AM
1 1-Dichloroeth	ane	< 0.15	0.15		ppbV	1	4/1/2016 5:36:00 AM
1.1-Dichloroeth		< 0.15	0.15		ppbV	1	4/1/2016 5:36:00 AM
Chloroethane		< 0.15	0.15		ppbV	1	4/1/2016 5:36:00 AM
Chloromethane	,	0.95	0,15		ppbV	1	4/1/2016 5:36:00 AM
cis-1,2-Dichlord	bethene	0.77	0.15		ppbV	1	4/1/2016 5:36:00 AM
Tetrachioroethy		< 0.15	0.15		ppbV	1	4/1/2016 5:36:00 AM
trans-1,2-Dichle		< 0.15	0.15		₽¢bV	1	4/1/2016 5:36:00 AM
Trichloroethene		< 0.040	0.040		ррЬ∨	1	4/1/2016 5:36:00 AM
Vinyl chloride		0.70	0.040		ppbV	1	4/1/2016 5:36:00 AM
•	fluorobenzene	126	70-130		%REC	1	4/1/2016 5:36:00 AM

Qualifiers:

- ++ Reporting Limit
- Ð Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Non-routine analyte, Quantitation estimated, JN
- Spike Recovery outside accepted recovery limits s
- Results reported are not blank corrected
 - E Value above quantitation range

.

- Analyte detected at or below quantitation limits J
- Not Detected at the Reporting Limit ND

Page 6 of 9

Date: 26-Apr-16

Analyses		Result	**Limit			DF	Date Analyzed
Lab ID:	C1603076-006A				Matrix:		
Project:	Emerson Landfill				Collection Date:	3/21/20	16
Lab Order:	C1603076				Tag Number:	564,447	
CLIENT:	LaBella Associates, P.C.			С	lient Sample ID:	1770-1A	.Q-2

-					
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	0.65	0.82) ug/m3	1	4/1/2016 5:36:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 5:36:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 5:36:00 AM
Chioromethane	2.0	0.31	ug/m3	1	4/1/2016 5:36:00 AM
cis-1,2-Dichloroethene	3.1	0.59	ug/m3	1	4/1/2016 5:36:00 AM
Tetrachioroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 5:36:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 5:36:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/1/2018 5:36:00 AM
Vinyl chloride	1.8	0.10	ug/m3	1	4/1/2016 5:36:00 AM
-					

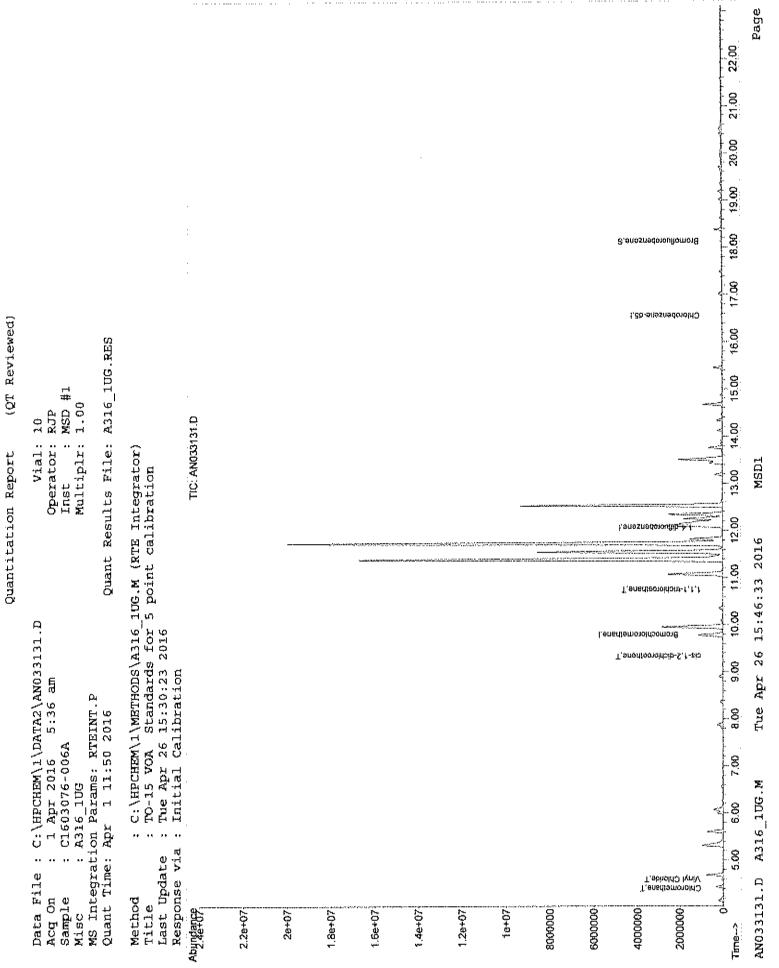
Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- , Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 6 of 9

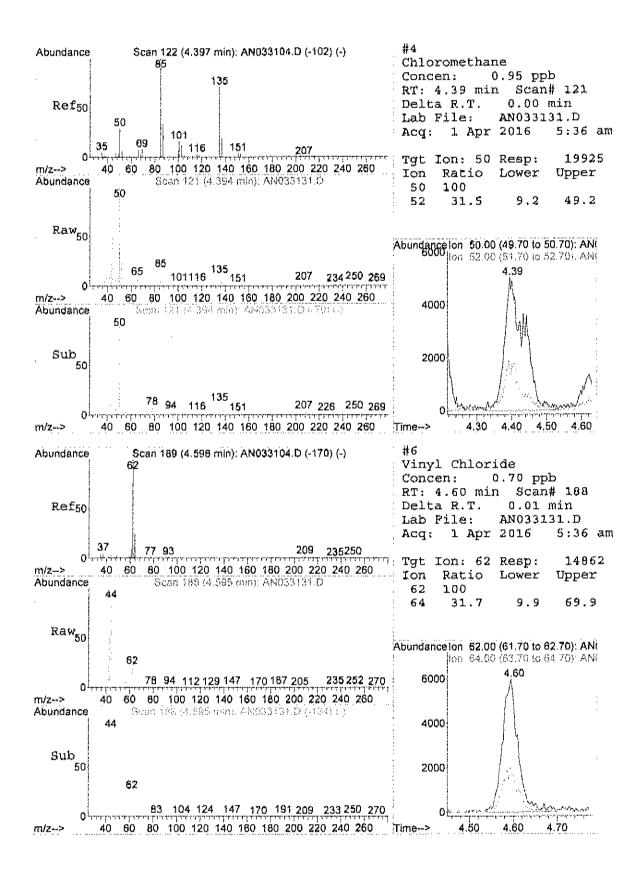

Centek Laboratories

Page 88 of 245

.........

Data File : C:\HPCHEM\1\DATA2 Acq On : 1 Apr 2016 5:3 Sample : C1603076-006A Misc : A316_1UG MS Integration Params: RTEINT Quant Time: Apr 01 11:43:17 2	6 am .P	Operato Inst Multipl	: MSD 样1 .r; 1,00
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Sta Last Update : Thu Mar 17 10: Response via : Initial Calibr DataAcq Meth : 1UG_RUN	ndards for 5 pc 24:27 2016		nr)
Internal Standards	R.T. QIO	n Response Conc	: Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.60 128 12.06 114 16.56 11	10020 1. 58984 1. 7 31005m D 1.	00.09pb 0.00 00.00 ppb 0.00 00.00 ppb 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 99 Range 70 - 13	5 25696m / 1. 80 Recovery	26 ppb 0.00 = 126.00%
Target Compounds 4) Chloromethane 6) Vinyl Chloride 29) cis-1,2-dichloroethene 36) 1,1,1-trichloroethane	4,60 6: 9,34 6:) 19925 0. 2 14862 0. 1 18149 0. 7 6607 0.	.70 ppb 87 .77 ppb 93

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN033131.D A316_1UG.M Tue Apr 26 15:46:32 2016 MSD1



the state of the s

Centek Laboratories

Page 90 of 245

Ċ\$

Tue Apr 26 15:46:35 2016

MSD1

Page 91 of 245

Centek Laboratories

AN033131.D A316_1UG.M

Tue Apr 26 15:46:36 2016

MSD1

Page 4

Centek Laboratories

Page 92 of 245

Date: 26-Apr-16

	boratories, EDC	
CLIEN'T:	LaBella Associates, P.C.	Client Sample ID: 1770-SVI-2
Lab Order:	C1603076	Tag Number: 89,1166
·	Emerson Landfill	Collection Date: 3/21/2016
Project:	C1603076-007A	Matrix: AIR
Lab ID:	0.1803076-007A	

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
	-3		"Hg		3/29/2016
Lab Vacuum In Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
	< 0.15	0.15	Vđợq	1	4/1/2016 6:15:00 PM
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/1/2016 6:15:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/1/2016 6:15:00 PM
1,1-Dichloroethene		0.15	ppbV	1	4/1/2016 6:15:00 PM
Chloroethane	< 0.15		ppbV	1	4/1/2016 6:15:00 PM
Chloromethane	< 0.15	0.15	••	,	4/1/2016 6:15:00 PM
cis-1,2-Dichloroethene	0.87	0.15	ppb∨	1	
Tetrachloroethylene	< 0.15	0,15	ppbV	3	4/1/2016 6:15:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 6:15:00 PM
Trichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 6:15:00 PM
	0.72	0.15	Vdqq	1	4/1/2016 6:15:00 PM
Vinyl chloride Surr: Bromofluorobenzene	102	70-130	%REC	1	4/1/2016 6:15:00 PM

Qualifiers:

- ** Reporting Limit
- Analyte detected in the associated Method Blank в

- Holding times for preparation or analysis exceeded Н
- Non-routine analyte, Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits S
- Results reported are not blank corrected
- . Value above quantitation range Б
- Analyte detected at or below quantitation limits ļ,
- ND Not Detected at the Reporting Limit

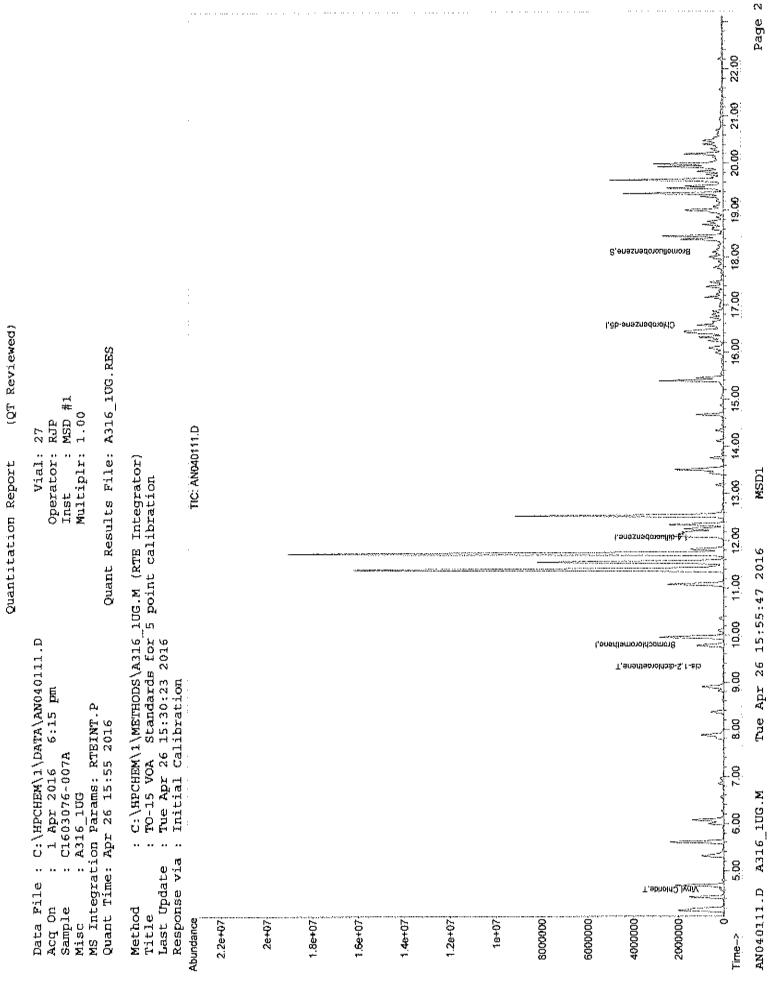
Page 7 of 9

Date: 26-Apr-16

Client Sample 1D: 1770-SVI-2 LaBella Associates, P.C. CLIENT: Tag Number: 89,1166 C1603076 Lab Order: Collection Date: 3/21/2016 **Project:** Emerson Landfill Matrix: AIR C1603076-007A Lab ID: Bacult ĎΕ – Date Analyzed . . **Limit Qual Units .

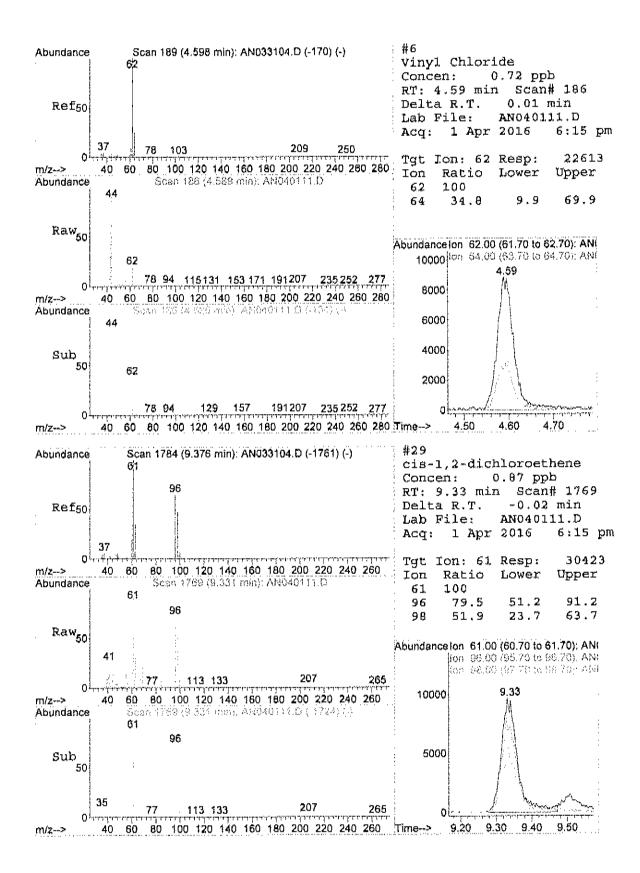
Analyses	Result	""Limit Que	u Onns	DF	Date Analyzeu
1UG/M3 BY METHOD TO15	TO-15				Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2016 6:15:00 PM
1,1-Dichloroethane	< 0.61	0.51	ug/m3	1	4/1/2016 6:15:00 PM
1.1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 6:15:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 6:15:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/1/2016 6:15:00 PM
cis-1.2-Dichloroethene	3.4	0.59	ug/m3	1	4/1/2016 6:15:00 PM
Tetrachioroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 6:15:00 PM
trans-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 6:15:00 PM
Trichloroethene	< 0.81	0.81	ug/m3	1	4/1/2016 6:15:00 PM
Vinvl chloride	1.8	0,38	ug/m3	1	4/1/2016 6:15:00 PM

Qualifiers:


** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- Results reported are not blank corre
- E Value above quantitation range
- J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit


Page 7 of 9

Vial: 27 Data File : C:\HPCHEM\l\DATA\AN040111.D Acq On : 1 Apr 2016 6:15 pm Sample : C1603076-007A Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 01 21:19:09 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title: TO-15 VOAStandards for 5 point calibrationLast Update: Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.80128278961.00 ppb-0.0135) 1,4-difluorobenzene12.06114949011.00 ppb0.0050) Chlorobenzene-d516.56117522621.00 ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 34190m/ 1.02 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 102.00% Target Compounds Qvalue 6) Vinyl Chloride4.5962226130.72 ppb9229) cis-1,2-dichloroethene9.3361304230.87 ppb89

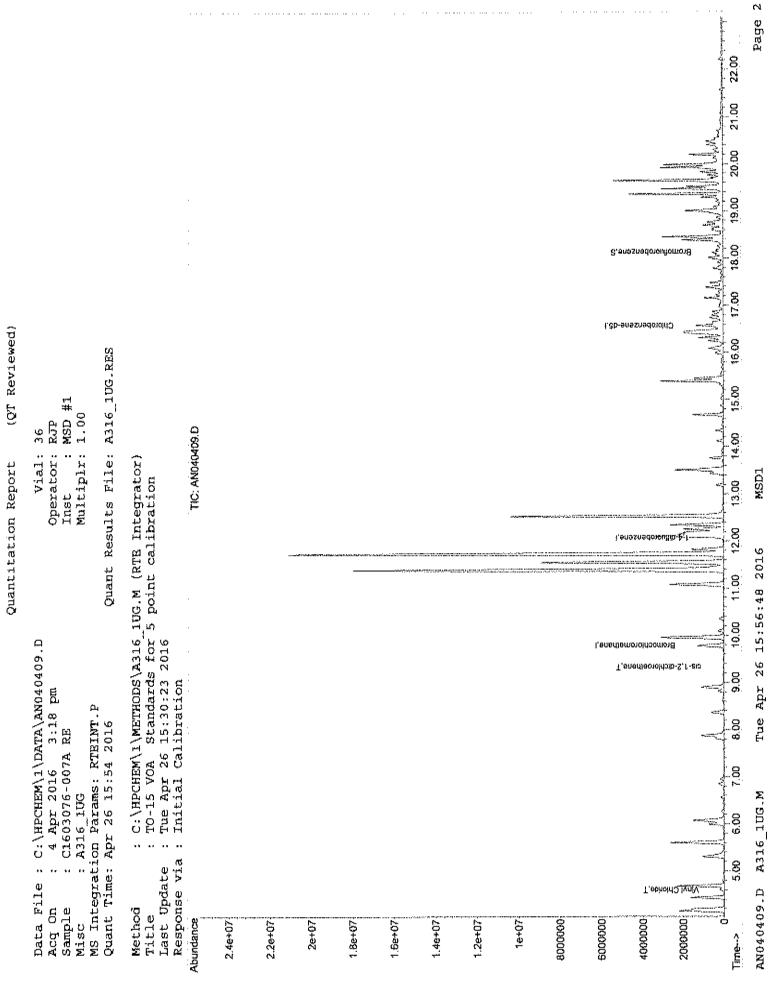
Centek Laboratories

Page 96 of 245

AN040111.D A316_1UG.M

Tue Apr 26 15:55:48 2016

MSD1


Page 3

Centek Laboratories

Data File : C:\HPCHEM\1\DATA\AN Acq On : 4 Apr 2016 3:18 Sample : C1603076-007A RE Misc : A316_1UG MS Integration Params: RTEINT.F Quant Time: Apr 26 15:53:52 201	pm		Oper Inst	iplr:	RJP MSD 1.00	
Quant Method : C:\HPCHEM\1\METH Title : TO-15 VOA Stand Last Update : Tue Apr 26 15:30 Response via : Initial Calibrat DataAcq Meth : LUG_RUN	lards for :23 2016 :ion	5 poir	nt calibrati	ion		
Internal Standards	R.T.	QION	Response (Conc Ur	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.06	114	28391 97706 57357	1.00	ppb	-0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000 R	18.14 ange 70	95 - 130	37037m Recovery	1.00 ⁄ ≞	ppb 100.	0.00 00%
Target Compounds 6) Vinyl Chloride 29) cis-1,2-dichloroethene	4.59 9.33	62 61	25415 31805	0.80 0.90	ррb ррb	Qvalue 87 85

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040409.D A316_1UG.M Tue Apr 26 15:56:47 2016 MSD1

Page 1

Centek Laboratories

Page 99 of 245

Date: 26-Apr-16

						······································
CLIENT:	LaBella Associates, P.C			lient Sample ID:		
Lab Order:	C1603076			Tag Number:	131,29	7
Project:	Emerson Landfill			Collection Date:	3/21/20)16
Lab ID:	C1603076-008A			Matrix:		
Analyses		Result	**Limit Qual		DF	Date Analyzed
FIELD PARAM	ETERS		FLD			Analyst:
Lab Vacuum In		-7		"Họ		3/29/2016
Lab Vacuum O	ut	-30		"Hg		3/29/2016
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		TO-15			Analyst: RJI
1,1,1-Trichloroe		< 0.15	0.15	pøb∨	1	4/1/2018 6:15:00 AM
1.1-Dichloroeth		< 0.15	0.15	ррв∨	1	4/1/2016 6:15:00 AM
1.1-Dichloraeth		< 0.15	0.15	ppb∨	1	4/1/2016 6:15:00 AM
.,						

3,1-UICRIOROEINARE	~ 0.10	0.10	PPD V	•	1. 1
1.1-Dichlorgethene	< 0.15	0.15	ppb∨	1	4/1/2016 6:15:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/1/2016 6:15:00 AM
Chloromethane	0.90	0.15	ppbV	1	4/1/2016 6:15:00 AM
cis-1,2-Dichloroethene	0.23	0.15	ppb∨	1	4/1/2016 6:15:00 AM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	4/1/2016 6:15:00 AM
trans-1.2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/1/2016 6:15:00 AM
Trichloroethene	< 0.040	0.040	ppbV	1	4/1/2016 6:15:00 AM
	0.22	0.040	ppbV	1	4/1/2016 6:15:00 AM
Viny! chloride		70-130	%REC		4/1/2016 6:15:00 AM
Surr: Bromofluorobenzene	128	10-130	70KEG	•	

Qualifiers:

** Reporting Limit

- Analyte detected in the associated Method Blank в
- Holding times for preparation or analysis exceeded H
- Non-routine analyte, Quantitation estimated. ЯN
- Spike Recovery outside accepted recovery limits \mathbf{S}
- Results reported are not blank corrected .
 - Value above quantitation range E.

- Analyte detected at or below quantitation limits J
- ND Not Detected at the Reporting Limit

.....

Page 8 of 9

Date: 26-Apr-16

LaBella Associates, P.C. Client Sample ID: 1770-IAQ-3 CLIENT: Tag Number: 131,297 Lab Order: C1603076 Collection Date: 3/21/2016 Emerson Landfill **Project:** Matrix: AIR Lab ID: C1603076-008A DF **Date Analyzed** Result **Limit Qual Units Analyses Analyst: RJP TO-15 ALIG/M3 W/ 0 26HG/M3 CT-TCE-VC

1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		10-10	•		mager nor
1.1.1-Trichloroethane	< 0.82	0.62	ug/m3	1	4/1/2016 6:15:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2016 6:15:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 6:15:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2016 6:15:00 AM
Chloromethane	1.9	0.31	ug/m3	1	4/1/2016 6:15:00 AM
cis-1,2-Dichloroethene	0.91	0.59	ug/m3	1	4/1/2016 6:15:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/1/2016 6:15:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2016 6:15:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	1	4/1/2016 6:15:00 AM
Vinyl chloride	0.56	0.10	ug/m3	1	4/1/2016 6:15:00 AM

Qualifiers:

** Reporting Limit

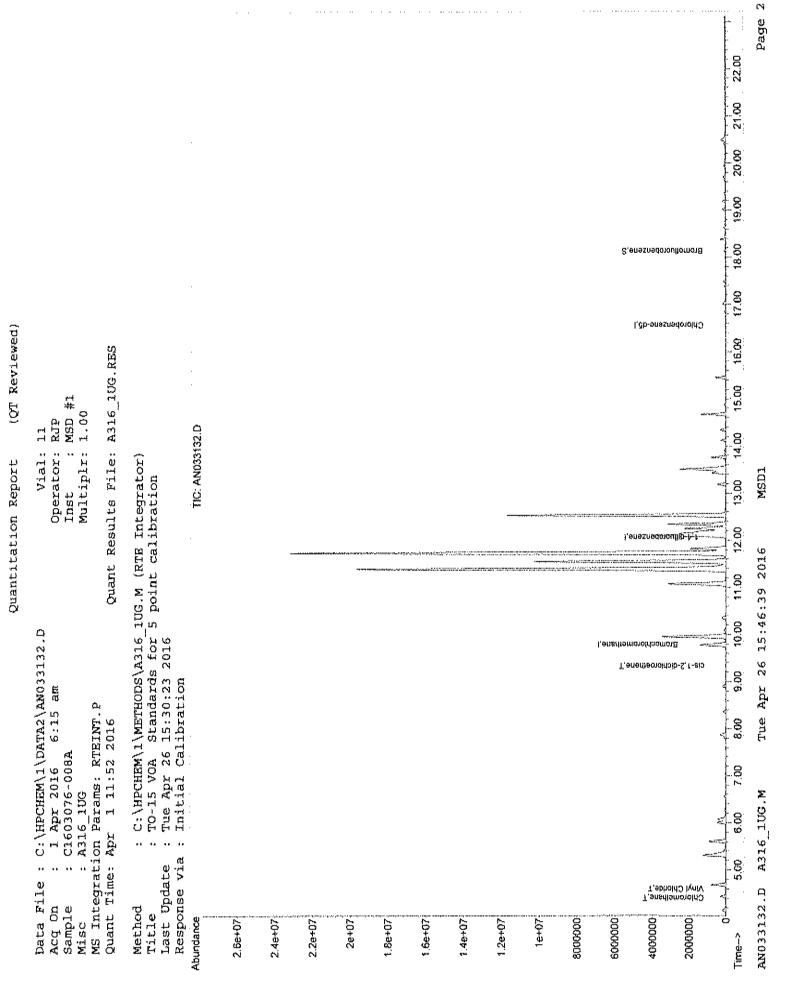
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

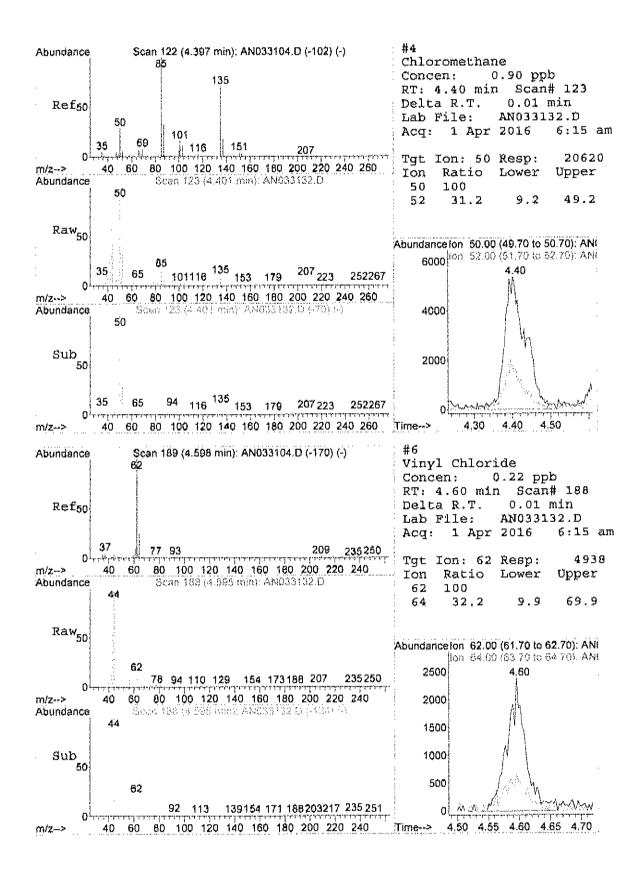
.

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit


Page 8 of 9

Centek Laboratories

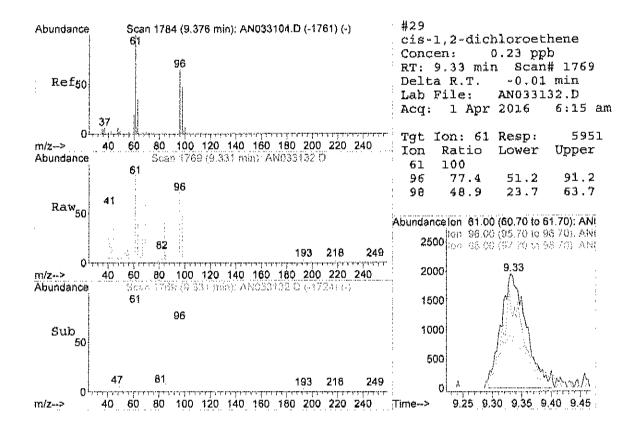
Page 101 of 245


Data File : C:\HPCHEM\1\DATA2\ Acq On : 1 Apr 2016 6:15 Sample : C1603076-008A Misc : A316_1UG MS Integration Params: RTEINT, Quant Time: Apr 01 11:43:19 20	5 am .P	Qua	Opera Inst	Vial: ator: : iplr: File:	RJP MSD 1.00	
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Star Last Update : Thu Mar 17 10:2 Response via : Initial Calibra DataAcq Meth : 1UG_RUN	ndards for 5 24:27 2016 ation	5 poir	it calibrati	on		Dev (Min)
Internal Standards	R.T. (QION	Response C	onc 01	11L8 	
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.79 12.05 16.56	128 114 117	20410 65363 31903	1.00 1.00 1.00	dqq dqq dqq	-0.01 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	26287m) Recovery	1.28	ppb 128.	0.00 00%
Target Compounds 4) Chloromethane 6) Vinyl Chloride 29) cis-1,2-dichloroethene	4,60	62	20620 4930 5951	0.22	ррь	Qvalue 96 88 92

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN033132.D A316_1UG.M Tue Apr 26 15:46:38 2016 MSD1

Centek Laboratories

Page 103 of 245


AN033132.D A316_1UG.M

Tue Apr 26 15:46:41 2016

MSD1

Page 3

Centek Laboratories

AN033132.D A316_1UG.M

Tue Apr 26 15:46:41 2016

MSDL

Page 4

Centek Laboratories

Page 105 of 245

Date: 26-Apr-16

Client Sample ID: 1770-SVI-3 LaBella Associates, P.C. CLIENT: Tag Number: 188,308 C1603076 Lab Order: Collection Date: 3/21/2016 Emerson Landfill Project: Matrix: AIR C1603076-009A Lab ID: Date Analyzed DF Result **Limit Oual Units

Analyses	Result	**Limit Qua			
FIELD PARAMETERS		FLD		Analyst:	
Lab Vacuum In	-4		"Hg		3/29/2016
Lab Vacuum Out	-30		"Hg		3/29/2016
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	0.17	0.15	ppbV	1	4/1/2016 6:54:00 PM
1,1-Dichloroethane	< 0,15	0.15	ppbV	1	4/1/2016 6:54:00 PM
1.1-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 6:54:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	4/1/2016 6:64:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	4/1/2016 6:54:00 PM
cis-1,2-Dichloroetheae	< 0.15	0.15	ppbV	1	4/1/2016 6:54:00 PM
	< 0.15	0,15	ppb∨	1	4/1/2016 6:54:00 PM
Tetrachloroethylene trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/1/2016 6:54:00 PM
	4.2	0.75	vdqq	5	4/2/2016 4:03:00 PM
Trichloroethene	0.61	0.15	ppbV	1	4/1/2016 6:54:00 PM
Vinyl chloride Surr: Bromofluorobenzene	92.0	70-130	%REC	1	4/1/2016 6:54:00 PM

Oualificrs:	++	Reporting Limit	 Results reported are not blank corrected	
~	H JN	Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits	Value above quantitation range Analyte detected at or below quantitation limits Not Detected at the Reporting Limit Page 9 of 9	9

Tetrachioroethylene

Trichloroethene

Vinyl chloride

trans-1,2-Dichloroethene

Date: 26-Apr-16

1

5

1

CLIENT:	LaBella Associates, P.			C	Client Sample ID:	1770-3	SVI-3
Lab Order:	C1603076				Tag Number:		
Project:	Emerson Landfill				Collection Date:		2016
Lab ID:	C1603076-009A				Matrix:		
Analyses		Result	**Limit		Units	DF	Date Analyzed
1UG/M3 BY M		*******	τc)-15			Analyst: RJF
1,1,1-Trichloro		0,93	0.82		ug/m3	1	4/1/2016 6:54:00 PM
1,1-Dichloroeth		< 0.61	0.61		ug/m3	1	4/1/2016 6:54:00 PM
1.1-Dichloroeth		< 0.59	0.59		ug/m3	1	4/1/2016 6:54:00 PM
Chloroethane		< 0.40	0.40		ug/m3	1	4/1/2016 6:54:00 PM
Chloromethane	-	< 0.31	0.31		ug/m3	1	4/1/2016 6:54:00 PM
cis-1.2-Dichlor		< 0.59	0.59		ug/m3	1	4/1/2016 6:54:00 PM
Tetrachioroeth		< 1.0	1.0		ug/m3	1	4/1/2016 6:54:00 PM

0.59

4.0

0.38

< 0,59

23

1.6

ug/m3

ug/m3

ug/m3

Qualifiers:

Reporting Limit **

- Analyte detected in the associated Method Blank. ₿
- Holding times for preparation or analysis exceeded Н
- Non-routine analyte, Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits \$

Value above quantitation range Е

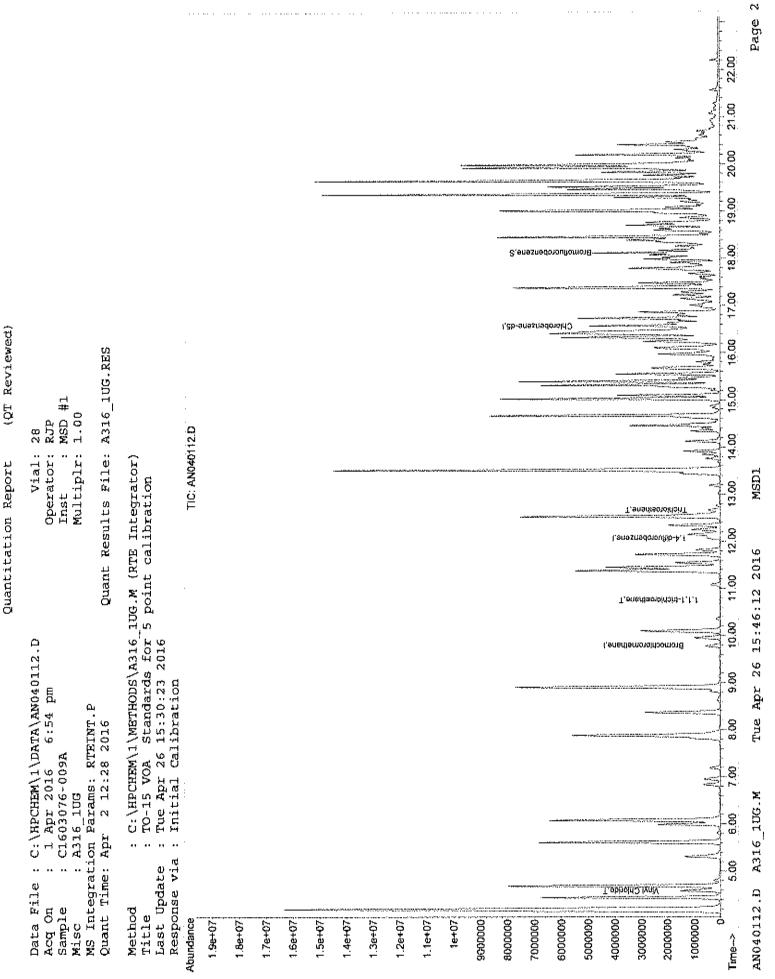
.

- Analyte detected at or below quantitation limits Ĵ
- ND Not Detected at the Reporting Limit

Page 9 of 9

Centek Laboratories

Page 107 of 245

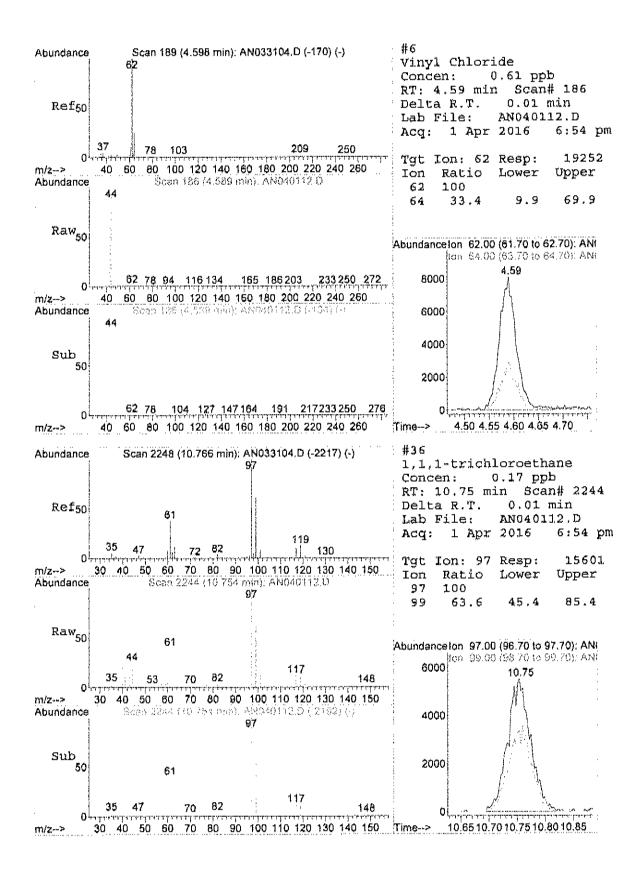

4/1/2016 6:54:00 PM

4/2/2016 4:03:00 PM

4/1/2016 6:54:00 PM

Data File : C:\HPCHEM\1\DATA\AN040112. Acq On : 1 Apr 2016 6:54 pm Sample : C1603076-009A Misc : A316_1UG MS Integration Params: RTEINT.P Quant Time: Apr 01 21:19:47 2016	D Vial: 28 Operator: RJP Inst : MSD #1 Multiplr: 1.00 Quant Results File: A316_1UG.RES
Quant Method : C:\HPCHEM\1\METHODS\A31 Title : TO-15 VOA Standards fo Last Update : Thu Mar 17 10:24:27 201 Response via : Initial Calibration DataAcq Meth : 1UG_RUN	r 5 point calibration
Internal Standards R.T	. Oton Response Conc units Dev(Min)
1) Bromochloromethane 9.7	9 128 20019 1.00 ppb -0.01 5 114 97134 1.00 ppb 0.00 6 117 49886 1.00 ppb 0.00
System Monitoring Compounds 66) Bromofluorobenzene 18.1 Spiked Amount 1.000 Range 7	4 95 29661m/ ¹ 0.92 ppb 0.00 0 - 130 Recovery = 92.00%
36) 1.1.1-trichloroethane 10.7	Qvalue 9 62 19252 0.61 ppb 89 5 97 15601 0.17 ppb 98 7 130 148692 3.60 ppb 97

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040112.D A316_1UG.M Tue Apr 26 15:46:11 2016 MSD1



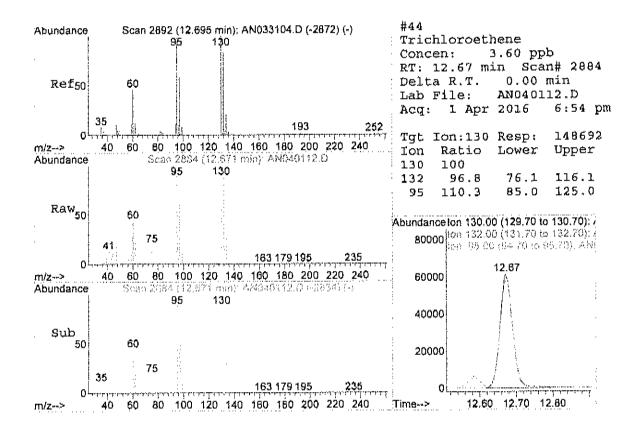
Centek Laboratories

.

....

Page 109 of 245

AN040112.D A316 1UG.M


Tue Apr 26 15:46:14 2016

MSD1

Page 3

Centek Laboratories

Page 110 of 245

AN040112.D A316_1UG.M

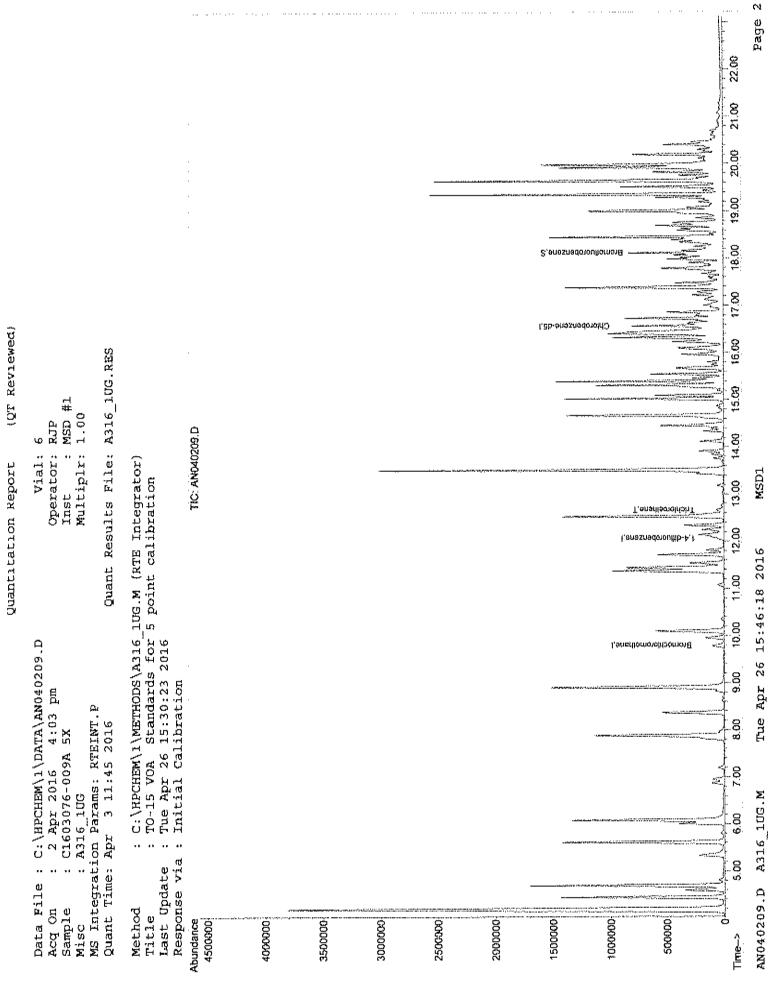
Tue Apr 26 15:46:14 2016

MSD1

Page 4

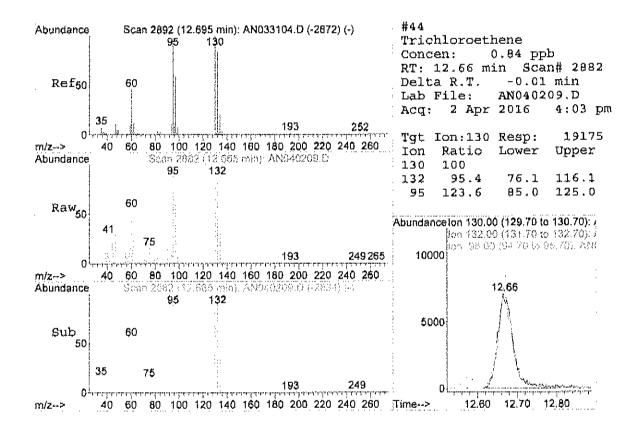
Centek Laboratories

Page 111 of 245


Vial: 6 Data File : C:\HPCHEM\1\DATA\AN040209.D Acq On : 2 Apr 2016 4:03 pm Sample : C1603076-009A 5X Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 03 06:12:29 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min)
 1) Bromochloromethane
 9.80
 128
 18360
 1.00
 ppb
 0.00

 35) 1,4-difluorobenzene
 12.05
 114
 53965
 1.00
 ppb
 0.00

 50) Chlorobenzene-d5
 16.56
 117
 40273m
 1.00
 ppb
 0.00
 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 29256m // 1.13 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 113.00% Target Compounds Qvalue 44) Trichloroethene 12.66 130 19175 0.84 ppb 90


(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040209.D A316_1UG.M Tue Apr 26 15:46:17 2016 MSD1

Page 1

Centek Laboratories

Page 113 of 245

AN040209.D A316 1UG.M

Tue Apr 26 15:46:19 2016

MSD1

Page 3

Centek Laboratories

Page 114 of 245

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS DATA

Centek Laboratories

Page 115 of 245

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INITIAL CALIBRATION

Centek Laboratories

Page 116 of 245

Response Factor Report MSD #1

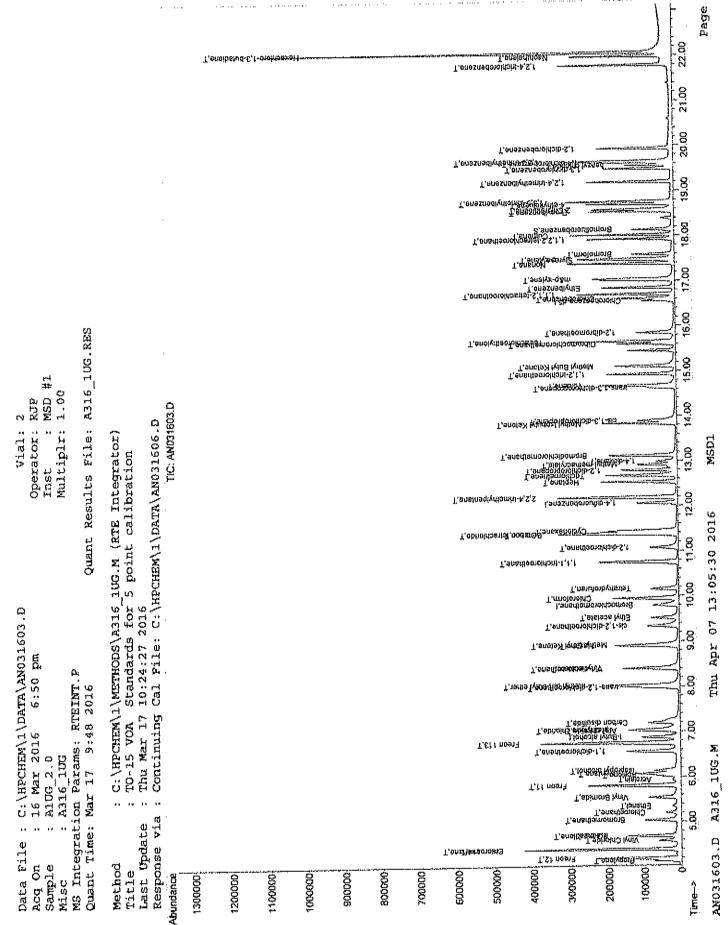
	Titl Last	od : C:\HPC © : TO-15 Update : Thu Ma onse via : Inicia	VOA Sta r 17 10:	ndards 24:27	A316_1 for 5 2016	UG.M point	(RTË Ir ; calib	itegrator) pration	
		bration Files ⇒AN031612.D ≈AN031609.D	0.10 «	AN0316	511.D	0.15	anan(≂AN(031610.D 131607.D	
									9-13 (T)
		Compound	0.04	0.10	0.15	0.30	0.50	0.75 AVg	
	I	Bromochlorometha Propylene Freon 12 Chloromethane Freon 114 Vinyl Chloride Butane	ne -			IST) 0 916	0 800	0.787 0.810	18.47
2)	T T	Propylene Freon 12			5.132	4.678	4,218	4.223 4.271	10.16
4)	Ť	Chloromethane			1.503	1.264	1,102	1,101 1,118	16.44
5)	т	Freon 114			4.240	3,932	3.598	3,582 3,598	9.99 22.21
6)	T	Vinyl Chloride	1.719	1,251	1.297	1.175	1.217	1.136 1.285	21.70
	T T	Butane			0.944	1.260	0.745	0.776 0.847	
8) 9)	T	Bromomethane			1,732	1.419	1.456	1,223 1,320	15.58
10)	т	Butane 1,3-butadiene Bromomethane Chloroethane Ethanol Acrolein Vinyl Bromide Freon 11 Acetone Pentane			0.548			0.443 0.459	9.89 22.51
11)	т	Ethanol			0.466	0.454	0.339	0.316 0.341 0.273 0.290	16.78
12)	T	Acrolein			1.654	1.410	1.249	1.246 1.298	12.66
13) 14)	T T	Vinyi Bromide			5.356	4,760	4.368	4.251 4.393	10.46
	Ť	Acetone			0.580	0.446	0.467	0.385 0.432	15.55
	т	Pentane			1.399	1.121	0.953	0,938 0,986	19.20
17)	T	Isopropyl alcoh			1.930	1.424	1.271	1.223 1.283	10.49
	T T	1,1-dichioroeth			3.697	3.334	3,051	3.060 3.094	9.50
) t	E-Butyl alcohol			2.795	2.640	2.350	2,175 2.240	14.34
	Ť	Merhylene chlor			1.287	1,198	1.152	1.112 1.124	7.74
	T	Allyl chloride			1.371	1.068	0.996	3.276 3.316	14.26
) T) T	Ethanol Acrolein Vinyl Bromide Freon 11 Acetone Pentane Isopropyl alcoh 1,1-dichloroeth Freon 113 t-Butyl alcohol Methylene chlor Allyl chloride Carbon disulfid trans-1,2-dichl methyl tert-but 1,1-dichloroeth Vinyl acetate Methyl Ethyl Ke cis-1,2-dichlor Hexane			1.785	1.581	1.489	1.479 1.522	8.00
) T	methyl tert-but			3.237	3.087	2.752	2.784 2.881 2.145 2.155 1.860 1.869 0.428 0.461 1.234 1.250 1.266 1.308 1.682 1.784	6.44
	Ť	1,1-dichloroeth			2,501	2.236	2.143	2.145 2.155	7.74
) Т	Vinyl acerate			2,311	1,977	1,523	1.860 1.869	7.54
) T	Methyl Ethyl Ke cis-1,2-dichlor			1.213	1.318	1.253	1,234 1.250	3.55
) T) T	Hexane			1.377	1.268	1.247	1.266 1.308	3.87
	ŕ	Ethyl acetate			2.162	1.967	1.682	1.682 1.784	10.20
32)) T	Chloroform				- <u>-</u>	/	2,874 2,918 0,811 0,828	··
) T	Tetrahydrofuran 1,2-dichloroeth			1 826	1 794	1.645	1,604 1.641	7.17
34)) T	1,2-dientoroech							
35)) I	1,4-difluoroben:	zene -		•• •• • • • •		'D		7.43
36	-	1,1,1-trichloro			1.073	1.013	0,947	/ 0,901 0.939 ; 0,379 0.387	
37	-	Cyclohexane	1 514	1 229	1 098	1.027	0.964	0.926 1.048	
38) 39)	*	Carbon tetrachl Benzene	T.914	1,649	0.968	0.850) 0.818	0.806 0.832	0,21
) r	Methyl methacry			0.347	0.270	0.242	2 0.278 0.271	12.09
41		1,4-dioxane			0.218	0.242	0,234	0.211 0.213	9.01 4.74
42	•	2,2,4-trimethyl			1.598	1,466	: 0 312 215 0 3) 1.406 1.453 ? 0.326 0.338	
43		Heptane Trichloroethene	0 593	0.476	0.419	0.397	/ 0.392	2 0.393 0.425	15.21
) Т) Т	1,2-dichloropro		0, 2, 0	0.331	0.323	0.307	7 0.291 0.300	6+07
) T	Bromodichlorome			0.658	0.765	5 0.731	L 0.702 0.734	7.46 5.47
47) Т	cis-1,3-dichlor			0.445	0,416	5 0 359 5 0 359	9 0.378 0.400 7 0.345 0.359	
48		trans-1,3-dichl 1,1,2-trichloro			0.395	0.345	6 0.323	0.317 0.329	
49) 'I'								
50) I	Chlorobenzene-d	5				D		 F 47
) T	Toluene			Q.656	0.657	0.62	3 0.664 0.679	. <u>.</u>
				v cali	bratic	n leve	els exc	ceeded format	: ###

(#) = Out of Range ### Number of calibration levels exceeded format ### A316_1UG.M Thu Apr 07 13:04:59 2016 MSD1

Calibration Files 0.10 =AN031611.D 0.15 =AN031607.D 0.30 =AN031609.D 0.50 =AN031608.D 0.75 =AN031607.D Compound 0.04 0.10 0.15 0.30 0.50 0.75 Avg %RED 52) T Methyl Isobutyl 1.257 1.227 1.174 1.227 1.201 5.80 53) T Dibromochlorome 0.954 0.844 0.859 0.850 0.857 4.94 54) T Methyl Butyl Ke 1.013 1.133 0.978 1.026 1.066 7.36 55) T 1.2-dibromoetha 1.023 0.860 0.857 0.850 0.891 4.61 56) T Tetrachloroethy 0.981 0.712 0.625 0.622 0.864 1.903 57) T Chlorobenzene 0.698 0.800 0.807 0.855 0.891 4.61 58) T 1.1.1,2-tetrach 0.668 0.620 0.810 0.622 0.925 1.55 611 T Nonane 0.537 0.452 0.455 0.474 0.552 <th>Method : C:\HPCHI Title : TO-15 VC Last Update : Thu Mar Response via : Initial</th> <th>M\l\METHODS\A316_lUG.M (RTE Integrator) A Standards for 5 point calibration 17 10:24:27 2016 Calibration</th> <th></th>	Method : C:\HPCHI Title : TO-15 VC Last Update : Thu Mar Response via : Initial	M\l\METHODS\A316_lUG.M (RTE Integrator) A Standards for 5 point calibration 17 10:24:27 2016 Calibration	
Compound 0.04 0.16 0.13 0.130 1.130 1.130 1.130 1.130 1.130 1.130 1.201 0.641 <th< td=""><td>0.04 =AN031612.D 0.</td><td></td><td></td></th<>	0.04 =AN031612.D 0.		
52) TMethyl Isobutyl $1.257 \ 1.227 \ 1.174 \ 1.227 \ 1.201 $		0,01 0,120 0,00	&RSD
1,699,1.607,1.503,1.407,1.43	<pre>52) T Methyl Isobutyl 53) T Dibromochlorome 54) T Methyl Butyl Ke 55) T 1,2-dibromoetha 56) T Tetrachloroethy 57) T Chlorobenzene 58) T 1,1,1,2-tetrach 59) T Ethylbenzene 60) T m&p-xylene 61) T Nonane 62) T Styrene 63) T Bromoform 64) T o-xylene 65) T Cumene 66) S Bromofluorobenz 67) T 1,1,2,2-tetrach 68) T Propylbenzene 69) T 2-Chlorotoluene 70) T 4-ethyltoluene 71) T 1,3,5-trimethyl 72) T 1,2,4-trimethyl 73) T 1,3-dichloroben 76) T 1,2,3-trimethyl 77) T 1,2,4-trimethyl 77) T 1,2,4-trichloroben 78) T 1,2,4-trichloroben</pre>	$\begin{array}{c} 1.257 \ 1.227 \ 1.174 \ 1.227 \ 1.201 \\ 0.954 \ 0.844 \ 0.859 \ 0.850 \ 0.857 \\ 1.113 \ 1.133 \ 0.978 \ 1.026 \ 1.068 \\ 1.023 \ 0.886 \ 0.637 \ 0.790 \ 0.845 \\ 0.981 \ 0.712 \ 0.625 \ 0.622 \ 0.586 \ 0.599 \ 0.648 \\ 0.989 \ 0.894 \ 0.875 \ 0.855 \ 0.891 \\ 0.668 \ 0.700 \ 0.664 \ 0.649 \ 0.666 \\ 1.179 \ 1.069 \ 1.076 \ 1.097 \ 1.165 \\ 0.862 \ 0.818 \ 0.830 \ 0.822 \ 0.925 \\ 0.537 \ 0.452 \ 0.455 \ 0.474 \ 0.552 \\ 0.616 \ 0.546 \ 0.553 \ 0.568 \ 0.644 \\ 0.471 \ 0.450 \ 0.440 \ 0.442 \ 0.463 \\ 1.102 \ 0.918 \ 1.093 \ 1.016 \ 1.109 \\ 1.528 \ 1.160 \ 1.102 \ 1.083 \ 1.299 \\ 0.602 \ 0.608 \ 0.592 \ 0.601 \ 0.592 \ 0.614 \ 0.643 \\ 1.606 \ 1.289 \ 1.061 \ 1.068 \ 1.140 \\ 1.653 \ 1.450 \ 1.274 \ 1.157 \ 1.379 \\ 1.15 \ 0.938 \ 0.930 \ 0.834 \ 1.004 \\ 1.437 \ 1.277 \ 1.046 \ 1.000 \ 1.183 \\ 1.760 \ 1.512 \ 1.301 \ 1.240 \ 1.416 \\ 1.647 \ 1.374 \ 1.172 \ 1.119 \ 1.224 \\ 0.958 \ 0.839 \ 0.718 \ 0.663 \ 0.778 \\ 1.256 \ 1.055 \ 1.074 \ 1.101 \ 1.110 \\ 0.854 \ 0.804 \ 0.638 \ 0.633 \ 0.733 \\ 1.944 \ 1.737 \ 1.429 \ 1.376 \ 1.510 \\ 1.394 \ 1.099 \ 0.540 \ 0.846 \ 0.954 \\ 0.693 \ 0.719 \ 0.677 \ 0.622 \ 0.720 \\ 1.699 \ 1.607 \ 1.503 \ 1.407 \ 1.494 \end{array}$	$\begin{array}{c} 4.94\\ 7.36\\ 9.38\\ 19.03\\ 4.61\\ 3.94\\ 6.41\\ 11.55\\ 16.56\\ 13.48\\ 4.51\\ 9.78\\ 13.89\\ 9.58\\ 13.20\\ 10.36\\ 12.64\\ 11.59\\ 15.92\\ 11.85\\ 0.22\\ 11.05\\ 14.35\\ 21.55\end{array}$

(#) m Out of Range ### Number of calibration levels exceeded format ### A316_1UG.M Thu Apr 07 13:05:00 2016 MSD1

Quant Method : C:\HPCHEM\l\METHODS\All6_1UG.M (ETE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Updat : TNumar 17 06:17:56 2016 Beaponse vis : Continuing Cal File: C:\HPCHEM\l\DATA\AN031606.D DataAcq Meth : 1UG_RIN Internal Standards R.T. Qion Response Conc Units Dev(Min) 1) Bromochloromethane 9.79 128 39696 1.00 ppb -0.01 35) 1,4-difluorobenzene 12:05 114 119341 1.00 ppb 0.00 50) Chloromethane 9.79 128 39696 1.00 ppb -0.01 50) Chlorobenzene 18:13 95 4831 1.15 ppb 0.00 51 1,7 -difluorobenzene 18:13 95 4831 1.15 ppb 0.00 System Monitoring Compounds 66: Bromofluorobenzene 18:13 95 4831 1.15 ppb 0.00 System Monitoring Compounds 61: Bromofluorobenzene 4:19 85 300662 1.82 ppb 100 3: Propylene 4:14 95 2720 1.77 ppb # 100 3: Chloromethane 4:39 50 75653 1.85 ppb 90 6: Vinyl Chloride 4:58 62 71454 1.80 ppb 85 7: Dutane 4:69 39 60711 1.98 ppb 86 7: Dutane 4:69 39 60711 1.98 ppb 85 8: Dromoethane 5:20 64 3104807 1.79 ppb # 102 10: Chloromethane 5:20 64 310481 1.04 ppb 95 9: Dromoethane 5:20 64 3104807 1.198 ppb 86 11: Standare 4:69 39 60717 1.98 ppb # 102 12: Acrolein 5:34 45 22162 1.78 ppb 93 <td< th=""><th>Acq On Sample Misc</th><th>ile : C:\HPCHEM\1\DATA\A : 16 Mar 2016 6:50 : AlUG_2.0 : A316_LUG egration Params: RTEINT. Time: Mar 17 08:19:00 20</th><th>Ъш</th><th></th><th>Mul</th><th>tiplr:</th><th>RJP MSD ‡ 1.00</th><th></th><th>.RES</th></td<>	Acq On Sample Misc	ile : C:\HPCHEM\1\DATA\A : 16 Mar 2016 6:50 : AlUG_2.0 : A316_LUG egration Params: RTEINT. Time: Mar 17 08:19:00 20	Ъш		Mul	tiplr:	RJP MSD ‡ 1.00		.RES
DataAcq Meth 1.00_NUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1.) Promochloromethane 9.79 128 39696 1.00 ppb -0.01 35) 1.4 difluorobenzene 12.05 114 119341 1.00 ppb 0.00 50) Chlorobenzene 16.55 117 65204 1.00 ppb 0.00 System Monitoring Compounds 66.0 Bromofluorobenzene 18.13 95 48331 1.15 ppb 0.00 2) Propylene 4.14 41 52720 1.77 ppb # 100 3) Freen 114 4.19 85 300962 1.82 ppb 90 4) Chloromethane 4.39 95 75653 1.85 ppb 90 6) Vinyl Chloride 4.66 43 4007 1.71 ppb 93 7) Dutale 5.03 94 87794 1.75 ppb 93 10 Chloromethane 5.03 94	Quant Title	Method : C:\HPCHEM\1\MET : TO-15 VOA Stan	HODS\A316_ dards for	lUG.M S poix	(RTE Integ nt calibrat	rator) ion			
1) Bromochloromethane 9.79 126 39696 1.00 ppb -0.01 35) 1.4-difluorobenzene 12.05 114 119341 1.00 ppb 0.00 50) Chlorobenzene 16.56 117 650 70.00 0.00 System Monitoring Compounds 661 Bromofluorobenzene 18.13 95 48311 1.15 ppb 0.00 System Monitoring Compounds 61 Bromofluorobenzene 18.13 95 48311 1.15 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery # 115.00* 0.00 Target Compounds -1.19 85 300982 1.82 ppb 90 10 Choromethane 4.39 50 75653 1.82 ppb 90 11 Brane 4.69 39 60171 1.90 ppb 466 12 Noromethane 5.20 64 31434 1.30 ppb 466 <	DataAc	q Meth : 100_RUN						Dev (Min)
1) Bromechloromethane 9.79 126 13934 1.00 Ppt 0.00 35) 1, 4-difluorobenzene 16.55 117 65204 1.00 Ppb 0.00 50) Chlorobenzene 18.13 95 48331 1.15 Ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery * 115.00% Target Compounds 2 4.14 41 52720 1.77 Ppb # 100 3) Freon 12 4.139 95 300962 1.82 Ppb 99 99 4) Chloromethane 4.39 50 75653 1.82 Ppb 99 6) Vinyl Chloride 4.68 43 4007 1.71 Ppb 95 7: Dutane 5.20 64 31648 1.75 Ppb 93 9) Dromomethane 5.34 45 22162 1.89 Ppb 46 10 Chloroethane 5.20 64 31648 1.75 Ppb 93 10) Chloroethane 5.20 64 3164 <	 TUCGT								0.01
System Monitoring Compounds Spiked Amount 18.13 95 4B311 Recovery 1.15 ppb x 0.00 Target Compounds 2 Propylene 4.14 41 52720 1.77 pb t 100 3) Freon 12 4.19 85 300982 1.82 pb t 100 4) Chloromethane 4.39 85 252361 1.79 pp t 99 6) Vinyl Chloride 4.68 62 71454 1.80 pb t 99 7) Butane 4.69 39 60171 1.98 pb t 86 11) Chloroethane 5.03 94 88794 1.75 pp t 93 10) Chloroethane 5.20 64 31848 1.69 pp t 66 11) Ethanol 5.34 45 22162 1.89 pp t 66 12) Acrolein 5.93 56 19053m/1 1.92 pp t 67 13) Vinyl Bromide 5.64 101 311834 1.80 pp t <td>1)</td> <td>Bromochloromethane</td> <td>9.79</td> <td>128</td> <td>39696</td> <td>1.00</td> <td>ppp</td> <td></td> <td>0.00</td>	1)	Bromochloromethane	9.79	128	39696	1.00	ppp		0.00
System Monitoring Compounds Spiked Amount 18.13 95 4B311 Recovery 1.15 ppb spiked Amount 0.00 Target Compounds 2 Propylene 4.14 41 52720 1.77 ppb # 100 3) Freon 12 4.19 85 300982 1.82 ppb 100 4) Chloromethane 4.39 95 252361 1.79 ppb 99 6) Vinyl Chloride 4.66 43 84007 1.71 ppb 99 7) Butane 4.69 30 94 88794 1.75 ppb 93 10) Chloromethane 5.20 64 31842 1.90 pb 466 11) Ethanol 5.34 45 22162 1.69 ppb 466 12) Acrolein 5.33 56 19053m ^{2/1} 1.92 ppb 466 13) Vinyl Bromide 5.60 101 311834 1.40 49 95 14) Freon 11 6.06 42 64025	35)	1,4-difluorobenzene	12.05	117	65204	1.00	ppb		0.00
Target Compounds Qvalue 2) Propylene 4.14 41 52720 1.77 ppb # 100 3) Freen 12 4.39 50 75633 1.85 ppb 90 4) Chloromethane 4.39 50 75653 1.77 ppb 99 5) Freen 114 4.39 85 252561 1.77 ppb 89 6) Vinyl Chloride 4.66 43 84007 1.71 ppb 86 1.j-butadiene 4.69 39 60771 1.98 ppb 86 1.j-butadiene 5.03 94 86794 1.75 ppb 93 10 Chloroethane 5.03 94 86794 1.77 ppb 96 11) Ethanol 5.93 56 19963m/ ⁽¹⁾ 1.92 ppb 95 10 Prohane 5.64 101 311834 1.64 96 11) Ethanol 5.93 56 19963m/ ⁽¹⁾ 1.92	50)	Chlorobenzene-d5	T0.20	±± ,	~ ~ ~ ~ ~ ~ ~ ~ ~				
Target Compounds Qvalue 2) Propylene 4.14 41 52720 1.77 ppb # 100 3) Freen 12 4.39 50 75633 1.85 ppb 90 4) Chloromethane 4.39 50 75653 1.77 ppb 99 5) Freen 114 4.39 85 252561 1.77 ppb 89 6) Vinyl Chloride 4.66 43 84007 1.71 ppb 86 1.j-butadiene 4.69 39 60771 1.98 ppb 86 1.j-butadiene 5.03 94 86794 1.75 ppb 93 10 Chloroethane 5.03 94 86794 1.77 ppb 96 11) Ethanol 5.93 56 19963m/ ⁽¹⁾ 1.92 ppb 95 10 Prohane 5.64 101 311834 1.64 96 11) Ethanol 5.93 56 19963m/ ⁽¹⁾ 1.92	Syste	Monitoring Compounds							0 00
Target Compounds Qvalue 2) Propylene 4.14 41 52720 1.77 ppb # 100 3) Freen 12 4.39 50 75633 1.85 ppb 90 4) Chloromethane 4.39 50 75653 1.77 ppb 99 5) Freen 114 4.39 85 252561 1.77 ppb 89 6) Vinyl Chloride 4.66 43 84007 1.71 ppb 86 1.j-butadiene 4.69 39 60771 1.98 ppb 86 1.j-butadiene 5.03 94 86794 1.75 ppb 93 10 Chloroethane 5.03 94 86794 1.77 ppb 96 11) Ethanol 5.93 56 19963m/ ⁽¹⁾ 1.92 ppb 95 10 Prohane 5.64 101 311834 1.64 96 11) Ethanol 5.93 56 19963m/ ⁽¹⁾ 1.92	66)	Bromofluorobenzene	18.13	95	48331	1.15	ppp	00%	0.00
Target Compounds Qvalue 2) Propylene 4.14 41 52720 1.77 ppb # 100 3) Frein 12 4.39 50 75633 1.85 ppb 90 4) Chloromethane 4.39 50 75653 1.85 ppb 99 5) Frein 114 4.39 62 71454 1.60 ppb 89 6) Vinyl Chloride 4.66 43 84007 1.71 ppb 86 1) J-butadiene 4.69 39 60171 1.98 ppb 86 1) J-butadiene 5.03 94 86794 1.77 ppb 96 10) Chloroethane 5.20 64 31848 1.90 ppb # 66 11) Ethanol 5.93 56 19963m/" 1.92 ppb 96 12) Acrolein 5.94 106 90315 1.77 ppb 96 13) Vinyl Bromide 5.54 102 311834 1.84 90 # 62 14) Freon 11 6.75 101 31163	Spi	ked Amount 1.000	Range 70	- 130	Recover	CY **	<u>.</u>	000	
Target Compounds4.144.1 52720 1.77ppb#1003)Freon 124.19953009621.82pph1004)Chloromethane4.39952525611.79pph994)Chloromethane4.39852525611.79pph996)Vinyl Chloride4.6643840071.71pph867)Butane4.6643840071.71pph869)Bromomethane5.0396601711.98pph8611)Stouastiene5.03661963m/11.92pph8611)Ethanol5.93561963m/11.92pph9611)Ethanol5.94106903151.77pph9913)Vinyl Bromide5.54106903151.77pph9614)Preon 116.0258315062.05pph9616)Pentane6.0642640251.75pph9916)Pentane6.56908671.81pph9617)Isopropyl alcohol6.1345953781.89pph4618)1.1-dichloroethene6.56908671.81pph9210)Herdoride7.19762294691.81pph9720)transe7.19762294691.81pph <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$\Delta \pi t^{\mu}$</td><td>alme</td></td<>								$\Delta \pi t^{\mu}$	alme
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon 11 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 56 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Allyl chloride 7.97 61 109677 1.86 ppb 99 23) Carbon disulfide 7.97 751 109677 1.86 ppb	Targe	et Compounds	4 14	41	52720	1.77	ppb	#	100
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon 11 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 56 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Allyl chloride 7.97 61 109677 1.86 ppb 99 23) Carbon disulfide 7.97 751 109677 1.86 ppb	2)	brobArene	4.19	85	300982	1,82	\mathbf{ppb}		100
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon II 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 58 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Carbon disulfide 7.19 761 109677 1.86 ppb 99 23) Carbon disulfide 7.97 71 1.66 ppb 99	3)	Freon 12 Chleromethane	4.39	50	75653	1.85	ppb		90
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon II 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 58 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Carbon disulfide 7.19 761 109677 1.86 ppb 99 23) Carbon disulfide 7.97 71 1.66 ppb 99	4) E)	Execu 114	4.39	85	252561	1.79	ppb		99
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon 11 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 56 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Allyl chloride 7.97 61 109677 1.86 ppb 99 23) Carbon disulfide 7.97 751 109677 1.86 ppb		vinyl Chloride	4.58	62	71,454	1.80	ppp		09
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon 11 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 56 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Allyl chloride 7.97 61 109677 1.86 ppb 99 23) Carbon disulfide 7.97 751 109677 1.86 ppb	7)	Butane	4.68	43	84007	1.71	ppo		95 88
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon 11 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 56 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Allyl chloride 7.97 61 109677 1.86 ppb 99 23) Carbon disulfide 7.97 751 109677 1.86 ppb	8)	1,3-butadiene	4.69	39	60171	1 75	ppb		93
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon 11 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 56 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Allyl chloride 7.97 61 109677 1.86 ppb 99 23) Carbon disulfide 7.97 751 109677 1.86 ppb	9)	Bromomethane	5.03	94	80/94 91048	1,90	ppb	#	85
13) Vinyl Browning 5.80 101 311834 1.84 ppb 99 14) Freon 11 5.80 101 311834 1.84 ppb 99 15) Acetone 6.02 56 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 18) 1.1-dichloroethene 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #83 21) Methylene chloride 7.00 41 75821 2.00 ppb #83 22) Allyl chloride 7.97 61 109677 1.86 ppb 99 23) Carbon disulfide 7.97 751 109677 1.86 ppb	10)	Chloroethane	5.20	04	22162	1.89	ppb	#	66
13) Vinyl Brownie 5.60 101 311834 1.84 ppb 99 14) Freon 11 5.60 101 311834 1.84 ppb 99 15) Acetone 6.02 56 31506 2.05 ppb # 62 16) Pentane 6.06 42 64025 1.75 ppb 99 17) Isopropyl alcohol 6.13 45 95376 1.89 ppb # 46 16) 1.1.4-dichloroethane 6.56 96 90867 1.61 ppb #9 19) Freon 113 6.75 101 218149 1.79 ppb #73 20) t-Butyl alcohol 6.87 59 153022 1.79 ppb #8 21) Methylene chloride 7.00 41 75821 2.00 ppb 82 221 Methylene chloride 7.97 61 109677 1.86 ppb 90 23) Carbon disulfide 7.97 751 109677 1.86 ppb	11)	Ethanol	5 93	56	19963m/ ³	1,92	dqq		
22)Altyl chloradd7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)1,1-dichloroethane8.39631558901.83ppb9927)Vinyl acetate6.41431390821.80ppb9928)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane6.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.95ppb	12)	Acrolein Nigerl Bromide	5.54	106	90315	1.77	\mathbf{ppb}		96
22)Alfyl childrand7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)1,1-dichloroethane8.39631558901.83ppb9927)Vinyl acetate8.41431390821.80ppb9926)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane8.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.95pp	13)	Ereon 11	5.80	101	311834	1.84	qqq	,,	99
22)Alfyl childrand7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)1,1-dichloroethane8.39631558901.83ppb9927)Vinyl acetate8.41431390821.80ppb9926)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane8.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.95pp	141	Acetope	6.02	56	31506	2.05	ppp	#	U.2 00
22)Alfyl childrand7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)1,1-dichloroethane8.39631558901.83ppb9927)Vinyl acetate8.41431390821.80ppb9926)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane8.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.95pp	16)	Pentane	6.06	42	64025	1.75	ppp	44	46
22)Altyl chloradd7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)1,1-dichloroethane8.39631558901.83ppb9927)Vinyl acetate6.41431390821.80ppb9928)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane6.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.95ppb	17)	Isopropyl alcohol	6.13	45	95378	1 81	ppb	.11	89
22)Altyl chloradd7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)1,1-dichloroethane8.39631558901.83ppb9927)Vinyl acetate6.41431390821.80ppb9928)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane6.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.95ppb	76)	1,1-dichloroethene	6.56	96	90007	1.79	dog 1		96
22)Alfyl childrand7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)1,1-dichloroethane8.39631558901.83ppb9927)Vinyl acetate8.41431390821.80ppb9926)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane8.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.95pp	19)	Freon 113	6.70	. TOT	163022	1.79	dqq	#	73
22)Airy Contortion7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)nethyl tert-butyl ether8.39631558901.83ppb9927)Vinyl acetate8.41431390821.80ppb9928)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane8.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.96<	20)	t-Butyl alcohol	0.01	64	81781	1,83	р́рb		92
22)Airy Contortion7.19762294691.61ppb9723)Carbon disulfide7.19762294691.61ppb9024)trans-1,2-dichloroethene7.97611096771.66ppb9025)methyl tert-butyl ether8.01732170921.92ppb9626)nethyl tert-butyl ether8.39631558901.83ppb9927)Vinyl acetate8.41431390821.80ppb9928)Methyl Ethyl Ketone8.9272351091.95ppb#29)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane8.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9631)Ethyl acetate9.94832094221.84ppb9832)Chloroform9.94832094221.84ppb9833)Tetrahydrofuran10.1542590931.60ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.96<	21)	Methylene chloride	7.00	41	75821	2.00	dqq (88
237CallbarCallbar7.97611096771.66pp59024)trans-1,2-dichloroethene8.01732170921.92ppb9625)methyl tert-butyl ether8.39631558901.83ppb9926)1,1-dichloroethane8.39631558901.83ppb9927)Vinyl acetate8.41431390821.80ppb9928)Methyl Ethyl Ketone3.9272351091.95ppb#10029)cis-1,2-dichloroethene9.3361956401.86ppb9330)Hexane8.90571037451.97ppb9631)Ethyl acetate9.51431326811.93ppb9632)Chloroform9.94632094221.84ppb9833)Tetrahydrofuran10.1542590931.86ppb8734)1,2-dichloroethane11.07621167591.86ppb9036)Carbon tetrachloride11.391172216131.95ppb9039)Benzene11.36781931611.95ppb9040)Methyl methacrylate12.9141622121.99ppb9741)1,4-dioxane12.18573517812.00ppb9842)2,2,4-trimethylpentane12.534386114 </td <td></td> <td>MTTAL CUTACTICS</td> <td></td> <td></td> <td>229469</td> <td>1.81</td> <td>Ppb</td> <td></td> <td>97</td>		MTTAL CUTACTICS			229469	1.81	Ppb		97
25) methyl tert-butyl ether8.01732170321.03pp26) 1,1-dichloroethane8.39631558901.83ppb9927) Vinyl acetate8.41431390821.60ppb9928) Methyl Ethyl Ketone8.9272351091.95ppb#29) cis-1,2-dichloroethene9.3361956401.86ppb9330) Hexane8.90571037451.97ppb9631) Ethyl acetate9.51431326811.93ppb9632) Chloroform9.94632094221.84ppb9833) Tetrahydrofuran10.1542590931.60ppb8534) 1,2-dichloroethane10.75972119521.92ppb10036) 1,1,1-trichloroethane10.75972119521.92ppb9037) Cyclohexane11.3456955602.08ppb9038) Carbon tetrachloride11.391172216131.95ppb9039) Benzene11.36781931811.98ppb9040) Methyl methacrylate12.9908481431.87ppb9741) 1,4-dioxane12.18573517812.00ppb9642) 2,2,4-trimethylpentane12.18573517812.04ppb9642)2,2,4-trimethylpentane12.5343861142.04ppb96<	22/ 24)	trans-1, 2-dichloroethen							
26) $1,1-dichloroethane$ 8.39 63 153890 1.00 pp 27)Vinyl acetate 8.41 43 139082 1.80 ppb 99 28)Methyl Ethyl Ketone 8.92 72 35109 1.95 ppb 93 29) $cis-1,2-dichloroethene$ 9.33 61 95640 1.86 ppb 93 30)Hexane 8.90 57 103745 1.97 ppb 96 31)Ethyl acetate 9.51 43 132681 1.93 ppb 96 32)Chloroform 9.94 83 209422 1.84 ppb 98 33)Tetrahydrofuran 10.15 42 59093 1.80 ppb 87 34) $1,2-dichloroethane$ 11.07 62 116759 1.86 ppb 87 34) $1,2-dichloroethane$ 11.44 56 95560 2.08 ppb 90 36) $1,1,1-trichloroethane$ 11.39 117 221613 1.95 ppb 90 37)Cyclohexane 11.36 78 193181 1.98 ppb 90 39)Benzene 12.91 41 62212 1.99 ppb 90 40)Methyl methacrylate 12.99 00 46143 1.67 ppb 97 41) $1,4-dioxane$ 12.18 57 351781 2.00 ppb 96 42) $2,2,4-trimethylpentane$ $12,53$	25)	methyl tert-butyl ether	0.01						
27)Vinyl acetate 6.41 43 13962 1.95 ppb #28)Methyl Ethyl Ketone 8.92 72 35109 1.95 ppb #29)cis-1,2-dichloroethene 9.33 61 95640 1.86 ppb 93 30)Hexane 8.90 57 103745 1.97 ppb 96 31)Ethyl acetate 9.51 43 132681 1.93 ppb 96 32)Chloroform 9.94 83 209422 1.84 ppb 98 33)Tetrahydrofuran 10.15 42 59093 1.80 ppb 87 34) $1,2$ -dichloroethane 11.07 62 116759 1.86 ppb 87 36) $1,1,1$ -trichloroethane 10.75 97 211952 1.92 ppb 90 37)Cyclohexane 11.44 56 95560 2.08 ppb 90 38)Carbon tetrachloride 11.39 117 221613 1.95 ppb 90 39)Benzene 12.91 41 62212 1.99 ppb 90 40)Methyl methacrylate 12.99 00 48143 1.67 ppb 97 41) $1,4$ -dioxane 12.18 57 351781 2.00 ppb 96 42) $2,2,4$ -trimethylpentane $12,53$ 43 86114 2.04 ppb 96	25)	1,1-dichloroethane	9.35						
26)Methyl Ethyl Ketone 8.92 72 35640 1.86 ppb 93 29) $cis-1, 2-dichloroethene$ 9.33 61 95640 1.86 pph 93 30)Hexane 8.90 57 103745 1.97 pph 96 31)Ethyl acetate 9.51 43 132681 1.93 pph 96 32)Chloroform 9.94 83 209422 1.84 pph 96 33)Tetrahydrofuran 10.15 42 59093 1.80 pph 85 34) $1, 2-dichloroethane$ 11.07 62 116759 1.86 pph 87 36) $1, 1, 1-trichloroethane$ 10.75 97 211952 1.92 pph 90 37)Cyclohexane 11.44 56 95560 2.08 pph 90 38)Carbon tetrachloride 11.39 117 221613 1.95 pph 90 39)Benzene 12.91 41 62212 1.99 pph 400 Methyl methacrylate 12.91 41 62212 1.99 pph 97 41 $1, 4-dioxane$ 12.18 57 351781 2.00 pph 96 42 $2, 2, 4-trimethylpentane$ $12, 53$ 43 86114 2.04 pph 96	27)	Vinyl acerate							100
29)cis-1,2-dichtoroethene5.90571037451.97ppb9630)Hexane9.51431326811.93ppb9631)Ethyl acetate9.51431326811.93ppb9632)Chloroform9.94832094221.84ppb9633)Tetrahydrofuran10.1542590931.80ppb8534)1,2-dichloroethane11.07621187591.86ppb8736)1,1.1-trichloroethane10.75972119521.92ppb9036)1,1.1-trichloroethane11.3456955602.08ppb9037)Cyclohexane11.391172216131.95ppb9738)Carbon tetrachloride11.36781931811.98ppb9039)Benzene12.9141622121.99ppb4040)Methyl methacrylate12.9908481431.87ppb9741)1,4-dioxane12.18573517812.00ppb9842)2,2,4-trimethylpentane12.18573517812.04ppb9642)4343861142.04ppb96	26)	Methyl Ethyl Ketone							93
30) Hexale9.51431326811.93ppb9631) Ethyl acetate9.94832094221.84ppb9832) Chloroform9.94832094221.84ppb9833) Tetrahydrofuran10.1542590931.80ppb8534) 1,2-dichloroethane11.07621187591.86ppb8736) 1,1,1-trichloroethane10.75972119521.92ppb10036) 1,1,1-trichloroethane11.3456955602.08ppb9037) Cyclohexane11.391172216131.95ppb9738) Carbon tetrachloride11.36781931811.98ppb9039) Benzene12.9141622121.99ppb4040) Methyl methacrylate12.9908481431.87ppb9741) 1,4-dioxane12.18573517812.00ppb9842) 2,2,4-trimethylpentane12.18573517812.04ppb9841) Uortane12,5343861142.04ppb98									96
31) Strip: Model9.94832094221.84PPS9632) Chloroform10.1542590931.60Ppb8533) Tetrahydrofuran10.1542590931.60Ppb8734) 1,2-dichloroethane11.07621167591.66Ppb8736) 1,1,1-trichloroethane10.75972119521.92Ppb10037) Cyclohexane11.4456955602.08Ppb9038) Carbon tetrachloride11.391172216131.95Ppb9839) Benzene11.36781931611.98Ppb9840) Methyl methacrylate12.9141622121.99Ppb9741) 1,4-dioxane12.9908481431.87Ppb9742) 2,2,4-trimethylpentane12.18573517812.00Ppb9842) Upbtane12,5343861142.04Ppb96	30)	Hexane Ethyl adefale							
12)11.01542590931.801.80ppb3333)Tetrahydrofuran10.1542590931.80ppb8734)1,2-dichloroethane11.07621187591.86ppb8736)1,1,1-trichloroethane10.75972119521.92ppb10037)Cyclohexane11.4456955602.08ppb9038)Carbon tetrachloride11.391172216131.95ppb9739)Benzene11.36781931611.98ppb9840)Methyl methacrylate12.9141622121.99ppb9741)1,4-dioxane12.9908481431.87ppb9742)2,2,4-trimethylpentane12.18573517812.00ppb9842)2,2,4-trimethylpentane12,5343861142.04ppb96	3⊥) 30\	Chloroform							
34) $1,2$ -dichloroethane 11.07 62 110795 1.00 pp 36) $1,1,1$ -trichloroethane 10.75 97 211952 1.92 ppb 100 37)Cyclohexane 11.44 56 95560 2.08 ppb 97 38)Carbon tetrachloride 11.39 117 221613 1.95 ppb 96 39)Benzene 11.36 76 193161 1.98 ppb 96 40)Methyl methacrylate 12.91 41 62212 1.99 ppb 97 41) $1,4$ -dioxane 12.99 06 48143 1.87 ppb 96 42) $2,2,4$ -trimethylpentane 12.18 57 351781 2.00 ppb 96 42) $2,2,4$ -trimethylpentane 12.53 43 86114 2.04 ppb 96		Tetrahydrofuran	10.15	5 42					
36) 1,1,1-trichloroethane 10.75 97 21132 10.075 90 37) Cyclohexane 11.44 56 95560 2.08 ppb 90 38) Carbon tetrachloride 11.39 117 221613 1.95 ppb 90 39) Benzene 11.36 76 193181 1.98 ppb 90 40) Methyl methacrylate 12.91 41 62212 1.99 ppb 97 41) 1,4-dioxane 12.99 00 48143 1.87 ppb 97 42) 2,2,4-trimethylpentane 12.18 57 351781 2.00 ppb 96 42) 2,2,4-trimethylpentane 12,53 43 86114 2.04 ppb 96	34)	1,2-dichloroethane							1.00
37) Cyclohexane 11.44 56 55560 1.05 pp 97 38) Carbon tetrachloride 11.39 117 221613 1.95 ppb 98 39) Benzene 11.36 78 193181 1.98 ppb 98 40) Methyl methacrylate 12.91 41 62212 1.99 ppb 97 41) 1.4-dioxane 12.99 08 48143 1.87 ppb 97 42) 2.2.4-trimethylpentane 12.18 57 351781 2.00 ppb 96 42) Uoptane 12.53 43 86114 2.04 ppb 96	36)	1,1,1-trichloroethane		-					90
38) Carbon tetrachloride 11.39 11, 21013 1.96 ppb 98 39) Benzene 11.36 78 193181 1.96 ppb 98 40) Methyl methacrylate 12.91 41 62212 1.99 ppb 97 41) 1,4-dioxane 12.99 08 48143 1.87 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 351781 2.00 ppb 98 42) Uoptane 12,53 43 86114 2.04 ppb 98	37)	Cyclohexane							97
39) Benzene 12.91 41 62212 1.99 ppb # 60 40) Methyl methacrylate 12.91 41 62212 1.99 ppb # 60 41) 1,4-dioxane 12.99 00 48143 1.87 ppb 97 42) 2,2,4-trimethylpentane 12.18 57 351781 2.00 ppb 98 42) 2,04-trimethylpentane 12,53 43 86114 2.04 ppb 86	38)	Carbon tetrachloride							98
40) Methyl methaciylate 12.99 00 48143 1.87 ppb 97 41) 1,4-dioxane 12.99 00 48143 1.87 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 351781 2.00 ppb 98 42) 2,2,4-trimethylpentane 12,53 43 86114 2.04 ppb 98	39)	Benzene Maskul mathaorylate				1.9:	a bbp) #	60
41) 1,4-GIOXane 12.18 57 351781 2.00 ppb 98 42) 2,2,4-trimethylpentane 12.18 57 351781 2.04 ppb 96 42) 2,2,4-trimethylpentane 12.53 43 86114 2.04 ppb 96	40)	Metnyt metnacryrate							97
12,53 43 86114 2.04 PPD	41)	2,4-trimethylpentane			351781	2.0			
									00 99
44) Trichloroethene 12.67 130 save 1 81 pph 96	44)	Trichloroethene			-				99
	45)		12.7	9 63	67226	 7 • T	" * 5ħt		
(#) = qualifier out of range (m) = manual integration (#) = qualifier out of range (m) 27.3205 M6D1									


(#) = qualifier out of range (m) = manual integration AN031603.D A316_1UG.M Thu Apr 07 13:05:28 2016

Page 1

Vial: 2 Data File : C:\HPCHEM\1\DATA\AN031603.D Operator: RJP Acq On : 16 Mar 2016 6:50 pm Sample : AlUG_2.0 Inst : MSD #1 Multiplr: 1.00 Misc : A316_10G MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:19:00 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN CompoundR.T. QIONResponseConc UnitQvalue46)Bromodichloromethane13.11831681641.95 ppb9947)cis-1,3-dichloropropene13.6975951932.09 ppb10048)trans-1,3-dichloropropene14.6275814001.94 ppb9249)1,1,2-trichloroethane14.9397730461.93 ppb9851)Toluene14.6792958592.10 ppb9652)Methyl Isobutyl Ketone13.62431612051.95 ppb9753)Dibromochloromethane15.6012911719m1.98 ppb9755)1,2-dibromoethane15.611035731.91 ppb9756)Tetrachloroethylene15.66164777301.98 ppb9857)Chlorobenzene16.611121146092.01 ppb9858)1,1,1,2-tetrachloroethane16.71131839291.64 ppb9759)Strylbenzene17.04912794194.64 ppb9761)Nonane17.384390502.36 ppb9862)Styrene17.461041007902.36 ppb9563)Bromoform17.56173638662.18 ppb9764)c.xylene17.92923.1291491.652932.99 pb65)Cumene16.75197752.53 ppb9967)1,1,2,2-tetrachlo R.T. QION Response Conc Unit Qvalue Compound

(#) = qualifier out of range (m) = manual integration (+) * signals summed AN031603.D A316_10G.M Thu Apr 07 13:05:29 2016 MSD1

Page 2

 $(x_{i},y_{i},y_{i})\in (x_{i},y_{i})\in (x_{i},y_{i})\in (x_{i},y_{i})\in (x_{i},y_{i})\in (x_{i},y_{i})$

.

.

....

Vial: 3 Data File : C:\HPCHEM\1\DATA\AN031604.D Acq On : 16 Mar 2016 7:30 pm Sample : AlUG_1.50 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MISC : ABIO_100 MULTIPIT: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 08:18:42 2016 Quant Results File: ABI6_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN R.T. Qion Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.80128373881.00ppb-0.0135) 1.4-difluorobenzene12.061141250971.00ppb0.0050) Chlorobenzene-d516.56117714251.00ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 48889 1.06 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 106.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 106.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.13
 41
 41028
 1.46
 Ppb
 #
 109

 3) Freon 12
 4.13
 41
 41028
 1.47
 Ppb
 99

 4) Chloromethane
 4.39
 55
 56920
 1.48
 Ppb
 910

 5) Freon 114
 4.58
 62
 53313
 1.42
 Ppb
 92

 6) Vinyl Chloride
 4.66
 43
 62790
 1.36
 Ppb
 93

 9) Bromomethane
 5.03
 94
 6597
 1.40
 Ppb
 93

 10) Chloroethane
 5.20
 64
 24605
 1.56
 Ppb
 96

 11) Sthanol
 5.74
 106
 6992
 1.43
 Ppb
 96

 12) Acrolein
 5.74
 106
 6932
 1.43
 Ppb
 96

 13) Vinyl Bromide
 5.64
 104
 596
 1.44
 Ppb</t Qvalue (4) = malifier out of range (m) = manual integration(#) = qualifier out of range (m) = manual integration AN031604.D A316_1UG.M Thu Apr 07 13:05:32 2016 MSD1

Page 1

Vial: 3 Data File : C:\HPCHEM\1\DATA\AN031604.D Operator: RJP Acq On : 16 Mar 2016 7:30 pm Inst : MSD #1 Sample : A1UG_1.50 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:18:42 2016 Quant Method : C:\HPCHEM\1\METHODS\A315_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN R.T. Qion Response Conc Unit Qvalue

 46)
 Bromodichloromethane
 13.11
 83
 131443
 1.45 ppb
 98

 47)
 cis-1,3-dichloropropene
 13.69
 75
 73577
 1.52 ppb
 98

 48)
 trans-1,3-dichloropropene
 14.63
 75
 63904
 1.46 ppb
 93

 49)
 1,1,2-trichloroethane
 14.93
 97
 60215
 1.52 ppb
 99

 51)
 Toluene
 14.67
 92
 76620
 1.53 ppb
 96

 52)
 Methyl Isobutyl Ketone
 13.63
 43
 112630
 1.24 ppb
 97

 53)
 Dibromochloromethane
 15.60
 129
 89145m
 1.44 ppb
 93

 54)
 Methyl Butyl Ketone
 15.61
 14
 100523
 1.23 ppb
 96

 55)
 1,2-dibromoethane
 15.65
 164
 62276
 1.45 ppb
 98

 56)
 Tetrachloroethylene
 15.65
 164
 62276
 1.45 ppb
 98

 57)
 Chlorobenzene
 16.61
 112
 93564
 1.50 ppb
 91

 58)
 1,1,1,2-tetrachloroethane
 16.70
 131< Compound 63) Bromoform 64) o-xylens - 95 65)Cumene18.021051436471.68ppb67)1,1,2,2-tetrachloroethane17.92631028931.35ppb68)Propylbenzene18.5491146044m1.74ppb69)2-Chlorotoluene18.5691109401m1.57ppb70)4-ethyltoluene18.70105121465m1.63ppb71)1,3,5-trimethylbenzene18.75105142483m1.53ppb72)1,2,4-trimethylbenzene19.191051130631.42ppb73)1,3-dichlorobenzene19.40146757261.39ppb74)benzylchloride19.56911059941.43ppb75)1,4-dichlorobenzene19.651051411181.34ppb76)1,2,3-trimethylbenzene19.93146815741.25pph78)1,2,4-trichlorobenzene21.79180770421.53ppb79)Naphthalene21.981281628051.71ppb80)Hexachloro-1,3-butadiene22.062251648151.22ppb -99 - 99 95 98 97 99 97 98 96 98 95

(#) = qualifier out of range (m) = manual integration (+) = signale summed AN031604.D A316_1UG.M Thu Apr 07 13:05:33 2016 MSD1

Page 2

Centek Laboratories

	Ť,9⊓аЮвіхи⊄∳- слойслох	V.prosnedonakraku, S.y	22.00 Page 3
			21.00
		T,enestrisdonoliteite-S, t	20.00
	·	₹.9995090%go@55 T,9n9xn9a0xt196n9732992101-0- T,9n9xn9a0xt196m10-0-2.1.	19.00
		7,205/1900/04/31,5,5,5,1	18.00
		T.enselleerer. Ethylberzene, T.ethylberzene,	17.00
1 1UG.RES		T,งกรโชเนอาอรี่สุดีสูญรักอาอุโนลอกอาย่าน	16.00
3 RJP MSD #1 1.00 A316_10	9	Т.овруддурдурдурдурдурдурдурдурдурдурдурдурд	15.00
щ с с с с с с с с с с с с с	grator) tion 031606.D TiC AN03604.D	Т. эпојей Құндарі құлдыры. с. г <u>. 213 — тектетет</u>	3.00 14.00 MSD1
Vial Operator Inst Multipir Results File	316_1UG.M (RTE Integrator) for 5 point calibration 016 C:\HPCHEM\1\DATA\AN031606.D TIC:AN0360	Tenelgari Langingongingota Langingongingota Langing	1. 1. 1.
	(RTE II t cali) 1/DATA	 Τ, οιλούτοιπία ιακτιο θ. Τ, οπόχαθοίουξο. Τ, οπόχαθοίουξιο. Τ, οπότοθογείο απότο θ. δ. δ.	2016
Quant	point (point (CHEM/1	Τ,ຍກຣຕໂອອາວໄຕ່ວ່າໄ+1,1,5 Τ,ອກຣຕໂອອາວໄຕ່ວ່າໄ+1,1,5 Τ,ອກຣຕໂອອາວເຊີກວ່າຍ່າວຊ່າວ2,1	11.0
đ. P	A316_100 2016 5 1 C:\HPC	Construction of the second of	10.00
АМОЗІ66 О рт . Р	\METHODS/J Standards 10:24:27 Cal File: Cal File:	T.9narkoreotherkoreothere. T.9narkoreotherkoreothere. T.enarkoreothere.	9.00 Apr 07
\DATA\A 7:30 7:21 8.TEINT.J	M/1/MET A Star 17 10:2 IIG Cal	Т. голия Туплицантурно-5, г. если и	1 Pure
HPCHEM/1/I Mar 2016 1.50 6_1106 Params: R7 Params: R7	RCHE Mar Linui:	T, enclosed and the strength of the strength o	
		Choncelhard, T. Shared Glenc, T Choncelhard, T Elibard, T Elibard, T Action 11, 7 Action 11, 7	00 6.00 M316 1UG,M
a File : C:' I On : 16 mple : All sc : A3 Integration	d Tpdate vi	T, 20169194400613	L với
Data F Acq On Sample Misc Ms Int	Method Title Last Updi Response Abundance 950000 950000 850000 850000 750000 750000 650000	600000 55000 560000 450000 350000 350000 350000 150000 150000 100000 50000	^{05, , , ,} Тще⊸ АN031604. D

Data File : C:\HPCHEM\1\DATA\AM Acq On : 16 Mar 2016 8:10 Sample : AlUG_1.25 Misc : A316_1UG MS Integration Params: RTEINT.E Quant Time: Mar 17 08:18:24 201	pm 2 16		Oper Inst Mult ant Results	; iplr: File:	RJÞ MSD # 1.00		RBS		
Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN									
			Response C						
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.80 12.08 16.56	128 114 117	38435 118006 66689	1.00 1.00 1.00	ppp pdd ddd		0.00 0.00 0.00		
Gystem Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000)									
Target Compounds			34125 188632 46990 159182 44524 55448 36591 55311 20643	1 10	mb	- H - H	100		
2) Propylene	4.14	41	34125	1 10	ppp ppp	71	99		
3) Freon 12	4.19	85	188632	1,10	ppb		94		
4) Chloromethane	4.39	50	46990	1 1 2	ppb		99		
5) Freon 114	4,39	85	159182	1 16	222 222		93		
6) Vinyl Chloride	4.58	62	44524	1.10	2022		94		
7) Butane	4.68	43	55448	1.10	PPD PPD		84		
3) 1,3-butadiene	4.69	39	36591	1 1 2 2	PPD PPD		91		
9) Bromomethane	5.04	94	55311 20643 13696 12410m 56822	1.13	555	#1	85		
10) Chloroethane	5,20	64	20643	1 20	ppo	17 41	74		
11) Ethanol	5.36	45	13696 8	1,20	DDD DDD	17			
10) Boroloin	5.94	56	12410m /	1.2%	ppp		95		
13) Vinyl Bromide	5,54	106	56822 194667	1.15	ppo		99		
14) FTEON II	5.80	101	194667	1.19	ppn		33		
15) Acetone	6.03	58	18687m	1,25	ppb				
16) Pentane	6.07	42	4134 3m	1.16	ppb		46		
17) Teopropyl alcohol	6.15	45	194867 18607m 41343m 57073 \$6328 137846 93562 50280m 41687m	1.17	ppp	Ħ	89		
18) 1,1-dichloroethene	6.56	96	\$6328	1.16	ppo		96		
19) Freon 113	6.75	1.01	137846	1.17	ppp		93		
20) C-Butyl alcohol	6.88	59	93562	1.13	ppp		33		
21) Methylene chloride	7.04	64	50280m	1.10	ppp				
22) Allyl chloride	/.UI	4 -	1200/11		· ·		97		
23) Carbon disulfide	7.20	76	140023	1.20	ppb		94		
24) trans-1,2-dichloroethene	7.97	61	68887				94		
25) methyl tert-butyl ether	8.03	73	131518		ppb ppb		97		
26) 1,1-dichloroethane	8.39	63	95089		מקק				
27) Vinyl acetate	8.41	43	89018m J 21142		ppb	#	100		
28) Methyl Ethyl Ketone	8.94	72	61144		ppb	u	90		
29) cis-1,2-dichloroethene	9.34	61	57658		ppb		97		
30) Hexane	8.89	57	62689		ppb		95		
31) Ethyl acetate	9.52	43	70814 128907		ppb		98		
32) Chloroform	9,94	83	37021		ppb		89		
33) Tetrahydrofuran	10.15		73032		ppb		89		
34) 1,2-dichloroethane	11.07		131367		ppb		9 9		
36) 1,1,1-trichloroethane	10.75		57547		ppb		90		
37) Cyclohexane	11.44		137163		ppb		99		
38) Carbon tetrachloride	11.39 11.37		116070	1.21	_ ppb		99		
39) Benzene			27863	1.23	ppb		83		
40) Methyl methacrylate	12.92		116970 37063 28574	1.12	ppb		1.00		
41) 1,4-dioxane	13.00 12.19	88 57	211404	1.21	ppb		98		
42) 2,2,4-trimethylpentane	12.13) C A D			ppb		92		
43) Heptane	12.53	43	50947 57922		ppb		99		
44) Trichloroethene			41974) ppb		100		
45) 1,2-dichloropropane	12.78	63				- 			
(4) = $-\infty$) if for out of rande	(m) = man	บล⊥าเ	tegration 5:36 2016						

(#) = qualifier out of range (m) = manual integration AN031605.D A316_1UG.M Thu Apr 07 13:05:36 2016

Vial: 4 Data file : C:\HPCHEM\1\DATA\AN031605.D Acq On : 16 Mar 2016 Sample : AlUG_1.25 Operator: RJP 0:10 pm Inst : MSD #1 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:18:24 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG RUN R.T. QION Response Conc Unit Qvalue Compound ______ 46) Bromodichloromethane 13.11 83 102348 1.20 ppb 47) cis-1,3-dichloropropene 13.90 75 57578 1.26 ppb 99

 47)
 cis-1,3-dichloropropene
 13.90
 75
 57570
 1.26 ppb

 48)
 trans-1,3-dichloropropene
 14.63
 75
 51106
 1.23 ppb

 49)
 1,1,2-trichloroethane
 14.93
 97
 46126
 1.24 ppb

 51)
 Toluene
 14.68
 92
 56126
 1.20 ppb

 52)
 Methyl Isobutyl Ketone
 13.83
 43
 97491m
 1.15 ppb

 53)
 Dibromochloromethane
 15.60
 129
 67490m
 1.17 ppb

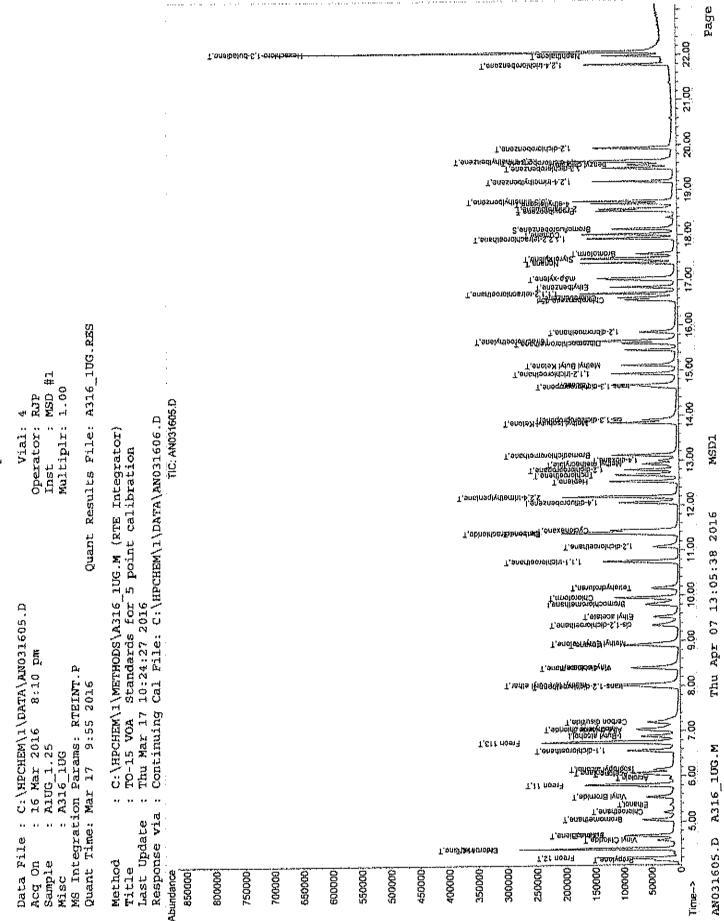
 54)
 Methyl Butyl Ketone
 15.11
 43
 90049m
 1.18 ppb

 55)
 1,2-dibromoethane
 15.85
 107
 66367
 1.20 ppb

 56)
 Tetrachloroethylene
 15.66
 164
 47939
 1.18 ppb

 57)
 Chlorobenzene
 16.61
 112
 73949
 1.27 ppb

 58)
 1,1,1,2-tetrachloroethane
 16.71
 131
 54587
 1.16 ppb

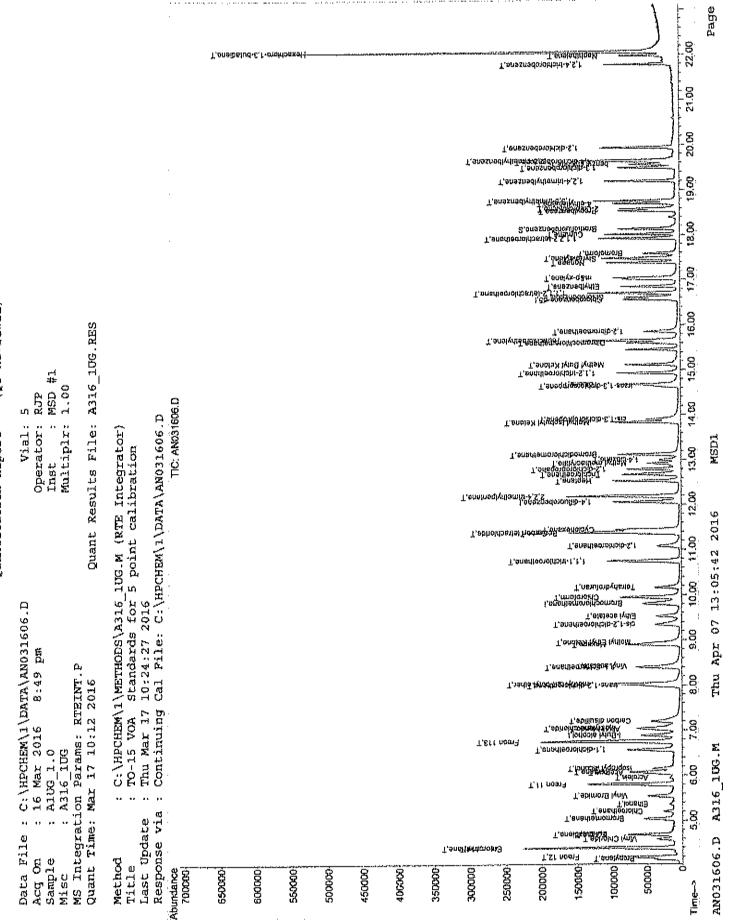

 59)
 Ethylbenzene
 16.85
 91
 103191
 1.32 ppb

 60)
 m&p-xylene
 17.04
 91
 173419
 2.61 ppb
 </t 57578 51108 99 92 95 96 97 100 85 95 98 10.0010.0010.0010.0010.0010.0010.0010.0060)m&p-xylene17.04911734192.61ppb61)Nonane17.3643524391.46ppb62)Styrene17.46104610681.40ppb63)Bromoform17.56173412971.38ppb64)o-xylene17.489199047m1.42ppb65)Cumene18.011051194711.49ppb67)1,1,2,2-tetrachloroethane17.9283877571.23ppb68)Propylbenzene16.5491112193m1.43ppb69)2-Chlorotoluene18.70105103814m1.50ppb70)4-ethyltoluene18.70105103814m1.50ppb71)1,3.5-trimethylbenzene19.19105969261.30ppb72)1,2.4-trimethylbenzene19.49146676471.33ppb74)benzylchloride19.5691930161.34ppb75)1,4-dichlorobenzene19.651051178601.20ppb76)1,2,3-trimethylbenzene19.93146727001.20ppb76)1,2,4-trichlorobenzene21.78180629091.34ppb79)Naphthalene21.98128100472m1.13ppb80)Hexachloro-1,3-butadie 97 98 92 99 98 98 96 - 99 94 95 95 96 -96 95

(#) = qualifier out of range (m) = manual integration (+) = signals summed

AN031605.D A316_1UG.M Thu Apr 07 13:05:37 2016 MSD1

ŝ



Data File : C:\HPCHEM\1\DATA\AM Acq On : 16 Mar 2016 B:49 Sample : A1UG_1.0 Misc : A316_1UG MS Integration Params: RTEINT.1 Quant Time: Mar 17 08:18:03 201	pm	Quz	Oper Inst Mult	Vial: ator: iplr: File:	RJP MSD 1.00		, RES		
Quant Method : C:\HPCHEM\l\METHODS\A316_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\l\DATA\AN031605.D DataAcq Meth : lUG_RUN									
Internal Standards			Response C						
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.81 12.06 16.56	128 114 117	36682 112843 61333	1.00 1.00 1.00	ррр ррр ррр		0.00 0.00 0.00		
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	39738 Recovery	1.01 - =	ppb 101.	00%	0.00		
Townshinds						Qva	alue		
Target Compounds 2) Propylene	4.14	41	27277 151027 37602 128823 36447 44989 28499 46282 16583 11746 9571m / 46664	0.99	ppb	#	100		
3) Freen 12	4.19	85	151027	0.99	$\mathbf{p}\mathbf{p}\mathbf{p}$		99		
4) Chloromethane	4.39	50	37602	1.00	ddd		100		
5) Freon 114	4.39	85	126523	0.99	ppo		200		
6) Vinyl Chloride	4.58	62	3544/ */090	0.99	ppb ppb		96		
7) Butane	4.68	49	24202	3.02	npb		81		
6) 1,3-butadiene	50.0 10.03	94	46282	0.99	dơg		95		
9) Bromomethane	5.21	64	16583	1,07	ppb		100		
10) Chlorcethane 11) Ethanol	5.35	45	11746	1.08	ppb	ŧ	74		
12) Acrolein	5.95	56	9571m 🗸	' 1.00	ppb				
13) Vinyl Bromide	5,54	106	46664	0.99	ppb				
14) Freon 11	5.80	101	1,54925	0.99	ррь		96		
	6.04	56	46664 154925 14328m 33653	1.01	bbp		- 4		
16) Pentane	6.07	42	14320m 33653 46253 46032 111420 78078 40970 33103m	0.99	ppb	.12	94 46		
17) Isopropyl alcohol	6.15	45	46253	0.99	aqq	1 1 4	68		
18) 1,1-dichloroethene	6,56	96	45034	0,99	2000	11	96		
19) Freon 113	6.74	101	20070	0.99	ppb	֠	77		
20) t-Butyl alcohol	6.00	۳C 84	40970	0.99	DDD		97		
21) Methylene chloride	7.02	41	33103m V	0.95	ppb				
22) Allyl chloride 23) Carbon disulfide	7,20		116250		ppb		96		
24) trans-1,2-dichloroethene			54958	1.01	рръ		94		
25) methyl tert-butyl ether			103590		$\mathbf{p}\mathbf{p}\mathbf{p}$		93		
26) 1,1-dichloroethane	8.40		77856		ppb		99		
27) Vinyl acetat©	8.43	-	61972		ppb		96 100		
28) Methyl Ethyl Ketone	8.94		16500 46977		dqq dqq		92		
29) cis-1,2-dichloroethene	9,35 8,90		48164		ppb		94		
30) Hexane	9.52		62899		bbgd (94		
31) Ethyl acetate 32) Chloroform	9.94		104226		dqq		98		
33) Tetrahydrofuran	10.15		29839		dqq		89		
34) 1,2-dichloroethane	11.09		58404		ppb		89		
36) 1,1,1-trichloroethane	10.75	97	104507		bbp b		97		
37) Cyclohexane	11.45		43452) ppb		89		
38) Carbon tetrachloride	11.39		107492		dqq (98 98		
39) Benzene	11.36		91,969		dqq (dqq (63		
40) Methyl methacrylate	12.91		29340 24261) ppb		100		
41) 1,4-dioxane	13,00 12,18) ppb		99		
42) 2,2,4-trimethylpentane	12.10				յ ըթԵ		93		
43) Heptane 44) Trichloroethene		130	44026	1.00) ppb		97		
vi diabloxopxopane	12.79	53	33334	1.00) ppb		99		
				~~~~					
(4) = multipler out of range	(m) = man	ual in	tegration ::40 2016						

Vial: 5 Data File : C:\HPCHEM\1\DATA\AN031506.D Operator: RJP Acg On : 16 Mar 2016 8:49 pm Inst : MSD #1 ; AlUG_1.0 Sample Multiplr: 1.00 Misc : A316_1UG MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:18:03 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN CompoundR.T. QIONResponseConc UnitQvalue46)Bromodichloromethane13.1283813851.00ppb9947)cis-1,3-dichloropropene13.9075432860.99ppb9248)trans-1,3-dichloropropene14.6375391000.99ppb9749)1,1,2-trichloroethane14.9397356391.00ppb9751)Toluene14.6892432161.01ppb9952)Methyl Isobutyl Ketone15.1143707331.01ppb54)Methyl Butyl Ketone15.1143709731.01ppb55)1,2-dibromoethane15.66107513661.01ppb56)7etrachloroethylene15.66164371931.01ppb56)7etrachloroethane16.70131428831.01ppb57)Chlorobenzene16.61112539111.01ppb58)Ethylbenzene17.04911142192.02ppb60)m&p-xylene17.46104405421.01ppb61)Nonane17.56173276231.01ppb62)Styrene17.46104405421.01ppb63)Bromoform17.56173276231.01ppb64)Nonae17.56173276231.01ppb65)Cumene</t R.T. QION Response Conc Unit Qvalue Compound -

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN031606.D A316_1UG.M Thu Apr 07 13:05:41 2016 MSD1

ŝ



and which the process of the second second

Data File : C:\HPCHEM\1\DATA\AN031607.D Vial: 6 Acq On : 16 Mar 2016 9:27 pm **Operator:** RJP Inst : MSD #1 Sample : A1UG_0.75 Misc : A316_1UG Multiplr: 1.00 MS Integration Farams: RTEINT.P Quant Time: Mar 17 08:19:18 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 10G_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.81128364291.00ppb0.0035) 1,4-difluorobenzene12.061141154051.00ppb0.0050) Chlorobenzene-d516.56117644931.00ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 39593 0.95 ppb 0.00 Spiked Amount 1.000 Range 70 ~ 130 Recovery # 95.00% 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 95.00%

 Target Compounds
 Qvalue

 2)
 Propylene
 4.13
 41
 21494
 0.78 ppb
 #
 100

 3)
 Frecon 12
 4.19
 05
 115333
 0.76 ppb
 90
 92

 5)
 Frecon 114
 4.39
 85
 97880
 0.76 ppb
 98

 6)
 Vinyl Chloxide
 4.58
 62
 27592
 0.76 ppb
 96

 7)
 Butane
 4.68
 43
 31050
 0.76 ppb
 90

 10)
 Chloroethane
 5.21
 64
 12103
 0.77 ppb
 100

 11)
 Ethanol
 5.36
 45
 8634
 0.80 ppb
 #7

 12)
 Accolein
 5.75
 106
 34036
 0.75 ppb
 96

 13)
 Yinyl Bromide
 5.55
 106
 34036
 0.76 ppb
 95

 13)
 Procoll
 5.64
 96
 3521me
 Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration AN031607.D A316_1UG.M Thu Apr 07 13:05:44 2016 MSD1

Vial; 6 Data File : C:\HPCHEM\1\DATA\AN031607.D Operator: RJP Acg On : 16 Mar 2016 9:27 pm Inst : MSD #1 Sample : A1UG_0.75 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 00:19:18 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Unit Qvalue Compound 46) Bromodichloromethane 13.12 83 60775 0.73 ppb 47) cis-1,3-dichloropropene 13.90 75 32684 0.73 ppb 100 96 

 47)
 cis-1,3-dichloropropene
 13,90
 75
 32684
 0.73
 ppb

 48)
 trans-1,3-dichloropropene
 14,63
 75
 29063
 0.74
 ppb

 49)
 1,1,2-trichloroethane
 14,63
 75
 29063
 0.75
 ppb

 51)
 Toluene
 14,68
 92
 32126
 0.71
 ppb

 52)
 Methyl Isobutyl Ketone
 13,83
 43
 59370
 0.73
 ppb

 53)
 Dibromochloromethane
 15.60
 129
 41112m
 0.74
 ppb

 54)
 Methyl Butyl Ketone
 15.11
 43
 49642
 0.67
 ppb

 55)
 1,2-dibromoethane
 15.65
 164
 28969
 0.75
 ppb

 57)
 Chlorobenzene
 16.61
 112
 41332
 0.73
 ppb

 59)
 1,1,1,2-tetrachloroethane
 16.71
 131
 31396
 0.70
 ppb

 59)
 Ethylbenzene
 17.04
 91
 79500
 1.33
 ppb

 60)
 m&p-xylene
 17.38
 43
 22932
 0.66
 <t 90 -96 98 - 99 96 96 97 90 95 99 92 95 91 99 95 52361 100 18.02 105 

 65)
 Cumene
 18.02
 105
 52361
 0.68
 ppb

 67)
 1,1,2,2-tetrachloroethane
 17.92
 83
 51665
 0.75
 ppb

 68)
 Propylbenzene
 18.54
 91
 55960m
 0.74
 ppb

 69)
 2-Chlorotoluene
 18.58
 91
 40331m
 0.64
 ppb

 70)
 4-ethyltoluene
 18.70
 105
 48366m
 0.72
 ppb

 71)
 1,3,5-trimethylbenzene
 18.75
 105
 59988m
 0.71
 ppb

 72)
 1,2,4-trimethylbenzene
 19.19
 105
 54115
 0.75
 ppb

 73)
 1,3-dichlorobenzene
 19.48
 146
 32066
 0.65
 ppb

 65) Cumene - 98 

 68)
 Propylociacia

 69)
 2-Chlorotoluene

 70)
 4-ethyltoluene

 71)
 1,3,5-trimethylbenzene

 72)
 1,2,4-trimethylbenzene

 73)
 1,3-dichlorobenzene

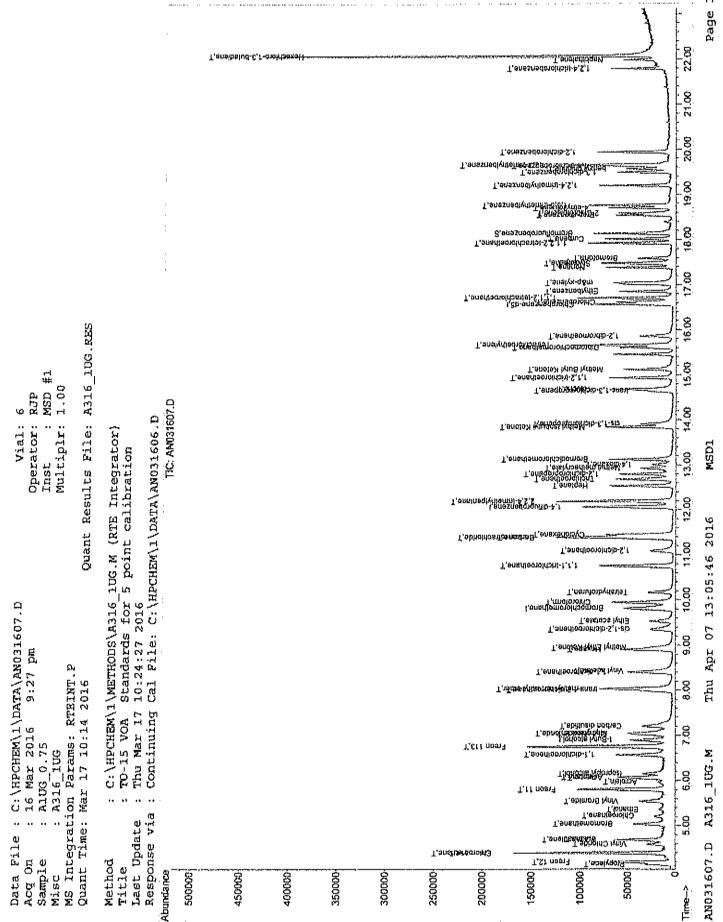
 74)
 19.19

 75)
 1,3-dichlorobenzene

 19.56
 91

 105
 105

 96 97 13)1,3-G1CD1070Denzene19.48145320660.65ppb74)benzyl chloride19.5691532370.80ppb75)1,4-dichlorobenzene19.62146306240.66ppb76)1,2,3-trimethylbenzene19.65105665640.70ppb77)1,2-dichlorobenzene19.93146409000.70ppb78)1,2,4-trichlorobenzene21.7818030081m0.66ppb79)Naphthalene21.9812868066m0.79ppb80)Hexachloro-1,3-butadiene22.06225854430.70ppb -96 97 96


(#) = qualifier out of range (m) = manual integration (+) = signals summed AN031607.D A316_1UG.M Thu Apr 07 13:05:45 2016 MSD1

Page 2

97

95

m



Vial: 7 Data File : C:\HPCHEM\1\DATA\AN031608.D Operator: RJP Acq On : 16 Mar 2016 10:05 pm Inst : MSD #1 Sample : A1UG_0.50 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:19:39 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.82128360801.00ppb0.0135) 1,4-difluorobenzene12.061141130701.00ppb0.0050) Chlorobenzene-d516.56117677471.00ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 40075 0.92 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 92.00% 0.00 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 92.00%

 Target Compounds
 Qvalue

 2)
 Propylene
 4.14
 41
 14424
 0.53
 ppb
 #
 100

 3)
 Preon 12
 4.19
 65
 76005
 0.51
 ppb
 98

 5)
 Freon 114
 4.39
 50
 19879
 0.53
 ppb
 92

 7)
 Butane
 4.68
 43
 21962
 0.49
 ppb
 94

 8)
 1.3-butadlene
 4.69
 39
 13445
 0.49
 ppb
 97

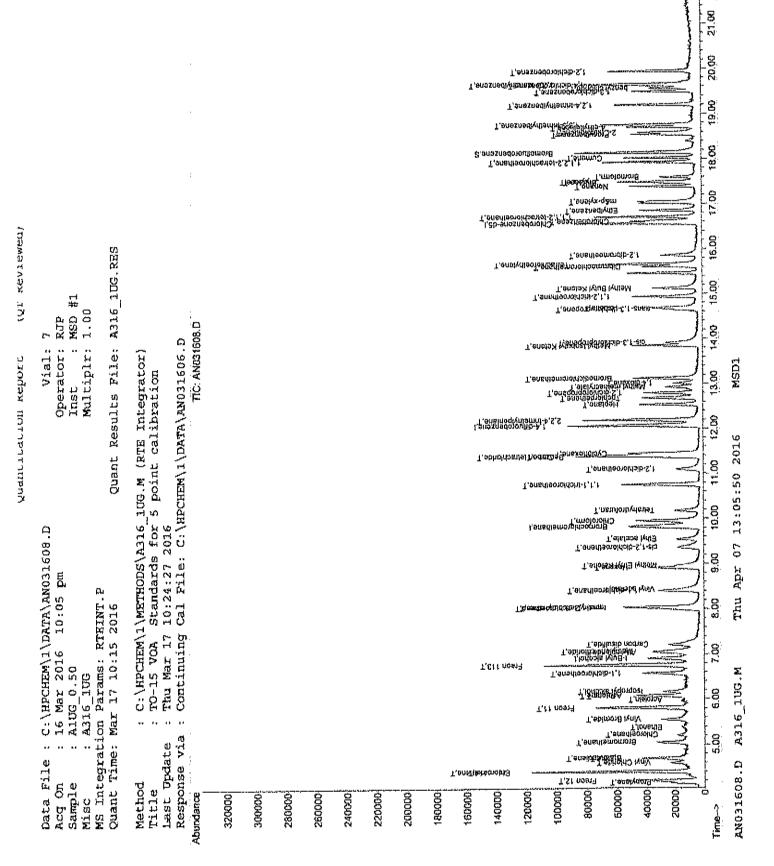
 0
 Chloroethane
 5.20
 64
 8256
 0.54
 ppb
 #
 86

 11)
 Ethanol
 5.37
 45
 6117
 0.57
 ppb
 93

 12)
 Accoletn
 5.97
 56
 48244
 0.60
 ppb
 #

 13)
 Winyl Bromide
 5.55
 106
 22507
 0.56
 ppb
 #</td Ovalue 

(#) = qualifier out of range (m) = manual integration AN031608.D A316_1UG.M Thu Apr 07 13:05:48 2016 MSD1


Data File : C:\HPCHEM\1\DATA\AN031608.D Vial: 7 Operator: RJP Acq On : 16 Mar 2016 10:05 pm Inst : MSD #1 Sample : ALUG 0.50 Mise : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 08:19:39 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN CompoundR.T. QIonResponseConc UnitQvalue46)Bromodichloromethane13.1263413220.51ppb46)trans-1,3-dichloropropene13.9075220100.50ppb46)trans-1,3-dichloropropene14.6475201600.51ppb47)trans-1,3-dichloropropene14.6475201600.45ppb49)1,1,2-trichloroethane14.6692211050.45ppb51)Toluene13.6443397670.46ppb52)Methyl Isobutyl Ketone15.124333116m0.43ppb53)Dibromochloromethane15.65107283530.50ppb54)Methyl Eutyl Ketone15.66164198350.49ppb55)1,2-dibromoethane15.66164198350.49ppb56)Tetrachloroethylene15.66164198350.49ppb57)Chlorobenzene16.61112296360.50ppb58)1,1,1,2-tetrachloroethane17.79151562320.90ppb59)Ethylbenzene17.0591562320.42ppb60)mkp-xylene17.4991370220.52ppb61)Nonane17.3843154200.42ppb62)Styrene17.4991370220.52ppb63)Bromoform<td R.T. Qion Response Conc Unit Qvalue Compound 98 96 93 93 97 97 98 97 99 92 92 98 95 94 90 99 96 99 97 96 - 97 95 92 97 ٿ و 96

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN031608.D A316_1UG.M Thu Apr 07 13:05:49 2016 MSD1

ŝ

Page

22.00



المتحديد والمتحرف المراجع والمتحد والمحمد المحمد المراجع

T.orialbetud-C, P-cholebexet4

T.anazardonottisiy.4,5,t T.anataringavi

Vial: 0 Data File : C:\HPCHEM\1\DATA\AN031609.D Operator: RJP Acq On : 16 Mar 2016 10:42 pm Inst : MSD #1 Sample : AlUG_0.30 Misc : A316_1UG Multiplr: 1.00 MS Integration Params; RTEINT.P Quant Time: Mar 17 08:19:57 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.83128342401.00ppb0.0235) 1,4-difluorobenzene12.071141074271.00ppb0.0150) Chlorobenzene-d516.57117630701.00ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 37922 0.93 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 93.00% 0.00 

 Byiked Amount
 1.000
 Range 70 - 130
 Recovery
 # 33.00%

 Target Compounds
 Cvalue

 2) Propylene
 4.14
 41
 9410
 0.37 ppb
 # 100

 3) Freen 12
 4.19 05 40050
 0.34 ppb
 99

 4) Chloromethane
 4.40 50
 12962
 0.37 ppb
 99

 5) Freen 114
 4.39 85 40350
 0.33 ppb
 98

 6) Vinyl Chloride
 4.59 62
 12065
 0.35 ppb
 96

 7) Butane
 4.69 39
 12046
 0.49 ppb
 97

 9) Bromomethane
 5.21 64
 5112
 0.35 ppb
 96

 10) Chloroethane
 5.21 64
 5112
 0.35 ppb
 96

 11) Ethanol
 5.98 56
 3556m
 0.40 ppb
 97

 13) Vinyl Bromide
 5.55 106
 14443
 0.33 ppb
 90

 14) Preon 11
 5.86 1001
 48893
 0.35 ppb
 96

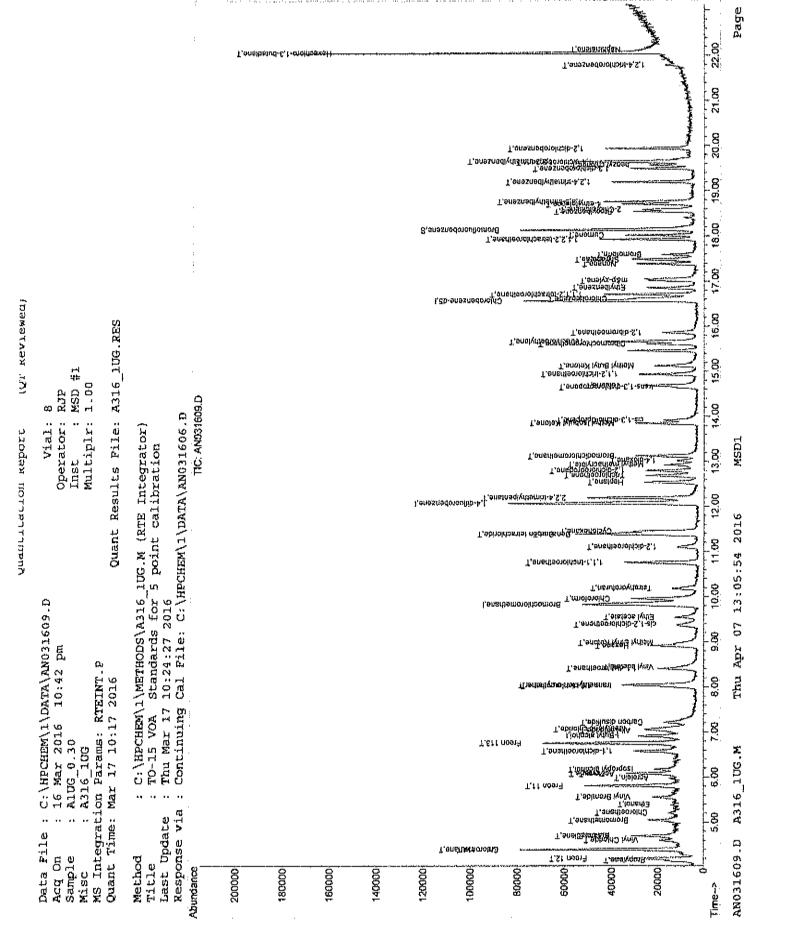
 15) Accolen
 6.06
 42 11517
 0.31 ppb
 97

 16) Pentane
 6.66 10
 12304
 0.33 ppb
 90

 17 sopropyl alcohol
 6.16 45
 12304< 

(#) = qualifier out of range (m) = manual integration ANO31609.D A316_1UG.M Thu Apr 07 13:05:52 2016 MSD1

Vial: 8 Data File : C:\HPCHEM\1\DATA\AN031609.D Acq On : 16 Mar 2016 10:42 pm Operator: RJP Inst ; MSD #1 Sample : AlUG_0.30 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG,RES Quant Time: Mar 17 08:19:57 2016 Ouant Method : C:\HPCHEM\1\METHODS\A316 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D


DataAcq Meth : LUG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.13	83	24639	0.32 ppb	100
47×	cis-1,3-dichloropropene	13.91	75	13399	0.32 ppb	96
48)	trans-1,3-dichloropropene	14.64	75	11780	0.31 ppb	93
49)	1,1,2-trichloroethane	14.93	97	11103	0.33 ppb	99
\$1)	Yoluene	14.68	92	12431	0.28 ppb	95
52)	Methyl Isobutyl Ketone	13.84	43	23225 ru	0.29 ppb	96
53Ĵ	Dibromochloromethane	15.61	129	15960m 灯	0.29 ppb	
54)	Methyl Butyl Ketone	15.12	43	21434m b	0.30 ppb	
55)	1,2-dibromoethane	15.86	107	16758	0.32 ppb	94
56)	Tetrachloroethylene	15,66	164	11766	0.31 ppb	100
57)	Chlorobenzene	16.61	112	16920	0.31 ppb	83
58)	1,1,1,2-tetrachloroethane	16.70	131	13253	0.30 ppb	# 85
59)	Ethylbenzene	16.86	91	20219	0.27 ppb	97
60)	m&p-xylene	17.02	91	30952	0.53 ppb	97
61)	Nonane	17.38	43	8544	0.25 ppb	99
62)	Styrene	17.47	104	10322	0.25 ppb	97
63)	Bromoform	17.58	173	8523	0.30 ppb	95
64)	o-xylene	17.49	91	17375	0.26 ppb	95
6S)	Cumerie	18.02	105	22320	0.29 ppb	96
67)	1,1,2,2-tetrachloroethane	17.92	83	24384 🕜	0.36 ppb	98
68)	Propylbenzene	18.54	91	27429m 🖓		
69)	2-Chlorotoluene	18.58	91	1775lm	0.29 ppb	
70)	4-ethyltoluene	18.70		24157m	0.37 ppb	
71)	1,3,5-trimethylbenzene	18.76	105	28602m J	0.35 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	25992	0.37  ppb	94
73)	1,3-dichlorobenzene	19.49	146	15074	dqq EE.0	99
74)	benzyl chloride	19.56	91	19958	0.31 ppb	92
75)	1,4-dichlorobenzene	19.62	146	15212	0.33 ppb	96
76)	1,2,3-trimethylbenzene	19.65	105	32866	0.35 ppb	98
77)	1,2-dichlorobenzene	19.94		20801	2 0.36 ppb	96
78)	1,2,4-trichlorobenzene	21.79		13610m /	0.31 ppb	
79)	Naphthalene	22,14		30401m (l)	0.36 ppb	
80)	Hexachloro-1,3-butadiene	22.06	225	34640 V	0.29 ppb	93

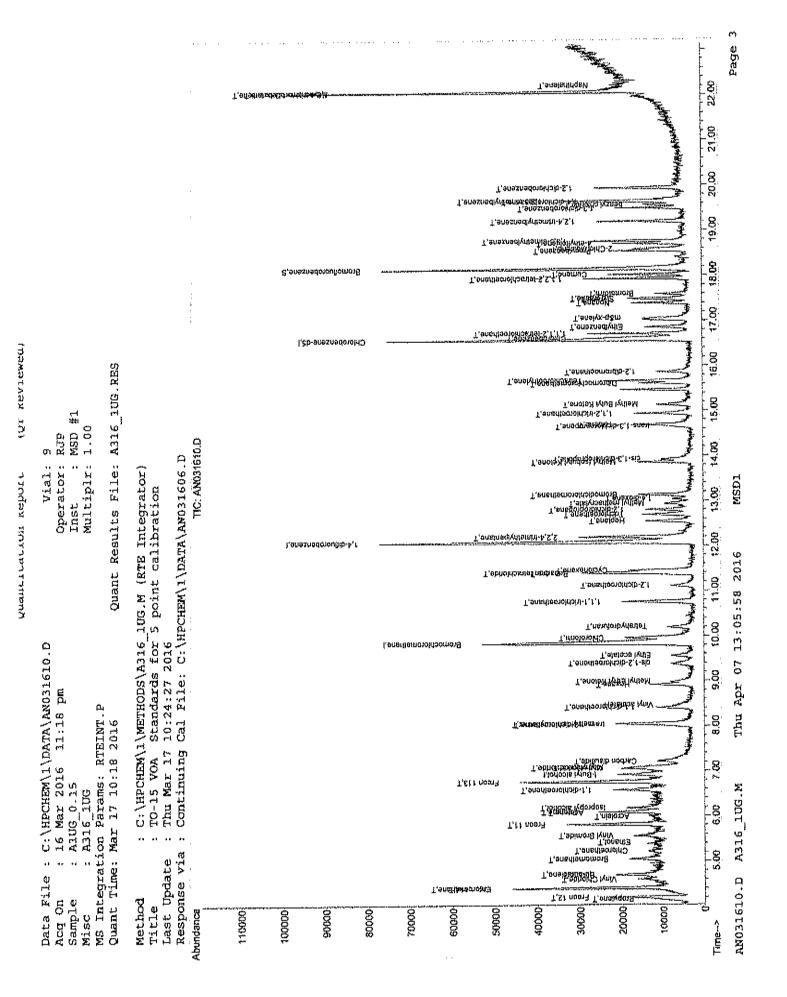
(#)  $\approx$  qualifier out of range (m) = manual integration (+)  $\approx$  signals summed AN031609.D A316_1UG.M Thu Apr 07 13:05:53 2016 MSD1



m



Acq On Sample Misc MS Integra	: C:\HPCHEM\1\DATA\; : 16 Mar 2016 11:1 : A1UG_0.15 : A316_1UG tion Params: RTEINT : Mar 17 08:20;22 2	mg 6	Quz	Ins Mul	Vial: rator: t : tiplr: File:	RJP MSD 1.00	)	.RES	
Quant Method : C:\HPCHEM\l\METHODS\A316_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\l\DATA\ANO31606.D DataAcq Meth : 1UG_RUN									
Internal	Standards			Response					
1) Brom 35) 1,4- 50) Chic	ochloromethane difluorobenzene robenzene-d5	9.83 12.07 16.57	128 114 117	33400 103197 62434	1.00 1.00 1.00	ррр ррр рдр		0.02 0.01 0.00	
System Mo 66) Brom Spiked	nitoring Compounds ofluorobenzene Amount 1.000	18.14 Range 70	95 - 130	36945 Recover	0.92 Y ≖	ррb 92.	00%	0.00	
Maxaat Co	mounde						Ōva	alue	
Target Co 2) Prop 3) Free 4) Chlo	ylene	$4.15 \\ 4.19 \\ 4.40$	41 85 50	5667 25710 7532 21243	0.23 0.18 0.22	ppb ppb dqq	ŧ.	$100 \\ 100 \\ 94$	
5) Freq		4.39	05	21243	0.18	$\overline{ppb}$		98	
6) Viny	l Chloride	4.59	62	21243 6499 9555 4728m 8678 2747 2336m 1928m 8288 26836 26936	0.19	ppb		85	
7) Buta		4.68	43	9555 	0.23	ppp	Ħ	84	
	butadiene	4.70	39	4728m /	0.19	ppb		99	
	omethane	5.04	94	8678	0,20	ppp	iż	73	
	roethane	3.44	45	2736m	0.24	200	n		
11) Etha		5,4V 6 07	40	1929m	0.21	npb			
12) Acro		5,57	20	6266	0 19	ppb		97	
14) Viny 14) Freo	l Bromide	5.53	101	26836	0.19	ppb		100	
15) Aceu		6.06	58	2908m	0.22	ppb			
16) Pent		6.08	42	2908m 7007 9697m	0.23	υpb	#	74	
17) Теор	ropyl alcohol	6.18	45	9697m	0.23	ppb			
18) 1.1-	dichloroethene n 113 tyl alcohol	6.56	96	7737	0.18	ppb	#	87	
19) Freo	n 11.3	6.75	101	18520	0,19	ppb		96	
20) t-Bu	tyl alcohol	6.91	59	14003	0.19	ppb	并		
21) Meth	ylene chloride	7.06	84	6447 [	0.17	ppb		84	
22) Ally	l chloride	7.06	41	6867m	0.22	$\mathbf{p}\mathbf{p}\mathbf{p}$			
23) Carb	on disulfide	7.21	76	21871	0.20	ppp		100	
	s-1,2-dichloroethen		61	8942	0.18			92 90	
	yl tert-butyl ether		73	16217	0.17 0.17			97	
	dichloroethane	8.40 8.46	63 43	12529 11579m	0.18				
	l acetate yl Ethyl Ketone	8.98	72	2686	0,18		#	100	
	1,2-dichloroethene	9.38	61	6078	0,14			76	
30) Hexa		8,91	57	6897	0.16			97	
	l acetate	9,55	43	10831	0.19			92	
32) Chlo		9,95	83	17226	0.18			96	
	ahydrofuran	10.20	42	1934	0.18			98	
34) 1,2-	dichloroethane	11.10	62	9147	0.17			87 99	
	1-trichloroethane	10.75	97	16611	0.17			99 88	
37) Cycl	Shexane	11,45 11,39	56 117	6376 16991	0.16 0.17			97	
39) Carb 39) Benz	on tetrachloride	11.37	78	14982	0,10			98	
	yl methacrylate	12.94	41	5374	0.20			97	
41) 1,4-		13.03	88	3369	0.15			91	
42) 2.2.	4-crimethylpentane	12.19	57	24737	0.16			98	
43) Hept		12.54	43	5155	0.14	ppb		94	
	hloroethene	12.70	130	6406	0.16			94	
45) 1.2-	lichloropropane	12.80	63	5119	0.17	ppp		95	
	lifier out of range								


(#) = qualifier out of range (m) = manual integration ANO31610.D A316_1UG.M Thu Apr 07 13:05:56 2016

Centek Laboratories

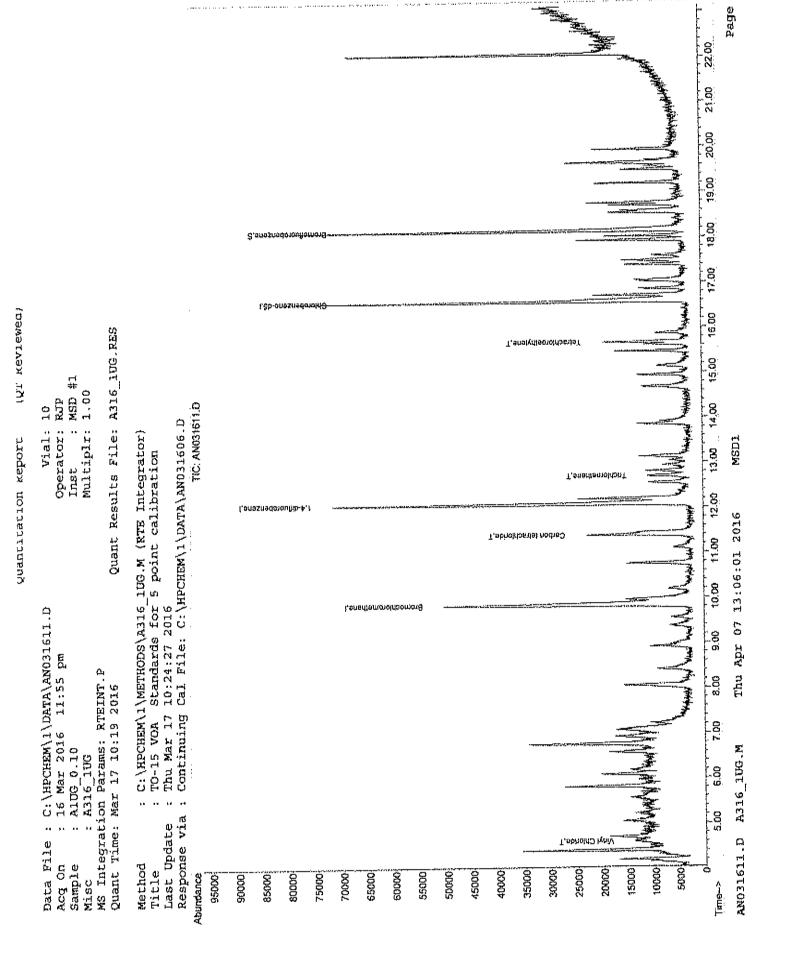
MSD1

Vial: 9 Data File : C:\HPCHEM\1\DATA\AN031610.D Acq On : 16 Mar 2016 11:18 pm Operator: RJP Inst : MSD #1 : A1UG_0.15 : A316_1UG Sample Multiplr: 1.00 Misc MS Integration Params: RTEINT.P Quant Time: Mar 17 08:20:22 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HFCHEM\1\METHOD\$\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN CompoundR.T. QIonResponseConc UnitQvalue46)Bromodichloromethane13.1263132750.18 ppb9747)cis-1,3-dichloropropene13.917569930.17 ppb9648)trans-1,3-dichloropropene14.647566090.18 ppb9449)1,1,2-trichloroethane14.647566090.19 ppb9651)Toluene14.689261410.14 ppb8952)Methyl Isobutyl Ketone13.6543117700.15 ppb9653)Dibromochloromethane15.661298932m0.17 ppb54)Methyl Butyl Ketone15.144310426m0.15 ppb9555)1,2-dibromoethane15.8610795030.18 ppb9457)Chlorobenzene16.6111292630.17 ppb9558)1,1,2,2-tetrachloroethane15.7113164420.15 ppb9459)Ethylbenzene17.0491161370.28 ppb9460)m&p-xylene17.4491103240.16 ppb9661)or-xylene17.5817344150.16 ppb9662)styrene17.5817344150.16 ppb9663)Bromoform17.5817344150.16 ppb9664)o-xylene18.549115476m0.21 ppb63)Bromoform17.58<td R.T. QIon Response Cond Unit Qvalue Compound 18343 0.16 ppb 95 50) Hexachloro-1,3-butadiene 22.06 225

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN031610.D A316_1UG.M Thu Apr 07 13:05:57 2016 MSD1



Vial: 10 Data File : C:\HPCHEM\1\DATA\AN031611.D Acq On : 16 Mar 2016 11:55 pm Sample : AlUG_0.10 Operator: RJP Inst : MSD #1 Misc : A316 1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Mar 17 08:20:37 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 08:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : LUG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 

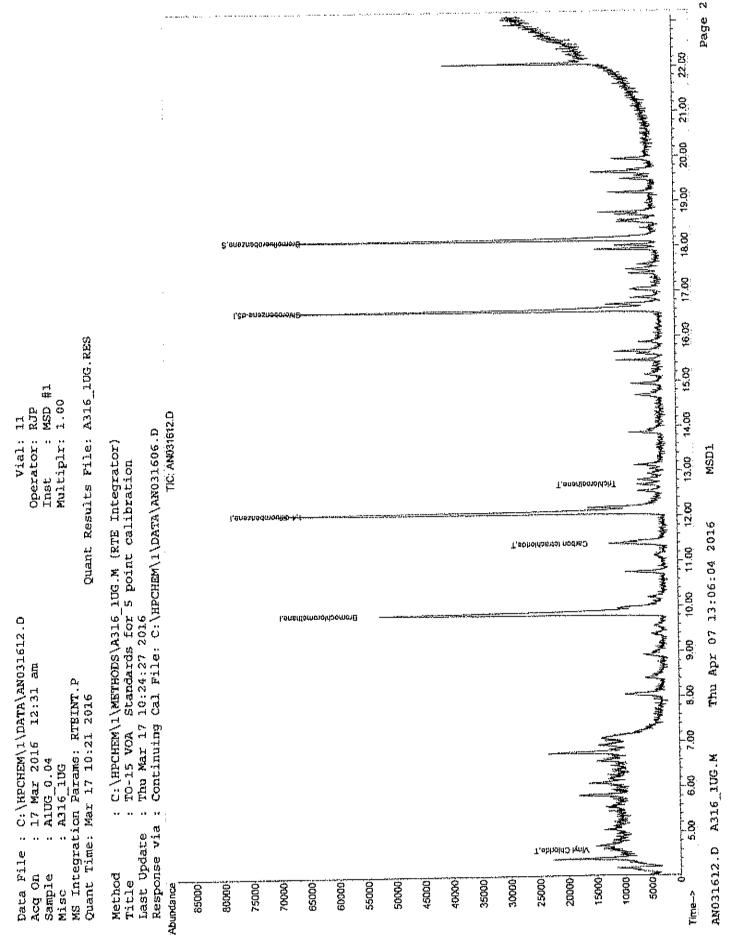

 1) Bromochloromethane
 9.84
 128
 36456m ⁽²⁾
 1.00 ppb
 0.03

 35) 1,4-difluorobenzene
 12.08
 114
 101173
 1.00 ppb
 0.02

 50) Chlorobenzene-d5
 16.57
 117
 65714
 1.00 ppb
 0.00

 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 39949 0.95 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 95.00% Ovalue Target Compounds 6) Vinyl Chloride4.696245620.12 ppb8638) Carbon tetrachloride11.38117124330.13 ppb9944) Trichloroethene12.7013048190.12 ppb9756) Tetrachloroethylene15.661644679m//0.12 ppb 6) Vinyl Chloride

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN031611.D A316_10G.M Thu Apr 07 13:06:00 2016 MSD1




3

Data File : C:\HPCHEM\l\DATA\. Acq On : 17 Mar 2016 12:33 Sample : AlUG 0.04 Misc : A316_1UG MS Integration Params; RTEINT Quant Time: Mar 17 08:20:59 2	lam .P		Inst	iplr:	MSD #1 1.00	g.res
Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 03:17:56 2016 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AN031606.D DataAcq Meth : 1UG_RUN						
Internal Standards					nits Dev	(Min)
<ol> <li>Bromochloromethane</li> <li>1, 4-difluorobenzene</li> <li>Chlorobenzene-d5</li> </ol>	9.83 12.07	$\begin{array}{c} 120 \\ 114 \end{array}$	35586m 🖉 102709	1.00	dqq	0.02
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	18.14 Range 70	95 - 130	36946 Recovery	0.94	ppb 94.00%	0.00
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene	4.59 11.38 12.69		2447 6221 2436	0.07 0.06 0.06		alue 93 98 96

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN031612.D A316_1UG.M Thu Apr 07 13:06:03 2016 MSD1





## GC/MS VOLATILES-WHOLE AIR

### METHOD TO-15

# CALIBRATION VERIFICATION

Centek Laboratories

Page 147 of 245

Evaluate Continuing Calibration Report

Vial: 4 Data File : C:\HPCHEM\1\DATA2\AN033104.D Operator: RJP Inst : MSD #1 Acq On : 31 Mar 2016 12:19 pm Sample : AlUG_1.0 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Apr 26 14:41:32 2016 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% AvgRF CCRF &Dev Area& Dev (min) Compound 

 35 I
 1,4-difluorobenzene
 1.000
 1.000
 0.0
 43#
 0.00

 36 T
 1,1,1-trichloroethane
 0.939
 1.159
 -23.4
 54
 0.00

 37 T
 Cyclohexane
 0.387
 0.496
 -28.2
 56
 0.00

 38 T
 Carbon tetrachloride
 1.048
 1.256
 -19.8
 57
 0.00

 39 T
 Benzene
 0.832
 1.005
 -20.8
 53
 0.00

 40 T
 Methyl methacrylate
 0.213
 0.252
 -18.3
 51
 0.00

 41 T
 1,4-dioxane
 0.338
 0.361
 -6.8
 44#
 0.00

 42 T
 2,2,4-trimethylpentane
 1.453
 1.749
 -20.4
 51
 0.00

 43 T
 Heptane
 0.338
 0.361
 -6.8
 44#
 0.00

 44 T
 Trichloroethene
 0.425
 0.452
 -6.4
 50
 0.00

 45 T
 1,2-dichloropropane
 0.300
 0.369
 -23.0
 54
 0.00

 45 T
 1,2-dichloropropene
 0.300
 0.369
 -23.0
 54

(#) = Out of Range

Centek Laboratories

Page 148 of 245

Evaluate Continuing Calibration Report Vial: 4 Data File : C:\HPCHEM\1\DATA2\AN033104.D Operator: RJP Acq On : 31 Mar 2016 12:19 pm Inst : MSD #1 Sample : A1UG_1.0 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Apr 26 14:41:32 2016 Response via : Multiple Level Calibration Min, RRF : 0.000 Min, Rel. Area : 50% Max. R.T. Dev 0.33min Max, RRF Dev : 30% Max, Rel. Area : 150% CompoundAvgRFCCRF&Dev Area% Dev (min51 TToluene0.6790.52922.145#0.0052 TMethyl Isobutyl Ketone1.2011.1018.3520.0053 TDibromochloromethane0.8570.866-1.1610.0054 TMethyl Butyl Ketone1.0680.69316.446#0.0055 T1.2-dibromoethane0.8450.956-13.4680.0056 TTetrachloroethylene0.6400.55113.4550.0057 TChlorobenzene0.8910.947-6.3640.0058 T1.1.1.2-tetrachloroethane0.6660.767-15.2650.0059 TEthylbenzene1.1651.206-3.7610.0060 Tm&p-xylene0.9250.9022.5580.0061 TNonane0.5520.600-8.7660.0062 TStyrene0.6640.732-13.7610.0063 TBromoform0.4631.053-127.4#1380.0064 To-xylene1.1091.288-16.1700.0065 TCumene1.2091.511-16.3730.0065 TCumene1.3791.519-10.2760.0065 TPropylbenzene1.3791.519-10.2760.0070 T1.3.2.2-tetrachloroethane1.3791.519-10.2<t AvgRF CCRF %Dev Area% Dev(min) Compound _______

(#) = Out of Range SPCC's out = 0 CCC's out = 0 AN033104.D A316_1UG.M Tue Apr 26 14:47:11 2016 MSD1

Acq Or Sample Misc MS Int	File : C:\HPCHEM\1\DATA2\ n : 31 Mar 2016 12:19 e : AlUG_1.0 : A316_1UG tegration Params: RTEINT. Time: Mar 31 12:43:55 20	P pm		Oper Inst Mult	Vial: ator: iplr:	RJ₽ MSD 1.00		BBB	
						A J I U			
Title Last W Respon	Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN								
Inte	rnal Standards Bromochloromethane	R.T.	QIon	Response C	Conc Ur	nits	Dev (	Min)	
"""++. l)	Bromochloromethane	9.03	128	21478m 🖡	1.00	ppb		0.02	
35)	1,4-difluorobenzene Chlorobenzene-d5	12.08	114	48888	1.00	ppb		0.02	
50)	Chlorobenzene-d5	16.57	11 <b>7</b>	36495	1.00	ppb		0.01	
66)	em Monitoring Compounds Bromofluorobenzene iked Amount 1.000	18.14 Range 70	95 - 130		1.20 ∕ ≞	ppb 120.	00%	0.00	
<b>m</b>							<u>Óva</u>	lue	
	et Compounds Propylene	4.14	41	18168 103821 29556m /	1.04	dag	ŧ.~	100	
	Freon 12	4.20	85	103821	1.13	ppb		100	
,	Chloromethane	4.40	50	29556m //	1.23	$\overline{ppb}$			
5)	Freon 114	4,40	85	93501 .	1.21	ppb		91	
6)	Vinyl Chloride	4.60		28017	1.16			87	
	Butane	4.69	43	34332	1.24			96	
	1,3-butadiene	4.70	39	21729m	1.19			~~	
	Bromomethane	5.05	94	32471 11107 6863m 7332m	1.15			99 97	
	Chloroethane	5,22	04 4 E	11107	1.13 0.94			37	
	Ethanol	5.53 6.10	40	7332m	1.18				
	Acrolein Vinyl Bromide	5.57	106	28965	1.04			96	
	Freon 11	5.82	101	106189	1.13			98	
	Acetone	6.16	50	106189 10527m	1,14				
· · ·	Pentane	6.10	42	17420	0.82	$\overline{p}\overline{p}b$		86	
	Isopropyl alcohol	6.30	45	30088m 28353 74948	0.99				
18)	1,1-dichloroethene	6.59	96	28353	1.03			90	
	Freon 113							94	
	t-Butyl alcohol	7.06	59	54341m	1,13			0.0	
21)	Methylene chloride	7.07	84	22522 25558m	0.93 1.19			89	
22)	Allyl chloride Carbon disulfide	7.06 7.23	41 76	69279	0.97			98	
	trans-1,2-dichloroethene		61	31915m	0.98				
	methyl tert-butyl ether	8.11	73	62077	1.00			95	
	1,1-dichloroethane	8.42	63	46664	1.01			99	
	Vinyl acetate	8.52	43	33086m	0,82				
	Methyl Ethyl Ketone	9.04	72	8766m	0.89				
	cis-1,2-dichloroethene	9.38	61	20111	0.75			96	
	Hexane	8.93	57	24255	0.86			92 99	
	Ethyl acetate	9.60	43	29969	0.78 0.95			99 99	
	Chloroform	9.97 10.26	83 42	59806 15794	0.89			้อ้อ	
	Tetrahydrofuran 1,2-dichloroethane	10.28	62	27519	0.78			90	
	1,1,1-trichloroethane	10.77		56681m	1.23				
	Cyclohexane	11.45	56	24249	1.28		#	85	
38)	Carbon tetrachloride	11.40	117	61417m	1.20				
39)	Benzene	11.38	78	49155	1.21			97	
40)	Methyl methacrylate	12,95	41	14556		рbр	#	76	
41)	1,4-dioxane	13.08		12319	1.19			99	
	2,2,4-trimethylpentane	12.20						0.0	
	Heptane	12.55			1.07			95 97	
44)	Trichloroethene	12.70	130	22115 18046	1.06	ppp			
45)	1,2-dichloropropane								

(#) = qualifier out of range (m) = manual integration AN033104.D A316_1UG.M Tue Apr 26 14:47:16 2016

MSD1

Data File : C:\HPCHEM\1\DATA2\AN033104.D Vial: 4 Operator: RJP Acq On : 31 Mar 2016 12:19 pm Inst : MSD #1 Sample : A1UG_1.0 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 31 12:43:55 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Thu Mar 17 10:24:27 2016

Response via : Initial Calibration DataAcq Meth : 1UG_RUN

	Compound	R.T.	QION	Response	Cond Unit	Qvalue
46)	Bromodichloromethane	13.13	83	41651m 4	1.16 ppb	
47)	cis-1,3-dichloropropene	13.92	75	24149	1.24 ppb	97
48)	trans-1,3-dichloropropene	14,71	75	22400m	1.28 ppb	
49)	1,1,2-trichloroethane	14.94	97	17373m	1.08 ppb	
51)	Toluene	14.69	92	19295	0.78 ppb	99
52)	Methyl Isobutyl Ketone	13.88	43	40189	0.92 ppb	97
53)	Dibromochloromethane	<b>1</b> 5.61	129	31600m	1.01 ppb	
54)	Methyl Butyl Ketone	15 17	43	32594 🔍	0.64  ppb	91
55)	1,2-dibromoethane	15.87	107	34960	1.13  ppb	96
56)	Tetrachloroethylene	15.67	164	20482	0.87 ppb	97
57)	Chlorobenzene	16.62	112	34556	1.06 ppb	90
58)	1,1,1,2-tetrachloroethane	16.72	131	27987	1.15 ppb	95
59)	Ethylbenzene	16.86	91	44081	1.04 ppb	100
60)	m&p-xylene	17.05	91	65852	1.95  ppb	96
61)	Nonane	17.39	43	21909	1.09 ppb	94
62)	Styrene	17.47	104	26727	1.14 ppb	69
63)	Bromoform	17.59	173	38427	2.20 ppb	99
64)	o-xylene	17.49	91	46990	1.16 ppb	96
65)	Cumene	18,02		55145 /	7 1.16 ppb	98
67)	1,1,2,2-tetrachloroethane	17.93	83	55145 48409m	1.16 ppb	
68)	Propylbenzene	18.54	91	55449m	T'TO DDD	
69)	2-Chlorotoluene	18.56	91	41764m	1.14 ppb	
70)	4-ethyltoluene	19.70		50153m	1.16 ppb	
71)	1,3,5-trimethylbenzene	18.76	105	65318m	1.26 ppb	
72)		19.19	105	55409	1.24 ppb	93
73}	1,3-dichlorobenzene	19.49	146	36108	1.27 ppb	98
74)	benzyl chloride	19.57	91	47227	1.17 ppb	99
75)		19.62	146	31681	1,18 ppb	96
	1,2,3-trimethylbenzene	19.65	105	69701	1.26 ppb	96
•	1,2-dichlorobenzene	19.94		43140	1.24  ppb	97
	1,2,4-trichlorobenzene	21,78		24145m	0.92 ppb	
79)		22.12		56077m		
80)	Hexachloro-1,3-butadiene	22.06	225	62867	0.98 ppb	95

(#) = qualifier out of range (m) = manual integration (+) = signals summed Tue Apr 26 14:47:16 2016 AN033104.D A316_1UG.M MSD1

m Page

22.00

1. enslerbidgeb

21.00 20.00 3,erieznadoromtoib-S,t T.onsznodorothyliamiñ.acstradorothyliaminter T.onsznodorothyliaminter 19.00 T.snasnediythemhi-A.S.R 18.00 T,ensiliaciolitacias, 1,2,2, tetrachloroethane, 1 Bromofluorobertzene, 5 T. orter and the state of the s 17.00 Т.опеуух-д.блі eren ander er state er en de se 16.00 Quant Results File: A316_1UG.RES T.onsriscomord/b-S, h T,onoTyAMASH3A15298ithomoratc. T,enstrationotitati,z,t,t — T,enstrationotitati, T,enstryt Ketone,T 8 MSD #1 ÷ <u>1.00</u> ີ່, ອກອດວາຊອາດໄກໄຟເອຊິສນສະກັນງ RJPTIC: AN033104.D 14.00 4 T. enore, XAMANAMAN birthrake. 1-20 Multiplr: Operator: Vial: C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) **MSD1** point calibration 13,00 Inst 12.00 T, ensinedivitiemint #, S, S Lensznedorouilib-A, Tue Apr 26 14:47:17 2016 T.abholriomai.acdae08t,on6x%805VO 11.00 f,enartisonoinb-S,f T,enameonomohr-t,t,t ൾ Tetrahydroturan,T 10.00 T, motorolicionalitation ແລະ ເປັນ ແລະ ເ C:\HPCHEM\1\DATA2\AN033104.D TO-15 VOA Standards for Tue Apr 26 14:41:32 2016 T.etetece lynt⊟ T, enert/eonot/toib-S, f-sio g <u>។ ទៃក៏ប៉ីមើង ប្រុករគ</u>រដ Initial Calibration 12:19 pm T,aneriaoroinoio†∫,≜taisoe iγ∩λ MS Integration Params: RTEINT.P 8.00 Quant Time: Mar 31 12:46 2016 T, nortis Iviud-HopPlefighBonoiribio-S, Leanert 7.00 Mar 2016 T,EFF ridenii AlUG 1.0 A316_1UG T,enedteoto(dbib+1, t AN033104.D A316_1UG.M Т оналож _{толого} Г юпорія (усотов 6.00 T,st noer3 T.abimor8 |viihtonen8≅ 31 T,enerhemomorB T,enerheoroinC Response via 5.00 Last Update •• Data File T, orisidiante Labricito Lyny 7,enementerrosse T,S1 RoatA Acq On Method Sample T.analygou9 Title 80000 200000 600009 40000 360000 340000 300000 280000 260000 240000 200000 180000 160000 140000 120000 00000 Abundance 320000 220000 Misc Time-->

T,ensibetud-E, L-orahisexett T, 909%n9donoldom-4,S,f

Reviewed)

(QT

Quantitation Report

Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AN040102.D Vial: 18 Operator: RJP Inst : MSD #1 Acq On : 1 Apr 2016 12:06 pm Sample : AlUG_1.0 Misc : A316_lUG Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Apr 26 14:41:32 2016 Response via : Multiple Level Calibration Min, RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% CompoundAvgRFCCRF% Dev Area% Dev (mi1IBromochloromethane1.0001.0000.0550.002TPropylene0.8100.860-6.2640.013TFreen 124.2715.108-19.6680.004TChloromethane1.1181.325-18.5710.005TFreen 1143.5964.429-23.1690.006TVinyl Chloride1.1251.238-10.0690.007TButane0.8471.054-24.4750.009TBromomethane1.3201.586-20.2690.0010TChlorosethane0.3410.349-2.360-0.1312TAcrolein0.3410.349-2.360-0.1312TAcrolein0.2900.363-18.3660.0014Freen 114.3935.147-17.2670.0015Acetone0.4320.464-12.068-0.0916TPentane0.8660.897-0.159-0.0117Isopropyl alcohol1.4091.659-17.772-0.1118T1.1-dichloroethene1.2811.51-5359-0.0117Freen 1133.0943.971-28.3720.0020tt<td Compound AvgRF CCRF %Dev Area% Dev(min) 

 35 I
 1,4-difluorobenzene
 1.000
 1.000
 0.0
 41# -0.02

 36 T
 1,1,1-trichloroethane
 0.939
 1.190
 -26.7
 52
 0.00

 37 T
 Cyclohexane
 0.387
 0.461
 -24.3
 51
 0.00

 38 T
 Carbon tetrachloride
 1.048
 1.339
 -27.6
 57
 0.00

 39 T
 Benzene
 0.832
 1.008
 -21.2
 50
 0.00

 40 T
 Methyl methacrylate
 0.271
 0.361
 -33.2#
 56
 -0.01

 41 T
 1,4-dioxane
 0.213
 0.274
 -28.6
 52
 *0.06

 42 T
 2,2,4-trimethylpentane
 1.453
 1.814
 -24.8
 50
 0.00

 43 T
 Heptane
 0.338
 0.359
 -6.2
 41#
 -0.01

 44 T
 Trichloroethene
 0.425
 0.509
 -19.8
 53
 *0.01

 45 T
 1,2-dichloropropane
 0.300
 0.356
 ~18.7
 49# -0.02

 46 T
 Bromodichloromethane
 0.734
 0.874
 -19.1
 49# -0.01

 <tr 

(#) = Out of Range

AN040102.D A316_1UG.M Tue Apr 26 14:48:37 2016 MSD1

	Data File : C:\HPCHEM\1\DATA\AN040102.D Acq On : l Apr 2016 12:06 pm Sample : AlUG_1.0 Misc : A316_1UG MS Integration Params: RTEINT.P					.: 18 TIRJP : MSD #1 TI.00
		· · · · · · · · · · · · · · · · · · ·	ls for 5 2 2016	point cali	Integrator ibration	-)
	Min. Max.	RRF : 0.000 Min. Rel. RRF Dev : 30% Max. Rel.			R.T. Dev	0.33min
		Compound	AvgRF	CCRF	*Dev Ar	ea% Dev(min)
555555555566666666667777777777777777777	ΤΥΥΥΤΤΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥ	Toluene Methyl Isobutyl Ketone Dibromochloromethane Methyl Butyl Ketone 1,2-dibromoethane Tetrachloroethylene Chlorobenzene 1,1,1,2-tetrachloroethane Ethylbenzene m&p-xylene Nonane Styrene Bromoform o-xylene Cumene Bromofluorobenzene 1,1,2,2-tetrachloroethane Propylbenzene 2-Chlorotoluene 4-ethyltoluene 1,3,5-trimethylbenzene 1,2,4-trimethylbenzene 1,3-dichlorobenzene benzyl chloride 1,4-dichlorobenzene 1,2,3-trimethylbenzene	0.679 1.201 0.857 1.068 0.845 0.648 0.666 1.165 0.925 0.552 0.644 0.463 1.109 1.299 0.643 1.109 1.299 0.643 1.140 1.379 1.004 1.224 0.778 1.110 0.733 1.510	0.571 0.974 0.781 1.154 0.859 0.573 0.694 0.980 1.256 1.506 0.691	$18.0 \\ -17.3 \\ -8.2 \\ -13.0 \\ ~15.1 \\ 11.9 \\ ~9.3 \\ -17.3 \\ 0.9 \\ 7.1 \\ -3.8 \\ ~7.8 \\ -111.7 \\ +13.3 \\ -15.9 \\ -7.5 \\ -24.6 \\ -16.3 \\ -16.3 \\ -10.0 \\ -17.6 \\ -26.3 \\ -20.4 \\ -20.6 \\ 3.3 \\ -25.2 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ -28.4 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
77 78 79 80	Ť T T	1,2-dichlorobenzene 1,2,4-trichlorobenzene Naphthalene Hexachloro-1,3-butadiene	0.954 0.720 1.494 1.754	1.228	-28.7 12.9 -10.7 -22.1	71 0.00 49# 0.00 67 0.00 60 0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0 AN040102.D A316_1UG.M Tue Apr 26 14:48:38 2016 MSD1

Page 154 of 245

Data File : C:\HPCHEM\1\DATA\AN040102.D Acq On : 1 Apr 2016 12:06 pm Sample : AlUG_1.0 Misc : A316_1UG Vial: 19 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 01 12:45:47 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\l\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 

 1) Bromochloromethane
 9.82
 128
 20214m
 1.00 ppb
 0.02

 35) 1,4-difluorobenzene
 12.06
 114
 45908
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.57
 117
 32719m
 1.00 ppb
 0.00

 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 22624 1.07 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00% 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 107.004

 Target Compounds
 Ovalue

 2) Propylene
 4.15
 41
 17376
 1.06 ppb
 #
 100

 3) Freon 12
 4.20
 65
 103246
 1.20 ppb
 99

 4) Chloromethane
 4.40
 50
 26785m
 1.19 ppb
 99

 5) Freon 114
 4.40
 85
 89516
 1.23 ppb
 100

 6) Vinyl Chloride
 4.60
 62
 25030
 1.09 ppb
 96

 6) 1,3-butadiene
 5.04
 94
 32059
 1.20 ppb
 96

 10) Choroethane
 5.22
 64
 10944
 1.19 ppb
 99

 11) Ethanol
 5.39
 45
 7055
 1.02 ppb
 # 60

 12) Accolein
 5.86
 106
 104322
 1.17 ppb
 98

 13) Vinyl Bromide
 5.66
 106
 22924
 1.25 ppb
 77

 13) Accolein
 6.07
 58
 9780
 1.26 ppb
 97</t

(#) = qualifier out of range (m) = manual integration

AN040102.D A316_1UG.M Tue Apr 26 14:48:42 2016 MSD1

Centek Laboratories

Page 155 of 245

Data File : C:\HPCHEM\1\DATA\AN040102.D Vial: 18 Acq On : 1 Apr 2016 12:06 pm Operator: RJP Sample : AlUG_1.0 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 01 12:45:47 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Unit Qvalue K.T. QionResponseConc Unit(46)Bromodichloromethane13.128340101m1.19ppb47)cis-1,3-dichloropropene13.917522657m1.23ppb48)trans-1,3-dichloropropene14.647521777m1.32ppb49)1,1,2-trichloroethane14.949717117m1.13ppb51)Toluene14.6892162100.82ppb52)Methyl Isobutyl Ketone13.854346116m1.17ppb53)Dibromochloromethane15.6012930336m1.08ppb54)Methyl Butyl Ketone15.1243394871.13ppb55)1,2-dibromoethane15.66164186770.68ppb57)Chlorobenzene16.62112318611.09ppb58)1,1,2-tetrachloroethane16.6591377420.99ppb60)m&p-xylene17.0491561871.86ppb61)Nonane17.3843187421.04ppb62)Styrene17.46104227131.08ppb63)Bromoform17.59173320492.12ppb64)o-xylene17.4991411051.13ppb65)Cumene16.02105492021.16ppb66)Propylbenzene16.02105492021.16ppb</ Compound _____ ______ 91 93 96 87 96 100 96 94 89 100 100 46449m / 1.16 ppb 52486m 1 1.24 ppb 99 67)1,1,2,2-tetrachloroethane17.929368)Propylbenzene18.549169)2-Chlorotoluene16.5891 

 52466m
 1.10 pp 

 36127m
 1.10 pp 

 45616m
 1.18 ppb

 50514m
 1.26 ppb

 48219m
 1.20 ppb

 30703m
 1.21 ppb

 35105m
 0.97 ppb

 30034
 1.25 ppb

 1.28 ppb

 69) 2-Chlorotoluene18.589170) 4-ethyltoluene18.7010571) 1,3,5-trimethylbenzene18.7610572) 1,2,4-trimethylbenzene19.1910573) 1,3-dichlorobenzene19.4914674) benzyl chloride19.569175) 1,4-dichlorobenzene19.6214676) 1,2,3-trimethylbenzene19.62146 74)Denzy1Chloride19.569135105m0.97ppb75)1,4-dichlorobenzene19.62146300341.25ppb76)1,2,3-trimethylbenzene19.6510563436m1.28ppb77)1,2-dichlorobenzene19.9414640179m1.29ppb78)1,2,4-trichlorobenzene21.7918020515m0.87ppb79)Naphthalene22.1212854113m1.11ppb 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040102.D A316_1UG.M Tue Apr 26 14:48:42 2016 MSD1

80) Hexachloro-1,3-butadiene 22.06 225 70093

Page 2

96

1.22 ppb

#### Page 157 of 245

22,00 T costentrowM T,onoibsind-E, I-orointeeval I T.enesnederoldoid:A.S.P 21,00 20.00 T, enesnedotolitalb-S, F 19.00 T,onecnediy/demint-A,S,t ຂ.ຕ້ຄົວຜູໄດ້ຄາສາທາ, ໄດ້ ໄ.ອກອະດອດທາງໄດ້ເລື້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງ ເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ້ອງເອີ 18.00 T. HIMANN S 17.00 Reviewed) 8 Quant Results File: A316_1UG.RES ģ T,ensitraomoid(b-S, r T.Anologies (International Contraction of the Contraction of Contr 15.00 Ť,enariteororiats,t,t T,enorextylΩuΩtytist (QT # 1.00 T.aneoorgotojdialoj61t-ensil MSD RЛР TIC: AN040102.D 138 14.00 T, snotaN iviuque/aughenoinaid-E(T-8i3 Vial: Operator: Multiplr: C:\HPCHEM\1\METHODS\A316 1UG.M (RTE Integrator) Quantitation Report MSD1 point calibration 13.69 Tightar and the second se Inst T,anetqah 12.00 T, anemediymamin 4, 5, 5 l, eneznedonouilib-b, t 26 14:48:43 2016 Т,ebhokhoeท⊌ลสณ<mark>รุ</mark>ลิกธxeñ015¢⊃```` 11.00 T,onsrbeoroldoib-S.T T,enedieoroldohi-h,h,h Ľ٦ 10.00 Tetrehydrofuran, T Lenertemonologicorrente L'anatonologicorrente Standards for C:\HPCHEM\1\DATA\AN040102.D Tue Apr 26 14:41:32 2016 T.anenteorotrició-S.1.sic 1,atetece l'anetece l'anetece 8 Calibration T, anolan Ringi tyriam Apr сņ 12:06 pm MS Integration Params: RTEINT.P Τ, snantsorolη, β**μ**ηδές iγnλ Tue 1 12:48 2016 8.00 T, OP 1997 New Topic Colored Type Street TO-15 VOA Apr 2016 I copola ingender 1 Advicence volume Carbon disultide T 2.08 Initial T,Eff rosi3 T, anortraciolitalb-1,1 A316 1UG.M AlUG 1.0 A316 10G Tuploid toppopyl Booking. toppopyl Booking. 6.00 T,FL ROOM Quant Time: Apr T,anattemomora Chiotoettrane.T Chiatotott Chanat, T Vinyt Bromide, T ... -Response via 5.00۰. Last Update Data File T, anaimetrus transland i vaiv. AN040102.D T entration acrosses Acq On T,Sf reenfl Sample Method Title 160000 20000 000000 40000 300000 260000 240000 80000 140000 340000 320000 280000 220000 200000 20000 900008 60000 Abundance Misc 400000 380000 360000 Time-->

ო

Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AN040203.DVial: 3Acq On : 2 Apr 2016 12:08 pmOperator: RJPInst : MSD #1Inst : MSD #1 Sample : A1UG_1.0 Misc : A316_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Apr 26 14:41:32 2016 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% CompoundAvgRFCCRF% Dev Area% Dev (mi1. IBromochloromethane1.0001.0000.064-0.022 TPropylene0.8100.985-21.6640.003 TFreen 124.2715.043-18.1780.004 TChloromethane1.1181.345-20.3830.005 TFreon 143.5984.247-18.0770.006 TVinyl Chloride1.1251.234-9.7790.007 TButane1.2651.409-9.673-0.018 T1,3-butadiene0.8470.933-10.2760.009 TBromomethane1.3201.496-13.3750.0010 TChlorobethane0.4590.514-12.072-0.0111 TEthanol0.3410.374-9.774-0.1512 TAcrolein0.2900.326-13.180-0.1513 TVinyl Bromide1.2981.457-12.273-0.0214 TFreen 114.3934.716-7.471-0.0215 TAcetone0.4220.490-13.480-0.1513 TVinyl Bromide1.2091.424-1.172-0.1415 TAcetone0.4220.490-13.480-0.0214 TFreen 114.3934.716-7.471-0.0217 TIsopropyl AvgRF CCRF %Dev Area% Dev(min) Compound 

 35 I
 1,4-difluorobenzene
 1.000
 1.000
 0.0
 54
 -0.02

 36 T
 1,1,1-trichloroethane
 0.939
 1.136
 -21.2
 66
 -0.02

 37 T
 Cyclohexane
 0.387
 0.487
 -25.8
 68
 -0.01

 38 T
 Carbon tetrachloride
 1.048
 1.187
 -13.3
 67
 0.00

 39 T
 Benzene
 0.832
 0.997
 -19.8
 66
 0.00

 40 T
 Methyl methacrylate
 0.213
 0.234
 -9.9
 58
 -0.07

 41 T
 1,4-dioxane
 0.213
 0.234
 -9.9
 58
 -0.07

 42 T
 2,2,4-trimethylpentane
 1.453
 2.014
 -38.6#
 73
 -0.01

 43 T
 Heptane
 0.338
 0.399
 -18.0
 60
 -0.02

 44 T
 Trichloroethene
 0.425
 0.504
 -18.6
 69
 -0.01

 45 T
 1,2-dichloropropane
 0.300
 0.367
 -22.3
 67
 -0.02

 46 T
 Bromodichloromethane
 0.734
 0.877
 -19.5
 65< 

(#) = Out of Range

AN040203.D A316_1UG.M Tue Apr 26 14:59:45 2016 MSD1

Method       : C:\HPCHEM\l\METHODS\A316_1UG.M (RTE Integrator)         Title       : TO-15 VOA Standards for 5 point calibration         Last Update : Tue Apr 26 14:41:32 2016         Response via : Multiple Level Calibration         Min. RRF       : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min         Max. RRF Dev : 30% Max. Rel. Area : 150%         Compound       AvgRF       CCRF       %Dev Area% Dev(min)         51 T       Toluene       0.679       0.582       14.3       63       0.00         52 T       Methyl Isobutyl Ketone       1.201       0.907       24.5       54       -0.04         53 T       Dibromochloromethane       0.497       0.954       -11.3       85       0.00         54 T       Methyl Butyl Ketone       1.068       0.764       28.5       50       -0.02         56 T       1,2-dibromoethane       0.845       1.005       -18.9       91       -0.02         57 T       Chlorobenzene       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.665       1.295       -11.2       83       0.00         66 T       nsop-xylene       0.644       0.778       -20.8       89       0.00      <		Acq Samp Misc	le : AlUG_1.0	0203.D		Operato Inst	al: 3 or: RJP : MSD #1 Lr: 1.00
Max. RRF Dev : 30%       Max. Rel. Area : 150%         Compound       AvgRF       CCRF       %Dev Area% Dev(min)         51 T       Toluene       0.679       0.582       14.3       63       0.00         52 T       Methyl Isobutyl Ketone       1.201       0.907       24.5       54       -0.04         53 T       Dibromochloromethane       0.857       0.954       -11.3       85       0.00         54 T       Methyl Butyl Ketone       1.068       0.764       28.5       50       -0.02         56 T       Tetrachloroethylene       0.648       0.517       20.2       65       0.00         57 T       Chlorobenzene       0.891       1.037       -16.4       90       0.00         58 T       1.1.1.2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.165       1.295       -11.2       83       0.00         60 T       m&p-xylene       0.925       0.999       -8.0       81       -0.01         61 T       Nonane       0.552       0.667       -20.8       89       0.00         63 T       Bromoform       0.464       0.711       -10.6 </td <td></td> <td>Titl Last</td> <td>e : TO-15 VOA Standard Update : Tue Apr 26 14:41:33</td> <td>1s for 5 2 2016</td> <td></td> <td></td> <td>or)</td>		Titl Last	e : TO-15 VOA Standard Update : Tue Apr 26 14:41:33	1s for 5 2 2016			or)
51 T       Toluene       0.679       0.582       14.3       63       0.00         52 T       Methyl Isobutyl Ketone       1.201       0.907       24.5       54       -0.04         53 T       Dibromochloromethane       0.857       0.954       -11.3       85       0.00         54 T       Methyl Butyl Ketone       1.068       0.764       28.5       50       -0.02         55 T       1,2-dibromoethane       0.845       1.005       -18.9       91       -0.02         56 T       Tetrachloroethylene       0.646       0.517       20.2       65       0.00         57 T       Chlorobenzene       0.891       1.037       -15.4       90       0.00         58 T       1,1,2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.165       1.295       -11.2       83       0.00         60 T       m&p-xylene       0.552       0.667       -20.8       89       0.00         61 T       Nonane       0.552       0.667       -20.8       89       0.00         63 T       Bromoform       0.463       0.896       -93.5#       150#       0.						R.T. Dev	/ 0.33min
52 T       Methyl Isobutyl Ketone       1.201       0.907       24.5       54       -0.04         53 T       Dibromochloromethane       0.857       0.954       -11.3       85       0.00         54 T       Methyl Butyl Ketone       1.068       0.764       28.5       50       -0.05         55 T       1,2-dibromoethane       0.845       1.005       -18.9       91       -0.02         56 T       Tetrachloroethylene       0.648       0.517       20.2       65       0.00         57 T       Chlorobenzene       0.891       1.037       -16.4       90       0.00         68 T       1,1,1,2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       0.165       1.295       -11.2       83       0.00         60 T       m&p-xylene       0.925       0.999       -8.0       81       -0.01         61 T       Nonane       0.552       0.667       -20.8       89       0.00         63 T       Bromoform       0.643       0.711       -10.6       83       0.00         64 T       o-xylene       1.109       1.288       -16.1       90       0			Compound	AvgRF	CCRF	*Dev 2	Area% Dev(min)
53 T       Dibromochloromethane       0.857       0.954       -11.3       85       0.00         54 T       Methyl Butyl Ketone       1.068       0.764       28.5       50       -0.05         55 T       1,2-dibromoethane       0.845       1.005       -18.9       91       -0.02         56 T       Tetrachloroethylene       0.648       0.517       20.2       65       0.00         57 T       Chlorobenzene       0.891       1.037       -16.4       90       0.00         58 T       1,1,1,2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.165       1.295       -11.2       0.00         61 T       Nonane       0.552       0.667       -20.8       89       0.00         62 T       Styrene       0.644       0.778       -20.8       89       0.00         63 T       Bromoform       0.463       0.896       -93.5#       150#       0.00         64 T       o-xylene       1.109       1.288       -16.1       90       0.00         65 T       Cumene       1.299       1.563       -20.3       98       0.00	51	т Т	Toluene	0.679	0.582	1.4.3	63 0.00
54 T       Methyl Butyl Ketone       1.068       0.764       28.5       50       -0.05         55 T       1,2-dibromoethane       0.845       1.005       -18.9       91       -0.02         56 T       Tetrachloroethylene       0.648       0.517       20.2       65       0.00         57 T       Chlorobenzene       0.891       1.037       -16.4       90       0.00         58 T       1,1,1,2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.165       1.295       -11.2       83       0.00         60 T       m&p-xylene       0.925       0.999       -8.0       81       -0.01         61 T       Nonane       0.552       0.667       -20.8       89       0.00         63 T       Bromoform       0.463       0.896       -93.5#       150#       0.00         64 T       o-xylene       1.109       1.268       -16.1       90       0.00         65 T       Cumene       1.299       1.563       -20.3       98       0.00         67 T       1,1,2,2-tetrachloroethane       1.140       1.377       -20.8       97       0.00	52	т	Methyl Isobutyl Ketone	1.201	0.907	24.5	54 ~0.04
54 T       Methyl Butyl Ketone       1.068       0.764       28.5       50       -0.05         55 T       1,2-dibromoethane       0.845       1.005       -18.9       91       -0.02         56 T       Tetrachloroethylene       0.648       0.517       20.2       65       0.00         57 T       Chlorobenzene       0.891       1.037       -16.4       90       0.00         58 T       1,1,1,2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.165       1.295       -11.2       83       0.00         60 T       m&p-xylene       0.925       0.999       -8.0       81       -0.01         61 T       Nonane       0.552       0.667       -20.8       89       0.00         63 T       Bromoform       0.463       0.896       -93.5#       150#       0.00         64 T       o-xylene       1.109       1.268       -16.1       90       0.00         65 T       Cumene       1.299       1.563       -20.3       98       0.00         67 T       1,1,2,2-tetrachloroethane       1.140       1.377       -20.8       97       0.00	53	T,	Dibromochloromethane	0.857	0,954	-11.3	85 0.00
55 T       1,2-dibromoethane       0.845       1.005       -18.9       91       -0.02         56 T       Tetrachloroethylene       0.648       0.517       20.2       65       0.00         57 T       Chlorobenzene       0.891       1.037       -16.4       90       0.00         58 T       1.1.1,2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.165       1.295       -11.2       83       0.00         60 T       m&p-xylene       0.925       0.999       -8.0       81       -0.01         61 T       Nonane       0.552       0.667       -20.8       93       0.00         62 T       Styrene       0.644       0.778       -20.8       89       0.00         63 T       Bromoform       0.463       0.896       -93.5#       150#       0.00         65 T       Cumene       1.109       1.268       -16.1       90       0.00         65 T       Propylbenzene       1.377       -20.8       97       0.00         66 T       Propylbenzene       1.40       1.377       -20.8       97       0.00         7 T	54	т	Methyl Butyl Ketone	1.068	0.764	28.5	50 -0.05
58 T       1,1,1,2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.165       1.295       -11.2       83       0.00         60 T       m&p-xylene       0.925       0.999       -8.0       81       -0.01         61 T       Nonane       0.552       0.667       -20.8       93       0.00         62 T       Styrene       0.644       0.778       -20.8       89       0.00         63 T       Bromoform       0.463       0.896       -93.5#       150#       0.00         64 T       o-xylene       1.109       1.288       -16.1       90       0.00         65 T       Cumene       1.299       1.563       -20.3       98       0.00         66 S       Bromofluorobenzene       0.643       0.711       -10.6       83       0.00         67 T       1,1,2,2-tetrachloroethane       1.140       1.377       -20.8       97       0.00         68 T       Propylbenzene       1.379       1.719       -24.7       110       0.00         70 T       4-ethyltoluene       1.004       1.253       -24.8       98       0.00	55	т	1 2-dibromoethane	0.845	1,005	-18.9	91 -0.02
58 T       1,1,1,2-tetrachloroethane       0.666       0.752       -12.9       82       -0.01         59 T       Ethylbenzene       1.165       1.295       -11.2       83       0.00         60 T       m&p-xylene       0.925       0.999       -8.0       81       -0.01         61 T       Nonane       0.552       0.667       -20.8       93       0.00         62 T       Styrene       0.644       0.778       -20.8       89       0.00         63 T       Bromoform       0.463       0.896       -93.5#       150#       0.00         64 T       o-xylene       1.109       1.288       -16.1       90       0.00         65 T       Cumene       1.299       1.563       -20.3       98       0.00         66 S       Bromofluorobenzene       0.643       0.711       -10.6       83       0.00         67 T       1,1,2,2-tetrachloroethane       1.140       1.377       -20.8       97       0.00         68 T       Propylbenzene       1.379       1.719       -24.7       110       0.00         70 T       4-ethyltoluene       1.004       1.253       -24.8       98       0.00	56	т	Tetrachloroethylene	0.648	0.517	20,2	65 0.00
59 TEthylbenzene1.1651.295-11.2830.0060 Tm&p-xylene0.9250.999-8.081-0.0161 TNonane0.5520.667-20.8930.0062 TStyrene0.6440.778-20.8990.0063 TBromoform0.4630.896-93.5#150#0.0064 To-xylene1.1091.288-16.1900.0065 TCumene1.2991.563-20.3980.0066 SBromofluorobenzene0.6430.711-10.6830.0067 T1,1,2,2-tetrachloroethane1.1401.377-20.8970.0068 TProgylbenzene1.3791.719-24.71100.0069 T2-Chlorotoluene1.0041.253-24.8980.0070 T4-ethyltoluene1.1831.500-26.81080.0071 T1,3,5-trimethylbenzene1.4161.777-25.51020.0072 T1,2,4-trimethylbenzene0.7780.961-23.5950.0073 T1,3-dichlorobenzene0.7330.867-18.3900.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0075 T1,2,4-trimethylbenzene1.5101.781-17.9910.0077 T1,2,4-trinchlorobenzene0.9541.145-20.0950.0076 T <td>57</td> <td>т</td> <td>Chlorobenzene</td> <td>0.891</td> <td>1.037</td> <td>-16.4</td> <td>90 0.00</td>	57	т	Chlorobenzene	0.891	1.037	-16.4	90 0.00
59 TEthylbenzene1.1651.295-11.2830.0060 Tm&p-xylene0.9250.999-8.081-0.0161 TNonane0.5520.667-20.8930.0062 TStyrene0.6440.778-20.8990.0063 TBromoform0.4630.896-93.5#150#0.0064 To-xylene1.1091.288-16.1900.0065 TCumene1.2991.563-20.3980.0066 SBromofluorobenzene0.6430.711-10.6830.0067 T1,1,2,2-tetrachloroethane1.1401.377-20.8970.0068 TProgylbenzene1.3791.719-24.71100.0069 T2-Chlorotoluene1.0041.253-24.8980.0070 T4-ethyltoluene1.8331.500-26.81080.0071 T1,3,5-trimethylbenzene1.4161.777-25.51020.0072 T1,2,4-trimethylbenzene0.7780.961-23.5950.0073 T1,3-dichlorobenzene0.7330.867-18.3900.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0075 T1,2,4-trimethylbenzene1.5101.781-17.9910.0076 T1,2,4-trinchlorobenzene0.52226.1590.0077 T1,2-dichlo	58	'Ľ	1,1,1,2-tetrachloroethane	0.666	0.752	-12.9	82 -0.01
60 T $m&p-xylene$ $0.925$ $0.999$ $-8.0$ $81$ $-0.01$ 61 TNonane $0.552$ $0.667$ $-20.8$ $93$ $0.00$ 62 TStyrene $0.644$ $0.778$ $-20.8$ $89$ $0.00$ 63 TBromoform $0.463$ $0.896$ $-93.5\#$ $150\#$ $0.00$ 64 T $o-xylene$ $1.109$ $1.288$ $-16.1$ $90$ $0.00$ 65 TCumene $1.299$ $1.563$ $-20.3$ $98$ $0.00$ 66 SBromofluorobenzene $0.643$ $0.711$ $-10.6$ $83$ $0.00$ 67 T $1.1,2,2-tetrachloroethane$ $1.379$ $1.719$ $-24.7$ $110$ $0.00$ 67 T $2-Chlorotoluene$ $1.004$ $1.253$ $-24.8$ $98$ $0.00$ 68 TPropylbenzene $1.183$ $1.500$ $-26.8$ $108$ $0.00$ 70 T $4-ethyltoluene$ $1.183$ $1.500$ $-26.8$ $108$ $0.00$ 71 T $1.3,5-trimethylbenzene$ $1.224$ $1.376$ $-12.4$ $93$ $0.00$ 72 T $1.2,4-trimethylbenzene$ $0.778$ $0.961$ $-23.5$ $95$ $0.00$ 73 T $1.3$ -dichlorobenzene $0.773$ $0.867$ $-18.3$ $90$ $0.00$ 75 T $1.4$ -dichlorobenzene $0.733$ $0.867$ $-18.3$ $90$ $0.00$ 76 T $1.2,4$ -trimethylbenzene $1.510$ $1.781$ $-17.9$ $91$ $0.00$ 77 T $1.2,4$ -trichlorobenzene $0.954$ <td>59</td> <td>т</td> <td></td> <td></td> <td></td> <td></td> <td>83 0.00</td>	59	т					83 0.00
61 TNonane0.5520.667-20.8930.0062 TStyrene0.6440.778-20.8890.0063 TBromoform0.4630.896-93.5#150#0.0064 To-xylene1.1091.288-16.1900.0065 TCumene1.2991.563-20.3980.0066 SBromofluorobenzene0.6430.711-10.6830.0067 T1,1,2,2-tetrachloroethane1.401.377-20.8970.0068 TPropylbenzene1.3791.719-24.71100.0069 T2-Chlorotoluene1.0041.253-24.8980.0070 T4-ethyltoluene1.4161.777-25.51020.0071 T1,3,5-trimethylbenzene1.2241.376-12.4930.0073 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.9541.145-20.0950.0077 T1,2,4-trichlorobenzene0.9541.145-20.0950.00	60	Τ			0,999	-8.0	81 -0.01
63 TBromoform0.4630.896 $-93.5\#$ 150#0.0064 To-xylene1.1091.268 $-16.1$ 900.0065 TCumene1.2991.563 $-20.3$ 980.0066 SBromofluorobenzene0.6430.711 $-10.6$ 830.0067 T1,1,2,2-tetrachloroethane1.1401.377 $-20.8$ 970.0068 TPropylbenzene1.3791.719 $-24.7$ 1100.0069 T2-Chlorotoluene1.0041.253 $-24.8$ 980.0070 T4-ethyltoluene1.1831.500 $-26.8$ 1080.0071 T1,3,5-trimethylbenzene1.4161.777 $-25.5$ 1020.0072 T1,2,4-trimethylbenzene0.7780.961 $-23.5$ 950.0073 T1,3-dichlorobenzene0.7730.867 $-10.3$ 900.0075 T1,4-dichlorobenzene1.5101.781 $-17.9$ 910.0076 T1,2,3-trimethylbenzene1.5101.781 $-17.9$ 910.0077 T1,2-dichlorobenzene0.9541.145 $-20.0$ 950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00					0.667	-20.8	93 0.00
63 TBromoform0.4630.896 $-93.5\#$ 150#0.0064 To-xylene1.1091.268 $-16.1$ 900.0065 TCumene1.2991.563 $-20.3$ 980.0066 SBromofluorobenzene0.6430.711 $-10.6$ 830.0067 T1,1,2,2-tetrachloroethane1.1401.377 $-20.8$ 970.0068 TPropylbenzene1.3791.719 $-24.7$ 1100.0069 T2-Chlorotoluene1.0041.253 $-24.8$ 980.0070 T4-ethyltoluene1.1831.500 $-26.8$ 1080.0071 T1,3,5-trimethylbenzene1.4161.777 $-25.5$ 1020.0072 T1,2,4-trimethylbenzene0.7780.961 $-23.5$ 950.0073 T1,3-dichlorobenzene0.7730.867 $-10.3$ 900.0075 T1,4-dichlorobenzene1.5101.781 $-17.9$ 910.0076 T1,2,3-trimethylbenzene1.5101.781 $-17.9$ 910.0077 T1,2-dichlorobenzene0.9541.145 $-20.0$ 950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	62	т	Styrene	0.644	0.778	-20.8	89 0.00
64 To-xylene1.1091.268-16.1900.0065 TCumene1.2991.563-20.3980.0066 SBromofluorobenzene0.6430.711-10.6830.0067 T1,1,2,2-tetrachloroethane1.1401.377-20.8970.0068 TPropylbenzene1.3791.719-24.71100.0069 T2-Chlorotoluene1.0041.253-24.8980.0070 T4-ethyltoluene1.1831.500-26.81080.0071 T1,3,5-trimethylbenzene1.2241.376-12.4930.0072 T1,2,4-trimethylbenzene0.7780.961-23.5950.0073 T1,3-dichlorobenzene0.7330.867-18.3900.0075 T1,4-dichlorobenzene1.5101.781-17.9910.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00				0.463			150排 0.00
65 TCumene1.2991.563-20.3980.0066 SBromofluorobenzene0.6430.711-10.6830.0067 T1,1,2,2-tetrachloroethane1.1401.377-20.8970.0068 TPropylbenzene1.3791.719-24.71100.0069 T2-Chlorotoluene1.0041.253-24.8980.0070 T4-ethyltoluene1.1831.500-26.81080.0071 T1,3,5-trimethylbenzene1.2241.376-12.4930.0072 T1,2,4-trimethylbenzene0.7780.961-23.5950.0073 T1,3-dichlorobenzene0.7330.867-18.3900.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2,4-trichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	64	т		1.109			
66 SBromofluorobenzene0.6430.711-10.6830.0067 T1,1,2,2-tetrachloroethane1.1401.377-20.8970.0068 TPropylbenzene1.3791.719-24.71100.0069 T2-Chlorotoluene1.0041.253-24.8980.0070 T4-ethyltoluene1.1831.500-26.81080.0071 T1,3,5-trimethylbenzene1.4161.777-25.51020.0072 T1,2,4-trimethylbenzene1.2241.376-12.4930.0073 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2,4-trichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	65	т	Cumene	1.299	1,563	-20.3	98 0.00
68 TPropylbenzene1.3791.719-24.71100.0069 T2-Chlorotoluene1.0041.253-24.6980.0070 T4-ethyltoluene1.1831.500-26.81080.0071 T1,3,5-trimethylbenzene1.4161.777-25.51020.0072 T1,2,4-trimethylbenzene1.2241.376-12.4930.0073 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	66	S		0.643	0.711	-10.6	83 0.00
68 TPropylbenzene1.3791.719-24.71100.0069 T2-Chlorotoluene1.0041.253-24.8980.0070 T4-ethyltoluene1.1831.500-26.81080.0071 T1,3,5-trimethylbenzene1.4161.777-25.51020.0072 T1,2,4-trimethylbenzene1.2241.376-12.4930.0073 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	67	т	1,1,2,2-tetrachloroethane	1,140	1.377	-20.8	97 0.00
70 T4-ethyltoluene1.1831.500-26.81080.0071 T1,3,5-trimethylbenzene1.4161.777-25.51020.0072 T1,2,4-trimethylbenzene1.2241.376-12.4930.0073 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	68	T	Propylbenzene	1.379	1.719	-24.7	110 0.00
71 T1,3,5-trimethylbenzene1.4161.777-25.51020.0072 T1,2,4-trimethylbenzene1.2241.376-12.4930.0073 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	69	т	2-Chlorotoluene	1,004	1.253	-24.8	98 0.00
71 T1,3,5-trimethylbenzene1.4161.777-25.51020.0072 T1,2,4-trimethylbenzene1.2241.376-12.4930.0073 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	70	т	4-ethyltoluene		1.500		108 0.00
72 T1,2,4-trimethylbenzene1.2241.376-12.4930.0073 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	71	т				-25.5	102 0.00
73 T1,3-dichlorobenzene0.7780.961-23.5950.0074 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-18.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	72	т			1.376	-12.4	93 0.00
74 Tbenzyl chloride1.1101.170-5.4720.0075 T1,4-dichlorobenzene0.7330.867-10.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	73	т					95 0.00
75 T1,4-dichlorobenzene0.7330.867-10.3900.0076 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	74	т				-5,4	72 0.00
76 T1,2,3-trimethylbenzene1.5101.781-17.9910.0077 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00	75	Ϋ́		0.733	0.867		90 0.00
77 T1,2-dichlorobenzene0.9541.145-20.0950.0078 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00						-17.9	
76 T1,2,4-trichlorobenzene0.7200.53226.1590.0079 TNaphthalene1.4941.14823.2660.00							95 0.00
79 T Naphthalene 1.494 1.148 23.2 66 0.00						26.1	59 0.00
	79	т	Naphthalene	1.494	1,148	23.2	
	80	T				19.7	56 0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0 AN040203.D A316_1UG.M Tue Apr 26 14:59:45 2016 MSD1

Page 159 of 245

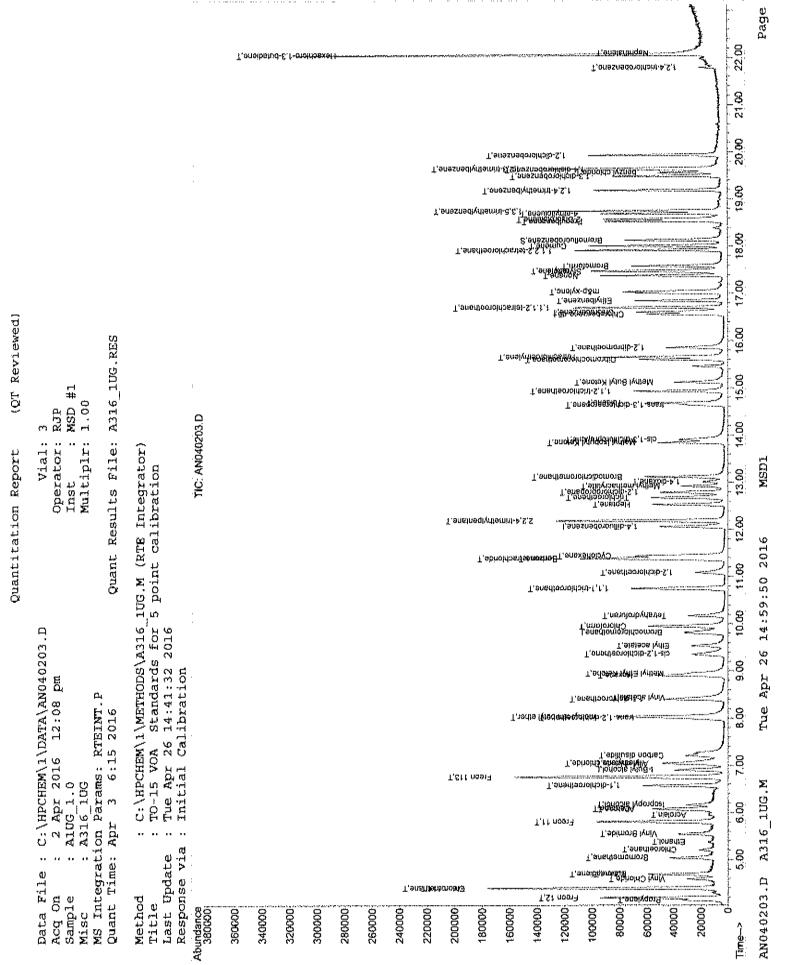
Acq O Sampl Misc MS In	File : C:\HPCHEM\l\DATA\A n : 2 Apr 2016 12:06 e : AlUG_1.0 : A316_1UG tegration Params: RTEINT. Time: Apr 03 06:13:09 20	.P	Qua	Oper: Inst Mult:	Vial: ator: : iplr: File:	RJP MSD 1.00		J.RES
Title Last Respo	Method : C:\HPCHEM\l\MET : TO-15 VOA Star Update : Thu Mar 17 10:2 nse via : Initial Calibra cq Meth : lUG_RUN	ndards for 24:27 2016	_1UG.M 5 poin	(RTE Integra nt calibratio	ator) on			
Inte	rnal Standards	R.T.	QION	Response C	onc U	nits	Dev	(Min)
	Bromochloromethane	9.81	120	23340m f	1,00	daa		0.00
35)	l,4-difluorobenzene Chlorobenzene-d5	12.06	114	60425	1.00	ppb		0.00
50)	Chlorobenzene-d5	16.56	117	46554	1.00	ppb		0.00
66)	em Monitoring Compounds Bromofluorobenzene iked Amount 1.000	18.13 Range 70	95 - 130	33085 Recovery	1,10	ррb 110.	00%	0.00
55		10001090	100				•••	
	et Compounds			23001 117694				alue
	Propylene	4.15	41.	23001	1.22			100
	Freon 12 Chloromethane	4.19 4.39	85 50	117694 31394	1.18 1.20			100 91
,	Freon 114	4.39			1.18			98 98
	Vinyl Chloride	4.59	85 62 43	28806	1.10			91
	Butane	4.68	43	32878	1.10			93
	1,3-butadiene	4,69		21775 34909 11994	1.10			79
9)	Bromomethane	5.04	94	34909	1.13	$\mathbf{p}\mathbf{p}\mathbf{b}$		93
	Chloroethane	5.21	64	11994	1.12			90
	Ethanol.	5.37	45	8735 A	1.10		#	72
	Acrolein	5.95	56	7667m P	1.13			0.7
	Vinyl Bromide	5.54	106 101	34003	1.12			97
	Freon 11 Acetone	5.80 6.06	101 58	110074 11425	$1.07 \\ 1.13$			99 72
	Pentane		58 42	11420 23948	1.13 1.04			91
	Isopropyl alcohol	6.16	45	23948 33227 35358	1.01			46
18)	1,1-dichloroethene	6.57	96	35358	ĩ.18			100
	Freon 113	6.75	1.01	90548	1.25			92
20)	t-Butyl alcohol	6.90	59	55178	1.05	dqq	#	77
	Methylene chloride	7.05	84	31160	1.19	ppb		91
	Allyl chloride	7.02	41	27173	1.17			86
-	Carbon disulfide	7.21	76	88486	1.14			98
	trans-1,2-dichloroethene		61	39889	1.12			91
	methyl tert-butyl ether	8.03 8.40	73	80441 56508	1.20			92 98
	l,l-dichloroethane Vinyl acetate	8.44	63 43	48681	$1.12 \\ 1.12$			98
	Methyl Ethyl Ketone	8.95	72	12927	1.20		#	100
	cis-1,2-dichloroethene	9.35	61	33508	1.15			92
	Hexane	8,91	57	34528	1.13			95
31)	Ethyl acetate	9.53	43	49400	1.19			96
	Chloroform	9.95	83	69579	1.02			99
	Tetrahydrofuran	10.16	42	23510	1.22			92
	1,2-dichloroethane	11.00	62	38354	1.00			88
	1,1,1-trichloroethane	10.75	97 57	68741	1.21			98
	Cyclohexane Carbon tetrachloride	11.44 11.39	56 117	29399m 🎢	1.26 1.13			97
	Benzene	11.37	78	60241	1,20			99
-	Methyl methacrylate	12.92	41	18539m /	1.13			
	1,4-dioxane	13.01	88	14154	1,10			100
	2,2,4-trimethylpentane	12,19	57	121680m in	1.39			
	Heptane	12.53	43	24121 1	1.18	dqq		92
	Trichloroethene	12.60	130	30434	1.19			98
45)	1,2-dichloropropane	12.68 12.79	63	22191	1.22			97

(#) = qualifier out of range (m) = manual integration AN040203.D A316_1UG.M Tue Apr 26 14:59:49 2016

MSD1

Data File : C:\HPCHEM\1\DATA\AN040203.DVial: 3Acq On : 2 Apr 2016 12:08 pmOperator: RJPSample : AlUG_1.0Inst : MSD #1Misc : A316_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Apr 03 06:13:09 2016Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Thu Mar 17 10:24:27 2016Response via : Initial Calibration

DataAcq	Meth	:	lUG	RUN	
				175 E	


	Compound	R.T.	QION	Response (	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	52994 a	1.19 ppb	100
47)	cis-1,3-dichloropropene	13,90	75	30596m 🖉	1.27 ppb	
48)	trans-1,3-dichloropropene	14.64	75	25414m )	1.17 ppb	
49)	1,1,2-trichloroethane	14.93	97	22894m	1.15 ppb	
51)	Toluene	14.60	92	27083	0.86 ppb	96
52)	Methyl Isobutyl Ketone	13.84	43	42214	0.76 ppb	98
53)	Dibromochloromethane	15.60	129	44419m /	1.11 ppb	
54)	Methyl Butyl Ketone	15.12	43	35579 ∛	0.72 ppb	96
55)	1,2-dibromoethane	15.85	107	46773	1.19 ppb	96
56)	Tetrachloroethylene	15.66	164	24068	0.80 ppb	100
57)	Chlorobenzene	16.61	112	48270	1.16 ppb	91
58)	1,1,1,2-tetrachloroethane	16.70	131	34997	1.13 ppb	96
59)	Ethylbenzene	16.85	91	60302	l.ll ppb	98
60)	m&p-xylene	17.04	91	93017	2.16 ppb	93
61)	Nonane	17.30	43	31062	1.21 ppb	97
62)	Styrene	17.46	104	36214	1.21 ppb	89
63)	Bromoform	17.59	173	41735	1.94 ppb	99
64)	o-xylene	17.49	91	59958	1.16 ppb	6 <i>9</i>
65)	Cumene	18,01	105	72750	1.20 ppb	98
67)	1,1,2,2-tetrachloroethane	17.92	63	64100 ~	1.21 ppb	97
68)	1 1	18,54	91	80019m (/)	1.25 ppb	
69)	2-Chlorotoluene	18.58	91	58353m )	1.25 ppb	
70)	4-ethyltoluene	18.70		69819m /	1.27 ppb	
71)	1,3,5-trimethylbenzene	18.75	105	ىل 82710m		
72)	•	19.19	105	64048	1.12 ppb	92
73)	1,3-dichlorobenzene	19.49	146	44739	1.23 ppb	98
74)	benzyl chloride	19.56	91	54469	1.05 ppb	100
75)	1,4-dichlorobenzene	19,62	146	40353	1.18 ppb	95
76)	1,2,3-trimethylbenzene	19.65	105	82929	1.18 ppb	97
77)	1,2-dichlorobenzene	19.94	146	53322 🏿	) 1.20 ppb	94
78)		21.79		24786m 🎢	0.74 ppb	
79)	Naphthalene	22.11	128	53453m 发	, 0.77 ppb	
80)	Hexachloro-1,3-butadiene	22.07	225	65564	0.80 ppb	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040203.D A316_1UG.M Tue Apr 26 14:59:49 2016 MSD1

Page 2

#### Page 162 of 245

ŝ



# GC/MS VOLATILES-WHOLE AIR

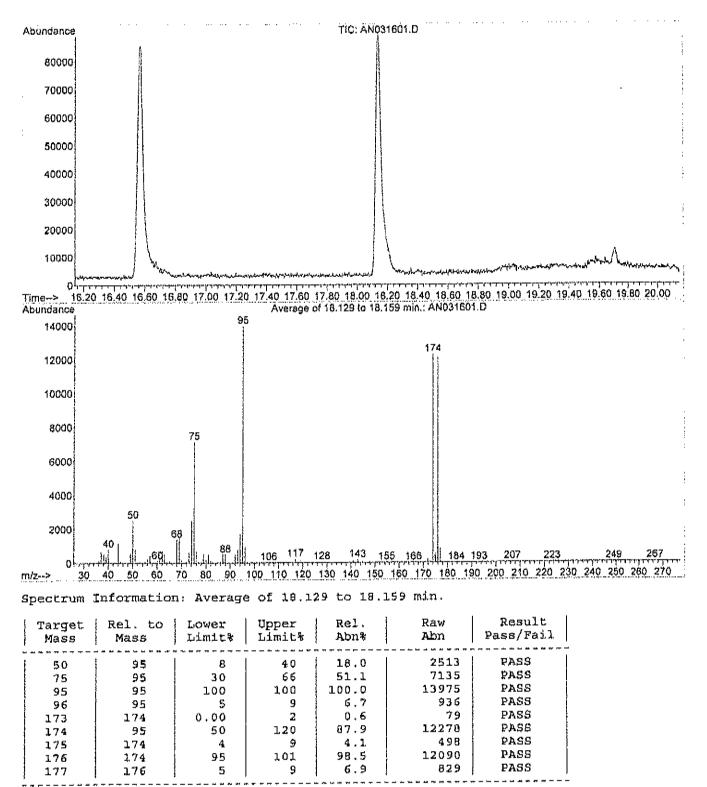
.

METHOD TO-15

# **RAW DATA**

.

.


•

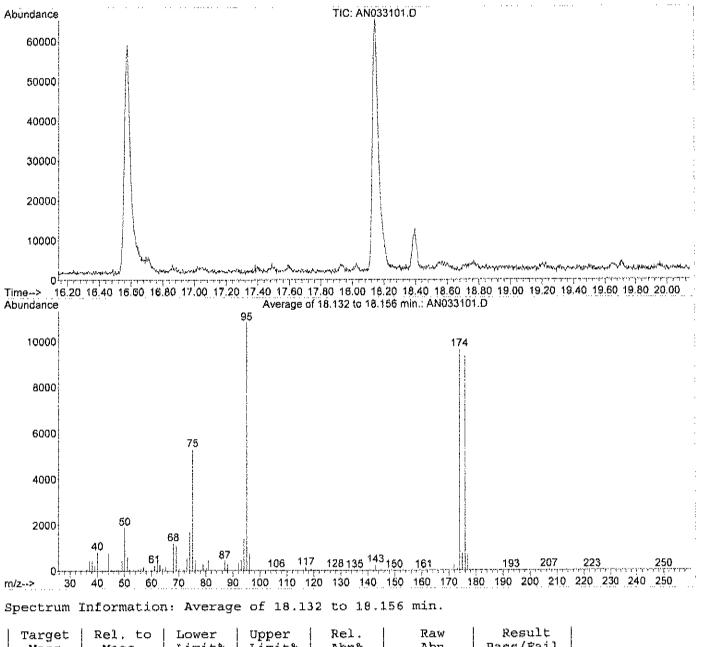
,

.

· . . .

Vial: 1 Data File : C:\HPCHEM\1\DATA\AN031601.D Operator: RJP : 16 Mar 2016 5:26 pm Acq On : MSD #1 Inst Sample BFB1UG Multiplr: 1.00 Misc : A316 lUG MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration Title



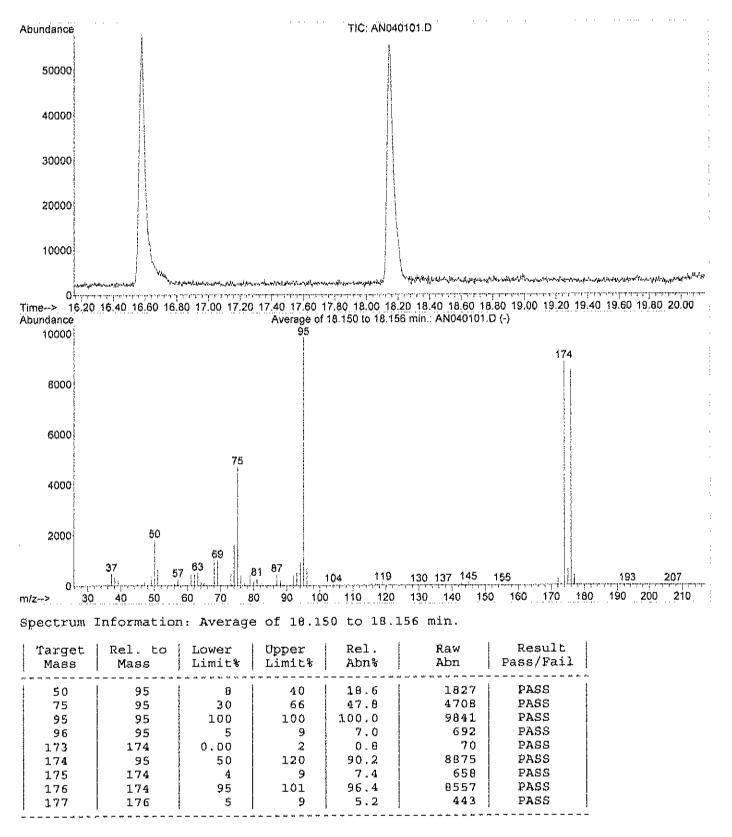

Thu Apr 07 13:04:45 2016 MSD1

AN031601.D A316_1UG.M

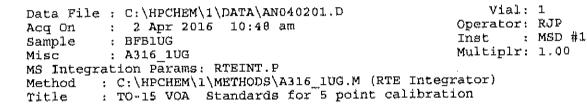
Centek Laboratories

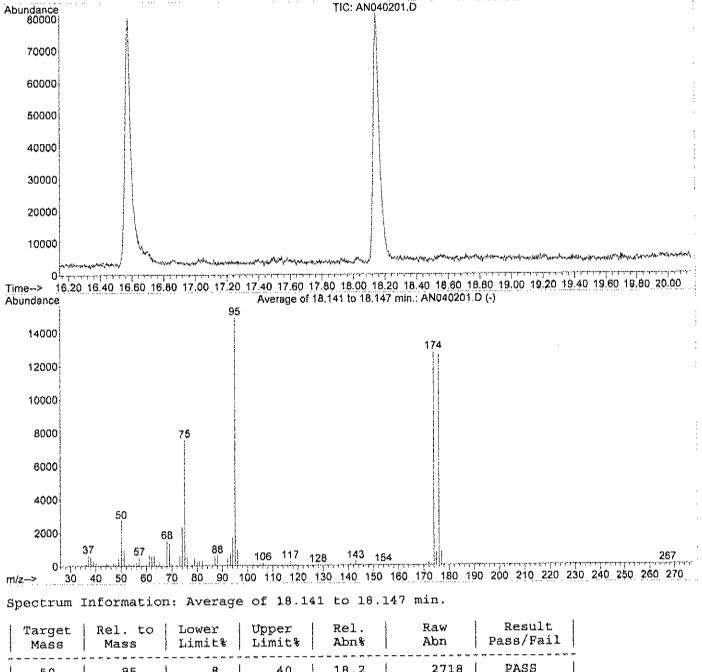
BFB

Data File : C:\HPCHEM\1\DATA2\AN033101.D Vial: l Operator: RJP : 31 Mar 2016 9:33 am Acq On : BFB1UG Inst : MSD #1 Sample . A316_1UG Multiplr: 1.00 Misc MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration Title




	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail	
•								-
	50	95	8	40	17.5	1890	PASS	
	75	95	30	66	49.0	5299	PASS	!
	95	95	100	100	100.0	10811	PASS	
	96	95	5	9	7.0	757	PASS	
	173	174	0.00	2	0.7	65	PASS	
	1.774	95	50	1,20	89.2	9645	PASŜ	
	175	1.74	4	9	7.8	750	PASS	ł
	176	174	95	101	97.0	9355	PASS	
	177	176	5	9	7.5	704	PASS	
								-


AN033101.D A316_1UG.M


Tue Apr 26 14:47:04 2016 MSD1

Vial: 16 Data File : C:\HPCHEM\1\DATA\AN040101.D Operator: RJP Acg On : 1 Apr 2016 10:05 am Sample Inst : MSD #1 : BFB1UG Multiplr: 1.00 Misc : A316 1UG MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration Title



AN040101.D A316 1UG.M Tue Apr 26 14:48:24 2016 MSD1





50	95	i 8-1	40	18.2	2718	PASS	1
75	95	i 3όi	66	50.7	7557	PASS	Í
95	95	100	100	100.0	14902	PASS	
96	95	5	9	6.7	1000 }	PASS	
173	174	Q.00	2	0.2	31 (	PASS	
174	95	50	120	85.9	12799	PASS	
175	174	4	9	6.0	772	PASS	
176	174	95	101	98.7	12634	PASS	
177	176	5	9	6.7	841	PASS	}

AN040201.D A316_1UG.M

Tue Apr 26 14:59:39 2016 MSD1

# GC/MS VOLATILES-WHOLE AIR

# METHOD TO-15 RAW QC DATA

Centek Laboratories

Page 168 of 245

CLIENT: LaBella A Work Order: C1603074 Proiset: 575 Coffey	LaBella Associates, P.C. C1603074 575 Colfay EPSI SVI					Test Cade: 0	0.25CT-TCE-VC	
Sample ID AMB1UG-033116	SampType: MBLK	TestCode:	TestCode: 0.25CT-TCE- Uni	Units: ppbV	Prep Date:		RunNo: 10B17	
Client ID: ZZZZZ	Batch ID: R10817	TestNo: TO-15	TO-15		Analysis Date:	3/31/2016	SeqNo: 127095	
Analyte	Result	PQL	SPK vaiue SPK Ref Val	of Val %REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Quai
1,1,1-Trichkoroethane	< 0.15	0.15						
1,1-Dichloroethane	< 0.15	0.15						
1,1-Dichloroethene	< 0.15	0.15						
Chioroethane	< 0.15	0,15						
Chloromethane	< 0.15	0.15						
cis-1,2-Dichiorcethene	< 0.15	0.15						
i etrachioroethylene	< 0.15	0.15						
frans-1,2-Dichloroethene	< 0.15	0.15						
Trichloroethene	< 0.040	0.040						
Vinyl chloride	< 0.040	0:040						
Sample ID AMB1UG-040116	SampType: MBLK	TestCode	TestCode: 0.25CT-TCE- Uni	Units: ppbV	Prep Date:		RunNo: 10818	
Client ID: ZZZZ	Batch ID: R10818	TestNo	o: T <b>0-15</b>		Anaiysis Date:	4/1/2016	SeqNo: 127112	
Analyte	Result	PQL	SPK value SPK Ref Val	ef Val %REC	LowLimit	HighLimit RPD Ref Val	KRPD RPDLimit	Quai
1,1,1-Trichloroethane	< 0.15	0.15						
1,1-Dichloroethane	< 0.15	0.15						
1,1-Dichioroethene	< 0.15	0.15						
Chloroethane	< 0.15	0.15						
Chbromethane	< 0.15	0.15						
cis-1,2-Dichloroethene	< 0.15	0.15						
Tetrachioroethylene	< 0.15	0.15						
frans-1,2-Dichloroethene Trichloroethene	< 0.15 < 0.140	0.15 0.040						
Qualifiers: Results rep 3 Analyte de	Results reported are not blank corrected Analyte detected at or below quantitation limits	imits	<ul> <li>E Value above qu</li> <li>ND Not Detected at</li> </ul>	Value above quantifation range Not Detected at the Reporting Limit		H Holding times for R RPD outside acce	Holding times for preparation or analysis exceeded RPD outside accepted neovery limits	deđ
S Smike Recr	Snike Remory ontside accepted (actively finite	limits						Dage Loft

Centek Laboratories

Date: 26-Apr-16

### Page 169 of 245

CLIENT: Work Order:	LaBella As C1603074	LaBella Associates, P.C. C1603074												
Project:	575 Colfa	575 Colfax FESL SVI								TestCode: 0.25CT-TCE-VC	0.25CT-T	rce-v	ç	
Sample ID AMB1UG-040116	106-040116	SampType: MBLK		Code: 0.25(	T-TCE-	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	ite:		RunNo: 10818	10818		
Client IU: ZZZZ	N	Batch ID: R10818		TestNo: TO-15	ŝ			Analysis Date: 4/1/2016	ate: 4/1/.	016	SeqNo: 127112	127112		
Analyte		Result	POL		alue SF	SPK value SPK Ref Val	%REC	LowLimit	HighLin	%REC LowLimit HighLimit RPD Ref Val		% የ በ	RPDLimit	Quai
Vinyl chloride		< 0.040	0.040	0										

 Holding times for preparation or analysis exceeded
 R RPD outside accepted recovery limits Value above quantifistion range
 ND Not Detected at the Reporting Limit Spike Recovery outside accepted recovery limits Analyte detected at or below quantitation limits Results reported are not blank corrected Qualifiers:

**Centek Laboratories** 

Page 170 of 245

Page 2 of 3

	LaBella Associates, P.C.	ates, P.C.									
Work Order: Cl	C1603074										
Project: 57	575 Colfax FESL SVI	IL SVI					TestC	ode: 11	TestCode: lugM3_T015	<i>ن</i> م	
Sample (D AMB1UG-040216		SampType: MBLK	TestCod	TestCode: 1ugM3_T015 Units: ppbV		Prep Date:			RunNo: 10819	6	
Client ID: ZZZZ	H	Batch ID: R10819	TesiN	TestNo: TO-15	Analys	Analysis Date:	4/2/2016		SeqNo: 127124	24	
Analyte		Result	PQL	SPK vaiue SPK Ref Val	%REC LOW	Limit Hi	LowLimit HighLimit RPD Ref Val	Ref Val	0da%	RPDLimit	Quai
1,1,1-Trichloroethane		< 0.15	0.15								
1, 1-Dichloroethane		< 0.15	0.15								
1,1-Dichlorcethene		< 0.15	0.15								
Chioroethane		< 0.15	0.15								
Chloromethane		< 0.15	0.15								
cis-1,2-Dichloroethene		< 0.15	0.15								
Tetrachioroethylene		< 0.15	0.15								
(rans-1,2-Dichlorcethene	jē	< 0.15	0.15								
Trichloroethene		< 0.15	0.15								
Vinyl chloride		< 0,15	0.15								

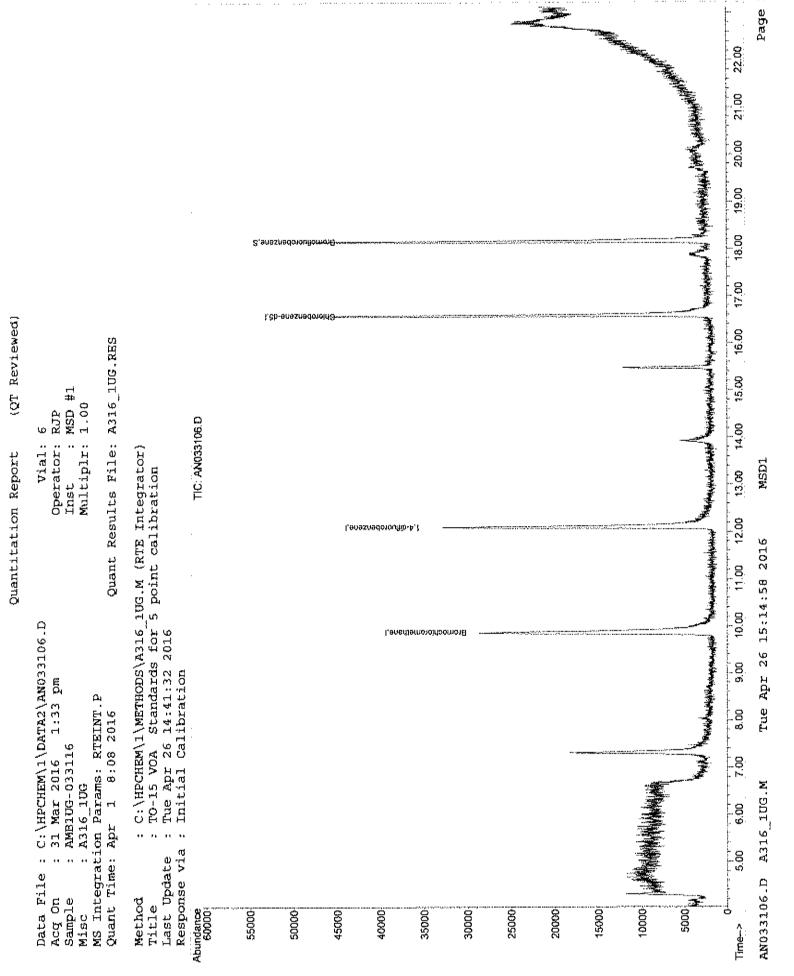
Page 3 of 3

H Holding times for preparation or analysis exceeded R RPD outside accented remove limit

Value above quantilation range
 NO Not Detected at the Reporting Limit

Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits

 $-\infty$ 


Qualifiers:

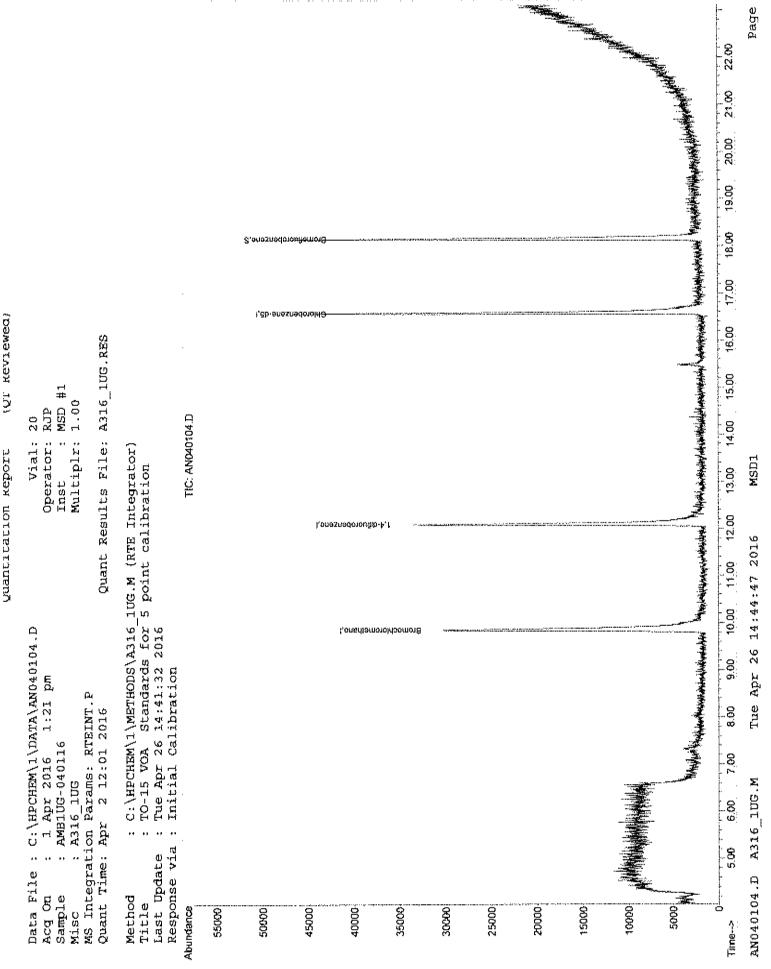
Results reported are not blank corrected

Data File : C:\HPCHEM\1\DATA2\AN033106.D Vial: 6 Acq On : 31 Mar 2016 1:33 pm Sample : AMB1UG-033116 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 01 03:34:38 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) ______ 1) Bromochloromethane9.8612820032m /1.00 ppb0.0535) 1,4~difluorobenzene12.09114479301.00 ppb0.0450) Chlorobenzene-d516.57117441611.00 ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.15 95 25131 0.08 ppb 0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 88.00% Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN033106.D A316_1UG.M Tue Apr 26 15:14:57 2016 MSD1

Page 1




Centek Laboratories

Page 173 of 245

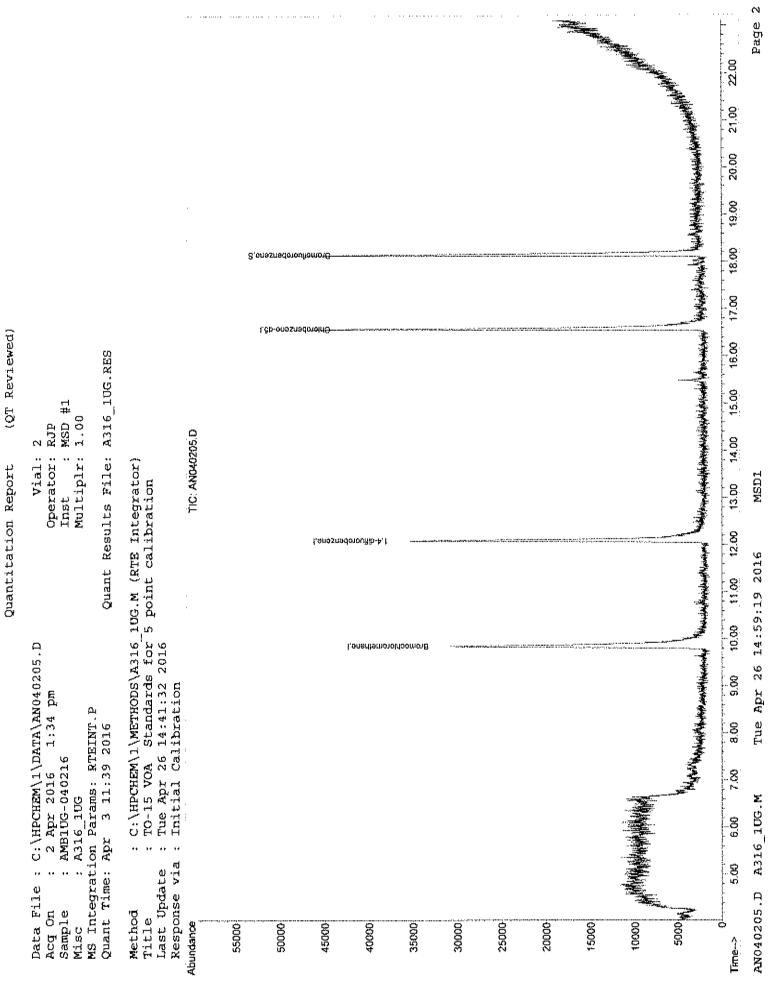
2

Data File : C:\HPCHEM\l\DATA\AN040104.D Acq On : l Apr 2016 1:21 pm Sample : AMBlUG-040116 Misc : A316_1UG Vial: 20 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 02 12:01:20 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Bromochloromethane9.86128102521.00 ppb0.0535) 1,4-difluorobenzene12.09114460231.00 ppb0.0350) Chlorobenzene-d516.57117412571.00 ppb0.01 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 24184 0.91 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 91.00% Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040104.D A316_1UG.M Tue Apr 26 14:44:46 2016 MSD1



Centek Laboratories


Page 175 of 245

3

Data File : C:\HPCHEM\1\DATA\AN040205.D Vial: 2 Acq On : 2 Apr 2016 1:34 pm Operator: RJP Sample : AMB1UG-040216 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params; RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Apr 02 14:36:31 2016 Quant Method : C:\HPCHEM\1\METHODS\A316 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.85128177171.00ppb0.0435) 1,4-difluorobenzene12.08114498781.00ppb0.0350) Chlorobenzene-d516.58117413901.00ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 24022 0.90 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 90.00% **Ovalue** Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040205.D A316_1UG.M Tue Apr 26 14:59:18 2016 MSD1

Page 1



Centek Laboratories

Page 177 of 245

						~4	ANALY	TICAL (	QC SUN	ANALYTICAL QC SUMMARY REPORT	<u> </u>
CLIENT: La	Bella As	LaBella Associates, P.C.									
Work Order: Cl	C1603074										
Project: 57	15 Colfax	575 Colfax FESL SVI						Tes	TestCode: 0	0.25CT-TCE-VC	
Sample ID ALCS1UG-033116	-033116	SampType: LCS	TestCox	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:	้เข้		RunNo: 10817	
Client (D: ZZZZ		Batch ID: R10817	Testh	TestNo: TO-15			Analysis Date:	e: 3/31/2016		SeqNo: 127096	
Analyte		Result	PQL	SPK value SI	SPK Ref Val	%REC	LowLimit	HighLimit RF	RPD Ref Val	%RPD RPDUmit C	Quat
1,1,1-Trichloroethane		1.250	0.15	ųni	0	125	8	130			]
1,1-Dichioroethane		1.120	0.15	ф.т	o	112	70	130			
1,1-Dichloroethene		1.120	0.15	.far.	¢	112	70	130			
Chloroethane		1.220	0.15	ł	0	12	67	130			
Chiorometinane		1.230	0.15	¥٣	¢	123	70	130			
cis-1,2-Dichlomethene		1.060	0.15	•	0	<del>1</del> 1 2 2	70	130			
Tetrachloroethyiene		0.9200	0.15	•	0	92.0	70	130			
trans-1,2-Dichloroethene	he	1.050	0.15	-	φ	±05	02	130			
Trichloroethene		1.110	0.040	-	0	131	70	130			
Vinyl chloride		1.090	0.040	-	0	ŧ0	20	130			
Sample ID ALCS1UG-040116	-040116	SampType: LCS	TestCot	TestCode: 0.25CT-TCE-	. Units: ppbV		Prep Date:	نة		RunNo: 10818	
Client (D: 22222		Batch ID: R10818	Testh	No: 70-15			Analysis Date:	e: 4/1/2016		SeqNo: 127113	
Analyte		Result	PQL	SPK vakue S	SPK Ref Val	%REC	LowLimit	HighLimit RI	RPD Ref Vai	%RPD RPDLimit C	Quat
1,1,1-Tricklowethane		1.290	0.15	•-	0	129	70	130			
1,1-Dichhoroethane		1.040	0.15	*	0	104	70	130			
1,1-Dichloroethene		1.100	0.15	ł	0	110	70	130			
Chloroethane		1.130	0.15	ţ	Ð	113	70	130			
Chioromethane		1.230	0.15	¥	0	123	70				
cis-1,2-Dichloroethene		0.9800	0.15	<b>5</b> 77	Q	98.0	02	130			
Tetrachioroethylene		0.8800	0.15	भूगा	Q	88.0	70	130			
trans-1,2-Dichloroethene	ne	0.9900	0.15	۴.	o	99.0	70	130			
Frichloroethene		1.230	0.040	***	¢	123	02	130			
Qualifiers: Ro	csulis repo	Results reported are not blank corrected		E. Value abi	Value above quantitation range	)ĝc		H Hol	lding tuncs for	Holding hines for proparation or analysis exceeded	
	nalyte dete	Analyte detected at or below quantitation limits	imits	ND Not Deter	Not Detected at the Reporting Limit	ig Limit		R RPI	D outside acce	RPD outside accepted recovery litraits	
15 S .	pike Recov	Spike Recovery outside accepted recovery limits	timits							Pag	Page 1 of 3

CENTEK LABORATORIES, LLC

815-6

Centek Laboratories

Page 178 of 245

Date: 26-Apr-16

CUENT: LaBella Associates, P.C. Work Order: C1603074	LaBella Associates, P.C. C1603074	ssociates,	, P.C.						E	Ę		5	
			144							strode: u	1estcode: 0.2501-10E-VC	-v.C	
Sample (U ALCS1UG-040116	10G-040116		Samp lype: LCS	TestCoc	le: 0.25CT-TCE	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:			RunNo: 10818	318	
Client ID: ZZZZ	2	Batch	Batch ID: R10818	Tesin	Na: TO-15			Analysis Date: 4/1/2016	2. 4/1/2016		SegNo: 127113	113	
Analyte			Result	Pal	SPK value SPK Ref Val	SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	HighLimit	RPD Ref Val	QqN%	%RPD RPDLimit	Qual
Virryl chloride			1.100	0,040		¢	110	70	130				

Centek Laboratories

Page 179 of 245

H FIGIDING DEADS FOR DECORPORATION OF ANALYSIS CALENDED	E Value above quantitation tange	Kestais reported are not biank corrected	Zualstiers;

Page 2 of 3

CLIENT: LaB	3ella As:	LaBella Associates, P.C.									
Work Order: C16	C1603074										
Project: 575	Colfax	575 Coltax FESL SVI						TestCode:	TestCode: lugM3_T015		
Sample ID ALCS1UG-040216	140216	SampType: LCS	TestCol	de: 1ugM3_T	TestCode: 1ugM3_T015 Units: ppbV		Prep Date:	<b>6</b> ,	RunNo: 10819		
Client (D: ZZZZ		Batch ID: R10819	Test	TestNo: TO-15			Anatysis Dat	Anatysis Date: 4/2/2016	SeqNo: 127125		
Analyte		Result	Par	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Vat	QAA QAA%	RPDLimit Quat	ğ
1,1,1-Trichhoroethane		1.290	0.15	-	0	129	02	130			
1,1-Dichloroethane		1.170	0.15	-	0	117	70	130			
1,1-Dichloroethene		1.200	0.15	-	D	120	02	130			
Chloroethane		1.230	0.15	-	Ð	123	02	130			
Chloromethane		1.290	0.15	-	Ð	129	02	130			
cis-1,2-Dichiproethene		1.170	0.15	-	Ð	117	70	130			
Tetrachioroethylene		0.7800	0.15	-	Ð	0.87	70	130			
trans-f,2-Dichloroethene	Ø)	1.180	0.15	-	0	118	70	130			
Trichioroethene		1.260	0.15	*~	c	126	70	130			
Vinyi chloride		1.140	0.15	<b>*</b>	0	114	70	130			

Not Detected at the Reporting Limit Value above quantitation range ω Q Analyte detected at or below quantitation lumits Splike Recovery outside accepted recovery limits Results reported are not blank corrected . . v Qualifiers: Page 180 of 245

Page 3 of 3

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits

л ч

Vial: 5 Data File : C:\HPCHEM\1\DATA2\AN033105.D Acg On : 31 Mar 2016 12:57 pm Sample : ALCS1UG-033116 Misc : A316_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 31 13:40:26 2016 Quant Results File: A316_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.81128202351.00 ppb0.0035) 1,4-difluorobenzene12.06114535951.00 ppb0.0050) Chlorobenzene-d516.57117328931.00 ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 24330 1.15 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 115.00% 

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 115.00%

 Target Compounds
 Ovalue

 2) Propylene
 4.15
 41
 18444
 1.12 ppb
 #
 100

 3) Freeon 12
 4.19
 85
 108186
 1.25 ppb
 99
 94

 10 Chloromethane
 4.39
 50
 27930
 1.23 ppb
 94

 6) Vinyl Chloride
 4.59
 62
 24728
 1.09 ppb
 91

 7) Butane
 4.69
 43
 31576
 1.21 ppb
 96

 10) Chlorothane
 5.21
 64
 11361
 1.22 ppb
 91

 11) Ethanol
 5.37
 45
 7949
 1.15 ppb
 # 68

 12) Acctolein
 5.96
 56
 7163
 1.22 ppb
 95

 13) Vinyl Bromide
 5.55
 106
 30203
 1.15 ppb
 96

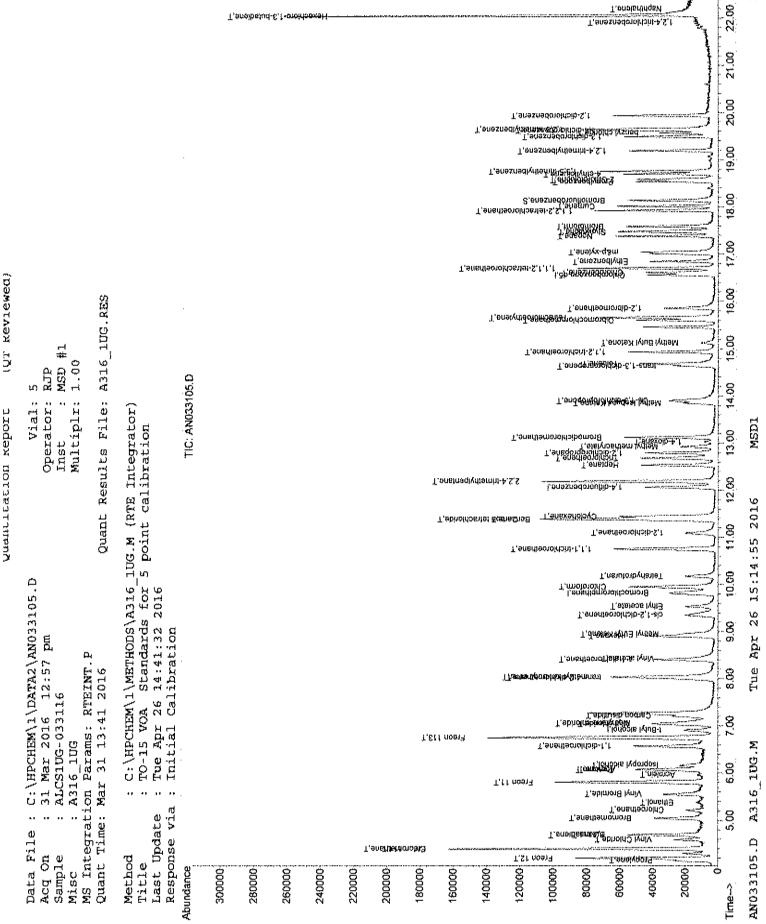
 14) Freen 11
 5.80
 101
 113728
 1.20 ppb
 97

 15) Acctone
 6.05
 9844
 1.33 ppb
 77

 16) Pentane
 6.05
 101
 76210
 1.22 ppb Target Compounds 

(#) = qualifier out of range (m) = manual integration AN033105.D A316_1UG.M Tue Apr 26 15:14:53 2016 MSD1

Data File : C:\HPCHEM\1\DATA2\AN033105.DVial: 5Acq On : 31 Mar 2016 12:57 pmOperator: RJPSample : ALCS1UG-033116Inst : MSD #1Misc : A316_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Mar 31 13:40:26 2016Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Thu Mar 17 10:24:27 2016Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

	Compound	R.T.	QION	Response (	Conc Unit	Qvalue
46)	Bromodichloromethane	13.12	83	49145m 🕅	1.25 ppb	
47)	cis-1,3-dichloropropene	13,91	75	25793	1.20 ppb	98
48)	trans-1,3-dichloropropene	14.63	75	22819m	1,19 ppb	
49)	1,1,2-trichloroethane	14.93	97	21714	1.23 ppb	98
51)	Toluene	14.68	92	21405	0.96 ppb	98
52)	Methyl Isobutyl Ketone	13.85	43	14776m	0.37 ppb	
53)	Dibromochloromethane	15.60	129	35353m	1.25 ppb	
54)	Methyl Butyl Ketone	15.12	43	10560m	0.30 ppb	
55)	1,2-dibromoethane	15.86	107	33793 🐧	1.22 ppb	96
56)	Tetrachloroethylene	15.65	164	19690	0.92 ppb	96
57)	Chlorobenzene	16.61	112	31204	1.06 ppb	83
58)	1,1,1,2-tetrachloroethane	16.70	131	25628	1,17 ppb	97
59)	Ethylbenzene	16.85	91	37066	0.97 ppb	100
60)	m&p-xylene	17.05	91	57446	1.89 ppb	95
61)	Nonane	17.38	43	1.794.8	0.99 ppb	98
62)	Styrene	17.46	104	22860	1.08 ppb	91
63)	Bromoform	17.59	173	33915	2.23 ppb	99
64)	o-xylene	17.49	91	43063	1.18 ppb	97
65)	Cumene	18.02	105	41100	0.96 ppb	96
67)	1,1,2,2-tetrachloroethane	17.92	83	41.344	1.10 ppb	99
68)		18.54		44805m 🕖		
69)	2-Chlorotoluene	19,58	91	32571m ,	0.99 ppb	
	4-cthyltoluene	18.70		39533m /	1.02 ppb	
71)		18.76	105	47412m 🕏	1.02 ppb	
72)		19.19	105	35331	dqq 88.0	93
73)	1,3-dichlorobenzene	19.49	146	30675	1.20 ppb	97
74)	benzyl chloride	19.57	91	36429	1.00 ppb	97
75)	l,4-dichlorobenzene	19.62	146	28854	1.20 ppb	98
76)		19,65	105	42402	0.85 ppb	90
77)	1,2-dichlorobenzene	19.93	146	33057	1.05 ppb	96
78)	1,2,4-trichlorobenzene	21.91	180	18692m 🔑	0.79 ppb	
79)	Naphthalene	22.21	128	27592m X	0.56 ppb	
80)	Hexachloro-1,3-butadiene	22.07	225	53161 0	0.92 ppb	96

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN033105,D A316_1UG,M Tue Apr 26 15:14:54 2016 MSD1

Page 2

Page 182 of 245



T, anolbalud-E, I-onoldooxol i-

T.phalerIngeV

Data File : C:\HPCHEM\1\Data Acq On : 1 Apr 2016 12:45 pm Vial: 19 Operator: RJP Sample : ALCSIUG-040116 Misc : A316_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 02 12:01:11 2016 Quant Results File: A316_1UG.RES Quant Method : C;\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.8212820858m1.00 ppb0.0135) 1,4-difluorobenzene12.07114460191.00 ppb0.0050) Chlorobenzene-d516.56117313971.00 ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 23410 1.16 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 116.00% 

 66) Bromofluorobenzene
 18.14
 95
 2310
 1.16 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 116.004

 Target Compounds
 Qvalue

 2) Propylene
 4.15
 41
 19322
 1.14
 ppb
 #
 100

 3) Freon 12
 4.20
 85
 108917
 1.23
 ppb
 92

 5) Freon 114
 4.40
 65
 67334
 1.16
 ppb
 91

 7) Butane
 4.66
 43
 32939
 1.23
 ppb
 91

 7) Butane
 5.04
 94
 33154
 1.20
 ppb
 91

 10) Chloroethane
 5.01
 94
 33154
 1.20
 ppb
 91

 11) Ethanol
 5.37
 45
 6602
 0.93
 ppb
 61

 12) Acrolein
 5.97
 56
 7177
 1.19
 ppb
 95

 13) Vinyl Bromide
 5.55
 106
 31182
 1.20
 ppb
 96

 14) Freon 11
 5.61
 101
 113643
 1.24
 ppb
 95</t 

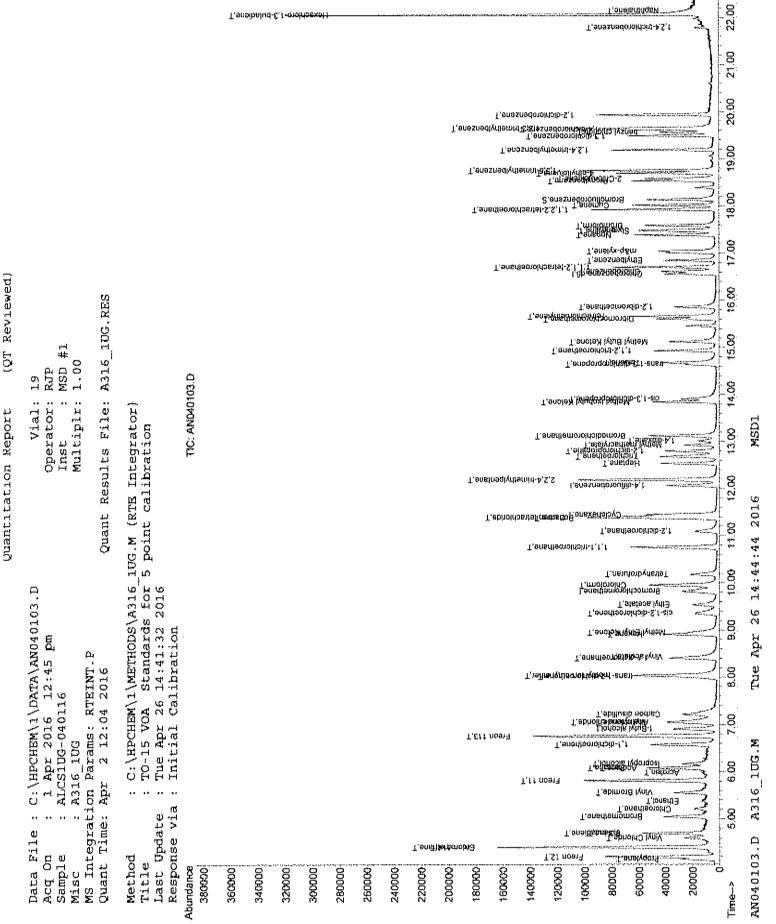
(#) = qualifier out of range (m) = manual integration

AN040103.D A316_1UG.M Tue Apr 26 14:44:42 2016 MSD1

Page 184 of 245

Data File : C:\HPCHEM\1\DATA\AN040103.D Vial: 19 Acq On : 1 Apr 2016 12:45 pm Operator: RJP Sample : ALCSIUG-040116 Misc : A316_1UG Inst : MGD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316_1UG.RES Quant Time: Apr 02 12:01:11 2016 Quant Method : C:\HPCHEM\1\METHODS\A316_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG_RUN CompoundR.T. QIonResponseConcUnitQvalue46)Bromodichloromethane13.128341457m1.23 ppb47)cis-1,3-dichloropropene13.917522251m1.21 ppb48)trans-1,3-dichloropropene14.647520489m1.24 ppb49)1,1,2-trichloroethane14.949718169m1.20 ppb51)Toluene13.8443397721.05 ppb9652)MethylIsobutylKetone13.8443397721.05 ppb9553)Dibromochloromethane15.6112930463m1.13 ppb9454)MethylButylKetone15.6610730844m1.16 ppb55)1,2-dibromoethane15.66164179400.88 ppb9556)Tetrachloroethylene16.6111231424m1.12 ppb58)1,1,2-tetrachloroethane16.71131241831.16 ppb9759)Ethylbenzene16.8591362630.99 ppb9660)m&p-xylene17.0591538111.85 ppb93 R.T. QION Response Conc Unit Qvalue Compound 96 95 94 99 97 98 93

60)	m&p-xylene	17.05	91	53811	1.85 ppb	93
61)	Nonane	17.30	43	18316	1.06 ppb	97
62	Styrene	17.46	104	22721	1.12 ppb	90
63)	Bromoform	17.58	173	33285	2.29 ppb	99
64	o-xylene	17.48	91	42165	1.21 ppb	98
65	Cumene	18.02	105	44417	1.09 ppb	96
67)	1,1,2,2-tetrachloroethane	17,92	83	40140m	1.34 ppb	
68)	Propylbenzene	18.54	91	56112m	1.30 ppb	
69		18.58	91	31.555m	1.00 ppb	
70	4-ethyltoluene	18.70	105	45720m	1.23 ppb	
71	1,3,5 ⁻ trimethylbenzene	18.76	105	58743m	1.32 ppb	
72)	1,2,4-trimethylbenzene	19.19	105	4841.9m	1.26 ppb	
73	1,3-dichlorobenzene	19.49	146	34715m	1.42 ppb	
74	benzyl chloride	19.56	91	40041m	1.15 ppb	
75	1,4-dichlorobenzene	19.62	146	30402m	1.32 ppb	
76	1,2,3-trimethylbenzene	19.65	105	67485	1.42 ppb	94
77	1,2-dichlorobenzene	19.93	146	45704 /	1.53 ppb	97
78)	1,2,4-trichlorobenzene	21.80	180	20891m -	0.92 ppb	
79	Naphthalene	22.15	129	44379m	0.95 ppb	
	Hexachloro-1,3-butadiene	22.07	225	64975	1.18 ppb	97


~~~~~~~~~ (#) = qualifier out of range (m) = manual integration (+) = signals summed AN040103,D A316\_1UG.M Tue Apr 26 14:44:43 2016 MSD1

Page 185 of 245

Ċ)

Page

L, analeni/dav

T, snoib#Jud-C.1-orolnoexof1

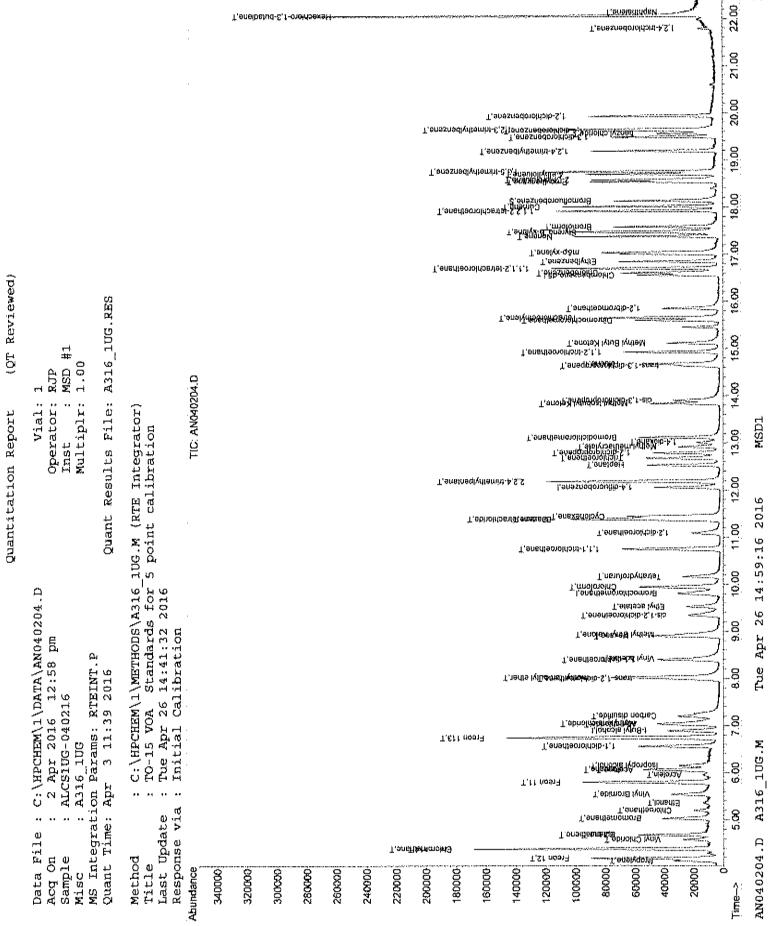
| Data File : C:\HPCHEM\l\DATA\ANO
Acq On : 2 Apr 2016 12:58 p
Sample : ALCS1UG-040216
Misc : A316_1UG
MS Integration Params: RTEINT.P
Quant Time: Apr 02 14:36:13 2016 | m | Qua | Oper
Inst
Mult | Vial:
ator:
iplr:
File: | RJP
MSD
1,0(| כ | G.RES |
|--|--------------------|------------|--------------------------|----------------------------------|----------------------------------|------|----------|
| Quant Method : C:\HPCHEM\1\METHO
Title : TO-15 VOA Standa
Last Update : Thu Mar 17 10:24:
Response via : Initial Calibrati
DataAcq Meth : lUG_RUN | rds for
27 2016 | | | | | | |
| Internal Standards | | | Response C | | | | |
| 1) Bromochloromethane | 9,81 | 128 | 21348m 🖉 | 1.00 | dqq | | 0.00 |
| 35) 1,4-difluorobenzene | 12.06 | 114 | 52201 | 1.00 | ppb | | 0.00 |
| 50) Chlorobenzene-d5 | 16.56 | 117 | 44220 | 1.00 | ppo | | 0.00 |
| System Monitoring Compounds | | | | | | | |
| 66) Bromofluorobenzene | | 95 | 32006 | 1.12 | $\mathbf{p}\mathbf{p}\mathbf{b}$ | • | 0.00 |
| Spiked Amount 1.000 Ra | inge 70 | - 130 | Recovery | = | 112 | .00% | |
| Target Compounds | | | | | | Ova | alue |
| 2) Propylene | 4.14 | 41 | 21303 | 1.24 | dqq | | 100 |
| 3) Freon 12 | 4.19 | | 112715 | 1.24 | | | 99 |
| 4) Chloromethane | 4.39 | | 30667 | | | | 94 |
| 5) Freon 114 | 4.39 | 85 | 96961
27465
31094 | 1.26 | | | 98 |
| 6) Vinyl Chloride | 4.58 | 62 | 27465 | 1,14 | | | 89 |
| 7) Butane | 4.68 | 43 | 31094 | 1.13 | | | 96 |
| 8) 1,3-butadiene | 4.69 | 39 | 22506 | | | | 84 |
| 9) Bromomethane | 5.03 | 94
64 | 34108 | 1.21 | | | 95 |
| 10) Chloroethane | 5.21 | | 12081
8936 л | 1.23 | | | 97 |
| 11) Ethanol | 5.37 | 45 | $\frac{8936}{7589m}$ | 1.23 | | # | 74 |
| 12) Acrolein | 5.95
5.54 | 106 | 32945 | $1.23 \\ 1.19$ | | | 94 |
| 13) Vinyl Bromide
14) Freon 11 | 5.80 | 106
101 | 108604 | 1.16 | | | 98 |
| 15) Acetone | 6.05 | 58 | 10100m | 1.10 | | | 20 |
| 16) Pentane | 6.07 | | 24302 | 1.16 | | | 93 |
| 17) Isopropyl alcohol | 6.15 | 45 | 32873 l | 1.09 | | # | 46 |
| 18) 1,1-dichloroethene | 6.56 | 96 | 32873
32833
85460m | 1.20 | | | 94 |
| 19) Freon 113 | 6.75 | 101 | 85460m | 1.29 | | | |
| 20) t-Bucyl alcohol | 6.89 | 59 | 52338 | 1.09 | | # | 75 |
| 21) Methylene chloride | 7.05 | 84 | 29910 | 1.25 | | | 88 |
| 22) Allyl chloride | 7.02 | 41 | 25381 | 1.19 | | | 84 |
| 23) Carbon disulfide | 7.21 | 76 | 83066 | 1.17 | | | 98 |
| 24) trans-1,2-dichloroethene | 7.99 | 61 | 38349 | 1.18 | | | 91 |
| 25) methyl tert-butyl ether | 8.03 | 73 | 74015 | 1.20 | | | 90 |
| 26) 1,1-dichloroethane
27) Vinyl acetate | 8.40
8.43 | 63
43 | 53984
46737 | 1.17
1.17 | | | 99
98 |
| 27) Vinyi acetate
28) Methyl Ethyl Ketone | 8.94 | 72 | 11871 | 1.21 | | # | 100 |
| 29) cis-1,2-dichloroethene | 9,35 | 61 | 31216 | 1.17 | | π | 92 |
| 30) Hexane | 8.89 | 57 | 31529 | 1,13 | | | 97 |
| 31) Ethyl acetate | 9.53 | 43 | 46407 | 1.22 | | | 91 |
| 32) Chloroform | 9.95 | 83 | 67143 | 1.08 | | | 100 |
| 33) Tetrahydrofuran | 10.17 | 42 | 21607 | 1.22 | | | 93 |
| 34) 1,2-dichloroethane | 11.09 | 62 | 36475 <i>N</i> | 1.04 | ррь | | 90 |
| 36) 1,1,1-trichloroethane | 10.75 | 97 | 63335m 🗸 | 1.29 | | | |
| 37) Cyclohexane | 11,44 | 56 | 27045m | 1.34 | | | ± |
| 38) Carbon tetrachloride | 11.39 | 117 | 67542 | 1.23 | | | 97 |
| 39) Benzene | 11.37 | 78 | 55204 | 1.27 | | | 97 |
| 40) Methyl methacrylate | 12.91 | 41 | 16940m | 1.20 | | | 00 |
| 41) 1,4-dioxane | 13.02 | 88 | 13230 | 1.19 | | | 98 |
| 42) 2,2,4-trimethylpentane | $12.18 \\ 12.53$ | 57
43 | 114159m /
22298 / | $1.50 \\ 1.27$ | | | 94 |
| 43) Heptane
44) Trichloroethene | 12.68 | 130 | 27991 / | 1.26
1.26 | | | 98 |
| 44) Trichloroethene
45) 1,2-dichloropropane | 12.00
12.79 | 63 | 18752m | 1.20 | | | ~ ~ ~ |
| | | | aretion | | | | |

(#) = qualifier out of range (m) = manual integration AN040204.D A316\_1UG.M Tue Apr 26 14:59:14 2016

Page 187 of 245

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AN040204.DVial: 1Acq On : 2 Apr 2016 12:58 pmOperator: RJPSample : ALCS1UG-040216Inst : MSD #1Misc : A316\_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Apr 02 14:36:13 2016Quant Method : C:\HPCHEM\1\METHODS\A316\_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Thu Mar 17 10:24:27 2016Response via : Initial Calibration


DataAcq Meth : 1UG\_RUN

| | Compound | R.T. | Qíon | Response | Conc Unit | Qvalue |
|-----|---------------------------|-------|--------|----------|-----------|--------|
| 46) | Bromodichloromethane | 13.11 |
ӨЗ | 44063m { | 1.15 ppb | |
| 47) | cis-1,3-dichloropropene | 13,90 | 75 | 25728m | 1.23 ppb | |
| 48) | | 14.63 | 75 | 24149m | 1.29 ppb | |
| 49) | 1,1,2-trichloroethane | 14.93 | 97 | 20773m | 1.21 ppb | |
| 51) | Toluene | 14.68 | 92 | 23774 | 0.79 ppb | 93 |
| 52) | Methyl Isobutyl Ketone | 13.83 | 43 | 39350 | 0.74 ppb | 98 |
| 53) | Dibromochloromethane | 15.60 | 129 | 38789m | 1.02 ppb | |
| 54) | Methyl Butyl Ketone | 15.12 | 43 | 35587 | 0.75 ppb | 91 |
| 55) | 1,2-dibromoethane | 15.85 | 107 | 43150 | 1.15 ppb | 98 |
| 56) | Tetrachloroethylene | 15.66 | 164 | 22377 | 0.78 ppb | .97 |
| 57) | Chlorobenzene | 16.61 | 112 | 46561 | 1.18 ppb | 92 |
| 58) | 1,1,1,2-tetrachloroethane | 16.70 | 131 | 34745 | 1.10 ppb | 95 |
| 59) | Ethylbenzene | 16.85 | 91. | 61162 | 1.19 ppb | 98 |
| 60) | m&p-xylene | 17.04 | 91 | 98093 | 2.40 ppb | 95 |
| 61) | Nonane | 17.38 | 43 | 28351m | 1.16 ppb | |
| 62) | Styrene | 17.46 | 104 | 36491 | 1.28 ppb | 91 |
| 63) | Bromoform | 17.58 | 173 | 42375 | 2.07 ppb | 99 |
| 64) | o-xylene | 17.48 | 91 | 60210m | 1.23 ppb | |
| 65) | Cumene | 18.02 | 105 | 73127 | 1.27 ppb | 98 |
| 67) | 1,1,2,2-tetrachloroethane | 17.92 | 83 | 63040 | 1.25 ppb | 99 |
| 68) | Propylbenzene | 18.54 | 91 | 79403m | 1.30 ppb | |
| 69) | 2-Chlorotoluene | 18.58 | 91 | 61383m | 1.38 ppb | |
| 70) | 4-ethyltoluene | 18.70 | 105 | 50219m | 1.11 ppb | |
| 71) | | 18.75 | 105 | 72962m | 1.17 ppb | |
| 72) | 1,2,4-trimethylbenzene | 19.19 | 105 | 57079 | 1.05 ppb | 89 |
| 73) | 1,3-dichlorobenzene | 19.49 | 146 | 40130 | 1.17 ppb | 97 |
| 74) | benzyl chloride | 19.56 | 91 | 47079 | 0.96 ppb | 97 |
| 75) | 1,4-dichlorobenzene | 19.62 | 146 | 35806 | 1.10 ppb | 95 |
| 76) | • | 19.65 | 1,05 | 74548 | 1.12 ppb | 97 |
| 77) | | 19.93 | 146 | 44061 | 1.04 ppb | 95 |
| | 1,2,4-trichlorobenzene | 21.79 | | 22866m | 0.72 ppb | |
| 79) | Naphthalene | 22.13 | | 49350m | 0.75 ppb | |
| 80) | Hexachloro-1,3-butadiene | 22.07 | 225 | 58446 | 0.75 ppb | 95 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040204.D A316\_1UG.M Tue Apr 26 14:59:15 2016 MSD1

-

Page 2

| 1 | | | | | ~4 | NNALY | TICAI | L QC SU | ANALYTICAL QC SUMMARY REPORT | REPO | RT |
|---|--|---------|-----------------|-------------------------------------|------------------|----------------|--------------|------------------|--|----------------|------|
| CLIENT: LaBella A
Work Order: C1603074 | LaBella Associates, P.C.
C1603074 | | | | | | | | | | |
| Project: 575 C | 575 Colfax FESL SVI | | | | | | | TestCode: | 0.25CT-TCE-VC | E-VC | |
| Sample ID ALCS1UGD-033116 | 13116 SampType: LCSD | TestCod | de: 0.25CT-TCE- | Units: ppbV | | Prep Date | | | RunNo: 10 | 10817 | |
| Client ID: ZZZZ | Batch ID: R10817 | TestN | Ve: T0-15 | | - | Analysis Date: | le: 4/1/2016 | 16 | SeqNo: 127097 | 1601 | |
| Analyte | Result | Pal | SPK value SP | SPK Ref Val | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD | RPDLimit | Qual |
| 1,1,1-Trichloroethane | 1.280 | 0.15 | ÷ | 0 | 128 | 70 | 130 | 1.25 | 2.37 | 30 | |
| 1,1-Dichloroethane | 1,040 | 0.15 | - | ٥ | 104 | 70 | 130 | 1,12 | 7.41 | 30 | |
| 1,1-Dichloroethene | 1.120 | 0.15 | - | D | 112 | 70 | 130 | 1,12 | 0 | 8 | |
| Chloroethane | 1.250 | 0.15 | - | 0 | 125 | 70 | 130 | 1.22 | 2.43 | | |
| Chloromethane | 1.210 | 0.15 | ~- | Ð | 121 | 0/ | 130 | 1.23 | 1.64 | | |
| cis-1,2-Dichloroethene | 1.010 | 0.15 | • | Ð | 101 | 02 | 130 | 1.05 | 4.83 | | |
| Tetrachioroethylene | 0006.0 | 0.15 | *** | 0 | 90.0 | 70 | 130 | 0.92 | 2.20 | | |
| trans-1,2-Dichloroethene | 1.000 | 0.15 | 4 | 0 | 1 <mark>0</mark> | 70 | 130 | 1.05 | 4.88 | | |
| Trichlosoethene | 1.150 | 0.040 | 4 | Û | 115 | 70 | 130 | 1.11 | 3.54 | 30 | |
| Vinyl chloride | 1.050 | 0.040 | ψm | 0 | 105 | 6 | 130 | 1.09 | 3.74 | 90
GE | |
| Sample ID ALCS1UGD-040116 | 10116 SampType: LCSD | TestCod | de: 0.25CT-TCE- | Units: ppbV | | Prep Date: | le: | | RunNo: 10818 | 1818 | |
| Client ID: ZZZZ | Batch ID: R10818 | TestN | No: TO-15 | | | Analysis Date: | le: 4/2/2016 | 16 | SeqNo: 127114 | 27114 | |
| Analyte | Result | PQL | SPK value SP | SPK Ref Val | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD | RPDLimit | Quał |
| 1,1,1-Trichloroethane | 1.280 | 0.15 | ~ | ¢ | 128 | 2 | 130 | 1.29 | 0.778 | 90 | : |
| 1,1-Dichlomethane | 1.040 | 0.15 | - | Q | 104 | 70 | 130 | 1.04 | Ö | 30 | |
| 1,1-Dichloroethene | 1.100 | 0.15 | - | 0 | 110 | 70 | 130 | 1.1 | Ö | | |
| Chloroethane | 1.240 | 0.15 | - | 0 | 124 | 70 | 130 | 1.13 | 9.28 | | |
| Chloromethane | † .230 | 0.15 | - | ð | 123 | 70 | 130 | 1.23 | 0 | | |
| cis-1,2-Dichloraethene | 0.9400 | 0.15 | . | 0 | 94.0 | 70 | 130 | 0.98 | | | |
| Tetrachloroethytene | 0.8300 | 0.15 | *** | 0 | 83.0 | 70 | 130 | 0.58 | | | |
| trans-1,2-Dichloroethene | 0.9600 | 0.15 | * | o | 96.0 | 07 | 130 | 0.99 | | | |
| Trichloroethene | 1.210 | 0.040 | ~~ | 0 | 124 | 6 <sup>5</sup> | 130 | 1.23 | 1.64 | 30 | |
| Qualifiers: Resul | Results reported are not blank corrected | | E Value abor | Vatue above quantitation range | 28 | | H | Holding times fo | Holding times for preparation or analysis exceeded | analysis excee | disd |
| (Analy | Analyte detected at or below quantitation limits | ischets | ND Not Detect | Not Detected at the Reporting Limit | g Limit | | 65 | RPD outside act | RPD outside accepted recovery limits | innits | |
| • | | | | | | | | | | | |

Centek Laboratories

Date: 26-Apr-16

Page 190 of 245

| CLIENT:
Work Order: | LaBella As
C1603074 | LaBella Associates, P.C.
C1603074 | | | | | | | | | | |
|------------------------|------------------------|--|--------|---------------|-----------------------------------|------|-------------------------|-------------|-------------------------------------|-------------------------|--------------------|------|
| Project: | 575 Colfax FESL SVI | FESL SVI | | | | | | | estCode: | TestCode: 0.25CT-TCE-VC | E-VC | |
| Sample ID ALCS | 1060-040116 | Sample ID ALCS1UGD-040116 SampType: LCSD | TestCo | de: 0,25CT-T(| TestCode: 0.25CT-TCE- Units: ppbV | | Prep Date: | 6 | | RunNo: 10818 | 818 | |
| Client ID: ZZZZ | Z | Batch ID: R10818 | Test | TestNo: TO-15 | | - | Analysis Date: 4/2/2016 | le: 4/2/201 | i6 | SeqNo: 127114 | 7114 | |
| Analyte | | Result | POL | SPK value | SPK value SPK Ref Val | %REC | Low-imit | HighLimit | %REC LowLinit HighLimit RPD Ref Val | %RPD | %RPD RPDLimit Qual | Qual |
| Vinyl chloride | | 1.070 | 0.040 | - | • | 107 | 02 | 130 | 11 | 2.76 | 30 | |

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits <u>n</u> 🗠 Vatue above quantitation range
 ND Not Detected at the Reporting Limit Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits Results reported are not blank corrected Qualifiers:

Centek Laboratories

Page 2 of 3

| Work Order: C1603074 | | | | | | | | | | | |
|--|---------------------|--------|---------------|----------------------------------|------|-------------------------|------------|-------------------------------------|---------------|----------|------|
| Project: 575 Colfa | 575 Colfax FESL SVI | | | | | | F | TestCode: lugM3_T015 | ugM3_T01 | 5 | |
| Sample ID ALCS1UGD-040216 SampType: LCSD | 5 SampType: LCSD | TestCo | de: 1ugM3_T | TestCode: 1ugM3_T015 Units: ppbV | | Prep Date: | iii iii | | RunNo: 10819 | 19 | |
| Client ID: ZZZZ | Batch ID: R10819 | Test | TesiNo: TO-15 | | - | Analysis Date: 4/3/2016 | e: 4/3/201 | 9 | SeqNo: 127130 | 130 | |
| Analyte | Result | Pol | SPK value | SPK value SPK Ref Val | %REC | LowLimit | HighLimit | %REC LowLimit HighLimit RPD Ref Vat | C43% | RPDLimit | Quai |
| 1,1,1-Trichloroethane | 1.300 | 0.15 | - | o | 130 | 57 | 130 | 1.29 | 0.772 | 8 | |
| 1,1-Dichloroethane | 1.170 | 0.15 | 1 | 0 | 117 | 70 | 130 | 2.17 | Ō | 30 | |
| 1,1-Dichlonethene | 1.110 | 0.15 | - | 0 | 111 | 70 | 130 | 1.2 | 7.79 | œ | |
| Chloroethane | 1.090 | 0.15 | - | 0 | 109 | 70 | 130 | 1.23 | 12.1 | 30 | |
| Chloromethane | 1.190 | 0.15 | 4 | Ð | 119 | 02 | 130 | 1.29 | 8.06 | 30 | |
| cis-1,2-Dichloroethene | 1.110 | 0.15 | *** | Ö | 111 | 70 | 130 | 1,17 | 5.26 | 30 | |
| Tetrachloroethylene | 0.8900 | 0.15 | * | 0 | 89.0 | 70 | 130 | 0.78 | 13.2 | 30 | |
| trans-1,2-Dichloroethene | 1,150 | 0.15 | ų | 0 | 115 | 70 | 130 | 1.18 | 2.59 | 30 | |
| Trichloroethene | 1.220 | 0.15 | ** | ¢ | 122 | 70 | 130 | 1.26 | 3.23 | 8 | |
| Vinyl chloride | 1.220 | 0.15 | ų | Ģ | 122 | 70 | 130 | 1.14 | 6.78 | R | |
| | | | | | | | | | | | |

Centek Laboratories

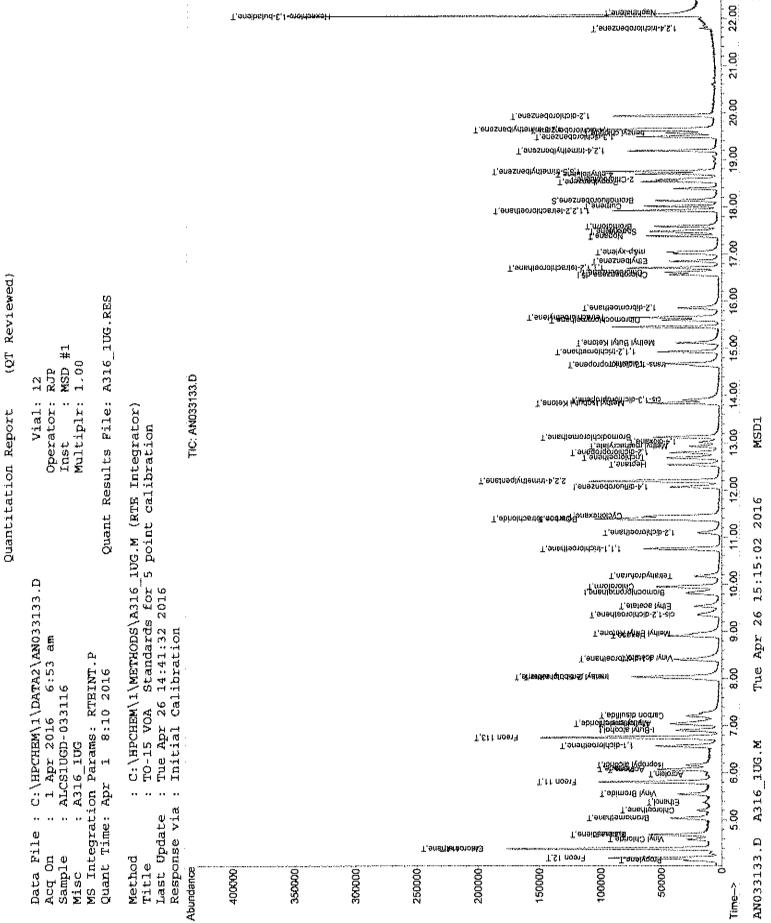
LaBella Associates, P.C.

CLIENT:

Page 192 of 245

| Data File : C:\HPCHEM\1\DATA2
Acq On : 1 Apr 2016 6:5
Sample : ALCS1UGD-033116
Misc : A316_1UG
MS Integration Params: RTEINT | 3 am
.P | | Oper
Inst
Mult | Vial:
ator:
;
iplr: | RJP
MSD
1.00 | |
|---|--------------------------|-------------|--------------------------|------------------------------|----------------------|-----------------|
| Quant Time: Apr 01 07:41:06 2 | 016 | Qu | ant Results | File: | A316_ | 1UG.RES |
| Quant Method : C:\HPCHEM\l\ME
Title : TO-15 VOA Sta
Last Update : Thu Mar 17 10:
Response via : Initial Calibr
DataAcq Meth : 1UG_RUN | ndards for
24:27 2016 | | | | | |
| Internal Standards | R.T. | QIon | Response C | | | |
| - 1 - 1 - 1 - 1 - 1 | | 128 | 22710m Ø | 1.00 | ppb | 0.02 |
| 1) Bromochloromethane
35) 1,4-difluorobenzene
50) Chlorobenzene-d5 | 12.07 | 114 | 52964 | 1.00 | dqq | 0.00 |
| 50) Chlorobenzene-d5 | 16.56 | 117 | 34225 | 1.00 | ppp | 0.00 |
| System Monitoring Compounds
66) Bromofluorobenzene
Spiked Amount 1.000 | 18.14
Range 70 | 95
- 130 | 25901
Recovery | 1.18 | ррb
118.0 | 0.00
90% |
| | | | | | | |
| Target Compounds
2) Propylene | 4.15 | 41 | 22423 | 1.22 | nnh | Qvalue
100 |
| 3) Freon 12 | | | 119838 | 1.24 | ממס | |
| 4) Chloromethane | 4 40 | 50 | 119838
30837
94564 | 1.21 | ppb | 96 |
| 5) Freon 114 | 4.39 | 85 | 94564 | 1.21
1.16 | ррь | 94 |
| 6) Vinyl Chloride | 4.59 | 62 | 26715 | 1.05 | ppb | 88 |
| 7) Butane | 4.69 | 43 | 33781
22465
36360 | 1,16 | ppb | 98 |
| 8) 1,3-butadiene | 4.69 | 39 | 22465 | 1.17 | dqq | 94 |
| 9) Bromomethane | 5.04 | 94 | 36360 | 1.21 | ppp | 96
94 |
| 10) Chloroethane
11) Ethanol | 5.21 | 04
46 | 12903 | $1.25 \\ 1.30$ | | |
| 12) Acrolein | 5.37
5.97 | 56 | 12983
10054
7538 | 1.15 | ppb | |
| 13) Vinyl Bromide | 5.55 | 106 | 32655 | 1.11 | daa | 94 |
| 14) Freon 11 | 5.81 | 101 | 115634 | 1,16 | ppb | 98 |
| 15) Acetone | 6.05 | 58 | 115634
10361
21785 | 1.06 | ppb | # 86 |
| 16) Pentane | 6.08 | 42 | 21785 | 0.97 | ppb | 96 |
| 17) Isopropyl alcohol | 6.16 | 45 | 29904 | 0.93 | ppb | # 46 |
| 18) 1,1-dichloroethene | 6.57 | 96 | 32675 | 1.12 | | 91 |
| 19) Freon 113 | 0.75 | . | | 1.24 | | 94 |
| 20) t-Butyl alcohol | 6.90
7.05 | 59
84 | 54115
28453 | 1.06 | | # 74
89 |
| 21) Methylene chloride
22) Allyl chloride | 7.03 | 0≁
41 | 21912 | $1.11 \\ 0.97$ | | 78 |
| 23) Carbon disulfide | 7.21 | 76 | 77697 | 1.03 | | 96 |
| 24) trans-1,2-dichloroethen | | 61 | 34621 | 1.00 | | 89 |
| 25) methyl tert-butyl ether | 8.03 | 73 | 70378 | 1.08 | | 92 |
| 26) 1,1-dichloroethane | 8.40 | 63 | 50964 | 1.04 | | 100 |
| 27) Vinyl acetate | 8.44 | 43 | 34292 | 0.01 | | 95 |
| 28) Methyl Ethyl Ketone | 8.96 | 72 | 10709 | 1.02 | | # 100
89 |
| 29) cis-1,2-dichloroethene
30) Hexane | 9.35
8.91 | 61
57 | 28746
27596 | 1.01
0.93 | | 97 |
| 31) Ethyl acetate | 9.53 | 43 | 42553 | 1.05 | | 93 |
| 32) Chloroform | 9.95 | 83 | 64410 | 0.97 | | 98 |
| 33) Tetrahydrofuran | 10.17 | 42 | 18009 | 0.96 | | 91 |
| 34) 1,2-dichloroethane | 11.10 | 62 | 35642 | 0.96 | | 89 |
| 36) 1,1,1~trichloroethane | 10.75 | 97 | 63644 | 1.28 | | 98 |
| 37) Cyclohexane | 11.45 | 56 | 26237 | 1,28 | | # 87 |
| 38) Carbon tetrachloride | 11.39 | 117 | 71132 | 1.28 | | 97
67 |
| 39) Benzene | 11.37
12.93 | 78
41 | 51827
16708 🍙 | $1.18 \\ 1.17$ | | 97
82 |
| 40) Methyl methacrylate
41) 1,4-dioxane | 13.01 | 88 | 13693m / | 1, 1, 22 | | ന വം |
| 41) 1,4-GIOXANE
42) 2,2,4-trimethylpentane | 12.19 | 57 | | 1.37 | | |
| 42) 2,2,4 Crimeenyipencane
43) Heptane | 12.54 | 43 | 17595 | 0.98 | | 89 |
| 44) Trichloroethene | 12.69 | | 25767 | 1.15 | | 98 |
| 45) 1,2-dichloropropane | 12.79 | 63 | 18020 | 1.13 | dqg | 100 |
| | () | | ******** | | | |

(#) = qualifier out of range (m) = manual integration AN033133.D A316\_1UG.M Tue Apr 26 15:15:00 2016


MŞD1

Data File : C:\HPCHEM\1\DATA2\AN033133.D Acq On : 1 Apr 2016 6:53 am Sample : ALCS1UGD-033116 Misc : A316\_1UG Vial: 12 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316\_1UG.RES Quant Time: Apr 01 07:41:06 2016 Quant Method : C:\HPCHEM\1\METHODS\A316\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN

| | Compound | R.T. | QION | Response | Conc Unit | Qvalue |
|-----|---------------------------|-------|------|----------------|------------|--------|
| 46) | Bromodichloromethane | 13.12 | 83 | 49599 | 1.28 ppb | 98 |
| 47) | cis-1,3-dichloropropene | 13.90 | 75 | 25744m 🖡 | 1,22 ppb | |
| 48) | trans-1,3-dichloropropene | 14.65 | 75 | 22881m | 1.20 ppb | |
| 49) | 1,1,2-trichloroethane | 14.93 | 97 | 21315 | 1.22 ppb | 99 |
| 51) | Toluene | 14.68 | 92 | 21010 | 0.90 ppb | 95 |
| 52) | Methyl Isobutyl Ketone | 13.84 | 43 | 52442 | 1.28 ppb | 98 |
| 53) | Dibromochloromethane | 15.60 | 129 | 35795m | 1.22 ppb | |
| 54) | Methyl Butyl Ketone | 15.12 | 43 | 34843 | 0.95 ppb | 95 |
| 55) | 1.2-dibromoethane | 15.86 | 107 | 33858m | 1.17 ppb | |
| 56) | Tetrachloroethylene | 15.66 | 164 | 20024 | 0.90 ppb | 96 |
| 57) | Chlorobenzene | 16.61 | 112 | 32547 | 1.07 ppb | 87 |
| 58) | 1,1,1,2-tetrachloroethane | 16.71 | 131 | 24656 | 1.08 ppb | 97 |
| 59) | Ethylbenzene | 16.85 | 91 | 36622 | 0.92 ppb | 99 |
| 60) | m&p-xylene | 17.04 | 91 | 53360 | 1.69 ppb | 91 |
| 61) | Nonane | 17.38 | 43 | 19169 | 1.02 ppb | 96 |
| 62) | Styrene | 17.46 | | 22328 | 1.01 ppb | 91 |
| 63) | Bromoform | 17.59 | | 32571 | 2.06 ppb | 98 |
| 64) | o-xylene | 17.48 | | 38663 | 1.02 ppb | 100 |
| 65) | Cumene | 18.02 | | 43545 | 0.98 ppb | 97 |
| 67) | 1,1,2,2-tetrachloroethane | 17.92 | | 48358 | 1.24 ppb | 100 |
| 68) | Propylbenzene | 18,54 | | 55777m | 1.18 ppb | |
| 69) | 2-Chlorotoluene | 18.58 | | 35032m | 1.02 ppb | |
| 70) | 4-ethyltoluene | 18,70 | | 50112m | 1.24 ppb | |
| 71) | | 18.75 | | 60516m | 1.25 ppb | |
| 72) | | 19.19 | | 51996 | 1.24 ppb | 97 |
| 73) | 1,3-dichlorobenzene | 19.49 | 146 | 33657m | 1.26 ppb | |
| 74) | benzyl chloride | 19.56 | 91 | 48542 | 1.28 ppb | 98 |
| 75) | 1,4-dichlorobenzene | 19.62 | | 32126m | 1.28 ppb | |
| 76) | 1,2,3-trimethylbenzene | 19.65 | | 65042 | 1.26 ppb | 92 |
| 77) | 1,2-dichlorobenzene | 19.93 | | 41624 m | 1.20 ppb | |
| 78) | 1,2,4-trichlorobenzene | 21.79 | | 25407m | [1.03 ppb | |
| 79) | Naphthalene | 22.13 | | 59093m 🗸 | | |
| 60) | Hexachloro-1,3-butadiene | 22.06 | 225 | 73201 | 1.22 ppb | 96 |

\_\_\_\_\_\_\_\_\_\_ (#) = qualifier out of range (m) = manual integration (+) = signals summed Tue Apr 26 15:15:01 2016 MSD1 AN033133.D A316 1UG.M

Reviewed)

| Data File : C:\HPCHEM\1\DATA\A
Acq On : 2 Apr 2016 3:21
Sample : ALCS1UGD-040116
Misc : A316_1UG
MS Integration Params: RTEINT.
Quant Time: Apr 02 07:59:55 20 | am
P | Qua | Oper:
Inst
Mult: | Vial:
ator:
:
iplr:
File: | RJP
MSD
1.00 | #1
) | J.RES |
|---|--------------------------------|-------------|---|---------------------------------------|--------------------|---------|-----------|
| Quant Method : C:\HPCHEM\1\MET
Title : TO-15 VOA Stan
Last Update : Thu Mar 17 10:2
Response via : Initial Calibra
DataAcq Meth : 1UG_RUN | dards for
4:27 2016
tion | 5 роіг | nt calibratio | on | | | |
| Internal Standards | | | | | | | + ++ |
| 1) Bromochloromethane
35) 1,4-difluorobenzene
50) Chlorobenzene-d5 | 9.81 | 128 | 20437m / <sup>)</sup> | 1.00 | \mathbf{ppb} | | 0.00 |
| 35) 1,4-difluorobenzene | 12.07 | 114 | 45874 | 1.00 | ppb | | 0.00 |
| 50) Chlorobenzene-d5 | 16.56 | 117 | 33404 | 1.00 | ppb | | 0.00 |
| System Monitoring Compounds
66) Bromofluorobenzene
Spiked Amount 1.000 | 18.14
Range 70 | 95
- 130 | 23229
Recovery | 1.08
= | ppb
108. | .00% | 0.00 |
| Target Compounds | | | | | | Ova | alue |
| 2) Propylene | 4.15 | 41 | 17794
106757
28161 | 1.07 | qqq | Į. | 100 |
| 3) Frenn 12 | 4,20
4,39 | 85 | 106757 | 1.22 | ppb | | 99 |
| 4) Chloromethane | 4.39 | 50 | 28161
84475
24511
30299
20711
30593
11593
7438
6489
30312
108818
9989
21958
31569
28746
75197
45185 | 1.23 | ppb | | 94 |
| 5) Freon 114 | 4.39 | 85 | 84475 | 1,15 | ppp | | 93
88 |
| 6) Vinyl Chloride | 4.59 | 02
43 | 20200 | 1.07 | ppb | | 94 |
| 7) Butane
8) 1,3-butadiene | 4.60 | -1:3
-19 | 20711 | 1.20 | ppb | | 67 |
| 9) Bromomethane | 5.04 | 94 | 30593 | 1.13 | ppb | | 97 |
| 10) Chloroethane | 5.21 | 64 | 11593 | 1.24 | dqq | | 00 |
| 11) Ethanol | 5.37 | 45 | 7438 | 1.07 | ppb | # | 70 |
| 12) Acrolein | 5.96 | 56 | 6489 | 1.10 | ppb | # | 5 |
| 13) Vinyl Bromide | 5.54 | 106 | 30312 | 1.14 | ppb | | 98 |
| 14) Freon 11 | 5.81 | 101 | 108818 | 1.21 | ppb | | 98 |
| 15) Acetone | 6.06 | 58 | 9969 | 1,13 | bbp | Ħ | 67 |
| 16) Pentane | 6.07 | 42 | 21958 | 1.09 | qqq | ы | 82 |
| 17) Isopropyl alcohol | 6.16 | 45 | 31569 | 1.10 | ppp | ŧ | 46
89 |
| 18) 1,1-dichloroethene | 6.57 | 96 | 20746 | 1 10 | ppp | | 94 |
| 19) Freon 113
20) t-Butyl alcohol | 6.90 | 101
59 | 45105 | 0.98 | ppb | # | 73 |
| 21) Methylene chloride | 7.06 | 84 | 25448 | 1.11 | | | 89 |
| 22) Allyl chloride | 7.03 | 41. | 19430 | 0.95 | | | 83 |
| 23) Carbon disulfide | 7,21 | 76 | 68931 | 1.02 | | | 98 |
| 24) trans-1,2-dichloroethene | 7.99 | 61 | 29781 | 0.96 | | | 89 |
| 25) methyl tert-butyl ether | 8.03 | 73 | 58091 | 0,99 | | | 89 |
| 26) 1,1-dichloroethane | 8.40 | 63 | 45819 | 1.04 | | | 98 |
| 27) Vinyl acetate | 8.44 | 43 | 28686 | 0.75 | | | 98 |
| 28) Methyl Ethyl Ketone | 8.94
9.35 | 72
61 | 8460
24101 | 0.90
0.94 | | # | 100
89 |
| 29) cis-1,2-dichloroethene
30) Hexane | 8.90 | 57 | 22935 | 0.86 | | | 97 |
| 31) Ethyl acetate | 9.54 | 43 | 37330 | 1.02 | | | 96 |
| 32) Chloroform | 9.95 | 83 | 58620 | 0,98 | | | 98 |
| 33) Tetrahydrofuran | 10.17 | 42 | 14842 | 0.00 | | | 92 |
| 34) 1,2-dichloroethane | 11.09 | 62 | 32732 n | 0,98 | | | 89 |
| 36) 1,1,1-trichloroethane | 10.75 | 97 | 55200m / | 1.20 | | | |
| 37) Cyclohexane | 11,45 | 56 | 22616 / | 1,27 | | # | 84 |
| 38) Carbon tetrachloride | 11.40 | 117 | 60536m4 | 1.26 | | | 07 |
| 39) Benzene | 11.37 | 78 | 46455 | 1,22 | | | 97
85 |
| 40) Methyl methacrylate | 12.93 | 41
88 | 15859
11429 | 1.28
1.17 | | ** | 100 |
| 41) 1,4-dioxane
42) 2,2,4-trimethylpentane | 13.01
12.19 | 80
57 | 95059 | 1.43 | | | 97 |
| 42) 2,2,4-trimethyipentane
43) Heptane | 12.53 | 43 | | 1.00 | | | 95 |
| 43) Reptane
44) Trichloroethene | 12.68 | 130 | 23579 | 1,21 | | | 97 |
| 45) 1 2-dichloropropage | 12.79 | 63 | 16910 | 1.23 | dqq | | 94 |
| (4) multiple out of paper | | | | | | | ~ ~ ~ ~ |

(#) = qualifler out of range (m) \approx manual integration AN040125.D A316\_1UG.M Tue Apr 26 14:44:50 2016

MSD1

Data File : C:\HPCHEM\1\DATA\AN040125.D Acq On : 2 Apr 2016 3:21 am Vial: 3 Operator: RJP Sample : ALCSIUGD-040116 Misc : A316\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A316\_1UG.RES Quant Time: Apr 02 07:59:55 2016 Quant Method : C:\HPCHEM\1\METHODS\A316\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 17 10:24:27 2016 Response via : Initial Calibration DataAcq Meth : 10G\_RUN

| | Compound | R.T. | QIon | Response C | Conc Unit | Qvalue |
|-----|---------------------------|-------|------|------------|-----------|--------|
| 46) | Bromodichloromethane | 13.12 | 83 | 42093m K | 1.25 ppb | |
| 47) | cis-1,3-dichloropropene | 13.90 | 75 | 23342m | 1.27 ppb | |
| 48) | trans-1,3-dichloropropene | 14.63 | 75 | 26114 | 1.59 ppb | 91 |
| 49) | 1,1,2-trichloroethane | 14.93 | 97 | 17907m 🛔 | 1.19 ppb | |
| 51) | Toluene | 14.60 | 92 | 19046 | 0.84 ppb | 97 |
| 52) | Methyl Isobutyl Ketone | 13.84 | 43 | 40410 | 1.01 ppb | 95 |
| 53) | Dibromochloromethane | 15.60 | 129 | 34742m | 1.21 ppb | |
| 54) | Methyl Butyl Ketone | 15,12 | 43 | 27202 🔨 | 0.76 ppb | 91 |
| 55) | | 15.85 | 107 | 35295 | 1.25 ppb | 95 |
| 56) | | 15.66 | 164 | 17901 | 0.83 ppb | 97 |
| 57) | Chlorobenzene | 16.61 | 112 | 32123 | 1.08 ppb | 89 |
| 58) | 1,1,1,2-tetrachloroethane | 16.71 | 131 | 25427 | 1.14 ppb | 95 |
| 59) | Ethylbenzene | 16,85 | 91 | 36776 | 0.94 ppb | 96 |
| 60) | m&p-xylene | 17.04 | 91 | 58050 | 1.88 ppb | 94 |
| 61) | Nonane | 17.38 | 43 | 17894 | 0.97 ppb | 96 |
| 62) | Styrene | 17.46 | 104 | 23463 | 1,09 ppb | 91 |
| 63) | Bromoform | 17.59 | 173 | 33067 | 2.14 ppb | 99 |
| 64) | o-xylene | 17.49 | 91 | 41443 | 1.12 ppb | 98 |
| 65) | Cumene | 18.02 | 105 | 42342 | 0.98 ppb | 99 |
| 67) | 1,1,2,2-tetrachloroethane | 17.93 | 63 | 46433 A | 1.22 ppb | 99 |
| 68) | | 18.54 | 91 | 50147m 🖅 | 1.09 ppb | |
| 69) | 2-Chlorotoluene | 10.58 | 93. | 30598m | 0.91 ppb | |
| 70} | 4-ethyltoluene | 18.70 | 105 | 43131m / | 1.09 ppb | |
| 71) | | 10.76 | 105 | 53436m | 1.13 ppb | |
| 72) | 1,2,4-trimethylbenzene | 19.19 | 105 | 43324 | 1.06 ppb | 96 |
| 73) | 1,3-dichlorobenzene | 19.48 | 146 | 32101m | 1,23 ppb | |
| 74) | benzyl chloride | 19.56 | 91 | 40921 | 1.10 ppb | 98 |
| 75) | 1,4-dichlorobenzene | 19,62 | 146 | 28290 | 1.16 ppb | 94 |
| 76) | | 19.65 | 105 | 54000 | 1.07 ppb | 91 |
| 77) | 1,2-dichlorobenzene | 19.93 | 146 | 36031 | 1.13 ppb | 96 |
| 78) | 1,2,4-trichlorobenzene | 21.79 | | 20383m / | 0.85 ppb | |
| 79) | Naphthalene | 22.15 | | 46143m 💞 | 0.92 ppb | |
| 60) | Hexachloro-1,3-butadiene | 22.06 | 225 | 63646 | 1.09 ppb | 96 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040125.D A316\_1UG.M Tue Apr 26 14:44:50 2016 MSD1

Page 198 of 245

21.00 20.00 T,eneznedoro/holb-S,t T.anasnadivnišinnasistatooinidiip ไป โรงกะ T.anasnadivnišinnasistatooinidiip ไม่ไปไม่ไหว่านั่งกะ 19.00 T.enasnedlydfamnt-e,S,P 18.00 T,enariteonoliticanjaks, t.t. 4 2. snariteonologi 2. snasnodotooliomologi 小奶奶的路 17,00 8 A316 1UG.RES ģ T,enenteomordro-S, t ") อกสีเงกุ*ธปี*เล*กุณญญิ*ฐอกอาสเน 15.00 NSD #1 1.00 T,enegerge,gegige,\$,t-anex $_{\rm RJP}$ TIC: AN040125.D 34.00 m ͳ,enotaγ\h##d0fgbgb\wh8bb.c,r...ei⊡ Quant Results File: Operator: Multiplr: vial: C:\HPCHEM\1\METHODS\A316 1UG.M (RTE Integrator) point calibration T, anergal — T, anergal — T, anergal — T, anergal — T, anergan (1997) T, anergano (1997) T, anergano (1998) T, anergano (1998) T, anergano (1998) T, anergano (1998) 13.00 Inst 12.00 T,enemeqiyrismht-2,2,2 l,enemedorouitio-5,1 T.sbhokbauðtmats08T.en<u>exshölöv</u>o 11.00 7. anertieoroidolo-5, f T.ans/hooroldohi-F,F,F ŝ 10.00 7, αφιωλογύχή φήθητα (,คุณสมุลุกจางใต้วงศาอายิ่ 1, เท่าอุเงาจเต่.) Standards for Tue Apr 26 14:41:32 2016 C:\HPCHEM\1\DATA\AN040125.D T,onorheonatoito-S, t-ala Ethyi acetate,T 9.00 Calibration T.onoi6X/14/12/14/neW 3:21 am MS Integration Params: RTEINT.P T.anisdradinginging the Mail 8 2 12:07 2016 T. northe IvTure#Magnualtheib-S. f -arrient αçi ALCS1UGD-040116 TO-15 VOA 7,00 Apr 2016 Initial T,Ett nom 7 T.anamaonoidbib-L.F A316 10G T. Jamper A. T. risk T. Jamper A. Roongosi 6.00 T.I.f. noor3 Quant Time: Apr T,shishlangnongenstrand, T Chloroethane, T Ethanol, T Vinst Bromide, T 2 Response via 5.88 •• Last Update Data File .Tone Liter Land Land Land Land T,enellietiimooti3 1,51 1000-1 Acq On Sample T,analygon3. Method Title 80000 60000 20000 40000 260000 240000 140000 000000 340000 300000 180000 150000 20000 320000 220000 200000 Abundance 280000 Màsc 360000 Time-->

.....

T,ensibstud-E,t-onoldoexet+

.

T, ON STERRING RV

T,eneznedotołński-4,5,1

Reviewed)

(QT

Quantitation Report

MSD1

14:44:51 2016

Tue Apr 26

A316 1UG.M

AN040125.D

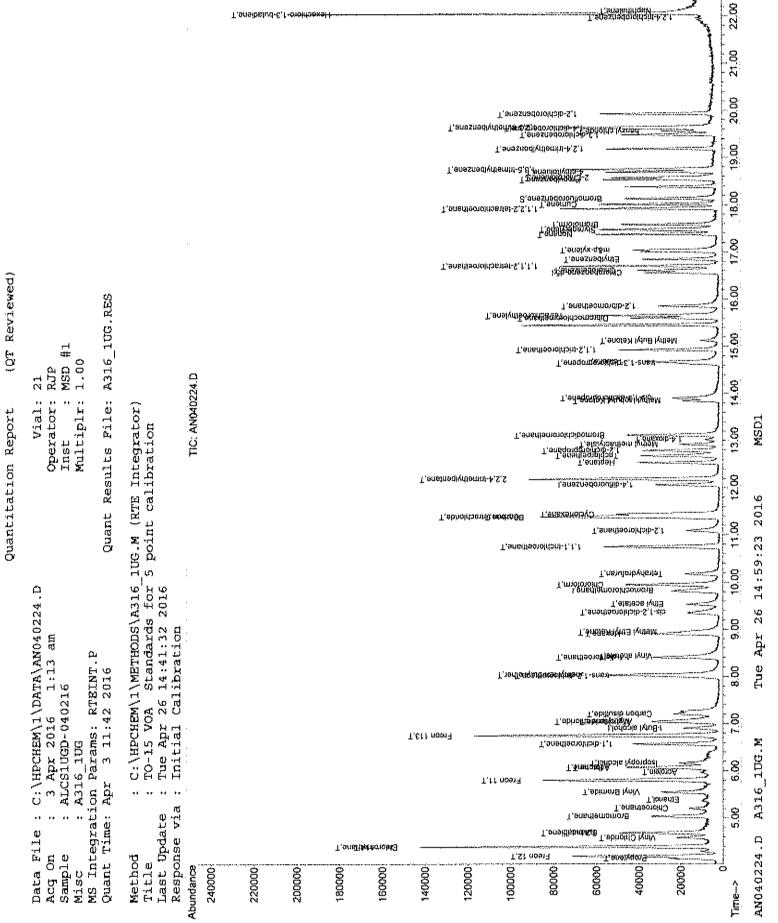
22.00

| Acq O
Sampl | File : C:\HPCHEM\1\DATA\A
n : 3 Apr 2016 1:13
e : ALCS1UGD-040216
: A316_1UG | | | Oper
Inst | Vial:
ator:
;
iplr: | RJ₽
MSD | | |
|------------------------|--|---------------------------------------|-----------------|-------------------------------|------------------------------|----------------|-----|------------|
| MS In | tegration Params: RTEINT.
Time: Apr 03 06:12:44 20 | .P
)16 | Qua | | | | | 3.RES |
| Title
Last
Respo | Method : C:\HPCHEM\1\MET
: TO-15 VOA Star
Update : Thu Mar 17 10:2
nse via : Initial Calibra
cq Meth : 1UG_RUN | ndards for
24:27 2016 | 1UG.M
5 poin | (RTE Integr
nt calibration | ator)
on | | | |
| Inte | rnal Standards | R.T. | QION | Response C | one Un | its | Dev | (Min) |
| l} | Bromochloromethane | 9.83 | 128 | 16685m 🏠 | 1.00 | dqq | | 0.03 |
| 35) | 1,4-difluorobenzene | 12.07 | 114 | 39568m L | 1.00 | ppb | | 0.00 |
| 50) | Chlorobenzene-d5 | 16.57 | 117 | 28434m Y | 1.00 | ррь | | 0.00 |
| Svet | em Monitoring Compounds | | | | | | | |
| | Bromofluorobenzene | 18.13 | 95 | 19428 | 1.06 | ppb | | 0,00 |
| | | | | Recovery | <u>w</u> | 106. | 00% | |
| | _ | | | | | | | |
| | et Compounds | | | 2000 | 1 | | | alue |
| | Propylene | 4.15 | 41 | 16606
90322 | 1.23 | | # | 100
100 |
| | Freon 12
Chloromothana | 4.20
4.40 | | 22283m | 1.27 | dqq | | 100 |
| | Chloromethane
Freon 114 | 4.39 | 20 | 71787m | 1.20 | ppb | | |
| • | Vinyl Chloride | 4.58 | | | 1.22 | | | 92 |
| | Butane | 4.69 | | 25482m | 1.19 | | | |
| | 1,3-butadiene | 4.69 | | | 1.13 | | | 64 |
| | Bromomethane | 5.04 | | 27027m | 1,23 | | | |
| | Chloroethane | 5.22 | | 8362m | 1.09 | | | |
| | Ethanol | 5.38 | A 6 | 7013 | 1.23 | ppb | 井 | 78 |
| | Acrolein | 5,96 | 56 | 5600m | 1.16 | | | |
| | Vinyl Bromide | 5.55 | 106 | 23708m | 1.09 | | | |
| | Freon 11 | 5.81 | 101 | 96272m | 1.31 | ppb | | |
| 15) | Acetone | 6.06 | | | 1.06 | ppb | | |
| | Pentane | 6.08 | | 19957 | 1,21 | | | 89 |
| | Isopropyl alcohol | 6.16 | 45 | 22867 | 0.97 | | 材 | 46 |
| | 1,1-dichloroethene | 6.58 | | 23753 | 1.11 | ppp | | 93 |
| | Freon 113 | 6.75 | 101 | 66199m | 1.28 | | н | 60 |
| | t-Butyl alcohol | 6.90 | 59 | 23640 🔮 | 0.64 | | 拼 | 69 |
| | Methylene chloride | 7.05 | 84
41 | 23461
18688 | 1.25
1.12 | | # | 86
91 |
| | Allyl chloride
Carbon disulfide | 7.03
7.21 | 76
76 | 63706 | 1,12
1,15 | | | 97 |
| | trans-1,2-dichloroethene | | 61 | 29171 | 1.15 | | | 96 |
| 25) | methyl tert-butyl ether | 8.03 | 73 | 49301 | 1,03 | | | 84 |
| 26) | 1,1-dichloroethane | B.40 | 63 | 42150 | 1.17 | | | 99 |
| | Vinyl acetate | 6.43 | 43 | 30164 | 0.97 | | | 98 |
| 28) | Methyl Ethyl Ketone | 8.95 | 72 | 7134 | 0.93 | ppb | # | 100 |
| 29) | cis-1,2-dichloroethene | 9.36 | 61 | 23080 | 1.11 | | | 96 |
| 30) | Hexane | 8.90 | 57 | 21665 | 0.99 | | | 94 |
| | Ethyl acetate | 9.54 | 43 | 29271 | 0.98 | | # | 83 |
| | Chloroform | 9.96 | 83 | 53371 | 1.10 | | | 98 |
| 33) | Tetrahydrofuran | 10.18 | 42 | 14430 | 1.04
1.10 | | | 99
88 |
| | 1,2-dichloroethane | 11.09
10.75 | 62
97 | 30054
48306m N | 1.30 | | | 00 |
| | 1,1,1-trichloroethane
Cyclohexane | 10.75 | 56 | 48508m /
19148m | 1.25 | | | |
| | Carbon tetrachloride | 11.39 | 117 | 51845m | 1.25 | | | |
| 39)
39) | Benzene | 11.37 | 78 | 36958m | 1.12 | | | |
| 40) | Methyl methacrylate | 12.92 | 41 | 11930 | 1.11 | | 井 | 85 |
| 41) | 1,4-dioxane | 13,02 | 88 | 4854m | 0.58 | | | |
| - | 2,2,4-trimethylpentane | 12.19 | \$7 | 79575m | 1.30 | \mathbf{ppb} | | |
| 43) | Heptane | 12.54 | 43 | 16023 | 1,20 | | | 97 |
| | Trichloroethene | 12.68 | 130 | 20428 | 1.22 | | | 99 |
| 45) | 1,2~dichloropropane | 12.79 | 63 | 13855m <sup>v</sup> | 1.17 | ppb | | |
| | | · · · · · · · · · · · · · · · · · · · | | | | ***** | | |

(#) = qualifier out of range (m) = manual integration AN040224.D A316\_1UG.M Tue Apr 26 14:59:21 2016

Centek Laboratories

Page 199 of 245


MSD1

Data File : C:\HPCHEM\1\DATA\AN040224.DVial: 21Acq On : 3 Apr 2016 1:13 amOperator: RJPSample : ALCS1UGD-040216Inst : MSD #1Misc : A316\_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Apr 03 06:12:44 2016Quant Time: Apr 03 06:12:44 2016Quant Results File: A316\_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\A316\_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Thu Mar 17 10:24:27 2016Response via : Initial Calibration

DataAcq Meth : 1UG\_RUN

| | Compound | R.T. | QION | Response | Conc Unit | Qvalue |
|-----|---------------------------|-------|------|---------------------|------------|--------|
| 46) | Bromodichloromethane | 13.12 | 83 | 40630 |) 1.40 ppb | 99 |
| 47) | | 13.91 | 75 | 17575m | 1.11 ppb | |
| 48) | trans-1,3-dichloropropene | 14.64 | 75 | 17502m | 1.23 ppb | |
| 49) | 1,1,2-trichloroethane | 14.93 | 97 | 15 9 18m | 1.22 ppb | |
| 51) | Toluene | 14.68 | 92 | 15999 | 0.63 ppb | 93 |
| 52) | Methyl Isobutyl Ketone | 13.85 | 43 | 16015m | 0.47 ppb | |
| 53) | Dibromochloromethane | 15.60 | 129 | 29038m | | |
| 54) | Methyl Butyl Ketone | 15.12 | 43 | 11884m 🗸 | 0.39 ppb | |
| 55) | 1,2-dibromoethane | 15,86 | 107 | 30992 | 1.29 ppb | 95 |
| 56) | Tetrachloroethylene | 15.66 | 164 | 16328 | 0.89 ppb | 99 |
| 57) | Chlorobenzene | 16.61 | 112 | 28766 | 1.13 ppb | 90 |
| 50) | 1,1,1,2-tetrachloroethane | 16.71 | 131 | 23282 | 1.23 ppb | 96 |
| 59) | Ethylbenzene | 16.85 | 91 | 32846 | 0.99 ppb | 98 |
| 60) | m&p-xylene | 17.04 | 91 | 50659 | 1.93 ppb | 94 |
| 61) | Nonane | 17.38 | 43 | 17387 | 1.11 ppb | 96 |
| 62) | Styrene | 17.46 | 104 | 19788 | 1.08 ppb | 94 |
| 63) | Bromoform | 17.59 | 173 | 27444 | 2.09 ppb | 96 |
| 64) | o-xylene | 17.49 | 91 | 36160 | 1.15 ppb | 97 |
| 65) | Cumene | 18.02 | 105 | 38606 | 1.05 ppb | 98 |
| 67) | 1,1,2,2-tetrachloroethane | 17.93 | 83 | 42851 / | ן 1.32 ppb | 97 |
| 68) | Propylbenzene | 18.54 | | 42675m <sup>/</sup> | , 1.09 ppb | |
| 69) | | 18.58 | 91 | 28750m | 1.01 ppb | |
| | 4-ethyltoluene | 18.70 | 105 | 36356m | 1.08 ppb | |
| | 1,3,5-trimethylbenzene | 18.75 | 105 | 47475m [| | |
| | 1,2,4-trimethylbenzene | 19.19 | | 33263 [| 0.96 ppb | 91 |
| 73) | 1,3-dichlorobenzene | 19.49 | 146 | 24776 | 1.12 ppb | 98 |
| 74) | benzyl chloride | 19.56 | 91 | 24061 | 0.76 ppb | 91 |
| 75) | 1,4-dichlorobenzene | 19.62 | | 22059 | 1.06 ppb | 97 |
| | 1,2,3-trimethylbenzene | 19.65 | 105 | 45073 | 1.05 ppb | 95 |
| , | l,2-dichlorobenzene | 19.93 | | 26784 🏼 | 0.99 ppb | 97 |
| 78) | | 21,97 | | 13922m <sup>4</sup> | 0.68 ppb | |
| 79) | Naphthalene | 22.12 | | 22973m ¥ | 2 T. T. T | |
| 80) | Hexachloro-1,3-butadiene | 22.06 | 225 | 38512 | 0.77 ppb | 94 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN040224.D A316\_1UG.M Tue Apr 26 14:59:22 2016 MSD1

T, an side lud-6, 1+onoinaos

.

T.909x09d010fin2fit-A.S.f.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INJECTION LOG

Centek Laboratories

Page 202 of 245

| | C | Directory: (| C:\HPCHEM | 1\DATA2 | Injection Log | Instrument #
internal Standard Stock
Standard Stock #
LCS Stock # | |
|-------------|---|--|--|--|---------------|--|--|
| ıe | Vial | FileName | Multiplier | SampieName | | LCS Stock #
Misc Infothod Ref: EPAT | ro-1 Injected 1999 |
| 578901 | 29
30
31
1 | An033037.d
An033038.d
An033039.d
An033040.d
An033101.d | 1.
1.
1.
1. | C1603071-003A 40X
C1603071-004A 10X
C1603062-002A 540X
No MS or GC data pres
BFB1UG | | A316_1UG
A316_1UG
A316_1UG
A316_1UG | 31 Mar 2016 07:37
31 Mar 2016 08:14
31 Mar 2016 08:50
31 Mar 2016 09:33
31 Mar 2016 10:56 |
| 12345 | 2
3
4
5
6 | An033102.d
An033103.d
An033104.d
An033105.d
An033106.d | 1.
1.
1.
1.
1. | A1UG
A1UG
A1UG_1.0
ALCS1UG-033116
AMB1UG-033116 | | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG | 31 Mar 2016 11:38
31 Mar 2016 12:19
31 Mar 2016 12:57
31 Mar 2016 13:33 |
| ô789012345 | 7
8
9
10
11
12
1
2
3
4 | An033107.d
An033108.d
An033109.d
An033110.d
An033111.d
An033112.d
An033113.d
An033114.d
An033115.d
An033116.d | 1.
1.
1.
1.
1.
1.
1.
1. | WAC033116A
WAC033116B
WAC033116C
WAC033116D
WAC033116E
WAC033116F
C1603064-002A 270X
C1603064-002A 810X
C1603064-007A 540X | | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG | 31 Mar 2016 14:15
31 Mar 2016 14:52
31 Mar 2016 15:30
31 Mar 2016 16:07
31 Mar 2016 16:44
31 Mar 2016 17:27
31 Mar 2016 18:04
31 Mar 2016 18:43
31 Mar 2016 19:19
31 Mar 2016 19:55 |
| 6789012345 | 5
6
7
8
2
2
2
3
4
5 | An033117.d
An033118.d
An033119.d
An033120.d
An033122.d
An033122.d
An033123.d
An033125.d
An033125.d | 1.
1.
1.
1.
1.
1.
1.
1. | C1603064-009A 270X
C1603064-003A 270X
C1603064-006A 540X
C1603064-008A 270X
C1603075-004A
C1603075-004A MSD
C1603075-004A MSD
C1603075-002A
C1603075-005A
C1603074-001A | | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG | 31 Mar 2016 20:32
31 Mar 2016 21:08
31 Mar 2016 21:45
31 Mar 2016 22:22
31 Mar 2016 23:01
31 Mar 2016 23:43
1 Apr 2016 00:25
1 Apr 2016 01:04
1 Apr 2016 01:43
1 Apr 2016 02:22 |
| 67890123456 | 6
7
9
10
11
12
13
14
15 | An033127.d
An033128.d
An033129.d
An033130.d
An033131.d
An033132.d
An033133.d
An033135.d
An033135.d
An033137.d | 1.
1.
1.
1.
1.
1.
1.
1.
1. | C1603074-003A
C1603074-005A
C1603076-001A
C1603076-004A
C1603076-006A
C1603076-008A
ALCS1UGD-033116
C1603075-001A
C1603075-003A
C1604001-001A
No MS or GC data pres | sent | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG | 1 Apr 2016 03:00
1 Apr 2016 03:39
1 Apr 2016 04:18
1 Apr 2016 04:57
1 Apr 2016 05:36
1 Apr 2016 06:53
1 Apr 2016 08:10
1 Apr 2016 08:49
1 Apr 2016 09:28 |

27 Apr 2016 09:54

Page 203 of 245

| | C | Directory: C | :\HPChem\ | 1\DATA | 1 L99 trumont #
Internal Standard Slock #A13 | +935 | | | | | | |
|--|--|--|--|--|--|--|--|--|--|--|--|--|
| | | | | | Standard Stock # 134836 | | | | | | | |
| ne | Vial | FileName | Multiplier | SampleName | LCS Slock # 134
Mathig Role EPA TO-157 | C 31 | | | | | | |
| | 16
18
20
21
22
23
25
26
27
28
27
28
21
22
23
22
23
22
23 | An040101.d
An040102.d
An040103.d
An040105.d
An040106.d
An040106.d
An040108.d
An040109.d
An040109.d
An040110.d
An040111.d
An040111.d
An040113.d
An040115.d
An040116.d | 1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1. | 8FB1UG
A1UG_1.0
ALCS1UG-040116
AMB1UG-040116
C1603075-001A 2X
C1603074-002A
C1603076-002A
C1603076-005A
C1603076-007A
C1603076-009A
C1603076-009A
C1603089-001A
C1603089-002A
C1603089-002A
C1603089-003A
C1603089-004A | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG | 1 Apr 2016 10:05
1 Apr 2016 12:06
1 Apr 2016 12:45
1 Apr 2016 13:21
1 Apr 2016 13:59
1 Apr 2016 14:58
1 Apr 2016 14:58
1 Apr 2016 15:39
1 Apr 2016 16:18
1 Apr 2016 16:57
1 Apr 2016 17:36
1 Apr 2016 18:15
1 Apr 2016 18:54
1 Apr 2016 19:33
1 Apr 2016 20:12
1 Apr 2016 20:51
1 Apr 2016 21:30 | | | | | | |
| 7
3
9
0 | 24
25
26
27 | An040117.d
An040118.d
An040119.d
An040120.d | 1,
1,
1.
1. | C1603089-005A
C1603089-006A
C1603089-007A
C1603089-008A | A316_1UG
A316_1UG
A316_1UG
A316_1UG | 1 Apr 2016 22:09
1 Apr 2016 22:48
1 Apr 2016 23:27
2 Apr 2016 00:06 | | | | | | |
| 1234537390 | 28
29
1
2
3
4
5
6
7
8 | An040121.d
An040122.d
An040123.d
An040125.d
An040125.d
An040126.d
An040127.d
An040128.d
An040128.d
An040129.d | 1.
1.
1.
1.
1.
1.
1.
1. | C1603089-009A
C1603089-010A
C1603089-011A
C1603089-012A
ALCS1UGD-040116
C1603079-001A
C1603079-002A
C1603079-003A
C1603079-004A
C1603079-005A | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG | 2 Apr 2016 00:45
2 Apr 2016 01:24
2 Apr 2016 02:03
2 Apr 2016 02:42
2 Apr 2016 03:21
2 Apr 2016 04:00
2 Apr 2016 04:39
2 Apr 2016 05:18
2 Apr 2016 05:57
2 Apr 2016 06:36 | | | | | | |
| 1
2
3
4
5
5
7
3
9
0 | 9
10
11
12
13
1
2
3
1 | An040131.d
An040132.d
An040133.d
An040135.d
An040135.d
An040201.d
An040201.d
An040202.d
An040203.d
An040203.d | 1.
1.
1.
1.
1.
1.
1.
1. | C1603079-006A
C1603078-001A
C1603078-002A
C1603078-003A
C1603078-003A DUP
No MS or GC data present
BFB1UG
A1UG
A1UG_1.0
ALCS1UG-040216 | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG | 2 Apr 2016 07:15
2 Apr 2016 07:54
2 Apr 2016 08:33
2 Apr 2016 09:12
2 Apr 2016 09:50
2 Apr 2016 10:48
2 Apr 2016 11:29
2 Apr 2016 12:08
2 Apr 2016 12:58 | | | | | | |
| 1234537330 | 2
3
4
5
6
7
8
9
10
11 | An040205.d
An040206.d
An040207.d
An040208.d
An040209.d
An040210.d
An040211.d
An040212.d
An040213.d
An040214.d | 1.
1.
1.
1.
1.
1.
1.
1. | AMB1UG-040216
C1603078-004A
C1603074-002A 10X
C1603074-004A 90X
C1603076-009A 5X
C1603079-001A 10X
C1603079-002A 10X
C1603079-003A 10X
C1603079-005A 10X | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG | 2 Apr 2016 13:34
2 Apr 2016 14:13
2 Apr 2016 14:50
2 Apr 2016 15:27
2 Apr 2016 16:03
2 Apr 2016 16:40
2 Apr 2016 16:40
2 Apr 2016 17:53
2 Apr 2016 18:30
2 Apr 2016 19:06 | | | | | | |
| 1
2
3
4
5 | 12
13
14
15
16 | An040215.d
An040216.d
An040217.d
An040218.d
An040219.d | 1.
1.
1.
1.
1. | C1603079-006A 10X
C1603078-001A 10X
C1603078-001A 40X
C1603078-002A 10X
C1603078 | A316_1UG
A316_1UG
A316_1UG
A316_1UG
A316_1UG -002A 403 | 2 Apr 2016 19:43
2 Apr 2016 20:19
2 Apr 2016 20:56
2 Apr 2016 21:32
X 2 Apr 2016 22:08 | | | | | | |

k

134936 13453 linjected

> 2 Apr 2016 22:45 2 Apr 2016 23:21 2 Apr 2016 23:58 3 Apr 2016 00:34 3 Apr 2016 01:13 3 Apr 2016 01:52 3 Apr 2016 02:31 3 Apr 2016 03:10 3 Apr 2016 03:49 3 Apr 2016 04:28 3 Apr 2016 05:07 3 Apr 2016 05:46 3 Apr 2016 06:25 3 Apr 2016 07:03 3 Apr 2016 07:42 3 Apr 2016 08:21 3 Apr 2016 09:00

> 3 Apr 2016 09:42 3 Apr 2016 11:40 3 Apr 2016 12:29 3 Apr 2016 13:47 3 Apr 2016 14:24 3 Apr 2016 15:01 3 Apr 2016 15:38 3 Apr 2016 16:15 3 Apr 2016 16:52 3 Apr 2016 17:28 3 Apr 2016 18:07 3 Apr 2016 18:49 3 Apr 2016 19:32 3 Apr 2016 20:11 3 Apr 2016 20:50 3 Apr 2016 21:29 3 Apr 2016 22:09 3 Apr 2018 22:45 3 Apr 2016 23:24 4 Apr 2016 00:06 4 Apr 2016 00:49 4 Apr 2016 01:28 4 Apr 2016 02:08 4 Apr 2016 02:47 4 Apr 2016 03:26 4 Apr 2016 04:06 4 Apr 2016 04:45

musmal Standard Stock # A1343.35

losconont M

Standard Stock #\_\_\_

| ine | Via | FileName | Multiplier | SampleName | UMis@Info# | 1345J Injecte |
|-----------|-----|--------------------------|------------|--------------------------|----------------------|-------------------|
| 2116 | Via | I HENGINE | Manpher | Gampieriane | Allothod Ref: EPA | TO-15 / Jan. 1999 |
| 56 | 17 | An040220.d | 1. | C1603078-003A 10X | A316_1UG | 2 Apr 2 |
| 57 | 18 | An040221.d | 1. | C1603078-003A 40X | A316_1UG | 2 Apr 2 |
| 58 | 19 | An040222.d | 1, | C1603078-004A 10X | A316_1UG | 2 Apr 2 |
| 59 | 20 | An040223.d | 1. | C1603078-004A 40X | A316_1UG | 3 Apr 2 |
| 30
30 | 21 | An040223.0 | 1. | ALCS1UGD-040216 | A316_1UG | 3 Apr 2 |
| 30 | 22 | An040225.d | 1.
1, | C1603092-001A | | 3 Apr 2 |
| | | | | | A316_1UG | |
| 32 | 23 | An040226.d | 1. | C1603092-002A | A316_1UG
A316_1UG | 3 Apr 2 |
| 33 | 24 | An040227.d | 1. | C1603092-003A | | 3 Apr 2 |
| 34 | 25 | An040228.d | 1. | C1603092-004A | A316_1UG | 3 Apr 2 |
| 55 | 26 | An040229.d | 1, | C1603092-005A | A316_1UG | 3 Apr 2 |
| 6 | 27 | An040230.d | 1. | C1603092-006A | A316_1UG | 3 Apr 2 |
| 37 | 28 | An040231.d | 1, | C1603092-007A | A3161UG | 3 Apr 2 |
| 38 | 29 | An040232.d | 1. | C1603092-008A | A316_1UG | 3 Apr 2 |
| 39 | 30 | An040233.d | 1. | C1603092-009A | A316_1UG | 3 Apr 2 |
| Ό | 31 | An040234.d | 1. | C1603092-010A | A3161UG | 3 Apr 2 |
| 11 | 32 | An040235.d | 1. | C1603092-012A | A316_1UG | 3 Apr 2 |
| 2 | 33 | An040236.d | 1. | C1603092-015A | A316_1UG | 3 Apr 2 |
| '3 | | An040237.d | 1. | No MS or GC data present | , · · | |
| '4 | 1 | An040301.d | 1. | BFB1UG | A316_1UG | 3 Apr 2 |
| '5 | ż | An040302.d | 1. | A1UG_1.0 | A316_1UG | 3 Apr 2 |
| | | | | | — | |
| '6 | 3 | An040303.d | 1. | ALCS1UG-040316 | A316_1UG | 3 Apr 2 |
| 7 | 4 | An040304.d | 1. | AMB1UG-040316 | A316_1UG | 3 Apr 2 |
| '8 | 1 | An040305.d | 1. | WAC040316A | A316_1UG | 3 Apr 3 |
| '9 | 2 | An040306.d | 1. | WAC040316B | A316_1UG | 3 Apr 2 |
| :0 | 3 | An040307.d | 1. | WAC040316C | A316_1UG | 3 Арг 2 |
| :1 | 4 | An040308.d | .1. | WAC040316D | A316_1UG | 3 Apr 2 |
| ·2 | 5 | An040309.d | 1. | WAC040316E | A318_1UG | 3 Apr 2 |
| :3 | 6 | An040310.d | 1. | C1603078-002A 90X | A316iUG | 3 Apr 2 |
| -4 | 7 | An040311.d | 1. | C1603092-013A | A316_1UG | 3 Apr 2 |
| -5 | 8 | An040312.d | 1. | C1603092-013A MS | A316_1UG | 3 Apr 2 |
| -6 | 9 | An040313.d | 1. | C1603092-013A MSD | A316 1UG | 3 Apr 2 |
| 7 | 10 | An040314.d | 1. | C1603092-016A | A316_1UG | 3 Apr 2 |
| 8 | 11 | An040315.d | 1. | C1603092-017A | A316_1UG | 3 Apr 2 |
| 9 | 12 | An040316.d | i. | C1603092-018A | A316_1UG | 3 Apr 2 |
| ŏ | 13 | An040317.d | 1. | C1603092-019A | A316_1UG | 3 Apr 2 |
| 1 | 14 | An040318.d | 1. | C1603092-012A 10X | A316 1UG | 3 Apr 2 |
| 2 | 15 | An040319.d | 1. | C1603091-005A | A316_1UG | 3 Apr 2 |
| 3 | 16 | An040320.d | 1.
1, | C1603091-005A MS | A316_1UG | 4 Apr 2 |
| 4 | 17 | An040321.d | 1. | C1603091-005A MSD | A316_1UG | 4 Apr 2 |
| 5 | 18 | An040322.d | 1. | C1603091-001A | A316_1UG | 4 Apr 2 |
| | | | | | | |
| 6 | 19 | An040323.d | 1. | C1603091-002A | A3161UG | 4 Apr 2 |
| 7 | 20 | An040324.d | 1. | C1603091-003A | A316_1UG | 4 Apr 2 |
| 8 | 21 | An040325.d | 1. | C1603091-004A | A316_1UG | 4 Apr 2 |
| 9 | 22 | An040326.d | 1. | C1603091-006A | A316_1UG | 4 Apr 2 |
| 00 | 23 | An040327.d | 1. | C1603091-007A | A316_1UG | 4 Apr 2 |
| 01 | | An040328.d | 1. | No MS or GC data present | | , |
| 02 | 28 | An040401.d | 1. | BFB1UG | A316_1UG | 4 Apr 2 |
| 03 | 29 | An040402.d | 1. | A1UG_1.0 | A3161UG | 4 Apr 2 |
| 04 | 30 | An040403.d | 1. | ALCS1UG-040416 | A316_1UG | 4 Apr 2 |
| 05 | 31 | An040404.d | 1. | AMB1UG-040416 | A316_1UG | 4 Apr 3 |
| 06 | 32 | An040405,d | 1. | C1603092-017A 40X | A316_1UG | 4 Apr 2 |
| 07 | | An040405.d | 1. | C1603076-003A RE | A316_1UG | 4 Apr 2 |
| 08 | | An040400.d
An040407.d | 1.
1. | C1603076-005A RE | A316_1UG | 4 Apr 2 |
| 09 | | An040407.d | | C1603076-002A RE | A318_1UG | 4 Apr 2 |
| 10 | 36 | An040408.d | 1.
1. | C1603076-007A RE | A316_1UG | 4 Apr 2 |
| 10 | 30 | 70040408.0 | 1. | 01003070-007A RE | A910_100 | 4 APE 4 |

4 Apr 2016 09:00 4 Apr 2016 09:37 4 Apr 2016 10:16 4 Apr 2016 10:52 4 Apr 2016 11:46 4 Apr 2016 12:25 4 Apr 2016 12:25 4 Apr 2016 14:00 4 Apr 2016 14:39 4 Apr 2016 15:18

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS LOG

| 2 |
|---------|
| Ē |
| ries |
| ē |
| Ital |
| þ |
| Ţ |
| tek |
| ្រួ |
| \circ |

GC/MS Calibration Standards Logbook

| Chkd by | | | | | | | | | | | | | | | | | | | | | | |
|--|-----------|---------------------------------------|----------|------------------|-------------|-------------|--------|----------|--------|--------------|----------|----------|--------|--------|----------|--------|----------|-------------|----------|----------|---------|--------|
| Prep by (| ٤ | 4 | аЧ | 4 | | 2- | | | | | | | | | | | 4 | -
-
- | | | | > |
| Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb) | 50 | | í DDM | | | bady | | * | | | + | 1 00,036 | 50,000 | 5000 | 1 Pod | | + | 20 220 | | | | 1 |
| Finial Vol (psia) | 30 | 45 | THE MIX | L NWI | MONI C | 000 | | , | 45 | 30 | | | 30 | -4 | 45 | | → | 30 | | | > | 30 |
| Initial Vol (psig | 1. 5 | - J
C | 14 | | | | | ,4 | 0.30 | 3.0 | 1.5 | | 1.5 | 3.0 | 5.0 | •+ | * |
.5 | -+ | | ⇒ | 3,0 |
| Stock Conc | 1 nom | 12000 | athe | Napr V | | 1 | 4 | → | H-SPPM | Plots/500496 | loon | 10001 | 1 ppm | 50020 | | | -9 | Mdd 1 | | | > | 20.24 |
| Stock # | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | ・
イ
ノ | PUD4 | AIZOY | AIZOS | 7 | Profee Al | A02.76 | A0265 | 7515 | AIRIA | Arses | racia | AIZOG | 4 Lind | A1203 | AILOY | 9519 | A1220 |
| Description | | 101 | FF - | - I T | 55 | KJ
KJ | LCS | STD | 5- | | SULF | کدلا | 4 PCH | 4 Reds | 16 ±5 | 51.0 | 1
1 | J S F | ST'S | Lcs | ЧРСН | HPat |
| Desc | 10 K | | 2011-02 | | トー | 1015 | | | 70/5 | { | | + | 7015 | -• | TOIS IUG | | -+ | To is | _ | | | Þ |
| Date Evn | Vaic Lap | 11 1111 | 4 | UN VI | LI 8/11 | 1/25/16 | | | | | | | | | | | , | 21116 | | | | |
| Date Drep | . 1, 1, " | 41022 | -)
-) | 1/15/16 | 1/18/16 | 1/18/16 | | | | | | | | | | | , | 112211 | - | | | |
| # 110 | # njo | | A-1202 | A-1203 | A-1204 | A-1205 | A-1206 | | 7001.4 | ALL A | | (12)-A | 2121-A | A-1213 | A-12.14 | 2121 A | דורו-א | A- 1217 | A.1218 | A. (2)9 | 07 (1) | A-122/ |
| L | S. | | | | | ries | 38 | | -1 | <u> </u> | <u> </u> | <u> </u> | | | 1 | | | | | <u> </u> | | ae 2 |

Page # 51

FORM 153

Page 207 of 245

| LLC |
|---------|
| tories, |
| iborat |
| ntek La |
| G |

GC/MS Calibration Standards Logbook

| Chkd by | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|--|-----------|--------|---------|---------------|-----------|----------|--------|-------|---------|--------|---------|----------|---------|----------|--------|--------|------------------------|--------|--------|----------|----------------------|---------|-------|------------|---|------------|----|---|
| Prep by | (j) | _ | ,
, | > | А
З | (J) | | | | | | | | | | | | | > | | 3 - | | ,
 | > | | | | |
| Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb) | SOU | 1 | | -> | waa | 50 | | | | > | м
М | ŚŨ | C' | ſ? | | 2002 | | | | | 200 | | | | (| 62 | | |
| Finial Vol (psia) | 30 | ł, | | う | 2100 psid | 102 | | | | ≫ | 30 | <u>ч</u> | 30 | 20 | | 30 | い
エ | | | > ; | 30 | | | ~ | ~ | Page # | | |
| Initial Vol (psic | | 5.9 | | | ۲
۲ | | | - | | ₹ | 3.0 | 0.20 | | _ | | 21 | 0.9 | | | | <u>, </u> , <u>,</u> | | | ~ | | | | |
| Stock Conc | lo oum | 2000 | | > | A LIN | | | - | | À | 20,02 | ļ | ÷ | ļ | | In pom | 2000 | | | K | mdd 1 | | | \uparrow | | | | |
| Stork # | 00.16 | A1277 | 41778 | A1279 | FF-49/9 | 0 0000 | 1 1001 | H1205 | 47214 | 9519 | | HC POR | A1055 | <u>\</u> | | A0269 | | | _ | | A 1289 | A1203 | | | | | | |
| intion | | ηF | | LES I | - | | (7 | 515 | LCS | 4 PCH | 4 Petty | F.R.M | | | Sut | 22A | く
(小
で
り
二 | | 272 | 3 | J.S
T | AS
S | ٢٢٢ | t-Pert | | | | |
| Constration | | 10,07 | | | Ĭ | <u> </u> | 201 | _ | | | | | | | | > | 11 | | | ~ | 105 | | | | | | | |
| | | - 11 | | +; | 1110 | | 911116 | | | | | | | | | | | | | \geq | 3/21/16 | | | | | | | |
| r
 | Late Frep | 111010 | | | <u>٦</u> | | 31716 | _ | | | | | | | | | | | | > | 3/14/16 |) | | | 7 | | | |
| | | Sal- | 7A- 500 | - 100 - Habor | | A- 100 | A-1240 | A-125 | A- 1292 | × 1293 | 1291 | - 12 | C1-71-4 | A-1246 | A-1297 | 1198 | 1799 | A-1 C1 | A-1300 | A. 130 / | A. 1302 | A 1363 | | | | E FORM 153 | 54 | 5 |

| \mathcal{O} |
|---------------|
| |
| Ц |
| oratories, |
| R |
| Lat |
| ıtek |
| Cen |

GC/MS Calibration Standards Logbook

| hv Chkd hv | | | | | | | | | | | | | | | | | | | | | | : | |
|--|----------|------------|----------|----------|---------------|---------------|---------|------------|---------|----------|--------|--------|--------|---------------|---------|---------|---------------|----------|--------|----------------|---------|--|-----------|
| Pren hv | | | <u> </u> | | | | | \geq | C 3 | | | | | | | | | | | \rightarrow | 3 | | |
| Stock Conc Initial Vol (psiol Finial Vol (psia) Final Conc (pob) | 5 | 63 | 3 | 50 | 5,00 | ~ | | | 27 | | | > | 15 | 50 | S)
S | S | 520 | 1 | | Ŷ | s
S | 27 | |
| Finial Vol (nsia) | 30 | קן | 30 | 30 | 30 | 451 | | 7 | 30 | , | | ~ | જ | 54 | 30 | 30 | 30 | 451 | | $\hat{\gamma}$ | 30 | | P # afigu |
| Initial Vol (psio | 3,0 | | 3,0 | ارک
ک | ر.
ارک | 5.0 | _ | | 10 | | | | 3,Ò | 02.0 | 3,0 | 1,5 | 1.5 | ٥.٩ | | 4 | 1.5 | | |
| Stock Conc | راس 20 | | Socoph | | 10 ppm | رليوني | | | medi | , | | | Lax os | ll,Szon | | | Macol | لادد لك | | \uparrow | med | • | |
| Stock # | 4 | the stit | A1668 | 1707J | 14-269 | AIJOZ | A1303 | A-1304 | મારદી | A1203 | Huzity | 9519 | | ACADA | A1085 | AULTO | A0269 | A1314 | AISIS | A1316 | A 1269 | | |
| 5 | 4 Park | Fuird | S/w¥ | SOLF | Hzs | I.S | 57 | 227 | 72
2 | ζť | 207 | 4 hat | Stath | Folm | SILUX | Souf | HrS | ST | 572) | كعك | ZZ | | |
| Description | 7015 | | | | | TOIS 146 | _ | \uparrow | Tois . | 1 | | | | | | | \rightarrow | TOIS 146 | | \rightarrow | TOIS | | |
| Date E <sub>xp</sub> | 3 /21/14 | | | | | | | ر
ک | 3/28/16 | | | | | | | | | | | Ϋ́, | 4/4/17 | | |
| Date Prep | | - | | | | | | ⇒ | 3/21/16 | | | | | | | | | | | ⇒ | 3/18/16 | | |
| Std # | 9081 -80 | 1021 - 102 | ×4- 1308 | 04-1309 | Q/21-
vato | -131/
131/ | A- 1312 | 4-13/3 | A. 1314 | A- 1315 | 4-1316 | 4-1317 | 4-1318 | <u>s-1319</u> | 4.1320 | 4. 132/ | 1.1322 | 4.1323 | 4-1324 | 4-1325 | 72 El . | а
0708
607
08
08
08
08
08
08
08
08
08
08
08
08
08 | of |

| LLC |
|--------|
| ories, |
| orato |
| Lab |
| ntek |
| ß |

GC/MS Calibration Standards Logbook

| Chkd by | | | | | | | | | | | | | | | | | | | | | |
|---|----------------|--------|---------------|---------------|---------|--------|-----------|--------|-------------|--------|---------------|------------|--------|--------|--------|-----------|---------|-----------|----------------|-------------|-------------------------|
| Prep by 0 | <u>کر</u>
۲ | | | | | | | | | | > | A3 | | | | | | | | | \geq |
| Final Conc (ppb) | 50 | | → | م) | Ś | 50 | ß | ŝ | -+ | | → | S | _ | | ⇒ | ٦ | Ś | у
У | Sd | 299 | 1 |
| Stock Conc Initial Vol (psig] Finial Vol (psia) | 30 | | ~ | 30 | 4
V | 30 | 30 | 30 | H | _ | \rightarrow | 30 | | | ~ | 30 | Şħ | 30 | <u>و2</u> | 30 | ۲۶ |
| Initial Vol (psig | 1,5 | _ | Ł | 3.0 | 0.20 | 3,0 | <u>``</u> | ,
V | 0.9 | | 1 | , <u>'</u> | | | ٦ | 3.0 | 07.0 | 3.0 | <u>ر</u>
در | 1.5 | 6 . 0 |
| Stock Conc | אליני ן | | \rightarrow | 50,000 | سرد کرا | Soph | | Ň | So por | | ~ | (mag) | | | ٦ | 50 000 | | i : | | mere of | 2002 |
| Stock # | Fuzz3 | AIZUT | 9519 | A1 329 | AcPofi | A loss | HOUTO | STR. | À 1326 | A1327 | 141328 | H 1289 | 11203 | Arzurt | 9519 | વ્રાઉધો | pcpofi | S/WX Anst | Hozzofi | 40269 | H 1338 |
| Description | Tois STA | | rinch | Hirld | Maay | Xn15 | | V #23# | TOIS ING IS | | 577 | 7015 725 | (12 | ٢٢٢ | Aroh | Hradansul | 1-2xm | XW12 | SUF | $V = H_z S$ | ZI AN ZIOT |
| Date Exp | 1/1/1C | - | | | | | | | | | > | 4/11/16 | | | | | | | | - | -} |
| Date Prep | 3 28/16 | | | | | | | | | | Þ | 41416 | | | | | | | | | $\overline{\mathbf{A}}$ |
| Std # | × | 8751-A | A- 1325 | pot
A-1330 | | A-1332 | A.1333 | A-1334 | A-1335 | A-1336 | A- 1337 | A- 1338 | A-1339 | A-1340 | A-134) | A-1342 | A- 1343 | A-1344 | A- 1345 | | (451 -A |

FORM 153

 $P_{age \#} (d)$

Sec. 1

Page 210 of 245

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CANISTER CLEANING LOG

Centek Laboratories, LLC Instrument: Entech 3100

QC Canister Cleaning Logbook

| | (Istp) | | | | | <u> </u> | | | | | | 1 | | | 1 | | T | | | | T | Ι | ſ | | <u> </u> | |
|--------------------------------------|--|--|-----|-----|----|-------------|-------------------|----|-----|------|----------|----------|------------|-----|----------|----------|-----------|------|-----|------|-----|------------|----------|------|----------|--------|
| | Detection Limits Leak Test 24hr (psig str/stp) | 00000 | + | + | + | + | | | | | | | | | <u> </u> | <u> </u> | |
 | | | | | |
 | | À |
| | fest 24h | | | | | | + | + | + | + | + | + | <u>↓</u> + | + | | + | + | + | * | + | + | + | + | + | + | + |
| | Eat. | 5+30 | -+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 4 | + | + | + | | | | \geq |
| | n Linits | 2 <u>5.015.000000000000000000000000000000000</u> | | | | | | | | | | | | | | | | | | | | | | + | + | + |
| | Detection | | | | | | | | | | | | | | | | | | | | | | | | | 1 |
| | Geral | | | | | | 2 | | | | | 2 | | | | | 0 | | | | | 6-4 | | | | |
| | | | | | _ | | ITTL ILL ITTLE IS | | | | > | Renaul | | | | | a minerzh | | | | | Will N | | | | ≥ |
| | | | | | | | THE | | | | | NA NA | | | | 1 | | | | | | INCON | | | | |
| Date | | 9 | | | | | | | | | | | | | | | | | | - | | 1 | - | | | |
| | | | | | | - | | | | | - | | | | | | | | | | | | | | | |
| er of Cycles | | 5 ; | _ | | _ | | | | | _ | | | | - | | | | | | | | | | | | |
| r Nùmb | Ĩř | 4 | | | | | | | | | | | | | | | | | | | | | | | | |
| i Numbe | | | | | | | | | | | | | | | | | | | | | | | | | | 1 |
| QC Car | <u>6</u> 5 | × | | | P | 282 | N
N
N | | | 1> | 100 | <u> </u> | | | ╞ | 20 | | - | | | 120 | <u>}</u> - | | | | |
| lumber | | | | | 1 | †=

 | | | | | | | | | - | | | | | | | | | | + | |
| Canister Number OC Can Number Number | 33 | 63 | 128 | 567 | 66 | 200 | \$ | 93 | 275 | 3.05 | 149 | | 553 | EC. | 133 | | CHC. | 5 | 153 | 19.5 | 249 | 4100 | <u>I</u> | 139 | 130 | |
| 2 | | | | | | | | | | | | | | | | | -6 | 3 | | | | = | U | è | <u> </u> | |

Centek Laboratories

Page 212 of 245

Centek Laboratories, LLC

Instrument: Entech 3100

| psig stristp) | 30 | | | | | | ·
 | | + | + | + | 4 | | | | + | + | + | + | | > + | + | -+- | 4 | + | | |
|--|---|--------|-----|-----|-----|-------------|---------|----|-----|----|-------------|--------|-----|-----|----|--------|-----|-----|-------|---|---------------|---|-----|---|---|-----------|--------------|
| Detection Limits Leak Test 24hr (psig str/stp) | + 30 | + | + | | + | + | + | + | | + | | | | + | | + | | + | + | + | + | + | + | + | + | 39 | |
| action Limits | 110 m3+1).25 + | | | | | | | | | | | | | | | | | | | | λ | | | | | Page # | |
| 5399
1939 | | | | | | 01/0 | | | _ | | AIL H | 112011 | | | | 1911 - | | | | | | | | | | | |
| OG Batch Number | NIDE NO IGIL | | | | | V N CAPIGIC |)))/ビス) | | | | 11915-27014 | | | | | | | | | | | | | | | | |
| Data | 0.16.11. | 9.11.6 | 4 | | | | | | | | | | | | | | | | | | | | | | , | Form C151 | |
| | mber of Lycles | R | | | | | | | | | | -+ | + | | | | | | | | \rightarrow | | | | | | |
| | Canister Number OC Can Number Number of | | | | | -> | 363 | | | | -> | 326 | | | | > | 541 | , I | | | \rightarrow | | | | | - | |
| וחאורטווופווו. בוונכטו טוסט | umber OC C | 901 | | | | | | | 6 | | | | | ~ | | | | | ρ | 6 | | | | | | - A2 | |
| Instrume | Canister N | 2
 | 345 | 326 | 322 | 106 | 8
ع | 00 | 367 | 57 | 363 | 332 | 274 | 168 | 32 | 321 | | 0 | 1,190 | 5 | 541 | | | | | | Ciealist uy. |

Centek Laboratories

Page 213 of 245

| 3100 |
|------------|
| Entech |
| nstrument: |

| (dish) | 0 | | | | | | | | | | | | | | | | Ì | | | | | | | | | |
|--|-------------|-----|-----|-----------------|-----|-----|---|----------|-----|-----|------|-----------------|----|-----|-----|-----|-----|----|----|---------|-----|---|---|----------|----------|-------------|
| Detection Limits Leak Test 24hr (psig stristp) | ∑
?
+ | + | + | + | + | 47 | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | , | + | ∋
_+ | |
| Test 24 | 0 | | | | | | | | | | | 1996-0-1-0000-0 | | | | | | | | | | | | | <u>,</u> | |
| Leak | ~
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| 1 Limits | کریز | | | | | | | | | | | | | | | | | | | | | | | | | 149 |
| Detection | 10-40 25 | | | | | | | | | | | _ | | | | | | | | | | | | | Ą | Page # |
| | | | | | | Ъ | | | | | J | | | | | 9 | | | | | 21 | | | | | Ω. |
| ch Num | 3081 | | | | | | | | | | | | | | | | | | | | | | ; | | | |
| QC Batch Number | WAC 030816A | | | | | | | | | | | | | | | | | | | | | | | | J | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | 51 |
| Date | 3/8/16 | - | | | | | | | | | | | | | | | | | | <u></u> | | | | | Þ | Form C151 |
| of Cycles | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ber of (| مہ | - | | · • • • • • • • | | | | | | | | | | | | | | | | | | | |
 | 5 | |
| er Nun | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 Numbe | 5 | | | | | 6 | | | | | 5 | | | | | 0 | | | | | 6-5 | | | | | |
| Canister Number QC Can Number Number | 139 | | | - | | 366 | | <u>-</u> | | و | 1153 | t | | | ド | 138 | | | | | Srr | | | | - | de |
| mber | | | | | | | | | | | | | | | | | | | 5 | | | | | | | ¥ |
| ister Nu | 174 | 465 | ļЧĺ | 567 | 135 | 213 | 5 | 178 | 151 | 398 | 1123 | 32 | 15 | 787 | N93 | 205 | 2 5 | 10 | 12 | 138 | 77 | 5 | a | | 379 | Cleaned by: |
| Cah | _ | | | | | | | | | | | | | | | 100 | | | | | |] | |
 | | Clea |

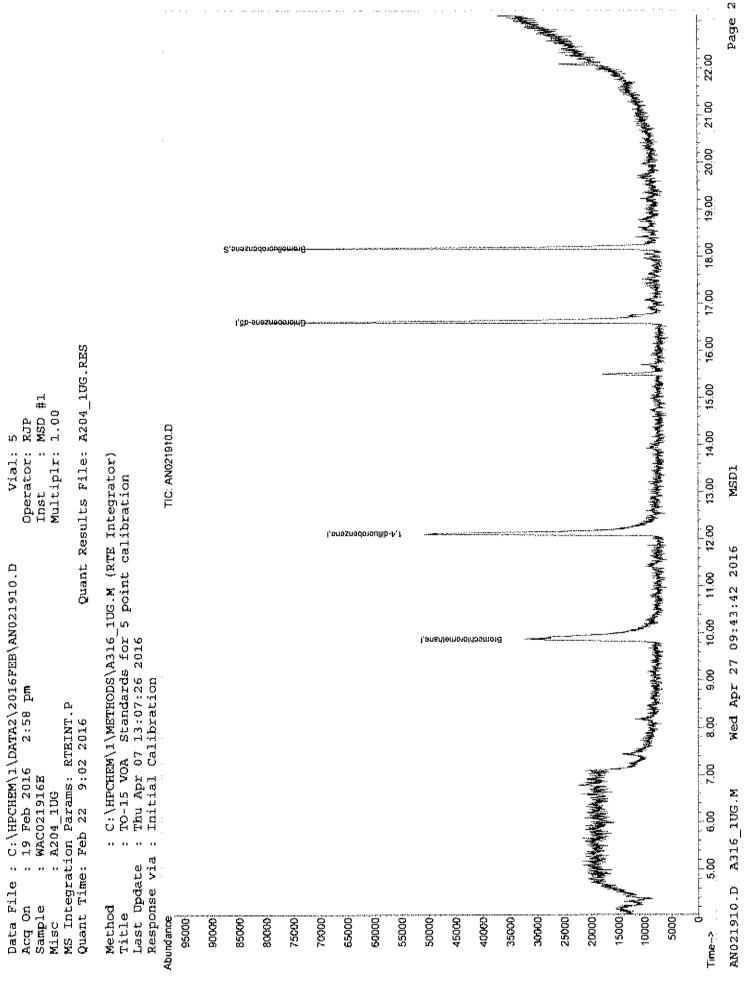
Centek Laboratories

Page 214 of 245

| ဝဂ |
|----------|
| Canister |
| <u> </u> |
| Cleanin |
| g Log |
| gbook |

Centek Laboratories, LLC

Instrument: Entech 3100


| Cleaned by: | | | | | 2 | ľ | | | | | 1020 | H Ŷ7 | 9611 | ×511 | 24 | 2 | 12.04 | 21 | - Y | h, h, h, h | R. | 1175 | 八八
千 | 337 | 1018 | Canister Number |
|-------------|---|---|---|---|---|---|-----------------|---|---|---|----------|------|---------------|------|----|----------|-------|----|-----|------------|----|------|----------------|-----|-------------|------------------|
| RSP
P | | | | | | | | | | | - | | | | Ē | f | | | | 11 | 4 | | | | 89 | QC Can Number |
| | | | | | | | | | | | 6- | | 100 m 100 m 1 | | | | | | | | | | | | ц
С | Number of Cycles |
| Form C151 | | | | | | | | | | | | | | | | | _ | | | | | | | | 3/8/16 4 | Date |
| | | | | | | | | | | | | | | | 4 | | | | | | | | | | MACD30516 1 | OC Batch Number |
| Page # | | | | | | | | | | | 6 | | | | • | | | | | ſr
 | | | | | F 1/5+10,25 | Dete |
| 150 | + | ÷ | + | + | ÷ | + | (

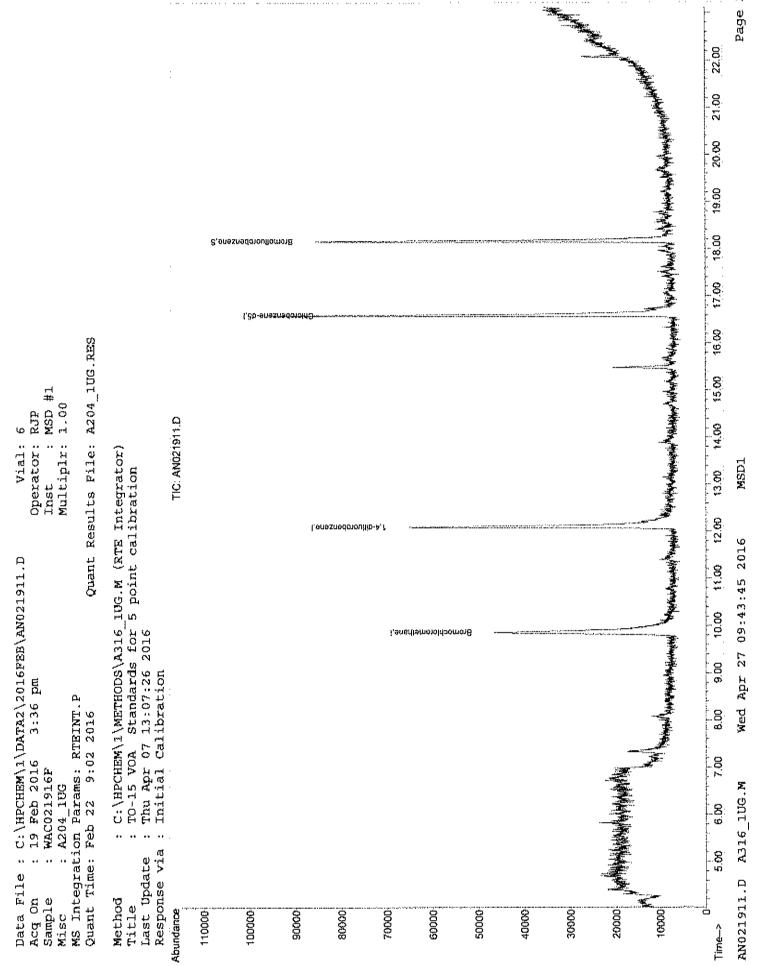
 | + | Ŧ | + | + | + | + | + | * | + | + | + | + | + | + | + | + | + | | - 10 AB |
| | + | + | + | 4 | - | + | 4 | - | + | + | + | + | 4 | + | + | + | + | + | + | + | + | + | + | + | + | (ps) |

 \sim

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021910.D Vial: 5 Acq On : 19 Feb 2016 2:58 pm Operator: RJP Sample : WAC021916E Misc : A204\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A204\_1UG.RES Quant Time: Feb 22 07:55:01 2016 Quant Method : C:\HPCHEM\1\METHODS\A204\_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.8712832071m1.00ppb0.0035) 1,4-difluorobenzene12.12114870461.00ppb0.0350) Chlorobenzene-d516.60117815021.00ppb0.02 35) 1,4-difluorobenzene
50) Chlorobenzene-d5 System Monitoring Compounds 66) Bromofluorobenzene 18.17 95 39860m 0.72 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 72.00% Qvalue Target Compounds

(#) = qualifier out of range (m) ∞ manual integration (+) = signals summed AN021910.D A316\_1UG.M Wed Apr 27 09:43:41 2016 MSD1

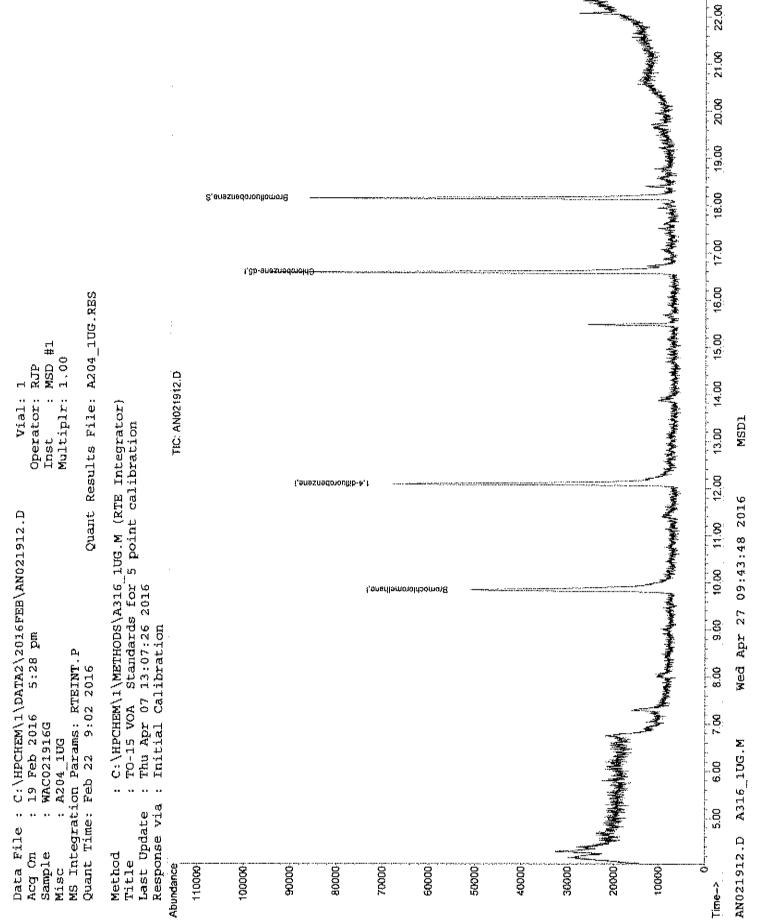
/// кеузинатизмания// (уг кеуземец)


Centek Laboratories

Page 217 of 245

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021911.D Vial: 6 Acq On : 19 Feb 2016 3:36 pm Sample : WAC021916F Misc : A204\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 22 07:55:02 2016 Quant Results File: A204\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A204\_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration DataAcq Meth : lUG\_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.87128300901.00ppb0.0135) 1,4-difluorobenzene12.10114932611.00ppb0.0150) Chlorobenzene-d516.59117834801.00ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.16 95 40440m 0.71 ppb Spiked Amount 1.000 Range 70 ~ 130 Recovery = 71.00% 0.00 Ovalue Target Compounds

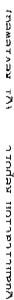
(#) = qualifier out of range (m) = manual integration (+) = signals summed AN021911.D A316\_lUG.M Wed Apr 27 09:43:44 2016 MSD1

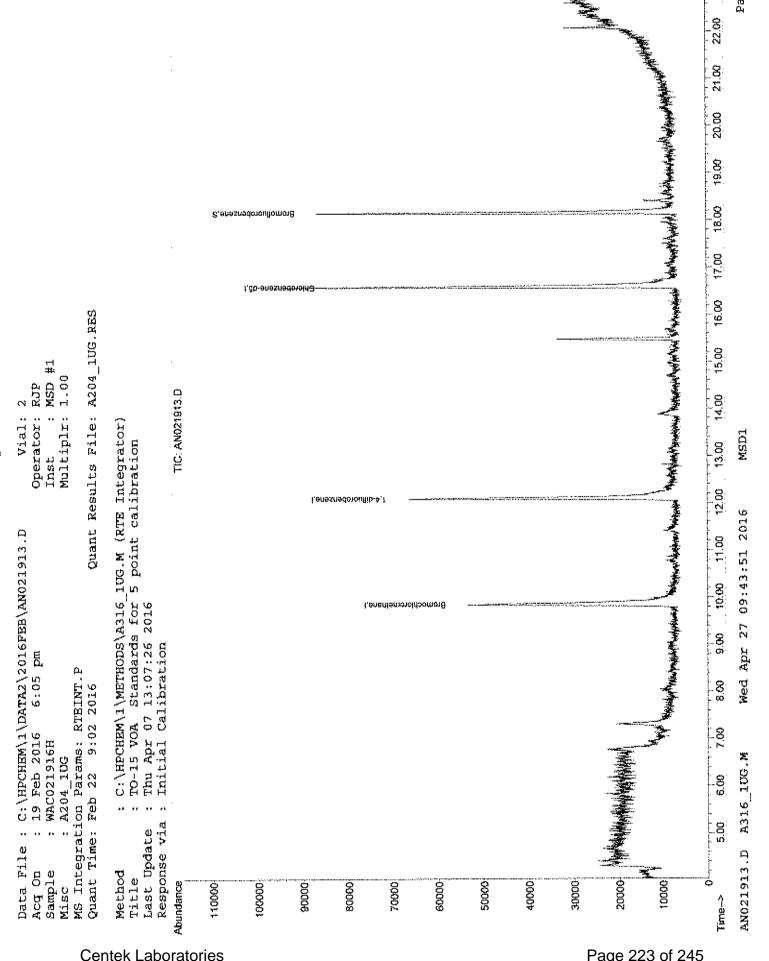


3

Quantitation Report (QT Reviewed) Vial: 1 Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021912.D Acq On : 19 Feb 2016 5:28 pm Operator: RJP Sample : WAC021916G Misc : A204\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 22 07:55:03 2016 Quant Results File: A204\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A204\_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.84128305651.00 ppb-0.0235) 1,4-difluorobenzene12.09114861651.00 ppb0.0050) Chlorobenzene-d516.59117813551.00 ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.16 95 38855m 0.70 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 70.00% Qvalue Target Compounds

(#) = qualifier out of range (m) ∞ manual integration (+) = signals summed AN021912.D A316\_1UG.M Wed Apr 27 09:43:47 2016 MSD1

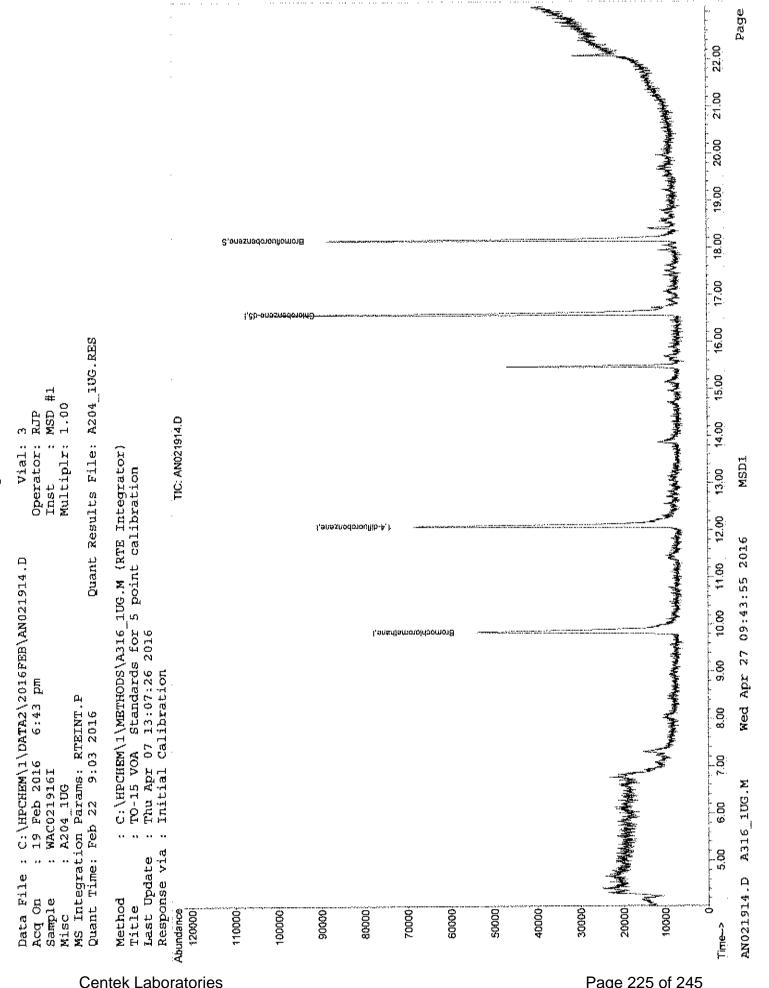



∩‡

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021913.D Vial: 2 Acq On : 19 Feb 2016 6:05 pm Operator: RJP Sample : WAC021916H Misc : A204\_lUG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 22 07:55:04 2016 Quant Results File: A204 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A204\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards \_\_\_\_\_ 1) Bromochloromethane9.85128307191.00 ppb0.0035) 1,4-difluorobenzene12.09114889801.00 ppb0.0050) Chlorobenzene-d516.58117827541.00 ppb0.00 System Monitoring Compounds
 56) Bromofluorobenzene
 18.16
 95
 42155m
 0.75 ppb

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 #
 75.00%
 66) Bromofluorobenzene 0.00 Target Compounds Ovalue

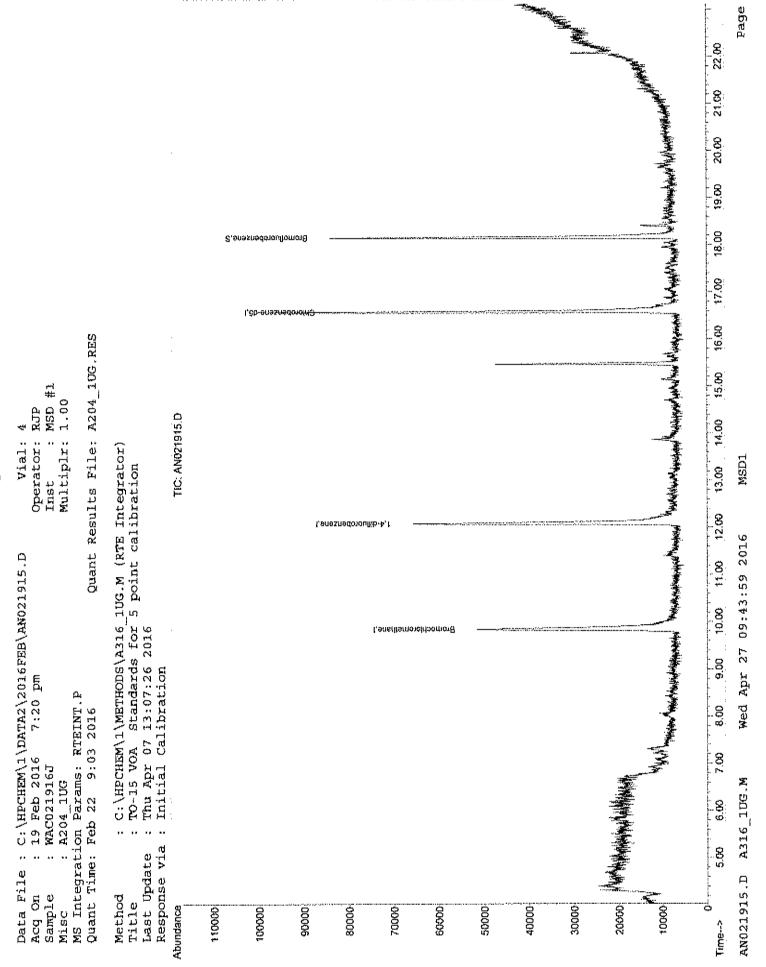
(#) = qualifier out of range (m) = manual integration (+) = signals summed AN021913.D A316\_1UG.M Wed Apr 27 09:43:50 2016 MSD1



...

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021914.D Vial: 3 Acq On : 19 Feb 2016 6:43 pm Operator: RJP Sample : WAC021916I Misc : A204\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 22 07:55:05 2016 Quant Results File: A204\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A204\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.85128308961.00 ppb-0.0135) 1,4-difluorobenzene12.09114905451.00 ppb0.0050) Chlorobenzene-d516.58117831251.00 ppb0.00 System Monitoring Compounds 56) Bromofluorobenzene 18.16 95 41130m 0.73 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 73.00% 66) Bromofluorobenzene Target Compounds Qvalue

(#) = gualifier out of range (m) ~ manual integration (+) ~ signals summed AN021914.D A316\_1UG.M Wed Apr 27 09:43:54 2016 MSD1

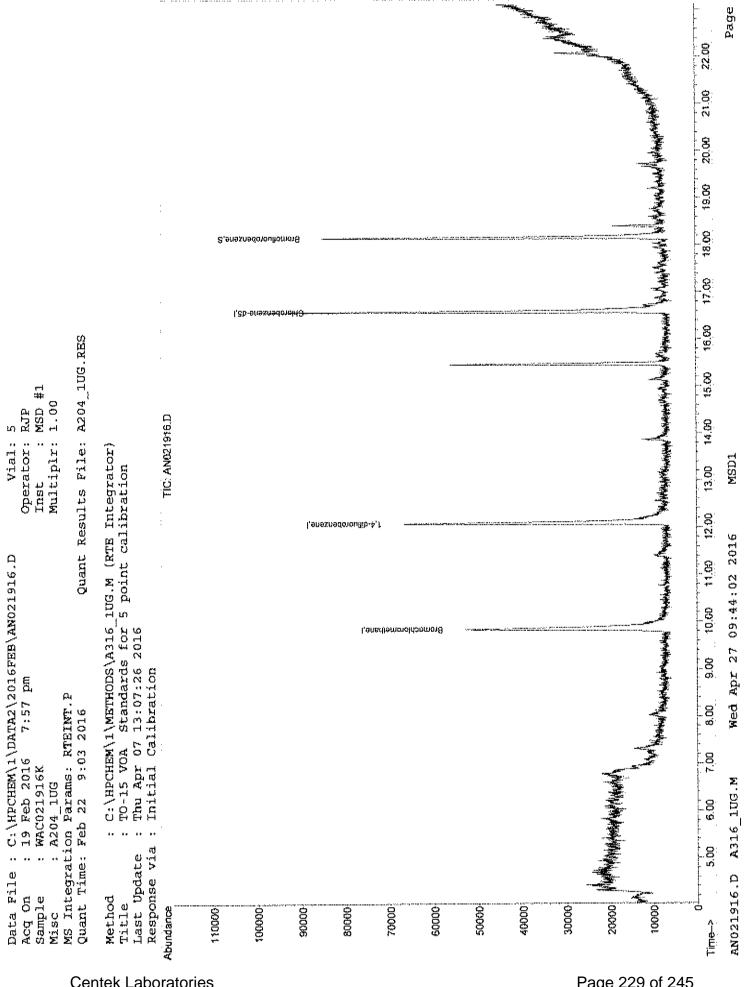


ŝ

(OT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021915.D Vial: 4 Acq On : 19 Feb 2016 7:20 pm Operator: RJP Sample : WAC021916J Misc : A204\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 22 07:55:06 2016 Quant Results File: A204\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A204 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QION Response Conc Units Dev(Min) Internal Standards \*\*\*\*\*\*\* 1) Bromochloromethane9.85128295441.00 ppb0.0035) 1,4-difluorobenzene12.09114844941.00 ppb0.0050) Chlorobenzene-d516.58117792651.00 ppb0.00 System Monitoring Compounds
 66) Bromofluorobenzene
 10.16
 95
 39870m
 0.74 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery ≈ 74.00%
 Target Compounds Qvalue

Centek Laboratories

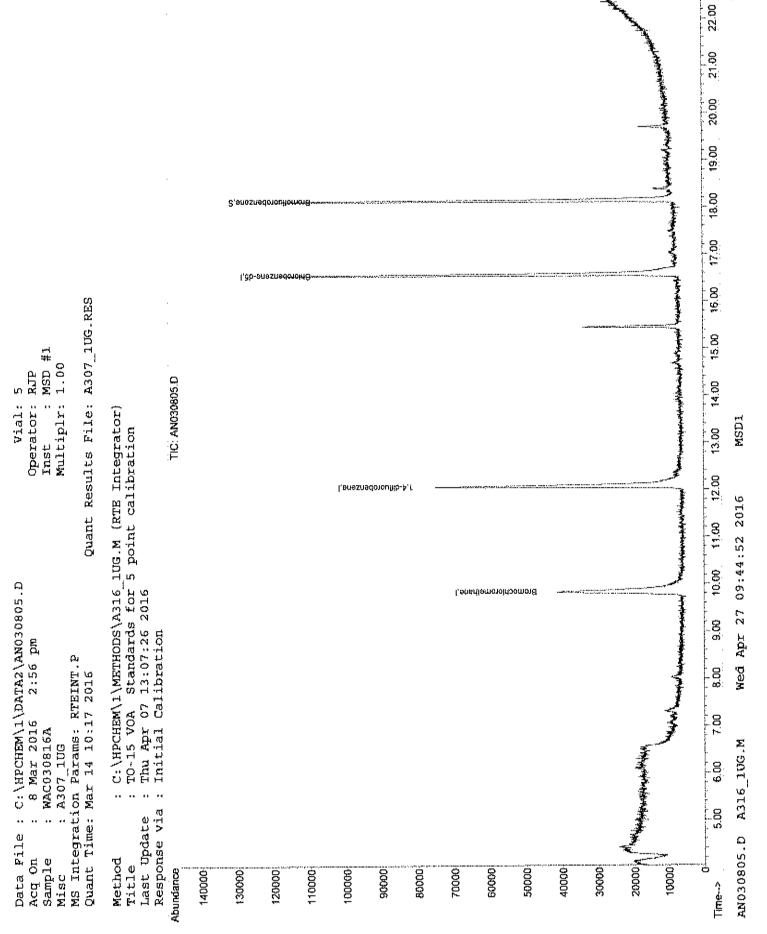

Page 227 of 245

ŝ

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2016FEB\AN021916.D Vial: 5 Acg On : 19 Feb 2016 7:57 pm Operator: RJP Sample : WAC021916K Misc : A204\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A204\_1UG.RES Quant Time: Feb 22 07:55:07 2016 Quant Method : C:\HPCHEM\1\METHODS\A204\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Feb 11 11:13:02 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.84128293431.00 ppb-0.0235) 1,4-difluorobenzene12.10114883901.00 ppb0.0050) Chlorobenzene-d516.59117804841.00 ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 18.15 95 40271m 0.73 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 73.00% 0.00 Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN021916.D A316\_1UG.M Wed Apr 27 09:44:01 2016 MSD1

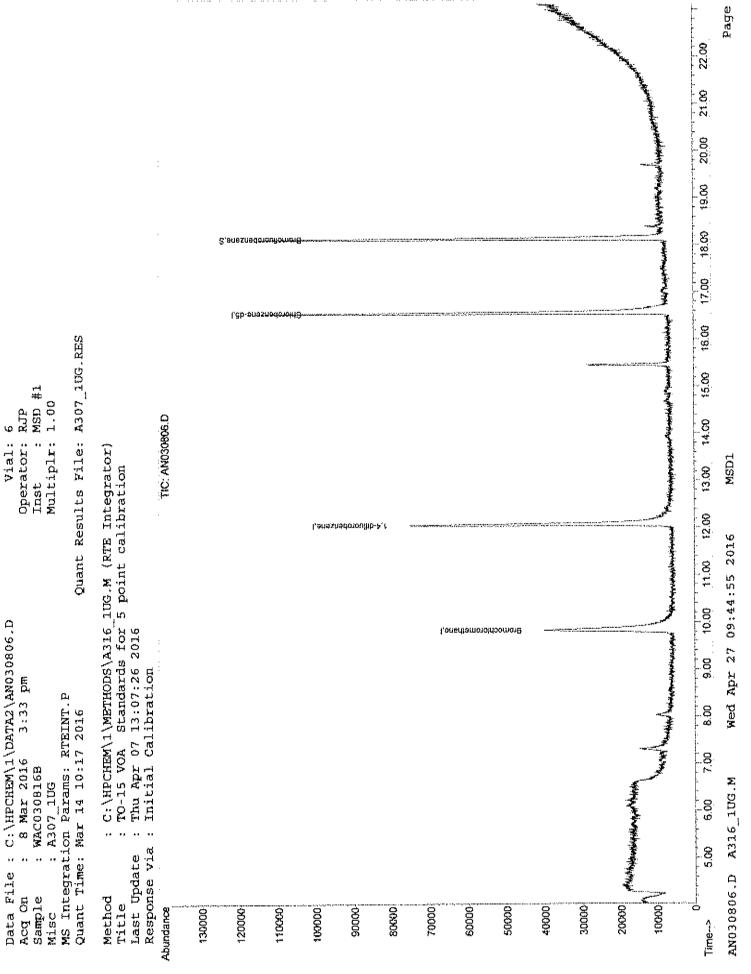
INDWDTADW TAL า กก้อง แกราจารายกก้



3

Data File : C:\HPCHEM\1\DATA2\AN030805.D Vial: 5 Acq On : 8 Mar 2016 2:56 pm Sample : WAC030816A Misc : A307\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 09 10:51:24 2016 Quant Results File: A307\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A307 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration DataAcg Meth : 10G RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.83128251361.00ppb0.0635) 1,4-difluorobenzene12.071141161731.00ppb0.0350) Chlorobenzene-d516.561171023801.00ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 63120 0.83 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 83.00% 0.02 Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030805.D A316\_1UG.M Wed Apr 27 09:44:51 2016 MSD1


Centek Laboratories

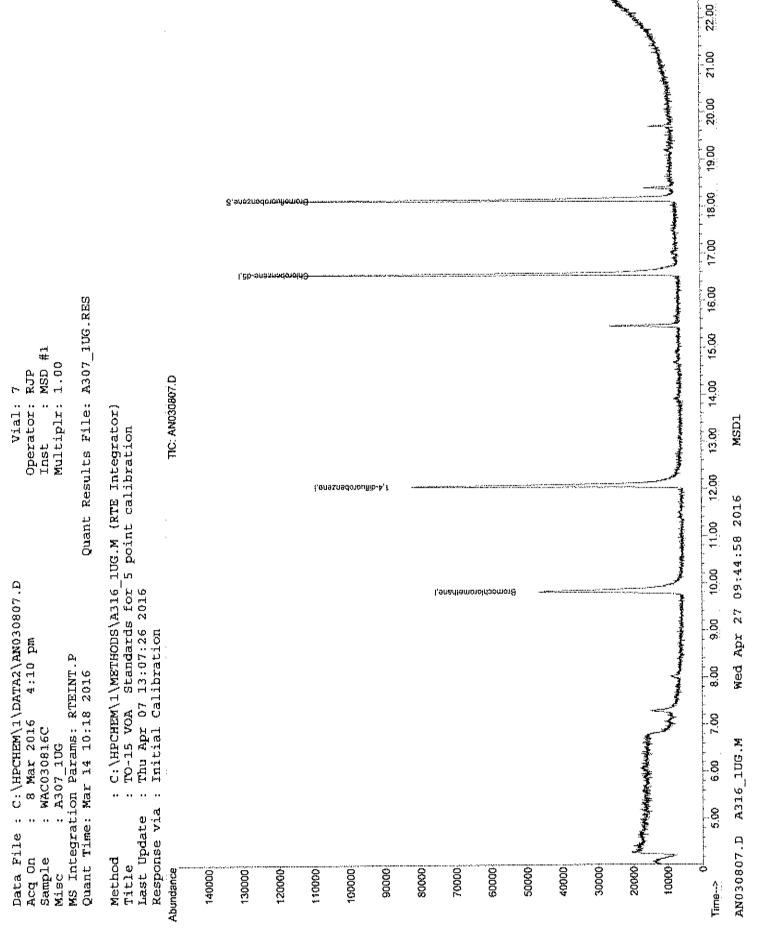
Page 231 of 245

Page 2

Quantitation Report (QT Reviewed) Vial: 6 Data File : C:\HPCHEM\1\DATA2\AN030806.D Acq On : 8 Mar 2016 3:33 pm Operator: RJP Sample : WAC030816B Misc : A307\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A307\_1UG.RES Quant Time: Mar 09 10:51:30 2016 Ouant Method : C:\HPCHEM\1\METHODS\A307\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.8312630593m1.00ppb0.0535) 1,4-difluorobenzene12.061141155461.00ppb0.0250) Chlorobenzene-d516.56117983681.00ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 60091 0.82 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 82.00% 0.02 Qvalue Target Compounds

Centek Laboratories

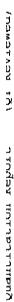
.

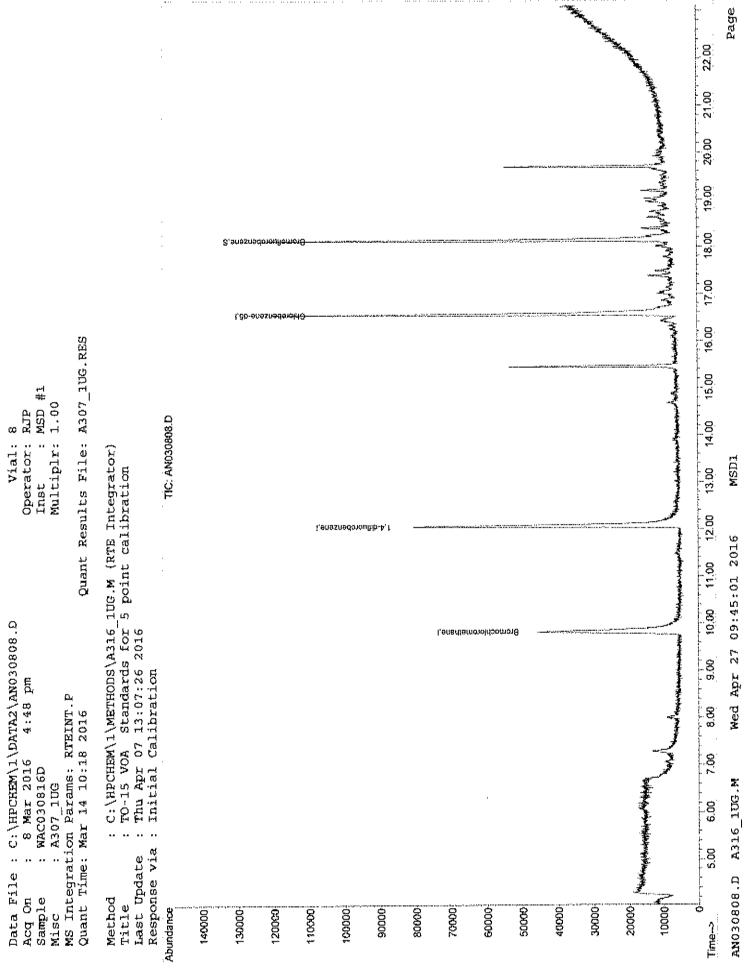

Page 233 of 245

Ċ٧

Data File : C:\HPCHEM\1\DATA2\AN030807.D Vial: 7 Acq On : 8 Mar 2016 4:10 pm Sample : WAC030816C Misc : A307\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 09 10:51:37 2016 Quant Results File: A307\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A307\_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration DataAcg Meth : 1UG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.8212831202m1.00 ppb0.0435) 1,4-difluorobenzene12.061141183231.00 ppb0.0250) Chlorobenzene-d516.561171024601.00 ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 63649 0.83 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 83.00% 0.01 Target Compounds Ovalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030807.D A316\_1UG.M Wed Apr 27 09:44:57 2016 MSD1


Centek Laboratories

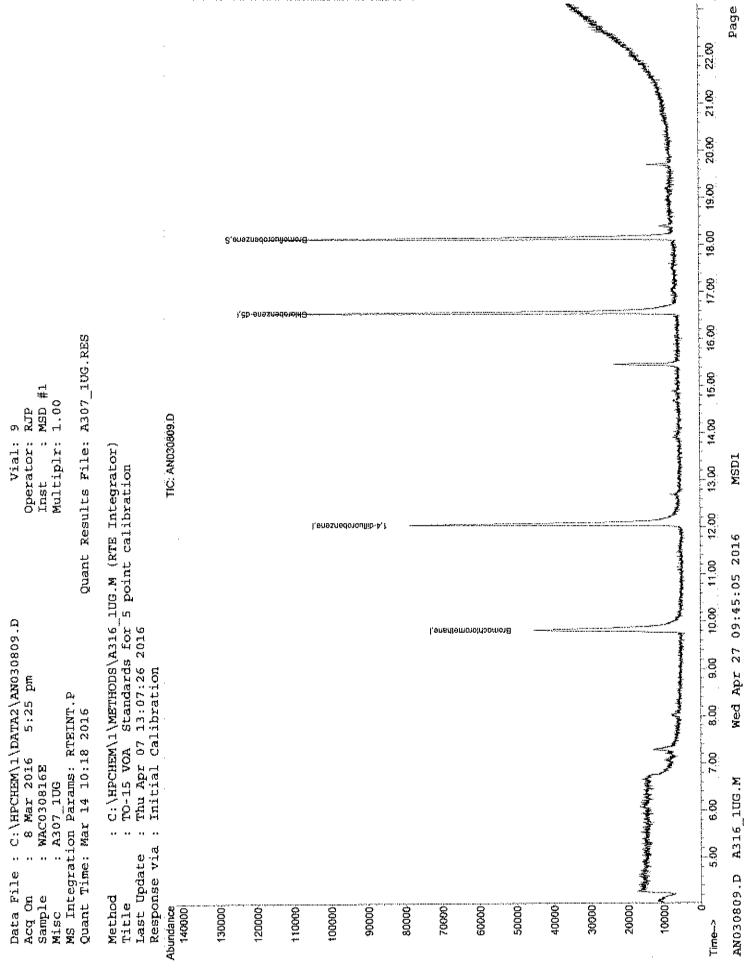

Page 235 of 245

Page 2

Quantitation Report (QT Reviewed) Vial: 8 Data File : C:\HPCHEM\1\DATA2\AN030808.D Acq On : 8 Mar 2016 4:48 pm Sample : WAC030816D Operator: RJP Inst : MSD #1 Misc : A307\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A307\_1UG.RES Quant Time: Mar 09 10:51:47 2016 Quant Method : C:\HPCHEM\1\METHODS\A307 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards \_\_\_\_\_\_ 1) Bromochloromethane9.8312830436m1.00ppb0.0535) 1,4-difluorobenzene12.061141149801.00ppb0.0250) Chlorobenzene-d516.56117989551.00ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 61350 0.83 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 83.00% 0.01 Ovalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030608.D A316\_1UG.M Wed Apr 27 09:45:00 2016 MSD1

Centek Laboratories

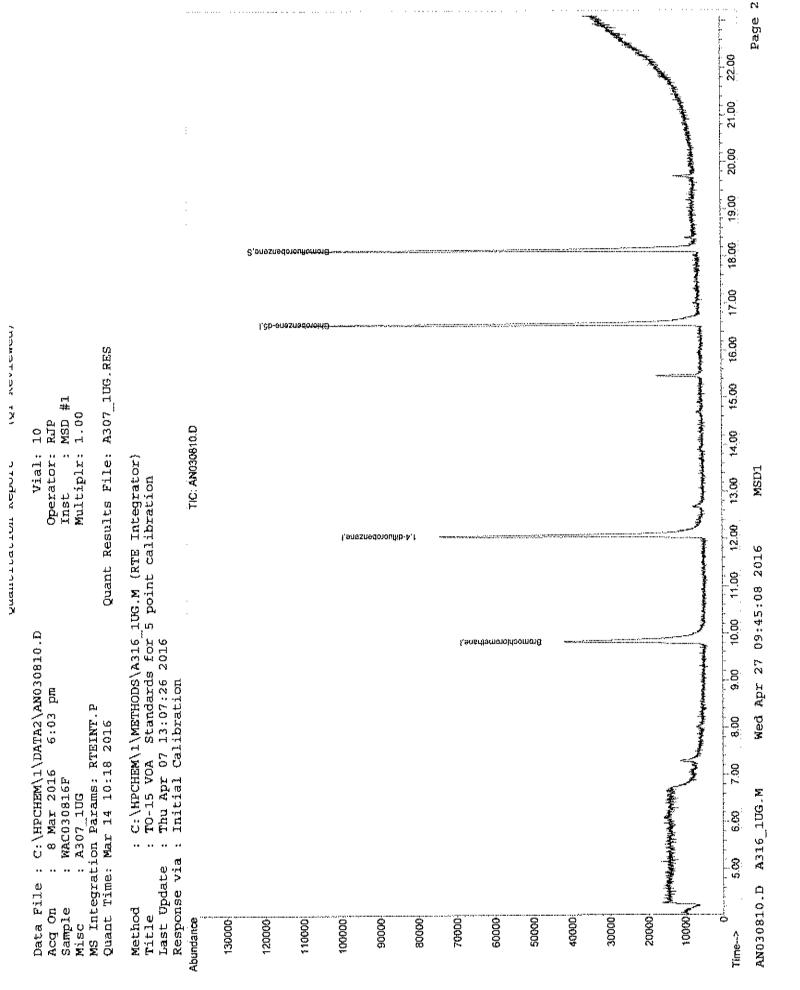

Page 237 of 245

C\$

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AN030809.D Vial: 9 Acq On : 8 Mar 2016 5:25 pm Sample : WAC030816E Misc : A307\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A307\_1UG.RES Quant Time: Mar 09 10:51:55 2016 Quant Method : C:\HPCHEM\1\METHOD9\A307\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards \_\_\_\_\_\_ 1) Bromochloromethane9.8212829860m1.00ppb0.0535) 1,4-difluorobenzene12.071141136151.00ppb0.0350) Chlorobenzene-d516.561171004801.00ppb0.02 35) 1,4-difluorobenzene
50) Chlorobenzene-d5 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 60863 0.81 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 81.00% 0.02 Qvalue Target Compounds

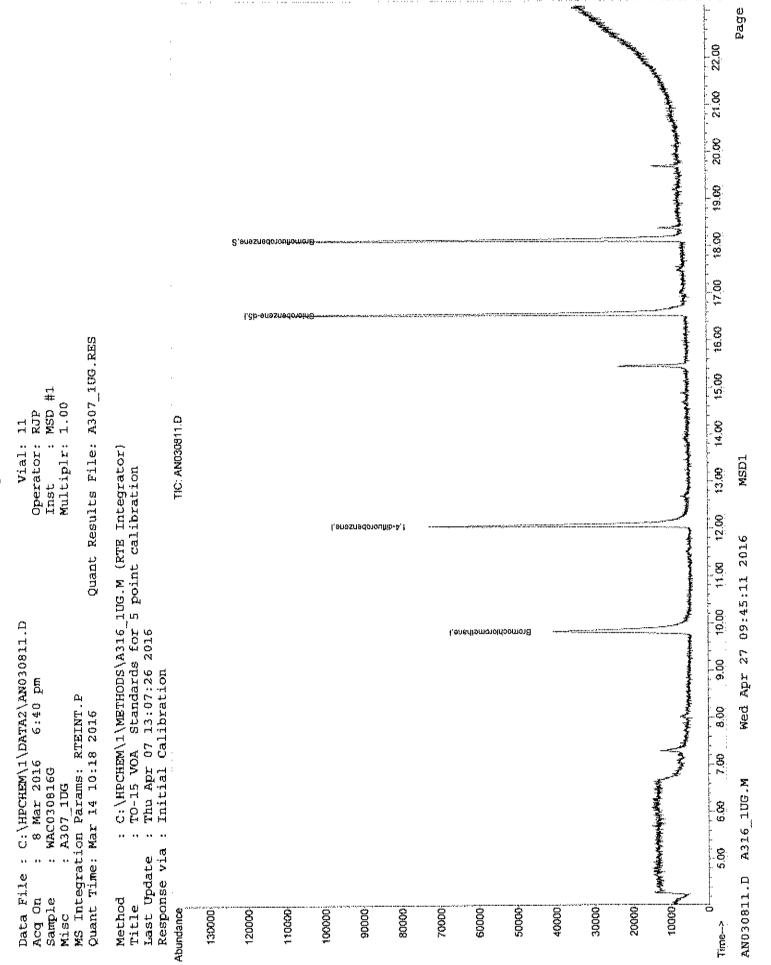
(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030809.D A316\_1UG.M Wed Apr 27 09:45:04 2016 MSD1

Centek Laboratories


Page 239 of 245

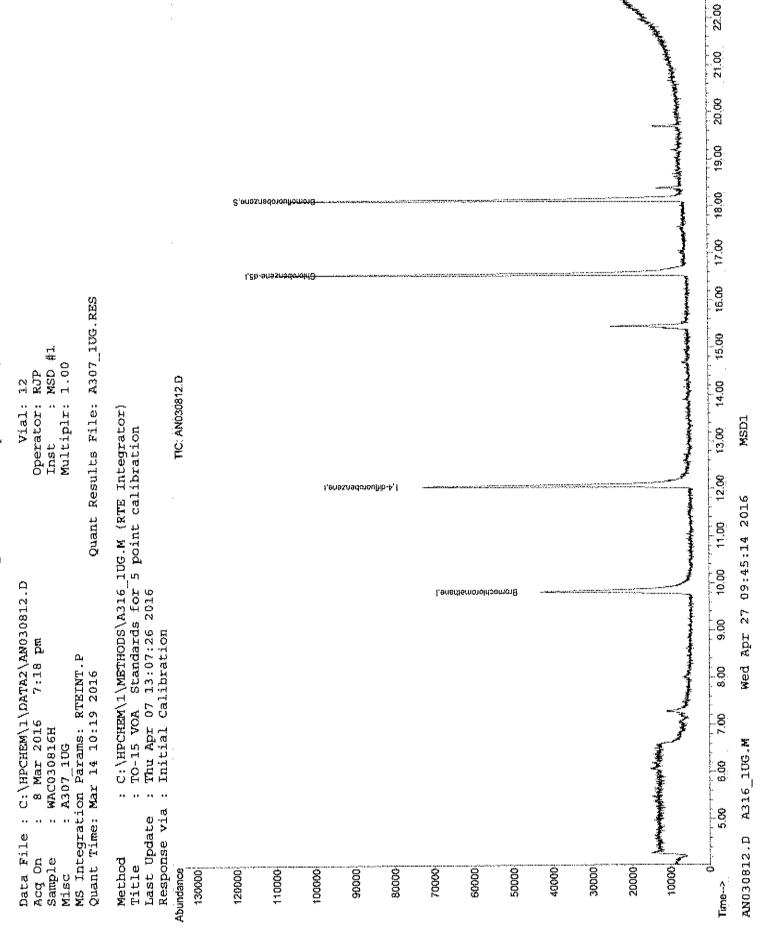
ŝ

Quantitation Report (QT Reviewed) Vial: 10 Data File : C:\HPCHEM\1\DATA2\AN030810.D Acq On : 8 Mar 2016 6:03 pm Operator: RJP Sample : WAC030816F Misc : A307\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A307\_1UG.RES Quant Time: Mar 09 10:52:04 2016 Quant Method : C:\HPCHEM\1\METHODS\A307\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards \_\_\_\_\_\_ 1) Bromochloromethane9.83128245401.00 ppb0.0535) 1,4-difluorobenzene12.071141103961.00 ppb0.0350) Chlorobenzene-d516.56117949561.00 ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 58532 0.83 ppb 0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 83.00% Qvalue Target Compounds


(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030810.D A316\_1UG.M Wed Apr 27 09:45:07 2016 MSD1

Page 1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AN030011.D Vial: 11 Acq On : 8 Mar 2016 6:40 pm Operator: RJP Sample : WAC030816G Misc : A307\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A307\_1UG.RES Quant Time: Mar 09 10:52:16 2016 Quant Method : C:\HPCHEM\1\METHODS\A307\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.82128235541.00ppb0.0535) 1,4-difluorobenzene12.071141063761.00ppb0.0350) Chlorobenzene-d516.56117940411.00ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.13 95 57324 0.82 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 62.00% 0.02 Qvalue Target Compounds



ŝ

Quantitation Report (QT Reviewed) Vial: 12 Data File : C:\HPCHEM\1\DATA2\AN030812.D Acq On : 8 Mar 2016 7:18 pm Operator: RJP Inst ; MSD #1 Sample : WAC030816H Misc : A307\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A307\_1UG.RES Quant Time: Mar 09 10:52:25 2016 Quant Method : C:\HPCHEM\1\METHODS\A307\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 08 11:08:59 2016 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.82128239781.00ppb0.0535) 1,4-difluorobenzene12.061141032701.00ppb0.0250) Chlorobenzene-d516.56117930061.00ppb0.02 System Monitoring Compounds 66) Bromofluorobenzene 18.14 95 55535 0.80 ppb 0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 80.00% Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AN030812.D A316\_1UG.M Wed Apr 27 09:45:13 2016 MSD1

Centek Laboratories

Page 245 of 245

Page 2

•

| Client & a Bella | E al l | ecklist |
|---------------------------------------|--|---|
| Chent A OPTIC | Project Mirson St. Lan | dfill sDG: C1703050 |
| | | |
| | | <u>YES NO NA</u> |
| Analytical Results | Present and Complete | · |
| TIC's present | Present and Complete | |
| | Holding Times Met | |
| Comments: | | |
| | | ar |
| Chain-of-Custody | Present and Complete | |
| Surrogate Recovery | Present and Complete | \ \ |
| y | Present and Complete
Recoveries within limits | ан санананан таканан такана така так |
| | Sample(s) reanalyzed | |
| | | |
| nternal Standards Recovery | Present and Complete | ` |
| | Recoveries within limits | |
| | Sample(s) reanalyzed | |
| Comments: | | |
| ـــــــــــــــــــــــــــــــــــــ | | |
| ab Control Sample (LCS) | Present and Complete | \ |
| | Recoveries within limits | The second |
| | | |
| ab Control Sample Dupe (LCSD) | Present and Complete | <u> </u> |
| | Recoveries within limits | |
| S/MSD | Press - 10 | |
| | Present and Complete | <u></u> |
| | Recoveries within limits | and the second second |
| mmen(s; | | |
| | | |
| nple Raw Data | | ann ann an 1990 an 1999 agus an 1990 agus an 1 |
| [r | Present and Complete | Law marks |
| | Spectra present for all samples | |
| ንንተለድብርና | | |

Centek Laboratories, LLC

Private and Confidential

Page 1 of 2

Ŋ

.

| TO | -15-Package Review Chec | klist | | |
|--------------------------------|---|---------------|---|--------------------------------|
| Client: LeBella | Projeci Emerson Stand | LEK SDG: | <u> 172305</u> | 0 |
| | | YES | NO NA | |
| Standards Data | | | | |
| Initial Calibration Summary | Present and Complete | | | |
| - | Calibration(s) met criteria | ~ | | |
| Continuing Calibration Summary | Present and Complete | > | | |
| | Calibration(s) met criteria | ~ | | |
| Standards Raw Data | Present and Complete | <u> </u> | | |
| Comments: | | · | | **** |
| Raw Quality Control Data | , | | | |
| Tune Criteria Report | Present and Complete | × 1 | | |
| Method Blank Data | MB Results <pql< td=""><td><math>\overline{}</math></td><td>÷,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td><td></td></pql<> | $\overline{}$ | ÷,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |
| | Associated results flagged "B" | | <u> </u> | |
| LCS sample data | Present and Complete | ~ | | |
| LCSD sample data | Present and Complete | $\overline{}$ | | |
| MS/MSD sample data | Present and Complete | \leq | | |
| Comments: | | | | |
| Lagbooks | | | ατ <u>ι π</u> ει το ποι το το ποι ποι το ποι | MA LABO AT LAB <u>A</u> |
| Injection Log | Present and Complete | <u> </u> | | |
| Standards Log | Present and Complete | <u> </u> | | |
| Can Cleaning Log | Present and Complete | <u> </u> | | |
| . | Raw Data Present | <u> </u> | | |
| Calculation sheet | Present and Complete | > | | |
| DL's | Present and Complete | <u>></u> | | |
| Bottle Order Form | Present and Complete | | | |
| Sample Tracking Form | Present and Complete | <u> </u> | | |
| Additional Comments: | | | | |
| | ، « « « « « « « « « « « « « « « « « « « | | | |
| · · · · / / | 11. | | ······ | |
| Section Supervisor: Lett | Jat/CDate: | 5/25(17) | | |
| QC Supervisor: My | Rice Date: | | | |
| Centek Laboratories, LLC | Private and Confidential | | Page 2 of : | 2 |

ENTEK LABORATORIES, LLC

 143 Midler Park Drive \* Syracuse, NY 13206

 Phone (315) 431-9730 \* Emergency 24/7 (315) 416-2752

 NYSDOH ELAP
 Certificate No. 11830

Analytical Report

Ann Aquilina LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614

Wednesday, March 22, 2017 Order No.: C1703050

TEL: (585) 454-6110 FAX (585) 454-3066

RE: Former Emerson St Landfill

Dear Ann Aquilina:

Centek Laboratories, LLC received 5 sample(s) on 3/17/2017 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

will Dolli

William Dobbin Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attomey fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%Next business day TAT by Noon = 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75%Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

Page 5 of 213

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

1. Package Review Check List

2. Case Narrative

- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation

8. Sample Data

a. Form 1 (if requested) TIC's b. Quantization Report with Spectra

9. Standards Data

a. Initial Calibration with Quant Report

- b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - e. MS/MSD

12. Log Books

- a. Injection Log Book
- b. Standards Log Book
- c. QC Canister Log Book

Date: 29-Mar-17

CLIENT:LaBella Associates, P.C.Project:Former Emerson St LandfillLab Order:C1703050

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

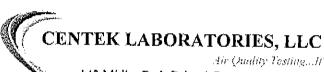
Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (± 2 ", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (± 1 ", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, ± 1 ". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

| the second s | 1 <sup>1</sup> UB/M3+TCE.25 X CI | W | ap Elahellape.com | N | RecViAnalysis | | 1 - 2 - 1 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - | -01-7-10-10- | | **** | | | | | 5 | | - | /
Contrian CIRCI E ONE | RedEX UPS Pickup/Dropoff | | |
|--|---|---|--|---|---------------------------|----------------|---|--------------|-------------------|------|---|---|---|---------|----------|---|---|---------------------------|--------------------------|-------------------|---|
| 1월 전 | - Company:
Company:
Check Here if Same: | Invoice to:
Address:
City, State, Zip | Email: 0.0 6 | Field Vacuum | 115430 1 7 | 20
201 - 57 | 301 P | 301 100 | - 1 97 | ••• | - | 1 | • |
••• | - | - | 1 | /
Date/Time | 3/14/17 800 | C1-C1-5 | he reverse side. |
| Site Name: FUX Mer
Project: 1770 1
POA: 2(017 | LABELLA. | Address: UABBRICH A. Aquilina
City. State, Zip 7 UU)tak 347-024 | Email O Q Juline Ola helle pc. 1 pm | Canister Regulator Analysis Request
Number Number | 259 TO-15 Select | 1176 1170 | | 1183 1161 V | | | | | | | | | | Signature | arth | Marvo N | oting Centek Labs Terms and Conditions listed on the reverse side. |
| Centek Labs - Chain of Custody
143 Midler Park Drive
Syracuse, NY 13206
315-431-9730 Vapor Intrusion & Mo | | 25%
50% | | | 3/2/17 | | | 2 | | | | | | | | | | Print Name | The Kulling | ICK-MANDA | in of Custody, you are acce |
| Cartask Laboratories | OF Check
Of Urnaround Time: One | O Business Days
Business Days
Business Days | Whext Day by 5pm
Next Day by Noon
Same Day | For Same and Next Day TAT Please Notify Lab
Sample ID Date Sampled | 170-200-20
3711-200-26 | -1 , | 1 - addor B | 2 | | | | | | | | | | ļ | | Ceived at Lab by: | By signing Centek Labs Chain of Custody, you are accepting Centek [|

| CENTEK LABORATORIES, LLC | | | Date: 29-Mar-17 | | | | | | |
|-----------------------------------|--|------------------------------|------------------------------|----------------------------|--|--|--|--|--|
| CLIENT:
Project:
Lab Order: | LaBella Associates, P.C.
Former Emerson St Landfill
C1703050 | | Work Orde | r Sample Summary | | | | | |
| Lab Sample ID
C1703050-001A | Client Sample ID
1770-1AQ-2B | Tag Number
368.259 | Collection Date
3/12/2017 | Date Received
3/17/2017 | | | | | |
| C1703050-002A | 1770-1AQ-3B | 1176.1170 | 3/12/2017 | 3/17/2017 | | | | | |
| C1703050-003A | 1770-1AQ-4B | 168.1161 | 3/12/2017 | 3/17/2017 | | | | | |
| C1703050-004A | 1770-Outdoor-B | 484.251 | 3/12/2017 | 3/17/2017 | | | | | |
| C1703050-005A | 1770-Dupe B | 1182.1161 | 3/12/2017 | 3/17/2017 | | | | | |

| CENTEK LABORATORIES, | LLC | | | Sample Re | ceipt (| Checklist |
|---|------------------------|-----------------------|------------------------|------------|-------------|------------------|
| Client Name LABELLA - ROCHESTER | | | Date and Tim | e Receive | | 3/17/2017 |
| Work Order Numbe C1703050 | | | Received by | NM | | |
| Checklist completed by Signatore | 3-()-
Date | - (| Reviewed by | Initials | <u>></u> | 3/1-7/17
Date |
| Matrix: Ca | rrier name: <u>Fed</u> | Ex Grou | bnu | | | |
| Shipping container/cooler in good condition? | Yes | | No 🗂 | Not Presen | | |
| Custody seals intact on shippping container/cooler? | Yes | [] | No 🛄 | Not Presen | X | |
| Custody seals intact on sample bottles? | Yes | | No 🗍 | Not Presen | Y | |
| Chain of custody present? | Yes | V | No 🗍 | | | |
| Chain of custody signed when relinquished and received? | Yes | \mathbf{V} | No 🗌 | | | |
| Chain of custody agrees with sample labels? | Yes | | No 🗔 | | | |
| Samples in proper container/bottle? | Yes | $\mathbf{\mathbf{v}}$ | No 🗔 | | | |
| Sample containers intact? | Yes | \checkmark | No 🗔 | | | |
| Sufficient sample volume for indicated test? | Yes | | No 🗔 | | | |
| All samples received within holding time? | Yes | | No []] | | | |
| Container/Temp Blank temperature in compliance? | Yes | | No 🗔 | | | |
| Water - VOA viats have zero headspace? No VOA | A vials submitted | $\mathbf{\Sigma}$ | Yes 🗔 | No 🗀 | | |
| Water - pH acceptable upon receipt? | Yes | | No 🗹 | | | |
| Adjusted7 | ? | | Checked by | | | |
| | | | 1998 and 1997 and 1997 | | - | |

Any No and/or NA (not applicable) response must be detailed in the comments section be


| Client contacted | Date contacted: | Person contacted |
|-------------------|-----------------|------------------|
| Contacted by: | Régarding: | |
| Comments: | | |
| | 1a1a | |
| | | |
| Corrective Action | | |
| | | 999999966 |
| M | | |
| 2 19 William | | |

| LLC |
|------------|
| oratories, |
| iek Lab |
| Cent |

Page 12 of 213

20-Mar.17

| | | | | | 29-Mar-17 | |
|------------------|----------------------------|-----------------|--------|--------------------------------|---------------------|--|
| Lab Order: | C1703050 | | | | | and an and a second |
| Client: | LaBella Associates, P.C. | P.C. | | | DATES DEPORT | F |
| Project: | Former Emerson St Landfill | andfill | | | AND AN DALLAN | - |
| Sample JD | Client Sample 1D | Collection Date | Matrix | Test Name | 1 | |
| C1703050-001A | 1770-1AO-2B | 100001 | | | Juby Date Prep Date | Analysis Date |
| | | 2117772310 | AIF | lug/m3 w/ 0.25ug/M3 C1-TCE-VC | | 3/21/2017 |
| | | | | lug/m3 w/ 0.25ug/M3 CT-TCE-VC | | LINUAL |
| VINHOCOFOULO | 1770-1AC-3B | | | Jug/m3 w/ 0.25ug/M3 CT-TCE-VC | | LINCIAN |
| | | | | lug/m3 w/ 0.25ug/AB CT-TCE-VC | | 1/0//017 |
| ALW-0000110 | 1770-1AQ-4B | | | lag/m3 w/ 0.25ug/M3 CT-TCE-VC | | 100101 |
| | | | | lug/m3 w/ 0.25ug/M3 CT-TCE-VC | | 100001 |
| CLUDING CONTRACT | F70-Outdoor-B | | | lug/m3 w/ 0.254g/M3 CT-TCE-VC | | 100101 |
| | | | | lug/m3 w/ 0.25ug/M3 CT-TCE-VC | | 3/20/2017 |
| A CUHOCOCO IN | 1770-Dupe B | | | lug/m3 w/ 0.25ag/M3 CT-FCE-VC | | 107124 |
| | | | | lug/m3 w/ 0.25ug/M5 C11-TCE-VC | | 3/21/2017 |
| | | | | | | |

2

SHIPPED TO:

CANISTER ORDER

dir Quality Testing...It's a Ges 143 Midler Park Drive \* Syracuse, NY 13206 TEL: 315-431-9730 \* FAX: 315-431-9731

6323

29-Mar-17

\_\_\_\_\_

| Company:
Contact: | LaBella Associates, P.C. | Submitted By: | | |
|------------------------------|---|---------------|--------------|----|
| Address: | Ann Aquilina
300 State Street, Suite 201 | MadeBy; | NM | |
| | Rochester, NY 14614 | Ship Date: | 2/15/2017 | |
| Phone: | (585) 454-6110 | VIA: | FedEx Ground | |
| Quote ID;
Project:
PO; | 0 | Due Date: | 2/17/2017 | |
| Bottle Code | Bottle Type | TEST(s) | | QT |
| MC1400CC | LAC MIGH-CAR | 1ug/M3 bv | Method TO15 | |
| MC1000CC | 1L Mini-Can | tug/M3 by | Method TO15 | |
| Can / Reg ID | Description | | | |
| 1176 | 1L Mini-Can - 1253 VI | | | |
| 1182 | 1L Mini-Can - 1237 VI | | | |
| 1170 | Time-Set Reg-0795 V) | | | |
| 1161 | Time-Set Reg-0674 VI | | | |
| 232 | 1L Mini-Can - 1163 VI | | | |
| 251 | Time-Set Reg - 689 VI | | | |
| 259 | Time-Set Reg - 697 Vf | | | |
| 68 | 1L Mini-Can - 1138 VI | | | |
| 26 8 | Time-Set Reg - 706 VI | | | |
| 368 | 1L Mini-Can - 1317 VI | | | |
| 184 | 1.4L Mini-Can - 1366 VI | | | |

Comments: (5) 1L @ 6hrs, (1) 1.4L @ 6hrs - needs "T" for dupe WAC 020717 A-C, 110316 A-B

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

ANALYTICAL RESULTS

.

Page 14 of 213

| Centek | Laboratorio | s, LLC |
|--------|-------------|--------|
|--------|-------------|--------|

Date: 27-Mar-17

| CLIENT:
Lab Order:
Project:
Lab ID: | LaBella Associates, P
C1703050
Former Emerson St La
C1703050-001A | | | Client Sampl
Tag Nun
Collection I
Ma | nber: | 368.2
3/12/2 | 59 |
|--|--|---------|------------|---|-------|-----------------|-----------------------|
| Analyses | | Result | **Limit Qı | al Units | | DF | Date Analyzed |
| FIELD PARAMI | ETERS | | FLD | | | | Analyst: |
| Lab Vacuum In | | -7 | | "Hg | | | 3/17/2017 |
| Lab Vacuum Ou | ut | -30 | | "Hg | | | 3/17/2017 |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | TO-15 | | | | Analyst: RJP |
| 1,1,1-Trichloroe | thane | < 0.15 | 0.15 | ррЬ∨ | | 1 | 3/20/2017 10:03:00 PM |
| 1,1-Dichloroetha | ine | < 0.15 | 0.15 | рръ∨ | | 1 | 3/20/2017 10:03:00 PM |
| 1,1-Dichloroethe | ane | < 0.15 | 0.15 | ррв∨ | | 1 | 3/20/2017 10:03:00 PM |
| Chloroethane | | < 0.15 | 0,15 | ррЬ∨ | | 1 | 3/20/2017 10:03:00 PM |
| Chloromethane | | 0.95 | 0.15 | ppb∨ | | 1 | 3/20/2017 10:03:00 PM |
| cis-1,2-Dichloro | athene | < 0.15 | 0.15 | ppbV | | 1 | 3/20/2017 10:03:00 PM |
| Tetrachioroethyl | ene | < 0.15 | 0.15 | ррь∨ | | 1 | 3/20/2017 10:03:00 PM |
| trans-1,2-Dichto | roethene | < 0.15 | 0.15 | ррЬ∨ | | 1 | 3/20/2017 10:03:00 PM |
| Trichloroethene | | < 0.040 | 0.040 | Vdqq | | 1 | 3/20/2017 10:03:00 PM |
| Vinyl chloride | | < 0.040 | 0.040 | ppb∨ | | 1 | 3/20/2017 10:03:00 PM |
| Surr: Bromofi | uorobenzene | 99.0 | 70-130 | %REC | | 1 | 3/20/2017 10:03:00 PM |

| Qualifiers: | ** | Quantitation Limit | | Results reported are not blank corrected |
|-------------|----|--|----|---|
| | в | Analyte detected in the associated Method Blank | E | Estimated Value above quantitation range |
| | н | Holding times for preparation or analysis exceeded | J | Analyte detected below quantitation limit |
| | JN | Non-routine analyte. Quantitation estimated. | NÐ | Not Detected at the Limit of Detection |
| | S | Spike Recovery outside accepted recovery limits | | Page 1 of 5 |

.

Date: 27-Mar-17

| CLIENT:
Lab Order: | LaBella Associates, P
C1703050 | C. Client Sample ID:
Tag Number: | | | | | | | |
|---------------------------------|-----------------------------------|-------------------------------------|---------|--------|------------------|-----------------------|-----------------------|--|--|
| Project: | Former Emerson St La | andfill C | | | Collection Date: | | 3/12/2017 | | |
| Lab ID: C1703050-001A | | | | Matrix | | AIR | | | |
| Analyses Re | | Result | **Limit | Qual | Units | ÐF | Date Analyzed | | |
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | | TO-15 | | | | Analyst: RJP | | |
| 1,1,1-Trichloroethane | | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| 1.1-Dichloroeth | ອກອ | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| 1,1-Dichloroeth | ene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:03:00 PN | | |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 10:03:00 PN | | |
| Chloromethane | | 2.0 | 0.31 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| cis-1,2-Dichloroethene < 0.59 | | 0.59 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | | |
| Tetrachloroethylene < 1.0 | | 1.0 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | | |
| trans-1,2-Dichloroethene < 0.59 | | 0.59 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | | |
| Trichloroethene < 0.21 | | 0.21 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | | |
| Vinyi chioride | | < 0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |

Qualifiers: \*\* Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN -Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Б Estimated Value above quantitation range

.

- 1 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 27-Mar-17

| CLIENT;
Lab Order; | LaBella Associates, P
C1703050 | P.C. Client Sample ID
Tag Number | | | | | - | | |
|---------------------------------|-----------------------------------|-------------------------------------|---------|--------------|-------|--------|-----------------------|--|--|
| Project: | Former Emerson St L | Landfill Collection Dat | | | | 3/12/2 | 2017 | | |
| Lab ID: | C1703050-002A | Matrix: | | | | | AIR | | |
| Analyses | | Result | **Limit | Qual | Units | ÐF | Date Analyzed | | |
| FIELD PARAMETERS | | FLD | | | | | Analyst: | | |
| Lab Vacuum In | | -5 | | | "Hg | | 3/17/2017 | | |
| Lab Vacuum Out | | -30 | | | "Нց | | 3/17/2017 | | |
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | | то | Analyst: RJP | | | | | |
| 1,1,1-Trichloroe | ethane | < 0,15 | 0.15 | | ppbV | 1 | 3/20/2017 10:45:00 PN | | |
| 1.1-Dichloroeth | ane | < 0,15 | 0.15 | | ppbV | 1 | 3/20/2017 10:45:00 PN | | |
| 1,1-Dichloroeth | ene | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 10:45:00 PN | | |
| Chioroethane | | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 10:45:00 PN | | |
| Chloromethane | | 0.81 | 0.15 | | ррьV | 1 | 3/20/2017 10:45:00 PN | | |
| cis-1,2-Dichloroethene | | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 10:45:00 PN | | |
| Tetrachloroethylene < 0. | | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 10:45:00 PN | | |
| trans-1,2-Dichioroethene < 0.15 | | < 0.15 | 0.15 | | ррбV | 1 | 3/20/2017 10:45:00 PN | | |
| Trichloroethene < 0.040 | | < 0.040 | 0.040 | | ppbV | 1 | 3/20/2017 10:45:00 PN | | |
| Vinyt chloride | | < 0.040 | 0.040 | | ppbV | 1 | 3/20/2017 10:45:00 PN | | |
| Surr: Bromofi | luorobenzene | 101 | 70-130 | | %REC | 1 | 3/20/2017 10:45:00 PM | | |

| Qualifiers: | ** | Quantitation Limit | , | Results reported are not blank corrected |
|-------------|----|--|----|---|
| | в | Analyte detected in the associated Method Blank | Е | Estimated Value above quantitation range |
| | Н | Holding times for preparation or analysis exceeded | .! | Analyte detected below quantitation limit |
| | JN | Non-routine analyte. Quantitation estimated. | ND | Not Detected at the Limit of Detection |
| | S | Spike Recovery outside accepted recovery limits | | |

Date: 27-Mar-17

| CLIENT: | LaBella Associates, P | .C. | Client Sample ID: 1770-1AQ-3B | | | | | | |
|---------------------------------|-----------------------|----------------------|-------------------------------|-------|------------------|-----------------------|-----------------------|--|--|
| Lab Order: | C1703050 | Tag Number: | | | | | 1176.1170 | | |
| Project: | Former Emerson St L | andfill Collection f | | | Collection Date: | | | | |
| Lab ID: C1703050-002A | | | | | Matrix: | | | | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed | | |
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | | TO-15 | | | | Anaiyst: RJP | | |
| 1,1,1-Trichloroethane | | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| 1.1-Dichloroethane | | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| 1,1-Dichloroeth | ene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Chioroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 10:46:00 PM | | |
| Chloromethane | | 1.7 | 0.31 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| cis-1,2-Dichloroethene < 0.59 | | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | | |
| Tetrachloroethylene < 1.0 | | 1.0 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | | |
| trans-1,2-Dichloroethene < 0.59 | | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | | |
| Trichloroethene < 0.21 | | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Vinyl chloride < 0.10 | | 0.10 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | | |

 Qualifiers:
 \*\*
 Quantitation Limit
 .
 Results

 B
 Analyte detected in the associated Method Blank
 E
 Estimate

 H
 Holding times for preparation or analysis exceeded
 J
 Analyte

- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantization limit
- ND Not Detected at the Limit of Detection

Date: 27-Mar-17

| CLIENT:
Lab Order:
Project:
Lab ID: | LaBella Associates, P
C1703050
Former Emerson St L
C1703050-003A | Tag Number | | | | | 168.1161
3/12/2017 | |
|--|---|------------|---------|------|-------|----|-----------------------|--|
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed | |
| FIELD PARAMETERS | | FLD | | | | | Analyst: | |
| Lab Vacuum In | | -9 | | | "Hg | | 3/17/2017 | |
| Lab Vacuum Out | | -30 | | | "Hg | | 3/17/2017 | |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | то | -15 | | | Analyst: RJP | |
| 1,1,1-Trichloroe | thane | < 0.15 | 0.15 | | ppb∨ | 1 | 3/20/2017 11:28:00 PM | |
| 1,1-Dichioroetha | ane | < 0.15 | 0.15 | | pøbV | 1 | 3/20/2017 11:28:00 PM | |
| 1,1-Dichloroethe | ene | < 0.15 | 0.15 | | ррbV | 1 | 3/20/2017 11:25:00 PM | |
| Chloroethane | | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PM | |
| Chloromethane | | 0.82 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PM | |
| cis-1,2-Dichloroethene | | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PM | |
| Tetrachloroethylene < 0 | | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PM | |
| trans-1,2-Dichloroethene < 0.15 | | < 0.15 | 0.15 | | ppb∨ | 1 | 3/20/2017 11:28:00 PM | |
| Trichloroethene < 0,040 | | < 0,040 | 0.040 | | ppbV | 1 | 3/20/2017 11:28:00 PM | |
| Vinyl chloride | | < 0.040 | 0.040 | | ppbV | 1 | 3/20/2017 11:28:00 PM | |
| Surr: Bromofi | uorobenzene | 96.0 | 70-130 | | %REC | 1 | 3/20/2017 11:28:00 PM | |

| Qualifiers: | ** | Quantitation Limit | , | Results reported are not blank corrected |
|-------------|----|--|---|---|
| | в | Analyte detected in the associated Method Blank | E | Estimated Value above quantitation range |
| | Н | Holding times for preparation or analysis exceeded | J | Analyte detected below quantitation limit |

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- esults reported are not blank corrected.
- stimated Value above quantitation range
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Date: 27-Mar-17

| CLIENT:
Lab Order: | LaBella Associates, P
C1703050 | .C. | | lient Sample ID:
Tag Number: | - | | | |
|---------------------------------|-----------------------------------|--------|---------|---------------------------------|-------|-----------------|-----------------------|--|
| Project: | Former Emerson St L | | | | | Date: 3/12/2017 | | |
| Lab ID: C1703050-003A | | | | Matrix: | | AIR | | |
| Апајуses | | Result | **Limit | Qual | Units | DF | Date Analyzed | |
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | | TO-15 | | | Analyst: RJP | | |
| 1,1,1-Trichloroe | thane | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| 1,1-Dichloroethane | | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| 1,1-Dichloroethene | | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Chloromethane | | 1.7 | 0.31 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| cis-1,2-Dichloroethene < 0. | | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Tetrachloroethylene < 1.0 | | < 1.0 | 1.0 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| trans-1,2-Dichloroethene < 0.59 | | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Trichloroethene < (| | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Vinyl chloride | | < 0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |

 Qualifiers:
 \*\*
 Quantitation Limit

 B
 Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

.

ND Not Detected at the Limit of Detection

Date: 27-Mar-17

| CLIENT:
Lab Order: | LaBella Associates, P
C1703050 | P.C. | | | 1770-Outdoor-B
484.251 | | | | |
|--------------------------|-----------------------------------|---------------------|-----------|------------|---------------------------|--------|----------------------|--|--|
| Project: | Former Emerson St L | Landfill Collection | | | | 3/12/2 | 2017 | | |
| Lab ID: | C1703050-004A | Matrix | | | | | AIR | | |
| Analyses | | Result | **Limit | Qual Units | | ĎF | Date Analyzed | | |
| FIELD PARAMETERS | | | FLD | | | | Analyst: | | |
| Lab Vacuum In | | -6 | | "Hg | | | 3/17/2017 | | |
| Lab Vacuum Ou | Jt. | -30 | | "Но | | | 3/17/2017 | | |
| UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | TO- | 15 | | | Analyst: RJP | | |
| 1,1,1-Trichloroethane | | < 0.15 | 0.15 | ppb∨ | | 1 | 3/20/2017 7:50:00 PM | | |
| 1,1-Dichloroetha | an o | < 0,15 | 0.15 | ррь∨ | | 1 | 3/20/2017 7:50:00 PM | | |
| 1,1-Dichloroethe | ene | < 0.15 | 0.15 | ppb∨ | | 1 | 3/20/2017 7:50:00 PM | | |
| Chloroethane | | < 0.15 | 0.15 | Þøb∨ | | 1 | 3/20/2017 7:50:00 PM | | |
| Chloromethane | | 0.75 | 0.15 | ppb∨ | | 1 | 3/20/2017 7:50:00 PM | | |
| cis-1,2-Dichloroethene | | < 0.15 | 0.15 ppbV | | | 1 | 3/20/2017 7:50:00 PM | | |
| Tetrachioroethylene | | < 0.15 | 0.15 | ppbV | | 1 | 3/20/2017 7:50:00 PM | | |
| trans-1,2-Dichioroethene | | < 0.15 | 0.15 | ppbV | | 1 | 3/20/2017 7:50:00 PM | | |
| Trichloroethene | | < 0,040 | 0.040 | ppbV | | 1 | 3/20/2017 7:50:00 PM | | |
| Vinyl chloride | | < 0.040 | 0.040 | ppbV | | 1 | 3/20/2017 7:50:00 PM | | |
| Surr: Bromofil | uorobenzene | 96.0 | 70-130 | %REC | | 1 | 3/20/2017 7:50:00 PM | | |

| Qualifiers: ** | Quantitation Limit |
|----------------|--------------------|
|----------------|--------------------|

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

.

Date: 27-Mar-17

| CLIENT: | LaBella Associates, P | .C. | | C | lient Sample ID: | 1770- | Outdoor-B |
|-----------------|-----------------------|---------|---------|------|-------------------------|--------|----------------------|
| Lab Order: | C1703050 | | | | Tag Number: | 484.2 | 51 |
| Project: | Former Emerson St La | andfill | | | Collection Date: | 3/12/3 | 2017 |
| Lab ID: | C1703050-004A | | | | Matrix: | AIR | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed |
| 1UG/M3 W/ 0.: | 25UG/M3 CT-TCE-VC | | το | -15 | | | Analyst: RJF |
| 1,1,1-Trichloro | ethane | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| 1,1-Dichloroet | nané | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| 1,1-Dichloroet | lene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Chloromethane | e | 1.5 | 0.31 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| cis-1,2-Dichlor | oethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Tetrachioroeth | ylene | < 1.0 | 1.0 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| trans-1,2-Dichl | oroethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Trichloroethen | e | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Vinyl chloride | | < 0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM |

Qualifiers: \*\* Quant

\*\* Quantitation Limit

 ${\bf B}$ — Analyte detected in the associated Method Blank

......

,

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 27-Mar-17

| CLIENT:
Lab Order: | LaBella Associates, P
C1703050 | <sup>2</sup> .C. | | С | lient Sample ID:
Tag Number: | | • |
|-----------------------|-----------------------------------|------------------|---------|------|---------------------------------|--------|-----------------------|
| Project: | Former Emerson St L | andfill | | | Collection Date: | 3/12/2 | 2017 |
| Lab ID: | C1703050-005A | | | | Matrix: | AIR | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed |
| FIELD PARAM | ETERS | | F | LD | | | Analyst: |
| Lab Vacuum In | | -9 | | | "Hg | | 3/17/2017 |
| Lab Vacuum Oi | ut | -30 | | | "Hg | | 3/17/2017 |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | тс | -15 | | | Analyst: RJP |
| 1,1,1-Trichloroe | thane | < 0.15 | 0.15 | | ppb∨ | 1 | 3/21/2017 12:10:00 AN |
| 1,1-Dichloroeth: | ane | < 0.15 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AM |
| 1,1-Dichloroethe | ene | < 0.15 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AN |
| Chloroethane | | < 0.15 | 0.15 | | ppb∨ | 1 | 3/21/2017 12:10:00 AN |
| Chloromethane | | 0.89 | 0.15 | | p¢b∨ | 1 | 3/21/2017 12:10:00 AN |
| cis-1,2-Dichloro | ethene | < 0.15 | 0.15 | | ррв∨ | 1 | 3/21/2017 12:10:00 AN |
| Tetrachloroethy | lenø | < 0.15 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AN |
| trans-1,2-Dichlo | roethene | < 0.15 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AN |
| Trichloroethene | | < 0.040 | 0.040 | | рръV | 1 | 3/21/2017 12:10:00 AN |
| Vinyl chloride | | < 0,040 | 0.040 | | ppbV | 1 | 3/21/2017 12:10:00 AN |
| Surr: Bromofi | luorobenzene | 100 | 70-130 | | %REC | 1 | 3/21/2017 12:10:00 AN |

| Qualifiers: | ** | Quantitation Limit | | Results reported are not blank corrected | |
|-------------|----|--|----|---|---|
| | в | Analyte detected in the associated Method Blank | Е | Estimated Value above quantitation range | |
| | н | Holding times for preparation or analysis exceeded | Ļ | Analyte detected below quantitation limit | |
| | JN | Non-routine analyte. Quantitation estimated, | NÐ | Not Detected at the Limit of Detection | |
| | S | Spike Recovery outside accepted recovery limits | | | Ĩ |

Date: 27-Mar-17

| CLIENT:
Lab Order:
Project:
Lab ID: | LaBella Associates, P
C1703050
Former Emerson St La
C1703050-005A | | | | lient Sample ID:
Tag Number:
Collection Date:
Matrix: | 1182.
3/12/2 | 1161 |
|--|--|--------|---------|------|--|-----------------|-----------------------|
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed |
| 1UG/M3 W/ 0,2 | 5UG/M3 CT-TCE-VC | | то | -15 | | | Analyst: RJP |
| 1,1,1-Trichloroe | thane | < 0.82 | 0.82 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |
| 1,1-Dichloroeth | ane | < 0.61 | 0.61 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |
| 1.1-Dichloroeth | ene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |
| Chloroethane | | < 0.40 | 0.40 | | սց/mՅ | 1 | 3/21/2017 12:10:00 AM |
| Chloromethane | | 1.8 | 0.31 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |
| cis-1,2-Dichloro | ethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |
| Tetrachloroethy | lene | < 1.0 | 1.0 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |
| trans-1,2-Dichic | roethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |
| Trichloroethene | | < 0.21 | 0.21 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |
| Vinyl chloride | | < 0,10 | 0.10 | | ug/m3 | 1 | 3/21/2017 12:10:00 AM |

Qualifiers: \*\*

Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

.

.

GC/MS VOLATILES-WHOLE AIR

۰.

METHOD TO-15

QUALITY CONTROL SUMMARY

Page 25 of 213

CENTEK LABORATORIES, LLC

Date: 27-Mar-17

QC SUMMARY REPORT SURROGATE RECOVERIES

| CLIENT: | LaBella Associates, | P.C. | |
|-----------------|---------------------|---------------------------------------|--|
| Work Order: | C1703050 | | |
| Project: | Former Emerson St | Landfill | |
| Test No: | TO-15 | Matrix: A | |
| Sample ID | BR4FBZ | | |
| ALCSIUG-032017 | 96.0 | | |
| ALCSIUGD-03201 | 7 97.0 | | |
| AMB1UG-032017 | 93.0 | · · · · · · · · · · · · · · · · · · · | |
| C1703050-001A | 99.0 | | |
| C1703050-002A | 101 | | |
| C1703050-003A | 96.0 | | |
| C1703050-004A | 96.0 | | |
| C1703050-004A M | S 98.0 | | |
| C1703050-004A M | SD 99.0 | | |
| C1703050-005A | 100 | | |

| Acronym | | Surrogate | QC Limits |
|---------|---|--------------------|-----------|
| BR4FBZ | - | Bromofluorobenzene | 70-130 |
| | | | |
| | | | |
| | | | |
| | | | |
| j
 | | | |

\* Surrogate recovery outside acceptance limits

l

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\A0032002.D Tune Time : 20 Mar 2017 11:14 am

Daily Calibration File : C:\HPCHEM\1\DATA\A0032002.D

| (BFB) | (151) | (IS2) | (IS3) |
|-------|-------|-------|-------|
| | 19677 | 91887 | 76086 |

| File | Sample | DL | Surrogate | Recovery % | Internal St | andard Respo | onses |
|------------|-----------------|------|-----------|--------------|-------------|--------------|-------|
| A0032003.D | ALCS1UG-03201 | 7 | 96 | | 18587 | 86723 | 73319 |
| A0032004.D | AMB1UG-032017 | | 93 | | 18191 | 81621 | 66968 |
| A0032014.D | C1703050-004A | | 96 | | 13369 | 59517 | 48346 |
| A0032015.D | C1703050-004A | MS | 90 | | 12965 | 59084 | 49891 |
| A0032016.D | C1703050-004A | MSD | 99 | | 12927 | 61212 | 51251 |
| A0032017.D | C1703050-001A | | 99 | | 12944 | 59644 | 49626 |
| A0032018.D | C1703050-002A | | 101 | | 13210 | 60426 | 51042 |
| A0032019.D | C1703050-003A | | 96 | | 13112 | 60666 | 50616 |
| A0032020.D | C1703050-005A | | 100 | | 12939 | 60039 | 50085 |
| A0032026.D | C1703050-004A | 10x | 94 | | 1.4458 | 67096 | 55112 |
| A0032027.D | C1703050-001A | 10x | 92 | | 12952 | 62172 | 50174 |
| A0032028.D | C1703050-002A | 10x | 98 | | 12844 | 57925 | 46234 |
| A0032029.D | C1703050-003A | 10x | 92 | | 11878 | 56049 | 45186 |
| A0032030.D | C1703050-005A | 1.0x | 91 | | 11444 | 53989 | 44090 |
| A0032031.D | ALCS1UGD-0320 | 17 | 97 | | 11608 | 53720 | 44926 |
| t - fa | ils 24hr time d | chec | k *-fai | ils criteria | | | |

Created: Mon Mar 27 11:26:49 2017 MSD #1/

Date: 27-Mar-17

CENTEK LABORATORIES, LLC

| Page | | | | | | - 4 | ANALY | TICAI | ANALYTICAL QC SUMMARY REPORT | MMARY | REPOR | E |
|------|---|---|---------|--------------------------|--|------------------------------|----------------|--------------|--|---------------------------------------|---------------------------|-------------|
| 28 c | CLIENT; | LaBella Associates, P.C. | | | | | | | | | | |
| of 2 | Work Order: C1703050 | | | | | | | | | | | |
| 213 | Project: | Former Ernerson St Landfill | | | | | | μ. | TestCode: (| 0.25CT-TCE-VC | E-VC | |
| | Sample ID ALCS1UG-032017 | SampType: LCS | TestCod | TestCode: 0.25CT-TCE- | E- Units: pobV | | Prep Date: | تە | | RunNo: 12048 | 148 | |
| | Client ID: ZZZZ | Batch ID: R12048 | TestN | TestNo: TO-15 | | 7 | Analysis Date: | e: 3/20/2017 | 1 | SeqNo: 140948 | 1948 | |
| | Analyte | Result | Par | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD | RPDLimit | Qual |
| | 1,1,1-Trichloroethane | 0.9800 | 0.15 | - | o | 98.0 | 8 | 5 | | | | |
| | 1,1-Dichloroethane | 0.9700 | 0.15 | *** | 0 | 97.0 | 70 | 130 | | | | |
| | 1,1-Dichloroethene | 0.9200 | 0.15 | •••• | 0 | 92.0 | 62 | 130 | | | | |
| | Chloroethane | 1.050 | 0.15 | a rm | 0 | 106 | 70 | 55 | | | | |
| | Chloromethane | 1.250 | 0.15 | • | 0 | 125 | 20 | 130 | | | | |
| | cis-1,2-Dichbroethene | 0.9400 | 0.15 | ¥ | 0 | 94.0 | 70 | 130 | | | | |
| | Tetrachloroethytene | 1.040 | 0.15 | 4 117 | 0 | 104 | 02 | 130 | | | | |
| | trans-1,2-Dichloroethene | 0.9500 | 0.15 | *** | 0 | 95.0 | 70 | 130 | | | | |
| | Trichloroethene | 1.000 | 0.040 | **** | 0 | 100 | 70 | 130 | | | | |
| | Vinyl chloride | 1.040 | 0.040 | ¥** | 0 | 104 | 70 | 130 | | | | |
| | Sample ID ALCS1UGD-032017 | SampType: LCSD | TestCod | TestCode: 0.25CT-TCE- | E- Units: ppbV | | Prep Date | ы
ы | | RunNo: 12048 | 48 | |
| | Client ID: 22222 | Batch ID: R12048 | TestN | No: TO-15 | | - | Analysis Date: | e: 3/21/2017 | 17 | SeqNo: 140949 | 949 | |
| | Analyte | Result | PQL | SPK value | SPK Ref Vat | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD | RPDLimit | Quai |
| | 1,1,1-Trichloroethane | 060.1 | 0.15 | Υ π | Ð | 109 | 8 | 130 | 0.58 | 10.6 | 30 | |
| | 1,1-Dichloroethane | 1.070 | 0.15 | *** | 0 | 107 | 70 | 130 | 0.97 | 9.80 | 30 | |
| | 1,1-Dichlorcethene | 0.9700 | 0.15 | * ** | Ð | 97.0 | 02 | 130 | 0.92 | 5.29 | 30 | |
| | Chloroethane | 1.290 | 0.15 | *- | Ð | 129 | 70 | 130 | 1.06 | 19.6 | 90
30 | |
| | Chloromethare | 1.400 | 0.15 | + | Ċ | 140 | 02 | 130 | 1.25 | 11.3 | 30 | Ś |
| | cis-1,2-Dichlomethene | 1.030 | 0.15 | 4 | 0 | 103 | 70 | 130 | 0.94 | 9.14 | 30 | |
| | Tetrachloroethylene | 1.080 | 0.15 | 4 | 0 | 108 | 70 | 130 | 1.04 | 3.77 | 30 | |
| | Irans-1,2-Dichlomethene | 1.030 | 0.15 | * | ð | 103 | 70 | 130 | 0.95 | 8.08 | 30 | |
| | Trichlosoethene | 1.050 | 0,040 | ۲ | 0 | 105 | 70 | 130 | ۲ | 4.88 | 30 | |
| | | | | | | | | Ì | | | | |
| | Quanners: Accura rejains
Analyte detects | Analyte detected below quantitation limit | | L CSUITIAN
ND Not Det | estimated vante above quantitation range
Not Detected at the Limit of Detection | nengunon rang
i Detection | 8 | E & | Holding times for preparation of analysis exceeded
RPD outside accepted recovery limits | preparation of a
pied recovery lin | natysis excection
tits | 5 |
| | S Spike Recover | Spike Recovery outside accepted recovery timits | timits | | | | | | | | | Page 1 of 2 |

Centek Laboratories, LLC

Page 2 of 2

Holding times for preparation of analysis exceeded

RPD outside accepted recovery limits

¥ 2

E Estimated Value above quantitation range ND Not Detected at the Limit of Detection

> Analyte detected below quantitation limit Spike Recovery outside accepted recovery limits

 $-\infty$

Qualifiers:

Results reported are not blank corrected

Centek Laboratories, LLC

| | ORATORIES, LLC | |
|----------------|-----------------------|----------------------|
| | KLABORA | |
| 1 | ENTEK | |
| and the second | 5 | States of the second |

ANALYTICAL QC SUMMARY REPORT

Date: 27-Mar-17

LaBella Associates, P.C.

C1703050

Work Order: CLEENT:

H Page 30 of 213

| Project: Former Em | Former Enterson St Landfill | | | | | | | TestCode: 0.25CT-TCE-VC | 125CT-TCI | C-VC | |
|--|------------------------------------|--------|-------------------------------------|--|------|------------------------------|--|-------------------------------------|-------------------------------|---------------|------|
| Sample ID AMB1UG-032017
Client ID: ZZZZ | SampType: MBLK
Batch ID: R12048 | TestCo | sstCode: 0.25CT-TC
TestNo: TO-15 | TestCode: 0.25CT-TCE- Units: ppbV
TestNo: TO-15 | | Prep Date:
Analysis Date: | Prep Dale:
Analysis Date: 3/20/2017 | 11 | RunNo: 12048
SeqNo: 140947 | 48
947 | |
| Analyte | Result | Pol | SPK value | SPK value SPK Ref Val | %REC | LowLimit | HighLimit | %REC LowLimit HighLimit RPD Ref Val | 0dX% | %RPD RPDLimit | Qual |
| 1,1,1-Trichloroethane | < 0.15 | 0.15 | | | | | | | | | |
| 1,1-Dichloroethane | < 0.15 | 0.15 | | | | | | | | | |
| 1,1-Dichloroethene | < 0.15 | 0.15 | | | | | | | | | |
| Chloroethane | < 0.15 | 0.15 | | | | | | | | | |
| Chioromethane | < 0.15 | 0.15 | | | | | | | | | |
| cis-1,2-Dichloroethene | < 0.15 | 0.15 | | | | | | | | | |
| Tetrachloroethylene | < 0.15 | 0.15 | | | | | | | | | |
| trans-1,2-Dichloroethene | < 0.15 | 0.15 | | | | | | | | | |
| Trichleroethene | 0,040 | 0.040 | | | | | | | | | |
| Vinyl chtoride | < 0.040 | 0.040 | | | | | | | | | |

Centek Laboratories, LLC

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Н×

Estimated Value above quantitation range Estimated Value above quantitation ran;
 NO Not Detected at the Limit of Detection

Spike Recovery outside accepted recovery limits Analyte detected below quantization fimit Results reported are not blank corrected

> •

Qualifiers:

Date: 27-Mar-17

CENTEK LABORATORIES, LLC

| | | | | | -4 | ANALY | ANALYTICAL QC SUMMARY REPORT | 2C SUN | 1MARY | REPOF | сī |
|----------------------------|-----------------------------|--------|-----------------------|---------------|------|----------------|------------------------------|-------------|---------------|----------|------|
| CLIENT: LaBella A | LaBella Associates, P.C. | | | | | | | | | | |
| Work Order: C1703050 | | | | | | | | | | | |
| Project: Former En | Former Ernerson St Landfill | | | | | | Test | TestCode: 0 | 0.25CT-TCE-VC | -VC | |
| Sample (D C1703050-004A MS | SampType: MS | TestCo | TestCode: 0.25CT-TCE- | - Units: ppbV | | Prep Date: | je: | | RunNo: 12048 | 81 | |
| Client ID: 1770-Outdoor-B | Batch ID: R12048 | Test | FestNo: TO-15 | | | Analysis Date: | te: 3/20/2017 | | SeqNo: 140955 | 355 | |
| Analyle | Result | PQL | SPK value | SPK Ref Val | %REC | LowLimil | MighLimit RP | RPD Ref Val | %RPD | RPOLIMI | Quat |
| 1, 1, 1- Trichkoroethane | 1.030 | 0.15 | - | 0 | 103 | 20 | 130 | | | | |
| 1,1-Dichloroethane | 0.9900 | 0.15 | 4 | 0 | 0.66 | 70 | 130 | | | | |
| 1,1-Dichloroethene | 0.9300 | 0.15 | - | 0 | 93.0 | 02 | 130 | | | | |
| Chloroethane | 1.260 | 0.15 | F | o | 126 | 20 | 130 | | | | |
| Chloromethane | 2.100 | 0.15 | £ | 0.75 | 135 | 70 | 130 | | | | Ś |
| cis-1,2-Dichloroethene | 1.010 | 0.15 | - | D | 101 | 70 | 1 30 | | | | |
| Tetrachioroethylene | 1.020 | 0.15 | - | a | 102 | 70 | 130 | | | | |
| trans-1,2-Dichloroethene | 0.9800 | 0.15 | - | 0 | 98.0 | 70 | 130 | | | | |
| Trichloroethene | 1.040 | 0:040 | - | 0 | 104 | 70 | 130 | | | | |
| Vinyi chloride | 1.200 | 0.040 | - | 0 | 120 | 70 | 130 | | | | |
| Sample ID C1703050-004A MS | SampType: MSD | TestCo | TestCode: 0.25CT-TCE- | - Units: ppbV | | Prep Date: | | | RunNo: 12048 | 8 | |
| Client ID: 1770-Outdoor-B | Batch ID: R12048 | Test | Testho: TO-15 | | | Analysis Date: | le: 3/20/2017 | | SeqNo: 140956 | 156 | |
| Analyte | Result | Pal | SPK value S | SPK Ref Val | %REC | LowLimit | HighLimit RP | RPD Ref Val | %RPD | RPDLimit | Qual |
| 1,1,1-Frichloroethane | 1.000 | 0.15 | • | 0 | 100 | 22 | 130 | 1.03 | 2.96 | 8 | |
| 1,1-Dichloroethane | 1.040 | 0.15 | • | Ģ | ₫ | 70 | 130 | 0.99 | 4,93 | 8 | |
| 1,1-Dichleroethene | 0.9100 | 0.15 | ¥ | 0 | 91.0 | 02 | 130 | 0.93 | 2.17 | R | |
| Chloroethane | 1.240 | 0.15 | T | G | 124 | 62 | 130 | 1.26 | 1.60 | ጽ | |
| Chloromethane | 1.770 | 0.15 | t | 0.75 | 102 | 70 | 130 | 2.1 | 17.1 | ጽ | |
| cis-1,2-Dichloroethene | 1.030 | 0.15 | *** | 0 | 103 | 22 | 130 | 1.01 | 1.96 | 8 | |
| Tetrachioroethylene | 0065:0 | 0.15 | • | 0 | 0.66 | <u>م</u> | 130 | 1.02 | 2.99 | œ | |
| trans-1,2-Dichloroethene | 1.000 | 0.15 | • | Ģ | 100 | 70 | 130 | 0.98 | 2.02 | ጽ | |
| Trichbroethene | 1.010 | 0.040 | ¥. | 0 | 101 | 70 | 130 | 1.04 | 2.93 | 30 | |
| | | | | | | | | | | | |

Page 1 of 2

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

H &

Estimated Value above quantitation mage Not Detected at the Limit of Detection

Centek Laboratories, LLC

| Work Order:
Project: | LaBella Associates, P.C.
C1703050
Former Emerson St Land | CI 703050
Former Emerson St Landfill | IJ | | | | | | | Ľ | TestCode: 0.25CT-TCE-VC | 12SCT-TC | E-VC | |
|---|--|---|--------------|---------|---|--------|-------------|------|---------------------------|------------------------|-------------------------------------|---------------------------|-----------------------------------|------|
| Sample ID C1703050-004A MS SampType: MSD Client ID: 1770-Outdoor-B Batch ID: 8120 | 050-004A MS
httdoor-B | SampType: MSD
Batch ID: 812048 | ASD
M2048 | TestCox | TestCode: 0.25CT-TCE- Units: ppbV
TestMix: T0.45 | ц
С | Jaits: ppbV | | Prep Date: | | | RunNo: 12048 | 048 | |
| Analyte | | _ | Result | Pal | SPK value SPK Ref Val | Xds | Ref Val | %REC | turaiyaia uka
LowLimli | Low-Limit HighLimit RI | SREC LowLimit HighLimit RPD Ref Val | sequo: 140300
%RPD RPI | INU: 140336
%RPD RPDLimit Qual | Qual |
| Vinyl chloride | | | 1.240 | 0.040 | - | | 0 | 124 | 70 | 130 | 1.2 | 3.26 | 8 | |

| H | ¥ | |
|--|---|---|
| Estimated Vatue above quantitation range | Not Detected at the Limit of Detection | |
| ı | QN | |
| Results reported are not blank corrected | Analyse detected below quantitation limit | Spike Recovery outside accepted recovery timits |
| • | | S |
| Qualifiers: | | |

Page 2 of 2

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits

1แg/M3 Detection Limit January 2016

Method TO-15A Units=ppb

| Name | Amount | D(#1 | 10L#2 | 101#3 | 10L#4 | IDL#5 | 第7日 | 10 <i>1#</i> 7 | Average | StdDev | %Rec | ē |
|---|--------------|-----------|-------|-------|--------------|-------|------|----------------|---------|--------|--------------|----------|
| Propylene
Frann 13 | ព្រះ | 0.16 | 0.15 | 0.16 | 0,14 | 0, 16 | 0.14 | 0.16 | 0.153 | 0.010 | <u>98.1</u> | 0.030 |
| | 5.3
5.4 | 0,38 | 0,17 | 0.17 | 0,17 | 0,18 | 0,17 | 0.17 | 0.173 | 0.005 | 86.8 | 0.015 |
| | 0.15 | 0.19 | 0.18 | 0.16 | 0,18 | 0.18 | 0.2 | 0.17 | 0.180 | 0.013 | 83.3 | 0.041 |
| t total total | 0.15 | 0.78 | 0,17 | 0.17 | 0.17 | 0.18 | 0.17 | 0.18 | 0.174 | 0.005 | 86.1 | 0.017 |
| erry canalog
Distance | 61.0
21.2 | 0.17 | 0.16 | 0,16 | 0.15 | 0.16 | 0.15 | 0,15 | 0,157 | 0.008 | 95.5 | 0.024 |
| autoric
4 2 historicae | 61.0 | 0.18 | 0.16 | 0.17 | 0.18 | 0.18 | 0.19 | 0.19 | 0.179 | 0.011 | 84.0 | 0.034 |
| Demonstrate | 0.15
2.15 | 170 | 20 | 6.2 | 0.22 | 0.17 | 0.18 | 0.23 | 0.201 | 0.021 | 74.5 | 0.065 |
| Characteria | 0.15 | 0.18 | 02 | 0.21 | 0.18 | 0.22 | 0.16 | 0.21 | 0,194 | 0.021 | 77.2 | 0.056 |
| | 0.15
\$ | 0.19 | 0.19 | 0,16 | 0.19 | 0.19 | 0.18 | 0.19 | 0,184 | 0.011 | 81.4 | 0.036 |
| | 0.15 | 0.16 | 0.16 | 0.18 | 0.17 | 0.19 | 0.18 | 0.19 | 0.176 | 0.013 | 85.4 | 0.040 |
| Mind Particip | 0.15 | 0.22 | 0.17 | 0.19 | 0.16 | 0.18 | 0.21 | 0.17 | 0.186 | 0.022 | 80.8 | 0200 |
| very oromoe | 0.15 | 0.17 | 0.15 | 0.16 | 0.16 | 0.17 | 0.17 | 0.17 | 0.164 | 0.006 | 913 | 0.025 |
| | 0.15 | 0.13 | 0.17 | 0.17 | 0.18 | 0.19 | 0,17 | 0.18 | 0.177 | 0.008 | 64.7 | 0.024 |
| Dentono | | 0.2 | 0.17 | 0.18 | 0.15 | 0.15 | 0.18 | 0.14 | 0.167 | 0.021 | 89.7 | 0.067 |
| | 61.0
21.0 | 0.18
 | 0,17 | 0.18 | 0.16 | 0.17 | 0.2 | 0.16 | 0.174 | 0.014 | 86.1 | 0.044 |
| tauptopytalcontor
4 4 4 fabiar on an | 0.15
2 | 27 | 0.2 | 0.19 | 0.2 | 0.19 | 0.21 | 0.19 | 0.200 | 0.012 | 75.0 | 0.036 |
| | 0.15 | 20 | 0.17 | 0.19 | 0,19 | 0.19 | 0,18 | 0.18 | 0.186 | 0.010 | 80.8 | 0.034 |
| | 0.15 | 0.17 | 0.16 | 0.18 | 0.18
0.18 | 0.18 | 0.17 | 0.17 | 0.173 | 0.008 | 86.8 | 0.024 |
| | 0.15 | 0.21 | 0,2 | 0.2 | 0.21 | 0,2 | 0.2 | 0.18 | 0.2080 | 0.040 | 75.0 | 0.021 |
| Wetnylene chloride | 0.15 | 0.2 | 0.18 | 0.19 | 0.18 | 0.2 | 0.19 | 0.17 | 0.187 | 0.011 | 80.2 | 0.035 |
| Allyli chorae | 0.15 | 0.18 | 0.17 | 0.16 | 0.18 | 0.18 | 0.2 | 0.18 | 0.179 | 0.012 | 2005
84 D | 0.038 |
| | 0.15 | 0,2 | 0.17 | 0.19 | 0.19 | 02 | 0.18 | 0.19 | 0,189 | 0.011 | 79.5 | 0.034 |
| Trans-1, 2-dichiocoethene | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 | 0,16 | 0.14 | 0.15 | 0.146 | 0.008 | 102.9 | 0.025 |
| memyt tert-butyt ether | 0.15 | 0,14 | 0.14 | 0.14 | 0.13 | 0.15 | 0,14 | 0.13 | 0.139 | 0.007 | 108.2 | 0.027 |
| t, I-otchioneurane
Manimetric | 0.15 | 0.17 | 0.15 | 0.16 | 0.15 | 0.17 | 0.16 | 0.16 | 0.160 | 0.008 | 93.8 | 0.026 |
| Viriyi aceaale
Matria Ethia Variati | 0.15 | 0,14 | 0,13 | 0.14 | 0.13 | 0.13 | 0.13 | 0.12 | 0.131 | 0.007 | 14,1 | 0.022 |
| | 0.75 | 0.17 | 0.17 | 0.16 | 0.16 | 0.15 | 0.13 | 0.12 | 0.151 | 0.020 | 99.1 | 0.061 |
| users, 2-utu ini ottatele
Usersio | 61.0 | 0.15
2 | 0.14 | 0.15 | 0.15 | 0.16 | 0.15 | 0.14 | 0.150 | 0.008 | 100.0 | 0.026 |
| CENALIE
Citaul contrain | 0.15 | 0.12 | 0.14 | 0.13 | 0.13 | 0.13 | 0.12 | 0,12 | 0.127 | 0.008 | 118.0 | 0.024 |
| | 0.15
21.0 | 0.16 | 0.17 | 0,14 | 0.15 | 0.14 | 0.16 | 0.13 | 0.150 | 0.014 | 100.0 | 0.044 |
| | 0.75 | 0,16 | 0.16 | 0.16 | 0.16 | 0.17 | 0.16 | 0.17 | 0.163 | 0.005 | 92.1 | 0.015 |
| | 0.15 | 0,15 | 0.13 | 0.15 | 0,15 | 0.15 | 0,15 | 0,14 | 0.146 | 0,008 | 102.9 | 0.025 |
| 1,2-Ochoroethane | 0.15 | 0.16 | 0.15 | 0, 16 | 0,16 | 0.17 | 0.16 | 0.17 | 0.161 | 0.007 | 92.9 | 0.022 |
| 1,1,1-trichloroethane | 0.15 | 0,17 | 0.16 | 0.17 | 0.17 | 0.16 | 0.17 | 0.17 | 0.167 | 0.005 | 89.7 | 0.015 |
| cyclonexarie | 0.15 | 0.14 | 0.14 | 0,14 | 0.15 | 0.15 | 0.14 | 0.14 | 0.143 | 0.005 | 105.0 | 0.015 |
| Carbon tetrachioride | 0.15 | 0.13 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.149 | 0.009 | 101.0 | 0.028 |
| benzene | 0.15 | 0.15 | 0.16 | 0,16 | 0.15 | 0.16 | 0.16 | 0.16 | 0.157 | 0.005 | 95.5 | 0.015 |
| Methyl methacrylate | 0,15 | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 | 0.15 | 0,11 | 0.140 | 0.014 | 107.1 | 0.044 |
| 1,4-dioxane | 0,15 | 0,38 | 0.18 | 0.19 | 0.18 | 0.15 | 0.17 | 0.12 | 0.167 | 0.024 | 69.7 | 0,076 |
| Confidential | | | | | | | | | | | 1/8/ | 1/8/2016 |
| | | | | | | | | | | | : | |

| Centek Laboratories
IDI Studu | | | | ň | 1ug/M3 Detection Limit | tion Limit | | | | | Method TO-15A |)-15A |
|---|-----------|---------|-----------|------|------------------------|----------------|--------------|-------|----------|-------|------------------|-----------|
| Name | Amount | 101 #1 | (# 10) | | January 2016
Ini 44 | 1016
(ni ≝c | 374 (C) | 14 P. | | | Uait
Second | Uaits=ppb |
| 2.2.4-frimethylnenfane | 0.15 | 0.15 | 0.15 | 14 | 910 | 244 | 0 40
D 40 | | afigiant | anuev | PARC
Port | |
| Hantana (transmission of the second s | | | | | 29 | * *
5 | | 010 | 0.101 | 0,007 | | 220.0 |
| Trichlemethers | | 71.0 | 5.5 | 0.13 | 0.12 | E.13 | 0.13 | 0.13 | 0.127 | 0.005 | 118.0 | 0.015 |
| | 0.13 | 0.14 | 41.1)
 | 0.14 | 0.15 | 0.15 | 0.14 | 0.15 | 0.146 | 0.005 | 102.9 | 0.017 |
| | 0.15 | 0.16 | 0.17 | 0,17 | 0.16 | 0.17 | 0.16 | 0,16 | 0.164 | 0.005 | 91.3 | 0.017 |
| Bromodichioromethane | 0.15 | 0.16 | 0,16 | 0.16 | 0.15 | 0,16 | 0.17 | 0.16 | 0.160 | 0.006 | 93.8 | 0.018 |
| cis-3,3-dichloropropene | 0.15 | 0.13 | 0,13 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.133 | 0.005 | 112.9 | 0.015 |
| trans-1,3-dichloropropene | 0,15 | 0.16 | 0.13 | 0.13 | 0.14 | 0.14 | 0.14 | 0.16 | 0.143 | 0,013 | 105.0 | 0.039 |
| 1,1,2-trichloroethane | 0.15 | 0.16 | 0.15 | 0.16 | 0.15 | 0.16 | 0.18 | 0.17 | 0.161 | 0.011 | 8 2.9 | 0.034 |
| Toluene | 0.15 | 0,14 | 0.14 | 0,14 | 0.13 | 0,16 | 0.14 | 0.15 | 0.143 | 0.010 | 105.0 | 0:030 |
| Methyl isobutyl Ketone | 0,15 | 0,18 | 0.18 | 0.18 | 0.18 | 0,16 | 0,18 | 0,15 | 0,173 | 0.013 | 86.8 | 0.039 |
| Dibromochloromethane | 0.15 | 0.16 | 0.16 | 0.17 | 0,18 | 0.16 | 0.17 | 0,18 | 0.169 | 0.003 | 0.69 | 0.028 |
| Methyl Buryl Ketone | 0.15 | 0.17 | 0.16 | 0,18 | 0.17 | 0.16 | 0.17 | 0.14 | 0.164 | 0.013 | 91,3 | 0,040 |
| 1,2-dibromoethane | 0.15 | 0.16 | 0,17 | 0.16 | 0.16 | 0.16 | 0,16 | 0,17 | 0.163 | 0.005 | 92.1 | 0.015 |
| Tetrachlomethylene | 0,15 | 0.16 | 0.17 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.164 | 0.005 | 91.3 | 0.017 |
| Chlorobenzene | 0.15 | 0.16 | 0.16 | 0.16 | 0.17 | 0.15 | 0.17 | 0,17 | 0,163 | 0.008 | 8 | 0.024 |
| 1,1,1,2-feirachloroefhane | 0.15 | 0.17 | 0,17 | 0,17 | 0,18 | 0.16 | 0.18 | 0.17 | 0.171 | 0.007 | 87.5 | 0.022 |
| Ethybenzene | 0.15 | 0.13 | 0,14 | 0,14 | 0.14 | 0.12 | 0.14 | 0.13 | 0.134 | 0.003 | 117 | 0.025 |
| Ш&р-хуеле | 0,3 | 0.25 | 0.25 | 0.25 | 023 | 0.25 | 0.25 | 0.25 | 0.247 | 0.003 | 121.4 | 0.024 |
| Nonane | 0,15 | 0.11 | 0.11 | 0.15 | 0.11 | 0.1 | 0.1 | 0,11 | 0.107 | 0.005 | 140.0 | 0.015 |
| Styrene | 0,15 | 0.12 | 0.13 | 0.13 | 0.11 | 0.12 | 0.13 | 0.12 | 0.123 | 0.008 | 122.1 | 0.024 |
| Bromotorm | 0,15 | 0.15 | 0.15 | 0,16 | 0.15 | 0.15 | 0.17 | 0.16 | 0.156 | 0.008 | 96 .3 | 0.025 |
| o-xytene | 0.15 | 0.11 | 0.12 | 0.12 | 0.14 | 0.14 | 0.12 | 0.11 | 0.123 | 0.013 | 122.1 | 0.039 |
| Currene | 0.15 | 0.12 | 0,13 | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 | 0.127 | 0.005 | 118.0 | 0.015 |
| Bramofluorobenzere | Y- | 0.88 | 6°0 | 60 | 0.87 | 0.89 | 0.89 | 0.9 | 0.890 | 0.012 | 112.4 | 0.036 |
| 1,1,2,2-fetrachloroethane | 0.15 | 0,16 | 0.16 | 0.17 | 0.16 | 0.17 | 0.17 | 0.16 | 0.164 | 0.005 | 91.3 | 0.017 |
| Propy Denzene | 0,15
 | 0.13 | 0.12 | 0.13 | 0.13 | 0.11 | 0.13 | 0.11 | 0.123 | 0.010 | 122.1 | 0.030 |
| 2-Chlorodoluene | 0.15 | 0.13 | 0.13 | 0.13 | 0.14 | 0.13 | 0.12 | 0.13 | 0.130 | 0.006 | 115.4 | 0.018 |
| 4-ethyltotuene | 0.15 | 0,11 | 0,12 | 0.12 | 0.12 | 0.13 | 0.13 | 0.11 | 0,120 | 0.008 | 125.0 | 0.026 |
| 1,3,5-frimethylbenzene | 0,15 | 0.12 | 0,13 | 0.14 | 0.12 | 0.13 | 0.13 | 0.13 | 0,129 | 0.007 | 116.7 | 0.022 |
| 1,2,4-trimethybenzene | 0.15 | 0
12 | 0.13 | 0.12 | 0.12 | 0.13 | 0.12 | 0.12 | 0.123 | 0.005 | 12,1 | 0.015 |
| 1,3-dichlorcbenzene | 0.15 | 0,14 | 0,14 | 0.14 | 0.13 | 0.14 | 0.13 | 0.14 | 0,137 | 0.005 | 109.4 | 0.015 |
| benzyl chloride | 0.15 | 0.13 | 0.16 | 0.13 | 0.15 | 0,13 | 0.15 | 0.16 | 0.144 | 0.014 | 104.0 | 0.044 |
| 1,4-dichtorobenzene | 0.15 | 0.13 | 0,11 | 0.12 | 0.12 | 0,12 | 0.12 | 0.13 | 0.121 | 0.007 | 123.5 | 0.022 |
| 1,2,3-trimethybenzene | 0.15 | 0.12 | 0.11 | 0,12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.116 | 0,005 | 129.6 | 0.017 |
| 1,2-dichionobenzene | 0.15 | 0.13 | 0,14 | 0.14 | 0.14 | 0,14 | 0.14 | 0.13 | 0.137 | 0.005 | 109.4 | 0.015 |
| 1,2,4-trictitorobenzene | 0,15 | 0.1 | 0.11 | 0,1 | 0.11 | 0.11 | 0.12 | 0.1 | 0.107 | 0.008 | 140.0 | 0.024 |
| Naphthalene | 0.15 | 0.13 | 0.13 | 0.14 | 0.11 | 0.12 | 0.14 | 0.12 | 0.127 | 0.011 | £18.0 | 0.035 |
| Hexachloro-1,3-butadiane | 0.15 | 0.16 | 0,17 | 0.17 | 0.17 | 0.16 | 0.16 | 0.16 | 0.164 | 0.005 | 91.3 | 0.017 |
| | | | | | | | | | | | | |

Confidential

1/8/2016

Centek Laboratories, LLC

| | | | 2 2 | 2 5 | , ug |
|---|----------------|----------------------|-----------------|--------------------|-------------|
| zd TO-15A
Units≕ppb | ٦ | 0.028 | | 50 0
0 03 | 0.036 |
| Method TO-15A
Units=ppb | %Rec | 101.4 | 1.101 | 101.4 | 142.9 |
| | StdDev | 0.009 | 0.010 | 0.012 | 0.012 |
| | s. | 0.099 | 0.034 | 660.0 | 0.070 |
| | | 0.1
0.10 | 000
000 | 0.09 | 0.05 |
| - | 10.#S | 0.09 | 800 | 60:0 | 0.07 |
| ion Limit
16 | 10L#5 | 0.03
0.03 | 0.08 | 0.1 | 0,05 |
| 0.25ug/M3 Delection Limit
January 2016 | EN-FF | 0.09
0.09 | 0.08 | 0.09 | 0.06 |
| 0.254 | 10.FC | 0.08 | 0.07 | 0.09 | 0.07 |
| <u>4</u>
2 | ¥ da | 0.11 | 0.1 | 0.12 | 0.08 |
| 14 | Ŭ. | 0.1 | 0.1 | 0.11 | 60.0 |
| A more A | | 0,0 | 0.1 | 0.1 | 0,1 |
| Centek Laborztones
IDL Study
Name | Vitra Chiraida | carbon tetrachloride | Trichloroethene | Tetrachiomethylene | Naphthalene |

ł

1/15/2016

\*

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

where: Ax = area of the characteristic ion for the compound being measured Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

% D = <u>(RRFc - mean RRFi) \* 100</u> mean RRFi

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

where: Ax = area of the characteristic ion for the compound being measured

- Ais = area of the characteristic ion for the specific internal standard of the compound being measured
- Is = Concentration of the internal standard injected (ppbv)
- RRF= relative response factor for the compound being measured

Df = Dilution factor

,

-

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

.

.

- .

Page 37 of 213

.

.

Date: 27-Mar-17

| CLIENT: | LaBella Associates, P. | .C. | | Clier | it Sample ID: | 1770- | IAQ-2B |
|------------------|------------------------|---------|---------|---------|----------------|--------|-----------------------|
| Lab Order: | C1703050 | | | | Tag Number: | 368.2 | 59 |
| Project: | Former Emerson St La | ındfill | | Co | llection Date: | 3/12/2 | 2017 |
| Lab ID: | C1703050-001A | | | | Matrix: | AIR | |
| Analyses | | Result | **Limit | Qual Ur | nits | DF | Date Analyzed |
| | ETERS | | FL | .D | | | Analyst: |
| Lab Vacuum In | | -7 | | "He | 9 | | 3/17/2017 |
| Lab Vacuum Oi | ut | -30 | | "Hi | 9 | | 3/17/2017 |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | TO | -15 | | | Analyst: RJP |
| 1,1,1-Trichloroe | ethane | < 0.15 | 0.15 | ppl | b∨ | 1 | 3/20/2017 10:03:00 PM |
| 1,1-Dichloroetha | aue | < 0.15 | 0.15 | ppi | ЬV | 1 | 3/20/2017 10:03:00 PN |
| 1,1-Dichloroethe | ene | < 0.15 | 0.15 | iqq | bV | 1 | 3/20/2017 10:03:00 PN |
| Chloroethane | | < 0.15 | 0.15 | ppl | Ь∨ | 1 | 3/20/2017 10:03:00 PN |
| Chloromethane | | 0.95 | 0.15 | iqq | bV | 1 | 3/20/2017 10:03:00 PN |
| cis-1,2-Dichloro | ethene | < 0.15 | 0.15 | ppl | Ьν | 1 | 3/20/2017 10:03:00 PN |
| Tetrachloroethy | fene | < 0.15 | 0.15 | ppl | bV | 1 | 3/20/2017 10:03:00 PN |
| trans-1,2-Dichlo | proethene | < 0.15 | 0.15 | ppi | Þν | 1 | 3/20/2017 10:03:00 PN |
| Trichloroethene | | < 0.040 | 0.040 | ppl | ЬV | 1 | 3/20/2017 10:03:00 PN |
| Vinyl chloride | | < 0.040 | 0.040 | ppl | bV | 1 | 3/20/2017 10:03:00 PN |
| Surr: Bromofi | luorobenzene | 99.0 | 70-130 | %F | REC | 1 | 3/20/2017 10:03:00 PN |

| Qualifiers: | ** | Quantitation Limit | , | Results reported are not blank corrected | |
|-------------|----|--|----|---|-------------|
| | в | Analyte detected in the associated Method Blank | E | Estimated Value above quantitation range | |
| | н | Holding times for preparation or analysis exceeded | J | Analyte detected below quantitation limit | |
| | лţ | Non-routine analyte, Quantitation estimated. | ND | Not Detected at the Limit of Detection | D |
| | S | Spike Recovery outside accepted recovery limits | | | Page 1 of 5 |

Date: 27-Mar-17

| CLIENT:
Lab Order: | LaBella Associates, P
C1703050 | .C. | | C | lient Sample ID:
Tag Number: | | - |
|-----------------------|---------------------------------------|---------|---------|------|---------------------------------|--------|-----------------------|
| Project: | Former Emerson St La | andfill | | | Collection Date: | 3/12/2 | 2017 |
| Lab ID: | C1703050-001A | | | | Matrix: | AIR | |
| Analyses | · · · · · · · · · · · · · · · · · · · | Result | **Limit | Qual | Units | ÐF | Date Analyzed |
| UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | то | -15 | | | Analyst: RJP |
| 1,1,1-Trichioroe | thane | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM |
| 1,1-Dichloroetha | ane | < 0.61 | 0.61 | | ug/m3 | t | 3/20/2017 10:03:00 PM |
| 1,1-Dichloroethe | ene | < 0.59 | 0.59 | | ug/m3 | 7 | 3/20/2017 10:03:00 PM |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM |
| Chloromethane | | 2.0 | 0.31 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM |
| cis-1,2-Dichloro | ethene | < 0,59 | 0,59 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM |
| Tetrachloroethy | lene | < 1.0 | 1.0 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM |
| trans-1,2-Dichlo | roethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM |
| Trichloroethene | | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM |
| Vinyl chloride | | < 0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM |

| Qualifiers: | ф ж. | Quantitation Limit | 1 | Results reported are not blank corrected | |
|-------------|------|--|----|---|-------------|
| | в | Analyte detected in the associated Method Blank | £ | Estimated Value above quantitation range | |
| | н | Holding times for preparation or analysis exceeded | J | Analyte detected below quantitation limit | |
| | JN | Non-routine analyte. Quantitation estimated. | ND | Not Detected at the Limit of Detection | |
| | S | Spike Recovery outside accepted recovery limits | | | Page 1 of 5 |

Quantitation Report (QT Reviewed) Data File ; C:\HPCHEM\1\DATA\A0032017.D Vial: 12 Acq On : 20 Mar 2017 10:03 pm Sample : C1703050-001A Misc : A312\_1UG **Operator:** RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:13 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.53128129441.00 ppb-0.0135) 1,4-difluorobenzene11.93114596441.00 ppb0.0050) Chlorobenzene-d516.81117496261.00 ppb0.00 System Monitoring Compounds65) Bromofluorobenzene18.4595368700.990.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 99.00%

 Target Compounds
 Qvalue

 3) Freon 12
 4.54
 85
 68820
 0.66
 ppb
 99

 4) Chloromethane
 4.71
 50
 14825
 0.95
 ppb
 94

 14) Freon 11
 6.31
 101
 33056
 0.34
 ppb
 99

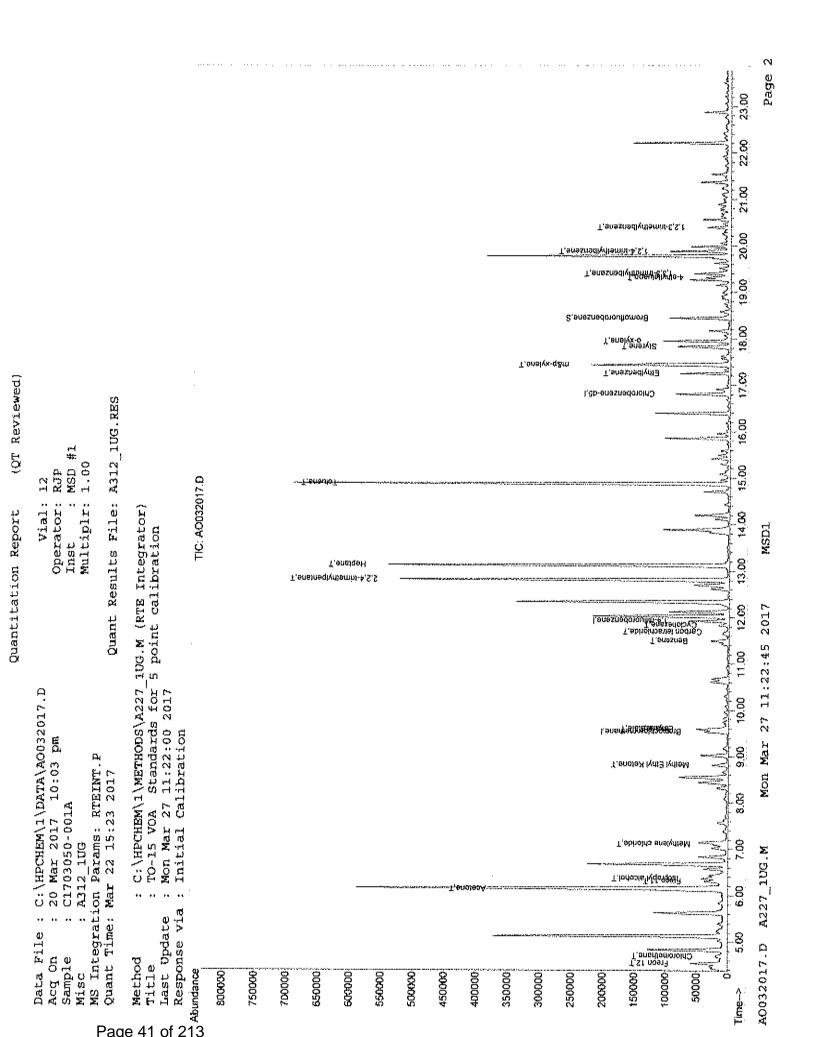
 15) Acetone
 6.13
 58
 83585
 7.87
 ppb
 #
 1

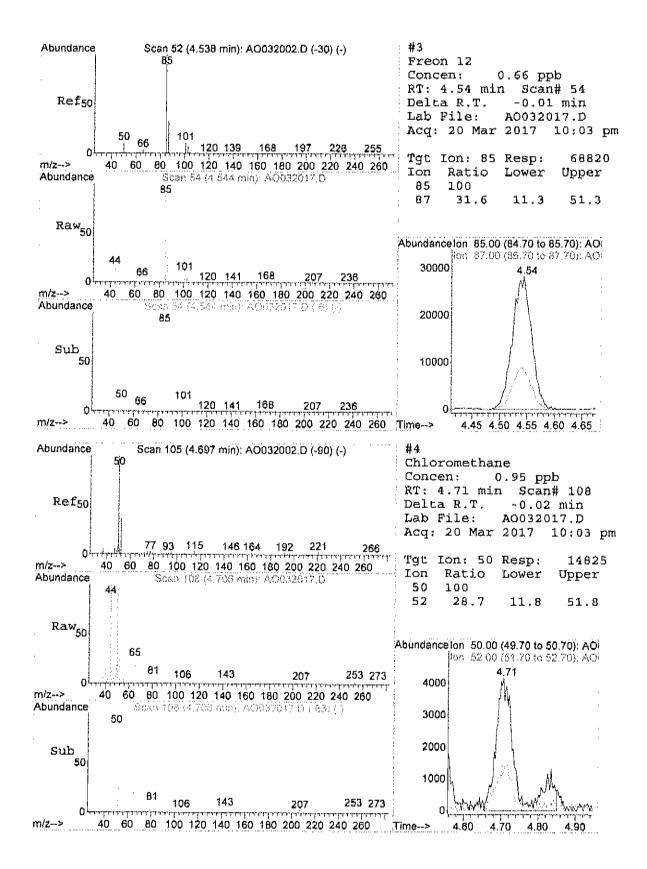
 17) Isopropyl alcohol
 6.37
 45
 53750
 1.79
 ppb
 #
 10

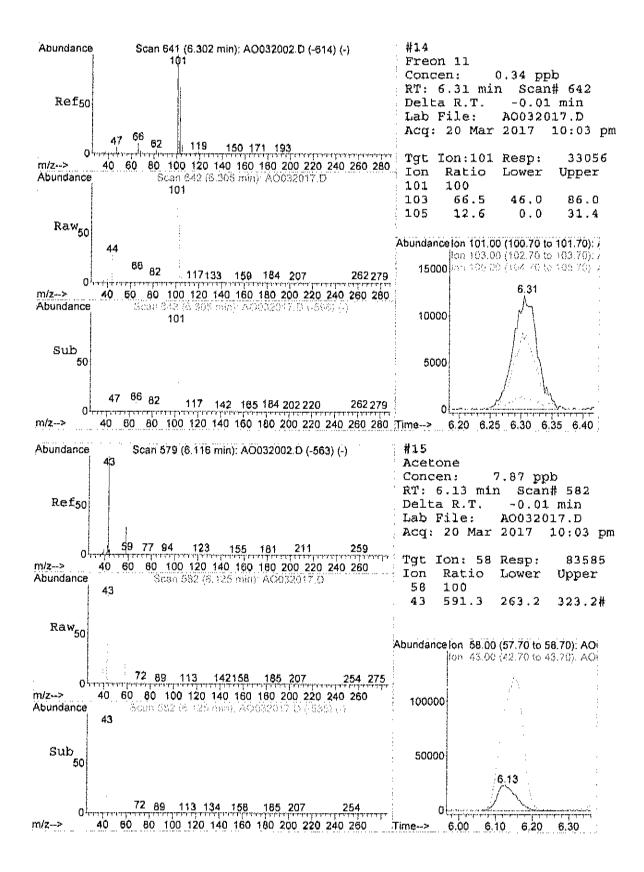
 20) Methylene chloride
 7.10
 84
 12647
 0.64
 ppb
 #
 76

 20) Hexane
 9.59
 57
 27156
 0.87
 ppb
 #
 10

 30 Hexane
 9.59
 57
 27156
 0.87
 ppb
 #
 79

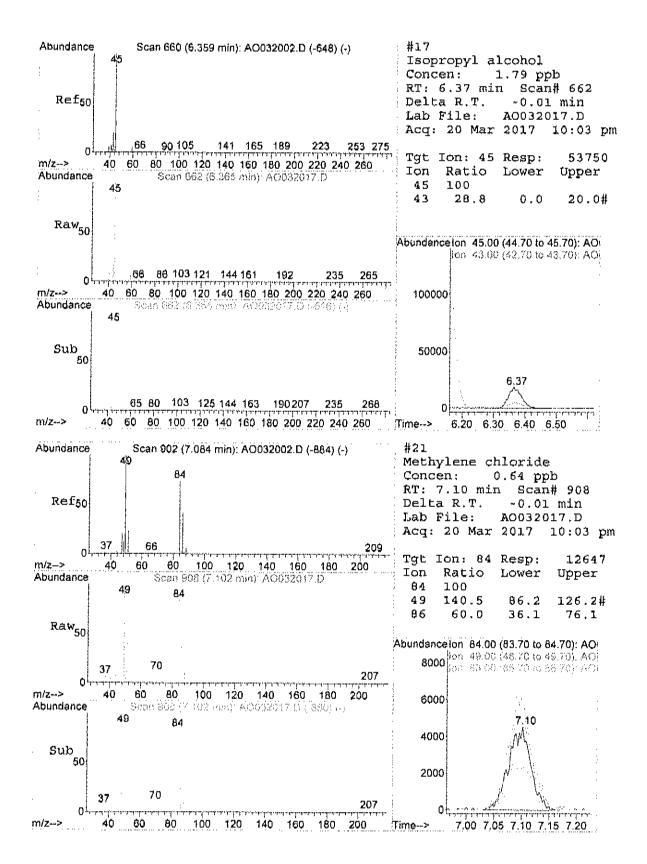

 31) Ethyl acetate
 9.59
 43
 24699
 0.38
 ppb
 #
 79

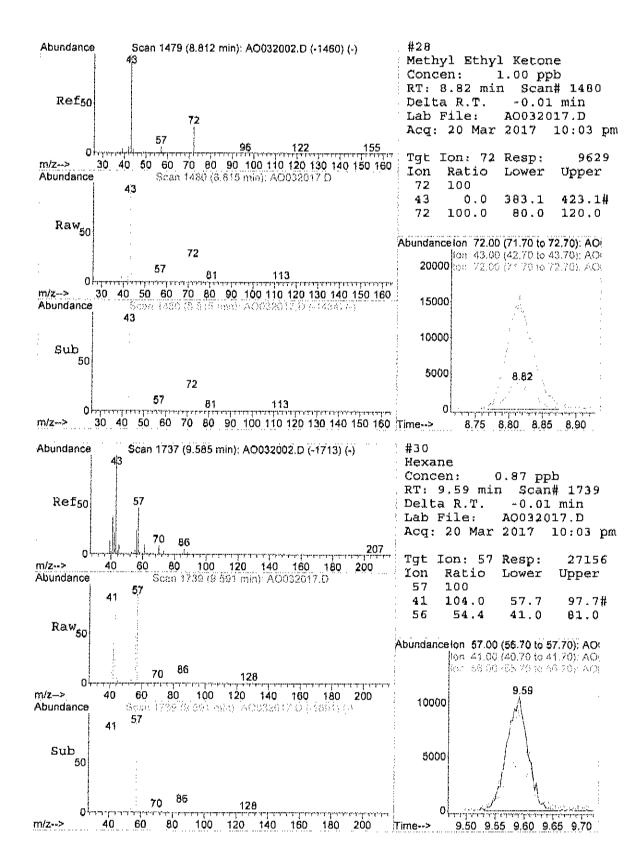

 36) Carbon tetrachloride
 11.69
 117
 4781m f
 0.08
 ppb
 #


 39) Benzene
 11.49
 76
 33042
 0.54
 ppb
 81

 43) Heptane Target Compounds Qvalue

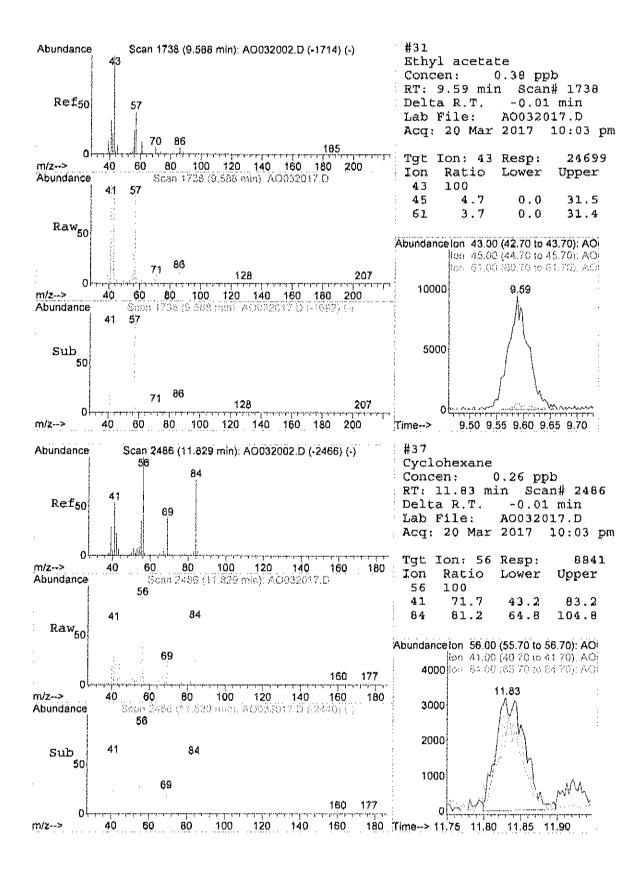
(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032017.D A227\_1UG.M Mon Mar 27 11:22:44 2017 MSD1 Page 40 of 213





A0032017.D A227\_1UG.M Page 43 of 213

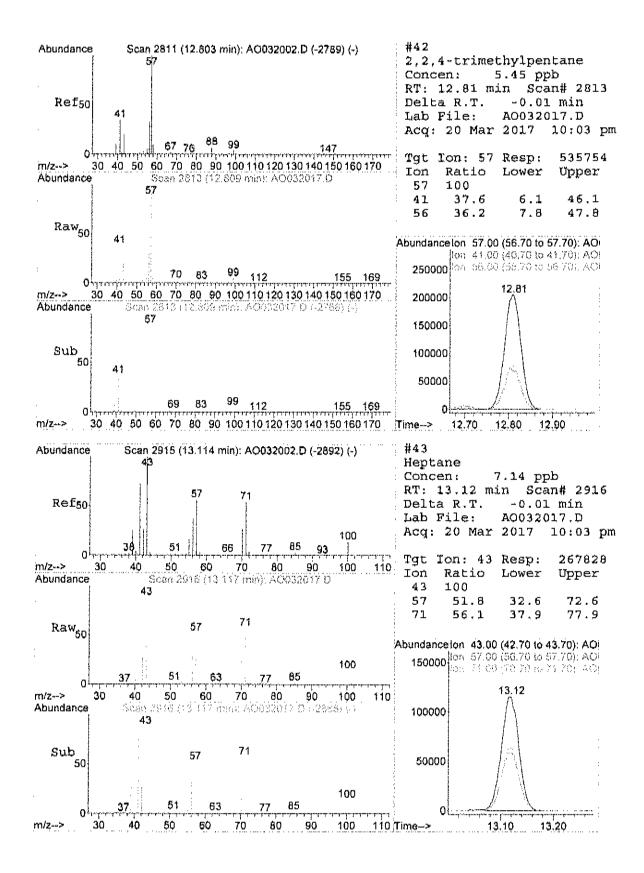
Page 4



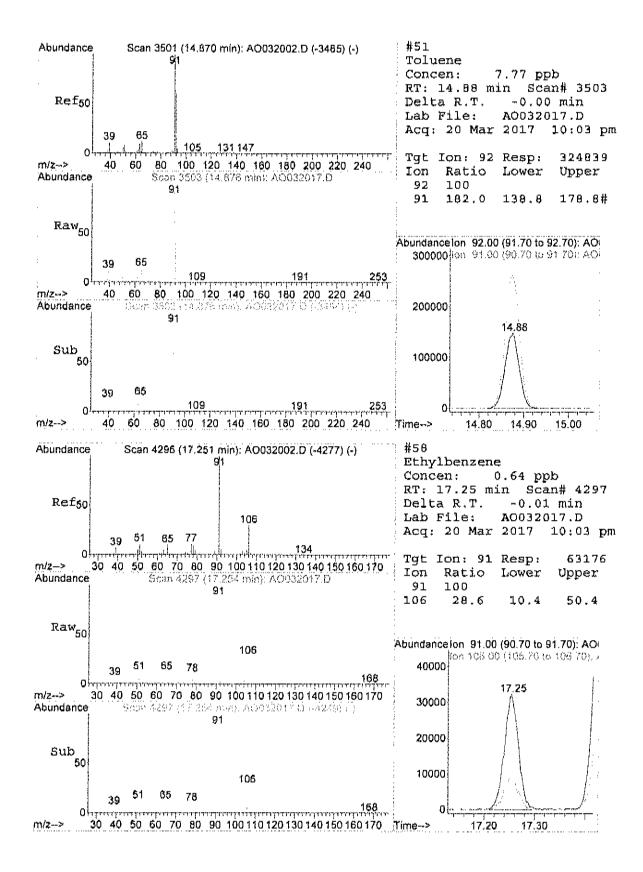
A0032017.D A227\_1UG.M Page 44 of 213

A0032017.D A227\_1UG.M Page 45 of 213

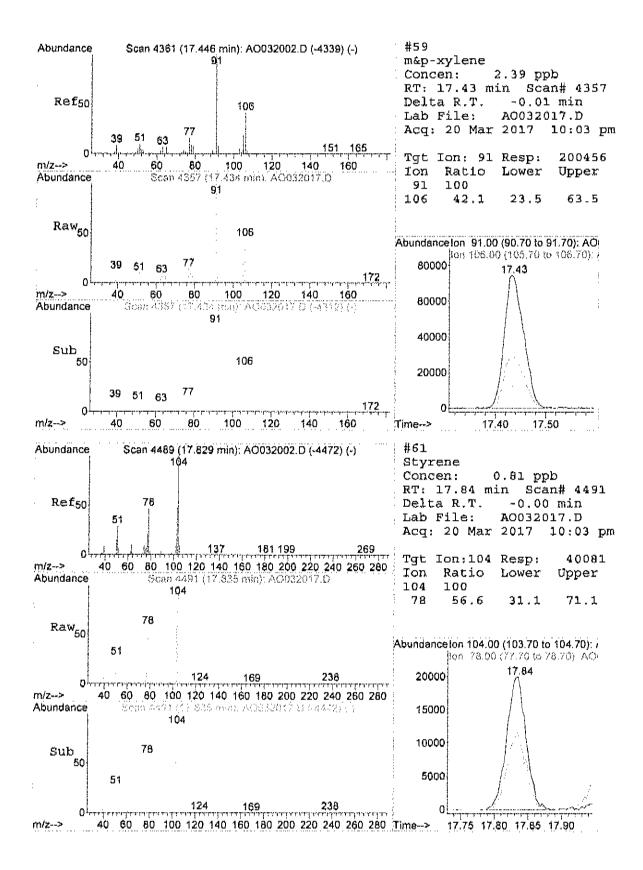
Page 6

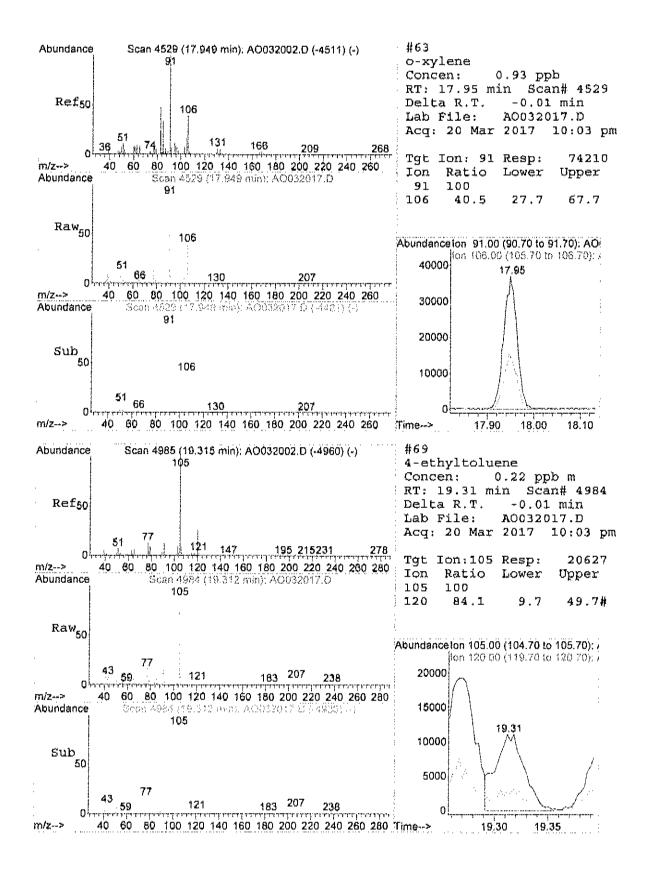


А0032017.D А227\_1UG.M Page 46 of 213

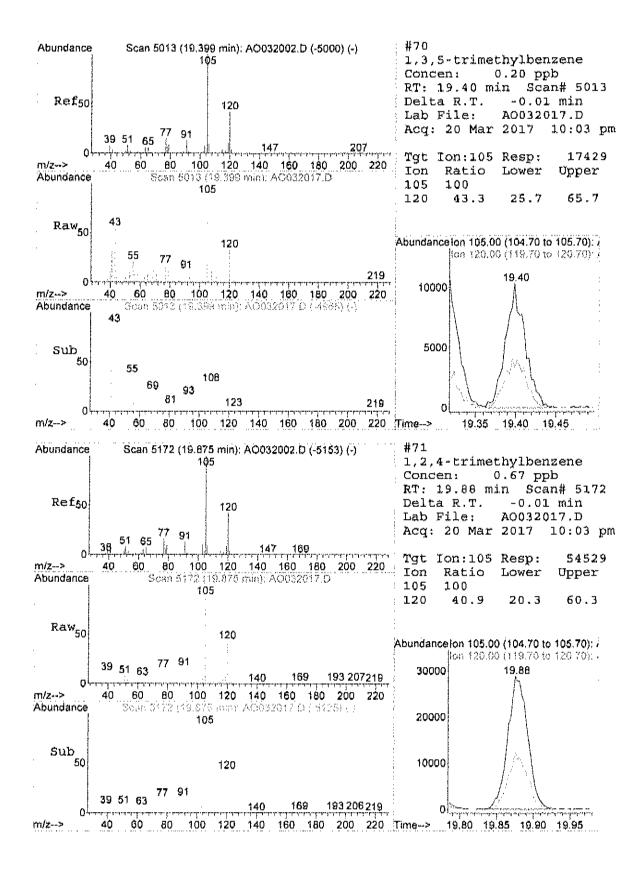


A0032017.D A227\_1UG.M Page 47 of 213

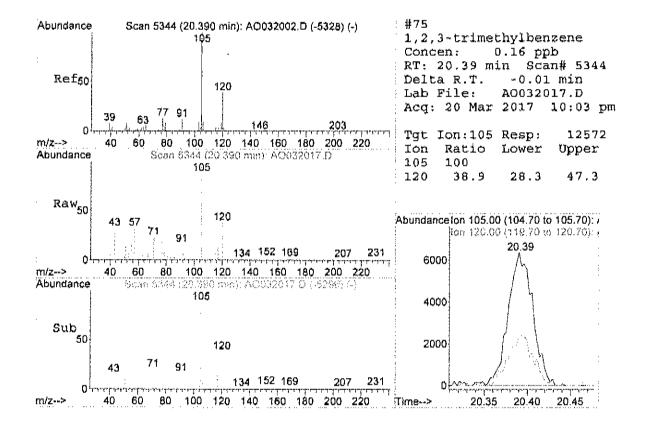

Page 8



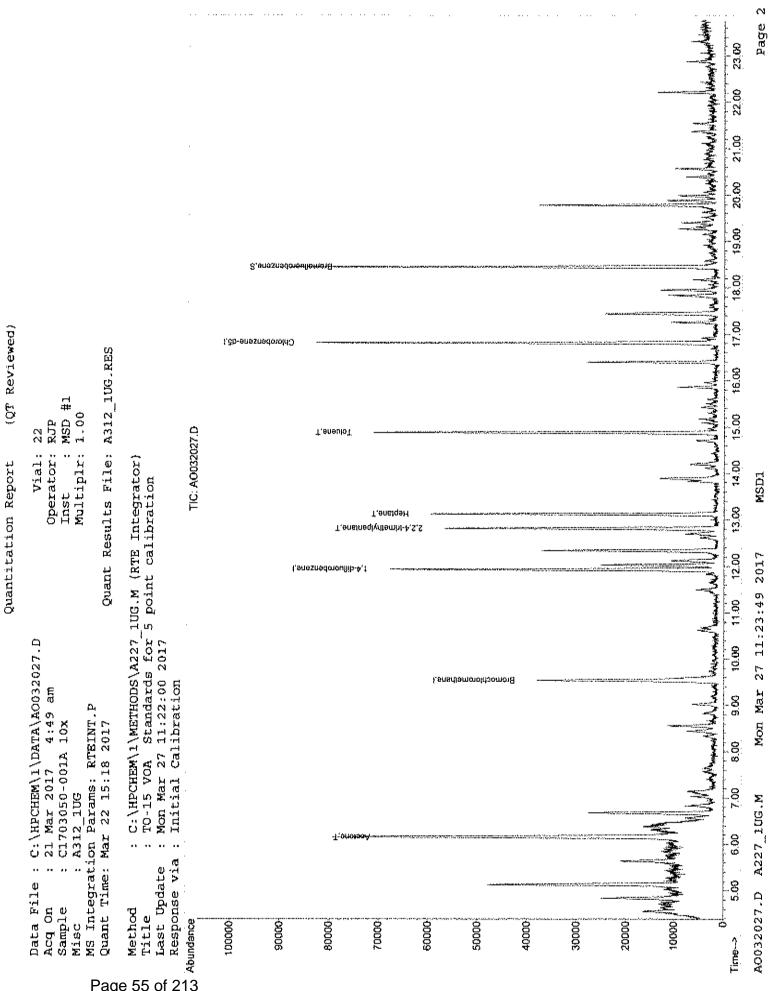
A0032017.D A227\_1UG.M Page 48 of 213

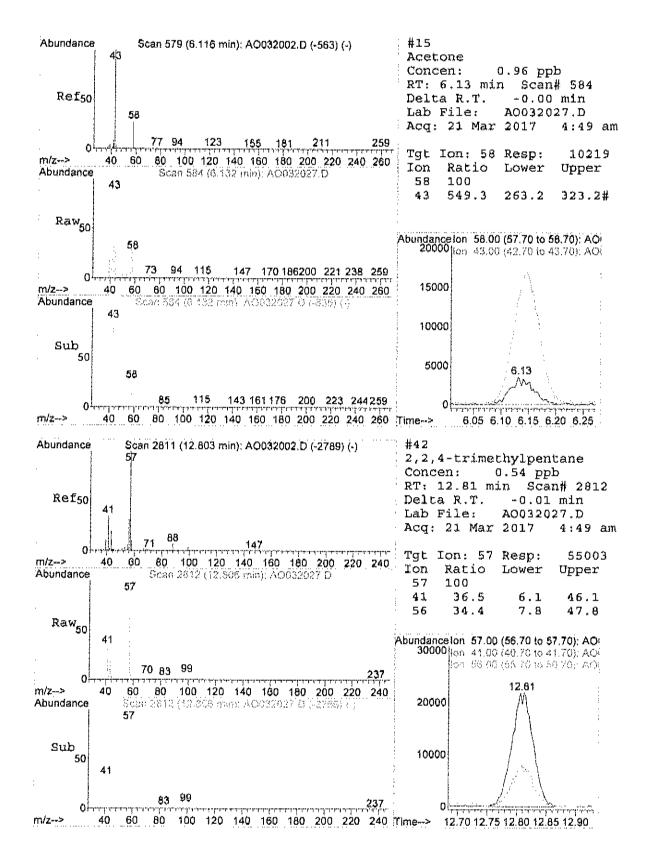


A0032017.D A227\_1UG.M Page 49 of 213

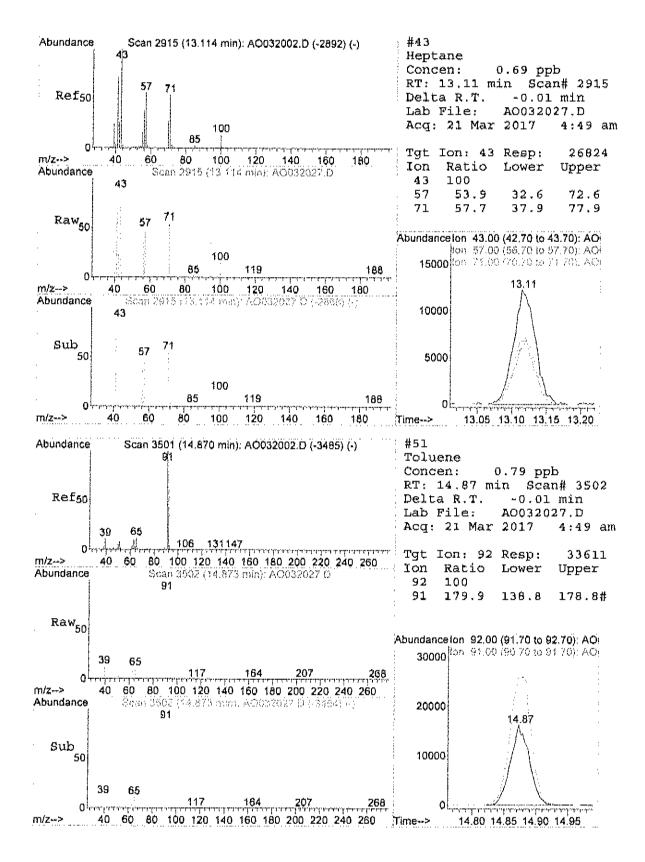


Page 12




A0032017.D A227\_1UG.M Page 52 of 213

Page 13



| | Quantitat | ion Re | port (QT | Revie | wed) | |
|--|---------------------------------|-------------------|----------------------------------|---|--------------------|-----------------------------------|
| Data File : C:\HPCHEM\1\DATA\
Acq On : 21 Mar 2017 4:4
Sample : C1703050-001A 10x
Misc : A312_1UG
MS Integration Params: RTEINT
Quant Time: Mar 21 09:03:23 2 | 9 am
:
:
: P | | Ins
Mul | Vial:
rator:
t :
tiplr:
File: | RJP
MSD
1.00 | <u>כ</u> |
| Quant Method : C:\HPCHEM\1\ME
Title : TO-15 VOA Sta
Last Update : Wed Mar 15 10:
Response via : Initial Calibr
DataAcq Meth : 1UG_RUN | ndards for
58:20 2017 | 5 poi | (RTE Integ
nt calibrat | rator)
ion | | |
| Internal Standards | R.T. | QIon | Response | Conc U | nits | Dev(Min) |
| 1) Bromochloromethane
35) 1,4-difluorobenzene
50) Chlorobenzene-d5 | 9.53
11.93
16.81 | 128
114
117 | 12952
62172
50174 | 1.00
1.00
1.00
1.00 | dqq
dqq
dqq | -0.01
-0.01
0.00 |
| System Monitoring Compounds
65) Bromofluorobenzene
Spiked Amount 1.000 | 18.45
Range 70 | 95
- 130 | 34407
Recover; | 0.92
Y ≌ | ррЬ
92. | 0.00
00% |
| Target Compounds
15) Acetone
42) 2,2,4-trimethylpentane
43) Heptane
51) Toluene | 6.13
12.81
13.11
14.87 | 57
43 | 10219
55003
26824
33611 | 0.54
0.69 | ppb
ppb | Qvalue
1
84
99
84 |

A0032027.D A227\_1UG.M Page 56 of 213

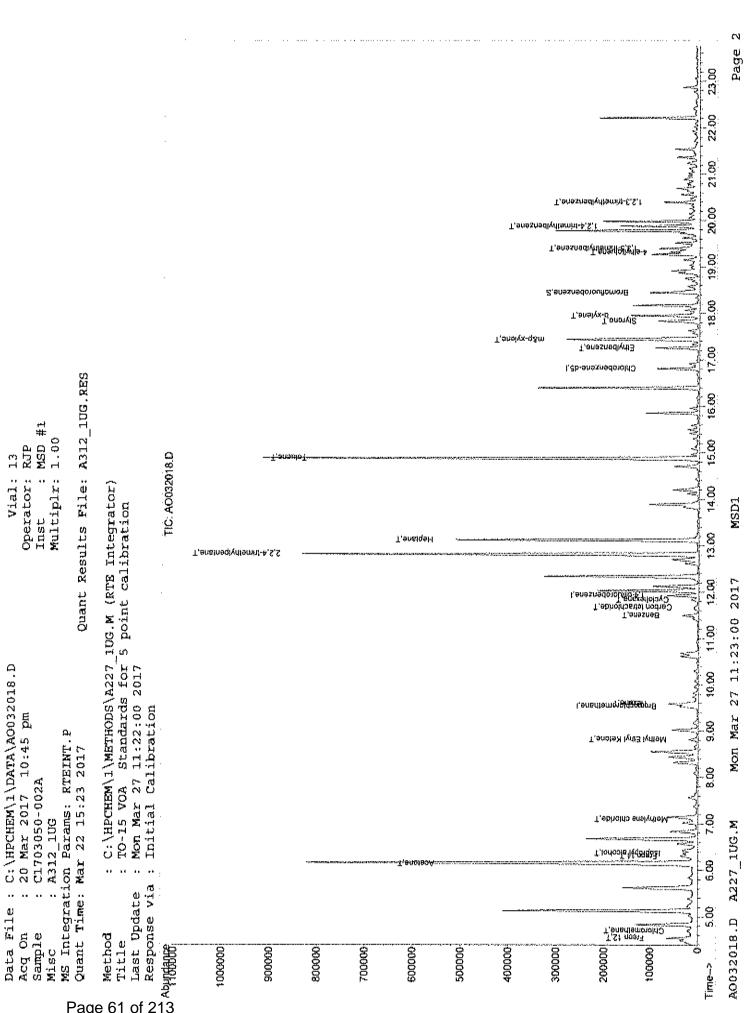
Centek Laboratories, LLC

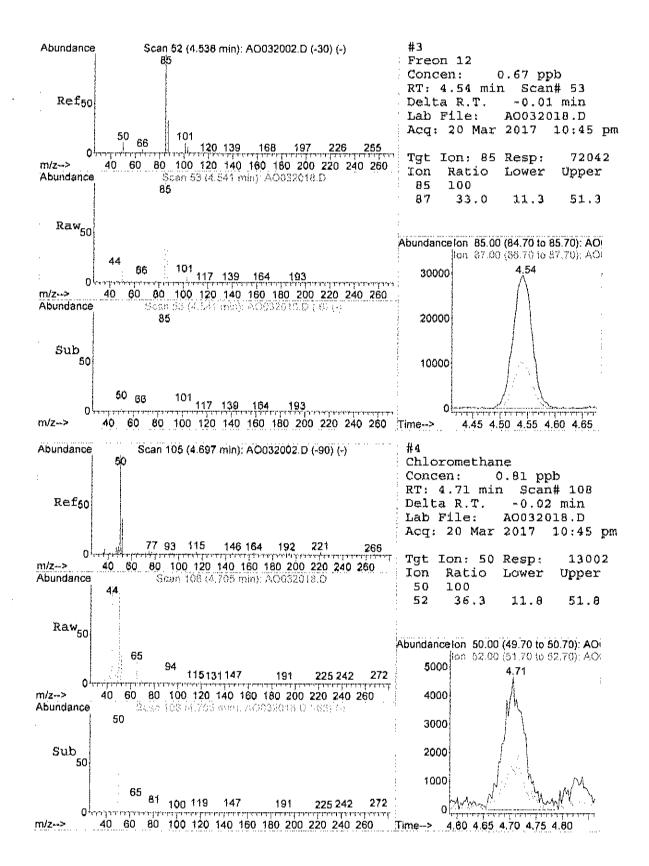
Date: 27-Mar-17

| CLIENT:
Lab Order:
Project:
Lab ID: | LaBella Associates, P
C1703050
Former Emerson St La
C1703050-002A | Client Sample ID:
Tag Number:
Collection Date:
Matrix: | | | 1176.1170
3/12/2017 | | |
|--|--|---|---------|------------|------------------------|----|-----------------------|
| Analyses | | Result | **Limit | Qual Units | Ľ |)F | Date Analyzed |
| | ETERS | | FL | D | | | Analyst: |
| Lab Vacuum In | | -5 | | "Hg | | | 3/17/2017 |
| Lab Vacuum Oi | <i>i</i> t | -30 | | "Hg | | | 3/17/2017 |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | тÓ- | 15 | | | Analyst: RJP |
| 1,1,1-Trichloroe | thane | < 0.15 | 0.15 | pobV | 1 | | 3/20/2017 10:45:00 PM |
| 1,1-Dichloroeth: | ine | < 0.15 | 0,15 | ppb∨ | 1 | | 3/20/2017 10:45:00 PM |
| 1,1-Dichloroethe | ene | < 0.15 | 0.15 | ppb∨ | 1 | | 3/20/2017 10:45:00 PM |
| Chloroethane | | < 0.15 | 0.15 | ppb∨ | 1 | | 3/20/2017 10:45:00 PM |
| Chloromethane | | 0.81 | 0.15 | vdqq | 1 | | 3/20/2017 10:45:00 PM |
| cis-1,2-Dichloro | ethene | < 0.15 | 0.15 | Vdqq | 1 | | 3/20/2017 10:45:00 PM |
| Tetrachioroethy | ene | < 0.15 | 0.15 | ррь∨ | 1 | | 3/20/2017 10:45:00 PM |
| trans-1,2-Dichlo | roethene | < 0.15 | 0.15 | ppbV | 1 | | 3/20/2017 10:45:00 PM |
| Trichloroethene | | < 0.040 | 0.040 | ppb∨ | 1 | | 3/20/2017 10:45:00 PM |
| Vinyl chloride | | < 0.040 | 0.040 | ppb∨ | 1 | | 3/20/2017 10:45:00 PM |
| Surr: Bromoft | uorobanzene | 101 | 70-130 | %REC | 1 | | 3/20/2017 10:45:00 PM |

| | · · · · · · · · · · · · · | | | | |
|-------------|---------------------------|--|----|---|-------------|
| Qualifiers: | ** | Quantitation Limit | | Results reported are not blank corrected | |
| | в | Analyte detected in the associated Method Blank | Б | Estimated Value above quantitation range | |
| | H | Holding times for preparation or analysis exceeded | ز | Analyte detected below quantitation limit | |
| | JN | Non-routine analyte. Quantitation estimated. | ND | Not Detected at the Limit of Detection | |
| | S | Spike Recovery outside accepted recovery limits | | | Page 2 of 5 |

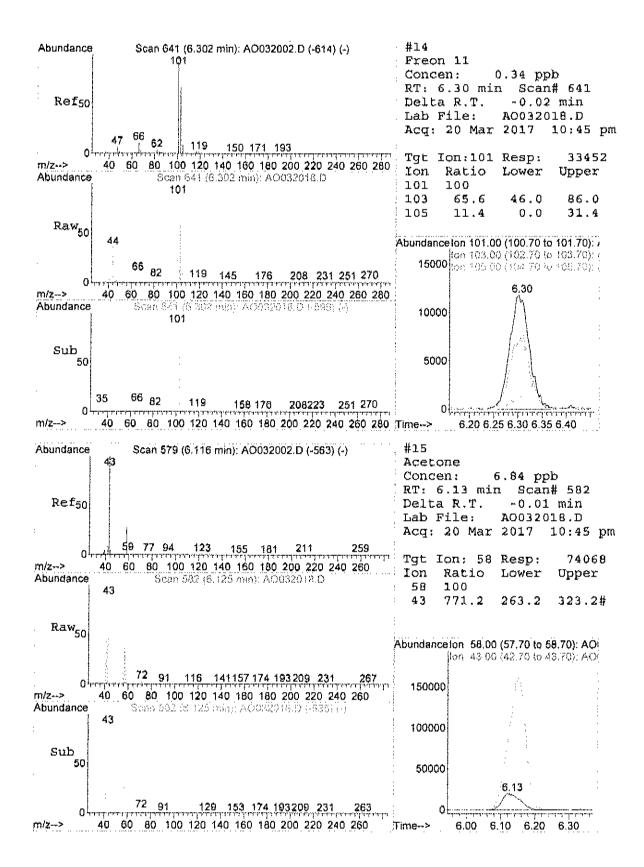
Centek Laboratories, LLC

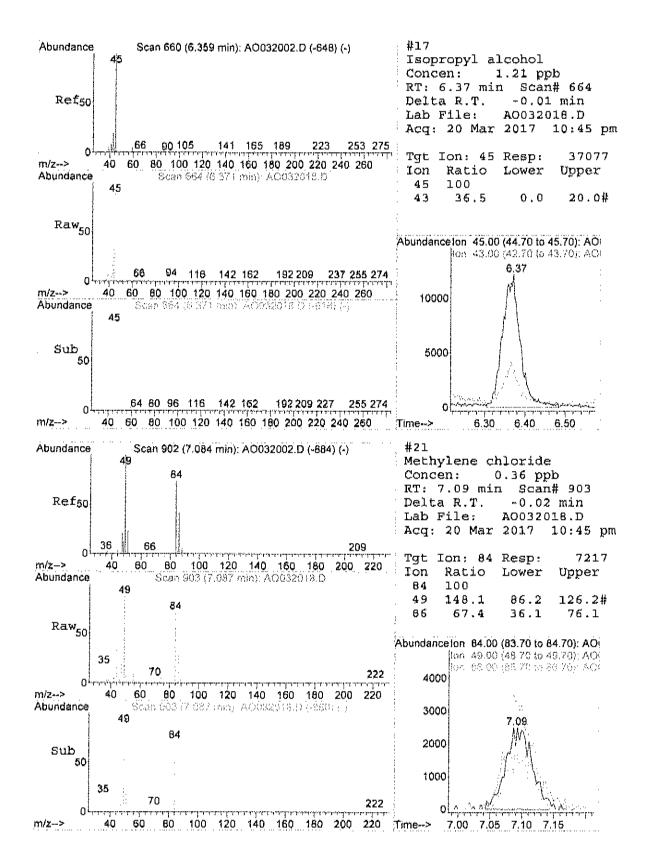

Date: 27-Mar-17

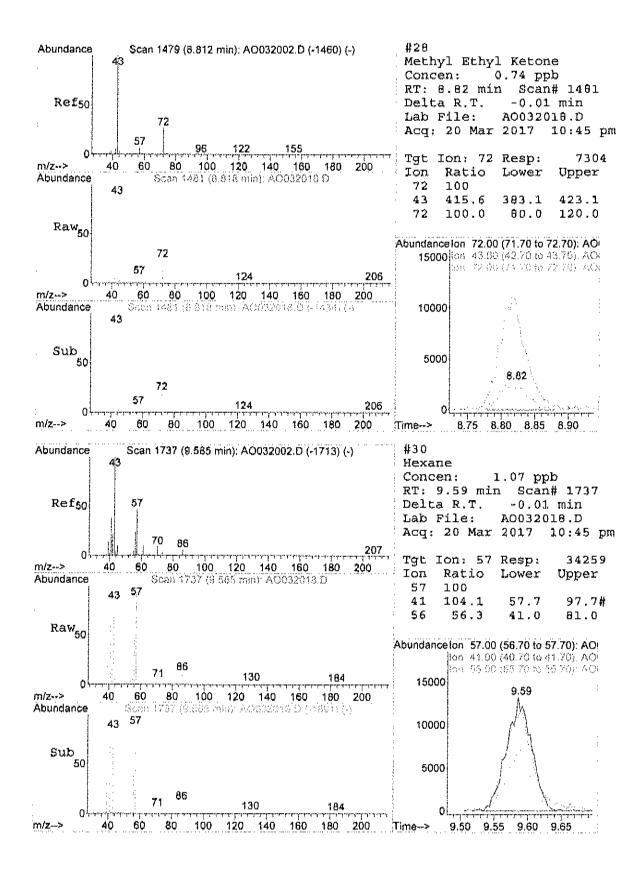

| CLIENT: LaBella Associates, P.C. | | | | C | lient Sample ID: | 1770-IAQ-3B | | | |
|----------------------------------|---------------------|-----------------------------------|---------|------|------------------|-------------|-----------------------|--|--|
| Lab Order: | C1703050 | | | | Tag Number: | 1176. | 1176.1170 | | |
| Project: | Former Emerson St L | rson St Landfill Collection Date: | | | 3/12/2017 | | | | |
| Lab ID: C1703050-002A | | | | | Matrix: | AIR | | | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed | | |
| UG/M3 W/ 0.2 | 25UG/M3 CT-TCE-VC | | то | -15 | | | Analyst: RJP | | |
| 1,1,1-Trichloroe | ethane | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| 1,1-Dichloroeth | ane | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 10:45:00 PN | | |
| 1,1-Dichloroeth | iene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PN | | |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 10:45:00 PN | | |
| Chloromethane | 2 | 1.7 | 0,31 | | ug/m3 | 1 | 3/20/2017 10:45:00 PN | | |
| cis-1,2-Dichlord | pethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Tetrachloroeth) | ylene | < 1.0 | 1.0 | | ug/m3 | 1 | 3/20/2017 10:45:00 PN | | |
| trans-1,2-Dichle | proethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PN | | |
| Trichloroethene | ÷ | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Vinyl chloride | | < 0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |

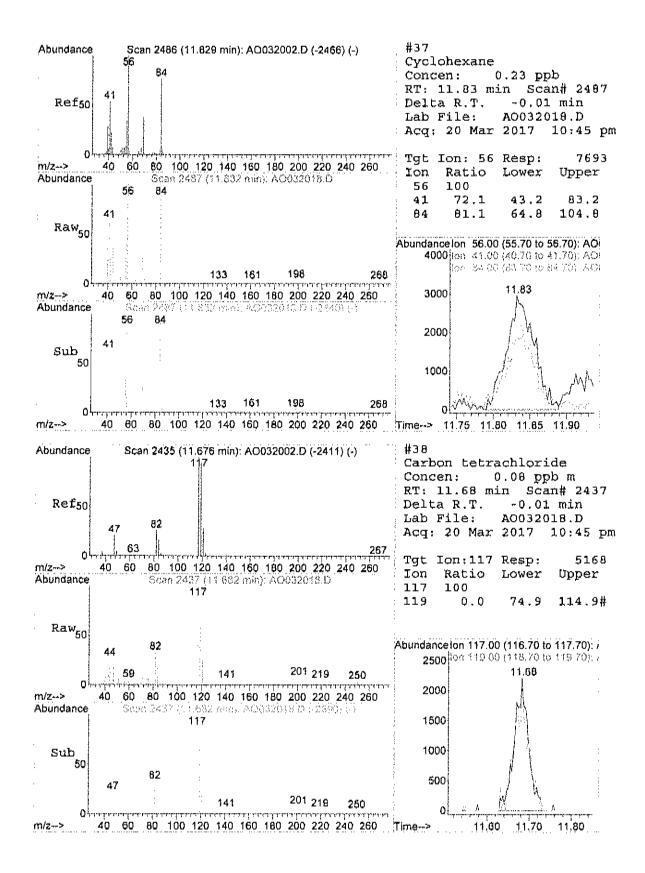
| Qualifiers: | ** | Quantitation Limit | | Results reported are not blank corrected | |
|-------------|----|--|----|---|-------------|
| | 8 | Analyte detected in the associated Method Blank | E | Estimated Value above quantitation range | |
| | H | Holding times for preparation or analysis exceeded | j | Analyte detected below quantitation limit | |
| | ۶N | Non-routine analyte. Quantitation estimated. | ND | Not Detected at the Limit of Detection | |
| | s | Spike Recovery outside accepted recovery limits | | 1 | Page 2 of 5 |

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AQ032019.D Vial: 13 Acq On : 20 Mar 2017 10:45 pm **Operator:** RJP Sample : C1703050-002A Misc : A312\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:14 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.53128132101.00 ppb-0.0135) 1,4-difluorobenzene11.92114604261.00 ppb-0.0250) Chlorobenzene-d516.80117510421.00 ppb-0.02 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 38512 1.01 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 101.00% 0.00 Target CompoundsQvalue3) Freon 124.5465720420.67ppb974) Chloromethane4.7150130020.81ppb9214) Freon 116.30101334520.34ppb10015) Acetone6.1358740686.94ppb117) Isopropyl alcohol6.3745370771.21ppb#10021) Methylene chloride7.096472170.36ppb#80028) Methyl Ethyl Ketone8.827273040.74ppb9630) Hexane9.5957342591.07ppb#38) Carbon tetrachloride11.681175169m0.08ppb39) Benzene11.5076365850.59ppb8442) 2, 2, 4-trimethylpentane12.81578864838.90ppb8643) Heptane13.12432506626.60ppb9651) Toluene14.86924297949.99ppb9356) Ethylbenzene17.43912596603.01ppb9361) oc-xylene17.95911024151.24ppb9363) oc-xylene17.95911024151.24ppb9570) 1, 3, 5-trimethylbenzene Target Compounds Qvalue

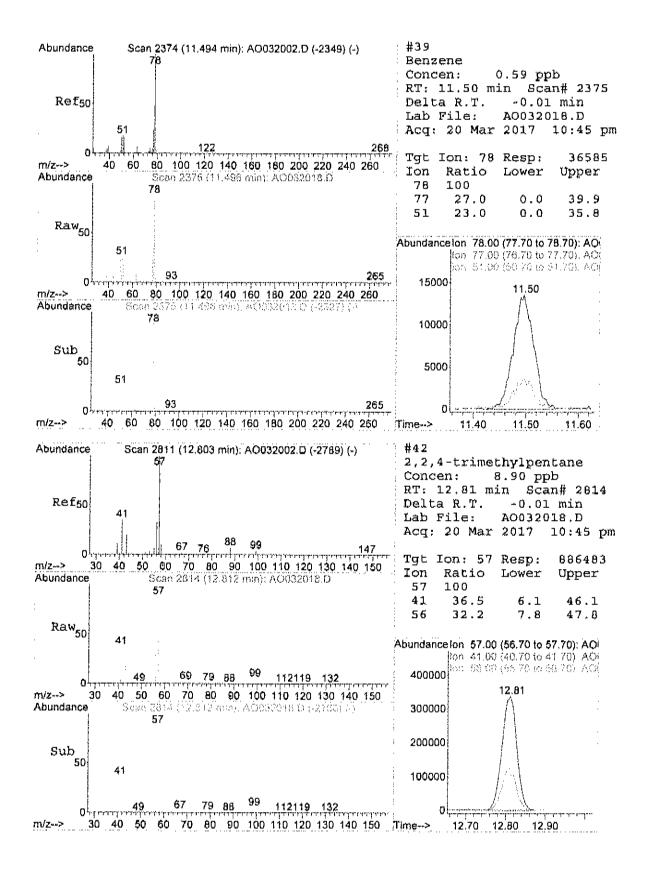

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032018.D A227\_1UG.M Mon Mar 27 11:22:59 2017 MSD1 Page 60 of 213

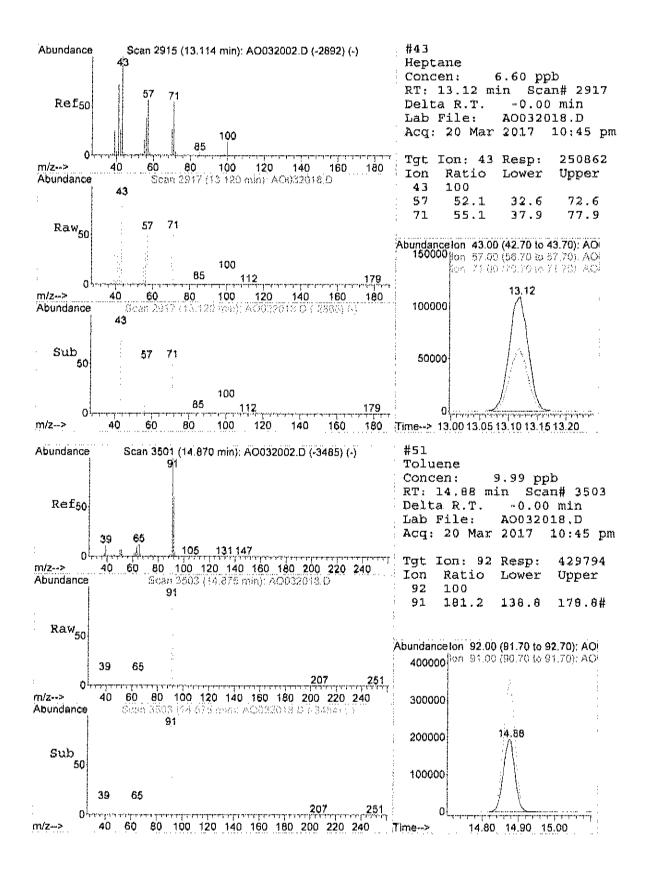


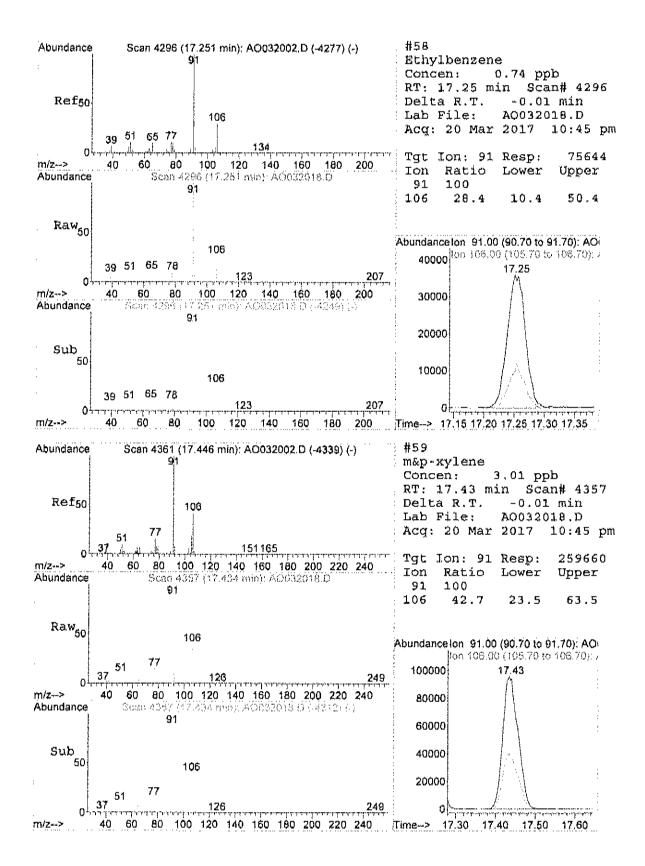


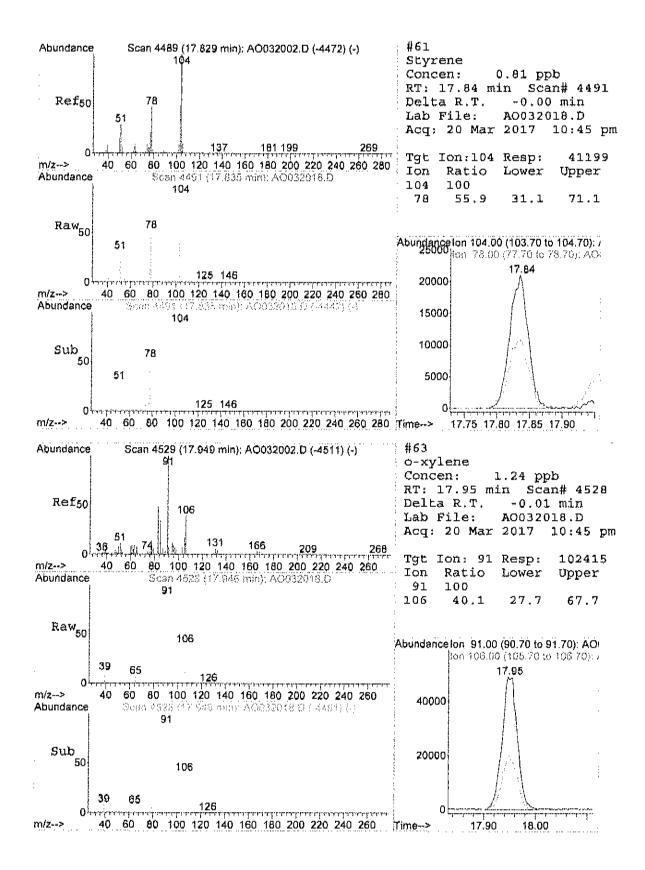

A0032018.D A227\_1UG.M Page 62 of 213

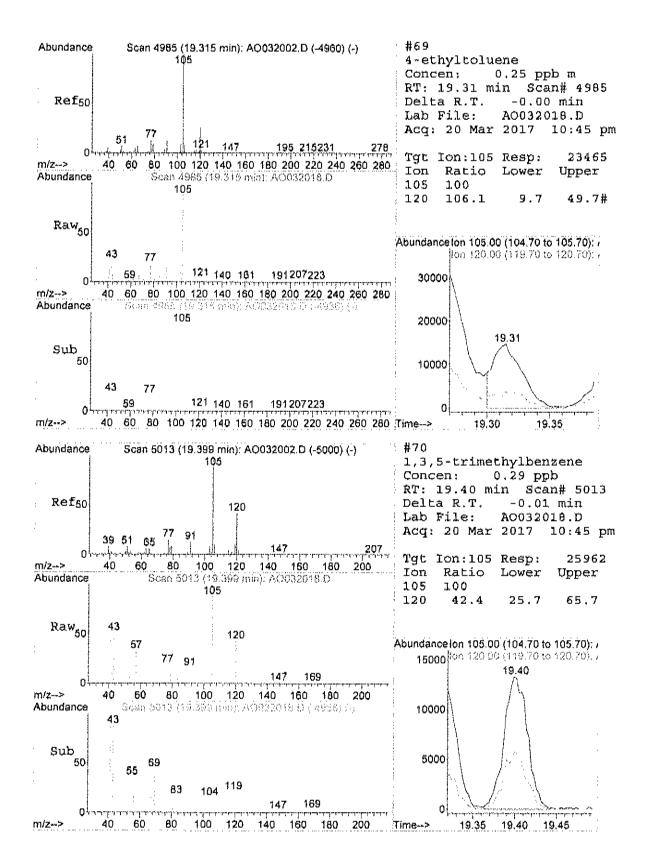
Page 3



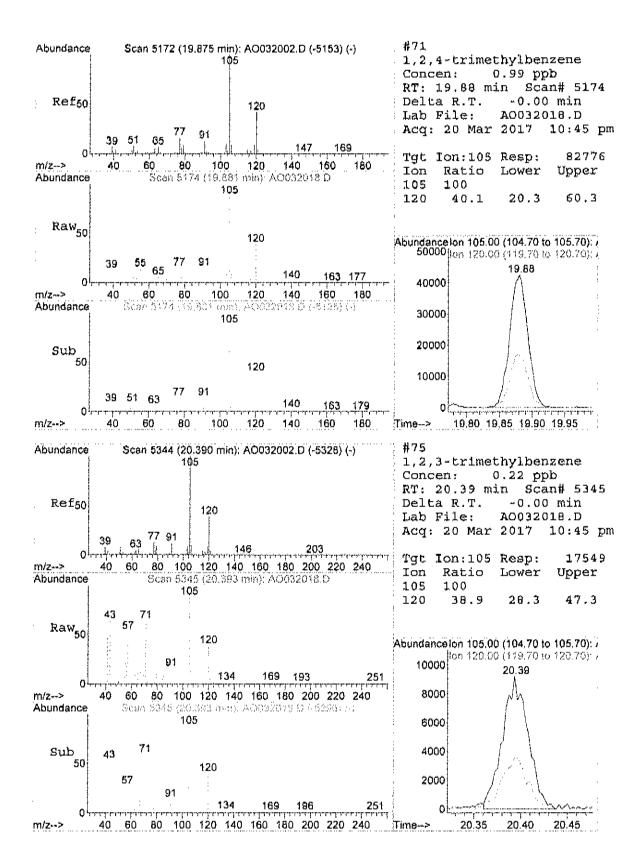


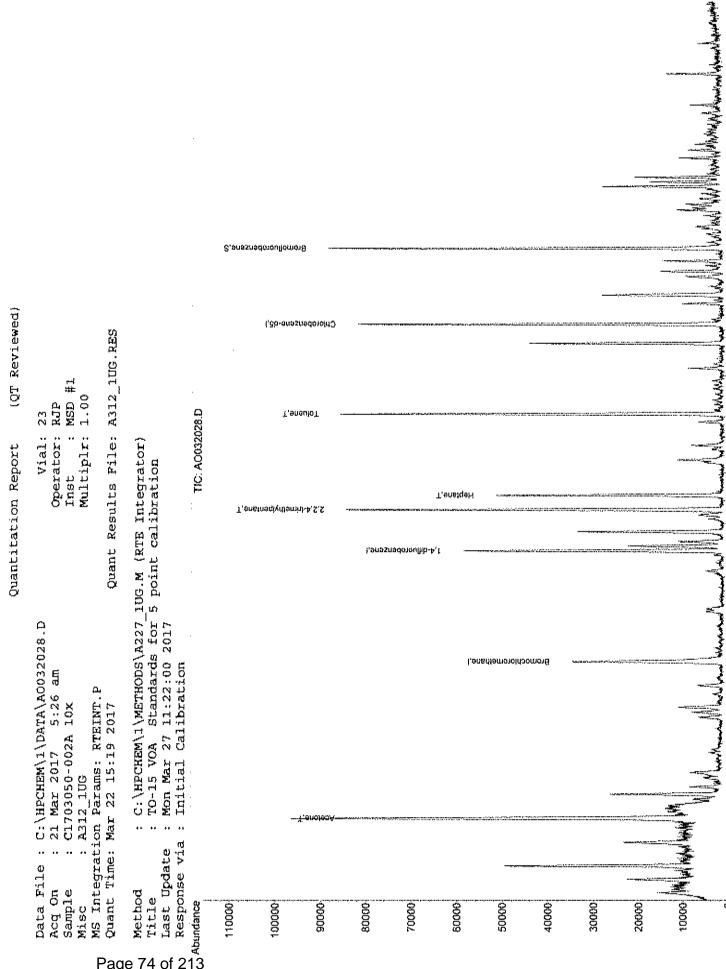



A0032018.D A227\_1UG.M Page 66 of 213



A0032018.D A227\_1UG.M Page 67 of 213 MSD1





A0032018.D A227\_1UG.M Page 71 of 213

A0032018.D A227\_1UG.M Page 72 of 213

| | Quantitat | ion Rep | port (QT | Review | wed) | |
|--|-----------------------------------|-------------|---------------------------------|---|--------------------|-----------------------------------|
| Data File : C:\HPCHEM\1\DATA\
Acq On : 21 Mar 2017 5:2
Sample : C1703050-002A 10x
Misc : A312_1UG
MS Integration Params: RTEINT
Quant Time: Mar 21 09:03:24 2 | 6 am
.P | | Ins
Mul | Vial:
rator:
t :
tiplr:
File: | RJP
MSD
1.00 | |
| Quant Method : C:\HPCHEM\1\ME
Title : TO-15 VOA star
Last Update : Wed Mar 15 10:
Response via : Initial Calibr
DataAcq Meth : 1UG_RUN | ndards for
58:20 2017
ation | 5 poir | nt calibrat | ion | | |
| Internal Standards | | | Response | | | Dev(Min) |
| 1) Bromochloromethane
35) 1,4-difluorobenzene
50) Chlorobenzene-d5 | 9.53
11,92 | 128
114 | 12844
57925 | 1.00
1.00 | dqq
qqq | -0.01 |
| System Monitoring Compounds
65) Bromofluorobenzene
Spiked Amount 1.000 | 18.44
Range 70 | 95
- 130 | 34037
Recover | 0.98
Y = | 999
98. | 0.00
00% |
| Target Compounds
15) Acetone
42) 2,2,4-trimethylpentane
43) Heptane
51) Toluene | 6.14
12.81
13.12
14.87 | 57 | 9965
85164
23875
38654 | 0.89 | dqq
dqq | Qvalue
1
86
97
84 |

.

Page 2

23.00

22,00

21.00

20.00

19.00

18.00

17.00

16.00

15.00

14 S

13.60

12.00

11.00

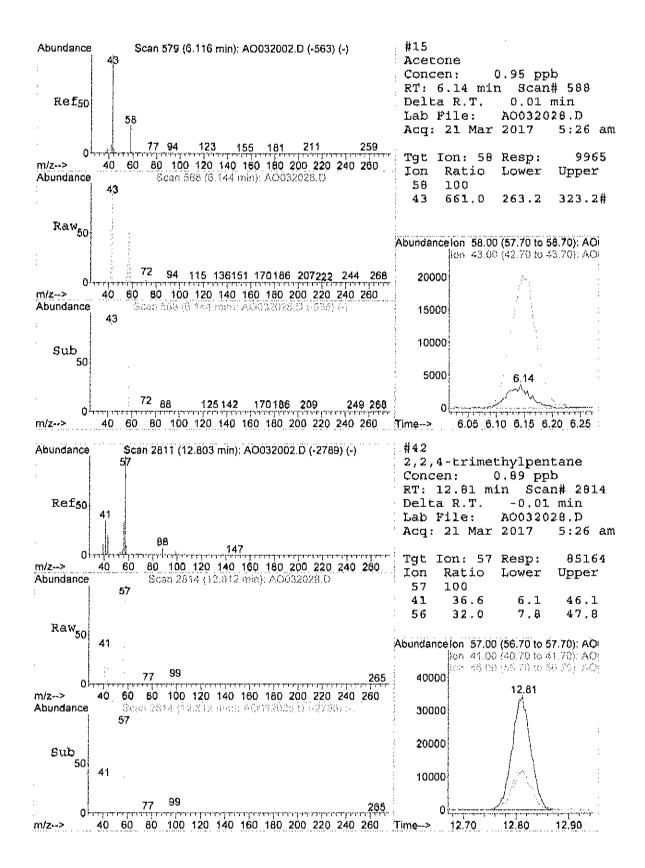
10,00

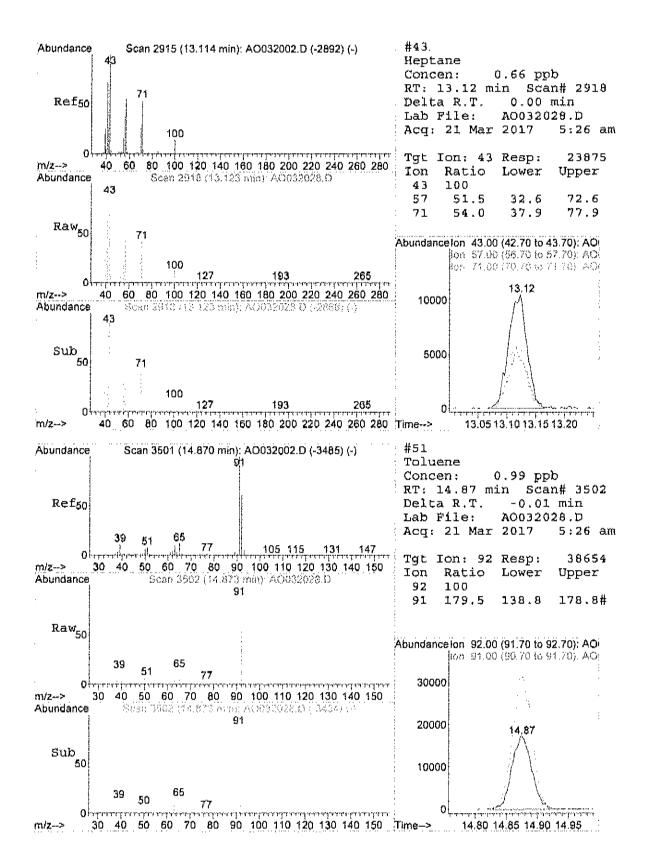
8,00

8.00

7.09

6.00


5.00


Time-

A0032028.D A227\_1UG.M

MSD3

Mon Mar 27 11:23:55 2017

A0032028.D A227\_1UG.M Page 76 of 213

Centek Laboratories, LLC

Date: 27-Mar-17

| CLIENT: | LaBella Associates, P | .C. | | C | lient Sample ID; | 1770- | IAQ-4B |
|------------------|-----------------------|---------|---------|------|-------------------------|--------|-----------------------|
| Lab Order: | C1703050 | | | | Tag Number: | 168.1 | 161 |
| Project: | Former Emerson St La | andfill | | | Collection Date: | 3/12/2 | 2017 |
| Lab ID: | C1703050-003A | | | | Matrix: | AIR | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed |
| FIELD PARAM | ETERS | | F | LD | | | Analyst: |
| Lab Vacuum In | | -9 | | | "Hg | | 3/17/2017 |
| Lab Vacuum Or | ut | -30 | | | ۳Hg | | 3/17/2017 |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | тс | -16 | | | Analyst: RJF |
| 1,1,1-Trichloroe | thane | < 0.15 | 0.15 | | ¢pbV | 1 | 3/20/2017 11:28:00 PN |
| 1,1-Dichloroeth | ane | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PN |
| 1,1-Dichloroeth | ene | < 0.15 | 0,15 | | ppbV | 1 | 3/20/2017 11:28:00 PM |
| Chloroethane | | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PM |
| Chloromethane | | 0,82 | 0,15 | | ρpbV | 1 | 3/20/2017 11:28:00 PN |
| cis-1,2-Dichtoro | ethene | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PN |
| Tetrachioroethy | lene | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PM |
| trans-1,2-Dichto | roethene | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 11:28:00 PN |
| Trichloroethene | | < 0.040 | 0.040 | | ppbV | 1 | 3/20/2017 11:28:00 PN |
| Vinyl chloride | | < 0.040 | 0.040 | | ppbV | 1 | 3/20/2017 11:28:00 PN |
| Surr: Bromof | luorobenzene | 96.0 | 70-130 | | %REC | 1 | 3/20/2017 11:28:00 PM |

.

Qualifiers: \*\* Quantitatio

Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Centek Laboratories, LLC

Date: 27-Mar-17

| Anaturaa | D | | |
|------------|----------------------------|-------------------|---------------------------------------|
| Lab ID: | C1703050-003A | Matrix: | |
| Project: | Former Emerson St Landfill | Collection Date: | 3/12/2017 |
| Lab Order: | C1703050 | Tag Number: | 168.1161 |
| CLIENT: | LaBella Associates, P.C. | Client Sample ID: | |
| | | | · · · · · · · · · · · · · · · · · · · |

| Analyses | Result **Limit Qual Units | | DF | Date Analyzed | | |
|-------------------------------|---------------------------|------|-------|---------------|-----------------------|--|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | TO-15 | | | | Analyst: RJP | |
| 1,1,1-Trichloroethane | < 0.82 | 0.82 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| 1.1-Dichloroethane | < 0.61 | 0.61 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| 1,1-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Chioroethane | < 0.40 | 0.40 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Chloromethane | 1.7 | 0.31 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| cis-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Tetrachloroethylene | < 1.0 | 1.0 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| trans-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Trichloroethene | < 0.21 | 0,21 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Vinyl chloride | < 0.10 | 0.10 | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| | | | | | | |

Qualifiers: \*\*

Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032019.D Vial: 14 Acq On : 20 Mar 2017 11:28 pm Operator: RJP Sample : C1703050~003A Misc : A312\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:15 2017 Quant Results File: A312 1UG.RES Quant Method : C:\HPCHEM\l\METHODS\A312\_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards \*\*\*\*\* 1) Bromochloromethane9.53128131121.00 ppb0.0035) 1,4-difluorobenzene11.93114606661.00 ppb0.0050) Chlorobenzene-d516.80117506161.00 ppb-0.01 System Monitoring Compounds 65) Bromofluorobenzene 18.44 95 36344 0.96 ppb -0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 96.00%

 Target Compounds
 Qvalue

 3) Freon 12
 4.54
 85
 71072
 0.67
 ppb
 97

 4) Chloromethane
 4.70
 50
 12991
 0.82
 ppb
 88

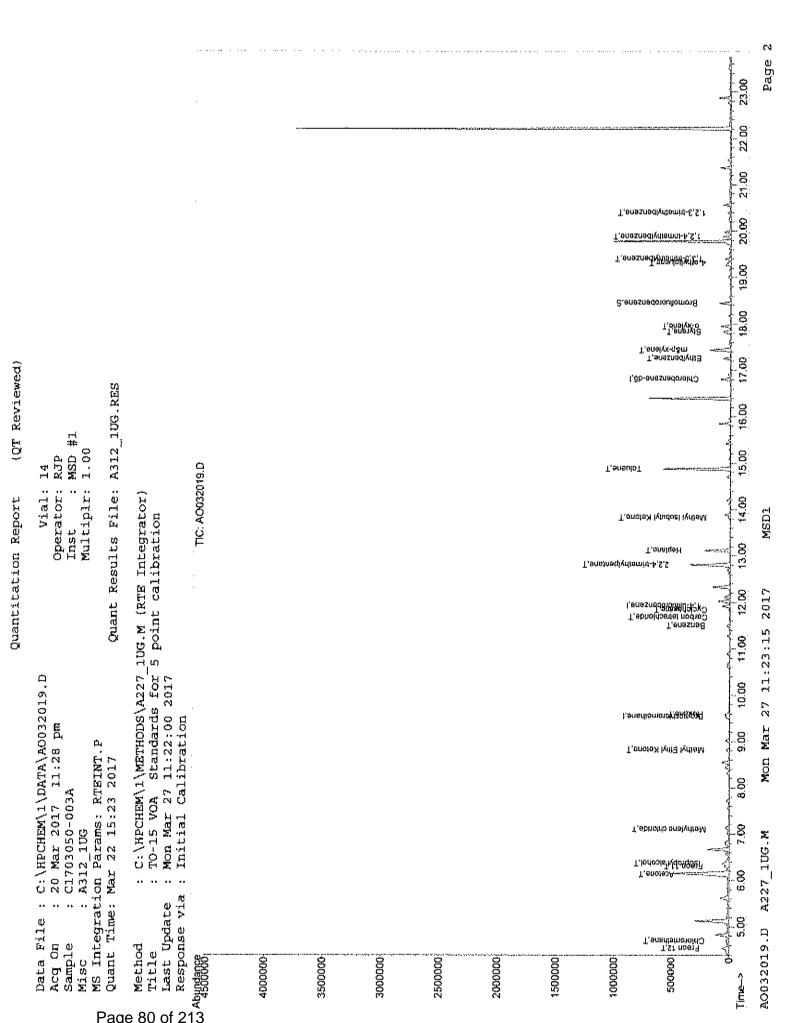
 14) Freon 11
 6.31
 101
 32307
 0.33
 ppb
 98

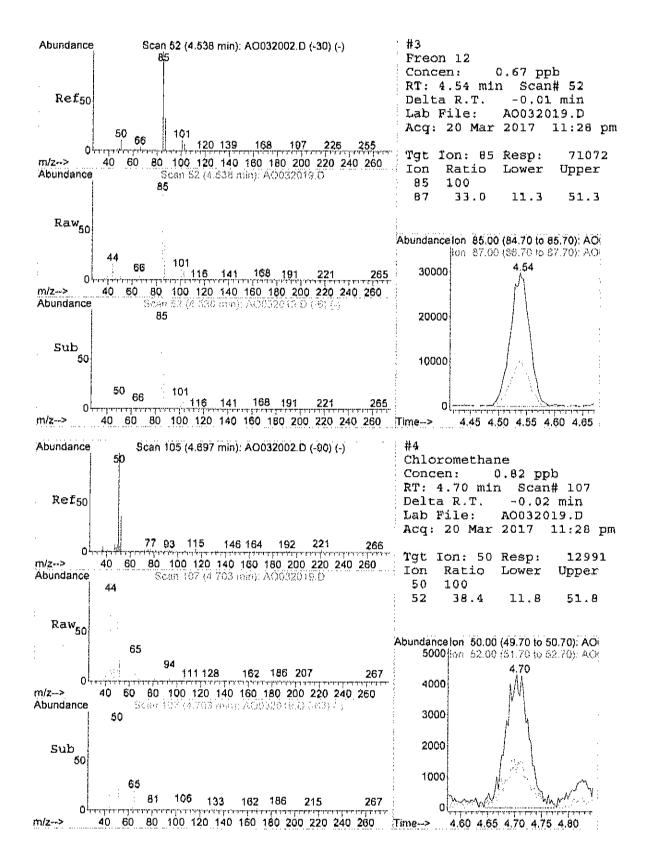
 15) Acetone
 6.11
 58
 110884
 10.31
 ppb
 #
 9

 17) Isopropyl alcohol
 6.36
 45
 85218
 2.81
 ppb
 #
 10

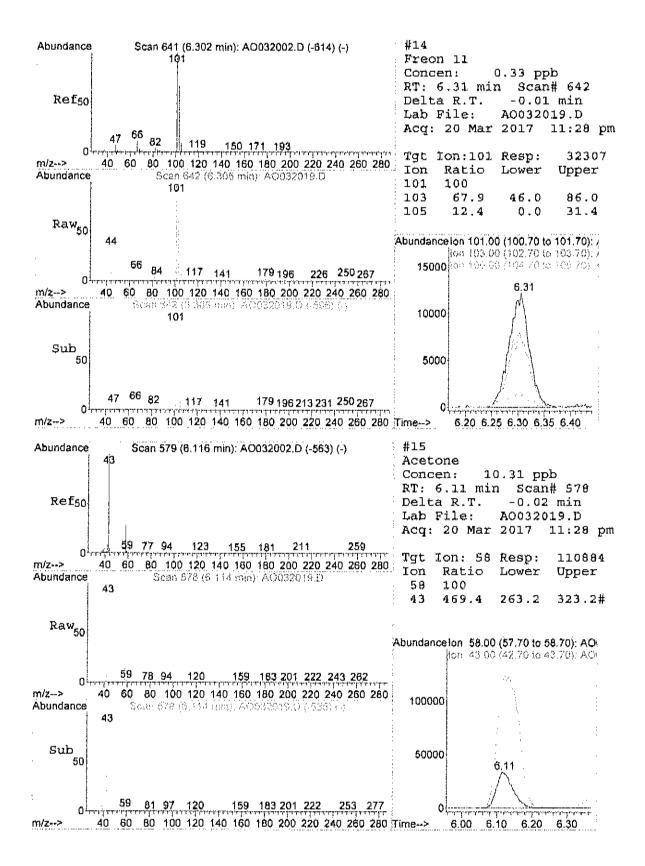
 21) Methylene chloride
 7.09
 84
 7253
 0.36
 ppb
 #
 15

 30) Hexane
 9.81
 72
 11455
 1.17
 ppb
 #
 19

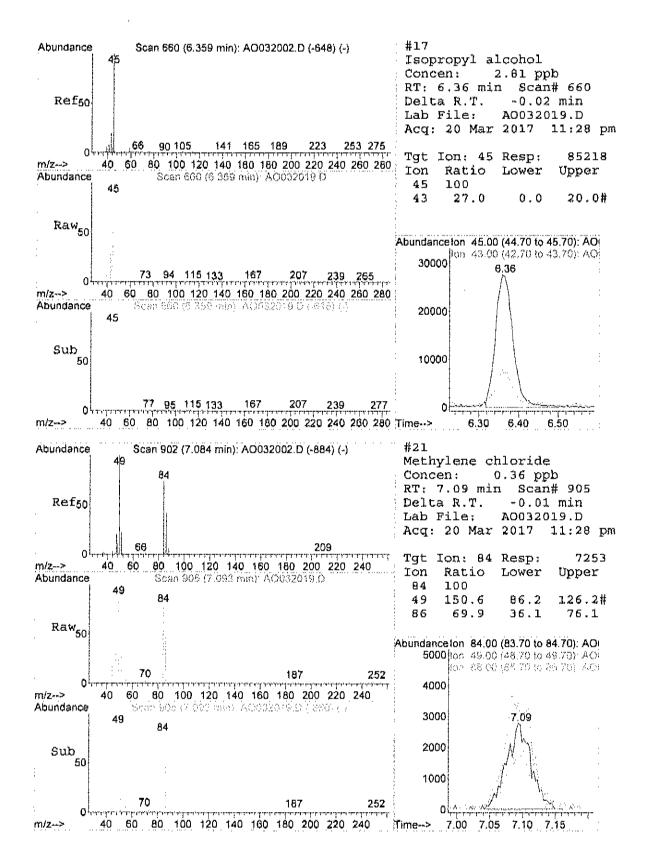

 30) Hexane
 9.88
 57
 22474
 0.71
 ppb
 #
 19


 30) Hexane
 11.64
 56
 551.9
 0.17
 ppb
 #
 19

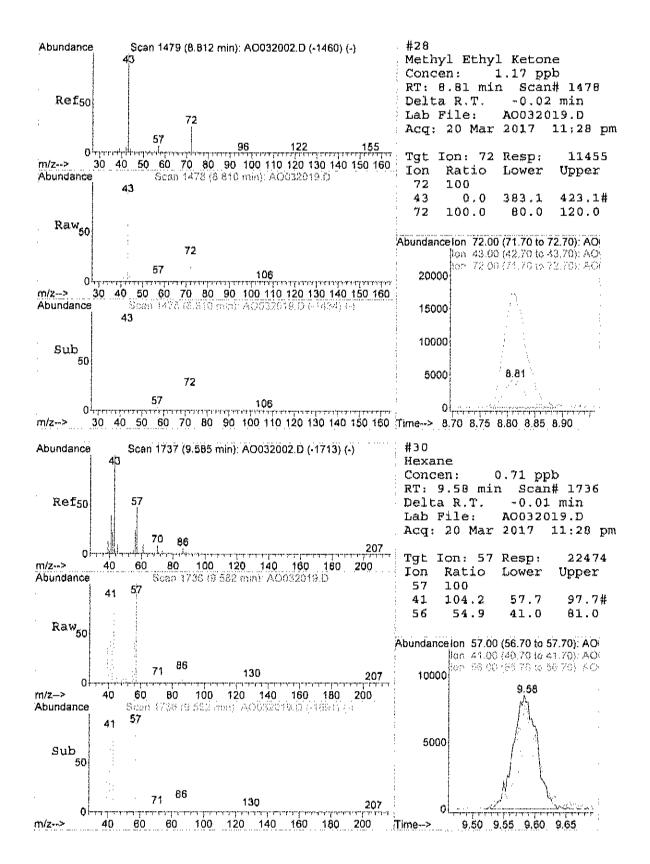
 30) Hexane
 11.64
 16
 117
 4466m /0
 0.07
 ppb
 #
 8


 33) Heptane
 11.24
 108508
 2.04
 ppb
 97
 51
 Toluene</td Target Compounds Qvalue

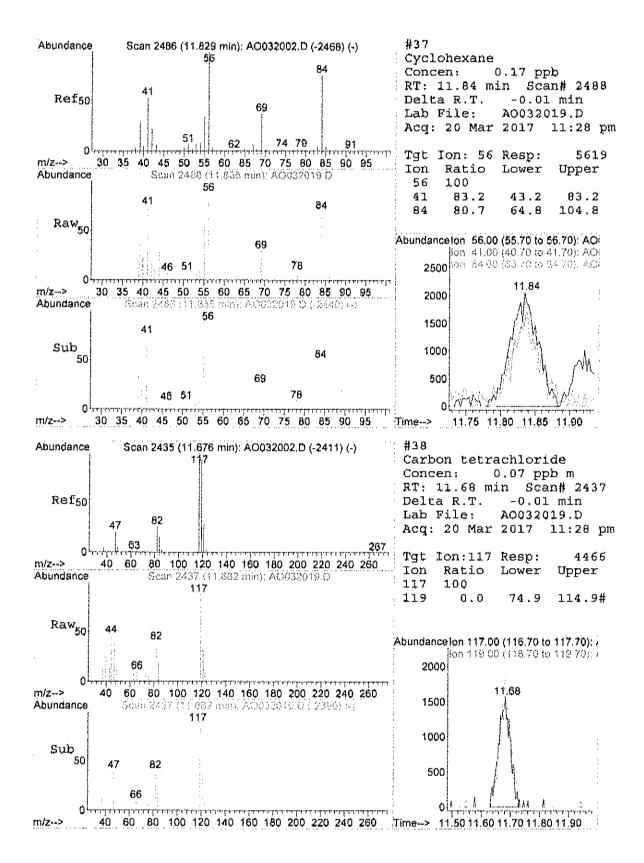
(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032019.D A227\_1UG.M Mon Mar 27 11:23:14 2017 MSD1 Page 79 of 213

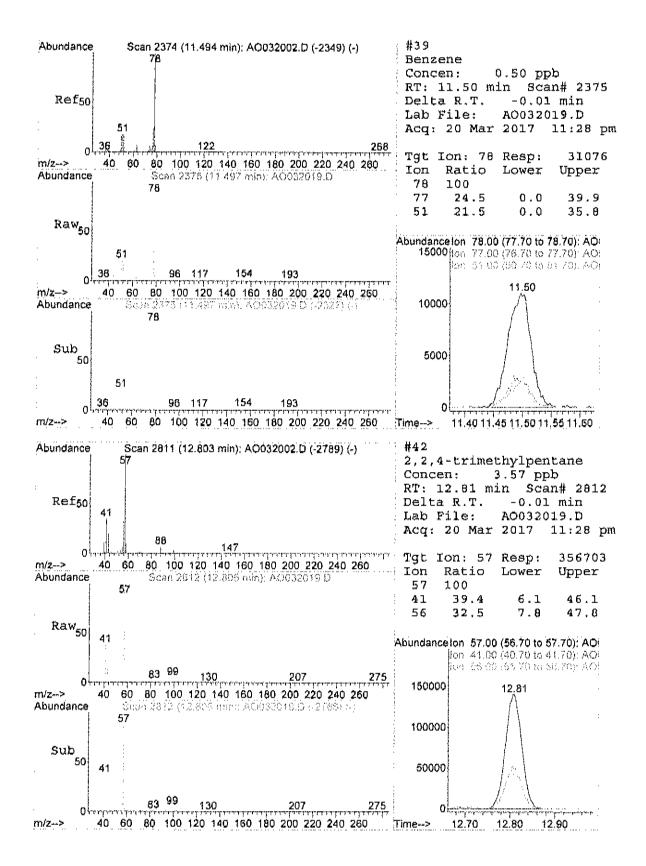


MSD1

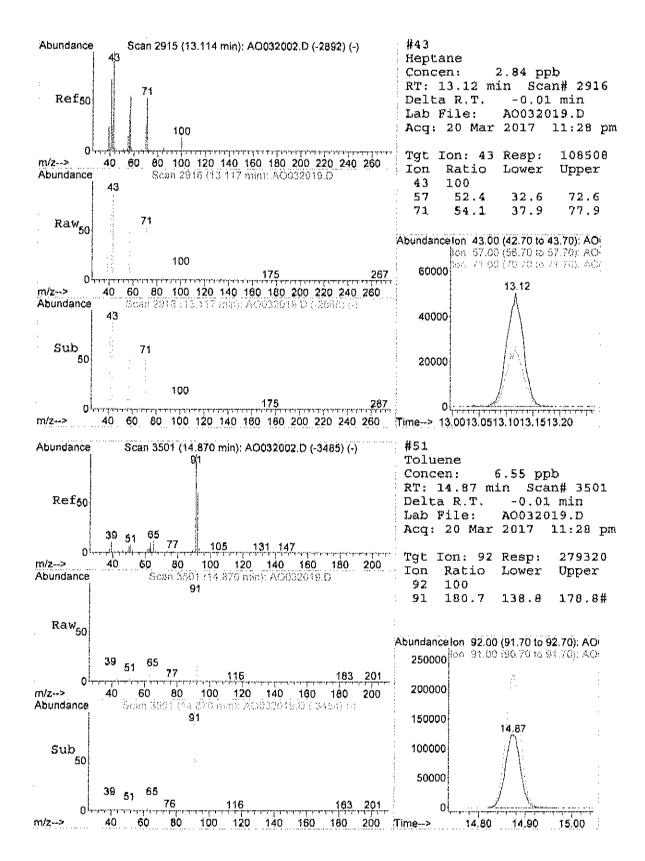


A0032019.D A227\_1UG.M Page 82 of 213

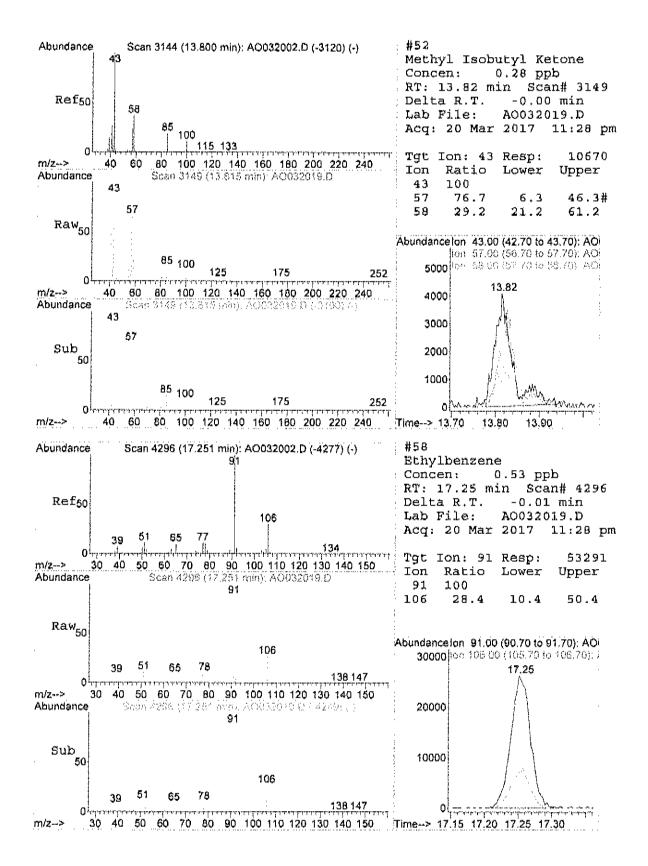

Page 4

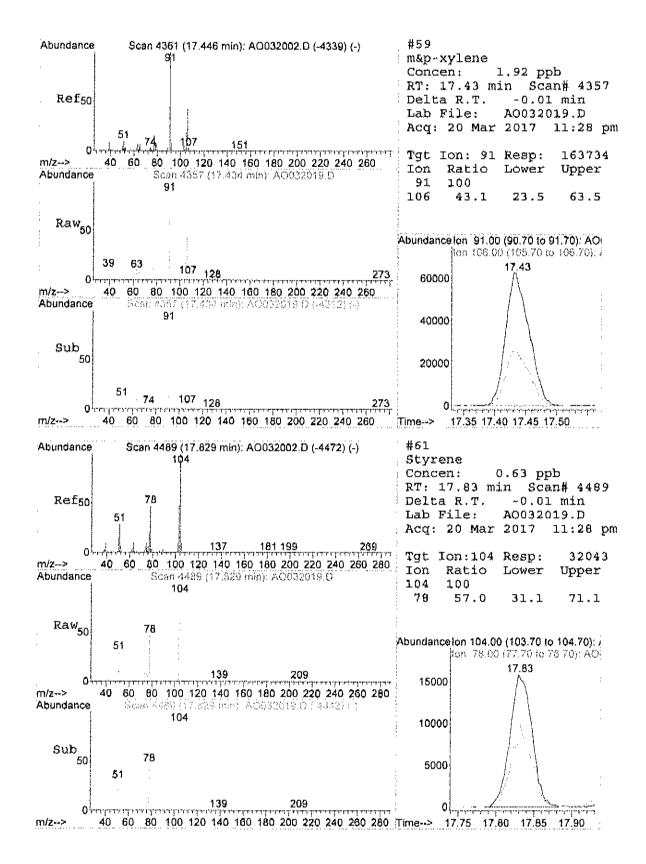


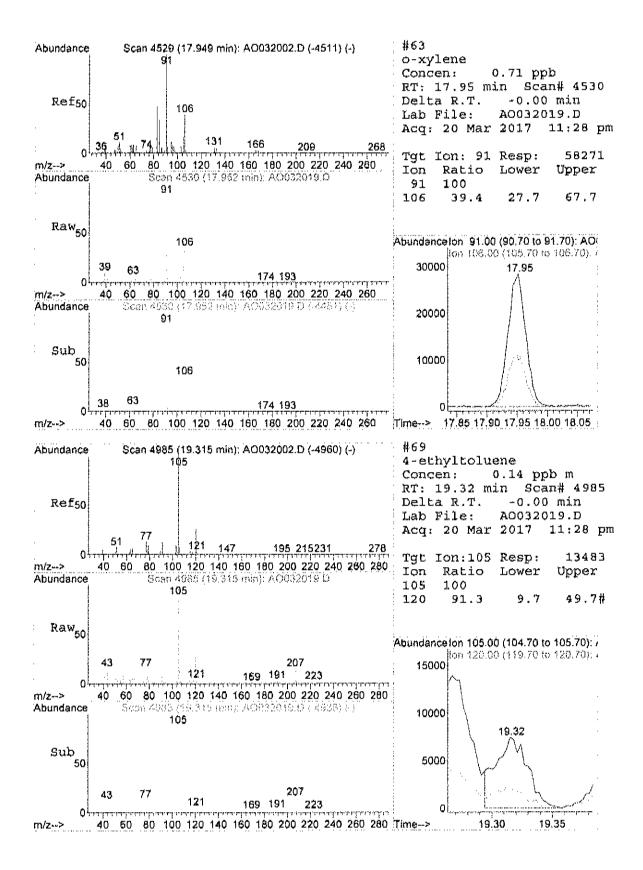
A0032019.D A227\_1UG.M Page 83 of 213

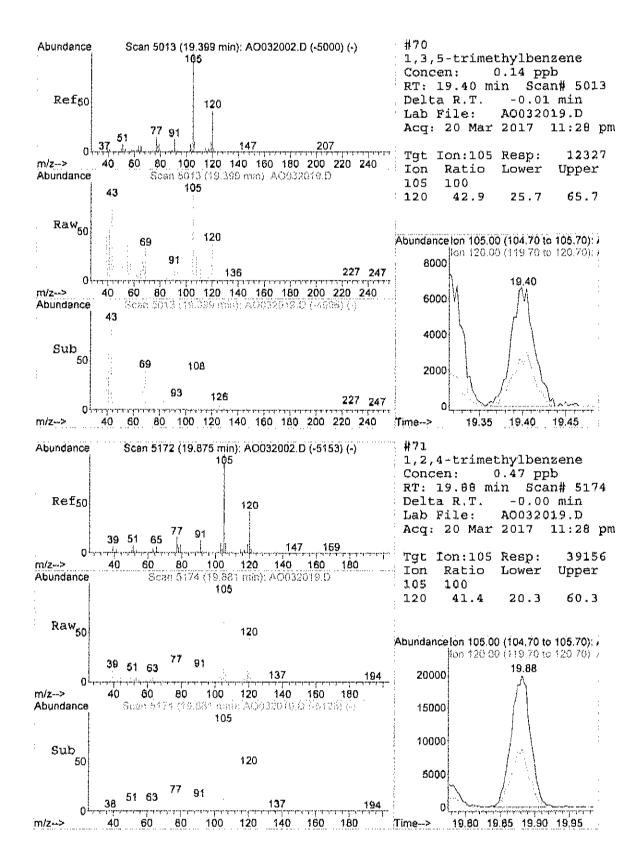


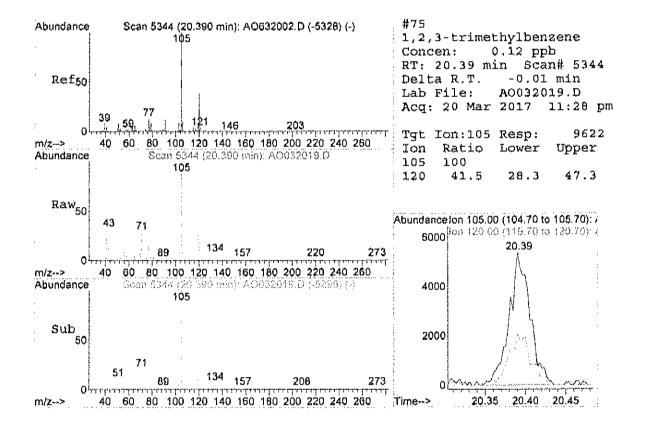
А0032019.D A227\_10G.M Page 84 of 213



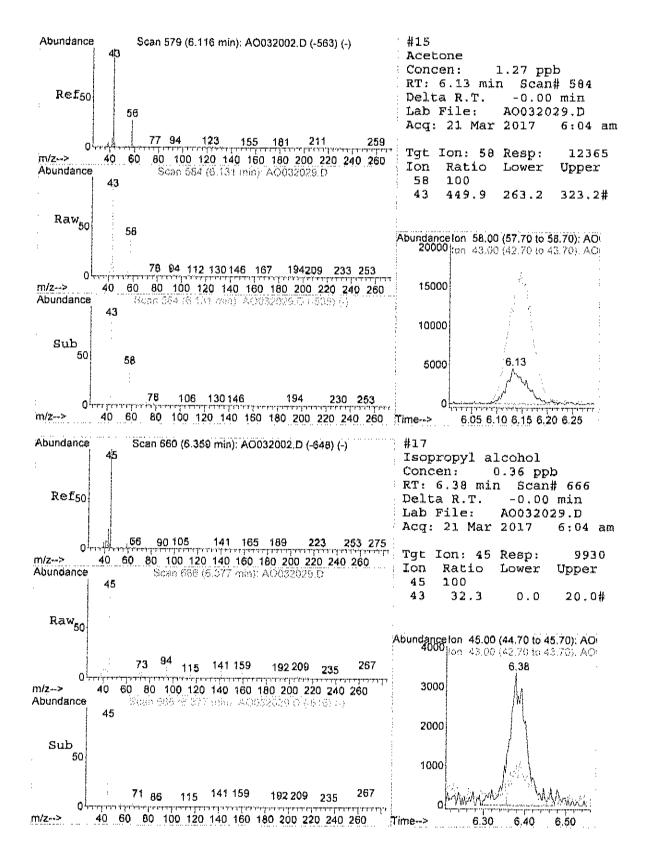

A0032019.D A227\_1UG.M Page 86 of 213

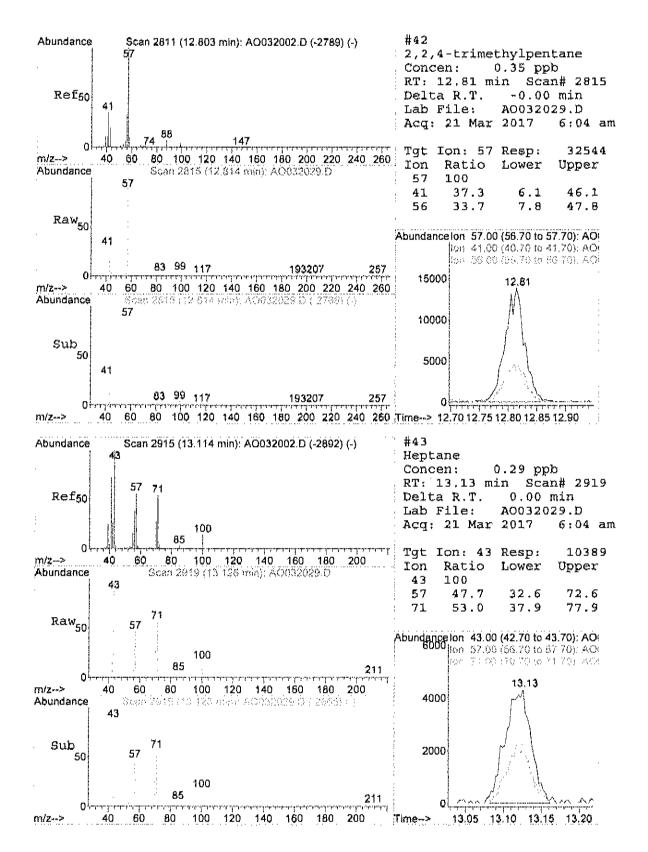

A0032019.D A227\_1UG.M Page 87 of 213

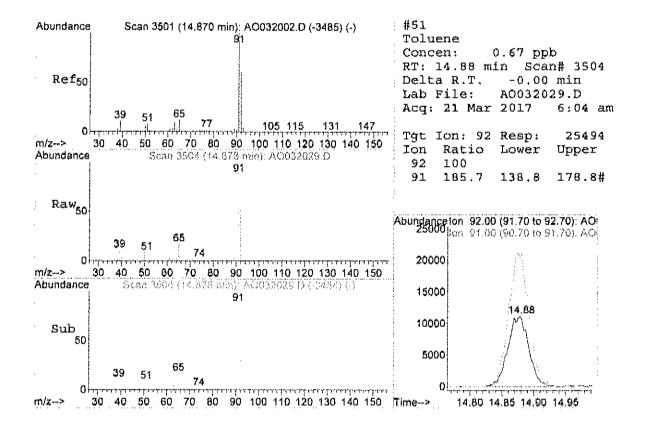

MSD1



A0032019.D A227\_1UG.M Page 89 of 213




A0032019.D A227\_1UG.M Page 91 of 213


| | Quantitat: | ion Rej | port (QT | Review | wed) | |
|--|---|--------------------|-----------------------------|----------------------------------|--------------------|-----------------------|
| Data File : C:\HPCHEM\1\DATA\
Acq On : 21 Mar 2017 6:0
Sample : C1703050-003A 10x
Misc : A312_1UG
MS Integration Params: RTEINT
Quant Time: Mar 21 09:03:25 2 | 4 am
.P | | Oper
Inst
Mult | Vial:
ator:
iplr:
File: | RJP
MSD
1.00 |) |
| Quant Method : C:\HPCHEM\1\ME
Title : TO-15 VOA Sta:
Last Update : Wed Mar 15 10:
Response via : Initial Calibra
DataAcq Meth : 1UG_RUN | ndards for
58:20 2017
ation | _1UG.M
5 poir | (RTE Integr
nt calibrati | ator)
.on | | |
| Internal Standards | R.T. | QIon | Response C | onc U | nits | Dev(Min) |
| 1) Bromochloromethane
35) 1,4-difluorobenzene
50) Chlorobenzene-d5 | 9.54 | 1.28
114
117 | 11876
56049
45186 | 1.00
1.00
1.00 | ppb
dqq
dqq | 0.00
-0.02
0.00 |
| System Monitoring Compounds
65) Bromofluorobenzene
Spiked Amount 1.000 | 18.44
Range 70 | 95
- 130 | 31210
Recovery | 0.92
′ ≞ | ррь
92. | 0.00
00% |
| Target Compounds
15) Acetone
17) Isopropyl alcohol
42) 2,2,4-trimethylpentane
43) Heptane
51) Toluene | 6.13
6.30
12.81
13.13
14.88 | 45
57
43 | 9930
32544
10389 | 0.36
0.35
0.29 | dqq
ppb
dqq | # 100 |

Page 2 23.00 22.00 21.00 20.00 19.00 2,eneznadorositemorB t8.00 17.00 (QT Reviewed) Licb-eneznadoroidD ŝ Quant Results File: A312\_1UG.RBS [] half, Lilling Manual Manual 16.00 NSD #1 1.00 \$5.00 Ъ TIC: A0032029.D 24 T, an outoT میں اللہ اللہ میں ال Operator: Multiplr: vial: ... C:\HPCHEM\1\METHODS\A227\_1UG.M (RTE Integrator) 14.00 Quantitation Report **MSD1** 5 point calibration Inst 13.00 T,ensiqeM 3 T.aniphnedityfiamiti-A.S.S. 5 12,00 2 Mon Mar 27 11:24:01 2017 (,enscredorouthe-A, f 11,08 Standards for C:\HPCHEM\1\DATA\A0032029.D Mon Mar 27 11:22:00 2017 10.00 i,energemonolricomon8 Initial Calibration 6:04 am 9.00 MS Integration Params: RTEINT.P Quant Time: Mar 22 15:19 2017 C1703050-003A 10x North North 8.00 TO-15 VOA 21 Mar 2017 8 A312 1UG A227 10G.M j (lodoble typohos) 6.00 ------(9) ... Response via .. Last Update 5.00 Data File A0032029.D Sample Acq On Method Title 15000 10000 Abundance 1000001 95000 85000 65000 50000 45000 40000 35000 30000 25000 20000 5000 900006 80000 75000 70000 600009 55000 õ Misc Time-->

A0032029.D A227\_1UG.M Page 96 of 213

Date: 27-Mar-17

| CLIENT:
Lab Order: | LaBella Associates, P
C1703050 | .C. | | C | lient Sample ID:
Tag Number: | | |
|-----------------------|-----------------------------------|---------|---------|-------------|---------------------------------|--------|----------------------|
| Project: | Former Emerson St L: | andfill | | | Collection Date: | 3/12/2 | 2017 |
| Lab ID: | C1703050-004A | | | Matrix: AIR | | | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed |
| FIELD PARAM | ETERS | | FI | _D | | | Analyst: |
| Lab Vacuum In | | -6 | | | "Hg | | 3/17/2017 |
| Lab Vacuum Oi | ut | -30 | | | "Hg | | 3/17/2017 |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | та | -15 | | | Analyst: RJP |
| 1,1,1-Trichloroe | ethane | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 7:50:00 PM |
| 1,1-Dichloroeth | ane | < 0.15 | 0.15 | | ррбV | 1 | 3/20/2017 7:50:00 PM |
| 1,1-Dichloroeth | ene | < 0,15 | 0.15 | | ррв∨ | 1 | 3/20/2017 7:50:00 PM |
| Chloroethane | | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 7:50:00 PM |
| Chloromethane | | 0.75 | 0.15 | | ррҌ∨ | 1 | 3/20/2017 7:50:00 PM |
| cis-1,2-Dichloro | ethene | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 7:50:00 PM |
| Tetrachloroethy | lene | < 0.15 | 0.15 | | ppb∨ | 1 | 3/20/2017 7:50:00 PM |
| trans-1,2-Dichlo | proethene | < 0.15 | 0.15 | | ppbV | 1 | 3/20/2017 7:50:00 PM |
| Trichloroethene | 1 | < 0.040 | 0.040 | | ррв∨ | 1 | 3/20/2017 7;50:00 PM |
| Vinyl chloride | | < 0.040 | 0.040 | | ppbV | 1 | 3/20/2017 7:50:00 PM |
| Surr: Bromof | luorobenzene | 96.0 | 70-130 | | %REC | 1 | 3/20/2017 7:50:00 PM |

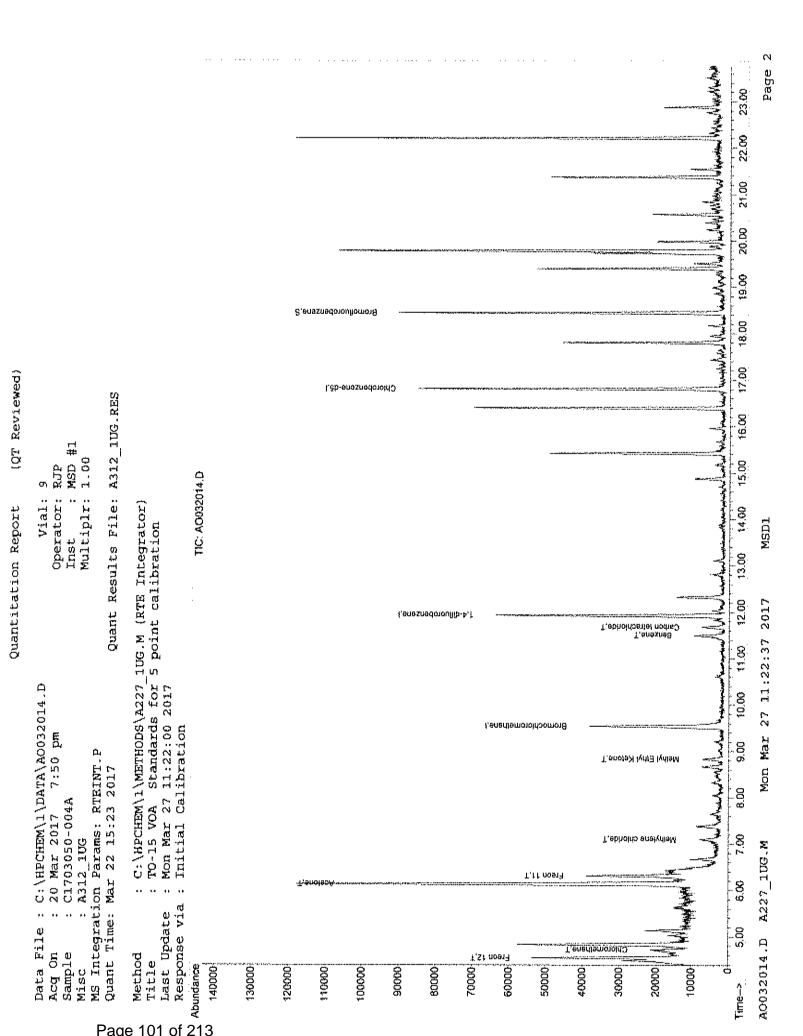
| Qualifiers: | ** | Quantitation Limit | | Results reported are not blank corrected | |
|-------------|----|--|----|---|-------------|
| | в | Analyte detected in the associated Method Blank | E | Estimated Value above quantitation range | |
| | н | Holding times for preparation or analysis exceeded | I | Analyte detected below quantitation limit | |
| | JN | Non-routine analyte, Quantitation estimated. | ND | Not Detected at the Limit of Detection | D . 1.65 |
| | S | Spike Recovery outside accepted recovery limits | | | Page 4 of 5 |

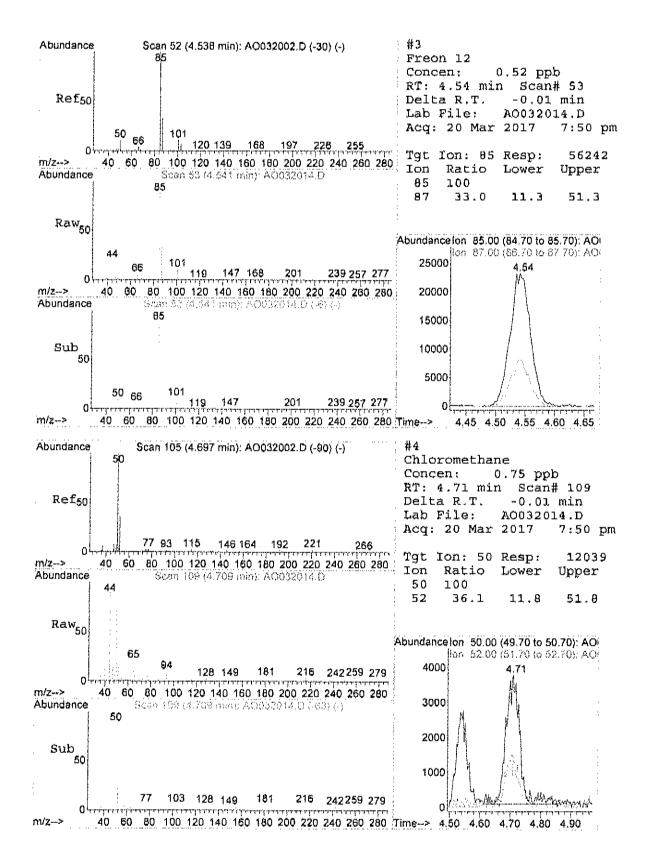
Date: 27-Mar-17

| Lab ID: | C1703050-004A | Matrix: | AIR |
|------------|----------------------------|-------------------|----------------|
| Project: | Former Emerson St Landfill | Collection Date: | |
| Lab Order; | C1703050 | Tag Number: | 484.251 |
| CLIENT: | LaBella Associates, P.C. | Client Sample ID: | 1770-Outdoor-B |
| | | | |

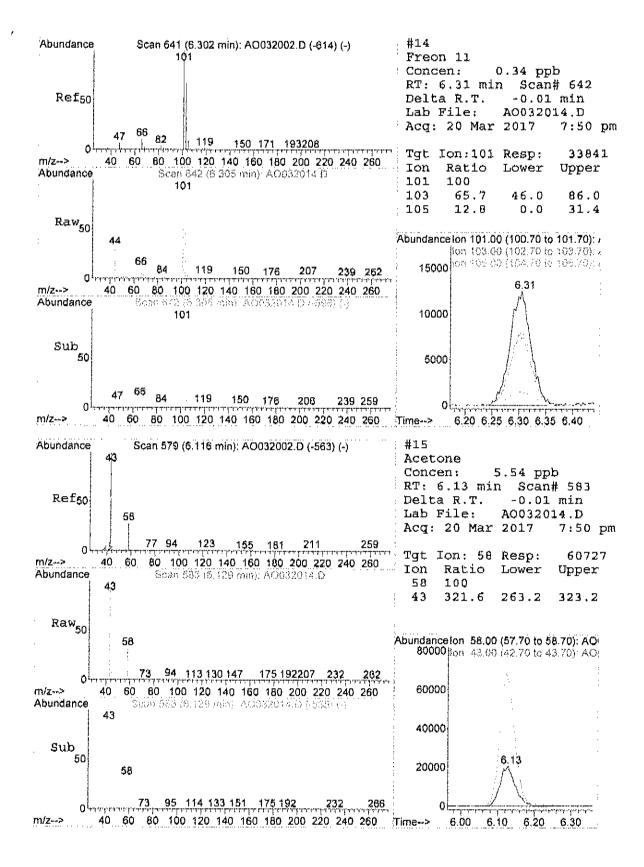
| Analyses | Result | **Limit Qi | ial Units | DF | Date Analyzed |
|-------------------------------|--------|------------|-----------|----|----------------------|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | TO-15 | | | | Analyst: RJP |
| 1,1,1-Trichloroethane | < 0.82 | 0.82 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| 1,1-Dichloroethane | < 0.61 | 0.61 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| 1,1-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Chloroethane | < 0,40 | 0.40 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Chloromethane | 1.5 | 0.31 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| cis-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Tetrachloroethylene | < 1.0 | 1.0 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| trans-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Trichloroethene | < 0.21 | 0.21 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| Vinyl chloride | < 0.10 | 0.10 | ug/m3 | 1 | 3/20/2017 7:50:00 PM |
| | | | | | |

Qualifiers:

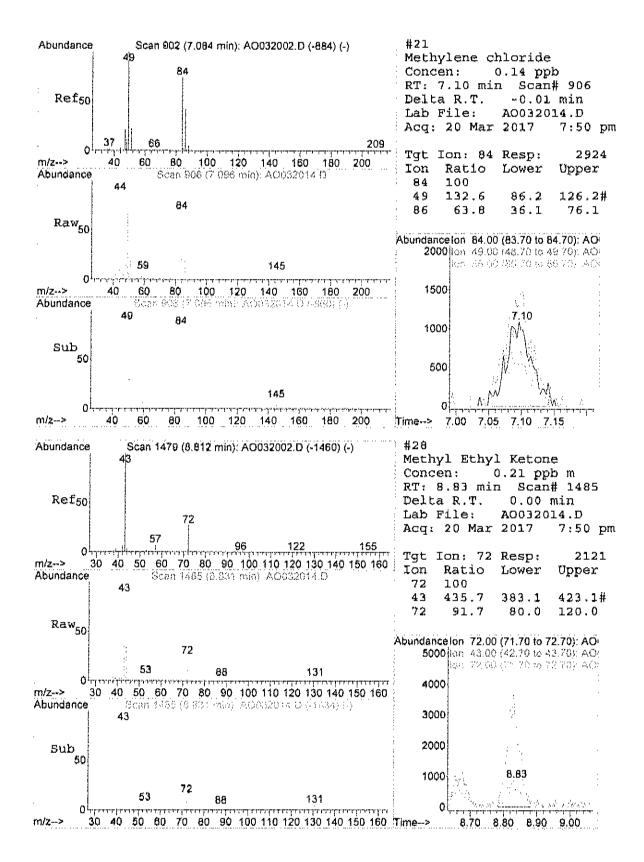

\*\* Quantitation Limit

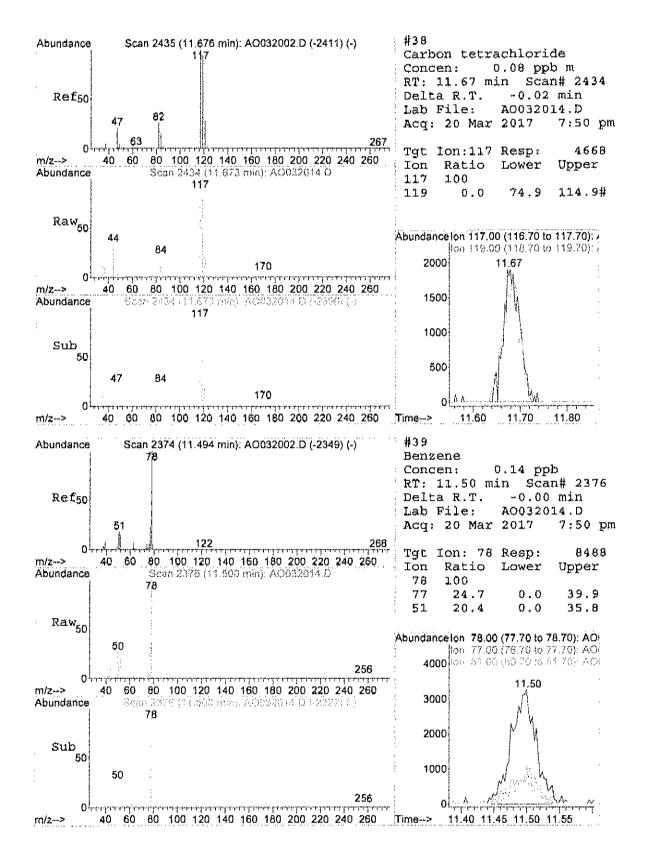

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- 5 Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

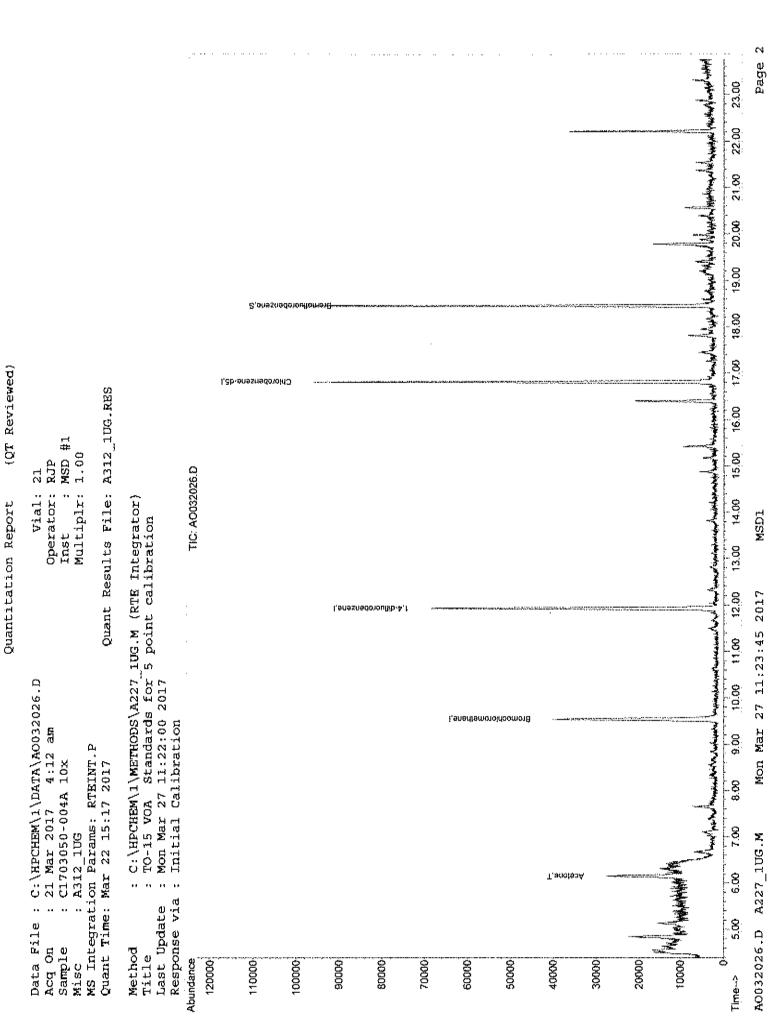

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

| Quantitat | tion Report (QT Reviewed) | | | | | |
|---|---|--|--|--|--|--|
| Data File : C:\HPCHEM\1\DATA\A0032014.D
Acq On : 20 Mar 2017 7:50 pm
Sample : C1703050-004A
Misc : A312_1UG
MS Integration Params: RTEINT.P
Quant Time: Mar 21 09:03:10 2017 | Operator: RJP
Inst : MSD #1
Multiplr: 1.00 | | | | | |
| Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Mar 15 10:58:20 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN | | | | | | |
| Internal Standards R.T. | . QIon Response Conc Units Dev(Min) | | | | | |
| 1) Bromochloromethane9.5335) 1,4-difluorobenzene11.9350) Chlorobenzene-d516.80 | 3 128 13369 1.00 ppb -0.01 3 114 59517 1.00 ppb -0.01 0 117 48346 1.00 ppb -0.01 | | | | | |
| System Monitoring Compounds
65) Bromofluorobenzene 18.44
Spiked Amount 1.000 Range 70 | 4 95 34704 0.96 ppb 0.00
0 ~ 130 Recovery = 96.00% | | | | | |
| 4) Chloromethane4.7114) Freon 116.3115) Acetone6.1321) Methylene chloride7.1028) Methyl Ethyl Ketone8.8338) Carbon tetrachloride11.67 | Qvalue 4 85 56242 0.52 ppb 97 1 50 12039 0.75 ppb 92 1 101 33841 0.34 ppb 99 3 58 60727 5.54 ppb 85 0 84 2924 0.14 ppb 80 3 72 2121m 0.21 ppb 7 7 117 4668m 0.08 ppb 89 0 78 8488 0.14 ppb 89 | | | | | |

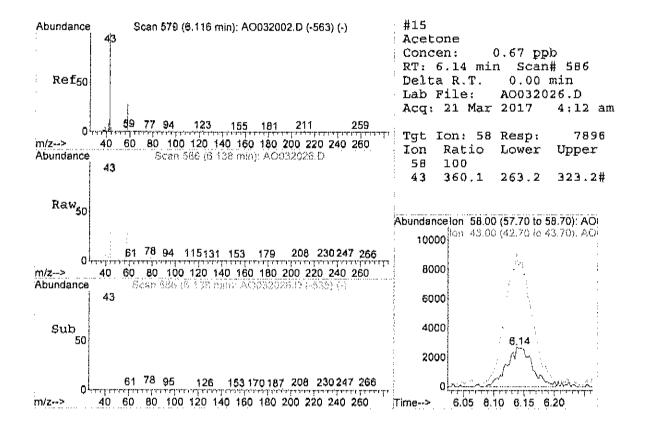



MSD1

A0032014.D A227\_1UG.M Page 103 of 213 MSD1



A0032014.D A227\_1UG.M Page 104 of 213



Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032026.D Vial: 21 Acq On : 21 Mar 2017 4:12 am Sample : C1703050-004A 10x Misc : A312\_1UG **Operator:** RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:22 2017 Quant Results File: A312 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.53128144581.00ppb-0.0135) 1,4-difluorobenzene11.93114670961.00ppb-0.0150) Chlorobenzene-d516.81117551121.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 38591 0.94 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 94.00% Target Compounds Qvalue 15) Acetone 6.14 58 7896 0.67 ppb # 65

Page 106 of 213

Page 107 of 213

Date: 27-Mar-17

| CLIENT: | LaBella Associates, P | .С. | | C | lient Sample ID: | 1770- | Dupe B |
|------------------|-----------------------|---------|---------|------|-------------------------|--------|-----------------------|
| Lab Order: | C1703050 | | | | Tag Number: | 1182. | H61 |
| Project: | Former Emerson St La | andfill | | | Collection Date: | 3/12/2 | 2017 |
| Lab ID; | C1703050-005A | | | | Matrix: | AIR | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed |
| FIELD PARAM | ETERS | | F | LD | | | Analyst: |
| Lab Vacuum In | | -9 | | | "Hg | | 3/17/2017 |
| Lab Vacuum Or | ut | -30 | | | "Hg | | 3/17/2017 |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | тс | -15 | | | Analyst: RJP |
| 1,1,1-Trichloroe | thane | < 0.15 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AM |
| 1,1-Dichloroeth: | ane | < 0.15 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AM |
| 1,1-Dichloroethe | êne - | < 0.15 | 0.15 | | ppb∨ | 1 | 3/21/2017 12:10:00 AM |
| Chloroethane | | < 0.15 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AM |
| Chioromethane | | 0.89 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AM |
| cis-1,2-Dichloro | ethene | < 0.15 | 0.15 | | ppbV | 1 | 3/21/2017 12:10:00 AM |
| Tetrachloroethy | lene | < 0.15 | 0.15 | | ppb∨ | 1 | 3/21/2017 12:10:00 AM |
| trans-1,2-Dichlo | roethene | < 0.15 | 0.15 | | ррБ∨ | 1 | 3/21/2017 12:10:00 AM |
| Trichloroethene | | < 0.040 | 0.040 | | ppbV | 1 | 3/21/2017 12:10:00 AM |
| Vinyi chloride | | < 0.040 | 0,040 | | ppbV | 1 | 3/21/2017 12:10:00 AM |
| Surr: Bromofi | luorobenzene | 100 | 70-130 | | %REC | 1 | 3/21/2017 12:10:00 AM |

| Qualifiers: | ** | Ouantitation Limit | | Results reported are not blank corrected | |
|-------------|----|--|----|---|-------------|
| Quamera | | Quannaenn Linn | , | Results reported are not brank confected | |
| | 8 | Analyte detected in the associated Method Blank | E | Estimated Value above quantitation range | |
| | Ы | Holding times for preparation or analysis exceeded |) | Analyte detected below quantitation limit | |
| | JN | Non-routine analyte. Quantitation estimated. | ND | Not Detected at the Limit of Detection | |
| | s | Spike Recovery outside accepted recovery limits | | | Page 5 of 5 |

Date: 27-Mar-17

| Analyses | Result | **Limit Qual Units | DF Date Analyzed |
|------------|----------------------------|--------------------|------------------|
| Lab ID: | C1703050-005A | Matrix: | AIR |
| Project: | Former Emerson St Landfill | Collection Date: | 3/12/2017 |
| Lab Order: | C1703050 | Tag Number: | 1182.1161 |
| CLIENT; | LaBella Associates, P.C. | Client Sample ID: | 1770-Dupe B |
| | | | |

| 7(111) 5C.5 | Resart | | um Omis | Dr | Date Analyzeu | |
|-------------------------------|--------|------|---------|----|-----------------------|--|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | TO-15 | | | | Analyst: RJP | |
| 1,1,1-Trichloroethane | < 0,82 | 0.82 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| 1,1-Dichloroethane | < 0.61 | 0.61 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| 1,1-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| Chloroethane | < 0.40 | 0,40 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| Chloromethane | 1.8 | 0.31 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| cis-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| Tetrachioroethylene | < 1.0 | 1,0 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| trans-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| Trichloroethene | < 0.21 | 0,21 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| Vinyl chloride | < 0.10 | 0.10 | ug/m3 | 1 | 3/21/2017 12:10:00 AM | |
| | | | | | | |

| Qualifiers: | ** | Quantitation Limit | | Results reported are not blank corrected | |
|-------------|----|--|----|---|-------------|
| | В | Analyte detected in the associated Method Blank | Ę | Estimated Value above quantitation range | |
| | н | Holding times for preparation or analysis exceeded | J | Analyte detected below quantitation fimit | |
| | JN | Non-routine analyte. Quantitation estimated. | ND | Not Detected at the Limit of Detection | |
| | s | Spike Recovery outside accepted recovery limits | | | Page 5 of 5 |

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032020.D Vial: 15 Acq On : 21 Mar 2017 12:10 am Operator: RJP r C1703050-005A Inst : MSD #1 Sample Misc : A312\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:16 2017 Quant Results File: A312 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.53128129391.00 ppb0.0035) 1,4-difluorobenzene11.92114600391.00 ppb-0.0250) Chlorobenzene~d516.81117500051.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.45 95 37366 1.00 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 100.0 0.00 Recovery = 100.00%

 Target Compounds
 Qvalue

 3) Freon 12
 4.55
 85
 69053
 0.66
 ppb
 100

 4) Chloromethane
 4.71
 50
 13838
 0.89
 ppb
 98

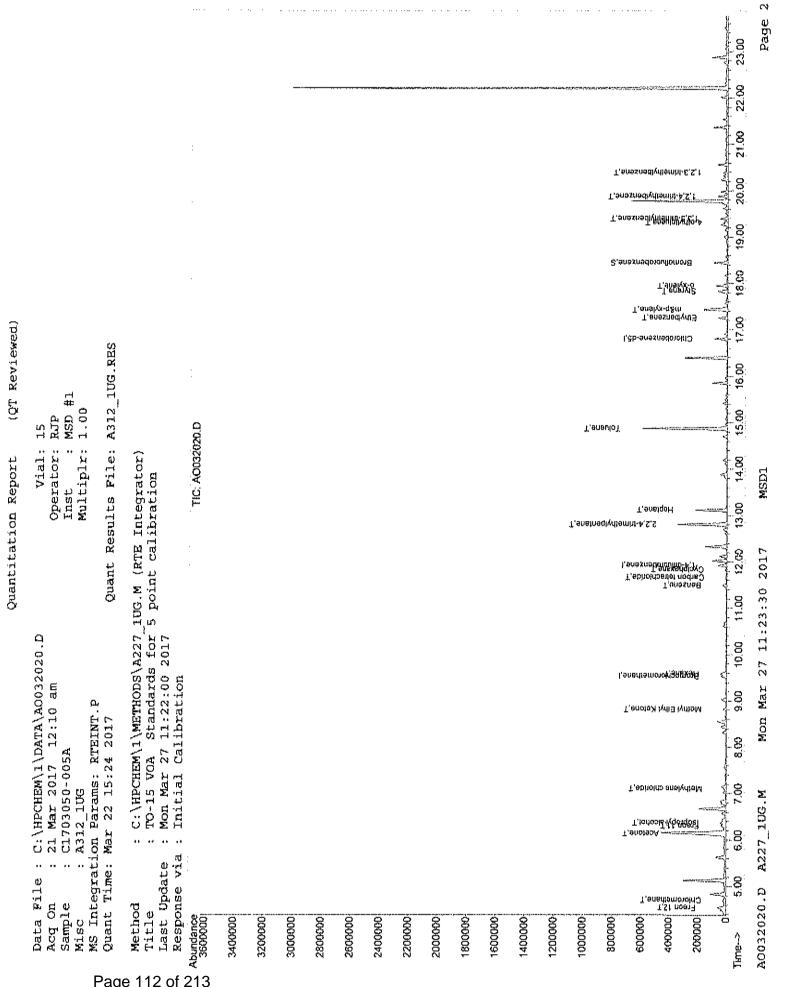
 14) Freon 11
 6.31
 101
 33331
 0.34
 ppb
 97

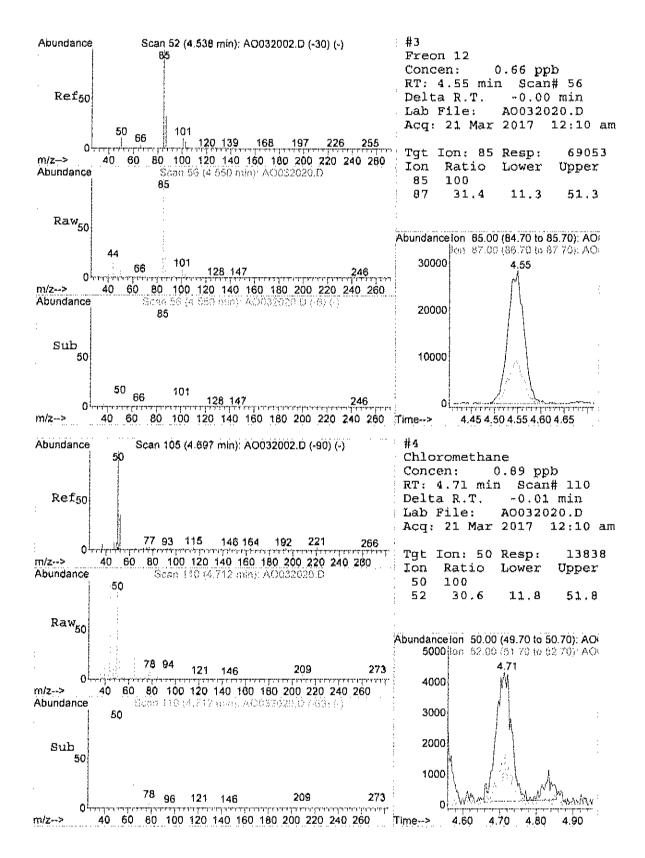
 15) Acetone
 6.13
 56
 94192
 8.87
 ppb
 #
 1

 17) Isopropyl alcohol
 6.37
 45
 48830
 1.63
 ppb
 #
 100

 21) Methylene chloride
 7.10
 64
 7321
 0.37
 ppb
 #
 76

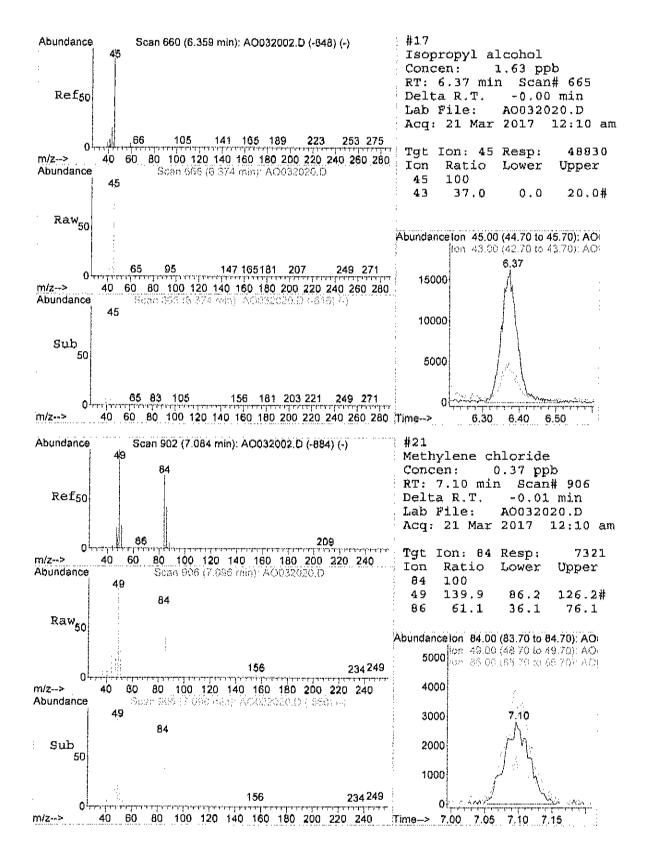
 28) Methyl Ethyl Ketone
 0.62
 72
 7891
 0.82
 ppb
 #
 84

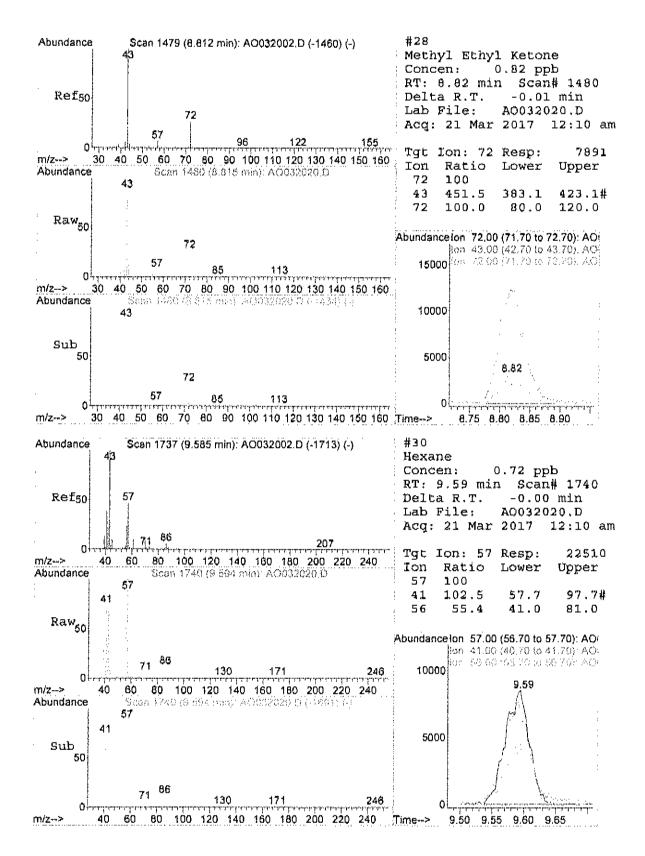

 30) Hexane
 9.59
 57
 22510
 0.72
 ppb
 #
 81

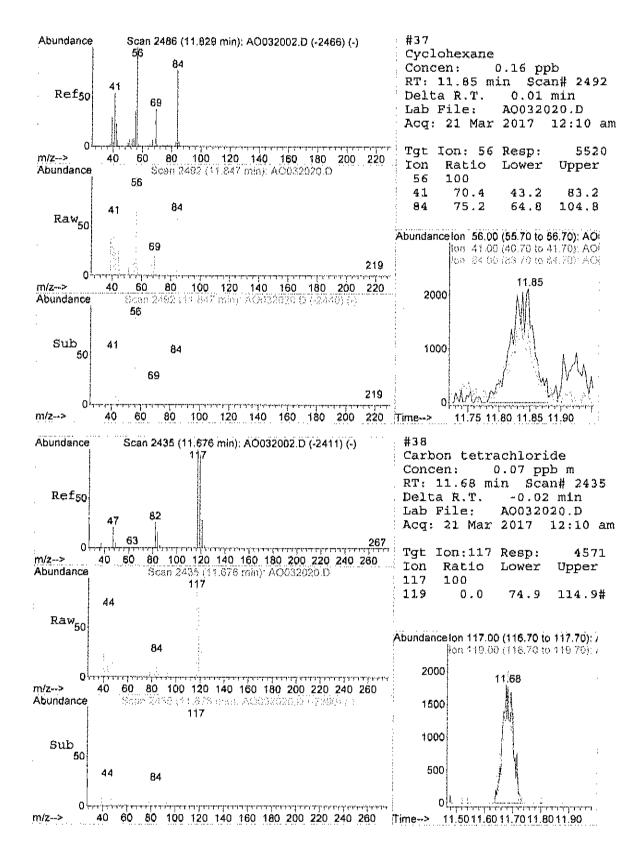

 37) Cyclohexane
 11.68
 157
 355444
 3.59
 ppb
 68

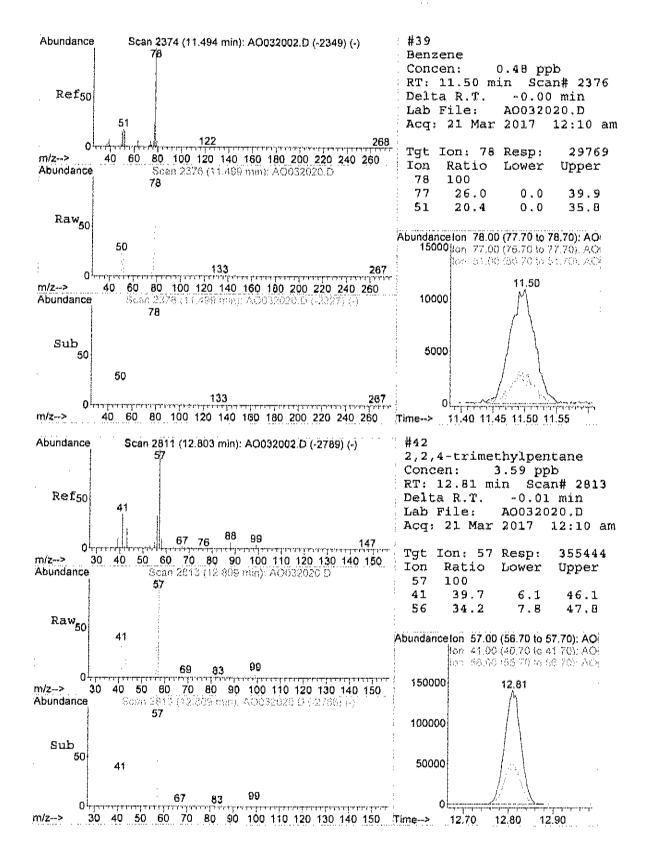

 42) 2,2,4-trimethylpentane
 12.81
 57
 355444
 3.59
 ppb
 81

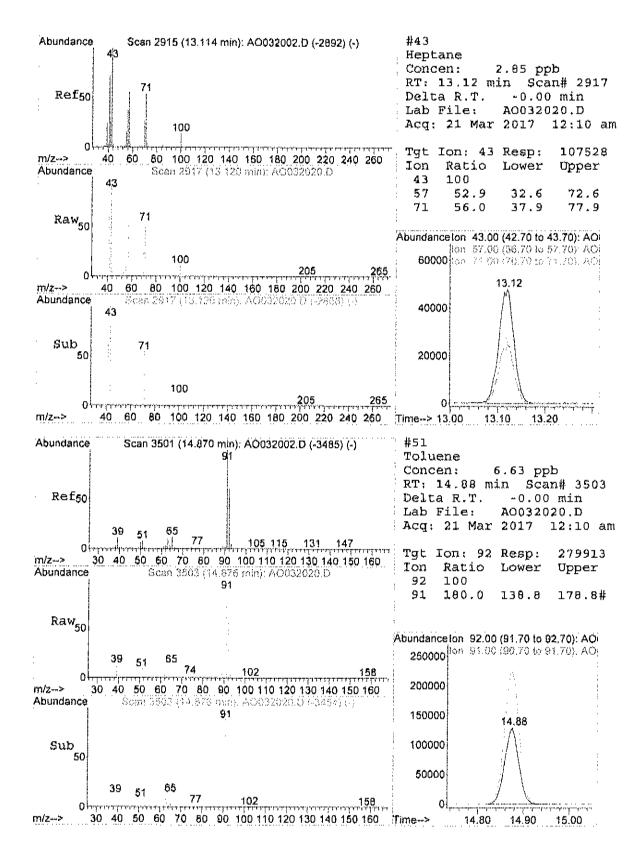
 43) Heptane
 13.12
 43
 107526
 2.65
 ppb
 96

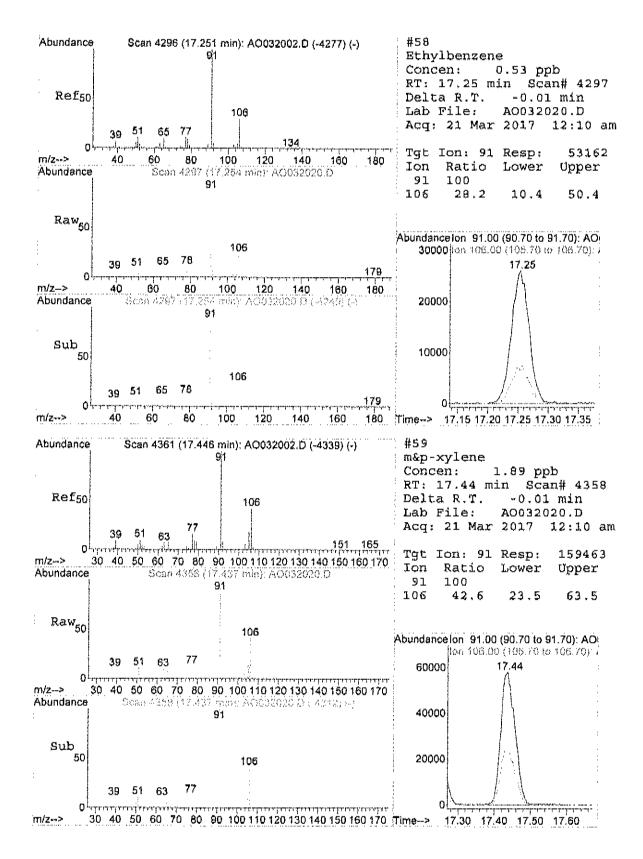

 51
 Target Compounds Qvalue

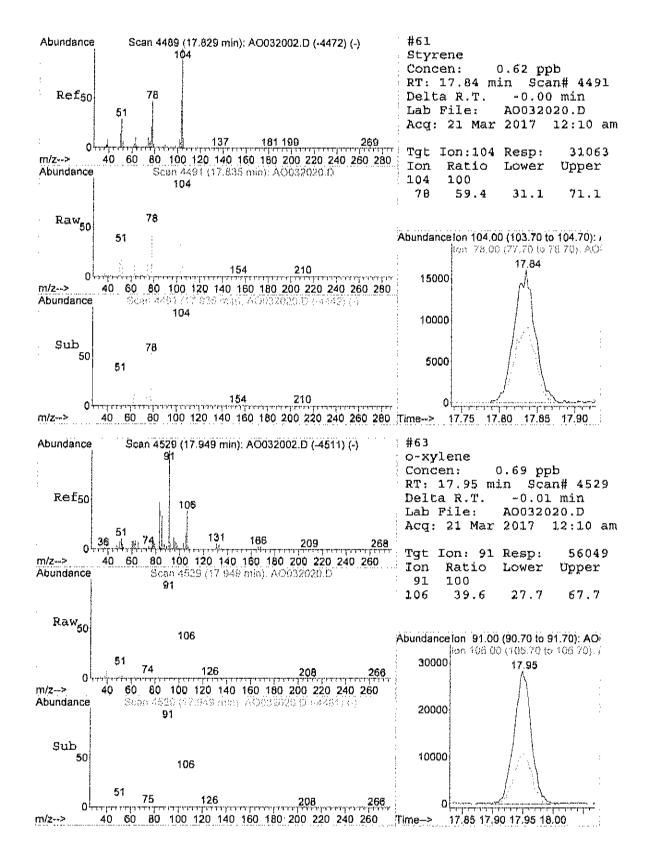




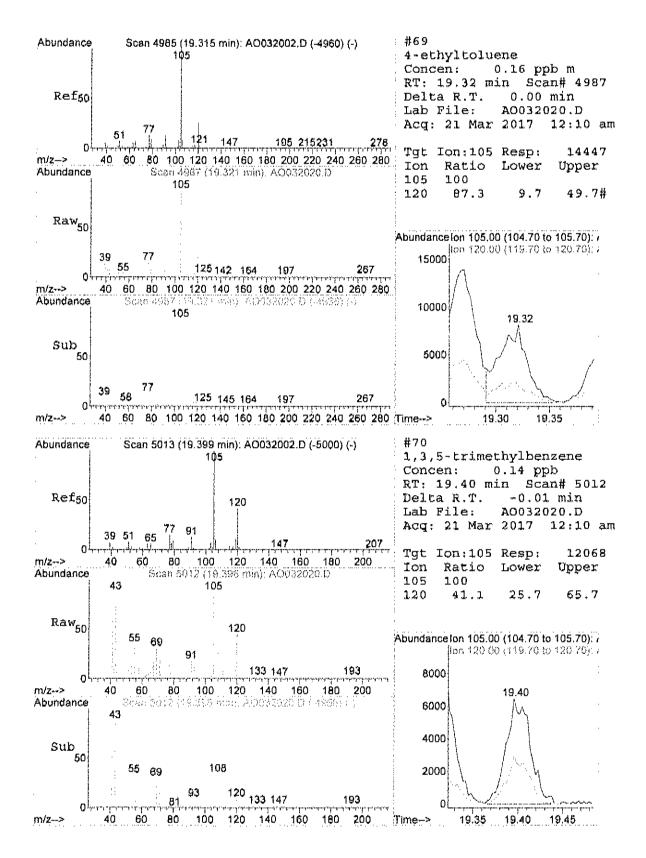

A0032020.D A227\_1UG.M Page 114 of 213

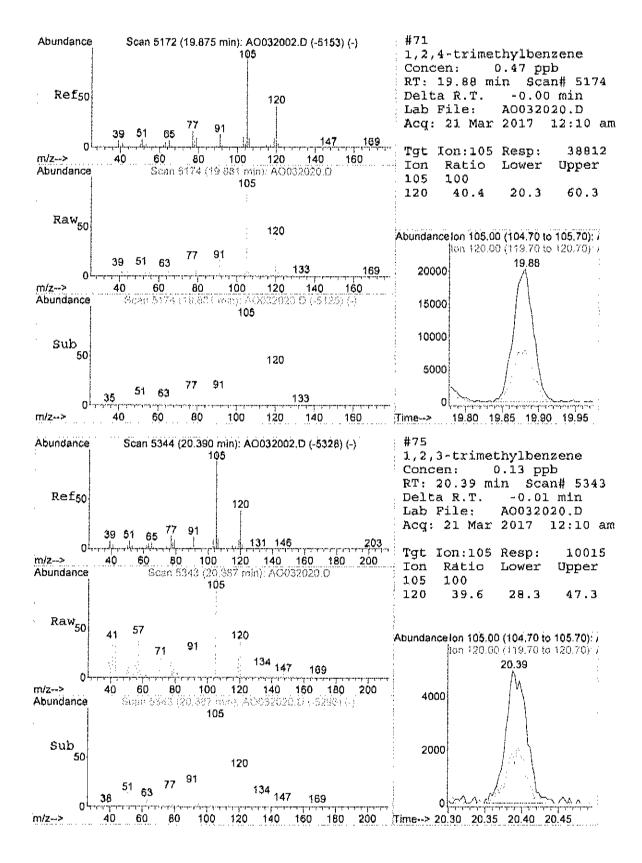



A0032020.D A227\_1UG.M Page 116 of 213



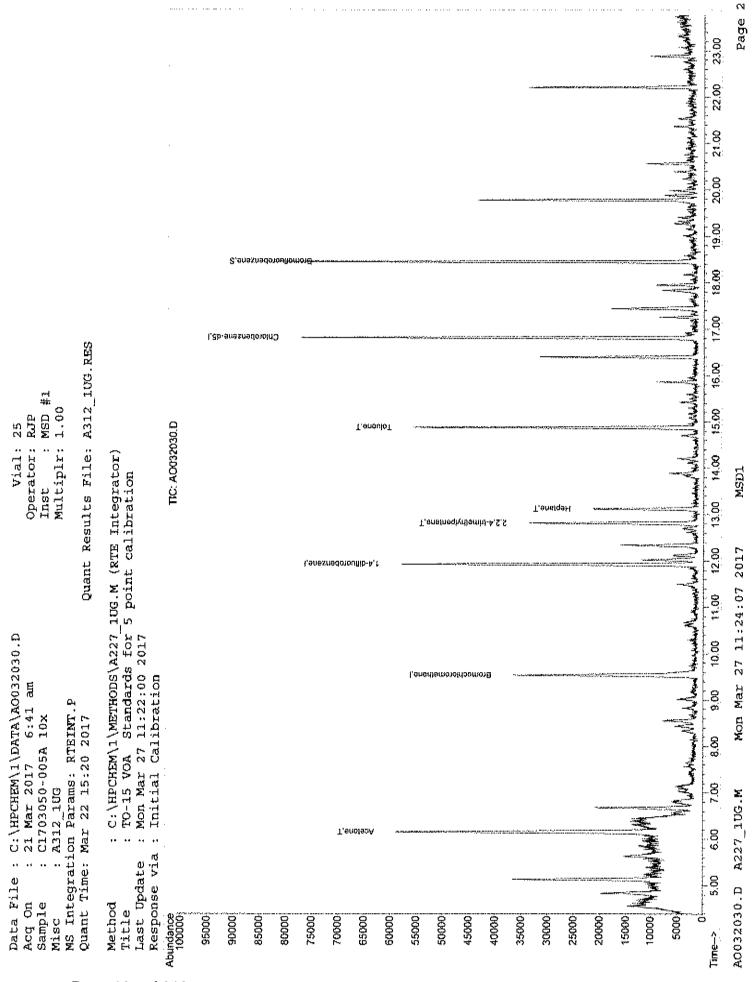
A0032020.D A227\_1UG.M Page 118 of 213



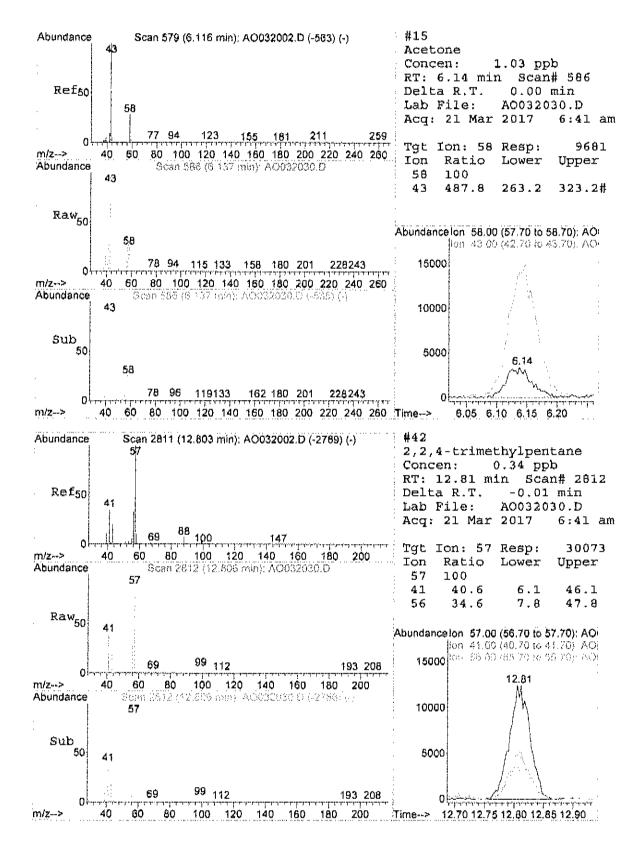


A0032020.D A227\_1UG.M Page 120 of 213

A0032020.D A227\_1UG.M Page 121 of 213

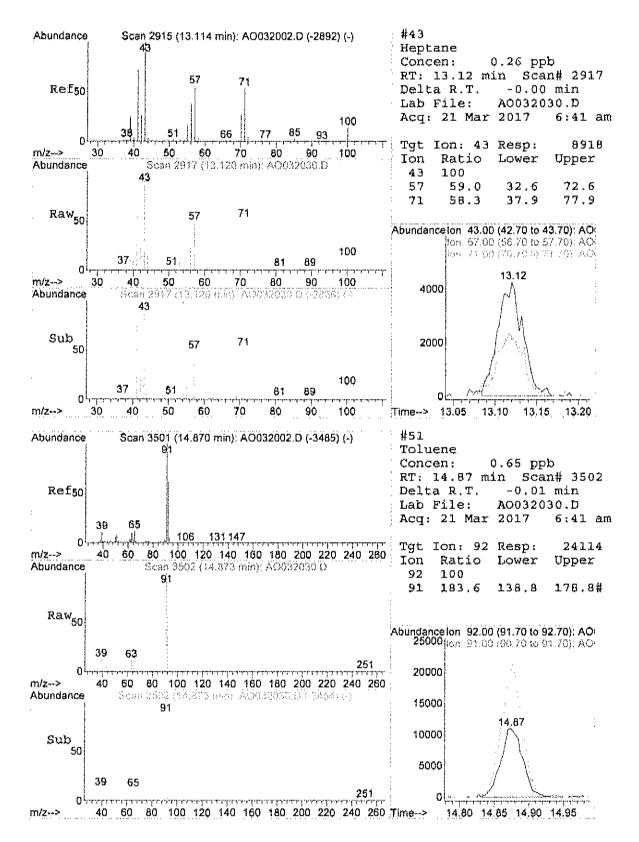


A0032020.D A227\_1UG.M Page 123 of 213


| | Quantitat | ion Rej | port (Q) | r Review | wed) | |
|---|----------------------------------|-------------|-------------------|--|--------------------|-----------------------------------|
| Data File : C:\HPCHEM\1\DATA\/
Acq On : 21 Mar 2017 6:42
Sample : C1703050-005A 10x
Misc : A312_1UG
MS Integration Params: RTEINT
Quant Time: Mar 21 09:03:26 20 | Lam, | | Ope
Ins
MuJ | Vial:
erator:
st :
itiplr:
; File: | RJP
MSD
1.00 | |
| Quant Method : C:\HPCHEM\1\MET
Title : TO-15 VOA Star
Last Update : Wed Mar 15 10:9
Response via : Initial Calibra
DataAcq Meth : 1UG_RUN | dards for
58:20 2017
ation | 5 poi: | nt calibrat | tion | . d . | D 444 (154 -) |
| Internal Standards | к.т. | | kesponse | cone ui | 11CS
 | Dev(Min) |
| Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 | 11.92 | 114 | 53989 | 1.00 | ppb | -0.01
-0.01
0.00 |
| System Monitoring Compounds
65) Bromofluorobenzene
Spiked Amount 1.000 | 18.45
Range 70 | 95
- 130 | 29968
Recover | 0.91
y = | ppb
91. | 0.00
00% |
| Target Compounds
15) Acetone
42) 2,2,4-trimethylpentane
43) Heptane
51) Toluene | 12.01 | 57
43 | 8918 | $0.34 \\ 0.26$ | ppb
ppb | Qvalue
1
80
95
81 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032030.D A227\_1UG.M Mon Mar 27 11:24:06 2017 MSD1 (QT Reviewed)

Quantitation Report



Page 125 of 213

A0032030.D A227\_1UG.M

Page 126 of 213

A0032030.D A227\_1UG.M

Page 127 of 213

GC/MS VOLATILES-WHOLE AIR

.

METHOD TO-15

STANDARDS DATA

•

Page 128 of 213

.

. .

GC/MS VOLATILES-WHOLE AIR

.

METHOD TO-15

,

INITIAL CALIBRATION

.

•

.

Page 129 of 213

.

.

| | | | Res | ponse | Factor | Report | : MSD | #⊥ | |
|-----------------|--------------|--|--------------------------------|-------|-------------------------|----------------|----------------|----------------|--------------|
| | Meth | od : C:\HPC | HEM\1\METHODS | \A312 | LUG.M | (RTE In | itegrat | cor) | |
| | Titl | e : TO-15
Update : Wed Man | /OA Standard | s for | 5 point | ; calib | pration | â | |
| | Resp | onse via : Initial | r 15 10:58:20
L Calibration | 2017 | | | | | |
| | _ | | | | | | | | |
| | | bration Files
#A0031213.D (|),10 =AQ031 | 212.D | 0.15 | ∞Λ Ο0 | 31211 | . D | |
| | 0.30 | =A0031210.D | D.50 ≡ AOO31 | 209.D | 0.75 | =AO0 | 31208 | . D | |
| | | Compound | 0.04 0.10 | 0.15 | 0.30 | 0.50 | 0.75 | Avg | *RSD |
| | | | | | | | | | |
| 1) | Ì | Bromochloromethan
Propylene
Freon 12
Chloromethane
Freon 114
Vinyl Chloride
Butane
1,3-butadiene
Bromomethane
Chloroethane
Ethanol
Acrolein
Vinyl Bromide
Freon 11
Acetone
Pentane
Isopropyl alcoh
1,1-dichloroeth
Freon 113
t-Butyl alcohol
Methylene chlor
Allyl chloride
Carbon disulfid
trans-1,2-dichl
methyl tert-but
1,1-dichloroeth
Vinyl acetate
Methyl Ethyl Ke
cis-1,2-dichlor
Hexane
Ethyl acetate
Chloroform | 1e | | ISTI |) | | | |
| 2) | Ť | Propylene | | 2.101 | 2.251 | 2,012 | 2.084 | 1.983 | 8.43 |
| 3) | T | Freon 12
Chloromethane | | 8.592 | 2 8,305 | 8.500 | 8.276
1 97% | 8.095
1.200 | 4.83 |
| 5) | T | Freon 114 | | 6.390 | 6.033 | 6.053 | 6.057 | 6.032 | 3.11 |
| 6) | Ť | Vinyl Chloride | 2.027 1.985 | 1.655 | 1.826 | 1,663 | 1.705 | 1,757 | 8.13 |
| 7) | т | Butane | | 2.004 | 2.154 | 1.875 | 2.048 | 1.936 | 6.46 |
| 8) | T | 1,3-butadiene | | 1.292 | 1.240 | 1.289 | 1.249 | 1.227 | 3.97 |
| 9) | T | Bromomethane | | 2.502 | | 2.130 | 2.249 | 2.172 | 7.56 |
| 10/ | T
T | Etherol | | 0.097 | 0.642 | 0.548 | 0.578 | 0.573 | 4.97 |
| $\frac{11}{12}$ | T | Acrolein | | 0.648 | 0.529 | 0.601 | 0.506 | 0.566 | 7.89 |
| 1.3) | т | Vinyl Bromide | | 2,268 | 2,220 | 2.148 | 2.107 | 2.114 | 4.26 |
| 14) | т | Freon 11 | | 7.425 | 7.522 | 7.610 | 7.689 | 7.471 | 3.20 |
| 15) | T | Acetone | | 1.061 | . 0.870 | 0.711 | 0.857 | 0,820 | 14.05 |
| 10/ | T
T | Fencane
Teopropyl alcoh | | 2.946 | . 1.013
. 2.283 | 2.344 | 2.218 | 2.314 | 11.45 |
| 18) | Ť | 1.1-dichloroeth | | 1.622 | 1.570 | 1.576 | 1.650 | 1.573 | 2.93 |
| 19) | Ť | Freon 113 | | 3.229 | 3.329 | 3.468 | 3.622 | 3.434 | 3.50 |
| 20) | t | t-Butyl alcohol | | 3.980 | 3.890 | 3.984 | 4.109 | 4.095 | 3.54 |
| 21) | Т | Methylene chlor | | 1.623 | 1.552 | 1,520 | 1.514 | 1.519 | 3.71 |
| 22) | T
T | Carbon disulfid | | 4 979 | × 2.150 | 2.259 | 4.846 | 4.189 | 2.24 |
| 24) | ŕ | trans-1.2-dichl | | 2,676 | 2.616 | 2.631 | 2.726 | 2,670 | 1.98 |
| 25) | Ŧ | methyl tert-but | | 5.256 | 5.350 | 5.280 | 5.491 | 5.418 | 2.41 |
| 26) | \mathbf{T} | 1,1-dichloroeth | | 3.033 | 3.270 | 3,165 | 3,393 | 3.249 | 3.46 |
| 27) | T | Vinyl acetate | | 4,367 | 4,600 | 4.309 | 4.609 | 4,452 | 2.50 |
| 20) | .T. | Metnyi stnyi ke | | 2 515 | . U.643
: 5 474 | U.711
J 580 | 2 562 | 0,744
2,524 | 1.47 |
| 30) | Ŷ | Hexane | | 2.430 | 2.461 | 2.374 | 2.488 | 2.417 | 1,70 |
| 31) | Ť | Ethyl acetate | | 4.854 | 5.011 | 4.791 | 5.168 | 5.025 | 3.29 |
| | | Chloroform | | | | | | | |
| 33) | | Tetrahydrofuran | | | 1.860
3.262 | | | | 2.85
2.23 |
| 34) | т | 1,2-dichloroeth | | 3.388 | 3.26% | 3,319 | 2.340 | 2.2/4 | 2.23 |
| 35) | | 1,4-difluorobenze | ne | | | | | | |
| 36) | | 1,1,1-trichloro | 0,999 | | 1.060 | | | | |
| 37)
38) | | Cyclohexane
Carbon tetrachl | 0.965 0.972 | | | | | | 7.41
3.58 |
| 39) | | Benzene | 01200 01276 | | 1,079 | | | | 2.41 |
| 40) | | Methyl methacry | | 0.484 | 0.502 | 0.475 | 0.495 | 0.497 | 2.53 |
| 41) | | 1,4-dioxane | | | 0.190 | | | | 4.27 |
| 42) | | 2,2,4-trimethyl | | | 1.734 | | | | 2.59
6.85 |
| 43)
44) | | Heptane
Trichloroethene | 0.427 0.464 | | 0.680 | | | | 4.10 |
| 45) | | 1,2-dichloropro | 0.427 0.404 | | 0.410 | | | | 2.52 |
| 46) | | Bromodichlorome | | 0.986 | 1,011 | 0.972 | 0.962 | 0.981 | 1.70 |
| 47) | т | cis-1,3-dichlor | | 0.630 | 0.689 | 0.666 | 0.662 | 0.667 | 2.58 |
| 48) | | trans-1,3-dichl | | 0.649 | 0.689
0.658
0.431 | 0.647 | 0.660 | 0.662 | 1,66
2,40 |
| 49) | т | 1,1,2-trichloro | | 0.400 | ***** | ••• | | | |
| 50) | Ι | Chlorobenzene-d5 | | | ISTE |) | | | |
| 51) | т | Toluene | | 0.875 | 0.841 | 0.866 | 0.832 | 0.843 | 2.57 |
| | | | | | | | | | |

| Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator) | |
|--|-------------------------------|
| Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Mar 15 10:58:20 2017
Response via : Initial Calibration | |
| Calibration Files
0.04 =A0031213.D 0.10 =A0031212.D 0.15 =A0031211.D
0.30 =A0031210.D 0.50 =A0031209.D 0.75 =A0031208.D | |
| | *RSD |
| 52) T Methyl Isobutyl 0.779 0.724 0.689 0.740 0.761 53) T Dibromochlorome 0.930 0.925 0.985 0.996 0.994 54) T Methyl Butyl Ke 0.497 0.534 0.567 0.593 0.591 55) T 1,2-dibromoetha 0.808 0.793 0.834 0.841 0.823 56) T Tetrachloroethy 0.517 0.509 0.527 0.516 0.514 57) T Chlorobenzene 1.034 1.065 1.079 1.100 1.084 58) T Ethylbenzene 2.014 2.059 2.000 2.024 1.993 59) T mAp-xylene 1.690 1.705 1.676 1.730 1.688 60) T Nonane 1.010 1.014 1.047 1.062 1.017 61) T Styrene 0.951 0.957 0.933 1.002 1.000 621 T Bromoform 0.673 0.686 0.719 0.733 0.728 631 T o-xylene 1.644 1.646 1.614 1.634 1.616 641 T Cumene 2.065 2.055 1.986 2.076 2.036 651 S Bromofluorobenz 0.748 0.732 0.746 0.737 0.748 0.748 661 T 1.1,2,2-tetrach 1.034 1.077 1.058 1.066 1.046 671 T Propylbenzene 0.484 0.484 0.496 0.514 0.500 681 T 2-Chlorotoluene 0.496 0.474 0.463 0.460 0.471 691 T 1.3.5-trimethyl 1.760 1.742 1.650 1.756 1.731 | -5.39.112113.4461940464613902 |

Response Factor Report MSD #1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0031204.D Vial: 1 Acq On : 12 Mar 2017 2:38 pm Operator: RJP Sample : AlUG\_2.0 Misc : A312\_1UG Inst : MSD #1 Multiplr: 1.00 M5 Integration Params; RTEINT.P Quant Time: Mar 12 20:34:47 2017 Quant Results File: A312\_1UG,RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D DataAcq Meth : 1UG\_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.53128688131.00ppb0.0035) 1,4-difluorobenzene11.931143376191.00ppb0.0050) Chlorobenzene-d516.811172901031.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 214856 0.99 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 99.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 99.00\*

 Target Compounds
 Ovalue

 2) Propylene
 4.47
 41
 246713
 1.60 ppb
 94

 3) Freon 12
 4.54
 45
 1050189
 1.69 ppb
 94

 4) Chloromethane
 4.71
 50
 163668m / 1.91 ppb
 94

 6) Vinyl Chloride
 4.93
 62
 211738
 1.96 ppb
 96

 8) 1,3-butadiene
 5.07
 39
 161747m / 2.02 ppb
 93

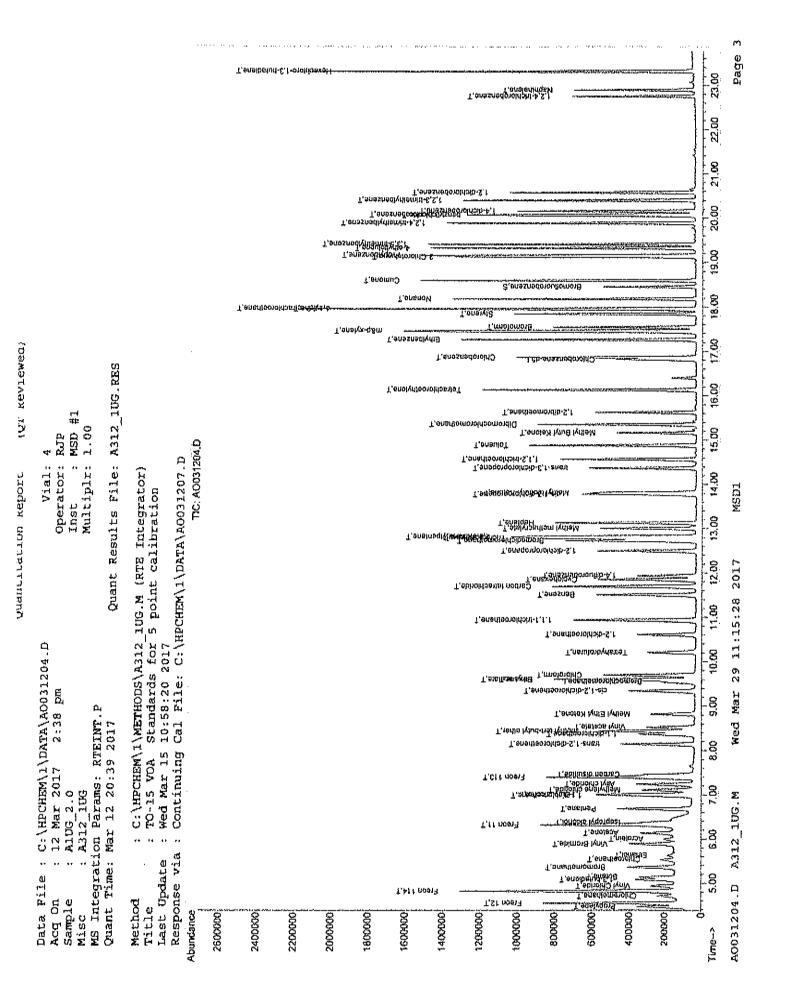
 9) Dromomethane
 5.36
 94
 279062
 1.95 ppb
 93

 10) Chloroethane
 5.63
 64
 99556
 1.92 ppb
 74

 11) Bthanol
 6.31
 101
 73734
 1.86 ppb
 91

 13) Vinyl Bromida
 5.69
 106
 280047
 2.00 ppb
 95

 14) Freon 11
 6.31
 101
 73754
 1.86 ppb
 95


 14) Freon 11
 6.37
 45
 255959
 1.96 ppb
 44

 Target Compounds

(#) = qualifier out of range (m) = manual integration A0031204.D A312\_1UG.M Wed Mar 29 11:15:26 2017 MSD1

| Qu | antitat | ion Re | eport (Q | T Reviewed) | |
|--|--|---|--|--|--|
| Data File : C:\HPCHEM\1\DATA\A00
Acq On : 12 Mar 2017 2:38 p
Sample : A1UG_2.0
Misc : A312_1UG
MS Integration Params: RTEINT.P
Quant Time: Mar 12 20:34:47 2017 | nin | | In
Mu | Vial: 4
erator: RJP
st : MSD
ltiplr; 1,0
s File: A31 | " מ |
| Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 20;32:57 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D
DataAcq Meth : 1UG_RUN | | | | | |
| Compound | R.T. | QION | Response | Conc Unit | Qvalue |
| <pre>46) Bromodichloromethane
47) cis~1,3-dichloropropene
48) trans-1,3-dichloropropene
49) 1,1,2-trichloroethane
51) Toluene
52) Methyl Isobutyl Ketone
53) Dibromochloromethane
54) Methyl Butyl Ketone
55) 1,2-dibromoethane
56) Tetrachloroethylene
57) Chlorobenzene
58) Ethylbenzene
59) m&p-xylene
60) Nonane
61) Styrene
62) Bromoform
63) o-xylene
64) Cumene
65) 1,1,2,2-tetrachloroethane
66) 1,1,2,2-tetrachloroethane
67) Propylbenzene
68) 2-Chlorotoluene
69) 4-ethyltoluene
70) 1,3,5-trimethylbenzene
71) 1,2,4-trimethylbenzene
72) 1,3-dichlorobenzene
73) benzyl chloride
74) 1,4-dichlorobenzene
75) 1,2,3-trimethylbenzene
76) 1,2-dichlorobenzene</pre> | 12.72
13.77
14.37
14.56
13.81
15.62
15.62
16.13
16.86
17.26
17.84
17.54
17.96
18.59 | 173
91
105
83
120
126
105
105
146
146
146 | 436670
908570
1164212
587761
291771
273190
1074893
978715
937606
490916
686385
452531
905669
475430 | 1.95 ppb
2.00 ppb
1.99 ppb
1.96 ppb
2.24 ppb
2.24 ppb
2.13 ppb
2.13 ppb
1.96 ppb
1.96 ppb
1.96 ppb
1.96 ppb
1.96 ppb
1.96 ppb
1.96 ppb
1.95 ppb
1.95 ppb
1.95 ppb
1.95 ppb
1.98 ppb
1.98 ppb
1.98 ppb
1.98 ppb
1.98 ppb
1.98 ppb
1.98 ppb
1.98 ppb
1.99 ppb | 98
92
99
\$6
1
99
97
98
99
98
95
95 |
| 77) 1,2,4-trichlorobenzene
78) Naphthalene
79) Hexachloro-1,3-butadiene | 22.75
22.89
23.31 | 180
128
225 | 211860
583558
405840 | 2.29 ppb
2.27 ppb | 95 |

(#) « qualifier out of range (m) = manual integration (+) = signals summed A0031204.D A312\_1UG.M Wed Mar 29 11:15:27 2017 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0031205.D Vial: 5 Acq On : 12 Mar 2017 3:19 pm Operator: RJP Sample : AlUG\_1.50 Misc : A312\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 12 20:34:20 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312 1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D DataAcq Meth : 1UG\_RUN R.T. Qion Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.54120669261.00ppb0.0035) 1,4-difluorobenzene11.931143325121.00ppb0.0050) Chlorobenzene-d516.821172796851.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.46 95 213377 1.02 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 102.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 #
 102.00%

 Target Compounds
 Qvalue

 2) Propylenc
 4.48
 41
 182591
 1.33 ppb
 94

 3) Freeon 12
 4.55
 65
 762209
 1.40 ppb
 97

 4) Chloromethane
 4.72
 50
 120233m
 1.40 ppb
 92

 6) Vinyl Chloride
 4.94
 62
 166523
 1.40 ppb
 98

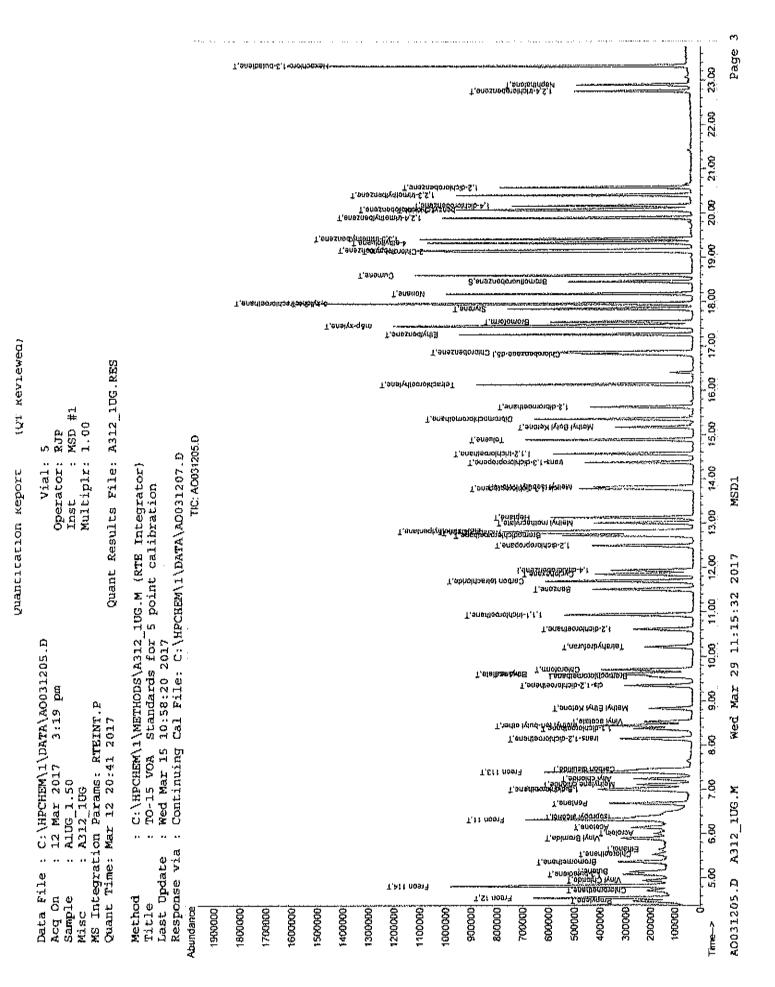
 70 autane
 5.13
 43
 186024
 1.39 ppb
 98

 10 Chlorotethane
 5.36
 94
 208151
 1.42 ppb
 #87

 21 Accolein
 6.00
 56
 55557
 1.43 ppb
 91

 13) Vinyl Bromide
 5.69
 106
 210280
 1.50 ppb
 96

 16) Pectone
 6.13
 50
 73643
 1.30
 Ppb
 44


 17
 Soporpyl alcohol
 6.37
 45
 220863
 1.46 ppb
 91

 18) Percentl3
 7.39
 101
 350355
 Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration A0031205.D A312\_1UG.M Wed Mar 29 11:15:30 2017 MSD1

| Qu | antitat: | ion Re | port (QI | Reviewed) | |
|---|---|---|--|--|--|
| Data File : C:\HPCHEM\1\DATA\A00
Acq On : 12 Mar 2017 3:19 p
Sample : AlUG_1.50
Misc : A312_10G
MS Integration Params: RTEINT.P
Quant Time: Mar 12 20:34:20 2017 | m | Qu | Ins
Mul | Vial: 5
erator: RJP
st : MSD
tiplr: 1.00
; File: A312 | |
| Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 20:32:57 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D
DataAcq Meth : 1UG_RUN | | | | | |
| Compound | | | | Conc Unit | |
| <pre>46) Bromodichloromethane
47) cis-1,3-dichloropropene
48) trans-1,3-dichloropropene
49) 1,1,2-trichloroethane
51) Toluene
52) Methyl Isobutyl Ketone
53) Dibromochloromethane
54) Methyl Butyl Ketone
55) 1,2-dibromoethane
56) Tetrachloroethylene
57) Chlorobenzene
58) Ethylbenzene
59) m&p-xylene
60) Nonane
61) Styrene
62) Bromoform
63) o-xylene
64) Cumene
65) 1,1,2,2-tetrachloroethane
65) 1,1,2,2-tetrachloroethane
66) 2-Chlorotoluene
69) 4-ethyltoluene
70) 1,3,5-trimethylbenzene
71) 1,2,4-trimethylbenzene
72) 1,3-dichlorobenzene
73) benzyl chloride
74) 1,4-dichlorobenzene</pre> | 12.72 13.70 14.36 14.00 14.00 15.00 15.00 15.00 15.00 15.00 15.00 17.45 17.56 17.59 15.00 17.59 19.00 19.00 20.05 20.16 | 83
75
99
42
1
40
6
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
1
9
42
9
42 | 481213
335940
330866
213355
343916
334910
422169
273270
348503
215347
461523
820910
1405875
416243
432439
316026
6666599
840612
431842
212421
194316
762154
725707
673780
356215m
472212
332418m | 1.45 ppb
1.50 ppb
1.47 ppb
1.47 ppb
1.47 ppb
1.46 ppb
1.62 ppb
1.50 ppb
1.51 ppb
1.50 ppb
1.51 ppb
1.50 ppb
1.47 ppb
1.50 ppb
1.51 ppb
1.51 ppb
1.51 ppb
1.47 ppb
1.49 ppb
1.47 ppb
1.49 ppb
1.47 ppb
1.49 ppb
1.47 ppb
1.49 ppb
1.47 ppb
1.49 ppb | 97
97
94
95
95
94
95
99
100
91
99
96
96
96
96
96
96
96
97
100
97
100
97
100
97 |
| 75) 1,2,3-trimethylbenzene
76) 1,2-dichlorobenzene
77) 1,2,4-trichlorobenzene
78) Naphthalene
79) Hexachloro-1,3-butadiene | 20.57
22.75
22.89 | 146
180
120 | 354351
145504 | 1.47 ppb
1.51 ppb
1.63 ppb
1.63 ppb
1.51 ppb | 99
97
95
94
97 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0031205.D A312\_1UG.M Wed Mar 29 11:15:31 2017 MSD1

(QT Reviewed) Quantitation Report Vial: 6 Data File : C:\HPCHEM\1\DATA\AQ031206.D Acq On : 12 Mar 2017 3:59 pm Operator: RJP Inst : MSD #1 Sample : AlUG\_1.25 Misc : A312\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 12 20:33:49 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) ; TO-15 VOA Standards for 5 point calibration Title Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D DataAcq Meth : 1UG\_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.55128655971.00ppb0.0035) 1,4-difluorobenzene11.941143192321.00ppb0.0050) Chlorobenzene-d516.811172691551.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 206078 1.02 ppb Spiked Amount 1.000 Range 70 - 130 Recovery - 102.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 \*
 102.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.48
 41
 152443
 1.17
 ppb
 93

 3) Freon 12
 4.56
 65
 639970
 1.21
 ppb
 97

 4) Chloromethane
 4.73
 50
 103054m
 1.26
 ppb
 91

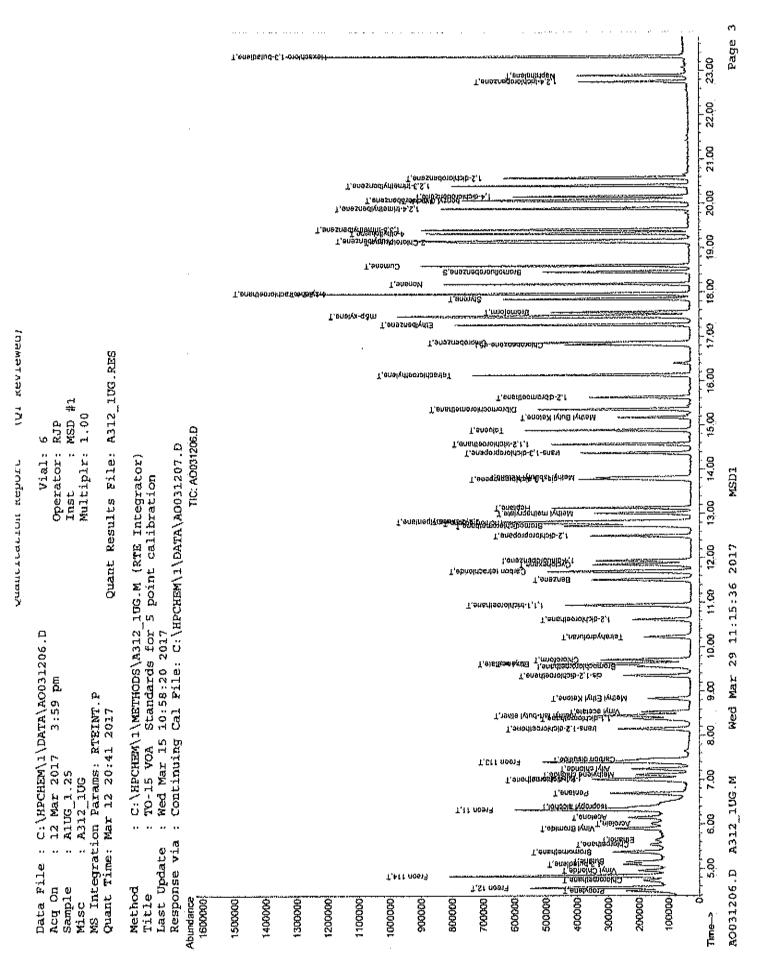
 5) Freon 114
 4.95
 62
 139058
 1.22
 ppb
 95

 6) Vinyl Chloride
 5.14
 43
 150870
 1.18
 ppb
 96

 1.3.butadiene
 5.37
 94
 171292
 1.25
 ppb
 95

 1.3. bronomethane
 5.364
 45
 47774m
 1.25
 ppb
 95

 1.3. bronomethane
 6.14
 5.89
 106
 169006
 1.27
 ppb
 96


 1.3. bronomethane
 6.32
 101
 623694
 1.17
 ppb
 98

 1.3. bronomethane
 6.38
 45
 182996
 1 Ovalue

(#), = qualifier out of range (m) = manual integration A0031206.D A312\_1UG.M Wed Mar 29 11:15:34 2017 MSD1

| Qu | antitat: | ion Re | eport (Q | T Reviewe | d.) | |
|--|----------------|-----------|----------------------------|---|-------------|---|
| Data File : C:\HPCHEM\1\DATA\A00
Acq On : 12 Mar 2017 3:59 p
Sample : A1UG_1.25
Misc : A312_1UG
MS Integration Params: RTEINT.P | | | In | Vial: 6
erator: R
st : M
ltiplr: 1 | SD #1 | |
| Quant Time: Mar 12 20:33:49 2017 | | Qu | ant Result | s File: A | 312_1UG.RE# | s |
| Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 20:32:57 2017
Response via : Continuing Cal File; C:\HPCHEM\1\DATA\A0031207.D
DataAcq Meth : 1UG_RUN | | | | | | |
| Compound | R.T. | QION | Response | Conc Uni | t Qvalue | |
| 46) Bromodichloromethane | 12.72 | 83 | 393213 | 1.24 p | | 7 |
| 47) cis-1.3-dichloropropene | 13.70 | | | _ | | |
| 47) cis-1,3-dichloropropene
48) trans-1,3-dichloropropene | 1.4.37 | 75 | 269123
260575
174449 | 1.24 p | | |
| 49) 1,1,2-trichloroethane | 14.57 | 97 | 174449 | 1,25 p | pb 98 | |
| 51) Toluene | 14.88 | 92 | 174449
287861 | 1.27 p | | |
| 52) Methyl Isoburyl Ketone | 13.82 | 43 | 264897 | א בר ו | | õ |
| 53) Dibromochloromethane | 15.35 | 129 | 340857 | 1.26 p | | 3 |
| 54) Methyl Butyl Ketone | 15.17 | 43 | | | թե 96 | 9 |
| 55) 1,2-dibromoethane | 15.62 | 107 | 212871
279071 | 1,24 p | | 7 |
| 56) Tetrachloroethylene | 16.13 | 164 | 173013 | 1 26 5 | | - |
| 56) Tetrachloroethylene
57) Chlorobenzene
58) Ethylbenzene | 16.06 | 112 | 375345 | 1.27 p | | |
| | 17.26 | 91. | 664997 | 1.24 p | | |
| 59) m&p-xylene | 17.45 | 91 | 1136848 | 2.48 p | | |
| 60) Nonane | | 43 | 344828 | 1,25 p | | |
| 61) Styrene | | 104 | 344828
344613
253635 | 1.24 p | • | |
| 62) Bromoform | 17.54 | | 253635 | 1.26 p | | |
| 63) o-xylene | | 91 | 548521
686774 | 1.27 p | | |
| 64) Cumene | 10.59 | 105 | | | | |
| 66) 1,1,2,2-tetrachloroethane
67) Propylbenzene | 17.95
19.16 | 83
120 | $348254 \\ 170075$ | 1.23 p | | |
| 6B) 2-Chlorotoluene | 19.18 | 126 | 157170 | 1.24 p;
1.22 p; | | 1 |
| 69) 4-ethyltoluene | 19.32 | 105 | 631776 | 1.22 p
1.26 p | | |
| 70) 1,3,5-trimethylbenzene | 19.40 | 105 | 587697 | 1.23 p | ob 90 | |
| 71) 1,2,4-trimethylbenzene | 19.86 | 105 | 549694 | 1.24 p | | |
| 72) 1,3-dichlorobenzene | 20.07 | 146 | 289001 | 1.27 p | | |
| 73) benzyl chloride | 20.05 | 91 | 379596 | | | |
| 74) 1,4-dichlorobenzene | 20,16 | 146 | 262734 | 1,22 p | | 5 |
| 75) 1,2,3-trimethylbenzene | 20.40 | 105 | | | bb 90 | 3 |
| 76) 1,2-dichlorobenzene | 20.57 | 146 | | 1.24 P | ob 97 | 7 |
| 77) 1,2,4-trichlorobenzene | 22.75 | 180 | | 1.32 p | рв 96 | 5 |
| 78) Naphthalene | 22.89 | 128 | 315056 | 1.32 p) | | |
| 79) Hexachloro-1,3-butadiene | 23,32 | 225 | 233786 | 1.25 p) | ob 95 | ö |

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0031206.D A312\_1UG.M Wed Mar 29 11:15:35 2017 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0031207.D Vial: 7 Acq On : 12 Mar 2017 4:39 pm Sample : AlUG 1.0 Misc : A312\_1UG **Operator:** RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 12 20:33:08 2017 Quant Results File; A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File: C:\HFCHEM\1\DATA\A0031207.D DataAcq Meth : 1UG RUN Internal Standards R.T. Qion Response Conc Units Dev(Min) 1) Bromochloromethane9.54128644281.00ppb0.0035) 1,4-difluorobenzene11.941143101761.00ppb0.0050) Chlorobenzene-d516.821172649861.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 198187 1.00 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery # 100.00%

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 # .100.00%

 Target Compounds
 Qualue

 2) Propylene
 4.48
 41
 128707
 1.01 ppb
 97

 4) Chloromethane
 4.75
 05
 50040
 1.00 ppb
 93

 5) Freen 114
 4.82
 05
 38660
 1.00 ppb
 93

 6) Vinyl Chloride
 4.94
 62
 110056
 1.00 ppb
 93

 7) Butane
 5.14
 43
 125260
 1.00 ppb
 94

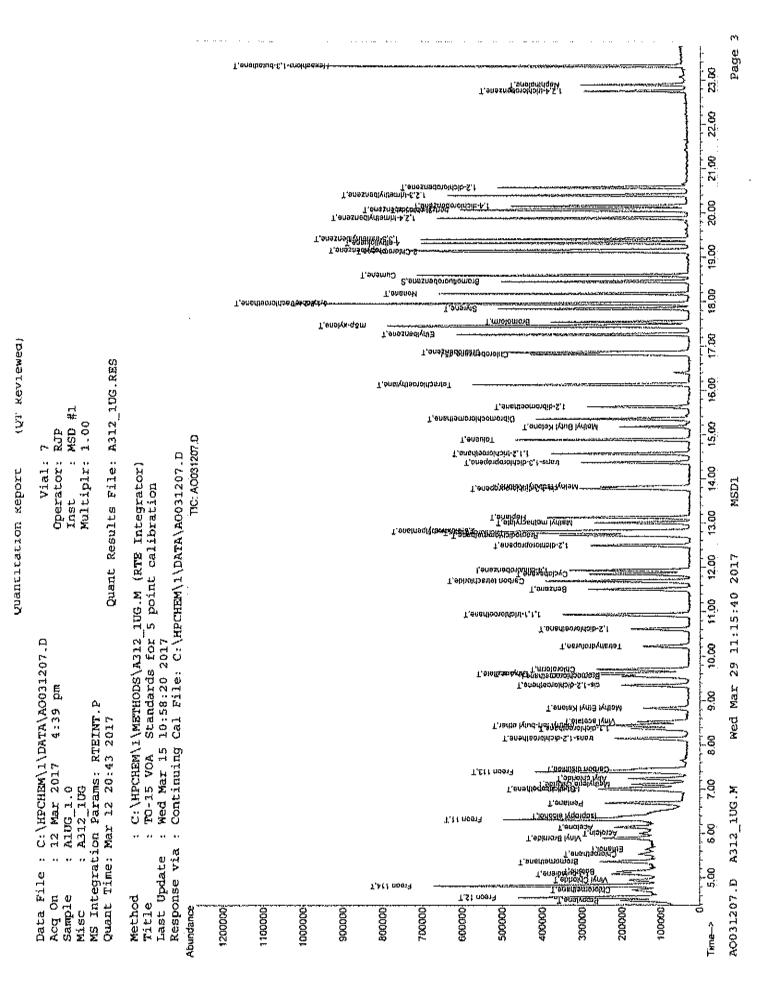
 10) Chlorodthane
 5.63
 64
 46804
 1.00 ppb
 97

 11) Rthanol
 5.63
 537549
 1.00 ppb
 97

 12) Acrolein
 6.00
 55
 36307
 1.00 ppb
 97

 13) Vinyl Bromide
 5.89
 106
 131516
 1.00 ppb
 97

 13) Acctone
 6.32
 101
 49519
 1.00 ppb
 97


 14
 13.001
 21104
 41515
 1.00 ppb
 98

 10) L-1dchloroethene
 6.99
 97917
 1.00 ppb
 89

 13) Preen 113</ Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration A0031207.D A312\_1UG.M Wed Mar 29 11:15:38 2017 MSD1

(QT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\A0031207.D Vial: 7 Acq On : 12 Mar 2017 4:39 pm Operator: RJP Sample ; AlUG\_1.0 Misc : A312\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params; RTEINT.P Quant Time: Mar 12 20:33:08 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D DataAcq Meth : 1UG RUN CompoundR.T. QIONResponseConc UnitQvalue46)Bromodichloromethane12.72633069481.00ppb9647)cis-1,3-dichloropropene13.77752084651.00ppb9648)trans-1,3-dichloropropene14.37752095081.00ppb9849)1,1,2-trichloroethane14.68922225691.00ppb9751)Toluene13.62431974631.01ppb9653)Dibromochloromethane15.621072208301.00ppb9755)1,2-dibromoethane15.621072208301.00ppb9755)1,2-dibromoethane15.621072208301.00ppb9557)Chlorobenzens16.861122915271.00ppb9557)Chlorobenzens16.861122915271.00ppb9660)Nonane18.17432705070.99ppb9661)Styrene17.64919035062.00ppb9863)o-xylene17.96914244121.00ppb9863)o-xylene17.96914244121.00ppb9863)o-xylene17.96914244121.00ppb9864)Cumene18.17432705070.99ppb9665)1,2, Compound R.T. QIon Response Conc Unit Qvalue

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0031208.D Vial: 8 Acq On : 12 Mar 2017 5:15 pm Operator: RJP Sample : AlUG\_0.75 Misc : A312\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 12 20:35:18 2017 Quant Results File: A312\_IUG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D DataAcq Meth : 10G\_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.54128628211.00ppb0.0035) 1,4-difluorobenzene11.931143109771.00ppb0.0050) Chlorobenzene-d516.811172580301.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 193096 1.00 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 \*
 100.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.46
 41
 90190
 0.79 ppb
 77

 3) Freen 12
 4.56
 85
 389927
 0.77 ppb
 97

 4) Chloromethane
 4.72
 50
 60092
 0.77 ppb
 93

 5) Freen 114
 4.92
 65
 255374
 0.75 ppb
 93

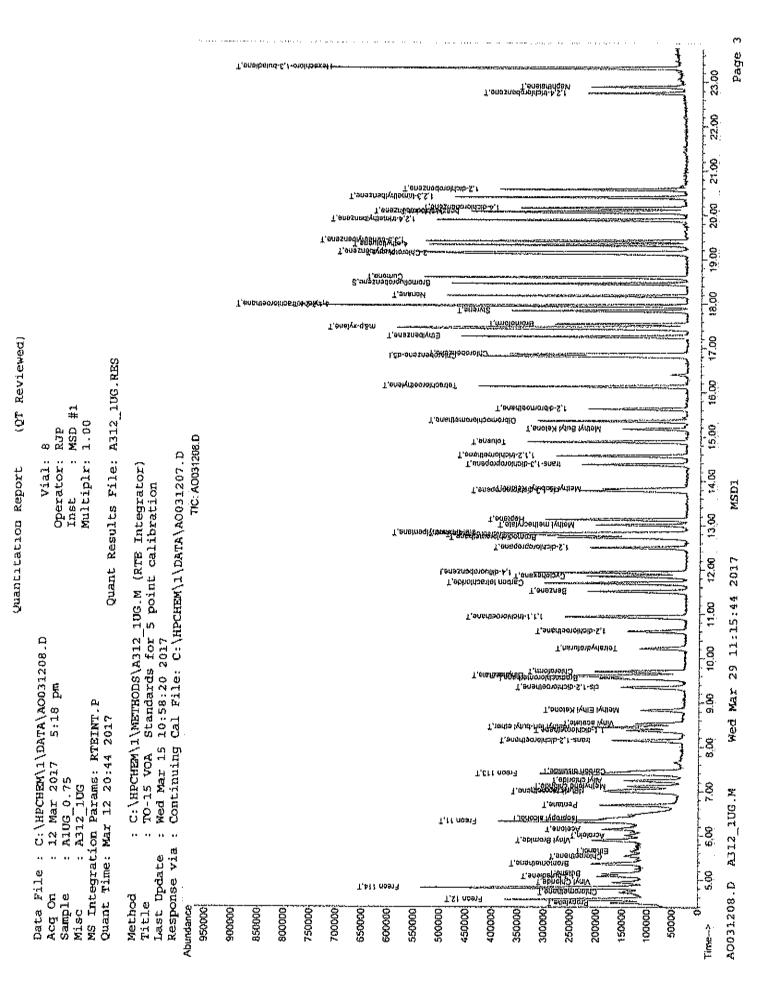
 6) Vinyl Chloride
 5.14
 43
 96475
 0.79 ppb
 93

 7) Butane
 5.14
 43
 96475
 0.79 ppb
 90

 101 Chloroethane
 5.53
 64
 36050m
 0.78 ppb
 91

 11) Ethanol
 5.64
 45
 27228
 0.74 ppb
 91

 131 Vinyl Bromide
 5.89
 106
 99259
 0.78 ppb
 92


 131 Vinyl Bromide
 6.14
 58
 40356
 0.76 ppb
 92

 131 Fereno 11
 6.32
 101
 1042527
 0.81 ppb
 93 Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration A0031208.D A312\_1UG.M Wed Mar 29 11:15:42 2017 MSD1

| Qua | antitat | ion Re | port (Q | T Reviewe | a) | |
|--|----------------|-------------|-----------------|---|--------------|----------|
| Data File : C:\HPCHEM\1\DATA\A001
Acq On : 12 Mar 2017 5:18 pr
Sample : A1UG_0.75
Misc : A312_1UG
MS Integration Params: RTEINT.P | τt | | In
Mu | Vial; 0
erator: R
st : M
ltiplr: 1 | SD #1
.00 | |
| Quant Time: Mar 12 20:35:18 2017 | | Qu | ant Result | s File: A | 312_100 | G.RES |
| Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 20:32:57 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D
DataAcq Meth : 1UG_RUN | | | | | | |
| Compound | R.T. | QIon | Response | Conc Uni | t Qva | alue |
| 46) Bromodichloromethane | 12.72 | 83 | 224399 | 0.72 p |
bb | 98 |
| 47) cis-1,3-dichloropropene | 13.78 | | 154352 | 0.74 0 | | 96 |
| 48) trans-1,3-dichloropropene | 14.37 | 75 | 153860 | 0.73 p | | 96 |
| 49) 1,1,2-trichloroethane | 14.57 | 97 | 99060 | 0.73 p | | 99 |
| 51) Toluene | 14.68 | 92 | 160921 | 0,74 p | рЬ # | 81 |
| 52) Methyl Isobutyl Ketone | 13.82 | 43 | 143220 | 0.75 p | b | 94 |
| 53) Dibromochloromethane | 15.35 | 129 | 1,92660 | 0.74 p | ob do | 93 |
| 54) Methyl Butyl Ketone | 15.17 | 43 | 114739 | 0.73 p | do | 95 |
| 55) 1,2-dibromoethane | 15.62 | 107 | 162725 | 0.76 p | ρþ | 98 |
| 55) 1,2-dibromoethane
56) Tetrachloroethylene
57) Chlorobenzene | 16.13 | 164 | 100250 | 0.76 p | Ъ | 97 |
| | 16.86 | 112 | 212921 | 0.75 pj | | 88 |
| 50) Ethylbenzene | 17.26 | 91 | 391774 | 0.76 p | þb | 98 |
| 59) m&p-xylene | 17.45 | 91 | 669530 | 1.52 pj | | 96 |
| 60) Nonane | 18.17 | 43 | 205570 | 0.77 pj | d c | 92 |
| 61) Styrene | 17.84 | 104 | 193840 | 0.73 p | | 95 |
| 62) Bromoform | 17.54 | 173 | 141927 | 0.73 pj | | 97 |
| 63) o-xylene | 17.95 | 91 | 316189 | 0.77 pj | | 91 |
| 64) Cumene | 18.59 | 105 | 401761 | 0.76 pj | dç | 99 |
| 66) 1,1,2,2-tetrachloroethane | 17.95 | 83 | 206331 | 0.76 pj | pb " | 96 |
| 67) Propylbenzene | 19.16 | | 99384 | 0.76 p) | b # | 1 |
| 68) 2-Chlorotoluene | 19.13 | 126 | 08951 | 0.72 p | | 1 |
| 69) 4-sthyltoluene | 19.32 | 105 | 374024 | 0.78 pj | | 97 |
| 70) 1,3,5-trimethylbenzene | 19.40 | 105 | 339912 | 0.74 pj | | 97 |
| 71) 1,2,4-trimethylbenzene | 19.88 | 105 | 323837 | 0.76 p | | 100 |
| 72) 1,3-dichlorobenzene | 20.08 | 146 | 164633 | 0.75 pi | | 96 |
| 73) benzyl chloride | 20.05 | 91 | 209052 | 0.75 pr | | 99 |
| 74) 1,4-dichlorobenzene | 20.16 | 146 | 148648 | 0.72 pi | | 95 |
| 75) 1,2,3-trimethylbenzene
76) 1,2-dichlorobenzene | 20.40
20.57 | 1.05
146 | 318549 | 0,76 pr | | 98 |
| 77) 1,2,4-trichlorobenzene | 20.57
22.75 | 180 | 166869
57147 | 0.77 pi
0.69 pi | | 98
94 |
| 76) Naphthalene | 22.89 | 128 | 162608 | 0.69 pp
0.71 pp | | 94
93 |
| 79) Hexachloro-1,3-butadiene | 22.09 | 225 | 135259 | 0.71 pp
0.76 pp | | 95
96 |
| | | | | orio hF | | 20 |

(#) = qualifier out of range (m) \* manual integration (+) \* signals summed A0031208.D A312\_1UG.M Wed Mar 29 11:15:43 2017 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0031209.D Vial: 9 Acq On : 12 Mar 2017 5:56 pm Sample : AlUG\_0.50 Operator: RJP Inst : MSD #1 Misc : A312\_1UG Multiplr: 1.00 MS Integration Params: RTEINT, P ns integration Params: RTEINT.P Quant Time: Mar 12 20:35:50 2017 Quant Results Pile: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File: C:\HFCHEM\1\DATA\A0031207.D DataAcq Meth : 1UG\_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.54128633301.00ppb0.0035) 1,4-difluorobenzene11.931143026311.00ppb0.0050) Chlorobenzene-d516.011172550771.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 191096 1.00 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00% 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 100.004

 Target Compounds
 Qvalue

 2) Propylene
 4.46
 41
 63725m
 0.51 ppb

 3) Freen 12
 4.56
 85 269149
 0.53 ppb
 97

 4) Chloromethane
 4.72
 50 41069m
 0.52 ppb
 97

 5) Freen 114
 4.62 65 191668
 0.56 ppb
 91

 6) Vinyl Chloride
 4.94 62 52646
 0.48 ppb
 77

 7) Dutane
 5.36 94 67440
 0.55 ppb
 98

 9) Bromomethane
 5.63 64 27744
 0.56 ppb # 27
 71

 11) Ethanol
 5.63 45 17360
 0.47 ppb # 72
 72

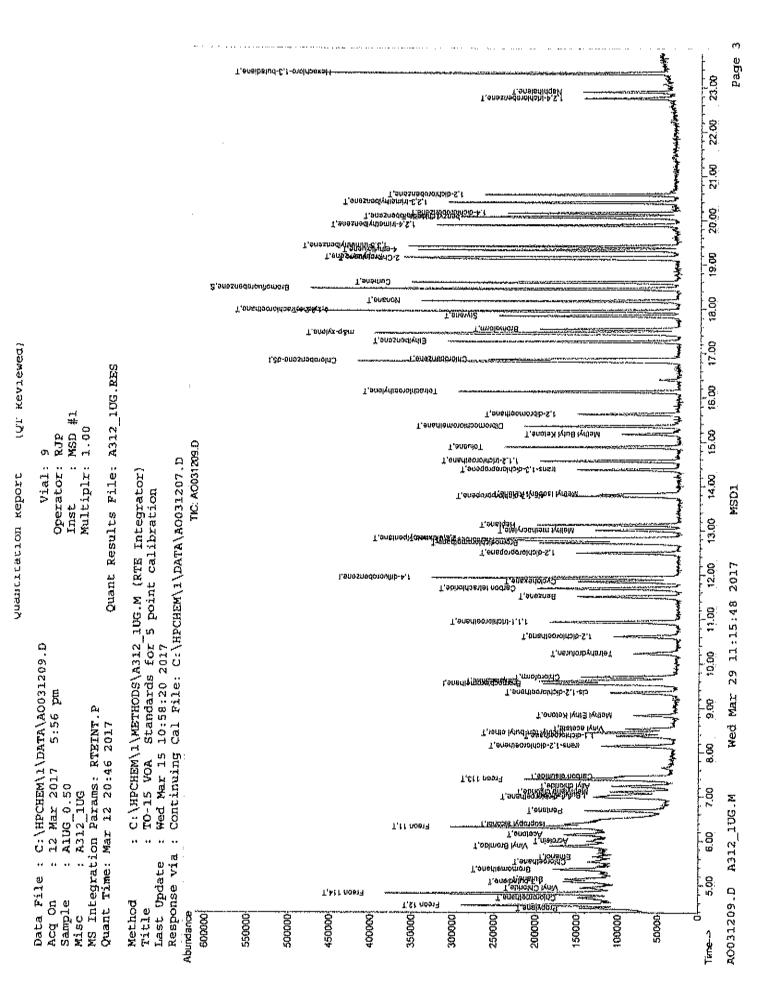
 12) Accrolein
 6.00 56 19031
 0.53 ppb # 60
 70

 13) Vinyl Bromide
 5.69 106 68007
 0.53 ppb # 60

 16) Pencane
 6.14 58 22516
 0.43 ppb # 60

 16) Pencane
 6.37 45 74228
 0.53 ppb # 51

 71 Isopropyl alcohol
 6.37 45 74228
 0.53 ppb # 52


 17 Isopropyl alcohol
 7.03 59 126119
 0.49 ppb # 52

 18) Heron 113
 7.39 101 109006 0.50 ppb # 60
 223 Allyl chloride
 Target Compounds Ovalue \_\_\_\_\_\_\_\_\_\_\_

(#) = qualifier out of range (m) = manual integration A0031209.D A312\_1UG.M Wed Mar 29 11:15:46 2017 MSD1

| Qu | antitat | ion Re | port (Q | T Reviewed) | |
|---|--|---|--|--|---|
| Data File : C:\HPCHEM\1\DATA\A00
Acq On : 12 Mar 2017 5:56 p
Sample : AlUG_0.50
Misc : A312_1UG
MS Integration Params: RTEINT.F
Quant Time: Mar 12 20:35:50 2017 | m | | In
Mu | Vial: 9
erator: RJP
st : MSD
ltiplr: 1.00
s File: A312 |) |
| Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 20:32:57 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D
DataAcq Meth : 1UG_RUN | | | | | |
| Compound | | | | Conc Unit | Qvalue |
| <pre>60) Nonane
61) Styrene
62) Bromoform
63) o-xylene
64) Cumene
66) 1,1,2,2-tetrachloroethane
67) Propylbenzene
68) 2-Chlorotoluene
69) 4-ethyltoluene
70) 1,3,5-trimethylbenzene
71) 1,2,4-trimethylbenzene
72) 1,3-dichlorobenzene
73) benzyl chloride
74) 1,4-dichlorobenzene
75) 1,2,3-trimethylbenzene</pre> | 14,56
14.89
13.82
15.35
15.17
15.62
16.13
16.86
17.26
17.44
19.17
17.94
17.54
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
17.94
19.16
19.13
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.42
19.44
19.13
19.42
19.42
19.42
19.44
19.44
19.16
19.42
19.42
19.42
19.44
19.44
19.44
19.16
19.42
19.42
19.42
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
10.44
1 | 75
97
43
427
107
154
107
1053
1053
1053
12055
1056
12055
1056
1056
1056
1056
1056
1056
1056
1 | 72354
106360
67231
137661
255134
427464
133530
126708
91643
205819
253263
134924
63306
59000
230128
210433
201502
105890
125197
93351
193195 | 0.49 ppb
0.50 ppb
0.48 ppb
0.49 ppb
0.52 ppb
0.47 ppb
0.47 ppb
0.47 ppb
0.49 ppb
0.50 ppb
0.50 ppb
0.51 ppb
0.51 ppb
0.51 ppb
0.51 ppb
0.48 ppb
0.50 ppb
0.48 ppb | 95
94
92
99
86
95
91
95
99
99
95
96
97
96
100
90
100
98
100
98
100
97
100
97
100
4
97 |
| 76) 1,2-dichlorobenzene
77) 1,2,4-trichlorobenzene
78) Naphthalene
79) Hexachloro-1,3-butadiene | 20.58
22.75
22.89
23.32 | 180
128 | 102401
34657
94309
82669 | 0.48 ppb
0.43 ppb
0.42 ppb
0.47 ppb | 95
96
92
95 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0031209.D A312\_1UG.M Wed Mar 29 11:15:47 2017 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\l\DATA\A0031210.D Vial: 10 Acq On : 12 Mar 2017 6:33 pm Operator: RJP Sample : AlŭG\_0.30 Misc : A312\_lŭG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 12 20:36:22 2017 Quant Results File: A312\_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File; C:\HPCHEM\1\DATA\A0031207.D DataAcq Meth : 1UG\_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min)
 1) Bromochloromethane
 9.54
 128
 63718
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 11.94
 114
 294339
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.81
 117
 255325
 1.00 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 188070 0.98 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.49
 41
 43032m
 0.34 ppb

 3) Freon 12
 4.55
 65
 156750
 0.31 ppb
 96

 4) Chloromethane
 4.72
 50
 21245m
 0.30 ppb
 92

 5) Freon 114
 4.02
 85
 115124
 0.32 ppb
 84

 7) Butane
 5.14
 43
 41177
 0.33 ppb
 480

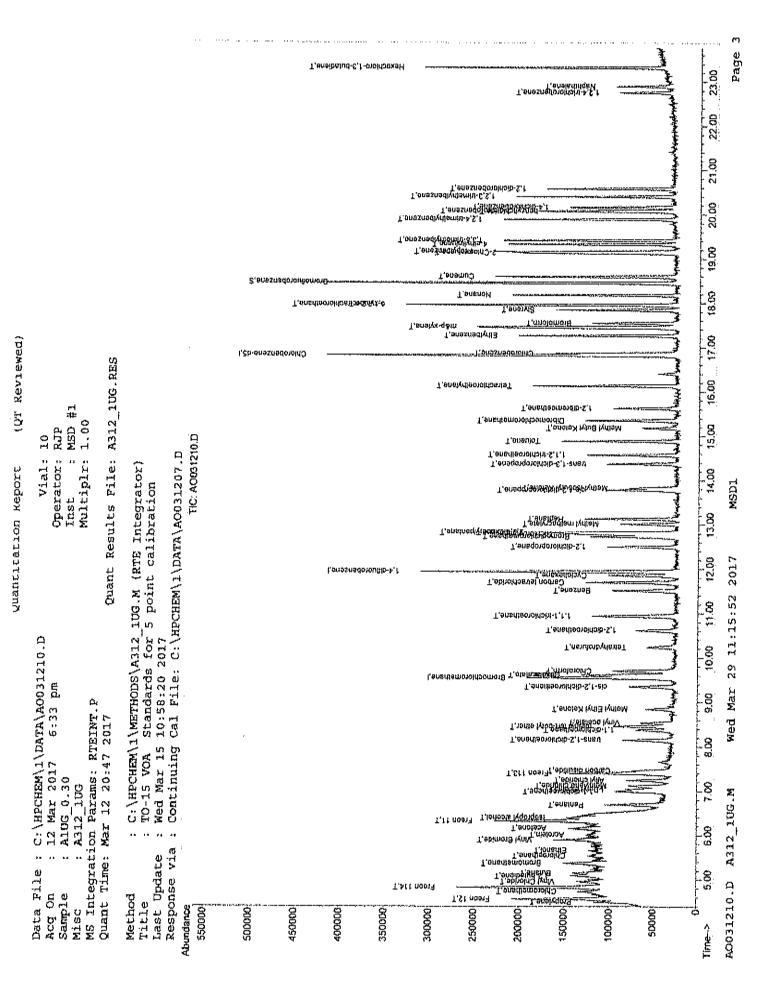
 9) Bromomethane
 5.37
 94
 43605
 0.33 ppb
 93

 10) Chloroethane
 5.64
 64
 16215
 0.31 ppb
 73

 11) Rthanol
 5.64
 510108m
 0.32 ppb
 94
 0.33 ppb
 98

 13) Vinyl Bromide
 5.64
 61
 10108m
 0.32 ppb
 91
 12

 14) Freen 11
 6.31
 101
 143779
 0.29 ppb
 93
 16
 1638
 0.31 ppb
 12


 15) Rectone
 6.15
 58
 16785
 0.32 ppb
 49
 10

 16) Pentane
 6.69
 96
 30017
 0.31 ppb
 127

 16) Pentane
 < Target Compounds Qvalue

(#) = qualifier out of range (m) = manual integration A0031210,D A312\_1UG.M Wed Mar 29 11:15:50 2017 MSD1

| Qu | antitat | ion Re | port (Q | T Reviewed) | |
|---|-------------------------------|-----------------|-------------------------|---|---|
| Data File : C:\HPCHEM\1\DATA\A00
Acq On : 12 Mar 2017 6:33 p
Sample : A1UG_0.30
Misc : A312_1UG
MS Integration Params: RTEINT.P
Quant Time: Mar 12 20:36:22 2017 | m | | ี
มา
ทบ | Vial: 10
erator: RJP
st : MSD
ltiplr: 1.00
s File: A312 |) |
| Quant Method : C:\HPCHEM\1\METHO
Title : TO-15 VOA Standa
Last Update : Sun Mar 12 20:32:
Response via : Continuing Cal Fi
DataAcq Meth : 1UG_RUN | DS\A312
rds for
57 2017 | _1UG.M
5 poi | (RTE Inte
nt calibra | grator)
tion | - |
| Compound | R.T. | QIon | Response | Conc Unit | Qvalue |
| | | | | Conc Unit
0.30 ppb
0.31 ppb
0.29 ppb
0.30 ppb
0.29 ppb
0.28 ppb
0.28 ppb
0.26 ppb
0.29 ppb
0.30 ppb
0.30 ppb
0.31 ppb
0.31 ppb
0.31 ppb
0.31 ppb
0.32 ppb
0.32 ppb
0.32 ppb
0.33 ppb
0.34 ppb
0.35 ppb
0.35 ppb
0.35 ppb | ~ |
| 46) Bromodichloromethane | 12.72 | 63 | 89312 | 0.30 ppb | 98 |
| 47) cis-1,3-dichloropropene | 13.77 | 75 | 60841 | 0.31 ppb | 94 |
| 48) trans-1,3-dichloropropene | 14.36 | 75 | 58075 | 0,29 ppb | 96 |
| 49) 1,1,2-trichloroethane | 14,5/ | 97 | 38042 | aqq 0.30 | 99
86 |
| 51) Toluene
52) Methyl Isobutyl Ketone | 13 03 | 92 | 044J4
55463 | 0.30 ppb | 91
91 |
| 53) Dibromochloromethane | 13.62 | 43 | 3390Z
20960 | 0.29 ppb | 90 |
| 53) Dibromochioromethane
54) Methyl Butyl Ketone | 10.04 | 129 | 10050 | 0.26 ppb | 93 |
| 55) 1,2-dibromoethane | 10.11 | 42 | 60939 | | 92 |
| 56) Tetrachloroethylene | 12.02 | 107 | 39014 | 0.20 0000 | 95 |
| | 10,13 | 104 | 33014 | 0.30 000 | 81 |
| 57) Chlorobenzene
58) Ethylbenzene | 17.26 | 112 | 01364
767696 | 0.22 0.20 | 96 |
| 59) m&p-xylene | 17.20 | 91
01 | 201020 | 0.51 PPD | 96 |
| 60) Nonane | 10 17 | 21
43 | 201214 | add 02.0 | 97 |
| 61) Styrene | 17 64 | 104 | 77071
05557 | 0.30 ppb
0.28 ppb | 88 |
| 62) Bromoform | 17.55 | | 73333
53535 | 0.20 000 | 94 |
| 63) o-xylene | 17.96 | | 106113 | 0.27 ppb
0.31 ppb | 91 |
| 64) Cumene | 18,60 | 105 | 157435 | 0.30 000 | 98 |
| 66) 1,1,2,2-tetrachloroethane | | 100 | 82482 | 0.30 ppb | 95 |
| 67) Propylbenzene | 19.16 | 120 | 37097 | 0.30 ppb
0.31 ppb
0.29 ppb | # ī |
| 68) 2-Chlorotoluene | 19.12 | 126 | 36313 | 0.29 ppb
0.30 ppb
0.29 ppb | # 1 |
| 69) 4-ethyltoluene | 19.32 | | 139943 | 0.29 ppb | " |
| 70) 1,3,5-trimethylbenzene | 19.41 | 105 | 133461 | 0.29 ppb | 92 |
| 71) 1,2,4-trimethylbenzene | 19.88 | 105 | 124458 | 0.29 ppb
0.30 ppb | 97 |
| 72) 1,3-dichlorobenzene | 20.08 | 145 | 65162 | 0,30 ppb | # 29 |
| 73) benzyl chloride | 20.05 | 91 | 69651 | 0,30 ppb
0.25 ppb | 98 |
| 74) 1,4-dichlorobenzene | 20.15 | 146 | 54396 | 0.27 000 | # 25 |
| 75) 1,2,3-trimethylbenzene | 20.40 | 105 | 120856 | 0.29 ppb | . 99 |
| 76) 1,2-dichlorobenzene | 20.58 | 146 | 65673 | 0.31 ppb | |
| 77) 1.2.4-trichlorobenzene | 22.75 | 180 | 18401 | 0,23 ppb | 95 |
| 76) Naphthalene | 22.89 | 128 | 51606 | 0.31 ppb
0.23 ppb
0.23 ppb | 95 |
| 79) Hexachloro-1,3-butadiene | 23.31 | 225 | 48188 | 0.27 ppb | 96 |
| | | | | | |

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0031211.D Vial: 11 Acq On : 12 Mar 2017 7:10 pm **Operator:** RJP Sample : AlUG\_0.15 Misc : A312\_1UG Inst : MSD #1 Misc : A312\_1UG MS Integration Params: RTEINT.P Quant Time: Mar 12 20:36:55 2017 Multiplr: 1.00 Quant Results File: A312 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Mar 12 20:32:57 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D DataAcq Meth : 1UG\_RUN Internal Standards R.T. Qion Response Conc Units Dev(Min)
 1) Bromochloromethane
 9.55
 128
 62833
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 11.94
 114
 290175
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.81
 117
 246215
 1.00 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 183691 1.00 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 100.00\*

 Target Compounds
 2
 Propylene
 4.49
 41
 19902m
 0.16 ppb
 99

 3) Freon 12
 4.56
 65
 80983
 0.16 ppb
 99

 4) Chloromethane
 4.71
 50
 10421m
 0.15 ppb
 99

 6) Vinyl Chloride
 4.95
 62
 15596
 0.14 ppb
 #
 14

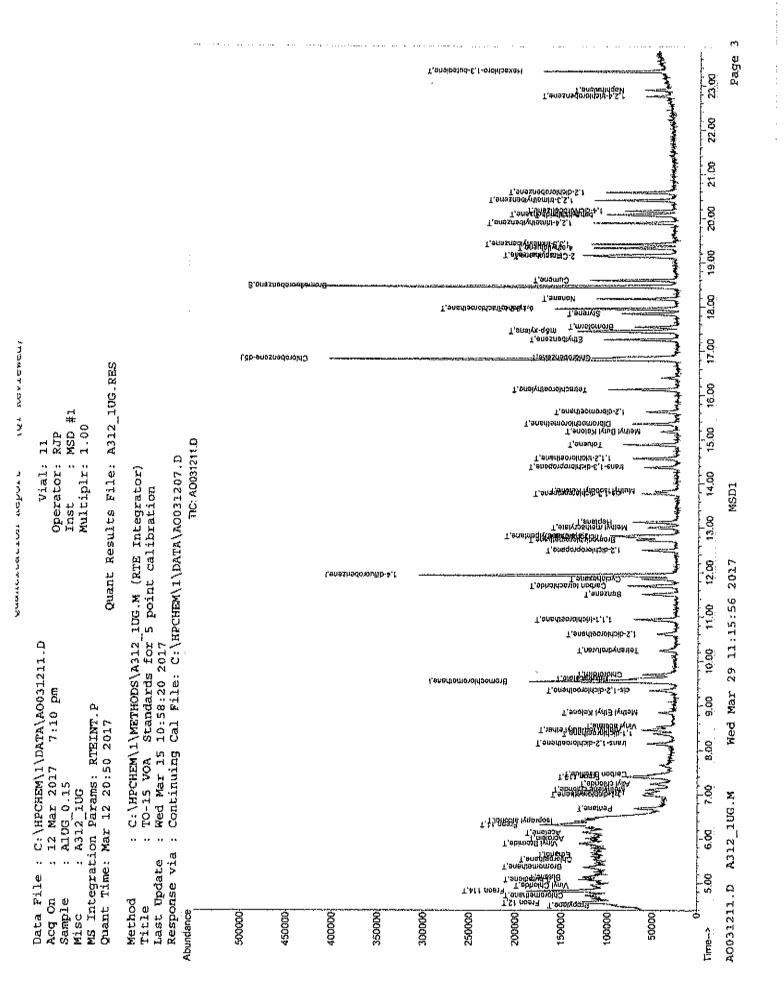
 7) Butane
 5.13
 43
 1868m
 0.15 ppb
 91

 9) Bromomethane
 5.36
 94
 23577
 0.18 ppb
 #

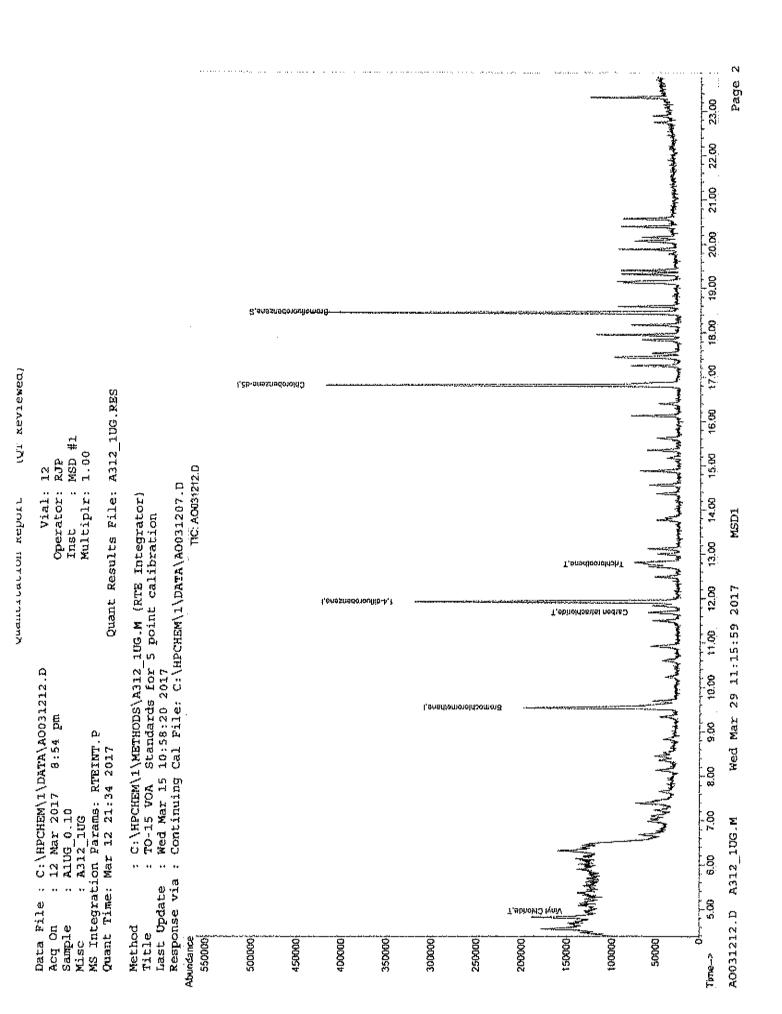
 10) Chloroethane
 5.64
 45
 5679m
 0.17 ppb
 91

 10) Chloroethane
 6.14
 58
 997
 0.19 ppb
 #
 71

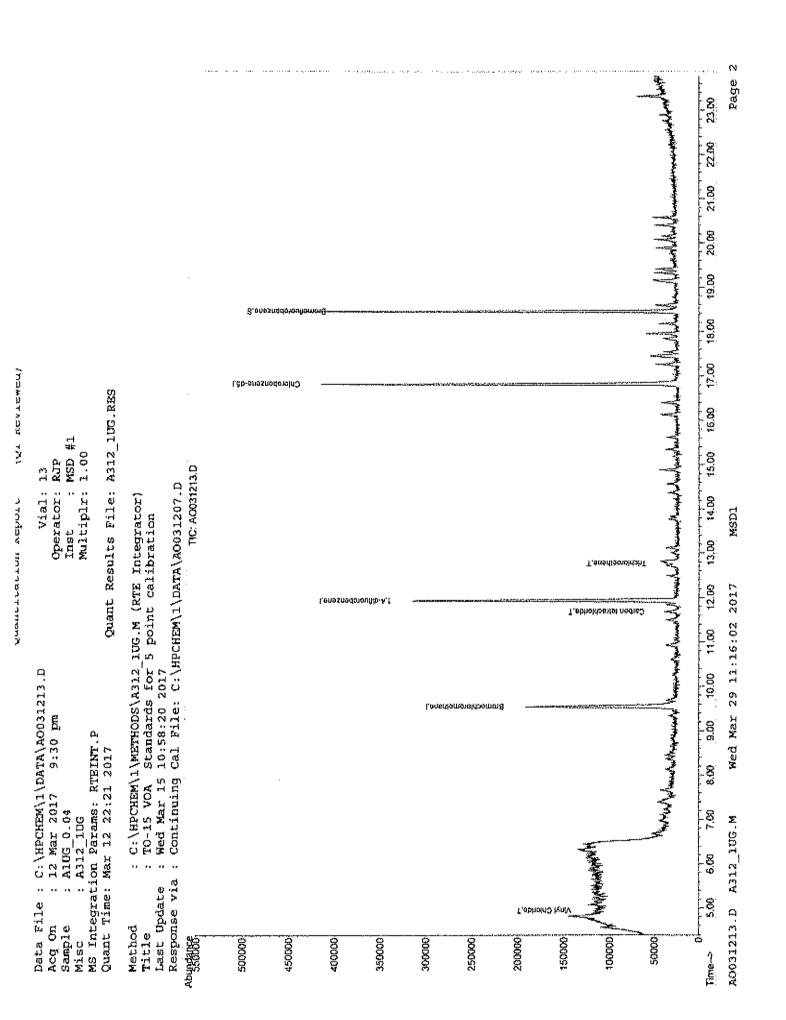
 13) Vinyl Bromide
 5.06
 106
 21376
 0.17 ppb
 98
 17


 14) Freon 11
 6.31
 101
 70019
 0.44 ppb
 91
 17

 15) Acetone
 6.14
 58
 27762
 0.20


(#) » qualifier out of range (m) « manual integration A0031211.D A312\_1UG.M Wed Mar 29 11:15:54 2017 MSD1

| Qua | antitat: | ion Re | port (QT | Reviewed) | | |
|--|----------------|----------|--------------------|---|-----|------------|
| Data File : C:\HPCHEM\1\DATA\A003
Acq On : 12 Mar 2017 7:10 pr
Sample : A1UG_0.15
Misc : A312_1UG
MS Integration Params: RTEINT.P
Quant Time: Mar 12 20:36:55 2017 | 'n | Ou | Inst | Vial: 11
ator: RJP
: MSD
:iplr: 1.00
File: A312 | | J.RES |
| | | | | | | |
| Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 20:32:57 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0031207.D
DataAcq Meth : 1UG_RUN | | | | | | |
| Compound | R.T. | QIon | Response C | Conc Unit | QVa | alue |
| 46) Bromodichloromethane | 12.72 | 83 | 44097 | 0.15 ppb | | 98 |
| | | 75 | 28156 | 0.14 pph | | 93 |
| 47) cis-1,3-dichloropropene
48) trans-1,3-dichloropropene | 14.37 | 75 | 29021 | 0,14 ppb | | 90 |
| 49) 1,1,2-trichloroethane | 14.56 | 97 | 18105 | 0,14 ppb | | 95 |
| 51) Toluene | 14.88 | | 32298 | 0.16 ppb | | 90 |
| 52) Methyl Isobutyl Ketone | 13.83 | 43 | 20755 | 0 16 000 | | 8 3 |
| 53) Dibromochloromethane | 15.34 | | 34330 | 0.14 ppb | | 92 |
| 54) Methyl Butyl Ketone | 15.18 | 43 | 18340m / | 0.12 ppb | | |
| 55) 1,2-dibromoethane | 15.62 | 107 | 29846 | 0.15 ppb | | 98 |
| 56) Tetrachloroethylene | 16.13 | 164 | 19090 | 0.15 ppb | | 96 |
| 57) Chlorobenzene | 16.86 | 112 | 38202 | 0.14 ppb | # | 75 |
| 58) Ethylbenzene | 17.26 | 91 | 74373 | 0.15 ppb | | 100 |
| 59) m&p-xylene | 17.44 | 91 | 124811 | 0.30 ppb | | 95 |
| 60) Nonane | 18,18 | 43 | 37307 | 0.15 ppb | | 92 |
| 61) Styrene | 17.84 | 104 | 35114 | 0.14 ppb | | 91 |
| 62) Bromoform | 17.54 | | 24855 | 0.13 ppb | | 98 |
| 63) o-xylene | 17.96 | | 60717 | 0.15 ppb | | 87 |
| 64) Cumene | 18.60 | | 76283 | 0,15 ppb | | 99 |
| 66) 1,1,2,2-tetrachloroethane | | | 38171 | 0.15 ppb | | 91 |
| 67) Propylbenzene | 19,16 | | 17888 | 0.14 ppb | # | 1 |
| 68) 2-Chlorotoluene | 19.13 | | 18307
68013m /j | 0.16 ppb | # | ב |
| 69) 4-ethyltoluene | 19.32 | | | 0.15 ppb | | |
| 70) 1,3,5-trimethylbenzene | 19.41 | | 64985m 💪 | 0.15 ppb | | 0.0 |
| 71) 1.2.4-trimethylbenzene | 19.89 | | 63544 | 0.16 ppb | н | 90
54 |
| 72) 1,3-dichlorobenzene | 20,08 | 146 | 30169 | 0.14 ppb | # | 54 |
| 73) benzyl chloride | 20.06 | | 33641 | 0.13 ppb | ш | 100 |
| 74) 1,4-dichlorobenzene | 20.16 | | 25295 | 0.13 ppb | Ħ | 47
95 |
| 75) 1,2,3-trimethylbenzene | 20.40 | | 60066 | 0.15 ppb | | 95 |
| 76) 1,2-dichlorobenzene | 20.57 | | 30744
10001m P | 0.15 ppb
0.13 ppb | | 99 |
| 77) 1,2,4-trichlorobenzene | 22.75
22.89 | | | 0.13 ppb
0.12 ppb | | |
| 78) Naphthalene
79) Hexachloro-1,3-butadiene | 22.39 | 225 | 25940m
23581 | 0.14 ppb | | 96 |
| () uevacutoro-1'2-hurantene | 10.01 | <u> </u> | 7000T | A'TA PPD | | 24 |


(#) = qualifier out of range (m) = manual integration (+) = signals summed A0031211.D A312\_1UQ.M Wed Mar 29 11:15:55 2017 MSD1

| | Quantitat | ion Re | port (QT | ' Revie | wed) |
|---|--|-------------------|---------------------------|----------------------|--------------------------------------|
| Data File : C:\HPCHEM\1\DATA\.
Acq On : 12 Mar 2017 8:5
Sample : A10G 0.10
Misc : A312_10G
MS Integration Params: RTEINT
Quant Time: Mar 12 21:33:19 2 | 4 pm
.P | | Mul | t :
tiplr: | MSD #1
1.00 |
| Quant Method : C:\HPCHEM\1\ME
Title : TO-15 VOA Sta
Last Update : Sun Mar 12 20;
Response via : Continuing Cal
DataAcq Meth : 1UG_RUN | ndards for
32:57 2017
File: C:\) | 5 poi:
HPCHEM | nt calibrat | ion
31207.1 | |
| Internal Standards | R.T. | QION | Response | Conc U | nits Dev(Min) |
| Bromochloromethane 1,4-difluorobenzene Chlorobenzene-dS | 9.54 | 128
114
117 | 65737
309843
255362 | 1.00
1.00
1.00 | ppb 0.00
ppb -0.01
ppb 0.00 |
| System Monitoring Compounds
65) Bromofluorobenzene
Spiked Amount 1.000 | 10.45
Range 70 | 95
- 130 | 186957
Recover | 0,98
Y == | ррь 0.00
98.00% |
| Target Compounds
6) Vinyl Chloride
38) Carbon tetrachloride
44) Trichloroethene | 4.95
11.69
12.77 | 62
117
130 | 13052
30105
14388 | 0.12
0.09
0.10 | Qvalue
ppb 66
ppb 98
ppb 91 |

| | Quantitat | lon Re | port (Ql | r Review | ved) | |
|--|--------------------------|------------------|---------------------------|--------------------------|--------------------------------|--------------------|
| Data File : C:\HPCHEM\1\DATA\
Acq On : 12 Mar 2017 9:3
Sample : AlUG_0.04
Misc : A312_1UG
MS Integration Params: RTEINT
Quant Time: Mar 12 22:19:55 2 | '. P | | Ins
Mul | st ;
L ci plr: | MSD #1
1.00 | ES |
| Quant Method : C:\HPCHEM\1\ME
Title : TO-15 VOA Sta
Last Update : Sun Mar 12 20:
Response Via : Continuing Cal
DataAcq Meth : 10G_RUN | ndards for
32:57 2017 | 5 poi | nt calibrat | ion |) | |
| Internal Standards | R.T. | QIon | Response | Conc Ur | hits Dev(Mi | n) |
| 1) Bromochloromethane
35) 1,4-difluorobenzene
50) Chlorobenzene-d5 | | | 62431
299372
246566 | | | 00
02
00 |
| System Monitoring Compounds
65) Bromofluorobenzene
Spiked Amount 1.000 | 19.44
Range 70 | 95
- 130 | 184432
Recover | 1.00
y = | ppb 0.
100.00% | 00 |
| Target Compounds
6) Vinyl Chloride
38) Carbon tetrachloride
44) Trichloroethene | 4.94
11.69
12.76 | 62
117
130 | 5063
11557
5113 | 0.05
0.04
0.04 | Qvalu
ppb #
ppb
ppb # | e
1
95
67 |

Centek Laboratories, LLC

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CALIBRATION VERIFICATION

Page 160 of 213

Centek Laboratories, LLC

Evaluate Continuing Calibration Report

| | Acq (
Samp)
Misc | File : C:\HPCHEM\1\DATA\Ad
On : 20 Mar 2017 11:14
le : AlUG 1.0
: A312_1UG
ntegration Params: RTEINT. | am | nr | Operato
Inst | al: 3
pr: RJP
: MSD #1
Lr: 1.00 |
|----------|------------------------|---|--------------------------|------------------|-----------------------|--|
| | Titl
Last | od : C:\HPCHEM\1\MET)
e : TO-15 VOA Stand
Update : Wed Mar 15 10:54
onse via : Multiple Level (| dards for 5
3:20 2017 | point cal: | Integrato
ibration | or) |
| | Min.
Max. | RRF : 0.000 Min. Re
RRF Dev : 30% Max. Re | el. Area :
el. Area : | 50% Max.
150% | R.T. Det | / 0.33min |
| | | Compound | AvgRF | CCRF | %Dev ₽ | Areat Dev(min) |
| ד |
т | Bromochloromethane | | | | 31# -0.01 |
| | Ť | Propylene | 1.983 | 1.678 | 15.4 | 26# -0.02 |
| | Ť | Propylene
Freon 12
Chloromethane | 8.095 | 8,630 | -6.6 | 26# -0.02
33# ~0.01
31# -0.02 |
| | т | Chloromethane | 1.208 | 1.291 | -6.9 | 31# -0.02 |
| 5 | т | Freon 114 | 6.032 | 6.642 | -10.1 | 34# ~0.02 |
| 6 | т | Vinyl Chloride | 1.757 | 1.607 | -2.8 | 32# -0.02 |
| 7 | т | Butane | 1.936 | 2.027 | -4.7 | 32# -0.02 |
| | т | 1,3-butadiene | 1.227 | 1.121 | 8.6 | 32# -0.02
32# -0.02
26# -0.02 |
| | т | Bromomethane | 2,172 | 2,424 | -11.6 | 36# -0.02 |
| 10 | | Chloroethane | 0.789 | 0.794 | ~0.6 | 32# -0.02
35# -0.01 |
| 11 | | Ethanol | 0.573 | 0.670 | -16,9 | 35# -0,01 |
| 12 | | Acrolein | 0.566 | 0.667 | -17.0 | 36# -0.01 |
| 13 | | Vinyl Bromide | 2.114 | 1.884 | 10.9 | 28# -0.02 |
| 14 | | Freon 11 | 7.471 | 8.442 | -13.0 | 34# -0.02
28# ~0.02 |
| 15 | | Acetone | 0.620 | 0.740 | 9.8 | 28# ~0.02 |
| 16 | | Pentane | 1.770 | 1.556 | 12.1 | 28# -0.01 |
| 17 | | Isopropyl alcohol | 2.314
1.573
3.434 | 2.682 | ~15.9 | 37井 -0.02 |
| 18 | | 1,1-dichloroethene | 1.573 | 1.431 | 9.0 | 29# -0.02 |
| 19 | | Freon 113 | 3.434 | 2.424 | | 30# 0.00 |
| 20
21 | | t-Butyl alcohol
Methylene chloride | 4.095 | 4.139 | 10 7 | 31# ~0.01
27# -0 02 |
| 22 | | Allyl chloride | 1.917
7 199 | 1 945 | 10.7 | 27# -0.02
27# ~0.02 |
| 23 | | Methylene chloride
Allyl chloride
Carbon disulfide | 4 764 | 4 441 | 68 | 27# ~0.02
28# -0.02
28# -0.02 |
| 24 | Ť | trans-1,2-dichloroethene
methyl tert-butyl ether
1,1-dichloroethane | 2.678 | 2.529 | 5.6 | 28# -0.02 |
| 25 | -
T | methyl tert-butyl ether | 5,418 | 5.048 | 6.8 | 28# -0.02 |
| 26 | $\bar{\mathbf{T}}$ | 1,1-dichloroethane | 3.249 | 3.091 | 4.9 | 28# -0.02 |
| 27 | T | Vinyl acetate | 4.452 | 5.133 | -15.3 | 35# -0.02 |
| 28 | | Methyl Ethyl Ketone | 0,744 | 0.763 | -2.6 | 30# -0.02 |
| 29 | т | cis-1,2-dichloroethene | 2.524 | 2.373 | 6.0 | 29# -0.02 |
| 30 | т | Hexane | 2.417 | 2.157 | 10.8 | 27# ~0.01 |
| 31 | т | Ethyl acetate | 5.025 | 4.941 | 1.7 | 334 -0°01 |
| 32 | | Chloroform | 4.298 | 4.235 | 1.5 | 30# ~0.02 |
| 33 | | Tetrahydrofuran | 1.787 | 1.674 | 6.3 | 29# -0.02 |
| 34 | Γ | 1,2~dichloroethane | 3.274 | 3.205 | 2.1 | 30# ~0.02 |
| 35 | | 1,4-difluorobenzene | 1.000 | 1.000 | 0.0 | 30# -0.02 |
| 36 | | l,l,l-trichloroethane | 1.029 | 0.987 | 4.1 | 28# -0.02 |
| 37 | т | Cyclohexane | 0.561 | 0.512 | 0.7 | 28# -0.01 |
| 30 | | Carbon tetrachloride | 1.032 | 1.000 | 3.1 | 28# -0.02 |
| 39 | | Benzene | 1.029 | 0.995 | 3.3 | 29# 0.00 |
| 40 | | Methyl methacrylate | 0.497 | 0.496 | 0.2 | 29# ~0.02 |
| 41 | | 1,4-dioxane | 0.196 | 0.239 | -21.9 | 35# -0.03 |
| 42 | | 2,2,4-trimethylpentane | 1.640 | 1.575 | 4.4 | 26井 -0.02 |
| 43 | | Heptane | 0.629 | 0.573 | 8.9 | 27# 0.00 |
| 44 | | Trichloroethene | 0.447 | 0.448 | -0.2 | 29# 0.00 |
| 45 | | 1,2-dichloropropane | 0.393 | 0.363 | 2.5 | 29件 ~0.02
28井 0.00 |
| 46 | | Bromodichloromethane | 0.981 | 0,949
0,633 | 3.3
5.1 | 28井 0.00
28井 -0.02 |
| 47
48 | | cis-1,3-dichloropropene
trans-1,3-dichloropropene | 0.667
0.662 | 0.633 | 8.3 | 27# 0.00 |
| 49
49 | | 1,1,2-trichloroethane | 0.428 | 0.445 | ~4.0 | 30# ~0.01 |
| | - | | 0.420 | | | |

\_ \_ \_

(#) = Out of Range A0032002.D A312\_1UG.M Wed Mar 29 12:26:06 2017

Centek Laboratories, LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\A0032002.D Acq On : 20 Mar 2017 11:14 am Vial: 3 Operator: RJP Sample : AlUG\_1.0 Misc : A312\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% CompoundAvgRFCCRF%Dev Area% Dev(mi51 TToluene0.8430.656-1.529#0.0052 TMethyl Isobutyl Ketone0.7610.967-27.137#-0.0253 TDibromochloromethane0.9840.993-0.928#0.0054 TMethyl Butyl Ketone0.5911.022-72.9#48#0.0055 T1,2-dibromoethane0.8230.850-3.329#0.0056 TTetrachloroethylene1.0641.126-3.929#0.0059 Tm&p-xylene1.6881.705-1.029#0.0060 TNonane1.0170.9992.620#0.0061 TStyrene1.001-1.028#0.0062 TBromoform0.7280.783-7.630#0.0063 T0-xylene1.6161.674-3.630#0.0065 SBromofluorobenzene0.5000.538-7.630#0.0066 T1,1,2,2-tetrachloroethane1.0461.112-6.330#0.0067 TPropylbenzene0.5000.538-7.630#0.0068 T2-chlorotoluene0.4710.4700.224#0.0070 T1,3,5-trimethylbenzene1.6361.720-5.030#0.0073 T< AvgRF CCRF %Dev Area% Dev(min) Compound

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032002.D Acq On : 20 Mar 2017 11:14 am Sample : AlUG\_1.0 Vial: 3 Operator: RJP Sample : AlUG\_1.0 Misc : A312\_10G Inst : MSD #1 Misc : A312\_10G Multiple: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:02:59 2017 Quant Results File: A312\_10G.RES Multiplr: 1.00 Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.53128196771.00ppb-0.0135) 1,4-difluorobenzene11.92114918871.00ppb-0.0250) Chlorobenzene-d516.81117760861.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 55761 0.98 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00%

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 98.00%

 Target Compounds
 Qvalue

 2
 Propylene
 4.46
 41
 33027
 0.85 ppb
 84

 3)
 Freon 12
 4.54
 05
 169816
 1.07 ppb
 96

 4)
 Chloromethane
 4.70
 50
 25395m
 1.03 ppb
 97

 7)
 Butane
 5.12
 43
 39922
 1.03 ppb
 97

 7)
 Butane
 5.34
 94
 47669
 1.12 ppb
 96

 1)
 Choromethane
 5.51
 64
 15310
 1.17 ppb
 # 80

 10)
 Chloroethane
 5.62
 45
 13180
 1.17 ppb
 # 97

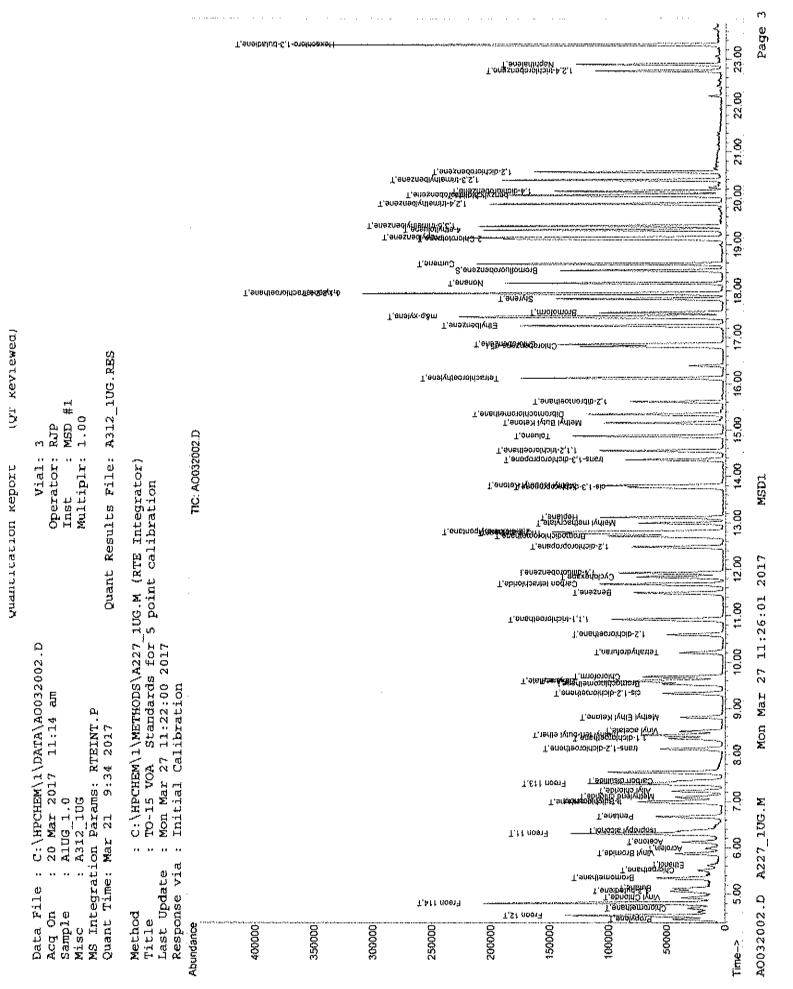
 11)
 Btomomethane
 5.61
 64
 166115
 1.13 ppb
 99

 12)
 Accolein
 5.99
 56
 13117
 1.16 ppb
 # 37

 13)
 Vinyl Bromide
 5.07
 106
 37073
 0.89 ppb
 94

 14)
 Freon 11
 7.00
 59
 28167
 0.91 ppb
 93</ Target Compounds

(#) = qualifier out of range (m) = manual integration Mon Mar 27 11:26:00 2017 MSD1 A0032002.D A227\_1UG.M Mon Mar 27 11:26:00 2017


Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0032002.DVial: 3Acq On : 20 Mar 2017 11:14 amOperator: RJPSample : A1UG\_1.0Inst : MSD #1Misc : A312\_LUGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Mar 21 09:02:59 2017Quant Method : C:\HPCHEM\1\METHODS\A312\_LUG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Wed Mar 15 10:58:20 2017Response via : Initial CalibrationDataAcq Meth : LUG\_RUN

| | Compound | R.T. | QIon | Response | Conc Unit | Qvalue |
|-----|---------------------------|-------|--------|----------|-----------|--------|
| 46) | Bromodichloromethane | 12.71 |
ӨЗ | 87166 | 0.97 ppb | 98 |
| 47) | | 13.76 | 75 | 58138 | 0.95 ppb | 97 |
| 49) | trans-1,3-dichloropropene | 14.36 | 75 | 55820 | 0.92 ppb | 100 |
| 49) | 1,1,2-trichloroethane | 14.55 | 97 | 40897 | 1.04 ppb | 94 |
| 51) | Toluene | 14.87 | 92 | 65145 / | 1.02 ppb | 86 |
| 52) | Methyl Isobutyl Ketone | 13.80 | 43 | 73544m | 1.27 ppb | |
| 53) | Dibromochloromethane | 15.34 | 129 | 75536 | 1.01 ppb | 93 |
| 54) | Methyl Butyl Ketone | 15,15 | 43 | 77749m y | 1.73 ppb | |
| 55) | 1,2-dibromoethane | 15.61 | 107 | 64670 | 1.03 ppb | 99 |
| 56) | Tetrachloroethylene | 16.12 | 164 | 42060 | 1.08 ppb | 99 |
| 57) | Chlorobenzene | 16.85 | 112 | 85635 | 1.04 ppb | 92 |
| 58) | Ethylbenzene | 17.25 | 91 | 152910 | 1.01 ppb | 98 |
| 59) | m&p-xylene | 17.45 | 91 | 259409 | 2.02 ppb | 97 |
| 60) | Nonane | 10.17 | 43 | 75216 | 0.97 ppb | 94 |
| 61) | Styrene | 17.83 | 104 | 76868 | 1.01 ppb | 95 |
| 62) | Bromoform | 17.53 | 173 | 59541 | 1.08 ppb | 98 |
| 63) | o-xylene | 17.95 | 91 | 127334 | 1.04 ppb | 90 |
| 64) | Cumene | 18,58 | 105 | 159357 | 1.03 ppb | 98 |
| 66) | 1,1,2,2-tetrachloroethane | 17.94 | 83 | 84630 | 1.06 ppb | 96 |
| 67) | Propylbenzene | 19.15 | 120 | 40919 | 1.08 ppb | # 1 |
| 68) | 2-Chlorotoluene | 19.11 | 126 | 35758 | 1.00 ppb | # 1 |
| 69) | | 19.31 | 105 | 152383 | 1.08 ppb | |
| 70) | 1,3,5-trimethylbenzene | 19.40 | 105 | 136814 | 1.04 ppb | 97 |
| 71) | 1,2,4-trimethylbenzene | 19.88 | 105 | 130846 | 1.05 ppb | 99 |
| 72) | 1,3-dichlorobenzene | 20.07 | 146 | 71910m 🖗 | 1.12 ppb | |
| | benzyl chloride | 20.05 | 91 | 73349 | 0.92 ppb | 96 |
| 74) | 1,4-dichlorobenzene | 20,15 | 146 | 65206m | 1.14 ppb | |
| | 1,2,3-trimethylbenzene | 20.39 | 105 | 130448 | 1.08 ppb | 100 |
| 76) | 1,2-dichlorobenzene | 20.57 | 146 | 72082 / | 1.13 ppb | 98 |
| 77) | 1,2,4-trichlorobenzene | 22,74 | 180 | 30308m 🌡 | 1.30 ppb | |
| 78) | Naphthalene | 22.89 | 128 | 107997 | 1.68 ppb | 95 |
| 79) | Hexachloro-1,3-butadiene | 23.31 | 225 | 63576 | 1.24 ppb | 95 |
| | | | | | 01.05 | |

(#) =qualifier out of range (m) = manual integration (+) = signals summed A0032002.D A227\_1UG.M Mon Mar 27 11:26:00 2017 MSD1

Page 165 of 213

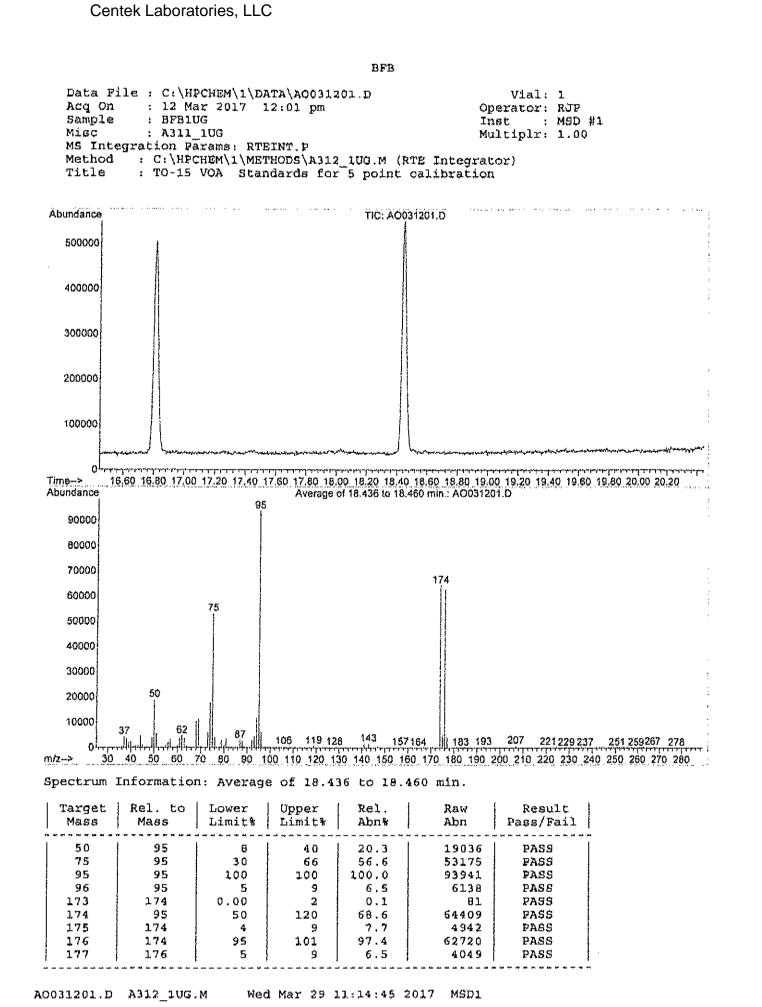
,

ï

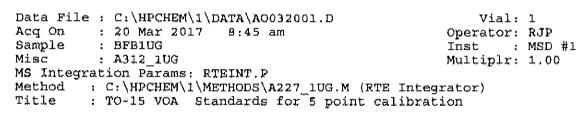
GC/MS VOLATILES-WHOLE AIR

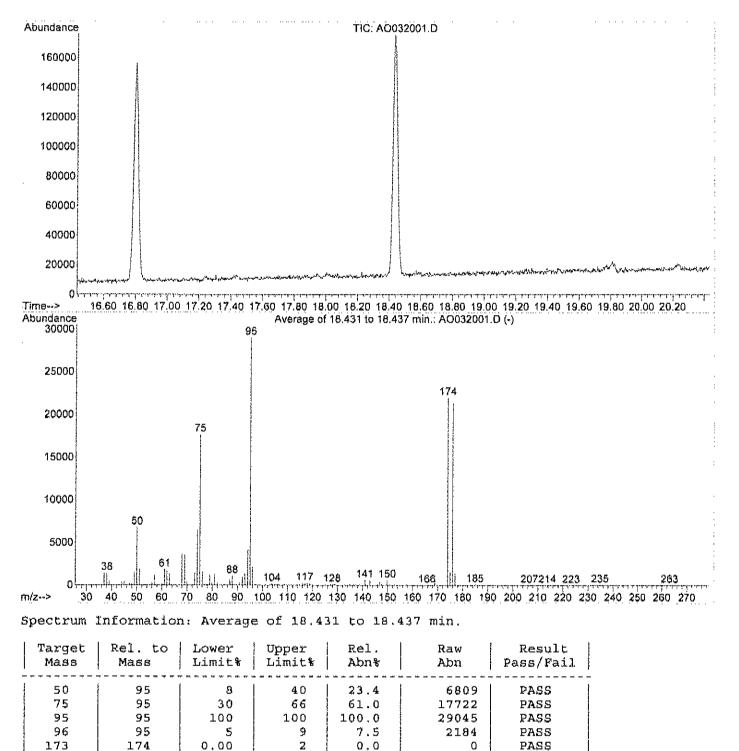
· · · · · ·

METHOD TO-15


RAW DATA

.


.


ï

Page 166 of 213

Page 167 of 213

PASS

PASS

PASS

PASS

A0032001.D A227\_1UG.M Mon Mar 27 11:25:48 2017 MSD1

75.8

96.9

7.0

6.4

Page 168 of 213

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 RAW QC DATA

Page 169 of 213

| TC |
|--------------------------|
| ties, l |
| CENTEK LABORATORIES, LLC |
| ABOR |
| TEK L |
| CEN |

Starting.

Page 170 of 213

ANALYTICAL QC SUMMARY REPORT

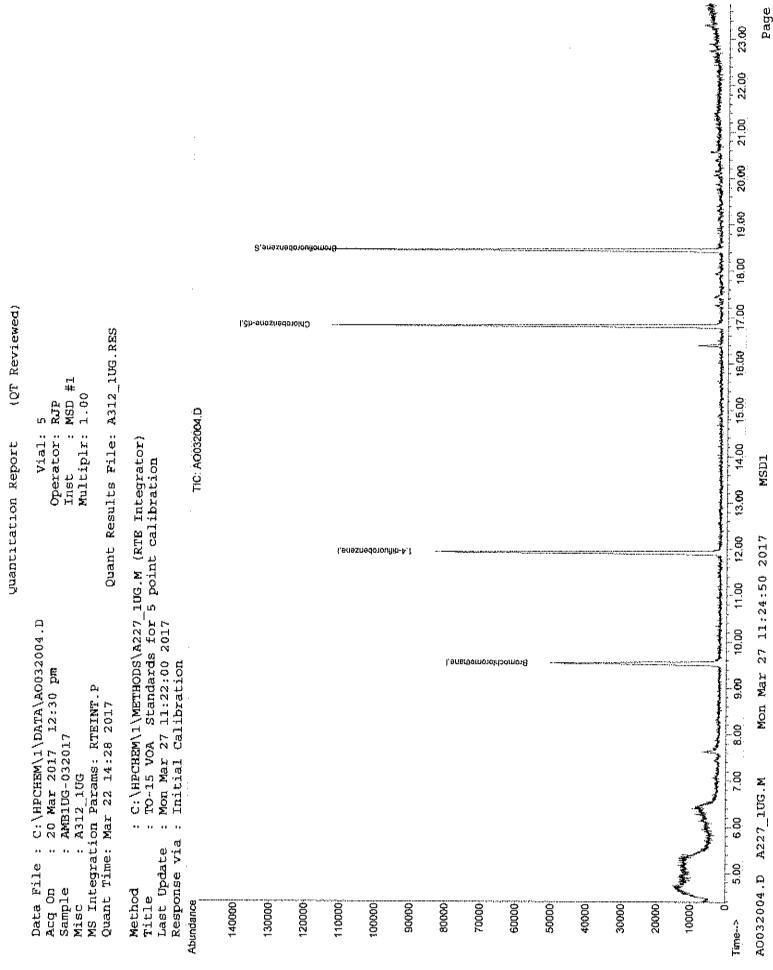
Date: 27-Mar-17

| Centek Laboratories, | LLC |
|----------------------|-----|
| | |

| CLIENT: L
Work Order: C | LaBella As
C1703050 | LaBella Associates, P.C.
C1703050 | | | | | | |
|----------------------------|------------------------|--------------------------------------|--------|-----------------------------------|--------------------------------------|-------------|-------------------------|------|
| Project: F | Former En | Former Emerson St Landfill | | | Ŧ | estCode: (| TestCode: 0.25CT-TCE-VC | |
| Sample ID AMB1UG-032017 | 3-032017 | SampType: MBLK | TestCo | TestCode: 0.25CT-TCE- Units: ppbV | Prep Date: | | RunNo: 12048 | |
| Client (D: ZZZZZ | | Batch ID: R12048 | Test | TestNo: TO-15 | Analysis Date: 3/20/2017 | 17 | SeqNo: 140947 | |
| Analyte | | Result | PQI | SPK value SPK Ref Val | %REC LowLinit HighLinnit RPD Ref Val | RPD Ref Val | %RPD RPDLimit | Qưal |
| 1,1,1-Frichloroethane | | < 0.15 | 0.15 | | | | | |
| 1,1-Dichloroethane | | < 0.15 | 0.15 | | | | | |
| 1,1-Dichloroethene | | < 0.15 | 0.15 | | | | | |
| Chloroethane | | < 0.15 | 0.15 | | | | | |
| Chloromethane | | < 0.15 | 0.15 | | | | | |
| cis-1,2-Dichloroethene | æ | < 0.15 | 0.15 | | | | | |
| Tetrachloroethylene | | < 0.15 | 0.15 | | | | | |
| trans-1,2-Dichloroethene | ene | < 0.15 | 0.15 | | | | | |
| Trichloroethene | | < 0.040 | 0.040 | | | | | |
| Virryl chloride | | < 0.040 | 0.040 | | | | | |

H Holding times for preparation or analysis excueded R RPD outside accepted recovery limits RPD outside accepted recovery limits Estimated Value above quantitation range E Estimated Value above quantitation ran ND Not Detected at the Limit of Detection Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected - v . Qualifiers:

Page I of I


Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032004.D Vial: 5 Acq On : 20 Mar 2017 12:30 pm Sample : AMB1UG-032017 Misc : A312\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Mar 21 09:03:01 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min)

 1) Bromochloromethane
 9.54
 128
 18191
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 11.92
 114
 81621
 1.00 ppb
 -0.02

 50) Chlorobenzene-d5
 16.81
 117
 66968
 1.00 ppb
 0.00

 System Monitoring Compounds 65) Bromofluorobenzene 18.44 95 46438 0.93 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 93.00% Target Compounds **Ovalue**

ŝ

ANALYTICAL QC SUMMARY REPORT

Qual Quaj S Holding times for preparation or analysis exceeded 8 8 8 8 8 8 8 8 %RPD RPDLimit 39.39 RPDLimit TestCode: 0.25CT-TCE-VC SeqNo: 140955 SeqNo: 140956 RunNo: 12048 RunNo: 12048 %RPD 1.60 3,88 4.93 2.17 17.1 1.96 2.99 2.02 0.99 0.93 1.26 8 0.98 LowLimit HighLimit RPD Ref Val 2.1 1.01 1.03 9 RPD Ref Val Analysis Date: 3/20/2017 Analysis Date: 3/20/2017 HighLimit 001 130 130 130 130 130 130 88 130 130 130 130 130 130 130 130 130 ц 🗠 Prep Date Prep Date (cowLimit Estimated Value above quantitation range %REC %REC 99.0 93.0 126 135 <u>5</u> 98.0 91.0 0.99 103 101 120 120 <u>1</u>00 ₫ 124 102 103 <u>5</u> TestCode: 0.25CT-TCE- Units: ppbV FestCode: 0.25CT-TCE- Units: ppbV 0.75 0 0 0 0 0 0.75 ¢ \circ Ċ Ö SPK Ref Val ¢ Ö o Ö o Ċ 00 SPK Ref Vai SPK value SPK value TestNo: TO-15 TestNo: TO-15 ωQ 0.15 0.15 Ъ 0.15 0.15 0.15 0.15 0.15 0.15 0.040 0.15 0.15 0.15 0.15 0.040 ğ 0.15 0.15 0.15 0.15 0.040 Results reported are not blank corrected Batch ID: R12048 Result Batch ID: R12048 0.9969.0 0.9300 1.260 2.100 1.010 1.020 0.9800 1.040 1.030 1,200 Result 1.040 0.9100 1.240 1.770 1,030 1.000 0.9900 1.000 1.010 SampType: MSD Former Emerson St Landfill SampType: MS LaBella Associates, P.C. Sample ID C1703050-004A MS Sample ID C1703050-004A MS C1703050 1770-Outdoor-B Client ID: 1770-Outdoor-B trans-1,2-Dichloroethene Irans-1,2-Dichloroethene cis-1,2-Dichloroethene cis-1,2-Dichlorcethene 1,1,1-Trichloroelhane 1,1.1-Trichloroethane Tetrachlorpethylene Tetrachtoroethytene f,1-Dichlorpethene 1-Dichlorbelhane 1, 1-Dichloroethane 1,1-Dichloroethene Trichloroethene Work Order: Chloromethane Chloromethane Trichloroethene Chloroethane Vinyl chloride Chloroelinane Client ID: CLIENT: Qualifiers: Project: Analyte Analyte

Page 173 of 213

RPD putside accepted recovery limits

Not Detected at the Limit of Detection

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit

\$2

| CLJENT: | LaBella As | CLIENT: LaBella Associates, P.C. | | | | | | *** | | | | |
|--|---------------------------|--|-------|--------------------------------------|--|------|-------------------------------------|-----------|-------------------------|-------------------------------|---------------|------|
| Work Order: | C1703050 | | | | | | | | | | | |
| Project: | Former Em | Former Emerson St Landfill | | | | | | F | TestCode: 0.25CT-TCE-VC | (25CT-TC) | E-VC | |
| Sample ID C1703050-004A I
Client ID: 1770-Outdoor-B | 3050-004A MS
Outdoor-B | Sample ID C1703050-004A MS SampType: MSD
Client ID: 1770-Outdoor-B Batch ID: R12048 | | istCode: 0.25CT-TCI
TestNo: T0-15 | TestCode: 0.25CT-TCE- Units: ppbV
TestNo: TO-15 | | Prep Date: Analysis Date: 3/20/2017 | 3/20/20 | 17 | RunNo: 12048
SeqNo: 140956 | 048
)956 | |
| Analyte | | Result | t PQL | SPK value | SPK value SPK Ref Val | %REC | %REC LowLimit HighLimit RPD Ref Val | łighLimit | RPD Ref Val | 049% | %RPD RPDLimit | Qual |
| Vinyi chloride | | 1.240 | 0.040 | ¥100 | 0 | 124 | 70 | 130 | 1.2 | 3.28 | 8 | |

.

Page 2 of 2

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032015.D Acq On : 20 Mar 2017 8:36 pm Sample : C1703050~004A MS Misc : A312\_1UG Vial: 10 Operator: RJP Inst : MSD #1 Misc : A312\_10G Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:11 2017 Quant Results File: A312\_10G.RES Multiplr: 1.00 Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) Internal standardsx.1. Qion Response cond outer setting1) Bromochloromethane9.53 128 12965 1.00 ppb 0.0035) 1,4-difluorobenzene11.93 114 59084 1.00 ppb 0.0050) Chlorobenzene-d516.80 117 49891 1.00 ppb -0.01 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 36740 0.98 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00%

 Spiked Anount
 1.000
 Range 70 - 130
 Recovery
 =
 98.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.48
 41
 28259
 1.10 ppb
 70

 3) Freen 12
 4.55
 85
 145466
 1.39 ppb
 98

 4) Chloromethane
 4.71
 50
 32913m
 2.10 ppb
 86

 6) Vinyl Chloride
 4.94
 62
 27374
 1.20 ppb
 88

 7) Butane
 5.14
 43
 44821
 1.79 ppb
 85

 8) Labetadeine
 5.36
 94
 33815
 1.20 ppb
 89

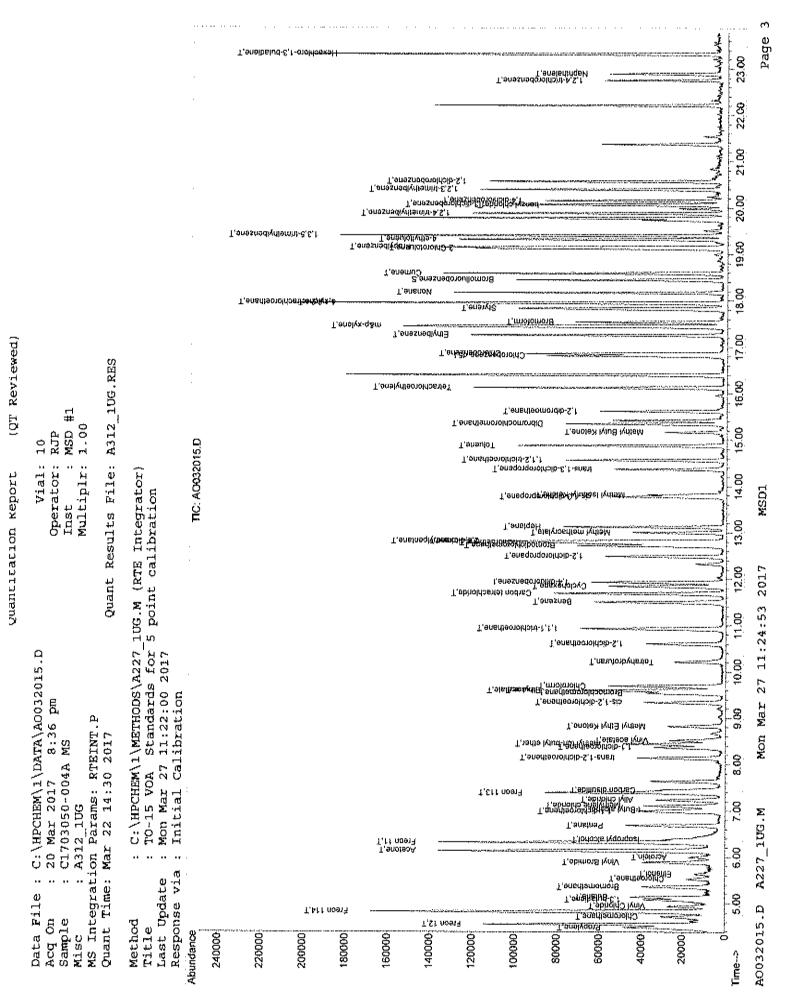
 9) Bromomethane
 5.53
 64
 12894
 1.62 ppb
 97

 11) Ethanol
 5.63
 45
 12234
 1.65 ppb
 33

 12) Accolein
 6.00
 56
 10412
 1.42 ppb
 97

 11) Ethanol
 5.63
 45
 12234
 1.65 ppb
 33

 12) Accolein
 6.13
 50
 1.101
 169477
 1.75 ppb
 98


 12) Accolein
 6.13
 563
 1.101
 169497
 1.95 ppb</ (#) = qualifier out of range (m) = manual integration A0032015.D A227\_1UG.M Mon Mar 27 11:24:52 2017 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0032015.D Acq On : 20 Mar 2017 8:36 pm Sample : C1703050-004A MS Misc : A312\_1UG Vial: 10 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:11 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN

| | Compound | R.T. | QIon | Response | Conc Unit | Qvalue |
|-----|---------------------------|-------|------|----------|-----------|--------|
| 46) | Bromodichloromethane | 12,72 | 83 | 62245 | 1.07 ppb | 100 |
| 47) | cis-1,3-dichloropropene | 13.77 | 75 | 36746 | 0.93 ppb | 98 |
| 48) | trans-1,3-dichloropropene | 14.36 | 75 | 35125 | 0.90 ppb | 96 |
| 49) | 1,1,2-trichloroethane | 14.56 | 97 | 26589 | 1.05 ppb | 96 |
| 51) | Toluene | 14.87 | 92 | 46534 | 1.11 ppb | # 84 |
| 52) | Methyl Isobutyl Ketone | 13.82 | 43 | 30700 | 0.81 ppb | |
| 53) | | 15.34 | 129 | 47736 | 0.97 ppb | 91 |
| 54) | | 15.16 | 43 | 23689 | 0.80 ppb | 91. |
| 55) | l,2-dibromoethane | 15,62 | 107 | 41615 | 1.01 ppb | 97 |
| 56) | Tetrachloroethylene | 16.12 | 164 | 26038 | 1.02 ppb | 98 |
| 57) | Chlorobenzene | 16.86 | 1,12 | 54851 | 1.01 ppb | 68 |
| 58) | Ethylbenzene | 17.25 | 91 | 101068 | 1.01 ppb | 96 |
| 59) | m&p-xylene | 17.45 | 91 | 171389 | 2.03 ppb | 94 |
| 60) | | 18.17 | 43 | 52462 | 1.03 ppb | 89 |
| 61) | Styrene | 17.83 | 104 | 46904 | 0.94 ppb | 89 |
| 62) | Bromoform | 17.53 | 173 | 35633 | 0.98 ppb | 97 |
| 63) | o-xylene | 17.95 | 91 | 81698 | 1.01 ppb | 90 |
| 64) | Cumene | 18.58 | 105 | 95674 | 0.94 ppb | 96 |
| 66) | 1,1,2,2-tetrachloroethane | 17.95 | 83 | 51559 | 0.99 ppb | 98 |
| | Propylbenzene | 19.15 | 120 | 23644 | 0.95 ppb | # 1 |
| 68) | | 19.12 | 126 | 21156 | 0.90 ppb | # 1 |
| 69) | | 19.31 | 105 | 88185 | 0.95 ppb | 95 |
| 70) | | 19.40 | 1.05 | 81022 | 0.94 ppb | 97 |
| 71) | | 19.88 | 105 | 76530 | 0.94 ppb | 99 |
| 72) | | 20.07 | 146 | 39144 | 0,93 ppb | 96 |
| | benzyl chloride | 20.05 | 91 | 32264 | 0.62 ppb | 97 |
| 74) | | 20.16 | 146 | 36837 | 0.98 ppb | 98 |
| 75) | | 20,39 | 105 | 73076 | dqq 20.0 | 100 |
| 76) | | 20.57 | 146 | 39067 | 0.94 ppb | 96 |
| 77) | 1,2,4-trichlorobenzene | 22.75 | 180 | 15463 | 1,01 ppb | 95 |
| | Naphthalene | 22.89 | 128 | 38752 | 0.92 ppb | 92 |
| 79) | Hexachloro-1,3-butadiene | 23.31 | 225 | 33176 | 0.99 ppb | 94 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032015.D A227\_1UG.M Mon Mar 27 11:24:52 2017 MSD1

Page 177 of 213

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032016.D Vial: 11 Acg On : 20 Mar 2017 9:22 pm Sample : C1703050-004A MSD Misc : A312\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 Misc : A312\_10G Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:12 2017 Quant Results File: A312\_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QIon Response Conc Units Dev(Min)
 1) Bromochloromethane
 9.53
 128
 12927
 1.00
 ppb
 -0.02

 35) 1,4-difluorobenzene
 11.92
 114
 61212
 1.00
 ppb
 -0.02

 50) Chlorobenzene-d5
 16.81
 117
 51251
 1.00
 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 37767 0.99 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 99.00%

 65)
 Bromofluorobenzene
 18.45
 95
 37767
 0.99
 pp ppb
 0.00

 Target Compounds
 0
 Recovery
 # 99.00%

 2)
 Propylene
 4.47
 41
 26431
 1.03
 ppb
 # 62

 3)
 Freen 12
 4.55
 85
 145314
 1.33
 ppb
 97

 4)
 Chloromethane
 4.71
 50
 27689m
 1.77
 ppb
 90
 90

 5)
 Freen 114
 4.81
 85
 101216
 1.30
 ppb
 91

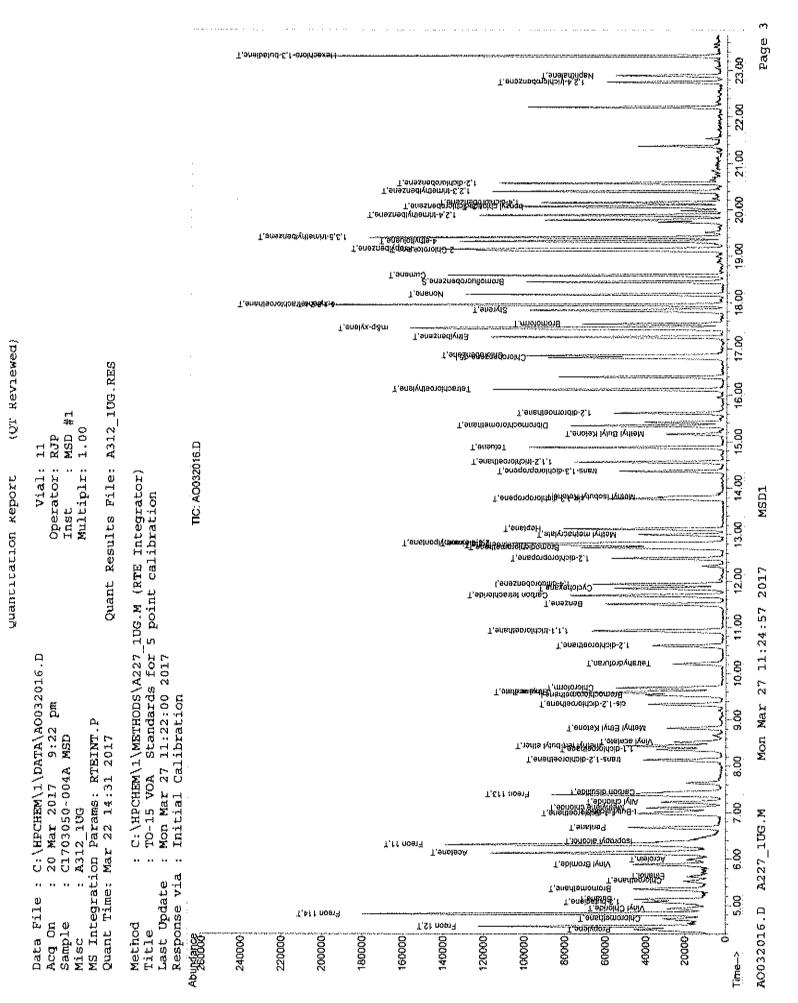
 6)
 Viryl Chloride
 4.93
 62
 28079
 1.30
 ppb
 90

 7)
 Butane
 5.13
 43
 40136
 1.60
 ppb
 91

 9)
 Bromomethane
 5.35
 94
 37149
 1.32
 ppb
 90

 10)
 Chloroethane
 5.13
 63
 1299
 1.76
 ppb
 82

 11)
 Ethanol
 5.99
 56
 10096
 1.30
 101
 1.75
 ppb
 93
 104


 11)
 (#) = qualifier out of range (m) = manual integration A0032016.D A227\_1UG.M Mon Mar 27 11:24:56 2017 MSD1

Page 178 of 213

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032016.D Vial: 11 Acq On : 20 Mar 2017 9:22 pm Operator: RJP : C1703050-004A MSD Sample Inst : MSD #1 Misc : A312\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:12 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN

| | Compound | R.T. | QION | Response | Conc Unit | Qva | alue |
|-----|---------------------------|-------|------|----------|------------------------|-----|------|
| 46) | | 12.72 | 83 | 61414 | 1.02 ppb | | 96 |
| 47) | cis-1,3-dichloropropene | 13.77 | 75 | 38178 | 0.93 ppb | | 95 |
| 48) | | 14.36 | 75 | 35216 | 0.87 ppb | | 96 |
| 49) | 1,1,2-trichloroethane | 14.56 | 97 | 26816 | 1.02 ppb | | 99 |
| 51) | Toluene | 14.87 | 92 | 45325 | 1.05 ppb | # | 81 |
| 52) | Methyl Isobutyl Ketone | 13.82 | 43 | 28029 | 0.72 ppb | | 94 |
| 53) | Dibromochloromethane | 15.35 | 129 | 49199 | dqq 80.0 | | 95 |
| 54) | Methyl Butyl Ketone | 15.16 | 43 | 25142 | 0.83 ppb | | 93 |
| 55) | | 15,62 | 107 | 42135 | $1.00 \overline{ppb}$ | | 97 |
| 56) | Tetrachloroethylene | 16.12 | 164 | 26101 | 0.99 ppb | | 96 |
| 57) | Chlorobenzene | 16.85 | 112 | 55122 | 0.99 ppb | | 86 |
| 58) | Ethylbenzen@ | 17.26 | 91 | 98191 | 0.96 ppb | | 98 |
| 59) | m&p-xylene | 17.44 | 91 | 173144 | 2.00 ppb | | 94 |
| 60) | Nonane | 18.17 | 43 | 51432 | 0.99 ppb | | 91 |
| 61) | Styrene | 17.83 | 104 | 49128 | 0.96 ppb | | 93 |
| 62) | Bromoform | 17.54 | 173 | 35668 | 0.96 ppb | | 97 |
| 63) | o-xylene | 17.95 | 91 | 83108 | 1.00 ppb | | 87 |
| 64) | Cumene | 18.58 | 105 | 99603 | 0.95 ppb | | 98 |
| 66) | 1,1,2,2-tetrachloroethane | 17.95 | 83 | 53434 | 1.00 ppb | | 97 |
| 67) | | 19.15 | 120 | 24218 | 0.94 ppb | # | 1 |
| 68) | 2-Chlorotoluene | 19.12 | 126 | 21522 | 0.89 ppb | Ħ | 1. |
| | 4-ethyltoluene | 19.31 | 105 | 91094 | 0.96 ppb | | 95 |
| 70) | 1,3,5-trimethylbenzene | 19.40 | 105 | 83231 | 0.94 ppb | | 96 |
| 71) | 1,2,4-trimethylbenzene | 19.88 | 105 | 77381 | 0.92 ppb | | 100 |
| 72) | 1,3-dichlorobenzene | 20.00 | 146 | 41672 | 0.96 ppb | | 96 |
| 73) | | 20.05 | 91 | 46491m 🎜 | 0.86 ppb | | |
| 74) | | 20.15 | 146 | 37891 | 0.98 ppb | | 97 |
| | 1,2,3-trimethylbenzene | 20,40 | 105 | 74424 | 0.91 ppb | | 98 |
| 76) | 1,2-dichlorobenzene | 20.57 | 146 | 40115 | 0.94 ppb | | 99 |
| 77) | 1,2,4-trichlorobenzene | 22.74 | 180 | 16509 | 1.05 ppb | | 94 |
| | Naphthalene | 22.89 | 128 | 40040 | 0.93 ppb | | 96 |
| 79) | Hexachloro-1,3-butadiene | 23.31 | 225 | 35010 | 1.01 ppb | | 96 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032016.D A227\_1UG.M Mon Mar 27 11:24:56 2017 MSD1

| 27-Mar-17 | |
|-----------|--|
| Date: | |

ANALYTICAL QC SUMMARY REPORT

CENTEK LABORATORIES, LLC

CLIENT: LaBella Associates, P.C.

| | | | | | | | • | 25CT-TC | 07.0 | |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| | | | | | | | • | 25CT-TO | 07.0 | |
| Former Emerson St Landfill | | | | | | Test | tCode: U | | E-1 C | |
| SampType: LCS | TestCad | le: 0.25CT-TCE- | Units: ppbV | | Prep Date | | | RunNo: 121 | 048 | |
| Batch ID: R12048 | TesiN | lo: TO-15 | | | Anatysis Date | : 3/20/2017 | | SegNo: 14 | 0948 | |
| Result | PQL | SPK value St | PK Ref Val | %REC | LowLimit | | D Ref Val | %RPD | RPDLimit | Quai |
| 0.9800 | 0.15 | - | 0 | 98.0 | ۶ | 130 | | | | |
| 0.9700 | 0.15 | £ | ¢ | 97.0 | 70 | 130 | | | | |
| 0.9200 | 0.15 | ٣ | 0 | 92.0 | 20 | 130 | | | | |
| 1.060 | 0.15 | £ | Đ | 106 | 70 | 130 | | | | |
| 1.250 | 0.15 | • | 0 | 125 | 70 | 130 | | | | |
| 0.9400 | 0.15 | | ¢ | 94.0 | 70 | 130 | | | | |
| 1.040 | 0.15 | ų | Ċ | 104 | 70 | 130 | | | | |
| 0.9500 | 0.15 | ų.a | 0 | 95.0 | 70 | 130 | | | | |
| 1.000 | 0.040 | yur | ð | 100 | 62 | 130 | | | | |
| 1.040 | 0.040 | *** | 0 | 164 | 70 | 130 | | | | |
| SampType: LCSD | TestCod | le: 0.25CT-TCE- | Units: ppbV | | Prep Date | | | RunNo: 12(| 048 | |
| Batch ID: R12048 | TestN | lo: T0-15 | | _ | Analysis Date | 03/21/2017 | | SeqNo: 14(| 949 | |
| Result | POL | SPK value SI | PK Ref Val | %REC | LowLimit | | PD Ref Val | Oda% | RPDLimit | Quai |
| 1.090 | 0.15 | * | 0 | 109 | 70 | 130 | 0.98 | 10.6 | 8 | |
| 1.070 | 0.15 | * | ð | 107 | 70 | 130 | 76.0 | 9.80 | 30 | |
| 0.9700 | 0.15 | *** | ð | 97.0 | 70 | 130 | 0.92 | 5.29 | 90 | |
| 1.290 | 0.15 | ÷ | Ð | 129 | 70 | 130 | 1.05 | 19.6 | 8 | |
| 1.400 | 0.15 | ÷ | Ċ | 140 | 70 | 130 | 1.25 | 11.3 | 30 | ŝ |
| 1.030 | 0.15 | *** | o | 103 | 70 | 130 | 0.94 | 9.14 | 30 | |
| 1.080 | 0.15 | * | Ð | 106 | 70 | 130 | 1.62 | 3.77 | 30 | |
| 1.030 | 0.15 | ¥ | Ċ | 103 | 70 | 130 | 0.95 | 3.08 | 30 | |
| 1.050 | 0.040 | ÷ | ð | 105 | 02 | 130 | ~ | 4.88 | 30 | |
| | | | | | | | | | | |
| Results reported are not blank corrected | | E Estimated | l Value above quan | tilation rang | e, | H Hold | ling times for p | preparation or a | nalysis exceed | E |
| s (i in i i i i i i i i i i i i i i i i i | mpType: LCS
latch ID: R12048
Result
0.9700
0.9700
0.9700
0.9700
0.9700
1.040
1.040
1.040
1.040
1.070
0.9500
1.070
0.9500
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9700
1.070
0.9500
1.070
0.9700
1.070
0.9700
1.070
0.9500
1.070
0.9500
1.070
0.9500
1.070
0.9500
1.070
0.9500
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.0700
1.07000
1.07000
1.07000
1.07000
1.070000000000 | 2 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | TestCade: 0.25 048 TestNo: TO-1 ult POL SPK v 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 01 TestNo: 0 02 0.15 0 03 0.15 0 04 0.040 0 05 0.15 0 06 0.15 0 07 0.15 0 08 0.15 0 09 0.15 0 09 0.15 0 015 0.15 0 040 0.15 0 015 0.15 0 00 0.15 0 015 0.15 0 015 0.15 0 02 0.15 <td< td=""><td>TestCade: 0.25 048 TestNo: TO-1 ult POL SPK v 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 01 TestNo: 0 02 0.15 0 03 0.15 0 04 0.040 0 05 0.15 0 06 0.15 0 07 0.15 0 08 0.15 0 09 0.15 0 09 0.15 0 015 0.15 0 040 0.15 0 015 0.15 0 00 0.15 0 015 0.15 0 015 0.15 0 02 0.15 <td< td=""><td>TestCode: 0.25CT-TCE- Units: ppbV 048 TestKoode: 0.25CT-TCE- Units: ppbV 011 PQL SPK walue SPK Ref Val %REC 000 0.15 1 0 98.0 000 0.15 1 0 97.0 000 0.15 1 0 97.0 000 0.15 1 0 97.0 000 0.15 1 0 104 000 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 01 0.040 1 0 104 00 0.15 1 0 104 01 0.040 1 0 104 01 0.040 0.161</td><td>TestCode: 0.25CT-TCE- Units: pbbV Prep Date uit PolL SPK value SPK Ref Val Analysis Date uit PolL SPK value SPK Ref Val Analysis Date uit PolL SPK value SPK Ref Val Analysis Date 00 0.15 1 0 98.0 70 00 0.15 1 0 97.0 70 00 0.15 1 0 97.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 104 70 01 0.15 1 0 104 70 01 0.040 1 0 104 70 02 0.040 1 0 104 70 03 <td< td=""><td>TestCode: 0.25CT-TCE- Units: ppbV Prep Date: X20/2 uit POL SPK value SPK Ref Val Analysis Date: X20/2 uit POL SPK value SPK Ref Val Analysis Date: X20/2 00 0.15 1 0 98.0 70 130 00 0.15 1 0 98.0 70 130 00 0.15 1 0 98.0 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 107 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 70 130 130 00 0.15 1 0 106 70 130 00 0.16 1</td><td>Interface Interpretation Prep Date: Odd TestNo: C.S.S.CT-T.C.E- Units: ppbV Prep Date: V202 Odd TestNo: TO-15 Analysis Date: V202 Odd TestNo: TO-15 Analysis Date: V202 Odd O15 1 O 98.0 70 130 Odd O15 1 O 94.0 70 130 Odd O15 1 O 94.0 70 130 Odd O16 O 94.0 70 130 Odd O O 106 70 130</td><td>TestCode: 0.2SCT-TCE- Units: ppbV Prep Date: X20/2 048 TestNo: TO-15 Analysis Date: X20/2 uit PQL SPK value SPK Ref Val KFEC Low, Limit HighLimit 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 1.16</td><td>IteatCode: 0.25CT-TCE- Units: Pape Earthor Farthor Farthor 043 TestKode: 0.25CT-TCE- Units: Pape Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Saphor Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Farthor</td></td<></td></td<></td></td<> | TestCade: 0.25 048 TestNo: TO-1 ult POL SPK v 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 00 0.15 0 01 TestNo: 0 02 0.15 0 03 0.15 0 04 0.040 0 05 0.15 0 06 0.15 0 07 0.15 0 08 0.15 0 09 0.15 0 09 0.15 0 015 0.15 0 040 0.15 0 015 0.15 0 00 0.15 0 015 0.15 0 015 0.15 0 02 0.15 <td< td=""><td>TestCode: 0.25CT-TCE- Units: ppbV 048 TestKoode: 0.25CT-TCE- Units: ppbV 011 PQL SPK walue SPK Ref Val %REC 000 0.15 1 0 98.0 000 0.15 1 0 97.0 000 0.15 1 0 97.0 000 0.15 1 0 97.0 000 0.15 1 0 104 000 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 01 0.040 1 0 104 00 0.15 1 0 104 01 0.040 1 0 104 01 0.040 0.161</td><td>TestCode: 0.25CT-TCE- Units: pbbV Prep Date uit PolL SPK value SPK Ref Val Analysis Date uit PolL SPK value SPK Ref Val Analysis Date uit PolL SPK value SPK Ref Val Analysis Date 00 0.15 1 0 98.0 70 00 0.15 1 0 97.0 70 00 0.15 1 0 97.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 104 70 01 0.15 1 0 104 70 01 0.040 1 0 104 70 02 0.040 1 0 104 70 03 <td< td=""><td>TestCode: 0.25CT-TCE- Units: ppbV Prep Date: X20/2 uit POL SPK value SPK Ref Val Analysis Date: X20/2 uit POL SPK value SPK Ref Val Analysis Date: X20/2 00 0.15 1 0 98.0 70 130 00 0.15 1 0 98.0 70 130 00 0.15 1 0 98.0 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 107 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 70 130 130 00 0.15 1 0 106 70 130 00 0.16 1</td><td>Interface Interpretation Prep Date: Odd TestNo: C.S.S.CT-T.C.E- Units: ppbV Prep Date: V202 Odd TestNo: TO-15 Analysis Date: V202 Odd TestNo: TO-15 Analysis Date: V202 Odd O15 1 O 98.0 70 130 Odd O15 1 O 94.0 70 130 Odd O15 1 O 94.0 70 130 Odd O16 O 94.0 70 130 Odd O O 106 70 130</td><td>TestCode: 0.2SCT-TCE- Units: ppbV Prep Date: X20/2 048 TestNo: TO-15 Analysis Date: X20/2 uit PQL SPK value SPK Ref Val KFEC Low, Limit HighLimit 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 1.16</td><td>IteatCode: 0.25CT-TCE- Units: Pape Earthor Farthor Farthor 043 TestKode: 0.25CT-TCE- Units: Pape Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Saphor Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Farthor</td></td<></td></td<> | TestCode: 0.25CT-TCE- Units: ppbV 048 TestKoode: 0.25CT-TCE- Units: ppbV 011 PQL SPK walue SPK Ref Val %REC 000 0.15 1 0 98.0 000 0.15 1 0 97.0 000 0.15 1 0 97.0 000 0.15 1 0 97.0 000 0.15 1 0 104 000 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 00 0.15 1 0 104 01 0.040 1 0 104 00 0.15 1 0 104 01 0.040 1 0 104 01 0.040 0.161 | TestCode: 0.25CT-TCE- Units: pbbV Prep Date uit PolL SPK value SPK Ref Val Analysis Date uit PolL SPK value SPK Ref Val Analysis Date uit PolL SPK value SPK Ref Val Analysis Date 00 0.15 1 0 98.0 70 00 0.15 1 0 97.0 70 00 0.15 1 0 97.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 94.0 70 00 0.15 1 0 104 70 01 0.15 1 0 104 70 01 0.040 1 0 104 70 02 0.040 1 0 104 70 03 <td< td=""><td>TestCode: 0.25CT-TCE- Units: ppbV Prep Date: X20/2 uit POL SPK value SPK Ref Val Analysis Date: X20/2 uit POL SPK value SPK Ref Val Analysis Date: X20/2 00 0.15 1 0 98.0 70 130 00 0.15 1 0 98.0 70 130 00 0.15 1 0 98.0 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 107 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 70 130 130 00 0.15 1 0 106 70 130 00 0.16 1</td><td>Interface Interpretation Prep Date: Odd TestNo: C.S.S.CT-T.C.E- Units: ppbV Prep Date: V202 Odd TestNo: TO-15 Analysis Date: V202 Odd TestNo: TO-15 Analysis Date: V202 Odd O15 1 O 98.0 70 130 Odd O15 1 O 94.0 70 130 Odd O15 1 O 94.0 70 130 Odd O16 O 94.0 70 130 Odd O O 106 70 130</td><td>TestCode: 0.2SCT-TCE- Units: ppbV Prep Date: X20/2 048 TestNo: TO-15 Analysis Date: X20/2 uit PQL SPK value SPK Ref Val KFEC Low, Limit HighLimit 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 1.16</td><td>IteatCode: 0.25CT-TCE- Units: Pape Earthor Farthor Farthor 043 TestKode: 0.25CT-TCE- Units: Pape Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Saphor Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Farthor</td></td<> | TestCode: 0.25CT-TCE- Units: ppbV Prep Date: X20/2 uit POL SPK value SPK Ref Val Analysis Date: X20/2 uit POL SPK value SPK Ref Val Analysis Date: X20/2 00 0.15 1 0 98.0 70 130 00 0.15 1 0 98.0 70 130 00 0.15 1 0 98.0 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 107 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 106 70 130 00 0.15 1 0 70 130 130 00 0.15 1 0 106 70 130 00 0.16 1 | Interface Interpretation Prep Date: Odd TestNo: C.S.S.CT-T.C.E- Units: ppbV Prep Date: V202 Odd TestNo: TO-15 Analysis Date: V202 Odd TestNo: TO-15 Analysis Date: V202 Odd O15 1 O 98.0 70 130 Odd O15 1 O 94.0 70 130 Odd O15 1 O 94.0 70 130 Odd O16 O 94.0 70 130 Odd O O 106 70 130 | TestCode: 0.2SCT-TCE- Units: ppbV Prep Date: X20/2 048 TestNo: TO-15 Analysis Date: X20/2 uit PQL SPK value SPK Ref Val KFEC Low, Limit HighLimit 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 99.0 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 0.15 1 0 104 70 130 000 1.16 | IteatCode: 0.25CT-TCE- Units: Pape Earthor Farthor Farthor 043 TestKode: 0.25CT-TCE- Units: Pape Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Saphor Farthor Saphor Farthor Farthor Saphor Farthor Farthor Saphor Farthor Farthor |

Page 181 of 213

R RPD outside accepted recovery limits

ND Not Detected at the Limit of Detection

Analyse detected below quantitation limit Spike Recovery outside accepted recovery limits

÷ \$7

| CLIENT:
Work Order | CLIENT: LaBella Associates, P.C.
Work Order C1703050 | | | | | | | | | | |
|-------------------------------------|---|-----------------------------------|-----------------------|--|------|--|-------------------------------------|---------|-------------------------------|--------------------|------|
| Project: | Former Emerson St Landfill | | | | | | TestC | ode: 0. | TestCode: 0.25CT-TCE-VC | C-VC | |
| Sample ID ALCS1
Client ID: 22222 | Sample ID ALCS1UGD-032017 SampType: LCSD
Client ID: ZZZZZ Batch ID: R12048 | TestCode: 0.25CT
TestNo: TO-15 | 25CT-TCE. | TestCode: 0.25CT-TCE- Units: ppbV
TestNo: TO-15 | | Prep Date:
Analysis Date: 3/21/2017 | 3/21/2017 | | RunNo: 12048
SeqNo: 140949 | 48
949 | |
| Analyte | Result | POL SPI | SPK value SPK Ref Val | ⊃K Ref Val | %REC | LowLimit Hi | %REC LowLimit HighLimit RPD Ref Val | Ref Vai | QqA% | %RPD RPDLimit Qual | Qual |
| Vinyl chloride | 1.350 | 0.040 | | 0 | 135 | 20 | 130 | 1.04 | 25.9 | 8 | S |

Page 182 of 213

| Estimated Value above quantitation range H Holding times for preparation or analysis exceeded
Not Detected at the Limit of Detection R RPD outside accepted recovery limits | çç. | Estimated Vatue above quantitation range
Not Detected at the Limit of Detection |
|--|--|---|
| | Estimated Vatue above quantitation range
Not Detected at the Limit of Detection | E Estimated Value above quantitation range
ND Not Detected at the Limit of Detection |
| Estimated Vaiue above quantitation range
Not Detected at the Limit of Detection | - | Э.
Ор |
| | E ND | |

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032003.DVial: 4Acq On : 20 Mar 2017 11:53 amOperator: RJPSample : ALCS1UG-032017Inst : MSD #1Misc : A312\_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Mar 21 09:03:00 2017 Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.53128185871.00ppb-0.0135) 1,4-difluorobenzene11.92114867231.00ppb-0.0150) Chlorobenzene-d516.81117733191.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.44 95 52862 0.96 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery 296.00%

 65) Bromofluorobenzene
 18.44
 95
 52862
 0.96 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 96.004

 Target Compounds
 0
 4.47
 41
 31330
 0.85 ppb
 08

 2) Propylene
 4.47
 41
 31330
 0.85 ppb
 98

 3) Freen 12
 4.55
 85
 154264
 1.13 ppb
 90

 6) Vinyl Chloride
 4.94
 62
 33874
 1.04 ppb
 89

 7) Butane
 5.12
 43
 8825
 1.07 ppb
 97

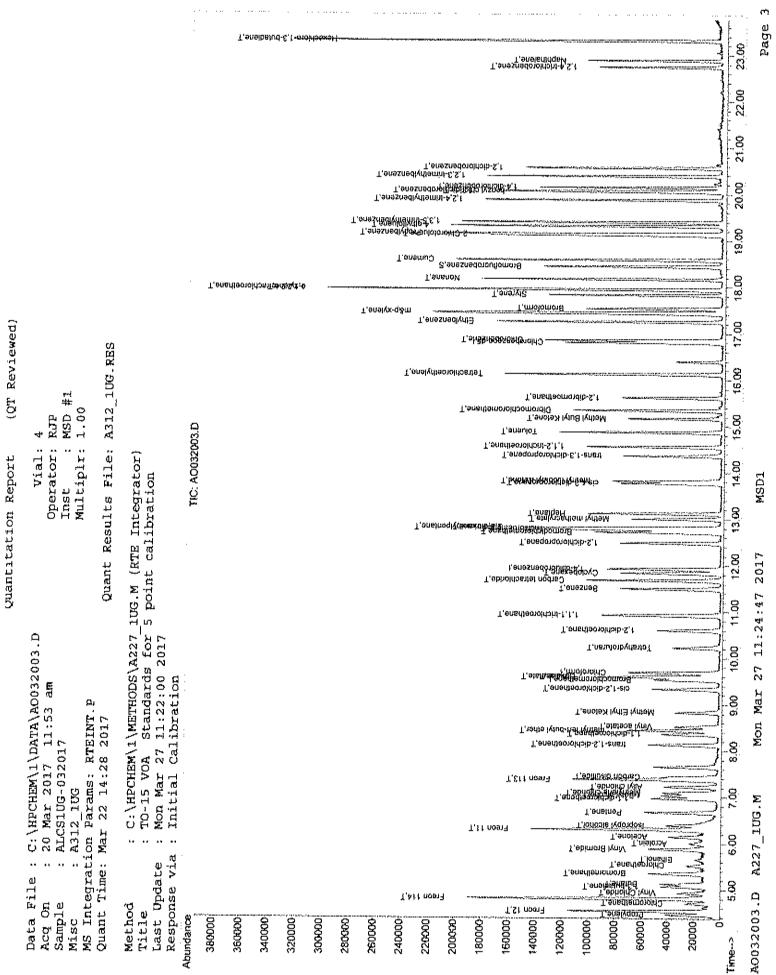
 9) Bromomethane
 5.36
 94
 49442
 1.22 ppb
 85

 10) Chloroethane
 5.36
 94
 49442
 1.22 ppb
 85

 11) Ethanol
 5.61
 64
 1.155 ppb
 96
 100

 11) Alvid Bromide
 5.86
 106
 1.22 ppb
 85
 100

 12) Acrolein
 6.11
 56
 1219
 1.15 ppb
 96


 13) Vinyl Bromide
 6.67
 42
 29634
 0.91 ppb #
 42

 14) Freen 113
 < (#) = qualifier out of range (m) = manual integration A0032003.D A227\_1UG.M Mon Mar 27 11:24:45 2017 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032003.D Vial: 4 Acq On : 20 Mar 2017 11:53 am Operator: RJP Sample : ALC51UG-032017 Misc : A312\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Mar 21 09:03:00 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:59:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN

| Compound | R.T. | QION | Response | Conc Unit | Qvalue |
|--|-------|--------|----------|-----------------------|--------|
| 46) Bromodichloromethane | |
^^ | | | |
| 47) cis-1,3-dichloropropene | 12.72 | 83 | 84785 | 1.00 ppb | 100 |
| 48) trans-1,3-dichloropropene | 13.77 | 75 | 54234 | 0.94 ppb | 98 |
| 49) 1,1,2-trichloroethane | 14.36 | 75 | 54947 | 0.96 ppb | 98 |
| 51) Toluene | 14.56 | 97 | 38699 | 1.04 ppb | 98 |
| 52) Methyl Isobutyl Ketone | 14.88 | 92 | 60244 | 0.98 ppb | 86 |
| 53) Dibromochloromethane | 13.02 | 43 | 70351 | 1.26 ppb | 94 |
| 54) Methyl Butyl Ketone | 15.34 | 129 | 71393 | 0.99 ppb | 92 |
| 55) 1,2-dibromoethane | 15.17 | 43 | 51845m/ | 1.20 ppb | |
| | 15.62 | 107 | 59924 | 0.99 ppb | 96 |
| 56) Tetrachloroethylene
57) Chlorobenzene | 16.12 | 164 | 39067 | 1.04 ppb | 100 |
| 577 Chiofobenzene
58) Ethylbenzene | 16.86 | 112 | 80124 | 1.01 ppb | 90 |
| | 17.25 | 91 | 144494 | 0.99 ppb | 97 |
| 59) m&p-xylene
60) Nonane | 17.45 | 91 | 251734 | 2.03 ppb | 96 |
| | 18.17 | 43 | 73372 | 0.98 ppb | 92 |
| | 17.83 | 104 | 73162 | 1.00 ppb | 95 |
| | 17.54 | 173 | 56409 | 1.06 ppb | 98 |
| 63) o-xylene | 17,95 | 91 | 120417 | 1.02 ppb | 89 |
| 64) Cumene | 18.50 | 105 | 150134 | 1.01 ppb | 99 |
| 66) 1,1,2,2-tetrachloroethane | 17.94 | 83 | 80139 | 1.05 ppb | 98 |
| 67) Propylbenzene | 29.15 | 120 | 37257 | 1.02 ppb | # 1 |
| 68) 2-Chlorotoluene | 19.12 | 126 | 34574 | 1.00 ppb | # 1. |
| 69) 4-ethyltoluene | 19.31 | 105 | 140340 | 1.03 ppb | 98 |
| 70) 1,3,5-trimethylbenzene | 19.40 | 105 | 127451 | 1.00 ppb | 98 |
| 71) 1,2,4-trimethylbenzene | 19.88 | 105 | 120118 | 1.00 ppb | 99 |
| 72) 1,3-dichlorobenzene | 20.07 | 146 | 67087 | 1.08 ppb | 96 |
| 73) benzyl chloride | 20.05 | 91 | 69080 | 0.90 ppb | 98 |
| 74) 1,4-dichlorobenzene | 20.15 | 146 | 62506 | 1.13 ppb | 96 |
| 75) 1,2,3-trimethylbenzene | 20.39 | 105 | 120306 | 1.03 ppb | 100 |
| 76) 1.2-dichlorobenzene | 20.56 | 146 | 65808 | $1.07 \overline{ppb}$ | 98 |
| 77) 1,2,4-trichlorobenzene | 22.74 | 180 | 27753 | 1.24 ppb | 88 |
| 78) Naphthalene | 22.89 | 128 | 83248 | 1.35 ppb | 95 |
| 79) Hexachloro-1,3-butadiene | 23.31 | 225 | 57808 | 1.17 ppb | 97 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032003.D A227\_1UG.M Mon Mar 27 11:24:46 2017 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032031.D Acq On : 21 Mar 2017 7:21 am Sample : ALCS1UGD-032017 Misc : A312\_1UG Vial: 26 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MISC ASI2\_100 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:27 2017 Quant Results File: A312\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : lUG\_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min)

 1) Bromochloromethane
 9.54
 128
 11608m/A
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 11.93
 114
 53720
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.81
 117
 44926
 1.00 ppb
 0.00

 System Monitoring Compounds 65) Bromofluorobenzene 18.44 95 32608 0.97 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 97.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 57.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.47
 41
 21599
 0.94 ppb
 03

 3) Freen 12
 4.54
 05
 126595
 1.35 ppb
 98

 4) Chloromethane
 4.71
 50
 19606m
 1.40 ppb
 69

 5) Freen 114
 4.61
 85
 103686
 1.48 ppb
 94

 7) Butane
 5.13
 43
 28728m
 1.29 ppb
 94

 8) I., 3-butadiene
 5.07
 39
 18357m
 1.29 ppb
 73

 10) Chloroethane
 5.53
 64
 11828
 1.29 ppb
 73

 11) Ethanol
 5.63
 106
 35029
 1.43 ppb
 93

 12) Accolein
 5.99
 56
 8962
 1.11 ppb
 94

 13) Vinyl Bromide
 6.67
 42
 19439
 0.95 ppb
 33

 13) Accolein
 6.38
 45
 29614
 1.11 ppb
 94

 Target Compounds Qvalue (#) = qualifier out of range (m) = manual integration

AQ032031.D A227\_1UG.M Mon Mar 27 11:25:00 2017 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\A0032031.D Vial: 26 Acg On : 21 Mar 2017 7:21 am **Operator:** RJP : ALCS1UGD-032017 Sample Inst : MSD #1 Misc : A312\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:27 2017 Quant Results File; A312\_1UG,RES Quant Method : C:\HPCHEM\1\METHODS\A312\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN Compound R.T. QION Response Conc Unit Ovalue

 46) Bromodichloromethane
 12.72
 83
 50740
 1.11
 ppb
 100

 47) cis-1,3-dichloropropene
 13.77
 75
 35366
 0.99
 ppb
 96

 48) trans-1,3-dichloropropene
 14.36
 75
 31078
 0.90
 ppb
 96

 49) 1,1,2-trichloroethane
 14.56
 97
 24546
 1.07
 ppb
 99

 51) Toluene
 14.68
 92
 39166
 1.03
 ppb
 #82

 52) Methyl Isobutyl Ketone
 13.81
 43
 17978
 0.53
 ppb
 92

 53) Dibromochloromethane
 15.34
 129
 46029
 1.04
 ppb
 92

 54) Methyl Butyl Ketone
 15.17
 43
 16037mf
 0.60
 ppb

 55) 1,2-dibromoethane
 15.62
 107
 39172
 1.06
 ppb
 98

 56) Tetrachloroethylene
 16.12
 164
 25049
 1.06
 ppb
 99

 57) Chlorobenzene
 17.26
 91
 94417
 1.05
 ppb
 97

 58) Ethylbenzene
 17.45
 91
 163012
 2.15

 59)
 m&p-xylene
 17.45
 91
 163012
 2.15
 ppb
 93

 60)
 Nonane
 10.17
 43
 47832
 1.05
 ppb
 92

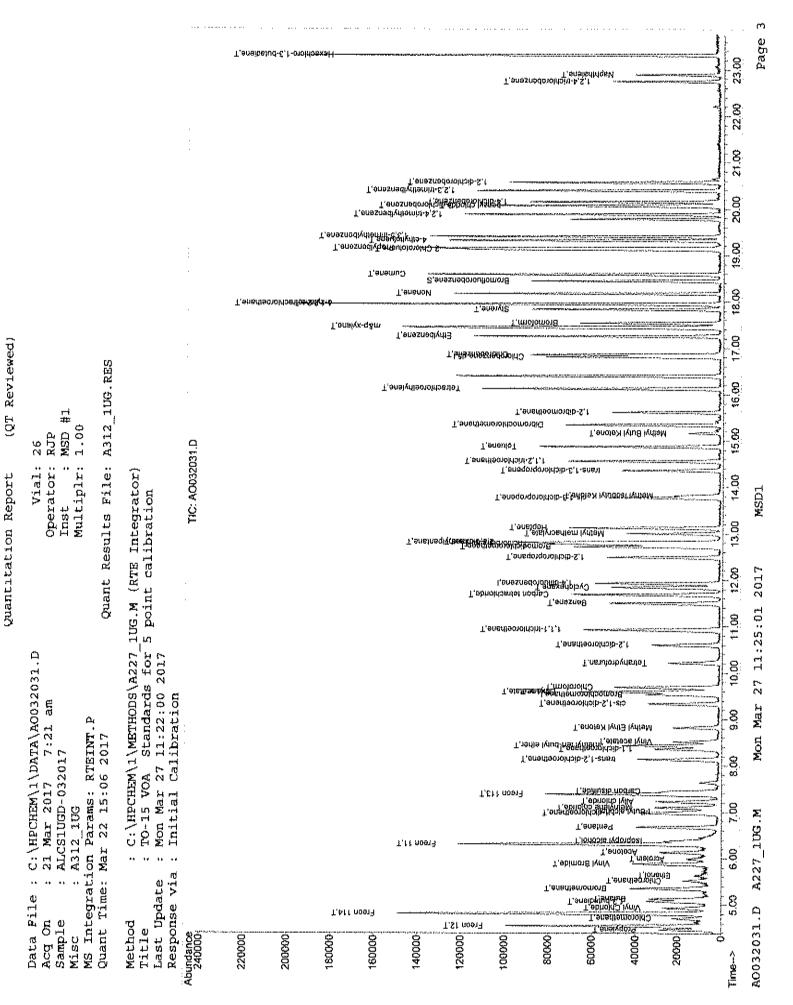
 61)
 Styrene
 17.84
 104
 45956
 1.02
 ppb
 94

 62)
 Bromoform
 17.54
 173
 32631
 1.00
 ppb
 96

 63)
 o-xylene
 17.95
 91
 78894
 1.09
 ppb
 99

 64)
 Cumene
 18.59
 105
 96973
 1.06
 ppb
 96

 65)
 1.1.2.2-tetrachloroethane
 17.95
 83
 51567
 1.10
 ppb
 97


 67)
 Propylbenzene
 19.12
 126
 22343
 1.06
 ppb
 #1

 68)
 2-Chlorotoluene
 19.32
 105
 89431
 1.07
 ppb
 98

 70)
 1.3.5-trimethylbenzene
 19.40
 105
 81609
 1.05
 ppb
 93

 71)
 1.2.4-trimethylbenzene
 19.86
 105
 74574
 1.01
 ppb
 98

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032031.D A227\_1UG.M Mon Mar 27 11:25:00 2017 MSD1

,

.

GC/MS VOLATILES-WHOLE AIR

.

.

METHOD TO-15

INJECTION LOG

-

Page 189 of 213

, ,

| Directory: C;\HP | CHEM\1\DATA | tion Log | 13 |
|--|---|--|--|
| Line Vial FileName Mult | iplier SampleName | Standard Stock // AISJ
LCS Stock // AISJ
AMASANO, FEA TO 157J | fan, hjested |
| 1113Ac031203.d1.1124Ac031204.d1.1135Ac031205.d1.1146Ac031206.d1.1157Ac031207.d1.1168Ac031208.d1.1179Ac031209.d1.11810Ac031210.d1.11911Ac031211.d1.12012Ac031212.d1. | | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 12 Mar 2017 13:55
12 Mar 2017 14:38
12 Mar 2017 15:19
12 Mar 2017 15:59
12 Mar 2017 16:39
12 Mar 2017 17:18
12 Mar 2017 17:56
12 Mar 2017 18:33
12 Mar 2017 19:10
12 Mar 2017 20:54 |
| 121 13 Ao031213.d 1. 122 1 Ao031214.d 1. 123 2 Ao031215.d 1. 124 3 Ao031216.d 1. 125 4 Ao031217.d 1. 126 5 Ao031218.d 1. 127 6 Ao031219.d 1. 128 7 Ao031220.d 1. 129 8 Ao031221.d 1. 130 9 Ao031222.d 1. | A1UG_0.04
AMB1UG_031217
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG # | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 12 Mar 2017 21:30
12 Mar 2017 22:44
12 Mar 2017 23:21
12 Mar 2017 23:58
13 Mar 2017 00:36
13 Mar 2017 01:13
13 Mar 2017 01:50
13 Mar 2017 02:28
13 Mar 2017 03:05
13 Mar 2017 03:42 |
| 131 10 Ao031223.d 1. 132 Ao031224.d 1. 133 1 Ao031301.d 1. 134 2 Ao031302.d 1. 135 3 Ao031303.d 1. 136 4 Ao031304.d 1. 137 21 Ao031305.d 1. 138 22 Ao031306.d 1. 139 23 Ao031307.d 1. 140 24 Ao031308.d 1. | IDL1UG #
No MS or GC data present
BFB1UG
A1UG_1.0
ALCS1UG-031317
AMB1UG-031317
C1703035-001A
C1703035-013A
C1703035-013A 10X
C1703035-013A 90X | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 13 Mar 2017 04:19
13 Mar 2017 07:34
13 Mar 2017 08:14
13 Mar 2017 09:12
13 Mar 2017 09:48
13 Mar 2017 10:47
13 Mar 2017 11:27
13 Mar 2017 12:04
13 Mar 2017 12:41 |
| 14125Ao031309.d1.14226Ao031310.d1.14327Ao031311.d1.14428Ao031312.d1.14529Ao031313.d1.14630Ao031314.d1.14731Ao031315.d1.1481Ao031316.d1.1492Ao031317.d1.1503Ao031318.d1. | C1703035-019A
WAC031317A
WAC031317B
WAC031317C
WAC031317D
WAC031317E
WAC031317F
C1703035-004A
C1703035-006A
C1703035-007A | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 13 Mar 2017 13:17
13 Mar 2017 13:56
13 Mar 2017 14:34
13 Mar 2017 15:12
13 Mar 2017 15:49
13 Mar 2017 16:27
13 Mar 2017 17:05
13 Mar 2017 17:45
13 Mar 2017 18:25
13 Mar 2017 19:05 |
| 1514Ao031319.d1.1525Ao031320.d1.1536Ao031321.d1.1547Ao031322.d1.1558Ao031323.d1.1569Ao031324.d1.15710Ao031325.d1.15811Ao031326.d1.15912Ao031327.d1.16013Ao031328.d1. | C1703035-008A
C1703035-009A
C1703035-010A
C1703035-011A
C1703035-012A
C1703035-015A
C1703035-016A
C1703035-016A
C1703035-017A
C1703035-018A
ALCS1UG | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 13 Mar 2017 19:46
13 Mar 2017 20:27
13 Mar 2017 21:07
13 Mar 2017 21:47
13 Mar 2017 22:27
13 Mar 2017 23:07
13 Mar 2017 23:47
14 Mar 2017 00:27
14 Mar 2017 01:07
14 Mar 2017 01:47 |
| 161 14 Ao031329.d 1. 162 15 Ao031330.d 1. 163 16 Ao031331.d 1. 164 17 Ao031332.d 1. 165 18 Ao031333.d 1. | ALCS1UGD-031317
C1703035-004A 10x
C1703035-006A 10x
C1703035-006A 40x
C1703035-007A 10x | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 14 Mar 2017 02:27
14 Mar 2017 03:03
14 Mar 2017 03:40
14 Mar 2017 04:17
14 Mar 2017 04:54 |

| | [| Directory: C | C:\HPCHEN | IN1\DATA | njection Log | 3 |
|---|---|--|--|--|--|--|
| пе | Vial | FileName | Multiplier | SampleName | Standard Stock # A1914
LCS Stock # A1915
Mined Neat EPA TO 157 Ja | n Injected |
| 11
12
13
14
15
16
7
89
20 | 3
4
5
6
7
8
9
10
11
12 | Ao031203.d
Ao031204.d
Ao031205.d
Ao031206.d
Ao031207.d
Ao031208.d
Ao031209.d
Ao031210.d
Ao031211.d
Ao031212.d | 1.
1.
1.
1.
1.
1.
1.
1. | A1UG
A1UG_2.0
A1UG_1.50
A1UG_1.25
A1UG_1.0
A1UG_0.75
A1UG_0.50
A1UG_0.30
A1UG_0.15
A1UG_0.10 | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 12 Mar 2017 13:55
12 Mar 2017 14:38
12 Mar 2017 15:19
12 Mar 2017 15:59
12 Mar 2017 16:39
12 Mar 2017 17:18
12 Mar 2017 17:56
12 Mar 2017 18:33
12 Mar 2017 19:10
12 Mar 2017 20:54 |
| 1234567890 | 13
1
2
3
4
5
6
7
8
9 | A0031213.d
A0031214.d
A0031215.d
A0031216.d
A0031217.d
A0031218.d
A0031219.d
A0031220.d
A0031221.d
A0031222.d | 1.
1.
1.
1.
1.
1.
1.
1. | A1UG_0.04
AMB1UG_031217
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG #
IDL1UG # | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 12 Mar 2017 21:30
12 Mar 2017 22:44
12 Mar 2017 23:21
12 Mar 2017 23:58
13 Mar 2017 00:36
13 Mar 2017 01:13
13 Mar 2017 01:50
13 Mar 2017 02:28
13 Mar 2017 03:05
13 Mar 2017 03:42 |
| 1234567690 | 22 | A0031223.d
A0031224.d
A0031301.d
A0031302.d
A0031303.d
A0031304.d
A0031305.d
A0031306.d
A0031307.d
A0031308.d | 1.
1.
1.
1.
1.
1.
1.
1. | IDL1UG #
No MS or GC data presen
BFB1UG
A1UG_1.0
ALCS1UG-031317
AMB1UG-031317
C1703035-001A
C1703035-013A
C1703035-013A 10X
C1703035-013A 90X | A312_1UG
at
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 13 Mar 2017 04:19
13 Mar 2017 07:34
13 Mar 2017 08:14
13 Mar 2017 09:12
13 Mar 2017 09:48
13 Mar 2017 10:47
13 Mar 2017 11:27
13 Mar 2017 12:04
13 Mar 2017 12:41 |
| 1
2
3
4
5
6
7
8
9
0 | 26
27
28
29
30
31
1
2 | A0031309.d
A0031310.d
A0031311.d
A0031312.d
A0031313.d
A0031314.d
A0031315.d
A0031315.d
A0031317.d
A0031317.d | 1,
1,
1,
1,
1,
1,
1,
1,
1, | C1703035-019A
WAC031317A
WAC031317B
WAC031317C
WAC031317D
WAC031317D
WAC031317F
C1703035-004A
C1703035-006A
C1703035-007A | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 13 Mar 2017 13:17
13 Mar 2017 13:56
13 Mar 2017 14:34
13 Mar 2017 15:12
13 Mar 2017 15:49
13 Mar 2017 16:27
13 Mar 2017 16:27
13 Mar 2017 17:45
13 Mar 2017 18:25
13 Mar 2017 19:05 |
| 1
2
3
4
5
6
7
8
9
0 | 5
6
7
8
9
10
11
12 | Ao031319.d
Ao031320.d
Ao031321.d
Ao031322.d
Ao031323.d
Ao031324.d
Ao031325.d
Ao031325.d
Ao031326.d
Ao031327.d | 1.
1.
1.
1.
1.
1.
1.
1. | C1703035-008A
C1703035-009A
C1703035-010A
C1703035-011A
C1703035-012A
C1703035-015A
C1703035-016A
C1703035-017A
C1703035-018A
ALCS1UG | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 13 Mar 2017 19:46
13 Mar 2017 20:27
13 Mar 2017 21:07
13 Mar 2017 21:47
13 Mar 2017 22:27
13 Mar 2017 23:07
13 Mar 2017 23:47
14 Mar 2017 00:27
14 Mar 2017 01:07
14 Mar 2017 01:47 |
| 1
2
3
4
5 | 15
16
17 | Ao031329.d
Ao031330.d
Ao031331.d
Ao031332.d
Ao031333.d | 1.
1.
1.
1.
1. | ALCS1UGD-031317
C1703035-004A 10x
C1703035-006A 10x
C1703035-006A 40x
C1703035-007A 10x | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 14 Mar 2017 02:27
14 Mar 2017 03:03
14 Mar 2017 03:40
14 Mar 2017 04:17
14 Mar 2017 04:54 |

| | | | | Injection Log | |
|--|---|--|--|--|--|
| | Directory: | C:\HPCHEN | 1\1\DATA | loternal Standard Stock # / | 1914 |
| ine | Vial FileName | Multiplier | SampleName | LCS Stock # A | |
| 77
78
79
80
81
82
83
34 | 16 Ao032021.d 17 Ao032022.d 18 Ao032023.d 19 Ao032024.d 20 Ao032025.d 21 Ao032026.d 22 Ao032026.d 23 Ao032028.d 24 Ao032028.d 25 Ao032030.d | 1.
1.
1.
1.
1.
1.
1.
1.
1. | C1703049-002A
C1703049-004A
C1703049-005A
C1703049-001A
C1703049-003A
C1703050-004A 10x
C1703050-001A 10x
C1703050-002A 10x
C1703050-003A 10x
C1703050-005A 10x | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 21 Mar 2017 00:53
21 Mar 2017 01:33
21 Mar 2017 02:13
21 Mar 2017 02:54
21 Mar 2017 03:35
21 Mar 2017 04:12
21 Mar 2017 04:49
21 Mar 2017 05:26
21 Mar 2017 06:04
21 Mar 2017 06:41 |
| 37
38
39
30
31
32
33
34 | 26 Ao032031.d 27 Ao032032.d 28 Ao032033.d Ao032034.d 1 Ao032101.d 2 Ao032102.d 3 Ao032102.d 3 Ao032103.d 4 Ao032104.d 5 Ao032105.d 6 Ao032106.d | 1.
1.
1.
1.
1.
1. | ALCS1UGD-032017
C1703049-002A 10x
C1703049-004A 10x
No MS or GC data prese
BF81UG
BF81UG
A1UG_1.0
ALCS1UG-032117
AMB1UG-032117
C1703055-001A 10X | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 21 Mar 2017 07:21
21 Mar 2017 07:59
21 Mar 2017 08:36
21 Mar 2017 10:11
21 Mar 2017 11:32
21 Mar 2017 12:21
21 Mar 2017 13:01
21 Mar 2017 13:38
21 Mar 2017 14:33 |
| 97 (
98 9
99 1
90 1
91 1
92 1 | 7 A0032107.d 8 A0032108.d 9 A0032109.d 10 A0032110.d 11 A0032111.d 12 A0032112.d 13 A0032113.d 14 A0032114.d A0032115.d 1 A0032301.d | 1.
1,
1,
1.
1.
1.
1.
1. | C1703055-001A
C1703055-001A 40X
C1703049-005A 9X
C1703049-005A 90X
C1703049-001A 10X
C1703049-001A 20X
C1703049-003A 10X
C1703049
No MS or GC data prese
BFB1UG | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG -003A :
A312_1UG | 21 Mar 2017 15:16
21 Mar 2017 15:54
21 Mar 2017 16:34
21 Mar 2017 17:11
21 Mar 2017 17:49
21 Mar 2017 18:26
21 Mar 2017 19:04
20X 21 Mar 2017 19:41
23 Mar 2017 08:29 |
| 17 18 19 0 1 2 3 4
17 2 19 0 1 2 3 4 | | 1.
1.
1.
1.
1.
1.
1.
1. | A1UG_1.0
ALC\$1UG-032317
AM81UG-032317
C1703059-010A
C1703059-001A
C1703059-001A MS
C1703059-001A MSD
C1703059-002A
C1703059-003A
C1703059-004A | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 23 Mar 2017 12:28
23 Mar 2017 13:20
23 Mar 2017 13:57
23 Mar 2017 14:45
23 Mar 2017 15:46
23 Mar 2017 16:33
23 Mar 2017 16:33
23 Mar 2017 18:00
23 Mar 2017 18:43
23 Mar 2017 19:23 |
| 72
82
92 | Ao032318.d
Ao032319.d
Ao032320.d | 1.
1.
1.
1.
1.
1.
1.
1.
1. | C1703059-005A
C1703059-006A
C1703059-007A
C1703059-008A
C1703059-009A
C1703065-001A
C1703065-002A
C1703065-003A
C1703066-001A
C1703061-003A | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 23 Mar 2017 20:03
23 Mar 2017 20:44
23 Mar 2017 21:25
23 Mar 2017 22:05
23 Mar 2017 22:46
23 Mar 2017 23:26
24 Mar 2017 00:08
24 Mar 2017 00:49
24 Mar 2017 01:29
24 Mar 2017 02:09 |
| 6 6
7 7
8 8
9 9
0 1 | Ao032323.d
Ao032324.d | 1.
1.
1.
1.
1. | C1703061-005A
C1703061-006A
C1703061-008A
ALCS1UGD-032317
C1703061-001A | A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG
A312_1UG | 24 Mar 2017 02:51
24 Mar 2017 03:34
24 Mar 2017 04:17
24 Mar 2017 04:56
24 Mar 2017 05:37 |

•

.

۰.

.

GC/MS VOLATILES-WHOLE AIR

. .

.

METHOD TO-15

STANDARDS LOG

Page 193 of 213

| Centek Laboratories, LLC | aborato | ries, LLC | | | | GC/MS Ca | llibration Sta | GC/MS Calibration Standards Logbook | ock | | Cente |
|--------------------------|-----------|---------------|---------|-------------|--------------|---------------|--------------------|---|------------------|---------------|------------------|
| std # | Oate Prep | Date Exp | Deso | Description | Stock # | 4 | Initial Vol (psig) | Stock Conc Initial Vol (psig) Finial Vol (psia) | Final Conc (ppb) | Prep by C | ek-l
Chkd Fyl |
| A-A1788 | 12/22/16 | 12/29/16 | T015 | X | ALORE | | 3.0 | 30 | 50 | 22 | abo |
| A-1789 | ļ | | 1 | | AORTO | | ر
ن | 30 | 50 | | rato |
| A-1790 | | | Ŷ | H2S | A0269 | 10ppm | 5 | 30 | 500 | | ries |
| A- [79] | | | Tois I | NG IS | A1782 | SOpph | 60 | ס <i>ו</i>
ד | -1 | | , LL |
| A. 1792 | | | | 21D | A1783 | | | | | | .C |
| A-1793 | \geq | \rightarrow | | LCS | AI784 | | \checkmark | Ŷ | \rightarrow | 2 | |
| A-1794 | 91162121 | 115117 | TOIS | 5
T | A1289 | 1 ppm | آ گ | 30 | 50 | A
3 | |
| A:TIB95 | | - | - | STJ) | F1203 | | _ | | | | |
| 2.1796 | | | | Sor | Pour A | | | | | | |
| A- 1797 | | | | Hoch | 9519 | ~ | \rightarrow | ሻ | ~ | | |
| A- 1798 | | | | L PCHS | < | 50 pp | 3,0 | 30 | ر\ | | |
| A- 1799 | | | | FORM | PLPOA | Miss pom | _ | ЧS | 50 | | |
| A- 1 800 | | | | SILOX | SILOX MOSS | Socied | | 30 | 50 | | |
| A. 180) | | | | SULE | Aolto
A | L pom | ا,ج | 30 | 20 | | |
| A-1802 | | | -> | NzS | A0269 | 10 ppm | l.S | 30 | 290 | | ł |
| A. 1803 | | | TOIS 11 | ING IS | A N944 | 50 005 | 0,9 | Ч | Ĺ | | |
| A- 1804 | | | | 5TD | RIT45 | -
- | | | | | |
| A.1805 | ->
- | _ <u>∖</u> | | LCS | A1796 | \rightarrow | > | -> | \rightarrow | ≥ | |
| A-1806 | 115117 | 1115118 | 1015 | SH | FF-47206 | Xo LIN | N | 2000psia | 1 ppm | <u>л</u>
З | |
| A-1807 | 115/17 | 115/18 | STORY | TOIS SUD | | FF-45347 | LINDE | 2200 2510 | 1 PPM | A M | |
| A-1508 | 11/6/17 | 1/6//8 | TOIS | NA KS | Free | 1-PDM | ¥ | ,
-
₿ | Se les | N | |
| FORM 153 | | | | R | AIZ03 | 4 | A1203 570 | NOW SI | L CS | | |
| 2 III | | | | | | | | Page # | | | |

Page 194 of 213

Ĩ

erensiten fi

and the second sec

2 michigant

C assessed

a second

2007 E 1

8 -1

| r) |
|-------|
| Ε |
| ູ່ |
| rie |
| rator |
| 0U. |
| لم |
| k I |
| nte |
| |

GC/MS Calibration Standards Logbook

| | Chkd by | | | | | | | | | | | | | | | - | | | | | | | | | | | | |
|-------------------------------------|--|-----------------------|--------------------|-------------|---------|--------|----------|--------|-----------|-------------|--------|------------------|----------|-------------|--------|----------|----------|-------------|--------|-------|-----------|--------|-------------|--------|-----------------------|---------|----------|--|
| | Prep by | Q | | | | | | | | | | | | | | | CW | | | | | | | | | | | |
| ook | Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb) | 20 | , | | | | | | | | | | 000 | 0/1 | | | 50 | | | | | 4 | Z
Z
Z | | | | 2 | |
| GC/MS Calibration Standards Logbook | Finial Vol (psia) | 2 4 | 3 | | | | |)
} | 94 | R | , | | x | C -7 | | _> | Q C |)
)
) | | | | ÷ | т
Г | | | | \$ | |
| ibration Sta | nitial Vol (psig | 1
1
1
1
1 | | | | |), | | R
0 | 3,0 |)6 | ,
,
,
, | -9
-9 | 7,0 | | <u>ر</u> | بر
بر | | | | | 20 | | | 0,0 | | 4 | |
| GC/MS Cal | Stock Conc II | | 100 | | | | <u>ب</u> | 50,000 | WOOK S-11 | | | | Inggol 1 | 50000 | | 7 | | wdd | | | \$ | KNONA | | | 1, may a shi 5 00 pag | 1001 | 40001 | |
| Ū | Stock # | | A1206 | ATTON CONTR | ALANSON | | | A1845 | A0574 | 12 100 King | | <u>v ~ v</u> | ANU | 41892 | M 1462 | 1.66 ~ | | V - 206 | A, 40 | A1508 | 9519 | AIGN1 | | | V/cen. | 02000 | 1,A0269 | |
| | | Description | Tais AS | | Ī | 1 | | HRHK | FORM | | | 201- | 1 | Tousiule IS | S. | | | TO15 IS | STA | 577 | LACH LACH | | | FORM | 2120× | 50L | 4 H25 | |
| es, LLC | | Date Exp | 3/10/11 | | | | | | | | | | <u> </u> | | | | ナ | 3/21/17 | | | | | | | | | 2 | |
| aboratori | | Date Prep | 3/3/11 | | | | | | | | | | | | | | 1 | | | | | | | | | | } | |
| acentek Laboratories, LLC | • 19 | # pis
05 (| - 5 % -
- 7 % - | | A-17 LJ | A-1994 | A-1395 | 149b | | | A-1444 | A-1589 | 1500 | | H-1-1 | A- 522- | 6071-A | A-1504 | 2051 V | 157. | A-1 UC | A-1401 | A-1908 | A-1909 | A-1910 | 11-5/-0 | 41912 | |

7\_

Page#\_

FORM 153

........

Centek Laboratories, LLC

Realized and Active an

| Cen | tek
Pyro | Lab | orat | torie | s, L | LC | | | | | | | | | | | | | | | | | | |
|-------------------------------------|---|-----------------|---------------------------------------|---------|------|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----------|--|
| | Prep by | QM | | 7 | | | | | | | | | | | | | | | | | | | | |
| JoK | Final Conc (ppb) | 100 | , , , , , , , , , , , , , , , , , , , | -,4 | | | | | | | | | | | | | | | | | | |)~ | |
| GC/MS Calibration Standards Logbook | Stock Conc Initial Vol (psig) Finial Vol (psia) | ا لا | | , | | | | | | | | | | | | | | | | | | | Hadde | |
| alibration Sta | Initial Vol (psig) | 0,9 | | J | | | | | | | | | | | | | | | | | | | | |
| GC/MS C8 | Stock Conc | 50000 | - | -9 | | | | | | | | | | | | | | | | | | | | |
| | Stock # | A1904 | A1905 | A1906 | | | | | | | | | | | | | | | | | | | | |
| | Description | រ | | | | | | | | | | | | | | | | | | | | | | |
| ies, LLC | Date Exp | רוויגוצ | | , | | | | | | | | | | | | | | | | | | | | |
| aborator | Date Prep | | | | f | | | | | | | | | | | | | | | | | | : | |
| Centek Laboratories, LLC | Std # | E121A-A | A- 21514 | A-A1515 | A- | A- | A- | A- | A- | А- | А- | A- | A- | A- | A- | A- | A. | -A- | A- | A- | A- | А. | FORM 153 | |

Page 196 of 213

Ĩ

ľ,

Ŕ

þ

:

. . 4

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CANISTER CLEANING LOG

Page 197 of 213

| ultrain Instrument: Entech 3100 | Entech 3100 | · 0 | | | | | | |
|--|---------------|--------------|-------------------|----------------|----------------|--------------------|---------------------------|----------------|
| 0 Canster Number Canister Size QC Can Number | Canister Size | C Can Number | # of Cycles Int & | nt & Date Clea | Date Cleaned | 999666 | Leak Test 24hr Int & Date | nr lint & Date |
| 1207 | ۲
۲ | 218 | 30 | 11 loz 1 i C | RJP WACILO316A | 0 149/m3+0.2 \$ 30 | + | 30 ILloghurapp |
| | | | | | | | + 30 + | ~ |
| | | | | | | | + 30 + | |
|] . | | | | | | | + 30 | |
| 218 | | <u>م</u> | | | > | | + 30 + | |
| 1320 | | 1207 | | | WACI10316B | <u> </u> | + 30 + | |
| 1208 | | | | | | | + 30 + | |
| 1200 | | | | | | | + 30 + | |
| <u>124</u> | | | | | | | + 30 + | |
| 1001 | | > | | | > | | + 30 + | |
| 217 | | 215 | | | WACIIO316C | | + 30 + | |
| 1273 | | ••• | | | | | + 30 + | |
| | | | | | an tabén | | + 30 + | |
| 187
U 87 | | | | | | | + 30 + | |
| 215 | | > | | | > | | + 30 + | |
| 319 | | 1203 | | | WAC110316D | Q | + 30 + | |
| ン や コ | | | | | - | | + 30 | |
| u 83 | | | | . | | | + 30 | |
| 1001 | | | | | | | + 30 + | |
| 1203 | | > | | | > | | + 30 + | |
| | | 5 | | | I WACI 1034 | H
H | + 30 + | |
| 103 | | Τ | | | | | + 30 + | |
| | | | | | | | + 30 + | |
| 200 | | | | ********** | | | + 30 | |
| 6 IT | | <u>م</u> | \mathbb{N} | > | > | <u>э</u> | + 30 ++ | } |
| Form C151 | | | | | | | Page # | |

Annal Annal Ann a source in area a 1.447.745 Specifics faust,f

Centek Laboratories, LLC

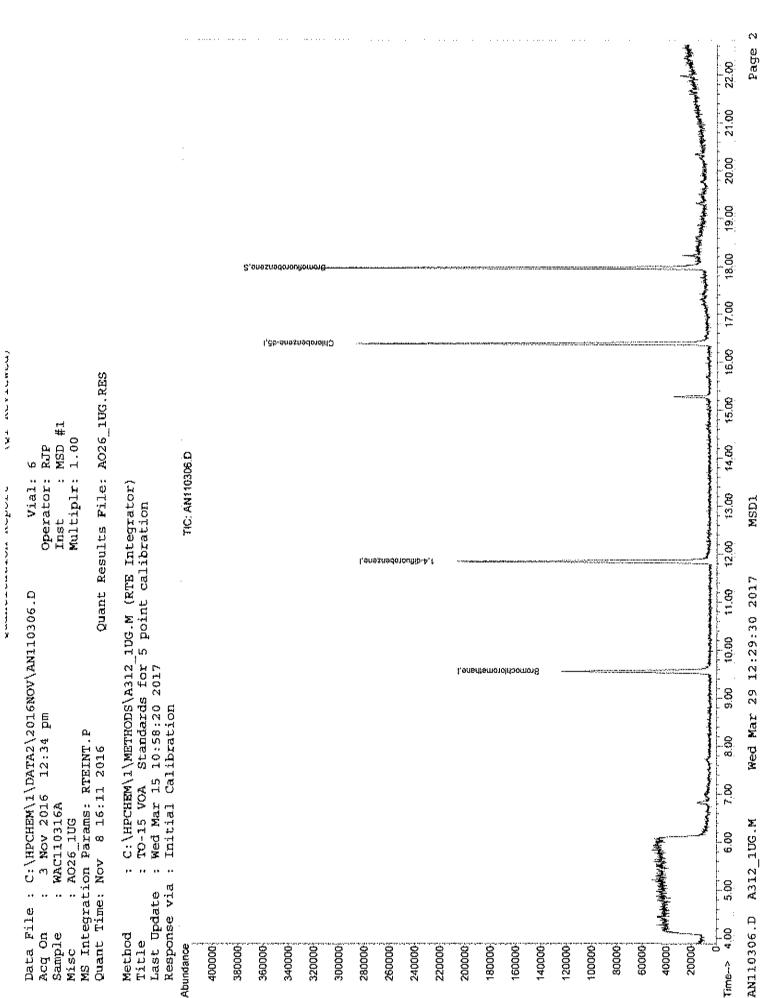
No. 11 See

Same -

QC Canister Cleaning Logbook

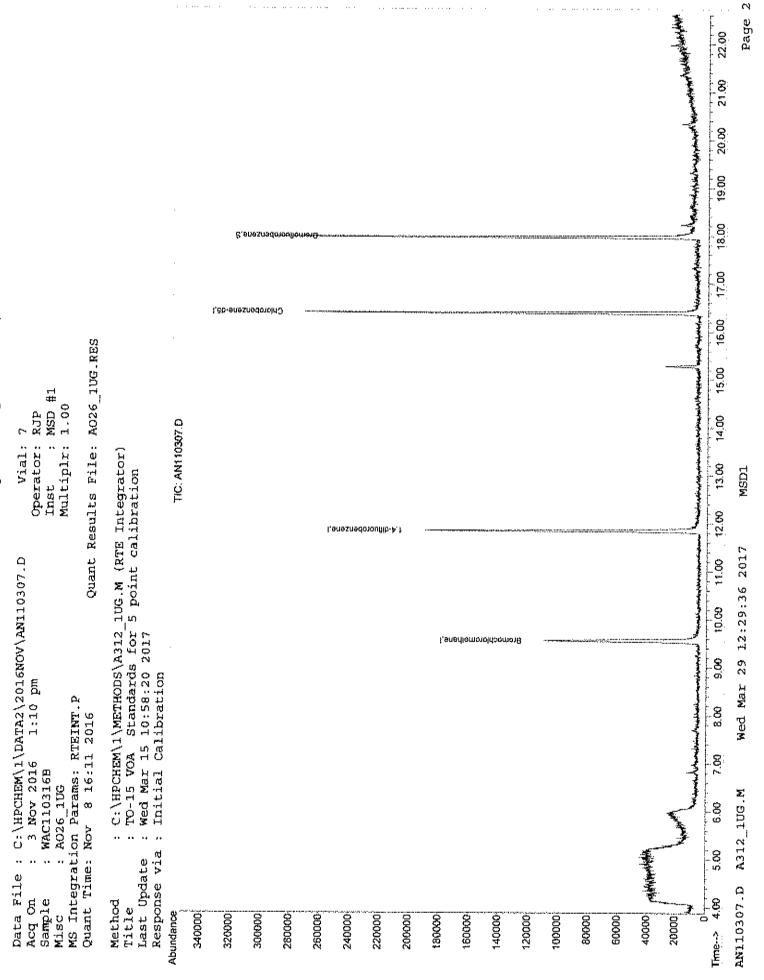
1

, water

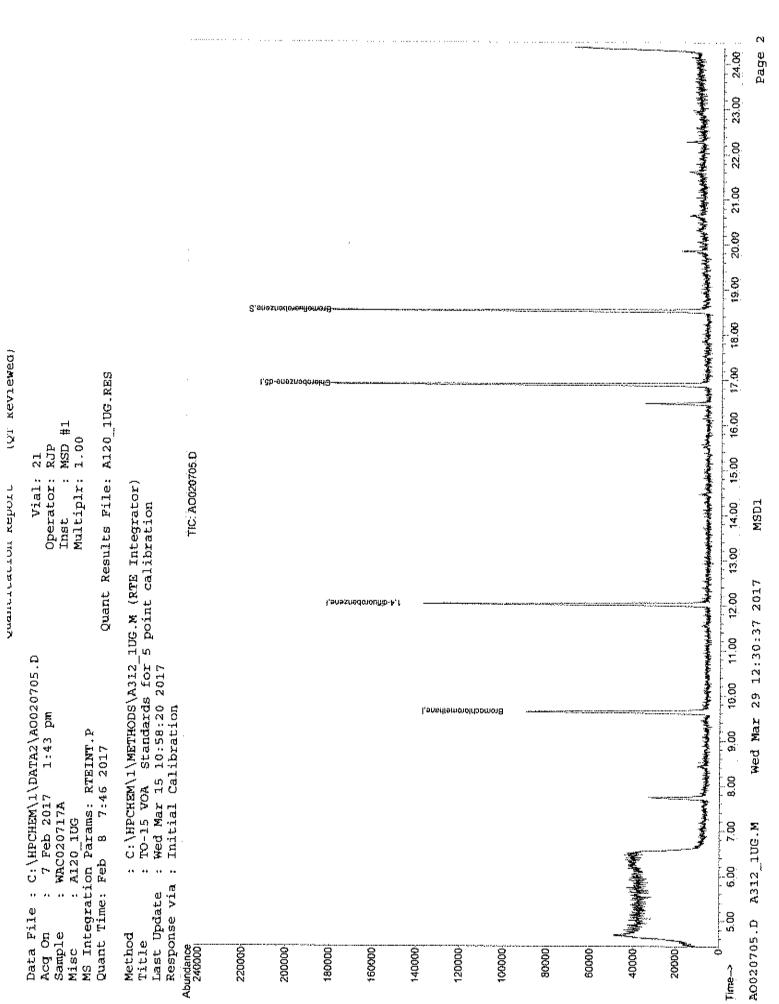

, ,

QC Canister Cleaning Logbook

| | 3 | | | | | | | | | | | | | | | | | | | | | | | | | 1 |
|------------------------|--------------|-------|-------|-----|------|------|-----|------|-------|---------------|------|------|------|------|------------|-----|-------------------------|-------|------|----------------|------------|--------|--|------|----------|---|
| & Date | 2/8/2 | | | | | | | | | | | | | | w - | | | | | | | | | | | |
| Leak est 2411 m & Date | + 30 | + | + | + | + | + | + | + | .4 | - | 4 | + | + | + | + | + | + | + | + | 4 | 4 | + | 4 | + | | |
| AL UBA-SA | 30 | + 30 | + 30 | | + 30 | + 30 | | + 30 | | + 30 | + 30 | + 30 | + 30 | + 30 | + 30 | | + 30 | | + 30 | + 30 | + 30 | | + 30 | + 30 | + 30 | |
| | 1 10 TO 25 + | | + | + | + | + | + | · + | + | * | + | + | + | - | 4 | + | | + | + | + | + | + | + | + | | |
| _ | AUCORONA | | | | | В | > | | | | J | | | | | 4 | > | | | | <u>}</u> } | | | | | |
| | U.A.C | [| | | | | | | | | | | | | | | | | | | | -
- | | | <u>ب</u> | |
| | 2/6/in A | | | | | | | | | | | | | | | | | | | | | | | | ¢ | |
| | থ | | | | | | | | | | | - | | | | | | | | | | | | | -} | |
| | 287 | | | | > | 77) | | | | \rightarrow | 132 | | | |) | 200 | | | | 2 | 316 | | - 1 | | ナ | |
| またの 通知なられたたたたかいため | 11 | | | | | | | | | | | | | | | | | | | | | | | |) | |
| | 169 | 11 22 | dc ii | 369 | 187 | 161 | 107 | 599 | كلالأ | 247 | 101 | 501 | 243 | 556 | 232 | 351 | <i>ເ</i> 3 <sup>3</sup> | 5 ৫ 2 | 352 | λ_{o0} | 138 | 327 | 336 | 174 | 314 | |

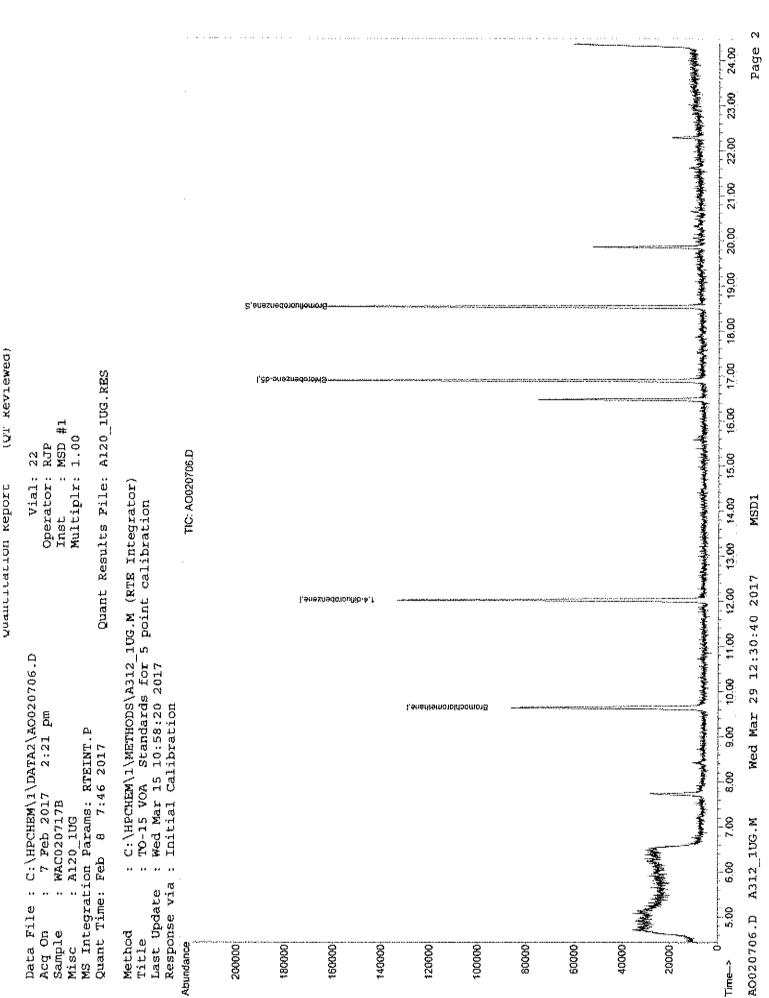

Centek Laboratories, LLC

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2016NOV\AN110306.D Vial: 6 Acq On : 3 Nov 2016 12:34 pm Operator: RJP Sample : WAC110316A Misc : A026\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Quant Time: Nov 08 15:11:32 2016 Quant Results File: A026\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A026\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Oct 27 07:19:53 2016 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.55128516201.00 ppb0.0035) 1,4-difluorobenzene11.051142157351.00 ppb0.0150) Chlorobenzene-d516.391171927321.00 ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 17.96 95 109128 0.84 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 84.00% 17.96 95 109128 0.84 ppb 0.00 Target Compounds Qvalue

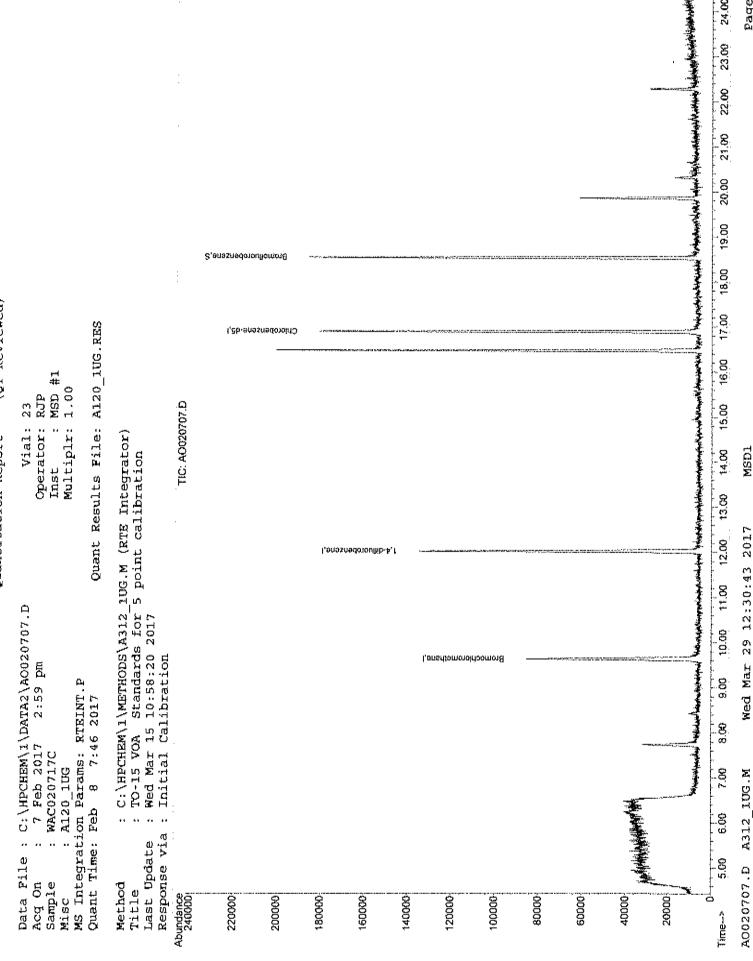


Page 201 of 213

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2016NOV\AN110307.D Vial: 7 Acq On : 3 Nov 2016 1:10 pm Sample : WAC110316B Misc : AO26\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Nov 08 15:11:33 2016 Quant Results File: A026\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A026\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Oct 27 07:19:53 2016 Response via : Initial Calibration DataAcq Meth : lUG\_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.56120468941.00ppb0.0035) 1,4-difluorobenzene11.041141984861.00ppb0.0050) Chlorobenzene-d516.391171777471.00ppb0.00 System Monitoring Compounds 66) Bromofluorobenzene 17.96 95 95638 0.60 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 80.00% 0.00 Target Compounds Qvalue

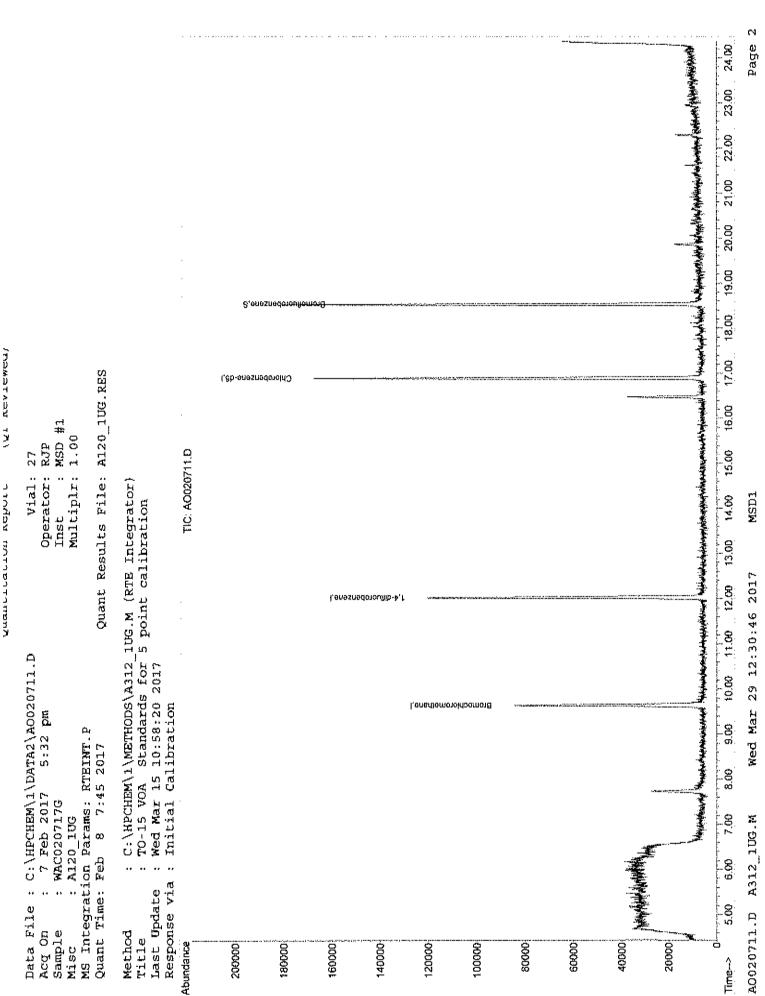


Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0020705.D Vial: 21 Acq On : 7 Feb 2017 1:43 pm Sample : WAC020717A Misc : A120\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Feb 08 06:45:25 2017 Quant Results File: A120\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A120\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Jan 30 16:04:21 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.64128373361.00ppb0.0035) 1,4-difluorobenzene12.021141420511.00ppb-0.0150) Chlorobenzene-d516.891171224531.00ppb0.00 System Monitoring Compounds 55) Bromofluorobenzene 18.53 95 71313 0.91 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 91.00% 65) Bromofluorobenzene 0.00 Target Compounds Qvalue

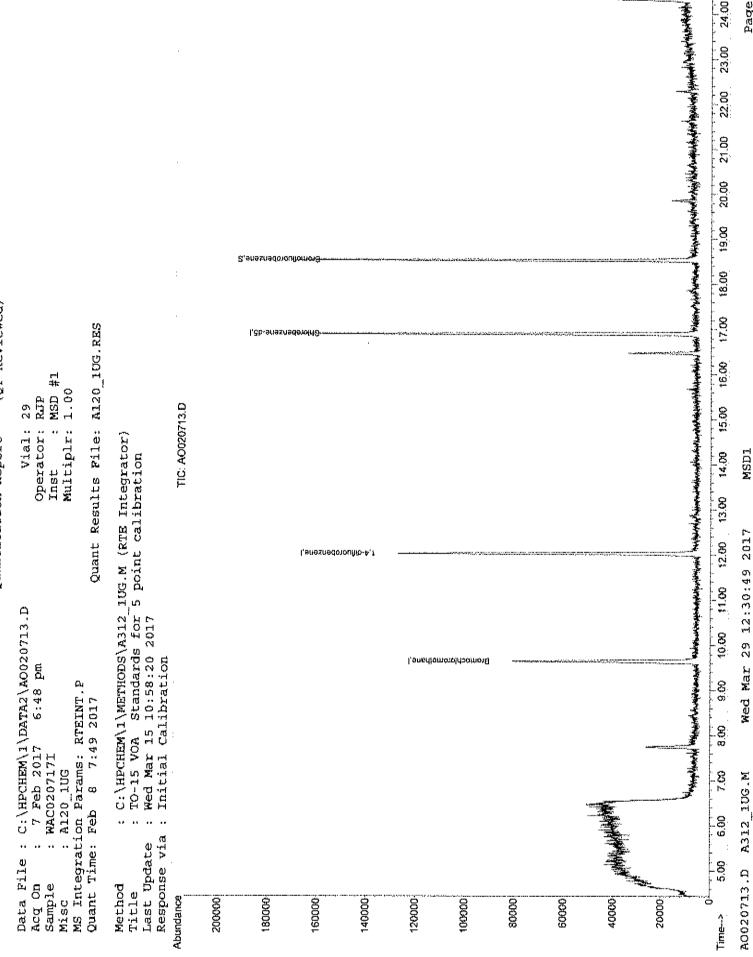

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0020706.D Vial: 22 Acq On : 7 Feb 2017 2:21 pm Sample : WAC020717B Misc : Al20\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Quant Time: Feb 08 06:45:26 2017 Quant Results File: A120 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A120\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Jan 30 16:04:21 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.64128346821.00 ppb0.0035) 1,4-difluorobenzene12.031141362441.00 ppb0.0050) Chlorobenzene-d516.891171142661.00 ppb0.00 System Monitoring Compounds
 5) Bromofluorobenzene
 18.53
 95
 65305
 0.90 ppb

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery = 90.00%
 65) Bromofluorobenzene 0.00 Target Compounds Qvalue

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0020707.D Vial: 23 Acq On : 7 Feb 2017 2:59 pm Operator: RJP Sample : WAC020717C Misc : A120\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Feb 08 06:45:27 2017 Quant Results File: A120\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A120\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Jan 30 16:04:21 2017 Response via : Initial Calibration DataAcq Meth : lUG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.63128340381.00ppb-0.0135) 1,4-difluorobenzene12.031141339401.00ppb0.0050) Chlorobenzene-d516.901171160781.00ppb0.00 System Monitoring Compounds
 65) Bromofluorobenzene
 18.53
 95
 65832
 0.89
 ppb


 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery = 89.00%
 0.00 Target Compounds Qvalue

N Page 24,00


23.00

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0020711.D Vial: 27 Acq On : 7 Feb 2017 5:32 pm **Operator:** RJP Sample : WAC020717G Misc ; A120\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Quant Results File: A120\_1UG.RES Quant Time: Feb 08 06:45:31 2017 Quant Method : C:\HPCHEM\1\METHODS\A120\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Jan 30 16:04:21 2017 Response via : Initial Calibration DataAcq Meth : 1UG\_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.64128336891.00 ppb0.0035) 1,4-difluorobenzene12.031141317101.00 ppb0.0050) Chlorobenzene-d516.891171105561.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.53 95 63979 0.91 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 91.00% Target Compounds Qvalue

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data file : C:\HPCHEM\1\DATA2\A0020713.D Vial: 29 Acq On : 7 Feb 2017 6:48 pm Operator: RJP Sample : WAC020717I Misc : A120\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 08 06:45:33 2017 Quant Results File: A120\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A120\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Jan 30 16:04:21 2017 Response via : Initial Calibration DataAcq Meth : 10G\_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.63128326751.00 ppb-0.0135) 1,4-difluorobenzene12.031141308721.00 ppb0.0050) Chlorobenzene-d516.901171105971.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.53 95 62547 0.89 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 89.00% Target Compounds Ovalue

2 Page 24.00

23.00

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 2

Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

FORMER EMERSON LANDFILL Project 210173 SDG: C1603076 Sampled 3/21/2016

TO-15 AIR SAMPLES

| 1770-IAQ-1
1770-SVI-1
BLIND DUP 1
1770-OUTDOOR AIR
BLIND DUP 2
1770-IAQ-2
1770-SVI-2
1770-IAQ-3
1770-SVI-3 | (C1603076-01)
(C1603076-02)
(C1603076-03)
(C1603076-04)
(C1603076-05)
(C1603076-06)
(C1603076-07)
(C1603076-08)
(C1603076-09) |
|--|---|
| | |

DATA ASSESSMENT

One data package containing analytical results for nine TO-15 samples was received from LaBella Associates, P.C. on 3Apr16. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Emerson Landfill Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of ten volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The positive results reported from 1770-IAQ-2 and 1770-IAQ-3 have been qualified as estimations due to high surrogate standard recoveries.

The trichloroethene and tetrachloroethene concentrations found in 1770-SVI-1 and BLIND DUP-2 and the 1,1,1-trichloroethane result from 1770-SVI-3 have been qualified as estimations due to poor internal standard performance.

The results from 1770-IAQ-2 have been qualified as estimations because the canister's vacuum regulator malfunctioned.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

Jan.

Date: 12 May 16

James B. Baldwin DATAVAL, Inc.

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained nine TO-15 samples that were collected in 1-liter SUMMA canisters. Sampling was completed on 21Mar16. The canisters were shipped back to the laboratory, via FedEx, on 28Mar16 and were received on 29Mar16. Although the sample canisters were received intact and properly labeled, custody seals were not present on the packaging.

Canister vacuum readings were recorded in the laboratory prior to shipment, in the field prior to and following sampling, and in the laboratory at the time of receipt.

| SAMPLE | PRIOR TO | PRIOR TO | POST | LAB |
|--------------|----------|----------|----------|---------|
| | SHIPMENT | SAMPLING | SAMPLING | RECEIPT |
| | ("Hg) | (``Hg) | ("Hg) | ("Hg) |
| 1770-IAQ-1 | -30 | -30 | -4 | -4 |
| 1770-SVI-1 | -30 | -30 | -5 | -5 |
| BLIND DUP 1 | -30 | -30 | -4 | -4 |
| 1770-OUTDOOR | -30 | -30 | -3 | -4 |
| BLIND DUP 2 | -30 | -30 | -5 | -5 |
| 1770-IAQ-2 | -30 | -30 | -9.5 | -10 |
| 1770-SVI-2 | -30 | -30 | -3 | -3 |
| 1770-IAQ-3 | -30 | -30 | -7 | -7 |
| 1770-SVI-3 | -30 | -30 | -4 | -4 |

The final vacuum readings from 1770-SVI-2 and 1770-IAQ-3 fell slightly outside of the ASP limits of $-5\pm1"$ Hg. These slight deviations do not necessitate data qualifications because vacuum was maintained in each of the canisters and sample volumes were sufficient to complete the necessary analyses.

The final vacuum reading of -10''Hg from 1770-IAQ-2 indicates that the vacuum regulator did not function properly. The results reported from this sample have been qualified as estimations based on this observation.

The analysis of this group of samples was completed between 01Apr16 and 04Apr16, satisfying the ASP holding time limitation.

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters were cleaned in five batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination above the reporting limit.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Three method blanks were analyzed with this group of samples. Each of these blanks demonstrated acceptable chromatography and was free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples. Each of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed on 04Feb16. Standards of 0.04, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration check standards were analyzed on 31Mar16, 01Apr16 and 02Apr16, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, an acceptable level of instrument stability was demonstrated by each targeted analyte.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, elevated recoveries were reported for the BFB additions to 1770-IAQ-2 (126%) and 1770-IAQ-3 (128%). The positive results reported from this pair of samples have been qualified as estimations based on these indications of positive bias.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, an unacceptably high response was reported for the 1,4-difluorobenzene additions to 1770-SVI-1, BLIND DUP-1, BLIND DUP-2, 1770-SVI-2 and 1770-SVI-3. The trichloroethene (TCE) and tetrachloroethene (CL4ENE) concentrations found in 1770-SVI-1 and BLIND DUP-2 and the 1,1,1trichloroethane (111TCA) result from 1770-SVI-3 have been qualified as estimations based on this performance. It is noted that a high internal standard response would produce a negative bias in the associated analyte measurements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

Although a sample from this program was not selected for matrix spiking, three pairs of spiked blanks (LCS/LCSD) were analyzed with this group of samples. Each of these spiked blank pairs demonstrated acceptable levels of measurement precision and accuracy.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Although the blind field split duplicate samples included in this delivery group were not identified, the previously reported spiked blanks demonstrated an acceptable level of measurement precision.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples. SUMMARY OF QUALIFIED DATA

FORMER EMERSON LANDFIL

SAMPLED MARCH 2016

•

| INT STD
111TCA | 0.93J | |
|-------------------|--|--|
| INT STD
CL4ENE | 5.2J
6.3J | |
| INT STD
TCE | 0.97J | |
| SUROGATES | ALL POS J
ALL POS J | |
| SAMPLING | ALL J/UJ | |
| | <pre>(C1603076-01)
(C1603076-02)
(C1603076-03)
(C1603076-03)
(C1603076-04)
(C1603076-06)
(C1603076-06)
(C1603076-07)
(C1603076-08)
(C1603076-08)
(C1603076-08)</pre> | |
| | 1770-IAQ-1
1770-SVI-1
BLIND DUP 1
1770-OUTDOOR
BLIND DUP 2
1770-IAQ-2
1770-SVI-2
1770-SVI-3
1770-SVI-3 | |

s second and second and a second and a second s Client Sample ID: 1770-1AQ-1 CLIENT: LaBella Associates, P.C. Lab Order: C1603076 Tag Number: 1183,339 Collection Date: 3/21/2016 Project: Emerson Landfill Matrix: AIR Lab ID: C1603076-001A and and the second s are a sine instant surface Result \*\* Limit Qual Units Analyses DF Date Analyzed

| /allaifaca | | mune dan | | | |
|-------------------------------|--------|----------|-------|---|---------------------|
| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | TO-15 | | | Analyst: RJP |
| 1,1,1-Trichloroethene | < 0.82 | 0.82 | ug/m3 | 1 | 4/1/2016 4:18:00 AM |
| 1,1-Dichloroethane | ≺ 0.61 | 0.61 | ug/m3 | 1 | 4/1/2016 4:18:00 AM |
| 1,1-Dickloraethene | < 0.59 | 0.59 | ug/m3 | 1 | 4/1/2016 4:18:00 AM |
| Chloroethane | < 0.40 | D.40 | ug/m3 | 1 | 4/1/2015 4:18:00 AM |
| Chloromethane | 1.7 | 0.31 | ug/m3 | 1 | 4/1/2016 4.18:00 AM |
| cls-1.2-Dichloroethane | < 0.59 | 0.59 | ug/m3 | 1 | 4/1/2016 4:18:00 AM |
| Tetrachloroethylene | < 1.0 | 1.0 | ug/m3 | 1 | 4/1/2016 4:18:00 AM |
| trans-1.2-Dichloroethene | < 0.59 | 0.69 | ug/m3 | ٤ | 4/1/2016 4:18:00 AM |
| Trichloroethene | < 0.21 | 0.21 | ug/m3 | 1 | 4/1/2016 4:18:00 AM |
| Viny: chloride | < 0.10 | 0.10 | ug/m3 | 1 | 4/1/2016 4:18:00 AM |
| | | 1L | | | |

 Qualifiers:
 \*\*
 Reporting Limit
 Results reported are not blank corrected

 B
 Analyte detected in the associated Method Blank
 E
 Value above quantitation range

 M
 Elolding times for preparation or analysis exceeded
 J
 Analyte detected at or below quantitation limits

 JN
 Non-routine analyse, Quantitation estimated.
 ND
 Not Detected at the Reporting Limit

 S
 Spike Recovery outside accepted recovery limits
 P

Page 1 of 9

trans-1,2-Dichloroethene

Trichloroethene

Vinyl chloride

Date: 26-Apr-16

1

1

1

4/1/2016 5:36:00 PM

4/1/2016 5:36:00 PM

4/1/2016 5:36:00 PM

| CLIENT: | LaBella Associatos, P. | С. | | C | lient Sample ID: | 1770- | SVI-I | |
|------------------|------------------------|--------------------------------|---------|------|-------------------------------|----------|---------------------|--|
| Lab Order: | Lab Order: C1603076 | | | | Tag Number: | 1179,343 | 343 | |
| Project: | Emerson Landfill | a Landfill Collection Date: 3/ | | | 3/21/2 | | | |
| Lab ID: | C1603076-002A | Matrix: | | | | | | |
| Analyses | | Result | **Limit | Qual | and the second second part of | DF | Date Analyzed | |
| UG/M3 BY ME | ETHOD TO15 | | TO | -15 | | | Analyst: RJP | |
| 1,1,1-Trichloroe | ethane | < 0.82 | 0.82 | | ug/m3 | 1 | 4/1/2016 5:36:00 PM | |
| 1.1.Dichloroeth | ane | < 0.61 | 0.61 | | Em/gu | 1 | 4/1/2016 5:36.00 PM | |
| 1,1-Dichloroeth | ene | < 0.59 | 0.59 | | ug/m3 | 2 | 4/1/2016 5:36:00 PM | |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 4/1/2016 5:38:00 PM | |
| Chloromethane | | < 0.31 | 0.31 | | ug/m3 | 1 | 4/1/2016 5:36:00 PM | |
| cls-1,2-Dichlord | osthene | < 0.59 | 0.59 | | ug/m3 | 1 | 4/1/2016 5:36:00 PM | |
| Tetrachloroethy | liene | 5.2] | ŧ.0 | | ug/m3 | 1 | 4/1/2016 5:36:00 PM | |
| | | | | | | | | |

| | | | | 1 |
|-------------|---|---|---|---|
| | | Ä | 1 | |
| 1 | 1 | 1 | 1 | Y |
| $^{\prime}$ | ľ | 1 | | l |
| | L | L | | |

0.58

0.81

0.38

ug/m3

ug/m3

ug/m3

< 0.59

0.67

0.66

Qualifiers;

\*\* Reporting Limit

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Client Sample ID: Blind Dup 1 CLIENT: LaBella Associates, P.C. Tag Number: 419,339 Lab Order: C1603076 Collection Date: 3/21/2016 Project: Emerson Landfill Matrix: AIR C1603076-003A Lab ID: ----------Result \*\* Limit Qual Units DF Date Analyzed Analyses

| 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC | | TO-15 | | | Analyst: RJP |
|-------------------------------|--------|-------|-----------|----|---------------------|
| 1,1,1-Trichloroethane | < 0.82 | 0.82 | ug/m3 | 1 | 4/1/2016 4:18:00 PM |
| 1,1-Dichloroethane | < 0.61 | 0.61 | Em'gu | 1 | 4/1/2016 4:18:00 PM |
| 1.1-Dichloroethene | < 0.59 | 0.59 | u:g/m3 | 1 | 4/1/2016 4:18:00 PM |
| Chloroethang | < 0.40 | 0.40 | ug/m3 | 1 | 4/1/2018 4:18:00 PM |
| Chloromethane | < 0.31 | 0 31 | ug/m3 | 1 | 4/1/2016 4:18:00 PM |
| cis-1,2-Dichloroothene | < 0.59 | 0.59 | ug/m3 | 1 | 4/1/2016 4:18:00 PM |
| Tetrachloroethylene | < 1.0 | 1.0 | ug/m3 | 1 | 4/1/2016 4:18:00 PM |
| trans-1,2-Dichloroethene | < 0.59 | 0.59 | បច្ច/កានិ | \$ | 4/1/2016 4:18:00 PM |
| Trichioroethene | < 0.21 | 0.21 | Em/gu | 1 | 4/1/2016 4:18:00 PM |
| VinyE chloride | < 0.10 | D.10 | ug/m3 | 1 | 4/1/2016 4:18:00 PM |
| | | | | | |

| Qualifiers: | ** | Reporting Limit | | Results reported are not blank corrected | |
|-------------|----|--|----|---|-------------|
| 1.0.2.2.1 | в | Analyte detected in the associated Method Blank | E | Value above quantitation range | |
| | 11 | Holding times for preparation or analysis exceeded | ł | Analyte detected at or below quantitation | limits |
| | JN | Non-routine analyte. Quantitation estimated. | ND | Not Detected at the Reporting Limit | Page 3 of 9 |
| | S | Spike Recovery outside accepted recovery limits | | | LOGE D ON A |

Date: 26-Apr-16

ŝ

| CLIENT: | LaBella Associates, P. | .C. | | C | lient Sampl | e ID: 1770- | Outdoor Air | |
|---------------------------|------------------------|--------|---------------------|------|--------------|--------------|---------------------|--|
| Lab Order: | C1603076 | | Tag Number: 192,342 | | | | | |
| Project: Emerson Landfill | | | | | Collection I | Date: 3/21/2 | 2016 | |
| Lad W: | C1603076-004A | | Matrix: AlR | | | | | |
| Analyses | | Result | **Limit | Qual | Units | ĎF | Date Analyzed | |
| UG/M3 W/ 0.2 | SUG/M3 CT-TCE-VC | | TO | -15 | | | Analyst: RJP | |
| 1,1,1-Trichloso | ethane | < 0.82 | 0.82 | | ug/m3 | 1 | 4/1/2016 4:57:00 AM | |
| 1,1-Dichloroeth | ane | < 0.61 | 0.61 | | ug/m3 | 1 | 4/1/2016 4:57:00 AM | |
| 1,1-Dichloroeth | еле | < 0.59 | 0.59 | | սք/m3 | 1 | 4/1/2016 4:57:00 AM | |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 4/1/2016 4:57:00 AM | |
| Chloromethane | , | 1.6 | 0.31 | | Em)gu | 1 | 4/1/2016 4:57:00 AM | |
| cis-1,2-Dichlor | pethene | < 0.59 | 0.59 | | ug/m3 | 1 | 4/1/2016 4-57:00 AM | |
| Tetrachloroeth | vieno | < 1.D | 1.0 | | ug/m3 | 1 | 4/1/2016 4.57:00 AM | |
| trans-1,2-Dichl | proethene | < 0.59 | 0.59 | | ug/m3 | 1 | 4/1/2016 4:57:00 AM | |
| Trichleroethene | e | < 9.21 | 0.21 | | ug/m3 | 1 | 4/1/2016 4:57:00 AM | |
| Vinyl chioride | | < 5.10 | 0.10 | | ug/m3 | 1 | 4/1/2016 4:57:00 AM | |

2115

---------. Results reported are not blank corrected Qualifiers: \*\* Reporting Limit 2 B Value above quantitation range 8 Analyte detected in the associated Method Blank. J Analyte detected at or below quantitation limits H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit JN Non-routine analyte, Quantitation estimated. Page 4 of 9 5 Spike Recovery outside accepted recovery limits

| CLIENT; | LaBella Associates, P.C. | | | ¢ | lient Sample 1D: | Blind | Dup 2 |
|--------------------------|--------------------------|--------|---------|------|------------------|--------|---------------------|
| Lab Order: C1603076 | | | | | Tag Number: | 1193, | 343 |
| Project: Emerson Landill | | | | | Collection Date: | 3/21/2 | 2016 |
| Lab ID: | C1603076-005A | | | | Matrix: | AIR | |
| Analyses | | Result | **Limit | Qual | linits | DF | Date Analyzed |
| UG/M3 BY MI | ETHOD TO15 | | TO | -15 | | | Analyst: RJF |
| 1,1,1-Trichloroe | ethane | < 0.82 | 0.82 | | ug/m3 | 1 | 4/1/2016 4:57:00 PM |
| 1,1-Dichloroeth | อกุล | < 0.61 | 0.61 | | ug/m3 | 1 | 4/1/2016 4:57:00 PM |
| 1.1-Dichloroeth | 606 | < 0.59 | 0.59 | | Em/pu | 1 | 4/1/2016 4:57:00 PM |
| Chloroethane | | < 0.40 | G.40 | | Cmigu S | 1 | 4/1/2016 4:57:00 PM |
| | | | | | | | |

| Chloromethane | < 0.31 | 0.31 | ug/m3 | 7 | 4/1/2016 4:57:00 PM |
|--------------------------|--------|------|-------|---|---------------------|
| cis-1,2-Dichloroethene | < 0.59 | 0.59 | ug/mS | 1 | 4/1/2016 4:57:00 PM |
| Tetrachloroethylene | 6.3 | 1.0 | ug/m3 | 1 | 4/1/2016 4:57:00 PM |
| trans-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 4/1/2016 4:57:00 PM |
| Trichloroethene | 1.4 | 0.81 | ug/m3 | 1 | 4/1/2016 4:57:00 PM |
| Vinyl chtoride | < 0.38 | 0.38 | ug/m3 | 1 | 4/1/2016 4:57:00 PM |
| | | | | | |

ANS

------..... 12.12 \*\* Reporting Limit Qualifiers: B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

- JN Non-contine analyte, Quantitation estimated.
- S Spike Recovery mutside accepted recovery limits

Results reported are not blunk corrected

- E Value above quantitation range
- J Analyse detected at or below quantitation limits.
- ND Not Detected at the Reporting Limit

Date: 26-Apr-16

| CLIENT: | LaBella Associates, P. | С. | | C | lient Sample ID: | 1770- | IAQ-2 |
|---------------------------|------------------------|--------|---------|---------|------------------|--------|---------------------|
| Lab Order: | C1603076 | | | 564,447 | | | |
| Project: Emerson Landfill | | | | | Collection Date: | 3/21/2 | :016 |
| Lab ID: | C1603076-006A | | | | Matrix; | AIR | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed |
| UG/M3 W/ 0.1 | 25UG/M3 CT-TCE-VC | | TO | -15 | | | Analyst: RJP |
| 1,1,1-Trichloro | ethano | 0.65] | 0.82 | J | ug/m3 | 1 | 4/1/2016 5:36:00 AM |
| 1,1-Dichloroeth | tané | < 0.61 | 0.61 | | ug/m3 | 1 | 4/1/2016 5:36:00 AM |
| 1,1-Dichloroeth | sene | < 0.59 | 01 0.59 | | ug/m3 | 1 | 4/1/2016 5:36:00 AM |
| Chlorosthane | | < 0.40 | 0.4D | | ug/m3 | 1 | 4/1/2016 5:36:00 AM |
| Chloromethane | | 2.0 | 0.31 | | ug/m3 | 1 | 4/1/2016 5:36:00 AM |
| cis-1.2-Dichlori | pethene | 3.1 | 0.59 | | ug/m3 | 1 | 4/1/2016 5:36:00 AM |
| Tatrachioroethy | ylene | < 1.0 | 1.0 | | ug/m3 | 1 | 4/1/2016 5:38:00 AM |
| trans-1.2-Dichi | orosthene | < 0.59 | UJ 0.59 | | ug/m3 | 1 | 4/1/2016 5:36:00 AM |
| Trichloroethen | 5 | < 0.21 | 0.21 | | Em/pu | 1 | 4/1/2016 5:36:00 AM |
| Vinyl chloride | | 1.8 | 0.10 | | ug/m3 | + | 4/1/2016 5:36:00 AM |

----.... Qualifiers:

\*\* Reporting Limit

B Analyte detocted in the associated Method Blank

.

- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte, Quantitution estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
 - E Value above quantitation range
 - J Analyte detected at ur below quantitation limits
 - ND Not Detected at the Reporting Limit

Date: 26-Apr-16

CLIENT: LaBella Associates, P.C. Client Sample ID: 1770-SVI-2 Lab Order: C1603076 Tag Number: 89,1166 Project: Collection Date: 3/21/2016 Emerson Landfill Matrix: AIR Lab ID: C1603076-007A ---------. -----\*\*Limit Qual Units Analyses Result DF Date Analyzed TO-15 1UG/M3 BY METHOD TO15 Analyst: RJP 1.1,1-Trichlomethane 4/1/2016 6:15:00 PM < 0.82 0.82 ug/m3 1 1,1-Dichloroethane < 0.61 0.61 ug/m3 ŧ 4/1/2016 5:15:00 PM 1,1-Dichlorcethene < 0.59 0.59 L:g/m3 1 4/1/2016 6:15:00 PM Chloroethane < 0.40 ug/m3 1 4/1/2016 6:15:00 PM 0.40

| Chloromethane | < 0.31 | 0.31 | ug/m3 | 1 | 4/1/2016 6:15:00 PM |
|--------------------------|--------|------|-------|---|---------------------|
| cis-1,2-Dichloroethene | 3.4 | 0.59 | ug/m3 | 1 | 4/1/2016 6:15:00 PM |
| Tetrachloroethylene | < 1.0 | 1.0 | ug/m3 | 1 | 4/1/2016 6:15:00 PM |
| trans-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 4/1/2016 6:15:00 PM |
| Trichloroethene | < 0,81 | 0.81 | ug/m3 | 1 | 4/1/2016 6:15:00 PM |
| Vinyl chloride | 1.8 | 0.38 | ug/m3 | 1 | 4/1/2016 6:15:00 PM |
| | | | | | |

14

| | | | 1 | |
|-------------|----|---|-------|--|
| Qualifiers: | ** | Reparting Lunit | | Results repaired are not blank corrected |
| | в | Analyte detected in the associated Method Blank | 17 | Value above quantitation range |
| | 13 | Fluiding times for preparation or analysis exceeded | | Analyte detected at or helow quantitation limits |
| | JN | Non-routine analyte. Quantitation estimated. | 211/2 | Not Detected at the Reporting Limit |
| | S | Spike Recovery outside recepted recovery limits | | Page 7 of 9 |

Date: 26-Apr-16

| CLIENT: | LaBella Associates, P.C. | | | C | lient Sample ID: | 1770-1 | AQ-3 |
|-----------------|--------------------------|--------|---------|------|-------------------------|--------|---------------------|
| Lab Order: | C1603076 | | | | Tag Number: | 131,29 | 75 |
| Project: | Emerson Landfill | | | | Collection Date: | 3/21/2 | 016 |
| Lab 1D: | C1603076-008A | | | | Matrix; | AIR | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed |
| UG/M3 W/ 0.2 | 25UG/M3 CT-TCE-VC | | то | -15 | | | Analyst: RJP |
| 1,1,1-Trichloro | ethane | < 0.82 | 0.82 | | Crntgu S | 1 | 4/1/2016 6:15:00 AM |
| 1,1-Dichloroett | าลกษ | < 0.61 | 0.6t | | Lig/m3 | 1 | 4/1/2016 6:16:00 AM |
| 1,3-Dichtoroeth | nene | < 0.59 | 0.59 | | ug/m3 | 1 | 4/1/2016 6:15:00 AM |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 4/1/2016 6:15:00 AM |
| Chloromethene | 9 | 1.9] | 0.31 | | ug/m3 | 1 | 4/1/2016 6:15:00 AM |
| cis-1.2-Dichlor | oethene | 0.91 | 0.59 | | ug/m3 | 1 | 4/1/2016 6:15:00 AM |
| Tetrachloroath | ylene | < 1.0 | 1.0 | | ug/m3 | 1 | 4/1/2016 6:15:00 AM |
| uans-1,2-Dichi | orbethene | < 0.59 | 0.59 | | បន្ទ/កា3 | 1 | 4/1/2016 6:15:00 AM |
| Trichloraethen | e | < 0.21 | 0.21 | | ււք/m3 | 3 | 4/1/2016 6:15:00 AM |
| Vinyt chloride | | 0.56 | 0.10 | | ug/m3 | 1 | 4/1/2016 6.15:00 AM |

AA

Qualifiers:

\*\* Reporting Limit

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- 8 Spike Recovery nutside accepted recovery limits

Results reported are not blank converted

- E. Value above quantitation range
 - J Analyte detected at ur below quantitation limits
- ND Not Detected at the Reporting Limit

Page 8 of 9

CLIENT: LaBella Associates, P.C. Client Sample ID: 1770-SVI-3 Lab Order: C1603076 Tag Number: 188,308 Project: Emerson Landfill Collection Date: 3/21/2016 Lab ID: C1603076-009A Matrix: AlR Analyses Result \*\*Limit Qual Units DF Date Analyzed

| 1UG/M3 BY METHOD TO15 | | TO-15 | | | Analyst: RJP |
|--------------------------|-----------------|-------|-------|---|---------------------|
| 1, 1, 1-Trichlorgethane | 0.93 | 0.82 | ug/m3 | 1 | 4/1/2016 6:54:00 PM |
| 1.1-Dichloroethane | < 0.61 | 0.61 | ug/m3 | 1 | 4/1/2016 6:54:00 PM |
| 1,1-Dichtoroethene | < 0.59 | 0.69 | ug/m3 | 1 | 4/1/2016 6:54:00 PM |
| Chicroethane | < 0.40 | 0.40 | ug/m3 | 1 | 4/1/2016 6:54:00 PM |
| Chloromethane | < 0.31 | 0.31 | ug/m3 | 1 | 4/1/2016 6:54:00 PM |
| cis-1,2-Dichloroethene | < 0.59 | 0.69 | ug/m3 | 1 | 4/1/2016 6.54:00 PM |
| Tetrachloroethytene | < 1.0 | 1.0 | ug/m3 | 1 | 4/1/2016 6:54:00 PM |
| trans-1,2-Dichloroethene | < 0.59 | 0.59 | ug/m3 | 1 | 4/1/2016 6:54:00 PM |
| Trichloroethene | 23 | 4.0 | ug/m3 | 5 | 4/2/2016 4:03:00 PM |
| Vinyl chloride | 1. 8 | 0.38 | ug/m3 | 1 | 4/1/2016 6:54:00 PM |
| | | | | | |

Qualifierst

\*\* Reporting Limit

B Analyte detected in the associated Method Blank

Fl Holding times for preparation or analysis exceeded

IN Non-routine analyte. Quantitation estimated.

S Spike Recovery muside accepted recovery fimits

Results reparted are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 9 of 9

Date: 26-Apr-16

CENTEK LABORATORIES, LLC

QC SUMMARY REPORT SURROGATE RECOVERIES

| CLIENT; | LaBella Associates, P.C. | |
|-----------------|--------------------------|-----------|
| Work Order: | C1603076 | |
| Project: | Emerson Landfill | |
| Test No: | TO-15 | Matrix: A |
| Sample ID | BR4FBZ | |
| ALCS1UG-033110 | 6 115 | |
| ALCS1UG-040F10 | | |
| ALCS11/G-040210 | 5 112 | |
| ALCS1UGD-0331 | 16 118 | |
| ALCS1UGD-0401 | | |
| ALCS1UGD-0402 | | |
| AMB1UG-033116 | 88.0 | |
| AMB1UG-040116 | | |
| AMB1UG-040216 | 90.0 | |
| C1603075-004A N | 4S t16 | |
| C1603075-004A N | 4SD 107 | |
| C1603076-001A | 110 | |
| C1603076-002A | \$8.0 | |
| C1603076-003A | 117 | |
| C1603076-004A | 104 | |
| C1603076-005A | 108 | |
| C1603076-006A | (126) | |
| C1603076-007A | 102 | |
| C1603076-008A | 128 | |
| C1603076-009A | 92.0 | |

| - Acronym | Surrogate | QC Limits | 1 |
|--|-------------------------------------|-----------|----|
| BR4FBZ z | Bromofluorobenzenc | 70-130 | ÷ |
| | | | 1 |
| | | | |
| | | | 1 |
| | | | 1 |
| 1 | | | |
| 1 | | | |
| 1 | | | |
| | | | |
| ······································ | | | ++ |
| - on Logar | e recovery outside acceptance limit | 5 | |

1

'une File : C:\HPCHEM\1\DATA2\AN033104.D 'une Time : 31 Mar 2016 12:19 pm

aily Calibration File : C:\HPCHEM\1\DATA2\AN033104.D

| | | (BFB) | (IS1)
21478 | (IS2)
48888 | (IS3)
36495 |
|-----------|---------------|-------------------------|----------------|----------------|----------------|
| '11c | | DL Surrogate Recovery % | Internal | Standard Re | sponses |
| | ALCS1UG-03311 | | 20235 | 53595 | 32893 |
| N033106.1 | AMB1UG-033116 | 88 | 20032 | 47930 | 44161 |
| N033129.E | C1603076-001A | 110 | 17319 | 46632 | 44330 |
| | C1603076-004A | 104 | 16741 | 43872 | 44391 |
| | C1603076-006A | 126 | 18828 | 58984 | 31005 |
| N033132.D | C1603076-008A | 128 | 20410 | 65363 | 31903 |
| N033133.E | ALCS1UGD-0331 | 16 118 | 22710 | 52964 | 34225 |

t - fails 24hr time check \* - fails criteria

Created: Tue Apr 26 15:59:27 2016 MSD #1/

Tune File : C:\HPCHEM\1\DATA\AN040102.D Tune Time : 1 Apr 2016 12:06 pm

Saily Calibration File : C:\HPCHEM\1\DATA\AN040102.D

| | | (BFB) | (IS1)
20214 | (IS2)
45908 | (IS3)
32719 |
|------------|----------------|-------------------------|----------------|----------------|----------------|
| °ile | Sample | DL Surrogate Recovery % | Internal | Standard | Responses |
| 1N040103.D | ALCS1UG-04013 | | 20058 | 46019 | 31397 |
| W040104.D | AMB1UG-040116 | 91 | 18252 | 46023 | 41257 |
| 1N040108.D | C1603076-0037 | | 24896 | 74463* | 58495* |
| WC40109.D | C1603076-005A | 108 | 26433 | 86881* | 45080 |
| W040110.D | C1603076-002A | 88 | 26432 | 89168* | 49311* |
| W040111.D | C1603076-007A | 102 | 27896 | 94901* | 52262* |
| W040112.D | C1.603076-0094 | 92 | 28019 | 97134* | 49886* |
| W040125.D | ALCS1UGD-0401 | 16 108 | 20137 | 45874 | 33404 |

t - fails 24hr time check \* - fails criteria

Created: Tue Apr 26 16:00:31 2016 MSD #1/

'une File : C:\HPCHEM\1\DATA\AN040203.D 'une Time : Z Apr 2016 12:08 pm

wily Calibration File : C:\HPCHEM\1\DATA\AN0402G3.D

| | | (BFB) | | (IS1)
23340 | (IS2)
60425 | (IS3)
46554 |
|-----------|------------------|----------------|-------------|----------------|----------------|----------------|
| 'ile | Sample | DL Surrogate R | | Internal St | 7 | |
| NC40204.D | ALCS1UG-040216 | 112 | | 21348 | 52201 | 44220 |
| N040205.D | AMB1UG-040216 | 90 | | 17717 | 49878 | 41390 |
| N040209.D | C1603076-009A | SX 113 | | 18360 | 53965 | 40273 |
| N040224.D | ALCS1UGD-04021 | \$ 106 | | 16685 | 39568 | 28434 |
| t - faj | lls 24hr time cl | neck * - fai | ls criteria | | | |

Created: Tue Apr 26 16:01:33 2016 MSD #1/

Nume File : C:\HPCHEM\1\DATA\AN040402.D Nume Time : 4 Apr 2016 9:37 am

Daily Calibration File : C:\HPCHEM\1\DATA\AN040402.D

| | | | (BFB) | | (IS1)
22087 | (IS2)
49561 | (IS3)
31552 | |
|-----------|----------------|------|-----------|-------------|----------------|----------------|----------------|-------|
| Vile | Sample | DL | Surrogate | Recovery % | Internal | Standard Res | ponses | |
| N040403.D | ALCSIUG-04041 | 5 | 100 | ******** | 23166 | 49402 | 37389 | NC 21 |
| N040404.D | AMB1UG-040416 | | 82 | Not 1 | 21865 | 49252 | 42435 | |
| N040406.D | C1603076-003A | RE | 105 | regulate | 19294 | 43636 | 39672 | *** |
| N040407.D | C1603076-005A | RE | 121 | 105 | 26358 | 86314* | 51558* | |
| N040408.D | C1603076-002A | RE | 120 | | 28253 | 94627* | 56547* | |
| N040409.D | C1603076-007A | RE | 100 | | 28391 | 97706* | 57357* | |
| t - fai | ls 24hr time (| hech | < * - fai | ls criteria | | ********* | | *** |

Created: Tue Apr 26 16:02:37 2016 MSD #1/

| CLIENT: LaBella Associate
Work Order: C1603076
Project: Emcrson Landfill | s, P.C. | | | | | | TestCode: 0.25CT-TCE-VC | le: 0.25 | 0.25CT-TCE-VC | s-vc | |
|--|--|---------|--|-------------------------------------|--------|------------------------------|-------------------------|--------------------------------------|-------------------------------|---|------|
| Sample ID. AMB1UG-033116
Client ID. 22222 | Sampliype: MBLK
Batch ID: R10817 | TestCo | TestCode: 0.25CT-TCE-
TestNo: T0-15 | Units: ppbV | * | Prep Oate:
Analysis Date: | ste: 3/31/2016 | 12 N | RunNo: 10817
SeqNo: 127095 | 17
095 | |
| Analyte | Result | POL | SPK value SF | SPK Ref Val | %REC | LowLinnt | HighLimit RPD Ref Val | fVal | %RPD | RPOLimit | Quai |
| 1,1,1-Trichloroethane | < 0.15 | 0.15 | | | | | | | | | |
| 1,1-Dichloroethane | < 0.15 | 0.15 | | | | | | | | | |
| 1,1-Dichforoethene | < 0,15 | 0.15 | | | | | | | | | |
| Chlorcethane | < 0.15 | 0.15 | | | | | | | | | |
| Chioromethane | <0.15 | 0.15 | | | | | | | | | |
| cis-1,2-Dichlonethene | < 0.15 | 0.15 | | | | | | | | | |
| Tetrachloroethylene | < 0.15 | 0.15 | | | | | | | | | |
| trans-1,2-Dichtonethene | < 0.15 | 0.15 | | | | | | | | | |
| Trichtoroethena | < 0.040 | 0.040 | | | | | | | | | |
| Vinyt chloride | < 0.040 | 0.040 | | | | | | | | | |
| Sample ID AMB1UG-040116 | SampType: MBLK | TestCo | TestCode: 0.25CT-TCE- | Units: ppbV | | Prep Date: | ite: | Ru | RunNo: 10818 | 18 | |
| Client ID: ZZZZ | Batch (D; R10818 | Test | TestNo. TO-15 | | - | Analysis Date: | ate: 4/1/2016 | Se | SeqNo: 127112 | 112 | |
| Analyte | ຕີຂະບຳ | POI. | SPK value SF | SPK Ref Val | %REC | LowLinit | HighLimit RPD Ref Val | f Val | %RPD | RPDLimit | Qual |
| 1,1,1-Trichforoethane | < 0,15 | 0.15 | | | | | | | | | |
| 1,1-Dichloroethane | < 0.15 | 0.15 | | | | | | | | | |
| 1,1-Dichloroethene | < 0.15 | 0.15 | | | | | | | | | |
| Chloroethane | < 0.15 | 0.15 | | | | | | | | | |
| Chloromethane | < 0.15 | 0.15 | | | | | | | | | |
| cis-1,2-Dichloroethene | < 0.15 | 0.15 | | | | | | | | | |
| Tetrachtoroethylene | < 0.15 | 0.15 | | | | | | | | | |
| trans-1,2-Dichloroothene | < 0.15 | 0.15 | | | | | | | | | |
| Trichloroethene | < 0.040 | 9.040 | | | | | | | | | |
| Chall Rates Daughe rand | Discoute survived two way then to some survived | | E Value abo | Value akone enemetration energe | | | 14 Maldastin | the most | the second second | Lialdine times for researchion an susheise averaged | |
| | Analyte detected at an below quantitation finnts | STITE - | | Not Detected at the Repurting Limit | t.imit | | | RPD nutside accepted recuvery limits | cuvery lim | uls. | ł |
| | | | | | | | | | 1110 | | |

Date: 26-Apr-16

| CLIENT:
Work Order: | C1603076 | LaBella Associates, P.C.
C1603076 | | | | | | | | | |
|--|------------------|--------------------------------------|--------|--|------------|------|---------------------|-------------------------------------|-------------------------|--------------------|------|
| Project: | Emerson Landfill | .andfill | | | | | | TestCode | TestCode: 0.25CT-TCE-VC | E-VC | |
| Sample ID AMB1UG-040116
Client ID: ZZZZ | 1UG-040116
Z | SampType: MBLK
Batch ID: R10818 | TestCo | TestCode: 0,25CT-TCE- Units, ppbV
TestNo: TO-15 | Vdga, ppbV | | Prep Date: 4/1/2016 | Ru
4/1/2016 Se | InNo: | 108†8
†27112 | |
| Analyte | | Result | POL | SPK value SPK Ref Val | PK Ref Val | %REC | I now imit H | %REC LowLimit HighLimit RPD Ref Var | | %RPO RPOUIMIt Qual | Quat |

Results reported are not blank corrected ------Qualifiers;

Analyte detected at or below quantitation limits. - - -

Spike Roctwery outside accepted rocovery limits

I ≃

Hulding times for preparation of analysis exceeded RPD outside accepted recovery limits Page 2 of 3

-

E Value above quantilation range ND Not Detected at the Reporting Const.

| 0216 5 | SampType: MBLK
Batch ID: R10819
Result | | | | | | | | | TestCode: lugM3_T015 | lugM3_T(| 315 | |
|---|--|----|------|---|-----------|---|------|---------------------------------------|--------------------|---|-------------------------------|--|------|
| vralyte
.,1,1-Trichkoroethane
.,1-Dichloroethane
.,1-Dichloroethene
Zhioroethane
zhioromethane
dis-1,2-Dichkoroethone
tetrachforoethylene | Result | 07 | Test | stCode: 1ugM3
TestNo: TO-15 | J-15 | TestCode: 1ugM3_TO15 Units: ppbV
TestNo: F0-15 | | Prep Date:
Analysis Date: 4/2/2016 | ate:
ate: 4/2/3 | :016 | RunNo: 10819
SeqNo: 127124 | 0819
27124 | |
| .1.1.Trichkorethane
.1-Dichloroethane
.1-Dichloroethane
Moroethane
thioromethane
is-1.2-Dichloroethylene
etrachloroethylene | -046 | - | 10d | | SPK value | SPK Ref Vał | %REC | | HighLim | LowLink HighLimit RPD Ref Val | %RPD | RPDLimit | Qual |
| 1-Dichloroethane 1-Dichloroethane Moroethane Moromethane 5-1, 2-Dichloroethane 5-1, 2-Dichloroethylene | C1.72 V | > | 0.15 | 10 | | | | | | | | | |
| .1-DicMaroathene
Moroethane
hioromethane
s-1, 2-Dichloroethone
etrachforoethylene | < 0.15 | 10 | 0.15 | th and a second s | | | | | | | | | |
| Moroethane
hioromethane
s-1,2-Dichforoothone
etrachforoethylene | < 0.15 | 10 | 0.15 | 5 | | | | | | | | | |
| hiorometharre
s-1,2-Dichkoropthane
strachforoethylene | ÷ 0.25 | 10 | 0.15 | LD. | | | | | | | | | |
| s-1,2-Dichforopthane
efrachforoethylene | < 0.75 | 10 | 0.15 | 2 | | | | | | | | | |
| strachforoethylene | < 0.35 | 10 | 0.15 | 10 | | | | | | | | | |
| | ÷ 0.15 | 15 | 0.15 | 10 | | | | | | | | | |
| Irans-1, 2-Dichloroethene | < 0,15 | 10 | 0.15 | \$ | | | | | | | | | |
| Trichloroethene | < 0.15 | 15 | 0.15 | 10 | | | | | | | | | |
| Vinyt chloride | < 0.15 | 10 | 0.15 | 2 | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| Onsiléfieres Results recorded are not blank remembed | black comested | 17 | | Q. | | Value show chantilation range | | | . c | Lobbin financian and a second s | it weeks to be a | and the second sec | 1 |

- NJ) Not Detected at the Reporting Limit

Anulyte detected at or below quantitation limits Spike Recovery outside accepted recovery binits

~ 0

R. RPD uniside accepted recovery limits

Page 3 uf 3

| | () | |
|------|---|--------|
| | LL | |
| | ES, | |
| | ORI | |
| | AT | |
| | OR | |
| | LAE | |
| | EK] | |
| 1 | IIN | |
| | CE | 1 |
| dig. | All | area a |

ANALYTICAL QC SUMMARY REPORT

Date: 26-4pr-16

LaBella Associates, P.C. C1603076 Work Order: CLIENT:

Emerson Landfill Project:

TestCode: 0.25CT-TCE-VC

| Sample ID ALCS1UG-033116 | SampType: LCS | TestCode | TestCode: 0.25CT-TCE- | Units: papy | | Prep Date: | | | RUMND: 10 | 10817 | |
|---|--|----------|-----------------------|--------------------------------------|-------|----------------|---------------|----------------|---|----------------|-------------|
| Client ID: ZZZZ | Batch ID: R10817 | TestNo | Testho: TO-15 | | | Analysis Date: | 3/31/2018 | | SeqNo: 127096 | 7096 | |
| Analyte | Resut | POL | SPK value SP | SPK Ref Val | %REC | LowLimit F | HighLinit R | RPD Ref Val | GGA% | RPDLimit | Qual |
| 1,1,1-Trichloroetharte | 1.250 | 0.15 | - | 0 | 125 V | 10 | 130 | | | | |
| 1,1-Dichloroethane | 1.520 | 0.15 | ٢ | 0 | 112 | 0/ | 130 | | | | |
| 1.1-Dichloroethene | 1.120 | 0.15 | - | 0 | 112 | 70 | 130 | | | | |
| Chloroethane | 1.220 | 0.15 | F | 0 | 122 | 02 | 130 | | | | |
| Chloromethane | 1,230 | 0.15 | ٢ | 0 | 123 | 70 | 130 | | | | |
| cis-1,2-Dichloroethene | 1.060 | 0,15 | +- | 0 | 105 | 02 | 130 | | | | |
| Tetrachioroethylene | 0.9200 | 0.15 | 4 | 0 | 92.0 | 02 | 130 | | | | |
| trans-1,2-Dichloroethene | 1.050 | 0.45 | ** | Ð | 105 | 20 | \$30 | | | | |
| Trichloroethene | 1.110 | 0.040 | | 0 | 111 | 20 | 130 | | | | |
| Vinyl chloride | 1.090 | 0.040 | ę., | Ð | 109 | 70 | 130 | | | | |
| Sample ID ALCS1UG-040116 | SampType: LCS | TestCode | TestCode: 0.25CT-TCE- | Units: ppbV | | Prep Date: | | | RunNo: 10818 | 318 | |
| Client ID: Z227Z | Batch ID: R10818 | TestNo | TestNo: TO-15 | | | Analysis Date: | 4/1/2015 | | SeqNo. 127113 | 5113 | |
| Analyte | Result | POL | SPK value SP | SPK Ref Val | %REC | Low mait H | Highlichet Rt | RPD Ref Val | CGA7% | RPDLimit | Qual |
| 1,1,1-Trichloroethane | 1.290 | 0.15 | - | 0 | 129 | 04 | 130 | | | | |
| 1,1-Dichloroethane | 1.040 | 0.15 | Ŧ | a | 104 | 02 | 130 | | | | |
| 1, 1-Dichloroethene | 1.100 | 0.15 | ÷ | 0 | 110 | 02 | 130 | | | | |
| Chloroethane | 1.130 | 0.15 | ٢ | 0 | 113 | 70 | 130 | | | | |
| Chloromethane | 1.230 | 0.35 | ٠ | 0 | 123 | 92 | 130 | | | | |
| cis-1,2-Dichloroelhene | 0.9800 | 0.15 | 1 | 0 | 98.D | 70 | 130 | | | | |
| Tetrachloroethykene | 0.8800 | 0.15 | 1 | 0 | 88.0 | 70 | 130 | | | | |
| trans-1,2-Dichloroethene | 0.9500 | 0.15 | | 0 | 99.0 | 70 | 139 | | | | |
| Trichloroethene | 1.230 | D.040 | F | 0 | 123 | 02 | 130 | | | | |
| and the memory of market structure structures and structures (see | | | | | | | | | and the second se | | |
| Quidificers: . Results report | Results reported are not blunk corrected | | E Value abov | Victor above quantization range | 36 | | H Hoh | ding times for | Holding times for preparation or analysis exceeded | halysis exceed | H |
| | Analyte detected at or below quantitation limits | state | ND Not Detect | Not Detected at the Reporting Lithit | Limit | | R RPI |) wetside aver | RPD wetside averaged recovery limits | nits | |
| 5 Spike Recove | Spike Recovery casside accepted recovery limits | imits | | | | | | | | 4 | Page 1 of 2 |

Poge 1 of 3

LaBella Associates, P.C. C1603076 1 Work Order: CLAENT:

Emerson Landfill Project:

TestCode: 0.25CT-TCE-VC

| Enember 11 | AL CONTRACTOR OF GRADE | | 6
F | | | | | | | | | |
|-----------------|--|------------------|---------|-----------------------------------|-------------|------|-------------------------|-------------|-------------------------------------|---------------|--------------------|------|
| Collinger In | campre in ALCATOG-440176 Samptype: LUS | variablype: LGS | lestcoc | TestCode: 0.25CT-TCE- Units: ppbV | Units: ppbV | | Prep Dale: | | | RunNo: 10818 | 818 | |
| Client ID: ZZZZ | 22222 | Batch ID: R10818 | Testh | festiva: TO-15 | | ď | Analysis Date: 4/1/2016 | 4112016 | | SeqNo' 127113 | 7113 | |
| Analyte | | Result | PQL | SPK value SPK Ref Val | K Ref Val | %REC | LowLimit | HighLimit 🗧 | %REC LowLimit HighLimit RPD Ref Vel | %RPD | %RPD RPD.umit Qual | Qual |
| Vinyl chloride | a | 1.100 | 0.040 | - | 0 | 110 | 02 | 130 | | | | |

Page 2 af 3

Helding times for preparation of analysis executed
 R. RPD outside accounted

E Value above quantitation range ND Not Unteered at the Reporting Limit

Spike Recuvery outside accupied secondry limits Analyse detected at or below quantitation timits.

Qualifiers:

Results reported are not blank corrected

| Project: Emcrson Landfill | andfilj | | | | | | | TestCode: 1ugM3_T015 | lugM3_TO1 | in the | |
|--|-----------------------------------|--------|----------------------------------|---|------|------------|------------------------------------|-------------------------------------|-------------------------------|---------------|------|
| Sample ID ALCS1UG-040216
Client HD: ZZZZZ | SampType: LCS
Batch ID: R10819 | TestCo | s)Code: fugM3_T
TestNo: TO-15 | FestCode: fugM3_TO15 Units: ppbV
TestNo: TO-15 | | Prep Date: | Prep Date: Analysis Date: A12/2016 | | RunNo: 10819
Sealo: 127126 | 319 | |
| Analyte | Resut | P.01. | SPK value | SPK value SPK Ref Val | %REC | Lowinsit | HighLimil | %REC LowLimit HighLimit RPD Ref Val | %RPD | %RPD RPDLimit | Qual |
| 1,1,1-Trichloroethang | 1.290 | 0,15 | | 0 | 129 | 02 | 130 | | | | |
| 1, 1. Dichloroethane | 1.170 | 0.15 | | 0 | 117 | 20 | 130 | | | | |
| 1,1-Dichkroethene | 1.200 | 0.15 | ** | 0 | 120 | 02 | 130 | | | | |
| Chloroethans | 1.230 | 0.15 | | 0 | 123 | 10 | 130 | | | | |
| Chloromethane | 1.290 | 0.15 | ٣ | 0 | 129 | 0.4 | 130 | | | | |
| cis-1,2-Dichloroethene | 1.170 | 0.15 | F | 0 | 131 | 202 | 130 | | | | |
| Tetrachloroethylene | 0.7800 | 0.15 | F | ¢ | 78.0 | 20 | 130 | | | | |
| trans-1,2-Dichloroethene | 1.180 | 0.15 | F | 0 | 118 | 20 | 130 | | | | |
| Trichloroetheng | 1,260 | 0.15 | F | D | 921 | 20 | 130 | | | | |
| Vinyl chloride | 1.140 | 0.15 | ~ | 0 | 114 | 02 | 130 | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

LaBella Associates, P.C.

CIJIENT:

Halding times for preparation or usufysis exceeded RPD outside accepted recovery limits 1 e E Vutue above quantilation range. ND Not Defeated at the Reporting Linuit

Analyte detected at ur below quantitation lineits

- -

Results reported are not blank entrected

. Qualifiers: Spike Recovery ostiside accepted recovery limits

Puge 3 of 3

| | PC. | | |
|-----|---|----------------------|---|
| | S.L | | |
| | RUE | | |
| | ATO | | |
| | OR | | |
| | LAB | | |
| | EK | | |
| 1 | TNE | | 4 |
| | S | in the second second | / |
| 1.5 | N. S. | | |

ANALYTICAL QC SUMMARY REPORT

Date: 26-Apr-16

l

and the second se

| LaBella Associates, P.C. | A DESCRIPTION OF A DESC |
|--------------------------|--|
| CLIENT: | |
| | NT: LaBella Associates, F |

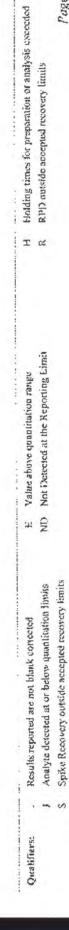
Finerson Landfill C1603076 Work Order: Project:

TestCode: 0.25CT-TCE-VC

| Client ID: ZZZZ Batch II
Analyta
1.1.1-Trichloroethane
1.1-Dichloroethane | dent addining | TestCod | TestCode: 0.25CT-TCE- | E. Units: ppbV | | Prep Date: | .0 | | RunNo: 10817 | 817 | |
|--|----------------------|------------------------------------|-----------------------|-------------------------------------|----------|----------------|-------------|---|--------------------|-----------------|------|
| rialyta
.1.1-Trichloroethane
.1-Dichloroethane | Batch ID: R10317 | TesiN | TestNo: TO-15 | | | Analysis Date: | c: 4/1/2016 | Q. | SegNo: 127097 | 1097 | |
| .1.1-Trichloroethane
.1-Dichloroethane | Result | PQL | SPK value | SPK Ref Val | %REC | LOWLIMIT | HighLimit | RPD Ref Val | 048% | RPDLimit | Qual |
| .1-Dichloroethane | 1.280 | 0.15 | 1 | 0 | 128 | 70 | 130 | 1.25 | 2.37 | 30 | |
| | 1.040 | 0.15 | F | D | 104 | 20 | 130 | 3 12 | 7.41 | 30 | |
| 1,1-Dichloros(hane | 1.120 | 0.15 | ٢ | 0 | 112 | 70 | 130 | 1.12 | 0 | 30 | |
| Chloroethans | 1.250 | 0.15 | 4 | 0 | 125 | 20 | 130 | 1.22 | 2.43 | 30 | |
| Chloromethane | 1.210 | 0.15 | ** | 0 | 121 | 02 | 130 | 1.23 | 1.64 | 30 | |
| cis-1,2-Dichloroethene | 1.010 | 0.15 | + | 0 | 101 | 02 | 130 | 1.06 | 4.63 | 30 | |
| Tetrachloroethylene | 0.0002.0 | 0.15 | 1 | 0 | 90.06 | 20 | 130 | 0.92 | 2.20 | 30 | |
| Irans-1,2-Dichloroethene | 1.000 | 0.15 | T ~ | 0 | 100 | 70 | 130 | 1.05 | 4.88 | 30 | |
| Trichloroethene | 1.150 | 0.040 | 100 | 0 | 115 | 70 | 130 | 1.12 | 3.54 | 30 | |
| Vinyl chloride | 1.050 | 0.040 | | Q | 105 | 70 | 130 | 1,09 | 374 | 30 | |
| Sample 1D ALCS1UGD-040116 SampTyl | SampType: LCSD | TestCoo | TestCode: 0.25CT-TCE- | E- Units: ppby | | Prep Date: | ii. | | RunNo: 10818 | 818 | |
| Ctient ID: ZZZZ | Balch ID: R10818 | Tesið | TestNo: TO-15 | | | Analysis Date: | e: 4/2/2016 | 9 | SeqNo: 127114 | 7144 | |
| Analyte | Reșult | PQL | SPK value | SPK Ref Val | %REC | LowLimit | Highlimit | RPD Ref Val | CGA% | RPDLimit | Qual |
| 1,1,1-Trichloroethane | 1.280 | 0.15 | 1 | 0 | 128 | V 70 | 130 | 1.29 | 0.778 | 30 | |
| 1,1-Dichforcethane | 1.040 | 0.15 | + | D | 104 | 20 | 130 | 1.04 | o | 30 | |
| t, 1-Dichloroethene | 100 i | 0.15 | ** | D | 110 | 01 | 130 | 1.1 | 0 | 30 | |
| Chlorcethane | 1.240 | 0.15 | ٣ | D | 124 | 70 | 130 | 1.13 | 9.28 | 30 | |
| Chloromethane | 1,230 | 0,15 | *- | 0 | 123 | 70 | 130 | 1.23 | Ð | 30 | |
| cis-1.2-Dichloroethene | 0.9400 | 0.15 | - | 0 | 94.0 | 30 | 130 | 0.98 | 4.17 | 30 | |
| Tetrachionethytene | 0.8300 | 0.15 | | 0 | 83.0 | 70 | 130 | D.88 | 5.85 | 30 | |
| Irans-1,2-Dichloroethene | 0.9600 | 0.15 | 1 | 0 | 96.0 | 70 | 130 | 0.99 | 3.08 | 30 | |
| Trichloroethena | 1.210 | 0.040 | - | Q | 521 | 02 | 130 | 1.23 | 1.64 | 30 | |
| | | the same in comments of some state | | | | | | | | | |
| Qualifiers: Results reported are not black corrected | black corrected | | E Value | Value above quantitution range | ਰਤੀਸ | | | Floiding times for preparation or analysis exceeded | r preparation or a | utalysis exceed | pag |
| J Analyte detacted at or below quantitation limits | tow quantitation lit | nits | NI3 Not 136 | Not Detocted at the Reporting Limit | ig Limit | | * | RPD outside norepted recovery limits | epted recovery fit | mits | |

| | 1 | 7 | |
|--|--|----------------|--|
| | Chraf | | <sup></sup> 문 |
| | 134
114
RPOI init | 30 | ulysis exceeds |
| 0.25CT-TCE-VC | RunNo: 10818
SeqNo: 127114
%APD RP | 2.76 | preparation or anulys |
| TestCode: 0 | e: 4/2/2016
e: 4/2/2016
Hinbh imir RPD Rof Val | ÷ | Holding times for preparation or anulysis exceeded
RPD outside accepted recovery litaits |
| | 4/2/2016 | 130 | |
| | Prep Date:
Analysis Date:
Lewi imit H | 20 | |
| | An An %REC 1 | 701 | e .
Limi |
| | E- Units: ppbv
SPK Ref val | 0 | Value above quantitation muge
Not Detexted at the Reporting Limit |
| ; | TestCode: 0.25CT-TCE-
TestNo: TO-15
POL SPK value Sr | - | i a Q |
| | TestCode
TestNi | 0.040 | All starts |
| | LCSD
R10818
Result | 1.070 | varrected
Juantifisition bi |
| Associates, P.C.
76
1 Landfill | SampType: LCSD
Batch ID: R10818
Result | | Results reported are not blank varrected
Analytic detected at or below quantifistion limits |
| LaBella Associates, P.C.
C1603076
Emerann Landfill | Sample ID ALCS1UGD-040116
Crient ID: ZZZZZ | | Results reporte
Analyte detecto |
| | ALCSIL | * | |
| CLIENT:
Work Order:
Project: | Sample ID
Cfient ID:
Analyte | Vinyl chloride | Qualifiers: |

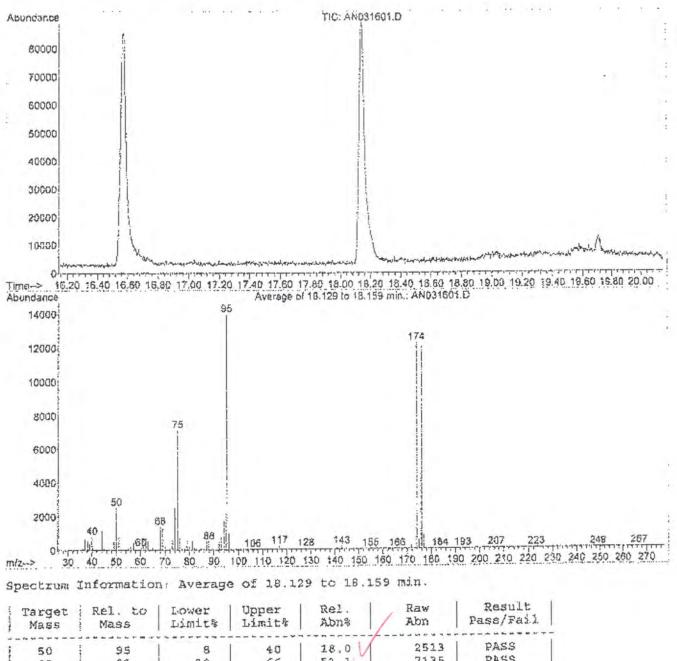
Page 2 of 3


Spike Recovery autside accepted recovery limits

- 5

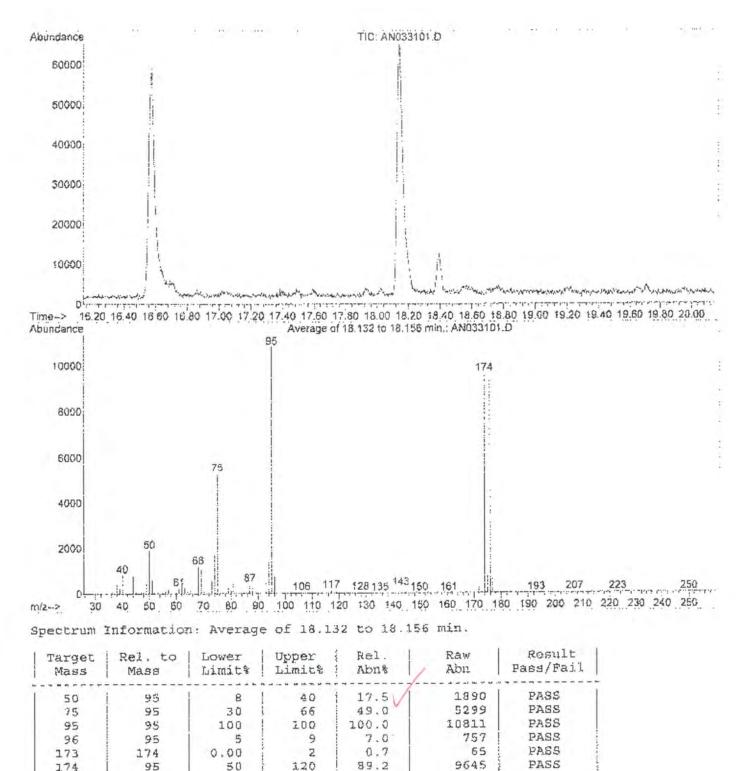
CLIENT: LaBella Associates, P.C. Work Order: C1603076 Project: Emerson Landfill

TestCode: lugM3\_T015


| MONT SHIP I DATE OF THE STAND OF THE SHIP OF THE STAND | camptype: Loan | TestCoc | e. lugh3_1 | TestCode: 1ugM3_TO15 Units: ppbV | | Prep Date: | e. | | RunNo: 10819 | 10 | |
|--|------------------|---------|---------------|----------------------------------|-------|-------------------------|------------|--------------------------------|---------------|----------|------|
| Client ID: 22222 | Batch ID: R10819 | Testn | TestNo: TO-15 | | * | Analysis Date: 4/3/2016 | e: 4/3/201 | 6 | SegNo: 127130 | 130 | |
| Analyte | Result | Tod | SPK value | SPK Ref Val | %REC | 1, own init | HighLimit | LowLimit HighLimit RPD Ref Val | Oda% | RPDLimit | Qual |
| 1,1,1-Trichlorethane | 1.300 | 0.15 | F | 0 | 130 \ | 02 | 130 | 1.29 | 0.772 | 30 | |
| 1,1-Dichloroethane | 1.170 | 0.15 | F | 0 | 215 | 10 | 130 | 1.17 | Q | 30 | |
| 1,1-Dichloroethene | 1.110 | 0.15 | - | 0 | 111 | 20 | 130 | 1.2 | 7.79 | 30 | |
| Chłorcethane | 1.090 | 0 15 | - | Q | 109 | 20 | 130 | 1.23 | 12.1 | 30 | |
| Chioromothana | 1.190 | 0.15 | 1 | ¢ | 119 | 20 | 130 | 1.29 | 8.05 | 30 | |
| cis-1,2-Dichloroethene | 1.130 | 0.15 | F | 0 | LLE | 02 | 130 | 1.17 | 5.26 | 30 | |
| Tetrachtoroethylane | 0,6900 | 0,15 | ÷ | O | \$8.0 | 20 | 130 | 0.78 | 13.2 | 30 | |
| Irans-1,2-Dichloroethene | 1.150 | 0.15 | F | 0 | 115 | 20 | 130 | 1.18 | 2.58 | 30 | |
| Trichtoroethene | 1.220 | 0.15 | 1 | D | 122 | 20 | 130 | 1.26 | 3.23 | 30 | |
| Vinyl chloride | 1.220 | 0.15 | 1 | 0 | 122 | 02 | 130 | 1.14 | 5.78 | 30 | |

Page 3 of 3

í


Data File : C:\HPCHEM\1\DATA\AN031601.DVial: 1Acq On : 16 Mar 2016 5:26 pmOperator: RJPSample : BFB1UGInst : MSD #1Misc : A316\_1UGMultiplr: 1.00MS Integration Params: RTEINT.PMethod : C:\HPCHEM\1\METHODS\A316\_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibration

| 1 75 | : 95 | 1 30 | 55 | 51.1 | 1135 | 2222 |
|-------|--------|--------|-----|-------|--|------|
| 95 | 95 | 100 | 100 | 100.0 | 13975 | PASS |
| 96 | 95 | 5 | 9 | 5.7 | 936 | PASS |
| 173 | 174 | 1 0.00 | 2 | 0.6 | 79 | PASS |
| 174 | 95 | 50 | 120 | 87.9 | 12278 | PASS |
| 175 | 174 | 4 | 9 | 4.1 | 498 | PASS |
| 176 | 1.74 | 95 | 101 | 98.5 | 12090 | PASS |
| 177 | 176 | 5 | 9 | 6.9 | 829 | PASS |
| 1 4/1 | l with | | | | and the second sec | |

AN031601.D A316\_1UG.M Thu Apr 07 13:04:45 2016 MSD1

Data File : C:\HPCHEM\J\DATA2\AN033101.D Vial: 1 Operator: RJP Acg On : 31 Mar 2016 9:33 am Sample : BFB1UG Inst : MSD #1 Multiplr: 1.00 Misc : A316 1UG MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A316 lUG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

AN033101.D A316 1UG.M Tue Apr 26 14:47:04 2016 MSD1

4

95

5

9

9

101

7,8

97.0

7.5

750

704

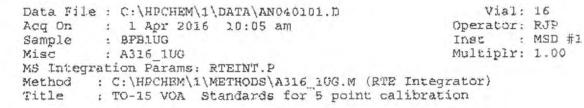
9355

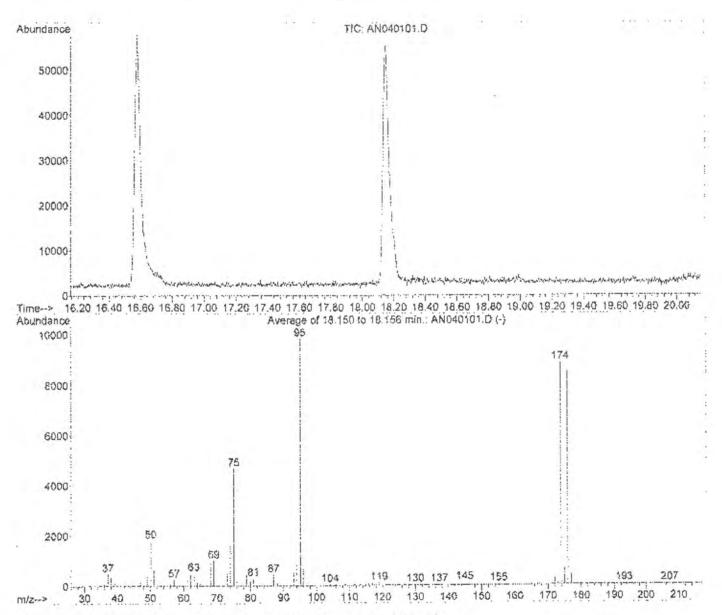
PASS PASS

PASS

95

174

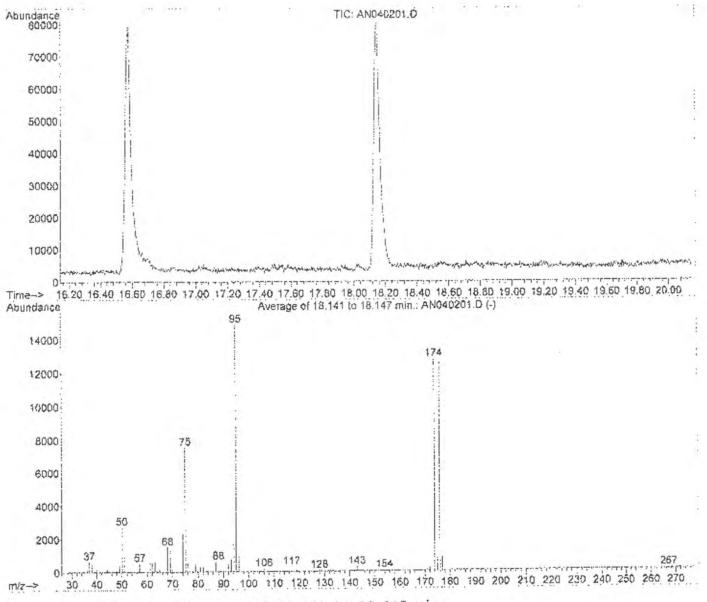

174


176

1.74 175

376

177



Spectrum Information: Average of 18.150 to 18.156 min.

| | Target
Mass | Rel. to
Mass | Lower
Limit* | Upper
Limit% | Rel.
Abnš | Raw
Abn | Result
Pass/Paii |
|---|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 1 | 50 | 95 | 8 | 40 | 28.6 | 1827 | PASS |
| | 75 | 95 | 30 | 66 | 47.8 | 4708 | PASS |
| | 95 | 95 | 100 | 100 | 100.0 | 9841 | PASS |
| | 96 | 95 | 5 | 9 | 2.0 | 692 | PASS |
| | 173 | 174 | 0.00 | 2 | 0.8 | 70 | PASS |
| | 174 | 95 | 50 | 120 | 90.2 | 8875 | PASS |
| | 175 | 174 | 4 | 9 | 7.4 | 658 | PASS |
| | 176 | 174 | 95 | 101 | 96.4 | 8557 | PASS |
| | 177 | 176 | 5 | 9 | 5.2 | 443 | PASS |

Data File : C:\HPCHEM\1\DATA\AN040201.D Vial: 1 Operator: RJP : 2 Apr 2016 10:48 am Acq On Inst : MSD #1 ; BFB1UG Sample Multiplr: 1.00 Misc : A316 1UG MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A316\_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

Spectrum Information: Average of 18.141 to 18.147 min.

AN040201.D A316 10G.M

| Target
Mass | Rel. to
Mass | Lower
Limit* | Upper
Limit% | Rel.
Abn§ | Raw
Abn | Result
Pass/Fail |
|----------------|-----------------|-----------------|-----------------|--------------|------------|---------------------|
| 50 | 95 | 8 | 40 | 18.2 | 2718 | PASS |
| 75 | 95 | 30 | 66 | S0.7 | 7557 | PASS |
| 95 | 95 | 100 | 100 | 100.G | 14902 | PASS |
| 96 | 95 | 5 | 9 | 6.7 | 1000 | PASS |
| 173 | 174 | 0.00 | 2 | 0.2 | 31 | PASS |
| 174 | 95 | 50 | 120 | 85.9 | 12799 | PASS |
| 175 | 174 | 4 | 9 | 6.0 | 772 | PASS |
| 176 | 174 | 95 | 101 | 98.7 | 12634 | PASS |
| 177 | 176 | 5 | 9 | 6.7 | 841 | PASS |

Tue Apr 26 14:59:39 2016 MSD1

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

FORMER EMERSON LANDFILL Project 210173 SDG: C1703050 Sampled 03/12/2017

TO-15 AIR SAMPLES

| 1770-IAQ-2B | (C1703050-01) |
|--------------|---------------|
| 1770-IAQ-3B | (C1703050-02) |
| 1770-IAQ-4B | (C1703050-03) |
| 1770-OUTDOOR | (C1703050-04) |
| 1770-DupeB | (C1703050-05) |

DATA ASSESSMENT

One data package containing analytical results for five TO-15 samples was received from LaBella Associates, P.C. on 31Mar17. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Emerson Landfill Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of ten volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The results reported from 1770-IAQ-4B and DupeB have been qualified as estimations because the samples were not collected correctly.

The chloromethane results from this project have been qualified as estimations due to a high spiked blank recovery.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

Jami James B. Baldwin

Date: 02 May 17

James B. Baldwin DATAVAL, Inc.

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained four TO-15 samples that were collected in 1-liter SUMMA canisters and one sample, 1770-OUTDOOR, that was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples. Sampling was completed on 12Mar17. The canisters were shipped to the laboratory, via FedEx-Ground, on 14Mar17 and were received on 17Mar17. Although the sample canisters were received intact and properly labeled, custody seals were not present on the packaging.

Canister vacuum readings were recorded in the laboratory prior to shipment, in the field prior to and following sampling, and in the laboratory at the time of receipt and at the time of analysis.

| SAMPLE | PRIOR TO
SHIPMENT
("Hg) | PRIOR TO
SAMPLING
("Hg) | POST
SAMPLING
("Hg) | LAB
ANALYSIS
("Hg) |
|--------------|-------------------------------|-------------------------------|---------------------------|--------------------------|
| 1770-IAQ-2B | -30 | -30 | -7 | -7 |
| 1770-IAQ-3B | -30 | -30 | -5 | -5 |
| 1770-IAQ-4B | -30 | -30 | -10 | -9 |
| 1770-OUTDOOR | -30 | -30 | -6 | -6 |
| 1770-DupeB | -30 | -30 | -10 | -7 |

The canister regulators were set in the laboratory to collect 6hour samples. However, when sampling was completed, the canister for 1770-IAQ-2B had not reached the required end point of -4 to -6 "Hg. Data has not been qualified due to this issue because exceedence was minor. Samples of 1770-IAQ-4B and DupeB were collected for nine hours. Even with this prolonged period of sampling the method end point was not reached. The results from this pair of samples have been qualified as estimations because the samples were not collected correctly.

The vacuum readings recorded after sampling and at the time of analysis indicated that the integrity of each sample had been maintained during this period. The analysis of this group of samples was completed on 20Mar17 and 21Mar17. The ASP holding time limitation was satisfied.

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters were cleaned in two batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination above the laboratory's reporting limit.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

One method blank was analyzed with this group of samples. This blank demonstrated acceptable chromatography and was free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported for standards that were analyzed prior to the initial instrument calibration and the analysis of program samples. These checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed on 12Mar17. Standards of 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

A continuing calibration check standard was analyzed on 20Mar17, prior to the analysis sequence that included the samples from this project. This check demonstrated an acceptable level of instrument stability.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, however, an acceptable recovery was reported for each surrogate addition to this group of samples,

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard

just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, acceptable performance was reported for each internal standard addition to this group of samples. The internal standard retention time of each sample fell within a window of ± 10 seconds.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

1770-OUTDOOR was selected for matrix spiking. Each targeted analyte was added to two volumes of this sample. The recoveries reported for these additions demonstrated acceptable levels of measurement precision and accuracy.

A pair of spiked blanks (LCS/LCSD) was also analyzed with this group of samples. This LCS/LCSD pair produced a high recovery of chloromethane (140%). The chloromethane results from this group of samples have been qualified as estimations based on this indication of positive bias.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The duplicate sample that was included in this delivery group was not identified. It is noted, however, that the previously addressed spiked samples demonstrated an acceptable level of measurement precision.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument print outs. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples. SUMMARY OF QUALIFIED DATA

SAMPLED MARCH 2017

| LANDFILL | |
|----------|--|
| EMERSON | |
| FORMER | |

| SPIKED BLANK
CHLOROMETHANE | 2.0J
1.7J
1.7J
1.5J
1.8J |
|-------------------------------|--|
| SAMPLING | ALL J/UJ
ALL J/UJ |
| | (C1703050-01)
(C1703050-02)
(C1703050-03)
(C1703050-03)
(C1703050-04)
(C1703050-05) |
| | 1770-IAQ-2B
1770-IAQ-3B
1770-IAQ-4B
1770-OUTDOOR
1770-DupeB |

```
Date: 27-Mar-17
```

| CLIENT: | LaBella Associates, P | .C. | | Client Sample ID: 1770-1AQ-2B | | | | | |
|-----------------------|-----------------------|---------|---------|-------------------------------|------------------|--------|-----------------------|--|--|
| Lab Order: | C1703050 | | | | Tag Number: | 368.2 | 368.259 | | |
| Project: | Former Emerson St L | andfill | | | Collection Date: | 3/12/2 | 2017 | | |
| Lab ID: | | Matrix: | | AIR | | | | | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed | | |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | тс | -15 | | 1 | Analyst: RJP | | |
| 1,1,1-Trichloroethane | | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| 1.1-Dichloroethane | | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| 1,1-Dichloroeth | ene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| Chloromethane | - | 2.0] | 0.31 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| cis-1,2-Dichloro | ethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| Tetrachloroethy | lene | < 1.0 | 1.0 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| trans-1,2-Dichlo | roethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| Trichloroethene | | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |
| Vinyl chloride | | < 0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 10:03:00 PM | | |

AK

Qualifiers:

Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 5

\*\*

```
Date: 27-Mar-17
```

| CLIENT:
Lab Order: | | | | C | Client Sample ID:
Tag Number: | | | | |
|-----------------------|---------------------|---------|---------|------|----------------------------------|--------|-----------------------|--|--|
| Project: | Former Emerson St L | andfill | | | Collection Date: | 3/12/2 | 3/12/2017 | | |
| Lab ID: | C1703050-002A | | Matrix: | | AIR | AIR | | | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed | | |
| 1UG/M3 W/ 0.25 | UG/M3 CT-TCE-VC | | то | -15 | | | Analyst: RJP | | |
| 1,1,1-Trichloroet | hane | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| 1,1-Dichloroetha | ne | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| 1,1-Dichloroethe | ne | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Chioroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Chloromethane - | - | 1.7] | 0.31 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| cis-1,2-Dichloroe | thene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Tetrachloroethyle | ene | < 1.0 | 1.0 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| trans-1,2-Dichlor | oethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Trichloroethene | | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |
| Vinyl chloride | | < 0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 10:45:00 PM | | |

AS

\*\* Qualifiers: Quantitation Limit Results reported are not blank corrected . В Analyte detected in the associated Method Blank Ë Estimated Value above quantitation range H Holding times for preparation or analysis exceeded Analyte detected below quantitation limit J JN Non-routine analyte. Quantitation estimated. ND Not Detected at the Limit of Detection S Spike Recovery outside accepted recovery limits

ARS

```
Date: 27-Mar-17
```

| CLIENT:
Lab Order: | | | | C | Client Sample ID:
Tag Number: | the second se | | |
|-----------------------|----------------------|--------|---------------|------|----------------------------------|---|-----------------------|--|
| Project: | Former Emerson St La | ndfill | | | Collection Date: | 3/12/2 | 2017 | |
| Lab ID: | C1703050-003A | | | | Matrix: | AIR | | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed | |
| 1UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | то | -15 | | | Analyst: RJP | |
| 1.1,1-Trichloroe | thane | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| 1,1-Dichloroetha | ine | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| 1,1-Dichloroethe | ene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Chloromethane | - | 1.7] | 0.31 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| cis-1,2-Dichloro | ethene | < 0 59 | 0.59 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Tetrachloroethy | ene | < 1.0 | 1.0 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| trans-1,2-Dichlo | roethene | < 0.59 | ふ 0.59 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Trichloroethene | | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |
| Vinyl chloride | | \$0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 11:28:00 PM | |

\*\* Qualifiers: Quantitation Limit Results reported are not blank corrected B Analyte detected in the associated Method Blank E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded Analyte detected below quantitation limit 1 JN Non-routine analyte. Quantitation estimated. ND Not Detected at the Limit of Detection Page 3 of 5 S Spike Recovery outside accepted recovery limits

Date: 27-Mar-17

| CLIENT: LaBella Associates, P.C.
Lab Order: C1703050 | | | | C | lient Sample ID:
Tag Number: | | | | |
|---|---------------------|---------|---------|-------|---------------------------------|-------------|----------------------|--|--|
| Project: | Former Emerson St L | andfill | | | Collection Date: | | | | |
| Lab ID: | | | | Matri | | No. and the | | | |
| Analyses | | Result | **Limit | Qual | Units | DF | Date Analyzed | | |
| UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | то | -15 | | | Analyst: RJP | | |
| 1,1,1-Trichloroethane | | < 0.82 | 0.82 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| 1,1-Dichloroeth | ane | < 0.61 | 0.61 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| 1,1-Dichloroethe | enø | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| Chloroethane | | < 0.40 | 0.40 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| Chloromethane | - | 1.5] | 0.31 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| cis-1,2-Dichloro | ethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| Tetrachloroethy | lene | < 1.0 | 1.0 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| trans-1,2-Dichlo | roethene | < 0.59 | 0.59 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| Trichloroethene | | < 0.21 | 0.21 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |
| Vinyl chloride | | < 0.10 | 0.10 | | ug/m3 | 1 | 3/20/2017 7:50:00 PM | | |

MS

| Qualifiers: | ** | Quantitation Limit | | | |
|-------------|----|----------------------------------|--|--|--|
| | R | Analyte detected in the associat | | | |

- B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

,

| Centek Laboratories, L | |
|------------------------|--|
|------------------------|--|

```
Date: 27-Mar-17
```

| CLIENT: | LaBella Associates, P. | .C. | | Client Sample ID: | | | 1770-Dupe B | | | |
|-----------------------|------------------------|---------|---------|-------------------|--------|-----|-----------------------|--|--|--|
| Lab Order: | C1703050 | | | Tag Number: | | | 1182.1161 | | | |
| Project: | Former Emerson St La | andfill | | Collection | | | | | | |
| Lab ID: C1703050-005A | | | | M | atrix: | AIR | | | | |
| Analyses | | Result | **Limit | Qual Units | | DF | Date Analyzed | | | |
| UG/M3 W/ 0.2 | 5UG/M3 CT-TCE-VC | | TO- | 15 | | | Analyst: RJP | | | |
| 1,1,1-Trichloroethane | | < 0.87 | 0.82 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| 1,1-Dichloroeth | ane | < 0.6 | 0.61 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| 1,1-Dichloroeth | ene | < 0.59 | 0.59 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| Chloroethane | | < 0.40 | 0.40 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| Chloromethane | - | 1.8 | 0.31 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| cis-1,2-Dichloro | ethene | < 0,59 | 0.59 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| Tetrachloroethy | lene | < 1.0 | 1.0 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| trans-1,2-Dichic | proethene | < 0.59 | UJ 0.59 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| Trichloroethene | | < 0.21 | 0.21 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |
| Vinyl chloride | | < 0.10 | 0.10 | ug/m3 | | 1 | 3/21/2017 12:10:00 AM | | | |

1KS

Qualifiers: \*\*

Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 5

CENTEK LABORATORIES, LLC

Date: 27-Mar-17

1

QC SUMMARY REPORT SURROGATE RECOVERIES

| CLIENT: | | Associates, P.C | • | | | | | |
|-------------------------------------|--|-----------------|---------------------------------------|--|--|---|---|---|
| Work Order:
Project:
Test No: | C170305
Former I
TO-15 | Emerson St Lan | dfill
Matrix: A | | | | | |
| Sample ID | 10-13 | BR4FBZ | | | | | | |
| ALCSIUG-03201 | 7 | 96.0 | | | | | ··································· | · • · · · · · · · · · · · · · · · · · · |
| ALCSIUGD-0320 | 17 | 97.0 | | •••••••••••••••••••••••••••••••••••••• | ······ | | | 1.
1.
1. |
| AMB1UG-032017 | 1 | 93.0 | · · · · · · · · · · · · · · · · · · · | ···· • • • • • • • • • • • • • • • • • | | | | |
| C1703050-001A | | 99.0 | | | | | | |
| C1703050-002A | | 101 | | | ······································ | | a | |
| C1703050-003A | ······································ | 96.0 | | ···· | | | 1 | |
| C1703050-004A | | 96.0 | · · | | | | | |
| C1703050-004A N | /IS | 98.0 | | | | | ul in a an a <sup>n</sup> na n air an a' an a | · · · · · · · · · · · · · · · · · · · |
| C1703050-004A N | ASD | 99.0 | | | | · | 1 | ağı (|
| C1703050-005A | ······································ | 100 | | | | | | |

| Acronym | Surrogate | QC Limits |
|---------|-----------------------------|----------------|
| BR4FBZ | = Bromofluorobenzene | 70-130 |
| | | |
| | | |
| | | |
| | | |
| * Sun | ogate recovery outside acco | entance limits |

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\A0032002.D Tune Time : 20 Mar 2017 11:14 am

| | pration File : | | | | 27548 | 128642 | 106520 |
|------------|----------------|-----|-----------|---------------|-------------------------|-------------------------|-------------------------|
| | | | (BFB) | | (IS1)
19677
1/806 | (IS2)
91887
55/32 | (IS3)
76086
45652 |
| 'ile | Sample | DL | Surrogate | Recovery % | | Standard Resp | |
| 0032003.D | ALCS1UG-03201 | 7 | 96 | | 18587 | 86723 | 73319 |
| 0032004.D | AMB1UG-032017 | | 93 | | 18191 | 81621 | 66968 |
| 0032014.D | C1703050-004A | | 96 | | 13369 | 59517 | 48346 |
| .0032015.D | C1703050-004A | MS | 98 | | 12965 | 59084 | 49891 |
| 0032016.D | C1703050-004A | MSD | 99 | | 12927 | 61212 | 51251 |
| 0032017.D | C1703050-001A | | 99 | ********** | 12944 | 59644 | 49626 |
| 0032018.D | C1703050-002A | | 101 | ************* | 13210 | 60426 | 51042 |
| 0032019.D | C1703050-003A | | 96 | | 13112 | 60666 | 50616 |
| 0032020.D | C1703050-005A | | 100 | | 12939 | 60039 | 50085 |
| 0032026.D | C1703050-004A | 10x | 94 | | 14458 | 67096 | 55112 |
| 0032027.D | C1703050-001A | 10x | 92 | | 12952 | 62172 | 50174 |
| 0032028.D | C1703050-002A | 10x | 98 | | 12844 | 57925 | 46234 |
| 0032029.D | C1703050-003A | 10x | 92 No | t required | 11878 | 56049 | 45186 |
| D032030.D | C1703050-005A | 10x | 91 | 4 | 11444 | 53989 | 44090 |
| 0032031.D | ALCS1UGD-03201 | .7 | 97 | | 11608 | 53720 | 44926 |

t - fails 24hr time check \* - fails criteria

Created: Mon Mar 27 11:26:49 2017 MSD #1/

Date: 27-Mar-17

CENTEK LABORATORIES, LLC

| | LaBella Associates, P.C. | | | | | | | | | | |
|--|---|--------|-----------------------|----------------|------|--------------------------|---------------|-------------|---------------|----------|------|
| Work Order: C1/03030
Project: Former Em | CI/103020
Former Emerson St Landfill | | | | | | - | FestCode: (| 0.25CT-TCE-VC | E-VC | |
| Sample ID ALCS1UG-032017 | SampType: LCS | TestCo | TestCode: 0.25CT-TCE- | E- Units: ppbV | | Prep Date: | te: | | RunNo: 12048 | 048 | |
| Client ID: ZZZZ | Batch ID: R12048 | Test | Testino: TO-15 | | | Analysis Date: | te: 3/20/2017 | 017 | SeqNo: 140948 | 0948 | |
| Analyte | Result | Pal | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD | RPDLimit | Qual |
| 1,1,1-Trichloroethane | 0.9800 | 0.15 | F | 0 | 98.0 | 70 | 130 | | | | |
| 1,1-Dichloroethane | 0.9700 | 0.15 | ** | 0 | 07.6 | 202 | 130 | | | | |
| 1,1-Dichloroethene | 0.9200 | 0.15 | - | 0 | 92.0 | 02 | 130 | | | | |
| Chloroethane | 1.060 | 0.15 | ** | 0 | 106 | 02 | 130 | | | | |
| Chloromethane | 1.250 | 0.15 | 1 | 0 | 125 | 20 | 130 | | | | |
| cis-1,2-Dichloroethene | 0.9400 | 0.15 | | 0 | 94.0 | 70 | 130 | | | | |
| T etrachtoroethytene | 1.040 | 0.15 | *** | 0 | 104 | 02 | 130 | | | | |
| frans-1,2-Dichloroethene | 0.9500 | 0.15 | 947 | 0 | 95.0 | 70 | 130 | | | | |
| Trichloroethene | 1.000 | 0.040 | + | 0 | 100 | 20 | 130 | | | | |
| Vinyl chloride | 1.040 | 0.040 | 1 | 0 | 104 | 70 | 130 | | | | |
| Sample ID ALCS1UGD-032017 | SampType: LCSD | TestCo | TestCode: 0.25CT-TCE- | E- Units: ppbV | | Prep Date | te: | | RunNo: 12048 | 348 | |
| Client ID: ZZZZ | Batch ID: R12048 | Test | TestNo: TO-15 | | | Analysis Date: 3/21/2017 | te: 3/21/20 | 117 | SeqNo: 140949 | 0949 | |
| Analyte | Result | lQq | SPK vatue | SPK Ref Val | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD | RPOLimit | Qual |
| 1,1,1-Trichloroethane | 1.090 | 0.15 | 1 | 0 | 109 | 70 | 130 | 96.0 | 10.6 | 30 | |
| 1,1-Dichloroethane | 1.070 | 0.15 | + | 0 | 107 | 70 | 130 | 79.0 | 9.80 | 30 | |
| 1, 1-Dichloroethene | 0.9700 | 0.15 | 1 | 0 | 97.0 | 20 | 130 | 0.92 | 5.29 | 30 | |
| Chloroethane | 1.290 | 0.15 | * | 0 | 129 | 20 | 130 | 1.06 | 19.6 | 30 | |
| Chloromethane | 1.400 | 0.15 | + | 0 | 140 | 02 | 130 | 1.25 | 11.3 | 30 | s |
| cis-1,2-Dichloroethene | 1.030 | 0.15 | ** | 0 | 103 | 02 | 130 | 0.94 | 9.14 | 30 | |
| Tetrachloroethylene | 1.080 | 0.15 | 1 | 0 | 108 | 01 | 130 | 1.04 | 3.77 | 30 | |
| trans-1,2-Dichloroethene | 1.030 | 0.15 | 4 | 0 | 103 | 10 | 130 | 0.95 | 8.08 | 30 | |
| Trichloroethene | 1.050 | 0.040 | - | 0 | 105 | 02 | 130 | 1 | 4.88 | 30 | |

Centek Laboratories, LLC

Page I of 2

Spike Recovery outside accepted recovery limits . - 0

| | | | | | | | L | TestCode: 0.25CT-TCE-VC | .25CT-TCI | E-VC | |
|---|------------------------------------|---------|-------------------------------------|--|-------|-----------------------------|--|-------------------------------------|-------------------------------|---------------|------|
| Sample ID ALCS1UGD-032017 SampType: LCS0
Client ID: ZZZZ Batch ID: R1204 | SampType: LCSD
Batch ID: R12048 | TestCor | estCode: 0.25CT-TC
TestNo: TO-15 | TestCode: 0.25CT-TCE- Units: ppbV
TestNo: TO-15 | Ar | Prep Date:
natysis Date: | Prep Date:
Analysis Date: 3/21/2017 | 17 | RunNo: 12048
SeqNo: 140949 | 048
0949 | |
| Analyte | Result | POL | SPK value | SPK value SPK Ref Val | %REC | LowLimit | HighLimit | %REC LowLimit HighLimit RPD Ref Val | %RPD | %RPD RPDLimit | Qual |
| Vinyl chloride | 1.350 | 0.040 | - | D | 135 🗸 | 20 | 130 | 1.04 | 25.9 | 30 | S |

Page 29 of 213

Results reported are not blank corrected . - 0

Qualifiers:

- Analyse detected below quantitation limit
- Spike Recovery outside accepted recovery limits
- Estimated Value above quantitation range Not Detected at the Limit of Detection BND E
- Holding times for proparation or analysis exceeded RPD outside accepted recovery limits **I** 4

| 5 |
|-----|
| - |
| 1 |
| - |
| a |
| - |
| |
| 15 |
| 01 |
| 6.4 |
| |
| 2 |
| - |
| 50 |
| 0 |
| |

ANALYTICAL QC SUMMARY REPORT

CENTEK LABORATORIES, LLC

Page 30 of 213

| CLIENT: LaBella As
Work Order: C1703050 | LaBella Associates, P.C.
C1703050 | | | | | | | | | | |
|--|--------------------------------------|--------|---------------|-----------------------------------|------|--------------------------|-------------|-------------------------------------|-------------------------|--------------------|------|
| Project: Former En | Former Emerson St Landfill | | | | | | I | estCode: | TestCode: 0.25CT-TCE-VC | E-VC | |
| Sample ID AMB1UG-032017 | SampType: MBLK | TestCo | de: 0.25CT-TC | TestCode: 0.25CT-TCE- Units: ppbV | | Prep Date: | ei ii | | RunNo: 12048 | 048 | |
| Client ID: ZZZZ | Batch ID: R12048 | Tesh | TestNo: TO-15 | | | Analysis Date: 3/20/2017 | e: 3/20/201 | 17 | SeqNo: 140947 | 1947 | |
| Analyte | Result | POL | SPK value | SPK value SPK Ref Val | %REC | LowLimit | HighLimit | %REC LowLimit HighLimit RPD Ref Val | %RPD | %RPD RPDLimit Qual | Qual |
| 1,1,1-Trichloroethane | < 0.15 V | 0.15 | | | | | | | | | |
| 1,1-Dichloroethane | < 0.15 | 0.15 | | | | | | | | | |
| 1,1-Dichloroethene | < 0.15 | 0.15 | | | | | | | | | |
| Chioroethane | < 0.15 | 0.15 | | | | | | | | | |
| Chloromethane | < 0.15 | 0.15 | | | | | | | | | |
| cis-1,2-Dichloroethene | < 0.15 | 0.15 | | | | | | | | | |
| Tetrachloroethylene | < 0.15 | 0.15 | | | | | | | | | |
| trans-1,2-Dichloroethene | < 0.15 | 0.15 | | | | | | | | | |
| Trichloroethene | < 0.040 | 0.040 | | | | | | | | | |

0.040

< 0.040

Vinyl chloride

Results reported are not blank corrected 4 Qualifiers:

Analyte detected below quantitation limit - 5

Spike Recovery outside accepted recovery limits

Estimated Value above quantitation range Not Detected at the Limit of Detection AD RD

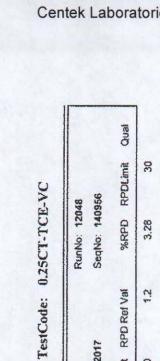
- Holding times for preparation or analysis exceeded HX
 - RPD outside accepted recovery limits
- Page 1 of 1

Date: 27-Mar-17

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

| LaBella Associates, P.C. | C1703050 |
|--------------------------|------------------|
| CLIENT: LaB | Work Order: C17(|


1 Page 31 of 213

| Citt Whon-nonco in and hipo | SampType: MS | TestCox | TestCode: 0.25CT-TCE- | Units: ppbV | | Prep Date: | ài | | RunNo: 12048 | 048 | |
|-----------------------------|------------------|---------|-----------------------|-------------|-------|--------------------------|--------------|-------------|---------------|----------|------|
| Client ID: 1770-Outdoor-B | Batch ID: R12048 | Testh | TestNo: TO-15 | | 4 | Analysis Date: | e: 3/20/2017 | 117 | SeqNo: 140955 | 0955 | |
| Analyte | Result | PQL | SPK value SP | SPK Ref Val | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD | RPOLIMI | Qual |
| 1, 1, 1-Trichtoroethane | 1.030 | 0.15 | 1 | 0 | 103 / | 20 | 130 | | | | |
| 1,1-Dichloroethane | 0.9900 | 0.15 | ۴ | 0 | 0.99 | 20 | 130 | | | | |
| 1,1-Dichloroethene | 0.9300 | 0.15 | F | 0 | 93.0 | 02 | 130 | | | | |
| Chloroethane | 1.260 | 0.15 | ۲ | 0 | 126 | 02 | 130 | | | | |
| Chloromethane | 2.100 | 0.15 | 1 | 0.75 | 135 | 202 | 4904 | 135 | | | S |
| cis-1,2-Dichloroethene | 1.010 | 0.15 | 1 | 0 | 101 | 70 | 130 | | | | |
| Tetrachioroethylene | 1.020 | 0.15 | + | 0 | 102 | 70 | 130 | | | | |
| trans-1,2-Dichloroethene | 0,9800 | 0.15 | 1 | 0 | 98.0 | 20 | 130 | | | | |
| Trichloroethene | 1.040 | 0.040 | 1 | 0 | 104 | 20 | 130 | | | | |
| Vinył chloride | 1.200 | 0.040 | 1 | 0 | 120 | 02 | 130 | | | | |
| Sample ID C1703050-004A MS | SampType: MSD | TestCor | TestCode: 0.25CT-TCE- | Units: ppbV | | Prep Date: | ä | | RunNo: 12048 | 748 | |
| Client ID: 1770-Outdoor-B | Batch ID: R12048 | Testi | TestNo: TO-15 | | 4 | Analysis Date: 3/20/2017 | e: 3/20/20 | 117 | SeqNo: 140956 | 9956 | |
| Analyte | Result | PQL | SPK value SP | SPK Ref Val | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD | RPDLimit | Qual |
| ,1,1-Trichloroethane | 1.000 | 0.15 | L | 0 | 1001 | 20 | 130 | 1.03 | 2.96 | 30 | |
| ,1-Dichloroethane | 1.040 | 0.15 | - | 0 | 104 | 20 | 130 | 0.99 | 4.93 | 30 | |
| , 1-Dichloroethene | 0.9100 | 0.15 | | 0 | 91.0 | 02 | 130 | 0.93 | 2.17 | 30 | |
| Chloroethane | 1.240 | 0.15 | - | 0 | 124 | 02 | 130 | 1.26 | 1.60 | 30 | |
| Chloromethane | 1.770 | 0.15 | - | 0.75 | 102 | 02 | 130 | 2.1 | 1.71 | 30 | |
| cis-1,2-Dichloroethene | 1.030 | 0.15 | F | 0 | 103 | 02 | 130 | 1.01 | 1.96 | 30 | |
| Tetrachioroethylene | 0.9900 | 0.15 | 1 | 0 | 0.66 | 20 | 130 | 1.02 | 2.99 | 30 | |
| trans-1,2-Dichloroethene | 1.000 | 0.15 | *** | 0 | 100 | 02 | 130 | 0.98 | 2.02 | 30 | |
| Trichtoroethene | 1,010 | 0.040 | 1 | 0 | 101 | 20 | 130 | 1.04 | 2.93 | 30 | |

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit

s

Page 1 of 2

Former Emerson St Landfill LaBella Associates, P.C. CI703050 Sample ID C1703 Work Order: CLIENT: Project:

| Sample 10 | Samole ID C1703050-0044 MS SamoTvoe MSD | SampTyne: MSD | TestCoc | Part 1 25CT-TCE | TestCode: 0.35CT.TCF. 1 loits: nohV | | Pren Date | ia | | Dunho 17040 | A C | |
|----------------|---|------------------|---------|-----------------------|-------------------------------------|------|--------------|--------------------------|-------------------------------------|---------------|--------------------|------|
| Client ID: | Client ID: 1770-Outdoor-B | Batch ID: R12048 | Testh | TestNo: TO-15 | | 4 | unalysis Dat | Analysis Date: 3/20/2017 | 2 | SeqNo: 140956 | 956 | |
| Analyte | | Result | POL | SPK value SPK Ref Val | SPK Ref Val | %REC | LowLimit | HighLimit F | %REC LowLimit HighLimit RPD Ref Val | %RPD | %RPD RPDLimit Qual | Qual |
| Vinyl chloride | de | 1.240 | 0.040 | 1 | 0 | 124 | 70 | 130 | 12 | 3.28 | 30 | |

Centek Laboratories, LLC

Results reported are not blank corrected - 0

Qualifiers:

- Analyse detected below quantitation limit
 - Spike Recovery outside accepted recovery limits
- E Estimated Value above quantitation range ND Not Detected at the Limit of Detection
- H Holding times for preparation or analysis exceeded
 R RPD outside accepted recovery limits

Page 32 of 213

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 3

Field Logs

| | | Soil Vapor | Instrusion | Project Name: | Former Emerson St | reet Landfill- 1770 Em | erson St |
|------------------|-------------------------|------------------|-------------------------|-----------------|-------------------------|------------------------|-------------------------|
| IAR | ELIV | _ | ing Log | Project No: | 210173 | | |
| | sociates, D.P.C | | | Ū. | AA and ED | | |
| ~ | | Former Em | erson Street | Sampled By: | | | |
| | | | dfill | Date: | 21-Mar-16 | | |
| | | 1770 Eme | rson Street | Weather: | ~35 degress overca | st | |
| | | | | Wind Speed/Dir | rection: from SW les | s than 5 mph | |
| | | | | | | | |
| ID: 17 | 70-SVI-1 | ID: 17 | 70-SVI-2 | ID: 1 | 770-SVI-3 | ID: 177 | 0-Outdoor Air |
| Sub-Slab Pressur | e: 0.00 "wc | Sub-Slab Pressur | e: 0.00 "wc | Sub-Slab Pressu | ıre: -0.006 "wc | Sub-Slab Pressur | e: NA "w |
| Canister: 1179 | | Canister: 89 | | Canister: 188 | | Canister: 322 | |
| Regulator: 343 | | Regulator: 1166 | | Regulator: 308 | | Regulator: 1159 | |
| Helium Tracer in | | Helium Tracer in | | | in shroud: 60.8% | Helium Tracer in | |
| Helium Tracer at | | Helium Tracer at | | Helium Tracer | | Helium Tracer at | |
| Sub | -Slab | Sub | -Slab | Sut | o-Slab | Outd | loor Air |
| Time | Vacuum Reading
("Hg) | Time | Vacuum Reading
("Hg) | Time | Vacuum Reading
("Hg) | Time | Vacuum Reading
("Hg) |
| Start 808 | 30 | Start 843 | 30 | Start 906 | 30 | Start 800 | 30 |
| End 1357 | 5 | End 1450 | 3 | End 1415 | 4 | End 1353 | 3 |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | 1 | | | | 1 | 1 |

Notes/Activities: 1770-SVI-1 = Blind Dup 2 (canister 1179 regulator 343)

| | _ | | Soil Gas | Testing Log | Project Name: | Former Emerson Street Landfill | - 1770 Emerson ST |
|---------------------|-------------------------|----|-------------------|-------------------------|-----------------|---------------------------------|-------------------|
| LABE | ニレビハ | | | | Project No: | 210173 | |
| Ass | sociates, D.P. | C. | Former F | erson Street | Sampled By: | AA and ED | |
| | | | | ierson Street | Date: | 21-Mar-16 | |
| | | | | rson Street | | | |
| | | | 1770 Ellie | Ison Street | Weather: | ~35 degress overcast | |
| | | | | | Wind Speed/Dir | ection: from SW less than 5 mph | l |
| D: 1770 | -IAQ-1 | ſ | ID: 17 | 70-IAQ-2 | ID: 1 | 770-IAQ-3 | |
| Sub-Slab Pressure: | | | Sub-Slab Pressure | | Sub-Slab Pressu | | |
| Canister: 1183 | | | Canister: 89 | | Canister: 188 | | |
| Regulator: 339 | | ľ | Regulator: 1166 | | Regulator: 308 | | |
| Helium Tracer in sł | hroud: NA | | Helium Tracer in | shroud: NA | Helium Tracer | n shroud: NA | |
| Helium Tracer at p | oint: NA | | Helium Tracer at | | Helium Tracer a | t point: NA | |
| Indoor | | ľ | | or Air | | oor Air | |
| Time | Vacuum Reading
("Hg) | | Time | Vacuum Reading
("Hg) | Time | Vacuum Reading
("Hg) | |
| Start 804 | 30 | Ī | Start 843 | 29 | Start 943 | 30 | |
| End 1335 | 4 | ľ | End 1453 | 9.5 | End 1418 | 7 | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

Notes/Activities:

1770-IAQ-1 = Blind Dup 1 (canister 419 regulator 339)

| | Soil Gas Testing Log | Project Name: | Former Emerson Street Landfill- 1770 Emerson ST |
|--------------------|-----------------------|----------------|---|
| LABELIA | | Project No: | 210173 |
| Associates, D.P.C. | Former Emerson Street | Sampled By: | AA |
| | Landfill | Date: | 3/21/20163/12/2017 |
| | 1770 Emerson Street | Weather: | ~45 degress overcast |
| | | Wind Speed/Dir | rection: from W less than 5 mph |

| ID: 1770-IAQ-2B ID: | | | | | |
|---------------------------------|---|---|------------|--|--|
| Sub-Slab Pressure: NA | | | Sub | | |
| Canister: 368
Regulator: 259 | | | Can
Reg | | |
| | | | | | |
| | | | | | |
| | Helium Tracer at point: NA Hel Indoor Air | | | | |
| | Vacuum Reading | | | | |
| Time | ("Hg) | | | | |
| Start 800 | 30 | | | | |
| 815 | 29 | | | | |
| 910 | 26 | | | | |
| 1000 | 23 | | | | |
| 1100 | 19 | | | | |
| 1230 | 12.0 | | | | |
| 1310 | 9 | | | | |
| End 1345 | 7 | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | [| | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

| D: 1770-IAQ-3B | | | | | | | | | |
|--|------|--|--|--|------------|-------------------------|--|--|--|
| ib-Slab Pressure: NA
anister: 1176
egulator: 1170
elium Tracer in shroud: NA
elium Tracer at point: NA | | | | | | | | | |
| | | | | | Indoor Air | | | | |
| | | | | | Time | Vacuum Reading
("Hg) | | | |
| | | | | | Start 802 | 30 | | | |
| 815 | 28.0 | | | | | | | | |
| 910 | 23 | | | | | | | | |
| 1000 | 20 | | | | | | | | |
| 1100 | 15 | | | | | | | | |
| 1230 | 9.0 | | | | | | | | |
| 1310 | 6.0 | | | | | | | | |
| End 1330 | 5.0 | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

| wind Speed/Direction: from w less than 5 mpn | | | | | | | | |
|---|----|---|--|--|-----------|-------------------------|-----------|-------|
| | | 10 | | | | | | |
| ID: 1770-IAQ-4B
Sub-Slab Pressure: NA
Canister: 168
Regulator: 1161
Helium Tracer in shroud: NA
Helium Tracer at point: NA
Indoor Air | | ID: 1770-Outdo | | | | | | |
| | | Sub-Slab Pressure: NA
Canister: 484
Regulator: 251
Helium Tracer in shroud: N
Helium Tracer at point: NA
Outdoor Air | | | | | | |
| | | | | | Time | Vacuum Reading
("Hg) | Time | Vacuu |
| | | | | | Start 805 | 30+ | Start 804 | |
| | | | | | 815 | 30 | 815 | |
| | | | | | 910 | 27 | 1100 | |
| 1000 | 25 | 1310 | | | | | | |
| 1100 | 22 | End 1330 | | | | | | |
| 1230 | 18 | | | | | | | |
| 1310 | 15 | | | | | | | |
| 1345 | 13 | | | | | | | |
| End 1500 | 10 | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

| Regulator: 251 | | | | |
|----------------------------|-------------------------|--|--|--|
| Helium Tracer in sh | | | | |
| Helium Tracer at point: NA | | | | |
| Outdoor Air | | | | |
| Time | Vacuum Reading
("Hg) | | | |
| Start 804 | 30+ | | | |
| 815 | 30 | | | |
| 1100 | 18 | | | |
| 1310 | 7 | | | |
| End 1330 | 6 | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

1770-Outdoor-B

Notes/Activities:

1770-IAQ-4 = Blind Dup 1 (canister 1182 regulator 1161)

LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 4

Preliminary Building Assessment and Site Reconnaissance

Site: 1770 Emerson Street (500 Lee Road Building C) Site Recon Date: October 14, 2010 Consultant: Stantec/Day Team

Summary of Available Historic Records:

- The structure (approximately 12,000 sq. ft.) was built in 1980.
- The building was originally occupied by General Motors, which used the facility as a chemical storage building. Separate areas were designated for Flammable Gas, Oxidizers, Non-Flammable Gas, Acids, Flammable Liquids, Bulk Storage and Shipping and Receiving.
- The <u>parcel</u> is listed as 1770 Emerson Street. The <u>subject building</u> was formerly part of and is currently known as 500 Lee Road, designated as Building C, for business and mail purposes. A <u>new building</u> (not included in this property survey) is under construction to the south of the subject building and will be referred to as 1770 Emerson Street.
- The property was subdivided from the 500 Lee Road property with the property boundary approximately 17' north of the building's north side. Due to the subdivision, the tanks and pump islands depicted on drawing P-2 are located on the adjacent property to the north.

Current Site Use:

- Currently owned by Vampiro Ventures LLC and occupied by New York Commercial Flooring, a flooring warehouse, retailer, and installer; and by Kimmins Coffee Service, a coffee supply and service company.
- New York Commercial Flooring uses approximately 6,000 sq. ft. for offices and flooring warehousing. This tenant intends to move into a new building (not included in this survey) being built to the south of the subject building at 1770 Emerson Street. The warehousing operations store several chemicals, including VOCs in the form of glues and solvents, but generally do not use these on the premises.
- Kimmins Coffee Service uses approximately 6,000 sq. ft. for offices, coffee supply warehousing, and coffee machine and pot servicing and cleaning. The service and cleaning functions use cleaning chemicals.
- Approximately 6 people occupy the flooring warehouse and office areas during weekdays (1 shift). Approximately 8 people occupy the coffee warehouse and office areas during weekdays (1 shift).
- Approximately 5,500 sq. ft. is used for warehousing of flooring and approximately 500 sq. ft. is used as office space for the flooring company. Approximately 5,000 sq. ft. is used as coffee supply warehousing and approximately 1,000 sq. ft. is used as coffee service office space.

Site Recon Observations:

- Chemical storage observed on-site included:
 - Flooring warehouse area carpet glue storage, vinyl adhesive, epoxy primer, sealant, contact cement, seam sealer, polyurethane
 - o Location 8 Room background adhesive/sealant storage
 - o Location 14 Gas can storage shelf
 - Location 15 Chemical storage shelf polyurethane, caulk, masonry cleaner, contact cement, adhesive, adhesive remover
 - Location 48 Gasoline storage can 2 gal plastic
 - Location 57 Storage shelf with household cleaners
- The foundation system for the building consists of a slab-on-grade concrete floor on caissons (reported by Mr. Chris Leva [owner] to be 16" thick; however, drawing S-1 indicates 8" concrete slab on compacted fill), with masonry walls to 48" high followed by metal walls.
- Floor slab condition was generally good (one floor crack in the flooring warehouse area at Location 30 [<1/8" to 1/4" wide], no heaving observed).
- The building uses ceiling mounted natural gas forced air heat in the warehouses. Office areas are heated separately by ducted heat pump natural gas and electric.
- According to Drawing P-2, utilities enter the building at the north side, they share a common corridor, and they connect to an off-site Power House building.

Site: 1770 Emerson Street (500 Lee Road Building C) Site Recon Date: October 14, 2010 Consultant: Stantec/Day Team

- A sewer interceptor vault is located east of the building at the loading dock. The vault is connected to a 30" storm line.
- Pressure and air exchange rates within building were not known by owner or tenant.

List of Observed Floor Penetrations (Potential SVI Locations):

- Electrical conduit (1") (Locations 28,38,50).
- Fire protection (6") (Location 33).
- Toilets (Locations 18,53,56).
- Roof drain downspout (4") (Location 6)
- Floor drains (3",18") (Locations 16,19,23,40).
- Trench drains (3" wide) (Locations 1,9,10,12,58,60)
- Sump (16") (Location 51)
- Sink drain (3") (Location 21)
- Cleanout (3") (Location 24)
- Floor crack (<1/8"-1/4") (Location 30)
- Floor chip (2") (Location 7)
- Expansion joints (1/4") (Location 46).
- Dock lifts (4'x5') (Locations 25,26,27)
- Cut off rebar or bolts (1/2") (Location 47)
- Hole in base of wall above foundation penetration to exterior (1'x1') (Location 3)
- Other pipes (1"-3") (Locations 34,35,36,37,39)

Site Recon Meter Readings (Total Readings Collected – 67):

- Total Background Readings Collected = 23
 - o Background VOC readings due to operations ranged from 42 to 207 ppb
 - o Background Methane readings due to operations were 0%
- Total Floor Penetration Readings Collected = 34
 - VOC readings above background were recorded at:
 - Locations where readings are potentially related to sewer gases:
 - Location 19 Floor drain = 66 ppb (Background = 61 ppb)
 - Location 21 Sink drain = 86 ppb (Background = 81 ppb)
 - Location 51 Floor sump = 124 ppb (Background = 120 ppb)
 - Location 58 Trench drain = 131 ppb (Background = 120 ppb)
 - Locations where readings are minor (<10% or 50 ppb above background) and presumed to be due to instrument or background variability:
 - Location 3 Hole in base of wall above foundation penetration to exterior = 173 ppb (Background = 127 ppb)
 - Location 46 Expansion joint = 127 ppb (Background = 120 ppb)
 - Location 47 Floor penetrations cut off rebar or bolts = 131 ppb (Background = 120 ppb)
 - Location 50 Electrical conduit = 125 ppb (Background = 120 ppb)
 - Location 53 Toilet base = 135 ppb (Background = 132 ppb)
 - Location 56 Toilet base = 128 ppb (Background = 123 ppb)
 - Note: It is likely that the VOC readings above background at the floor penetration locations
 listed above are due to equipment sensitivity or site operations; however, potential soil vapor
 intrusion as a source cannot be ruled out.

Site: 1770 Emerson Street (500 Lee Road Building C) Site Recon Date: October 14, 2010 Consultant: Stantec/Day Team

o No Methane readings above background were recorded

U:\190500643\report\1770 Emerson St\1770.Emerson.St\_observations.docx

FORMER EMERSON STREET LANDFILL SOIL VAPOR INTRUSION PRELIMINARY BUILDING ASSESSMENT AND SITE RECONAISSANCE

| Parcel Information: | |
|--|-------------------------|
| Address: | |
| Owner: | |
| | |
| Building this Sheet Represents (fill out | one for each building): |
| Interviewer Information: | |
| Name: | Date/Time Prepared: |
| Consultant Firm: | Phone No.: |
| Owner/Interviewee Information: | |
| Last Name: | First Name: |
| Address: | |
| | |
| | |
| Tenant Information (if any): | |
| Tenant Contact Person: | |
| Address: | |
| Company: | |
| Office Phone: | |

SECTION I - Building Construction Information

- B. Does owner have knowledge that ash or solid waste was removed at time of building construction:

If yes, are any documents available?

C. Building Construction

| | Construction Type | Finish Type | Sealed | Square Feet |
|-----------------------|-------------------|-------------|--------|-------------|
| Basement | | | | |
| Crawl Space | | | | |
| First Floor | | | | |
| Foundation Walls | | | | |
| 2 <sup>nd</sup> Floor | | | | |

D. Any additions to building: If yes, list dates and locations:

If yes, note variations in construction:

E. Utility/Floor Penetrations

| | Location(s) | Size/Description |
|----------------------|-------------|------------------|
| Electric | | |
| Gas | | |
| Water | | |
| Sewer/Wastewater | | |
| Sumps | | |
| Floor/Trench Drains | | |
| Dry Well | | |
| Oil/Water Separators | | |
| Cracks in Floor | | |
| Expansion Joints | | |
| Floating Slab | | |
| Monitoring Points | | |
| Scales | | |
| Utility Vaults | | |
| Elevators | | |
| Other | | |

| F. | Does facility have an on Site septic system? | | | | | | |
|----|--|--|--|--|--|--|--|
| | If yes, where and size: | | | | | | |
| G. | Does facility provide pretreatment of wastewater prior to discharge to sanitary sewer? | | | | | | |
| H. | Is there a vapor barrier associated with the foundation system? | | | | | | |
| _ | If yes, indicate type/material, location, thickness, etc.: | | | | | | |
| I. | Is there a radon/sub slab soil vapor mitigation system on any portion of the building? | | | | | | |
| | If yes, describe system and date installed: | | | | | | |
| | If yes, Is the system active or passive? | | | | | | |
| | If yes, Is system currently operational? | | | | | | |
| J. | Standing water or wet areas in lower levels? | | | | | | |
| | If yes, list location and describe: | | | | | | |
| | If yes how frequent: | | | | | | |
| K. | Is the building insulated? | | | | | | |
| | If yes, location(s) and type? | | | | | | |
| L. | Are there any settlement issues with the building? | | | | | | |
| | If yes, describe: | | | | | | |
| M. | Are there any cracks in floor slabs (1 <sup>st</sup> floor or basement)? | | | | | | |
| | If yes, location(s), width, etc.? | | | | | | |
| N. | Are there any elevators in the building? | | | | | | |
| | If yes, describe construction and condition of pit (poured concrete, cinder block, etc.) | | | | | | |
| Co | Comments: | | | | | | |
| | | | | | | | |

SECTION II – Heating, Ventilation and Air Conditioning Information

A. Type of heating system(s) used in this building: For each heat system/unit, provide the following:

| Unit Type | Unit
Location | Areas Heated | Unit Size | Pressurization
(neg. vs. positive) | Air Communication
with other areas (duct
work, doors, etc.) | | | | |
|--------------|--|--------------|-----------|---------------------------------------|---|--|--|--|--|
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| If more that | B. Type of fuel used: If more than one list locations: C. Domestic hot water tank fueled by: | | | | | | | | |
| Comments: | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

SECTION III – Indoor Air Quality Influence Factors

| A. Is there a garage, service area or manufacturing area in building? | | | | | | | | |
|---|--|--|--|--|--|--|--|--|
| If yes, list all that apply: | | | | | | | | |
| Does the garage, service or manufacturing areas have separate heating unit/system? Are petroleum-powered machines or vehicles used or stored within the garage, service area or manufacturing area of building? (<i>e.g., forklifts, vehicle fleet, lawnmower, etc.</i>) | | | | | | | | |
| If yes, specify: | | | | | | | | |
| | | | | | | | | |
| B. Are there any current or former USTs, ASTs or Fueling Facilities on the property? | | | | | | | | |
| If yes, specify location: | | | | | | | | |
| | | | | | | | | |
| C. Are there any current or former hydraulic lifts at the property? | | | | | | | | |
| If yes, locations and note if underground or above ground: | | | | | | | | |
| D. Are there any current or former petroleum or chemical spills at the Site? | | | | | | | | |
| E. Are there any current or former groundwater monitoring wells at the Site?
If yes, specify location and accessibility: | | | | | | | | |
| | | | | | | | | |
| F. Has the building ever had a fire? | | | | | | | | |
| If yes, When: | | | | | | | | |
| G. Is there a maintenance area? | | | | | | | | |
| If yes, Where: | | | | | | | | |

H. Are there any parts cleaners used at the site?

If yes, list location(s) and solvent types:

| I. Are there any drum and/or chemical storage areas? |
|---|
| If yes, list location(s) and materials: |
| |
| J. Are cleaning products used routinely? |
| If yes, When & Where: |
| K. Has painting/staining been done in the last 6 months? |
| If yes, When & Where: |
| L. Is there new carpet, drapes or other textiles within installed within the last year? |
| If yes, Where & When: |
| M. Are there air fresheners in office spaces or bathrooms? |
| If yes, Where & Type: |
| N. Are there exhaust fans (e.g., break rooms, bathrooms, or other locations)? |
| If yes, where vented and how often do they run: |
| O. Has there been a pesticide application on the grounds? |
| If yes, When & Type: |
| P. Is smoking allowed on the property? |
| If yes, is it allowed within buildings and where? |
| Q. Are there odors in the building? |
| If yes, please describe: |
| R. Are solvents used within the building?
(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, etc.) |
| If yes, what types of solvents are used: |

| | S. Is groundwater extracted for any purpose (e.g. cooling water, geothermal, etc.)? | |
|----|--|---|
| | If yes, how many extraction wells, what depths and what is the rate of extraction: | |
| | T. Are there any air handling units in the building? | |
| | If yes, locations, sizes, intakes & exhaust: | |
| | U. Are there any doors (overhead/bay or others) that are routinely open? | |
| | If yes, note locations, sizes, and approximate times open: | |
| | V. Do any of the building occupants regularly use a dry cleaning service? Kimmins Coffee Service
uniform laundry | ; |
| | ased on Information obtained list all potential soil gas entry points and there sizes (e.g., cracks in floor,
bid space, piping, utility ports, sumps, elevator pits, lifts, drains, etc.). | |
| | | |
| | | |
| | | |
| | | |
| | Note: See page 12 & 13 for additional information to be collected on each potential soil gas entry point e., photographs, PID and landfill gas measurements, etc.] | |
| Co | omments: | |
| | | |

Section III Question I:

Flooring warehouse area - carpet glue storage, vinyl adhesive, epoxy primer, sealant, contact cement, seam sealer, polyurethane; Location 8 – Room background - adhesive/sealant storage; 14 – Gas can storage shelf; 15 – Chemical storage shelf – polyurethane, caulk, masonry cleaner, contact cement, adhesive, adhesive remover; 48 – Gasoline storage can - 2 gal plastic; 57 – Storage shelf with household cleaners

Section IV – Occupancy/General Use

| Location Use | Occupied
(list hours/shifts) | Number of
Employees
(Full/Part-time) | Approx.
Sq. Ft. | Level
(basement,
1 <sup>st</sup> Floor,
2 <sup>nd</sup> Floor,
etc.) | Brief Summary of
Business/
Operations in Area
(include additional
sheets as necessary) |
|------------------------------|---------------------------------|--|--------------------|--|--|
| Office | | | | | |
| Manufacturing/
Production | | | | | |
| Warehouse/
Storage | | | | | |
| Garage | | | | | |
| Maintenance | | | | | |
| Conference/
Break Rooms | | | | | |

Comments:

1770 Emerson St, Rochester, NY

Instrument Readings:

Mark each location on site sketch where reading was collected and provide a photograph. At a minimum, readings must be collected from all potential soil gas entry points within buildings (e.g., utility vaults, sumps, floor drains, oil/water separators, floor cracks, etc.) and any subsurface features on the exterior (e.g., catch basins, manholes, utility vaults, etc.). In addition, at least one breathing zone location will be measured for each discrete area within buildings.

| Location | VOCs | CH4 | CO2 | 02 | CO | H2S | Description & Commonts |
|----------|------|-----|-----|------|-----|-----|---|
| Units | ppb | % | % | % | ppm | ppm | Description & Comments |
| 1 | 98 | 0 | 0 | 20.8 | 0 | 0 | Trench drain, doorway ~ 1ft deep |
| 2 | 127 | 0 | 0 | 20.8 | 0 | 0 | Carpet roll room background (for locations 1,3) |
| 3 | 173 | 0 | 0 | 20.9 | 0 | 0 | Hole in base of wall - above foundation - penetration to exterior |
| 4 | 140 | 0 | 0 | 21.1 | 0 | 0 | Carpet storage area south side background |
| 5 | 161 | 0 | 0 | 21.1 | 0 | 0 | Room background (for locations 6,7) |
| 6 | 158 | 0 | 0 | 21.2 | 0 | 0 | Roof drain downspout - penetrates floor |
| 7 | 112 | 0 | 0 | 21.2 | 0 | 0 | Chip in concrete floor |
| 8 | 117 | 0 | 0 | 21.2 | 0 | 0 | Room background - adhesive/sealant storage (for locations 9,10) |
| 9 | 86 | 0 | 0 | 21.2 | 0 | 0 | Trench drain in doorway at north end of room |
| 10 | 95 | 0 | 0 | 21.3 | 0 | 0 | Trench drain at south end of room |
| 11 | 108 | 0 | 0 | 21.3 | 0 | 0 | Room background - vinyl flooring storage (for location 12) |
| 12 | 82 | 0 | 0 | 21.4 | 0 | 0 | Trench drain in doorway at north end of room |
| 13 | 159 | 0 | 0 | 21.4 | 0 | 0 | Room background - tool storage (for locations 14,15,16) |
| 14 | 172 | 0 | 0 | 21.5 | 0 | 0 | Gas can storage shelf |
| 15 | 1848 | 0 | 0 | 21.5 | 0 | 0 | Chemical storage shelf- polyurethane, caulk, masonry cleaner, contact cement, adhesive,
adhesive remover |
| 16 | 73 | 0 | 0 | 21.5 | 0 | 0 | Floor drain - circular |
| 17 | 61 | 0 | 0 | 21.5 | 0 | 0 | Bathroom background (for locations 18,19) |
| 18 | 60 | 0 | 0 | 21.5 | 0 | 0 | Toilet base |
| 19 | 66 | 0 | 0 | 21.5 | 0 | 0 | Floor drain in door frame |
| 20 | 81 | 0 | 0 | 21.5 | 0 | 0 | Janitor's closet - room background (for location 21) |

- 13 –

FORMER EMERSON STREET LANDFILL PRELIMINARY ASSESSMENT OF PARCEL

Note: dash marks indicate that no reading was taken.

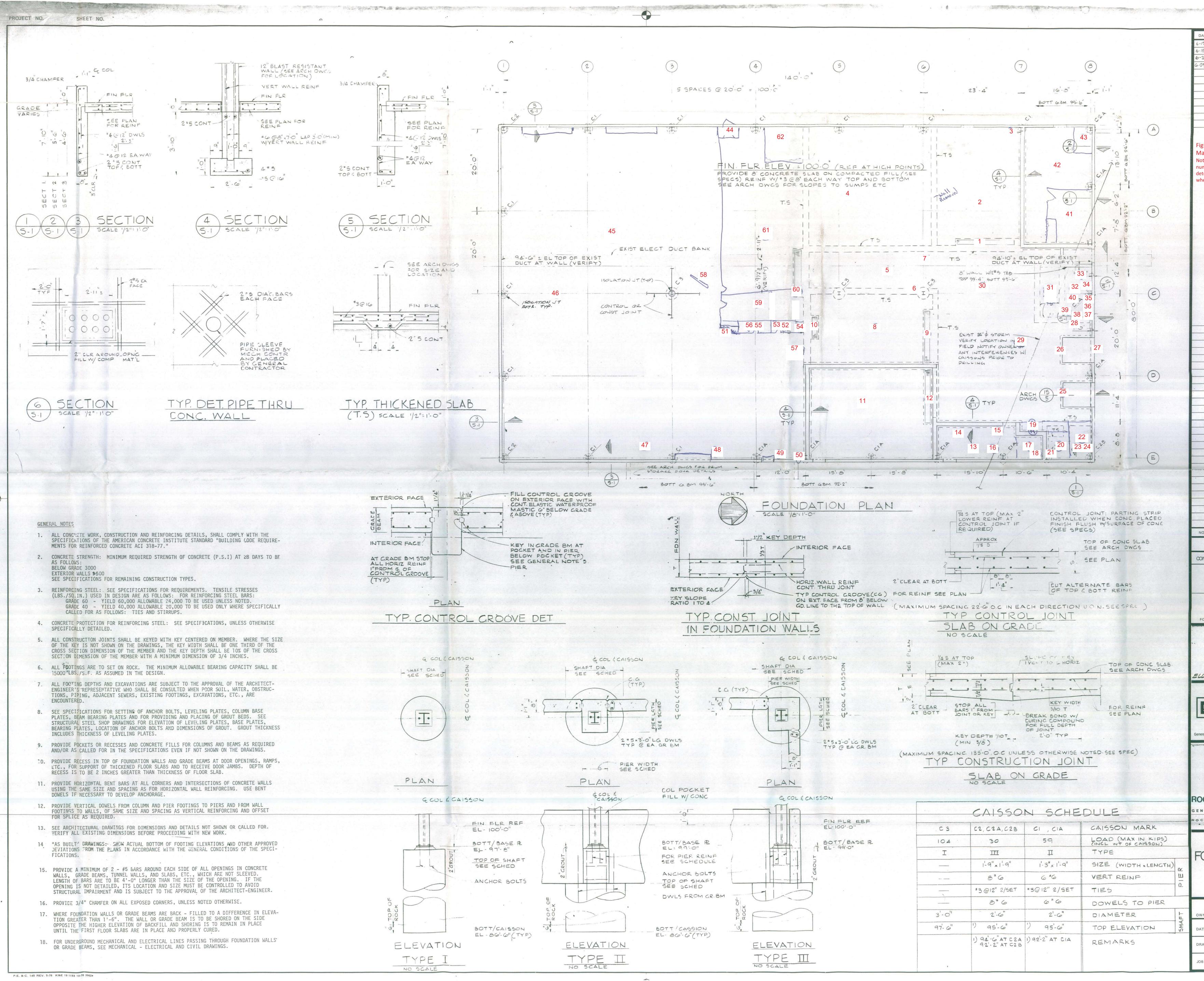
Property of LaBella Associates, P.C. Developed in association with City of Rochester

Instrument Readings (Continued):

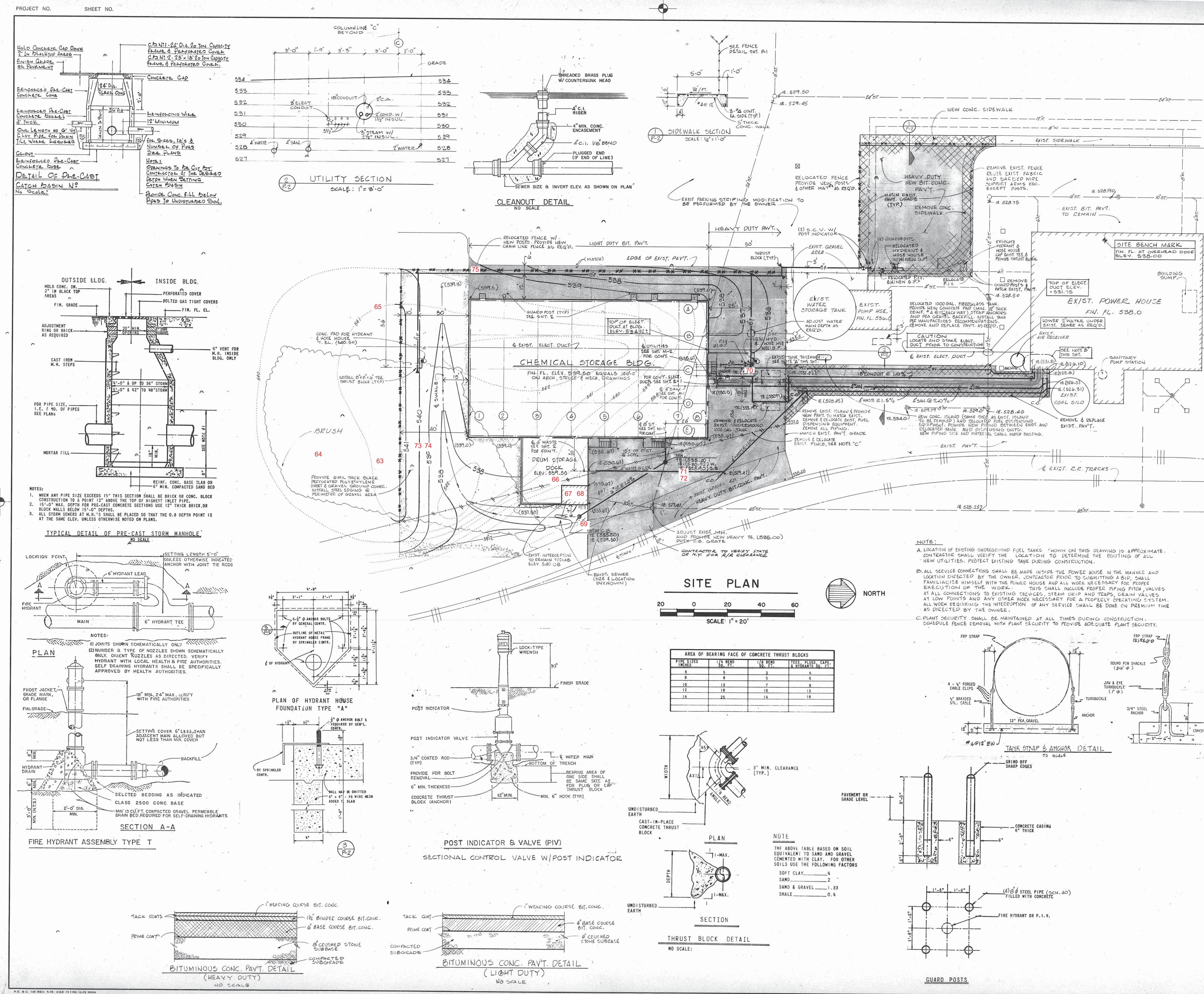
Mark each location on site sketch where reading was collected and provide a photograph. At a minimum, readings must be collected from all potential soil gas entry points within buildings (e.g., utility vaults, sumps, floor drains, oil/water separators, floor cracks, etc.) and any subsurface features on the exterior (e.g., catch basins, manholes, utility vaults, etc.). In addition, at least one breathing zone location will be measured for each discrete area within buildings.

| Location | VOCs | CH4 | CO2 | 02 | CO | H2S | Description & Comments |
|----------|------|-----|-----|------|-----|-----|--|
| Units | ppb | % | % | % | ppm | ppm | Description & Comments |
| 21 | 86 | 0 | 0 | 21.5 | 0 | 0 | Sink drain in utility sink |
| 22 | 119 | 0 | 0 | 21.5 | 0 | 0 | Bathroom background (for locations 23,24) |
| 23 | 116 | 0 | 0 | 21.5 | 0 | 0 | Bathroom floor drain |
| 24 | 70 | 0 | 0 | 21.5 | 0 | 0 | Bathroom electrical penetration or cleanout |
| 25 | 38 | 0 | 0 | 21.6 | 0 | 0 | Below loading dock lift E |
| 26 | 26 | 0 | 0 | 21.6 | 0 | 0 | Below loading dock lift W |
| 27 | - | - | - | - | - | - | Below west hydraulic lift |
| 28 | 42 | 0 | 0 | 21.5 | 0 | 0 | Hydraulic lift control utility conduit penetration |
| 29 | 94 | 0 | 0 | 21.6 | 0 | 0 | Room background - loading and storage area (for locations 25,26,28,30) |
| 30 | 80 | 0 | 0 | 21.6 | 0 | 0 | Floor crack (<1/8"-1/4") |
| 31 | 86 | 0 | 0 | 21.6 | 0 | 0 | Sample storage room (carpet) background |
| 32 | 42 | 0 | 0 | 21.6 | 0 | 0 | Electrical room background (for locations 33-40) |
| 33 | 35 | 0 | 0 | 21.6 | 0 | 0 | Floor penetration ~ 6" steel pipe - fire protection |
| 34 | 29 | 0 | 0 | 21.6 | 0 | 0 | Floor penetration ~ 3" pipe - furnace? |
| 35 | 36 | 0 | 0 | 21.6 | 0 | 0 | Floor penetration ~ 2" steel pipe - cut off |
| 36 | 17 | 0 | 0 | 21.5 | 0 | 0 | Floor penetration ~ 2" steel pipe cut off w/ concrete cutout |
| 37 | 28 | 0 | 0 | 21.5 | 0 | 0 | Floor penetration ~3" steel pipe - cut off |
| 38 | 40 | 0 | 0 | 21.6 | 0 | 0 | Floor penetration - electrical conduit |
| 39 | 30 | 0 | 0 | 21.6 | 0 | 0 | Floor penetration - utility conduit |
| 40 | 30 | 0 | 0 | 21.6 | 0 | 0 | Floor drain |

Instrument Readings (Continued):


Mark each location on site sketch where reading was collected and provide a photograph. At a minimum, readings must be collected from all potential soil gas entry points within buildings (e.g., utility vaults, sumps, floor drains, oil/water separators, floor cracks, etc.) and any subsurface features on the exterior (e.g., catch basins, manholes, utility vaults, etc.). In addition, at least one breathing zone location will be measured for each discrete area within buildings.

| Location | VOCs | CH4 | CO2 | 02 | CO | H2S | Description & Comments |
|----------|------|-----|-----|------|-----|-----|--|
| Units | ppb | % | % | % | ppm | ppm | Description & Comments |
| 41 | 185 | 0 | 0.1 | 21.5 | 0 | 0 | Office space - room background |
| 42 | 207 | 0 | 0 | 21.5 | 0 | 0 | Office space - room background |
| 43 | 193 | 0 | 0.1 | 21.5 | 0 | 0 | Furnace room - room background |
| 44 | 53 | 0 | 0 | 21.3 | 0 | 0 | Entry way to office - background |
| 45 | 120 | 0 | 0 | 21.2 | 1 | 0 | Room background (for locations 46-51,57,58) |
| 46 | 127 | 0 | 0 | 21.3 | 0 | 0 | Expansion joint in floor - N/S trending across room |
| 47 | 131 | 0 | 0 | 21.3 | 0 | 0 | Floor penetrations - cut off rebar or bolts |
| 48 | 380 | 0 | 0 | 21.4 | 0 | 0 | Gasoline storage can - 2 gal plastic |
| 49 | 1333 | 0 | 0 | 21.4 | 0 | 0 | Snowblower gas tank |
| 50 | 125 | 0 | 0 | 21.4 | 0 | 0 | Electrical conduit - floor penetration |
| 51 | 124 | 0 | 0 | 21.4 | 0 | 0 | Floor sump ~ 16" diameter with bolted cover |
| 52 | 132 | 0 | 0 | 21.4 | 0 | 0 | Bathroom w/ exhaust fan/vinyl floor - background (for location 53) |
| 53 | 135 | 0 | 0 | 21.4 | 0 | 0 | Toilet base |
| 54 | 131 | 0 | 0 | 21.5 | 0 | 0 | Janitor closet/hot water boiler background |
| 55 | 123 | 0 | 0 | 21.5 | 0 | 0 | Bathroom w/ exhaust fan/vinyl floor - background (for location 56) |
| 56 | 128 | 0 | 0 | 21.5 | 0 | 0 | Toilet base |
| 57 | 138 | 0 | 0 | 21.5 | 0 | 0 | Storage shelf with household cleaners |
| 58 | 131 | 0 | 0 | 21.5 | 0 | 0 | Trench drain |
| 59 | 129 | 0 | 0 | 21.4 | 0 | 0 | Room background - repair and cleaning room (for location 60) |
| 60 | 46 | 0 | 0 | 21.4 | 0 | 0 | Trench drain |


Instrument Readings (Continued):

Mark each location on site sketch where reading was collected and provide a photograph. At a minimum, readings must be collected from all potential soil gas entry points within buildings (e.g., utility vaults, sumps, floor drains, oil/water separators, floor cracks, etc.) and any subsurface features on the exterior (e.g., catch basins, manholes, utility vaults, etc.). In addition, at least one breathing zone location will be measured for each discrete area within buildings.

| Location | VOCs | CH4 | CO2 | 02 | CO | H2S | Description & Commonts |
|----------|-------|-----|-----|------|-----|-----|--|
| Units | ppb | % | % | % | ppm | ppm | Description & Comments |
| 61 | 130 | 0 | 0 | 21.4 | 0 | 0 | Office space, carpeted, finished interior walls background |
| 62 | 139 | 0 | 0 | 21.4 | 0 | 0 | Office space, carpeted, finished interior walls background |
| 63 | 3479 | 0 | 0 | 21.4 | 0 | 0 | Catch basin (1770) NE Corner of site (tar coated) |
| 64 | 1640 | 0 | 0 | 21.4 | 0 | 0 | Catch basin (1770) E-center site (tar coated) |
| 65 | 40890 | 0 | 0 | 21.4 | 0 | 0 | Catch basin (1770) NW Corner of site (tar coated) |
| 66 | 14 | 0 | 0 | 21.5 | 0 | 0 | Catch basin (building C) E side, dock |
| 67 | 57 | 0 | 0 | 21.4 | 0 | 0 | Wastewater vault |
| 68 | - | - | - | - | - | - | Interior of vault photograph |
| 69 | 1 | 0 | 0 | 21.5 | 0 | 0 | Stormwater catch basin, E side Bldg C |
| 70 | - | - | - | - | - | - | North face of Bldg C |
| 71 | - | - | - | - | - | - | East face Bldg C |
| 72 | - | - | - | - | - | - | Loading dock on east of Bldg C |
| 73 | - | - | - | - | - | - | 1770 site photo |
| 74 | - | - | - | - | - | - | South face bldg C |
| 75 | - | - | - | - | - | - | West face bldg C |
| 76 | | | | | | | |
| 77 | | | | | | | |
| 78 | | | | | | | |
| 79 | | | | | | | |
| 80 | | | | | | | |

| TE
- 79 | ISSUED FOR
CHECKING
OWNER APPROVAL | APPROVAL | APPROVAL | |
|---------------|--|------------------------------------|----------------------|----------------|
| | ALL TRADES BID | L'Igni | t Infrite | |
| | | | | |
| | | | | |
| | | | | |
| | 1 - 1770 Emers | | Site Recon | |
| e: Lo
nber | nterior Locatior
ocation numbers o
rs at each location
r and landfill gas r | correspond to pl
and to photoio | nization | |
| | r and landfill gas r
aken. | | <i>)</i> | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| Anna Alina | | | | |
| | | | | |
| | | | | * |
| | | | | |
| - | | | | |
| | | | | |
| | | | | |
| | *************** | | | |
| | | * | | |
| | | | | • |
| | | | | T |
| | DATE BY | APPROVAL | APPROVAL | and the second |
| JTR/ | ACT SIGNATURES | CERTIFIED BY | | |
| F | THE OWNER | | • | · • • |
| rOF | THE OWNER | | | |
| OR TH | HE CONTRACTOR | DATE | | |
| | | JOL | 3 NO. 79-190 | |
| | | 1 | ····· | |
| 15/. | HAEYAERT | GENHEIME | K, ASSOC. | |
| GM | Plant Engin | neering & Con | struction | |
| al Mot | ors Corporation 485 West | Milwaukee Avenue - Dot | roit, Michigan 48202 | |
| | CHEMICAL ST | | | |
| | | FOR | | |
| ~ | FSTED DO | ODUCTO | DIVISION | 4 |
| ER | AL MOTOR | S CORI | PORATION | |
| , e | | CT TITLE | EW YORK | |
| | UNDATIC | N PLA | AN | |
| 100 | AND D | | | |
| | SHE | | TÀ | ľ |
| | S IDENTIFICATION | 512
PROJECT | 19
NUMBER | |
| | 6-25-79
BY F.5 | | -1 - | |
| | T. G.A.R JR | - | NUMBER | |
| | U | SHEET | | |

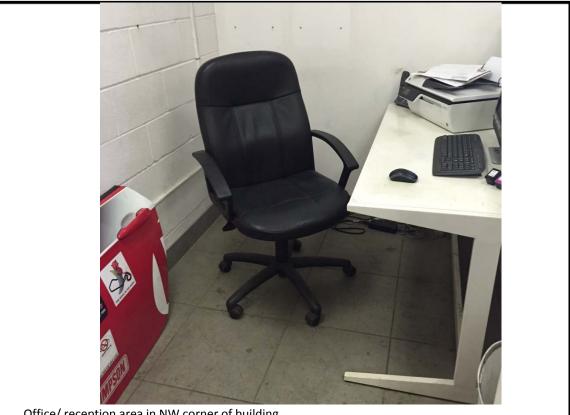
 \cdot

0

| | | • | 1. 1997
1. 1997
1. 1997 | |
|--------------|--|----------------|---|-----------------------|
| DATE | ISSUEI | D FOR | APPROVAL | APPROVAL |
| 6-15-79 | | ING | | |
| 6-20-19 | PERMIT | 3 | <i>n</i> / | 2.0.0 |
| 6-25-19 | ALL TRA | DES BID | K. lane | Solayten |
| | | | | 1 |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| Figur | ·e 2 - 17 <sup>·</sup> | 70 Emei | rson Street S | VI Site Recon |
| Мар | (Exterio | r Locati | ons) | |
| numb | ers at eac | h locatio | correspond to
and to photo | pionization |
| 1287 | tor and la
e taken. | ndfill gas | s meter reading | glocations, |
| | | | | |
| | | | r s | |
| | | ٣ | | |
| | | | 14 | |
| | | | * 1.
* | |
| | | | | |
| (| | | | |
| | | | | |
| | | | | |
| | а . | | 2 | |
| i | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | - | | | |
| | | | | |
| | | | • | |
| | | · | | |
| | | | | |
| | | | | |
| | | | | |
| | | | • | |
| | | | | |
| | telle anna fut as tha tha fair meann chefo | | | |
| NO. | DATE | BY | APPROVAL | APPROVAL |
| | | | CERTIFIED B | Y |
| CONTRA | ACT SIGN | ATURES | | |
| | | | | |
| FOF | THE OWN | ER | | |
| | | | | |
| FOR | HE CONTRA | CTOP | DATE | |
| , on H | - CONTRA | | | B NO. 70 100 |
| | | | JO | B NO. 79-190 |
| | | | | |
| | | | | |
| ELIS/ | NAEYA | ERT/G | ENHEIMER | 2, 4550 c, |
| | | 2 | • | |
| GM | Plan | t Engin | eering & Cor | struction |
| | | | | |
| General Moto | ors Corporation | 485 West M | Ailwaukee Avenue De | troit, Michigan 48202 |
| | | | | |
| С | HEMIC | AL STO | DRAGE BUI | LDING |
| | 12
 | 11
12
12 | | |
| | | 1 | FOR | i. |
| | - | | | |
| | | £7,1 | | DIVISION |
| GENERA | | OTORS | | PORATION
NEW YORK |
| | | PROJEC | T TITLE | |
| | | | | |
| SITI | E PL | AN | AND | |
| | | | | 2 |
| IVI | 136. | DE | ETAILS | 5 |
| | | SHEET | T TITLE | · |
| | | | | 49 |
| OWNER'S | IDENTIFI | CATION | PROJECT | NUMBER |
| DATE | 0-25-7 | 9 | LR3 | 3 - 1 |
| DRAWN BY | | | Þ | -2 |
| | D.L. | | | S. |
| JOB CAPT. | H.D. | | SHEET | NUMBER |
| | | CONTRACTOR OF | 1. S. | |

General interior view

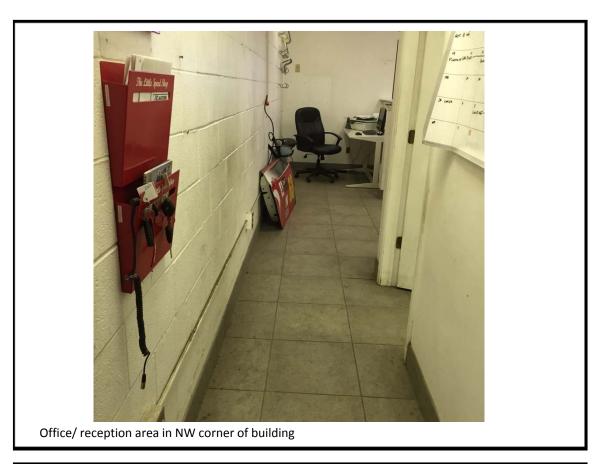
General interior view

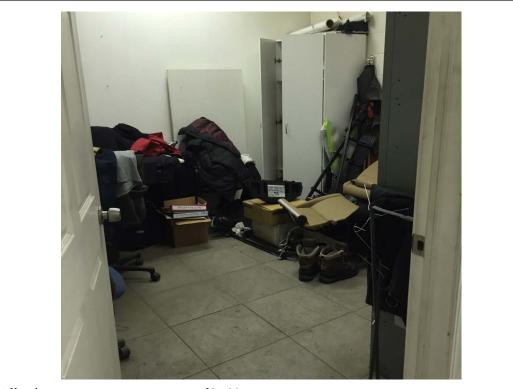


LaBella Associates, D.P.C. 300 State Street

Rochester, New York 14614

Appendix 5


Photograph Log



Office/ reception area in NW corner of building

Office/ reception area in NW corner of building

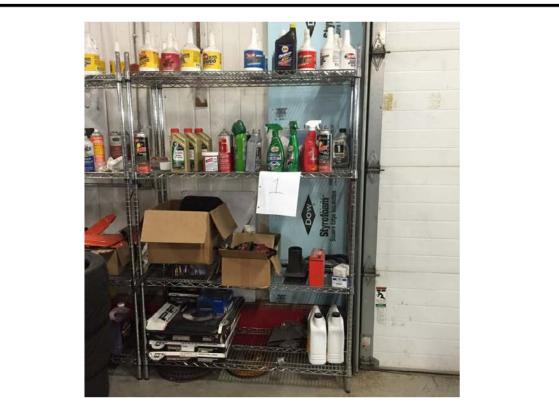
Office/ reception area in NW corner of building

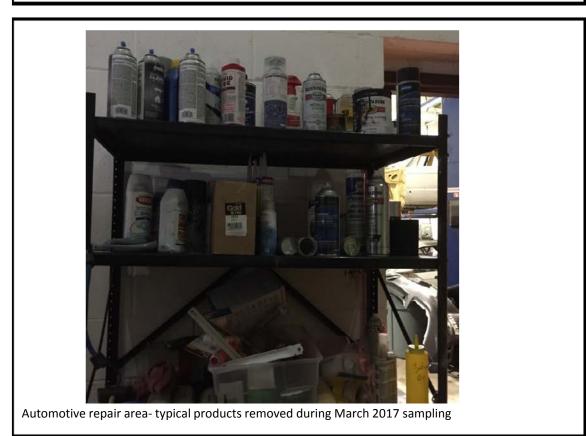
Automotive repair area- vehicles not removed during sampling


Automotive repair area- waste oil tanks not removed during sampling

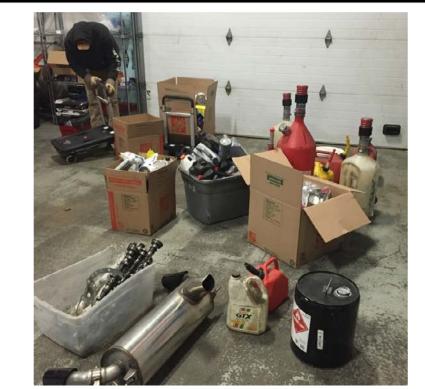
Automotive repair area- typical products removed during March 2017 sampling

Automotive repair area- typical products removed during March 2017 sampling




Automotive repair area- typical products removed during March 2017 sampling

Automotive repair area- typical products removed during March 2017 sampling



Automotive repair area- typical products removed during March 2017 sampling

Automotive repair area- typical products removed during March 2017 sampling

Automotive repair area- all products removed during March 2017 sampling