Attorneys and Counselors at Law

A PARTNERSHIP INCLUDING PROFESSIONAL CORPORATIONS

LINCOLN FIRST TOWER

POST OFFICE BOX 1051

ROCHESTER, NEW YORK 14603

(716) 546-8000 CABLE NIXONHARG ROCHESTER TELEX: 978450

November 27, 1985

SUITE 800 ONE THOMAS CIRCLE WASHINGTON, D. C. 20005 (202) 223-7200

REYNOLDS PLAZA 1061 EAST INDIANTOWN ROAD JUPITER, FLORIDA 33458 (305) 746-1002 (305) 283-5004 (MARTIN COUNTY)

MEN 2 3 1035

はなます。 約回り 1

Manmohan Mehta Sanitary Engineer Division of Solid and Hazardous Waste New York State Department of Environmental Conservation 6274 East Lima Road Avon, New York 14414

Dear Mr. Mehta:

Enclosed please find the third quarter analytical results from General Testing and Lozier Laboratories for Taylor Instrument monitoring wells. The letter prepared by Mark McClements of Taylor outlines the sampling protocol used by both labs for collecting and preparing the samples prior to analysis.

The most recent results cast serious doubts in our mind as to the validity of the test results of samples taken from well 0-0 in September 1984, December 1984, and March 1985. For the next quarter, we shall continue to send split samples to two independent testing laboratories.

If you require additional assistance in this matter, please do not hesitate to contact me.

Sincerely,

E Robert The p

G. Robert Witmer, Jr. / P.C.

GRW:gk Enclosure cc: Mark McClements

30 ROCKEFELLER PLAZA NEW YORK, NEW YORK IOI12 (212) 586-4100 CABLE, NIXONHARG NEW YORK TELEX 66521

October 31, 1985

· . . . 62 COLO HACTE

Mr. Larry Blue Nixon, Hargrave, Devans & Doyle Lincoln First Tower Post Office Box 1051 Rochester, New York 14603

D.E.C. REG. PB

Dear Larry:

On October 1, 1985, the quarterly well water samples were collected at Taylor Instrument's Ames Street plant. A split sample for each site was sent to Lozier Laboratories and General Testing Corporation to be independently analyzed for mercury. The seven locations sampled were LY-1, LY-2, LY-3, LY-4, W-5, 0-0, and D-0.

Each of the wells was purged the day before sampling. In addition, the following protocol was carefully followed to ensure accuracy of the results:

- 1. One large sample was collected for each location, shaken to mix, and transferred to clean plastic containers to be taken to each laboratory.
- 2. The samples were submitted to both laboratories on the same day.
- 3. Personnel at both laboratories were instructed to add nitric acid as a preservative to all sample bottles upon receipt, refrigerate the samples prior to analysis, not filter samples before analysis, follow the total mercury method. (EPA method number 245.1 - cold vapor analytical technique), and analyze the samples within the time period specified in the method.

The analytical results are shown in Table I. Duplicate determinations for each well were performed if sufficient sample were available. Intralaboratory duplicate determinations gave good precision. The correlation for interlaboratory results was also good. This is due, in part, to strict adherence to the sampling protocol.

Four of the seven samples showed levels of mercury below the detectability limit of the analytical method. As in the past, LY-4 had no sample in it after purging. LY-1 and 0-0 showed low, but detectable, concentrations. These two sites have historically shown detectable concentrations of mercury. October 31, 1985

Mr. Larry Blue Nixon, Hargrave, Devans & Doyle

Page Two

٦

.

If you have any questions about this project, please contact the writer at (716) 235-5000, extension 3607.

Sincerely yours,

Mark J. Mc Clements

Mark J. McClements Facilities Environmental Engineer

jw

c: Robert Halton
 Kevin Hylton - Combustion Engineering

enclosure

MJM - 10/31/85

• • •

TABLE I

MERCURY RESULTS FOR QUARTERLY WELL WATER SAMPLES (ppb - parts per billion)

	GENERAL TEST Results	ING	LOZIER RESULTS					
WELL SITE	SAMPLE #1 S	AMPLE #2	SAMPLE #1					
LY-1	2.6	2.5	2.2	2,5				
LY = 2	<0.7	×	<0.5	÷				
:_Y-3	<0.5	×	<0.5	< 0.5				
$\sum_{r} \gamma - z_r$	*	×	2 4	×				
る しょうしょう しょう	<0.5	<0.5	<0.5	<0.5				
D0	<0.5	<0.5	<0.5	< 0.5				
0-0	1.4	1.2	1.4	1.5				

* = INSUFFICIENT SAMPLE

.

12000000005

general testing corporation

water and wastewater testing specialists

710 Exchange Street Rochester, NY 14608 (716) 454-3760		85 Trinity Place Hackensack, NJ 07601 (201) 488-5242	
--	--	--	--

LABORATORY REPORT

Job No. <u>R51927</u> Date <u>10/16/85</u>

Water Samples

Sample(s) Reference

10/01/85

Client

Mr. Mark McClements Taylor Instruments 95 Ames Street Rochester, NY 14611

Date Samples (\mathbf{x}) received () collected by General Testing

P.O. #		ANALYTICAL RESULTS (mg/l unless stated otherwise)
Sample Description		
		Mercury
TAYLOR INSTRUMENTS Date(s) Time(s)	Mercury 10/1/85 am	Duplicates
LYl	0.0026	0.0025
LY2	<0.0007	-
LY3	<0.0005	-
LY4	*	
₩- 5	<0.0005	<0.0005
D -0	<0.0005	<0.0005
0-0	0.0014	0.0012

Received 10/2-1/85

MJM

* No sample received

Analytical procedures in accordance with Standard Methods for the Examination of Water and Wastewater, 15th Edition and Methods for Chemical Analysis of Water and Wastes, EPA. (<) indicates lowest detectable concentration with procedure used. Data on quality control performed with above sample(s) is available upon request.

Michael K. Pery Laboratory Director

• ,.	GENERAL	TESTING COR	PORATION/C	HAIN-OF-C	USTODY R	ECORD	
•	710 Exchange Street 8 Rochester, NY 14608	85 Trinity Place Hackensack, NJ 07	601			b No. <u>5/92</u> Project No.	
	Sample Origination & Shipp Collection Site	TAYLOR	INSTRUM	IENTS			_
	Address Stree Collector Print	t (ZIFR	City	St	ate	Zip	-
	Print		-		Si	gnature	-
	Bottles Prepared by Bottles Shipped to Cl Samples Shipped via.	ient via	S	eal/Shipping #			_
	Sample(s) Relinquished by:			eived by:		Date/Time	
	1. Sign 97 and	Instrumer	into 1. S	ign or		10/1/85	-
	2. Sign /	045 a.m.	<u> 10 /1 /85</u> 2. S	ign			
	for 3. Sign		3. 5	or ign			
	for		• 11	$\frac{\mathcal{O}}{\mathcal{O}}$:	
	Sample(s) Received in Labo		alt	P. / Ih.		011185@10	<u>:4</u>
		e Location e/Time	Analyte c Analyte Group(s) (see below for ac	Required Prese		Bottle Set(s) (see below)	Re- at G
1	LY	/	Hg			6	
•		'85 : AM W	Ŭ				
2	L	\ ٦	Hg			6	
	10/ /	85 AM	0				
	LV	3	Ha			6	
3	10/1	'85 : AM	u J				
	LÝ	4	No s	AMPLE		6	
4		'85 : AM					
	W·	.5	Hy			6	
5	10 / 1	185 : AM	0				

Use Bottle No. for indicating type bottles used in each bottle set and fill in box with # of bottles used for each type.

Bottle No.	1	2	3	4	5	6	7	8	9	10	11
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.		
# of each						1					

Additional Analytes _

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H)
 River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), ____(X), ____(Y).

•	710 Exchange Rochester, NY					7601					No. <u>5192</u> oject No	
	Sample Originat Collection	Site		TA	γı	ORI	NSTRUM	ENT	<u>`S</u>			-
	Address _ Collector_	Stro	eet LOZ	ELER		City		Sta	ate	Sig	Zip	_
	Bottles Pr Bottles Sh	epared by hipped to	y Client v		_		_ Seal/Ship	oping #				
	Sample(s) Relind 1. Sign 6 for 2. Sign for 3. Sign for		$r \int \frac{9}{1}$	<u>na Cl</u> r <u>stru</u> 0.45 (l m	ent	Received by 1. Sign for 2.2. Sign for 3. Sign for	/:			Date/Time / / / : / /	
	Sample(s) Recei	Sam	borator ple Loc Date/Tin	ation	1	Analyte Gr	P. //// alyte or pup(s) Required for additional)	d Prese	ample erved	Pren	Bottle Set(s) (see below)	
1		I)-ø	/ : Am	W		Hy				6	
2		Ø 10/1	'-Ø	-: Am	W		Hz-				6	in the second
3		/	/									
4 °		/	/	:								
5		/	/	:								

Use Bottle No. for indicating type bottles used in each bottle set and fill in box with # of bottles used for each type.

Bottle No.	1	2	3	4	5	6	7	8	9	10	11
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pi.	Steril. Pl.		
# of each											

Additional Analytes _

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H).
 River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), _____(X), _____(Y).

JOB SPECIFIC QUALITY CONTROL REPORT

Customer: Taylor Instruments .

Job Number: 51927 Date Received: 10/1/85

	1				1				4	1		
Parameter	Sample	•	Precision			Spik	ed <u>Re</u> co	very			EPA Recove	ry
	-	Dilution	Analytical Value #1	Analytical Value #2	Dilution	Analytical Value	Spike Added	Spiked Value	% Recovery	Known	Recovery	%Recover
Hg	E		<0.0005	<0.0005		<0.0005		0.230		0.0014	0.0014	100
Нg				· · · · · · · · · · · · · · · · · · ·						1		
										0.0087	0.0093	107
					<u></u>					<u> </u>		
			· · · ·									
				• • • • • • • •				·				
								• •				
	· · · · ·				·····			· · · · · · · · · · · · · · · · · · ·				
		······			_							
								, , ,				
		· · · ·									· · ·	
					. 			• • • •				
						·			· ·	1		
						••			· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · .	<u>.</u>
							0	a . A . /	K. Pen			
					<u></u>		//	L-A	KP		<u> </u>	
								bec	N. Jew	P		
								·	V	<u> </u>		
						·						
			·	·					· · · • • • • • • • • • • • •		· · · · ·	
							,	·				

23 N. MAIN STREET • FAIRPORT, NEW YORK 14450 • 716-425-2210

ALAN J LAFFIN, LABORATORY DIRECTOR DAVID M SKINNER, LABORATORY MANAGER

RICHARD F. SCHERBERGER, M.S., C.I.H. CONSULTANT

October 30, 1985

Mr. Mark McClements Taylor Instruments 95 Ames Street Rochester, New York 14601

Re: Project No.: 85-09-439 Date Rec'd : 10-01-85

Dear Mr. McClements;

Enclosed you will find the analytical results on the above project.

If you have any questions, please do not hesitate to contact me.

Very truly yours,

Alan J. Laffin

Director, Analytical services

AJL/tgn Enclosure: As noted.

LOZIER LABORATORIES

1// 50 7161105

23 N. Main Street-Fairport Client: Taylor Instrumen 95 Ames Street Rochester, New Attn: Mark McClo Staff Eng	nts York 1460 ements	Date Re Laborat Purchas	ceived : ory No. : e Order No.: Date : Signature :	10-1-85 85-09-439 10-25-85 [2][an][. Alan J. 1		A. B. C. D. E. Cc	Ly-2 Ly-3 Ly-4		F. G. H. J.	D-0
Parameters	A	B	C	D	 E	F	G	H	I	
Mercury, Hg.	0.0022	< 0.0005	< 0.0005	I.S.		<0.0005	< 0.0005	0.0014		
9/30 Depth to Water	N.A.	N.A.	N.A.	N.A.		8.45'	7.50'	10.40 '		

Sample Identification:

Page of

Parameters	<u>A</u>	B	C	D	<u> </u>	<u> </u>	G	н	I	<u> </u>
Mercury, Hg.	0.0022	< 0.0005	< 0.0005	I.S.		<0.0005	< 0.0005	0.0014		<u> </u>
9/30 Depth to Water	<u>N.A.</u>	<u>N.A.</u>	N.A.	<u>N.</u> A.		8.45'	7.50'	10.40 '		<u> </u>
10/1 Depth to Water	<u>N.</u> A.	<u>N.A.</u>	<u>N.A.</u>	N.A.		9.15'	7.50'	10.30 '	l	J
		J	<u> </u>	<u> </u>		J	J			<u> </u>
Duplicate Analysis	0.0025	<u> </u>	<u>< 0.0005</u>	I.S.		<0.0005	< 0.0005	0.0015		<u></u>
l		<u></u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>
		l	<u> </u>	<u> </u>			<u> </u>			<u> </u>
		j	J	<u> </u>		<u> </u>	J			<u> </u>
		<u> </u>	<u></u>	<u> </u>		<u></u>	JJ		<u> </u>	<u> </u>
		l				<u> </u>	II			
l		<u> </u>	<u> </u>			<u> </u>	<u> </u>		<u> </u>]

Note: All results expressed in Mg/L unless noted otherwise.

Analysis Comments:

______N.A. : Not Applicable

All depth to water measurements are reported in feet.

QUALITY CONTROL REPORT

Taylor Mercury Analysis

10-21-85

External Q.C.

Sample	Lozier Value	True Value	95 % Confidence Limits
WS 378 (2)	0.95	1.8	1.4 - 2.2
WS 378 (13)	1.6	1.4	1.0 - 1.7
WP 284 (1)	0.72	0.67	0.3 - 1.1

Internal Q.C.

Sample	Lozier Value	Duplicate Analysis	Spike Recovery
Ly - 1	2.2	2.5	N.A.
Ly - 3	< 0.5	< 0.5	N.A.
W - 5	< 0.5	< 0.5	N.A.
D - O	< 0.5	< 0.5	N.A.
0 - 0	1.4	1.5	N.A.

N.A. = Not Analyzed

.

All above results reported in ug/1, ppb.

DZIER LABORAT	TORIES	CHAIN OF REC	CUSTODY ORD	PROJECT	NAME: <u>Taylos</u>	LASP.
<u> </u>					OK NUMBER:	#[
SAMPLE NUMBER	DATE T	IME SAMPLE LOCA	ATION SHAPE	80 40 50 ANA 80 40 50 ANA 10 60 10 10 10 10 10 10	AVSIS AUROF TUNES	TEL POPE
85 10 439 A 85 10 439 B 85 10 439 C	10-1-85 Am	LY-1 LY-2 1V-3	Well Had	Ha	One	2 40 m/s
85 10 439 F 85 10 439 F 85 10 439 G 85 10 439 G 85 10 439 H		$ \begin{array}{c} LY-Y\\ - U-5\\ - U-0\\ - d \end{array} $				No Samp L
SAMPLED BY:	RID RU	- + Mark	J. Mc Cler	nents		
	<u>185_10:15a.m</u> 185_10:15a.m	SIGN DATE TIME	Jate		4 SIGN DATE	
RECEIVED 1 21 BY: SIGN <u>10-1-</u> DATE	DRLA	2 SIGN DATE TIME	3 3		4 SIGN DATE	

 \frown

Attorneys and Counselors at Law

A PARTNERSHIP INCLUDING PROFESSIONAL CORPORATIONS

LINCOLN FIRST TOWER

ROCHESTER, NEW YORK 14603

(716) 546-8000 CABLE: NIXONHARG ROCHESTER TELEX: 978450

February 4, 1985

SUITE 1200 1090 VERMONT AVENUE, N.W. WASHINGTON, D. C. 20005 (202) 842 - 3600

REYNOLDS PLAZA 1061 EAST INDIANTOWN ROAD JUPITER, FLORIDA 33458 (305) 746-1002 1305)283-5004 (MARTIN COUNTY)

30 ROCKEFELLER PLAZA NEW YORK, NEW YORK 10112 (212) 586-4100 CABLE: NIXONHARG NEW YORK TELEX: 66521

A Start

Paul F. Schmied, P.E. Regional Engineer New York State Department of Environmental Conservation Region 8 6274 East Avon-Lima Road

Avon, New York 14414

Re: Results of Fourth Quarter Sampling -Taylor Instrument

Dear Paul:

On January 25 we sent to you the fourth-quarter report by Lozier Laboratories dated January 9, 1985. Page 1 of that report indicated that Sample H would be quantified. That has been done, and I enclose the revised two page report of Lozier Laboratories dated January 9, which should be substituted for the report previously submitted.

The comments in my January letter regarding the sample taken at Well 0-0 are still relevant. If you would like to discuss these results, please do not hesitate to contact either Libby Ford or me.

Very truly yours,

Bob a Ame. 1

G. Robert Witmer, Jr., P.C.

GRW:gk Enclosure cc: Larry Blue

Lent: Taylor Instrument 95 Ames Street Rochester, New York 14601			Date Received : 12-18-85 Laboratory No. : 84-12-545 Purchase Order No.:				<u>LY - 1</u> <u>LY - 2</u> <u>LY - 3</u> <u>LY - 4</u> Well - 2		G. <u>Well - D-C</u> H. <u>Well - O-C</u> I. <u>PZ - 2 Sha</u> J. <u>PZ - 2 Dec</u>		
	•	Report	Signature :	<u>1-9-85 (</u> <u>Alan J.</u> I			owents:				
Attn : Mr. Larry B	31ue										
Attn : Mr. Larry B	31ue	B	C	D			G	Н		J	
		B B B B B B B B	C < 0.002	D N. S.		_ <u></u>	 < 0.002	/	I < 0.002	J	
Parameters	A			,		_ <u></u>	J	/	I <_0.002 	J	
Parameters Mercury, Hg	A 0.003			,		_ <u></u>	J	/	I < 0.002 8.71'	J	

leconde

Note: All results expressed in Mg/L unless noted otherwise.

Analysis Comments:

____<u>N.S. = No Sample_</u>

[2504z 6-27-84]

.

LOZIER LABORA 23 N. Main Street-Fairpo	ATORIES ort, New York 1	4450 - 7 1 6	/ 4 2 5 - 2 2	10		Sample Identification: A. Field Blank B. Wash before Well 0-0 C.			Page 2_ of F G H.		
<u>ut:</u> Taylor Instrumen Attn: Mr. Larry	. •	Laborato Purchase Report D Auth. Si	Date Received:12-18-84Laboratory No.:84-12-545Purchase Order No.::.Report Date:1-9-85 (revised)Auth. Signature:.Lab Director:.				D D E Comments:				
Parameters		В	C	D	E	<u>F</u>	G] <u>H</u>]			
Mercury, Hg	<0.002	< 0.002					ļ	<u> </u>			
I]		 	<u> </u>			
·			A				J	J 	, 		
l								J			
							ļ	ļ			
1 I	لــــــــــــــــــــــــــــــــــــ	لــــــــــــــــــــــــــــــــــــ	 I		 I		J	// /	l		
			 				J	ـــــــــــــــــــــــــــــــــــــ			
)	 			
1			I	1	ţ		1	1	1		

Note: All results expressed in Mg/L unless noted otherwise.

Analysis Comments:_____

[2504z 6-27-84]

.

Attorneys and Counselors at Law

A PARTNERSHIP INCLUDING PROFESSIONAL CORPORATIONS

LINCOLN FIRST TOWER

POST OFFICE BOX 1051 ROCHESTER, NEW YORK 14603

> (716) 546-8000 CABLE: NIXONHARG ROCHESTER TELEX: 978450

SUITE 800 ONE THOMAS CIRCLE WASHINGTON, D. C. 20005 (202) 223 -7200

REYNOLDS PLAZA 1061 EAST INDIANTOWN ROAD JUPITER, FLORIDA 33458 (305) 746-1002 (305) 283-5004 (MARTIN COUNTY)

August 26, 1985

Paul Schmied Regional Engineer New York State Department of Environmental Conservation Region 8 6274 East Avon-Lima Road Avon, New York 14414

> Re: Results of Second Quarter Sampling -Taylor Instruments - Proposal for Extending Monitoring Period

Dear Paul:

Enclosed please find the results of the second quarter sampling for 1985 for Taylor Instrument's ("Taylor") Ames Street facility in Rochester. As indicated in my letter dated May 6, 1985, Taylor split samples between Lozier Laboratories and General Testing in an attempt to resolve the questions raised from the first quarter results. Once again both sets of analytical data are similar in that low, but detectable levels of mercury were found in wells Ly-1 and 0-0. In addition, Lozier found levels of mercury in well D-0 which were below General Testing's detectable limits.

Also enclosed are the QA/QC data for each laboratory. As can be seen from the results both labs were relatively close to the 95% Confidence Interval, although Lozier had to perform their QA/QC twice due to some of the first results being below the 95% Confidence Interval. Please note that General Testing results for well 0-0 in the last two sampling periods are relatively

RECEIVED

AUC 2 0 1985

SOUD WASTE

30 ROCKEFELLER PLAZA NEW YORK, NEW YORK 10112 (212) 586-4100 CABLE: NIXONHARG NEW YORK TELEX 66521

Paul Schmied August 26, 1985 Page 2

consistent, while Lozier's results dropped sharply between the first quarter and the second quarter to levels consistent with General Testing.

It is now thought that the apparent first quarter analytical discrepancies were largely due to sampling and sample handling techniques.

Taylor Instrument has completed the two years of sampling and analysis called for in the April 1983 report $\pm /$ it submitted to DEC on the mercury problem. The data indicates that the paving of the area of suspected contamination has generally led to lower groundwater levels. While the analytical results have not been as consistent as we would have hoped, the majority of the samples collected during the last two years have contained no measurable amount of mercury. Taylor feels that data collected to date does not provide a basis for sound management decisions. Therefore, Taylor is proposing to continue sampling at the site for another four quarters. However, since monitoring well W-2 has not showed signs of mercury throughout the two year monitoring period, Taylor is planning to drop this well from its quarterly sampling. Similarly since mercury has only been detected (at very low levels) two times at the shallow piezometer PZ-2 locations, Taylor Instrument is planning to also drop both shallow and deep PZ-2 sampling locations. Taylor Instrument will continue to sample the remaining seven locations (0-0, D-0, LY-1, LY-2, LY-3, LY-4 and W-5) and to report both water levels and mercury concentrations to DEC following each sampling event.

Taylor believes extending sampling for another four quarters will provide sufficient data for it, and DEC, to conclude that no further remedial work is necessary at the site. It would welcome the chance to meet with DEC, if you feel it is necessary, to discuss in more detail the results of its monitoring efforts to date.

On behalf of Taylor Instrument, I would appreciate receiving the Department's approval of Taylor Instrument's plan to extend its quarterly sampling at its

^{*/} Entitled Phase 1, Mercury Contamination.

Paul Schmied August 26, 1985 Page 3

Ames Street facility. As always, it continues to be a pleasure working with the Department on this project. I know I speak for Taylor Instrument as well as myself when I say that I appreciate your and the Department's cooperativeness in working with Taylor Instrument on this matter.

Very truly yours,

. سم ر.

G. Robert Witmer, Jr., P.C.

GRW:sl Enclosure cc: Wade Hall Mark McClements Kevin Hylton Thomas Lawson

23 N MAIN STREET • LAIRPORT, NEW YORK 14450 • 716-425-2210

ACAN JI LAFEN LABORATORY DIRECTOR DWITTIM SKINNER LABORATORY MANAGER

HICHAPLEE SCHERBERGER MISE CITH. CONSULTANT

July 24, 1985

Taylor Instruments 95 Ames Street Rochester, NY 14601

Attention: Wade Hall

Re: Project No.: 85-06-235 Date Rec'd : 6-20-85

Dear Mr. Hall:

Enclosed you will find the analytical results on the above project.

There are two reports enclosed. The first report dated 7-12-85 was rejected due to poor external quality control results. The second report, dated 7-24-85, was accepted, both internal and external quality control results were within 95% Confidence limits.

Please note that the mercury results from the wells did not change significantly between the two reports.

Each report contains the data sheet, a quality control report and the in-house chain of custody sheet.

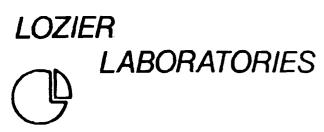
If you have any questions concerning any part of this report, please do not hesitate to contact me.

Very truly yours,

111 . All.

Alan J. Laffin Director, Analytical Services

AJL/mem Enclosure: As noted.


xc: Mr. Larry Blue, Nixon, Hargraves, Devans & Doyle

OZIER LAE	ZIER LABORATORIES				CHAIN OF CUSTODY RECORD				NAME: NUMBER: OK NUMBER:	
SAMPLE NU	MBER	DATE	Тім	E SAMPLE LOCA	TION SCHAPTER	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1960 41 1960 41	A N A	LYSIS JUSOT PARTIES	+ 42 000 to 0100 0100
		6-20-85	2:10: **	0-0	1 unites		Hy		72-51	Denit of Grad
			2. 2" 10	<i>Ω⊐</i> _ <i>S</i>			╪╧┼╌┼			TELTING L
			2 7/100	1 17-0			<u>†</u> ; <u></u> †			
			2:5:000	62-6-						
			3:055	D-Ø						
			3 2000	d-d						
	<u>ن</u>		3:55	<u> (y-1</u>						1
			4'con	14-2						
			7, 40 000	1.1-3					, , , , , , , , , , , , , , , , , , ,	<u> </u>
			7.4500	Ly-4			11			Say George
		1	4:35	Field BLY					¥,	γ_{phi}
BAMPLED DY:	SIGN	ΊΓD	R-1 (-							
RELINQUIGHED	1 P1	1 D F	21 /	2	3	<u> </u>			4	
BY:	SIGN	<u> </u>		SIGN	11	GN			SIGN	
	DATE	<u>247</u> <u>478</u> TIME	<u>10 pm</u>	DATE TIME		TE	TIME	<u>_</u>	DATE	
RECEIVED	<u> </u>		i							
BY:	- Orice	in The Rule	main 1	2	3				4	
	SIGN 617019	x 4:40	5 pm	SIGN	SIG	GN			SIGN	
	DATE	TIME	<u> </u>	DATE TIME	DA	TE	TIME		DATE	TIME
Method of She	WENT:	,)			RECEN	ED FO	R LAB	ORATORY BY:	
Auto				SIGN	Retingen					[
<u></u>				SIGN		SIGN			DATE	TIME

LOZIER	ORAT	ORIE	S	CHAIN OF REC	CUSTO	YC	PR	OJECT	NAME: <u>Tay I</u>	CR INST.
									NUMBER: DK NUMBER:	<i>==</i>
SAMPLE NUME	BER	DATE	TIM	E SAMPLE LOG	CATION SAN		50 / 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		V313 JUNOT TANKES	THE POOL
85 C G - 235	Ĕ	6-20-65	3.044	W \$ -2	inter		Hug		Regional	Sport and
<u>≥5-06 235</u>	Ĩ		3.3.00	PB-5						
5-06-235	Ţ		<u> </u>	P=-D						
35 cle 235	F		2	× = 5	1					
15 Clo-235	G	· ·	315 0 %	<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		_		-+	: 	
·5 06 235	<u> </u>		<u> </u>	2-2			┼╾┟╌┽╴╽			
<u>35_01-235_</u>	_ <u>A</u>		<u> </u>	<u> </u>	_	++-	┟┟┥╽	_+_+	· · · · · · · · · · · · · · · · · · ·	
<u>35 06-235</u>	<u> </u>		+ 30 2m				┥╌┥╴┥			
<u>5 Cle 235</u>	<u> </u>		3 yum			+-+	+ + + +	-++	·	7
<u>*5 01-235 =</u> <u>*5-01-235</u>		*	in the second	Feld Bur	7	╉╼┽─	7		7	N 2 3.mpl 21/2
SAMPLED BY:	SIGN		211							
RELINQUISHED BY:	1 ZL SIGN DATE		<u>+</u>	2 Burn M Kol SIGN <u>G/20/255</u> 4 DATE TIM	43 pp	SIGN	TIME		4 SIGN DATE	TIME
RECEIVED BY:	1 Guan	<u>HA (Co)c</u> <u>5 413:</u> TIME	iver to	SIGN	452-	SIGN DATE	TIME		4 SIGN DATE	TIME
METHOD OF SHIPN	AENT:			ELD sign	1511			~	DRATORY BY: mald 6-20- DATE	85 5.25 p.m TIME

•

· · ·

CHAIN OF CUSTODY RECORD PROJECT NAME: Taylor Instruments

FIELD BOOK NUMBER:

SAMPLE NUMBER	DATE T	IME SAMPLE LOCATION		A STATE CONTINUES FELOPORT FELOPORT
85-06-235 A	7-17-85 8:30	ky-1	water 100	
85-06-235 C	7-17-85 8:30	Ly-3	Water 34	1
85-06-235 D	17-19-85 8:30	Field Blank	Water 100	
85-06-235 E	7-17-85 8:30	W-2	Water 100	
<u>85-06-235</u> F	7-17-35 8:30	W-5	Water	1
85-06-235 G	7-17-85 8:30	D-Ø	Water loc	
85-06-235 H	7-17-85 8 30	Ø-Ø	Water	
85-06-235 I	7-17-85 8:30	Pz-2 shallow	Water	1
<u>85-06-235 J</u>	7-17-85 8:30	Pz-2 deep	Water	· · · · · · · · · · · · · · · · · · ·
				
SAMPLED BY: <u>Ma</u> sign	ry Ellen mentor	ald 7-17-85		
RELINQUISHED 1		2	3	
			3	4
BY: SIGN		SIGN		SIGN
	TIME	_		
BY: SIGN	TIME	SIGN	SIGN	SIGN
BY: SIGN DATE	TIME	SIGN DATE TIME	SIGN DATE TIME	SIGN DATE TIME
BY: SIGN DATE RECEIVED 1	TIME	SIGN DATE TIME 2	SIGN DATE TIME 3	SIGN DATE TIME 4
BY: SIGN DATE RECEIVED 1 BY: SIGN DATE		SIGN DATE TIME 2 SIGN	SIGN DATE TIME 3 SIGN DATE TIME	SIGN DATE TIME 4 SIGN DATE TIME
BY: SIGN DATE RECEIVED 1 BY: SIGN		SIGN DATE TIME 2 SIGN	SIGN DATE TIME 3 SIGN	SIGN DATE TIME 4 SIGN DATE TIME

.OZIER LAI	BORAT	TORIES		CHAIN OF C RECO		PROJEC	T NAME:	flor Instrument
			-			PROJEC	T NUMBER:	35-06-235
5								
SAMPLE NU	MBER	DATE	TIME	SAMPLE LOCATI	ON SHAPPE		WALYSIS HUR OF THE OF	**
85-06-235	5 A	7-8-85	1:00	ky-1		100		
	 B	7-8-85	1.00	Ly-2		200		
u	C	7.8-85	1.00	Ly-3		100		
	2	7-8-85	100	Field Blank		100		
ц	E	7-8-85	1.00	D-2		100		
n	F	7-8-85	1.00	W-5		100		
ب ړ.		7-8-85	1.00	0-0		100		
11	H	7-8-35	1:00	0-0		100		
)i	I	7-8-85	1.00	PZ-2-Shallow		100		
,,		7-8-85	1.00	pz-2-deep		100		
		7-8-85	1.00	·				
SAMPLED BY:	<u>_110</u> Sign	ry Ellin 7	m. Jona	la 7-8-	85			
RELINQUISHED	1		2		3		4	
BY:	SIGN		H	SIGN	SIGN		SIGN	
	DATE	TIME	ī	DATE TIME	DATE	TIME	DATE	TIME
RECEIVED	1		2		3		4	
BY:	SIGN			JIGN	SIGN		- SIGN	_
	DATE	TIME		ATE TIME	DATE	TIME	DATE	
					[_]			
METHOD OF 8H	PMENT:				RE	CEIVED FOR LA	BORATORY BY	:

Taylor Mercury Analysis

7-19-85

External Q.C.

Sample	Lozier Value	True Value	95% Confidence Interval
WS 378 [#2]	1.1	1.8	1.4 - 2.2
WS 378[#3]	1.5	1.4	1.0 - 1.7
WP 481 [#2]	6.2	8.7	5.9 - 11.1
WP 284 [#3]	0.81	0.67	0.3 - 1.1
WP 284 [#4]	8.90	8.73	5.9 - 11.1
WP 475[#5]	1.25	3.6	1.6 - 5.0
WP 475 [#6]	5.66	8.0	4.0 - 11.0

Internal Q.C.

1

Sample	Lozier Value	Duplicate Value	Spike Recovery
W-5	<0.2	<0.2	120%
Well 0-0	0.8	1.5	110%

Note: All results are reported in ug/l, ppb.

Taylor Mercury Analysis

7-12-85

External Q.C.

Sample	Lozier Value	True Value	95% Confidence Interval
WP 481 [#2]	3.8	8.7	5.9 - 11.1
WP 475 [#5]	0.84	3.6	1.6 - 5.0
WP 475 [#6]	4.9	8.0	4.0 - 11.0
EP Tox [#1]	8	50	
EP Tox [#2]	75	300	

Internal Q.C.

ı.

Sample	Lozier Value	Duplicate	Spike Recovery
1.y-3	0.3	0.2	95.4%
Well D-0	0.5	0.4	101%

Note: All results are reported in ug/1, ppb.

ent:	Taylor Instruments 95 Ames Street Rochester, NY 14601	Date Received Laboratory No Purchase Orde Report Date Auth. Signatu Lab Director	er No.:	6-20-85 85-06-23 7-12-85 Cetan Alan J.	A.	C D E	Ly-2 Ly-3 Field Blar M-2 ents:	1k	
							<u> </u>		

	<u> </u>					<u> </u>		·*	
0.0038	0.0004	0.0003	<0.0002	<0.0002	0.0003	0.0005	0.0019	<0.0002	<0.0002
NA	NA	NA	NA NA	9.06	6.76	6.03	8.72	6.97	10.88
NA J	NA	NA	NA	9.15	7.00	6.12	9.11	7.32	10.10
		0.0002]			0,0004] 	
		95.4%		/ 		101%) 	
			J	J				<u> </u>	<u>]</u>
			<u> </u>					<u> </u>	<u> </u>
]			<u> </u>	j				ļ	<u>]</u>
<u> </u>	اــــــــــــــــــــــــــــــــــــ		J	J]	}
	0.0038 NA NA	0.0038 0.0004 NA NA NA NA	0.0038 0.0004 0.0003 NA NA NA NA NA NA 0.0002	0.0038 0.0004 0.0003 <0.0002	0.0038 0.0004 0.0003 <0.0002	0.0038 0.0004 0.0003 <0.0002 <0.0002 0.0003 NA NA NA NA 9.06 6.76 NA NA NA NA 9.15 7.00 0.0002 0.0002 0.0002 0.0002 0.0003	0.0038 0.0004 0.0003 <0.0002	0.0038 0.0004 0.0003 <0.0002	0.0038 0.0004 0.0003 <0.0002

Note: All results expressed in Mg/L unless noted otherwise.

Analysis Comments:

_

Ly-4: Insufficient sample

NA : Not applicable

	N. Main Street-Fairport, New York			A. Ly-1	F. W-5
				B . Ly-2	G . <u>D</u> -0
lient:	Taylor Instruments	Date Received : 6-	-20-85	C. Ly-3 D. Field Blank	H. 0-0 I. Pz-2 shall
	95 Ames Street	Laboratory No. : 85	5-06-235	E . W-2	J. Pz-2 deep
	Rochester, NY 14601	Purchase Order No.:		<u> </u>	
		Report Date : 7-	-24-85	Comments:	
		Auth. Signature	and. Killing		
		Lab Director : Al	lan J. Laffin		

Parameters	A	В	<u> </u>	D	<u> </u>	F	G ¹⁴	Н	<u> </u>	<u> J </u>
Mercury, Hg	0.0032	+	<0.0006*	<0.0002	<0.0002	<0.0002	0.0004	0.0008	<0.0002	<0.0002
Depth to water(ft)	NA	NA	NA	NA	9.06	6.76	6.03	8.72	6.97	10.88
Before sampling	NA	<u>NA</u>	NA	NA	9.15	7.00	6.12	9.11	7.32	10.10
Duplicate analysis	J		 		 	<0.0002		0.0015]]]]
Spike recovery					<u> </u>	120%		110%]]
]	<u>]</u>			<u>]</u>] !
]]	J
						J]	J
			<u>_</u>		<u> </u>	j	J		<u> </u>]

Note: All results expressed in Mg/L unless noted otherwise.

Analysis Comments:	Ly-4: Insufficient sample	NA: Not applicable	
	+ : Insufficient sample on second analysis		
	* : Used only 34 ml for the second analysis		

water and wastewater testing specialists

710 Exchange Street Rochester, NY 14608 (716) 454-3760

85 Trinity Place Hackensack, NJ 07601 (201) 488-5242

July 8, 1985

Ms. Carrie Overholt Nixon, Hargrave, Devans & Doyle Lincoln First Tower Rochester, NY 14603

Dear Carrie:

Enclosed is our results on 11 samples received June 20, 1985 for Mercury analysis. Due to the sensitive nature of the results, we performed the analysis in duplicate where possible. You will be charged for only one analysis. The internal quality control data is also attached.

The samples were received unpreserved. We added nitric acid to the samples in the laboratory. The samples were refrigerated until analysis. The samples were analyzed by the cold vapor procedure, Method 303F. Our chain of custody is attached.

Thank you for allowing us to participate in this quality assurance check. Please do not hesitate to call if you have any questions.

Sincerely,

GENERAL TESTING CORPORATION

latter Al Adull

Walter H. Scheible Environmental Engineer

WHS/jmj

cc: Mr. Brian Robinson Taylor Instruments

	G	ENER	AL TESTIN	IG COR	PORATION/CHAII	N-OF-CUSTODY F	ECORD	
	710 Exchange Rochester, NY		85 Trinity Hackensa		7601	GTC Jo Client	ob No. <u>51/34</u> Project No	} - -
	Sample Originat Collection Address _ Collector_	Site Stre	TAY 15 H eet -	LOR MES	PLANT ST Rextle	State	144, 07 Zip	- -
	Bottles Pr	epared by	y <u> </u>	2-15-1	Rec'd b	$y \underline{B_{21AN}}$ hipping #		/
	Sample(s) Relind 1. Sign for 2. Sign for 3. Sign for	puished b		busop	Received 1. Sign for 2. Sign for 3. Sign for	by: 1 all Arbuit	$ \begin{array}{c c} Date/Time \\ \hline $	
	Sample(s) Recei		boratory by ple Location	11	Analyte or	Sample Prep	Bottle Set(s)	5:10 Rec'd
1	Lab# D 2_ A		ate/Time	- *	Analyte Group(s) Requir (see below for additional Hg	al) Y N Y N	(see below)	
2	P2-5 B	/	/ :					-
· 3	12-10 C) /	/ :					_
4	W-5. D	/	/ :					_
5	DO E	/	A, :					

Use Bottle No. for indicating type bottles used in each bottle set and fill in box with # of bottles used for each type.

Bottle No.	1	2	3	4	5	6	7	8	9	10	11
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.		
# of each						1					

Additional Analytes

Note: Samples taken key Lozen

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

 Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), ____(X), ____(Y).

	GE 710 Exchange S Rochester, NY 14		5 Trinity			FION/C	HAIN-(OF-CUS	TODY R GTC Jo Client F	ECORE b No Project N	51139	9KZ
;	Sample Originatio Collection S Address	Site	Tan	ation 1/07	Ans	Thu						
	Collector	Street			City			State		_	Zip	
	Collector	Print							Si	gnature		_
	Bottles Prep Bottles Ship Samples Sh	ped to Clie	ent via			Se	al/Shipp	ing #				
	Sample(s) Relinqu			.			ived by	. 1 hr	A		ate/Time	· · ·
	1. Sign for	Brian	<u>11 (2</u>)			1. Sig fo		alt	Simila	h_lé	5:10	5
	2. Sign	(2. Si					1_1	1
	for3. Sign					fo 3. Si					:	
	for					fo					:	
:	Sample(s) Receive	ed in Labor	atory by_							11	@	<u>:</u>
	Client I.D.# Lab#		Location /Time	*	Analyte (see be	Analyte or Group(s) F low for add	lequired litional)	Samp Preserved Y N	le Prep Filtered Y N	Bo (se	ttle Set(s) ee below)	Rec'd at GTC
1	0-0	U'i Ce 1201	11	liv		Hg					6	
	F, I	(ê 1201	85 :	C		1					1	
	14-1			1		1						
2	27-1											
	G	/ /	:									
	110											
· 3	17-1											
	H	/ /	:								ļ	
	112											
4	67-5											
	I	/ /	:								R	
	11-11											
5	L [= 4									_	1	
	J	/ /	:	X		\mathbb{N}^{2}					Υ-	
	Use Bottle No. for	indicating	type bott	les used i	n each be	ottle set a	nd fill in	box with #	t of bottles	s used for	r each type	 Ə.
	Bottle No.	1	2	3		5	6	7	8	9	10	11
	Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.		
							<u> </u>	<u> </u>	┥		┥──┤	

Additional Analytes _	Note:	Samples	Falsin	bul	-03/11/	
• –		/				

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

of each

 Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), ____(X), ____(Y).

710 Exchange Rochester, NY					GT0 Cli€	C Job I ent Pro	CORD Pag No. <u>57/39</u> ject No	-
Collection	tion & Shipping Informat	ion Austrij	age Z					-
Collector	Street	City		State			Zip	-
Conector	Print					Sign	ature	-
Bottles S	repared by hipped to Client via Shipped via		Seal/Shipp	oing #				
Sample(s) Relin	Duan Me le		Received by:	tall	the	M.	Date/Time	/
for 2. Sign	Taylo-		for 2. Sign		170		5:10	
for 3. Sign for			for 3. Sign for					
Sample(s) Rece	ived in Laboratory by					/	/@	:
Client I.D.#	Sample Location Date/Time	Analyte G	nalyte or Group(s) Required bw for additional)	Sam Preserve Y N	ple Pre	ered	Bottle Set(s) (see below)	Reat
FIELD BLANK K	GILL ES:		Hg				6	
	/ / :							
	/ / :							_
	/ / :							_
	/ / :							_

Bottle No.	1	2	3	4	5	6	7	8	9	10	11
Bottle Type	40 ml Vial	Pint Glass	Qt. Glass	4 oz. Plastic	8 oz. Plastic	16 oz. Plastic	Qt. Pl.	Gal. Pl.	Steril. Pl.		
# of each						1					

Additional Analytes

Samples ĕ 1 aprin Note ters UZUL IJ

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

 Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), _____(X), _____(Y).

water and wastewater testing specialists

general testing corporation

710 Exchange Street Rochester, NY 14608 (716) 454-3760

85 Trinity Place Hackensack, NJ 07601 (201) 488-5242

LABORATORY REPORT

Job No. <u>R51139</u> Date <u>07/08/85</u>

Client

Ms. Carrie Overholt Nixon, Hargrave, Devans & Doyle Lincoln First Tower Rochester, NY 14603

Sample(s) Reference

6/20/85

Taylor Instruments Monitoring Wells

Date Samples ($\frac{1}{2}$ received () collected by General Testing

ANALYTICAL RESULTS P.O. # (mg/l unless stated otherwise) Sample Description Mercury Duplicate TAYLOR INSTRUMENTS Mercury 6/20/85 Date(s) Time(s) Well D-0 <.0005 <.0005 $M - \mathfrak{I}$ <.0005 Well D-2 <.0005 0.0042 LY-1 0.0040 LY-2 <.0008 \star LY-3 <.0005 <.0005 0 - 00.0016 0.0014 P-Z Shallow <.0005 <.0005 P-Z Deep <.0005 <.0005 Well W-5 <.0005 <.0005 Field Blank <.0005 Insufficient sample for duplicate analysis Mr. Brian Robinson cc: Taylor Instruments

Analytical procedures in accordance with Standard Methods for the Examination of Water and Wastewater, 15th Edition and Methods for Chemical Analysis of Water and Wastes, EPA. (<) indicates lowest detectable concentration with procedure used. Data on quality control performed with above sample(s) is available upon request.

Michael Laboratory Director

general testing corporation

water and wastewater testing specialists

710 Exchange Street Rochester, NY 14608 (716) 454-3760

85 Trinity Place Hackensack, NJ 07601 (201) 488-5242

Laboratory Director

LABORATORY REPORT

Ms. Carrie Overholt

Lincoln First Tower

ob No.	51139	Date	<u>7/8/85</u>	

Client

Sample(s) Reference

Taylor Instruments Nixon, Hargrave, Devans & Doyle Monitoring Wells QC Data

Rochester, NY 14603 Date Samples ($_X$) received () collected by General Testing 6/20/85

used. Data on quality control performed with above sample(s)

is available upon request.

P.O. #			AL RESULTS ated otherwise)	
Sample Description		Spiked Re	covery	EPA Ref.
	Duplicate	Amount Added	ہ Recovery	% Recovery
Date(s) Time(s)	6/20/85			
Well D-2	1			
Mercury	<.0005	0.002	96%	98%
Well W-5				
Mercury	<.0005	0.002	100%	103%
cc: Mr. Brian Robinson Taylor Instruments				
Analytical procedures in accordance with Standard Methods for the Examination of Water and Wastewater, 15th Edition and Methods for Chemical Analysis of Water and Wastes, EPA. (<) indicates lowest detectable concentration with procedure		<u>Malan</u>	L . 200	

Attorneys and Counselors at Law

A PARTNERSHIP INCLUDING PROFESSIONAL CORPORATIONS

LINCOLN FIRST TOWER

POST OFFICE BOX 1051 ROCHESTER, NEW YORK 14603

> (716) 546-8000 CABLE: NIXONHARG ROCHESTER TELEX: 978450

> > May 6, 1985

SUITE 1200 1090 VERMONT AVENUE,N.W. WASHINGTON, D. C. 20005 (202) 842-3600

REYNOLDS PLAZA 1061 EAST INDIANTOWN ROAD JUPITER, FLORIDA 33458 (305) 746 -1002 (3051 283-5004 (MARTIN COUNTY)

Paul Schmied Regional Engineer Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

> Re: Taylor Instrument - Ames Street site, QA/AC Data on First Quarter Sampling

Dear Paul:

Enclosed, as a follow-up to my letter of April 25, 1985, (enclosing the results of the first quarter sampling of the monitoring wells at the above site) are the QC/QA results for both laboratories involved in those analyses. As I indicated to you in that letter, the samples were split between two laboraboties and those laboratories reported very different results. Because of the apparent discrepency, Taylor Instrument asked both laboratories to review their analytical methodologies and to submit any relevant QA/QC data. Both laboraboties were able to supply the enclosed QA/QC data, including analyses of EPA standards. Each laboratory reported results which were relatively close to the 95% Confidence Since neither lab has any explanation for the Interval. extreme difference in the sampling results, Taylor plans to split samples once again between the two labs during the second quarter sampling, and once again we will submit both results to DEC.

If you would like to discuss the encrosed data, please do not hesitate to call either Libby Ford or myself.

Very truly yours,

Finil where

G. Robert Witmer, Jr., P.C.

GRW/ema Enclosure cc: Larry A. Blue

30 ROCKEFELLER PLAZA NEW YORK, NEW YORK 10112 (212) 586-4100 CABLE, NIXONHARG NEW YORK TELEX 66521

N.H.D. & D. MAY 0.6 1985

ï

EL CLASSED

May 2, 1985

Mary Elizabeth Ford Environmental Health Engineer Nixon, Hargrave, Devans & Doyle Lincoln First Tower P.O. Box 1951 Rochester, New York 14603

Dear Libby:

Enclosed please find the analytical results and quality control work performed by both General Testing and Lozier Laboraties. As can be seen from the QC reports, both laboratories are relatively close to the 95% Confidence Interval. Neither lab has any explanation for the extreme difference in the results. I would like to split samples with both labs at the next sampling quarter in attempt to determine which laboratory is at error.

Please forward this information to the DEC for their information. If you are able to determine any information as to how this happened, please contact me.

Very truly yours,

Larry A. Blue

Facilities Environmental Engineer Plant Engineering Department

LAB/jed Encls.

xc: Wade Hall

23 N. MAIN STREET • FAIRPORT, NEW YORK 14450 • 716-425-2210

May 1, 1985

Mr. Larry Blue Taylor Instrument 95 Ames Street Rochester, New York 14601

Re: Quality Control Report for Mercury Analysis on March 26, 1985

Dear Mr. Blue :

Enclosed you will find a quality control report for mercury analysis that was conducted at Lozier Laboratories on March 26, 1985. The Lozier analysis of two Taylor wells , a rinsing of Well 0-0 and one other sample that was analyzed just prior to the Taylor samples is also included.

As the results show the Lozier reported values for mercury for all the WP and EP TOX Q.C. samples are just under the reported 95 % confidence interval for those samples. After investigating these Q.C. results I found the the samples, WP and EP TOX Q.C., were made up some six to seven months prior to this analyses, which can explain the low mercury levels. These results do show that our laboratory can distinguish between low level mercury and high level mercury in water samples.

The method that Lozier Laboratories uses for mercury analysis is the Manual Cold Vapor Technique which can be found in the 1985 DEC Methods Manual Attachment 5 page D-61.

I am also enclosing copies of the WP and EP TOX Q.C. report sheets for your own information.

I would be willing to sit down with you and discuss our sampling and analytical procedures at Taylor Instrument at your convenience. I hope we can resolve this problem in the near future.

Very truly yours Alan 1. Laffin

Director, Analytical Services

2	LOZIER LABORATORIES 23 N. Main Street-Fairport, New York 14 <u>Client:</u> Taylor Instruments 95 Ames Street Rochester, New York 14601		Date Re Laborat Purchas	Date Received : 3-13-85 Laboratory No. : 85-03-096 Purchase Order No.: Report Date : 3-29-85 Auth. Signature : Auth. Auth.			Sample Identification: A. Ly-1 B. Ly-2 C. Ly-3 D. Ly-4 E. W-2 Comments:			Page <u>1</u> of <u>1</u> F. <u>W-5</u> G. <u>D-0</u> H. <u>0-0</u> I. <u>Pz-2-shall</u> J. <u>Pz-2-deep</u>		
	Attn: Larry Blue Environmen Parameters		Auth. S Lab Dir 	ignature : ector : 	Alan J. L	<u>affin</u>						
1	Нд	0.0016	<0.0003	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0326	<0.0002		
fore Pur	3-12 Depth to Water	-			<u> </u>	6.52'	5.89'	5.51'	<u> </u>	5.85'	9.62'	
" Sampl. 	3-13 Depth to Water	 	/ /)]]		6.60'	5.83'	5.67'	8.08'	5.84'	 9.65' 	
]]]	/ /)]]]]]]]	
1. 			┟ ╎ ╎	/ /	 }	/ }	 	 	! ! !	J J I)] 	
]]		//	

ς.

Note: All results expressed in Mg/L unless noted otherwise.

LOZIER LABO 23 N. Main Street-Fai	OZIER LABORATORIES N. Main Street-Fairport, New York 14450 - 716/425 - 2210						Sample Identification:Page 2K. Field BLKPL. Rinse Water after 0-0QM.R.			
	aylor Instrument age 2 (Cont'd)		Date Received:3-13-85Laboratory No.:85-03-096Purchase Order No.::Report Date:3-29-85Auth. Signature:			N O Comments:			R	· · · · · · · · · · · · · · · · · · ·
Parameters	К.	L.]	м.	<u>N.</u>	O,	Р,	Q.	JR	<u> </u>	
<u> Нд </u>	<0.0002	<0.0002]]] 	
· · · · · · · · · · · · · · · · · · ·					/	·		/	/ <u></u>	
)	JJ	ا		J	<u></u>	
l]]]]	 		J J İ]]	
]]]]]]]	
]]]]]		
]]]]]		

Note: All results expressed in Mg/L unless noted otherwise.

Mercury Analysis

3-26-85

Quality Control Report

Sample I.D.	True Value	95 % Confidence Interval	Lozier Value
WP 1178 # 1	0.7	0.3 - 1.1	< 0.2
WP 481 # 2	8.7	5.9 - 11.1	5.6
WP 475 #5	3.5	1.6 - 5.0	1.0
WP 475 #6	8.0	4.0 - 11.0	N.D.
EP TOX 283 # 1	50		38
EP TOX 283 # 2	300		250

Taylor Sample	Lozier Analysis	Duplicate	Triplicate	Reorted	Spike Recovery
* Well 0-0	27	24	49	32	
Rinse After Well 0-0	0.2	0.2		0.2	115 %
Well 2	0.2	0.2	•	0.2	114 %
Sample 062	20	21		20	81 %

N.D. = Not Calculated.
* = Sediment present in sample

.

All results are reported in ppb, ug/l

U.S. Environmental Protection Agency Envrironmental Monitoring and Support Laboratory - Cincinnati

WATER POLLUTION QUALITY CONTROL CHECK SAMPLES

True Values for TRACE METALS I

When diluted to volume according to instructions, the samples contain the following compounds at concentrations expressed as ug/liter. The mean recovery (X) and the standard deviation (S) are listed below along with the true value and the 95% confidence interval. The true value represents the actual weighing and subsequent dilutions. The 95% confidence interval represents the mean recovery plus or minus two standard deviations (X + ZS) and was developed from regression equations from Performance Evaluation Studies.

Parameter	Sample	True Value	Χ	S	95% Confidence Interval
A1	1	106	134	23.2	87.6 - 180
	2	730	746	63.6	619 - 873
As	1	27	27.0	3.58	19.8 - 34.2
	2	235	234	25.9	182 - 286
Be	1	29	29.3	2.39	24.5 - 34.1
	2	235	232	12.5	207 - 257
Cd	1	9.1	8.75	1.02	6.7 - 10.8
	2	39	36.9	2.94	31.0 - 42.8
Cr	1	7.1	7.27	1.15	5.0 - 9.6
	2	261	258	24.2	210 - 306
Co	1	43	42.7	3.13	36.4 - 49.0
	2	261	25 9	15.0	229 - 289
Cu	- <u> </u>	8.9	9.60	1.76	6.1 - 13.1
	2	339	335	16.7	302 - 368
Fe	<u> </u>	22	23.3	5.0	13.3 - 33.3
	2	796	788	46.7	695 - 881
Pb	<u>1</u>	43	44.0	5.0	34.0 - 54.0
	2	435	430	30.6	359 - 491
Mn	<u> </u>	13	12.8	2.2	8.4 - 17.2
	2	548 million and a second		20.6	305
Нд	1	0.7	0.72	0.19	0.3 - 1.1
•	2	8.7	8.47	1.29	5.9 - 11.1
	1		17.2	2.0	11.4 - 23.0
	2	207	206	14.5	177 - 235
Se	<u> </u>		10.3	1.9	6.5 - 14.1
	2	50	46.7	7.7	31.3 - 62.1
V	1	130	131	15.1	101 - 161
	2	846	864	68.9	726 - 984
Zn	1	10	10.9	3.6	3.7 - 18.1
	2	418	415	17.2	381 - 449

WP 1178/481

U.S. Environmental Protection Agency

Environmental Monitoring and Support Laboratory - Cincinnati

WATER POLLUTION QUALITY CONTROL SAMPLES

True Values for TRACE METALS

When diluted to volume according to instructions, the samples contain the following compounds at concentrations expressed as $\mu g/liter$. The mean recovery (\overline{X}) and the standard deviation (S) are listed below along with the true value and the 95% confidence interval. The true value represents the actual weighting and all subsequent dilutions. The 95% confidence interval represents the mean recovery plus or minus two standard deviations ($\overline{X} + 2S$) and was developed from regression equations from Method Validation Studies.

arameter	<u>S</u> ample	True Value	X	S ·	95% Confidence Interval
Al	4	60	83.9	19.1	45.7 - 122
	5	450	460	59.3	341 - 579
	6	800	81 9	68.6	682 - 956
As	4	22	23.1	2.2	18.7 - 27.5
113	5	60	56.6	9.8	37.0 - 76.2
	6	300			207 - 393
			300	46.5	
Be	4	20	20.5	2.2	16.1 - 24.9
	5	250	249	16.3	216 - 282
	`6	900	894	42.2	810 - 978
Cd	4	-25025	-238-	17.4	-203 - 273 -
	5	13	12.3	1.4	9.5 - 15.1
	6	70	65.6	5.6	54.4 - 76.8
Cr K	4	10	10.2	<u> </u>	8.0 - 12.4
Cr <i>r</i>		80			
	5		78.0	8.9	60.2 - 95.8
	6	250	242	23.0	196 - 288
Co	4	20	20.3	2.4	15.5 - 25.1
	5	80	80.7	3.0	74.7 - 86.7
	6	600	599	33.2	533 - 665
Cu 😿	4		11.3	2.6	6.1 - 16.5
cu x	5	50	49.4	3.5	42.4 - 56.4
	6	350	346	17.7	311 - 381
<u> </u>		20	21.8		14.4 - 29.2
Fe K	4			3.7	
	5	80	79.6	11.1	57.4 - 102
	6	900	899	37.1	825 - 973
Pb	4	24	24.7	3.7	17.3 - 32.1
	5	120	122	14.8	92.4 - 152
	6	400	399	27.2	345 - 453
		15	15.5	4.4	6.7 - 24.3
Mn	4				
Mn		75	73.9	/ 4	59 1 - 88 7
Mn	4 5 6	75 500	73.9 495	7.4	<u>59.1</u> - 88.7 425 - 565
Mn Hg	5 6 4	500	495 (77)	35.2 0.22	425 - 565
	5 6 4 5	500 Ga75 3.5	493 G.75 3.3	35.2 0.87	425 - 565 9:52 - 1-2 1.6 - 5.0
	5 6 4	500	495 (77)	35.2 0.22	425 - 565
	5 6 4 5	500 Gen76 3.5 8.0 30	493 (35.2 0.87	425 - 565 9:52 - 1-2 1.6 - 5.0
Hg	5 6 4 5 6 4 5	500 (76 3.5 8.0 30 	495 (35.2 0.87 1.7 6.1 0.7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni ,	5 6 4 5 6 4	500 3.5 8.0 30 90 300	498 (35.2 0.87 1.7 6.1 0.7 26.7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg	5 6 5 6 4 5 6 4	500 3.5 8.0 30 30 300 6.0	495 3.3 7.5 29.9 77.7 301 5.6	35.2 0.87 1.7 6.1 0.7 26.7 1.4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni ,	5 6 5 6 4 5 6 4 5	500 3.5 8.0 30 30 6.0 30	495 (35.2 0.87 1.7 6.1 6.7 26.7 1.4 3.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni ,	5 6 5 6 4 5 6 4	500 3.5 8.0 30 30 300 6.0	495 3.3 7.5 29.9 77.7 301 5.6	35.2 0.87 1.7 6.1 0.7 26.7 1.4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni ,	5 6 5 6 4 5 6 4 5	500 3.5 8.0 30 90 300 6.0 30 50	495 3.3 7.5 29.9 77.7 301 5.6 29.3 48.0	35.2 0.87 1.7 6.1 0.7 26.7 1.4 3.0 8.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni ,	5 6 5 6 4 5 6 4 5 6 4 5 6 4	500 G 76 3.5 8.0 30 90 300 6.0 30 50 70	495 G .76 3.3 7.5 29.9 77.3 301 5.6 29.3 48.0 67.4	35.2 0.87 1.7 6.1 0.7 26.7 1.4 3.0 8.2 8.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni ,	5 6 5 6 4 5 6 4 5 6 4 5 6 4 5	500 (495 G.7 3.3 7.5 29.9 77.7 301 5.6 29.3 48.0 67.4 235	35.2 0.87 1.7 6.1 0.7 26.7 1.4 3.0 8.2 8.2 48.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni Se V	5 6 5 6 4 5 6 4 5 6 4 5 6	500 G 76 3.5 8.0 30 90 300 6.0 30 50 70 250 850	498 3.3 7.5 29.9 77.7 301 5.6 29.3 48.0 67.4 235 844	35.2 0.87 1.7 6.1 0.7 26.7 1.4 3.0 8.2 8.2 48.9 65.8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni Se V	5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4	500 3.5 8.0 30 30 6.0 30 50 70 250 850 16	495 G .7 3.3 7.5 29.9 77.7 301 5.6 29.3 48.0 67.4 235 844 17.1	35.2 0.87 1.7 6.1 6.7 26.7 1.4 3.0 8.2 8.2 48.9 65.8 3.7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Hg Ni Se V	5 6 5 6 4 5 6 4 5 6 4 5 6	500 G 76 3.5 8.0 30 90 300 6.0 30 50 70 250 850	498 3.3 7.5 29.9 77.7 301 5.6 29.3 48.0 67.4 235 844	35.2 0.87 1.7 6.1 0.7 26.7 1.4 3.0 8.2 8.2 48.9 65.8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

U.S. Environmental Protection Agency Environmental Monitoring and Support Laboratory - Cincinnati

EP EXTRACT METALS - Quality Control Samples

TRUE VALUES

When diluted to volume according to the instructions, the samples contain the following elements expressed as mg/liter. The True Value represents the actual weighings and all subsequent dilutions.

Element	Concentrate #	True Value
Ba	1 2	40.0 mg/liter 119.6
Cd	1 2	0.70 1.30
Cr	1 2	1.25 6.50
Pb	1 2	2.00 8.00
Нд	1 2	0.05 0.30
Ag	1 2	1.00 6.00
As	3 4	1.00 7.00
Se	3 4	0.50 1.50

.

	water a	nd wastewa	ter testing	specialists
general testing		710 Exchange Street Rochester, NY 14608 (716) 454-3760	85 Trinity Hackensack, (201) 488	NJ 07601
LABORATORY REPORT	Job No	R50494	Date04/1	15/85
Client Mr. Larry Blue Taylor Instrument 95 Ames Street Rochester, NY 14611 Date Samples (x) received () collected by General Testi		erence ell Water 29/85		
		ANALYTICA	L RESULTS	
P.O. #		(mg/l unless sta	ated otherwise)	
Sample Description TAYLOR INSTRUMENT	Mercury		Known Value	% Recovery
Date(s)	-		د استین میروند بیان کردی این در در در این این این این این این این این این در در در این	
i LY-1	(ppm) 0.00063	می وجوده می می وجود و در می ماده این از می می وجوده می می می وجود و در می ماده این می ا		
LY-2 LY-3	\$ <.0005			
LY-4 D-O	< 0005			
PZ-2D	0.00348 \$<.0005	and the stand of the		
w2	<pre> <.0005 <.0005 </pre>	1		
QC Performed with this Run:			0.0087	1108
EPA Standard #2 EPA Standard #1 Duplicate Analysis LY-1	0.00063	د میں برمان میں ہے۔ ایک میں کردی کر کیک ایک میں کر ایک میں کر ع	0.0014	
Duplicate Analysis LY-1 Matrix Spike LY-3 Blank Spike	- Server - Server state - Server and a server and a server server and a server server and a server ser		0.0051	1028 938
and a subserver and a subserver and an and a subserver and a subserver and a subserver and a subserver and a su A subserver and a subserver and and a subserver and a subserver and a subserver and a subserver and a subserver A subserver and a subserver and and a subserver	and a second			
ا الالجام والمحمد الأربانية بالمستقل المستقل المستمرينية المستمرين المستمرين المستقل المستقل المستقل المستقل ا المستسهين المار المستقل	برد مد الدري ولك المداري و المراجعة المدري ولك المدارية	· · · · · · · · · · · · · · · · · · ·	بلاید مربع مربع اید است. در از معنوب مربع مربع م	
است در با ایک از با ایک استین بیشان که کمانی باشی باشی ایک استان است. استان از استان ایک استین با میشود با ایک استان با با ترکی ایک استان ایک	· · · · · · · · · · · · · · · · · · ·	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	a la antina su districto antina de la composición de la composición de la composición de la composición de la c la composición de la compo	A set and an end of a set o
* No sample, container empty.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	ـــــــــــــــــــــــــــــــــــــ
المانية (المان التي يوسيس موسق المانية المربية المربية (مربية مسل موجود المانية). المانية (المانية المربية المسلم المانية (المانية المربية المانية المانية). المانية (المانية المانية (المانية المانية (المانية (المانية المانية (المانية (المانية المانية (المانية الم	بر بر بر بر بر المسر المسر الم		ی میکینی در در در این است. این میکینی در این این است است. این این این این این این این این این این	به بری بید
Analytical procedures in accordance with Standard Methods for the Examination of Water and Wastewater, 15th Edition and Methods for Chemical Analysis of Water and Wastes, EPA.	i (R	

(<) indicates lowest detectable concentration with procedure used. Data on quality control performed with above sample(s) is available upon request.

Laboratory Director

Nixon, Hargrave, Devans & Doyle

Attorneys and Counselors at Law

A PARTNERSHIP INCLUDING PROFESSIONAL CORPORATIONS

LINCOLN FIRST TOWER

ROCHESTER, NEW YORK 14603

(716) 546-8000 CABLE: NIXONHARG ROCHESTER TELEX: 978450

April 25, 1985

SUITE 1200 1090 VERMONT AVENUE,N.W. WASHINGTON, D C. 20005 (202) 842-3600

REYNOLDS PLAZA 1061 EAST INDIANTOWN ROAD JUPITER, FLORIDA 33458 (305) 746-1002 (3051 283-5004 (MARTIN COUNTY)

Paul Schmied Regional Engineer New York State Department of Environmental Conservation Region 8 6274 East Avon-Lima Road Avon, New York 14414

> Re: Results of First Quarter Sampling -- Taylor Instrument

Dear Paul:

Enclosed please find the results of the first quarter sampling for 1985 for Taylor Instrument's Ames Street in Rochester. The data is consistent with the fourth quarter sampling results for 1984 in that mercury was detected in only two wells. However, as a spot check on the precision of the analytical results, a split-sample was sent to a second laboratory, General Testing, for analysis. Both the sets of analytical data are included. The reports from the two laboratories are similar in that both laboratories detected mercury in only two wells. However, General Testing reported mercury levels lower than that reported by Lozier's laboratory. The difference is particularly significant at Well 0-0 (the presumed center of contamination) for which General Testing reported mercury levels a full order of magnitude lower than that reported by Lozier's. As you may remember, Well 0-0 is the well where, during the last year, mercury levels had been reported to range from non-detectible to approximately 40 parts per million. In lieu of these results, we have asked both Lozier and General Testing to review their laboratory practices with regards to mercury analysis to insure that the correct analytical procedures are being strictly adhered to.

30 ROCKEFELLER PLAZA NEW YORK, NEW YORK 10112 (212) 588-4100 CABLE, NIXONHARG NEW YORK TELEX 66521 Paul Schmied April 25, 1985 Page 2

As always, if you have any questions on the enclosed results, please do not hesitate to contact either Libby Ford or myself.

Very truly yours,

F. K. W. Charman Ser

G. Robert Witmer, Jr., P.C.

GRW/ema Enclosure cc: Larry Blue

general testing 710 Exchange Street. Ronhester: NY 14406 corporation (716) 454 3760 LABORATORY REPORT R50494 Date 04/15/85 Job No. Sample(s) Reference Client Mr. Larry Blue

Well Water

3/29/85

Date Samples (\mathbf{x}) received () collected by General Testing

Taylor Instrument

Rochester, NY 14611

95 Ames Street

ANALYTICAL RESULTS P.O # (mg/l unless stated otherwise) -----Sample Description TAYLOR INSTRUMENT Mercury Date(s) Time(s) (ppm) LY - 10.00063 LY-2<.0005 LY-3 LY - 4<.0005 D-0 <.0005 0.00348 0-0 <.0005 PZ-2D FZ-25 <.0005 W2 <.0005 W5 <.0005 ÷., - Contraction (1997) No sample, container empty.

Analytical procedures in accordance with Standard Methods. for the Examination of Water and Wystewater, 15th Edition and Methods for Chemical Analysis of Water and Wastes, EPA. (<) indicates lowest detectable concentration with procedure Field. Data on quality control performed with obove sample(s) Privielatio upon legi est.

والمهجان والمتراجل الهمين متحاصا المحال الجوالا الراجا الوراط

Litelory Director

water and wastewater testing specialists

EF Terrer, Plaue Haller Nu Öbbr (2.1:40;-5242

<u>Client:</u>	Taylor Instruments 95 Ames Street	Date Received : 3-13-85 Laboratory No. : 85-03-096 Purchase Order No.:		B. Ly-2 C. Ly-3 D. Ly-4 E. W-2	G. D-0 -H. 0-0 I. Pz-2-shal J. Pz-2-deep
	Rochester, New York 14601 Attn: Larry Blue Environmental Eng.	Report Date : Auth, Signature :	: 3-29-85 : : Alan J. Laffin	Comments:	

	Parameters	A	В	<u> </u>	D	<u> </u>	F	G	<u> </u>	I	J
	Hg	0.0016	<0.0003	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.03264	<0.0002	<0.0002
efore Pur	3-12 Depth to Water					6.52'	5.89'	5.51'	7.98'	5.85'	9.62'
" Sampl.	3-13 Depth to Water					6.60'	5.83'	5.67'	8.08'	5.84'	9.65'
]							
]							
										-	
1]	<u></u>						
					J						

Note: All results expressed in Mg/L unless noted otherwise.

	ZIER LABORATORIES Main Street-Fairport, New York		- 2 2 1 0	Sample Identification: K. <u>Field BLK</u> L. Rinse Water after 0-0	Page 2_ of _
lient:	Taylor Instrument	Date Received Laboratory No.	: <u>3-13-85</u> : <u>85-03-096</u>	N	Q R S T.
	Page 2 (Cont'd)	Purchase Order No Report Date Auth, Signature Lab Director		Comments:	·

Parameters	к.	L.	M.	<u>N.</u>	<u> </u>	<u> </u>	Q	R	<u> </u>	<u> </u>
Hg	<0.0002	<0.0002								J
					_ 					
									/	
										·
			_							
				1						·

Note: All results expressed in Mg/L unless noted otherwise.

30 ROCKEFELLER PLAZA NEW YORK, NEW YORK IOII2 (212) 586-4100 CABLE: NIXONHARG NEW YORK TELEX: 66521

Nixon, Hargrave, Devans & Doyle

Attorneys and Counselors at Law

LINCOLN FIRST TOWER

POST OFFICE BOX 1051

ROCHESTER, NEW YORK 14603

(718) 546-8000 CABLE NIXONHARG ROCHESTER TELEX: 978450

January 25, 1985

SUITE 1200 1090 VERMONT AVENUE, N. W. WASHINGTON, D. C. 20005 (202) 842-3600

SUITE 510 FIRST NATIONAL BANK OF PALM BEACH BUILDING 1001 U.S. HIGHWAY ONE JUPITER, FLORIDA 33458 (305) 746-1002

Paul Schmied Regional Engineer New York State Department of Environmental Conservation Region 8 6274 East Avon-Lima Road Avon, New York 14414

> Re: Results of Fourth Quarter Sampling - Taylor Instrument

Dear Paul:

Enclosed please find the results of the fourth quarter groundwater sampling for 1984 for Taylor Instrument's Ames Street site in Rochester. This data is relatively consistent with past data on mercury levels at the site although the mercury level at Well 0-0 is once again high. Since this is the presumed center of the contamination, the high levels are not unexpected since the remedial plan has significantly cut down on the amount of infiltration entering the ground which, in turn, would tend to dilute mercury levels. As I indicated in my December 19, 1984 letter to you, the laboratory included quality assurance/quality control data with its report.

If you would like to discuss the enclosed results, please do not hesitate to contact either Libby Ford or myself.

Very truly yours,

G. Robert Witmer, Jr., P.C.

GRW/jc cc: Larry Blue

Groundwater std. . 002 mg/0

	N. Main Street-Fairport, New			A. $1.Y - 1$ B. $1.Y - 2$	F. <u>Well - 5</u> G. <u>Well - D-0</u>
Client:	Taylor Instrument 95 Ames Street Rochester, New York		Date Received:12-18-84Laboratory No.:84-12-545Purchase Order No.:	C. $\underline{LY} - 3$ D. $\underline{LY} - 4$ E. Well - 2	H. <u>Well - 0-0</u> I. <u>PZ - 2 Shalï</u> J. <u>PZ - 2 Deep</u>
		14601	Report Date : 1-9-85 Auth. Signature : <u>Clan J. Laff</u> Lab Director : Alan J. Laffin	Comments:	
	Attn : Larry Blue				

٠

Parameters	A	B	C	D	<u> </u>	F	G	<u>H</u>	<u> </u>	J
Mercury , Hg	0.003	< 0.002	<u>< 0.002</u>	<u>N.S.</u>	< 0.002	< 0.002	<u>< 0.002</u>	<u>> 0.038</u>	<0.002	<u>K n.002</u>
Depth of Water		J]]	;]]]]
Before Purge 12/17				_	8.90'	7.91'	7.12'	10.17'	8.71'	11.86
After Samplel2/18					8.86'	8.11'	7.17'	10.13'	8.76'	13.2
			 		 ·					
	-			, <u></u>	i		 	 		
			,	, 	 					,
		1	·	/ <u></u>	J	/ 	·	،،		1
 ا		, }	' 	, <u></u>	J		!	نــــــــــــــــــــــــــــــــــــ		J
		1		/ 	J	/ 	!	ں ا		۔۔۔۔۔ ا

Note: All results expressed in Mg/L unless noted otherwise.

Analysis Comments:

N.S. = no sample

.

Sample H " Well 0-0 " will be quantified

t: Taylor Instrument Attn_: Larry Blue		Date Received : 12-18-84 Laboratory No. : 84-12-545 Purchase Order No.: Report Date : 1-9-85 Auth. Signature Lab Director : Alan J. Lafin			B. <u>Wash Before We</u> ll 0-0 C. D. E. Comments:			J	H 1 J	
Parameters		 B		D	E	 F	 G		I	
Mercury, Hg	<0.002	< 0.002	//	/ /				J]
]		l	J]	J]]]
۱ <u> </u>		. <u> </u>		ļ <u> </u>	<u> </u>	J	ļ	ļ]		<u> </u>
		J	J	J	J]]		J		.]
	J	_J	J	!	J	J	_ J	J		J \
	J	J) 	/ 	J 	J 	J	لــــــــــــــــــــــــــــــــــــ		J
		J	/ 	/ <u></u>		 				J
]!)]	<u> </u>]
			j	J	J	J]	JJ]
_ 		J		<u> </u>]]		J		<u></u>
lote: All results expr	ressed in Mg/L u	inless noted o								
		<u> </u>								
Comments:										

•

23 N. MAIN STREET • FAIRPORT, NEW YORK 14450 • 716-425-2210

٩

Mercury Analysis

1-9-85

Quality Control Report

Sample I.D.	True Value	95 % Confidence Interval	Lozier Value
WS # 13	1.4	1.0 - 1.7	< 2.0
WP # 1	0.7	0.3 - 1.1	< 2.0
WP # 2	8.7	5.9 -11.1	10.4
WP # 5		1.6 - 5.0	< 2.0
WP # 6	8.0	4.0 -11.0	6.6
EP TOX #1	50.0	80 % Recovery	40.6
EP TOX #2 -	300	97 % Recovery	290

Taylor Sample	Lozier Analysis	Duplicate Analysis	 Spike Recovery
PZ - 2S	< 2.0	< 2.0	98.6 %
LY - 3	< 2.0	< 2.0	95.3 %

All results are reported in ppb, ug/l