

January 2, 2020

Frank Sowers, P.E. NYSDEC – Region 8 6274 East Avon-Lima Road Avon, NY 14414

Re: Brockport Landfill

DEC Site No. 828038

Long Term Environmental Monitoring Report

Dear Mr. Sowers:

Thank you for your clarification to our letter dated Dec. 31,2019.

We are pleased to submit The Engineering report in PDF format as a separate single file.

Dr. Applin is coordinating with the Lab any changes in the electronic data deliverable (EDD) for loading the validated data into the Department's EQuIS data management system

If you have any questions, or if you require additional information, please call me at 585-272-7310

Very truly yours,

Ram Shrivastava, P.E.

Enclosures

cc: Mr. Harry G. Donahue, Superintendent of Public Works, Village of Brockport Mr. Lewis S. Streeter, Remedial Project Manager, General Electric Company

LONG TERM ENVIRONMENTAL MONITORING FOR THE

BROCKPORT LANDFILL

SITE NO. 828038

REPORT ON MONITORING WELLS ANALYTICAL RESULTS

For the

Village of Brockport

49 State Street

Brockport, New York 14420

June 2019 Sampling Event

TABLE OF CONTENTS

INTRODUCTION	3
SAMPLING LOCATIONS	4
SAMPLING	4
ANALYSIS	5
DATA VALIDATION	5
TREND ANALYSIS OF WATER QUALITY DATA	5
EXCEEDANCES OF NYSDOH PART 5 DRINKING WATER STANDARDS	6
WATER LEVEL DATA	6
EMERGING CONTAMINANTS TEST RESULTS	7
SITE VISIT OBSERVATIONS	7
CONCLUSIONS	7
REFERENCES	9

APPENDICES

APPEND A.3 A.2 A.1	Sample S Emerging	LABORATORY ANALYTICAL DATA W-1 and Seep (Work Order # 7095500) Contaminants (Work Order # 7095477) May Wells (Work Order # 7095441)
APPEND	IX B	SITE MAP – SAMPLE LOCATIONS
APPEND	IX C	TREND ANALYSIS OF WATER QUALITY DATA
APPEND	IX D	DATA VALIDATION REPORT
APPEND	IX E	TABLE OF EXCEEDANCES OF NYSDOH PART 5 DRINKING WATER STANDARDS
APPEND	IX F	WATER LEVEL DATA AND MAPS OF WELL LOCATIONS

INTRODUCTION

The Village of Brockport Landfill is located on East Canal Road, east of the Village of Brockport in the Town of Sweden, Monroe County, NY. The landfill property is approximately 36 acres. The waste mass encompasses about 17.5 acres and is located north of Otis Creek. The landfill was closed in 1984. Following various post-closure site investigations, the landfill was capped during 1999. A Certification Report was completed by Malcolm Pirnie, Inc. and approved by the NYSDEC on September 21, 2001. Post-closure monitoring of the on-site groundwater monitoring wells and surface water was initiated in 2001.

This report presents the results of post-closure groundwater and surface water monitoring conducted during June 2019 at the Village of Brockport Landfill, Monroe County, NY. The field sampling and laboratory analyses were conducted in accordance with the Brockport Landfill Monitoring Plan (the "Monitoring Plan"), Appendix D, of the Post-Closure Monitoring and Maintenance Operations Manual for the Brockport Landfill (Malcolm Pirnie, Inc., December 2000; revised April 2001).

In addition to the list of field and chemical parameters identified in the Monitoring Plan, the June 2019 sampling event also included the sampling and analysis of emerging contaminants [per-and polyfluoroalkyl substances (PFAS) and 1,4-dioxane]. The sampling and analysis of these compounds was conducted in accordance with a separate work plan prepared by Larsen Engineers (January 18, 2019) and approved by the NYSDEC on May 6, 2019. The sampling was limited to four of the on-site wells. The analytical results for these compounds are included in this report.

The June 2019 groundwater and surface water sampling was performed by Enalytic, LLC, East Syracuse, NY, on June 25 and 26, 2019. Laboratory analysis of the samples was conducted by Pace Analytical Services, Inc., Melville, NY. The analytical results were validated by an independent data validator (KR Applin and Associates). KR Applin and Associates also performed trend analyses on all analytical results obtained to date.

SAMPLING LOCATIONS

The post-closure monitoring well array consists of six overburden wells and six bedrock wells that are assigned the following IDs:

Overburden Wells	Bedrock Wells
GW-1S	GW-3R
GW-2S	GW-4R
GW-3S	GW-5R
GW-5S	GW-6R
GW-6S	GW-7R
GW-7S	GW-9R

In addition to the monitoring wells, surface water samples were collected at one location on Otis Creek and at a "seep" located at the northwest corner of the landfill adjacent to the access road. The sampling locations are shown on Figure 2-1 of the Monitoring Plan.

SAMPLING

Sampling of the monitoring wells and surface waters listed above was performed on June 25 and 26, 2019 by a field team from Enalytic, LLC. Samples were collected for the analysis of field parameters, general chemistry parameters, metals, and TCL volatile organic compounds (VOCs), as defined in the Monitoring Plan. For samples exhibiting turbidities in excess of 50 NTU, an additional filtered sample was collected for the analysis of metals. Appropriate quality control (QC) samples (matrix spike/matrix spike duplicate samples, equipment blanks, and trip blanks) were also collected. A field duplicate sample was collected from well GW-5R. All monitoring well samples were collected using dedicated bailers.

During the June 2019 sampling event, samples were also collected for the analysis of emerging contaminants (PFAS and 1,4-dioxane). These samples were collected from the following four wells only:

GW-1S GW-3S GW-6R GW-9R

The sampling for emerging contaminants was conducted in accordance with the sampling protocol described in the Larsen Engineers work plan dated May 6, 2019.

Copies of the Field Data Reports and the Chain of Custody Documents are provided with the laboratory analytical data (Appendix A).

ANALYSIS

Except for PFAS, the laboratory analyses, including analyses for 1,4-dioxane, were performed by Pace Analytical Services, Inc., Melville, NY, using appropriate USEPA SW-846 methods. The analyses for PFAS, performed using EPA Method 537 (modified), were subcontracted to Eurofins TestAmerica, Sacramento, CA. Analytical results were provided in USEPA Tier IV (NYSDEC ASP Category B) format.

All analytical results are provided in Adobe PDF format with this report.

DATA VALIDATION

Validation of the laboratory data was performed by KR Applin and Associates following appropriate USEPA guidance documents for the validation of metals and VOCs. The Data Validation Report is provided in Appendix B.

As a result of the data review, all analytical results were deemed to be usable. However, the results for some analytes were qualified as estimated (J) due to various QC problems. No analytical results were qualified as rejected (R).

TREND ANALYSIS OF WATER QUALITY DATA

In accordance with Section 6.3.2 of the Monitoring Plan, a trend analysis was performed on the post-closure monitoring data. To evaluate long-term trends, the analysis included all data obtained from 2001 to present. Trend analyses were performed using the analytical results obtained for each analyte at each sampling point. The analysis was performed by KR Applin and Associates using AquaChem© software. The Trend Analysis Report is provided in Appendix G.

The number of trends identified varied widely among the monitoring well and surface water samples. However, downward trends were predominant in wells GW-2S, GW-3S, GW-5S, GW-7S, GW-4R, and GW-6R.

Upward trends were predominant in wells GW-1S, GW-6S, GW-3R, GW-5R, GW-7R, and GW-9R.

Downward trends were found for trichloroethene (TCE) and/or its degradation products (cisdichloroethene and vinyl chloride) in wells GW-3S, GW-3R, and GW-6R. A downward trend for chloroethane was found for well GW-5R.

Upward trends in barium, calcium, magnesium, manganese, potassium, and sodium were found for surface water sample SW-1. No trends were found for the seep sample.

EXCEEDANCES OF NYSDOH PART 5 DRINKING WATER STANDARDS

The analytical results from the June 2019 sampling event were compared to the NYSDOH Part 5 Drinking Water Standards. Results exceeding the standards are listed in the attached table. As shown, exceedances of the standards for iron, manganese, or sodium occurred in many of the wells and most likely reflect naturally-occurring concentrations of these parameters. Wells showing exceedances of the standards for VOCs and other indicators of landfill contamination (e.g., chloride and sodium) include the following:

GW-3R GW-4R GW-5S GW-5R GW-6R

GW-7R

WATER LEVEL DATA

A summary of groundwater elevations measured at each of the monitoring wells since post-closure monitoring began in 2001 is attached. The elevations are also plotted on the attached time series graph. As illustrated on the graph, the elevations measured during the June 2019 sampling event show a recovery since the previous 2016 event when a period of drought-like conditions occurred.

Comparisons of the water elevations in the shallow and deep well pairs (e.g., GW-3S/3R, GW-5S/5R, GW-6S/6R, and GW-7S/7R) show slightly higher elevations in the shallow wells, which indicates a potential for downward flow from the overburden to the bedrock.

The distribution of groundwater elevations measured at the various wells indicates that groundwater within the shallow; moraine water-bearing zone continues to flow toward a tributary of Otis Creek at the south side of the site and toward a wetland located north of the landfill site. Groundwater within the shallow bedrock zone discharges to the Barge Canal north of the site. As indicated by the generally parallel trends in the elevation data (see time series

graph), groundwater flow directions have remained relatively consistent during the post-closure period.

EMERGING CONTAMINANTS TEST RESULTS

The analytical results for emerging contaminants are provided in Appendix A.2. The results show a value of 22.6 μ g/L for 1,4-dioxane in the sample from well GW-6R. A value of 19.8 μ g/L was reported for the field duplicate sample taken from this well. Non-detect results were reported for wells GW-1S, GW-3S, and MW-9R.

The results for PFAS compounds detected at concentrations above the method detection limits (MDLs) are summarized in the attached table. As shown, various PFAS compounds were detected in each of the four wells sampled. In general, more compounds were detected in bedrock wells GW-6R and GW-9R and at higher concentrations than overburden wells GW-1S and GW-3S. All the reported detections are below the USEPA health advisory level of 70 µg/L.

SITE VISIT OBSERVATIONS

Observations of the landfill appearance and overall site conditions were documented by the Enalytic, LLC field team while performing sample collection. They observed that the landfill was generally well maintained by the Brockport Village Department of Public Works. No leachate outbreaks were observed. Water quality in Otis Creek and nearby drainage ditches appeared too good. No discoloration, unusual turbidity or detectible odors were observed in surface waters at the time of the site visit.

The landfill cap was completely vegetated with grass. The Village of Brockport Department of Public Works was mowing/trimming the landfill and surrounding area during the sampling event. No damage to the fencing surrounding the landfill was observed.

All of the monitoring wells appeared to be in good condition except for the following: The locks on wells GW-2S and GW-5S were rusty and difficult to open. The metal lids on wells GW-6S and GW-7R were either broken or bent and could not be locked.

CONCLUSIONS

The sampling of groundwater and surface water at the Village of Brockport Landfill was conducted on June 25 and 26, 2019. Complete samples were collected from each of the 12 groundwater monitoring wells, from one surface water location, and one seep. The samples were analyzed for the parameters listed in the Post-Closure Monitoring and Maintenance Operations Manual, which include general chemistry parameters, metals, and TCL volatile organic compounds.

In addition, samples were collected from two overburden and two bedrock monitoring wells for the analysis of emerging contaminants (PFAS and 1,4-dioxane).

The analytical results were validated by an independent data validator. All results were considered to be usable. No results were rejected.

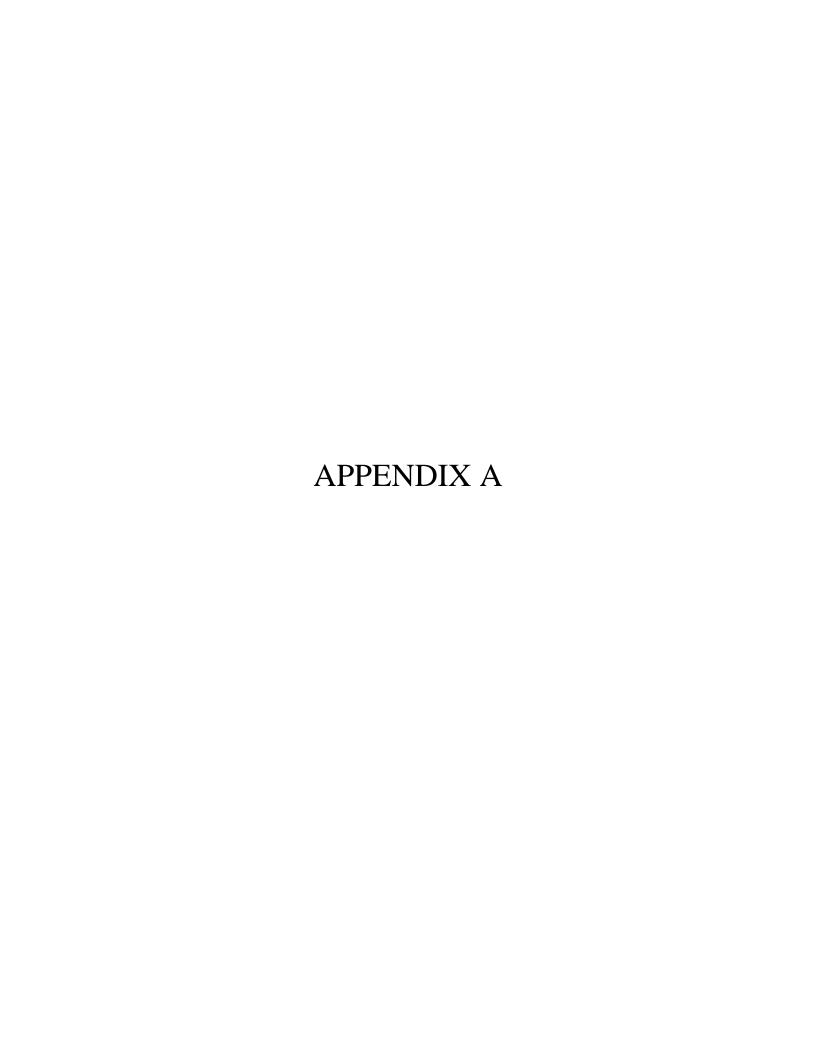
Groundwater flow directions appear to be consistent with earlier determinations. Groundwater within the overburden continues to flow toward a tributary of Otis Creek at the south side of the site and toward a wetland located north of the landfill site. Groundwater within the shallow bedrock zone discharges to the Barge Canal north of the site.

A trend analysis was performed using all analytical data obtained to date for each well and surface water sampling point. Downward trends were predominant in wells GW-2S, GW-3S, GW-5S, GW-7S, GW-4R, and GW-6R.Upward trends were predominant in wells GW-1S, GW-6S, GW-3R, GW-5R, GW-7R, and GW-9R.

Downward trends were found for TCE and/or its degradation products in wells GW-3S, GW-3R, and GW-6R. A downward trend for chloroethane was found for well GW-5R.

Upward trends in barium, calcium, magnesium, manganese, potassium, and sodium were found for surface water sample SW-1. No trends were found for the seep sample.

The analytical results were also compared to the NYSDOH Part 5 drinking water standards. Exceedances of the standards for iron, manganese, or sodium occurred in many of the wells and most likely reflect naturally-occurring concentrations of these parameters. Six wells, mainly bedrock wells, showed exceedances of the standards for VOCs and other indicators of landfill contamination (e.g., chloride and sodium).


The analytical results for emerging contaminants showed a value of 22.6 μ g/L for 1,4-dioxane in well GW-6R. Non-detect results were reported for wells GW-1S, GW-3S, and MW-9R.

Various PFAS compounds were detected in each of the four wells sampled. In general, more compounds were detected in bedrock wells GW-6R and GW-9R and at higher concentrations than overburden wells GW-1S and GW-3S. All the reported detections were below the USEPA health advisory level of $70~\mu g/L$.

REFERENCES

Larsen Engineers, Work Plan for Additional Sampling and Testing for Emerging Contaminants PFAS and 1,4-Dioxane; January 2019; Modified May 2019.

Malcolm Pirnie, Inc., Brockport Landfill - Site 8-28-038, Post-Closure Monitoring and Maintenance Operations Manual; December 2000; Revised April 2001.

July 12, 2019

Pete Fricano Enalytic, LLC 6034 Corporate Drive East Syracuse, NY 13057

RE: Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Dear Pete Fricano:

Enclosed are the analytical results for sample(s) received by the laboratory on June 27, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REVISION 1: Report re-issued on 7/12/19 for updated qualifiers in the case narrative.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Journey Com

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040 Project Manager

Enclosures

Pace Analytical www.pacelabs.com

575 Broad Hollow Road Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Long Island Certification IDs

575 Broad Hollow Rd, Melville, NY 11747

New York Certification #: 10478 Primary Accrediting Body

New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Maryland Certification #: 208

Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Method:EPA 6010CDescription:6010 MET ICPClient:Enalytic, LLCDate:July 12, 2019

General Information:

2 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121065

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 576051)
 - Calcium
 - Sodium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: Enalytic, LLC Date: July 12, 2019

General Information:

2 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120726

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- BLANK (Lab ID: 574699)
 - 2-Butanone (MEK)
- LCS (Lab ID: 574700)
 - 2-Butanone (MEK)
- MS (Lab ID: 574820)
 - 2-Butanone (MEK)
- MSD (Lab ID: 574821)2-Butanone (MEK)
- SEEP (Lab ID: 7095500002)
 - 2-Butanone (MEK)
- SW-1 (Lab ID: 7095500001)
 - 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120726

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- LCS (Lab ID: 574700)
 - Acetone
 - Dibromochloromethane
- MS (Lab ID: 574820)
 - Acetone
 - Dibromochloromethane
- MSD (Lab ID: 574821)
 - Acetone
 - Dibromochloromethane

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- BLANK (Lab ID: 574699)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: Enalytic, LLC Date: July 12, 2019

QC Batch: 120726

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- Vinyl chloride
- trans-1,4-Dichloro-2-butene
- LCS (Lab ID: 574700)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- MS (Lab ID: 574820)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- MSD (Lab ID: 574821)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- SEEP (Lab ID: 7095500002)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- SW-1 (Lab ID: 7095500001)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: Enalytic, LLC Date: July 12, 2019

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 120726

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 574700)
 - 1,1,1,2-Tetrachloroethane

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 574700)
 - 1.1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - 4-Methyl-2-pentanone (MIBK)
 - trans-1,4-Dichloro-2-butene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120726

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095502007

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 574820)
 - 1,1,1,2-Tetrachloroethane
 - 1,2-Dibromo-3-chloropropane
 - trans-1,4-Dichloro-2-butene
- MSD (Lab ID: 574821)
 - 1,1,1,2-Tetrachloroethane
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - trans-1,4-Dichloro-2-butene

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 574820)
 - Chlorobenzene
 - Ethylbenzene
 - Styrene
- MSD (Lab ID: 574821)
 - Styrene

MS: Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result

- MS (Lab ID: 574820)
 - · Xylene (Total)

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: Enalytic, LLC Date: July 12, 2019

QC Batch: 120726

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095502007

R1: RPD value was outside control limits.

• MSD (Lab ID: 574821) • lodomethane

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

Sample: SW-1	Lab ID: 70	095500001	Collected: 06/26/	19 11:51	Received: 06	/27/19 11:05 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical M	ethod:						
Field pH	8.08	Std. Units		1		06/26/19 11:51		
Field Temperature	22.8	deg C		1		06/26/19 11:51		
Field Specific Conductance	1021	umhos/cm		1		06/26/19 11:51		
Oxygen, Dissolved	9.8	mg/L		1		06/26/19 11:51	7782-44-7	
REDOX	-73	mV		1		06/26/19 11:51		
Field Turbidity	4.38	NTU		1		06/26/19 11:51		
6010 MET ICP	Analytical M	ethod: EPA 60	10C Preparation Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 23:19	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:19	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 23:19		
Calcium	88300	ug/L	200	1		07/10/19 23:19		
ron	2580	ug/L	20.0	1	07/09/19 10:00	07/10/19 23:19	7439-89-6	
Magnesium	18200	ug/L	200	1	07/09/19 10:00	07/10/19 23:19	7439-95-4	
Manganese	428	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:19	7439-96-5	
Potassium	<5000	ug/L	5000	1	07/09/19 10:00	07/10/19 23:19	7440-09-7	
Sodium	93800	ug/L	5000	1	07/09/19 10:00	07/10/19 23:19	7440-23-5	
3260C Volatile Organics	Analytical M	ethod: EPA 820	60C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/05/19 20:50	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/05/19 20:50	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/05/19 20:50	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/05/19 20:50	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/05/19 20:50	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/05/19 20:50	75-25-2	CL
Bromomethane	<1.0	ug/L	1.0	1		07/05/19 20:50	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/05/19 20:50	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/05/19 20:50	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/05/19 20:50	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/05/19 20:50	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/05/19 20:50	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/05/19 20:50	74-87-3	CL
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/05/19 20:50	96-12-8	CL,L2
Dibromochloromethane	<1.0	ug/L	1.0	1		07/05/19 20:50	124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/05/19 20:50	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/05/19 20:50	74-95-3	
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/05/19 20:50		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/05/19 20:50	106-46-7	
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/05/19 20:50	110-57-6	CL,L2
,1-Dichloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	75-34-3	CL,L2
,2-Dichloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	107-06-2	
,1-Dichloroethene	<1.0	ug/L	1.0	1		07/05/19 20:50		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/05/19 20:50		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/05/19 20:50		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/05/19 20:50		

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

Sample: SW-1	Lab ID: 709	5500001	Collected: 06/26/1	9 11:51	Received: 0	6/27/19 11:05 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 20:50	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 20:50	10061-02-6	
Ethylbenzene	<1.0	ug/L	1.0	1		07/05/19 20:50	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/05/19 20:50	591-78-6	
odomethane	<1.0	ug/L	1.0	1		07/05/19 20:50	74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/05/19 20:50	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/05/19 20:50	108-10-1	L2
Styrene	<1.0	ug/L	1.0	1		07/05/19 20:50	100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	630-20-6	L1
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/05/19 20:50	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/05/19 20:50	108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/05/19 20:50	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/05/19 20:50	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/05/19 20:50	96-18-4	
√inyl acetate	<1.0	ug/L	1.0	1		07/05/19 20:50	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		07/05/19 20:50	75-01-4	CL
Kylene (Total)	<3.0	ug/L	3.0	1		07/05/19 20:50	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	101	%	68-153	1		07/05/19 20:50	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-124	1		07/05/19 20:50	460-00-4	
Toluene-d8 (S)	102	%	69-124	1		07/05/19 20:50	2037-26-5	

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

Sample: SEEP	Lab ID: 7	095500002	Collected: 06/26/	19 12:54	Received: 06	5/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical M	lethod:						
Field pH	7.97	Std. Units		1		06/26/19 12:54		
Field Temperature	23.6	deg C		1		06/26/19 12:54		
Field Specific Conductance	624	umhos/cm		1		06/26/19 12:54		
Oxygen, Dissolved	10.9	mg/L		1		06/26/19 12:54	7782-44-7	
REDOX	-98	mV		1		06/26/19 12:54		
Field Turbidity	24.8	NTU		1		06/26/19 12:54		
6010 MET ICP	Analytical M	lethod: EPA 60	10C Preparation Mo	ethod: Ef	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 23:35	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:35	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 23:35		
Calcium	91900	ug/L	200	1		07/10/19 23:35		
ron	1090	ug/L	20.0	1	07/09/19 10:00	07/10/19 23:35	7439-89-6	
Magnesium	19000	ug/L	200	1	07/09/19 10:00	07/10/19 23:35	7439-95-4	
Manganese	240	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:35	7439-96-5	
Potassium	<5000	ug/L	5000	1	07/09/19 10:00	07/10/19 23:35	7440-09-7	
Sodium	101000	ug/L	5000	1	07/09/19 10:00	07/10/19 23:35	7440-23-5	
260C Volatile Organics	Analytical M	lethod: EPA 820	60C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/05/19 21:10	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/05/19 21:10	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/05/19 21:10	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/05/19 21:10	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/05/19 21:10	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/05/19 21:10	75-25-2	CL
Bromomethane	<1.0	ug/L	1.0	1		07/05/19 21:10	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/05/19 21:10	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/05/19 21:10	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/05/19 21:10	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/05/19 21:10	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/05/19 21:10	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/05/19 21:10	74-87-3	CL
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/05/19 21:10	96-12-8	CL,L2
Dibromochloromethane	<1.0	ug/L	1.0	1		07/05/19 21:10	124-48-1	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/05/19 21:10		
Dibromomethane	<1.0	ug/L	1.0	1		07/05/19 21:10		
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/05/19 21:10		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/05/19 21:10		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/05/19 21:10		CL,L2
,1-Dichloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10		CL,L2
,2-Dichloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10		,- -
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10		
1,2-Dichloropropane	<1.0	ug/L ug/L	1.0	1		07/05/19 21:10		

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

Sample: SEEP	Lab ID: 709	5500002	Collected: 06/26/1	9 12:54	Received: 06	6/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 21:10	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 21:10	10061-02-6	
Ethylbenzene	<1.0	ug/L	1.0	1		07/05/19 21:10	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/05/19 21:10	591-78-6	
lodomethane	<1.0	ug/L	1.0	1		07/05/19 21:10	74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/05/19 21:10	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/05/19 21:10	108-10-1	L2
Styrene	<1.0	ug/L	1.0	1		07/05/19 21:10	100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	630-20-6	L1
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/05/19 21:10	108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/05/19 21:10	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/05/19 21:10	96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		07/05/19 21:10	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		07/05/19 21:10	75-01-4	CL
Xylene (Total)	<3.0	ug/L	3.0	1		07/05/19 21:10	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	100	%	68-153	1		07/05/19 21:10	17060-07-0	
4-Bromofluorobenzene (S)	102	%	79-124	1		07/05/19 21:10	460-00-4	
Toluene-d8 (S)	102	%	69-124	1		07/05/19 21:10	2037-26-5	

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

QC Batch: 121065 Analysis Method: EPA 6010C

QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Associated Lab Samples: 7095500001, 7095500002

METHOD BLANK: 576048 Matrix: Water

Associated Lab Samples: 7095500001, 7095500002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	<60.0	60.0	07/10/19 21:22	
Arsenic	ug/L	<10.0	10.0	07/10/19 21:22	
Barium	ug/L	<200	200	07/10/19 21:22	
Calcium	ug/L	<200	200	07/10/19 21:22	
Iron	ug/L	<20.0	20.0	07/10/19 21:22	
Magnesium	ug/L	<200	200	07/10/19 21:22	
Manganese	ug/L	<10.0	10.0	07/10/19 21:22	
Potassium	ug/L	<5000	5000	07/10/19 21:22	
Sodium	ug/L	<5000	5000	07/10/19 21:22	

LABORATORY CONTROL SAMPLE:	576049					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	750	767	102	80-120	
Arsenic	ug/L	500	475	95	80-120	
Barium	ug/L	500	523	105	80-120	
Calcium	ug/L	25000	25200	101	80-120	
Iron	ug/L	2000	2020	101	80-120	
Magnesium	ug/L	25000	24900	100	80-120	
Manganese	ug/L	250	246	98	80-120	
Potassium	ug/L	50000	51400	103	80-120	
Sodium	ug/L	50000	51700	103	80-120	

MATRIX SPIKE SAMPLE:	576051						
Parameter	Units	7095441009 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Antimony	ug/L	<60.0	750	753	100	75-125	
Arsenic	ug/L	<10.0	500	511	102	75-125	
Barium	ug/L	275	500	722	89	75-125	
Calcium	ug/L	125000	25000	140000	62	75-125 ľ	/11
Iron	ug/L	16600	2000	18600	104	75-125	
Magnesium	ug/L	65400	25000	84800	78	75-125	
Manganese	ug/L	505	250	726	88	75-125	
Potassium	ug/L	13800	50000	62100	97	75-125	
Sodium	ug/L	179000	50000	212000	67	75-125 ľ	/11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

SAMPLE DUPLICATE: 576050					
		7095441009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Antimony	ug/L	<60.0	<60.0		
Arsenic	ug/L	<10.0	<10.0		
Barium	ug/L	275	278	1	
Calcium	ug/L	125000	123000	2	
Iron	ug/L	16600	18000	9	
Magnesium	ug/L	65400	64400	2	
Manganese	ug/L	505	506	0	
Potassium	ug/L	13800	13800	0	
Sodium	ug/L	179000	178000	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

QC Batch: 120726 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Associated Lab Samples: 7095500001, 7095500002

METHOD BLANK: 574699 Matrix: Water

Associated Lab Samples: 7095500001, 7095500002

·	•	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	1.0	07/05/19 12:46	
1,1,1-Trichloroethane	ug/L	<1.0	1.0	07/05/19 12:46	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	07/05/19 12:46	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	07/05/19 12:46	
1,1-Dichloroethane	ug/L	<1.0	1.0	07/05/19 12:46	CL
1,1-Dichloroethene	ug/L	<1.0	1.0	07/05/19 12:46	
1,2,3-Trichloropropane	ug/L	<1.0	1.0	07/05/19 12:46	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	07/05/19 12:46	CL
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	07/05/19 12:46	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	07/05/19 12:46	
1,2-Dichloroethane	ug/L	<1.0	1.0	07/05/19 12:46	
1,2-Dichloropropane	ug/L	<1.0	1.0	07/05/19 12:46	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	07/05/19 12:46	
2-Butanone (MEK)	ug/L	<5.0	5.0	07/05/19 12:46	IL
2-Hexanone	ug/L	<5.0	5.0	07/05/19 12:46	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	07/05/19 12:46	
Acetone	ug/L	<5.0	5.0	07/05/19 12:46	
Acrylonitrile	ug/L	<1.0	1.0	07/05/19 12:46	
Benzene	ug/L	<1.0	1.0	07/05/19 12:46	
Bromochloromethane	ug/L	<1.0	1.0	07/05/19 12:46	
Bromodichloromethane	ug/L	<1.0	1.0	07/05/19 12:46	
Bromoform	ug/L	<1.0	1.0	07/05/19 12:46	CL
Bromomethane	ug/L	<1.0	1.0	07/05/19 12:46	
Carbon disulfide	ug/L	<1.0	1.0	07/05/19 12:46	
Carbon tetrachloride	ug/L	<1.0	1.0	07/05/19 12:46	
Chlorobenzene	ug/L	<1.0	1.0	07/05/19 12:46	
Chloroethane	ug/L	<1.0	1.0	07/05/19 12:46	
Chloroform	ug/L	<1.0	1.0	07/05/19 12:46	
Chloromethane	ug/L	<1.0	1.0	07/05/19 12:46	CL
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	07/05/19 12:46	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	07/05/19 12:46	
Dibromochloromethane	ug/L	<1.0	1.0	07/05/19 12:46	
Dibromomethane	ug/L	<1.0	1.0	07/05/19 12:46	
Ethylbenzene	ug/L	<1.0	1.0	07/05/19 12:46	
Iodomethane	ug/L	<1.0	1.0	07/05/19 12:46	
Methylene Chloride	ug/L	<1.0	1.0	07/05/19 12:46	
Styrene	ug/L	<1.0	1.0	07/05/19 12:46	
Tetrachloroethene	ug/L	<1.0	1.0	07/05/19 12:46	
Toluene	ug/L	<1.0	1.0	07/05/19 12:46	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	07/05/19 12:46	
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	07/05/19 12:46	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

METHOD BLANK: 574699 Matrix: Water

Associated Lab Samples: 7095500001, 7095500002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,4-Dichloro-2-butene	ug/L	<1.0	1.0	07/05/19 12:46	CL
Trichloroethene	ug/L	<1.0	1.0	07/05/19 12:46	
Trichlorofluoromethane	ug/L	<1.0	1.0	07/05/19 12:46	
Vinyl acetate	ug/L	<1.0	1.0	07/05/19 12:46	
Vinyl chloride	ug/L	<1.0	1.0	07/05/19 12:46	CL
Xylene (Total)	ug/L	<3.0	3.0	07/05/19 12:46	
1,2-Dichloroethane-d4 (S)	%	97	68-153	07/05/19 12:46	
4-Bromofluorobenzene (S)	%	102	79-124	07/05/19 12:46	
Toluene-d8 (S)	%	105	69-124	07/05/19 12:46	

LABORATORY CONTROL SAMPLE	574700					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	57.4	115	74-113	L1
1,1,1-Trichloroethane	ug/L	50	51.1	102	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	41.0	82	74-121	
1,1,2-Trichloroethane	ug/L	50	43.2	86	80-117	
1,1-Dichloroethane	ug/L	50	40.6	81	83-151	CL,L2
1,1-Dichloroethene	ug/L	50	42.6	85	45-146	
1,2,3-Trichloropropane	ug/L	50	45.2	90	71-123	
1,2-Dibromo-3-chloropropane	ug/L	50	35.2	70	74-119	CL,L2
1,2-Dibromoethane (EDB)	ug/L	50	50.5	101	83-115	
1,2-Dichlorobenzene	ug/L	50	50.4	101	74-113	
1,2-Dichloroethane	ug/L	50	46.2	92	74-129	
1,2-Dichloropropane	ug/L	50	41.1	82	75-117	
1,4-Dichlorobenzene	ug/L	50	49.3	99	71-113	
2-Butanone (MEK)	ug/L	50	41.9	84	44-162	IL
2-Hexanone	ug/L	50	42.0	84	32-183	
4-Methyl-2-pentanone (MIBK)	ug/L	50	34.2	68	69-132	L2
Acetone	ug/L	50	51.7	103	23-188	CH
Acrylonitrile	ug/L	50	37.1	74	59-148	
Benzene	ug/L	50	43.3	87	73-119	
Bromochloromethane	ug/L	50	49.3	99	81-116	
Bromodichloromethane	ug/L	50	49.6	99	78-117	
Bromoform	ug/L	50	42.4	85	65-122	CL
Bromomethane	ug/L	50	34.6	69	52-147	
Carbon disulfide	ug/L	50	40.2	80	41-144	
Carbon tetrachloride	ug/L	50	52.9	106	59-120	
Chlorobenzene	ug/L	50	54.1	108	75-113	
Chloroethane	ug/L	50	36.3	73	49-151	
Chloroform	ug/L	50	46.8	94	72-122	
Chloromethane	ug/L	50	25.3	51	46-144	CL
cis-1,2-Dichloroethene	ug/L	50	45.1	90	72-121	
cis-1,3-Dichloropropene	ug/L	50	48.7	97	78-116	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

ABORATORY CONTROL SAMPLE:	574700					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
ibromochloromethane	ug/L	50	58.2	116	70-120	CH
ibromomethane	ug/L	50	46.3	93	75-125	
nylbenzene	ug/L	50	53.4	107	70-113	
domethane	ug/L	50	36.2	72	61-144	
ethylene Chloride	ug/L	50	42.6	85	61-142	
yrene	ug/L	50	57.9	116	72-118	
trachloroethene	ug/L	50	50.6	101	60-128	
luene	ug/L	50	44.9	90	72-119	
ns-1,2-Dichloroethene	ug/L	50	45.9	92	56-142	
ns-1,3-Dichloropropene	ug/L	50	49.9	100	79-116	
ns-1,4-Dichloro-2-butene	ug/L	50	33.9	68	71-121	CL,L2
chloroethene	ug/L	50	48.9	98	69-117	
chlorofluoromethane	ug/L	50	43.9	88	27-173	
nyl acetate	ug/L	50	41.1	82	20-158	
nyl chloride	ug/L	50	30.6	61	43-143	CL
rlene (Total)	ug/L	150	164	109	71-109	
2-Dichloroethane-d4 (S)	%			96	68-153	
Bromofluorobenzene (S)	%			109	79-124	
oluene-d8 (S)	%			102	69-124	

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 57482	0		574821						
			MS	MSD							
	70	95502007	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD C	Qua
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	50	60.2	57.7	120	115	74-113	4 M0	
1,1,1-Trichloroethane	ug/L	<1.0	50	50	55.3	51.0	111	102	65-118	8	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	50	44.5	45.0	89	90	74-121	1	
1,1,2-Trichloroethane	ug/L	<1.0	50	50	48.4	47.8	97	96	80-117	1	
,1-Dichloroethane	ug/L	<1.0	50	50	43.4	41.2	87	82	83-151	5 CL,N	10
,1-Dichloroethene	ug/L	<1.0	50	50	49.5	46.6	99	93	45-146	6	
,2,3-Trichloropropane	ug/L	<1.0	50	50	49.5	49.1	99	98	71-123	1	
,2-Dibromo-3-chloropropane	ug/L	<1.0	50	50	35.3	36.3	71	73	74-119	3 CL,N	10
,2-Dibromoethane (EDB)	ug/L	<1.0	50	50	55.4	56.1	111	112	83-115	1	
,2-Dichlorobenzene	ug/L	<1.0	50	50	54.9	51.0	110	102	74-113	7	
,2-Dichloroethane	ug/L	<1.0	50	50	49.4	48.1	99	96	74-129	3	
,2-Dichloropropane	ug/L	<1.0	50	50	46.4	44.1	93	88	75-117	5	
,4-Dichlorobenzene	ug/L	<1.0	50	50	53.6	49.7	107	99	71-113	8	
P-Butanone (MEK)	ug/L	<5.0	50	50	40.3	41.0	81	82	44-162	2 IL	
-Hexanone	ug/L	<5.0	50	50	41.7	43.8	83	88	32-183	5	
-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	37.5	39.2	75	78	69-132	4	
cetone	ug/L	<5.0	50	50	37.2	40.3	74	81	23-188	8 CH	
crylonitrile	ug/L	<1.0	50	50	39.5	40.9	79	82	59-148	3	
Benzene	ug/L	<1.0	50	50	48.9	45.4	98	91	73-119	7	
Bromochloromethane	ug/L	<1.0	50	50	53.0	51.6	106	103	81-116	3	
Bromodichloromethane	ug/L	<1.0	50	50	52.1	50.5	104	101	78-117	3	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

MATRIX SPIKE & MATRIX SPIR	KE DUPLICATI	E: 57482	ທ MS	MSD	574821					
	70	95502007	Spike	Spike	MS	MSD	MS	MSD	% Rec	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD Qua
Bromoform	ug/L	<1.0	50	50	44.0	45.9	88	92	65-122	4 CL
Bromomethane	ug/L	<1.0	50	50	42.2	42.3	84	85	52-147	0
Carbon disulfide	ug/L	<1.0	50	50	49.2	43.8	98	88	41-144	12
Carbon tetrachloride	ug/L	<1.0	50	50	55.9	52.3	112	105	59-120	7
Chlorobenzene	ug/L	<1.0	50	50	59.8	55.3	120	111	75-113	8 M1
Chloroethane	ug/L	<1.0	50	50	44.3	41.6	89	83	49-151	6
Chloroform	ug/L	<1.0	50	50	50.4	47.4	101	95	72-122	6
Chloromethane	ug/L	<1.0	50	50	35.5	36.6	71	73	46-144	3 CL
cis-1,2-Dichloroethene	ug/L	<1.0	50	50	47.7	45.4	95	91	72-121	5
cis-1,3-Dichloropropene	ug/L	<1.0	50	50	50.6	49.3	101	99	78-116	3
Dibromochloromethane	ug/L	<1.0	50	50	59.4	59.1	119	118	70-120	1 CH
Dibromomethane	ug/L	<1.0	50	50	51.2	50.5	102	101	75-125	1
Ethylbenzene	ug/L	<1.0	50	50	59.5	53.6	119	107	70-113	10 M1
lodomethane	ug/L	<1.0	50	50	54.1	43.2	108	86	61-144	22 R1
Methylene Chloride	ug/L	<1.0	50	50	45.9	43.8	92	88	61-142	5
Styrene	ug/L	<1.0	50	50	63.7	59.3	127	119	72-118	7 M1
Tetrachloroethene	ug/L	<1.0	50	50	56.9	51.1	114	102	60-128	11
Toluene	ug/L	<1.0	50	50	51.1	46.7	102	93	72-119	9
trans-1,2-Dichloroethene	ug/L	<1.0	50	50	49.6	46.5	99	93	56-142	6
trans-1,3-Dichloropropene	ug/L	<1.0	50	50	51.9	51.5	104	103	79-116	1
trans-1,4-Dichloro-2-butene	ug/L	<1.0	50	50	33.8	32.9	68	66	71-121	3 CL,M0
Trichloroethene	ug/L	<1.0	50	50	53.4	49.9	107	100	69-117	7
Trichlorofluoromethane	ug/L	<1.0	50	50	51.3	47.3	103	95	27-173	8
√inyl acetate	ug/L	<1.0	50	50	38.5	38.2	77	76	20-158	1
Vinyl chloride	ug/L	<1.0	50	50	41.0	38.2	82	76	43-143	7 CL
Xylene (Total)	ug/L	<3.0	150	150	182	166	122	111	71-109	9 MS
1,2-Dichloroethane-d4 (S)	%						97	97	68-153	
4-Bromofluorobenzene (S)	%						108	110	79-124	
Toluene-d8 (S)	%						102	103	69-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/12/2019 02:11 PM

СН	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
CL	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
IL	This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
MS	Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
R1	RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Date: 07/12/2019 02:11 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7095500001 7095500002	SW-1 SEEP				
7095500001 7095500002	SW-1 SEEP	EPA 3005A EPA 3005A	121065 121065	EPA 6010C EPA 6010C	121071 121071
7095500001 7095500002	SW-1 SEEP	EPA 8260C/5030C EPA 8260C/5030C	120726 120726		

Long-Term Monitoring Analyte List ASP B **EQUIS Deliverables** Received by: (sign) Received by; (sign) Remarks Rec'd for Lab by: Name of Courier Lum CASSIE DUNBAR Chain of Custody Record JAKE CONGOER 15:25 10 Ime Time Time KRIS MANN ග Date K.Y. 00 Date Date 1 WO#:7095500 0 Company. ENALYTIC, Preservative Sampled by (Print) Field PETER PRICANO 10 Relinquished by:(sign) Relinquished by:(sign) Relinquished by:(sign) 4 × × 3 × × N × × 095500 Number of Containers 3 3 Lab Internal Use Only 1:1 HCL HN03 None Field 250 ml 250 mi Grab or Comp Grab 40 ml Grab Size NA (315) 437-0255 | Monroe County NY Brockport Landfill Plastic Glass Plastic Matrix N/A N/A Fax (315) 437 1209 SW SW 11:51 Am 12:54 PM Sample bottle: Time 2 Vials 6034 Corporate Drive E. Syracuse New York 13057 Field Readings: Spec Cond, Temp, Turbidity Field Readings: pH, Eh, Dissolved Oxygen Dissolved Metals if Field Turbidity >50 NTU. Please Filter for Dissolved Metals at Lab. 61/92/9 6/56/19 Date T-Sb, As, Ba, Ca, Fe, Mg, Mn, K, Na D-Sb, As, Ba, Ca, Fe, Mg, Mn, K, Na EPA 8260 TCL Volatiles List Enalytic LLC Parameter and Method Sample ID Phone (315) 437 0255 Enalytic, LLC Peter Fricano Seep SW-4 47

Sample Condition Upon Receipt

Client Name: Enalytic

WO#:7095500

Due Date: 07/12/19 PM: JSA

D	Client DCcm	mercial [Pace Ch	Other	CLIENI	. ENALTITO	
Courier: NFed Ex UPS USPS	Client []Com	U 05					
Tracking #: [735]	1>6	17)			7		
Custody Seal on Cooler/Box Present: [Yes No			Yes [l No	Temperature Blan	k Present: Yes No
Packing Material: Bubble Wrap Bub	oble Bags 🔲 Z	iploc []Nor	ne Dth	er		Type of Ice: Wet	Blue None
Thermometer Used: (H09)	Correc	tion Facto	r: + ()) . 1		Samples on ice, coo	oling process has begun
Cooler Temperature (°C): 4.1	Cooler '	Temperatu	re Correc	ted (°C):	4.5	Date/Time 5035A ki	ts placed in freezer
Temp should be above freezing to 8.0°C							
USDA Regulated Soil (N/A, water sar	mple)			Date	and Initials	of person examining co	entents:(0/27/1911
Did samples originate in a quarantine zone within	the United State	e AL AR CA	A. FL. GA, I	7.0			om a foreign source (internation
TV V/A (check man							uerto Rico)? Yes No
If Yes to either question	n, fill out a Re	gulated So	oil Check	list (F-LI-	C-010) and i	include with SCUR/COC	paperwork.
						COMMENTS	
Chain of Custody Present:	DY'es .	□No		1.			
Chain of Custody Filled Out:	Yes	□No		2.			*
Chain of Custody Relinquished:	YYes	□No		3.			
Sampler Name & Signature on COC:	Yes	□No	□N/A	4.			
Samples Arrived within Hold Time:	Yes	□No		5.			
Short Hold Time Analysis (<72hr):	□Yes	DNO		6.			
Rush Turn Around Time Requested:	□Yes	PNo		7.	******		
Sufficient Volume: (Triple volume provided for MS	MSD Yes	□No		8.			
Correct Containers Used:	YYes	□No		9.			
-Pace Containers Used:	YYes	□No				•	
Containers Intact:	Yes	□No		10.			
Filtered volume received for Dissolved tests	□Yes	□No	DINA	11.	Note if sedin	nent is visible in the dissolved	container.
Sample Labels match COC:	Yes	□No	•	12.			
-Includes date/time/ID/Analysis Matrix S	L WO OIL					8	
All containers needing preservation have been che	cked Yes	□No	□N/A	13.	☐ HNO ₃	☐ H₂SO₄ ☐ NaOH	☐ HCI
oH paper Lot # ' HC%63 463	(
All containers needing preservation are found to be	in			Sample #			
compliance with EPA recommendation?	1	□No	□N/A				
HNO, H ₂ SO ₄ , HCI, NaOH>9 Sulfide,	PYes		۵,,,,			140	
NAOH>12 Cyanide) Exceptions: VØA, Coliform, TOC/DOC, Oil and Gre	ase.			Initial wh	en completed:	Lot # of added preservative	Date/Time preservative add
DRO/8015 (water). Per Method, VOA pH is checked after analysis							
	□Yes	□No	MN/A	14.			
Samples checked for dechlorination: (I starch test strips Lot #							
Residual chlorine strips Lot #					Positive for Re	s. Chlorine? Y N	18
leadspace in VOA Vials (>6mm).	□Yes	ΔNo	DNIV	15.			
rip Blank Present:	□Yes	No	□N/A	16,			
rip Blank Custody Seals Present	□Yes	□No	DINIA				
ace Trip Blank Lot # (if applicable):							
Client Notification/ Resolution:				Field Data	a Required?	Y / N	
Person Contacted:			/		Date/Time:		
comments/ Resolution:							
AMILINATIA INCOMINE		<u> </u>			***************************************	The second secon	
And the second s						8.	7

Enalytic, LLC

Analytical Testing Laboratory

"30 years of science and customer service experience supporting our clients' ever-changing analytical needs"

Shipping: 6034 Corporate Drive * East Syracuse, NY 13057

Mailing: P.O. Box 289 * Syracuse, NY 13206 Phone: (315) 437-0255 * Fax: (315) 437-1209

Mr. Ram Shrivastava, P.E.

Wednesday, August 7, 2019

Larsen Engineers 700 West Metro Park Rochester, NY 14623-2678

Re: Analysis Report: Brockport Landfill

Work Order: E1906099

Town of Sweden, Monroe County, NY Emerging Contaminants Monitoring

Dear Ram Shrivastava, P.E.,

In accordance with the Brockport Landfill's Environmental Monitoring Plan, please find attached test results for the above referenced project.

The sampling for the event was conducted by Enalytic, LLC Field Technicians on June 25th-26th, 2019.

Four wells were sampled (GW-1S, GW-3S, GW-6R, and GW-9R), one Field Duplicate (GW-6R) and one Matrix Spike/Matrix Spike Duplicate (GW-9R). As per the NYSDEC's requirements regarding the sampling of PFAS and 1,4-Dioxane, an Equipment Blank was also collected.

The analytical testing for the PFAS was performed by Eurofins Test America, Sacramento, NELAP Identification Number 11666 (an accreditation/certification summary may be found on page 37 of 41 in the attached report). The analytical testing for the 1,4-Dioxane was performed by Pace Analytical Services, Inc. (NYSDOH ELAP ID# 10888). The Pace Labs test report (which includes the Eurofins Test America, Sacramento test report) is enclosed.

Should you have any questions regarding the sampling event or the enclosed test report, or if I can be of any further service to you, please do not hesitate to give me a call.

Sincerely,

Enalytic Laboratories, LLC

Peter F. Fricano

Peter F. Fricano Project Manager

Enc: Pace Analytical ASP-B Category B Package Report Nos. 7095477,

Enalytic Field Data Sheets and NY Equis EDD w/Excel Spreadsheet.

Enalytic, LL0	C	Groun	d water Field	Log F	ile: TS-30-0)1 Revised:	7/13/15	
Client:		n Engineeri						
Project:	 	kport Landf		Lab	D No. (ente	er by lab)	:	
Well ID.:		GW-1S						
Condition of We	ll:	Good		Locked:	- **** ****	Yes		
Method of Evacu	uation: h	IDPE Bailer (N	ew)	Lock ID:		10G151		
Method of Samp	oling: <u>F</u>	IDPE Bailer (N	ew)					
A A A	A>	۵	Diamentan of	6.t_H		OII.		
	ТОР	Α.	Diameter of \			2"	_ inch	
c		В.	Well Depth N			15.45	feet	
		C.	Depth to Wa			3.8	_ feet	ţ
		D.	_	ater Column (c	alculated)	11.65	_ feet	t
B ↑	WATER LEVEL		Conversion F	actor		X.16	had hip become on	,
			Well Volume	(calculated)		1.86	_ gall	ons
			No. of Volum	es to be Evac	uated	x3		
			Total Volume	to be Evacua	ted	5.6	gall	ons
* † *			Actual Volum	ne Evacuated		10	_ gall	ons
<u></u>	SILT	E.	Installed We	Depth (if kno	wn)	N/A	feet	4
		F.	Depth of Silt	(calculated		N/A	feet	:
Field Measurements	Initial Evacuation		Final Sampling		% Recha			
Date	6/25/2019		6/26/2019	-		oth to Water	3.8	
Time	12:01pm		11:37am		Recharge D	epth to Water	5.2	feet
EH	-158		56		0			64
Temperature	16.2		19.3	 		column height	88	%
pH Specific Cond.	7.37 530		7.41 628		ist water	column height		
Turbidity	18.5		163	 .	Elevation(To	op of Casing)	N/A	feet
Dissolved Oxygen	N/A		N/A	de la companya del companya de la companya del companya de la comp	G.W. Elev		N/A	feet
Appearance	Lt. Reddish		Reddish		G.W.Elevati	on =Top of Case Ele	ev-Total De	pth

Sampler: Peter Fricano, Kris Mann

Signature:

Cassie Dunbar, Jake Longden

Weather:

Observations

84degF Clear

Dissolved Metals

Enalytic, LL	C	Ground v	vater Field Log	File: TS	S-30-01 Revised	d: 7/13/15	 5
Client:		en Engineering	J				
Project: Bro		ckport Landfill		Lab ID No.	(enter by lab)		
Well ID.:		GW-3S					
Condition of We	ell:	Good		Locked:	Yes		
Method of Evac	uation:	HDPE Bailer (New)	<u> </u>	Lock ID:	10G151		
Method of Samp	oling:	HDPE Bailer (New)	<u>,</u>				
† † †	A -	Α. [Diameter of Well		2"	inc	hes
	ТОР	B. V	Vell Depth Measu	ıred	20.22	fee	ŧ
		С. [Depth to Water		2.5	fee	ıt
		D. L	ength of Water C	olumn (calculat	ed) 18.85	fee	ł
B ↑	WATER LEVEL	C	Conversion Factor	•	X.16		**
			Vell Volume (calc		2.86	gall	lons
			lo. of Volumes to		x3	ted to be also	
			otal Volume to be actual Volume Eva		<u>8.6</u> 25		lons lons
F	SILT		nstalled Well Dep		N/A	gan	
			Depth of Silt (calcu		N/A	fee	
Field Measurements	Initial Evacuation	Fina	l Ipling	% R	echarge:		
Measurements	LVacdation	Sail	ihiiii	Initia	l Depth to Water	2.5	feet
Date Time	6/25/2019 10:10am		6/26/2019 12:04pm	Rech	arge Depth to Water	4.6	feet
EH	-151		-144	-			
Temperature	15.8		18.6	2nd	water column height	89	<u>%</u>
pH	7.30	<u></u>	7.23	1st v	vater column height		
Specific Cond.	952		953	<u>-</u>			
Turbidity	24.0		48.6	Eleva	tion(Top of Casing)	N/A	feet
Dissolved Oxygen Appearance	N/A Clear w/debris		N/A Glear w/dehris	-	. Elevation=	N/A	feet
ACCERTACE	CIEST WICHDIN	i (JEST WHOSPIES	C W	Elevation =Ton of Case E	JOU. TOTAL IN	onth

84degF Clear

Weather: Observations:

Sampler: Peter Fricano, Kris Mann
Cassie Dunbar, Jake Longden
Signature:

Enalytic, LL(Larsen	Engineerin				7/13/15		
Project: Well ID.:		port Landfil /-6R	<u> </u>	Lab ID No. (er	nter by lab)			
				,				
Condition of Wel	l:	Good		Locked:	Yes			
Method of Evacu	lethod of Evacuation: HDI		IDPE Bailer (New)		10G151			
Method of Samp	ling: HE	PE Bailer (Ne	w)					
↑ ↑ ↑ 	<u>_ A</u> →	A.	Diameter of Well		4"	inch	es	
	ТОР	В.	Well Depth Measu	red	35.93	- feet		
Ċ		С.	Depth to Water	100	7.6	feet		
			•					
		Ď.	Length of Water C	olumn (calculated)	28.41	_ feet		
B ↑	WATER LEVEL		Conversion Factor		X.65		•	
	Laku V kata		Well Volume (calc	ulated)	18.46	_ gallo	ons	
D			No. of Volumes to	be Evacuated	x3			
			Total Volume to be	e Evacuated	55.4	gallo	ons	
† † 			Actual Volume Eva	acuated	55	gallo	ons	
F	SILT	E.	Installed Well Dep	th (if known)	N/A	feet		
		F.	Depth of Silt (calcu	ulated	N/A	_ feet		
Field Measurements	Initial Evacuation		nal ampling	% Rech	•	7.0		
Date	6/25/2019		6/26/2019	Initial D	epth to Water	7.6	feet	
Time	11:07am		11:01am	Recharge	Depth to Water	7.6	feet	
EH	22		-19	•				
Temperature	14.5		14.3		ter column height	100	<u>%</u>	
pН	7.18	······	6.99	. 1st wate	er column height			
Specific Cond. Turbidity	<u>1176</u> 45.5	····	1720 109	Elevation	(Top of Casing)	N/A	feet	
Dissolved Oxygen	N/A		N/A	G.W. E	levation=	N/A	feet	
Appearance Weather: Observations:	Clear 84degF Clear	Dissolved Met	Lt. Reddish als	G.W.Elevation =Top of Case Elev-Total Depth Sampler: Peter Fricano, Kris Mann Cassie Dunbar, Jake Longden				
				Signatu	re Thicsn	<u> </u>		

Enalytic, LLC

Ground water Field Log

File: TS-30-01

Revised: 7/13/15

Client:
Project:

Larsen Engineering

Brockport Landfill

Lab ID No. (enter by lab)

Well ID.:

GW-9R

Condition of Well:

Good

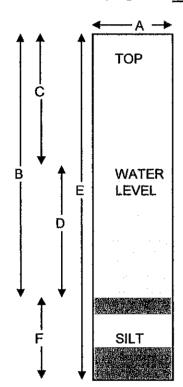
Locked:

Yes

Method of Evacuation:

HDPE Bailer (New)

Lock ID:


10G151

Method of Sampling:

HDPE Bailer (New)

F.

Depth of Silt (calculated

A.	Diameter of Well	2"	inches
B.	Well Depth Measured	18.58	feet
C.	Depth to Water	3.8	feet
D.	Length of Water Column (calculated)	14.78	feet
	Conversion Factor	X.16	
	Well Volume (calculated)	2.36	gallons
	No. of Volumes to be Evacuated	<u> </u>	
	Total Volume to be Evacuated	7.1	gallons
	Actual Volume Evacuated	10	gallons
E.	Installed Well Depth (if known)	N/A	feet

Field	Initial	Final
Measurements	Evacuation	Sampling
Date	6/25/2019	6/26/2019
Time	1:10pm	12:27pm
EH	-148	
Temperature	15.8	13.8
pН	7.22	7.04
Specific Cond.	418	383
Turbidity	107	46
Dissolved Oxygen	N/A	N/A
Appearance	Clear	Clear
Weather:	84degF Clear	
Observations:		

% Recharge:

Initial Depth to Water

N/A

3.8 feet

feet

Recharge Depth to Water

4.3 feet

2nd water column height 1st water column height 97 %

1st water column neigh

Elevation(Top of Casing)
G.W. Elevation=

N/A feet N/A feet

G.W.Elevation =Top of Case Elev-Total Depth

Sampler: Peter Fricano, Kris Mann Cassie Dunbar, Jake Longden

Signature:

Peter micano

July 19, 2019

Pete Fricano Enalytic, LLC 6034 Corporate Drive East Syracuse, NY 13057

RE: Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Dear Pete Fricano:

Enclosed are the analytical results for sample(s) received by the laboratory on June 27, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040 Project Manager

In law

Enclosures

CERTIFICATIONS

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485

A2LA Certification #: 2926.01 Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064

Alaska DW Certification #: MN00064

Connecticut Certification #: PH-0256

EPA Region 8+Wyoming DW Certification #: via MN 027-

053-137

Florida Certification #: E87605 Georgia Certification #: 959

Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064

Maryland Certification #: 322

Massachusetts Certification #: M-MN064

Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Certification #: via MN 027-053-137

Minnesota Petrofund Certification #: 1240
Mississippi Certification #: MN00064
Missouri Certification #: 10100
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064
New Hampshire Certification #: 2081
New Jersey Certification #: MN002
New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507

Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Vermont Certification #: VT-027053137
Virginia Certification #: 460163

Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01

SAMPLE SUMMARY

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Lab ID	Sample ID	Matrix	Date Collected	Date Received
7095477001	GW-1S	Water	06/26/19 11:37	06/27/19 11:05
7095477002	GW-3S	Water	06/26/19 12:04	06/27/19 11:05
7095477003	GW-6R	Water	06/26/19 11:01	06/27/19 11:05
7095477004	GW-9R	Water	06/26/19 12:27	06/27/19 11:05
7095477005	FIELD DUPLICATE	Water	06/26/19 11:01	06/27/19 11:05
7095477006	EQUIPMENT BLANK	Water	06/26/19 11:47	06/27/19 11:05

SAMPLE ANALYTE COUNT

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
7095477001	GW-1S	EPA 8270D by SIM	STB	2	PASI-M
7095477002	GW-3S	EPA 8270D by SIM	STB	2	PASI-M
7095477003	GW-6R	EPA 8270D by SIM	STB	2	PASI-M
7095477004	GW-9R	EPA 8270D by SIM	STB	2	PASI-M
7095477005	FIELD DUPLICATE	EPA 8270D by SIM	STB	2	PASI-M
7095477006	EQUIPMENT BLANK	EPA 8270D by SIM	STB	2	PASI-M

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Date: 07/19/2019 08:59 AM

Sample: GW-1S	Lab ID: 709	Lab ID: 7095477001		Collected: 06/26/19 11:37		/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV 14 Dioxane By SIM	Analytical Meth	hod: EPA 82	270D by SIM Prepara	ation Me	thod: EPA 3510			
1,4-Dioxane (SIM) Surrogates	<0.23	ug/L	0.23	1	07/02/19 16:45	07/16/19 21:51	123-91-1	
1,4-Dioxane-d8 (S)	34	%.	30-125	1	07/02/19 16:45	07/16/19 21:51		

(631)694-3040

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Date: 07/19/2019 08:59 AM

Sample: GW-3S	Lab ID: 709	Lab ID: 7095477002		Collected: 06/26/19 12:04		/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV 14 Dioxane By SIM	Analytical Met	hod: EPA 82	270D by SIM Prepara	ation Me	thod: EPA 3510			
1,4-Dioxane (SIM) Surrogates	<0.23	ug/L	0.23	1	07/02/19 16:45	07/16/19 22:30	123-91-1	
1,4-Dioxane-d8 (S)	39	%.	30-125	1	07/02/19 16:45	07/16/19 22:30		

(631)694-3040

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Date: 07/19/2019 08:59 AM

Sample: GW-6R	Lab ID: 709	Lab ID: 7095477003		9 11:01	Received: 06	/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV 14 Dioxane By SIM	Analytical Met	hod: EPA 82	70D by SIM Prepara	ation Me	ethod: EPA 3510			
1,4-Dioxane (SIM) Surrogates	22.6	ug/L	0.23	1	07/02/19 16:45	07/16/19 21:12	123-91-1	
1,4-Dioxane-d8 (S)	36	%.	30-125	1	07/02/19 16:45	07/16/19 21:12		

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Date: 07/19/2019 08:59 AM

Sample: GW-9R	Lab ID: 709	Lab ID: 7095477004		9 12:27	Received: 06	/27/19 11:05 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8270D MSSV 14 Dioxane By SIM	Analytical Meth	nod: EPA 82	270D by SIM Prepara	ation Met	hod: EPA 3510				
1,4-Dioxane (SIM) Surrogates	<0.23	ug/L	0.23	1	07/02/19 16:45	07/16/19 22:50	123-91-1	M1	
1,4-Dioxane-d8 (S)	38	%.	30-125	1	07/02/19 16:45	07/16/19 22:50			

(631)694-3040

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Date: 07/19/2019 08:59 AM

Sample: FIELD DUPLICATE	Lab ID: 709	Lab ID: 7095477005		9 11:01	Received: 06	5/27/19 11:05 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV 14 Dioxane By SIM	Analytical Met	hod: EPA 82	270D by SIM Prepara	ation Me	ethod: EPA 3510			
1,4-Dioxane (SIM) Surrogates	19.8	ug/L	0.24	1	07/02/19 16:45	07/16/19 21:31	123-91-1	
1,4-Dioxane-d8 (S)	39	%.	30-125	1	07/02/19 16:45	07/16/19 21:31		

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Date: 07/19/2019 08:59 AM

Sample: EQUIPMENT BLANK	Lab ID: 709	Lab ID: 7095477006		9 11:47	Received: 06	/27/19 11:05 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8270D MSSV 14 Dioxane By SIM	Analytical Met	hod: EPA 82	70D by SIM Prepara	ation Me	thod: EPA 3510				
1,4-Dioxane (SIM) Surrogates	<0.23	ug/L	0.23	1	07/02/19 16:45	07/16/19 22:10	123-91-1		
1,4-Dioxane-d8 (S)	32	%.	30-125	1	07/02/19 16:45	07/16/10 22:10			

Qualifiers

QUALITY CONTROL DATA

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Date: 07/19/2019 08:59 AM

QC Batch: 617118 Analysis Method: EPA 8270D by SIM

QC Batch Method: EPA 3510 Analysis Description: 8270D Water 14 Dioxane by SIM

Associated Lab Samples: 7095477001, 7095477002, 7095477003, 7095477004, 7095477005, 7095477006

METHOD BLANK: 3333284 Matrix: Water

Associated Lab Samples: 7095477001, 7095477002, 7095477003, 7095477004, 7095477005, 7095477006

Parameter Units Result Limit Analyzed

 1,4-Dioxane (SIM)
 ug/L
 <0.25</td>
 0.25
 07/16/19 20:32

 1,4-Dioxane-d8 (S)
 %.
 39
 30-125
 07/16/19 20:32

LABORATORY CONTROL SAMPLE: 3333285

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (SIM) 10 6.4 64 40-125 ug/L 1,4-Dioxane-d8 (S) 30-125 %.

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3333286 3333287

			MS	MSD								
		7095477004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dioxane (SIM)	ug/L	<0.23	9.1	9.1	6.7	6.1	73	66	70-130	9	30	M1
1,4-Dioxane-d8 (S)	%.						42	42	30-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 07/19/2019 08:59 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BROCKPORT LANDFILL 6/26

Pace Project No.: 7095477

Date: 07/19/2019 08:59 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7095477001	GW-1S	EPA 3510	617118	EPA 8270D by SIM	620003
7095477002	GW-3S	EPA 3510	617118	EPA 8270D by SIM	620003
7095477003	GW-6R	EPA 3510	617118	EPA 8270D by SIM	620003
7095477004	GW-9R	EPA 3510	617118	EPA 8270D by SIM	620003
7095477005	FIELD DUPLICATE	EPA 3510	617118	EPA 8270D by SIM	620003
7095477006	EQUIPMENT BLANK	EPA 3510	617118	EPA 8270D by SIM	620003

Enalytic LLC 6034 Corporate Drive E. Syracuse New York 13057

Chain of Custody Record

(315) 437 0255	Fax 437 1209	0												
Client:		Project #/ Project Name	ame			3	#0	WO# - 709547	757	77				
Enalytic, LLC		Brockport Landfill	t Landfill										Remarks	
Ollent Contact:	Phone #	Location (city/state)	Address			# G i								
Peter Fricano	(315) 437-0255	Monroe County N	County N	>-									jing Contaminants	nd contrast of the
Sample ID	Date	Time	Matrix	Grab or Comp	Lab Internal Use Only	NR NR	7095477 1) 2) (3	3) 4) 5	5) (6)	6) (7) (8	(8) (9) (10)	. 4	ASP B - EQUIS Del.	
GW-1S	61/72/9	11:37 AM	GW	Grab	4	2	XX						100	
GW-3S	6/20/19	12:04m	GW	Grab	4	2	××						ZOW	
GW-6R	6/26/19	HIOSIAM	GW	Grab	4	2	×						003	
GW-9R (MS/MSD)	6/26/19	12:27 PM	GW	Grab	12	(*8	XX						COST	
Field Duplicate (GW-6R)	6/20/10	HOIAM	GW	Grab	4	2	XX					_1	999	
Equipment Blank	6/52/9	11:47am	GW	Grab	4	2	XX					NEV	NEW HOPE BAILER	38
2					1	1						出	FIELD CLEANED)
					世人	7)		7
)									,
														ugytestdoops
						\vdash			-					_
									-					-

									\blacksquare					
						\top			-					
Parameter and Method		Sample bottle:	Type	Size	Preservative	Samp	Sampled by (Print)	Print)	- -	RIC MANN	7778	Name	Name of Courier	
			HDPE	250ml	-	PETER	LY Y	RICANO	_	JAKE	JAKE LONGDE	manual little		
2) 1,4-Dioxane by EPA Method 8270C	8270C		A-Glass	250ml	None	Company:	any: E	ころろろ	2	SS	SIEDI	CASSIE DUNBAR		******
3)							uished	Relinquished by:(sign)	<u>-</u> ۱	Date		-	Received by: (sign)	
5)					7	13	3	11/1	was	120	12.0	· C	the state of the s	
(9)						Reling	uished	Relinquished by:(sign)	<u>-</u>	Date	Time	1	Received by: (sign)	
(<u>)</u>						The	2 m	1	374	12/2	17:17	-		
(6) Pag						Seling	uished	Relinguished by:(sign)	1	Date	Time	-	Rec'd for Lab by:	
(0 ₁ e 14										000	12118		1.1.h	
* Additional volume submitted for the MS/MSD samples.	d for the MS/M	SD sample	ú						.,	12/0			a MO THE	1
)		

Sample Condition Upon Receipt

Client Name:

WO#:7095477

Due Date: 07/12/19

CLIENT: ENALYTIC

Courier: Fed Ex UPS USPS C	lient []Comme	ercial [Pace LL	mer					
Tracking #: 7755 7595	6062			/				****	
Custody Seal on Cooler/Box Present:	Yes No		ıls intact:		No	Tempe	rature Blank	k Present: Yes 🛭	M
Packing Material: Bubble Wrap Bubble	e Bags 💟 Zipl	ос Пио	ine Dth	er		Туре о	fice; Wet	Blue None	
	Correction	on Facto	or: + (I	1.2		Sample	s on ice, coo	olling process has begu	n
Thermometer Used: TM091	Cooler Te				5.0	Date/Ti	me 5035A ki	ts placed in freezer	
Cooler Temperature (°C):					P*************************************	AND THE RESERVE OF THE PARTY OF		_	
Temp should be above freezing to 6.0°C	(0)			Date	and Initials	of person ex	camining co	ntents: 17/6/27	6
USDA Regulated Soil (N/A, water samp	ie)	AL AR C	A EL GAL				-	om a foreign source (intern	alie
Did samples originate in a quarantine zone within th	e United States: A	AL, AR, C	A, 1 L, 0/1, 1		,,,,,	including	Hawaii and Pu	ierto Rico)? Yes N	
NM, NY, OK, OR, SC, TN, TX, or VA (check map)? If Yes to either question,	fill out a Regu	ulated S	oil Check	list (F-Ll	-C-010) and	include with	SCUR/COC	paperwork.	
II Tes to ettile. q						C	COMMENTS:		
Chain of Custody Present:	Yes	□No		1.				A decidation of the same property of the same and the sam	
	QYes	□No	14	2.					
Chain of Custody Filled Out:	Dyes	□No		3.					
Chain of Custody Relinquished:	Wes	□No	□N/A	1.					
Sampler Name & Signature on COC:	Yes	ONO		5.				•	- 7552
Samples Arrived within Hold Time:	□Yes	BNo		6.					a= 40
Short Hold Time Analysis (<72hr):	□Yes	DNO		7.					
Rush Turn Around Time Requested:		□N ₀		8.					
Sufficient Volume: (Triple volume provided for MS/MS				9.			•		
Correct Containers Used:	Yes	□No							
-Pace Containers Used:	Yes			10.			•		_
Containers Intact:	Yes	□No	ANIA	11.	Note if sedin	nent is visible in	the dissolved of	container	
Filtered volume received for Dissolved tests	Yes	□No	DIVA	12.	Note ii sedili	ient is visible in	the dissolved (Container.	
Sample Labels match COC:	Yes	□No		12.					
-Includes date/time/ID/Analysis Matrix SL V				1	C UNO		511.011	5.1101	
All containers needing preservation have been checke	□Yes	□No	DINIA	13.	☐ HNO₃	□ H ₂ SO ₄	□ NaOH	☐ HCI	
pH paper Lot # '			•	S's	,				
All containers needing preservation are found to be in			t	Sample	#				
compliance with EPA recommendation?	□Yes	□No	DIMA						
(HNO ₃ , H₂SO₄, HCI, N∂OH>9 Sulfide, NAOH>12 Cyanide)							ā		
Exceptions: VOA, Coliform, TOC/DOC, Oil and Greasi	e.			Initial wi	hen completed:	Lot # of added	d preservative:	Date/Time preservative a	dd
DRO/8015 (water). Per Method, VOA pH is checked after analysis		***********					***		
Samples checked for dechlorination:	□Yes	□No	BMA	14.					
KI starch test strips Lot #									
Residual chlorine strips Lot #				-	Positive for Re	s. Chlorine? Y	Ν		_
leadspace in VOA Vials (>6mm):	□Yes	□No	Bhiv	15.					
Trip Blank Present:	□Yes	□No	DIMIA	16.					
Frip Blank Present	□Yes	ONo	BUIL						
Pace Trip Blank Lot # (if applicable):			\						
				Field Dat	ta Required?	Υ	/ N		
Client Notification/ Resolution:	although the company of the first of the first of the company of t				Date/Time:		v; 4 n. dans Post - 14 a. 14 a		
Person Contacted:					•				
Comments/ Resolution:									
			-	******		4			
						***************************************			_

* PM (Project Manager) review is documented electronically in LIMS.

Page 15 of 41 T-LI-C 002 rev.02

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-51811-1

Laboratory Sample Delivery Group: 7095477 Client Project/Site: Pace PFAS Testing

For:

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, New York 11747

Attn: Jennifer Aracri

Cesar C Cortes

Authorized for release by: 7/16/2019 9:50:05 PM

Cesar Cortes, Project Manager I (916)374-4316

cesar.cortes@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

10

1 0

13

14

Laboratory Job ID: 320-51811-1 SDG: 7095477

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Isotope Dilution Summary	13
QC Sample Results	15
QC Association Summary	20
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

4

8

9

11

12

14

1

Definitions/Glossary

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

Qualifiers

	~ i		_
	G	ΝI	S
_	_	•••	_

RER

RPD

TEF

TEQ

RL

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

Case Narrative

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Job ID: 320-51811-1

SDG: 7095477

Job ID: 320-51811-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Receipt

The samples were received on 6/28/2019 at 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.6° C.

Method 537 modified

The following samples were brown in color and contained brown particulate: GW-1S (320-51811-1), GW-3S (320-51811-2), GW-6R (320-51811-3) and FIELD DUPLICATE (320-51811-5).

The following samples were yellow in color and contained brown particulate: GW-9R (320-51811-4), GW-9R (320-51811-4[MS]), GW-9R (320-51811-4[MSD]).

The following samples contained non-settable particulates which clogged the solid-phase extraction column: GW-1S (320-51811-1), GW-3S (320-51811-2), GW-6R (320-51811-3) and FIELD DUPLICATE (320-51811-5).

Elevated reporting limits are provided for the following samples due to insufficient volume provided: GW-6R (320-51811-3), GW-9R (320-51811-4) and GW-9R (320-51811-4[MS]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Job ID: 320-51811-1

SDG: 7095477

Client Sample ID: GW-1S	Lab Sample ID: 320-51811-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid	0.74	J	2.0	0.35	ng/L	1	_	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.44	JB	2.0	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.85	J	2.0	0.54	ng/L	1		537 (modified)	Total/NA

Client Sample ID: GW-3S Lab Sample ID: 320-51811-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid	7.5		2.0	0.35	ng/L	1	_	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.8	J	2.0	0.86	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.85	J	2.0	0.20	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.76	JB	2.0	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.8		2.0	0.54	ng/L	1		537 (modified)	Total/NA
6:2 FTS	6.4	J	20	2.0	ng/L	1		537 (modified)	Total/NA

Lab Sample ID: 320-51811-3 **Client Sample ID: GW-6R**

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid	40		2.0	0.36	ng/L		_	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	12		2.0	0.59	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid	6.1		2.0	0.26	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	27		2.0	0.87	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.7 E	3	2.0	0.17	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	0.82	J	2.0	0.19	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	36		2.0	0.55	ng/L	1		537 (modified)	Total/NA

Client Sample ID: GW-9R

•									
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid	23		2.0	0.34	ng/L		_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	3.2		2.0	0.48	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	2.9		2.0	0.57	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid	2.7		2.0	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	5.1		2.0	0.83	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.51	J	2.0	0.26	ng/L	1		537 (modified)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.28	J	2.0	0.28	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.8	J	2.0	0.20	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.2	JB	2.0	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PEOS)	2.9		2.0	0.53	ng/l	1		537 (modified)	Total/NA

Client Sample ID: FIELD DUPLICATE

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid	40		2.0	0.35	ng/L		_	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	12		2.0	0.58	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid	5.6		2.0	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	26		2.0	0.85	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	1.0	J	2.0	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.81	J	2.0	0.31	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.9	J	2.0	0.20	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.9	В	2.0	0.17	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	0.96	J	2.0	0.19	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Lab Sample ID: 320-51811-4

Lab Sample ID: 320-51811-5

Detection Summary

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Job ID: 320-51811-1

SDG: 7095477

Client Samp	le ID: FIELD	DUPLICATE	(Continued)
--------------------	--------------	------------------	-------------

Lab	Sample	ID:	320	-5 1	181	1-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	39	2.0	0.54 ng/L	1 537 (modified)	Total/NA

Client Sample ID: EQUIPMENT BLANK

Lab	Sample	ID: 32	0-518 1	1-6

Analyte	Result Qualifier	RL	MDL (Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.44 JB	2.0	0.17 r	ng/L	1	_	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.98 J	2.0	0.54 r	ng/L	1		537 (modified)	Total/NA

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

Client Sample ID: GW-1S

Lab Sample ID: 320-51811-1

Date Collected: 06/26/19 11:37

Date Received: 06/28/19 09:30

Matrix: Water

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid	0.74	J	2.0	0.35	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluoropentanoic acid (PFPeA)	ND		2.0		ng/L			07/04/19 10:44	1
Perfluorohexanoic acid (PFHxA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluoroheptanoic acid	ND		2.0	0.25	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorononanoic acid (PFNA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorododecanoic acid (PFDoA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorohexanesulfonic acid (PFHxS)	0.44	JB	2.0	0.17	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorooctanesulfonic acid (PFOS)	0.85	J	2.0	0.54	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32	ng/L		07/02/19 07:30	07/04/19 10:44	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35	ng/L		07/02/19 07:30	07/04/19 10:44	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	3.1	ng/L		07/02/19 07:30	07/04/19 10:44	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20		ng/L		07/02/19 07:30	07/04/19 10:44	1
6:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 10:44	1
8:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 10:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	77		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C5 PFPeA	84		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C2 PFHxA	82		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C4 PFHpA	83		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C4 PFOA	83		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C5 PFNA	79		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C2 PFDA	82		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C2 PFUnA	64		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C2 PFDoA	59		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C2 PFTeDA	67		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C3 PFBS	80		25 - 150				07/02/19 07:30	07/04/19 10:44	1
18O2 PFHxS	80		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C4 PFOS	77		25 - 150				07/02/19 07:30	07/04/19 10:44	1
13C8 FOSA	70		25 - 150				07/02/19 07:30	07/04/19 10:44	1
d3-NMeFOSAA	71		25 - 150				07/02/19 07:30	07/04/19 10:44	1
d5-NEtFOSAA	66		25 - 150				07/02/19 07:30	07/04/19 10:44	1
M2-6:2 FTS	87		25 - 150				07/02/19 07:30	07/04/19 10:44	1
M2-8:2 FTS	78		25 - 150					07/04/19 10:44	1

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

Client Sample ID: GW-3S Lab Sample ID: 320-51811-2

Date Collected: 06/26/19 12:04 Matrix: Water Date Received: 06/28/19 09:30

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid	7.5		2.0		ng/L			07/04/19 10:52	
Perfluoropentanoic acid (PFPeA)	ND		2.0		ng/L			07/04/19 10:52	
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.59	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluoroheptanoic acid	ND		2.0	0.25	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluorooctanoic acid (PFOA)	1.8	J	2.0	0.86	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluorobutanesulfonic acid (PFBS)	0.85	J	2.0	0.20	ng/L		07/02/19 07:30	07/04/19 10:52	•
Perfluorohexanesulfonic acid (PFHxS)	0.76	JB	2.0	0.17	ng/L		07/02/19 07:30	07/04/19 10:52	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19	ng/L			07/04/19 10:52	,
Perfluorooctanesulfonic acid (PFOS)	2.8		2.0	0.54				07/04/19 10:52	
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L			07/04/19 10:52	
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:52	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20		ng/L			07/04/19 10:52	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20		ng/L			07/04/19 10:52	•
6:2 FTS	6.4	J	20		ng/L			07/04/19 10:52	
8:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 10:52	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	51		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C5 PFPeA	68		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C2 PFHxA	66		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C4 PFHpA	73		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C4 PFOA	73		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C5 PFNA	78		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C2 PFDA	85		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C2 PFUnA	65		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C2 PFDoA	61		25 - 150				07/02/19 07:30	07/04/19 10:52	
13C2 PFTeDA	66		25 - 150					07/04/19 10:52	
13C3 PFBS	70		25 - 150					07/04/19 10:52	
1802 PFHxS	74		25 - 150 25 - 150					07/04/19 10:52	
13C4 PFOS	70		25 - 150 25 - 150					07/04/19 10:52	
13C8 FOSA	62		25 - 150 25 - 150					07/04/19 10:52	
d3-NMeFOSAA	64		25 - 150 25 - 150					07/04/19 10:52	
d5-NEtFOSAA	72		25 ₋ 150					07/04/19 10:52	
M2-6:2 FTS	84		25 - 150					07/04/19 10:52	
M2-8:2 FTS	96		25 - 150				07/02/19 07:30	07/04/19 10:52	

Client: Pace Analytical Services, LLC Job ID: 320-51811-1 Project/Site: Pace PFAS Testing SDG: 7095477

Client Sample ID: GW-6R Lab Sample ID: 320-51811-3 Date Collected: 06/26/19 11:01

Date Received: 06/28/19 09:30

Matrix: Water

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid	40		2.0	0.36	ng/L		07/02/19 07:30	07/04/19 11:00	
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.50	ng/L		07/02/19 07:30	07/04/19 11:00	
Perfluorohexanoic acid (PFHxA)	12		2.0	0.59	ng/L		07/02/19 07:30	07/04/19 11:00	
Perfluoroheptanoic acid	6.1		2.0	0.26	ng/L		07/02/19 07:30	07/04/19 11:00	
Perfluorooctanoic acid (PFOA)	27		2.0	0.87	ng/L		07/02/19 07:30	07/04/19 11:00	
Perfluorononanoic acid (PFNA)	ND		2.0	0.28	ng/L		07/02/19 07:30	07/04/19 11:00	
Perfluorodecanoic acid (PFDA)	ND		2.0	0.32	ng/L		07/02/19 07:30	07/04/19 11:00	· · · · · · · · ·
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/02/19 07:30	07/04/19 11:00	•
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.56	ng/L		07/02/19 07:30	07/04/19 11:00	•
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/02/19 07:30	07/04/19 11:00	•
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.30	ng/L		07/02/19 07:30	07/04/19 11:00	•
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/02/19 07:30	07/04/19 11:00	•
Perfluorohexanesulfonic acid (PFHxS)	4.7	В	2.0	0.17	ng/L		07/02/19 07:30	07/04/19 11:00	,
Perfluoroheptanesulfonic Acid (PFHpS)	0.82	J	2.0	0.19	ng/L		07/02/19 07:30	07/04/19 11:00	•
Perfluorooctanesulfonic acid (PFOS)	36		2.0	0.55	ng/L		07/02/19 07:30	07/04/19 11:00	•
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.33	ng/L		07/02/19 07:30	07/04/19 11:00	
Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.36	ng/L		07/02/19 07:30	07/04/19 11:00	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	3.2	ng/L		07/02/19 07:30	07/04/19 11:00	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20	1.9	ng/L		07/02/19 07:30	07/04/19 11:00	
6:2 FTS	ND		20		ng/L		07/02/19 07:30	07/04/19 11:00	•
8:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 11:00	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	34		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C5 PFPeA	59		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C2 PFHxA	62		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C4 PFHpA	63		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C4 PFOA	71		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C5 PFNA	73		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C2 PFDA	85		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C2 PFUnA	72		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C2 PFDoA	64		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C2 PFTeDA	72		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C3 PFBS	79		25 - 150					07/04/19 11:00	
1802 PFHxS	74		25 - 150				07/02/19 07:30	07/04/19 11:00	
13C4 PFOS	75		25 - 150				07/02/19 07:30	07/04/19 11:00	:
13C8 FOSA	60		25 - 150					07/04/19 11:00	
d3-NMeFOSAA	68		25 - 150					07/04/19 11:00	
d5-NEtFOSAA	75		25 - 150					07/04/19 11:00	
M2-6:2 FTS	111		25 - 150					07/04/19 11:00	
	98								

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

Client Sample ID: GW-9R

Lab Sample ID: 320-51811-4

Date Collected: 06/26/19 12:27

Date Received: 06/28/19 09:30

Matrix: Water

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid	23		2.0	0.34	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluoropentanoic acid (PFPeA)	3.2		2.0	0.48	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorohexanoic acid (PFHxA)	2.9		2.0	0.57	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluoroheptanoic acid	2.7		2.0	0.25	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorooctanoic acid (PFOA)	5.1		2.0	0.83	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorononanoic acid (PFNA)	0.51	J	2.0	0.26	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorodecanoic acid (PFDA)	ND		2.0	0.30	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.54	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorotetradecanoic acid	0.28	J	2.0	0.28	ng/L		07/02/19 07:30	07/04/19 11:16	
PFTeA)					-				
Perfluorobutanesulfonic acid PFBS)	1.8	J	2.0	0.20	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorohexanesulfonic acid (PFHxS)	1.2	JB	2.0	0.17	-		07/02/19 07:30	07/04/19 11:16	
Perfluoroheptanesulfonic Acid PFHpS)	ND		2.0	0.19	-			07/04/19 11:16	
Perfluorooctanesulfonic acid (PFOS)	2.9		2.0		ng/L			07/04/19 11:16	
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.31	ng/L		07/02/19 07:30	07/04/19 11:16	
Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.34	U		07/02/19 07:30	07/04/19 11:16	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	3.0	ng/L		07/02/19 07:30	07/04/19 11:16	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20	1.9	ng/L		07/02/19 07:30	07/04/19 11:16	
6:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 11:16	
3:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 11:16	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	46		25 - 150				07/02/19 07:30	07/04/19 11:16	
13C5 PFPeA	77		25 - 150				07/02/19 07:30	07/04/19 11:16	
13C2 PFHxA	79		25 - 150				07/02/19 07:30	07/04/19 11:16	
13C4 PFHpA	88		25 - 150				07/02/19 07:30	07/04/19 11:16	
13C4 PFOA	95		25 - 150				07/02/19 07:30	07/04/19 11:16	
13C5 PFNA	96		25 - 150				07/02/19 07:30	07/04/19 11:16	
I3C2 PFDA	106		25 - 150				07/02/19 07:30	07/04/19 11:16	
13C2 PFUnA	100		25 - 150					07/04/19 11:16	
13C2 PFDoA	96		25 - 150					07/04/19 11:16	
13C2 PFTeDA	100		25 - 150					07/04/19 11:16	
13C3 PFBS	91		25 - 150					07/04/19 11:16	
1802 PFHxS	90		25 ₋ 150					07/04/19 11:16	
13C4 PFOS	96		25 - 150					07/04/19 11:16	
13C8 FOSA	86		25 ₋ 150					07/04/19 11:16	
d3-NMeFOSAA	91		25 - 150 25 - 150					07/04/19 11:16	
5-Niter OSAA 15-NEtFOSAA	100		25 - 150 25 - 150					07/04/19 11:16	
	116		25 - 150 25 - 150					07/04/19 11:16	
M2-6:2 FTS									

Client: Pace Analytical Services, LLC Job ID: 320-51811-1 Project/Site: Pace PFAS Testing SDG: 7095477

Client Sample ID: FIELD DUPLICATE

Lab Sample ID: 320-51811-5 Date Collected: 06/26/19 11:01 **Matrix: Water** Date Received: 06/28/19 09:30

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid	40		2.0	0.35	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorohexanoic acid (PFHxA)	12		2.0	0.58	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluoroheptanoic acid	5.6		2.0	0.25	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorooctanoic acid (PFOA)	26		2.0	0.85	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorononanoic acid (PFNA)	1.0	J	2.0	0.27	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorodecanoic acid (PFDA)	0.81	J	2.0	0.31	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorobutanesulfonic acid (PFBS)	1.9	J	2.0	0.20	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorohexanesulfonic acid (PFHxS)	4.9	В	2.0	0.17	ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.96	J	2.0		ng/L			07/04/19 11:32	1
Perfluorooctanesulfonic acid (PFOS)	39		2.0		ng/L		07/02/19 07:30	07/04/19 11:32	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L			07/04/19 11:32	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35	ng/L		07/02/19 07:30	07/04/19 11:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20		ng/L		07/02/19 07:30	07/04/19 11:32	1
N-ethylperfluorooctanesulfonamidoac	ND		20	1.9	ng/L		07/02/19 07:30	07/04/19 11:32	1
etic acid (NEtFOSAA) 6:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 11:32	1
8:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 11:32	1
Isotope Dilution	%Recovery	Qualifier	Limits		Ū		Prepared	Analyzed	Dil Fac
13C4 PFBA	41	Qualifier	25 - 150				•	07/04/19 11:32	1
13C5 PFPeA	74		25 - 150 25 - 150					07/04/19 11:32	1
13C2 PFHxA	74 75		25 - 150 25 - 150					07/04/19 11:32	1
13C4 PFHpA	79		25 - 150					07/04/19 11:32	1
13C4 PFOA	87		25 ₋ 150					07/04/19 11:32	1
13C5 PFNA	93		25 - 150					07/04/19 11:32	
13C2 PFDA	106		25 - 150					07/04/19 11:32	1
13C2 PFUnA	86		25 - 150					07/04/19 11:32	1
13C2 PFDoA	76		25 - 150					07/04/19 11:32	1
13C2 PFTeDA	86		25 - 150					07/04/19 11:32	1
13C3 PFBS	91		25 - 150				07/02/19 07:30	07/04/19 11:32	1
1802 PFHxS	87		25 - 150				07/02/19 07:30	07/04/19 11:32	1
13C4 PFOS	87		25 - 150				07/02/19 07:30	07/04/19 11:32	1
13C8 FOSA	73		25 - 150				07/02/19 07:30	07/04/19 11:32	1
d3-NMeFOSAA	85		25 - 150				07/02/19 07:30	07/04/19 11:32	1
d5-NEtFOSAA	89		25 - 150				07/02/19 07:30	07/04/19 11:32	1
M2-6:2 FTS	138		25 - 150				07/02/19 07:30	07/04/19 11:32	1
M2-8:2 FTS	121		25 - 150				07/00/40 07:00	07/04/19 11:32	1

Client: Pace Analytical Services, LLC Job ID: 320-51811-1 Project/Site: Pace PFAS Testing SDG: 7095477

Client Sample ID: EQUIPMENT BLANK

Lab Sample ID: 320-51811-6 Date Collected: 06/26/19 11:47 Date Received: 06/28/19 09:30

Matrix: Water

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid	ND		2.0	0.35	ng/L		07/02/19 07:30	07/04/19 11:40	
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		07/02/19 07:30	07/04/19 11:40	
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		07/02/19 07:30	07/04/19 11:40	•
Perfluoroheptanoic acid	ND		2.0	0.25	ng/L		07/02/19 07:30	07/04/19 11:40	
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/02/19 07:30	07/04/19 11:40	•
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/02/19 07:30	07/04/19 11:40	
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/02/19 07:30	07/04/19 11:40	· · · · · · · · · ·
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/02/19 07:30	07/04/19 11:40	•
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/02/19 07:30	07/04/19 11:40	•
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/02/19 07:30	07/04/19 11:40	•
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29	ng/L		07/02/19 07:30	07/04/19 11:40	
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/02/19 07:30	07/04/19 11:40	
Perfluorohexanesulfonic acid (PFHxS)	0.44	JB	2.0	0.17	ng/L		07/02/19 07:30	07/04/19 11:40	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19	ng/L		07/02/19 07:30	07/04/19 11:40	
Perfluorooctanesulfonic acid	0.98	J	2.0	0.54	ng/L		07/02/19 07:30	07/04/19 11:40	•
(PFOS)									
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 11:40	•
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 11:40	•
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	3.1	ng/L		07/02/19 07:30	07/04/19 11:40	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20		ng/L		07/02/19 07:30	07/04/19 11:40	,
6:2 FTS	ND		20		ng/L			07/04/19 11:40	•
8:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 11:40	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	77		25 - 150				07/02/19 07:30	07/04/19 11:40	-
13C5 PFPeA	82		25 - 150				07/02/19 07:30	07/04/19 11:40	
13C2 PFHxA	77		25 - 150				07/02/19 07:30	07/04/19 11:40	
13C4 PFHpA	80		25 - 150				07/02/19 07:30	07/04/19 11:40	
13C4 PFOA	84		25 - 150				07/02/19 07:30	07/04/19 11:40	
13C5 PFNA	81		25 - 150				07/02/19 07:30	07/04/19 11:40	
13C2 PFDA	93		25 - 150				07/02/19 07:30	07/04/19 11:40	
13C2 PFUnA	83		25 - 150				07/02/19 07:30	07/04/19 11:40	
13C2 PFDoA	80		25 - 150					07/04/19 11:40	
13C2 PFTeDA	94		25 - 150				07/02/19 07:30	07/04/19 11:40	
13C3 PFBS	80		25 - 150					07/04/19 11:40	
1802 PFHxS	82		25 - 150					07/04/19 11:40	
13C4 PFOS	79		25 - 150					07/04/19 11:40	
13C8 FOSA	67		25 - 150					07/04/19 11:40	
d3-NMeFOSAA	78		25 - 150					07/04/19 11:40	
d5-NEtFOSAA	80		25 - 150					07/04/19 11:40	
M2-6:2 FTS	79		25 ₋ 150				07/02/19 07:30		
WIZ-0.2 F I 3									

Client: Pace Analytical Services, LLC Job ID: 320-51811-1 Project/Site: Pace PFAS Testing

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Doro	ent Isotope	Dilution Bo	covery (Ac	contanco I	imite\	
		PFBA	PFPeA	PFHxA		PFOA	PFNA	PFDA	PFUnA
Lab Camada ID	Olivert Orange to ID				PFHpA				
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-51811-1	GW-1S	77	84	82	83	83	79	82	64
320-51811-2	GW-3S	51	68	66	73	73	78	85	65
320-51811-3	GW-6R	34	59	62	63	71	73	85	72
320-51811-4	GW-9R	46	77	79	88	95	96	106	100
320-51811-4 MS	GW-9R	39	63	66	71	73	72	88	74
320-51811-4 MSD	GW-9R	46	73	75	80	86	86	101	86
320-51811-5	FIELD DUPLICATE	41	74	75	79	87	93	106	86
320-51811-6	EQUIPMENT BLANK	77	82	77	80	84	81	93	83
CS 320-305096/2-A	Lab Control Sample	83	90	86	85	86	89	92	91
MB 320-305096/1-A	Method Blank	86	87	88	89	90	87	96	93
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFDoA	PFTDA	3C3-PFB	PFHxS	PFOS	PFOSA	-NMeFOS	-NEtFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150
320-51811-1	GW-1S	59	67	80	80	77	70	71	66
320-51811-2	GW-3S	61	66	70	74	70	62	64	72
320-51811-3	GW-6R	64	72	79	74	75	60	68	75
320-51811-4	GW-9R	96	100	91	90	96	86	91	100
320-51811-4 MS	GW-9R	75	84	78	76	86	70	75	80
320-51811-4 MSD	GW-9R	88	95	82	86	91	77	91	94
320-51811-5	FIELD DUPLICATE	76	86	91	87	87	73	85	89
320-51811-6	EQUIPMENT BLANK	80	94	80	82	79	67	78	80
_CS 320-305096/2-A	Lab Control Sample	89	101	90	85	90	78	85	89
MB 320-305096/1-A	Method Blank	94	107	87	86	88	75	83	89

Percent Isotope Dilution Recovery (Acceptance Limits)

		M262FTS	M282FTS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)
320-51811-1	GW-1S	87	78
320-51811-2	GW-3S	84	96
320-51811-3	GW-6R	111	98
320-51811-4	GW-9R	116	134
320-51811-4 MS	GW-9R	87	100
320-51811-4 MSD	GW-9R	103	122
320-51811-5	FIELD DUPLICATE	138	121
320-51811-6	EQUIPMENT BLANK	79	106
LCS 320-305096/2-A	Lab Control Sample	83	82
MB 320-305096/1-A	Method Blank	86	92

Surrogate Legend

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

PFHpA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

13C3-PFBS = 13C3 PFBS

Eurofins TestAmerica, Sacramento

SDG: 7095477

Isotope Dilution Summary

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS PFOSA = 13C8 FOSA d3-NMeFOSAA = d3-NMeFOSAA d5-NEtFOSAA = d5-NEtFOSAA M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS

Job ID: 320-51811-1 SDG: 7095477

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-30509 Matrix: Water	6/1-A							ole ID: Method Prep Type: T	
Analysis Batch: 305698								Prep Batch:	
	MB	MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid	ND		2.0		ng/L			07/04/19 10:28	
Perfluoropentanoic acid (PFPeA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorohexanoic acid (PFHxA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluoroheptanoic acid	ND		2.0	0.25	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorohexanesulfonic acid (PFHxS)	0.319	J	2.0	0.17	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluoroheptanesulfonic Acid	ND		2.0	0.19	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:28	
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		07/02/19 07:30	07/04/19 10:28	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	3.1	ng/L		07/02/19 07:30	07/04/19 10:28	
N-ethylperfluorooctanesulfonamidoac	ND		20	1.9	ng/L		07/02/19 07:30	07/04/19 10:28	
6:2 FTS	ND		20	2.0	ng/L		07/02/19 07:30	07/04/19 10:28	
3:2 FTS	ND		20		ng/L		07/02/19 07:30	07/04/19 10:28	
	МВ	MB			Ū				
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	86		25 - 150				•	07/04/19 10:28	
13C5 PFPeA	87		25 - 150					07/04/19 10:28	
13C2 PFHxA	88		25 - 150					07/04/19 10:28	
13C4 PFHpA	89		25 - 150					07/04/19 10:28	
13C4 PFOA	90		25 ₋ 150					07/04/19 10:28	
13C5 PFNA	87		25 ₋ 150					07/04/19 10:28	
13C2 PFDA	96		25 - 150					07/04/19 10:28	
13C2 PFUnA	93		25 ₋ 150					07/04/19 10:28	
			25 - 150 25 - 150						
13C2 PFDoA 13C2 PFTeDA	94 107		25 - 150 25 - 150					07/04/19 10:28 07/04/19 10:28	
13C2	87								
			25 ₋ 150					07/04/19 10:28 07/04/19 10:28	
1802 PFHxS	86		25 - 150						
13C4 PFOS	88		25 ₋ 150					07/04/19 10:28	
13C8 FOSA	75		25 - 150					07/04/19 10:28	
d3-NMeFOSAA	83		25 - 150					07/04/19 10:28	
d5-NEtFOSAA	89		25 - 150					07/04/19 10:28	
M2-6:2 FTS	86		25 - 150					07/04/19 10:28	
M2-8:2 FTS	92		25 - 150				07/02/19 07:30	07/04/19 10:28	

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water								Prep Type: Total/NA Prep Batch: 305096
Analysis Batch: 305698			Spike	LCS	LCS			%Rec.
Analyte			Added	Result	Qualifier	Unit	D %Rec	Limits
Perfluorobutanoic acid			40.0	42.0		ng/L	105	70 - 130
Perfluoropentanoic acid (PFPeA)			40.0	36.9		ng/L	92	66 - 126
Perfluorohexanoic acid (PFHxA)			40.0	38.9		ng/L	97	66 - 126
Perfluoroheptanoic acid			40.0	39.6		ng/L	99	66 - 126
Perfluorooctanoic acid (PFOA)			40.0	38.3		ng/L	96	64 - 124
Perfluorononanoic acid (PFNA)			40.0	40.5		ng/L	101	68 - 128
Perfluorodecanoic acid (PFDA)			40.0	36.5		ng/L	91	69 - 129
Perfluoroundecanoic acid			40.0	35.2		ng/L	88	60 - 120
(PFUnA)								
Perfluorododecanoic acid			40.0	38.1		ng/L	95	71 - 131
(PFDoA)				40.0				70. 400
Perfluorotridecanoic acid			40.0	40.0		ng/L	100	72 - 132
(PFTriA) Perfluorotetradecanoic acid			40.0	37.8		ng/L	95	68 ₋ 128
(PFTeA)				00				00 - 120
Perfluorobutanesulfonic acid			35.4	34.5		ng/L	98	73 - 133
(PFBS)								
Perfluorohexanesulfonic acid (PFHxS)			36.4	34.9		ng/L	96	63 - 123
Perfluoroheptanesulfonic Acid (PFHpS)			38.1	37.9		ng/L	100	68 - 128
Perfluorooctanesulfonic acid			37.1	34.7		ng/L	94	67 - 127
(PFOS)			38.6	36.6		na/l	95	68 - 128
Perfluorodecanesulfonic acid (PFDS)			36.0	30.0		ng/L	95	00 - 120
Perfluorooctanesulfonamide			40.0	41.8		ng/L	104	70 ₋ 130
(FOSA)						3		
N-methylperfluorooctanesulfona			40.0	38.7		ng/L	97	67 - 127
midoacetic acid (NMeFOSAA)								
N-ethylperfluorooctanesulfonami			40.0	42.2		ng/L	106	65 - 125
doacetic acid (NEtFOSAA) 6:2 FTS			37.9	38.1		ng/L	100	66 - 126
8:2 FTS			38.3	41.7		ng/L	100	67 ₋ 127
0.2 F13	1.00	LCS	36.3	41.7		TIG/L	109	07 - 127
Isotope Dilution	%Recovery		Limits					
13C4 PFBA	83	Qualifier	25 ₋ 150					
13C5 PFPeA	90		25 - 150 25 - 150					
13C2 PFHxA	86		25 - 150 25 - 150					
			25 - 150 25 - 150					
13C4 PFHpA	85 86							
13C4 PFOA	86		25 - 150 25 - 150					
13C5 PFNA	89							
13C2 PFDA	92		25 ₋ 150					
13C2 PFUnA	91		25 - 150					
13C2 PFDoA	89		25 - 150					
13C2 PFTeDA	101		25 - 150					
13C3 PFBS	90		25 ₋ 150					
18O2 PFHxS	85		25 - 150					
13C4 PFOS	90		25 - 150					
13C8 FOSA	78		25 - 150					
d3-NMeFOSAA	85		25 - 150					

Client: Pace Analytical Services, LLC Job ID: 320-51811-1 Project/Site: Pace PFAS Testing SDG: 7095477

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-305096/2-A

Lab Sample ID: 320-51811-4 MS

Matrix: Water

Matrix: Water

Perfluorobutanoic acid

Perfluoroheptanoic acid

Analyte

(PFUnA)

(PFHxS)

13C2 PFDoA

Analysis Batch: 305698

Analysis Batch: 305698

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluorooctanoic acid (PFOA)

Perfluorononanoic acid (PFNA)

Perfluorodecanoic acid (PFDA)

Perfluoroheptanesulfonic Acid

Perfluorooctanesulfonamide

Perfluoroundecanoic acid

LCS LCS

Sample Sample

23

3.2

2.9

2.7

5.1

0.51

ND

ND

ND

ND

75

Result Qualifier

Isotope Dilution	%Recovery	Qualifier	Limits
M2-6:2 FTS	83		25 - 150
M2-8:2 FTS	82		25 - 150

97

106

68 - 128

70 - 130

Client Sample ID: Lab Control Sample

Client Sample ID: GW-9R **Prep Type: Total/NA**

Prep Batch: 305096

Prep Type: Total/NA

Prep Batch: 305096

Spike MS MS %Rec. Added Result Qualifier Unit D %Rec Limits 41.3 65.6 ng/L 103 70 - 130 ng/L 41.3 41.6 93 66 - 126 41.3 43.9 ng/L 99 66 - 126

41.3 40.9 ng/L 93 66 - 126 41.3 43.7 ng/L 93 64 - 124 41.3 43.8 ng/L 105 68 - 128 41.3 39.2 ng/L 95 69 - 129 41.3 39.3 ng/L 95 60 - 120

ng/L

ng/L

ND 41.3 41.3 ng/L 100 71 - 131 Perfluorododecanoic acid (PFDoA) ND Perfluorotridecanoic acid 41.3 44.5 ng/L 108 72 - 132 (PFTriA) 0.28 J 38.8 Perfluorotetradecanoic acid 41.3 ng/L 93 68 - 128

(PFTeA) 1.8 J 36.5 38.5 100 73 - 133 ng/L Perfluorobutanesulfonic acid (PFBS) 1.2 JB 37.6 37.2 ng/L 96 63 - 123 Perfluorohexanesulfonic acid

(PFHpS) 38.1 2.9 38.3 ng/L 92 67 - 127 Perfluorooctanesulfonic acid (PFOS) ND 39.8 37.4 94 68 - 128 ng/L Perfluorodecanesulfonic acid (PFDS)

39.3

38.1

43.8

(FOSA) 100 ND 41.3 41.3 ng/L 67 - 127N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA) ND 41.3 40.4 ng/L 98 65 - 125 N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)

41.3

ND 39.2 38.8 99 66 - 126 6:2 FTS ng/L 8:2 FTS ND 39.6 40.0 101 67 - 127 ng/L MS MS

25 - 150

Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	39		25 - 150
13C5 PFPeA	63		25 - 150
13C2 PFHxA	66		25 - 150
13C4 PFHpA	71		25 - 150
13C4 PFOA	73		25 - 150
13C5 PFNA	72		25 - 150
13C2 PFDA	88		25 - 150
13C2 PFUnA	74		25 - 150

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Job ID: 320-51811-1

SDG: 7095477

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 320-51811-4 MS **Client Sample ID: GW-9R Matrix: Water**

Prep Type: Total/NA Analysis Batch: 305698 Prep Batch: 305096 MS MS

	,,,,		
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFTeDA	84		25 - 150
13C3 PFBS	78		25 - 150
1802 PFHxS	76		25 - 150
13C4 PFOS	86		25 - 150
13C8 FOSA	70		25 - 150
d3-NMeFOSAA	75		25 - 150
d5-NEtFOSAA	80		25 - 150
M2-6:2 FTS	87		25 - 150
M2-8:2 FTS	100		25 - 150

Client Sample ID: GW-9R Lab Sample ID: 320-51811-4 MSD **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 305698	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.	atch: 30	05096 RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid	23		40.7	63.5		ng/L		100	70 - 130	3	30
Perfluoropentanoic acid (PFPeA)	3.2		40.7	40.8		ng/L		93	66 - 126	2	30
Perfluorohexanoic acid (PFHxA)	2.9		40.7	44.8		ng/L		103	66 - 126	2	30
Perfluoroheptanoic acid	2.7		40.7	42.8		ng/L		99	66 - 126	5	30
Perfluorooctanoic acid (PFOA)	5.1		40.7	45.5		ng/L		99	64 - 124	4	30
Perfluorononanoic acid (PFNA)	0.51	J	40.7	43.5		ng/L		106	68 - 128	1	30
Perfluorodecanoic acid (PFDA)	ND		40.7	38.4		ng/L		94	69 - 129	2	30
Perfluoroundecanoic acid (PFUnA)	ND		40.7	39.1		ng/L		96	60 - 120	0	30
Perfluorododecanoic acid (PFDoA)	ND		40.7	39.6		ng/L		97	71 - 131	4	30
Perfluorotridecanoic acid (PFTriA)	ND		40.7	39.2		ng/L		96	72 - 132	13	30
Perfluorotetradecanoic acid (PFTeA)	0.28	J	40.7	38.7		ng/L		94	68 - 128	0	30
Perfluorobutanesulfonic acid (PFBS)	1.8	J	35.9	38.0		ng/L		100	73 - 133	1	30
Perfluorohexanesulfonic acid (PFHxS)	1.2	JB	37.0	35.8		ng/L		93	63 - 123	4	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND		38.7	39.4		ng/L		102	68 - 128	3	30
Perfluorooctanesulfonic acid (PFOS)	2.9		37.7	37.6		ng/L		92	67 - 127	1	30
Perfluorodecanesulfonic acid (PFDS)	ND		39.2	36.2		ng/L		92	68 - 128	3	30
Perfluorooctanesulfonamide (FOSA)	ND		40.7	43.5		ng/L		107	70 - 130	1	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		40.7	39.4		ng/L		97	67 - 127	5	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		40.7	42.3		ng/L		104	65 - 125	4	30
6:2 FTS	ND		38.6	37.9		ng/L		98	66 - 126	2	30
8:2 FTS	ND		39.0	39.8		ng/L		102	67 - 127	1	30
	MSD	MSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFBA	46		25 - 150								
4005 DED. 4	70		05 450								

13C5 PFPeA 73 25 - 150

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 320-51811-4 MSD	Client Sample ID: GW-9R
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 305698	Prep Batch: 305096

Analysis Batch: 305698				Prep Batch: 305096
	MSD	MSD		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C2 PFHxA	75		25 - 150	
13C4 PFHpA	80		25 - 150	
13C4 PFOA	86		25 - 150	
13C5 PFNA	86		25 - 150	
13C2 PFDA	101		25 - 150	
13C2 PFUnA	86		25 - 150	
13C2 PFDoA	88		25 - 150	
13C2 PFTeDA	95		25 - 150	
13C3 PFBS	82		25 - 150	
1802 PFHxS	86		25 - 150	
13C4 PFOS	91		25 - 150	
13C8 FOSA	77		25 - 150	
d3-NMeFOSAA	91		25 - 150	
d5-NEtFOSAA	94		25 - 150	
M2-6:2 FTS	103		25 - 150	
M2-8:2 FTS	122		25 - 150	

QC Association Summary

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

LCMS

Prep Batch: 305096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-51811-1	GW-1S	Total/NA	Water	3535	
320-51811-2	GW-3S	Total/NA	Water	3535	
320-51811-3	GW-6R	Total/NA	Water	3535	
320-51811-4	GW-9R	Total/NA	Water	3535	
320-51811-5	FIELD DUPLICATE	Total/NA	Water	3535	
320-51811-6	EQUIPMENT BLANK	Total/NA	Water	3535	
MB 320-305096/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-305096/2-A	Lab Control Sample	Total/NA	Water	3535	
320-51811-4 MS	GW-9R	Total/NA	Water	3535	
320-51811-4 MSD	GW-9R	Total/NA	Water	3535	

Analysis Batch: 305698

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-51811-1	GW-1S	Total/NA	Water	537 (modified)	305096
320-51811-2	GW-3S	Total/NA	Water	537 (modified)	305096
320-51811-3	GW-6R	Total/NA	Water	537 (modified)	305096
320-51811-4	GW-9R	Total/NA	Water	537 (modified)	305096
320-51811-5	FIELD DUPLICATE	Total/NA	Water	537 (modified)	305096
320-51811-6	EQUIPMENT BLANK	Total/NA	Water	537 (modified)	305096
MB 320-305096/1-A	Method Blank	Total/NA	Water	537 (modified)	305096
LCS 320-305096/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	305096
320-51811-4 MS	GW-9R	Total/NA	Water	537 (modified)	305096
320-51811-4 MSD	GW-9R	Total/NA	Water	537 (modified)	305096

3

4

6

8

9

10

12

. .

2

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Lab Sample ID: 320-51811-1

Matrix: Water

SDG: 7095477

Job ID: 320-51811-1

Client Sample ID: GW-1S Date Collected: 06/26/19 11:37

Date Received: 06/28/19 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			249.8 mL	10.0 mL	305096	07/02/19 07:30	MTN	TAL SAC
Total/NA	Analysis	537 (modified)		1			305698	07/04/19 10:44	JRB	TAL SAC

Client Sample ID: GW-3S

Date Collected: 06/26/19 12:04

Lab Sample ID: 320-51811-2

Matrix: Water

Date Collected: 06/26/19 12:04 Date Received: 06/28/19 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			247.8 mL	10.0 mL	305096	07/02/19 07:30	MTN	TAL SAC
Total/NA	Analysis	537 (modified)		1			305698	07/04/19 10:52	JRB	TAL SAC

Client Sample ID: GW-6R

Date Collected: 06/26/19 11:01

Lab Sample ID: 320-51811-3

Matrix: Water

Date Collected: 06/26/19 11:01 Date Received: 06/28/19 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			244.5 mL	10.0 mL	305096	07/02/19 07:30	MTN	TAL SAC
Total/NA	Analysis	537 (modified)		1			305698	07/04/19 11:00	JRB	TAL SAC

Client Sample ID: GW-9R

Date Collected: 06/26/19 12:27

Lab Sample ID: 320-51811-4

Matrix: Water

Date Received: 06/28/19 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			255 mL	10.0 mL	305096	07/02/19 07:30	MTN	TAL SAC
Total/NA	Analysis	537 (modified)		1			305698	07/04/19 11:16	JRB	TAL SAC

Client Sample ID: FIELD DUPLICATE Lab Sample ID: 320-51811-5

Date Collected: 06/26/19 11:01 Date Received: 06/28/19 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			248.7 mL	10.0 mL	305096	07/02/19 07:30	MTN	TAL SAC
Total/NA	Analysis	537 (modified)		1			305698	07/04/19 11:32	JRB	TAL SAC

Client Sample ID: EQUIPMENT BLANK

Lab Sample ID: 320-51811-6

Date Collected: 06/26/19 11:47 Date Received: 06/28/19 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			250.7 mL	10.0 mL	305096	07/02/19 07:30	MTN	TAL SAC
Total/NA	Analysis	537 (modified)		1			305698	07/04/19 11:40	JRB	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Sacramento

Matrix: Water

Matrix: Water

Accreditation/Certification Summary

Client: Pace Analytical Services, LLC
Project/Site: Pace PFAS Testing

Job ID: 320-51811-1
SDG: 7095477

Laboratory: Eurofins TestAmerica, Sacramento

537 (modified)

3535

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Water

uthority	Program	1	EPA Region	Identification Number	er Expiration Date
ew York	NELAP		2	11666	04-01-20
The following analyte the agency does not o	•	ort, but the laboratory	is not certified by th	e governing authority. T	his list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyt	te	
537 (modified)	3535	Water	6:2 FT	S	
537 (modified)	3535	Water	8:2 F1	S	
537 (modified)	3535	Water	•	/lperfluorooctanesulfona NEtFOSAA)	midoacetic
537 (modified)	3535	Water		hylperfluorooctanesulfor NMeFOSAA)	namidoacetic
537 (modified)	3535	Water	Perflu	orobutanesulfonic acid (PFBS)
537 (modified)	3535	Water	Perflu	orobutanoic acid	
537 (modified)	3535	Water	Perflu	orodecanesulfonic acid ((PFDS)
537 (modified)	3535	Water	Perflu	orodecanoic acid (PFDA	A)
537 (modified)	3535	Water	Perflu	orododecanoic acid (PFI	DoA)
537 (modified)	3535	Water	Perflu	oroheptanesulfonic Acid	(PFHpS)
537 (modified)	3535	Water	Perflu	oroheptanoic acid	
537 (modified)	3535	Water	Perflu	orohexanesulfonic acid ((PFHxS)
537 (modified)	3535	Water	Perflu	orohexanoic acid (PFHx	A)
537 (modified)	3535	Water	Perflu	orononanoic acid (PFNA	A)
537 (modified)	3535	Water	Perflu	orooctanesulfonamide (F	FOSA)
537 (modified)	3535	Water	Perflu	orooctanesulfonic acid (l	PFOS)
537 (modified)	3535	Water	Perflu	orooctanoic acid (PFOA)
537 (modified)	3535	Water	Perflu	oropentanoic acid (PFPe	eA)
537 (modified)	3535	Water	Perflu	orotetradecanoic acid (P	PFTeA)
537 (modified)	3535	Water	Perflu	orotridecanoic acid (PFT	riA)

Perfluoroundecanoic acid (PFUnA)

3

4

5

9

11

14

14

15

Method Summary

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Job ID: 320-51811-1

SDG: 7095477

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Job ID: 320-51811-1

SDG: 7095477

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-51811-1	GW-1S	Water	06/26/19 11:37	06/28/19 09:30	
320-51811-2	GW-3S	Water	06/26/19 12:04	06/28/19 09:30	
320-51811-3	GW-6R	Water	06/26/19 11:01	06/28/19 09:30	
320-51811-4	GW-9R	Water	06/26/19 12:27	06/28/19 09:30	
320-51811-5	FIELD DUPLICATE	Water	06/26/19 11:01	06/28/19 09:30	
320-51811-6	EQUIPMENT BLANK	Water	06/26/19 11:47	06/28/19 09:30	

FMT-ALL-C-002rev.00 24March2009

Repor	Report / Invoice To	Subc	Subcontract To			-	Requested Analysis	S
Jennil Pace 575 B Melvil Phone	Jennifer Aracri Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747 Phone (631)694-3040 Email: jennifer aracri@nacelabs.com	TAE 880 F West	TA Eurofins-Sacramento 880 Riverside Pkwy West Sacramento, CA 95605	amento P. vy , CA 95605	P.O. 7095477JSA			
State	State of Sample Origin: NY				Preserved Containers	untainers	ZES VA SA PA SAY	
Item	Sample ID	Collect Date/Time	Lab ID	Matrix	pewesewaq		250-21011 Chain 01 Custoury	
-	GW-1S	6/26/2019 11:37	7095477001	Water	2		×	
2	GW-3S	6/26/2019 12:04	7095477002	Water	2			
8	GW-6R	6/26/2019 11:01	7095477003	Water	2		×	
4	GW-9R	6/26/2019 12:27	7095477004	Water	و		X "MSIASI) SAMALE	· · · · · · · · · · · · · · · · · · ·
2	FIELD DUPLICATE	6/26/2019 11:01	7095477005	Water	7		×	
9	EQUIPMENT BLANK	6/26/2019 11:47	7095477006	Water	- 2			
								Comments
Transfers	fers Released By	Date	Date/Time Rec	Received By		Date/Time	Need a Category B package w/NY EOu	cage w/NY EOu
-	100mm - 年代	17) 60-81 PHA18	T	ETA-SAC	6/28/19 930		
2						,		
6								
	The state of the s							

LAB USE ONLY

uIS EDDs

or

Samples Intact Y

Z 9

Received on Ice

Custody Seal Y or

2.00

Cooler Temperature on Receipt

Pace Analytical www.pacelabs.com

Results Requested By: 7/12/2019

BROCKPORT LANDFILL 6/26

Workorder Name:

Workorder: 7095477

Report / Invoice To

Chain of Custody

PASI New York Laboratory

2 60 MAN 6/28/19

Client: Pace Analytical Services, LLC

Job Number: 320-51811-1 SDG Number: 7095477

List Source: Eurofins TestAmerica, Sacramento

Login Number: 51811 List Number: 1

Creator: Oropeza, Salvador

Creator. Oropeza, Jarvador		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

July 26, 2019

Pete Fricano Enalytic, LLC 6034 Corporate Drive East Syracuse, NY 13057

RE: Project: BROCKPORT LANDFILL

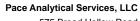
Pace Project No.: 7095441

Dear Pete Fricano:

Enclosed are the analytical results for sample(s) received by the laboratory on June 27, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040 Project Manager

In law

Enclosures

575 Broad Hollow Road Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Long Island Certification IDs

575 Broad Hollow Rd, Melville, NY 11747

New York Certification #: 10478 Primary Accrediting Body

New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Maryland Certification #: 208

Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method:EPA 6010CDescription:6010 MET ICPClient:Enalytic, LLCDate:July 26, 2019

General Information:

13 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121065

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 576051)
 - Calcium
 - Sodium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 6010C

Description: 6010 MET ICP, Dissolved

Client: Enalytic, LLC Date: July 26, 2019

General Information:

3 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: **BROCKPORT LANDFILL**

Pace Project No.: 7095441

Method: EPA 8260C/5030C **Description:** 8260C Volatile Organics

Client: Enalytic, LLC Date: July 26, 2019

General Information:

15 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120782

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- BLANK (Lab ID: 574898)
 - 2-Butanone (MEK)
- GW-1S (Lab ID: 7095441014)
 - 2-Butanone (MEK)
- GW-2S (Lab ID: 7095441015)
 - 2-Butanone (MEK)
- GW-3R (Lab ID: 7095441017)
 - 2-Butanone (MEK)
- GW-3S (Lab ID: 7095441016)
 - 2-Butanone (MEK)
- GW-4R (Lab ID: 7095441018)
 - 2-Butanone (MEK)
- GW-5R (Lab ID: 7095441020)
 - 2-Butanone (MEK)
- GW-5S (Lab ID: 7095441019)
 - 2-Butanone (MEK)
- GW-6R (Lab ID: 7095441022)
 - 2-Butanone (MEK)
- GW-6S (Lab ID: 7095441021)
 - 2-Butanone (MEK)
- GW-7R (Lab ID: 7095441024) • 2-Butanone (MEK)
- GW-7S (Lab ID: 7095441023)
- 2-Butanone (MEK) • GW-9R (Lab ID: 7095441025)
- 2-Butanone (MEK)
- GW-X (Lab ID: 7095441026)
- 2-Butanone (MEK)
- LCS (Lab ID: 574899)
- 2-Butanone (MEK)
- MS (Lab ID: 574949)
 - 2-Butanone (MEK)
- MSD (Lab ID: 574950)

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: Enalytic, LLC Date: July 26, 2019

QC Batch: 120782

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- 2-Butanone (MEK)
- STORAGE BLANK (Lab ID: 7095441028)
 - 2-Butanone (MEK)
- TRIP BLANK (Lab ID: 7095441027)
 - 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120782

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- GW-7R (Lab ID: 7095441024)
 - Acetone
- GW-X (Lab ID: 7095441026)
 - Acetone
- LCS (Lab ID: 574899)
 - Acetone
 - trans-1,3-Dichloropropene
- MS (Lab ID: 574949)
 - Acetone
 - trans-1,3-Dichloropropene
- MSD (Lab ID: 574950)
 - Acetone
 - trans-1,3-Dichloropropene

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- BLANK (Lab ID: 574898)
 - Bromoform
- GW-1S (Lab ID: 7095441014)
 - Bromoform
- GW-2S (Lab ID: 7095441015)
 - Bromoform
- GW-3R (Lab ID: 7095441017)
 - Bromoform
- GW-3S (Lab ID: 7095441016)
 - Bromoform
- GW-4R (Lab ID: 7095441018)
 - Bromoform
- GW-5R (Lab ID: 7095441020)
 - Bromoform
- GW-5S (Lab ID: 7095441019)
 - Bromoform
- GW-6R (Lab ID: 7095441022)
 - Bromoform

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: Enalytic, LLC Date: July 26, 2019

QC Batch: 120782

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- GW-6S (Lab ID: 7095441021)
 - Bromoform
- GW-7R (Lab ID: 7095441024)
 - Bromoform
- GW-7S (Lab ID: 7095441023)
 - Bromoform
- GW-9R (Lab ID: 7095441025)
 - Bromoform
- GW-X (Lab ID: 7095441026)
 - Bromoform
- LCS (Lab ID: 574899)
 - Bromoform
- MS (Lab ID: 574949)
 - Bromoform
- MSD (Lab ID: 574950)
 - Bromoform
- STORAGE BLANK (Lab ID: 7095441028)
 - Bromoform
- TRIP BLANK (Lab ID: 7095441027)
 - Bromoform

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 120782

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 574899)
 - trans-1,3-Dichloropropene

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 574899)
 - Bromoform

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 8260C/5030C

Description: 8260C Volatile Organics

Client: Enalytic, LLC Date: July 26, 2019

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120782

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441022

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

• MS (Lab ID: 574949)

• trans-1,3-Dichloropropene

• MSD (Lab ID: 574950)

• trans-1,3-Dichloropropene

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 574949)

- 1,1,1-Trichloroethane
- Bromodichloromethane
- MSD (Lab ID: 574950)
 - 1,1,1-Trichloroethane
 - Bromodichloromethane
 - Carbon tetrachloride
 - cis-1,3-Dichloropropene

R1: RPD value was outside control limits.

- MSD (Lab ID: 574950)
 - lodomethane

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: SM22 2320B
Description: 2320B Alkalinity
Client: Enalytic, LLC
Date: July 26, 2019

General Information:

11 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120959

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 575760)

• Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: SM22 2320B
Description: 2320B Alkalinity
Client: Enalytic, LLC
Date: July 26, 2019

General Information:

2 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121116

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7096405001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 576690)

• Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: SM22 2340C

Description: 2340C Hardness, Total

Client: Enalytic, LLC Date: July 26, 2019

General Information:

13 samples were analyzed for SM22 2340C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: SM22 2540C

Description: 2540C Total Dissolved Solids

Client: Enalytic, LLC Date: July 26, 2019

General Information:

13 samples were analyzed for SM22 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 410.4
Description: 410.4 COD
Client: Enalytic, LLC
Date: July 26, 2019

General Information:

13 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days

Client: Enalytic, LLC Date: July 26, 2019

General Information:

13 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 351.2

Description: 351.2 Total Kieldahl Nitrogen

Client: Enalytic, LLC Date: July 26, 2019

General Information:

13 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121362

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095339001,7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 577928)
 - Nitrogen, Kjeldahl, Total
- MS (Lab ID: 577930)
 - Nitrogen, Kjeldahl, Total

QC Batch: 121363

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095483001,7095502007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 577934)
 - Nitrogen, Kjeldahl, Total
- MS (Lab ID: 577936)
 - Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Enalytic, LLC Date: July 26, 2019

General Information:

13 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119806

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009,7095480001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 569383)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2

Client: Enalytic, LLC Date: July 26, 2019

General Information:

13 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119801

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009,7095502007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 569325)
 - Nitrite as N

QC Batch: 119800

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095474001,7095480001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 569319)
 - Nitrite as N
- MS (Lab ID: 569321)
 - Nitrite as N

Duplicate Sample

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water

Client: Enalytic, LLC

Date: July 26, 2019

General Information:

13 samples were analyzed for SM22 4500 NH3 H. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Method: EPA 9060A

Description: 9060A TOC as NPOC

Client: Enalytic, LLC Date: July 26, 2019

General Information:

13 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 120232

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

• DUP (Lab ID: 571636) • Total Organic Carbon

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-1S	Lab ID:	7095441001	Collected: 06/26/	19 11:37	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical I	Method:						
Field pH	7.41	Std. Units		1		06/26/19 11:37	7	
Field Temperature	19.3	deg C		1		06/26/19 11:37	7	
Field Specific Conductance	628	umhos/cm		1		06/26/19 11:37	7	
REDOX	56			1		06/26/19 11:37		
Field Turbidity	163	NTU		1		06/26/19 11:37	7	
6010 MET ICP	Analytical I	Method: EPA 60	10C Preparation Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:34	4 7440-36-0	
Arsenic	<10.0		10.0	1	07/09/19 10:00	07/10/19 21:34	4 7440-38-2	
Barium	<200	ug/L	200	1	07/09/19 10:00	07/10/19 21:34	4 7440-39-3	
Boron	<50.0	0	50.0	1	07/09/19 10:00			
Calcium	106000	0	200	1	07/09/19 10:00			
ron	3880	0	20.0	1	07/09/19 10:00			
Magnesium	22100	0	200	1	07/09/19 10:00			
Manganese	121	0	10.0	1	07/09/19 10:00			
Potassium	<5000	0	5000	1	07/09/19 10:00			
Sodium	5600	Ü	5000	1	07/09/19 10:00	07/10/19 21:34	1 7440-23-5	
6010 MET ICP, Dissolved	Analytical I	Method: EPA 60	10C					
Antimony, Dissolved	<60.0	ug/L	60.0	1		07/03/19 14:04	4 7440-36-0	
Arsenic, Dissolved	<10.0	ug/L	10.0	1		07/03/19 14:04	4 7440-38-2	
Barium, Dissolved	<200	0	200	1		07/03/19 14:04	4 7440-39-3	
Cadmium, Dissolved	<2.5		2.5	1		07/03/19 14:04		
ron, Dissolved	106	0	20.0	1		07/03/19 14:04		
Magnesium, Dissolved	19400	0	200	1		07/03/19 14:04		
Manganese, Dissolved	12.7	0	10.0	1		07/03/19 14:04		
Potassium, Dissolved	<5000	0	5000	1		07/03/19 14:04		
Sodium, Dissolved	5010	ug/L	5000	1		07/03/19 14:04	1 7440-23-5	
2320B Alkalinity	Analytical I	Method: SM22 2	320B					
Alkalinity, Total as CaCO3	325	mg/L	1.0	1		07/09/19 00:20)	
2340C Hardness, Total	Analytical I	Method: SM22 2	340C					
Fot Hardness asCaCO3 (SM 2340B	280	mg/L	5.0	1		07/11/19 17:19)	
2540C Total Dissolved Solids	Analytical I	Method: SM22 2	540C					
Total Dissolved Solids	350	mg/L	20.0	1		07/01/19 09:49	e	
110.4 COD	Analytical I	Method: EPA 410	0.4 Preparation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:05	5	
00.0 IC Anions 28 Days	Analytical I	Method: EPA 300	0.0					
Chloride	3.2	mg/L	2.0	1		07/09/19 23:55	5 16887-00-6	
Sulfate	30.4	ū	5.0	1		07/09/19 23:55		

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-1S	Lab ID: 709	5441001	Collected: 06/26/1	9 11:37	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	i1.2 Preparation Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.18	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:54	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	3.2					
Nitrate as N Nitrate-Nitrite (as N)	0.18 0.18	mg/L mg/L	0.050 0.050	1 1		06/27/19 22:08 06/27/19 22:08		
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:54	14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:42	7664-41-7	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:51	7440-44-0	D6
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:51	7440-44-0	
Total Organic Carbon	3.9	mg/L	1.0	1		07/02/19 18:51	7440-44-0	D6
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:51		
Mean Total Organic Carbon	3.0	mg/L	1.0	1		07/02/19 18:51	7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-2S	Lab ID: 70	095441002	Collected: 06/26/	19 12:26	Received: 06	5/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical M	ethod:						
Field pH	6.56	Std. Units		1		06/26/19 12:26		
Field Temperature	21.1	deg C		1		06/26/19 12:26		
Field Specific Conductance	380	umhos/cm		1		06/26/19 12:26		
REDOX	-133	mV		1		06/26/19 12:26		
Field Turbidity	15.2	NTU		1		06/26/19 12:26		
6010 MET ICP	Analytical M	ethod: EPA 6010	OC Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:39	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:39	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 21:39		
Boron	<50.0	ug/L	50.0	1		07/10/19 21:39		
Calcium	70700	ug/L	200	1		07/10/19 21:39		
ron	2720	ug/L	20.0	1		07/10/19 21:39		
Magnesium	8470	ug/L	200	1		07/10/19 21:39		
Manganese	1550	ug/L	10.0	1		07/10/19 21:39		
Potassium	<5000	ug/L	5000	1		07/10/19 21:39		
Sodium	<5000	ug/L	5000	1	07/09/19 10:00	07/10/19 21:39	7440-23-5	
2320B Alkalinity	Analytical M	ethod: SM22 23	20B					
Alkalinity, Total as CaCO3	197	mg/L	1.0	1		07/09/19 00:31		
2340C Hardness, Total	Analytical M	ethod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	170	mg/L	5.0	1		07/11/19 17:20		
2540C Total Dissolved Solids	Analytical M	ethod: SM22 25	40C					
Total Dissolved Solids	211	mg/L	10.0	1		07/01/19 09:49		
10.4 COD	Analytical M	ethod: EPA 410.	.4 Preparation Me	thod: EF	PA 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:05		
300.0 IC Anions 28 Days	Analytical M	ethod: EPA 300.	.0					
Chloride	3.4	mg/L	2.0	1		07/10/19 00:12	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 00:12		
351.2 Total Kjeldahl Nitrogen	Analytical M	ethod: EPA 351.	.2 Preparation Me	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	1.4	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:54	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical M	ethod: EPA 353.	.2					
Nitrate as N	0.10	ma/l	0.050	4		06/27/19 22:10	14707 55 0	
	0.10	mg/L mg/L	0.050	1		06/27/19 22:10		
Nitrate-Nitrite (as N)	0.10	mg/L	0.050	1		00/21/19 22:10	1121-31-8	
853.2 Nitrogen, NO2	Analytical M	ethod: EPA 353.	.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:55	14797-65-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-2S	Lab ID:	7095441002	Collected: 06/26/1	19 12:26	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:46	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	060A					
Total Organic Carbon	3.9	mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.6	6 mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.8	3 mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.7	7 mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Mean Total Organic Carbon	3.0	o mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3S	Lab ID: 70	95441003	Collected: 06/26/1	19 12:04	Received: 06	5/27/19 11:05 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Me	ethod:						
Field pH	7.23	Std. Units		1		06/26/19 12:04		
Field Temperature	18.6	deg C		1		06/26/19 12:04		
Field Specific Conductance	953	umhos/cm		1		06/26/19 12:04		
REDOX	-144	mV		1		06/26/19 12:04		
Field Turbidity	48.6	NTU		1		06/26/19 12:04		
6010 MET ICP	Analytical Me	thod: EPA 6010	OC Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:44	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:44	7440-38-2	
Barium	203	ug/L	200	1		07/10/19 21:44		
Boron	50.7	ug/L	50.0	1		07/10/19 21:44		
Calcium	78800	ug/L	200	1		07/10/19 21:44		
ron	7490	ug/L	20.0	1		07/10/19 21:44		
Magnesium	24600	ug/L	200	1		07/10/19 21:44		
Manganese Potassium	63.8 <5000	ug/L	10.0	1		07/10/19 21:44		
Sodium	12600	ug/L	5000 5000	1 1		07/10/19 21:44 07/10/19 21:44		
		ug/L		ı	07/09/19 10:00	07/10/19 21:44	7440-23-3	
2320B Alkalinity		thod: SM22 23						
Alkalinity, Total as CaCO3	289	mg/L	1.0	1		07/09/19 00:45		
2340C Hardness, Total	Analytical Me	thod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	280	mg/L	5.0	1		07/11/19 17:26		
2540C Total Dissolved Solids	Analytical Me	thod: SM22 25	40C					
Total Dissolved Solids	280	mg/L	20.0	1		07/01/19 09:50		
110.4 COD	Analytical Me	thod: EPA 410.	4 Preparation Met	thod: EF	PA 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.	0					
Chloride	7.2	mg/L	2.0	1		07/10/19 00:29	16887-00-6	
Sulfate	37.0	mg/L	5.0	1		07/10/19 00:29		
351.2 Total Kjeldahl Nitrogen		•	2 Preparation Met		ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν			
						07/11/10 12:55	7727 27 0	
Nitrogen, Kjeldahl, Total	0.32	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:55	1121-31-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.	2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:11	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:11	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:56	14797-65-0	
	40.000	9/ ⊏	0.000	·		55/21/10 10:00		

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3S	Lab ID: 7	7095441003	Collected: 06/26/1	9 12:04	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical M	Method: SM22 4	1500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:47	7664-41-7	
9060A TOC as NPOC	Analytical M	lethod: EPA 90	60A					
Total Organic Carbon	1.4	mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.3	mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.4	mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.4	mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Mean Total Organic Carbon	1.4	mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3R	Lab ID: 7095441004 Co		Collected: 06/26/1	19 12:11	Received: 06	5/27/19 11:05 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Me	thod:						
Field pH	7.72	Std. Units		1		06/26/19 12:11		
Field Temperature	14.4	deg C		1		06/26/19 12:11		
Field Specific Conductance	592	umhos/cm		1		06/26/19 12:11		
REDOX	-158	mV		1		06/26/19 12:11		
Field Turbidity	44.2	NTU		1		06/26/19 12:11		
6010 MET ICP	Analytical Me	thod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:50	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:50	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 21:50		
Boron	<50.0	ug/L	50.0	1		07/10/19 21:50		
Calcium	168000	ug/L	200	1		07/10/19 21:50		
ron	1200	ug/L	20.0	1		07/10/19 21:50		
Magnesium	26300	ug/L	200	1		07/10/19 21:50		
Manganese	131	ug/L	10.0	1		07/10/19 21:50		
Potassium Sodium	<5000 14700	ug/L	5000	1 1		07/10/19 21:50 07/10/19 21:50		
	14700	ug/L	5000	ı	07/09/19 10:00	07/10/19 21:50	7440-23-3	
2320B Alkalinity	-	thod: SM22 23						
Alkalinity, Total as CaCO3	458	mg/L	1.0	1		07/09/19 01:05		
2340C Hardness, Total	Analytical Me	thod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	440	mg/L	5.0	1		07/11/19 17:28		
2540C Total Dissolved Solids	Analytical Me	thod: SM22 25	40C					
Total Dissolved Solids	530	mg/L	20.0	1		07/01/19 09:51		
110.4 COD	Analytical Me	thod: EPA 410.	4 Preparation Met	thod: EF	PA 410.4			
Chemical Oxygen Demand	14.6	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.	0					
Chloride	43.6	mg/L	2.0	1		07/10/19 00:46	16887-00-6	
Sulfate	43.9	mg/L	5.0	1		07/10/19 00:46		
351.2 Total Kjeldahl Nitrogen		-	2 Preparation Met		PA 351.2			
Nitrogen, Kjeldahl, Total	0.28	mg/L	0.10	1		07/11/19 12:56	7727-37-9	
,		•		'	37,11,10 00.04	57/11/10 12:00	. 121 01-0	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.	۷					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:12	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:12	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:57	14797-65-0	
	40.000	9/ ⊏	0.000			33/21/10 10:01		

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3R	Lab ID: 7095	5441004	Collected: 06/26/1	19 12:11	Received: 00	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:48	7664-41-7	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
Total Organic Carbon	5.1	mg/L	1.0	1		07/02/19 20:24	1 7440-44-0	
Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	1 7440-44-0	
Total Organic Carbon	5.1	mg/L	1.0	1		07/02/19 20:24	1 7440-44-0	
Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	1 7440-44-0	
Mean Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	1 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 7	7095441005	Collected: 06/26/1	19 10:17	Received: 06	5/27/19 11:05 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical M	lethod:						
Field pH	8.14	Std. Units		1		06/26/19 10:17		
Field Temperature	13.2	deg C		1		06/26/19 10:17		
Field Specific Conductance	6440	umhos/cm		1		06/26/19 10:17		
REDOX	-104	mV		1		06/26/19 10:17		
Field Turbidity	113	NTU		1		06/26/19 10:17		
6010 MET ICP	Analytical M	lethod: EPA 601	0C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:55	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:55	7440-38-2	
Barium	<200	ug/L	200	1	07/09/19 10:00	07/10/19 21:55	7440-39-3	
Boron	2660	ug/L	50.0	1		07/10/19 21:55		
Calcium	104000	ug/L	200	1		07/10/19 21:55		
ron	2200	ug/L	20.0	1		07/10/19 21:55		
Magnesium	19400	ug/L	200	1		07/10/19 21:55		
Manganese	160	ug/L	10.0	1		07/10/19 21:55		
Potassium	23400	ug/L	5000	1		07/10/19 21:55		
Sodium	1110000	ug/L	50000	10	07/09/19 10:00	07/11/19 15:20	7440-23-5	
6010 MET ICP, Dissolved	Analytical M	1ethod: EPA 601	0C					
Antimony, Dissolved	<60.0	ug/L	60.0	1		07/03/19 14:07	7440-36-0	
Arsenic, Dissolved	<10.0	ug/L	10.0	1		07/03/19 14:07	7440-38-2	
Barium, Dissolved	<200	ug/L	200	1		07/03/19 14:07		
Cadmium, Dissolved	<2.5	ug/L	2.5	1		07/03/19 14:07		
ron, Dissolved	274	- 3	20.0	1		07/03/19 14:07		
Magnesium, Dissolved	17500	ug/L	200	1		07/03/19 14:07		
Manganese, Dissolved	123	ug/L	10.0	1		07/03/19 14:07		
Potassium, Dissolved	28200	ug/L	5000	1		07/03/19 14:07		
Sodium, Dissolved	987000	ug/L	5000	1		07/03/19 14:07	7440-23-5	
2320B Alkalinity	Analytical M	1ethod: SM22 23	320B					
Alkalinity, Total as CaCO3	111	mg/L	1.0	1		07/09/19 01:13		
2340C Hardness, Total	Analytical M	Method: SM22 23	340C					
Tot Hardness asCaCO3 (SM 2340B	310	mg/L	5.0	1		07/11/19 17:30		
2540C Total Dissolved Solids	Analytical M	Method: SM22 25	540C					
Total Dissolved Solids	3360	mg/L	20.0	1		07/01/19 09:51		
410.4 COD	Analytical M	lethod: EPA 410	0.4 Preparation Met	thod: EP	PA 410.4			
Chemical Oxygen Demand	94.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06		
300.0 IC Anions 28 Days	Analytical M	lethod: EPA 300	0.0					
Chloride	2300	mg/L	200	100		07/10/19 20:40	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 01:02	14808-79-8	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 709	5441005	Collected: 06/26/1	9 10:17	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	1.2 Preparation Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	2.0	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:57	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	3.2					
Nitrate as N Nitrate-Nitrite (as N)	0.076 0.076	mg/L mg/L	0.050 0.050	1 1		06/27/19 22:13 06/27/19 22:13		
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:01	14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
Nitrogen, Ammonia	1.8	mg/L	0.10	1		07/11/19 15:49	7664-41-7	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
Total Organic Carbon	4.1	mg/L	1.0	1		07/02/19 20:41	7440-44-0	
Total Organic Carbon	4.1	mg/L	1.0	1		07/02/19 20:41	7440-44-0	
Total Organic Carbon	3.6	mg/L	1.0	1		07/02/19 20:41	7440-44-0	
Total Organic Carbon	3.5	mg/L	1.0	1		07/02/19 20:41	7440-44-0	
Mean Total Organic Carbon	3.8	mg/L	1.0	1		07/02/19 20:41	7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5S	Lab ID: 70	95441006 (Collected: 06/26/1	19 10:01	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Me	thod:						
Field pH	7.08	Std. Units		1		06/26/19 10:01		
Field Temperature	17.4	deg C		1		06/26/19 10:01		
Field Specific Conductance	2760	umhos/cm		1		06/26/19 10:01		
REDOX	-28	mV		1		06/26/19 10:01		
Field Turbidity	7.11	NTU		1		06/26/19 10:01		
6010 MET ICP	Analytical Me	thod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:01	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1		07/10/19 22:01		
Barium	396	ug/L	200	1		07/10/19 22:01		
Boron	75.8	ug/L	50.0	1		07/10/19 22:01		
Calcium	139000	ug/L	200	1		07/10/19 22:01		
ron	2260	ug/L	20.0	1		07/10/19 22:01		
Magnesium	56200 535	ug/L	200	1 1		07/10/19 22:01		
Manganese Potassium	535 <5000	ug/L ug/L	10.0 5000	1		07/10/19 22:01 07/10/19 22:01		
Sodium	380000	ug/L ug/L	5000	1		07/10/19 22:01		
2320B Alkalinity		thod: SM22 232						
Alkalinity, Total as CaCO3	713	mg/L	1.0	1		07/09/19 01:40)	
2340C Hardness, Total		₉ , = thod: SM22 234				0.7007.0001.10		
·	-			1		07/11/10 17:26		
Tot Hardness asCaCO3 (SM 2340B	500	mg/L	5.0	1		07/11/19 17:36		
2540C Total Dissolved Solids	Analytical Me	thod: SM22 254	40C					
Total Dissolved Solids	1530	mg/L	20.0	1		07/01/19 10:05	i	
110.4 COD	Analytical Me	thod: EPA 410.4	4 Preparation Met	thod: EF	PA 410.4			
Chemical Oxygen Demand	72.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06	;	
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.0	0					
Chloride	663	mg/L	40.0	20		07/10/19 20:56	16887-00-6	
Sulfate	40.1	mg/L	5.0	1		07/10/19 01:19	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 351.2	2 Preparation Met	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	0.82	mg/L	0.10	1		07/11/19 12:58	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.2	2					
				,		00/07/40 00 4	4 4 7 0 7 5 5 6	
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:14		
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:14	1121-31-9	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.2	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:02	14797-65-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5S	Lab ID: 709	5441006	Collected: 06/26/1	9 10:01	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	nod: SM22 4	500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:50	7664-41-7	
9060A TOC as NPOC	Analytical Meth	nod: EPA 90	60A					
Total Organic Carbon	10.9	mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.6	mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.5	mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.5	mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Mean Total Organic Carbon	10.6	mg/L	1.0	1		07/02/19 20:59	7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5R	Lab ID: 70	95441007	Collected: 06/26/	19 09:45	Received: 06	6/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Me	thod:						
Field pH	6.92	Std. Units		1		06/26/19 09:45	j	
Field Temperature	16.9	deg C		1		06/26/19 09:45	i	
Field Specific Conductance	3350	umhos/cm		1		06/26/19 09:45		
REDOX	O/R	mV		1		06/26/19 09:45		
Field Turbidity	49	NTU		1		06/26/19 09:45		
6010 MET ICP	Analytical Me	thod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:06	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1		07/10/19 22:06		
Barium	14700	ug/L	200	1		07/10/19 22:06		
Boron	646	ug/L	50.0	1		07/10/19 22:06		
Calcium	255000	ug/L	200	1		07/10/19 22:06		
ron	24700	ug/L	20.0	1		07/10/19 22:06		
Magnesium	95500	ug/L	200	1 1		07/10/19 22:06		
Manganese Potassium	462 18400	ug/L ug/L	10.0 5000	1		07/10/19 22:06 07/10/19 22:06		
Sodium	387000	ug/L ug/L	5000	1		07/10/19 22:06		
2320B Alkalinity		ethod: SM22 23						
Alkalinity, Total as CaCO3	1280	mg/L	5.0	1		07/09/19 18:21		
2340C Hardness, Total		ethod: SM22 23						
Tot Hardness asCaCO3 (SM 2340B	900	mg/L	5.0	1		07/11/19 17:41		
`		· ·		•		07/11/13 17.41		
2540C Total Dissolved Solids	-	thod: SM22 25		ā		07/04/40 40 00		
Total Dissolved Solids	1870	mg/L	20.0	1		07/01/19 10:06	į	
110.4 COD	Analytical Me	thod: EPA 410.	4 Preparation Me	thod: EF	PA 410.4			
Chemical Oxygen Demand	176	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:15		
800.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.	0					
Chloride	461	mg/L	40.0	20		07/10/19 21:13	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 02:09	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 351.	2 Preparation Me	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	10.6	mg/L	0.50	5	07/11/19 05:54	07/11/19 13:33	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.	2					
				4		06/27/40 22:46	14707 55 0	
Nitrate as N Nitrate-Nitrite (as N)	<0.050 <0.050	mg/L	0.050 0.050	1 1		06/27/19 22:16 06/27/19 22:16		
witate-withte (as iv)	<0.050	mg/L	0.050	I		00/21/19 22:10	1121-31-8	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:03	14797-65-0	

REPORT OF LABORATORY ANALYSIS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5R	Lab ID:	7095441007	Collected: 06/26/1	19 09:45	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22	4500 NH3 H					
Nitrogen, Ammonia	7.0	6 mg/L	0.50	5		07/11/19 16:14	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	060A					
Total Organic Carbon	50.	1 mg/L	1.0	1		07/02/19 21:17	7440-44-0	
Total Organic Carbon	50.0	6 mg/L	1.0	1		07/02/19 21:17	7440-44-0	
Total Organic Carbon	50.	7 mg/L	1.0	1		07/02/19 21:17	7440-44-0	
Total Organic Carbon	50.2	2 mg/L	1.0	1		07/02/19 21:17	7440-44-0	
Mean Total Organic Carbon	50.4	4 mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6S	Lab ID: 70	95441008	Collected: 06/26/1	19 11:06	Received: 06	5/27/19 11:05 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Me	thod:						
Field pH	7.02	Std. Units		1		06/26/19 11:06		
Field Temperature	15.2	deg C		1		06/26/19 11:06		
Field Specific Conductance	710	umhos/cm		1		06/26/19 11:06		
REDOX	55	mV		1		06/26/19 11:06		
Field Turbidity	49.3	NTU		1		06/26/19 11:06		
6010 MET ICP	Analytical Me	thod: EPA 6010	OC Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:12	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 22:12	7440-38-2	
Barium	287	ug/L	200	1		07/10/19 22:12		
Boron	67.5	ug/L	50.0	1		07/10/19 22:12		
Calcium	116000	ug/L	200	1		07/10/19 22:12		
ron	1640	ug/L	20.0	1		07/10/19 22:12		
Magnesium	23800	ug/L	200	1 1		07/10/19 22:12		
Manganese Potassium	49.3 5070	ug/L ug/L	10.0 5000	1		07/10/19 22:12 07/10/19 22:12		
Sodium	<5000	ug/L ug/L	5000	1		07/10/19 22:12		
2320B Alkalinity	Analytical Me	thod: SM22 23	20B					
Alkalinity, Total as CaCO3	392	mg/L	1.0	1		07/09/19 02:52		
2340C Hardness, Total	Analytical Me	thod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	350	mg/L	5.0	1		07/11/19 17:42		
2540C Total Dissolved Solids	Analytical Me	thod: SM22 25	40C					
Total Dissolved Solids	386	mg/L	20.0	1		07/01/19 10:06		
110.4 COD	Analytical Me	thod: EPA 410.	4 Preparation Met	thod: EF	PA 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:16		
800.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.	0					
Chloride	<2.0	mg/L	2.0	1		07/10/19 02:26	16887-00-6	
Sulfate	21.0	mg/L	5.0	1		07/10/19 02:26	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 351.	2 Preparation Met	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	0.37	mg/L	0.10	1	07/11/19 05:54	07/11/19 13:00	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.	2					
Nitrate as N	0.36	mg/L	0.050	1		06/27/19 22:17	14797-55-8	
Nitrate as N Vitrate-Nitrite (as N)	0.36	mg/L	0.050	1		06/27/19 22:17		
		•		•				
53.2 Nitrogen, NO2	•	thod: EPA 353.						
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:04	14797-65-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6S	Lab ID: 709	5441008	Collected: 06/26/1	9 11:06	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	nod: SM22 4	1500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:53	7664-41-7	
9060A TOC as NPOC	Analytical Meth	nod: EPA 90	60A					
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:13	3 7440-44-0	
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:13	3 7440-44-0	
Total Organic Carbon	1.9	mg/L	1.0	1		07/02/19 22:13	3 7440-44-0	
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:13	3 7440-44-0	
Mean Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:13	3 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID:	7095441009	Collected: 06/26/	19 11:01	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical	Method:						
Field pH	6.99	Std. Units		1		06/26/19 11:01		
Field Temperature	14.3	deg C		1		06/26/19 11:01		
Field Specific Conductance	1720	umhos/cm		1		06/26/19 11:01		
REDOX	-19			1		06/26/19 11:01		
Field Turbidity	109	9 NTU		1		06/26/19 11:01		
010 MET ICP	Analytical	Method: EPA 60	10C Preparation M	ethod: E	PA 3005A			
Antimony	<60.0) ug/L	60.0	1	07/09/19 10:00	07/10/19 22:28	7440-36-0	
Arsenic	<10.0		10.0	1	07/09/19 10:00	07/10/19 22:28	7440-38-2	
Barium	27	U	200	1	07/09/19 10:00	07/10/19 22:28	7440-39-3	
Boron	828	J	50.0	1		07/10/19 22:28		
Calcium	125000	- 3	200	1		07/10/19 22:28		M1
ron	16600	J	20.0	1		07/10/19 22:28		
/lagnesium	65400	J	200	1		07/10/19 22:28		
Manganese	509	0	10.0	1		07/10/19 22:28		
Potassium Sodium	13800 179000	J	5000 5000	1 1		07/10/19 22:28 07/10/19 22:28		M1
010 MET ICP, Dissolved		Method: EPA 60°						
antimony, Dissolved	<60.0) ug/L	60.0	1		07/03/19 14:09	7440-36-0	
rsenic, Dissolved	<10.0	J	10.0	1		07/03/19 14:09		
Barium, Dissolved	219	-	200	1		07/03/19 14:09	7440-39-3	
Cadmium, Dissolved	<2.	_	2.5	1		07/03/19 14:09	7440-43-9	
ron, Dissolved	858	ug/L	20.0	1		07/03/19 14:09	7439-89-6	
Magnesium, Dissolved	58300) ug/L	200	1		07/03/19 14:09	7439-95-4	
Manganese, Dissolved	419	ug/L	10.0	1		07/03/19 14:09	7439-96-5	
Potassium, Dissolved	1370		5000	1		07/03/19 14:09	7440-09-7	
Sodium, Dissolved	164000	ug/L	5000	1		07/03/19 14:09	7440-23-5	
320B Alkalinity	Analytical	Method: SM22 2	320B					
Ikalinity, Total as CaCO3	863	B mg/L	1.0	1		07/09/19 03:24	·	M1
340C Hardness, Total	Analytical	Method: SM22 2	340C					
ot Hardness asCaCO3 (SM 2340B	520	mg/L	5.0	1		07/11/19 18:00	ı	
540C Total Dissolved Solids	Analytical	Method: SM22 2	540C					
otal Dissolved Solids	928	3 mg/L	20.0	1		07/01/19 10:07	•	
10.4 COD	Analytical	Method: EPA 410	0.4 Preparation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	27.8	B mg/L	10.0	1	07/09/19 09:02	07/09/19 11:16	i	
00.0 IC Anions 28 Days	Analytical	Method: EPA 300	0.0					
Chloride	63.0	mg/L	10.0	5		07/11/19 10:36	16887-00-6	
Sulfate	35.3	3 mg/L	5.0	1		07/10/19 02:43	1/18/18-70-8	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID: 709	5441009	Collected: 06/26/1	9 11:01	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 351	.2 Preparation Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	4.4	mg/L	0.10	1	07/11/19 05:54	07/11/19 13:02	7727-37-9	M1
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 353	3.2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:18	3 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:18	3 7727-37-9	
853.2 Nitrogen, NO2	Analytical Meth	nod: EPA 353	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:08	3 14797-65-0	M1
500 Ammonia Water	Analytical Meth	nod: SM22 4	500 NH3 H					
Nitrogen, Ammonia	3.1	mg/L	0.10	1		07/11/19 15:54	7664-41-7	
9060A TOC as NPOC	Analytical Meth	nod: EPA 906	60A					
Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.8	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Mean Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID: 70	95441010	Collected: 06/26/	19 09:31	Received: 06	6/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Me	ethod:						
Field pH	7.23	Std. Units		1		06/26/19 09:31		
Field Temperature	15.3	deg C		1		06/26/19 09:31		
Field Specific Conductance	758	umhos/cm		1		06/26/19 09:31		
REDOX	-68	mV		1		06/26/19 09:31		
Field Turbidity	758	NTU		1		06/26/19 09:31		
6010 MET ICP	Analytical Me	ethod: EPA 601	0C Preparation M	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:57	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 22:57	7440-38-2	
Barium	421	ug/L	200	1		07/10/19 22:57		
Boron	68.8	ug/L	50.0	1	07/09/19 10:00	07/10/19 22:57	7440-42-8	
Calcium	120000	ug/L	200	1		07/10/19 22:57		
ron	2890	ug/L	20.0	1		07/10/19 22:57		
Magnesium	30100	ug/L	200	1		07/10/19 22:57		
Manganese	1020	ug/L	10.0	1		07/10/19 22:57		
Potassium	7670	ug/L	5000	1		07/10/19 22:57		
Sodium	<5000	ug/L	5000	1	07/09/19 10:00	07/10/19 22:57	7440-23-5	
2320B Alkalinity	Analytical Me	ethod: SM22 23	320B					
Alkalinity, Total as CaCO3	396	mg/L	1.0	1		07/09/19 04:46		
2340C Hardness, Total	Analytical Me	ethod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	340	mg/L	5.0	1		07/11/19 18:18		
2540C Total Dissolved Solids	Analytical Me	ethod: SM22 25	540C					
Total Dissolved Solids	376	mg/L	20.0	1		07/01/19 10:20		
110.4 COD	Analytical Me	ethod: EPA 410	.4 Preparation Me	thod: EF	PA 410.4			
Chemical Oxygen Demand	16.8	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:17		
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 300	.0					
Chloride	<2.0	mg/L	2.0	1		07/10/19 03:33	16887-00-6	
Sulfate	8.9	mg/L	5.0	1		07/10/19 03:33		
351.2 Total Kjeldahl Nitrogen	Analytical Me	ethod: EPA 351	.2 Preparation Me	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	2.7	mg/L	0.10	1	07/11/19 05:54	07/11/19 13:05	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	ethod: EPA 353	.2					
	4.0	m ~/I	0.050	4		06/27/40 22:04	14707 55 0	
Nitrate as N	1.3	mg/L	0.050	1		06/27/19 22:24		
Nitrate-Nitrite (as N)	1.3	mg/L	0.050	1		06/27/19 22:24	1121-31-9	
353.2 Nitrogen, NO2	Analytical Me	ethod: EPA 353	.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:12	14797-65-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID: 709	5441010	Collected: 06/26/1	9 09:31	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Met	hod: SM22	4500 NH3 H					
Nitrogen, Ammonia	1.1	mg/L	0.10	1		07/11/19 16:00	7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 90	060A					
Total Organic Carbon	3.6	mg/L	1.0	1		07/02/19 23:32	2 7440-44-0	
Total Organic Carbon	3.6	mg/L	1.0	1		07/02/19 23:32	2 7440-44-0	
Total Organic Carbon	3.6	mg/L	1.0	1		07/02/19 23:32	2 7440-44-0	
Total Organic Carbon	3.7	mg/L	1.0	1		07/02/19 23:32	2 7440-44-0	
Mean Total Organic Carbon	3.6	mg/L	1.0	1		07/02/19 23:32	2 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 70	95441011	Collected: 06/26/1	19 09:23	Received: 06	5/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Me	ethod:						
Field pH	7.22	Std. Units		1		06/26/19 09:23		
Field Temperature	12.8	deg C		1		06/26/19 09:23		
Field Specific Conductance	2050	umhos/cm		1		06/26/19 09:23		
REDOX	-155	mV		1		06/26/19 09:23		
Field Turbidity	41.7	NTU		1		06/26/19 09:23		
6010 MET ICP	Analytical Me	ethod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 23:02	7440-36-0	
Arsenic	49.7	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:02	7440-38-2	
Barium	1830	ug/L	200	1		07/10/19 23:02		
Boron	851	ug/L	50.0	1		07/10/19 23:02		
Calcium	195000	ug/L	200	1		07/10/19 23:02		
ron	21100	ug/L	20.0	1		07/10/19 23:02		
Magnesium	86700	ug/L	200	1		07/10/19 23:02		
Manganese	230	ug/L	10.0	1		07/10/19 23:02		
Potassium	8740	ug/L	5000	1		07/10/19 23:02		
Sodium	171000	ug/L	5000	1	07/09/19 10:00	07/10/19 23:02	7440-23-5	
2320B Alkalinity	Analytical Me	ethod: SM22 23	20B					
Alkalinity, Total as CaCO3	833	mg/L	1.0	1		07/09/19 05:17		
2340C Hardness, Total	Analytical Me	ethod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	700	mg/L	5.0	1		07/11/19 18:20		
2540C Total Dissolved Solids	Analytical Me	ethod: SM22 25	40C					
Total Dissolved Solids	1270	mg/L	20.0	1		07/01/19 10:20		
110.4 COD	Analytical Me	ethod: EPA 410.	4 Preparation Met	thod: EF	PA 410.4			
Chemical Oxygen Demand	127	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:17		
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 300.	0					
Chloride	387	mg/L	2.0	1		07/10/19 03:50	16887-00-6	
Sulfate	6.0	mg/L	5.0	1		07/10/19 03:50		
351.2 Total Kjeldahl Nitrogen	Analytical Me	•	2 Preparation Met	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	3.0	mg/L	0.10	1		07/11/19 13:07	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres		ethod: EPA 353.	2					
	.0.050		0.050	4		06/07/40 00:05	14707 55 0	
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:25		
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:25	1121-31-9	
353.2 Nitrogen, NO2	Analytical Me	ethod: EPA 353.	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:15	14797-65-0	

REPORT OF LABORATORY ANALYSIS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 7	7095441011	Collected: 06/26/1	19 09:23	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical N	Method: SM22	4500 NH3 H					
Nitrogen, Ammonia	0.31	mg/L	0.10	1		07/11/19 16:01	7664-41-7	
9060A TOC as NPOC	Analytical N	Method: EPA 90	060A					
Total Organic Carbon	38.4	mg/L	1.0	1		07/02/19 23:5	7440-44-0	
Total Organic Carbon	38.6	mg/L	1.0	1		07/02/19 23:5	7440-44-0	
Total Organic Carbon	39.0	mg/L	1.0	1		07/02/19 23:5	7440-44-0	
Total Organic Carbon	38.9	mg/L	1.0	1		07/02/19 23:51	7440-44-0	
Mean Total Organic Carbon	38.7	mg/L	1.0	1		07/02/19 23:51	T 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID: 70	95441012 (Collected: 06/26/1	19 12:27	Received: 06	5/27/19 11:05 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Field Data	Analytical Me	thod:						
Field pH	7.04	Std. Units		1		06/26/19 12:27		
Field Temperature	13.8	deg C		1		06/26/19 12:27		
Field Specific Conductance	383	umhos/cm		1		06/26/19 12:27		
REDOX	-13	mV		1		06/26/19 12:27		
Field Turbidity	46	NTU		1		06/26/19 12:27		
6010 MET ICP	Analytical Me	thod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 23:08	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:08	7440-38-2	
Barium	254	ug/L	200	1		07/10/19 23:08		
Boron	<50.0	ug/L	50.0	1		07/10/19 23:08		
Calcium	74800	ug/L	200	1		07/10/19 23:08		
ron	1910	ug/L	20.0	1		07/10/19 23:08		
Magnesium	9810	ug/L	200	1 1		07/10/19 23:08		
Manganese Potassium	383 <5000	ug/L ug/L	10.0 5000	1		07/10/19 23:08 07/10/19 23:08		
Sodium	<5000	ug/L	5000	1		07/10/19 23:08		
2320B Alkalinity	Analytical Me	thod: SM22 232	20B					
Alkalinity, Total as CaCO3	218	mg/L	1.0	1		07/09/19 05:28		
340C Hardness, Total	Analytical Me	ethod: SM22 234	40C					
Tot Hardness asCaCO3 (SM 2340B	90.0	mg/L	5.0	1		07/11/19 18:22		
2540C Total Dissolved Solids	Analytical Me	ethod: SM22 254	40C					
Total Dissolved Solids	254	mg/L	10.0	1		07/01/19 10:21		
10.4 COD	Analytical Me	thod: EPA 410.4	4 Preparation Met	thod: EF	PA 410.4			
Chemical Oxygen Demand	32.2	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:17		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.0	0					
Chloride	3.7	mg/L	2.0	1		07/10/19 04:06	16887-00-6	
Sulfate	9.8	mg/L	5.0	1		07/10/19 04:06	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 351.2	2 Preparation Met	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	0.57	mg/L	0.10	1	07/11/19 05:54	07/11/19 13:08	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.2	2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:26	14797-55-8	
Nitrate as N Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:26		
		-		•		33.2.7.10 22.20		
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.2	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:16	14797-65-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID: 7	095441012	Collected: 06/26/1	9 12:27	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical M	lethod: SM22 4	1500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 16:02	2 7664-41-7	
9060A TOC as NPOC	Analytical M	lethod: EPA 90	60A					
Total Organic Carbon	7.6	mg/L	1.0	1		07/03/19 00:08	3 7440-44-0	
Total Organic Carbon	7.8	mg/L	1.0	1		07/03/19 00:08	3 7440-44-0	
Total Organic Carbon	7.8	mg/L	1.0	1		07/03/19 00:08	3 7440-44-0	
Total Organic Carbon	7.7	mg/L	1.0	1		07/03/19 00:08	3 7440-44-0	
Mean Total Organic Carbon	7.7	mg/L	1.0	1		07/03/19 00:08	3 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-X	Lab ID: 7	095441013	Collected: 06/26	/19 09:45	Received: 06	5/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical M	ethod: EPA 60	10C Preparation N	lethod: El	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 23:13	3 7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:13	3 7440-38-2	
Barium	14400	ug/L	200	1	07/09/19 10:00			
Boron	645	ug/L	50.0		07/09/19 10:00			
Calcium	252000	ug/L	200		07/09/19 10:00			
ron	22700	ug/L	20.0		07/09/19 10:00			
Magnesium	94200	ug/L	200		07/09/19 10:00			
Manganese	460	ug/L	10.0		07/09/19 10:00			
Potassium	18500	ug/L	5000		07/09/19 10:00			
Sodium	382000	ug/L	5000	1	07/09/19 10:00	07/10/19 23:13	3 7440-23-5	
2320B Alkalinity	Analytical M	ethod: SM22 2	2320B					
Alkalinity, Total as CaCO3	1280	mg/L	5.0	1		07/09/19 18:28	3	
2340C Hardness, Total	Analytical M	ethod: SM22 2	2340C					
Tot Hardness asCaCO3 (SM 2340B	900	mg/L	5.0	1		07/11/19 18:29)	
2540C Total Dissolved Solids	Analytical M	ethod: SM22 2	2540C					
Total Dissolved Solids	1800	mg/L	20.0	1		07/01/19 10:21	I	
110.4 COD	Analytical M	ethod: EPA 41	0.4 Preparation M	ethod: EP	A 410.4			
Chemical Oxygen Demand	169	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:17	,	
800.0 IC Anions 28 Days	Analytical M	ethod: EPA 30	0.0					
Chloride	464	mg/L	40.0	20		07/10/19 21:46	6 16887-00-6	
Sulfate	<5.0	mg/L	5.0			07/10/19 04:23		
351.2 Total Kjeldahl Nitrogen	Analytical M	ethod: EPA 35	1.2 Preparation M	ethod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	12.8	mg/L	0.50	5	07/11/19 05:54	07/11/19 13:34	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical M	ethod: EPA 35	3.2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:30) 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050			06/27/19 22:30		
353.2 Nitrogen, NO2		ethod: EPA 35		·		00/21/10 22:00	,	
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:18	2 14707 65 0	
		· ·		Į.		06/27/19 20.16	14/9/-05-0	
1500 Ammonia Water	-	ethod: SM22 4						
Nitrogen, Ammonia	7.6	mg/L	0.50	5		07/11/19 17:17	7664-41-7	
9060A TOC as NPOC	Analytical M	ethod: EPA 90	60A					
Total Organic Carbon	49.7	mg/L	1.0	1		07/03/19 00:26	7440-44-0	
Total Organic Carbon	50.2	mg/L	1.0	1		07/03/19 00:26	7440-44-0	
Total Organic Carbon	49.9	mg/L	1.0	1		07/03/19 00:26	7440-44-0	
Total Organic Carbon	50.1	mg/L	1.0	1		07/03/19 00:26	7440-44-0	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-X	Lab ID: 709	95441013	Collected: 06/26/	19 09:45	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	Analytical Me	thod: EPA 90	60A					
Mean Total Organic Carbon	50.0	mg/L	1.0	1		07/03/19 00:26	6 7440-44-0	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-1S	Lab ID: 70	95441014	Collected: 06/25/1	19 12:01	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 17:58	8 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 17:58	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 17:58	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:58	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 17:58	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 17:58	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 17:58	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 17:58	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 17:58	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 17:58	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:58	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 17:58	3 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 17:58	8 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 17:58		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
I,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 17:58	_	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
.2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:58		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:58		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 17:58		
,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
,, Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:58		
cis-1,2-Dichloroethene	<1.0 <1.0	ug/L ug/L	1.0	1		07/06/19 17:58		
rans-1,2-Dichloroethene	<1.0 <1.0	ug/L ug/L	1.0	1		07/06/19 17:58		
1,2-Dichloropropane	<1.0 <1.0	-	1.0	1		07/06/19 17:58		
cis-1,3-Dichloropropene	<1.0 <1.0	ug/L ug/L	1.0	1		07/06/19 17:58		
• •	<1.0 <1.0	•	1.0	1		07/06/19 17:58		1.4
rans-1,3-Dichloropropene		ug/L		1				L1
Ethylbenzene	<1.0	ug/L	1.0			07/06/19 17:58		
2-Hexanone	<5.0	ug/L	5.0	1 1		07/06/19 17:58 07/06/19 17:58		
odomethane Asthylana Chlarida	<1.0	ug/L	1.0	1				
Methylene Chloride	<1.0	ug/L	1.0			07/06/19 17:58		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 17:58		
Styrene	<1.0	ug/L	1.0	1		07/06/19 17:58		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
I,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 17:58		
oluene	<1.0	ug/L	1.0	1		07/06/19 17:58		
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
I,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
Frichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:58		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 17:58		
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:58		
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 17:58		
/inyl chloride	<1.0	ug/L	1.0	1		07/06/19 17:58		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 17:58	1330-20-7	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-1S	Lab ID: 709	5441014	Collected: 06/25/1	9 12:01	Received: 06	6/27/19 11:05 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	129	%	68-153	1		07/06/19 17:58	17060-07-0	
4-Bromofluorobenzene (S)	93	%	79-124	1		07/06/19 17:58	460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 17:58	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-2S	Lab ID: 70	95441015	Collected: 06/25/1	19 10:40	Received:	06/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 17:39	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 17:39	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 17:39	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:39	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 17:39	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 17:39	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 17:39	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 17:39	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 17:39	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 17:39	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:39	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 17:39	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 17:39	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 17:39		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 17:39		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:39		
I,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 17:39		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 17:39		
1.2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:39		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:39		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 17:39		
1,1-Dichloroethane	<1.0 <1.0	ug/L ug/L	1.0	1		07/06/19 17:39		
1,2-Dichloroethane	<1.0 <1.0	ug/L ug/L	1.0	1		07/06/19 17:39		
1,1-Dichloroethene	<1.0 <1.0	ug/L ug/L	1.0	1		07/06/19 17:39		
cis-1,2-Dichloroethene	<1.0 <1.0	•	1.0	1		07/06/19 17:39		
•		ug/L		1				
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:39		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:39		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0			07/06/19 17:39		1.4
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 17:39		L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 17:39		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 17:39		
odomethane	<1.0	ug/L	1.0	1		07/06/19 17:39		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 17:39		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 17:39		
Styrene	<1.0	ug/L	1.0	1		07/06/19 17:39		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:39		
,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:39		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 17:39		
Toluene	<1.0	ug/L	1.0	1		07/06/19 17:39		
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:39	71-55-6	
,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:39		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:39		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 17:39		
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:39	96-18-4	
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 17:39	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 17:39	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 17:39	1330-20-7	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-2S	Lab ID: 709	95441015	Collected: 06/25/1	9 10:40	Received: 06	6/27/19 11:05 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	thod: EPA 82	60C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	125	%	68-153	1		07/06/19 17:39	17060-07-0	
4-Bromofluorobenzene (S)	95	%	79-124	1		07/06/19 17:39	460-00-4	
Toluene-d8 (S)	95	%	69-124	1		07/06/19 17:39	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3S	Lab ID: 709	5441016	Collected: 06/25/1	19 10:10	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 17:20	0 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 17:20	0 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 17:20	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 17:20	75-25-2	CL,L2
3romomethane	<1.0	ug/L	1.0	1		07/06/19 17:20	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 17:20	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 17:20	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 17:20	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 17:20	0 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 17:20	96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20	124-48-1	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 17:20	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 17:20	74-95-3	
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20		
.4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 17:20) 110-57-6	
,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
I,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:20		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:20		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:20		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 17:20		
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 17:20		L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 17:20		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 17:20		
odomethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 17:20		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 17:20		
Styrene	<1.0	ug/L	1.0	1		07/06/19 17:20		
I,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
etrachloroethene	<1.0	ug/L	1.0	1		07/06/19 17:20		
Foluene	<1.0	•	1.0	1		07/06/19 17:20		
		ug/L						
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
I,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
Frichloroethene	2.9	ug/L	1.0	1		07/06/19 17:20		
Frichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:20		
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 17:20		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 17:20		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 17:20) 1330-20-7	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3S	Lab ID: 7	7095441016	Collected: 06/25/1	9 10:10	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	lethod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	127	%	68-153	1		07/06/19 17:20	17060-07-0	
4-Bromofluorobenzene (S)	95	%	79-124	1		07/06/19 17:20	460-00-4	
Toluene-d8 (S)	96	%	69-124	1		07/06/19 17:20	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3R	Lab ID: 709	95441017	Collected: 06/25/1	19 10:15	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 17:0	0 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 17:00	0 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 17:00	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 17:00	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 17:00	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 17:00	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 17:00	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 17:00	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:0	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 17:0	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 17:0	0 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 17:00		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
I,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 17:00		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 17:0		
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:0		
.4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:00		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:00		
	1.5	_	1.0	1		07/06/19 17:0		
cis-1,2-Dichloroethene		ug/L		1				
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,2-Dichloropropane	<1.0	ug/L	1.0			07/06/19 17:00		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 17:00		1.4
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 17:00		L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 17:00		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 17:00		
odomethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 17:00		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 17:0		
Styrene	<1.0	ug/L	1.0	1		07/06/19 17:0		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:0		
,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:0		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 17:0		
Toluene	<1.0	ug/L	1.0	1		07/06/19 17:00		
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:00		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:00	96-18-4	
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 17:00	108-05-4	
/inyl chloride	3.4	ug/L	1.0	1		07/06/19 17:00	75-01-4	
Kylene (Total)	<3.0	ug/L	3.0	1		07/06/19 17:0	1330-20-7	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3R	Lab ID: 709	5441017	Collected: 06/25/1	9 10:15	Received: 06	6/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	60C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	122	%	68-153	1		07/06/19 17:00	17060-07-0	
4-Bromofluorobenzene (S)	94	%	79-124	1		07/06/19 17:00	460-00-4	
Toluene-d8 (S)	95	%	69-124	1		07/06/19 17:00	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 70	95441018	Collected: 06/25/1	19 09:15	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 16:4	1 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 16:4	1 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 16:4	1 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 16:4	1 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 16:4°	1 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 16:4°	1 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 16:4°	1 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 16:4°	1 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 16:4	1 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 16:4	1 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 16:4	1 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 16:4	1 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 16:4	1 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 16:4 ⁻		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 16:4		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
I,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 16:4		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
.2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 16:4		
I.4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 16:4		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 16:4		
,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
,, Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 16:4		
cis-1,2-Dichloroethene	<1.0 <1.0	•	1.0	1		07/06/19 16:4 ⁻		
rans-1,2-Dichloroethene	<1.0 <1.0	ug/L	1.0	1		07/06/19 16:4 ⁻		
1,2-Dichloropropane	<1.0 <1.0	ug/L	1.0	1		07/06/19 16:4		
	<1.0 <1.0	ug/L	1.0	1		07/06/19 16:4		
cis-1,3-Dichloropropene		ug/L	1.0	1				1.4
rans-1,3-Dichloropropene	<1.0	ug/L				07/06/19 16:4		L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 16:4		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 16:4		
odomethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 16:4		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 16:4		
Styrene	<1.0	ug/L	1.0	1		07/06/19 16:4		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
I,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 16:4		
Toluene	<1.0	ug/L	1.0	1		07/06/19 16:4		
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 16:4		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 16:4		
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 16:4	1 96-18-4	
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 16:4		
/inyl chloride	<1.0	ug/L	1.0	1		07/06/19 16:4	1 75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 16:4	1 1330-20-7	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 7	095441018	Collected: 06/25/1	9 09:15	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	lethod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	125	%	68-153	1		07/06/19 16:4	I 17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 16:4	l 460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 16:4	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5S	Lab ID: 709	5441019	Collected: 06/25/1	19 09:48	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 16:2	2 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 16:2	2 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 16:2	2 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 16:2	2 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 16:2	2 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 16:2	2 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 16:2	2 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 16:2	2 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 16:2	2 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 16:2	2 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 16:2	2 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 16:2	2 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 16:2	2 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 16:2		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 16:2		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 16:2		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 16:2		
	<1.0	_	1.0	1		07/06/19 16:2		
cis-1,2-Dichloroethene		ug/L		1				
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,2-Dichloropropane	<1.0	ug/L	1.0			07/06/19 16:2		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1			2 10061-01-5	1.4
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1			2 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 16:2		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 16:2		
odomethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 16:2		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 16:2		
Styrene	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 16:2		
Toluene	<1.0	ug/L	1.0	1		07/06/19 16:2		
I,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 16:2		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 16:2		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 16:2	2 96-18-4	
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 16:2	2 108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 16:2	2 75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 16:2	2 1330-20-7	

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5S	Lab ID: 709	5441019	Collected: 06/25/1	9 09:48	Received: 00	6/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates	407	0/	00.450	4		07/00/40 40 00	47000 07 0	
1,2-Dichloroethane-d4 (S)	127	%	68-153	1		07/06/19 16:22		
4-Bromofluorobenzene (S)	96	%	79-124	1		07/06/19 16:22	460-00-4	
Toluene-d8 (S)	93	%	69-124	1		07/06/19 16:22	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5R	Lab ID: 709	5441020	Collected: 06/25/1	9 09:31	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 16:0	2 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 16:0	2 107-13-1	
Benzene	6.7	ug/L	1.0	1		07/06/19 16:0	2 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 16:0	2 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 16:0	2 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 16:0	2 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 16:0	2 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 16:0	2 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 16:0	2 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 16:0	2 56-23-5	
Chlorobenzene	4.8	ug/L	1.0	1		07/06/19 16:0	2 108-90-7	
Chloroethane	24.0	ug/L	1.0	1		07/06/19 16:0	2 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 16:0	2 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 16:0	2 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 16:0	2 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 16:0	2 124-48-1	
I,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 16:0	2 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 16:0	2 74-95-3	
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 16:0		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 16:0		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 16:0		
,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:0		
,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:0		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 16:0		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 16:0		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 16:0		
I,2-Dichloropropane	<1.0	ug/L	1.0	1		07/06/19 16:0		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1			2 10061-01-5	
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1			2 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 16:0		_'
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 16:0		
odomethane	<1.0	ug/L ug/L	1.0	1		07/06/19 16:0		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 16:0		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L ug/L	5.0	1		07/06/19 16:0		
• • • • • • • • • • • • • • • • • • • •	<1.0	•	1.0	1		07/06/19 16:0		
Styrene ,1,1,2-Tetrachloroethane		ug/L						
	<1.0 <1.0	ug/L	1.0 1.0	1		07/06/19 16:0 07/06/19 16:0		
,1,2,2-Tetrachloroethane Tetrachloroethene		ug/L		1		07/06/19 16:0		
	<1.0	ug/L	1.0	1				
oluene	<1.0	ug/L	1.0	1		07/06/19 16:0		
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:0		
I,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 16:0		
Frichlandhuanan athara	<1.0	ug/L	1.0	1		07/06/19 16:0		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 16:0		
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 16:0		
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 16:0		
/inyl chloride	<1.0	ug/L	1.0	1		07/06/19 16:0		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 16:0	2 1330-20-7	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5R	Lab ID: 7	095441020	Collected: 06/25/1	9 09:31	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	ethod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	122	%	68-153	1		07/06/19 16:02	17060-07-0	
4-Bromofluorobenzene (S)	102	%	79-124	1		07/06/19 16:02	460-00-4	
Toluene-d8 (S)	95	%	69-124	1		07/06/19 16:02	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6S	Lab ID: 709	95441021	Collected: 06/25/1	19 11:04	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	thod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 15:4	3 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 15:4	3 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 15:4	3 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:4	3 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 15:4	3 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 15:4	3 75-25-2	CL,L2
3romomethane	<1.0	ug/L	1.0	1		07/06/19 15:4	3 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 15:4	3 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 15:4	3 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 15:4	3 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:4	3 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 15:4	3 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 15:4	3 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 15:4	3 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 15:4	3 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:4	3 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 15:4	3 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 15:4	3 74-95-3	
.2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:4		
.4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:4		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 15:4		
,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:4:		
,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:4		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:4		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:4		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:4		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/06/19 15:4		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 15:4		
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1			3 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 15:4		_'
2-Hexanone	<5.0	ug/L ug/L	5.0	1		07/06/19 15:4		
odomethane	<1.0	ug/L ug/L	1.0	1		07/06/19 15:4		
Methylene Chloride	<1.0	ug/L ug/L	1.0	1		07/06/19 15:4		
•	<5.0	•	5.0	1		07/06/19 15:4		
I-Methyl-2-pentanone (MIBK)	<5.0 <1.0	ug/L	1.0	1		07/06/19 15:4		
Styrene		ug/L						
,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 15:4 07/06/19 15:4		
	<1.0	ug/L	1.0	1				
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 15:4		
Toluene	<1.0	ug/L	1.0	1		07/06/19 15:4:		
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:4:		
,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:4:		
Frichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:4:		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 15:4		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 15:4		
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 15:4		
/inyl chloride	<1.0	ug/L	1.0	1		07/06/19 15:4		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 15:4	3 1330-20-7	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6S	Lab ID: 7	095441021	Collected: 06/25/1	9 11:04	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	lethod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	126	%	68-153	1		07/06/19 15:43	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 15:43	460-00-4	
Toluene-d8 (S)	96	%	69-124	1		07/06/19 15:43	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID: 7	7095441022	Collected: 06/25/1	9 11:07	Received: (06/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260C Volatile Organics	Analytical N	Method: EPA 82	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 15:23	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 15:23	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 15:23	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:23	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 15:23	75-27-4	M1
Bromoform	<1.0	ug/L	1.0	1		07/06/19 15:23	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 15:23	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 15:23	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 15:23	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 15:23	56-23-5	M1
Chlorobenzene	<1.0		1.0	1		07/06/19 15:23	108-90-7	
Chloroethane	<1.0	_	1.0	1		07/06/19 15:23	75-00-3	
Chloroform	<1.0	•	1.0	1		07/06/19 15:23	67-66-3	
Chloromethane	<1.0	•	1.0	1		07/06/19 15:23	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	_	1.0	1		07/06/19 15:23		
Dibromochloromethane	<1.0	_	1.0	1		07/06/19 15:23		
1,2-Dibromoethane (EDB)	<1.0	J	1.0	1		07/06/19 15:23	106-93-4	
Dibromomethane	<1.0	0	1.0	1		07/06/19 15:23		
1.2-Dichlorobenzene	<1.0	0	1.0	1		07/06/19 15:23		
1,4-Dichlorobenzene	<1.0	_	1.0	1		07/06/19 15:23		
rans-1,4-Dichloro-2-butene	<1.0		1.0	1		07/06/19 15:23		
1,1-Dichloroethane	<1.0	_	1.0	1		07/06/19 15:23		
1,2-Dichloroethane	<1.0	0	1.0	1		07/06/19 15:23		
1,1-Dichloroethene	<1.0	0	1.0	1		07/06/19 15:23		
cis-1,2-Dichloroethene	14.5	_	1.0	1		07/06/19 15:23		
rans-1,2-Dichloroethene	<1.0	_	1.0	1		07/06/19 15:23		
1,2-Dichloropropane	<1.0	J	1.0	1		07/06/19 15:23		
cis-1,3-Dichloropropene	<1.0	J	1.0	1		07/06/19 15:23		M1
trans-1,3-Dichloropropene	<1.0 <1.0	J	1.0	1		07/06/19 15:23		L1,M0
Ethylbenzene	<1.0 <1.0	_	1.0	1		07/06/19 15:23		L I,IVIO
zunyiberizene 2-Hexanone	<1.0 <5.0		5.0	1		07/06/19 15:23		
odomethane	<5.0 <1.0	J	1.0	1		07/06/19 15:23		R1
Methylene Chloride	<1.0	J	1.0	1		07/06/19 15:23		Κī
•	<1.0 <5.0	J	5.0	1		07/06/19 15:23		
4-Methyl-2-pentanone (MIBK)		0		1		07/06/19 15:23		
Styrene	<1.0	0	1.0					
1,1,1,2-Tetrachloroethane	<1.0	Ū	1.0	1		07/06/19 15:23		
1,1,2,2-Tetrachloroethane	<1.0	J	1.0	1		07/06/19 15:23		
Tetrachloroethene	<1.0	J	1.0	1		07/06/19 15:23		
Toluene	<1.0	J	1.0	1		07/06/19 15:23		
I,1,1-Trichloroethane	<1.0	J	1.0	1		07/06/19 15:23		M1
1,1,2-Trichloroethane	<1.0	J	1.0	1		07/06/19 15:23		
Frichloroethene	10.5	J	1.0	1		07/06/19 15:23		
Trichlorofluoromethane	<1.0	•	1.0	1		07/06/19 15:23		
1,2,3-Trichloropropane	<1.0	•	1.0	1		07/06/19 15:23		
/inyl acetate	<1.0	Ū	1.0	1		07/06/19 15:23		
Vinyl chloride	4.0	Ū	1.0	1		07/06/19 15:23		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 15:23	1330-20-7	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID: 709	5441022	Collected: 06/25/1	9 11:07	Received: 06	6/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	124	%	68-153	1		07/06/19 15:23	17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-124	1		07/06/19 15:23	460-00-4	
Toluene-d8 (S)	96	%	69-124	1		07/06/19 15:23	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID: 709	5441023	Collected: 06/25/1	19 11:25	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 15:0	3 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 15:0	3 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 15:0	3 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 15:0	3 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 15:0	3 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 15:0	3 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 106-46-7	
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 78-87-5	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 10061-01-5	
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 15:0	3 591-78-6	
odomethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 15:0	3 108-10-1	
Styrene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 100-42-5	
I,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0		
Toluene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 71-55-6	
I,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0		
Frichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 15:0		
√inyl acetate	<1.0	ug/L	1.0	1		07/06/19 15:0		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 15:0		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 15:0		

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID: 709	5441023	Collected: 06/25/1	9 11:25	Received: 06	6/27/19 11:05 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates 1,2-Dichloroethane-d4 (S)	124	%	68-153	1		07/06/19 15:03	17060-07-0	
4-Bromofluorobenzene (S)	97	% %	79-124	1				
Toluene-d8 (S)	95	%	69-124	1		07/06/19 15:03	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 70	95441024	Collected: 06/25/1	19 11:16	Received:	06/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Acetone	8.1	ug/L	5.0	1		07/06/19 14:44	67-64-1	СН
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 14:44	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 14:44	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 14:44	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 14:44	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 14:44	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 14:44	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 14:44	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:44	108-90-7	
Chloroethane	2.8	ug/L	1.0	1		07/06/19 14:44	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 14:44	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 14:44		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
I,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 14:44		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
I.2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:44		
I.4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:44		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 14:44		
1,1-Dichloroethane	6.6	ug/L	1.0	1		07/06/19 14:44		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:44		
cis-1,2-Dichloroethene	<1.0	ug/L ug/L	1.0	1		07/06/19 14:44		
rans-1,2-Dichloroethene	<1.0		1.0	1		07/06/19 14:44		
1,2-Dichloropropane	<1.0 <1.0	ug/L	1.0	1		07/06/19 14:44		
	<1.0	ug/L	1.0	1		07/06/19 14:44		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 14:44		1.4
rans-1,3-Dichloropropene		ug/L		1				L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 14:44 07/06/19 14:44		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 14:44		
odomethane Asthylana Chlarida	<1.0	ug/L	1.0	1				
Methylene Chloride	<1.0	ug/L	1.0			07/06/19 14:44		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 14:44		
Styrene	<1.0	ug/L	1.0	1		07/06/19 14:44		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 14:44		
Toluene	<1.0	ug/L	1.0	1		07/06/19 14:44		
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
I,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:44		
richlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 14:44		
/inyl acetate	<1.0	ug/L	1.0	1		07/06/19 14:44		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 14:44		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 14:44	1330-20-7	

REPORT OF LABORATORY ANALYSIS

(631)694-3040

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 709	5441024	Collected: 06/25/1	9 11:16	Received: 00	6/27/19 11:05 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	122	%	68-153	1		07/06/19 14:44	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 14:44	460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 14:44	2037-26-5	

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID: 709	5441025	Collected: 06/25/1	9 13:10	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 14:24	1 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 14:24	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 14:24	1 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:24	1 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 14:24	1 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 14:24	1 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 14:24	1 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 14:24	1 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 14:24	1 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 14:24	1 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:24		
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
Chloroform	<1.0	ug/L	1.0	1		07/06/19 14:24		
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 14:24		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 14:24		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:24		
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:24		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:24		
trans-1,2-Dichloroethene	<1.0 <1.0	-	1.0	1		07/06/19 14:24		
•	<1.0 <1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dichloropropane	<1.0 <1.0	ug/L	1.0	1		07/06/19 14:24		
cis-1,3-Dichloropropene	<1.0 <1.0	ug/L	1.0	1		07/06/19 14:24		1.4
trans-1,3-Dichloropropene		ug/L		1		07/06/19 14:24		L1
Ethylbenzene 2-Hexanone	<1.0	ug/L	1.0	1				
z-nexanone lodomethane	<5.0 <1.0	ug/L	5.0 1.0	1		07/06/19 14:24 07/06/19 14:24		
		ug/L		1				
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 14:24		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0			07/06/19 14:24		
Styrene	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 14:24		
Toluene	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:24		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 14:24		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 14:24		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 14:24		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 14:24	1 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID: 709	5441025	Collected: 06/25/1	9 13:10	Received: 06	6/27/19 11:05 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	122	%	68-153	1		07/06/19 14:24	17060-07-0	
4-Bromofluorobenzene (S)	94	%	79-124	1		07/06/19 14:24	460-00-4	
Toluene-d8 (S)	95	%	69-124	1		07/06/19 14:24	2037-26-5	

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-X	Lab ID: 709	5441026	Collected: 06/25/1	9 09:31	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 8	260C/5030C					
Acetone	16.3	ug/L	5.0	1		07/06/19 14:0	5 67-64-1	СН
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 14:0	5 107-13-1	
Benzene	7.3	ug/L	1.0	1		07/06/19 14:0	5 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:0	5 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 14:0	5 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 14:0	5 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 14:0	5 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 14:0	5 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 14:0	5 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 14:0	5 56-23-5	
Chlorobenzene	5.1	ug/L	1.0	1		07/06/19 14:0	5 108-90-7	
Chloroethane	25.6	ug/L	1.0	1		07/06/19 14:0		
Chloroform	<1.0	ug/L	1.0	1		07/06/19 14:0		
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 14:0		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 14:0		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:0		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 14:0		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 14:0		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:0		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:0		
trans-1,4-Dichloro-2-butene	<1.0	ug/L ug/L	1.0	1		07/06/19 14:0		
1,1-Dichloroethane	1.0	ug/L ug/L	1.0	1		07/06/19 14:0		
1,2-Dichloroethane	<1.0	ug/L ug/L	1.0	1		07/06/19 14:0		
,	<1.0 <1.0	_	1.0	1		07/06/19 14:0		
1,1-Dichloroethene	<1.0 <1.0	ug/L	1.0	1		07/06/19 14:0		
cis-1,2-Dichloroethene		ug/L		1				
trans-1,2-Dichloroethene	<1.0 <1.0	ug/L	1.0 1.0	1		07/06/19 14:0 07/06/19 14:0		
1,2-Dichloropropane		ug/L		1				
cis-1,3-Dichloropropene	<1.0	ug/L	1.0				5 10061-01-5	1.4
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1			5 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 14:0		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 14:0		
lodomethane	<1.0	ug/L	1.0	1		07/06/19 14:0		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 14:0		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 14:0		
Styrene	<1.0	ug/L	1.0	1		07/06/19 14:0		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:0		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:0		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 14:0		
Toluene	<1.0	ug/L	1.0	1		07/06/19 14:0		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:0		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:0		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:0	5 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 14:0	5 75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 14:0		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 14:0	5 108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 14:0	5 75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 14:0	5 1330-20-7	

(631)694-3040

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-X	Lab ID: 709	5441026	Collected: 06/25/1	9 09:31	Received: 06	6/27/19 11:05 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates 1,2-Dichloroethane-d4 (S)	121	%	68-153	1		07/06/19 14:05	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-124	1		07/06/19 14:05	460-00-4	
Toluene-d8 (S)	93	%	69-124	1		07/06/19 14:05	2037-26-5	

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: TRIP BLANK	Lab ID: 709	5441027	Collected: 06/25/1	9 00:00	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 13:4	6 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 13:4	6 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 13:4	6 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 13:4	6 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 13:4	6 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 13:4	6 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 13:4	6 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 13:4	6 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/06/19 13:4	6 78-87-5	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 13:4		
lodomethane	<1.0	ug/L	1.0	1		07/06/19 13:4		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 13:4		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 13:4	6 108-10-1	
Styrene	<1.0	ug/L	1.0	1		07/06/19 13:4	6 100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 13:4		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 13:4		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 13:4		
Toluene	<1.0	ug/L	1.0	1		07/06/19 13:4		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 13:4		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 13:4		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 13:4		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 13:4		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 13:4		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 13:4		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 13:4		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 13:4		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: TRIP BLANK	Lab ID: 709	5441027	Collected: 06/25/1	9 00:00	Received: 06	6/27/19 11:05 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	126	%	68-153	1		07/06/19 13:46	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-124	1		07/06/19 13:46	460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 13:46	2037-26-5	

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: STORAGE BLANK	Lab ID: 709	5441028	Collected: 06/27/1	9 00:00	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Met	nod: EPA 8	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		07/06/19 12:40	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 12:40	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 12:40	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 12:40	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 12:40	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/06/19 12:40	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 12:40	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 12:40	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 12:40	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 12:40	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 12:40		
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
Chloroform	<1.0	ug/L	1.0	1		07/06/19 12:40		
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 12:40		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 12:40	_	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 12:40		
rans-1,4-Dichloro-2-butene	<1.0		1.0	1		07/06/19 12:40		
1,1-Dichloroethane	<1.0 <1.0	ug/L ug/L	1.0	1		07/06/19 12:40		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 12:40		
	<1.0 <1.0	-	1.0	1		07/06/19 12:40		
cis-1,2-Dichloroethene		ug/L		1				
trans-1,2-Dichloroethene	<1.0 <1.0	ug/L	1.0 1.0	1		07/06/19 12:40 07/06/19 12:40		
1,2-Dichloropropane	<1.0 <1.0	ug/L	1.0	1		07/06/19 12:40		
cis-1,3-Dichloropropene	<1.0 <1.0	ug/L	1.0	1		07/06/19 12:40		1.4
trans-1,3-Dichloropropene		ug/L				07/06/19 12:40		L1
Ethylbenzene	<1.0	ug/L	1.0	1				
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 12:40		
lodomethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 12:40		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 12:40		
Styrene	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 12:40		
Toluene	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 12:40		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 12:40		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 12:40		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 12:40	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 12:40	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 12:40	1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: STORAGE BLANK	Lab ID: 709	5441028	Collected: 06/27/1	9 00:00	Received: 06	6/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Metl	nod: EPA 82	60C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	126	%	68-153	1		07/06/19 12:40	17060-07-0	
4-Bromofluorobenzene (S)	96	%	79-124	1		07/06/19 12:40	460-00-4	
Toluene-d8 (S)	93	%	69-124	1		07/06/19 12:40	2037-26-5	

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

QC Batch: 120375 Analysis Method: EPA 6010C

QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved

Associated Lab Samples: 7095441001, 7095441005, 7095441009

METHOD BLANK: 572392 Matrix: Water

Associated Lab Samples: 7095441001, 7095441005, 7095441009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony, Dissolved	ug/L	<60.0	60.0	07/03/19 13:48	
Arsenic, Dissolved	ug/L	<10.0	10.0	07/03/19 13:48	
Barium, Dissolved	ug/L	<200	200	07/03/19 13:48	
Cadmium, Dissolved	ug/L	<2.5	2.5	07/03/19 13:48	
Iron, Dissolved	ug/L	<20.0	20.0	07/03/19 13:48	
Magnesium, Dissolved	ug/L	<200	200	07/03/19 13:48	
Manganese, Dissolved	ug/L	<10.0	10.0	07/03/19 13:48	
Potassium, Dissolved	ug/L	< 5000	5000	07/03/19 13:48	
Sodium, Dissolved	ug/L	<5000	5000	07/03/19 13:48	

LABORATORY	CONTROL SAMPLE:	572393

Date: 07/26/2019 04:57 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony, Dissolved	ug/L	750	719	96	80-120	
Arsenic, Dissolved	ug/L	500	498	100	80-120	
Barium, Dissolved	ug/L	500	498	100	80-120	
Cadmium, Dissolved	ug/L	50	50.2	100	80-120	
Iron, Dissolved	ug/L	2000	2030	101	80-120	
Magnesium, Dissolved	ug/L	25000	25100	100	80-120	
Manganese, Dissolved	ug/L	250	252	101	80-120	
Potassium, Dissolved	ug/L	50000	47400	95	80-120	
Sodium, Dissolved	ug/L	50000	48900	98	80-120	

MATRIX SPIKE SAMPLE:	572395						
Parameter	Units	7095441009 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Antimony, Dissolved	ug/L	<60.0	750	756	101	75-125	
Arsenic, Dissolved	ug/L	<10.0	500	524	103	75-125	
Barium, Dissolved	ug/L	219	500	720	100	75-125	
Cadmium, Dissolved	ug/L	<2.5	50	49.2	98	75-125	
Iron, Dissolved	ug/L	858	2000	3300	122	75-125	
Magnesium, Dissolved	ug/L	58300	25000	83600	101	75-125	
Manganese, Dissolved	ug/L	419	250	668	100	75-125	
Potassium, Dissolved	ug/L	13700	50000	58100	89	75-125	
Sodium, Dissolved	ug/L	164000	50000	214000	100	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

SAMPLE DUPLICATE: 572394 7095441009 Dup RPD Parameter Units Result Result Qualifiers <60.0 Antimony, Dissolved ug/L <60.0 <10.0 Arsenic, Dissolved ug/L <10.0 219 Barium, Dissolved ug/L 226 3 Cadmium, Dissolved ug/L <2.5 <2.5 Iron, Dissolved 858 1040 19 ug/L Magnesium, Dissolved ug/L 58300 59600 2 Manganese, Dissolved 419 ug/L 425 1 Potassium, Dissolved ug/L 13700 14000 2 164000 Sodium, Dissolved ug/L 168000 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

LABORATORY CONTROL CAMPLE.

Date: 07/26/2019 04:57 PM

QC Batch: 121065 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

METHOD BLANK: 576048 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	<60.0	60.0	07/10/19 21:22	
Arsenic	ug/L	<10.0	10.0	07/10/19 21:22	
Barium	ug/L	<200	200	07/10/19 21:22	
Boron	ug/L	<50.0	50.0	07/10/19 21:22	
Calcium	ug/L	<200	200	07/10/19 21:22	
Iron	ug/L	<20.0	20.0	07/10/19 21:22	
Magnesium	ug/L	<200	200	07/10/19 21:22	
Manganese	ug/L	<10.0	10.0	07/10/19 21:22	
Potassium	ug/L	< 5000	5000	07/10/19 21:22	
Sodium	ug/L	<5000	5000	07/10/19 21:22	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L		767	102	80-120	
Arsenic	ug/L	500	475	95	80-120	
Barium	ug/L	500	523	105	80-120	
Boron	ug/L	2500	2550	102	80-120	
Calcium	ug/L	25000	25200	101	80-120	
ron	ug/L	2000	2020	101	80-120	
/lagnesium	ug/L	25000	24900	100	80-120	
/langanese	ug/L	250	246	98	80-120	
Potassium	ug/L	50000	51400	103	80-120	
Sodium	ug/L	50000	51700	103	80-120	

MATRIX SPIKE SAMPLE:	576051						
Parameter	Units	7095441009 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Antimony	 ug/L	<60.0	750	753	100	75-125	
Arsenic	ug/L	<10.0	500	511	102	75-125	
Barium	ug/L	275	500	722	89	75-125	
Boron	ug/L	828	2500	3220	96	75-125	
Calcium	ug/L	125000	25000	140000	62	75-125 N	/ 11
Iron	ug/L	16600	2000	18600	104	75-125	
Magnesium	ug/L	65400	25000	84800	78	75-125	
Manganese	ug/L	505	250	726	88	75-125	
Potassium	ug/L	13800	50000	62100	97	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

MATRIX SPIKE SAMPLE: 576051 7095441009 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers ug/L 179000 50000 Sodium 212000 67 75-125 M1

		7095441009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Antimony	ug/L	<60.0	<60.0		
Arsenic	ug/L	<10.0	<10.0		
Barium	ug/L	275	278	1	
Boron	ug/L	828	833	1	
Calcium	ug/L	125000	123000	2	
on	ug/L	16600	18000	9	
/lagnesium	ug/L	65400	64400	2	
Manganese	ug/L	505	506	0	
Potassium	ug/L	13800	13800	0	
Sodium	ug/L	179000	178000	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

QC Batch: 120782 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Associated Lab Samples: 7095441014, 7095441015, 7095441016, 7095441017, 7095441018, 7095441019, 7095441020, 7095441021,

7095441022, 7095441023, 7095441024, 7095441025, 7095441026, 7095441027, 7095441028

METHOD BLANK: 574898 Matrix: Water

Associated Lab Samples: 7095441014, 7095441015, 7095441016, 7095441017, 7095441018, 7095441019, 7095441020, 7095441021,

7095441022, 7095441023, 7095441024, 7095441025, 7095441026, 7095441027, 7095441028

700044	022, 7093441023, 7	Blank	Reporting	1020, 103344102	1, 1000441020
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L	<1.0	1.0	07/06/19 11:23	
1,1,1-Trichloroethane	ug/L	<1.0	1.0	07/06/19 11:23	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	07/06/19 11:23	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	07/06/19 11:23	
1,1-Dichloroethane	ug/L	<1.0	1.0	07/06/19 11:23	
1,1-Dichloroethene	ug/L	<1.0	1.0	07/06/19 11:23	
1,2,3-Trichloropropane	ug/L	<1.0	1.0	07/06/19 11:23	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	07/06/19 11:23	
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	07/06/19 11:23	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	07/06/19 11:23	
1,2-Dichloroethane	ug/L	<1.0	1.0	07/06/19 11:23	
1,2-Dichloropropane	ug/L	<1.0	1.0	07/06/19 11:23	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	07/06/19 11:23	
2-Butanone (MEK)	ug/L	<5.0	5.0	07/06/19 11:23	IL
2-Hexanone	ug/L	<5.0	5.0	07/06/19 11:23	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	07/06/19 11:23	
Acetone	ug/L	<5.0	5.0	07/06/19 11:23	
Acrylonitrile	ug/L	<1.0	1.0	07/06/19 11:23	
Benzene	ug/L	<1.0	1.0	07/06/19 11:23	
Bromochloromethane	ug/L	<1.0	1.0	07/06/19 11:23	
Bromodichloromethane	ug/L	<1.0	1.0	07/06/19 11:23	
Bromoform	ug/L	<1.0	1.0	07/06/19 11:23	CL
Bromomethane	ug/L	<1.0	1.0	07/06/19 11:23	
Carbon disulfide	ug/L	<1.0	1.0	07/06/19 11:23	
Carbon tetrachloride	ug/L	<1.0	1.0	07/06/19 11:23	
Chlorobenzene	ug/L	<1.0	1.0	07/06/19 11:23	
Chloroethane	ug/L	<1.0	1.0	07/06/19 11:23	
Chloroform	ug/L	<1.0	1.0	07/06/19 11:23	
Chloromethane	ug/L	<1.0	1.0	07/06/19 11:23	
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	07/06/19 11:23	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	07/06/19 11:23	
Dibromochloromethane	ug/L	<1.0	1.0	07/06/19 11:23	
Dibromomethane	ug/L	<1.0	1.0	07/06/19 11:23	
Ethylbenzene	ug/L	<1.0	1.0	07/06/19 11:23	
Iodomethane	ug/L	<1.0	1.0	07/06/19 11:23	
Methylene Chloride	ug/L	<1.0	1.0	07/06/19 11:23	
Styrene	ug/L	<1.0	1.0	07/06/19 11:23	
Tetrachloroethene	ug/L	<1.0	1.0	07/06/19 11:23	
Toluene	ug/L	<1.0	1.0	07/06/19 11:23	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	07/06/19 11:23	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

METHOD BLANK: 574898 Matrix: Water

Associated Lab Samples: 7095441014, 7095441015, 7095441016, 7095441017, 7095441018, 7095441019, 7095441020, 7095441021,

7095441022, 7095441023, 7095441024, 7095441025, 7095441026, 7095441027, 7095441028

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	07/06/19 11:23	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	1.0	07/06/19 11:23	
Trichloroethene	ug/L	<1.0	1.0	07/06/19 11:23	
Trichlorofluoromethane	ug/L	<1.0	1.0	07/06/19 11:23	
Vinyl acetate	ug/L	<1.0	1.0	07/06/19 11:23	
Vinyl chloride	ug/L	<1.0	1.0	07/06/19 11:23	
Xylene (Total)	ug/L	<3.0	3.0	07/06/19 11:23	
1,2-Dichloroethane-d4 (S)	%	125	68-153	07/06/19 11:23	
4-Bromofluorobenzene (S)	%	100	79-124	07/06/19 11:23	
Toluene-d8 (S)	%	94	69-124	07/06/19 11:23	

LABORATORY CONTROL SAMPLE	574899				
		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifier
1,1,1,2-Tetrachloroethane	ug/L	50	47.9	96	74-113
1,1,1-Trichloroethane	ug/L	50	54.5	109	65-118
1,1,2,2-Tetrachloroethane	ug/L	50	49.1	98	74-121
1,1,2-Trichloroethane	ug/L	50	50.0	100	80-117
1,1-Dichloroethane	ug/L	50	49.5	99	83-151
1,1-Dichloroethene	ug/L	50	45.3	91	45-146
,2,3-Trichloropropane	ug/L	50	49.2	98	71-123
1,2-Dibromo-3-chloropropane	ug/L	50	41.9	84	74-119
1,2-Dibromoethane (EDB)	ug/L	50	53.6	107	83-115
1,2-Dichlorobenzene	ug/L	50	48.1	96	74-113
,2-Dichloroethane	ug/L	50	56.7	113	74-129
,2-Dichloropropane	ug/L	50	50.5	101	75-117
,4-Dichlorobenzene	ug/L	50	46.6	93	71-113
P-Butanone (MEK)	ug/L	50	55.1	110	44-162 IL
2-Hexanone	ug/L	50	46.9	94	32-183
I-Methyl-2-pentanone (MIBK)	ug/L	50	44.0	88	69-132
Acetone	ug/L	50	62.9	126	23-188 CH
Acrylonitrile	ug/L	50	51.8	104	59-148
Benzene	ug/L	50	48.8	98	73-119
Bromochloromethane	ug/L	50	47.9	96	81-116
Bromodichloromethane	ug/L	50	56.8	114	78-117
Bromoform	ug/L	50	30.5	61	65-122 CL,L2
Bromomethane	ug/L	50	41.4	83	52-147
Carbon disulfide	ug/L	50	53.6	107	41-144
Carbon tetrachloride	ug/L	50	53.5	107	59-120
Chlorobenzene	ug/L	50	45.5	91	75-113
Chloroethane	ug/L	50	45.2	90	49-151
Chloroform	ug/L	50	52.5	105	72-122
Chloromethane	ug/L	50	41.0	82	46-144

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

ABORATORY CONTROL SAMPLE:	574899					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
s-1,2-Dichloroethene	ug/L	50	47.7	95	72-121	
s-1,3-Dichloropropene	ug/L	50	55.6	111	78-116	
romochloromethane	ug/L	50	51.6	103	70-120	
romomethane	ug/L	50	50.5	101	75-125	
ylbenzene	ug/L	50	44.7	89	70-113	
omethane	ug/L	50	57.3	115	61-144	
thylene Chloride	ug/L	50	48.0	96	61-142	
rene	ug/L	50	49.8	100	72-118	
achloroethene	ug/L	50	39.8	80	60-128	
ene	ug/L	50	47.0	94	72-119	
s-1,2-Dichloroethene	ug/L	50	48.6	97	56-142	
s-1,3-Dichloropropene	ug/L	50	58.7	117	79-116 (CH,L1
s-1,4-Dichloro-2-butene	ug/L	50	47.2	94	71-121	
loroethene	ug/L	50	50.4	101	69-117	
nlorofluoromethane	ug/L	50	48.2	96	27-173	
d acetate	ug/L	50	55.5	111	20-158	
d chloride	ug/L	50	43.2	86	43-143	
ne (Total)	ug/L	150	138	92	71-109	
Dichloroethane-d4 (S)	%			119	68-153	
omofluorobenzene (S)	%			105	79-124	
ene-d8 (S)	%			93	69-124	

MATRIX SPIKE & MATRIX SPIKE	574950										
			MS	MSD							
	70	095441022	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	50	51.4	52.8	103	106	74-113	3	
1,1,1-Trichloroethane	ug/L	<1.0	50	50	60.6	61.6	121	123	65-118	2 M	1
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	50	52.0	51.4	104	103	74-121	1	
1,1,2-Trichloroethane	ug/L	<1.0	50	50	54.6	53.4	109	107	80-117	2	
1,1-Dichloroethane	ug/L	<1.0	50	50	56.4	55.6	113	111	83-151	1	
1,1-Dichloroethene	ug/L	<1.0	50	50	52.3	51.5	105	103	45-146	2	
1,2,3-Trichloropropane	ug/L	<1.0	50	50	52.4	52.8	105	106	71-123	1	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	50	50	42.4	44.3	85	89	74-119	4	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	50	56.5	56.9	113	114	83-115	1	
1,2-Dichlorobenzene	ug/L	<1.0	50	50	53.2	53.3	106	107	74-113	0	
1,2-Dichloroethane	ug/L	<1.0	50	50	62.9	60.6	126	121	74-129	4	
1,2-Dichloropropane	ug/L	<1.0	50	50	56.2	56.9	112	114	75-117	1	
1,4-Dichlorobenzene	ug/L	<1.0	50	50	51.9	53.0	104	106	71-113	2	
2-Butanone (MEK)	ug/L	< 5.0	50	50	52.3	50.5	105	101	44-162	4 IL	
2-Hexanone	ug/L	<5.0	50	50	44.0	44.1	88	88	32-183	0	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	46.1	44.7	92	89	69-132	3	
Acetone	ug/L	<5.0	50	50	46.5	46.9	93	94	23-188	1 C	Н
Acrylonitrile	ug/L	<1.0	50	50	51.6	50.8	103	102	59-148	2	
Benzene	ug/L	<1.0	50	50	56.0	55.7	111	110	73-119	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

MATRIX SPIKE & MATRIX SPIK	KE DUPLICATI	E: 57494			574950					
Parameter	70 Units	95441022 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD Qu
Bromochloromethane	ug/L	<1.0	50	50	52.1	50.8	104	102	81-116	
Bromodichloromethane	ug/L	<1.0	50	50	61.0	61.5	122	123	78-117	1 M1
Bromoform	ug/L	<1.0	50	50	35.5	35.3	71	71	65-122	0 CL
Bromomethane	ug/L	<1.0	50	50	36.9	41.8	74	84	52-147	12
Carbon disulfide	ug/L	<1.0	50	50	60.7	59.0	121	118	41-144	3
Carbon tetrachloride	ug/L	<1.0	50	50	58.9	61.0	118	122	59-120	4 M1
Chlorobenzene	ug/L	<1.0	50	50	51.1	51.5	102	103	75-113	1
Chloroethane	ug/L	<1.0	50	50	52.5	51.7	105	103	49-151	2
Chloroform	ug/L	<1.0	50	50	59.4	57.8	119	116	72-122	3
Chloromethane	ug/L	<1.0	50	50	43.9	45.4	88	91	46-144	3
cis-1,2-Dichloroethene	ug/L	14.5	50	50	64.5	65.1	100	101	72-121	1
cis-1,3-Dichloropropene	ug/L	<1.0	50	50	58.0	58.7	116	117	78-116	1 M1
Dibromochloromethane	ug/L	<1.0	50	50	52.9	53.8	106	108	70-120	2
Dibromomethane	ug/L	<1.0	50	50	55.9	54.9	112	110	75-125	2
Ethylbenzene	ug/L	<1.0	50	50	51.7	52.1	103	104	70-113	1
lodomethane	ug/L	<1.0	50	50	51.1	63.6	102	127	61-144	22 R1
Methylene Chloride	ug/L	<1.0	50	50	53.7	52.0	107	104	61-142	3
Styrene	ug/L	<1.0	50	50	56.1	56.3	112	113	72-118	0
Tetrachloroethene	ug/L	<1.0	50	50	45.5	47.5	91	95	60-128	4
Toluene	ug/L	<1.0	50	50	54.3	53.6	109	107	72-119	1
trans-1,2-Dichloroethene	ug/L	<1.0	50	50	55.1	54.9	110	110	56-142	0
trans-1,3-Dichloropropene	ug/L	<1.0	50	50	60.8	61.3	122	123	79-116	1 CH,M0
trans-1,4-Dichloro-2-butene	ug/L	<1.0	50	50	37.0	36.8	74	74	71-121	1
Trichloroethene	ug/L	10.5	50	50	67.8	68.5	115	116	69-117	1
Trichlorofluoromethane	ug/L	<1.0	50	50	55.0	54.4	110	109	27-173	1
Vinyl acetate	ug/L	<1.0	50	50	49.5	49.6	99	99	20-158	0
Vinyl chloride	ug/L	4.0	50	50	51.2	50.4	94	93	43-143	1
Xylene (Total)	ug/L	<3.0	150	150	157	159	105	106	71-109	1
1,2-Dichloroethane-d4 (S)	%						119	119	68-153	
4-Bromofluorobenzene (S)	%						104	104	79-124	
Toluene-d8 (S)	%						95	96	69-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

QC Batch: 120959 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441008, 7095441009,

7095441010, 7095441011, 7095441012

METHOD BLANK: 575757 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441008, 7095441009,

7095441010, 7095441011, 7095441012

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<1.0</td>1.007/08/19 23:14

LABORATORY CONTROL SAMPLE: 575758

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 25.8 103 85-115 mg/L 25

MATRIX SPIKE SAMPLE: 575760

7095441009 Spike MS MS % Rec Result % Rec Limits Parameter Units Conc. Result Qualifiers 863 Alkalinity, Total as CaCO3 25 898 140 75-125 M1 mg/L

SAMPLE DUPLICATE: 575759

Date: 07/26/2019 04:57 PM

 Parameter
 Units
 Result Result
 Result RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 863
 853
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 70

QC Batch Method:

7095441

QC Batch: 121116

SM22 2320B

Analysis Method:

SM22 2320B

Analysis Description:

Matrix: Water

2320B Alkalinity, High Level

Associated Lab Samples:

7095441007, 7095441013

METHOD BLANK: 576671

Associated Lab Samples: 7

7095441007, 7095441013

Blank

Reporting

Parameter

Units

Result

Limit Analyzed

Qualifiers

Alkalinity, Total as CaCO3

mg/L

<5.0

5.0 07/09/19 18:09

LABORATORY CONTROL SAMPLE: 576672

Parameter

Units

Spike Conc. LCS Result LCS % Rec % Rec Limits

Qualifiers

Alkalinity, Total as CaCO3

MATRIX SPIKE SAMPLE:

Parameter

Parameter

576690

Units

mg/L

mg/L

mg/L

7096405001 Result Spike Conc.

312

127

MS Result

102

2310

7

MS % Rec

72

80-120

% Rec Limits

75-125 M1

Qualifiers

SAMPLE DUPLICATE:

Alkalinity, Total as CaCO3

Date: 07/26/2019 04:57 PM

Alkalinity, Total as CaCO3

576689

7096405001 Units Result Dup Result

2080

ult RPD 2230

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

QC Batch: 121348 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

METHOD BLANK: 577808 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Tot Hardness asCaCO3 (SM 2340B mg/L <5.0 5.0 07/11/19 17:14

LABORATORY CONTROL SAMPLE: 577809

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Tot Hardness asCaCO3 (SM 2340B mg/L 100 97.0 97 90-110

MATRIX SPIKE SAMPLE: 577810

7095441009 Spike MS MS % Rec % Rec Limits Qualifiers Parameter Units Result Conc. Result 520 Tot Hardness asCaCO3 (SM 2340B 2000 2460 97 75-125 mg/L

SAMPLE DUPLICATE: 577812

Date: 07/26/2019 04:57 PM

 Parameter
 Units
 Result Result
 Result RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 520
 500
 4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

QC Batch: 120088 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008, Associated Lab Samples:

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

METHOD BLANK: 570959 Matrix: Water

7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008, Associated Lab Samples: 7095441009, 7095441010, 7095441011, 7095441012, 7095441013 Blank Reporting Qualifiers Parameter Units Result Limit Analyzed **Total Dissolved Solids** mg/L <1.0 1.0 07/01/19 09:33 LABORATORY CONTROL SAMPLE: 570960 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** 105 500 524 85-115 mg/L MATRIX SPIKE SAMPLE: 570962 7095597001 Spike MS MS % Rec Parameter Limits Units Result Conc. Result % Rec Qualifiers 99.0 **Total Dissolved Solids** 300 384 95 75-125 mg/L MATRIX SPIKE SAMPLE: 570964 7095441009 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids	mg/L	928	600	1520	98	75-125	
SAMPLE DUPLICATE: 570961							
		7095597001	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Total Dissolved Solids	mg/L	99.0	99.0	0			

SAMPLE DUPLICATE: 570963					
		7095441009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Total Dissolved Solids	mg/L	928	928	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

BROCKPORT LANDFILL Project:

Pace Project No.: 7095441

QC Batch: 120637 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006

METHOD BLANK: 574366 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006

Blank

Reporting

Limit Parameter Units Result Analyzed Chemical Oxygen Demand <10.0 10.0 07/05/19 14:04 mg/L

LABORATORY CONTROL SAMPLE:

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 500 511 102 90-110

MATRIX SPIKE SAMPLE: 574368

7095774001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 69.8 1000 1060 99 90-110 Chemical Oxygen Demand mg/L

MATRIX SPIKE SAMPLE: 574370

7095441006 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers Chemical Oxygen Demand mg/L 72.0 1000 1120 105 90-110

SAMPLE DUPLICATE: 574369

7095774001 Dup Parameter Units Result Result RPD Qualifiers 69.8 3 Chemical Oxygen Demand mg/L 67.6

SAMPLE DUPLICATE: 574371

Date: 07/26/2019 04:57 PM

7095441006 Dup Units Result Result **RPD** Qualifiers Parameter 72.0 Chemical Oxygen Demand 72.0 0 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

QC Batch: 120992 Analysis Method: EPA 410.4
QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

Associated Lab Samples: 7095441007, 7095441008, 7095441009, 7095441010, 7095441011, 7095441012, 7095441013

METHOD BLANK: 575842 Matrix: Water

Associated Lab Samples: 7095441007, 7095441008, 7095441009, 7095441010, 7095441011, 7095441012, 7095441013

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Spike

Chemical Oxygen Demand mg/L <10.0 10.0 07/09/19 11:15

LABORATORY CONTROL SAMPLE: 575843

ParameterUnitsConc.Result% RecLimitsQualifiersChemical Oxygen Demandmg/L50050710190-110

MATRIX SPIKE SAMPLE: 575844

7095441009 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 27.8 1000 1060 103 90-110 Chemical Oxygen Demand mg/L

LCS

LCS

% Rec

MATRIX SPIKE SAMPLE: 575846

7095502007 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 45.5 1000 1020 98 90-110

SAMPLE DUPLICATE: 575845

Parameter Units Result Result RPD Qualifiers

Chemical Oxygen Demand mg/L 27.8 30.0 8

SAMPLE DUPLICATE: 575847

Date: 07/26/2019 04:57 PM

 Parameter
 Units
 7095502007 Result
 Dup Result
 RPD
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 45.5
 38.9
 16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

QC Batch: 121124 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

METHOD BLANK: 576786 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<2.0	2.0	07/09/19 20:01	
Sulfate	mg/L	<5.0	5.0	07/09/19 20:01	

LABORATORY CONTROL SAMPLE:	576788	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		10.7	107	90-110	
Sulfate	mg/L	10	10.7	107	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 576789 576790											
			MS	MSD							
	70	94618009	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Chloride	mg/L	<2.0	10	10	12.6	12.4	106	105	80-120		
Sulfate	mg/L	<5.0	10	10	13.0	13.0	107	107	80-120	0	

MATRIX SPIKE SAMPLE:	576791						
		7095441009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	63.0	50	114	101	80-120	
Sulfate	mg/L	35.3	10	45.6	103	80-120	

SAMPLE DUPLICATE: 576792					
		7095441009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Chloride	mg/L	63.0	62.8	0	
Sulfate	mg/L	35.3	35.5	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

QC Batch: 121362 Analysis Method: EPA 351.2
QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010

METHOD BLANK: 577926 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010

Parameter	Units	Blank Result	Reporting Limit		Analyzed	Qualifie	ers	
Nitrogen, Kjeldahl, Total	mg/L	<0.10	0.	10	07/11/19 12:	40		
LABORATORY CONTROL SAMPLE:	577927							
Parameter	Units	•	LCS Result		LCS % Rec	% Rec Limits	Qualifiers	
Nitrogen, Kjeldahl, Total	mg/L	4	4.2		104	90-110		
MATRIX SPIKE SAMPLE:	577928							
Parameter	Units	7095339001 Result	Spike Conc.		MS Result	MS % Rec	% Rec Limits	Qualifiers
Nitrogen, Kjeldahl, Total	mg/L	0.	72 4	1	5.4	117	90-11	0 M1
MATRIX SPIKE SAMPLE:	577930							
Parameter	Units	7095441009 Result	Spike Conc.		MS Result	MS % Rec	% Rec Limits	Qualifiers
Nitrogen, Kjeldahl, Total	mg/L	4	1.4 4	ļ —	9.0	115		0 M1
SAMPLE DUPLICATE: 577929								
Parameter	Units	7095339001 Result	Dup Result		RPD	Qualifiers		
Nitrogen, Kjeldahl, Total	mg/L	0.72	0.0	63	1:	2	_	
SAMPLE DUPLICATE: 577931								
Parameter	Units	7095441009 Result	Dup Result		RPD	Qualifiers		
Nitrogen, Kjeldahl, Total	mg/L	4.4	4	 1.5		1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

QC Batch: 121363 Analysis Method: EPA 351.2

QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

Associated Lab Samples: 7095441011, 7095441012, 7095441013

METHOD BLANK: 577932 Matrix: Water

Associated Lab Samples: 7095441011, 7095441012, 7095441013

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Kjeldahl, Total mg/L <0.10 0.10 07/11/19 13:06

LABORATORY CONTROL SAMPLE: 577933

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 4.2 104 90-110

MATRIX SPIKE SAMPLE: 577934

7095483001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.45 4 Nitrogen, Kjeldahl, Total 5.9 136 90-110 M1 mg/L

MATRIX SPIKE SAMPLE: 577936

7095502007 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.82 Nitrogen, Kjeldahl, Total mg/L 6.6 144 90-110 M1

SAMPLE DUPLICATE: 577935

ParameterUnits7095483001 ResultDup ResultRPDQualifiersNitrogen, Kjeldahl, Totalmg/L0.450.462

SAMPLE DUPLICATE: 577937

Date: 07/26/2019 04:57 PM

Parameter Units Result Result RPD Qualifiers

Nitrogen, Kjeldahl, Total mg/L 0.82 0.89 8

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

QC Batch: 119800 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008

METHOD BLANK: 569317 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008

Blank Reporting

LCS

LCS

% Rec

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 0.050
 06/27/19 19:30

Spike

LABORATORY CONTROL SAMPLE: 569318

 Parameter
 Units
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

 Nitrite as N
 mg/L
 1
 1.0
 104
 90-110

7095474001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N 0.5 0.59 118 90-110 M1 mg/L

MATRIX SPIKE SAMPLE: 569321 7095480001 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.59 118 90-110 M1

SAMPLE DUPLICATE: 569320 7095474001 Dup

Parameter Units Result Result RPD Qualifiers

Nitrite as N mg/L <0.050 <0.050

SAMPLE DUPLICATE: 569322

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

BROCKPORT LANDFILL Project:

Pace Project No.:

QC Batch Method:

7095441

QC Batch: 119801

EPA 353.2

Analysis Method:

EPA 353.2

Analysis Description:

353.2 Nitrite, Unpres.

Associated Lab Samples: 7095441009, 7095441010, 7095441011, 7095441012, 7095441013

METHOD BLANK: 569323 Matrix: Water

Associated Lab Samples:

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

Blank

Reporting

Parameter

Units

Result

Limit Analyzed

Qualifiers

Nitrite as N

Nitrite as N

Nitrite as N

Nitrite as N

mg/L

< 0.050

0.050 06/27/19 20:06

LABORATORY CONTROL SAMPLE: 569324

Parameter

Units

mg/L

mg/L

Units

mg/L

mg/L

Units

mg/L

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

MATRIX SPIKE SAMPLE:

569325

Parameter Units 7095441009 Result < 0.050 Spike Conc.

0.5

0.5

< 0.050

< 0.050

1.0

MS Result

0.59

0.53

104

MS % Rec

119

107

90-110

% Rec Limits

Qualifiers 90-110 M1

MATRIX SPIKE SAMPLE:

Parameter

Parameter

Parameter

569327

7095502007 Result

< 0.050

< 0.050

< 0.050

Spike Conc.

MS Result

MS % Rec % Rec Limits

90-110

Qualifiers

SAMPLE DUPLICATE: 569326

Date: 07/26/2019 04:57 PM

Units

7095441009 Result

Dup Result

RPD

Qualifiers

Nitrite as N

Nitrite as N

SAMPLE DUPLICATE: 569328

7095502007 Result

Dup Result

RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: **BROCKPORT LANDFILL**

Pace Project No.: 7095441

Nitrate-Nitrite (as N)

Date: 07/26/2019 04:57 PM

QC Batch: 119806 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008, Associated Lab Samples:

7095441009, 7095441010, 7095441011, 7095441012

METHOD BLANK: 569379 Matrix: Water

7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008, Associated Lab Samples:

7095441009, 7095441010, 7095441011, 7095441012

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Nitrate-Nitrite (as N) mg/L < 0.050 0.050 06/27/19 21:19 LABORATORY CONTROL SAMPLE: 569380 LCS LCS Spike % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) 1 1.1 107 90-110 mg/L

MATRIX SPIKE SAMPLE: 569381 7095441009 Spike MS MS % Rec % Rec Limits Parameter Units Result Conc. Result Qualifiers < 0.050 Nitrate-Nitrite (as N) 0.5 0.56 110 90-110 mg/L

MATRIX SPIKE SAMPLE: 569383 7095480001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L 6.3 5 10.7 88 90-110 M6

SAMPLE DUPLICATE: 569382 7095441009 Dup **RPD** Parameter Units Result Result Qualifiers

< 0.050 < 0.050 Nitrate-Nitrite (as N) mg/L

SAMPLE DUPLICATE: 569384 7095480001 Dup Result Result **RPD** Qualifiers Parameter Units 6.3

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

6.2

2

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

QC Batch: 119808 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Associated Lab Samples: 7095441013

METHOD BLANK: 569388 Matrix: Water

Associated Lab Samples: 7095441013

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.050 0.050 06/27/19 22:27

LABORATORY CONTROL SAMPLE: 569389

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L 1.1 106 90-110

MATRIX SPIKE SAMPLE: 569390

7095441013 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrate-Nitrite (as N) 0.5 0.56 109 90-110 mg/L

SAMPLE DUPLICATE: 569391

Date: 07/26/2019 04:57 PM

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

QC Batch: 121442 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

METHOD BLANK: 578123 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013 Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersNitrogen, Ammoniamg/L<0.10</td>0.1007/11/19 15:40

LABORATORY CONTROL SAMPLE: 578124

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Ammonia mg/L 1 0.94 94 90-110

MATRIX SPIKE SAMPLE: 578125

MS 7095441009 Spike MS % Rec Result Result % Rec Limits Qualifiers Parameter Units Conc. 3.1 Nitrogen, Ammonia 4.0 81 75-125 mg/L

SAMPLE DUPLICATE: 578126

Date: 07/26/2019 04:57 PM

		7095441009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Nitrogen, Ammonia	mg/L	3.1	3.2	3	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

QC Batch: 120232 Analysis Method: EPA 9060A
QC Batch Method: EPA 9060A Analysis Description: 9060 TOC

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

METHOD BLANK: 571634 Matrix: Water

Associated Lab Samples: 7095441001, 7095441002, 7095441003, 7095441004, 7095441005, 7095441006, 7095441007, 7095441008,

7095441009, 7095441010, 7095441011, 7095441012, 7095441013

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	1.0	07/02/19 17:59	
Total Organic Carbon	mg/L	<1.0	1.0	07/02/19 17:59	
Total Organic Carbon	mg/L	<1.0	1.0	07/02/19 17:59	
Total Organic Carbon	mg/L	<1.0	1.0	07/02/19 17:59	
Total Organic Carbon	mg/L	<1.0	1.0	07/02/19 17:59	

LABORATORY CONTROL SAMPLE:	571635	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	10	9.2	92	85-115	
Total Organic Carbon	mg/L	10	9.3	93	85-115	
Total Organic Carbon	mg/L	10	9.2	92	85-115	
Total Organic Carbon	mg/L	10	9.2	92	85-115	
Total Organic Carbon	mg/L	10	9.3	93	85-115	

MATRIX SPIKE SAMPLE:	571637						
		7095441001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	3.0	10	11.6	86	75-125	
Total Organic Carbon	mg/L	2.6	10	11.7	90	75-125	
Total Organic Carbon	mg/L	2.6	10	11.6	89	75-125	
Total Organic Carbon	mg/L	3.9	10	11.6	77	75-125	
Total Organic Carbon	mg/L	2.6	10	11.4	88	75-125	

MATRIX SPIKE SAMPLE:	571639						
		7095441009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	8.9	10	17.6	88	75-125	
Total Organic Carbon	mg/L	8.8	10	17.6	88	75-125	
Total Organic Carbon	mg/L	8.9	10	17.6	87	75-125	
Total Organic Carbon	mg/L	8.9	10	17.6	87	75-125	
Total Organic Carbon	mg/L	8.9	10	17.7	88	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

SAMPLE DUPLICATE: 571636 7095441001 Dup RPD Parameter Units Result Result Qualifiers Mean Total Organic Carbon 3.0 mg/L 3.4 14 2.6 63 D6 **Total Organic Carbon** mg/L 5.1 2.6 Total Organic Carbon mg/L 2.8 8 Total Organic Carbon mg/L 3.9 2.9 32 D6 Total Organic Carbon mg/L 2.6 2.8 7

SAMPLE DUPLICATE: 571638					
		7095441009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Mean Total Organic Carbon	mg/L	8.9	7.6	16	
Total Organic Carbon	mg/L	8.9	7.5	16	
Total Organic Carbon	mg/L	8.8	7.6	15	
Total Organic Carbon	mg/L	8.9	7.6	16	
Total Organic Carbon	mg/L	8.9	7.6	16	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/26/2019 04:57 PM

CH	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
CL	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
IL	This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
M0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
M6	Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
R1	RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
7095441001	GW-1S		-	_	
095441002	GW-2S				
095441003	GW-3S				
095441004	GW-3R				
095441005	GW-4R				
095441006	GW-5S				
095441007	GW-5R				
095441008	GW-6S				
095441009	GW-6R				
095441010	GW-7S				
095441011	GW-7R				
095441012	GW-9R				
095441001	GW-1S	EPA 3005A	121065	EPA 6010C	121071
095441002	GW-2S	EPA 3005A	121065	EPA 6010C	121071
095441003	GW-3S	EPA 3005A	121065	EPA 6010C	121071
095441004	GW-3R	EPA 3005A	121065	EPA 6010C	121071
095441005	GW-4R	EPA 3005A	121065	EPA 6010C	121071
095441006	GW-5S	EPA 3005A	121065	EPA 6010C	121071
095441007	GW-5R	EPA 3005A	121065	EPA 6010C	121071
95441008	GW-6S	EPA 3005A	121065	EPA 6010C	121071
095441009	GW-6R	EPA 3005A	121065	EPA 6010C	121071
95441010	GW-7S	EPA 3005A	121065	EPA 6010C	121071
095441011	GW-7R	EPA 3005A	121065	EPA 6010C	121071
95441012	GW-9R	EPA 3005A	121065	EPA 6010C	121071
95441013	GW-X	EPA 3005A	121065	EPA 6010C	121071
095441001	GW-1S	EPA 6010C	120375		
095441005	GW-4R	EPA 6010C	120375		
095441009	GW-6R	EPA 6010C	120375		
095441014	GW-1S	EPA 8260C/5030C	120782		
095441015	GW-2S	EPA 8260C/5030C	120782		
)95441016	GW-3S	EPA 8260C/5030C	120782		
95441017	GW-3R	EPA 8260C/5030C	120782		
095441018	GW-4R	EPA 8260C/5030C	120782		
95441019	GW-5S	EPA 8260C/5030C	120782		
95441020	GW-5R	EPA 8260C/5030C	120782		
095441021	GW-6S	EPA 8260C/5030C	120782		
95441022	GW-6R	EPA 8260C/5030C	120782		
95441023	GW-7S	EPA 8260C/5030C	120782		
95441024	GW-7R	EPA 8260C/5030C	120782		
095441025	GW-9R	EPA 8260C/5030C	120782		
95441026	GW-X	EPA 8260C/5030C	120782		
95441027	TRIP BLANK	EPA 8260C/5030C	120782		
095441028	STORAGE BLANK	EPA 8260C/5030C	120782		
095441001	GW-1S	SM22 2320B	120959		
095441002	GW-2S	SM22 2320B	120959		
095441003	GW-25	SM22 2320B	120959		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J.1. J.J	OIVILL LULUD	120000		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
7095441005	GW-4R	SM22 2320B	120959	_	
095441006	GW-5S	SM22 2320B	120959		
095441008	GW-6S	SM22 2320B	120959		
095441009	GW-6R	SM22 2320B	120959		
095441010	GW-7S	SM22 2320B	120959		
095441011	GW-7R	SM22 2320B	120959		
095441012	GW-9R	SM22 2320B	120959		
095441007	GW-5R	SM22 2320B	121116		
095441013	GW-X	SM22 2320B	121116		
095441001	GW-1S	SM22 2340C	121348		
095441002	GW-2S	SM22 2340C	121348		
095441003	GW-3S	SM22 2340C	121348		
095441004	GW-3R	SM22 2340C	121348		
095441005	GW-4R	SM22 2340C	121348		
095441006	GW-5S	SM22 2340C	121348		
095441007	GW-5R	SM22 2340C	121348		
095441008	GW-6S	SM22 2340C	121348		
095441009	GW-6R	SM22 2340C	121348		
095441010	GW-7S	SM22 2340C	121348		
095441011	GW-7R	SM22 2340C	121348		
095441012	GW-9R	SM22 2340C	121348		
095441013	GW-X	SM22 2340C	121348		
095441001	GW-1S	SM22 2540C	120088		
095441002	GW-2S	SM22 2540C	120088		
095441003	GW-3S	SM22 2540C	120088		
095441004	GW-3R	SM22 2540C	120088		
095441005	GW-4R	SM22 2540C	120088		
095441006	GW-5S	SM22 2540C	120088		
095441007	GW-5R	SM22 2540C	120088		
095441008	GW-6S	SM22 2540C	120088		
095441009	GW-6R	SM22 2540C	120088		
095441010	GW-7S	SM22 2540C	120088		
095441011	GW-7R	SM22 2540C	120088		
095441012	GW-9R	SM22 2540C	120088		
095441013	GW-X	SM22 2540C	120088		
095441001	GW-1S	EPA 410.4	120637	EPA 410.4	120712
095441002	GW-2S	EPA 410.4	120637	EPA 410.4	120712
095441003	GW-3S	EPA 410.4	120637	EPA 410.4	120712
095441004	GW-3R	EPA 410.4	120637	EPA 410.4	120712
095441005	GW-4R	EPA 410.4	120637	EPA 410.4	120712
095441006	GW-5S	EPA 410.4	120637	EPA 410.4	120712
095441007	GW-5R	EPA 410.4	120992	EPA 410.4	121023
095441008	GW-6S	EPA 410.4	120992	EPA 410.4	121023
095441009	GW-6R	EPA 410.4	120992	EPA 410.4	121023
095441010	GW-7S	EPA 410.4	120992	EPA 410.4	121023
095441011	GW-7R	EPA 410.4	120992	EPA 410.4	121023

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
7095441012	GW-9R	EPA 410.4	120992	EPA 410.4	121023
7095441013	GW-X	EPA 410.4	120992	EPA 410.4	121023
7095441001	GW-1S	EPA 300.0	121124		
7095441002	GW-2S	EPA 300.0	121124		
7095441003	GW-3S	EPA 300.0	121124		
7095441004	GW-3R	EPA 300.0	121124		
095441005	GW-4R	EPA 300.0	121124		
095441006	GW-5S	EPA 300.0	121124		
095441007	GW-5R	EPA 300.0	121124		
095441008	GW-6S	EPA 300.0	121124		
095441009	GW-6R	EPA 300.0	121124		
7095441010	GW-7S	EPA 300.0	121124		
7095441011	GW-7R	EPA 300.0	121124		
7095441012	GW-9R	EPA 300.0	121124		
7095441013	GW-X	EPA 300.0	121124		
7095441001	GW-1S	EPA 351.2	121362	EPA 351.2	121381
	GW-2S				121381
7095441002		EPA 351.2	121362	EPA 351.2	
7095441003	GW-3S	EPA 351.2	121362	EPA 351.2	121381
095441004	GW-3R	EPA 351.2	121362	EPA 351.2	121381
095441005	GW-4R	EPA 351.2	121362	EPA 351.2	121381
095441006	GW-5S	EPA 351.2	121362	EPA 351.2	121381
095441007	GW-5R	EPA 351.2	121362	EPA 351.2	121381
095441008	GW-6S	EPA 351.2	121362	EPA 351.2	121381
095441009	GW-6R	EPA 351.2	121362	EPA 351.2	121381
095441010	GW-7S	EPA 351.2	121362	EPA 351.2	121381
095441011	GW-7R	EPA 351.2	121363	EPA 351.2	121382
7095441012	GW-9R	EPA 351.2	121363	EPA 351.2	121382
095441013	GW-X	EPA 351.2	121363	EPA 351.2	121382
7095441001	GW-1S	EPA 353.2	119806		
095441002	GW-2S	EPA 353.2	119806		
095441003	GW-3S	EPA 353.2	119806		
7095441004	GW-3R	EPA 353.2	119806		
7095441005	GW-4R	EPA 353.2	119806		
095441006	GW-5S	EPA 353.2	119806		
7095441007	GW-5R	EPA 353.2	119806		
7095441008	GW-6S	EPA 353.2	119806		
7095441009	GW-6R	EPA 353.2	119806		
095441010	GW-7S	EPA 353.2	119806		
095441011	GW-7R	EPA 353.2	119806		
095441012	GW-9R	EPA 353.2	119806		
7095441013	GW-X	EPA 353.2	119808		
7095441001	GW-1S	EPA 353.2	119800		
7095441001 7095441002	GW-15	EPA 353.2 EPA 353.2	119800		
	GW-3S	EPA 353.2 EPA 353.2	119800		
7095441003 7095441004	GW-3R				
		EPA 353.2	119800		
7095441005	GW-4R	EPA 353.2	119800		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7095441006	GW-5S	EPA 353.2	119800		•
7095441007	GW-5R	EPA 353.2	119800		
7095441008	GW-6S	EPA 353.2	119800		
7095441009	GW-6R	EPA 353.2	119801		
7095441010	GW-7S	EPA 353.2	119801		
7095441011	GW-7R	EPA 353.2	119801		
7095441012	GW-9R	EPA 353.2	119801		
7095441013	GW-X	EPA 353.2	119801		
7095441001	GW-1S	SM22 4500 NH3 H	121442		
7095441002	GW-2S	SM22 4500 NH3 H	121442		
7095441003	GW-3S	SM22 4500 NH3 H	121442		
7095441004	GW-3R	SM22 4500 NH3 H	121442		
7095441005	GW-4R	SM22 4500 NH3 H	121442		
7095441006	GW-5S	SM22 4500 NH3 H	121442		
7095441007	GW-5R	SM22 4500 NH3 H	121442		
7095441008	GW-6S	SM22 4500 NH3 H	121442		
7095441009	GW-6R	SM22 4500 NH3 H	121442		
7095441010	GW-7S	SM22 4500 NH3 H	121442		
7095441011	GW-7R	SM22 4500 NH3 H	121442		
7095441012	GW-9R	SM22 4500 NH3 H	121442		
7095441013	GW-X	SM22 4500 NH3 H	121442		
7095441001	GW-1S	EPA 9060A	120232		
7095441002	GW-2S	EPA 9060A	120232		
7095441003	GW-3S	EPA 9060A	120232		
7095441004	GW-3R	EPA 9060A	120232		
7095441005	GW-4R	EPA 9060A	120232		
7095441006	GW-5S	EPA 9060A	120232		
7095441007	GW-5R	EPA 9060A	120232		
7095441008	GW-6S	EPA 9060A	120232		
7095441009	GW-6R	EPA 9060A	120232		
7095441010	GW-7S	EPA 9060A	120232		
7095441011	GW-7R	EPA 9060A	120232		
7095441012	GW-9R	EPA 9060A	120232		
7095441013	GW-X	EPA 9060A	120232		

REPORT OF LABORATORY ANALYSIS

Englytic I.L.C.					Chain		104.7005441	7	00	54	41				
6034 Corp. Drive E. Syrac. No. 13057	Ne 130	22				3	# 1	, .		· =					
(510) 451 OECO	an a	Project #/ Project Name	ame		in the state of										
Enalytic, LLC		Brockport Landfill	t Landfill				195441			_	_				Remarks
Client Contact:	Phone #	and	Address	>		f Cont	ya Ayashindi asiyun	and discovery or the special or the							ona-Term Monitorina
Peter Filcano	(315) 437-0255	Time Matrix	Matrix	Grab or	Lab Internal Use	ainers	desired and replacement	-			-	ć			Analyte List ASP B
	-			1		\top	-	-		-		ō	(8)		Eddio Deliverables
GW-1S	6/77/10	11:37AM	GW	Grab		0	-	<u> </u>	< >	\ \ !	< >		+	\downarrow	200
GW-2S	6/92/9	12:26 PM	QW GW	Grab		2	-	_	×	-	×		\dagger	+	3
GW-3S	6/26/19	12:04 PM	GW	Grab		2	$\stackrel{\sim}{\sim}$	×	×	×	×		\dashv	\dashv	
GW-3R	61/92/9	12:11 PM	GW	Grab		2	×	×	×	×	×				8
GW4R	61/97/9	10217AM	GW	Grab		2	×	×	×	×	×				8
GW-5S		10:01AM	GW	Grab		5	×	×	×	×	×				OFF OFF
GW-5R	-	9145AM	GW	Grab		5	×	×	×	×	×				90
GW-6S		11:06 AM	GW	Grab	8	5	×	XX	×	×	×				200
GW-6R (MS/MSD)	6/20/10	N:OIAM	GW	Grab		15*	×	×	×	×	×			\dashv	MS/MSD Location
GW-7S	6/26/19	9:3 JAM	GW	Grab		2	×	×	×	×	×				010
GW-7R	6/27/10	9:23 AM	GW	Grab		5	×	×	×	×	×			-	(10)
GW-9R	6/72/9	Ma 12:21	GW	Grab		2	×	×	×	×	×			-	4 X X
GW-X (Duplicate) (GN-5R)	6/75/9	12-26 PM	GW	Grab		2		×	×	×	×			-	010
Equipment Blank	-1	1	Water	Grab		ည		×	×	×	×			2	NOVE COLLECTED
			39.45A	(F)				\dashv			\dashv	_		-	- 1
17								-			-		24	_	
Parameter and Method	Sam	Sample bottle:	Type	Size	Preservative	Sam	Sampled by	少	rint)	(Print)		KKIS.		2	AN Name of Courier
			N/A	NA	Field	10	ETER	. 1	7	2 1		SAFE	_	DC570	3
2) Field Readings: Spec Cond, Temp, Turb.	Temp, Turb.		NA	MA	Field	S C	Company	4	128/1		7	J	5	SSE	a 1
	e, Alkalinity		Plastic	1 Litter	None		Kelinquisned by:(sign)		(Six	Û.	בַּע	Care	E '	1	Received by. (sign)
(4) IKN, Ammonia, COD, Total Phenois	nenois	2 Visle	A-Glass	100 M	H2S04	7	10	(=	Y	12	7	124	15:61	7	A Company
76	.Na.Hardness	25.4	Plastic	250 ml	HNO3	Re) g	by:(sign)	(L	P	Date	Time	1	Received by (sign),
	æ		Plastic	250 mi	None	6	4	S	. 61	3 Hic		1/2/19	17.0	-	2011 01/celo
1						1		2	`	3	T		l	\neg	1 :: ::::::::::::::::::::::::::::::::::
(65						Reli	Relinquished by:(sign)	hed t	y:(si	(ut	<u> </u>	Date	Time		Rec'd for Lab by:
	oidity >50 NTC														
	etals at Lab.														
* Additional volume submitted for the MS/MSD samples.	d tor the MS/n	ISD sample	Š.								-			+	

Chain of Custody Record

Enalytic LLC 6034 Corporate Drive E. Syracuse New York 13057 (315) 437 0255

(315) 437 0255	Fax 437 1209														-
		Project #/ Project Name	ame			N		_							nine
Enalytic, LLC		Brockport Landfill	t Landfill			lo. o		purpopular que de primer			u parles de des			Remarks	days and
Client Contact:	Phone #	Location (city/state)	Address			f Ç					aprovince district	-			-
Peter Fricano	(315) 437-0255 Monroe County NY	Monroe (County N	•		ontai			,		ng ang ang distribution of the second				-
Sample ID	Date	Time	Matrix	Grab or Comp	Lab Internal Use		1) [2)	3) 4)	5)	. (9	7) 8)	6	10)	Analyte List ASP B EQUIS Deliverables	-
GW-1S	6/22/19	12:01 PM	GW	Grab		2	×		_						-
GW-2S		16:40 AM	GW	Grab		2	×								-
GW-3S		16:16 AM	GW	Grab		2	×								
GW-3R		10:15 AM	GW	Grab	a	2	×								-
GW-4R		9=15 AM	GW	Grab		2	×								-
GW-5S		9248 AM	GW	Grab		2	×								-
GW-5R		9:31 AM	GW	Grab		2	×								-
GW-6S		11:04 AM	GW	Grab		2	×			7					and desirated
GW-6R (MS/MSD)		11:07 AM	GW	Grab		9	×								-
GW-7S		11-25AM	GW	Grab		2	×								-
GW-7R		11:16 AM		Grab		2	×								National Property lies
GW-9R		1:10 PM		Grab		2	×					-			-
GW-X (Duplicate) (GW-5R)		9:31AM	GW	Grab		2	×								-
Equipment Blank		1	Water	Grab		2	×		_					None Collected	-
Trip Blank	→	(Water	Grab		7	×								
									****			appire.			-
Parameter and Method	Sam	Sample bottle:	Type	Size	Preservative	Sam	Sampled by (Print)	(Prin	1		RRIS		3	MANNMame of Courier	-
1) EPA 8260 TCL Volatiles		2 Vials	Glass	40ml	1:1 HCI	W.	不同の	K	TRICANO	0	JARG		LONG-DEN	75	ala de la constanta
2)	ė.					Com	oany:	3	7	الم	4		7	CASTIE DUNBAR	Mandaga
3)						8 E	Relinquished by:(sign)	d by:	sign)		Date	-	1	Received by: (sign)	
4)						5	4	Y	ſ		126/	-	52.5ht	Mary 4	one of the last
5)						4	the	100	eran	l	7	-	-	8 / 11/	-
(9)						Relin	Relinquished by:(sign)	d by:(sign)		Date	-	Time	Received by: (sign)	priparion and
(Jage						18	In the	1	320		1/20/19	-	17:00	からできると	-
(9)		3					1					-	寸	7 SEATINE	died
(B)						Relin	Relinquished by:(sign)	d by:	sign)		Date	Time		Rec'd for Lab by:	Name and Address of the
f 15													*******		DANIEL STATES
3													-		alpatora esta
				(Annable)											Temples of

Pace Analytical Control of the Contr

Sample Condition Upon Receipt

Client Name:

WO#:7095441

PM: JSA Due Date: 07/12/19

	-OY	MUTH	<u> </u>		CLIENT	: ENALYTIC
Courier: Ded Ex UPS USPS	Client Com	nmercial 🗌 F	Pace 🗍	Other	OLILI	
Tracking #: 7755	7595	6/4	3			
Custody Seal on Cooler/Box Presen	it: Nes No	Seals	s intact:	Yes [] No	Temperature Blank Present: Yes
Packing Material: Bubble Wrap		inloc Non	е Пот	ner		Type of Ice: Wet Blue None
Thermometer Used: TH091		ction Factor	in	Ω		
Cooler Temperature (°C):		Temperatur		cted (°C)	5.0	Samples on ice, cooling process has begun
	V	remperatur	0 001101	0104 (0)		Date/Time 5035A kits placed in freezer
Lemp should be above freezing to 6.0° USDA Regulated Soil (☑ N/A, water				Data	o = d 1='t'-1	
/			FI 0.			of person examining contents: 7.7. 6/
Did samples originate in a quarantine zone win NM, NY, OK, OR, SC, TN, TX, or VA (check r		s: AL, AR, CA, S NO	, FL, GA,	ID, LA, MS	s, NC,	Did samples orignate from a foreign source (internal including Hawaii and Puerto Rico)? Yes No
		gulated Soi	il Check	list (F-LI	-C-010) and	include with SCUR/COC paperwork.
						COMMENTS:
Chain of Custody Present:	Yes	□No		1.		
Chain of Custody Filled Out:	□Yes	□No		2.		
Chain of Custody Relinquished:	ØYes	□No		3.		
Sampler Name & Signature on COC:	DYes	□No	□N/A	4.		•
Samples Arrived within Hold Time:	Yes	□No		5.		
Short Hold Time Analysis (<72hr):	Ves	□No		6.		
Rush Turn Around Time Requested:	□Yes	DNO		7.		
Sufficient Volume: (Triple volume provided for N	MS/MSD: NYes	□No		8.		
Correct Containers Used:	Yes	□No		9.		
-Pace Containers Used:	□Yes	□No	10.175			
Containers Intact:	ØYes	□No		10.		
Filtered volume received for Dissolved tests	□Yes	□No	NIA	11.	Note if sedim	nent is visible in the dissolved container.
Sample Labels match COC:	Wes	□No ·		12.		
-Includes date/time/ID/Analysis Matrix	S/WT DIL				Ÿ.	
All containers needing preservation have been c	hecked Yes	□No	□N/A	13.	□ HNO ₃	☐ H₂SO₄ ☐ NaOH ☐ HCI
pH paper Lot #						
All containers needing preservation are found to	be in			Sample #	#	3
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCI, NaOH>9 Sulfide,	□yes	□No	□N/A			
VAOH>12 Cyanide)	Lives .	D140	Litera			
Exceptions: VOA, Coliform, TOC/DOC, Oil and G DRO/8015 (water).	Grease,			Initial wh	nen completed:	Lat that added acceptable to the
Per Method, VOA pH is checked after analysis					piotou,	Lot # of added preservative: Date/Time preservative add
Samples checked for dechlorination:	□Yes		DINIA	14.		
(I starch test strips Lot #						
tesidual chlorine strips Lot #					Positive for Re	s. Chlorine? Y N
leadspace in VOA Vials (>6mm):	□Yes	DM0 [NNC	15.		
rip Blank Present:	ElYes		□ A\N	16.		
	□Yes		AINC			
rip Blank Custody Seals Present			1			
20494 29484 241935 2 26-329 882 338 35				-		8
ace Trip Blank Lot # (if applicable):	_	/		Field Data	a Required?	Y / N
rip Blank Custody Seals Present ace Trip Blank Lot # (if applicable): Tient Notification/ Resolution: erson Contacted:					a Required? Date/Time:	Y / N
ace Trip Blank Lot # (if applicable):	received	DUMP	s for	0 81		TW-YR and GHIHOR FEX
ace Trip Blank Lot # (if applicable): Tient Notification/ Resolution: erson Contacted:	received is was r	107-PC		0 81		TO YR and GWER Fer am CRED Stork o

7095441-001

Enalytic, LL	_C	Groun	d water Field Lo	g File: TS-30)-01 Revised	i: 7/13/1	5
Client:	Larse	n Engineeri	ng		=:		
Project:		kport Landi		Lab ID No. (er	nter by lab)		
Well ID.:		GW-1S	*** ***		= "	201	
MALINE CO.							
Condition of W	'ell:	Good	EXCEPTANCE AND ADDRESS	Locked:	Yes		
Method of Eva	cuation: I	HDPE Bailer (N	ew)	Lock ID:	10G151	·	
Method of Sam	npling:	-IDPE Bailer (N	ew)				
↑ ↑ ↑ ↑ ↑	——A →	A.	Diameter of Well	I	2"	inc	hes
	TOP	B.	Well Depth Meas	sured	15.45	_ fee	et
C		C.	Depth to Water		3.8	fee	et
		D.	Length of Water	Column (calculated)	11.65	_ fee	et
B ↑ 1	WATER		Conversion Factor	or	X.16		
E	LEVEL		Well Volume (cal	lculated)	1.86	gal	lons
	-2 E 5		No. of Volumes t	o be Evacuated	x3		
			Total Volume to I	be Evacuated	5.6	_ gal	lons
★ ★ <u>B</u>			Actual Volume E	vacuated	10	_ gal	lons
	SILT	E.	Installed Well De	pth (if known)	N/A	fee	t
		F.	Depth of Silt (cale	culated	N/A	fee	et
Field	Initial	_	inal	% Rech	arge:		
Measurements	Evacuation	3	Sampling	Initial De	epth to Water	3.8	
Date	6/25/2019		6/26/2019	midal Be	pur to water	0.0	
Tlme	12:01pm		11:37am	Recharge	Depth to Water	5.2	feet
ĔΗ	-158		56	x			
Temperature	16.2		19.3	2nd water	er column height	88	%
οΗ	7.37	-	7.41	1st wate	r column height	-	
Specific Cond.	530	A	628				
Turbidity	18.5		163	Elevation(Top of Casing)	N/A	feet
Dissolved Oxygen	N/A		N/A	G.W. Ele	evation=	N/A	feet
Appearance	Lt. Reddish		Reddish	_	tion =Top of Case El		
Weather: Observations	84degF Clear			Cas	: Peter Fricano, ssie Dunbar, Jake		
1/252		Dissolved Meta	ls	Signatur			

Enalytic, LLC Ground water Field Log File: TS-30-01 Revised: 7/13/15 Client: Larsen Engineering **Brockport Landfill** Project: Lab ID No. (enter by lab) GW-2S Well ID .: Condition of Well: Good Locked: Lock Rusted/Frozen Method of Evacuation: Dedicated Bailer Lock ID: 5H82 Method of Sampling: **Dedicated Bailer** A. Diameter of Well 2" inches TOP B. Well Depth Measured 21.11 feet C. Depth to Water 9.8 feet D. Length of Water Column (calculated) 11.3 feet WATER Conversion Factor X.16 Ē LEVEL Well Volume (calculated) 1.81 gallons D No. of Volumes to be Evacuated x 3 Total Volume to be Evacuated 5.43 gallons Actual Volume Evacuated 6 gallons E. SILT Installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Evacuation Sampling Initial Depth to Water 9.8 feet Date 6/25/2019 6/26/2019 Time 10:40am 12:26pm 8.7 Recharge Depth to Water feet EH -92 -133 21.1 Temperature 20.5 2nd water column height 101 % 7.22 pН 6.56 1st water column height Specific Cond. 416 380 **Turbidity** 112 15.2 N/A Elevation(Top of Casing) feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance Clear w/ debris Clear w/ debris G.W.Elevation =Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Cassie Dunbar, Jake Longden Signature:

Enalytic, L Client: Project: Well ID.:	Larse	Groun en Engineeri ckport Landi GW-3S		-	ile: TS-30	1	d: 7/13/1	5
Condition of V	Vell:	Good		Locked:		Yes		
Method of Eva	acuation:	HDPE Bailer (N	ew)	Lock ID:		10G151		
Method of Sai	mpling:	HDPE Bailer (N	ew)					
† † † †	TOP ↑	A.	Diameter o	of Well		2"	inc	ches
		B.	Well Depth	Measured		20.22	fee	et .
		C.	Depth to W	/ater		2.5	fee	∍t
		D.	Length of \	Vater Column (c	alculated)	18.85	fee	∍t
₿▼↑∐	WATER		Conversion	n Factor		X.16		
	LEVEL		Well Volun	ne (calculated)		2.86	gal	llons
D			No. of Volu	mes to be Evacı	uated	x3		
	2.		Total Volur	ne to be Evacuat	ted	8.6	gal	llons
* +			Actual Volu	me Evacuated		25	_ gal	llons
F I	SILT	E,	Installed W	ell Depth (if knov	wn)	N/A	fee	ət
1		F	Depth of Si	It (calculated		N/A	fee	ŧ
Field Measurements	Initial Evacuation		inal ampling		% Recha			
Date	6/25/2019		6/26/201	9	Initial Dep	oth to Water _	2.5	feet
Time	10:10am	- I	12:04pn	1	Recharge D	epth to Water	4.6	feet
EH 	-151		-144					
Temperature	15.8	-	18.6	7		column height	89	%
pH	7.30		7.23		1st water	column height		
Specific Cond. Turbidity	952 24.0		953 48.6		Elevation/T	a of Continue)	NI/A	£4
Dissolved Oxygen	TO THE OWNER OF THE OWNER OWNER OF THE OWNER OWN		N/A	tries, its bines	,	op of Casing)	N/A	feet
Appearance	Clear w/debris	-	Clear w/del	oris	G.W. Elevati	on =Top of Case El	N/A ev-Total De	feet epth
Weather: Observations:	84degF Clear		AMAZU ISASA		Sampler:	Peter Fricano, ie Dunbar, Jake	Kris Man	าท

Enalytic, LLC Ground water Field Loa File: TS-30-01 Revised: 7/13/15 Larsen Engineering Client: **Brockport Landfill** Project: ULI ID No. (enter by lab) GW-3R Well ID .: Condition of Well: Good Locked: Yes Method of Evacuation: **Dedicated Bailer** Lock ID: 10G151 Method of Sampling: **Dedicated Bailer** A. Diameter of Well 4" inches TOP B. Well Depth Measured 37.66 feet C. Depth to Water 6.7 feet D. Length of Water Column (calculated) 30.96 feet B WATER Conversion Factor X.65 E **LEVEL** Well Volume (calculated) 20.1 gallons D No. of Volumes to be Evacuated x 3 Total Volume to be Evacuated 60.3 gallons Actual Volume Evacuated 60 gallons SILT E. Installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Sampling Evacuation Initial Depth to Water 6.7 feet Date 6/25/2019 6/26/2019 Time 10:15am 12:11pm Recharge Depth to Water 5,8 feet EH -184 -158 Temperature 11.3 14.4 2nd water column height % pΗ 7.77 7.72 1st water column height Specific Cond. 634 592 Turbidity 678 44.2 Elevation(Top of Casing) N/A feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance Cloudy Clear G.W.Elevation =Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Cassie Dunbar, Jake Longden Signature:

					4			
Enalytic, LL	.C	Groun	nd water Fiel	d Log	File: TS-30	-01 Revised	d: 7/13/18	5
Client:	Larsei	n Engineer	ing					
Project:	Broc	kport Land	fill	Lah	ID No. (en	ter by lab)	7	
Well ID.:		GW-4R					J. 18	
Condition of W	ell:	Good		Locked	i:	Yes		
Method of Evad	cuation:	Dedicated Ba	iler	Lock IE	D:	10G151		
Method of Sam	pling:	Dedicated Ba	iler					
† † † <u>†</u>	TOP ↑	A.	Diameter of	Well		2"	inc	hes
		B.	Well Depth	Measured		61.9	fee	t
		C.	Depth to Wa	ater		12.5	fee	t
		D,	Length of W	/ater Column (calculated)	39.2	fee	t
	WATER		Conversion	Factor		X.16	_	-
	LEVEL		Well Volume	e (calculated)		6.27	gal	lons
P			No. of Volum	nes to be Evad	cuated	x3		-
	P. R. M		Total Volum	e to be Evacua	ated	18.9	_ gall	ons
*			Actual Volur	ne Evacuated		18	gall	ons
F	SILT	E.	Installed We	ell Depth (if kno	own)	N/A	fee	t
↓ ↑ ®		F.	Depth of Silt	(calculated		N/A	feet	t
Field Measurements	Initial Evacuation		Final Sampling		% Recha	rge:		
		·	g		Initial Dep	oth to Water	12.5	feet
Date	6/25/2019		6/26/2019			1122		
Time 	9:15am		10:17am		Recharge D	epth to Water	8.5	feet
EH .	-110		-104					
Femperature 	16.1	-	13.2			column height	90	<u>%</u>
oH	8.22		8.14		1st water	column height		
Specific Cond. Furbidity	5640 59.2	riii -	6440 113	-	Elovation/T	an of Coning)	NIA	foot
Dissolved Oxygen	N/A		N/A		-	op of Casing)	N/A	feet
Appearance	Clear	anaroni	Clear		G.W. Elevati	on =Top of Case El	N/A ev-Total De	feet
Veather:	84degF Clear	-				Peter Fricano,		
Observations:	7,1479, 01001	Dissolved Me	etals			sie Dunbar, Jake		
**************************************					Signatule	•		

Enalytic, LLC Ground water Field Log File: TS-30-01 Revised: 7/13/15 Larsen Engineering Client: Project: **Brockport Landfill** LAB ID No. (enter by lab) **GW-5S** Well ID.: Condition of Well: Good Locked: Yes-Lock Rusted/Frozen **Dedicated Bailer** Method of Evacuation: Lock ID: 10G151 Method of Sampling: Dedicated Bailer ock Rusted/Frozen A. Diameter of Well inches TOP Well Depth Measured B. 9.62 feet C. Depth to Water 3.8 feet D. Length of Water Column (calculated) 5.82 feet WATER Conversion Factor X.16 E LEVEL Well Volume (calculated) 0.93 gallons D No. of Volumes to be Evacuated х3 Total Volume to be Evacuated 2.79 gallons Actual Volume Evacuated 5 gallons POPULATION OF E. SILT Installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Evacuation Sampling Initial Depth to Water 3.8 feet Date 6/25/2019 6/26/2019 Time 9:48am 10:01am Recharge Depth to Water 5.4 feet EH -126 -28 Temperature 19.3 17.4 2nd water column height 7.08 Hq 7.43 1st water column height Specific Cond. 1629 2760 Turbidity 7.69 7.11 Elevation(Top of Casing) N/A feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance G.W.Elevation =Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Cassie Dunbar, Jake Longden Signature:

Enalytic, LLC Ground water Field Log File: TS-30-01 Revised: 7/13/15 Client: Larsen Engineering Project: **Brockport Landfill** Lab ID No. (enter by lab) GW-5R Well ID.: Condition of Well: Good Locked: Yes Method of Evacuation: **Dedicated Bailer** Lock ID: 10G151 Method of Sampling: **Dedicated Bailer** A. Diameter of Well 4" inches TOP B. Well Depth Measured 25.15 feet C. Depth to Water 2.9 feet D. Length of Water Column (calculated) 22.25 feet WATER Conversion Factor X.65 E LEVEL Well Volume (calculated) 14.46 gallons D No. of Volumes to be Evacuated x 3 Total Volume to be Evacuated 43.4 gallons Actual Volume Evacuated 40 gallons SILT E. Installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Evacuation Sampling Initial Depth to Water 2.9 feet Date 6/25/2019 6/26/2019 Time 9:31am 9:45am Recharge Depth to Water 3.5 feet EH -140 O/R Temperature 16.1 16.9 2nd water column height рΗ 7.02 6.92 1st water column height Specific Cond. 3390 3350 Turbidity 117 49 Elevation(Top of Casing) N/A feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance Clear Clear G.W.Elevation =Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Cassie Dunbar, Jake Longden Signature:

Enalytic, LLC Ground water Field Log File: TS-30-01 Revised: 7/13/15 Client: Larsen Engineering **Brockport Landfill** Project: Lab ID No. (enter by lab) **GW-6S** Well ID.: Condition of Well: Poor Locked: No Method of Evacuation: **Dedicated Bailer** Lock ID: 10G151 Method of Sampling: Dedicated Bailer A. Diameter of Well inches TOP B. Well Depth Measured 19.72 feet C. Depth to Water 7.1 feet D. Length of Water Column (calculated) 12.62 feet В WATER Conversion Factor X,16 E **LEVEL** Well Volume (calculated) 2.02 gallons D No. of Volumes to be Evacuated х3 Total Volume to be Evacuated 6.06 gallons and the second Actual Volume Evacuated 6 gallons SILT E. Installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Evacuation Sampling Initial Depth to Water 7.1 feet Date 6/25/2019 6/26/2019 Time 11:04am 11:06am Recharge Depth to Water feet EΗ 67 55 Temperature 14.3 15.2 2nd water column height % pΗ 6,92 7.02 1st water column height Specific Cond. 594 710 Turbidity 26.5 49.3 Elevation(Top of Casing) N/A feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance Clear Clear G.W.Elevation =Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Cassie Dunbar, Jake Longden Signature:

Enalytic, LLC Ground water Field Log File: TS-30-01 Revised: 7/13/15 Larsen Engineering Client: **Brockport Landfill** Project: Lab ID No. (enter by lab) GW-6R Well ID .: Condition of Well: Good Locked: Yes HDPE Bailer (New) Method of Evacuation: Lock ID: 10G151 Method of Sampling: HDPE Bailer (New) A. Diameter of Well 4" inches TOP B. Well Depth Measured 35.93 feet C. Depth to Water 7.6 feet Ď. Length of Water Column (calculated) 28.41 feet B **WATER** Conversion Factor X.65 Ē LEVEL Well Volume (calculated) 18.46 gallons No. of Volumes to be Evacuated x 3 Total Volume to be Evacuated 55.4 gallons Actual Volume Evacuated 55 gallons SILT E. Installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Evacuation Sampling Initial Depth to Water 7.6 feet Date 6/25/2019 6/26/2019 Time 11:07am 11:01am 7.6 Recharge Depth to Water feet EH -22 -19 Temperature 14.5 14.3 2nd water column height 100 % pН 7.18 6.99 1st water column height Specific Cond. 1176 1720 **Turbidity** 45.5 109 N/A Elevation(Top of Casing) feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance Clear Lt. Reddish G.W.Elevation = Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Dissolved Metals Cassie Dunbar, Jake Longden Signature:

Enalytic, LLC Ground water Field Log File: TS-30-01 Revised: 7/13/15 Larsen Engineering Client: **Brockport Landfill** Project: Lab ID No. (enter by lab) **GW-7S** Well ID .: Condition of Well: Good Locked: Yes Method of Evacuation: Dedicated Bailer Lock ID: 10G151 Method of Sampling: **Dedicated Bailer** A. Diameter of Well 2" inches TOP B. Well Depth Measured 20.1 feet C. Depth to Water 4.6 feet D, Length of Water Column (calculated) 15.5 feet B WATER Conversion Factor X.16 E LEVEL Well Volume (calculated) 2.48 gallons D No. of Volumes to be Evacuated х3 Total Volume to be Evacuated 7.44 gallons **Actual Volume Evacuated** Section 1 8 gallons Ĕ. SILT installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Evacuation Sampling Initial Depth to Water 4.6 feet Date 6/25/2019 6/26/2019 Time 11:25am 9:31am 5.0 Recharge Depth to Water feet ЕH -160 -68 Temperature 13.7 15.3 2nd water column height % pΗ 7.31 7.23 1st water column height Specific Cond. 721 758 Turbidity 11.8 48.0 Elevation(Top of Casing) N/A feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance Clear Clear G.W.Elevation =Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Cassie Dunbar, Jake Longden Signature:

Enalytic, LLC Ground water Field Log File: TS-30-01 Revised: 7/13/15 Client: Larsen Engineering Project: **Brockport Landfill** Lab ID No. (enter by lab) GW-7R Well ID.: Condition of Well: Good Locked: No Method of Evacuation: Dedicated Bailer Lock ID: Lid doesn't close Method of Sampling: **Dedicated Baller** A. Diameter of Well 4" inches TOP В, Well Depth Measured 34,6 feet C. Depth to Water 6.7 feet D. Length of Water Column (calculated) 27.9 feet B WATER Conversion Factor X.65 E **LEVEL** Well Volume (calculated) 18.1 gallons D No. of Volumes to be Evacuated х3 Total Volume to be Evacuated 54.4 gallons Actual Volume Evacuated 50 gallons E. SILT Installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Evacuation Sampling Initial Depth to Water 6.7 feet Date 6/25/2019 6/26/2019 Time 11:16am 9:23am 7.0 feet Recharge Depth to Water EΗ -140 -155 12.8 Temperature 14.1 2nd water column height 100 % 7.22 pН 7.18 1st water column height Specific Cond. 2050 2300 Turbidity 75.7 41.7 Elevation(Top of Casing) N/A feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance Lt. Reddish Lt. reddish G.W.Elevation =Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Cassie Dunbar, Jake Longden Signature:

Enalytic, LLC Ground water Field Log File: TS-30-01 Revised: 7/13/15 Client: Larsen Engineering **Brockport Landfill** Project: Lab ID No. (enter by lab) GW-9R Well ID .: Condition of Well: Good Locked: Yes Method of Evacuation: HDPE Bailer (New) Lock ID: 10G151 Method of Sampling: HDPE Bailer (New) A. Diameter of Well inches TOP В. Well Depth Measured 18.58 feet C. Depth to Water 3.8 feet D. Length of Water Column (calculated) 14.78 feet В WATER Conversion Factor X.16 Ê LEVEL Well Volume (calculated) 2.36 gallons D No. of Volumes to be Evacuated x 3 Total Volume to be Evacuated 7.1 gallons Actual Volume Evacuated 10 gallons SILT Ē. Installed Well Depth (if known) N/A feet F. Depth of Silt (calculated N/A feet Field Initial Final % Recharge: Measurements Evacuation Sampling Initial Depth to Water 3.8 feet Date 6/25/2019 6/26/2019 Time 1:10pm 12:27pm Recharge Depth to Water 4.3 feet EH -148 -13 Temperature 15.8 13.8 2nd water column height % pН 7.22 7.04 1st water column height Specific Cond. 418 383 Turbidity 107 46 Elevation(Top of Casing) N/A feet Dissolved Oxygen N/A N/A G.W. Elevation= N/A feet Appearance Clear Clear G.W.Elevation =Top of Case Elev-Total Depth Weather: 84degF Clear Sampler: Peter Fricano, Kris Mann Observations: Cassie Dunbar, Jake Longden Signature:

ANALYTICAL REPORT

Job Number: 420-156225-1

SDG Number: 7095441

Job Description: Pace Analytical Sevices, Inc.-Mellville

For:

Pace Analytical Mellville 575 Broadhollow Road Melville, NY 11747

Attention: James Murphy

Laura Marciano

Laura L Marciano

Customer Service Manager

Imarciano@envirotestlaboratories.com

07/15/2019

cc: Ms. Jen Aracri Betty Harrison Accounts Payable Sophia Sparkes

NYSDOH ELAP does not certify for all parameters. EnviroTest Laboratories does hold certification for all analytes where certification is offered by ELAP unless otherwise specified in the Certification Information section of this report Pursuant to NELAP, this report may not be reproduced, except in full, without written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554

EXECUTIVE SUMMARY - Detections

Client: Pace Analytical Mellville Job Number: 420-156225-1

Sdg Number: 7095441

Lab Sample ID Client Sample ID Reporting

Analyte Result / Qualifier Limit Units Method

No Detections

METHOD SUMMARY

Client: Pace Analytical Mellville Job Number: 420-156225-1

SDG Number: 7095441

Description	Lab Location	Method Preparation Method	
Matrix: Water			
Phenolics (Total Recoverable, Colorimetric, Semi-Automated, with Distillation)	EnvTest	EPA EPA 420.4 Rev.1	
Distillation/Phenolics	EnvTest	Distill/Phenol	

Lab References:

EnvTest = EnviroTest

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Pace Analytical Mellville Job Number: 420-156225-1

SDG Number: 7095441

Method	Analyst	Analyst ID
EPA EPA 420.4 Rev.1	Mastrobuono, Danielle	DM

SAMPLE SUMMARY

Client: Pace Analytical Mellville Job Number: 420-156225-1

SDG Number: 7095441

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-156225-1	GW-2S	Water	06/26/2019 1226	07/02/2019 0930
420-156225-2	GW-3S	Water	06/26/2019 1204	07/02/2019 0930
420-156225-3	GW-3R	Water	06/26/2019 1211	07/02/2019 0930
420-156225-4	GW-4R	Water	06/26/2019 1017	07/02/2019 0930
420-156225-5	GW-5S	Water	06/26/2019 1001	07/02/2019 0930
420-156225-6	GW-5R	Water	06/26/2019 0945	07/02/2019 0930
420-156225-7	GW-6S	Water	06/26/2019 1106	07/02/2019 0930
420-156225-8	GW-6R	Water	06/26/2019 1101	07/02/2019 0930
420-156225-9	GW-7S	Water	06/26/2019 0931	07/02/2019 0930
420-156225-10	GW-7R	Water	06/26/2019 0923	07/02/2019 0930
420-156225-11	GW-9R	Water	06/26/2019 1227	07/02/2019 0930
420-156225-12	GW-X	Water	06/26/2019 0945	07/02/2019 0930

SAMPLE RESULTS

Analytical Data

Client: Pace Analytical Mellville Job Number: 420-156225-1

Sdg Number: 7095441

			General Chemis	try			
Client Sample ID:	GW-2S						
Lab Sample ID: Client Matrix:	420-156225-1 Water				Date Sampled: Date Received:		26/2019 1226 02/2019 0930
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010		0.010 1/2019 1548 1/2019 0925	0.010	1.0	EPA 420.4 Rev.
Client Sample ID:	GW-3S						
Lab Sample ID: Client Matrix:	420-156225-2 Water				Date Sampled: Date Received:		26/2019 1204 02/2019 0930
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010		0.010 1/2019 1549 1/2019 0925	0.010	1.0	EPA 420.4 Rev.
Client Sample ID:	GW-3R						
Lab Sample ID: Client Matrix:	420-156225-3 Water				Date Sampled: Date Received:		26/2019 1211 02/2019 0930
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010		0.010 1/2019 1550 1/2019 0925	0.010	1.0	EPA 420.4 Rev.
Client Sample ID:	GW-4R						
Lab Sample ID: Client Matrix:	420-156225-4 Water				Date Sampled: Date Received:		26/2019 1017 02/2019 0930
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010	•	0.010 1/2019 1550 1/2019 0925	0.010	1.0	EPA 420.4 Rev.
Client Sample ID:	GW-5S						
Lab Sample ID: Client Matrix:	420-156225-5 Water				Date Sampled: Date Received:		26/2019 1001 02/2019 0930
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010	,	0.010 /2019 1551 /2019 0925	0.010	1.0	EPA 420.4 Rev.

Analytical Data

Client: Pace Analytical Mellville Job Number: 420-156225-1

Sdg Number: 7095441

			General C	Chemistry			
Client Sample ID:	GW-5R						
Lab Sample ID: Client Matrix:	420-156225-6 Water				Date Sampled: Date Received:		26/2019 0945 02/2019 0930
Analyte		Result	Qual Uni	ts RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010	U mg. Date Analyzed Date Prepared:	/L 0.010 07/11/2019 1551 07/11/2019 0925	0.010	1.0	EPA 420.4 Rev.1
Client Sample ID:	GW-6S						
Lab Sample ID: Client Matrix:	420-156225-7 Water				Date Sampled: Date Received:		26/2019 1106 02/2019 0930
Analyte		Result	Qual Uni	ts RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010	U mg. Date Analyzed Date Prepared:	/L 0.010 07/11/2019 1552 07/11/2019 0925	0.010	1.0	EPA 420.4 Rev.1
Client Sample ID:	GW-6R						
Lab Sample ID: Client Matrix:	420-156225-8 Water				Date Sampled: Date Received:		26/2019 1101 02/2019 0930
Analyte		Result	Qual Uni	ts RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010	U mg. Date Analyzed Date Prepared:	/L 0.010 07/11/2019 1552 07/11/2019 0925	0.010	1.0	EPA 420.4 Rev.1
Client Sample ID:	GW-7S						
Lab Sample ID: Client Matrix:	420-156225-9 Water				Date Sampled: Date Received:		26/2019 0931 02/2019 0930
Analyte		Result	Qual Uni	ts RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010	U mg. Date Analyzed Date Prepared:	/L 0.010 07/11/2019 1557 07/11/2019 0925	0.010	1.0	EPA 420.4 Rev.1
Client Sample ID:	GW-7R						
Lab Sample ID: Client Matrix:	420-156225-10 Water				Date Sampled: Date Received:		26/2019 0923 02/2019 0930
Analyte		Result	Qual Uni	ts RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010	U mg. Date Analyzed Date Prepared:	/L 0.010 07/11/2019 1558 07/11/2019 0925	0.010	1.0	EPA 420.4 Rev.1

Analytical Data

Client: Pace Analytical Mellville Job Number: 420-156225-1

Sdg Number: 7095441

General (Chemistry
-----------	-----------

Client Sample ID: GW-9R

Lab Sample ID: 420-156225-11 Date Sampled: 06/26/2019 1227

Client Matrix: Water Date Received: 07/02/2019 0930

Analyte Result Qual Units RL RL Dil Method

 Phenolics, Total Recoverable
 0.010
 U mg/L
 0.010
 0.010
 1.0
 EPA 420.4 Rev.1

 Anly Batch:
 Date Analyzed
 07/11/2019 1558
 1558

Prep Batch: Date Prepared: 07/11/2019 0925

Client Sample ID: GW-X

Lab Sample ID: 420-156225-12 Date Sampled: 06/26/2019 0945

Client Matrix: Water Date Received: 07/02/2019 0930

Analyte Result Qual Units RL RL Dil Method

Phenolics, Total Recoverable 0.010 U mg/L 0.010 0.010 1.0 EPA 420.4 Rev.1

 Anly Batch:
 Date Analyzed
 07/11/2019
 1559

 Prep Batch:
 Date Prepared:
 07/11/2019
 0925

DATA REPORTING QUALIFIERS

Client: Pace Analytical Mellville Job Number:

Sdg Number: 7095441

Lab Section	Qualifier	Description	
General Chemistry			
	U	Indicates analyzed for but not detected.	

Certification Information

Client: Pace Analytical Mellville Job Number:

Sdg Number: 7095441

The following analytes are Not Part of the ELAP scope of accreditation:

Sulfur, Tungsten, Bicarbonate Alkalinity, 7 Day BOD 5210C, 28 Day BOD, Soluble BOD, Carbon Dioxide, Carbonate Alkalinity, CBOD Soluble, Chlorine, Cyanide (WAD), Ferrous Iron, Ferric Iron, Total Nitrogen, Total Organic Nitrogen, Dissolved Oxygen, pH, Solids (Fixed), Solids (Percent), Solids (Percent Moisture), Solids (Percent Volatile), Solids (Volatile Suspended), Temperature, TKN (Soluble), COD (Soluble), Total Inorganic Carbon, 2-Aminopyridine, 3-Picoline, 1-Methyl-2-pyrrilidinone, Aziridine, Dimethyl sulfoxide, 1-Chlorohexane, 1,2,4,5-Tetramethylbenzene, 4-Ethyl toluene, p-Diethylbenzene, Iron Bacteria, Salmonella, Sulfur Reducing Bacteria, & UOD (Ultimate Oxygen Demand).

The following analytes are Not Part of ELAP Potable Water scope of accreditation:

Ammonia (SM 4500NH3G), TKN (351.2), Phosphorus (365.3), Nitrate-Nitrite (10-107-4-1C, 353.2), m-Xylene & p-Xylene (502.2, 524), o-Xylene (502.2, 524), Sulfide (SM4500SD), Acenaphthene (525.2), Acenaphthylene (525.2), Fluoranthene (525.2), Fluorene (525.2), Phenanthrene (525.2), Anthracene (525.2), Pyrene (525.2), Benzo[a]anthracene (525.2), Benzo[b]fluoranthene (525.2), Benzo[g,h,i]perylene (525.2), Benzo[k]fluoranthene (525.2), Indeno[1,2,3-cd]pyrene (525.2), & Dibenz(a,h)anthracene (525.2).

The following analytes are Not Part of ELAP Solid and Hazardous Waste scope of accreditation:

Ammonia (SM 4500NH3G), TKN (351.2), Phosphorus (365.3), 1,2-Dichloro-1,1,2-trifluoroethane (8260), & Chlorodifluoromethane (8260).

The following analytes are Not Part of ELAP Non Potable Water scope of accreditation:

Dissolved Organic Carbon (5310C), Mecoprop (8151A), MCPA (8151A), Propylene Glycol (8015D).

Definitions and Glossary

Client: Pace Analytical Mellville Job Number:

Sdg Number: 7095441

Abbreviation	These commonly used abbreviations may or may not be present in this report.
%R	Percent Recovery
DL, RA, RE	Indicates a Dilution, Reanalysis or Reextraction.
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit - an estimate of the minimum amount of a substance that an analytical process can reliably detect. A MDL is analyte- and matrix-specific and may be laboratory-dependent.
ND	Not detected at the reporting limit (or MDL if shown).
QC	Quality Control
RL	Reporting Limit - the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
RPD	Relative Percent Difference - a measure of the relative difference between two points.

QUALITY CONTROL RESULTS

Quality Control Results

Client: Pace Analytical Mellville Job Number: 420-156225-1

Sdg Number: 7095441

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Prep Batch: 420-133354					
LCS 420-133354/3-A	Lab Control Spike	Т	Water	Distill/Phenol	
MB 420-133354/2-A	Method Blank	Т	Water	Distill/Phenol	
420-156225-1	GW-2S	Т	Water	Distill/Phenol	
420-156225-2	GW-3S	Т	Water	Distill/Phenol	
420-156225-3	GW-3R	Т	Water	Distill/Phenol	
420-156225-4	GW-4R	T	Water	Distill/Phenol	
420-156225-5	GW-5S	T	Water	Distill/Phenol	
420-156225-6	GW-5R	T	Water	Distill/Phenol	
420-156225-7	GW-6S	T	Water	Distill/Phenol	
420-156225-8	GW-6R	T	Water	Distill/Phenol	
420-156225-8MS	Matrix Spike	Т	Water	Distill/Phenol	
420-156225-8MSD	Matrix Spike Duplicate	T	Water	Distill/Phenol	
420-156225-9	GW-7S	T	Water	Distill/Phenol	
420-156225-10	GW-7R	T	Water	Distill/Phenol	
420-156225-11	GW-9R	Т	Water	Distill/Phenol	
420-156225-12	GW-X	Т	Water	Distill/Phenol	
Analysis Batch:420-1334	405				
LCS 420-133354/3-A	Lab Control Spike	Т	Water	EPA 420.4 Rev.1	420-133354
MB 420-133354/2-A	Method Blank	T	Water	EPA 420.4 Rev.1	420-133354
420-156225-1	GW-2S	Т	Water	EPA 420.4 Rev.1	420-133354
420-156225-2	GW-3S	Т	Water	EPA 420.4 Rev.1	420-133354
420-156225-3	GW-3R	T	Water	EPA 420.4 Rev.1	420-133354
420-156225-4	GW-4R	T	Water	EPA 420.4 Rev.1	420-133354
420-156225-5	GW-5S	T	Water	EPA 420.4 Rev.1	420-133354
420-156225-6	GW-5R	Т	Water	EPA 420.4 Rev.1	420-133354
420-156225-7	GW-6S	T	Water	EPA 420.4 Rev.1	420-133354
420-156225-8	GW-6R	Т	Water	EPA 420.4 Rev.1	420-133354
420-156225-8MS	Matrix Spike	Т	Water	EPA 420.4 Rev.1	420-133354
420-156225-8MSD	Matrix Spike Duplicate	T	Water	EPA 420.4 Rev.1	420-133354
420-156225-9	GW-7S	Т	Water	EPA 420.4 Rev.1	420-133354
420-156225-10	GW-7R	Т	Water	EPA 420.4 Rev.1	420-133354
420-156225-11	GW-9R	Т	Water	EPA 420.4 Rev.1	420-133354
420-156225-12	GW-X	Т	Water	EPA 420.4 Rev.1	420-133354

Report Basis

T = Total

Quality Control Results

Surrogate Reco	very Report		
Lab Sample ID	Client Sample ID		

Surrogate

Acceptance Limits

Quality Control Results

Client: Pace Analytical Mellville Job Number: 420-156225-1 Sdg Number: 7095441

Method Blank - Batch: 420-133354 Method: EPA 420.4 Rev.1 Preparation: Distill/Phenol

Client Matrix: Water Dilution: 1.0

Lab Sample ID:

07/11/2019 1547 Date Analyzed: Date Prepared: 07/11/2019 0925

MB 420-133354/2-A

Analysis Batch: 420-133405 Prep Batch: 420-133354

Units: mg/L

Instrument ID: Lachat Quikchem 8500 FIA Lab File ID: OM_7-11-2019_03-45-07PM.(

Initial Weight/Volume: mL Final Weight/Volume: mL

Analyte Result Qual RL RL Phenolics, Total Recoverable 0.010 U 0.010 0.010

Lab Control Spike - Batch: 420-133354 Method: EPA 420.4 Rev.1 Preparation: Distill/Phenol

Lab Sample ID: LCS 420-133354/3-A

Client Matrix: Water Dilution: 1.0

07/11/2019 1547 Date Analyzed: 07/11/2019 0925 Date Prepared:

Analysis Batch: 420-133405 Prep Batch: 420-133354

Units: mg/L

Instrument ID: Lachat Quikchem 8500 FIA Lab File ID: OM 7-11-2019 03-45-07PM.(

Initial Weight/Volume: mL Final Weight/Volume: mL

Analyte Spike Amount Result % Rec. Limit Qual Phenolics, Total Recoverable 0.050 100 57 - 123 0.0500

Matrix Spike/ Method: EPA 420.4 Rev.1 Matrix Spike Duplicate Recovery Report - Batch: 420-133354 Preparation: Distill/Phenol

MS Lab Sample ID: 420-156225-8 Client Matrix: Water Dilution: 1.0

07/11/2019 1605 Date Analyzed: 07/11/2019 0925 Date Prepared:

Analysis Batch: 420-133405 Prep Batch: 420-133354

Instrument ID: Lachat Quikchem 8500 FIA

> Lab File ID: OM_7-11-2019_03-45-07PN Initial Weight/Volume: mL Final Weight/Volume: mL

MSD Lab Sample ID: 420-156225-8 Analysis Batch: 420-133405 Instrument ID: Lachat Quikchem 8500 FIA Client Matrix: OM_7-11-2019_03-45-07PM.(Water Lab File ID:

Dilution: 1.0

Date Analyzed: 07/11/2019 1556 Date Prepared:

Prep Batch: 420-133354

Initial Weight/Volume: mL Final Weight/Volume: mL

07/11/2019 0925

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Phenolics, Total Recoverable 89 91 55 - 136 2 20

Calculations are performed before rounding to avoid round-off errors in calculated results.

Chain of Custody

PASI New York Laboratory

156775

Workorder: 7095441

Workorder Name:

BROCKPORT LANDFILL

Results Requested By: 7/12/2019

	7177	/ Invoice To	Subcor	itract To									,	Re	quest	ed An	alysis				
5 M P	ace A 75 Br Ielville hone	er Aracri Analytical Melville Joad Hollow Road e, NY 11747 (631)694-3040 jennifer.aracri@pacelabs.com	315 Fuller	st Laboratories ton Avenue 1, NY 12550	s, Inc. P.C	709	5441]\$	SA			Total Recoverable										
s	tate	of Sample Origin: NY				F	reserve	d Con	tainer	s											
lt	em	Sample ID	Collect Date/Time	Lab ID	Matrix	H2SO4					20.1 Phenolics,										LAB USE ONLY
≱ 1-		-6W-18	6/28/2019 11:37	7095441001	Water	#=					$\ddot{\mathbf{x}}$	-			+	-				\top	
2		GW-2S	6/26/2019 12:26	7095441002	Water	†		1	\vdash		Х	一十		\top	+	T		_	十	十	
3		GW-3S	6/26/2019 12:04	7095441003	Water	1		1			Х				1	†			1	1	
4		GW-3R	6/26/2019 12:11	7095441004	Water	1					Х	\Box			1	T				丅	
5		GW-4R	6/26/2019 10:17	7095441005	Water	1			_		Х				_	1			T	1	
6		GW-5S	6/26/2019 10:01	7095441006	Water	1			П		Х				1	1			\top	1	
7	***************************************	GW-5R	6/26/2019 09:45	7095441007	Water	1					Х								\top	\top	
8		GW-6S	6/26/2019 11:06	7095441008	Water						Х						İ				
9		GW-6R	6/26/2019 11:01	7095441009	Water						Х										
1	0 .	GW-7S	6/26/2019 09:31	7095441010	Water						Х										
1	1	GW-7R	6/26/2019 09:23	7095441011	Water						Х										
1	2	GW-9R	6/26/2019 12:27	7095441012	Water						Х										
1	3	GW-X	6/26/2019 09:45	7095441013	Water						Х										
1	4																				
1	5																				
1	6												1100		T (111) (12)	 	I T				
1	7									## ##			562				1		$oxed{oxed}$		

*sample not received +BE

Date Sampled: 6/26/2019

420-1357539

							1000	Comments
Transfers	Refleased By	Date/Time	Received By			Date/Time		
1	1) MUMPAGE	1/1/11/80	M	~a. (7/2/10	19:80A	\sim
2			' '	~				\
3				<u> </u>	\			
Cooler Te	mperature on Receip	Custo	ly Seal Y or (N)	Rece	ived on Ice	Y-}or N	Samples Intact Y or N
	•			\bigcirc	~			
					_	$\gamma \wedge C$		

154225 pg. 2062

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Pace Analytical Mellville

Job Number: 420-156225-1

SDG Number: 7095441

Login Number: 156225

Question	T/F/NA	Comment
Samples were collected by ETL employee as per SOP-SAM-1	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is recorded.	True	2.5 C
Cooler Temp. is within method specified range.(0-6 C PW, 0-8 C NPW, or BAC <10 C $$	True	
If false, was sample received on ice within 6 hours of collection.	NA	
Based on above criteria cooler temperature is acceptable.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 420-157149-1

SDG Number: 7095441

Job Description: Pace Analytical Sevices, Inc.-Mellville

For:

Pace Analytical Mellville 575 Broadhollow Road Melville, NY 11747

Attention: James Murphy

Roscem. Cusack

Designee for
Laura L Marciano
Customer Service Manager
Imarciano@envirotestlaboratories.com
07/24/2019

cc: Ms. Jen Aracri Betty Harrison Accounts Payable Sophia Sparkes

NYSDOH ELAP does not certify for all parameters. EnviroTest Laboratories does hold certification for all analytes where certification is offered by ELAP unless otherwise specified in the Certification Information section of this report. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554

Job Narrative 420-J157149-1

Comments

No additional comments.

All samples were received in good condition within temperature requirements.

General ChemistryNo analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Pace Analytical Mellville Job Number: 420-157149-1

Sdg Number: 7095441

Lab Sample ID Client Sample ID Reporting

Analyte Result / Qualifier Limit Units Method

No Detections

METHOD SUMMARY

Client: Pace Analytical Mellville Job Number: 420-157149-1

SDG Number: 7095441

Description	Lab Location	Method Preparation Method
Matrix: Water		
Phenolics (Total Recoverable, Colorimetric, Semi-Automated, with Distillation)	EnvTest	EPA EPA 420.4 Rev.1
Distillation/Phenolics	EnvTest	Distill/Phenol

Lab References:

EnvTest = EnviroTest

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Pace Analytical Mellville Job Number: 420-157149-1

SDG Number: 7095441

Method	Analyst	Analyst ID
EPA EPA 420.4 Rev.1	Mastrobuono, Danielle	DM

SAMPLE SUMMARY

Client: Pace Analytical Mellville Job Number: 420-157149-1

SDG Number: 7095441

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
420-157149-1	GW-1S	Water	06/26/2019 1137	07/18/2019 0855

SAMPLE RESULTS

Analytical Data

Client: Pace Analytical Mellville Job Number: 420-157149-1

Sdg Number: 7095441

General Chemistry

Client Sample ID: **GW-1S**

06/26/2019 1137 Lab Sample ID: 420-157149-1 Date Sampled:

Client Matrix: Date Received: 07/18/2019 0855 Water

DATA REPORTING QUALIFIERS

Client: Pace Analytical Mellville Job Number:

Sdg Number: 7095441

Lab Section	Qualifier	Description	
General Chemistry			
	U	Indicates analyzed for but not detected.	

Definitions and Glossary

Client: Pace Analytical Mellville Job Number:

Sdg Number: 7095441

Abbreviation	These commonly used abbreviations may or may not be present in this report.
%R	Percent Recovery
DL, RA, RE	Indicates a Dilution, Reanalysis or Reextraction.
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit - an estimate of the minimum amount of a substance that an analytical process can reliably detect. A MDL is analyte- and matrix-specific and may be laboratory-dependent.
ND	Not detected at the reporting limit (or MDL if shown).
QC	Quality Control
RL	Reporting Limit - the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
RPD	Relative Percent Difference - a measure of the relative difference between two points.

QUALITY CONTROL RESULTS

Quality Control Results

Client: Pace Analytical Mellville Job Number: 420-157149-1 Sdg Number: 7095441

Method Blank - Batch: 420-133698 Method: EPA 420.4 Rev.1
Preparation: Distill/Phenol

Lab Sample ID: MB 420-133698/2-A Analysis Batch: 420-133752 Instrument ID: Lachat Quikchem 8500 FIA

Client Matrix: Water Prep Batch: 420-133698 Lab File ID: OM_7-23-2019_02-26-53PM.C Dilution: 1.0 Units: mg/L Initial Weight/Volume: mL

Date Analyzed: 07/23/2019 1429 Final Weight/Volume: mL

Date Prepared: 07/22/2019 1040

Analyte Result Qual RL RL
Phenolics, Total Recoverable 0.010 U 0.010 0.010

Lab Control Spike - Batch: 420-133698 Method: EPA 420.4 Rev.1
Preparation: Distill/Phenol

Lab Sample ID: LCS 420-133698/3-A Analysis Batch: 420-133752 Instrument ID: Lachat Quikchem 8500 FIA

Client Matrix: Water Prep Batch: 420-133698 Lab File ID: OM_7-23-2019_02-26-53PM.(
Dilution: 1.0 Units: mg/L Initial Weight/Volume: mL

Dilution: 1.0 Units: mg/L Initial Weight/Volume: mL Date Analyzed: 07/23/2019 1430 Final Weight/Volume: mL Date Prepared: 07/22/2019 1040

Analyte Spike Amount Result % Rec. Limit Qual
Phenolics, Total Recoverable 0.0500 0.049 98 57 - 123

Matrix Spike/ Method: EPA 420.4 Rev.1

Matrix Spike Duplicate Recovery Report - Batch: 420-133698 Preparation: Distill/Phenol

 MS Lab Sample ID:
 420-157149-1
 Analysis Batch:
 420-133752
 Instrument ID:
 Lachat Quikchem 8500 FIA

 Client Matrix:
 Water
 Prep Batch:
 420-133698
 Lab File ID:
 OM_7-23-2019_02-26-53PM

Dilution: 1.0 Initial Weight/Volume: mL

 Date Analyzed:
 07/23/2019
 1434
 Final Weight/Volume:
 mL

 Date Prepared:
 07/22/2019
 1040
 mL

MSD Lab Sample ID: 420-157149-1 Analysis Batch: 420-133752 Instrument ID: Lachat Quikchem 8500 FIA

Client Matrix: Water Prep Batch: 420-133698 Lab File ID: OM_7-23-2019_02-26-53PM.0

Dilution: 1.0 Initial Weight/Volume: mL

 Date Analyzed:
 07/23/2019
 1435
 Final Weight/Volume:
 mL

 Date Prepared:
 07/22/2019
 1040
 mL

Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual

Phenolics, Total Recoverable 119 115 55 - 136 3 20

Calculations are performed before rounding to avoid round-off errors in calculated results.

Chain of Custody

PASI New York Laboratory

157149

Pace Analytical www.pacelabs.com

Workorder: 7095441

Workorder Name:

BROCKPORT LANDFILL

pg. 16F2

Results Requested By: 7/12/2019

***************************************		Orkorder Hallie.	DIVOCKFOR	(······································		110.	Juite	s Req									
Report	/Invoice To	Subcon	tract To								·····	Req	ueste	d Ana	ilysis					
Pace A 575 B Melvill Phone	er Aracri Analytical Melville road Hollow Road e, NY 11747 (631)694-3040 jennifer.aracri@pacelabs.com	315 Fuller	t Laboratories ton Avenue 1, NY 12550	s, Inc. _{P.O.}	7095 ——	441JS	SA		I Fotal Recoverable											
State	of Sample Origin: NY				Pr	eserve	d Cont	ainers	Cs,							ı				
ltem	Sample ID	Collect Date/Time	Lab ID	Matrix	H2S04				20.1 Phenolics											LAB USE ONLY
1	GW-1S	6/26/2019 11:37	7095441001	Water					Х										T	
2		0/00/0040 40:26	7005141702						**										T	
3	GMAC	0/20/2010 12:04	7000-141000						*				1							
4		0/20/2013 12:11	7090441004						¥										\neg	
5		0/20/2010-10.17	7000441000						*											
6	QWED	6/26/2019 10:01	7095441000	770000					*											
7		0/00/01/03/07/0	7093441007						*											
8	CINICO	CIDCIDO40 44-93		Water					-X-			T	111 111							4
9	CIMAR								*				1)(1)		1111111 20-1					111
10	G\0.75	0/00/00/00	7005444040	\\\\\ata=					*				GW-1		20-1	37 1.	+3-/-	\ - I		
11	QVV.7D	6/26/06	100077104						*			T								4.0
12	CIALOR								*			T	Date	Sample	d: 6/26/	2019	4	120-1	3649	16
13		0/20/20/0 00:40	7000-11-0-10						~											
14																				
15																				
16																				
17																				-

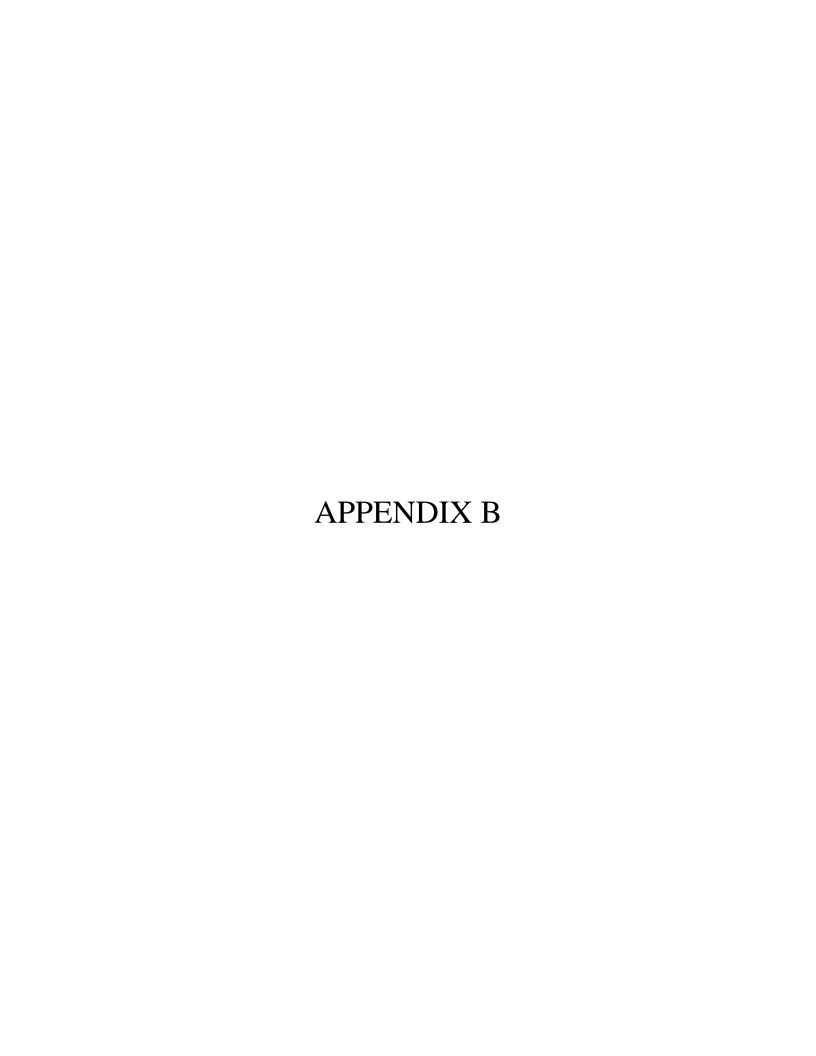
VOLUME FOR BOTTLE NOT RECEIVED

157149 pg 2 df 2

				• • • • • • • • • • • • • • • • • • • •		
Transfers	Released By	Date/Time	Received By /	Date/Time	0.42-4:0	Comments
1		7/12/19 188	La Dale	ols/ae	CATEGORY	B W EUNIS EDDAS
2	The state of the s			8:55	NEEUS	,
3						
Cooler Te	mperature on Receipt 💪 . 🌱 °C	Custody	y Seal Y or N	Received on Ice	Y)or N	Samples Intact(Y) or N
	- •					

FEDEX P.U. 1101 0710 8369

LOGIN SAMPLE RECEIPT CHECK LIST


Client: Pace Analytical Mellville

Job Number: 420-157149-1

SDG Number: 7095441

Login Number: 157149

Question	T/F/NA	Comment
Samples were collected by ETL employee as per SOP-SAM-1	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is recorded.	True	6.4 C
Cooler Temp. is within method specified range.(0-6 C PW, 0-8 C NPW, or BAC <10 C	True	
If false, was sample received on ice within 6 hours of collection.	NA	
Based on above criteria cooler temperature is acceptable.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

DATA VALIDATION REPORT

Brockport Landfill Site No. 8-28-038

June 2019 Sampling Event

Prepared by:

Kenneth R. Applin, Ph.D. **KR** Applin and Associates 8806 Route 256 Dansville, NY 14437

August 2019

Table of Contents

		Page No.
	REVIEWER'S NARRATIVE	
1.0	SUMMARY	1
2.0	TECHNICAL GUIDANCE USED IN THE DATA REVIEW	1
3.0	SAMPLING SUMMARY	2
4.0	LABORATORY ANALYSIS	3
5.0	DATA VALIDATION RESULTS	4
	5.1 Volatile Organic Compounds	4
	5.2 Metals	5
	5.3 Wet Chemistry Parameters	5
	5.4 Per- and Polyfluoroalkyl Substanes (PFAS)	6
	5.4 Field Duplicate Results	6
6.0	TOTAL USABLE DATA	6

ATTACHMENTS

Comparison of field duplicate results (Well GW-5R) Data Validation Acronyms Validator Qualifications

APPENDICES

APPENDIX A	Laboratory Case Narratives
APPENDIX B	Documentation of Quality Control Issues
APPENDIX C	Validated Laboratory Data

REVIEWER'S NARRATIVE

The analytical data obtained from the June 2019 sampling of the Brockport Landfill, Brockport, New York, have been reviewed in accordance with the criteria set forth in the Brockport Landfill – Site No. 8-28-038 Post-Closure Monitoring and Maintenance Operations Manual following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated, "J", or as non-detects, "U", are considered usable for the purpose of evaluating water quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data validation report.

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on final data tables because they cannot be relied upon, even as a last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase the confidence in data, but any value potentially contains error.

Reviewer's Signature

Kenneth R. Applin, P

Date: (Jug. 21, 2019

1.0 SUMMARY

SITE:

Brockport Landfill / Site No. 8-28-038

SAMPLING DATE:

June 2019

SAMPLE TYPE:

Groundwater / Surface Water

LABORATORY:

Enalytic LLC, E. Syracuse, NY Pace Analytical Services, LLC

Melville, NY

SDG or

WORK ORDER No.:

7095441 / 7095500

2.0 TECHNICAL GUIDANCE USED IN THE DATA REVIEW

Data validation requirements are specified in the *Brockport Landfill Monitoring Plan* which is included in the *Brockport Landfill – Site No. 8-28-038 Post-Closure Monitoring and Maintenance Operations Manual* (Malcolm Pirnie Inc., December 2000; revised April 2001).

Section 6.2.3 of the Monitoring Plan states that the analytical results from each scheduled monitoring event will be validated against the following criteria:

- Stated objectives of the Sampling Plan,
- Stated quality assurance (QA) objectives of the Quality Assurance Project Plan (QAPP),
- Analysis date versus the applicable holding times,
- Percentage of QA analyses conducted,
- Field and laboratory blank contamination,
- Percent recoveries of laboratory quality control (QC) samples,
 and
- Relative percent differences (RPDs) of laboratory QC samples and field replicates.

In addition, the Monitoring Plan (Section 6.2) requires that the criteria used for data validation be modeled after the following United States Environmental Protection Agency (USEPA) guidance documents or their updated versions:

- Functional Guidelines for Evaluating Organic Analyses, EPA 68-01-6999, February 1, 1998.
- Functional Guidelines for Evaluating Inorganic Analyses, EPA, July 1, 1988.

The following updated USEPA guidance documents were used to validate the analytical results from the June 2019 sampling event:

- Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3 (SOP #HW-2 Revision #13), September 2006.
- Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SW-846 Method 8260B; SOP # HW-24, Revision #2, August 2008.

3.0 SAMPLING SUMMARY

Groundwater and surface water sampling was conducted on June 26, 2019, by a sampling team from Enalytic LLC, Inc., East Syracuse, New York. The required groundwater and surface water monitoring points include six overburden monitoring wells, six shallow bedrock monitoring wells, one surface water sampling location on Otis Creek, and one surface water "seep". The sample designation numbers are listed below.

Overburden Wells	Shallow Bedrock Wells
GW-1S	GW-3R
GW-2S	GW-4R
GW-3S	GW-5R
GW-5S	GW-6R
GW-6S	GW-7R
GW-7S	GW-9R

The Otis Creek sample is designated as SW-1. The seepage sample is designated as "SEEP". Sample locations are shown in Figure 2-1 of the Monitoring Plan.

Complete samples were collected from each of the monitoring points. All samples were collected as whole, unfiltered samples. The samples from wells GW-1S, GW-4R, and GW-6R exhibited field turbidities in excess of 50 NTU. Additional samples for dissolved metals analysis were collected from these wells and were filtered in the lab. Both the filtered and non-filtered analytical results were reported.

All field quality control samples specified in Section 5.3 of the Monitoring Plan including trip blanks, one blind duplicate, and a matrix spike/matrix spike duplicate sample were collected with the monitoring well samples. A field duplicate sample was collected from well GW-5R.

4.0 LABORATORY ANALYSIS

Laboratory analysis of the samples was conducted by Pace Analytical Services, LLC, Melville, NY. The monitoring well samples and the surface water samples were analyzed as two individual sample delivery groups. The laboratory work order number for the monitoring well samples is 7095441. The work order number for the surface water samples is 7095500. The analyses were performed in accordance with established USEPA analytical methods. The analytical data for the wells and the surface waters were validated separately using the QC data pertaining to each data package.

The monitoring well samples were analyzed for the chemical parameters listed in Table 3-1 of the Monitoring Plan, which include 11 general chemistry parameters, 9 TAL metals, and 33 TCL volatile organic compounds (VOCs). Surface water sample SW-1 and the seep sample were analyzed for TAL metals and TCL VOCs only (no general chemistry parameters). In addition to total metals, dissolved metals were also analyzed in filtered samples from wells GW-1S, GW-4R, and GW-6R.

In addition to the analytes listed above, samples were also collected from wells GW-1S, GW-3S, GW-6R, and GW-9R for the analysis of per- and polyfluoroalkyl substances (PFAS). The laboratory analyses were subcontracted to Eurofins TestAmerica, Sacramento, CA.

All QC data required under the Monitoring Plan were supplied with the sample analytical results. These data include results for the QC analyses specified in Section 5.4.2 of the Monitoring Plan as well as additional QC data provided by the lab.

5.0 DATA VALIDATION RESULTS

The analytical results for the June 2019 sampling event were validated using the criteria listed in Section 2.0 of this report following appropriate USEPA guidance. Data that were qualified as non-detects (U), estimated non-detects (UJ), estimated (J), or rejected (R) are identified in the following sections and are flagged on the final data sheets of the lab report using red ink.

5.1 Volatile Organic Compounds

Analyte	Samples Affected	Qualifier	Reason
Acetone	All well	J pos.	%D in CCAL > control
Bromoform	samples	UJ non-	limit
trans-1,3-		detects	
Dichloropropene			
Acetone	SW-1	J pos.	%D in CCAL > control
Bromoform	SEEP	UJ non-	limit
1,2-Dibromo-3-		detects	
chloropropane			
Dibromochloromethane			
trans-1,4-Dichloro-2-	:		
butene			
1,1-Dichloroethane			
Vinyl chloride			

5.2 Metals

Analyte	Samples Affected	Qualifier	Reason			
Calcium	All well samples	none	MS recovery < control limit *			
Iron Potassium	All filtered well samples	J pos.	%D of serial dilution > control limit			
Calcium Sodium	SW-1 SEEP	J pos. UJ non- detects	%R of interference check sample < control limit			

^{*} In accordance with USEPA guidance, analytical results are not qualified on the basis of MS/MSD recoveries alone. However, MS/MSD recoveries less than the control limits indicate possible low biases in the analytical results. Recoveries greater than the control limits indicate possible high biases in the results.

5.3 Wet Chemistry Parameters

Analyte	Samples Affected	Qualifier	Reason
Alkalinity	GW-6R	none	MS/MSD recoveries >
Nitrite as N			control limit *
TKN			

^{*} In accordance with USEPA guidance, analytical results are not qualified on the basis of MS/MSD recoveries alone. However, MS/MSD recoveries less than the control limits indicate possible low biases in the analytical results. Recoveries greater than the control limits indicate possible high biases in the results.

5.4 Per- and Polyfluoroalkyl Substances (PFAS)

Analyte	Samples Affected	Qualifier	Reason			
PFOS	GW-1S	Change pos results < CRQL to CRQL	Detected in equip blank at 0.98 J ng/L			
PFOS	GW-3S GW-9R	J detects < 10x equip blank value	Detected in equip blank at 0.98 J ng/L			
PFHxS	GW-1S GW-3S GW-9R Equip Blank	Change pos results < CRQL to CRQL	Detected in method blank at 0.319 J ng/L			

Note: 1,4-dioxane was also analyzed by Method 8270D-SIM. All analytical QC data were within acceptable limits.

5.5 Field Duplicate Results

A field duplicate sample was collected from well GW-5R. The analytical results for the sample and duplicate are compared in the attached table. Except for acetone, the relative percent differences (RPDs) between the duplicate results for each analyte were within the 20% control limit. Given the elevated RPD for acetone, the results in the duplicate samples were qualified as estimated (J or UJ).

6.0 TOTAL USABLE DATA

No analytical results were rejected as a result of this data review. Although some results were qualified as estimated (J or UJ) and/or may be biased due to matrix or other effects, all results are considered usable.

COMPARISON OF FIELD DUPLICATE SAMPLE RESULTS **Brockport Landfill**

June 2019 Sampling Event

Monitoring Well Sample GW-5R

Analyte	Units	CRDL	5x CRDL	Sample	Q	Duplicate	Q	ABS Diff	RPD
General Chemistry									
Alkalinity, Total as CaCO3	mg/L	5	25	1280		1280		0	0.0
Hardness, Total as CaCO3	mg/L	5.0	25	900		900		0	0.0
Total Dissolved Solids	mg/L	20	100	1870		1800		70	3.8
Chemical Oxygen Demand	mg/L	10	50	176		169		7	4.1
Chloride	mg/L	40	200	461		464		3	0.6
Sulfate	mg/L	5	25	5.0	U	5.0		0	
Nitrogen, Kjeldahl, Total	mg/L	0.5	2.5	10.6		12.8		2.2	18.8
Nitrate as N	mg/L	0.05	0.25	0.050	U	0.050		0	
Nitrate-Nitrite as N	mg/L	0.05	0.25	0.050	U	0.050		0	
Nittrite as N	mg/L	0.05	0.25	0.050	U	0.050		0	
Nitrogen, Ammonia	mg/L	0.5	2.5	7.6		7.6		0	0.0
Total Organic Carbon	mg/L	1	5	50.4		50.0		0.4	8.0
Phenolics, Total	mg/L	0.010	0.050	0.010	Ü	0.010	U	0	
Total Metals									
Antimony	ug/L	60.0	300	60.0	U	60.0	U	0	
Arsenic	ug/L	10.0	50.0	10.0	Ū	10.0	U	0	
Barium	ug/L	200	1000	14700		14400		300	2.1
Boron	ug/L	50.0	500	646		645		1	0.2
Calcium	ug/L	200	1000	255000		252000		3000	1.2
Iron	ug/L	20.0	100	24700		22700		2000	8.4
Magnesium	ug/L	200	1000	95500		94200		1300	1.4
	ug/L	10.0	50.0	462		460		2	0.4
Manganese Potassium	ug/L	5000	25000	18400		18500		100	0.5
Sodium	ug/L	5000	25000	387000		382000		5000	1.3
VOCs			25	5.0	· U	16.3	J	11.3	106
Acetone	ug/L	5		7.3	J	6.7	•	0.6	8.6
Benzene	ug/L	1	5	7.3 4.8		5.1		0.3	6.1
Chlorobenzene	ug/L	1	5			25.6		1.6	6.5
Chloroethane	ug/L	1	5	24.0 1.0		25.6 1.0	U	0.0	0.0
1,1-Dichloroethane	ug/L	. 1	5	1.0		1.0	·	0.0	0.0

Notes:

CRDL = contract required detection limit (method detection limit used for General Chemistry parameters) RPD = relative percent difference = ABS[(C1 - C2)/((C1 + C2)/2)]*100 "U" qualifier indicates a non-detect result at the concentration shown "J" qualifier indicates an estimated result

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

Appendix A

Laboratory Case Narratives

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Neils

Method:

EPA 6010C Description: 6010 MET ICP Enalytic, LLC

Client: Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121065

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 576051)
 - Calcium
 - Sodium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 6010C

Description: 6010 MET ICP, Dissolved

Client: Date: Enalytic, LLC July 26, 2019

General Information:

3 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 8260C/5030C **Description:** 8260C Volatile Organics

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

15 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120782

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- BLANK (Lab ID: 574898)
 - · 2-Butanone (MEK)
- GW-1S (Lab ID: 7095441014)
 - · 2-Butanone (MEK)
- · GW-2S (Lab ID: 7095441015)
 - · 2-Butanone (MEK)
- GW-3R (Lab ID: 7095441017)
 - · 2-Butanone (MEK)
- GW-3S (Lab ID: 7095441016)
 - 2-Butanone (MEK)
- GW-4R (Lab ID: 7095441018)
 - 2-Butanone (MEK)
- GW-5R (Lab ID: 7095441020) · 2-Butanone (MEK)
- GW-5S (Lab ID: 7095441019)
- · 2-Butanone (MEK)
- GW-6R (Lab ID: 7095441022) 2-Butanone (MEK)
- GW-6S (Lab ID: 7095441021)
 - 2-Butanone (MEK)
- · GW-7R (Lab ID: 7095441024)
 - · 2-Butanone (MEK)
- GW-7S (Lab ID: 7095441023)
 - · 2-Butanone (MEK)
- GW-9R (Lab ID: 7095441025)
 - 2-Butanone (MEK)
- · GW-X (Lab ID: 7095441026)
 - 2-Butanone (MEK)
- · LCS (Lab ID: 574899)
 - 2-Butanone (MEK)
- · MS (Lab ID: 574949) · 2-Butanone (MEK)
- MSD (Lab ID: 574950)

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 8260C/5030C **Description: 8260C Volatile Organics**

Client:

Enalytic, LLC

Date:

July 26, 2019

QC Batch: 120782

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- 2-Butanone (MEK)
- STORAGE BLANK (Lab ID: 7095441028)
 - · 2-Butanone (MEK)
- TRIP BLANK (Lab ID: 7095441027)
 - 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120782

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- GW-7R (Lab ID: 7095441024)
 - Acetone
- GW-X (Lab ID: 7095441026)
 - Acetone
- LCS (Lab ID: 574899)
 - Acetone
 - trans-1,3-Dichloropropene
- MS (Lab ID: 574949)
 - Acetone
 - · trans-1,3-Dichloropropene
- MSD (Lab ID: 574950)
 - Acetone
 - trans-1,3-Dichloropropene

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- · BLANK (Lab ID: 574898)
 - Bromoform
- GW-1S (Lab ID: 7095441014)
 - Bromoform
- GW-2S (Lab ID: 7095441015)
 - Bromoform
- GW-3R (Lab ID: 7095441017)
 - Bromoform
- GW-3S (Lab ID: 7095441016)
 - Bromoform
- GW-4R (Lab ID: 7095441018)
 - Bromoform
- GW-5R (Lab ID: 7095441020)
 - Bromoform
- GW-5S (Lab ID: 7095441019)
 - Bromoform
- GW-6R (Lab ID: 7095441022)
 - Bromoform

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 8260C/5030C **Description: 8260C Volatile Organics**

Client:

Enalytic, LLC July 26, 2019

Date:

QC Batch: 120782

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- · GW-6S (Lab ID: 7095441021)
 - Bromoform
- GW-7R (Lab ID: 7095441024)
 - Bromoform
- · GW-7S (Lab ID: 7095441023)
 - Bromoform
- GW-9R (Lab ID: 7095441025)
 - Bromoform
- GW-X (Lab ID: 7095441026)
 - Bromoform
- LCS (Lab ID: 574899)
 - Bromoform
- · MS (Lab ID: 574949)
 - Bromoform
- MSD (Lab ID: 574950)
 - Bromoform
- STORAGE BLANK (Lab ID: 7095441028)
 - Bromoform
- TRIP BLANK (Lab ID: 7095441027)
 - Bromoform

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

- L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
 - · LCS (Lab ID: 574899)
 - trans-1,3-Dichloropropene
- L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
 - · LCS (Lab ID: 574899)
 - Bromoform

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 8260C/5030C **Description:** 8260C Volatile Organics

Client:

Enalytic, LLC

Date:

July 26, 2019

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120782

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441022

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- · MS (Lab ID: 574949)
 - trans-1,3-Dichloropropene
- MSD (Lab ID: 574950)
 - trans-1,3-Dichloropropene

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 574949)
 - 1,1,1-Trichloroethane
 - · Bromodichloromethane
- MSD (Lab ID: 574950)
 - 1,1,1-Trichloroethane
 - · Bromodichloromethane
 - · Carbon tetrachloride
 - · cis-1,3-Dichloropropene

R1: RPD value was outside control limits.

- MSD (Lab ID: 574950)
 - lodomethane

Additional Comments:

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 2320B Description: 2320B Alkalinity

Client: Date:

Enalytic, LLC July 26, 2019

General Information:

11 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120959

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 575760)
 - Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 2320B **Description: 2320B Alkalinity** Enalytic, LLC

Client: Date:

July 26, 2019

General Information:

2 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121116

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7096405001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

· MS (Lab ID: 576690)

Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 2340C

Description: 2340C Hardness, Total

Client: Date:

Enalytic, LLC July 26, 2019

General Information:

13 samples were analyzed for SM22 2340C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 2540C

Description: 2540C Total Dissolved Solids

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for SM22 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 410.4

Client:

Description: 410.4 COD Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 300.0

Description: 300.0 IC Anions 28 Days

Client: Date: Enalytic, LLC July 26, 2019

General Information:

13 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121362

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095339001,7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 577928)
 - · Nitrogen, Kjeldahl, Total
- MS (Lab ID: 577930)
 - · Nitrogen, Kjeldahl, Total

QC Batch: 121363

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095483001,7095502007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 577934)
 - · Nitrogen, Kjeldahl, Total
- · MS (Lab ID: 577936)
 - · Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Date: Enalytic, LLC July 26, 2019

General Information:

13 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119806

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009,7095480001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 569383)
 - · Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 353.2

Description: 353.2 Nitrogen, NO2

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119801

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009,7095502007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 569325)
 - · Nitrite as N

QC Batch: 119800

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095474001,7095480001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 569319)
 - · Nitrite as N
- · MS (Lab ID: 569321)
 - · Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 4500 NH3 H Description: 4500 Ammonia Water

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for SM22 4500 NH3 H. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 9060A

Description: 9060A TOC as NPOC

Client: Date:

Enalytic, LLC July 26, 2019

General Information:

13 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 120232

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 571636)
 - · Total Organic Carbon

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

SW-1/SEEP

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Method:

EPA 6010C

Client:

Description: 6010 MET ICP Enalytic, LLC

Date:

July 12, 2019

General Information:

2 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121065

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 576051)
 - Calcium
 - Sodium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No .:

7095500

Method:

EPA 8260C/5030C

Client:

Description: 8260C Volatile Organics Enalytic, LLC

Date:

July 12, 2019

General Information:

2 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120726

- IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
 - BLANK (Lab ID: 574699)
 - 2-Butanone (MEK)
 - LCS (Lab ID: 574700)
 - 2-Butanone (MEK)
 - MS (Lab ID: 574820)
 - · 2-Butanone (MEK) • MSD (Lab ID: 574821)

 - 2-Butanone (MEK)
 - SEEP (Lab ID: 7095500002)
 - 2-Butanone (MEK)
 - SW-1 (Lab ID: 7095500001)
 - · 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120726

- CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
 - · LCS (Lab ID: 574700)
 - Acetone
 - · Dibromochloromethane
 - MS (Lab ID: 574820)
 - Acetone
 - Dibromochloromethane
 - MSD (Lab ID: 574821)
 - Acetone
 - · Dibromochloromethane
- CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
 - BLANK (Lab ID: 574699)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Method:

EPA 8260C/5030C

Client:

Description: 8260C Volatile Organics Enalytic, LLC

Date:

July 12, 2019

QC Batch: 120726

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- · Vinyl chloride
- trans-1,4-Dichloro-2-butene
- · LCS (Lab ID: 574700)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- MS (Lab ID: 574820)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - · Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- MSD (Lab ID: 574821)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - · Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- SEEP (Lab ID: 7095500002)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - · Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- SW-1 (Lab ID: 7095500001)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Method:

EPA 8260C/5030C Description: 8260C Volatile Organics

Client: Date:

Enalytic, LLC July 12, 2019

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 120726

- L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
 - LCS (Lab ID: 574700)
 - 1,1,1,2-Tetrachloroethane

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 574700)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - 4-Methyl-2-pentanone (MIBK)
 - trans-1,4-Dichloro-2-butene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120726

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095502007

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- · MS (Lab ID: 574820)
 - 1,1,1,2-Tetrachloroethane
 - 1,2-Dibromo-3-chloropropane
 - trans-1,4-Dichloro-2-butene
- MSD (Lab ID: 574821)
 - 1,1,1,2-Tetrachloroethane
 - 1.1-Dichloroethane
 - 1.2-Dibromo-3-chloropropane
 - trans-1,4-Dichloro-2-butene

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 574820)
 - Chlorobenzene
 - Ethylbenzene
 - Styrene
- MSD (Lab ID: 574821)
 - Styrene

MS: Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.

- MS (Lab ID: 574820)
 - · Xylene (Total)

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Method:

EPA 8260C/5030C

Client:

Description: 8260C Volatile Organics

Client:

Enalytic, LLC

Date:

July 12, 2019

QC Batch: 120726

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095502007

R1: RPD value was outside control limits.

MSD (Lab ID: 574821)lodomethane

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Appendix B

Documentation
of
Quality Control
Issues

MSV - FORM VII VOA-1 MSV CONTINUING CALIBRATION DATA

11952974CCV

Lab Name: Pace Analytical - New York

Calibration Date: 07/06/2019

Time: 10:11

Instrument ID: 70MSV5

GC Column: Col 1

Init. Calib. Date(s): 06/26/2019

06/26/2019

Lab File ID: 070619.B\H20811.D

Init. Calib. Time(s): 20:17

22:55

SDG No.: 7095441

7095441						
COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
Acetone	Averaged	0.13316	0.17573	0.1000 /	31.9699	20.0000
Acrylonitrile	Averaged	0.16496	0.17330	0.0100	5.0512	20.0000
Benzene	Averaged	1.75932	1.74520	0.5000	-0.8029	20.0000
Bromochloromethane	Averaged	0.27846	0.28772	0.0100	3.3240	20.0000
Bromodichloromethane	Averaged	0.41459	0.48402	0.2000	16.7487	20.0000
Bromoform	Linear	50	34.69418	0.1000 (-30.6116	20.0000
Bromomethane	Averaged	0.39255	0.35408	0.1000	-9.7984	20.0000
2-Butanone (MEK)	Averaged	0.53739	0.63315	0.1000	17.8207	20.0000
Carbon disulfide	Averaged	1.54591	1.78979	0.1000	15.7758	20.0000
Carbon tetrachloride	Averaged	0.46735	0.51546	0.1000	10.2938	20.0000
Chlorobenzene	Averaged	2.38660	2.19936	0.5000	-7.8453	20.0000
Chloroethane	Averaged	0.48900	0.48224	0.1000	-1.3812	20.0000
Chloroform	Averaged	1.28076	1.39320	0.2000	8.7791	20.0000
Chloromethane	Averaged	0.75997	0.68843	0.1000	-9.4130	20.0000
1,2-Dibromo-3-chloropropane	Linear	50	46.44463	0.0500	-7.1107	20.0000
Dibromochloromethane	Averaged	0.54881	0.58057	0.1000	5.7871	20.0000
1,2-Dibromoethane (EDB)	Averaged	0.28179	0.30787	0.1000	9.2576	20.0000
Dibromomethane	Averaged	0.19712	0.18946	0.0100	-3.8881	20.0000
1,2-Dichlorobenzene	Averaged	1.77473	1.76305	0.4000	-0.6585	20.0000
1,4-Dichlorobenzene	Averaged	2.06176	2.00781	0.5000	-2.6166	20.0000
trans-1,4-Dichloro-2-butene	Linear	50	47.25384	0.0100	-5.4923	20.0000
1,1-Dichloroethane	Averaged	1.25586	1.28885	0.2000	2.6270	20.0000
1,2-Dichloroethane	Averaged	0.88079	1.01502	0.1000	15.2396	20.0000
1,1-Dichloroethene	Averaged	0.52986	0.56889	0.1000	7.3671	20.0000
cis-1,2-Dichloroethene	Averaged	0.87612	0.86787	0.1000	-0.9409	20.0000
trans-1,2-Dichloroethene	Averaged	0.78885	0.78901	0.1000	0.0205	20.0000
1,2-Dichloropropane	Averaged	0.38820	0.40230	0.1000	3.6298	20.0000
cis-1,3-Dichloropropene	Averaged	0.51836	0.61125	0.2000	17.9198	20.0000
trans-1,3-Dichloropropene	Averaged	0.43053	0.54109	0.1000 (25.6800	20.0000
Ethylbenzene	Averaged	1.32684	1.22971	0.1000	-7.3203	20.0000
2-Hexanone	Linear	50	49.76483	0.1000	-0.4703	20.0000
Iodomethane	Linear	50	48.28708	0.0100	-3.4258	20.0000
Methylene Chloride	Averaged	0.72032	0.75302	0.1000	4.5396	20.0000
4-Methyl-2-pentanone (MIBK)	Linear	50	47.31260	0.1000	-5.3748	20.0000
Styrene	Averaged	2.27696	2.33680	0.3000	2.6283	20.0000
1,1,1,2-Tetrachloroethane	Averaged	0.65945	0.65200	0.0100	-1.1310	20.0000

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

	SAMPLE N
ORGANIC-1	

FORM V INORGANIC-1 MATRIX SPIKE SAMPLE RECOVERY

5	76051MS	

Lab Name:	Pace Analytical - New York	_SDG No. : 7095441	Contract:	BROCKPORT LANDFILL
Matrix:	Water	Basis: Wet	Parent Sample ID:	GW-6R
Percent Mo	oisture:			

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Antimony	ug/L	75-125	753	<60.0	750	100
Arsenic	ug/L	75-125	511	<10.0	500	102
Barium	ug/L	75-125	722	275	500	89
Boron	ug/L	75-125	3220	828	2500	96-
Calcium	ug/L	75-125	140000	125000	25000	62*
Iron	ug/L	75-125	18600	16600	2000	104
Magnesium	ug/L	75-125	84800	65400	25000	78
Manganese	ug/L	75-125	726	505	250	88
Potassium	ug/L	75-125	62100	13800	50000	97
Sodium	ug/L	75-125	212000	179000	50000	67*

FORM VIII INORGANIC-1 SERIAL DILUTIONS

Lab Name: Pace Analytical - New York SDG No. : 7095441 Contract: BROCKPORT LANDFILL

Matrix: Water Parent Sample ID: GW-6R

Analyte	Units	Initial Sample Result	Serial Dilution Result	% Difference	Control Limit %D
Antimony, Dissolved	ug/L	13.4U	67.0U		10
Arsenic, Dissolved	ug/L	8.1U	40.5U	_	10
Barium, Dissolved	ug/L	219	226J	3.0	10
Cadmium, Dissolved	ug/L	0.84U	4.2U		10
Iron, Dissolved	ug/L	858	1320	53.8*	10
Magnesium, Dissolved	ug/L	58300	61000	4.6	10
Manganese, Dissolved	ug/L	419	428	2.0_	10
Potassium, Dissolved	ug/L	13700	16000J	16.8*	10
Sodium, Dissolved	ug/L	164000	176000	7.0	10

analysed 7/3/19

GW-15 Gitered -4R Sitered -6R

^{*} Indicates that the % Difference exceeds the control limit. No difference is calculated if either result is a non-detect. 07/17/2019 12:45

FORM V INORGANIC-1 MATRIX SPIKE SAMPLE RECOVERY

569325MS

Lab Name:	Pace Analytical - New York	_SDG No. : 7095441	Contract:	BROCKPORT LANDFILL
Matrix:	Water	Basis: Wet	Parent Sample ID:	GW-6R
Percent Mo	oisture:			

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Nitrite as N	mg/L	90-110	0.59	<0.050	0.50	119*

FORM V INORGANIC-1 MATRIX SPIKE SAMPLE RECOVERY

575760MS	

Lab Name:	: Pace Analytical - New York	SDG No. :	7095441	Contract:	BROCKPORT LANDFILL	
Matrix:	Water	Basis: We	et	Parent Sample ID:	GW-6R	
Percent Mo	oisture:					
		Control				

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Alkalinity, Total as CaCO3	mg/L	75-125	898	863	25.0	140*

FORM V INORGANIC-2 MATRIX SPIKE SAMPLE RECOVERY

Lab Name:	Pace Analytical - New York	_SDG No. : 7095441	Contract:	BROCKPORT LANDFILL
Matrix:	Water	Basis: Wet	Parent Sample ID:	GW-6R
Percent Mo	oisture:			

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Nitrogen, Kjeldahl, Total	mg/L	90-110	9.0	4.4	4.0	115*

MSV - FORM III VOA-1 WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Pace Analytical - New York
Date Extracted: 07/05/2019
Instrument: 70MSV5
Parent Sample ID: 7095502007

Matrix Spike - Sample No: 574820MS

Date Analyzed (1): <u>07/05/2019</u> Lab File ID: <u>070519.B\H20807.D</u>

SDG No.: 7095500

COMPOUND	SPIKE ADDED	SAMPLE	MS CONCENTRATION	MC 0/ DEC	QC
COMPOUND	(ug/L)	CONCENTRATION (ug/L)	(ug/L)	MS %REC	LIMITS REC.
1,1,1,2-Tetrachloroethane	50.0	<1.0	60.2	120	74-113
1,1,1-Trichloroethane	50.0	<1.0	55.3	111	65-118
1,1,2,2-Tetrachloroethane	50.0	<1.0	44.5	89	74-12
1,1,2-Trichloroethane	50.0	<1.0	48.4	97	80-117
1,1-Dichloroethane	50.0	<1.0	43.4	87	83-15
1,1-Dichloroethene	50.0	<1.0	49.5	99	45-146
1,2,3-Trichloropropane	50.0	<1.0	49.5	99	71-12
1,2-Dibromo-3-chloropropane	50.0	<1.0	35.3	71	74-11
1,2-Dibromoethane (EDB)	50.0	<1.0	55.4	111	83-11
1,2-Dichlorobenzene	50.0	<1.0	54.9	110	74-11;
1,2-Dichloroethane	50.0	<1.0	49.4	99	74-129
1,2-Dichloropropane	50.0	<1.0	46.4	93	75-117
1,4-Dichlorobenzene	50.0	<1.0	53.6	107	71-113
2-Butanone (MEK)	50.0	<5.0	40.3	81	44-162
2-Hexanone	50.0	<5.0	41.7	83	32-18:
4-Methyl-2-pentanone (MIBK)	50.0	<5.0	37.5	75	69-13
Acetone	50.0	<5.0	37.2	74	23-188
Acrylonitrile	50.0	<1.0	39.5	79	59-14
Benzene	50.0	<1.0	48.9	98	73-119
Bromochloromethane	50.0	<1.0	53.0	106	81-116
Bromodichloromethane	50.0	<1.0	52.1	104	78-11
Bromoform	50.0	<1.0	44.0	88	65-122
Bromomethane	50.0	<1.0	42.2	84	52-14
Carbon disulfide	50.0	<1.0	49.2	98	41-14
Carbon tetrachloride	50.0	<1.0	55.9	112	59-120
Chlorobenzene	50.0	<1.0	59.8	120	75-113
Chloroethane	50.0	<1.0	44.3	89	49-15
Chloroform	50.0	<1.0	50.4	101	72-122
Chloromethane	50.0	<1.0	35.5	71	46-144
Dibromochloromethane	50.0	<1.0	59.4	119	70-120
Dibromomethane	50.0	<1.0	51.2	102	75-125
Ethylbenzene	50.0	<1.0	59.5	(119)	70-113
Iodomethane	50.0	<1.0	54.1	108	61-144
Methylene Chloride	50.0	<1.0	45.9	92	61-142
Styrene	50.0	<1.0	63.7	(127)	72-118
Tetrachloroethene	50.0	<1.0	56.9	114	60-128
Toluene	50.0	<1.0	51.1	102	72-119
Trichloroethene	50.0	<1.0	53.4	107	69-117
Trichlorofluoromethane	50.0	<1.0	51.3	103	27-173
Vinyl acetate	50.0	<1.0	38.5	77	20-158
Vinyl chloride	50.0	<1.0	41.0	82	43-143
Xylene (Total)	150	<3.0	182	122	71-109
cis-1,2-Dichloroethene	50.0	<1.0	47.7	95	72-12
cis-1,3-Dichloropropene	50.0	<1.0	50.6	101	78-116
trans-1,2-Dichloroethene	50.0	<1.0	49.6	99	56-142
trans-1,3-Dichloropropene	50.0	<1.0	51.9	104	79-116
trans-1,4-Dichloro-2-butene	50.0	<1.0	33.8	68	71-12

MSV - FORM VII VOA-1 MSV CONTINUING CALIBRATION DATA

11949853CCV

Lab Name: Pace Analytical - New York

Instrument ID: 70MSV5 GC Column: Col 1

Init. Calib. Date(s): 06/26/2019 06/26/2019

Lab File ID: 070519.B\H20784.D Init. Calib. Time(s): 20:17 22:55

SDG No.: 7095500

7095500		 _				
COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
Acetone	Averaged	0.13316	0.20236	0.1000	(51.9635)	20.0000
Acrylonitrile	Averaged	0.16496	0.13306	0.0100	-19.3415	20.0000
Benzene	Averaged	1.75932	1.54098	0.5000	-12.4109	20.0000
Bromochloromethane	Averaged	0.27846	0.28165	0.0100	1.1434	20.0000
Bromodichloromethane	Averaged	0.41459	0.42591	0.2000	2.7306	20.0000
Bromoform	Linear	50	32.63451	0.1000	-34.7310	20.0000
Bromomethane	Averaged	0.39255	0.31997	0.1000	-18.4889	20.0000
2-Butanone (MEK)	Averaged	0.53739	0.56030	0.1000	4.2632	20.0000
Carbon disulfide	Averaged	1.54591	1.40956	0.1000	-8.8196	20.0000
Carbon tetrachloride	Averaged	0.46735	0.49593	0.1000	6.1163	20.0000
Chlorobenzene	Averaged	2.38660	2.56459	0.5000	7.4581	20.0000
Chloroethane	Averaged	0.48900	0.39789	0.1000	-18.6309	20.0000
Chloroform	Averaged	1.28076	1.19544	0.2000	-6.6616	20.0000
Chloromethane	Averaged	0.75997	0.55738	0.1000	-26.6575	20.0000
1,2-Dibromo-3-chloropropane	Linear	50	38.13836	0.0500	(-23.7233)	20.0000
Dibromochloromethane	Averaged	0.54881	0.66957	0.1000	(22.0031)	20.0000
1,2-Dibromoethane (EDB)	Averaged	0.28179	0.30256	0.1000	7.3715	20.0000
Dibromomethane	Averaged	0.19712	0.18967	0.0100	-3.7798	20.0000
1,2-Dichlorobenzene	Averaged	1.77473	1.79766	0.4000	1.2916	20.0000
1,4-Dichlorobenzene	Averaged	2.06176	2.04018	0.5000	-1.0464	20.0000
trans-1,4-Dichloro-2-butene	Linear	50	33.39355	0.0100	-33,2129	20.0000
1,1-Dichloroethane	Averaged	1.25586	1.00122	0.2000	-20.2764)	20.0000
1,2-Dichloroethane	Averaged	0.88079	0.83244	0.1000	-5.4894	20.0000
1,1-Dichloroethene	Averaged	0.52986	0.47710	0.1000	-9.9565	20.0000
cis-1,2-Dichloroethene	Averaged	0.87612	0.78509	0.1000	-10.3900	20.0000
trans-1,2-Dichloroethene	Averaged	0.78885	0.72115	0.1000	-8.5825	20.0000
1,2-Dichloropropane	Averaged	0.38820	0.32859	0.1000	-15.3560	20.0000
cis-1,3-Dichloropropene	Averaged	0.51836	0.52632	0.2000	1.5354	20.0000
trans-1,3-Dichloropropene	Averaged	0.43053	0.45474	0.1000	5.6231	20.0000
Ethylbenzene	Averaged	1.32684	1.38791	0.1000	4.6028	20.0000
2-Hexanone	Linear	50	59.40826	0.1000	18.8165	20.0000
Iodomethane	Linear	50	43.15444	0.0100	-13.6911	20.0000
Methylene Chloride	Averaged	0.72032	0.62239	0.1000	-13.5948	20.0000
4-Methyl-2-pentanone (MIBK)	Linear	50	40.49326	0.1000	-19.0135	20.0000
Styrene	Averaged	2.27696	2.62168	0.3000	15.1396	20.0000
1,1,1,2-Tetrachloroethane	Averaged	0.65945	0.76445	0.0100	15.9214	20.0000

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

MSV - FORM VII VOA-2 MSV CONTINUING CALIBRATION DATA

SAMPLE NO.

11949853CCV

Lab Name: Pace Analytical - New York Calibration Date: 07/05/2019 Time: 11:20

Instrument ID: <u>70MSV5</u> GC Column: <u>Col 1</u> Init. Calib. Date(s): <u>06/26/2019</u> 06/26/2019

Lab File ID: 070519.B\H20784.D Init. Calib. Time(s): 20:17 22:55

SDG No.: 7095500

COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
1,1,2,2-Tetrachloroethane	Averaged	1.04756	0.92543	0.3000	-11.6589	20.0000
Tetrachloroethene	Averaged	0.91150	0.87874	0.2000	-3.5938	20.0000
Toluene	Averaged	1.88707	1.70866	0.4000	-9.4543	20.0000
1,1,1-Trichloroethane	Averaged	0.58747	0.60228	0.1000	2.5215	20.0000
1,1,2-Trichloroethane	Averaged	0.28090	0.25640	0.1000	-8.7208	20.0000
Trichloroethene	Averaged	0.43629	0.42566	0.2000	-2.4354	20.0000
Trichlorofluoromethane	Averaged	0.91948	0.86513	0.1000	-5.9111	20.0000
1,2,3-Trichloropropane	Averaged	0.33495	0.32865	0.0100	-1.8826	20.0000
Vinyl acetate	Averaged	1.10289	0.96940	0.0100	-12.1034	20.0000
Vinyl chloride	Averaged	0.77310	0.59796	0.1000	-22.6543	20.0000
m&p-Xylene	Averaged	1.56348	1.67939	0.1000	7.4141	20.0000
o-Xylene	Averaged	1.49049	1.59566	0.3000	7.0562	20.0000
4-Bromofluorobenzene (S)	Averaged	0.82533	0.88635	0.0100	7.3928	20.0000
1,2-Dichloroethane-d4 (S)	Averaged	0.31326	0.29840	0.0100	-4.7442	20.0000
Toluene-d8 (S)	Averaged	2.69679	2.71347	0.0100	0.6188	20.0000

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

FORM V INORGANIC-1 MATRIX SPIKE SAMPLE RECOVERY

	
576051MS	

Lab Name:	Pace Analytical - New York	_SDG No. : 7095500	Contract:	BROCKPORT LANDFILL LONG
Matrix:	Water	Basis: Wet	Parent Sample ID:	7095441009
Percent Mo	sietura:			

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Antimony	ug/L	75-125	753	<60.0	750	100
Arsenic	ug/L	75-125	511	<10.0	500	102
Barium	ug/L	75-125	722	275	500	89 _
Calcium	ug/L	75-125	140000	125000	25000	62*
Iron	ug/L	75-125	18600	16600	2000	104
Magnesium	ug/L	75-125	84800	65400	25000	78
Manganese	ug/L	75-125	726	505	250	88
Potassium	ug/L	75-125	62100	13800	50000	97
Sodium	ug/L	75-125	212000	179000	50000	67*

Appendix C

Validated Laboratory Data

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-1S	Lab ID:	7095441001	Collected:	06/26/1	19 11:37	Received: 06	/27/19 11:05 N	latrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical I	Method:							
Field pH	7.41	Std. Units			1		06/26/19 11:37		
Field Temperature	19.3	deg C			1		06/26/19 11:37		
Field Specific Conductance	628	umhos/cm			1		06/26/19 11:37		
REDOX	56				1		06/26/19 11:37		
Field Turbidity	163	NTU			1		06/26/19 11:37		
6010 MET ICP	Analytical I	Method: EPA 60°	10C Prepar	ration Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L		60.0	1	07/09/19 10:00	07/10/19 21:34	7440-36-0	
Arsenic	<10.0	ug/L		10.0	1	07/09/19 10:00	07/10/19 21:34	7440-38-2	
Barium	<200	ug/L		200	1		07/10/19 21:34		
Boron	<50.0	-		50.0	1		07/10/19 21:34		
Calcium	106000			200	1		07/10/19 21:34		
Iron	3880	_		20.0	1		07/10/19 21:34		
Magnesium	22100	_		200	1		07/10/19 21:34		
Manganese	121	•		10.0	1		07/10/19 21:34		
Potassium	<5000			5000	1		07/10/19 21:34		
Sodium	5600			5000	1	07/09/19 10:00	07/10/19 21:34	7440-23-5	
6010 MET ICP, Dissolved	Analytical I	Method: EPA 60	10C						
Antimony, Dissolved	<60.0	ug/L		60.0	1		07/03/19 14:04	7440-36-0	
Arsenic, Dissolved	<10.0	ug/L		10.0	1		07/03/19 14:04		
Barium, Dissolved	<200	•		200	1		07/03/19 14:04		
Cadmium, Dissolved	<2.5			2.5	1		07/03/19 14:04		
Iron, Dissolved		ug/L		20.0	1		07/03/19 14:04		
Magnesium, Dissolved	19400	•		200	1		07/03/19 14:04		
Manganese, Dissolved	12.7			10.0	1		07/03/19 14:04		
Potassium, Dissolved	<5000	-		5000	1		07/03/19 14:04		
Sodium, Dissolved	5010	ug/L		5000	1		07/03/19 14:04	7440-23-5	
2320B Alkalinity	Analytical	Method: SM22 2	320B						
Alkalinity, Total as CaCO3	325	5 mg/L		1.0	1		07/09/19 00:20		
2340C Hardness, Total	Analytical	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	280	mg/L		5.0	1		07/11/19 17:19		
2540C Total Dissolved Solids	Analytical	Method: SM22 2	2540C						
Total Dissolved Solids	356	mg/L		20.0	1.		07/01/19 09:49	İ	
410.4 COD	Analytical	Method: EPA 41	0.4 Prepara	ation Me	thod: EF	PA 410.4			
Chemical Oxygen Demand	<10.6	mg/L		10.0	1	07/05/19 11:06	07/05/19 14:05	i	
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0						
Chloride	3.2	2 mg/L		2.0	1		07/09/19 23:55	16887-00-6	
Sulfate	30.4	_		5.0	1		07/09/19 23:55	14808-79-8	

REPORT OF LABORATORY ANALYSIS

without the written consent of Pace Analytical Services, LLC.

This report shall not be reproduced, except in full,

Page 20 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-1S	Lab ID: 709	5441001	Collected: 06/26/1	9 11:37	Received: 06	3/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 35	61.2 Preparation Met	hod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	0.18	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:54	4 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 35	53.2					
Nitrate as N	0.18	mg/L	0.050	1		06/27/19 22:0	8 14797-55-8	
Nitrate-Nitrite (as N)	0.18	mg/L	0.050	1		06/27/19 22:0	8 7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	hod: EPA 35	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:5	4 14797-65-0	
4500 Ammonia Water	Analytical Met	hod: SM22	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:4:	2 7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 90	060A					
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	D6
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	
Total Organic Carbon	3.9	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	D6
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	
Mean Total Organic Carbon	3.0	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-2S	Lab ID: 70	95441002 C	Collected: 06/26/	19 12:26	Received: 06	6/27/19 11:05 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	thod:						
Field pH	6.56	Std. Units		1		06/26/19 12:26		
Field Temperature	21.1	deg C		1		06/26/19 12:26		
Field Specific Conductance	380	umhos/cm		1		06/26/19 12:26		
REDOX	-133	mV		1		06/26/19 12:26		
Field Turbidity	15.2	NTU		1		06/26/19 12:26		
6010 MET ICP	Analytical Me	thod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:39	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:39	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 21:39		
Boron	<50.0	ug/L	50.0	1		07/10/19 21:39		
Calcium	70700	ug/L	200	1		07/10/19 21:39		
fron	2720	ug/L	20.0	1		07/10/19 21:39		
Magnesium	8470	ug/L	200	1		07/10/19 21:39		
Manganese Betaggium	1550	ug/L	10.0	1		07/10/19 21:39		
Potassium Sodium	<5000 <5000	ug/L ug/L	5000 5000	1 1		07/10/19 21:39 07/10/19 21:39		
2320B Alkalinity		ug/L thod: SM22 232		'	00.00	07710/19 21.39	7440-23-3	
	•			4		07/00/40 00:04		
Alkalinity, Total as CaCO3	197	mg/L	1.0	1		07/09/19 00:31		
2340C Hardness, Total	Analytical Me	thod: SM22 234	.0C					
Tot Hardness asCaCO3 (SM 2340B	170	mg/L	5.0	1		07/11/19 17:20		
2540C Total Dissolved Solids	Analytical Me	thod: SM22 254	OC					
Total Dissolved Solids	211	mg/L	10.0	1		07/01/19 09:49		
410.4 COD	Analytical Me	thod: EPA 410.4	Preparation Me	thod: EF	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:05		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.0)					
Chloride	3.4	mg/L	2.0	1		07/10/19 00:12	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 00:12		
351.2 Total Kjeldahl Nitrogen		_	Preparation Me		A 351.2	31.70770 00.72		
Nitrogen, Kjeldahl, Total	1.4	mg/L	0.10	1		07/44/40 12:54	7727 27 0	
		•		'	07/11/19 05.54	07/11/19 12:54	1121-31-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.2						
Nitrate as N	0.10	mg/L	0.050	1		06/27/19 22:10	14797-55-8	
Nitrate-Nitrite (as N)	0.10	mg/L	0.050	1		06/27/19 22:10	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.2	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:55	14797-65-0	
				•				

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-2S	Lab ID:	7095441002	Collected: 06/26/1	9 12:26	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	<0.16	mg/L	0.10	1		07/11/19 15:46	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	060A					
Total Organic Carbon	3.9	mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.8	3 mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.7	7 mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Mean Total Organic Carbon	3.0	mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-3S	Lab ID: 70	95441003 (Collected: 06/26/1	9 12:04	Received: 06	1/27/19 11:05 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	thod:						
Field pH	7.23	Std. Units		1		06/26/19 12:04		
Field Temperature	18.6	deg C		1		06/26/19 12:04		
Field Specific Conductance	953	umhos/cm		1		06/26/19 12:04		
REDOX	-144	m∨		1		06/26/19 12:04		
Field Turbidity	48.6	NTU		1		06/26/19 12:04		
6010 MET ICP	Analytical Me	thod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:44	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:44	7440-38-2	
Barium	203	ug/L	200	1	07/09/19 10:00	07/10/19 21:44	7440-39-3	
Boron	50.7	ug/L	50.0	1		07/10/19 21:44		
Calcium	78800	ug/L	200	1		07/10/19 21:44		
Iron	7490	ug/L	20.0	1		07/10/19 21:44		
Magnesium	24600	ug/L	200	1		07/10/19 21:44		
Manganese Potassium	63.8 <5000	ug/L	10.0	1		07/10/19 21:44		
Sodium	. 12600	ug/L ug/L	5000 5000	1 1		07/10/19 21:44 07/10/19 21:44		
2320B Alkalinity		ug/L thod: SM22 232		•	07709/19 10.00	07/10/19 21.44	7440-23-3	
Alkalinity, Total as CaCO3	289	mg/L	1.0	1		07/09/19 00:45		
•		_		i		07/09/19 00:45		
2340C Hardness, Total	·	thod: SM22 234						
Tot Hardness asCaCO3 (SM 2340B	280	mg/L	5.0	1		07/11/19 17:26		
2540C Total Dissolved Solids	Analytical Me	thod: SM22 254	10C					
Total Dissolved Solids	280	mg/L	20.0	1		07/01/19 09:50		
410.4 COD	Analytical Me	thod: EPA 410.4	4 Preparation Met	hod: EP	'A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.0)					
Chloride	7.2	mg/L	2.0	1		07/10/19 00:29	16887-00-6	
Sulfate	37.0	mg/L	5.0	1		07/10/19 00:29		
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 351.2	2 Preparation Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.32	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:55	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.2	2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/10 22:11	14707 55 9	
Nitrate as N Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:11 06/27/19 22:11		
, ,		-		•		UJIZII 13 ZZ.11	1121-31-8	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.2	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:56	14797-65-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-3S	Lab ID:	7095441003	Collected: 06/26/1	19 12:04	Received: (06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:47	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	060A					
Total Organic Carbon	1.4	4 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.3	3 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.4	4 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.4	4 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Mean Total Organic Carbon	1.4	4 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	

25 of 1984

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-3R	Lab ID: 70	95441004	Collected: 06/26/	19 12:11	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	thod:						
Field pH	7.72	Std. Units		1		06/26/19 12:1	1 .	
Field Temperature	14.4	deg C		1		06/26/19 12:1	1	
Field Specific Conductance	592	umhos/cm		1		06/26/19 12:1		
REDOX Field Turbidity	-158	mV		1		06/26/19 12:11		
	44.2	NTU		1		06/26/19 12:1	l	
6010 MET ICP	Analytical Me	thod: EPA 60	10C Preparation M	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:50	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1		0 07/10/19 21:50		
Barium	<200	ug/L	200	1		0 07/10/19 21:50		
Boron Calcium	<50.0 168000	ug/L	50.0 200	1 1		0 07/10/19 21:50		
lron	1200	ug/L ug/L	20.0	1) 07/10/19 21:5() 07/10/19 21:5(
Magnesium	26300	ug/L ug/L	20.0	1		0 07/10/19 21:50		
Manganese	131	ug/L	10.0	1		0 07/10/19 21:50		
Potassium	<5000	ug/L	5000	1		0 07/10/19 21:50		
Sodium	14700	ug/L	5000	1		0 07/10/19 21:50		
2320B Alkalinity	Analytical Me	thod: SM22 2	320B					
Alkalinity, Total as CaCO3	458	mg/L	1.0	1		07/09/19 01:0	5	
2340C Hardness, Total	Analytical Me	thod: SM22 2	340C					
Tot Hardness asCaCO3 (SM 2340B	440	mg/L	5.0	1		07/11/19 17:28	3	
2540C Total Dissolved Solids	Analytical Me	thod: SM22 2	540C					
Total Dissolved Solids	530	mg/L	20.0	1		07/01/19 09:5	1 .	
410.4 COD	Analytical Me	thod: EPA 410	0.4 Preparation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	14.6	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:00	3	
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300	0.0					
Chloride	43.6	mg/L	2.0	1		07/10/19 00:46	6 16887-00-6	
Sulfate	43.9	mg/L	5.0	1		07/10/19 00:46		
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 35	1.2 Preparation Me	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.28	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:56	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 35	3.2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:12	2 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:12		
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 35						
	•			4		00/07/40 40		
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:57	14797-65-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Sample: GW-3R	Lab ID: 1	7095441004	Collected: 06/26/1	9 12:11	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical N	Method: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:48	7664-41-7	
9060A TOC as NPOC	Analytical N	Method: EPA 90	960A					
Total Organic Carbon	5.1	mg/L	1.0	1		07/02/19 20:24	7440-44-0	
Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	7440-44-0	
Total Organic Carbon	5.1	mg/L	1.0	1		07/02/19 20:24	7440-44-0	
Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	7440-44-0	
Mean Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 709	5441005	Collected: 06/26/1	9 10:17	Received: 06	/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Met	thod:						
Field pH	8.14	Std. Units		1		06/26/19 10:17		
Field Temperature	13.2	deg C		1		06/26/19 10:17		
Field Specific Conductance	6440	umhos/cm		1		06/26/19 10:17	•	
REDOX	-104	mV		1		06/26/19 10:17	•	
Field Turbidity	113	NTU		1		06/26/19 10:17	i	
6010 MET ICP	Analytical Met	thod: EPA 601	DC Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:55	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:55	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 21:55		
Boron	2660	ug/L	50.0	1	07/09/19 10:00			
Calcium	104000	ug/L	200	1	07/09/19 10:00			
lron'	2200	ug/L	20.0	1	07/09/19 10:00			
Magnesium	19400	ug/L	200	1	07/09/19 10:00		,	
Manganese	160	ug/L	10.0	1		07/10/19 21:55		
Potassium	23400	ug/L	5000	1		07/10/19 21:55		
Sodium	1110000	ug/L	50000	10	07/09/19 10:00	07/11/19 15:20	7440-23-5	
6010 MET ICP, Dissolved	Analytical Met	thod: EPA 601	OC					
Antimony, Dissolved	<60.0	ug/L	60.0	1		07/03/19 14:07	7440-36-0	
Arsenic, Dissolved	<10.0	ug/L	10.0	1		07/03/19 14:07	7440-38-2	
Barium, Dissolved	<200	ug/L	200	1		07/03/19 14:07	7440-39-3	
Cadmium, Dissolved	<2.5	ug/L	2.5	1		07/03/19 14:07	7440-43- 9	
Iron, Dissolved	274-5	-	20.0	1		07/03/19 14:07	7439-89-6	
Magnesium, Dissolved	17500	ug/L	200	1		07/03/19 14:07	7439-95-4	
Manganese, Dissolved	123	ug/L	10.0	1		07/03/19 14:07		
Potassium, Dissolved	28200		5000	1		07/03/19 14:07		
Sodium, Dissolved	987000	ug/L	5000	1		07/03/19 14:07	7440-23-5	
2320B Alkalinity	Analytical Met	thod: SM22 23	20B					
Alkalinity, Total as CaCO3	111	mg/L	1.0	1		07/09/19 01:13	;	
2340C Hardness, Total	Analytical Met	thod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	310	mg/L	5.0	1		07/11/19 17:30		
2540C Total Dissolved Solids	Analytical Met	thod: SM22 25	40C					
Total Dissolved Solids	3360	mg/L	20.0	1		07/01/19 09:51		
410.4 COD	Analytical Met	thod: EPA 410	.4 Preparation Met	thod: EF	A 410.4			
Chemical Oxygen Demand	94.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06	•	
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 300	.0					
Chloride	2300	mg/L	200	100		07/10/19 20:40	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 01:02	14808-79-8	

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-4R	Lab ID: 709	5441005	Collected: 06/26/	19 10:17	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
351.2 Total Kjeldahl Nitrogen	Analytical Meti	hod: EPA 35°	I.2 Preparation Me	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	2.0	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:57	7 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 353	3.2					
Nitrate as N	0.076	mg/L	0.050	1		06/27/19 22:1:	3 14797-55-8	
Nitrate-Nitrite (as N)	0.076	mg/L	0.050	1		06/27/19 22:1:	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	hod: EPA 353	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:0	1 14797-65-0	
500 Ammonia Water	Analytical Met	hod: SM22 4	500 NH3 H					
Nitrogen, Ammonia	1.8	mg/L	0.10	1		07/11/19 15:49	7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 906	60A					
Total Organic Carbon	4.1	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	
Total Organic Carbon	4.1	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	
Total Organic Carbon	3.6	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	
Total Organic Carbon	3.5	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	
Mean Total Organic Carbon	3.8	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Sample: GW-5S	Lab ID: 70	95441006	Collected: 06/26	19 10:01	Received: 06	3/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	ethod:						
Field pH	7.08	Std. Units		1		06/26/19 10:01		
Field Temperature	17.4	deg C		1		06/26/19 10:01		
Field Specific Conductance	2760	umhos/cm		1		06/26/19 10:01		
REDOX	-28	mV		1		06/26/19 10:01		
Field Turbidity	7.11	NTU		1		06/26/19 10:01		
6010 MET ICP	Analytical Me	ethod: EPA 601	OC Preparation M	lethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:01	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 22:01	7440-38-2	
Barium	396	ug/L	200	1	07/09/19 10:00	07/10/19 22:01	7440-39-3	
Boron	75.8	ug/L	50.0	1	07/09/19 10:00	07/10/19 22:01	7440-42-8	
Calcium .	139000	ug/L	200	1	07/09/19 10:00	07/10/19 22:01	7440-70-2	
iron	2260	ug/L	20.0	1		07/10/19 22:01		
Magnesium	56200	ug/L	200	1		07/10/19 22:01		
Manganese Potassium	535	ug/L	10.0	1		07/10/19 22:01		
Sodium	<5000	ug/L	5000	1		07/10/19 22:01		
	380000	ug/L	5000	1	07/09/19 10:00	07/10/19 22:01	7440-23-5	
2320B Alkalinity	Analytical Me	ethod: SM22 23	20B					
Alkalinity, Total as CaCO3	713	mg/L	1.0	1		07/09/19 01:40		
2340C Hardness, Total	Analytical Me	ethod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	500	mg/L	5.0	1		07/11/19 17:36		
2540C Total Dissolved Solids	Analytical Me	ethod: SM22 25	40C					
Total Dissolved Solids	1530	mg/L	20.0	1		07/01/19 10:05		
110.4 COD	Analytical Me	ethod: EPA 410.	4 Preparation Me	thod: EF	A 410.4			
Chemical Oxygen Demand	72.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06		
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 300.	0					
Chloride	663	mg/L	40.0	20		07/10/19 20:56	16887-00-6	
Sulfate	40.1	mg/L	5.0	1		07/10/19 01:19		
351.2 Total Kjeldahl Nitrogen	Analytical Me	_	2 Preparation Me	thod: EF	A 351.2			
Nitrogen, Kjeldahl, Total	0.82	mg/L	0.10	1		07/11/19 12:58	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres		thod: EPA 353.		-				
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:14		
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:14	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:02	14797-65-0	
		_					-	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5S	Lab ID:	7095441006	Collected: 06/26/1	9 10:01	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	<0.16	mg/L	0.10	1		07/11/19 15:50	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	60A					
Total Organic Carbon	10.9	mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.6	6 mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.9	5 mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.5	5 mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Mean Total Organic Carbon	10.6	mg/L	1.0	1		07/02/19 20:59	7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 70

7095441

Sample: GW-5R	Lab ID: 709	95441007	Collected: 06/26/	19 09:45	Received: 00	6/27/19 11:05 N	Matrix: Water	***
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	thod:						
Field pH	6.92	Std. Units		1		06/26/19 09:45	;	
Field Temperature	16.9	deg C		1		06/26/19 09:45	i	
Field Specific Conductance	3350	umhos/cm		1		06/26/19 09:45	;	
REDOX	O/R	mV		1		06/26/19 09:45		
Field Turbidity	49	NTU		1		06/26/19 09:45		
6010 MET ICP	Analytical Me	thod: EPA 601	10C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:06	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 22:06	7440-38-2	
Barium	14700	ug/L	200	1	07/09/19 10:00	07/10/19 22:06	7440-39-3	
Boron	646	ug/L	50.0	1		07/10/19 22:06		
Calcium	255000	ug/L	200	1		07/10/19 22:06		
Iron	24700	ug/L	20.0	1		07/10/19 22:06		
Magnesium	95500	ug/L	200	1		07/10/19 22:06		
Manganese	462	ug/L	10.0	1		07/10/19 22:06		
Potassium	18400	ug/L	5000	1		07/10/19 22:06		
Sodium	387000	ug/L	5000	1	07/09/19 10:00	07/10/19 22:06	7440-23-5	
2320B Alkalinity	Analytical Me	thod: SM22 2	320B					
Alkalinity, Total as CaCO3	1280	mg/L	5.0	1		07/09/19 18:21	•	
2340C Hardness, Total	Analytical Met	thod: SM22 2	340C					
Tot Hardness asCaCO3 (SM 2340B	900	mg/L	5.0	1		07/11/19 17:41		
2540C Total Dissolved Solids	Analytical Met	thod: SM22 2	540C					
Total Dissolved Solids	1870	mg/L	20.0	1		07/01/19 10:06		
410.4 COD	Analytical Met	thod: EPA 410	0.4 Preparation Met	thod: EF	A 410.4			
Chemical Oxygen Demand	176	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:15		
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 300	0.0					
Chloride	461	mg/L	40.0	20		07/10/19 21:13	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 02:09		
351.2 Total Kjeldahl Nitrogen		_	.2 Preparation Met		A 351.2		7.000 70 0	
Nitrogen, Kjeldahl, Total	10.6	mg/L	0.50	5		07/11/19 13:33	7727-37-0	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	- •		J	0771710 00.04	0771710 10.00	1121-31-3	
	•		···					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:16	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:16	7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	thod: EPA 353	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:03	14797-65-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-5R	Lab ID: 709	5441007	Collected: 06/26/1	9 09:45	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
Nitrogen, Ammonia	7.6	mg/L	0.50	5		07/11/19 16:14	7664-41-7	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
Total Organic Carbon	50.1	mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	
Total Organic Carbon	50.6	mg/L	1.0	1		07/02/19 21:13	7 7440-44-0	
Total Organic Carbon	50.7	mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	
Total Organic Carbon	50.2	mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	
Mean Total Organic Carbon	50.4	mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-6S	Lab ID:	7095441008	Collected: 06/26/	19 11:06	Received: 06	3/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical I	Method:						
Field pH	7.02	Std. Units		1		06/26/19 11:06		
Field Temperature	15.2	deg C		1		06/26/19 11:06		
Field Specific Conductance	710	umhos/cm		1		06/26/19 11:06		
REDOX	55			1		06/26/19 11:06		
Field Turbidity	49.3	NTU		1		06/26/19 11:06		
6010 MET ICP	Analytical I	Method: EPA 60°	10C Preparation Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:12	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 22:12	7440-38-2	
Barium	287	ug/L	200	1		07/10/19 22:12		
Boron	67.5		50.0	1	07/09/19 10:00	07/10/19 22:12	7440-42-8	
Calcium	116000	-3	200	1		07/10/19 22:12		
Iron	1640	J	20.0	1	07/09/19 10:00	07/10/19 22:12	7439-89-6	
Magnesium	23800	.	200	1	07/09/19 10:00	07/10/19 22:12	7439-95-4	
Manganese	49.3	-3 -	10.0	1		07/10/19 22:12		
Potassium Sadium	5070		5000	1		07/10/19 22:12		
Sodium	<5000	ug/L	5000	1	07/09/19 10:00	07/10/19 22:12	7440-23-5	
2320B Alkalinity	Analytical N	Method: SM22 2	320B					
Alkalinity, Total as CaCO3	392	mg/L	1.0	1		07/09/19 02:52		
2340C Hardness, Total	Analytical N	Method: SM22 2	340C					
Tot Hardness asCaCO3 (SM 2340B	350	mg/L	5.0	1		07/11/19 17:42		
2540C Total Dissolved Solids	Analytical N	Method: SM22 2	540C					
Total Dissolved Solids	386	mg/L	20.0	1		07/01/19 10:06		
410.4 COD	Analytical N	Method: EPA 410	0.4 Preparation Met	hod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:16		
300.0 IC Anions 28 Days	Analytical N	Nethod: EPA 300	0.0					
Chloride	<2.0	mg/L	2.0	1		07/10/19 02:26	16887-00-6	
Sulfate	21.0	•	5.0	1		07/10/19 02:26		
351.2 Total Kjeldahl Nitrogen	Analytical N	lethod: EPA 351	.2 Preparation Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.37		0.10	1		07/11/19 13:00	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical N	Method: EPA 353						
•	-							
Nitrate as N	0.36	•	0.050	1		06/27/19 22:17		
Nitrate-Nitrite (as N)	0.36	mg/L	0.050	1		06/27/19 22:17	7727-37-9	
353.2 Nitrogen, NO2	Analytical N	/lethod: EPA 353	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:04	14797-65-0	
		-						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-6S	Lab ID: 709	5441008	Collected: 06/26/1	9 11:06	Received: 0	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Met	hod: SM22	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:53	3 7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 90	060A					
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0	
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0	
Total Organic Carbon	1.9	mg/L	1.0	1		07/02/19 22:13	3 7440-44-0	
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0	
Mean Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-6R	Lab ID:	7095441009	Collected:	06/26/	19 11:01	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	6.99	Std. Units			1		06/26/19 11:0	1	
Field Temperature	14.:	3 deg C			1		06/26/19 11:0	1	
Field Specific Conductance	1720	umhos/cm			1		06/26/19 11:0	11	
REDOX	-19	9 m∨			1		06/26/19 11:0	1	
Field Turbidity	109	9 NTU			1		06/26/19 11:0	1	
6010 MET ICP	Analytical	Method: EPA 60	10C Prepai	ration Me	ethod: El	PA 3005A			
Antimony	<60.0	0 ug/L		60.0	1	07/09/19 10:00	07/10/19 22:2	8 7440-36-0	
Arsenic	<10.0	ug/L		10.0	1	07/09/19 10:00	07/10/19 22:2	8 7440-38-2	
Barium	27			200	1	07/09/19 10:00	07/10/19 22:2	8 7440-39-3	
Boron	828	-5-		50.0	1		07/10/19 22:2		
Calcium	12500	- 5		200	1		07/10/19 22:2		M1
Iron	1660			20.0	1		07/10/19 22:2		
Magnesium	6540			200	1		07/10/19 22:2		
Manganese	509			10.0	1		07/10/19 22:2	_	
Potassium	13800			5000	1		07/10/19 22:2		
Sodium	179000	ug/L		5000	1	07/09/19 10:00	07/10/19 22:2	8 7440-23-5	M1
6010 MET ICP, Dissolved	Analytical	Method: EPA 60	10C						
Antimony, Dissolved	<60.0	ug/L		60.0	1		07/03/19 14:0	9 7440-36-0	
Arsenic, Dissolved	<10.0	D ug/L		10.0	1		07/03/19 14:0	9 7440-38-2	
Barium, Dissolved	219	3		200	1		07/03/19 14:0	9 7440-39-3	
Cadmium, Dissolved	<2.			2.5	1		07/03/19 14:0	9 7440-43-9	
Iron, Dissolved		3 Jug/L		20.0	1		07/03/19 14:0		
Magnesium, Dissolved	5830	~		200	1		07/03/19 14:0		
Manganese, Dissolved	419			10.0	1		07/03/19 14:0		
Potassium, Dissolved	1370			5000	1		07/03/19 14:0		
Sodium, Dissolved	164006	ug/L		5000	1		07/03/19 14:0	9 /440-23-5	
2320B Alkalinity	Analytical	Method: SM22 2	320B						
Alkalinity, Total as CaCO3	86:	3 mg/L		1.0	1		07/09/19 03:2	4	M1
2340C Hardness, Total	Analytical	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	520	mg/L		5.0	1		07/11/19 18:0	0	
2540C Total Dissolved Solids	Analytical	Method: SM22 2	540C						
Total Dissolved Solids	928	3 mg/L		20.0	1		07/01/19 10:0	7	
410.4 COD	Analytical	Method: EPA 410	0.4 Prepara	ation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	27.8	3 mg/L		10.0	1	07/09/19 09:02	07/09/19 11:1	6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 300	0.0						
Chloride	63.6	mg/L		10.0	5		07/11/19 10:3	6 16887-00-6	
Sulfate	35.3			5.0	1			3 14808-79-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

KAP91 8/17/19

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID: 709	5441009	Collected: 06/26/1	9 11:01	Received: 06	3/27/19 11:05 I	Vatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 35	1.2 Preparation Me	thod: EP	PA 351.2			
Nitrogen, Kjeldahl, Total	4.4	mg/L	0.10	1	07/11/19 05:54	07/11/19 13:02	7727-37-9	M1
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 35	53.2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:18	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:18	7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	hod: EPA 35	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:08	14797-65-0	M1
4500 Ammonia Water	Analytical Met	hod: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	3.1	mg/L	0.10	1		07/11/19 15:54	7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 90	060A					
Total Organic Carbon	8.9	mg/Ļ	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.8	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Mean Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID:	7095441010	Collected:	06/26/1	19 09:31	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	7.23	Std. Units			1		06/26/19 09:3	1	
Field Temperature	15.3				1		06/26/19 09:3	1	
Field Specific Conductance	758				1		06/26/19 09:3		
REDOX	-68				1		06/26/19 09:3		
Field Turbidity	758	3 NTU			1		06/26/19 09:3	1	
6010 MET ICP	Analytical	Method: EPA 601	10C Prepar	ation Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L		60.0	1	07/09/19 10:0	0 07/10/19 22:5	7 7440-36-0	
Arsenic	<10.0	ug/L		10.0	1	07/09/19 10:0	0 07/10/19 22:5	7 7440-38-2	
Barium -	42			200	1		0 07/10/19 22:5		
Boron	68.8	_		50.0	1		00 07/10/19 22:5		
Calcium	120000	-		200	1		00 07/10/19 22:5		
Iron	2890	.		20.0	1		00 07/10/19 22:5		
Magnesium Manganese	30100 1020			200 10.0	1 1		00 07/10/19 22:5 00 07/10/19 22:5		
Potassium	7670	J		5000	1		00 07/10/19 22:5 00 07/10/19 22:5		
Sodium	<5000			5000	1		0 07/10/19 22:5		
2320B Alkalinity	Analytical	Method: SM22 2	320B						
Alkalinity, Total as CaCO3	396	6 mg/L		1.0	1		07/09/19 04:4	6	
2340C Hardness, Total	Analytical	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	340	mg/L		5.0	1		07/11/19 18:1	8	
2540C Total Dissolved Solids	Analytical	Method: SM22 2	540C						
Total Dissolved Solids	376	mg/L		20.0	1		07/01/19 10:2	0	
410.4 COD	Analytical	Method: EPA 410	0.4 Prepara	ition Met	thod: EP	A 410.4			
Chemical Oxygen Demand	16.8	3 mg/L		10.0	1	07/09/19 09:0	07/09/19 11:1	7	
300.0 IC Anions 28 Days	Analytical	Method: EPA 300	0.0						
Chloride	<2.6	mg/L		2.0	1		07/10/19 03:3	3 16887-00-6	
Sulfate	8.8	•		5.0	1			3 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 351	1.2 Prepara	ition Met	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	2.7	7 mg/L		0.10	1	07/11/19 05:5	4 07/11/19 13:0	5 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 353	3.2						
Nitrate as N	1.3	3 mg/L		0.050	1		06/27/19 22:2	4 14797-55-8	
Nitrate-Nitrite (as N)	1.3	_		0.050	1		06/27/19 22:2		
353.2 Nitrogen, NO2		J	2.2		•				
<u>-</u> ,	•	Method: EPA 353	3. Z						
Nitrite as N	<0.050) mg/L		0.050	1		06/27/19 20:1	2 14797-65-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID:	7095441010	Collected: 06/26/	19 09:31	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22	4500 NH3 H					
Nitrogen, Ammonia	1.	1 mg/L	0.10	1		07/11/19 16:00	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 9	060A					
Total Organic Carbon	3.	6 mg/L	1.0	1		07/02/19 23:32	7440-44-0	
Total Organic Carbon	3.	6 mg/L	1.0	1		07/02/19 23:32	7440-44-0	
Total Organic Carbon	3.	6 mg/L	1.0	1		07/02/19 23:32	7440-44-0	
Total Organic Carbon	3.	7 mg/L	1.0	1		07/02/19 23:32	7440-44-0	
Mean Total Organic Carbon	3.	6 mg/L	1.0	1		07/02/19 23:32	7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 7	095441011	Collected:	06/26/1	19 09:23	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical M	lethod:							
Field pH	7.22	Std. Units			1		06/26/19 09:2	3	
Field Temperature	12.8	deg C			1		06/26/19 09:2:	3	
Field Specific Conductance	2050	umhos/cm			1		06/26/19 09:2:		
REDOX	-155				1		06/26/19 09:2:		
Field Turbidity	41.7	NTU			1		06/26/19 09:2	3	
6010 MET ICP	Analytical M	1ethod: EPA 60	10C Prepai	ration Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L		60.0	1	07/09/19 10:00	07/10/19 23:0	2 7440-36-0	
Arsenic	49.7	ug/L		10.0	1	07/09/19 10:00	07/10/19 23:0	2 7440-38-2	
Barium	1830	ug/L		200	1		07/10/19 23:0		
Boron	851	ug/L		50.0	1		07/10/19 23:0:		
Calcium	195000	9		200	1		07/10/19 23:0		
Iron	21100	-		20.0	1		07/10/19 23:0		
Magnesium	86700			200	1		07/10/19 23:0		
Manganese	230	<u> </u>		10.0	1		07/10/19 23:0		
Potassium	8740 171000	•		5000 5000	1 1) 07/10/19 23:0:) 07/10/19 23:0:		
Sodium		Ū		3000	•	07/09/19 10.00	0111011923.0	2 1440-23-3	
2320B Alkalinity	Analytical N	Method: SM22 2	:320B						
Alkalinity, Total as CaCO3	833	mg/L		1.0	1		07/09/19 05:1	7	
2340C Hardness, Total	Analytical M	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	700	mg/L		5.0	1		07/11/19 18:20)	
2540C Total Dissolved Solids	Analytical N	Method: SM22 2	2540C						
Total Dissolved Solids	1270	mg/L		20.0	1		07/01/19 10:2	0	
410.4 COD	Analytical N	Nethod: EPA 41	0.4 Prepara	ation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	127	mg/L		10.0	1	07/09/19 09:02	2 07/09/19 11:1	7	
300.0 IC Anions 28 Days	Analytical N	Method: EPA 30	0.0						
Chloride	387	mg/L		2.0	1		07/10/19 03:5	0 16887-00-6	
Sulfate	6.0	•		5.0	1			0 14808-79-8	
351.2 Total Kjeldahl Nitrogen		//ethod: EPA 35	1.2 Prepara			Δ 351 2			
-	•		1.2 I Topuli				I 07/41/40 42·0	7 7727 27 0	
Nitrogen, Kjeldahl, Total	3.0	J		0.10	1	07/11/19 05.54	1 07/11/19 13:0	1 1121-31-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical N	Nethod: EPA 35	3.2						
Nitrate as N	<0.050	mg/L		0.050	1		06/27/19 22:2	5 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		06/27/19 22:2	5 7727-37-9	
353.2 Nitrogen, NO2	Analytical N	Method: EPA 35	3.2						
Nitrite as N	<0.050	mg/L		0.050	1		06/27/19 20:1	5 14797-65-0	
								· -	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID:	7095441011	Collected: 06/26/	19 09:23	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22	4500 NH3 H					
Nitrogen, Ammonia	0.3	1 mg/L	0.10	1		07/11/19 16:01	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	060A					
Total Organic Carbon	38.4	4 mg/L	1.0	1		07/02/19 23:5	1 7440-44-0	
Total Organic Carbon	38.0	6 mg/L	1.0	1		07/02/19 23:51	1 7440-44-0	
Total Organic Carbon	39.0	mg/L	1.0	1		07/02/19 23:51	1 7440-44-0	
Total Organic Carbon	38.9	9 mg/L	1.0	1		07/02/19 23:51	1 7440-44-0	
Mean Total Organic Carbon	38.3	7 mg/L	1.0	1		07/02/19 23:51	1 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID:	7095441012	Collected: 06/2	6/19 12:27	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:						
Field pH	7.0	4 Std. Units		1		06/26/19 12:23	7	
Field Temperature	13.	8 deg C		1		06/26/19 12:23	7	
Field Specific Conductance	38			1		06/26/19 12:2		
REDOX	-1			1		06/26/19 12:23		
Field Turbidity	4	6 NTU		1		06/26/19 12:21	7	
6010 MET ICP	Analytical	Method: EPA 60	10C Preparation	Method: E	PA 3005A			
Antimony	<60.	•	60	0 1	07/09/19 10:00	07/10/19 23:08	3 7440-36-0	
Arsenic	<10.		10		07/09/19 10:00	07/10/19 23:0	3 7440-38-2	
Barium	25	-5-	20			0 07/10/19 23:08		
Boron	<50.	- 3	50			0 07/10/19 23:08		
Calcium	7480		20			0 07/10/19 23:08		
Iron	191		20			0 07/10/19 23:08		
Magnesium Magnesium	981 38	·	20 10			07/10/19 23:08 0 07/10/19 23:08		
Manganese Potassium	-500		500			0 07/10/19 23:0		
Sodium	<500	•	500			0 07/10/19 23:00		
2320B Alkalinity	Analytical	Method: SM22 2	320B					
Alkalinity, Total as CaCO3	21	8 mg/L	1	0 1		07/09/19 05:2	3	
2340C Hardness, Total	Analytical	Method: SM22 2	340C					
Tot Hardness asCaCO3 (SM 2340B	90.	0 mg/L	5	0 1		07/11/19 18:22	2	
2540C Total Dissolved Solids	Analytical	Method: SM22 2	540C					
Total Dissolved Solids	25	4 mg/L	10	0 1		07/01/19 10:2	1	
410.4 COD	Analytical	Method: EPA 41	0.4 Preparation I	Лethod: EF	PA 410.4			
Chemical Oxygen Demand	32.	2 mg/L	10	0 1	07/09/19 09:02	2 07/09/19 11:17	7	
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0					
Chloride	3.	7 mg/L	2	0 1		07/10/19 04:00	6 16887-00-6	
Sulfate	9.	8 mg/L	5	0 1		07/10/19 04:0	6 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 35	1.2 Preparation I	/lethod: EF	PA 351.2		•	
Nitrogen, Kjeldahl, Total	0.5	7 mg/L	0 .1	0 1	07/11/19 05:54	07/11/19 13:08	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 35	3.2					
Nitrate as N	<0.05	0 mg/L	0.08	0 1		06/27/19 22:20	3 14797-55-8	
Nitrate-Nitrite (as N)	<0.05	_	0.05			06/27/19 22:20		
, ,		Method: EPA 35		•		·		
353.2 Nitrogen, NO2	,			_				
Nitrite as N	<0.05	0 mg/L	0.05	0 1		06/27/19 20:10	6 14797-65-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-9R	Lab ID: 709	5441012	Collected: 06/26/1	9 12:27	Received: 0	6/27/19 11:05 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Met	hod: SM22 4	500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 16:02	7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 90	60A					
Total Organic Carbon	7.6	mg/L	1.0	1		07/03/19 00:08	7440-44-0	
Total Organic Carbon	7.8	mg/L	1.0	1		07/03/19 00:08	7440-44-0	
Total Organic Carbon	7.8	mg/L	1.0	1		07/03/19 00:08	7440-44-0	
Total Organic Carbon	7.7	mg/L	1.0	1		07/03/19 00:08	7440-44-0	
Mean Total Organic Carbon	7.7	mg/L	1.0	1		07/03/19 00:08	7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-X GW-5R	Lab ID: 709	5441013	Collected: 06/2	3/19 09:45	Received: 06	5/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 601	10C Preparation	Method: E	PA 3005A			
Antimony	<60.0	ug/L	60.) 1	07/09/19 10:00	07/10/19 23:13	7440-36-0	
Arsenic	<10.0	ug/L	10.	1.	07/09/19 10:00	07/10/19 23:13	7440-38-2	
Barium	14400	ug/L	20	1	07/09/19 10:00	07/10/19 23:13	7440-39-3	
Boron	645	ug/L	50.) 1	07/09/19 10:00	07/10/19 23:13	7440-42-8	
Calcium	252000	ug/L	20) 1	07/09/19 10:00	07/10/19 23:13	3 7440-70-2	
ron	22700	ug/L	20.) 1	07/09/19 10:00	07/10/19 23:13	7439-89-6	
1agnesium	94200	ug/L	20) 1	07/09/19 10:00	07/10/19 23:13	7439-95-4	
/langanese	460	ug/L	10.) 1	07/09/19 10:00	07/10/19 23:13	7439-96-5	
otassium	18500	ug/L	500) 1	07/09/19 10:00	07/10/19 23:13	3 7440-09-7	
odium	382000	ug/L	500) 1	07/09/19 10:00	07/10/19 23:13	3 7440-23-5	
320B Alkalinity	Analytical Meth	od: SM22 2	320B					
Alkalinity, Total as CaCO3	1280	mg/L	5.) 1		07/09/19 18:28	3	
340C Hardness, Total	Analytical Meth	od: SM22 2	340C					
ot Hardness asCaCO3 (SM 2340B	900	mg/L	5.) 1		07/11/19 18:29)	
540C Total Dissolved Solids	Analytical Meth	od: SM22 2	540C					
otal Dissolved Solids	1800	mg/L	20) 1		07/01/19 10:21	l	
10.4 COD	Analytical Meth	od: EPA 410	0.4 Preparation N	lethod: Ef	PA 410.4			
chemical Oxygen Demand	169	mg/L	10.) 1	07/09/19 09:02	07/09/19 11:17	,	
00.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Chloride	464	mg/L	40.			07/10/19 21:46		
Sulfate	<5.0	mg/L	5. 1. 2. Dramasation 1		DA 054 0	07/10/19 04:23	14000-79-0	
51.2 Total Kjeldahl Nitrogen	·		1.2 Preparation N			07//4//0 40:04	7707.07.0	
litrogen, Kjeldahl, Total	12.8	mg/L	0.5	5	07/11/19 05:54	07/11/19 13:34	1121-31-9	
53.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	100: EPA 350						
Nitrate as N	<0.050	mg/L	0.05			06/27/19 22:30	_	
litrate-Nitrite (as N)	<0.050	mg/L	0.05) 1		06/27/19 22:30	7727-37-9	
53.2 Nitrogen, NO2	Analytical Meth	od: EPA 350	3.2					
litrite as N	<0.050	mg/L	0.05	0 1		06/27/19 20:18	3 14797-65-0	
500 Ammonia Water	Analytical Meth	nod: SM22 4	500 NH3 H					
litrogen, Ammonia	7.6	mg/L	0.5	5		07/11/19 17:17	7664-41-7	
060A TOC as NPOC	Analytical Meth	od: EPA 900	60A					
otal Organic Carbon	49.7	mg/L	1.			07/03/19 00:26		
otal Organic Carbon	50.2	mg/L	1.	0 1		07/03/19 00:26	7440-44-0	
Total Organic Carbon	49.9	mg/L	1.	0 1		07/03/19 00:26	7440-44-0	
Total Organic Carbon	50.1	mg/L	1	0 1		07/03/19 00:26	7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Lab ID: 7095441013

Collected: 06/26/19 09:45

Report Limit

Prepared

Received: 06/27/19 11:05

Analyzed

Matrix: Water

CAS No.

Qual

9060A TOC as NPOC

Sample: GW-X

Analytical Method: EPA 9060A

Mean Total Organic Carbon

Date: 07/26/2019 04:57 PM

Parameters

50.0

Results

mg/L

Units

1.0

DF

07/03/19 00:26 7440-44-0

Client Sample ID: GW-1S

Lab Sample ID:

420-157149-1

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-157149-1

SDG ID.: Matrix:

7095441

Water

Date Sampled:

06/26/2019 11:37

Reporting Basis:

WET

Date Received:

07/18/2019 08:55

CAS No.	Analyte	Conc.	RL	, , , , , , , , , , , , , , , , , , , ,	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010		mg/L	υ		1	EPA 420.4 Rev.1

Client Sample ID: GW-2S

Lab Sample ID: 420-156225-1

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.: Matrix:

7095441

Date Sampled: 06/26/2019 12:26

Reporting Basis:

Water

WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	Ū		1	EPA 420.4 Rev.1

Client Sample ID: GW-3S

Lab Sample ID:

420-156225-2

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 12:04

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	c Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L U		1	EPA 420.4 Rev.1

Client Sample ID: GW-3R

Lab Sample ID: 420-156225-3

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled: 06/26/2019 12:11

Reporting Basis: WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	C	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	. U		1	EPA 420.4 Rev.1

Client Sample ID:

GW-4R

Lab Sample ID:

420-156225-4

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 10:17

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	C	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-5S

Lab Sample ID:

420-156225-5

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.: Matrix:

7095441

Water

Date Sampled:

06/26/2019 10:01

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL .	Units C	Q DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L U	1	EPA 420.4 Rev.1

Client Sample ID:

GW-5R

Lab Sample ID:

420-156225-6

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 09:45

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	C Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L U		1	EPA 420.4 Rev.1

Client Sample ID: GW-6S

Lab Sample ID: 420-156225-7

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled: 06/26/2019 11:06

Reporting Basis:

WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-6R

Lab Sample ID:

420-156225-8

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 11:01

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	C	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-7S

Lab Sample ID: 420-156225-9

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 09:31

Reporting Basis:

WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units C	Q DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L U	1	EPA 420.4 Rev.1

Client Sample ID: GW-7R

Lab Sample ID: 420-156225-10

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled: 06/26/2019 09:23

Reporting Basis:

WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	. C	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-9R

Lab Sample ID: 420-156225-11

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled: 06/26/2019 12:27

Reporting Basis: WET Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-X

Lab Sample ID:

420-156225-12

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 09:45

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	Ū		1	EPA 420.4 Rev.1

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-1S	Lab ID: 70954	41014	Collected: 06/25/19 12	01 Received: 06/27/19 11:05 Matrix:	Water
Parameters	Results	Units	Report Limit DF	Prepared Analyzed CA	AS No. Qual
8260C Volatile Organics	Analytical Method	1: EPA 82	260C/5030C		
Acetone	<5.0UJ	ug/L	5.0 1	07/06/19 17:58 67-6	4-1
Acrylonitrile	<1.0	ug/L	1.0 1	07/06/19 17:58 107-	
Benzene	<1.0	ug/L	1.0 1	07/06/19 17:58 71-4	
Bromochloromethane	<1.0	ug/L	1.0 1	07/06/19 17:58 74-9	
Bromodichloromethane	<1.0	_ ug/L	1.0 1	07/06/19 17:58 75-2	
Bromoform	<1.0115	ug/L	1.0 1	07/06/19 17:58 75-2	
Bromomethane	<1.0	ug/L	1.0 1	07/06/19 17:58 74-8	
2-Butanone (MEK)	<5.0	ug/L	5.0 1	07/06/19 17:58 78-9	
Carbon disulfide	<1.0	ug/L	1.0 1	07/06/19 17:58 75-1	
Carbon tetrachloride	<1.0	ug/L	1.0 1	07/06/19 17:58 56-2	
Chlorobenzene	<1.0	ug/L	1.0 1	07/06/19 17:58 108-	
Chloroethane	<1.0	ug/L	1.0 1	07/06/19 17:58 75-0	
Chloroform	<1.0	ug/L	1.0 1	07/06/19 17:58 67-6	
Chloromethane	<1.0	ug/L	1.0 1	07/06/19 17:58 74-8	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0 1	07/06/19 17:58 96-1	
Dibromochloromethane	<1.0	ug/L	1.0 1	07/06/19 17:58 124-	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0 1	07/06/19 17:58 106-	
Dibromomethane	<1.0	ug/L	1.0 1	07/06/19 17:58 74-9	
1,2-Dichlorobenzene	<1.0	ug/L	1.0 1	07/06/19 17:58 95-5	
1,4-Dichlorobenzene	<1.0	ug/L	1.0 1	07/06/19 17:58 106-	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0 1	07/06/19 17:58 110-	
1.1-Dichloroethane	<1.0	ug/L	1.0 1	07/06/19 17:58 75-3	
1,2-Dichloroethane	<1.0	ug/L	1.0 1	07/06/19 17:58 107-	
1,1-Dichloroethene	<1.0	ug/L	1.0 1	07/06/19 17:58 75-3	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0 1	07/06/19 17:58 156-	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0 1	07/06/19 17:58 156-	
1,2-Dichloropropane	<1.0	ug/L ug/L	1.0 1		
cis-1,3-Dichloropropene	<1.0	ug/L ug/L	1.0 1	07/06/19 17:58 78-8	
trans-1,3-Dichloropropene	<1.045	ug/L	1.0 1	07/06/19 17:58 1006	
Ethylbenzene	<1.0	ug/L	1.0 1	07/06/19 17:58 1006	
2-Hexanone	<5.0	ug/L ug/L	5.0 1	07/06/19 17:58 100-4	
Iodomethane	<1.0	_	1.0 1	07/06/19 17:58 591-	
Methylene Chloride	<1.0	ug/L		07/06/19 17:58 74-8	
•		ug/L		07/06/19 17:58 75-09	
4-Methyl-2-pentanone (MIBK) Styrene	<5.0 <1.0	ug/L	5.0 1	07/06/19 17:58 108-	
•		ug/L	1.0 1	07/06/19 17:58 100-4	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0 1	07/06/19 17:58 630-2	
1,1,2,2-Tetrachloroethane Tetrachloroethene	<1.0	ug/L	1.0 1	07/06/19 17:58 79-34	
Toluene	<1.0	ug/L	1.0 1	07/06/19 17:58 127-	
	<1.0	ug/L	1.0 1	07/06/19 17:58 108-8	
1,1,1-Trichloroethane	<1.0	ug/L	1.0 1	07/06/19 17:58 71-58	
1,1,2-Trichloroethane Trichloroethene	<1.0	ug/L	1.0 1	07/06/19 17:58 79-00	
	<1.0	ug/L	1.0 1	07/06/19 17:58 79-0	
Trichlorofluoromethane	<1.0	ug/L	1.0 1	07/06/19 17:58 75-69	
1,2,3-Trichloropropane	<1.0	ug/L	1.0 1	07/06/19 17:58 96-18	
Vinyl acetate	<1.0	ug/L	1.0 1	07/06/19 17:58 108-0	
Vinyl chloride	<1.0	ug/L	1.0 1	07/06/19 17:58 75-0	
Xylene (Total)	<3.0	ug/L	3.0 1	07/06/19 17:58 1330	-20-7

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

JAM 8/19/19

Page 46 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-1S	Lab ID: 70	95441014	Collected: 06/25/1	9 12:01	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	ethod: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	129	%	68-153	1		07/06/19 17:58	17060-07-0	
4-Bromofluorobenzene (S)	93	%	79-124	1		07/06/19 17:58	460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 17:58	2037-26-5	

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-2S	Lab ID: 70954	41015	Collected: 06/25/19 1	10:40	Received: 06/27/19	11:05	Matrix: Water	V-1.1.
Parameters	Results	Units	Report Limit [DF	Prepared A	nalyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	d: EPA 8	260C/5030C					
Acetone	<5.0 UJ	ug/L	5.0	1	07/06	6/19 17:3	9 67-64-1	
Acrylonitrile	<1.0	ug/L		1			9 107-13-1	
Benzene	<1.0	ug/L		1			9 71-43-2	
Bromochloromethane	<1.0	ug/L		1			9 74-97-5	
Bromodichloromethane	<1.0	ug/L		1			9 75-27-4	
Bromoform	<1.0 UJ	ug/L		1			9 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1			9 74-83-9	OL,LZ
2-Butanone (MEK)	<5.0	ug/L		1			9 78-93-3	IL.
Carbon disulfide	<1.0	ug/L		1			75-35-3 75-15-0	11-
Carbon tetrachloride	<1.0	ug/L		1			9 56-23-5	
Chlorobenzene	<1.0	ug/L		1				
Chloroethane	<1.0	ug/L		1			9 108-90-7 9 75-00-3	
Chloroform	<1.0	ug/L		1				
Chloromethane	<1.0	ug/L		1			9 67-66-3	
1,2-Dibromo-3-chloropropane	<1.0	-					74-87-3	
Dibromochloromethane	<1.0	ug/L		1			96-12-8	
1,2-Dibromoethane (EDB)		ug/L		1			124-48-1	
, ,	<1.0	ug/L		1			0 106-93-4	
Dibromomethane	<1.0	ug/L		1			74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L		1	07/06	/19 17:39	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L		1	07/06	/19 17:39	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1	07/06	/19 17:39	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1	07/06	/19 17:39	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1	07/06	/19 17:39	107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1	07/06	/19 17:39	75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06	/19 17:39	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06	/19 17:39	156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1	07/06	/19 17:39	78-87-5	
cis-1,3-Dichloropropene	<1.0	_ug/L	1.0	1	07/06	/19 17:39	10061-01-5	
trans-1,3-Dichloropropene	CN 0.1>	ug/L	1.0	1			10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1			100-41-4	
2-Hexanone	<5.0	ug/L		1			591-78-6	
lodomethane	<1.0	ug/L		1			74-88-4	
Methylene Chloride	<1.0	ug/L		1			75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		, 1			108-10-1	
Styrene	<1.0	ug/L		1			100-10-1	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0				630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1				
Tetrachloroethene	<1.0	ug/L					79-34-5	
Toluene	<1.0			1			127-18-4	
1,1,1-Trichloroethane	<1.0 <1.0	ug/L		1			108-88-3	
1,1,2-Trichloroethane		ug/L		1			71-55-6	
Trichloroethene	<1.0	ug/L		1			79-00-5	
Trichlorofluoromethane	<1.0	ug/L		1			79-01-6	
	<1.0	ug/L		1			75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L		1			96-18-4	
Vinyl acetate	<1.0	ug/L		1	07/06	/19 17:39	108-05-4	
Vinyl chloride	<1.0	ug/L		1	07/06	/19 17:39	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0 1	1	07/06	19 17:39	1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

FABE 19/19

Page 48 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-2S	Lab ID:	7095441015	Collected: 06/25/1	9 10:40	Received: 0	6/27/19 11:05	Matrix: Water	-
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	5 %	68-153	1		07/06/19 17:39	17060-07-0	
4-Bromofluorobenzene (S)	9	5 %	79-124	1		07/06/19 17:39		
Toluene-d8 (S)	9	5 %	69-124	1		07/06/19 17:39		

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-3S	Lab ID: 70954	41016	Collected: 06/25/1	9 10:10	Received: 0	6/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	t: EPA 8	260C/5030C					
Acetone	<5.0 UJ	ug/L	5.0	1		07/06/19 17:20	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 17:20	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 17:20	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
Bromoform	<1.0UJ		1.0	1		07/06/19 17:20		CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 17:20	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 17:20		IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 17:20		
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 17:20		
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20		
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
Chloroform	<1.0	ug/L	1.0	1		07/06/19 17:20		
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 17:20		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 17:20		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20		
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 17:20		
1.1-Dichloroethane	<1.0 <1.0	ug/L	1.0	1		07/06/19 17:20		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:20		
cis-1,2-Dichloroethene	<1.0	ug/L ug/L	1.0	1		07/06/19 17:20		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:20		
·	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,2-Dichloropropane	<1.0	ug/L _ug/L	1.0	1		07/06/19 17:20		
cis-1,3-Dichloropropene	<1.0 UJ	ug/L ug/L	1.0	1		07/06/19 17:20		L1
trans-1,3-Dichloropropene	<1.0		1.0	1		07/06/19 17:20		
Ethylbenzene		ug/L	5.0	1		07/06/19 17:20		
2-Hexanone	<5.0	ug/L	1.0	1		07/06/19 17:20		
Iodomethane	<1.0 <1.0	ug/L	1.0	1		07/06/19 17:20		
Methylene Chloride		ug/L	5.0	1		07/06/19 17:20		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		1		07/06/19 17:20		
Styrene	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0 1.0	1		07/06/19 17:20		
1,1,2,2-Tetrachloroethane	<1.0	ug/L				07/06/19 17:20		
Tetrachloroethene	<1.0	ug/L	1.0	1 1		07/06/19 17:20		
Toluene	<1.0	ug/L	1.0	-		07/06/19 17:20		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
Trichloroethene	2.9	ug/L	1.0	1				
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 17:20		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:20		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 17:20		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 17:20		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 17:20	1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANN 8/19/1 9 Page 50 of 153

Date: 07/26/2019 04:57 PM

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3S	Lab ID: 70	95441016	Collected: 06/25/1	9 10:10	Received: 06	3/27/19 11:05 N	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
8260C Volatile Organics	Analytical Me	Analytical Method: EPA 8260C/5030C									
Surrogates											
1,2-Dichloroethane-d4 (S)	127	%	68-153	1		07/06/19 17:20	17060-07-0				
4-Bromofluorobenzene (S)	95	%	79-124	1		07/06/19 17:20	460-00-4				
Toluene-d8 (S)	96	%	69-124	1		07/06/19 17:20	2037-26-5				

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-3R	Lab ID: 70954	41017	Collected: 06/25/1	9 10:15	Received: 06	3/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	d: EPA 8	260C/5030C					
Acetone	<5.0UJ	ug/L	5.0	1		07/06/19 17:00	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 17:00	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 17:00	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	74-97-5	
Bromodichloromethane	<1.0	. ua/L	1.0	1		07/06/19 17:00	75-27-4	
Bromoform	<1.0US	ug/L	1.0	1		07/06/19 17:00	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 17:00	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 17:00	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 17:00	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 17:00	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:00	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 17:00	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 17:00	96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 17:00	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
1.2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:00	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:00		
trans-1.4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:0		
cis-1,2-Dichloroethene	1.5	ug/L	1.0	1		07/06/19 17:0		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:0		
	<1.0	ug/L	1.0	1		07/06/19 17:0		
1,2-Dichloropropane	<1.0	ug/L ug/L	1.0	1		07/06/19 17:0		
cis-1,3-Dichloropropene	<1.0 US	ug/L	1.0	1		07/06/19 17:0		L1
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 17:0		
Ethylbenzene	<5.0		5.0	1		07/06/19 17:0		
2-Hexanone	<1.0	ug/L ug/L	1.0	1		07/06/19 17:0		
lodomethane	<1.0 <1.0	ug/L ug/L	1.0	1		07/06/19 17:0		
Methylene Chloride	<5.0	ug/L ug/L	5.0	1		07/06/19 17:0		
4-Methyl-2-pentanone (MIBK)	<1.0	_	1.0	1		07/06/19 17:0		
Styrene	<1.0	ug/L	1.0	1		07/06/19 17:0		
1,1,1,2-Tetrachloroethane		ug/L	1.0	1		07/06/19 17:0		
1,1,2,2-Tetrachloroethane	<1.0	ug/L				07/06/19 17:0		
Tetrachioroethene	<1.0	ug/L	1.0	1		07/06/19 17:0		
Toluene	<1.0	ug/L	1.0	1				
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:0		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:0		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:0		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 17:0		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:0		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 17:0		
Vinyl chloride	3.4	ug/L	1.0	1		07/06/19 17:0		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 17:0	0 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

4W 108/19/19 Page 52 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3R	Lab ID:	7095441017	Collected: 06/25/1	9 10:15	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	2 %	68-153	1		07/06/19 17:00	17060-07-0	
4-Bromofluorobenzene (S)	9	4 %	79-124	1		07/06/19 17:00	460-00-4	
Toluene-d8 (S)	9	5 %	69-124	1		07/06/19 17:00	2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 709544	41018	Collected: 06/25/1	9 09:15	Received: 06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyze	CAS No.	Qual
8260C Volatile Organics	Analytical Method	1: EPA 8:	260C/5030C				
Acetone	<5.0 UJ	ug/L	5.0	1	07/06/19 16	:41 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1	07/06/19 16	:41 107-13-1	
Benzene	<1.0	ug/L	1.0	1	07/06/19 16	:41 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1	07/06/19 16	:41 74-97-5	
Bromodichloromethane	<1.0	- ug/L	1.0	1	07/06/19 16	:41 75-27-4	
Bromoform	<1.0 LS	ug/L	1.0	1	07/06/19 16	:41 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1	07/06/19 16	:41 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1	07/06/19 16	:41 78-93-3	IL.
Carbon disulfide	<1.0	ug/L	1.0	1	07/06/19 16	:41 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1	07/06/19 16	:41 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1	07/06/19 16	:41 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1	07/06/19 16	:41 75-00-3	
Chloroform	<1.0	ug/L	1.0	1	07/06/19 16	:41 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1	07/06/19 16	:41 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1	07/06/19 16	:41 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1	07/06/19 16	:41 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1	07/06/19 16	:41 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1	07/06/19 16	:41 74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1	07/06/19 16	:41 95-50-1	
1.4-Dichlorobenzene	<1.0	ug/L	1.0	1	07/06/19 16	:41 106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1	07/06/19 16	3:41 110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1	07/06/19 16	5:41 75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1	07/06/19 16	3:41 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 16	6:41 75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 16	3:41 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 16	3:41 156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1	07/06/19 16	5:41 78-87-5	
cis-1,3-Dichloropropene	<1.0	_ug/L	1.0	1	07/06/19 16	3:41 10061-01-5	
trans-1,3-Dichloropropene	حما 1.0 الم	ug/L	1.0	1	07/06/19 16	3:41 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1	07/06/19 16	5:41 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1	07/06/19 16	3:41 591-78-6	
Iodomethane	<1.0	ug/L	1.0	1	07/06/19 1	5:41 74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1	07/06/19 10	5:41 75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1	07/06/19 10	5:41 108-10-1	
Styrene	<1.0	ug/L	1.0	1	07/06/19 10	3:41 100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1	07/06/19 10	3:41 630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1	07/06/19 1	5:41 79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 127-18-4	
Toluene	<1.0	ug/L	1.0	1	07/06/19 1	5:41 108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1	07/06/19 1	6:41 108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1	07/06/19 1	6:41 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

KANA19

Page 54 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 709	5441018	Collected: 06/25/1	9 09:15	Received: 06	8/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	:60C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	125	%	68-153	1		07/06/19 16:41	1 17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 16:41	1 460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 16:41	1 2037-26-5	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-5S	Lab ID: 70954	41019	Collected: 06	5/25/19	9 09:48	Received: 0	5/2//19 11:05	Matrix: Water	
Parameters	Results	Units	Report Lir	mit — –	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Metho	d: EPA 8	260C/5030C						
Acetone	<5.0 WJ	ug/L		5.0	1		07/06/19 16:2	2 67-64-1	
Acrylonitrile	<1.0	ug/L		1.0	1		07/06/19 16:2		
Benzene	<1.0	ug/L		1.0	1		07/06/19 16:2		
Bromochloromethane	<1.0	ug/L		1.0	1		07/06/19 16:2		
Bromodichloromethane	<1.0	_ ug/L		1.0	1		07/06/19 16:2		
Bromoform	CN 0.1>	ug/L		1.0	1		07/06/19 16:2	2 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1.0	1		07/06/19 16:2	2 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		07/06/19 16:2	2 78-93-3	IL
Carbon disulfide	<1.0	ug/L		1.0	1		07/06/19 16:2	2 75-15-0	
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/06/19 16:2	2 56-23-5	
Chlorobenzene	<1.0	ug/L		1.0	1		07/06/19 16:2	2 108-90-7	
Chloroethane	<1.0	ug/L		1.0	1		07/06/19 16:2	2 75-00-3	
Chloroform	<1.0	ug/L		1.0	1		07/06/19 16:2	2 67-66-3	
Chloromethane	<1.0	ug/L		1.0	1		07/06/19 16:2	2 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L		1.0	1		07/06/19 16:2	2 96-12-8	
Dibromochloromethane	<1.0	ug/L		1.0	1		07/06/19 16:2	2 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L		1.0	1		07/06/19 16:2	2 106-93-4	
Dibromomethane	<1.0	ug/L		1.0	1		07/06/19 16:2		
1,2-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 16:2	2 95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 16:2		
trans-1,4-Dichloro-2-butene	<1.0	ug/L		1.0	1		07/06/19 16:2		
•	<1.0	ug/L		1.0	1		07/06/19 16:2		
1,1-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 16:2	•	
1,2-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 16:2		
1,1-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 16:2		
cis-1,2-Dichloroethene	<1.0 <1.0	ug/L ug/L		1.0	1		07/06/19 16:2		
trans-1,2-Dichloroethene	<1.0 <1.0	ug/L		1.0	1		07/06/19 16:2		
1,2-Dichloropropane	<1.0 <1.0	ug/L ug/L		1.0	1			22 10061-01-5	
cis-1,3-Dichloropropene	<1.0US	ug/L ug/L		1.0	1			22 10061-02-6	L1
trans-1,3-Dichloropropene	<1.0			1.0	1		07/06/19 16:		
Ethylbenzene		ug/L		5.0	1		07/06/19 16:		
2-Hexanone	<5.0	ug/L		1.0	1		07/06/19 16::		
Iodomethane	<1.0	ug/L		1.0	1		07/06/19 16:		
Methylene Chloride	<1.0	ug/L		5.0	1		07/06/19 16:		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L			1		07/06/19 16:		
Styrene	<1.0	ug/L		1.0	1			22 630-20-6	
1,1,1,2-Tetrachloroethane	<1.0	ug/L		1.0			07/06/19 16:		
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1.0	1			22 13-34-3	
Tetrachloroethene	<1.0	ug/L		1.0	1			22 127-10-4	
Toluene	<1.0	ug/L		1.0	1		07/06/19 16:		
1,1,1-Trichloroethane	<1.0	ug/L		1.0	1				
1,1,2-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 16:		
Trichloroethene	<1.0	ug/L		1.0	1		07/06/19 16:		
Trichlorofluoromethane	<1.0	ug/L		1.0	1		07/06/19 16:		
1,2,3-Trichloropropane	<1.0	ug/L		1.0	1		07/06/19 16:		
Vinyl acetate	<1.0	ug/L		1.0	1			22 108-05-4	
Vinyl chloride	<1.0	ug/L		1.0	1		07/06/19 16:		
Xylene (Total)	<3.0	ug/L		3.0	1		07/06/19 16:	22 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

KRAJ19

Page 56 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5S	Lab ID: 709	5441019	Collected: 06/25/1	9 09:48	Received: 06	3/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	127	%	68-153	1		07/06/19 16:22	2 17060-07-0	
4-Bromofluorobenzene (S)	96	%	79-124	1		07/06/19 16:22	2 460-00-4	
Toluene-d8 (S)	93	%	69-124	1		07/06/19 16:22	2 2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-5R	Lab ID: 709544	11020	Collected:	06/25/1	9 09:31	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	I: EPA 82	260C/5030C						
Acetone	<5.0 UCJ	ug/L		5.0	1		07/06/19 16:0	02 67-64-1	
Acrylonitrile	<1.0	ug/L		1.0	1		07/06/19 16:0	2 107-13-1	
Benzene	6.7	ug/L		1.0	1		07/06/19 16:0)2 71-43-2	
Bromochloromethane	<1.0	ug/L		1.0	1		07/06/19 16:0	2 74-97-5	
Bromodichloromethane	<1.0	ug/L		1.0	1		07/06/19 16:0	2 75-27-4	
Bromoform	<1.0 US	ug/L		1.0	1		07/06/19 16:0	2 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1.0	1		07/06/19 16:0	2 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		07/06/19 16:0	2 78-93-3	IL
Carbon disulfide	<1.0	ug/L		1.0	1		07/06/19 16:0	02 75-15-0	
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/06/19 16:0	2 56-23-5	
Chlorobenzene	4.8	ug/L		1.0	1		07/06/19 16:0	02 108-90-7	
Chloroethane	24.0	ug/L		1.0	1		07/06/19 16:0		
Chloroform	<1.0	ug/L		1.0	1		07/06/19 16:0		
Chloromethane	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dibromo-3-chloropropane	<1.0	ug/L		1.0	1		07/06/19 16:0		
Dibromochloromethane	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dibromoethane (EDB)	<1.0	ug/L		1.0	1		07/06/19 16:0		
Dibromomethane	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,4-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 16:0		
	<1.0	ug/L ug/L		1.0	1		07/06/19 16:0		
trans-1,4-Dichloro-2-butene	<1.0	_		1.0	1		07/06/19 16:0		
1,1-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dichloroethane		ug/L		1.0	1		07/06/19 16:0		
1,1-Dichloroethene	<1.0	ug/L							
cis-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 16:0		
trans-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dichloropropane	<1.0	ug/L		1.0	1		07/06/19 16:0		
cis-1,3-Dichloropropene	<1.0	ug/L		1.0	1			02 10061-01-5	
trans-1,3-Dichloropropene	<1.0UJ			1.0	1			02 10061-02-6	L1
Ethylbenzene	<1.0	ug/L		1.0	1		07/06/19 16:		
2-Hexanone	<5.0	ug/L		5.0	1		07/06/19 16:		
lodomethane	<1.0	ug/L		1.0	1		07/06/19 16:		
Methylene Chloride	<1.0	ug/L		1.0	1		07/06/19 16:		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		07/06/19 16:		
Styrene	<1.0	ug/L		1.0	1		07/06/19 16:		
1,1,1,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 16:		
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 16:		
Tetrachloroethene	<1.0	ug/L		1.0	1		07/06/19 16:		
Toluene	<1.0	ug/L		1.0	1		07/06/19 16:		
1,1,1-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 16:	02 71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 16:	02 79-00-5	
Trichloroethene	<1.0	ug/L		1.0	1		07/06/19 16:	02 79-01-6	
Trichlorofluoromethane	<1.0	ug/L		1.0	1		07/06/19 16:	02 75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L		1.0	1		07/06/19 16:	02 96-18-4	
Vinyl acetate	<1.0	ug/L		1.0	1		07/06/19 16:	02 108-05-4	
Vinyl chloride	<1.0	ug/L		1.0	1		07/06/19 16:	02 75-01-4	
Xylene (Total)	<3.0	ug/L:		3.0	1		07/06/19 16:	02 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

1-24/21-

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5R	Lab ID:	7095441020	Collected: 06/25/1	9 09:31	Received: 0	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	2 %	68-153	1		07/06/19 16:02	17060-07-0	
4-Bromofluorobenzene (S)	10	2 %	79-124	1		07/06/19 16:02	460-00-4	
Toluene-d8 (S)	9	5 %	69-124	1		07/06/19 16:02	2 2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-6S	Lab ID: 70954	41021	Collected: 06/25/19	9 11:04	Received: 06/27/19 11:05 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
8260C Volatile Organics	Analytical Method	d: EPA 8	260C/5030C			
Acetone	<5.0 US	ug/L	5.0	1	07/06/19 15:43 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1	07/06/19 15:43 107-13-1	
Benzene	<1.0	ug/L	1.0	1	07/06/19 15:43 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1	07/06/19 15:43 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1	07/06/19 15:43 75-27-4	
Bromoform	<1.045	ug/L	1.0	1	07/06/19 15:43 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1	07/06/19 15:43 74-83-9	·
2-Butanone (MEK)	<5.0	ug/L	5.0	1	07/06/19 15:43 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1	07/06/19 15:43 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1	07/06/19 15:43 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1	07/06/19 15:43 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1	07/06/19 15:43 75-00-3	
Chloroform	<1.0	ug/L	1.0	1	07/06/19 15:43 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1	07/06/19 15:43 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1	07/06/19 15:43 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1	07/06/19 15:43 124-48-1	
1,2-Dibromoethane (EDB)	<1.0 <1.0	ug/L	1.0	1	07/06/19 15:43 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1	07/06/19 15:43 74-95-3	
1.2-Dichlorobenzene	<1.0 <1.0	_	1.0	1	07/06/19 15:43 95-50-1	
• •	<1.0 <1.0	ug/L ug/L	1.0	1	07/06/19 15:43 106-46-7	
1,4-Dichlorobenzene	<1.0 <1.0	_	1.0	1	07/06/19 15:43 110-57-6	
trans-1,4-Dichloro-2-butene		ug/L	1.0	1	07/06/19 15:43 75-34-3	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		
1,2-Dichloroethane	<1.0	ug/L			07/06/19 15:43 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 15:43 75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 15:43 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 15:43 156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1	07/06/19 15:43 78-87-5	
cis-1,3-Dichloropropene	<1.0	_ ug/L	1.0	1	07/06/19 15:43 10061-01-5	
trans-1,3-Dichloropropene	C)N0.1>	ug/L	1.0	1	07/06/19 15:43 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1	07/06/19 15:43 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1	07/06/19 15:43 591-78-6	
Iodomethane	<1.0	ug/L	1.0	1	07/06/19 15:43 74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1	07/06/19 15:43 75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1	07/06/19 15:43 108-10-1	
Styrene	<1.0	ug/L	1.0	1	07/06/19 15:43 100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1	07/06/19 15:43 630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1	07/06/19 15:43 79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1	07/06/19 15:43 127-18-4	
Toluene	<1.0	ug/L	1.0	1	07/06/19 15:43 108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1	07/06/19 15:43 71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1	07/06/19 15:43 79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1	07/06/19 15:43 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1	07/06/19 15:43 75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1	07/06/19 15:43 96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1	07/06/19 15:43 108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1	07/06/19 15:43 75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1	07/06/19 15:43 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6S	Lab ID: 70	95441021	Collected: 06/25/1	9 11:04	Received: 06	5/27/19 11:05 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	126	%	68-153	1		07/06/19 15:43	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 15:43	460-00-4	
Toluene-d8 (S)	96	%	69-124	1		07/06/19 15:43	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID: 70954	41022	Collected:	06/25/1	9 11:07	Received: (06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	d: EPA 8	260C/5030C						
Acetone	<5.0 NJ	ug/L		5.0	1		07/06/19 15:2	3 67-64-1	
Acrylonitrile	<1.0	ug/L		1.0	1		07/06/19 15:2	3 107-13-1	
Benzene	<1.0	ug/L		1.0	1		07/06/19 15:2	3 71-43-2	
Bromochloromethane	<1.0	ug/L		1.0	1		07/06/19 15:2	3 74-97-5	
Bromodichloromethane	<1.0	ug/L		1.0	1		07/06/19 15:2		M1
Bromoform	<1.0 UT			1.0	1		07/06/19 15:2		CL,L2
Bromomethane	<1.0	ug/L		1.0	1		07/06/19 15:2		
2-Butanone (MEK)	<5.0	ug/L		5.0	1		07/06/19 15:2		IL
Carbon disulfide	<1.0	ug/L		1.0	1		07/06/19 15:2		
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/06/19 15:2		M1
Chlorobenzene	<1.0	ug/L		1.0	1		07/06/19 15:2		••••
Chloroethane	<1.0	ug/L		1.0	1		07/06/19 15:2		
Chloroform	<1.0	ug/L		1.0	1		07/06/19 15:2		
Chloromethane	<1.0	-		1.0	1		07/06/19 15:2		
+···-	<1.0 <1.0	ug/L		1.0	1		07/06/19 15:2		
1,2-Dibromo-3-chloropropane		ug/L		1.0	1		07/06/19 15:2		
Dibromochloromethane	<1.0	ug/L							
1,2-Dibromoethane (EDB)	<1.0	ug/L		1.0	1		07/06/19 15:2		
Dibromomethane	<1.0	ug/L		1.0	1		07/06/19 15:2		
1,2-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 15:2		
1,4-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 15:2		
trans-1,4-Dichloro-2-butene	<1.0	ug/L		1.0	1		07/06/19 15:2		
1,1-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 15:2		
1,2-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 15:2		
1,1-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 15:2		
cis-1,2-Dichloroethene	14.5	ug/L		1.0	1		07/06/19 15:2		
trans-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 15:2		
1,2-Dichloropropane	<1.0	ug/L		1.0	1		07/06/19 15:2		
cis-1,3-Dichloropropene	<1.0	_ ug/L		1.0	1		07/06/19 15:2	3 10061-01-5	M1
trans-1,3-Dichloropropene	<1.0UJ	ug/L		1.0	1			3 10061-02-6	L1,M0
Ethylbenzene	<1.0	ug/L		1.0	1		07/06/19 15:2	3 100-41-4	
2-Hexanone	<5.0	ug/L		5.0	1		07/06/19 15:2	23 591-78-6	
lodomethane	<1.0	ug/L		1.0	1		07/06/19 15:2	23 74-88-4	R1
Methylene Chloride	<1.0	ug/L		1.0	1		07/06/19 15:2	23 75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		07/06/19 15:2	3 108-10-1	
Styrene	<1.0	ug/L		1.0	1		07/06/19 15:2	3 100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 15:2	3 630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 15:2	23 79-34-5	
Tetrachloroethene	<1.0	ug/L		1.0	1		07/06/19 15:2	23 127-18-4	
Toluene	<1.0	ug/L		1.0	1		07/06/19 15:2	23 108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 15:2	23 71-55-6	M1
1,1,2-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 15:2		
Trichloroethene	10.5	ug/L		1.0	1		07/06/19 15:2		
Trichlorofluoromethane	<1.0	ug/L		1.0	1		07/06/19 15:2	•	
1,2,3-Trichloropropane	<1.0	ug/L		1.0	1		07/06/19 15:2		
Vinyl acetate	<1.0	ug/L		1.0	1		07/06/19 15:2		
Vinyl chloride	4.0	ug/L		1.0	1		07/06/19 15:2		
viriyi Graditae	- T.V	wg/L		1.0	•		31,33113 13.2	-5 -5 -5 -5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID: 70	95441022	Collected: 06/25/1	9 11:07	Received: 06	3/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	ethod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	124	%	68-153	1		07/06/19 15:23	3 17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-124	1		07/06/19 15:23	3 460-00-4	
Toluene-d8 (S)	96	%	69-124	1		07/06/19 15:23	3 2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID: 7095	441023	Collected: 06/25/1	9 11:25	Received: 06	3/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Metho	od: EPA 8	260C/5030C					
Acetone	<5.0 UJ	ug/L	. 5.0	1		07/06/19 15:03	8 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 15:03	3 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 15:03	3 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 74-97-5	
Bromodichloromethane	<1.0	_ ug/L	1.0	1		07/06/19 15:03	3 75-27-4	
Bromoform	<1.0 UT	ug/L	1.0	1		07/06/19 15:03	3 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 15:03	3 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 15:03	3 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 15:03	3 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:03	3 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 15:03	3 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 15:03	3 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:03	3 95-50-1	
1.4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:03	3 106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 156-60-5	
1,2-Dichloropropane	<1.0	ug/L	- 1.0	1		07/06/19 15:0	3 78-87-5	
cis-1,3-Dichloropropene	<1.0	_ug/L	1.0	1		07/06/19 15:0	3 10061-01-5	
trans-1,3-Dichloropropene	<1.01/		1.0	1		07/06/19 15:0	3 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 15:0	3 591-78-6	
Iodomethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 15:0	3 108-10-1	
Styrene	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0		
Toluene	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 15:0		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 15:0		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 15:0		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 15:0		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

8/19/19

Page 64 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID: 70	95441023	Collected: 06/25/1	9 11:25	Received: 06	3/27/19 11:05 N	√atrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
8260C Volatile Organics	Analytical Me	Analytical Method: EPA 8260C/5030C									
Surrogates											
1,2-Dichloroethane-d4 (S)	124	%	68-153	1		07/06/19 15:03	17060-07-0				
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 15:03	460-00-4				
Toluene-d8 (S)	95	%	69-124	1		07/06/19 15:03	2037-26-5				

Project:

BROCKPORT LANDFILL

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 70954	41024	Collected: 06/25/1	9 11:16	Received: 06	/27/19 11:05 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Metho	d: EPA 8	260C/5030C					
Acetone	8.1 J	ug/L	5.0	1		07/06/19 14:44	67-64-1	CH
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 14:44	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 14:44	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44	75-27-4	
Bromoform	<1.045	ug/L	1.0	1		07/06/19 14:44	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 14:44	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 14:44	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 14:44	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 14:44	56-23-5	•
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:44	108-90-7	
Chloroethane	2.8	ug/L	1.0	1		07/06/19 14:44		
Chloroform	<1.0	ug/L	1.0	1		07/06/19 14:44		
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 14:44		
Dibromochloromethane	<1.0 <1.0	ug/L	1.0	1		07/06/19 14:44		
	<1.0	ug/L	1.0	1		07/06/19 14:44		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 14:44		
Dibromomethane	<1.0 <1.0	_	1.0	1		07/06/19 14:44		
1,2-Dichlorobenzene		ug/L	1.0	1		07/06/19 14:44		
1,4-Dichlorobenzene	<1.0	ug/L		1		07/06/19 14:44		
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 14:44		
1,1-Dichloroethane	6.6	ug/L	1.0			07/06/19 14:44		
1,2-Dichloroethane	<1.0	ug/L	1.0	1				
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:44		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:44		
trans-1,2-Dichloroethene	<1.0	ug/L	- 1.0	1		07/06/19 14:44		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/06/19 14:44		
cis-1,3-Dichloropropene	<1.0	_ ug/L	1.0	1		07/06/19 14:44		
trans-1,3-Dichloropropene	<1.0 L(J	_	1.0	1		07/06/19 14:44		L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 14:44		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 14:44		
Iodomethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 14:44		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 14:44		
Styrene	<1.0	ug/L	1.0	1		07/06/19 14:44	100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44	630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 14:44	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/06/19 14:44	108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44	71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:44	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:44	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 14:44		
1.2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 14:44	96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 14:44		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 14:44		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 14:44		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

KADAL-849/19

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 7	095441024	Collected: 06/25/1	9 11:16	Received: 0	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	lethod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	122	%	68-153	1		07/06/19 14:44	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 14:44	460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 14:44	0007.00.5	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID: 7	095441025	Collected:	06/25/1	9 13:10	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	ethod: EPA 82	260C/5030C						
Acetone	<5.0	uT ug/L		5.0	1		07/06/19 14:2	24 67-64-1	
Acrylonitrile	<1.0	ug/L		1.0	1		07/06/19 14:2	24 107-13-1	
Benzene	<1.0	ug/L		1.0	1		07/06/19 14:2	24 71-43-2	
Bromochloromethane	<1.0	ug/L		1.0	1		07/06/19 14:2	24 74-97-5	
Bromodichloromethane	<1.0	ug/L		1.0	1		07/06/19 14:2	24 75-27-4	
Bromoform	<1.0	UT ug/L		1.0	1		07/06/19 14:2	24 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1.0	1		07/06/19 14:2	24 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		07/06/19 14:2	24 78-93-3	IĹ
Carbon disulfide	<1.0	ug/L		1.0	1		07/06/19 14:2	24 75-15-0	
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/06/19 14:2	24 56-23-5	
Chlorobenzene	<1.0	ug/L		1.0	1		07/06/19 14:2		
Chloroethane	<1.0	ug/L		1.0	1		07/06/19 14:2		
Chloroform	<1.0	ug/L		1.0	1		07/06/19 14:		
Chloromethane	<1.0	ug/L		1.0	1		07/06/19 14:		
1,2-Dibromo-3-chloropropane	<1.0	ug/L		1.0	1		07/06/19 14:		
Dibromochloromethane	<1.0	ug/L		1.0	1		07/06/19 14:		
1,2-Dibromoethane (EDB)	<1.0	ug/L		1.0	1		07/06/19 14:		
Dibromomethane	<1.0	ug/L		1.0	1		07/06/19 14:		
1,2-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 14:		
1,4-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 14:		
trans-1,4-Dichloro-2-butene	<1.0	ug/L		1.0	1		07/06/19 14:		
1,1-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 14:		
'	<1.0	ug/L		1.0	1		07/06/19 14:		
1,2-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 14:		
1,1-Dichloroethene		_		1.0	1		07/06/19 14:		
cis-1,2-Dichloroethene	<1.0 <1.0	ug/L		1.0	1		07/06/19 14::		
trans-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 14::		
1,2-Dichloropropane	<1.0 <1.0	ug/L		1.0	1			24 10061-01-5	
cis-1,3-Dichloropropene	<1.0°	ug/L ug/L		1.0	1			24 10061-01-5	L1
trans-1,3-Dichloropropene					1		07/06/19 14:		L1
Ethylbenzene	<1.0	ug/L		1.0			07/06/19 14:		
2-Hexanone	<5.0	ug/L		5.0	1				
Iodomethane	<1.0	ug/L		1.0	1		07/06/19 14:		
Methylene Chloride	<1.0	ug/L		1.0	1		07/06/19 14:		•
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		07/06/19 14:		
Styrene	<1.0	ug/L		1.0	1			24 100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L		1.0	1			24 630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 14:		
Tetrachloroethene	<1.0	ug/L		1.0	1			24 127-18-4	
Toluene	<1.0	•		1.0	1			24 108-88-3	
1,1,1-Trichloroethane	<1.0	_		1.0	1		07/06/19 14:		
1,1,2-Trichloroethane	<1.0	_		1.0	1		07/06/19 14:		
Trichloroethene	<1.0	•		1.0	1		07/06/19 14:		
Trichlorofluoromethane	<1.0	_		1.0	1		07/06/19 14:		
1,2,3-Trichloropropane	<1.0	_		1.0	1		07/06/19 14:		
Vinyl acetate	<1.0	_		1.0	1			24 108-05-4	
Vinyl chloride	<1.0	_		1.0	1		07/06/19 14:		
Xylene (Total)	<3.0	ug/L		3.0	1		07/06/19 14:	24 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

4P/19/19

Page 68 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID:	7095441025	Collected: 06/25/1	9 13:10	Received: 0	06/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	22 %	68-153	1		07/06/19 14:24	17060-07-0	
4-Bromofluorobenzene (S)	9	94 %	79-124	1		07/06/19 14:24	460-00-4	
Toluene-d8 (S)	g	95 %	69-124	1		07/06/19 14:24	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 709544

Sample: GW-X	Lab ID: 70	095441026	Collected:	06/25/1	9 09:31	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical M	ethod: EPA 82	260C/5030C						
Acetone	16.3	☐ ug/L		5.0	1		07/06/19 14:0	5 67-64-1	СН
Acrylonitrile	<1.0	ug/L		1.0	1		07/06/19 14:0	5 107-13-1	
Benzene	7.3	ug/L		1.0	1		07/06/19 14:0	5 71-43-2	
Bromochloromethane	<1.0	ug/L		1.0	1		07/06/19 14:0	5 74-97-5	
Bromodichloromethane	<1.0	ug/L		1.0	1		07/06/19 14:0	5 75-27-4	
Bromoform	30.1>	μΩ/L		1.0	1		07/06/19 14:0	5 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1.0	1		07/06/19 14:0	5 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		07/06/19 14:0	5 78-93-3	IL.
Carbon disulfide	<1.0	ug/L		1.0	1		07/06/19 14:0	5 75-15-0	
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/06/19 14:0	5 56-23-5	
Chlorobenzene	5.1	ug/L		1.0	1		07/06/19 14:0	5 108-90-7	
Chloroethane	25.6	ug/L		1.0	1		07/06/19 14:0	5 75-00-3	
Chloroform	<1.0	ug/L		1.0	1		07/06/19 14:0		
Chloromethane	<1.0	ug/L		1.0	1		07/06/19 14:0		
1,2-Dibromo-3-chloropropane	<1.0	ug/L		1.0	1		07/06/19 14:0		
Dibromochloromethane	<1.0	ug/L		1.0	1		07/06/19 14:0		
1,2-Dibromoethane (EDB)	<1.0	ug/L		1.0	1		07/06/19 14:0		
Dibromomethane	<1.0	ug/L ug/L		1.0	1		07/06/19 14:0		
	<1.0 <1.0	_		1.0	1		07/06/19 14:0		
1,2-Dichlorobenzene		ug/L		1.0	1		07/06/19 14:0		
1,4-Dichlorobenzene	<1.0	ug/L							
rans-1,4-Dichloro-2-butene	<1.0	ug/L		1.0	1		07/06/19 14:0		
1,1-Dichloroethane	1.0	ug/L		1.0	1		07/06/19 14:0		
1,2-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 14:0		
1,1-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 14:0		
cis-1,2-Dichloroethene	<1.0	ug/L		1.0	•1		07/06/19 14:0		
trans-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 14:0		
1,2-Dichloropropane	<1.0	ug/L		1.0	1		07/06/19 14:0		
cis-1,3-Dichloropropene	<1.0	ug/L		1.0	1			05 10061-01-5	
trans-1,3-Dichloropropene	<1.0	NG ug/L		1.0	1			05 10061-02-6	L1
Ethylbenzene	<1.0	ug/L		1.0	1		07/06/19 14:0		
2-Hexanone	<5.0	ug/L		5.0	1		07/06/19 14:0		
iodomethane	<1.0	ug/L		1.0	1		07/06/19 14:0		
Methylene Chloride	<1.0	ug/L		1.0	1		07/06/19 14:		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		07/06/19 14:	05 108-10-1	
Styrene	<1.0	ug/L		1.0	1		07/06/19 14:	05 100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 14:	05 630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 14:	05 79-34-5	
Tetrachloroethene	<1.0	ug/L		1.0	1		07/06/19 14:	05 127-18-4	
Toluene	<1.0	ug/L		1.0	1		07/06/19 14:	05 108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 14:	05 71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 14:	05 79-00-5	
Trichloroethene	<1.0	ug/L		1.0	1		07/06/19 14:		
Trichlorofluoromethane	<1.0	ug/L		1.0	1		07/06/19 14:		
1,2,3-Trichloropropane	<1.0	ug/L		1.0	1		07/06/19 14:		
Vinyl acetate	<1.0			1.0	1		07/06/19 14:		
Vinyl chloride	<1.0	_		1.0	1		07/06/19 14:		
Xylene (Total)	<3.0			3.0	1		07/06/19 14:		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-X	Lab ID:	7095441026	Collected: 06/25/1	9 09:31	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	1 %	68-153	1		07/06/19 14:05	17060-07-0	
4-Bromofluorobenzene (S)	10	1 %	79-124	1		07/06/19 14:05	460-00-4	
Toluene-d8 (S)	9	3 %	69-124	1		07/06/19 14:05	5 2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL LONG TERM

Date: 07/12/2019 02:11 PM

Field Data Analytical Method: Field pH 8.08 Std. Units 1 06/26/19 11:51 Field Temperature 22.8 deg C 1 06/26/19 11:51 Field Temperature 12.8 mg/L 1 06/26/19 11:51 Oxygen, Dissolved 9.8 mg/L 1 06/26/19 11:51 Oxygen, Dissolved 9.8 mg/L 1 06/26/19 11:51 Field Turbidity 4.38 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/2	Sample: SW-1	Lab ID: 70	95500001	Collected: 06/26/	19 11:51	Received: 06	3/27/19 11:05	Matrix: Water	
Field pH	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Temperature	Field Data	Analytical Me	ethod:						
Field Specific Conductance	Field pH	8.08	Std. Units		1		06/26/19 11:5	1	
Oxygen, Dissolved 9.8 mg/L	Field Temperature	22.8	deg C		1		06/26/19 11:5	1	
REDOX 7.3 m/Y 1 06/28/19 11:51 Field Turbidity 4.38 NTU 1 1 06/28/19 11:51 Field Turbidity 4.38 NTU 1 1 06/28/19 11:51 Field Turbidity 4.38 NTU 1 1 06/28/19 11:51 Field Turbidity 4.38 NTU 1 1 07/09/19 10:00 07/10/19 23:19 7440-36-0 Arsenic 40.0 ug/L 0.0 1 07/09/19 10:00 07/10/19 23:19 7440-38-2 Bartum 200 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7440-38-2 Bartum 88300 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7440-70-2 From 25600 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7440-70-2 From 25600 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7439-98-6 Manganesie 18200 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7439-98-6 Manganesie 428 ug/L 10.0 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 50.0 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 50.0 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-13-1 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-13-1 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-13-1 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-13-1 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-23-2 CL Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	Field Specific Conductance	1021	umhos/cm		1		06/26/19 11:5	1	
September Sept	Oxygen, Dissolved	9.8	mg/L		1		06/26/19 11:5	7782-44-7	
### Septomble Analytical Method: EPA 6010C Preparation Method: EPA 3005A ### Analytical Method: EPA 6010C Preparation Method: EPA 3005A ### Analytical Method: EPA 6010C Preparation Method: EPA 3005A ### Analytical Method: Qugl. G0.0 1 07709/19 10:00 07710/19 23:19 7440-38-0 ### Analytical Method: Qugl. 200 1 07709/19 10:00 07710/19 23:19 7440-38-2 ### Analytical Method: Qugl. 200 1 07709/19 10:00 07710/19 23:19 7440-02-2 ### Analytical Method: Qugl. 200 1 07709/19 10:00 07710/19 23:19 7440-02-2 ### Manganesis 428 ugl. 10.0 1 07709/19 10:00 07710/19 23:19 7440-02-2 ### Manganese 428 ugl. 10.0 1 07709/19 10:00 07710/19 23:19 7440-02-3 ### Analytical Method: EPA 8260C/5030C	• •	-73	mV		1		06/26/19 11:5	1	
Antimony	Field Turbidity	4.38	NTU		1		06/26/19 11:5	1	
Arsenic	6010 MET ICP	Analytical Me	ethod: EPA 60	10C Preparation M	ethod: El	PA 3005A			
Barium	Antimony	<60.0	ug/L	60.0	1				
Calcium 88300 Ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7440-70-2 relation Iron 2580 Ug/L 20.0 1 07/09/19 10:00 07/10/19 23:19 7439-89-6 relation Magnesium 18200 Ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 relation Manganese 428 Ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 relation Potassium \$500 Ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7440-09-7 relation Sodium \$3800 Ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7440-09-7 relation Acetone \$50 Ug/L 50 1 07/09/19 10:00 07/10/19 23:19 7440-23-5 8260C Votatile Organics Analytical Method: EPA 8260C/5030C Value 1 07/09/19 10:00 07/10/19 23:19 7440-23-5 8260C Votatile Organics Analytical Method: Ug/L 1.0 1 07/05/19 20:50	Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:1	9 7440-38-2	
Calcium	Barium	<200	ug/L	200	1	07/09/19 10:00	07/10/19 23:1	9 7440-39-3	
Roman 1820	Calcium	88300		200	1	07/09/19 10:00	07/10/19 23:1	9 7440-70-2	
Manganese 428 Potassium ug/L 10.0 1 07/09/19 10:00 07/10/19 23:19 7439-96-5 7440-09-7 7400 7439-96-5 7440-09-7 7400-09 77/00/19 23:19 7440-09-7 7400 7440-09-7 7440-09-	Iron	2580	ug/L	20.0	1	07/09/19 10:00	07/10/19 23:1	9 7439-89-6	
Manganese 428 ug/L 10.0 1 07/09/19 10:00 07/10/19 23:19 7439-96-5 Potassium <5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7440-09-7 8260C Volatile Organics Analytical Method: EPA 8260C/5030C EPA 8260C/5030C Section 4.0 07/05/19 20:50 67-64-1 7440-09-7 Acetone <5.0 Ug/L 1.0 1 07/05/19 20:50 67-64-1 407/05/19 20:50 70-71-3-1 80-71-3-1 <	Magnesium	18200	ug/L	200	1	07/09/19 10:00	07/10/19 23:1	9 7439-95-4	
Sodium Sa800	-	428		10.0	1	07/09/19 10:00	07/10/19 23:1	9 7439-96-5	
8260C Volatile Organics Analytical Method: EPA 8260C/5030C Acetone < 5.0	Potassium	<5000	ug/L	5000	1	07/09/19 10:00	07/10/19 23:1	9 7440-09-7	
Acetone	Sodium	93800	J ug/L	5000	1	07/09/19 10:00	07/10/19 23:1	9 7440-23-5	
Acrylonitrile 41.0 ug/L 41.0 ug/L 41.0 ug/L 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 107-13-1 Benzene 41.0 ug/L 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-97-5 Bromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-27-4 Bromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-25-2 CL Bromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-25-2 CL Bromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-25-2 CL Bromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-25-2 CL Bromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-35-3 LL Carbon disulfide 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-15-0 Carbon tetrachloride 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-00-3 Chlorobenzene 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-00-3 Chloroform 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-00-3 Chloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-00-3 CL Cl-Libinomo-3-chloropropane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-95-3 CL Argonical and an argonical and an argonical and argon	8260C Volatile Organics	Analytical Me	ethod: EPA 82	60C/5030C					
Benzene	Acetone	<5.0 ^	√ ug/L	5.0	1		07/05/19 20:5	0 67-64-1	
Benzene <1.0 ug/L 1.0 1 07/05/19 20:50 71-43-2 Bromochloromethane <1.0	Acrylonitrile	<1.0	ug/L	1.0	1		07/05/19 20:5	0 107-13-1	
Bromodichloromethane	-	<1.0	ug/L	1.0	1		07/05/19 20:5	0 71-43-2	
Bromoform	Bromochloromethane	<1.0	ug/L	1.0	1		07/05/19 20:5	0 74-97-5	
Bromomethane	Bromodichloromethane		ug/L	1.0	1		07/05/19 20:5	0 75-27-4	
2-Butanone (MEK)	Bromoform	<1.0 \	√ ug/L	1.0	1		07/05/19 20:5	0 75-25-2	CL
2-Butanone (MEK)	Bromomethane	<1.0	ug/L	1.0	1		07/05/19 20:5	0 74-83-9	
Carbon disulfide <1.0 ug/L 1.0 1 07/05/19 20:50 75-15-0 Carbon tetrachloride <1.0 ug/L 1.0 1 07/05/19 20:50 56-23-5 Chlorobenzene <1.0 ug/L 1.0 1 07/05/19 20:50 75-00-3 Chloroform <1.0 ug/L 1.0 1 07/05/19 20:50 75-00-3 Chloromethane <1.0 ug/L 1.0 1 07/05/19 20:50 76-66-3 Chloromethane <1.0 ug/L 1.0 1 07/05/19 20:50 74-87-3 CL 1,2-Dibromo-3-chloropropane <1.0 1 07/05/19 20:50 74-87-3 CL 1,2-Dibromoethane (EDB) <1.0 ug/L 1.0 1 07/05/19 20:50 74-95-3 CL,L 1,2-Dichlorobenzene <1.0 ug/L 1.0 1 07/05/19 20:50 74-95-3 1,2-Dichlorobenzene <1.0 ug/L 1.0 1 07/05/19 20:50 75-95-0-1 1,1-Dichlorobenzene <1.0	2-Butanone (MEK)	<5.0		5.0	1				IL
Chlorobenzene	• •	<1.0		1.0	1				
Chloroethane	Carbon tetrachloride	<1.0	ug/L	1.0	1		07/05/19 20:5	0 56-23-5	
Chloroform	Chlorobenzene	<1.0	ug/L	1.0	1				
Chloromethane	Chloroethane	<1.0	ug/L	1.0	1		07/05/19 20:5	0 75-00-3	
1,2-Dibromo-3-chloropropane <1.0	Chloroform	<1.0	ug/L	1.0	1		07/05/19 20:5	0 67-66-3	
1,2-Dibromo-3-chloropropane <1.0	Chloromethane	<1.0	J ug/L	1.0	1		07/05/19 20:5	0 74-87-3	CL
Dibromochloromethane	1.2-Dibromo-3-chloropropane	<1.0		1.0	1		07/05/19 20:5	0 96-12-8	CL,L2
1,2-Dibromoethane (EDB) <1.0			_	1.0	1		07/05/19 20:5	0 124-48-1	
Dibromomethane <1.0 ug/L 1.0 1 07/05/19 20:50 74-95-3 1,2-Dichlorobenzene <1.0				1.0	1		07/05/19 20:5	0 106-93-4	
1,2-Dichlorobenzene <1.0	• •	<1.0	_	1.0	1		07/05/19 20:5	0 74-95-3	
1,4-Dichlorobenzene <1.0		<1.0		1.0	1		07/05/19 20:5	60 95-50-1	
trans-1,4-Dichloro-2-butene <1.0	•	<1.0	ug/L	1.0	1		07/05/19 20:5	0 106-46-7	
1,1-Dichloroethane <1.0	• • • • • • • • • • • • • • • • • • • •	<1.0	J ug/L	1.0	1		07/05/19 20:5	60 110-57-6	CL,L2
1,2-Dichloroethane <1.0	•			1.0	1				CL,L2
1,1-Dichloroethene <1.0	•		_	1.0	1		07/05/19 20:5	0 107-06-2	
cis-1,2-Dichloroethene <1.0	•		_	1.0	1				
trans-1,2-Dichloroethene <1.0 ug/L 1.0 1 07/05/19 20:50 156-60-5	•		_	1.0) 1		07/05/19 20:5	0 156-59-2	
07/05/40 00 50 70 07 5	•		-	1.0	1				
	1,2-Dichloropropane		ug/L				07/05/19 20:5	60 78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Sample: SW-1	Lab ID: 709	5500001	Collected: 06/26/1	19 11:51	Received: 00	6/27/19 11:05	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 20:50	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 20:50	10061-02-6	
Ethylbenzene	<1.0	ug/L	1.0	1		07/05/19 20:50	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/05/19 20:50	591-78-6	
Iodomethane	<1.0	ug/L	1.0	1		07/05/19 20:50	74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/05/19 20:50	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/05/19 20:50	108-10-1	L2
Styrene	<1.0	ug/L	1.0	1		07/05/19 20:50	100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	630-20-6	L1
1.1.2.2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0,	1		07/05/19 20:50	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/05/19 20:50	108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	71-55-6	
1.1.2-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/05/19 20:50	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/05/19 20:50	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/05/19 20:50	96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		07/05/19 20:50) 108-05-4	
Vinyl chloride	<1.0 🔾		1.0	1		07/05/19 20:50	75-01-4	CL
Xylene (Total)	<3.0	ug/L	3.0	1		07/05/19 20:50	1330-20-7	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	101	%	68-153	1		07/05/19 20:50	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-124	1		07/05/19 20:50	460-00-4	
Toluene-d8 (S)	102	%	69-124	1		07/05/19 20:50	2037-26-5	

FAMILIA 19/19

Project:

BROCKPORT LANDFILL LONG TERM

Sample: SEEP	Lab ID: 70	95500002	Collected: 06/26/	19 12:54	Received: 06	/27/19 11:05 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	thod:						
Field pH	7.97	Std. Units		1		06/26/19 12:54		
Field Temperature	23.6	deg C		1		06/26/19 12:54		
Field Specific Conductance	624	umhos/cm		1		06/26/19 12:54		
Oxygen, Dissolved	10.9	mg/L		1		06/26/19 12:54	7782-44-7	
REDOX	- 9 8	m۷		1		06/26/19 12:54		
Field Turbidity	24.8	NTU		1		06/26/19 12:54		
6010 MET ICP	Analytical Me	thod: EPA 60	10C Preparation M	lethod: El	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 23:35	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:35	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 23:35		
Calcium	91900 3		200	1	07/09/19 10:00	07/10/19 23:35	7440-70-2	
Iron	1090	ug/L	20.0	1	07/09/19 10:00	07/10/19 23:35	7439-89-6	
Magnesium	19000	ug/L	200	1	07/09/19 10:00	07/10/19 23:35	7439-95-4	
Manganese	240	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:35	7439-96-5	
Potassium	. <5000	_ ug/L	5000	1	07/09/19 10:00	07/10/19 23:35	7440-09-7	
Sodium	101000	J ug/L	5000	1	07/09/19 10:00	07/10/19 23:35	7440-23-5	
8260C Volatile Organics	Analytical Me	ethod: EPA 82	60C/5030C					
Acetone	<5.0 <	J ug/L	5.0	1		07/05/19 21:10	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/05/19 21:10	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/05/19 21:10	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/05/19 21:10	74-97-5	
Bromodichloromethane	<1.0	_ ug/L	1.0	1		07/05/19 21:10	75-27-4	
Bromoform	<1.0 ^	J ug/L	1.0	1		07/05/19 21:10	75-25-2	CL
Bromomethane	<1.0	ug/L	1.0	1		07/05/19 21:10	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/05/19 21:10	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/05/19 21:10	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/05/19 21:10	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/05/19 21:10) 108- 9 0-7	
Chloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/05/19 21:10	67-66-3	
Chloromethane	<1.0	J ug/L	1.0	1		07/05/19 21:10		CL
1,2-Dibromo-3-chloropropane		ug/L	1.0	1		07/05/19 21:10	96-12-8	CL,L2
Dibromochloromethane	<1.0	ug/L	1.0	1		07/05/19 21:10) 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0) 1		07/05/19 21:10		
Dibromomethane	<1.0	ug/L	1.0) 1		07/05/19 21:10		
1,2-Dichlorobenzene	<1.0	ug/L	1.0) 1		07/05/19 21:10		
1,4-Dichlorobenzene	<1.0	ug/L	1.0) 1		07/05/19 21:10		
trans-1,4-Dichloro-2-butene	<1.0		1.0) 1		07/05/19 21:10		CL,L2
1,1-Dichloroethane	<1.0	ゴ ug/L	1.0) 1		07/05/19 21:10		CL,L2
1,2-Dichloroethane	<1.0	ug/L	1.0) 1		07/05/19 21:10	0 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0) 1		07/05/19 21:10		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0) 1		07/05/19 21:10		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0) 1		07/05/19 21:10		
1.2-Dichloropropane	<1.0	ug/L	1.0) 1		07/05/19 21:10	0 78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 10 of 21

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Sample: SEEP	Lab ID: 7095	500002	Collected: 06/26/1	9 12:54	Received: 0	6/27/19 11:05 N	//atrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	od: EPA 8	260C/5030C					
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 21:10	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 21:10		
Ethylbenzene	<1.0	ug/L	1.0	1		07/05/19 21:10	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/05/19 21:10	591-78-6	
Iodomethane	<1.0	ug/L	1.0	1		07/05/19 21:10	74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/05/19 21:10	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/05/19 21:10	108-10-1	L2
Styrene	<1.0	ug/L	1.0	1		07/05/19 21:10	100-42-5	
1.1.1.2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	630-20-6	L1
1.1.2.2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/05/19 21:10	108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/05/19 21:10	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/05/19 21:10	96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		07/05/19 21:10	108-05-4	
Vinyl chloride	<1.07	ug/L	1.0	1		07/05/19 21:10	75-01-4	CL
Xylene (Total)	<3.0	ug/L	3.0	1		07/05/19 21:10	1330-20-7	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	100	%	68-153	1		07/05/19 21:10		
4-Bromofluorobenzene (S)	102	%	79-124	1		07/05/19 21:10	460-00-4	
Toluene-d8 (S)	102	%	69-124	1		07/05/19 21:10	2037-26-5	

CARP 19/19

Environment Testing TestAmerica

ANALYTICAL REPORT

Job Number: 320-51811-1

SDG Number: 7095477

Job Description: Pace PFAS Testing

For:

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747

Attention: Jennifer Aracri

CEVAR C CORtes

Approved for release. Cesar C Cortes Project Manager i 7/16/2019 9:51 PM

Cesar C Cortes, Project Manager I 880 Riverside Parkway, West Sacramento, CA, 95605 (916)374-4316 cesar.cortes@testamericainc.com 07/16/2019

Receipt

The samples were received on 6/28/2019 at 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.6° C.

Method 537 modified

The following samples were brown in color and contained brown particulate: GW-1S (320-51811-1), GW-3S (320-51811-2), GW-6R (320-51811-3) and FIELD DUPLICATE (320-51811-5).

The following samples were yellow in color and contained brown particulate: GW-9R (320-51811-4), GW-9R (320-51811-4[MSD]), GW-9R (320-51811-4[MSD]).

The following samples contained non-settable particulates which clogged the solid-phase extraction column: GW-1S (320-51811-1), GW-3S (320-51811-2), GW-6R (320-51811-3) and FIELD DUPLICATE (320-51811-5).

Elevated reporting limits are provided for the following samples due to insufficient volume provided: GW-6R (320-51811-3), GW-9R (320-51811-4) and GW-9R (320-51811-4[MS]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Job ID: 320-51811-1 SDG: 7095477

320-51811-1 (320-51811-2 (320-51811-3 (320-51811-4 (320-51811-5 F	Client Sample ID GW-1S GW-3S GW-6R GW-9R FIELD DUPLICATE EQUIPMENT BLANK	Water Water Water Water	06/26/19 12:04 06/26/19 11:01 06/26/19 12:27	06/28/19 09:30	Asset ID
---	--	----------------------------------	--	----------------	----------

PASI New York Laboratory

IS EDD?	EQu	XN/	ide n	зска	o A	VIC	read	3) E	: pəə	N	8	mML	aleO					(B)	Received 6	miTherad	Released, By	erstenstT
	1488	sıu	omine	O S	100	70 Y		490%	435	(V. 1		60	7/44			X ()	7	30000			N. 17.24 Bear 1971 1972 1972 1972	
	1	<u> </u>	-	1	T	Ĭ	1				X		(AMAZINE SCORE				U	Water	9005742605	74:ht erosiasia	эльмеит вгамк	<u> 19</u>
***************************************		_	1		<u> </u>	t	1	l	1.		X		*********	1	-		7	V/ater	3004748807	ro:rr eros/as/a	פרס מעארוכאדפ	13 일
		_	体	17	卜	収	ŧτ	Ħ	PIS	W,	X				 		う	VVater	400774807	72:21 e102/92/9	¥6-W	(5) Þ
		1	1	-	<u> </u>	1	Ť	ÎΤ	1-1-1	*	X		************	-	<u> </u>		2	Water	£007742607	10:11 8105/85/8	¥9-W	3 6/
		1	1			1		1			X		*********				2	Water	7095477002	6/26/2019 12:04	sew.	<u> 5</u> e
		_	1			1	1	T			X		· · · · · · · · · · · · · · · · · · ·				7	Vater	1007742807	76:11 e102/92/8	NIS .	છ દ
YNO BEU BAJ											Į.						Uppreserved	xinisM	glari	Collect Date(Time		
							чэ .			•	PFAS by 537M	**************************************	iguji	diro:) pox	iosoi					91)694-3040 31)694-3040 Julier aracri@pacelabe.com Sample Origin: NY	Phone (6 Pmail: jei
													**************************************					.0.9 .0.9	fins-Sacramei rside Pkwy rramento, CA	oură AT 880 Rive	Aracri Aytical Melville A Hollow Road	A tellinnel. anA eas9 so18 272
4 C C C P C C C C C C C C C C C C C C C	78. S.S.S.S.		610i										<u> 1489</u>			and and the same	announdam.	Manage Comments of the Comment of th	BROCKPOR	order Name: Subconti	161: 7095477 Worke	

Custody Seal Y or M

70, 31 W/F2/9

11/82/9 NHH

Samples Intact Y or N

N 10 Y

Received on Ice

PEG 61/82/9

Cooler Temparature on Receipt 2 . O . C

173741

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento

Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: GW-1S

Lab Sample ID: 320-51811-1

Matrix: Water

Lab File ID: 2019.07.03LLC_038.d

Analysis Method: 537 (modified)

Date Collected: 06/26/2019 11:37

Extraction Method: 3535

Date Extracted: 07/02/2019 07:30

Injection Volume: 20(uL)

Sample wt/vol: 249.8(mL)

Date Analyzed: 07/04/2019 10:44

Con. Extract Vol.: 10.0(mL)

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture:

GPC Cleanup: (Y/N) N

Analysis Batch No.: 305698

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	0.74	J	2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58
375-85-9	Perfluoroheptanoic acid	ND		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2.0	0.85
375-95-1	Perfluoronomanoic acid (PFNA)	ND		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ZOU -0-44	JB	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND ND		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	7.0 U -0.85	J	2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	DN		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento

Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: GW-3S

Lab Sample ID: 320-51811-2

Matrix: Water

Lab File ID: 2019.07.03LLC_039.d

Analysis Method: 537 (modified)

Date Collected: 06/26/2019 12:04

Extraction Method: 3535

Date Extracted: 07/02/2019 07:30

Sample wt/vol: 247.8(mL)

Date Analyzed: 07/04/2019 10:52

Con. Extract Vol.: 10.0(mL)

Dilution Factor: 1

Injection Volume: 20(uL)

GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture:

GPC Cleanup: (Y/N) N

Analysis Batch No.: 305698

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	7.5		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.59
375-85-9	Perfluoroheptanoic acid	ND		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	1.8	J	2.0	0.86
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.85	J	2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	2.04 D-76	JB	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	2.8	丁 -	2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	DИ		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	6.4	J	20	2.0
39108-34-4	8:2 FTS	DIV		20	2.0

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: GW-6R Lab Sample ID: 320-51811-3

Matrix: Water Lab File ID: 2019.07.03LLC_040.d

Analysis Method: 537 (modified) Date Collected: 06/26/2019 11:01

Extraction Method: 3535 Date Extracted: 07/02/2019 07:30

Sample wt/vol: 244.5(mL) Date Analyzed: 07/04/2019 11:00

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 305698 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	40		2.0	0.36
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.50
307-24-4	Perfluorohexanoic acid (PFHxA)	12		2.0	0.59
375-85-9	Perfluoroheptanoic acid	6.1		2.0	0.26
335-67-1	Perfluorooctanoic acid (PFOA)	27	t	2.0	0.87
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0.28
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.32
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ИD		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	mD ND		2.0	0.56
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND	******************	2.0	0.30
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	4.7	В	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.82	J	2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	36		2.0	0.55
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.33
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.36
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.2
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND	**	20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: GW-9R Lab Sample ID: 320-51811-4

Matrix: Water Lab File ID: 2019.07.03LLC_042.d

Analysis Method: 537 (modified) Date Collected: 06/26/2019 12:27

Extraction Method: 3535 Date Extracted: 07/02/2019 07:30

Sample wt/vol: 255(mL) Date Analyzed: 07/04/2019 11:16

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 305698 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	23		2.0	0.34
2706-90-3	Perfluoropentanoic acid (PFPeA)	3.2		2.0	0.48
307-24-4	Perfluorohexanoic acid (PFHxA)	2.9		2.0	0.57
375-85-9	Perfluoroheptanoic acid	2,7		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	5.1		2.0	0.83
375-95-1	Perfluorononanoic acid (PFNA)	0.51	J	2.0	0.26
335-76-2	Perfluorodecanoic acid (PFDA)	DN		2.0	0.30
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND	***************************************	2.0	0,54
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.28	J	2.0	0.28
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.8	J †	2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	204 12	ĴВ	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND ND		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	2.9	J	2.0	0.53
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.31
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.34
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.0
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND	· · · · · · · · · · · · · · · · · · ·	20	2.0

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: FIELD DUPLICATE

Matrix: Water

Analysis Method: 537 (modified)

Extraction Method: 3535

Sample wt/vol: 248.7(mL)

Con. Extract Vol.: 10.0(mL)

Injection Volume: 20(uL)

% Moisture:

Analysis Batch No.: 305698

Lab Sample ID: 320-51811-5

Lab File ID: 2019.07.03LLC 044.d

Date Collected: 06/26/2019 11:01

Date Extracted: 07/02/2019 07:30

Date Analyzed: 07/04/2019 11:32

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	40	<u> </u>	2.0	0,35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	12		2.0	0.58
375-85-9	Perfluoroheptanoic acid	5.6	1	2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	26		2.0	0.85
375-95-1	Perfluorononanoic acid (PFNA)	1.0	J	2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	0.81	J	2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.9	J	2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	4.9	В	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.96	J	2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	39		2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: EQUIPMENT BLANK Lab Sample ID: 320-51811-6

Matrix: Water Lab File ID: 2019.07.03LLC_045.d

Analysis Method: 537 (modified) Date Collected: 06/26/2019 11:47

Extraction Method: 3535 Date Extracted: 07/02/2019 07:30

Sample wt/vol: 250.7(mL) Date Analyzed: 07/04/2019 11:40

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 305698 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	ND		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58
375-85-9	Perfluoroheptanoic acid	ND		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2.0	0,85
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	(0.44	JB	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	MD		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	(0.98	J	2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND-		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: Lab Sample ID:

Matrix: Water

Analysis Method: 537 (modified)

Extraction Method: 3535

Sample wt/vol: 250(mL)

Con. Extract Vol.: 10.0(mL)

Injection Volume: 20(uL)

% Moisture:

Analysis Batch No.: 305698

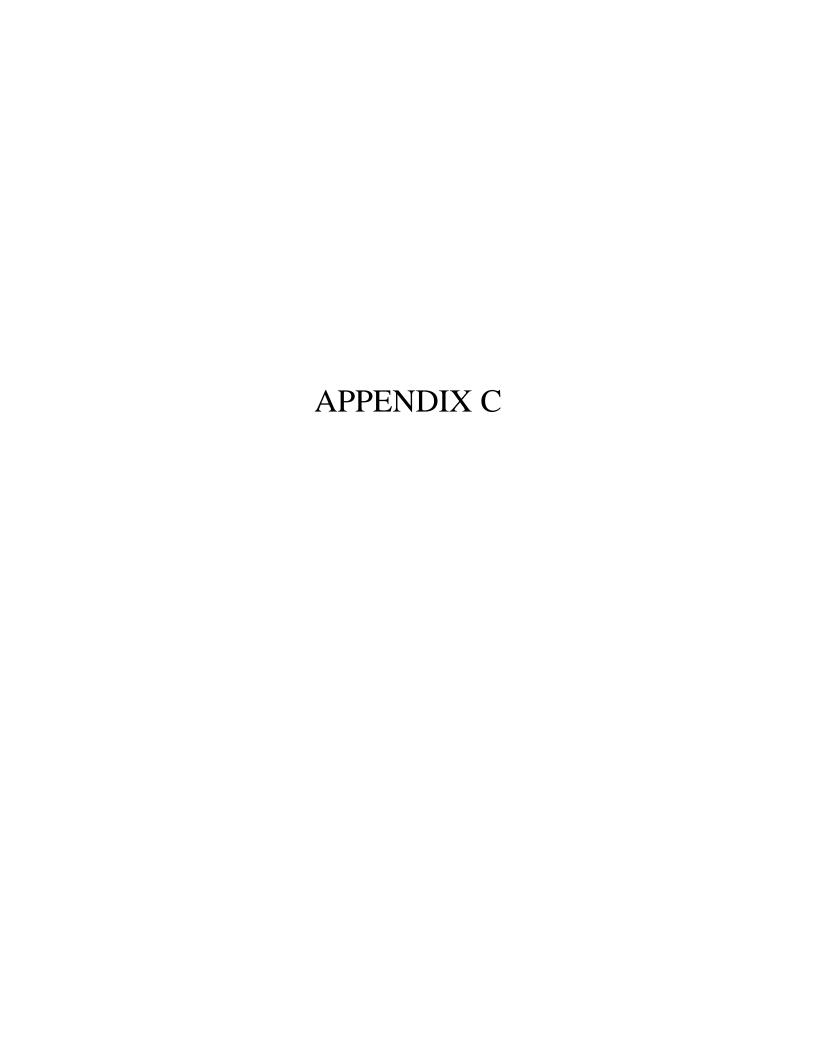
Lab Sample ID: MB 320-305096/1-A

Lab File ID: 2019.07.03LLC 036.d

Date Collected:

Date Extracted: 07/02/2019 07:30

Date Analyzed: 07/04/2019 10:28


Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	ND		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	C.58
375-85-9	Perfluoroheptanoic acid	DM	<u>+</u> .	2.0	0,25
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2,0	0.85
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0,27
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2,0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	70.319	J	2.0	0.17
375-92-9	Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND	. 1. 11	20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND	-	20	2.0

Trend Analysis of Water Quality Data

Brockport Landfill
Site No. 8-28-038

(2001 - 2019 Data)

Prepared by:

Kenneth R. Applin, Ph.D. KR Applin & Associates 8806 Route 256 Dansville, NY 14437

September 2019

Table of Contents

		<u>Page No</u> .
1.0	INTRODUCTION	1
2.0	PROCEDURES	1
3.0	RESULTS	2
4.0	CONCLUSIONS	2

Tables

Follows Page

Table 1

Trend Analysis Summary

2

Exhibit A

Time Series Plots

1.0 INTRODUCTION

In accordance with Section 6.3.2 in Appendix D of the Brockport Landfill - Site No. 8-28-038 Post-Closure Monitoring and Maintenance Operations Manual for the Village of Brockport Landfill, analytical data obtained from the past rounds of groundwater and surface water monitoring at the landfill site were examined to determine temporal trends in water quality at each of the sampling locations. The trend analyses were performed for the purpose of evaluating the performance of the landfill cap.

The analytical results obtained for each monitoring well and surface water sampling point during 2001 - 2019 were examined for trends of concentration versus time using a non-parametric statistical method. The analytical data were examined for both upward and downward trends so that potential impacts or improvements in water quality at the site can be assessed.

2.0 PROCEDURES

Trends in water quality were evaluated statistically using Sen's slope estimator, a non-parametric method of estimating the true slope (change in concentration over time) of the historical analytical data. An upward slope in the data indicates an upward trend in the data. A downward slope indicates a downward trend. Because the method is non-parametric, it can be applied to datasets containing a high level of non-detects and is not significantly affected by outliers.

For each monitoring well and surface water sampling station, trend analyses were conducted on all inorganic and organic chemical parameters in the database using up to 20 data points available from the 2001 - 2019 monitoring period. Method detection limits (MDLs) were substituted for non-detect data. Chemical parameters with more than 80% non-detect results in the historical data were not tested for trends. Parameters having insufficient data (n < 4) were also not tested for trends.

The statistical tests were performed at the 95% confidence level. The tests were conducted using AquaChem© computer software.

3.0 RESULTS

The trends identified in the monitoring well and surface water analytical data are summarized in Table 1 and are shown graphically in Exhibit A of this report. As indicated in Table 1, the number of trends found varied widely among the monitoring well and surface water samples. Downward trends were predominant in wells GW-2S, GW-3S, GW-5S, GW-7S, GW-4R, and GW-6R...

Upward trends were predominant in wells GW-1S, GW-6S, GW-3R, GW-5R, GW-7R, and GW-9R.

Downward trends were identified for trichloroethene (TCE) and/or its degradation products (cis-1,2-dichloroethene and vinyl chloride) in wells GW-3S, GW-3R, and GW-6R. A downward trend for chloroethane was found for well GW-5R.

Upward trends in barium, calcium, magnesium, manganese, potassium, and sodium were found for surface water sample SW-1. No trends were found for the SEEP samples.

4.0 CONCLUSIONS

The predominance of downward trends identified for wells GW-2S, GW-3S, GW-5S, GW-7S, GW-4R, and GW-6R indicates an improvement in groundwater quality in areas surrounding these wells. The upward trends identified for key leachate indicator parameters such as barium, sodium, chloride, and total dissolved solids (TDS) in wells GW-1S, GW-6S, GW-3R, GW-5R, GW-7R, and GW-9R suggests that groundwater quality surrounding these wells has yet to improve.

Upward trends dominated in surface water sample SW-

1.

TABLE 1

TREND ANALYSIS SUMMARY 2001 - 2019 Monitoring Data

(U indicates an upward trend; D indicates a downward trend)

OVERBURDEN WELLS

GW-1S	GW-2S	GW-3S	GW-5S	GW-6S	GW-7S
Chloride (U)	Sulfate (D)	Chloride (D)	Chloride (U)	Barium (U)	Conductivity (D)
TDS (U)		Sulfate (D)	COD (D)	` ,	Chloride (D)
Calcium (U)		TDS (D)	TKN (D)		COD (D)
		Barium (D)	Barium (D)		Ammonia (D)
		Potassium (D)	Iron (D)		Sulfate (D)
		Sodium (D)	Manganese (D)		TDS (D)
		cis-1,2-DCE (D)	Sodium (U)		TKN (D)
		Vinyl chloride (D)			TOC (D)
					Barium (D)
					Calcium (U)
					Potassium (D)
					Sodium (D)
					Bicarbonate (D)

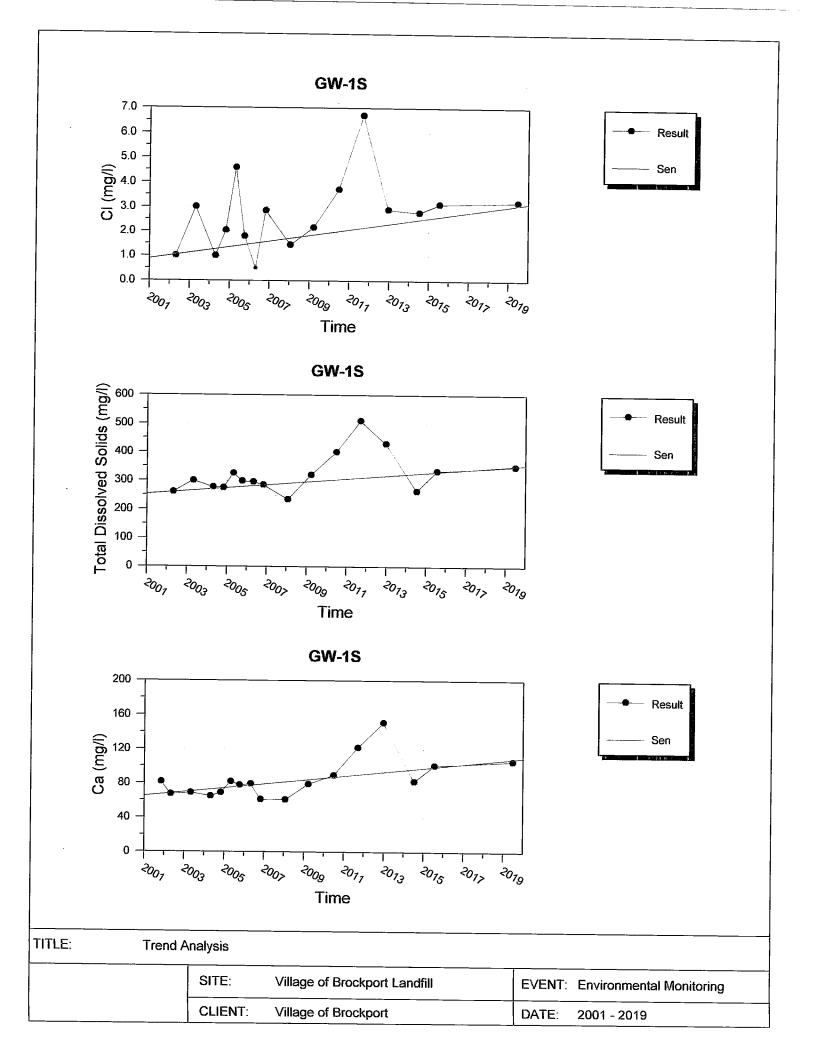
BEDROCK WELLS

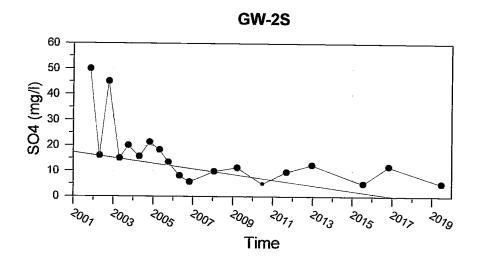
GW-3R	GW-4R	GW-5R	GW-6R	GW-7R	GW-9R
TDS (U)	Chloride (U)	Chloride (U)	Conductivity (D)	Chloride (U)	TDS (U)
Calcium (U)	COD (D)	TDS (U)	Ammonia (D)	COD (U)	Calcium (U)
Iron (D)	Ammonia (D)	TKN (U)	TKN (D)	TDS (U)	Iron (U)
Potassium (U)	TKN (D)	Barium (U)	Iron (D)	TOC (U)	Manganese (U)
Sodium (U)	TOC (D)	Magnesium (U)	Potassium (D)	Arsenic (U)	······································
Bicarbonate (U)	Barium (D)	Manganese (D)	TCE (D)	Barium (U)	
Vinyl chloride (D)	Iron (D)	Potassium (U)	` '	Calcium (U)	
	Magnesium (D)	Sodium (U)		Iron (U)	
	Manganese (D)	Chloroethane (D)		Magnesium (U)	
	Potassium (D)	. ,		Manganese (D)	
	Bicarbonate (D)			Sodium (U)	
				Bicarbonate (U)	

SURFACE WATER

SW-1	SEEP
Barium (U)	
Calcium (U)	no
Magnesium (U)	trends
Manganese (U)	
Potassium (U)	
Sodium (U)	

Notes:


COD = chemical oxygen demand TOC = total organic carbon TDS = total dissolved solids


TKN = total Kjeldahl nitrogen
TCE = trichloroethene

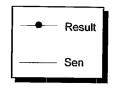
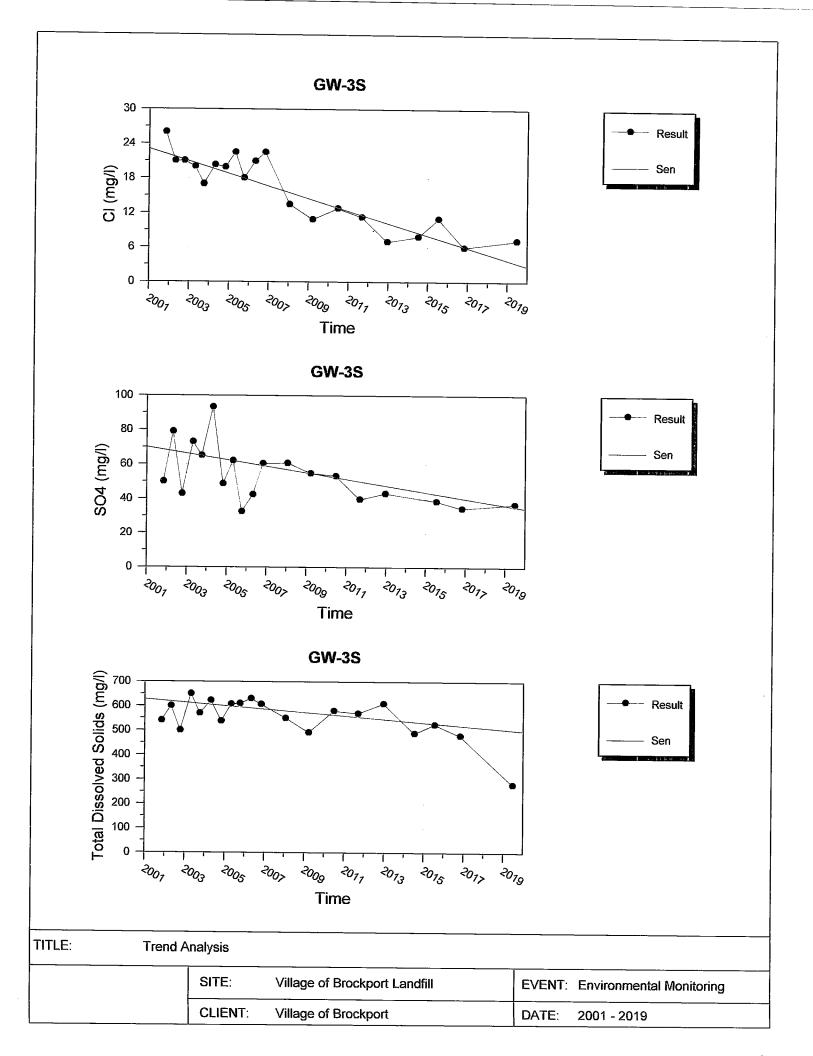
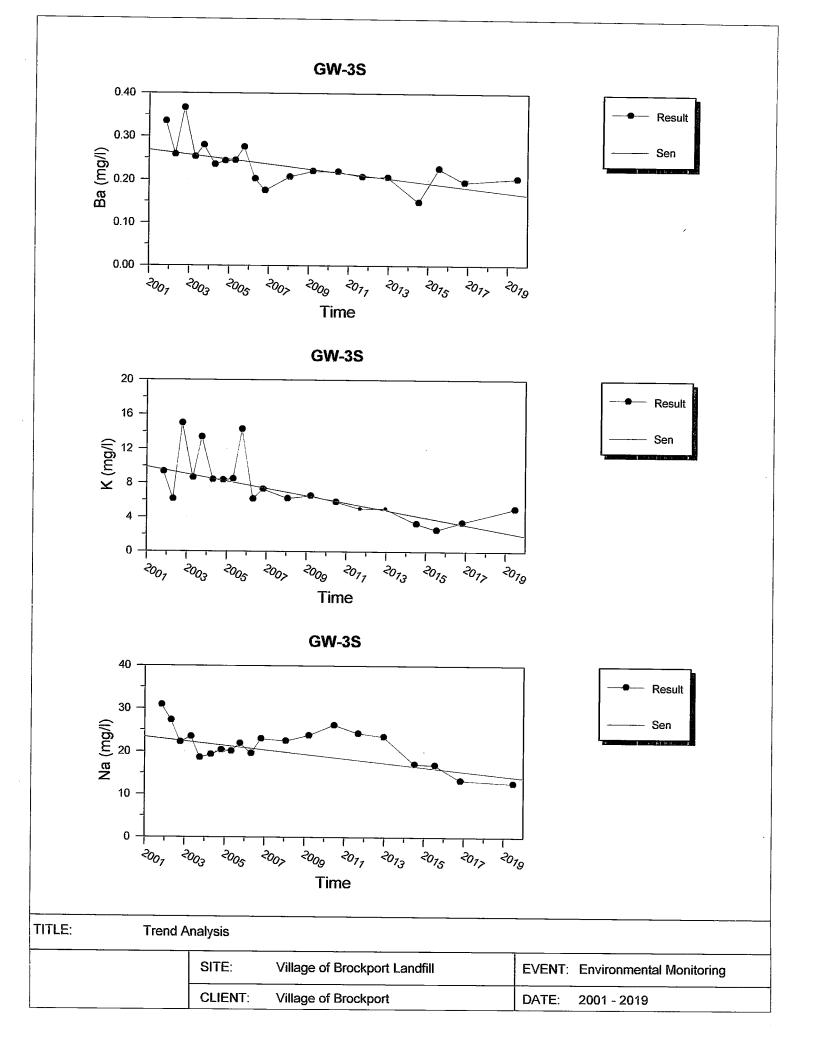
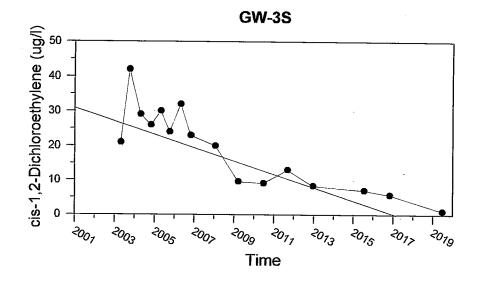
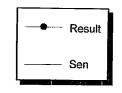

cis 1,2-DCE = cis-1,2-dichloroethene

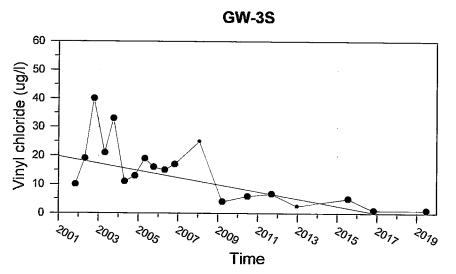
Exhibit A

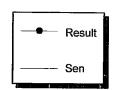

Time Series Plots

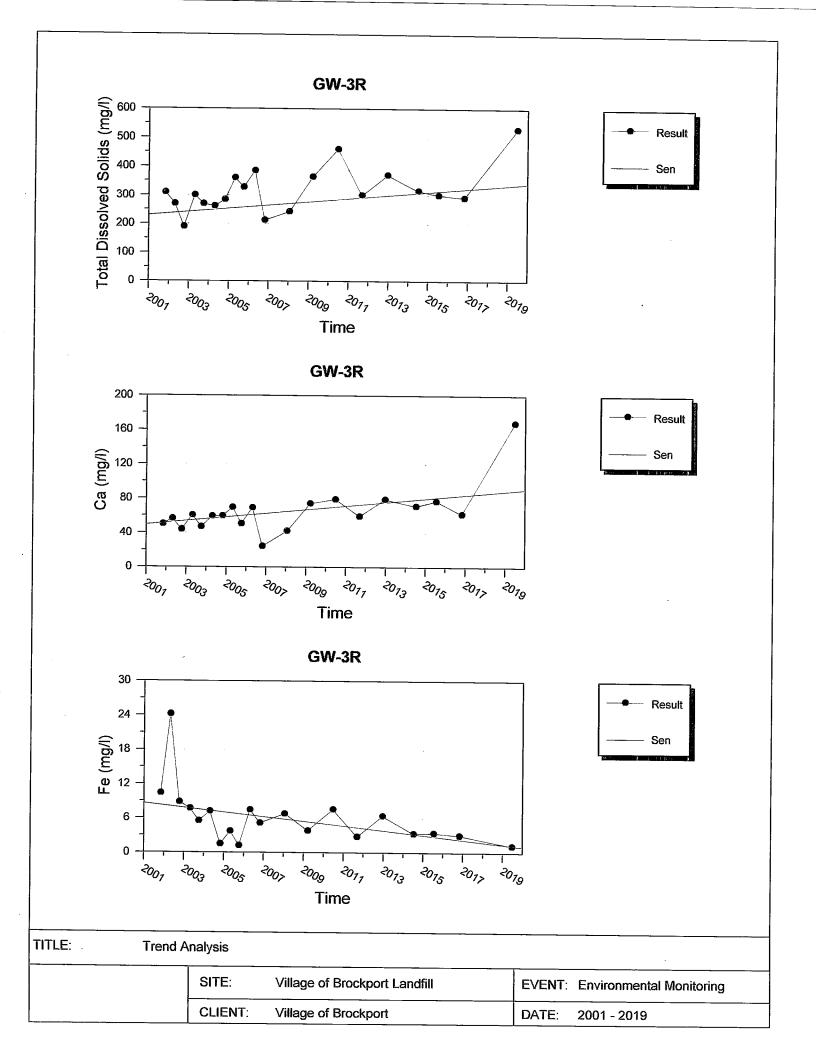


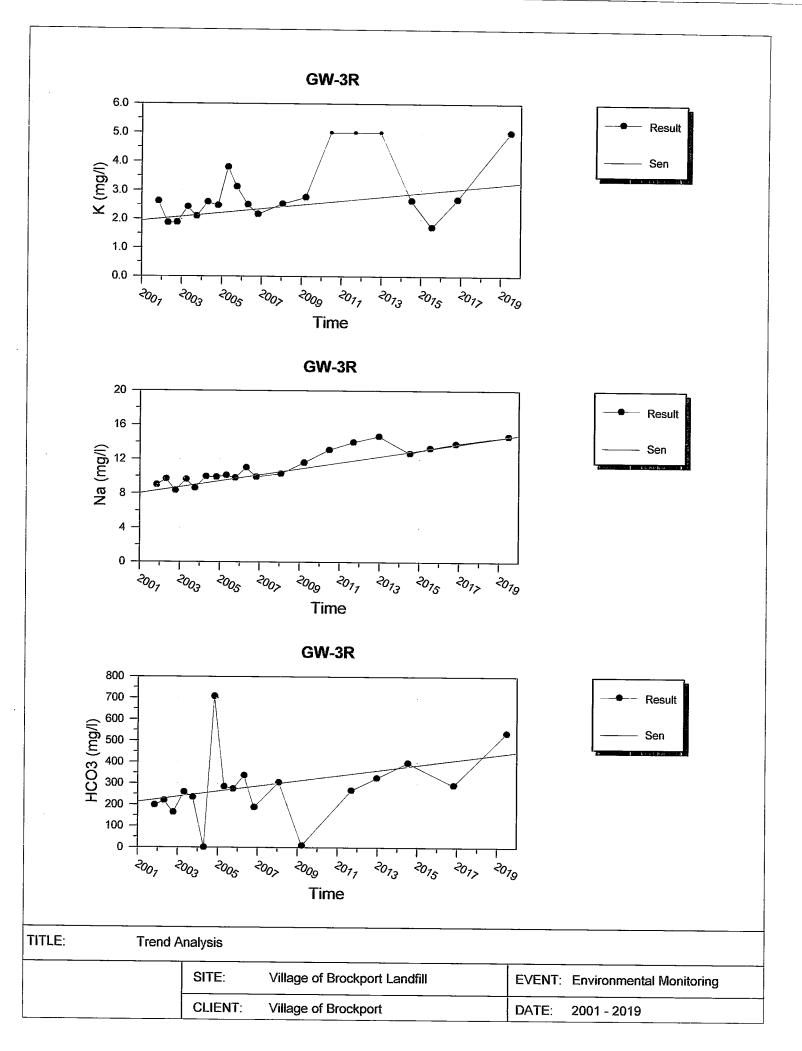


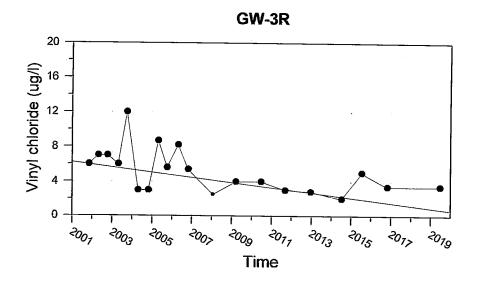


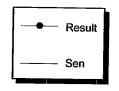

TITLE:	Trend A	Trend Analysis					
		SITE:	Village of Brockport Landfill	EVENT: Environmental Monitoring			
		CLIENT:	Village of Brockport	DATE: 2001 - 2019			



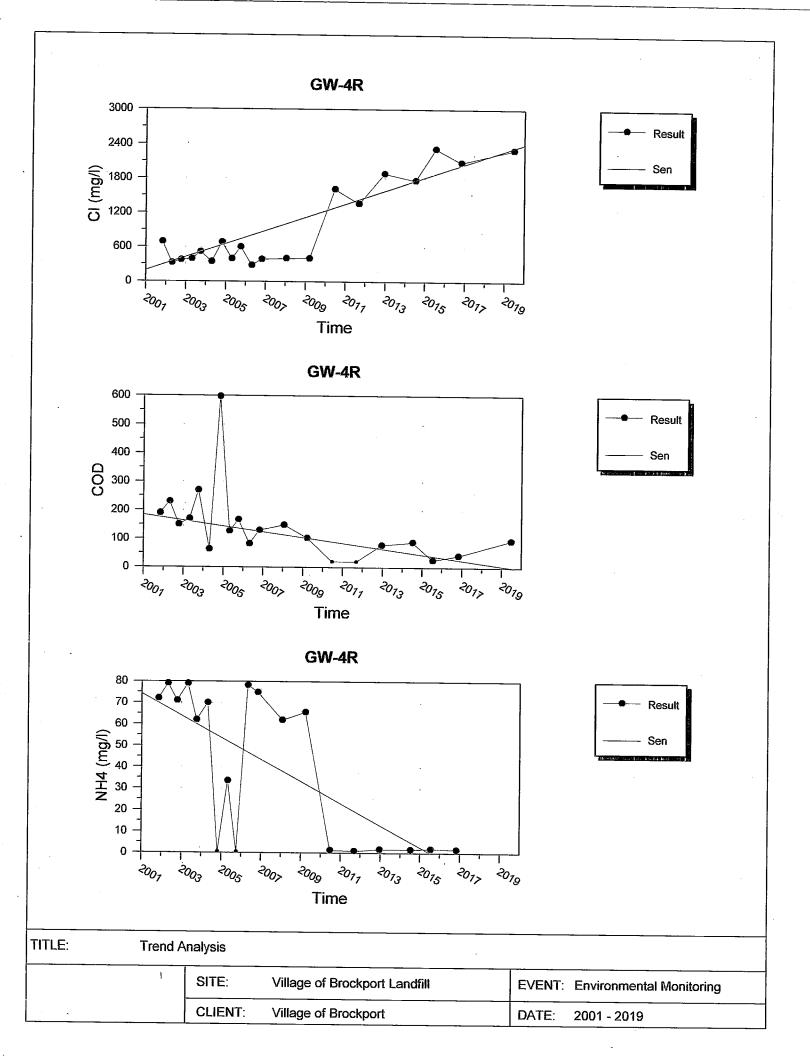


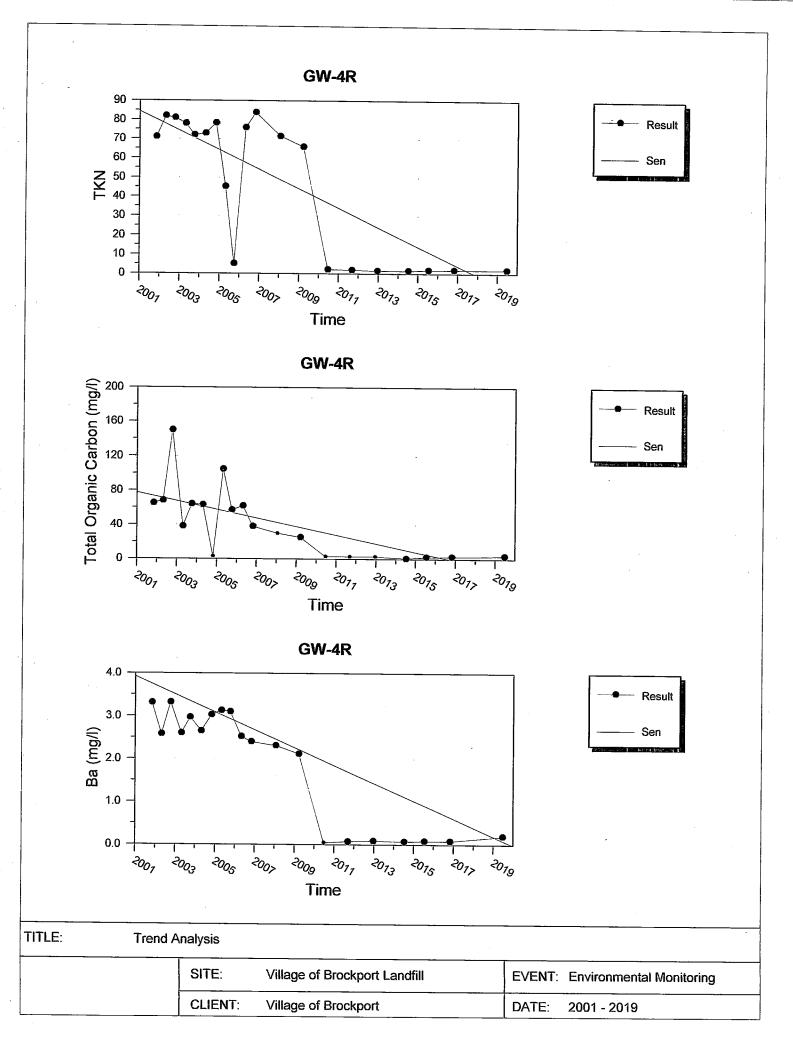


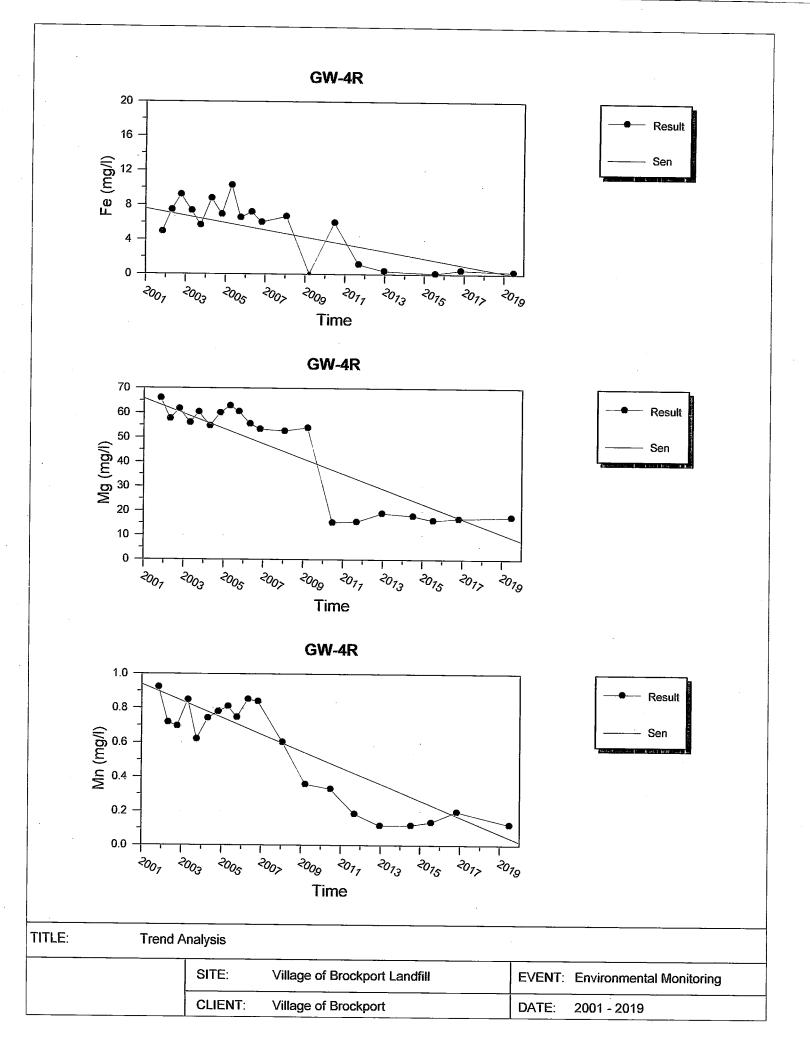


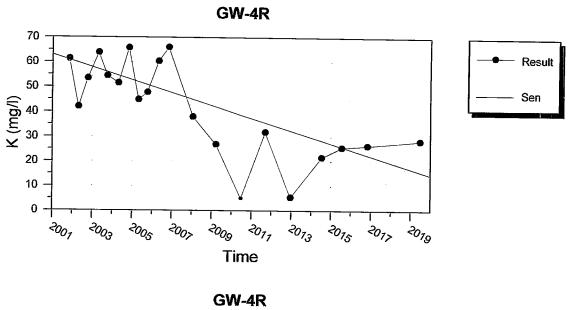


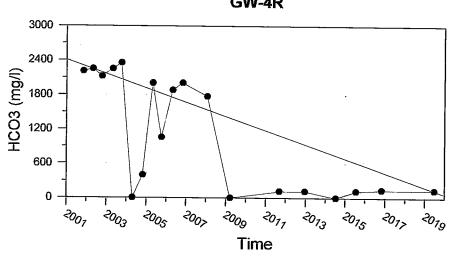
TITLE:	Trend A	nalysis			
		SITE:	Village of Brockport Landfill	EVENT: Environmental Monitoring	
		CLIENT:	Village of Brockport	DATE: 2001 - 2019	

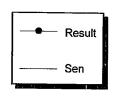


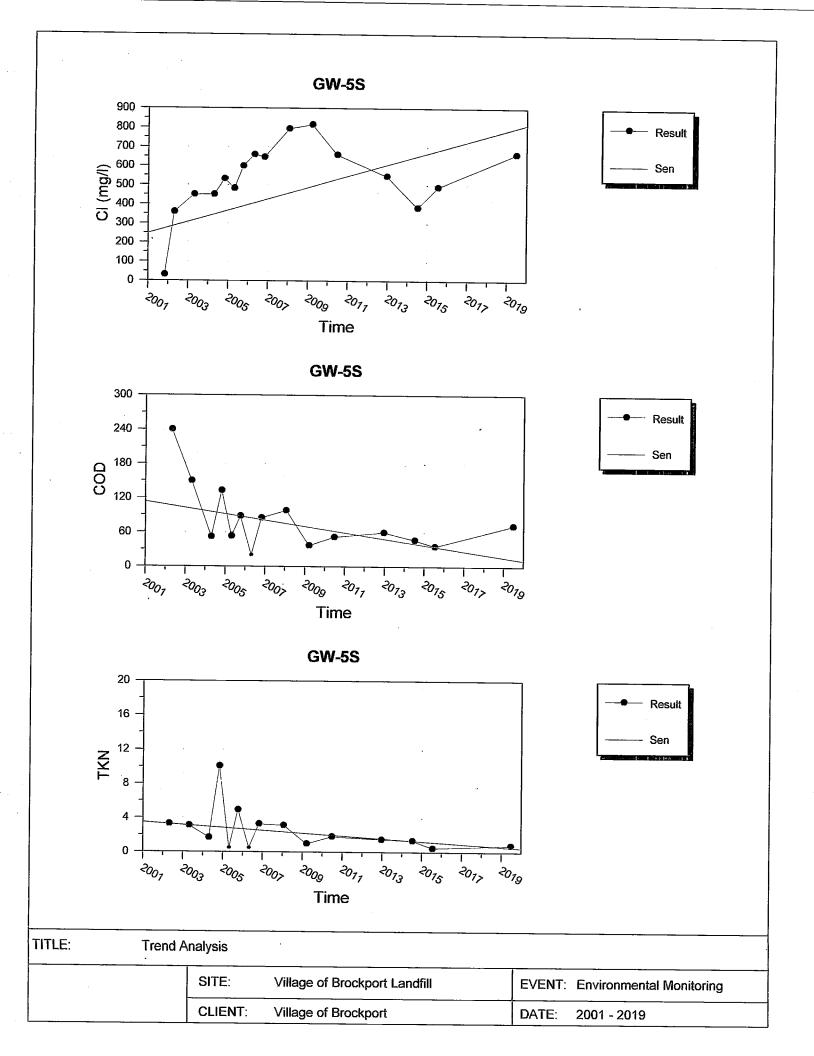


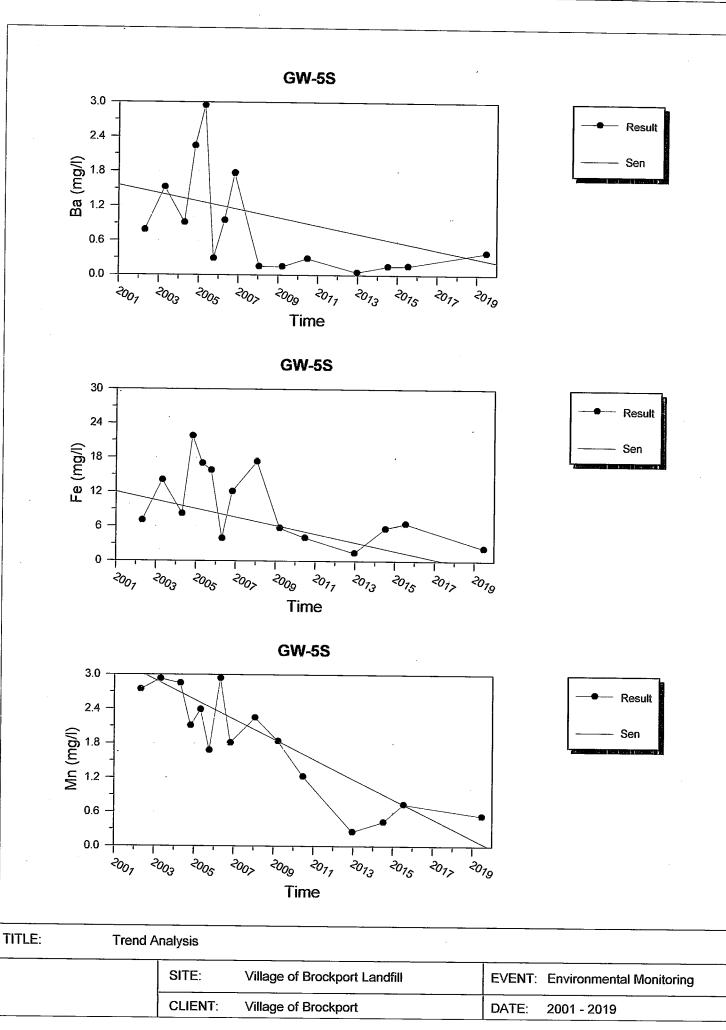


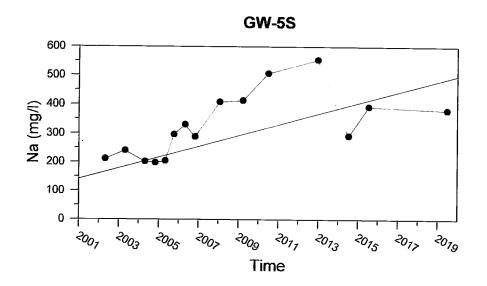


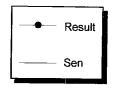

TITLE:	Trend A	nalysis		
		SITE:	Village of Brockport Landfill	EVENT: Environmental Monitoring
		CLIENT:	Village of Brockport	DATE: 2001 - 2019



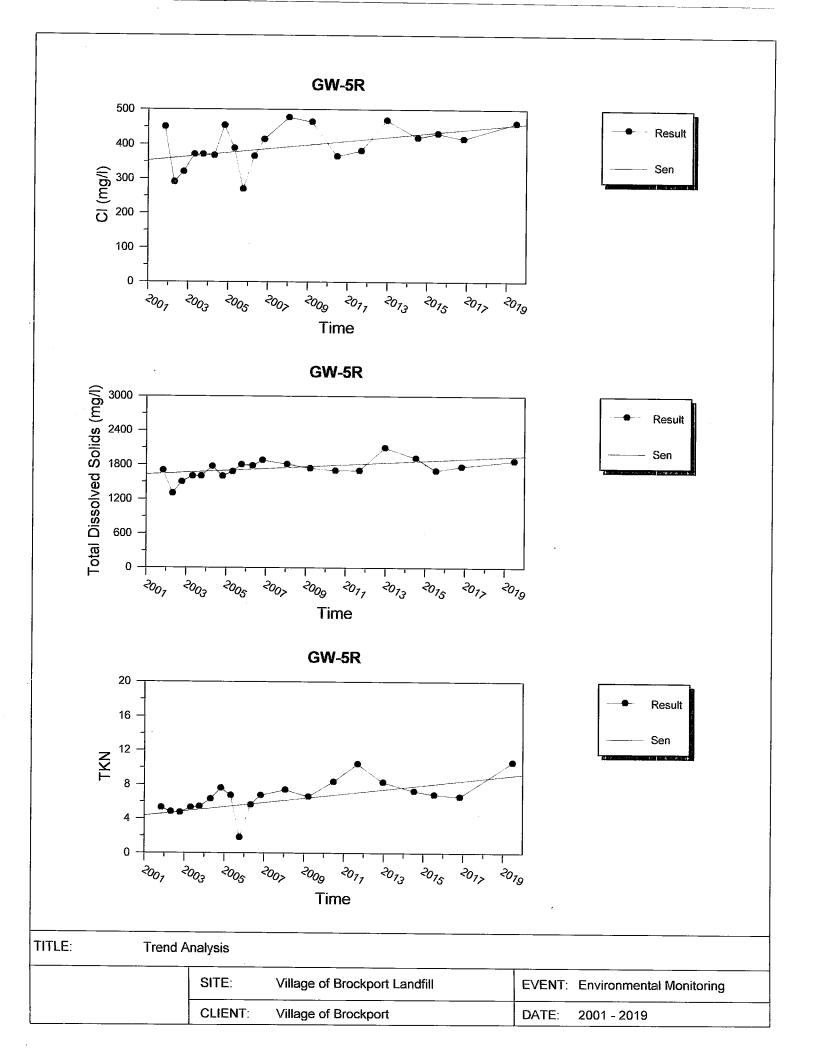


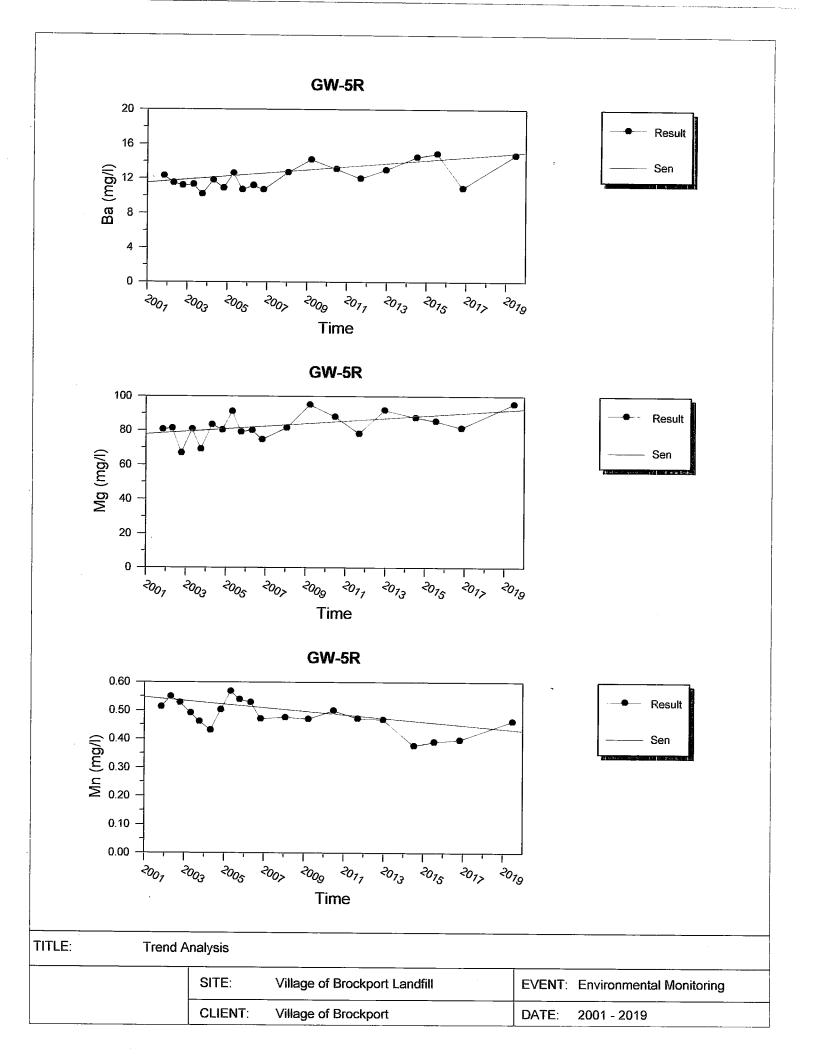


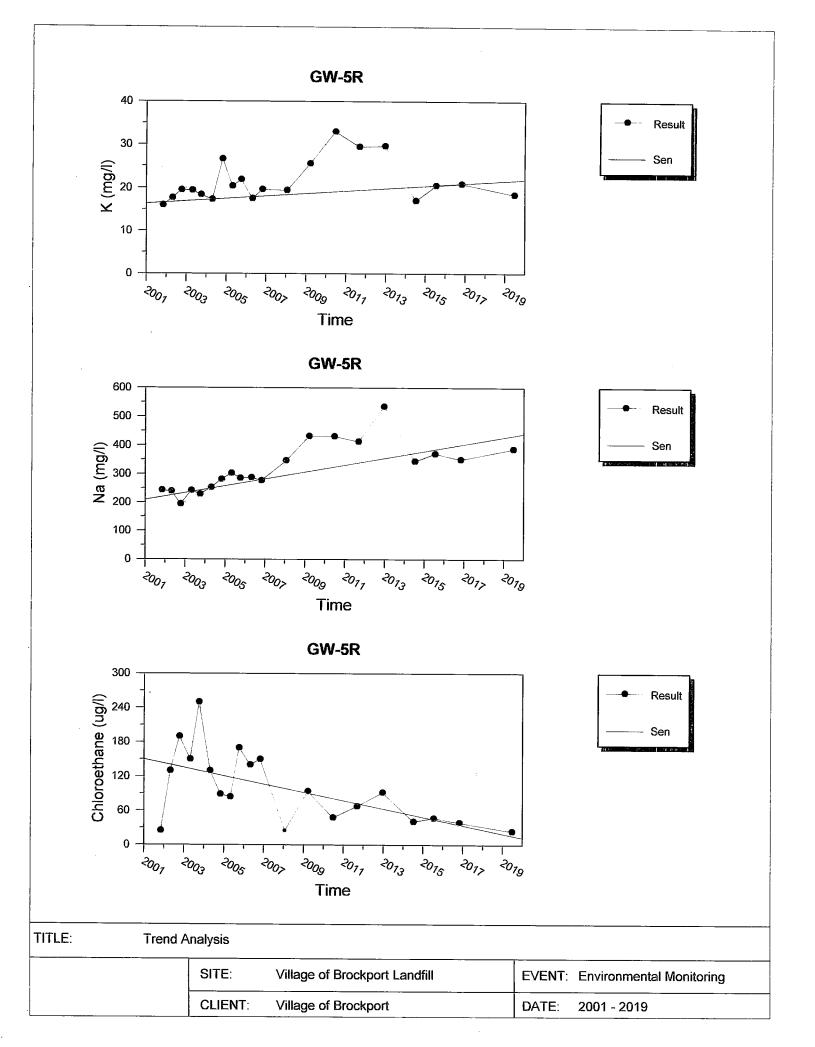


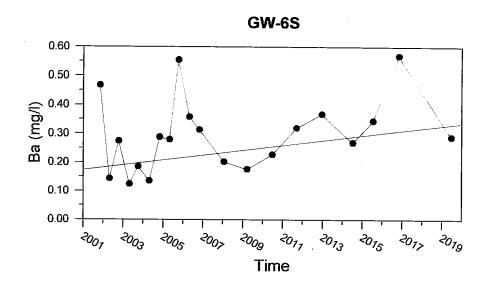


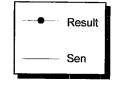
TITLE:	Trend A	Analysis		
		SITE:	Village of Brockport Landfill	EVENT: Environmental Monitoring
		CLIENT:	Village of Brockport	DATE: 2001 - 2019

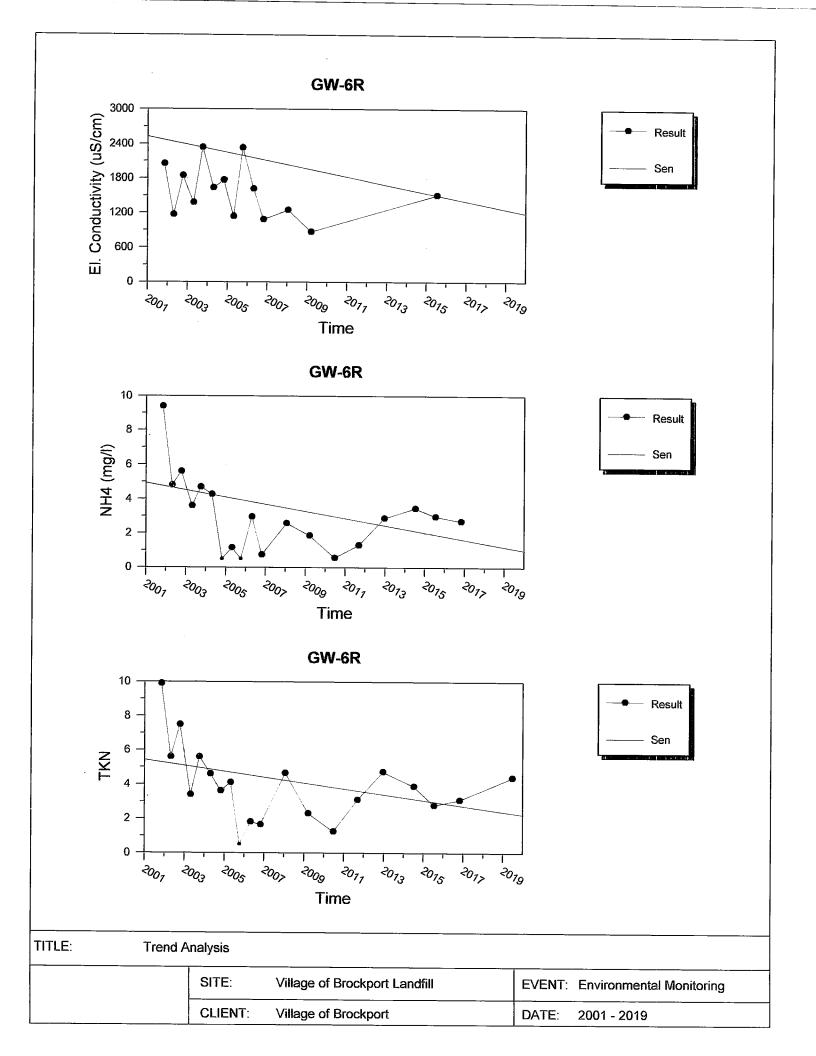


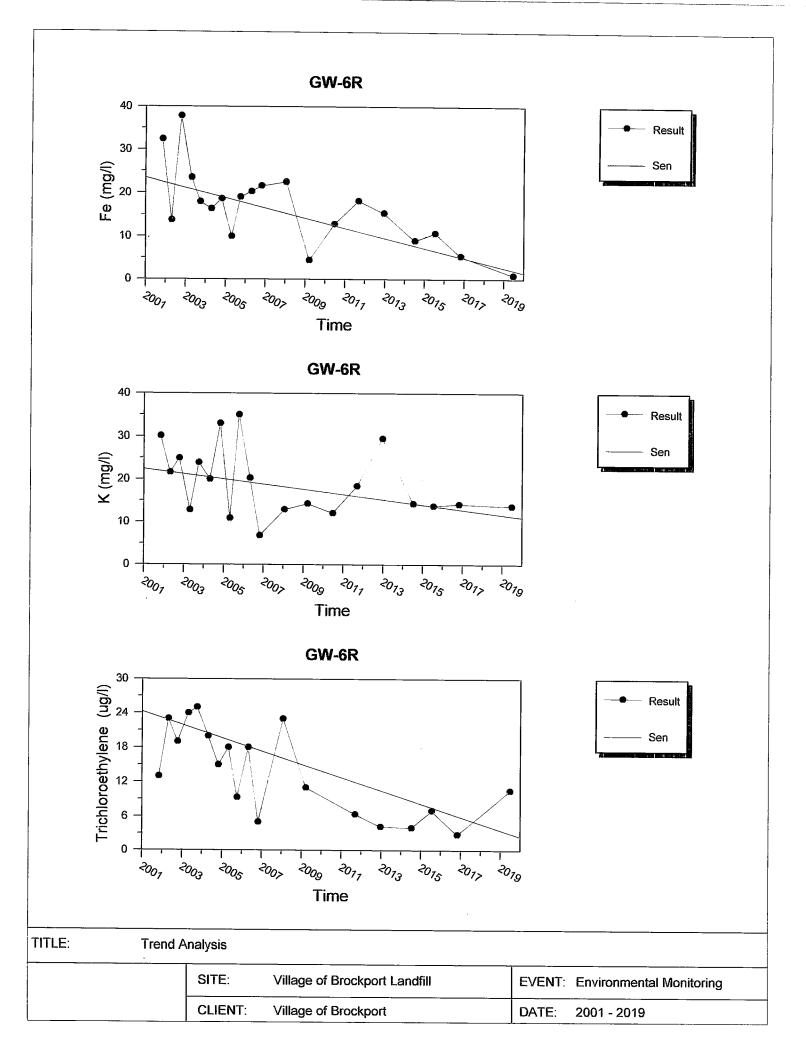


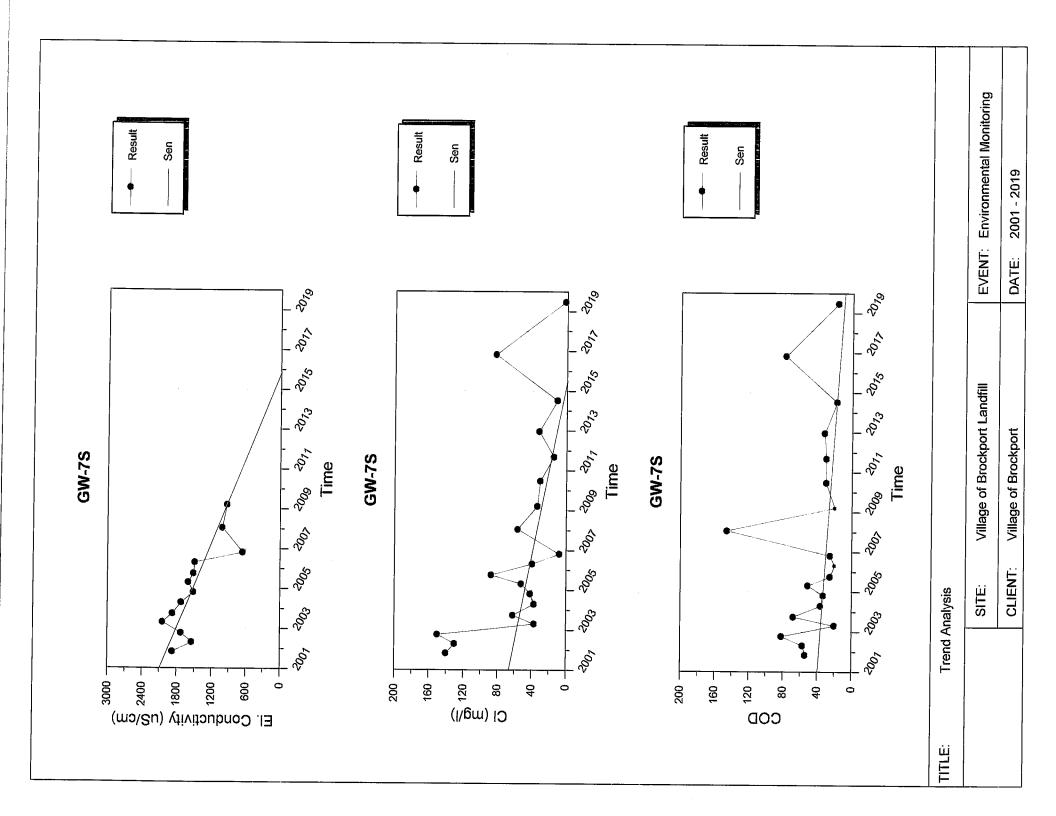


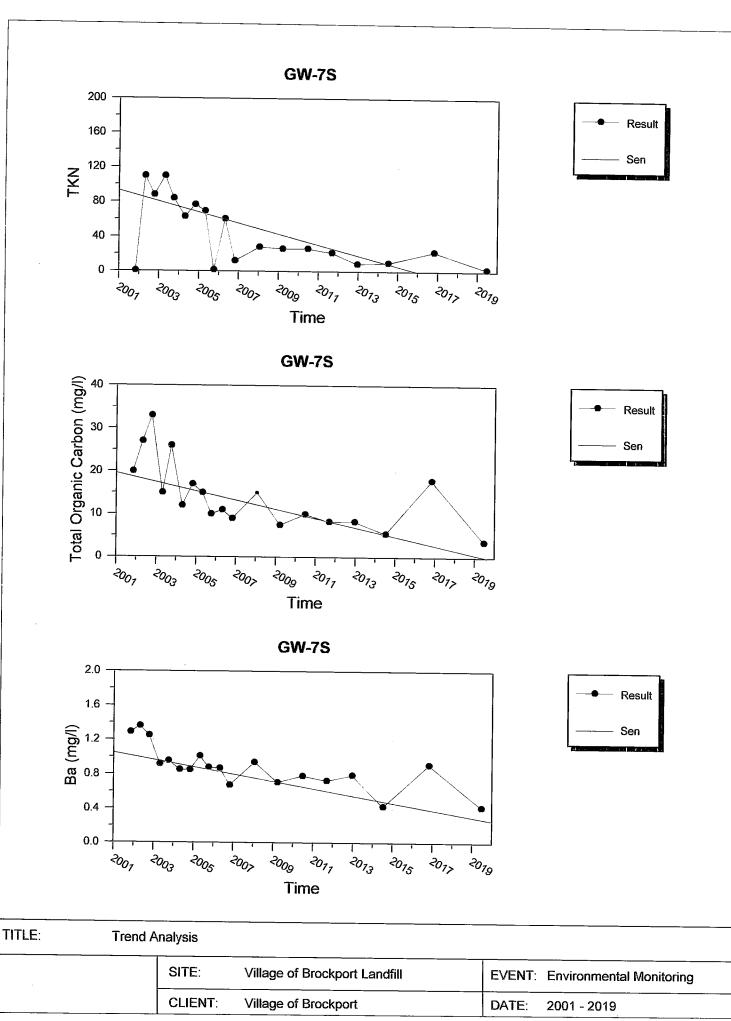


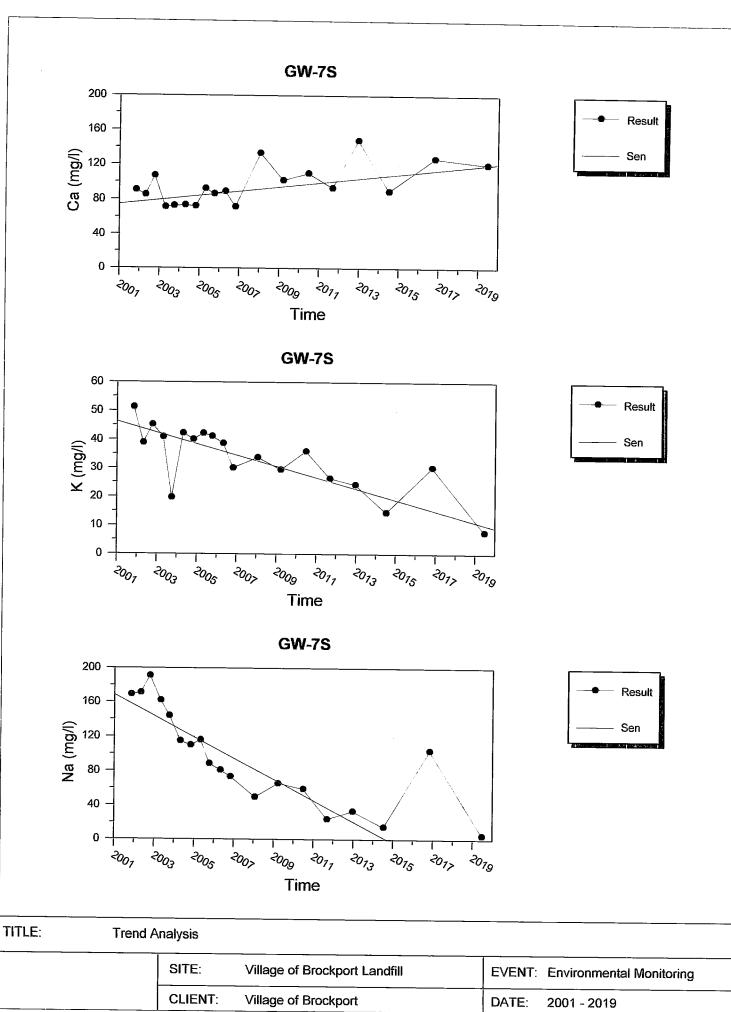

TITLE:	Trend A	nalysis		·
		SITE:	Village of Brockport Landfill	EVENT: Environmental Monitoring
		CLIENT:	Village of Brockport	DATE: 2001 - 2019

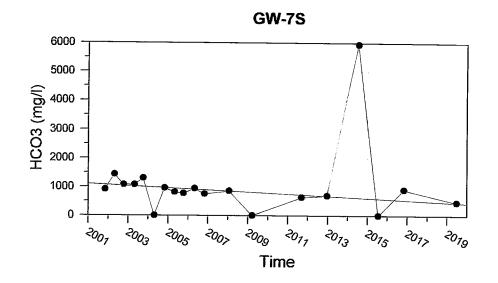


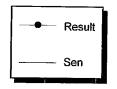


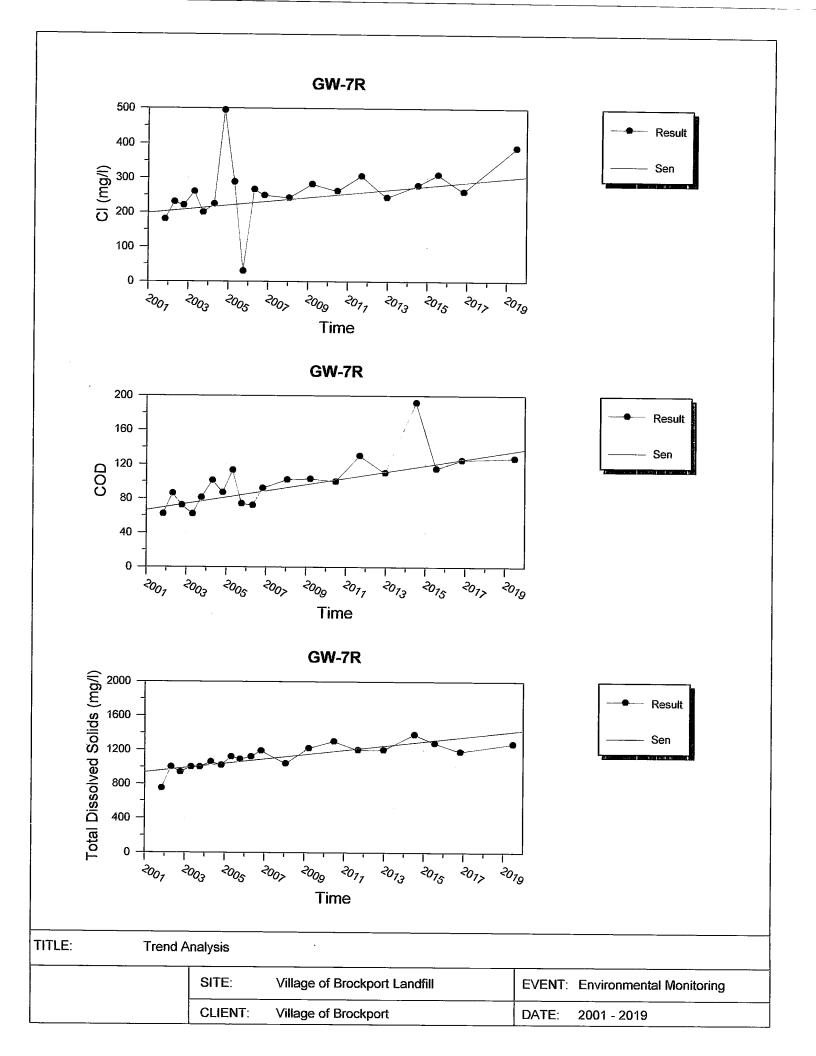


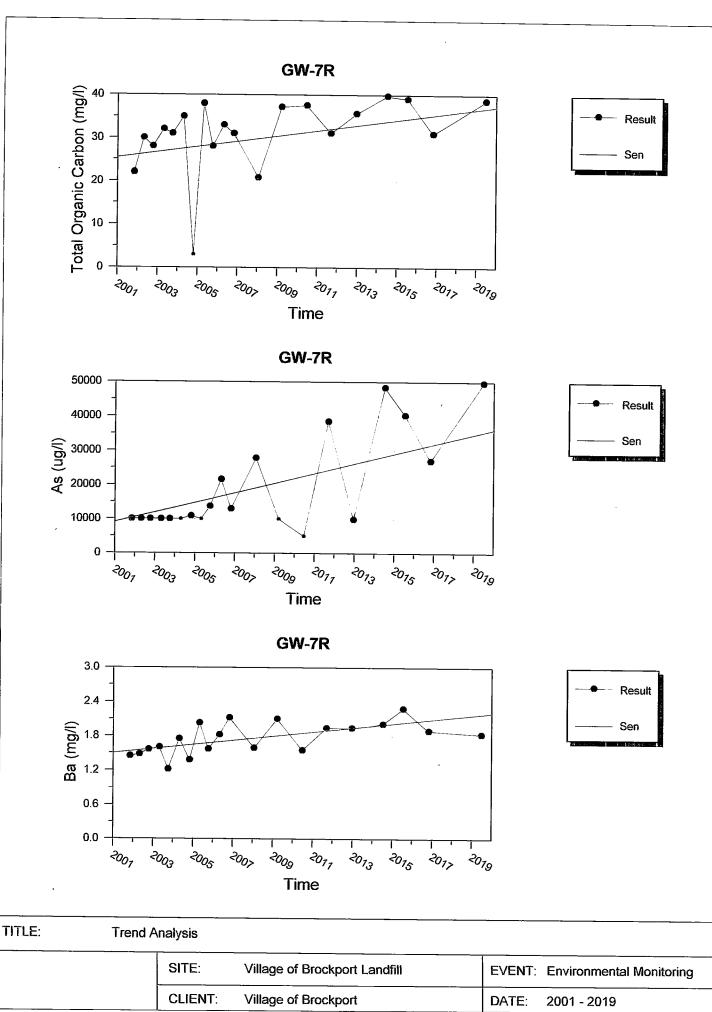

TITLE:	Trend A	nalysis			
		SITE:	Village of Brockport Landfill	EVENT:	Environmental Monitoring
		CLIENT:	Village of Brockport	DATE:	2001 - 2019

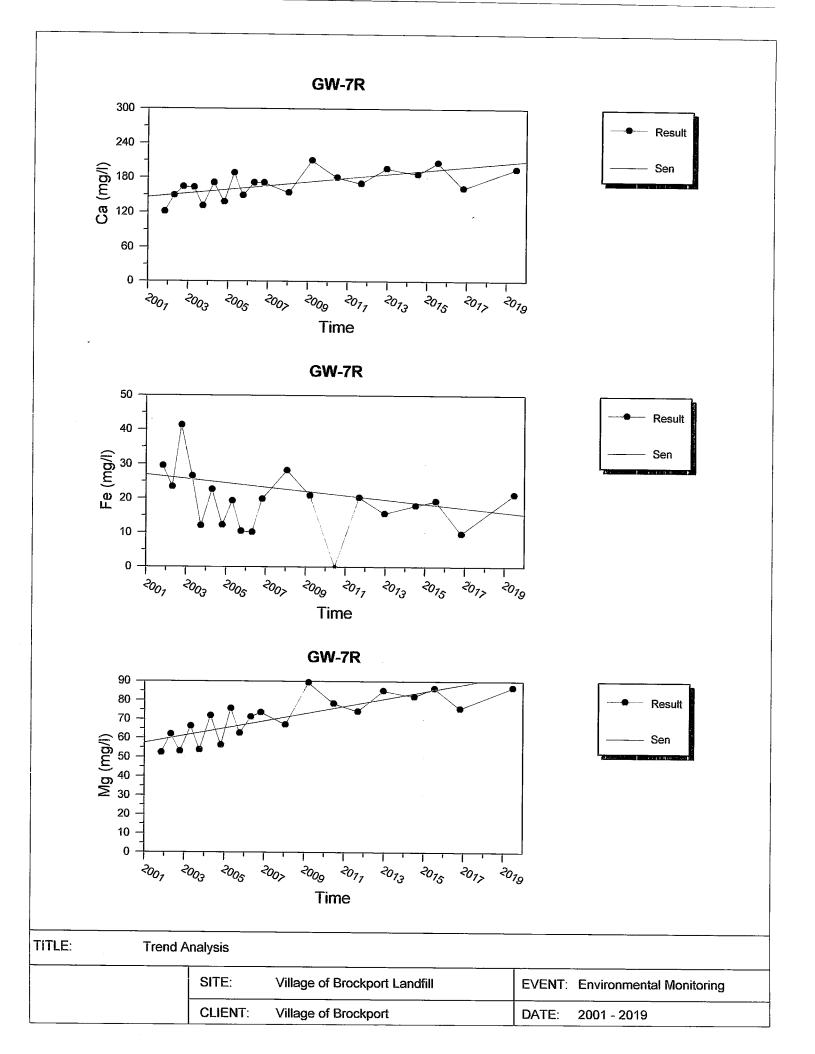


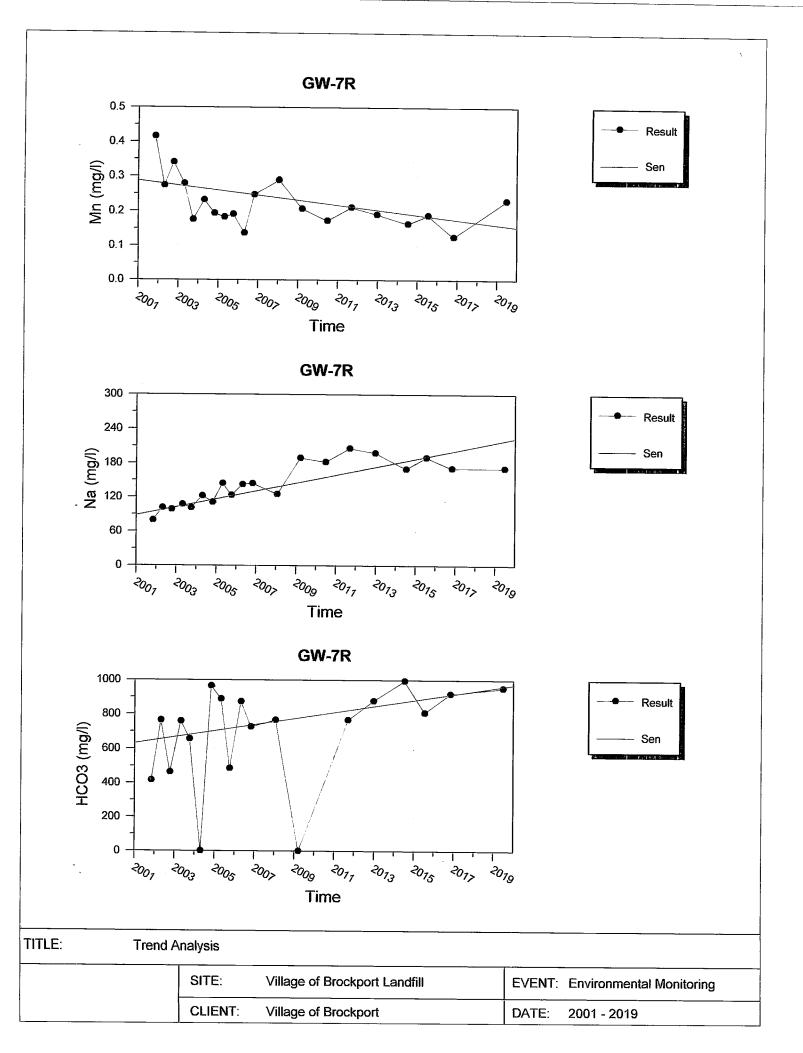


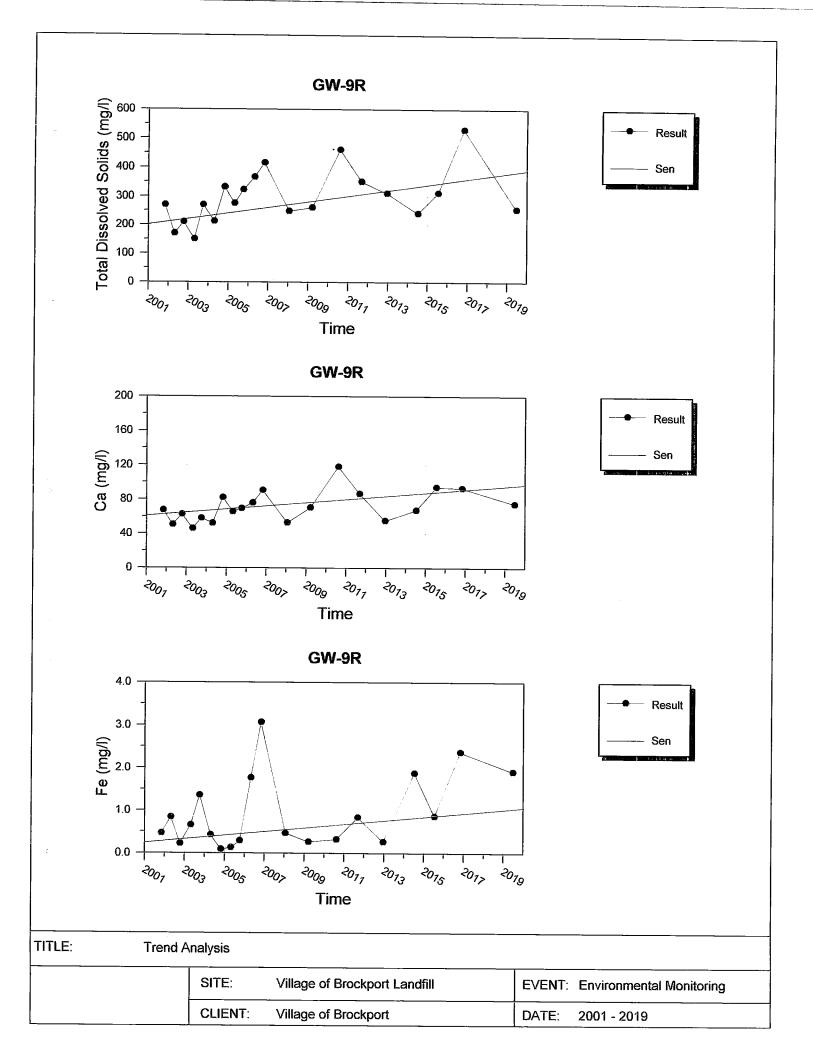


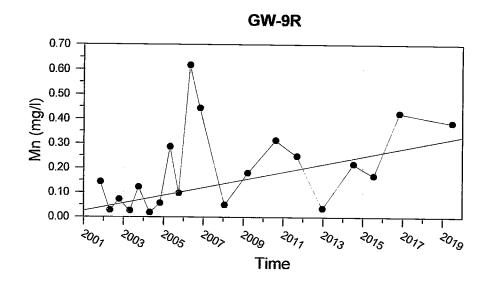


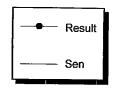


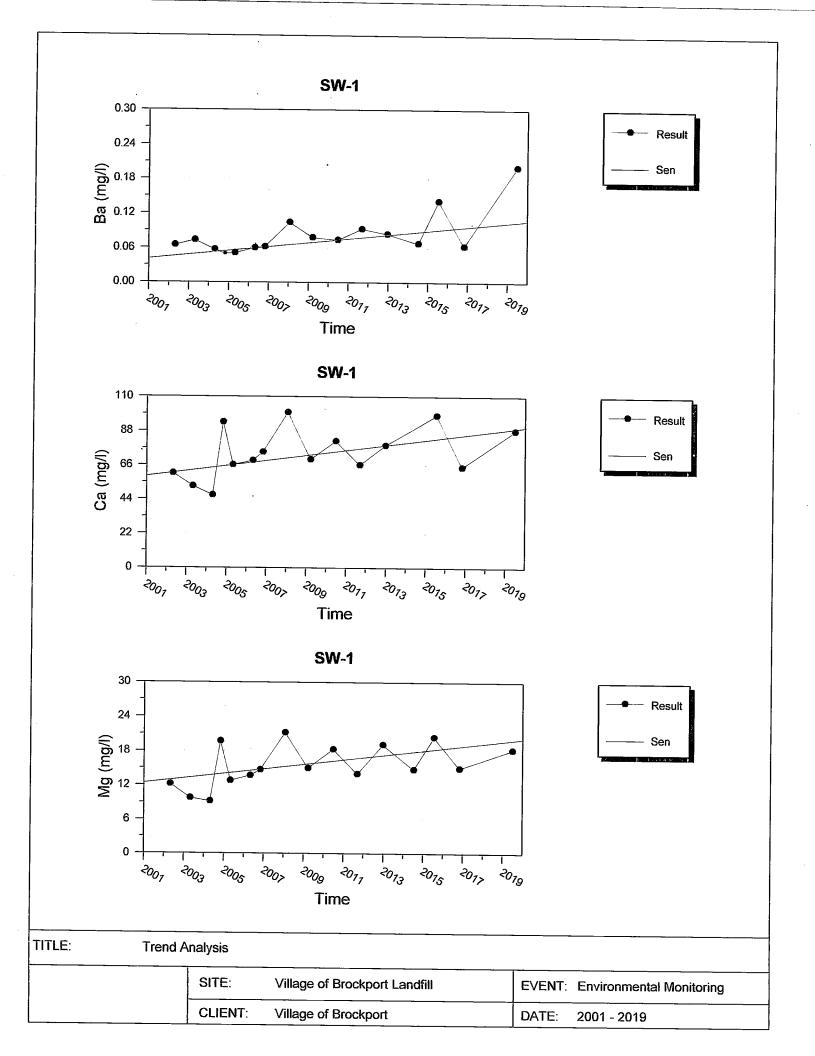


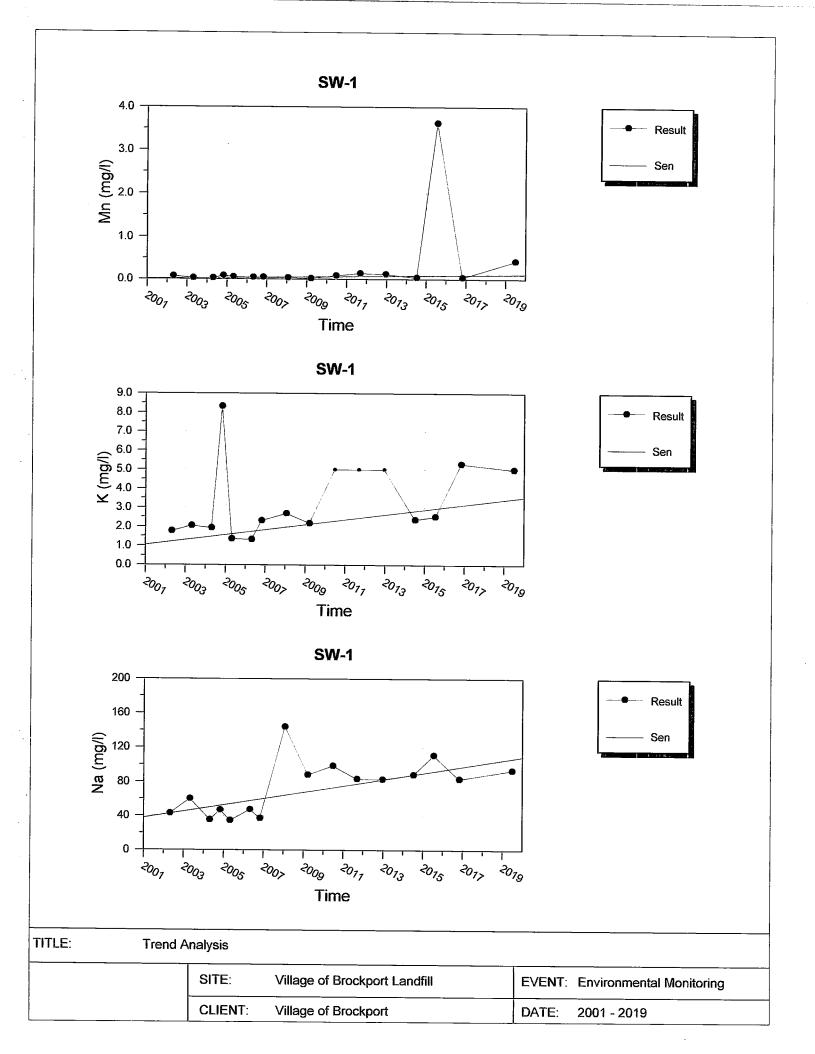


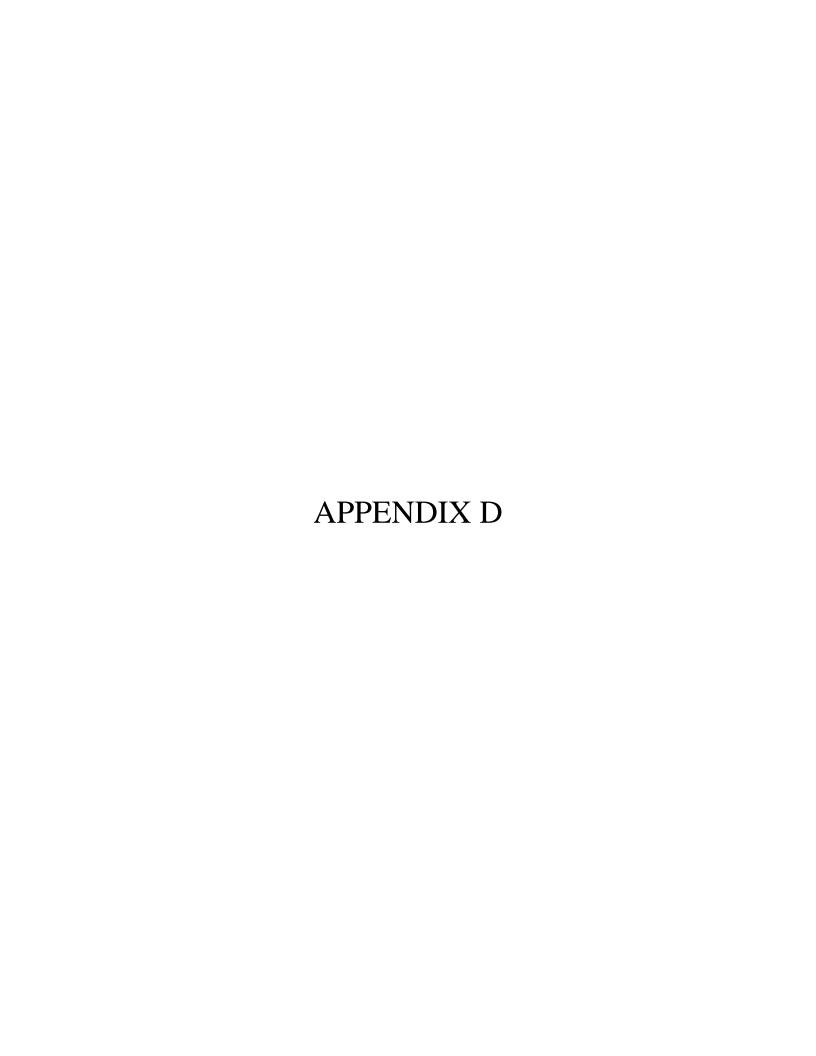

TITLE: T	rend Analysis		
	SITE:	Village of Brockport Landfill	EVENT: Environmental Monitoring
	CLIENT:	Village of Brockport	DATE: 2001 - 2019











TITLE:	Trend Analysis		
	SITE:	Village of Brockport Landfill	EVENT: Environmental Monitoring
	CLIENT:	Village of Brockport	DATE: 2001 - 2019

DATA VALIDATION REPORT

Brockport Landfill Site No. 8-28-038

June 2019 Sampling Event

Prepared by:

Kenneth R. Applin, Ph.D. **KR** Applin and Associates 8806 Route 256 Dansville, NY 14437

August 2019

Table of Contents

		Page No.
	REVIEWER'S NARRATIVE	
1.0	SUMMARY	1
2.0	TECHNICAL GUIDANCE USED IN THE DATA REVIEW	1
3.0	SAMPLING SUMMARY	2
4.0	LABORATORY ANALYSIS	3
5.0	DATA VALIDATION RESULTS	4
	5.1 Volatile Organic Compounds	4
	5.2 Metals	5
	5.3 Wet Chemistry Parameters	5
	5.4 Per- and Polyfluoroalkyl Substanes (PFAS)	6
	5.4 Field Duplicate Results	6
6.0	TOTAL USABLE DATA	6

ATTACHMENTS

Comparison of field duplicate results (Well GW-5R) Data Validation Acronyms Validator Qualifications

APPENDICES

APPENDIX A	Laboratory Case Narratives
APPENDIX B	Documentation of Quality Control Issues
APPENDIX C	Validated Laboratory Data

REVIEWER'S NARRATIVE

The analytical data obtained from the June 2019 sampling of the Brockport Landfill, Brockport, New York, have been reviewed in accordance with the criteria set forth in the Brockport Landfill – Site No. 8-28-038 Post-Closure Monitoring and Maintenance Operations Manual following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated, "J", or as non-detects, "U", are considered usable for the purpose of evaluating water quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data validation report.

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on final data tables because they cannot be relied upon, even as a last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase the confidence in data, but any value potentially contains error.

Reviewer's Signature

Kenneth R. Applin, P

Date: (Jug. 21, 2019

1.0 SUMMARY

SITE:

Brockport Landfill / Site No. 8-28-038

SAMPLING DATE:

June 2019

SAMPLE TYPE:

Groundwater / Surface Water

LABORATORY:

Enalytic LLC, E. Syracuse, NY Pace Analytical Services, LLC

Melville, NY

SDG or

WORK ORDER No.:

7095441 / 7095500

2.0 TECHNICAL GUIDANCE USED IN THE DATA REVIEW

Data validation requirements are specified in the *Brockport Landfill Monitoring Plan* which is included in the *Brockport Landfill – Site No. 8-28-038 Post-Closure Monitoring and Maintenance Operations Manual* (Malcolm Pirnie Inc., December 2000; revised April 2001).

Section 6.2.3 of the Monitoring Plan states that the analytical results from each scheduled monitoring event will be validated against the following criteria:

- Stated objectives of the Sampling Plan,
- Stated quality assurance (QA) objectives of the Quality Assurance Project Plan (QAPP),
- Analysis date versus the applicable holding times,
- Percentage of QA analyses conducted,
- Field and laboratory blank contamination,
- Percent recoveries of laboratory quality control (QC) samples,
 and
- Relative percent differences (RPDs) of laboratory QC samples and field replicates.

In addition, the Monitoring Plan (Section 6.2) requires that the criteria used for data validation be modeled after the following United States Environmental Protection Agency (USEPA) guidance documents or their updated versions:

- Functional Guidelines for Evaluating Organic Analyses, EPA 68-01-6999, February 1, 1998.
- Functional Guidelines for Evaluating Inorganic Analyses, EPA, July 1, 1988.

The following updated USEPA guidance documents were used to validate the analytical results from the June 2019 sampling event:

- Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3 (SOP #HW-2 Revision #13), September 2006.
- Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SW-846 Method 8260B; SOP # HW-24, Revision #2, August 2008.

3.0 SAMPLING SUMMARY

Groundwater and surface water sampling was conducted on June 26, 2019, by a sampling team from Enalytic LLC, Inc., East Syracuse, New York. The required groundwater and surface water monitoring points include six overburden monitoring wells, six shallow bedrock monitoring wells, one surface water sampling location on Otis Creek, and one surface water "seep". The sample designation numbers are listed below.

Overburden Wells	Shallow Bedrock Wells
GW-1S	GW-3R
GW-2S	GW-4R
GW-3S	GW-5R
GW-5S	GW-6R
GW-6S	GW-7R
GW-7S	GW-9R

The Otis Creek sample is designated as SW-1. The seepage sample is designated as "SEEP". Sample locations are shown in Figure 2-1 of the Monitoring Plan.

Complete samples were collected from each of the monitoring points. All samples were collected as whole, unfiltered samples. The samples from wells GW-1S, GW-4R, and GW-6R exhibited field turbidities in excess of 50 NTU. Additional samples for dissolved metals analysis were collected from these wells and were filtered in the lab. Both the filtered and non-filtered analytical results were reported.

All field quality control samples specified in Section 5.3 of the Monitoring Plan including trip blanks, one blind duplicate, and a matrix spike/matrix spike duplicate sample were collected with the monitoring well samples. A field duplicate sample was collected from well GW-5R.

4.0 LABORATORY ANALYSIS

Laboratory analysis of the samples was conducted by Pace Analytical Services, LLC, Melville, NY. The monitoring well samples and the surface water samples were analyzed as two individual sample delivery groups. The laboratory work order number for the monitoring well samples is 7095441. The work order number for the surface water samples is 7095500. The analyses were performed in accordance with established USEPA analytical methods. The analytical data for the wells and the surface waters were validated separately using the QC data pertaining to each data package.

The monitoring well samples were analyzed for the chemical parameters listed in Table 3-1 of the Monitoring Plan, which include 11 general chemistry parameters, 9 TAL metals, and 33 TCL volatile organic compounds (VOCs). Surface water sample SW-1 and the seep sample were analyzed for TAL metals and TCL VOCs only (no general chemistry parameters). In addition to total metals, dissolved metals were also analyzed in filtered samples from wells GW-1S, GW-4R, and GW-6R.

In addition to the analytes listed above, samples were also collected from wells GW-1S, GW-3S, GW-6R, and GW-9R for the analysis of per- and polyfluoroalkyl substances (PFAS). The laboratory analyses were subcontracted to Eurofins TestAmerica, Sacramento, CA.

All QC data required under the Monitoring Plan were supplied with the sample analytical results. These data include results for the QC analyses specified in Section 5.4.2 of the Monitoring Plan as well as additional QC data provided by the lab.

5.0 DATA VALIDATION RESULTS

The analytical results for the June 2019 sampling event were validated using the criteria listed in Section 2.0 of this report following appropriate USEPA guidance. Data that were qualified as non-detects (U), estimated non-detects (UJ), estimated (J), or rejected (R) are identified in the following sections and are flagged on the final data sheets of the lab report using red ink.

5.1 Volatile Organic Compounds

Analyte	Samples Affected	Qualifier	Reason
Acetone	All well	J pos.	%D in CCAL > control
Bromoform	samples	UJ non-	limit
trans-1,3-		detects	
Dichloropropene			
Acetone	SW-1	J pos.	%D in CCAL > control
Bromoform	SEEP	UJ non-	limit
1,2-Dibromo-3-		detects	
chloropropane			
Dibromochloromethane			
trans-1,4-Dichloro-2-			
butene			
1,1-Dichloroethane			
Vinyl chloride			

5.2 Metals

Analyte	Samples Affected	Qualifier	Reason
Calcium	All well samples	none	MS recovery < control limit *
Iron Potassium	All filtered well samples	J pos.	%D of serial dilution > control limit
Calcium Sodium	SW-1 SEEP	J pos. UJ non- detects	%R of interference check sample < control limit

^{*} In accordance with USEPA guidance, analytical results are not qualified on the basis of MS/MSD recoveries alone. However, MS/MSD recoveries less than the control limits indicate possible low biases in the analytical results. Recoveries greater than the control limits indicate possible high biases in the results.

5.3 Wet Chemistry Parameters

Analyte	Samples Affected	Qualifier	Reason
Alkalinity	GW-6R	none	MS/MSD recoveries >
Nitrite as N			control limit *
TKN			

^{*} In accordance with USEPA guidance, analytical results are not qualified on the basis of MS/MSD recoveries alone. However, MS/MSD recoveries less than the control limits indicate possible low biases in the analytical results. Recoveries greater than the control limits indicate possible high biases in the results.

5.4 Per- and Polyfluoroalkyl Substances (PFAS)

Analyte	Samples Affected	Qualifier	Reason			
PFOS			Detected in equip blank at 0.98 J ng/L			
PFOS	GW-3S GW-9R	J detects < 10x equip blank value	Detected in equip blank at 0.98 J ng/L			
PFHxS	GW-1S GW-3S GW-9R Equip Blank	Change pos results < CRQL to CRQL	Detected in method blank at 0.319 J ng/L			

Note: 1,4-dioxane was also analyzed by Method 8270D-SIM. All analytical QC data were within acceptable limits.

5.5 Field Duplicate Results

A field duplicate sample was collected from well GW-5R. The analytical results for the sample and duplicate are compared in the attached table. Except for acetone, the relative percent differences (RPDs) between the duplicate results for each analyte were within the 20% control limit. Given the elevated RPD for acetone, the results in the duplicate samples were qualified as estimated (J or UJ).

6.0 TOTAL USABLE DATA

No analytical results were rejected as a result of this data review. Although some results were qualified as estimated (J or UJ) and/or may be biased due to matrix or other effects, all results are considered usable.

COMPARISON OF FIELD DUPLICATE SAMPLE RESULTS **Brockport Landfill**

June 2019 Sampling Event

Monitoring Well Sample GW-5R

Analyte	Units	CRDL	5x CRDL	Sample	Q	Duplicate	Q	ABS Diff	RPD
General Chemistry									
Alkalinity, Total as CaCO3	mg/L	5	25	1280		1280		0	0.0
Hardness, Total as CaCO3	mg/L	5.0	25	900		900		0	0.0
Total Dissolved Solids	mg/L	20	100	1870		1800		70	3.8
Chemical Oxygen Demand	mg/L	10	50	176		169		7	4.1
Chloride	mg/L	40	200	461		464		3	0.6
Sulfate	mg/L	5	25	5.0	U	5.0		0	
Nitrogen, Kjeldahl, Total	mg/L	0.5	2.5	10.6		12.8		2.2	18.8
Nitrate as N	mg/L	0.05	0.25	0.050	U	0.050		0	
Nitrate-Nitrite as N	mg/L	0.05	0.25	0.050	U	0.050		0	
Nittrite as N	mg/L	0.05	0.25	0.050	Ū	0.050		0	
Nitrogen, Ammonia	mg/L	0.5	2.5	7.6		7.6		0	0.0
Total Organic Carbon	mg/L	1	5	50.4		50.0		0.4	8.0
Phenolics, Total	mg/L	0.010	0.050	0.010	Ü	0.010	U	0	
Total Metals									
Antimony	ug/L	60.0	300	60.0	U	60.0	U	0	
Arsenic	ug/L	10.0	50.0	10.0	Ū	10.0	U	0	
Barium	ug/L	200	1000	14700		14400		300	2.1
Boron	ug/L	50.0	500	646		645		1	0.2
Calcium	ug/L	200	1000	255000		252000		3000	1.2
Iron	ug/L	20.0	100	24700		22700		2000	8.4
Magnesium	ug/L	200	1000	95500		94200		1300	1.4
	ug/L	10.0	50.0	462		460		2	0.4
Manganese Potassium	ug/L	5000	25000	18400		18500		100	0.5
Sodium	ug/L	5000	25000	387000		382000		5000	1.3
VOCs			25	5.0	· U	16.3	J	11.3	106
Acetone	ug/L	5		7.3	J	6.7	•	0.6	8.6
Benzene	ug/L	1	5	7.3 4.8		5.1		0.3	6.1
Chlorobenzene	ug/L	1	5			25.6		1.6	6.5
Chloroethane	ug/L	1	5	24.0 1.0		25.6 1.0	υ	0.0	0.0
1,1-Dichloroethane	ug/L	. 1	5	1.0		1.0	J	3.0	0.0

Notes:

CRDL = contract required detection limit (method detection limit used for General Chemistry parameters) RPD = relative percent difference = ABS[(C1 - C2)/((C1 + C2)/2)]*100 "U" qualifier indicates a non-detect result at the concentration shown "J" qualifier indicates an estimated result

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

Appendix A

Laboratory Case Narratives

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Neils

Method:

EPA 6010C Description: 6010 MET ICP Enalytic, LLC

Client: Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121065

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 576051)
 - Calcium
 - Sodium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 6010C

Description: 6010 MET ICP, Dissolved

Client: Date: Enalytic, LLC July 26, 2019

General Information:

3 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 8260C/5030C **Description:** 8260C Volatile Organics

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

15 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120782

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- BLANK (Lab ID: 574898)
 - · 2-Butanone (MEK)
- GW-1S (Lab ID: 7095441014)
 - · 2-Butanone (MEK)
- · GW-2S (Lab ID: 7095441015)
 - · 2-Butanone (MEK)
- GW-3R (Lab ID: 7095441017)
 - · 2-Butanone (MEK)
- GW-3S (Lab ID: 7095441016)
 - 2-Butanone (MEK)
- GW-4R (Lab ID: 7095441018)
 - 2-Butanone (MEK)
- GW-5R (Lab ID: 7095441020) · 2-Butanone (MEK)
- GW-5S (Lab ID: 7095441019)
- · 2-Butanone (MEK)
- GW-6R (Lab ID: 7095441022) 2-Butanone (MEK)
- GW-6S (Lab ID: 7095441021)
 - 2-Butanone (MEK)
- · GW-7R (Lab ID: 7095441024)
 - · 2-Butanone (MEK)
- GW-7S (Lab ID: 7095441023)
 - · 2-Butanone (MEK)
- GW-9R (Lab ID: 7095441025)
 - 2-Butanone (MEK)
- · GW-X (Lab ID: 7095441026)
 - 2-Butanone (MEK)
- · LCS (Lab ID: 574899)
 - 2-Butanone (MEK)
- · MS (Lab ID: 574949)
 - · 2-Butanone (MEK)
- MSD (Lab ID: 574950)

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 8260C/5030C **Description: 8260C Volatile Organics**

Client:

Enalytic, LLC

Date:

July 26, 2019

QC Batch: 120782

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- 2-Butanone (MEK)
- STORAGE BLANK (Lab ID: 7095441028)
 - · 2-Butanone (MEK)
- TRIP BLANK (Lab ID: 7095441027)
 - 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120782

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- GW-7R (Lab ID: 7095441024)
 - Acetone
- GW-X (Lab ID: 7095441026)
 - Acetone
- LCS (Lab ID: 574899)
 - Acetone
 - trans-1,3-Dichloropropene
- MS (Lab ID: 574949)
 - Acetone
 - · trans-1,3-Dichloropropene
- MSD (Lab ID: 574950)
 - Acetone
 - trans-1,3-Dichloropropene

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- · BLANK (Lab ID: 574898)
 - Bromoform
- GW-1S (Lab ID: 7095441014)
 - Bromoform
- GW-2S (Lab ID: 7095441015)
 - Bromoform
- GW-3R (Lab ID: 7095441017)
 - Bromoform
- GW-3S (Lab ID: 7095441016)
 - Bromoform
- GW-4R (Lab ID: 7095441018) Bromoform
- GW-5R (Lab ID: 7095441020) Bromoform
- GW-5S (Lab ID: 7095441019)
- Bromoform
- GW-6R (Lab ID: 7095441022) Bromoform

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 8260C/5030C **Description: 8260C Volatile Organics**

Client:

Enalytic, LLC

Date:

July 26, 2019

QC Batch: 120782

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- · GW-6S (Lab ID: 7095441021)
 - Bromoform
- GW-7R (Lab ID: 7095441024)
 - Bromoform
- · GW-7S (Lab ID: 7095441023)
 - Bromoform
- GW-9R (Lab ID: 7095441025)
 - Bromoform
- GW-X (Lab ID: 7095441026)
 - Bromoform
- LCS (Lab ID: 574899)
 - Bromoform
- · MS (Lab ID: 574949)
 - Bromoform
- MSD (Lab ID: 574950)
 - Bromoform
- STORAGE BLANK (Lab ID: 7095441028)
 - Bromoform
- TRIP BLANK (Lab ID: 7095441027)
 - Bromoform

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

- L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
 - · LCS (Lab ID: 574899)
 - trans-1,3-Dichloropropene
- L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
 - · LCS (Lab ID: 574899)
 - Bromoform

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 8260C/5030C **Description:** 8260C Volatile Organics

Client:

Enalytic, LLC

Date:

July 26, 2019

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120782

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441022

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- · MS (Lab ID: 574949)
 - trans-1,3-Dichloropropene
- MSD (Lab ID: 574950)
 - trans-1,3-Dichloropropene

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 574949)
 - 1,1,1-Trichloroethane
 - · Bromodichloromethane
- MSD (Lab ID: 574950)
 - 1,1,1-Trichloroethane
 - · Bromodichloromethane
 - · Carbon tetrachloride
 - · cis-1,3-Dichloropropene

R1: RPD value was outside control limits.

- MSD (Lab ID: 574950)
 - lodomethane

Additional Comments:

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 2320B Description: 2320B Alkalinity

Client: Date:

Enalytic, LLC July 26, 2019

General Information:

11 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120959

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 575760)
 - Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 2320B **Description: 2320B Alkalinity** Enalytic, LLC

Client: Date:

July 26, 2019

General Information:

2 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121116

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7096405001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

· MS (Lab ID: 576690)

Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 2340C

account.

Description: 2340C Hardness, Total

Client: Date: Enalytic, LLC July 26, 2019

General Information:

13 samples were analyzed for SM22 2340C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 2540C

Description: 2540C Total Dissolved Solids

Client: Date: Enalytic, LLC July 26, 2019

General Information:

13 samples were analyzed for SM22 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 410.4 Description: 410.4 COD

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 300.0

Description: 300.0 IC Anions 28 Days

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121362

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095339001,7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 577928)
 - · Nitrogen, Kjeldahl, Total
- MS (Lab ID: 577930)
 - · Nitrogen, Kjeldahl, Total

QC Batch: 121363

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095483001,7095502007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 577934)
 - · Nitrogen, Kjeldahl, Total
- · MS (Lab ID: 577936)
 - · Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Date: Enalytic, LLC July 26, 2019

General Information:

13 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119806

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009,7095480001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 569383)
 - · Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

PROJECT NARRATIVE

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 353.2

Description: 353.2 Nitrogen, NO2

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119801

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009,7095502007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 569325)
 - · Nitrite as N

QC Batch: 119800

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095474001,7095480001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 569319)
 - · Nitrite as N
- · MS (Lab ID: 569321)
 - · Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

SM22 4500 NH3 H Description: 4500 Ammonia Water

Client:

Enalytic, LLC

Date:

July 26, 2019

General Information:

13 samples were analyzed for SM22 4500 NH3 H. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Method:

EPA 9060A

Description: 9060A TOC as NPOC

Client: Date:

Enalytic, LLC July 26, 2019

General Information:

13 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 120232

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 571636)
 - · Total Organic Carbon

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

SW-1/SEEP

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Method:

EPA 6010C

Client:

Description: 6010 MET ICP Enalytic, LLC

Date:

July 12, 2019

General Information:

2 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 121065

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095441009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- · MS (Lab ID: 576051)
 - Calcium
 - Sodium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No .:

7095500

Method:

EPA 8260C/5030C

Client:

Description: 8260C Volatile Organics Enalytic, LLC

Date:

July 12, 2019

General Information:

2 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120726

- IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
 - BLANK (Lab ID: 574699)
 - 2-Butanone (MEK)
 - LCS (Lab ID: 574700)
 - 2-Butanone (MEK)
 - MS (Lab ID: 574820)
 - · 2-Butanone (MEK) • MSD (Lab ID: 574821)

 - 2-Butanone (MEK)
 - SEEP (Lab ID: 7095500002)
 - 2-Butanone (MEK)
 - SW-1 (Lab ID: 7095500001)
 - · 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 120726

- CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
 - · LCS (Lab ID: 574700)
 - Acetone
 - · Dibromochloromethane
 - MS (Lab ID: 574820)
 - Acetone
 - Dibromochloromethane
 - MSD (Lab ID: 574821)
 - Acetone
 - · Dibromochloromethane
- CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
 - BLANK (Lab ID: 574699)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Method:

EPA 8260C/5030C

Client:

Description: 8260C Volatile Organics Enalytic, LLC

Date:

July 12, 2019

QC Batch: 120726

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- · Vinyl chloride
- trans-1,4-Dichloro-2-butene
- · LCS (Lab ID: 574700)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- MS (Lab ID: 574820)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - · Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- MSD (Lab ID: 574821)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - · Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- SEEP (Lab ID: 7095500002)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - · Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- SW-1 (Lab ID: 7095500001)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - Bromoform
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

All surrogates were within QC limits with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Method:

EPA 8260C/5030C Description: 8260C Volatile Organics

Client:

Enalytic, LLC

Date:

July 12, 2019

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 120726

- L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
 - LCS (Lab ID: 574700)
 - 1,1,1,2-Tetrachloroethane

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 574700)
 - 1,1-Dichloroethane
 - 1,2-Dibromo-3-chloropropane
 - 4-Methyl-2-pentanone (MIBK)
 - trans-1,4-Dichloro-2-butene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 120726

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095502007

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- · MS (Lab ID: 574820)
 - 1,1,1,2-Tetrachloroethane
 - 1,2-Dibromo-3-chloropropane
 - trans-1,4-Dichloro-2-butene
- MSD (Lab ID: 574821)
 - 1,1,1,2-Tetrachloroethane
 - 1.1-Dichloroethane
 - 1.2-Dibromo-3-chloropropane
 - trans-1,4-Dichloro-2-butene

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 574820)
 - Chlorobenzene
 - Ethylbenzene
 - Styrene
- MSD (Lab ID: 574821)
 - Styrene

MS: Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.

- MS (Lab ID: 574820)
 - · Xylene (Total)

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

7095500

Method:

EPA 8260C/5030C

Client:

Description: 8260C Volatile Organics

Client:

Enalytic, LLC

Date:

July 12, 2019

QC Batch: 120726

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7095502007

R1: RPD value was outside control limits.

MSD (Lab ID: 574821)lodomethane

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Appendix B

Documentation
of
Quality Control
Issues

MSV - FORM VII VOA-1 MSV CONTINUING CALIBRATION DATA

11952974CCV

Lab Name: Pace Analytical - New York

Calibration Date: 07/06/2019

Time: 10:11

Instrument ID: 70MSV5

GC Column: Col 1

Init. Calib. Date(s): 06/26/2019

06/26/2019

Lab File ID: 070619.B\H20811.D

Init. Calib. Time(s): 20:17

22:55

SDG No.: 7095441

7095441						
COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
Acetone	Averaged	0.13316	0.17573	0.1000 /	31.9699	20.0000
Acrylonitrile	Averaged	0.16496	0.17330	0.0100	5.0512	20.0000
Benzene	Averaged	1.75932	1.74520	0.5000	-0.8029	20.0000
Bromochloromethane	Averaged	0.27846	0.28772	0.0100	3.3240	20.0000
Bromodichloromethane	Averaged	0.41459	0.48402	0.2000	16.7487	20.0000
Bromoform	Linear	50	34.69418	0.1000 (-30.6116	20.0000
Bromomethane	Averaged	0.39255	0.35408	0.1000	-9.7984	20.0000
2-Butanone (MEK)	Averaged	0.53739	0.63315	0.1000	17.8207	20.0000
Carbon disulfide	Averaged	1.54591	1.78979	0.1000	15.7758	20.0000
Carbon tetrachloride	Averaged	0.46735	0.51546	0.1000	10.2938	20.0000
Chlorobenzene	Averaged	2.38660	2.19936	0.5000	-7.8453	20.0000
Chloroethane	Averaged	0.48900	0.48224	0.1000	-1.3812	20.0000
Chloroform	Averaged	1.28076	1.39320	0.2000	8.7791	20.0000
Chloromethane	Averaged	0.75997	0.68843	0.1000	-9.4130	20.0000
1,2-Dibromo-3-chloropropane	Linear	50	46.44463	0.0500	-7.1107	20.0000
Dibromochloromethane	Averaged	0.54881	0.58057	0.1000	5.7871	20.0000
1,2-Dibromoethane (EDB)	Averaged	0.28179	0.30787	0.1000	9.2576	20.0000
Dibromomethane	Averaged	0.19712	0.18946	0.0100	-3.8881	20.0000
1,2-Dichlorobenzene	Averaged	1.77473	1.76305	0.4000	-0.6585	20.0000
1,4-Dichlorobenzene	Averaged	2.06176	2.00781	0.5000	-2.6166	20.0000
trans-1,4-Dichloro-2-butene	Linear	50	47.25384	0.0100	-5.4923	20.0000
1,1-Dichloroethane	Averaged	1.25586	1.28885	0.2000	2.6270	20.0000
1,2-Dichloroethane	Averaged	0.88079	1.01502	0.1000	15.2396	20.0000
1,1-Dichloroethene	Averaged	0.52986	0.56889	0.1000	7.3671	20.0000
cis-1,2-Dichloroethene	Averaged	0.87612	0.86787	0.1000	-0.9409	20.0000
trans-1,2-Dichloroethene	Averaged	0.78885	0.78901	0.1000	0.0205	20.0000
1,2-Dichloropropane	Averaged	0.38820	0.40230	0.1000	3.6298	20.0000
cis-1,3-Dichloropropene	Averaged	0.51836	0.61125	0.2000	17.9198	20.0000
trans-1,3-Dichloropropene	Averaged	0.43053	0.54109	0.1000 (25.6800	20.0000
Ethylbenzene	Averaged	1.32684	1.22971	0.1000	-7.3203	20.0000
2-Hexanone	Linear	50	49.76483	0.1000	-0.4703	20.0000
Iodomethane	Linear	50	48.28708	0.0100	-3.4258	20.0000
Methylene Chloride	Averaged	0.72032	0.75302	0.1000	4.5396	20.0000
4-Methyl-2-pentanone (MIBK)	Linear	50	47.31260	0.1000	-5.3748	20.0000
Styrene	Averaged	2.27696	2.33680	0.3000	2.6283	20.0000
1,1,1,2-Tetrachloroethane	Averaged	0.65945	0.65200	0.0100	-1.1310	20.0000

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

	SAMPLE N
ORGANIC-1	

FORM V INORGANIC-1 MATRIX SPIKE SAMPLE RECOVERY

5	76051MS	

Lab Name:	Pace Analytical - New York	_SDG No. : 7095441	Contract:	BROCKPORT LANDFILL
Matrix:	Water	Basis: Wet	Parent Sample ID:	GW-6R
Percent Mo	oisture:			

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Antimony	ug/L	75-125	753	<60.0	750	100
Arsenic	ug/L	75-125	511	<10.0	500	102
Barium	ug/L	75-125	722	275	500	89
Boron	ug/L	75-125	3220	828	2500	96-
Calcium	ug/L	75-125	140000	125000	25000	62*
Iron	ug/L	75-125	18600	16600	2000	104
Magnesium	ug/L	75-125	84800	65400	25000	78
Manganese	ug/L	75-125	726	505	250	88
Potassium	ug/L	75-125	62100	13800	50000	97
Sodium	ug/L	75-125	212000	179000	50000	67*

FORM VIII INORGANIC-1 SERIAL DILUTIONS

Lab Name: Pace Analytical - New York SDG No. : 7095441 Contract: BROCKPORT LANDFILL

Matrix: Water Parent Sample ID: GW-6R

Analyte	Units	Initial Sample Result	Serial Dilution Result	% Difference	Control Limit %D
Antimony, Dissolved	ug/L	13.4U	67.0U		10
Arsenic, Dissolved	ug/L	8.1U	40.5U	_	10
Barium, Dissolved	ug/L	219	226J	3.0	10
Cadmium, Dissolved	ug/L	0.84U	4.2U		10
Iron, Dissolved	ug/L	858	1320	53.8*	10
Magnesium, Dissolved	ug/L	58300	61000	4.6	10
Manganese, Dissolved	ug/L	419	428	2.0_	10
Potassium, Dissolved	ug/L	13700	16000J	16.8*	10
Sodium, Dissolved	ug/L	164000	176000	7.0	10

analysed 7/3/19

GW-15 Gitered -4R Sitered -6R

^{*} Indicates that the % Difference exceeds the control limit. No difference is calculated if either result is a non-detect. 07/17/2019 12:45

FORM V INORGANIC-1 MATRIX SPIKE SAMPLE RECOVERY

569325MS

Lab Name:	Pace Analytical - New York	_SDG No. : 7095441	Contract:	BROCKPORT LANDFILL
Matrix:	Water	Basis: Wet	Parent Sample ID:	GW-6R
Percent Mo	oisture:			

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Nitrite as N	mg/L	90-110	0.59	<0.050	0.50	119*

FORM V INORGANIC-1 MATRIX SPIKE SAMPLE RECOVERY

575760MS	

Lab Name:	: Pace Analytical - New York	SDG No. :	7095441	Contract:	BROCKPORT LANDFILL	
Matrix:	Water	Basis: We	et	Parent Sample ID:	GW-6R	
Percent Mo	oisture:					
		Control				

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Alkalinity, Total as CaCO3	mg/L	75-125	898	863	25.0	140*

FORM V INORGANIC-2 MATRIX SPIKE SAMPLE RECOVERY

Lab Name:	Pace Analytical - New York	_SDG No. : 7095441	Contract:	BROCKPORT LANDFILL
Matrix:	Water	Basis: Wet	Parent Sample ID:	GW-6R
Percent Mo	oisture:			

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Nitrogen, Kjeldahl, Total	mg/L	90-110	9.0	4.4	4.0	115*

MSV - FORM III VOA-1 WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Pace Analytical - New York
Date Extracted: 07/05/2019
Instrument: 70MSV5
Parent Sample ID: 7095502007

Matrix Spike - Sample No: 574820MS

Date Analyzed (1): <u>07/05/2019</u> Lab File ID: <u>070519.B\H20807.D</u>

SDG No.: 7095500

COMPOUND	SPIKE ADDED	SAMPLE	MS CONCENTRATION	MC 0/ DEC	QC
COMPOUND	(ug/L)	CONCENTRATION (ug/L)	(ug/L)	MS %REC	LIMITS REC.
1,1,1,2-Tetrachloroethane	50.0	<1.0	60.2	120	74-113
1,1,1-Trichloroethane	50.0	<1.0	55.3	111	65-118
1,1,2,2-Tetrachloroethane	50.0	<1.0	44.5	89	74-12
1,1,2-Trichloroethane	50.0	<1.0	48.4	97	80-117
1,1-Dichloroethane	50.0	<1.0	43.4	87	83-15
1,1-Dichloroethene	50.0	<1.0	49.5	99	45-146
1,2,3-Trichloropropane	50.0	<1.0	49.5	99	71-12
1,2-Dibromo-3-chloropropane	50.0	<1.0	35.3	71	74-11
1,2-Dibromoethane (EDB)	50.0	<1.0	55.4	111	83-11
1,2-Dichlorobenzene	50.0	<1.0	54.9	110	74-11;
1,2-Dichloroethane	50.0	<1.0	49.4	99	74-129
1,2-Dichloropropane	50.0	<1.0	46.4	93	75-117
1,4-Dichlorobenzene	50.0	<1.0	53.6	107	71-113
2-Butanone (MEK)	50.0	<5.0	40.3	81	44-162
2-Hexanone	50.0	<5.0	41.7	83	32-18:
4-Methyl-2-pentanone (MIBK)	50.0	<5.0	37.5	75	69-13
Acetone	50.0	<5.0	37.2	74	23-188
Acrylonitrile	50.0	<1.0	39.5	79	59-14
Benzene	50.0	<1.0	48.9	98	73-119
Bromochloromethane	50.0	<1.0	53.0	106	81-116
Bromodichloromethane	50.0	<1.0	52.1	104	78-11
Bromoform	50.0	<1.0	44.0	88	65-122
Bromomethane	50.0	<1.0	42.2	84	52-14
Carbon disulfide	50.0	<1.0	49.2	98	41-14
Carbon tetrachloride	50.0	<1.0	55.9	112	59-120
Chlorobenzene	50.0	<1.0	59.8	120	75-113
Chloroethane	50.0	<1.0	44.3	89	49-15
Chloroform	50.0	<1.0	50.4	101	72-122
Chloromethane	50.0	<1.0	35.5	71	46-144
Dibromochloromethane	50.0	<1.0	59.4	119	70-120
Dibromomethane	50.0	<1.0	51.2	102	75-125
Ethylbenzene	50.0	<1.0	59.5	(119)	70-113
Iodomethane	50.0	<1.0	54.1	108	61-144
Methylene Chloride	50.0	<1.0	45.9	92	61-142
Styrene	50.0	<1.0	63.7	(127)	72-118
Tetrachloroethene	50.0	<1.0	56.9	114	60-128
Toluene	50.0	<1.0	51.1	102	72-119
Trichloroethene	50.0	<1.0	53.4	107	69-117
Trichlorofluoromethane	50.0	<1.0	51.3	103	27-173
Vinyl acetate	50.0	<1.0	38.5	77	20-158
Vinyl chloride	50.0	<1.0	41.0	82	43-143
Xylene (Total)	150	<3.0	182	122	71-109
cis-1,2-Dichloroethene	50.0	<1.0	47.7	95	72-12
cis-1,3-Dichloropropene	50.0	<1.0	50.6	101	78-116
trans-1,2-Dichloroethene	50.0	<1.0	49.6	99	56-142
trans-1,3-Dichloropropene	50.0	<1.0	51.9	104	79-116
trans-1,4-Dichloro-2-butene	50.0	<1.0	33.8	68	71-12

MSV - FORM VII VOA-1 MSV CONTINUING CALIBRATION DATA

11949853CCV

Lab Name: Pace Analytical - New York

Instrument ID: 70MSV5 GC Column: Col 1

Init. Calib. Date(s): 06/26/2019 06/26/2019

Lab File ID: 070519.B\H20784.D Init. Calib. Time(s): 20:17 22:55

SDG No.: 7095500

7095500		 _				
COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
Acetone	Averaged	0.13316	0.20236	0.1000	(51.9635)	20.0000
Acrylonitrile	Averaged	0.16496	0.13306	0.0100	-19.3415	20.0000
Benzene	Averaged	1.75932	1.54098	0.5000	-12.4109	20.0000
Bromochloromethane	Averaged	0.27846	0.28165	0.0100	1.1434	20.0000
Bromodichloromethane	Averaged	0.41459	0.42591	0.2000	2.7306	20.0000
Bromoform	Linear	50	32.63451	0.1000	-34.7310	20.0000
Bromomethane	Averaged	0.39255	0.31997	0.1000	-18.4889	20.0000
2-Butanone (MEK)	Averaged	0.53739	0.56030	0.1000	4.2632	20.0000
Carbon disulfide	Averaged	1.54591	1.40956	0.1000	-8.8196	20.0000
Carbon tetrachloride	Averaged	0.46735	0.49593	0.1000	6.1163	20.0000
Chlorobenzene	Averaged	2.38660	2.56459	0.5000	7.4581	20.0000
Chloroethane	Averaged	0.48900	0.39789	0.1000	-18.6309	20.0000
Chloroform	Averaged	1.28076	1.19544	0.2000	-6.6616	20.0000
Chloromethane	Averaged	0.75997	0.55738	0.1000	-26.6575	20.0000
1,2-Dibromo-3-chloropropane	Linear	50	38.13836	0.0500	(-23.7233)	20.0000
Dibromochloromethane	Averaged	0.54881	0.66957	0.1000	(22.0031)	20.0000
1,2-Dibromoethane (EDB)	Averaged	0.28179	0.30256	0.1000	7.3715	20.0000
Dibromomethane	Averaged	0.19712	0.18967	0.0100	-3.7798	20.0000
1,2-Dichlorobenzene	Averaged	1.77473	1.79766	0.4000	1.2916	20.0000
1,4-Dichlorobenzene	Averaged	2.06176	2.04018	0.5000	-1.0464	20.0000
trans-1,4-Dichloro-2-butene	Linear	50	33.39355	0.0100	-33,2129	20.0000
1,1-Dichloroethane	Averaged	1.25586	1.00122	0.2000	-20.2764)	20.0000
1,2-Dichloroethane	Averaged	0.88079	0.83244	0.1000	-5.4894	20.0000
1,1-Dichloroethene	Averaged	0.52986	0.47710	0.1000	-9.9565	20.0000
cis-1,2-Dichloroethene	Averaged	0.87612	0.78509	0.1000	-10.3900	20.0000
trans-1,2-Dichloroethene	Averaged	0.78885	0.72115	0.1000	-8.5825	20.0000
1,2-Dichloropropane	Averaged	0.38820	0.32859	0.1000	-15.3560	20.0000
cis-1,3-Dichloropropene	Averaged	0.51836	0.52632	0.2000	1.5354	20.0000
trans-1,3-Dichloropropene	Averaged	0.43053	0.45474	0.1000	5.6231	20.0000
Ethylbenzene	Averaged	1.32684	1.38791	0.1000	4.6028	20.0000
2-Hexanone	Linear	50	59.40826	0.1000	18.8165	20.0000
Iodomethane	Linear	50	43.15444	0.0100	-13.6911	20.0000
Methylene Chloride	Averaged	0.72032	0.62239	0.1000	-13.5948	20.0000
4-Methyl-2-pentanone (MIBK)	Linear	50	40.49326	0.1000	-19.0135	20.0000
Styrene	Averaged	2.27696	2.62168	0.3000	15.1396	20.0000
1,1,1,2-Tetrachloroethane	Averaged	0.65945	0.76445	0.0100	15.9214	20.0000

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

MSV - FORM VII VOA-2 MSV CONTINUING CALIBRATION DATA

SAMPLE NO.

11949853CCV

Lab Name: Pace Analytical - New York Calibration Date: 07/05/2019 Time: 11:20

Instrument ID: <u>70MSV5</u> GC Column: <u>Col 1</u> Init. Calib. Date(s): <u>06/26/2019</u> 06/26/2019

Lab File ID: 070519.B\H20784.D Init. Calib. Time(s): 20:17 22:55

SDG No.: 7095500

COMPOUND	CURVE	RRF or Amount	RRF or Amount	MIN RRF	%D	MAX %D
1,1,2,2-Tetrachloroethane	Averaged	1.04756	0.92543	0.3000	-11.6589	20.0000
Tetrachloroethene	Averaged	0.91150	0.87874	0.2000	-3.5938	20.0000
Toluene	Averaged	1.88707	1.70866	0.4000	-9.4543	20.0000
1,1,1-Trichloroethane	Averaged	0.58747	0.60228	0.1000	2.5215	20.0000
1,1,2-Trichloroethane	Averaged	0.28090	0.25640	0.1000	-8.7208	20.0000
Trichloroethene	Averaged	0.43629	0.42566	0.2000	-2.4354	20.0000
Trichlorofluoromethane	Averaged	0.91948	0.86513	0.1000	-5.9111	20.0000
1,2,3-Trichloropropane	Averaged	0.33495	0.32865	0.0100	-1.8826	20.0000
Vinyl acetate	Averaged	1.10289	0.96940	0.0100	-12.1034	20.0000
Vinyl chloride	Averaged	0.77310	0.59796	0.1000	-22.6543	20.0000
m&p-Xylene	Averaged	1.56348	1.67939	0.1000	7.4141	20.0000
o-Xylene	Averaged	1.49049	1.59566	0.3000	7.0562	20.0000
4-Bromofluorobenzene (S)	Averaged	0.82533	0.88635	0.0100	7.3928	20.0000
1,2-Dichloroethane-d4 (S)	Averaged	0.31326	0.29840	0.0100	-4.7442	20.0000
Toluene-d8 (S)	Averaged	2.69679	2.71347	0.0100	0.6188	20.0000

The values for compounds reported as total are based on a summation of the components within the laboratory information management system.

FORM V INORGANIC-1 MATRIX SPIKE SAMPLE RECOVERY

	
576051MS	

Lab Name:	Pace Analytical - New York	_SDG No. : 7095500	Contract:	BROCKPORT LANDFILL LONG
Matrix:	Water	Basis: Wet	Parent Sample ID:	7095441009
Percent Mo	sietura:			

Analyte	Units	Control Limit %R	Spiked Sample Result (SSR)	Sample Result (SR)	Spike Added (SA)	%R
Antimony	ug/L	75-125	753	<60.0	750	100
Arsenic	ug/L	75-125	511	<10.0	500	102
Barium	ug/L	75-125	722	275	500	89 _
Calcium	ug/L	75-125	140000	125000	25000	62*
Iron	ug/L	75-125	18600	16600	2000	104
Magnesium	ug/L	75-125	84800	65400	25000	78
Manganese	ug/L	75-125	726	505	250	88
Potassium	ug/L	75-125	62100	13800	50000	97
Sodium	ug/L	75-125	212000	179000	50000	67*

Appendix C

Validated Laboratory Data

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-1S	Lab ID:	7095441001	Collected:	06/26/1	19 11:37	Received: 06	/27/19 11:05 N	latrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical I	Method:							
Field pH	7.41	Std. Units			1		06/26/19 11:37		
Field Temperature	19.3	deg C			1		06/26/19 11:37		
Field Specific Conductance	628	umhos/cm			1		06/26/19 11:37		
REDOX	56				1		06/26/19 11:37		
Field Turbidity	163	NTU			1		06/26/19 11:37		
6010 MET ICP	Analytical I	Method: EPA 60°	10C Prepar	ration Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L		60.0	1	07/09/19 10:00	07/10/19 21:34	7440-36-0	
Arsenic	<10.0	ug/L		10.0	1	07/09/19 10:00	07/10/19 21:34	7440-38-2	
Barium	<200	ug/L		200	1		07/10/19 21:34		
Boron	<50.0	-		50.0	1		07/10/19 21:34		
Calcium	106000			200	1		07/10/19 21:34		
Iron	3880	_		20.0	1		07/10/19 21:34		
Magnesium	22100	_		200	1		07/10/19 21:34		
Manganese	121	•		10.0	1		07/10/19 21:34		
Potassium	<5000			5000	1		07/10/19 21:34		
Sodium	5600			5000	1	07/09/19 10:00	07/10/19 21:34	7440-23-5	
6010 MET ICP, Dissolved	Analytical I	Method: EPA 60	10C						
Antimony, Dissolved	<60.0	ug/L		60.0	1		07/03/19 14:04	7440-36-0	
Arsenic, Dissolved	<10.0	ug/L		10.0	1		07/03/19 14:04		
Barium, Dissolved	<200	•		200	1		07/03/19 14:04		
Cadmium, Dissolved	<2.5			2.5	1		07/03/19 14:04		
Iron, Dissolved		ug/L		20.0	1		07/03/19 14:04		
Magnesium, Dissolved	19400	•		200	1		07/03/19 14:04		
Manganese, Dissolved	12.7			10.0	1		07/03/19 14:04		
Potassium, Dissolved	<5000	-		5000	1		07/03/19 14:04		
Sodium, Dissolved	5010	ug/L		5000	1		07/03/19 14:04	7440-23-5	
2320B Alkalinity	Analytical	Method: SM22 2	320B						
Alkalinity, Total as CaCO3	325	5 mg/L		1.0	1		07/09/19 00:20		
2340C Hardness, Total	Analytical	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	280	mg/L		5.0	1		07/11/19 17:19		
2540C Total Dissolved Solids	Analytical	Method: SM22 2	2540C						
Total Dissolved Solids	356	mg/L		20.0	1.		07/01/19 09:49	İ	
410.4 COD	Analytical	Method: EPA 41	0.4 Prepara	ation Me	thod: EF	PA 410.4			
Chemical Oxygen Demand	<10.6	mg/L		10.0	1	07/05/19 11:06	07/05/19 14:05	i	
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0						
Chloride	3.2	2 mg/L		2.0	1		07/09/19 23:55	16887-00-6	
Sulfate	30.4	_		5.0	1		07/09/19 23:55	14808-79-8	

REPORT OF LABORATORY ANALYSIS

without the written consent of Pace Analytical Services, LLC.

This report shall not be reproduced, except in full,

Page 20 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-1S	Lab ID: 709	5441001	Collected: 06/26/1	9 11:37	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 35	61.2 Preparation Met	hod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	0.18	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:54	4 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 35	53.2					
Nitrate as N	0.18	mg/L	0.050	1		06/27/19 22:0	8 14797-55-8	
Nitrate-Nitrite (as N)	0.18	mg/L	0.050	1		06/27/19 22:0	8 7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	hod: EPA 35	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:5	4 14797-65-0	
4500 Ammonia Water	Analytical Met	hod: SM22	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:4:	2 7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 90	060A					
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	D6
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	
Total Organic Carbon	3.9	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	D6
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	
Mean Total Organic Carbon	3.0	mg/L	1.0	1		07/02/19 18:5	1 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-2S	Lab ID: 70	95441002 C	Collected: 06/26/	19 12:26	Received: 06	3/27/19 11:05 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	thod:						
Field pH	6.56	Std. Units		1		06/26/19 12:26		
Field Temperature	21.1	deg C		1		06/26/19 12:26		
Field Specific Conductance	380	umhos/cm		1		06/26/19 12:26		
REDOX	-133	mV		1		06/26/19 12:26		
Field Turbidity	15.2	NTU		1		06/26/19 12:26		
6010 MET ICP	Analytical Me	thod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:39	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:39	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 21:39		
Boron	<50.0	ug/L	50.0	1		07/10/19 21:39		
Calcium	70700	ug/L	200	1		07/10/19 21:39		
Iron Magnesium	2720 8470	ug/L	20.0	1		07/10/19 21:39		
Manganese	1550	ug/L	200 10.0	1 1		07/10/19 21:39		
Potassium	<5000	ug/L ug/L	5000	1		07/10/19 21:39 07/10/19 21:39		
Sodium	<5000	ug/L	5000	1		07/10/19 21:39		
2320B Alkalinity	Analytical Me	thod: SM22 232	0B					
Alkalinity, Total as CaCO3	197	mg/L	1.0	1		07/09/19 00:31		
2340C Hardness, Total	Analytical Me	thod: SM22 234	0C					
Tot Hardness asCaCO3 (SM 2340B	170	mg/L	5.0	1		07/11/19 17:20		
2540C Total Dissolved Solids	Analytical Me	thod: SM22 254	OC					
Total Dissolved Solids	211	mg/L	10.0	1		07/01/19 09:49		
410.4 COD	Analytical Me	thod: EPA 410.4	Preparation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:05		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.0)					
Chloride	3.4	mg/L	2.0	1		07/10/19 00:12	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 00:12		
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 351.2	Preparation Me	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	1.4	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:54	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.2	?					
Nitrate as N	0.10	mg/L	0.050	1		06/27/19 22:10	14707 55 0	
Nitrate-Nitrite (as N)	0.10 0.10	mg/L	0.050	1		06/27/19 22:10		
, ,		_		'		JUIZI 13 ZZ. 10	1141-01-0	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.2	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:55	14797-65-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-2S	Lab ID:	7095441002	Collected: 06/26/1	9 12:26	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22 4	1500 NH3 H					
Nitrogen, Ammonia	<0.16	mg/L	0.10	1		07/11/19 15:46	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	60A					
Total Organic Carbon	3.9	mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.6	mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.8	3 mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Total Organic Carbon	2.7	7 mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	
Mean Total Organic Carbon	3.0	mg/L	1.0	1		07/02/19 19:52	2 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-3S	Lab ID: 70	95441003 (Collected: 06/26/1	9 12:04	Received: 06	1/27/19 11:05 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	thod:						
Field pH	7.23	Std. Units		1		06/26/19 12:04		
Field Temperature	18.6	deg C		1		06/26/19 12:04		
Field Specific Conductance	953	umhos/cm		1		06/26/19 12:04		
REDOX	-144	m∨		1		06/26/19 12:04		
Field Turbidity	48.6	NTU		1		06/26/19 12:04		
6010 MET ICP	Analytical Me	thod: EPA 6010	C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:44	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:44	7440-38-2	
Barium	203	ug/L	200	1	07/09/19 10:00	07/10/19 21:44	7440-39-3	
Boron	50.7	ug/L	50.0	1		07/10/19 21:44		
Calcium	78800	ug/L	200	1		07/10/19 21:44		
Iron	7490	ug/L	20.0	1		07/10/19 21:44		
Magnesium Magnesium	24600	ug/L	200	1		07/10/19 21:44		
Manganese Potassium	63.8 <5000	ug/L	10.0	1		07/10/19 21:44		
Sodium	. 12600	ug/L ug/L	5000 5000	1 1		07/10/19 21:44 07/10/19 21:44		
2320B Alkalinity		ug/L thod: SM22 232		•	07703/13 10.00	07/10/19 21.44	7440-23-3	
-	-					07/00/40 00 45		
Alkalinity, Total as CaCO3	289	mg/L	1.0	1		07/09/19 00:45		
2340C Hardness, Total	Analytical Me	thod: SM22 234	10C					
Tot Hardness asCaCO3 (SM 2340B	280	mg/L	5.0	1		07/11/19 17:26		
2540C Total Dissolved Solids	Analytical Me	thod: SM22 254	10C					
Total Dissolved Solids	280	mg/L	20.0	1		07/01/19 09:50		
410.4 COD	Analytical Me	thod: EPA 410.4	4 Preparation Met	hod: EF	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 300.6)					
Chloride	7.2	mg/L	2.0	1		07/10/19 00:29	16887-00-6	
Sulfate	37.0	mg/L	5.0	1		07/10/19 00:29		
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 351.2	2 Preparation Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.32	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:55	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 353.2	2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:11	1/707 55 0	
Nitrate as N Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:11		
, ,		-		•		GUIZII IƏ ZZ. II	1141-01-0	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.2	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 19:56	14797-65-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-3S	Lab ID:	7095441003	Collected: 06/26/1	19 12:04	Received: (06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:47	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	060A					
Total Organic Carbon	1.4	4 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.3	3 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.4	4 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Total Organic Carbon	1.4	4 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	
Mean Total Organic Carbon	1.4	4 mg/L	1.0	1		07/02/19 20:08	3 7440-44-0	

25 of 1984

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-3R	Lab ID:	7095441004	Collected:	06/26/1	19 12:11	Received: (06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	7.72	2 Std. Units			1		06/26/19 12:1	1 .	
Field Temperature	14.4	4 deg C			1		06/26/19 12:1	1	
Field Specific Conductance	59:				1		06/26/19 12:1	1	
REDOX	-158				1		06/26/19 12:1	1	
Field Turbidity	44.2	2 NTU			1		06/26/19 12:1	1	
6010 MET ICP	Analytical	Method: EPA 60°	10C Prepar	ation Me	ethod: E	PA 3005A			
Antimony	<60.6	ug/L		60.0	1	07/09/19 10:0	0 07/10/19 21:5	0 7440-36-0	
Arsenic	<10.6			10.0	1	07/09/19 10:0	0 07/10/19 21:5	0 7440-38-2	
Barium	<200			200	1	07/09/19 10:0	0 07/10/19 21:5	0 7440-39-3	
Boron	<50.0			50.0	1		0 07/10/19 21:5		
Calcium	168000	-		200	1		0 07/10/19 21:5		
Iron	1200	- 3 -		20.0	1		0 07/10/19 21:5		
Magnesium	2630	3		200	1		0 07/10/19 21:5		
Manganese	13	- 3		10.0	1		0 07/10/19 21:5		
Potassium	<5000	3		5000	1		0 07/10/19 21:5		
Sodium	14700	ug/L		5000	1	07/09/19 10:0	0 07/10/19 21:5	0 7440-23-5	
2320B Alkalinity	Analytical	Method: SM22 2	320B						
Alkalinity, Total as CaCO3	458	3 mg/L		1.0	1		07/09/19 01:0	5	
2340C Hardness, Total	Analytical	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	440	mg/L		5.0	1		07/11/19 17:2	8	
2540C Total Dissolved Solids	Analytical	Method: SM22 2	540C						
Total Dissolved Solids	536	mg/L		20.0	1		07/01/19 09:5	1 .	
410.4 COD	Analytical	Method: EPA 410	0.4 Prepara	ition Met	thod: EP	A 410.4			
Chemical Oxygen Demand	14.0	6 mg/L		10.0	1	07/05/19 11:0	6 07/05/19 14:0	6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 300	0.0						
Chloride	43.6	6 mg/L		2.0	1		07/10/19 00:4	6 16887-00-6	
Sulfate	43.9	-		5.0	1			6 14808-79-8	
351.2 Total Kjeldahl Nitrogen		Method: EPA 35	1.2 Prenara			Δ 351 2	07710/10/00:7	0 1-000-10-0	
-			r.z rropara				4 07/44/40 40:5	. 7707.07.0	
Nitrogen, Kjeldahl, Total	0.28	_		0.10	1	0//11/19 05:5	4 07/11/19 12:5	6 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 353	3.2						
Nitrate as N	<0.050	mg/L		0.050	1		06/27/19 22:1	2 14797-55-8	
Nitrate-Nitrite (as N)	<0.050) mg/L		0.050	1		06/27/19 22:1	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical	Method: EPA 353	3.2						
Nitrite as N	<0.056			0.050	1		06/27/10 10:5	7 1/707.66.0	
	~0.031	, my/L		J.JJU	•		00/2//19 19:5	7 14797-65-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Sample: GW-3R	Lab ID: 1	7095441004	Collected: 06/26/1	9 12:11	Received: 0	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical N	Method: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:48	7664-41-7	
9060A TOC as NPOC	Analytical N	Method: EPA 90	960A					
Total Organic Carbon	5.1	mg/L	1.0	1		07/02/19 20:24	7440-44-0	
Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	7440-44-0	
Total Organic Carbon	5.1	mg/L	1.0	1		07/02/19 20:24	7440-44-0	
Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	7440-44-0	
Mean Total Organic Carbon	5.0	mg/L	1.0	1		07/02/19 20:24	7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 709	5441005	Collected: 06/26/1	9 10:17	Received: 06	/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Met	thod:						
Field pH	8.14	Std. Units		1		06/26/19 10:17		
Field Temperature	13.2	deg C		1		06/26/19 10:17		
Field Specific Conductance	6440	umhos/cm		1		06/26/19 10:17	•	
REDOX	-104	mV		1		06/26/19 10:17	•	
Field Turbidity	113	NTU		1		06/26/19 10:17	i	
6010 MET ICP	Analytical Met	thod: EPA 601	DC Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 21:55	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 21:55	7440-38-2	
Barium	<200	ug/L	200	1		07/10/19 21:55		
Boron	2660	ug/L	50.0	1	07/09/19 10:00			
Calcium	104000	ug/L	200	1	07/09/19 10:00			
lron'	2200	ug/L	20.0	1	07/09/19 10:00			
Magnesium	19400	ug/L	200	1	07/09/19 10:00		,	
Manganese	160	ug/L	10.0	1		07/10/19 21:55		
Potassium	23400	ug/L	5000	1		07/10/19 21:55		
Sodium	1110000	ug/L	50000	10	07/09/19 10:00	07/11/19 15:20	7440-23-5	
6010 MET ICP, Dissolved	Analytical Met	thod: EPA 601	OC					
Antimony, Dissolved	<60.0	ug/L	60.0	1		07/03/19 14:07	7440-36-0	
Arsenic, Dissolved	<10.0	ug/L	10.0	1		07/03/19 14:07	7440-38-2	
Barium, Dissolved	<200	ug/L	200	1		07/03/19 14:07	7440-39-3	
Cadmium, Dissolved	<2.5	ug/L	2.5	1		07/03/19 14:07	7440-43- 9	
Iron, Dissolved	274-5	-	20.0	1		07/03/19 14:07	7439-89-6	
Magnesium, Dissolved	17500	ug/L	200	1		07/03/19 14:07	7439-95-4	
Manganese, Dissolved	123	ug/L	10.0	1		07/03/19 14:07		
Potassium, Dissolved	28200		5000	1		07/03/19 14:07		
Sodium, Dissolved	987000	ug/L	5000	1		07/03/19 14:07	7440-23-5	
2320B Alkalinity	Analytical Met	thod: SM22 23	20B					
Alkalinity, Total as CaCO3	111	mg/L	1.0	1		07/09/19 01:13	;	
2340C Hardness, Total	Analytical Met	thod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	310	mg/L	5.0	1		07/11/19 17:30		
2540C Total Dissolved Solids	Analytical Met	thod: SM22 25	40C					
Total Dissolved Solids	3360	mg/L	20.0	1		07/01/19 09:51		
410.4 COD	Analytical Met	thod: EPA 410	.4 Preparation Met	thod: EF	A 410.4			
Chemical Oxygen Demand	94.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06	•	
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 300	.0					
Chloride	2300	mg/L	200	100		07/10/19 20:40	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 01:02	14808-79-8	

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-4R	Lab ID: 709	5441005	Collected: 06/26/	19 10:17	Received: 06	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
351.2 Total Kjeldahl Nitrogen	Analytical Meti	hod: EPA 35°	I.2 Preparation Me	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	2.0	mg/L	0.10	1	07/11/19 05:54	07/11/19 12:57	7 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 353	3.2					
Nitrate as N	0.076	mg/L	0.050	1		06/27/19 22:1:	3 14797-55-8	
Nitrate-Nitrite (as N)	0.076	mg/L	0.050	1		06/27/19 22:1:	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	hod: EPA 353	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:0	1 14797-65-0	
500 Ammonia Water	Analytical Met	hod: SM22 4	500 NH3 H					
Nitrogen, Ammonia	1.8	mg/L	0.10	1		07/11/19 15:49	7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 906	60A					
Total Organic Carbon	4.1	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	
Total Organic Carbon	4.1	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	
Total Organic Carbon	3.6	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	
Total Organic Carbon	3.5	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	
Mean Total Organic Carbon	3.8	mg/L	1.0	1		07/02/19 20:4	1 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Sample: GW-5S	Lab ID: 70	95441006	Collected: 06/26	19 10:01	Received: 06	3/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	ethod:						
Field pH	7.08	Std. Units		1		06/26/19 10:01		
Field Temperature	17.4	deg C		1		06/26/19 10:01		
Field Specific Conductance	2760	umhos/cm		1		06/26/19 10:01		
REDOX	-28	mV		1		06/26/19 10:01		
Field Turbidity	7.11	NTU		1		06/26/19 10:01		
6010 MET ICP	Analytical Me	ethod: EPA 601	OC Preparation M	lethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:01	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 22:01	7440-38-2	
Barium	396	ug/L	200	1	07/09/19 10:00	07/10/19 22:01	7440-39-3	
Boron	75.8	ug/L	50.0	1	07/09/19 10:00	07/10/19 22:01	7440-42-8	
Calcium .	139000	ug/L	200	1	07/09/19 10:00	07/10/19 22:01	7440-70-2	
iron	2260	ug/L	20.0	1		07/10/19 22:01		
Magnesium	56200	ug/L	200	1		07/10/19 22:01		
Manganese Potassium	535	ug/L	10.0	1		07/10/19 22:01		
Sodium	<5000	ug/L	5000	1		07/10/19 22:01		
	380000	ug/L	5000	1	07/09/19 10:00	07/10/19 22:01	7440-23-5	
2320B Alkalinity	Analytical Me	ethod: SM22 23	20B					
Alkalinity, Total as CaCO3	713	mg/L	1.0	1		07/09/19 01:40		
2340C Hardness, Total	Analytical Me	ethod: SM22 23	40C					
Tot Hardness asCaCO3 (SM 2340B	500	mg/L	5.0	1		07/11/19 17:36		
2540C Total Dissolved Solids	Analytical Me	ethod: SM22 25	40C					
Total Dissolved Solids	1530	mg/L	20.0	1		07/01/19 10:05		
110.4 COD	Analytical Me	ethod: EPA 410.	4 Preparation Me	thod: EF	A 410.4			
Chemical Oxygen Demand	72.0	mg/L	10.0	1	07/05/19 11:06	07/05/19 14:06		
300.0 IC Anions 28 Days	Analytical Me	ethod: EPA 300.	0					
Chloride	663	mg/L	40.0	20		07/10/19 20:56	16887-00-6	
Sulfate	40.1	mg/L	5.0	1		07/10/19 01:19		
351.2 Total Kjeldahl Nitrogen	Analytical Me	_	2 Preparation Me	thod: EF	A 351.2			
Nitrogen, Kjeldahl, Total	0.82	mg/L	0.10	1		07/11/19 12:58	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres		thod: EPA 353.		-				
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:14		
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:14	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me	thod: EPA 353.	2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:02	14797-65-0	
		_					-	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5S	Lab ID:	7095441006	Collected: 06/26/1	9 10:01	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	<0.16	mg/L	0.10	1		07/11/19 15:50	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	60A					
Total Organic Carbon	10.9	mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.6	6 mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.9	5 mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Total Organic Carbon	10.5	5 mg/L	1.0	1		07/02/19 20:59	7440-44-0	
Mean Total Organic Carbon	10.6	mg/L	1.0	1		07/02/19 20:59	7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 70

7095441

Sample: GW-5R	Lab ID: 709	95441007	Collected: 06/26/	19 09:45	Received: 00	6/27/19 11:05 N	Matrix: Water	***
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	thod:						
Field pH	6.92	Std. Units		1		06/26/19 09:45	;	
Field Temperature	16.9	deg C		1		06/26/19 09:45	i	
Field Specific Conductance	3350	umhos/cm		1		06/26/19 09:45	;	
REDOX	O/R	mV		1		06/26/19 09:45		
Field Turbidity	49	NTU		1		06/26/19 09:45		
6010 MET ICP	Analytical Me	thod: EPA 601	10C Preparation Me	ethod: E	PA 3005A			
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:06	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 22:06	7440-38-2	
Barium	14700	ug/L	200	1	07/09/19 10:00	07/10/19 22:06	7440-39-3	
Boron	646	ug/L	50.0	1		07/10/19 22:06		
Calcium	255000	ug/L	200	1		07/10/19 22:06		
Iron	24700	ug/L	20.0	1		07/10/19 22:06		
Magnesium	95500	ug/L	200	1		07/10/19 22:06		
Manganese	462	ug/L	10.0	1		07/10/19 22:06		
Potassium	18400	ug/L	5000	1		07/10/19 22:06		
Sodium	387000	ug/L	5000	1	07/09/19 10:00	07/10/19 22:06	7440-23-5	
2320B Alkalinity	Analytical Me	thod: SM22 2	320B					
Alkalinity, Total as CaCO3	1280	mg/L	5.0	1		07/09/19 18:21	•	
2340C Hardness, Total	Analytical Met	thod: SM22 2	340C					
Tot Hardness asCaCO3 (SM 2340B	900	mg/L	5.0	1		07/11/19 17:41		
2540C Total Dissolved Solids	Analytical Met	thod: SM22 2	540C					
Total Dissolved Solids	1870	mg/L	20.0	1		07/01/19 10:06		
410.4 COD	Analytical Met	thod: EPA 410	0.4 Preparation Met	thod: EF	A 410.4			
Chemical Oxygen Demand	176	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:15		
300.0 IC Anions 28 Days	Analytical Met	thod: EPA 300	0.0					
Chloride	461	mg/L	40.0	20		07/10/19 21:13	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		07/10/19 02:09		
351.2 Total Kjeldahl Nitrogen		_	.2 Preparation Met		A 351.2		7.000 70 0	
Nitrogen, Kjeldahl, Total	10.6	mg/L	0.50	5		07/11/19 13:33	7727-37-0	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	- •		J	0771710 00.04	0771710 10.00	1121-31-3	
	•		···					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:16	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:16	7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	thod: EPA 353	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:03	14797-65-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-5R	Lab ID: 7095441007		Collected: 06/26/19 09:45		Received: 06/27/19 11:05		Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Method: SM22 4500 NH3 H							
Nitrogen, Ammonia	7.6	mg/L	0.50	5		07/11/19 16:14	7664-41-7	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
Total Organic Carbon	50.1	mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	
Total Organic Carbon	50.6	mg/L	1.0	1		07/02/19 21:13	7 7440-44-0	
Total Organic Carbon	50.7	mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	
Total Organic Carbon	50.2	mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	
Mean Total Organic Carbon	50.4	mg/L	1.0	1		07/02/19 21:17	7 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-6S	Lab ID:	7095441008	Collected: 06/26/	/19 11:06	Received: 06	06/27/19 11:05	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
Field Data	Analytical Method:								
Field pH	7.02	Std. Units		1		06/26/19 11:06			
Field Temperature	15.2	deg C		1		06/26/19 11:06			
Field Specific Conductance	710			1		06/26/19 11:06			
REDOX	55			1		06/26/19 11:06			
Field Turbidity	49.3	NTU		1		06/26/19 11:06			
6010 MET ICP	Analytical I	Method: EPA 60°	10C Preparation Me	ethod: El	PA 3005A				
Antimony	<60.0	ug/L	60.0	1	07/09/19 10:00	07/10/19 22:12	7440-36-0		
Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 22:12	7440-38-2		
Barium -	287		200	1		07/10/19 22:12			
Boron	67.5		50.0	1		07/10/19 22:12			
Calcium	116000	-3	200	1		07/10/19 22:12			
Iron	1640	J	20.0	1		07/10/19 22:12			
Magnesium Maggapaga	23800	.	200	1		07/10/19 22:12			
Manganese Potassium	49.3 5070	-3 -	10.0	1		07/10/19 22:12			
Sodium	5070 <5000		5000 5000	1 1		07/10/19 22:12			
2320B Alkalinity		Method: SM22 2		ī	07109/19 10:00	07/10/19 22:12	/4 4 0-23-3		
Alkalinity, Total as CaCO3	392		1.0	4		07/00/40 00:50			
•		J		1		07/09/19 02:52			
2340C Hardness, Total	Analytical f	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	350	mg/L	5.0	1		07/11/19 17:42			
2540C Total Dissolved Solids	Analytical N	Method: SM22 2	540C						
Total Dissolved Solids	386	mg/L	20.0	1		07/01/19 10:06			
410.4 COD	Analytical N	Method: EPA 410	0.4 Preparation Met	hod: EP	A 410.4				
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	07/09/19 09:02	07/09/19 11:16			
300.0 IC Anions 28 Days	Analytical N	/lethod: EPA 300	0.0						
Chloride	<2.0	mg/L	2.0	1		07/10/19 02:26	16887-00-6		
Sulfate	21.0	•	5.0	1		07/10/19 02:26			
351.2 Total Kjeldahl Nitrogen	Analytical Method: EPA 351.2 Preparation Method: EPA 351.2								
Nitrogen, Kjeldahl, Total	0.37		0.10	1		07/11/19 13:00	7727-37-9		
353.2 Nitrogen, NO2/NO3 unpres		Method: EPA 353		٠		5			
•	-								
Nitrate as N	0.36	•	0.050	1		06/27/19 22:17			
Nitrate-Nitrite (as N)	0.36	mg/L	0.050	1		06/27/19 22:17	7727-37-9		
353.2 Nitrogen, NO2	Analytical N	/lethod: EPA 353	3.2						
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:04	14797-65-0		
		-					-		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-6S	Lab ID: 7095441008		Collected: 06/26/19 11:06		Received: 06/27/19 11:05		Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
4500 Ammonia Water	Analytical Method: SM22 4500 NH3 H								
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 15:53	3 7664-41-7		
9060A TOC as NPOC	Analytical Met	hod: EPA 90	060A						
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0		
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0		
Total Organic Carbon	1.9	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0		
Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0		
Mean Total Organic Carbon	1.8	mg/L	1.0	1		07/02/19 22:1:	3 7440-44-0		

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-6R	Lab ID:	7095441009	Collected:	06/26/	19 11:01	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	6.99	Std. Units			1		06/26/19 11:0	1	
Field Temperature	14.:	3 deg C			1		06/26/19 11:0	1	
Field Specific Conductance	1720	umhos/cm			1		06/26/19 11:0	11	
REDOX	-19	9 m∨			1		06/26/19 11:0	1	
Field Turbidity	109	9 NTU			1		06/26/19 11:0	1	
6010 MET ICP	Analytical	Method: EPA 60	10C Prepai	ration Me	ethod: El	PA 3005A			
Antimony	<60.0	0 ug/L		60.0	1	07/09/19 10:00	07/10/19 22:2	8 7440-36-0	
Arsenic	<10.0	ug/L		10.0	1	07/09/19 10:00	07/10/19 22:2	8 7440-38-2	
Barium	27			200	1	07/09/19 10:00	07/10/19 22:2	8 7440-39-3	
Boron	828	-5-		50.0	1		07/10/19 22:2		
Calcium	12500	- 5		200	1		07/10/19 22:2		M1
Iron	1660			20.0	1		07/10/19 22:2		
Magnesium	6540			200	1		07/10/19 22:2		
Manganese	509			10.0	1		07/10/19 22:2	_	
Potassium	13800			5000	1		07/10/19 22:2		
Sodium	179000	ug/L		5000	1	07/09/19 10:00	07/10/19 22:2	8 7440-23-5	M1
6010 MET ICP, Dissolved	Analytical	Method: EPA 60	10C						
Antimony, Dissolved	<60.0	ug/L		60.0	1		07/03/19 14:0	9 7440-36-0	
Arsenic, Dissolved	<10.0	D ug/L		10.0	1		07/03/19 14:0	9 7440-38-2	
Barium, Dissolved	219	3		200	1		07/03/19 14:0	9 7440-39-3	
Cadmium, Dissolved	<2.			2.5	1		07/03/19 14:0	9 7440-43-9	
Iron, Dissolved		3 Jug/L		20.0	1		07/03/19 14:0		
Magnesium, Dissolved	5830	~		200	1		07/03/19 14:0		
Manganese, Dissolved	419			10.0	1		07/03/19 14:0		
Potassium, Dissolved	1370			5000	1		07/03/19 14:0		
Sodium, Dissolved	164006	ug/L		5000	1		07/03/19 14:0	9 /440-23-5	
2320B Alkalinity	Analytical	Method: SM22 2	320B						
Alkalinity, Total as CaCO3	86:	3 mg/L		1.0	1		07/09/19 03:2	4	M1
2340C Hardness, Total	Analytical	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	520	mg/L		5.0	1		07/11/19 18:0	0	
2540C Total Dissolved Solids	Analytical	Method: SM22 2	540C						
Total Dissolved Solids	928	3 mg/L		20.0	1		07/01/19 10:0	7	
410.4 COD	Analytical	Method: EPA 410	0.4 Prepara	ation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	27.8	3 mg/L		10.0	1	07/09/19 09:02	07/09/19 11:1	6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 300	0.0						
Chloride	63.6	mg/L		10.0	5		07/11/19 10:3	6 16887-00-6	
Sulfate	35.3			5.0	1			3 14808-79-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

KAP91 8/17/19

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID: 709	5441009	Collected: 06/26/1	9 11:01	Received: 06	3/27/19 11:05 I	Vatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 35	1.2 Preparation Me	thod: EP	PA 351.2			
Nitrogen, Kjeldahl, Total	4.4	mg/L	0.10	1	07/11/19 05:54	07/11/19 13:02	7727-37-9	M1
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 35	53.2					
Nitrate as N	<0.050	mg/L	0.050	1		06/27/19 22:18	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/27/19 22:18	7727-37-9	
353.2 Nitrogen, NO2	Analytical Met	hod: EPA 35	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/27/19 20:08	14797-65-0	M1
4500 Ammonia Water	Analytical Met	hod: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	3.1	mg/L	0.10	1		07/11/19 15:54	7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 90	060A					
Total Organic Carbon	8.9	mg/Ļ	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.8	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	
Mean Total Organic Carbon	8.9	mg/L	1.0	1		07/02/19 22:30	7440-44-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID:	7095441010	Collected:	06/26/1	19 09:31	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	7.23	Std. Units			1		06/26/19 09:3	1	
Field Temperature	15.3				1		06/26/19 09:3	1	
Field Specific Conductance	758				1		06/26/19 09:3		
REDOX	-68				1		06/26/19 09:3		
Field Turbidity	758	3 NTU			1		06/26/19 09:3	1	
6010 MET ICP	Analytical	Method: EPA 601	10C Prepar	ation Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L		60.0	1	07/09/19 10:0	0 07/10/19 22:5	7 7440-36-0	
Arsenic	<10.0	ug/L		10.0	1	07/09/19 10:0	0 07/10/19 22:5	7 7440-38-2	
Barium -	42			200	1		0 07/10/19 22:5		
Boron	68.8	-		50.0	1		00 07/10/19 22:5		
Calcium	120000	-		200	1		00 07/10/19 22:5		
Iron	2890	.		20.0	1		00 07/10/19 22:5		
Magnesium Manganese	30100 1020			200 10.0	1 1		00 07/10/19 22:5 00 07/10/19 22:5		
Potassium	7670	J		5000	1		00 07/10/19 22:5 00 07/10/19 22:5		
Sodium	<5000			5000	1		0 07/10/19 22:5		
2320B Alkalinity	Analytical	Method: SM22 2	320B						
Alkalinity, Total as CaCO3	396	6 mg/L		1.0	1		07/09/19 04:4	6	
2340C Hardness, Total	Analytical	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	340	mg/L		5.0	1		07/11/19 18:1	8	
2540C Total Dissolved Solids	Analytical	Method: SM22 2	540C						
Total Dissolved Solids	376	mg/L		20.0	1		07/01/19 10:2	0	
410.4 COD	Analytical	Method: EPA 410	0.4 Prepara	ition Met	thod: EP	A 410.4			
Chemical Oxygen Demand	16.8	3 mg/L		10.0	1	07/09/19 09:0	07/09/19 11:1	7	
300.0 IC Anions 28 Days	Analytical	Method: EPA 300	0.0						
Chloride	<2.6	mg/L		2.0	1		07/10/19 03:3	3 16887-00-6	
Sulfate	8.8	•		5.0	1			3 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 351	1.2 Prepara	ition Met	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	2.7	7 mg/L		0.10	1	07/11/19 05:5	4 07/11/19 13:0	5 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 353	3.2						
Nitrate as N	1.3	3 mg/L		0.050	1		06/27/19 22:2	4 14797-55-8	
Nitrate-Nitrite (as N)	1.3	_		0.050	1		06/27/19 22:2		
353.2 Nitrogen, NO2		J	2.2		•		V		
<u>-</u> ,	•	Method: EPA 353	3. Z						
Nitrite as N	<0.050) mg/L		0.050	1		06/27/19 20:1	2 14797-65-0	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID:	7095441010	Collected: 06/26/1	19 09:31	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical	Method: SM22	4500 NH3 H					
Nitrogen, Ammonia	1.1	1 mg/L	0.10	1		07/11/19 16:00	7664-41-7	
9060A TOC as NPOC	Analytical	Method: EPA 90	060A					
Total Organic Carbon	3.0	6 mg/L	1.0	1		07/02/19 23:3:	2 7440-44-0	
Total Organic Carbon	3.0	6 mg/L	1.0	1		07/02/19 23:3	2 7440-44-0	
Total Organic Carbon	3.0	6 mg/L	1.0	1		07/02/19 23:3:	2 7440-44-0	
Total Organic Carbon	3.1	7 mg/L	1.0	1		07/02/19 23:3:	2 7440-44-0	
Mean Total Organic Carbon	3.0	6 mg/L	1.0	1		07/02/19 23:3	2 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 7	095441011	Collected:	06/26/1	19 09:23	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical M	lethod:							
Field pH	7.22	Std. Units			1		06/26/19 09:2	3	
Field Temperature	12.8	deg C			1		06/26/19 09:2:	3	
Field Specific Conductance	2050	umhos/cm			1		06/26/19 09:2:		
REDOX	-155				1		06/26/19 09:2:		
Field Turbidity	41.7	NTU			1		06/26/19 09:2	3	
6010 MET ICP	Analytical M	1ethod: EPA 60	10C Prepai	ration Me	ethod: El	PA 3005A			
Antimony	<60.0	ug/L		60.0	1	07/09/19 10:00	07/10/19 23:0	2 7440-36-0	
Arsenic	49.7	ug/L		10.0	1	07/09/19 10:00	07/10/19 23:0	2 7440-38-2	
Barium	1830	ug/L		200	1		07/10/19 23:0		
Boron	851	ug/L		50.0	1		07/10/19 23:0:		
Calcium	195000	9		200	1		07/10/19 23:0		
Iron	21100	-		20.0	1		07/10/19 23:0		
Magnesium	86700			200	1		07/10/19 23:0		
Manganese	230	<u> </u>		10.0	1		07/10/19 23:0		
Potassium	8740 171000	•		5000 5000	1 1) 07/10/19 23:0:) 07/10/19 23:0:		
Sodium		Ū		3000	•	07/09/19 10.00	0111011923.0	2 1440-23-3	
2320B Alkalinity	Analytical N	Method: SM22 2	:320B						
Alkalinity, Total as CaCO3	833	mg/L		1.0	1		07/09/19 05:1	7	
2340C Hardness, Total	Analytical M	Method: SM22 2	340C						
Tot Hardness asCaCO3 (SM 2340B	700	mg/L		5.0	1		07/11/19 18:20)	
2540C Total Dissolved Solids	Analytical N	Method: SM22 2	2540C						
Total Dissolved Solids	1270	mg/L		20.0	1		07/01/19 10:2	0	
410.4 COD	Analytical N	Nethod: EPA 41	0.4 Prepara	ation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	127	mg/L		10.0	1	07/09/19 09:02	2 07/09/19 11:1	7	
300.0 IC Anions 28 Days	Analytical N	Method: EPA 30	0.0						
Chloride	387	mg/L		2.0	1		07/10/19 03:5	0 16887-00-6	
Sulfate	6.0	•		5.0	1			0 14808-79-8	
351.2 Total Kjeldahl Nitrogen		/lethod: EPA 35	1.2 Prepar			Δ 351 2			
-	•		1.2 I Topuli				I 07/41/40 42·0	7 7727 27 0	
Nitrogen, Kjeldahl, Total	3.0	J		0.10	1	07/11/19 05.54	1 07/11/19 13:0	1 1121-31-8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical N	Nethod: EPA 35	3.2						
Nitrate as N	<0.050	mg/L		0.050	1		06/27/19 22:2	5 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		06/27/19 22:2	5 7727-37-9	
353.2 Nitrogen, NO2	Analytical N	Method: EPA 35	3.2						
Nitrite as N	<0.050	mg/L		0.050	1		06/27/19 20:1	5 14797-65-0	
								· -	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7R	Lab ID: 7	095441011	Collected: 06/26/1	9 09:23	Received: 0	6/27/19 11:05	Matrix: Water	•
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical M	ethod: SM22	4500 NH3 H					
Nitrogen, Ammonia	0.31	mg/L	0.10	1		07/11/19 16:01	7664-41-7	
9060A TOC as NPOC	Analytical M	lethod: EPA 90	60A					
Total Organic Carbon	38.4	mg/L	1.0	1		07/02/19 23:5	1 7440-44-0	
Total Organic Carbon	38.6	mg/L	1.0	1		07/02/19 23:51	1 7440-44-0	
Total Organic Carbon	39.0	mg/L	1.0	1		07/02/19 23:51	1 7440-44-0	
Total Organic Carbon	38.9	mg/L	1.0	1		07/02/19 23:51	1 7440-44-0	
Mean Total Organic Carbon	38.7	mg/L	1.0	1		07/02/19 23:5	1 7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID:	7095441012	Collected: 06/2	6/19 12:27	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:						
Field pH	7.0	4 Std. Units		1		06/26/19 12:23	7	
Field Temperature	13.	8 deg C		1		06/26/19 12:23	7	
Field Specific Conductance	38			1		06/26/19 12:2		
REDOX	-1			1		06/26/19 12:23		
Field Turbidity	4	6 NTU		1		06/26/19 12:21	7	
6010 MET ICP	Analytical	Method: EPA 60	10C Preparation	Method: E	PA 3005A			
Antimony	<60.	•	60	0 1	07/09/19 10:00	07/10/19 23:08	3 7440-36-0	
Arsenic	<10.		10		07/09/19 10:00	07/10/19 23:0	3 7440-38-2	
Barium	25	-5-	20			0 07/10/19 23:08		
Boron	<50.	- 3	50			0 07/10/19 23:08		
Calcium	7480		20			0 07/10/19 23:08		
Iron	191		20			0 07/10/19 23:08		
Magnesium Magnesium	981 38	·	20 10			07/10/19 23:08 0 07/10/19 23:08		
Manganese Potassium	-500		500			0 07/10/19 23:00		
Sodium	<500 <500	•	500			0 07/10/19 23:00		
2320B Alkalinity	Analytical	Method: SM22 2	320B					
Alkalinity, Total as CaCO3	21	8 mg/L	1	0 1		07/09/19 05:2	3	
2340C Hardness, Total	Analytical	Method: SM22 2	340C					
Tot Hardness asCaCO3 (SM 2340B	90.	0 mg/L	5	0 1		07/11/19 18:22	2	
2540C Total Dissolved Solids	Analytical	Method: SM22 2	540C					
Total Dissolved Solids	25	4 mg/L	10	0 1		07/01/19 10:2	1	
410.4 COD	Analytical	Method: EPA 41	0.4 Preparation I	Лethod: EF	PA 410.4			
Chemical Oxygen Demand	32.	2 mg/L	10	0 1	07/09/19 09:02	2 07/09/19 11:17	7	
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0					
Chloride	3.	7 mg/L	2	0 1		07/10/19 04:00	6 16887-00-6	
Sulfate	9.	8 mg/L	5	0 1		07/10/19 04:0	6 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 35	1.2 Preparation I	/lethod: EF	PA 351.2		•	
Nitrogen, Kjeldahl, Total	0.5	7 mg/L	0 .1	0 1	07/11/19 05:54	07/11/19 13:08	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 35	3.2					
Nitrate as N	<0.05	0 mg/L	0.08	0 1		06/27/19 22:20	3 14797-55-8	
Nitrate-Nitrite (as N)	<0.05	_	0.05			06/27/19 22:20		
, ,		Method: EPA 35		•		·		
353.2 Nitrogen, NO2	,			_				
Nitrite as N	<0.05	0 mg/L	0.05	0 1		06/27/19 20:10	6 14797-65-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-9R	Lab ID: 709	5441012	Collected: 06/26/1	9 12:27	Received: 0	6/27/19 11:05 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Met	hod: SM22 4	500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		07/11/19 16:02	7664-41-7	
9060A TOC as NPOC	Analytical Met	hod: EPA 90	60A					
Total Organic Carbon	7.6	mg/L	1.0	1		07/03/19 00:08	7440-44-0	
Total Organic Carbon	7.8	mg/L	1.0	1		07/03/19 00:08	7440-44-0	
Total Organic Carbon	7.8	mg/L	1.0	1		07/03/19 00:08	7440-44-0	
Total Organic Carbon	7.7	mg/L	1.0	1		07/03/19 00:08	7440-44-0	
Mean Total Organic Carbon	7.7	mg/L	1.0	1		07/03/19 00:08	7440-44-0	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-X GW-5R	Lab ID: 709	5441013	Collected: 06/2	3/19 09:45	Received: 06	5/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 601	10C Preparation	Method: E	PA 3005A			
Antimony	<60.0	ug/L	60.) 1	07/09/19 10:00	07/10/19 23:13	7440-36-0	
Arsenic	<10.0	ug/L	10.	1.	07/09/19 10:00	07/10/19 23:13	7440-38-2	
Barium	14400	ug/L	20	1	07/09/19 10:00	07/10/19 23:13	7440-39-3	
Boron	645	ug/L	50.) 1	07/09/19 10:00	07/10/19 23:13	7440-42-8	
Calcium	252000	ug/L	20) 1	07/09/19 10:00	07/10/19 23:13	3 7440-70-2	
ron	22700	ug/L	20.) 1	07/09/19 10:00	07/10/19 23:13	7439-89-6	
1agnesium	94200	ug/L	20) 1	07/09/19 10:00	07/10/19 23:13	7439-95-4	
/langanese	460	ug/L	10.) 1	07/09/19 10:00	07/10/19 23:13	7439-96-5	
otassium	18500	ug/L	500) 1	07/09/19 10:00	07/10/19 23:13	3 7440-09-7	
odium	382000	ug/L	500) 1	07/09/19 10:00	07/10/19 23:13	3 7440-23-5	
320B Alkalinity	Analytical Meth	od: SM22 2	320B					
Alkalinity, Total as CaCO3	1280	mg/L	5.) 1		07/09/19 18:28	3	
340C Hardness, Total	Analytical Meth	od: SM22 2	340C					
ot Hardness asCaCO3 (SM 2340B	900	mg/L	5.) 1		07/11/19 18:29)	
540C Total Dissolved Solids	Analytical Meth	od: SM22 2	540C					
otal Dissolved Solids	1800	mg/L	20) 1		07/01/19 10:21	I	
10.4 COD	Analytical Meth	od: EPA 410	0.4 Preparation N	lethod: Ef	PA 410.4			
chemical Oxygen Demand	169	mg/L	10.) 1	07/09/19 09:02	07/09/19 11:17	,	
00.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Chloride	464	mg/L	40.			07/10/19 21:46		
Sulfate	<5.0	mg/L	5. 1. 2. Dramasation 1		DA 054 0	07/10/19 04:23	14000-79-0	
51.2 Total Kjeldahl Nitrogen	·		1.2 Preparation N			07//4//0 40:04	7707.07.0	
litrogen, Kjeldahl, Total	12.8	mg/L	0.5	5	07/11/19 05:54	07/11/19 13:34	1121-31-9	
53.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	100: EPA 350						
Nitrate as N	<0.050	mg/L	0.05			06/27/19 22:30	_	
litrate-Nitrite (as N)	<0.050	mg/L	0.05) 1		06/27/19 22:30	7727-37-9	
53.2 Nitrogen, NO2	Analytical Meth	od: EPA 350	3.2					
litrite as N	<0.050	mg/L	0.05	0 1		06/27/19 20:18	3 14797-65-0	
500 Ammonia Water	Analytical Meth	nod: SM22 4	500 NH3 H					
litrogen, Ammonia	7.6	mg/L	0.5	5		07/11/19 17:17	7664-41-7	
060A TOC as NPOC	Analytical Meth	od: EPA 900	60A					
otal Organic Carbon	49.7	mg/L	1.			07/03/19 00:26		
otal Organic Carbon	50.2	mg/L	1.	0 1		07/03/19 00:26	7440-44-0	
Total Organic Carbon	49.9	mg/L	1.	0 1		07/03/19 00:26	7440-44-0	
Total Organic Carbon	50.1	mg/L	1	0 1		07/03/19 00:26	7440-44-0	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.:

7095441

Lab ID: 7095441013

Collected: 06/26/19 09:45

Report Limit

Prepared

Received: 06/27/19 11:05

Analyzed

Matrix: Water

CAS No.

Qual

9060A TOC as NPOC

Sample: GW-X

Analytical Method: EPA 9060A

Mean Total Organic Carbon

Date: 07/26/2019 04:57 PM

Parameters

50.0

Results

mg/L

Units

1.0

DF

07/03/19 00:26 7440-44-0

Client Sample ID: GW-1S

Lab Sample ID:

420-157149-1

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-157149-1

SDG ID.: Matrix:

7095441

Water

Date Sampled:

06/26/2019 11:37

Reporting Basis:

WET

Date Received:

07/18/2019 08:55

CAS No.	Analyte	Conc.	RL	, , , , , , , , , , , , , , , , , , , ,	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010		mg/L	υ		1	EPA 420.4 Rev.1

Client Sample ID: GW-2S

Lab Sample ID: 420-156225-1

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.: Matrix:

7095441

Date Sampled: 06/26/2019 12:26

Reporting Basis:

Water

WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	Ū		1	EPA 420.4 Rev.1

Client Sample ID: GW-3S

Lab Sample ID:

420-156225-2

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 12:04

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	c Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L U		1	EPA 420.4 Rev.1

Client Sample ID: GW-3R

Lab Sample ID: 420-156225-3

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled: 06/26/2019 12:11

Reporting Basis: WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	C	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	. U		1	EPA 420.4 Rev.1

Client Sample ID:

GW-4R

Lab Sample ID:

420-156225-4

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 10:17

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	C	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-5S

Lab Sample ID:

420-156225-5

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.: Matrix:

7095441

Water

Date Sampled:

06/26/2019 10:01

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL .	Units C	Q DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L U	1	EPA 420.4 Rev.1

Client Sample ID:

GW-5R

Lab Sample ID:

420-156225-6

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 09:45

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	С	Q DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L U		1	EPA 420.4 Rev.1

Client Sample ID: GW-6S

Lab Sample ID: 420-156225-7

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled: 06/26/2019 11:06

Reporting Basis:

WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-6R

Lab Sample ID:

420-156225-8

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 11:01

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	C	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-7S

Lab Sample ID: 420-156225-9

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 09:31

Reporting Basis:

WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units C	Q DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L U	1	EPA 420.4 Rev.1

Client Sample ID: GW-7R

Lab Sample ID: 420-156225-10

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled: 06/26/2019 09:23

Reporting Basis:

WET

Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	. C	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-9R

Lab Sample ID: 420-156225-11

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled: 06/26/2019 12:27

Reporting Basis: WET Date Received: 07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	С	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	U		1	EPA 420.4 Rev.1

Client Sample ID: GW-X

Lab Sample ID:

420-156225-12

Lab Name:

EnviroTest Laboratories, Inc.

Job No.:

420-156225-1

SDG ID.:

7095441

Matrix:

Water

Date Sampled:

06/26/2019 09:45

Reporting Basis:

WET

Date Received:

07/02/2019 09:30

CAS No.	Analyte	Conc.	RL	Units	c	Q	DIL	Method
TOTPHEN	Phenolics, Total Recoverable	0.010	0.010	mg/L	ū		1	EPA 420.4 Rev.1

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-1S	Lab ID: 70954	41014	Collected: 06/25/19	12:01	Received: 06/2	7/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	d: EPA 8	260C/5030C					
Acetone	<5.0UJ	ua/L	5.0	1	C	7/06/19 17:58	3 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		7/06/19 17:5		
Benzene	<1.0	ug/L	1.0	1		7/06/19 17:58		
Bromochloromethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
Bromodichloromethane	<1.0	_ ug/L	1.0	1		7/06/19 17:5		
Bromoform	<1.0 U T	ug/L	1.0	1		7/06/19 17:58		CL,L2
Bromomethane	<1.0	ug/L	1.0	1		7/06/19 17:5		,
2-Butanone (MEK)	<5.0	ug/L	5.0	1		7/06/19 17:58		IL
Carbon disulfide	<1.0	ug/L	1.0	1		7/06/19 17:58		
Carbon tetrachloride	<1.0	ug/L	1.0	1		7/06/19 17:58		
Chlorobenzene	<1.0	ug/L	1.0	1		7/06/19 17:58		
Chloroethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
Chloroform	<1.0	ug/L	1.0	1		7/06/19 17:58 7/06/19 17:58		
Chloromethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		7/06/19 17:58 7/06/19 17:58		
Dibromochloromethane	<1.0	ug/L	1.0	1		17/06/19 17:58 17/06/19 17:58		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		7/06/19 17:50 17/06/19 17:58		
Dibromomethane	<1.0	ug/L	1.0	1		7/06/19 17:50 17/06/19 17:58		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		7/06/19 17:58 17/06/19 17:58		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		7/06/19 17:50 7/06/19 17:58		
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		7/06/19 17:58 17/06/19 17:58		
1,1-Dichloroethane	<1.0	ug/L	1.0	1		7/06/19 17:50 7/06/19 17:58		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		7/06/19 17:58 17/06/19 17:58		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		7/06/19 17:58 17/06/19 17:58		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		7/06/19 17:58 7/06/19 17:58		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		7/06/19 17:58 7/06/19 17:58		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		7/06/19 17:58 17/06/19 17:58		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1				
trans-1,3-Dichloropropene	<1.045		1.0	1			10061-01-5	1.4
Ethylbenzene	<1.0	ug/L ug/L	1.0	1			10061-02-6	L1
2-Hexanone	<5.0	_	5.0	1		7/06/19 17:58		
Iodomethane	<1.0	ug/L		1		17/06/19 17:58 17/06/19 17:58		
Methylene Chloride	<1.0 <1.0	ug/L	1.0	1		7/06/19 17:58		
-	<5.0	ug/L	1.0			7/06/19 17:58		
4-Methyl-2-pentanone (MIBK) Styrene		ug/L	5.0	1		7/06/19 17:58		
	<1.0	ug/L	1.0	1		7/06/19 17:58		
1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
Tetrachloroethene	<1.0	ug/L	1.0	1		7/06/19 17:58		
Toluene	<1.0	ug/L	1.0	1		7/06/19 17:58		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
Trichloroethene Trichloroftyoromethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		7/06/19 17:58		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		7/06/19 17:58		
Vinyl acetate	<1.0	ug/L	1.0	1		7/06/19 17:58	,	
Vinyl chloride	<1.0	ug/L	1.0	1		7/06/19 17:58		
Xylene (Total)	<3.0	ug/L	3.0	1	0	7/06/19 17:58	1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

MAD 8/19/19

Page 46 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-1S	Lab ID: 7	095441014	Collected: 06/25/1	9 12:01	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	lethod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	129	%	68-153	1		07/06/19 17:58	3 17060-07-0	
4-Bromofluorobenzene (S)	93	%	79-124	1		07/06/19 17:58	3 460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 17:58	3 2037-26-5	

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.:

Date: 07/26/2019 04:57 PM

7095441

Sample: GW-2S	Lab ID: 70954	41015	Collected: 06/25/19 1	10:40	Received: 06/27/19	11:05	Matrix: Water	V-1.1.
Parameters	Results	Units	Report Limit [DF	Prepared A	nalyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	d: EPA 8	260C/5030C					
Acetone	<5.0 UJ	ug/L	5.0	1	07/06	6/19 17:3	9 67-64-1	
Acrylonitrile	<1.0	ug/L		1			9 107-13-1	
Benzene	<1.0	ug/L		1			9 71-43-2	
Bromochloromethane	<1.0	ug/L		1			9 74-97-5	
Bromodichloromethane	<1.0	ug/L		1			9 75-27-4	
Bromoform	<1.0 UJ	ug/L		1			9 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1			9 74-83-9	OL,LZ
2-Butanone (MEK)	<5.0	ug/L		1			9 78-93-3	IL.
Carbon disulfide	<1.0	ug/L		1			75-35-3 75-15-0	11-
Carbon tetrachloride	<1.0	ug/L		1			9 56-23-5	
Chlorobenzene	<1.0	ug/L		1				
Chloroethane	<1.0	ug/L		1			9 108-90-7 9 75-00-3	
Chloroform	<1.0	ug/L		1				
Chloromethane	<1.0	ug/L		1			9 67-66-3	
1,2-Dibromo-3-chloropropane	<1.0	-					74-87-3	
Dibromochloromethane	<1.0	ug/L		1			96-12-8	
1,2-Dibromoethane (EDB)		ug/L		1			124-48-1	
• •	<1.0	ug/L		1			0 106-93-4	
Dibromomethane	<1.0	ug/L		1			74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L		1	07/06	/19 17:39	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L		1	07/06	/19 17:39	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1	07/06	/19 17:39	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1	07/06	/19 17:39	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1	07/06	/19 17:39	107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1	07/06	/19 17:39	75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06	/19 17:39	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06	/19 17:39	156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1	07/06	/19 17:39	78-87-5	
cis-1,3-Dichloropropene	<1.0	_ug/L	1.0	1	07/06	/19 17:39	10061-01-5	
trans-1,3-Dichloropropene	CN 0.1>	ug/L	1.0	1			10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1			100-41-4	
2-Hexanone	<5.0	ug/L		1			591-78-6	
lodomethane	<1.0	ug/L		1			74-88-4	
Methylene Chloride	<1.0	ug/L		1			75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		, 1			108-10-1	
Styrene	<1.0	ug/L		1			100-10-1	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0				630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1				
Tetrachloroethene	<1.0	ug/L					79-34-5	
Toluene	<1.0			1			127-18-4	
1,1,1-Trichloroethane	<1.0 <1.0	ug/L		1			108-88-3	
1,1,2-Trichloroethane		ug/L		1			71-55-6	
Trichloroethene	<1.0	ug/L		1			79-00-5	
Trichlorofluoromethane	<1.0	ug/L		1			79-01-6	
	<1.0	ug/L		1			75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L		1			96-18-4	
Vinyl acetate	<1.0	ug/L		1	07/06	/19 17:39	108-05-4	
Vinyl chloride	<1.0	ug/L		1	07/06	/19 17:39	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0 1	1	07/06	19 17:39	1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

FABE 19/19

Page 48 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-2S	Lab ID: 70	95441015	Collected: 06/25/1	9 10:40	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	ethod: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	125	%	68-153	1		07/06/19 17:39	9 17060-07-0	
4-Bromofluorobenzene (S)	95	%	79-124	1		07/06/19 17:39		
Toluene-d8 (S)	95	%	69-124	1		07/06/19 17:39		

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-3S	Lab ID: 70954	41016	Collected: 06/25/1	9 10:10	Received: 0	6/27/19 11:05 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260C Volatile Organics	Analytical Method	t: EPA 8	260C/5030C						
Acetone	<5.0 UJ	ug/L	5.0	1		07/06/19 17:20	67-64-1		
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 17:20	107-13-1		
Benzene	<1.0	ug/L	1.0	1		07/06/19 17:20	71-43-2		
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20	74-97-5		
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20			
Bromoform	<1.0UJ		1.0	1		07/06/19 17:20		CL,L2	
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 17:20	74-83-9		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 17:20		IL	
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 17:20			
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 17:20			
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20			
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20			
Chloroform	<1.0	ug/L	1.0	1		07/06/19 17:20			
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20		•	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 17:20			
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:20			
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 17:20			
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 17:20			
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20			
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:20			
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 17:20			
1.1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20			
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20			
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:20			
cis-1,2-Dichloroethene	<1.0	ug/L ug/L	1.0	1		07/06/19 17:20			
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:20			
·	<1.0	ug/L	1.0	1		07/06/19 17:20			
1,2-Dichloropropane	<1.0	ug/L —ug/L	1.0	1		07/06/19 17:20			
cis-1,3-Dichloropropene	<1.0 UJ	ug/L	1.0	1		07/06/19 17:20		L1	
trans-1,3-Dichloropropene	<1.0		1.0	1		07/06/19 17:20		_,	
Ethylbenzene		ug/L	5.0	1		07/06/19 17:20			
2-Hexanone	<5.0	ug/L	1.0	1		07/06/19 17:20			
Iodomethane	<1.0 <1.0	ug/L	1.0	1		07/06/19 17:20			
Methylene Chloride		ug/L	5.0	1		07/06/19 17:20			
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		1		07/06/19 17:20			
Styrene	<1.0	ug/L	1.0	1		07/06/19 17:20			
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0 1.0	1		07/06/19 17:20			
1,1,2,2-Tetrachloroethane	<1.0	ug/L				07/06/19 17:20			
Tetrachloroethene	<1.0	ug/L	1.0	1 1		07/06/19 17:20			
Toluene	<1.0	ug/L	1.0	-					
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20 07/06/19 17:20			
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:20			
Trichloroethene	2.9	ug/L	1.0	1					
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 17:20			
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:20			
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 17:20			
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 17:20			
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 17:20	1330-20-7		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANN 8/19/1 9 Page 50 of 153

Date: 07/26/2019 04:57 PM

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3S	Lab ID: 70	95441016	Collected: 06/25/1	9 10:10	Received: 06	8/27/19 11:05 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260C Volatile Organics	Analytical Me	Analytical Method: EPA 8260C/5030C							
Surrogates									
1,2-Dichloroethane-d4 (S)	127	%	68-153	1		07/06/19 17:20	17060-07-0		
4-Bromofluorobenzene (S)	95	%	79-124	1		07/06/19 17:20	460-00-4		
Toluene-d8 (S)	96	%	69-124	1		07/06/19 17:20	2037-26-5		

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-3R	Lab ID: 70954	41017	Collected: 06/25/1	9 10:15	Received: 06	6/27/19 11:05 I	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260C Volatile Organics	Analytical Method	d: EPA 8	260C/5030C						
Acetone	<5.0 UJ	ug/L	5.0	1		07/06/19 17:00	67-64-1		
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 17:00	107-13-1		
Benzene	<1.0	ug/L	1.0	1		07/06/19 17:00	71-43-2		
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	74-97-5		
Bromodichloromethane	<1.0	ua/L	1.0	1		07/06/19 17:00	75-27-4		
Bromoform	<1.0US	ug/L	1.0	1		07/06/19 17:00	75-25-2	CL,L2	
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 17:00	74-83-9		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 17:00	78-93-3	IL	
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 17:00	75-15-0		
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 17:00	56-23-5		
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:00	108-90-7		
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00	75-00-3		
Chloroform	<1.0	ug/L	1.0	1		07/06/19 17:00	67-66-3		
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	74-87-3		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 17:00	96-12-8		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 17:00	124-48-1		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 17:00	106-93-4		
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 17:00			
1.2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:00			
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 17:00			
trans-1.4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 17:00			
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00			
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:00			
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:0			
cis-1,2-Dichloroethene	1.5	ug/L	1.0	1		07/06/19 17:0			
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:0			
	<1.0	ug/L	1.0	1		07/06/19 17:0			
1,2-Dichloropropane	<1.0	ug/L _ ug/L	1.0	1		07/06/19 17:0			
cis-1,3-Dichloropropene	<1.0 US	ug/L	1.0	1		07/06/19 17:0		L1	
trans-1,3-Dichloropropene	<1.0 200	ug/L ug/L	1.0	1		07/06/19 17:0			
Ethylbenzene	<5.0		5.0	1		07/06/19 17:0			
2-Hexanone	<1.0	ug/L ug/L	1.0	1		07/06/19 17:0			
lodomethane	<1.0	ug/L ug/L	1.0	1		07/06/19 17:0			
Methylene Chloride	<5.0	ug/L ug/L	5.0	1		07/06/19 17:0			
4-Methyl-2-pentanone (MIBK)	<1.0	_	1.0	1		07/06/19 17:0			
Styrene		ug/L	1.0	1		07/06/19 17:0			
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 17:0		-	
1,1,2,2-Tetrachloroethane	<1.0	ug/L				07/06/19 17:0			
Tetrachioroethene	<1.0	ug/L	1.0	1					
Toluene	<1.0	ug/L	1.0	1		07/06/19 17:0			
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:0			
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 17:0			
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 17:0			
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 17:0			
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 17:0			
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 17:0			
Vinyl chloride	3.4	ug/L	1.0	1		07/06/19 17:0			
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 17:0	0 1330-20-7		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

4W 108/19/19 Page 52 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-3R	Lab ID:	7095441017	Collected: 06/25/1	9 10:15	Received: 0	6/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	2 %	68-153	1		07/06/19 17:00	17060-07-0	
4-Bromofluorobenzene (S)	9	4 %	79-124	1		07/06/19 17:00	460-00-4	
Toluene-d8 (S)	9	5 %	69-124	1		07/06/19 17:00	2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 709544	11018	Collected: 06/25/1	9 09:15	Received: 06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
8260C Volatile Organics	Analytical Method	I: EPA 8:	260C/5030C				
Acetone	<5.0 UJ	ug/L	5.0	1	07/06/19 10	5:41 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1	07/06/19 10	6:41 107-13-1	
Benzene	<1.0	ug/L	1.0	1	07/06/19 10	6:41 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 74-97-5	
Bromodichloromethane	<1.0	- ug/L	1.0	1	07/06/19 1	6:41 75-27-4	
Bromoform	<1.0 45	ug/L	1.0	1	07/06/19 1	3:41 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1	07/06/19 1	5:41 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1	07/06/19 1	5:41 78-93-3	IL.
Carbon disulfide	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1	07/06/19 1	6:41 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-00-3	
Chloroform	<1.0	ug/L	1.0	1	07/06/19 1	6:41 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1	07/06/19 1	6:41 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 95-50-1	
1.4-Dichlorobenzene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 106-46-7	
trans-1.4-Dichloro-2-butene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 78-87-5	
cis-1,3-Dichloropropene	<1.0	_ug/L	1.0	1	07/06/19 1	6:41 10061-01-5	
trans-1,3-Dichloropropene	حما 1.0	ug/L	1.0	1	07/06/19 1	6:41 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1	07/06/19 1	6:41 591-78-6	
Iodomethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1	07/06/19 1	6:41 108-10-1	
Styrene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 127-18-4	
Toluene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1	07/06/19 1	6:41 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1	07/06/19 1	6:41 96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1	07/06/19 1	6:41 108-05-4	
Vinyl additional Vinyl chloride	<1.0	ug/L	1.0	1	07/06/19 1	6:41 75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		6:41 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

KANA19

Page 54 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-4R	Lab ID: 709	5441018	Collected: 06/25/1	9 09:15	Received: 06	8/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	:60C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	125	%	68-153	1		07/06/19 16:41	1 17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 16:41	1 460-00-4	
Toluene-d8 (S)	94	%	69-124	1		07/06/19 16:41	1 2037-26-5	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-5S	Lab ID: 70954	41019	Collected: 06/25/1	9 09:48	Received: 06/27/19 11:0	5 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyz	ed CAS No.	Qua
8260C Volatile Organics	Analytical Metho	d: EPA 8	260C/5030C				
Acetone	<5.0 MJ	ug/L	5.0	1		16:22 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		16:22 107-13-1	
Benzene	<1.0	ug/L	1.0	1		16:22 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		16:22 74-97-5	
Bromodichloromethane	<1.0	_ ug/L	1.0	1		16:22 75-27-4	
Bromoform	CN 0.1>	ug/L	1.0	1	07/06/19	16:22 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1	07/06/19	16:22 74-83-9	•
2-Butanone (MEK)	<5.0	ug/L	5.0	1	07/06/19	16:22 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1	07/06/19	16:22 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1	07/06/19	16:22 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1	07/06/19	16:22 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1	07/06/19	16:22 75-00-3	
Chloroform	<1.0	ug/L	1.0	1	07/06/19	16:22 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1	07/06/19	16:22 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1	07/06/19	16:22 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1	07/06/19	16:22 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1	07/06/19	16:22 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1	07/06/19	16:22 74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1	07/06/19	16:22 95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1	07/06/19	16:22 106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1	07/06/19	16:22 110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1	07/06/19	16:22 75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1	07/06/19	16:22 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19	16:22 75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19	16:22 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1	07/06/19	16:22 156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1	07/06/19	16:22 78-87-5	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1	07/06/19	16:22 10061-01-5	5
trans-1,3-Dichloropropene	<1.0UJ	ug/L	1.0	1	07/06/19	16:22 10061-02-6	6 L1
Ethylbenzene	<1.0	ug/L	1.0	1	07/06/19	16:22 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		16:22 591-78-6	
Iodomethane	<1.0	ug/L	1.0	1	07/06/19	16:22 74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		16:22 75-09-2	
	<5.0	ug/L	5.0	1		16:22 108-10-1	
4-Methyl-2-pentanone (MIBK)	<1.0	ug/L	1.0	1		16:22 100-42-5	
Styrene	<1.0	ug/L	1.0	1		16:22 630-20-6	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		16:22 79-34-5	
1,1,2,2-Tetrachloroethane	<1.0	ug/L ug/L	1.0	1		16:22 127-18-4	
Tetrachloroethene	<1.0	ug/L ug/L	1.0	1		16:22 108-88-3	
Toluene	<1.0	ug/L	1.0	1		16:22 71-55-6	
1,1,1-Trichloroethane		_	1.0	1		16:22 79-00-5	
1,1,2-Trichloroethane	<1.0 <1.0	ug/L ug/L	1.0	1		16:22 79-01-6	
Trichloroethene		_	1.0	1		16:22 75-69-4	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		16:22 96-18-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		16:22 108-05-4	
Vinyl acetate	<1.0	ug/L	1.0	1		16:22 75-01-4	
Vinyl chloride	<1.0	ug/L) 16:22 1330-20-7	
Xylene (Total)	<3.0	ug/L	3.0	1	07/00/15	10.22 1000 20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

KARAL 8/19/19

Page 56 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5S	Lab ID: 709	5441019	Collected: 06/25/1	9 09:48	Received: 06	3/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	thod: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	127	%	68-153	1		07/06/19 16:22	2 17060-07-0	
4-Bromofluorobenzene (S)	96	%	79-124	1		07/06/19 16:22	2 460-00-4	
Toluene-d8 (S)	93	%	69-124	1		07/06/19 16:22	2 2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-5R	Lab ID: 709544	11020	Collected:	06/25/1	9 09:31	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	I: EPA 82	260C/5030C						
Acetone	<5.0 UCJ	ug/L		5.0	1		07/06/19 16:0	02 67-64-1	
Acrylonitrile	<1.0	ug/L		1.0	1		07/06/19 16:0	2 107-13-1	
Benzene	6.7	ug/L		1.0	1		07/06/19 16:0)2 71-43-2	
Bromochloromethane	<1.0	ug/L		1.0	1		07/06/19 16:0	2 74-97-5	
Bromodichloromethane	<1.0	ug/L		1.0	1		07/06/19 16:0	2 75-27-4	
Bromoform	<1.0 UJ	ug/L		1.0	1		07/06/19 16:0	2 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1.0	1		07/06/19 16:0	2 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		07/06/19 16:0	2 78-93-3	IL
Carbon disulfide	<1.0	ug/L		1.0	1		07/06/19 16:0	02 75-15-0	
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/06/19 16:0	2 56-23-5	
Chlorobenzene	4.8	ug/L		1.0	1		07/06/19 16:0	02 108-90-7	
Chloroethane	24.0	ug/L		1.0	1		07/06/19 16:0		
Chloroform	<1.0	ug/L		1.0	1		07/06/19 16:0		
Chloromethane	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dibromo-3-chloropropane	<1.0	ug/L		1.0	1		07/06/19 16:0		
Dibromochloromethane	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dibromoethane (EDB)	<1.0	ug/L		1.0	1		07/06/19 16:0		
Dibromomethane	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dichlorobenzene	<1.0	-		1.0	1		07/06/19 16:0		
,	<1.0	ug/L ug/L		1.0	1		07/06/19 16:0		
1,4-Dichlorobenzene	<1.0	ug/L ug/L		1.0	1		07/06/19 16:0		
trans-1,4-Dichloro-2-butene		_		1.0	1		07/06/19 16:0		
1,1-Dichloroethane	<1.0 <1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dichloroethane		ug/L		1.0	1		07/06/19 16:0		
1,1-Dichloroethene	<1.0	ug/L							
cis-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 16:0		
trans-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 16:0		
1,2-Dichloropropane	<1.0	ug/L		1.0	1		07/06/19 16:0		
cis-1,3-Dichloropropene	<1.0	ug/L		1.0	1			02 10061-01-5	
trans-1,3-Dichloropropene	<1.0UJ			1.0	1			02 10061-02-6	L1
Ethylbenzene	<1.0	ug/L		1.0	1		07/06/19 16:		
2-Hexanone	<5.0	ug/L		5.0	1		07/06/19 16:		
lodomethane	<1.0	ug/L		1.0	1		07/06/19 16:		
Methylene Chloride	<1.0	ug/L		1.0	1		07/06/19 16:		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		07/06/19 16:		
Styrene	<1.0	ug/L		1.0	1		07/06/19 16:		
1,1,1,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 16:		
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 16:	02 79-34-5	
Tetrachloroethene	<1.0	ug/L		1.0	1		07/06/19 16:		
Toluene	<1.0	ug/L		1.0	1		07/06/19 16:		
1,1,1-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 16:	02 71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 16:	02 79-00-5	
Trichloroethene	<1.0	ug/L		1.0	1		07/06/19 16:	02 79-01-6	
Trichlorofluoromethane	<1.0	ug/L		1.0	1		07/06/19 16:	02 75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L		1.0	1		07/06/19 16:	02 96-18-4	
Vinyl acetate	<1.0	ug/L		1.0	1		07/06/19 16:	02 108-05-4	
Vinyl chloride	<1.0	ug/L		1.0	1		07/06/19 16:	02 75-01-4	
Xylene (Total)	<3.0	ug/L:		3.0	1		07/06/19 16:	02 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

1-21/19 8/19/19

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-5R	Lab ID:	7095441020	Collected: 06/25/1	9 09:31	Received: 0	06/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	2 %	68-153	1		07/06/19 16:02	17060-07-0	
4-Bromofluorobenzene (S)	10	2 %	79-124	1		07/06/19 16:02	460-00-4	
Toluene-d8 (S)	Q	5 %	69-124	1		07/06/19 16:02	2 2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-6S	Lab ID: 70954	41021	Collected:	06/25/1	9 11:04	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Metho	d: EPA 8	260C/5030C						
Acetone	<5.0 UJ	ug/L		5.0	1		07/06/19 15:4	3 67-64-1	
Acrylonitrile	<1.0	ug/L		1.0	1		07/06/19 15:4	3 107-13-1	
Benzene	<1.0	ug/L		1.0	1		07/06/19 15:4	3 71-43-2	
Bromochloromethane	<1.0	ug/L		1.0	1		07/06/19 15:4	3 74-97-5	
Bromodichloromethane	<1.0	ug/L		1.0	1		07/06/19 15:4	3 75-27-4	
Bromoform	<1.0UJ	ug/L		1.0	1		07/06/19 15:4	3 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1.0	1		07/06/19 15:4	3 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		07/06/19 15:4	3 78-93-3	IL
Carbon disulfide	<1.0	ug/L		1.0	1		07/06/19 15:4	3 75-15-0	
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/06/19 15:4		
Chlorobenzene	<1.0	ug/L		1.0	1		07/06/19 15:4	3 108-90-7	
Chloroethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
Chloroform	<1.0	ug/L		1.0	1		07/06/19 15:4		
Chloromethane	<1.0	ug/L		1.0	1		07/06/19 15:4	3 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L		1.0	1		07/06/19 15:4		•
Dibromochloromethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,2-Dibromoethane (EDB)	<1.0	ug/L		1.0	1		07/06/19 15:4	3 106-93-4	
Dibromomethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,2-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 15:4		
1.4-Dichlorobenzene	<1.0	ug/L		1.0	1		07/06/19 15:4		
trans-1,4-Dichloro-2-butene	<1.0	ug/L		1.0	1		07/06/19 15:4	3 110-57-6	
1,1-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,2-Dichloroethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,1-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 15:4		
cis-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 15:4		
trans-1,2-Dichloroethene	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,2-Dichloropropane	<1.0	ug/L		1.0	1		07/06/19 15:4		
cis-1,3-Dichloropropene	<1.0	ug/L		1.0	1			3 10061-01-5	
trans-1,3-Dichloropropene	<1.0UJ			1.0	1			3 10061-02-6	L1
Ethylbenzene	<1.0	ug/L		1.0	1		07/06/19 15:4		
2-Hexanone	<5.0	ug/L		5.0	1		07/06/19 15:4		
Iodomethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
Methylene Chloride	<1.0	ug/L		1.0	1		07/06/19 15:4		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		07/06/19 15:4		
Styrene	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,1,1,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,1,2,2-Tetrachloroethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
Tetrachloroethene	<1.0	ug/L		1.0	1		07/06/19 15:4		
Toluene	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,1,1-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,1,2-Trichloroethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
Trichloroethene	<1.0	ug/L		1.0	1		07/06/19 15:4		
Trichlorofluoromethane	<1.0	ug/L		1.0	1		07/06/19 15:4		
1,2,3-Trichloropropane	<1.0	ug/L		1.0	1		07/06/19 15:4		
Vinyl acetate	<1.0	ug/L		1.0	1		07/06/19 15:4		
Vinyl chloride	<1.0	ug/L		1.0	1		07/06/19 15:4		
Xylene (Total)	<3.0	ug/L		3.0	1		07/06/19 15:4		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6S	Lab ID: 709	5441021	Collected: 06/25/1	9 11:04	Received: 06	/27/19 11:05 N	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260C Volatile Organics	Analytical Met	Analytical Method: EPA 8260C/5030C								
Surrogates								•		
1,2-Dichloroethane-d4 (S)	126	%	68-153	1		07/06/19 15:43	17060-07-0			
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 15:43	460-00-4			
Toluene-d8 (S)	96	%	69-124	1		07/06/19 15:43	2037-26-5			

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-6R	Lab ID: 70954	41022	Collected: 06/25/1	9 11:07	Received: 06/27/19	11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared An	alyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Method	1: EPA 8:	260C/5030C					
Acetone	<5.0 LJ	ug/L	5.0	1	07/06/	19 15:23	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1	07/06/	19 15:23	107-13-1	
Benzene	<1.0	ug/L	1.0	1	07/06/	19 15:23	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1			74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1			75-27-4	M1
Bromoform	<1.0 UJ	ug/L	1.0	1			75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1			74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1			78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1			75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1			56-23-5	M1
Chlorobenzene	<1.0	ug/L	1.0	1			108-90-7	
Chloroethane	<1.0	ug/L	1.0	1			75-00-3	
Chloroform	<1.0	ug/L	1.0	1			67-66-3	
Chloromethane	<1.0	ug/L	1.0	1			74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1			96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1			124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1			106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1			74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1			95-50-1	
1.4-Dichlorobenzene	<1.0	ug/L	1.0	1			106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1			110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1			75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1			107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1			75-35-4	
cis-1,2-Dichloroethene	14.5	ug/L	1.0	1			156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1			156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1			78-87-5	
cis-1,3-Dichloropropene	<1.0	ug/L م	1.0	1			10061-01-5	M1
trans-1,3-Dichloropropene	<1.0UJ	ug/L	1.0	1			10061-02-6	L1,M0
Ethylbenzene	<1.0	ug/L	1.0	1			100-41-4	_ ,,,,,
2-Hexanone	<5.0	ug/L	5.0	1			591-78-6	
Iodomethane	<1.0	ug/L	1.0	1			74-88-4	R1
Methylene Chloride	<1.0	ug/L	1.0	1			75-09-2	•••
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1			108-10-1	
Styrene	<1.0	ug/L	1.0	1			100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1			630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1			79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1			127-18-4	
Toluene	<1.0	ug/L	1.0	1			108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1			71-55-6	М1
1,1,2-Trichloroethane	<1.0	ug/L ug/L	1.0	1			79-00-5	
Trichloroethene	10.5	ug/L ug/L	1.0	1			79-00-5	
Trichlorofluoromethane	10.5 <1.0	ug/L ug/L	1.0	1			75-69-4	
1,2,3-Trichloropropane	<1.0 <1.0	ug/L ug/L	1.0	1			96-18-4	
• •	<1.0 <1.0	ug/L ug/L	1.0	1			108-05-4	
Vinyl acetate		-	1.0	1			75-01-4	
Vinyl chloride	4.0	ug/L						
Xylene (Total)	<3.0	ug/L	3.0	1	07/06	119 15:23	1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

8/19/19

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-6R	Lab ID: 709	5441022	Collected: 06/25/1	9 11:07	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	124	%	68-153	1		07/06/19 15:23	17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-124	1		07/06/19 15:23	460-00-4	
Toluene-d8 (S)	96	%	69-124	1		07/06/19 15:23	2027 26 6	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-7S	Lab ID: 7095	441023	Collected: 06/25/1	9 11:25	Received: 06	3/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Metho	od: EPA 8	260C/5030C					
Acetone	<5.0 UJ	ug/L	. 5.0	1		07/06/19 15:03	8 67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 15:03	3 107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 15:03	3 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 74-97-5	
Bromodichloromethane	<1.0	_ ug/L	1.0	1		07/06/19 15:03	3 75-27-4	
Bromoform	<1.0 UT	ug/L	1.0	1		07/06/19 15:03	3 75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 15:03	3 78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 15:03	3 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 15:03	3 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:03	3 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 15:03	3 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 15:03	3 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 15:03	3 74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:03	3 95-50-1	
1.4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 15:03	3 106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 156-60-5	
1,2-Dichloropropane	<1.0	ug/L	- 1.0	1		07/06/19 15:0	3 78-87-5	
cis-1,3-Dichloropropene	<1.0	_ug/L	1.0	1		07/06/19 15:0	3 10061-01-5	
trans-1,3-Dichloropropene	<1.01/		1.0	1		07/06/19 15:0	3 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 15:0	3 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 15:0	3 591-78-6	
Iodomethane	<1.0	ug/L	1.0	1		07/06/19 15:0	3 74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 15:0	3 75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 15:0	3 108-10-1	
Styrene	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0		
Toluene	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 15:0		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 15:0		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 15:0		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 15:0		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 15:0		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 15:0		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 64 of 153

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-7S	Lab ID: 70	95441023	Collected: 06/25/1	9 11:25	Received: 06	3/27/19 11:05 N	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260C Volatile Organics	Analytical Me	Analytical Method: EPA 8260C/5030C								
Surrogates										
1,2-Dichloroethane-d4 (S)	124	%	68-153	1		07/06/19 15:03	3 17060-07-0			
4-Bromofluorobenzene (S)	97	%	79-124	1		07/06/19 15:03	3 460-00-4			
Toluene-d8 (S)	95	%	69-124	1		07/06/19 15:03	3 2037-26-5			

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-7R	Lab ID: 70954	41024	Collected: 06/25/19	11:16	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Metho	d: EPA 8	260C/5030C					
Acetone	8.1 3	ug/L	5.0	1		07/06/19 14:44	67-64-1	СН
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 14:44	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 14:44	1 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44	74-97-5	
Bromodichloromethane	<1.0	_ ug/L	1.0	1		07/06/19 14:44	75-27-4	
Bromoform	<1.0125	ug/L	1.0	1		07/06/19 14:44	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 14:44	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 14:44	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 14:44	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 14:44	4 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:44	4 108-90-7	
Chloroethane	2.8	ug/L	1.0	1		07/06/19 14:44	4 75-00-3	
Chloroform	<1.0	ug/L	1.0	1		07/06/19 14:44	4 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 14:44	4 74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 14:4	4 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:4	1 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 14:4	4 106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		07/06/19 14:4	4 74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:4	4 95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:4		
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 14:4		
1,1-Dichloroethane	6.6	ug/L	1.0	1		07/06/19 14:4		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:4		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:4		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:4		
•	<1.0	ug/L	1.0	1		07/06/19 14:4		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:4		
1,2-Dichloropropane	<1.0	_ ug/L	1.0	1			4 10061-01-5	
cis-1,3-Dichloropropene	<1.0 UT		1.0	1			4 10061-02-6	L1
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 14:4		
Ethylbenzene	<5.0	ug/L ug/L	5.0	1		07/06/19 14:4		
2-Hexanone	<0.0 <1.0	_	1.0	1		07/06/19 14:4		
Iodomethane	<1.0 <1.0	ug/L	1.0	1		07/06/19 14:4		
Methylene Chloride	<5.0	ug/L	5.0	1		07/06/19 14:4		
4-Methyl-2-pentanone (MIBK)		ug/L	1.0	1		07/06/19 14:4		
Styrene	<1.0	ug/L		1		07/06/19 14:4		•
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0					
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:4		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 14:4		
Toluene	<1.0	ug/L	1.0	1		07/06/19 14:4		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:4		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:4		
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:4		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 14:4		
1.2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 14:4		
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 14:4		
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 14:4		
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 14:4	4 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

KADAL-849/19

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-7R	Lab ID:	7095441024	Collected: 06/25/1	9 11:16	Received: 06	5/27/19 11:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	2 %	68-153	1		07/06/19 14:44	17060-07-0	
4-Bromofluorobenzene (S)	9	7 %	79-124	1		07/06/19 14:44	460-00-4	
Toluene-d8 (S)	g	4 %	69-124	1		07/06/19 14:44	2037-26-5	

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID: 70954	41025	Collected: 06/25/19	13:10	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Metho	d: EPA 82	260C/5030C					
Acetone	<5.0 UT	ug/L	5.0	1		07/06/19 14:24	67-64-1	
Acrylonitrile	<1.0	ug/L	1.0	1		07/06/19 14:24	107-13-1	
Benzene	<1.0	ug/L	1.0	1		07/06/19 14:24	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:24	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/06/19 14:24	75-27-4	
Bromoform	<1.0 UT	ug/L	1.0	1		07/06/19 14:24	75-25-2	CL,L2
Bromomethane	<1.0	ug/L	1.0	1		07/06/19 14:24	4 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/06/19 14:24	78-93-3	IĹ
Carbon disulfide	<1.0	ug/L	1.0	1		07/06/19 14:24	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/06/19 14:24		
Chlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:24		
Chloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
Chloroform	<1.0	ug/L	1.0	1		07/06/19 14:24		
Chloromethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/06/19 14:24		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/06/19 14:24		
Dibromomethane	<1.0	ug/L ug/L	1.0	1		07/06/19 14:24		
	<1.0	_	1.0	1		07/06/19 14:24		
1,2-Dichlorobenzene		ug/L	1.0	1		07/06/19 14:24		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/06/19 14:24		
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,1-Dichloroethene	<1.0	ug/L				07/06/19 14:2		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1				
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:24		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/06/19 14:2		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/06/19 14:2		
trans-1,3-Dichloropropene	<1.0hJ	_	1.0	1			4 10061-02-6	L1
Ethylbenzene	<1.0	ug/L	1.0	1		07/06/19 14:2		
2-Hexanone	<5.0	ug/L	5.0	1		07/06/19 14:2		
Iodomethane	<1.0	ug/L	1.0	1		07/06/19 14:2		
Methylene Chloride	<1.0	ug/L	1.0	1		07/06/19 14:2		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/06/19 14:2		
Styrene	<1.0	ug/L	1.0	1		07/06/19 14:2		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:2		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/06/19 14:2		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/06/19 14:2		
Toluene	<1.0	ug/L	1.0	1		07/06/19 14:2		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:2		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/06/19 14:2	4 79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/06/19 14:2	4 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/06/19 14:2	4 75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/06/19 14:2	4 96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		07/06/19 14:2	4 108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		07/06/19 14:2	4 75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		07/06/19 14:2	4 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-9R	Lab ID:	7095441025	Collected: 06/25/1	9 13:10	Received: 0	06/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	22 %	68-153	1		07/06/19 14:24	17060-07-0	
4-Bromofluorobenzene (S)	9	94 %	79-124	1		07/06/19 14:24	460-00-4	
Toluene-d8 (S)	g	95 %	69-124	1		07/06/19 14:24	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:


BROCKPORT LANDFILL

Pace Project No.: 7095441

Sample: GW-X	Lab ID: 70954	141026	Collected: 06/	25/19 0	9:31	Received:	06/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Lin	nit D	F	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Metho	d: EPA 8	260C/5030C						
Acetone	16.3 🎞	ug/L		5.0	1		07/06/19 14:0	5 67-64-1	CH
Acrylonitrile	<1.0	ug/L		1.0	1		07/06/19 14:0	5 107-13-1	
Benzene	7.3	ug/L		1.0	1		07/06/19 14:0	5 71-43-2	
Bromochloromethane	<1.0	ug/L		1.0	1		07/06/19 14:0	5 74-97-5	
Bromodichloromethane	<1.0	_ ug/L		1.0	1		07/06/19 14:0	5 75-27-4	
Bromoform	ZN0.1>	ug/L		1.0	1		07/06/19 14:0	5 75-25-2	CL,L2
Bromomethane	<1.0	ug/L		1.0	1		07/06/19 14:0	5 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	:	5.0	1		07/06/19 14:0	5 78-93-3	IL
Carbon disulfide	<1.0	ug/L		1.0 ·	1		07/06/19 14:0	5 75-15-0	
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/06/19 14:0	5 56-23-5	
Chlorobenzene	5.1	ug/L		1.0	1		07/06/19 14:0	5 108-90-7	
Chloroethane	25.6	ug/L		1.0	1		07/06/19 14:0	5 75-00-3	
Chloroform	<1.0	ug/L			1		07/06/19 14:0		
Chloromethane	<1.0	ug/L			1		07/06/19 14:0		
1,2-Dibromo-3-chloropropane	<1.0	ug/L			1		07/06/19 14:0		
Dibromochloromethane	<1.0	ug/L			1		07/06/19 14:0		
1,2-Dibromoethane (EDB)	<1.0	ug/L			1		07/06/19 14:0		
Dibromomethane	<1.0	ug/L			1		07/06/19 14:0		
1.2-Dichlorobenzene	<1.0	ug/L			1		07/06/19 14:0		
1,4-Dichlorobenzene	<1.0	ug/L			1		07/06/19 14:0		
trans-1,4-Dichloro-2-butene	<1.0	ug/L			1		07/06/19 14:0		
1,1-Dichloroethane	1.0	ug/L ug/L	-		1		07/06/19 14:0		
•	<1.0	ug/L ug/L			1		07/06/19 14:0		
1,2-Dichloroethane	<1.0	ug/L ug/L			1		07/06/19 14:0		
1,1-Dichloroethene	<1.0	_		1.0 1.0 s			07/06/19 14:0		
cis-1,2-Dichloroethene	<1.0 <1.0	ug/L		_	1		07/06/19 14:0		
trans-1,2-Dichloroethene		ug/L			1		07/06/19 14:0		
1,2-Dichloropropane	<1.0	ug/L			1				
cis-1,3-Dichloropropene	<1.0	_ ug/L						5 10061-01-5	
trans-1,3-Dichloropropene	CN 0.1>	_			1			5 10061-02-6	L1
Ethylbenzene	<1.0	ug/L			1		07/06/19 14:0		
2-Hexanone	<5.0	ug/L			1		07/06/19 14:0		
Iodomethane	<1.0	ug/L			1		07/06/19 14:0		
Methylene Chloride	<1.0	ug/L			1		07/06/19 14:0		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L			1		07/06/19 14:0		
Styrene	<1.0	ug/L			1		07/06/19 14:0		
1,1,1,2-Tetrachloroethane	<1.0	ug/L			1		07/06/19 14:0		
1,1,2,2-Tetrachloroethane	<1.0	ug/L			1		07/06/19 14:0		
Tetrachloroethene	<1.0	ug/L			1		07/06/19 14:0		
Toluene	<1.0	ug/L			1		07/06/19 14:0		
1,1,1-Trichloroethane	<1.0	ug/L			1		07/06/19 14:0		
1,1,2-Trichloroethane	<1.0	ug/L			1		07/06/19 14:0		
Trichloroethene	<1.0	ug/L			1		07/06/19 14:0		
Trichlorofluoromethane	<1.0	ug/L		1.0	1		07/06/19 14:0		
1,2,3-Trichloropropane	<1.0	ug/L		1.0	1		07/06/19 14:0		
Vinyl acetate	<1.0	ug/L		1.0	1		07/06/19 14:0	5 108-05-4	
Vinyl chloride	<1.0	ug/L		1.0	1		07/06/19 14:0		
Xylene (Total)	<3.0	ug/L		3.0	1		07/06/19 14:0	5 1330-20-7	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL

Pace Project No.: 7095441

Date: 07/26/2019 04:57 PM

Sample: GW-X	Lab ID: 7095441026		Collected: 06/25/1	9 09:31	Received: 06	6/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	12	1 %	68-153	1		07/06/19 14:05	17060-07-0	
4-Bromofluorobenzene (S)	10	1 %	79-124	1		07/06/19 14:05	460-00-4	
Toluene-d8 (S)	9	3 %	69-124	1		07/06/19 14:05	5 2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project:

BROCKPORT LANDFILL LONG TERM

Date: 07/12/2019 02:11 PM

Field Data Analytical Method: Field pH 8.08 Std. Units 1 06/26/19 11:51 Field Temperature 22.8 deg C 1 06/26/19 11:51 Field Temperature 12.8 mg/L 1 06/26/19 11:51 Oxygen, Dissolved 9.8 mg/L 1 06/26/19 11:51 Oxygen, Dissolved 9.8 mg/L 1 06/26/19 11:51 Field Turbidity 4.38 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 11:51 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/26/19 20:50 Field Turbidity 6.40 NTU 1 06/2	Sample: SW-1	Lab ID: 70	95500001	Collected: 06/26/	19 11:51	Received: 06	3/27/19 11:05	Matrix: Water	
Field pH	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Temperature	Field Data	Analytical Me	ethod:						
Field Specific Conductance	Field pH	8.08	Std. Units		1		06/26/19 11:5	1	
Oxygen, Dissolved 9.8 mg/L	Field Temperature	22.8	deg C		1		06/26/19 11:5	1	
REDOX 7.3 m/Y 1 06/28/19 11:51 Field Turbidity 4.38 NTU 1 1 06/28/19 11:51 Field Turbidity 4.38 NTU 1 1 06/28/19 11:51 Field Turbidity 4.38 NTU 1 1 06/28/19 11:51 Field Turbidity 4.38 NTU 1 1 07/09/19 10:00 07/10/19 23:19 7440-36-0 Arsenic 40.0 ug/L 0.0 1 07/09/19 10:00 07/10/19 23:19 7440-38-2 Bartum 200 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7440-38-2 Bartum 88300 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7440-70-2 From 25600 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7440-70-2 From 25600 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7439-98-6 Manganesie 18200 ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7439-98-6 Manganesie 428 ug/L 10.0 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 50.0 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 50.0 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-13-1 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-13-1 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-13-1 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-13-1 Potasisium 5000 ug/L 50.0 1 07/09/19 20:50 07-23-2 CL Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	Field Specific Conductance	1021	umhos/cm		1		06/26/19 11:5	1	
September Sept	Oxygen, Dissolved	9.8	mg/L		1		06/26/19 11:5	7782-44-7	
### Septomble Analytical Method: EPA 6010C Preparation Method: EPA 3005A ### Analytical Method: EPA 6010C Preparation Method: EPA 3005A ### Analytical Method: EPA 6010C Preparation Method: EPA 3005A ### Analytical Method: Qugl. G0.0 1 07709/19 10:00 07710/19 23:19 7440-38-0 ### Analytical Method: Qugl. 200 1 07709/19 10:00 07710/19 23:19 7440-38-2 ### Analytical Method: Qugl. 200 1 07709/19 10:00 07710/19 23:19 7440-02-2 ### Analytical Method: Qugl. 200 1 07709/19 10:00 07710/19 23:19 7440-02-2 ### Manganesis 428 ugl. 10.0 1 07709/19 10:00 07710/19 23:19 7440-02-2 ### Manganese 428 ugl. 10.0 1 07709/19 10:00 07710/19 23:19 7440-02-3 ### Analytical Method: EPA 8260C/5030C	• •	-73	mV		1		06/26/19 11:5	1	
Antimony	Field Turbidity	4.38	NTU		1		06/26/19 11:5	1	
Arsenic	6010 MET ICP	Analytical Me	ethod: EPA 60	10C Preparation M	ethod: El	PA 3005A			
Barium	Antimony	<60.0	ug/L	60.0	1				
Calcium 88300 Ug/L 200 1 07/09/19 10:00 07/10/19 23:19 7440-70-2 relation Iron 2580 Ug/L 20.0 1 07/09/19 10:00 07/10/19 23:19 7439-89-6 relation Magnesium 18200 Ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 relation Manganese 428 Ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7439-98-5 relation Potassium \$500 Ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7440-09-7 relation Sodium \$3800 Ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7440-09-7 relation Acetone \$50 Ug/L 50 1 07/09/19 10:00 07/10/19 23:19 7440-23-5 8260C Votatile Organics Analytical Method: EPA 8260C/5030C Value 1 07/09/19 10:00 07/10/19 23:19 7440-23-5 8260C Votatile Organics Analytical Method: Ug/L 1.0 1 07/05/19 20:50	Arsenic	<10.0	ug/L	10.0	1	07/09/19 10:00	07/10/19 23:1	9 7440-38-2	
Calcium	Barium	<200	ug/L	200	1	07/09/19 10:00	07/10/19 23:1	9 7440-39-3	
Roman 1820	Calcium	88300		200	1	07/09/19 10:00	07/10/19 23:1	9 7440-70-2	
Manganese 428 Potassium ug/L 10.0 1 07/09/19 10:00 07/10/19 23:19 7439-96-5 7440-09-7 7400 7439-96-5 7440-09-7 7400-09 77/00/19 23:19 7440-09-7 7400 7440-09-7 7440-09-	Iron	2580	ug/L	20.0	1	07/09/19 10:00	07/10/19 23:1	9 7439-89-6	
Manganese 428 ug/L 10.0 1 07/09/19 10:00 07/10/19 23:19 7439-96-5 Potassium <5000 ug/L 5000 1 07/09/19 10:00 07/10/19 23:19 7440-09-7 8260C Volatile Organics Analytical Method: EPA 8260C/5030C EPA 8260C/5030C Section 4.0 07/05/19 20:50 67-64-1 7440-09-7 Acetone <5.0 Ug/L 1.0 1 07/05/19 20:50 67-64-1 407/05/19 20:50 70-71-3-1 80-71-3-1 <	Magnesium	18200	ug/L	200	1	07/09/19 10:00	07/10/19 23:1	9 7439-95-4	
Sodium Sa800	-	428		10.0	1	07/09/19 10:00	07/10/19 23:1	9 7439-96-5	
8260C Volatile Organics Analytical Method: EPA 8260C/5030C Acetone < 5.0	Potassium	<5000	ug/L	5000	1	07/09/19 10:00	07/10/19 23:1	9 7440-09-7	
Acetone	Sodium	93800	J ug/L	5000	1	07/09/19 10:00	07/10/19 23:1	9 7440-23-5	
Acrylonitrile 41.0 ug/L 41.0 ug/L 41.0 ug/L 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 107-13-1 Benzene 41.0 ug/L 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-97-5 Bromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-27-4 Bromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-25-2 CL Bromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-25-2 CL Bromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-25-2 CL Bromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-25-2 CL Bromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-35-3 LL Carbon disulfide 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-15-0 Carbon tetrachloride 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-00-3 Chlorobenzene 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-00-3 Chloroform 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-00-3 Chloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 75-00-3 CL Cl-Libinomo-3-chloropropane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromochloromethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-87-3 CL L]-Dibromomethane 41.0 ug/L 41.0 1 41.0 07/05/19 20:50 74-95-3 CL Argonical and an analysis of the second and an analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second and analysis of the second analysis of the second and analysis of the second analysi	8260C Volatile Organics	Analytical Me	ethod: EPA 82	60C/5030C					
Benzene	Acetone	<5.0 ^	√ ug/L	5.0	1		07/05/19 20:5	0 67-64-1	
Benzene <1.0 ug/L 1.0 1 07/05/19 20:50 71-43-2 Bromochloromethane <1.0	Acrylonitrile	<1.0	ug/L	1.0	1		07/05/19 20:5	0 107-13-1	
Bromodichloromethane	-	<1.0	ug/L	1.0	1		07/05/19 20:5	0 71-43-2	
Bromoform	Bromochloromethane	<1.0	ug/L	1.0	1		07/05/19 20:5	0 74-97-5	
Bromomethane	Bromodichloromethane		ug/L	1.0	1		07/05/19 20:5	0 75-27-4	
2-Butanone (MEK)	Bromoform	<1.0 \	√ ug/L	1.0	1		07/05/19 20:5	0 75-25-2	CL
2-Butanone (MEK)	Bromomethane	<1.0	ug/L	1.0	1		07/05/19 20:5	0 74-83-9	
Carbon disulfide <1.0 ug/L 1.0 1 07/05/19 20:50 75-15-0 Carbon tetrachloride <1.0 ug/L 1.0 1 07/05/19 20:50 56-23-5 Chlorobenzene <1.0 ug/L 1.0 1 07/05/19 20:50 75-00-3 Chloroform <1.0 ug/L 1.0 1 07/05/19 20:50 75-00-3 Chloromethane <1.0 ug/L 1.0 1 07/05/19 20:50 76-66-3 Chloromethane <1.0 ug/L 1.0 1 07/05/19 20:50 74-87-3 CL 1,2-Dibromo-3-chloropropane <1.0 ug/L 1.0 1 07/05/19 20:50 74-87-3 CL 1,2-Dibromoethane (EDB) <1.0 ug/L 1.0 1 07/05/19 20:50 74-95-3 CL,L 1,2-Dichlorobenzene <1.0 ug/L 1.0 1 07/05/19 20:50 74-95-3 1,2-Dichlorobenzene <1.0 ug/L 1.0 1 07/05/19 20:50 75-34-3 CL,L <tr< td=""><td>2-Butanone (MEK)</td><td><5.0</td><td></td><td>5.0</td><td>1</td><td></td><td></td><td></td><td>IL</td></tr<>	2-Butanone (MEK)	<5.0		5.0	1				IL
Chlorobenzene	• •	<1.0		1.0	1				
Chloroethane	Carbon tetrachloride	<1.0	ug/L	1.0	1		07/05/19 20:5	0 56-23-5	
Chloroform	Chlorobenzene	<1.0	ug/L	1.0	1				
Chloromethane	Chloroethane	<1.0	ug/L	1.0	1		07/05/19 20:5	0 75-00-3	
1,2-Dibromo-3-chloropropane <1.0	Chloroform	<1.0	ug/L	1.0	1		07/05/19 20:5	0 67-66-3	
1,2-Dibromo-3-chloropropane <1.0	Chloromethane	<1.0	J ug/L	1.0	1		07/05/19 20:5	0 74-87-3	CL
Dibromochloromethane	1.2-Dibromo-3-chloropropane	<1.0		1.0	1		07/05/19 20:5	0 96-12-8	CL,L2
1,2-Dibromoethane (EDB) <1.0			_	1.0	1		07/05/19 20:5	0 124-48-1	
Dibromomethane <1.0 ug/L 1.0 1 07/05/19 20:50 74-95-3 1,2-Dichlorobenzene <1.0				1.0	1		07/05/19 20:5	0 106-93-4	
1,2-Dichlorobenzene <1.0	• •	<1.0	_	1.0	1		07/05/19 20:5	0 74-95-3	
1,4-Dichlorobenzene <1.0		<1.0	_	1.0	1		07/05/19 20:5	60 95-50-1	
trans-1,4-Dichloro-2-butene <1.0	•	<1.0	ug/L	1.0	1		07/05/19 20:5	0 106-46-7	
1,1-Dichloroethane <1.0	• • • • • • • • • • • • • • • • • • • •	<1.0	J ug/L	1.0	1		07/05/19 20:5	60 110-57-6	CL,L2
1,2-Dichloroethane <1.0	•			1.0	1				CL,L2
1,1-Dichloroethene <1.0	•		_	1.0	1		07/05/19 20:5	0 107-06-2	
cis-1,2-Dichloroethene <1.0	•		_	1.0	1				
trans-1,2-Dichloroethene <1.0 ug/L 1.0 1 07/05/19 20:50 156-60-5	•		_	1.0) 1		07/05/19 20:5	0 156-59-2	
07/05/40 00 50 70 07 5	•		-	1.0	1				
	1,2-Dichloropropane		ug/L				07/05/19 20:5	60 78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.: 7095500

Sample: SW-1	Lab ID: 7099	5500001	Collected: 06/26/1	9 11:51	Received: 06	5/27/19 11:05 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 20:50	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 20:50	10061-02-6	
Ethylbenzene	<1.0	ug/L	1.0	1		07/05/19 20:50	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/05/19 20:50	591-78-6	
lodomethane	<1.0	ug/L	1.0	1		07/05/19 20:50	74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/05/19 20:50	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/05/19 20:50	108-10-1	L2
Styrene	<1.0	ug/L	1.0	1		07/05/19 20:50	100-42-5	
1.1.1.2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	630-20-6	L1
1.1.2.2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0,	1		07/05/19 20:56	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/05/19 20:50) 108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	71-55-6	
1.1.2-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 20:50	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/05/19 20:50	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/05/19 20:50	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/05/19 20:5	96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		07/05/19 20:5	0 108-05-4	
Vinyl chloride	<1.0 🔾	_	1.0	1		07/05/19 20:5	75-01-4	CL
Xylene (Total)	<3.0	ug/L	3.0	1		07/05/19 20:5	0 1330-20-7	
Surrogates		.						
1,2-Dichloroethane-d4 (S)	101	%	68-153	1		07/05/19 20:5	0 17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-124	1		07/05/19 20:5	0 460-00-4	
Toluene-d8 (S)	102	%	69-124	1		07/05/19 20:5	0 2037-26-5	

FAMILIA 19/19

Project:

BROCKPORT LANDFILL LONG TERM

Pace Project No.:

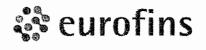
Sample: SEEP	Lab ID: 70	095500002	Collected: 06	6/26/1	9 12:54	Received: 06	/27/19 11:05	Matrix: Water	
Parameters	Results	Units	Report Li	imit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical M	ethod:							
Field pH	7.97	Std. Units			1		06/26/19 12:54	ļ	
Field Temperature	23.6	deg C			1		06/26/19 12:54	ļ	
Field Specific Conductance	624	umhos/cm			1		06/26/19 12:54	ļ	
Oxygen, Dissolved	10.9	mg/L			1		06/26/19 12:54	7782-44-7	
REDOX	- 9 8	mV			1		06/26/19 12:54	ļ	
Field Turbidity	24.8	NTU			1		06/26/19 12:54	ļ	
6010 MET ICP	Analytical M	ethod: EPA 60	10C Preparati	ion Me	ethod: EF	PA 3005A			
Antimony	<60.0	ug/L		60.0	1	07/09/19 10:00	07/10/19 23:3	7440-36-0	
Arsenic	<10.0	ug/L		10.0	1	07/09/19 10:00	07/10/19 23:3	7440-38-2	
Barium	<200	ug/L		200	1	07/09/19 10:00	07/10/19 23:3	5 7440-39-3	
Calcium	91900			200	1	07/09/19 10:00	07/10/19 23:3	5 7440-70-2	
Iron	1090	ug/L		20.0	1	07/09/19 10:00	07/10/19 23:3	7439-89-6	
Magnesium	19000	ug/L		200	1	07/09/19 10:00	07/10/19 23:3	5 7439-95-4	
Manganese	240	ug/L		10.0	1	07/09/19 10:00	07/10/19 23:3	7439-96-5	
Potassium	. <5000	_ ug/L	5	5000	1	07/09/19 10:00	07/10/19 23:3	5 7440-09-7	
Sodium	101000			5000	1	07/09/19 10:00	07/10/19 23:3	5 7440-23-5	
8260C Volatile Organics	Analytical M	lethod: EPA 82	60C/5030C						
Acetone	<5.0	J ug/L		5.0	1		07/05/19 21:1	0 67-64-1	
Acrylonitrile	<1.0	ug/L		1.0	1		07/05/19 21:1	0 107-13-1	
Benzene	<1.0	ug/L		1.0	1		07/05/19 21:1	71-43-2	
Bromochloromethane	<1.0	ug/L		1.0	1		07/05/19 21:1	0 74-97-5	
Bromodichloromethane	<1.0	ug/L		1.0	1		07/05/19 21:1	0 75-27-4	
Bromoform	<1.0	J ug/L		1.0	1		07/05/19 21:1	0 75-25-2	CL
Bromomethane	<1.0	ug/L		1.0	1		07/05/19 21:1	0 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		07/05/19 21:1	0 78-93-3	IL
Carbon disulfide	<1.0	ug/L		1.0	1		07/05/19 21:1	0 75-15-0	
Carbon tetrachloride	<1.0	ug/L		1.0	1		07/05/19 21:1	0 56-23-5	
Chlorobenzene	<1.0	ug/L		1.0	1		07/05/19 21:1	0 108-90-7	
Chloroethane	<1.0	ug/L		1.0	1		07/05/19 21:1	0 75-00-3	
Chloroform	<1.0	ug/L		1.0	1		07/05/19 21:1		
Chloromethane	<1.0			1.0	1		07/05/19 21:1		CL
	<1.0	שני ug/L		1.0	1		07/05/19 21:1		CL,L2
1,2-Dibromo-3-chloropropane	<1.0	ug/L		1.0	1		07/05/19 21:1		,
Dibromochloromethane	<1.0	ug/L		1.0	1		07/05/19 21:1		
1,2-Dibromoethane (EDB)				1.0	1		07/05/19 21:1		
Dibromomethane	<1.0 <1.0	ug/L ug/L		1.0	1		07/05/19 21:1		
1,2-Dichlorobenzene	<1.0 <1.0	_		1.0	1		07/05/19 21:1		
1,4-Dichlorobenzene	<1.0 <1.0			1.0	1		07/05/19 21:1		CL,L2
trans-1,4-Dichloro-2-butene	v.r> <1.0	J ug/L			1		07/05/19 21:1		CL,L2
1,1-Dichloroethane				1.0			07/05/19 21:1		UL,LZ
1,2-Dichloroethane	<1.0	_		1.0	1		07/05/19 21:1		
1,1-Dichloroethene	<1.0	•		1.0	1				
cis-1,2-Dichloroethene	<1.0	_		1.0	1		07/05/19 21:1		
trans-1,2-Dichloroethene	<1.0			1.0	1		07/05/19 21:1		
1,2-Dichloropropane	<1.0	ug/L		1.0	1		07/05/19 21:1	U 78-87-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 10 of 21

Project:


BROCKPORT LANDFILL LONG TERM

Pace Project No.: 70

7095500

Sample: SEEP	Lab ID: 7095	500002	Collected: 06/26/1	9 12:54	Received: 0	6/27/19 11:05 N	//atrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	od: EPA 8	260C/5030C					
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 21:10	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/05/19 21:10		
Ethylbenzene	<1.0	ug/L	1.0	1		07/05/19 21:10	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		07/05/19 21:10	591-78-6	
Iodomethane	<1.0	ug/L	1.0	1		07/05/19 21:10	74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		07/05/19 21:10	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/05/19 21:10	108-10-1	L2
Styrene	<1.0	ug/L	1.0	1		07/05/19 21:10	100-42-5	
1.1.1.2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	630-20-6	L1
1.1.2.2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10	127-18-4	
Toluene	<1.0	ug/L	1.0	1		07/05/19 21:10	108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/05/19 21:10	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/05/19 21:10	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/05/19 21:10	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/05/19 21:10	96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		07/05/19 21:10	108-05-4	
Vinyl chloride	<1.05	ug/L	1.0	1		07/05/19 21:10	75-01-4	CL
Xylene (Total)	<3.0	ug/L	3.0	1		07/05/19 21:10	1330-20-7	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	100	%	68-153	1		07/05/19 21:10		
4-Bromofluorobenzene (S)	102	%	79-124	1		07/05/19 21:10	460-00-4	
Toluene-d8 (S)	102	%	69-124	1		07/05/19 21:10	2037-26-5	

Environment Testing TestAmerica

ANALYTICAL REPORT

Job Number: 320-51811-1

SDG Number: 7095477

Job Description: Pace PFAS Testing

For:

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747

Attention: Jennifer Aracri

CESAR C Coxtes

Approved for release Cesar C Cortes Project Manager i 7/16/2019 9:51 PM

Cesar C Cortes, Project Manager I 880 Riverside Parkway, West Sacramento, CA, 95605 (916)374-4316 cesar.cortes@testamericainc.com 07/16/2019

Receipt

The samples were received on 6/28/2019 at 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.6° C.

Method 537 modified

The following samples were brown in color and contained brown particulate: GW-1S (320-51811-1), GW-3S (320-51811-2), GW-6R (320-51811-3) and FIELD DUPLICATE (320-51811-5).

The following samples were yellow in color and contained brown particulate: GW-9R (320-51811-4), GW-9R (320-51811-4[MSD]), GW-9R (320-51811-4[MSD]).

The following samples contained non-settable particulates which clogged the solid-phase extraction column: GW-1S (320-51811-1), GW-3S (320-51811-2), GW-6R (320-51811-3) and FIELD DUPLICATE (320-51811-5).

Elevated reporting limits are provided for the following samples due to insufficient volume provided: GW-6R (320-51811-3), GW-9R (320-51811-4) and GW-9R (320-51811-4[MS]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Pace Analytical Services, LLC Project/Site: Pace PFAS Testing

Job ID: 320-51811-1 SDG: 7095477

Ab Sample ID Client Sample ID 320-51811-1 GW-1S 320-51811-2 GW-3S 320-51811-3 GW-6R 320-51811-4 GW-9R 320-51811-5 FIELD DUPLICATE 320-51811-6 EQUIPMENT BLANK

Chain of Custody

PASI New York Laboratory

Workorder: 7095477 Workorder Name: **BROCKPORT LANDFILL 6/26** Results Requested By: 7/12/2019 Report / Invoice To Subcontract To Requested Analysis Jennifer Aracri TA Eurofins-Sacramento P.O. 7095477JSA Pace Analytical Melville 880 Riverside Pkwy 575 Broad Hollow Road West Sacramento, CA 95605 Melville, NY 11747 Phone (631)694-3040 Email: jennifer.aracri@pacelabs.com State of Sample Origin: Preserved Containers Collect Item Sample ID Lab IO Date/Time : 445 34 Matrix LAB USE ONLY GW-15 6/26/2019 11:37 7095477001 Water 2 Page 364 of 365 405 of 521 GW-35 6/28/2019 12:04 7095477002 Water Х GW-6R X 6/26/2019 11:01 7095477003 Water GW-9R 7095477004 6/26/2019 12:27 Water FIELD DUPLICATE X 6/26/2019 11:01 7095477005 Water **EQUIPMENT BLANK** 6/26/2019 11:47 7095477006 Water Comments Released, By Date/Time Received By Date/Time Transfers Need a Category B package w/NY EQuIS EDDs WALL- MEL ETA-SAC 2.6°C Cooler Temperature on Receipt Custody Seal Y or N Received on Ice Y or N Samples Intact Y or N

4.60 6/28/19

Lab Name: Eurofins TestAmerica, Sacramento

Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: GW-1S

Lab Sample ID: 320-51811-1

Matrix: Water

Lab File ID: 2019.07.03LLC_038.d

Analysis Method: 537 (modified)

Date Collected: 06/26/2019 11:37

Extraction Method: 3535

Date Extracted: 07/02/2019 07:30

Analysis Batch No.: 305698

Sample wt/vol: 249.8(mL)

Date Analyzed: 07/04/2019 10:44

Injection Volume: 20(uL)

Con. Extract Vol.: 10.0(mL)

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

% Moisture:

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	0.74	J	2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58
375-85-9	Perfluoroheptanoic acid	ND		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2.0	0.85
375-95-1	Perfluoronomanoic acid (PFNA)	ND		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	D		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ПD		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ZOU -0-04	JB	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND ND		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	7.0 W -0.85	J	2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND	- · · · · · · · · · · · · · · · · · · ·	20	2.0
39108-34-4	8:2 FTS	ПD		20	2.0

Lab Name: Eurofins TestAmerica, Sacramento

Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: GW-3S

Lab Sample ID: 320-51811-2

Matrix: Water

Lab File ID: 2019.07.03LLC_039.d

Analysis Method: 537 (modified)

Date Collected: 06/26/2019 12:04

Extraction Method: 3535

Date Extracted: 07/02/2019 07:30

Date Analyzed: 07/04/2019 10:52

Sample wt/vol: 247.8(mL)

Dilution Factor: 1

Con. Extract Vol.: 10.0(mL)
Injection Volume: 20(uL)

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

% Moisture:

Units: ng/L

Analysis Batch No.: 305698

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	7.5		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.59
375-85-9	Perfluoroheptanoic acid	ND		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	1.8	J	2.0	0.86
375-95-1	Perfluorononancic acid (PFNA)	ND		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND	1	2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.85	J	2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	7.04 D-76	JB	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	2.8	J	2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	6.4	J	20	2.0
39108-34-4	8:2 FTS	D		20	2.0

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: GW-6R Lab Sample ID: 320-51811-3

Matrix: Water Lab File ID: 2019.07.03LLC_040.d

Analysis Method: 537 (modified) Date Collected: 06/26/2019 11:01

Extraction Method: 3535 Date Extracted: 07/02/2019 07:30

Sample wt/vol: 244.5(mL) Date Analyzed: 07/04/2019 11:00

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 305698 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	40		2.0	0.36
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.50
307-24-4	Perfluorohexanoic acid (PFHxA)	12		2.0	0.59
375-85-9	Perfluoroheptanoic acid	6.1		2.0	0.26
335-67-1	Perfluorooctanoic acid (PFOA)	27	t	2.0	0.87
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0.28
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.32
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.56
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND	******************	2.0	0.30
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	4.7	В	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.82	J	2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	36		2.0	0.55
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.33
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.36
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.2
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND	**	20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: GW-9R Lab Sample ID: 320-51811-4

Matrix: Water

Lab File ID: 2019.07.03LLC_042.d Analysis Method: 537 (modified) Date Collected: 06/26/2019 12:27

Extraction Method: 3535

Date Extracted: 07/02/2019 07:30

Sample wt/vol: 255(mL)

Date Analyzed: 07/04/2019 11:16

Con. Extract Vol.: 10.0(mL)

Dilution Factor: 1

Injection Volume: 20(uL)

GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture:

GPC Cleanup: (Y/N) N

Analysis Batch No.: 305698

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	23		2.0	0.34
2706-90-3	Perfluoropentanoic acid (PFPeA)	3.2		2.0	0.48
307-24-4	Perfluorohexanoic acid (PFHxA)	2.9		2.0	0.57
375-85-9	Perfluoroheptanoic acid	2.7		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	5.1		2.0	0.83
375-95-1	Perfluorononanoic acid (PFNA)	0.51	J	2.0	0.26
335-76-2	Perfluorodecanoic acid (PFDA)	DND		2.0	0.30
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND	*******************************	2.0	0,54
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.28	J	2.0	0.28
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.8	J	2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	204 12	ĴВ	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND ND		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	2.9	J	2.0	0.53
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.31
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.34
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.0
2991-50-6	N-ethylperfluorocctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: FIELD DUPLICATE

Lab Sample ID: 320-51811-5

Matrix: Water

Lab File ID: 2019.07.03LLC 044.d

Analysis Method: 537 (modified)

Extraction Method: 3535

Date Collected: 06/26/2019 11:01

Date Extracted: 07/02/2019 07:30

Sample wt/vol: 248.7(mL)

Date Analyzed: 07/04/2019 11:32

Con. Extract Vol.: 10.0(mL)

Dilution Factor: 1

Injection Volume: 20(uL)

GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture:

GPC Cleanup: (Y/N) N

Analysis Batch No.: 305698

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	40		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	12		2.0	0.58
375-85-9	Perfluoroheptanoic acid	5.6		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	26		2.0	0.85
375-95-1	Perfluorononanoic acid (PFNA)	1.0	J	2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	0.81	J	2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.9	J	2,0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	4.9	В	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.96	J	2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	39		2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID: EQUIPMENT BLANK Lab Sample ID: 320-51811-6

Matrix: Water Lab File ID: 2019.07.03LLC_045.d

Analysis Method: 537 (modified) Date Collected: 06/26/2019 11:47

Extraction Method: 3535 Date Extracted: 07/02/2019 07:30

Sample wt/vol: 250.7(mL) Date Analyzed: 07/04/2019 11:40

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 305698 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	ND		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58
375-85-9	Perfluoroheptanoic acid	ND		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2.0	0,85
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	ND		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1,1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND_		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.44	J В	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	סוא		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	(0.98	J	2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	- GM		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 320-51811-1

SDG No.: 7095477

Client Sample ID:

Lab Sample ID: MB 320-305096/1-A

Matrix: Water

Lab File ID: 2019.07.03LLC_036.d

Analysis Method: 537 (modified)

Date Collected:

Extraction Method: 3535

Date Extracted: 07/02/2019 07:30

Sample wt/vol: 250(mL)

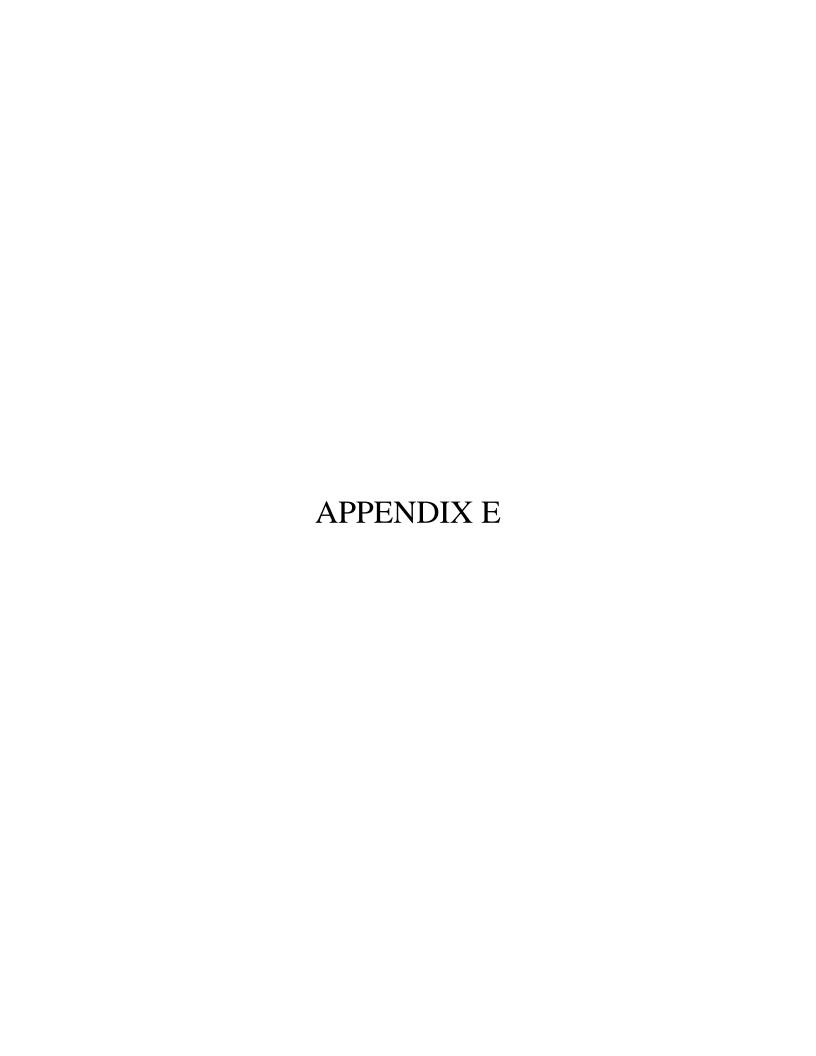
Date Analyzed: 07/04/2019 10:28

Con. Extract Vol.: 10.0(mL)

Dilution Factor: 1

Injection Volume: 20(uL)

GC Column: GeminiC18 3x100 ID: 3(mm)


% Moisture:

GPC Cleanup: (Y/N) N

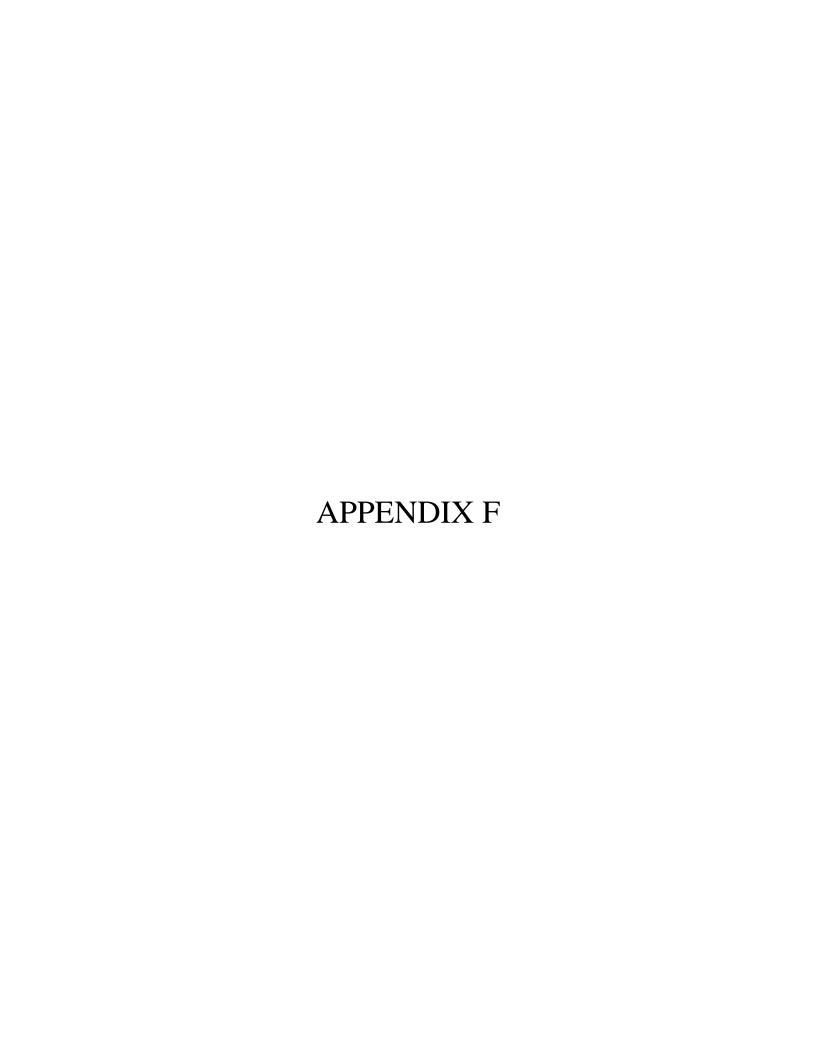
Analysis Batch No.: 305698

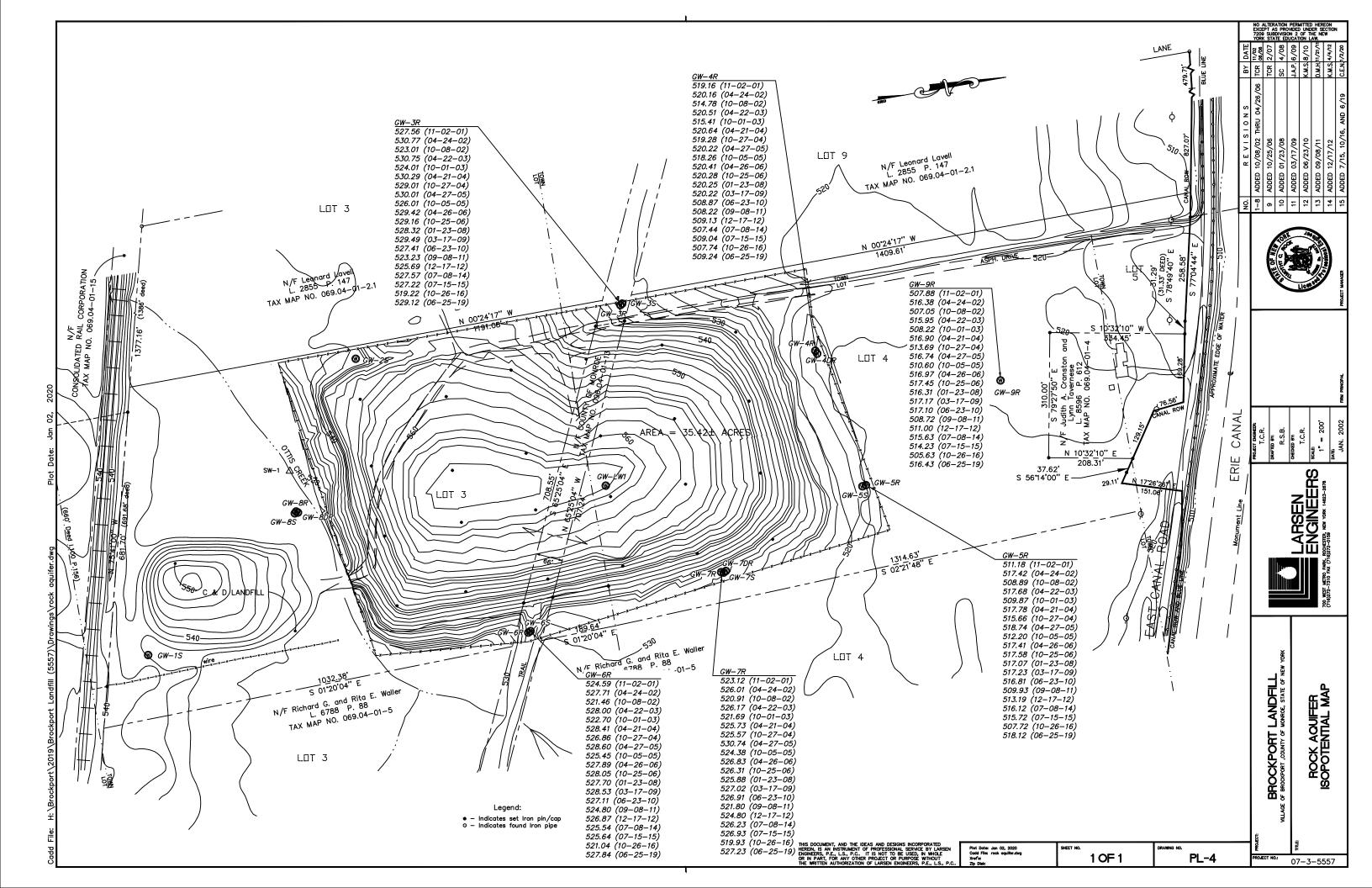
Units: ng/L

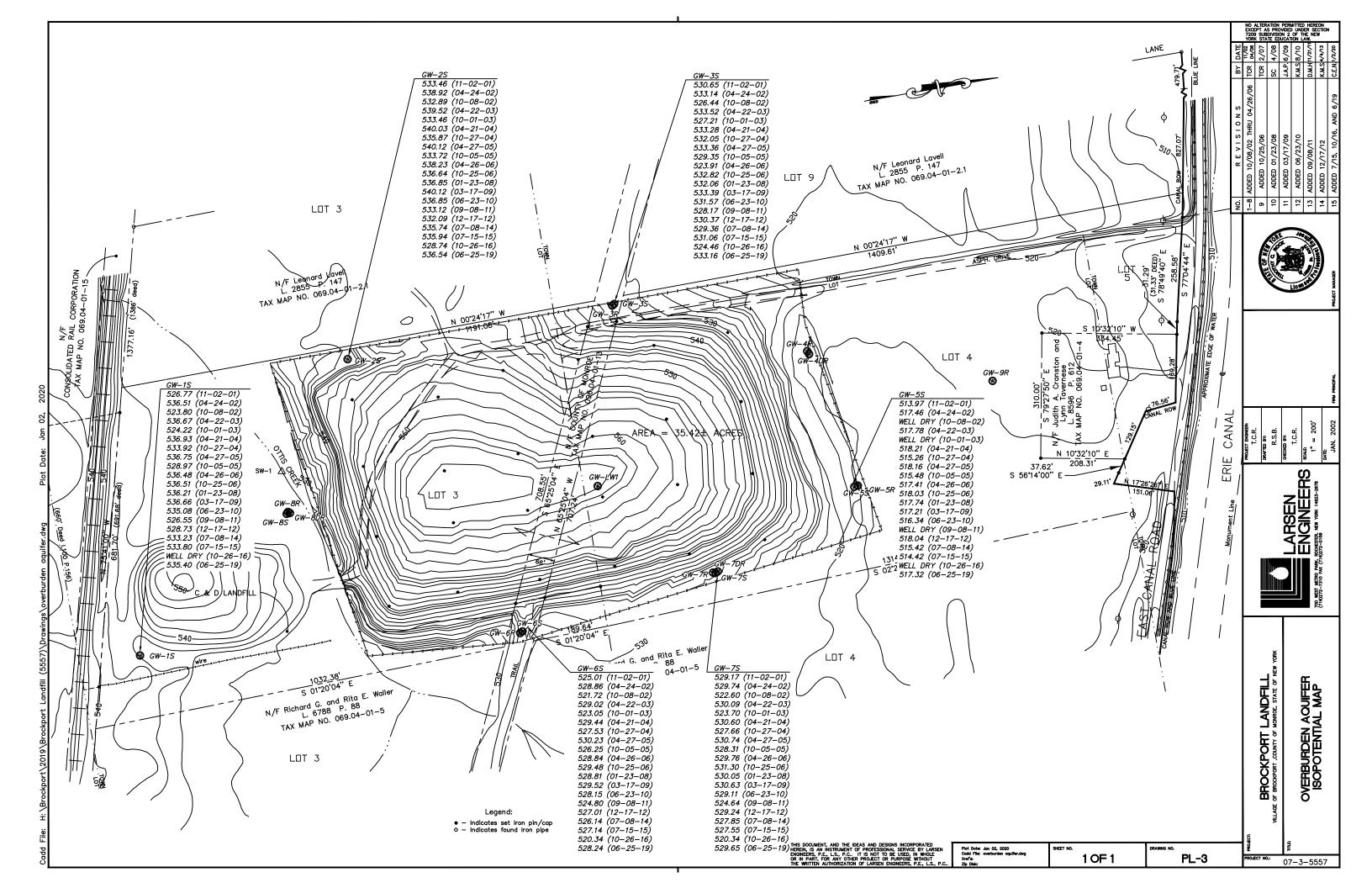
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid	ND		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	C.58
375-85-9	Perfluoroheptanoic acid	ND		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2.0	0.85
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	DN		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ОИ		2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	(0.319	丁)	2.0	0.17
375-92-9	Perfluoroheptanesulfonic Acid (PFHpS)	DM		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND ND		2.0	0.35
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2 FTS	ND		20	2.0
39108-34-4	8:2 FTS	ND		20	2.0

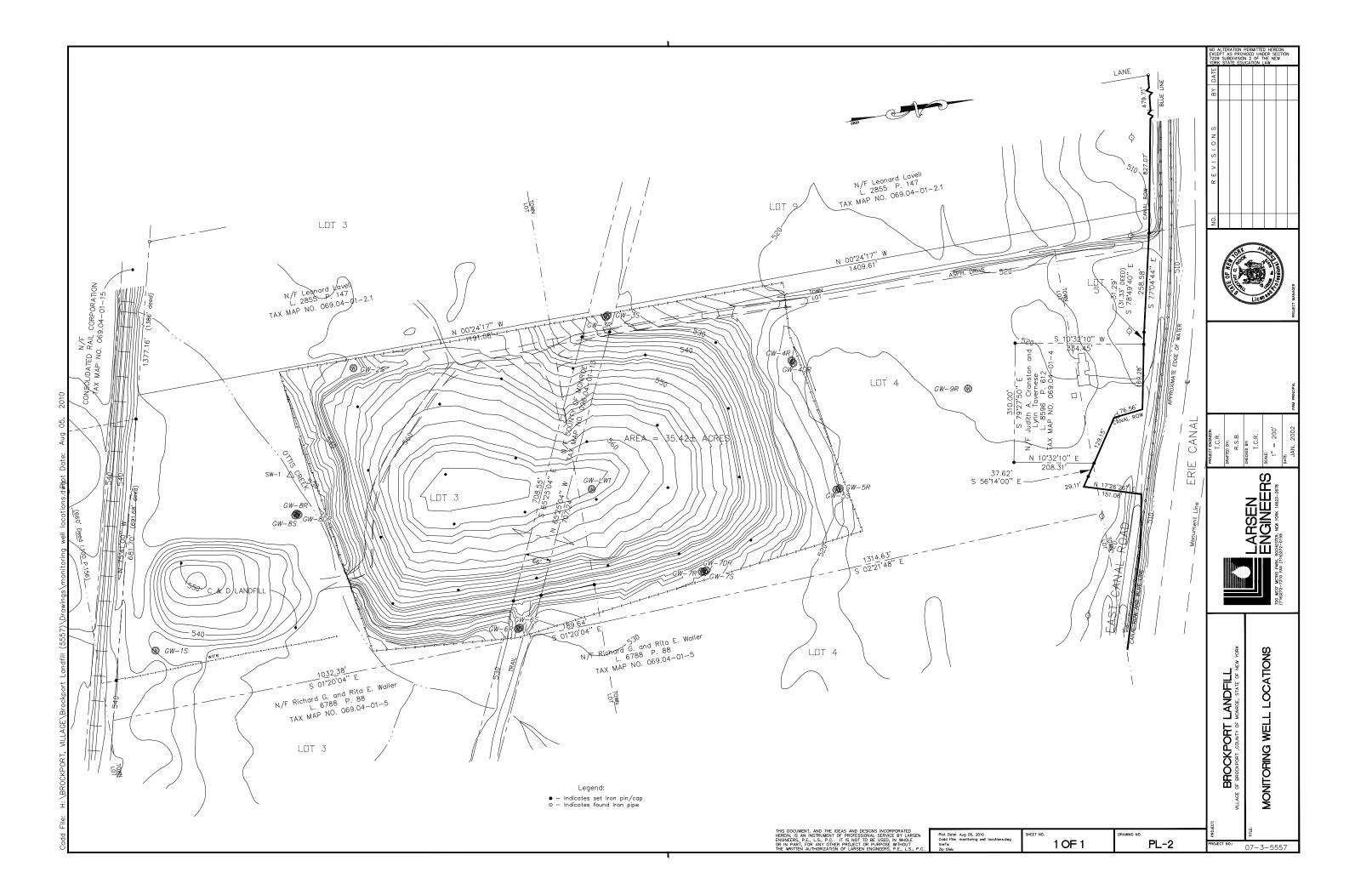
EXCEEDANCES OF NYSDOH Part 5 DRINKING WATER STANDARDS

Brockport Landfill June 2019 Sampling Event


			NYSDOH	Analysis
Well I.D.	Parameter	Units	DW Std	Result
GW-1S	Iron	mg/L	0.3	3.88
GW-2S	Iron	mg/L	0.3	2.72
GW-3S	Iron	mg/L	0.3	7.49
GW-3R	Iron	mg/L	0.3	1.20
	Vinyl chloride	ug/L	2	3.4
GW-4R	Iron	mg/L	0.3	2.2
	Sodium	mg/L	*	1110
	Sodium (filtered)	mg/L	*	987
	Chloride	mg/L	250	2300
GW-5S	Iron	mg/L	0.3	2.26
	Sodium	mg/L	*	380
	Chloride	mg/L	250	663
GW-5R	Barium	mg/L	2	14.7
	Iron	mg/L	0.3	24.7
	Manganese	mg/L	0.3	0.462
	Sodium	mg/L	*	387
	Chloride	mg/L	250	461
	Benzene	ug/L	5	6.7
	Chloroethane	ug/L	5	24.0
GW-5R	Barium	mg/L	2	14.4
Duplicate	Iron	mg/L	0.3	22.7
	Manganese	mg/L	0.3	0.460
	Sodium	mg/L	*	382
	Chloride	mg/L	250	464
	Benzene	ug/L	5	7.3
	Chlorobenzene	ug/L	5	5.1
	Chloroethane	ug/L	5	25.6
GW-6S	Iron	mg/L	0.3	1.64


Exceedances (Continued)


			NYSDOH	Analysis
Well I.D.	Parameter	Units	DW Std	Result
GW-6R	Iron	mg/L	0.3	16.60
	Iron (filtered)	mg/L	0.3	0.858
	Manganese	mg/L	0.3	0.505
	Manganese (filtered)	mg/L	0.3	0.419
	Sodium	mg/L	*	179
	Sodium (filtered)	mg/L	*	164
	cis-1,2-Dichloroethene	ug/L	5	14.5
	Trichloroethene	ug/L	5	10.5
	Vinyl chloride	ug/L	2	4.0
GW-7S	Iron	mg/L	0.3	2.89
	Manganese	mg/L	0.3	1.02
GW-7R	Iron	mg/L	0.3	21.1
	Sodium	mg/L	*	171
	Chloride	mg/L	250	387
	1,1-Dichloroethane	ug/L	5	6.6
GW-9R	Iron	mg/L	0.3	1.91
	Manganese	mg/L	0.3	0.383
SW-1	Iron	mg/L	0.3	2.58
	Manganese	mg/L	0.3	0.428
	Sodium	mg/L	*	93.8
Seep	Iron	mg/L	0.3	1.09
	Sodium	mg/L	*	101


^{*} No designated limit for sodium. Water containing more than 20 mg/L of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 mg/L should not be used by people on moderately restricted sodium diets.

Note: The samples from wells GW-1S, GW-4R, and GW-6R had turbidities in excess of 50 NTU. Filtered samples were therefore collected and analyzed in addition to total metals.

