file. hw. 828044. 1990-5-10. State-Mt. hope-time!. Seeps-lab-report. Pdf

Plz scon to size and Color

Monroe County

JOHN M. DAVIS, P.E. DIRECTOR 716 • 274-7630

Department of Engineering 350 East Henrietta Road • Rochester, N.Y. 14620

May 18, 1990

THOMAS R. FREY

COUNTY EXECUTIVE

Mr. George Harris Chief, Remedial Action Section C Division of Hazardous Waste Remediation New York State Department of Environmental Conservation Room 222 50 Wolf Road Albany, New York 12233-7010

RE: STATE-MT. HOPE TUNNEL C-36-745-10 ROCHESTER PURE WATERS DISTRICT

Data from the analysis of air, soil and muck samples for the period from April 30, 1990 to May 4, 1990 are enclosed for your information and use.

Sincerely,

Philip W. Steinfeldt Associate Engineer

/jr Enclosures

cc: Mr. Mike Khalil, DEC, Avon, w/encl. Mr. Jim Smith, H & A of New York

DAILY FIELD REPORT

PROJECT: STATE ST. - MT. HOPE TUNNEL

DATE: 30 Apr. 1990

Rochester, New York

PAGE: 1 of 2 FILE: 7433-82

STV/Seelye Stevenson Value & Knecht

CONTRACTOR: GCF Constructors

WEATHER: Partly cloudy 70°

CONTRACTOR ACTIVITIES:

CLIENT:

Mined TBM tunnel from Station 61+40 to Station 62+15 (swing shift), and from 62+15 to 62+51 (graveyard shift). No tunnel mining was conducted during the day shift.

Hauled tunnel muck intermittently during the day shift. Dumped tunnel muck on the spoil pile adjacent to Control Structure 41 intermittently during all three shifts.

FIELD REPRESENTATIVE ACTIVITIES:

P. Micciche (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 0723 to 1458 hrs. Conducted 10 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained one sample of soil from the excavation for the 24-in. diameter reinforced concrete pipe (east of the railroad tracks) at Site 15, and performed headspace screening using the same instrument.

No tunnel muck samples were obtained as no tunnel mining was conducted during the day shift.

S. Parker (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 1524 to 2254 hrs. Conducted 13 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

W. Lanik (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 2310 to 0630 hrs. Conducted 16 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

REPORT NO. 49

PROJECT:

CLIENT:

STATE ST. - MT. HOPE TUNNEL

DATE: 30 Apr. 1990

Rochester, New York STV/Seelye Stevenson Value &

2 of 2 PAGE: FILE: 7433-82

Knecht

TEST DATA SUMMARY:

None of the action threshold levels for the targeted compounds referenced in the 1 March 1990 workplan (benzene, toluene, 1,2-DCE, methylene chloride, and vinyl chloride) were exceeded during the monitoring periods.

FIELD REPRESENTATIV	<u>E</u>	TIME ON SITE
P. Micciche		0700-1500
		(8.0 hrs.)
S. Parker		1500-2300
		(8.0 hrs.)
W. Lanik		2300-0700
		(8.0 hrs.)

DISTRIBUTION

STV/Seelye Stevenson: Mr. Richard Richter

Mr. Suki Suresh Mr. Phil Steinfeldt

H&A OF NEW

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: P. Micciche

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 61 + 40

END: 61 + 40

ADVANCE: 0

FILE: 7433-82

PAGE: 1 OF 2

DATE: 30 April 1990

SHIFT: Day DFR NO.: 49

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS						
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL
0723	_			_	_		_				0.07	0.07
0841				0.10	_	tr	_	0.70		_	_	0.80
0914		_				tr	_	_	_	0.14	0.03	0.17
1012		_	_	0.10	0.04	0.01	_			0.20		0.34
1053	_	_	- <u>-</u>		_	0.02		_		0.17		0.17
1115			_		_	0.02		_		_	_	_
1135	_				_	0.02			100		<u> </u>	_
1330			_			0.01	-			0.17		0.17
1430	_	_	-		_	0.02	e - partie (ett disenting) e 110 - august (ett disenting)			_	_	_
1458	_		-			0.01			author that is beginned.	- 142-144-144-144-144-144-144-144-144-144-	0.22	0.22
0955aa				0.30	0.08		-	0.06	0.08	0.17		0.69
1032cg	_		-	0.09	0.04	_			0.05	_	_	0.18
											1	
							A secondarion	er an ila.				
							Table State Company		E72 T		2 2 2 2	
				* -		*						

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE		TARGET COMPOUNDS OTHERS												
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL		
SM15/1045	_	_	_	_	_	_	-	_	_		0.37	0.37		
									*	17				
	,													

	Tunnel muck dumped from approximately 1330 to 1400 hrs.
	Tunnel muck hauled from site intermittently until approximately 1330 hrs. during day shift.
	No visitors to trailer during day shift.
	No visitors to trainer during day smit.
-	
	Collected sample of soil from the excavation for the 24-in. diameter concrete pipe (east of the railroad tracks) at Site 15
	at 1045 hrs. Excavation in the trench advanced to approximately 22 ft. below ground surface at time of sampling.
	Sample consisted of moist brown fill, visually classified as silty CLAY, with little coarse to fine sand, trace
	cinders, trace brick fragments.

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (cg) INDICATES CARRIER GAS BLANK ANALYSIS.
- 4. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- 5. (tr) INDICATES METHANE DETECTED AT CONCENTRATIONS LESS THAN 0.01 PERCENT.
- 6. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME, METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: S. Parker

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 61 + 40

END: 62 + 15 ADVANCE: 75 FILE: 7433-82

PAGE: 1 OF 2

DATE: 30 April 1990

SHIFT: Swing DFR NO.: 49

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	IPOUNDS		OTHERS							
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS.	TOTAL	
1524		_				0.02		_		0.11	0.02	0.13	
1627			_		0.05	0.02		0.03	0.06	0.23	0.70	1.07	
1850				0.02	0.08	0.02	_	_		0.22	0.68	1.00	
1733	_	_		0.02	0.08	0.02		0.03	0.10	0.35	0.83	1.41	
1818	_	_		_	0.07	0.02			0.07	0.31	0.71	1.16	
1906	_				0.10	0.02	_	_	0.06	0.38	0.66	1.20	
2006	_			_	0.08	0.01	_ &	0.14	0.07	0.20	0.70	1.19	
2035				0.07	0.52	0.02	_		==:	0.53	2.53	3.85	
2052	_				0.09	0.02			0.05	0.32	0.76	1.22	
2112	_			_	0.09	0.02		_	0.08	0.19	0.66	1.02	
2152					0.06	0.02	_		0.06	0.26	0.56	0.94	
2236					0.04	tr		_	_	0.17	0.08	0.29	
2254	_				0.03	0.02	_	_	0.04	0.15	0.09	0.31	
								and the street of the street o			b		
	3-113										ania:		

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLETYPE			TARGET COM	POUNDS					OTHERS			
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED
TM/1645		_	_	0.17	0.17	_		·	0.09	0.10	4.02	4.55
TM/2115			_	0.07	0.02				0.04	_	4.47	4.60
							,				Telshill .	
								* "	7			

REMARKS/ VISITORS:				
Tunnel muck dumped intermittently after approximate	ately 1630 hrs.	during swing shift.		
			Z le la	
No tunnel muck hauled from site during swing shift	l			
No visitors to trailer during swing shift.				
				4 3 1 2 1
		The second secon		
		The second secon	er de la companya de	

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (tr) INDICATES METHANE DETECTED AT CONCENTRATIONS LESS THAN 0.01 PERCENT.
- 4. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: W. Lanik

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 62 + 15

END: 62 + 51

ADVANCE: 36

FILE: 7433-82

PAGE: 1 OF 2

DATE: 30 April-1 May 199

SHIFT: Graveyard DFR NO.: 49

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS						
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	пикиомиз-	TOTAL
2310			_		0.03	0.01		_	0.02	0.17	_	0.22
2335				_	0.07	0.01			_	_	0.06	0.23
0005	_			_	0.03	0.01	_	_	_	0.14		0.17
0035	_			_	0.03	0.01					_	0.03
0106	_	_		_	0.02	0.02			_	0.15	_	0.17
0138		_	_	_	_	0.01	_	_	-			_
0215	_				_	0.01		_		_		_
0244				_		0.01				0.09		0.09
0301	_	_	_		_	0.01			_	0.07		0.07
0331	_	=			_ ,	0.01	_	_	_		_	### T
0401	_	_		0.02	0.06	0.01	_		0.07	0.13	0.49	0.77
0431		_	_	0.02	0.05	0.01	_	_	0.04	0.39	0.51	1.01
0501	_		_	0.02	0.06	0.01	_		_		0.67	0.75
0531	<u></u>	-	_	0.02	0.06	0.01	_			0.12	0.75	0.95
0601	. (14 <u>2</u> 15)	_		0.02	0.06	0.02			0.06	0.11	0.63	0.88
0630	_	-	_	0.02	0.06	0.02	_		0.04	0.16	0.51	0.79

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE			TARGET COM	POUNDS			OTHERS							
TIME	VINYL	METHYLENE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED		
TM/0045	_	_	_	0.10	0.11	-	_	_	0.06	0.05	2.36	2.68		
TM/0515		_		0.05	0.12			_			1.59	1.76		
2350aa	_	_	_	_	0.05	_	_	0.03		_	0.06	0.14		
0055cg	_	_				_				_		-		

REMAF	RKS/ VISITORS:			
	Tunnel muck dumped intermittently during	g graveyard shift.		
	No tunnel muck hauled from site during g	raveyard shift.		
	No visitors to trailer during graveyard shift	t.		
		1		
			Party Control of the	
		7		

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (cg) INDICATES CARRIER GAS BLANK ANALYSIS.
- 4. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- 5. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

DAILY FIELD REPORT

PROJECT: STATE ST. - MT. HOPE TUNNEL

DATE: 1 May 1990

FILE:

Rochester, New York

PAGE: 1 of 2

7433-82

CLIENT: STV/Seelye Stevenson Value &

Knecht

CONTRACTOR: GCF Constructors

WEATHER: Partly cloudy 630

CONTRACTOR ACTIVITIES:

Mined TBM tunnel from Station 62+51 to Station 63+05 (day shift), from 63+05 to 63+61 (swing shift), and from 63+61 to 64+35 (graveyard shift).

Hauled tunnel muck intermittently during the day shift and until approximately 1730 hrs. during the swing shift. Dumped tunnel muck on the spoil pile adjacent to Control Structure 41 intermittently during all three shifts.

FIELD REPRESENTATIVE ACTIVITIES:

S. Parker (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 0715 to 1420 hrs. Conducted 11 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and one sample of soil from the excavation for the 24-in. diameter reinforced concrete pipe (east of the railroad tracks) at Site 15, and performed headspace screening using the same instrument.

P. Micciche (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 1505 to 2244 hrs. Conducted 14 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

W. Lanik (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 2301 to 0630 hrs. Conducted 16 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

PROJECT: STATE ST. - MT. HOPE TUNNEL

DATE: 1 May 1990

Rochester, New York

PAGE: 2 of 2

7433-82

CLIENT:

STV/Seelye Stevenson Value &

FILE:

Knecht

TEST DATA SUMMARY:

None of the action threshold levels for the targeted compounds referenced in the 1 March 1990 workplan (benzene, toluene, 1,2-DCE, methylene chloride, and vinyl chloride) were exceeded during the monitoring periods.

FIELD REPRESENTATIVE	TIME ON SITE
S. Parker	0700-1515
	(8.25 hrs.)
P. Micciche	1500-2300
	(8.0 hrs.)
W. Lanik	2300-0700
	(8.0 hrs.)

DISTRIBUTION

STV/Seelye Stevenson: Mr. Richard Richter

Mr. Suki Suresh Mr. Phil Steinfeldt

HEA OF NEW YORK

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: S. Parker

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 62 + 51

END: 63 + 05

ADVANCE: 54

FILE: 7433-82

PAGE: 1 OF 2

DATE: 1 May 1990

SHIFT: Day

DFR NO.: 50

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS						
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	nuknomna.	TOTAL
0715	_	_			0.02	0.01		_		0.03	_	0,05
0810	_				0.06	0.01	_	0.03	0.06	0.30	0.09	0.54
0851			_	0.02	0.08	0.01		-	_	0.52	0.83	1.45
0933	_	_		_	0.02	0.02	_		0.06	0.20	_	0.28
1016		_		0.02	0.07	0.01		_	0.06	0.32	0.59	1.06
1104				0.02	0.07	0.01	_	_	0.14	0.47	0.77	1.47
1208				0.02	0.06	0.01	_		0.06	0.39	0.60	1,13
1245					0.03	0.01			0.06	0.32		0.41
1324	_	_	_	_	0.02	0.01		_	_	0.50	_	0.52
1357	_			0.02	0.06	0.01	_		_	0.73	0.59	1.40
1420	_	_		0.02	0.07	0.01	-	_	0.06	0.36	0.62	1.13
(vv:												
				-			***************************************	Name of the Assessment of the		e ty		
								The Common of th				
											nel mi	

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE				IPOUNDS					OTHERS		and the second	
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	M-XYLENE	O-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED
TM/0815				0.24	0.29	_		0.16	0.10	0.31	8.03**	9.13
TM/0815D	_	_		0.21	0.22			0.09	14-	0.11	7.97	8.60
SM15/1045	_	_		_	_		_		-		0.03	0.03
TM/1230	_		_	0.19	0.20	_		0.09	_	0.08	4.85	5,41
										by		
						¥						

REMARKS/ \	VISITORS:
Τι	unnel muck dumped intermittently during day shift.
Τι	unnel muck hauled from site intermittently during day shift.
N	o visitors to trailer during day shift.
C	ollected sample of soil from the excavation for the 24-in. diameter reinforced concete pipe (east of the railroad tracks) at
Si	ite 15 at 1045 hrs. Sample obtained from pile of excavated materials located adjacent to the 8-ft. diameter access manhole.
E	xcavation in trench advanced to approximately 27.8 ft below ground surface at time of sampling. Sample consisted of brown
fil	I, visually classified as silty CLAY, with little coarse to fine sand, trace roots, trace brick, trace gravel, and trace cinders.

SAMPLE TYPE:

M TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.
- 4. (D) INDICATES DUPLICATE ANALYSIS.
- 5. (**) INDICATES IMPRECISE RESULT DUE TO OFF-SCALE CHROMATOGRAM FOR UNKNOWN COMPOUNDS. SEE DUPLICATE ANALYSIS
 FOR MORE PRECISE CONCENTRATION OF UNKNOWNS. ALL OTHER CONCENTRATIONS REPORTED IN THE ORIGINAL ANALYSIS ARE
 BASED ON ON-SCALE CHROMATOGRAM PEAKS, AND THEREFORE ARE MORE PRECISE THAN THOSE IN THE DUPLICATE ANALYSIS.

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: P. Micciche

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 63 + 05

END: 63 + 61

ADVANCE: 56

FILE: 7433-82

PAGE: 1 OF 2

DATE: 1 May 1990

SHIFT: Swing DFR NO.: 50

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	пикиомиз•	TOTAL DETECTED
1505						0.01		_	_	0.23		0.23
1530			_		0.05	0.03		_	_	0.31	0.09	0.45
1612		_	_	0.02	0.08	0.01	_	_	_	0.56	0.65	1.31
1727				0.02	0.09	_	_	0.56			1.26	1.93
1814			_	_		tr	_		_	0.22	0.04	0.26
1855		_		_		0.02		_	0.06	0.37	0.85	1,28
1929	_	_	_	0.03	0.08	0.02		- ,	0.06	0.85	0.77	1.79
2008	_	-	_	_	_	0.01		_		0.02	0.36	0.38
2032	_	_		_	_	0.05		_	_	0.19	0.31	0.50
2059	2 1	_		_		0.03	_		_		0.33	0.33
2119	_	_				0.02			_	0.19	0.27	0.46
2153		_			_	0.02		_	0.06	_	0.74	0.80
2227				0.02	_	0.09	_	_	0.03	0.14	1.19	1.38
2244				0.02	0.07	0.11			0.06		1.33	1.48
				/2			make territory a		.774			
			1									

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

BAMPLETYPE			TARGET COM	IPOUNDS					OTHERS			
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS"	TOTAL
TM/1546				0.11	0.13				0.06	0.31	3.46**	4.07
TM/1546D				0.12	0.12			_	0.05	0.02	3.85	4.16
TM/1824				0.11	0.12				0.05	0.02	2.62	2.92
1851cg	_		0.02		0.05				0.02	0.15		0.24
1709cg					0.03			0.05	0.05	0.19	0.02	0.34
2136cg		_						-	_			
2207aa	-	_		_			_			_	_	

REMARKS/ VISITORS:	
Tunnel muck dumped intermittently during swir	ng shift.
Tunnel muck hauled from site intermittently uni	til approximately 1730 hrs. during swing shift.
No visitors to trailer during swing shift.	

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (cg) INDICATES CARRIER GAS BLANK ANALYSIS.
- 4. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- 5. (tr) INDICATES METHANE DETECTED AT CONCENTRATIONS LESS THAN 0.01 PERCENT.
- 6. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.
- 7. (D) INDICATES DUPLICATE ANALYSIS.
- 8. (**) INDICATES IMPRECISE RESULT DUE TO OFFSCALE CHROMATOGRAM FOR UNKNOWN COMPOUNDS. SEE DUPLICATE ANALYSIS FOR MORE PRECISE CONCENTRATION OF UNKNOWNS. ALL OTHER CONCENTRATIONS REPORTED IN THE ORIGINAL ANALYSIS ARE BASED ON ON-SCALE CHROMATOGRAM PEAKS, AND THEREFORE ARE MORE PRECISE THAN THOSE IN THE DUPLICATE ANALYSIS.

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: W. Lanik

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 63+61

END: 64 + 35

ADVANCE: 74

FILE: 7433-82

PAGE: 1 OF 2

DATE: 1-2 May 1990

SHIFT: Graveyard DFR NO.: 50

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	APOUNDS					OTHERS			
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL
2301	_			0.02	0.07	0.08	_	_		0.39	0.98	1.46
2330		_		_	0.04	0.06		_	_	0.19	0.43	0.66
0000	_	_	_	0.02	0.07	0.05	_	_		_	0.78	0.87
0030	_	_	_	- 7		0.01		_		0.07	0.25	0.32
0100	_	_	_	0.02	0.06	tr	_		0.04	_	0.57	0.69
0130	_	_	_	0.02	0.07	0.01		_	- 0.04	0.15	0.49	0.77
0200	_		_	0.02	0.06	0.01	_		_	0.05	0.33	0.48
0230	_	_	_		0.02	0.02	_	_		0.11	0.02	0.15
0300		_	_		0.07	0.01	in the latest the state of the	-	122	0.04	0.24	0.35
0330	_	_	_	0.02	0.07	0.01		_	0.05	_	0.69	0.83
0400		_	_	0.02	0.06	0.02	_	_	_	0.13	0.41	0.62
0430			_	0.03	0.10	0.02		_	_	0.13	0.62	0.88
0500	_	_	_	0.03	0.09	0.01	_	_		0.15	0.91	1.18
0530	· _	_		0.02	0.07	0.02	The state of the s	_			0.55	0.64
0600	_	_	_	0.02	0.08	0.02			0.05	0.14	0.67	0.96
0630	_	_	_	0.03	0.09	0.01	_		0.06	0.12	0.75	1.05

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE			TARGET COM	POUNDS					OTHERS			
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED
TM/0100	-	_	_	0.13	0.15	_	_	_	0.07	_	2.82	3.17
TM/0445	_		_	0.12	0.15		11 12	_	0.07	_	1.72	2.06
							+ 75, 1 1 1 s					
										B - 1	1 - 7	
										10		

RKS/ VISITORS:			
Tunnel muck dumped intermittently during graveyard shift			
		- 1	-
No tunnel muck hauled from site during graveyard shift.			
No visitors to trailer during graveyard shift.			
			1
			4)
······································			

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (11) INDICATES METHANE DETECTED AT CONCENTRATIONS LESS THAN 0.01 PERCENT.
- 4. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

DAILY FIELD REPORT

PROJECT: STATE ST. - MT. HOPE TUNNEL DATE: 2 May 1990

Rochester, New York PAGE: 1 of 2

CLIENT: STV/Seelye Stevenson Value & FILE: 7433-82

Knecht

CONTRACTOR: GCF Constructors

WEATHER: Partly cloudy 480

CONTRACTOR ACTIVITIES:

Mined TBM tunnel from Station 64+35 to Station 64+90 (day shift), from 64+90 to 65+35 (swing shift), and from 65+35 to 66+00 (graveyard shift).

Hauled tunnel muck intermittently during the day shift and until approximately 1610 hrs. during the swing shift. Dumped tunnel muck on the spoil pile adjacent to Control Structure 41 intermittently during all three shifts.

FIELD REPRESENTATIVE ACTIVITIES:

S. Parker (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 0703 to 1454 hrs. Conducted 13 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and one sample of soil from the excavation for the 24-in. diameter reinforced concrete pipe (east of the railroad tracks) at Site 15, and performed headspace screening using the same instrument.

P. Micciche (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 1519 to 2236 hrs. Conducted 14 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and one sample of soil excavated from the 12-ft. diameter drop structure at Site 27, and performed headspace screening using the same instrument.

W. Lanik (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 2305 to 0630 hrs. Conducted 16 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

REPORT NO. 51

PROJECT: STATE ST. - MT. HOPE TUNNEL

Rochester, New York

DATE: 2 May 1990

CLIENT: STV/Seelye Stevenson Value &

PAGE: 2 of 2 FILE: 7433-82

Knecht

TEST DATA SUMMARY:

None of the action threshold levels for the targeted compounds referenced in the 1 March 1990 workplan (benzene, toluene, 1,2-DCE, methylene chloride, and vinyl chloride) were exceeded during the monitoring periods.

FIELD REPRESENTATIVE	TIME ON SITE
S. Parker	0700-1530
	(8.5 hrs.)
P. Micciche	1500-2300
	(8.0 hrs.)
W. Lanik	2300-0700
	(8.0 hrs.)

DISTRIBUTION

STV/Seelye Stevenson: Mr. Richard Richter

Mr. Suki Suresh Mr. Phil Steinfeldt

H&A OF NEW YORK

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: S. Parker

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 64 + 35

END: 64 + 90

ADVANCE: 55

FILE: 7433-82

PAGE: 1 OF 2

DATE: 2 May 1990

SHIFT: Day DFR NO.: 51

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

	CHLORIDE	METHYLENE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL
0703				0.03	0.07	0.02		_	0.05	0.19	0.73	1.07
0742	_		_		0.04	0.01		0.04	0.05	0.16	_	0.29
0813				0.02	0.07	0.02	_	_	0.07	0.15	0.56	0.87
0856			_	0.02	0.07	0.01	_	0.04	0.08	0.34	0.54	1.09
0943		_		0.01	0.05	0.01	_		0.06	0.23	0.21	0.56
1020		_			0.07	0.02	_	_	0.03	0.17	0.22	0.49
1108		_		0.02	0.05	0.01			0.03	0.18	0.19	0.47
1140	/				0.02	0.02			_	0.22	0.01	0.25
1222				0.01	0.05	0.02	_	-	0.03	0.32	0.54	0.95
1258		_		_		0.01	_		_	0.16		0.16
1340	_	_			0.04	0.01			_	_	0.23	0.27
1416		-		_		0.01	_			0.13	0.04	0.17
1434	_	_			_	0.01	_	-	_	0.18	0.20	0.38
							ar Later and Area on an				Park I	
1359aa		_	_	_	0.02			_	_	_	_	0.02
1435cg	_	_		_	_	_	_	_		_	0.64	0.84

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

BAMPLETYPE			TARGET COM	IPOUNDS					OTHERS			
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED
TM/0830	_	_		0.14	0.14		_		0.06	0.14	4.18	4.66
SM15/1050						_		_	_	_	0.02	0.02
TM/1135				0.12	0.12	_			0.05	0.07	3.04	3.40
	7											

Tunnel muck dumped into	ermittently during day shift.		
Tunnol muck hauled from	n site intermittently during day shift.		
Turrier muck maded from	i site intermittently during day sinit.		
Collected sample of soil f	from the excavation for the 24-in. diam	eter reinforced concrete pipe (ea	st of the railroad track
	from the excavation for the 24-in. diam		
at Site 15 at 1050 hrs. Sa		naterials located adjacent to the	8-ft. diameter access
at Site 15 at 1050 hrs. Sa Excavation in trench adva	ample obtained from pile of excavated named to approximately 29.4 ft. below g	naterials located adjacent to the ground surface at the time of sam	8-ft. diameter access
at Site 15 at 1050 hrs. Sa Excavation in trench adva	imple obtained from pile of excavated n	naterials located adjacent to the ground surface at the time of sam	8-ft. diameter access
at Site 15 at 1050 hrs. Sa Excavation in trench adva	ample obtained from pile of excavated named to approximately 29.4 ft. below g	naterials located adjacent to the ground surface at the time of sam	8-ft. diameter access
at Site 15 at 1050 hrs. Sa Excavation in trench adva	ample obtained from pile of excavated named to approximately 29.4 ft. below g	naterials located adjacent to the ground surface at the time of sam	8-ft. diameter access

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (cg) INDICATES CARRIER GAS BLANK ANALYSIS.
- 4. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- 5. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: P. Micciche

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 64 + 90

END: 65+35

ADVANCE: 45

FILE: 7433-82

PAGE: 1 OF 2

DATE: 2 May 1990

SHIFT: Swing DFR NO.: 51

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS							
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS-	, TOTAL DETECTED	
1519	_			_	_	0.02			-	_	_	_	
1602					0.03	0.02	_		_	0.22	0.32	0.57	
1637				_	_	0.03			_	0.23	0.04	0.27	
1714		_	_	0.03	0.09	0.02		_	0.10	0.26	0.46	0.94	
1756	_	_	_	_	0.05	0.03	_		0.06	0.32	0.16	0.59	
182 6					_	0.02	_		0.04	0.21		0.25	
1904			_	_		0.01	_	- :		0.15	0.04	0.19	
1938				_		0.02			_	0.14	_	0.14	
2018	_	_	_	_	_	0.02	_	_	_	0.16	0.03	0.19	
2045			-			0.01	_	_	_	0.14		0.14	
2113			-			0.01	_	_	_	0.13	_	0.13	
2151		_	-	_	0.12	0.01				0.14	0.50	0.76	
2211		_	_		0.06	0.02			0.06	0.12	0.59	0.83	
2236		_		_	0.06	0.02		_	_		0.51	0.57	
1540aa	_			_		A Constitution of the Cons		-	1-1-			_	
1620cg	_	_				_	_	_	_		0.08	0.08	

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE			TARGET COM	POUNDS		OTHERS							
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	PCE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED	
SM27/1510	_						_		_	_			
SM27/1510D				_		_	_			_	_		
TM/1645	-			0.16	0.17		_		0.07	0.08	4.92	5.40	
TM/2200			_	0.34	0.34				0.16	0.54	15.29***	16.67	
TM/2200D				0.33	0.35	_			0.14	0.24	16.12***	17.18	
TM/2200T	_			0.33	0.33	_			0.13	0.51	14.32	15.62	

KS/ VISITORS:	
Tunnel muck dumped intermittently during swing shift.	
Tunnel muck hauled from site intermittently until approximately 1610 hrs	s. during swing shift.
No visitors to trailer during swing shift.	
No visitors to trailer during swing strict.	
Collected sample of soil excavated from the 12-ft. diameter drop structu	ure at Site 27 at 1510 hrs. Sample obtained
from stockpile adjacent to the structure. Excavation advanced to approx	ximately 6.0 ft. below ground surface
	i e i i e i e i e i e i e i e i e i e i
at the time of sampling. Sample consisted of brown fill, visually classifie	ed as coarse to fine sandy GRAVEL,
with little silt, trace concrete, and trace brick fragments.	

SAMPLE TYPE:

TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (cg) INDICATES CARRIER GAS BLANK ANALYSIS.
- 4. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- 5. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.
- 6. (D) INDICATES DUPLICATE ANALYSIS.
- 7. (T) INDICATES TRIPLICATE ANALYSIS.
- 8. (**) DUPLICATE ANALYSIS WAS PERFORMED AS A RESULT OF CHROMATOGRAM BASELINE DRIFT DURING ORIGINAL ANALYSIS.
- 9. (***) INDICATES IMPRECISE RESULT DUE TO OFF-SCALE CHROMATOGRAM PEAKS FOR UNKNOWN COMPOUNDS. SEE TRIPLICATE ANALYSIS FOR MORE PRECISE CONCENTRATION OF UNKNOWNS. ALL OTHER CONCENTRATIONS REPORTED IN THE ORIGINAL ANALYSIS ARE BASED ON ON-SCALE CHROMATOGRAM PEAKS, AND THEREFORE ARE MORE ACCURATE THAN THOSE IN THE DUPLICATE AND TRIPLICATE ANALYSES.

DUILL DATA TARFF

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: W. Lanik

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 65 + 35

END: 66 + 00

ADVANCE: 65

FILE: 7433-82

PAGE: 1 OF 2

DATE: 2-3 May 1990

SHIFT: Graveyard DFR NO.: 51

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS							
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS-	TOTAL DETECTED	
2305					0.04	0.01			0.03	0.18	0.07	0.32	
2335						0.01	_		-	0.14		0.14	
0000	_		_	_		0.02	_	1		0.13	0.03	0.16	
0030	_	_	_		_	0.02	_	1		0.12	0.01	0.13	
0100	_		_	_	0.01	0.01		_		0.17	_	0.18	
0131	_	_		_	0.03	0.02		_	-	0.12	0.03	0.18	
0201	_			_	0.10	0.03		_ ;	0.05	0.17	0.34	0.66	
0230					0.06	0.02			0.04	0.17	0.23	0.50	
0300				_	0.02	0.02		-	_	0.23	0.02	0.27	
0330	_		_	0.02	0.06	0.01	_	_	0.05	0.24	0.63	1.00	
0400				0.02	0.07	0.01		_	0.04	0.13	0.70	0.96	
0430	_				0.05	0.02			_	_		0.05	
0500	_			0.02	0.06	0.01	_	_	0.05	V	0.81	0.94	
0530		_		0.02	0.05	0.01			0.03	0.22	0.51	0,83	
0600		_		0.01	0.03	0.01	_		0.02	0.18	0.27	0.51	
0630	_	_	_	_	0.02	0.02	_	_		0.18	0.03	0.23	

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLETYPE			TARGET COM	POUNDS		OTHERS							
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED	
TM/0015	_		_	0.10	0.11	_	_	_	0.05		2.57	2.83	
TM/0430	_	_	_	0.09	0.10		_	_	0.06	0.05	1.53	1.83	
							-						
2320aa		_	_	_	0.05		_	_	_	_	0.45	0,50	

KS/ VISITORS:				
Tunnel muck dumped intermittently during graveyar	rd shift.			
No tunnel muck hauled from site during graveyard s	shift.			
No visitors to trailer during graveyard shift.				
		:	2.	
2			* - 2	

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- 4. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

DAILY FIELD REPORT

PROJECT: STATE ST

STATE ST. - MT. HOPE TUNNEL

DATE: 3 May 1990

Rochester, New York

PAGE: 1 of 2

CLIENT:

STV/Seelye Stevenson Value &

FILE: 7433-82

Knecht

CONTRACTOR:

GCF Constructors

WEATHER:

Sunny 50⁰

CONTRACTOR ACTIVITIES:

Mined TBM tunnel from Station 66+00 to Station 66+34 (day shift), from 66+34 to 67+02 (swing shift), and from 67+02 to 67+67 (graveyard shift).

Hauled tunnel muck intermittently during the day shift. Dumped tunnel muck on the spoil pile adjacent to Control Structure 41 intermittently during all three shifts.

FIELD REPRESENTATIVE ACTIVITIES:

S. Parker (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 0703 to 1440 hrs. Conducted 14 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained two tunnel muck samples from the spoil pile and one sample of soil excavated from the 12-ft. diameter drop structure at Site 27, and performed headspace screening using the same instrument.

No soil samples were obtained from Site 15 as no excavation was performed during the day shift.

Obtained routine weekly tunnel muck sample TM0800(0503) in accordance with the 1 March 1990 workplan.

P. Micciche (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 1507 to 2235 hrs. Conducted 15 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Delivered routine weekly tunnel muck sample TM0800(0503) to General Testing Company for analysis.

Obtained two tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

W. Lanik (H&A) performed air monitoring of the tunnel ventilation exhaust from 2303 to 0630 hrs. Conducted 16 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

PROJECT:

STATE ST. - MT. HOPE TUNNEL

DATE: 3 May 1990

Rochester, New York

2 of 2 PAGE:

CLIENT:

STV/Seelye Stevenson Value &

FILE:

7433-82

Knecht

Obtained two tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

DATA SUMMARY:

None of the action threshold levels for the targeted compounds referenced in the 1 March 1990 workplan (benzene, toluene, 1,2-DCE, methylene chloride, and vinyl chloride) were exceeded during the monitoring periods.

FIELD REPRESENTATIVE	TIME ON SITE
S. Parker	0700-1515
	(8.25 hrs.)
P. Micciche	1500-2300
	(8.0 hrs.)
W. Lanik	2300-0700
	(8.0 hrs.)

DISTRIBUTION

STV/Seelye Stevenson: Mr. Richard Richter

Mr. Suki Suresh

Mr. Phil Steinfeldt

H&A OF NEW YORK

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: S. Parker

CHECKED BY: S. Parker

TUNNEL HEADINGS AT

START: 66 + 00

END: 66+34

ADVANCE: 34

FILE: 7433-82

PAGE: 1 OF 2

DATE: 3 May 1990

SHIFT: Day DFR NO.: 52

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	IPOUNDS		OTHERS							
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL	
0703			_		0.03	0.03	_	_	_	0.18	0.08	0.29	
0753				0.01	0.04	0.01		0.04	0.06	0.27	_	0.42	
0838					0.02	0.01		_	0.03	0.20		0.25	
0923	_	_	_			0.01	_	_	0.02	0.13		0.15	
0958				_		0.01	_	_	_	0.12		0.12	
1034	_					0.02						_	
1107				_	_	0.01		_		0.14	0.03	0.17	
1145				0.02	0.06	0.01			0.05	0.28	0.72	1.13	
1221		-			0.03	0.01		_	_	0.29	0.16	0.48	
1242				0.02	0.05	0.01			0.04	0.29	0.79	1.19	
1309	_			0.01	0.04	0.01				· —	0.49	0.54	
1344				0.02	0.07	0.02	_		0.06	0.31	0.68	1.14	
1418				0.02	0.07	0.02		_	0.05	0.17	0.73	1.04	
1440	_		_	_	0.02	0.03		2 specificación for contributorio		0.10	0.04	0.16	
								1082					

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLETYPE			TARGET COM	IPOUND8					OTHERS			
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED
TM/0800	_		_	0.14	0.17				0.07	0.19	0.61	1.18
SM27/1205				_		_			1-1	_	_	_
TM/1240	_	_	_	0.10	0.14	_	_		0.08	0.07	1.86	2.25

REMARKS/ VISITORS:					
Tunnel muck o	umped intermittently duri	ing day shift.			
Tunnel muck h	auled from site intermitte	ntly during day shift.		9	
No visitors to t	ailer during day shift.				
Collected sam	ole of soil excavated from	the 12-ft. diameter drop s	structure at Site 27 at	1135 hrs. Sample obtain	ed
from stockpile	adjacent to structure. Exc	cavation advanced to bedr	ock at approximately	8.5 ft. below ground surf	асе
at time of sam	oling. Sample consisted o	of brown fill, visually classi	fied as coarse to fine	sandy GRAVEL, with little	е
silt and clay, to	ace brick, trace cinders, a	and trace asphalt.			
Obtained routi	ne weekly tunnel muck sa	ample TM 0800(0503).			

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

WILL FULL INDEP

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: P. Micciche

CHECKED BY: S. Parker

TUNNEL HEADINGS AT

START: 66 + 34

END: 67+02

ADVANCE: 68

FILE: 7433-82

PAGE: 1 OF 2

DATE: 3 May 1990

SHIFT: Swing DFR NO.: 52

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COL	POUNDS		OTHERS							
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	пикиомиз.	TOTAL	
1507						0.02	_	_	_	_	_		
1538		_				0.02	_	_			0.36	0.36	
1606			_		_	0.02		_	_		0.03	0.03	
1636	_		_			0.02			_	1.38	0.06	1.44	
1706	-		_	_	_	0.04				0.13	0.02	0.15	
1749				0.02	0.06	0.02			0.06	0.20	0.76	1,10	
1824	_			0.02	0.05	0.02	_		_	0.26	0.51	0.84	
1902					_	0.03				0.43	0.06	0.49	
1946				0.03	0.09	0.02		0.03	0.11	0.41	0.81	1.48	
2027					0.03	0.04	_		0.03	0.22	0.05	0.33	
2101				0.02	0.07	0.01			0.08	0.34	0.81	1,32	
2131				0.02	0.07	0.02			0.08	0.32	0.75	1.22	
2152		_		0.02	0.10	0.02			0.05	0.38	0.84	1.39	
2214		_	_		0.02	0.03	1 - 1		0.03	0.22	0.03	0.30	
2235	_			0.02	0.08	0.01		_	0.06	0.42	0.80	1.38	
	1.1										- 1 cm		

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE			TARGET COM	POUNDS		OTHERS							
TIME	VINYL	METHYLENE CHLORIDE	1,2-OCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED	
TM/1640		_	_	0.11	0.15	_		_	0.08		2.02	2.36	
TM/1920		_		0.16	0.18			-	0.09	_	3.37	3.80	
	2								7.5	1-, 1			
			* .										

EMAR	RKS/ VISITORS:	
	Tunnel muck dumped intermittently during swing shift.	
	No tunnel muck hauled from site during swing shift.	
	No visitors to trailer during swing shift.	
	Delivered routine weekly tunnel muck sample TM 0800(0503) to General Testing Co. for analysis.	
		į.
BREVIA	ATIONS: SAMPLE TYPE: TM TUNNEL MUCK	

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

PHILL DATA TARE

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: S. Parker

CHECKED BY: S. Parker

TUNNEL HEADINGS AT

START: 67 + 02

END: 67 + 67

ADVANCE: 65

FILE: 7433-82

PAGE: 1 OF 2

DATE: 3-4 May 1990 SHIFT: Graveyard

DFR NO.: 52

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS							
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL	
2303		_		0.02	0.07	0.02	_		_	0.19	0.75	1.03	
2330		_		0.02	0.06	0.02	_	-	0.05	0.22	0.59	0.94	
0000				_	0.02	0.03	_	_	_	_	0.03	0.05	
0030	_		_	_	0.02	_	_	_				0.02	
0105				0.02	0.06	0.01		_	_	0.25	0.74	1.07	
0135					0.06	0.01	_		0.03	0.16	0.58	0.83	
0204	_	_	_	0.02	0.07	0.02		·- ;	0.07	0.16	0.80	1.12	
0230				0.02	0.07	0.01	_		0.07	0.23	0.61	1.00	
0300	_			0.02	0.08	0.02		_	0.04	0.20	0.59	0,91	
0330			_	0.02	0.16	0.02			0.05	0.14	0.95	1.32	
0400	_			0.02	0.07	0.01			0.05	0.25	0.72	1.11	
0430				0.02	0.06	0.01			0.05	0.15	0.62	0.90	
0500		_		0.02	0.05	0.02			0.04		0.50	0.61	
0530	_	_	_	0.02	0.12	0.01		_	0.06		0.81	1.01	
0600			_	0.02	0.08	0.02	`	_	0.06	0.31	0.59	1.04	
0630	_	_	_	0.02	0.07	0.02	_	_	_	0.29	0.78	1.16	

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE			TARGET COM	IPOUNDS					OTHERS			
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED
TM/0030				0.13	0.13		_		0.07	_	1.61	1.94
TM/0430	_			0.09	0.10				0.05	0.06	1.68	1.98
0013aa					0.07	_	_	_		· · · _ ·	0.10	0.17
			9)						*			
	**											

REMARKS/ VISITORS:					
Tunnel muck du	mped intermittently du	ring graveyard shi	ft.		
No tunnel muck	hauled from site during	g graveyard shift.			
2					
No visitors to tra	ailer during graveyard s	hift.	J 10	4	
		N.			
				. *	
					2
			XX Z		

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- 4. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

DAILY FIELD REPORT

PROJECT: STATE ST. - MT. HOPE TUNNEL DATE: 4 May 1990

Rochester, New York

1 of 2 PAGE:

CLIENT:

STV/Seelye Stevenson Value &

FILE: 7433-82

Knecht

WEATHER:

CONTRACTOR: GCF Constructors

Partly cloudy 60°

CONTRACTOR ACTIVITIES:

Mined TBM tunnel from Station 67+67 to Station 67+80 (day shift), from 67+80 to 68+51 (swing shift), and from 68+51 to 69+15 (graveyard shift).

Hauled tunnel muck intermittently during the day shift and until approximately 1630 hrs. during the swing shift. Dumped tunnel muck on the spoil pile adjacent to Control Structure 41 intermittently during all three shifts.

FIELD REPRESENTATIVE ACTIVITIES:

S. Parker (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 0705 to 1900 hrs. Conducted 19 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained 3 tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

Coordinated delivery of tunnel muck sample TM/2200, obtained on 2 May 1990, to General Testing Co. for volatiles analyses (EPA 8240). This sample was selected to replace previously submitted routine weekly sample TM0800(0503) due to relatively high concentrations of unknowns detected during headspace screening. remaining routine analyses will be performed on TM0800(0503).

No samples were obtained from Sites 15, 27 or 28 as no excavation was performed during the day shift.

W. Lanik (H&A) performed routine air monitoring of the tunnel ventilation exhaust from 1900 to 0700 hrs. Conducted 24 tunnel exhaust air screenings using the Photovac 10s70 gas chromatograph.

Obtained 3 tunnel muck samples from the spoil pile and performed headspace screening using the same instrument.

REPORT NO. 53

PROJECT:

STATE ST. - MT. HOPE TUNNEL

DATE: 4 May 1990

Rochester, New York

PAGE: 2 of 2

CLIENT:

STV/Seelye Stevenson Value &

FILE:

7433-82

Knecht

TEST DATA SUMMARY:

None of the action threshold levels for the targeted compounds referenced in the 1 March 1990 workplan (benzene, toluene, 1,2-DCE, methylene chloride, and vinyl chloride) were exceeded during the monitoring periods.

FIELD REPRESENTATIVE

TIME ON SITE

S. Parker

0700-1915 (12.25 hrs.)

W. Lanik

1900-0700 (12.0 hrs.)

DISTRIBUTION

STV/Seelye Stevenson: Mr. Richard Richter

Mr. Suki Suresh

Mr. Phil Steinfeldt

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: S. Parker

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 67 + 67

END: 67 + 80

ADVANCE: 13

FILE: 7433-82

PAGE: 1 OF 2

DATE: 4 May 1990

SHIFT: Day

DFR NO.: 53

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS							
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED	
0705		_		0.02	0.05	0.02		_	0.03	0.14	0.60	0,84	
0754	_			0.03	0.08	0.02			0.11	0.43	0.67	1.32	
0829					0.02	0.03	_		_	0.22	0.03	0.27	
0909	_			0.02	0.07	0.02			0.07	0.36	0.74	1.26	
0949		_			0.02	0.02				0.19	0.40	0.61	
1031		_				tr	_		-	0.17		0,17	
1115		_	_	-		0.01		_ :	4-1	0.13	0.04	0.17	
1145						0.01				0.10	_	0.10	
1215	_		_	_	_	0.01			_		_	_	
1240		_				0.01	_			0.12	0.20	0.32	
1315	_		_	_	0.03	0.02			0.04	_	0.06	0.13	
1341	_		_	_	_	0.01	_	_	_	0.29		0.29	
1416	_	_	_		_	tr	_	_	_	_	_	##Z	
1451	_					0.01	_				_	_	

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE			TARGET COM	IPOUNDS					OTHERS			ominika k
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	TCE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED
TM/0755		_		0.16	0.21	_		_	0.10	0.06	3.95	4.48
TM/1415		_	_	0.20	0.30	_		_	0.15	_	6.75	7.40
TM/1415D	. —		_	0.23	0.31	_		_	0.15	_	6.55	7.24

REMAF	RKS/ VISITORS:
	Tunnel muck dumped intermittently during day shift.
	Tunnel muck hauled from site intermittently during day shift.
	T. Crowl (H&A) visited trailer at 1500 hrs. to pick up tunnel muck sample TM/2200, collected on 2 May 1990,
	and delivered to General Testing Company for EPA 8240 volatiles analyses.
1	No apparent excavation was performed at Sites 15,27, or 28 during day shift and no samples were obtained.

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (σ) INDICATES METHANE DETECTED AT CONCENTRATIONS LESS THAN 0.01 PERCENT.
- 4. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.
- 5. (D) INDICATES DUPLICATE ANALYSIS PERFORMED FOR QUALITY ASSURANCE/QUALITY CONTROL.

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: S. Parker/W. Lanik

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 67 + 80

END: 68 + 51 ADVANCE: 71

DATE: 4 May 1990

SHIFT: Swing

FILE: 7433-82

PAGE: 1 OF 2

DFR NO.: 53

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS								
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED		
1529				_	_	0.01			-	_				
1624			_	_	0.03	0.02	_		_	-	0.04	0.07		
1706				0.02	0.06	0.02		-	0.04	0.16	0.48	0.76		
1744	_	_		0.02	0.08	0.02	_	_	0.05	0.42	0.73	1.30		
1847				0.02	0.07	0.02	_	_	0.04	0.20	0.72	1.05		
1908		_	_	0.02	0.12	0.02	_	_	0.08	_	1.09	1.31		
1931				0.02	0.07	0.02	_	:		_	0.82	0.91		
2001	-	_	_	0.02	0.08	0.01	_	_	0.04	_	0.73	0.87		
2030	_			0.02	0.08	0.02	_		0.06	0.20	1.14	1.50		
2100			_	0.02	0.11	0.01			0.05	0.35	1.25	1.78		
2130	**			_	0.02	0.01	_		_	0.12	0.36	0.50		
2200	_			0.02	0.07	0.02		_	_		1.08	1.17		
2230	-			0.02	0.10	0.02		_		0.29	0.91	1.32		
1514aa			_		_							_		

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE			TARGET COM	POUNDS					OTHERS			
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL DETECTED
TM/1740				0.16	0.26		-		0.13	_	2.57	3.12
TM/2100		_	_	0.05	0.14				0.09		0.41	0.69
								a 1:				
				-								

REMARKS/ VISITORS:				
Tunnel muck dumped	intermittently after approxi	mately 1720 hrs. du	ring swing shift.	
Tunnel muck hauled fr	om site intermittently until	approximately 1630	hrs. during swing shift.	
·	· ·	1 2 2		+1 11
No visitors to trailer du	iring swing shift.			
		er e		
		Α,		
	*		- 4	

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.

PROJECT: STATE ST. MT. HOPE AVE TUNNEL

CLIENT: STV/ SEELYE STEVENSON VALUE & KNECHT

H&A REPRESENTATIVE: W. Lanik

CHECKED BY: P. Micciche

TUNNEL HEADINGS AT

START: 68 + 51

END: 69 + 15

ADVANCE: 64

FILE: 7433-82

PAGE: 1 OF 2

DATE: 4-5 May 1990

SHIFT: Graveyard DFR NO.: 53

TUNNEL AIR SAMPLES

APPARENT VOLATILE ORGANIC COMPOUNDS DETECTED IN PPM

TIME			TARGET COM	POUNDS		OTHERS								
	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL		
2300		_		0.02	0.10	0.01	_		0.05	0.26	0.74	1,17		
2330		_		0.02	0.08	0.02		_	0.06		1.16	1.32		
0000			_		0.02	0.01			_	0.12	0.11	0.25		
0030	_			0.02	0.07	0.02			_	_	0.68	0.77		
0100		_		0.02	0.08	0.01	_	_	0.06	0.12	0.94	1.22		
0130		_		0.02	0.07	0.01			0.07	0.15	0.73	1.04		
0200	_			0.02	0.07	0.02		- :	_	0.16	0.62	0.87		
0230					0.02	0.02				0.12	0.03	0.17		
0300	_				0.02	0.02				0.12	0.05	0.19		
0330					0.05	_	_	_		0.11	0.09	0.25		
0400	_			0.02	0.06	0.01					0.72	0.80		
0430		_		0.02	0.08	0.01		_	0.02	0.15	0.61	0.88		
0500		_		0.02	0.07	0.01		_	0.05	_	0.99	1.13		
0530				0.02	0.07	0.02	_	_	0.05	0.26	0.96	1.36		
0600		_		0.02	0.08	0.01		_	0.05	0.24	0.88	1.25		
0630		_		0.02	0.08	0.01	_	_	0.05	0.10	0.96	1.21		

TUNNEL MUCK/ SHAFT/ GROUNDWATER SAMPLES

SAMPLE TYPE			TARGET COM	IPOUNDS		OTHERS								
TIME	VINYL	METHYLENE CHLORIDE	1,2-DCE	BENZENE	TOLUENE	METHANE (PERCENT)	HYDROGEN SULFIDE	ETHYL BENZENE	M-XYLENE	STYRENE	UNKNOWNS*	TOTAL		
TM/0000	_	_	_	0.12	0.21		_	_	0.14	0.07	1.70	2.24		
TM/0430	_	_	_	0.07	0.17			-	0.09		0.67	1.00		
0143aa		_			0.04	_	_	_	_		_	0.04		
					. ,									
		, -												

REMARKS/ VISITORS:	
Tunnel muck dumped intermittently during graveyard shift.	
No tunnel muck hauled from site during graveyard shift.	
	- 1 - 2
	-,

SAMPLE TYPE:

TM TUNNEL MUCK

TS TUNNEL SEEP

SM# SHAFT SOIL OR MUCK FROM SITE 15, 27, OR 28

- 1. (*) UNIDENTIFIED CHROMATOGRAM PEAKS EXPRESSED IN TOLUENE EQUIVALENTS.
- 2. COMPOUNDS LESS THAN 10 PPB NOT REPORTED.
- 3. (aa) INDICATES AMBIENT AIR BLANK ANALYSIS.
- 4. METHANE CONCENTRATIONS EXPRESSED IN PERCENT BY VOLUME. METHANE CONCENTRATION VALUES NOT INCLUDED IN TOTAL DETECTED COLUMN.