Tables

Table 3-1Preliminary Evaluation of Remedial Measure Technologies for Soil

Feasibility Study

Former George A. Robinson Company., Inc. Site 477 Whitney Road, Penfield, New York

Response Actions	Remedial Technologies	Process Options	Description	Retained: Yes or No	
No Action	Not Applicable	No Action	Not Applicable	Yes	Use as a baseline for c
Institutional Control	Not Applicable	Deed Restrictions	Deed restrictions to limit the property use and implementation of a Site Management Plan.		Minimize potential for e
	Not Applicable	Access Restrictions	Place access restrictions along the property boundary (i.e., fencing and signage).		Minimize potential for e
Engineering Control	Infiltration Control or Capping	Soil, Asphalt and Concrete Cover	Prevent direct contact and infiltration through the use of cover.	Yes	Maintaining / adding as May require import of n
		Soil Flushing	Flush soil with liquid to desorb contaminants.	No	Limited effectiveness for and till because of distr contaminant mass. Rec
	Physical	Surfactant Flushing	Flush soil with surfactant solution to promote the desorption and solubilization of hydrophobic contaminants.	No	Does not enhance meta distribution and injectio mass. Requires capture
		Thermal Treatment	Subsurface heating. May require total fluids recovery, including vapor extraction and treatment of vapor stream.		Effective for CVOCs. En process options.
In Situ Treatment	Oberried	Oxidation	Inject oxidizing agent to oxidize contaminants.	Yes	Effective for CVOCs. In permeability soils and to direct contact with the co other process options.
	Chemical	Stabilization/ Solidification	Treatment/fixation of soil and contaminants by mixing.		Effective for CVOCs an leachability to groundwa distribution and injectio mass. Likely to require
	Biological	Enhanced Reductive Dechlorination	Inject a substrate to facilitate biodegradation of soil COPCs by microorganisms.	Yes	Only effective for CVOC be ineffective in lower p and the need to have d be combined with other
		Bioventing	Add oxygen to vadose zone to stimulate aerobic microorganisms for the catabolization of contaminants.	No	Soil COPCs do not hav
Removal	Excavation	Excavation	Remove soil through mechanical methods.	Yes	Effective for CVOCs, P to require demolition of of recovered water. Bac and/or PFAS-impacted
	Extraction	SVE	Apply a vacuum to extraction wells to enhance VOC volatilization. Recover and treat vapor.	Yes	Effective for VOCs. Ine permeability soils and t saturated soil. May be o
		Multi-Phase Extraction	Apply a vacuum to extraction wells to enhance fluids recovery. Treat and dispose of extracted fluids.	No	Limited effectiveness in

See Notes on Page 2.

Decision Rationale

omparison to other alternatives.

exposure to residual concentrations in soil.

exposure to residual concentrations in soil.

phalt or concrete over impacted soil would eliminate contact and infiltration. naterials to stabilize grassed areas prior to capping.

or CVOCs because of low solubilities. Ineffective in lower permeability soils ibution and injection challenges and the need to have direct contact with the quires capture, collection, and treatment of flushed liquid.

als solubility. Ineffective in lower permeability soils and till because of n challenges and the need to have direct contact with the contaminant e, collection, and treatment of flushed liquid.

ffective for PFAS. Ineffective for metals. May be combined with other

neffective for PFAS. Ineffective for metals. May be ineffective in lower till because of distribution and injection challenges and the need to have contaminant mass. Requires multiple injections. May be combined with

nd metals. Effective for reducing the overall mass flux of PFAS by reducing vater. May be ineffective in lower permeability soils and till because of on challenges and the need to have direct contact with the contaminant demolition of Buildings 52, 64, and 101 for access.

Cs in the saturated zone. Ineffective for PFAS. Ineffective for metals. May bermeability soils and till because of distribution and injection challenges lirect contact with the contaminant mass. Requires multiple injections. May r process options.

e viable aerobic degradation pathways.

FAS, and metals. Implementable in unconsolidated deposits and till. Likely Buildings 52, 64, and 101 for access. Requires dewatering and treatment ckfill with reactive media would mitigate soil recontamination by CVOC groundwater re-entering the excavation.

ffective for PFAS. Ineffective for metals. Limited effectiveness in low ill. Stripping at the air/water interface would have minimal effect on VOCs in combined with other process options

low permeability soils and till. Ineffective for PFAS.

Table 3-1Preliminary Evaluation of Remedial Measure Technologies for Soil

Feasibility Study

Former George A. Robinson Company., Inc. Site 477 Whitney Road, Penfield, New York

	Response Actions	Remedial Technologies	Process Options	Description	Retained: Yes or No	
		Physiochemical	Soil Washing	Physical separation of contaminated soil from non-contaminated soil followed by chemical desorption to remove contaminants from the soil.	Yes	Effective for CVOCs, P contact with the contan water prior to disposal.
Ex Situ Treatment			Low-Temperature Thermal Treatment	Heat soil using a conveyor and burner system to promote the volatilization of VOCs. Heat of hydration when water mixes with calcium oxide (e.g., quicklime) can also promote volatilization. Requires dedicated, access-restricted site area for treatment operations.	No	Ineffective for metals. C treatment with other ex
	Ex Situ Treatment	Physical	On-site Incineration	Heat soil using a conveyor and burner system to thermally oxidize VOCs. Requires dedicated, access-restricted site area for treatment operations.	No	Ineffective for PFAS. In unit volume of treated s options infeasible. Lowe mass trapped in interior
		Chaminal	Stabilization/ Solidification	Fixation of soil and contaminants by mixing. Requires dedicated, access-restricted site area for treatment operations.	Yes	Effective for CVOCs, P
		Chemical	Oxidation	Oxidize contaminants	No	Ineffective for PFAS. In treatment operations.
		Biological	Land Farming	Stockpile and till soils to promote aerobic biodegradation.	No	Ineffective for contamin metals.
	Distant	Disposal	On-site	Disposal or reuse of soil onsite. Generally requires treatment prior to disposal. See ex situ treatment options above.	Yes	Feasible in conjunction soil and approval from
Disposai	ызроза	Off-site	Disposal of soil or remediation process residuals offsite.	Yes	Effective and implement treatment due to land b	

Note:

Shaded cells indicate technologies not retained.

Abbreviations:

COPC - constituent of potential concern

CVOC - chlorinated volatile organic compound

PFAS - per- and polyfluoroalkyl substances

SVE - soil vapor extraction

VOC - volatile organic compound

Decision Rationale

PFAS, and metals. Effectiveness is limited by the ability to achieve direct minant mass. Requires onsite treatment of contaminated fines and wash

Cost per unit volume of treated soil would make combination of thermal situ process options infeasible.

neffective for metals. Requires recovery and treatment of vapors. Cost per soil would make combination of incineration with other ex situ process er permeability soils and till require intense mixing to effectively contact r pore space.

PFAS, and metals.

effective for metals. Requires dedicated, access-restricted site area for

nants that degrade under anaerobic conditions (e.g., CVOCs), PFAS, and

with other process options if onsite space available. Requires treatment of regulators and site owner.

ntable. Disposal location will depend on soil concentrations. May require preban regulations.

Table 3-2Preliminary Evaluation of Remedial Measure Technologies for Vapor Intrusion

Feasibility Study

Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Response Actions	Remedial Technologies	Process Options	Description	Retained: Yes or No	
No Action	Not Applicable	Not Applicable	Not Applicable	Yes	Use as a baseline for c
Institutional Control	Not Applicable	Deed Restrictions	Deed restrictions to limit the property use and implementation of a Site Management Plan.	Yes	Minimize potential for e
	Building Sealing	Caulking/Sealing	Seal pathways for vapor to enter building (slab, walls, etc.) through caulking, epoxy/polymer coatings, and minor concrete repair, as necessary.	Yes	Effective and implemer 102. Requires ongoing
Containment		Concrete	Thicken the existing concrete pad.		Effective and implement Building 102.
	Passive Barrier	Passive Barrier	Install a spray applied, polyvinyl chloride, or rubber liner during new building construction. Liner to be sealed to perimeter footings, post footings, piping and other protrusions.		Effective for new constr 102.
	Building Pressurization	Lilding Pressurization HVAC Adjustments Keep doors closed and adjust HVAC systems to maintain a higher pressure within the building than under the slab to prevent vapors from entering.		No	Low effectiveness and Requires modification of
	Air Cleaning	Filtering of Indoor Air	Install carbon filter on HVAC systems or as stand alone units to remove volatile organic compounds from the indoor air.	No	May be ineffective at B filter. Does not prevent
	Passive Venting	Passive Venting	Install vent pipes from the subslab to the atmosphere.		Effective for new constr Implementation require
Mitigation	2002	Individual Fans	Depressurize the subslab using inline fans to prevent vapors from entering the buildings.	Yes	Effective and implemen
willgation	3303	Centralized Systems	Depressurize the subslab using a centralized blower to prevent vapors from entering the buildings.	Yes	Effective and implemen
	551/5	Individual Fans	Dilute the subslab vapors by introducing fresh air into the subslab using inlet pipes.	No	Best suited for very por vapor intrusion.
	3373	Centralized Systems	Systems Dilute the subslab vapors by introducing fresh air into the subslab using inlet pipes.		Best suited for very por vapor intrusion.
	SSP	Individual Fans or Centralized System	Force fresh air beneath the slab to push vapors away from the subslab.	No	Best suited for very por vapor intrusion.
Removal	Demolition	Building Demolition	Demolish a building to remove the potential for vapor intrusion into indoor air.	No	Highly effective but has eliminate future use of

Note:

Shaded cells indicate technologies not retained.

Abbreviations:

HVAC - heating ventilation and air conditioning SSDS - subslab depressurization system

SSVS - subslab ventilation system SSP - subslab pressurization

Decision Rationale

comparison to other alternatives.

exposure to residual concentrations.

ntable. Implementation requires disruption of ongoing activities in Building g inspection to preserve effectiveness.

table. Implementation requires substantial disruption of ongoing activities in

ruction. Implementation requires demolition and reconstruction of Building

difficult to implement in aging buildings. Building 102 is not airtight. of worker behavior to prevent doors being left open.

uilding 102 because of building size and the large volume of indoor air to vapors from entering the buildings.

ruction. May require collection and treatment of vented vapor. s demolition and reconstruction of Building 102.

ntable for minimizing potential exposure to residual concentrations.

ntable for minimizing potential exposure to residual concentrations.

ous soils. Requires significant infrastructure. May increase potential for

ous soils. Requires significant infrastructure. May increase potential for

ous soils. Requires significant infrastructure. May increase potential for

implementability challenges and high costs. Implementation would Building 102 or incur additional cost for reconstruction.

Table 3-3Preliminary Evaluation of Remedial Measure Technologies for Groundwater

Feasibility Study

Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Response Actions	Remedial Technologies	Process Options	Description	Retained: Yes or No	
No Action	Not Applicable	No Action	Not Applicable	Yes	Use as a baseline for co
Institutional Control	Not Applicable	Deed Restrictions	Deed restrictions to limit the property use and implementation of a Site Management Plan.	Yes	Minimize potential for e
		Long-Term Monitoring	Monitor groundwater quality.	Yes	Minimize potential for e
Monitoring	Groundwater Monitoring	Monitored Natural Attenuation	Monitor natural attenuation parameters and groundwater quality.		Observation of degrada standalone response. M
	Infiltration Control or Capping	nfiltration Control or Capping Impermeable Cover Impermeable cover (concrete and asphalt) to minimize infiltration.		Yes	Addition of asphalt or co require import of materi
		Grout Injection Pressure injection of grout to provide a low permeability co		Yes	Must be combined with in to low permeability de migration within the con
Containment	Barriers (Horizontal or Vertical)	Trenched Cut-off Wall	Low permeability wall to prevent horizontal migration of groundwater.	Yes	Must be combined with in to low permeability de migration within the con
		Sheet Piling	Sheet pile wall to prevent horizontal migration of groundwater.	Yes	Must be combined with in to low permeability de migration within the con
		Thermal Treatment	Subsurface heating. May require total fluids recovery, including vapor extraction and treatment of vapor stream.	No	Effective for PFAS. Inef
	Physical	Permeable Reactive Barrier or Funnel and Gate	A passive treatment wall across the groundwater flow path.	No	Effective for CVOCs, Pf permeability deposits to
		Air Sparging	Strip Site COPCs using air injection wells.	No	Ineffective for PFAS. In the recovery area. Ineff move a large enough pe
la Citu Taratarant		In-well Air Stripping	Strip Site COPCs in a dual-screened well that controls groundwater flow.	No	Ineffective for PFAS. In the recovery area. Ineff move a large enough pe
In Situ Treatment		Oxidation	Oxidize contaminants.	Yes	Effective for chlorinated lower permeability soils have direct contact with other process options.
	Chemical	Precipitation	Fixation of contaminants to soil by amendment injection.	Yes	Effective for metals. Am for PFAS. May be ineffe challenges and the nee other process options.
		Chemical Reduction	Use a reductant or reductant generating material (i.e., zero valent iron) to degrade contaminants.	Yes	Effective for CVOCs. In permeability soils and ti direct contact with the c

See Notes on Page 3.

Decision Rationale

omparison to other alternatives.

exposure to residual concentrations in groundwater.

exposure to residual concentrations in groundwater.

ation products indicates attenuation of some CVOCs. Ineffective as a May be combined with other process options.

oncrete over grassed portions of the Site would reduce infiltration. May ials to stabilize grassed areas prior to capping.

groundwater extraction and treatment or similar technology. Requires keyeposits to prevent underflow. Does not prevent vertical groundwater ntainment area.

groundwater extraction and treatment or similar technology. Requires keyeposits to prevent underflow. Does not prevent vertical groundwater ntainment area.

groundwater extraction and treatment or similar technology. Requires keyeposits to prevent underflow. Does not prevent vertical groundwater ntainment area.

ffective for metals. May be combined with other process options.

FAS, and metals with different reactive media. Requires key-in to low prevent underflow.

effective for metals. Requires groundwater flow to move contaminants to fective in lower permeability soils and till where groundwater flow may not ortion of the mass through the target area.

effective for metals. Requires groundwater flow to move contaminants to fective in lower permeability soils and till where groundwater flow may not ortion of the mass through the target area.

d VOCs. Ineffective for PFAS. Ineffective for metals. May be ineffective in and till because of distribution and injection challenges and the need to the contaminant mass. Requires multiple injections. May be combined with

mendment will also enhance reductive dechlorination of CVOCs. Ineffective fective in lower permeability soils and till because of distribution and injection ed to have direct contact with the contaminant mass. May be combined with

effective for PFAS. Ineffective for metals. May be ineffective in lower ill because of distribution and injection challenges and the need to have contaminant mass. May be combined with other process options.

Table 3-3Preliminary Evaluation of Remedial Measure Technologies for Groundwater

Feasibility Study

Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Response Actions	Remedial Technologies	Process Options	Description	Retained: Yes or No	
In Situ Treatment (cont.)	Biological	Enhanced Reductive Dechlorination	Inject a degradable substrate to facilitate biodegradation of groundwater COPCs by microorganisms.	Yes	Effective for CVOCs. In permeability soils and direct contact with the
		Excavation/Dewatering	Remove impacted groundwater through excavation and dewatering.	Yes	Effective in areas when of Buildings 52, 64, an extracted fluids. Has th
Removal	Removal	Groundwater Extraction	Hydraulic containment through the extraction of groundwater using vertical wells.	Yes	Effective for Site grour because of low achieve extracted fluids. Has th
		Multi-Phase Extraction	Apply a moderate to high vacuum (i.e., higher than 10 mmHg) to a series of extraction wells for enhanced total fluids recovery.	No	Limited effectiveness in extracted fluids. DNAP
		Groundwater Recovery Trenches	Trenches, drains and piping, used to passively collect groundwater.	Yes	Effective for Site grour recovery area. Limited low achievable recover
		Air Stripping	Transfer contaminants from an aqueous to a vapor phase. Off-gas may require additional treatment.	Yes	Effective and impleme PFAS. Ineffective for n
	Physical	Carbon Adsorption	Remove contaminants from the aqueous or vapor phase onto activated carbon.	Yes	Effective and impleme PFAS. Generally ineffe
		IX Adsorption	Remove contaminants from the aqueous phase onto IX resin.	Yes	Effective and impleme CVOCs. Ineffective for
		UV/Chemical Oxidation	Destroy VOCs by changing the oxidation state of target contaminants using UV radiation and chemical oxidants.	No	Effective and implement for PFAS. Ineffective for combination of UV/che
Ex Situ Treatment	Chemical	Precipitation	Removal of COPCs from groundwater through precipitation by amendment addition	Yes	Effective for metals. In chlorinated VOCs but roptions.
		Ozone Oxidation	Oxidize contaminants.	Yes	Effective and impleme Ineffective for PFAS. In
		Aerobic Bioreactor	Aerobic biodegradation performed in an engineered bioreactor for contaminant removal from a process stream.	No	Site COPCs do not ha
	Biological	Anaerobic Bioreactor	Biodegradation in the absence of oxygen performed in an engineered bioreactor for contaminant removal from a process stream.	No	Effective and impleme for PFAS. Ineffective for chlorinated ethenes re

See Notes on Page 3.

Decision Rationale

neffective for PFAS. Ineffective for metals. May be ineffective in lower till because of distribution and injection challenges and the need to have contaminant mass. Requires multiple injections.

re soil and groundwater impacts are co-located. Likely to require demolition ad 102 for access. Requires dewatering and ex situ treatment and disposal of the potential to mobilize DNAPL and PFAS.

ndwater COPCs. Limited effectiveness in low permeability soils and till able recovery and recharge. Requires ex situ treatment and disposal of ne potential to mobilize DNAPL and PFAS.

n low permeability soils and till. Requires ex situ treatment and disposal of PL has not been observed to accumulate in wells.

ndwater COPCs. Requires groundwater flow to move contaminants to the I effectiveness for mass removal in low permeability soils and till because of ery and recharge. Requires ex situ treatment and disposal of extracted fluids.

ntable technology for ex situ groundwater treatment of VOCs. Ineffective for netals. May be combined with other ex situ treatment options.

ntable technology for ex situ groundwater treatment of VOCs. Ineffective for ective for metals. May be combined with other ex situ treatment options.

ntable technology for ex situ groundwater treatment of metals. Ineffective for r PFAS. May be combined with other process options.

ntable technology for ex situ groundwater treatment of CVOCs. Ineffective or metals. Cost per unit volume of treated groundwater would make emical oxidation with other ex situ process options infeasible.

effective for PFAS. Amendment will also enhance reductive dechlorination of requires long treatment time. May be combined with other ex situ process

ntable technology for ex situ groundwater treatment of chlorinated VOCs. neffective for metals. May be combined with other ex situ treatment options.

ve viable aerobic degradation pathways.

ntable technology for ex situ groundwater treatment of CVOCs. Ineffective or metals. Long hydraulic retention times for complete mineralization of quire large reactor volumes.

Table 3-3Preliminary Evaluation of Remedial Measure Technologies for Groundwater

Feasibility Study

Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Response Actions	Remedial Technologies	Process Options	Description	Retained: Yes or No	
	Dianagal	POTW	Offsite discharge to a POTW.	Yes	Effective but may requi
	Disposal	Treatment Facility	Offsite disposal of liquids to be containerized and treated by a second party.		Effective and implemer
		Facility Use	Non-potable onsite reuse of treated groundwater.	No	No onsite use of non-po
Disposal/ Discharge	Reuse	Reinjection	Reinject treated groundwater.	Yes	Implementable in uncol permeability soils.
	Discharge	Surface Water Discharge	Discharge treated groundwater to the Thomas or Irondequoit Creeks.	Yes	Effective and implemer
		Air Discharge	Discharge from air treatment system.	Yes	Granular activated carb for VOCs.

Note:

Shaded cells indicate technologies not retained.

Abbreviations:

COPC - constituent of potential concern CVOC - chlorinated volatile organic compound DNAPL - dense nonaqueous phase liquid IX - ion exchange mmHg - millimeters of mercury PFAS - per- and polyfluoroalkyl substances POTW - Public Owned Treatment Works SPDES - State Pollutant Discharge Elimination System UV - ultraviolet VOC - volatile organic compound

Decision Rationale

ire onsite pretreatment and permits with the POTW.

ntable technology for ex situ groundwater treatment of site COPCs.

otable water is occurring.

onsolidated deposits but reinjection volume will be limited in lower

ntable assuming a SPDES permit equivalency can be obtained.

bon or air stripper can be used to achieve regulatory air discharge standards

Table 3-4 **Process Options Screening for Soil**

Feasibility Study Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Remedial Technologies	Process Options		Effectiveness Evaluation		Implementability Evaluation		Relative Cost Evaluation		Retained?		
Not Applicable	No Action	Low	No effect on soil concentrations. Effectiveness, if any, is attributed to naturally occurring processes.	High	Easily implemented.	Low	No additional costs.	Yes	Use as a baseline for comparison to other alternatives.		
Not Applicable	Deed Restrictions	Low	No effect on soil concentrations. Placing deed restrictions and maintaining the Site Management Plan will reduce potential exposure to residual concentrations.	High	Easily implemented.	Low	Negligible costs.	Yes	Considered in conjunction with other process options.		
	Access Restrictions	Low	No effect on soil concentrations. Limiting site access will reduce potential for exposure to residual concentrations.	High	Easily implemented.	Low	Negligible costs.	Yes	Considered in conjunction with other process options.		
Infiltration Control or Capping	Impermeable Cover	Low	Use/maintain cover to prevent direct contact and rainwater infiltration. Does not limit leaching to groundwater traversing the area.	High	May require extension of impermeable cover (i.e., asphalt, concrete).	Low	Low capital and O&M costs since most surface is already covered.	Yes	Considered in conjunction with other process options.		
In Situ Physical Treatment	Thermal Treatment	High	Effective for chlorinated solvents and other VOCs in saturated soil. Effective for PFAS. Ineffective for metals. Effectively reach treatment goals in a short time frame.	Moderate	Predesign sampling needed to confirm treatment area. Requires installation and maintenance of electrodes or heater wells and recovery and treatment of vapors. The density of the soil would need to be analyzed to determine spacing. Likely to require demolition of Buildings 52, 64, and 101 for access.	High	High capital cost for installation of infrastructure and off-gas capture and treatment. High O&M costs.	Yes	Considered in conjunction with other process options for metals.		
	Oxidation	Moderate	Effective for CVOCs. Effective for PFAS. Ineffective for metals. Effectiveness is limited by the ability to achieve direct contact with the contaminant mass.	Moderate	Predesign sampling needed to confirm treatment area. Requires multiple injections to be effective. May experience reduced distribution and CVOC contact in till.	Moderate	Moderate capital cost and O&M costs for multiple injections using injection wells installed in close proximity in smaller treatment areas. High O&M costs for multiple injections using direct push injections in larger treatment areas.	Yes	Considered in conjunction with other process options for metals.		
Treatment	Stabilization/ Solidification	High	Effective for fixing CVOCs and metals in soil but does not reduce contaminant concentrations in soil. Effective for reducing the overall mass flux of PFAS by reducing leachability to groundwater. Effectiveness is limited by the ability to achieve direct contact with the contaminant mass.	High	Predesign sampling needed to confirm treatment area. Likely to require demolition of Buildings 52, 64, and 101 for access. May be ineffective in lower permeability soils and till.	High	High capital cost for building demolition.	Yes	Poses higher cost than other considered methods and greater design/engineering challenges. Does not reduce contaminant concentrations in soil.		
In Situ Biological Treatment	Enhanced Reductive Dechlorination	Moderate	Only effective for CVOCs in the saturated zone. Ineffective for PFAS. Ineffective for metals. Effectiveness is limited by the ability to achieve direct contact with the contaminant mass.	Moderate	Predesign sampling needed to confirm treatment area. Requires multiple injections to be effective. May experience reduced distribution and CVOC contact in till.	Moderate	Moderate capital cost and O&M costs for multiple injections using injection wells installed in close proximity in smaller treatment areas. High O&M costs for multiple injections using direct push injections in larger treatment areas.	Yes	Considered in conjunction with other process options for metals.		
Removal	Excavation	High	Effective for mass removal in areas where DNAPL and PFAS are contributing to soil and groundwater concentrations or in shallow unsaturated soils. Replaced clean soils may become recontaminated by CVOC and/or PFAS-impacted groundwater re- entering the excavation.	Moderate/ Low	Predesign sampling needed to confirm treatment area. Likely to require demolition of Buildings 52, 64, and 101 for access. Requires active dewatering of the excavation and treatment or offsite disposal. Backfill with reactive media may be implemented to prevent recontamination by CVOC and/or PFAS-impacted groundwater entering the excavation.	High	High capital cost for building demolition. Offsite disposal of excavated material and extracted groundwater and import of backfill would be required.	Yes	Effective for all Site soil COPCs. Considered in conjunction with other process options.		
	SVE	Low	Effective for VOC removal from higher permeability vadose zone soil. Ineffective for PFAS. Ineffective for metals.	Low/ Moderate	Not easily implementable in lower permeability soil and till.	High	High capital cost to install SVE wells in close proximity in larger treatment areas. Moderate to high operations and maintenance costs.	No	High cost and lower effectiveness in comparison to other process options.		

See Notes on Page 2.

Table 3-4 **Process Options Screening for Soil**

Feasibility Study

Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Remedial Technologies	Process Options		Effectiveness Evaluation		Implementability Evaluation		Relative Cost Evaluation		Retained?		
Ex Situ Physiochemical Treatment	Soil Washing	High	Effective for CVOCs, PFAS, and metals. Effectiveness is limited by the ability to achieve direct contact with the contaminant mass. Requires on-site treatment of contaminated fines and wash water prior to disposal.	Low	Requires a high degree of certainty and optimization of the volume of soil requiring treatment and may be less amenable to a field pilot scale trial than other ex situ technologies.	Moderate /High	Cost dependent on the extent of ex situ treatment required. If excavation extends beyond 20 feet below ground surface, this technology becomes cost prohibitive.	Yes	Considered in conjunction with other process options for shallow soil.		
Ex Situ Chemical Treatment	Stabilization/ Solidification	High	Effective for CVOCs, PFAS, and metals. Effectiveness is limited by the ability to achieve direct contact with the contaminant mass.	Low/ Moderate	Implementable. Requires the use of a pug mill and addition of water to create plasticity in tight clays.	High	High capital cost for soil excavation and backfill. Not all of the material would be used as backfill so disposal would be required.	No	High capital cost and difficult Implementability in comparison to other process options. Does not reduce contaminant concentrations in soil.		
Disposal	On-site	Moderate	Requires onsite soil treatment prior to disposal.	Low/ Moderate	Requires treatment of soil and approval from regulators and site owner for implementation. Requires available onsite space for staging and treatment.	Moderate	Cost dependent on the extent of ex situ treatment required.	Yes	Considered in conjunction with removal process options.		
	Off-site	High	Removes the contaminants from the site.	Moderate	Used in conjunction with excavation. Requires coordination and acceptance of material at an offsite location.	Moderate/ High	Cost dependent on the classification of the soil for disposal and the level of required pre-treatment.	Yes	Considered in conjunction with removal process options.		

Note:

Shaded cells indicate technologies not retained.

Abbreviations: COPC - constituent of potential concern CVOC - chlorinated volatile organic compound

DNAPL - dense nonaqueous phase liquid

O&M - operation and maintenance

PFAS - per- and polyfluoroalkyl substances SVE - soil vapor extraction

VOC - volatile organic compound

Table 3-5 **Process Options Screening for Vapor Intrusion**

Feasibility Study Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Remedial Technologies	Process Options		Effectiveness Evaluation	Implementability Evaluation		Relative Cost Evaluation		Retained for Consideration		
Not Applicable	No Action	Low	No effect on VOC concentrations in soil vapor or indoor air. Effectiveness, if any, is attributed to naturally occurring processes.	High	Easily implemented.	Low	No additional costs.	Yes	Use as a baseline for comparison to other alternatives.	
Not Applicable	Deed Restrictions	Moderate	No effect on VOC concentrations in soil vapor or indoor air. Placing deed restrictions and maintaining the Site Management Plan will reduce potential exposure.	High	Easily implemented.	Low	Negligible costs.	Yes	Considered in in conjunction with other process options.	
Building Sealing	Caulking/Sealing	Low/ Moderate	Limits the migration of VOCs in subslab soil vapor into the building.	Moderate/ High	Relatively easy to seal cracks; more difficult to seal entire slab. May require relocation of some building activities during implementation.	Low	Uses standard caulking or sealing methods.	Yes	Considered in in conjunction with other process options.	
	Concrete	Moderate	Limits the migration of VOCs in subslab soil vapor into the building.	Low	Requires building modification to thicken the concrete pad and limited access during construction. May require relocation of some building activities during implementation.	High	High installation cost.	No	High capital cost and difficulty to implement in comparison to other process options.	
SSDS	Individual Fans	High	Limits the migration of VOCs in subslab soil vapor into the building. Removes VOC mass and prevents future accumulation of mass below the slab.	Moderate	Systems can be easily installed.	Moderate	Moderate installation cost. Low operating cost. Requires long-term O&M.	Yes	Considered in in conjunction with other process options.	
	Centralized Systems	High	Limits the migration of VOCs in subslab soil vapor into the building. Removes VOC mass present and prevents future accumulation of mass below the slab.	Moderate	System can be easily installed and existing systems can be easily modified.	Moderate	Moderate installation cost. Using multiple low horse power blowers would keep operating costs comparable to SSDS with individual fans. Requires long-term O&M.	Yes	Considered in in conjunction with other process options.	

Note: Shaded cells indicate technologies not retained.

Abbreviations:

O&M - operation and maintenance SSDS - subslab depressurization system VOC - volatile organic compound

Table 3-6 Process Options Screening for Groundwater

Feasibility Study Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Remedial Technologies	Process Options		Effectiveness Evaluation	Implementability Evaluation		Relative Cost Evaluation		Retained for Consideration		
Not Applicable	No Action	Low	Effectiveness, if any, is attributed to naturally occurring processes.	High	Easily implemented.	Low	No additional costs.	Yes	Use as a baseline for comparison to other alternatives.	
Not Applicable	Deed Restrictions	Moderate	No effect on groundwater concentrations. Maintaining the Site Management Plan will reduce potential exposure to residual concentrations.	High	Easily implemented.	Low	Negligible costs.	Yes	Considered in conjunction with other process options.	
Groundwater	Long-Term Monitoring	Low	Effectiveness, if any, is attributed to naturally occurring processes.	High	Easily implemented.	Low/ Moderate	Likely to require expansion of existing monitoring well network. Long term O&M required.	Yes	Considered in conjunction with other process options. No protectiveness in areas not targeted for active remediation.	
Monitoring	Monitored Natural Attenuation	Moderate	Natural attenuation processes would require an extended timeframe to reduce COPC concentrations to cleanup goals. Effectiveness would improve following source removal/treatment.	High	Degradation of CVOCs and some attenuation evident in groundwater results.	Low/ Moderate	Likely to require expansion of existing monitoring well network. Long term O&M required.	Yes	Considered in conjunction with other process options. Limited protectiveness in areas not targeted for active remediation.	
	Impermeable Cover	Low	Use/maintain cover to prevent direct contact and rainwater infiltration.	Moderate	Requires extension of impermeable cover (i.e., asphalt, concrete).	Moderate	Moderate capital and O&M costs. May require import of materials to stabilize grassed areas prior to capping.	Yes	Considered in conjunction with other process options. Limited protectiveness in areas not targeted for active remediation.	
	Grout Injection	Moderate/ High	Effective for arresting further horizontal migration of dissolved Site COPCs downgradient of the grout injection area.	Moderate/ High	Requires key-in to low permeability deposits to prevent underflow. Requires groundwater extraction and treatment upgradient of the flow barrier to prevent groundwater mounding. Requires long-term set aside of onsite area for treatment facility.	High	High capital cost for flow barrier and treatment system installation. Long-term O&M costs.	Yes	Effectively treats all Site groundwater COPCs in conjunction with ex situ treatment options.	
Containment	Frenched Cut-off Wa	l Moderate/ High	Effective for arresting further horizontal migration of dissolved Site COPCs downgradient of the cut-off wall.	Moderate/ High	Requires key-in to low permeability deposits to prevent underflow. Requires groundwater extraction and treatment upgradient of the flow barrier to prevent groundwater mounding. Requires long-term set aside of onsite area for treatment facility.	High	High capital cost for flow barrier and treatment system installation. Long-term O&M costs.	Yes	Effectively treats all Site groundwater COPCs in conjunction with ex situ treatment options.	
	Sheet Piling	Moderate/ High	Effective for arresting further horizontal migration of dissolved Site COPCs downgradient of the sheet piling.	Low/ Moderate	Requires key-in to low permeability deposits to prevent underflow. Requires groundwater extraction and treatment upgradient of the flow barrier to prevent groundwater mounding. Requires long-term set aside of onsite area for treatment facility.	High	High capital cost for flow barrier and treatment system installation. Long-term O&M costs.	No	Higher cost and greater implementation challenges in comparison to other process options.	
In Situ Physical Treatment	Thermal Treatment	High	Effective for treating dissolved chlorinated solvents and VOCs in groundwater through volatilization. Effective for PFAS. Can effectively reach treatment goals in a short time frame.	Low/ Moderate	Predesign sampling needed to confirm treatment area. Requires installation and maintenance of electrodes or heater wells and recovery and treatment of vapors. The density of the soil would need to be analyzed to determine spacing. Likely to require demolition of Buildings 52, 64, and 101 for access. Would require a large footprint of treatment to target dissolved concentrations.	High	High capital cost for installation of infrastructure and off-gas capture and treatment in large treatment area. High O&M costs.	No	Ineffective for metals. Ineffective for complete destruction of the vapor phase and waste product generation (hydrogen fluoride) being released during treatment of PFAS. Considered in conjunction with other process options.	
	Permeable Reactive Barrier or Funnel and Gate	Moderate/ High	Effective for CVOCs, PFAS, and metals with different reactive media. Effectiveness is limited by the ability to achieve full contact with impacted groundwater.	Moderate/ High	Requires key-in to low permeability deposits to prevent underflow.	High	High capital cost for installation. Long-term O&M costs are dependent on the reactive media used.	Yes	Effective for all Site groundwater COPCs. Considered in conjunction with other process options.	

See Notes on Page 3.

Table 3-6 Process Options Screening for Groundwater

Feasibility Study Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Remedial Technologies	Process Options		Effectiveness Evaluation		Implementability Evaluation		Relative Cost Evaluation	Retained for Consideration		
	Oxidation	Moderate/ High	Effective for CVOCs. Ineffective for PFAS. Ineffective for metals. Effectiveness is limited by the ability to achieve full contact with impacted groundwater.	Moderate	Predesign sampling needed to confirm treatment area. May experience reduced distribution and contact with impacted groundwater in till.	High	Moderate capital cost and O&M costs for multiple injections using injection wells installed in close proximity in smaller treatment areas. High O&M costs for multiple injections using direct push injections in larger treatment areas.	Yes	Considered in conjunction with other process options.	
In Situ Chemical Treatment	Precipitation	Moderate/ High	Effective for CVOCs and metals. Ineffective for PFAS. Amendment can be targeted to precipitate metals and enhance reductive dechlorination of CVOCs. Metals removed from groundwater are precipitated onto and remail in site soil. Effectiveness is limited by the ability to achieve full contact with impacted groundwater.	Moderate	Predesign sampling needed to confirm treatment area. May experience reduced distribution and contact with impacted groundwater in till.	High	Moderate capital cost and O&M costs for multiple injections using injection wells installed in close proximity in smaller treatment areas. High O&M costs for multiple injections using direct push injections in larger treatment areas.	Yes	Considered in conjunction with other process options.	
	Chemical Reduction	Moderate/ High	Effective for CVOCs. Ineffective for PFAS. Ineffective for metals. Effectiveness is limited by the ability to achieve full contact with impacted groundwater.	Moderate	Predesign sampling needed to confirm treatment area. May experience reduced distribution and contact with impacted groundwater in till.	High	Moderate capital cost and O&M costs for multiple injections using injection wells installed in close proximity in smaller treatment areas. High O&M costs for multiple injections using direct push injections in larger treatment areas.	Yes	Considered in conjunction with other process options.	
In Situ Biological Treatment	Enhanced Reductive Dechlorination	Moderate/ High	Effective for CVOCs. Ineffective for PFAS. Ineffective for metals. Effectiveness is limited by the ability to achieve full contact with impacted groundwater.	Moderate	Predesign sampling needed to confirm treatment area. May experience reduced distribution and contact with impacted groundwater in till.	High	Moderate capital cost and O&M costs for multiple injections using injection wells installed in close proximity in smaller treatment areas. High O&M costs for multiple injections using direct push injections in larger treatment areas.	Yes	Lower effectiveness in comparison to other in situ process options.	
	Excavation/Dewater ing	Moderate	Effective for mass removal in areas where DNAPL, soil impacts, and groundwater concentrations are coincident. Groundwater treatment would be limited to the amount of impacted water entering the excavated area and the transport of impacted groundwater to the excavated area.	Moderate	Likely to require demolition of Buildings 64 and 52 (western side of Site) and Building 101 (eastern side of Site) for access. Would require dewatering of the excavation and treatment of recovered water or offsite disposal.	High	High capital cost for building demolition. Offsite disposal of treated groundwater and excavated material and import of backfill would be required.	No	Higher cost and greater implementation challenges in comparison to other process options.	
Removal	Groundwater Extraction	High	Effective for all Site COPCs. Effectiveness is limited by the ability to fully intercept impacted groundwater. Requires ex-situ treatment and reuse/discharge of treated groundwater (see below).	Moderate	Requires long-term set aside of onsite area for treatment facility.	High	Moderate capital cost to install extraction wells. High capital costs for treatment system installation. Long-term O&M costs.	Yes	Effectively treats all Site groundwater COPCs. Limited effectiveness in low permeability soils and till.	
	Groundwater Recovery Trenches	High	Effective for all Site COPCs. Effectiveness is limited by the ability to fully intercept impacted groundwater. Requires ex situ treatment and reuse/discharge of treated groundwater (see below).	Moderate	May require building demolition for implementation. Requires long-term set aside of onsite area for treatment facility.	High	High capital cost for trench and treatment system installation. Long-term O&M costs.	Yes	Effectively treats all Site groundwater COPCs.	
	Air Stripping	Moderate	Effective for ex-situ treatment of VOCs in groundwater. Ineffective for PFAS. Ineffective for metals.	High	Implemented using an air stripping unit.	Low	Low capital cost.	Yes	Considered in conjunction with other ex situ removal technologies.	
Ex Situ Physical Treatment	Carbon Adsorption	Moderate	Effective for ex-situ treatment of CVOCs in groundwater. Effective for PFAS. Likely ineffective for metals.	High	Carbon absorption capacity for CVOC degradation products such as vinyl chloride is reduced.	Moderate/ High	High infrastructure costs; moderate long-term O&M cost because of carbon regeneration.	No	Higher cost in comparison to other ex situ removal technologies.	
	IX Adsorption	Moderate	Effective for ex-situ treatment of metals in groundwater. Ineffective for CVOCs. Ineffective for PFAS.	High	May require different resins in series for removal of all Site groundwater COPCs.	Low	Low capital cost; moderate long-term O&M cost because of IX regeneration.	Yes	Considered in conjunction with other ex situ removal technologies.	

See Notes on Page 3.

Table 3-6 **Process Options Screening for Groundwater**

Feasibility Study

Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Remedial Technologies	Process Options		Effectiveness Evaluation	Implementability Evaluation		Relative Cost Evaluation		Retained for Consideration		
Ex Situ Chemical Treatment	Precipitation	Moderate/ High	Effective for ex-situ treatment of metals in groundwater. Ineffective for CVOCs. Ineffective for PFAS.	High	Implementability depends on maintaining appropriate redox conditions. Different metals may require different amendments.	High	Low capital cost.	Yes	Considered in conjunction with other ex situ removal technologies.	
	Ozone Oxidation	Moderate /High	Effective for ex-situ treatment of CVOCs in groundwater. Ineffective for PFAS. Ineffective for metals.	Moderate	Implementability contingent upon addressing health and safety concerns from strong oxidant. Requires production or delivery of ozone in a gaseous state.	High	High capital cost; low to moderate O&M cost.	No	Higher cost and greater implementation challenges in comparison to other ex situ removal technologies.	
	POTW	High	Requires the lowest level of treatment prior to discharge.	Moderate	Requires permitting and construction of discharge line to discharge to POTW.	Moderate	Moderate capital cost and moderate O&M cost.	Yes	Considered in conjunction with removal technologies.	
Disposal	Treatment Facility	High	Removes the contaminated media from the site.	Moderate	Requires acceptance from disposal facility.	High	High transport cost; disposal cost dependent on the COPCs and concentrations.	Yes	Considered in conjunction with removal technologies.	
Reuse	Reinjection	High	Requires high level of treatment to meet discharge standards.	Low/ Moderate	Requires permitting and construction of recharge infrastructure on site. Implementability is dictated by the transmissivity of the site materials and the availability of onsite space for recharge infrastructure.	High	High capital cost and moderate O&M cost.	No	Greater implementation challenges in comparison to other process options.	
Discharge	Surface Water Discharge	High	Requires high level of treatment to meet discharge standards.	High	Implementability is dictated by SPDES permit requirements.	Low	Negligible capital cost; minimal O&M cost.	Yes	Considered in conjunction with ex situ physical treatment technologies.	
	Air Discharge	High	Requires high level of treatment to meet discharge standards.	High	Implementability is dictated by permit requirements.	Low	Low capital cost; low O&M cost.	Yes	Considered in conjunction with ex situ physical treatment technologies.	

Note: Shaded cells indicate technologies not retained.

Abbreviations: COPC - constituent of potential concern CVOC - chlorinated volatile organic compound

DNAPL - dense nonaqueous phase liquid

IX - ion exchange

MNA - Monitored Natural Attenuation

O&M - operation and maintenance PFAS - per- and polyfluoroalkyl substances

POTW - Public Owned Treatment Works

SPDES - State Pollutant Discharge Elimination System

VOC - volatile organic compound

Table 4-1Summary of Costs for Remedial Alternatives

Feasibility Study Report Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Notes:

LTM = Long-term monitoring

O&M = Operation and maintenance

Feasibility Study

Threshold and Balancing Criteria	Alternative 1: No Action	Rating	Alternative 2: Return to Pre-Disposal Conditions	Rating	Alternative 3: Source Soil Excavation, Soil Treatment, and Groundwater Treatment	Rating
Overall protection of public health and the environment	Would not be protective of human health and the environment because soil and groundwater containing COPCs at concentrations greater than applicable soil and groundwater standards would remain at the site. Potential exposure to contaminated soil and groundwater by site workers and/or visitors would remain.	No	Metals and VOCs at concentrations above criteria in source soils would be eliminated via excavation and off-site disposal. PFAS and VOCs at concentrations above criteria in both on- and off-site groundwater would be reduced through groundwater extraction and treatment. LTM combined with a limited monitored natural attenuation (MNA) assessment would be used to monitor and/or further reduce contaminant concentrations over time to ensure protection of human health and the environment during implementation. Following groundwater extraction and treatment implementation, LTM/MNA would be used to evaluate decreasing COPC concentrations over time.	Yes	Metals and VOCs at concentrations above criteria in source soils would be eliminated via excavation or, for metals, controlled via in-situ stabilization. VOCs at concentrations above criteria in site groundwater would be reduced through ISCO injections and reductions would be confirmed/tracked through post injection monitoring. PFAS concentrations in site groundwater would be reduced and controlled through injection of colloidal carbon. Offsite groundwater impacts would attenuate and/or be reduced over time due to treatment of on-site sources. LTM/MNA would be used to further reduce and/or track COPC concentrations over time to ensure protection of human health and the environment during remedial implementation and achieve/confirm PFAS, VOCs, and metals concentrations below criteria in groundwater.	Yes
Compliance with standards, criteria, and guidance (SCGs)	Would not meet the SCGs because contamination would persist at concentrations greater than standards/guidelines in soil and groundwater.	No	Would meet soil SCGs over the short term by removing impacted soil and is expected to meet groundwater SCGs over the long term by treating impacted groundwater	Yes	Excavation, in-situ treatment, performance monitoring, and reporting would be conducted in compliance with federal and state requirements	Yes
Long-term effectiveness and permanence	Would not meet the SCGs over the long term because contamination would persist at concentrations greater than standards/guidelines in soil and groundwater		High. VOCs and metals in source soils would be removed from the site via excavation. VOCs and PFAS concentrations in groundwater would be significantly reduced over time through groundwater extraction and treatment and natural attenuation for VOCs. Following remedy implementation, concentrations of VOCs, PFAS, and metals in soil and groundwater would be reduced to low levels and show established downward trends to ensure continued compliance with NYSDEC Class GA Standard or Guidance Values.	5	High/Moderate VOCs and metals in source soils would be removed from the site via excavation resulting in long-term effectiveness and permanence. Metals in source soils that remain on site would be in a stabilized form preventing/limiting further leaching to groundwater. VOCs in source area groundwater would be directly targeted and their concentrations reduced via ISCO injection. Desorption of PFAS could occur over time, reducing long-term permanence. Concentrations of VOCs and PFAS that remain in groundwater post remediation are expected to attenuate over time and/or be reduced through reduction of mass flux from treated source soils. Follow up injections of either ISCO and/or colloidal carbon may be necessary for long-term effectiveness and permanence.	4
Reduction of toxicity, mobility, and volume	Would not reduce the toxicity or mobility of the contaminants; however, the volume of contamination may be reduced over the long term through natural attenuation and/or off-site migration.		High. Would result in the permanent and significant reduction of toxicity, mobility, and volume of VOCs, PFAS, and metals through removal of source soils and removal and treatment of VOCs and PFAS in groundwater.	5	High/Moderate. Would reduce the toxicity, mobility, and volume of VOCs, metals, and PFAS in on- site soil and groundwater. Off-site downgradient groundwater impacts would be reduced over time as a result of reduced mass flux from the site but not be targeted directly.	4
Short-term effectiveness	No to minimal risk to workers during limited scope associated with well abandonment.	-	Moderate. Manageable risk to workers who excavate soil and operate the treatment system due to the use of heavy equipment during excavation, system install and trenching, and physical demands of the job.	3	Moderate. Manageable risk to workers who excavate soil due to the use of heavy equipment, chemicals, and physical demands of the job. DPT injections will add risk to workers due to chemical handling and physical hazards.	4

Feasibility Study

Threshold and Balancing Criteria	Alternative 1: No Further Action	Rating	Alternative 2: Return to Pre-Disposal Conditions	Rating	Alternative 3: Source Soil Excavation, Soil Treatment, and Groundwater Treatment	Rating
Implementability	Can be easily implemented but would not be compliant with NYSDEC regulations/policy		Low. Would be implemented using readily available technologies; however, implementation would require extensive site controls, significant clearing both onsite and offsite, significant trenching both on- and off-site in challenging terrain to connect extraction wells to the system, and ability to secure and maintain access agreements with off-site properties. Complex geology poses challenges for effectively targetting impacted groundwater. Periodic redevelopment and/or replacement of extraction wells would likely be required.	2	Moderate. Would be implemented using readily available technologies; however, implementation would require extensive site control, pilot testing, and predesign investigation to design an effective treatment approach. Treatment of VOCs in groundwater via ISCO and PFAS via colloidal carbon would be difficult to effectively implement due to complex geology.	3
Cost	Approximately \$110K for monitoring well abandonment		High. \$14.8 million	1	Moderate. \$6.5 million	3
Land use	Would not achieve criteria for the current or anticipated future (i.e., commercial or restricted residential) land use		Unrestricted Use (Soil and Groundwater). Would return the site to pre-disposal conditions resulting in unrestricted land use.	5	Unrestricted Use (Soil) and Restricted Use (Groundwater). COPCs in site soil would be reduced to below Protection of Groundwater SCOs. COPCs in groundwater would be addressed through in-situ treatment but their concentrations would still exceed NYSDEC Class GA Standard or Guidance Values.	4
Green and sustainable remediation	Physical footprint would be negligible, but the alternative would not be resilient and would pose risks to community.		Low. Waste management and heavy equipment operation would have significant footprints and be disruptive to the community. Pump and treat system operation would incur long-term waste generation and infrastructure.	1	Moderate. Source area excavation would have lower waste footprint compared to Alternative 2. Injections and stabilization would have relatively low footprints for long-term benefits.	3
Screening Score Summary						
				22		25

Feasibility Study

Threshold and Balancing Criteria	Alternative 4: Source Soil Excavation and Groundwater Treatment	Rating	Alternative 5: Partial Source Soil Excavation and Prevention of Offsite Migration	Ratin	Alternative 6: Partial Source Soil Removal, Cover, and Prevention of Offsite g Migration	Rating
Overall protection of public health and the environment	Metals and VOCs at concentrations above criteria in source soils would be eliminated via excavation. VOCs at concentrations above criteria in site groundwater would be reduced through ISCO injections and reductions would be confirmed/tracked through post injection monitoring. PFAS concentrations in site groundwater would be reduced and controlled through injection of colloidal carbon. Offsite groundwater impacts would attenuate and/or be reduced over time due to treatment of on-site sources. LTM/MNA would be used to further reduce and/or track COPC concentrations over time to ensure protection of human health and the environment during remedial implementation and achieve/confirm PFAS, VOCs, and metals concentrations below criteria in groundwater.	Yes	Metals and VOCs at concentrations above criteria in source area soils would be partially eliminated via excavation. PFAS concentrations in site groundwater would be reduced and controlled through injection of colloidal carbon. VOCs at concentrations above criteria in on-site groundwater near and downgradient of Building 64 would be reduced through ISCO injections and reductions would be confirmed/tracked through post injection monitoring. Off-site migration of VOC-impacted groundwater near Building 101 would be controlled through PRBs installed at targeted areas along the property boundary. Off-site groundwater impacts would attenuate and/or be reduced over time due to removal of on-site sources. LTM/MNA would be used to further reduce and/or track COPC concentrations over time to ensure protection of human health and the environment during remedial implementation and achieve/confirm PFAS, VOCs, and metals concentrations below criteria in groundwater over time.	Yes	Metals and VOCs at concentrations above criteria in source area soils would be partially eliminated via excavation. A cover would be installed over remining soils with metals at concentrations exceeding criteria to minimize contact and further leaching to groundwater. PFAS concentrations in site groundwater would be reduced and controlled through injection of colloidal carbon. Off-site migration of VOC-impacted groundwater would be controlled through PRBs installed at targeted areas along the property boundary. Off-site groundwater impacts would attenuate and/or be reduced over time due to source area remediation. LTM/MNA would be used to further reduce and/or track COPC concentrations over time to ensure protection of human health and the environment during remedial implementation and achieve/confirm PFAS, VOCs, and metals concentrations below criteria in groundwater over time.	Yes
Compliance with standards, criteria, and guidance (SCGs)	Excavation, in-situ treatment, performance monitoring, and reporting would be conducted in compliance with federal and state requirements	Yes	Excavation, performance monitoring, and reporting would be conducted in compliance with federal and state requirements.	Yes	Expected to meet soil and groundwater SCGs over the long term. Excavation, cove installation, performance monitoring, and reporting would be conducted in compliance with federal and state requirements.	Yes
Long-term effectiveness and permanence	High/Moderate VOCs and metals in source soils would be removed from the site via excavation resulting in long-term effectiveness and permanence. VOCs in source area groundwater would be directly targeted and their concentrations reduced via ISCO injection. Desorption of PFAS and/or other bound compounds could occur over time, reducing long-term permanence. Concentrations of VOCs and PFAS that remain in groundwater post remediation are expected to attenuate over time and/or be reduced through reduction of mass flux from removal of source soils. Follow up injections of either ISCO and/or colloidal carbon may be necessary for long-term effectiveness and permanence.	4	High/Moderate VOCs and metals in source soils would be removed from the site via excavation resulting in long-term effectiveness and permanence. VOCs in source area groundwater surrounding Building 64 would be directly targeted and their concentrations reduced via ISCO injection. Desorption of PFAS could occur over time, reducing long-term permanence. Concentrations of VOCs and PFAS that remain in groundwater post remediation are expected to attenuate over time and/or be reduced through reduction of mass flux from removal of source soils. Follow up injections of either ISCO and/or colloidal carbon may be necessary for long-term effectiveness and permanence. The effectiveness of the PRB in treating VOCs will require on-going monitoring and potential maintenance.	4	Moderate VOCs and metals in source soils would be removed from the site via excavation resulting in long-term effectiveness and permanence. Would not implement source treatment of groundwater for VOCs lowering the effectiveness rating. Desorption of PFAS could occur over time, reducing long-term permanence. Concentrations of VOCs and PFAS that remain in groundwater post remediation are expected to attenuate over time and/or be reduced through reduction of mass flux from removal of source soils. Follow up injections of either ISCO and/or colloidal carbon may be necessary for long-term effectiveness and permanence. The effectiveness of the PRB in treating VOCs will require on-going monitoring and potential maintenance.	3
Reduction of toxicity, mobility, and volume	High/Moderate. Would reduce the toxicity, mobility, and volume of VOCs, metals, and PFAS in on- site soil and groundwater. Off-site downgradient groundwater impacts would be reduced over time as a result of reduced mass flux from the site but not be targeted directly.	4	High/Moderate. Would reduce the toxicity, mobility, and volume of onsite CVOCs, metals, and PFAS contaminants in both soil and groundwater. Off site downgradient groundwater impacts to the south of Building 101 would rely on the PRB to treat VOCs in groundwater at the fence and decrease mass flux from the site over time.	4	Moderate. Would reduce the toxicity, mobility, and volume of onsite CVOCs, metals, and PFAS contaminants in soil. Would not directly treat source VOC contaminants in groundwater but rather rely on containment and treatment as it migrates off-site to reduce mobility.	3
Short-term effectiveness	Moderate. Manageable risk to workers who excavate soil due to the use of heavy equipment and physical demands of the job. DPT injections will add risk to workers due to chemical handling and physical hazards.	4	Moderate. Manageable risk to workers excavating soil, conducting the colloidal carbon injection, and installing the PRB.	4	Moderate. Manageable risk to workers excavating soil, conducting the colloidal carbon injection, and installing the PRB.	4

Feasibility Study

Threshold and Balancing Criteria	Alternative 4: Source Soil Excavation and Groundwater Treatment	Rating	Alternative 5: Partial Source Soil Excavation and Prevention of Offsite Migration	Rating	Alternative 6: Partial Source Soil Removal, Cover, and Prevention of Offsite Migration	Rating
Implementability	Moderate. Would be implemented using readily available technologies; however, implementation would require extensive site controls, pilot testing, and predesign investigation to design an effective treatment approach. Treatment of VOCs in groundwater via ISCO and PFAS via colloidal carbon would be difficult to effectively implement due to complex geology.	3	Moderate. Would be implemented using readily available technologies; however, implementation would require extensive site controls, pilot testing and predesign investigation to design an effective treatment approach. Treatment of VOCs in groundwater via ISCO and PFAS via colloidal carbon would be difficult to effectively implement due to complex geology. Installation of the PRB is challenging due to site constraints, site access, depth of groundwater, and heterogeneous and complicated geology.	3	Moderate. Would be implemented using readily available technologies; however, implementation would require extensive site controls, pilot testing, and predesign investigation to design an effective treatment approach. Treatment of PFAS via colloidal carbon would be difficult to effectively implement due to complex geologyy. Installation of the PRBs is challenging due to site constraints, site access, depth of groundwater, and heterogeneous and complicated geology.	3
Cost	Moderate. \$6.6 million	3	High \$6.3 million	2	High. \$6.8 million	1
Land use	Unrestricted Use (Soil) and Restricted Use (Groundwater). Site contaminants in soil would be addressed through excavation and treatment and reduced to below Protection of Groundwater SCOs. Contaminants in groundwater would be addressed through treatment but would still exceed NYSDEC Class GA Standard or Guidance Values.	4	Restricted Use (Soil and Groundwater). Unrestricted use would not be attained for soil or groundwater. Site contaminants would continue to exceed NYSDEC Class GA Standard or Guidance Values and SCOs.	2	Restricted Use (Soil and Groundwater). Unrestricted use would not be attained for soil or groundwater. Site contaminants would continue to exceed NYSDEC Class GA Standard or Guidance Values and SCOs.	2
Green and sustainable remediation	Moderate. Source area excavation would have lower waste footprint compared to Alternative 2. Injections would have relatively low footprints for long-term benefits.	3	Moderate. Partial source area excavation and PRB would reduce waste generation. Source area excavation would have lower waste footprint compared to Alternative 2. Without demolition of Building 101, or removal of the soils beneath, these areas could be vulnerable to future extreme weather conditions and could result in potential for migration of impacts. Materials would be needed for the PRB construction. Injections would have relatively low footprints for long-term benefits.	3	Moderate. Partial source area excavation, cap, and PRB would reduce waste generation. Source area excavation would have lower waste footprint compared to Alternative 2. Without demolition of Building 101, or removal of the soils beneath, these areas could be vulnerable to future extreme weather conditions and could result in potential for migration of impacts. Materials would be needed for the cap and PRB construction. Injections would have relatively low footprints for long-term benefits.	3
Screening Score Summary						
		25		22		19

Feasibility Study Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Notes:

All costs are estimated to an accuracy of +50% to -30% (USEPA 2000). State acceptance and community acceptance modifying criteria will not be given a rating; these will be reflected during the Proposed Plan process.

Acronyms and Abbreviations:

ARAR = applicable or relevant and appropriate requirementCFR = Code of Federal RegulationsCMR = Code of Massachusetts RegulationsLUC = land use controlMCL = maximum contaminant levelNIA = North Impact AreaNPDWSA = non-potential drinking water source areaPFAS = per- and polyfluoroalkyl substancesRAOs = Remedial Action ObjectivesRCRA = Resource Conservation and Recovery Actredox = oxidation-reduction

Color Code:

Threshold criteria are Pass / Fail More desirable Neutral Less desirable

Rating categories for Threshold and Balancing

and Other Criteria (Excluding Cost): (0) None

- (1) Low
- (2) Low to moderate
- (3) Moderate
- (4) Moderate to high

(5) High

Figures

Document Path: T:_ENV/NYSDEC\George Robinson\mxd\Feasibility Study\Figure 1-1 Site Location.mxd

Last

Exceeds NYSDEC Ambient Water Quality Guidance Value and New York State MCLs for PFOA and PFOS in drinking water.

C:\Users\posenauer\ACCDocs\Arcadis\AUS-NYSDEC-ROBINSON & CO. INC.-PENFIELD New York\Project Files\2023\01-In Progress\01-DWG\FSR-F0X-ALTERNATIVES 1 TO 7.dwg LAYOUT: 4-1 SAVED: 11/17/2023 1:02 PM ACADVER: 24.2S (LMS TECH) PAGESETUP: C-PB-PDF PLOTSTYLETABLE: PLOTTED: 11/17/2023 1:02 PM BY: POSENAUER, LISA

C:Users\posenauer\ACCDocs\Arcadis\AUS-NYSDEC-ROBINSON & CO. INC.-PENFIELD New York\Project Files\2023\01-In Progress\01-DWG\FSR-F0X-ALTERNATIVES 1 TO 7.dwg LAYOUT: 4-3 SAVED: 11/17/2023 1:02 PM ACADVER: 24.2S (LMS TECH) PAGESETUP: C-PB-PDF PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 11/17/2023 1:47 PM BY: POSENAUER, LISA

- 3 4 52
 - SITE FENCE HISTORICAL SETTLING POND HISTORICAL WASTEWATER LAGOON
 - EXCAVATION AREA IDENTIFICATION NUMBER
 - IN-SITU STABILIZATION TO ADDRESS METALS IN SOIL EXCAVATION TO ADDRESS VOCs IN SOIL POST-BUILDING DEMOLITION EXCAVATION
- ISCO DPT INJECTION POINT (15' ROI)
 COLLOIDAL CARBON INJECTION AREA
 GROUNDWATER FLOW DIRECTION
 MONITORING WELL LOCATION
- SEEP LOCATION

NOTE: HISTORICAL BOUNDARIES ARE APPROXIMATE.

GEORGE A. ROBINSON & CO. INC. (SITE #8-28-065) 477 WHITNEY ROAD PENFIELD, NEW YORK FEASIBILITY STUDY REPORT

ALTERNATIVE 3: SOURCE SOIL EXCAVATION, SOIL TREATMENT, AND GROUNDWATER TREATMENT

FIGURE

C:Users\lposenauer\ACCDocs\Arsadis\AUS-NYSDEC-ROBINSON & CO. INC.-PENFIELD New York\Project Files\2023\01-In Progress\01-DWG\FSR-F0X-ALTERNATIVES 1 TO 7.dwg LAYOUT: 4-4 SAVED: 11/17/2023 1:02 PM ACADVER: 24.2S (LMS TECH) PAGESETUP: C-PB-PDF PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 11/17/2023 1:47 PM BY: POSENAUER, LISA

SITE FENCE HISTORICAL SETTLING POND HISTORICAL WASTEWATER LAGOON EXCAVATION AREA IDENTIFICATION NUMBER EXCAVATION TO ADDRESS METALS IN SOIL

SITE BOUNDARY

EXCAVATION TO ADDRESS VOCS IN SOIL POST-BUILDING DEMOLITION EXCAVATION ISCO DPT INJECTION POINT (15' ROI)
 PERFORMANCE MONITORING WELL
 COLLOIDAL CARBON INJECTION AREA
 GROUNDWATER FLOW DIRECTION
 MONITORING WELL LOCATION
 SEEP LOCATION

NOTE: HISTORICAL BOUNDARIES ARE APPROXIMATE.

GEORGE A. ROBINSON & CO. INC. (SITE #8-28-065) 477 WHITNEY ROAD PENFIELD, NEW YORK FEASIBILITY STUDY REPORT

ALTERNATIVE 4: SOURCE SOIL EXCAVATION AND GROUNDWATER TREATMENT

300'

C:Users\posenauerACCDocs\Arcadis\AUS.NYSDEC.ROBINSON & CO. INC.-PENFIELD New York\Project Files\2023\01-In Progress\01-DWG\FSR-F0X-ALTERNATIVES 1 TO 7.dwg LAYOUT: 4-5 SAVED: 11/17/2023 1:02 PM ACADVER: 24.2S (LMS TECH) PAGESETUP: C-PB-PDF PLOTSTYLETABLE: PLOTTED: 11/17/2023 1:47 PM BY: POSENAUER, LISA

LEGEND:

SITE BOUNDARY

SITE FENCE

EXCAVATION AREA IDENTIFICATION NUMBER

EXCAVATION TO ADDRESS METALS IN SOIL EXCAVATION TO ADDRESS VOCs IN SOIL POST-BUILDING DEMOLITION EXCAVATION

PERMEABLE REACTIVE BARRIER

COLLOIDAL CARBON INJECTION AREA

GROUNDWATER REMEDIAL

ACTIONS

- MONITORING WELL LOCATION
- SEEP LOCATION

NOTE:

HISTORICAL BOUNDARIES ARE APPROXIMATE. GEORGE A. ROBINSON & CO. INC. (SITE #8-28-065) 477 WHITNEY ROAD PENFIELD, NEW YORK FEASIBILITY STUDY REPORT ALTERNATIVE 5: PARTIAL SOURCE SOIL EXCAVATION AND PREVENTION OF OFFSITE MIGRATION

200

GRAPHIC SCALE

400

C:Users\posenauer\ACCDocs\Arcadis\AUS-NYSDEC-ROBINSON & CO. INC.-PENFIELD New York\Project Files\2023\01-In Progress\01-DWG\FSR-F0X-ALTERNATIVES 1 TO 7.dwg LAYOUT: 4-6 SAVED: 11/17/2023 1:02 PM ACADVER: 24.2S (LMS TECH) PAGESETUP: C-PB-PDF PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 11/17/2023 1:02 PM BY: POSENAUER, LISA

Environmental Justice Screening Tool (EJScreen) Community Report

EJScreen Community Report

This report provides environmental and socioeconomic information for user-defined areas, and combines that data into environmental justice and supplemental indexes.

Monroe County, NY

A3 Landscape

LANGUAGES SPOKEN AT HOME

LANGUAGE	PERCENT
English	86%
Spanish	2%
Russian, Polish, or Other Slavic	2%
Other Indo-European	1%
Chinese (including Mandarin, Cantonese)	1%
Other Asian and Pacific Island	3%
Arabic	5%
Other and Unspecified	1%
Total Non-English	14%

Blockgroup: 360550119015 Population: 607 Area in square miles: 1.04

COMMUNITY INFORMATION

LIMITED ENGLISH SPEAKING BREAKDOWN

Speak Spanish	0%
Speak Other Indo-European Languages	100%
Speak Asian-Pacific Island Languages	0%
Speak Other Languages	0%

Notes: Numbers may not sum to totals due to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, American Community Survey (ACS) 2017-2021. Life expectancy data comes from the Centers for Disease Control.

Environmental Justice & Supplemental Indexes

The environmental justice and supplemental indexes are a combination of environmental and socioeconomic information. There are thirteen EJ indexes and supplemental indexes in EJScreen reflecting the 13 environmental indicators. The indexes for a selected area are compared to those for all other locations in the state or nation. For more information and calculation details on the EJ and supplemental indexes, please visit the EJScreen website.

EJ INDEXES

The EJ indexes help users screen for potential EJ concerns. To do this, the EJ index combines data on low income and people of color populations with a single environmental indicator.

SUPPLEMENTAL INDEXES

The supplemental indexes offer a different perspective on community-level vulnerability. They combine data on percent low-income, percent linguistically isolated, percent less than high school education, percent unemployed, and low life expectancy with a single environmental indicator,

SUPPLEMENTAL INDEXES FOR THE SELECTED LOCATION

These percentiles provide perspective on how the selected block group or buffer area compares to the entire state or nation.

Report for Blockgroup: 360550119015

 \equiv

EJScreen Environmental and Socioeconomic Indicators Data

SELECTED VARIABLES	VALUE	STATE AVERAGE	PERCENTILE IN STATE	USA AVERAGE	PERCENTILE IN USA			
POLLUTION AND SOURCES								
Particulate Matter (µg/m ³)	6.76	7.71	18	8.08	16			
Ozone (ppb)	57.9	62.6	25	61.6	23			
Diesel Particulate Matter (µg/m ³)	0.153	0.525	23	0.261	32			
Air Toxics Cancer Risk* (lifetime risk per million)	20	25	5	25	5			
Air Toxics Respiratory HI*	0.2	0.33	5	0.31	4			
Toxic Releases to Air	530	450	85	4,600	47			
Traffic Proximity (daily traffic count/distance to road)	77	430	33	210	50			
Lead Paint (% Pre-1960 Housing)	0.81	0.55	76	0.3	92			
Superfund Proximity (site count/km distance)	0.029	0.24	5	0.13	27			
RMP Facility Proximity (facility count/km distance)	0.26	0.21	84	0.43	64			
Hazardous Waste Proximity (facility count/km distance)	0.47	4.3	26	1.9	49			
Underground Storage Tanks (count/km ²)	0.99	7.7	34	3.9	47			
Wastewater Discharge (toxicity-weighted concentration/m distance)	0.0012	5	43	22	50			
SOCIOECONOMIC INDICATORS								
Demographic Index	26%	35%	47	35%	44			
Supplemental Demographic Index	16%	14%	67	14%	64			
People of Color	4%	42%	11	39%	10			
Low Income	49%	28%	83	31%	79			
Unemployment Rate	6%	6%	64	6%	66			
Limited English Speaking Households	3%	7%	59	5%	70			
Less Than High School Education	3%	12%	23	12%	24			
Under Age 5	0%	5%	0	6%	0			
Over Age 64	15%	17%	48	17%	49			
Low Life Expectancy	18%	17%	57	20%	34			

*Diesel particulate matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here provide broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data update are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update can be found at: https://www.epa.gov/haps/air-toxics-data-update.

Sites reporting to EPA within defined area:

Superfund	0
Hazardous Waste, Treatment, Storage, and Disposal Facilities	0
Water Dischargers	4
Air Pollution	1
Brownfields	0
Toxic Release Inventory	2

Other community features within defined area:

Schools 1
Hospitals 0
Places of Worship 0

Other environmental data:

Air Non-attainment	Yes
Impaired Waters	Yes

Selected location contains American Indian Reservation Lands*	No
Selected location contains a "Justice40 (CEJST)" disadvantaged community	No
Selected location contains an EPA IRA disadvantaged community	No

Report for Blockgroup: 360550119015

EJScreen Environmental and Socioeconomic Indicators Data

HEALTH INDICATORS								
INDICATOR	HEALTH VALUE	STATE AVERAGE	STATE PERCENTILE	US AVERAGE	US PERCENTILE			
Low Life Expectancy	18%	17%	56	20%	34			
Heart Disease	7.5	5.6	91	6.1	77			
Asthma	9.9	10	52	10	52			
Cancer	9.1	6	97	6.1	96			
Persons with Disabilities	14.1%	11.8%	70	13.4%	60			

		CLIMATE	INDICATORS		
INDICATOR	HEALTH VALUE	STATE AVERAGE	STATE PERCENTILE	US AVERAGE	US PERCENTILE
Flood Risk	10%	11%	67	12%	67
Wildfire Risk	0%	1%	0	14%	0

		CRITICAL SERVI	CE GAPS		
INDICATOR	HEALTH VALUE	STATE AVERAGE	STATE PERCENTILE	US AVERAGE	US PERCENTILE
Broadband Internet	5%	13%	28	14%	27
Lack of Health Insurance	3%	5%	39	9%	20
Housing Burden	No	N/A	N/A	N/A	N/A
Transportation Access	Yes	N/A	N/A	N/A	N/A
Food Desert	No	N/A	N/A	N/A	N/A

Footnotes

Report for Blockgroup: 360550119015

www.epa.gov/ejscreen

Green and Sustainable Remediation Evaluation

Appendix B Green and Sustianable Remediation Evaluation

Feasibility Study

Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Remedial Alternative	Remediation	Greenhouse Gas Emissions	Total Energy Used	Water Consumption	Electricity Usage	Onsite NOx Emissions	Onsite SOx Emissions	Onsite PM10 Emissions	Total NOx Emissions	Total SOx Emissions	Total PM10 Emissions	Non- Hazardous Waste Landfill Space	Topsoil Consumption	Lost Hours - Injury
		metric ton	MMBTU	gallons	MWH	metric ton	metric ton	metric ton	metric ton	metric ton	metric ton	tons	cubic yards	hours
Alternative 1	Well Destruction	1.82E+00	1.97E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.31E-03	1.79E-03	4.40E-04	0.00E+00	0.00E+00	0.00E+00
	TOTAL	1.82E+00	1.97E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.31E-03	1.79E-03	4.40E-04	0.00E+00	0.00E+00	1.51E-02
	Soil Remediation	8.55E+02	1.22E+04	0.00E+00	0.00E+00	4.00E-03	8.39E-04	7.74E-04	1.36E+00	1.20E+00	1.70E+00	7.50E+03	5.00E+02	2.10E+00
	Groundwater Remediation	1.34E+02	1.10E+04	1.76E+03	0.00E+00	1.17E-01	1.27E-02	1.14E-02	1.84E-01	9.88E-02	3.04E-02	1.39E+01	0.00E+00	6.50E-01
Alternative 2	Long-Term Monitoring and O&M	2.25E+03	4.03E+04	8.43E+08	4.00E+03	0.00E+00	0.00E+00	0.00E+00	2.76E+00	3.59E+00	1.17E+00	0.00E+00	0.00E+00	5.52E+00
	Building 101 Demolition	1.49E+01	2.09E+02	0.00E+00	0.00E+00	5.20E-03	9.56E-04	6.27E-04	2.21E-02	8.03E-03	3.73E-02	2.00E+02	0.00E+00	7.37E-02
	TOTAL	3.25E+03	6.36E+04	8.43E+08	4.00E+03	1.26E-01	1.45E-02	1.28E-02	4.32E+00	4.89E+00	2.94E+00	7.71E+03	5.00E+02	8.33E+00
	Soil Remediation	6.25E+02	9.25E+03	8.37E+02	1.64E+00	3.89E-03	8.09E-04	7.52E-04	1.04E+00	9.94E-01	1.20E+00	5.10E+03	5.00E+02	1.46E+00
	Groundwater Remediation	8.65E+01	5.60E+03	2.36E+05	1.79E+00	7.38E-02	7.54E-03	6.64E-03	2.23E-01	2.39E-01	5.59E-02	4.17E+00	0.00E+00	5.25E-01
Alternative 3	Long-Term Monitoring and O&M	6.57E+01	8.50E+02	3.48E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.05E-02	5.20E-04	2.44E-03	0.00E+00	0.00E+00	3.63E-01
	Building 101 Demolition	1.49E+01	2.09E+02	0.00E+00	0.00E+00	5.20E-03	9.56E-04	6.27E-04	2.21E-02	8.03E-03	3.73E-02	2.00E+02	0.00E+00	7.37E-02
	TOTAL	7.92E+02	1.59E+04	2.40E+05	3.43E+00	8.29E-02	9.30E-03	8.02E-03	1.31E+00	1.24E+00	1.29E+00	5.30E+03	5.00E+02	2.42E+00
	Soil Remediation	6.91E+02	9.85E+03	0.00E+00	0.00E+00	3.18E-03	6.67E-04	6.16E-04	1.10E+00	9.76E-01	1.36E+00	6.00E+03	5.00E+02	1.67E+00
	Groundwater Remediation	8.65E+01	5.60E+03	2.36E+05	1.79E+00	7.38E-02	7.54E-03	6.64E-03	2.23E-01	2.39E-01	5.59E-02	4.17E+00	0.00E+00	5.25E-01
Alternative 4	Long-Term Monitoring and O&M	6.57E+01	8.50E+02	3.48E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.05E-02	5.20E-04	2.44E-03	0.00E+00	0.00E+00	3.63E-01
	Building 101 Demolition	1.49E+01	2.09E+02	0.00E+00	0.00E+00	5.20E-03	9.56E-04	6.27E-04	2.21E-02	8.03E-03	3.73E-02	2.00E+02	0.00E+00	7.37E-02
	TOTAL	8.58E+02	1.65E+04	2.39E+05	1.79E+00	8.22E-02	9.16E-03	7.88E-03	1.37E+00	1.22E+00	1.46E+00	6.20E+03	5.00E+02	2.63E+00
	Soil Remediation	6.60E+02	9.42E+03	0.00E+00	0.00E+00	3.00E-03	6.29E-04	5.81E-04	1.06E+00	9.42E-01	1.30E+00	5.70E+03	5.00E+02	1.59E+00
Altornativo 5	Groundwater Remediation	7.83E+02	9.72E+03	1.86E+05	1.49E+00	7.63E-02	8.92E-03	7.41E-03	1.50E+00	2.49E+00	8.29E-01	1.70E+03	5.00E+02	1.03E+00
Alternative 5	Long-Term Monitoring and O&M	8.23E+01	1.06E+03	4.32E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.57E-02	6.47E-04	3.03E-03	0.00E+00	0.00E+00	4.50E-01
	TOTAL	1.53E+03	2.02E+04	1.90E+05	1.49E+00	7.93E-02	9.55E-03	7.99E-03	2.58E+00	3.43E+00	2.13E+00	7.40E+03	1.00E+03	3.07E+00
	Soil Remediation	5.82E+02	8.33E+03	0.00E+00	0.00E+00	3.27E-03	6.84E-04	6.33E-04	9.52E-01	8.75E-01	1.12E+00	4.80E+03	6.85E+02	1.40E+00
Altornative	Groundwater Remediation	1.58E+03	1.31E+04	8.54E+04	7.46E-01	3.46E-02	5.63E-03	4.17E-03	2.74E+00	5.10E+00	1.11E+00	2.61E+02	5.00E+02	1.39E+00
Alternative 6	Long-Term Monitoring and O&M	6.92E+01	8.95E+02	4.00E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.16E-02	5.50E-04	2.57E-03	0.00E+00	0.00E+00	3.82E-01
	TOTAL	2.23E+03	2.24E+04	8.94E+04	7.46E-01	3.79E-02	6.32E-03	4.80E-03	3.71E+00	5.98E+00	2.23E+00	5.06E+03	1.19E+03	3.17E+00

Abbreviations: MMBTU = one million British thermal units MWH = megawatt hours

NOx = nitrogen oxides PM10 = particulate matter with a diameter of 10 micometers or less

SOx = sulfur oxides

Appendix B Green and Sustianable Remediation Evaluation

Feasibility Study

Remedial Alternatives Cost Detail

Table C-1Summary of Costs for Alternative 1

Feasibility Study Report Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Item Description	Estimated Quantity	Unit	Unit Price	Cost
Capital Costs				
Alternative Implementation				
Well Abandonment	20	Well	\$3,600	\$72,000
			Subtotal	\$72,000
Management				
Close-Out Reporting	1	Lump Sum	\$17,000	\$17,000
			Subtotal	\$17,000
			Total Capital Costs	\$89,000
		Construct	ion Contingency (20%)	\$14,400

\$110,000	CAPITAL COST (ROUNDED)
\$0	ONE TIME FUTURE COSTS
\$0	O&M COST
\$0	LTM COST
\$110,000	TOTAL UNDISCOUNTED COST (30 YEARS)
\$110,000	PRESENT VALUE

Table C-2Summary of Costs for Alternative 2

Feasibility Study Report Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Item Description	Estimated Quantity	Unit	Unit Price	Cost
Capital Costs				
Site Preparation / Final Remedial Design				
Demolition of Buildings 52, 64, 73, and 101	1	Lump Sum	\$870,000	\$870,000
Pre-Design Investigation	1	Lump Sum	\$80,000	\$80,000
Site Preparation and Submittals	1	Lump Sum	\$170,000	\$170,000
			Subtotal	\$1,120,000
Alternative Implementation		<u> </u>		
Installation of Sheet Piling	2,500	Vertical Square Feet	\$50	\$125,000
Excavation and Loadout of Soil Source Areas	4,400	Cubic Yard	\$70	\$308,000
Transportation and Disposal of Excavated Soils	7,500	Ton	\$90	\$675,000
Backfill of Excavated Areas	7,500	Ton	\$45	\$337,500
Site Restoration Post Excavation	1	Lump Sum	\$40,000	\$40,000
System Installation Preparation	1	Lump Sum	\$30,000	\$30,000
Extraction Well Installation, Trenching, and Infrastructure	1	Lump Sum	\$790,000	\$790,000
Treatment System and Building	1	Lump Sum	\$330,000	\$330,000
			Subtotal	\$2,635,500
Management				
Engineering Design and Coordination	1	Lump Sum	\$140,000	\$140,000
Construction Oversight	1	Lump Sum	\$640,000	\$640,000
			Subtotal	\$780,000
			Total Capital Cost	\$4,535,500
		Constructio	n Contingency (20%)	\$751,100
Operation and Maintenance (O&M) Costs				
Annual Operation and Maintenance				
Inspection (twice a week) and Oversight	1	Per Year	\$165,000	\$165,000
System Expenses	1	Per Year	\$160,000	\$160,000
Data Compilation, Oversight, and Reporting	1	Per Year	\$25,000	\$25.000
			Subtotal	\$350,000
Annual Long-Term Monitoring (LTM)				
Semi-Annual Sampling and Analysis for 20 Wells	1	Per Year	\$50,000	\$50 000
Semi-Annual Data Analysis and Reporting	1	Per Year	\$30,000	\$30,000
	· ·		Subtotal	\$80,000

CAPITAL COST (ROUNDED) \$5,290,000

ONE TIME FUTURE COSTS \$0 \$350,000 ANNUAL O&M ANNUAL LTM \$80,000 ANNUAL O&M and LTM \$430,000 TOTAL O&M COST (20 YEARS) \$7,000,000 TOTAL LTM COST (20 YEARS) \$1,600,000 TOTAL UNDISCOUNTED COST (20 YEARS) \$14,750,000 PRESENT VALUE (20 Years) \$13,050,000

Table C-3Summary of Costs for Alternative 3

Feasibility Study Report Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Item Description	Estimated Quantity	Unit	Unit Price	Cost
Capital Costs				
Site Preparation / Final Remedial Design				
Demolition of Buildings 52, 64, 73, and 101	1	Lump Sum	\$870,000	\$870,000
Pre-Design Investigation	1	Lump Sum	\$70,000	\$70,000
Site Preparation and Submittals	1	Lump Sum	\$150,000	\$150,000
			Subtotal	\$1,090,000
Alternative Implementation			A-0	* 10 1 = 00
Installation of Sheet Piling	2,030	Vertical Square Feet	\$50	\$101,500
Excavation and Loadout of Soil Source Areas	3,000	Cubic Yard	\$70	\$210,000
Excavation and Staging for Mixing Area	500		\$35	\$17,500
I ransportation and Disposal of Excavated Solis	5,100	Ton	\$90	\$459,000
Backfill of Excavated Areas	5,100	I on	\$45	\$229,500
Site Restoration Post Excavation	1		\$40,000	\$40,000
Terrabond ® 3% By Weight	26	I on	\$400	\$10,200
Amendment Mixing and Backfill of Treated Solls	500		\$50	\$25,000
Ovident (active permanagenets)	FR 000	Lump Sum	\$94,000	\$94,000
Oxidant (Solium permanganate)	58,000	Poullus	\$3 \$20,000	\$192,000
Other ISCO Injection Supplies / Analytical	0	Lump Sum	\$30,000 \$3,640	\$30,000 \$32,900
Colleidel Corbon Injection Subcontractore	9		\$ა,040 ¢120.000	\$32,000 \$120,000
	169	Lump Sum	\$120,000 \$5,000	\$120,000
Other Colloidal Carbon Injection Supplies / Apolytical	100		\$5,000	ა040,000 \$20,000
	1		\$30,000 Quiltatat	\$30,000
Managomont			Subtotal	\$2,431,500
Engineering Design and Coordination	1		000 002	000 002
	1		\$30,000	\$90,000
	1	Eurip Sum	\$350,000 Subtotal	\$350,000
			Total Canital Cost	\$3 961 500
		Construction	Contingency (20%)	\$704,300
Operation and Maintenance (O&M) Costs				
ISCO Performance Monitoring (Year 2)				
Baseline and 7 post-monitoring sampling events	12	Well	\$15 500	\$190,000
Reporting	1		\$30,000	\$30,000
roporting	1	Eurip Guin	Subtotal	\$220,000
Follow-up ISCO Injection (Year 4)			Subtotal	φ220,000
ISCO Injection Subcontractors	1		\$70,000	\$70.000
Ovident (active norman consta)	20.000	Earlip Sain	\$70,000 ¢2	\$70,000
Oxidant (sodium permanganate)	38,280	Pound	\$3	\$127,000
Other Injection Supplies/Analytical	1	Lump Sum	\$30,000	\$30,000
Oversight	1	Lump Sum	\$40,000	\$40,000
			Subtotal	\$267,000
Annual Long-Term Monitoring		1	1 1	
Semi-Annual Sampling and Analysis for 20 Wells	1	Per Year	\$50,000	\$50,000
Semi-Annual Data Analysis and Reporting	1	Per Year	\$30,000	\$30,000
			Subtotal	\$80,000

CAPITAL COST (ROUNDED)	\$4,670,000
ONE-TIME FUTURE COSTS (YEAR 2)	\$220,000
ONE-TIME FUTURE COSTS (YEAR 4)	\$270,000
ANNUAL LTM COST	\$80,000
UNDISCOUNTED LTM COST (15 YEARS)	\$1,200,000
TOTAL UNDISCOUNTED COST (15 YEARS)	\$6,360,000
PRESENT VALUE ONE-TIME FUTURE COSTS (YEAR 2) (ROUNDED)	\$216,000
PRESENT VALUE ONE-TIME FUTURE COSTS (YEAR 4) (ROUNDED)	\$259,000
PRESENT VALUE OF LTM	\$1,109,000
Present Value (15 Years)	\$6,254,000

Table C-4Summary of Costs for Alternative 4

Feasibility Study Report Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Item Description	Estimated Quantity	Unit	Unit Price	Cost
Capital Costs				
Site Preparation / Final Remedial Design				
Demolition of Buildings 52, 64, 73, and 101	1	Lump Sum	\$870,000	\$870,000
Pre-Design Investigation	1	Lump Sum	\$70,000	\$70,000
Site Preparation and Submittals	1	Lump Sum	\$160,000	\$160,000
			Subtotal	\$1,100,000
Alternative Implementation				
Installation of Sheet Piling	2,030	Vertical Square Feet	\$50	\$101,500
Excavation and Loadout of Soil Source Areas	3,500	Cubic Yard	\$70	\$245,000
Transportation and Disposal of Excavated Soils	6,000	Ton	\$90	\$540,000
Backfill of Excavated Areas	6,000	Ton	\$45	\$270,000
Site Restoration Post Excavation	1	Lump Sum	\$40,000	\$40,000
In-Situ Chemical Oxidation (ISCO) Injection Subcontractors	1	Lump Sum	\$94,000	\$94,000
Oxidant (sodium permanganate)	58,000	Pounds	\$3	\$192,000
Other ISCO Injection Supplies / Analytical	1	Lump Sum	\$30,000	\$30,000
ISCO Performance Monitoring Well Installation and Initial Sampling Round	9	Well	\$3,460	\$31,100
Colloidal Carbon Injection Subcontractors	1	Lump Sum	\$120,000	\$120,000
Colloidal Carbon	168	Injection Point	\$5,000	\$840,000
Other Colloidal Carbon Injection Supplies / Analytical	1	Lump Sum	\$30,000	\$30,000
			Subtotal	\$2,533,600
Management		•		
Engineering Design and Coordination	1	Lump Sum	\$90,000	\$90,000
Construction Oversight	1	Lump Sum	\$350,000	\$350,000
			Subtotal	\$440,000
			Total Capital Cost	\$4,073,600
		Construction	Contingency (20%)	\$726,720
Operation and Maintenance (O&M) Costs				
ISCO Performance Monitoring (Year 2)				
Baseline and 7 post-monitoring sampling events	12	Well	\$15,500	\$190,000
Reporting	1	Lump Sum	\$30,000	\$30,000
		•	Subtotal	\$220.000
Follow-up ISCO Injection (Year 4)				
ISCO Injection Subcontractors	1	Lump Sum	\$70,000	\$70,000
Oxidant (sodium permanganate)	38 280	Pound	\$3	\$127,000
Other Injection Supplies/Analytical	1	Lump Sum	\$30,000	\$30,000
Oversight	1	Lump Sum	\$40,000	\$40,000
Oversight	<u> </u>		Subtotal	\$267 000
Annual Long-Term Monitoring			Gubiolai	Ψ207,000
Semi-Annual Sampling and Analysis for 20 Wells	1	Per Veer	\$50 በበበ	¢50 000
Somi Annual Data Analysis and Panarting	1	Per Veer	\$30,000 \$20,000	φου,000 ¢οο.οοο
Semi-Annual Data Analysis and Reporting	I	PerYear	\$30,000 Subtotal	\$30,000 \$80,000
			Sublotai	φου,000

CAPITAL COST (ROUNDED)	\$4,810,000
ONE-TIME FUTURE COSTS (YEAR 2)	\$220,000
ONE TIME FUTURE COSTS (YEAR 4)	\$270,000
ANNUAL LTM COST	\$80,000
UNDISCOUNTED LTM COST (15 YEARS)	\$1,200,000
TOTAL UNDISCOUNTED COST (15 YEARS)	\$6,500,000
PRESENT VALUE ONE-TIME FUTURE COSTS (YEAR 2) (ROUNDED)	\$216,000
PRESENT VALUE ONE-TIME FUTURE COSTS (YEAR 4) (ROUNDED)	\$259,000
PRESENT VALUE OF LTM	\$1,109,000
Present Value (15 Years)	\$6,474,000

https://arcadiso365.sharepoint.com/teams/portfolio-PF-81697616/Shared Documents/Robinson/FS/FS Report/Tables/Robinson FS Table 4-1 & App C

Table C-5Summary of Costs for Alternative 5

Feasibility Study Report Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Item Description	Estimated Quantity	Unit	Unit Price	Cost
Capital Costs				
Site Preparation / Final Remedial Design				
Demolition of Buildings 52, 64, and 73	1	Lump Sum	\$790,000	\$790,000
Pre-Design Investigation	1	Lump Sum	\$110,000	\$110,000
Site Preparation and Submittals	1	Lump Sum	\$390,000	\$390,000
			Subtotal	\$1,290,000
Alternative Implementation				
Installation of Sheet Piling	2,030	Vertical Square Feet	\$50	\$101,500
Excavation and Loadout of Soil Source Areas	3,300	Cubic Yard	\$70	\$231,000
Transportation and Disposal of Excavated Soils	5,700	Ton	\$90	\$513,000
Backfill of Excavated Areas	5,700	Ton	\$45	\$256,500
Site Restoration Post Excavation	1	Lump Sum	\$40,000	\$40,000
In-Situ Chemical Oxidation (ISCO) Injection Subcontractors	1	Lump Sum	\$72,000	\$72,000
Oxidant (sodium permanganate)	40,000	Pounds	\$3	\$132,000
Other ISCO Injection Supplies / Analytical	1	Lump Sum	\$20,000	\$20,000
ISCO Performance Monitoring Well Installation and Initial Sampling Round	9	Well	\$2,440	\$22,000
Permeable Reactive Barrier (PRB) Installation Subcontractor	1	Lump Sum	\$350,000	\$350,000
Loadout, Transportation, and Disposal of Soil from PRB Areas	1,000	Cubic Yard	\$125	\$125,000
PRB Zero Valent Iron	473	Ton	\$1,200	\$567,000
PRB Sand for construction	1,400	Ton	\$55	\$77,000
PRB Restoration (surface completion and restoration of the installation area,				
removing the working platforms, reseeding)	1	Lump Sum	\$40,000	\$40,000
Colloidal Carbon Injection Subcontractors	1	Lump Sum	\$120,000	\$120,000
Colloidal Carbon	168	Injection Point	\$5,000	\$840,000
Other Colloidal Carbon Injection Supplies / Analytical	1	Lump Sum	\$30,000	\$30,000
			Subtotal	\$3,537,000
Management				. , ,
Engineering Design and Coordination	1	Lump Sum	\$90,000	\$90,000
Construction Oversight	1	Lump Sum	\$400,000	\$400,000
			Subtotal	\$490,000
			Total Capital Cost	\$5,317,000
		Constructio	n Contingency (20%)	\$965,400
Operation and Maintenance (O&M) Costs				
ISCO Performance Monitoring (Year 2)				
Baseline and 7 post-monitoring sampling events	8	Well	\$19,400	\$160.000
Reporting	1		\$30,000	\$30,000
	1	Lump Gum	Subtotal	\$190,000
Follow up ISCO Injection (Year 4)			Subtotal	φ150,000
	1	Lump Cum	¢48.000	¢49.000
	1	Lump Sum	\$48,000	\$48,000
Oxidant (sodium permanganate)	26,400	Pound	\$3	\$88,000
Other Injection Supplies/Analytical	1	Lump Sum	\$24,000	\$24,000
Oversight	1	Lump Sum	\$30,000	\$30,000
			Subtotal	\$190,000
Annual Long-Term Monitoring				
Semi-Annual Sampling and Analysis for 20 Wells	1	Per Year	\$50,000	\$50,000
Semi-Annual Data Analysis and Reporting	1	Per Year	\$30,000	\$30,000
			Subtotal	\$80,000

\$6,290,000	CAPITAL COST (ROUNDED)
\$190,000	ONE-TIME FUTURE COSTS (YEAR 2)
\$190,000	ONE TIME FUTURE COSTS (YEAR 4)
\$80,000	ANNUAL LTM COST
\$1,600,000	UNDISCOUNTED LTM COST (20 YEARS)
\$8,270,000	TOTAL UNDISCOUNTED COST (20 YEARS)
\$186,000	PRESENT VALUE ONE-TIME FUTURE COSTS (YEAR 2) (ROUNDED)
\$183,000	PRESENT VALUE ONE-TIME FUTURE COSTS (YEAR 4) (ROUNDED)
\$1,109,000	PRESENT VALUE OF LTM
\$7,848,000	Present Value (20 Years)

Feasibility Study Report Former George A. Robinson Company, Inc. Site 477 Whitney Road, Penfield, New York

Item Description	Estimated Quantity	Unit	Unit Price	Cost
Capital Costs	quantity			
Site Preparation / Final Remedial Design				
Demolition of Buildings 52, 64, and 73	1	Lump Sum	\$790,000	\$790,000
Pre-Design Investigation	1	Lump Sum	\$110,000	\$110,000
Site Preparation and Submittals	1	Lump Sum	\$740,000	\$740,000
			Subtotal	\$1,640,000
Alternative Implementation				
Installation of Sheet Piling	2,030	Vertical Square Feet	\$50	\$101,500
Excavation and Loadout of Soil Source Areas	2,800	Cubic Yard	\$70	\$196,000
Transportation and Disposal of Excavated Soils	4,800	Ton	\$90	\$432,000
Backfill of Excavated Areas	4,800	Ton	\$45	\$216,000
1-Foot Cover	315	Ton	\$45	\$14,000
Site Restoration Post Excavation	1	Lump Sum	\$40,000	\$40,000
Permeable Reactive Barrier (PRB) Installation Subcontractor	1	Lump Sum	\$860,000	\$860,000
Loadout, Transportation, and Disposal of Soil from PRB Areas	2,300	Cubic Yard	\$125	\$287,500
PRB Zero Valent Iron	1,087	Ton	\$1,200	\$1,304,100
PRB Sand for construction	3,200	Ton	\$55	\$176,000
PRB Restoration (surface completion and restoration of the				
installation area, removing the working platforms, reseeding)	1	Lump Sum	\$40,000	\$40,000
Colloidal Carbon Injection Subcontractors	1	Lump Sum	\$120,000	\$120,000
Colloidal Carbon	168	Injection Point	\$5,000	\$840,000
Other Colloidal Carbon Injection Supplies / Analytical	1	Lump Sum	\$30,000	\$30,000
			Subtotal	\$4,657,100
Management	•			
Engineering Design and Coordination	1	Lump Sum	\$90,000	\$90,000
Construction Oversight	1	Lump Sum	\$410,000	\$410,000
			Subtotal	\$500,000
			Total Capital Cost	\$6,797,100
		Constructio	n Contingency (20%)	\$1,259,420
Long-Term Monitoring (LTM) Costs				
Annual Long-Term Monitoring				
Semi-Annual Sampling and Analysis for 20 Wells	1	Per Year	\$50,000	\$50,000
Semi-Annual Data Analysis and Reporting	1	Per Year	\$30,000	\$30.000
			Subtotal	\$80,000

CAPITAL COST (ROUNDED)	\$8,060,000
ONE TIME FUTURE COSTS	\$0
TOTAL O&M COST	\$0
ANNUAL LTM COST	\$80,000
UNDISCOUNTED LTM COSTS (YEARS 1-20)	\$1,600,000
TOTAL UNDISCOUNTED COST (20 YEARS)	\$9,660,000
PRESENT VALUE OF LTM	\$1,444,000
Present Value (20 Years)	\$9,504,000

Arcadis of New York, Inc. 201 Fuller Road, Suite 201 Albany, NY 12203 United States Phone: 518 250 7300 Fax: www.arcadis.com