www.haleyaldrich.com

2016 PERIODIC REVIEW REPORT FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

by Haley & Aldrich of New York Rochester, New York

for Xerox Corporation Webster, New York

File No. 42227-404 February 2017

Haley & Aldrich of New York 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

10 February 2017 File No. 42227-404

Xerox Corporation 800 Phillips Road Bldg. 205-99F Webster, New York 14580

Attention: Mr. Eliott Duffney

Subject: 2016 Periodic Review Report Former Xerox Building 801 Facility Henrietta, New York

Dear Mr. Duffney:

Haley & Aldrich of New York is pleased to provide Xerox Corporation with this annual Periodic Review Report (PRR) for the Former Xerox Building 801 Facility in Henrietta, New York. This report summarizes activities performed and presents data collected during the period 1 January 2016 through 31 December 2016, and is intended to satisfy the PRR requirements and annual reporting requirements described in the NYSDEC-approved 30 July 2015 Revised Site Management Plan.

This report is being submitted to the New York State Department of Environmental Conservation (NYSDEC) in electronic (Adobe Acrobat) format conforming to the electronic document submission requirements of the NYSDEC. An additional copy of Appendix A (Annual Institutional and Engineering Controls Certification Form) is also being submitted in hard copy format to the NYSDEC as requested.

Please do not hesitate to contact us should you have any questions regarding this report.

Sincerely yours, HALEY & ALDRICH OF NEW YORK

Jonathan M. Sanger Environmental Specialist

Janice D. Szucs, P.E. Project Manager

c: Harris Corporation; Attn: Craig Donnan

G:\Xerox\Henrietta B801\Reporting - PRR\2016 Report 7\2017-0210-HANY-2016_Xerox_Annual_Report_F.docx

Executive Summary

This is the annual Periodic Review Report (PRR) for 2016 for the Former Xerox Building 801 Facility located at 1350 Jefferson Rd, Henrietta, NY (Site). This report presents updates to current Site conditions, confirms that previously investigated and remediated Site risks are effectively managed, and summarizes activities performed and data collected during the period 1 January 2016 through 31 December 2016. This report is intended to satisfy the requirements described in the NYSDEC-approved 30 July 2015 Revised Site Management Plan (SMP). The PRR Annual Institutional and Engineering Controls Certification Form is included in Appendix A.

Xerox has implemented several remedial actions at this Site from the early 1990s through 2006, when active remediation was deemed complete by the NYSDEC. An overall summary of the Remedial Actions and site management activities performed at the Site and timeframes is as follows:

- 1. Groundwater pump and treat to manage plume migration (1990 to 1994).
- 2. Stormwater redirection around the source area (1995).
- 3. 2-PHASE Extraction to reduce soil and groundwater residual concentrations (1994 to 2001).
- 4. HRC-S (biological amendment) pilot test and larger-scale injection to further reduce soil and groundwater residuals (2003 to 2006).
- 5. Installation and testing of a sub-slab depressurization (SSD) system (2006 to 2007).
- 6. Sale of the property to Harris Corporation (Harris) on 15 March 2010. Xerox vacated the building in September 2010 and Harris started renovations to the building. As part of the renovations, modifications and expansion to the existing SSD system were performed. Renovations were substantially completed in September 2011. Harris currently occupies the building.

Active remediation for the Site was completed in August 2006 with the implementation of the largescale biological amendment addition to stimulate natural degradation processes over the long term. No further remediation has been conducted, nor is contemplated based on the current site conditions. Site activities are now governed by a SMP for long term management of remaining contamination as required by the NYSDEC, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance, and (4) periodic reporting. SMP activities include annual groundwater monitoring; operation, maintenance, and monitoring of a sub-slab depressurization (SSD) system; management of soil cover and adherence to management protocols for the Soil and Groundwater Management Area (SGMA) of the Site; and annual certification that prescribed Site engineering and institutional controls (EC/ICs) are still in place.

During the 2016 reporting period, the EC/ICs onsite were in place and functioned effectively.

Based on the results of the most recent groundwater sampling event, the plume remains confined within the footprint of the defined SGMA. Overall, the data collected during the most recent monitoring event is consistent with the past monitoring events since active remediation was deemed complete by the NYSDEC, with the exception of MW-19. The total volatile organic compound (VOC) concentration detected at MW-19 was 7,953 ug/L in 2016, approximately an order of magnitude greater than 606 ug/L total VOCs detected in 2015, and higher than previous sampling events dating back to 2006 when remediation was deemed complete at the Site. Conditions at the Site have not changed since the

previous monitoring event in 2015, except for the average 4 foot drop in water elevations at the Site. In general, the source area well data showed an overall decrease in chlorinated compounds of concern, a static condition, or a condition of decreasing parent compounds and increasing daughter compounds, which is expected under the degradation scenario. Xerox plans to resample MW-19 during first quarter 2017 to verify the anomalous concentrations detected in 2016.

During the reporting period, there was one SSD system shutdown on 16 August 2016, due to a power surge at the facility. When power was restored to the system, two fans were discovered inoperable and required replacement. The two fans were replaced within three weeks of the reported shutdown, and full system operation was restored. The SSD system continues to operate effectively within the design zone of influence and is mitigating the potential for vapor impacts to indoor air within the Former Xerox Building 801.

A visual inspection of the SGMA has confirmed that protective cover and fencing to limit access remain in place and have not been disturbed. Under the sale agreement, Harris is responsible for notifying NYSDEC of any planned excavations within the SGMA and reporting SGMA activities to Xerox, which, if conducted, will be included in future summary reports. During 2016, there were no ground intrusive activities that took place within the SGMA. Outside of the SGMA, Site improvement work included final hydro seeding of the berm on the north end of the parking lot.

Exec List List	cutive of Tab of Figu	Summary les ures	ii v v
1.	Site	Activities	1
2.	Gro	undwater and Surface Water Monitoring	2
	2.1 2.2 2.3	SOURCE AREA WELLS – HRC-S INJECTION AREA DOWNGRADIENT WELLS SURFACE WATER	2 2 3
3.	Sub	-Slab Depressurization System	4
	3.1 3.2	SYSTEM OPERATION & MAINTENANCE SUMMARY SUB-SLAB VACUUM MONITORING	4 4
4.	SGN	/A Activities and Site Improvements	5
5.	Rec	ommendations and Future Activities	6

Tables	
--------	--

Figures

Appendix A – Annual Engineering and Institutional Controls Certification Form

Appendix B – Laboratory Analytical Data Report

Appendix C – Time vs. Concentration Graphs

Appendix D – NYSDEC Acceptance of Resampling

Page

List of Tables

Table No.	Title
I	Total VOCs in Groundwater Since 2006
II	Site Water Level Data
III	Groundwater & Surface Water Monitoring Analytical Summary
IV	SSD System Vacuum Floor Point Readings
V	SSD Fan Vacuum Readings

List of Figures

Figure No.	Title
1	Project Locus
2	Site Plan
3	Sub-Slab Depressurization System Plan – As Built
4	Upper Aquifer Groundwater Contours 2016

1. Site Activities

Activities performed during the reporting period as stipulated by the 30 July 2015 Revised Site Management Plan (SMP) for the Former Xerox Building 801 Facility located at 1350 Jefferson Rd, Henrietta, NY (Site) are summarized below. See Figure 1 for the Site location.

- Site-wide static groundwater levels and groundwater samples were obtained by ALS Environmental of Rochester, New York on 30 and 31 August 2016.
- Vacuum testing was conducted to evaluate the sub-slab depressurization (SSD) system performance on 8 September 2016 by Haley & Aldrich.
- During 2016, there were no ground intrusive activities that took place within the SGMA. Outside of the SGMA, site improvement work included final hydro seeding of the berm on the north end of the parking lot.

During the 2016 reporting period, the engineering and institutional controls onsite were in place and functioned effectively. The Institutional and Engineering Controls Certification Form documenting that site management requirements are being met is included as Appendix A and is also being submitted in hard copy format to NYSDEC.

2. Groundwater and Surface Water Monitoring

On 30 and 31 August 2016, groundwater samples were collected from twelve (12) onsite wells and two of the three (3) surface water locations as required by the SMP (Figure 2). Sampling and laboratory analysis were conducted by ALS Environmental of Rochester, New York. Laboratory analytical results are summarized in Tables I and III, and in the sections below. Table III provides historical data from 2006 to the present time in order to show recent trends since the completion of the larger-scale HRC-S injection in 2006 and as confirmation that analytical results reflect a stable plume condition. Data prior to 2006 can be found in previous semi-annual reports prepared for the Site. The laboratory data report is included in Appendix B. A graphical depiction of the data is included as Appendix C.

Static groundwater levels were collected from twelve (12) onsite wells on 30 August 2016. The data is summarized in Table II. Groundwater contours based on the data are included on Figure 4. Groundwater elevations are on average approximately 4 feet lower than 2015 groundwater elevations and the lowest observed since September 2008. Groundwater flow direction and gradients remain consistent with past monitoring events. Groundwater flows to the north-northeast, which is consistent with past monitoring results.

2.1 SOURCE AREA WELLS – HRC-S INJECTION AREA

Five well locations VE-6, VE-10, VE-12, VE-15, and RW-4 are located within what was the larger-scale HRC-S Injection Area, and herein referred to as the residual Source Area. Refer to Figure 2 for the location of those wells. The analytical data is summarized in Tables I and III. Refer to the figures in Appendix C for a graphical depiction of the data trends with time.

Volatile organic compound (VOC) data from the residual source area is consistent with historical data and indicate that the enhanced reductive dechlorination process stimulated by the injection of the HRC-S is active and continuing in the remediation area. VE-10, VE-12, and VE-15 in particular continue to show strong evidence of the reductive dechlorination pathway with overall decreasing levels of cis-1,2dichloroethene (cis-1,2-DCE) and 1,1-dichloroethane (1,1-DCA) and corresponding increasing or higher levels of daughter products vinyl chloride and chloroethane as expected due to the reductive dechlorination process. Parent compounds tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1trichloroethane (1,1,1-TCA) were not detected in any of the source area wells during the 2016 sampling event, with the exception of trace amounts of TCE in RW-4 (8 ug/L) and 1,1,1-TCA in VE-6 (710 ug/L), which has decreased compared to the 2015 sampling event concentration (1,600 ug/L 1,1,1-TCA). Concentrations of parent compounds detected remain well below levels observed before remediation was conducted at the site. In general, the source area well data showed an overall decrease in chlorinated compounds of concern, a static condition, or a condition of decreasing parent compounds and increasing daughter compounds, which is expected under the degradation scenario. The groundwater analytical results indicate that the reductive dechlorination process is progressing naturally to completion, gradually reducing residual contaminant levels and assisting with maintaining overall plume stability as intended.

2.2 DOWNGRADIENT WELLS

The downgradient well locations are MW-2, MW-10, MW-13S, MW-16, MW-18S, and MW-19. They are primarily located outside and downgradient of the HRC-S injection area. Refer to Figure 2 for the

location of these wells. The analytical data is summarized in Tables I and III. Refer to the figure in Appendix C for a graphical depiction of the total VOC data trends with time.

Parent VOC concentrations (PCE, TCE, and 1,1,1-TCA) were generally consistent with the previous sampling event and historical trends, with the exception of MW-19 which had an increase in VOC concentrations in 2016 (7,953 ug/L total VOCs) compared to 2015 (606 ug/L total VOCs). Analytical results indicated an increase of parent and daughter compounds. Concentrations of parent compounds 1,1,1-TCA (340 ug/L), PCE (120 ug/L) and TCE (3,100 ug/L) showed a large increase compared to the results of the 2015 sampling event (36 ug/L 1,1,1-TCA, non-detect < 5 ug/L PCE, 99 ug/L TCE). Concentrations in daughter compounds 1,1-DCA (320 ug/L), vinyl chloride (190 ug/L) and cis-1,2-DCE (3,700 ug/L) showed a large increase compared to results from 2015 (73 ug/L 1,1-DCA, 32 ug/L vinyl chloride, 340 ug/L cis-1,1-DCE). Concentration for total VOCs detected was higher in the 2016 sampling event than previous sampling events dating back to 2006 when remediation was deemed complete at the Site. Conditions at the Site have not changed since 2015, except for the overall drop in water elevations in this area. Water elevation in MW-19 decreased by 5.53 feet from the 2015 sampling event. The increase in concentrations at MW-19 was not observed in other downgradient wells. Well MW-10, located upgradient of MW-19, was consistent in parent and daughter product concentrations in 2016 (1,012 ug/L total VOCs) compared to the previous year (1,100 ug/L total VOCs). Total VOC concentrations at MW-13S (5.4 ug/L total VOCs) indicated a decrease compared to the previous year (76.8 ug/L total VOCs). VOC concentrations at wells MW-2, MW-16, and MW-18S, located near or just outside the downgradient edge of the SGMA, remain non-detect and are consistent with historical results. These results indicate the plume remains within the limits of the SGMA. Xerox plans to resample MW-19 during first quarter 2017 to verify the anomalous concentrations detected in 2016.

Resampling of MW-19

As specified in the SMP, groundwater monitoring wells are routinely sampled using a submersible pump for purging and a bailer for sample collection. Since the Site is not owned or occupied by Xerox, the management and disposal of groundwater sampling purge water is impractical for resampling of just one well. In order to eliminate purge water associated with resampling MW-19, Xerox will be resampling using a passive diffusion bag (PDB) in lieu of the SMP-specified sampling method, as approved by the NYSDEC in an email dated 8 February 2017 (Appendix D). The PDB will be left in the well for a minimum of two weeks prior to collecting the sample so that it may equilibrate with the surrounding groundwater. To serve as a control for comparison of the results of sampling via PDB versus purging with a pump and bailing, another PDB will be concurrently placed in MW-10, where concentrations have remained relatively consistent for the past few years.

2.3 SURFACE WATER

Samples were collected from two of the three surface water locations: SW-34, SW-35. SW-29, which historically has non-detectable VOC concentrations, was dry during the sampling event and therefore was not sampled. VOCs were not detected in SW-34 and SW-35 samples. Refer to figure 2 for locations of surface water samples. Analytical results are summarized in Table III.

3. Sub-Slab Depressurization System

3.1 SYSTEM OPERATION & MAINTENANCE SUMMARY

The sub-slab depressurization system continues to operate at the Site. During the 2016 reporting period, a system shutdown occurred on 16 August 2016 due to a power surge at the facility. When power was restored to the system, Fan-1 and Fan-3 were found inoperable and required replacement. Fan-1 and Fan-3 were replaced and placed back online on 29 August (Fan-1) and 8 September (Fan-3). There were no other shutdowns of the system noted during 2016 and observed sub-slab vacuum readings are consistent with historical levels.

3.2 SUB-SLAB VACUUM MONITORING

Overall, monitoring results from vacuum monitoring points (Figure 3) collected on 8 September 2016 show that the system is working effectively within the zone of influence. Sub-slab vacuum readings were collected from vacuum monitoring floor points using a handheld manometer. The 2016 results as well as historical results are included on Table IV. Vacuum measurements taken from these points met the design criteria of 0.002 inches of water column. In addition to vacuum monitoring at floor points, readings from suction points were collected using permanently installed gauges. Readings from the suction points indicated that the seven SSD system fans in operation during the monitoring event are providing adequate coverage of the area where SSD system is applied. Suction point vacuum readings are included in Table V.

4. SGMA Activities and Site Improvements

A visual inspection of the SGMA has confirmed that protective cover and fencing to limit access remain in place and have not been disturbed. During June 2013, Harris had discussions with the NYSDEC regarding reporting and documentation of potential site improvements that may be made outside of the SGMA. The NYSDEC requested that these site improvements be documented in the PRR. During 2016, there were no ground intrusive activities that took place within the SGMA. Outside of the SGMA, Site improvement work included final hydro seeding of the berm on the north end of the parking lot.

5. Recommendations and Future Activities

- Resampling of MW-19, and MW-10 as a control, using a passive diffusion bags during first quarter 2017
- Continued groundwater well monitoring and sampling according to the SMP
- Continued monitoring of the SSDS
- Continued annual reporting as stipulated in the Site Management Plan

WELL ID	Jun-06	Nov-06/Dec-06	Jun-07	Dec-07	Jun-08	Dec-08	Jun-09	Jun-10/Jul-10	Oct-11	Aug-12	Sep-13	Jul-14	Aug-15	Aug-16
RW-4	76,700	17,760	4,782	29,130	26,520	4,540	1,340	1,230	10,631	940	666	1,823	747	227
MW-2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-10	1,402	1,792	924	1,848	2,524	2,470	1,417	1,002	2,668	2,885	869	1,686	1,100	1,012
MW-13S	281	183	109	117	98.2	73.6	95.0	75.7	63.4	71	74	68.4	76.8	5.4
MW-16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-18S	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-19	1,778	2,220	2,281	183	761	107.9	725	1,410	518	1,371	997	303	606	7,953
MW-24S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
VE-6	50,900	23,430	42,020	3,300	18,830	9,770	25,380	80,970	46,000	39,300	44,400	49,500	25,900	16,530
VE-10	54,400	48,300	81,600	43,700	24,000	47,650	90,400	43,800	62,000	76,600	62,900	44,100	44,600	88,000
VE-12	88,900	48,100	74,200	75,800	85,400	120,300	127,500	97,000	173,800	101,700	69,400	97,800	68,400	40,900
VE-15	57,600	14,440	50,100	8,800	36,800	30,250	26,100	43,800	8,207	1,592	1,248	4,909	830	530

Notes:

1. All concentrations are in ug/L.

Concentrations are rounded to the whole number.
 "ND" Indicates not detected above laboratory detection limit.

Wall ID	Potoronoo Elovation	Depth to	o Water
Weilind		August 2015	August 2016
RW-4	498.84	2.9	5.77
MW-2	498.49	3.42	6.68
MW-10	498.45	3.15	8.11
MW-13S	498.35	5.49	12.02
MW-16	498.83	6.83	11.58
MW-18S	498.81	5.13	11.89
MW-19	498.53	4.89	10.42
MW-24S	503.44	3.97	5.38
VE-6	498.93	3.3	6.58
VE-10	500.04	9.34	6.12
VE-12	501.09	4.12	5.33
VE-15	499.73	3.58	6.48

Notes:

1. Elevations measured in feet above mean sea level.

2. Depth to water measured from the top of the well riser.

3. Water levels measured by ALS.

Sample ID							VE-12															VE-	10								
Analyte or Method	12/12/2006	6/14/2007	12/18/2007	6/12/2008	12/18/2008	6/22/2009	7/1/2010	10/11/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	11/23/2003	11/24/2003 DUPLICATE	12/2/2004	3/29/2005	6/23/2006	12/12/2006	6/13/2007	12/18/2007	6/12/2008	12/17/2008	6/22/2009	7/1/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016
VOCs 8260B (ug/L) Acetone	ND (4000)	ND (4000)	ND (4000)	ND (8000)	ND (8000)	ND (4000)	ND (10000)	ND (10000)	ND (2500)	ND (2500) J	ND (2500)	ND (2500)	ND (2000)	ND (1000)	ND (2000)	ND (1000)	ND (1000)	ND (5000)	ND (5000)	ND (8000)	ND (5000)	ND (4000)	ND (1000)	ND (4000)	ND (5000)	ND (5000)	ND (2500)	ND (2500) .I	ND (2500)	ND (2000)	ND (5.000)
Benzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1 000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2 500)
Bromodichloromethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Bromoform	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1.000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Bromomethane (Methyl Bromide)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
2-Butanone (Methyl Ethyl Ketone)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)
Carbon Disulfide	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (5,000)
Carbon Tetrachloride	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Chlorobenzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Chloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	1,400	2,700	4,800	9,200	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	1,300	2,100	1,800	2,000	2,600	2,900	2,100	4,500	5,000
Chloroform (Trichloromethane)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Chloromethane (Methyl Chloride)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Dibromochloromethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
1,1-Dichloroethane	14,000	9,600	11,000	7,200	18,000	8,800	11,000	12,000	17,000	16,000	16,000	15,000	4,900	1,200	1,200	1,100	1,300	1,600	1,600	2,600	2,700	3,000	850	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
1,2-Dichloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
1,1-Dichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	1,700	ND (2500)	ND (2500)	ND (1300)	ND (1300)	1,400	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
cis-1,2-Dichloroethene	4,100	23,000	19,000	40,000	57,000	73,000 D	48,000	100,000	44,000	27,000	45,000	14,000	5,800	17,000 E	17,000 D	17,000 D	18,000 D	42,000	40,000	79,000	17,000	18,000	4,500	36,000	14,000	23,000	48,000	28,000	22,000	6,100	50,000
trans-1,2-Dichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
1,2-Dichloropropane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Cis-1,3-Dichloropropene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
trans-1,3-Dichloropropene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Ethylbenzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
2-Hexanone	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)
Methylene Chloride	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	450	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (5,000)
Styrene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300) J	ND (1300) J	I ND (1300) J	ND (1300)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300) J	ND (1300)	ND (1000)	ND (2,500)
1,1,2,2-Tetrachloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Tetrachloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	1,100	1,000	820	1,000	2,800	1,700	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Toluene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
1,1,1-Trichloroethane	ND (1000)	4,600	1,800	7,200	3,300	11,000	4,000	8,800	2,700	ND (1300)	4,700	1,600	ND (1,000)	2,000	2,000	1,600	2,000	4,000	3,200	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
1,1,2-Trichloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Trichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	1,400	1,300	1,200	ND (250)	4,000	1,800	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
Vinyl Chloride	30,000	37,000	44,000 D	31000	42000	33,000	34,000	53,000	38,000	25,000	28,000	33,000	21,000	ND (250)	ND (500)	ND (250)	1,900	ND (1250)	ND (1250)	ND (2000)	24,000	33,000	41,000 D	51,000 D	28,000	37,000	26,000	32,000	20,000	34,000	33,000
o-Xylene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)
m,p-Xylenes	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)

Not Applicable/Not Sampled ND: Not Detected D: Diluted (Stopped flagging diluted results starting in 2012.) R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected during that sampling period.

Sample ID		VE-6																			V	′E-15						
Analyte or Method	6/23/2006	12/13/2006	6/13/2007	12/19/2007	6/11/2008	12/18/2008	6/23/2009	6/28/2010	10/12/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/30/2016	6/23/2006	12/13/2006	6/13/2007	12/19/2007	6/11/2008	12/18/2008	6/23/2009	7/1/2010	10/11/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016
VOCs 8260B (ug/L)																												
Acetone	ND (4000)	ND (2000)	ND (2000)	ND (400)	ND (400)	ND (1000)	ND (2000)	ND (2000)	ND (5000)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (5000)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (1000)	ND (1000)	250	160	140	94 J	110	87	ND (50)
Benzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Bromodichloromethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Bromoform	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Bromomethane (Methyl Bromide)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
2-Butanone (Methyl Ethyl Ketone)	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	650	ND (500)	430	300	210	140	130	82	ND (50)
Carbon Disulfide	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (1,000)	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	ND (50)	ND (50)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)
Carbon Tetrachloride	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Chlorobenzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Chloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	110	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	880	2,200	1,100	940	1,400	610	530
Chloroform (Trichloromethane)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Chloromethane (Methyl Chloride)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Dibromochloromethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
1,1-Dichloroethane	1,100	900	1,800	120	1,800	300	980	2,400	1,700	1,900	2,100	2,200	1,200	720	2,600	940	3,100	2,300	2,400	1,900	2,000	400	650	83	41	720	51	ND (25)
1,2-Dichloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
1,1-Dichloroethene	ND (1000)	530	820	ND (100)	ND (100)	ND (250)	ND (500)	600	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	500	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
cis-1,2-Dichloroethene	22,000	18,000	32,000 D	2,700	8000 D	8,500	18,000	66,000 D	40,000 D	34,000	36,000	39,000	20,000	14,000	38,000	12,000	43,000 D	3,400 D	29,000	19,000 D	9,100	130	1,600	ND (50)	ND (25)	1,200	ND (25)	ND (25)
trans-1,2-Dichloroethene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	570	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	160	540	59	33	250	ND (25)	ND (25)
1,2-Dichloropropane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Cis-1,3-Dichloropropene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
trans-1,3-Dichloropropene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Ethylbenzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
2-Hexanone	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	150	50	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)
Methylene Chloride	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	46	140	ND (50)	-	99	ND (25)	ND (25)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (1,000)	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	ND (50)	ND (50)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)
Styrene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300) J	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25) J	ND (25) J	ND (25)	ND (25)
1,1,2,2-Tetrachloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Tetrachloroethene	11,000	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	4,100	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Toluene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
1,1,1-Trichloroethane	10,000	4,000	6,000	340	920	970	1,700	4,700	2,400	3,400	3,100	5,500	1,600	710	7,500	880	600	ND (500)	ND (1000)	ND (250)	ND (250)	38	67	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
1,1,2-Trichloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Trichloroethene	6,800	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	5,400	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Vinyl Chloride	ND (1000)	ND (500)	1,400	140	8000 D	ND (250)	4,700	6,700	1,900	ND (1300)	3,200	2,800	3,100	1,100	ND (1250)	620	2,900	3,100	5,400	8,700	15,000 D	340	2,500	ND (50)	ND (25)	1,000	ND (25)	ND (25)
o-Xylene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
m,p-Xylenes	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)

Not Applicable/Not Sampled ND: Not Detected D: Diluted (Stopped flagging diluted results starting in 2012.) R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected during that sampling period.

	Sample ID							RW	-4													MW	-2						
Analyte or Method		6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/28/2010	10/11/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/28/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016
VOCs 8260B (ug/L)																													
Acetone		ND (5000)	ND (2000)	NA	ND (500)	ND (2000)	ND (500)	ND (1000)	ND (100)	ND (100)	ND (50)	ND (50) J	ND (50)	ND (50)	ND (10)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Benzene		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)		ND (1300)	ND (500)	ND (250)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)		ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	55	100	ND (50)	ND (50) J	ND (50)	ND (50)	11	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide		ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	36	760	40	43	85	37	7	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)		ND (1300)	ND (500)	ND (250)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane		7,800	1,300	560	1,500	1,500	620	390	150	390	150	75	160	100	64	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5.0)	ND (5.0)	ND (5)
1,1-Dichloroethene		3,100	ND (500)	52	330	ND (500)	ND (130)	ND (250)	ND (25)	ND (30)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene		41,000 D	14,000	3,500	24,000 D	20,000 D	3,200	690	910	5,000	620	470	1,300	500	92	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (170)	ND (25)	ND (25)	ND (25)	ND (25)	5.3	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone		ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50) J	ND (50)	ND (50)	12	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (31)	ND (25)	ND (25)	ND (25)	ND (25)	6.8	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketor	ne)	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene		ND (1300)	ND (500)	NA	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25) J	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5.0)	ND (5.0)	ND (5)
1,1,2,2-Tetrachloroethane		ND (1300)	ND (500)	ND (500)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene		1,500	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane		14,000	660	100	1,400	720	ND (130)	ND (250)	29	220	ND (25)	ND (25)	40	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane		ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene		5,800	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	8	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride		3,500	1,800	570	1,900	4,300 D	720	260	50	4,200	130	78	210	110	21	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes		ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Not Applicable/Not Sampled ND: Not Detected D: Diluted (Stopped flagging diluted results starting in 2012.) R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected during that sampling period.

Sample ID								MW-10														MW-	13S						
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/26/2015 DUPLICATE	8/31/2016	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/29/2014	8/26/2015	8/31/2016
VOCs 8260B (ug/L)																													
Acetone	ND (100)	ND (200)	ND (100)	ND (100)	ND (200)	ND (200)	ND (40)	ND (50)	ND (200)	ND (100)	ND (50) J	ND (50)	ND (50)	ND (50)	ND (50)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10) J	ND (10)
Benzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	97	120	73	160	180	190	100	86	200	240	88	170	110	110	99	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)
1,2-Dichloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	ND (25)	ND (50)	ND (25)	28	ND (50)	ND (50)	16	17	50	ND (50)	ND (25)	28	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	1,000 D	1,300	660	1,300 D	1,900	1,800	1,100 D	700 D	1,900 D	2,000	610	1,100	750	780	720	97	56	34	34	26	18	21	11	9.4	13	16	14	22	5.4
trans-1,2-Dichloroethene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	15	50	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25) J	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5.0) J	ND (5)
1,1,2,2-Tetrachloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	52	53	26	31	ND (100)	ND (50)	14	ND (13)	ND (54)	65	ND (25)	41	ND (25)	ND (25)	ND (25)	56	42	23	26	23	18	29	28	23	20	20	20	17	ND (5)
Toluene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (25)	62	33	67	76	88	40	27	84	110	27	70	32	34	26	34	19	10	10	9.2	6.6	9	6.7	5	7.4	7	6	7	ND (5)
1,1,2-Trichloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	93	97	58	82	98	92	47	47	120	130	53	97	68	69	68	94	66	42	47	40	31	36	30	31	31	31	28	31	ND (5)
Vinyl Chloride	160	160	74	180	270	300	100	110	310	340	91	180	140	150	99	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Not Applicable/Not Sampled ND: Not Detected D: Diluted (Stopped flagging diluted results starting in 2012.) R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected during that sampling period.

Sample ID								MW-16														MW-18S						
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	7/1/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	8/31/2016 DUPLICATE	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016
VOCs 8260B (ug/L)																												
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Not Applicable/Not Sampled ND: Not Detected D: Diluted (Stopped flagging diluted results starting in 2012.) R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected during that sampling period.

Sample ID							MW	-19													MW-2	24S						
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/12/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/28/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016
VOCs 8260B (ug/L)																												
Acetone	ND (100)	ND (200)	ND (200)	ND (20)	ND (40)	ND (20)	ND (20)	ND (40)	ND (40)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)
Benzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50)	ND (50)	ND (10)	ND (25)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	210	240	280	14	92	9.5	63	150	43	150	120	38	73	320	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)
1,1-Dichloroethene	80	100	95	5.6	26	ND (5)	22	69	17	63	41	10	14	120	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	1,000 D	1,400	1,600	36	240	24	330 D	910 D	260 D	580	620	170	340	3,700	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	18	10	ND (10)	ND (25)	ND (25)	12	63	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50)	ND (50)	ND (10)	ND (25)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25) J	ND (25) J	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)
1,1,2,2-Tetrachloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	38	ND (50)	ND (50)	15	22	7.4	16	ND (10)	ND (10)	13	ND (25)	ND (25)	ND (5.0)	120	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	120	140	140	22	71	13	54	100	38	87	67	24	36	340	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	330	340	100	90	310	54	240 D	140	160	420	110	52	99	3,100	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (25)	ND (50)	66	ND (5)	ND (10)	ND (5)	ND (5)	23	ND (10)	58	39	9	32	190	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Not Applicable/Not Sampled ND: Not Detected D: Diluted (Stopped flagging diluted results starting in 2012.) R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected during that sampling period.

Sample ID				SW-29										SW-	34						
Analyte or Method	11/29/2006	12/20/2007	6/24/2009	6/23/2010	10/11/2011	8/22/2012	7/29/2014	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/12/2008	12/18/2008	6/24/2009	6/23/2010	10/11/2011	8/23/2012	9/5/2013	7/29/2014	8/26/2015	8/31/2016
VOCs 8260B (ug/L)																					
Acetone	ND (20)	ND (50)	ND (40)	ND (20)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Benzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)
1,1,2,2-Tetrachloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-I richloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2- I richloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Irichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	NU (5)	ND (5)	NÚ (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Not Applicable/Not Sampled ND: Not Detected D: Diluted (Stopped flagging diluted results starting in 2012.) R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected during that sampling period.

Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

February 2017

Sample ID							SW-35						
Analyte or Method	6/16/2006	11/29/2006	12/20/2007	6/12/2008	12/18/2008	6/24/2009	6/23/2010	10/11/2011	8/23/2012	9/5/2013	7/29/2014	8/26/2015	8/31/2016
VOCs 8260B (ug/L)													
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (40)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	6.3	8.6	ND (5)	15	19	ND (5)	16	ND (5)	ND (5)	14	6	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	20	15	86	ND (5)	140	110	ND (5)	73	11	ND (5)	76	20	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (5)	10	ND (5)	21	21	ND (5)	8.8	ND (5)	ND (5)	12	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	5.1	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	12	15	ND (5)	27	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Not Applicable/Not Sampled ND: Not Detected D: Diluted (Stopped flagging diluted results starting in 2012.) R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not collected during that sampling period.

Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

February 2017

	5/22/2008	5/22/2009	5/20/2010	9/19/2011	9/26/2012	9/27/2013	10/21/2014	9/3/2015	9/8/2016
	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum
Location ID	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)
T-1	0.038	0.052	0.054	0.048	0.030	0.021	0.022	0.330	0.029
T-2	0.151	0.135	0.132	0.348	0.616	0.267	Decom.	Decom.	Decom.
T-3	0.806	0.863	0.787	0.741	0.663	0.223	0.215	0.247	0.241
T-4	0.039	0.047	0.048	0.056	0.063	0.031	0.029	0.043	0.040
T-7	0.108	0.116	0.115	Inaccessible	0.109	0.066	0.055	0.064	0.060
T-8	0.19	0.244	0.281	0.229	0.265	0.099	Decom.	Decom.	Decom.
T-9	0.016	0.017	0.013	0.298	0.299	0.221	Decom.	Decom.	Decom.
T-10	0.279	0.197	0.208	0.108	0.107	0.088	Decom.	Decom.	Decom.
T-11	0.01	0.011	0.026	0.089	0.082	0.046	0.008	0.014	0.014
T-12	0.064	0.112	0.125	0.159	0.115	0.141	Decom.	Decom.	Decom.
T-13	0.013	0.005	0.002	0.004	0.002	0.005	0.000	Decom.	Decom.
T-14	0.018	0.013	0.012	0.016	0.016	0.016	0.016	0.014	0.014
T-15	0.001	0.001	0.001	0.002	0.002	0.001	Decom.	Decom.	Decom.
T-16	0.971	0.955	1.040	1.140	1.015	0.825	Decom.	Decom.	Decom.
T-17	0.002	0.005	0.003	0.009	0.016	0.009	0.011	0.010	0.008
T-18	NR	0.003	0.002	0.002	0.002	0.003	0.003	0.003	0.004
T-19	0.03	0.037	0.059	0.448	0.383	0.345	Decom.	Decom.	Decom.
T-20	NR	0.001	0.002	0.006	0.004	0.004	0.004	0.004	0.005
T-21	NR	0.001	0.004	0.003	0.002	0.002	0.001	0.002	0.003
T-22	0.002	0.004	0.002	0.094	0.166	0.123	0.081	0.008	0.099
T-23	0.002	0.002	0.006	0.191	0.251	0.191	Decom.	Decom.	Decom.
T-24	0	0	0.005	0.021	0.007	0.045	Decom.	Decom.	Decom.
T-25	0.001	0.002	0.000	0.015	0.026	0.031	0.026	0.036	0.029
T-26	0.001	0.003	0.001	0.009	0.012	0.010	0.007	0.006	0.006
T-27	0	0.001	0.000	0.019	0.040	0.050	Decom.	Decom.	Decom.
T-28	0	0.005	0.001	0.002	0.019	0.010	0.004	0.005	0.003
T-29				0.010	0.009	0.010	0.009	0.010	0.004
T-30				0.010	0.014	0.017	0.01	0.019	0.036
T-31				0.008	0.011	0.009	0.007	0.009	0.014
T-32				0.059	0.086	0.077	0.054	0.07	0.074
T-33				0.026	0.058	0.013	0.007	0.012	0.005
T-34				0.017	0.014	0.007	0.009	0.008	0.008

Notes:

1. NR = Not able to get a reading

2. Values in bold represent readings below the 0.002 inches of water column design criteria.

		5/22/2008	5/22/2009	5/22/2010	9/19/2011	9/26/2012	9/27/2013	10/21/2014	9/3/2015	9/8/2016
		Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum
Suction Point	Fan	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
Location ID	System	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)
S-1		25.0	22.5	23.5	24.0	24.0	29.0	23.0	24.0	24.0
S-2	F-1	25.0	22.5	23.5	23.5	23.5	22.0	23.0	23.0	24.0
S-3		24.0	22.5	23.0	23.0	24.0	22.0	22.0	23.0	23.0
S-4	Бр	45.0	47.0	43.5	48.0	42.0	40.0	40.0	40.0	40.0
S-5	F-2	46.0	46.0	46.0	48.0	46.0	38.0	37.0	37.0	36.0
S-6		5.0	4.0	4.0	1.5	2.0	1.5	>2.0	>2.0	>2.0
S-7	F-3	4.5	3.5	4.0	Inaccessible	0.8	0.77	0.86	0.96	0.72
S-8		4.5	4.0	4.0	1.0	1.519	1.0	0.65	0.75	0.75
S-9	E 4				Inaccessible	0.684	0.698	0.60	0.66	0.60
S-10	Γ-4				1.0	0.7	0.218	0.75	0.80	0.75
S-11	F-5				Gauge out of range	0.260	0.70	0.16	0.15	0.18
S-12					0.4	0.3	0.25	0.25	0.25	0.25
S-13	E 6				9.0	10.0	10.0	10.0	10.0	9.0
S-14	F-0				8.5	9.0	10.0	9.0	9.5	9.0
S-15					8.0	8.5	10.5	10.0	9.0	10.0
S-16	F-7				7.5	8.0	10.0	9.0	9.0	10.0
S-17					7.0	7.5	9.5	8.0	8.5	9.0

LEGEND

NOTES

1. THE LIMITS OF THE SGMA ARE CONTINGENT ON NO LONG TERM GROUNDWATER EXTRACTION FOR ANY PURPOSE OUTSIDE OF THE SGMA. SEE THE SITE MANAGEMENT PLAN REVISED 16 JUNE 2010 FOR DETAILS.

2. BASE MAP DATA FILE PREPARED BY BERGMANN ASSOCIATES, ROCHESTER, NEW YORK UNDER DIRECT CONTRACT WITH XEROX CORPORATION.

3. STREAM LOCATIONS ARE APPROXIMATE.

400 200

SCALE IN FEET

XEROX CORPORATION FORMER BUILDING 801 FACILITY HENRIETTA, NEW YORK

SITE PLAN

JANUARY 2017

FIGURE 2

	SSDS PIPING SYSTEM (XEROX)
	SSDS PIPING SYSTEM (HARRIS)
◆ T-2	VACUUM TEST LOCATION (XEROX)
◆ T-29	VACUUM TEST LOCATION (HARRIS)
	SUCTION LOCATION (XEROX)
<u>S-10</u>	SUCTION LOCATION (HARRIS)
♦⊕	DECOMMISSIONED LOCATIONS

APPENDIX A

Annual Engineering and Institutional Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No. 828069	Site Details	Box 1
Site Name, Xerox - Henrietta Fac		
	Ally J. Zin Code: 14602	
City/Town: Henrietta	a Zip Code: 14623	
County: Monroe Site Acreage: 2.0 85.98	8 I.	
Reporting Period: January 15, 201	6 to January 15, 2017 January 1, 201	6 to December 31, 2016
		YES NO
1. Is the information above correct	t?	
If NO, include handwritten above	ve or on a separate sheet.	
2. Has some or all of the site prop tax map amendment during this	perty been sold, subdivided, merged, or un s Reporting Period?	dergone a
3. Has there been any change of (see 6NYCRR 375-1.11(d))?	use at the site during this Reporting Period	d 🖂 🔽
 Have any federal, state, and/or for or at the property during this 	local permits (e.g., building, discharge) be s Reporting Period?	een issued
If you answered YES to ques that documentation has been	tions 2 thru 4, include documentation on previously submitted with this certific	or evidence ation form.
5. Is the site currently undergoing	development?	
		Box 2
	51 E	YES NO
6. Is the current site use consister Commercial and Industrial	nt with the use(s) listed below?	
7. Are all ICs/ECs in place and fu	nctioning as designed?	
IF THE ANSWER TO EIT DO NOT COMPLET	HER QUESTION 6 OR 7 IS NO, sign and d E THE REST OF THIS FORM. Otherwise (late below and continue.
A Corrective Measures Work Plan	must be submitted along with this form to	o address these issues.
Signature of Owner, Remedial Party	or Designated Representative	Date
	a	

SITE NO. 828069		Box
Description of I	nstitutional Controls	
Parcel	Owner	Institutional Control
162-08.1-2	Harris Corporation	
	Remedial Party - Xerox Corporation	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwate	er monitoring;	
Establishment of a so	il and groundwater management area;	
A deed restriction white	ch restricts site use;	
Compliance with the s continued managemen address continued O&	ite management plan dated 6/16/10 and revis at of residual contamination in the soil and gro M of all engineering controls, and provide for p Harris Comparison	sed on 7/30/15 which addresses oundwater management area, to periodic certification.
102.07-1-5	Remedial Party - Xerox Corporation	Ground Water Use Restriction
		Landuse Restriction Monitoring Plan
	÷	Site Management Plan
Continued groundwate	er monitoring;	
Continued operation a	nd monitoring of the sub-slab depressurizatio	n system
		il system,
Establishment of a so	il and groundwater management area;	
A deed restriction which	ch restricts site use;	·
Compliance with the s continued managemer address continued O&	ite management plan dated 6/16/10 and revis t of residual contamination in the soil and gro M of all engineering controls, and provide for p	ed on 7/30/15 which addresses undwater management area, to periodic certification.
162.08-1-1	Harns Corporation	Ground Water Use Restriction
	Remedial Party - Xerox Corporation	Landuse Restriction Monitoring Plan
		Site Management Plan
Continued groundwate	r monitoring;	
Establishment of a soil	l and groundwater management area;	
A deed restriction which	ch restricts site use;	
Compliance with the s continued managemer address continued O& 162.08-1-30	ite management plan dated 6/16/10 and revis It of residual contamination in the soil and grou M of all engineering controls, and provide for p Harris Corporation	ed on 7/30/15 which addresses undwater management area, to periodic certification.
	Remedial Party - Xerox Corporation	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwate	r monitoring;	
Continued operation a	nd monitoring of the sub-slab depressurization	n system;
A deed restriction which	ch restricts site use;	
Compliance with the a	ite management plan dated 6/16/10 and route	ed on 7/30/15 which addresses
continued managemen	t of residual contamination in the soil and group	undwater management area, to

162.08-1-31	Harris Corporation		
	Remedial Party - Xerox Corporation	Landuse Restriction Ground Water Use Restriction Monitoring Plan Site Management Plan	
Continued groundwater	r monitoring;		4
A deed restriction whic	h restricts site use;		
Compliance with the si continued managemen address continued O&M	te management plan dated 6/16/10 and revis t of residual contamination in the soil and grou I of all engineering controls, and provide for p	ed on 7/30/15 which addresses undwater management area, to periodic certification.	_
		Box 4	
Description of E	ngineering Controls		
<u>Parcel</u> 162.07-1-3	Engineering Control		
	Vapor Mitigation		
162.08-1-30			
	Vapor Mitigation		

•

Periodia Paview Penert (PPP) Cartification Statements		
renous Review Report (PRR) Certification Statements		
certify by checking "YES" below that:		
 a) the Periodic Review report and all attachments were prepared under the d reviewed by, the party making the certification; 	irection of,	, and
 b) to the best of my knowledge and belief, the work and conclusions describe are in accordance with the requirements of the site remedial program, and ge engineering practices; and the information presented is accurate and competer 	d in this c nerally acc a.	ertification cepted
	YES	NO
	M	
If this site has an IC/EC Plan (or equivalent as required in the Decision Document), or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below t following statements are true:	for each Ir hat all of t	nstitutional he
(a) the Institutional Control and/or Engineering Control(s) employed at this sit the date that the Control was put in-place, or was last approved by the Depart	e is uncha ment;	inged sinc
(b) nothing has occurred that would impair the ability of such Control, to prote the environment;	ect public h	ealth and
(c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control;	ate the rer	nedy,
(d) nothing has occurred that would constitute a violation or failure to comply Management Plan for this Control; and	with the S	ite
(e) if a financial assurance mechanism is required by the oversight document mechanism remains valid and sufficient for its intended purpose established in	for the sit the docu	e, the ment.
There is no financial assurance requirement for the site.	YES	NO
		0
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continu	e.	
Corrective Measures Work Plan must be submitted along with this form to address	these iss	ues.
anature of Owner, Remedial Party or Designated Representative	_	
	Periodic Review Report (PRR) Certification Statements I certify by checking "YES" below that: a) the Periodic Review report and all attachments were prepared under the d reviewed by, the party making the certification; b) to the best of my knowledge and belief, the work and conclusions describe are in accordance with the requirements of the site remedial program, and ge engineering practices; and the information presented is accurate and compete If this site has an IC/EC Plan (or equivalent as required in the Decision Document), or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below th following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this sit the date that the Control was put in-place, or was last approved by the Depart (b) nothing has occurred that would impair the ability of such Control, to prote the environment; (c) access to the site will continue to be provided to the Department, to evalua including access to evaluate the control endineering of this Control; (d) nothing has occurred that would constitute a violation or failure to comply Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document mechanism remains valid and sufficient for its intended purpose established in There is no financial assurance requirement for the site. IF THE ANSWER TO QUESTION 2 is NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue Corrective Measures Work Plan must be submitted along with this form to address	 Periodic Review Report (PRR) Certification Statements I certify by checking "YES" below that: a) the Periodic Review report and all attachments were prepared under the direction of reviewed by, the party making the certification; b) to the best of my knowledge and belief, the work and conclusions described in this of are in accordance with the requirements of the site remedial program, and generally accordance with the requirements of the site remedial program, and generally accordance with the requirements of the site remedial program, and generally accordance with the requirements of the site remedial program, and generally accordance with the requirements of the site remedial program, and generally accordance with the requirements of the site remedial program, and generally accordance with the requirements of the site remedial program, and generally accordance with the requirements of the site remedial program, and generally accordance with the requirements of the site remedial program. f this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each if for engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the for the institutional Control and/or Engineering Control(s) employed at this site is unchat the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public P the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remincluding access to evaluate the continued maintenance of this Control; (c) nothing has occurred that would constitute a violation or failure to comply with the S Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site mechanism remains valid and sufficient for its intended purpose established in the document for

Box 5

IC CERTIFICATIONS SITE NO. 828069	
	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGN I certify that all information and statements in Boxes 1,2, and 3 are true. I un statement made herein is punishable as a Class "A" misdemeanor, pursuant Penal Law.	IATURE derstand that a false to Section 210.45 of the
Eliott Duffney at 800 Phillips R2 Wi print name print business address	ehster NY 14580
am certifying as <u>Remedial Party</u>	_(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	2/8/17
Rendering Certification	Liate

IC/EC CERTIFICATIONS		
4	Professional Engineer Signature	Box 7
I certify that all information in Boxe punishable as a Class "A" misdeme	s 4 and 5 are true. I understand that a fall eanor, pursuant to Section 210.45 of the F Halfy & Mdrich of I	se statement made herein is Penal Law. New YorK
Janice Szucs print name	at 200 town centre Dr., f	Rochester, NY 146,23
am certifying as a Professional English	Owner or I	Remedial Party)

APPENDIX B

Laboratory Analytical Data Report

Service Request No:R1609188

Mr. Eliott Duffney Xerox Corporation USA 800 Phillips Road Bldg #205-99F Webster, NY 14580

Laboratory Results for: Bldg 801 annual Wells 2016

Dear Mr.Duffney,

Enclosed are the results of the sample(s) submitted to our laboratory August 31, 2016 For your reference, these analyses have been assigned our service request number **R1609188**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

I amanestor

Janice Jaeger Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 2 of 90

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016Sample Matrix:Water

Service Request:R1609188 Date Received:8/31/16

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt

Nineteen water samples were received for analysis at ALS Environmental on 08/31/2016. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at \leq 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

Method 8260, 9/6/16: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Sample Receiving Notes:

Sampling was performed by ALS personnel in accordance with ALS Field Sampling SOPs or by client specifications.

Approved by	I amanestor	Date	12/27/2016

SAMPLE DETECTION SUMMARY

Lab ID: R160	09188-0	01			
Results	Flag	MDL	PQL	Units	Method
720		20	500	ug/L	8260C
14000		30	500	ug/L	8260C
710		36	500	ug/L	8260C
1100		32	500	ug/L	8260C
Lab ID: R160	09188-0	02			
Results	Flag	MDL	PQL	Units	Method
5000		120	2500	ug/L	8260C
50000		150	2500	ug/L	8260C
33000		160	2500	ug/L	8260C
Lab ID: R160	09188-0	03			
Results	Flag	MDL	PQL	Units	Method
9200		48	1000	ug/L	8260C
4900		40	1000	ug/L	8260C
5800		60	1000	ug/L	8260C
21000		64	1000	ug/L	8260C
Lab ID: R160	09188-0	04			
Results	Flag	MDL	PQL	Units	Method
530		1.2	25	ug/L	8260C
Lab ID: R160	09188-0	05			
Results	Flag	MDL	PQL	Units	Method
11		0.81	10	ug/L	8260C
7.0		0.24	5.0	ug/L	8260C
64		0.20	5.0	ug/L	8260C
92		0.30	5.0	ug/L	8260C
5.3		0.33	5.0	ug/L	8260C
12		1.7	10	ug/L	8260C
6.8		0.60	5.0	ug/L	8260C
8.0		0.22	5.0	ug/L	8260C
21		0.32	5.0	ug/L	8260C
Lab ID: R160	09188-0	07			
Results	Flag	MDL	PQL	Units	Method
99		1.0	25	ug/L	8260C
720		1.5	25	ug/L	8260C
26		1.8	25	ug/L	8260C
68		11	25	ua/L	8260C
			20	••• 9/ —	02000
	Lab ID: R16 Results 720 14000 710 1100 Lab ID: R16 Results 5000 5000 5000 5000 33000 Lab ID: R16 Results 9200 4900 5800 21000 Lab ID: R16 Results 530 Lab ID: R16 Results 530 21000 Lab ID: R16 Results 530 Lab ID: R16 Results 530 Lab ID: R16 Results 11 7.0 64 92 5.3 12 6.8 8.0 21 Lab ID: R16 Results 99 720 26 <tr< td=""><td>Lab ID: R1609188-0 Results Flag 720 14000 14000 710 1100 Intervention Results Flag 5000 50000 5000 50000 33000 Flag 5000 50000 33000 Flag 9200 4900 4900 5800 21000 Flag 9200 4900 5800 21000 Casults Flag 9200 4900 5800 21000 Casults Flag 530 Flag 530 Flag 530 Flag 530 Flag 11 7.0 64 92 5.3 12 6.8 8.0 21 6.8 8.0 21 99 720 26 68</td><td>Lab ID: R1609188-001 Results Flag MDL 720 20 14000 30 710 36 1100 32 Lab ID: R1609188-001 32 Results Flag MDL 5000 120 50000 150 33000 160 33000 160 Lab ID: R1609188-001 MDL 9200 48 4900 40 5800 60 21000 64 64 64 S300 1.2 64 Eab ID: R1609188-000 MDL 64 S300 610 21000 64 S300 1.2 7.0 64 Eab ID: R1609188-000 9.0 7.0 2.4 A900 1.2 9.0 7.0 Results Flag MDL MDL 9.2 9.3 9.3 MDL 9.2 9.3 9.3 MDL 9.2</td><td>Lab ID: R1609188-001 Results Flag MDL PQL 720 20 500 14000 30 500 710 36 500 1100 32 500 1100 32 500 Results Flag MDL PQL 5000 120 2500 50000 150 2500 50000 160 2500 50000 160 2500 33000 160 2500 33000 160 2500 9200 48 1000 4900 40 1000 21000 64 1000 21000 64 1000 21000 1.1 25 64 0.20 5.0 64 0.20 5.0 64 0.20 5.0 61 0.33 5.0 5.3 0.33 5.0 6.8<</td><td>Lab ID: R1609188-001 Results Flag MDL PQL Units 720 20 500 ug/L 14000 30 500 ug/L 710 36 500 ug/L 710 32 500 ug/L 1100 32 500 ug/L Lab ID: R1609188-00 PQL Units 5000 120 2500 ug/L 5000 150 2500 ug/L 5000 160 2500 ug/L 50000 160 2500 ug/L 3000 160 2500 ug/L 9200 48 1000 ug/L 4900 40 1000 ug/L 21000 64 1000 ug/L 21000 64 1000 ug/L 2500 1.2 25 ug/L 21000 1.2 25 ug/L 530 1.2 25</td></tr<>	Lab ID: R1609188-0 Results Flag 720 14000 14000 710 1100 Intervention Results Flag 5000 50000 5000 50000 33000 Flag 5000 50000 33000 Flag 9200 4900 4900 5800 21000 Flag 9200 4900 5800 21000 Casults Flag 9200 4900 5800 21000 Casults Flag 530 Flag 530 Flag 530 Flag 530 Flag 11 7.0 64 92 5.3 12 6.8 8.0 21 6.8 8.0 21 99 720 26 68	Lab ID: R1609188-001 Results Flag MDL 720 20 14000 30 710 36 1100 32 Lab ID: R1609188-001 32 Results Flag MDL 5000 120 50000 150 33000 160 33000 160 Lab ID: R1609188-001 MDL 9200 48 4900 40 5800 60 21000 64 64 64 S300 1.2 64 Eab ID: R1609188-000 MDL 64 S300 610 21000 64 S300 1.2 7.0 64 Eab ID: R1609188-000 9.0 7.0 2.4 A900 1.2 9.0 7.0 Results Flag MDL MDL 9.2 9.3 9.3 MDL 9.2 9.3 9.3 MDL 9.2	Lab ID: R1609188-001 Results Flag MDL PQL 720 20 500 14000 30 500 710 36 500 1100 32 500 1100 32 500 Results Flag MDL PQL 5000 120 2500 50000 150 2500 50000 160 2500 50000 160 2500 33000 160 2500 33000 160 2500 9200 48 1000 4900 40 1000 21000 64 1000 21000 64 1000 21000 1.1 25 64 0.20 5.0 64 0.20 5.0 64 0.20 5.0 61 0.33 5.0 5.3 0.33 5.0 6.8<	Lab ID: R1609188-001 Results Flag MDL PQL Units 720 20 500 ug/L 14000 30 500 ug/L 710 36 500 ug/L 710 32 500 ug/L 1100 32 500 ug/L Lab ID: R1609188-00 PQL Units 5000 120 2500 ug/L 5000 150 2500 ug/L 5000 160 2500 ug/L 50000 160 2500 ug/L 3000 160 2500 ug/L 9200 48 1000 ug/L 4900 40 1000 ug/L 21000 64 1000 ug/L 21000 64 1000 ug/L 2500 1.2 25 ug/L 21000 1.2 25 ug/L 530 1.2 25

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-13S	Lab ID: R1	609188-	800			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	5.4		0.30	5.0	ug/L	8260C
CLIENT ID: MW-19	Lab ID: R1	609188-	011			
Analyte	Results	Flag	MDL	PQL	Units	Method
1,1-Dichloroethane	320		0.50	13	ug/L	8260C
1,1-Dichloroethene	120		1.5	13	ug/L	8260C
cis-1,2-Dichloroethene	3700	D	15	250	ug/L	8260C
trans-1,2-Dichloroethene	63		0.83	13	ug/L	8260C
Tetrachloroethene	120		0.75	13	ug/L	8260C
1,1,1-Trichloroethane	340		0.90	13	ug/L	8260C
Trichloroethene	3100	D	11	250	ug/L	8260C
Vinyl Chloride	190		0.80	13	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 90

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
R1609188-001	VE-6	8/30/2016	1410
R1609188-002	VE-10	8/31/2016	0940
R1609188-003	VE-12	8/31/2016	0950
R1609188-004	VE-15	8/31/2016	0900
R1609188-005	RW-4	8/31/2016	0907
R1609188-006	MW-2	8/31/2016	1055
R1609188-007	MW-10	8/30/2016	1335
R1609188-008	MW-13S	8/30/2016	1115
R1609188-009	MW-16	8/30/2016	1230
R1609188-010	MW-18S	8/30/2016	1125
R1609188-011	MW-19	8/30/2016	1220
R1609188-012	MW-24S	8/31/2016	1135
R1609188-013	SW-29	8/31/2016	1110
R1609188-014	SW-34	8/30/2016	1245
R1609188-016	MW-16 Duplicate	8/30/2016	1230
R1609188-018	Trip Blank	8/30/2016	0700
R1609188-019	SW-35	8/31/2016	1245

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE ____

____OF____

Project Name	Project Number		Ī			AN	ALYSI	S REQ	UEST	ΈD (h	nclude	Meth	od Nu	mber	and C	ontain	er Pre	servativ	ve)		
Project Manager	Report CC		PRE	SERVA				T													
CompanyAddress	≩		NTAINERS								100				/	/	/			Preservative). NONE 1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH	e Key
Phone #	Email Satzafier's Printed Name	rAn)	NUMBER OF CO	Come W.	GC/NS SWO	GC VOAS	PESTICIDES	PCB6 0082	METALS, TOTAL	METALS, Dicc, bel	Comments bel								R	 A. Acet MeOH NaHSO4 Other MARKS/ TE DESCRIP* 	14 4
	FOR OFFICE USE SAMP ONLY LAB ID DATE	LING TIME MATRIX		1																	
MID-13.5	8/30/16	115 W		X												<u> </u>	ļ	<u> </u>			
MW -185		1125 1	·	1											L	L	<u> </u>	 			
Mul - 19	- Mi	1220															 	-			
MW -16	- MA	1230												<u> </u>		 		10	SP		
SW-34		1245		_		 							<u> </u>		<u> </u>	┢	┼──				
MW = 10		1335	<u> </u>	$\downarrow \downarrow$	 	 								ļ		 			u	· · · · · · · · · · · · · · · · · · ·	
VE-6		1410		<u> </u>	-	┟──┤												╂───		<u></u> .	
TiB.	-01× 1	0700	<u> </u>	<u> </u>									L			┼		+			
VE-15	e/31/16	0900														╂	+	 			
RW-A	-005	0901		+	-	╞──┨									┼──	┼	+	10	6		
VE-10		07+0		V	 _						L	L	L	L	L	L	4			EORMATIO	N
SPECIAL INSTRUCTIONS/COMMENTS					TU	JRNAR		REQUI		NTS		REP	URT R	EQUIR	EMEN	13		1144			
metals						HUSH	I (SURCE	HANGES	SAPPLI	,		_ I. Res		r. NC Summ	nariec		PO	#		<u></u>	
						1 day		day	3 day			_ n. Hes (LCS,	DUP, M	S/MSD a	as requir	eď)					
						4 day		uay				_ III. Re	sults + (QC and (Calibrati	on	BIL	L TO:			
					BEO	UESTE) REPOI	RT DAT	E			Sumn	naries						and and he		
	e,											_ IV. Da	ta Valida	ation Rep	port with	Raw D	ata				
See QAPP	-				+						4	Eda	ita	Vpe		No	┢				
STATE WHERE SAMPLES WERE CO	LLECTED		0.001				BECEN		/		+	E.U8	RELINC	UISHE	D BY				RECE	IVED BY	
RELINQUISHED BY	RECEIVED BY	RELINQUISHE	JBA				NEGEN	VE.U D1				•					ľ				
Simtu 11 0	Signature of Shitting Ann	Signature			Signat	ture					Signa	ature			<u> </u>	R	160	91	28	F	
Printed Name Band A LA	Pillet Note	Printed Name			Printe	d Name					Printe	ed Name	9			Xero; Bidg	Corpo 801 anr	ration U	SA SA	5	
Firm	Firm 12	Firm	<u> </u>		Firm					•	Firm	<u> </u>			_						
Date/Time B/2/11	Date/Time \$ 21-16 12-25	Date/Time		8 0	f Date/1	Time					Date/	Time									11 (00)

Distribution: White - Lab Copy; Yellow - Return to Originator

- CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 · Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ____

Project Name		Project Number	<u>ar na na mang ng</u> ilagan – ana na mang na a		, () a (a (A	ALYS	IS RE	QUEST	red (#	nclud	e Meth	od Nu	imber a	and Co	ontain	er Pre	servati	ve)	
		Report CC	,		PRE	SERVA	TIVE															
					CONTAINERS		3				$\left \right $	¹ below	LIVED S Deloui			/		/			Pr 0. 1. 2. 3. 4. 5. 6	reservative Key NONE HCL HNO3 H2SO4 NaOH Zn. Acetate MeOH
Phone #	<i>Der</i>	Email Sangefer's Printen Name	SAU		NUMBER OF	GCMIS VOL	0.000 000 000 000 000 000 000 000 000 0	80,0%	PESTICIDES	PCB6 008	METALS TOT	METALS, DICS	ni comment								7. 8. REM LTERNATE	NaHSO4 Other MARKS/ E DESCRIPTION
CLIENT SAMPLE I	D FOR OFF	ICE USE SAN LAB ID DATE	ipling Time	MATRIX																		
VE-12		8/31/16	0950	4		X										· ·						
JW - 2 JW - 32	3595-00-0		///0																· · · · ·			
MW - 24s	per o	12	35	₩		¥														VO	Fro	e
<u> 700 - 04</u>	maduk																					
	JAN																					
			-			-															. <u> </u>	
SPECIAL INSTRUCTIONS/COM	MENTS	· ·					т и	JRNAR RUSI	OUND H (SURC	REQU HARGE	IREME S APPLY	NTS)		REPO	DRT RI alts Only	EQUIRI '	EMENI	rs		INV	OICE INF	ORMATION
								<u>`</u> .1 da <u>v</u>	/2	day	3 day			_ II. Res (LCS.)	ults + Q DUP, MS	C Summ S/MSD a:	naries Is require	ď)	PO (₽	•	
								4 day	y5	day				III. Res	sults + C)C and C	alibratio	n	BILL	то:		
							REQU	UESTEI	d Repo	RT DAT	ΓE			IV. Dat	a Valida	tion Rep	oort with I	Raw Dat	a			. <u></u>
		·											4	Eda	ta	Yee		Νο	-			
STATE WHERE SAMPLES V RELINQUISHED BY	VERE COLLECTED	RECEIVED BY	REL	INQUISHED	BY				RECE	VED B	Y				ELINQ	UISHEI	D BY		<u></u> ∙	<u></u>	RECEIV	ED BY
Signature & AP 15	O Signature		Signature	<u>. </u>		<u>.</u>	Signati	ure			•		Signa	ature			R1	609	915	38		5
Printed Name La	Les Printed Name	W (), ESMETIAN	Printed Name				Printed	d Name					Printe	ed Name			Xerox C Bidg 80	Corpora 1 annua	tion US al Wells	SA 3 10/10 101	, 	
Firm AZS	Firm	Als	Firm				Firm					`	Firm	Time	·							
Date/Time 831/16	Date/Time	-37/6 13:35	Date/Time	and the second secon		90	Date/T	lime					Date	Tarte					<u> </u>		© 2012 l	by ALS Group

Distribution: White - Lab Copy; Yellow - Return to Originator

A											1	R160)9188	3	5	
AD	A) E I	(erox Corp 3idg 801 an 1991-119	nual Wells	ALE LEVEL IN		
AL	5 , 7	С	oole	r Rec	eipt an	ıd Pr	esei	rvatio	on Ch	eck Fo	or				TAT TATAL	
roject/Clie		240	X		e	_Folde	er Nu	ımber_	R16()9190	1	'				
ooler receive	d on 8.31-1	6		by:	NE	~	CO	URIER	ALS	DUPS	FEDE	ex ve	LOCITY	CLIE	NT	
Were Cus	stody seals on	outside	e of co	oler?	Y	G	5a	Perc	hlorate	samples	have re	equired 1	neadspace	?	Y N	NA
Custody	napers proper	lv com	pleted	(ink. sig	ened)? Y) N	5b	Did	VOA vi	als, Alk.o	r Sulfi	de have	sig* bubl	bles?	YN	NA
Didallbc	ttles arrive in	rood ce	nditio	on (unbr	roken)? Y	5 N	6	Whe	re did th	e bottles	origin	ate?	ALS/F	200	CLIEN	T
Circle	Vot loo Dry		al nac		recent? V		7	Soil	VOA re	ceived as	· F	Bulk	Encore	50355	et N/	
Circle.	ver ice Dry			KS p			, Ľ,	3011			· ·					~
Temperature	e Readings	Dat	e: <u>&</u> 3	17-16	Time:	3:3/		ID	:(IR#5	∕IR#6		From	: Temp	Blank	Sample	e Bottle
Observed Te	mp (°C)	4	1.5													
Correction F:	actor (°C)	-/	5,5					·								
Corrected Te	mp (°C)	Ĭ	H.R.													
Within 0-6°C	2?		$\langle \mathbf{v} \rangle$	N	Y N	1	Y	N	Y	N	Y	N	Y	N	Y	N
f<0°C, wer	e samples froz	en?	Y	N	Y N	J	Y	N	Y	N	Y	N	Y	N	Y	N
If out of T	emperature.	note p	acking	v/ice co	ndition:			Ice me	lted	Poor	ly Pacl	ked	San	ne Day	Rule	
& Client A	pproval to R	un San	nples:	y	Standi	ing Ap	oroval	 Clier	nt awar	e at drop-	off (Client no	otified by:			
				0	- 215-		- 12-			2-21-11		at 1-	· 			
All samples	held in storag	e locat	ion:	K	-170-2	бу	- 172		on	ダフトル	;	at 15	5 • 7			
				<u> </u>		— .										
5035 sample	es placed in sto	orage l	ocatio	n:		by			on			at				
5035 sample	es placed in sto	orage l	ocatio	n:		by			 			at				
5035 sample Cooler Bre	es placed in sto akdown: Dat	e:	ocation -31-1	n:	Time:	_ by [4;4	17	ł	on	HZ		at	 → -> N	lo son	n ple d	
Cooler Bre 1. W	es placed in store eakdown: Dat Vere all bottle	e: <u>8</u> abels c	-31-1 comple	n:	Time: analysis, pr	by 	/ 7 tion, e	tc.)?	on	Y.	ES		<u> </u>	lo son On V	nple d	ates/ 1
Cooler Bre 1. W 2. D	es placed in store eakdown: Dat Vere all bottle la bid all bottle la	e: <u>8</u> abels c	-3 j- j comple d tags	n:	Time: analysis, pr vith custod	by <u>14;4</u> reservat y paper	1 7 tion, e s?	tc.)?	on oy:	Y Y Y	ES ES	atNO	<u></u>	lo son ON V	nple d 17/15	ates/ 1
Cooler Bre 1. W 2. D 3. W 4. W	ss placed in sto eakdown: Dat Vere all bottle la Vere correct co Vere correct co	e: <u>8</u> abels o bels an	-3 - 1 completed tags rs used	n: ete (<i>i.e.</i> a agree w l for the	Time: analysis, pr vith custod tests indica	by <u>4;4</u> reservat y paper ated?	tion, e	tc.)?	on	Y Y Y Y Y	ES ES ES ES	at NO NO NO		lo son ON V	$\frac{1}{11}$	ntes/ 1
5035 sample Cooler Bre 1. W 2. D 3. W 4. W 5 A	es placed in sto eakdown: Dat Vere all bottle la Did all bottle la Vere correct co Vere 5035 vial	e : <u>R</u> abels c bels an ntainer s accep	$-3 - \frac{1}{2}$ completed tags rs used table (n:	Time: analysis, pr vith custody tests indica a labels, no	by <u>14;4</u> reservat y paper ated? ot leakir	tion, e s? ng)?	tc.)?	on	Y Y Y Y Y	ES ES ES Fedlar	at NO NO NO R Bags I	$\rightarrow N$	lo son on V	nple d 'inl's	ates/ 1
Cooler Bre 1. W 2. D 3. W 4. W 5. A Explain an	es placed in sta eakdown: Dat Vere all bottle la Vere correct co Vere 5035 vial in Samples: C av discrepanci	e: <u>8</u> abels c bels an ntainer s accep assette: es:	-3 j- -3 j- comple d tags rs used table (s / Tub	n: ete (<i>i.e.</i> a agree w for the $(no extra bes Intac$	Time: Time: analysis, pr vith custody tests indica a labels, no ct	by <u>14;4</u> reservat y paper ated? of leakir C	tion, e s? ng)? eaniste	tc.)?	on	Y Y Y Y Y	ES ES ES Fedlar	at NO NO NO B Bags I	nflated	ic son on l	nple d '1115 NA	1/tes/ 1
5035 sample Cooler Bre 1. W 2. D 3. W 4. W 5. A Explain an pH	es placed in sta eakdown: Dat Vere all bottle la Vere correct co Vere 5035 vial ir Samples: C ny discrepanci Reagent	e <u></u> abels c bels an ntainer s accep assette: es: Yes	contion -3 - comple d tags rs used table (s / Tub	n: tete (<i>i.e.</i> a agree w for the no extra bes Intac	Time: Time: analysis, pr vith custod tests indica a labels, no t teceived	by <u>14;4</u> reservat y paper ated? ot leakir C	tion, e s? ng)? caniste	tc.)? ers Press Sample	on oy: urized	Y Y Y Y Y Y Y	ES ES ES Fedlar	at NO NO NO B Bags I Added	nflated	lo son ON V C	nple d 11/15 NA NA Yes=A	11 11
Cooler Bre 1. W 2. D 3. W 4. W 5. A Explain an pH	es placed in sta eakdown: Dat Vere all bottle la Vere correct cc Vere 5035 vials is Samples: C by discrepanci Reagent	e: abels c bels an ntainer s accep assette: es: Yes	ocation -3 - comple d tags s used table (s / Tub	n: (ete (i.e. a agree w for the no extra bes Intac Lot Ro	Time: analysis, pr vith custody tests indica a labels, no ct eccived	by <u>14,4</u> reservat y paper ated? ot leakir C	tion, e s? aniste	ers Press Sample	on	Vol. Added	ES ES ES Fedlar(at NO NO NO NO NO NO NO Added	nflated	ic son On V Canal	n ple d 'i 115 NA NA Yes=A sample	ates/ 1 II s OK
5035 sample Cooler Bre 1. W 2. D 3. W 4. W 5. A Explain an pH ≥12	es placed in sto eakdown: Dat Vere all bottle la Vere correct cc Vere 5035 vial ir Samples: C ny discrepanci Reagent NaOH	e:X abels c bels an ntainer s accep assette: es: Yes	comple comple d tags s used table (s / Tub	n: ete (<i>i.e.</i> a agree w for the no extra bes Intac	Time: analysis, pr vith custody tests indice a labels, no a t ecceived	by <u>14;4</u> reservat y paper ated? to leakin C	tion, e s? ng)? caniste	ttc.)? ers Press Sample	on oy: urized	VZ- Y Y Y Y Y Vol. Added	ES ES ES Fedlar	at NO NO NO B Bags I Added	nflated	lo son On V nal	NA Yes=A sample	ates/ 1
$\begin{array}{c} \hline \\ 5035 \text{ sample} \\ \hline \\ $	es placed in ste eakdown: Dat Vere all bottle la Vere correct co Vere 5035 vial ir Samples: C ny discrepanci Reagent NaOH HNO ₃	e: abels c bels an ntainer s accep assette: es: Yes	-3 - / comple d tags rs used table (s / Tub	n:	Time: analysis, pr vith custody tests indica a labels, no t eccived	by <u>14;4</u> reservat y paper ated? ot leakir C	(7 tion, e s? ng)? caniste	tc.)? ers Press Sample	on	Y Y Y Y Y Vol. Added	ES ES ES Fedlar Lot	at NO NO B Bags I Added	nflated	ic son On V C	n ple d 's nll'S N/A Yes=A sample No=Sa	ates/ 1 II s OK mples
$\begin{array}{c} \text{Source} \\ \text{Source} \\$	es placed in sta eakdown: Dat Vere all bottle la Vere correct co Vere 5035 vial ir Samples: C by discrepanci Reagent NaOH HNO ₃ H ₂ SO ₄	e : K abels c bels an ntainer s accep assette: es: Yes	-3 -] comple d tags rs used table (s / Tub	n: tete (<i>i.e.</i> a agree w for the no extra bes Intac	Time: Time: analysis, pr vith custod tests indica a labels, no t ecceived	by <u>14;4</u> reservat y paper ated? ot leakir C	tion, e s? ng)? aniste	tc.)?	on	Y Y Y Y Y Y Y N Vol. Added	ES ES Fedlar Lot	at NO NO B Bags I Added	nflated	ic son On V nai	yes=A sample N/A Yes=A sample No=Sa were	ll s OK mples
5035 sample 5035 sample Cooler Bre 1. W 2. D 3. W 4. W 5. A Explain an pH ≥12 ≤2 ≤2 ≤2	es placed in sta eakdown: Dat Vere all bottle la Vere correct co Vere 5035 vial ir Samples: C by discrepanci Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄	e : K abels c bels an ntainer s accep assette es: Yes	-3 - compled d tags rs used table (s / Tub	n:	Time: analysis, pr vith custod tests indica a labels, no t ecceived	by <u>U</u> , <u>U</u> , <u>U</u> reservative y paper ated? ot leakir C E:	tion, e s? ng)? caniste	tc.)?	on	Vol. Added	ES ES Fedlar(at NO NO NO B Bags I Added	nflated	ic som On V C	NA Yes=A sample No=Sa were preserv The loc	II s OK mples
$\begin{array}{c} \hline \\ \hline $	es placed in sta eakdown: Dat Vere all bottle la Vere correct cc Vere 5035 vial is Samples: C by discrepanci Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For CN Phone L	e : abels an intainer s accep assette: es: Yes	-3 - comple d tags rs used table (s / Tub	n:	Time: analysis, pr vith custod tests indica a labels, no ct ecceived	by <u>U</u> , <u>U</u> ,	tion, e s? ng)? caniste	ers Press Sample	on	Vol. Added	ES ES Fedlar(at NO NO NO B Bags I Added	nflated	lo son On V	NA Yes=A sample No=Sa were preserv The lab	li s OK mples red at
$\begin{array}{c} \hline & \hline \\ \hline \\$	es placed in sta eakdown: Dat Vere all bottle la Vere correct cc Vere 5035 vial is Samples: C by discrepanci Reagent NaOH HNO ₃ H ₂ SO ₄ For CN Phenol and 522	e: abels c bels an intainer s accep assette: Yes	-3 - comple d tags 's used table (s / Tub	n: (tete (<i>i.e.</i> a agree w for the no extra bes Intac Lot Ro If +, cc add Na ascorb	Time: analysis, pr vith custody tests indica a labels, no ct ecceived ontact PM t la2S2O3 (CN ic (phenol)	by <u>14,4</u> reservat y paper ated? t leakir C E: 0 0),	tion, e s? ng)? caniste	ers Press	on oy: urized ID	Vol. Added	ES ES Fedlar	at NO NO NO NO NO NO NO Added	nflated	ic son On V	NA Yes=A sample No=Sa were preserv The lab listed	ll s OK mples red at
$\begin{array}{c} \hline \\ \hline $	es placed in sta eakdown: Dat Vere all bottle la Vere correct cc Vere 5035 vial ir Samples: C ny discrepanci Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For CN Phenol and 522 Na 520	e : abels an- ntainer s accep assette: es: Yes	-3 - comple d tags s used table (s / Tub	n: (. agree w for the no extra bes Intac Lot Ro If +, cc add Na ascorb	Time: analysis, pr vith custody tests indica a labels, no a labels, no	by <u>14;4</u> reservat y paper ated? t leakir C E: 0 0),	ion, e s? ng)? caniste	ers Press	on py: ID	VZ- Y Y Y Y Y Vol. Added	ES ES Fedlar	at NO NO NO B Bags I Added	nflated	lo son On V nal	Yes=A sample N/A Yes=A sample No=Sa were preserv The lab listed PM Ok	$\frac{1}{4tes} = \frac{1}{2}$
$\begin{array}{c} \hline \\ \hline $	es placed in sta eakdown: Dative Vere all bottle la Vere correct co Vere 5035 vial: air Samples: C ny discrepanci Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For CN Phenol and 522 Na ₂ S ₂ O ₃ Zn A cetate	e : abels c bels an ntainer s accep assettes es: Yes 	-3 - comple d tags s used table (s / Tub	n: tete (i.e. a agree w for the no extra bes Intac Lot Ro If +, cc add Na ascorb	Time: Time: analysis, pr vith custod tests indica a labels, no t a labels, no t a labels, no t c ecceived	by <u>14,4</u> reservat y paper ated? t leakin C E: 0),	mg)? aniste	tc.)?	on	Vol. Added	ES ES Fedlar Lot	at NO NO B Bags I Added	nflated Fin pH	nai	Yes=A sample N/A Yes=A sample No=Sa were preserv The lab listed PM Ok Adjust	$\frac{1}{4 e^{2}}$
5035 sample 5035 sample Cooler Bre 1. W 2. D 3. W 4. W 5. A Explain an pH ≥12 ≤2 ≤2 ≤4 Residual Chlorine (-)	ss placed in sta eakdown: Dat Vere all bottle la Vere correct co Vere 5035 vial ir Samples: C by discrepanci Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For CN Phenol and 522 Na ₂ S ₂ O ₃ ZnAcetate	e : Kateria Construction of the second secon	-3 - -3 - compled d tags rs used table (s / Tub No - - - - - - - - - -	n: (ete (i.e. a agree w for the no extra bes Intace Lot Re If +, cc add Na ascorb	Time: Time: analysis, pr vith custod tests indica a labels, no t ecceived ecceived ontact PM t ta2S2O3 (CN ic (phenol).	by <u>14;4</u> reservative y paper ated? ot leakir C E: 0 0),	rg)? caniste	tc.)?	on or oy: urized ID	Vol. Added	ES ES Fedlar Lot	at NO NO Bags I Added	nflated Fin ph	nai Ind	Yes=A sample N/A Yes=A sample No=Sa were preserv The lab listed PM Ok Adjust	$\frac{1}{4\pi}\frac{1}{e^{\frac{1}{2}}}$
5035 sample 5035 sample Cooler Bre 1. W 2. D 3. W 4. W 5. A Explain an pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 Residual Chlorine (-)	es placed in sta eakdown: Dat Vere all bottle la Vere correct co Vere 5035 vial is Samples: C vere 5035 vere 500 vere 500	e : Kateria Construction of the second secon	-3 - compled d tags rs used table (s / Tub No	n: agree w for the (i.e. a agree w for the oextra pes Intac Lot Ro If +, cc add Na ascorb <u>4115(</u>	Time: analysis, pr vith custod tests indica a labels, no ct ecceived ecceived ontact PM t a ₂ S ₂ O ₃ (CN ic (phenol).	by <u>14</u> , 4 reservat y paper ated? ot leakir C E: 0 0),	/ 7 tion, e s? ng)? eaniste xp S	ers Press Sample	on ov: urized ID o be test	Vol. Added	ES ES Fedlar Lot	at NO NO NO Bags I Added	nflated Fin pH	ic som On V nal I	Yes=A sample N/A Yes=A sample No=Sa were preserv The lab listed PM Ok Adjust	$\frac{1}{4\pi}$
$\begin{array}{c} \hline \\ \hline $	ss placed in sta eakdown: Dat Vere all bottle la Vere all bottle la Vere 5035 vial is Samples: C vy discrepanci Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For CN Phenol and 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	e : abels c bels an intainer s accep assette: Yes - **	-3 j- j comple d tags 's used table (s / Tub No - - - - **	n: (agree w for the no extra bes Intac Lot Ro If +, cc add Na ascorb Y115()/	Time: analysis, pr vith custody tests indica a labels, no ct ecceived ontact PM tr azSzO3 (CN ic (phenol).	by <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	rig)? caniste	ers Press Sample	on ov: urized ID o be test I by VC	Vol. Added	ES ES Fedlar Lot	at NO NO NO B Bags I Added	nflated Fin pH	ic som on V	Yes=A sample No=Sa were preserv The lab listed PM Ok Adjust	$\frac{1}{4tes} = \frac{1}{2}$
$\frac{1}{5035 \text{ sample}}$ $\frac{1}$	as placed in states placed in states placed in states where all bottle law vere all bottle la vere correct convere 5035 vials, ir Samples: Convert States and	e: abels an ntainer s accep assette: es: Yes 	-3 - compled tags s used table (s / Tub No - - - +*	n: (. agree w for the no extra bes Intac Lot Ro If +, cc add Na ascorb 4115()	Time: Time: analysis, pr vith custody tests indica a labels, no a labe	by <u>14,4</u> reservat y paper ated? t leakir C E: 0 0),	rion, e s? ng)? caniste xp S	ers Press Bample	on ov: urized ID	Vol. Added	ES ES Fedlar Lot	at NO NO NO B Bags I Added	nflated Fin pH	lo son On V nai i	Yes=A sample No=Sa were preserv The lab listed PM Ok Adjust	$\frac{1}{4 e^{2}}$

CLRES	BULK
DO	FLDT
HPROD	HGFB
HTR	LL3541
РН	SUB
SO3	MARRS
ALS	REV

PC Secondary Review: P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r12.doc

*significant air bubbles: VOA > 5-6 mm : WC > 1 in. diameter

	FIELD M(ONITORIN	ig report	- -	· · · ·
PROJECT XENE	<u>)x 801</u>	WELLS	L	48 ID	
SAMPLE POINTID	MW-	13.5		•	
PURGE IN FORMATION				· · · ·	2
Well Dépth (ft.)2	0.46	Purge Date _	3/30/16	Purge Method	201
SWL (ft.)	1.02	Start Time	1045	Stop Time	46
Standing Water (ft.)	, . 44	Volume Purge	ed gal. 1, 4	# casings 1D	NI
Well Constant (gal/ft.)	5.16	Observations	LI RUST -	-TAN TIN	<u> </u>
Well Volume (gal.)	1.4		·	· · · ·	
SAMPLING INFORMATION					
Sample Method	ALLER		•		
Date 8/30/10.	Time	115 51	NL 16.02		
Recharge Time _29	^ Recharge	e Rate M			
AppearanceG	nel TIN	T		•	
Weather Conditions	ONNY 7	S é	48 th r, SOM	WY 75	
Sampling Technician (Print	BOB (M	BAN	Signature But	hlen	
Meter	Parameter		Renlicate 1	Renlicate 2	
MINDER)	pH	unit	7,75	7.25	-
1	Conductivity	µmhos/cm	3690	3690	
Ţ	Temperature	Degrees Celsius	13.4	13.5	
		304	0H7.00	· . · ·	
Calibration Date/Time	130116	1000	4,01		
OBSERVATIONS	,	· .	<i>/////////////////////////////////////</i>	·	
······				۹ محمد معمد مارو می او معمد می او معمد می مواد می او می	
	· · · · · · · · · · · · · · · · · · ·				
	<u></u>		90		******
		·	· · ·		<u> </u>

ntreas we we derive reason we where the draw we were existence to be a the set of the state of the set of the

OJEC	T Xen	ox boi	Wous	L	AB ID	
 	E POINT ID	Mw-la	BS			
URGE	INFORMATION			•		
/ell.D€	épth (ft.)	25,02	Purge Date	<u>B 30 /16</u>	Purge Method <u>F</u>)091
WL (ft	.)	1.89	Start Time	1055	Stop Time 105	8
tandir	ng Water (ft.) [3,13	Volume Purge	d gal.2.5	# casings 1.2	DILY
Vell Co	onstant (gal/ft.)	0.16	Observations .	LT Ros	57-TAN 77	NI
Nell V	'olume (gal.)	2.1		· · ·	•	<u> </u>
AMPL	ING INFORMATION		•			
ample	BIJ30/16	Len Time	1/25 sv	M 18.96	, ,	
Rechar	rge Time	Recharge	Rate <u>M</u>	مى ھەلەر يەرىپىي قىسىمىيى قىسىمىيى قىلىسىمىيى قىلىمىيى قىلىمىيى قىلىمىيى قىلىمىيى قىلىمىيى قىلىمىيى قىلىمىيى ق مەرەپ قىلىمىيى قىلىمى		· · ·
Appear	rance <u>LT-C</u>	MEY TIN	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Weath	her Conditions	SURVEY T	254	18°hr. <u>Sco</u> r	UNY 75	
Sampli	ing Technician (Print)	Bosch	BAN	Signature <u>D</u>	hla	
	Meter	Parameter	Unit	Replicate 1	Replicate 2	
	MYRON	рН	unit	7,75	7.74	
•		Conductivity	µmhos/cm	3220	3223	
	J.	Temperature	Degrees Celsius	16.1	16.2	
	· ·		1030	• •	• •	
Calibra OBSEF	ation Date/Time	30,16	<u> </u>		· · ·	• .
Calibra OBSEF	ation Date/Time 🖉	<u>) 30 16</u>				
Calibra OBSEF	ation Date/Time 🖉	<u>) 30, 16</u>	<u> </u>			
Calibra OBSEF	ation Date/Time 🦉	<u>) 30, 16</u>	<u></u>			

ROJECT XENOX 801 Wars LAB ID AMPLE POINT ID MW - 19URGE INFORMATION Purge Date 8/30/16 Purge Method For Kunp Vell_Depth (ft.) 15,89 WL (ft.) 10.42 Start Time ______ Stop Time ______ Volume Purged gal. 1. 8 # casings 2014 itanding Water (ft.) 5, 47 Nell Constant (gal/ft.) ______ Observations GREY-TAN TINT Well Volume (gal.) ____ O , 9 SAMPLING INFORMATION Sample Method BAILON Date $\underline{\mathcal{B}}30/lb$ Time 1220Recharge Time 35 Recharge Rate M Lt GROY TINT Appearance Weather Conditions SUNNY 75 48 hr. SUNNY 75 Sampling Technician (Print) Leve (MKAN Signature Replicate 1 **Replicate 2** Parameter Meter Uhit рΗ unit MYRON Conductivity µmhos/cm Temperature **Degrees** Celsius 16. 7 6 loi Calibration Date/Time 8 30, 16 1030 OBSERVATIONS _____ 13 of 90

XM	nγ 801	WELLS	LA	B ID	DUP
AMPLE POINT ID	MW-K	2	· · · · · · · · · · · · · · · · · · ·		
URGE IN FORMATION			·		
vell_Depth (ft.)	22-90	Purge Daté 💆	30/16	Purge Method 💪	AILER
WL (ft.)	11,58	Start Time	2^{α}	Stop Time 1205	
tanding Water (ft.)	11,32	Volume Purgeo	d gal ;	# casings_2.	1 214
Nell Constant (gal/ft.)	0.16	Observations _	Grot -TT	AN	
Well Volume (gal.)	4.8		·	•	
SAMPLING INFORMATIO	N				
Sample Method B	Arcen				
Date <u>8 30 /16 .</u>		12 ³⁰ sw	п _11.87		
Recharge Time	Recharge	Rate <u>M</u>			•
Appearance	T TAN -l	Snown T	TNT		
Weather Conditions	SUUM 75	5 4	8 hr. <u>Sou</u>	104 75	
Sampling Technician (Pri	Bess Un	BAN	Signature	hla	
Meter	Parameter	Unit	Replicate 1	Replicate 2	
MYRON	7 pH	unit	7,29	7,28	
1	Conductivity	µmhos/cm	3585	3590	
4	Temperature	Degrees Celsius	15.6	15.7	
	× · ·	22			
Calibration Date/Time	<u>B130/16</u>	1000			•
OBSERVATIONS				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
				۹ 	
	·	······			
	<u></u>		90		
	<u></u>				······································

		<u>ox 80</u>		L/	\B ID	
MPLE	POINT ID	<u>Sw-3</u>	3.4		·	
RGE	NEORMATION			•		
ell Dér	oth (ft.)	<u> </u>	Purge Datė		Purge Method	K
/L (ft.))		Start Time		Stop Time	·
nding	g Water (ft.)	··	Volume Purged	Bat	# casings	
ell Cor	nstant (gal/ft.)		Observațions _			
ell Vo	olume (gal.)			<u></u>	•	
MPĹľ	NG INFORMATION					· .
ate	8/30/16	Time Recharge	2 47 SW	L	• •	
ppear	ance <u> </u>	ENIC	7~	C ,	in ite	
Veath	er Conditions	POUCY	<u>/</u> 48	3 ^{-hr.}		
				15.1		
amplir	ng Technician (Print)	Bosch	CAN :	Signature Doc	<u>lr</u>	
mplir	ng Technician (Print) Meter	Bon (n Parameter	Unit	Signature 204 Replicate 1	Replicate 2]
implir	ng Technician (Print) Meter MYROD	Parameter pH	Unit Unit unit	Replicate 1 7.83	Replicate 2 7,94	
mplir	ng Technician (Print) Meter MYRON	Parameter pH Conductivity	Unit Unit unit unit	Replicate 1 7,83 1925	Replicate 2 7, 84 1928	
amplir	ng Technician (Print) Meter MYRON	Parameter pH Conductivity Temperature	Unit Unit unit µmhos/cm Degrees Celsius	Replicate 1 7.83 1925 22.1	Replicate 2 7, 94 1928 22, 2	
amplir [ng Technician (Print) Meter MYRON J	Parameter pH Conductivity Temperature	Unit Unit unit µmhos/cm Degrees Celsius	Signature Def Replicate 1 7.83 1925 22.1	Replicate 2 7, 94 1928 22, 2	
amplir Calibra	ng Technician (Print) Meter MYRON L tion Date/Time	Parameter pH Conductivity Temperature	Unit Unit unit µmhos/cm Degrees Celsius	Signature Don Replicate 1 7.83 1925 22.1	Replicate 2 7, <u>9</u> 4 1928 22, 2	
amplir Calibra	ng Technician (Print) Meter MYRON tion Date/Time	Parameter pH Conductivity Temperature	Unit unit unit umhos/cm Degrees Celsius	Signature Don Replicate 1 7.83 1925 22.1	Replicate 2 7.94 1928 22.2	
amplir alibra	ng Technician (Print) Meter MYRON tion Date/Time	Parameter pH Conductivity Temperature	Unit unit unit µmhos/cm Degrees Celsius	Signature Def Replicate 1 7.83 1925 22.1	Replicate 2 7, <u>9</u> 4 1928 22, 2	
amplir Calibra DBSER	ng Technician (Print) Meter MYRON tion Date/Time VATIONS	Parameter pH Conductivity Temperature	Unit unit unit umhos/cm Degrees Celsius	Signature Deh Replicate 1 7.83 1925 22.1	Replicate 2 7, <u>9</u> 4 1928 22, 2	

ROJECT XENOX 201 LAB ID MW-10 AMPLEPOINTID URGE INFORMATION Purge Date $\underline{8/30/16}$ Purge Method $\underline{FUC_{1}}$ Start Time $\underline{13^{15}}$ Stop Time $\underline{13^{18}}$ vell. Dépth (ft.) 21,24 WL (Ft.) 8:11 Volume Purged gal. 4 # casings 2 DRY itanding Water (ft.) 13, 13 Observations LT RUST-TAN TINT Nell Constant (gal/ft.) ______ Well Volume (gal.) ____ A . SAMPLING INFORMATION Sample Method BAUS Date 8/30/16. Time 1335 SWL 10, 33 Recharge Time 18md Recharge Rate M - TAN TINT Appearance Weather Conditions SUNNY 75 48 hr. SUNNY 75 Sampling Technician (Print NBAN ____ Signature 💃 Replicate 2 Replicate 1 Parameter Unit Meter pН unit MYZON Conductivity µmhos/cm SCAL Degrees Celsius Temperature 0,0 Calibration Date/Time <u>8/30/16</u> OBSERVATIONS 16 of 90

XEROX 801 WELLS LAB ID___ ROJECT _ AMPLEPOINTID____VE-G URGE INFORMATION Vell, Depth (ft.) 16.37 Purge Date 8/30/16 Purge Method FOGA Start Time 13^{55} Stop Time 13^{58} WL (Ft.) 6.58 standing Water (ft.) ____9,79 Volume Purged gal. 7 # casings / DAY Observations GREAT-BLACK TIDT Nell Constant (gal/ft.) 0.165 Well Volume (gal.) _____ 6.4 SAMPLING INFORMATION Sample Method SALCAL Date 8/30/16 Time 1410 SWL 9.93 Recharge Time 12 Recharge Rate M Appearance LT TAN TINT Weather Conditions SURNY 80 48 hr. SUNY 75 Sampling Technician (Print) 533 MBAN Signature **Replicate 2** Replicate 1 Meter Parameter Unit pН unit MURDN Conductivity umhos/cm 80 Degrees Celsius Temperature Calibration Date/Time <u>B30/16</u> 1030 OBSERVATIONS 17 of 90

commune necessario were performed in accordance with all applicable protocols:

ALS)

FIELD MONITORING REPORT

	ox 801		_*` 	LAB ID	
AMPLE POINT ID	1E-15		·		······
PURGE IN FORMATION				· ·	
Well. Dépth (ft.)	Koi 77	Purge Date _	8/31/16	Purge Method <u>FUG</u>	- RUMP
SWL (ft.)	6.48	Start Time	0840	Stop Time	
Standing Water (ft.)	D.29	Volume Purg	ed gal. <u>7</u>	# casings	L
Well Constant (gal/ft.)	0.65	Observation	BLACK	TINT	
Well Volume (gal.)	e.7				<u></u>
SAMPLING INFORMATION				•	. *
Sample Method BAIL	15th				
Date 3/31/16	Time 1	0900 s	WL 10,43		
Decharge Time 174	La Recharge	Rata M			. ·
Recharge fille					
Appearance					
Weather Conditions	VENCAST	68	48 hr. <u>- SOK</u>	DNY 75	<u></u>
Sampling Technician (Print)	ASOB (NBAN	Signature Br	hllen	
Meter	Parameter	Unit	Replicate 1	Replicate 2	•
MYRON	рН	unit	7,08	7.09	-
	Conductivity	µmhos/cm	4475	4480	
J.	Temperature	Degrees Celsius	15.5	15.6	
				• • •	
Calibration Date/Time	31,16	0830		· .	
OBSERVATIONS	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · ·
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
		***********			·····
	· · · · · · · · · · · · · · · · · · ·	······································			
				· · · · · · · · · · · · · · · · · · ·	·

Sampling procedures were performed in accordance with all applicable protocols:

PROJECT_	Xer	10x 801		L	4B ID	
SAMPLE F	OINT ID	PW-4	(<u></u>	
PURGEIN	FORMATION				· · ·	
Well Dept	th (ft.)	15,44	Purge Date 🖉	31/16	Purge Method <u>F</u>	101 Run
SW/1 (Ft.)		5.77	Start Time	0850	Stop Time	ĩ2
Standing '	Water (ft.)	9.67	Volume Purge	1 gal. 3, 5	# casings 1.1 L	NY
Wall Cons	stant (gal/ft.)	Oille	Observations	BEACK	TINIT	
Mall Volt	 	3.1	o poor ragiono j		· · · · · · · · · · · · · · · · · · ·	
Wen von						· · · · · · · · · · · · · · · · · · ·
SAMPLIA	RA1	11-22				
Sample.N	Alethod		A007	12 1/0	•	
Date	0131110	Time	STOT SW	$L \underline{10,10}$	• •	
Recharge	Time 1.5M	IN Recharge	e Rate <u>M</u>			
Appearar	ice	estr.			• 	
Weather	Conditions 🜔	VENCAST	68 LTRANS	shr. SUNN	1 3	
Sampling	Technician (Print)	Bos Cu	3AN	Signature <u>Kar</u>	ille.	
[Meter	Parameter	Unit	Replicate 1	Replicate 2	
	NURON	рН	unit	7.72	7,72	
	1	Conductivity	µmhos/cm	2660	260	
	\checkmark	Temperature	Degrees Celsius	13,8	13,7	
			- 21)	• •	. · ·	
Calibratio	on Date/Time	31,16	00=0		• • • • •	•
OBSERV	ATIONS		•		·	
·			······	· · · · · · · · · · · · · · · · · · ·		
		<u></u>	····			
- <u></u>	· · · · · · · · · · · · · · · · · · ·	_ <u></u>				
			19 of 9	<u> </u>		

Sampling procedures were performed in accordance with all applicable protocols:

ROJECT	Xen	0x 801	WEUS	L		C
)	VE-10	. <u></u>	- 		
VIRGE INFORMA	TION			•	•	· · ·
Well_Depth (ft.)_	/	6,47	Purge Date	131/16	Purge Method <u>FC</u>	or long
swi (ft.)	(i	2.12	Start Time	0918	Stop Time 092	
Standing Water (ft.) 10	135	Volume Purgeo	1 gal. 7.0	# casings 1 D/	<u>H</u>
Well Constant (g	a(/ft.)	Oiles	Observations	1+ BLA	K. TINT	
	I) [10.7		6		
WEIL VOIGHICIBU				<u></u>		
SAMPLING INFO	PA-	11		•		
Sample Method Date $\theta / 3/$	116	Time (2940 sw	19.77	- -	
Recharge Time	19 14/14	C Recharge	Rate <u>M</u>			•
Appearance	(Lista		· · · · · · · · · · · · · · · · · · ·	-	
Weather Conditi	ons <u>68</u>	1º LT RAI	N 48	Shr. SUNA	JY TS	
Sampling Technic	cian (Print)	Bos Un	BAN	Signature	ihla	
		Dogootor	11:53	Ponlicate 1	Replicate 2	· ·
	ster	nH	unit		100100	•
MYI	2070	Conductivity	µmhos/cm	6011	6831)	
J	/	Temperature	Degrees Celsius	15:6	15.7	
· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · ·	<u> </u>		,
Calibration Date/	Time <u></u>	31,16	0830			•
OBSERVATIONS		····	•		· · · · · · · · ·	
		······			· · · · · · · · · · · · · · · · · · ·	
		·			-	,
		<u>American a seconda de la composición de</u>		· · · · · · · · · · · · · · · · · · ·		
·			<u>20 of 9</u>	0		

Sampling procedures were performed in accordance with all applicable protocols.

PROJECT XEM	DX 801	l	L	AB ID	
AMPLE POINT ID	VE-12			. <u></u>	
WRGE IN FORMATION			• • •	· · ·	· ·
Nell Depth (ft.)	7.00	Purge Date	3/30/16_	Purge Method <u>FC</u>	OI PUMP
	5.33	Start Time	0930	Stop Time 093	3
Since Jimes (A/ster (ft) /1	.107	Volume Durge	d gal 8.0	# casings (D)	LY
tanding water (it.)	Ver	Observations	In Bin		
Well Constant (gal/ft.)	10-	Observations.	LT DIACI		
Well Volume (gal.)/	$\mathcal{O}_{\mathcal{O}}$				
SAMPLING INFORMATION					
Sample MethodBA	ILER				
Date 10/30/16	Time	<u>0950</u> sv	n 11.16	•	
Recharge Time 17M	IN Recharge	e Rate M	·	• ·	· · ·
	10-An	· · · · · · · · · · · · · · · · · · ·			
	001+DA		Scial	111 75	
Weather Conditions	Ral	4	8'hr		
Sampling Technician (Print)	Vices (M	<u>ISAN</u>	Signature	oult	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Meter	Parameter	Unit	Replicate 1	Replicate 2	
MYRON	pH	unit	6125	6,25	
	Conductivity	µmhos/cm	8500	8503	
¥	Temperature	Degrees Celsius	16.3	16.4	
· · · · · ·	•	0.030)		•	
Callbration Date/Time	30,16	0830		· · · · · · ·	
OBSERVATIONS		•			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			•
		······································		• 	
	<u></u>				
		21 of 9)0		· · · · · · · · · · · · · · · · · · ·

Sampling procedures were performed in accordance with all applicable protocols:

ROJECT XIMOX 801 WELLS LAB ID MW-2 AMPLEPOINTID URGE INFORMATION Purge Date 8/31/16 Purge Method FOG Nell, Depth (ft.) 23,50Start Time 1035 Stop Time 0 1038 6.68 ;WL (ft.)_____ Volume Purged gal. 3.0 # casings 1, 1 DAY Observations RUST-TAN TINT Well Constant (gal/ft.) 0.16 Well Volume (gal.) 2.7 SAMPLING INFORMATION Sample Method ISAILER SWL 7.41 Recharge Time 17min Recharge Rate M Appearance CucAn Weather Conditions 68° LT RAIN 48 hr. SONNY 75 Sampling Technician (Print) Kos UBAN Signature 10-Replicate 1 **Replicate 2** Parameter Unit Meter unit pН , lolo MYZON Conductivity umhos/cm 120 124 3.3 **Degrees** Celsius Temperature Calibration Date/Time 8/31/16 OBSERVATIONS-22 of 90

ROJECT Xene	DX 80	(LA	BID	
AMPLE POINTID	$5\omega - 3$	J 35 as	sir Bran M	hadlen -	• • • • • • • • • • • • • • • • • • • •
URGE IN FORMATION					
Vell, Dépth (ft.)		Purge Date	·	Purge Method	<u> </u>
WL (ft.)		Start Time		Stop Time	·
itanding Water (ft.)		Volume Purgeo	gal	# casings	
Nell Constant (gal/ft.)		Observations		,	
Well Volume (gal.)		·····			
AMPLING INFORMATION	м ²				
Recharge Time Appearance Weather Conditions Sampling Technician (Print)_	Recharge	- Rate 41 70 41 MBAa	3 hr. <u>SCNA</u> Signature <u>B</u>	by TS Ula	
Meter	Parameter	Unit	Replicate 1	Replicate 2	
MURON	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius	8.51 35.7 19.7	8,50 36,1 19,7	
Calibration Date/Time OBSERVATIONS	<u>131 / 16</u>	0830	· · · · · · · · · · · · · · · · · · ·		
·····	······	······		· · · · · · · · · · · · · · · · · · ·	

ROJECT	XENC	Y 801	WERLS	LA	BID	
AMPLE	POINT ID	MW-2	As			<u>.</u>
	NFORMATION			 		•
Vell, Der	oth (ft.)	1,78	Purge Datė 🔜	0/31/16	Purge Method <u>F</u>	201
WL (ft.)	5	,38	Start Time	1123	Stop Time	5
Standing	water (ft.) <u>/</u> Ə	.40	Volume Purged	gal. 2.5	# casings 1.2	j) Ly
Well Cor	nstant (gal/ft.)	Oillo	Observations _	KUST-D	\$ TINI	··
Well Vo	lume (gal.)	2.0	<u></u>		•	
SAMPLI	NG INFORMATION		• •			
Sample.	Method <u>BA</u>	than				
Date	10/31/16	Time	1135 SW	6.03	- -	
Recharg	ge Time 10 m	ير Recharge	Rate <u>M</u>			``
Appeara	ance <u>Li</u>	-Rus -T	AN TINT		• •	
Weath	er Conditions	B° LTR	AIN 4	shr. Sow	1 75	
Samplir	ng Technician (Print)	Box 4	UBAN	Signature <u>150</u>	the	
Product and	Meter	Parameter	Unit	Replicate 1	Replicate 2	
	MYRON	рН	unit	7.11	7.12	
		Conductivity	µmhos/cm	1623	1620	
	V	Temperature	Degrees Celsius	1912	19,2	
-	· · · · · · · · · · · · · · · · · · ·	1201 H	N Q30		•	
Calibrat	tion Date/Time <u>70</u>				· ·	•
OBSER	VATIONS	· · ·	••		· · ·	•
					•	
	· · · · · · · · · · · · · · · · · · ·	<u>.</u>				
·			24 of 9	90		

	MOX 80	>(LA	B ID	
AMPLE POINT ID	Sw-2				
URGE INFORMATION			·	•	
Vell Depth (ft.)	······································	Purge Date		Purge Method	
WL (ft.)	<u> </u>	Start Time		Stop Time	·
tanding Water (ft.)		Volume Purged	gal #	t casings	
Vell Constant (gal/ft.)		Observations _			·
Well Volume (gal.)				/ . 	
AMPLING INFORMATIO	N				
Sam ple .Method					
Date		sw	1	~	
Recharge Time	Recharge	e Rate			•
Appearance				•	
Weather Conditions		48	3 [.] hr		
Sampling Technician (Pri	nt)		Signature		
		18484	Poplicate 1	Replicate 2]
Meter	Paramerer		Neplicate I	Nephoare &	- ·
	Conductivity	umbos/cm			-
	Temperature	Degrees Celsius			-
	<u>/</u>			<u>_{</u>	
Calibration Date/Time	. / /		$\boldsymbol{\lambda}$		
		· · · · · · · · · · · ·		•	•
OR2EKAA11002	•			•	
	NO	how		· ·	
······································	<u></u>	25 of 9	00	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 26 of 90

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester L	ab ID # for State Certifica	ations ¹
		NT TT

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Accredited	Nebraska Accredited	294100 A/B
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047	North Carolina #676	Virginia #460167

¹ Analyses were performed according to our laboratoryø NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016

VE-6

Water

R1609188-001

Sample Name:

Sample Matrix:

Lab Code:

Service Request: R1609188

Date Collected: 08/30/16 **Date Received:** 08/31/16

Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	VE-10 R1609188-002 Water		Date Collected: 08/31/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By JMISIUREWICZ
Sample Name: Lab Code: Sample Matrix:	VE-12 R1609188-003 Water		Date Collected: 08/31/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	VE-15 R1609188-004 Water		Date Collected: 08/31/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	RW-4 R1609188-005 Water		Date Collected: 08/31/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Analyst Summary report

Client:	Xerox Corporation USA
Project:	Bldg 801 annual Wells 2016

MW-2

Water

R1609188-006

Sample Name:

Sample Matrix:

Lab Code:

Service Request: R1609188

Date Collected: 08/31/16 **Date Received:** 08/31/16

Analysis Method 8260C		Extracted/Digested By	Analyzed By JMISIUREWICZ
Sample Name: Lab Code: Sample Matrix:	MW-10 R1609188-007 Water		Date Collected: 08/30/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By JMISIUREWICZ
Sample Name: Lab Code: Sample Matrix:	MW-13S R1609188-008 Water		Date Collected: 08/30/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By JMISIUREWICZ
Sample Name: Lab Code: Sample Matrix:	MW-16 R1609188-009 Water		Date Collected: 08/30/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By JMISIUREWICZ
Sample Name: Lab Code: Sample Matrix:	MW-18S R1609188-010 Water		Date Collected: 08/30/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By JMISIUREWICZ

Analyst Summary report

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016

MW-19

Water

R1609188-011

Sample Name: Lab Code:

Sample Matrix:

Service Request: R1609188

Date Collected: 08/30/16 **Date Received:** 08/31/16

Analysis Method 8260C 8260C		Extracted/Digested By	Analyzed By JMISIUREWICZ KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-24S R1609188-012 Water		Date Collected: 08/31/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By JMISIUREWICZ
Sample Name: Lab Code: Sample Matrix:	SW-34 R1609188-014 Water		Date Collected: 08/30/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-16 Duplicate R1609188-016 Water		Date Collected: 08/30/16 Date Received: 08/31/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER

Analyst Summary report

Client: Xerox Corporation USA **Project:** Bldg 801 annual Wells 2016

Trip Blank R1609188-018

Water

Service Request: R1609188

Date Collected: 08/30/16 **Date Received:** 08/31/16

Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	SW-35 R1609188-019 Water	D D	ate Collected: 08/31/16 ate Received: 08/31/16
Analysis Method		Extracted/Digested By	Analyzed By

8260C

Sample Name:

Sample Matrix:

Lab Code:

BALLGEIER

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method	
200.7	200.2	
200.8	200.2	
6010C	3005A/3010A	
6020A	ILM05.3	
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2	
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2	
9034 Sulfide Acid	9030B	
Soluble		
9056A Bomb (Halogens)	5050A	
9066 Manual Distillation	9065	
SM 4500-CN-E Residual	SM 4500-CN-G	
Cyanide		
SM 4500-CN-E WAD	SM 4500-CN-I	
Cyanide		

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
-	
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 35 of 90

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 36 of 90
Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 14:10
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	VE-6	Units: ug/L
Lab Code:	R1609188-001	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	1000 U	1000	100	09/06/16 17:40	
Benzene	500 U	500	100	09/06/16 17:40	
Bromodichloromethane	500 U	500	100	09/06/16 17:40	
Bromoform	500 U	500	100	09/06/16 17:40	
Bromomethane	500 U	500	100	09/06/16 17:40	
2-Butanone (MEK)	1000 U	1000	100	09/06/16 17:40	
Carbon Disulfide	1000 U	1000	100	09/06/16 17:40	
Carbon Tetrachloride	500 U	500	100	09/06/16 17:40	
Chlorobenzene	500 U	500	100	09/06/16 17:40	
Chloroethane	500 U	500	100	09/06/16 17:40	
Chloroform	500 U	500	100	09/06/16 17:40	
Chloromethane	500 U	500	100	09/06/16 17:40	
Dibromochloromethane	500 U	500	100	09/06/16 17:40	
1,1-Dichloroethane	720	500	100	09/06/16 17:40	
1,2-Dichloroethane	500 U	500	100	09/06/16 17:40	
1,1-Dichloroethene	500 U	500	100	09/06/16 17:40	
cis-1,2-Dichloroethene	14000	500	100	09/06/16 17:40	
trans-1,2-Dichloroethene	500 U	500	100	09/06/16 17:40	
1,2-Dichloropropane	500 U	500	100	09/06/16 17:40	
cis-1,3-Dichloropropene	500 U	500	100	09/06/16 17:40	
trans-1,3-Dichloropropene	500 U	500	100	09/06/16 17:40	
Ethylbenzene	500 U	500	100	09/06/16 17:40	
2-Hexanone	1000 U	1000	100	09/06/16 17:40	
Methylene Chloride	500 U	500	100	09/06/16 17:40	
4-Methyl-2-pentanone (MIBK)	1000 U	1000	100	09/06/16 17:40	
Styrene	500 U	500	100	09/06/16 17:40	
1,1,2,2-Tetrachloroethane	500 U	500	100	09/06/16 17:40	
Tetrachloroethene	500 U	500	100	09/06/16 17:40	
Toluene	500 U	500	100	09/06/16 17:40	
1,1,1-Trichloroethane	710	500	100	09/06/16 17:40	
1,1,2-Trichloroethane	500 U	500	100	09/06/16 17:40	
Trichloroethene	500 U	500	100	09/06/16 17:40	
Vinyl Chloride	1100	500	100	09/06/16 17:40	
o-Xylene	500 U	500	100	09/06/16 17:40	
m,p-Xylenes	500 U	500	100	09/06/16 17:40	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 14:10
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	VE-6	Units: ug/L
Lab Code:	R1609188-001	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	09/06/16 17:40	
Toluene-d8	115	87 - 121	09/06/16 17:40	
Dibromofluoromethane	112	89 - 119	09/06/16 17:40	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 09:40
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	VE-10	Units: ug/L
Lab Code:	R1609188-002	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	5000 U	5000	500	09/02/16 12:46	
Benzene	2500 U	2500	500	09/02/16 12:46	
Bromodichloromethane	2500 U	2500	500	09/02/16 12:46	
Bromoform	2500 U	2500	500	09/02/16 12:46	
Bromomethane	2500 U	2500	500	09/02/16 12:46	
2-Butanone (MEK)	5000 U	5000	500	09/02/16 12:46	
Carbon Disulfide	5000 U	5000	500	09/02/16 12:46	
Carbon Tetrachloride	2500 U	2500	500	09/02/16 12:46	
Chlorobenzene	2500 U	2500	500	09/02/16 12:46	
Chloroethane	5000	2500	500	09/02/16 12:46	
Chloroform	2500 U	2500	500	09/02/16 12:46	
Chloromethane	2500 U	2500	500	09/02/16 12:46	
Dibromochloromethane	2500 U	2500	500	09/02/16 12:46	
1,1-Dichloroethane	2500 U	2500	500	09/02/16 12:46	
1,2-Dichloroethane	2500 U	2500	500	09/02/16 12:46	
1,1-Dichloroethene	2500 U	2500	500	09/02/16 12:46	
cis-1,2-Dichloroethene	50000	2500	500	09/02/16 12:46	
trans-1,2-Dichloroethene	2500 U	2500	500	09/02/16 12:46	
1,2-Dichloropropane	2500 U	2500	500	09/02/16 12:46	
cis-1,3-Dichloropropene	2500 U	2500	500	09/02/16 12:46	
trans-1,3-Dichloropropene	2500 U	2500	500	09/02/16 12:46	
Ethylbenzene	2500 U	2500	500	09/02/16 12:46	
2-Hexanone	5000 U	5000	500	09/02/16 12:46	
Methylene Chloride	2500 U	2500	500	09/02/16 12:46	
4-Methyl-2-pentanone (MIBK)	5000 U	5000	500	09/02/16 12:46	
Styrene	2500 U	2500	500	09/02/16 12:46	
1,1,2,2-Tetrachloroethane	2500 U	2500	500	09/02/16 12:46	
Tetrachloroethene	2500 U	2500	500	09/02/16 12:46	
Toluene	2500 U	2500	500	09/02/16 12:46	
1,1,1-Trichloroethane	2500 U	2500	500	09/02/16 12:46	
1,1,2-Trichloroethane	2500 U	2500	500	09/02/16 12:46	
Trichloroethene	2500 U	2500	500	09/02/16 12:46	
Vinyl Chloride	33000	2500	500	09/02/16 12:46	
o-Xylene	2500 U	2500	500	09/02/16 12:46	
m,p-Xylenes	2500 U	2500	500	09/02/16 12:46	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 09:40
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	VE-10	Units: ug/L
Lab Code:	R1609188-002	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	09/02/16 12:46	
Toluene-d8	112	87 - 121	09/02/16 12:46	
Dibromofluoromethane	111	89 - 119	09/02/16 12:46	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 09:50
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	VE-12	Units: ug/L
Lab Code:	R1609188-003	Basis: NA
	Volatile Organic Compou	unds by GC/MS

Analysis Method: 8260C

Prep Method: EPA 5030	Prep Method:	EPA 5030C
-----------------------	--------------	-----------

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	2000 U	2000	200	09/06/16 18:10	
Benzene	1000 U	1000	200	09/06/16 18:10	
Bromodichloromethane	1000 U	1000	200	09/06/16 18:10	
Bromoform	1000 U	1000	200	09/06/16 18:10	
Bromomethane	1000 U	1000	200	09/06/16 18:10	
2-Butanone (MEK)	2000 U	2000	200	09/06/16 18:10	
Carbon Disulfide	2000 U	2000	200	09/06/16 18:10	
Carbon Tetrachloride	1000 U	1000	200	09/06/16 18:10	
Chlorobenzene	1000 U	1000	200	09/06/16 18:10	
Chloroethane	9200	1000	200	09/06/16 18:10	
Chloroform	1000 U	1000	200	09/06/16 18:10	
Chloromethane	1000 U	1000	200	09/06/16 18:10	
Dibromochloromethane	1000 U	1000	200	09/06/16 18:10	
1,1-Dichloroethane	4900	1000	200	09/06/16 18:10	
1,2-Dichloroethane	1000 U	1000	200	09/06/16 18:10	
1,1-Dichloroethene	1000 U	1000	200	09/06/16 18:10	
cis-1,2-Dichloroethene	5800	1000	200	09/06/16 18:10	
trans-1,2-Dichloroethene	1000 U	1000	200	09/06/16 18:10	
1,2-Dichloropropane	1000 U	1000	200	09/06/16 18:10	
cis-1,3-Dichloropropene	1000 U	1000	200	09/06/16 18:10	
trans-1,3-Dichloropropene	1000 U	1000	200	09/06/16 18:10	
Ethylbenzene	1000 U	1000	200	09/06/16 18:10	
2-Hexanone	2000 U	2000	200	09/06/16 18:10	
Methylene Chloride	1000 U	1000	200	09/06/16 18:10	
4-Methyl-2-pentanone (MIBK)	2000 U	2000	200	09/06/16 18:10	
Styrene	1000 U	1000	200	09/06/16 18:10	
1,1,2,2-Tetrachloroethane	1000 U	1000	200	09/06/16 18:10	
Tetrachloroethene	1000 U	1000	200	09/06/16 18:10	
Toluene	1000 U	1000	200	09/06/16 18:10	
1,1,1-Trichloroethane	1000 U	1000	200	09/06/16 18:10	
1,1,2-Trichloroethane	1000 U	1000	200	09/06/16 18:10	
Trichloroethene	1000 U	1000	200	09/06/16 18:10	
Vinyl Chloride	21000	1000	200	09/06/16 18:10	
o-Xylene	1000 U	1000	200	09/06/16 18:10	
m,p-Xylenes	1000 U	1000	200	09/06/16 18:10	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 09:50
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	VE-12	Units: ug/L
Lab Code:	R1609188-003	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	09/06/16 18:10	
Toluene-d8	113	87 - 121	09/06/16 18:10	
Dibromofluoromethane	111	89 - 119	09/06/16 18:10	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 09:00
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	VE-15	Units: ug/L
Lab Code:	R1609188-004	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/06/16 16:39	
Benzene	25 U	25	5	09/06/16 16:39	
Bromodichloromethane	25 U	25	5	09/06/16 16:39	
Bromoform	25 U	25	5	09/06/16 16:39	
Bromomethane	25 U	25	5	09/06/16 16:39	
2-Butanone (MEK)	50 U	50	5	09/06/16 16:39	
Carbon Disulfide	50 U	50	5	09/06/16 16:39	
Carbon Tetrachloride	25 U	25	5	09/06/16 16:39	
Chlorobenzene	25 U	25	5	09/06/16 16:39	
Chloroethane	530	25	5	09/06/16 16:39	
Chloroform	25 U	25	5	09/06/16 16:39	
Chloromethane	25 U	25	5	09/06/16 16:39	
Dibromochloromethane	25 U	25	5	09/06/16 16:39	
1,1-Dichloroethane	25 U	25	5	09/06/16 16:39	
1,2-Dichloroethane	25 U	25	5	09/06/16 16:39	
1,1-Dichloroethene	25 U	25	5	09/06/16 16:39	
cis-1,2-Dichloroethene	25 U	25	5	09/06/16 16:39	
trans-1,2-Dichloroethene	25 U	25	5	09/06/16 16:39	
1,2-Dichloropropane	25 U	25	5	09/06/16 16:39	
cis-1,3-Dichloropropene	25 U	25	5	09/06/16 16:39	
trans-1,3-Dichloropropene	25 U	25	5	09/06/16 16:39	
Ethylbenzene	25 U	25	5	09/06/16 16:39	
2-Hexanone	50 U	50	5	09/06/16 16:39	
Methylene Chloride	25 U	25	5	09/06/16 16:39	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/06/16 16:39	
Styrene	25 U	25	5	09/06/16 16:39	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/06/16 16:39	
Tetrachloroethene	25 U	25	5	09/06/16 16:39	
Toluene	25 U	25	5	09/06/16 16:39	
1,1,1-Trichloroethane	25 U	25	5	09/06/16 16:39	
1,1,2-Trichloroethane	25 U	25	5	09/06/16 16:39	
Trichloroethene	25 U	25	5	09/06/16 16:39	
Vinyl Chloride	25 U	25	5	09/06/16 16:39	
o-Xylene	25 U	25	5	09/06/16 16:39	
m,p-Xylenes	25 U	25	5	09/06/16 16:39	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 09:00
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	VE-15	Units: ug/L
Lab Code:	R1609188-004	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	09/06/16 16:39	
Toluene-d8	112	87 - 121	09/06/16 16:39	
Dibromofluoromethane	112	89 - 119	09/06/16 16:39	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 09:07
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	RW-4	Units: ug/L
Lab Code:	R1609188-005	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/06/16 16:08	
Benzene	5.0 U	5.0	1	09/06/16 16:08	
Bromodichloromethane	5.0 U	5.0	1	09/06/16 16:08	
Bromoform	5.0 U	5.0	1	09/06/16 16:08	
Bromomethane	5.0 U	5.0	1	09/06/16 16:08	
2-Butanone (MEK)	11	10	1	09/06/16 16:08	
Carbon Disulfide	10 U	10	1	09/06/16 16:08	
Carbon Tetrachloride	5.0 U	5.0	1	09/06/16 16:08	
Chlorobenzene	5.0 U	5.0	1	09/06/16 16:08	
Chloroethane	7.0	5.0	1	09/06/16 16:08	
Chloroform	5.0 U	5.0	1	09/06/16 16:08	
Chloromethane	5.0 U	5.0	1	09/06/16 16:08	
Dibromochloromethane	5.0 U	5.0	1	09/06/16 16:08	
1,1-Dichloroethane	64	5.0	1	09/06/16 16:08	
1,2-Dichloroethane	5.0 U	5.0	1	09/06/16 16:08	
1,1-Dichloroethene	5.0 U	5.0	1	09/06/16 16:08	
cis-1,2-Dichloroethene	92	5.0	1	09/06/16 16:08	
trans-1,2-Dichloroethene	5.3	5.0	1	09/06/16 16:08	
1,2-Dichloropropane	5.0 U	5.0	1	09/06/16 16:08	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/06/16 16:08	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/06/16 16:08	
Ethylbenzene	5.0 U	5.0	1	09/06/16 16:08	
2-Hexanone	12	10	1	09/06/16 16:08	
Methylene Chloride	6.8	5.0	1	09/06/16 16:08	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/06/16 16:08	
Styrene	5.0 U	5.0	1	09/06/16 16:08	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/06/16 16:08	
Tetrachloroethene	5.0 U	5.0	1	09/06/16 16:08	
Toluene	5.0 U	5.0	1	09/06/16 16:08	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/06/16 16:08	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/06/16 16:08	
Trichloroethene	8.0	5.0	1	09/06/16 16:08	
Vinyl Chloride	21	5.0	1	09/06/16 16:08	
o-Xylene	5.0 U	5.0	1	09/06/16 16:08	
m,p-Xylenes	5.0 U	5.0	1	09/06/16 16:08	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 09:07
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	RW-4	Units: ug/L
Lab Code:	R1609188-005	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	09/06/16 16:08	
Toluene-d8	114	87 - 121	09/06/16 16:08	
Dibromofluoromethane	110	89 - 119	09/06/16 16:08	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 10:55
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-2	Units: ug/L
Lab Code:	R1609188-006	Basis: NA
	Volatile Organic Compour	nds by GC/MS

Analysis Method:8260CPrep Method:EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 04:50	
Benzene	5.0 U	5.0	1	09/02/16 04:50	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 04:50	
Bromoform	5.0 U	5.0	1	09/02/16 04:50	
Bromomethane	5.0 U	5.0	1	09/02/16 04:50	
2-Butanone (MEK)	10 U	10	1	09/02/16 04:50	
Carbon Disulfide	10 U	10	1	09/02/16 04:50	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 04:50	
Chlorobenzene	5.0 U	5.0	1	09/02/16 04:50	
Chloroethane	5.0 U	5.0	1	09/02/16 04:50	
Chloroform	5.0 U	5.0	1	09/02/16 04:50	
Chloromethane	5.0 U	5.0	1	09/02/16 04:50	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 04:50	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 04:50	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 04:50	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 04:50	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 04:50	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 04:50	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 04:50	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 04:50	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 04:50	
Ethylbenzene	5.0 U	5.0	1	09/02/16 04:50	
2-Hexanone	10 U	10	1	09/02/16 04:50	
Methylene Chloride	5.0 U	5.0	1	09/02/16 04:50	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 04:50	
Styrene	5.0 U	5.0	1	09/02/16 04:50	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 04:50	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 04:50	
Toluene	5.0 U	5.0	1	09/02/16 04:50	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 04:50	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 04:50	
Trichloroethene	5.0 U	5.0	1	09/02/16 04:50	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 04:50	
o-Xylene	5.0 U	5.0	1	09/02/16 04:50	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 04:50	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 10:55
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-2	Units: ug/L
Lab Code:	R1609188-006	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/02/16 04:50	
Toluene-d8	112	87 - 121	09/02/16 04:50	
Dibromofluoromethane	112	89 - 119	09/02/16 04:50	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 13:35
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-10	Units: ug/L
Lab Code:	R1609188-007	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/02/16 11:14	
Benzene	25 U	25	5	09/02/16 11:14	
Bromodichloromethane	25 U	25	5	09/02/16 11:14	
Bromoform	25 U	25	5	09/02/16 11:14	
Bromomethane	25 U	25	5	09/02/16 11:14	
2-Butanone (MEK)	50 U	50	5	09/02/16 11:14	
Carbon Disulfide	50 U	50	5	09/02/16 11:14	
Carbon Tetrachloride	25 U	25	5	09/02/16 11:14	
Chlorobenzene	25 U	25	5	09/02/16 11:14	
Chloroethane	25 U	25	5	09/02/16 11:14	
Chloroform	25 U	25	5	09/02/16 11:14	
Chloromethane	25 U	25	5	09/02/16 11:14	
Dibromochloromethane	25 U	25	5	09/02/16 11:14	
1,1-Dichloroethane	99	25	5	09/02/16 11:14	
1,2-Dichloroethane	25 U	25	5	09/02/16 11:14	
1,1-Dichloroethene	25 U	25	5	09/02/16 11:14	
cis-1,2-Dichloroethene	720	25	5	09/02/16 11:14	
trans-1,2-Dichloroethene	25 U	25	5	09/02/16 11:14	
1,2-Dichloropropane	25 U	25	5	09/02/16 11:14	
cis-1,3-Dichloropropene	25 U	25	5	09/02/16 11:14	
trans-1,3-Dichloropropene	25 U	25	5	09/02/16 11:14	
Ethylbenzene	25 U	25	5	09/02/16 11:14	
2-Hexanone	50 U	50	5	09/02/16 11:14	
Methylene Chloride	25 U	25	5	09/02/16 11:14	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/02/16 11:14	
Styrene	25 U	25	5	09/02/16 11:14	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/02/16 11:14	
Tetrachloroethene	25 U	25	5	09/02/16 11:14	
Toluene	25 U	25	5	09/02/16 11:14	
1,1,1-Trichloroethane	26	25	5	09/02/16 11:14	
1,1,2-Trichloroethane	25 U	25	5	09/02/16 11:14	
Trichloroethene	68	25	5	09/02/16 11:14	
Vinyl Chloride	99	25	5	09/02/16 11:14	
o-Xylene	25 U	25	5	09/02/16 11:14	
m,p-Xylenes	25 U	25	5	09/02/16 11:14	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 13:35
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-10	Units: ug/L
Lab Code:	R1609188-007	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/02/16 11:14	
Toluene-d8	112	87 - 121	09/02/16 11:14	
Dibromofluoromethane	111	89 - 119	09/02/16 11:14	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 11:15
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-13S	Units: ug/L
Lab Code:	R1609188-008	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 05:20	
Benzene	5.0 U	5.0	1	09/02/16 05:20	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 05:20	
Bromoform	5.0 U	5.0	1	09/02/16 05:20	
Bromomethane	5.0 U	5.0	1	09/02/16 05:20	
2-Butanone (MEK)	10 U	10	1	09/02/16 05:20	
Carbon Disulfide	10 U	10	1	09/02/16 05:20	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 05:20	
Chlorobenzene	5.0 U	5.0	1	09/02/16 05:20	
Chloroethane	5.0 U	5.0	1	09/02/16 05:20	
Chloroform	5.0 U	5.0	1	09/02/16 05:20	
Chloromethane	5.0 U	5.0	1	09/02/16 05:20	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 05:20	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 05:20	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 05:20	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 05:20	
cis-1,2-Dichloroethene	5.4	5.0	1	09/02/16 05:20	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 05:20	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 05:20	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 05:20	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 05:20	
Ethylbenzene	5.0 U	5.0	1	09/02/16 05:20	
2-Hexanone	10 U	10	1	09/02/16 05:20	
Methylene Chloride	5.0 U	5.0	1	09/02/16 05:20	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 05:20	
Styrene	5.0 U	5.0	1	09/02/16 05:20	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 05:20	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 05:20	
Toluene	5.0 U	5.0	1	09/02/16 05:20	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 05:20	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 05:20	
Trichloroethene	5.0 U	5.0	1	09/02/16 05:20	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 05:20	
o-Xylene	5.0 U	5.0	1	09/02/16 05:20	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 05:20	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 11:15
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-138	Units: ug/L
Lab Code:	R1609188-008	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	09/02/16 05:20	
Toluene-d8	111	87 - 121	09/02/16 05:20	
Dibromofluoromethane	114	89 - 119	09/02/16 05:20	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 12:30
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-16	Units: ug/L
Lab Code:	R1609188-009	Basis: NA
	Volatile Organic Compoun	ds by GC/MS

Analysis Method: 8260C

			-
Prep Metho	od:	EPA	5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 05:51	
Benzene	5.0 U	5.0	1	09/02/16 05:51	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 05:51	
Bromoform	5.0 U	5.0	1	09/02/16 05:51	
Bromomethane	5.0 U	5.0	1	09/02/16 05:51	
2-Butanone (MEK)	10 U	10	1	09/02/16 05:51	
Carbon Disulfide	10 U	10	1	09/02/16 05:51	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 05:51	
Chlorobenzene	5.0 U	5.0	1	09/02/16 05:51	
Chloroethane	5.0 U	5.0	1	09/02/16 05:51	
Chloroform	5.0 U	5.0	1	09/02/16 05:51	
Chloromethane	5.0 U	5.0	1	09/02/16 05:51	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 05:51	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 05:51	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 05:51	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 05:51	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 05:51	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 05:51	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 05:51	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 05:51	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 05:51	
Ethylbenzene	5.0 U	5.0	1	09/02/16 05:51	
2-Hexanone	10 U	10	1	09/02/16 05:51	
Methylene Chloride	5.0 U	5.0	1	09/02/16 05:51	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 05:51	
Styrene	5.0 U	5.0	1	09/02/16 05:51	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 05:51	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 05:51	
Toluene	5.0 U	5.0	1	09/02/16 05:51	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 05:51	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 05:51	
Trichloroethene	5.0 U	5.0	1	09/02/16 05:51	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 05:51	
o-Xylene	5.0 U	5.0	1	09/02/16 05:51	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 05:51	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 12:30
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-16	Units: ug/L
Lab Code:	R1609188-009	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/02/16 05:51	
Toluene-d8	113	87 - 121	09/02/16 05:51	
Dibromofluoromethane	111	89 - 119	09/02/16 05:51	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 11:25
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-18S	Units: ug/L
Lab Code:	R1609188-010	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 08:40	
Benzene	5.0 U	5.0	1	09/02/16 08:40	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 08:40	
Bromoform	5.0 U	5.0	1	09/02/16 08:40	
Bromomethane	5.0 U	5.0	1	09/02/16 08:40	
2-Butanone (MEK)	10 U	10	1	09/02/16 08:40	
Carbon Disulfide	10 U	10	1	09/02/16 08:40	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 08:40	
Chlorobenzene	5.0 U	5.0	1	09/02/16 08:40	
Chloroethane	5.0 U	5.0	1	09/02/16 08:40	
Chloroform	5.0 U	5.0	1	09/02/16 08:40	
Chloromethane	5.0 U	5.0	1	09/02/16 08:40	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 08:40	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 08:40	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 08:40	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 08:40	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 08:40	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 08:40	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 08:40	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 08:40	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 08:40	
Ethylbenzene	5.0 U	5.0	1	09/02/16 08:40	
2-Hexanone	10 U	10	1	09/02/16 08:40	
Methylene Chloride	5.0 U	5.0	1	09/02/16 08:40	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 08:40	
Styrene	5.0 U	5.0	1	09/02/16 08:40	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 08:40	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 08:40	
Toluene	5.0 U	5.0	1	09/02/16 08:40	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 08:40	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 08:40	
Trichloroethene	5.0 U	5.0	1	09/02/16 08:40	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 08:40	
o-Xylene	5.0 U	5.0	1	09/02/16 08:40	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 08:40	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 11:25
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-18S	Units: ug/L
Lab Code:	R1609188-010	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	09/02/16 08:40	
Toluene-d8	113	87 - 121	09/02/16 08:40	
Dibromofluoromethane	104	89 - 119	09/02/16 08:40	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 12:20
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-19	Units: ug/L
Lab Code:	R1609188-011	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	25 U	25	2.5	09/02/16 09:43	
Benzene	13 U	13	2.5	09/02/16 09:43	
Bromodichloromethane	13 U	13	2.5	09/02/16 09:43	
Bromoform	13 U	13	2.5	09/02/16 09:43	
Bromomethane	13 U	13	2.5	09/02/16 09:43	
2-Butanone (MEK)	25 U	25	2.5	09/02/16 09:43	
Carbon Disulfide	25 U	25	2.5	09/02/16 09:43	
Carbon Tetrachloride	13 U	13	2.5	09/02/16 09:43	
Chlorobenzene	13 U	13	2.5	09/02/16 09:43	
Chloroethane	13 U	13	2.5	09/02/16 09:43	
Chloroform	13 U	13	2.5	09/02/16 09:43	
Chloromethane	13 U	13	2.5	09/02/16 09:43	
Dibromochloromethane	13 U	13	2.5	09/02/16 09:43	
1,1-Dichloroethane	320	13	2.5	09/02/16 09:43	
1,2-Dichloroethane	13 U	13	2.5	09/02/16 09:43	
1,1-Dichloroethene	120	13	2.5	09/02/16 09:43	
cis-1,2-Dichloroethene	3700 D	250	50	09/06/16 17:09	
trans-1,2-Dichloroethene	63	13	2.5	09/02/16 09:43	
1,2-Dichloropropane	13 U	13	2.5	09/02/16 09:43	
cis-1,3-Dichloropropene	13 U	13	2.5	09/02/16 09:43	
trans-1,3-Dichloropropene	13 U	13	2.5	09/02/16 09:43	
Ethylbenzene	13 U	13	2.5	09/02/16 09:43	
2-Hexanone	25 U	25	2.5	09/02/16 09:43	
Methylene Chloride	13 U	13	2.5	09/02/16 09:43	
4-Methyl-2-pentanone (MIBK)	25 U	25	2.5	09/02/16 09:43	
Styrene	13 U	13	2.5	09/02/16 09:43	
1,1,2,2-Tetrachloroethane	13 U	13	2.5	09/02/16 09:43	
Tetrachloroethene	120	13	2.5	09/02/16 09:43	
Toluene	13 U	13	2.5	09/02/16 09:43	
1,1,1-Trichloroethane	340	13	2.5	09/02/16 09:43	
1,1,2-Trichloroethane	13 U	13	2.5	09/02/16 09:43	
Trichloroethene	3100 D	250	50	09/06/16 17:09	
Vinyl Chloride	190	13	2.5	09/02/16 09:43	
o-Xylene	13 U	13	2.5	09/02/16 09:43	
m,p-Xylenes	13 U	13	2.5	09/02/16 09:43	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 12:20
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-19	Units: ug/L
Lab Code:	R1609188-011	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/02/16 09:43	
Toluene-d8	111	87 - 121	09/02/16 09:43	
Dibromofluoromethane	112	89 - 119	09/02/16 09:43	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 11:35
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-24S	Units: ug/L
Lab Code:	R1609188-012	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 09:12	
Benzene	5.0 U	5.0	1	09/02/16 09:12	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 09:12	
Bromoform	5.0 U	5.0	1	09/02/16 09:12	
Bromomethane	5.0 U	5.0	1	09/02/16 09:12	
2-Butanone (MEK)	10 U	10	1	09/02/16 09:12	
Carbon Disulfide	10 U	10	1	09/02/16 09:12	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 09:12	
Chlorobenzene	5.0 U	5.0	1	09/02/16 09:12	
Chloroethane	5.0 U	5.0	1	09/02/16 09:12	
Chloroform	5.0 U	5.0	1	09/02/16 09:12	
Chloromethane	5.0 U	5.0	1	09/02/16 09:12	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 09:12	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 09:12	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 09:12	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 09:12	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 09:12	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 09:12	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 09:12	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 09:12	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 09:12	
Ethylbenzene	5.0 U	5.0	1	09/02/16 09:12	
2-Hexanone	10 U	10	1	09/02/16 09:12	
Methylene Chloride	5.0 U	5.0	1	09/02/16 09:12	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 09:12	
Styrene	5.0 U	5.0	1	09/02/16 09:12	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 09:12	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 09:12	
Toluene	5.0 U	5.0	1	09/02/16 09:12	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 09:12	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 09:12	
Trichloroethene	5.0 U	5.0	1	09/02/16 09:12	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 09:12	
o-Xylene	5.0 U	5.0	1	09/02/16 09:12	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 09:12	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 11:35
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-24S	Units: ug/L
Lab Code:	R1609188-012	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	09/02/16 09:12	
Toluene-d8	108	87 - 121	09/02/16 09:12	
Dibromofluoromethane	113	89 - 119	09/02/16 09:12	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 12:45
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	SW-34	Units: ug/L
Lab Code:	R1609188-014	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 21:15	
Benzene	5.0 U	5.0	1	09/02/16 21:15	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 21:15	
Bromoform	5.0 U	5.0	1	09/02/16 21:15	
Bromomethane	5.0 U	5.0	1	09/02/16 21:15	
2-Butanone (MEK)	10 U	10	1	09/02/16 21:15	
Carbon Disulfide	10 U	10	1	09/02/16 21:15	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 21:15	
Chlorobenzene	5.0 U	5.0	1	09/02/16 21:15	
Chloroethane	5.0 U	5.0	1	09/02/16 21:15	
Chloroform	5.0 U	5.0	1	09/02/16 21:15	
Chloromethane	5.0 U	5.0	1	09/02/16 21:15	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 21:15	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 21:15	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 21:15	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 21:15	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 21:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 21:15	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 21:15	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 21:15	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 21:15	
Ethylbenzene	5.0 U	5.0	1	09/02/16 21:15	
2-Hexanone	10 U	10	1	09/02/16 21:15	
Methylene Chloride	5.0 U	5.0	1	09/02/16 21:15	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 21:15	
Styrene	5.0 U	5.0	1	09/02/16 21:15	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 21:15	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 21:15	
Toluene	5.0 U	5.0	1	09/02/16 21:15	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 21:15	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 21:15	
Trichloroethene	5.0 U	5.0	1	09/02/16 21:15	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 21:15	
o-Xylene	5.0 U	5.0	1	09/02/16 21:15	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 21:15	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 12:45
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	SW-34	Units: ug/L
Lab Code:	R1609188-014	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/02/16 21:15	
Toluene-d8	114	87 - 121	09/02/16 21:15	
Dibromofluoromethane	110	89 - 119	09/02/16 21:15	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 12:30
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-16 Duplicate	Units: ug/L
Lab Code:	R1609188-016	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 21:46	
Benzene	5.0 U	5.0	1	09/02/16 21:46	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 21:46	
Bromoform	5.0 U	5.0	1	09/02/16 21:46	
Bromomethane	5.0 U	5.0	1	09/02/16 21:46	
2-Butanone (MEK)	10 U	10	1	09/02/16 21:46	
Carbon Disulfide	10 U	10	1	09/02/16 21:46	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 21:46	
Chlorobenzene	5.0 U	5.0	1	09/02/16 21:46	
Chloroethane	5.0 U	5.0	1	09/02/16 21:46	
Chloroform	5.0 U	5.0	1	09/02/16 21:46	
Chloromethane	5.0 U	5.0	1	09/02/16 21:46	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 21:46	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 21:46	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 21:46	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 21:46	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 21:46	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 21:46	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 21:46	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 21:46	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 21:46	
Ethylbenzene	5.0 U	5.0	1	09/02/16 21:46	
2-Hexanone	10 U	10	1	09/02/16 21:46	
Methylene Chloride	5.0 U	5.0	1	09/02/16 21:46	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 21:46	
Styrene	5.0 U	5.0	1	09/02/16 21:46	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 21:46	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 21:46	
Toluene	5.0 U	5.0	1	09/02/16 21:46	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 21:46	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 21:46	
Trichloroethene	5.0 U	5.0	1	09/02/16 21:46	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 21:46	
o-Xylene	5.0 U	5.0	1	09/02/16 21:46	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 21:46	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 12:30
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	MW-16 Duplicate	Units: ug/L
Lab Code:	R1609188-016	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	09/02/16 21:46	
Toluene-d8	113	87 - 121	09/02/16 21:46	
Dibromofluoromethane	112	89 - 119	09/02/16 21:46	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 07:00
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	Trip Blank	Units: ug/L
Lab Code:	R1609188-018	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 22:17	
Benzene	5.0 U	5.0	1	09/02/16 22:17	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 22:17	
Bromoform	5.0 U	5.0	1	09/02/16 22:17	
Bromomethane	5.0 U	5.0	1	09/02/16 22:17	
2-Butanone (MEK)	10 U	10	1	09/02/16 22:17	
Carbon Disulfide	10 U	10	1	09/02/16 22:17	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 22:17	
Chlorobenzene	5.0 U	5.0	1	09/02/16 22:17	
Chloroethane	5.0 U	5.0	1	09/02/16 22:17	
Chloroform	5.0 U	5.0	1	09/02/16 22:17	
Chloromethane	5.0 U	5.0	1	09/02/16 22:17	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 22:17	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 22:17	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 22:17	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 22:17	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 22:17	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 22:17	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 22:17	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 22:17	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 22:17	
Ethylbenzene	5.0 U	5.0	1	09/02/16 22:17	
2-Hexanone	10 U	10	1	09/02/16 22:17	
Methylene Chloride	5.0 U	5.0	1	09/02/16 22:17	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 22:17	
Styrene	5.0 U	5.0	1	09/02/16 22:17	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 22:17	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 22:17	
Toluene	5.0 U	5.0	1	09/02/16 22:17	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 22:17	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 22:17	
Trichloroethene	5.0 U	5.0	1	09/02/16 22:17	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 22:17	
o-Xylene	5.0 U	5.0	1	09/02/16 22:17	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 22:17	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/30/16 07:00
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	Trip Blank	Units: ug/L
Lab Code:	R1609188-018	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/02/16 22:17	
Toluene-d8	113	87 - 121	09/02/16 22:17	
Dibromofluoromethane	112	89 - 119	09/02/16 22:17	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 12:45
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	SW-35	Units: ug/L
Lab Code:	R1609188-019	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 22:47	
Benzene	5.0 U	5.0	1	09/02/16 22:47	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 22:47	
Bromoform	5.0 U	5.0	1	09/02/16 22:47	
Bromomethane	5.0 U	5.0	1	09/02/16 22:47	
2-Butanone (MEK)	10 U	10	1	09/02/16 22:47	
Carbon Disulfide	10 U	10	1	09/02/16 22:47	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 22:47	
Chlorobenzene	5.0 U	5.0	1	09/02/16 22:47	
Chloroethane	5.0 U	5.0	1	09/02/16 22:47	
Chloroform	5.0 U	5.0	1	09/02/16 22:47	
Chloromethane	5.0 U	5.0	1	09/02/16 22:47	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 22:47	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 22:47	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 22:47	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 22:47	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 22:47	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 22:47	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 22:47	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 22:47	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 22:47	
Ethylbenzene	5.0 U	5.0	1	09/02/16 22:47	
2-Hexanone	10 U	10	1	09/02/16 22:47	
Methylene Chloride	5.0 U	5.0	1	09/02/16 22:47	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 22:47	
Styrene	5.0 U	5.0	1	09/02/16 22:47	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 22:47	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 22:47	
Toluene	5.0 U	5.0	1	09/02/16 22:47	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 22:47	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 22:47	
Trichloroethene	5.0 U	5.0	1	09/02/16 22:47	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 22:47	
o-Xylene	5.0 U	5.0	1	09/02/16 22:47	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 22:47	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: 08/31/16 12:45
Sample Matrix:	Water	Date Received: 08/31/16 13:35
Sample Name:	SW-35	Units: ug/L
Lab Code:	R1609188-019	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	09/02/16 22:47	
Toluene-d8	114	87 - 121	09/02/16 22:47	
Dibromofluoromethane	112	89 - 119	09/02/16 22:47	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 69 of 90

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 70 of 90

QA/QC Report

Client:	Xerox Corporation USA
Project:	Bldg 801 annual Wells 2016
Sample Matrix:	Water

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C			
Extraction Method:	EPA 5030C			

		4-Bromofluorobenzene	Toluene-d8	Dibromofluoromethane		
Sample Name	Lab Code	85 - 122	87 - 121	89 - 119		
VE-6	R1609188-001	105	115	112		
VE-10	R1609188-002	101	112	111		
VE-12	R1609188-003	104	113	111		
VE-15	R1609188-004	104 112		112		
RW-4	R1609188-005	106	110			
MW-2	R1609188-006	102	112	112		
MW-10	R1609188-007	103	112	111		
MW-13S	R1609188-008	104	111	114		
MW-16	R1609188-009	103	113	111		
MW-18S	R1609188-010	94	113	104		
MW-19	R1609188-011	103	111	112		
MW-24S	R1609188-012	101	108	113		
SW-34	R1609188-014	102	114	110		
MW-16 Duplicate	R1609188-016	105	113	112		
Trip Blank	R1609188-018	103	113	112		
SW-35	R1609188-019	104	114	112		
Lab Control Sample	RQ1610436-03	103	111	113		
Method Blank	RQ1610436-04	105	111	110		
Lab Control Sample	RQ1610500-03	106	116	115		
Method Blank	RQ1610500-04	105	113	114		
Lab Control Sample	RQ1610552-03	106	112	110		
Method Blank	RQ1610552-04	106	114	111		
VE-10 MS	RQ1610552-05	106	113	113		
VE-10 DMS	RQ1610552-06	108	113	110		

Service Request: R1609188

QA/QC Report

Client:	Xerox Corporation USA Bldg 801 annual Wells 2016						Service	R1609188			
Project:							Date Co	08/31			
Sample Matrix	Water	bor					Date Received.		08/31		
Sumple Mutrix.	water						Date Ar	alwade	00/01/10		
							Date Al	aryzeu:	09/0/.	10	
							Date Ex	tracted:	NA		
			Dup	licate Matri	x Spike S	ummary					
Volatile Organic Compounds by GC/MS											
Sampla Nama	VE 10			8	•	v		Uniter	ug/I		
	VL-10							omis.	ug/L		
Lab Code:	R1609188-	-002						Basis:	NA		
Analysis Method:	8260C										
Prep Method:	EPA 50300	С									
			м	latrix Snika		Dun	licata Matri	v Snika			
			маных эріке Dupilcate маных эріке				ospike				
		G 1	Ν	21010552-05			Q1010552-	00	0/ D		DDD
Analyta Nama		Sample	Docult	Spike	0/ Dec	Dogult	Spike	0/ Doc	% Kec	DDD	KPD Limit
Analyte Name		5000 U	16500	25000	% Kec	16400	25000	% Kec	20.151	KPD <1	20
Benzene		2500 U	26600	25000	106	27000	25000	108	76-129	2	30
Bromodichlorometha	ne	2500 U	23900	25000	96	24200	25000	97	76-127	1	30
Bromoform		2500 U	26900	25000	108	28100	25000	112	58-133	4	30
Bromomethane		2500 U	6100	25000	24	9240	25000	37	10-162	41*	30
2-Butanone (MEK)		5000 U	19400	25000	78	21800	25000	87	46-141	12	30
Carbon Disulfide		5000 U	28900	25000	116	29300	25000	117	34-162	1	30
Carbon Tetrachloride		2500 U	23200	25000	93	23500	25000	94	65-135	2	30
Chlorobenzene		2500 U	25300	25000	101	25800	25000	103	76-125	2	30
Chloroethane		5000	29000	25000	96	29000	25000	96	70-140	<1	30
Chloroform		2500 U	24700	25000	99	24500	25000	98	75-130	<1	30
Chloromethane		2500 U	24200	25000	97	23500	25000	94	55-160	3	30
Dibromochlorometha	ine	2500 U	22100	25000	88	23200	25000	93	72-128	5	30
1,1-Dichloroethane		2500 U	26000	25000	104	27100	25000	108	74-132	4	30
1,2-Dichloroethane		2500 U	22500	25000	90	22600	25000	90	68-130	<1	30
1,1-Dichloroethene		2500 U	27000	25000	108	27800	25000	111	74-139	3	30
cis-1,2-Dichloroethei	ne	50000 2500 U	76900	25000	107	/5400	25000	101	72-133	2	30 20
1.2 Dichloropropaga	lene	2300 U 2500 U	26300	25000	103	26400	25000	105	70 124	<1	30 20
r,2-Dichloropropane	ono	2500 U	20900	25000	07	20700	25000	107	79-124 52 134	3	30
trans-1 3-Dichloroprop	nene	2500 U	23300	25000	93	23400	25000	94	50-142		30
Ethylbenzene	opene	2500 U	25700	25000	103	25500	25000	102	72-134	<1	30
2-Hexanone		5000 U	19800	25000	79	20500	25000	82	56-132	4	30
Methylene Chloride		2500 U	25900	25000	104	26300	25000	105	75-121	1	30
4-Methyl-2-pentanon	e (MIBK)	5000 U	21400	25000	86	21500	25000	86	60-141	<1	30
Styrene		2500 U	27000	25000	108	27300	25000	109	34-156	1	30
1,1,2,2-Tetrachloroet	hane	2500 U	23300	25000	93	23600	25000	94	72-122	1	30
Tetrachloroethene		2500 U	25800	25000	103	27200	25000	109	67-137	5	30
Toluene		2500 U	27300	25000	109	27400	25000	110	79-125	<1	30
1,1,1-Trichloroethane	e	2500 U	23300	25000	93	24200	25000	97	74-127	4	30
1,1,2-Trichloroethane	2	2500 U	24700	25000	99	24500	25000	98	79-119	1	30
Trichloroethene		2500 U	26900	25000	107	26100	25000	104	62-142	3	30
Vinyl Chloride		33000	56900	25000	96	55500	25000	90	60-157	2	30
o-Xylene		2500 U	26200	25000	105	26700	25000	107	68-134	2	30
m,p-Xylenes	• 1 (4) • • • ·	2500 U	52900	50000	106	53200	50000	106	68-138	<1	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.
Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1610436-04	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 03:48	
Benzene	5.0 U	5.0	1	09/02/16 03:48	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 03:48	
Bromoform	5.0 U	5.0	1	09/02/16 03:48	
Bromomethane	5.0 U	5.0	1	09/02/16 03:48	
2-Butanone (MEK)	10 U	10	1	09/02/16 03:48	
Carbon Disulfide	10 U	10	1	09/02/16 03:48	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 03:48	
Chlorobenzene	5.0 U	5.0	1	09/02/16 03:48	
Chloroethane	5.0 U	5.0	1	09/02/16 03:48	
Chloroform	5.0 U	5.0	1	09/02/16 03:48	
Chloromethane	5.0 U	5.0	1	09/02/16 03:48	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 03:48	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 03:48	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 03:48	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 03:48	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 03:48	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 03:48	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 03:48	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 03:48	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 03:48	
Ethylbenzene	5.0 U	5.0	1	09/02/16 03:48	
2-Hexanone	10 U	10	1	09/02/16 03:48	
Methylene Chloride	5.0 U	5.0	1	09/02/16 03:48	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 03:48	
Styrene	5.0 U	5.0	1	09/02/16 03:48	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 03:48	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 03:48	
Toluene	5.0 U	5.0	1	09/02/16 03:48	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 03:48	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 03:48	
Trichloroethene	5.0 U	5.0	1	09/02/16 03:48	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 03:48	
o-Xylene	5.0 U	5.0	1	09/02/16 03:48	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 03:48	

Analytical Report **Client:** Xerox Corporation USA Service Request: R1609188 **Project:** Bldg 801 annual Wells 2016 Date Collected: NA Sample Matrix: Water Date Received: NA Method Blank Units: ug/L Sample Name: Basis: NA Lab Code: RQ1610436-04

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	09/02/16 03:48	
Toluene-d8	111	87 - 121	09/02/16 03:48	
Dibromofluoromethane	110	89 - 119	09/02/16 03:48	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1610500-04	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/02/16 17:41	
Benzene	5.0 U	5.0	1	09/02/16 17:41	
Bromodichloromethane	5.0 U	5.0	1	09/02/16 17:41	
Bromoform	5.0 U	5.0	1	09/02/16 17:41	
Bromomethane	5.0 U	5.0	1	09/02/16 17:41	
2-Butanone (MEK)	10 U	10	1	09/02/16 17:41	
Carbon Disulfide	10 U	10	1	09/02/16 17:41	
Carbon Tetrachloride	5.0 U	5.0	1	09/02/16 17:41	
Chlorobenzene	5.0 U	5.0	1	09/02/16 17:41	
Chloroethane	5.0 U	5.0	1	09/02/16 17:41	
Chloroform	5.0 U	5.0	1	09/02/16 17:41	
Chloromethane	5.0 U	5.0	1	09/02/16 17:41	
Dibromochloromethane	5.0 U	5.0	1	09/02/16 17:41	
1,1-Dichloroethane	5.0 U	5.0	1	09/02/16 17:41	
1,2-Dichloroethane	5.0 U	5.0	1	09/02/16 17:41	
1,1-Dichloroethene	5.0 U	5.0	1	09/02/16 17:41	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 17:41	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/02/16 17:41	
1,2-Dichloropropane	5.0 U	5.0	1	09/02/16 17:41	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 17:41	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/02/16 17:41	
Ethylbenzene	5.0 U	5.0	1	09/02/16 17:41	
2-Hexanone	10 U	10	1	09/02/16 17:41	
Methylene Chloride	5.0 U	5.0	1	09/02/16 17:41	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/02/16 17:41	
Styrene	5.0 U	5.0	1	09/02/16 17:41	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/02/16 17:41	
Tetrachloroethene	5.0 U	5.0	1	09/02/16 17:41	
Toluene	5.0 U	5.0	1	09/02/16 17:41	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/02/16 17:41	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/02/16 17:41	
Trichloroethene	5.0 U	5.0	1	09/02/16 17:41	
Vinyl Chloride	5.0 U	5.0	1	09/02/16 17:41	
o-Xylene	5.0 U	5.0	1	09/02/16 17:41	
m,p-Xylenes	5.0 U	5.0	1	09/02/16 17:41	

Analytical Report **Client:** Xerox Corporation USA Service Request: R1609188 **Project:** Bldg 801 annual Wells 2016 Date Collected: NA Sample Matrix: Water Date Received: NA Units: ug/L Sample Name: Method Blank Basis: NA Lab Code: RQ1610500-04

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	09/02/16 17:41	
Toluene-d8	113	87 - 121	09/02/16 17:41	
Dibromofluoromethane	114	89 - 119	09/02/16 17:41	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1609188
Project:	Bldg 801 annual Wells 2016	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1610552-04	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/06/16 12:03	
Benzene	5.0 U	5.0	1	09/06/16 12:03	
Bromodichloromethane	5.0 U	5.0	1	09/06/16 12:03	
Bromoform	5.0 U	5.0	1	09/06/16 12:03	
Bromomethane	5.0 U	5.0	1	09/06/16 12:03	
2-Butanone (MEK)	10 U	10	1	09/06/16 12:03	
Carbon Disulfide	10 U	10	1	09/06/16 12:03	
Carbon Tetrachloride	5.0 U	5.0	1	09/06/16 12:03	
Chlorobenzene	5.0 U	5.0	1	09/06/16 12:03	
Chloroethane	5.0 U	5.0	1	09/06/16 12:03	
Chloroform	5.0 U	5.0	1	09/06/16 12:03	
Chloromethane	5.0 U	5.0	1	09/06/16 12:03	
Dibromochloromethane	5.0 U	5.0	1	09/06/16 12:03	
1,1-Dichloroethane	5.0 U	5.0	1	09/06/16 12:03	
1,2-Dichloroethane	5.0 U	5.0	1	09/06/16 12:03	
1,1-Dichloroethene	5.0 U	5.0	1	09/06/16 12:03	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/06/16 12:03	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/06/16 12:03	
1,2-Dichloropropane	5.0 U	5.0	1	09/06/16 12:03	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/06/16 12:03	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/06/16 12:03	
Ethylbenzene	5.0 U	5.0	1	09/06/16 12:03	
2-Hexanone	10 U	10	1	09/06/16 12:03	
Methylene Chloride	5.0 U	5.0	1	09/06/16 12:03	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/06/16 12:03	
Styrene	5.0 U	5.0	1	09/06/16 12:03	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/06/16 12:03	
Tetrachloroethene	5.0 U	5.0	1	09/06/16 12:03	
Toluene	5.0 U	5.0	1	09/06/16 12:03	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/06/16 12:03	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/06/16 12:03	
Trichloroethene	5.0 U	5.0	1	09/06/16 12:03	
Vinyl Chloride	5.0 U	5.0	1	09/06/16 12:03	
o-Xylene	5.0 U	5.0	1	09/06/16 12:03	
m,p-Xylenes	5.0 U	5.0	1	09/06/16 12:03	

Analytical Report **Client:** Xerox Corporation USA Service Request: R1609188 **Project:** Bldg 801 annual Wells 2016 Date Collected: NA Sample Matrix: Water Date Received: NA Units: ug/L Sample Name: Method Blank Basis: NA Lab Code: RQ1610552-04

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	09/06/16 12:03	
Toluene-d8	114	87 - 121	09/06/16 12:03	
Dibromofluoromethane	111	89 - 119	09/06/16 12:03	

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016Sample Matrix:Water

Service Request: R1609188 **Date Analyzed:** 09/02/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1610436-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	21.1	20.0	106	40-161
Benzene	8260C	20.8	20.0	104	76-118
Bromodichloromethane	8260C	19.2	20.0	96	78-126
Bromoform	8260C	24.4	20.0	122	71-136
Bromomethane	8260C	19.6	20.0	98	42-166
2-Butanone (MEK)	8260C	21.4	20.0	107	61-137
Carbon Disulfide	8260C	18.9	20.0	94	65-127
Carbon Tetrachloride	8260C	17.2	20.0	86	68-125
Chlorobenzene	8260C	20.8	20.0	104	80-121
Chloroethane	8260C	24.5	20.0	123	70-127
Chloroform	8260C	18.7	20.0	94	76-120
Chloromethane	8260C	23.8	20.0	119	69-145
Dibromochloromethane	8260C	20.5	20.0	103	77-128
1,1-Dichloroethane	8260C	20.2	20.0	101	78-117
1,2-Dichloroethane	8260C	19.1	20.0	95	71-127
1,1-Dichloroethene	8260C	20.1	20.0	101	74-135
cis-1,2-Dichloroethene	8260C	20.8	20.0	104	80-121
trans-1,2-Dichloroethene	8260C	20.9	20.0	104	80-120
1,2-Dichloropropane	8260C	21.7	20.0	108	80-119
cis-1,3-Dichloropropene	8260C	19.4	20.0	97	74-126
trans-1,3-Dichloropropene	8260C	18.2	20.0	91	67-135
Ethylbenzene	8260C	19.4	20.0	97	76-120
2-Hexanone	8260C	19.9	20.0	99	63-124
Methylene Chloride	8260C	21.3	20.0	106	73-122
4-Methyl-2-pentanone (MIBK)	8260C	19.6	20.0	98	66-124
Styrene	8260C	21.5	20.0	108	80-124
1,1,2,2-Tetrachloroethane	8260C	20.2	20.0	101	78-122
Tetrachloroethene	8260C	19.4	20.0	97	78-124
Toluene	8260C	20.8	20.0	104	77-120
1,1,1-Trichloroethane	8260C	17.3	20.0	86	74-120
1,1,2-Trichloroethane	8260C	20.9	20.0	104	82-118
Trichloroethene	8260C	21.8	20.0	109	78-123
Vinyl Chloride	8260C	22.2	20.0	111	69-133
Printed 12/27/2016 4:59:55 PM			Supers	et Reference:16-000	00391469 rev 00

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016Sample Matrix:Water

Service Request: R1609188 Date Analyzed: 09/02/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1610436-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	20.6	20.0	103	80-120
m,p-Xylenes	8260C	40.9	40.0	102	78-123

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016Sample Matrix:Water

Service Request: R1609188 **Date Analyzed:** 09/02/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1610500-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	17.2	20.0	86	40-161
Benzene	8260C	19.9	20.0	99	76-118
Bromodichloromethane	8260C	18.9	20.0	94	78-126
Bromoform	8260C	23.4	20.0	117	71-136
Bromomethane	8260C	15.8	20.0	79	42-166
2-Butanone (MEK)	8260C	18.5	20.0	93	61-137
Carbon Disulfide	8260C	23.4	20.0	117	65-127
Carbon Tetrachloride	8260C	15.7	20.0	79	68-125
Chlorobenzene	8260C	19.6	20.0	98	80-121
Chloroethane	8260C	16.8	20.0	84	70-127
Chloroform	8260C	17.8	20.0	89	76-120
Chloromethane	8260C	17.6	20.0	88	69-145
Dibromochloromethane	8260C	18.6	20.0	93	77-128
1,1-Dichloroethane	8260C	19.2	20.0	96	78-117
1,2-Dichloroethane	8260C	18.5	20.0	93	71-127
1,1-Dichloroethene	8260C	18.5	20.0	93	74-135
cis-1,2-Dichloroethene	8260C	20.2	20.0	101	80-121
trans-1,2-Dichloroethene	8260C	18.4	20.0	92	80-120
1,2-Dichloropropane	8260C	20.6	20.0	103	80-119
cis-1,3-Dichloropropene	8260C	19.9	20.0	100	74-126
trans-1,3-Dichloropropene	8260C	19.1	20.0	96	67-135
Ethylbenzene	8260C	18.0	20.0	90	76-120
2-Hexanone	8260C	18.0	20.0	90	63-124
Methylene Chloride	8260C	19.7	20.0	98	73-122
4-Methyl-2-pentanone (MIBK)	8260C	18.7	20.0	93	66-124
Styrene	8260C	20.1	20.0	101	80-124
1,1,2,2-Tetrachloroethane	8260C	20.5	20.0	102	78-122
Tetrachloroethene	8260C	17.8	20.0	89	78-124
Toluene	8260C	20.0	20.0	100	77-120
1,1,1-Trichloroethane	8260C	15.7	20.0	78	74-120
1,1,2-Trichloroethane	8260C	20.9	20.0	104	82-118
Trichloroethene	8260C	19.2	20.0	96	78-123
Vinyl Chloride	8260C	17.6	20.0	88	69-133
Printed 12/27/2016 4:59:56 PM			Supers	et Reference:16-000	00391469 rev 00

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016Sample Matrix:Water

Service Request: R1609188 Date Analyzed: 09/02/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1610500-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	19.6	20.0	98	80-120
m,p-Xylenes	8260C	38.1	40.0	95	78-123

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016Sample Matrix:Water

Service Request: R1609188 **Date Analyzed:** 09/06/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1610552-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	17.1	20.0	86	40-161
Benzene	8260C	20.5	20.0	103	76-118
Bromodichloromethane	8260C	18.2	20.0	91	78-126
Bromoform	8260C	20.5	20.0	102	71-136
Bromomethane	8260C	13.8	20.0	69	42-166
2-Butanone (MEK)	8260C	17.0	20.0	85	61-137
Carbon Disulfide	8260C	22.6	20.0	113	65-127
Carbon Tetrachloride	8260C	16.5	20.0	83	68-125
Chlorobenzene	8260C	19.0	20.0	95	80-121
Chloroethane	8260C	17.5	20.0	87	70-127
Chloroform	8260C	18.4	20.0	92	76-120
Chloromethane	8260C	18.2	20.0	91	69-145
Dibromochloromethane	8260C	18.3	20.0	92	77-128
1,1-Dichloroethane	8260C	19.6	20.0	98	78-117
1,2-Dichloroethane	8260C	18.1	20.0	90	71-127
1,1-Dichloroethene	8260C	19.4	20.0	97	74-135
cis-1,2-Dichloroethene	8260C	19.9	20.0	100	80-121
trans-1,2-Dichloroethene	8260C	19.7	20.0	98	80-120
1,2-Dichloropropane	8260C	19.7	20.0	98	80-119
cis-1,3-Dichloropropene	8260C	18.9	20.0	94	74-126
trans-1,3-Dichloropropene	8260C	18.2	20.0	91	67-135
Ethylbenzene	8260C	19.5	20.0	98	76-120
2-Hexanone	8260C	15.9	20.0	80	63-124
Methylene Chloride	8260C	20.4	20.0	102	73-122
4-Methyl-2-pentanone (MIBK)	8260C	16.9	20.0	85	66-124
Styrene	8260C	20.1	20.0	100	80-124
1,1,2,2-Tetrachloroethane	8260C	18.8	20.0	94	78-122
Tetrachloroethene	8260C	19.8	20.0	99	78-124
Toluene	8260C	21.0	20.0	105	77-120
1,1,1-Trichloroethane	8260C	17.4	20.0	87	74-120
1,1,2-Trichloroethane	8260C	18.6	20.0	93	82-118
Trichloroethene	8260C	20.3	20.0	102	78-123
Vinyl Chloride	8260C	18.5	20.0	92	69-133
Printed 12/27/2016 4:59:57 PM			Supers	et Reference:16-000	00391469 rev 00

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 annual Wells 2016Sample Matrix:Water

Service Request: R1609188 Date Analyzed: 09/06/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1610552-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	19.2	20.0	96	80-120
m,p-Xylenes	8260C	40.1	40.0	100	78-123

SAMPLE IDENTIFICATION KEY

Pr	oject:	Xerox Building 801 Annual Monitoring	Client:	Xerox Corpo	oration						File Number: 42227					
Lo	cation:	Henrietta, NY	Weather:								Project Manager: Janice Szucs					
In	vestigation Area:		Units:	ft							Field Rei	oresentativ	/e:			
Sa	moling Company:	ALS	Notes:								Field Re	oresentativ	/e Signature	2:		
	hersteru		1											Data		
La	boratory:	ALS													Date	
	Sample ID	Parent Sample ID	Location ID	Sample Date	Sample Time (military)	Sample Type Code	Matrix Code	Filtered (Water Only) (T/D/N)	Com- posite (Y/N)	Soil Type	Depth to Top (ft)	Depth to Bottom (ft)	Chain of Custody Number	Comments	Collected By	
	RW-4 2016 AN		RW-4	08/31/16	0907	N	WG	Ν	N		8.0	23.0			ALS	
	VE-6 2016 AN		VE-6	08/30/16	1410	N	WG	Ν	N		2.5	12.8			ALS	
	VE-10 2016 AN		VE-10	08/31/16	0940	N	WG	Ν	N		2.5	12.8			ALS	
	VE-12 2016 AN		VE-12	08/31/16	0950	N	WG	N	N		2.5	12.8			ALS	
	VE-15 2016 AN		VE-15	08/31/16	0900	N	WG	N	N		2.5	12.8			ALS	
	MW-2 2016 AN		MW-2	08/31/16	1055	N	WG	N	N		7.0	22.0			ALS	
	MW-10 2016 AN		MW-10	08/30/16	1335	N	WG	N	N		6.0	21.0			ALS	
	MW-13S 2016 AN		MW-13S	08/30/16	1115	N	WG	N	N		8.0	18.0			ALS	
	MW-16 2016 AN		MW-16	08/30/16	1230	N	WG	N	N		10.0	20.0			ALS	
	MW-18S 2016 AN		MW-18S	08/30/16	1125	N	WG	Ν	N		12.0	22.0			ALS	
	MW-19 2016 AN		MW-19	08/30/16	1220	N	WG	N	N		3.0	14.0			ALS	
	MW-24S 2016 AN		MW-24S	08/31/16	1135	N	WG	N	N		5.0	15.0			ALS	
	MW-16 DUP 1 2016 AN	MW-16 2016 AN	MW-16	08/30/16	1230	FD	WG	Ν	N		10.0	20.0			ALS	
	TRIP BLANK 1 2016 AN			08/30/16	0700	тв	WQ	N	N						ALS	
	TRIP BLANK 2 2016 AN					ТВ	WQ	Ν	N						ALS	
	SW-29 2016 AN		SW-29			N	WS	N	N		0.0	0.0		no flow	ALS	
	SW-34 2016 AN		SW-34	08/30/16	1245	N	WS	N	N		0.0	0.0			ALS	
	SW-35 2016 AN		SW-35	08/31/16	1110	N	WS	Ν	N		0.0	0.0			ALS	

SAMPLE IDENTIFICATION KEY

															. ()
P	oject:	Xerox Building 801 Annual Monitoring	Client:	Xerox Corpo	oration						File Nun	nber:		4222	7
L	ocation:	Henrietta, NY	Weather:								Project I	Manager:		Janice Szucs	
In	vestigation Area:		Units: ft								Field Re	presentativ	/e:		
s	ampling Company:	ALS	Notes:								Field Re	presentativ	ve Signature	:	
Li	boratory:	ALS		-		-		-				-			Date
	Sample ID	Parent Sample ID	Location ID	Sample Date	Sample Time (military)	Sample Type Code	Matrix Code	Filtered (Water Only) (T/D/N)	Com- posite (Y/N)	Soil Type	Depth to Top (ft)	Depth to Bottom (ft)	Chain of Custody Number	Comments	Collected By

GROUNDWATER LEVEL MONITORING REPORT

Project:	: Xerox Building 801 Annual Monitoring								File Number:				
Location:	Henrietta, N	٩Y				Weathe	r:		Project Manager:				
Reference:	Top of Cas	ing				Units:			Field Representative:				
Method:	Dip					Comme	nts:						
Monitoring Well ID	Area of Interest	Monitoring Interval	Date	Time (Military Time)	Date & Time	Well Dry? (Y/N)	Depth to Floating Product (ft)	Depth to Water (ft)	Depth to Sinking Product (ft)	Depth to Well Bottom (ft)	U n i	Top of Riser Elevation (ft)	Calc. Water Elevation (ft)
RW-4	ONSITE	ANNUAL	08/31/16	09:07	8/31/16 9:07	N		5.77		25.44	ft	498.84	493.07
VE-6	ONSITE	ANNUAL	08/30/16	14:10	8/30/16 14:10	N		6.58		16.37	ft	498.93	492.35
VE-10	ONSITE	ANNUAL	08/31/16	09:40	8/31/16 9:40	N		6.12		16.47	ft	500.04	493.92
VE-12	ONSITE	ANNUAL	08/31/16	09:50	8/31/16 9:50	N		5.33		17.00	ft	501.09	495.76
VE-15	ONSITE	ANNUAL	08/31/16	09:00	8/31/16 9:00	N		6.48		16.77	ft	499.73	493.25
MW-2	ONSITE	ANNUAL	08/31/16	10:55	8/31/16 10:55	N		6.68		23.50	ft	498.49	491.81
MW-10	ONSITE	ANNUAL	08/30/16	13:35	8/30/16 13:35	N		8.11		21.24	ft	498.45	490.34
MW-13S	ONSITE	ANNUAL	08/30/16	11:15	8/30/16 11:15	N		12.02		20.46	ft	498.35	486.33
MW-16	ONSITE	ANNUAL	08/30/16	12:30	8/30/16 12:30	N		11.58		22.90	ft	498.83	487.25
MW-18S	ONSITE	ANNUAL	08/30/16	11:25	8/30/16 11:25	N		11.89		25.02	ft	498.81	486.92
MW-19	ONSITE	ANNUAL	08/30/16	12:20	8/30/16 12:20	N		10.42		15.89	ft	498.53	488.11
MW-24S	ONSITE	ANNUAL	08/31/16	11:35	8/31/16 11:35	N		5.38		17.78	ft	503.44	498.06

GROUNDWATER LEVEL MONITORING REPORT

Project:	Xerox Building 801 Annual Monitoring				Client: Xerox Corporation				File Number:				
Location:	Henrietta, NY				Weather:					Project Manager:			
Reference:	Top of Casing				Units: ft				Field Representative:				
Method:	Dip				Comments:								
Monitoring Well ID	Area of Interest	Monitoring Interval	Date	Time (Military Time)	Date & Time	Well Dry? (Y/N)	Depth to Floating Product (ft)	Depth to Water (ft)	Depth to Sinking Product (ft)	Depth to Well Bottom (ft)	U n i t	Top of Riser Elevation (ft)	Calc. Water Elevation (ft)

	Form FMG 5.1-01 Rev (06-09-09)
42227	
Janice Szucs	
Remarks	Measured By
	ALS

			Form FMG 5.1-01 Rev (06-09-09)
		42227	
Janice Szucs			
	Remarks		Measured By

APPENDIX C

Time vs. Concentration Graphs

Haley & Aldrich of New York G:\Xerox\Henrietta B801\Reporting - PRR\2016 Report 7\Tables\Individual Files\Table I and II -Total VOCs_Water Levels_2016.xls

Total VOCs - Downgradient Wells

APPENDIX D

NYSDEC Acceptance of Resampling

Sanger, Jonathan

From:	Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov></todd.caffoe@dec.ny.gov>
Sent:	Wednesday, February 08, 2017 4:59 PM
То:	Duffney, Eliott N
Cc:	Szucs, Janice
Subject:	Re: Former Xerox Henrietta resampling with PDB's

Using the PDBs is acceptable. If you would prefer to change the sampling protocol for future sampling rounds to PDBs for all wells, that is acceptable to me too.

Todd M. Caffoe, P.E. NYSDEC - Region 8 Headquarters 6274 East Avon-Lima Road Avon, New York 14414

Phone: (585)226-5350

NEW EMAIL ADDRESS: todd.caffoe@dec.ny.gov

From: Duffney, Eliott N <Eliott.Duffney@xerox.com>
Sent: Wednesday, February 8, 2017 4:37 PM
To: Caffoe, Todd (DEC)
Cc: Szucs, Janice (JSzucs@haleyaldrich.com)
Subject: Former Xerox Henrietta resampling with PDB's

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Todd,

The Q3-2016 analytical result for MW-19 at the former Xerox - Henrietta site showed a significant increase in total VOC concentration (from 606 ppb to 7,953 ppb). Xerox desires to resample this well to confirm the increase in this detection at MW-19. To do this, we propose to install a passive diffusion bag (PDB) to allow a sample to be collected. A PDB sample is also proposed to be collected from MW-10 to act as a control comparison for the resample of MW-19.

Using PDB's to collect groundwater samples is not the normal well sampling protocol that has been used at the site. The use of PDB's for this resampling effort is being proposed to eliminate the creation of purge water - that would require a separate trip by a waste handler to collect, transport, and dispose of. Please let me know if you have any issues with the use of PDB's to collect groundwater samples at the site or if PDB's are acceptable for this resampling effort.

Thank you,

Eliott N. Duffney

Program Manager Xerox Corporation Corporate Assessment and Environmental Operations